
UNPROTECTED

Backups may be made
using standard copying
procedures.

·D CODE·

COMPATIBLE

Any version of Apple II@>
DOS 3.3 and ProDOS'·

APPLESOFT®PROGRAM COMPACTOR AND DE-BUGGER
by ALAN BIRD

APPLESOFT COMPACTOR
D CODE squeezes every wasted byte
out ofyour Applesoft programs, to save
memory space and increase efficiency.
Optionally combine program lines, cut
variable names to one or two charac
ters, and remove REM statements.

All Goto's, Gosub's and If-Then's are
automatically considered. The number
of bytes-saved is printed on the screen.

D CODE also finds program lines
that are unused, and lets you eliminate
them to save even more wasted space.

PROGRAM PROOFREADER
Uncover errors before they happen! If
you commit a typo while entering a
program line, the error is reported on
the spot before your program is Run.

Quickly scan existing programs too,
for hidden errors and potential crashes.

PROGRAM COMPARER
Compare any two files to see if they are
the same. Differences are reported so
you will know what has been changed.

SUPER-TRACE FEATURES
Stop an Applesoft program anytime
you want, and ask to see the most
recent line numbers and program state
ments (l to 10,000 of them) that have
been executed. Great for finding out
what makes programs tick (or crash!).

An all-new TRACE function neatly
prints program statements and variable
values in a sealed-off window at the
bottom of the screen. Optionally step
through a program line-by-line as you
watch your variable values change!

DE-BUGGING BREAKPOINTS
Pre-set breakpoints before you RUN, so
a program stops ifa specified condition
becomes true, or if a certain statement
is executed a certain number of times.

Find all occurrences ofany string in
your programs-in under 2 seconds!
GPLE COMPATIBLE
D CODE's de-bugging features are
fully-compatible with Beagle's Global
Program Line Editorand Double-Take.

INCLUDES FREE PEEKS & POKES CHART
"APPLE" is a registered trade mark of Apple Computer. Inc.

~IMPORTANT! Before you start:
DO NOT BOOT THE D CODE DISK if you want DOS 3.3 D CODE.

Boot it only if you want ProDOS D CODE (see page 4).

DCODE
APPLESOFT PROGRAM COMPACTER AND DE-BUGGER

Copyright © 1984, Alan Bird

One disk, two versions: DOS 3.3 and ProDOS'·
Compatible with any model of Apple"

(ProOOS version requires minimum 64K)

ISBN 0-917085-07-8

Published by
Beagle Bros Micro Software, Inc.

3990 Old Town Avenue
San Diego, California 92110

Table of Contents
About the Disk 2
Summary of D CODE Functions 3
The D CODE Disk Catalog 4
COMPACT Program Packer 6
COMPARE File Comparer 17
D.BUG Program De-Bugger 20

Fast Finder 22
Program Checker 24
Easy Lister 25
Window Tracer 26
Dump Tracer 32
Breakpoints 34

Index 40

About the Disk
D CODE IS (as they say) POWERFUL
D CODE is a collection of three sophisticated machine language programs
designed to help the Applesoft programmer work more efficiently.
COMPACT makes your programs take up less space. COMPARE analyzes
differences between programs. D.BUG adds new commands to your keyboard
vocabulary, and makes finding those elusive bugs easier and-who knows?
maybe even fun!

D CODE IS DOS 3.3 AND ProDOS™ COMPATIBLE
All D CODE programs come in two versions-one set for working under DOS
3.3 and another set for ProDOS-both on the same side of the D CODE disk.
DON'T BOOT THE D CODE DISK if you want the DOS 3.3 version of
D CODE (see page 4 for more info).

BACK UP YOUR DISK
Like all Beagle Bros disks, D CODE is not copy protected, just copyrighted.
Before you get too deeply involved, make a copy of the D CODE disk, using
the copy program that came with your Apple (like DOS 3.3's COPYA or
ProDOS's FILER or the Apple lIe System Utilities disk).

At Beagle Bros, we avoid copy-protection so our programs will be more
friendly to work with, and therefore more valuable to you, the purchaser.
Please don't give copies of our software away. Every illegal copy you see is a
vote AGAINST friendly software and FOR copy protection and higher prices.
You support us, and we'll support you.

BACK UP YOUR PROGRAMS
Please SAVE your original programs on disk and LOCK them before using
it first, under a new name, just in case it doesn't survive the trip. This tip
applies mostly to programs that have been altered with COMPACT.

WELCOME, BEGINNERS
D CODE is for the semi-experienced Applesoft programmer. If terms like
"DOS", "BRUN" and "program line" don't make sense to you, you may want
to do some more reading in your Apple manuals before moving on. Actually,
just remembering to periodically make backups of your programs will rescue
you from any serious problems. (Also see "Beginner's DOS Note" on page 5.)

2

D CODE Summary

To COMPACT an Applesoft Program (page 6)

1. Load your program from your disk.
2. Insert the D CODE disk, and type "BRUN COMPACT".
3. Select the features you want.
4. Type "C".

(To use COMPACT again while it's still loaded, type "&".)

To COMPARE Files (page 17)

1. Insert the D CODE disk, and type "BRUN COMPARE".
2. Type the name of two same-type (Applesoft, Text, etc.) files you want to compare.

(To use COMPARE again while it's stiilloaded, type "&".)

De-Bugging Functions (D.BUG) (page 21)

Insert the D CODE disk, and type "BRUN D.BUG" to install the following new
commands (single-letter abbreviations in parentheses):

BREAK lets you set up program breakpoints (page 34).

CHECK (C) proofreads a program (page 24).

DUMP (D) lists the last statements used before a program crash (page 32).

FIND (F) finds all occurrences of a word in a program (page 22).

L lists a program (page 25).

NOTRACE (N) turns off all TRACE functions (page 26).

TRACE (T) turns on the trace and function (page 26).

VARIABLES (V:) sets up variables and expressions to be TRACEd (page 26).

WINDOW (W) lets you pre-adjust the size of the TRACE window (page 26).

SIZE (S) lets you set the buffer size for DUMP (page 32).

ZAP (Z) clears the DUMP buffer (page 32).

3

The D CODE Catalog
The D CODE disk has two sets of programs on it-one for Apple's older
DOS 3.3 and another for the newer ProDOS. Both disk catalogs are nearly
identical, with the ProDOS version containing three extra files-PRODOS,
BASIC.SYSTEM and FP. Here is a rundown of the main files on the disk:

STARTUP is the greeting program that displays the main disk menu when
you boot the disk. Since you can't boot the disk in DOS 3.3 (see next
page), you wiII need to type "RUN STARTUP" to see this program.

TITLE is the machine-language program that does the crazy text title routine
at the beginning of STARTUP.

COMPACT (page 6) packs Applesoft programs to the smallest possible size by
removing Rem statements, shortening variable names and combining
program lines.

LINE.SPLITTER (page 15) lets you chop an Applesoft program line in two, in
case COMPACT (above) left you with a line that is too long to edit.

COMPARE (page 17) lets you compare two Applesoft, Binary, or Text files to
see if they are identical.

D.BUG (page 20) gives you 11 new commands that proofread programs, trace
program lines and variables as they are executed, find words and let you
set up breakpoints for de-bugging your programs.

D.BUG.DEMO demonstrates the capabilities of D.BUG.

FP (ProDOS version of D CODE only) wiII remove the D CODE program (and
any Applesoft program) currently in memory. Its function is basically the
same as DOS 3.3's FP command. Type "-FP" to execute.

NOTES contains any changes or revelations that have occurred since this
manual was printed.

4

Getting Started
ProDOS D CODE
To use D CODE under ProDOS, you can boot the D CODE disk by inserting
it in your main drive and turning on your Apple's power switch. Or, with
ProDOS booted, type "PR#6" from the keyboard. Or, if you're using a newer
Apple, press CONTROL/OPEN-APPLE/RESET.

Soon, the D CODE menu will appear-just type the number
corresponding to the program you want to run or load:

(1) COMPACT
(2) COMPARE
(3) D.BUG
(4) D.BUG DEMO
(5) NOTES (CHANGES TO MANUAL)

If you already have ProDOS booted, you can skip the menu and simply type a
hyphen followed by the name of the D CODE program you wish to see or
use-STARTUP, COMPACT, COMPARE, etc.

