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Preface

If you'’re in the mood for launching into a full scale, eight hundred page reading binge, then
you will benefit from the chosen sequence of information in the book. If you're only up for one
or two hundred pages on your chosen subject, then you might do well to read an entire part
in order. However, each chapter stands by itself, and within each chapter there are enough
summaries and cross references that you should be able to plunge in at will just about anywhere.

A lot of effort went into creating a very detailed index which should help you get quick
information on specific kinds of products, words you're not familiar with, and particular aspects
of the Apple’s hardware and system software. The bulk of information in the book pertains
to the I+, //e and //c computers, but the old II also gets considerable coverage.

A key point for many readers to know in advance is that.the technical level of the text varies.
The usual pattern is to begin with a full fledged technical explanation, then to follow witha
more general summary, and then to slip on up to the most general level when actually com-
paring products. So if you don’t understand things where you're reading, try another paragraph.

The book doesn’t offer sufficient technical detail for a determined assembly language pro-
grammer in training or erstwhile hardware designer. The objective for such folks is only to
explain what is going on and to point you in the direction of the appropriate technical source.

The intended audience is the Apple user who just finds all this stuff interesting and wants to
get a handle on how things work.

None of the authors are electrical engineers or professional programmers.

Aaron Filler, who organized and wrote this book, is a M.D./Ph.D. student who has spent the
past five years doing research and teaching in biology and human evolution at Harvard
University. He is currently completing his medical training at the University of Chicago. He
has experience in assembling and programming Apple-based laboratory systems.

Nick Anis, who arranged all of the contacts with information sources and collected most of
the research information, is a consultant in Fullerton, California who has worked as atechnical
support director for a large manufacturer of Apple peripherals.

Terry Deacon, who carried out or supervised most of the hardware evaluations, is an instructor
at Harvard University who uses microcomputers in his neurcbiology research.

In the course of preparing the book we received valuable information and assistance from
many people at Apple Computer: Erika Vogler provided photographs and arranged contacts,
Peter Baum and Steve Wozniak discussed hardware, and Ernie Beernink, Dick Houston, and
Bill Schjelderup talked to us about operating system software. Special thanks go to John
Sculley and Steve Wozniak of Apple, for participating in the comments section.
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We also thank Pat Caffrey for explaining the Apple interrupt bug, William Mensch and David
Eyes for discussing the 65816 and 65802, Jamie Taffe of Pion for talking about RAM, Wink
Saville and Bill Graves for information on a few software mysteries, Matt Filler who made
available his tables of printer escape codes, and Alan Roskiewicz of A + magazine with whom
" we pooled our evaluation models of speech synthesis and recognition products.

Ron Davis and Joel Mode of the The Computer Store in Cambridge, Massachusetts, Tom
Freeman of ACP in Santa Ana, California, and Jan McGowan of MicroPro provided access to
technical literature and hardware at crucial moments. Eli Heffron’s in Cambridge, Mas-
sachusetts permitted us to photograph electronic components and computer systems in their
store.

More than two hundred companies sent us detailed technical literature and photographs which
provided the basis for our discussions of nearly 800 peripheral products. Most of the companies
readily put engineers on the phone to explain their products to us and a great many provided
products for testing and evaluation.

We gratefully thank the hundreds of sales and technical people we dealt with at the various
companies and we also thank Ron Beekley who did the dBase II programming to help us keep
track of all this product information, Patty Anis who entered much of the data, and the
numerous computer users among the students and faculty at Harvard as well as in Fullerton
who helped us in product evaluations.

We thank David H. Miller for taking the time to do a photo session with John Sculley which
resulted in the excellent shot in Chapter 43. Among the chapter front pieces and product
shots are over a hundred photographs by Nancy Cleveland, selected from the more than 500
photos she took for this project.

In the course of preparing the manuscript, we had the benefit of thoughtful comments and
suggestions from Eugene Altmann, Dr. Richard Smith, and Pete McDonald all of whom read
drafts of the book, as well as DATAMOST editors Scott Wilson, Marcia Carrozzo, and Lorraine
Coffey who saw the book through to completion.

Finally, we’re counting on the readers of this first edition to tell us about aspects of the Apple
you'd like to see explained in more detail or about which you have special knowledge. We
apologize in advance for any errors, omissions, or murky explanations that may have crept
in. Comments, suggestions, or information on new products should be sent to: Apple Thesaurus,
524 W. Commonwealth Ave., Suite M, Fullerton, CA. 92632.
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Chapter 1

Processing and Memory
Inside The Apple

Turn off the Apple’s power and rip the top off.

Your dealer will let you do this in the showroom, and you certainly can do it at home where
no one’s watching (except if you have a //c, of course, in which case DO NOT rip the top off,
but do look at Figure 1.1 where we rip the top off for you). You’re now looking down onto the
stuff of tomorrow’s dreams—epoxy, silicon, copper and plain old plastic. With power off but
cord still plugged in, look into the Apple and with one finger reach in and touch the large
golden metal box on the left. Pause, then remove your hand from the Apple. A bizarre new
cult ritual? Perhaps “yes” in some seldom traveled pockets of Southern California, but for the
most part not really. You have just discharged your static electricity.

Static is one of the four Apple frying entities you’ll be learning to watch out for. It can cause
strange behavior in an otherwise well-behaved Apple and damage new computer parts as well
as cause embarrassment during handshakes.

Fortunately, static electric charges seek out the path of least resistance to the earth. Your
favorite path will be from your hand to the metal box to the power cord, down to your basement,
and on to any water pipe to ground (meaning exactly “the earth itself”). This is the only point
at which plumbing is directly relevant to your Apple.

The large green card that fills most of the Apple is called the motherboard. The first thing
that may strike you as unusual about such a complicated electronic device is that there aren’t
any wires (except for that one lonely set that connects to the box on the left). This is OK, as
modern computers don’t use wires. It's all done with cameras. To wit, photolithography in
sheets of copper on panels of epoxy has completely replaced the familiar wires of TVs, radios
and stereos of the recent past.

Scattered about the motherboard are small black plastic rectangles on metal legs. These are
Dual In-line Packages (DIPs—pronounced either like “zip” or like V.I.P,, depending on your
mood and which sounds best in the particular phrase at hand), the electronic “hardware” of
which your computer is made. Some of these have eight legs, some have 14, but the grand
master chips of this computer generation are the 40 pin DIPs. In the //e and //c there are four
of these, in the Il and I+ there is only one. In either case, in every Apple there is at least
one 40 pin DIP with the numbers 6502 printed somewhere on its back (see Figure 1.1). Inside
this one single package is the Apple incarnate.
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Fig. 1.1a The 6502 on the I//lI+

motherboard. It is the largest DIP
on the Apple II/IH-. The numbers
6502 are printed on the top.

e ga 54 04 o

Fig. 1.1b The 6502 on the //e
motherboard. There are four 40-pin
DIPs on the //e motherboard.
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Fig. 1.1¢ (right} Under the cover of

internal power converter.

::% Rﬁ&\@\_\\&\\

the //c: keyboard, disk drive, and
motherboard. Like the //e, the //c

Fig. 1.1d (below) The //c
has four 40-pin DIPs.
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The Apple’s Microprocessor: Apple on a
Thumbnail

The 6502 plastic package conceals and contains one tiny flake of silicon about a quarter of an
inch on each side (see Figure 1.2). The package and the chip together cost all of about $3.75.
The $2000 worth of odds and ends that make up the rest of your Apple exist only to serve the
momentary whims and wants of the tiny 6502 silicon microprocessor chip here ensconced
unceremoniously in dull black plastic.

Fig. 1.2 The silicon chip is the
smallest square in the center of
the 40 pin DIP.

The mind of an Apple, embodied in a flesh of silicon called the 6502, has two key characteristics:
stupefying simplicity and staggering speed. The most elaborate thought that a 6502 is capable
of runs something like this: “Get the number at address 31,325; add one to the number; put
the number back at address 31,325; get the number at address 31,326, etc.,” ad infinitum.
The trick is that the 6502 can step through its simplest thoughts in about one millionth of a
second. Really complex thoughts may take 10 millionths of a second. When 10 seconds have
gone by, your Apple may have done two or three million separate little things. Now each of
these little things taken alone are not very impressive; but let’s face it, two or three million
of just about anything is sufficiently into the gobs and gobs range that it just can’t be ignored
or laughed at without a second glance.

Later on we’ll take a look at the world as seen through the eyes of the 6502, but for now, just
take a moment to contemplate in the abstract what a ridiculous yet exquisite wonder that
man has wrought in this odd new machine.

Apple Memory: What it is and What is in it

The Nature of Computer Memory: How and What to
Remember

What about all the other DIP chips out there? A lot of that stuff has to do with memory. The
- most critical memory in the Apple resides in a few very small areas within the 6502 itself.
In the best of all possible worlds, all of the Apple’s memory would reside inside the 6502, but
in the 1980s this is not yet physically possible. The average Apple has over 500,000 little tiny
memory units called “dynamic storage cells.” Little though they may be, you'd have to put
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each one into a space one half millionth of an inch across if you wanted to put them all inthe
6502—this just can’t be done. Therefore they end up scattered around the motherboard in
various assorted chips, and a substantial array of electrical connections and switching mech-
anisms are required to fool the 6502 into believing that they’re right inside the DIP along
with it.

Memory is used for two things in a computer. One is to hold computer programs (the verbs
and articles of computer function), and the other is to hold data (the nouns).

A computer program is a series of instructions which tell the 6502 what to do next (i.e., add
two numbers, write some number to some address in memory, or read the next program
instruction). To operate the 6502, a computer programmer puts a list of such instructions into
the Apple’s memory somewhere, tells the 6502 the “address” of the location in memory of the
first instruction on the list, and then tells the 6502 to start taking its instructions, in order,
from that list. And we do mean a programmer. You will never have to think about your Apple
this way unless you want to.

Most Apple users buy complete program packages such as word processing packages or ac-
counting packages. Although all of these types of “software” are ultimately translated into
the “machine language” instructions which the 6502 can understand, a good purchased pro-
gram works hard to hide the inner workings of the Apple from the user. Even if you choose
to write your own programs in BASIC, Pascal, or some other language, the operation of the
6502 is handled for you, automatically, by the internals of the programming language.

In the Apple II and II +, there are nearly two dozen chips directly having to do with memory.
In the //e, most of this has been reduced to eight chips arranged in a row along the front (16
along the right side in the //c), a second 40 pin DIP (the Memory Management Unit or MMU
for short) and one or two more devoted in part to a special permanent program called the
Apple Monitor. This Monitor is not the TV-like object you see things on, but is a “logical”
monitor—it permits a human to peer into the inner workings of the 6502.

The Monitor: Who Speaks for the Apple?

If the Apple can be said to have a personality of its own, then that personality is written in
the machine language computer program etched into the silicon memory chips in which the
Monitor resides. Every time the Apple wakes up, the first thing that stirs is the Monitor. It
is “Big Brother” to the chips of the motherboard, conscience to the 6502, and mediator of the
rhythm and nature of conversation between you and the computer. In substance, it is a col-
lection of several dozen short, fast, efficient computer programs which are burned into per-
manent storage on every Apple ever shipped. The Monitor is an example of a whole genre of
permanent, unerasable software-on-a-chip often called “firmware.”

For example, one of the Monitor programs constantly and automatically checks whether or
not a key has been pressed.

You turn on your Apple, stand back two or three feet and just stare at it—meanwhile, having
no way of knowing how detached you really are, and deadly intent to never, ever, ever, miss
a keypress through inattention, the Monitor keeps checking the keyboard again and again
and again, thousands of times a second. When it detects a keypress, it hands over control to
another Monitor program that figures out which key was pressed. Yet another program then
checks a list somewhere to find out if the Apple is supposed to do something special when
that key is pressed, and so on—you get the idea.
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If you know a true computer hacker who actually owns an Apple II (not a /e or even a II+)
you can watch the Monitor pop to life when the machine is turned on.

The Monitor is much more secretive in the I+, //e and //c. You only get to talk to it directly
during major computer disasters. Instead, during normal times, from almost the instant you
turn on the computer, the Monitor turns on an Interpreter which understands the “English-
like” commands of the BASIC computer language and translates them into the 6502 machine
language instructions the Monitor can understand. Better yet, it also tries to turn on your
disk drive and read in an even more “user friendly” program which may actually understand
real English. You type in a question, the program from disk translates your English question
into a question in the BASIC computer language, the BASIC Interpreter translates it into a
machine language request (perhaps involving the Monitor), and finally the 6502 understands
and does something to find an answer.

The Monitor and the BASIC language Interpreter are stored in permanent memory on spe-
cialized memory chips on the motherboard. The Monitor and the BASIC interpreter are always
there, even when the Apple is off. The chips in which they reside can be read by the 6502.
However, they are closed books in the sense that nothing can alter their contents. They may
be read, but they may not be written to. In their infinite wisdom, the computer people from
Southern California have come to call this type of memory Read Only Memory. The short form
is ROM (always pronounced like Tom). This is the first of the four famous computer buzzwords
(Bits, Bytes, RAM and ROM) about which you will be hearing more later.

Usable Memory: Memories that Change

The Monitor is a wonderful thing, but it is unchanging. It would be awfully boring if the
Apple always did exactly the same thing every time you used it; ROM is important, but it is
not enough. The changeable memory of the Apple is in two very different forms. The first
exists in chips on the motherboard—it is lightning fast, but it is expensive and takes up
precious space. The second type of changeable memory is physically outside the computer on
some sort of magnetic recording surface—usually a 5 1/4 inch floppy disk.

Unfortunately, the 6502 can’t work on any program, text, data, etc., unless that information
is actually in the DIP chip memory on the motherboard. This means that anything stored in
the external disk memory has to be copied into the motherboard memory before it can be
used. If you were working on some information in the computer, and then needed to use
something that was stored on the disk, you'd have to wait anywhere from two to 30 seconds
before you could continue with what you were doing—this all but defeats the whole idea of a
fast working microprocessor. The mitigating advantage of disk storage is that it is very cheap
in comparison. It still costs about $50 to buy enough DIP chip memory to store a 40 page
document, but only about 25 cents to buy the same amount of storage on a modern dense
floppy.

There is one more major difference between the changeable memory on disk and the changeable
memory in DIP chips—“volatility.” Memory in DIP chips evaporates every time the power is
turned off—it is absolutely gone for good in an instant and can never be retrieved. Memory
on a disk, however, is exactly the same as music on a standard tape recorder tape—you have
to make a fairly determined effort to erase it. Motherboard memory is fast but evanescent;
disk memory is slow but lasting.
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The final important conceptual difference between these two types of changeable memory is
that information on disks usually has to be read in fairly long streams. If you wanted to see
whether a sentence stored on the disk ended with a period, you'd probably have to read in the
whole sentence starting from the beginning. With DIP chip motherboard memory, however,
the 6502 can always look at the exact single smallest unit of information it is interested in.
It does not matter where in motherboard memory it is stored, all locations are equal in the
eyes of the 6502. This free ability to access all of this sort of memory at full speed has been
called “random access”—and, for those of you who haven’t figured it out already, the appro-
priate buzzword for describing fast, changeable, motherboard chip memory is Random Access
Memory (RAM, the second of the four famous buzzwords).

Electronic Basis of Computer Memory: The Measure of
Memory

Perhaps the biggest difference between memory in the human mind and memory in acomputer
is that in the computer memory can be measured in neat little units. The nature of these
units grows out of the heart of hearts of microelectronics and its implications extend upward
to the highest level of computer function. In this measure lies the link between your thoughts
and the flow of electrons deep within the computer.

This nearly metaphysical link is accomplished by one of the great and marvelously original
inventions of this century. The device is simple in conception. It is no more than an individual
on/off switch—distinguished because it can be thrown nearly instantaneously, has no moving
parts, and can be fabricated through photolithography in sizes as small as the nucleus of a
single human cell. The switches are called transistors. There’s more about this sort of thing
in a later chapter, but for now the point is that two states, on or off, underlie all of computer
electronics. The rest of electronics, in fact the rest of the universe, doesn’t usually work this
way.

Normally, you must allow for infinite variation between any two absolute points. In the mid
1940s however, computer designers abandoned the “linear” variation common to most elec-
tronic devices of that time in favor of discrete, on/off electronics, now called “digital” electronics.
This choice was actually made before transistors were invented, and the first electronic com-
puters used a kind of electro-mechanical switch in which a piece of metal actually had to
swing across the switch box with every change. With the invention of transistors, it became
possible to throw a switch far faster than a neuron in the brain can respond to a stimulus.

Logic and Memory from Transistors

In computers, these switches are arranged in groups that have “logical” decision-making
capabilities. In one typical arrangement, two “wires” lead into a group of transistors called
an “AND gate,” and one “wire” leads out of the group. IF the first line coming in is coming
from an “on” transistor group elsewhere AND the second line coming in is also coming from
an “on” transistor group elsewhere, THEN the “AND gate” will turn its output line “on.” This
clump of silicon has just checked out some information from its environment, evaluated it,
taken an action based on the information, and announced it’s decision to any other groups
which happen to be listening (by being attached to its output line).

Clumps of these “logic gates” can be connected together to form a memory group called a “flip-

flop.” These flip-flops usually involve about 20 or 30 transistors assembled into three or four
logic gates. The gates are linked in a sort of electronic figure eight which you can learn more
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about later, but the most important thing is that once a flip-flop is either set to the on condition
or to the off condition, it will stay that way even after the incoming signals are removed as
long as you don’t turn off the computer. A transistor or a logic gate alone forgets what it was
doing the instant you stop talking to it.

Some microcomputers use these flip-flops for all of their changeable motherboard memory, but
in the Apple only the 6502 itself, and a few isolated chunks of special memory here andthere
on the motherboard, use flip-flops. When the first Apple was being designed, most computer
manufacturers were choosing to use only flip-flop based memory, but Apple chose to use
“dynamic storage cells” instead. At the time, the choice was probably due to flip-flop memory
being far more expensive and requiring much more space than was available on the Apple
motherboard.

Dynamic Memory

Dynamic storage cells are similar to flip-flops in conception, but they borrow from the old
linear electronics, mix the old with a bit of very modern digital electronic trickery, and come
up with an interesting sort of hybrid. The good news is that each cell requires the equivalent
of only two transistors, but the bad news is that they spend a great deal of their time somewhere
between on and off.

This irresolute approach to reality is all very scandalous from the point of view of the digital
circuitry that surrounds them, and, as a result, just about every other chip in the Apple invests
a great deal of time in a process of reminding the dynamic storage cells to please get themselves
either completely on or completely off. If it’s all done correctly, you never have to actually
repeat to a cell what it is supposed to contain, you just have to keep on telling all of them to
be tidy about it.

This process is called “refreshing” the memory. The whole business certainly sounds a bit
cockamamie, but it is reassuring to know that as the years have gone by virtually all micro-
computers have come to use dynamic storage cells rather than flip-flops. The initial decision
sharply reduced the cost of Apple memory and played an important part in the Apple’s early
success.

These storage cells are designed so that the 6502 can address each individual one in two
different ways. The 6502 can choose simply to “read” the storage cell by looking at the output
line without changing the internal state, or it can cause the storage cell to flip (i.e., from on
to off or vice versa). This is called a “write.” The official buzzword name for the quantum of
information embodied in the on or off state of one single storage cell is the “bit.” One bit of
information is the smallest amount that can be stored, changed, or read, and the information
that can be contained in one single bit is limited to a seemingly unambitious two states: 0 or
1. And let’s be frank, one bit just isn’t that informative.

Bits and Bytes

Now, suppose you take two of these storage cells side by side. Both could hold a 0, or the first
could hold a 1 and the second hold 0, or the first could hold a 0 and the second hold a 1, or
finally both could hold 1s. With two storage cells, then, you get four possible states. In fact,
you could store any number from zero to three as a pattern of 1s and 0Os in these two cells.
Three cells get you any number from zero to eight, four cells get you any number from zero
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to 15, ad infinitum. If the 6502 wanted to know what coded number was stored in this group
of four storage cells, it could go through one by one and read them in order. There is an
alternative though. A great deal of time could be saved if there was a single address for the
whole group. The 6502 would specify a group of four storage cells, and the group would
automatically announce its collective status. After all, the 6502 doesn’t really care about the
value of each bit in and of itself, rather it wants to know the single value encoded by the
whole group.

Aha, but is four the most efficient number of cells to put in a group? If you had a group of 10
you could get a number as large as 1,024 in a single read (that’s two times two times two,
done 10 times). In fact, large mainframe computers which specialize in number crunching
tend to have as many as 64 storage cells in every group, so a single read gets them the potential
of tossing around an inordinately large number such as the number of inches from here to
the sun or some such. Since few Apple users need to operate with such large numbers on a
day-to-day basis, a great many Apple storage cells would go unused most of the time—and
remember, motherboard memory is expensive.

Eight Bits for ASCII

The number of storage cells grouped together in the Apple probably was determined more by
letters than by numbers per se. A strong suspect for being the responsible party is the old
teletype machine. A teletype is usually a 1950s or 60s vintage typewriter-like device which
uses a bizarre spinning wheel to convert key presses at its keyboard into a series of digital
on/off signals which are then sent over the phone lines (see Figure 1.3). A code was developed
which had enough options for all capital letters, small letters, numbers, asterisks, parentheses,
etc., as well as for a number of “control characters” used to warn the receiver about any special
formatting of the incoming text.

Fig. 1.3 Old Teletype mechanical
communication device (circa 1960).
The bits of the ASCII code are
placed at different positions around
the wheel. As the brush spins, the
bits are picked up and transmitted
“serially,” one after another.




The code allowed for 128 different signals, so each character could be represented as a pattern
of seven bits (two raised to the seventh power equals 128). However, since the object was to
transmit the information over the phone lines, the designers of the code added one extra bit
to each character pattern which they then used in a very clever way to let the receiver know
for sure if static had garbled the transmission.

The code for each character is a set of ones and zeros (i.e., “010 0111”). This particular coded
character has four ones in it. Whenever a code had an odd number of ones, however (i.e., “011
1000”), then the machine would automatically put an extra one on the end of the code (“1011
1000”). In this fashion, every code received must have had an even number of ones at the time
it was sent. On receipt, each code was checked for this “even parity” and then this unneeded
eighth bit was stripped off and thrown away.

The name for this code hasn’t quite achieved buzzword status, but you do hear about it quite
a bit. It is “ASCII” (pronounced “as key”) which stands for American Standard Code for
Information Interchange.

Any computer which might have to communicate with some other computer-like device was
going to have to use ASCII, and so eight bits was established as the practical minimum for
designing microcomputers. The buzzword term for eight bits is a “byte.” You can buy a plug-
in card for your Apple which handles numbers in 16 bit “words” or even in 32 bit “longwords,”
but eight bit bytes are the lowest common denominator. Only eight bits can be used at atime
when you are tossing around ASCII alphanumeric characters in applications such as word
processing or communications, so more brawny processors can actually be less efficient for
many computer uses.

—

Fig. 1.4a (above) A row of eight RAM chips in the //e.

Fig. 1.4b (right) A row of 16 RAM chips in the //c.

26




There is one last surprise about the grouping of the eight storage cells into a single addressable
byte. If you look back into the Apple at the motherboard and locate the RAM chips, you’ll
notice that the chips are laid out in groups of eight (see Figure 1.4). Each byte actually has
only one of its eight storage cells in each chip. The 6502 asks for something like the frontleft
bit. Then all eight RAM chips in the row each simultaneously announce the contents of the
one bit they have in that position. One “wire” leads from each chip in the row to one of eight
pins on the 6502 DIP package. The 6502 looks at the eight pins and sees an entire byte all
at once.

In the Apple II and II+, each chip has about 16,000 bits on it so a row of eight of these chips
can store about 16,000 bytes. In the //e and //c, each memory chip has 64,000 dynamicstorage
cells on board, so that a single row of eight chips holds 64,000 bytes. The standard abbreviation
for 1,000 in computer lingo is the letter “K.” Alright then, are you ready? The next time you
say that your Apple //e has 64K bytes of RAM, you're going to know exactly what you’re
talking about in a sublime and exact sense.

Organization and Limits of the Memory:
Forwarding Address

Ah yes, you say, but why this pervasive number of 64K? Why not 70K or 197K? A completely
accurate description of exactly how much memory the Apple can use turns out to be surpris-
ingly technical and complex. The details are spelled out precisely later; for now though, let’s
assume it can actually use exactly 64K and talk about why.

At the very beginning of the discussion of memory we said that the most important memory
was actually on the 6502 chip itself. Some of this memory is like ROM—it stores permanent
internal instructions called microcode. The volatile part of the memory can store a total of
eight bytes. Each of these eight bytes has a unique function and an individual name. They
are called microprocessor “registers” and are used in the actual execution of machine language
instructions by the 6502. Three of these registers are used as scratchpads for fairly general
purpose temporary storage, but the remaining five are responsible for remembering the lo-
cation of the program the 6502 is currently executing, and for guiding the 6502 through the
execution of the instructions.

Every 6502 instruction is at least one byte in length, some are two bytes long, and the longest
take three whole bytes to make their point. An example of a three byte instruction is as
follows: 1)“I'm about to give you the address of a number you'll be needing,” 2)“This byte is
first half of the address,” 3)“This byte is the last half of the address.” What just happened was
that a program handed the 6502 a memory address which was two bytes long. This is the
longest address that it’s possible to give to the 6502. Two bytes is 16 bits. A 16 bit address
can be any number from 0 to 65,535 (2 to the 16th), but no more.

This is the proximate limit on the amount of RAM the 6502 can conveniently speak to; it is
the origin of the famous 64K. When the 6502 was designed in the mid 1970s this seemed like
more than enough memory locations, and no one gave serious consideration to the use of four
byte instructions or of putting in a 24 bit register to hold a three byte address.

It happens that there is some trickery which can be done to get around this limit, which is

why the //c can have 128K, and why several companies sell large memory expansion boards
for the Apple II, II+ and //e. However, this trickery is not convenient, and programmers have
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been slow to go about taking advantage of it. Most of the popular commercial programs you
can buy were written at a time when RAM memory was much more expensive than it is now
and many Apple owners had only a total of 48K installed in their machines. The programs
allowed you to add memory up to the full “natural” amount of 64K but did not makeallowances
for the trickery to expand further. Some Apple owners who are very sophisticated in writing
their own programs do use much larger ranges of memory, and it is now possible to use large
banks of memory with MagiCalc or VisiCalc, but for the most part we’ll all just have to wait
for the bulk of commercial software to be upgraded.

Floppy Disks and Disk Drives: Spinning
Memory

Disks and disk drives got some mention earlier as inexpensive but relatively slow changeable
memory; but these are fascinating devices in their own right and require substantial care and
feeding. The fundamental logic behind the design of computer disk memory flows from a point
already made. The 6502 can’t read bytes of information from the disk directly. To use infor-
mation stored on a disk, the 6502 must go through a two step process. First, it has to cause
a chunk of information to be copied into RAM, and only then can it begin to use the bytes of
information. Once the data is copied into RAM, the disk drive is simply turned off.

This two step process often causes some confusion for first time users who are thinking of a
phonograph record or a tape recorder. If you take the record out of the record player, there’s
no more music. Not so with computer disks.

The first crucial variable in the design of the disk system is the size of the smallest chunk to
be read by a single command. Although information moves from the disk to the Apple at a
high rate of speed once the information has been located, it may take more than a second to
get to that step. First, a command must be sent to turn on the drive’s motor to get the disk
spinning. The red light on the drive turns on immediately, but the Apple still has to allow
time for the disk to go from 0 to 300 revolutions per second. Then the reading mechanism has
to be physically positioned over the correct location on the disk. If this work were done one
byte at a time, it could take nearly a minute to copy in one 40 column line of text (in a worst
case scenario). Apple has settled on a chunk size of 256 bytes at a time. When the Apple knows
exactly which chunks it wants and where they are on the disk, it’s able to read in about 1000
bytes a second in a steady stream—this means it takes about two seconds to fill up the
equivalent of a full 80 column by 25 line screen when reading directly from disk. These 256
byte chunks on the disk are called “sectors.”

On an Apple diskette the sectors are laid out in 35 concentric rings, not in a spiral. Each ring
or “track” is broken into 16 sections, each of which is a “sector.” Therefore there are 35 times
16 equals 560 sectors. Since each one contains 256 bytes, there’s room for about 143K bytes
on one Apple diskette. The Apple uses about 15K for its own purposes and you get to use
128K of storage on one Apple diskette. Most word processing programs keep at least two copies
of your text on each diskette, so for practical purposes this means you’re limited to about 30
or 40 pages of text on one diskette. There is no substantive reason for this 128K limit except
that it reflected the state of disk drive technology several years ago when the system was set
up. The newest high-tech Apple-compatible drives have 154 tracks each with 30 sectors on
one side of a 5 1/4 inch diskette.
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The Disk Operating System: Monitoring the Spin

If disk space is so limited, what is it that the Apple does with that missing 15K? You'll no
doubt recall the system Monitor programs which we said gave the Apple its personality. That
Monitor was written before 5 1/4 inch disk drives were commercially available (early Apple
owners used a cassette tape recorder for external storage), so it doesn’t include the programs
required to operate the disk drive and to keep tabs on what information is stored in which
sector. The machine language programs which supervise the management of the disk drive
are called collectively the Disk Operating System (DOS). You get one copy of the Apple disk
operating system when you buy your Apple.

This set of DOS programs has to be copied into RAM memory every time you turn on the
Apple and want to use the disk drive. The one advantage of distributing these programs on
disks is that it is comparatively easy for Apple to distribute improved versions of the DOS
programs after your computer leaves the showroom. Older Apples use version 3.2, most current
Apples use 3.3. The newest disk operating system for the Apple II is called ProDOS. It is
completely new and is far more powerful, versatile and easy to use than DOS 3.3,

Loading DOS into RAM: Footware for Memory

Some of you may have noticed a logical inconsistency in the previous paragraph. If DOS has
to be in memory before the disk drive can be used, then how does the 6502 know how to copy
in the DOS itself? This problem is solved by a trick called “bootstrap loading” (implying that
DOS pulls itself into memory by pulling on its own bootstraps) and typically referred to as
“booting” the diskette. One of the chips on the disk drive controller card is actually a small
ROM chip. It stores a tiny little “mini-DOS” which the 6502 can read and execute quite easily.

To turn control of the 6502 over to this mini-DOS, Apple II owners had to type commands
into the Monitor in something resembling machine language. The Apple Il + was sold with
two new ways of booting: the “PR#6” command in BASIC, and an “Autostart” version of the
main Monitor which automatically started executing the mini-DOS whenever the Apple was
first turned on. In the //e or //c, you can boot the disk drives by hitting the Control — Open-
Apple - Reset combination on the keyboard or by using any of the previously available methods.

..Fig. 1.6 The inside of a floppy disk.
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When this mini-DOS program is run, it copies in some specific sectors and turns control of
the 6502 over to the short program it has just copied in. This program is nothing but a set of
instructions for reading a larger bunch of sectors, and so on, until all of the 10K of DOS is
copied into RAM. The image of DOS is then moved to the higher address numbers in memory
and the lower address part of memory is left available for other programs and data to use.
DOS only has to be loaded once when the computer is first turned on. However, since it stays
in RAM memory, it is destroyed whenever the Apple is turned off and you have to be sure a
copy is available on the first diskette you use when the computer is next turned on.

Fig. 1.6a Inside the Disk !} drive.
The small white circle with the
black line is the read/write head
(A). When you open the drive door,
you lift the metal frame and pull
the black pressure arm (B) up off
the head.

Fig. 1.8b Inside the Disk //c drive.
The small square with a black line
is the read/write head (A).

Initializing a Diskette: The First Spin

A brand new diskette is a clean smooth magnetic slate (see Figure 1.5). It has no tracks and
no sectors. Normally, DOS is completely unable to do anything with such a diskette, and it
certainly can’t be booted. To use a new diskette you have to first bootstrap-load a good copy
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of DOS from some other diskette. Once DOS is loaded, you can use one of the DOS programs
you have just loaded to prepare the new diskette for use. The command you type is usually
INIT HELLO and this calls up the initialization program. The process of initialization involves
putting little magnetic marks in each site on the diskette which will later hold a bit of
information. If you stopped the process at this point, clipped off the diskette jacket and sprin-
kled iron filings on the diskette, you could actually see the tracks and sectors (this is OK for
laughs once or twice, but it is an expensive trick).

There is a single read/write head in the disk drive which sits beneath the spinning disk (see
Figure 1.6). Directly above the head is a little swinging arm which presses the disk surface
down onto the head. The read/write head and the arm can be moved from the outside of the
disk to the inside in 35 little steps, all under command from the 6502. If you listen carefully
during initialization you will first hear a loud buzz when the head is yanked all the way to
the outer track; next youw’ll hear 35 quiet little thumps as the head steps inward to write each
successive track. When you open the drive door, you manually lift the little arm off the disk
and thus bring the diskette out of contact with the head.

Once each sector has been marked out, the program goes on to write an address in the first
part of each sector. When this process is completed, it becomes possible for the more standard
parts of the DOS program to copy from or write to any individual sector out of the 560 which
it so chooses. Before finishing, a complete copy of DOS is written on the first three tracks
(starting from the outside, working in), and a filing system is set up on track 17 (halfway in
from the outside). Finally, one extra program in Applesoft BASIC called “HELLQ” is copied
onto the diskette. Formatting from a ProDOS menu is similar, but ProDOS itself is only copied
onto the disk if you decide you want to put it there for the purpose of creating a new startup
disk.

The Directory: Keeping Track of Tracks

The filing system is the part of DOS you'’re forced to be aware of the most often. Although
information on the disk is actually arranged in physical sectors, most users would like to refer
to an entire coherent collection of information by a single name. The term for such acollection
is a “file.” A file might contain an entire word processing program in either BASIC or in
machine language, or it might contain a letter or report you're working on.

Let’s say you’re using a word processing program and you have typed a three page letter into
RAM memory. When you’re finished, you usually tell the word processing program to save
your text by copying it out onto the disk as a file called, for example, MYTEXT. The word
processing program tells DOS the name you chose, and it tells DOS where in RAM it can find
your text. DOS then copies your text, 256 characters at a time, onto a series of sectors on the
disk.

DOS is not required to use the sectors in order. It could put the first bunch of charactersin
sector 4 of track 19, then the next bunch in sector 10 of track 21, etc. A free wheeling system
like this permits DOS to make the most efficient use of your disk as you create and remove
files. However, while it’s bouncing around out there with your text, it has to keep a very
careful record of which sectors it has used and in what order it used them.

DOS begins by writing the name of your file on the filing system track of the disk, then it

keeps a list of tracks and sectors as it uses them. This list is called the diskette “directory.”
Later on, when you want DOS to retrieve MYTEXT, it checks the directory to see if there is
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a file by that name. When it finds it, DOS is then able to locate the list of sectors. It reads
them in the appropriate order, copying the contents of each of them into RAM. When it is all
done, you get back the complete text you started with, ready for further work. In the body of
your text there is no remaining evidence of the partitioning of the file into sectors. All you
are aware of is your text and the name of your file.

This Directory is a potential Achilles heel. If it gets damaged, you may be unable to retrieve
your text even though the text itself is completely intact. There are wizards out there who
specialize in retrieving data from diskettes with damaged directories, but the best cure is
prevention and the only means of prevention is to make duplicate copies of important files
before disaster (which, by the way, is inevitable) strikes.
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Chapter 2

Output, Input and Expansion

Characters on the Screen:
What You See and What You Get

Once you've closed the top of the Apple, hooked up all the cables, turned it all on, and let the
disk drive do its thing, the two most engaging aspects of the Apple are the keyboard and the
screen. The clear and obvious mental analogy for just about everyone is the trusty old type-
writer. In a typewriter, the words on the paper are the be all and end all of what the machine
and your task are all about. Not so in a computer, not so at all. In fact, from the 6502’s point
of view, the pattern of light and dark you see on the screen as words is a lot of meaningless
gibberish about which it would just as soon forget.

In fact, relieved of the burden of dealing with humans, the Apple could do all of its work
without ever drawing a picture of what it has done. The characters you see and the way they
are displayed are entirely an afterthought for the computer. Fortunately, computer program-
mers are typically humans, (user compatible warmware?) and most of nearly every computer
program ever written is devoted to managing the appearance of characters on the screen.

Screen Memory: Holding On to the Cast Off Characters

When the 6502’s work results in the production of numbers or strings of alphabetic characters
which it believes the user might care about, it starts blindly dumping the codes for these
numbers and letters into a RAM storage area (computer folks always call these RAM storage
areas “buffers”). There is one area in the Apple’'s RAM which is always used in an agreed
upon way for representing screen information. It is conveniently thought of as a grid with 40
by 24 equals 960 pigeon holes.

One of the Monitor programs catches the character codes as they come out of the 6502. Then,
handling them one by one, it figures out where to put them among the memory locations
which represent the 960 spots in the 40 columns by 24 lines available.

It sounds like an extremely simple task, but it is not completely intuitive. One typical pattern
is to start at the bottom of “screen memory” on the 24th line and the first column. As new
characters turn up, the program steps to the right one column at a time until it hits the right
margin. When the next character comes in, the line that was just finished is copied over again
into the 40 memory locations for line 23, and everything that was in line 24 is erased. Onthe
screen this looks like the bottom line has just rolled upwards—a process called “scrolling”—
but, as you see, the actual details aren’t quite that elegant.
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Once the whole screen is.full (when the 961st character arrives), the top line appears to get
rolled up just above the top of the screen. In fact, it has fallen off the edge and has quite
completely disappeared from screen memory. That doesn’t mean it’s gone altogether. Remem-
ber, the screen display is quite incidental to what the 6502 is actually up to. If you ever want
to see that line again, the screen management program which has been doing so well up to
now is completely unable to help. Some other program is going to have to know where those
character codes actually are on the disk drive or elsewhere in RAM and then bring them back
to the screen program.

80 Column Display: Improving the View

If you have a //e or //c, you're probably wondering why there is all this harping about 40
columns. If you have a II or II+ you know why and you have probably already shelled out
an extra two or three hundred dollars to escape the tyranny of 40 columns. If it’s so unpopular,
why did Apple choose 40 columns in the first place?

You may remember an article in TIME magazine in which one of their writers complained
about the fact that computer manufacturers call their screens “monitors” when everyone knew
they were really just TVs. Not true. There is an important difference. Probably the least
insightful thing the inventors of the Apple decided was that few people would buy a special
monitor for their Apple, and that hook-ins to home TVs would be the order of the day.

Early Apples were sometimes shipped with an attachment that turned the normal signals
into radio-frequency information a TV could understand, and you get one of these RF mod-
ulators free with a //c. But if alphabetic characters were going to be readable on a TV screen,
they were going to have to be relatively big characters. As it happens, 40 columns by 24 lines
of capital letters is all your average TV can handle. And thus early Apples came by their
humbling deficiencies of no lowercase letters and only 40 columns. This wasn’t just a me-
chanical thing. The limitation was written into the heart of hearts of the Monitor program
and even into the design of the BASIC computer language interpreter. Even in the //e you
have to use machine language-like commands to supplement Applesoft BASIC to get control
of any column after the fortieth. It’s only in the //c that 80 columns and lowercase characters
have been completely integrated into all levels of the system.

The other available standard for how many columns Apple might have chosen comes from
another relic of early, mostly bygone computer days—the old IBM punch card. These cards
and the great big card punching machines which are the great grandparents of modern CRT
terminals allowed for 80 little holes to be punched across the surface of each card. Whenever
an Apple owner wanted to use the machine as a way of talking to the huge mainframe computer,
he or she discovered that the mainframe expected to be spoken to and heard from strictly in
80 column lines. Hence the advent of “80 column video boards” for the Apple from such
companies as Videx and ALS.

For the most part, these cards don’t use the Apple’s screen memory grid, and they ignore what
the Monitor screen management programs are doing. All that is required is to get a look at
the character codes as they come out of the 6502 and to put them into the 80-column board’s
own built-in screen management system. These boards have their own RAM for storing the
characters in an 80 by 25 display grid.

In the //e and //c an even more bizarre approach is used. Apple stuck with exactly the same

40 by 24 screen memory locations it had always used, but then it used one of those bits of
memory address trickery mentioned earlier for going beyond 64K. Out in the //e special slot
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(when even the simplest //e text card is installed), there is an extra 1K of RAM which thinks
it has the exact same addresses as the normal screen memory. Half of the characters go to
their normal location on the motherboard and the other half are placed in RAM out on the
text card. The motherboard gets the odd numbered columns and the text card gets the even
ones. In the //c, characters for odd numbered columns go in the eight RAM chips located
towards the front of the machine and even ones go to the back (see Figure 1.4b).

Character Formation: Electron Calligraphy

All of the screen character handling talked about so far has led to a bunch of character codes
being laid out in RAM. This sort of thing is nothing you can actually see. The final step is for
another part of the Apple called the Video Display Generator to keep on scanning the lines
of screen memory about 60 times a second and then to translate the series of character codes
into a completely different kind of signal which operates the electron beam in your actual
Cathode Ray Tube (CRT) monitor. The beam sweeps horizontally across the screen you’re
looking at and blinks on and off as it passes.

This is where the actual quality of the characters you look at comes in. If the beam swept
horizontally across the screen a full 20 times before it got from the top to the bottom of each
line of text that it was drawing out, then it would have the opportunity to render each letter
as a beautiful and precisely formed shape. However, before it got to the bottom of the entire
screen it would have had to make an awful lot of fast, precise sweeps. It turns out that seven
passes for each line of text (not including the spaces between lines) makes a pretty good
looking alphabetic character. Various 80 column-video character generator boards for the II
and Il + use from seven up to 11 sweeps ($100 for the one that makes seven sweeps and $275
for the one that does 11), and the //e and //c use seven sweeps. In 1983, the Videx Corporation
put Apple to shame and substantially upped the ante by releasing a plug-in Apple video board
which generates 128 columns by 32 lines (or 160 by 25 or 80 by 48) all with 12 sweeps on
each character line (this one lists for $380).

Fig. 2.1 Apple letter-quality printer.
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Characters on Paper: Ink and the Apple

The operation of a printer that actually types on paper is logically identical to putting char-
acters on the screen. The programs that arrange where letters will appear on paper are
extremely similar, and in some cases identical to, the ones that arrange where letters will
appear on the CRT screen. Of course, once the lines of text or numbers are appropriately laid
out in RAM, the character generation step has to be done a bit differently. In nearly all cases,
entire letters are generated one at a time; this differs from the situation on the CRT screen
where you first generate the top one-seventh of all the letters on a line, then the second one-
seventh, etc.

Once the command to print a letter has been sent, the details of character generation are left
to the actual printing machine. The design problem for computer printers is that they’ve got
to take an actual physical hammer, swing it through some distance, mash it through a ribbon
onto the paper, get it out of the way and then get the next character ready for the hammer.
All this real world motion seems hideously slow from the point of view of your average
electronic device.

The fastest approach that is in common use for Apples is to constantly change the shape of
the surface of the hammer. This is what is done in the “dot matrix” printers. The hammer is
actually a “print head” made up of a vertical row of movable wires with their cut ends facing
the paper. Individual wires in the row are either left inactive or driven forward to strike the
paper several times as the print head advances across the character (see Figure 2.2). The
sequence of dot patterns is altered according to which character has been called for by the
computer.

Print Head

Fig. 2.2 The print head of many dot
matrix printers is a vertical stack of nine
pins. As the print head steps across the

‘l'}.:e p’i‘?‘ ’?’“d "-e.P.‘ °°"°‘f nine printing positions, it taps out a
nine printing positions as it completed character. The sequence of
taps out a completed character. dot patterns is altered according to

which character has been called for by
the computer.

A dot matrix printer which used a row of 20 wires with 20 horizontal steps across each character
would produce a 20 by 20 matrix of 400 little dots for each beautifully formed character.
However, each wire would have to be so thin that they might wear out a few days after you



bought your printer and it would take quite a long time to work across an entire line of text.
As a result, the most rugged, high speed dot matrix printers tend to use a vertical array of
nine wires with eight strikes across the character. Their characters aren’t particularly pretty,
but such printers can type as many as 200 characters per second and can last for years. Soon,
however, dot matrix printers may be replaced by a new generation of printers which use a
matrix of little ink jets instead of wires. This avoids the need for the print head to swing down
onto the paper and also removes the durability limit so that very dense character matrices
are possible.

Fig. 2.3 The daisy wheel printer is
an alternative to the dot matrix
printer. Most daisy wheel printers
use a wheel with 96 character
strokes which produce
typewriter-like characters. This is

a 130 character wheel for a special
Qume printer.

The alternate approach to printer character generation is a bit slower but makes perfect
typewriter-like characters. The best version of this approach is called a “daisy wheel.” The
wheel has 128 petals (like spokes) each of which has a completely formed character on its end
(see Figure 2.3). A given ASCII code is interpreted as an instruction to rotate the little wheel
to the appropriate position to get the requested character under the hammer before it strikes,
These “letter quality” printers also permit fancy formatting, such as superscripting and sub-
scripting, by using other ASCII codes as instructions to roll the platten to slightly offset
positions before striking in the character. The end result can be equivalent to the best expensive
typewriter, but few of these machines can move faster than about 55 characters per second.

Keyboard Function: Fingerprints on the 6502

At one point earlier in the discussion about the physical distribution of bits in a byte of RAM
you may recall a mention of eight “wires,” one from each RAM chip in a row, leading to eight
pins on the 6502 DIP chip package. The 6502 is able to look at these eight pins all at once
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and see an entire byte of information. This byte could contain a machine language instruction,
or it could contain a number from 0 to 255, or it could be the ASCII code for an alphanumeric
character (letter or numeral). The 6502 looks to these eight pins (called “data pins”) to find
out almost everything it needs to know.

As it happens there’s more than one way to put a byte onto those eight pins. Granted, the
RAM uses them quite a bit, but the RAM does not have them all to itself. So who do you have
to pay off in order to get an audience with the 6502’s eight data pins? Actually, access is very
freely available as long anyone who has something to announce follows appropriate protocol
and goes through appropriate channels. The appropriate protocol is to have all eight bits ready
and waiting to go, together and all at once when the 6502 asks to see them, and the appropriate
channels boil down to two major routes and two relatively minor ones.

The first and most obvious route into the Apple is from the keyboard. When you press a key,
a unique coded signal is generated, loaded into a cable, carried into the Apple, decoded into
a one byte ASCII code and then held in a little buffer. Part of the Monitor program informs
the 6502 that a keypress has been made and gently advises it to check the keyboard buffer
to find out which key it was, as soon as is convenient.

In the eyes of the Apple, all of the keys are equal. None of them has any meaning at all unless
some program it is executing has some special idea about them. Only the “Reset” key has a
permanent special function, but even this can be modified by a clever machine language
programmer who can turn it into a relatively innocuous key acting like any number or letter
he or she so chooses. When you press a key, any key, you are only generating a code which
must be thought about and kicked around a little in the Apple before it can cause anything
to happen.

This is another aspect of computer function which can be confusing to a first time user ac-
customed to thinking about a typewriter where a key is a key is a key, and they all do the
same thing every time you hit them. In a computer, however, to know the effect that a given
keypress will have, you must know exactly which part of which program is running at the
time you type it. For the most part you have absolutely no choice other than to teach your
fingers a different keyboard language for each operating system you use (ProDOS, DOS, Pascal,
CP/M) and for each different program.

Expansion Slots: Bytes from Different
Directions

One striking feature of the IIII+ and //e motherboard that hasn’t gotten any mention yet is
that row of three inch long plastic slots along the back (see Figure 2.4). Each slot contains 50
metal contacts laid out in two rows of 25. The contacts in each slot are numbered from one
to 50 beginning on the right side at the front end, going up to 25 at the back and working up
to 50 at the front left. In each slot, the pins numbered 42 through 49 are connected directly
to the 6502’s eight data pins. There are literally hundreds of different kinds of electronic
“cards” you can buy to stuff into these slots, but almost all of them live and breathe by placing
bytes of information on pins 42 to 49 of the slot.

Once a byte arrives on pins 42 to 49 of any one of the slots, that byte is physically indistin-

guishable from a byte that is coming from the keyboard. Most of the time, the 6502 is able
to keep track of where these bytes come from by limiting access to its data pins. No bytes are
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ever actually put directly onto the data lines (which connect to the data pins). The keyboard
or the slot cards always first put their bytes into their own personal little buffer next to the
data lines. Next, they go about trying to tell the 6502 they’re holding a byte which they think
the 6502 should look at. Like any information manager surrounded by five or six sources of
information screaming for immediate attention, the 6502 and the Monitor are forced to rely
on a carefully laid out system of determining who has priority. Once a data source is chosen,
the 6502 can send a signal which dumps the contents of the selected buffer onto its data lines.
Only then can the 6502 find out exactly what the selected information source has to say. The
/lc has several “built-in cards” which act as if they were in slots, so the same basic scheme

still applies.
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Fig. 2.4a The Apple //e has seven accessory slots and one auxiliary slot.
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The source of the information coming in from the keyboard is obvious, but the various slot
cards are set up to feed in information from a whole smorgasbord of kinds of sources. Almost
everyone who owns an Apple has a disk drive controller card in slot number six. Among other
things, that card collects in coded data from the surface of the disk and places it on the data
lines. Another popular source is a graphics tablet. This is a board that you just draw on. As
the special pen moves around on the tablet, bytes appear on the data lines which tell the
Apple where the pen is. In this fashion, a coded picture can be loaded into the Apple’s RAM
and a special program can use the data to make a duplicate copy appear on the screen or to
save a copy of the code for the drawing out onto the disk drive for later display or analysis.

Fig. 2.4b (left) A fully stuffed Apple can
be a dazzling machine.

Fig. 2.4c (below) Behind all those
connectors on the back of your //c is all
the circuitry for two serial interface cards,
an 80 column video” card, a mouse
interface card, an “RGB color interface”
card, and a disk drive controller
interface card.
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Serial Input: Getting a Word in Edgewise

After the keyboard and the disk drive, the most popular third source of information is from
the telephone. For the most part, computers only speak on the phone to other computers.
There’s no reason why you can’t build a device and write a program to let the Apple understand
spoken English coming in on the telephone line, and, in fact, some devices which can do this
in a limited way are available for the Apple. For now, though, most computer telephone
communication is limited to the use of digital signals, usually grouped into standard ASCII
code.

Earlier on it was noted that the required protocol for feeding bytes to the data pins demanded
that all eight bits be ready and waiting to go. However, when ASCII codes are sent over the
telephone lines this presents something of a problem. The whole world’s phone system is based
on information traveling in one direction having just one wire to travel in, yet you need to
have eight wires addressed all at once inside the Apple. The digital on/off signals of the ASCII
code are sent down the line one after another. The first bit arrives, then the second, and so
on until sometime later (seemingly an eternity from the 6502’s fast lane point of view) the
eighth bit arrives. This pattern of arrival is called “serial,” meaning that the bits come along
in a linear series one behind the next. The way the 6502 wants its bits is lined up side by
side in what are called “paraliel” channels.

Fortunately, converting from serial to parallel isn’t a big deal. The incoming signals are first
converted from telephone tones into computer voltages by a “modem” device (to be examined
in more detail later) and then the //c modem port or a slot card which engages in this sort of
conversion just collects up the incoming bits and puts them into their proper place in a buffer
side by side until all eight have arrived. Only then does the card make a request for the 6502
to read the contents of its buffer. By the time the 6502 actually does take a look, the serial
bits have already been put in place and appear completely identical to a parallel byte.

CP/M and the Z-80: Two’s Company

Applesoft BASIC, Apple DOS, and the 6502 are wonderful things that many people claim to
love dearly. However, tens of thousands of Apple owners, do the great bulk of their computer
work on a different computer. Don’t be alarmed. Although this second computer is in many
ways faster, more powerful, more versatile and more sophisticated, you get the whole thing
on a single Apple slot plug-in board or //c expansion module that costs about $250. It usesthe
RAM you own, it uses the Apple’s keyboard and screen, it operates the same disk drive and
talks to the same printer.

When the first Apple was still a mere twinkle in Steve Wozniak's eye, two great microprocessors
had already been born. One was made by Intel Corporation and they called it the 8080. A
second had been developed by Motorola and it was called the 6800. A third company, MOS
Technology, had looked over the design of the 6800, decided it was a great machine but that
they could build it a little better and a little cheaper. Thus was born a close relative of the
6800—the 6502 of subsequent notoriety.

When Wozniak designed his first microcomputer he did it as a hobby project. He had no company
and not too much money. At the time, an 8080 would have cost $50 or $60 and all the electronic
parts distributors preferred payment via a company purchase order form. The 6502, on the
other hand, which was available over the counter at hobby electronic stores, was much more
reliable in simple machines, and was much cheaper.
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This is not to imply the 6502 isn’t a great microprocessor, but it may help explain some
differences in the subsequent history of microcomputers based on the two. Many hobbyists
and engineers found the 8080 more interesting because it was more elaborate, and program-
mers found that the same business market that was willing to pay extra money for an 8080
based machine was willing to pay extra money for more elaborate programs requiring larger
amounts of expensive RAM memory. It is still the case that the fastest and most powerful
programs for word processing and data management have been written in the language of
the 8080.

It happened, however, that a couple of students at Harvard Business School were only able
to afford an Apple when they wrote one of the best business program ever written for micro-
computers—VisiCale. For years, businesses that wished to use VisiCalc had no choice but to
buy Apples. At this point Bill Gates comes into the picture. One of his major contributions to
the history of microcomputers was to write a version of the BASIC computer language which
could run on the 8080. He realized that he could sell copies of his version of BASIC and help
make his language popular with a broader range of professional programmers if it could be
run on Apples as well as on 8080 based computers. His company, Microsoft, produced the first
“8080-based” plug-in computer for the Apple. With this card installed, an Apple owner had
access to both all of the programs written for the 6502, as well as to the equally large number
written for the 8080.

Unlike the 6502, the 8080 has never been associated with any one particular brand of computer.
6502 based machines like the Apple (and the Commodore) are usually quite insular and only
run programs designed for one computer. On the other hand, 8080s have been designed into
dozens and dozens of utterly different computers, but have always allowed nearly total “port-
ability” of programs. A word processing program such as WordStar, which runs on one 8080
based computer, will almost certainly run on any other.

As mentioned earlier, the 6502 is really an update of the Motorola 6800, nonetheless 6502
programs do not run on 6800s and vice versa. In the 8080 world, however, “software portability”
was at a premium and when newer versions of the 8080 were designed, the engineers made
certain that any program which could run on an 8080 could also be “transported” onto the
newer chips. Features were added, but nothing old was changed or taken away. Intel’s second
generation version is the 8085, but a different company, Zilog, produced far and away the
most popular update of the 8080—the Z-80 (see Figure 2.5).

The souped up Z-80B processors, which are rapidly growing in popularity, run through program
instructions at three times the speed of the 6502, but the language in which the programs
are being executed is really the old and sage 8080 machine language. Some companies, such
as Microsoft, have written programs in Z-80 language that won’t run on 8080 or 8085 based
machines. But since Microsoft sells it’s own Z-80 card, they really don’t mind the loss of
portability—you have to buy their processor card if you want to run their programs.

Apple DOS and the Apple Monitor are written in 6502 machine language, so a Z-80 card
sitting alone in an Apple can’t talk to the keyboard, can’t talk to the screen, and can’t operate
the disk drives—not a very productive state of affairs. The popular Microsoft Z-80 carddoesn’t
even have any ROM. To operate the Z-80, you must have a Monitor program and a disk
operating system written in 8080 machine language. When you buy a Z-80 for the Apple you
are given a disk which carries both the 8080 machine language Monitor and disk operating
system. The bootstrap procedure when the 8080 operating system is loaded starts out just like
an Apple DOS boot, with the first steps being handled by the 6502.

44



Fig. 2.5 Eight bit microprocessors are
made by Zilog (Z-80), Intel (8085), and
Synertek (6502).

At some point, however, when enough 8080 language has been copied into RAM, the 6502
does a remarkable little trick; it simultaneously turns itself off, turns on the Z-80, and tells
the Z-80 the starting address of the 8080 machine language it has altruistically loaded. The
2-80 takes over, finishes the loading of the Monitor and disk operating system, and then starts
sending messages to the screen that it has got control of the Apple and is ready to accept
commands from the keyboard.

The Monitor and disk operating system used by 8080, 8085, and Z-80 based computers were
first written in 1973 by Gary Kildall while he was an employee of Intel. He had a very early
version 8080 microcomputer system and one of the first floppy disk drives ever made by
Shugart. His operating system may not have been the absolute best possible one that could
have been written, but it was first and it was very well done. The earliest commercial programs
for the 8080 used his operating system, and from then on there really were very few attempts
by others to design different ones.

Kildall’s program is called Control Program for Microcomputers (CP/M). Newer versions of
CP/M have been written in 8086 machine language to run on the IBM PC and in 68000
machine language to run on the most advanced microcomputers being designed 10 years after
the program was first written. CP/M was also the model used when Microsoft released the
first version of MS-DOS (PC-DOS), which competes with CP/M-86 for use on the IBM PC.

When CP/M wakes up in the Apple, you can’t talk to it in machine language as with the Apple
Monitor, but neither will it accept English-like commands in BASIC. You must respond to the
“A>” prompt by typing the name of a program to be run. Some of these programs are actually
part of CP/M itself which load during the boot process. The rest are either “utility” programs
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which extend and elaborate upon the fundamental functions of CP/M or they are “applications”
programs such as word processors or database managers which take control of the computer
once they are loaded and running.

One important way in which CP/M based word processing and database management excel
dramatically over the use of Apple DOS based programs is in their potential for using very
large amounts of external disk storage. Those few programmers who have gone the extra mile
to write really excellent 6502 DOS programs have almost universally designed them tooperate
strictly on Apple’s own 128K disk drives. Some newer ProDOS based programs for the 6502
don’t have this limitation, but you can always be sure that if you are using a CP/M database
management program, you can conveniently attach floppy disks with up to 3000K bytes on
each diskette or a hard disk with 5 or 10,000K bytes.

Summary

In reading the first two chapters you should have made an important transition. Well crafted
applications programs and the friendly affect of Applesoft BASIC try to lull you into thinking
of the Apple as a screen, keyboard, and slot into which you push diskettes. That is a perfectly
fine way for a beginner to approach the Apple; it eases you into a positive relaxing relationship
with the device. However, once you’ve become comfortable with using a computer this sort of
black (and beige) box approach becomes very unsatisfying. The inner workings we've just
covered are not intuitively obvious nor extremely straightforward. Nonetheless, you should
be developing a mental framework which lets you understand the Apple as it really is.

With your Apple closed up, plugged in and turned on to the square bracket “BASIC” prompt,
type: CALL —151. When you hit the Return key, you should see an asterisk and a flashing
box on the screen. Now type FF3A.FFD8 and then hit Return. The numbers and letters on
your screen are the instructions by which your 6502 is able to make the sound “beep.” Type
FF3AG and then hit Return to hear what this machine language program sounds like.
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® CHAPTER 3 Hardware Overview
® CHAPTER 4 Summary of Program Options

47



LI LTI I ’.

Ll fe a2




Chapter 3

Hardware Overview

Up until now, you have been led to believe that the 6502 microprocessor chip controls the
Apple. You know that it operates at a clock speed of one megahertz and that it is responsible
for moving data from place to place in the RAM memory and for moving data in and out of
the Apple through its I/O ports. You've probably also heard that it can turn over control to
other processor cards running at two, four, six, or even 12 megahertz. All this will be reviewed
in detail in subsequent chapters.

The Video Display Generator

What you probably didn’t know or haven’t given much thought to is that most of the data
manipulation and a great deal of the mathematical calculation that goes on in a standard
unenhanced Apple takes place at a speed of over 14 megahertz. The 6502 is not alone on the
motherboard.

The 6502’s faster partner is the Video Display Generator (VDG) whose job is to control the
electron gun sweeping along in your video monitor or TV. A great deal of the Apple’s hardware
design, and almost all of the trickier parts of programming an Apple in BASIC, are dictated
by the peculiar needs and special wants of the VDG. In fact, during 50 percent of the time
your Apple is turned on, the VDG has complete and uncontested control of the entire machine.
You don’t notice this time because it is simultaneous with the 6502’s time. In each millionth
of a second, the 6502 gets the first half and the VDG gets the second half. The 6502 is not
allowed to make even the tiniest peep during the VDG’s time, and the VDG gets its time even
if you don’t plug in a video monitor to see what it’s doing.

The VDG is hard to appreciate as a distinct entity on the motherboard of the Apple Il because
it is made up of about 20 different chips scattered all around. In the Apple //e and //c , it's a
little less cryptic, because although it is still sprawled out into five or six chips, it is embodied
largely in its very own 40-pin DIP, the Input/Output Unit (IOU) which sits near the 6502 on
the motherboard.

Don’t get the idea that this exagerates the importance of this thing. Wozniak’s patent for the
Apple (U.S. Patent No. 4,130,862) is called “Microcomputer for use with Video Display.”
Chapters 5, 6 and 7 are devoted to exposing the inner workings of this beast, outlining its
modification in the //e and //c, explaining why it does what it does, and giving you the infor-
mation you need to tame it, enhance it, or override and replace it with special peripheral
cards.
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Input Scanners

The Apple does not sit around waiting passively for input. Rather, it constantly scans its
horizon. This goes on all the time, no matter what the 6502 or the VDG are up to. The horizon
being scanned is the keyboard and the device doing the scanning is a keyboard decoding chip
called the AY3600 (early model Apple IIs have an MM5740).

The keyboard chip has its own clock which emits pulses at about 90 kilohertz (90,000 cycles
per second). It also has a check list of 90 possible key locations, and every time it receives a
clock pulse it looks at the next key location on the list. As a result, it manages to check all
90 keys about 1000 times each second. This is pretty slow compared to the 6502 and horren-
dously slow compared to the VDG, but it’s an awful lot faster than your average touch typist
and that’s all that counts here.

The keyboard chip is built into the Apple keyboard in the II and the II+ and it sends fully
encoded ASCII data bytes down to the motherboard via the keyboard connector cable. In the
//e and //c, the keyboard chip has been moved down onto the motherboard, so the keyboard
cable carries only the raw key location pulses. Further, the bytes emerging from the AY3600
PRO in the //e and //c are intercepted by an extra ROM chip and reinterpreted before being
passed on to the rest of the system.

This extra ROM provides a great deal of increased versatility to the //e and //c, because several
different keyboard versions can be switched in or out by turning on different parts of the ROM.
For instance, when the Caps Lock key is pushed, the ROM makes the //e keyboard lock like
the II+ keyboard from the point of view of the 6502. Further, the use of this extra ROM makes
it convenient for Apple to release special versions of the //e for “Dvorak” style keyboards and
for a variety of European keyboard layouts by simply putting in a different ROM to do this
last retranslation step and then painting new symbols on top of the keys.

The “keyboard” switch on the //c connects directly to the ROM chip, so pushing it instantly
changes the ROM’s interpretation of incoming key codes, thus activating Dvorak mode. In
addition, it connects to part of the video system, so special European characters can be activated
on the screen and on the keyboard simultaneously.

The Apple has a second scanning system which it uses to keep track of joysticks and game
paddles. Like the keyboard, this system has a scanning frequency of about 90 kilohertz, but
unlike the keyboard, there is no special independent clock. The scanning is all done by a
particular set of machine language commands and requires the full attention of the 6502 for
its timing.

There is an even more sophisticated hardware and software scanning system for the mouse.
In the //c, that system is built-in and it uses a complex array of interrupts, softswitches, timers
and flags to let the 6502 follow the mouse at the same time it does everything else it’s supposed
to be doing. The Apple mouse interface for the II, II+ and the //e actually uses a 6805
microprocessor to do most of the work. This system is faster and more accurate, but more
expensive, than the //c’s built-in approach.

You are by no means limited to using the built-in keyboard, game controls and mouse to get
commands and data into the Apple. Chapters 8, 9, 10 and 11 cover a variety of alternatives,
from detachable keyboards you can hold in your lap to special tablets you can draw on to
microphones you can speak to from across the room.
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Real World Interfaces

There are all kinds of information producing and information absorbing things out there in
the world which cannot and will not understand ASCII directly. Computers (and computer
owners) aren’t very tolerant of being ignored by or cut off from anything, so a boom industry
has developed around the process of “transducing” all kinds of information into signals a
computer can understand, and, obversely, transducing computer style signals into a myriad
of other kinds of output.

One important category of information is embodied in the frequency of continuously oscillating
signals. The most obvious example is sound, and an Apple can be outfitted to generate speech
or music, as well as to accept and interpret voice commands. The fundamental process is to
use a microphone to capture a mechanical sound wave and to represent it as an electrically
varying voltage. This was sufficient in the old days of radio and audio electronics, but for a
computer to interpret the information, one more step is required.

For example, let’s choose a wave which takes a full second to go from its minimum to its
maximum voltage, and then starts heading back down toward its minimum. The computer’s
approach to monitoring this signal is to go out a hundred times a second and measure the
actual current value of the voltage. If you recorded the measurements, you could come back
later and plot out a fairly good representation of the actual wave.

With graph paper, you'd mark out the positions on the x-axis for a hundred of the one hundredth
of a second sampling intervals, and you'd plot the value at each interval along the y-axis. If
you connect the dots the regenerated wave appears a bit jagged when looked at from close up,
but as you move back from your drawing it seems to smooth out until your eye can’t pick up
the difference. In fact, the quality of one of these devices is determined by how rapidly it does
its sampling and how many different little incremental levels it can recognize.

The generic term for continuously varying information is “analog” and the generic term for
discrete binary computer style information is “digital,” so the process described in the previous
paragraph has been termed Analog to Digital conversion and is usually abbreviated as A/D
conversion. It is also common to say that the information has been “digitized.” You’ll no doubt
be surprised to learn that the reverse process of using the digital data to regenerate a fair
approximation of the original analog signal is called Digital to Analog (D/A) conversion.

The simplest use of A/D and D/A conversion would be as a sort of computerized tape recorder.
Analog information is captured, digitized, stored, and then reconverted into analog form to
reproduce the sound when called for. This is the basis of the new laser disk digital audio
systems. But a computer can do more.

