& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual Confidential"

INTRODUCTION

The Operating System is a single user system providing comcurrent
processes, events, exceptions, device independent I/0 in a hierarchical
file system, and management of code and data segmentation., This manual
is intended for applications programmers who deal directly with the
Operating System.

The Operating System falls naturally into four categories: file
management, process management, memory management, and process
commnication. In each of the four chapters describing these
portions of the Operating System, there is an overview of the subject
that explains the terms and concepts used in the system calls. The
system calls themselves are then described in some detail. A fifth
chapter describes system startup procedures. The Appendices describe
the Operating System interface and error codes.

Page 1

| Source: David T Craig Page 0001 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1=-Mar=-82 : Operating System Reference Manual Confidential

FILE OVERVIEW
INTRODUCTION

The File System provides device independent I/0, reliable storage
with access protection, uniform file naming conventions, and
configurable device drivers.

A file is an uninterpreted stream of eight bit bytes. A file that

is stored on a block structured device resides in a catalog and has

a name. For each such file the catalog contains an entry describing

the file’s attributes including the lepgth of the file, its position

on the disk, and the last backup copy date. Arbitrary application=defined
attributes can be stored in an area called the file label.

Each file has two associated measures of length, the Logical End of
File (LEOF) and the Physical End of File (PEOF). The LEOF is a
pointer to the last byte that has meaning to the application.

The PEOF is a count of the number of blocks allocated to the

file. ~The pointer to the next byte to be read or written is called
the file marker.

To handle input and output, applications do not need to know the
physical characteristics of a device. Applications that do, however,
can increase the I/0 performance by causing file accesses on block
boundaries. Each Operating System call is synchronous in that the
1/0 requested is performed before the call returns. The actual I/0,
however, is asynchronous and is always performed in the context of an
Operating System process. '

To reduce the impact of an error, the file system maintains a high

level of distributed, redundant information about the files om

storage devices. Duplicate copies of critical information are stored in
dif ferent forms and in different places on the media. All the files

are able to identify and describe themselves, and there are usually
several ways to recover lost information. The scavenger program is

able to discover and reconstruct damaged directories from the
information stored with each file.

FILE NAMES

All the files known to the Operating System at a particular time are
organized into a tree of catalogs. At the top of this tree is a
predefined catalog with names for the highest level objects seen by
the system. These include physical devices, such as a printer or

a modem, and the volume names of any disks that are available.

Any object catalogued in the file system can be named by specifying
the volume in which the file resides and the file name. The names

are separated by the character "=-". Because the top catalog in the
tree has no name, all complete pathnames begin with "-".

Page 4

| Source: David T Craig Page 0002 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 . Operating System Reference Manual. Confidential .

For example, - -

)

<PRINTER names the physical printer,

~LISA-FORMAT.TEXT
names a file on a volume named LISA. .

The file name can contain up to 32 characters. If a longer name is specified,
the name is truncated to 32 characters. Accesses to sequential devices

use a dummy filename that is ignored but must be present in the pathname.

For example, the serial port pathname

-RS232B
is illegal, but
-RS232B-XY¥2

is accepted, even though the -XYZ portion is ignored. Certain device names
are predefined:

“RS232A Serial Port 1
RS2328 Serial Port 2
UPPER Upper Twiggy drive (Drive 1)
LOWER Lower Twiggy drive (Drive 2)

DEVO, DEV6, DEV7, DEV8 : :
Bit bucket (byte stream is flushed into oblivion)

Upper and lower case are significant in file names: *TESTVOL’ is not the
same object as ‘TestVol’. Any ASCII character is legal in a pathname,
including the non-printing characters.

THE WORKING DIRECTORY

It is sometimes incouvenient to specify a complete pathname,
especially when working with a group of files in the same volume.

To alleviate this problem, the operating system maintains the

name of a working directory for each process. When a pathname is
specified without a leading "-", the name refers to an object in the
working directory. For example, if the working directory is -LISA
the name FORMAT.TEXT refers to the same file as -LISA-FORMAT.TEXT.
The default working directory name is the name of the boot volume
directory.

DEVICES

The Lisa hardwar. supports a variety of I/0 devices including the
keyboard, mouse, clock, two Twiggy disk drives, two serial ports,

a parallel port, and three expansion I/0 slots. The screen, keyboard,
and mouse are accessed through LisaGraf and the Window Manager.
The other devices are handled by the Operating System.

Page 5 -

| Source: David T Craig Page 0003 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1=Mar-82 ' Operating System Reference Manual Confidential

v

Device names follow the same conventions as file names. Attributes
like baud rate and print intensity are controlled by using the
DEVICE_CONTROL call with the appropriate pathname.

All device calls are synchromous from the process point of view.
Within the Operating System, however, 1/0 operations are asynchronous.
The process doing the I/O is blocked until the operation 1s complete.