DOS 3.3 D CODE
If you are going to use D CODE with DOS 3.3, don't boot the D CODE disk.
Instead, boot the DOS 3.3 System Master disk or whatever DOS 3.3 disk you
normally would boot. Now insert the 0 CODE disk, type "RUN STARTUP",
and pick the program you want to use from the menu. Or you can type
"BRUN" followed by the name of the utility you wish to use, like COMPACT,
COMPARE or D.BUG.

BEGINNER'S DOS NOTE
Which Disk Operating System (DOS) you use is up to you; you'll probably
want to use the one you are used to. If you don't know which you are using,
type "CAT". If you get a disk catalog, you're using ProDOS. If you get a
"?Syntax Error" message, you're using DOS 3.3 (or you haven't booted, and
therefore aren't using any DOS).

~AND WE REPEAT (;. a~ """~ ",''''',
Boot the D CODE disk ONLY if you are going to be using ProDOS.
To use DOS 3.3 D CODE, boot a DOS 3.3 disk first.

5

COMPACT
D CODE's COMPACT program allows you to reduce the amount of memory
occupied by an Applesoft program, by optionally removing Rem statements,
packing as many statements as possible into single program lines, and
shortening variable names.

COMPACT-PROGRAM ADVANTAGES
1. A compacted program will occupy less space in memory. If, for example, a
program won't quite fit in memory under one of the graphics pages,
compacting it might just squeeze it in. Or you may need more room for
variables, more subroutines, etc.

2. A compacted program will usually take up less space on disk. A DOS 3.3
disk sector is 256 bytes long; a ProDOS block is 512 bytes. Sometimes an
entire sector or block can be saved by eliminating just a couple of bytes.

3. A compacted program will tend to run slightly faster (nothing that will
knock your socks off, however).

4. It just plain FEELS GOOD to make a program as small as possible. This
feeling, of course, depends on your own personal set of values (and how
content your childhood was).

COMPACT-PROGRAM DISADVANTAGES
1. Compacted programs tend to be more difficult for humans to read. More
statements per program line is one reason. Abbreviated variable names are
another (bigger) reason.

2. Without Rem statements, a program can be difficult to decipher, especially
a couple of months down the road.

3. After compacting a program, you may have some program lines that, due to
their length, are uneditable, even with GPLE (Beagle Bros' Global Program
Line Editor), and especially with ancient cursor-tracing methods. The
L1NE.SPLITTER program (page 15) is a solution that pretty much scratches
this problem off the list, however.

PLAY IT SAFE
Because of the disadvantages above, you should always LOCK your
uncompacted program on disk, so you won't accidentally SAVE the
compacted version on top of it. Then Save your compacted version on disk
under a new name. Your expanded version with its Rem statements and
descriptive variable names might come in handy some day. In fact, now that
you have the ability to Quickly compact your code, you may want to use more
Remarks and longer variable names to help in "pre-release" de-bugging.

6

How to Use Compact
1. Lock the program you want compacted (type "LOCK PROGRAM-NAME")
on disk so you don't accidentally lose it.
2. LOAD the program you want to compact (type "LOAD PROGRAM-NAME").

3. BRUN COMPACT (just type "BRUN COMPACT" with the D CODE disk in
your drive). If this has recently been done, you can probably just type "&".

D.BUG Note: If you want D.BUG and COMPACT both in memory, you must
BRUN D.BUG first. Otherwise COMPACT will disappear.

Now you will see COMPACT's menu:
(1) REMOVE REMS YES
(2) CONCATENATE LINES YES
(3) SHORTEN VARIABLE NAMES YES
(4) RENAME VARIABLES YES
(5) COMPACT PART OF PROGRAM .. NO
(6) VARIABLE TABLE TO PRINTER .. NO
(C) COMPACT
(Q) QUIT

You have six YES/NO options before compacting a program (the top four
always start out as YES). You can toggle each option from YES to NO and
back by pressing the number key indicated on the left. When you are ready,
press "C" to compact the program. It won't take long.

7

COMPACT Menu Options

Here is an explanation of each COMPACT menu option:

1. REMOVE REMS
YES means that when you compact your program, every Remark statement
will be deleted. If you use a lot of Rems, this option will save more program
space than any other, because every character and space in a Remark takes up
an entire byte of memory.

2. CONCATENATE LINES (computerese for "Connect Lines".)
YES means that when you compact your program, as many statements as
possible will be packed into single program lines, thus eliminating old line
numbers. Sample program:

10 TEXT: HOME
20 GOSUB 50
30 PRINT "OOGFOOO"
40ENO
50 PRINT CHR$(7)
60 RETURN

When these lines are concatenated, they look like:
10 TEXT: HOME: GOSUB 50: PRINT "OOGFOOO": ENO
50 PRINT CHR$(7): RETURN

Every line number that is removed saves you a big four bytes of space. In this
example, we saved 16 bytes.

Technical Note: Applesoft needs an "overhead" of 5 bytes per line-2 for
the line number, 2 for a pointer to the next line, and 1 for a zero that ends
the line. You lose one of the 5 bytes saved for the extra colon that separates
the connected statements, leaving you with 4 saved for every line number
eliminated.

ULTRA-LONG-LINE PROBLEMS
With option 2 set at YES, COMPACT will often create a program line that
works perfectly, but is too long to edit. Applesoft allows program lines of
about 250 bytes (each Applesoft word like "PRINT" takes up one byte).
Editing, however, has to consider each character in the listing (now "PRINT"
takes up five characters, plus two more for spaces on each end). Even GPLE's
"Pack" feature (removes spaces from program lines) won't always let you edit
an ultra-long line.

WATCH OUT that you don't inadvertently chop the end off of a program
line when you attempt to edit it. If you are cursor-tracing a line and you hear
beeping (or if you try to edit with GPLE and code is missing), type
CONTROIrX immediately, and BRUN LINE.SPLITTER (page 15).

8

3. SHORTEN VARIABLE NAMES
When this option is set to YES, all variable names longer than two characters
will be shortened to two characters. For example:

Old New
NAMES$ NA$
NUMBER NU
TABLE(NUM) TA(NU)
WXYZ% WX%

In Applesoft, it doesn't matter how long your variable names are, only the first
two characters count (COMPACT leaves only those two characters if you
select YES for this option). The variables APPLE, APPALOOSA and AP are
the same. So are MOUSE$, MOUNTEVEREST$ and MO$. The advantage to
long variable names is that they are more descriptive. The disadvantage is that
they take up a lot of room-one byte per character.

Note: OPTION 3 simply chops the end offof long
variable names. OPTION 4 adually renames variables

without regard to their former names.

4. RENAME VARIABLES
When this option is selected, COMPACT will change as many tW<H>r-more
character variable names into one-letter names as possible. The multiple
character variables that are used most often will be converted to single letter
names until all 26 letters have been used (for each variable type. Remember,
A$, A% and A may all be in the same program). See the sample variable
conversion table on page 13.

Note: A (4) YES sets (3) to YES and (5) to NO. A (4) NO sets (6) to NO.

5. COMPACT PART OF PROGRAM
Use this option if you only want a portion of a program compacted. After
typing "C" to start compacting, you will be asked for the start and end line
numbers for compacting. You may default to the beginning or the end of the
program by simply hitting RETURN as an answer to either question.

A (5) YES sets (4) to NO.

6. VARIABLE TABLE TO PRINTER
When set to YES, this option will print the renamed variables on your slot 1
printer (if option 4 is set to YES). See page 12 for details.

9

COMPACT options (continued)

C. COMPACT
Just type "c" to compact your program. After a brief pause (depending on the

length of your program), a variable conversion table will be displayed if you

selected option 4 (sample on page 13). When compacting is completely

finished, you will see the former length of the program, the new length, and

the amount of memory that was saved, all in bytes.

