

--+ ~

~ -+­ --+­ ~ + -+--+
_I ... + + ~ ... -+----+

I
~I -+­ ~ l­ • ..

I t~ r +­ ...

tT t 01­ +­ +-­ Apple 11/

+

50S Device Driver Writer's
+- T

~ t

+­ t- tt
l t ~

I :
!- 1

+­

+­

I­

.. t

+- t-

Guide

1 I

~ t
1 t +
+

+ ~
+ + +

.. 01­~

t- t­ ~ +­

.. ..+- ~

.. +- +­t

l

II 50S Device Drivers Writer s GUide •

Contents

Introduction ix

x Why Device Drivers?

x Who Uses Them?

x How They Work

xi Scope of this Manual

xii Apple II Emulation Mode

xiii Notations Used in this Manual

1 Overview of SOS Device Drivers 1

4 SOS Device Classes

4 Character Driver Functions

5 D~INIT

5 D~OPEN

5 D~CLOSE

5 D~READ

5 DR-WRITE

6 DR-STATUS

6 DR-CONTROL

iv SOS Device Drivers Writer's Guide •

6 Block Device Functions
6 D~INIT

6 D~READ

7 D~WRITE
7 DR-REPEAT
7 D~STATUS

7 D~CONTROL

7 Conceptual Model of SOS
8 The Abstract Machine
9 SOS Data and Control Flow

10 Generalized Device Driver Model
11 Summary

2 The Physical Environment of SOS 13

14 Hardware Diagram

14 SOS System Address Space

16 System Control Registers

16 E Register

17 Z Register

18 B Register

19 Memory Addressing

19 Bank-switched Addressing

19 Enhanced-Indirect Addressing

21 RS232 Serial Port

21 Receive/Transmit Data Register

21 Status Register

21 Command Register

22 Control Register

22 External Device Selection

22 $C800 Selection

v

23

• Contents

3 Request Handling

27
27
28
28
29
29
29
30
31
31
36
36
36
37
37
38
38
40
40
41
43

Driver Execution Environment
Zero- and Extended-address Page Usage
Driver Parameter Table
B Register
System Clock State
System Interrupt State
System I/O State

Internal Driver Structure
The Driver Information Block (DIB)

The DIB Header Block

The DIB Configuration Block

Storage and Communication Buffers
SOS Driver Requests

DR-INIT
DR-OPEN
DR-CLOSE
DR-READ
DR-WRITE
DR-REPEAT
DR-STATUS
DR-CONTROL

4 50S-provided Services

49 System Resou rce Allocation
50 ALLOCSIR
51 DEALCSIR
51 I/O Expansion Selection
52 SELC800
52 Error Handling
53 SYSERR
53 System Errors
54 Event Handling
55 Event Queing
55 Event Recognition
56 QUEEVENT

47

vi SOS Device Drivers Writer's Guide 	 •

5 	 Interrupt Handling 59

60 Interrupt Handlers

61 Interrupt Handler Design

62 Interrupt Handler Environment

64 Interrupt Resou rces

6 	 Device Driver Coding Techniques 65

66 General Driver Design

68 Writing Character Drivers

69 Writing Block Drivers

69 Writing for Interrupt-driven Devices

69 Creating Device Driver Code Files

70 Error Detection and Reporting

7 	 Interfacing with Apple III
Peripheral Connectors 71

72 Physical Description
73 Electrical Description
77 Design Techniques for Interface Cards
77 Decoupling
77 I/O Loading and Drive Rules
79 Timing Signals
80 Designing-in 6522s
82 Design Techniques for Apple III Prototyping Cards
83 Minimizing EMI
84 Safety and Testing
85 Programm ing Notes

• Contents vii

Appendices

A Sample Block Driver Skeleton 87

B Sample Character Driver Skeleton 99

C 6502B Instruction Set 111

D Important Fixed Addresses 121

122 SOS Resources Available for Device Driver's Use
122 Addresses Important to Device Drivers

Glossary 123

Figures and Tables 133

Index 135

vIII SOS Device Drivers Writer S GUide •

n ro uc Ion x•

Introduction

The device driver is an essential and integral part of the Apple III
operating system, hereafter referred to as SOS (Sophisticated
Operating System). It is the part of SOS that supports all input and
output (I/O) operations, regardless of the type of device being used.

In the world of SOS, everything external to the CPU and its memory
address space is a file: to be opened, read, written to, and closed.
Unlike many other computer systems, the type of device being used
for I/O makes essentially no difference in the way that programs
perceive and use them.

Device drivers write to and read from flies. This manual tells you
how to write device drivers and incorporate them into SOS. It
assumes that you are familiar with both 6502 assembly-language
programming and the information in the following four manuals:

Apple III Owner's Guide

Apple III Standard Device Drivers Manual

Apple III SOS Reference Manual

Apple III Pascal Program Preparation Tools

If that assumption is not yet correct, we can resume when you return.

x eVlce rivers rI ers UI e •

Why Device Drivers?

Most of us are used to speaking with people who use and understand
the same language that we do. When someone new moves into the
neighborhood speaking another language, we can either learn the
new language, find a translater, wait for the other person to learn
your language, or else get by without communicating.

A computer system is like a neighborhood, and each different device
connected to the computer "speaks differently". If each application
written to run on a computer is required to have its own routines to
communicate with devices, a great amount of time (and money) is
spent on needlessly duplicating effort. Rather than require users to
write new interfac ing programs or rewrite applications for each new
device that they connect to their Apple III , SOS device drivers
support uniform communication between applications and devices.

Device drivers become part of SOS and so are loaded each time the
system is booted . AI/I /O in SOS is performed by device drivers.

Who Uses Them?

Every part of the Apple III system that communicates with something
or someone external to the Apple Ill 's processor uses device drivers
in SOS, and no I/O is done without them . Some device drivers are
supplied with SOS, including .CONSOLE, .PRINTER, .AUDIO, and
.RS232 ; they are described in the Apple III Standard Device Drivers
Manual.

Other device drivers are supplied with the device that they serve, for
example .PROFILE, supplied with the ProFile hard disk.

How They Work

All SOS data flow is performed by device drivers through files . A file
is a named , ordered sequence of bytes and may be used to store,
transmit , or retrieve any type of information that you can put into the
Apple III.

Introduction xi

SOS recognizes two classes of files: character files and block files.

A character file is treated by SOS as an continuous stream of bytes.
SOS can read or write the next byte in the stream, but it cannot
reread or skip bytes in the stream.

A file sent to a character device, such as a printer, is a character
device file. As far as a program running under SOS is concerned,
there is no difference in the way it accesses any type of character
device; all look like files to the program.

A file can also reside on a block device, such as a disk drive. A block
file is composed of characters in groups called blocks of 512 bytes
each. Blocks are numbered serially, but SOS can read from or write
to any given block at will. A block file is limited to a maximum of
$FFFFFE bytes, or 16,777,215 bytes.

A program can open, read, write, and close a character file, but
cannot create, delete, or rename one. A character device file cannot
be accessed as a random-access file; a block device file can be
accessed randomly.

Scope of this Manual

This manual provides enough information for experienced assembly­
language programmers to write device drivers for character and
block devices to work with Apple III SOS.

This manual is not intended to be a tutorial covering basic
programming or hardware-design techniques; we assume that you
know them already.

Chapter 1 provides a general overview of the concepts underlying
SOS device drivers.

Chapter 2 describes in general terms the underlying physical
environment of SOS device drivers.

xii 	 SOS Device Drivers Writer's Guide

Chapter 3 describes request handling, the main "job" of device
drivers.

Chapter 4 describes the services provided by SOS to aid device
dr iver fu nction, such as error reporting and resou rce allocation .

Chapter 5 describes interrupts and interrupt handling by SOS device
drivers.

Chapter 6 presents techniques for developing device drivers.

Chapter 7 presents techniques for designing and building interface
cards to connect with the Apple III through the backplane peripheral
con nectors.

Appendix A is a sample device driver skeleton that can be used as a
starting point for writing drivers for block devices such as disks.

Appendix B is a sample device driver skeleton that can be used as a
starting point for writing drivers for character devices such as
printers.

Appendix C contains the instruction set of the 6502B, the
microprocessor used by the Apple III.

Appendix D contains a list of system addresses that are important to
device driver writers.

App/e II Emu/ation Mode

The Apple III also offers an Apple II Emulation mode. In this mode,
the Apple III functions as a 48K Apple II or Apple II Plus with a disk
controller card in slot 6, and a serial (either Communication or Serial)
interface card in slot 5 or 7. There is no "slot 0". Other limitations of
Emulation mode operation are:

• 	 No software requiring the Language card will run on an
Apple III in Emulation mode.

• 	 . Introduction xiii

• 	 Only the built-in disk drive and the first external drive will be
usable. Daisy-chaining additional drives is not supported.

• 	 The RGB video output will only generate black and white
images in HIRES graphics.

• 	 There is no cassette port.

• 	 DMA and interrupts are not supported.

Notations Used in this Manual

Three symbols appear throughout this manual to point out
particularly important information:

A hand indicates information of an especially useful nature, which
may not be very obvious at first sight.

An eye points out some characteristic of the software or hardware
operation that you should be careful about.

A stop sign draws your attention to something that may have
serious consequences if not used properly, such as damaging the
Apple III or causing a serious error, or complete shutdown of
system operation.

XIV eVlce Drivers rlters ui e

• Overview of SOS Device Drivers 1

Overview of 50S Device Drivers .

4 SOS Device Classes
4 Character Driver Functions
5 D~INIT

5 D~OPEN

5 D~CLOSE

5 D~READ

5 D~WRITE

6 D~STATUS

6 D~CONTROL

6 Block Device Functions

6 D~INIT

6 D~READ

7 D~WRITE

7 D~REPEAT

7 D~STATUS

7 D~CONTROL

7 Conceptual Model of SOS

8 The Abstract Machine

9 SOS Data and Control Flow

10 Generalized Device Driver Model
11 Summary

1

2 80S Device Driver Writer's Guide

Overview of 50S Device Drivers

The Apple III/S0S system deals with all input and output (I/O) in
the same way: all devices connected to the system are files,
communicating with SOS through device drivers.

Every device driver has one or more physical devices associated with
it. For example, a block device driver has one or more block devices,
a format device driver has one or more format devices, and so on.

SOS communicates to attached devices (keyboard , screen, printers,
disks, and so on) by sending device requests to direct the operation
of each device by its device driver. Remember that all devices
connected to SOS are files.

A device driver is a memory-resident module that implements the set
of SOS device requests (through request handlers) required of all
devices connected to SOS. In addition to device requests, a device
driver also performs interrupt handling (with interrupt handlers) for
devices using interrupts.

At system startup, device drivers reside in a file called SOS.DRIVER
on the boot volume. You can change the content of SOS.DRIVER with
the SOS System Configuration Program (SCP) described in the Apple
III Standard Device Drivers Manual. SCP lets you reconfigure your
operating system by adding or removing device drivers. Note that
SCP also checks the validity of your device driver's format.

3 Overview of SOS Device Drivers

When a device driver is called, the SOS device manager passes a
request table to the device driver defining the type of operation to be
done. These operations are called device requests, and each device
driver has a specific set of device requests that it must perform for its
own device. SOS device requests are briefly described later in this
chapter, and in detail in Chapter 3.

A standard group of device drivers comes with every Apple III system
to enable the operation of the Apple Ill's built-in devices, such as
speaker, screen, keyboard, and RS232 serial port. These device
drivers are described in the Apple III Standard Device Drivers
Manual .

When you obtain an optional accessory device that can be connected
to your Apple III, the device driver needed to operate it is also
supplied .

Table 1-1 lists some important device drivers and the devices they
serve.

Device Driver Device(s) Served

(names as supplied)

CONSOLE

.PRINTER

.RS232

.AUDIO

.GRAFIX

.D1 through .D4

.PROFILE

Screen and Keyboard

Apple III serial port

Apple III speaker

Apple III graphics d isp lay

Disk III disk drives

ProF ile hard disk

Table 1-1. SOS Device Drivers and Devices

4 SOS Device Driver Writer's Guide •

All the device drivers listed in Table 1-1 except .PROFILE and the
Disk III drivers .02 through .04 operate built-in devices, and all
except .PROFILE are supplied wi,th the Apple III, system software
package. The .PROFILE driver is supplied with the ProFi,le hard disk,
and is typical of device drivers supplied with Apple III opt,ional
devices. Its use is described in the documentation supplied with the
ProFile hard disk.

SOS Device Classes

There are two classes of devices (and device drivers) within Apple III
SOS : character devices and block devices.

Character devices, such as printers and modems, can transfer
information in sequential character streams up to 64K bytes in length
at one time.

Block devices, such as disks, transfer information in 512-byte blocks.
Any higher orders of organization, such as files and directories, are
the responsibility of SOS.

A subclass of the block device driver is the format driver, used to
format a block device before use. A format device driver may either
be part of a block device driver or stand alone. A format driver
should be included as part of the device driver except when the
format driver is very large. In such a case, memory limitations would
dictate the need for a stand alone format driver.

Examples of stand alone format device drivers are .FMTD1 through
.FMTD4, found on the SOS Utilities diskette and used by SCP to
format diskettes.

Character Driver Functions

Character device drivers move character streams either in one
direction , like .PRINTER, or bidirectionally, like .RS232 ..

5 • Overview of SOS Device Drivers

Character drivers must support NEWLINE mode. This allows the use
of a single character to mark a logical end of record in a character
stream . The N ~WUNE charac ter may be defined any number of t imes
through DR-CONTROL device requests.

The SOS device requests performed by character device drivers are
described briefly below, and in greater detail in Chapter 3. Device
requests are issued by the SOS device manager.

DR_tNtT

DR-INIT operates once only (during system startup) to prepare the
device driver for use. The device served by the driver is not accessed
and remains closed, and no resources are allocated .

OR_OPEN

DR-OPEN is called to allocate a resource from the system : in this
case, to open its device file to be either written to or read from.

OR_CLOSE

DR-CLOSE is called to perform two operations : it shuts down its
device, and it deallocates the system resources assigned to the driver
and gives them back to the system .

OR_ READ

DR-READ is called to read a specified number of characters from its
character device into a buffer in memory.

DR-WRITE is called to write a specified number of characters from
a buffer in memory out to the character device.

6 SOS Device Driver Writer's Guide •

DR_STATUS

DFL-STATUS is called to provide information on the current status of
its device. In addition to the device's status, other information specific
to a given device or driver may be returned.

DR_CONTROL

DFL-CONTROL is called to reset the device, load control parameters,
reset the NEWLINE character (described in Chapter 3), or make other
changes to the device's operating parameters.

Block Driver Functions

Block devices move data in 512-byte blocks, and allow SOS to access
easily any given logical block of a block device.

A block driver's device is divided into consecutively-numbered logical
blocks; higher orders of organization (such as files or directories) on
the device are handled outside the driver.

The SOS device requests implemented by block device drivers are
briefly described below and in detail in Chapter 3.

DR_INIT

DFL-INIT is called during system startup to perform operations
required to prepare the device for use, allocate resources needed by
the driver, and open the device. A DFL-INIT request for a block device
is equivalent to requesting DFL-INIT and DFL-OPEN for a character
device.

DR_READ

DFL-READ is called to read one or more blocks from the block
device, beginning at a specified logical block number.

Overview of SOS Device Drivers 7 •

DR_WRITE

D~WRITE is called to write a specified number of 512-byte blocks
onto the block device from a buffer in memory, beginning at a given
logical block number on the device.

D~REPEAT is called to repeat a D~READ or D~WRITE
operation on a device. The unit number given for the call must be the
same as the last unit called by the SOS device manager, and the last
operation performed by that unit must have been D~READ or
D~WRITE.

DR_STATUS

D~STATUS is called by the SOS device manager to return the
status of its block device. Either a status byte (whose format is
defined in the driver's documentation), or the preferred location of a
bitmap may be returned.

DR_CONTROL

D~CONTROL is called to format the device.

Conceptual Model of 50S

It is often helpful for you to have a mental image of SOS and the

relation of device drivers to it when you are creating a new driver.

The conceptual model of SOS presented below is purposely
incomplete and slanted toward device drivers. The Apple III SOS
Reference Manual gives a more complete picture, and you should
understand it well before you begin writing device drivers.

8 SOS Device Driver Writer's Guide

The Abstract Machine

The Apple IIIISOS system is defined in terms of an abstract machine
whose operation and performance is a combinat ion of the two parts
of the system, SOS and the Apple III.

Figure 1-1 shows the components of the SOS abstract machine.

FILE
MANAGEMENT

6502

MEMORY
MANAGEMENT

I ---------4- -_-_-__ USER

.1-----­ INTERPRETER . _ ~

MEMORY

Figure 1-1. The SOS/Apple III Abstract Machine

9 • Overview of SOS Device Drivers

As Figure 1-1 indicates, almost everyth ing that goes on in the
abstract machine does so in memory. Even the hardware attached to
the abstract machine, such as pri nters, appears to exist somewhere
in the machine as memory.

It is important to realize that the user's appli cation never actually
deals with any physical part of the system , it only " sees" a
representation of those parts as presented to it by SOS.

SOS Data and Control Flow

Figure 1-2 shows the overall structure of SOS data and control flow.
Note that all transfer of information to and from the world external to
the SOS abstract machine passes through device drivers. There are
no exceptions!

SPEAKER

RS 232

PORTA & B

SLOT 1-4

6502

I ADDRES: 'NG EXTENSION CIRCUITRY

TIMING CIRCUITRY

Figure 1-2. SOS Data and Control Flow

10 SOS Device Driver Writer's Guide •

Generalized Device Driver Model

Figure 1-3 shows an idealized device driver.

DEVICE HEADER

DEVICE HEADER

CONFIGURATION

ASCII COPYRIGHT NOTICE

BUFFER(\
I

CALL FROM 50S ~(MAIN ENTRY POINT~

' ~ ~ ~ ~
(R~AD I(W~ITEI{ S ;T II C~R I! OP:N "CL~SE\~

INTERRUPT ~(r_____________I_N_T_E_RR_U_P_T_H_A_N_D_L_E_R____________~J

Figure 1-3. Generalized Device Driver Model

Appendices A and B in this manual contain examples of device driver
skeletons that you can use as a starting point for writing your own
device driver.

When you look at them, note that their structure follows that of the
figure above.

• Overview of SOS Device Drivers 11

Buffers (if used) must be incorporated within the body of the driver
itself. When SOS places the device drivers in memory, it packs them
there to maximize the use of available space. This means that a
buffer outside the driver would be squeezed out by SOS.

Summary

Block device drivers support 512-byte blocks and logical block
numbers. They also implement the SOS device requests DR-.INIT,
DR-.READ, DR-.WRITE, DR-. STATUS, DR-.CONTROL, and
DR-.REPEAT

Character device drivers implement the following SOS device
requests : DR-.INIT, DR-.OPEN, DR-.CLOSE, DR-.READ,
DR-.WRITE, DR-.STATUS, and DR-.CONTROL.

A device driver is part of SOS. Device drivers should be designed~ and tested as carefully and thoroughly as the rest of the operating
system .

12 50S Device Driver Writer S GUide •

• The Physical Environment of SOS 13

The Physical Environment of SOS

14 Hardware Diagram
14 SOS System Add ress Space
16 System Control Registers
16 E Register
17 Z Register
18 B Register
19 Memory Addressing
19 Bank-switched Addressing
19 Enhanced-Indirect Addressing
21 RS232 Serial Port
21 Receive/Transmit Data Register
21 Status Register
21 Command Register
22 Control Register
22 External Device Selection
22 $C800 Selection

-

2

14 50S Device Driver Writer's Guide . •

The Physical Environment of 50S

You should read and understand the Apple III SOS Reference
Manual before tackling the rest of this manual.

You should be familiar with the physical environment of 50S if you
are to develop efficient device drivers that can obtain the best system
performance. Of particular importance in writing device drivers is
familiarity with the overall memory organization and addressing of
the Apple III, as well as system control registers, and how I/O devices
are mapped into memory. The remainder of this chapter addresses
these topics.

Hardware Diagram

Figure 2-1 is a simplified hardware diagram of the Apple III.

This figure emphasizes that the most important functional part of the
Apple III is its memory. Almost everything in the system either uses or
supports it.

SOS System Address Space

A portion of the diagram given in Figure 2-1 is a map of the Apple III
system memory, shown in Figure 2-2.

• The Physical Environment of SOS 15

Figure 2-1. Generalized Apple III Diagram

:~~~ ~ANK If BANK

$0 $1

SAOOO , I

SPFPF--------------+-I--------~

r-:;:lG;l

~~

~~
SWITCHABLE CURRENT SWITCHABLE BANKS

BANK SPACE

KEY : D CURRENT BANK

Figure 2-2. SOS System Address Space

16 SOS Device Driver Writer's Guide 	 •

It is important to remember that the architecture of the SOS abstract

machine's memory includes these well-defined characteristics:

• 	 One 32K block of memory, used by SOS, is always present,

extending from $0000 to $1 FFF and from $AOOO to $FFFF

• 	 The remainder of memory is divided into up to 15 additional
32K blocks, each one addressed from $2000 to $9FFF This
means that the SOS abstract machine could directly address
up to 512K of memory.

Note that the Apple III hardware presently supports a maximum of
256K bytes of memory.

System Control Registers

SOS has a number of registers to help it keep track of the system's
state, and to aid in addressing all the memory that the system
can use.

All or part of the information contained in these registers is available

for your device drivers to read. The registers are described below.

E Register

The E (environment) register (at $FFDF) contains information about
the state of the system. Its structure is given below, along with its
usual content when a device driver is called.

Environment Register

7 6 5 4 3 2 1 0

System I/O Screen Reset Write Stack ROM ROM
Clock Space State Enable Protect Used Select Select

• The Physical Environment of SOS 17

Bit Usage Value

r CPU clock rate (1 MHz or full speed) o (Full speed)
6 I/O space 1 (Enabled)
5 Screen - (Undefined)
4 Reset enable - (Undefined)
3 Write protect (top 16K) o (Not enabled)
2 Stack in use 1 (Primary)

1-0 ROM 00 (Deselected)

' Bit can be toggled by device drivers with reservations given below.

Because of the possible states of the screen and reset enable, the
Environment register may contain values of $74, $64, $54, or $44
when a device driver is called. Your driver should change only bit 7 of
the register, if necessary. The other bits should be left strictly alone.

Bit 7 defines the system clock rate, which can be switched between
1 MHz and full speed, which is presently 2 MHz.

A driver should never switch the clock to 1 MHz mode unless a part
on the card that it drives is unable to handle the higher speed.

Your drivers should always reset bit 7 to zero (full speed) before
exiting back to the device manager if they have had to set the clock
to 1 MHz.

Z Register

The Z (zero-page) register (at $FFDO) defines the actual page in
memory used for all zero-page references. It is always set to $18
when request handlers are called. When an interrupt handler is
called, the Z register contains $0. See Chapter 5 for more information
on interrupt handling.

This means that when you make a zero-page reference to $CO, the
actual address used is $CO of the current zero-page, an actual
address of $18CO.

--

18 SOS Device Driver Writer's Guide •

Enhanced-Indirect addressing requires a three-byte pointer to the
desired address. The first two bytes are placed in the current zero­
page while the third byte is placed in the extend-address page at the
same relative address as the second byte of the address in the zero­
page. The extend-add ress page, whose location is set by SOS, is
always page $14 during driver execution .

Zero-page Register

B Register

The B (bank) register (at $FFEF) defines which of the selectable 32K
banks of memory is in use by the value contained in bits 0-3. Its value
is set by the system.

Since the device driver accesses memory in the bank defined by the
B register, changing the register 's content moves the actual area in
memory being accessed to some other bank in the address space. It
would be something like trying to navigate the Los Angeles freeway
system while using a Chicago road map that you had just pulled out
of your car's glove compartment.

Device drivers use Enhanced-Indirect addressing when passing the
address of a table or list for some of the SOS driver requests (see
Chapter 3).

Bank Register

7 6 -, 5
I

4 3
,

2
I

1 I
(Undefined) (Bank in use)

0

See the discussion of Enhanced-Indirect addressing later in this
chapter.

• The Physical Environment of 50S 19

Memory Addressing

The Apple III/50S architecture allows addressing a memory space up
to 512K bytes in size.

The Apple III 50S Reference Manual describes the Apple III
addressing modes in detail. The information contained here is
primarily for review of addressing modes that concern device drivers.

The two methods of addressing that concern device drivers are the
Bank-switched and Enhanced-Indirect addressing modes described
below.

Bank-switched Addressing

Bank-switched addressing is standard 6502 addressing except that
the region of memory from $2000 through $9FFF will actually be one
of up to 15 available 32K blocks of memory, depending on the value
contained in the B register.

The B register always contains a value set by 50S when device
drivers are called . For more information on absolute addressing, see
the Apple III Pascal Program Preparation Tools manual.

Enhanced-Indirect Addressing

Enhanced-Indirect addressing uses a three-byte address to access
any given address within the Apple Ill 's memory, and is used by
device drivers when passing pointers. It is described in detail in the
Apple III 50S Reference Manual .

Extend-page currently in use is always equal to the content of the Z
register EOR $OC. When a device driver is called , since the Z register
always contains $18, the extend-page is always $14.

20 SOS Device Driver Writer's Guide 	 •

The first two bytes of the Enhanced-Indirect address are placed
in the current zero-page ($18), and the third byte is placed in the
extend-page at the same address as the high-order byte of the
address in the zero-page.

The extend-byte (X-byte) may contain 0 or a value ranging from $80
to $8F, giving 16 possible values. The second half of the extend­
register byte is the number of the switchable 32K bank being
accessed, numbered from $0 through $F If the extend-byte is $00,
there will be no extended address in use.

After the X-byte has selected the 32K address segment to access, the
two bytes in the current zero-page define the address in that segment
to access. For more information on Enhanced-Ind irect addressing,
see the Apple III SOS Reference Manual .

Because of the way that extended addressing is implemented in the
Apple III , locations $0000 through $OOFF in any given segment
cannot be addressed directly.

Here is a general algorithm for addressing those ranges of memory :

• 	 If the address is of the form $OOxx bank n, the address that

you use will be of the form $80xx bank n-1 .

• 	 In the case given above, if n=O, the address that you use will
be of the form $20xx bank $8F

• 	 If the address is of the form $FFxx bank n, the address that

you use should be $7Fxx bank n+ 1.

An example of a program that actually implements this is given in
Appendix A.

If the X-byte is $8F, the S-bank and bank 0 are switched into their
normal bank-switched form . This configuration is used by graphics
drivers needing to access the lowest part of the graphics area in
bank O.

• The Physical Environment of SOS 21
,

RS232 Serial Port

A minimally-configured Apple III has several built-in I/O devices in
addition to the keyboard and display screen . The RS232 serial port is
described below.

An Asynchronous Communication Interface Adapter (ACIA) is built
into the Apple III and is used for the built-in RS232 serial port. It must
be accessed at the fixed 1 MHz speed.

Note that the ACIA is a 6551 and not the 6850 used in some other
Apple interface devices. It contains four read/write registers that
your driver can use to control the ACIA as a serial I/O device: the
receive/transmit data register, status register, command register, and
the control register. They are briefly described below. For more
detailed information on the 6551 's command , control, and status
registers, see the manufacturer's data sheet.

Receive/Transmit Data Register

At $COFO is the receive/transmit data register. All data flowing
through the Apple Ill's RS232 serial port passes through this register.

Status Register

The ACIA's status register is at $COF1. It contains housekeeping
information for the ACIA.

