& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Malloy « Nov 1980)

=T

Date: November 7, 1980 <:)
To: Lisa Saftuware
cc: Cauch, Smith

@§arplc

Subject: Interface Specification for the standard dtorage manager

From: Tom Malloy

Several weeks ago we discussed the advantages of a unified intra-segment
starage management strategy. . At that time I proposed we adopt the Lotus
storage manager, or some variation thereof, as the standard. This met with
some approval. Attached is an intefface specificatiaon for

the storage manager we discussed. Please read and comment capiously on
content and style.

It seems unavoidable to have two memory managers; this intra-segment

manager and the 0S’ real-memory/segment manager. While two 'is not as good

as agne it is certainly much better than aone per application. DBetween these
two pieces of software it would be nice (and I think it is very possible) to
satisfy most/all of our memory management needs. I# we have almost satisfied

your needs, but not quite, lets get together and talk - maybe we can enhance
one ar both of the memory managers to avoid the need for another one.

Thanks = Tom ~
|

rc ‘6/200/
7[& LSa /’t‘/)'a SeJ)Mh.‘% hmwj m
WAI‘J\, aﬂ:edro&(/"7‘ /A ﬂl» [/Jqf\)h‘é

o Was fm
/NJMM (/’rm c’/m/ /"°7W A ssor
MQ//D f ﬂe %r,/x ﬁrgw wor /’
/mo) s /v/ar aa[o/—é,l w 75 /{”

syj’éh-'[d/zé’ M
Dud Tbbe Mal

amtje"

M Q c!"'/“““/ coty “1/"'5
MAnsY o (ca /754/) 13

/4‘\/7 //e,fzﬁ/a[-

| Source: David T Craig Page 0001 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Malloy « Nov 1980)

Preliminary Interface Specification - UnitHz (:)
I. Introduction

UnitHz performs intra—-segment memory management for Lotus, LisacCalec,

the Window Manager (Lily) and portions of the Operating System and Pascal
run~time. UnitHz provides a layered implementation ofs "heap-like" storage
regions, called zones. The most basic layer provides alloecation

and deallocation of non-relocatable blocks of storage within the zone.
This is, in the parlance of Pascal, "a Pascal heap with NEW and DISPOSE".
At the second level, code is added to provide relocatable starage block
management: a campacting heap. Since this relocation ability is outside
the domain of knowledge of both the hardware and the program development
environment, certain conventions must be obeyed by the programmer when
using this storage mechanism. Failure to follow the conventions will
usually produce catastrophic side effects. This potentxal drop in
reliability should be weighed against the added flexibility when

choosing a storage management methodology. Finally, a third level

of code implements a primitive, object oriented virtual memary. Lotus

is the only known client of this interface. Storage blocks managed

by UnitHz have a maximum size of 32k bytes. The zones themselves may

be arbitrarily large.
I7C %/zoo/: See f’jure 1, Y2 b .

II. Dependencies

UnitH: imports. UnitStd to provide a set of very common type declarations not
re~defined by Pascal. For instance the type, TP, is a pointer to
undescriminated storage (i.e. compatible with any pointer). -Similarly there
are ‘standard type declarations for arrays of bytes, arrays of characters and
other low level primitives. UnitStd also defines primitive operations an
these types, such as the maximum and minimum of two integers (CMax and CMax).

II1. Key objects

The key exported 6bJects of UnitHz are the handles on the storage blocks of
various types. In particular:

p undescriminated pointer. The handle on a non-relacatable
block of storage is a p.

h a pointer to a p. This double indirect pointer is the
handle on a relocatable block aof storage. The h is
invariant with respect to compaction of the zone. The
pointer. h”, is not. The conventions concerning the
use of the compacting allocator deal with the circumstances
under which these handles can be dereferenced. The
dereferencing rule, in its simplist form states that

. all dereferenced handles become invalid upon the executian
of any procedure in the UnitHz interface. A more practical
corollary states that any procedure call of unknown effect
may invalidate the handles. This includes all external
procedures. In practice, Lotus implementors typically
consider dereferenced handles invalid after any praocedure
call, internal or external.

~~The handle, h, points at a single, unique pointer to the

| Source: David T Craig Page 0002 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Malloy « Nov 1980)

]
‘ block itsel#f. The block, in turn, contains enaugh informatioa
(:) to locate this pointer when the compactor wishes to relocate
it. The pointer must be in a static location. In particular,
it cannot be embedded in a relacatable block.
N 4

n name. A 32-bit (mostly?) uninterpreted handle on a swappable
object. Access to swappable objects is via a procedural intert
which maps the name through a hash table which identifies
all of the currently rasident, swappable abgjects. If the objec
is is not resident, a user definable "trap" routine is invoked
to read it into the cache. The particulars aof this interface
will remain vague at least until we design the procedure
variable scheme.

IV. - Secondary aobjects

s
UnitHz manages a collection of storage zomes (ahz’s). A storage zone is a
cantiguous block of memory. It is expected that most zones will be the

complete contents of hardware data segments, although this is not 2
requirement. A storage zone is divided into a header, describing the
contents of the zone, followed by a sequence of storage blocks (abk’s).
A zone has a types tyhz, which determines the kind of blocks the zone
might contain. We currently imagine four types of blocks:

1) Free blocks L.
2) Non-relocatable blocks '
3) Relocatable blaocks

4) Named blocks

1t does nat seem to make sense to have all of these in a single zone.