Each device has a permanently assigned priority. From highest to lowest
the priorities are: :

Serial Port 1 (RS232A) 4

Serial Port 2 (RS232B, the leftmost port)
1/0 Slot O

1/0 Slot 1

I/0 Slot 2

Speaker

10 ms system timer

Keyboard, mouse, soft-off switch, battery powered clock
CRT vertical retrace interrupt

Parallel Port .

Twiggy 1 (UPPER)

Twiggy 2 (LOWER)

Video Screen

The Operating System maintains a Mount Table which connects each available
device with a name and a device number. The Device Driver associated with
a device knows about the device’s physical characteristics such as sector

size and interleave factors for disks.

STRUCTURED DEVICES

On structured devices, such as disk drives, the File System maintains a
higher level of data access built out of pages (logical names for blocks),
label contents, and data clusters (groups of contiguous pages). Any

file access ultimately translates into a page access. Intermediate
buffering is provided only when it is needed. Each page on a structured
device is self-identifying, and the page descriptor is stored with the
page contents to reduce the destructive impact of an I/0 error. The eight
components of the page descriptor are: '

Version number

Volume identifier

File identifier

Amount of data on the page
Page name

Page position in the file
Forward link

Backward link

Each structured device has a Media Descriptor Data File (MDDF) which
describes the various attributes of the media such as its size, page
length, block layout, and the size of the boot area. The MDDF is

) ’ . Page 6

| Source: David T Craig Page 0004 of 0025
S

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 , Operating System Reference Manual Confidential

created when the volume is initialized.

The File System also maintains a bitmap of which pages on the media

are currently allocated, and a catalog of all the files on the volume.
Each file contains a set of file hints which describe and point to

the actual file data. The file data need not be-allocated in tcontiguous
pages.

THE VOLUME CATALOG

On a block structured device, the volume catalog provides access to
the files. The catalog is itself a file which maps user names into
the internal files used by the Operating System. Each catalog eatry
contains a variety of information about each file including:

name

type

internal file number and address

size
~date and time created or last modified
file identifier

safety switch

The safety switch is used to avoid accidental deletions. While the safety
switch is on, the file cannot be deleted. The other fields are described
under the LOOKUP file system call.

The catalog can be located anywhere on the media, and the Operating System
may even move it around occassionally to avoid wear on the media.

LABELS

An application can store its own information about file attributes in
an area called the file label. The label allows the application to
keep the file data separate from information maintained about the
file. Labels can be used for any object in the file system. The
maximum label size is 488 bytes.

LOGICAL AND PHYSICAL END OF FILE

A file contains some number of bytes recorded in some number of
physical blocks. Additional blocks might be allocated to the file,
but not contain any file data. There are, therefore, two measures of
the end of the file called the logical and physical end of file. The
logical end of file (LEOF) is a pointer to the last stored byte which
has meaning to the application. The physical end of file (PEOF) is
a count of the number of blocks allocated to the file.

Page 7

| Source: David T Craig

Page 0005 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 | Operating System Reference Manual Confidential

v

In addition, each open file in each process has a pointer associated
with it called the file marker that points to the next byte in the
£ile to be read or written. When the file is opened, the file marker
points to the first byte (byte number 0). The file marker can be '
positioned implicitly or explicitly using the read and write calls.
It cannot be positioned past LEOF, however, except by a write
operation that appends data to a file.

When a file is created, an entry for it is made in the catalog
specified in its pathname, but no space is allocated for the file
‘{tself. When the file is opened by a process, space can be allocated
explicitly by the process, or automatirally by the operating system.
If a write operation causes the file marker to be positioned past the
Logical End Of File (LEOF) marker, LEOF and PEOF are automatically
extended. The new space is contiguous if possible, but not
necessarily adjacent to the previously allocated space.

FILE ACCESS

There are several modes in which an application can perform input,
output, or device control operatioms. Applications are provided with
a device independent byte stream interface. A specified number of
bytes is transferred either relative to the file marker or at a
specified byte location in the file. The physical attributes of the
device or file are not seen by the application, except that devices
that do not support positioning can only perform sequential
operations.

Applications that know the block size for structured devices can
optimize performance by performing I/0 on block boundaries in

integral block multiples. This mode bypasses the buffering of parts

of blocks that the system normally performs. Data transfers take

place directly between the device and the computer memory. Although
data transfers occur in physical units of blocks, the file marker still
indicates a byte position in the file.

A file can be open for access simultaneously by multiple processes.
All write operations are completed before amy other access to the
file is permitted. When ome process writes to a file the effect of
that write is immediately visible to all other processes reading the
file. The other processes may, however, have accessed the file in
an earlier state and not be aware of the change until the next time
they access the file. It is left up to the applications to insure
that processes maintain a comsistent view of a shared file.