OLD LENGTH : 4321
NEW LENGTH : 3210

BYTES SAVED: 1111

Now that a compacted program has replaced your original program in

memory, SAVE it before you RUN it. (Since you've Locked the original

uncompacted program on disk, you won't accidentally Save the compacted

version under the same name, will you?) You could name your compacted

version with a suffix like ".C". Now you will have the original program (like

"TESTPROGRAM") and the compacted program (like "TESTPROGRAM.C"),

both on the same disk.
If you decide to ignore our advice and Save your compacted version with

the same name as your original, there is no way the number of disk sectors

will be smaller, unless you Delete the original version from the disk first.

(DOS 3.3 only. ProDOS has eliminated this minor bug.)

"&" TO RE·RUN COMPACT
After COMPACT has been used and exited, you will usually be able to bring it

up again by typing "&" (return). If this doesn't work, just type "BRUN

COMPACT" again.

10

EXTRA BITES AT THE END OF A PROGRAM
COMPACT assumes that any extra bytes that it finds imbedded beyond the
end of a program is relocatable code that the program uses. If extra bytes are
found, you will be asked if you wish to keep them. Answering "Y" will move
the code to the new program end. "N" will delete the extra bytes.

If you don't think you have anything beyond the end of the program,
and COMPACT asks you about it anyway, just answer "N" and that will be the
end of that.

UNUSED STATEMENTS
When programs have undergone heavy revision, statements often remain that
can't possibly be executed-your program just won't encounter them.
COMPACT will report the line numbers that contain these potentially useless
statements. It's up to you to delete them after COMPACT is finished.

UNUSED STATEMENT EXAMPLE:
100 PRINT "HELLO" : GOTO 120 : PRINT "GOOD-BYE"

Here, "GOOD-BYE" will never be printed because of the GOTO statement
immediately before it. You could delete ": PRINT "GOOD-BYE" " and save 11
more bytes. In this case, you would NOT want to delete the entire line.
ANOTHER EXAMPLE:

90 PRINT "DOGFOOD": GOTO 110
100 PRINT" IS FOR DOGS."
110 PRINT" IS YUMMY WITH HOT SAUCE."

Assuming no other statement in this program goes to line 100, COMPACT
will tell you about it. You could delete line 100 (the entire line this time) and
save about 20 bytes.

INTENTIONAL UNUSED STATEMENTS
We like to use the following save-a-program trick:

1 GOTO 10
2 PRINT CHR$(4);"SAVE PROGRAM NAME": END
10 REM PROGRAM STARTS HERE

The trick here is that we can simply type "RUN2" anytime we want to Save
the program without having to remember its exact name. COMPACT will
report line 2 as unused, even though we want to keep it. No problem; just
don't delete line 2.

11

-------~

THE VARIABLE CONVERSION TABLE
When RENAME VARIABLES (option 4) is set to YES, a variable conversion
table will be displayed on the screen during compaction. This chart lists the
name of every variable in the program, it's new name (if it was changed), and
the number of times it appears in the program. (Note: Only the first two
characters of the variable will appear under the OLD column heading, even
though that variable may have had a longer name.).

One-character variables are listed first, unchanged, in the order of their
appearance in the program.

Next come the multiple-character variables. COMPACT will shorten as
many of these as possible to one character. with the one&. that appear most
often in the program changed first.

If no name appears in the NEW column, it's because there are no more
single characters left for that particular variable type. This will only occur in
very large and/or complex programs. Usually real or string variables will be
the first to run out of the 26 available single-character names.

LOOK FOR "LONE" VARIABLES
Watch the conversion chart for variables that appear only once or twice in a
program. This could indicate that the variable name was misspelled or was
once part of a program segment that was removed. You might be able to save
additional space (or uncover a potential bug) if you look at the lone variable
(use the FIND command in D.BUG. page 23).

12

=) A$ -- First string is
nameA$.

Single-character
variables are
listed first, and
will remain
unchanged.

=) A'Y.-- Firstinteger
variable is
namedA%.

13

SAMPLE VARIABLE CONVERSION TABLE
This table prints on the screen when COMPACT
option 4 (Rename Variables) is set to YES.

NEW OCCURRENCES-----------
2
6
5
8
2
14
21
4
1 _Note: Only 1 occurrence may indicate an

unnecessary (or misspelled) variable name.
8
9
15
7
72
52
95
17
20

Variables A, B, C 12
& D are already 9
used, so the first 16
multi-character "
variable is 94 - End of old smgle-character vanable names

E - converted to E. 39 _ The most-often used multi-character variable name
is converted first.F Variables are 19

G renamed without 1 7
regard to their

M original names. 16
N Set option 3 to 14
D YES to simply 14

shorten names.
P 14
Q 13
R 12
A$ (-- First string-array 11
U is named A$(;. 11

V 10
W 10
B$(9
C$(8

Y 8
8
8
8
8
8
8
7
6

=)

=>

=)

=)

=)

=)

=)

=)

=)

=)

=)

=)

=)

=)

=)

=)

OLD

D
L$
B
B$
AY.(
L
H
C
K
Z
J
N$
D$
A$
S$
A
X
T$
S
T
P(
I
BU
FI
EC
LV
SM
YE
BE
CO
BP
DF$(
CD
PN
FD
FI$(
PN$(
BL
IP
ID
PR
PRY.
10
CF
ME$
WD

COMPACT TIPS
1. Before using COMPACT, use D.BUG's CHECK command (page 22) to catch
any syntax errors in your program.

2. Now that you don't have to worry about Rems eating your program space,
use them to more-thoroughly document the development versions of your
programs. Use longer variable names too-like COUNTER instead of CTR.
Just remember that Applesoft only looks at the first two characters.
3. To look for unused program lines without compacting a program, set alI six
menu options to NO. (Some minor changes might be made to your program.)

4. To save even more space, RE-NUMBER YOUR PROGRAM BY I's, using
the Renumber feature from Beagle's Double-Take disk (ProDOS or DOS 3.3).

COMPACT ERROR MESSAGES
NO APPLESOFT PROGRAM IN MEMORY
This means what it says. Load your program first, then BRUN COMPACT (or
type "&" if COMPACT is already loaded).

MEMORY OVERFLOW. PROGRAM TOO LARGE
This sometimes happens when you have other machine language program(s)
in memory in addition to COMPACT. You may need to re-boot or take other
measures to clear memory.

RELOAD YOUR BASIC PROGRAM
This message wiII occasionalIy come up when you're going to compact a very
long Applesoft program. Just re-Ioad the program as instructed, and type "&"
to re-run COMPACT.

In case you care: When you first BRUN COMPACT, it's code Bloads at
$4000 (16384 decimal), and then relocates itself just under HIMEM. If your
loaded program extends above $4000, it will be partialIy wiped out by
COMPACT and you'lI be told to re-Ioad.

There's a COMPACT example on page 16.

14

..

LINE.SPLITTER
LINE.SPLITIER simply chops a program line into two parts, in case it is too
long to edit (see page 8). With your program loaded, simply type "BRUN
LINE.SPLITIER" and, when asked, type the number of the line you want to
split. LINE.SPLITIER will split the line as near the middle as possible, taking
into consideration any IF statements.

The second section of the split line will be numbered one line number
higher than the first section.

LINE.SPLITTER ERROR MESSAGES
LINE DOES NOT EXIST
Oops, try again.

RENUMBER FOLLOWING LINE
If the higher number is already taken, the split will be cancelled and you will
have to renumber that part of your program to make room. (Use the
RENUMBER option from our Double-Take disk, or do it "by hand" by cursor
tracing or by using GPLE's edit feature.)

LINE CAN'T BE SPLIT
The line has only one statement, or its first statement contains an IF.

SAMPLE BEFORE:
120 DIM SC(263),FI(255).I • 1.J •

1.K • 1.ML • 16384.M0 • 1740
8.MM • 17408.PR • 17409:A •
1.B • 2.C • 3.D = 4.F0 • 128
.FF • 255.TF • 256.LOC • 192
00.Q· - 16384.QQ • Q + 16.
G$· CHR$ (7).D$· CHR$ (4
) • RT • 16

130 F'RINT "MEAT LOAF"

SAMPLE AFTER:
120 DIM SC(263),FI(255).I = 1.J =

1.K • 1.ML • 16384.M0 = 1740
8.MM = 17408:PR = 17409.A =
1.B • 2.C • 3

121 D • 4.F0 = 128.FF = 255:TF =
256.LOC = 19200:Q. - 16384
.QQ • Q + 16.6$ = CHR$ (7).
D$· CHR$ (4).RT • 16

130 PRINT "MEAl" LOAF" 15

COMPACT Example:

Before:

OLD LENGTH 1 310
NEW LENGTH I 100

.------ Notice how COMPACT removes leading spaces
~ in DATA statements. Trailing spaces not

affected.
Note: The READ A$ command ignores
leading spaces. You should use quote marks if
you want to keep the spaces.
(Example: DATA" TRY': " THIS'?