Command Register

At $COF2 is the ACIA's command register, holding information for the
ACIA on what it should be doing.

22 SOS Device Driver Writer's Guide •

Control Register

The ACIA's control register is at $COF3, with information on the
ACIA's proper operating state.

External Device Selection

The addresses available for a given slot's I/O and onboard devices are
calculated by adding the slot number multiplied by 16 to $C080. For
example, slot 1 uses addresses $C090 through $C09F

The memory addresses available to any slot (for on board buffers, and
so forth) are $CnOO through $CnFF, where n is the number of the slot
being used.

$CBOO Selection

You can include up to 2K of memory decoded for the address space
from $C800 on up on your interface card. Your driver can access this
space by calling SELC800, which is described in Chapter 4. Since this
address space may be shared among several devices, it must be
explicitly allocated each time it is to be used.

~ The Apple III has no screen slots such as those in the Apple II
~ available for use.

Request Handling

27 Driver Execution Environment
27 Zero- and Extended-address Page Usage
28 Driver Parameter Table
28 B Register
29 System Clock State
29 System Interrupt State
29 System I/O State
30 Internal Driver Structure
31 The Driver Information Block (DIB)
31 The DIB Header Block
36 The DIB Configuration Block
36 Storage and Communication Buffers
36 SOS Driver Requests
37 DFLINIT
37 DFLOPEN
38 D~CLOSE

38 D~READ

40 D~WRITE

40 D~REPEAT

41 D~STATUS

43 D~CONTROL

3

24 SOS Device Driver Writer's Guide •

Request Handling

As mentioned in Chapter 1, there are two classes of device drivers:
block and character. (Remember that block devices include a
subclass , that of format devices.)

All device drivers handle a given set of requests passed to them by
the SOS device manager through a driver request parameter table, a
ten-byte list beginning at $CO in the current zero-page.

A request handler should process the following SOS requests
(assuming that its driver needs to implement them):

DR-READ
DR-WRITE
DR-STATUS
DR-CONTROL
DR-OPEN (character drivers only)
DR-CLOSE (character drivers only)
DR-I""T
DR-REPEAT (block drivers only)

After the operation has been completed, the request handler returns
execution to the SOS device manager.

The request handler should also check for improper request codes,
and other likely error conditions. Error handling is discussed in
Chapter 4.

• Request Handling 25

Device drivers are called by the SOS device manager, never by user's
programs or a SOS interpreter.

Table 3-1 presents the format of the device driver parameter tables as
passed to character drivers. The addresses correspond to the current
zero-page in use by the device driver ($18). Note that all pointers are
three-byte enhanced-indirect pointers.

DEVICE DRIVER PARAMETERS PASSED CHARACTER DRIVERS

READ WRITE STATUS CONTROL OPEN CLOSE IN IT

$CO

$Cl

$C2

$C3

$C4

$C5

$C6

$C7

$C8

$C9

0 1 2 3 6 7 8

UNIT .NUM UNI L NUM UNIT_NUM UNILNUM UNIT_NUM UNIL NUM UNILNUM

BUFFER

POINTER

BUFFER

POINTER

STA CO DE CTl CO DE

STATU S
LIST

POINTER

CONTROL
LIST

POINTERREOUEST­

ED
COUNT

BYTE

COU NT

BYTES
READ

POINTER

NOTE : Pointers are 3-byte addresses using the X byte

Table 3-1_ Character Device Driver Request Parameters

26 80S Device Driver Writer's Guide •

Table 3-2 presents the format of the device driver parameter tables as
passed to block drivers. The addresses correspond to the current
zero-page in use by the device driver ($18). Note that all pointers are
three-byte enhanced-indirect pointers.

The block numbers specified in the DR-READ, DR-WRITE, and
DR-REPEAT device calls are logical block numbers. Only the device
driver itself knows (or cares) what the actual physical location of the
data is.

DEVICE DRIVER PARAMETERS PASSED BLOCK DRIVERS

READ WRITE STATUS CONTROL INIT REPEAT

$CO

$Cl

$C2

$C3

$C4

$C5

$C6

$C7

$C8

$C9

1 8 90 2 3

UNIT_NUMUNIT_NUM UNIT_NUMUNILNUM UNILNUM UNILNUM

BUFFERBUFFER BUFFER STA COD E CTLCODE

POINTER
LIST

POINTER POINTER STATUS CONTROL
LIST

REQUEST­ BYTE POINTER POINTER

ED

COUNT
 IGNOREDCOUNT

BLOCKBLOCK BLOCK

NUMBERNUMBER NUMBER

BYTES

READ

POINTER

NOTE : Pointers are 3-byte addresses using the X byte

Table 3-2. Block Device Driver Request Parameters

• Request Handling 27

The parameters passed to device drivers and their uses are further
described later in this chapter in the individual descriptions of the
SOS driver requests.

In addition to request handling, some drivers also handle interrupts.
Interrupt handling as it relates to device drivers is described in
Chapter 5 of this manual.

The first code executed in your drivers is a request handler, which is
the single entry point for each device driver.

The request handler checks the contents of $CO for the request
code passed by the SOS device handler. It then branches to the
appropriate part of your driver and begins acting on the request.

Driver Execution Environment

Every time a device driver is called by the device manager, some
aspects of the execution environment are the same. These
characteristics are outlined in Table 3-3.

The environment characteristics outlined in Table 3-3 are described
in more detail below.

Zero- and Extended-address Page Usage

Zero-page locations $CO through $FF are available for all device
drivers' use. (Some of them are preloaded when your driver is called .)

Since all the drivers configured into the system share the same zero­
and extend-page locations, these locations are useful to a given
driver only while that driver is running. Other than the parameter list
passed to the driver when it is called , your driver cannot count on the
contents of the rest of the space when it begins execution.

28 SOS Device Driver Writer's Gu ide •

Characteristic State

Decimal mode Disabled

Interrupts Enabled

Status bits (N . V. B. Z. C) Indeterminate

Accumulator Indeterminate

X register Indeterminate

Y register Indeterminate

Environment register
CPU c lock Full speed
I/O space Enabled
Screen Undefined
Re se t lock Undefined
Write protect Off
Stack Primary
ROM Disabled

Zero-page in use $18

Extend-page in use $14

Bank register System

I/O Expansion Slot Deselected

Table 3-3. SOS Device Driver Environment

Driver Parameter Table

Parameters are always passed to device drivers in locations $CO
through $C9 in the current zero-page ($18). Depending on the type of
driver operation being requested, ali of these locations may not be
used . For a complete description of each SOS driver request's
parameter table, see the individual SOS driver request descriptions
later in this chapter.

B Register

The B (bank) register is located at $FFEF and contains the number of
the bank in which your driver resides.

Request Handling 29

System Clock State

The system clock determines how fast the Apple III operates, and its
speed can be changed. It normally runs at 2 MHz (full speed), but
some parts of the system cannot operate at that speed . When these
parts (such as the video refresh) are working, the clock is slowed to
1 MHz.

This rapid switching between 1 and 2 MHz means that the system
effectively operates somewhere between 1.4 and 1.7 MHz.

Avoid using time-dependent code! If exact timing is absolutely
necessary, then hardware to take care of the critical timing
functions should be on your interface card .

When your driver is called , the system clock speed is always set to
full speed, and should be reset to that when you exit the driver if you
have changed it. Since you cannot depend on the exact clock speed
during operation in full speed mode, you can only be certain of the
minimum time needed for any given operation to be completed .

~ You should never switch the clock rate to 1 Mhz unless parts of
~ your device will not operate at higher rates.

System Interrupt State

Interrupts (IRQ) will be enabled , and unless you absolutely require
them to be disabled, leave them alone. Interrupts and interrupt
handlers are described in detail in Chapter 5.

System I/O State

When your driver is called , it can depend on the I/O space to be
selected and $C800 space to be not selected.

30 50S Device Driver Writer's Guide

Internal Driver Structure

All device drivers consist of a Device Information Siock (DIS), storage
and communication buffers (as and if needed by the driver), a
request handler, an interrupt handler, and device requests.

~ Usual programming convention places the drivers ' buffers and data V before any of the executable code.

The general structure of a device driver is shown in Figure 3-1.

{
 REQUEST HANDLER

INTERRUPT HANDLER (\

DEVICE INFORMATION

BLOCK (DlB)

BUFFERS

DEVICE REQUEST

CODE

Figure 3-1. Device Driver Structure

Request Han mg 31

The Device Information Block (DIB)

A DIB is a table at the beginning of each driver defining the
characteristics of the devices that the driver can handle. A device
driver may have more than one DIB ; for example, if it handles more
than one device. A DIB is made up of two parts, the header block and
the configuration block, described below.

The DIB Header Block

The DIB header block is a table beginning at the first address of the
driver. Table 3-4 outlines its structure.

Field Name Length (bytes)

Comment field
Link pointer
Entry pointer
Device name (dev_ name)
Flags
Slot (slot_num)
Unit number (unit_num)
Device type (dev_type)
Device subtype
Fill er
Blocks
Manufacturer (manuf_id)
Version (ver_num)
Configuration fi eld

3+ (optional)
2

2

16

1

1

1

1
1
1
2
2

2

256 (max)

Table 3-4. DIB Header Block Structure

The Comment field is optional. If used, it can only appear at the
beginning of the the first header block in the driver. A comment field
is signalled by placing $FFFF as the first two bytes of the driver. If it
appears, the following byte will contain the length in bytes (up to 255)
of the comment immediately following.

The Link field (bytes $0 and $1) points to the beginning of the next
DIB contained within the device driver. If there are no more DIBs in
the driver, the Link field must be set to zero. A DIB is required for
each device served by a device driver.

32 SOS Device Driver Writer's Guide

The Entry field (bytes $2 and $3) points to the driver's entry address.
The entry point is defined by the device driver's writer and the value
is relocated during system boot to reflect the driver's location in
memory after startup. This pointer is used by the SOS device
manager when it calls the device driver.

The Device name (bytes $4 through $13) begins with a byte defining
the length of the device name. The name itself is composed of a
period followed by the name of the device. The first character of
the name must be alphabetic, followed by any combination of
alphanumeric characters and periods. Any characters in the device
name field past the number defined in the count byte are ignored. All
alphabetic characters must be uppercase, and no blanks are allowed
in the name.

The Flag byte (byte $14) is examined by SOS during system startup.
Bit 7 indicates whether the driver is active (1) or inactive (0), and its
value can be set by SCP Bit 6 is the Page flag and indicates whether
the driver should be relocated to begin on a page boundary. Note
that the byte immediately following the end of the first DIS is the one
that begins the page. The other bits of the flag byte are reserved for
later use and should be set to zero .

The Slot byte (byte $15) contains the slot number of the driver's
device. (0 indicates a built- in device, such as the console). If the byte
contains $FF, SCP will permit the user to modify the slot number to a
value from 1 to 4, inclusive. When writing your driver, you should
initialize this field to the values $00, $01 through $04, or $FF

The Unit byte (byte $16) indicates the unit number of the device
driver. When you write a dr iver, set the first DIB 's unit number to 0,
the second to 1, and so on .

The Device type byte (byte $17), along with the following byte is used
for device classification and indentification . This field specifies the
generic family that the device belongs to.

• Request Handling 33

The device type byte for SOS character devices has the following
structu re :

o

x

Bit 7 is cleared for all character devices.

Bit 6 (W) is the "write allowed " byte. It must be set for all character
devices that accept data from the Apple III.

Bit 5 (R) is the "read allowed " bit. It must be set for all character
devices that send data to the Apple III.

Bit 4 is reserved for future use and must always be cleared .

The device type byte for SOS block devices has the following

structu re :

Bit 7 is set for all block devices.

Bit 6 (W) is the " write allowed" byte. It must be set for all block
devices that accept data from the Apple III.

Bit 5 (R) is the "removable device" bit. It must be set for all block
devices that use removeable storage media, such as floppy-disk
drives.

Bit 4 is set if the driver can also format its device.

34 SOS Device Driver Writer's Guide •

Format devices (such as .FMTD1) are considered to be a special class
of devices. Unless it would take up too much room, the format
driver should be included in the device driver. The top four bits of the
format device type byte are $0001. The button four bits, and the
entire subtype byte must be identical to its block device.

The Device subtype byte (byte $18) indicates the specific device
being referred to within the device type class specified in the
previous byte. The two fields together uniquely define the device.

® Device type/subtype assignments are made by the Apple Technical
Support group . You should contact them if your device might fit
into a type or subtype group not given in Table 3-5.

Device Type Subtype

Character device (write only) :

RS232 printer (.PRIN TE R)
Silentype printer (.SILENTYPE)
Parallel printer (.PARALLEL)
Sound port (.AUDIO)

Character device (read/write):

System console (.CONSOLE)
Graphics screen (.GRAFIX)
Onboard RS232 (.RS232)
Parallel card (.PARALLEL)

Block devices:

Disk III (.01 through .04)
ProFile disk (.PROFILE)

Format devices:

Disk III (.FMTD1 FMTD4)

$41
$41
$41
$43

$61
$62
$63
$64

$E1
$D1

$11

$01
$02
$03
$01

$01
$01
$01
$01

$01
$02

$01

Table 3-5. Currently-assigned SOS Device Types and Subtypes

The Filler byte (byte $19) is reserved for future use by Apple. Your
driver must have this byte set to zero.

• Request Handling 35

The Blocks field (bytes $1 A and $1 B) specifies, in hexadecimal , the
number of logical blocks in a block device. This field must be set to
zero if the device is a character device. If a block device can use more
than one format, this field must be set either during OR-INIT or when
the format to be used is known .

The Manufacturer field (bytes $1 C and $10) contains a code
identifying the maufacturer of the driver. $0000 unknown
manufacturer, and $0001 - $001 F will be reserved for Apple
Computer's devices. Other values are assigned by Technical Support
at Apple Computer, Inc.

The Version number field (bytes $1 E and $1 F) contain the version
number of the device dr iver. Its format is given below:

7
I

6
I

5
I

4 3
I

2
I

1
I

0

v1 Q

V vO

In this figure V corresponds to the major version number (ranging
from $0 through $7), vO and v1 together correspond to the minor
version number (ranging from $0 through $99), and Q (ranging from
$0, $A through $E) allows further qualification of the number. For
example,

1.16C

would be represented by the following values: V= $1, vO= $1, v1=$6,
and Q= $C.

The version field is followed by the DIB configuration block,
described below.

36 SOS Device Driver Writer's Guide •

The DIB Configuration Block

The DIS configuration block is an optional table following the DIB
header block. It contains information about the device(s) handled by
the device driver. If used, there must be a separate configuration
block for each device handled by a single driver.

The first two bytes of the DIS configuration block contain the number
of bytes in the block, in " low byte, high byte" order. The high byte is
always $00.

The DIB configuration block content is defined by the device driver
writer and can contain configuration information such as baud rate
of the device, and so on. This information must be covered in the
driver documentation, and its values can be altered by the System
Configuration Program (SCP).

@ There must be a Device Configuration Block included for each
physical device served by the d river if you want to be able to use
SCP to alter information about the device.

Storage and Communication Buffers

You should reserve space for storage and communication buffers
immediately after the DIS in your device drivers. All parts of a driver
must reside in the same bank of memory. SOS packs drivers together
within the bank during each system startup to most efficiently use
space, and the driver's buffers must be set up within the driver itself
to avoid being squeezed out of existence.

50S Driver Requests

The major portion of a device driver is taken up by request handlers,
the code that implements the SOS device requests. Each device
request is implemented by a request handler.

SOS device requests are described below.

• Request Handling 37

Driver Request $08

DR_INIT prepares the driver's device(s) for use after system startup.
It also tells SOS how many, and what type, of devices that the driver
will be handling.

Parameters :

Address Content

$CO 8

$C1 Unit number

If DR_INIT is unable to perform any of its functions, it should return
to SOS with carry set. If everything is all right, DR_INITreturns with
carry clear.

Note that SOS cannot handle any event queued during DR-INIT
operation.

Driver Request $06

DR-OPEN is used to activate a device for use by allocating the necessary resources.

It is not used by block device drivers.

Parameters :

Address Content

$CO 6

$C1 Unit number

38 SOS Device Driver Writer's Guide

Driver Request $07

DR_CLOSE sets the specified character device to closed. It also
returns the device and driver to their pre-OR_OPEN state and
releases any resources that have been allocated by the driver.

DR_CLOSE is not used for block devices.

Parameters:

Address Content

$CD 7

$C1 Unit number

The unit number is defined in the DIS header block of your device
driver.

~ The specified unit must have been previously opened or else an
~ error results from the call.

Driver Request $00

DR_READ is used to request data from a device

A DR_READ will take data from the device until one of the following
conditions is met :

1. 	 The requested number of bytes have been read.

2. 	 The NEWLINE mode is active and the NEWLINE character
has been encountered (this applies only to character
devices).

3. 	 The end of the data buffer has been reached .

• equest an mg

Parameters for a character device:

Address Content

$CO
$C1
$C2-$C3
-$14C3
$C4-$C5
$C6-$C7
$C8-$C9
-$14C9

o
Unit number
Buffer poi nter

Requested count
Ignored
Bytes-read pointer

Parameters for a block device :

Address Content

$CO
$C1
$C2-$C3
-$14C3
$C4-$C5
$C6-$C7
$C8-$C9
-$14C9

o
Unit number
Buffer pointer

Requested cou nt
Block number
Bytes-read pointer

The buffer pointer in $C2 and $C3 refers to an area where the
information being read from the device will be stored.

Locations $C6 and $C7, used only by block devices, contain the
number of the logical block where the read is to begin .

The requested count ($C4-$C5) is the number of characters that are
desired by the caller, and a request of 0 characters is a valid request.

$CB-$C9 po tnts to a location containing the number of characters
actually read from the device.

~ Note that block devices transfer data only in 512-byte blocks, and
~ do not deal with NEWLINE mode.

40 SOS Device Driver Writer's Guide

Device Request $01

DR_WRITE is used to send information to a device to be printed (or
displayed , written to disk, and so forth).

Parameters for a character device:

Address Content

$CO
$C1 Unit number
$C2-$C3 Buffer pointer
-$14C3
$C4-$C5 Byte count
$C6-$C7 Ignored

Parameters for a block device :

Address Content

$CO
$C1 Unit number
$C2-$C3 Buffer poi nter
$C4-$C5 Byte count
$C6-$C7 Block number

The buffer contains the information to be written by the device.
Remember that the byte count for block devices is given in multiples
of 512 bytes.

The block number (given for block devices only) is the logical number
of the first block to be written.

Driver Request $09

DR_REPEAT is used (by block drivers only) to repeat the previous
DR_READ or DR_WRITE operation.

• Request Handling 41

You should include a " last request " byte somewhere in your
device driver to keep track of the driver's last-performed
non-OR_REPEAT operation .

P aramete rs:

Address Content

$CO 9
$C1 Unit number
$C2-$C3 Buffer pointer
- $14C3
$C4-$C5 Ignored
$C~$C7 Block number

The block number is the logical block number at which the requested
operation is to begin.

@ The last operation performed by that driver and the unit being
~ called must have been either DR_READ or DR_WRITE.

Driver Request $02

DR_STATUS is used to obtain the current status of a device or its
driver.

Parameters:

Address Content

$CO 2
$C1 Unit number
$C2 Status code
$C3-$C4 Status list pointer
-$14C4

42 SOS Device Driver Writer's Guide •

The content of $C2 is a status code, with different codes for
character and block drivers. Character drivers must support at least
the codes given below :

Status code Meaning

$00 No operation
$01 Return control parameters
$02 Return NEWLINE information

Additional status codes may be included with a device driver, and, if
added, must be described in the driver's documentation.

The structure of the status list, if used, depends on the particular
status code request being performed.

For a $00 status code, the status list is a single byte:

Bit Value Meaning

7 0 Device not busy
1 Device busy

6-2 Not used
1 0 Device (or medium) not

write-protected
Write-protected

0 Not used

For a $01 status code, the first byte of the control list contains the
length of the control list in bytes. The structure and content of
the remainder of the list depends on the driver. Each driver's
documentation should describe its particular usage.

A $02 status code points to a two-byte list. The first byte contains $00
if there is no NEWLINE character, and $80 if there is one. The second
byte in the list contains the new f\IEWLINE character, assuming it
exists.

• Request Handling 43

The control parameters returned for other status codes given below
differ for each device driver. These must be included in each device
driver's documentation.

Block driver status codes are:

Status code Meaning

$00 Return status byte
$FE Return bitmap location

For a $00 status code, the status list is a single byte:

Bit Value Meaning

7 0 Device not busy
1 Dev ice busy

6-2 Not used
1 0 Device (or medium) not

write-protected
Write-protected

0 Not used

For a $FE status code, the driver writes two bytes to the status list.
This list will always contain $FFFF unless there is some good reason
to have the volume's bitmap placed at a particular location. $FFFF
means that the driver doesn't care, and the bitmap is generally placed
immediately following the directory.

~ The length of each status list depends on the driver. It must be
~ documented for each different driver.

Oevice Request $03

DR_CONTROL is used to send control information to a device.

44 SOS Device Driver Writer's Guide •

Parameters:

Address Content

$CO 3
$C1 Unit number
$C2 Control code
$C3-$C4 Control list pOinter
- $14C4

The control code tells the device what operation it is to perform . The
control list contains information that may be needed to perform the
task .

The control codes passed with the DR-CONTROL call parameter list
given below differ for character and block devices.

Character devices must support at least the control codes given
below:

Code Meaning

$00 Reset device
$01 Load control parameters
$02 Set NEWLINE information

Control code 0 clears input and output buffers and resets the device.

Control code $01 uses a pointer to a control list. The first byte of the
list must contain the length of the list in bytes. The structure and
content of a control list are peculiar to each device driver, and must
be documented for each device driver.

Control code $02 uses a two-byte control list. The first byte contains
$0 if there is no NEWLINE character, and $80 if there is one. The
second byte in the list contains the current NEWLINE character, if it
exists.

• Request Handling 45

For block devices, the control codes presently defined for
DR_CONTROL are:

Code Meaning

$00 Reset device
$FE Format the device

A $00 control code is used , for example, by Pascal to perform a unit
clear operation.

A $FE control code prepares the block device to read and write
logical blocks of data. The position and structure of directories, if
they exist, or other data structures on the device are up to the caller.

~ The control list must conform to the structure and content specified
~ by the device driver being called.

46 SOS Device Driver Writer's Guide •

• . SOS-provided Services 47

SOS-provided Services

49 System Resou rce Allocation
50 ALLOCSIR
51 DEALCSIR
51 I/O Expansion Selection
52 SELC800
52 Error Handling
53 SYSERR
53 System Errors
54 Event Handling
55 Event Queing
55 Event Recognition
56 QUEEVENT

4

48 SOS Device Driver Writer's Guide •

50S-provided Services

SOS has a mechanism to handle resource contention and provide
a linkage between the system's interrupt receiver and the various
driver's interrupt handlers. (Interrupts and interrupt handling are
described in Chapter 5 of this manual.)

A System Internal Resource (SIR) number is assigned to every
function that can either generate an interrupt or must be shared
among logically distinct operations handling interrupts.

Before any driver can use such a resource, it must allocate it by
calling the SOS routine ALLOCSIR (described below). When the
resource is no longer being used, it must be restored to the non­
interrupt state and then deallocated by calling the SOS routine
DEALCSIR (also described below). The present list of SIRs is
given in Table 4-1.

SIR Resource

$00 Reserved
$01 ACIA
$02-$10 Reserved
$11 Slot 1
$12 Slot 2
$13 Slot 3
$14 Slot 4

Table 4-1. System Internal Resource (SIR) Numbers

• SOS-provided Services 49

System Resource Allocation

Allocation and deal location of system resources is provided by the
SOS subroutines ALLOCSIR and OEALCSIR. Either routine may be
called from any environment except an interrupt handler.

ALLOCSIR and OEALCSIR both use a table to pass the addresses of
any interrupt handlers and to specify which resources are to be
allocated or deallocated.

Any number of SIRs may be handled in a given call, but they should
be taken in ascending numeric order. The table entry format is shown
below.

Byte Data

o SIR number
1 10 byte
2 Interrupt handler address (high byte)
3 Interrupt handler address (low byte)
4 Interrupt handler address (X·byte)

Byte 0 of the table should contain the SIR number of the resource
that you wish to be allocated or deallocated. For example, if it
contains $11, the device connected to slot 1 will be allocated (or
deallocated).

Byte 1 of the table contains an 10 byte set by SOS that can be
checked to verify ownership of the SIR. You don't need to do
anything except provide space in the table for that byte.

Bytes 2 through 4 of the table contain a pointer to the beginning
address of an interrupt handler for that particular resource. If there is
no interrupt handler for a given SIR , the last three bytes of its entry
should be zeroes.

50 SOS Device Driver Writer's Guide •

In general, block devices are allocated during system startup, and
character devices are allocated during execution of an OPEN device
call by their device driver, and deallocated during execution of a
CLOSE device call.

The resource-handling services provided by SOS are described
below.

ALLOCSIR Entry Point $1913

ALLOCSIR is used to allocate System Internal Resources. The
parameter table must reside in the driver's bank, and its address
must specify the absolute page number.

Parameters passed:

A: Size of parameter table in bytes
X: Parameter table address low byte
Y: Parameter table address high byte

Normal exit:

Carry: Clear
A,X,Y : Undefined

Error exit:

Carry: Set
X: SIR number causing error
A, Y: Undefined

An error is caused when either the requested SIR has already been
allocated or an invalid SIR is requested . If an error occurs, no SIRs
are allocated.

• SOS-provided Services 51

DEALCSIR Entry Point $1916

DEALCSIR is used to deallocate System Internal Resources. The
parameter table must reside in the driver's bank, and its address
must specify the absolute page number.

Parameters passed :

A: Size of parameter table in bytes
X: Parameter table address low byte
Y: Parameter table address high byte

Normal exit:

Carry: Clear
A,X, Y: Undefined

Error exit:

Carry : Set
X: SIR number causing error
A, Y: Undefined

An error is caused when the requested SIR was not owned or an
invalid SIR was requested. No SIRs are deallocated if an error occurs.

I/O Expansion Selection

The SOS subroutine SELC800 selects a peripheral card for the I/O
expansion address space at $C800 through $CFFF. This subroutine
may be called from any environment except an NMI interrupt handler.

The slot number of the peripheral card to be selected is passed in
the accumulator and all other cards are deselected . A slot number of
zero deselects all peripheral cards.

52 SOS Device Driver Writer's Guide 	 •

When an interrupt occurs, the SOS interrupt dispatcher automatically
deselects the I/O expansion space on all peripheral cards. The
previous card is reselected after the interrupt is processed. In order
for this mechanism to work properly, drivers and interrupt handlers
must always call SELC800 to select a peripheral card's I/O expansion
space.

In addition , drivers and interrupt handlers must call SELC800 before
referencing any of the I/O select addresses ($CNxx) for any
peripheral card that uses the I/O expansion space.

SELC800 	 Entry Point $1922

SELC800 is used to select $C800 I/O space.

Parameters Passed:

A: 	 Slot number (1-4) to be selected.
(0 deselects all slots.)

Normal Exit :

Carry : Clear
A: Undefined

X, Y: Unchanged

Error Exit : (Invalid slot number, slot not changed.)

Carry : Set

A, X,Y : Unchanged

Error Handling

SOS error codes are reported by the SOS routine SYSERR. Your
driver should call it whenever it encounters an error during
execution . The driver will place the appropriate error code in the
accumulator and then execute a JSR to SYSERR (at $1928) .