Page 8

| Source: David T Craig Page 0006 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual: Confidential-

Each time a file is opened, the Operating System allocates a file
marker for the Ealling process and a run-time identification number
called the refnum. The process uses the refnum in subsequent calls

to refer to the file. Each operation using the refnum affects only
the file marker associated with it. The refnum is global only

if a process has opened the file with global access. The LEOF and
PEOF values, however, are always global attributes of the file,

and any change to these values is immediately visible to all processes
accessing that file.

Processes can share the same file marker. In this access mode

(global access) each of the processes uses the same refnum for

the file. When a process opens a file in global access mode,

the refnum it gets back can be used by nmy process. Note that
[Global_Access] access allows the same file to be opened globally by
any number of processes, creating any number of simultaneously

shared refnums. [Global_Access,Private] access opens a file for global
access. but allows no other process to Open that file. Applications
must be aware of all the side effects that global accesses cause.

For example, processes making global accesses to a file cannot

make any assumptions about the location of the file marker from
one access to the next.

Even {f the access mode is not global, more than one process can have
the same file open simultaneously. Each process, in this case, has

its own refnum and file marker. A write operation to the file, however,
is immediately visible to all readers of that file.

PIPES

Because the Operating System supports multiple processes, a mechanism
1s needed for interprocess communication. This mechanism is called a
pipe. A pipe is very similar to any other object in the file system =—
it is named according to the same rules, and can have a label.

A pipe also implements a byte stream that queues information in a
first=-in-first-out manner for the pipe reader. Unlike a file,

however, a pipe can have only one reader at a time, and once data is
read from a pipe it is no longer available in the pipe.

A pipe can only be accessed in sequential mode. Only ome process can
read data from a pipe, but any number of processes can write data
into it. Because the data read from the pipe is consumed, the file
marker is always zero. If the pipe 1s empty and no processes have it
open for writing, End Of File is returned. If any process does have
it open for writing, the reading process is suspended until data
arrives in the pipe, or until all writers close the pipe.

When a pipe is created, its physical size is O bytes. You must allocate
space to the pipe before trying to write data into it. To avoid
deadlocks between the reading process and the writers, the Operating
System does not allow a process to read or write an amount of data
greater than half the physical size of the pipe. For this reason,

you should allocate to the pipe twice -as much space as the largest

Page 9

| Source: David T Craig Page 0007 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1=Mar-82 ' Operating System Reference Manual Confidential

N 13
amount of data in any planned read or write operatiom.

A pipe is actually a circular buffer with a read pointer and a write
pointer. All writers access the pipe through the same write pointer.
Whenever either pointer reaches the ‘end’ of the pipe, it wraps back
around to the first byte. If the read pointer catches up with the
write pointer, the reading process blocks until data is written or
until all the writers close the pipe. Similarly, if the write
pointer catches up with the read pointer, a writing process blocks
until the pipe reader frees up some space or until the reader closes
the pipe. Because pipes have this structure, there are certain
restrictions on some operations when dealing with a pipe. These
restrictions are discussed below under the relevant file system calls.

For massive data transfers, it is recommended that shared files or
data segments be used rather than pipes.

FILE SYSTEM CALLS

This section describes all the operating system calls that pertain
to the file system. A summary of all the Operating System calls can
be found in Appendix A. The following special types are used in

the file system calls: .

Pathname = STRING[255];

E_Name = STRING([Max Ename]; (* Max_EName = 32 *)
Accesses = (DRead, DWrite, Append, Private, Global_Access);
MSet = SET OF Accesses;

- loMode = (Absolute, Relative, Sequential);

The fs_info record and its associated types are described under the LOOKUP
call.

Page 10

| Source: David T Craig Page 0008 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1=-Mar-82 . Operating System Reference Manual Confidential
PROCESSES

INTRODUCTION ' R L e

A process is a plece of executable code that can be run at the same

time as other processes. Although processes can share code and data,

each process has its own stack. In most systems, including the one supported
by the Operating System, the parallel or concurrent execution of the
processes is simulated by using re—entrant code and a scheduler. The
scheduler allows each process to run urtil some conditiom occurs. At

that time, the state of the running process is saved, and the scheduler
looks at the pool of ready-to—run processes for the next one to be

executed. When the first process later resumes execution, it merely

picks up where it left off in its execution.

The status of a process depends on its scheduling state, execution state,

and memory state. The memory manager handles the process memory state.

If any-code or data segments need to be swapped in for the process to execute,
the memory manager is called before the process is launched by the scheduler.
The process execution state depends on whether the process is executing

in user mode or in system mode. In system mode, the process executes .
Operating System code in the hardware domain 0. In user mode, the process
executes user code in domains 1, 2, or 3.

The process scheduling state has four possibilities. The process is
"running” if it is actually engaging the attention of the CPU. If it
is ready to continue execution, but is being held back by the scheduler,
the process is said to be "ready". When it has completed its task and
has exitted its outer block, it is "terminated". A process can also

be "blocked". In the blocked state, the process is ignored by the
scheduler. It cannot continue its execution until something causes

its state to be changed to "ready". Processes commonly become .
blocked while awaiting completion of I/0. Certain Operating System
calls distinguish between a process that is blocked by an I/0 operationm,
and a process that is blocked because it has been suspended by some
other process.

