Apple Lisa Computer Info : Document # 136 : Enlisting User Help in Software Design

Doc™ |3

a3isitisk
HEBREH

E

EHELEERRR R

&
s
=
3
&
X
3

Apple Lisa Information

R

FILE NAME

EanS‘L'hj User Help in $ Phoare Design

DISK #

Oavid T. Craig
736 Edgewater, Wichita, Kansas 67230
(316) 733-0914

| .
! |IIIIIll|llllllllllll'lllIIIIIIIIIlIlllllllIlllllllllllllllllllllIIIIIIIIIIIIIIIIIIIII!IIlll!llllllllIllllllllllllllllllllllllllllllllll

1in
llllllllllllllllllllIIIlllIlllllllI|lIlllI|lIIlllIllllllll!llIlllllllillllIllllIlllIlllIIllllIlllIlllllllllllllllllIlllllllillllllllllll

R R T R R

7 4l
é Professional

“136-00.PICT” 261 KB 2000-12-24 dpi: 400h x 400v pix: 2555h x 3697v

| Source: David T. Craig -- Written by Larry Tesler (Jan 1983) Page 0001 of 0006 |

Apple Lisa Computer Info : Document # 136 : Enlisting User Help in Software Design

January 1983

ENLISTING USER HELP IN SCFTWARE DESIGN

Larry Tesler
Personal Office Systems Division
Apple Computer, Inc.

1. HISTORY

I first got into the area of user-friendly
software around 1963, when I helped to develop a
graphics language for art students. The job of
the art students was to design card stuants for
half-time shows at college football games. Our
graphics language allowed them to encode their
design in numeric terms. We fed their
descriptions to a computer program which then
prepared an instruction card for each seat in
the rooting section.

During the project, I learned to appreciate that
right-brain artists think differently from
left-brain computer scientists. It was
necessary to understand their thought processes
in order to design a usable graphics language.

The next time that I got really involved ia this
area was at Xerox PARC from 1973 to 1975. We
were trying to develop an office automation
system based on personal workstations such as
the Xerox Alto computer. We were very excited
about the possibilities of large displays with a
mouse as a pointing device. Our initial user
interface ideas were adopted from the NLS system
developed at SRI International. (NLS later
evolved into the Augment system offered by
Tymshare, Inc.)

Despite the enthusiasm of the developers, there
was a lot of resistance among office workers who
tried our system. To find out why, I developed
a way to watch people at work, observe what
difficulties they were having, and elicit
explanations from them.

One observation made during those tests later
proved to be a key idea. A lay person trying a
system for the first time is probably feeling
pretty stupid and thinks that any mistake is his
or her own. His inclination is not to tell you
what is difficult because he thinks it is his
problem. It is {mportant to keep emphasizing
that if he is having a problem, it is not his
but the computer’s. If you get into a car, turn
the wheel, and it steers about twice as far as
you expect, it is not that you are an
incompetent driver, it’s because the car has
oversteer.

SIGCHI BULLETIN

2. WHEN TO ENLIST USER HELP

Let me talk a little about zy work at Xerox PARC
from 1973-1980 and at Apple since 1980, where I
have been designing interactive systems., I
brought the user into the design process as a
helper, and the results were extremely good.

There are two stages of the development process
during which I think it is critical to get user
help.

One critical time is during the design phase,
when the designer has an idea of what his goals
are and probably has formulated scme idea of
what the user interface of his application is
going to be. But before the design is
completely frozen, it is a good idea to get a
reality check. At that point, my design teans
80 out and talk to potential users; we call it
"interviewing at the workplace."

The other critical time is after the software
has been implemented to the prototype stage,
before it is frozen, when there are still some
opportunities to make changes. Since I am
unable to produce armchair software designs that
are really usable, I have found it is really
important to build and verify prototypes, and
make numerous changes. The technique 1is very
similar to what Tom was telling you about,
"formative evaluation." *

3. ENLISTING USER HELP DURING THE DESIGN

During the formative stages of the development
effort, the designers need to get user input.

If they wait until the product is ready to ship,
it is too late. In the projects I have worked
on, we go to the workplaces of potential users
during the early stages of the design to observe
how people actually work.

3.1 Interviewing at the Workplace

Up to three people from the design team observe
and interview a prospective user. The goal of
each interview is to elicit from the prospect
his or her:

= Procedures
~ Problems

= Forms and Tools
-~ Terminology

* Editor's note: see page 13.