3 ONERR GOTD 50
8 TEXT
9 HOME
10 READ NUMBER
20 ALPHA$ = CHR$ (NUMBER)
25 PRINT ALPHA.,
30 GOTO 10
50 END
99 REM DATA
100 DATA 681 REM D
101 DATA 46. REM •
102 DATA 661 REM a
103 DATA 851 REM U
104 DATA 711 REM G
105 DATA 321 REM SPACE
106 DATA 701 REM F
107 DATA 731 REM I
108 DATA 78. REM N
109 DATA 681 REM D
110 DATA 83. REM S
111 DATA 321 REM SPACE
112 DATA 66: REM 8
113 DATA 85: REM U
114 DATA 71. REM G
115 DATA 83. REM S

BYTES SAVED. 210
After:
5 ONERR GOTO 50
8 TEXT 1 HOME
10 READ AIA$· CHR$ (A)I PRINT

A$,. GOTO 10
50 END 1 DATA 68,46,66,85,71,32

,70,73,78,68,83,32,66,85,71,
83

16

COMPARE
You've probably noticed how you tend to conect different versions of the same
program, saved to different disks under the same or different names.
D CODE's COMPARE program will take two Applesoft programs and ten you
exactly what lines are unique, different, or the same. You can also use
COMPARE to check binary and text files to see if they are identical.

JUST BRUN COMPARE AND TYPE TWO FILE NAMES
Select COMPARE From the D CODE startup menu, or simply type:

BRUN COMPARE
Unfortunately, COMPACT and COMPARE cannot live in the same Apple at
the same time-irreconcilable differences. COMPARE and D.BUG get along
quite wen, however. So do COMPACT and D.BUG.

When the COMPARE screen appears, enter the names of the two files
you want to compare. RETURN (with no name) signifies the Applesoft
program currently in memory. Under DOS 3.3, type the file name and any
DOS parameters that go with it (for example-MYPROGRAM,S6,D2). Under
ProDOS, COMPARE will assume the current prefix, unless the fun pathname
is specified (for example-/MYDISK/MY.SUBDIR/MYPROGRAM).

(continued)

Programs may look the same, but don't be so sure.
Use COMPARE to find subtle differences.

17

COMPARE (continued)

COMPARING APPLESOFT FILES
When you're comparing two Applesoft programs, COMPARE will ask you if
you want occurrences of identical lines printed. You will usually want to
answer uN", since "Y" will often print a ton of meaningless line numbers.

During comparison, a 1, 2, Dor S will appear next to the line numbers as
they are shown on the screen:
1 means that this line is unique to Program #1 (the first one you selected),

and doesn't exist in Program #2.
2 means the line exists in Program #2 and not in #1.
D means both programs have duplicate line numbers, but the contents of the

lines are different.
S means the lines are the same. (This will appear only if you answered UY" to

the DISPLAY SAME LINES? option.)

------,

"&" ltore~~
-·-i --- .-::.~=

COMPARING BINARY AND TEXT FILES
Since there are no line numbers in binary and text files, COMPARE will just
tell you if the files are identical or not.
Binary File Note: If you're using DOS 3.3, COMPARE will also display the
starting address and length of both files. (If you're in ProDOS, just type
"CATALOG" and take a look there.)

"&" TO RE-COMPARE
Once it's loaded, you may usually re-enter COMPARE and use it again by
typing U&" (return).

18

(19 is blank)

D.BUG
NEW COMMANDS/NEW DE-BUGGING POWER
D.BUG is a powerful machine language utility that will help you de-bug and
develop your Applesoft programs. Once D.BUG is loaded into memory, you
will have eleven brand new commands to work with (see next page). Before
you tackle any serious programming, play around with each of D.BUG's
commands and features, and get a feel for what they'll do for you.

All of D.BUG's commands may be typed directly or used inside your
programs; just treat them like normal Applesoft commands. Of course you
must load (BRUN) D.BUG itself before the new commands will work. 1

Check out the D.BUG.DEMO program to get a better idea of how D.BUG
will make life easier for you. Select the demo from the STARTUP menu, or J.
type "RUN D.BUG.DEMO". -

LOADING D.BUG
To load and activate D.BUG's commands, just type:

BRUN D.BUG
Or select D.BUG from the STARTUP program's menu-see page 4.

If you want D.BUG to c<rexist in memory with either COMPACT or
COMPARE, D.BUG must be loaded first. Other programs like GPLE, Double
Take, ProntoDOS, and so on, should be loaded before D.BUG.

D.BUG may be loaded from within a program in the usual way:
10 PRINT: PRINT CHR$(4);"BRUN D.BUG"

REMOVING D.BUG
To disable D.BUG and free up the approximately 5lhK of memory it occupies,
type "FP" (DOS 3.3) or "-FP" (ProDOS-FP is a memory-clearing file in the
ProDOS D CODE catalog.). This will "erase" D.BUG as well as any Applesoft
program in memory. If you're in the habit of typing "FP" instead of "NEW",
change your habit now, or you'll lose D.BUG every time.

SINGLE-CHARACTER ABBREVIATIONS
Each D.BUG command may be abbreviated by typing only its first character
(or characters). For example, the new CHECK command can be abbreviated as
C, CH, CHE, or CHEC. To function properly, some of the new commands
mayor must be followed by other characters or words.

20

D.BUG FUNCTIONS AND COMMANDS
Fast Finder (page 22)
New Command: FIND (F)
Function: Quickly searches through an Applesoft program for occurrences of a

specified character or word.

Program Checker (page 24)
New Command: CHECK (C)
Function: Quickly proofreads Applesoft programs for syntax and undefined

statement errors. In addition, everything you type from the keyboard is
proofread automatically (no command required).

Easy Lister (page 25)
New Command: L
Function: Saves you three keystrokes every time you list a program, by letting

you type "L" instead of "LIST".

Window Tracer (page 26)
New Commands: TRACE (T), NOTRACE (N), VARIABLES (V) and WINDOW (W)
Function: Lets you watch Applesoft program line numbers and statements

"live" as they are executed (and optionally watch variable and expression
values) in an adjustable text window at the bottom of the screen.

Dump Tracer (page 32)
New Commands: DUMP (D), SIZE (S) and ZAP (Z)
Function: After a program stops for any reason, you can see the line numbers

and statements that were most-recently executed.

Breakpoints (page 34)
New Command: BREAK (B)
Function: Lets you set up breakpoints so your program will automatically stop

when a variable becomes a certain value, or when other specified
conditions are true.

21

FAST FINDER (BRUN D.BUG to load)

New Command: FIND (F)

With any Applesoft program (and D.BUG) in memory, type "F" (return). You
will be asked what you want to "SEARCH FOR". After you respond, all line
numbers containing your character or word will be reported. If your word
appears in a line, say three times, that line number will appear three times.
The total number of occurrences will be reported after the search ends.

FIND scans your entire program twice, first looking for your string in
PRINT, REM and DATA statements, and then in the form of Applesoft words,
or tokens. When you tell FIND to search for "READ", for example, it reports
one set of line numbers for occurrences like PRINT "READ YOUR MAIL." and
then another set of numbers for occurrences like READ A$.

Drawbacks: While FIND will successfully find all occurrences of a
variable like X, it will also throw in all occurrences of variables XX, YX, XY
and MAX; strings like "FOX" and "Xebec", and so on. (Note: You can use
GPLE's slower global search routine to locate variables only.)

FIND won't find parts of Applesoft keywords, like the GO in GOTO or the
TURN in RETURN. For example, it won't find the "HO" in line 10, but it will
find it in lines 20 (twice) and 30 (three times).