PROCESS STRUCIURE

A process is a program. It can use up to 7 data segments and 116 code
segments simultaneously. When a process is instantiated, the Operating

" System creates a Process Control Block (PCB) for it. The PCB coutains
the process state, global id, and a pointer to a record of the process’s
current needs. These include pointers to its code and data segments, its
stack, an area to save registers, and so on. When a process calls the
Operating System, the data segments and stack of the process are
remapped into domain O where the Operating System executes. The

address space layout of system and user processes is set up to make
this remap as efficient as possible:

}

- ' Page 32
| Source: David T Craig

Page 0009 of 0025)

®& Apple Lisa Computer Information « Lisa Operating System Introduction (March 1982)
1-Mar-82 ‘ Operating System Reference Manual Confidential
\PROCESS ADDRESS SPACE LAYOUT
User Mode System Mode
Seg# Segi#
e e .
0 | Unavailable 0 | Low memory (512 Read—=Only bytes)
O B
1 | User Code Segments 1 | 0S Code Segments
. I . l
. | e |
L] I . I
1 |
| — A
i 95 | Real Memory Access (I/0 Space)
] . | (16 needed for 2 megabyte access)
| o | v .
| 111 |
| e
] 112 | Supervisor Stack
~ e
| 113 | System Jump Table
| e, i
| 114 | Sysglobal data
| S
| 115 | SysLocal of currently executing process
—— SRR
116. | LDSN 1 116 | User Data Space
. 1 | .
o i
o | |
! |
122 | LDSN 7 |
F———— |
123 | Stack |
e 1
124 | Shared Intrinsic Unit Data |
e |
125 | 1/0 Space]
e |
126 | Reserved 1
S |-
127 | Screen 127 | Screen
D S S
Page 33
L Source: David T Craig

Page 0010 of 0025)

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual Confidential

t

During execution, the process stack 1is:

PROCESS STACK LAYOUT

| Caller’s stack frame

High Memory

| Caller’s dynamic link

| Function Result (only |
| for a function) |
T i
| Procedure arguments i
B .
| Static Link (only for a |
| level 2 or higher proc) |
-——— - - -t
| Return Address |
o e e - - === - =t
(A6) = = = =>| Dynamic Link |= = =+
- -
| Local frame I
- m = m--———-

| Dynamic requirements |

w4
N

Low Memory - = = (A7)

Each process has an associated priority, an integer between 1 and 255.
The process scheduler usually executes the highest priority ready process.

The higher priorities (200 to 255) are reserved for Operating System and
Filer processes.

PROCESS HIERARCHY

When the system is first started, several system processes exist. At the
base of the process hierarchy is the root process which handles various

internal Operating System functions.

It has at least three soms, the memory

manager proce
manager process handles code
process is a simple command
and create other processes.
will be the Filer. The time
timed event channels.

ss, the timer process, and the shell process.

The memory
and data segment swapping. The shell
interpreter which you can use to rum programs
In the final Lisa system, the shell process
r process handles timing functions such as

Page 34

| Source: David T Craig

Page 0011 of 0025)

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual Confidential'

\ Root Process

/ 1NN
/ 1\ \=e———
/ | \ I
/ Shell \ Other...
4=———/ Process \—+ . -t
| | | ’
Memory Manager i Timer
Process User Process
Process
/1N
/ 1\

Other User Processes »

Any other system process (the Network Control Process, for example)
is a son of the root process. v

PROCESS CREATION

When a process is created, it is placed in the ready state, with a
priority equal to that of the process which created it. All the
processes created by a given process can be thought of as existing in
a subtree. Many of the process management calls can affect. the entire
subtree of a process as well as the process itself.

PROCESS CONTROL

Three system calls are provided for explicit control of a process.
These calls allow a process to kill, suspend (block), or activate
any other user process in the system. Process handling calls are not
allowed on Operating System processes. :

PROCESS SCHEDULING

Process scheduling is based on the priority established for the
process. The system usually attempts to execute the highest priority
ready process. Once it is executing a process loges the CPU only
under the following conditions: .

* The running process becomes blocked (during 1/0, for example).

* The running process lowers its priority below that of another
ready process or sets another process’s priority to be higher
than its owo.

* The running process yields the CPU to another process.

* The running process activates a higher priority process or suspends
itself.

Page 35

| Source: David T Craig

Page 0012 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1=-Mar-82 - | Operating System Reference Manual Confidential

i

* The running process makes any Operating System call when a higher
priority ready process exists.

* The running process causes code to be swapped or its §tack to be
expanded.)

Because the Operating System currently cannot seize the CPU from an
"executing process except in the cases noted above, background processes
should be liberally sprinkled with YIELD CPU calls.