“136-01.PICT” 361 KB 2000-12-24 dpi: 400h x 400v pix: 2995h x 4121v

Source: David T. Craig -- Written by Larry Tesler (Jan 1983)
\,

Page 0002 of 0006 |

Apple Lisa Computer Info : Document # 136 : Enlisting User Help in Software Design

January 1983 SIGCHI BULLETIN Volume 14,3

Even if we are just designing a text editor, we
want to know how the documents the prospect
produces fit into the entire process of his

job. Where does the paperwork he is typing come
from, and where does it go to after it leaves
his desk? How many revision cycles are there,
who specifies the revisions, and what does
marked-up copy look like?

If we are designing a data base application, we
want to know how he keeps things in his office.
Does he use index cards, files, or what?

If the prospect handles nine-part purchase order
forms, what happens to each of the nine parts,
who fills them in, and where are they routed?

It turns out that by asking very open-ended
questions we can find out things that we did not
even anticipate--usually very surprising

things. We designers tend to be limited by our
own experience and by the conventions of the
data processing industry, which really do not
reflect the way other people work.

It is also important to find out what
terminology people use. For example, in the
Apple UCSD Pascal Text Editor, there is a
command called "Save on File." Our secretaries
seemed to have no difficulties using this
command, so people theorized that it was
perfectly fine to call a document you are
preparing with a text editor a "file." But we
also noticed that this was not really the way
people in offices talked about things. They did
not call a document a "file;" a file was a
folder or a cabinet.

We were puzzled about why people did not have:
any trouble with the term "file" in the editor,
so we asked several secretaries with experience
using the editor what the word "file" meant on
the computer. All of them said a file was a
diskette. We then asked them the meaning of the
term "file" in the command '"Save on File Named
X." Their interpretation of this phrase was
"Save my memo on the the file [the diskette] and
name it [my memo] X." The fact that the wording
of the command contradicted their notion did not
change their idea of what a file was; instead,
they changed their parsing of the command so it
would make sense.)

One more point. During a user interview, we
focus on current practice. We don’t ask, "If
you had a computer, what would you do with it?"
Once im a while, this will elicit an interesting
remark. But people are not very good at
visualizing what it would be like to have a
computer in front of them, so this is not a very
productive approach.

4. ENLISTING USER HELP DURING IMPLEMENTATION

4.1 Prototype Testing

After developing prototype software, we return
to the users again to get their help in
verifying that the prototypes have good human
factors. I would say that in all cases I have

ever tested, they do not! We discover what
problems there are and allow time to correct
them.

In a one year development, if we have a fairly
good first cut at a user interface, maybe two or
three months need to be left at the end to fix
most of the problems that may be found. We
improve the human factors at the same time that
we are fixing bugs, improving performance, and
implementing extra features.

We really do not need to have a final prototype
in order to do the test. If we have something
that demonstrates the major functions and if a
user can get through a session without
likelihood of a crash, it is good enough for our
purposes.

The goals of prototype testing are:
- To resolve specific design issues;
~ To uncover unanticipated problems;

- To find out what is easy and what
is hard to learn, and what is
smooth and what is clumsy to use.

4.2 Resolving Specific Design Issues

Let me describe an example of a design issue
that has recurred several times in my projects.

Some of you may have read my Byte magazine
article (August 198l) about how to eliminate
modes from systems. Findings from my early
studies at Xerox PARC showed that modes were
very difficult for people to deal with. People
were always getting into the wrong mode and did
not know how to get back out.

My colleagues and I found an easy way to
eliminate modes from most commands in a text
editor. We structure the command language so
that the user first selects the operand of an
operation and then issues the command to operate
on it. Unfortunately, if one wants to move or
copy something from one place to another, it
requires two operands, the source and the
destination. The simple technique only works
when there is one operand.

Inevitably, someone would propose that we allow

two selections to exist at a time. The user
would select both a source and a destination,

136-02.PICT” 404 KB 2000-12-24 dpi: 400h x 400v pix: 2971h x 4121v

L Source: David T.

Craig -- Written by Larry Tesler (Jan 1983) Page 0003 of 0006 |

Apple Lisa Computer Info : Document # 136 : Enlisting User Help in Software Design

January 1983 SIGCHI BULLETIN Volume 14,3
using differeat buttons on the mouse, if there 4.4 Qualifying Sublects
is a mouse. There would be no mode at any point
because he could continually respecify each The people we like to observe in our prototype
selection independently. When both selections tests are novice users who are prospective
were finally to his liking, he could issue the end-users of the system. For example, if we are
Move command or the Copy command. testing out accounting software, we try to find

accounting clerks that have very little

This idea is a very appealing one. One experience.
colleague dubbed it the "Place and Thing
Model." The Thing is what you want to move or It is becoming difficult these days to find
copy and the Place is where you want it to g0« people who have never used a computer. In 1973,
An obvious corollary of the model is that typing we simply brought in secretaries from temporary
is inserted at the Place while the Delete agencies. At Apple, we ask new employees at
command deletes the Thing. orientation to fill out a form summarizing their

background and noting any previous use of

Fortunately, we tested the Place and Thing Model computers.