• 	 SOS-provided Services 53

SYSERR does not return to the driver after execution, but to the SOS
device manager.

SYSERR 	 Entry Point $1928

SYSERR is used to report errors to SOS.

Parameters Passed:

A: 	 Error code

SYSERR does not return to the caller.

System Errors

Table 4-2 lists the presently-defined SOS error codes returned by the
device driver to SOS through SYSERR.

Error Code Meaning

$20
$21
$22
$23
$24
$25
$26
$27
$28
$2B
$2C
$20
$2E
$30-$3F

Invalid request code
Invalid control or status code
Invalid control or status parameters
Device not open
Device not available
Resource not available
Invalid operation
I/O error
Not connected
Write-protected
Byte count is not multiple of 512
Block number is too large
Disk switched
Device-specific errors. (You define
them for each device, if needed.)

Table 4-2. SOS Driver Error Codes

54 SOS Device Driver Writer's Guide 	 •

Event Handling

An event acts as an asynchronous interrupt in software, and drivers
can define events in response to various external occurrences.

An event is armed when an interpreter requests the device driver to
respond to a given condition, such as an interrupt, related to its
device. The interpreter supplies the device driver with the address of
a subroutine to be called when the event occurs.

When the event occurs, the driver informs SOS of the event, its
priority, the address of the event handler, and then exits.

SOS then calls the event-handling routine in the interpreter.

Each time an event is signalled, an entry is made in the event queue.
Then, each time the interrupt manager dispatches the user process,
it checks the highest-priority entry in the event queue. If the event's
priority is greater than the the user's event fence (defined in the
Apple 111505 Reference Manual), it will be recognized and the
interrupt manager will delete its entry and call the event handler.

~ Note that it is not presently possible to unqueue any events placed
~ in the event queue.

When the event handler returns, the event queue is reexamined .
When there are no more events above the fence, the interrupt
manager restores the original user environment and returns to the
user process.

Event processing is also similar to interrupt processing in that the
environment is saved prior to and restored after calling the event
handler, so that the user process can continue normally. The major
differences are listed below:

• 	 Events are signalled by software, interrupts by hardware.

• 	 Event handlers are part of the user process and run in the

user's environment. Interrupt handlers are part of SOS and

run in SOS 's interrupt environment.

• 	 50S-provided Services 55

• 	 Events will only be recognized when the user process would
normally be running. They never preempt 50S.

• 	 Events are ordered. When more than one event is active at a
time, they will be processed in decreasing order of priority.
Events with equal priority are processed in first-in, first-out
(FIFO) order.

• 	 An event will be recognized only if its priority is greater than
the current user's process event fence. The user process can
raise or lower the event fence to control event recognition.

When an event is armed, the driver should save the opcode and the
entry location of the event handler. When it is time to queue an event,
the driver should check that location and compare its contents with
the saved opcode to determine whether the event handler is still
there.

Event Queueing

Events are signalled by calling the 50S subroutine QUEEVENT
(described later), and may be called from any environment except an
NMI interrupt handler.

When QUEEVENT is called, the event parameters are copied into an
event entry, which is linked into the active event queue. Events are
linked in decreasing priority, guaranteeing that the highest-priority
event is always at the head of the list. The list always ends with a
dummy entry with a priority of zero.

Event Recognition

SOS maintains an event fence for the user process and associates a
priority with each event. Each time the eve nt manager exits SOS and
dispatches the user process, it compares the priority of the event at
the head of the active event queue with the user's process current
event fence. If the event's priority is greater than the event fence, the
event will be recognized.

56 80S Device Driver Writer's Guide 	 •

Each time control returns to SOS from an event handler, the queue is
examined and succeeding events are handled until none remain in
the queue above the event fence. When there are no more events to
be recogn ized, SOS dispatches the user process.

QUEEVENT 	 Entry Point $191 F

The purpose of QUEEVENT is to signal an event to SOS.

Parameters passed:

X: Parameter array address low byte
Y: 	 Parameter array address high byte

(Must reside in current bank. If in zero-
page, the high byte must specify the absolute
page number, not zero.)

Normal exit (event queued):

Carry: Clear

A,X, Y: Undefined

The parameters passed in the parameter array are the event's priority,
an ID byte (supplied by SOS) to be passed to the event handler, and
the event handler's address.

The structure of the parameter array is:

Byte Data

o Event priority

ID byte (supplied by SOS)

2 Event handler address (low byte)

3 Event handler address (high byte)

4 Event handler address (X-byte)

• . SOS-provlded Services 57

Byte 0 contains the priority level of the event. Events with a priority
level lower than the current value of the event fence are ignored.

Byte 1 is a space for an 10 byte supplied by SOS to determine the
ownership of any given SIR.

Bytes 2 through 4 contain a pointer to the entry point of the event
handler assigned to the event in question .

58 SOS Device Driver Wnter s GUide •

Interrupt Handling

60 Interrupt Handlers
61 Interrupt Handler Design
62 Interrupt Handler Environment
64 Interrupt Resources

5

60 SOS Device Driver Writer's Guide •

Interrupt Handling

Hardware (IRQ) interrupts allow a device driver to handle
asynchronous operations in a peripheral device. By using interrupts,
a device can operate more efficiently, and allow the interpreter to
continue running .

For example, when you send a large number of characters to
.PRINTER to be printed, the driver doesn 't process all the text
immediately. Instead, it immediately returns control to the interpreter,
allowing the interpreter to do something else while .PRINTER
processes the print buffer contents as required by the printer.

When a device interrupt occurs, SOS establishes the interrupt
environment, locates the interrupt's source, and then calls the proper
i nterru pt hand ler.

When the interrupt handler returns, SOS restores the saved
environment and returns to the interrupted code.

Interrupt Handlers

Any device that uses or responds to interrupts requires an interrupt
handler as part of its device driver.

• Interrupt Handling 61

When an interrupt handler is called , it performs three functions :

1. Clears its interrupts

2. Services the interrupting device

3. Returns to the SOS dispatcher

Interrupt Handler Design

Your interrupt handler must conform to general device driver design
rules. There are some exceptions, described later, caused by slight
differences in the system environment during interrupt operation .

It is up to you to make sure that the device driver and its interrupt
handler operate without conflicts between each other and with SOS.
Masking the interrupt when the driver is running , semaphores, or
other appropriate mechanisms may be used to avoid problems, such
as code reentrancy or simultaneous data access by the driver and
interrupt hand ler.

Interrupt handlers may call only those SOS routines specifically
documented as being callable from interrupt handlers.

If your interrupt handler can complete its work in about 500
microseconds or less, it should not enable the interrupt system until
it has finished . However, it should never leave interrupts disabled for
more than 850 microseconds. Such a case might be an indication
that interrupts should not be used by the driver.

If servicing the interrupt will take more than 500 microseconds, the
interrupt handler must mask its interrupt and clear the "Any Slot "
interrupt flag , by storing $02 into $FFDD.

The t ime spent in your interrupt handler should be calculated for a
clock frequency of 1 MHz. Remember that only minimum times for
any process should be calculated . There is no way to guarantee
maximum interrupt response times.

62 SOS Device Driver Writer's GUide

Interrupt Handler Environment

Just as during a normal call to a device driver, certain system
conditions can be expected when your interrupt handler begins
execution :

• 	 Zero-page. When an interrupt occurs and your driver is
called, the Z (zero-page) register will be set to $00. The
extended-page used for en hanced addressing effectively
does not exist during interrupt handling . Extended
addressing is not available to interrupt handlers.

• 	 Bank register. The B (bank) register ($FFEF) is set by SOS
and should be left alone by your driver.

• 	 System clock. The system clock will be set to full speed when
your interrupt handler is called . After servicing the interrupt ,
the clock should be at full speed if your interrupt handler has
changed it.

• 	 Interrupts (IRQ). These have been disabled to allow your
handler to run to completion.

• 	 I/O space. Selected.

• 	 I/O expansion ($C800 space). Not selected .

• 	 Stack. The stack in use will be the primary system stack.

• 	 X register. The processor's X register will contain a pointer to
a $20-byte scratch pad area in zero-page. The scratch pad area
must be addressed with ZPG,X or (ZPG,X) addressing modes.

• 	 Y register. The processor's Y register will contain the status of
the onboard ACIA that has caused the interrupt.

When two or more interrupts occur simultaneously, SOS calls the
interrupt handlers in the order listed in Table 5-1 .

. ' Interrupt Handling 63

Priority Device

1 ACIA
2-8 Internal devices
9 Slot 1
10 Slot 2
11 Slot 3
12 Slot 4

Table 5-1. Interrupt Polling Priorities

The minimum response time to call an interrupt handler is about 160
microseconds, assuming that the interrupt system is enabled and
that there are no other interrupts with a higher polling priority. When
the interrupt handler returns, an additional 115 microseconds are
needed to relaunch the interrupted code.

There is no guaranteed maximum response time since higher­
priority interrupts may preempt lower-priority interrupts indefinitely.

Before executing, the handler should mask (or clear) its interrupt ,
and if the interrupt is from a peripheral slot, it must clear the "any
slot" interrupt flag by storing $02 in location $FFDD.

All interrupting devices must include the ability to mask and unmask
their interrupt independently of all other devices.

To prevent an interrupt handler from modifying shared data while a
driver is running, the driver should mask the device interrupt instead
of disabling the interrupt system.

In general, when you must disable the interrupt system, you should
preserve the current interrupt state, disable interrupts, then restore
the status. For example :

PHP

SEI

PLP

I r::; I •

instead of:

SEI

CLI

Failure to follow this convention will result in unknown errors.

See the section on System Resource Allocation in Chapter 4 for more
information on handling interrupts.

Interrupt Resources

SOS maintains a table of enabled IRQ interrupts and their handling
routines. When a device driver become active, it can ask SOS to add
an entry to this table, and give SOS the number of the interrupt it
wants and the address of the interrupt handler that will respond to
the interrupt.

The interrupt numbers, called SIRs, are explained in Chapter 4 under
System Resource Allocation.

When SOS receives an IRQ interrupt, it polls all SIRs in order of
precedence to find the particular device that generated the interrupt.
It then calls the interrupt handler associated with that SIR.

~ An IRQ interrupt can only be enabled and serviced by a device

~ driver.

• Device Driver Coding Techniques 65

Device Driver Coding Techniques

66 General Driver Design
68 Writing Character Drivers
69 Writing Block Drivers
69 Writing for Interrupt-driven Devices
69 Creating Device Driver Code Files
70 Error Detection and Reporting

6

66 SOS Device Driver Writer's Guide 	 •

Device Driver Coding Techniques

Device drivers are part of SOS and they should be as reliable and as
fully tested as the rest of the system.

Some things to remember when building your device drivers :

General Driver Design

When you set out to write your new driver, whether it is your first or
seventy-third, there are some questions you should ask yourself.

• 	 Is it a block or character device? This difference determines
what functions it must support, how you can implement it,
and how it can be tested.

• 	 Are interrupts needed, or even useful, for your driver's
operation?

• 	 How big a buffer is needed for your device to operate most
efficiently?

• 	 What diagnostics are possible?

• 	 Device Driver Coding Techniques 67

Device drivers hold some aspects of operation in common. All device
drivers are allowed to

• 	 Alter processor status flags D, N, V, Z, and C.

• 	 Enable processor status I (interrupts) with some limitations as
described in Chapter 5 of this manual.

• 	 Alter A, X, and Y registers. The device manager makes no
assumptions about register contents when a driver is
executed.

• 	 Alter E (environment) register except for the screen and stack
bits.

• 	 Alter the Z (zero-page) register.

• 	 Use software loops for a guaranteed minimum timing delay.

• 	 Disable the interrupt system by using a

PHP
SEI

PLP

instruction sequence.

• 	 Absolutely must allocate slots (SIR) when their use is needed
and must deallocate them when finished.

Device drivers are not allowed to

• 	 Issue SOS calls.

• 	 Use time-dependent code.

• 	 Communicate with other device drivers.

• 	 Alter the contents of the stack.

• 	 Alter the Bank register.

• 	 Disable the interrupt system with the sequence

e Ice rlver rlers UI e 	 •

SEI

CLI

because you will lose track of the previous processor status.

Some general suggestions on designing device drivers are:

• 	 If your driver uses interrupts (described in Chapter 5) , it
should mask the device interrupt to prevent the request
handler and interrupt handler from conflicting over shared
data.

• 	 When you need time-dependent operations, use on-board
hardware timers or a dedicated microprocessor.

• 	 Don't depend on actual processor speed in full-speed mode.
It varies.

• 	 And finally, make things easier for yourself by using the
device driver skeletons provided in Appendices A and B.

Writing Character Drivers

The list that follows gives a suggested sequence of steps for you to
follow when implementing a character device driver.

• 	 Do overall design. All character device drivers must support
NEWLINE mode.

• 	 Design tests and diagnostics.

• 	 Begin coding.

• 	 Implement DR_INIT.

• 	 Start using ExerSOS to test the driver 's interface with SOS.
(ExerSOS is described in the Apple III SOS Reference
Manual.)

• 	 Implement DR_READ and DR_WRITE.

• 	 Implement DR_STATUS and DR_CONTROL.

• 	 Device Driver Coding Techniques 69

• 	 Test with ExerSOS and diagnostics.

• 	 Test with live system.

Writing Block Drivers

The list that follows gives a suggested sequence of steps for you to
follow when implementing a block device driver.

• 	 Do overall design . All block device drivers must support
512-byte blocks and logical block numbers.

• 	 Design tests and diagnostics.

• 	 Begin coding .

• 	 Implement DR_ INIT.

• 	 Start using ExerSOS to test the driver's interface with SOS.
(ExerSOS is described in the Apple III 50S Reference
Manual .)

• 	 Implement DR_ READ and DR_WRITE.

• 	 Implement DR_ STATUS and DR_ CONTROL.

• 	 Implement DR_ REPEAT.

• 	 Test with ExerSOS and diagnostics.

• 	 Test with live system.

Writing for Interrupt-driven Devices

See Chapter 5 of this manual.

Creating Device Driver Code Files

Device driver code files are produced with the Apple III Pascal
Assembler. All you have to do is produce a standard relocatable
object file as described in the Apple III Pascal Program Preparation
Tools manual.

To be used as a device driver, your code file must not have been
manipulated by either the Linker or the Librarian. If it has been, it
will not work .

Error Detection and Reporting

It is up to your driver to catch errors during its execution .

When an error has been encountered and recognized, it must be
reported to 808 through 8Y8ERR, described in Chapter 4 under
Error Handling .

Before reporting errors to 808, which effectively terminates driver
execution , you can perform any necessary housekeeping functions to
insure that the driver will operate properly when it is called later on .

In addition to being able to recognize normal 808 errors, your driver
must be able to recognize error conditions peculiar to the device
being driven. A number of error code values have been reserved for
these device-dependent errors.

The documentation describing your device driver must include a
description of any special error codes for the benefit of interpreters
using your device driver.

Interfacing with App e enp era onnec ors•

Interfacing with Apple III
Peripheral Connectors

72 Physical Description
73 Electrical Description
77 Design Techniques for Interface Cards
77 Decoupling
77 I/O Loading and Drive Rules
79 Timing Signals
80 Designing-in 6522s
82 Design Techniques for Apple III Prototyping Cards
83 Minimizing EMI
84 Safety and Testing
85 Programming Notes

7

eVlce river n er s UI •

Interfacing with Apple III Peripheral
Connectors

The Apple III has four peripheral connectors at the back edge of the
main board that allow you to plug in peripherals to expand the
usefulness of the computer. The connectors' physical and electrical
characteristics are described in the following sections of this chapter.

® Every peripheral card used by the Apple III requires a device driver.

Most developers of new Apple III peripherals will want to use the
Apple III OEM Prototyping Card (described later in this chapter) to
aid in development. All descriptions in this chapter assume that you
are using the Prototyping Card for your initial development.

Physical Description

The four peripheral connectors along the back edge of the Apple Ill's
main logic board are 50-pin PC card edge connectors with pins on
0.10" centers (Winchester 2HW25CO-111). The connector pinout
appears in Figure 7-1 .

• Interfacing with Apple III Peripheral Con~ectors 73

GND
DMAOK

DMAI
10NMI

IROn
10RES

INH
-12V
-5V

SYNC
C7M

03
C1M

10CLR
C1M

DEVICE SELECTn
D7
D6
D5
D4
D3
D2
D1
DO

I 12V

0

,

0

2526
2427
2328
2229
2130

31 20
1932
1833
1734
1635
1536
1437
1338
1239
1140
1041
942

43 8
44 7

645
546

47 4
48 3
49 2

150

+5V
NA
NA
TSADB
RDY
I/O STROBE
PHI0
R/W
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
AO
I/O SELECT

Figure 7-1. Apple III Peripheral Connector Pinout

Electrical Description

Table 7-1 specifies the signals of each pin of the Apple III peripheral
connector.

74 SOS Device Driver Writer's Guide •

Pin Pin In or
Number Name Out·· Description

I/O SELECTn 0 This line goes low on slot n whenever page
$Cn is referenced, where n is a slot number.
This signal become active during PhiO
(nominally 500 ns at 1 MHz, 250 ns during
2 MHz), and can drive a maximum of 10
LSTTL loads per peripheral card .

2-17 AO-A15 0 Buffered system address bus. Addresses are
set up by the 6502 within 300 ns after the
beginning of C1 M. These lines can drive up
to 5 LSTTL loads per peripheral card.

18 R/W 1,0 READ/WRITE line. Goes high during a read
cycle, and low during a write cycle. This
line can drive up to 2 LSTTL loads per
peripheral card .

19 PHO 0 PhiO is a variable 1 or 2 MHz signal
(depending on the current clock speed of
the Apple III). The line is connected to the
video timing generator 's SYNC signal. It may
drive up to 5 LSTTL loads per interface
card.

20 I/O STROBE 0 This line will go low on all peripheral
connectors during PhiO of a read or write
cycle to any address in the range C800­
$CFFF. This line will drive up to 4 LSTTL
loads per peripheral card .

21 ROY "Ready" line to the 6502. This line should
change only during C1 M, and when low will
halt the microprocessor at the next READ
cycle. This line has a 1K ohm pullup to 1- 5V.

22 TSADB Any peripheral pulling this line low causes
the address bus to tri-state for DMA. This
line hasa 1Kohm pullupto +5V.

23 NA Not used in Apple III.

24 NA Not used in Apple III.

25 +5V 0 Positive 5 volt supply, providing a total
maximum of 600 rnA. A suggested limit per
card is 150 rnA.

26 GND NA System electrical ground. (0 volt line from
power supply.)

Table 7-1. Signal Description for Peripheral 1/0 Connectors

• Interfacing with Apple III Peripheral Connectors 75

Pin Pin In or
Number Name Out" Description

27 DMAOK 0 Acknowledge signal. It informs the
peripheral that the DMA requested by the
peripheral can now proceed.

28 DMAI Direct Memory Access (DMA) Interrupt
request. This line has a 1K ohm pullup to
i-5V.

29 IONMI Input/Output Non-Maskable Interrupt. The
non-maskable interrupt does not go directly
to the processor, so it can be masked by the
system reset lock function.

30 IROn Interrupt request line. The interrupt cycle
will begin if interrupts have not been
disabled . Each peripheral's signal goes to
an individual gate input and can be driven
by a normal TTL output.

31 IORES 0 The Input/Output Reset signal is used to
reset peripheral devices. It is pulled low by a
power-on , Reset during Emulation mode, or
a Control-Reset.

32 INH Inhibit line. When a device pulls this line low,
all system memory is disabled . This line has
a 1K ohm pullup to +5V.

33 - 12V 0 Negative 12 volt su pply' . The ma ximum
current th at may be drawn on this line is
150 mA.

34 -5V 0 Negative 5 volt supply'. The maximum
current that may be drawn on this line is
150 mAo

35 SYNC 0 Sync is the 6502 synchronizat ion sign al. You
can use it for external bus control signals.

36 C7M 0 7 MHz c lock. This line will drive 2 LSTTL
loads per card.

37 03 0 2 MHz asymmetric clock signal. Thi s line will
drive 2 LSTTL loads per peripheral card .

38 C1M 0 Complement of C1 M (Constant 1 MHz)
clock. This line will drive up to 12 LSTTL
loads per card.

Table 7-1. Signal Description for Peripheral 110 Connectors

76 SOS Device Driver Writer's Guide •

Pin Pin In or
Number Name Out" Description

39 10ClR 0 Provides the $C800 space disable function
directly without address decoding. It is
addressed at $C02X. ($CFFF was used as
the address for disabling the expansion
ROM . You should use 10ClR to ensure
greater reliability for your device.)

40 C1M 0 Phase C1 M (Constant 1 MHz clock). This is a
constant 1 MHz at all times, regardless of
system operational mode. When the system
is in the 1 MHz mode, this is the same as the
microprocessor PhiO clock. This line will
drive up to 12 lSTTl loads per card.

41 DEVICE SElECTn 0 A read or write to addresses $COnO through
$COnF (where n is the slot number) causes
Pin 41 on the selected connector to go low
during PhiO (400 ns in 1 MHz mode; 250 ns
in 2 MHz mode).

42-49 00-07 1,0 Buffered bidirectional data bus. During a
write cycle, data is set up by the processor
300 ns or less after the beginning of C1 M.
Data must be ready no less than 100 ns
before the end of C1 M during a read cycle.

50 +12V 0 Positive 12 volt supply, this line can supply a
total maximum current of 800 mAo

~ 'Note: Total power drawn by anyone peripheral card must not
~ exceed 1.5 watts .

"Indicates the direction of the signal: I means input to the Apple III from the
peripheral; 0 means output from the Apple III to the peripheral; 1,0 means either
direction is possible (for example, R/W or data).

n is the slot number on slot-specific signals.

Table 7-1, Signal Description for Peripheral 110 Connectors

• Interfacing with Apple III Peripheral Connectors 77

Design Techniques for Interface Cards

The Apple III Prototyping card has +5V and ground (GND) available
on both sides of the card. If other voltages are needed, you must wire
them individually. Integrated-circuit (IC) sockets are recommended
for peripheral interface applications. Transistor-Transistor Logic (TTL)
should be low-power Schottky (74LS---) where possible.

Decoupling

All voltages on your card should be decoupled with a 0.1 microfarad
capacitor to ground near the I/O connector card power pin at the
four special locations provided. Use additional 0.1 microfarad
capacitors for approximately every two low-power Schottky, CMOS,
or MOS devices.

If either PROM or buffer power-down is used, the power-down circuit
should be individually decoupled on the power supply side. Do not
decouple the switched power pin .

I/O Loading and Drive Rules

Table 7-2 gives the drive and loading requirements for the peripheral
I/O connector in terms of low-power Schottky logic (LSTTL). Note
that MOS devices usually do not have sufficient drive for a fully
loaded Apple III bus and must be buffered onto the data bus (see
Table 7-2) .

The address bus, the data bus, and the read/write (R/W) lines should
be driven by tri-state buffers such as the 74LS365.

78 SOS Device Driver Writer's Guide •

Pin
Number

Pin
Name

Drive Required
By Apple III Bus

Maximum
LSTTL Load'

1
2-17

1/0 SElECTn
AO-A15

N/ A
Tri-State Buffer

12
8

18
19

R/W
PHO

Tri-State Buffer
N/A

10
5

20
21

I/O STROBE
ROY

N/ A
Open Collector

12
N/A

22
23
24
25
26
27
28
29
30

TSAOB
not used
not used
+5V
GND
OMAOK
OMAI
10NMI
IROn

Open Collector
N/ A
N/A
N/A
N/A
N/A
Open Collector
Open Collector
Open Collector

N/A
N/A
N/A
N/AI150mAr'
N/A
4
4
N/A
N/A

31 10RES N/A 12

32
33
34
35
36

INH
- 12V
- 5V
SYNC
C7M

Open Collector
N/ A
N/ A
N/A
N/ A

N/A
N/A [50 mAl"
N/A [50 mA]"
10
10

37
38
39
40

03
C1M
10ClR
C1M

N/A
N/A
N/A
N/ A

10
12
12
12

41
42-49
50

OEVSELn
00-07
+12V

N/A
Tri-State Buffer
N/ A

12
8
N/A [75 mAl"

'loading is per slot with reference to the main logic board. For example, each Apple
III bus data line will drive 8 LSTTl inputs on any peripheral slot card.

"The power supply currents are the maximums for each card slot.

n is the slot number on slot-specific signals.

Table 7-2. Loading and Driving Rules

• Interfacing with Apple III Peripheral Connectors 79

Since considerable capacitance is distributed over an interface card ,
the load contributed by up to three other peripheral cards should be
considered in the design. Attempting to use PIAs and ACIAs directly
on the address bus will generally lead to errors in timing and level.
Type 2316 ROMs or 2716 EPROMs are exceptions, because the device
timing allows them a very large margin .

Timing Signals

A number of system timing signals are available on the Apple III bus.
Figure 7-2 shows details of the relative timing of these signals.

- 200 - 100 0 100 200 300 400 500 600 700 I
(4 1) • - • -
~~) :~:~

(3 6) C7M

(31) OJ
j.OICIM

138)C'i"M
- ~ t ,a ~ s

-
2MH J (~ I) DEVSEl

(19) R. W

(3S) SYNC

(16)C 7M

(37) 03

(39.401i!"1'M,C1 M

{42-4lj Ox

(I g) P H.

(2_17)"':f

Figure 7-2. I/O Timing Diag ram

80 SOS Device Driver Writer's Guide •

The Apple III runs in two clock modes : the 1 MHz mode, and the full­
speed mode, which is characterized by rapid changes of clock
frequency between 1 MHz and full speed . The Apple III can be forced
to operate in the 1 MHz mode either by using a special code (see
Chapter 3) or by using Apple II Emulation mode. If it is in the 1 MHz
mode, the Apple III strobes are about 440 nsec long and are
synchronized with the 1 MHz clock.

In the normal Apple III full-speed mode, the strobes are half the
length of the 1 MHz mode, as shown in Figure 7-2. More importantly,
in certain applications the phase of the 1 MHz clock (pins 38 and 40)
is unpredictable relative to the strobes. To perform a counting
operation requiring the system 1 MHz clock to start at a precise time
during a strobe, the 1 MHz mode must be used du ring the strobe
operation.

Designing-in 6522s

The VIA LSI circuit (6522) has proven very useful for Apple­
compatible peripherals. While similar to the 6520, the 6522 requires
more precise timing of its clock signal.

Both circuits must be buffered to the Apple III bus for reliable
operation in loaded systems. Unlike the Apple II 's IRQ line, which
might be " seeing " any number of LSTTL inputs, the Apple Ill 's IRQ
line sees only a single LSTTL input and thus requires no buffering.

The 6522 (and 6520) cannot be accessed in full-speed mode. Since~ timing margins have essentially been halved, there is in suffici ent
ti me for the 6522 to latch addresses.

Figures 3 through 5 show examples of circuits using the 6522 and the
6520 that are known to work satisfactorily.