10 TEXT: HOME: NORMAL
20 HO=3: SHO=3: HBO=7
30 PRINT "MELANIE'S OKLAHOMA HOME WAS HOT."

WILDC@RD C#ARACTERS
Using "@" in a search word will match any single character in a string. For
example, SEARCH FOR D@G will find all occurrences of the words "DOG",
"DIGGER", "DAGWOOD", "D3POG", and so on.

Using "#" in a search word will match any number ofcharacters. For
example, "D#G" will find all occurrences of the words "DOG", "DOODLING",
"D=1: FOR 2=1 TO 10: PRINT G", and "DEAFENING".

FIND AND LIST (FIND L or FL)
Typing "FINDL" or "FL" works like "F" (above), but each occurrence will be
Listed, and the search word will be highlighted in inverse.

You will FIND some examples on the following page.

22

FIND Examples

F
SEARCH FOR: X
(You type "FIND" (return) or "F" (return); "SEARCH FOR:" appears on the screen; you type ..x.. (return).)

This will print the line number of every program line that contains the
variable X or the character X.

FL
SEARCH FOR: AB
This will find and list every occurrence of AB. For example, the variables ABC,
CAB and XYZ79ABN and the strings ABBEY, RABBIT and CRAB.

FL
SEARCH FOR: POKE 4933@,O
This will find and list every POKE of 0 into memory locations 49330 through
49339, including POKE 49330,0; POKE 49331,0; POKE 49332,0; etc.

FL
SEARCH FOR: IF # THEN 100
This will find and list all occurrences of "IF" followed by anything, and ending
with "THEN 100", including such things as:

IF A THEN 100
IFVAL(X$)=127 THEN 100
IF PEEK(222)=255 OR C$="GOODBYE" THEN 100

23

PROGRAM CHECKER (BRUN D.BUG to load)

New Command: CHECK (C)

With any Applesoft program (and D.BUG) in memory, type "C" (return), and
your program will quickly be proofread for two specific things:

?SYNTAX ERRORS: This includes misspelled commands (like "PTINT"),
improperly punctuated Applesoft statements (like "INPUT AlB") and
type-mismatch errors (like A="CAT" and A$=CAT).

?UNDEFINED STATEMENT ERRORS: For example, a "GOTO 100" statement
when there is no line 100 in your program.

Sorry: Misspelled words inside quote marks (including DOS commands) and
in REM and DATA statements will be ignored. CHECK will also not find
?IIIegal Quantity errors and the like. The COMPACT program will find
program statements or lines that can't possibly be executed (not really an
error; see page 11).

D.BUG does not cancel improper statements, it just tells you about
them. Maybe your "error" was intentional-like a GOTO 100 when you hadn't
typed in line 100 yet. After entering a program line that is improper, you
should immediately edit, re-enter or delete the line. And speaking of editing,
D.BUG is totally compatible with GPLE (Beagle Bros' Global Program Line
Editor-see page 39).

If you want to type a statement that contains an error, and you don't
want to see and hear D.BUG's warning, precede the statement (and line
number, if any) with a slash ("I"). The slash turns off D.BUG's proofread
function for that line only.

ERROR MESSAGES
No Errors: This means that the program in memory when you typed "C" is

free of syntax and undefined statement errors.

(?) An inverse "?" in a listed program line or statement means a syntax
error exists nearby.

(#) An inverse "#" in a listed program line or statement means an
undefined statement error exists nearby.

"LIVE" SYNTAX CHECKING
With D.BUG loaded, every time you type anything, it will automatically be
checked for syntax and undefined statement errors. Improper statements will
be listed and flagged with an inverse "?" or "#".

24

EASY LISTER (BRUN D.BUG to load)

New Command: L

With D.BUG loaded, you may simply type "L" (return) to LIST the program in
memory. All Applesoft syntax is in effect; therefore you can use commands
like LIO-lOO, lrlOO and LlOO-.

GPLE Note: GPLE let's you define anything to be typed by ESC plus one
other key. GPLE's two-keystroke "ESC-L" List command won't let you specify a
line range (a disadvantage), but it does let you add other commands in front
of LIST, such as TEXT and NORMAL (an advantage).

IfI'd had D.BUG's
one-character liST

command when I was a
youngster, I'd have

saved 41,255,650,210,
244,315, 065,535, 650,
210,244,115,065,535,
650,210,244,315,065,
535,650,010,244,315,
065,535,650,210,244,
315,065,530,650,210,
994,513,566,735,455,
266,444,315,265,535,
650,210,244,415, 065,
535, 650,210,244,315,
065,543,252,333,244,
315,065,535, 650,210,
244,335,064,535, 650,
210,244 keystrokes

by now.

An unsolicited endorsement

25

WINDOW TRACER (BRUN D.BUG to load)

New Commands: TRACE (T)
NOTRACE (N)
VARIABLES (V)
WINDOW (W)

Note: D.BUG's TRACE and NOTRACE replace Applesoft's versions of the same command.

TRACE (T) (more details on pages 27-28)
Typing "T" before you Run a program activates an adjustable-size "trace
window" at the bottom of the text screen that displays line numbers and
statements (and optional variable values) as they are being executed. You have
the ability to slow program execution down or even execute one program line
at a time.

Hardware Note: Most Apple I1+ 80-column hardware (non-Apple brand)
does not support windows. D.BUG's TRACE will still work, but 80-column
screen layouts will scroll improperly. 40-column TRACE will work just fine.

NOTRACE (N)
Typing "N" disables TRACE and related commands.

VARIABLES (V:) (more details on page 30)
With TRACE active, this command lets you specify which variable and
expression values will be displayed in the trace window. For example, you
could type "V: X,Y,Z$" after typing "T" (for TRACE) to display values for those
variables when the program is Run. Typing "V:" with no variables will tum off
variable display.

WINDOW (W) (more details on page 29)
With TRACE active before a program is Run, typing "w" lets you pre-adjust
the size of the trace window at the bottom of the screen. Press Return when
finished adjusting.

The trace window may also be adjusted during a TRACE (see page 28).

26

TRACE Command Details

When you type "TRACE" or "T", the 40 or 80-column screen will be divided
into two windows that can function independently. Normally the trace
window is the bottom three lines of the screen; the top twenty lines remain
for your program output (a line of hyphens takes one more line):

Program Window.-
:,..,.,

I
2
.1
I
S
6
7
6
9
10
JJ
12
13
II
IS
16
17
IS

_ _ t ~~
~ 22

;:, Trace Window ~~
:,---------------

Limitations: Because TRACE alters the screen's normal boundaries, your
program's screen formatting may be slightly off (nothing as drastic as
Applesoft's old TRACE, though). Graphics program tracing is limited to the
four text lines at the bottom of the screen. You can't see the trace window at
all when you're viewing page 2.

If TRACE quits tracing and you haven't pressed a key, check your
program; it might have a NOTRACE command in it.

CHANGING TRACE SPEED AND WINDOW SIZE
During a TRACE, you may use any of the commands on the next page to
control the program's speed or shut TRACE off completely. Any of the
WINDOW adjustment commands on page 29 may be made while a program is
tracing (no need to press "W" first, however).

EXPERIMENT PLEASE
As we mentioned earlier, IT PAYS TO EXPERIMENT! To fully get the hang
(pardon the expression) of all these commands, you need to play around with
them -A few keypresses are worth 65,536 words. The following program is a
good one to use to test TRACE's commands and functions:

10 FOR 1=1 TO 100
20 PRINT I
30 NEXT
40 A=A+1: GOTO 10

Type this program in, then type "T" and "V: I,A". Now type "RUN" and try the
speed-control keys (next page) and the window commands (page 29).

27

TRACE (continued)

TRACE CONTROL KEYS
The following keys may be used while your program is running (except while
waiting for a CET or INPUT statement);

Space Bar: When you press the space bar, your program will execute just
one statement and wait for you to press the space bar again. If the trace
window is active, you will see each command appear before it is actually
executed. If you want, you can exit your program (with the usual
control-C) before a command is performed.

Return: After you're finished single-stepping with the space bar, the
RETURN key will restore normal-speed program execution.