The human eye has the capability of converting particular electromagnetic frequencies into
nerve signals the brain can interpret as color, and the human ear does a conversion of sound
frequencies into nerve signals the brain can interpret as tones and pitches. Similarly, a skilled
programmer can design analysis software that gives meaning to the digital patterns captured
by an A/D converter. It is possible to capture a spoken word as its digital representation and
then subject the captured data to an elaborate mathematical analysis so that the pattern can
be recognized, assigned meaning, and an ASCII representation of the spoken word passed on
to the 6502.
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A/D and D/A conversion is important for a large variety of scientific laboratory tasks, for
operation of robots, for capturing images from a video camera, and for controlling any number
of day-to-day devices such as light switches and air conditioners. The A/D and D/A devices
available for the Apple range enormously in quality and sensitivity. These will be reviewed
in some detail in Chapters 14 and 15, along with some fundamentally digital devices which
monitor time and count discrete events. The Apple has its own set of four built-in A/D con-
verters which are most commonly used with game paddles or joysticks, but they’re not par-
ticularly fast or sensitive.

Data Transfer Between Digital Devices

The simplest way to move programs or data from one computer to another is to write the
information onto a disk, pull the disk out of the drive and put it into the second computer.
This simple approach fails when the second computer can’t read Apple disks, the second
computer is far away and you can’t wait for the disk to be sent in the mail or carried across
town, or you want to communicate with a large number of nearby computers on an instan-
taneous basis.

The first problem, disk incompatibility, is fairly serious. Apple disks are unique and no other
type of computer can read a disk written by a standard Apple drive. An Apple can be hooked
up to a large variety of non-Apple disk drive and magnetic tape systems to permit inter-
changeability, but this approach is often very expensive and usually requires a special setup
for each different machine you need to communicate with. The second and third problems
come down to questions of time, money and efficiency.

In all of these cases, the problem is solved by running wires between the devices and letting
them communicate directly. This, however, introduces an additional range of compatibility
problems having to do with exactly what kinds of electrical signals will be used, when infor-
mation will go in one direction or another, etc.

The Apple //c dodges most of these problems since it has everything that you need already
built-in. However, an Apple II, I+ or //e as shipped from the factory has essentially no ability
whatsoever to be wired up to a second device. Let’s start with a really fundamental second
device, a printer (OK, OK, a printer isn’t actually a computer, but it looks like one from the
point of view of accepting data and these things almost universally never have their own disk
drives). There’s no way to connect a printer to a “bare bones” Apple.

The good news is that Apple and dozens of other manufacturers have designed and built
peripheral cards you can plug into the Apple’s expansion slots which provide the ability to
communicate. The bad news is that there are dozens of different cards on the market, most
of which differ in a variety of features. To pick the proper card to buy, you have to know either
the exact needs of the two devices you need to interconnect or you have to pay extra money
for a single fancy card which can handle a broad variety of very different tasks. Chapters 16,
17, 18 and 19 are devoted to explaining just exactly what these interfaces are supposed to do,
and how to go about picking the correct ones for the task at hand.

Communicating with a printer is usually so straightforward that once you purchase thecorrect
card for your printer, you're ready to go without further fuss. Almost any other sort of com-
munication requires both hardware and additional purchased software to manage the two-
way information transfers.
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The two broadest categories of communication protocols are serial and parallel. As a review,
serial communication is conducted along a single wire with the eight bits in a byte following
along one after another, while parallel communication uses eight wires side-by-side so the
eight bits in a byte can travel together.

Parallel connections are usually used inside a computer system and to link two devices which
are fairly near each other. Serial connections are used for communicating over the phone lines
and for communicating between devices which are more than a few feet apart within asingle
building.

The most elaborate type of parallel communications involves a system called the IEEE-488
bus. This is a means of making a number of devices feel as if they were actually sitting inside
a single computer. Individual devices on the IEEE-488 bus must be no more than 12 feet apart,
and a string of 15 devices must be squeezed into a total cable length of no more than 60 feet.
It is a versatile but rather expensive system and its use is largely limited to specialized
laboratory systems.

The major use of parallel communications for microcomputers these days is for connections
to printers. In selecting a parallel interface card for a printer, you still have to do a good bit
of checking to make sure the printer and your card agree on which wire in the cable will carry
which signal, although one particular configuration called the Centronics standard isbecoming
dominant.

All of the common types of parallel connection use a standard five volt signal which is directly
comprehensible to most of the chips in a computer, but because this is a fairly low voltage, it
is not powerful enough to be used in long cables. In serial communications it is customary to
use 12 volt signals which can carry over a longer distance, or to use a different electrical
property, “current flow”, for very long cables.

Many older communications devices, most notably the venerable teletype, use these current-
based signals, and a whole legion of laboratory and business equipment which used to get
connected to teletypes still provide their communications signals in this form. The most com-
mon arrangement is called “20 milliAmp current loop” and Apple makes a card which can
accept and send these signals. Early in the days of Apple it was important for Apple to be
able to sell the Apple II as a replacement for the old time teletype, but this communication
mode is rapidly disappearing in the market place.

The current dominant star in communications is a kind of signal and a set of protocols which
are together referred to as RS-232C. This is a system which uses serial signals at 12 volts,
and in which a number of control and signal lines are lined up next to the data lines. RS-
232C serial connections are used for printers and modems as well as for directly connecting
terminals to mainframe computers. The disadvantages of RS-232C systems include the limit
on the length of the cable to about 50 feet as well as the limit on communication speed to
about 19,200 bits per second for direct machine to machine connection (for a variety of reasons,
RS-232C is rarely operated faster than about 1,200 or 4,800 bits per second). RS-232C is
popular because these speeds are near the limit of the ability of printers, telephone lines, and
CRT display screens for accepting data and because telephone lines can be used for occasional
transmission over longer distances.

The Apple //c has two complete RS-232C ports and no provision for parallel communications.
This choice was due in large part to the need to avoid the radio frequency interference generated
by the parallel communications cables and in part by the greater versatility of serial RS-
232C communications systems.
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One new rising star in communications is a serial connection system called “RS-422.” It
requires just two wires, supports cable lengths up to 2,000 feet, and can transmit data at
nearly one million bits per second. This standard is important because it makes it possible to
establish Local Area Networks (LANs). Dozens of computers in a building can be connected
to each other and can exchange messages nearly instantaneously without paying a penny to
AT&T (formerly Ma Bell). There are actually several competing hardware strategies to pick
from, some of which can carry on communication at rates of 10 million bits per second; these
are explored in Chapter 20.

Apple Memory and the $C000 Space

The true path to understanding the Apple for most programming and hardware tasks leads
through a range of about 4K of memory addresses which we can call the “$C000 Space”
(pronounced see-thousand). This is a range of addressable locations the 6502 can use for a
variety of tasks related to input and output. Some are used to operate switches, some are
physical “ports” to the exterior, and some are used for special programs in ROM to operate
peripheral cards.

Since we're going to be talking about small chunks of memory here, it will be convenient to
start using a new term, the “page” of memory. A page is 1/4K of memory addresses (256
locations to be exact). The idea of a page of memory is very handy for programmers who use
the hexadecimal number system since the hexadecimal representation for 1/4K or 256 is $100.
In this notation, the first page of memory has locations between $00 and $FF, the second page
has $100 to $1FF, the third page from $200 to $2FF, etc. This breakdown of memory into
pages is actually meaningful to the 6502 at the level of its machine language instructions.

The most interesting and subtle set of locations all occur in the first half of the first page of
the $C000 Space, an area we can call the “$C0 Page” (see-zero). This set of 128 locations is
considered a little bit tricky by even the best Apple programmers, but you may need to use
them in even the simplest BASIC program. These are the objects of most of the “PEEKSs and
POKESs” you've heard about. There are a number of good published descriptions of the $C0
Page and the one that appears here in Chapters 22, 25 and 26 should also help. There’s a Iot
more to this region in the /e than in the IVII +, and in the //c it has yet again more additional
fine points, so you have to take care where you get your information. The functions performed
here include operating and monitoring all of the Apple’s built-in I/O devices.

Control Switches and Ports

When you’re working in the lower half of the $C0 Page, you have to be aware that most of
the locations have no ROM or RAM. Most of the locations are actually used as switches and
“latches.” A latch is a device which can hold a byte of data and then release it to the databus
when the 6502 hits a switch. This is a popular means of passing information back and forth
between two computing devices which are not completely synchronized.

Some of the locations are actually involved in communication between the 6502 and other
subsystems right on the motherboard. These are often addresses which the 6502 can write to
but which it cannot read. They make sense when you appreciate the presence of the 6502’s
co-resident, the VDG. Although the 6502 can’t read from them, the VDG can respond to some
of them, The 6502 can communicate with the VDG by altering one of these locations and then
relying on the VDG to look in on those locations from time to time. These “softswitches” and
“toggles” are actually output ports to this “other machine” sitting on the same motherboard.




In addition, the /e and //c have a few of these locations which can’t be read by the 6502 or by
the VDG, but which are used by the third of the /e and //c’s great 40 pin DIP chips, the
Memory Management Unit (MMU). There are a few more of these odd creatures which will
get covered later on including one that only a cassette tape recorder can hear (II, II+ and
/le and one that you can hear directly because it makes the Apple’s speaker go “click.”

In the II and the II+, the upper half of the $C0 Page is devoted to use as a series of control
switches and ports for peripheral cards plugged into the expansion slots. The same concepts
of control and monitoring still apply, but, in the II/II +, all of these 128 locations were used
to operate I/O devices installed in the slots rather than built in at the factory. However, as
Apple progressively adds more built-in features to newer models, little chunks of this half
page are rendered into locations for built-in devices. So the distinction between the lower and
upper half of the $C0 Page is not hard and fast.

ROM Areas in the $C000 Space

The remaining 15 pages of addresses in the $C000 Space are devoted to reading special ROMs
that manage I/O. Most manufacturers of peripheral cards for the Apple write 6502 machine
language programs which operate their cards. The tradition is to store this program in a ROM
chip, build it into the card, and make it available for easy use by a programmer. You can
usually cause one of these programs to be executed by typing the appropriate PR#n statement.

There is, however, something strange about the memory addresses for these ROM chips.
Although this part of the $C000 Space has just 15 pages of addresses, it’s possible to plug in
peripheral cards carrying a total of about 71 pages worth of ROM chips (seven cards with
nine pages per card, and one more card with eight pages). An Apple II with no peripheral
cards has no ROM at all in the $C000 Space. An Apple //e has a full 15 pages of ROM inthe
$C000 Space already there when it's shipped from the factory, but it still doesn’t seem to mind
very much if you plug in an additional 71 pages. You end up with 86 pages of ROM locations
sharing just 15 pages of addresses.

This is a “space/time” phenomenon. A range of memory addresses can be thought of as a space.
The trick for having many different ROMs share their addresses is to let them be in the same
space but to require that they be there at different times. Although the ROM chips do not
physically move, they do move “logically” in and out of the $C000 Space so that no two of
them are in exactly the same place at the same time.

The 6502 keeps looking at the same logical space. One moment it sees one set of ROM chips,
but when it looks again to the same memory space a few instants later it sees a different set
of ROMs. The various ROMs are switched in and out of the $C000 Space under control of
programs. However, you’ve probably done this switching yourself dozens of times without even
realizing it. When you type PR#3 to turn on a video card, you are switching the video card’s
control ROMs into the $C000 Space.

The ROM area of the $C000 Space in the //c is much simpler. The machine comes with 15
pages of ROM and that’s the way it stays. There is one interesting twist though. Most of the
machine language programs in those //c ROMs are written in extended 65C02 machine lan-
guage rather than in 6502 code.
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Iron, Plastic and Permanence

During the past 10 years, there has been a steady and progressive effort to store data as
smaller and smaller patches of magnetic marks on plastic and to put more and more concentric
rings of these marks onto the same flat disk. Five and a quarter inch floppies which could
store 80K bytes have given way to 5 1/4 inch floppies which can store 2,400K bytes and to 5
1/4 inch hard disks which can store 500,000K bytes (yes, that’s 500 megabytes), all of which
can be used with an Apple. Chapter 23 is a detailed exploration of the design of these devices
and of the engineering challenges involved in expanding their capacity.

The recent development of small inexpensive lasers may ultimately lead to the replacement
of the electromagnetic system. The new optical disk technology depends on using electrical
pulses to generate tiny, focused, and intense beams of light which can burn small holes in a
plastic recording medium. Lasers are used to read by shining a weak light on the disk and
watching for the reflection to fail when the reading beam passes over a burned spot. Laser
recording promises much higher densities than can be achieved with magnetic technology
and also an escape from the tendency of magnetic media to be not quite as permanent as you
would sometimes like. It is still very difficult, however, to erase and rewrite disks using laser
technology.

In Chapter 24 we'll try to swing through a scan of what's out there on the market in semi-
permanent storage devices. Choice of the right device for you depends on a whole variety of
factors such as interchangeability with other computers, reliability, and the availability of
purchased software which can work with a particular kind of disk device.
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Chapter 4

Summary of Program Options

Assembly Language Programming

Most programming ultimately consists of stringing together various chunks and pieces of the
operating system software and arranging for your own data handling needs. The easiest way
to do this is by programming in a high level language such as BASIC or Pascal; for the most
part, the language interpreter or compiler knows when to call the operating system services
and what to tell them to do. If, however, your program must run extremely fast and if you’ve
got plenty of time to do the programming, you may want to handle all the details yourself,
in person, by programming in assembly language.

To do assembly language programming you have to have a fairly good grasp of the detailed
organization of your computer’s hardware, because most of the instructions refer to actual
hardware locations. This knowledge must include the sort of details about the 6502 which are
reviewed in Chapters 27 and 28, and also a comfortable feel for the various landmarks scattered
around the Apple’s address space.

The language itself is usually fairly simple because most microprocessors have relatively
small sets of instructions. The process of learning involves finding out how to put together
clumps of instructions which cause the events you want to happen. There are many books
which describe the instruction sets of various microprocessors, but the 6502 and the Apple II
are also the subjects of a very large number of books about how to put these instructions
together into productive programs. '

In Chapters 29 and 30 you'll see that the 6502 instruction set is fairly sparse compared to
some other microprocessors. However, even though it is sparse, and even though it is an older
microprocessor, it is absolutely the microprocessor of choice for an assembly language novice
because of the large number of well written books for beginners and the variety of assembler
programs and utility software available to help you learn to program.

The //¢c comes with a new 65C02 microprocessor which has a larger and more powerful in-
struction set than the original 6502. The expanded instruction set includes all of the 6502
instructions plus several new ones. This means that you can take advantage of all the older
books and guides, but then you can go on to write faster and more compact programs using
all the new 65C02 instructions.

This book does not attempt to teach you how to program in assembly language and it does
not provide full explanations of all the instructions. However, it does provide an overview of
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‘ the process of assembly language programming. Also, Chapter 31 reviews several full featured
assemblers you can use to convert your assembly language programs into machine language.

If you decide to learn assembly language programming you will immediately discover that
you’re expected to own an assembler before you even start. The assembler plays the role of
the Applesoft Interpreter; it accepts your assembly language instructions and generates ma-
chine language. Your choice of an assembler will have a very substantial effect on how easy
it is for you to learn assembly language. Hopefully the information in Chapter 31 will get
you out of the chicken and egg problem of choosing an assembler before you really understand
what an assembler does.

Managing Programs, Disk Files and I/O

The manufacturer of any computer usually supplies a collection of machine language programs
which are together called an operating system. The programs in an operating system are
responsible for managing the I/O tasks such as reading data on the disk drives, for causing
programs to be executed by the microprocessor, and for keeping track of where programs and
data files are stored so they can be conveniently retrieved from storage when needed.

There are currently five different, well-supported operating systems available for the Apple
II, and each of them comes in several different flavors. The first and foremost of these comes
in two parts, a machine language level “Monitor” which is stored in a ROM in every Apple,
together with the well known DOS 3.3 distributed on disk. The second major resident operating
system is the Pascal operating system, and it essentially starts from scratch making little use
of the routines provided in the Monitor ROM, and completely replacing DOS. The third is
CP/M for which several companies have written versions of the I/O routines together called
the BIOS, and the fourth is MS-DOS 2.0 which runs in its own independent hardware envi-
ronment in the Rana 8086/2 peripheral. Fifth and newest is ProDOS. All of these store their
information on disk in completely unique fashions, so you cannot even use a blank disk which
has been formatted by one of the other systems. Chapters 35, 36 and 37 step through a detailed
comparison of several features of DOS 3.3, CP/M, ProDOS, and MS-DOS 2.0.

DOS and the Monitor are sort of indigenous to the Apple; they grew up piece by piece from
Wozniak’s fertile mind as the earliest Apples took shape and they reflect his ideas of what an
operating system should do rather than any standard industry model. The greatest asset of
this operating system is that it is easy for the beginning programmer to use. All of the
commands are given in simple statements which have the feel of programming in BASIC.
Further, these commands provide a truly incredible ease of control over all sorts of varied
I/O devices. This ability is absolutely unparalleled in any other microcomputer operating
system. -

The weaknesses of the DOS/Monitor operating system come in three categories. The first two
stem from the very fact that this is essentially a BASIC programmer’s operating system.
Machine language programmers who are trying to design top quality, high speed commercial
software are substantially left in the lurch. Using the subroutines available in the operating
system without actually giving commands in BASIC is not at all straightforward. Worse,
Apple has never made a substantial attempt to publish a clear set of procedures for using the
operating system features from machine language programs.
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This has spawned a bizarre dichotomy among skilled Apple programmers. One bunch has
tended to write a minimal skeleton of every program in BASIC, to loop out of BASIC into
machine language for fast subroutines, then to come back in to issue operating system com-
mands. The second approach has been the development of a feverish “hackers” network of
pure machine language programmers who go about trying to “crack” the operating system
and who occasionally publish personalized tricks for making it behave in one of several com-
puter magazines. ‘

Unfortunately, becoming a master at Apple machine language programming doesn’t help much
when you try to program a different computer. Further, since Apple doesn’t intend for the
operating system to be used by beginning machine language programmers, it has changed
the system a number of times in such a way as to force machine language programmers to
do substantial rewrites. The best Apple programs tend to be so specialized that little attempt
is ever made to make them run on any other computer system, and some can only run on a
single version of the Apple II. VisiCalc is one of the few examples of an Apple DOS based
program which was completely rewritten from scratch to run on the IBM PC.

The second weakness of the DOS/Monitor system is that it is a “command driven” system. A
computer novice must learn the commands and understand their effects before he or she can
use any of the features, such as running a program. This is why it has been popular for Apple
software to be sold in an automatic “boot and run” format which never requires the user to
interact with the operating system.

The third weakness stems from its uniqueness at the level of floppy disk usage. The renowned
zero interchangeability of Apple text files with text files on diskettes from other computers is
due in substantial part to this. In fact, some of the things DOS does are so unique that it may
not be possible to “boot” a disk unless you are actually using a genuine Apple Disk II disk
drive. You cannot even count on substituting a non-Apple disk drive made by the same equip-
ment manufacturer.

In Chapters 33 and 34 there is a fairly detailed overview of what DOS and the Monitor do,
how they do it, and where you can learn more. In spite of the weaknesses mentioned above,
this has been the dominant Apple operating system and one you’re likely to become familiar
with. It is the one given out free from 1978 to 1984, and the one that runs the hugeassortment
of excellent Apple software.

Pascal Operating System

The chief attractions of the Pascal Operating System are that it constantly provides menus
that describe your options before you give a command (see Figure 4.1), and that it is extremely
gentle with the novice, constantly double checking and warning you in a calm manner when
it thinks you’ve ordered it to do something you didn’t mean to. Sounds wonderful, doesn’t it?
Well, all this has its price.

First, it tends to be a bit sluggish when compared to DOS, and second, you will very soon
wish that it would stop being so friendly and protective all the time and simply let you go
directly about your business. Third, and most serious, this is an operating system for people
who want to program in Pascal or Modula-2. It is not for people who want to do word processing
or play computer games, etc. For a variety of reasons, there has never been very much com-
mercial software written to run on the Pascal Operating System. The few commercial Pascal
programs on the market such as PFS and Statpro hide the fact that they’re using the Pascal
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Operatiné System so you never get to enjoy it. Further, this is not the operating system for
people who wish to learn to program in machine language. The routines which make up the
operating system are not at all easy for a machine language programmer to use.

Ziler: 5iet, Slave, Wihat, Nlew, L(dir, R(es, Clhng, T(rans, Diate, Qluis iy

FORMATTER. DATA
PRINTOLT. CODE
- SYSTEN. . TEXT

L. 1 4 18,
19 Files(listed/in-dir), 277 blocks used, 3 unused, 3 in largest

Fig. 4.1 Pascal directory listing. The Pascal operating system can date stamp its files, and it always prints a menu of
options across the top of the screen.

The future may see some shift towards increased importance of Pascal programming on the
Apple because of the growing emphasis on portability of programs among different microcom-
puters. Apple Pascal 1.1 is also known as UCSD Pascal II.1. It is an extension of the original
UCSD Pascal. Softech microsystems has achieved essentially complete portability of programs
among all microcomputers with its own different version of Pascal called the UCSD Pascal
IV.1 p-system, and this version is now available to run on the Apple. It is important to note,
however, that this portability is only meaningful at the level of programming in the high level
Pascal language. There is no particular disk compatibility among computers using IV.1, and
another consideration is that it executes more slowly than Apple Pascal 1.1.

CP/M 80

To use CP/M you have to purchase some sort of peripheral card or the //c expansion module
which has a Z-80 microprocessor system, but the rewards are substantial for the serious
microcomputer user. A novice will find CP/M to be the most confusing of all the operating
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systems. Further, it is very weak at handling errors of any sort—mistakes or misstrokes often
result in an unresponsive or “hung” system, and CP/M is remarkably inarticulate in telling
you what you did that it objected to. The version of CP/M distributed with the Appli-Card
from PCPI is a little better in this regard than the one you get with the SoftCard from Microsoft.

However, once you get past your first few lumps and bruises, CP/M will impress the DOS or
Pascal user by its speed and no nonsense efficiency. The real reward, though, is in the top
flight software available for word processing, database management, and other business
applications.

One important reason for the strength of the software is that CP/M is a dream operating
system for machine language programmers. It is very well documented and it is arranged
specifically for the convenient use of skilled machine language programmers. It comes in
several parts, and the real key to its success is that Digital Research sells a sort of programmer’s
environment which is the same for an enormous number of microcomputers using 8080,
Z-80, 8088, or even 68000 microprocessors (almost anything except the 6502). This environ-
ment includes a list of some 50 or 60 different kinds of /O or file management tasks a
programmer might like to do and it assigns each task a number and a protocol for accepting
special instructions. The manufacturer of the computer system is responsible for writing the
actual machine language routines for its own system and linking these programs into the
numbered tasks or “services.”

The result of this is that a programmer can reasonably plan to write a fast, efficient machine
language program which will run on any one of a family of computers including all 8080,
Z-80, and appropriately equipped Apple computers. If he or she wants the program to run on
an IBM PC or a 68000 based computer, the machine language will have to be rewritten from
scratch, but since a majority of the work is actually done by CP/M services, the general
structure of the program can remain the same.

MS-DOS and CP/M86

There are several peripheral boards available for the Apple which use the 8088 to run MS-
DOS 1.1 and CP/M86. These two operating systems are essentially identical to CP/M except
that MS-DOS 1.1 lacks much of the variety of commands available with CP/M. Further, at
this writing, there is very little software for MS-DOS 1.1 which is not available in identical
form for Z-80 based system, and the new Z-80B cards often run the programs faster than the
8088 can.

The most serious current reason for not choosing these operating systems is that most of the
software that runs on the IBM PC will only run on the PC itself or on carefully crafted PC-
compatible machines. The various 8088 cards which are currently available for the Apple
were all designed before the PC software market had fully shaped up, and so they made no
particular effort at providing PC compatibility.

However, the story is a bit different for MS-DOS 2.0. There are several programs for this
newer operating system which are designed to use up to 256K of RAM, and these can be very
interesting, especially for the business user. The 8086/2 from Rana is a complete PC-compatible
machine in a box, including PC-compatible drives, PC-compatible video, and 256K of RAM.
It runs MS-DOS 2.0 and has the support of both Apple Computer and several major MS-DOS
software publishers. It is actually a very powerful machine which exceeds the power of most
PC-compatibles on the market as well as presenting graphics and processing features not
available for the PC itself.
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ProDOS

This is a totally new operating system for the Apple II family of computers. It is easy for non-
programmers to use because most of its features are available from menus. At the same time,
time, though, it has a very well designed “machine language interface” with well documented
system calls in the style of CP/M. Even the Applesoft interface has some powerful new com-
mands. Thus it has something new and improved to offer for a wide range of potential users.
In addition, it will work comfortably with nearly any kind of new external mass storage device,
thus breaking free of the 128K Disk II

ProDOS'’s closest relatives are the Sophisticated Operating System (SOS) of the Apple III and
the UNIX operating system originally developed at Bell Labs. The similarity to SOS results
in substantial disk compatibility between the Apple II and Apple III, and the similarities to
UNIX result in convenient management of hard disks and interesting new ways of carrying
out I/O tasks.

Programming Languages and BASIC

If you want to learn to program, you'’re going to have a pick a language, then go read some
books about your language, do a little programming to get the feel of it, and then start the
long gradual process of becoming eloquent. BASIC (Beginners All-Purpose Instruction Code)
and its older cousin FORTRAN (Formula Translator) dominate computer programming. FOR-
TRAN was born in the dawning days of the computer age (1956) and is so well known and
has been used in so many programs that it still has an enormous influence. Until the last
year or two, it has remained the unchallenged language of choice for scientific programming
because it is possible for a scientist to make use of huge libraries of FORTRAN subroutines
written by nearly two generations of programmers. FORTRAN compilers are still among the
best selling language packages.

BASIC closely parallels FORTRAN’s syntax and organization, but is a bit less stiff and formal.
This language is also getting a bit grey around the ears since it hasjust celebrated its twentieth
birthday. However, there is no great library of BASIC subroutines because BASIC comes in
so many flavors and because its freewheeling structure and popularity in “interpreted” form
aren’t well suited to plugging in other people’s subroutines.

For an Apple user, there are typically five choices among the various BASICs. The Apple is
sold with two versions, Integer BASIC and Applesoft BASIC (see Figure 4.2) and CP/M users
can choose among MBASIC, GBASIC, and CBASIC.

There are three principal areas where Applesoft excels over Integer BASIC. The first of these
is implied by the name “Integer.” This language can manipulate the 65,535 numbers that
come between -32,767 and + 32,767 and that’s it. Applesoft is also called “fioating point”
BASIC because it accepts numbers with decimal points and can use scientific notation to
handle an infinity of real numbers over a range of 10 to the 64th power (which is plenty).

The second difference is that Applesoft has greatly enhanced capabilities for playing around
with strings of characters, and the third difference is Applesoft’s ability to conveniently manage
Apple’s high resolution graphics. Integer offers a few extra services for the programmer, but
all of these capabilities can be added to Applesoft by loading in some popular utility programs.
Integer is important only because it was the first BASIC for the Apple and many Apple
programmers cut their teeth on it. Apple still distributes Integer BASIC so that all Apple
users will be able to run purchased programs written in Integer BASIC.




Fig. 4.2 Applesoft BASIC program listing. This is the most popular dialect of BASIC for the Apple.

The three CP/M BASICs are similar to Applesoft in many ways. CBASIC differs in that it is
a compiled version of BASIC. Compiling can produce faster running programs, but this yields
no special advantage since a program written with the Applesoft interpreter can be compiled
after it’s been completed by any one of several commercial utility programs.

GBASIC is largely identical to the standard CP/M MBASIC except that MBASIC does not
have graphics commands. Since Wozniak has built a very well documented Video Display
Generator into the hardware of the Apple, it was a relatively straightforward task for Microsoft
to duplicate the high resolution graphics commands in Applesoft, add them to MBASIC, and
call the new hybrid GBASIC. One of the principal arguments in favor of using MBASIC is
that programs may be portable among CP/M and CP/M86 systems, but if you use GBASIC,
portability is lost and you might as well be using Applesoft.

In the discussions of operating systems it was pointed out that the I/O routines in the DOS/
Monitor system were easily accessible from Applesoft BASIC and that the I/O routines in
CP/M were easily accessible from 8080 machine language. When you program in MBASIC,
you discover that it is very difficult to take advantage of the Apple’s formidable I/O capabilities,
and worse, it’s also very difficult to use CP/M’s operating system services. The beginning
programmer will have far greater power over the machine if he or she chooses Applesoft. A
skilled programmer who is comfortable with both 6502 and 8080 machine language will have
full use of the services of both operating systems—but we’re talking here about a very, very
select crowd.
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If you choose Applesoft BASIC, you can begin with the Tutorial and the Programmer’s Manual
sold by Apple, and then supplement that with any one of dozens of books on Applesoft. However,
it’s after you've gotten into it a bit that the real fun starts. There are literally hundreds of
“utility programs” and explanatory articles out there which you can use to make Applesoft
jump through hoops and turn somersaults. Learning Applesoft BASIC is a continuing process.
It can begin as an easy convenient language for learning to do simple tasks, but it can lead
you into the heart of hearts of microcomputers.

This book does not include a section on learning to program, but Chapters 38 and 39 are
intended to explain the lay of the land for advanced Applesoft programming. Many program-
mers who don’t want to become advanced but find themselves getting into troubled waters
may want to pick through the information in Chapters 40 and 41 on handling memory space
problems and speed problems in Applesoft programs.

Structured Programming and Pascal

Your choice of a programming language should also take into account the kind of task you
hope to be able to accomplish. There are two major areas where BASIC and FORTRAN are
subject to problems; the first is in the construction of very large and complex programs and
the second is in the area of writing operating system level software for managing I/O. You
may not be planning to write large programs, but be forewarned that these things do tend to
grow rapidly once started.

Pascal is a relatively young language (1971) which addresses the weaknesses of FORTRAN
and BASIC by building large programs from a series of smaller units. Each unit is composed
of a nested hierarchy of functional program segments and can be planned and written sepa-
rately as a logical, coherent entity before the various parts are all linked together when the
program is compiled. By making the program out of understandable little chunks, Pascal tends
to make it easier to add, substitute, or modify units long after a first version of the running
program is completed.

The Pascal compiling process has some serious limitations however. Pascal is not actually
compiled into the machine language of the 6502. Rather, it is compiled into a machine language
called “p-code” which cannot run on any real microprocessor. The Pascal operating system is
written in real 6502 machine language, and it creates, from software, something known as
the “P-machine.” This machine does not exist as hardware. It is a mental notation. The p-
code generated by the compiler is the machine language of the p-machine. The p-machine
executes the p-code instructions at run time by interpreting them into 6502 machine language.

Pascal was designed in this fashion so that p-machines could be created on every kind of
computer in the hope that compiled p-code would always encounter a seemingly identical p-
machine no matter what computer was actually being used. There are three flies in this
idealistic ointment. First, Pascal is slow because it goes through so many layers of translation.
Second, the p-machines which have been created on various computers ended up being so
different from each other that you cannot expect a program to actually be portable (unless all
the machines use the UCSD p-system Version IV.1 from Softech). Third, this multi-level
infrastructure tends to make the programmer completely isolated from the actual hardware
of the microcomputer. If an I/O facility is not provided by the language directly, you will have
a very difficult time trying to do the job yourself. Further, the final running machine language
tends to be comparatively inefficient.
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This is all acceptable in the classroom where students are learning good program design, but
it has made Pascal fairly unpopular with commercial software publishers. With the intro-
duction of new microprocessors such as the 68000, however, the computer can make up for
the sluggishness and inefficiency by sheer computational brute force and speed. As a result,
Pascal is much more important for commercial programs for 68000 based machines than it
has been for older microcomputers.

The C programming language was written (1974) by people who liked the ideas behind Pascal
but wanted to write efficient commercial and operating system software. C retains the struc-
tured, unit based approach to programming and even looks a bit like a Pascal program when
it is written out. However, it is very hardware oriented. The programmer can use many
commands that resemble assembly language more than anything else. The result is that when
a C program is compiled, it produces extremely compact and efficient machine language. In
fact, it is nearly as efficient as code written directly in assembly language. C is not a language
for beginners, but its spirit is so close to Pascal’s that it is fairly accessible to programmers
who have learned to program by using Pascal.

Modula-2 (1982) is one of the newest computer languages, but it is causing quite a bit of
excitement. It was written by Niklaus Wirth, the principal creator of Pascal. It is essentially
an update of Pascal for the benefit of professional programmers. It improves on Pascal’s pro-
clivity for modular structure. Pascal tends to nest its units, one within the next, within the
next, whereas Modula-2 tends to make them truly separable distinct units.

LOGO

For most Apple owners, LOGO is associated with Turtle Graphics. With these two parts
working together, young children can learn to program the Apple to carry out drawings of
complex geometrical shapes and just plain pictures. This is an excellent use for LOGO, but it
distracts some programmers from the real power and importance of LOGO. This language
differs from BASIC and Pascal in that it has its roots in the science of artificial intelligence.

On a practical level, the most important distinction of LOGO programming is that you can
use words as symbols for complex program operations. In effect, you define new commands in
the language as you go along. It might seem that verbal symbols are just a crutch for the
inexperienced, however, there is a good reason why a seven-year-old can write a LOGO program
to construct a complex geometric shape that most adult programmers could never complete
in BASIC. This mental elegance provides an interesting sort of programming power with
which more programmers should become acquainted.
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Chapter 5

The Video Display Generator

On the glowing surface of your Apple’s video screen, two great American passions meet:
television and microcomputers. When Wozniak was designing the first Apple II in the mid
1970s, however, television reigned supreme and the passion for microcomputers didn’t exist
yet. Consequently, Wozniak set out to design a piece of equipment which was as much an odd
new sort of television camera as it was a microcomputer.

Like any good television camera system, the Apple II produces a signal which can be sent to
the antenna of any black and white or color TV set in the country to reproduce what the
camera is looking at. In a standard television camera, a camera tube sweeps through a re-
petitive scan and captures the patterns of light and dark it sees before it. The Apple’s video
generator performs an almost identical kind of sweep, but instead of looking at people or
scenery, it scans a region of the Apple’s memory where an image pattern of ones and zeros
has been placed.

Again, as with a good television camera, it is possible to change which area of memory the
“camera” is looking at. In the Apple /e and //c there are six different regions or “display
ranges” which can be scanned. The programmer has the role of a scene designer or director—
exercising decisive control over what graphical patterns or letters and numbers get put into
each of the display ranges for the camera to see.

Hardware Video Systems

It is useful to think of Apple Video in terms of three distinct systems: text, graphics and color.
Within each of these there’s a fair amount to be learned about both the built-in and optional
enhancement hardware, and about the programming needed to control what gets displayed.

The first of the three systems is responsible for the display of text and data on the screen.
This is the way in which the users and designers of word processing, spreadsheet and database
programs tend to think about video. A large part of this chapter will therefore be devoted to
the Apple’s built-in hardware and software for managing text on the screen, and it will cover
equipment devoted to improving the quality and quantity of “alphanumeric” characters you
can see on the screen. It will also cover the options available for easing eye strain for people
who spend many hours staring at the video representation of text and data.

A second and substantially different approach to Apple video concerns what is called “bit-
mapped graphics.” This is the realm in which Apple video is closest to standard television,
yet the management of computer graphics is so much more subtle and complex than the
management of text characters that graphics video has lagged behind text video in terms of
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quality and versatility of software. Graphics capabilities are important to businessmen who
need graphs and charts, to scientists who need visual summaries of mathematical expressions,
and of course to artists and game designers.

Color video is a sort of third realm, although for the most part it is used to enhance graphics
displays. The use of color in computer graphics requires attention to a special set of hardware
enhancements, and it introduces a few more complexities into programming.

The Monochrome Video Screen

The inside surface of your video screen is coated with a material called a “phosphor” which
glows briefly when it is struck by a beam of electrons. At the far end of your monitor is an
“electron gun” which shoots electrons at the screen in a sharply focused beam. Left at peace,
the stream of electrons would zoom straight toward you, smash to a halt at one very tiny spot
in the center of your screen, and cause a single tiny bit of phosphor there at the center to
glow, surrounded by an unbroken field of black.

Electron Beam Raster

However, surrounding the electron gun is a yoke made of thousands of turns of fine copper
wire. In an endless ritual enacted an infinite number of times since the dawn of television,
the wires of the yoke generate an ever shifting electromagnetic field. This field first causes
the stream of electrons to bend sharply to the left side of the screen and then steadily sweeps
it across towards the right, leaving a single, perfectly straight glowing “scan line” across the
screen. The beam is then caused to snap back to the left, but pointed a tiny bit lower, so the
next sweep to the right draws a second perfectly straight scan line across the screen, but a
little lower than the last one.

This process repeats again and again, steadily approaching the bottom of the screen. But as
the lowest possible scan line is drawn, the beam is snapped back up to the top left corner.
From there it begins again, sweeping out one scan line after another, gradually filling the
screen with lines, each laid down exactly on top of the set just completed.

In nearly every television and monitor tube in this country, the electron beam carries out a
little less than 16,000 horizontal sweeps every second. Even more chilling, during the CBS
evening news, when millions of TV sets are tuned to a single broadcast channel, millions of
these beams, all over the country, sweep from side to side in exact and perfect synchrony. In
every home, the beam snaps back to the top at the same instant, 60 times every second,
performs exactly 262.5 horizontal sweeps, and then snaps back up to the top again (262.5
times 60 equals 15,750 sweeps per minute).

Figure 5.1 shows some of the scan lines in the sweep pattern. This pattern is called a “raster,”
the electron beam is called a “cathode ray” and the events all take place inside a Cathode
Ray Tube (CRT). The yoke is controlled by circuitry inside every television and every monitor.
The raster pattern starts up immediately as soon as the set is turned on, whether or not it is
receiving any TV signals or input from a monitor cable. However, there are two ways in which
the CRT will change its standard raster behavior in response to incoming signals.
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Rasters, Retrace, and Blanking
{for Apple, non-Interlaced, Video)

1 Horizontal Scan Line - A new one begine 15,700 times each

second (157 kHz). The display is generated during these scans
by varying the intensity of the electron beam. It takes 262
horizontal scan lines to cover the screen from top to bottom.

Horizontal Retrace - The beam is turned off or "blanked”
during retrace. Each one takes 24.6 microseconds.

Vertical Retrace - These begin about sixty times a second
(60 Hz}). The "Vertical Blanking" period during this type of
retrace takes 4 480 microseconds.

Fig. 5.1 Non-interlaced raster pattern for CRT screen.
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Synchronization and Blanking

The two kinds of responses are used to synchronize the starting time of each horizontal and
vertical return or “retrace,” and vary the intensity of the electron beam. In a broadcast
television system, the sweeping in the CRT is synchronized with the sweeping of the camera
tube in the TV camera, and in the Apple it is synchronized with sweeps through a display
range in Apple memory. Synchronization is accomplished by sending brief little pulses to the
proper place in the monitor, one kind of pulse for horizontal synchronization, another kind of
pulse for vertical synchronization. The synchronization task is very straightforward, the hor-
izontal and vertical synch pulses are always sent in exactly the same sequence, every time,
again and again without variation.

The intensity signal is controlled by two different systems in the Apple. The first is a sort of
“dumb” system which performs a very simple task. Its purpose is to be sure that the beam is
off during the horizontal and vertical retrace steps. No matter what the beam has been doing
as it sweeps across the screen, it is always turned way down before it is snapped back to the
other side or to the top, then turned on again when it is ready to return to begin the next
horizontal sweep. In this way, the beam can only draw stacks of horizontal lines. The diagonal
“retrace” lines (seé Figure 5.1) are always hidden, a process called “blanking.”

Intensity and the Image

The rest of the video system in the Apple is concerned with controlling the intensity of the
beam during horizontal sweeps. If you turn on your monitor and type a line of text onto the
screen you can get some idea of what the Apple is up to. On close examination you’ll see that
each letter is made up of a set of glowing dots. In each character, the dots are arranged in
seven rows. Each row continues horizontally across the screen passing through each character
in the line of text. Each of these rows is exactly one horizontal sweep of the electron beam,
so this means that the electron beam must complete seven full horizontal sweeps to draw out
a line of text.

As the beam travels along a row, it turns on or off in a carefully controlled pattern. The Apple’s
standard character set treats each letter as a pattern or matrix of seven rows with five dots
in each row. Figure 5.9 shows the pattern for the letter A. With this pattern in mind you can
look back at the line of text on your screen and pick out one of the seven rows. As you follow
it along the screen, you can see that it is just a pattern of on and off signals. This pattern is
controlled by the intensity signal and later on we’ll say more about how the pattern is created.

Dots and Characters

For each Apple character there must be one dot for spacing between letters, five dots for the
letter itself, and one more dot for spacing on the other side. To put 40 characters on a line,
this comes to 40 by seven equals 280 dot positions. When the //e 80 column mode is used or
a standard 80 column card is installed, their must be 80 by seven equals 560 dot positions.
One important question is: How fast must the beam turn on and off to generate this many
dots in a single sweep?

At a rate of 15,700 sweeps per second, each sweep has to get finished in just about 64 millionths
of a second. The beam has to turn on and off 560 times during one 64 millionth of a second!
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Actually, the situation is even worse because in Apple video the beam spends about one third
of its time either off the screen or doing retrace. When everything is calculated out, it is
revealed that the beam must be able to turn on and off in something less than one tenth of
one millionth of a second.

The standard way of stating this is as a rate of about 14 million times a second (14 megahertz).
The exact number is 14.31818 MHz, and some of you will no doubt remember from the back
corner of you mind that this is the rate of the Apple’s master crystal (see Figure 5.2). We see,
therefore, that nearly all timing of events in the Apple is tied to the need to turn dots on and
off very rapidly on the screen. This takes place 14 times faster than the 6502 can operate, so
most of the data manipulations and calculations are performed by the Apple’s Video Display
Generator, almost independently of the 6502.

Fig. 5.2 Master timing crystal for
the //e. This small metal package
contains a flake of quartz which
vibrates at the precise rate of
14.31818 million cycles per second.

The Apple Video Output Signal

Although there are several kinds of information the Apple must communicate to the video
monitor, there is only one wire which connects them. Inside the Apple, the horizontal and the
vertical synch signals, the blanking signals, and the intensity signals are all brought together
and mixed to form a single “composite” signal.

If you purchase a video monitor for your Apple, you must make sure that the monitor accepts
a composite signal. Some other microcomputers, such as the IBM PC provide three separate
signal lines for the two synchs and the intensity, all using the five volt signals so dear to TTL
electronic components (see Chapter 12). The Apple’s composite video signal is always between
zero and one volt, so it won’t work with these “T'TL” monitors.
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Use of a composite video signal is a tradition from television. For broadcast TV, this composite
signal was then mixed again with a high speed radio frequency (RF) signal and sent out onto
the airways. At a receiving television set, the RF signals was removed electronically to reveal
the composite video, and then the composite video was disassembled to get out the synch and
intensity signals for use in controlling the electron beam. Because the Apple II generatesa
composite video signal, it is a simple manner to add an “RF modulator” which creates the
kind of signal that is broadcast by TV stations. This trick permits you to connect the output
of an Apple directly to the antenna of a standard TV set. A good quality RF modulator is the
Sup’R Mod from M & R Enterprises, and you get one free from Apple if you buy a //c.

Television Set versus Video Monitor

This is a neat trick and it has saved many people the cost of a special monitor, but there is
one serious drawback to using a TV set. In television land, the rule is that you never put
more than about 300 dots on a scan line. Therefore, most televigion sets have been designed
with electron beams which can turn on and off at a rate or “bandwidth” of only six or seven
MH2z (see discussion of rates above).

This is fine for the Apple’s standard 40 column text, but if you use the /e 80 column card or
any other 80 column card, the TV’s electron beam won’t be able to turn on and off fast enough.
Remember, for 80 columns you need at least 560 dots in a scan line, and that means 14 MHz.
For this reason, any Apple owner who wants to see more than 40 columns on a line must buy
a video monitor with what is called a “bandwidth” of about 14 MHz. You can get by with a
12 MHz monitor, but the individual dots blend together a bit.

The 80/40 switch on the //c doesn’t actually affect the video system at all. Rather, it is a simple
way of warning your software that you are using a television set rather than a highresolution
video monitor. When the switch is pushed down, a program can detect a “flag” in one of the
Apple’s $CO locations ($C060, 49,248—see Chapter 26). The program can respond by setting
up the Apple to generate 40 column text rather than 80 column text.

Interlace and High Resolution Characters

Now that we’ve dealt with the question of how many dots you can put on a scan line, it is
appropriate to ask about how many scan lines you can fit on a screen or “field.” The design
of most TVs and monitors reflect the old standard from television which comes in at 262.5.
The Apple actually uses only 262 scan lines, of which a few are lost off the top of the screen
and few off the bottom, leaving 192 scan lines. Each Apple screen character is made of seven
rows with one extra row left for spacing, so this allows for 192 divided by eight equals 24 rows
of text.

Advanced Logic Systems sells an enhanced text card for the Apple called the Smarterm I
version 2.0 which can generate characters in a 9 by 11 matrix. By fiddling a bit with the synch
signals, they are able to use 24 by 11 equals 264 scan lines. These are very nicely formed
characters, but not all video monitors are capable of generating this resolution.

Videx has just upped the ante dramatically by releasing their new Ultraterm board. The
Ultraterm will be discussed in some detail later in the chapter, but at this point it isinteresting
to note that it can generate 48 rows of text using 12 scan lines for each character. This means
48 by 12 equals 576 scan lines on the screen. This high line density is not achieved by minor
fiddling with the synch signal, but rather by using a slightly different raster pattern called
an “interlaced” raster.
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Field 1

Fig. 5.3 Interlaced raster pattern for the CRT screen. This system packs in twice the vertical resolution of the non-
interlaced scan. It is used for broadcast TV and by the Ultraterm video board for the Apple.

79



Although interlace is actually the standard raster pattern for broadcast television, it is rarely
used in computer video monitors. Figure 5.3 shows an interlaced raster pattern, and you
should compare it with the non-interlaced raster in Figure 5.1. In this pattern, once the 262
scan lines have been drawn, a 263rd scan line starts, but, halfway through, the vertical synch
arrives and the rest of current horizontal sweep is carried out on the top. The beam now
proceeds to sweep out another 262 and a half scan lines, but these scan lines are in a slightly
different position than the previous set. Notice that this second time around, the vertical synch
occurs at the left margin instead of in the center.

There are two consequences of this alternating vertical synch position. The first is that in
standard interlace mode video there are 525 horizontal scan lines instead of 262.5. The second
consequence is that each position is “refreshed” by the beam only half as often. In the “non-
interlaced” mode described earlier in this section, each dot gets a fresh pulse of electrons 60
times a second, but in interlace, two full screen scans must be completed so each dot gets
refreshed only 30 times a second. ’

In nearly every video monitor on the market, the phosphor at a given dot will have begun to
fade before the beam gets back to it in interlace mode. This results in a visible “flicker” of
the screen which is distracting and causes eyestrain. Video monitors have been designed with
these “short persistence” phosphors so that the image will respond quickly to changes. How-
ever, this makes them dependent on a regular refresh 60 times a second.

Selecting a Monitor

The Ultraterm text card probably heralds the arrival of a new generation of very high reso-
lution text video boards and all of these boards will need to use interlace. Fortunately, two
companies offer monitors with “long persistence” phosphors which do not flicker in interlace
mode. The monitors are the Apple Monitor III (see Figure 5.4), and the Amdek 300 or Amdek
300A.

Fig. 5.4a The Apple Monitor Il is a high
resolution green screen monitor with fast
phosphors.

Fig. 5.4b The Apple Monitor lll has slower
phosphors which is desirable if you are using
interlaced video.
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Of these three monitors, the Amdek 300A is the outstanding video monitor on the market for
several reasons. First, the long persistence phosphor makes it amenable to text generators
with twice the density of horizontal scan lines as most other monitors. Second, the Amdek
300A has a relatively high resolution bandwidth of 18 MHz as opposed to 15 MHz for the
Apple Monitor IIL. This means that on each of its nearly 600 scan lines a beam can plot nearly
1000 dots, a substantially higher resolution than the Apple Monitor IIl. The folks at Videx
tested the Amdek 300A and discovered its bandwidth is actually quite a bit higher than the
18 MHz listed in the Amdek’s product specification sheets.

The actual bandwidth of the 300A prbved to be sufficient to display the 1,440 dots used in the
Ultraterm’s 160 column mode, and the manufacturers of the Ultraterm board have endorsed
the Amdek 300A as the optimal monitor.

The Monitor III also performs better than its specifications suggest it should. However, the
Monitor III can’t show all 160 columns of Ultraterm text because you can’t squeeze the hor-
izontal width of the image sufficiently to bring the entire line of text into view. The USI Pi 3
has a higher bandwidth (20 MHz), long persistence phosphor, and a simple switch for displaying
text in inverse, but it lacks the anti-glare screen on the Amdek 300A and Monitor III. This
anti-glare feature gives the Amdek 300A a deep black background behind bright characters.

In shopping for a monitor, you should be aware that some Monitor IIIs don’t have the long
persistence phosphor. In some applications, long persistence leads to “smear” on the screen so
Apple began producing them with a different phosphor. Then when the Apple III+ was given
interlace capabilities, Apple switched back to using the long persistence phosphor on the
Monitor III. The Monitor II has a short persistence phosphor but a bandwidth of 18 MHz. For
any of the high resolution video generator cards, the best way to find the right monitor may
be to bring the board along with you when you go shopping.

Fig. 5.5 Amdek's Video 300A
has slow amber phosphors and a
very high resolution video beam.

Amber versus Green

One final reason for recommending the Amdek 300A (see Figure 5.5) over the Apple Monitor
III is that the 300A uses amber colored phosphors instead of green phosphors. In the early
years of “monochrome” monitors the standard was black and white. Later, monitor manufac-
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turers realized they could achieve a brighter image with higher contrast by using green
phosphors. However, a problem has cropped up with green phosphors. The eye reacts to the
green on black in some ways like it does to the classic optical illusions using green on red
backgrounds—the eye muscles constantly go through tiny little refocusing actions which
contribute to eye strain.

The other problem with a green screen has to do with brightness. The color receptors in the
human eye are more sensitive to some colors than to others. If you place a green screen and
an amber screen side by side, and use objective light measuring equipment to adjust them to
the identical real intensity, the human eye will perceive the amber screen as much brighter.
As a result, by judicious use of the brightness and contrast controls on an amber monitor, you
can produce an image which is much easier on the eyes than the same image on a green
screen. The occupational health and safety laws of several European countries actually require
amber monitors.

Keeping Track of the Beam

The Apple’s video display generator has a sort of mental image of what the beam is doingin
the CRT. Each horizontal scan line is treated as if it were divided into 65 screen locations. Of
these, 40 are considered as positions for characters, and the remaining 25 are used up during
the time when the beam is off the edge of the screen or doing horizontal retrace. Each scan
line is given a number from 0 to 261, so there are 262 by 65 equals 17,030 screen addresses.
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These screen addresses are generated by a simple counting process. The master 14 MHz clock
signal is counted by several chips in the IVII +, or by a special Programmed Array Logic (PAL)
chip in the //e and //c (see Figure 5.6), and a series of slower clock pulses are created, some
at seven MHz, some at 3.5 MHz, some at two MHz and the slowest at about one MHz. There
are actually more than one of these one MHz signals, all slightly out of phase with each other,
and each used for a different purpose. One of the one MHz signals is called “Phase 0,” and it
is used by the 6502 as its main system clock. Another of these one MHz signals, called LDPS,
is used by the video screen address generator.

The screen address generator counts the incoming pulses to determine which one of the 65
horizontal positions is being illuminated by the electron beam at any instant. Each position
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is valid for a full one MHz clock cycle, and then the counter is incremented. As each LDPS
pulse comes in, the counter increases its current total, and announces the number to various
other chips. When the 65th pulse arrives, it clears itself back to zero and causes several other
things to happen.

(Afficianados may want to know that this 65th puise is a doozy. Wozniak used another fudge
here to handle his color synchronization problems. At every 65th pulse, the output of the 14
MHz main system clock is turned off for two 14 MHZ clock signals. As a result, even for the
6502, you get 64 “1 MHz” clock signals which are 978 nanoseconds in length followed by a
65th pulse which is extended to 1117 nanoseconds in length. The clock rate usually given for
the 6502 is 1.020484 MHz, but this is just an average. Hardware designers who have critical
timing demands should learn more about this—see Winston Gayler’s book The Apple II Circuit
Description or Jim Sather’s Understanding the Apple 11.)

Pulse number 65 signifies the end of a scan line, so the horizontal address counter sends a
signal to the vertical address counter to let it know that it’s time for a new scan line. The
vertical address counter keeps track of these pulses as it counts up from zero to 261. Atevery
instant it is possible to check these two counters and find out which scan line the beam is
sweeping on and where it is along the line.

But how does the electron beam know what the counter is doing? Remember the horizontal
and vertical synch pulses? Well, the screen addresses in the counters are used to generate the
synchronization pulses. Whenever the horizontal counter gets to the 65th count, it sends a
horizontal synch signal to the CRT. Similarly, whenever the vertical address counter gets to
the 262nd scan line, it sends out a vertical synch signal.

Using the Screen Addresses

You may not have made it through the preceeding three or four paragraphs, but the result of
all that is that the Apple assigns a number to every position on the screen which can hold a
text character, and it knows when the electron beam is passing through each of the positions.
All this knowledge is used to control the vertical and horizontal synchronization pulses, and
to blank out the signal during horizontal and vertical retrace.

The next task is for the video display generator to find out which character it is supposed to
be displaying in each of the positions, This brings us to “display memory.” In the Apple there
is a range of memory which is always used to store characters for display. In this range, which
is called text page one, there is space for 40 characters in each of 24 lines of text. There are
a variety of ways of managing screen memory, but the Apple uses a very straightforward
arrangement. Each of the 40 X 24 = 960 positions in display memory is assigned to one of
960 positions on the surface of the screen.

When the 6502 wants a particular character to be displayed in a particular position on the
screen, it puts the ASCII code for that character into the appropriate position in display
memory. After that, it is the responsibility of the video display generator to take care of all
the details of actually getting it into the appropriate position on the screen.

The Memory Mapper
The video display generator includes a set of chips which together are called the memory

mapper. This set of chips, along with the address generator system, has disappeared into the
10U in the Apple //e and //c (see Figure 5.7), but memory mapping still goes on. This system
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reads in each horizontal and vertical electron beam position from counters and decides which
character in display memory to fetch.

On the first video scan line there are 40 positions that need characters, with the remaining
25 positions being off the edges of the screen. As the beam is about to enter each of these 40
positions, the memory mapper picks out the appropriate location in display memory and fetches
the character stored there (see Chapter 21, Figure 21.6 for the actual address map).

Recall that it takes seven horizontal sweeps to make it from the top to the bottom of a character.
In this first scan line only the top one seventh of each character is actually painted onto the
screen. In the next scan line the same set of 40 characters are fetched again one by one, and
the second seventh of the character is displayed. Only after all seven scan lines have been
painted is a full line of complete characters visible, and only after an eighth blank scan line
for spacing is drawn out does the memory mapper start looking for a new set of 40 characters.
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Fig. 6.7b More than a dozen chips are required in the |I/11+ to do the video work of the //e or //c’s PAL and 10U.
The finger points to four chips in the address generation system.
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Memory Contention: Who’s On First?

One problem that has to be avoided in all computer video systems is the possibility that the
microprocessor will be trying to change an address in memory at the same instant that the
video display generator is trying to read from memory. If both try to use memory at the same
time, you have to choose between confusing the microprocessor or filling the screen with messy
hashes—neither very desirable. The Apple uses one of the smoothest and cleanest possible
schemes for avoiding these simultaneous accesses.

The microprocessor clock signal is a square wave which is off for half a microsecond and then
on for half a microsecond. The rules of memory use in the Apple are that in the first half of
every microsecond (millionth of a second), when the Phase 0 signal is off, the video generator
has full and unrestricted control of the Apple’s address bus, data bus, and memory chips. It
must complete its business and get out of the way during the second half of every microsecond
when the Phase 0 clock signal is on. This second half is reserved entirely for the use of the
6502. In this fashion, the 6502 and the VDG are completely interleaved at all times (see Figure
5.9).

Translating the ASCII Codes into Video
Dots

What the memory mapper comes up with for each screen position is an ASCII character code,
but this is not the same as a pattern of light and dark on the screen. To get the actual pattern
of dots, the video system uses a ROM chip called a Character Generator (see Figure 5.8). The
ROM contains the appropriate on and off signals for each scan line of each character. When
an ASCII code arrives at the ROM, the appropriate dot pattern for that character is called
up. The ROM then checks to see which scan line is about to be drawn and picks the appropriate
one seventh of the character. This process is diagrammed in Figure 5.9.

The appropriate set of seven dots has now been identified and these are popped out one after
another at a rate of seven MHz to turn the intensity signal on or off. This is the final step in
causing the right dot to appear in the right place in each character on the screen.

Changing the //e and //c Characters

It is possible to change the character generator ROM so that it will respond to each ASCII
code with a completely different dot pattern. For instance, you could plug in a sanskrit char-
acter set and each ASCII code would produce a sanskrit character instead of an American
character. The //e and //c are built to take special advantage of this. The //e and //c character
generator ROMs contain several different character sets, two of which are easily interchanged.
This feature is used to simulate an Apple II +, but it can also be used for a variety of European
and other than American character sets (the English one would have a pound sign instead of
a dollar sign).

The “keyboard” switch on the //c can simultaneously change the codes coming from the key-
board and select the appropriate section of the character generator ROM to accommodate any
necessary European or other foreign language characters. In fact, if you look closely at Figure
5.8c, you can see that there is room for a larger ROM chip in the same built-in DIP socket,
thus allowing even more character output flexibility in special versions of the //c.

85



Fig. 5.8a (top) The //e video
character ROM.

Fig. 5.8b (center) The lI/ll+ video
character ROM.
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Fig. 5.8¢ (bottom) Most of the //c video
hardware is in a small area of the
motherboard just behind the video
expansion connector. Here you can see
the 14.31818 MHz crystal; the TMG
timing chip; the character generator ROM
that contains the MouseText Icons as
well as standard characters; the 74LS 166
parallel /serial shift register that converts
a byte of video data into a stream of bits
for output; and the VID hybrid amplifier.
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Lowercase Character ROMs for the II and II +

Apple I and I+ owners can purchase a replacement for the standard II + character generator
ROM which will permit their machines to generate lowercase characters when operating in
standard Apple 40 column mode. These ROMs usually substitute lowercase characters for
flashing or inverse uppercase characters. The most popular of these is the Dan Paymar LCA-
1 and LCA-2, The LCA-2 is for revision 7 and more recent Apples, while the LCA-1 is for older
Apples (see Appendix D to find out which kind you own). These lowercase ROMs are also sold
by Lazer systems, by Vista (Vision-20), and by MPC Peripherals. They are very handy to use
if you are programming in BASIC or Assembly Language, but most commercial software will
not take advantage of this kind of lowercase characters. Vista also sells a card called the
Vision-40 which permits a programmer to create a variety of special fonts for other languages
or for special math and science applications.

Scrolling

In the Apple II, scrolling is handled by the 6502 and the Apple’s built-in I/O machine language
routines. All of the work that produces scrolling goes on during the 6502’s half of each mi-
crosecond and requires absolutely no attention from the video display generator.

The Apple’s scrolling system is based on the strict assignment of each location in text display
memory to one specific and permanent character position on the screen. When a row of text
characters has been stored in the third row of display memory, it will get painted on the third
row of character positions on the screen. To move that set of characters up to the second row,
the 6502 uses a subroutine which copies the bytes from the display memory third row to the
display memory second row, and then erases them from the third row in display memory. It
takes about 10 or 15 millionths of a second (microseconds) to move each character, so the whole
line gets scrolled in about 400 microseconds. In a full page scroll, the top line is erased and
overwritten, and the bottom line is cleared for new text.

When the whole screen is full of characters and all 24 rows of text have to be changed, the
960 one byte memory moves take the 6502 a total of about 10 or 15 milliseconds. The 6502
pretty much shuts down all other functions and does nothing but scrolling during this block
of time. It accepts no new keypresses, does no other work. This may seem to be fairly fast,
but if you have data coming into your computer from a 1200 baud modem, a new character
arrives every 12 milliseconds and the scroll routine is just barely fast enough to finish its
work and snap back to attention in time to catch the next incoming character after the end
of a line.

Review of Apple Text Video Generation

The electron beam in the CRT sweeps out 262 horizontal scan lines in each field. The speed
and pattern of these sweeps is determined largely by national standards for television. The
Apple has been built to generate its video display at a speed very close to the standard CRT
sweep rate, and it is able to force the CRT into exact synchrony with its own circuitry by
sending out a horizontal synchronization pulse when it wants each scan line to end, and by
sending the beam back to the top of the screen with a vertical synchronization pulse at the
end of each field.

87



¥ A T S A R A AT A S A S A A

Video ROIM

/ 4.The dot patlern from
the Video ROIM is used
directly 1o control the
intensity of the video
output signal.

3.The bit pattern "1100 0001° from RAIN is
the “Apple ASCII" code ($C1) for the
letter "A." This data is used as
an address to select the
video output dot pattern

10U {or VDG in I1/1I+)
from the Video ROIM. AN

gl N

—

2.Later,in @),an address
from the IOU moves data from
RAIN to the Video ROM

{Data moves from
RAM to the video

system during 21}

DATA BUS MY ADDRESS BUS
ak

1_Address from 63502
moves data from
{Data moves between Acc.to RAIM via the
RAIN and the 6502 in &0} data bus in 20

6502

Fig. 5.9 A master overview of the 40 column text video display generation system.



Of the 262 scan lines, 192 are actually visible on the screen, and since each character iseight
scan lines tall, the displayable video scan lines are grouped into 192 divided by eight equals
24 rows of text characters. In each of the 24 rows, the Apple assigns 40 positions for characters,
so there are a total of 24 rows by 40 columns equals 960 character positions on the screen.

Each of the 960 character positions on the video screen is paired with one of 960 locations in
the Apple’s motherboard RAM. This area of display memory RAM is called text page one. To
display a character, the 6502 places an ASCII code in the appropriate position in screen memory.
The 6502 and the person programming it can cause characters to move around on the CRT
screen by actually moving them around within display memory RAM. Scrolling is accomplished
in this way by recopying every character in the display memory to a different location within

display memory. :

The video display generator scans the display memory in synchrony with the electron beam’s
passage through the screen positions. For each position on the screen, the appropriate character
is fetched from the appropriate location in display memory. A character generator ROM chip
contains the actual pattern of dots which will form the character on the screen. The dot patterns
are read out of the ROM and sent out to the monitor to dim or brighten the electron beam at’
a rate of seven MHz. The complete screenful of characters is drawn over and over again 60
times a second to prevent the glowing phosphors from dimming.

Flat Screens

One very important display option for //c users is to not use video at all. The Apple flat screen
Liquid Crystal Display (LCD) plugs into the video expansion connector and gives you most of
the features of a CRT without all the weight and heat.

Everything described above in relation to the video generation system still applies. However,
once the signal emerges from the back of the Apple, a number of things change. The LCD
screen contains a custom designed chip somewhat like the IOU and MMU. It is responsible
for supervising the translation of the video output signal from the Apple into LCD control
signals. :

There are two tasks involved. First, there is a “frame grabber” which captures the incoming
video signal and converts it back into a bit pattern in RAM. That’s right, all it does is tostrip
out the synch and blanking information and recreate what the Apple has stored in its display
memory RAM. For this purpose, it is provided with 16K of its own RAM so that it has enough
space to store one complete 80 column screen or super high res 560 by 192 graphics screen.

There is another section of the custom chip which acts as an LCD Frame Refresher. Its task
is toread the data stored in the 16K of RAM and use the information to activate the appropriate
LCD crystals. Its task is very different from a CRT electron beam. There is no rastar. Rather,
it’s simply a matter of activating the appropriate locations on the screen grid by turning on
what amounts to an X line and a Y line.

The two parts of the custom chip (the Frame Grabber and the Frame Refresher) do their work
interleaved, at the same time. This is in many ways like the relation of the IOU and the 6502/
MMU on the Apple motherboard. There is a division of labor into two different phases of a
clock.
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The master clock for all this is the same 14 MHz clock that operates the Apple’s motherboard.
This clock signal is carried out from the video expansion connector to the LCD display. There
is a potential problem here. Signals which operate at such a high speed are very sensitive to
being placed in long cables. If the signal was carried directly out of the Apple, the length of
cable would provide “parasitic capacitance” (see Chapter 13), which would have a disastrous
effect on the whole Apple. Thus, there is a little buffer chip which detects the 14 MHz signal
from the video expansion connector and then reproduces it, in isolation, in the cable. This
chip is responsible for the bulge in the cable near the connector.

The LCD screen itself acts in a somewhat different a manner than a CRT because of differences
between the properties of the liquid crystals as opposed to the glowing phosphors in a CRT.
The most important difference is that a phosphor begins to glow brightly almost immediately
after it is stimulated by the CRT electron gun. A liquid crystal, however, takes as long as 100
milliseconds to reach full intensity. This is slower than the 60 Hz refresh time used to update
the CRT monitor. What all this means is that you can move, for instance, a mouse cursor from
place to place on a CRT screen with a position change 60 times a second, but if you try that
on an LCD, the cursor will just disappear. An LCD dot has to be selected during six full VBL
refresh cycles to reach full intensity.

The other important difference has to do with the shape of the dots. The 560 by 192 dots are
each perfectly square. Therefore, the screen is a rectangle about twice as wide as it is tall.
On the video screen however, the same dots fit into a screen that is approximately square.
This means that there will be considerable distortion of the shape of a graphics image if it is
designed on a CRT but dispayed on an LCD screen.
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Chapter 6

80 Column Text Display
80 Column Cards

Apple chose to use a 40 column screen display because it could be drawn on a video screen
by blinking the electron beam on and off no faster than seven MHz. At this rate, Apple video
would work with the television sets most people already owned. However, the industry standard
in computer video is an 80 column display.