• Interfacing with Apple III Peripheral Connectors 81

8304 6520

(42)
12:..:..:..c 8
13 7
14 6
15 5
16 4
17 3
18 ' 2
19 I

I
1

SEL ;~9

26
27
28
29
30
31
32
33

23

R/W I 21
(GND) 22
A1 35
AD 36

RESET 34

IRQ 37

<1> 0
T 38

25

+5
24(43) tb­

(44)
(45)
(46)
(47) I ­
(48)
(49)

(')
I/O

(18)
8

(26) CONTROL
(3) LINES
(2)

(31)

(30)

I--- ­(40)

(40)

(36)

(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)

(')

(18)
(5)
(4)
(3)

(2)

(31)

(30)

Figure 7-3. Sample 6520 Interfacing Circuit

<1>0

7M

1

~
12 8 7
13 7 6

26

14 6 5
15 5 4

28

16 4 3
17 :i 2

30

18 2 1
19 1 DO

32

SEL 1'1f1""9

R/W [

23

A3
A7

35

A1
AO

37

RESET

IRQ

~ ~4
2 ..L
3

12 LS74 9

1'11>

~ ~10

25
27

29

31

33

22

36

38

SOFT 5

24
+ 5

~

-

6522A

6522A REQU IRED

I
I/O

8

CONTROL

LINES

34

21

(')
r ­

= (41) DEV SEL
OR (1) I/O SEL

Figure 7-4. Sample (A) 6522 Interfacing Circuit

82 as Device Driver Writer's Guide •

(40)

(42)
(43)
(44)
(45)
(46)
(47)
(46)
(49)

(')

(18)

(5)
(4)
(3)

(2)

(31)

(30)

'i2LS112

r--a 5

+5

2A
IRED

ROL

SEL 11TT9 23
R/W I 22
A3
A7

35

A1

AO

4>0

7M

~ 12 6 7

3

36

13 7 6 27
14 6 5 26
15 5 4 29
16 4 3 30
17 3 2 31
16 2 1 32
19 1 DO 33

RESET

IRQ

34

1

2 i;('
r,:R S

15 14

26

6522A

36
37

21

S5

25
24

~
I-

-

652
REQU

1/0
8

CONT
SLINE

(') =(41) DEV SEL

OR (1) 1/0 SEL

Figure 7-5. Sample (6) 6522 Interfacing Circuit

Design Techniques for Apple III
Prototyping Cards

The Apple III Prototyping card is designed specifically to aid you in
developing new interfaces for the Apple III. A detailed description
of the card and recommended techniques for developing new
interfaces is covered in the manual that is supplied with the card .

• 	 Interfacing with Apple III Peripheral Connectors 83

Minimizing EMI

The Apple III has been designed to minimize electromagnetic
interferance (EMI) to radio and television receivers, and meets
Federal Communications Commission requirements for computing
devices.

Since Apple has no control over any circuitry you might design, you
have to assume responsibility for "good engineering practice" and
any EMI generated by the interface card.

Here are some guidelines to help you minimize EMI in your interface
card designs :

1. 	 Cards having no external I/O connections generally won't
cause increases in external EM\, Even so, decoupling
capacitors or networks should be placed on the card to
reduce electrical noise coupling into the main logic board or
adjacent interface cards.

2. 	 If your card is used to interface an external peripheral to the
Apple III, extra precautions must be taken because data
signals on I/O cables are a significant source of EM\,

External I/O connections must be of the metal shell-type, such as the
" DB" connector family. It is important to use metal-shell connectors
on both the card and the I/O cable.

The connector on your interface card should have the metal shell
electrically connected to logic ground. This may be accomplished by
using I-brackets to mount the connector on the cord . The metal shell
of the connector should also be electrically connected to the metal
casting of the Apple III at the rear I/O port.

All I/O cables must be of the shielded type (preferably braided shield
over pre-insulated signal conductors).

84 SOS Device Driver Writer's Guide 	 •

DO NOT use unshielded flat ribbon cables!
Due to cable constru c tion techiniques, there is an exposed
(unshielded) area between the cable shield and the connector. The
cable shield must be connected to the metal shell of the connector
by using short j umper wi res.

Similar construction techniques should be used at the peripheral end
of the cable.

Testing

Although the Apple III computer is tolerant of normal handling and
use, certain conditions will lead to damage of the main logic board or
its components. Before installing a new prototype interface card , it is
very important to check for short circuits (or other miswiring) to
prevent damage.

The test for short circuits on the constructed card has two steps :

1. 	 Check for short circuits between the power supply lines and
ground on the card by using an ohmmeter. Also check all
power supply traces, whether they are used or not, before
installing any ICs or transistors.

2. 	 Check for short circuits between each I/O connector trace
and all other connector traces on both sides of the board .
One typical board short circuit occurs between traces that
are on opposite sides of the connector.

Once you are certain that the power supply and I/O connector traces
won 't be short circuited , you can install the card and cont inue testing
as follows:

1. 	 Turn off the Apple Ill 's power switch on the back of the
computer. Unplug the Apple Ill's power cable. Note the Light­
Emitting Diode (LED) on the main logic board near the I/O
connectors . Be sure that this LED is off before inserting or
removing anything .

• 	 Interfacing with Apple III Peripheral Connectors 85

2. 	 Install the card in the appropriate 1/0 slot.

3. 	 Reconnect the power cable, turn the power switch back on ,
and check to see if the system will boot. If you have tested for
short circuits correctly as described above, failure to boot
probably means that there is a short circuit in the bus
interface or incorrect interface logic. Remove the bus and
address interface logic devices and try to boot the system
again .

4. 	 If you still can 't boot the system, you probably have a serious
connection or logic problem. Remove all the ICs, and try to
boot the system again. If the system still does not boot, then
carefully recheck your logic and wiring.

5. 	 Your device driver may have a bug that is taking the system
down during DR_INIT.

Programming Notes

The requirements for successful 110 operations depend on whether
the Apple III is to be used in Native mode or Apple II Emulation mode.

Because the Apple III uses memory overlays and is RAM oriented , the
only areas that are guaranteed not to be overwritten are the device
driver areas. Although it is generally not considered good practice to
make self-modifying code, placing the buffers and parameter storage
within the driver areas is the only way to guarantee their integrity
under all operating conditions.

® The 6502 performs a read cycle twice at indexed locations (such as
$C080 + $nO). The first of these is a false read. Similarly, indexed
store cycles will cause a false read cycle followed by the write cycle.
These false reads can disturb the status register of peripheral
devices such as PIAs or ACIAs. See the 6502 Programming Manual
for details on indexed memory operations.

86 SOS Device Dnver Writers GUide •

• Appendix A - Sample Block Driver Skeleton 87

This appendix contains a skeletal block driver to study as an example
of the structure of a basic block driver.

The sample is written for the Apple III Pascal Assembler and is
representative of SOS device drivers that have been written in the
past.

The implementation of the individual device requests, interrupt
handling, and so on, obviously is dependent on the actual device
being written for.

88 SOS Device Driver Writer's Guide •

A
Sample Block Driver Skeleton

Curr.·nt m~mar., oiIIvoOI il .ble 23454
0000: ti.tLe " Appllf III 5klfl.ton BLOCK OrlVlI!r"
2 block; For procedure code 22184 Ulords left

0000: prOt BLOCKDR
Curr .. nt "'ernoT"l.j .v.ll.ble : 22929
0000: nop.tchlist
0000: no",.croli.t
0000:
0000: Apple III Skeleton BLOC)/" DrIver
00001
0000: 505 Equ.tes
0000:
0000: 1913 AllocSIR EOU 1913 .. 11or.te ll,j~t"m lnt.rn.l r.SOurr.
0000 : 1916 O•• lcSIR EOU 191b J de.lloc.t ... "tt.m int"rnal
0000 : 1922 SelCBOO EOU 19:2:2 •• lect/de.elect I / O tp4l.c.
0000: 1928 SI,ItErr EOu 19:29 J report error to 101l5t''lII
0000 : FFOF' ERE~ EOU OFFDF environ",,,nt r.g i st"r
0000 : FFEF BRE~ EOU OFFEF bank regi5ter
0000:
0000: OOCO REQCODE EOU oeo req,u.tt rode
0000 : OOC 1 SOSUNJ T EOU OC 1 unit number
0000: 00C2 SOSBUF EOU OC2 buller pointer
0000: 00C4 REGCNT EOU OC' req,ul'5ted byt" count
0000: 00C2 CTLSTAT EOU oe2 control/statu .. cod.
0000: 00C3 CSLIST EOU Oe3 co ntrol / statu .. l1st po int"r
0000 : OOC6 SOSBUI. EOU oe. st.rting block number
0000: 00C8 BREAD EOU oe. byt"t ·rl'.e! returned bll D_REAO
0000 :
0000: D,r telllp s tl'rQ pall·
0000:
0000: 0000 BUFFER EOU 000 m" buffClr p tr
0000: 0002 BLOCK EOU 00' 1111,1 bloc II' p tr
0000: 0004 NBVTES EOU 00' • b'ltes to tran s fer for debugs
0000: 0005 NBLKS EOU 00' • bl oc ks to transfer for ,./W

0000:
0000: , SOS Error Cod .s
0000:
0000: 0020 XREOCODE EOU 20 Invalid rClqu ... t cod .
0000 : 0021 XC TLCODE EOU 21 invalid contro l / 5tatus code
0000 : OO;;!;;! XC TLF'ARAM EOU 22 inval id control / status param
0000 : 0025 XNORESRC EOU Retour c . not a v all .. b Ie2'

0000: 0026 XBADOF' EOU 2. invalid operation

0000: 0027 X IOERROR EOU 27 I/O .rror

0000: 0028 XNODR IVE EOu 28 dri v e not c onnl'ctl'd

0000: 002C X8VTECNT EOU ,e O..,t. count not multiple of 512

0000: 0020 XBLKNUM EOU 20 0 10ck number too I.rll.

0000 p.g.
0000
0000 Swi tch Macro
0000
0000 MACRO swi tch
0000 IF "7.1 " () 1 f paraml l 'i prC'5ent
0000 LOA 7. 1 load A wi th SWI tch index
0000 ENOC
0000 eMP . "1. ;;1"1 do bounds check
0000 BeS "'010
0000 ASL

http:req,u.tt

• Appendix A - Sample Block Driver Skeleton 89

0000 TAY

0000 LOA Z3"1 . V
0000 PHA

0000 LOA Y.3, V
OODO PHA
0000 IF " 1.4" (> ". "
DOOO ATS
0000 ENDe

0000 ' 010 ENOM

0000
0000 Force' 1 MhZ mod r

0000
0000 . MACRO ~. t Imh,
0000 PHP
0000 SEI
0000 LOA EREC
0000 ORA .eo
0000 STA EREG
0000 PLP

0000 ENOH

0000
0000 Fore It 2 MhZ mod.

0000
0000 MACRO 'il't2mh l

PHP

0000 SEI

0000

0000

LOA EREC
0000 AND . 7F
0000 STA EREG

0000 PLP

0000 ENOM
0000
0000 era "" debug c.l1
0000
0000 . MACRO im.t

0000 PHP
PHA0000
LOA II XI

0000
0000

STA 400
0000 STA SOFAR

0000 PLA

0000 PLP
0000 ENOM

0000 p.g.
0000
0000 O.V1C_ Id e ntlf!ic .t ion Block CDI B)

0000
0000
0000 I •

0000 • For block d.V1C.~. fill in .. block~.

0000
0000
0000
0000 0000 DIB WORD 0000
0002 ,",ORO Entry
0004 06 BYTE 6
0005 2E 42 4C 4F 43 4S .1:0 ASCII BLOC~

oooe 20 20 20 20 20 20 20
0013 20
0014 80 BYTE 80
0015 FF BYTE OFF
001b 00 BYTE 00
0017 01 BYTE 001
0018 05 BYTE 00'
0019 00 BYTE 00

00111. 8002 OJ B_BLOCKS WORD 2eo

001C 0000 WORD 0000

OOIE 0010 WORD 1000

0020

0020 oCB 1 png ttl .nd oco

0020

0020 0100 DCa WORD

0022

0022 80 DEBUG OYTE 80

0023

0023 Loe. l .l:01'a._

0023

0023 00 SaFAR BYTe: 00

0024 25 IN [TOK EYTE XNORESRC

0025 FF LASTOP BYTE OFF

0026 00 SLOTCN BYTE 00

0027 00 SLOTCX BYTE 00

0028 0000 DJDPTR WORD oIB

00211.

002A SIR tdb Ie

002A

002A StRADDR WORD SIRTABLE

OO;?C

002C 10 00 00 00 00 SIRTAI3LE e YTE 10. 0, O. O. a

0031 0005 SIRCOUNT EOU ·-SIRTABLE

If p.ram 4 omitted .
go to code

t",PI' / .vbtll'U , ,lot. "' I'rsi on. manuf

1 i nk

I!ntr.., pOint

"'-111. Caun t

I devHf n.;ame

dctlve. no pilge alignment

slot number

unit number

t~p e

~ub ty PI'

F ill_r

II blocks (80_8)

milnu Fec tur e r - un known'

1'el".-.;,,-p1'e- l i inar\,! ~

on e tlytr. For

debugging on (BOI / off (001 f l dg

91'05 5 debug

lnit ",!pnt ok(OOl l e1'ror code

llHt op For D_REPEAT cil l15

compute CN~. ~nd store lnlt

co",put . coxa a n d ~tore on init

point er to ou1'$('I\I(" ~

90 SOS Device Driver Writer's Guide •

00311 PAQE
00311 ; Milin entrl,l point for the (lTi ,.
0031 :
0031: A~ co
0033:

0033:

00331

00331 C9 DB eMP D_INIT?
'8
003:5: FO•• BEO Dai t go perform D_INIT processing

00371

0037 : , If d.bugglnQ is .n.bl.d, put our .. ddrl'ss Into (18)FD. FE, and FF.

0037 :

0037 : s .. tlmhl
0042: AD z.i!OO LOA DEBUG
00451 FO•• BEO tlO
00471 AD EFFf' LOA DREG
004A I 8~ FF STA OFF
004C I AD 2800 LOA DIBPTR
004F : e, FD STA OFD
0051: AD 2900 LOA DIBPTR+ 1
0054: 85 FE STA OFE
0056:
0056 : ; S ... if Initlelil.tion loI.nt ok , bl.l looking .t INITOK. If it ' , lera. th.n
0056: • l'..,erl,Jthinli went fin •• othu"""i •• it'," the .,.,.or cod. to return .
0056:
0056: AD 2400 .. 0 LOA INITOK
0059: FO •• BEO ObO ; look. ok to
0058 I
0059 : ; Return the .r,.or! Not

005S:

005D: 20 2619 JSR , not tonllilht, I have a h./IId.cl,. .

DOSE:

OO:5EI , S.l.ct our .lot. NOTE' w.'ve sll'lw.d down to IMhZ mod. "lrQ"d\l~ IMPORTANT~
005E:

005EI AD 1500 ObO LOA DIS SLOT OOT t, DO\.lNSHIFT befor" look lng

00611 20 2219 JSR S.leBOO , .t tho slot! Th) ~ on •.
 p I ".~.
0064: BOF' BeS .,0 IIIh.t! I c.n't h.,v. it' Oops!
0066:
0066: N,. c.ll tho d i .. p.tch.r subrautln., with tho slat ." .. t up
0066:
00001 20 •••• JSR 001 t
00091
0009: J Re"".mb.r the ap.ration w. p.rfar... d for D_REPEAT ,"'·o<. ... slng
00b9:
0009: A5 CO LDA REOCODE
OOoB : BD 2~0 STA L~TOP

006E I
OObEl R.I •••• the .lat, go oa<.11 211hZ mod •••nd l ••v •.
OObEl
006E I A9 00 LOA 10
0070 i 20 2219 JSR S.ICBOO
00731 ... t2I1th r
007E i 60 RT6

007F p.g.
007F I Th. Di,patch.r. Do ... It depending on REOCODE. Not. th.t if w. c.m. in
007F I a D_INIT call. w. do a lIr.n,h to Doit) nar.. ll'o1' Doit i. <..ll.d •• a
007F I .ubroutin.! \.I. (OP'o1 the lIuff.r paint.r and black I fro.. the para,nter
007F into own t.mp •• a. the t.m to w.nt th.m left ALONE .
007F
007F A' C;;2 Doit LOA SOB9UF
0081 B' DO STA BUFFER
00B3 A' C3 LOA SOS9VF+1
OOB, 8' 01 STA BUFFER+1
00B7 AD C314 LOA SOS9UF+1401
008A BD 0114 STA BUFFER+ 1~01
0080 A' Co LOA SOS8LI'.
008F B' 02 STA BLOCI'.
0091 A5 C7 LOA SOSBLI'.+1
0093 B, OJ STA SLOCK·l lIlock a 1. onl" 2 .
0095
0095 "lIIitch REOCODE, 9. OoTab 1. I go do It.
OOA"
001\6 A9 20 BadReq LOA IXREOCODE bad r.qu.st cod,,!

OOAB ;;20 ;;2B19 JSR SVSERR Pfui!

OOAB

OOAD A9 20 B.dOp LOA aXBADOP inv.l id op.ration'

OOAD 20 2B19 JSR SVSERR Pfui!

OOBO

OOBO ; Di .. patch t.ble for Dolt

OOBO

OOBO DaTaol. \.lORD DR ••d-l o r.ad

008;;2 . \.lORD DWrih-l 1 writ.

OOB~ \.lORD DSt.tu .. -l 2 .t.tu ..

OOBo WORD DControl-l I 3 control

OOSB A:500 !.lORD a.dR.q-l unu~.d !

OOBA A:500 !.lORD BadR.q-l unus.d'

OOBC AAOO WORD B.dOp-l o oprn I not for 11'1. ~

OOBE AAOO !.lORD BadOp-l 7 clas.! not for II'1r!

OOCO WORD DInit-l B inU

OOC;;2 WORD Dr.p.at-l 9 r.p •• t

OOC~

00C4 Proce•• int D_REPEAT is Repe.t the l •• t operation if It 101.' O_READ

00C4 D_WRITE • • 1•• colltpl.ln .

http:colltpl.ln
http:h./IId.cl

• Appendix A - Sample Block Driver Skeleton 91

00C4
00C4 AD 2500 DR.pe.t LD' LAS TOP ... I .. st th, ng .. did
ODC7 Fa•• BEO 01 00 .. . re .. d, th .. t ' ~ .,
ooe. c:q 01 CMP 01 I I, . IoIr i te
00C8 FO•• BEO .. th .. t '~ ., t ••
OOCD A9 26 LD' UBADOP el ~e p'u i
OOCF 20 ;;ZS19 "SR S~ .Err , co_pl.ln "

I

n.t . IoIr i te .
0002
0002
0002
0002 85 CO
0004 4C 7FOO -.IMP Doi t

0007; . p .. ;e
0007 : o INIT- c .. 11 prOce~s,nll

0007:
0007 : , C.. lled .. t .. ~ste", inl t time onl~ . Chec. DIB_SLOT to m.ke surl' that the USE'r
0007: set. v .. lid ~lot number fOr our interf .. ce AllocatE' it bl,l c .. lllng AllocSIR.
0007 1 If e ver~thing goes ok. set INITOK to 00 , else le. "' e .n error code i n it .
0007:
0007: AD 1500 Dlnit LDA DIB_SLOT
OODA I 30•• BMI
OODe I 0'9 CO OR. "ooeo
OODE: 80 2600 ST. SLOTCN
00£1 :
00£1 : Compute the ~l,Ist.em intern .. l reSOloirce nUilllber (SIR) .. nd c411 AilocSIR to
DOE 1 : trl,l .nd gr.b th .. t. for 101". It perfOrms slot. Checking dS .. ~ide effect .
DOE 1 :
OOEl: AD 1500 LDA D I B_SLOT
00E4: 18 CLC
00E5: 6D 2COO SIRTABLE'DC
OOEe: BO 2eoo ST. SIRTABLE
DOED I 14"1 05 LD. .SIRCOUNT
OOEO: /lIE. 2Aoo LD> SIRADDR
DOFO : Ae 2800 LOY SIRADDR+I
OOF3 : 20 1319 "SR AllocSIR i this on. ' 5 minl'!
OOF61 BO•• BCS .2 then .. g. in , Inavbe lt 15n't!
OOFS :
OOFS: , Select the slot to ~ee if there's. card out thl'ra
OOFS:
OOFBI set Imh r
0103: AD 1500 LDA DIB_SLOT

01001 20 221" -.lSFt 5elC800 c.n loIe select it?

0109' BO•• BCS .1 b / nope! th,.t 's no good !

010B I
0108/ Compute COXO fOr this slot and s.v e
010BI

01081 AD 1500 LDA DlB_SLOT

OIOE I 18 CLC

OIOF I 2A ROL
01101 2A ROL
01111 2A ROL
01121 2A ROL •
0113: 6., 80 'DC OBO , C080 + (slot .. 16)

01151 SO 2700 ST. SLOTCX

01181
01181
01181
01181
01181
01181
01181
OllBI
01181
01181 "''l 00 LD' 00
OIIAI BO 2400 ST' INITOK .",er~ th ,nil f,n • .
01101 202219 "SR 6elC800 de~el.ct

01201 60 RT6 goo.b
01211
01211 B.d slot .. ",o",.th 'ng • F that ilk .
01211
01211 A9 28 LD' .)lNODR IVE
01231 00•• " BNt eo
01251
0125/
Ol~51

01251 "''l 25
01271
01271 it as an errOr .
01271
0127: 80 2400 ST. INITOK no, lt didn ' t go ok
012A I 20 2819 "SR 5y~Err I doesn ' t return

0120 PAQE
0120 Randoln SUpport .end ch.cking routine~ for the block drl",er .
0120
0120 Check REOCNT to insure it'. ,. ..ulti,). of ~l;j!. RetUrn loIith C 'lear If
0120 it i. , ret ut' n with C .et if not L••.., • • N8LK6 containing the number of
0120 blocks to transfer .
0120
0120 'B CKCNT SEC

http:de~el.ct
http:l,Ist.em
http:co_pl.ln

92 SOS Device Driver Writer's Guide 	 •

012£
OlJO
01];;!

0134
0135
01J6
0138
0139
0lJ9
013<;1
0139
0139
0139
0138
013E
0140
0143
01 4:5
0145
014 :)

0145
0145
0145

0145
0145
0145
0 145
0146
0147
0)4 7
0147
0147
0147
0 147
0)47
0 14 7
0147
0147
0147
0148
0148

0149
0149
0149
0149
0149
0149
0149
0149
Ol4C
014E
014E
014£
014E
0150
0153
0153
0153
0153
0155
0156
0158
0159
0158
0158
015D
0158
OlSE
015E
015E
015E
0161
0lb3
0163
0163
0163
0165
0168
0168
0168
0 168
OlbA
Olbe
0160
0 160
0160
016D
0170
0172
0174
0174
0174
0174
0 176
0 178

AS C4
DO••
AS C5
18
6A
85 D5
60

A5 D2
CD IADO
A5 D3
ED IBOO
no··

18
60

60

60

0149

20 2001
90*­

A9 'C
.0 2819

AD 00
98
91 C8
C8
91 C8

20

;20]901
90··

A9 2D
20 2819

A~ 05
DO··
60

20 470 I
A9 ';J. 7

BODC

AO 01
Bl C8
69 02

LDA REGeNT look at lsb of byt.s to do
BNE O! no good! lsb ihould blf oo~

LOA REQCNT+ 1 look <3It HSB
CLC
RDR A put botorn bit lnto C, 0 into top
STA NaLKS $.11,1 • .1$ numbE'r of bloCKS
RTS C 1" "et from RCR to mar~ te'rror.

Convert block number to drive, 'Sector palr, and tr.ck Includes testlng
f'or VAl id block "umb .. r. B la ck "umtl.r co from BLOCIoI.. 1" ZP Output 1S

in DSS and TRK. C cl e. r on return mean!. no error , C 'let means block It bad

CVTBLIoI.. 	 LOA BLOCK
eMP 	 01 B_DLOCKS
LDA 	 BLOCK· I
SBC 	 DID_BLOCKS"l
'CS 	 02 br/ no good ' Rll'turn with C set'

Insert codE' to tran'lil.tf from bloc~ .. to Ialtl oil t e v er "ovr driv e needs .
• Sugge'lition put ttl" re$ultl.n9 tr.clt/"ector/.tc 1nfo In locals follOWing
• the DCB '30,,01.1 (oiln 100. ,.t it vsing th e d"bug STATUS ca ll s .

CL e
.2 	 RTS

• R".dlt .nd Writelt ne.d to be t'lpended into the actval tr.nt.f.r routinE'S
• for D_READ oiIInd D_WRlTE vt.1n9 DUFFER . DUFFER. 1. and OUFF !S:R + 140t .s. the
• bu ff e r .ddr." • . Ro..,tinlfs .rlf c.lllfd to tre".flfr 256 b"tes, and SHOULD
• increment DUFFER , BUFFER.l, OUFFER+1401!

Wr 1 te I t RTS

PAOE
, D_READ c .ll proce.,ing

J5R CKCNT

BCC .15

, Count not multiple of 512. Complein

LDA . XBYTECNT
010 JSO S" sErr , bye .

015 	 LDY 00
TVA
STA (BREAD),Y
INY

STA (DREAD), Y

JSR 	 ; and fl.t 1 t If 1 t did.

Convert. first bloc~ number to dri v e ls "ctor / track

01 	 JSR CVTBLK
BCC 0,

Bloc k t.t ink • . Comp I.in.

LDA UBLKNUI'1

JSR 5YSERR

, Tlf,t number block. l"ft t, tran.f"r" ., LDA NBLK5
BNE o.

03 RTS

, TrOlln"fer .b lac It from tho dis); to thO

o. 	 JSR Re.d I t
LDA I X IOERROR
OCS 01 0

LOY _I
LOA (BREAD),Y
ADC "2

http:tr.clt/"ector/.tc
http:re$ultl.n9
http:tran'lil.tf

• 	 Appendix A - Sample Block Driver Skeleton 93

017A
Ol7C
Ol7C
al7C
Ol7C
D17E
0180
0182
0182
0182
0 182
0184
Oleft

0lB8
0188
0188
0188
0188
0188
0188
0188
OIBD
0180
0 180
0180
0180
OleF
0 192
0192
0192
0192
01"":5
019:5
019:5
0195
0198
0 19A
Ol9A
Ol9A
019A
O l 9C
019F
Dl9F
DI9F
D19F
DIAl
01 .0.3
01.0.4
01.0.4
01.0.4
01.0.4
01.0.7
01.0.9
O IAB
01.0.8
0 1.0.8
OIAB
01.0.0
OlAF
OIS 1
0181
0181
0181
0183
0 1B:)

01B7
01B7
0187
0187
01B7
01B 7
0lS7
0187
01 8 7
0187
01B7
01B7
0107
01B7
0 lB 7
0187
OUl9
0188
0100
OIBF
OIOF
OI BF
OIBF
01C2
01C4
0 l C7
0lC7

91 C8

Eb 02
00"
Eb 03

Cb 05
FOEb
0006

0 188

20 2001
9 0 "

A9 2C
20 2819

20 ••••

20 3901
90 "

A9 20
20 2819

AS 05
DO••
60

20 4801
.0.9 27
BOE4

Eb 02
00••
Eb 03

Cb 05
FOEE
DODE

AS C2
FO••
C9 FE
FO.iI

AD 2200
FO..
4C ••••

STA 	 (BREAD) , v

Bump tho b 1 DC k numb .r

INC BLOCK

ONE .5

INC BLOCK· J

Dec rement • of b I DC ~ t; to do

.5 	 DEC NBLII.5
BEO 03 quit \f tholt. '.,. .Jll ~

BNE 1'1 •• do more block s.,
PAOE

D_lomITE , . 11 proc •• si.ng

OWrih EQU

Voi lidat . ttl. number 0' b'oltflo to transfu' and turn that i nto" of blocks

JSR 	 CKeNT
BCC 	 ."