‘When the scheduler is invoked, it saves the state of the current process

and selects the next process to run b¥ examining its pool of ready processes.
If the new process requires code or data to be swapped in, the memory
manager process is launched. If the memory manager i{s already working on a
process, the scheduler selects the highest priority process in the ready
queue that does not need anything swapped.

PROCESS TERMINATION

A process terminates when it hits its ‘END.’ statement, when it calls
TERMINATE PROCESS, when some process calls KILQ_?ROCESS on it, when 1its
father process terminates, or when it runs into an abnormal condition.
When a process terminates, a "terminate” exception condition is
signalled on the calling process and all of the processes it has
created. A process can declare an exception handler for this .
condition to insure that its house is in order before its demise.

Termination involves the following steps:
1. Signal the SYS_TERMINATE exception on the current process.
2. Execute the user’s exception handler (if any).

3. Send the SYS_§ON_;ERM event to the father of the current process
if a local event channel exists.

4. Instruct all sons of the current process to terminate.
S. Close all open files, data segments, and event channels.
6. Wait for all the sons to finish :érminatiou.

7. Release the PCB and return to the scheduler.

A process can protect itself from termination by disabling the
“terminate" exception. Under normal circumstances, however, a

process should cooperate with the Operating System by viewing the
terminate exception as an opportunity to cleam up its act before it

is terminated. If a process disables the terminate exception and then,

illogically, calls TERMINATE PROCESS, the Operating System forces the
process to terminate. .

Page 36

| Source: David T Craig

Page 0013 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 - Operating System Reference Manual Confidential

MEMORY MANAGEMENT OVERVIEW

1}

INTRODUCTION

Each process has a set of code and data segments which must be in
physical memory during execution of the process. The transfoYmation
of the logical address used by the process to the physical address
used by the memory controller to access physical memory is handled by
the memory management unit (MMU).

A LIMITED BARDWARE PERSPECTIVE

T
Addresses in LISA have three parts: a domain (context) number, a
hardware segment number, and an offset. A hardware segment is a
contiguous logical address space with a distinet address protectiom.
The hardware mapping registers determine each hardware segment’s type,
length (in pages of 512 bytes), and origin in physical memory. The
segment type (ReadOnly, ReadWrite, or Stack) controls access to that
segment.

Each segment can have up to 128 Kbytes of memory. The Operating System
provides data segments larger than 128 Kbytes by allocating adjacent
MMU registers to a single logical segment. 128 segments are

mapped by a single domain, so each of the four domains provides a
cache of an entire segment map. The Operating System rums in domain 0;
application programs can operate in domains 1, 2, or 3. The use of
domains speeds up process switching.

DATA SEGMENTS

Each process has a data segment that the Operating System
automatically allocates to it for use as a stack. The stack
segment ‘s internal structures are managed directly by the
hardware and the Operating System.

A process can require additional data segments for such things as
heaps and process to process communication. These added requirements
are made known to the Operating System at run time. The Operating
System views all data segments except the stack as linear arrays of
bytes. Therefore, allocation, access, and interpretation of
structures within a data segment are the responsibility of the
process.

The 68000 hardware requires that all data segments that are part of
the process’s working set be in physical memory and mapped by.
hardware segment registers during execution of the process. It is
the responsibility of the process to ensure that this requirement
is met.

Page 48

| Source: David T Craig

Page 0014 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1=-Mar-82 ’ Operating System Reference Manual Confidential

THE LOGICAL DATA SEGMENT NUMBER
N t

Besides the stack segment, a process can have up to seven data
segments in its working set at any given time. Other data
segments can be available to the process, but not actually be
members of the working set. To inform the Operating System
that it wants a certain data segment to be available, the process
associates that segment with a "logical data segment mumber" (LDSN).
When the process wants the data segment placed in memory and made
a member of the working set, it "binds” that segment to its
assoclated LDSN. mewm,wuhMSaundmmedltoL

is local to the calling process. The process uses the LDSN to
Keep track of where a given data segment can be found. More than
one data segment can be associated with”the same LDSN, but ounly
one such segment can be bound to an LDSN at any instant and thus
be a member of the working set of the process.

SHARED DATA SEGMENTS

Cooperating processes can share data segments. The segment

creator assigns the segment a unique name (a file system pathname).

All processes that want to share that data segment must then use the same
segment name. ILf the shared data segment contains address pointers

to segments, then the cooperating processes must also agree upon a

common LDSN to be associated with the segment. This LDSN is

transformed by the Operating System into a specific mapping register,

so all logical data addresses referencing locations within the data
segment are consistent for all processes sharing the segment.