Eighty columns are standard for two reasons. First and foremost, data processing had always
been done on IBM punched cards (Remember “Do not fold, spindle, or mutilate”?) which had
80 characters per card. CRT terminals were originally set up to emulate and replace these
punched cards.

The other reason for 80 columns is much more important for most microcomputer users, and
that is the need for more than 40 columns when word processing. Actually, most typed material
on paper has traditionally been about 65 or 70 columns wide. Forty was not enough, and 80
was the data processing standard, so 80 column video became the microcomputer standard as
well.

Owners of Apple I and IT+ computers often bought a card which carried the complete guts
of a stand-alone CRT terminal in order to generate 80 column text. These cards include what
amounts to a serial port, their own display memory, and a complete video display generator
system. The most popular of these 80 column cards has been the Videoterm card made by
Videx.

The Apple //e and //c use a much simpler approach to generate 80 columns of characters. The
//e and //c 80 column systems are fully integrated into the Apple’s older video display generator,
so it is relatively easy to control from Applesoft BASIC and by using the machine language
1/0 subroutines built into the Apple. However, the additional effort of generating 80 columns
does sort of strain the capabilities of the Apple’s standard video generator and its display
memory software.

There is nothing sacred about 80 columns, however. Punched cards are not very important
these days and never had much to do with microcomputers anyway. And so, the folks at Videx
said “Why not 160 columns for VisiCalc?” Also, there is nothing sacred about 24 rows, so the
folks at Videx said “Why not 48 rows?”—and so the Ultraterm card was born. This is one of
the finest quality text video generators available for any computer or terminal system. It is
very similar to the Videx Videoterm from the point of view of a programmer, but it is able to
put twice as many characters onto the screen in any one of several different combinations of
row and column formats.
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The /e and //c 80 Column Text System

The //e 80 column system requires little more than a 1K RAM chip and a few simple interface
chips on a card in the auxiliary slot (see Figure 6.1). The machine language software which
manages the 80 column system is actually in a ROM chip on the Apple’s motherboard and it
can be used to improve some features of the 40 column system, even if you don’t buy the //e
80 column card. This also means that an auxiliary slot card from another company will function
exactly like Apple’s own 80 column card since it will be operated by the Apple ROM on the
motherboard. The built-in 80 column system on the //c motherboard has exactly the same
chips that you would get on a fancy 64K //e extended text card.

L

Fig. 6.1 The //e text card. In
selecting a card for the auxiliary
slot, keep in mind that that the
only function you may not be
able to get from any other siot
in the //e is a special kind of
color output called RGB.

Several companies are selling //e auxiliary slot cards which provide the 1K of RAM, and also
provide additional features, because the auxiliary slot has pins that carry special signals for
controlling additional memory and for graphics. In selecting a card for the auxiliary slot, keep
in mind that the only function you may not be able to get from any other slot in a /e is a
special kind of color output called RGB (see Chapter 7). This is because an RGB card requires
a particular signal from the Apple which is available on slot 7 of a II or II+, but is only
available on the auxiliary slot of a //e. This limitation only applies to owners of revision A //
es (see Appendix D), since these signals have been restored to slot 7 in later revisions of the
/le. The signals needed to create RGB output are all available on the external video expansion
connector of the //c (see Chapter 7).

/le 80 column cards which provide an additional 64K of RAM memory are available from
Apple, Coex, ComX and Quadram, or you can get a 128K card from MicroMazx, or better yet,
one from Saturn Systems (the Neptune card) which provides 192K of additional RAM (see
Chapters 24 and 26 for information on using all that RAM). Putting one of the 64K auxiliary
slot cards into a //e makes its video and memory configuration identical to a //c. However, the
high capacity RAM cards can make the //e far more powerful than a //c.

Taxan and Amdek make //e 80 column cards which can also generate RGB color monitor
outputs (see Chapter 7) and Taxan makes one with RGB outputs and 64K of RAM. Finally,
Microsoft makes a card for the auxiliary slot which provides //e 80 column output, a fast
Z-80 processor, and 64K of RAM (see Chapter 29).
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Operation of the /e and //c 80 Column Systems

The principal design element in the /e and //c 80 column systems is the addition of more
display memory. In 40 column mode, there are 40 by 24 equals 960 character positions on the
screen, so only 960 bytes of display memory are required. In 80 column mode, however, there
are twice as many character positions on the screen and so the Apple has to provide twice as
many memory locations for display memory.

This additional memory requirement comes to just about 1K of memory, which is not an awful
lot, but Apple felt that there was no “safe” block of memory quite that big that they could
use without interfering with existing Apple software. To get out of the problem, Apple chose
a “bank switching” scheme in which an extra 1K memory chip was made available but in
which the addresses were exactly the same as the addresses for the old text page one.

Subroutines for Odd and Even Columns

When the Apple /e or //c is loading characters into memory for display in 80 column mode,
it uses a new machine language I/O routine. Machine language programmers can purchase
a listing of the new program from most Apple dealers in the Reference Manual Addendum:
Monitor ROM Listings for Ile Only. As each character arrives for display, it alternately loads
one character into the special 1K RAM and then the next character into the normal text page
one display memory, and so on back and forth. (Machine language programmers should check
$CF2F in the 80 column ROM listing.) Major entry points are the same in the //c firmware,
but most of the routines have been rewritten in 65C02 code.

When a full page has been loaded, you would see a strange pattern in the 1K RAM if you
could look in. It would contain the ASCII codes for every other character you'd typed in. Of
the 80 columns, the 40 even numbered columns get their characters stored in the extra 1K
and the 40 odd numbered columns get their characters stored in the traditional display memory
positions in main RAM.

The Video Data Bus

Now that the 6502 has created this schizophrenic situation, how does the video display gen-
erator deal with it? It is forced to break two otherwise cardinal rules of Apple operation.

The first rule it breaks is in fact a cardinal rule of all microcomputers. It reads two different
memory locations at exactly the same time. Normally, in bank switching setups, it’s considered
OK to assign the same numerical address to two different locations but only as long as you
restrict yourself to speaking to the two of them at different times. Remember, address locations
can be thought of as space, and you can’t have two locations in the same space at the same
time. Rules like these were probably made to be broken, but the /e does have some mitigating
circumstances. To wit, although they’re both addressed at the same time, they are not both
connected to the main data bus.

The //e and //c have a special “video data bus” which connects the character generator ROM
to two 74LS 374 “octal flip-flops.” When a text address is generated by the memory mapper,
it causes the two locations with that address to each present their data so that it may be
loaded into one of the 74LS 874s. The extra 1K is located on the //e 80 column card along with
one of the 74LS 374 chips. The other 74LS 374 is located on the //e motherboard. The two are
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loaded simultaneously. The one on the text card gets the character for the next even numbered
column and the one on the motherboard gets the character which will go in the next odd
numbered column. In the //c, all the RAM and both LS 374s are on the motherboard. Characters
for even numbered columns are stored in the back half of the /¢, under the disk drive, while
characters for odd numbered columns are stored towards the front, under the keyboard (see
Figure 6.2).
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Fig. 6.2a (top) In the //e, characters for odd numbered columns visit the LS 374 chip on their way to the
video character ROM.

! _ 8 Fig. 6.2b(bottom) In the //c,

JRrame e i) § characters for odd numbered
taerpir | _ columns are stored in the

SEMES auxillary RAM chips (marked
ARDO-7 RAM) and they go
through one of the two LS 374
chips. The other LS 374 chip
gets characters for even
numbered columns from the
main RAM chips (marked
MRDO-7 RAM). The 74LS 245
chip, marked “80 DIR” on the
motherboard, is involved in the
storage of characters in the
auxiliary RAM by the 65C02.




Timing Differences

With these two “buffers” loaded, the //e launches into the beginning of a normal II or II+
video display sequence. When the Phase 0 signal goes off, it uses its proper first half of the
microsecond (see Chapter 5) to present the character code from the main memory to the
character generator ROM. However, it does this via the special video data bus.

When Phase 0 turns on again, the video display generator violates another Apple law by
continuing to move data even though this half of the microsecond legally belongs to the 6502.
Because the video display generator in the /e has its very own data bus and a simple way of
addressing the 74LS 374, it can use this second part of the microsecond. So although the II
and II+ video display generator is only able to move one character in each microsecond, the
//e video display generator is able to move two characters each microsecond.

There is one more trick required. In the II and II+, it takes a full microsecond for each
character to get converted to the appropriate line of seven dots and get shifted out onto the
intensity line at seven MHz. The //e and //c must work twice as fast to get two characters out
in each microsecond, so when they are in 80 column mode they use a full 14 MHz clock to pop
the dots onto the video intensity output line. In this way they are able to get all 14 dots out
of the way before moving in the next pair of characters. Note also, this means the video
monitor must have a 14 MHz bandwidth so television sets are definitely out of the running.
You must have a video monitor to use the Apple’s 80 column text system.

Scrolling the //e and //c 80 Columns

The scrolling mechanism used for the /e and //c 80 column text system is essentially identical
to the approach used in standard 40 column mode (see Chapter 5), but the manipulation of
the characters in the extra 1K involves the regular address and data buses, so it can’t be done
simultaneously with the main memory scroll operation. Rather, the 6502 first rearranges all
the characters on the motherboard text page, then moves the characters into the extra 1K.
The scroll operation (machine language programmers see $CCB8) therefore takes twice as
long as it did with only 40 columns to move. Further, the firmware ignores any interrupt
requests during the entire operation. So the system’s attention is riveted on the scroll operation
and you cannot distract it even if there is an urgent need for it to pause and do something
else.

The II and II+ just barely finish scrolling fast enough to handle the incoming data stream
from a 1200 baud modem, but the //e scroll routine doesn’t quite make it. There are three
solutions to this 1200 baud problem.

Solving the //e 1200 Bps Modem Problem

First, you can leave your auxiliary slot open and install one of the fast 80 column cards
designed for the Il or Il + (Videoterm, Smarterm, etc.). This has the disadvantage of preventing
you from putting extra memory in the auxiliary slot. Most of these video cards need to go into
slot 3, and this slot is disabled whenever a card is put into the auxiliary slot.

Second, you can buy an Ultraterm card. This card has special circuitry which overrides the
“slot 3 killer,” so you can use both the Ultraterm and extra memory in the auxiliary slot.
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Third, and least expensive, you can buy new communications software which has a special
capability for overcoming the problem. Fourth, and at no expense to you, it is sometimes
possible to instruct the sender to send several “null” characters at the end of each line, so
that the characters the //e misses will not be important.

Fifth, get the new revised ROM from Apple and see that you have appropriate software to
work with the new ROM to get around the problem. This new ROM permits interrupts but
still may have a speed problem.

Machine language programmers can solve the problem in the old ROM in one of two ways.
Put a header on your communications software which copies the firmware into high RAM,
enables interrupts during scrolling, and then sets the appropriate switches to ensure that the
monitor is read from RAM and not from ROM. This approach is not without hazard since
interrupts sometimes cause bizarre and erratic behavior in an older Apple II (see Chapter 27).
The second way is to write a new scroll routine—this is what the Pie Writer folks have done.

Unfortunately, the only sure fire approach available now is to buy a non-Apple 80 column
card which plugs into one of the regular peripheral slots, not into the auxiliary slot.

In the //c, the scroll routines are rewritten in 65C02 code, and this provides enough of a speed
increase to solve the scrolling problem. But don’t run out and buy a //c just because you want
to use a 1200 bps modem. There is a completely different problem in the //c which has to do
with a design shortcut in the baud rate generation system. This problem is explained in
Chapter 17.

80 Column Cards and the Ultraterm Video
Display Card

The popular 80 column video boards for the II and II+ all work by providing a complete new
video display generator. Typically, they do not use the Apple’s display memory, nor its clock,
nor its character ROM, nor its screen addressing system. When one of these cards is activated,
it intercepts all characters being typed at the keyboard or coming in from any serial port, and
never even lets them get to the Apple’s display memory.

These boards always include a complete set of replacement I/O subroutines stored in their
own ROM (except Omnivision which requires you to load a routine from disk) which handles
the placement of the characters into their own, built-in display memory RAM. The designers
of these cards faced a much simpler task than Wozniak did when he designed the Apple II
video system. Although many of these boards have some sort of graphics display system, none
of them have anywhere near the resolution of the Apple’s high res graphics. Further, none of
these boards concerns itself in the slightest with the intricacies of color timing. These boards
are completely devoted to generation of text displays.

Not only is the design task less ambitious, but the electrical engineering required to create
a text display generator has been simplified enormously by the advent of single chip video
display generators called Cathode Ray Tube Controller (CRTC) chips. The popular Videoterm
and the new Ultraterm from Videx both use a chip called the Motorola 6845 CRTC. Thischip
is from a “family” of input/output devices built to work with the 6800 microprocessor, but
which also work well with the 6502.
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Fig. 8.3 The Smarterm | from ALS uses a 6545 CRTC (cathode ray tube controller) to manage the 80 column video display.

If you want to learn more about operating the 6845, you can read about it in the CRT Controller
Handbook by Gerry Kane (Osborne/McGraw Hill), but the manuals from Videx are really
more than sufficient. The Videx manuals deserve special mention. They represent probably
the outstanding technical documentation of any Apple peripheral product. Only Apple itself
does better. What this means is that professional programmers and hardware designers find
it easy to design their products to work with the Videx boards so that the user doesn’t have
to do any special fiddling. The beginning Applesoft or assembly language programmer will
also find the Videx video boards a richly documented environment in which to program. It
should be noted that this openness leaves Videx open to being copied by less original manu-
facturers, but Videx has chosen to put the user first.

The Smarterm I 80 column board from Advanced Logic Systems (see Figure 6.3), if enhanced
with the version 2.0 ROM, has more features, generates better characters, and is more versatile
than the Videx board. Further, the documentation is very good for most programming tasks.
The problem is that after you’ve invested two or three months time in building a program
around the Smarterm I, you may run into some special problem or (yes) bug in their firmware.
The manual is of no help when things get tricky, and ALS refuses to provide detailed infor-
mation on their firmware or hardware. The Smarterm I is an outstanding 80 column card for
the user of applications software and for the beginning programmer, but intermediate and
advanced programmers should be wary.

The Ultraterm board from Videx (see Figure 6.4) has all the features available on any Apple
video board, and although it may be out of your price range (it’s $379 list, and $279 mail
order, but most people will need to buy this card at the higher price from a local dealer who
knows how to use it), a brief guided tour of the Ultraterm may help you evaluate the features
of other boards and to appreciate why they cost less.

99



What the CRT Controller Does

In the course of describing the Apple 11 video display generator, several component tasks were
identified. There must be a master crystal to provide high speed timing for the system, these
clock pulses are then counted and used to keep track of when to send horizontal and vertical
synch pulses to the CRT, and to keep track of where the beam is pointing. The system must
also generate memory addresses to be used to call up the appropriate character to be displayed
at each screen position as the electron beam sweeps along. The 6845 does all of this auto-
matically. All it requires is an incoming clock pulse, some display memory in which to find
the characters, and a character generator ROM.

In addition to these tasks performed by the Apple’s video display generator, the 6845 does
several important things that the Apple has to do from software. One of these is generating
a cursor, and another is reading the position of a light pen. Aside from the simplicity and
reliability of providing all of these functions in a single chip, the 6845 provides an important
advantage in that it can be programmed to change its behavior.

Fig. 6.4 Videx uses a 6845
CRTC and a high speed crystal
to supervise their very high
resolution Ultraterm board.

The Apple video display generator can be caused to change its behavior from a text generator
to a graphics system, but within text mode it is fairly rigid. The Ultraterm takes advantage
of a full range of programmable features of the 6845 some of which were left unused in the
older Videoterm board. These include the ability to change the number of characters in a row
and to change the number of rows being displayed as well as various esoterica to do with the
synchronization pulses. In addition, you can program the cursor to be a single line or a full
block, to flash or to stay on. ‘
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Scrolling with a CRT Controller

Another important feature handled by the CRTC is scrolling. The Apple’s scroll routine is
entirely software based, and requires a substantial amount of time and effort on the part of
the 6502—so0 much so that the Apple /e 80 column card can’t handle a 1200 baud modem.
The 6845 handles scrolling automatically in a very simple and extremely fast way. Instead of
moving the characters, it just changes its memory map. Each row of text in display memory
is only assigned a temporary position on the screen. When the time comes to scroll, the 6845
just changes its matching of memory rows to screen rows. As a result, scrolling in the Ultraterm
is a simple internal operation which takes only a few millionths of a second instead of a fiftieth
of a second as in the /e 80 column system—an improvement of about two thousand fold.

Loading Display Memory

As a result, the limiting factor in speed of display for the Ultraterm is in the placement of
characters into proper position in screen memory as they are sent to it by a program or a fast
modem. This was also the case in the Videoterm board, and that board was limited to about
4800 baud (actually 6000 baud, but communications standards usually include 4800 and 9600
with nothing in between).

Someone at Videx pondered the ways of the 6502 and came up with two or three fairly subtle
improvements in the firmware and management of the display memory, so that the Ultraterm
is able to accept characters at 9600 baud. This may sound like more esoterica, but if you talk
to someone who has used an Ultraterm, one of their principal comments will be about the
remarkable speed at which the screen fills and changes. It is these few ingenious machine
language changes which are responsible. When you buy an Ultraterm, part of the price you
pay goes to support that programmer.

Character Formation

A very important consideration in choosing a video board is the quality of the characters
which get displayed. The major factor in quality of formation is the number of dots used to
make each character. The Apple’s video system uses a matrix of five dots across and seven
dots from top to bottom. Lowercase letters with tails such as “y” and “p” are allowed one more
dot, and all other characters are allotted an eighth dot which is left blank for spacing between
rows of text. Each character is also allotted a blank column of dots just before and just after
it (see Chapter 5, Figure 5.9). The Apple therefore generates five by seven characters in a
seven by eight dot matrix.

One of the factors in eyestrain is the density of the matrix. And although five by seven is
very readable, it is not at all optimal for people who spend much time staring at characters
on their monitor. Several of the 80 column cards on the market provide only five by seven
characters, and may not allot an extra dot for lowercase descenders. These boards include the
Sup’R Terminal from M & R enterprises, Smarterm II from ALS, Fullview 80, and Omnivision.
The characters are quite adequate and at least as good as the Apple 80 column video, but
certainly offer no improvement.

Several other boards offer seven by nine characters in an 8 by 12 matrix. These include the

Videoterm, the Viewmax 80, the Vision-80 from Vista, the Wizard 80, and the Smarterm I
from ALS. Only two boards offer even higher character resolution, the Smarterm I with the
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version 2.0 ROM, which generates 9 by 11 dot characters (see Figure 6.5), and the Ultraterm
which has an optional 8 by 12 dot character set in a 9 by 16 matrix.

The Smarterm I, the Vision-80, the Fullview 80 and the Ultraterm also provide an important
additional feature. This is the ability to switch back and forth from Apple video to enhanced
video under command from software. The other boards require you to turn off the computer
and plug in your video cable differently, or reach back and flip a switch by hand, or purchase
additional hardware to handle the switching. This “softswitch” capability is really essential
for programmers who want to use both 80 column video and Apple graphics.

Fig. 6.5a The //e 80 column
system generates 5X7
characters in a 7X8 matrix.
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Fig. 6.5b These characters are
generated by the version 2.0
upgrade of the Smarterm 1. The
matrix is 9X12, with lines 10
and 11 for “lowercase
descenders” and line 12
reserved for the space between
lines. The threaded pattern over
the dots is from a silk anti-glare
screen on the monitor.

Summary of Choices for Selecting an 80 Column Card

If you own an Apple //e, you can get 80 columns of text by adding what amounts to 1K of
RAM on a card placed in your //e auxiliary slot. These cards are manufactured by Coex, ComX,
Microsoft, Quadram, Saturn Systems (Titan Technologies), and Taxan. The advantages of this
approach is that you can simultaneously add an additional 64K of memory (192K with the
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Neptune Card from Saturn Systems), RGB capabilities (Taxan, see below for explanation), or
a Z-80 coprocessor (Microsoft).

All of these cards use the Apple //e 80 column firmware and do nothing more than lend it 1K
of RAM to do its work. This has the advantage of compatibility with all //e software and full
control of 40 column versus 80 column versus graphics output from software. Also, if you own
a revision B version of the //e (see Appendix D to find out which you have) and you install at
least 64K, you can use super high res graphics. The three disadvantages of using the //e’sbuilt
in 80 column facilities are that the character matrix is only five by seven dots, you cannot
conveniently use a 1200 baud modem, and you cannot produce a simultaneous display of Apple
graphics on one monitor and text on another monitor as you could with a standard video
board.

Owners of Apple II or II+ computers, or //e owners who can’t live with the limitations of the
//e 80 column system, have a different set of choices. You can select one of several which provide
seven by nine dot characters with prices ranging from $150 to $275 (Viewmax 80, Vision-80,
Videoterm); but these require manual switching of the video cable to get back to 40 columns,
and only the Viewmax 80 provides inverse characters (dark characters on a light background
as well as light characters on a dark background). The Videoterm offers a variety of optional
enhancements including extra character sets.

The Smarterm I from ALS provides seven by nine characters, with optional inverse video and
the ability to switch back to Apple 40 column mode or graphics from software. It may be
purchased with the version 2.0 character generator ROM to get nine by 11 dot characters. To
get this many lines on the screen without interlace they had to fiddle with the synch timing,
running the board near 50 Hz, and so this system is sensitive to electrical motor noise from
some fans (the Kensington System Saver is one fan that does not disturb this video system).

The Ultraterm is the top-of-the-line video board. It is sold with both seven by nine and eight
by 12 characters, but it is the first video board to be capable of displaying more than 80
columns or more than 24 rows. This card has several modes including 160 columns by 24 rows
and, at the other extreme, 80 columns by 48 rows of text characters. It provides switching to
standard Apple mode from software, and optional inverse video. It is the only video board
which can operate in expansion slot number 3 while another card is in the /e auxiliary slot.
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Chapter 7

Graphics and Color
Graphics

The Apple system for generating graphic displays uses the same video display generator that
produces text displays. The two important differences are that there is no equivalent of the
character generator ROM, and that the behavior of the memory mapper is altered.

Omitting the Characters and Using the Bits

In text generation systems, the microprocessor is responsible for placing ASCII codes into the
desired locations in display memory. When the video display generator is ready to use a
character, it fetches the ASCII code from display memory and then consults with a ROM chip
to find out what pattern of dots it should send to the monitor to paint each of the seven lines
which makes up the character (see Chapter 5, Figure 5.9).

For graphics, the microprocessor actually puts the dots directly into display memory. The
patterns of ones and zeros are not codes at all, but are meant to actually control individual
dots on the video screen. The Apple has a low resolution mode in which you can’t control
individual dots, but must work in clumps of 28 dots at a time. The reason Apple providesthis
low res mode will make more sense once graphics display memory is described. Very few Apple
programmers will be interested in the low res system. Its only distinction is that each of its
40 by 48 equals 1,920 clumps or “pixels” can be drawn in any of 16 colors.

Representation of High Resolution Dots in Memory

In high resolution mode, each bit stored in memory controls one dot. When the video display
generator fetches a byte of memory, it uses the stored bit pattern directly to drive the intensity
signal to the CRT. The Apple high resolution system provides control of 280 dots on each of
192 scan lines, so there are 53,760 dots or pixels available for forming shapes.

The memory mapping of these dots in the motherboard RAM is sufficiently arcane and complex
that it is not convenient for most programmers to attempt to plot points in memory (see
Chapter 21, Figure 21.7). The Applesoft Interpreter ROM, however, contains several easy to
use subroutines which let the machine language programmer get very good control. In Ap-
plesoft, control is absolutely effortless and, in fact, high res graphics in Applesoft BASIC is
one of the outstanding features of this dialect of BASIC.
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One very fancy and specialized way to load the dots into display memory is to plug in the
Telidon Graphics System card from Norpak. This is a card with its own Motorola 6809 processor
and 16K of machine language plotting routines stored in its own ROM. Just as ASCII code is
used to represent letters and numbers, there is a code called NAPLPS which is made up of
Picture Description Instructions (PDIs). This code system is used for telephone transmission
of videotex pictures via modems using standard communications software. The Telidon card
uses the 6809 to interpret incoming NAPLPS signals and to put bits in the proper locations
in the Apple’s high res display memory. It can also be used to create NAPLPS images in the
Apple’s hi-res display memory for later telephone transmission.

Double High Resolution in the II and Il +

Although each byte of memory should control eight dots on the screen, Apple high res graphics
only plots seven of the dots in each byte, reserving the eighth bit as a flag to keep track of
which color to plot the points in. Within months of the first release of Apple’s high res system,
clever “hackers” had figured out how to reclaim the eighth dot for monochrome graphics.

This is not all that trivial because Apple uses the eighth dot to decide whether or not to slide
the other seven dots to the right by half a position. These hackers realized that if a whole
line was moved half a position, then it would be sitting in a completely different set of 280
positions than if it hadn’t been slid over by half a dot. By clever control of the eighth bit, a
programmer can get selective control over 280 normal positions and 280 half-shifted positions.
This increases the Apple resolution to two times 280 equals 560 dots on a scan line in what
is called “double hi-res mode.”

Demo Program for Double Hi Res on the I1/1I+ or Ile/IIc

m HGR :nm SARSISSCRERNVNTIZIERISETARIEDION
100 FORY=0TO 159 :REIN *** This section generates ***
110 XX=260+Y/2 :REIN *** aseries of pointsona ***
120 YR=Y :REM ***  line, for the demo e
130 m lm :nnn SUSYRIBSUSIIUSNICEEPSIUNEINSEOD
140 NEXTY
150 HCOLOR =7
170 FOR Y = o To lsg 3 Rm SIRSENSNESENERINSERIIRNNTSESINDN
130 XX=100+Y/4 :REIN *** Thislis justtodrawa ***
190 YR=Y :REM *** standard Hi Res line for ***
200 HPLOT XR.YR : REM *** comparison on the screen **
210 nm :Rm SEESSRSSRENNEIIRRIENIRIRERIFEDR
220 END

1000 REI} ®***ss=sss DOUBLE HI RES Point Plotter Routine **$ssssssssssssessssass
1030 XXR=XR%/4:IN%=X%~4°*XX%

1040 IFM% =0 THEN HCOLOR = 2 :REIY] ®**ssusssssssnanassassesasnnass

1050 IFMR=1 THEN HCOLOR = 6 : REIM *** This section selects which **
1060 IFMR =2 THEN HCOLOR = 1 :REM *** waqy to set the color phase **
1070 IFMR =3 THEN HCOLOR = S :REIN ***  bit to smooth the plot  **
1080 HPLOTX‘/Z,Y“ :REII) *o=ovssssannsssssnsssacssasrns

1000 RETURN

Listing 7.1 Monochrome Double Hi-Res Plotter for the lI/11+. This is a point plotter routine. Your program must generate
the X, Y coordinates (X=0 t0 559, Y==0to 191). This method produces the same wide dots as standard hi-res, butit gives
more precise control of point plotting locations.
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Fig. 7.1a(above) These lines demonstrate the I+ hi-res and double hi-res line. The dots are still twice as wide
as in the //e and //c super hi-res, but the positioning is more precise than standard hi-res.

Fig. 7.1b (below) The super hi-res mode in the //e and //c has smaller dots and makes less jagged lines
at low angles.
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Listing 7.1 shows a very simple routine to add to a BASIC program which lets you plot in a
field of 560 by 192 dots. It checks your horizontal coordinate, decides whether or not to shift
it, and then accomplishes the shift by issuing a bogus color instruction to Applesoft before
plotting. Figure 7.1 shows the high res and double high res lines generated by the program.

Super High Resolution for the //e and //c

If you own a //¢, or have an Apple //e with a revision B or later board (see Appendix D), with
an additional 64K of memory installed in the auxiliary slot, you can also get 560 dots per
scan line in what is called “super high res mode.” Various Apple documents have called this
“double,” “super,” or “ultra” high res, but here we will refer to it as “super high res” mode.

This approach is completely different from the “double high res” mode just described. It uses
the same bank switching system that the //e and //c use to display 80 columns of text instead
of 40 (see Chapter 6) and has nothing to do with the eighth bit. Further, you get 16 true colors
with full 560 by 192 dot resolution. Listing 7.2 is a listing of a program which can operate
the super high res system. It accepts an x coordinate between 0 and 559, decides whether to
put it in memory in the text card or on the motherboard, issues the appropriate bank switching
commands, and then uses the appropriate Applesoft plotting command. The resulting super
high res plot is shown in Figure 7.1b.

Demo Program for Super Hi Res on the Ile/IIc

S0 PRINT CHR$(4);"PR#3"

60 PRINT CHR${(12)

70 VTAB 22: HTAB 25

80 PRINT "SUPER HI RES IGNORING COLOR"

90 GOSUB 220 :REM *** [nitialize Super Hi Res ****
100 HCOLOR =7 :REM * hls e
110 FORDX=0TO10 :REM *** This section generatea ****
120 CX=0Y=0 :REM *** asgeriesof pointson  ****
130 FORX=CXTOCX+DX-1 :REM *** onseverallinesand ****
140 GOSUB 350 :REM *** then calls the Super Hi ****
150 NEXT :REIN ** Res point plotting routine. **
160 CX=CX+DX:Y=Y+1 :REM *** There is no equivalent of ***
170 IFX <300 ANDY < 160 THEN 130 :REM ** the "HPLOT X1.Y1 TOX2,YZ" **
180 NEXTDX :REM *** command used in Hi Res ***
lm m :Rm CEEEEFEREEFERESEEEERESEEERFEEE

200 REM®******* SUPER HIGH RES Initialization and Screen Clear **®®*r*errsees

210 REmM

220 POKE 491540 :REM ** RAMRD Off **
230 POKE 491560 :REM ** RAMWRT Off **
240 POKE 491530 :REIM ** 80STORE On **
250 POKE 492380 . REIM ** HIRES On **
260 POKE 49160.0 :REIM ** ALTZP Off **
270 POKE 492460 :REM ** A3 Off **
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280 POKE 492320 :REIM ** GR i

290 POKE 491650 :REM ** 80COL On **

300 HGR

310 POKE 49237.0 :REIN ** Aux. ¥®

320 CALL 62450 :REIM ** Interp. screen clear routine *

m ) Rm ..‘...'.‘SUPER m Rm Point plotter Routjnellt.UUU.'I"II".“'I'I".

340 REmM

350 )o(,lnr(x/7):pe,>o(/2_1n]- ()oc/z) cRE[NS* S5 SIRE SRS ASEUNNERIBLRATRRS
360 XX =INTECL/ 2) + (X7 7) - XX) : REM *** This section selects Aux. ****
3710 XX=INT(XX*7+0.5) :Rem *** orMain Memory for ****
380 POKE 492370 :REN *** each point generated ****
390 IF PG=0.5 THEN POKE 492360 :REIN *** by your program and ****
400 IF XX» 279 THEN RETURN :REIN ***  adjusts the plotting ****
410 HPLOTXXY :REM *** position BrE
420 POKE 49236.0 cREIT] ®***vssessassansnsnsannasnsons

430 RETURD

Listing 7.2 Super Hi-Res Plotter for the //e or//c (by Don Worth). There is a screen initialization section and a point plot-
ter, but your program must generate the X,Y coordinates (X= 0 to 559, Y=0 to 191). Dots are one-half the width of the
standard hi-res and you can get 15 different colors. In order to run this program, DOS must be active and an Apple 80
column board must be present. See Solftalk, July 1983, page 121; Softalk, September 1983, page 83; and Apple
Orchard, January 1984, page 26 for more elaborate routines and information.

Memory Mapping for Graphics

In text mode, there are just 24 by 40 equals 960 character positions on the screen. Each of
the 960 characters is represented by a one byte ASCII code so the text display requires just
about 1K bytes of memory. When a character is actually painted on the screen, it is made up
in a field of eight scan lines of seven dots each (see Chapter 5, Figure 5.9), therefore each byte
of text calls up a fixed pattern of eight by seven equals 56 dots. To paint a character on the
screen, each ASCII code is called up eight times, once for each line of dots it requires to fill
the matrix.

Lo-Res Display Memory

In lo-res graphics mode, the bit patterns are placed into the same 960 locations in memory
that are used for ASCII codes in text mode. This practice dates back to the “early days” of
Apple when many Apple owners had a grand total of only 4K or 8K of RAM memory installed
(RAM was very expensive in those days).

To get 1,920 pixels from these 960 bytes, the lores system treats the first four bits of every
byte differently than it treats the second four bits in the byte. The appropriate terms for these
two halves of a byte are the low order “nybble” and the high order “nybble.” The memory
mapper fetches bytes from the same locations in display memory as it uses for text, but it
does not just send the bit patterns directly to the intensity signal. During the first four fetches,
it uses just the low order nybble, and during the second four fetches it uses only the high
order nybble. Each of the 40 character positions on a line are thereby divided into a top pixel
with four scan lines, and a bottom pixel with the next four scan lines.
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Although the information for a low res pixel is contained in just four bits, the video display
generator needs to do one more trick to use these bits to get any one of 16 colors. The reason
for the maneuver is rooted in the deep technology of color television, but let’s just state this
for the record. The Apple switches into high speed by using the 14 MHz clock to send the dots
out to the television set, and it “circulates” the four bits so that the whole nybble gets sent
out four times in a row in a steady burst of 16 dots. The arrangement of the dot patterns is
just so that the TV set typically thinks it is getting eight dots at seven MHz, not realizing
that there are really 16 dots in the stream appearing at 14 MHz. Some of this makes more
sense once the color scheme is laid out.

High Resolution Display Memory

The task for the memory mapper is really much more straightforward in high res. For each
scan line it draws on the screen, it uses a different set of memory addresses. A screen scan
line is still treated as if it has just 40 positions, but there are 192 such scan lines to bedealt
with instead of just 24 rows as in tekt. A full screenful of high res data requires 40 by 192
equals 7,680 bytes of data; nearly 8K of display memory.

To draw a high res image, a byte is called up from display memory for each of the 40 positions
on each scan line. The bits in that byte are used directly to turn on and off the intensity signal
to the CRT. Since the eighth bit is reserved for color information, only seven bits are sent
from each. A review of the addressing for one of the high res display memory ranges appears
in Chapter 21, Figure 21.7, and there is a discussion of memory use for multiple display pages
in Chapter 26.

One resemblance to the text system is worth noting. Recall that in 40 column mode, a seven
MHz clock is used to shift out seven dots for each of the 40 characters. Similarly, the dots in
high res graphics mode are shifted out at a rate of seven MHz.

This is the basis of the super high res mode provided by the //c and the //e revision B board.
Much as in //e and //c 80 column mode, display memory is split between an 8K range on the
motherboard and an 8K range on the extended text card or /¢ auxiliary RAM. When a display
memory address is called by the video display generator, a byte from the auxiliary 64K card
and a byte from main memory are simultaneously loaded into respective 74LS 374 chips. The
two bytes are called up in two different halves of each microsecond by way of the video data
bus, and the dots are clocked out to the CRT at 14 MHz.

This also means that super high res dots are smaller than the dots produced by normal or
double high res. Because the clock rate is twice as fast (14 MHz as opposed to seven MHz),
the electron beam is kicked up for only half as long for each dot.

Color

When Wozniak set out to design the Apple II’s video display generator, he wasn’t satisfied to
just produce text, and he wasn’t satisfied with high resolution graphics. The system had to
do color graphics, and it should be able to operate a color television set directly. These are all
demanding engineering tasks for a single integrated digital system, but the last was the most
difficult. Wozniak’s solution to the problem was the true “piece de resistance” in the design of
the Apple. However, some may think he was a bit too ambitious.
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To make the whole thing happen required a substantial number of design compromises else-
where in the system. These compromises provide an endless source of challenges for peripheral
designers who know about them and an endless source of puzzlement for some peripheral
designers who don’t. In any case, the whole thing flies (so to speak), and the overall verdict
has been overwhelmingly positive. The Apple II video system is an electrical engineer’s work
of art.

Nonetheless, there are a variety of ways in which the Apple’s color graphics can be enhanced
by a number of different categories of plug-in cards. The following discussion will attempt to
describe the Apple’s color video for its own sake and to make clear what task each of these
categories of peripherals is intended to accomplish.

Broadcast Color Conventions

The inside surface of a color monitor or television screen is quite different from a monochrome
CRT. Dot locations on the color screen are real discrete things, and each dot is actually made
up of three small patches of phosphor; one red, one green, and one blue. The electron beam
itself is actually three separate but very closely aligned beams. When the triple beam points
at a dot, each of the three beams points at just one of the patches of phosphor. No matter
which dot the triple beam is pointing at, one beam always zeros in on the red dot, one on the
green, and one on the blue. Therefore, although the three beams put out otherwise identical
streams of electrons, one beam always causes red to appear on the screen, one beam always
causes green, and the third always causes blue. For this reason, one speaks of a red beam, a
green beam and a blue beam.

To transmit a color image you don’t have to send the colors themselves, you just have to send
information telling the television set what combination of the three beams it should turn on
as it gets to each dot in its raster scan. You can, of course, generate any color in the rainbow
with a proper mix of these three colors, and the dots are so tiny that the eye perceives a single
hue rather than a pattern of red, green and blue dots.

It might have been simplest to just broadcast three separate signals, all closely synchronized
and each controlling a different beam, but the dictates of assembling a reasonable radio
frequency signal ruled out this option. Instead, the controlling information is sent as a single
coded stream of information and then decoded by the television receiver at high speed as the
beam sweeps across the screen.

This sort of code grows out of the days when electronics was all about resonant circuits and
smoothly oscillating waves. The coding is done by fiddling with waveforms. The most easily
grasped analogy is two runners of similar build jogging along side by side. Their legs are the
same length, their running style is identical, they’re moving at the same speed. You can
imagine their perfectly synchronized footfalls coming down exactly at the same instant time
after time. It could be said that they are moving their legs at the same frequency.

Now consider what would happen if you had the same two runners and all else was identical
except that this time the two were a little out of step with each other. One runner’s left foot
is just starting to touch the ground at the same time that the other runner’s left foot is pushing
off. This relationship would be repeated identically for every step. In this case, you would say
that they are running at the same frequency but they are a little “out of phase.” This is how
the coding is done for color broadcast.
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The frequency used for color broadcasts is absolutely, strictly, exactly, and incontravertibly
3.579545 MHz. Why not a nice round number like 3.5 MHz or, better yet, 4 MHz? Well this
number was chosen by a committee sometime in the 1950s. But in their defense it must be
said that the frequency they chose was strictly dictated by some mathematical consequences
of other nice round numbers used in broadcasting which had been chosen by others before
them.

In order for any system to operate the decoding system in a color television set, it must be
able to generate a signal at exactly 3.579545 MHz, no ifs, ands or buts. The coding system is
based on detecting an incoming signal at that frequency and measuring how far out of phase
it is with a preestablished standard. If it’s a little out of phase call it a yellow, a bit more out
of phase call it magenta, very far out of phase call it green, and so on. The television receiver
does the phase measurement and decides what combination of the three beams to turn on at
each dot. The broadcaster can cause the phase difference to change for each dot, and thereby
gets control of the hue of each dot on the screen.

Apple Color Video

Since Wozniak knew he would need a signal at about 14 MHz and he knew he needed one
signal at exactly 3.579545 MHz, he chose to make the master crystal run at 4 x 3.579545 =
14.31818. That is the source of this fundamental Apple number. Nearly all other timing signals
in the Apple are synchronized with, and derived from, the 14 MHz signal, so everything in
the Apple steps to a beat determined by the NTSC color committee many decades ago.

Now that you understand the importance of the 3.5 MHz signal, let’s look at how the Apple
actually sends the color code to the TV set. If a byte in high res display memory had the bit
pattern “10101010,” think about what would happen when it is sent to the monitor. High res
bits are clocked out at a rate of seven MHz, which means an endless stream of this bit pattern
would send out seven million bits every second.

But recall that the ones turn the beam on and the zeros turn it off. From the point of the TV
set, you might consider the ones and zeros as peaks and valleys in a steady signal. In these
terms, you could say that 3.5 million peaks (ones) would arrive each second. Yes, this is a
wave with a frequency of 3.5 MHz (3.579545 MHz to be exact). If the byte was “01010101”
instead (notice a zero on the left, the eighth bit, instead of a one), the frequency would be the
same but the phase would be different. And you no doubt remember that that is how color is
encoded.

Actually, only seven bits get sent so there are a few more tricks to get it all working right,
but you should have the basic idea. A full explanation is available in Gayler’s Apple II Circuit
Description or Jim Sather’s Understanding the Apple II.

Now what about the eighth bit? This is the one that gets fiddled with to get double high res
graphics in an Apple II or II +. In monochrome, this bit causes a shift in position which can
be used to double the resolution to 560 dots. But in color video, it’s intended use is to provide
a finer increment of phase shifting to get more colors. When this bit is set properly, the outgoing
pulses are delayed for one 14 MHz pulse. This gives finer phase control for color and it permits
finer position control for monochrome.
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The Timing Compromises

This section is for the diehards who have been multiplying frequencies and counting scan
lines to see how it all adds up. It is not an explanation, just a guide to the math.

If the Apple used the standard horizontal sweep rate of 15.734 kHz, then each sweep would
take 63.5 microseconds. Most 6502 clock cycles in the Apple take 978 nanoseconds, so 63.556/
.978 equals almost exactly 65. This means that there are 65 potential character positions in
every scan line. Each character gets seven dots at seven MHz so each dot takes 139.68 na-
noseconds, seven dots take 0.97777 microseconds, and a full line of 65 by 7 dots takes 63.5555
microseconds. Each cycle at 3.579545 MHz takes 279.37 nanoseconds, so you can fit in exactly
2217.5 cycles of the color reference clock.

The one problematic number from the above paragraph is the 227.5. This means that thecolor
reference clock would be halfway through a cycle when the next line started—so its phase
would be wrong. This trouble occurs in Apples because the character cell time from the 6502
runs off the same clock as the video. Wozniak’s solution was to essentially shut the Apple off
for two counts of the 14 MHz clock at the end of every horizontal scan line. During this time,
the 3.5M signal could seem to completely finish its 227th cycle, and be ready to start the next
line fully in phase.

The consequence of this is that every 65th clock cycle of the 6502 is a little longer than the
rest. Further, each horizontal scan takes a little longer than it would in a normal video
situation, and the horizontal scan rate drops from 15.734 kHz to 15.7 kHz.

Video Tape Recorders and Broadcast

For those who wisely skipped the preceeding bout of numerology, a good summary is that the
Apple sends out its horizontal synchronization signals at a rate of 15,700 per second. This is
a little less than the standard broadcast rate (15,734 kHz) agreed upon by the National
Television Standards Committee (NTSC). Wozniak chose this non-standard rate as a compro-
mise in order to make it possible to accomplish several other video timing tricks described
above.

Further, because the Apple uses a non-interlaced display, (see Chapter 5) there are only 262
scan lines of output per field instead of the 262.5 in one half of an NTSC interlaced field.
There are actually about 10 or 15 arcane aspects of video timing which are slightly non-
standard in the Apple, and interested engineers should consult The Apple II Circuit Description
by Winston Gayler (Sams and Co., Indianapolis) for a full accounting.

At the time, these slight differences seemed like no special problem because it was so close
to NTSC standards that any monitor or television set would not notice the difference. However,
modern Video Cassette Recorders (VCRs) are much more finicky and will not tolerate Apple’s
non-standard video signal.

Two companies, Adwar Video Corp. and Video Associates Labs, sell equipment which can help
compensate. Adwar sells a device called the Proc Mod for about $100 which gives substantial
compatibility with VCRs by fiddling around a bit with the synch signals. However, advertisers
or TV newscasters who want to adapt an Apple to actually generate broadcast standard images
must buy Adwar’s more elaborate ARS 170 card which costs over $1000. This board actually
captures two successive non-interlaced frames in its own memory and then recreates the video
signal in full NTSC standard output, 15,734 kHz, 525 interlaced scan lines, and a 59.94 Hz
vertical synch.
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The full scale system from Adwar permits a video enthusiast to create labels and graphics
with the Apple and overlay them on top of regular TV images on a VCR. With this special
effects keyer, the entire system costs about $2000. Video Associates Labs makes a very similar
system which sells for $2500.

This substantial cost has to be balanced against the $15 or $20,000 cost of a purpose-built
system. Systems of this type have been purchased by TV stations, corporations preparing
videotaped sales presentations, and schools wishing to economize in training students in both
video and microcomputer technology.

Another option is to replace the Apple graphics system entirely by using a Number Nine
Graphics generator board which can be made to produce true NTSC output as just one of a
variety of features (see below). This approach does not permit you to use Apple graphics
software you may already own, but there is a substantial amount of software available spe-
cifically for the Number Nine board.

RGB Boards and High Resolution
Computer Graphics

Fortunately, most folks interested in good resolution color graphics don’t need to use VCRs,
video discs or broadcast equipment and can choose a very different route towards simplifying
and improving the Apple video system. Most of the complexity of Apple color video is due to
the desire to make the color signals acceptable to standard color television sets (after passage
through an RF modulator). The Apple goes through a complex process of encoding the color
information as phase variations at 3.5 MHz, and then the television set or color monitor has
to turn around and decode the signal to see which electron beam should be on and when it
should be on.

Since computer graphics need not accommodate the idiosyncrasies of broadcast video, it is
possible to take a vastly simpler and more precise approach. The computer sends out three
individual signal lines to directly control the three electron beams. There is no coding or
decoding. There are several companies which make peripheral boards or //c expansion modules
which decode the Apple’s color signal and send it out as three separate signals, one for the
red beam, one for the green beam, and one for the blue beam. These cards are, not surprisingly,
called RGB boards.

Because there is less chance for ambiguity, color video based on RGB output signals tends to
produce crisper images. Most of the color monitors on the market require RGB output, so an
Apple owner often decides to buy an RGB board in order to use some specific monitor. However,
//e and //c owners who wish to use the 16 color super high res feature will find that only RGB
output is adequate.

Apple II and I1+ owners can select from among RGB boards from Advanced Logic Systems,
Amdek, Electrohome, Microtek, M & R, and from Telemax, but these boards differ in several
respects. In addition to the red, green and blue signals, (and the horizontal and vertical synch)
an RGB monitor can use an intensity signal. With three color inputs you can generate eight
different colors, but an intensity signal can be used to get finer variation of the hues. Most
of the Apple RGB boards are for monitors which accept a digital intensgity signal; it is either
on or off. Such digital intensity signal RGB boards can control 16 colors.
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Digital RGB Boards

The RGB boards from ALS, Amdek, M & R, and the Telemax VCB A2 all provide digital
intensity control. Among these, the Amdek DVM II board stands out because of the way it
does the decoding of the Apple output (see Figure 7.2). Most RGB boards do the decoding by
comparing the Apple’s video output to the Apple’s regular 3.5 MHz color reference signal.

There are two problems with this approach. First, that signal is only available to peripheral
boards plugged into peripheral slot 7 and is not available on any of the regular peripheral
slots in the //e. So most of the RGB boards can only be used in slot 7 of an Apple Il orII +.
The second problem is that using the Apple’s color reference signal apparently leads to some
of the same occasional ambiguities that the RGB system is meant to avoid.

The Amdek DVM II RGB board uses the signal directly from the Apple’s 14 MHz crystal. This
means you have to do some fiddling on the motherboard, but the accuracy is the best possible,
and you can put it in any slot. It is also possible to take the output from your 80 column text
card and send it into a port on the DVM II. The board will respond to commands from software
to stop displaying color graphics and start displaying clean, sharp 80 column text in any of
16 colors or clean white on black with a good quality color monitor.

Analog RGB Boards

Another feature provided by some RGB boards is fine control over the intensity signal. The
Supercolor Board from Electrohome and the Rainbow 256 from Microtek can both produce
256 different colors on the screen of an RGB monitor which can accept an “analog” intensity
signal. This is very nice, but you have to use special software to take advantage of the colors
because the Apple video system itself has no way of specifying more than six colors in high
res mode or 16 colors in low res mode. Both of these boards must be installed in slot 7 of a 1I
or IT+.

RGB for the //e and //c

If you want RGB output in a revision A //e, you're probably going to have to put your RGB
board in the auxiliary slot, because none of the I'II+ RGB boards will work in the //e. This
is because Apple had removed the 3.5 MHz color reference signal from peripheral slot 7 in
order to use that pin for a new signal.

Fortunately, Apple has provided a rich variety of timing signals on the pins of the auxiliary
slot, and Amdek, Telemax, and Taxan have come to market with RGB boards for the //e
auxiliary slot. All of these boards permit the display of 80 column text in any of 16 colors or
white on your RGB monitor. The Amdek DVM 80e, the Telemax A2e, and the Taxan 410-80,
all provide RGB and //e 80 column support. Taxan has also released the “410-64,” which
includes both an extra 64K of auxiliary RAM and a digital-intensity RGB output.

All of the important signals for generating RGB color output on the /e auxiliary slot have
been led out to the external video expansion connector on the //c (see Figure 7.2b and Appendix
A). Therefore you still must attach an RGB module such as the Taxan 410-15 to translate the
connector’s timing signals into true RGB output.
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Fig. 7.2a The Amdek DVM Il (top) and DVM 80e {bottom}. Both boards provide RGB output, but the DVM 80e
provides simple switching among //e video modes.

Fig. 7.2b The //c video expansion connector provides some of the same video signals as the //e auxilliary siot.
Therefore, you need an expansion module to actually get RGB output, just as //e owners need an RGB card.
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Color Graphics Generators and Ultré High
Res

All of the color and graphics peripherals discussed so far have been used to extend the ca-
pabilities of the Apple’s built-in system for generating high res color graphics. However, it is
possible to install a peripheral board which produces graphics all by itself, independent of the
Apple high res video display generator. This is conceptually very much like the idea of in-
stalling an 80 column card to be used instead of the Apple’s own 40 column text generator,
except that you replace and upgrade high res graphics instead. Just as the 80 column text
cards are based on single chip CRT controllers, these graphics boards are based on single chip
graphics display controllers.

These graphics boards make improvements in several problem areas. The first is that they
can produce standard NTSC video signals at a much lower cost than the corrective boards
from Adwar and Video Associates Labs, and can therefore be used with VCR and video
broadcast equipment. One of the boards offers options for any or all of true NTSC composite
video signals, RGB with digital intensity or RGB with analog intensity.

Second, they can add substantial new capabilities for the graphics programmer, including the
ability to produce high speed animation. You see, in order to plot images with Apple high res
graphics, the programmer must work with a few simple geometrical commands. Once a shape
is formed, every movement of the shape must be treated as a problem of complete geometrical
recalculation of each point. Although much of this work is done by the Apple’s own machine
language subroutines, it still means substantial work for the programmer and substantial
processing time for the 6502. This is why Apple graphics is tied to fairly slow, coarse movements
on the screen.

The emphasis in graphics chips is to let the programmer refer to shapes, regions and directions
of movement rather than to the dots themselves. The programmer states what he or she would
like to see happen at a fairly high level, and the chip acts on the commands as simple machine
language commands in its own graphics oriented machine language. In the 6502, machine
language commands refer to memory addresses and registers; but in a graphics controller
chip, the machine language commands refer to shapes and motions directly. This all results
in an enormous improvement in speed of drawing and of animation of shapes. The Number
Nine Graphics System board can cause complex multi-colored objects to appear to spin rapidly
on the screen.

Third, and finally, a graphics board can provide additional display memory and the capability
to deal with much higher numbers of dots. The Number Nine board provides 128K of RAM,
devoted exclusively to its own graphics display needs. Of course this means that Applesoft
programmers will not have to reserve space in the main memory for the Apple graphics display,
but the true dividend is in the remarkable increase in resolution. Apple high res gets you
about 54,000 dots in monochrome or about 27,000 dots with six colors. The Number Nine
board can get you over a million dots in monochrome or 260,000 dots with 16 colors. That’s
right folks, an order of magnitude (10 times) increase in resolution for color, and 20 timesthe
resolution in monochrome (this sort of stuff requires a very good monitor though).

It should be noted that as soon as you break free of the Apple’s own graphics, you also lose
the ability to use the Apple’s simple graphics commands. These graphics boards are only as
good as the available software and documentation. Fortunately, the Number Nine board has
generated so much excitement among graphics programmers that the software situation is
already quite excellent.
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Programmers are provided with a set of new high level commands to use from within Applesoft
BASIC, and another company offers a set of commands to be used from Pascal. Integrated
packages are available for “paintbrush” work with graphics tablets, for commercial artists
who need to manipulate a variety of type fonts, for video camera digitizing, and for hard copy
printout on high res color graphics printers.

One of the most exciting implications of the arrival of the NNGS board is the advent of high
quality Computer Aided Design (CAD) and architectural drafting on a personal computer
system at one tenth the cost of current CAD systems. Standard CAD software is currently
being rewritten to run on the Apple.

The Graphics Chips

The graphics boards for the Apple are sharply divided by their use of two different generations
of graphics chips. The less expensive boards use the older TMS 9918, but the truly spectacular
Number Nine board uses the new NEC 7220 graphics display controller.

Fig. 7.3 Super Sprite from Synetix. A TMS 3918 generates the video sprites, an AY-3-8912 produces sound effects, and
a TMS 5220 generates speech.

Sprites and the TMS 9918

The two boards which use the TMS 9918 are sold by Synetix (Super Sprite; $395) and by Third
Millenium Engineering (The Arcade Board; $295). Both of these boards include 16K of display
memory and also have facilities for generating special effects sounds.

The TMS 9918 does provide for a modest increase in resolution over standard Apple color high
res (260 by 192 with 16 colors versus 140 by 192 with eight colors), but it’s real advantageis
that it moves much of the work of replotting points into the hardware realm of the chip instead
of depending on the 6502 running software. As a result, you can use the TMS 9918 to create
shapes and then cause them to move very rapidly across the screen. Motions can take place
in 32 different imaginary planes—as if each of several objects was moving within its own
transparent overlay sheet.

The Super Sprite (see Figure 7.3) permits you to overlay the moving images (sprites) on top

of an image generated by standard Apple high res graphics. The Super Sprite achieves partial
compatibility with video cassette recorders (VCRs) by stripping out the Apple’s non-standard
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horizontal synch pulses and replacing them with NTSC standard synchs at about 15.73 kHz.
However, this is not full standard NTSC output. You can use a VCR, but you cannot mix
Super Sprite output with standard NTSC video or use it for broadcast.

The Arcade Board does not use the Apple’s high res output at all, but it does permit you to
link two arcade boards together, and it does produce full NTSC standard video output.

Ultra High Resolution and the NEC 7220

The Number Nine Graphics System board (see Figure 7.4) uses an extremely powerful new
chip called the NEC 7220 Graphics Display Controller (GDC). Until 1983, a graphics output
of this quality could only be produced by a $25 to $30,000 committed system or an enormously
expensgive mainframe computer. The NNGS board sells for $945 in its simplest configuration
(5612 by 512 with 16 colors and 724 by 724 monochrome), and a $200 upgrade provides pro-
grammable analog RGB output which permits the board to control 4,096 colors at each dot.
An alternative upgrade ($145) provides full NTSC standard video output for complete com-
patibility with all VCR, video disk, and broadcast requirements. There is a light pen interface,
and Number Nine also provides a connector for an optional external power supply.

Fig. 7.4 Number Nine Graphics System for ultra hi-res video. The board has a NEC 7220 graphics display controller and
128K of RAM for display memory.

Objects form, fill, and move with remarkable speed in the native board, but the upgrade
permits you to form a complete image in one of the four color planes, keep it invisible until
it is drawn, and then suddenly reveal the complex shape in a matter of milliseconds. This is
just one of those things that has to be seen to be believed.

A company with extremely demanding graphics needs can purchase up to four of these boards
for use in coordination in a single Apple. By choosing the high speed version of the board,
and adding the analog intensity RGB output module, you can produce 1024 by 1024 pixel
resolution with each dot being displayed in any one of 4,096 colors.
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The NEC 7220 machine language includes commands for a variety of geometric shapes and
performs high speed “vector math,” which is how it can move hundreds of thousands of dots
at a time at high speed. Because there are machine commands for zooming and panning, it
is possible to use some of the typesetting fonts to create words written in small letters which
rapidly grow and move across the screen. This can all be filmed with a movie camera pointing
at the screen or sent directly to a VCR as video.

A similar but slightly more elaborate board from Micrographic Images has an interface with
a high speed video digitizer for rapid capture of images from camera to the NEC 7220 display
memory.

If you need this level of resolution but you don’t need all the bells and whistles of the NEC
7220’s vector math and shape commands, you might consider the Rana 8086/2 (see Chapter
30). This is effectively a complete IBM PC compatible computer built to interface with the
Apple bus. It differs from the PC in having two very high resolution modes, including a 600
by 400 dot monochrome mode.

Color Monitors

Unlike the situation with monochrome monitors, you must be very careful about which kind
of color monitor you buy. It is not just a matter of which is “best,” but a matter of the exact
kind of use you hope to make of it. There are good reasons for buying any one of a low resolution,
medium resolution, high resolution, or very high resolution color monitors.

Fig. 7.5 Color | low resolution
monitor with composite video
input. This is an appropriate
monitor for standard Apple
graphics, and includes a built-in
speaker to amplify sound effects.
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When Apple high res graphics is used to produce color images, it has an effective resolution
of 140 pixels. This level of detail is easily accommodated by any low resolution color monitor
such as the Amdek Color I ($380; see Figure 7.5), the Electrohome ECM 1302-1 (with composite
adapter), or a standard color television set. All of these accept the single line “composite”
output direct from the Apple and provide about 300 by 260 pixels. This is also adequate for
output from graphics cards using the TMS 9918 chip. If you use this system, however, you
cannot display 80 column text on the same monitor.

With an RGB board installed, you can use an RGB low resolution monitor such as the Amdek
Color I1I ($479). Because of the improved control provided by the RGB output signals, this
type of monitor can also be used for 80 column text if your 80 column card produces simple
five by seven matrix characters. This applies particularly to owners of the Apple //e or //c. As
explained earlier, /e owners may well choose to use a combined RGB and //e-80 column board.
This system will work with a low resolution RGB monitor.

Fig. 7.6 Taxan RGB!l high resolution monitor. This sort of monitor is for a special high resolution video generators or for
extra clarity when 80 column text is displayed in color.
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Medium resolution RGB monitors such as the Amdek Color II (560 by 240 pixels; $529) or
Electrohome ECM 1302-2 have been designed primarily for the IBM PC market, but there
are two kinds of uses for these monitors for Apple II owners. The Amdek DVM II board can
be used to send 80 column display to an RGB monitor, but if the 80 column card uses a seven
by nine character matrix, the dot pattern will not plot well on a low resolution monitor. The
other use is for super high res graphics on //c’s and revision B Apple //e’s.

High Resolution RGB monitors such as the Taxan RGB III ($700; see Figure 7.6), the Quad-
chrome Monitor from Qaudram ($795), and the Amdek Color IV (with analog color range) are
only appropriate if you plan to buy an NNGS graphics generator (or if you want to display
80 column output from the ALS Smarterm I via the Amdek DVM II card, but it’s much cheaper
just to buy a separate Amdek 300A monochrome monitor for ALS 80 column).

The simplest configuration of the NNGS graphics board was described as 512 by 512 with 16
colors. Actually, the exact proportions of horizontal and vertical must be changed a bit for use
with one of these monitors. The standard configuration as shipped by Number Nine Computer
Engineering is 620 by 420 and this is accommodated by all three of these monitors.

If you want to go beyond 620 by 420 in color, you’re off into a different world as far asmonitors
are concerned. This puts you out of the consumer market, and prices jump sharply into the
range of $2000 to $5000. You could contact Tektronix, but keep in mind that you’re speaking
of higher resolution than they provide in their 4100 series graphics editors. Ultra high res-
olution monitors are available from Hitachi and a few other sources, but it is probably best
to discuss your application with the manufacturers of the NNGS system.
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PART 2

The Interactive Apple

® CHAPTER 8 The Human Interface: Keyboards,
Pointers and Digitizers

® CHAPTER 9 Spatial Input
® CHAPTER 10 Sound and Music

® CHAPTER 11 Apple Speech and Hearing
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Chapter 8

The Human Interface:
Keyboards, Pointers and
Digitizers

The search for the ultimate input device is roaring along at full pace with mice, touch tablets,
voice recognition systems, and light pens tossed into the stew to compete with the QWERTY
keyboard. To add a bit more spice, computer designers, programmers and electrical engineers
have recently begun making appeals to “right brain” versus “left brain” behavior in cham-
pioning one input device or another. In fact, the abstracts of behavioral biology may have very
little to tell us about how to design computers; however, since at least part of this writing
team has spent the last four or five years at Harvard University doing research and teaching
about the evolution and biology of human communication, this seemed to be as good a place
as any to slip back into our own field of expertise and throw a few more brain terms into the
debate.

You certainly can’t do justice to the neurobiology of communication and perception in the
space of three or four paragraphs, but a few points are worth making. Most of the attention
in the design of human/computer interfaces goes towards what may be called “cortical” pro-
cesses such as language. The traffic of human thought is carried out with the aid of symbols.
In the left cerebral cortex of the brain, the learned words of a language such as English are
used to represent ideas; in the right cerebral cortex, icons, images and patterns are more
important. A person with damage to the right cerebral cortex may not be able to recognize
whose handwriting they are looking at, while similar damage on the left side can block
understanding of the written word altogether.

However, the elusive “open loop” in the human/computer interface may also involve other
kinds of processing in the brain. There is a “limbic system” which pertains mostly to emotion
and through which we attach importance to what we perceive in our environment. Evendeeper
within the brain is a “collicular” system which mediates spatial attention. A flashing cursor
can catch our attention at a collicular level, causing a turn of the head or a rapid reaiming
of the eye (which you don’t usually perceive consciously) without the more ponderous involve-
ment of the cortex. If the limbic system attaches importance to the flashing cursor, then the
cortex may get involved.

Finally, at the level of muscular movement or “motor output,” there is a distinction between
unique or newly learned movements which must be stepped through, motion by motion, under
direct conscious control of the cortex, as opposed to repetitive, well known movements which
become encoded as nearly permanent patterns in a deep brain structure called the cerebellum.
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A learned, cerebellar movement can be called into action by an effective command from any
of the conscious thought of the cortex, the emotional response of the limbic system, or the
instantaneous orienting response of the colliculus. These cerebellar movements can be rapid,
smooth and precise, virtually independent of the complexity of the muscular or sensory ac-
robatics involved. (For electrical engineers, a useful metaphor would be to think of the cer-
ebellum as a Programmed Logic Array (PLA) to the cortex’s microprocessor.) The fastest
responses of a highly skilled video arcade game freak (the kind who has been raised up from
infancy with a joystick in hand) can reflect a “collicular/cerebellar” loop which never involves
the slower associative processing of the cortex.

The attempt to develop “user friendly” windowing screens can be more explicitly approached
as a problem in making the screen “collicular friendly.” The colliculus has “hard wired” ways
of making the eye scan surrounding space which involves a preference for tracing the edges
of objects and for creating visual abbreviations for complex shapes. The brain perceives Lisa’s
windows as a small number of discrete objects; much of the work of selecting a single window
to pay attention to is done at the level of the colliculus and limbic system before the cortical
visual recognition process is fully engaged. The very different design of windows in, for ex-
ample, Perfect Writer fails in this regard. The screen is perceived as a detailed array of complex
shapes which must be picked through consciously by the cortex again and again.

Further, once a Lisa window is attended to, right cortex association of the icons can further
relieve the burden of the left cortex which is trying to attend to words and numbers. This is
in part why competing windowing software for the IBM PC, which does not account for all
these fine points, often fails miserably, relative to Lisa, by making the computer seem more
difficult to use and more taxing to attend to. The magic of Lisa is not simply due to crowding
a large number of competing options into your field of view, rather it has to do with providing
spontaneity of switching between tasks while retaining the sensation of a simple, uncluttered
screen. Whether the designers of Lisa (and Xerox Star) arrived at their screen layout through
an analytic approach to the literature of perceptual psychology or in response to intuitive
aesthetics, many of the particulars of the graphics are not as trivial as they may seem.

Entering Words, Letters and Numbers

This brings us to the design of input devices. To get words and numbers into the computer
your options include, voice, writing, typing, pencilled cards, and the primitive “front panel.”

For voice, the Apple must digitize or acquire the sound pattern, undergo a pattern recognition
process, and then pass along the selected string of ASCII characters. Writing on an input pad
requires the computer to undertake a similar series of interpretive events, but although the
word is already available in its component letters, computers have a much harder time with
image recognition than with sound recognition.

The remaining options all shift much of the burden of decoding the word into letters on over
to the human who is generally much better equipped than a microcomputer to carry out
pattern recognition. Skilled typists can pound the keyboard as well as they can write and as
fast as they can talk, so this distribution of labor has served the computer/human interface
well for many years. Most modern keyboards do some further processing of their own tomatch
keypresses with ASCII codes to feed to the computer, so everything proceeds quite smoothly.

Back in the days before we had inexpensive smart keyboards, and before IBM felt threatened
by the microcomputer (i.e., circa 1980), most people who used computers did even more of the
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work by pencilling in little boxes on computer cards or did daily battle with a grinding, whirring
keypunch. You can, in fact, buy a punched/pencilled-card reader for the Apple from Mountain
Computer (the Model 1100A), or from Chatsworth Data Corp. (OMR-500 and OMR-2000).

Twenty-five to 30 years earlier, punched cards were a big user friendly breakthrough which
relieved computer operators from the necessity of sitting in front of a row of eight switches
called a front panel and setting the digital pattern of each letter one at a time. You can still
rig up your Apple to accept bytes in this fashion using some of the special digital ports
mentioned in Chapter 15, but really now, let’s not get carried away with nostalgia.