; Count not multiple of ~12 . Cemp l .. in .

LOA . XBVTECNT
010 JSR Sl,IsErr

an~ problltm~

and , i .. 	 it If 1 t did .

JSR CVTBLK

BCC
 .,

• Bloc k number stink • . Cemp I,.in .

LOA IXBLKNUM

JSR SVSERR IU"II .

., LDA NOLKS

BNE 54

RTS . a 11 III onll ~ b '0,1 t!' !

; Tran .. fltr a block from thlt u .. er to th~ dj ", k .. JSR Wri tilt t

LOA U IOERROR

BCS 010

Bump tho bl oc k numbltr

INC BLOCK

BNE
 .,
INC 	 BLOCM+ 1

Olt cr ltmltnt .. b lac ~ s to do0'
., DEC N8LKS

BEO 03 quit if th a t ' s .11'

BNE .ls11 do marlt bloclr~ .

.,

PAQE

w. 	 mu .. t impl ltmltnt two D_STATUS call .. :

a R.turn .. t.tus (00 s"~" not bu .. .,, >

FE R.t",rn prl'f.rr.d b~tm.p location (FFFF I

Addltlonltll'o,l . for lII.bygglng, i ~l.m.nt .

80 Fhad from drivllr .. pacII

81 Read from COXO spacII

e;! Rltad from CNOO "p.CII

83 Rltad fro C8xx ~pact!'

84 Hang .. olid!

OStatU$ LOA CTLSTAT comllland to
"EO OSOO "tat u'i 00

CMF . OFE

BEO OSFE st.tus FE

LOA 	 DEBUC 1 " It .n.1bl.d ?
DEO 	 CSNQ br / noplI . complain
JMP 	 OSBl go 100_ for d.bug c all~ '

Sta t u'i cod .. "0 good Complain .

••

94 SOS Device Driver Writer's Guide 	 •

0 le7
0l e7 A9 2 1
0 1C 9 20 .;18 19
O I CC
DI CC
O I CC
Olec AD 00
OlCE 98
O leF 91 C3
OlPI b O
0102
OlD:;;!
0102
0102 AD 00
0104 A9 FF
0 10b 91 C3
O IDa C8
0109 9 1 C3
01 DB 6 0

OIDC
OlDe
OlOC
OlDC
OIDe
OlDC
O IDC
OlDC
O IDC
O lDC
O IDC
O IDC
OIDC
OlDe
O IDC AS C2
01DE FO"
OlEO C9 FE
01£2 Fa ..
01£4
01E4
OlE4
01E4 AD 2200
01E7 FO"
0 1E9
0 1E9 4C ••••
OIEC
OIEC
OlEC
O lEC 4 C C7 01
O IEF
O IEF
OIEF
OIEF bO
QIFO
OlFO

OIFO
0 1F O
0 1FO
0 1FO
0 1FO
0 1FO
O IFO Eb 0 1
D IF;;!
DIF,';!
OIF'2
0 1F2
0 1F2
0 lF2
0 l F 2
0 1F2
0 1F2 A5 01
0 lF4 F O ••
0 1F6 C9 FF
O IF'S Fa••
O IFA bO
01PB
OlF'S A9 80
01FO 85 Dt
OIFF CE 0114
OC!02 AD 0114
020 5 C9 7F
0207 00-.
0 20 9 A9 20
0 208 85 01
0 200 A9 BF
020F 800 11 4
0 212 00••
0 214
0 214 18
0 215 bb 01
02 17 EE 0114
0 21A b O

CSNG

0600

LOA
" SR

LDV
TVA
STA
OTS

U CTLCODE
S VS£RR

00

(CSLI S TI . Y

; control / "t .. tu~ cod .. n o go o d

both Inde% and data
poke back to int.r •• t.d Dart",

DSFE LDV
LOA
S TA
INV
ST"
ATS

00
OOFF
CCSt..lSTI. Y

(CSt..ISTI , Y r.turn FFFF

.n' l.a"• .

I We mu.t IlJlpl.lII.nt t~o 0 CONTROL ,all. :
o R••• t d."lc.
FE P.r'Ol'lII lII.dia F01".utting

For d.bugg i ng . "'. ll'llpl nt a felll IIIor. :

80 Writ. d.i " .T .p.,.

81 Write COX O .p.c.

82 Write
CN •••p.,.
e3 WTit. ce•••pac.

DContTol LOA CTL S TAT ;. what "'. suppo !> .d to do ?
BEO "0 nothing? that's ..a.", '
C"P .OFE ; FOT... tting?
BE. 01 0 ; th.t ' s .a~v too !

LOA DEBUg 1'1 it enabl.d ?

BE. o. iF .0 . no 1II0Te comm8nd. !

Dce _ """
o. ,,"P 	 CSNG

'fl O RTS

INCLUDE MISC

PAgE

1 Bump i. called to bUlllp the buffeT point.T bV on .. page (2~b b"t ••)
W. 	 dink the MSB of the buf'.T point • • and 'all into Fl xUp to 5 •• if

g.n.Tllt.d an .no"'l1ll4 (.nd f i x i t up)

Bump INC 	 BUFFER+ 1 ; bUlllp and f.ll i nto n •• t cod e

F'i. up the buff.T point.T to cOTTect fOT anlj 8dd T••• lng anoi'llal i., '

S i ne. ",. ' 11 c,.ll Bump .ft.T .ac h p.g8 . w. Ju.t n ... G to do the Initial

ch.c lnng fOT two c •••• .

OOX X bank N -) 	 S OXX bank N-l
2 0XX bank SF w.s 0 (! !!)l' N

FF XX b.nk N -) 	 7 F XX b.nk N+ 1

F l xUp LOA 	 BUFFER+ 1 l o o k .t /"ISS

BEO 02 bT l that ' . o n e '

C"P . OFF I i. it the et h .T one?

BEO OJ bTI",up . f it it '

RTS .In .a.14 one !

LOA 080 	 oo xx -) SOXX
S TA SUFFER+ 1
DEC BUFFER+ 140 1 bank N -.> bank N-I
LOA BUFF'ER+1401 " •• i.f it ",a. bank 0

C"" 07F (BO l b. f oTI! the DEC..
ONE bT l nop • • all fi.edO.
LOA 	 1 fit ",as , eholng_ b o th0'0
5TA BUFFER+ I I ,ub of addTe$S and
LOA 08F
S TA BUFFER+ t 40 1 blink numb.r fOT bank SF (' ~ ,)
ONE o. 	 al~av. brolnche s

CLC

ROR BUFFER+ 1 FF XX -) 7 F XX (ele "' '''' coding)

I NC BUFFER + 140 1 I ban k N -) bank N+ 1
RTS I bve .

http:IlJlpl.lII.nt

• 	 Appendix A - Sample Block Driver Skeleton 95

0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
0218
D2t8
0218
0218
0218
021E
0220
0220
0220
0220
0223
0223
0223
0223
02:/'
022~

0225
0225
0227
022A
022A
022A
022A
023'
023'
0239
D23A
0238
D23E
0240
0243
0245
0247
0247
02~2

02'3
02'3
02'3
0 2:!13
02,3
0253
0253
0253
0255
02:::'7
0259
0258
02'0
025F
0261
0263
0265
0267
O;,/b'i
0268
0268
0268
0268
0260
026£
026F
O;;!bF
02bF
026F
o:nl
0272
0273
0273
0274
0277
0279
027C
0270
0280
0282
0285

20 ••••
90••

20 2819

FO••

A9 AD
BO ••••

20 ••••
91 C3
CB
EE ••••
DO••
EE ••••
C6 D4
DOEE

60

AQ 01
A5 C2
C9 eo
FO••
C9 91
FO·.
C9 82
F O ••
C9 93
FO••
C9 84
FOFE

A9 2 J
38
6 0

A9 22
38
60

18
AD 2800
71 C3
80 ••••
ce
AD 2900
71 C:)
Bo ••••
4C ••••

PAOE

) D_STATUS debullging c.lls . Th ••• c.-II. tr"".'er data froll'l thlll dri.ver and
I 	 it. 110 .paca to thlll u.lllr bu"lIIr . Thill 'or_t 0' thlll .t .. tu. li.t for th

call. i. :

BO ! .b~tlll. ! di.p R.ad from dr iv lllr oIIr ••
BI .b~t.. dl.p R•• d from COX. spac.
e~ .b~tlll. I di.p R.ad from CN.x SpolC ..
e3 .b~tlll. dl.p R.ad from c exx ... pace

For v.riou. bi,.rr. r ••• on., III. chao•• to ..odif~ th. IOoild instruction
r .. th.r than u ... ind.xing . Th. ranglll c h.c"ing on th. v.riou. call. dapand,
on how "'ueh coda I ""rit .. to do renga ch.ckinll .

, COInll'lon codlll . 5.t up • bllt •• to tran.flllr, bu","p CalIST pointar••nd
I do the tr.n"fer . W. do it in l"h1 ","ad. a. w. "ell be loo"nll at the .lot.

08Bl 	 ')SR ose6ET ; do ".tup for dabug call.
BCC '2 • b/w.nt ok .

BEQ 	 .plit l' 00 b~t .. " to tran.fer!

O.fln. th. in.tructia n to do

LOA

STA not the b •• t technique

I 	 •• t l"h1 mod., and do the tran"far .

.at Imh I

,0 do
STA (eSUST). V return data to u •• r

INY

INC AOORl

BNE t!

INC AOORH

t! 	 DEC NBVTES bu.p point.r •• d.crem.nt count
BNE OSloop , loop through .Il bll te.

OSloop 	 ')SR 0 •• !t .

•• t2I1'1h I bac II to full .p.ed
Scr.m RTS .1I don • .

peg.

s.tup code for both .t.tu. end control debug c .. ll, . W. validatl' the
I di.pl.ee.ent and po •• 1b1ll length para.et.r. in th. control/1it.tu. li.t .
, and "et up the addr ••• in AOORl. AOORH in the In"truc tlon WI' '11 I' •• cutl'
I lat.r on to do th. tra".fer • .

oseSET 	 LOY 01 inde. u •• d b~ lat.r code
LOA e TLSTAT op to p.rform
C"P '.0 r l w dr iv .. r .par" ,.
BEQ oseo b / ~e • • •• t up For that
C"P '81

BEQ OSBI r / w COX. ,-pac.

CrIP '82

BEQ 0592 r l lll CNOO "pac.

CMP '83

BEQ OSB3 r/lll CB •• 'J.p.c.

CMP .80

BEQ t!

, Not on. our •• r.turn cod. In A wi th C •• t.a'
02 	 LOA IXCTLCOOE

SEC

FI.turn bad para",et.r .r r or.

NQPARAM LOA IXCTLPARAM • para",et.r 1. no good
SEC

RTS

0580 	 CLC I r.ad from driver
LO. OIBPTR point to u.
AOC (CSLlSJ) , V add in flrtot blltl'
STA AOORl put into intotr uc tlon
INY
LOA OlBPTR.l
ADC (CSLIST). V I form hi bvte
STA ADDRH I .tor. into i n.truction
,)MP Def in ;0 tInldl up

http:control/1it.tu
http:d.crem.nt

96 SOS Device Driver Writer's Guide •

0288
O;;?88 81 C3 0581 LOA ((SUST). V piell up dlspl.epmpnt
028A 30E3 Bel NQPARAM th.t won ' t do~

02BC C9 10 cep 010
O;!SE IODF BPL NQPARAM J nor will th.t! onl~ 0;; 1at I

0290 AA TA' tt.th for. IfIom.nt
0291 AD 1500 LOA oIB_SLOT ",h.t', our .lot7
0294 FOD9 BEO NCPARAM cut •. WI' don't hav.
0'296 OA ASL A
O;;t~7 0 ASL A
0298 OA ASL
0299 OA ASL multIply b .. 16
029A 18 CLC

0298: 69 80 AoC OBO for..- XO for th. 'flot
0290: 71 (3 AoC (CSLI6T)' Y .dd i n displ.c.",.nt
029F 1 BD •••• STA AOORL .tor. low byt. into instruction
02A2: CO INY
02A31 81 C3 LOA (CSLISTl, Y better b. OO!
02A5: DOC8 BNE NQPARAM onl\1 \lour .lot !
02A7: AO 00 LOY 00
02A9: B 1 C3 LOA (CSLIST), Y J hal&! I'l'Ieny b\lte~ .Q.tn?
02AO: 30C2 Bel NQPARAM J nope
02AD: CB INY pOint to di.plaeem.nt ~gcdn
02AE: 18 CLe
02AF: 71 C3 AoC (CSLIST), Y must b. « 10
0:281: (9 10 cep OlD
0293: IDBA BPL NCPARAM nap • . won ' t do .t .. 11.
02B~: 4C •••• Jep DCfln J go fini.h up
0298 :
0288: AD 1~oo 0582 LOA DIB_SLOT r •• d from eNOO .pec.
0288; FOB,;! BEO NCPARAM muilt h.v•• ~lot to do It thOugh !
02801 09 co ORA _oeo form CN
02BF: eo STA AoORH .lind hot. into instruction
02C2: 91 C3 LOA CCSLISTl, Y di.pl"olc.ml!'nt
02(4: BD •••• STA AOORl into instruction
02C7: CB INY
02C8: 81 C3 LOA (CSL1STl, Y ch.ck hi b~t.

O.2CA: DCA3 BNE NQPARAM ber f If b')d
02(C: FO" BEO OCfin go do cle.nup prOCl"!. fdn g (alwOl~t branchl"s)
02CEI
02CE! 81 C3 0583 LOA (CSLlST) , Y low b~t' of dn,plecpmpnt
0200: 80 •••• STA AooRL pok. into Inl5truction
0:203 : C8 INY
0204: 91 (3 LOA (CSLlST), Y hi b~tp of dltpl.cl"ml!'nt
0206: 3097 "el NQPAAAM no good
0209: (9 10 cep OlD ' .. g.1 r.ng. i~ O-F
0:20A: 1093 BPL N<;:PARAM billlll!'r 15 no good'

020(: 18 CLC

0200: 69 CB AoC _OCB

02DF: 80 •••• STA AOORH ~tor. Into Initruction

02£2:

02£2:

02£2:

02£2: AD 00 OCfln LOY 00 pOint b.ck .lilt _b~tPi to do
02£4: Bl C3 LOA (CSLIST). Y g.t It from list
02£6 I AA TAX
02£7: 85 04 STA NBYTES
02£9:
0 2£9: Roll th. die •. Dump CSLIST point.r b~ 3 and ."tum. it won't ero,s Into
0:2£9: edd".'''ing anom.l~ Not gunt ... d to work'
02E9:
02£91 18 CLC
02EA: AS (3 LOA CSL IST
02£C: 69 03 AoC 00
02££: 8:5 (3 STA CSL rST
O:2FO: A9 00 LOA 00
02F2: 65 (4 AoC CSLIST+ 1
02F4: 8~ C4 STA CSLIST+l

02F6 18 CLC
02F7 SA nA 'i.t lint on _ b.,.tps, with C cleer
02FB 60 RTS rpturn to e.tl1Clr
02FQ
02FQ NOTE . The fo11ol.l1ng in-.tructl0n I" built on the fl.,. , to bl" l"ithl."r an absolute
02F9 LOA (A.D) or an OIbtolut. STA (BOlo The .ddr • .,., in the Instruction It modlfi.d
021'9 go to .liminat. f.ls •• trob. problem., on ind •• ed Inst .. u c tlOnt
02FQ
02FQ 00 001 k BYTE 00 Opcode go • ., hpre
02FA 00 AOORl DYTE 00 10\11 b.,.t. of address
02FB 00 AooRH . DYTE 00 hi b.,.t. of .ddrlll ss
02FC 60 Rrs th.n \II. r("turn

http:di.plaeem.nt
http:displ.c.",.nt

• Appendix A - Sample Block Driver Skeleton 97

O;?FD PAOe:

02FD

02FD I D_CONTROL d.bug~pn'il '.Ill ... TI, ••• ,.11. tr.ln.f.r ~ht .. to th. dri v l''' ilnd

O;?FD tt, 110 IP"'. '''0," th. u •• r bu"." . Th. fo"",_t of the status 115t lor the5t'

02FD c .11. i'l .

02FD

O;?FD 80 "b~t." I cUsp di.p I d.t. Wrlt. to dri v l!'T .Ired
02FD Bl "b~t.s I di"p DO d.t. Writ. to COX. "pace
02FD 82 I "b~t •• I d,.p 00 d.t. , Writ. to eN •• 'pace
02FD 83 "b~t.. di.p di'lp d.ta Writ. to CBII space
02FD
02FD
02FD
02FD For v arlOUI bil .. rr. r an • • """ ch aas, to mOd lf\l the store I n s truction
02FD r .. ther th .. n u .. , indexing. The r.nljl' checking on the varioul. c ~lls dep"nd,
02FD o n ho"'" much code I write to do r .. nqe checking.
02FD
02FD Common code. 5et up .. b~t ... to tr .. n.f.r, bump C5LJST pOinter , and
02FD do tl'le tr .. nl.f.r . ""e do it in 111hZ ", a d ... s ""'to m.. ", be loaking .It th. slo t .
02FD
O;?FD :20 5302 Dce. JSR D5CSET go do Io,t up
0300 90·· BCC .,
0302
0302 5etup b~rf.d . Ret u rn
0302
0302 20 2819 JSR SIj sErr
0305
0305 BEO LE'<lv, ; and scr ..m If it ' l 00'Fa'''' '2
0307
0307 Define tho Instruc t ion ab s S TA (blecch !)
0307
0307 A9 80 LOA .80
0309 80 F'902 STA 0 ••
030C
030C , Itt 111hZ mod • • ~nd d O the' tr~n.fer .

030C
OJOC
03 17
0317 BI C3 DCloop cDA (C5LI Sf). V pIck u~er d~ t~

0319 20 F902 JSR O.k P" , .

"P
~wa"," 031C C8 IN Y

0310 EE FAD2 INC ADDRL
0320 DOlHI ON E '1
0322 EE FDG2 IN C ADDRH
032~ C6 O"l .. DEC NB VT ES bump pointerl , decrement c oun t
0327 DOEE ONE DC loop loop through .11 blj te.
0329
0329 ~.t2mhl b.c k fu 11 .p eed
033~ 60 L, .. v , RTS .11 don,.
033~ END

'0

"'U - A ~'O 1ut. lll · l .. b., 1 VD - l"I I"Id.'\n.d I"IC - Macr o
AF - II' II f DF . O...· II'p_P r(l ~ Fe - Func
-. - lI'"b l ,~ P'V - Pf" I t ..

AOrHI H LJ OOlJ"I; kCOAI. L II 02F" : Al.LOC~ IA AD LqL3 OADGf' LG 001011 DAO!ItEO LII OOoAo· OL.OC K AD aOD~ OI.,OCII. DJr Pfi - - - ­
DHI!: AD AU ooce· DA EG .. nEF': 8 U11'nJt AD 0000 L II 01J'0 Cto;CN ' Lil 0120 CSI*.. f 5 T .. GOtJ ,.... L D (LoU: '
e llS'A T All OOC;Z· C.V lIlLill L D O I l": OCO ' La O;ZF"C nCD L D 0020 DCF f N LI 02G1 OCLOOP L.B 0 .3 17 OCQNHiIOt.. L [I """ OIOC
Dti:Al..CS IA AD !"71 ""· DE:BUO Lll 00:1'2 1 nl. '-0 0000 OI IilIlLQ(; to; LD OO I A D UJPTQ L.a oo;ze 01 ltSLQT 1..0 001:5 O IN\ '" Ltl 0000'7
DOn L B 001' OOTAOU: '- 0 00110 : DAEAO UIO l4 Q OfU! "tr.AT L D OOC 4 0500 L D (}\i:C ,,,". LD ~"j nOlI . L ll" 0288
nso> " o~e : DS8:J L a o~CE: OS", u:t 0 '"'1[1 DSCSET LO 0 4 ":) OSF"I[L iJ 0 10 2 n...OOI' l tl 02:3S Hr "" Tt./&i L it 0187

" 0188: £ NtP v c. DO ,. EfilEC AD F"F OF Fl lfUP L U 0 1," :2 LD O¥q I" A' INI rCJo(, I..tr 002.""" I"L ASlOI' 002,. Lf:AI/£ 1.. 0 0 3 ;1 4 : NJH... I'i S AD 0003 ~D YTES All 0004 NoQP A RAM L D o~,e"f"" 'IEAO l1 L U 01 47 ~QCNT All 00(";

" o'O~ "A, 0(1(;0 SCA" " LD 02!1.or r HLc. a:>o A' Iq2~ SE lIl'll1.l '" ---- ~tT:Z""MZ SI l'l " POR ~ II QoO;jI ,o. SIP"CQUI.'tIl OOO~
ilA TAIJU 1,.1I OO~: SLOTCI">' LD OO:i!bi &lorO 1.. 0 0027 SOF" AA C8 00" SOiDLLC. AU OOC~ All OOC2 "",""IT0 OOCI50S'""1 f(~ MC S"'~1j AI> i "';;jei WAI f El l LII 0148)"DADOP A8 aO~b "'0 00010 (DY £OIT "' It OO.2C x(11..(0000."1:11
~c.n•.p"RA All OO~· l I OEP~CA " 9 t liODfltvC AD 0028 "lNQRE S RC AD 00>, . om: " II 0020OO:!?I """"'""
ASI.tnbl~ c ampllli'te: 882 Iln.~

o Error~ fl~gg.d on th 1 5 A~ ... mbllj

98 SOS Device Driver Writer 5 GUide •

• Appendix B - Sample Character Driver Skeleton 99

1

This appendix contains a skeletal character driver for you to study as
an example of the structure of a basic character driver.

The sample driver is written to confirm to the Apple III Pascal
Assembler and is representative of SOS device drivers that have
been written in the past .

Complete implementation of the individual device requests, interrupt
handling, and so on, obviously is dependent on the actual device
being written for.

100 SOS Device Driver Writer's Guide •

B
Sample Character Driver Skeleton

Current m.mor~ available : 23454

00001 tith "Appl~ 1// Skeleton CHAR Driver "

:2 b loct. for procedure (ode 22184 ""ord~ left

00001 proc CHAR
Cu .. rent memor\l a v .ail.bl. ' :2:29;;29
00001 nop. t chlist
00001 nom.acI"ol it t
00001
00001 App 1.- 1/1 ,kel.-ton CHARACTER dr iva ..
00001
00001 50S Ettu.at ••
00001
00001 I'H3 Al JocSIR EOU 1913 alloc .. te ~ ... 'tem Intern.1 r,"ource
00001 1916 C•• teStR EOU 1916 deallocate ,,, s tem internal
0000: 1922 SalCBOO EOU 192< sellct/dt,elltct I/O spOilce
00001 1928 S",'IErr EOU 19:28 ".port f'rrOr to s t.m
00001 F'FDF EREQ EOU OFFOF enVlronmltnt reg i ,tf'r
0000 1 FFEf BREG EOU OFFEF bank rlgist.r
00001
00001 OOCO REQCODE EOU OCO r.q.ue,t codt

0000' OOCI SOSUNIT EOU OC I unit numbltr
00001 00C2 BUFFER EOU OC2 bu'f.r p Ointer
00001 OOC' REGeNT EOU OGO rl!'q,u.sted b"tl!' co unt
0000 1 DOC2 CTLSTAT EOU 002 control / st.lltus codl!'
00001 OOC3 CBUST EOU OC3 c o ntrol/status lilt pointer
00001 OOC. SDSBLK EOU OC. starting block number
00001 OOC. BREAD EOU DC. b\lt •• r.ad rtturn.d b ... D_READ
00001
00001 , Du' temp i; in t .ro polg_
00001
00001 0000 NBYTES EOU 000 • b ... t. , to tr.llnGftr for debugs
00001 0001 RETCNT EOU 001 returnf'd b"te count temp
0000:
00001 50S Error Cad ••
00001
00001 0020 lCREGCODE EOU 20 Inv.lld rlq.Ul"5t codlt
00001 0021 XCTLCODE EOU 21 inval id c ontrol/status code
00001 0022 lC CTLPARAM EOU .2 i n v alld eontrol / stdtus par.am
00001 0023 lCNOTDPEN EOU 23 de v lct not optn
00001 0024 XNOTAVAIL EOU 2' df' V1CIt not .o) v 8 1 1abl.
00001 002' XNORE5RC EOU ., RI".oure. not aV.illil.ble
0000 : OO~6 XSADOP EGU ,. ll'lval id operation
00001 0027 X IOERROR EOU 27 I / O error
00001 002. XNODR IVE EOU ,. dri v e not connlcttd
0000: 004C XEOFERROR EOU 4C end of fIle f'rror

00001 page
0000:
00001 !"I.cros
0000:
0000 : !"IACRO s""i teh
0000: IF "7.J" <> if paraml i'5 pre.ltnt
OOoo r LOA X! load A with .w i tch ind e J
00001 EN DC
00001 . IF ";(2" <> .. " if pardm 2 i s presf'nt
0000: CMe "7.2+ 1 do bounds check
0000: BCS '-OlD
00001 ENDC
0000: ASL
OOOor fAY

• Appendix B - Sample Character Driver Skeleton 101

LOA 1.3+1 , V

00001 PHA
0000: LOA

0000:

X:] , V

0000 I PHA
00001 . IF " 7.4" () " . "
00001 RTS

0000 1 ENDe

0000 : _OlD EN OM
00001
00001 Fore. 1 MhZ trlod ..
0000:
00001 MACRO .1' t 111'11'1 l

00001 PHP
0000: SE I
00001 LOA EREG
0000 I ORA '80
0000: STA EREG
00001 PLP
0000 : ENOM

0000 :
0000 1 , Fore . :2 MhZ mod,
00001
0 000 1 MACRO ,.t2mh I
0000 : PHP
0000 1 SEI
0000 1 LOA EREG
0000 [AND . 7F
00001 STA EREG
00001 PLP
OOOO! ENDM

00001
00001
00001
00001 MACRO INeADR
00001 [Ne Xl
00001 ONE _:lJO
00001 INC 1.1'"
0000: ONE 9310
00001 SEC
0000: RDR :'0+1

0000: INC :.c.l"1401
00001 .310 EN OM
00001
00001
0000:
00001 MACRO IN"
0000 1 INC 1. 1
0000: BNE 9210
0000: INC 1.1+ 1
00001 _21 0 ENON
0000:
0000 1 , Gros t deb ug t.ll
0000:
0000: . MACRO imat
0000: PHP
0000: PHA
0000: LOA _1. 1
0000 I STA .00
00001 STA SOFAR
0000: PLA
0000: PLP
0000: ENDM

0000 p.g.
0000
0000 OI' '' ICI' IdentiFi.cation 8] celi:
0000
0000 0000 DID !oIORD 0000
0002 !oIORD Entrl,l

0004 0' BYTE 5
0005 2E 43 48 41 '22020 ASe I I ". CHAR

oooe 20 20 20 ;!O :010 20 20
0013 20
0014 80 BYTE 80
0015 FF OlD_SLOT [lYTE OFF
0016 00 BVTE 00
00 17 60 BVTE ObO
0018 00 BVTE 000
OOIC'il 00 BVTE 00
OOIA 0000 DIB_BLOCKS !oIORD 0000
OOIC 0000 . !oIORD 0000
ODI E DOlO WORD 1000
0020
0020 ' DeB l"ngth .nd oeD
0020
0020 0100 DeB WORD

002.
0022 BO DEBUG DYTE SO
0 023
0023 ' 1.. 0c,,1 stOrilg"
002:1
002:1 00 SOFAR BYTE 00

Jf param 4 omitted .
!I 0 to cod ..

bilnk OV l'rfl o",, ?
vup'

(0[0)

I

I \nk
e n tT"\,I POI n t
n ."'e count
; devlc" n .m"

!

act iv " , no pag" olhg"m"nt
.. lot nu",h .. r
unit numb .. r
type - char4cter , r / w
sub tvp"
filler
It bloc~!> - nonl'~

milnufac tU "l' r-un known ~

r"I •• sl' -p ,..11 inOlrv '

one IIVt .. fOT"

••

102 SOS Device Driver Writer's Guide •

00241 25 INITOK BYTE XNORESRC init went oll.(OOl / error code
002' : 00 SLOTCN BYTE 00 co_pute CN:o and store 1.ni t
00261 00 SU1TCX BYTE 00 J co.pute COXO and .. tore on 'nit
00271 0000 OIBPTR WOAD DIB point.r to our .. el"es~
00291 00 OPENFLO BYTE 00 J open/c IO'l.d f la9
002A I
OO~AI 00 NLFLAG BYTE 00 J NEWLINE mode flao (BO/OO)

0028 : 00 NLCHAR BYTE 00 NEWLINE charac ter

002C:

oo::!:c! 81R tab Ie

002C:

002C: SIRADDR WOAD SIRTABLE

002E I

002E: 10 00 00 00 00 SIRTABLE BYTE 10. O. O. O. 0

0033 : 000' SIRCOUNT . EOU e-SIRTABLE

00331 PAOE
0033: I Hain entr" point For th. driver .
00331
00331 A5 co Entr" LOA REOCODE
0035:
003:51 If th i" i • . 0 - INJT call (Function cod. .> . .11 i p tho slot setup .
00351
0035: C9 08 eMf' , D_INIT?
00371 FO.· BEO Doi. t , ,0 perForm 0-INIT proce'l$ing
00391
00;]9 1 ; " d.bugging ,. enabled. put our addre.s into { IS)FD. FE. •n' FF .