For instance, it has not been decided whether allowing the mixture of
relocatable and non-relocatable blacks in the same zone would be a feature or
headache. although it is technically feasible. Let’s say for discussion’s
sake that there are two types of zones:

tyhzNrel non-relocatable blocks only
tyhzRel relocatable and swappable blocks anly

Each block has a header followed by the user’s storage. The header contains
a 2-bit block type field, ¢tybk, a 14-bit count of words. cw, and some tybk depe
information. Figure 1 illustrates the layout of a zone.

The type dependent information is:

1) Free blocks are linked together on a doubly linked list used by the
allocation routines.

2) Non-relocatable blocks have no type dependent anarmatzan and hence
the smallest per block overhead (i1é6-bits)

3) Relocatable _blocks have a 146 bit "locator"” of the single pointer to the
block. This single pointer, which is pointed AT by the handle, h, can be
in one of two general areass. Most of these pointer will be in a pool of
pointers at the beginning of the zone, in which case the locator is an
offset from hz to the pointer. When the zone is initialized the user may
supply another base address, pBase. This is provided to allow %the user to
place blaock pointers in his global data area. Any call to allocate-a block
must supply a handle which points at a location within 32k bytes of pBase
or hz. .-

| Source: David T Craig Page 0003 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Malloy « Nov 1980)

4) Named blocks contain the 32-bit name which identifies the block plus
some miscellaneocus information about the object. For instance, there
is @ small LRY timer used by the software tao
chooase a block to remave from the cache.

V. Initialization, reconfiguaration and destruction of objects
HzInit(pFst, pLim, ipPoolMac, loglpnlLim, pBase) : hz

The contiguous block of storage IN [pFst..pLim) is turned into a zone. I¢
ipPoolMac > O then a pool of pointers is allocated at the beginning of the
zone. These pointers will point at relocatable blocks:, therefore the address
of each painter is potentially an h—type handle. A hash table large enough to
hold 2~~loglpnLim pointers is allocated as a relocatable block in the zone. A
handle on the zone is returned. We can imagine dynamically increasing

or decreasing ipPooclMac and ipnLim, but the current implementation does not
include this feature.

A zone which contains no user data can be abandoned at any time by the user
without notifying UnitHz. ’

~

VI. Operation
IMPLEMENTATION NOTE:

In order to allow for multiple zones each routine in the implementation

must take the zone handle, hz, as an argument. This may be viewed, with

some justification, as a high price to pay. A subtle implementation decision
was made in order to minimize this overhead in the future. Namely, the zane
pointer is always the first parameter to the procedure. I1# and when the

Pascal run—time conventions are changed to pass procedure parameters in registe:
this could have the very pleasant effect of the zone handle being placed in

an address register when an interface pracedure is called and remaining there
for the duration of its execution. This conventiaon may be of use to ather
programmers implementing "object oriented" interfaces.

AllocateBk(hz, hDst, cb, tybk)

Allocates a block of type tybk with cb bytes af user storage in zone huz.
A pointer to the user’s portion of the block is placed in hDst".

HAllocate(hz, cb) : hRslt

Allocates a relocatable block with cb bytes of user storage in zone hz.
A painter to the block is allocated from the pool and its address returned
a4 the result.

FreeBk(hz, hDst, tybk)
Frees the block refered to by hDst.

|

changeSizeH(hz, hDst, cbNew)

Changes the size of a relocatable block refered to by hDst. Bad news if
it is not , a relpocatable block.

| Source: David T Craig Page 0004 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Malloy « Nov 1980)

\

PMapN{hz, n. fLock) : p : : .(:)

Maps the name, n, thraugh the hash table of resident named objects. If it
.is found a pointer to the user portion of that block is returned. Otherwisa,
chand wave> the user—-defined "trap" mechanism is invoked to read it into the
zone. flock is a flag. If true the object is locked into physical memory
until unlocked by ancther call on PMapN with the same n and fLock = FALSE.

Without this extra feature it would be technically impossible to "dereference"

two named objects simultaneously. since the second cald might invalidate the
first painter. .

SetFDirty(hz, n, fDRirty)

Sets the dirty flag for the object named by n. When the object is swapped
out it will be updated on the disk.

s

$T¢ '-l—/wol A_ l_«_'ﬂief \h’ff_e Mrﬂ "

g Al
\\E Tom Mal(oy ﬁ//ow& R IprM]MmﬂwW, "
g vaevx’('(‘w\— called “ﬁuu?arian S+7/€ |
é I ‘ﬁ\‘t‘l' orf'q(\ta'{'et(at Xev:ox Ff\:’(EC |
R loarles Simonyr, & orimer
S N um(nr e ”I“)
XY o gy T
™ | bl w
\§ 3 ‘(’ l nf‘\(es vev!
\\S{ 9 1 € F Lp, + . o{
I %.\ le«ws spea':(yl"t‘] + 1f
% < - etyle wes wed 1
Q ;P memla(o, ’ﬂ”“ ST ‘H‘r(
§§ Kevm r"’ﬁr‘aﬂ‘" ;”k “’;or .
S ro ces
‘ X3 wysIRIa W ¢) o A
N Ao (ca. (175, f
£ lom sonetimes
~

| Source: David T Craig

Page 0005 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Malloy « Nov 1980))

bz A Hemr Zows @

C?one ka..Ez
| >! f -

ohz (zore huaclen)

2888l t)

arg P%\--’ C poruA ?eol)

P
i
w4

)

<

argpn Chasle -\-u‘leB

Porn (VI rk*o
= ble .L(a.S

abRL (o b

alo b ne (/O.S{"L/OCEB l

Fleuez 2. o The EM("

| Source: David T Craig Page 0006 of 0006 |