Entering Spatial Information

While voice input is still in an early growth stage (see Chapter 11), keyboard input is, for the
most part, in a happy and mature state. Within the past year or so, however, one weakness
in keyboard (and, for that matter, voice) input has gotten increasing attention. To wit, there
are things we wish to communicate to the computer which are not directly equated with words.
If you've ever found it bothersome to reach over to an arrow key to move the cursor during
word processing, you might be crushed to learn that saying “left, left, left, up, up, up, left”
into a voice system is infinitely more tedious and distracting.

This is the point at which computer designers have invoked the idea of left brain versus right
brain. It is considered that the words and numbers on the screen have meaning in the left
cortex of the brain, but that positions and directions exist in the “cognitive maps” and spatial
notations of the right cortex. A “pointing” device (mouse, touch pad) lets you carry out your
intentions for motion in the same terms in which you perceive the space on the screen.

The screen metaphor in Lisa takes this one step farther by representing menu options as
pictorial icons in standard positions on screen windows. This is an attempt at a sort of “parallel
processing” in which as many tasks as possible are allocated completely to what is assumed
to be right brain processing so that they will not complicate the processing of words and
numbers by the left brain.

Entering Affective Information

Still largely untapped are our emotional (limbic) and orientational (collicular) forms of expres-
sion. One of the problematic aspects of current voice input systems is that as the user becomes
frustrated or nervous their tone of voice changes, and the computer becomes unable to recognize
what they are saying, thus adding to the anxiety. It may, in fact, be this unresponsiveness to
emotional tone that makes some people so uneasy with computers. The programmers at Elec-
tronic Arts claim to be quite interested in this problem. Further, it is interesting to note that
the Alpha Syntauri SM 05 music keyboard (see Chapter 10) has velocity sensitive keys so the
computer knows not only which key you struck, but how hard you hit it.

While there is no forseeable prospect of computers receiving our thoughts directly, one path
for making a computer instantly aware of what a human is interested in is to track eye
movements. The colliculus has a standard set of rules for directing scanning, but it does its
work interactively with the limbic system which attaches importance to objects. All of this
seems to imply that a computer can be made to be more responsive than most would like to
contemplate. But, as we have seen, with enough RAM, a fast enough processor and just the
right sensors, almost anything is possible (after all, this is 1984).
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Fig. 8.1a (top) The Apple //e
keyboard.

e T

Fig. 8.1b (center) The Apple Il
keyboard.

Fig. 8.1¢ (bottom) The Apple //c
keyboard.
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Keyboards

The elements of keyboard design grow out of more than a century of mechanical constraints
and cultural habits. However, in the past five years, the occupational health concerns of
workers and the marketing concerns of manufacturers have combined to make this familiar
array of push button switches into one of the most intensely studied objects humans have ever
laid their hands on. Further, during the same five years, advances in electronics have greatly
increased our expectations of the kinds of things a keyboard should be able to do.

The physical design of a keyboard usually takes the needs of a skilled touch typist as its
starting point. You then throw in a few adjustments for the needs of less skilled typists who
don’t necessarily want to use a computer as if it were a typewriter, account for mechanical
reliability, and make a few allowances for improved safety.

There are really two quite distinct areas of concern in the design of the electronics. The most
fundamental problem is to mesh the peculiarities of the speed and regularity of human move-
ment with the respective peculiarities of computer data acquisition. Beyond that, there is the
issue of encoding letters as ASCII codes. While simple one to one matching has been the norm
in the past, newer keyboards have their own microprocessors, RAM, ROM and audio systems,
and perform services not anticipated in the age of the typewriter.

Ergonomics

If you ever get to compare the feel of the keyboard of an early Apple II to the one that was
being installed in the last few II +’s coming off the assembly line in late 1982, you’ll notice
that a great deal had already happened before the arrival of the //e and //c. This is the impact
of “ergonomics.”

Aside from being a very trendy term, ergonomics, or “human factors design,” is concerned
with making you feel comfortable while you work. During the history of the IIII+, Apple
Computer was both affected by and actively involved in efforts to improve keyboard comfort.
The later keyboards reflect changes in the height and angle of the keytops in each of the rows
of keys, a change from center-depressed to sculpted keytops, replacement of shiny plastic with
a matte finish, as well as changes in how hard your fingers had to press and how far the keys
travel.

Later versions of the /e extended this series of changes by using dark labels on the light matte
background and adding small, raised, positioning dots on the d, k, and right arrow keys. The
/lc adds firmer tactile feedback, crisper audible feedback, and a rubber splash screen beneath
the keys to catch smaller spills harmlessly (see Figure 8.1).

Mechanical Features

The most active research on keyboard comfort has been done by several German groups. One
result is a set of Deutsche Industrie Norm (DIN) standards which are having such a substantial
impact in the U.S. that they induced IBM to abandon its much loved Selectric style keyboard
for a DIN style device for the IBM PC. You can get DIN style keyboards for the Apple II/II +
from Keytronics and from Multitech.
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The purely mechanical standards cover the recommended height of the “home row” (ASDFGH,
ete.) above the table top, how far you have to push a key before the switch throws (“pretravel”),
how hard you have to push to get it there (a standard “activation force” for regular keys and
a greater one for the space bar), and the maximum distance you can push a key before it hits
bottom (“travel”). There are also suggestions on the shape and color of the key tops, and the
angle of slope of the whole keyboard.

The DIN specifications recommend that the user be allowed to move and position the keyboard
relative to any CRT screen. This is widely interpreted as a requirement for detachable key-
boards, but it was really directed at the widely used CRT terminals in which the keyboard
was built into the same unit as the screen. This forced the user to always stare at the screen
from a fixed distance and at the same angle, causing eye strain. This problem does not nec-
essarily apply to the Apple Il since the monitor is not attached, thus the Apple II design meets
the intention of the DIN specification. In fact, the great bulk of people who use the Apple II
or the IBM PC work with the keyboard in a fixed position directly in front of the screen
anyway, but this is not necessary nor is it always a good idea. The //c certainly meets the
letter and the intent of the specification, and also fits handily in your lap while you’re working.

The principal things you can’t do with an Apple II, II+ or //e keyboard in this regard are to
sit back with your feet up and the keyboard in your lap, much as some folks like to dowhen
writing in a notebook, nor can you move the Apple cabinet and drives off of your desk to
reserve space only for the keyboard. For the large majority who prefer to work at a desk, the
Apple II design works very well. However, for those who want a detachable keyboard so they
can put their feet up or make more space on the desk, there are a number of them available.

Feedback

Another important concern has to do with “feedback” which helps you to be certain you have
activated the key. This was never a problem for typewriters which made an unmistakable
clatter for each keystroke. Among computer users, this has turned out to be a matter of
substantial differences in personal taste. A few companies make completely silent keyboards
(i.e., Keytronic) where the only feedback is the steadily increasing resistance as the key
descends (“tactile feedback™).

Most Selectric or Apple style keyboards rely on an audible confirmatory snap either as the
key strikes bottom or as it pops back up after release. A third option which is built-in on some
keyboards or can be generated from software in the Apple is a click sound (10 to 40milliseconds
at 500 to 1500 Hz in some Keytronic keyboards) each time the computer receives a character.

The PCPI Appli-Card Z-80B coprocessor (see Chapter 29) lets each user select and set a
preferred volume for the click or no click at all. You make your choice and then it is patched
into the CP/M operating system disk and activated every time you boot up. The click is
generated from the Apple’s speaker regardless of the kind of keyboard you are using. This
has the provocative and interesting consequence that each user can set up their own version
of the PCPI CP/M operating system according to personal aesthetics.

Secondary Key Blocks

The major point at which skilled touch typists part company with the remainder of computer
users is in their attitude towards additional blocks of keys placed out of reach of the home
typing position. Typists using WordStar will happily type four and five key control sequences
to issue commands as long as they don’t have to do a hunt and peck cycle which involves
looking at the keyboard, reaching, and then returning to the home position. More and more
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computer users, however, are coming to prefer special “function” keys which help avoid the
tedium of learning and typing command sequences. Function keys are often arranged as a
separate group along the top of the keyboard or on either side of the primary key area.

In addition to command function keys, many users like to have a separate cursor movement
pad to tap at without concern for accidentally hitting other keys. A “compass” shaped cursor
pad has the added advantage of purely spatial correlation with the screen. Finally, there is
substantial interest in numeric key areas. Many typists who otherwise are primary key fa-
natics do not like entering large amounts of numeric data with the normal number keys.

The most popular arrangement for number keys is called a calculator style arrangement (7,
8, 9 on the top row) though some like a telephone style arrangement (1, 2, 3 on the top). More
recently, the demand has been for “VisiCalc pads” which should include not only numbers
and arithmetic operators, but also parentheses, label, direction, and command keys in a cluster
for operation with one hand. Variations on these themes are available from several companies
for addition to the IVII+ or //e (see below).

Keyboard Electronics to Interface Humans
with Computers

The electronic system that manages the keyboard must mediate among the way humans type
and the way mechanical keyboards work and the way the Apple reads in data. The whole
process involves detecting a keypress and translating it into a digital code, isolating the
computer from the slow and irregular pace of the human, and responding to requests for rapid
repeat. The translation step involves correctly detecting a keypress, identifying which key it
is that’s down, selecting the appropriate matching output code, and informing the 6502 that
a new code is available.

Things get a little trickier a few millionths of a second later, because the human finger that
started the sequence is most likely still engaged in the process of pushing the key down. The
entire keystroke may take over half a second (which is 500,000 cycles of the 6502’s clock). To
avoid any ambiguities, the keyboard electronics must detect both the beginning and the end
of a single keystroke and treat the whole period of time that the key is down as if it were a
single rapid event lasting less than a thousandth of a second.

Ifthe human decides to activate the repeat or autorepeat (a /e and //c) feature, another problem
arises. Operating at a wide open, uninhibited rate, the keyboard could send a thousand copies
of the character per second. This would rapidly fill the screen and overwhelm most running
programs in the computer. There is therefore a special electronic subsystem to handle auto-
repeat and slow it down sufficiently to properly emulate the approximate typing speed of a
human.

The AY-3600 Keyboard Decoder

Each key on the keyboard sits above a position on an X,Y grid made up of electrically con-
ducting X lines and Y lines. When a key is pushed, it throws a switch connecting one of the
X lines to one of the Y lines (see Figure 8.2). If the keyboard electronics can tell which X line
is connected to which Y line, then it will know which key has been pressed.
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At the heart of the detection and translation system are two counting registers in a chip called
the AY-3600 Keyboard Decoder. This chip is used in the //c, the /e and in most II+’s (see
Appendix D). The two registers count through nine X positions and 10 Y positions, thus
stepping through a total of 90 X,Y position pairs. The number in the X counter increments
by one with each tick from a 90 kHz clock. After nine ticks, the X counter cycles back to zero
and the Y counter is incremented by one. A complete cycle through all 90 possible X,Y pairs
thus takes one millisecond.

The X lines are outputs from the AY-3600, and the Y lines are inputs. With each step of the
90 kHz clock, an electrical pulse is sent out on the one X line whose number is in the X
counter. The AY-3600 then looks at the one Y line whose number ig in the Y counter. When
a keypress connects an X line to a Y line, then the pulse sent out on the X line output will
show up on the Y line input. Most of the time this is not the case, and the X counter is advanced
and a pulse is sent on the next X line. This continues until each of the nine X lines have
gotten one pulse. Then the Y counter is incremented by one, and the cycle through the X lines
repeats itself.

Data Bus ou

Bit 7 only P
DATA BUS B4
e ———
(reset line)
Output codes from AY-3600
Data Bus____ to Kegboard ROM in Ile
Z AY

Bit 7 only

X0 X1 X2 X3 X4 XS5 X6 X7

Fig. 8.2 The keyboard input system on the //e. The Open Apple and Solid Apple keys operate the game port push button

lines O and 1. The layout is similar for the I+, but there is no keyboard ROM or AKD (any key down) line, and the data
strobe goes directly to a data bus buffer.

Detecting a Keypress
If a key has been pressed, then at some time during the next millisecond the AY-3600 will
send a pulse to that key’s X line at the same time that the AY-3600 is looking at that key’s

Y line. At that moment, the pulse will appear on the Y input and the AY-3600 will know it
has detected a keypress.
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The AY-3600 immediately stops the advance of its X and Y counters, stops sending pulses,
and changes into its analyse and report mode. The first active response is to turn on a signal
called Any Key Down (AKD). This signal will remain on until the human has finished the
entire keystroke and the key is no longer in contact. The AKD signal is used only by the
keyboard electronics in the II and I+, but in the //e and //c it travels on into the IOU (Input
Output Unit) and its status can be read at Apple address $C010 (decimal 49168; see Chapter
26). :

Then, before proceeding any further, the AY-3600 comes to a complete dead halt for a period
of eight milliseconds. This time is called the “debounce period” and helps the AY-3600 ignore
any phantom making and breaking of the switched connection due to actual mechanical switch
bounce (see Chapter 14). As the debounce period ends, the code translation step begins.

Translating the X,Y Position into an Output Code

The numbers that were in the X counter and the Y counter when the keypress was detected
describe the X,Y position of the key that it is down. The AY-3600 must now match this X,Y
pair with a digital code to send to the Apple. This chip has been designed so that any man-
ufacturer can program into it which code will be sent for each possible X,Y pair. Although
the same chip is used in the II+ and in the /e and //c, the AY-3600 translate program is
different in the three machines.

Before beginning the translation, the AY-3600 looks at two other inputs which are managed
separately from the rest of the grid. One is from the Shift key and one is from the Control
key. There are four possible Shift/Control situations (Shift, Unshift, Control and Shift-Control).
Thus there are 90 x four = 360 possible output codes for an AY-3600. In the II/II + only 47
of the 90 possible X,Y positions are active, and these are used with Shift and Control to
generate 96 different output codes. In the /e there are 56 possible X,Y pairs and they are used
with Shift and Control to generate 128 different output codes.

Another very important difference between the III+ and the //e and //c arises at this point.
The AY-3600 output codes in the II'II + are the actual ASCII codes which are passed onto the
Apple data bus for use by the 6502. In the //e or //c, however, the AY-3600 output codes are
just the first step in the translation process.

The //e and //c have a separate 2K ROM chip (see Figure 8.3) which receives the AY-3600
output codes and treats them as part of aROM address. The ROM also receives an input from
the Caps Lock key on the keyboard as well as from two additionalsignalson the motherboard.
The //c keyboard ROM also gets an input from the “keyboard” switch. These various signals
allow the ROM to alter the interpretation of the keys into 16 different possible layouts. This
feature is used for some European keyboards, and it is used to simulate a II+ keyboard.
Another interesting aspect is that it can respond as if the keyboard were in a Dvorak layout
rather than a QWERTY layout.

The QWERTY layout of the keys dates back to the late 1860s and was designed to slow typists
down so that they wouldn’'t swamp the mechanics of early typewriters. The Dvorak layout
was designed in the 1930s to make it easier to type. It's design is based on selecting the 11
most frequently used keys and placing them all in the typists home row. It’s been 50 years
since the advent of Dvorak and it’s never made a really big impact, but interested //e and //c
owners should be happy to learn that their machines have an optional Dvorak mode.
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Fig. 8.3a (right) The //e keyboard
ROM permits reassignment of keys
after decoding by the AY-3600.
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Fig. 8.3b (top left) The
keyboard switch on the //c is
connected directly to the
keyboard ROM. When the switch
is down, the ROM changes its
responses to key codes from
the AY-3600, thus converting
the keyboard to a DVORAK
arrangement.

Fig. 8.3c (bottom left) The //c
keyboard ROM is marked
MAP. It receives and
translates codes from the
AY-3600 chip.

134




The Data Strobe and the Keyboard Flag Bit
Once the AY-3600 has selected the appropriate output code, it places that code in its output
register and attempts to inform the 6502 that a new key has been pressed. When a program
in the Apple looks at address $C000 (decimal 49152) it can see a seven bit character code from
the keyboard. In the II/II+ this code is read directly from the AY-3600, while in the //e and
/e it is read from the data pins of the keyboard ROM.

However, the eighth bit in the byte is not actually part of the character code. Rather, it is
used as a signal from the AY-3600. There is a special output line from the AY- 3600 whose
sole purpose is to set the eighth bit of $C000 to one whenever a new output code is generated.
In normal operation, the AY-3600 waits about 11 microseconds after it has gotten its new
output code ready to go, and then it turns on its Data Strobe line for a single 11 microsecond
pulse. This pulse on the Data Strobe line is what sets the Keyboard Flag Bit to one.

Some further details of this Keyboard Flag Bit are discussed in Chapters 26 and 33. Standard
protocol in the Apple requires that whenever a program reads in a character code from $C000,
then that program must immediately do a “read” or “write” to address $C010 which is calted
the Clear Keyboard Strobe address. A read or write to $C010 clears the Keyboard Flag Bit
to zero. The next time the program looks at $C000, it can check the eighth bit before it decides
whether or not to do anything with the seven bit character code it sees there. If the eighth
bit is set to zero, the program can assume that it has already read that character and thus
ignore its continued presence in the input port.

In the //c, this keyboard Data Strobe line has a powerful additional function. It has a second
connection to the Data Set Ready (DSR) pin of the 6551 communications chip used for serial
port two. The actual purpose of this connection is to permit the AY-3600 to generate an
interrupt when a key is pressed. This mode is used primarily when the //c is also using the
modem port, but it can be used at other times to improve program performance. Most Apple
programs spend the bulk of their time waiting around for a keypress to occur. In the //c,
however, a program can do other useful work and attend to the keyboard only when an interrupt
occurs. This function is explained in detail in Chapter 18.

Reviewing the Acquisition Sequence

In review then, when you strike a key, the AKD signal line turns on immediately, eight
milliseconds later the AY-3600 has selected an output code to send, and 11 microseconds after
that it sends a Data Strobe pulse to the Apple to set the Keyboard Flag Bit. Let’s assume that
the 6502 has been running around and around in its KEYIN program loop (see Chapter 33)
continually checking the status of the Keyboard Flag Bit. A few microseconds after the AY-
3600 sends the Data Strobe, the 6502 notices the change in the Flag Bit, grabs a copy of the
character out of the input port, and then clears the Flag Bit back to zero.

This completes the sequence of detecting and acquiring a key press. When all this isfinished,
the output code is still sitting in the AY-3600 register, your finger is still just beginning the
keypress (everything so far took just nine thousandths of a second), and the AKD line is still
on.

N-Key Rollover
As soon as the AY-3600 has finished sending out its Data Strobe, it restarts its scanning
activities. The X and Y counters begin to increment, pulses are sent successively on the X
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lines, and new keypresses can be detected. Note, however, that this resumption has occurred
long before the human has finished the previous keystroke. The AY-3600 will ignore any new
report of the previous key until it has been released. Meanwhile, it will collect in as many
new keys as you can press.

If you simultaneously push down all the keys on the keyboard, it will step through them one
by one, stop the counter temporarily, decode, send Data Strobe and move to the next, always
ignoring any that have already been reported. This is called “N-Key Rollover.” It is important
because it means that a fast typist who has several keys down in rapid succession before the
first one is released will not confuse the keyboard.

Although the AY-3600 is equipped to do N-Key Rollover, the keyboard of the I/II +, as well
as the //c keyboard, are not wired properly to permit the feature to operate correctly. When
several keys are down, there begins to be a network of possible paths an X pulse can take on
its way to a Y input. The result is that if you press more than two keys on a IIII+ keyboard,
you will get phantom keys that have never actually been pressed. The //e has strategically
placed diodes scattered about the grid switches which prevent these errant paths from de-
veloping. Thus the I'II + and the //c have 2-Key Rollover, but the /e has N-Key Rollover.

I/II+ Repeat and //e and //c Autorepeat

Once a key has been pressed, its output code will remain in the AY-3600 output register until
a different key is pressed, but once the 6502 has grabbed the code and cleared the Flag Bit,
it will ignore its continued presence. However, if a new Data Strobe signal is sent, then the
Flag Bit will be reset to one and the 6502 will think the key has been pressed again. Thisis
the basis of the repeat function.

In the Apple IVII+, the repeat system is based on a “5655 timer” which is set to an output
frequency of 10 pulses per second. When the AKD signal is on and the Repeat key is pressed,
the 555 timer is activated. Early Apple II's with the “single piece keyboard” (see Appendix
D) used a keyboard decoder chip called the MM 5740, and that chip received the pulses from
the timer and sent new Data Strobes. In the “two piece keyboard” used in later Apple IIs and
all Apple II+’s there is an AY-3600 which has no built-in provision for a repeat function. In
those Apples, the 555 timer is simply connected to the Data Strobe line directly.

The autorepeat system in the //e and //c is a bit more sophisticated. Recall that in the //e and
/e, the AKD signal goes all the way down into the IOU. When the IOU sees the AKD signal
turn on, it begins counting with an internal timer. After 0.9 seconds have passed with the
AKD signal still on, the IOU goes into autorepeat mode. The Keyboard Flag Bit is actually
a one bit storage location inside the IOU in a //e or //c, so it is no special problem for the IOU
to begin resetting the Flag Bit on its own at a rate of 15 per second.

Some programmers who write games or who write for very young children may want to override
this autorepeat function and so the //e and //c makes it possible to do so. Although the //e
reference manual says that a read to $C010 gets you only the high bit, this address actually
looks very much like $C000. You get the seven bit character code, but the eighth bit is set by
AKD instead of by Data Strobe. This means you can ignore the usual strobe, clear, and repeat
system and work directly from key down or key up information. You still get all the advantages
of N-Key Rollover since the lower seven bits are updated with each new keypress even if AKD
stays on.
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Intelligent Encoding of the Output Codes

As noted, the //e and //c have a keyboard ROM placed between the AY- 3600 outputs and the
Apple’s keyboard input port. The only way a user can actually alter the codes is to push Caps
Lock or the //c “keyboard” switch and there is no way to alter the coding process from within
a program. Access to the various alternative coding bytes requires some cuts, solders and
jumpers on the motherboard.

There are, however, a growing number of pieces of add on equipment for the Apple such as
the Omega II keyboard from Zicor which can make this coding process much more elaborate.
These “smart” keyboards can store hundreds or thousands of alternate character assignments.
Most of these systems have their own supervisory microprocessor, RAM and ROM interposed
between the keyboard decoder chip and the Apple’s keyboard input port.

This happens to be one area where III+ owners are in much better shape than //e owners.
In the IVII+, the MM5740 or AY-3600 is actually mounted on a special board beneath the
keys (see Figure 8.4). The keyboard cable passively delivers the final ASCII code ready for
use. This makes it easy to add extra electronics for intelligent decoding and simply feed finished
ASCII codes on down to the motherboard.

In the //e and //c, however, the AY-3600 is mounted directly on the motherboard and what
passes in the keyboard cable are the raw X line pulses and Y input return lines. For an
intelligent keyboard system to operate it must not only generate the desired codes, but it must
also simulate the appropriate switch closures to interface with the //e’s AY-3600.

The only alternative is to unplug the keyboard ROM and intercede at that point, but future
versions of the //e may have the ROM soldered to the board rather than in a removable socket
connection, so designers have been hesitant to build products that require this change. This
probably means that intelligent keyboards for the //e will require a regular expansion slot
rather than plugging inconspicuously into the keyboard input port connector. In any case, this
is one area where peripheral products for the II/II+ are in no way compatible with the //e.

Adding New Keyboard Features

The things you can do to improve upon your current keyboard situation include adding a
numeric pad, adding a block of special function keys, or adding an entirely new detachable
keyboard with a numeric pad and function keys built in. If you happen to be perfectly happy
with all the things your keyboard does as it is, but wish it were detachable, then you canbuy
a fairly inexpensive case and cable from Innovative Micro Goodies or Keytec and follow their
instructions for moving your Apple’s standard keyboard out into a detached chassis. Both
companies make II/II + and also /e versions.

Another modest improvement many II+ owners might want to consider is the Repeaterrrr
from High Order Micro Electronics. This is a small circuit board which plugs into your revision
seven motherboard (see Appendix D) and adds autorepeat to all the keys on the keyboard.
These folks also sell a Repeaterrrr + version which includes a little kit for making the Shift
Key Mod.

The Shift Key Mod is a widely used trick whereby you connect your shift key to one of the

pushbutton inputs in the game port. Many 80 column cards and word processing programs
which can handle upper and lowercase characters will automatically check this input before
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accepting each new character. The total effect is make the IIII+ shift key work like a real
typewriter shift key. Figure 8.4 describes how to do the procedure yourself (see also Appendix
D), but if you want to keep things as simple as possible you can purchase the modification
ready to go from High Order Micro Electronics.
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For the Shift key mod, a micro test chip
{Radio Shack pn# 270-370) is attached to
the second pin from the left, thus tapping
into the shift key signal. You can connect
the clip easily with the top off your Apple
and without actually removing the piggy
back board. The wire from the test clip is
then shoved into the push button 2
position on the game connector. (See

Fig. 26.2c.)

Numeric and Spreadsheet Keypads

A compact convenient detached numeric pad is very handy if you’re going to be entering a
great deal of numeric data. You can get simple numeric pads for the II/Il+ and /e from Apple
and from Advanced Business Technologies. As explained earlier, the keyboard connector sys-
tem for the II/II+ is very different than for the /e (see Figures 8.5 and 8.6), so you must
specify which version you want. The ABT Keypad B is for the II/II+ and their Keypad K is
for the //e (see Figure 8.7). If you have an old Keypad B, ABT will tell you how to modify and
adapt it to work on the //e.

Fig. 8.5 The I+ keyboard
connector. You may have to
unplug the cable to install
some keyboard upgrades, but
always be sure to notice
which way the plug is facing
before you remove it.
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Fig. 8.6 The //e keyboard and numeric
keypad connectors. If you use a slot3 80
column board instead of a //e auxiliary slot
card, you may need to do the shift key mod
by putting a drop of solder on the “X6"
jumper. The X6 jumper is already connected
on Revision A //e's.
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With a few more keys placed around the calculator style number keys, the pad can be considered
a “VisiCalc pad.” The Keywiz 83 from Creative Computer Peripherals has four cursor arrow
keys, 15 VisiCalc command keys, and a shift key which assigns alternate commands to the
15 command keys. Thus you get 30 one or two stroke commands, cursor keys, and a numeric
pad. The Keywiz 83 requires replugging the motherboard keyboard connector and it also
requires a free expansion slot, but it is available for the I/II+ and for the //e.

Fig. 8.7 ABT 13 key numeric pad. Separate
versions are made for the |1+ and for the //e.
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The //e Tender from Track House is a bit more modest, but is much more convenient than the
Keywiz 83 for single handed use. It has a full 18 key numeric pad, a space bar, four arrow
keys, and four programmable keys. These keys are programmed by setting switches and may
be assigned to any single key you choose. The //e Tender is designed in conformance with the
DIN design standards and so is a bit more comfortable to use than any of the other numeric
or function key pads. The interface has been arranged so that you easily connect or disconnect
the pad via a plug in the //e back panel. There is also a less expensive version in which the
four keys are permanently assigned and there is a model for the II/II +.

Function Keypads

Videx, ABT, and Creative Computer Peripherals make systems which add intelligence and
versatility to the normal range of functions of your Apple’s keyboard. These products have to
be considered in a cautious vein because you can get a fully detachable keyboard which does
everything these systems do all for a comparable price. The Videx Enhancer II and Function
Strip has been around for a long time and is comparatively inexpensive, but the CCP products
are new and very expensive when compared to a full featured detachable keyboard.

There are two products from CCP that are arranged as function keypads. The Keywiz Con-
vertible has 24 function keys, four cursor arrows and a shift key which alters the assignments
of the function keys. You purchase the Convertible in a set configuration for any one of 10
different word processing packages. The Softkey from ABT is also a fixed configuration function
keypad which offers either 15 Applesoft or 15 Pascal commands.

The second product from CCP, the Keywiz VIP (Very Intelligent Peripheral), has 31 function
keys which can be shifted to 62 different outputs. There is also a select system which lets you
switch among four complete sets of 62 keys. Further, this product has a special kind of memory
chip called non-volatile RAM which permits you to key in your own assignments for each key.
The RAM is called non-volatile because the VIP will remember your assignments even when
the power is off. You can store up to eight characters for each function key and with a total
of four x 62 equals 248 key assignments. Both of the CCP products can be used with either
the II, II + or //e.

The Enhancer II from Videx has a more limited market of the Apple 11+ and later Apple IIs
with the two piece keyboard, but it provides some attractive features at a low price. It is not
a separate keyboard or keypad, but rather is an enhancement of the built-in keyboard elec-
tronics. You can also purchase a Function Strip which is a tape made up of 16 touch sensitive
pads which you stick onto your Apple case above the keyboard.

The electronics serves to expand the possible character outputs to a full set of 128 ASCII codes
and permits reassignment of any key on the keyboard. Videx has also developed a Dvorak
keyboard option based on this system. You can store key sequences of up to a total of 510
characters distributed among the different keys. In addition, the Enhancer II can act as a 128
character “type ahead buffer” which means that if you are typing faster than your program’s
ability to accept characters, the Enhancer II will store up the extra characters and feed them
on to your program one by one as it becomes ready for them.

Replacement Detachable Keyboards

There are five manufacturers of detachable keyboards for the Apple. All of the keyboards have
numeric pads and some kind of function keys, but they differ quite a bit in the number of
features provided. Of the five, only the EPS keyboard is available in a //e version.
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Fig. 8.8 KB-200 keyboard from Keytronic.

The KB-200 from Keytronics is a fully DIN standard keyboard that closely resembles the IBM
PC keyboard (see Figure 8.8). It has 10 function keys, but these are permanently assigned to
a few DOS and Applesoft commands. It is rugged, a bit heavier than some of the other
keyboards, but with a long enough cable for convenient use when sitting back, away from
your desk. There is no provision for keeping the standard Apple keyboard active while the
KB-200 is plugged in.

One alternative to permanently assigned functions is to leave all the function keys for pro-
gramming by the user, which is the case on the MAK-II Accufeel from Multi-tech. This is a
DIN style keyboard with 12 programmable function keys placed across the top of the keyboard.
All of the other keyboards offer a much larger number of programmable and/or preassigned
keys.

The Amkey Pro 100 is the more modest of the remaining three keyboards and is the only one
of the five which lacks a cursor pad. It has seven permanently assigned DOS commands and
18 reassignable function keys. The function keys have three modes of operation. In mode 0
you can assign functions to the 18 keys, in mode 1 they offer an expanded set of Applesoft
and DOS commands, and in mode 2 they provide 18 VisiCalc commands.

The most elaborate keyboards are from Executive Peripheral Systems (EPS) and from Zicor
(the Omega II). The EPS board has 12 function keys which shift into four modes, giving you
48 active function assignments. However, this is an awkward board in two major respects.
The physical layout is not optimal for reaching the function keys and there is no simple means
of programming the function keys yourself. EPS sells a set of ROMs for various popular
programs, but you can only plug in one of these ROM modules at a time, and all are at extra
cost. EPS will make a ROM to order for you if you desire.

The best design of any of the boards is the Omega II (see Figure 8.9). It has 25 function keys
and five built-into ROMs that support a large number of popular programs as well as a set
for configuring your Epson printer. You switch instantly among assignments by tapping mode
keys on the board. There is a sixth mode which allows you to program the keys yourself. The
assignments are stored in 4K of static RAM in the keyboard but may be uploaded and down-
loaded to disk. With a single load you can have up to 31 characters assigned to each of the
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Fig. 8.9 Omega Il keyboard
from Zicor.

25 function keys, and 255 characters assigned to two additional long function keys. There is
a full cursor compass with a home key in the center and these make up five more function
keys also with six levels of assignment. Finally, there is a 128 character type ahead buffer
which can be conveniently enabled or disabled.

The remarkable thing about the Omega II is that it is so incredibly packed with features yet
it is beautifully laid out for convenient access to all features by a touch typist. The numeric
pad is laid out as a 23 key VisiCalc pad and the cursor keys are on the left in reach of a touch
typist’s fifth finger. The board is light, rugged, reliable, attractive and has a 10 foot connector
cable. Your standard keyboard remains active at all times, but there is a Caps Lock key (as
well as a Shift Lock) which lets the Omega II simulate a standard Apple II keyboard.
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Fig. 8.10 Bar Code Reader.
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Character Input without a Keyboard

The most exciting alternative to keyboard input is voice. A top of the line product such as the
VIM from Voice Machine Communications (see Chapter 11) can respond to 80 spoken com-
mands by recognizing your words and pumping the appropriate characters in through the
keyboard input port. The VIM and a few other voice input products are described in the chapter
on voice.

A far less dramatic but nonetheless very important character input device is the bar code
reader. You can get the BarWand scanner from ABT as a separate device (see Figure 8.10),
or you can buy it as part of a full scale “Retail Management System,” complete with a cash
register drawer, numeric entry pad, bar code printing software, and point-of-sale/inventory
management software (see Figure 8.11).

Fig. 8.11 Retail Management system.

143






Chapter 9

Spatial Input
Spatial Input

The physical designs of spatial input devices draw on three rather distinct aspects of our
normal human expression and action. Pointing is natural form of human gestural commu-
nication, drawing is a more attentive means to the indirect communication of art and image;
hand control is built on our enthusiasm for operating mechanical devices (buttons, knobs,
levers and triggers).

Any one of the many major distinct kinds of spatial input devices can be made to do the tasks
of all of the others. However, each emphasizes some particular aspect of our abilities for spatial
expression. Digitizing tablets and digitizing cameras stay closest to drawing and help maintain
the exact physical sensation of using a pen or paint brush. To achieve this simulation, they
require the most elaborate electronics and mechanical equipment and hence are much more
expensive than other spatial input devices.

Joysticks, trackballs and game paddles are built to emulate our favorite mechanical control
devices and emphasize force, orientation and directional attention. The mechanisms involved
tend to be simple and inexpensive, but they provide very little of the sensation of drawing or
pointing. The future descendants of these devices may include the equivalent of micro ma-
nipulator or macro manipulator gloves which detect and scale detailed motions of the hand.
This sort of thing is not too important for playing games, but could be very useful for pro-
gramming robot devices.

The major competitors for the best pointing and drawing device are the touch screen, light
pen, touch pad and mouse. Of all of these, the mouse is gaining the most rapid acceptance
among microcomputer users in part because it is comparatively inexpensive, but also because
it comes closest to meshing with our feel for all of pointing, drawing and mechanical hand
control.

The Touch Screen and Light Pen

The most direct analogy to drawing and pointing to objects on paper is achieved by the touch
screen and light pen which let you interact directly with the image on the CRT. A touch screen
such as the CTA Touch Bezel is based on a frame which mounts on the front of your monitor
and which sets up a grid of infrared light beams and photo detectors. Touch screens first came
into heavy use by air traffic controllers during the 1960s. The CRT screens got messy and
dirty and people’s arms got tired.
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Nonetheless, for intermittent use where precise pointing isn’t necessary, these can be very
handy. The screen system from Computer Technology Associates has a resolution of 96 hori-
zontal points by 64 vertical points so it should be possible to select any one of the characters
on an 80 by 24 column text display. However, fingers are thicker than characters. To take full
advantage of the precision, you need to use some narrow pointer to break the beam which
defeats the whole idea of spontaneous pointing. The optimal use is to permit casual users to
select menu options by pointing to large, well labeled blocks on the screen.

A light pen is actually just a fancy, hand held photo detector. As explained in Chapter 5, the
image on the CRT screen is created by an electron beam which sweeps through a “raster”
pattern on the screen (see Chapter 5, Figure 5.1). The beam draws a thin horizontal line, then
snaps back diagonally te the side it started on but pointing a little lower in preparation for
drawing the next horizontal line. A complete coverage of the screen takes 1/60th of a second.
The beam is always “shining” as it draws, but it must emit a much brighter burst to make a
phosphor glow as a dot on the screen.

When you point the light pen at a position on the screen, it waits until it sees the beam sweep
by and then sends a gignal to the computer. The Apple directly controls the timing and position
of the electron beam sweeps, so it is a fairly straightforward task to match up an absolute
screen position with the time at which a pulse arrives from the light pen.

Fig. 9.1 Magesllan light pen. The light pen will allow
the user to interact directly with the image on the CRT
screen. The resolution of a light pen can be much
better than a touch screen.

The resolution of a light pen can be much better than a touch screen, and both Magellan and
Gibson Laboratories claim that their pens can pick out a single dot on the Apple high res
screen. The Magellan pen collects up its video timing information from the internal video
connector on the Apple motherboard and reports detection via one of the pushbutton inputs
on the game port (see below). This light pen also has a button on its side (see Figure 9.1)
which you can use as a secondary select button much as you would use a button on a mouse.
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The strong point of the simple interface used by Magellan is that it helps keep down the cost
of the system. However, it does place a heavier burden on the programmer for interpretation.
The Gibson light pen is plugged into slot 7 and uses special video synch signals provided on
the pins of that slot. The extra electronics on the Gibson card makes this system easier to
deal with for most programmers, but it also makes the system considerably more expensive.
Another problem is that early Apple //e’s with a revision A motherboard (see Appendix D)
don’t have the necessary video synch signals on slot 7.

There are a few other limitations with both light pens. First, it takes a bit of practice to get
used to pointing the pen at the right angle for good detection which further detracts from
spontanteity of use relative to other pointing devices. Then, because the pen is light and held
at a distance, there can be trouble with jitter for high resolution work. In addition, you should
note that these pens don’t work with amber screen monitors nor with older Monitor IIIs which
have a long persistence phosphor.

Touchpads and Mice

To use a touchpad or a mouse you have to maintain a sort of mental image of a secondary
map of the screen. You point to a surface on a desk top but the action happens elsewhere on
the CRT. Remarkably enough, this proves to be a fairly effortless task for most people. For
instance, our seven-year-old reviewer immediately latched onto the Koala touch pad and
happily used it for hours on end. A touch pad is small and convenient and unlike a light pen
or touch screen there is no problem with fatigue from holding your arm up and your hand
doesn’t obscure the image on the screen.

Fig. 9.2 Koalapad Touch tablet.
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The KoalaPad touch tablet (see Figure 9.2) is a low resolution graphics tablet which plugs
into the Apple game port and which can detect and follow the press of a finger without the
need for a special pen or marker device. Like a touch screen, the resolution you get when
drawing with a finger isn’t too good, so you often end up using a stylus. It’s impossible to
remember exactly where you last put your finger down so you always have to first make
contact and then trace to where you left the cursor if you want to draw smooth lines or trace
to the menu box you mean to select. The pad has two buttons for confirming your choice of a
location and for controlling software options.

To use a mouse, you must have a square foot or so of space clear on a clean desk top in easy
reach when you’re working. Some people don’t work like that and may want to use a KoalaPad,
but there are several advantages of using a mouse. First, the mouse stays put when you take
your hand off it so you eliminate the initial contact and search step. More importantly, it is
convenient to design a mouse which provides good manual control at very high resolution.

The Apple Il Mouse

The mouse system for the Apple II from Apple Computer is extremely complex and sophis-
ticated. It has a delightfully fast and precise response to movement, and is extremely easy to
use. However, that speed and precision required a remarkable amount of skillful hardware
and software engineering. The AppleMouse interface card for II, II+, and //e computers ac-
tually has a 6805 “microcomputer on a chip” to carry out most of the work. The 6805 has its
own RAM and ROM inside the DIP with it, and thus it can monitor the mouse and storeinforma-
tion about movements without any effort on the part of the 6502.

In the //c, however, all of the work is done by the Apple’s own 65C02. This involves an elegant,
multilayered system of precisely timed interrupts and high speed interrupt handling routines.
You have to be careful of your information source if you're trying to learn about the system
since several small but crucial errors managed to creep into the description in the first release
of the //c technical reference manual.

The Mouse Itself

The Apple II mouse differs from the Lisa mouse in that it is designed to work in a smaller
area of desktop space. As you track in one direction, there are 45 clicks per inch on the Apple
IT mouse, but just 31 clicks per inch on the Lisa mouse. At a density of one click per screen
pixel, you scan 280 dots in just 6.2 inches or 560 super high res dots in 12.4 inches, Lisa needs
at least 23.2 inches for a full sweep of its 720 dot horizontal screen. In fact, as you will see
shortly, there is not a strict linear relationship between distance moved and dots counted, but
these measures make it fairly clear that you can, for instance, roll the mouse around on the
cover of a paperback novel lying near your chair.

Inside the mouse, there is one switch detector for the button and four “optical detectors” for
monitoring motions. Each optical detector involves a small wheel which sits in contact with
the mouse’s large rubber ball. When you push the mouse across a desktop, you cause the
rubber ball to roll, and it turns the small wheel.

There are little square holes around the circumference of the wheel and there is a tiny Light
Emitting Diode (LED) trying to shine through one of the holes to activate a light detector on

148



the other side of the small wheel. If you were inside the detector, you would therefore see the
light source blink on and off as the wheel turned. The light detector is connected to the Apple’s
mouse interface, so this lets the Apple watch the wheel. When the mouse is still, the detector
sends a steady signal, but the signal begins to blink on and off as the mouse moves.

X-MOVE and Y-MOVE

If you move the mouse in one direction at a steady speed, one of the optical detectors will thus
send a steady square wave signal to the Apple. As a new hole moves into register, the signal
riges, then, as the hole passes, the light beam is cut and the signal falls. The Apple usually
attends only to the “rising edge” of the signal, although it can be configured to watch only
the “falling edge” of the signal instead. The //c softswitches at $C05C through $CO5F (49,244
to 49,247) are used to select rising or falling edge.

One of the detectors is called X0 or X-MOVE and it is positioned in the mouse casing to turn
when you move the mouse to the right or left. A second one called YO or Y-MOVE is placed
at right angles to the first one, and it detects forward or backward motion. With these two
detectors you can find out when the mouse is moving, how fast it is moving, and even which
axis or axes it is moving on; unfortunately, you can’t tell which direction either wheel is
turning in.

X-DIR, Y-DIR and Interrupts

To determine direction, Apple added two more optical detector wheels. The first of these is
called X1 or X-DIR and it is placed exactly on the other side of the rubber ball from X0. When
you move the mouse to the right or left, both wheels turn in unison. However, the two wheels
have been installed so that their holes are a little bit out of register. What this means is that
when you roll the mouse to the left, the signal from X1 always turns on just before the signal
from X0 (and, of course, turns off first as well). When you roll to the right, X0 always turns
on first, a few instants before X1 turns on.

To detect motion and direction, the Apple watches the X0 signal line. Whenever it sees a
rising edge, it immediately goes about seeing whether or not X1 is also on. If so, the mouse
has just moved one click to the left. The Apple //c must check X1 within about 50 microseconds
(millionths of a second) to be sure it gets this direction information correctly. A similar situation
applies for YO and a signal called Y1 or Y-DIR. The Y1 signal will be on if the mouse has
moved backward, and off if the mouse has moved forward.

Obviously, this system will fail miserably unless the Apple is paying very close attention to
the X0 and YO lines at all times while the mouse is being used. Not only must it notice the
change on X0 or YO0, but it must also be prepared to check immediately to learn the status of
Xl1or Y1.

The only way to accomplish this is with a high speed “interrupt” system. When such a system
is working, a signal such as X0 is able to activate a switch inside the 6502 microprocessor
which halts whatever program is in process. The 6502 then goes about servicing the interrupt
request and, when it is done, goes back to what it was doing before.

The AppleMouse Interface Card for the II, II+ and /e

Unfortunately, the Apple II, II+ and any //e’s sold before the summer of 1984 cannot perform
this sort of interrupt properly (see Chapter 27). This is why it was necessary to put a 6805
microprocessor on the AppleMouse interface card. The 6805 devotes its full attention to the
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mouse, and carries out leisurely information exchanges with the 6502 at convenient times.
Any Apple //e can be upgraded to handle high speed mouse interrupts (this requires replacing
some ROMs), but because of the 6805 in the AppleMouse interface, most users will find they
don’t need the upgrade just to use a mouse.

If you are using DOS 3.3, Pascal or CP/M, then your programs have to pause periodically to
interrogate the 6805. The 6805 has 128 bytes of RAM which it uses to store current data on
mouse movements. It takes care of the fast check of X1 and Y1 and uses the data to calculate,
update, and store an absolute X,Y position as well as to watch for presses of the mouse button.
However, storage space is very limited, so if the mouse is moved rapidly, your program may
not interrogate the 6805 often enough. As a result, this “passive” mode may allow some loss
of information.

VBL Interrupts with ProDOS

The ProDOS operating system makes it possible for any Apple II to handle certain kinds of
less urgent interrupts. Therefore, when the AppleMouse interface card is being used with
ProDOS, its 6805 can be configured to generate interrupts at a steady rate of 60 times per
second.

This sort of 60Hz interrupt can be very important in an Apple. Those of you who have worked
through the section on video will know that 60 times a second the Apple launches into a
complete “refresh” of everything it has put on the video screen. However, there is a period of
time just before each refresh during which the electron beam inside the CRT is effectively
turned off, and that period of time is called the Vertical Blanking Interval (VBL). During
VBL, the 6502 can rearrange things in the Apple’s “display memory,” without disrupting what
you actually see on the video screen.

In fact, one of the great frustrations for game programmers on the Apple II and II1 + was that
it was impossible for a program to find out when a VBL was going on. In the //e, a program
can find out when a VBL is occurring by looking at location $C019 (49,177), but this means
the program has to hang out in a wait cycle, checking $C019 again and again until it finally
reveals a VBL. However, if you have an AppleMouse Interface Card installed and ProDOS
running, you can use the 60Hz interrupt as a “VBL interrupt”. The interrupts are, in fact,
locked into the video timing, so it is a true VBL interrupt.

To understand how the mouse system could work with VBL, think of a program that wants
to move a mouse cursor around on the screen. During each VBL, the 6805 sends an interrupt
request (IRQ) to the 6502. The 6502 responds by interrogating the 6805 about mouse position
and status, it then moves the mouse cursor in display memory, and when the next video refresh
begins, the mouse will have moved. At a rate of 60 mouse interrupts a second, the mouse will
seem very responsive to your average human user, and there will be no lags between move-
ments of your hand and cursor movements on the screen.

The //c, the Mouse and Interrupts

Unlike older Apple models, the //c is capable of operating as a high strung, ultra-responsive,
interrupt driven machine. In older Apples, whenever something happened outside the machine
such as a keypress on the keyboard, the arrival of a new byte from a modem, or a movement
of the mouse, the information had to be held in a temporary storage buffer until the Apple
got around to checking all the various buffers. This sometimes meant that information got
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lost, but it almost always meant that the Apple was set up to pay attention to only one source
of outside information at a time and that it was always wasting time in waiting loops, checking
and rechecking certain buffers, hoping for something to happen.

The //c can respond to interrupts from either one of the two serial ports, from the keyboard,
from a device connected to the external disk drive connector, from its own VBL interrupt
generator (see above), and from the X0 or YO line from the mouse. All of these different
“interrupt sources” lead to a common pathway. There is just one IRQ (interrupt request) line
leading into the 65C02 and all of them must share it. Therefore, when the 65C02 detects an
IRQ, its first task should be to figure out which source the interrupt came from.
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Fig. 9.3 Overview of //c Mouse interrupt system.
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//c Interrupt Source Flags

To make the system work, each interrupt source requires both a connection to the IRQ line
and a little bit of RAM where it can set up a flag. The source sets up the flag and then pulls
the IRQ line. The 65C02 responds by scanning through the various “interrupt source flags”
until it figures out which source wants attention.

In actual fact, because of the extremely demanding time requirements of the mouse X and Y
direction system (see above), the 65C02 always starts by reading X1 and Y1, no matter who
generated the interrupt request. Later, if it finds out that the IRQ was due to a movement of
the mouse, it looks back at the X1 and Y1 data it grabbed and starts calculating the mouse
position.

In summary, in order to function properly, the //c interrupt system must always be prepared
to respond immediately to an IRQ, it must always first check X1 and Y1 before 50 millionths
of a second have gone by, and then it must scan through the interrupt source flags to figure
out who called.

A Sure, Quick Start

The Apple has a complex memory bank switching system (see Chapters 25 and 26), so it must
be prepared to act correctly no matter how the memory is set up at the moment the IRQ
arrives. The details of the 65C02’s response to IRQ are covered in Chapter 27, but the principal
result is that the 65C02 reads the numbers stored in the two highest bytes in memory (ad-
dresses $FFFE and $FFFF; 65,534 and 65,535). Those two bytes tell the 65C02 where Apple
Computer has stored the Interrupt Handling routine, and it acts on that information to find
the routine and start running it.

Normally $FFFF and $FFFE refer to permanent locations in the Apple’s Monitor ROM, but
in a //c with a running mouse the contents of those two locations are copied into all of the
various chunks and pieces of RAM which can sometimes find themselves switched into the
address space. Therefore, no matter what the memory configuration when the IRQ arrives,
the 65C02 can always find the address of the interrupt handling routine.

However, the Interrupt Handling (IH) routine itself might be switched out of the address space
somewhere. In calmer circumstances, the 65C02 could probably use some short routine to
switch all the memory back to a standard configuration, and then look for the Interrupt
Handler. But remember, there’s only 50 microseconds before X1 and Y1 may become invalid.
Fortunately, in the //c, the entire 4K range of the $C000 space is permanently locked intothe
address space (see Chapter 22). Therefore, the Interrupt Handling routine is kept at $C803,
permanently in the address space.

(This is one point where it is very difficult to upgrade a //e to give it the features of a //c,
because in the //e there is no area of permanently locked in ROM. In the mouse interrupt
upgrade, the //e interrupt handler is put in with firmware for the //e 80 column system ($C300).
This is done because the $C300 page is the closest thing a //e has to permanently active ROM.
Videx has a specially modified version of the Ultraterm to accommodate this.)

Mouse Inputs and Interrupts

To monitor the mouse, the //c must watch five different signal lines: X-MOVE (X0), Y-MOVE
(Y0), X-DIR (X1), Y-DIR (Y1), and BUTTON. The X1, Y1 and BUTTON signals are handled
just as if all three were just buttons on a game control. In fact, BUTTON actually is connected
to the PB2 push button input ($C063) which is built into all Apple IIs. The X1 and Y1 lines
are connected in the same way as BUTTON, but they replace two of the analog game paddle
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inputs (PDL2 and PDL3, $C066 and $C067) which are built into older Apple IIs. These three
inputs are connected to a 74LS 251 (see Chapter 13) and all are read by looking at their
address ($C063,$C066, or $C067) just as if they were all push buttons.

The X-MOVE and Y-MOVE signals however have a very different input system. They are
connected directly to the Input Output Unit (IOU), where they may be used to generate
interrupts. In the //c, the IOU has an IRQ output which it can trigger in response to its built
in VBL timer, or in response to a signal from X0 or from YO (see Figure 9.3).

This section of the IOU is new in the //c, and it involves a number of new softswitch control
locations (see Chapter 26). For each of X0 and YO there is a pair of switches to select whether
the IRQ will occur in response to the rising or the falling edge of the signal from the mouse
(see above). These are usually set to monitor the rising edge for both X0 and Y0 ($C05C and
$CO5E).

The next level of control in the IOU is to do with whether or not the incoming signal will be
allowed to actually generate an IRQ. Both X0 and YO are controlled by a single softswitch
pair:

$C058 = Disable X0/Y0 IRQ
$C059 = Enable X0/Y0 IRQ

and there is a second pair that controls VBL interrupts:

$CO5A = Disable VBL IRQ
$C05B = Enable VBL IRQ

Aside from the obvious purpose of shutting off the mouse when it’s not being used, these
“enable/disable” switches get heavy use within the built-in firmware mouse routines.

When an appropriate edge arrives, and if that interrupt source is enabled, then an “interrupt
source flag” must be marked and the IRQ signal turned on. The three interrupt source flags
in the IOU can be read as follows:

$C015 = Read X0 interrupt source flag
$C017 = Read YO interrupt source flag
$C019 = Read VBL interrupt source flag

Some of these locations are identified incorrectly in some //c technical hterature from Apple.
$C015 and $C017 read but do not reset interrupt source flags.

After the interrupt handler has responded to the IRQ, scanned through the flags and located
the source, it has to be sure to clear or reset whichever flag was set, thus avoiding confusion
during the next interrupt. A read or write of $C048 resets both $0015 and $C017, no matter
which one was set, and a read or write of $C070 resets VBL.

This completes the picture of the hardware and the softswitches involved. To review, there
are three real sources for interrupts from the IQU: X0, YO and VBL. The VBL signal comes
from within the IOU, while the X0 and YO signals are caused by moving the mouse. If one
of these sources is enabled, then it is capable of setting an interrupt source flag in the IOU
and causing an IRQ signal to be sent to the 6502.
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//c Firmware for Managing Mouse Interrupts

The various machine language subroutines that operate the //c mouse interrupt system fall
into three categories. First is the master //c Interupt Handler (IH) itself which actually does
most of the work. Next is a collection of mouse firmware routines which are available for use
by any machine language program wishing to use the mouse. Finally, there must be a third
level which is the applications program such as MousePaint or your own program.

When the IH is finished with its chores, it turns control over to the application. At thispoint,
the application must have its own interrupt subroutine which follows a special protocol pre-
scribed by Apple. The application uses the mouse firmware routines to collect information
assembled automatically by the IH.

The Status and Mode Locations

In order to provide for communication among these three categories of subroutines, Apple has
reserved two RAM memory locations which can be called the status and the mode locations.
The two locations are in “screen holes” in text page one (a screen hole is an unused location
in RAM stuck in the middle of hundreds of locations used for managing the video display; see
Chapter 5 and Chapter 21, Figure 21.6b). The address of the the status location is $077C and
the address of the mode location is $07FC.

The status and mode locations act in many ways like the hardware in the IOU for interrupt
source flags and for IRQ enable/disable (see above). The IOU stands between the mouse on
the outside, and the 65C02 on the inside. If IRQs are disabled in the IOU hardware, the 65C02
will never be aware of mouse movements. Similarly, the status and mode locations stand
between the automatic, high speed IH on one side, and the particular applications program
on the other. Mode locations can be used to let the IH do its work “transparently” without the
applications program ever becoming aware that an interrupt has occurred. The status location
plays the part of the interrupt source flags. The Applications program learns what kind of
interrupt has happened by looking at the status location rather than by looking at the IOU
flags themselves (see Figure 9.3).

Mouse Work Done by the Interrupt Handler

Whenever an IRQ arrives at the 65C02, the IH quickly does some housekeeping in and around
the 65C02, and then begins almost immediately to read the X1 and Y1 inputs in order to
preserve the very volatile direction information they may contain (see above). Next it identifies
and records the current memory configuration and then switches everything to a standard
state. It is now ready to begin its search for the interrupt source flag, and the first place it
looks is to the IOU.

If the interrupt was caused by a movement of the mouse, it determines if X0 or YO was
responsible, and then uses the X1 or Y1 direction information it is holding to begin to calculate
a new absolute position for the mouse. The mouse position is stored in four X,Y Screen Hole
locations:

$047C X - low byte
$04FC Y - low byte
$057C X - high byte
$05FC Y - high byte

154



The Interrupt Handler actually updates the absolute position at this time and stores the new
value in the appropriate screen hole locations. If any “clamping limits” (see below) have been
set, it is the IH that takes these into account at this time.

The IH can finish up by resetting the X0 and YO interrupt source flags to 0, and then reac-
tivating the program that was running at the time of the interrupt. This is the “Transparent
Mode” of operation. The user’s program can look at the X,Y Screen Holes at any time to find
out where the mouse is, but will never know that any of the interrupting or updating has
occurred unless it looks.

The Transparent Mode presents the modest advantage of being able to function with just
about any program, including your own written in Applesoft BASIC, without any requirement
for a special mouse handling routine. However, in this mode, there is no way to be sure of
noticing a button press, nor is there any way to ensure smooth tracking of a mouse cursor on
the screen.

Using VBL to Enhance Mouse Performance

Most programs written specially to use the mouse will operate it in what is called Movement-
Button Interrupt Mode (MBI Mode). In this mode, the applications program is interrupted
automatically 60 times a second so that it can attend to details of following the mouse ac-
curately. When this mode is active, the Interrupt Handler does additional work to gather and
present mouse information and then passes control to the application program’s interrupt
subroutine rather than just reactivating the application in the middle of what it was doing
before the interrupt. Thus, the applications program can gather up all the information collected
by the IH, and take care of such details as moving the mouse cursor on the screen or accepting
a selection from a menu.

In MBI mode, when an X0 or YO0 interrupt occurs, things proceed just as in Transparent Mode
all the way through to the point where the IH has just updated the X,Y Screen Holes and
reset the X0 and YO interrupt source flags (see above). Now, however, the IH takes a few steps
to make additional information available to the user’s program. First, it disables all X0 and
YO interrupts. This means that all further movements of the mouse will be missed until after
the user has collected the information on position and reenabled X0 and YO interrupts. This
is the responsibility of the user’s program.

In addition, the IH records a bit called Delta which simply signifies that there has been some
movement in X or Y. This bit is stored temporarily in a screen hole at $067C. At this time,
however, the IH does not report the interrupt to the user’s program. Rather, it leaves the Delta
bit set, and finishes up just as in Transparent Mode.

The next interrupt to come along cannot come from X0 or YO (these are still disabled), so it
will most probably come from VBL. When the VBL IRQ occurs, the Interrupt Handler discovers
that fact by looking at interrupt source flags, and the first thing it does is to look at the Delta
bit in $067C. If it has been set, then IH goes about reporting the fact by putting an appropriate
bit into the Status Location at $077C.

Recall that the user’s program will use this status location as a sort of interrupt source flag.
There are three interrupt source bits in the Status Location. One of them is called X0/Y0
since it is set when either an X or Y move has occurred. A second one is called Button because
it will be used to simulate button interupts, and a third is for reporting VBL interrupts (see
Figure 9.3). In the sequence described above, only the X0/YO0 bit is set.
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Now that the IH has done the software equivalent of setting an interrupt source flag, it does
the software equivalent of sending in an IRQ. That equivalent is a jump through the “interrupt
vector” at $03FE (see Chapters 21 and 27). This is how the IH activates the application
program’s interrupt subroutine. For now, however, before looking at what the application’s
subroutine must do, it’s worth saying a little bit more about VBL and the “simulated button
interrupts” just mentioned.

Simulated Button Interrupts

Since a VBL interrupt occurs 60 times a second, the IH will often lock at the Delta bit in
$067C and find that there has been no change in X or Y position. In this case, IH checks to
see if the mouse button has been pressed (by reading $C063). If it has, then IH will set the
appropriate bit in the Status Location at $077C and then do a jump through $03FE toactivate
the application program’s interrupt subroutine.

From the point of view of the application program, this is just the same as if its interrupt
subroutine were called after an X or Y move. The way that the application program determines
the cause of the jump through $03FE is to look at the Status Location. There, it will find a
source bit set either for an X/Y move or for a button press. Thus, the application program
finds itself in a situation in which it is interrupted AND its interrupt subroutine is called
during some VBL intervals, but never more often than 60 times a second. When this occurs,
it will discover evidence of either an X/Y move or a button press.

There is another mode in which a jump is done through $03FE everytime a VBL interrupt
occurs, whether or not anything has happened with the mouse. This will be useful only for
some graphics-intensive programs that always need to know about VBL. In that mode, it will
find one of three conditions in the Status Location: evidence of an X/Y move, evidence of a
button press, or evidence only of a VBL interrupt source.

Mouse Firmware and Applications Programs

Once a jump through $03FE has occurred, the applications program is responsible for man-
aging a fair amount of bookkeeping. To simplify things, Apple has provided a small collection
of mouse firmware routines which the application should use for interacting with the IH.

First, the application should call a routine called SERVEMOUSE which does nothing but look
at the Status Location and report if any one of the three Interrupt Source Bits (X0/Y0, button,
VBL) have been set. If it comes back with the carry bit set, then it found something, and
you're supposed to call READMOUSE.

READMOUSE doesn’t actually read the mouse inputs or update the X,Y coordinates or any-
thing so impressive. All it does is to look around a little and come back with a simple report
of mouse status. This mouse status report involves the setting of three Mouse Status Bits.
These three bits are kept in a different part of the same Status Location ($077C) that holds
the three Interrupt Source Bits (see Figure 9.3). The three bits are: button up or down, button
up or down on previous call to READMOQUSE, and X/Y Move.

At this point the user’s program can go about reading the X,Y position from the X,Y Screen
Holes and deciding what it wants to do about the button status. It must also reenable X0and
YO interrupts at the level of the IOU ($C059), but this should not be done until after retrieving
the new X,Y coordinates from the screen holes.

The other mouse firmware routines available for the user’s program are INITMOUSE which
sets up all the screen hole locations and softswitches, and SETMOUSE which is used to activate
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the mode you want (transparent, movement interrupts, button interrupts, movement-button
interrupts, movement interrupts with full time VBL, etc.). In addition, you get CLEAR-
MOUSE, HOMEMOUSE, POSMOUSE, and CLAMPMOUSE for such tasks as homing your
mouse cursor or setting up window boundaries.

Finally, the one other important resource to keep in mind is the //c MouseText Character set
which lets you move graphic characters around on the text screen. These are text characters
from the point of view of the scrolling and video system, but they give you useful shapes for
cursors, window boundaries, and icons. These can be installed in a //e as well (see Chapter 26
for more details).

Hand Controls for Games

The internal game port connector in the Apple II, II+ and //e has provisions for seven input
signals and five outputs. The outputs are described in Chapters 14 and 26, and they don’t get
used for feedback by any of the popular hand control devices. These outputs are not available
on the external game connector on the //e, and they have been removed completely in the //c.

In the IL, Il + and /e, there are four “analog” or “game control” input ports (called GC0, GC1,
GC2, and GC3 in the II/Il+ manual and called PDLO, PDL1, PDL2, and PDL3 in the //e
manual) which can be used to measure the position of a knob or lever. In the //c, PDL2 and
PDL3 have been removed to make room for the X-DIR and Y-DIR inputs from the mouse (see
above discussion of the mouse). The detailed operation of the analog input system,described
in Chapters 14 and 26, allows for detecting 256 steps of position. The detection and measure-
ment process is fairly rapid, but varies with the distance from the zero setting. When you'’re
all the way over near zero, your position is confirmed about once every 15 millionths of a
second while at the other extreme you still get checked every three thousandths of a second,
so that, in any case, you are not likely to move too fast for detection.

The remaining three inputs (PB0, PB1 and PB2) are simple pushbutton detectors. Many Apple
IIII + owners have connected a wire from their shift key to the PB2 switch input to simulate
a regular shift key (see Chapter 8). Many word processing programs and 80 column card
firmware routines check the status of PB2 every time they read a character. For these reasons,
games and game controllers tend to stay away from PB2. In the //c, PB2 also serves as the
connection point for the button on the mouse. In the Apple //e and //c, the Open-Apple key is
connected to PBO and the Closed Apple key is connected to PB1. Both PBO and PB1 are used
in many games, and this means you can do your firing directly from the //e or //c keyboard if
you like.

Most programs that use hand controls treat PDL0 and PDL1 as measurements of an X axis
and a Y axis respectively and then group PDL2 and PDL3 together for use by a second pair
of inputs, i.e., for a second player. In a Game Paddle you control only one axis, thus you need
two game paddles to get full control of the X and Y axis, and you need four game paddles for
two players each to control both X and Y. In part, this dates back to the great grandfather of
most video games, Space Invaders, in which you moved from side to side behind barriersalong
the bottom of the screen and used the attached pushbutton to fire, but in which you never
had to move forward.

Game paddles from Kraft (see Figure 9.4), Apple and TG all emphasize precise positioning of

the rotary knob which sets the position of a single axis. Many games are based on this kind
of input, so paddles are still quite popular. You choose a paddle either based on the precision
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of the rotary knob or on how the thing feels in your hand. The Apple paddle emphasizes
forceful operation of the firing button with the thumb, while the TG game controller features
easy reconfiguration for left handed operation.

Fig. 9.4a Kraft game paddles. Fig. 9.4b Kraft premium joystick.

Fig. 9.4c TG Enjoystick. Fig. 9.4d TG Joystick.

In a Joystick or a Trackball, a single control affects both the X and the Y position inputs so
you get convenient bidirectional control. Most have a “spring centered” mode in which the
control snaps back to a central home position on release. This requires X and Y adjustments
since different games require slightly different home points. There is usually also a “free
floating” mode in which the stick stays where you left it when released. When you choose a
joystick, you should be sure it is easy to change modes and do the fine adjustment.

The Kraft Premium Joystick (see Figure 9.4) is based on a design from radio-control airplanes
and other remote devices where you place your thumb on top of a fairly short stick with limited
travel. This joystick is unique in that you can independently set either the X or the Y axis
to free floating or spring centered mode rather than being forced to switch them both at the
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same time. In addition, one push button is placed on top with the second one on the side so
it is easy to use one with your thumb and one with your index finger, while the TG joystick
has both buttons on top. The Mach III joystick from Hayes Products has a very different
emphasis with a heavy hand grip on the stick and a button placed on the top of the stick.

Fig. 9.5 The TG trackball. The trackball is
used for a distinctive feel in which there
is a low control to movement ratio.

The TG trackball (see Figure 9.5) is used for a distinctive feel in which there is a low “control
to movement” ratio. This means you can spin the thing hard to get a motion rather than
adjusting a joystick a few eighths of an inch.

Game Poﬁ Extenders

Particularly if you own an Apple II/Il +, you may find that more often than you’d like you
have to open up the Apple and plug and replug different kinds of hand controls into the game
port. There are several products which can take a lot of the bother out of this. The simplest
is the Scooter 0-Force X-Port (zero force external port). You plug one end of the device into
the game socket and mount the other end outside your Apple. The external socket has arelease
and clamp lever so you can put the game plug in place and then clamp it with much reduced
risk of bending pins. :

Fig. 9.6 Select-A-Port from TG has
several different game port configurations,
but also simplifies changing from joystick
to paddle, etc.
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The Mimco joystick has a full game socket in its side so you can plug your other controller
into the Mimco device without any unplugging. The second device can be assigned to PDL2
and PDL3 or it can be switched in as the only active control.