0039:

0039: 4D 2::200 LOA OEaUQ

003C r Fa.· BEO 010

003(1 AD EFFF LOA BREQ

0041 r 85 FF 6TA OFF ; bank reg

0043: AD 2700 LOA DIBPTR

00401 B5 Fe STA OFD

0048: AD 2800 LOA DIBPTR+l

0048 : a, FE STA OFE

0040:

00401 5 •• " Inltialiultion "".nt ok. b" 100111n9 at INITOK. If It ' .. ,.ro . then

00401 ; olver" th i ng ""ent Fin• • otherwi .. e it'. the errar code to return.
00401
00401 AO 2400 010 LOA INITOK
00:50: FO•• BEO '.0 ; look. all to me .

0052 :

00'21 J Return the error~ Not intere.ted in daing bu .. ine .. s 1.l1th "au!

00521

00':/: 1 20 2819 JSA S", ..Err

00"1

J Now call the di"patcher a .. a .. ubroutin.00'"
00":
00" 1 20 •••• '00 JSA Doit
0058: 00 ATS

0059: pag e

0059: The DlIpatcher . Doe .. It depending on REOCOOE. Note that iF ""e came in

0059 : I aD INIT call. do a br.nch to Doitl nor.all", . DOlt is called ,IS •

0059: .ubroutine~

0059 :

00'9: 0059 Doi t EOU

0059:

0059 : "WI tc h REOCODE . e, OoT.-ble it .
, ,0 do
006A:

006": A9 20 S.dReq LOA .XREOCODE , b •• reque'lt code'

OObe: 20 2819 JSA S" .. Err PFui!

OObF r

OOoF: 149 26 SadOp LDA UBADOP in".1 id op_r.tion'

0071 : 20 2819 J9A 5", .Err , PFui!

0074 :

00741 A9 23 NotOpen LOA IXNOTQPEN device not open for bu .. in ••• ~

0076 : 20 :2819 JSA S\,I.Err

0079:

0079 : , DISp.tch tab 1. for Do it On. .ntr" po. com...nd number , WI th 1'10 Ie"

0079 :

0079 : DaTable WORD DRead-1 0 read

0079 : WOAD OWrih-1 I IIIr i t.

0070: . WORD D5t.tus-l 2 .t.tu.

007F: WORD DControi-l 3 control

0081 : 6900 WORD SadReQ.-I , • unu.ed ~

00B3 : 6900 WORD a.dReq.-l • unus.d'

00B5: WORD DOp.n-l 0 open
00B7: WORD DClo .. e-l , 7 c los ..
0089 : WORD OJni t-l init•
OOSSI . p.g e
008BI , 0 - iNIT call proc ing
008B I
00891 J Called ,It .",.telll Init time ani", . Check DIB_SLOT to mat. sure th.t the user
aoesl J .. et a valid .lot nUlllber For our Int.rFaclf . Allocate It b" calli.ng AllocSlR .
008S: If e"er\,lth i.ng goe. ok , ... t INITQtC. to 00•• l.e leave an error code In it .
00891
OOB81 AD 1500 Olnit LOA
008EI 30•• BHI
00901 09 co ORA

http:calli.ng

• Appendix B - Sample Character Driver Skeleton 103

00'92: BO 2'00 SYA SLOTeN
OOq~1

00'9'1 , Select the .lot to ••• if there'" A cArd aut U'ere
009'1
009'1 "etll'llh I d a",ra h i f t fir s t ~

OOAO I AD I ,o0 LOA DIB SLOT
00A3: 20 221'9 JSR SelCBOO coin ",e s.lect It?

OOAb : BO•• acs _I b/nape'thAt ' " na gaad~

OOAD I

00"'0:

00,.,8:
00"'8: AD I~O LOA
OOAII: 18 CLC
OOAC I 2A ROL A
00"'01 2 ... ROL
OOAEI 2'" ROL
OOAFI 2'" ROL
oouo I 69 eo ADC oeo l CaBO + ("lat II 16)

00B2: BD 2600 STA SLOTCX
000'1
ooa,:
ooa,:
Ooe, I A'9 00 LOA 00

0087: SO 2400 STA INITDK " ... "r .. th in§! fin"

008A: 20 221 '9 "SR S.ICBOO d ••• l.ct

aOBD: 60 RTS ;aaIRb ...

008E:

008E: .lat Dr sam.th in; D' thAt illt .
, ...
OOBE :

OOBE: A9 29 U LOA UNODRIVE

ooco: DO" BHE OJ

OOC2:

OOC2:

OOC2:

ooc:;z: A'9 :;z, 02 LOA IXNORESRC

ooc41
00C41 • Stuff the cod" into INITOK And r.port It •• An errar
ooC41
DOC 4 I SO 2400 STA I na. it didn't ga ak.0'
00C7: 20 281'9 "5R J da".n't r.turn.

DOCA PAOE
OOCA
OOCA
DOC A
OOCA w... llae.t. aur re"aure •• t OPEN tillle. r"."t the d lc., .. nd set up far
OOCA d .. t .. tr .. n.f.r"
OOCA
aoCA AD 2900 DOp.n LOA OPENFLQ Ar" w. ap.n .. lr •• d .. 7
ooeD FO•• 8E. b/nop •.,
OOCF
OOCF
OOCF
ooeF A9 24 , OA _XNOTAVAIL j not i 1.b 1" .
0001 20 2819 "5R S .. "Err
0004
0004 Comput" the " .. "t.1In int.rn.. l r."ourc. nUlllb"r (SIRl .. nd , .. 11 AllacSIR to
0004 tr nd IjIr.b th .. t for 1.1". It p"rforlll' slat ch.,king ." .. sid" .. ff.ct .
0004 .,0004 AD 1'00 LOA DIB SLOT-
0007 18 CLC
0008 69 10 ADC "0 , Slr"lb+slat_
aOOA BO :2EOO STA SIRTAB LE
0000 A9 as LOA _SIRCOUNT
DOOF AE 2COO LD' 6lRADDR
00£2 AC 2000 LOY 6IRADDR+l
00<5
00£5
00£5
00£5 ·• Not .. if.n intt'rrupt h.r..U"r 1" u".d. th" b.nlt numb.r mUlt b. lo .. d"d
00E5 • from SREe .nd put into SIRTASLE. S •• writ.up an AllatS[R .
00E5
00E5
00E5
OOES 20 1319 AllocSIR UIl'l an,, ' '1 t1Iin.~

OOEe DO•• BCS I th.n .\J.in, m... b. it isn ' t'
OOEA

"5" ••
OOEA
OOEA
aOEA II In'"rt d !.c. l.tUP cad. h.r • .
OOEA II do it c.re'ull .. ~

OOEA
aOEA
OOEA
OOEA J "'.rt "'. ' r. ap.n ••nd 1.......
OOEA
aOEA "'9 BO LOA _eo
OO£C 80 STA.0 2900 OPENFLQ
COEF "T5
OOFO
DOFO ; Not il.bl.!
DaFO
OOFO A9 25 LOA .XNDRESRC
OOF'2 20 2819 JSR S...Err

104 SOS Device Driver Writer's Guide 	 •

OOF~

OOFS
OOFS
OOF:5
OOFS
OOF:5
OOFS

00"' AD 2900
OOFS
OOFA
OOFA 4C 7400
OOFD
OOFO
OOFD
OOFD
OOFD
OOFe
OOFe
OOFD
DOFO
OOFD
OOFD
OOFO
OOFO A9 05
DOFF AE 2COO
0102 AC 2000
0105 20 1619
0108 A9 00
OIDA eo 2900
0100 i!O

DIOE
OIOE
OIOE
DlOE AD 2900
Dill 00._
0113 4C 7400
OJ 16
0116
0116
0110 A900
0118 8501
OIIA 8502
aile
aIle
aIle
aile 20 ••••
011F
011F
OllF
OllF A9 FF
0121 45 C4
0123 8' C4
0125 A9 FF
0127 45 C5
0129 B5 C,
0120
0129
0129
0128 E6 C4
0120 004.
01:2F Eb CS
0131 FO••
0133
0133
0133
0133
0133 :20 ••••
0136 AO 00
0138 91 C2
013A 48
013B
0149
014F
014F
014F
014F 68
0150 :2C ;2AOO
0153 1006
01~S CD 2BOO
0158 0001
OISA
015A
OISA
015A

015A AO 00
0)5e AS 01
015E 91 es
0160 es
0lb1 AS 0:2
0163 91 es
0165 60

PAGE

DClo •• prOC •• Slng

Cluln up Itvltrything W"it for .11 IoIritt. to compl~ti' Dlta 110cat. thl!
!ilo ."'.1,1.

DClo~.. 	 LOA OPENFLG , 	 ar. "'It apl'n?
BNE 	 I hop.

01

• 	 In •• rt rundown .nd termln.. tlon cod. IIltrlt Jf ttl. devlclt g.ner .. tes
• 	 Intltrrupt', th ••• mu,t b. dll.bl.d "nil cl •• red be-fore O•• lcSIR is

LOA eSJR eOUNT
LO X SIRADDR
LOY SIRAOOR+ 1
JSR Oe.lcSIR
LOA 00
STA OPENFLG milr' us CLOSED
RTS qoomb".

PAGE
0 READ- cilll proc.SSlng

DR.lilld LOA OPENFLG
BNE 01 b/w. '1'1' op.n
JMP NotOp.n and grip. if "'.'1'1&0 not!

; Zl'ro 0 byt.s r •• d

LOA 00
STA RETeNT
STA RETCNT+ 1 , our r pol\le temp

LOA ..OFF form one's c amp llment
EOR REGCNT
STA REGCNT ., it ' ~ 1'.'11'1' to Increml'nt
LOA ..OFF and t ... t for ' .1'0

EOR REGeNT+ 1
STA REGeNT+ 1

. Th. r.il d loop . 5.. if t.rm in.t e on reque. ted b\!t. count first .

Rloop 	 INC REGCNT f)ump it
BNE 0 1 d idn ' t .0 to
INC REGeNT+ 1 bu"lp " b\!te

BEG Rdend tl'rminolt. on bl,lt. c aun t ~

C.t . bl,lt • from the d 1C., put it In the u ... r ' . buffer , Incr.ment

". buffer paint.r and the numb.r of byt., r eturned .

01 JSR Q.tSy t.
LOY 00
STA (BUFFER), Y s tar. Into u ... r buff.r
PHA s bl,lte on tho .. tilck
INCADR BUFFER bump tho painter
IN" RETCNT bump r.turn count

Check for NEWLINE mod., and t.rmin.tlon on NEWLINE ch.rilcter

PLA chr bac' .\laln

BIT NLFLAG is n.",l ine mod. set?

BPL Rioop br /nop e , do it some more.

eMP NLCHAR I if '0 , I" th i" the onu?

BNE Rioop I br/nop., ••• p gOing.

I 	 T.rmin.t. the r •• d , eith.r on b",te caul'lt or n.wllne Mo the ..
of return.d byte. to th. u •• r, then spltt ,

Rd.nd 	 LOY 00
LOA RETeNT I •• o' returned bllte count
STA (B READ), Y
INY
LOA RETeNT+ 1
6TA (BREAD), Y T't'turn it
RTS and J .iI ... e .

cilll!!'d

• . Appendix B - Sample Character Driver Skeleton 105

0 166
0 166
0 166
0 166 .. C.t[)yt e a ctu . lll.j de . .. the dlrty "'ark of gett in g. byte from the d e Vlc e
0 166 • To b. det erm in ed by the u~er ! Not. i t i,. c a II l' d i n 2 MhZ mod~, and the
0 166 • d. vIC II' / !ll o t h.u NOT b •• n !le l . ct .d .
0 166
0 166
0 166
0 166 .0 Get9'4te RT S

0167 PACE

0167 O_I.IRITE c a ll prac.!l'tlng

0 167

0167 AO 2~OO Ol.lr1 te LOA OPENFL(;

OlbA DO.· "NE b / ",. ' re op lPn

Clbe 4 C 7400 JMP NatOpen and g rip. if I.IIe' r~ no t'

016F

016F

0 16F

0 16F 2 0 •••• .. JSR FllUp itnd f I J it if ltd I d

0 172

0 172

0172
0 172 A9 FF LOA _OFF form on e ' s campl lmlP nt
0 17 4 4S C4 EOR REQCNT
0\76 S~ C4 STA REQCNT a .. It ' 'I ea'l lt'r to In cr ement
0178 A9 FF LOA _ OFF and t .s t for zero
Ol7A 4S C, EOR REQCNT+ 1
Ol7e 8 5 C5 STA REQCNT+ 1
0 17E
DI7E
OI7E
017E Eb C4 1ol1aop INC REGCNT
0180 00·· BNE .. br/nope .
018 2 E6 C5 I NC REGCNT+ 1
0 184 00-· BNE b r / nop • . ma r, to Il0l 1' 1 te..
0 186
0 186
0 186
0 186 .0 RT S
0187
0 187 , Get <II bllte from th . u •• r buff.r , r it' it , and bum p th. pointe r ,
0187
0187 AO 00 LOY _0
0189 B, C2 LOA I BUFFER) , Y II IP t b ~ t.
018S 20 'II ••• JSR P ut 9" t. lI.t rid of It
O I BE I NCAOR BUFFER
O 19C
019C , 00 ba ck a nd do It until th . b"t . count g o •• to OO ~
0 19C
0 19C 4 C 1EO I J HP "Hoop
0 19F
0 19F
019F
019F ·If PutB"t. a ctu a ll" do •• th. dirt" !&.lark . Call a d In ~"'hZ mod . , wi th
019F .. ,l o t /d e v l c . NOT 'I.I. ct .d ~

0 19F
019F
019F
0 19F 60 P utB"t . RTS

DI AD PAOE
CIAO
C IAO
CIAO
CIAO 101. must lIftp l . men t thr .e O_STATUS c a lls '
DI AD No op e r a tion
DIAD Ret urn de vic . co ntro l p a ram . t . r!l
C I AO R.t urn NEWLINE flag a nd ch ar. ct l' r
DIAD
D IAD , AilIilI ttton a l l"" fo r ilI.b u gglng , Il0l. IlIIplement :
C I AO 80 R.a d 'rom dr iv er !l p . ct'
C IAO 81 R••d Prom COXO ~ p,c.

D IAD 82 R•• d from CNOO ' p a c'
DI AD 83 A •• d from cexx . , a c e
DIAD 84 Hang soll d~

DIAD
DIAD AS C2 OStatulO LOA CT LSTAT camm.nd to issue
C I A2 FO·· "EO 0500 lOtatu s 00
O l A4 C9 01 e MP 0'
C I Ab FO BEO OSOI r ll tu rn davlc. co ntr ol p a ram5
OIAS C9 02 CMP

··
0'

0 1AA FO·· .EO OS02 ret u rn NEI.ILINE f l ag a nd ch aracter

CIAe

OIAe ; c heck f or debUIJ91n9 and d ebugging op~

DIAe

CIAe AD 2200 LOA DEBuG IS it en a blt' d '"

OlAF Fa·. BEO CSNC br / nop • • grlplP

01Bl 4C •••• JMP ass. 90 l oo~ for d . bu9 ca ll$ '

0 184

01 94 St a tus Cod . no good . Compl ain .

01 84

••

••

••

106 SOS Device Driver Writer's Guide •

0184: A9 21 CSNC LOA UCTLCCOE , control / st.tus cod. no good

01861 202819 JS" SVSERR

0189:

0189: , DOing nothing 1~ ,.,-, .

0189:

0189: 60 DSOO RTS

01BA:

OIBA:
OIBAI
018A: 60 OSOI RTS
aIBB I
01118 I
018B I
01B8: AO 00 OS02 LOY 00
0IBO: AD 2ADO LOA NLFLAQ n.l.lllin. .ctj"'. / in.cti f l.g
oleo: 91 C3 STA (CSLIST), V ,..tu,.n t. 1.1&."
01C;21 ce INY
01e3 : AD 2800 LOA NLCHAR n.",11n .. ch.r.c t.,.
01e6 : 91 C3 STA (CSLIsn. V r.turn th.t
Olca: 60 "TB , on' ~p 11 t .

01C9: PAGE
01C9:
01C9 :
0IC9.:
01C9 : ~. !!'lUst lll'lpl.",.nt thr •• 0 CONTROL c .. lls ·
01C9: a R.,.t d.vic;
01C9: S.t control p.ram.t.,.~
01C9: S.t NEWLINE fI .. g .. nd char .. et.,.
01C9:
01C9: For d.bug!llng . w. Imp t.m.nt .. f.1M lI'Ior .·
01C9 : BO Writ. d.i r ~p .. c.
01C91 81 Writ .. coxa &p. e e
01C9: 82 ~ri.t. eN . , &p.Ct'
01C9 : 83 Writlt ca •• sp.CI'
01C9:

01C9 1 A5 C2 OControt LOA CTLSTAT ; whet "' .. ~uppos.d lo do ?

Olca: Fa•• "EO oeoo d i c Ie re , .. t

OICDI C9 01 C"P 0'

OleF r FO •• BEO DCOI s.t control para"',

OlDtl C9 02 eMP
0103: FO-. DEO DC02 s.t NE~LINE fl .. g and c tlr
0105:

010S: • ch.clc for debugging .nd d.bugglng ops

0105:

01051 AD 2200 LOA OEOUC i~ enablltd ?

OIDa: Fe •• BEO i. f !II 0, no 1'I'I0r. cOlllrn"nd,!

OIDA :

OlDA: 4C •••• JMP OCBJ go chuc k for dltbugs .
0100:

0100: Control cod. no good Camp 1"1n.

0100:

0100: 4C 0401 .)MP CSNO

OlEO :

OlEO: ; S.t NE~LlNE fl .. ; ond c h .. ,..e t.r

OlEO:

01EOI AD 00 OC02 LOY 00

01E21 81 C3 LOA (CSLISn , V tho fl .. g

01E4: BD 2AOO STA NLFLAC up dill ted

01E7: C8 INY

0lE81 B1 c3 LOA (CSLIsn, V n.", line cherecl.r

OlEA I 80 2800 STA NLCHAR

DIED: 60 "TS •• S\l t. d.

01EE I

OIEE:

OIEEI

01EEI 60 Dcao RTS

OIEF:

OIEF I

OIEF:

OIEF: 60 DCa 1 RTS

CIFal

OIFO: INCLUDE MISC

01FQ . PAOE

01FQ

OIFQ Bump t, c .. ll.d to bUlllp the buff.r point.r bV on .. p.g. (2~6 bllt.,).

OIFO ~. dink th. MSB 0' th. buff.r point., end f.ll Into FIIUp to " •• if

OIFO g.ntr.t.d .In .nonll.l", <.nd fir it up>.

OIFO

OJFO E6 C3 BUnilp INC aUFFER+ 1

OIF;;?

01F2 Fi. up th. bufftr point.,. to corr.ct for .. n" .ddr.~~lng .nOI'l'l.li..~ '

QlF2 Sine. w.'11 , .. II Bump .,t.r •• ch p.g., w. JIJ&t n •• d to do the inltl .. l

OIF;? checking fa,. t",o c ••• , :

01F2 OOXX b.nk 1'4 -) Bon b ..nk 1'4-1

OIF;? 20XX b.nk BF if 1'4 wa. 0(" ')

OIF;;;! FFXX b .. nk N -) 7FXX b.nk N+ 1

OlF2

OlF2 A5 C3 Fi..Up LOA DUFFER+ 1 loo k .t Msa

OlF4 BEO br/th .. t ' , on.!

OIFt:. C9 FF e"p OOFF

OlFB Fa·· BEO .,

FO __

http:nOI'l'l.li
http:lll'lpl.",.nt

••

••

•••

• Appendix 8 - Sample Character Driver Skeleton 107

OlFA 60 RTS an •• ~\j on. ~

OlFB
OlFB A9 80 '2 LOA ••0 OOXX -) BOX)(
OlFO 85 C3 STA BUFFER·)
OIFF CE C:J14 OEC eUFFER+140 1 bank N -) bank
0202 AD C314 LOA DUFFER+1401 ,.. " it .a, b.n" 0
0205 C9 7F CMP .7F (80l before tho DEC .
0207 DO"· BNE br / nop. , all fi J.d .
0209 A9 20 LOA .20 if it IiJ.S, ctl.n!!e bath
0208 85 C3 STA BUFFER+l mob af .. ddre.~ .nd
0200 A9 SF LOA .8F
020F BD C314 STA BUFFER+l401 bank numb.r fa' b.n" ~ ~ ~ l.F (
0212 00·· BNE ah,... ~. branches
0214

••
0214 18 CLC
0215 66 C3 ROR BUFFE~+l FFXX -) 7FXX (c l."'er coding)
0217 EE C314 INC BUFFER+1401 bank N -) b .. n" N>1
021A 60 RTS b~ • .

0210 IPAGE
0210
0210 O_STATUS debugging CollIs Th.~. calls tr~n~f.r d~ta fro'" the drl"" '" and
0210 It~ 1/0 " p.c~ to th. ut." buffer Th ~ for"'oiIt of the st .- t vs list for the-sit
0210 call'i
0218
0210 80 Itb"te'i d ISP d i 'II' doilloil . R••d fro'" drl,,!"r a l-'! .
0219 81 "b.., tes d ISP 00 deta H:e-ad fro'" COX. "!O P.lce­
0219 82 "b.., te-s d I sp 00 daloil . Re~d froth CNI. spaoc:1t
0218 8J ab.., le-s d ISP d \ sp dal') Re .. d froth CBl' spacp
021 B
0218
0210
0218 For bila"re rltasons, e cha osII' to tr\adif\j thp load Instruction
0218 roilther lhoiln use Indeling . Tl"le range c:hec:klng on the- "'arIOu~ (all~ depends
0218 on 1"10 tr\uch code- I wrlle to d o ran!:l' el"leek i ng
0218
0218 Cam.mon code. Soil up I bljlt' S lo lransfer, buthp CSLIST pOlntpr, ana
0210 do the tr.nsfer We do il in IMhZ tr\ode oilI5 we th~y bp lo o king at the "lot.
0218
0210 ~O -*-* 05Bl JSR OSCSET ; do s elup for debug cal l s
021E 90"· DCC '2 b l went ok
0220
0220 OSCSET didn ' t llklt 'iomelh1r"lg The error co de
0220
0;;;1;;;10 ;;;10 2819 JSR SljsErr by.
0223
0223
0223
0223 FO·· DEO Scrath lop III if 00 by tes to transfer'
0;;;125
O;;;!;;;!S Define lhe in'ilrucllon lo dO an ab!> LOA
O;;;!;;;!S
022' A9 AD LOA lOAD
0227 80 •• ,.e STA Ga' not the best technique
022A
022A IMhZ thad., .. nd do lhe lroilln,fer .
022A
O;;;!2A 'iet 1mhr
0235
0;;;135 ;;10 •••• OSloop JSR 0 •• ga da it
0238 91 C3 STA <CSL.lSTl,V return data to us!.'r
023A C8 INY
0238 EE •••• INC AOORL
0;;;13E DO·· ONE ..
0;;;140 EE •••• INC AOORH..0;;;143 C6 DO DEC NBVTES bump pOlnt.r .. , decrlil'tr\ent
0245 DOEE BNE OSloap loop thr au gh all bytes
0;;;147
0;;;147 t.el;;i!mh t b4lc k ta full "peE'd
0252 60 5cr<lm RTS ,11 done

0253 Ipolge
0253
0253 Setup cad. far bath .. tatv'I .rlC' control debvg call .. . WE' ", .. Iid .. te the
0253 I dl'1p14lc,,,.,nt and pa"'Iibl.., length par"trlatert. in the control/ .. t .. tus IUit ,
0:253 and 'let up the addre .. , in ADDRL , AOO~H In tha In .. trvction we ' ll ellecute
0253 I lat,r tho tr.n'lf.r'l..
0:253
0253 AO 01 oseSET LOY 01 indeJ us.d olj Liter codll
0255 AS C2 LOA eTLSTAT op to Perform
02~7 C9 90 CMP .00 r l \ll dr,,,,.r ,pac.?
02S9 FO·· BEO 0580 b / lje~ . set up for that
0258 C9 91 CMP ..,
02~D FO·· BEO 0581
02SF C9 92 CMP 402
0261 FO·· BEO 05B2 r / ~ CNOO .. pace
0263 C9 93 CMP ••3
0265 FO·· BEO OS8J
0267 C9 84 CMP
0269 FOFE BEO h.n II "0 lid ~..
0269
0268
0268

108 SOS Device Driver Writer's Guide •

0:26D A9 21 '2 LOA IIX C TLC ODE
0260 JB S£C
026E bO ATS
0 26F
026F R~lurn bad par.m.t~r r-rror
0 26F'
026F
0271

A9 22
JB

NCPARM1 L OA
SEC

IfXCTLPARAM pilr.met .. ,. .. "0 9 00d

0272 bO ATS
O;,!7:)

0273
0274
0277
0279
027C

18
AD :noo
71 CJ
BD
C8

0580 CLC
L OA
ADC
STA
INY

DIBPTR
<C SLIST)' Y
AODRL

rl'.Jd from dr I vltr
pOint to u.
add ,n f 1 r Ii t till t.
pu' I nto I no:; true t I on