Left Arrow: Pressing the Left-Arrow (Backspace) key during a trace will slow
down program execution to one of eight different speeds.

Right-Arrow: Pressing the Right-Arrow key during a trace will speed a
program up (assuming it has been slowed down).

Button#l or Closed-Apple key: Pressing paddle/joystick Button #1 or
the Closed-Apple key (lIe/lIe only) will shut off the TRACE function to
make your program execute more quickly (normal speed).
Apple 11+ Note: You may also shut off TRACE by moving the trace
window down off the screen with ctrl-J (next page).

Button#O or Open-Apple key: Pressing paddle/joystick Button #0 or
the Open-Apple key (lIe/lIe only) will restore the TRACE function to its
full vim and vigor, windows and ail.

Control-C: Pressing CONTROLrC stops a program, as usual.

Also... You may use the Window Size keys (next page) during a TRACE.

28

WINDOW Command Details

Pressing "W' (after you have turned on TRACE with "T") will let you make
size adjustments to the trace window at the bottom of the screen. If your
program is already running and TRACE is active, you don't need to press "W'
to use the Size Adjustment commands below.

The trace window occupies the full width of the screen in either 40 or 80
columns. An asterisk marks the division between the statement window and
the variable window (see next page for variable tracing notes).

J J
2 2
3 3
4 4- ;;

Program Window - ~ t
8 8
9 9

W W
II II
U n
;: ASTERISK DIVIDES TRACE WINDOW ;~
;; (Move with the comma & period keys.) ;~

17 + 17M M
~ t g
~ ~

Trace window - i~ Line number~&-·---~- Variables -- ~
24 Statements 24

WINDOW SIZE ADJUSTMENTS
Up-Arrow or Control·K: Pressing the Up-Arrow (lIe/lIe only) or ctrl-K

(any Apple) will enlarge the trace window upward, thus reducing the size
of the program window. The trace window may fill all but the top three
lines of the screen.

Down-Arrow or Control-J: Pressing the Down-Arrow (lIe/lIe only) or
ctrl-J (any Apple) will reduce the size of the trace window downward,
thus enlarging the size of the program window. You may even reduce
the trace window all the way off the screen to allow your program to
execute normally.

): Pressing the comma key (shifted or not) will enlarge the size of the
variable window from right to left 20 spaces at a time, thus reducing the
space for traced line numbers and statements.

<: Pressing the period key (shifted or not) will reduce the size of the
variable window from left to right 20 spaces, thus enlarging the space for
traced line numbers and statements.

29

VARIABLE Command Details

Before a program is Run (and after turning on TRACE), typing "V:" followed
by one or more variables and expressions will make those variables' values
appear in the right section of the trace window (see WINDOW, previous page).
Due to screen space limitations, only the first five characters of the variable or
expression itself will be visible. If the variable value (or string) is longer than
12 characters, it will also be truncated.

Typing "V:" (note the colon) alone will cancel all variable tracing. So, of
course, will a NOTRACE command.

EXAMPLES:
T
V:X
RUN
"T" turns on TRACE so that line numbers and statements will be printed
during execution. "V: X" says trace variable X too. "RUN" starts program
execution. You may now use <. >. and the Up/Down arrows (or ctrl-K/J) to
adjust the size and arrangement of the trace window.

T
V: X, X+50, CHR$(N)
RUN
This command would trace the variable X, the expression X+50 and the
character whose ASCII value is N.

T
V:
RUN
This command would trace line numbers and statements only. The "V:"
cancels all variable tracing.

30

VARIABLE ERRORS
Some expressions, like CHR$(-65) or 123/0, are impossible to interpret, so
they wiII produce an error message during a trace.
For example: V: X%, X%*256, CHR$(X%), NA$(X%)
This VARIABLE command could produce the following output in the variable
window. While X%=65, you might see:

X'Y. == 65
X'Y.*25 III 16640
CHR:f(== A
NA:f(X ... NOW IS THE TIME

While X%=-1, you might see:
X'Y. == -1
X'Y.*25 • -256
CHRf(• ** ERROR **
NA$(X ... ** ERROR **

Notice how the expressions are shortened- "CHR$(X%)" becomes "CHR$(",
etc. Also notice that some of the expressions have produced appropriate error
messages.

Type "FP" any time you want to destroy D.BUG and all of its commands.

31

DUMP TRACER (BRUN D.BUC to load)

New Commands: DUMP (D)
SIZE (S)
ZAP (Z)

DUMP (0) (more details on next page)
After a program "crashes" at an error or stops for any reason, typing "0" will
dump, or list, in order used, the last line numbers and statements that were
executed. In effect, you can print a history of your program's execution.

If you follow "0" with a number, only that number of statements will be
dumped. Typing "012", for example, would dump 12 statements. (Exceptions:
See SIZE and ZAP.)

SIZE (S)
Typing "S" followed by a number (for example "S500") will adjust the size of
the dump buffer, letting it hold, in this example, 500 statements. The higher
the number, the less memory you have available for other uses (each
statement occupies only 2 bytes).

SIZE will determine the number of statements dumped if you try to
DUMP a number larger than the dump buffer.

The minimum buffer size is 5 (accomplished by simply typing "S"). The
maximum is somewhere above 10,000 (l00 is a more practical upper limit).
The default, when you load D.BUC, is 50 statements (l00 bytes).

The SIZE command will CLEAR all of your variables. You will need to
RUN your program again before you can do another DUMP.

Technical Note: The dump buffer resides above HIMEM. When you
change the buffer's size, HIMEM is adjusted accordingly.

ZAP (Z)
"Z" will ZAP (clear) the dump buffer.

IMPORTANT: You must ZAP the dump buffer if you want to type
"RUN FILENAME" (a DOS command) followed immediately by a DUMP.
Otherwise you'll be looking at meaningless garbage. Typing "RUN" alone (an
Applesoft command) automatically accomplishes a ZAP (for example, if you
typed "LOAD FILENAME" and then "RUN"). AZAP is also accomplished by
adding, changing or deleting a program line, or using the SIZE command.

32

DUMP Command Details
With your program (and D.BUG) loaded, type "RUN". When the program
stops, for any reason, type "D" to trace the last program lines and statements
executed. If you don't specify a number, the entire contents of the buffer will
be dumped. If you want fewer or more statements dumped, include a number
after the D-Iike D3 or D2500. You can only dump as many statements as the
dump buffer will hold (see SIZE, previous page).

If you want to capture a DUMP on your printer, type "PR#1" before you
type "D".

The trace buffer is automatically cleared when you make any changes to
a program (add, delete or modify a line). Therefore a DUMP after a change will
produce nothing. Always DUMP immediately after your program has been
RUN and stopped.

If you don't want to clear the dump buffer when you RUN a program,
type "RUN line#" instead of "RUN" ("Iine#" is your program's first line). Now
when you DUMP, earlier program Runs will be dumped first, with each
separate RUN separated by a horizontal line. Just type "RUN" if you don't
want earlier executions shown.

DUMP CONTROL KEYS
The following keys may be used during a DUMP:

Left and Right-Arrows: The Arrow keys control DUMP direction. Pressing
the Backspace key during a DUMP will start dumping backwards
through the dump buffer-just in case you missed something. Inverse or
flashing "R's" will indicate Reverse dumping. Don't attempt analysis of a
program while dumping backwards (it's confusing). Re-establish normal
dumping with the Right·Arrow.

Control-S: Pressing control-S during a DUMP will pause the display until
another key is pressed. If you hit one of the direction keys during a
pause, the listing will continue in whatever direction has been specified.

Space Bar: Pressing the space bar during a DUMP will step through the
dump buffer one statement at a time. Any other key resumes normal
speed.

Control-C: Pressing control-C exits a DUMP.

33

BREAKPOINTS (BRUN D.BUG to load)

New Commands: BREAK IF ..
BREAK ON ..
BREAK AT .
BREAK LIST
BREAK+
BREAK-

If you've ever been stumped by problems like "How did A$ get set equal to
"ABC"?" or "When does that X variable get assigned the value 10000?'' or
"When does location 216 get Poked with a zero?", you're going to like the
BREAK command.