The most elaborate game port upgrade is the Select-a-Port from TG products which has five
ports (see Figure 9.6). Three of the ports are standard game ports and can be switched in one
at a time. The fourth is configured to operate PDL2 and PDL3, and the fifth is wired specially
to handle sensitive controllers which would be affected by sharing the input lines with other
devices.

Graphics Digitizers

The main purpose of a graphics digitizer is to copy an existing image into digital computer
memory. For many applications, a mouse, touch pad or light pen system will be much more
convenient for free hand drawing. Another potential strong point for digitizers is that they
can be arranged to encode information at a much higher level of detail than can be displayed
on the screen.

FEFFETETTTr e

Fig. 9.7 Apple graphics tablet.

The digitizing tablets from Apple Computer and from Summagraphics are based on drawing
boards in which a magnetically sensitive grid has been embedded. The grid can detect the
presence of a special stylus through several sheets of paper. The Apple Graphics Tablet (see
Figure 9.7) has a minimum detection spacing of .039 inches which is actually a lower resolution
than the Apple II Mouse.

A simpler and much less expensive approach to designing the electronics is to build a digitizing
arm with a game paddle at each joint. The Apple’s built-in game paddle A/D converter can
detect 256 different angles at each joint. The resolution you get for digitizing from an 8 1/2
by 11 sheet of paper is nearly as good as with the Apple Graphics Tablet. The Versawriter
from Versa Computing (see Figure 9.8) has a two joint digitizing arm based on this principal
and the Space Tablet from Micro Control Systems has three joints for digitizing real three-
dimensional objects.
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Although these systems do well with regard to resolution and speed of digitizing, there are
problems with “linearity.” This means that the space between steps is not completely equal
across the full range. In addition, there can be distortion of one axis relative to another if the
paddle potentiometers at each joint are not calibrated to operate with identical sensitivity.

Video Digitizers

If very high resolution is f
not important, then the
fastest way to digitize a
complex pattern is with a :
video camera interface. oo . i
Once theimage is entered, { et
you can always come along % S U
later and edit the image

with a light pen or high
resolution digitizing pad.

=
v
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Fig. 9.8 Versa digitizing tablet.

The output of a video camera is an analog waveform with higher voltages for bright spots and
lower voltages for dark areas. The output traces a raster pattern (see Chapter 5, Figure 5.1)
which scans through the entire image 60 times a second. All that is needed is an appropriate
high speed A/D converter (see Chapter 14). To get a good description of the image you need
to know the “gray level” of each dot. An eight bit A/D converter would give you 256 levels of
gray at each dot. .

In reality, fast, high resolution digitizing of video output is an extremely challenging technical
problem. To do real time digitization at the level of resolution of the Apple high res screen,
you have only about 140 nanoseconds (billionths of a second) for each pixel. There are Flash
A/D Converters which can do this fairly easily, but to get eight bit precision (256 gray levels)
you have have to spend well over a thousand dollars just for the digitizing chip. Fortunately,
the 64 gray levels you can get from a six bit flash converter is fairly adequate and these chips
cost only $300 or $400. This is the basis of the video digitizer from Micrographic Images Corp.
which they use with their ultra high resolution graphics system (see Chapter 7).

For most folks interested in video digitizing, there is no need for such expensive electronic
heroics. As long as you are digitizing a fixed image, it is no problem to just let the image sit
there and slowly digitize it over a period of a full second or so. This is also much morereasonable
in light of the speed and storage capacity of the Apple computer since a fast machine language
program can only accept a new byte about once every 30 or 40 microseconds (millionths of a
second) and since there is only room for a small number of frames in main RAM.
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The Dithertizer //e from Computer Stations (see Figure 9.9) uses an efficient and inexpensive
digitizing system based on what amounts to a one bit A/D converter. It actually does real time
digitization, but it collects one gray level at a time. It digitizes an image with two graylevels
in a single full scan of the camera. Then the intensity setting of the converter is incremented
a little, and the image is digitized again at another level of brightness. After 64 full passes
of the raster, you have your 64 gray level image and just over one full second has passed. The
mathematical process of overlaying the multiple brightness images is called “dithering.”

Fig. 9.9 Computer Stations supplies this video camera
which has the proper synch signals to work with their
video digitizing system.

The Dithertizer //e system lets you use arrow keys or the game paddles to adjust brightness
and contrast, and it can be operated with a Il + if you get an extra adapter. The Dithertizer
/le software has been written to let you use //e super high res (560 by 192 dots) if you havea
revigion B //e (see Appendix D) and at least 64K of extra RAM in the auxiliary slot. The
primary weakness of the system is that it requires an industrial type video camera with an
external synch signal rather than an NTSC type of video camera such as are used in home
video systems. Fortunately, these industrial type cameras cost only a few hundred dollars.

There is a slower system called the DS-65 Digisector made by Microworks which has the
advantage of being compatible with either an NTSC or an industrial type video camera. The
Digisector uses a different approach to digitizing in which you select the coordinates to be
digitized one by one. As each position is identified, it is fully digitized to six bit precision (64
gray levels) but this is a software intensive process that proceeds at a rate of one pixel every
126 microseconds. This means that it takes about eight seconds to fully digitize a singleimage
with 256 by 256 dot resolution.

This full digitizing time is required if you need to do the whole screen; however, if you need
to follow only a small area, and write your own data collection routine, you can move the
“digitizing cursor” around and collect data fairly rapidly. This is what Microworks calls “ran-
dom access digitizing.” To help you do this, the Digisector board provides a real time analog
video output with the position of the digitizing cursor marked so you can watch what you're
doing on a separate CRT monitor and even write a program which lets you control the area
of digitizing with game paddles.
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Chapter 10

Sound and Music

We can hear anything that will make our middle ears vibrate. Most of the time this pertains
to those airborne vibrations which we call sound. Hearing, per se, is due to a spectacularly
precise analysis of incoming sound which is performed by our inner ears. That analysis de-
scribes any sound in terms of two component qualities: frequency and amplitude.

In fact, there is a remarkable richness of detail in the frequency and amplitude composition
of such standard everyday sounds as clicks and crashes, musical notes, and spoken words. Our
inner ears sort all this out almost instantaneously and without the slightest conscious effort
on our part. Unfortunately, one result of the ease of all of this is that we remain singularly
bored by and uninterested in simple uncomplicated sounds. As a consequence, the production
of sounds which we find interesting, pleasant or communicative is no simple task for a
microcomputer.

Actually, aside from the gross storage inefficiencies of trying to use RAM or floppy disks as a
recording media, a microcomputer can capture and reproduce sounds with wonderful fidelity.
However, we want our microcomputers to listen to us as easily as they can accept instructions
from the keyboard and to talk to us as readily as they put words on a video screen. Record
and playback we can do with tape recorders. Therefore, much of the excitement and effort has
gone into designing devices which permit a microcomputer to actively and dynamically as-
semble complex sounds, in real time, beginning only with their raw, underlying simple fre-
quency and amplitude components.

Elements of Sound

Most of the elemental basis of sound is not intuitively obvious from our experience in the
natural world. It’s really fairly simple stuff, but it’s just not what you’d expect.

For instance, the most central building block of all sounds is what we call the sine wave (see
Figure 10.1). We've all seen pictures of these and read about them in math and physics courses,
but it’s difficult to explain just exactly why this particular structure is so pervasive in our
natural environment. This is our standard way of representing pure vibration at a steady
rate. It is more fundamental than the atom as a basis of matter and energy in the universe,
and you’re just going to have to get used to it for the duration of this chapter.

A pure sine wave can be described by an amplitude and a frequency (as shown in Figure 10.1).

One of these waves can be used to drive a speaker, and if the frequency is between 30 cycles
per second (30 Hertz or Hz) and 18,000 cycles per second (18 kiloHertz or kHz) the wave is
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reproduced as a mechanical oscillation in your middle ear and detected as a sound by your
inner ear. The 30 Hz signal produces a steady, very low tone, while the 18 kHz signal produces
an ear splitting whistle. If the amplitude of the original wave is used to determine how much
energy is being used to drive the speaker, then we will perceive the amplitude as loudness.

Fig. 10.1 A sine wave.

So far, we have been talking about what are called “pure tones.” A pure tone is based on a
simple sine wave with no adornment. Most of the sounds we are accustomed to hearing are
actually composed of a large number of sine waves, each at a different frequency, and all
mixed together at their source. To recognize a complex sound, the inner ear performs an
analysis which breaks the sound down into its component frequencies. Incredible as it may
seem, it is even able to determine the relative amplitude of each of the components. It is
actually this array of frequency/amplitude pairs that the inner ear reports to the brain for
further analysis and recognition.

It is also possible to construct electronic devices to do this kind of frequency analysis, or even
to record the sound digitally and do the analysis mathematically. As a result of this ability,
it has been possible to examine the frequency components of musical notes, spoken words,
and other interesting patterns of oscillation. The results of this kind of analysis reveal more
counterintuitive wonders about the composition of sound. It is these results, however, which
provide the basis for music synthesis, speech synthesis and voice recognition.

Harmonics

Although most sounds are complex mixtures of frequency components, there is usually some
regularity in the system which in effect permits all of the components to live together. Analysis
of a sound usually reveals that it is composed of a single, dominant, “fundamental frequency”
and a series of “harmonics.” A harmonic is a sine wave with a frequency which is an integral
multiple of the fundamental frequency, i.e., 1 x, 2 x, 3 x, etc. (see Figure 10.2).
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Fig. 10.2 Harmonics are exact multiples of a fun-
damental frequency, i.e., the 5th harmonic (D) com-
pletes five cycles while the fundamental (A} completes
just one. Any waveform, such as a square wave(C, E), or
a sawtooth wave (G, H) can be built up by summing the
proper set of harmonics. A frequency analysis reverses
the process by decomposing a waveform into its com-
ponent haramonics.

A very striking example of how all this works is provided by the results of analysing a“square
wave” (see Figure 10.2c and 10.2e). The fundamental frequency is the same as the frequency
of the square wave, but the shape is very different. You can construct the shape of the square
wave by adding in all of its “odd harmonics,” i.e., 3 x, 5 x, 7 x, etc. As you can see, you need
very high frequency harmonics to put a really sharp edge on the wave. By comparison, the
results of adding both odd and even harmonics is shown in Figure 10.2g and 10.2h.
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We often describe a wave such as the square wave or sawtooth wave in terms of the shape it
assumes with all of its harmonics added in. A sustained musical note from, for instance, a
trombone has its own unique shape or “waveform.” One way you can simulate that sound
electronically is to first analyse it to determine all of its frequency components. Next you
would generate each of the components as a distinct pure sine wave and then sum them. If
your analysis was good enough, you would produce a sound which was indistinguishable from
the original. Stored in the computer, you would have just a series of eight or nine frequency/
amplitude pairs, but that would be a mathematical representation of the sound of the trombone.

In fact, you wouldn’t have to store all of the actual frequencies. You could get by with a
numerical value for the fundamental frequency and represent the harmonics by their number,
i.e., 3rd harmonic, 8th harmonic, etc. This is very important. When you change the pitch of
the trombone, you change the fundamental frequency, but you don’t necessarily change the
shape of the waveform. The frequency of, say, the third harmonic is now three time the new
fundamental frequency; thus all of the components change their frequencies in unison and
the overall shape of the waveform is maintained when pitch changes.

In summary, most sounds can be represented by a characteristic waveform (see Figure 10.3)
That waveform can also be described as a “spectrum” of harmonic multiples of thefundamental
frequency. To reproduce a sound you can either carefully trace its characteristic waveform or
reconstruct it dynamically based on information on its component frequency spectrum.

Sound Histories

To fully engineer a sound, you have to do a little bit more than just get the waveform right.
What we’ve put together so far is a complex waveform which is repeating at the rate of its
fundamental frequency and which a human will recognize as the instrumental voice of a
trombone; but at this point it’s just a steady continuous tone. However, for many sounds it is
extremely important to pay close attention to the first few instants during which the sound
rises initially from complete quiet to its steady state. This initial rise is described by the
musical term “attack.” '

A Same wWaveform
) Same Amplitude

/quetortn / Higher Pitch

Sarme Waveform
Steady Pitch

Fig. 10.3a The recognizable voice of an instrument is due to its characteristic waveform. When the fundamental
frequency changes pitch, the harmonics change with it so the shape is maintained and we still recognize it.
Fig. 10.3b Attack, sustain, and decay, make up the amplitude history of a note. The envelope describes that history.
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During the attack, the total amplitude increases at some steady rate until it reaches the
amplitude at which it will be “sustained.” Later, when the sound is ended, it will collapse
through a characteristic “decay.” These three events, attack, sustain and decay, mark out a
“volume envelope” for the sound (see Figure 10.3) and are also called the sound’s “amplitude
history.”

For truly accurate modeling, you also have to allow for changes in the shape of the waveform
itself in different parts of the envelope. The mature waveform may not fully establish itself
in the early phases of the attack, and it may change again during decay. In fact, it is often
the changes during attack and decay which are the most recognizable aspects of a sound. This
is particularly important when you are considering the rapid sequencing of the sounds that
make up human speech. These shifts in the frequency spectrum of the sound are its “frequency
history.” The “robot-like” quality of some speech synthesizers is due in part to ignoring these
changes during attack and decay.

Waveform Quality

It is therefore possible to synthetically create instrument sounds and human voices which are
of dramatically good quality. However, to do this you need a very complex and elaborate
electronic system, based on quite sophisticated knowledge of the sound you are modeling. To
do this well is expensive, and is not always necessary.

The simplest and most economical electronic sound systems generate simple square waves
rather than sine waves or carefully shaped synthetic waveforms. As noted earlier, a square
wave has a complex frequency composition from the point of view of a human ear; however,
it is the natural, simple, on/off output of a digital system. You hear the high frequency com-
ponents as reedy or tinny overtones, but the overall effect is a passable simulation of a pure
sine wave tone. The benefit of this kind of sound generation is that the electronics and com-
putation are simple and comparatively inexpensive.

One very different kind of sound which is worth mentioning is called “noise.” This term refers
to a sound which is composed of a random mix of frequencies which have no particular relation
to each other. You can make a low frequency noise by throwing in a mix of lower frequencies,
or a high frequency noise, or “white noise” which is supposed to be a random mix drawn from
the full range of audible frequencies. The frequency spectrum of white noise is “flat” because
none of the frequencies has more amplitude than any other.

Whether your source of sound is a carefully modeled waveform, a raw square wave or noise,
you can still control pitch, volume, and also the shape of the amplitude envelope. Sound effect
systems and simple music systems can be based on square wave and noise generation. You
only need modeled waveforms if you want to reproduce the recognizable “voice” of a selected
real musical instrument. To synthesize recognizable human voice, however, waveform shape
is most of the ball game, so square wave based systems are pretty much out of the question.

Sound Effect Generation
with the AY-3- 8910

The least ambitious task in computer based sound generation is to make the tones, beeps,
crashes, and buzzes that do wonders in spicing up a video game. One neat little package that
will do a lot of the work for you is the General Instruments AY-3-8910 Programmable Sound
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Generator (PSQG). This chip turns up along with other features on the Waldo board from Artra
(see Chapter 11), the Arcade Board from Third Millenium Engineering, the Sprite II and
Supersprite from Synetix (see Chapter 7), the Mockingboard Sound II and Mockingboard
Speech/Sound from Sweet Micro Systems and even in the sound effects section of the new
Personal Speech System from Votrax.

The AY-3-8910 can’t really be used for speech generation or for anything recognizable as
instrumental music, but it is very versatile and also provides a good opportunity to step through
some of the basic elements of a sound generation system. It is designed to accept a few
descriptive numbers from a microcomputer and use this information to go about sculpting and
producing the desired sounds.

The chip is based on three square wave generators and a noise generator. The three square
wave generators are treated as completely independent channels and there is no provision in
the chip for summing their outputs.

The programmer selects the frequency of the square wave by giving the AY-3-8910 a 12 bit
number (1 to 4,095). The chip picks up the one megahertz signal from the Apple’s built-in
clock and divides it by 16 times this 12 bit number to produce a range of frequencies from
1 Meg/(16 x 1) = 75 kHz to 1 Meg/(16 x 4095) = 15 Hz, thus spanning the human audible
range. So, although you have no control over the shape of the waveform which is the chip’s
“yoice,” you do have fairly good control over pitch.

Now that you’ve selected a frequency for the square wave, you can go about shaping an
amplitude history envelope for it (see Figure 10.4). The AY-3-8910 offers two modes for con-
trolling the envelope. One is direct control from the microcomputer. In direct control mode,
you could let the user control the tone by pushing and holding a key on the keyboard. When
you detect a keypress, you start feeding a series of steadily increasing attack amplitudes to
the AY-3-8910, you maintain maximum amplitude while the key is held down (using the //e
Any Key Down feature; see Chapter 8), and then step through a steadily decreasmg decay
when the key is released.

The alternative is an automatic mode in which you select from among several simple built-
in envelope profiles and then let the chip do all the work. The AY-3-8910 will also accept an
instruction to step through the envelope again and again at a specified frequency (see Figure
10.4) much like a string of quarter notes played on a kazoo or as-a rapid fire feature on an
audible raster blaster game.

Whichever mode you are using for shaping the amplitude envelope, you are allowed just 16
different settings (a four bit number). The actual output from the system is generated by a
Digital to Analog Converter (DAC; see Chapter 14) which produces an output current pro-
portional to the desired amplitude. The output for each channel is based on the state of the
square wave frequency input and the four bit number currently being sent from the envelope
generator and/or amplitude control.

The actual output from the DAC is logarithmically related to the amplitude value. This is
because the amplitude sensitivity of the human ear is based on a logarithmic scale. Ahuman
ear listening to this output would perceive it as if it were regular steps.

The hardware specification sheet from General Instruments provides instructions on how to

simulate gunshots, explosions, “laser sounds,” whistling bombs, wolf whistles, and race car
sounds. All of which gives you a fairly clear idea of the intended market for this device. This
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chip is used in seven different Apple products from five manufacturers, so it’s possible that it
will begin to develop some sort of following among commercial game programmers. If you buy
one of these products though, you’ll have to be sure you're given documentation on how to
program it or ready-to-run software which uses it to advantage.

3quare Wave 3ound Jhaping

A Steady Tone
B Same Pitch, reduced Amplitude
<
Higher Pitch
P Repeated stepping through volume envelope.

Fig. 10.4 Simple sound systems let you control pitch, amplitude, and amplitude envelope, white offering only a
single square wave voice.
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Square Wave Music

A sustained square wave tone sounds a little bit like a sound from an inexpensive electric
organ; so if you've got control over pitch and note duration, you are effectively in a position
to play out music with a square wave sound generator. The most important need is to bridge
the gap between the standard musical notation with which musicians are familiar and the
numerical orientation of the hardware. This is a software problem which was first solved
successfully for the Apple by ALF Products in 1977 when they released their first Entry
program for their MC16 Music Card.

While you are writing or entering music, the Apple’s video screen is set up as a graphic
representation of a musical score. The musician writes music by positioning standard notes
on the staff. The fast machine language subroutines hidden deep within the software package
can then read the score and issue appropriate commands to the hardware to play the song as
written.

The MC16 has three “voices,” each of which can be set to its own frequency. This lets you
simulate the effect of playing an organ with three fingers down at a time, or of three different
organs, each being played with one finger by a different person. The ALF MC1 sells for the
same price but has nine voices. The difference is that between the time the MC16 was designed
and the design of the MC1, Texas Instruments produced a sound generator chip which could
pack all of the features into a smaller, less expensive package. You do have better control of
frequency and amplitude with the MC16, but the MC1 has been more popular because of its
nine voices.

When composing for the MC1, you write nine different lines of music, one for each hardware
voice. The user interface is based on paddles and pushbuttons. You use one paddle to pick
what kind of note you want (whole note, 64th note, etc.) and you use the other paddle to
position the note on the musical staff, thus assigning it pitch. You can work in a four and a
half octave range and you can hear a note when you enter it. There is also a provision for
writing in percussive sounds by changing three of the lines of music from pitch to white noise
mode. The music you write can be saved to disk and can be printed out on a dot matrix printer.

There is a very similar product from Applied Engineering called the Super Music Synthesizer
which has 12 voices, four of which can be switched into percussive mode. There are actually
“albums” of music for the ALF MC1 and you can play ALF albums on the Super Music
Synthesizer. As with the MC1, you can shape the envelope of the notes, but an added feature
is the ability to control the speed at which the song is being played by turning the knob on
a paddle.

Instrumental Music Synthesis

The most important music hardware for the Apple II is the Music System from Mountain
Computer. This hardware differs from the sound generators discussed earlier in that it provides
the means for detailed crafting of the shape of the waveform. You can produce performance
quality renditions of hundreds of different instruments as well as creating unique new in-
strument sounds.

The software from Mountain Computer is similar in spirit to the ALF software; you write

music by placing notes on a musical staff using paddles and a light pen. However, the Music
System is used as the basis for the Alpha Syntauri (see Figure 10.5) and the Passport Designs
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keyboard synthesizers. Thus, with one of the keyboard systems attached, you can play as if
with a piano, but the notes are played out in real time and automatically written into the
score by the computer. This is therefore a true computer based musical composition system
and it has achieved widespread acceptance both among professional composers and performers
and among teachers and students of music theory.

Virtuoso Hardware Makes the Music

The input systems and software from Mountain, Passport, and particularly from Syntauri,
are all so well done, “user friendly,” and graphically sophisticated that virtually no user of
these systems needs to know much about the detailed workings of the hardware. This is almost
a shame, because the Music System boards from Mountain Computer represent the most
daring and brilliantly executed electronic design of any Apple II peripheral. Those MIT types
who remain unimpressed by mere music may just find the Music System aesthetically pleasing
simply from the point of view of microcomputer electronics design.

The starting point in the design is the need to generate analog signals with frequency com-
ponents near the high end of the human audible range, which, for the Music System, comes
to 15,625 Hz. A Digital to Analog Converter (DAC; see Chapter 14) must get new samples at
about twice this rate to get reasonably good reproduction, so you will need to send update
information to the DAC at a rate of 31,250 Hz or once every 32 microseconds. To make things
short and sweet, the Music System uses Direct Memory Access (DMA; see Chapter 27) to grab
data from memory and shove it into the synthesizer chips without the involvement of the
6502.

At this rate of doing DMA once every 32 microseconds, the 6502 gets to step through 32 of
its normal one microsecond clock periods, freeze briefly while the Music System does DMA,
and then go back to work. If the Music System had two separate music channels, each with
its own DAC, then it would have to do DMA twice every 32 microseconds. With four channels,
you’d have to stop for DMA every eight microseconds. Eventually, as you kept addingchannels,
you’d be doing DMA so fast that the 6502 would never get any time for itself to get processing
done. The practical limit is to do DMA every two microseconds, which means you can feed
data to 16 separate music channels. Which is what the Music System does.

This effectively means that the Music System runs completely interleaved with the 6502, as
if each were on a 500 kHz clock. The rate of data flow for the Music System is 500K bytes per
second, which is much faster than what the 6502 actually does, and is also striking in that
it is 20 times faster than what is achieved by the high performance scientific data acquisition
systems designed for the Apple (see Chapter 15).

DMA Access to Waveform Tables

To understand how the DMA is supervised, and the nature of the data that is being moved,
you need to flip back to the discussion of waveform composition. The Music System is able to
simulate specific musical instruments because it can produce copies of their natural waveform
shapes. The construction of these waveforms from their harmonic components is described
shortly, but for now, just consider that the objective of the system is to step the DAC on through
a series of samples of the waveform.

The shape of a waveform is stored as 256 samples. Each sample is an eight bit number which
represents one of 256 slices through the waveform. This information doesn’t describe the
frequency at which the waveform will be played, only its shape. The 256 bytes which describe
the waveform are stored in a “Waveform Table” in the Apple’s main RAM.
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When a Waveform Table is stored, its first byte is always placed on a “page boundary” so that
all 256 bytes in the Table will be on the same page. Each RAM location in the Apple can be
described by a page number and an offset into the page (see Chapter 21). Thus, by storing the
Waveform Tables in this manner, the Music System assures that all of the bytes in the
Waveform Table have the same page number. Therefore, for the DMA system to step its way
through a Waveform Table, all you have to do is tell it which page number to look at, and
then let it cycle its way on through the 256 offset numbers in the page.

Pitch Control

You will recall that the Waveform Table doesn’t specify the frequency at which the waveform
will be played. The frequency is controlled by the system software depending on the pitches
called for in the musical score. Once a pitch is requested, a frequency instruction is sent to
the music generation hardware. This is the same hardware which supervises the DMA and
which reads in the bytes of the Waveform Table. What the hardware does with the frequency
command is set the rate at which it will read through the Waveform Table.

Every 32 microseconds a music generation channel initiates DMA and siezes control of the
Apple’s address and data bus. While it has control, it announces the page number of the
Waveform Table it is reading from, and then it must present an offset into that page in order
to generate a complete memory address. At slow frequencies, the offset number will be the
same through many rounds of DMA, advancing only very slowly. At very high pitches, the
offset will advance with every DMA.

The Time Base for Playing Out the Envelope

The amplitude of the output signal will be based on information about the envelope at a given
instant in time as well as on the value of the waveform sample at that instant. The music
generation hardware will continue to cycle through the waveform at an assigned frequency
without any further attention from the 6502, but the amplitude information in the envelope
must be updated constantly so that notes can begin, rise in intensity, sustain for their assigned
duration and then fade. This sequence is a timed series of events dictated by the notes on the
score which the Mus1c System is reading from.

In order to get accurate control of the time base for reading through the music, the system
needs an accurate timer which it can read regularly without confusion, no matter what other
complex tasks it is carrying out. In the Music System, this is carried out by the use of
“interrupts” (see Chapter 27) which are generated by the Music System hardware. A timer
on one of the music boards generates an interrupt every eight milliseconds. When an interrupt
occurs, a simple routine increments a counter in the Apple’s memory space.

The timer which generates the interrupts is, in effect, a real world time device, so it proceeds
with unerring regularity independent of DMA, processing, or even other interrupts. Thus, the
6502 can always read the value in the counter to find out exactly how far into the musical
score it should be. The eight millisecond counter interrupts provide the time base for the
software system and also represent the ultimate time resolution for making changes in fre-
quency or amplitude. With every advance of the counter, the 6502 advances to the next slice
of the musical score and sets up the values which will operate all of the music generation
hardware for the following eight milliseconds until the next interrupt and counter advance.

Composer’s Model of the Hardware

Although you don’t have to know anything about the hardware to use the Syntauri or Passport
system, most composers need an appropriate mental representation for the elements of the
sound producing system. This “composer’s model” attends to the most basic musical effects of
the system rather than to the electronics.
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In the composer’s model, the Music System is made up of 16 programmable “oscillators,” eight
for the left speaker and eight for the right, each of which can generate musical sound. As with
any instrument, you can program an oscillator’s pitch and volume to produce a melody in the
playing out of a musical score. The extra dimension in programming the oscillators of the
Music System is that you can also program the “timbre” of an oscillator which means you can
choose whether it will sound like a violin string or a like a trumpet.

Musical Score for Instruments

The first layer of programming is completely identical to writing out a musical score for a
human musician. Each line of the score has information on register, pitch of individual notes,
and the time sequence of the piece, i.e., quarter notes, triplets, etc. If you own only the Music
System itself, you use the Apple’s standard typewriter keyboard, the game paddles, and a
light pen to write notes on the musical staff, but if you have the Syntauri or Passport versions
you can write the score by hitting keys on a piano style keyboard (see Figure 10.5).

If you purchase any one of these three systems, it will come with software which will handle
all of the deeper levels of programming for you. You can just select the “preset” instruments
you would like to use and then go on about writing music much as you would write text with
a word processor.

You can also write out different lines of music for the different instruments you assign to the
various hardware oscillators. These can all play simultaneously, like a small orchestra, and
this also permits you to use the Syntauri or Passport system as a multi-track tape recorder.
You can key in a new line while listening to the previous lines. On playback, you can see any
one of the lines written out in musical notation on the screen, so you can immediately change
notes to alter the arrangement.

Thus, working just at the level of the supplied “preset” instruments, this is a very powerful
device for a composer or musician. However, the true power and much of the educational value
of the synthesizer comes from the ability to work at a slightly deeper level.

Modeling the Instrument Sounds

The first level down into the depths of the system is the shaping of the envelope of a note.
This process is explained earlier, and is no more than a means of adjusting the quality of the
attack, sustain and decay of the volume of a note as it is played by an instrument.

Most real instruments have natural properties of envelope shape which is part of what you
recognize as the unique voice of that instrument. However, this is one of things that music
teachers and students spend a great deal of their time working with in the development of
technique. The Music System lets you make direct changes in the envelope which you can see
represented on the video screen, and it permits you to hear the effects of the changes you
experiment with.

Defining Instrument Waveforms .

The really exciting thing about these synthesizer systems for composers oriented towards
music theory is the ability to directly control the harmonic composition of the voice of an
instrument. As outlined earlier, most of the musical sounds we are familiar with are recog-
nizable because of the number of harmonic multiples of the fundamental frequency and because
of the relative amplitudes of the various harmonics. When summed, the fundamental frequency
and the particular set of harmonics result in a particular waveform which is characteristic of
a particular instrument.

You can create an instrumental voice by selecting the harmonic components and adding them
together with the Music System. This process of “additive synthesis” can be done either with
the hardware or with the software of the system. Since you have an array of 16 oscillators,
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you could conceivably set all of them to play pure sine waves, with each one assigned to a
different harmonic and amplitude. The sounds would then be combined on their way to the
amplifier. However, the assembly of the waveforms can also be done mathematically by the
software.

The principal limit on the complexity of a waveform shaped by the Music System software is
that there are just 256 time samples allowed in the waveform and the relative amplitude of
different segments of the waveform cannot vary by more than a factor of 256. Many instruments
can be defined in software to play out on a single oscillator, but by constructing two waveforms
that play out aspects of the voice on two oscillators, you can usually achieve any desired effect.

Choosing a System

The manual which comes with the Music System is a remarkably detailed and well written
document of nearly 100 pages. It reviews music and sound theory, explains the composer’s
model in great detail, and steps you through the use of the accompanying software. However,
without the Syntauri or Passport enhancements, the unadorned Music System has some frus-
trating aspects. When you compose music on the screen, it must first be “compiled” into a
play file before you can hear what you have written. There is a similar time lag between the
design of a new waveform and when you can hear the result of the new shape.

Both Syntauri and Passport allow you to hear notes played out in real time as you press keys
on their piano style keyboards and both offer a large number of well designed “preset” in-
strument voices. Further, Syntauri has a Quickwave package which lets you listen to many
waveform changes in real time.

Fig. 10.5 The Syntauri synthesizer system includes the keyboard, software, and Mountain Computer instrumental
music synthesizer electronics.
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Syntauri has two different keyboards; a 49 note, four octave keyboard called the SMO4, and
a 61 note, five octave keyboard called the SMO5 (see Figure 10.5). The SMO5 has “velocity
sensitive” keys which gets you some tactile control over the loudness of notes as you play
them. A normal piano keyboard is more sensitive to differences in force of impact rather than
in velocity, but this does give you additional control. You can get two foot pedals for control
of glide and sustain, and synchronization hardware to work with drum machines and tape
recorders. The Soundchaser from Passport Designs has a 49 note, four octave keyboard.

These two companies compete with each other on the power and ease of use of their software,
and both have a fairly strong line of software products. Many people will choose between the
two 49 note systems on the basis of what a local dealer is familiar with or on particular
software features. The SMOS5 from Syntauri and their Hammond B-3 software with the ASO5C
package is clearly the choice for the highest performance.

External Music Synthesizers

Those hardware afficianados who plowed through the section on the Mountain Music System
boards will appreciate the remarkable microcomputer acrobatics involved in making those
boards run. By attempting a challenging design, and sacrificing computational speed on the
part of the Apple, the Mountain system with Syntauri or Passport enhancements achieves a
remarkable level of direct interactive control over the music. A much simpler design approach
from the point of view of the electronics is to build a complete synthesizer system external to
the Apple in its own cabinet. The Apple is given responsibility for reading through the musical
score and then sending information to the synthesizer over a communications link.

The Compumusic console from Roland Corporation looks like a mixer board with sliding levers.
It has six preset instrumental voices which you cannot modify, as well as a percussion voice.
You compose music in a special score system which has no particular resemblance to a tra-
ditional musical staff but which gives you the ability to use direct numerical descriptions of
pitches and rhythms. The seventh and eighth channels on the console can be used to gain
programmed control over separate analog synthesizers or drum machines, so you can use the
Apple in place of a “voltage controlled sequencer” for a standard synthesizer.

With the action heating up in Apple music synthesis, Fender/Rogers/Rhodes has gotten into
the act with their Rhodes Chroma music terminal and Apple interface. The idea of a “music
terminal” is to view a digital synthesizer much in the same way as we are accustomed to
thinking of a printer or video display terminal. The Rhodes Chroma is a complete, self-
contained synthesizer with a five octave velocity sensitive keyboard, 16 oscillators, and pro-
gram control over waveform shape as well as over time sequence and pitch. It has 50 preset
instrumental voices built-in, all of which can be selected with switches on a control panel
above the keyboard.

The Chroma can be used for performance in real time, and it has its own RAM memory.
However, by providing an Apple interface, Fender/Rogers/Rhodes greatly enhances the ver-
satility of the device. All of the commands which can be issued from switches on the control
panel can also be sent from a stored music sequence in the Apple.

Music Terminals and MIDI

As more and more synthesizer manufacturers look to the route of interfacing with personal
computers, there has been an anticipation of the need for a standardized communication code.
This code would convey musical data just as ASCII code conveys text. Other terminal-like
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devices such as printers and modems use ASCII based “escape sequences” (see Chapter 18)
and command strings for communication, but this may not be adequate for music synthesizers.
As discussed in the section on the Mountain Music System hardware, many of these systems
require a very crisp rate of data flow.

The consensus has been to use a code called the Musical Instrument Digital Interface (MIDI).
The mechanical specification calls for a five pin DIN jack, and the carrier system is based on
an “asynchronous serial” (see Chapter 16) transmission similar to what is used for RS-232
modems and printers, but run at the comparatively high speed of 31.25 Kilobaud (31,250 bits
per second).

Processing Digitally Recorded Sound

All of the systems described so far in this chapter are based on the synthetic production of
sound relying on numerical representation of such properties as pitch, amplitude and harmonic
composition. The alternative is to record real sounds and play them back, much as is done
with the popular compact disk and laser systems. The difficulty with this is that a digitally
recorded “sound image” has to contain a huge amount of data.

In the course of producing sound waves, the Mountain Music System synthesizer gobbles up
data at 32,000 bytes per second for each of its 16 channels and so achieves full scale data flows
of 500,000 bytes per second. Most of these bytes are generated from scratch, in real time,
based on computations and descriptive parameters. If you wanted to play out a digital recording
with the same amount of data, you would need half a megabyte of RAM for each second of
sound. The full capacity of a huge mainframe with 16 megabytes of RAM would only supply
sound for eight seconds.

Nonetheless, if you are willing to be a little less ambitious about the quality and complexity
of the sound, and if you can make do with brief bursts, then digital recording and playback
can be a viable option with some interesting properties. You can, for instance, pack a half
second drum sound into a 16K ROM with full fidelity, but you may be able to get away with
half the amount of sound detail and so get a full second into the ROM. If you can call the
sound from ROM repetitively, then you’ve got microcomputer control of a real recorded sound.

The E-Mu Drumulator is such a ROM-based digital sound system. It is an external box which
contains ROMs for 12 different kinds of drums and percussion instruments. It can be operated
separately from the Apple, or you can connect it to the Apple with a standard RS-232C serial
port (see Chapter 18) and use the Apple to sequence the drum sounds.

Another interesting application for digital sound processing is in the modification of real
sounds to create altered sound effects. The DX-1 from Decillionix includes a card for an Apple
II expansion slot which permits you to record and play back sounds, but which also provides
for modeling the sounds while they are in memory. The record and playback features are based
on an eight bit Analog to Digital Converter (see Chapter 14) and an eight bit Digital to Analog
Converter.

Once you've captured a sound into memory, you can alter its pitch, add echo and reverb, or
just generally fiddle around with a joystick control to see what kind of bizarre modifications
you can produce. Once you are through modeling a sound you can then play it out and record
it with a regular tape recorder or save it to disk for replay on the DX-1 system.
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Chapter 11

Apple Speech and Hearing

Voice

The elements of human voice and speech can be understood in many of the same terms as
were used in the overview of sound and of instrumental music. The human vocal tract acts
like an orchestra with about 40 different instruments, each of which we call a phoneme. As
with a musical instrument, we recognize a phoneme by the shape of its waveform. In the
course of pronouncing words, we do something akin to operating a very fancy music synthesizer
which can change its output from trumpet to violin to drum, shuffling among dozens of in-
struments at a rate of eight or 10 instruments per second.

Most phonemes, such as the “ee’s” and “00’s” of vowels, are based on harmonicly rich sine
wave sounds, while others such as the “ss” in fuss are based on modeling the hiss of white
noise. To synthesize a human voice you need an appropriate controlled source of harmonic
tones, a white noise generator, and a few other odds and ends to model the sound output. Just
as with music, you must attend to the changes in frequency and amplitude during the attack,
sustain and decay phases of a phoneme.

One additional concern with voice is that we vary the way we pronounce a phoneme depending
on which phoneme we just finished with and which one we are about to start. You can produce
recognizable synthetic speech with just 40 standardized phonemes, but to get good quality
you have to include several variants of each which are called “allophones.”

If you construct a system with a total of 128 available allophones and if you can see that
you’ve got exactly correct timing for slipping from one to the next, throw in pauses and stops
of appropriate duration, and make a few allowances for intonation. . .. Well, then you can
synthesize voice which is astonishing in its natural quality and which is virtually indistin-
guishable from a tape recording of a real human. Wonderfully enough, there are Apple based
systems priced at under $200 which can do all of this.

Phoneme Production by Humans

There are a variety of ways of classifying phonemes, but the most essential distinction is
between “voiced” and “unvoiced.” Voiced phonemes, such as the vowel sounds mentioned
earlier, require the action of the vocal cords, while unvoiced phonemes just require air whoosh-
ing up from the lungs to blow around between teeth, tongue and lips. You can test this out
by putting your finger on your Adam’s apple and repeating the “00” sound and the “ss” in fuss
sound.
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Vibrating Vocal Cords

You activate your vocal cords by just pulling them tight to partially obstruct the airflow out
of your lungs, and the result is that they start to vibrate with a pitch dependent on howtight
your throat muscles have pulled them. The vocal cords are actually embedded in flat sheets
of tissue, all of which vibrate, but the loudest vibrations come from the cords themselves and
for most people the fundamental frequency is between 150 and 250 cycles per second (men
average 140 Hz, women average 230 Hz).

The frequency spectrum of the sound emitted directly from the vocal cord is just the raw
material. It contains components ranging from 150 Hz up to 4000 Hz. Your frequency spectrum
is part of what is characteristic of your own individual voice. Voice based security systems
can use this spectral information to “fingerprint” you.

Resonating Chambers '

As this complex waveform sets up air vibrations in your throat and mouth, it activates several
resonant chambers scattered about. These chambers have certain favorite frequencies which
they tune in on and use as the raw material for producing a fairly loud harmonic (see Chapter
10) of the fundamental frequencies. Each of these resonant chambers has its own favorite
output frequency with some low pitched resonators emphasizing 200 Hz components, and
others boosting frequencies as high as 2000 Hz.

With your vocal cords vibrating at a steady pitch and loudness you can produce different
output sounds by mechanically reshaping the resonant chambers. When the shape of a resonant
chamber is altered, its resonant frequency as well as its ability to produce a loud harmonic
can be changed. You reshape your resonant chambers by positioning your cheeks, tongue, lips,
etc., and you can even kick in a large extra resonator by dropping your uvula and hooking
the whole thing into your nasal passage.

Formants and Fricatives

The ultimate output waveform for a phoneme is determined by the starting waveform from
your vocal cords after it has been colored by several resonant chambers in your throat and
mouth or even your nose. The sound from the vocal cords is called the “glottal pitch,” the
resonant frequencies from throat and mouth are called “formant frequencies,” and your nose
is politely termed a “nasal resonator.”

The final bit of resonating and shaping done on some phonemes is carried out by the teeth,
lips, and the tongue when pressed into contact with other structures. This kind of sound is
called a “fricative” and describes the sound in the f, ¢, t, and v of the word fricative. The fis
an unvoiced fricative and the v is a voiced fricative.

Electronic Voice Production

There are three major distinct approaches to electronic voice synthesis, all of which turn up
in at least two popular products for the Apple. The simplest approach, “waveform encoding,”
pays no attention at all to the intricacies of voice frequency composition and operates more
like a digital tape recorder with record and playback modes than like an actual synthesizer.
You get good quality speech, but there’s only room in memory for a small number of words.
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The remaining two methods are both attempts to construct voice waveforms from their the-
oretical frequency components. The “Analog Formant” method uses electronic oscillators to
emulate the vocal resonant chambers and what not. This method produces the notorious “robot-
like” speech made famous by the Votrax Type ‘N Talk used in the movie War Games. Voice
quality is not great, but it is convenient to build “text to speech” synthesizers with unlimited
vocabularies.

The most sophisticated speech synthesis methods generate an output waveform entirely through
numerical calculations. One such method is called Linear Predictive Coding (LPC) for reasons
which will be explained shortly, and it involves full scale mathematical simulation of the
frequency effects of the different parts of the vocal tract. With the advent of single chip LPC
devices built into products such as the Echo II from Street Electronics, it has become possible
to synthesize very good quality voice with the unlimited vocabulary yielded by text to speech
synthesis. A second computational approach is a startling programming tour de force named
SAM (see below) which is available only for the 6502, and which permits mathematically
based synthesis without any specialized hardware.

Waveform Encoding Methods

This discussion recalls the review of digital sound processing in the music chapter. There is
no problem making a digital recording of remarkable fidelity; however, this requires a fairly
huge rate of data flow. The situation is not quite as bad as for music, since voice is actually
easier to encode than music in this type of system.

For a good recording you must sample the sound waveform at a rate which is twice as fast as
the highest important frequency components. Most music has important components with
frequencies over 15 kHz (thousands of cycles per second), so you need to take 30,000 samples
per second, with each sample involving a byte of data. Thus music encoding accumulates data
at a rate of 30K bytes per second; quickly overwhelming a 64K Apple. Most waveform com-
ponents in the human voice, however, are below four kHz, so you can do very well with just
8,000 samples per second, and can get passable quality with 4,000 Hz sampling. At 4K bytes
per second, you could easily load 10 or 15 words into the Apple’s memory for storage to disk
or for later playback.

Waveform ecoding gets you very good quality reproduction and you can even make out the
identity of the original speaker, so there has been some effort to solve the memory capacity
problem through some form of data compression. This is actually a lot less magical than it
sounds and is also simple to carry out.

The most popular means of compressing the data is use a method called “delta slope modu-
lation.” When you are digitizing with a standard, eight bit Analog to Digital Converter (ADC;
see Chapter 14) you make time slices through the incoming voice signal and within each slice
you determine which of 256 possible levels of intensity is currently coming in. Thus you
produce an eight bit byte of data for each sample. An alternative is to record the direction in
which the waveform is changing rather than its absolute value.

In one popular delta modulation system each sample is a four bit number. The first bit tells
whether the current sample is greater or lesser than the previous sample, and the remaining
three bits are used to state eight possible angles of slope for the change. Thus you can fit two
4 bit samples into a byte of storage space, and you've doubled your storage capacity.
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The Digitalker from National Semiconductor is such a delta modulated waveform encoding
and decoding system built into a single chip. The Digitalker is used in the Micromouth from
Micromint, and in the Cognivox system from Voicetek. There is a similar chip from Motorola
called the LM3418 which is used in the Supertalker SD 200 from Mountain Computer.

The Supertalker lets you do your digitizing at a poor quality, low data flow rate of 512 Hz,
and also at one kHz, two kHz, or a more reasonable four kHz. As with any waveform encoding
system, the big problem is storage space and speed of retrieval from disk. You can hold a few
seconds of speech in RAM, and then pack about five or six times as much on disk. It might
have been nice to use this with a RAM disk, but Mountain chose to use a special disk format
for the Supertalker, which means you’re probably limited to working with a standard Apple
drive.

Analog Formant Synthesis

When you are working purely within the digital realm of computers, sine waves are rendered
as abstract mathematical constructions. However, the older “analog” electronics, on which our
radios and stereos have been based, permits a much simpler rendering of sine waves. Looking
ahead into the section on basic electronics (see Chapter 13), you will find that it is very easy
to string together components such as resistors, capacitors and inductors in such a way as to
produce finely tuned oscillating electric currents.

Since the objective in voice synthesis is to recreate the various vibrations and resonances in
the human throat, mouth and nose, it might seem that tuned electronic resonators are ap-
propriate parts for the job. This occurred to electrical engineers who built crude systems along
these lines much earlier in this century.

The problem always was that to follow the complex flow of rapidly spoken phonemes in a
word, you had to readjust the settings of all the resonating circuits about 100 times a second.
This was not a reasonable task with levers and knobs. However, if you can collect together
all of the necessary resonating circuits and effectively put a digital computer in control of the
knobs and levers, then you’ve got a working system. This being the 1980s, you can now
purchase a complete system with all the oscillators and the digital control circuitry neatly
packaged into a small plastic DIP chip carrier for a few dollars. The neat execution of this
little feat in their SCO1 Speech Synthesizer chip has made the name Votrax the electrical
engineer’s equivalent of a household word.

Structure of an Analog Formant Speech Chip

There are thus two distinct segments which make up an “Analog Formant” speech synthesizer
such as the Votrax chip. In one section you have all of the analog oscillators, and in the other
section you have a small scale built-in microcomputer which takes care of all the adjustments
and updating.

The organization of the analog section closely reflects our theoretical understanding of the
human voice production system. There are two alternate sound sources, one called the “glottal
pitch resonator,” which plays the part of the vocal cords, and one called the “fricative resonator”
which generates white noise. Most voiced phonemes need to get passed through at least three
resonating chambers in the mouth and throat, and some need to resonate in the nose. Thus
the chip is provided with three “formant resonators” and a “nasal resonator.”

The digital circuitry is given direct control over the frequency setting of each of the six
resonators, and it has volume control over the glottal and fricative source as well as over the
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nasal resonator. These six resonant circuits and their nine control lines make up the analog
section of the synthesizer.

During the course of attack, sustain, decay and transition, the exact settings for a particular
phoneme change. Thus the digital circuitry views a phoneme or allophone as being made up
from a series of “frames.” Each frame is a list of settings for the nine control lines. Elegant
analog formant synthesizers can step through 30 frames in the production of a single phoneme.
In sequence, you could send the chip a one byte instruction calling for it to produce a selected
phoneme. The built-in ROM on the chip would use this byte to pick out a set of 30 instruction
frames needed to play out that phoneme. As each frame was executed, nine controls would
be adjusted. Your single byte request would have caused the chip to issue 30 times nine equals
270 resonator instructions.

To call up six phonemes in a second of speech, you would need just six bytes. The chip would
respond with six times 270 equals 1,620 resonator settings and a recognizable word would be
spoken. You may recall that a second of good quality speech can require 8000 bytes of memory
with waveform encoding methods, so the reduction to just six bytes by the analog formant
method really does change the whole ball game.

Text to Speech Algorithms

Since the microcomputer only has to send a few bytes per second, it has gobs and gobs of time
to mill around doing processing while it is waiting to request the next phoneme. One popular
thing to have the machine do while it is waiting is to run through a special program called
a “text to speech algorithm.” This kind of program does exactly what its name suggests. It
reads text from a standard text file and causes the synthesizer to speak it out. The principal
task of a text to speech program is to translate from the alphabetic spellings of standard
English into the phonetic spellings required for proper phoneme selection.

Some of the translations are quite straightforward, but when the algorithm encounters words
like “know” or “Connecticut” or “ASCII” it requires some level of sophistication to get things
right. This means that the quality of a text to speech algorithm depends on how many “rules”
it uses for assignment and how many “exceptions” it is able to watch for.

Even given that the phoneme selection is done well, there are a couple of other factors which
can cause trouble for the quality of speech. First of all, the use of just three formant resonators
omits some degree of detail, and the initial source tones from the glottal resonator are missing
many of the higher frequency components which we expect to hear in speech. Another limi-
tation of the popular SCO1 analog formant synthesizer from Votrax is that it has just 64
different “allophones” to draw on, while more elaborate systems may have twice that number.

The end result is what has come to be called “robot-like” speech. In fact, newer robots will
use much better synthesis systems, sounding more like HAL in 2001: A Space Odyssey than
like the Whopper master computer in War Games, so this is probably better referred to as
Votrax-like speech.

Nonetheless, the Votrax SC01 has had an important impact on the popularity of speech syn-
thesis for microcomputers. It is used in the Speech II and Sound/Speech I from Mockingboard,
the Sweet Talker from Micromint, Waldo from Artra, and in two products from Votrax, the
Type 'N Talk and the Personal Speech System. The Mockingboard products and the Sweet
Talker are inexpensive single board products, while Waldo is an elaborate multifunction
system described in the section on speech recognition systems.
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- The Votrax Type 'N Talk (see Figure 11.1) is an external, terminal-like device which connects
to the Apple via a standard RS-232C serial interface. You send characters to it just as you
would send them to a printer or a modem and it speaks out the characters as it receives them.
The text to speech algorithm work is carried out by a 6800 microprocessor in the Type 'N Talk
cabinet. You can control the pitch of the speaker’s voice as well as its volume only by adjusting
knobs on the front, and you have no control over the speed at which words are spoken or of
inflection.

/(/ WY —

TALK™

GunnE SHER

Fig. 11.1a Votrax Type ‘N Talk acts as an external RS-232 speaking terminal.

Fig. 11.1b Votrax Personal Speech System is similar in principal to the Type 'N Talk, but adds more sophisticated pro-
cessing of the input and control of output quality.
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Votrax has released a greatly enhanced product called the Personal Speech System (see Figure
11.1) which uses a Z-80 microprocessor to examine the incoming words for instructions on
inflection, speech rate and volume. More importantly, the text to speech algorithm has been
greatly enhanced. It knows how to handle a variety of abbreviations, will pronounce, i.e.,
“154” as “one hundred fifty-four,” and even lets you load in your own exception tables. The
system also includes a real time clock, an AY-3-8910 chip for tones and sound effects (see
Chapter 10), and can interface with either a serial (//c) or a parallel port.

Computational Synthesis

As noted in the section on analog formant synthesis, it is simple to build electronic circuits
to act as oscillators. Unfortunately, waveforms produced by that technique are so simple that
they don’t sound very much like natural human speech. With sufficient computational power,
however, all of the waveform modeling can be done on a purely mathematical basis. The
Software Automatic Mouth (SAM) from Don’t Ask Computer Software works to replicate the
phoneme waveforms using data from their fully formed frequency spectra.

A much more widely used commercial approach called LPC begins with waveform encoding
and then performs a detailed analysis of the input to extract descriptive parameters. Later,
when it is time to do synthesis, these parameters are used in what is an effective mathematical
model of the vocal tract to recreate the recorded words. If you can get extremely powerful
computation going, you can attend to all sorts of minor little details in the speech waveform
which are essential to natural sounding voice.

This scale of computation far exceeds the abilities of most microprocessors. However, there is
a two step approach to the math which makes it possible to construct simple, inexpensive
voice synthesizers for machines like the Apple. All of the analysis of speech is done inadvance
on a large mainframe computer, and the spoken words are reduced to sets of parameters and
coefficients to be plugged into equations at the time of synthesis. Then the synthesis is done
by a special high speed math processor, designed specifically to carry out the equations of
speech reconstruction.

When the large computer is used to analyze whole words, it will produce parameter lists for
synthesizing those words. The parameter lists are sufficiently brief that there is space for over
200 encoded words on a single 16K ROM. However, it is also possible to extract the various
encoded phonemes and allophones and store these rather than whole words. This means that
the system can be used with a text to speech algorithm just as with the Votrax chip. The
algorithm examines text files or incoming ASCII codes from a modem, and selects the necessary
phonemes to pronounce the words. This gets you an unlimited vocabulary of natural sounding
speech which is exactly the way you use the Echo II speech synthesizer from Street Electronics.

Properties of the LPC Coding Process

The equations that do the work accept an incoming digital waveform, and act like a filter to
modify the shape of the waveform. Just as with the analog formant synthesizer, you begin
with a glottal source and a noise source, but these sources output numbers instead of varying
voltages. The equations which act as filters take the place of the various resonators in the
throat, mouth and nose.

One additional advantage of starting with a digital waveform generator is that it is convenient
to begin with a fairly complex waveform which is modeled after the harmonic complexity of
an actual glottal pulse. The filter equations don’t really care how complex the incoming
waveform is, so you get a sort of free shot at improving the natural quality.
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The actual calculations involved are not that spectacular: a couple of multiplications and a
couple of additions. The problem is that you have to do all four operations about 100,000 times
a second. The original process required four multiplications and two additions, but an en-
hancement made it possible to cut out two of the multiplication steps. That enhancement uses
a standard mathematical “prediction” technique called linear regression and so the whole
process has been given the name Linear Predictive Coding (LPC) speech synthesis.

Texas Instruments succeeded in building a specialized high speed math chip which does LPC
calculations. This processor is packaged with a noise source, a glottal waveform source, a
digital to analog converter and an audio amplifier in the TMS 5220. You use the 5220 in
conjunction with a separate ROM chip or under direct command of the microcomputer.

To get it to produce a phoneme, you tell it the pitch, the amplitude, and 10 “filter coefficients”
which affect the way it does its calculations. This set of 12 pieces of information is called an
“LPC data frame” and, just as with analog formant synthesis, you need to feed it a series of
20 or 30 frames to produce a complete phoneme. The storage requirement comes to about 100
bytes per word. This is not as compact as with analog formant synthesis (6 to 10 bytes per
word). More importantly, though, it is much better than waveform encoding which can require
up to 8000 bytes per word to achieve similar quality.

LPC Synthesis Systems

The most outstanding voice synthesis system for the Apple is the Echo II from Street Elec-
tronics. The TMS 5220 chip it is based on turns up in several other products, including the
SSB- Apple from Multitech, the Super Sprite from Synetix,the V101A from Vynet, and in
Waldo from Artra. The two strengths of the Echo II are a wonderfully done software package
and manual, and a text to speech algorithm.

The Echo II text to speech algorithm is not nearly as sophisticated as the new algorithm in
the Votrax Personal Speech System, but it is the only one available for an Apple LPC product.
If you experiment with phonetic spellings, you can produce speech a little better than the
Votrax system will do automatically. The advantage of the Echo II is that you have the option
of selecting from many hundreds of preassembled words. When you pull these in off the disk
and put them into your BASIC programs, the system can produce a very natural sounding
voice with full control over what is called “prosody”—pitch, rhythm, duration and intensity.

The system from Multitech is based on nearly identical hardware, but it is poorly documented,
difficult to use, and offers no means of adding new words since you can’t do text to speech.
You are provided with a vocabulary of preassembled words, but many very important words
are missing, and there’s nothing you can do about it.

By adding a few additional kinds of hardware to their board, the folks at Vynet produced a
very interesting device. Their LPC synthesizer shares space on the V101A with the circuitry
usually used on modems for auto-answer and for touch tone recognition. The way this system
works is that when someone calls on the telephone, the V101A will answer the phone and
begin talking to the caller.

The interesting part is that it can tell the caller to specify what information they need by
pressing a touch tone number. The V101A listens to the touch tone, and uses it like aselection
from a menu in a standard piece of microcomputer software. It can respond to the request by
speaking out a new list of touch tone selectable options or by reporting the desired information.
The major liability of this system is that it comes with a limited, fixed vocabulary, and it’s
very expensive to have a special speech set made up. This may discourage individuals from
checking this out, but it should be of substantial interest in businesses with a heavy burden
of redundant phone answering.
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Software Synthesis by SAM

When you consider all of the research and development effort that has gone into systems like
LPC and the Votrax chip, you can’t help being amazed by the accomplishment of the pro-
grammer who created SAM. There are no oscillating circuits, math processors or mainframes
lurking in the background—the whole thing comes as a program on disk. The machine lan-
guage code involved is fairly classy stuff, but then again it isn’t something that no one else
could have done. Thus the striking part is how simple and obvious it all sounds in retrospect
in comparison with the Herculean quality of most of the other efforts.

All that’s going on is a reconstruction of a phoneme waveform from its frequency spectrum.
Knowing the harmonic composition of a phoneme and the rough shape of its envelope, the
SAM software calculates the appropriate output waveform shape. This is all done in real time
as allophones are encountered in the string of text. The equations generate about 7000 bytes
per second, so the Digital to Analog Converter makes reasonably good reproductions of com-
ponents of up to 3.5 kHz.

The equations also operate within the context of a set of rules which describe how an allophone
should be adjusted to allow for its context in a particular word, and for easing the transition
from one allophone to the next. The whole computational package is designed to be stored up
in high memory while Applesoft BASIC programs are running, but it does take up about 9K
of RAM. The result of the computations is a stream of data which still must be fed through
a Digital to Analog Converter and then amplified to drive a speaker. The package from Don’t
Ask Computer Software or from Tronic includes the SAM software, the DAC and the amplifier.

Voice Recognition

The technical challenges involved in getting an Apple to understand what you are saying to
it are substantially different from those involved in speech synthesis. In both cases, you are
concerned with storing the digital representation of words in as compact a space as possible;
however, the difference is that you need to store the word in a way which makes it easy for
the Apple to recognize while for synthesis you need to store it in a way that will later make
it easy for a human to recognize.

To achieve good speed and minimize computational requirements, voice recognition systems
ignore the phoneme elements and ignore the bases and origins of the various harmonic com-
ponents in a voice. The objective is to capture an entire word and to treat its total waveform
sequence as a single, hopefully recognizable, shape.

In all of the Apple systems the human who will be using the device speaks in a short list of
words through a microphone. These words are stored in RAM as if each one was a shape.
Later, when you want the system to accept a verbal command, it records your command and
then runs back through the list it stored earlier to see if your command looks like any of the
stored words.

Data Compression

Any system which is based on the direct digital recording of speech can get into memory
trouble quickly because an accurate recording requires a data flow of about 8000 bytes per
second. To store 40 words at this rate requires 240K of RAM, which is out of the question.
The LPC method of speech synthesis is based on recording at this data rate and then using
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an elaborate computational model to compress this data down into about 100 bytes persecond.
Because these compressed words must be reconstructed later, the computational coding task
is daunting.

Speech recognition systems also require compression, but since there is no need to reproduce
the speech later, the approach to compression can be far less elaborate. The standard tool in
compression for speech recognition is a “frequency spectrum analyzer.” This is a device which
effectively is made up of an array of waveform detectors, each set to a different frequency
within the range found in voice. Each one measures the amplitude of the waveform components
in its own range. When you run a waveform through one of these devices, it produces a report
on the frequency spectrum of the input.

The Voice Input Module (VIM) from Voice Machine Communications (see Figure 11.2) collects
in these frequency spectra at the rate of 200 per second while a word is being spoken. It uses
a 16 channel analyzer with eight bit precision in each channel, so 16 bytes of data are collected
in each sample.

Fig. 11.2 Voice Input Module from
Voice Machine Communications.
The system is available with a
gooseneck or a remote microphone.

This input rate of 3200 bytes per second is still very fast, so there is a further compression
step. Each spectrum is treated as a bar chart with 16 bars. This chart is submitted to “spectral
slope encoding” in which you simply go from bar to bar and if one bar is higher than or equal
to the previous bar, you record a one, but if it is lower, you record a zero. This results in a 16
bit number to replace your 16 byte spectrum, so you’ve cut your storage requirement to 400
bytes per second. ‘

Obviously, this ignores a great deal of the information in the spectrum, so you make asecond
compression pass with a different technique to get an abbreviation of a different aspect ofthe
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spectrum. In this process, called “spectral energy encoding,” you draw a line through the
average height of the bars and assign ones and zeros according to who’s above and who’sbelow
the line.

In fact, the process continues along these lines, further cutting and mashing, until you’ve
gotten things down into the range of about 100 bytes per second of speech. This is similar to
the degree of compression achieved with LPC, but it is done much more quickly in a rapid
series of abrupt strokes. In the case of the VIM the end result is that you can store 80 words
in 8K of RAM and thus, remarkably enough, the device is able to use these mangled and
compressed relicts to accurately and rapidly recognize what you are saying.

Performance

In addition to the VIM, there are voice recognition systems available from Artra (Waldo),
Scott Instruments (Voice Entry Terminal), and Voicetek (Cognivox). The Voicetek system is
based on a much simpler compression method called “delta modulation.” It doesn’t do extremely
well on recognition, but it is also a speech record and playback system so it is unique in using
the same inexpensive chip as the basis of a system to let you teach it what to say as well as
teach it what you mean.

Waldo is not extremely ambitious with regard to quality of recognition, but you can teach it
to recognize 24 phrases and it is the only one of the systems which will recognize your
commands from a distance of six feet from the microphone. However, the really remarkable
thing about Waldo is the umpteen other features squeezed onto the card. Waldo has a real
time clock, a noise generator, and a BSR Controller which lets you control light switches and
appliances throughout your house just by talking to your Apple. In addition, you can add a
Votrax SCO1 chip for rough quality speech synthesis or a TMS 5220 for high quality speech
with a fixed 206 word ROM-based vocabulary. You could thus give Waldo a verbal instruction
to say something to you and then whistle at precisely 8:35 p.m.

The Voice Entry Terminal (VET) from Scott Instruments and the Voice Input Module (VIM)
from Voice Machine Communications both emphasize high accuracy in voice recognition. The
VET has an external cabinet with 16K of RAM and can hold 40 words for recognition while
the VIM fits entirely onto a single card and squeezes 80 words into 8K of its own RAM. In
both of these systems the idea is to have the device recognize your instruction and respond
by sending ASCII character codes into the Apple keyboard input port. As a result, the Apple
itself is completely uninvolved in the acquisition and recognition process, and it accepts the
characters just exactly as if they were typed at the keyboard.

Using a Voice Recognition System

To use the VIM or VET, you first go through a training routine where you teach the device
the words it will have to recognize. In this process you speak the word into a microphone five
to seven times. With each pass, the compression system processes the input and compares it
to the previous attempt. Thus, it gradually accumulates the best approximation of the average
way in which you pronounce that word. You repeat this process for each of the 40 (VET) or
80 (VIM) words you want it to recognize, and when you are finished with the training session,
you store a copy of the set of compressed words on disk for future use.
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You can create as many sets as you like, but only one set can be loaded and active at a time.
Each person who will use the system must have their own personal word sets, because these
devices can only recognize commands from the one person who originally trained them. Fur-
ther, you may have to retrain the system from time to time as your own voice changes slightly
from month to month.

Once installed, trained and running, the VET and VIM are still sensitive to changes in your
exact pronunciation of a word. In effect, you are being trained as much as the device is, since
you must learn to say a word in nearly the same way every time you use it. Particularly for
the VET system, you will do best if you carefully choose words or phrases which are clearly
distinctive from one another. The VET or VIM can be instructed to match any string you like
with a given word and so you can use longer distinctive terms in the place of the similar
sounding shorter words you need to have typed into the Apple.

For a well motivated speaker such as a handicapped person, it is possible to achieve nearly
100 percent recognition of your commands with the VIM system. Most users who don’t use
the VET or VIM on a daily basis will find that some words are difficult to communicate to
the device without careful attention and some repetition. Thus, these systems are a wonderful
boon to the handicapped and to people who need to have their hands free while issuing
commands (in a low noise environment). In addition, if you use them on a regular basis you
will become sufficiently well trained that the recognition system will be very reliable and
easy to use.

It is clear that a great deal of the potential power of these devices has been sacrificed in order
to save on expensive RAM memory. However, the dramatic plunge in the cost of RAM over
the past four years as well as the increased availability of inexpensive, high speed micropro-
cessors will make it possible for the people who designed these pioneering systems to develop
much more versatile products in the near future.
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The Circuit Apple
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Chapter 12

Electricity and the Power
Supply

The Electric Apple: The Power Supply

Electricity is used both as a means of transmitting energy or power and as a means of trans-
mitting information. The DIP chips which make up the Apple’s circuitry specialize in the
information side of things and are usually referred to as “electronic” devices. However, work
requires energy, and in order to operate, these electronic devices need a steady supply of
energy. It is the business of the power supply to provide that energy in exactly the form the
chips will need.

The Apple’s power supply is the modern day descendant of a long tradition of electrical devices
reaching back for over two centuries. It is a very sophisticated electrical device however
and it performs a variety of feats which would have been unthinkable 20 years ago.

The principal duty of the power supply is to collect energy from the wall outlet as it is supplied
by the power company and to convert it into a form that can be safely used by the electronic
components. Its second duty is to maintain a constant surveillance of the electronic circuitry
and to attempt to minimize the damage when it senses a catastrophe coming on.

Measuring Power

There are several different terms used to describe amounts of electricity. The one you hear
about the most often is “voltage.” Voltage does not describe the amount of electrons flowing.
Rather, it describes a force field that can cause action at a distance—a rather science fiction-
like concept.

Voltage is to electrons as a magnetic field is to iron filings; it is able to make them move.
Place an electron in a high voltage, attractive electric force field and it will zoom towards the
point of greatest attraction, splatting against the field source with a force proportional to the
voltage which attracted it. Of course, if you set things up like this, all you'll end up with is
a source of a force field with a lot of electrons splatted up against the side of it. Sometimes
this sort of thing is useful, but it is also a reasonable description of what happens to you while
you’re scuffing your feet on a carpet and accumulating a static charge.
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Charge is a way of describing how many excess electrons have piled up somewhere. We’ll be
coming back to this later because it is the central concept in the design of most RAM memory
chips, but for now let’s assume we don’t want to accumulate any electrons. The conventional
way out of the problem is to set things up so that electrons are attracted to one side of a force
field and repelled from the other side. For every one that comes in, another one gets spat out
the other side. All that you have to do is to connect a copper wire to one side of the force field
generator and connect the other end of the wire to the other side. When the force field is
turned on, electrons will seem to be flowing in a continuous circuit but will never accumulate

anywhere.