0270
0280
028;2
0285
0288

AD 2800
71 CJ
80
' C

LOA
ADC
STA
J MP

DIBPTR ·q
CCSLlST),Y
ADDRH
DCft n

farm , , by t e
,t or ~ Into Ins truction
,0 fp'IS h up

0288
0 28A

8i CJ
30E3

0581 LOA
'MI

(CSLIST >, Y
NGPARAM

pick up II I!iP lo1Ctoml'nt

th .. t won ' t do'
0 2BC C9 10 CMP 010
0 2B£
0 290

IODF
AA

APL
TA'

NQPARAM no, Will tholt I on I.,.
" lolllh foe . 1'10",.n t

~ lot

0 291 AD 1 ~OO L OA OI B_SLOT wh .. t " ou' Ii lot ?
0294
0296

FOD9
OA

'EO
ASL

NQPARAI""I cut .. w' don ' t ha ... e

0297 OA ASL
0298 OA ASL
0299 OA ASL /!lui t Ip I Y b, Ib
029A 18 CLC

0298 b9 80 ADC .80 form XO fo, tho :s lot
0290
029F

71 CJ
80 .. ~.

ADC
STA

(CSL IST), Y
AOORL

, dd ,n dlspi .H;l'ml'nt.
$ to re low bl,ltl' I n to I ns true t I o n

02A2 C8 INY
02A3 8i CJ LOA (CSLI 5 T), Y bE' t tel' b. 00'
02A5 00C8 ONE NGPARAM onl y your ;;Io t·
02A7 AO 00 L OY .0
0 2A9 "' CJ LOA (CSL IST LY ho w m... n y b.., t l' ~ agal o '"
0 2AB ::JOC2 BMI NGPARAM nop I'
02AO C8 INY point t o d l ~ pla eCl'men l

02AE 18 ClC
02AF 71 C3 AD C <C5LI5T), Y ",u .. t. b" (": 10
02IJI C9 10 CMP 010
0283
0285

10BA
'C BPl

J MP
NGPARAI'1
OC(In

n Ope WOll't do
go (Inl :> h " " .I1

0:288
0288
029B

AD 1500
FOB2

0592 L OA
BED

018 SLOT -
NGPARAM

I' " 'Ill
m u ~ t

fr urn CNOO sP .!t. e"
h ~vr. . slot '0 do thOuqh'

0280
028F

09 CO
80 ­.. OAA

STA
Moca
AOORH

('o rm eN
, nd h o't ~ I nto I n 'J lr uc , on

02C2
02C4

8t CJ
80 -_... LOA

STA
(CSLlSTl. Y
AOOAL

dl 'lo p I .J ee rnl!' nt
I n to I n~ t. rue t I on C YUK')

02C7 C8 INY
02C8
O;;!CA

8i CJ
OOA::J

LOA
DNE

(CSLI S T J.Y
NCPARA~

c h l" ~ h, bl,lt e
bar (., b.d

02CC FO·· BED OCf 1 1"1 ,0 do e I qan up p rOe . S!>I f'lQ (idw,~ br ~'l.n che$)

02C[
02CE 81 CJ DSB3 L OA (CSLIST) ,Y low b "ltl of d I sp l .. c em e nt
0200 80 ••• if STA AOORL po k • I n to lnitruc tion
0203 C8 INY
0204 01 CJ L OA (CSLIST) , v ho b II t e of d I sp Idl Cl..' mcnt
0206 3097 OMI NGPARAI'1 no good
0208 C9 10 CMP "'0 Il'gal roil n!! E' " O-F
020A 1093 BP l NGPARAI'1 b I q g p r " "0 q ood I

020C 18 CLe
0200
020F

6~ CB
80 ADC

S TA
NOC 8
ADOAH S tOl'e In to In $ tl'ue t I on

02E2
0~[2

0:;;1E2
Sot up ", numb of byte $ tran s f eO'

02.E2
02E4

AO 00
BI CJ

OC(I n LOY
LOA

.0
(CSLlST), Y

pOI n l ,,,
"

bac k a< Mb ", te $

from ll ~ t
'0 do

02E6 AA TA ,
02E7 85 DO STA N!3 YTES 'i tash • n 1.1'0 p0i ge
02E9
02E9 Rol I tho d I (e Bump CSL 1S T pOin ter b, J and Il .. " urne " lLIon't Cro OS-:; Into
02E9 <lddr~ "til ln~ anomaly . No, 9var nt e .d '0 wOI' k I

02£9
02£9 18 ClC
02EA AS C3 LOA C5L I 5T
02£C 69 03 ADC . J
02E£ 85 C3 STA CSL I ST bur.'lp 10 b\jti' b, J
02FO A9 0 0 L OA ' 0
02F2 65 C4 ADC CSLIST-+ !
0;2F4 8 5 C4 STA CSLI5T"1 mallb e bump h> byte

• Appendix B - Sample Character Driver Skeleton 109

02Fb 18 e L e
0:2F7 814 TX" Sf't. lIn! on II b", t I! 'S . ,.,/1 tl'l eel e.lt

O:2FB 60 "TS r l'tur" to c .. ller
02F~

O::F~ NOTE The follo",,"g I n. t ruc l, on L .. b u .l l 0 " tt... fl~, t o b " . ltl1 .r .. " a b .. olvt.r
O:2fQ L OA (AD) or .n ""b~olu l. SfA (80) Til • • d tJ r e"Jdl In thl! I n st r uc ti o n I S modified
02FQ 110 t o ellmln.te f.l s t' IJi t f'obe p r obl e•• on Indf!J t!d I n s tru c tion s
02fQ
02FQ 00 C.~ BY TE. 00 Opcodl' g u!:. h e ,.. ,
02FA 00 ADDRL DY TE 00 1o... b.j t.~ °Fe .dd ,. ,, !..
O:2f B 00 ADORH DYTE 00 hi b"t e a f .lddr t's to
02FC 600 "TS then W~ ,.. t urn t

02FO: PAGE.

O:2FO:

O;2FO: D_CONTROL d~bu99lng (ails These ,.11 . tr.n"f.r da t a to th q drIV. " .and

Its l I D space From the user bufFl'r Tht< form.t of t C , t3 tuS lI st '01' h" . ~

02FO: (<I II ~
02FO:
02FD: 80 ab"te t: d 1'>0 d I "P dolt. Write t o d ' I V." ,. ... a ..

O:2fO : 8 1 ab "te 'l d I ~p 00 dah Wrl\. e La co x. p .. c ~

02FO : 82 ab \Jtl' '' d I SO

02FD:

00 d.t ~ WI" I te 0 CNI~ . p .c~

02FO : 83 . b\lle 'l d ISO d I loP dolt .. Wrl l(' t o C9 •• ' p.c .,

02FO;
02FO;
O:2FD :

For varlOU", bizarre rea~ons · ..,'" Cl'loo "e to IIIOdlFI,I the stor e Instr uc ti o n

O:2FD:

02FD :

rather th .. n u. e Ind('I)"g TI'It' r."g(' ch eck in g on the var l UU'i c; dlls d e ptnos

02FO:
 on how much code I ... rltll to do r.lnge checking

O:2FD :
Common cod e Se t up a b"tttS to tT' .. n " f er. bump CSL IS I p O lnt,;. r110

02FO : do thCT trjln . f @t r We do IMh! mod ... TO "' Po m.. y b lil 100 1Cl"IJ (I t th ., slot

O:2FO:

02FD: 20 5302 DCB. JS" DSCSE. T go do 'latu p

0300: qo·· DeC ' 2

0302:

02FD:

0302: , Satup bar fed Rt'turn

030:2:

0302: 20 281<;'1 JS" 5\1 s Err

0305:

0305: FO-" ., DEO Leav(' dnd scram If It 's 00'
0307 :

0307: Dcfln(' t"(> I nstruction .s ab .. STA (b I pc (h')

0307 :

0307 : 149 80 LOA _eo
0309: 80 F90;Z ST A Calc • s(>t UP dG an db; S Tp. In-:,lr uc tlon'

OJOC:

030C : • Gift lMhZ mode . and do the tr .. n~fer

030C l
030C: set1mhZ
03 17 :

0317: 01 C3 DC I 000 LOA (CSLlSTI. Y pick u'.O If I" dot ..
U,C., 'v, .t01.,0319 : 20 F902 JS"
031C: C8 I NV

03 10: EE FAD2 I NC ADORL

0320: DO" DNE
 ..
0322: EE FB02 INC .AOORH

0325: Cb DO DEC
 N['jYTES DUmp PO I 0 t~r S. decr~mcrnt count

loop through . 11 D~ te o;;

0329 :

0329 : se t2mh' D a ~ k to full IOp eed

0334 ~ bO L"J v l' "TS .11 dIll' "

0335: END

0:327: DOEE " DNE DC loop

LB - L .. .II. 1 UD - V'HII' l n .1I" 0 - ." .. o l u t ..
fl F - A. ' DI' - D. f p,,-~,..c

PIJ - ~\f" I I ['I'I v.te CS - C.,u t ..

""".. WI O;!F"B, "'0Df'1- Uo......- ... AU..0C'5 IR ... , I'H J: LU OO¢F. aAORE ..I OOf,A l il"LAO .. oc. ORE!: "'0 r ru
. 01 00(2 · U 01"0' ,.... C-Gl... I!;T ...a OOC) ' '$NO LI Oil" CJ\,,,$I"' T OOC2 1 DCoo La Olre
DCO. L' Ol n: ' DCO. 1..' 01101 DCO' L' 02F0 ' DCI L8 0020 1 D(F" I N L' ox:! I DCUK>' L. OJ I7 I DCLIIS[U! ,
DCOfojf"o.. 1-' OI C'Q Dti:.<oLCil li "'S 1· 1t> 1 D<Ju< L8 0022: 0 11 L O 0000: OIP II..OC~ LI 001 '" 018P'" !,.. OO:l7 ' GIlil.C f LI O(U~

L. 008D DO lt 1..8 00)" ;[N L' OOCA: DOT ASL(L. 007'f : ~EAO 1.11 0 10[0100 L' 0 1 •• : 1.1 011A'50'D..., LI Oltll LI 0273 1.11 oaee. OS8" L. oOlla : ..., LI O~e: ...' L' 0211 1ET L' 0;n.3......,. L.I 02;J) OST ... I VS L' OIAO: -,""'" L L' 0 1to7 : £H TR V t,,1 00:1:): jl'1If1)f. f : XU'" L' O l '-~ : L8 O~
el. , l'i'T(' L' 0 1040. ,"A1 "' -- : , ,,,, ... Oft INIT t... 002": 'NW L(A~ LI 03;l": MJvfE5 All 0000
He,." ...,.... L' 00:::. : .. NOfCPEN "' LII -O<l~ "Ul,vfE til O: W: IID(NO u Ol~
Itt.OC·jf "'1 OOC " I JII~OCODf: COCO I Ri: I CH' 000 11 01 :21 : !IC'_ 1.11 0~'2~ K LCOOO 1'''~;;j' 1 SE"t ll'lHl

I.' 02&1" I.
LI
' 00''': """"L _..

'" SIIIClJUJoIT St RfAllLE "-Ote", Lft 0Q;l~ aoTC ' LII I
S(1:w..Z ,
""AO~ Lloo...",(: 1 000'1 'L""" • OO~ I " OO~. '""
..... K ooe.1 IC'iUNll Sw l re... SY!!lI!IU" 1'948 ; WLCOP 1..0 017£, Ail 0001111: rc TLCODE Io.D OO~ I

l tTU'"AR A 00;:.. : XEOFE"tRo- ...e OO..t I ,0; 1 OERR AD co::,, ! kNOOA !VE " "'11' 00 fj:
,,.,. C All 00.23 , . T"'V.' AA OO.4! l M:)tC"Ool An con

UU::OCOOL All oa~ :

..." 00(1 1 ,,-
CUrr !!n !; minimum space is 20993 word -.,

A;~tmbl~ comolet e : 905 llnRs
o Errors flaglled on thi.~ A, sembl ..

http:GIlil.Cf
http:ellmln.te

110 50S Dev lcc Driver Writer s GUide •

• Appendix C - 65028 Instruction Set 111

6502 Microprocessor Instructions

AOC Add Memory to Accumulator with JSR Jump to New Location Saving
Carry Ret u rn Add ress

AND
ASL

"AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

LOA
LOX
LOY

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory

BCC Branch on Carry Clear LSR Shift Right one Bit (Memory or
BCS Branch on Carry Set Accumulator)
BEQ
BIT

Branch on Result Zero
Test Bits in Memory with
Accumulator

NOP
ORA

No Operation

"OR" Memory with Accumulator

BMI Branch on Result Minus PHA Push Accumulator on Stack
BNE Branch on Result not Zero PHP Push Processor Status on Stack
BPL Branch on Result Plus PLA Pull Accumulator from Stack
BRK Force Break PLP Pull Processor Status from Stack
BVC
BVS

Branch on Overflow Clear
Branch on Overflow Set

ROL Rotate One Bit Left (Memory or
Accumulator)

CLC Clear Carry Flag ROR Rotate One Bit Right (Memory or
CLO Clear Decimal Mode Accumulator)
CLI
CLV

Clear Interrupt Disable Bit
Clear Overflow Flag

RTI
RTS

Return from Interrupt
Return from Subroutine

CMP
CPX

Compare Memory and Accumulator
Compare Memory and Index X

SBC Subtract Memory from Accumulator
with Borrow

CPY Compare Memory and Index Y SEC Set Carry Flag
DEC
DEX
DEY
EOR

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

" Exclusive-Or" Memory with
Accumulator

SED
SEI
STA
STX
STY

Set Decimal Mode
Set Interrupt Disable Status
Store Accumulator in Memory
Stort! Indt!x X in Memory
Store Index Y in Memory

INC
INX
INY
JMP

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location

TAX
TAY
TSX
TXA
TXS

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer

TYA Transfer Index to Accumulator

112 SOS Device Driver Writer's Guide •

The Following Notation Applies to this Summary:

A Accumulator ¥­ Logical Exclusive Or
X, Y Index Reg isters r Transfer From Stack
M Memory 1 Transfer To Stack
C Borrow Transfer To
P Processor Status Register Transfer To
S Stack Pointer V Logical OR
j Change PC Program Counter

No Change PCH Program Counter High
+ Add PCL Program Counter Low
A Logical AND OPER Operand

Subtract # Immediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

FIGURE 3.

3 2

NOTE1 : BIT - TESTS BITS

Bit 6 and 7 are transferred to the status register. If the
result of A 1\ M is zero then Z= 1, otherwise Z= O.

• Appendix C - 65028 Instruction Set 113

Programming Model

7 0

A I ACCUMULATORI
7 0

y I INDEX REGISTER Y I
7 0

x I INDEX REGISTER X I
15 7 0

PCH PCl I PROGRAM COUNTER I
7 0

01 S I STACK POINTER

PROCESSOR STATUS REGISTER, "P"

CARRY

'------ ZE RO

L--_ __ INTERRUPT DISABLE

'-------- DECIMAL MODE

'---------- BREAK COMMAND

L-_______ OVERFLOW

L-________ NEGATIVE

114 80S Device Driver Writer's Guide •

Instruction Codes

Name
Description

Operation Addressing
Mode

Assembly
Language

Form

HEX
OP

Code
No .

Byles
"p" Status Reg

NZCIDV

ADe
Add memory to
accumulator with carry

A+M+C -A,C Immediate
Zero Page
Zero Page,X
Absolute
Absolute, X
Absolute,Y
(Indirect,X)
(Indirect), Y

ADC #'Oper
A'OC 'Oper
ADC 'Oper,X
ADC 'Oper
ADC 'Oper,X
ADC 'Oper,Y
ADC ('Oper,X)
ADC ('Oper),Y

69
65
75
6D
7D
79
61
71

2
2
2
3
3
3
2
2

j/j-­ j

AND
"AND" memory with
accumulator

Afl M-A Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute, Y
(Indirect,X)
(Indirect ,Y)

AND #'Oper
AND 'Oper
AND 'Oper,X
AND 'Oper
AND 'Oper,X
AND 'Oper,Y
AND ('Oper,X)
AND ('Oper),Y

29
25
35
2D
3D
39
21
31

2
2
2
3
3
3
2
2

/j----­

ASL
Shift left one bit
(Memory or Accumulator)

(See Figure 1) Accumulator
Zero Page
Zero Page,X
Absolute
Absolute,X

ASL A
ASL 'Oper
ASL 'Oper,X
ASL 'Oper
ASL 'Oper,X

OA
06
16
OE
IE

1
2
2
3
3

j j j --­

Bee
Branch on carry clear Branch on C=O Relative BCC 'Oper 90 2 ------

BeS
Branch on carry set Branch on C= 1 Relative BCS 'Oper BO 2 -----­

BEQ
Branch on result zero Branch on Z"" 1 Relative BEQ 'Oper FO 2 - ----­

BIT
Test bits in memory
with accumulator

Afl M, M7 -N,
M6-V

Zero Page
Ab solute

BIT' 'Oper
BIT' 'Oper

24
2C

2
3 M7j --­ M6

BMI
Branch on result minus Branch on N = 1 Relative BMI 'Oper 30 2 -----­

BNE
Branch on result not zero Branch on Z= 0 Relative BNE 'Oper DO 2 -----­

BPL
Branch on result plus Branch on N=O Relative BPL 'Oper 10 2 -----­

BRK
Force Break Forced

Interrupt
PC +2! P!

Implied BRK' 00 1 ---I--

BVe
Branch on overflow clear Branch on V = 0 Retative BVC 'Oper 50 2 - ----­

Note 2 A BRK command cannot
be masked by setting I

• Appendix C - 6502B I nstruction Set 115

Name
Description

Operation Addressing
Mode

Assembly
Language

Form

HEX
OP

Code
No.

Bytes
.. p" Status Reg

NZCIDV

BVS
Branch 0 n overflow set Branch on V= 1 Relative BVS Oper 70 2 ------

ClC
Clear carry flag O-,C Implied CLC 18 1 ---0--

ClD
Clear decimal mode 0-0 Implied CLD 08 1 - 0---­

CLI
0--.1 Implied CLI 58 1 - --0--

ClV
Clear overflow tlag O-,V Implied CLV B8 1 0----­

CMP
Compare memory and
accumulator

A-M Immediate
Zero Page
Zero Page,X
Ab solute
Ab solute,X
Ab solute, Y
(Indirect,X)
(Indirect), Y

CMP #Oper
CMP Oper
CMP Oper,X
CMP Oper
CMP Oper,X
CMP Oper,Y
CMP (Oper,X)
CMP (Oper).Y

C9
C5
05
CD
DO
09
Cl
01

2
2
2
3
3
3
2
2

jj j --­

CPX
Compare memory and
index X

X-M Immediate
Zero Page
Absolute

CPX #Oper
CPX Oper
CPX Oper

EO
E4
EC

2
2
3

j j j --­

CPY
Compare memory and
index Y

Y-M Immediate
Zero Page
Ab solute

CPY #Oper
CPY Oper
CPY Oper

CO
C4
CC

2
2
3

jjj--­

DEC
Decrement memory
by one

M-l-, M Zero Page
Zero Page, X
Ab sol ute
Absolute,X

DEC Dper
DEC Oper,X
DEC Dper
DEC Dper,X

C6
06
CE
DE

2
2
3
3

j j ---­

DEX
Decrement index X
by one

X-l-X Implied DEX CA 1 j j - --­

DEY
Decrement index Y
by one

Y-f_Y Implied DEY 88 1 j j ---­

116 SOS Device Driver Writer's Guide •

Name
Oescriplion

Operation Addressing
Mode

Assembly
Language

Form

HEX
OP

Code
No.

Bytes
"P" Status Reg

NZCIDV

EOR
"Exclusive-Or" memory A V M - ,A Immediate EOR #Oper 49 2 j j ---­
with accumulator Zero Page EOR Oper 45 2

Zero Page,X EOR Oper,X 55 2
Absolute EOR Oper 40 3
Absolute,X EOR Oper,X 50 3
Absolute,Y EOR Oper,Y 59 3
(Indirect,X) EOR (Oper,X) 41 2
(Indirect) ,Y EOR (Oper),Y 51 2

INC
Increment memory M + 1 ~M Zero Page INC Oper E6 2 jj---­
by one Zero Page,X INC Oper,X F6 2

Absolute INC Oper EE 3
Absolute,X INC Oper,X FE 3

INX
Increment index X by one X + I - X Implied INX E8 1 j j--­ -

INY
Increment index Y by one Y + 1 ~Y Implied INY C8 1 jj---­

JMP
Jump to new location (PC+ 1) -.PCL

(PC+2) -PCH
Absolute
Indirect

JMP Oper
JMP (Oper)

4C
6C

3
3

-----­

JSR
Jump to new locat ion
saving return address

PC + 21
(PC+ l)~PCL
(PC ..- 2) - PCH

Absolule JSR Oper 20 3 -----­

LDA
Load accumulator M~A Immediate LOA #Oper A9 2 jj---­
with memory Zero Page LOA Oper A5 2

Zero Page,X LOA Oper,X B5 2
Absolute LOA Oper AD 3
Absolute,X LOA Oper,X BO 3
Absolute,Y LOA Oper,Y B9 3
(Indirect,X) LOA (Oper.X) Al 2
(Indirecl) ,Y LOA (Oper),Y Bl 2

LOX
Load index X M-X Immediate LOX #Oper A2 2 j j --­ -
with memory Zero Page LOX Oper A6 2

Zero Page,Y LOX Oper,Y B6 2
Absolute LOX Oper AE 3
Absolute,Y LOX Oper,Y BE 3

LOY
Load index Y M-Y Immediate LOY #Oper AD 2 j j ---­
with memory Zero Page LOY Oper A4 2

Zero Page,X LOY Oper,X B4 2
Absolute LOY Oper AC 3
Absolute,X LOY Oper,X BC 3

• Appendix C - 65028 Instruction Set 117

Assembly HEX
Name Operation Addressing Language OP No. " p" Status Reg

Description Mode Form Code Bytes NZCIDV

lSR
I

Shift nght one bit (See Fi gure 1) Accumulator LSRA 4A 1 all--­
(memory or accum ulator) Zero Page LSR Oper 46 2

Zero Page.X LSR Oper. X 56 2
Ab solute LSR Oper 4E 3
Ab sol ute,X LSR Oper.X 5E 3

NOP
No operation No Operation Implied NOP EA 1 --­ --­

ORA
"OR " memory with AV M A Immediate ORA #Oper 09 2 j j ---­
accumulator Zero Page ORA Oper 05 2

Zero Page.X ORA Oper,X 15 2
Absolute ORA Oper 00 3
Ab solute.X ORA Oper,X lD 3
Absolute, Y ORA Oper.Y 19 3
(Indirect .X) ORA (O per.X) 01 2
(Indirect) ,Y ORA (O per),Y 11 2

PHA
Pu sh accumulator A! Implied PHA 48 1 -----­
00 stack

PHP
Push processor status P! Implied PHP 08 1 -----­
00 stack

PlA
Pull accumulator At Implied PLA 68 1 jj---­
from stack

PlP
Pull processor status P T Implied PLP 28 1 From Stack
from stack

ROl
Rolate ooe bit left (See Figure 2) Accumulator ROL A 2A I // j - - ­
(memory or accum ul ator) Zero Page ROL Oper 26 2

Zero Page. X ROL Oper.X 36 2
Absolute ROL Oper 2E 3
Absolute.X ROL Oper.X 3E 3

ROR
Rotate one bit rig ht (See Figure 3) Accumulator ROR A 6A 1 //j --­
(memory or accumulator) Zero Page ROR Oper 66 2

Zero Page. X ROR Oper.X 76 2
Ab sol ute ROR Oper 6E 3
Absol ute.X ROR Oper,X 7E 3

118 SOS Device Driver Writer's Guide •

Name
Description

Operation Addressing
Mode

Assembly
Language

Form

HEX
OP

Code
No.

Bytes
.. P" Status Reg

NlCIDV

RTI
Return from interrupt PtPCj Implied RTI 40 1 From Stack

RTS
Return from subroutine PCj. PC+ I-+PC Implied RTS 60 1 -----­
SBC
Subtract memory from
accumulator with borrow

A- M-C-+A Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
(tndirect,X)
(Indirect),Y

sac HOper
sac Oper
sac Oper,X
sac Oper
sac Oper,X
sac Oper,Y
SSC (Oper,X)
SSC (Oper),Y

E9
E5
F5
EO
FD
F9
El
Fl

2
2
2
3
3
3
2
2

jj j --­

SEC
Set carry flag 1 -+C Implied SEC 38 1 - ­ 1- - ­

SED
Set decimal mode 1-+0 Implied SED F8 1 ---­ t-

SEI
Set interrupt disable
status

1 -+1 Implied SEI 78 1 ---I-­

STA
Store accumulator
in memory

A-+M Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
(Indirect ,X)
(Indirect),Y

STA Oper
STA Oper,X
STA Oper
STA Oper,X
STA Oper,Y
STA (Oper,X)
STA (Oper),Y

85
95
80
90
99
81
91

2
2
3
3
3
2
2

-----­

STX
Store index X in memory X-+M Zero Page

Zero Page,Y
Absolute

STX Oper
STX Oper,Y
STX Oper

86
96
8E

2
2
3

-----­

STY
Store index Y in memory Y-+M Zero Page

Zero Page,X
Absolute

STY Oper
STY Oper,X
STY Oper

84
94
8C

2
2
3

-----­

TAX
Transfer accumulator
to index X

A -+X Implied TAX AA 1 jj---­

TAY
Transfer accumulator
to index Y

A -+Y Implied TAY A8 1 jj---­

TSX
Transfer stack pointer
to index X

S -+X Implied TSX SA 1 jj---­

• Appendix C - 65028 Instruction Set 119

Name
Description

Operation Addressing
Mode

Assembly
Language

Form

HEX
OP

Code
No.