As an example of the use of shared data segments, congider the
following situation: a process creates five other processes and
wants to use a different data segment for communication with each of
them. The process can associate and bind the five data segments with
LDSN values 1 to 5. Since it can access all five segments at will,
this method can have performance advantages, but all five data
segments must be in memory during executiom. If on the other hand,
the process associates all five data segments with the same LDSN,
only one such segment must be in memory at any time, but the

process must bind and unbind the segments to the LDSN whenever

a specific segment is needed. The application designer must

weigh the advantages and disadvantages of each method for the
application being developed. .

'PRIVATE DATA SEGMENTS

Data segments can also be private to a process. In this case, ‘the
maximum size of the segment can be greater than 128 Kbytes. The

actual maximum size depends on the amount of physical memory in
the machine and the number of adjacent LDSN‘s available to map the
segment. The process gives the desired segment size and the base
LDSN to use to map the segment. The Memory Manager then uses

ascending adjacent LDSN's to map successive 128 Kbyte chunks of

Page 49 -

| Source: David T Craig Page 0015 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 ‘ Operating System Reference Mamual Confidential

N +
the segment. The process must insure that enough consecutive LDSN’s
are available to map the entire segment.

Suppose a process has a data segment already bound to LDSN 2. If
the program tries to bind a 256 Kbyte data segment to LDSN 1, the
Operating System returns an error because the 256 Kbyte segment
needs two consecutive free LDSN’s. Instead, the program should
bind the segment to LDSN 3 and the system implicitly also uses
LDSN 4. If the program has no bound LDSN’s, it can start its
heap segment at LDSN 1, and as the heap grows, it can expand
upward through the 7 LDSN’s.

K4

CODE SEGMENTS

Division of a program into multiple code segments (swapping units) is
dictated by the programmer. If a program is so divided, the Linker
creates a jump table to insure that intersegment procedure references
are handled properly. The MMU registers can map up to 116 code segments.
The aliocation of the register mumbers is given in the Process Structure
section of the Process chapter.

A JSR, RTS, or JMP.L to a non-resident code segment causes a bus errtor
which results in a trap to the Operating System (a software
implementation of absence traps). The Operating System brings the
code segment into physical memory and returns control to the process,
allowing the procedure reference to continue.

THE PROCESS STAKX '

Because the Operating System sometimes needs to scan the stack of a
process, certain cqnventions must be observed:

* Register A7 is the stack pointer of the process.
* Register A6 is the link register for the process stack.

* A1l procedures must execute the LINK instruction using A6 as the
link register before any local data is placed on the stack or
another procedure call is executed.

These conventions are obviously hidden from the programmer’s view in
high level languages, but must be followed by assembly language
| programmers.

Stack expansion is handled automatically by the Operating Sysi:em.

Page 50

Y

| Source: David T Craig

Page 0016 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual Confidential’

SWAPPING .
When a process executes, the following segments are required to be in
physical memory and mapped by mapping registers:

* The current code segments being executed - .0
* All the data segments in the process working set.

The Operating System insures that this minimum set of segments is in
physical memory before the process is allowed to execute. If a
required segment is not in memory, a segment swap—in request

{s initiated. In the simplest case, this request only requires

the system to allocate a block of physical memory and to read in the
segment from the disk. In a worse case, the request may require that
other segments be swapped out first to free up sufficient memory. A
clock algorithm is used to determine which segments to swap out or

replace.

Page 51

| Source: David T Craig

Page 0017 of 0025)

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual Confidential

EXCEPTIONS and ?VENTS

Processes have several ways to keep informed about the state of the
world. Normal-process=to process communication and synchronization
can be handled using events or shared data segments. An abnormal
condition can cause an exception (interrupt) to. be signalled:which
the process can respond to in whatever way ir sees fit.

EXCEPTIONS

Normal execution of a process can be interrupted by an exceptional
condition (such as division by zero orraddress error). Some of these
conditions are trapped by the hardware, some by the system software,
and others can be signalled by the process itself. Exceptions have
character string names, some of which are predefined and reserved by
the Operating System.

When an exception occurs, the system first checks the state of the
exception. The three exception states are:

* Enabled
* Queued
*_ Ignored

If the exception is enabled, the system next looks for a user defined
handler for that exception. If none is found, the system default
exception handler is invoked. It usually aborts the current process.

If the state of the exception is queued, the exception is placed on a

queue. When that exception is subsequently enabled, this queue is
examined, and if any exceptions are found, the appropriate exception
handler is entered. Processes can flush the exception queue.

If the state of the exception is ignored, the system still detects
the occurrence of the exception, but the exception is neither honored
nor queued.

Invocation of the exception handler causes the sceduler to rum, so it

is possible for another process to run between the signalling of the
exception and the execution of the exceptionm handler.

" ‘ Page 64

| Source: David T Craig Page 0018 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 . Operating System Reference Manual Confidential

SYSTEM DEFINED EXCEPTIONS

Certain exceptions are predefined by the Operatiné System. These include:
* Division by zero (SYS_ZERO_DIV). Default handler aborts process.
* Value out of bounds (SYS_VALUE OOB). Default handler aborts process.
* Overflow (SYS_OVERFLOW). Default handler aborts process.