So where do all these electrons come from? Actually, they’re just sitting there in the copper
wire being part of copper atoms when nothing else is going on. When some of them are
participating in the circuit flow, the copper atoms don’t really notice since every electron they
lose gets replaced by another one from somewhere else in the wire. It is because of copper’s
rather blase “no sweat” attitude toward trading electrons among neighboring copper atoms
that it is constantly being put into wires, strung between telephone poles, and called a
“conductor.”

Current

How fast does an electron travel in a copper wire? Very slowly, actually. The situation here
is much like one in which you lay out a row of billiard balls in a line, all touching each other.
You take your pool cue and, simulating an electric force field, you tap the ball closest to you.
The ball at the other end of the row rolls away almost instantly, but the several balls along
the row barely move at all. It is the impulse which has been transmitted rapidly down the
line. Similarly, the force field is transmitted along the wire at a pace somewhere near the
speed of light, but the electrons at any given point just rattle around a little bit as the force
gets passed along essentially undiminished.

The stronger the force (i.e, the higher the voltage), the more electrons move and the faster

they move, but it’s still a fairly slow passage. The term “current” describes the number of

electrons that actually pass by some point along the wire in a given interval of time. The

current is related to the magnitude of the voltage pulling them along, and it is also related
~to how much bouncing around they do as they pass from copper atom to copper atom.

l

Fig. 12.1 Roll of resistors.

196




Resistance

If you placed a tube full of powdered carbon between the two sides of the same force field
source, the electrons would move much more slowly. The way electrical people describe this
property of powdered carbon (and a lot of other things) is to say that the substance has high
“resistance,” i.e., it resists the flow of electrons. Many useful electric circuits include short
stretches of copper wire conductor linked together by short stretches of these powdered carbon
tubes called “resistors” (see Figure 12.1). The higher the applied voltage in such a circuit, the
higher will be the current flow, but as you add more and more resistors, the amount of current
flow will decrease.

The power available for doing work is related to the amount of current flowing. By adjusting
the strength of the force field (voltage) and the amount of resistance (measured in ohms), you
can produce just the amount of current flow (measured in amps) that you happen to need at
any given point in the electronic device you're trying to operate. It is important to limit the
current flow and to see that it doesn’t get out of hand. You see, as the electrons bounce along,
even in a good conductor like copper, they “rub” against the fixed atoms and make the wire
get hot. This may be fine if you're building a space heater or a brilliant electric lamp, but
when you’re dealing with incredibly tiny and fragile microelectronic circuitry you had best
keep the current carefully under control.

Alternating and Direct Current

The form in which electrical power is supplied from your local water fall or nuclear reactor
is as a constantly varying voltage which reaches a maximum of 163 volts, then drops to -163
volts, comes back up to + 168, etc. If this is connected to a circuit, the electrons alternately
start moving toward the power plant and then away from it. This is called Alternating Current
(AC). The voltage varies smoothly from its minimum up to its maximum and back 60 times
a second.

This sort of electric power is useful for making light bulbs glow because it’s really the friction
that’s important. This is much like rubbing something to make it heat up—the fact that you
rub back and forth doesn’t decrease your effectiveness in the slightest. When the current
flowing in the wire is evaluated it is approximately equivalent to what would result from a
steady voltage of 115 volts. The formal name for this “effective” voltage is the Root Mean
Square (RMS) voltage; this reflects how the 115 is derived mathematically from the 163.

If you glance at the Apple power supply near where you plug in the cord, you will see that it
says “115 VAC, 60 Hz.” This is Apple’s way of specifying what it expects the local power
company to be providing; alternating current with an effective force of 115 volts varying at a
rate of 60 full cycles per second. A different power supply is used for European Apples since
European power companies have chosen to provide 220 VAC at 50 Hz.

The Task of the Power Supply

OK, so if there’s all this power available, why does the Apple require a large box called a
“power supply?” The problem is that if you connected the power company’s electricity directly
to the motherboard, you'd probably just start a fire. 115 VAC is the source of the Apple’s power,
but this is highly toxic stuff for electronic components. Unlike light bulbs and space heaters,
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high current and strong voltages are not the name of the game. Most electronic components
being built these days require a steady, unvarying five volt power supply. Some older chips
may require any or all of +5 volts, -5 volts, +12 volts, and -12 volts. Few of the chips on the
Apple II motherboard can make do with only +5 volts, and even the //e and //c require little
bits of -5, +12, and —12.

What the power supply does is to transform current at 115 volts into varying current at each
of +5, —5, +12, and —12 volts, and to coax the variations out so that the various voltages
each emerge as smooth, steady constant Direct Current (DC). This smoothing process is ac-
complished in part by devices called “capacitors” which store charge while the voltage is
increasing and then dump it back into the circuit while the voltage is decreasing. It takes a
few seconds for these capacitors to drain fully in the //e and this is why the memory does not
clear completely the instant you turn off the power.

Fig. 12.2b Just behind the //c power connector, a large capacitor and
inductor begin filtering the incoming power.

Fig. 12.2a (above) Inside the Apple power
supply for the II/1l+ and //e.

WAL LOGIC
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Fig. 12.2¢ (right) The Internal Power
Converter plugs into the //c¢’s only slot. It
filters, smooths and regulates the incoming
power and sends protected +12, -12, and
+5 volts to the motherboard.
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Transformers and Switchers

The process of transforming the voltage is performed by an electrical component called a
“transformer.” In many power supplies the transformer is a huge, heavy object that becomes
very hot as it works. Wozniak was determined to make a small, light, cool, power supply that
could be safely used inside a plastic cabinet without a fan, so a traditional transformer just
would not do.

The Apple’s power supply does have a small transformer, but some modern electronic trickery
is used to make the transforming process extremely cool and efficient (see Figure 12.2). The
efficiency of a transformer is directly related to the speed at which its alternating current is
alternating. In the Apple power supply, the 60 Hz AC power is first smoothed to steady DC,
and then a fancy system of components is used to make it alternate once again but at very

Fig. 12.2d (right) Inside the //c Internal Power
Converter box are a number of capacitors and
transformers and the high current transistors used in
the switching regulation system.

Fig. 12.2e (below) The 7905 voltage regulator chip
on the //c motherboard converts —12 volts into a
fourth, =5 volt supply.
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high speed. This high frequency power is then fed through the transformer system. This type
of power supply is called a “switching power supply.” They are fairly common these days
(though not at all universal), but Wozniak’s choice of a switching supply was bold and daring
at the time.

In the //c, the first step of smoothing the 60 Hz AC power to steady DC is done outside the
Apple in the External Power Supply. This external supply sends a steady DC current at + 15
volts to the Apple. The Internal Power Converter (see Figure 12.2c and 12.2d) accepts this 15
volt DC input and then uses a high speed switching system to produce the +5 VDC, +12
VDC, and -12 VDC which it sends to the motherboard. The -5 VDC needed by somecomponents
is derived on the motherboard by a 7905 voltage regulator (see Figure 12.2e) working on the
-12 volts supplied by the Internal Power converter.

The Internal Power Converter will actually work perfectly with inputs ranging from +9 volts
DC to +20 VDC. Thus the //c has been designed to operate from the power available from 12
volt automobile batteries and other such sources. This is particularly important in various
parts of the world where steady 120 volt AC power just can’t be relied on. In addition, it adds
to the //c’s portability since it can be conveniently connected to a rechargeable battery or even
to the cigarette lighter in your car. If, however, the power drops below nine volts, the “power”
light on the keyboard will begin to flash and you must turn off the Apple immediately.

The Apple’s Crowbar: Limits on Available Power

The voltage source in the the power supply may be thought of as a pool of potential energy
which is constantly being drained off as the current it causes is used to do work. The power
supply is carefully designed to use the 115 VAC it has available to steadily replenish the
potential energy pool.

The +12 volt supply is used to power the motor on the disk drive, so when the drive turns
on, there is an abrupt increase in demand for energy. The potential energy pool starts to drain
too fast, and all the voltages begin to drop. The power supply is designed to sense the increased
demand and to respond almost instantly by increasing the frequency of the AC power being
fed into the transformer. This yields an increased efficiency of energy supply, the pool is refilled
more rapidly, and the voltages are maintained. This process is called “regulation,” and it is
extremely important for the correct operation of the electronic components.

However, the power supply does not have an unlimited ability to increase its output of current.
Apple made an estimate of how much power they thought would be required by a fully equipped
Apple II and built the power supply accordingly. These maximums are not quite what they
could be.

Each additional peripheral card plugged into the Apple’s slots increases the demand for power.
With four cards installed, the power supply can just barely handle one disk drive motor, and
it becomes possible to cause intermittent failures of the power supply if a drive is kept in
continuous use for over 20 minutes. If you put in eight large cards, it may become nearly
impossible to get accurate information from the disk drive. Each time the drive turns on, the
voltages start to fluctuate and the microprocessor and the memory can get very confused.

In fact, most of the components in the supply can handle higher currents, and the actual limit

was chosen to minimize heat generation and thus avoid the need for a fan. Some electronics
whizzes have picked out the few circuit elements in the Apple supply which are the most
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sensitive to heat, changed them, and added heat sinks, with the result that their supply can
handle up to twice the planned rating.

Normally, though, if the power supply experiences sudden and excessive increases in demand,
it is designed to shut down completely. This design feature is inténded as an important pro-
tective feature and it has saved thousands of Apple owners from thousands of dollars worth
of damage to their systems. However, to make the system as safe as possible, Apple has adjusted
this shut down feature to occur very suddenly as soon as voltage slips just a bit out of expected
range.

The device that causes the shutdown is called a “crowbar,” in part because it responds to a
sharp but modest change in voltage by producing a massive change in the operation of the
power supply and in part because its electrical symbol on schematic drawings resembles a
crowbar. Its formal name is Silicon Controlled Rectifier (SCR).

Two Apple Frying Events:
Producing a Short Circuit

You will recall that current is related to both voltage and to resistance. This can be represented
mathematically by a simple formula, I = V/R (where I is the standard symbol for current).
This formula predicts that if for instance your circuit has a 12 volt supply and 24 ohms of
resistance, then the current will be 12/24 = 0.5 amps. The only reason to start getting
mathematical about this stuff is because it is worthwhile to point out what happens if the
resistance drops to somewhere near zero. If you have a nearly infinite pool of energy (such as
a nuclear power plant) supplying the voltage, the formula predicts that a zero resistance
circuit will have a current flow of nearly infinity. At amperage in this range, copper either
melts or just simply evaporates.

This sort of event is called a “short circuit.” It occurs whenever a voltage supply line is
connected to a returning “ground” wire without any resistance separating them. The Apple’s
power supply is not able to provide spectacular amounts of power, so a short in the Apple
won’t evaporate copper, but it can do an awful lot of damage. Apple users have two favorite
ways of producing a short. One of these occurs when people disobey all warnings and attempt
to plug in a new peripheral card while the power is on. If the card comes in at the wrong
angle, pin 25 connects to pin 26 and disaster strikes.
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the Disk 1l drive. The chip marked
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The other is a delayed action effect that comes about when the disk drive connector is plugged
into the disk drive card in the wrong direction. When you turn on the power, a chip inside
the drive called a ULN 2003 (see Figure 12.3) burns and smoke comes out of the drive. This
is an interesting failure because, for a variety of reasons, the power supply can’t detect the
fault and the only symptoms are the smoke and the fact that your disk drive won’t work
anymore. Fortunately, this isn’t much of a disaster since the chip only costs 40 cents, nothing
else gets damaged, and your dealer can replace it in just a few minutes.

Otherwise, the crowbar system is very effective at preventing excess current flow by keeping
up its surveillance of very sharp voltage changes. The Apple power supply system is well
designed and reliable, but there are several reasons why you may want to purchase enhance-
ments or replacements.

Replacing the Power Supply
Power Supply Failure

Apple //e owners are accustomed to using the Control/Open Apple/Reset sequence to clear the
system and restart things, but Apple II and II+ owners are constantly reaching back and
toggling the on/off switch. This mechanical switch has the highest failure rate of any com-
ponent in the Apple and when it goes, you ususally have to replace the entire power supply.
Just behind the switch in failure rate is the power supply itself. The supply in a heavily taxed
two- or three-year-old Apple may wake up one morning and quietly decide to expire.

If you don’t have too many cards in your Apple, you should probably have the supply replaced
with another standard Apple power supply. Your dealer will do this for about $100. If, however,
you have a lot of large cards in your Apple or are contemplating getting some, you should
give strong consideration to purchasing a power supply from some other company which has
a higher maximum current output.

Some expansion modules for the //c draw their power from the //c’s internal power converter,
and they can easily overwhelm it. There is no convenient way to change the //c’s power supply,
so all power-hungry expansion modules must come with their own power source.

Enough Power

An overtaxed power supply usually reveals itself as cryptic and bizarre behavior of the com-
puter including nonsense reads from disk, or inexplicable “hanging” of the system during disk
accesses. There are a variety of things which can cause these symptoms so you’ll have to do
a little checking before arriving at a verdict. The simplest approach is to remove a few cards
(such as a printer or communications card) and see if the problem clears up. If it dees, then
either the card you removed is bad or it’s your power supply. You can usually choose between
these two possibilities by testing the suspect cards standing alone in your computer. If they
work fine, it may very well be a power supply problem. Unfortunately, most Apple peripheral
manufacturers don’t tell you how much power their cards need so you're left to using this sort
of test.

The Apple I1, 11+ and //e supplies are rated in terms of their total output, but for the //c, Apple

specifies the amount of power available on its external connectors. This is the total power
minus what the //c itself uses.

202



Total output ratings for the II, II+ and //e:

+ Svolts....... 2.5 amps
+12volts....... 1.5 amps continuous
2.5 amps for intermittent use for
20 minute periods
— Svolts....... 0.25 amps
—12volts ....... 0.25 amps

Expansion power ratings for the //c:

+ 5volts......: 1.5 amps
+12volts....... 0.6 amps continuous
0.9 amps intermittent
~ S5volts....... 0.05 amps
-12volts....... 0.10 amps -

The biggest problem is with the +5 volt supply. The Apple motherboard uses up nearly 2.0
of the total 2.5 amps. Apple warns you that a grand total of only 0.5 amps is available for all
other cards. A card that is plugged in will draw power whether or not you are using it, so
there is no simple way around this problem.
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Replacement 5 Amp Internal Supplies

Several companies sell switching power supplies with crowbar current limiting protection
which provide increased amperage at the various voltages. These supplies fall into two cat-
egories. One set looks identical to the Apple power supply. To install one of these, you turn
off the Apple, unplug your supply from the motherboard (see Figure 12.4), remove four screws
on the bottom of the Apple and then reverse the process to install the new one. These supplies
typically provide a full 5 amps of +5 volt power. Once the Apple has used up its 2 amps, you
still have 3 amps left over for your peripherals, a six-fold increase.

One concern when you provide increased current is that your power supply will generate
increased heat. This doesn’t seem to be a serious problem for supplies that are properly
designed. Further, if you have so many cards that you need an increased power supply, you
really ought to have a fan (see below).

The real problem with these internal replacement supplies is that no well established Apple
peripheral manufacturer makes them. Many individual supplies have erratic performance
when current flow is at its highest. This means that they fail when you need them most. The
symptoms include odd behavior linked in time with the extra demand due to startup of the
motor in a disk drive. The West Coast electronics supply houses which sell the internal supplies
(JDR, Concord Computer Products) are all essentially retailers rather than manufacturers.
These supply houses have some stake in maintaining your confidence, but this stills leaves
you buying Brand X to plug into your Apple.

External Replacement Supplies

The other approach to enhancing the power supply is to use an external power supply which
has a cable that reaches in to the motherboard power connector. This is very easy to install.
Just turn off the Apple, unplug the Apple supply, and plug in the new one. Some Apple users
dislike the idea of having an extra external box, but it does completely remove this heat source
so the inside of your Apple stays much cooler.

Fig. 12.5 Sup’'R Switcher
replacement power supply from
M&R.
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The other advantage is that one such device is available from M&R products as the Sup’R
Switcher (see Figure 12.5). M&R is a well established Apple peripheral manufacturer with a
variety of products. The supply provides a full six amps of +5 volt power. You can leave the
old supply in place but disconnected from the motherboard. This makes installation a little
tricky on the //e simply because none of the openings on the back panel are large enough to
let the connector pass through. This is easily solved by first removing the Apple supply, passing
the cable in through the large opening that action provides, and then replacing the Apple

supply.

Some manufacturers of large power hungry boards help you out by providing external power
supplies which plug directly into their card. You get such a supply with the Saybrook 68000
processor card and the Metamorphic systems 8088 (see Chapter 30).

The most expensive solution is to purchase an expansion chassis from Mountain Computer.
This is a device which provides eight additional slots for the Apple along with their own supply.
The Mountain Chassis will be discussed in detail in Chapter 22, but it is enough to say here
that most of the large, sophisticated and power hungry cards that cause the problems either
won’t operate properly that far from the 6502 or are physically unable to fit into the Chassis.
This device will solve the power problem for a variety of applications, but its list price of $750
suggests you should pay careful attention to the Chassis’ idiosyncrasies as described in Chapter
22.

Sufficient Supply from the Power Company

The Apple II, I1 + and //e Power Supply and //c external supply expect to receive clean steady
constant power at 107 to 132 VAC. The actual amount of power is measured in Watts (W).
The amount of power consumed is related to the voltage your device is using and how much
current you are using at that voltage. Simply put, W = VI; the power is equal to the voltage
(V) times the current (I).

For the Apple, (5 volts) times (2.5 amps) equals (12.5 watts), and you also have to consider
(12 volts) X (2.5 amps) equals (30 watts). The other supplies are fairly minor, so 45 watts is
a good rough estimate. The power supply itself requires a fair amount of power to do its work,
so the incoming power line is required to provide about 110 watts. This is reflected by the
label on the back of the supply that says “1A” (for one amp). To run an Apple you need (110
volts) times (1 amp) equals (110 watts), or the approximate equivalent of a single light bulb.

The voltage rating of 107 to 132 VAC is Apple’s way of saying the computer will not be affected
by the more modest dips and rises in the power lines. As power use increases and decreases
during the day, power companies sometimes have to temporarily adjust their main output
voltage by a few percent. A 10 percent drop from 120 VAC on down to 108 VAC is sometimes
called a “brownout,” but will probably not cause any trouble.

Transients in the Power Line

Most power companies in the United States do a very good job of providing 107 to 132 VAC
at 60Hz; blackouts are rare, and the low power requirements of the Apple certainly present
no problems; however, a lot of things can happen to your power on the way to your wall outlet
and some of these things can be troublesome. The great power supply networks in the United
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States were designed by people who expected to be supplying light bulbs, toasters, refrigerators
and electric motors. When you are dealing with such devices, there is plenty of room for
fuzziness around the edges. The average power supply network is not designed for the needs
of complex electronic equipment and there is no major plan on the part of any power company
to try to change what they supply along these lines.

In most places around the country, monitoring of incoming power reveals occasional “tran-
sients” which fall into the categories of sags, surges and spikes. Sags are those momentary
plunges in voltage which make your lights dim for an instant. These are often caused by the
huge rush of current into large electric motors somewhere nearby. Particularly in the //e, the
large capacitors and the voltage regulation circuitry built into the Apple power supply will
pull you through most of the time without any effect. However, if this is an ongoing and serious
problem, you may have to invest in an “uninterruptible power supply” (see below), since no
amount of inexpensive filtering and adjusting will be much help.

Surges and Spikes

Surges and spikes are both sudden, sharp increases in voltage on the line, but the term “surge”
implies long duration (a few tenths of a second to a second) and modest voltage (200 to 300
volts), while spikes may come and go in a few millionths of a second but achieve maximums
of many thousands of volts. Surge protection requires a device which can dissipate the large
amount of excess power that is pouring in. Spike protection requires a device that can respond
at extremely high speed before any of the voltage increase can pass into the computer. The
specifications on protection devices often refer to a “two stage surge suppressor” and this
actually means that the manufacturer has thrown in a few components for a high power surge
section and few components for a high speed spike section.

Regulating Through a Surge

The surges are an artifact of the kind of equipment the power company uses to maintain a
steady output level in its network. Their systems are perfectly capable of cutting output when
demand drops, but most systems use “elctromechanical relays” (see Chapter 14) which take
anywhere from a few thousandths to a few tenths of a second to carry out switching commands.
While everyone is waiting for the switch to throw, a surge is rising throughout the local
metropolitan area.

The Apple’s power supply actually handles these fairly well all by itself because of its well
designed internal voltage regulation features. In fact, the real problem with a surge is that
it can overwhelm and destroy the fancy spike protector you purchased for your Apple. This
is why equipment from RH Electronics and EPD includes indicator lights and fuses to warn
you if your spike protector has been fried.

Switches, Sparks, and Spikes

Most troublesome among all of the problems are the spikes. Unfortunately, these have a variety
of causes ranging from the events which occur when you throw a wall switch to distant
lightning strikes. When current is flowing in a wire, it sets up a magnetic field in the space
around it. When you throw a switch to stop current flow, the fields collapse and power rushes
back into the line. In the very first few instants after the switch opens, the two switch contacts
are extremely close together, so as the voltage from the collapsing fields runs up into the
hundreds and thousands of volts, you get a high voltage spark across the switch.



Some devices, such as relays, motors and transformers, have large “inductors” which are
designed to build up very large magnetic fields. When these are turned off, they can cause a
sort of ringing series of sparks across the opening switch. Each spark discharges the rising
voltage, then it starts to rise again causing a new spark, all in a repeating cycle until discharge
is complete a couple of thousandths of seconds later.

It is possible to design switches in such a way as to prevent this, but your home, office and
lab is filled with devices in which this sort of thing happens all the time. One of the worst
groups of offenders in this regard are the manufacturers of letter quality printers; people who
really ought to know better. In addition, there are lightning strikes and plain old static to
worry about. Three thousand volts for a millionth of a second will not even change the glow
on your average light bulb, but it has every chance of confusing all hell out of a 6502 or
dynamic RAM chip. Further, it can damage or destroy individual little circuit elements scat-
tered about within the computer.

Electromagnetic and Radio Frequency Interference

A second kind of power line “noige” called Radio Frequency Interference (RFI) noise comes
from radios, TVs and other computers. This is high frequency, low power noise but can have
very annoying effects on an Apple. There is no problem with the voltages or currents involved,
but when you have slight variations at rates of 10 kHz (thousands of cycles per second) to 30
MHz (millions of cycles per second), the digital circuits can be fooled into thinking that the
variations are actually information they are supposed to be paying attention to. The fact that
your AC power lines can carry complex electronic signal patterns is used to advantage by
some of the “power line carrier control devices” (see Chapter 14), but otherwise, this capability
is a substantial potential nuisance.

One very troublesome aspect of electro-magnetic oscillations at these frequencies is that al-
though they can travel in wires, they can also be broadcast from one wire to another. For this
reason, it is important that noise at these “EMI-RFI” frequencies be filtered out as close as
possible to the computer chassis. As a result of all this, it has been standard practice for
several years for nearly all electronic devices to be built with “filters” to clean up the incoming
AC power and also to limit transmissions which might effect other devices.

Since the Apple II's switching power supply generates quite a bit of this kind of noise, Apple
had to build a very effective EMI-RFI filter into the machine in order to ensure that it met
Federal Communications Commission (FCC) regulations. This filter, fortunately, works very
well in both directions so only the owners of very early Apple IIs (which have a less rigorous
filter) need be concerned with buying an EMI-RFI filter.

Adding Power Protection

Most Apple owners will never have a problem with the quality of their incoming power, but
no one can be completely confident. The real question is whether buying power protection is
like buying a fourth lock for your apartment door (a little paranoid) or like buying automobile
insurance (you'd be crazy not to have it). Correspondingly, available devices range from $14
to $900.

There is no convincing proof that everyone needs one of these extra protection devices, but
the idea of a lightning bolt zapping your Apple is pretty arresting. A very large proportion of
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Apple owners have, in fact, purchased some such device. These things may not do too much
for your Apple, but they do give you a warm positive feeling that you’ve taken firm and
constructive action, in advance, to prevent a whole host of imaginable future mishaps.

Power Protection Devices

Amperage of Multiple Outlet Boxes

One advantage provided by many of these devices is that they usually include several outlets.
Not only is this a convenience for plugging in your computer, your monitor, your modem, etc.,
but it is important to plug in all the parts of your computer very close together to get a clean
common ground point. The easiest way to do this is to use a box with several outlets.

The Apple needs one amp, and your monitor, printer and external modem may togetherrequire
two more amps, so an outlet box rated at four amps, such as the System Saver by Kensington
Microware, is calling it a bit close. If you plug in a hard disk, the power coming out of the
System Saver becomes a slashed up mess since the device thinks it’s in an overvoltage situation.

Surge Protection

For most of the less expensive protection devices, your first priority is to see that the device
will respond in a few billionths of a second to shunt voltage spikes away from the Apple. All
of these devices work by effectively watching the magnitude of the incoming voltage and
throwing a switch when the voltage goes above a certain level.

As long as the thing works fast, the actual “clamping” voltage is not crucial: 200 volts for five
billionths of a second is no big deal in terms of power effects. The protection renders the spike
into some low power RFI noise which can be filtered out by the Apple.

The principal way to build a “switch” that can tolerate thousands of volts but throw open in
a few nanoseconds is to use a device called a Metal Oxide Varistor (MOV) which is a special
application of materials technology and transistor design that is essentially made to order for
the job. Unfortunately, the actual physical layout of the components in the surge protector
can slow the response of an MOV. For this reason, the “Zener Ray” option on the RH Electronics
Super Fan II (see Figure 12.6) relies heavily on a carefully designed filter system to catch
very high speed events, and then follows with a high speed “zener” diode all before the MOV
has to come into line.

Fig. 12.6 Super Fan Il from RH
includes two extra outlets, surge
protection and a front facing on/off
switch for the Apple.




The RH Electronics design also points up a problem in judging these devices from their
published specifications. The components used by a manufacturer may have excellent prop-
erties, but when you are working with high speed signals, only artful electronic design can
tease high performance out of the components. Many manufacturers publish the specifications
for the components they used, rather than the specifications for their own actual, assembled
products.

Popular surge protectors for the Apple are made by EPD (Electronic Protection Devices), RH
Electronics, and Kensington Microware. The EPD surge protector has a power section which
can dissipate 10,800 watts for one millisecond (10.8 joules) and a spike section with five
nanosecond response. This same surge protector is used in nine of their products. The Kiwi
is a one plug device, the Lemon/(EC-]) includes six outlets, and the Lime/(EC-II) comes on the
end of a six foot cord instead of plugging directly into the wall socket, and it also has an on/
off switch. The Electro-Clamp (EC) versions differ only in that they come in white as opposed
to glaring green or yellow.

Both RH Electronics and Kensington Microware offer their surge protectors as part of a device
with a fan, a switch and a second power outlet (see Figure 12.6). The comparable ratings on
the RH Electronics Super Fan II w/Zener Ray Option are 50 joules of power dissipation for
surges and a very high speed voltage clamp which can begin the system’s initial response in
a small fraction of a nanosecond. The Kensington Microware System Saver fan has protection
rated at 40 joules of power dissipation but a somewhat slow response of 50 nanoseconds. Fifty
billionths of a second may not sound slow to you, but in that length of time an arriving spike
from a lightning strike may already have sent a 5000 volt pulse into your Apple.

EMI-RFI Protection

The Apple has a very well designed EMI-RFI filter built into the circuitry of its power supply.
It can benefit from a little prefiltering, but that’s only true if the external filter has better
performance than the Apple’s own filter. For the most part, external filters are more important
for their role in spike protection than in noise filtering.

The Peach/(ECIV) and the Orange/(EC-V) from EPD resemble the Lemon and the Lime
respectively but include EMI-RFI protection. The way this is rated is to cite the frequency
ranges which will be filtered out, and to indicate how complete the filtering will be. The range
of affected frequencies for the EPD filter is 150 kHz to 30 MHz; however, the filter system is
not equally efficient at all frequencies. You are thus told that there is an “attenuation” range
of 5 dB to 58 dB. This cryptic notation is given in units of “decibels.”

A decibel is just a trendy mathematical way of stating a ratio. It is often used to describe the
relative power of two sounds in the equation:
dB = 10 log (P out/P in)

However, the same equation applies for electrical power. More pertinently, the designers of
filters use the relation between voltage and power (Power equals Voltage squared/Resistance)
to produce a decibel equation for voltages:

dB = 20 log (V out/V in)

This means that a 5 dB attenuation reflects a ratio of 1.78 to 1, and a 58 dB attenuation
means a ratio of about 800 to 1. Thus, for some frequencies, this filter only cuts the noise in
half, while for others it reduces it by 800 times. The Kensington Microware System Saver is
rated at 20 dB to 50 dB over a frequency range of 600 kHz to 30 MHz.



After you've sorted out these unnecessarily obscure numbers, you'll be disappointed to learn
that the performance of a filter is determined by what happens to be plugged in around it.
Therefore, the stated specs aren’t a reliable guide. There is no authority that does testing on
these devices for the Apple, so if you have critical needs (laboratory instrumentation, etc.)
you should be prepared to have the testing done where your computer is set up. It is for this
reason that the RH Electronics people do not claim frequency or attenuation specs for their
device.

Uninterruptible Power Supplies

Blackouts and blown fuses are fairly rare occurrences, but if you keep large amounts of valuable
data in RAM memory, or if you are using a hard disk, you might want to think about buying
one of the expensive devices which can give you some protection. Some hard disks need to
power down gradually and can be damaged by an abrupt power loss, so you may stand to lose
more than just a little data.

An Uninterruptible Power Supply (UPS) is a device which is expected to notice when the
incoming AC power drops below some minimum and to then kick in instantly with replacement
power. Most of these systems are designed to operate for no more than 10 or 20 minutes which
is supposed to give you time to save data and do a controlled power down. An alarm is usually
included to help make sure you know there’s trouble.

Fig. 12.7a With the Guardian Angel
uninterruptable power supply, you get
six minutes to save files to disk and
shut down in an orderly fashion.
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Guardian Angel can also give you
sufficient time to plug in an external
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There is a 150 watt UPS from RH Electronics called the Guardian Angel (see Figure 12.7)
which will take over in 10 milliseconds, and then maintain power for six minutes at 150 watts
or 15 minutes at 75 watts. For a well stuffed Apple, you'll be pushing towards the shorter
duration, but you can get an additional back-up battery. The system includes transient surge
protection at all times, so you don’t need to buy other protection devices.

EPD makes three Grizzly models for different load requirements. The 200 watt model outputs
a square wave, but the 500 watt and 1,000 watt models generate a fully formed sine wave
just like the power company’s normal supply. All of the Grizzly’s are rated at 20 minutes at
full load. Before selecting one of these, or the Guardian Angel, you'll have to calculate your
total system power needs. An Apple with two drives will do just fine with the Guardian Angel,
but 150 watts just won’t do it for many larger system configurations.

If you're using your Apple II, II+ or /e in a country where the power supply is subject to
frequent interruption and extended failure, these devices may not provide enough storage to
keep you going. In that case you’ll need a system that uses chopped voltages from a car battery
to drive a transformer, and then a means of recharging the battery when the power’s on. Better
yet, you may want to think about getting a //c which will run directly off of the 12 volts DC
supplied by the battery.

Heat in the Apple

All electronic devices generate heat as they work. You can test this out by turning off your
Apple (after it’s been on for 10 or 15 minutes) and touching the surface of one of the large
chips. The heat is not normally a problem. These devices are designed to operate properly at
temperatures up to 150 degrees Farenheit (70 degrees centigrade). However, if they are sur-
rounded by stagnant air their temperature will climb above the safe operating range. The
first sign of this can be erratic behavior of memory chips—which you will experience as
inexplicably bizarre behavior of your Apple, but which starts only after your machine has
been on for a while.

The Apple has been designed so that there is a constant “convective” air flow through the
box. This means that there is always a gentle breeze through an operating Apple; cool air
comes in the bottom, heats up, and expands out the slots on the sides. With just two or three
cards in the Apple, convection is more than adequate so long as you don’t defeat the design
by obstructing the openings in the case.

As you add more cards, however, you are adding more heat generating units and you are
obstructing airflow. The convective system gets overwhelmed, and you start gettingoverheated.
Some Apple owners choose to increase convection by operating their Apples with the top
removed. This does help a lot and it is very trendy in a “high tech decor” living room, but all
it takes is one paper clip bounced in through the open top and you’ll get an instant test ofthe
power supply’s crowbar shutdown capabilities.

Similarly, the //c is designed to be cooled by convective airflow, but the system only works if
you follow certain rules. You must use the flip down handle as a stand (see Figure 12.10) so
that the //c does not sit flat on any surface. In addition, you must not place anything on top
of the //c while it is running.
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Fans

In choosing a fan for a II, II+ or //e, you should consider four factors: sufficient airflow,
placement of the fan for best effect, audible noise from the fan and electrical noise from the
fan. The M&R Sup 'R Fan (see Figure 12.8) is popular with some Apple owners because it fits
inside the Apple, but although it is quiet and unobtrusive, it doesn’t generate enough airflow
for very overstuffed Apples and, much worse, it generates electrical noise which can “hash”
your video screen.

Fig. 12.8 Sup’R Fan from M&R.

For the great majority of Apples needing fans, either the Super Fan II from RH Electronics
or the System Saver from Kensington Microware would make a good choice. These fans sit
outside the Apple and draw air out over the power supply. This is important because the power
supply is often the hottest object in the Apple, and outgoing air should pass over it last to
avoid actually heating the chips instead of cooling them.

In addition to providing cooling, both have some circuitry to protect against electrical noise
in the power line as well as an on/off switch which you can safely use to turn off your entire
system without using the Apple’s own on/off switch, and the equivalent of three outlets. Both
are quiet, and cause no electrical interference.

Fig. 12.9 RH Super Fan.
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These two fans started out from the same company, but the Super Fan II seems to have gone
on with the original engineers while the System Saver went off with the marketers. In the
current versions, the Super Fan II (see Figure 12.9) has about twice the air flow of the System
Saver, its surge and spike electronic protection (“zener ray option”) are far superior, and it is
much quieter.

There are some physical problems with this side mounting design. Many Apple owners like
to put their Apple under a shelf system which supports their drives over the Apple and the
Monitor above the drives. The sides of most of the shelf systems get in the way of the fan. If
you must have a side mounting fan, be sure to choose a stand that accommodates it. This
warning does not apply to the Monitor III stand sold by Apple with the //e, since these fans
fit on this stand after a minor modification, although air flow is not as good. If you've got a
newer revision B Apple //e (see Appendix D) sold with the Monitor II and no stand, you have
to watch out because the new //e case has wider side walls than the older case so many fans
in the stores won’t slide on. -

If you already have a stand which restricts the sides of the Apple, you can get The Fan from
Kemcore Company which fits neatly along the back of the Apple. It has slots and connectors
so that it doesn’t impair access to the Apple back panel, and it also has surge protection.
Another option is to get a stand with a built-in fan from FMJ (Sentry II Cool Stack) or Doss
Industries (Apple Center), both of which also permit you to put your Apple under lock and
key to protect your peripheral cards.

For well stuffed Apples with five or six cards, the System Saver does not provide sufficient
air flow. If you get the M & R Sup 'R Switcher heavy duty external power supply, you’ll be
starting off with much less heat in the box, under which circumstances a Super Fan II from
RH Electronics (approximately 10 cubic feet per minute) should take care of you on up toa
full house of eight cards.

Other than that, if you don’t mind the noise, you can purchase a very powerful five inch
“muffin” fan from almost any electronics distributor (Concord, JDR) for about $10. These fans
vary with regards to audible and electrical noise, but at $10 a shot you can afford to try
whichever one is most easily available. The fan is placed snuggly against the back of the
Apple (be sure to attach a finger guard) and works very well with some of the metal Apple
stands such as the Pro-Tech II from Segull Enterprises.

Fig. 12.10 The hi-tech convection cooling system for the //c is based on the handie/stand which assures that air can
flow up from beneath the system.
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Chapter 13

Electronics and Apple ICs

In electrical equipment, resistors, conductors, capacitors, inductors and switches are grouped
together to store and transmit power, while in electronic equipment these same devices are
grouped together to store and transmit information. The key to electronic design is the as-
sembly of these fundamental devices into three kinds of special circuits; the reactive circuit,
the amplifier, and a newer addition, the logic gate.

Reactive Circuits

As you will recall, a resistor slows down the flow of electrons in a circuit (see Chapter 12). It
does this because the substance of the resistor doesn’t provide any simple paths for the electrons
to follow. Because of the material nature of this effect, a resistor always has the same resistance,
no matter what is going on around it electrically.

Reactive circuits are based on a property called “reactance,” which is somewhat similar to
resistance in that it can hinder the flow of electrons. However, the physical basis of reactance
is very different from resistance. It depends on the behavior of electromagnetic fields, and a
device can shift rapidly from very high reactance to very high conductance depending on
changes in the circuit it is part of. The crucial factor in these shifts is the rate at which voltages
are changing in the circuit.

There are two kinds of components that have reactance. One of them has high reactance when
the voltages are steady, but shifts gradually into conductance when voltages begin to alternate
rapidly. This component is called a “capacitor.” The other kind conducts freely while the
voltages are steady but acquires greater and greater reactance as the rate of voltage change
increases. This second kind of component is called an “inductor.”

These reactive components are the flesh and blood of “linear” electronics which includes the
design of most radios, televisions, stereos and tape recorders. For the most part, they have
been banished to a minor supporting role in the “digital” world of computers, yet there are
quite a large number of them scattered throughout the Apple. They serve as the principal
means for enforcing time dependence on the behavior of electric currents. In the Apple, they
are used in comparatively inaccurate timing circuits in the keyboard and the game connector,
in “signal conditioning” circuits in the disk drive read circuitry, and in housekeeping chores
throughout the system.
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Capacitance

Let’s begin with a voltage source and a conducting wire with a resistor in line. Current is
flowing in the circuit at a steady rate. If you cut the wire and separate the ends, the circuit
is broken. One end of the wire is a potential source of electrons (the “negative” end), and the
other end can attract electrons (the “positive” end), but because the ends are separated, no
current flows. Now if you take the two cut ends of the wire and bring them very close together
but not quite touching, something interesting begins to happen. Under the influence of the
attractive end, electrons begin to accumulate in the negative end facing it. Current has begun
to flow in the wire although the circuit is still broken.

The electrons do not continue to accumulate indefinitely, however. Electrons repel each other,
and as the attractive force causes them to get packed more and more densely into thenegative
end of the wire this repulsion becomes an important force in its own right. Eventually the
repelling force from the densely packed electrons which is inhibiting the arrival of new elec-
trons becomes equal to the attractive force. At this point, current flow stops. The end of the
wire has exhausted its capacity to hold electrons under those particular conditions.

Now, if you sharply increases the applied voltage, current flow will start up again until the
repulsion again balances the applied force. Whenever the voltage increases, electrons will
flow in, whenever voltage decreases, they will be driven out. However, so long as the voltage
remains steady, a steady state will be achieved and current flow will halt. Thus when the
voltage is steady, the capacitor acts like the broken, open circuit it really is. However, because
of the effects of the transmitted electro-magnetic field, while the voltage is changing there
will be current flow in this open circuit. This is the way in which the reactance of a capacitor
varies.

The measure of capacitance (farads) has to do with how many electrons can be poured into a
capacitor before it will reach a steady state at a given voltage. If the two ends of our wire are
attached to large flat plates, with the two plates perfectly parallel, very close but not touching,
then the same force can pull in a great many more electrons before the density gets so great
that repulsion stops the flow. This arrangement has a greater capacity for electrons. If the
plates are then brought a little bit closer together, the attractive force will increase and more
electrons will flow in.

Capacitors and Time Constants

Devices which specialize in this little maneuver are called capacitors. They are usually made
by taking two large flat metal sheets, placing a very thin layer of insulator between them,
and rolling up the whole thing into a neat little package. The capacitance of one of these
devices is determined by the surface area of its plates and how close together they are. When
one of these is placed in our simple circuit and the voltage is turned on, the current will carry
electrons into it until its capacity is reached and then the flow will stop.

The interesting question here is: How long will it take for the capacitor to get full? This is
determined by the amount of current. The current is proportional to the voltage and to the
value of the resistor we put in the circuit (I = V/R). If the current passes 10,000 electrons per
second and our capacitor can hold 100,000 electrons, then it will take 10 seconds. If we switch
in a capacitor which can only hold 100 electrons, the time drops to a tenth of a second. If we
now put in a very stiff resistor which sharply reduces the rate of current flow, then the filling
time will increase again. In this fashion, by adjusting the value of resistors and capacitors, a
characteristic response time or “time constant” can be built into a circuit.

216



Stray Capacitance

There is a certain scourge associated with all this. The problem comes about when two other-
wise unrelated wires happen to pass near each other in a complex circuit. An unintentional
capacitance develops, and every time a voltage is turned on in one of the wires some of the
electrons will get drawn off into this accidental capacitor until it is full, at which time the
circuit will begin to behave normally. The bigger the accidental capacitance, the longer it will
take for the circuit to get itself in order. In devices intended to change voltages over periods
of a few billionths of a second, stray capacitance can become an enormous hindrance to good
performance.

A similar problem slows the maximum speed at which a high speed electronic switch can be
thrown. A certain amount of time will always be taken up in filling or emptying the tiny little
capacitive pools and puddles that creep into any design. Yet another problem from stray
capacitance is the inadvertent coupling together of two wires which are not very close but one
of which is carrying a high speed, high voltage spike (see Chapter 12). Capacitive coupling
will let the high voltage spike cross into a new circuit even though there is no actual connection
between them.

Decoupling Capacitors

There is one problem in digital circuitry for which this sort of property can be very helpful.
All digital components effectively sit between a supply voltage and a ground. As they do their
work, they permit very brief pulses of the supply voltage to pass through into what may be
thought of as the “ground plane” which they share with their neighboring components.

L R

]

Fig. 13.1 A small capacitor is placed near
each digital chip on this card, and a large
100 microFarad decoupling capacitor
prevents digital noise from escaping out
onto the motherboard power plane.
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Fig. 13.2 Ciruit plan for building a simple 20 mAmp currentloop to RS-232C converterfora Teletype interface. Notice
the decoupling capacitors on the incoming +12V and ~12V lines which connect to the ground plane. The opto-
isolator contains a light emitting diode (between pins 1 and 2) which operates a phototransistor {between pins 4 and
5). When the current flows on the 20 mA line, the light shines, the phototransistor turns on, and switches the 2N 2222
transistor to connect the —12V supply to the RS-232 output.
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So as a large digital circuit, such as the Apple, goes about its work, it is constantly dumping
millions of tiny high speed voltage spikes into the ground plane. If the ground plane is large,
and all the components widely separated, then the little spikes will dissipate their electrons
into the surrounding void. In the real world, ground planes are thin and components are
densely packed, so all of the errant electrons can start poppmg their way back up into neigh-
boring chips, causing general havoc and confusion.

To avoid this, you will notice that all digital circuit boards are studded with little capacitors
that join the main supply voltage lines to the ground plane (see Figure 13.1). As long as the
computer’s steady DC supply stays at a fixed level above the 0 volts of ground, the capacitors
will keep the power plane separated from the ground plane. However, whenever a little spike
zips by, it will present itself to the capacitor as a sharp rapid rise in voltage, and the capacitor
will effectively soak up the pulse (see Figure 13.2). Thus, lots of “decoupling capacitors” lead
to a nice healthy quiet ground plane.

Inductance

The property of inductance is an even more bizarre result of the behavior of electromagnetic
fields. Whenever a current flows in a wire, it creates a magnetic field around the wire in
addition to creating an electric field. The lines of attraction in the electric field run perpen-
dicularly outward from the wire, while the lines of attraction in the magnetic field run in
circles around the wire.

When a circuit is open and no current is flowing, there is of course no electromagnetic field
generated by the wire. However, when the current begins to flow, part of the work to be done
goes into driving the force fields out into the space around the wire. These force fields have
a feel to them which is not unlike the inertia of a heavy mass when you first try to get it
moving. Most of the energy goes into setting up the field, but it requires little additional
energy to stay in place. However, when you then throw a switch to break open the circuit,
the inertia of the field shows itself again in that it collapses back into the wire a bit sluggishly.
Further, as it collapses it pours its energy into the wire, thus driving a collapse current.

The result of all this is that when you first turn on a circuit, the inductive elements soak up
some of the energy in the first few electrons, thus acting a bit like a resistor. The faster you
try to make the transition from zero to maximum, the more the inductance soaks up energy.
When you apply a high frequency change to an inductive element, no current gets through
at first, much as if the circuit was broken. Once you reach a steady voltage, however, the
inductive effects seem to disappear. Later, when you try to turn the circuit off, current keeps
flowing as the collapsing fields dump their stored energy back into the system.

When inductance is desirable, you can arrange a wire into a shape which will create the
densest possible magnetic field. This is done by coiling the wire. As the field increases in
magnitude, the lines of force become extremely dense in the center of the coil. This makes it
even more difficult for the field to build rapidly. The effect is as if the magnetic field was
creating an opposing voltage in the wire.

Information and Reactance

From the point of view of digital computer electronics, it is difficult to see how capacitors and
inductors can be considered informational circuit elements. However, it is from these com-
ponents that complex frequency coding and decoding systems in FM radios and other frequency
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‘based carriers are constructed. Many older electronics texts discuss only the reactive circuits
such as tuners, filters and resonators based on capacitors and inductors when they discuss the
transmission of information.

Amplifiers

An amplifier is a device in which a small current flowing in one circuit is given control over
a larger current flow in a second circuit. Such an amplifier circuit is built around one of two
special kinds of electrical components; the vacuum tube or the transistor. The first ancestor
of the amplifying vacuum tube was created by Thomas Edison just before the turn of the
- century, and the transistor was invented at the Bell Laboratory by William Shockley in 1947.

In a vacuum tube or transistor, the weaker circuit is able to change the component from a
non-conducting insulator to a resistor, and on into a very good conductor. For example, a
vacuum tube can be included in a circuit which carries huge currents at thousands of volts.
When the tube is operated as an insulator no current flows, but when a few volts are applied
to its controlling input, it can be converted into a conductor passing huge currents. An increase
of a few volts on the controlling line can cause an increase of a few thousand volts in the main
output of the tube. This is what is meant by “amplification,” a low power circuit controls a
separate high power circuit.

Semi-Conductors

In a vacuum tube, the change in conductance results from the ejection of free electrons into
an otherwise non-conducting vacuum, the effect that Thomas Edison discovered. In a transistor,
the change can result from the ejection of free electrons into an otherwise poorly conducting
slice of specially prepared silicon; a substance also referred to as a “semi-conductor.”

The detailed explanation of the way crystalline silicon changes from an insulator to a conductor
is the realm of a special branch of physics (solid state or semiconductor physics), but it has
all the trappings of alchemy; mixing in a few parts of arsenic (really) here, a little boron or
gallium there, etc., in a process called “doping.” Arsenic, for example, “builds in” a few extra
electrons. Mixing in some gallium or indium, on the other hand, leaves some holes in the
crystal matrix of the silicon.

In arsenic doped silicon, the extra electrons serve as negatively charged current carriers,
just as they do in copper. Silicon prepared in this way is called “n-type” silicon because of its
negative carriers. If you add gallium instead of arsenic, however, you actually produce a slight
shortage of electrons. It is convenient to think of this shortage as a scattering of electron-less
“holes.” These holes can actually move within the silicon, behaving as if they were positively
charged current carriers; this is therefore called “p-type” silicon.

Transistors

In a transistor, some p-type silicon can be sandwiched between two pieces of n-type silicon. If
you dump extra electrons into the center piece of p-type silicon, its holes will get filled and
you will have simulated a solid piece of n-type silicon. In your simulated solid piece of n-type
silicon there will be electrons available for current flow throughout the device, so you will
have set up current flow in a conductor. If you withdraw your electrons from the center slice,
the device will cease to conduct. This is the feat which was accomplished by Shockley in 1947,
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Fig. 13.3 Transistor structure and function.
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A transistor performs exactly the same function as a vacuum tube, but vacuum tubes are
comparatively large, hot and expensive. This is why the 35 years since Shockley’s success
have seen the steady replacement of vacuum tubes by transistors in most electronic equipment.
Vacuum tubes are still used for high power circuits and for a few other special functions which
transistors cannot handle, but they have virtually disappeared from standard electronic
equipment.

Two Kinds of Transistors

Transistors come in two large families. For years, there has been a sort of truce in which the
older kind has been used in most of the simpler chips, but the newer type has been used in
the very high density chips such as microprocessors. More recently, a bitter competition has
erupted in consumer electronics for domination of the market for simpler chips.

The kind of transistor described a few paragraphs earlier is called a Bipolar Junction Transistor
(BJT). These transistors always have at least three parts; two n-regions with a p-region in
the middle, or two p-regions with an n-region in the middle (see Figure 13.3).

The other grand class of transistors is called Field Effect Transistors (FETs). The most im-
portant of the FETs is a kind in which there is only one thin strip of n-region silicon. Normally,
it exists in the circuit as a conductor. However, a small patch of metal oxide is laid down over
the middle of the strip to insulate it from a conducting plate above. This plate can becharged
up by its control line. When the plate fills with electrons, it generates an electric field over
the n-region silicon below it, forcing the free electrons out of that area of the silicon. When
this happens, current flow in the silicon stops.

This arrangement is called a Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
Because these transistors have so few parts, they are the easiest to manufacture in extremely
high density designs. The 6502 is made from this kind of n-region transistor, so it is called
an “NMOS” microprocessor. This is the source of the name of the 6502’s original manufacturer
MOS Technology.

Electronic Circuits Built from Transistors

In a standard amplifier, the controlling current is varied gradually to produce a gradually
varying large output. This is how a weak radio signal is used to control your powerfulspeakers.
Transistors don’t do too well in this sort of task because their output doesn’t follow their input
in a sufficiently simple way. As a result, solid state amplifier circuits are built out of groups
of transistors which work together to simulate an old vacuum tube. The new device is called
an Operational Amplifier (Op Amp).

The Apple //c uses two fancy op amps to control and isolate (see Chapter 14) the audio and
video outputs. One is included in the AUD (see Chapter 8, Figure 8.3c) package, and the other
is in the VID (see Chapter 5, Figure 5.8¢) package. These devices are called “hybrid amplifiers”
because they use both digital and analog circuitry, all wrapped up in a single package. The
II, II+ and //e have a simple LM 741 op amp for managing the input from a cassette tape
recorder, but the //c has no cassette interface so the LM 741 is gone. Finally, the //c has an
LM 311 op amp (see Chapter 8, Figure 8.3¢c) which maintains a constant surveillance on the
incoming DC power from the external power supply. If it detects a drop below a certain
minimum, it activates a 555 timer which causes the power light on the keyboard to flash.
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Transistors do excel in the extreme function of the old amplifier tubes, which is to turn a
circuit completely on or completely off, with no variation in between. The fastest modern
transistors can do this in less than a billionth of a second (an electron traveling at the speed
of light cannot make it from one end of the Apple’s motherboard to the other in a billionth of
a second, so these very fast transistors are used effectively only in physically small computing
machines).

Although transistors were born as small, inexpensive amplifiers, their availability has led to
the emergence of a third kind of basic electronic component. In addition to resonant circuits
and amplifiers, electronic design now depends on small circuits called “logic gates.”

Logic Gates

A logic gate is built from five or 10 transistors and a few resistors. There are three fundamental
kinds of logic gates; the AND gate, the OR gate, and the INVERT gate. An AND gate has
two inputs and one output. If, and only if, BOTH of its input lines are receiving “on” signals
will it turn on its output.

An OR gate also has two inputs and one output, but it behaves a little differently. If one of
its inputs, or the other input or both of its inputs are “on,” then it turns on its output. The
INVERT gate is even simpler. It has just one input and one output. As its name suggests, if
it receives an “on” signal, it puts out an “off” signal. If, on the other hand, it receives an “off”
signal on its input, it puts out an “on” signal.

A 19th century mathematician named Boole worked out a complete and elaborate form of
algebra based on combinations of logical operations. In this “Boolean” algebra, he used only
ones and zeros, but was able to perform any sort of calculation. Electronic designers whobegan
working with logic gates in the early 1960s heartily embraced Boolean algebra because it
showed how to hook together AND, OR and INVERT into increasingly elaborate circuits with
increasingly elaborate algebraic behavior.

The three basic logic gates can be hooked together to provide a few more basic logicfunctions
including “NAND” (if both inputs are positive then put out a negative), “NOR” and “XOR”
(if one input is on or if the other input is on, but not if both are on, put out an “on”).

The Integrated Circuit

Early on in the development of the logic gate as a fundamental electronic device, they were
made by wiring together the necessary discrete transistors and resistors. But in the early
1960s, Jack Kilby of Texas Instruments invented a truly revolutionary way of making the
gates. The entire logic gate circuit was printed by photolithography on a single piece of silicon
and sold as an Integrated Circuit (IC).

Before Kilby’s invention, you bought transistors and resistors and fiddled to make each in-
dividual logic gate work, soldering together the components one by one. But the advent of the
integrated circuit truly transformed the task of the electrical engineer. A new kind of design
was possible that had its roots more in Boolean algebra than in electrical theory. A “logic
designer” purchased complete “logic circuits” and connected them together according to Boo-
lean dictates, and not necessarily needing to think about resistance, capacitance, volts or
amps. An AND gate was designed and debugged once, cast in silicon, and mass produced.
Wholesale and daily reinvention of this wheel halted abruptly.
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During the course of the 1960s, two lines of advance were taking place parallel to each other.
Logic designers worked at the next level of complexity to assemble groups of logic gates into
circuits which performed a variety of mathematical operations and memory functions. At the
same time, specialists in the fabrication of IC silicon chips were learning how to put increasing
numbers of gates into a single IC in a Dual In-line Package (DIP). By the late 1960s designers
could design very sophisticated devices by adding together chips with fairly elaborate collec-
tions of logic functions. It was in this environment that the first microprocessor was designed.

Apple II Electronics

Tables 13.1, 2 and 3 have lists of the discrete chips used in the construction of the Apple II/
II+, //e and //c. The makeup of the II is fairly typical of standard electronic design today.
There is one very high density NMOS microprocessor, some fairly high density memory chips,
and the remainder are all integrated circuits of rather modest complexity.

The //e and //c are very unusual in their electronic constitution. Apple expected to make a
huge number of systems with the identical set of logic functions, so an engineer (Walter
Broedner) who came to Apple from Synertek designed the original versions of two specially
made chips of fairly high density (the Memory Management Unit, see Chapters 21, 25 and
26; and the Input/Qutput Unit, see Chapters 5 and 9) which are used in the //e and //c to
provide all of the functions of dozens of smaller chips.

In the //c, the MMU and IOU have been redesigned a little bit to accommodate special features
of the //c. The MMU loses its DMA line (see Chapter 27) and the R/W 245 lines which is used
in the //e to connect the slots to the main data bus (see Appendix A). In their place, it takes
over control of some of the $C0 page hardware select functions which are managed by discrete
chips in the //e. The //c’s IOU loses its annunciator outputs (see Chapters 9 and 14), but gains
a set of switches, inputs and gates it can use to monitor mouse movements and generate
interrupts with its new IRQ line.

The //c and //e both have a Programmed Array Logic (PAL) chip, which is called TMG (for
“timing”) in the //c. This chip is effectively identical in the two machines, and is used to accept
the master 14 mHz clock as an input and then generate a number of special timing outputs.

The //c has two more special chips. One is the GLU, which is a PAL device whose modest task
is to replace three or four simple logic chips and to take over one or two functions that could
no longer be squeezed into the IOU (see Chapters 22 and 26). The other is a custom made
device called the Integrated Woz Machine (IWM; see Chapter 23). It replaces all of the circuitry
of the old Disk II interface card. This exact same chip is also used as the disk controller in
the Macintosh.

Finally, in addition to all the specially made chips, the 65C02, and all the standard chips
listed in Table 3, the Apple //c has four chips used for serial RS-232C communication. There
are two large 6551 Asynchronous Communications Interface Adapters (ACIAs; which are
described in detail in Chapter 16) and there are two chips which handle some mundane aspects
of the RS-232C electrical interface.

One is an MC 1488 which acts to accept TTL level voltages (0 to +5) used inside the Apple
(see below) and convert them to the higher voltages (-12 and +12) used in RS-232C com-
munication (see Chapter 16). There is also an MC 1489 which performs the necessary opposite
function of converting incoming RS-232C voltages into TTL voltages. The 1488 and 1489 are
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not voltage converters of the sort described in Chapter 12, rather the 1488 has -12 and +12
voltage lines coming in, but uses a TTL voltage to operate the switch that can connect the
higher voltages to the chip’s output. The 1489 works in a similiar way.

Chips on Apple I1/11+ Motherboard

748 00 (1) Quadruple two-input positive NAND gate

4L 02 (3) Guadruple two-input positive NOR gate

745 04 (1} Hex Inverter

7418 08  (2) Guadruple two-input positive AND gate

7418 11 (1) Triple thee-input positive AND gate

748 20 (1) Dual four-input positive NAND gate

7418 32 (1) Guadruple two-input positive-OR gate

7418 51 (1) AND-OR invert gate

7418 74 (3) Dual D-type positive edge triggered flip flop w/preset and clear
7415 86 (1) Quadruple two-input exclusive-OR gate

74L8 138  (4) Three o eight lines decoder/demultiplexer

74LS 130 (2) Dual two to four line decoder/demultiplexer

7418 151 (1) One of eight selector/multiplexer

7415 133  (4) Dual four line to one line data selector/multiplexer

7418 161  (4) Synchronous four bit counters, binary, direct clear

7418 166 (1) Eight bit shift register

7415 174  (3) Hex D-type flip-flop. single rail output. common direct clear

745 175 (1) Guad D-type flip-flop, complementary outputs, common direct clear
74l 194  (2) Four bit bidirectional universal shift register

7415 195 (1) Four bit parallel access shift register

74L5 251 (1) Data selector/multiplexer, true and inverted three-state output
7418 257  (S5) Quad data selector/multiplezer, noninverted three-state output
748 250 (1) Eight bit addressable latch

7416 283 (1) Four bit binary full adder

741 (1) Op-Amp

Lm

NE 558 (1) Quad Timer

NE S55 (2) Timer

8T 28 (2) Ouad transceiver

8T 97  (3) Hex tri-state driver

(1) Octal Transceiver (Rev. 7 boards)

g

2316 (1) Video Character Output ROM
2316  (6) 2K x 8 ROM (Monitor and Interpreter)
4116 (24) 16K x 1 dynamic RAIN

8Y 6802A (1) Microprocessor




7418
7418
7418
7418
7418
7415
7418
7418
7418
7415
7418

RE

AY

10
109
125
138
134
166

295
251
374

10U-lle
mmu-lle

PAL

Chips on Apple Ile Motherboard

(1) Guadruple two-input poeitive NOR gate

(1) Triple three-input positive NAND gate

(1) Dual JK positive edge triggered flip-flop with preset and clear

(1) Guadruple bus buffer gate with three state outputs

(1) Three to eight line decoder/demultiplexer

(1) Four line to sixteen line decoder/demultiplexer

(1) 8Dbit shift register - parallel/serial input, serial output

{2) Octal buffer/line driver/line receiver, non-inverted three state output

(1) Octal bus transceiver - noninverted three state outputs

(1) Data selector/multiplexer, true and inverted three state outputs

(1) Octal D-type flip-flop, three state outputs, common output control,
common enable

(1) op-Amp
(1) Quad Timer

(1) 2K x 8 ROM (Keyboard Character Codes)

(1) Video Character Output ROM

(2) 8K x 8 ROM (80 column firmware, diagnotics, Applesoft, and Monitor
(8) 64X x 1 RAM

(1) Keyboard decoder
(1) Microprocessor

(1) Input Output Unit
(1) Memory Management Unit
(1) Programmed Array Logic timing generator




Chips on Apple lic Motherboard

74l 32 (1) Guadruple two-input positive OR gates

7415 161 (1) Synchronous four bit counter, binary, direct clear

7418 186 (1) 8 bit shift register - parallel/serial input, serial output

74LS 245 (1) Octal bus transceiver - noninverted three state outputs

7415 251 (1) Data selecter/multiplezer, true and inverted three state outputs
745 374  (2) Octal D-type fNip-flop, three state outputs, common output control,

common enable
AUD (1) Hybrid audio amplifier
viD (1) Hybrid video amplifier

m 311 (1) Voltage comparator Op Amp
7905 (1) Voltage regulator

NE 556 (1) Guad Timer

NRE S55 (1) Timer

NEC 2401 (1) Guad optocoupler

mc 1488 (1) Quad R6-232C line driver
mc 1489 (1) Guad R6-232C receiver

2316 (1) 2K x 8 ROM (Keyboard Character Codes)

2384 (1) Video Character Generator ROM

23128 (1) 16K x 8 ROM (Monitor, Applesoft, and 1/0 Firmware)
6664 (16) 64K x 1 RAIN

AY 3600 (1) Keyboard Decoder
NCR 65C02A (1) Microprocessor
5Y 6551 (2) ACIA (Asynchronous Communications Interface Adapter)

10U-Tic (1) Input Output Unit

mmu-llc (1) Memory Management Unit

GLU (1) General Logic Unit (PAL)

mG (1) Timing Generator (PAL)

wm (1) Integrated Woz Machine (Disk Iic Interface and Controller)
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Standard ICs in the Apple II Family

Custom ICs such as the MMU, I0U and IWM are only economical in very large quantities,
80 most electronic devices made today still use the now classic set of discrete logic chips. Most
of these cost only 20 or 30 cents, but they do suck up power, create heat, introduce quality
control problems and take up a lot of space on a circuit board.

One clear token of the success of the Apple II family of computers, therefore, is to notice how
many standard discrete logic chips are used in the system. In an Apple II or I1+, there are
46 of these on the motherboard, five on the disk controller, and you would need eight or nine
more to provide two serial ports. This comes to a total of about 60. The comparable figure for
a similarly equipped Apple //e including two on the extended 80 column board is 28 discrete
chips. All of these functions are accomplished in a //c with just seven discrete logic chips.

The discrete logic IC chips used in the various members of the Apple II family fall into a few
standard categories. The simplest chips provide unadorned logic gate functions. More complex
chips provide memory, data manipulation and mathematical functions.

Simple Gates

Most modern logic DIP packages contain several completely separate logic gates. They are
together merely for economy and have no functional connection. A good example is the chip
numbered “74LS 02,” which is used in both the II and the //e. The formal name of this IC as
listed in the Texas Instruments Data Book is a “Quadruple two-input positive NOR gate”
which means that there are four simple NOR gates in the package. The number “02” signifies
that it was one of the first products designed in the “74” series sometime in the 1960s. This
“74” series of chips from TI has been the brick and mortar of which most of modern electronics
has been built. Recent products in this line have designations like “74LS 670” and are far
more complex.

Latches, Flip-flops and Registers

Several of the 74-series chips provide simple data storage functions. The latch is the simplest
element in this series. It is made from just two NOR gates connected in a figure eight and
can hold either a one or a zero. A master-slave flip-flop or an edge-triggered flip-flop is built
of a few of these latches and provides a variety of means of manipulating the one bit being
stored. A register is usually a package containing several connected flip-flops. In a parallel
to serial shift register such as the 74LS 166 used in the video system of the II, II +, //e and
/lc, a full parallel eight bit byte is loaded into the eight cells of the register, but, on command,
the contents of each register is passed down the line. The ones and zeros are then read off
the end of the register in serial form. This is how the Apple converts a byte of video data from
the character generator ROM (see Chapter 5) or from graphics display memory into a series
of on and off signals to control the electron gun in the CRT.

Decoders and Multiplexers

Decoding chips are used to translate incoming addresses into signals to individual chips. One
type of simple decoder has four output lines, but only two inputs. The two inputs carry in a
binary number which will be equal to 0, 1, 2, or 3 (00, 01, 10, 11). The decoder responds to
the binary number by turning on the appropriate one of its four outputs.

A multiplexer is used to select between two different sources of information. A common design

has four outputs but eight inputs (two sets of four inputs). In response to an external signal
it connects four of its inputs to the four outputs, leaving the other four inputs unused.
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Counters and Adders

Simple low level math can be relegated to stand alone ICs. Counting and adding chips are
very popular in cards which need to do a little bit of processing of incoming data before handing
the information over to a microcomputer system. In the Apple, the video display generator
does its work without help from the 6502, so in the Il and II + it uses a 74LS 283 to do a little
math for it.

Families of Logic Chips: TTL and CMOS

Logic designers do live something of a charmed existence, free from worry of fiddling directly
with transistors, but they are forced to deal with some special electronic properties of the logic
chips. The most important considerations are heat and speed. Often, the design possibilities
are constrained by the actual speed at which the transistors inside the chips are doing their
switching. Similarly, the energy consumed by many tens of thousands of transistors results
in heat which limits their density and creates demands on the power supply.

Since logic gates were first built into integrated circuits, there has been a continual attempt
to improve their performance by somehow increasing their speed and/or decreasing their
consumption of power. These factors are determined by the particular way in which the various
transistors and resistors are arranged in the fundamental logic gate building blocks.

In the 74 series from Texas Instruments, the arrangement is called Transistor Transistor
Logic (TTL). These gates use the BJT type of transistor and always require +5 volts to be
available for generation and reception of signals. TTL chips come in a variety of flavors which
reflect both the needs of special designs and also general progress in semiconductor technology.

The 74LS series

The original 74 series logic gates had a delay time of nine nanoseconds (billionths of a second)
and each consumed 10 milliwatts of power continuously. In a later “low power” version, only
one milliwatt was consumed, but the latency time went up to 33 nanoseconds. The most
important innovation however was the inclusion of a “schotky-type” transistor in the gate.
Without explaining exactly what this is, suffice it to say that this produced power consumption
of two milliwatts and a delay of 9.5 nanoseconds. These gates are designated 74LS for Low
power Schotky. They are currently the dominant circuit component type in the world of digital
electronics. The newest 74F series chips have a delay of just three nanoseconds and a power
consumption of four milliwatts, but these are not yet in widespread use.