Bytes
"p" Status Reg

NlCIDV

TXA
Transler index X
to accumulator

X-A Implied TXA 8A 1 jj--­ -

TXS
Transfer index X to
stack pointer

X-S Imp li ed TXS 9A 1 -----­

TVA
Transfer index Y
to accumulator

V-A Implied TYA 98 1 /j---­

Hex Operation Codes

00 - BRK 21 - AND - (Indirect. X) 42 ­
01 - ORA - (Indirect, X) 22 - 43­
02- 23- 44­
03- 24 - BIT - Zero Page 45 - EOR - Zero Page
04 - 25 - AND - Zero Page 46 - LSR - Zero Page
05 - ORA - Zero Page 26 - ROL - Zero Page 47 ­
06 - ASL - Zero Page 27- 48- PHA
07 - 28 - PLP 49 - EOR - Immediate
08 - PHP 29 - AND - Immediate 4A - LSR - Accumulator
09 - ORA - Immediate 2A - ROL - Accumulator 4B­
OA - ASL - Accumulator 2B- 4C - JMP - Absolute
OB- 2C - BIT - Absolute 40 - EOR - Absolute
OC- 20 - AND - Absolute 4E - LSR - Absolute
00 - ORA - Absolute 2E - ROL - Absolute 4F ­
OE - ASL - Absolute ?F- 50 - BVC
OF - 30 - BMI 51 - EDR - (Indirect), Y
10 - BPL 31 - AND - (Indirect), Y 52­
11 - ORA - (Indirect), Y 32- 53 ­
12- 33- 54­
13- 34- 55 - EOR - Zero Page, X
14- 35 - AND - Zero Page, X 56 - LSR - Zero Page, X
15 - ORA - Zero Page, X 36 - ROL - Zero Page, X 57 ­
16 - ASL - Zero Page, X 37- 58 - CLI
17 - 38 - SEC 59 - EOR - Absolute, Y
18 - CLC 39 - AND - Absolute, Y 5A­
19 - ORA - Absolute, Y 3A- 5B­
lA- 3B- 5C ­
lB- 3C- 50 - EOR - Absolute, X
lC- 3D - AND - Absolute, X 5E - LSR - Absolute, X
10 - ORA - Absolute, X 3E - ROL - Absolule, X 5F­
1 E - ASL - Absolute, X 3F - 60 - RTS
IF - 40 - RTI 61 - ADC - (Indirect , X)
20 - JSR 41 - EOR - (Indirect, X) 62 ­

120 SOS Device Driver Writer's Guide •

63­ 98 - TYA CO - CMP - Absolule
64 - 99 - STA - Absolule. Y CE - DEC - Absolule
65 - AOC - Zero Page 9A - TXS CF -
66 - ROR - Zero Page 9B­ DO - BNE
67­ 9C­ 01 - CMP - (Indirect). Y
68 - PLA 90 - STA - Absolute. X 02 -
69 - AOC - Immediate 9E - 03 -
6A - ROR - Accumulator 9F - 04 -
6B - AO - LOY - Immediate 05 - CMP - Zero Page. X
6C - JMP - Indirect Al - LOA - (Indirect. X) 06 ­ DEC - Zero Page, X
60 - AOC - Absolute A2 - LOX - Immediate 07­
6E - ROR - Absolute A3 - 08 - CLO
6F - A4 - LOY - Zero Page 09 - CMP - Absolute, Y
70 ­ BVS A5 - LOA - Zero Page OA­
71 - AOC - (Indirect). Y A6 - LOX - Zero Page OB­
72­ A7­ OC­
73­ A8 - TAY DO - CMP - Absolute. X
74 - A9 - LOA - Immediate DE - DEC - Absolute, X
75 - AOC - Zero Page . X AA - TAX OF -
76 - ROR - Zero Page, X AB - EO - CPX - Immediate
77­ AC - LOY - Absolute El - SBC - (Indirect . X)
78 - SEI AD - Absolute E2 -
79 - AOC - Absolute. Y AE - LOX - Absolute E3 -
7A­ AF­ E4 - CPX - Zero Page
7B - BO - BCS E5 - SBC - Zero Page
7C­ Bl - LOA - (Indirecl), Y E6 - INC - Zero Page
70 - AOC - Absolute. X NOP B2 - E7 -
7E - ROR - Absolute, X NOP B3­ E8 -INX
7F - B4 - LOY - Zero Page. X E9 - SBC - Immediate
80­ B5 - LOA - Zero Page, X EA­
81 - STA - (Indirect . X) B6 - LOX - Zero Page. Y EB -
82 - B7­ EC - CPX - Absolute
83­ B8 - CLV ED - SBC - Absolute
84 - STY - Zero Page B9 - LOA - Absolute, Y EE - INC ­ Absolute
85 ­ STA - Zero Page BA - TSX EF­
86 - STX - Zero Page BB - FO - BED
87­ BC - LOY - Absolute, X Fl - SBC - (Indirect) . Y
88 - DEY BO - LOA - Absolute. X F2 -
89 - BE - LOX - Absolute. Y F3 -
8A - TXA BF - F4 -
8B - CO - CPY - Immediate F5 - SBC - Zero Page, X
8C - STY - Absolute Cl - CMP - (Indirect, X) F6 - INC - Zero Page. X
80 - STA - Absolute C2 - F7 -
8E - STX - Absolute C3 - F8 - SED
SF - C4 - Cpy - Zero Page F9 - SSC - Absolute. Y
90 - SCC C5 - CMP - Zero Page FA­
91 - STA - (Indirect). Y C6 - DEC - Zero Page FB -
92 - C7 - FC -
93­ C8 -INY FD - SBC - Absolute, X
94 - STY - Zero Page. X C9 - CMP - Immediate FE - INC - Absolute. X
95 - STA - Zero Page. X CA - OEX FF -
96 ­ STX - Zero Page. Y CB­
97 - CC - CPY - Absolute

• Appendix 0 - Important Fixed Addresses 121

Important Fixed Addresses

122 SOS Resources Available for Device Driver's Use
122 Addresses Important to Device Drivers

122 SOS Device Driver Writer's Gu ide •

D
Important Fixed Addresses

There are several addresses that are commonly used by device
drivers, entry points for SOS resources available to device drivers,
and areas of memory that are often referred to .

50S Resources Available for Device
Driver's Use

ALLOCSIR
DEALCSIR
SELCBOO

SYSERR
QUEEVENT

$1913
$1916
$1922

$192B
$191F

To allocate SOS Internal Resource
To deallocate SOS Internal Resource
To select the $CBOO address space for a
given expansion slot
To report execution errors to SOS
To signal SOS that an event is to be queued

Addresses Important to Device Drivers

$FFDO
$FFDF
$FFEF
$1BCO-C9
$1BCA-FF
$14CO-C9
$14CA-FF

Zero-page (Z) Register
Environment (E) Register
Bank (B) Register
Driver parameter table area
Free zero-page area
Parameter table extend-page
Extend-page free area

Glossary

address n. A name or number designating a location in either the
computer's memory or an on-line file.

algorithm n. Any mechanical or computational procedure.

analog data n. Data representable as fractional numbers.

analog-to-digital converter n. A device that converts
measurements of continuously varying physical quantities such as
temperature, voltage, or current into a digital form that can be used
by a computer.

ASCII n. ASCII is an acronym for the American Standard Code for
Information Interchange. This code assigns a unique value from 0 to
127 to each of 128 numbers, letters, special characters, and control
characters.

assembler n. A program that converts assembly-language
instructions into machine-language instructions.

assembly language n. A computer language made up of simple
words, called mnemonics, that can be quickly and easily converted to
machine language. Assembly-language programs are less difficu It for
people to write and understand than programs written in machine
language.

124 SOS Device Driver Writer's Guide •

binary n. The base-two numbering system consisting of the two
digits, 0 and 1. Most computer storage devices are designed to store
binary digits and computer circuitry is designed to manipulate
information coded in a binary form.

bit n. Contraction of Binary digiT; the smallest amount of
information that a computer can hold. A single bit specifies a single
value of either "0" or " 1". A group of 4 bits together form a nibble, 8
bits form a byte, and various numbers of bits form words.

board n. Short for printed-circuit board, or PC board. A sheet of
material, usually made of fiberglass or phenolic-resin-impregnated
paper. Attached to either or both faces and often even within the
board are layers of copper, etched into the fine lines of specific
circuits. Connected to these copper circuits are electronic
components: resistors, capacitors, coils, and various solid-state
devices.

bootstrap or boot v. To get the system running. The primitive
bootstrap program loads into the computer a more sophisticated
program that then takes over the responsibility for the overall
operation of the computer.

buffer n. A device or area of memory that is allocated to hold
information temporarily. Buffers act to generally speed up the
performance of computer systems.

bus n. A group of wires that carry a related set of data, such as
the bits of an address, in a standard format from one place to
another. A bus can transmit information from one part of a computer
to another, between the computer and a peripheral device, or
between peripheral devices.

byte n. A basic unit of a computer's memory. A byte usually
comprises eight bits and is thus capable of expressing a range of
numbers from 0 to 255. (2 to the 8th power is 256.) Each character in
the ASCII code can be represented in one byte, with an extra bit left
over.

• Glossary 125

card n. A type of printed-circuit board that has a built-in
connector so that it may be plugged into a larger board or other
piece of hardware.

catalog n. See directory.

Central Processing Unit, or CPU n. The " brain " of the computer.
The CPU is responsible for executing instructions that control the
use of memory and perform arithmetic and logical operations. A
microprocessor is a CPU.

character n. Any symbol that has a widely-understood meaning.
In computers, letters, numbers, punctuation marks, and even what
are normally just concepts, such as carriage returns, are all
characters.

code n. 1. A computer program . 2. A method of representing
something in terms of something el se. The ASCII code represents
characters as binary numbers; the BASIC and Pascal languages are
codes that represent algorithms in terms of program statements.

cold start or cold boot v. To begin operat ion of the computer or a
given program on the computer by loading in the operating system
and the program, and then running .

command n. 1. An order given to the computer to perform an
immediate action. 2. The part of an instruction that specifies the
action to be carried out. In the BASIC instruction "PRINT " Hello" ",
PRINT is the command . In the Pascal instruction "writeln ('Hello ')",
writelnO is the command .

compiler n. A program that translates a high-level language
version of a program (the source code) into a low-level language
version (the object code).

computer n. A machine that is controlled by stored instruct ions
and is used to store, transfer, and transform information .

control character n. Control characters, the first thirty-two
characters of ASCII , initiate, modify, or stop control functions.

126 SOS Device Driver Writer's Guide •

controller n. See peripheral device controller.

CRT An acronym for Cathode-Ray Tube. A CRT is a tube with a
phosphor-coated optical glass faceplate which, when struck by a
directed beam of electrons generated within, glows with visible light.
Some examples of CRTs are oscilloscope tubes, radar screens, and
TV or monitor screens.

data n. Information that can be processed by a computer.

default n. The value or action selected by the system when the
user does not select an allowable value or action.

delimiter n. A character that is used to designate the beginning or
end of a string of characters and therefore is not considered a part
of the string. Spaces are common delimiters of English words.
/Computers/often/allow/other/symbols./

device n. A piece of computer hardware, such as a disk drive or
terminal. Device is short for peripheral device.

device driver n. A small program that acts as a communications
link between a device and the operating system.

digital data n. Data representable as whole numbers. See analog
data.

directory n. A table of information about the files stored on a
mass storage device such as a diskette. Information in a directory can
include the length and address of files, the amount of storage space
files occupy, etc .

disk n. A flat , circular piece of plastic (flexible disk) or metal (hard
disk), either electroplated or coated with a fine magnetic powder,
onto which information is magnetically recorded.

disk drive n. A device that can read information from and record
information on a flexible disk or hard disk in much the same way that
a tape recorder reads from and records on magnetic tape.

• Glossary 127

diskette n. The smaller (51/4 inch) of two usual forms of flexible
disk (also called floppy disk), the other (8 inch) simply being called a
flexible (or floppy) disk.

display 1. n. Information exhibited visually, especially on the
screen of a display device. 2. v. To exhibit information
visually. 3. n. A display device.

edit v. To change stored data or modify its format (for example, to
insert, delete or move characters in a file).

editor n. A program that interacts with the user, allowing entry of
text, graphics, and so on, into the computer and convenient editing
of that information.

execute v. 1. To carry out a command or instruction. 2. (colloq.)
To run a program or a portion of a program.

file n. A named, ordered collection of data.

file name n. The name used to identify a file. The operating
system is able to locate that file by its name.

firmware n. Software stored in a ROM.

flexible disk n. See diskette.

floppy disk n. See diskette.

graphics n. 1. Information that is conveyed in terms of pictures (as
distinguished from text). 2. Information displayed from a page of
graphics memory, rather than text memory. Such a graphics page
typically requires eight to sixteen times as much memory as a text
page. This information might include text. An example would be an
annotated chart or graph.

hardware n. The physical components of a computer and its
peripheral devices.

128 SOS Device Driver Writer's Guide •

Hertz (Hz) n. Cycles per second. A bicycle wheel which makes two
revolutions in one second is spinning at a rate of 2 Hz. The Apple 111'5
microprocessor runs at approximately 2 million Hz, or 2 MHz.

hexadecimal n. A number system which uses the ten digits 0

through 9 and the six letters A through F to represent values in base
16. Assembly-language instructions often use hexadecimal notation.

high-level language n. A programming language that is relatively
easy for humans to understand. FORTRAN, BASIC, and Pascal are all
examples of high-level languages. One statement of a high-level
language usually corresponds to several statements in a low-level
language.

I/O adj. Short for input/output: a general term referring to the
transfer of information into and out of a computer or peripheral
device.

I/O device n. An input/output device attached to a computer that
makes it possible to bring information into the computer and for the
computer to send information to the user or to another device. Such
devices include keyboards, monitor screens, and serial interface
cards.

IC n. See integrated circuit

input n. Information (data) arriving at a computer or device.
v. 1. The act of receiving data. 2. To type information into a
computer. (jargon)

instruction n. The smallest portion of a program that a computer
can execute. In 6502 machine language, an instruction comprises
one, two, or three bytes and corresponds to a single machine
operation. In a higher-level language, an instruction may be many
characters long and may correspond to many operations.

integ rated circuit (IC) n. A small piece (smaller than the size of a
fingernail and about as thin) of pure, crystalline semiconductor
material, usually silicon, that has had refined impurities introduced to
form the various elements of an electronic circuit. Integrated circuits,
or chips, are the basic building blocks of computers.

• Glossary 129

interface n. 1. The electronic components that allow two different
devices, or the computer and a device to communicate. 2. The part
of a computer program that interacts with the user.

interpreter n. A program, usually written in machine language,
that individually translates each step in a high-level language
program into a series of low-level machine language operations and
then carries out those operations before proceeding to the next step.
This is different from a compiler, which does all the translating before
the resultant object code is run . The execution of an interpreted
high-level program typically takes up to 100 times as long as that of
compiled object code.

K n. A prefix (kilo), derived from Greek, used to denote one
thousand . In common computer-related usage, K usually represents
2 to the 10th power or 1024.

kilobyte n. 1024 bytes.

load v. To transfer a program or data into the computer's memory.

low-level language n. Relative to high-level languages, low-level
languages are simpler, more primitive, and are more tightly tied to the
hardware of the computer than to the intuitive thought processes of
a human. Low-level languages on Apple computers include assembly
and machine languages.

machine language n. The computer language that controls the
lowest-level internal operations of the computer. Each statement or
instruction in machine language causes the machine to perform one
operation.

memory n. Devices in which data can be stored and from which
the data can be obtained at a later time. Typical memory devices
include several types of integrated circuits (normally found within the
computer) , disks, punched cards (do not fold , spindle, or mutilate),
and magnetic tapes. The information in a memory may be permanent,
that is, it may be read from but not written to (see Read-Only
Memory), or information may be written into as well as read from a
memory (see read/write memory). Memory is further defined as to
how specific locations of information may be accessed; there is
Random-Access Memory and serial access memory.

130 SOS Device Driver Writer's Guide •

microcomputer n. A computer that uses a microprocessor as the
primary part of its Central Processing Unit.

microprocessor n. A Central Processing Unit contained in a single
integrated circuit.

mnemonic n. A short, easy-to-remember word or group of letters
that stands for another word. Assembly-language instructions are
mnemonics.

monitor n. 1. A CRT, or CRT with its attendant circuits, which looks
like a TV set with no channel selectors. 2. A computer program that
allows the user to directly initiate machine-language instructions.

native code n. The machine-language code usable directly by the
CPU of the computer upon which the code is to be run. See P-code
and P-machine.

network n. 1. A number of interconnected, individually controlled
computers. 2. The hardware system used to interconnect such a
group of computers.

object code n. The code that results from a program's source
code, written in a high-level language, being translated by a compiler
or assembler into a lower-level language.

operating system n. The collection of programs that organize a
computer and its peripheral devices into a working unit that can be
used to develop and execute applications programs.

output n. Data that have been, are being, or are to be transmitted.
v. The act of transmitting data. (jargon)

page n. 1. A screenful of information on a video display. A page is
not necessarily 8.5" x 11". 2. A segment of internal storage.

peripheral n. A shortened form of "peripheral device". A device
attached to the computer that can provide input and/or accept output
from the computer. Peripherals include printers, disk drives, and
speech synthesizers.

• Glossary 131

peripheral device controller n. A specialized circuit that connects
a peripheral device to the computer. Such controllers are called
intelligent if they include small device handlers held in ROMs.
Controllers for the Apple II computer are most easily used if
intelligent; those for the Apple III use software device handlers that
are stored on diskette and become part of the operating system.

P-code n. Short for pseudo-code. Program instructions intended
to be executed by a P-machine.

P-machine n. Short for pseudo-machine. Software that emulates a
CPU. P-machines are created to allow one computer to imitate the
CPU of another and thus to run software created for that other
computer's CPU. (Purists will point out that some P-machines imitate
CPUs that don't really exist at all.) Programs run on a P-machine run
slower than they would if the hardware CPU of the computer could
run them directly.

port n. The point of connection between the computer and
peripheral devices, other computers, or a network. A port is usually a
physical connector terminating a bus.

program n. A stored sequence of instructions that causes a
computer to perform some function or operation. v. To create
such a sequence of instructions.

protocol n. A set of conventions governing information exchange
between two communicating computers, or between a computer and
a peripheral device.

Random-Access Memory (RAM) n. 1. Memory that has a unique
address for each unit of storage and a method by which each unit
may be immediately read from or written to. Such memory is made
up of some minimum grouping of bits; either nibbles, bytes, or
words. 2. The integrated circuits forming the main read-write
memory of the computer. The values stored in most types of RAM
memories are lost when power is no longer supplied.

132 SOS Device Driver Writer's Guide •

Read-Only Memory (ROM) n. The integrated circuits that contain
the computer's permanent memory ; phonograph records and optical
disks are ROMs. Information stored in ROM is not lost when the
power is removed. Most ROM is randomly accessible, but the term
random-access memo ry is usually rese rved for read-wri te memory

that is randomly accessible.

read-write memory n. Memory in which values may be stored and
read by the processor. Random-Access Memory, magnetic tape, and
disks are each read-write memories.

scroll v. To move all the information on a display (usually upward)
to make room for more information (usually at the bottom of the
sc reen).

software n. A collective term for computer programs. Software is
generally stored for future use on either disk or magnetic tape. When
actually being executed , software is typically held in read-write
memory.

SOS (Sophisticated Operating System) n. The operating system
used by the Apple III computer. It is designed to allow easy
development of new languages and the addition of new peripheral
devices while maintaining compatibility w ith existing hardware and
software running under SOS.

source code n. The original version of a program, written in a
high-level language for later compilation or assembly.

word n. A group of bits that occupies one storage location and is
treated by the operating system as a unit and is transported as such.
Aword is differentiated from both a byte (8 bits) and a nibble (4 bits)
in that its length is defined by the underlying design of the CPU
being used. Apple computer CPUs typically use either 1- or 2-byte
words. See P-machine.

• Figures and Tables 133

Figures and Tables

1 Overview of 50S Device Drivers

8 Figure 1-1 The SOS/Apple III Abstract Machine
9 Figure 1-2 SOS Data and Control Flow

10 Figure 1-3 Generalized Device Driver Model

3 Table 1-1 SOS Device Drivers and Devices

2 The Physical Environment of 50S

14 Figure 2-1 Generalized Apple III Diagram
14 Figure 2-2 SOS System Address Space

3 Request Handling

30 Figure 3-1 Device Driver Structure

25 Table 3-1 Character Device Driver Request Parameters
26 Table 3-2 Block Device Driver Request Parameters
28 Table 3-3 SOS Device Driver Environment
31 Table 3-4 DIB Header Block Structure
34 Table 3-5 Currently-assigned SOS Device Types and

Subtypes

134 	 SOS Device Driver Writer's Guide •

4 	 50S-provided Services

48 Table 4-1 System Internal Resource (SIR) Numbers
53 Table 4-2 SOS Driver Error Codes

5 	 Interrupt Handling

63 	 Table 5-1 Interrupt Polling Priorities

7 	 Interfacing with Apple III
Peripheral Connectors

73 Figure 7-1 Apple III Peripheral Connector Pinout
79 Figure 7-2 I/O Timing Diagram
81 Figure 7-3 Sample 6520 Interfacing Circuit
81 Figure 7-4 Sample (A) 6522 Interfacing Circuit
82 Figure 7-5 Sample (8) 6522 Interfacing Circuit

74 Table 7-1 Signal Description for PeripheralI/O
Connectors

78 Table 7-2 Loading and Driving Rules

Index

A
abstract machine, SOS 16

ACIA (Asynchronous

Communication Interface

Adapter) 21, 22, 79

address

enhanced-indirect 20

space, SOS 14

addressing 14

bank-switched 19

enhanced-indirect 18, 19-20

memory 19-20

ALLOCSIR 48-50

Apple 1/ Emulation mode iv, 85

Apple II/ Pascal Assembler 69

architecture, SOS 16

arming, event 54

Assembler, Apple III Pascal 69

assignments

device subtype 34

device type 34

asynchronous interrupt 54

.AUDIO ii

B
B (or bank) register 18, 19, 28, 62

bank-switched addressing 19

block 4

device(s) iii , 4

driver(s) 26, 69

functions 6, 11

writing 69

f ile iii

logical 6

numbers 26

blocks field , DIB 35

buffers 11 , 36, 66

bus timing 79

C
cables, I/O 83

card designs, prototyping 82

character

devices 4

driver(s) 68

functions 4, 11

writing 68

136 SOS Device Driver Writer's Guide •

file iii

NEWLINE 5-6

classes, device 4

clock

modes 80

rate 17

system 29, 62

code

files, device driver 69

reentrancy 61

time-dependant 67

command register 21

comment field, DIB 31

conceptual model , SOS 7

configu ration

block, DIB 35, 36

programs, system 2

connectors, peripheral 72

.CONSOLE ii

control

parameters 6

reg ister(s) 14, 16, 22

D
DEALCSIR 48-51

decoupling 77

design

driver 66

interrupt handlers 61

prototyping cards 82

detection , error 70

device(s)

block iii , 4

character 4

classes 4

driver(s) i, 2

adding 2

buffers 11

code files 69

removing 2

skeleton 10

standard 3

files 2

format 34

information block 30-31

name, DIB 32

physical 2

requests 2, 3, 5, 30, 36

reset 45

selection , external 22

subtype

assignments 34

byte, DIB 34

type

assignments 34

byte, DIB 32

diagnostics 66

DIB (Device Information Block)

30-31

comment field 31

configuration block 35, 36

entry field 32

filler byte 34

flag byte 32

header block 31

link field 35

slot byte 32

unit byte 32

version number 35

directories 4, 6

disabling interrupts 63

DMAv

documentation, driver 36

DRCLOSE 5, 24, 38

DRCONTROL 6-7, 24, 43, 68-69

DR..JNIT 5, 6,24, 37, 68-69, 85

DRDPEN 5, 24, 37

DRREAD 5-6, 24, 38, 68-69

DRREPEAT 7, 24, 40

DR...STATUS 6-7, 24, 41 , 68-69

DFLWRITE 5, 7, 24, 40, 68-69

drive rules, I/O 77

• Index 137

driver(s)

block 26,69

functions 6, 11

writing 69

buffers 36

design 66

documentation 36

parameter table 28

request parameter table

24-26

requests 36

character 68

fu nctions 4, 11

writing 68

design 66

device i, 2

block 11

code files 69

skeleton iv, 10

standard 3

format 4

E
E (or environment) register 16

electrical description 73

EMI, minimizing 83

emulation mode iv, 85

enhanced-indirect addressing

18, 19-20

entry field, DIB 32

envi ron ment

execution 68-69

interrupt handler 62

error codes

detection 70

handling 52

reporting 70

SOS 53

special 70

system 53

errors, system 53

event

arming 54

fence 55

handling 54

priority 55

queue 54

recognition 55

execution environment 27

ExerSOS 68-69

expansion, I/O 82

selection 51

extend-address page 18-19

extended-address page usage 27

external device selection 22

F

fence, event 55

field, DIB blocks 35

file 2,4,6

block iii

character iii

device iii

random-access iii

filler byte, DIB 34

flag

byte, DIB 32

interrupt 61

.FMTD14

format

device 34

driver 4

fu II-speed mode 80

functions

block driver 6, 11

character driver 4, 11

G

138 SOS Device Driver Writer's Guide •

H
handler

interrupt 2, 30, 51, 60

design 61

environment 62

request 2, 24, 30

handling

error codes 52

event 54

hardware

interfacing 72

testing 84

header block, DIS 31

I

I/O

cables 83

drive rules 77

expansion 62

selection 51

loading 77

space 62

selection 29

state, system 29

input operation i

interfacing, hardware 72

internal resource system 48

interrupt(s) 2, 27, 62, 66

asynchronous 54

disabling 63

flag 61

handler(s) 2, 30, 51, 60

design 61

environment 62

handling 60

IRQ 60

NMI51

polling priorities 63

receiver 48

resources 64

response times 61

state, system 29

IRQ interrupts 60

J

K

L
link field, DIB 31

loading, I/O 77

logical block 6

numbers 26

M

manufacturer field, DIS 35

maximum response time 63

memory

addressing 19-20

organ ization 14

space size 19

minimizing EMI 83

minimum response time 63

mode(s)

1 MHz 80

clock 80

emulation iv, 85

full-speed 80

NEWLINE 5

N
NEWLINE 38, 42, 44, 68-69

character 5-6

mode 5

NMI interrupt handling 55

numbers, block 26

••

o
OEM prototyping card 72

operation

input i

output i

organization, memory 14

output operation i

p

parameters, control 6

Pascal Assembler, Apple III 69

peripheral connectors 72

physical devices 2

PIA 79

polling priorities, interrupt 63

port, serial 21

.PRINTER ii, 4, 60

priority, event 55

.PROFILE ii

prototyping card design 82

Q
QUEEVENT 55-56

queue, event 54

R
random-access file iii

rate, clock 17

receive/transmit register 21

receiver, interrupt 48

recognition, event 55

reentrancy, code 61

register(s)

bank 18, 19, 28, 62

command 21

control 22

receive/transmit 21

status 21

system control 14, 16

Index 139

X 62

Y 62

Z17

reporting errors 70

request(s)

device 2, 3, 30

handlers 2, 24, 30

handling 24, 27

reset, device 45

resource(s) 48

allocation 49

interrupt 64

response time

maximum 63

minimum 63

interrupt 61

.RS232 ii, 4

RS232 port 21

s
SCP 2

SELC80052

selection

$C800 space 22, 29

I/O expansion 51

I/O space 29

semaphores 61

serial port 21

short circuit tests 84

SIR 48, 64

skeleton driver iv

skeleton, device driver 10

slot byte, DI B 32

SOSi

abstract machine 16

address space 14

architecture 16

conceptual model 7

device

classes 4

req uests 2, 3, 5, 30, 36

140 SOS Device Driver Writer's Guide •

error codes 53

SOS.DRIVER 2

space size, memory 19

space, I/ O 62

spec ial erro r codes 70

stack 62

standard device drivers 3

status reg ister 21

SYSERR 52-53, 70

system

clock 29,62

configuration program 2

control registers 14, 16, 22

errors 53

I/ O state 29

internal resource 48

interrupt state 29

T

table, driver request parameter

24-26

testing

hardware 84

short ci rcuits 84

time-dependant code 67

timing , bus 79

U
unit byte, DIS 32

V

version number, DIS 35

VIA 80

W
writing

block drivers 69

character drivers 68

x

X register 62

X-add ress page 1 8-19

X-byte 20

y

Y reg ister 62

z
Z register 17

zero-page 62

zero-page use 27

Special Symbols
$C800 selection 22

.AUDIO ii

.CONSOLE ii

.FMTD1 4

.PRINTER ii, 4,60

.PROFILE ii

.RS232 ii, 4

	Contents
	Introduction
	1) Overview of S0S Device Drivers
	2)The
hysical Environment of SOS
	3)
Request Handling
	4)
SOS-provided Services
	5)
Interrupt Handling
	6)
Device Driver Coding Techniques
	7)
Interfacing with Apple III Peripheral Connectors
	A)
Sample Block Driver Skeleton
	B)
Sample Character Driver Skeleton
	C)
65028 Instruction Set
	D) Important
 Fixed Addresses
	Glossary
	Figures and Tables
	Index