* Process termination (SYS_?ERMINAIE). This exception is signalled when
a process terminates, or when there is a bus error, address error,

. illegal inmstruction, privilege violatiom, or line 1010 or 1llll emulator
error. The default handler does nothing.

Except where otherwise noted, these exceptions are fatal if they occur
within Operating System code. The hardware exceptions for parity error,
spurious interrupt, and power failure are also fatal.

EXCEPTION HANDLERS

A user—defined exception handler can be declared for a specific
exception. This exception handler is coded as a procedure, but must
follow certain conventions. Each handler must have two input
parameters: Environment Ptr and Exception Ptr. The Operating System
ensures that these pointers are valid when the handler is entered.
-Environment_Ptr points to an area in the stack containing the
interrupted environment: register contents, condition flags, and
program state. The handler can access this environment and can
modify everything except the program counter and register A7.

The Exception Ptr points to an area in the stack containing
information about the specific exception.

Each exception handler must be defined at the global level of the
process, must return, and cannot have any "Exit" or "Global Goto"
statements. Because the Operating System disables the exception
before calling the exception handler, the handler should re-enable
the exception before it returns.

If an exception handler for a given exception already exists when
another handler is declared for that exception, the old one becomes
disassociated. There is no notion of block structured declaration of
exception handlers.

An exception can occur during the execution of an exception handler.
The state of the exception determines whether it is queued, honored,

or ignored. If the second exception has the same name as the exception
that {s currently being handled and its state is enabled, a nested
call to the exception handler occurs.

There is an "exception occurred" flag for every declared exception;
it is set whenever the corresponding exception occurs. This flag
can be examined and reset. Once the flag is set, it remains set

Page 65

| Source: David T Craig Page 0019 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 Operating System Reference Manual Confidential

until FLUSH_ﬁXEGP is called.

The following code fragment gives an example of exception handling.

PROCEDURE Handler(Env_Ptr:p_env_blk;
Datq_?tr:p_gx_gata);\

VAR ErrNum:INTEGER;

BEGIN

(* Env Ptr points to a record containing the program counter, *)

(* and all registers. Data_Ptr points to an array of 12 longints *)

(* that contain the event header and text if this handler is *)

(* associated with an event-cail channel (see below) *)

ENABLE_;XCEP(errnum,excep_pame);

(* this is either in a different segment or at the top level *) cot

Excep name:='EndOfDoc’; ‘
DECLAKE_;XCEQ_ﬁDL(errnum,excep_pame,@ﬂandler);

SIGNAQ_EXCEP(errnum,excep_pame,excep_ﬁata);

- Page 66
| Source: David T Craig

Page 0020 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 ’ Operating System Reference Manual Confidential

At the time the exception handler is invoked, the stack is:

low

address Exception Handler

Link

@Return_Exception

o - o~ ——

|

Data Ptr

Environment_Ptr

| —— o -

Terminate Flag

N D DI B R

(-

Exception Kind
Function Code (fc)
Access Address (aa)
Instruction Register
Status Register
Program Counter

Exception Data Block
(Sys_Terminate exception)

I—

Program Counter
Status Register
DO~=D7 and AO--A7

Exception Environment Block

Link

Program Counter -

high
address

_——t—t—t———F—————— 1
—— e -

The Exception Data Block given here reflects the state of the stack
upon a SYS_TERMINATE exception. The term ex_data record described
in the Interface appendix gives the various forms the data block can
take. The status register and program counter values in the data
block reflect the true (curremnt) state of these values. The same
data in the Environment block reflects the state of these values

at the time the exception was signalled, not the values at the time
the exception actually occurs.

In the case of a bus or address error, the PC can be 2 to 10 bytes
beyond the current instruction. The PC and A7 cannot be modified
by the exception handler. .

When a disabled exception is re—enabled, a queued exception may be
signalled. In this case, the exception environment reflects the state
of the world at the time the exception was re—enabled, not the time at
which the exception occurred.

Page 67

-

| Source: David T Craig

Page 0021 of 0025)

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-82 ’ Operating System Reference Manual Confidential

EVENTS

An event is a plece of information semt by one process to another,
generally to help cooperating processes synchronize their activities.
An event is sent through a kind of pipe called an event channel.

The event is a fixed size data block consisting of a header and some
text. The header contains control iaformation; the identifier of

the sending process and the type of the event. The header 1s written
by the system, not the sender, and is readable by the receiving process.
The event text is written by the sender; its meaning is defined by the
sending and receiving processes.

There are several predefined system evgnt types. The predefined type
"yser" is assigned to all events not sent by the Operating System.

EVENT CHANNELS

Event channels can be viewed as a higher—level approach to pipes. .
The most important difference is that event channels deal with fixed
size data blocks, whereas pipes can handle an arbitrary byte stream.