The 4000 series from Motorola

An increasingly important alternative to 74LS TTL chips is an entire family which duplicates
all the logic functions, but is based on a kind of MOSFET transistor. The transistors in these
logic gates are arranged in complementary pMOS and nMOS pairs, so the logic family is
formally called Complementary Metal Oxide Semiconductor Field Effect Transistor and is
universally abbreviated CMOS. These chips are usually given numbers which are in the range
of 4000 to 4999, but the last three digits are always the same as the 74LS chip with the same
function. A 74LS 166 becomes a 4166. Texas Instruments has recently begun producing its
own CMOS chips and these are given the designation “74C.”
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The two principal design differences between CMOS and TTL are that CMOS chips consume
virtually no power at all when they are not actually in use and that CMOS chips willoperate
properly with any supply voltage from three volts to 18 volts. These two factors together make
CMOS absolutely ideal for battery operated portable equipment.

There are, however, two serious drawbacks to the use of CMOS logic. The first concerns
reliable manufacture, assembly and use; they are very sensitive to static charges and are
easily destroyed. The second has been more damning; they typically have delay times in the
range of 50 or 60 nanoseconds. These chips would not function in some parts of the Apple’s
video generator for instance. Further, as they approach continuous operating speeds of one or
two megahertz, their power consumption becomes greater than the 74LS chips they are com-
peting with.

An enormous research and development effort has been poured into the CMOS speed problem.
Substantial improvements have been achieved in the lab, so CMOS promises to become even
more important over the next few years. The 65C02 used in the //c has CMOS circuitry
internally, but it is able to interface conveniently with the TTL type voltages used for the
rest of the Apple //c’s chips.

Building and Testing Boards for the Apple
Bus

Although circuit design and construction is not for the beginner, you don’t need to be an
electrical engineer. There are innumerable situations in which laboratory scientists, film
technicians, or managers of small plants may need to set up a simple interface that justdoesn’t
seem to be available anywhere (see Figure 13.2). At the simplest level, you can use the Apple
bus as a five and 12 volt power supply with no ground loop problems. If you are an electrical
engineer, the Apple bus can be great fun to work on for all sorts of remarkable projects. The
full bus specifications from Apple are provided in Appendices B and C.

Fig. 13.4 Vector prototyping
board (top) and Hollywood
Hardware Pro-1 (bottom).
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Prototyping Boards

In either case there are a few products available which can help. The first thing you need of
course is a “prototyping board,” and there are a variety of these available. If you're near an
electronics supplier, the easiest thing to get your hands on is usually the 4609 Plugboard from
Vector Electronic (see Figure 13.4). This board is similar in size to the Hobby/Prototyping
Board from Apple Computer. Of the two, the Vector board is a little easier to use for quick
and dirty projects, but the Apple board is of better quality.

If you’re going to order a board, the best available is the PRO-1 from Hollywood Hardware
(see Figure 13.4). It accepts up to 52 of the 16 pin sockets, is numbered and lettered by row,
and has all supply voltages clearly labled in several locations around the board. Douglas
Electronics has a general purpose breadboard and a wire-wrap panel, both of which are larger
than the Vector board but not as large as the PRO-1.

Testing Equipment

To test activity on the bus, you can work from an “extender board” which makes the signal
pins accessible several inches above the motherboard connector. You can get an extender board
from Douglas Electronics, California Computer Systems, or SSM.

For full scale testing of professional design work, you may want to consider the Bus Rider
from RC Electronics. This card is a full scale logic analyzer designed for the Apple II bus and
can be triggered on any specified address or data, on IRQ or R/W, or from any one of four
externally supplied signal inputs. It has four 512 by eight buffers and can acquire 512 samples
at one MHz.

Recommended Reading in Electricity and Electronics:

BEGINNER

Electricity—Edited by Harry Mileaf, Hayden Book Company Inc., Rochelle Park, New Jersey.
This book is available as seven separate sections or bound together as a single volume. It has
more illustrations than text and assumes absolutely no previous knowledge of electricity.
Sections on test equipment and electric motors will be irrelevant for those interested in
computer electronics.

Electronics—Edited by Harry Mileaf, Hayden Book Company Inc., Rochelle Park, New Jersey.

The section in this book on semiconductor devices is fairly good, but the book is strongly
oriented towards radio electronics.

Understanding Solid-State Electronics—By Texas Instruments Learning Center (available at
Radio Shack stores).

A well written introduction to the various types of integrated circuits.

Understanding Digital Electronics—By Texas Instruments Learning Center (available at Radio
Shack stores).
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This book explains how logic circuits are connected together to perform complex functions.
The theme of the book is to explain how an electronic calculator works.

INTERMEDIATE

Electronics and Instrumentation for Scientists—by Howard Malmstadt, Christie Enke and
Stanley Crouch, Benjamin/Cummings Publishing Company.

Not that everyone interested in electronics is a scientist, but there just aren’t too many good
intermediate electronics books for businessmen or writers. The principal thing is that this
book does not expect any special background in physics or electrical engineering, but provides
a very clear account of all aspects of linear and digital electronics, including A/D conversion,
and the use of Op Amps.

ADVANCED

The Art of Electronics—By Paul Horowitz and Winfield Hill, Cambridge University Press,
New York.

If you're going to read only one book on advanced electronics, this should be it. This Horowitz
and Hill book has caused quite a sensation among electronics types. Warning: don’t even start
if you haven’t already got a good grasp of the fundamental concepts.

The TTL Data Book for Design Engineers—available from Texas Instruments, Austin, Texas.
This is the electronics “Bible.” It is actually very simple to use and can be very handy to have
around even if you're only an advanced beginner. Chips are listed by number and described

at several levels of detail.

Handbook of Semiconductor and Bubble Memories—(1982) by Walter A. Triebel and Alfred
E. Chu, Prentice Hall, Englewood Cliffs, New Jersey.

Everything you might want to know about static and dynamic RAMs, the various types of
ROMs, and the new magnetic bubble memories.
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Chapter 14

Switches, Counters and
Converters

Calmly, quietly, the Apple interacts with the flow of change in the domains of space, time and
energy which swirl around it. A finger touches a keyboard, and the Apple assigns meaning.
The 6502 completes a complex calculation and then activates a music synthesizer to generate
a tone that has never been heard before. Inside a test tube in a darkened chamber, a biochemical
reaction slowly emits photons, a photomultiplier reacts, and the Apple records the instant in
time at which each electron released its quantum of light.

The nearly infinite variety of interactions with the physical world in which the Apple can
engage are based on switching, counting and analog conversion. These three categories of
action are distinguished more by the level of abstraction they signify for the Apple than by
any profound difference in the electronics involved. In all cases, the physical phenomena must
be represented by numbers which the computer can store and manipulate.

The numerical representation of a switching function is convenient because of its likeness to
the digital information system used within the computer. A switch that is on can be represented
by a binary 1, while a switch that is off can be considered as a numerical value of 0. The
passage of time has an equally obvious numeric description, All that is required is a stream
of discrete binary pulses arriving a steady frequency and a counter to describe how many such
pulses have arrived. The number of pulses equals the amount of time.

The third class of actions deals with continuously varying signals. These are unlike switches
or repetitive pulses in that they cannot be neatly described as either one or zero at any given
time. Such “analog” signals are usually described as a series of numbers (eight bit, 12 bit or
16 bit numbers, depending on the precision of the description) each of which is a measure of
the amplitude of the signal sampled at a given point in time (see Figure 14.4). The varying
signal is thus represented in memory as a series of numeric measurement values.

To acquire the series of numbers you use a cycle of sampling and measurement which is called
Analog to Digital Conversion. Similarly, a model of the original waveform can be regenerated
by a device called a Digital to Analog Converter, which reads in each of the series of stored
numbers and produces appropriate voltage steps.

Various combinations of switches, counters and converters are hidden within familiar input
and output devices, such as keyboards and joysticks, as well as in the somewhat less familiar
voice output and drawing pad input systems. Those devices are all described in detail in
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Chapters 8 through 11, while this chapter is concerned with the switches, counters and con-
verters themselves. Chapter 15 covers laboratory and industrial data acquisition systems
which are sold directly on the basis of the speed and power of these three fundamental elements.

Switches

The ideal switch acts like an insulator when it is open (infinite Off-Resistance), perfect con-
ductor when it is closed (zero On-Resistance), and can zip instantaneously from one state to
the other. Further, whoever or whatever operates this ideal switch should be completely
“igolated” from the electricity in the switched circuit (i.e., you should not get a shock when
you flip a light switch). Needless to say, there is no such thing as an ideal switch and you
have to trade off among the four properties of Off-Resistance, On-Resistance, Speed and Iso-
lation, all depending on what the switch is supposed to be doing.

Solid State Switches

The kind of solid state transistors that make up most of the Apple’s circuitry are among the
fastest switches. Unfortunately, although they can throw back and forth several million times
a second, their performance in regards to the other three properties is so miserable as to render
them almost useless except for interactions with other TTL “logic” circuitry (see Chapter 13).

BJTs

The detailed basis of switching in transistors is explained briefly in Chapter 13. It depends
on changing the resistance of a short stretch of semiconducting silicon by injecting electrons
or “holes” into it. In the Bipolar Junction Transistors (BJTs) used in most of the Apple’s TTL
chips, the input line which does the injecting (and therefore controls the “switch”) actually
becomes part of the circuit it is controlling (see Chapter 13, Figure 13.3). There is therefore
effectively no isolation at all between the controlling circuit and the switched circuit.

When a BJT switch is turned on, it can conduct electricity in only one direction, so you have
to be very careful if you use them with signals that might invelve alternating current. Further,
if you apply voltages much in excess of six volts in either direction, many BJTs will go into
a “breakdown” mode in which the controlling input loses control of the switched circuit. Most
BJTs have enough resistance to start heating up rapidly if you try to run much more than
100 milliamps of current through them, so they must be provided with metal “heat sinks.”

The principal reason for using BJT type switches is that they are very easy to interface with
the rest of the Apple’s circuitry. There are eight circuits on the Apple II, I+ and //e internal
Game I/Q Connector which are intended for BJT switching. The four “annunciator” lines each
provide a five volt output when selected from software, and each of these may be used as the
control input for a BJT-type switch outside the Apple. The “strobe output” is similar except
that it turns on for just one half of a microsecond when it is addressed by a program. The
three “pushbutton” inputs make it possible for a program to read the five volt or zero volt
output from an external switched circuit (see Chapter 26). You must have a II, II+ or //e to
get full use of these circuits since the annunciator and strobe outputs have been removed from
the //c.

In situations which require switching of up to about 60 volts or currents up to about 1.5 amps,

you can take advantage of a special kind of high power semiconductor switch. The Texas
Instruments SN75000 and ULN 2000 series of peripheral drivers and Darlington Switches
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are hundreds of times slower than simple BJTs and aren’t useful for alternating current.
However, they do greatly extend the range of control tasks for which solid state switches can
be used. They are easy to interface with standard TTL circuitry and don’t require special
physical designs for metal heat sinks.

Fig. 14.1a The two LEDs
(light emitting diodes) that light
up on the //c keyboard are
identical in function to the LEDs
used inside an optocoupler.

Fig. 14.1b The package marked NEC 2401
contains four LED/photodiode pairs. These couple
and isolate inputs from the //c’s mouse/game port.
The isolation helped make it possible to retrofit

the //c to be electronically compatible with the
Macintosh mouse.

Fig. 14.1c DIP (dual-in-line package) switches
provide direct mechanical control, but due to messy
switching characteristics, usually shouid not be
changed while the machine is on.
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Optical Switches

Many solid state switching systems use “optical switches” which actually turn out to be close
relatives of the BJT. Optical switches differ primarily in that they provide nearly perfect
isolation between the controlling input line and the switched circuit. An optical switch is
made up of a “photodiode/light-emitting diode pair.” When current flows through a semicon-
ductor, it glows (emits light; see Figure 14.1a). Similarly, when light of the proper frequency
is shined onto a semiconductor, its resistance is changed.

The controlling input in an optical switch is a Light Emitting Diode (LED) and the switched
circuit passes through a region of semiconductor (called a photodiode) which is exposed tothe
LED. The photodiode/LED pair are usually packaged together into a sealed plastic package
that looks like an ordinary DIP (see Figure 14.1b). Whenever current flows through the
controlling circuit, the LED glows, its light shines across a gap, and the photodiode in the
switched circuit is turned on.

The substance of the photodiode is quite similar to the substance of a standard BJT, so all of
the same limitations of unidirectional current, breakdown voltages, and On-Resistance still
apply. All that is different is the isolation of the controlling input. No electricity passes between
the two circuits, only light.

MOSFETs :

There is a second kind of transistor called a Field Effect Transistor (FET; see Chapter 13)
which is much better suited to a variety of switching tasks. In particular, the Metal Oxide
Semiconductor Field Effect Transistors (MOSFETS) do quite well.

The most fundamental difference between a MOSFET and a BJT is that the input line which
opens and closes a MOSFET is not in direct electrical contact with the switched circuit (see
Chapter 13, Figure 13.3). It creates an electric field to alter the conductance of the semicon-
ductor rather than pouring electrons or “holes” directly into it. This provides for much better
isolation of the control input from the switched circuit although the isolation is not at all
comparable to the isolation of an optical switch.

However, an additional consequence of the detailed function of MOSFETS is that they do
permit bidirectional current flow. This means that they can be used to switch circuits that
carry alternating current. You still have to keep voltages below about 20 volts to avoid de-
stroying a standard MOSFET switch, and they do not tolerate very large currents, but they
can be designed with very high off resistances. Further, just as with BJTs, there are special
high power versions available with breakdown voltages in the range of 40 volts and current
ratings in the range of one amp.

Mechanical Switches

For switching 120 Volt AC power, and for a variety of other high performance switched circuits,
it’s still hard to improve upon mechanical switches in which a piece of metal swings through
the air to make or break a connection. Mechanical switches often have On-Resistances of a
few tenths of an ohm, and nearly infinite Off-Resistances. In addition, the control input can
be completely isolated from the switched circuit.

Mechanical switches are controlled either by direct action of the human hand (see Figure
14.1c) or by the pull of an activated electromagnet. Manual switches provide the optimum in
full operator control, but, from a computer’s point of view, switching speeds are slow and



erratic. An “electromagnetic relay” (see photo at front of this chapter) is also quite slow
compared to a solid state switch, but the speed of switching is predictable and can be controlled
directly by the computer. In fact, it is not uncommon to get operator control and predictable
switching speed by using a manual switch to operate a relay.

When the control input to a relay is turned on, there is first a fixed amount of time before a
sufficient magnetic field develops to cause the switch contact to begin to move. This “operate
time” is followed by a “transfer time” during which the contact is swinging through the air.
However, the worst part of the relay’s performance often starts after the contact has hit home
at its destination, because at that time it begins to literally “bounce,” making and breaking
contact hundreds of times before it finally settles.

Debouncing and Reed Relays

It is possible to design a relay with an operate plus transfer time in the range of one to two
milliseconds, but settling times can continue for up to 50 milliseconds, thus greatly increasing
total switching time. Therefore, methods for “debouncing” mechanical switches are crucial to
their performance.

One example of a popular approach to debouncing is to use the output of the switched circuit
to operate a special flip-flop which flips on the arrival of the current from the first contact and
then ignores all subsequent on and off signals until it is reset. There are, in fact, a variety of
debouncing chips (74279, 4043, 4490), but all of these have the limitation of requiring the
switched circuit to pass through a semiconductor, so they may conflict with some of the best
features of a mechanical switch (i.e., AC currents, high voltages, etc.).

A different approach to coaxing the highest possible performance out of a relay is to use
lightweight contacts. These “reed relays” have good operate and transfer times because of the
reduced mass of the contacts. If these “reeds” are wetted with mercury, then bounce can be
sharply reduced or eliminated. Such “mercury wetted reed relays” have switching times in
the range of one millisecond, require relatively low currents to activate their electromagnets,
yet provide all of the advantages of mechanical switches.

Hall Effect Switches

A Hall effect switch is a sort of cross between a mechanical and a solid state switch. When a
magnet moves, it can cause current flow in a nearby conductor or semiconductor. In one popular
incarnation, all of the keys in a keyboard are constructed as magnet-tipped plungers. When
a key is pushed, the motion of the magnet creates an electromagnetic field which alters the
resistance of a nearby semiconductor. This has the effect of momentarily switching a solid
state circuit element into its “on” state. Thus the control element is mechanical, but there is
no swinging metal contact and hence no “bounce.”

Counters, Timers and Clocks

In general, clock and counter devices are expected to be able to send out pulses at a variety
of selected frequencies and to store up accumulating counts of these pulses. The keystone of
the system is a small flake of quartz vibrating at a very high frequency. The counting device
“divides” the original frequency by exact amounts so that slower versions are available at
various points on the card. Most complete systems have both “decade” counters which divide
the frequency by 10, and “binary” counters which divide it by two.
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An example of such a system in its most generalized form is The Clock from Mountain
Computer. The Mountain Clock has a one megahertz (one million pulses per second = 1 MHz)
crystal, six decimal counters, and two 12 bit binary counters and a final one bit counter. The
initial signal from the crystal pulses one million times a second, so the outputs from the six
decade counters are 100 kHz, 10 kHz, 1 kHz (milliseconds), 100 Hz, 10 Hz and 1 Hz (one pulse
per second), respectively. The first 12 bit counter sends a pulse every two to the eleventh
seconds (5.69 hours), the second 12 bit counter pulses every 97 days (two to the 23rd seconds)
and the last bit counter gives the 194 day pulse necessary to organize a full year of date
outputs. ’

These counters serve a dual function. On the one hand, they act as frequency dividers for
sending pulses, but at the same time they serve to accumulate counts of incoming pulses. All
of the bits in The Clock’s counters can be read from or written to by the 6502. When the second
12 bit counter receives its first pulse, it stores the number 1 to signify the passage of 5.69
hours. Three days later you'd expect to find 0000 0000 1101. This is equivalent to a decimal
count of 13 and records the passage of 13 x 5.69 = 73.97 hours. You can set the clock before
starting it by storing an initial number in the counter. For instance, 0000 1100 1110 could
signify the passage of 206 x 5.69 = 1,172 hours in a year and hence represent the evening
of February 17.

Most clocks and counters fall into two categories based on the degree to which they are either
devoted to a single function, such as telling the time of day, or intended to provide a wide
variety of clocking and counting functions. Most systems in both categories differ from the
Mountain Clock in that they use specialized chips to handle most of the dividing and counting
functions rather than building up from a large number of simpler separate chips.

Specialized Timing Chips

For simple time of day operation, it is possible to replace most of the circuitry on the Mountain
Clock with a single small “clock chip” such as the NEC 1990c¢ (Thunderclock) or 5832 (Applied
Engineering’s Timemaster and CCS’ 7424 Calendar/Clock Module) and a much slower crystal.
The clock chip has internal counters which permit it to send year, month, day of the week,
date, hour, minute and second outputs. This approach makes for a simple, inexpensive card
which does just one thing.

At the other extreme are flexible counter/timer systems based on the 6522, 6840, or AM 9513.
These chips offer programmed selection of a wide variety of frequency division factors, multiple
counters which can operate separately as well as in cascade, and which can accept incoming
pulses from more than one unsynchronized external source.

The 6522 is called the Versatile Interface Adapter (VIA) and is used in several Apple based
laboratory data acquisition systems (EcoTech, IMI, Interactive Structures) and is also available
by itself on an interface card from Snave Systems called the Fly Board. In addition to counting,
the 6522 has two bidirectional eight bit parallel ports with handshaking and a parallel to
serial converter.

The timing functions are based on two 16 bit programmable counters and several latches to
feed the counters. To program a four kHz output pulse you would store the number 250 in
one of the latches and set the 6522 timing section into the appropriate mode. The 6522 could
then use the one megahertz signal from the Apple bus to count out 250 microseconds, it would
then send a pulse, reload 250 into the counter, and start counting down again. This sequence
would repeat four times every millisecond, thus producing a four kHz output signal.
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Fig. 14.2 CCS programmed timer
uses a 6840.

There is a simpler device from Motorola called the 6840 which does not provide the additional
digital I/0 signals you get with the 6522, but which has three 16 bit counters. The Model 7440
Programmable Timer from CCS (see Figure 14.2) is based on the 6840.

The 9513 from Advanced Micro Devices (System Timing Controller)is devoted completely to
timing functions. It has five 16 bit counters which can be operated separately or joined in
groups. If all five were used as an 80 bit register to count a one megahertz pulse, the final bit
would advance only once every 30 billion years. More reasonably, three of them set up asa
48 bit counter can serve as an eight year real time clock, and the remaining two can be used
like the 6522 time registers.

The variety of control functions available on the 9513 permit the various registers and counters
to be used to shape square wave patterns of some complexity, to insert various delays in output
pulses, as well as to detect incoming signals for event counting and interval measurement.
While these functions are very handy for several laboratory and industrial control chores, the
versatility also makes the 9513 capable of handling most of the timing chores in a complete
computer system. The designers of the Saybrook 68000 coprocessor board (see Chapter 30)
chose to use the 9513 in this way.

Real Time Clock Cards for the Apple II, II+ and //e

The three important issues to keep in mind when you’re choosing a real time clock card are
your needs for precision and accuracy, ease of use from Applesoft and assembly language
programs, and compatibility with ProDOS and time based commercial applications software.
In addition, some clock systems come packaged with additional features which may sway your
choice.

The Clock from Mountain Computer counts and announces time in divisions down to one
millisecond and uses a good quality one MHz crystal system for .001 percent accuracy. This
makes the Mountain Clock the only time card which is useful in demanding laboratory and
industrial applications. All of the other Apple clock cards are oriented towards standard “time
of day” tasks and so count time in divisions down only to one second.
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There is a simple standard Applesoft programming approach for reading the time and date
on Apple clock cards. Just issue an IN# statement for the slot the clock is in and then do an
INPUT statement. The date and time pop right into your input variable just as if someone
typed them in from the keyboard. The Mountain Clock documentation provides a variety of
Applesoft, assembly language, and Pascal subroutines for doing fancy tricks with their clock,
and these and other programs are also provided on a disk. The Thunderclock from Thunderware
Inc. has less programming and hardware information spelled out in the documentation, but
has a nice set of useful programs on disk, including Pascal routines.

Fig. 14.3 Thunderclock (top) and Mountain Clock (bottom).

Time Format Compatibility

Aside from all other considerations, the compatibility problem may be the deciding factor for
most folks. All of the clocks deliver a description of the date and time into the Apple’s input
line buffer at $200 (see Chapters 21 and 33), but the exact form of the description varies. The
standard format is the Mountain Clock time string which is: 05/12 08;32;27.345 (for a little
after 8:30 a.m. on May 12). Other clocks such as the Thunderclock, the CCS Calendar/Clock
Module, and the Applied Engineering Timemaster offer a “Mountain Clock mode” in which
the card sends a string which is formatted identically to the Mountain time string except that
the milliseconds are set to 0.

However, the Thunderclock, CCS module and the Timemaster are also capable of providing
the day of the week and a.m./p.m. status. Further, the Timemaster and CCS module also
announce the year. The Thunderclock has one more mode which isn't easily available on the
other cards, which returns the data in numeric format: 05,03,12,08,32,27 (for Tuesday, May
12 at 8:32:27 a.m.). This is convenient in some programs because the values can be read
directly into numeric variables without the use of strings.
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ProDOS Compatibiiity

The most important compatibility issue has to do with ProDOS, which works automatically
with the numeric format of the Thunderclock but not with most other clock cards. According
to the author of ProDOS, this choice had mostly to do with the fact that he just happened to
own a Thunderclock card. The upshot of this is that even if your clock has a “Thunderclock
mode,” ProDOS probably won’t be able to read it. The ProClock from Practical Peripherals is
a newer product that is completely compatible with the ProDOS clock routines. This is not
an insurmountable problem since any clock manufacturer should be able to provide you with
a “patch” to ProDOS to let your own version of ProDOS read your own clock.

(For hackers who would like to know: a time request in ProDOS jumps through a vector stored
at $BFO06 on the global page. If a Thunderclock is installed, ProDOS will detect this fact from
the signature bytes in the Thunderclock ROM, and it will set the time vector to point to a
routine, in bank switched RAM, at $F142. At $F149, this routine puts a $A3 (ASCII #) in the
accumulator and does a JSR to $Cn0B to set the Thunderclock to numeric mode, followed by
a JSR to $Cn08 which causes the time to be read into the input line buffer at $200. The
remainder of the routine manipulates the values into the compressed format specified in the
ProDOS manual (see Chapter 37) and stores it in the global page at locations $BF90 to $BF93.)

Interrupt Generation by Clock Cards

Several clock cards can automatically generate interrupts (see Chapter 27) at a selected
frequency. One common use of this feature is to seize control of the Apple once a second and
update a time display on the screen. The Mountain Clock will accept a command to send
interrupts once a second. If you want interrupts at a different frequency, you have to do a “cut
trace and solder” modification on the board. Mountain gives instructions for getting interrupts
at 37 different frequencies ranging from 10 kHz (every 0.1 milliseconds) to once a month.

The CCS Module and the Timemaster can generate interrupts at one kHz (actually 1,024/
second), once a second, once a minute or once an hour. You use jumpers to hardwire the interrupt
configuration on the CCS card, but the Timemaster has a Peripheral Interface Adapter (PIA)
which lets you set up the interrupts from software. The Thunderclock has three interrupt
frequencies which can be set from software: 64 Hz, 256 Hz, and 2048 Hz.

Although the high frequency interrupts from the Mountain Clock, ProClock, CCS Module,
and Timemaster may be useful in some demanding applications, none of these cards provides
the most important interrupt frequency for most applications. The interface card for the Apple
II Mouse generates a 60 Hz interrupt tied to the vertical blanking signal (VBL) of the Apple
video generator (see Chapter 9). This 60 Hz VBL interrupt is important because it lets a
programmer cut into a program to rearrange the video display while the video electron beam
is turned off. This is important for good quality animation as well as for “windowing” in
multitasking operating systems.

In the //c, the IOU chip on the motherboard can be configured to generate VBL interrupts at
60 Hz (see Chapter 9). This interrupt can’t be used as part of a software clock, however, because
the IRQ line to the 65C02 must be disabled whenever the disk drive is reading or writing
data.

Additional Features on Clock Cards

The Thunderclock card has an interface system for operating a BSR X-10 controller. This
means that you can program light switches, coffee makers, etc., around your home to turn on
or off at selected times. Multifunction cards from Artra and Prometheus also offer BSR X-10
controller interfaces.
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A BSR system connects to the 120 VAC power available at the wall sockets throughout your
house and can transmit the electrical equivalent of ultrasonic tones over the AC power lines.
Plug-in modules at sockets throughout the building can detect the tones. Each plug-in module
is assigned a tone sequence which it can recognize and respond to. Thus providing the Apple
with a means of giving instruction to a BSR controller extends its control capabilities through-
out the building without the need for installing any new cables.

The Artra Waldo card has voice recognition, voice synthesis (see Chapter 11), and an audio
amplifier packed on board along with the clock/calendar and BSR controller. In theory, this
means that you can tell it verbally when it should turn on the lights, etc., and it can alsobe
instructed to yell out messages at selected times. Voice recognition and voice synthesis are
not completely “mature” technologies, so you shouldn’t get your hopes up too high for this
device, but it can do remarkable things.

The Prometheus Versacard is much less glamorous, and less expensive. It includes a graphics
parallel printer port, a serial port, and a BSR interface along with a clock/calendar. The
Mountain Computer CPS Multifunction Card has a parallel and serial port as well as a one
second resolution clock, but no BSR interface. The Versacard and the CPS card both use the
“phantom slot” technique (see Chapter 22) to load several different input/output capabilities
into a single slot while tricking the Apple into thinking that the various functions are spread
around in several different slots.

External Clocks for the //c

Both Hayes and Prometheus make external clocks which can be interfaced with the Apple
via a serial port. External clocks don’t make much sense for an Apple IL, II+ or /e, but they
are your only option for a //c. The Hayes Chronograph is a fairly expensive external device
which has the sole advantage for Apple owners that it, like the Pro Modem 1200, doubles as
a digital clock with a display you can glance at whenever you want to know the time.

The Prometheus Pro-Modem 1200 is a bit more interesting. This device includes a clock/
calendar inside a 1200 bps modem (see Chapter 17). It can be modified to generate interrupts
via the serial port (see Chapter 16) and you can get a ProDOS patch which reads it auto-
matically. Since the ProModem is a comparatively inexpensive modem in the first place, you
can think of it as providing a clock for free and thus it makes very good sense as a //c peri-
pheral. You should keep in mind, however, that most of the commercial software which can
use real time information (i.e., Visidex, DB Master, Executive Secretary, Transend, etc.) can
only operate internal clock cards and that ProDOS expects to find the Thunderclock, so an
external clock may only be useful if your software can be properly configured.

Analog to Digital Conversion

The great bulk of electronic monitoring and measuring systems used in audio, laboratory, and
industrial tasks have been designed to represent phenomena in the physical world as patterned
analog waveforms. These waveforms are usually expressed as voltages which vary through
time. Analog to Digital Conversion is a process which links the analytical power of digital
computers to the sensitivity and versatility of analog instrumentation equipment.
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During "DIGITIZATION,” the amplitude of a waveform is
sampled at regular intervals. The resulting numbers
can be stored in memory as g digital representation
of the original waveform.

This is the task performed by an "Analog to Digital Converter .*

A "16 bit" ADC would divide this range into 65535 steps, from $0000 to $FFFF.
Each 16 bit sample is represented in memory by a two byte number as shown below:

| $8000]$8C76 |$96CD [$A4CD| $5000] $BASG] $C3D7] $CC29] $D333[$D8A4[$DCCC] $DF33] $E00C |

An "8 bit"” ADC could measure only 256 different amplitude levels. This precision
is more than adequate for the waveform shown above,and it takes up less memory:

|$80]| $oC|$98|$a4]|$BO[$BA[$C3]$CC$D3]$D8 [$DC]$DF[$ED]

Reducing the “sampling rate” from 48 samples per cycle to just 12 samples per cycle
saves even more memory, but still produces a useful description:

[$80]$B0[$D3] $E0]
8 bit precision 8 bit precision
48 samples/cycle 12 samples/cycle

Later,the numbers can be recalled from memory and used
to regenerate a close model of the original analog waveform.
This is the task of a “Digital to Analog Converter.”

Fig. 14.4 A/D and D/A conversion.
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The most convenient mental image of an analog waveform is based 0.1 a curve drawn ongraph
paper. The steps along the X-axis represent increments of time. The curve can be described
as a series of Y values, with one Y value assigned to each increment along the X-axis (see
Figure 14.4). The Y values are “samples” and the distance between the samples reflects the
“sampling rate.” If the sampling rate is too slow, then the Y values won’t provide a very good
description of the curve.

The precision of the sample reflects the smallest variation which can be detected. A great deal
of information can be lost if the precision of the sampling is not adequate to the complexity
of the waveforem. For most Analog to Digital Converters (ADCs), there is a conflict between
precision and sampling rate. The more precise the Y measurement, the more time the ADC
requires to finish making a sample, and hence the slower the sampling rate. The objective in
the design of an ADC is to get the greatest precision with the fastest sampling rate.

There are three major kinds of devices used to carry out analog to digital conversion. Inte-
grating ADCs are simple, inexpensive and relatively low in performance. “Digital Servo”
ADCs can achieve fairly high performance at a modest price. Finally, there are “Flash” or
“Paralle]” ADCs which do effectively instantaneous conversions but in which the conflict is
between precision and high cost; a high precision flash ADC can cost over $1000.

Integrating ADCs

An integrating ADC does not measure voltage directly. Rather, it relies on currents generated
by the voltages of the waveform. A current is a rate of flow of units of charge. Conversion is
based on counting units of charge, or detecting the rate at which they are flowing. These
devices can be built out of fairly simple components such as capacitors, resistors and “com-
parators.” (A comparator is a kind of “op amp” (see Chapter 13) which can detect equivalent
signals on its two inputs, and it is used as a component in all of the different kinds of ADCs.)

The first step in conversion is to use the voltage in the waveform to create a current. This
requires that the voltage input be connected to a resistor. The current flows into a capacitor
which accumulates units of charge. In “sample and hold” types of converters, the waveform
input is connected to the capacitor for a brief, fixed amount of time. Higher voltages cause
greater currents and hence can load more units of charge into the capacitor during the sampling
interval.

In a “dual slope” integrating ADC, the charged capacitor is then disconnected from the voltage
source and allowed to discharge to ground at a fixed rate of current flow. A timer is started
when the discharge begins, and a “comparator” detects the moment at which the capacitor is
fully discharged. The amount of time for the discharge is proportional to the input voltage.
The time count is therefore a numerical representation of the average voltage during that
sampling interval.

The Apple II, II+ and //e have four ADCs connected to the game port (just two in the //c)
which are similar in concept to a dual slope ADC. In the Apple game controller system, a
fixed five volt signal is used as the input signal, but the resistance, and hence the current, is
varied. Turning a game paddle knob in one direction gives a high resistance and slow rate of
current flow, while the other direction gives a low resistance and high rate of current flow.
The incoming current charges a capacitor until the charge becomes equal to a reference charge
stored in a second capacitor. The amount of time for the input capacitor to become fully charged
is proportional to the setting of the resistor in the game paddle (see Figure 14.5).
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There is a subroutine in the Monitor (see Chapter 21) which begins the sampling process and
then checks the status of the ADC every 10.8 microseconds. If the external resistor is set near
zero, the ADC is triggered very rapidly (the actual minimum for software detection is about
15 microseconds). When it is at the opposite maximum, it can take up to 256 test periods or
256 times 10.8 equals 2.76 milliseconds to determine the setting. This process is explained in
more detail in The Apple Circuit Description by Gayler (Sams Publishing) and in Understand-
ing the Apple II by Sather (Quality Software).

This kind of ADC is inherently slow because the sampling rate must allow for the worst case
situation in which there is a full sweep from zero to the maximum charge. An alternative is
to detect the change from the previous sample rather than the difference from zero. In many
waveforms, the change from sample to sample is always quite small compared to the total
difference between minimum and maximum amplitude. The idea is to “follow” the input
voltage and make only incremental changes in the test signal examined by the comparator.

There is a kind of integrating ADC called a Voltage to Frequency Converter (VFC) which is
based on an attempt to follow the incoming signal and continuously adjust the amount of
charge being dumped into a test capacitor. The system is based on a device which sends pulses
of charge at a controlled frequency. When the frequency is increased, more charge is dumped
into the test capacitor per unit time, thus simulating an increase in current. The comparator
senses the difference in charge between the input capacitor and the test capacitor and uses
this information to either increase or decrease the frequency setting of the charge generator.
The frequency setting is available at all times during this process as a digital number that
can be read by the computer.

The principal limits on sampling rate are the speed at which the comparator can detect changes
and the maximum rate at which the charge generator can alter the frequency of its output.
The speed at which small changes are detected and balanced usually determines the sampling
rate. There are comparatively inexpensive VFCs which can manage sampling rates at speeds
up to one megahertz.

However, depending on the shape of the waveform being measured, the maximum rate at
which the charge generator can respond to large changes in the input may be the more
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important determinant of performance. The “slew rate” of the system is the maximum rate
of change in volts per second that the converter can track accurately. The best VFCs have
slew rates in the range of tens of thousands of volts per second. More practically, this means
that they can respond to a change of one volt in a few thousandths of a second.

Digital Servo ADCs

The key component in a digital servo ADC is a Digital to Analog Converter (DAC; see below).
The DAC is the functional opposite of an ADC; it responds to a digital number by producing
the desired voltage. The underlying designs of the various kinds of digital servo ADCs are
very similar to the designs of integrating ADCs except that there is no need to deal in currents
and charges and balanced capacitors. A digital servo ADC can actively produce test voltages
which can be compared directly to the voltages of the waveform.

There are “staircase,” “tracking,” and “successive approximation” digital servo ADCs. The
stai and the tracking ADC are similar in concept to the dual slope and the VFC respec-
tively, while the successive approximation ADC takes unique advantage of digital servo
technology.

Staircase Converters

In a “staircase” type of digital servo ADC, the converter requires a Sample and Hold Amplifier
(S/H Amp) to acquire a sample input voltage and then hold it steady during the conversion
process. The staircase ADC then begins loading numbers into its control register, starting at
zero and stepping upwards one by one. The DAC part of the converter examines the contents
of the control register and produces the requested test voltage. If the test voltage is not equal
to the input voltage being held by the S/H Amp, then the number in the control register is
incremented by one, the DAC produces a higher test voltage, and so on.

This process shares the same limitations which hinder the performance of dual slope inte-
grating ADCs. The staircase must start at zero and step upwards each time. The staircase
device operates much more quickly than the dual slope device, but it does not take full
advantage of the potential speed of the digital servo systems.

Tracking Converters

A “tracking” ADC is able to follow small changes in the waveform. The key to this feature is
that it can decrement the number in its control register as well as increment it. This relieves
it of the need to sweep up the “staircase” from zero for each measurement. A good tracking
ADC can operate without an S/H Amp. The control register is continually updated and the
value it contains is available to the computer as frequently as the computer can read it.

The sampling rate can be pushed up into the range of three to five megahertz. As with VFCs,
slew rate may be the major determinant of the kinds of waveforms it can describe accurately.
Because this is a digital device, however, it is possible to improve the slew rate by adding
larger numbers to the control register rather than just incrementing by one. Such a modified
tracking ADC can achieve slew rates in the range of five million volts per second (5 volts per
microsecond).

Successive Approximation

The most popular type of digital servo ADC is the Successive Approximation (SAR) converter.
Like the staircase converter, a SAR requires a good S/H Amp and starts from scratch for each
sample. However, it uses a much more efficient algorithm for setting its control register.
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A staircase converter starts with its Least Significant Bit (LSB) and adds one bit at a time.
For an eight bit converter, this might mean that it tries 0 millivolts, and then one millivolt
and then two millivolts, etc., until it had made the full 256 tests to completely cover its range.
Conversion time varies according to the magnitude of the input voltage, and the worst case
conversion time is 256 times the testing interval.

A SAR converter begins by testing with its Most Significant Bit (MSB). For an eight bit
converter this might mean that it first tries 128 millivolts. If this is too high, it sets the MSB
to 0 and tries the next highest bit which would call for 64 millivolts. Each step divides the
range of possibilities by half, and the process is always finished after the eighth test. The
result of this algorithm is that all conversions take the same amount of time, which is, for
example, eight times the testing interval for an eight bit converter.

The SAR algorithm becomes extremely important for high precision conversion. If the testing
interval were one microsecond, a 16 bit staircase converter could take up to 65,536 microse-
conds to do the conversion, but a similarly built SAR converter would always be done in 16
microseconds.

Flash ADCs

A flash ADC provides nearly instantaneous conversion because it cuts out all of the adjustment
steps required by other methods. Instead of using a single comparator and stepping the test
voltage through 256 levels, an eight bit flash ADC has 256 comparators, each permanently
set to a different voltage level, all of which are exposed to the incoming signal at the same
time.

If the comparators are preset to a series of voltages at one millivolt intervals (i.e. 0 millivolts,
1 millivolt, 2 millivolts, etc.) then an incoming voltage of 184 millivolts would simultaneously
activate the first 184 comparators. The array of comparator outputs that are turned on are
then channeled through a set of logic gates which can express the number of active comparators
as an eight bit digital number. The actual conversion time for a flash ADC is limited by. the
speed at which the semiconductors can respond, so that 20 nanoseconds is a practical conversion
time.

The number of comparator amplifiers required in a flash ADC is determined by how many
bits of precision are desired. There must be one comparator for each possible value in the
range, so that a 12 bit flash ADC requires 4,096 comparators. A 12 bit flash ADC is therefore
a very difficult part to manufacture, and so the cost goes up into the thousands of dollars.

Digital to Analog Conversion

To gain full participation in the analog world which surrounds it, an Apple must be able to
generate analog waveforms of its own. Some tasks such as reproducing the human voice or
playing out music require high speed variation, good precision, and close modeling of the
original waveform over a wide range, i.e., good “linearity.” Other tasks such as managing the
fine adjustment of motor speeds and the setting of variable controls on analog devices make
demands on accuracy (i.e., the achievement of an exactly correct voltage compared to some
external reference) and on the range of output voltages and currents the Apple can make
available.
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Most devices which carry out digital to analog conversion are similar in concept to a flash
ADC, but work in the opposite direction. The usual arrangement is to provide an array of
current sources, each set to a different level, and then to use a digital input to select which
of the sources will be connected to the output.

A DAC also differs from a flash ADC in that an eight bit DAC requires just eight current
sources while an eight bit flash ADC requires 256 (two to the eighth) comparators. The reason
for this difference is that the circuits of the DAC can sum the currents after they are selected
and before they are output, while a flash ADC has no way of subtracting or dividing prior to
conversion. In fact, it is because of the need to sum the outputs in a DAC that current sources
are used rather than voltage sources.

In a good current switching DAC, the actual selection and current summing is extremely
fast—typically on the order of 350 nanoseconds. A great deal of the speed is lost subsequently
in the conversion of the summed current to a voltage by a current summing operational
amplifier (op amp). Typical conversion speeds run in the range of three to five microseconds
for voltage output.

To vary the output range of the DAC, there are two approaches. In a “multiplying DAC,” a
range selector can alter the voltage which drives the array of current sources. The DAC and
its output are unchanged, but the magnitudes of the currents flowing in the system are varied.
The alternative, and more popular approach, is to put a gain amplifier in line to amplify the
output of the current summing op amp.

250






252



Chapter 15

Laboratory Data and Control
Systems

There is virtually no limit to the scale, scope and resolution of microcomputer based systems
for collecting data, monitoring processes and carrying out complex control tasks. If you're in
a position to having fairly good confidence about the electronics involved and know exactly
what you need, you can often do quite well at a low cost with a single board product. However,
the most elaborate systems are available as turnkey setups complete with data analysis
software, local service representatives and experienced technical consultants.

Several companies sell board level products which specialize in analog to digital conversion
(Hollywood Hardware, Applied Engineering, RC Electronics, Northwest Instruments, Inter-
active Structures, Data Translation), and others manufacturers include ADCs with other
functions on a single board (Mountain Computer, MicroDimensions, IMI). These systems offer
the full range of ADC performance at much lower cost than a full scale data acquisition
system.

The systems range in performance from dual slope converters with a 50 millisecond conversion
time (IMI's Adalab) to flash converters which need just a little more than 50 nanoseconds (RC
Electronics’ HS 7 Applescope; see Table 1). Most manufacturers offer 8 or 12 bit precision, but
there are also 14 bit (RC Electronics’ HR 14 Applescope, Data Translation, Keithley/DAS’
ADM?2) and 16 bit (Data Translation, Cyborg’s ISAAC F-150) converters available.

Software Speed

The performance of any of these products has as much to do with the quality of the support
software as with the hardware specs. In all of the systems except the RC Electronics Apple-
scopes and the Cyborg ISAAC 2000, the maximum speed of data collection is determined by
the program execution speed of the Apple rather than by the ADC hardware. As each data
byte is collected, the 6502 must get the byte from the data port and place it in RAM memory.

Most of the packages allow data collection at up to 10 kHz (equivalent to 100 microsecond
conversion time), while the fastest machine language routines (Keithley, RC Electronics) can
push this up to somewhere near 30 kHz (equivalent to 33 microsecond conversion time). A
hardware system based on DMA (see Chapter 27) could bypass the 6502 and push the speed
up to one MHz, but only the RC Electronics ADC systems are fast enough to require this sort
of loading speed, and those folks use a simpler solution for very high speed data collection up
to 14 MHz.
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Many of the manufacturers provide additional commands for Applesoft BASIC all built around
the ampersand (&) command (see Chapter 38). This makes it easy to issue configuration
commands and collect data from within an Applesoft program. The ampersand commands can
call up high speed machine language routines to actually move the data before returning to
Applesoft.

Interrupts for Efficient Use of the CPU

The most elegant software packages offer “background/foreground” operation based on inter-
rupts (see Chapter 27). This means that the Apple can go along doing statistics and printing
out plots yet still be able to temporarily snap its attention over to the input ports whenever
a byte of data arrives. The AMPRIS software from Interactive Structures and the Soft 500
software from Keithley both have this ability.

In fact, this is no trivial feat, because Apple DOS 3.3 has a serious bug in its interrupt handling
(see Chapter 27), and AMPRIS has to correct this bug by reconstructing several segments of
DOS 3.3. This background/foreground feature may turn up more often in future software from
other manufacturers since ProDOS is designed to handle interrupts properly without any
Herculean effort on the part of the programmers. There is a new set of ROMs available for
the //e which correct the interrupt bug, so many more programmers will be able to create
interrupt driven software in the future.

Complete Software Acquisition and Control Systems

A further consequence of software considerations arises if you suspect you may eventually
need more than just analog to digital conversion (i.e., timers, analog output, digital interfaces,
etc.). You are much better off buying a system in which a single software environment supports
several different kinds of interfaces. The Interactive Structures system is strong in this regard
since you can begin with a single relatively inexpensive board, but retain the capability for
substantial expansion later, all within a single software framework.

The more expensive full scale data acquisition systems from Keithley, Cyborg, Eco-Tech and
Interactive Structures all use external cabinets for installing an assortment of interfaces
including a variety of ADCs which the buyer can mix and match to suit particular needs.
Further, they all offer fairly sophisticated data collection software packages.

High Performance ADC Cards

High performance, modestly priced ADC cards include the AI13 from Interactive Structures,
the AD-121602 from Hollywood Hardware, and DT2832 and DT2834 from Data Translations.
These are SAR converters (see Chapter 14) with 12 bit precision (and optional 14 bit or 16 bit
precision for the Data Translation boards), and all offer software switching among 16 channels
of input. Of the three, the Hollywood Hardware board (see Figure 15.1a) is the least expensive
and offers a few features in addition to A/D conversion, but the Interactive Structures and
Data Translation boards have slightly better performance on several features pertaining to
A/D conversion itself.
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Fig. 15.1a Hollywood
Hardware AD121602
analog to digital converter.

Fig. 15.1b DAISI Al/13 analog to digital converter from Interactive Stuctures.
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The conversion time for the AI13 (see Figure 15.1b) is 20 microseconds, while the Hollywood
Hardware board comes in a little behind at 25 microseconds. For both of the boards, sampling
can proceed at full speed on a single channel, but there is a delay of about 100 microseconds
whenever you switch to another channel.

The major differences are in the quality of the “input range” and “input impedance.” It is
necessary to choose a range of input voltages that the ADC can expect to see from an input
waveform. You select the range and the ADC divides it into parts, 256 parts for an eight bit
ADC, 4096 parts for a 12 bit ADC, etc. The AI13 can switch among four unipolar input ranges
(0-5 Volts DC, 0-1 VDC, 0-0.50 VDC, and 0 to 0.1VDC) and four bipolar ranges (+/— 5 VDC,
through +/— 100 mVDC), all under software control. The Hollywood Hardware board has
just five input ranges (+/— 10 VDC, +/- 5 VDC, +/- 2.5 VDC, 0-10 VDC, and 0-5 VDC),
and these must be set by jumpers on the card.

Analog to Digital Converter Specs.

Applied Engineering
8 bit 78ps 8 channel $120.00

Cyborg

ISAAC 1-130 12 bit 25ps 1 channel $600.00

ISAAC I-100 12 bit 25us 16 channel $850.00

ISAAC I-150 16 bit 60us 2 channel $1.100.00

ISAAC 1-180 12 bit 3Sus 2 channel $700.00

ISAAC 21A 16 bit 10ms 2 channel $1,700.00

ISAAC C-100 12bit Spus 4 channel $3.825.00
Data Translations

DT 2832 12 bit SOus 16 channel $700.00

DT 2832 (5718) 18 bit 200 pus 16 channel $1,700.00
Eco Tech

ALISA/12 12 bit 20ps 16 channel $1.200.00

ALISA/08 8 bit TOpus 16 channel $035.00
Hollywood Hardware

AD 121602 12 bit 25ps 16 channel $450.00
Interactive Microware

Adalab 12 bit S0 ms 1 channel $495.00
Interactive Structures

A/02 8 bit 70us 16 channel $209.00

A/13 12 bit 258 16 channel $530.00
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Keithley DAS

ADIM1 12 bit 25us 1 channel $700.00

ADIM2 14 bit Dpus 1 channel $950.00
Micro-Dimensions

uD-1000 8 bit 120 s 8 channel $300.00
Mountain Computer

A/D 8 bit Qus 186 channel $350.00
Northwest Inst.

Model 85 8 bit 40ps 1 channel $995.00
RC Electronics

APL-D2 8 bit 2us 1 channel $795.00

HR14 14 bit l4ps 1 channel $995.00

HS7 7 bit S00 ns 1 channel

Table 15.1 Analog to digital converter specs: precision, conversion time, number of input channels, price.

The input impedance reflects the fact that the ADC looks something like a resistor from the
point of view of the signal source. If the input impedance is low, then the ADC will draw a
lot of current from the source of the waveform, and possible alter the appearance of the
waveform as a result. A high input impedance minimizes the effect of the ADC on the circuit
it is supposed to be sampling from. The input impedance for the AI13 is 10 MegOhms, while
the Hollywood Hardware board is rated at 150 KOhms.

For many applications, the small margin of extra performance on the part of the AI13 may
not be worth the additional $100. The extra features on the Hollywood Hardware hoard are
a tracking reference signal, and also two single bit inputs. An advantage of the AI13, on the
other hand, is that it is just one part of a family of nearly a dozen products in the DAISI series
from Interactive Structures (see below), and therefore is the best choice for a system which
may be expanded in the future. Although both systems offer ampersand commands, the AI13
software is a little more versatile.

Fig. 15.2 Data Translation DT2832 analog to digital converter.
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The Data Translation boards (see Figure 15.2) have a very high performance input amplifier,
an external trigger, and, with the DT2832, a programmable timer. One advantage of the Data
Translation boards is that you have the option of getting 12, 14, or 16 bit precision. With the
DT2832, the data collection rates are 20 kHz, 10 kHz, and 2.5 kHz for the three different
precision levels, while the same figures for the DT2834 are five kHz, 800 Hz, and 200 Hz.

Single Card Laboratory Interfaces

An A/D converter chip is sufficiently compact that it can share the space on an interface card
with several other interface devices. The major problem is that there is limited space for all
of the inputs and outputs if each of the devices has multiple channels. Accordingly, Interactive
Microware Inc. (IMI) has designed their Adalab card with a one channel, 12 bit A/D converter,
a one channel, 12 bit D/A converter, and a 6522 (see Chapter 14) to provide two parallel ports
and two 16 bit timer/counters.

The Adalab A/D converter is a very slow “dual slope” integrating converter (see Chapter 19)
with a 50 millisecond conversion time, but the D/A converter has a 20 microsecond conversion
time and sources up to 10 milliAmps. The IMI data collection, display, printer dump, and
plotter software is fairly extensive, and it is possible to operate the Interactive Structures
AI13 with the IMI software as a system expansion. In addition, IMI offers an optional reed
relay multiplexer which goes outside the Apple for slow switching among eight channels, an
instrumentation amplifier for conditioning signals on the way to the A/D converter, and a
buffering system to give added drive to the 6522 digital outputs so they can operate relays.

MicroDimensions makes a more modest lab interface called the MicroD-1000 which has an
eight channel, eight bit ADC with a conversion time of 120 microseconds, and a 6821 peripheral
interface adapter which provides eight bits of digital input and eight bits of digital output.
The manual for the MicroDimensions system tells you all about how to build your own optically
isolated input system and power relay controls, but you have to do all that yourself with parts
from your local electronics supplier.

Options for Eight Bit ADC boards

If you need fast conversion but are willing to concede a little on precision, then the Mountain
Computer A/D + D/A board could be a good choice. It has an eight bit ADC with a conversion
time of just nine microseconds. This is a 16 channel converter with an input impedance of one
MegOhm. You probably can’t get your software ready for a new data point more than once
every 20 or 30 microseconds, but the fast conversion time helps avoid averaging a signal. The
digital to analog converter mounted on the same board is a 16 channel, eight bit system with
a slew rate of 10 volts/millisecond and an output range of +/- 5 volts.

There is also a 16 channel, eight bit ADC from Interactive Structures (AI02), but it has a
conversion time of 70 microseconds. The Mountain Computer board sells for $350 and includes
both A/D and D/A conversion, while the AI02 is $300 for A/D conversion only. Applied En-
gineering makes an eight channel, eight bit ADC with a conversion time of 78 microseconds.
It has a rather low input impedance (20K Ohms) and is not backed by strong software, but
it does sell for a modest $129.
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Digital Oscilloscope Cards

A standard analog oscilloscope traces a waveform on a CRT screen, using the voltage of the
input signal to control the Y position of the beam, and some time base to control the X position.
Analog “storage” oscilloscopes let you retain the image on the screen; however, to save a
waveform for later analysis you usually attempt to capture the incoming signal on a high
quality tape recorder or on the paper of a strip chart recorder at the same time that you are
also creating an image of the signal on the screen. If you store on tape, you can do the analysis
by passing the signal back out from the recorder, through an A/D converter such as the
Interactive Structures AI13, and on into the Apple for digital storage on disk.

A top quality analog oscilloscope can follow signal components at up to 400 MHz, and a good
16 channel FM tape recorder can sock away hundreds of millions of points per second, all
available for later playback and A/D conversion at slow speed. What you can’t get from such
a system is “real time” analysis. In the past few years, “digital storage oscilloscopes” have
become a popular means of getting instant analysis of some kinds of signals. In these systems,
the original incoming signal is routed directly to an A/D converter. The resulting data bytes
are stored in RAM, used to plot an image on the CRT screen, and stored directly on disk.

The best digital oscilloscopes handle signals in the range of only 10 MHz, and also run into
trouble with limits on available memory. At a sampling rate of 10 MHz, you get 64K data
bytes in just 64 milliseconds. Nonetheless, for brief or “transient” waveforms in this frequency
range, a digital scope offers substantial benefits.

If you put an A/D converter into an Apple, you have the makings of a digital storage oscil-
loscope. RC Electronics and Northwest Instruments both acted on this fact by assembling the
necessary extra ingredients to provide most of the amenities of a standard oscilloscope system
(trigger inputs, BNC connectors, volts/div and sec/div controls, etc.). In fact, the products from
the two companies are not really comparable. The Northwest Instruments Model 85 aScope
is nothing more than a rather slow eight bit A/D converter with 256 bytes of memory available
for storage. It handles its 256 data points at up to 10,000 points per second, which is similar
to the data flow in some of the weaker A/D conversion software packages.

The Model 85 does have a trigger feature which lets it do “equivalent time” digitization of
signals at up to 50 MHz. This means that if you have a repetitive signal source which produces
exactly the same waveform every time, you can set up the Model 85 to sample the signal
many hundreds of times until its actual shape has been digitized. Software for this system is
not extensive, and the performance is far lower than the RC Electronics systems.

The three Applescope products from RC Electronics are actually formidable digital storage
oscilloscopes. Despite the far more sophisticated advertisements for the Model 85, it is the
Applescopes which will be useful for most interested labs. The APL-D2 is based on an eight
bit tracking A/D converter which can follow one MHz components in some waveforms. The
HS-7 is based on a seven bit “flash” converter with a conversion time of 70 nanoseconds (14
MHz), and the HR-14 is based on a hybrid ADC which uses both flash and tracking A/D
conversion to get 14 bit precision at 500 kHz.

The Applescopes benefit from fast machine language software and from on card memory buffers
which circumvent the limits imposed by the processing speed of the 6502. For sampling rates
up to 28 kHz, the scope driver software can load data directly into a 16K buffer in the Apple.
For higher sampling rates, the data is sent first to a RAM buffer on one of the Applescope
cards. The APL-D2 has a 1K buffer, but the HR-14 and HS-7 have 2K buffers. These buffers
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can store points on up te the full maximum sampling rate of 14 MHz in the HS-7. Once a
waveform is digitized into the buffer, the scope driver software can transfer it on down into
the Apple’s main memory a few milliseconds later. (Although the literature from RC Elec-
tronics claims a DMA capability (see Chapter 27), the Applescope boards do not actually do
DMA.)

In evaluating the acquisition speed needed for a given waveform, you should keep in mind
the peculiarities of the ADC method used in these systems. As noted earlier, a “tracking”
ADC can follow small changes rapidly, doing conversion at speeds approaching the stepping
rate. However, some kinds of signal changes make for “worst case” performance and may
require many steps to complete conversion.

The APL-D2 can step its control register at 0.286 microsecond intervals, and it uses a modified
tracking algorithm for handling large jumps, but the worst case conversion time includes 10
steps or 2.6 microseconds for acquisition and 6.6 microseconds for settling. Thus the worst
case conversion time is a little more than nine microseconds; this means a 100 kHz sampling
rate for some kinds of signals, but up to 3.5 MHz for others. The HR-14 has a slowermaximum
sampling rate (500 kHz), but it has a faster settling time and seven bits of flash conversion,
so it may have a faster effective sampling rate than the APL-D2 for some kinds of signals.

The final point to keep in mind is that the conversion speed must be faster than the frequency
of the signal being analyzed in order to get an accurate description of the waveform. The
Nyquist Limit suggests that you need a sampling rate at least twice as fast as the frequency
of the waveform. To begin with, to even approach this limit you need a very good “track and
hold amplifier” which helps you avoid averaging the signal while it is being sampled. In
practice, however, you shouldn’t expect to use a sampling rate much less than three times the
signal frequency, and some waveforms require an even larger margin for accurate digitization.
Given the ambiguities about worst case conversion speed for a tracking ADC, and about
appropriate sampling rate, the best thing is to contact the engineers at RC Electronics to
discuss your particular application.

Data Acquisition and Process Control

Microcomputers have been revolutionizing the scientific and industrial workplace. While much
of the excitement about microcomputers has focused on business and database oriented tasks,
the advent of inexpensive smart instrumentation and control systems has been having a
tremendous impact on productivity in the laboratory and in production facilities.

A great deal of the impact has been based on individual scientists and technicians who have
engineered interfaces for their own applications, but the demand for these systems has grown
so rapidly that it is now possible to purchase fully engineered and assembled systems which
can handle a remarkable variety of tasks.

Three important system manufacturers are Keithley/DAS, Cyborg, and Interactive Structures.
The products from these three companies each have a distinct emphasis. The Series 500 from
Keithly/DAS has a remarkable array of input preamplifiers and output shaping interfaces
any of which can be installed in a single 10 slot external chassis. This system also emphasizes
rapid solid state switching among hundreds of isolated inputs and outputs. It is possible to
attach more than one Series 500 chassis to an Apple, but a very diverse system with hundreds
of channels can be assembled in a single chassis.
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Fig. 15.3 ISAAC 91A data acquisition system.

The Cyborg products can be organized into several configurations which have strong input
capabilities but which do not match the Keithley/DAS output features. The ISAAC 41A/91A
(see Figure 15.3) core system provides for selection among a variety of high resolution A/D
converters and other interfaces in eight slots. You can expand it to include a variety of pream-
plifers, but this requires the addition of a special “remote” chassis and the signals are mul-
tiplexed by comparatively slow reed relay switches. In addition, Cyborg has a new “smart
chassis” called the ISAAC 2000 which uses a 68000 microprocessor and up to two megabytes
of RAM to sock away huge numbers of data points collected at high speed on one to four
channels. §

The DAISI system from Interactive Structures features a compact, rugged set of interfaces
many of which can be installed directly in Apple slots without an external chassis, but which
can also be purchased from Eco-Tech which makes rack mount chassis systems based on the
DAISI cards. The DAISI system has the unique distinction of being the first microcomputer
based data acquisition system to be used in Earth orbit aboard the Spacelab, thus passing
muster at NASA, surviving launch and reentry in the Space Shuttle, and working flawlessly
for a week in space. This system may be the best choice when it is convenient to spend $2,500
on each of five Apples each with its own partial DAISI systems scattered around a lab rather
than, for instance, to spend $12,500 on a single ISAAC 2000 system.

Elements of a System

To compare the three systems, you can group the various features they provide into seven
categories: analog signal inputs, analog to digital conversion, digital to analog conversion,
digital I/O, clock/counters, power control and monitoring, and physical layout (see Table 15.2).
In addition, it is important to consider the quality of the software tools available for organizing
the whole ensemble. The software varies with regards to integration of graphics output, and
with regard to speed of data handling.
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Table 16.2 Lab system features. Number of channels available is noted in grid.

Organization of Analog Input and A/D Conversion

Both the ISAAC and the DAISI analog input sections are based on multichannel A/D con-
verters, principally the ISAAC I-100 and the DAISI AI13. In most configurations, analog
signals are connected directly to the A/D converter card, ranges are set, and conversion can
proceed. The DAISI system offers a standard “Signal Conditioner” which can be used as a
preamp, but many acquisition systems based on the DAISI AI13 or AIO2 will need external
isolation amplifiers, etc., built by the user or purchased from another source. Channel selection
takes place within the A/D converter chip in both systems. For high precision tasks, the ISAAC
I-150 is distinguished as the only 16 bit A/D converter available among the systems.

The Keithley/DAS system (see Figure 15.4) is based on one A/D converter with just a single
channel of input. A system can be configured either with the 12 bit ADM1 or with the 14 bit
ADM2. All of the multiplexing and signal conditioning is done on separate analog input cards
before the conditioned signal is passed along to the A/D converter. The AIM1 through AIM6
modules include a variety of top quality instrumentation amplifiers and isolation amplifiers
with configurations for inputs ranging from 5 mV to 10 Volts from strain gauges, thermocouples
(B,E, J,K,R, S, and T with cold junction reference), RTD’s, and just about any other kind of
sensor or source that might turn up. The multiplexing is handled by high speed CMOS switches.
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Fig. 15.4 Series 500 data
acquistion system.

You can set up a remote preamplifier system for the ISAAC products as well, but this is a
higher cost, lower performance proposition. To set up two of the 4 channel I-140 preamps, you
need an additional remote chassis, an I-130 card to interface the remote system with the main
ISAAC bus, and an I1160 multiplexer, the three of which cost $1,450 before you even choose
the preamp cards, each of which costs another $750. Thus, adding eight channels of ther-
mocouple preamps costs about $3,000 for the ISAAC systems, but only a few hundred dollars
in the Keithley/DAS system and you can only use J, K and T thermocouples in the standard
ISAAC configuration. Further, the multiplexing is done by reed relays with no debouncing,
so it takes nearly half a second to switch channels.

Software Speed for Storing Data Points

For the Keithley/DAS, DAISI, and ISAAC 91A/41A systems, the actual rate of data collection
is limited by the speed at which a machine language program running on the 6502 can collect
in the data points and store them. For single channel data acquisition, the Keithley/DAS
software provides the fastest data collection, running up to 27 kHz, which is roughly equivalent
to a free running A/D converter with a 37 microsecond conversion time. Most of the software
for the DAISI and ISAAC systems has a maximum speed of 10 kHz, but both offer special
machine language routines to push the speed up to 20 kHz.
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An important feature of the Keithley/DAS and DAISI software which is missing from the
ISAAC system is “foreground/background operation,” which means that the Apple can proceed
with statistical analysis and plotting simultaneously with management of slower (500 Hz)
data collection tasks. The implementation of software multitasking on the Apple II with DOS
3.3 is no simple feat (see above).

The ISAAC 2000 system (see Figure 15.5) far exceeds the data collection speeds of any other
system. The separate 8 MHz 68000 processor in the ISAAC 2000 can handle sampling rates
up to 200 kHz for a single channel and up to 50 kHz for four channels running simultaneously.
Since 200 kHz is equivalent to an A/D conversion time of five microseconds, Cyborg has built
its C-100 module around a fast converter chip that runs at that speed. The system also takes
advantage of the huge linear address space of the 68000 microprocessor (see Chapter 30) by
allowing the addition of two Megabytes of RAM. The resulting potential for 10 seconds of real
time digitization at 200 kHz is a very impressive feat for a microcomputer based system.

Fig. 15.5 ISAAC 2000 data
acquistion system.

Digital 1/O and Timing A

The DI09 board in the DAISI system is based on two 6522 VIAs (see Chapter 14), thus it
provides four bit programmable, bidirectional, eight bit parallel ports with handshaking. There
is no special provision for buffering or isolating the inputs, and the outputs can only drive a
single TTL load. Each of the two 6522s has two 16 bit programmable counter/timers which
can also be used for event counting and as programmed frequency generators and delay timers. -

The ISAAC 41A/91A system provides a real time clock on the interface card in the Apple, and
some counters in the 91A chassis. The digital I/O is handled separately by the I-120 module
which has 16 bits of input and 16 bits of output. Each of these ports can be programmed to
operate on a bit, byte, or word (16 bit) basis, and the outputs can drive considerable loads.
The ISAAC 2000 includes a 24 bit timer/counter but no real time clock. Digital I/O for the
ISAAC 2000 is also based on the 1-120.

These various functions are spread onto several boards in the Keithley/DAS system. The real

time clock is on the interface card in the Apple, and, like the ISAAC clock, has a resolution
of one second. Digital I/O requires two separate boards, but the inputs are optically isolated
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(see Chapter 14) and have variable resistors to adjust for the strange parallel output voltages
that always seem to turn up on older lab instruments. The PIM1 is a powerful programmable
counter/timer with five 16 bit registers which can be cascaded into a single 80 bit register.

Analog Outputs and Power Control

Just as with analog and digital input, the Keithley/DAS system has the greatest variety of
options for analog output and control. The DAISI analog output is based on a two channel,
eight bit D/A converter with a five milliAmp output, and the ISAAC I-110 offers a four channel
12 bit D/A converter, also with a five mA output. The Keithley/DAS has three different A/D
converter boards, with the AOM1 being similar to the ISAAC I-110, the AOM2 offering two
channels of 16 bit precision, and the AOM3 emphasizing high current tasks with four separate
10 bit D/A converters each capable of 20 mA output.