Typing "BREAK:" (or "B:") followed by a number, 1-8, and some
instructions, tells your program to stop IF a specific condition is true, or ON
the occurrence of a certain command, or AT the execution of a certain line
number.

BREAKPOINT DEMO
Type in this little program so you can test some of the different types of
D.BUG breakpoints on the following page:

SAMPLE PROGRAM:
5 TEXT: HOME
10 X=INT(RND(1)*20)
20 PRINT X
30 IF X+2 THEN PRINT CHR$(7): GOTO 10
40 IF NOT INT(RND(1)*200) THEN 10
50 PRINT "END": END

SAMPLE BREAKPOINTS:
Now type in the following sample breakpoint commands:

Bl: IF X=lO
B2: ON GOTO
88: AT 20,10

The number after the "B" indicates the number of the break statement. Any
number, 1 through 8 is allowed.

34

BREAK Command Details

BREAK IF...
The first sample breakpoint, "Bl: IF X=lO" will cause a program, when RUN,
to stop any time X becomes equal to 10. When you Run the program several
times, it will stop with the following message:

BREAKPOINT 1: IF X=10
BREAK IN 20

The first line tells you which breakpoint caused the break. The second line
tells you the next statement executed after X was set equal to 10.

Here are some other BREAK IF... examples (Remember, the number
after the "B" could be any number 1-8.):

Bl: IF X=50 AND Y>50 would break any time X=50 and Y is greater than 50

Bl: IF DF$="DOGFOOD" would break any time DF$="DOGFOOD"

Note: The maximum size of a BREAK IF... or BREAK ON... statement is 32 bytes.

BREAK ON...
The second sample breakpoint (previous page), "B2: ON GOTO", will stop the
program on the first statement that begins with a GOTO.

Here are some other BREAK ON... examples that could be used to test
other programs:

82: ON PRINT would break on any statement that started with PRINT

B2: ON PRINT" would break on a statement like PRINT "HELLO", but not
on a statement like PRINT A$ or just plain PRINT.

82: ON IF X=25 AND Y=30 would break on any statement that started with
"IF X=25 AND Y=30".

82: ON AND Y=30 would never break, because a statement cannot legally
start with "AND".

B2: ON Y= would break the first time Y is assigned a value.

Note: The maximum size of a BREAK IF... or BREAK ON... statement is 32 bytes.

BREAK AT...
The third sample breakpoint (previous page), "88: AT 20,10", tells the
program to stop at line 20 the 10th time a line 20 statement is encountered.
(Again, the number 8 was used only as an example; any number, 1-8, is legal.)

The "AT 20,10" actually means the 10th execution of any line 20
statement. So if line 20 contained two statements, the program would break
on the fifth encounter with line 20. A "Bl: AT 20" command (with no second
number) would break the first time line 20 is encountered.

35

BREAK (continued)

BREAK LIST (BLIST)
Typing "BLIST" will list the breakpoints currently in memory, like this:

+BREAKPOINT 1: IF X=10
+BREAKPOINT 2: ON GOTO
+BREAKPOINT 8: AT 20,10

Typing "B2LIST" would list only breakpoint 2:
+BREAKPOINT 2: ON GOTO

BREAK-
The plus sign (+) next to each listed breakpoint (above) indicates that that
breakpoint is active. A minus sign (-) indicates a breakpoint that is inactive; it
will be ignored. To de-activate a particular breakpoint, like number 2, you can
type "B2-". To de-activate all breakpoints, type "8-".

BREAK+
To re-activate a particular breakpoint, like number 2, you can type "B2+".
Typing "B+" will activate all breakpoints.

Note: Initially defining a breakpoint automatically activates it.

REMOVING BREAKPOINTS
You can erase a particular breakpoint by typing "B" followed by a number and
a colon (like "B2:").

36

BREAKPOINT Notes
CONTINUING AFTER A BREAK
You can usually use the Applesoft command "CONT" if you wish to continue
running your program after a break. BUT, if your program stopped due to a
BREAK IF or BREAK ON condition, you will need to either tum off the
breakpoint or change the condition that caused the break. Otherwise you've
got another break coming immediately. For example, if your program stopped
because A=5, and you try to continue with A still equal to 5, the program will
immediately break again (because A still equals 5). You could use a direct
keyboard command (don't change your program) to set A equal to some other
value; then use CONT.

Note: If you type a direct keyboard command with an error in it, you
disable the CONT command. Don't ask why; we don't know.

USING BREAK IN YOUR PROGRAMS
Just like all D.BUG commands, breakpoints can be defined, activated and de
activated from within your Applesoft programs.

PROGRAM SPEED
BREAK IF breakpoints will often slow program execution considerably,
depending on how many breakpoints have been specified, and their
complexity. However, BREAK ON and BREAK AT will not slow a program
down much at all.

37

(38 is blank)

(Thinly·disguised advertisement)

GLOBAL PROGRAM LINE EDITOR by Neil Konzen
$49.95, Compatible with any Apple II, DOS 3.3 and ProDOS-IncIudes Apple Tip Book #7

A"WORD PROCESSOR"
FOR APPLESOFT PROGRAMS
GPLE is The classic Applesoft line editor for
the Apple. It lets you edit your program lines
fast without awkward cursor-tracing or clunky
"escape editing" methods.

GPLE is installed in memory when you
boot, remaining "invisible" to your programs
and unaffected by even the most "destructive"
commands, such as FP and INT. You may
install GPLE in normal 48K memory or in the
Language Card (built-in on all lIe's and IIc's).

INSERT AND DELETE
Now you can make almost instant changes to
any Applesoft or Integer Basic program line.
GPLE lets you jump the cursor to the change
point in the line and insert or delete text. Other
code in the line moves aside to make room
(what you see is what you get). If you make a
mistake, you can restore the line to its previous
condition with a keystroke.

Control-characters are easy to insert and
delete, appearing in inverse when being edited.

With GPLE, it is no longer necessary to
trace the cursor to the end of the line you are
editing. No matter where the cursor is, hit
Return, and that line is entered into memory.

GLOBAL SEARCH & REPLACE
GPLE finds any word or variable in a program,
letting you change that line, delete it, or just
look at it. Here are some examples of GPLE's
Global capabilities:
· Look at all lines containing a GOSUB.
· Edit or delete all lines with a REM.
• Locate all occurrences of the variable XX.
· Replace all X-variables with ABC's.
o Change all Hello strings to Good-Bye's.

I CAN7 BEUEVE I
PROGRAMMED ALL

THOSE YEARS
WITHOUT GPLEl

DEFINABLE ESC FUNCTIONS
GPLE lets you define an ESC-keypress fol
lowed by any other key to perform any key
board task. For example, ESC J can catalog
drive 1. ESCLcan doa "HOME: LIST", ESCN
could type an entire subroutine... Anything
you want, whenever you want it.

A complete set of Escape functions is
included with GPLE, pre-programmed and
ready to use. Each function may be used as is,
or deleted or changed whenever you like. After
you create your own "Escape Table", you can
save it on disk so it will be in memory the next
time you load GPLE.

8O-COLUMN COMPATIBILI1Y
All GPLE edit and global features support
Apple 8O-column cards and most 8O-column
cards on any Apple IIc, lIe, 11+ or II.

Double-Take, ProntoDOS, DOS Boss, Flex
Type, etc.,-and, of course, all of your Apple
soft and Integer Basic programs-get along
quite well with GPLE.

GPLE DOS MOVER
GPLE comes with its own "DOS Mover" pro
gram that lets you move DOS to the Language
Card (built-in on all IIc's and lIe's) for an
EXTRA 10,000 Bytes (lOK) of programmable
memory. GPLE itself may be located on the
Language Card or in Main 48K memory.

PLUS APPLE TIP BOOK #7
Learn more about your Apple-GPLE comes
with more tips and tricks from Beagle Bros,
many involving GPLE. Hours of good reading
and Apple experiments.