An event channel can be globally or locally defined. A global event
channel has a globally defined pathname catalogued in the file

system, and can be used by any process to handle user defined events.
A local event channel, however, has no name and is known only by the

Operating System and the process that opened it.

A local event channel is automatically creatéd when a process is created.
This channel can be opened by the father process to receive system
generated events pertaining to its somn.

There are two types of event channels: event-wait and event=-call.
If the receiving process is not ready to recelve the event, an
event~walt type of event channel queues an event sent to it .« An
event=-call type of event channel, however, treats its event as an
exception. The exception name must be given when the event=-call
event channel is opened, and an exception handler for that exception
must be declared. When an event is sent to an event-call event
channel, the Operating System signals the associated exception. If
the process reading the event-call chanmnel is suspended at the time
the event is sent, the event is queued and is executed when the process
becomes active.

When an event channel is created, the Operating System preallocates
enough space to the channel for typical interprocess communication.
If SEND_EVENT_CHN is called when the chamnel does not have enough
space for the event, the calling process is blocked until enough
space is freed up. .

. V Page 68

| Source: David T Craig

Page 0022 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1-Mar-~82 ’ Operating System Reference Manual Confidential

The following code fragment uses event-wait channels to handle
process synchronization:

PROCESS A PROCESS B
Open Chn_l to receive; Open Chn_l to send;)
6pen Chn_2 to send; Open Chn_2 to receive;
REPEAT REPEAT
Send to Chn_2; > Wait for Chn_2;
Wait for Chn_l; Send to Chn_l;
UNTIL AllDone; ‘ UNTIL AllDone;

The order of execution of the two processes is the same regardless of the
process priorities. In the following example using event=-call channels,
however, the process priorities do affect the order of execution.

PROCESS A ‘ PROCESS B

Declare Excep_l; Declare Excep_2;

Open Chn_l to receive Excep_l; Open Chn_l to send; -

Open Chn_2 to send; Open Chn_2 to receivé Excep_l;
Send Chn 2; }
PROCEDURE Handler; . PROCEDURE Handler;

Send Chn_2; Send Chn_l;

Yield Cpu; Yield Cpu;

THE SYSTEM CLOCK

A process can read the system clock time, convert to local time, or
delay its own continuation until a given time. The year, month, day,
hour, minute, second, and millisecond are available from the clock.
The system clock is in Greenwich mean time.

EXCEPTION MANAGEMENT CALLS

The event and exception management routines use several special types
and constants. To save space and reduce redundancy, these types are
defined only in Appendix A, and are referred to in the rest of this
chapter without much further comment. .

t . Page 69

-

| Source: David T Craig

Page 0023 of 0025)

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1~Mar-82 ‘ Operating System Reference Manual Confidential

L}

SYSTEM CONFIGURATION AND STARTUP

SYSTEM STARTUP >

Startup is a multi-step operation. After the startup request 1is
generated, code in the bootstrap ROM executes. This code runs a
gseries of diagnostic tests, and signals by a beep that all is
wel l- .

The ROM next selects a boot device. THe default boot device is the
Twiggy drive 1, but this can be overridden by the keyboard or by
parameter memory. The ROM passes the memory size, the boot device
position, and the results of the diagnostics to the loader found
on the boot device. .

The loader allocates physical memory and loads three types of Operating
System segments needed during Startup, including the configurable

device drivers. It creates a pseudo—outer—process, enters the Operating
System, and passes to Startup a physical address map and some parameter
data. .

Startup inherits the unmapped address space of the loader, initializes
the memory map, initializes all the Operating System subsytems, creates
the system process, then destroys the pseudo—outer-process (itself),
passing control to the highest priority process. At this point the

boot process is complete and the outer shell process or the Filer is

in control. :

SELF~DIAGNOSTICS

The self-test code in ROM performs an overall diagnostic check at
power~up and then executes the bootstrap routine from the disk.

The first tests initialize various system controls; MMU registers,
contrast control, parity logic, etc. You should hear a beep notifying
you that the startup tests have begun. A checksum is done on the ROM
itself, then all of the RAM in the system is tested for shorts and

address uniqueness. The Memory Management Unit is also tested in
this manner. -

Parts of the video and parity generator/checker circuitry are tested
next. The keyboard and mouse interfaces are tested by checking various
modes of the Versatile Interface Adapter operatiom, and by running a
ROM/RAM test of all the processors used in the interfaces. Meanwhile,
the disk controller is running its own tests of ROM and RAM. Finally,
the RS232 port and the clock are tested. ' ‘

Page 90

| Source: David T Craig

Page 0024 of 0025 |

& Apple Lisa Computer Information Lisa Operating System Introduction (March 1982)

1~Mar-82 . Operating System Reference Manual Confident;al.

CUSTOMIZING YOUR SYSTEM

The featﬁres and design of the system configuratiom program have not yet
been defined.

Page 91 .

| Source: David T Craig Page 0025 of 0025 |