before we shipped it to anybody. We implemented

a prototype and ran user tests. Actually, I had Ie is.important to know the person’s

to repeat the experiment several times over the experience. Have they used video games? Have

years for the benefit of people who did not they used data-entry systems? Do they have a

believe the results. personal computer at home, or have they taken
any computer classes? The results of the test

We were shocked (the first time) to find that will be interpreted differently depending on

people were confused by the Place and Thing their experience. For example, if we find

interface. It became clear after talking with someone constantly hitting the return key when
them and also by watching the errors they made it is not necess§ry, he may have once used a
that the confusion arose from having two foci of system that required it.

attention. They couldn’t predict whether

something they typed would go to the Place or to

the Thing, nor whether the Underline command 4.5 Beginning a Prototype Test

would underline the Thing or would underline new

text typed at the Place. In other words, the We schedule an hour for each test. At the

Place and Thing Model made copying and moving beginning of the test, it is impartant to get
easier, but it made simple operations like the person relaxed and comfortable and to)
typing and underlining more difficult. emphasize that it is not we who are testing him,

it is he who is testing the machine. We say,
To solve the move-and-copy problem, the Star "The machine is new and is just a prototype, so
design team at Xerox instituted a temporary mode it has lots of bugs in it. It is not very easy
while the user was waiting to specify a to use yet, and we would like you"to help us
destination, and the Smalltalk design team figure out how to make it easier." This
instituted a two-step cut dnd paste scheme. assurance helps to alleviate the feeling that he
Both proved less error-prone than the Place and Is being tested, and that he i{s at fault when he
Thing paradigm. makes mistakes.

Before beginning, we try to create a positive

The Place and Thi d h
n ng experience demonstrates that mind set before the user encounters

even an idea that seems elegant and that difficulti Th 1 h is t 4
satisfies some principle is not necessarily prtieulries. The general approach is to assure

going to succeed. The only way to find out is him that the system is not going to be hard,
to test it. although he will have an occasional problem.

However, there are aspects of most svstems that
are very difficult for all users. If we told a
user that those aspects were going to be easy,
and then he made the inevitable mistakes, he
would feel it was his own shortcoming. In such
cases, I take a different tactic. I tell the
user that this aspect of the system is going to
be very hard to learn, but by the end of the
hour, he will probably master it. Then after
fifteen or twenty minutes, when he begins to get
a handle on it, he feels accomplished and
positive about his ability to master the

1 think uncovering unanticipated problems is the system.
greatest benefit of prototype tests. When we

focused too much on known issues, the tests

rarely were worth the time and trouble they

took.

4.3 Uncovering Unanticipated Problems

Besides resolving specific design issues,
prototype testing always uncovers unanticipated
problems. For every design issue we knew about,
we would find a dozen unanticipated problems
with the system. People made too many errors,
did not understand what they had done, and were
confused by the terminology.

“136-03.PICT” 428 KB 2000-12-24 dpi: 400h x 400v pix: 3003h x 4161v
Source: David T. Craig -- Written by Larry Tesler (Jan 1983) Page 0004 of 0006 |
\,

Apple Lisa Computer Info : Document # 136 : Enlisting User Help in Software Design

January 1983

SIGCHI BULLETIN

Volume 14,3

4.6 Conducting a Prototype Test

During the test, I sit down next to the user and
tutor him step by step in how to use the
software. I try never to touch the machine
myself. Being present, I can vary the
instruction as 1 go along in response to what he
is doing. Even though I plan a certain
scenario, something may occur during the test
that suggests a more fruitful experiment. I
will change the scenario and explore the problem
more deeply.)

During the test, I note every event, whether a

success or a failure. If I only noted errors,

the subject would soon view my notetaking as an
intimidating act.

I try to talk as little as possible during the
test. I give a brief introduction and get the
user working immediately so he does not feel as
though he is being lectured. Sometimes, I give
more detailed instructions, but if I talked him
through every step he would just mechanically
execute my instructions and not recall much.
Instead, 1 let him practice and play with what
he has learned.

The user should not only execute tasks
correctly, he should also understand why they
are done the way they are so he can later
perform them without assistance. Frequently, I
stop giving instructions and let him guess and
try things, rather than telling him every step.
But during the first few minutes, it is helpful
to actually drive him through each step to help
him overcome any initial hesitation.

4.7 Maximizing Test Benefits

To make the tests of maximum benefit to the
designers, there are certain rules we try to
follow:

- Don’t offer help too soon;
~ Welcome suggestions and reactions;
~ Observe but don’t pressure.