39

D CODE Index
Abbreviated Commands 20
Ampersand (&) 10, 18
Applesoft Files, Compare 18
Back-ups 2
Beginner Info 2, 4
Binary Files, Compare 18
BREAKPOINT (B) 34-37
Breakpoints 34-37
Cash, Free 45
Catalog 4
CHECK (C) 24
COMPACT 3,6-14
COMPARE 3, 17-18
Concatenate Lines 8
Continuing After Break 37
D.BUG 3, 20-37
D.BUG.DEMO 20
DOS 3.3/ProDOS 2, 4, 5
DUMP (D) 32
Dump Tracer 32-33
Easy Lister 25
Eighty-Column Trace Problem 26
Error Finder 24
Errors, Variable Tracing 31
Fast Finder. 22-23
FIND (F) 22-23
FIND and LIST (FL) 22

FP 4, 20
GPLE 22, 25, 39
Imbedded Machine Code 11
LINE.SPLITIER 15
LIST (L) 25
NOTES 4
NOTRACE (N) 26
ProDOS/DOS 3.3 2, 4, 5
Program Checker 24
REM Removal 8
SIZE (S) 32
Slowing Down Programs 28
STARTUP 4, 5
Stepping Through a Program 28
Syntax Errors, Finding 24
Text Files, Compare 18
TITLE 4
TRACE (T) 26,27-28
Undefined Statement Errors 24
Unused Statements 11
VARIABLES (V) 26,30-31
Variables, Compacted 9, 12-13
Variables, Tracing 21,30-31
Wildc@rd C#aracters 22
WINDOW (W) 21, 29
Window Tracer 26-31
ZAP (Z) 32

Disclaimer of All Warranties and Liabilities
Even though the software described in this manual has been tested and reviewed, neither Beagle Bros nor its
software suppliers make any warranty or representation, either express or implied, with respect to this manual,
the software and!or the diskette; their quality, performance, merchantability, or fitness for any particular
purpose. As a result, the diskette, software and manual are sold "as is," and you, the purchaser, are assuming
the entire risk as to their quality and performance. In no event will Beagle Bros or its software suppliers be
liable for direct, indirect, incidental, or consequential damages resulting from any defect in the diskette,
software, or manual, even if they have been advised of the possibility of such damages. In particular, they shall
have no liability for any programs or data stored in or used with Beagle Bros products, including the costs of
recovering or reproducing these programs or data. Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may
not apply to you.

ProDOS™
This product includes software, ProDOS··, licensed from Apple Computer, Inc. Apple Computer, Inc. makes no
warranties, either express or implied, regarding the enclosed computer software package, its merchantability or
its fitness for any particular purpose. Some states do not allow the exclusion or limitation of implied warranties
or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you.

40

More Beagle Bros Apple Software
(WHAT'S NEW? Check our ads in A+, Call-A.P.P.L.E., inCider, Nibble and other Apple@ magazines.)

• GRAPHICS.
o ALPHA PLOT (11+. lIe. licit $39.50

Normal hi·res (6 colors. 28Ox192 pixels) drawing and typing
on both hi·res pages. Compress pictures to 1/3 disk space.

o APPLE MECHANIC 111+. lIe. lieIt 29.50
Create hi·res shapes foranimation with Applesoft's DRAW &
XDRAW commands. Put fancy hi·res type in your programs.
List & learn demo programs teach you hi·res programming.

o APPLE MECHANIC TYPEFACESt 20.00
26 new editable fonts to be used with Apple Mechanic.o BEAGLE GRAPHICS (llc or I28K lIel* 59.95
Double hi·res drawing (16 colors, 56Ox192 pixels) and typ
ing in many typestyles (all editable). Color fill, cut & paste.
200. color mixes. 33 new commands for using double·res in
your programs. Convert normal hi·res piclures and programs
to double hi·res, compress pix to 1/3 disk space .

o FLEX TYPE (11+. lIe.llelt 29.50
Variable·width text (wide. normal, condensed) controllable
with normal Applesoft commands. No BO-column card reqd.o FRAME-UP 111+. lIe. licit 29.50
Make Apple "slide shows". Keyboard controlled or unat·
tended. using your existing hi·res, Io-res and text screens.

o TRIPLE·DUMP 111+. lIe.llcl* 39.95
Transfer any image. including double hi-res. to your dot
matrix printer. Make Giant (8" high characters) Banners too.

• ALL-PURPOSE.
o DISKQUlK (lie or I28K lIelt $29.50

Acts like half a disk drive in slot 3. Silent and fast as a hard
disk. Load/save files in memory with normal commands.o FATCAT (II+.lle.llel* 34.95
Reads all of your DOS 3.3 and ProDOS file names into one or
more Master Catalogs for sorting, searching and printing.
Alphabetize file names on disks. Compare any two files.

o PRONTO· DOS (11+, lie, licit ,.,.,., 29.50
Triples the speed of loading and saving, New TYPE com·
mand displays text file contents, Move DOS for extra 10K.

t Supports DOS 3.3 only
* Supports both DOS 3.3 and ProDOS··

• PROGRAMMING •o BEAGLE BASIC (lie, 64K 1I+lt. ,. ,. , $34.95
Puts Applesoft in RAM so you can change it and add
enhancements-new commands like if·then·ELSE, SWAP
variables, GOTO/GOSUB-a·variable. TONE, HSCRN, etc.

o D CODE (1I+,lIe, llel* . , , , " 39.95
Compact Applesoft programs and reveal unused code. Auto
proofread Applesoft programs, even as you type. Trace any
number of program statements after stopping a program...

o DOS BOSS (11+. lie, licit "".... , ,.. 24.00
Reword DOS 3.3 commands. Change "Catalog" to "Cat".
"Syntax Error" to "Oops" or anything. Includes many meaty
tips for altering DOS, including program "save·protection".

o DOUBLE-TARE (11+. lie. llel* ., , 34.95
2·way scroll for Listings & Catalogs. Better List·format, fast
variable'line number display. better renumber/append,
auto line·numbering, instant hex/dec converter and more.

o GPLE (II+.lle.llcl* .. 49.95
Edit Applesoft without cursor·tracing. Features insert &
delete and fast search & replace, Make all keys be "function
keys" to type anything you like (ESC·I catalogs disk. etc.).
Move DOS 3.3 out of main memory to add 10K of space.

o SILICON SALAD 111+. lIe, licit. , 24.95
Over 100 utilities and tricks- hi·res program splitter, DOS
killer, disk scanner. hi·res text imprinter. 2·track catalog...

o TIP DISK #1 111+. lie. licit 20.00
100 tips on disk from Tip Books 1-4, Fascinating Apple
programming techniques. Includes Apple Command Chart.

o UTILITY CITY (11+. lIe. llelt 29.50
21 utilities- List·formatter puts each statement on a new
line, multi-column catalogs, invisible/trick file names, etc.

• GAMES.
o BEAGLE BAG (11+, lie, licit , '.,.,.,., $29.50

12 games on one disk. Voted to I983's MOST POPULAR list
in Softalkpoll. The best Apple game bargain on the market.

o I. O. SILVER (11+. lie, licit . '" $29.95
Two games in one-a great strategy game and a fast action
arcade game, Superb unlocked machine language graphics.

(Subject to change-See our current ads or catalog.)
"APPLE" is a Registered Trade Mark ofApple Computer, Inc,

DCODE"", Copyright © 1984, Alan Bird
ISBN 0-917085-07-8

Published by BEAGLE BROS MICRO SOFTWARE, INC.
3990 Old Town Avenue, San Diego, Califomia 92110

	Image1.jpg
	Image2.jpg
	Image3.jpg
	Image4.jpg
	Image5.jpg
	Image6.jpg
	Image7.jpg
	Image8.jpg
	Image9.jpg
	Image10.jpg
	Image11.jpg
	Image12.jpg
	Image13.jpg
	Image14.jpg
	Image15.jpg
	Image16.jpg
	Image17.jpg
	Image18.jpg
	Image19.jpg
	Image20.jpg
	Image21.jpg
	Image22.jpg
	Image23.jpg
	Image24.jpg
	Image25.jpg
	Image26.jpg
	Image27.jpg
	Image28.jpg
	Image29.jpg
	Image30.jpg
	Image31.jpg
	Image32.jpg
	Image33.jpg
	Image34.jpg
	Image35.jpg
	Image36.jpg
	Image37.jpg
	Image38.jpg
	Image39.jpg
	Image40.jpg
	Image41.jpg
	Image42.jpg