If the person seems stumped for a moment, I let
him think a little while to see if he can figure
out for himself what to do. If he starts
getting to the point where he is feeling
uncomfortable, then I will finally intervene.

It is important to be open to the user’s
suggestions and reactions. If the person
running the test gets defensive, argues, or
tries to put off discussion until later, the
user will clam up right away. Even if the
subject makes an obvious statement, a trivial
remark, or suggests something that is impossible
to do on a computer, it is important to welcome
his reactions and discuss them as an equal.

Otherwise, he will stop telling you the things
you necd to hear.

4.8 Interviewer Qualifications

Running prototype tests is not easy. I have
been doing it for nine years and I still learn
from my mistakes. When I conduct a series of
tests on the same software, I get better at
teaching and observing subjects with each
subsequent test.

During an interview, it is important to be
objective, observant, sensitive, and patient.
Someone who wants to run a prototype test must
be willing to assume that attitude, as well as
be a competent teacher.

One of the less obvious requirements for running
a prototype test is familiarity with the
software. We often have psychologists run user
tests. Ours have the right attitude, are good
teachers, and have previous experience running
subjects in experiments. But when they tried

to test early prototypes, they found themselves
insufficiently familiar with the software. If
the user made an error, the observing
psychologist did not understand the error or did
not even detect that an error had been made. If
the user wanted to explore something outside the
scenario, the teacher was stuck. So for early
prototype testing, it is important to have
someone present who is familiar with the
software.

When one individual does not have all of the
required skills, we run tests with two or three
people in the room: a teacher who knows the
software, an observer who knows it even better,
and perhaps a psychologist who can observe from
a different perspective and intervene if the
others become impatient or insensitive.

4.9 Concluding a Prototype Test

At the end of each test, we take time to gather
impressions from the subject. We start out
asking open questions. '"Well, what do you
think?" or "What was hard; what was easy?"
Later we pose more direct questions like "The
time you made that certain error, what were you
thinking?" or "What do you think is a better
term for this concept?" Usually in the
open-question stage we get some really good
responses that are unexpected. The directed
questions address more specific issues.

If there is time after the question period, I
ask the subject to go back and do some more
tasks. He or she has been using the machine
only an hour, so the question period is needed
to "cleanse" his short-term memory. After that,
having him try to repeat certain tasks tests his
recall of what he has been taught. This

“136-04.PICT” 414 KB 2000-12-24 dpi: 400h x 400v pix: 2971h x 4121v

| Source: David T. Craig -- Written by Larry Tesler (Jan 1983)

Page 0005 of 0006 |

Apple Lisa Computer Info : Document # 136 : Enlisting User Help in Software Design

January 1983 SIGCHL BULLETIN Y?EET?-Ef:E
provides us with clues about what is easy and quality assurance, software, and management.
what is hard to remember. Everyone needs to know the test conclusions to

understand why changes are or are not being
made. Then, of course, you must change the

4.10 Homework Between Tests software as needed or else it was all for
naught.

Between tests, the teacher has homework to do.)

1f there were other people observing the test, Our training group, staffed by psychologists and

we compare notes and debate interpretations. I educators, runs a similar series of tests in

reevaluate the teaching approach and plan the order to evaluate training materials. Usually,

issues and the scenarios for the next test. If we have already tested out the worst aspects,

the first test takes an hour, usually I can and by the time they get the software from

cover the same material in a half hour the engineering, they can debug their training

second time and thus have additional time to materials using the same technique.

teach more features.
5. CONCLUSTIONS

In conclusion, observing users really does

Arter I aave run through a whole series of tests work. Not only does it work, but it is really
on an application, 1 write a report about what necessary. In my experience, only occasionally
was commonly experienced by the users. have 1 found software that has been really easy
Generally, most users experience the same to use. In just about every case in which I was
things. Occasionally, some user’s unique quirk able to question the designers of friendly

may be worth mentioning, but what is of most software, they said that they, too, ran

concern is what most or all users experienced. extensive user tests and made extensive

revisions before the software was released.

4.11 Employing Test Results Some people think they can design friendly

software just by being clever or by reading
After an application is fully tested, we papers on principles of user interface design.
disseminate the results. Within Apple’s Principles are important to consider when you
organization everyone gets into the user are first designing, but unless you take the car
interface act: marketing, training, technical out for a road test, you won’t know about the
writing, product design, product support, oversteer.

FINiS

“136-05.PICT” 227 KB 2000-12-24 dpi: 400h x 400v pix: 2987h x 4145v
Source: David T. Craig -- Written by Larry Tesler (Jan 1983) Page 0006 of 0006 |
\,