The ISAAC system has no provision for power control and monitoring, which does happen to
be a strong point of the DAISI system. You get a separate chassis in which you mount your
choice of optically isolated relays for switching 110 VAC and 60 VDC or power monitors with
similar voltage ranges. The relays and monitors are supervised by signals from the DAISI
digital interface board. The Keithley/DAS power control system is a little bit more elegantin
that it has greater voltage ranges, uses solid state relay subsystems, and does not require an
additional chassis.

Physical Layout

The Keithley/DAS modules all plug into a standard 10 slot chassis with a heavy duty trans-
former based power supply (see Figure 15.4). This makes for a compact system which is
convenient to expand or alter. The ISAAC systems involve six different chassis types all for
handling different sizes, shapes, and numbers of cards. This is not a reflection of bad planning
so much as it is a reflection of evolutionary growth of Cyborg systems over the past six years
(there are nearly 1,500 ISAAC systems in use in laboratories all over the world).

The way to approach the ISAAC configurations is to begin with the 91A chassis (see Figure
15.8). It includes all of the features of the I-100, 1110, and I-120 boards (see Table 15.1) as
built-in features. In addition, there are eight slots into which additional I-100, I-110, I-120, I-
150, I-180 and I-130 cards can be installed. The 41A chassis has got just four slots and no
built-in features. If you need to use an I-160 multiplexer and/or I-140 preamplifier, you have
to get a different chassis because these cards are physically larger than the 91A/41A cabinets.
Cyborg offers a two slot and a five slot chassis for these larger boards.

Things get even more complex with the ISAAC 2000 (see Figure 15.5). The main chassis has
the 68000, 128K of RAM, 32K of ROM, a 24 bit timer, an IEEE-488 port (see Chapter 20),
two RS-232C ports (see Chapter 16), two slots for “C” cards, four slots for “I” cards, and ports
for attaching other chassis’. You’ll need one of the C-slots for the fast A/D converter, and the
C-200 board has just 256K of RAM, so you need an extra chassis with six more C-slots to get
up to two megabytes of RAM. Then, you might choose to attach one 91A or four 41A chassis’,
and then to extend on out to some remote chassis’ for preamps.

Aside from the complexity of all this, you spend a lot of money on boxes, and all this ribbon
cable can’t be too good for signal integrity at high speed. A Cyborg system which fits entirely
within a 91A or a 2000 chassis gives you good performance for your money, but, especially if
you’re going to need more “I” slots or preamps, you might do better to start off with a Keithley/
DAS.



The DAISI cards (AI13, AI02, DI09, AO03) all fit in regular Apple slots (see Figure 15.6), but
you need to buy a chassis for the signal conditioners and/or for the power control and monitoring
equipment. If your Apple runs out of slots or the power supply gets overtaxed, you'll need
more Apple slots. If you have fairly good skills as an Apple programmer, you can purchase a
Mountain Expansion Chassis (see Chapter 22) which gets you eight more slots and a good
power supply.
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Many users, however, may want to consider buying an ALIS system from Eco-Tech which is
effectively the same thing as buying an expansion chassis based on a DAISI card except that
Eco-Tech has done all the hardware and software work for you. This may be a good idea if
the DAISI electronics meets your needs but you don’t want to get involved in all the details
of interfacing. If you're starting from scratch and contemplating a large system, you should
probably give Keithley/DAS consideration first since it’s much more economical.

Software Support for Programmers and Users

All of these systems feature simple extensions to Applesoft which permit easy programmmg
The programming tools from Keithley/DAS go in for helping you pull off such feats as 16
inputs, in color, scrolling sideways on the screen or simultaneous statistical analysis during
data collection. One advantage of ISAAC, on the other hand, is that there have been so many
systems in use for so long that there are a number of “turnkey” software packages forcertain
applications which avoid the need for programming altogether.
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Specialized Systems for Molecular Biology and
Biochemistry

In the past, automated chemical analysis has largely been the province of well financed medical
facilities; however, there are now a variety of tasks in which research biologists and chemists
can economically make good use of microcomputers. There are commercially available hard-
ware and software packages for gel scanning, peptide and DNA synthesis, luminescence assay,
centrifuge control, and chromatography. '

The chromatography monitoring and control systems are in such widespread use that they
are manufactured by third party sources such as Interactive Microware and Cyborg, while
the other systems are specialized packages developed by the manufacturers of the analytic
instruments. In most cases, the Apple replaces the strip chart recorder and/or teletype (see
Chapter 13, Figure 13.2), but some systems let you program the timed or triggered operation
of valves, switches and other controls.

Gel Scanning and Luminometry

There are two packages from LKB which use an Apple for data collection and analysis. These
include an interface for their 2202 Ultroscan Laser Densitometer and for their 1250 Lumi-
nometer. The densitometer package is used as an extension of their high resolution electro-
focusing system, but the densitometer can be configured to read polyacrylamide, agarose, and
cellulose acetate gels, tube gels, micro TLC plates and autoradiography films, all with a
resolution of up to 50 microns, so the LKB Gel Scan software and/or hardware system may
be a convenient starting point for automating the analysis of a wide variety of separations.

The package for the luminometer is based on a “luminescence immuno assay” which competes
with a standard RIA. LKB markets this system in conjuction with chemiluminescent reagents
for steroid detection. The points to keep in mind about luminescence are that it can be more
sensitive than scintillation counting, but that ATP based luminescence generates a flash over
a period of just a few seconds and in which the shape of the waveform is often important.
Therefore, the proper monitoring of ATP bioluminescence as well as slower FMNH/NADH
bioluminescence is more demanding on the computational power of the photometer system
than standard counting of isotopes.

Many scintillation counters have a direct output from the photometer so you can do pulse
counting for luminescence assays directly in an Apple with a timer/counter interface card (see
Chapter 14), thus bypassing the scintillation counting system. However, the LKB package is
a straightforward way of getting a complete system.

Automated Synthesis and Separation of Macromolecules

While full scale automation of the synthesis and purification of macromolecules is nowhere
in sight, there are a few steps you can take to improve productivity along these lines. Vega
Biotechnologies offers a monitoring and control interface called the Coder 280 which links an
Apple and an automated DNA synthesizer for producing oligomers. Their other Apple-based
system is the Coupler 1000 for peptide synthesis. In both of these systems, using an Apple
means that you can run 24 hours a day if necessary, but that your investment in microprocessor
control also gets you a standard microcomputer to use when you’re not running syntheses.

Beckman has configured their L8M ultracentrifuge for a control and spin monitoring interface
with an Apple. This not only simplifies your task in calculating the speed for different rotors,
but it also means more unattended operation, temperature control, selection of stored accel-
eration/deceleration profiles for gradient separations, etc.
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Chromatography Systems

Both IMI and Cyborg make hardware and software packages for monitoring High Pressure
Liquid Chromatography (HPLC) and Gas Chromatography (GC). These systems are based on
comparatively inexpensive slow A/D converters but can be expanded to include control over
gradients, etc. The IMI Adalab system uses a 12 bit, dual slope converter with a 50 millisecond
conversion time. This is an adequate sampling speed for standard column HPLC, but may not
be fast enough for newer high speed separation techniques.

The Cyborg ISAAC 42A is built around an SAR A/D converter (see Chapter 14) with a 10
millisecond conversion time and 16 bit precision. The higher speed of conversion makes this
system suitable for microbore HPLC and capillary GC. The 16 bit precision is something to
keep in mind if you're doing complex separations with trace quantities. A 12 bit converter
effectively divides the full scale into 4,000 steps while a 16 bit converter divides it into 65,000
steps. Whether or not this makes a difference depends on the quality of your detector; if you've
spent the money for a very high resolution separation and detection system the 16 bit precision
may be well worth the extra cost in the data collection system.

Both of these systems have fairly extensive ready to run chromatography data collection and
analysis software. The Chromatext package with the ISAAC 42A has more elaborate analysis
and graphics features, and uses a 294K RAM card for high speed data storage and analysis
tasks. However, it is missing two strong features from the IMI package: software control of
the gradient pumps, and built-in routines for operating an HP 7470A/7475A or Houston
Instruments DMP 29 plotter (see Chapter 19).

To take advantage of IMI's software support of control outputs, you need to get their Chro-
madapt interface module along with the basic Adalab card. The ISAAC 42A chassis from
Cyborg has four slots for interface modules, much like their ISAAC 41A chassis, but it issold
with just the A/D card installed and the other three slots empty in the standard chromatog-
raphy package. If you want to add output control to the ISAAC system you have to purchase
an additonal card and their LabSoft programming language.
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PART 4

The Connected Apple

® CHAPTER 16 Serial Signals
® CHAPTER 17 Modems

® CHAPTER 18 Interfaces for Terminals, Modems
and Printers

® CHAPTER 19 Printers and Plotters
® CHAPTER 20 Local Area Networks and IEEE-488
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Chapter 16

Serial Signals

In the dawning decades of the electronic age, generation after generation of telegraph operators
struggled to make out the dots and dashes of Morse code. This long era came to an end in the
first few years of the 1900s with the advent of the printing telegraph, a machine which could
carry out the task of detecting and decoding, and then typing out the received message as
universally recognizable alphabetic characters.

From that time, the transmission and reception of electronically coded information ceased to
be a realm dominated by human skill, training and experience, and instead, the focus turned
to three areas: designing a code system which best suited the interpretive abilities of available
machines, choosing the appropriate electrical characteristics to best enhance reliable trans-
mission of the coded signals, and physically connecting the right wires to the right places.

It is an interesting sort of footnote that we still teach Morse code to youngsters (Boy Scout
merit badges and the like). This is apparently done as a sort of ethnic inculcation drawn from
the traditions of the dimly remembered past in which our electronic culture was born. More
recently, “RS-232C” has replaced Morse code telegraphy as a focus of awe and mystery.

Moving ASCII codes

For the past 20 years or so there has been substantially universal acceptance of the ASCII
code as a way of representing numbers and letters for interpretation by machines. The ASCII
code was discussed in Chapter 2, it will be discussed in more detail in Chapter 18, and it is
shown in Chapter 18, Table 18.1. Its most recent competitors included Binary Coded Decimal
(BCD), and Extended Binary Coded Decimal Interchange Code (EBCDIC).

BCD still crops up all the time inside computers, but is almost never permitted to get out
onto communications lines. For many years, all IBM computers used EBCDIC exclusively.
Fortunately, the ASCII world came to dominate, and EBCDIC has disappeared so completely
that you can reasonably expect never to have to deal with it outside of discussions of computer
history.

This is not to imply that you can simply plug any piece of computing equipment into any
other piece and expect them to communicate instantly and without further fuss. Far from it.
Far, far from it.

The code itself is never the problem. What has happened is that the functions performed by

the printing telegraph have been distributed out into several different kinds of machines.
ASCII codes come from people working at CRT terminals or microcomputers, and from data-
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bases in huge mainframe computers. The codes get sent to modems which place them onto
the telephone lines, to printers, and to clusters of other nearby computers. Modems, telephone
lines, printers, terminals and computers all seem to want their ASCII codes served up in their
own particular favorite way.

Connecting to Modems and Printers

There are no absolute and general standards. Variety is legion. In Chapter 20 there is coverage
of special interfaces for multi-computer networks, for connections with lab instruments (IEEE
488), and for talking with old teletypes. However, most Apple owners can limit their concerns
to interfacing one kind of “terminal” (the Apple) to a modem and to a printer.

Connection between terminals and modems is the one completely standardized kind of inter-
face. The coding system is called “asynchronous serial,” the electrical standard is called “RS-
232C,” and the arrangement of wires in the connector is also called “RS-232C.”

Unfortunately, the RS-232C system was designed only for operating modems, and happens to
lack two signals which you must have to operate a printer. As a result, nearly every printer
manufacturer has invented his or her own type of connection system. These systems fall into
two broad categories. The first group tries to come as close to RS-232C as they can, however
they tend to differ with regard to their way of adding the two missing signals.

The second group of printer manufacturers uses a set of slightly different coding systems
collectively called “parallel,” an electrical standard called “T'TL,” and several different kinds
of cable connectors. Within the last year or two, nearly all printers have been sold with the
option of using a standard system of wire connections and code signals. This de facto standard
is called “Centronics Parallel” and has been imposed on the manufacturers by frustrated
consumers rather than by an established standards committee.

Interface Cards and //c Ports

The II, II + and //e have no built-in facilities for any kind of RS-232C or parallel connections.
As a result, the usual pattern has been to select your printer, and then to choose an expansion
card which has the appropriate kind of modified RS-232C or specialized parallel connections,
and possibly to buy a separate standard serial card for your modem. None of the printer
manufacturers makes interface cards and vice versa, so you have to match up equipment from
at least two different companies.

Modem manufacturers have been a bit more attuned to helping folks with interfacing. SSM
sells a serial interface card and an external modem, while Hayes, Multi-Tech, SSM and No-
vation sell systems in which the guts of the modem is actually plugged directly into an Apple
peripheral slot, eliminating the need for a serial interface card.

One safe route through this jungle is to buy a card cdlled the AIO-II from SSM Microcomputer
Products. This one card can be simply and conveniently used to connect an Apple to absolutely
any printer, CRT terminal, or external modem (as well as to most plotters and a few other
specialized kinds of equipment). SSM will also provide any kind of interface cable you could
possibly need. This card is a bit of an oddity in the microcomputer world because it’s inex-
pensive, it’s always compatible, and no one else makes one.
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The situation is much more straightforward in the //c. The machine has two built-in, high
performance RS-232C ports and no parallel ports. Therefore, printer and modem manufac-
turers know that they must adjust their equipment to work with the //c. The parts and firmware
in the //c are fairly sophisticated and flexible, so you are unlikely to run into any insurmount-
able difficulties. Further, since Apple now sells its own modems and printers, you can avoid
all the problems by getting everything directly from Apple.

Computer Communication Via Telephone Lines

When data is being moved about within a computer, it is reasonably safe to assume that the
bits placed on the data bus by the 6502 will arrive, for instance, at the RAM chips exactly as
intended. Further, it is safe to assume that the RAM chips will be perfectly synchronized with
the 6502’s actions and that they will respond by capturing the data, without fuss, under simple
direct order from the 6502.

None of these assumptions are reasonable or safe when data bits depart from within the
protected confines of the computer. Inside the computer, signals are protected by a variety of
electronic arcania such as “thick ground planes,” “bypass capacitors,” and “power line filters”
(see Chapter 13), and all are synchronized by direct, “hard wire” connections to the system’s
one master clock.

Outside the computer, signals may travel through unprotected wires with noise prone electrical
characteristics. Electronic noise from radio frequency signals and from other signal wires can
and often will cause bits to get changed during transmission. Once the data arrives at its
destination, the receiving chips may belong to a computer that operates at a completely
different speed than the sender. Even if the two parties to the communication are both Apples,
their clocks will certainly not be synchronized with each other, and there is no way to make
the master clocks of two Apples become synchronized.

The result of these problems with noise and timing is that the basic information represented
in ASCII code must be supplemented with additional coded information which can help main-
tain surveillance against errors and which can help with the synchronization problem.

The Asynchronous Serial Coding System

The fundamental logic behind the various communications coding systems is that there can
be two completely different kinds of bits in the coded signals which are sent from one machine
to another. Some bits will be assigned to carrying the data which is actually being sent, but
there will also be some bits which are assigned exclusively to the special needs of the com-
munications equipment. These communications bit are usually added to the data just before
it is sent out of the computer, and then stripped off by the receiving device after the signal is
captured but just before the data is presented to the receiving processor.

To be historically accurate it is worth noting that the old serial interface card sold by Apple
relied on a system in which the 6502 itself added or removed the communications bits. However,
this kind of work has long been relegated to specialized single chip communications controllers.
The two most popular of these for Apple cards are the 6850 from Motorola and the 6551 from
MOS Technology, Synertek and others. These chips for 6800 based or 6502 based computers
are both called Asynchronous Communications Interface Adapters (ACIAs). The 6850 turns
up in the AIOQ-II card, while the newer and slightly more versatile 6551 is at the heart of the
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new Super Serial Card (SSC) from Apple. 'The /fe has two Synertek 6551s for its two ports.
Similar parts in 8080 or Z-80 based systems are called Universal Asynchronous Receiver
Transmitters (UARTS).

In asynchronous communications, each individual character which is transmitted is treated
as a separate problem for the timing and data integrity system. In other systems, long streams
of characters are sent with communications bits attached only to the very beginning and very
end of the stream. However, in the standard form of asynchronous communications, there are
three bits of communications information for every seven bits of data.

Error Checking and Parity

The ASCII code itself represents each of its 128 characters and control codes as a seven bit
pattern (see Chapter 18, Table 18.1). Therefore, asynchronous coding systems assume that
when ASCII data is being transmitted, the eighth bit in each byte is unused. This eighth bit
is manipulated by the ACIA to provide a crude sort of error detection system. The ACIA
examines each ASCII code and treats it as if it were just a number between zero and 127. In
one common protocol, it sets the eighth bit to zero if the number is even, but puts a one in
the eighth position if the number is odd. This gystem is called “parity checking.”

To use this for error checking, the receiving ACIA must be set up to operate with the same
protocol. When it is, it will check the numeric value of the incoming ASCII codes, and then
check to be sure the eighth bit is set appropriately. The five major error checking variants
available from the 6850 and 6551 (see Figure 16.1d) are odd parity, even parity, mark parity
(in which the eighth bit is set to one on all characters, a system expected by many mainframe
computers), space parity (in which the eighth bit is set to zero), and no parity. This last option
is important if you want to transmit non-ASCII data such as binary files or printer graphics
commands which use all eight bits.

If the ACIA is not happy with what it finds in the eighth bit, it is able to report that this
character is certainly incorrect. A program which is operating an ACIA should always check
with the “status register” of the ACIA (see Figure 16.1e) to learn if it thinks a character is
bad.

The asynchronous communication system provides no mechanism for correcting the error, but
at least you've got a warning that bad data is coming in. When this happens in a text trans-
mission, you can simply examine the text and correct it. If it happens with numerical data,
this sort of warning is very important. Occasional errors are handled by repeating the offending
portion of the transmission. If large numbers of errors are coming in, there’s probably some
hardware problem (for example, interference in the telephone line) which you’re going to have
to find and correct before continuing. /
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Asynchronous Communication
Interface Adapter

Features

® On-chip baud rate generator: 15 programmable baud ® 8-bit bi-directional data bus for direct communication
rates derived from a standard 1.8432 MHz external with the microprocessor.
crystal {50 to 19,200 baud). ® External 16x clock input for non-standard baud rates

® Programmable interrupt and status register to simpli- {up to 125 Kbaud).

fy software design. ® Programmable: word lengths; number of stop bits;
® Single +5 voit power supply. and parity bit generation and detection.
® Serial echo mode. ® Data set and modem control signals provided.
® False start bit detection. ® Parity: (odd, even, none, mark, space).
® Full-duplex or half-duplex operation.
® 5,6, 7, 8and 9 bit transmission.

Description

The SY6551 is an Asynchronous Communication Adap-
ter (ACIA)} intended to provide for interfacing the 6500/
6800 microprocessor families to serial communication

data sets and modems. A unique feature is the inclusion
of an on-chip programmable baud rate generator, with
a crystal being the only external component required.

Pin Configuration Block Diagram
6551
W TRANSMIT =
GND 1 ) AW controL [~
CS ]2 02 g
cs, 3 iRa
AES o TRANSMIT | .| TRaNswIT
RES Q4 B B DATA SHIFT |———- 0
RxC []5 DB REGISTER V| REGISTER
xTat1e [ o8y
xtaz (7 ] o8, — ..
s H os STATUS INTERRUPT —
ATS L18 i 3 0 REGISTER LoGIC i
8o ol D“t "‘:’:—-’ SELECT
T 8 oy ————"]
20 Ly s, — co:!:gou sauD [T Mk
57 DB, e CONTROL
B e —"—"] LOGIC REGISTER RATE XTALY
RxD DSR RS, ——=—at GENERATOR XTAL2
£ial 1 J—
RSy 6C0
RS, [ Vee RECEIVE RECEIVE
DATA K: SHIFT aig
o8, REGISTER REGISTER
> =71 oata =
{ | eus 1
| _|BUFFER
08, COMMAND RECEIVE
REGISTER CONTROL

Interface Signal Description
RES (Reset)

During system initialization a low on the RES input will
cause internal registers to be cleared.

$2 (Input Clock)

The input clock is the system ¢2 clock and is used to
trigger all data transfers between the system micropro-
cessor and the SY6551.

R/W (Read/Write)

The R/W 15 by the micr and is used
to control the direction of data transfers. A high on the
R pin allows the processor to read the data supplied

by the SYG551. A low on the R/W pin allows 2 write to
the SY6551.

1 |

ATS

IRG {interrupt Request)

The iRQ pin is an interrupt signat from the interrupt

control logic. 1t is an open drain cutput, perditting

several devices to be connected to the common (RO
i input. N ly & high level, IRQ goes

low when an interrupt occurs.

DBg - DBy (Deta Bus)

The DB(-DB; pins are the eight data lines used for trans-
fer of data between the processor and the SY6551.
These lines are bi-di and are liy high-im-
pedance except during Read cycles when selected,

CSp, TSy  (Chip Selects)

The two chip select inputs are normally connected t0

the processor address Jines either directly or through de-
coders. The SY6551 is selected when CSg is high and
CS, is low.

RSp, RSy (Register Selects)

The two register select lines are normally connected to
the processor address lines to allow the processor to
select the various SYG551 internal registers. The follow-
ing table indicates the internal register select coding:

Fig. 16.1a Pinout, block diagram, and microcomputer interface signals for Synertek 6651 ACIA (Asynchronous
Communications Interface Adapter). The Transmit Data Register and the Receive Data Registerboth appearin
the Apple //c address space at $C098 for the port 1 ACIA or at $C0a8 for the port 2 ACIA.

Courtesy of Synertek, see page 2.
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RSy RSo Write Read -7 DTR (Data Terminal Ready)

0 0 | Transmit Data | Receiver Data This output pin is used to indicate the status of the
Register Register 8Y6551 to the modem. A low on DTR indicates the
SY6551 is enabled and a high indicates it is disabled.
The processor controls this pin via bit 0 of the Com-
mand Register.

DSR (Data Set Ready)

0 1 Programmed Status Register
Reset (Data is
“Don‘t Care”’)

1 0 Command Register LAY
x The DSR input pin is used to indicate to the SY6551 the

! 1 Guyitre) Regtar status of the modem. A low indicates the “ready” state
The table shows that only the Command and Control and a high, “not-ready.” DSR is a high-impedance input
registers are read/write. The Programmed Reset opera- and must not be a no-connect. If unused, it should be
tion does not cause any data transfer, but is used to clear driven high or low, but not switched.
the SY6551 registers. The Programmed Reset is slightly Note: If Command Register Bit 0 = 1 and a change of
different from the Hardware Reset (RES) and these state on DSR occurs, TRQ will be set, and Status Regis-
differences are described in the individual register de- ter Bit 6 will reflect the new level. The state of DSR
finitions. does not affect either Transmitter or Receiver operation.
ACIA/Modem Interface DCD (Data Carrier Detect)
Signal Description The DCD input pin is used to indicate to the SY8551

XTAL1, XTAL2 (Crystal Pins) the s'tatlfs of the carrier-detect outpt'lt of. the rflodem. A

: N low indicates that the modem carrier signal is present
These pins are normally directiy connected to the exter- and a high, that it is not. DCD, like DSR, is a high-
nal crystal (1.8432 MHz) used to derive the various baud : 3
rates. Alternatively, an externally generated clock may
be used to drive the XTAL1 pin, in which case the
XTAL2 pin must float,

impedance input and must not be a no-connect.

Note: If Command Register Bit 0 = 1 and a change of
state on DCD occurs, IRQ will be set, and Status Regis-
ter Bit 5 will reflect the new level. The state of DCD
- TxD (Transmit Data) does not affect Transmitter operation, but must be low

The TxD output line is used to transfer serial NRZ (non- for the Receiver to operate.

return-to-zero) data to the modem. The LSB (least internal Orgonizotion
significant bit) of the Transmit Data Register is the first
data bit transmitted and the rate of data transmission is
determined by the baud rate selected.

The Transmitter/Receiver sections of the SY6551 are
depicted by the block diagram in Figure 5.

~>> RxD (Receive Data) g ICEVER o

The RxD input line is used to transfer serial NRZ data
into the ACIA from the modem, LSB first. The receiver
data rate is either the programmed baud rate or the rate R D‘i";?,f:;. LS;";V'CC
of an externally generated receiver clock. This selection CONTROL diie)
is made by programming the Control Register. :.ETG .'s: E,"
RxC (Receive Clock) A 8AUD cLocK

(] RATE DIVIDER
The RxC is a bi-directional pin which serves as either the | L RATOR i)
receiver 16x clock input or the receiver 16x clock out- f f T t
put. The latter mode results if the internal baud rate BITS0-3 IN

CONTROL

generator is selected for receiver data clocking. EEGISTER E@_—‘ o
e SHIFT REGISTER
RTS (Request to Send)

The RTS output pin is used to control the modem from
the processor. The state of the RTS pin is determined
by the contents of the Command Register,

Figure 5. Transmitter/Receiver Clock Circuits

Bits 0-3 of the Control Register select the divisor used

CTS (Clear to Send) to generate the baud rate for the Transmitter. If the
The CTS input pin is used to control the transmitter Receiver clock is to use the same baud rate as the Trans-
operation. The enable state is with CTS low. The trans- mitter, then RxC becomes an output pin and can be
mitter is automatically disabled if CTS is high, used to slave other circuits to the SY6551.

Fig. 16.1b ACIA/Modem interface signals for 6651 ACIA.

276



Control Register

The Control Register is used to select the desired mode
for the SY6551. The word length, number of stop bits,
and clock controls are all determined by the Control
Register, which is depicted in Figure 6.

CONTROL REGISTER
7/6/5141312/1]0

BAUD RATE
STOP BITS GENERATOR
0 = 1 Stop Bit 0] 0] 00| 16x EXTERNAL CLOCK
1 = 2 Stop Bits 0olo]o |1 50 BAUD
1 Stop Bit if Word Length
= 8 Bits and Parity* g0 L0 i
1% Stop Bits if Word Length 0joj1i 109.92
=5 Bits and No Parity. 0j1j0/(0 134.58
WORD LENGTH g : ‘: :) ;Zz
BIT |DATA WORD
615 LENGTH o(1{1(1 600
oo 8 110[(0]|0 1200
o1 7 1]0}011 1800
1o ) 1|]0]1]|0 2400
K] 5 1o ] 3600
1/1}10(0 4800
RECEIVER CLOCK SOURCE 111101 7200
0 = External Racsiver Clock L5 R B ) 9600
1 = Baud Rate Generator 1{1]{1]1 19,200

*This allows for 9-bit transmission {8 data bits plus parity).

7 6 5 &4 3 2 1 0
HARDWARE RESET ojJjolojojojojo]|o
e S S I S B S S

Fig. 16.1¢ 8551 ACIA Control Register. In the //c, itmay be read from or written to at §CO9B for the port 1 ACIA
or at $COAB for the port 2 ACIA.

Command Register
The Command Register is used to control Specific Trans-
mit/Receive functions and is shown in Figure 7.

COMMAND REGISTER
7116|5413 (2[1]0

d
PARITY CHECK CONTROLS t————————————— DATA TERMINAL READY
BIT OPERATION 0 = Disable Receiver and All
7165 Intereupts {DTR high)
. 2 T 1= Enable Recsiver and All
- | = | 0 | Parity Disabled - No Parity Bit Biver
- No Parity Bit Received Interrupts (DTR low)
0| 0 | 1 ] OddParity Receiver and Transmitter
0 1 1 Even Parity Receiver and RESEIVER INTERRUPT ENABLE
Transmitter 0 = IRQ Interrupt Enabled from Bit 3
1{ 0 [ 1 [ Mark Parity Bit Transmitted, ﬁumx Register
Parity Check Disabled 1= IRQ Interrupt Disabled
1 1 1 Space Parity Ei_t Transmitted,
Parity Check Disabled TRANSMITTER CONTROLS
BIT | TRANSMIT RTS
37z | INTERAUPT | 1LEVEL | TRANSMITTER
0|0 Disabled High Off
NORMAL/ECHO MODE 0} Enabled Low On
FOR RECEIVER 1 [0 | Disabled Low On
0 = Normal 1)1 Disabled Low Transmit BRK
1=Echo (Bits 2and 3
must be "'0")

7 6 5 4 3 2 1 0
e | Tt

Fig. 16.1d 6551 ACIA Command Register. In the //c, it may be read from or written to at $CO9A for the port 1
ACIA or at $COAA for the port 2 ACIA.

277



Siatus Register Transmit and Receive Data Regislers

The Status Register is used to indicate to the processor These registers are used as temporary data storage for
the status of various SY6551 functions and is outlined the 6661 Transmit and Receive circuits. The Transmit
in Figure 8. Data Register is characterized as follows:
@ Bit O is the leading bit to be transmitted,
ﬂﬂﬂﬂﬂﬂﬂﬂ : ® Unused data bits are the high-order bits and are
L — o s don‘t care” for transmission,
parity tmorr | 2N BN ) st Craaringe® The Receive Data Register is characterized in a similar
Fiasaiag Ervos® 2 = :::mw Sail Clasiing™ fashion:
Overrun® SN Enmor | seif Cleoring*e ® Bit 0 is the leading bit received.
mmo-: (:- 'Fm Full Read Receive ® Unused data bits are the high-order bits and are
Ry P 2 Ses “Q"* for the receiver,
Transmit Dats 0 = Not Empty Wreits Transmit . X
Register Empty | 1 = Emoty Deta Register ® Parity bits are not contained in the Receive Data
5% % Low ooy - Register, but are stripped-off after being used for
| sum external parity checking. Parity and all unused
0-B8R L Not Remtuatie high-order bits are *'0"".
o 12 DEA Hign | etiecrs DI "
RO 0= No Insarrupt [ Resd Figure 9 illustrates a single transmitted or received
12 eript | Bhetun Nepion data word, for the example of 8 data bits, parity, and
*NO INTERRUPT GENERATED FOR THESE CONDITIONS. 1 stop bit.
**CLEARED AUTOMATICALLY AFTER A READ OF RDR AND
THE NEXT ERROR FREE RECEIPT OF DATA. iR ARARK:
ol Jalafajs]e]lz]P]
7 6 6 4 3 2 1 0 l s | T
HARDWARERESET 0| - -f1]ojolo]o i i
PROGRAM RESET | - | - l - l _ I - i 0 | - I = | BIT [

sTOPBIT

Fig. 16.1e 6551 ACIA Status Register. In the //c, it may be read from or written to at $C099 for the port 1 ACIA
or $COA9 for the port 2 ACIA.

Framing, Serial Format and Baud Rates

Once an ACIA has gotten hold of an ASCII code and done whatever it’s supposed to do to the
eighth bit, it has then got the problem of getting this set of eight bits onto a single wire for
transmission on a phone line. To do this, an asynchronous communication system creates a
little pattern called a “frame.” In a typical setup, it turns on its output for 3.3 milliseconds,
then turns it off for eight more intervals of 3.3 milliseconds each (off for 8 x 3.3 = 26.6
milliseconds), then turns it on again for a closing burst, also about 3.3 milliseconds induration.
The initial burst is called a “start bit,” the eight “off” periods are called a “frame,” and the
closing burst is called a “stop bit” (see Figure 16.1e).

In the standard conventions of asynchronous communications, the frame is considered to have
eight “cells” in it. These cells are not physically marked off from each other, but rather reflect
the time allowed (3.3 milliseconds apiece). Each of the cells can be used to communicate one
bit of data. The disk drive system also uses a scheme with cells in a serial stream, but on a
floppy disk a marker is placed between each cell. There are no physical or electrical cell
markers in asynchronous communications.

As long as both the sender and receiver are both using the same 3.3 millisecond intervals,
the receiver is able to know when a character frame has arrived, and when each bit should
appear within the frame. If the code that is sent within the frame is “00010001,” there will
be no ambiguity about when the data begins. The three leading zeros in this example will be
recognized as zeros because nothing happens in the signal line during the first three cells of
the frame. :
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To create a frame for transmission, one part of the ACIA outputs a start bit, and then a
different part of the ACIA which is connected to the same line drops the data bits into the
time cells, one after another. Within a given cell, it does nothing to the line if the data is zero,
but puts a 3.3 millisecond pulse onto the line if the data bit is a one. Finally, the framing
section of the ACIA outputs a stop bit, and the device prepares to send the next character.

Each character therefore requires 10 intervals, one start bit, eight bits for the parity + ASCII
code, and one stop bit. If each bit is allotted 3.3 milliseconds, and these 10 bit character codes
are sent one after another in rapid succession, then there will be time for 300 bits in each
second. This is called a “300 baud” transmission rate. But, as you can see, the critical timing
element is the duration of the framing and data cells. An instruction to the ACIA that it
should operate at 300 baud (see Figure 16.1c¢) simply informs it that it should use 3.3 milli-
second cells even if it has only one character to send every 10 minutes..

RS-232C Data Signals

The 10 bit character code that emerges from the ACIA is a fairly standard computer signal
in that it is either 0 volts or 5 volts, and it is compatible with standard “TTL” chips (see
Chapter 13. However, although TTL signals are just fine running from chip to chip inside a
computer, they tend to get overwhelmed if they travel more than two or three feet in 4 cable
outside the computer.

Fig. 16.2 The //c serial interface hardware includes two 6551 ACIA’s, an MC 1488 and MC 1489 to handle the RS-232
electrical interface and a 74L.S161 chip to provide the baud clock rate which it gets by dividing down the 14 MHz system
clock frequently.
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The RS-232C system was intended to securely carry asynchronous serial codes over distances
of up to about 50 feet. And although the RS-232C standard was designed long before the birth
of TTL chips, it serves nicely for handling the external tasks of what is internally a TTL
system. A chip called the Motorola 1488 is used in the AIQ-II, the Apple Super Serial Card
and in the //c (see Figure 16.2) to do the conversion from TTL signals to RS-232 signals.
Although RS-232C allows considerable leeway, most computer manufacturers use a standard
signal system in which any pulse which is +5 volts in the computer is sent out as -12 volts,
and any signal which is 0 volts in the computer, comes out of the 1488 at +12 volts.

As a voltage pulse travels along a wire, it encounters some fixed amount of resistance per foot
of wire and this causes the voltage to drop steadily. Once a TTL signal has dropped from +5
volts to about + 2.5 volts, it gets fairly unreadable. In RS-232C, however, the starting signals
range from + 12 volts to -12 volts and the typical RS-232C receiver is designed to be able to
distinguish +5 from -5 volts, thus allowing for a loss of seven volts in either line. In a TTL
line, a one volt increase of the 0 volt signal together with a 1 volt decrease of the 5 volt signal
can be fatal to transmission. RS-232C transmissions are much more rugged.

Once an RS-232C signal arrives and is detected as positive or negative, a Motorola 1489 chip
can convert back into standard TTL levels for the receiving ACIA.

Fig. 16.3a DB-25 connectors for RS-232C communications. Male connector on left, female on right.
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Fig. 16.3c Pinout for the RS-232C signals on
the //c DIN connector.

Fig. 16.3b A 5-pin DIN connector used for the
//c RS-232C serial ports.
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The RS-232C Mechanical Connector Problem

In addition to agreeing on the permissible voltage levels for the wires which carry the data,
the RS-232C committee also agreed to a standard for the shape and number of pins for the
plugs and receptacles. The type of connector is called a “DB-25” or “25 pin subminiature D
connector” (see Figure 16.3a).

The “male” version of the connector has the pins and the “female” version has the little holes.
It was recommended that a female connector be placed on the modem and a male connector
be used on the computer; however, pins projecting from an unplugged connector tend to get
bent or short circuited, so many computer manufacturers have put female connectors on the
computer end as well. This is no problem if you connect the two with a cable that has a male
connector on both of its ends. Apple supplies the Super Serial Card with a female connector,
SSM gives you a choice with the AIO-II, and if all else fails you can always run down to Radio
Shack to get the appropriate parts to make your own.

The //c serial ports both have five pin DIN connectors (see Figure 16.3b). You’ll do best to buy
cables specially made for the //c because there are several different kinds of five pin DIN
connectors and no standard for what wire goes on which pin. Ideally, you want a cable with
a male DIN connector on one end and a male DB-25 connector on the other end.

The RS-232C Signal Connector Problem

The real “connector problem” with RS-232C has nothing to do with male versus female,
however, but is a little bit more subtle and a lot harder to detect. The RS-232C committee
assumed their standard would be used primarily for connecting terminals to modems and for
connecting computers to modems. Terminals and computers were called Data Terminal Equip-
ment (DTE), and modems were called Data Communications Equipment (DCE). All of the
signal wires used in the RS-232C standard are allowed to carry information in one direction
only. Some carry information from the DCE (modem) to the DTE (computer) and some go the
other way.

Of the 25 pins available on the DB-25 connector, the primary concern for many applications
is limited only to pins number 2 and number 3. Number 2 is intended to carry data signals
from a DTE (computer) to a DCE (modem) and is called Transmit Data (TD). Pin 3 is for carry
data in from the DCE (modem) to the DTE (computer) and is called Received Data or (RD).
This is all simple and straightforward if you are connecting an Apple to a modem.

However, some Apple owners connect separate CRT terminals to their computers in order to
take advantage of the detachable keyboard, and others wish to connect their machines directly
to another computer without an intervening modem. In each of these situations, all parties
involved will consider themselves to be DTEs. All will send out data on pin 2, yet no data
will ever turn up on anyone’s pin 3. .

Much worse, most printers consider themselves to be terminals. Both the Apple //c and the
Imagewriter are configured as terminals (DTE) and neither is a DCE. Once again, the best
thing is to buy specially made cables which handle the problem for you. But note that you
can’t use the same //c cable for a modem and for a printer.

Handling the “Null Modem” Problem with Interface Cards

If you bought the old Apple serial card, it was set up as if the Apple were a DCE or modem.
To connect to a real modem, you had to solder together a device called a “null modem” or
“modem eliminator” which, among other things, connected line 3 (the TD for a DCE) from
the Apple over onto line 2 (the TD for a DTE). The reason Apple chose this configuration is
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- because they expected most printers, mainframe computers and terminals to want to play the
part of the DTE; so the Apple would have to pretend it was a modem (DCE). Many serial
cards are still sold in this configuration, so M & R makes an item called an Adaptabox which
simplifies the construction of a null modem.

The Super Serial Card from Apple has a little unit called a “jumper block” which you unplug,
turn around, and replug to do the DCE to DTC conversion. The AIO-II from SSM has two
different connectors on the card, one labled “modem” (for connecting to a modem) and one
labeled “terminal” (for connecting to a printer, terminal or other computer). The only limitation
on the AIO-II is that you can’t use both at the same time, but this restriction is eased a bit
because the AIQ-II has a separate “Parallel” printer port which can be used to simultaneously
print the data being passed through your modem.

Another company, California Computer Systems (CCS), sells two different serial cards; the
7710A, which is set up as a DCE, and the 7710D, which is set up as a DTE. Yet another variant
is the CPS Multifunction card from Mountain Computer which can switch from DCE to DTE
under software control, retaining the configuration for up to two years (battery backup mem-
ory) or until instructed to change again.
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Chapter 17

Modems
Why Computers Need Modems

Until all the copper wire in the telephone system gets replaced with optical glass fiber, computer
users are going to have to continue to endure major dependence on a connection and signal
system which is grossly unsuited to digital data transfer. In networks (see Chapter 20), com-
puters are able to exchange data at rates of up to four million baud. The telephone system as
it is now arranged cannot tolerate signal changes faster than 600 baud. Yes, that was four
million versus 600.

It’s not that the telephone company has anything against computers. The very reason that
computer users need the phone system is the same reason that it cannot adapt to their needs.
Telephone wires go absolutely everywhere. We're talking about hundreds of millions of miles
of copper, well into the gobs and gobs range. Whenever the phone company makes a change
or improvement in its system, it has to see that the improvement will not either cut off vast
numbers of phone users or force them to replace all the wires. Actually, things have gotten
so intolerable that the replacement process has begun, in favor of lasers and fiber optics, but
this is going to take decades.

The initial premise of the telephone system was that everything should be engineered for
clean, crisp transmission of voice. No easy task, yet certainly well met. Voice is transmitted
as an electronic image of oscillating sound waves. The majority of the important frequencies
in human voice are in the 700 to 3000 Hz range that the phone system is designed to accept.
When you have predictable kinds of continuous oscillations you can apply all kinds of analog
magic to, for instance, interweave dozens of simultaneous phone conversations in a single wire
and then sort them out at distribution points so the parties speaking never know they have
anything other than their very own individual line.

This a wonderful trick, and we all appreciate it—most of the time. However, if you try to send
digital on/off signals through this phone system you encounter gross failure. The phone system
no longer seems so wonderful.

First, the wires have a small but finite capacitance (see Chapter 13), which means that in the
first few instants of a voltage transition, current rushes to fill these effective capacitiveplates.
However, as the signal transitions become faster and faster, the fixed filling time becomes a
greater and greater percentage of the total length of the signal burst. Above a certain frequency
the signal spends all its time emptying and filling the capacitance of the wire. The sum effect
of this is that above standard telephone frequencies, a signal just disappears into the wire
near the transmission point and never makes it to the other end.
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Going slow still doesn’t solve the problem. Much of the wizardry of telephone switching,
compressing and line sharing is quite toxic to discrete digital pulses and vice versa. Digital
is not allowed and it won’t work. If computers insist on conversing on the phone, they must
generate signals which behave like voice but are still easily interpreted by machine. Enter
the modem.

Modem Features

The simplest modems (i.e., Signalman, $99) do little more than sit between your serial card
and your telephone receiver, patiently and slowly moving digital data onto and off of the phone
lines. The most elaborate modems (i.e., Novation 212, Apple-CAT II, $800 +) will, unattended,
wake themselves up in the middle of the night, call another modem, transfer large files at
high speed and with great accuracy, turn out the lights in your living room, answer incoming
calls, collect any incoming modem messages for you to see later, and periodically do complete
checks on the integrity of their internal circuitry.

If you’ve never owned a modem, you may be amazed at the thought of spending over $500 for
a phone hook-up. However, for most business and academic telecommunication needs, a very
good case can be made for buying a full featured modem such as the Hayes Smartmodem 1200
($700), and home users should give full consideration to their potential needs before buying
a minimal modem.

Modulation, Demodulation and Carriers

The purpose of a modem (which is a contraction of the term modulator/demodulator) is to
stand between the digital world of the computer and the voice world of telephone and mediate
between them. The simpler modems which transmit information at 110 or 300 baud use a
very simple conversion system, generating two different tones to represent the digital on or
off. At higher speeds of 1200 bits per second, modems are forced to engage in much more
elegant magic of their own to slip high speed information through a low speed conduction
system.

Low Speed Modulation

The low speed (up to 300 baud) system actually dates back to early days of sending Morse
code over telegraph lines. The two tones are just oscillations at two different frequencies and
8o the system is called Frequency Shift Keying (FSK) with the “key” referring to the little
lever you tap on to generate Morse code. As the bits arrive at a modem from an RS-232C TD
line, the modem responds by generating one tone for zeros and a different tone for ones.

RS-232C signals are digital, and one consequence of this is that one wire cannot carry infor-
mation in two directions at exactly the same time. If you want to communicate in two directions
in one digital wire, you have to time everything very carefully so that the two sources are
unambiguously on at different times. This is all very demanding and RS-232C avoids the
problem by using two different wires, one (wire 2, TD) from the DTE (computer) to the DCE
(modem) and one from the DCE to the DTE (wire 3, RD).

In a telephone line, however, no such restrictions apply. This is because telephone information
signals are similar to sound and voice. When you are in a room with several people talking
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at the same time, you may not be able to pay attention to all of them, but your ears have no
trouble taking what is really a single complex sound wave and decomposing it into several
distinct and identifiable voices. As is well known, telephone conversation can take place in
two directions simultaneously, but it should be clear that both speakers’ voice signals are
completely intermingled in a complex pattern on a single wire.

Similarly, modems are able to converse in two directions on the same wire as long as the two
have different sounding voices, so to speak. The modem which originates the conversation is
required to “sing” its tones with a low pitched voice, while the answering modem sings with
a high pitched voice. When your modem contacts another modem, it maintains a low voice
through out the conversation. When another modem calls you, then your modem switches to
its high pitched voice. If you've ever listened to a calling modem, you’ve no doubt heard the
steady lower tone called the “originate carrier” tone.

In the United States there is a standard called Bell 103/113 which specifies what tones should
be used. The agreed on frequency for the originate carrier in the U.S. is 1070 Hz, and the
agreed on frequency for the answer carrier tone is 2025 Hz. These are the two voices. When
the two modems are both “on line,” both signals exist in the same telephone wire, but, like
your ear, the listening circuits of the modem have no problem telling the two apart.

300 Baud Frequency Shift Keying (FSK)

o o 0 1 0 1 0 0

1070 Hz 1070 Hz 1070 Hz 1270 Rz 1070 Hz 1270 Hz 1070 Hz 1070 Hz

Fig. 17.1 FSK modulation.

Whenever the originating modem has a one to transmit, it shifts frequencies a little to 1270
Hz, a zero brings it abruptly back down to the deeper tone at 1070 Hz (see Figure 17.1). The
originating modem shifts between a zero or “space” state of 2025 Hz and a one or “mark”
state of 2225 Hz. Two way communication in the same line are referred to as “Full Duplex,”
as opposed to “Half Duplex” communication where only one kind of tone is used and com-
munication proceeds in one direction only.
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International communications are conducted at a slightly different frequency using a standard
called “V.21” established by the Comite Consultatif International Telephonique et Telegrap-
hique (CCITT). Why must the French be different? Well, there are actually supposed to be
accents over several of the letters in the name of that international organization, but there
is no ASCII representation for accented letters. OQur American codes leave much of the world
out in the cold, even European countries which use an alphabet very much like our own.
American standards usually aren’t sufficient, so the CCITT goes about its business being
concerned with the special needs of a much broader community.

Acoustic Coupling

The simplest and oldest way of getting the modem tones onto the telephone line is to actually
generate the tones as sounds and then press a regular telephone receiver up against the
modem’s speaker. Back in the days before modular phone jacks, you had to cut and splice
wires if you wanted a direct electrical connection between your modem and the phone line.
This was not popular or convenient, so “acoustic” modems which actually relied on audible
tones were very popular.

These devices are still useful if you need to quickly connect a modem in a place without both
modular jacks and some sort of dual connection. Typically, you need to dial a number to get
a carrier tone, and then connect your modem instead of your telephone. This is a simple trick
if you can just plop the receiver down in the cradle of an acoustic modem. For this reason,
several manufacturers of portable computers have surrendered precious weight and space to
include an acoustic modem.

Acoustic modems which operate with the Bell 103/113 standard are available from Novation
and from Multi-Tech. The big problem with modems based on acoustic couplers is that they
have comparatively poor performance at secure data transmission. Someone talking in the
room might generate confusing tones. Novation sells a device called the Super Mike which
replaces and improves upon the microphone in your telephone handset, but if at all possible,
acoustic couplers should be avoided. *

300 Baud versus 1200 Bps

The major choice for most folks buying modems is between the slow 300 baud (30 characters
per second) or the faster 1200 bps (120 characters per second) machines. In fact, there is little
good justification for choosing a 300 baud modem unless you expect to use it only a few times
a year for fairly light work. A 300 baud modem costs less the day you buy it, but when you
are using a modem, you pay for telephone use by the minute and when you are contacting a
database such as The Source, you pay by the minute once again.

Everything takes four times longer with a 300 baud modem, so not only does the screen fill
with painful slowness, and your telephone line stay busy for extra hours, but all of your time
charges from the phone company, and some of them from the places you call, will be fourtimes
greater. This will cause you to cut back on your use of telecommunications and that certainly
defeats your original purpose. The frustratingly slow response of your computer, the endless
busy signals for people trying to reach you, and the high time charges together conspire to
cause many owners of 300 baud devices to put aside their first modem and buy a second one
which runs at 1200 bps. Only Novation provides a mearns of upgrading a 300 baud modem to
1200 bps (Apple-CAT II with 212 upgrade).



In the past, many Apple owners purchased 300 baud modems simply because none of the
easily installed internal modem cards could provide 1200 bps communications. The Era 2 1200
bps internal modem card from Microcom, which is now available, should convince many Apple
II, IT+ and //e owners to buy 1200 bps. The Era 2 is comparatively inexpensive for a 1200bps
system, and since you don’t need an interface card, it is far and away the lowest cost path to
high speed communication. It includes terminal emulation software and special data protocols
for communications with computers from other manufacturers.

High Speed Modulation

The FSK system used for 300 baud modems is useless for transmission at 1200 bps. Since
telephone communications permit signals from 700 Hz to 3000 Hz, it will no doubt be impossible
to understand why FSK modulation at 1200 bps won’t work.

The top diagram in Figure 17.2 is a representation of the range of frequencies accepted by
the phone line. It is divided down the center at 1850 Hz, with all the lower frequencies being
available for the originating modem and all the higher frequencies being reserved for the
answering modem. The originate carrier tone of 1070 Hz sits nearly in the middle of the lower
half, while the answer carrier tone of 2025 is near the middle of the upper half. As you can
see, the small shift between 1070 and 1270 Hz leaves most of the region between the bottom
(700 Hz) and the top of the originate zone (1850 Hz) untouched and presumably quiet, and
the situation in the answer zone is similar.

300 Baud Originate Answer
1070 Hz 1270 He 2025 Hz 2225 He
700 Hx 1830 Hz 3000 Hz
L_ asous _)l I(_ 4s0Hs _,|
for for
sidebands sidebands
1200 Baud 1200 He 2400 Hz
700 Hs 1830 Hx 3000 Hs
| 1600 Hs |
e for >
L 1600 Hz N sidebands |
N sidebands K
1200 Bps
. &
(600 Baud) o sl
700 Hs 1850 Hs 3000 Hz
900 Hs | L 900 Hz Al
; sidedinds v sidebands “

Fig. 17.2 Telephone lines permit frequencies between 700 and 3000 Hz. When a tone is modulated, it generates
“sidebands” which require space in the frequency spectrum.
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In reality, however, the act of modulating the frequency of a tone causes a few ringing fre-
quencies to appear. These are a kind of harmonic, much as in music. They are called “side-
bands,” and they are extremely important in radio and TV broadcasting. It is sufficient to
appreciate that they cause disturbances at a variety of frequencies around the central carrier
tone. The further from the carrier, the lower the amplitude of the disturbance. In practice, if
the modulation is going on at 300 Hz then the sidebands will cause substantial disturbances
over a range of 1.5 times 300 equals 450 Hz. You must therefore set aside a band of frequencies,
450 Hz in width, around the center of the mark and space frequencies. Figure 17.2 also shows
the true space required by the originate and answer signals, with sideband disturbances
included.

Now that you know about sidebands, consider what would happen if you tried to modulate at
1200 Hz. As is shown in Figure 17.2, there would be overlap and interference between the
two “voices.” In actual practice, FSK can be done at 1200 Hz if the line is half duplex, that
is, if communication is only tolerated in one direction. For the most part, however, FSK is not
useful. The maximum reasonable modulation frequency is 600 Hz. This is what is meant when
it is said that a telephone line can only be modulated at 600 baud.

Phase Shift Keying for High Speed Communication

Modems that can handle two way communication at 1200 bps are much more expensive than
300 baud modems. The extra cost is not just to pay for the same circuit running a little faster.
Rather, a 1200 bps modem requires a much more sophisticated means of modulating data,
and the electronics involved is far more elaborate. Good quality stand alone modems for 300
baud communications typically cost about $200, while 1200 bps modems of similar external
appearance list for $600.

The basic solution to putting 1200 bps communications into a 600 baud phone line is obvious,
just put two bits in every baud. What this might mean is that you use four different tones
instead of just two tones. You would not modulate any faster, but each signal would convey a
richer amount of information. There are four possible pairs of bits; 00, 01, 10, and 11 (four
“dibits”). If each one of the four is assigned a different signal then you could use any possible
combination of ten bits as a series of five dibit signals.

In actual practice, it is not possible to use FSK with four different frequencies. As you can
see from Figure 17.2, 600 baud is already calling it close on sidebands, and using four different
frequencies makes the sidebands too wide. Therefore, communications at 1200 bps do not
modulate frequency. The originator sends a carrier at 1200 Hz, and the answering modem
uses 2400 Hz, but the frequencies are not varied.

What is modulated for 1200 bps communications is the phase of the signal (see discussion of
phase in Chapter 7). If the dibit is 00, the carrier is shifted to begin each signal 1/4 acycle
late (+90 degrees), 01 is set to no phase shift, 10 starts a half cycle late (+ 180 degrees), and
11 starts 1/4 cycle early (-90 degrees). This system is called Phase Shift Keying (PSK). In this
way, modulation is performed at 600 baud, each baud describes two bits, and everything is
done at a single frequency.

To demodulate a PSK signal is a bit tricky since you must know the true unshifted phase
with which to compare each dibit. This calls for one last trick, which is to sneak in a reference
signal for timing the phase shifts. To do this, a 1200 bps modem collects in asynchronous data
and attempts to send it as long streams in continuous synchrony. If new characters come to
the modem from the computer too slowly or too fast, it is able to remove or add a few extra
stop bits to keep its pulsed output steady and regular. Finally, the data bits are shuffled around



amongst each other in a way which is both sufficiently predictable to permit reconstruction
by the receiving modem, yet also sufficiently irregular that they won’t confuse the interpre-
tation of the timing signal.

This is truly arcane stuff, but it is sufficient to note that 1200 bps transmission is a very
different beast than 300 baud transmission. Further, there are even more complex modulation
schemes which are so bizarre that few engineers can understand them well, but which have
the balancing merit of permitting transmission at speeds up to 9600 bps without the telephone
wires ever knowing what is zipping by within them.

Bell 212 versus Bell 202

Buyers should also be aware of the fact that there are two very different kinds of 1200 bps
modems on the market. As explained earlier, you cannot conduct “full duplex” (two way)
communications on the phone line at 1200 bps unless you do some very fancy electronictricks.
There is a standard for the trickery which is called the “Bell 212” system. However, if you
use only half duplex (one way) conversation, then transmission can be achieved by the same
simple modulation technique used for 300 baud communications.

These half duplex 1200 baud systems are called “Bell 202” compatible. The electronics in the
modem is much simpler, so these 1200 baud modems are much less expensive. However, they
constitute one large monkey wrench in that they are not the standard—you may not be able
to use them for most communications needs. The Sup’R Access-1 from M & R uses Bell 202
(note: this device from M & R offers several other more useful features), and it crops up here
and there among other equipment; so be careful when someone offers a real cheap “1200 baud”
modem.

1200 bps Problems for the //e and //c

Quite inpependent of the details of the modem itself, some Apple owners may have difficulties
using 1200 bps modems because of particular quirks of some models of the Apple. One sort of
problem applies to some Apple //e’s and the other applies to some Apple //c’s.

Slow Video Echo on the //e

The problem in the //e has to do with the 80 column video system. In most uses of a modem,
each character that arrives from the telephone line is “echoed” for display on the video screen.
As characters come pouring in, the //e does just fine for a while, steadily filling the screen
with incoming text. However, once the screen has 24 full lines of text on it, the Apple hasto
“scroll” the display. In the //e 80 column sytem, scrolling up by one line keeps the 6502 busy
long enough so that it will miss one or two incoming characters before it gets done with the
screen. With the screen full, it has to scroll after each line, and the situation becomes intolerable.

If you use a completely different kind of 80 column card, of the sort that Apple II and I+
owners put in slot 3, then you will have no problem. Those cards have a specialized CRT
controller chips which scrolls almost instantaneously. However, if you still want to use extra
memory in the auxiliary slot, you can only use the Ultraterm card from Videx, since other,
less expensive cards, require you to remove all cards from the auxiliary slot.

Another way to solve the problem is to use a serial interface card that generates “interrupts”
to stop the scrolling process for an instant whenever a new character needs to be captured in
from the modem. This requires specially designed communications software, and won’t work
on all //e’s. Older //e’s (bought in 1983) automatically disable the interrupt system whenever
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scrolling begins. //e’s from the first half of 1984 permit interrupts, but only with ProDOS
software. Finally, beginning in the summer of 1984, a third version of the Monitor and I/O
ROM chips was released that fully integrated interrupts. This version of the ROMs can be
installed in older //e’s as an upgrade.

The least expensive option is to choose software that has specially built routines that either
have their own fast scrolling routines or capture characters without always sending them
immediately for display. Ask the company that sells the software before you buy. If they don’t
know what you're talking about, their software probably won’t work for your machine.

However, rather than buying a new 80 column card or new software, consider the following.
The Practical Peripherals external serial printer buffer, the MBIS (see Chapter 18, Figure
18.12a) is bidirectional, so incoming files from the modem can be captured by the buffer while
you attend to other business, and subsequently brought into the //e at a speed it can handle.
When you’re shipping out large files there may be no need to view the text on the screen, so
you can send it to the buffer at very high speed, then dial up, log on, and transmit at a
moderately fast 1200 bps from the buffer. When you're done, just disconnect the modem and
reconnect your printer.

The //¢ video system is very similar to the //e video system, but the scrolling routines have
been rewritten in 65C02 machine language, which is just enough faster than 6502 code that
the whole thing works fine. Better yet, the //c has an elegant and elaborate interrupt and
buffer system (see Chapter 18) which is activated automatically when the modem port is used
in “terminal” configuration. This interrupt system comes built-in to the //c’s hardware and
firmware routines, so your average communications software package has to work very hard
to override it and muck things up.

Inaccurate Baud Clock on the //c

The problem in early //c’s is that when you configure the modem port to run at 1200 bps, it
actually runs at about 1165 bps (three percent too slow). What went wrong? Well, the //c uses
a Synertek 6551 ACIA (Asynchronous Commmunication Interface Adapter) to manage its
serial ports; one for the printer port and one for the modem port. One of the features of the
6551 is that if you provide it with a single clock input at a frequency of 1.8432 MHz, then it
will generate just about any baud rate you want (see Chapter 16, Figure 17.1¢c).

To get that input frequency, you could put a special crystal on the motherboard to generate
it. However, Apple engineers chose to minimize the risk of electrical interference and to reduce
the number of parts in the //c. Instead of a erystal, the //c has a 74LS 161 “four bit counter”
which starts with the Apple master clock frequency of 14.31818 MHz, and effectively divides
it by eight to get an output frequency of 1.7898 MHz. This is very close to what the 6551
needs. Close enough for 300 baud communication and almost close enough for 1200 bps
communication.

The engineers tested this with 1200 bps modems and it worked perfectly well. Thus the design
went forward and production began. Later, they discovered that if your communications pro-
tocol uses eight bit data, then framing errors can occur (see Chapter 16).

What this means is that-with each bit in the character frame, the 6551 gets a little bit further
out of synchrony. Even the seventh bit makes it through OK, but by the time the eighth bit
arrives, things are too far out of whack. Most communications use seven bit data, so you’ll be
OK. However, if you are having mysterious problems with data transmission errors at 1200
bps, you may want to talk to your dealer about a trade or upgrade to a later /¢ which has the
1.8432 MHz crystal.
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Three Kinds of Modem Control Systems

In addition to your 300 versus 1200 choice, you need to select from among a very wide range
of devices, all referred to as “modems.” All of them do modulation and demodulation, but most
of them do quite a bit more.

In this case, most of the differences have to do with the quality of interaction between the
computer and the modem. This refers to such features as automatic dialing, detecting busy
signals and passing the bad news back to the computer, etc., rather than to what happens to
the actual data to be launched into the telephone line.

SMARTIONE W 1200

Haygs

Fig. 17.3 Hayes Smartmodem 1200.

Fig. 17.4 Apple-Cat |l 300 baud modem
card.

293



From this point of view, there are three different kinds of modems. The first kind relies entirely
on the control lines provided by the RS-232C system. The second kind includes the various
external “smart” modems (see Figure 17.3) that contain their own microprocessor and can
exchange detailed commands and information reports.

The third kind is available only for computers with slots (such as the Apple II, II+ and //e)
and involves complete and direct control of the modem system by the microprocessor. These
internal “modem cards” (see Figure 17.4) usually have features quite similar to those of a
smart modem except that the Apple’s 6502 controls the features directly rather than relying
on the modem’s own microprocessor.

RS-232C Signals for Modem Control

You will recall from Chapter 16 that pin 2 (Transmit Data) and pin 3 (Receive Data) havethe
fundamental roles of passing information back and forth between the ACIA (which manages
the coding operation) and the modulator/demodulator system. All modems use RD and TD; in
fact, if you look closely at a Hayes Micromodem II card, you will see the same 6850 ACIA
that is used on the AIO-II serial card (although on the Hayes card the RD and TD lines only
travel for about a quarter of an inch, and they are never actually in RS-232C form).

Most external modems also use a second pair of RS-232C pins, one is called Request To Send
(RTS; pin 4) and the second is called Clear To Send (CTS; pin 5; see Figure 17.5). The RTS
line is an agreed upon single purpose control line through which the computer tells the modem
to turn on its outgoing carrier tone. The modem always responds by turning on the signal,
and once it has it going steady, it reports a confirmation back to the computer by sending a
signal on the CTS line. :

This RTS/CTS system is the computer’s way of turning on the modem. A computer may decide
to send an RTS command for one of two reasons: it wants to make a phone call, or it suspects
some other computer is trying to get in touch with it and wishes to respond.

There is a third and crucial signal line in the RS-232C connector which turns RTS/CTS into
a viable and functional command system. This third command line is called Carrier Detect
(CD; pin 8—its full formal name is actually received line signal indicator, but CD or DCD are
the common designations, and it’s always on pin 8).

When a modem has got its power turned on, and it knows its computer is paying attention to
it, it listens for incoming carrier tones on the phone line. If one comes in, it turns on the CD
wire. This lets the computer know that some other computer is ready to exchange information.

Making a Connection with a Simple (RTS/CTS) Modem

If your computer were trying to get in touch with some other computer, its first step would
be to turn on RTS and wait for its own modem to respond with CTS. The signal would be sent
out to the appropriate destination computer. The destination computer would first find out
about all this when it noticed that the CD line from its modem was on. If the destination
computer has nothing better to do, it would turn on its own RTS. Its modem would send a
CTS back to it and cause an answering carrier to be sent back to the first computer. At this
point, the originating modem would hear the responding carrier and send a CD signal to its
own computer.
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" /c; 1 Earth Ground
-0
15 O 2 TP - Transmit Data
_.___4_0
i 00— 3 RBRD - Receive Data
—0
5 Lo 4 RTS - Request to Send
=0
18 O— 5 CTS - Clear to Send
—O
- & O 6 DSR - Data Set Ready
o] 7 ¢ (Signal) Ground
Data Terminal Ready- DTR 20———1- O e
O 8 CD - Carrier Detect
21 (o]
O 9
Ring Indicator - BRI 22——-0
O— 10
Data Signaling Rate Select -DSRS 23— O & 1
24 -0
O 12
23—t 0
e

Other Pin Assignments:

9 - Reserved
10 - Reserved
11 - Unassigned
12 - Secondary CD
13 - Secondary CTS
14 - Secondary TD
15 - Transmit Clock (to DTE)
16 - Secondary Receive Data
17 - Reoeive Clock
18 - Unassigned
19 - Secondary RTS
2} - Signal Quality Detect
24 - Transmit Clook to DCE)
25 - Unassigned

Fig. 17.5 RS-232C signal assignments on DB-26 connector.
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At the end of all this, both of the computer/modem pairs would have all of RTS, CTS and CD
turned on. Whenever this situation occurs, communication can begin via RD, TD and the
modulator/demodulator at each end of the line.

Acoustic Modems

This sort of RTS/CTS and CD system is built into virtually all modems and is a part of the
6850 ACIA. These signals are used in acoustic modems such as the Signalman (from Anchor),
the CAT (from Novation), and the FM 30 (from Multi-Tech). In acoustic modems, the tone from
the modulator is actually generated as a sound from a speaker, and the microphone in the
telephone handset converts it back into electrical signals.

You may well be thinking: “Wait a second, who dials the number, who answers the phone?”
Well, with an CTS/RTS modem, the answer is “you.” When you’re dealing with acoustic modems
of this kind, it's no big deal to first get the RTS/CTS thing going so a whistle is coming out
of the acoustic modem’s microphone, and then to pick up any phone, dial the number, and
then place the handset into the acoustic coupler’s cradle. At the other end, the phone rings,
some informed person picks it up, hears the carrier tone, gets their system to do the RTS/CTS
thing, and then places their handset into their acoustic modem’s cradle. This process is sim-
plified a little bit if you are calling a big database—these companies usually just leave their
modems on generating carrier tones.

Direct Connect Modems

As noted earlier, however, acoustic modems are subject to noise, interference and poorintegrity
of data transmission. Novation was one of the first companies to get approval from the Federal
Communications Commission (FCC) to use a direct electrical connection between a modem
and the phone wire. The use of “FCC part 68” for a direct connection brought about an enormous
improvement in reliability of transmission, and made it possible to contemplate the construc-
tion of higher speed modems.

Fig. 17.8 Networker, a no frills,
300 baud modem.




There are a few comparatively inexpensive and reliable “direct connect” modems which operate
with the RTS/CTS and CD control system, including the Novation D-CAT and the Sup’R Access-
1 from M & R (which also offers switching among six different RS-232C ports). However, direct
connect modems with this simple command system have never been very popular with mi-
crocomputer owners. The problem in part is that, compared to acoustic modems, they are a
little more complicated to deal with when you are dialing up to make a connection. They
require, minimally, a “modular jack” type of connection to the phone line and a little more
attention to details. Nonetheless, if the cost of modems has been discouraging you from getting
involved in communications, the bare bones, low cost ($130) direct connect Networker modem
card (see Figure 17.6) from Zoom Telephonics might be worth looking into.

But the real reason these modems are not popular is that once a direct connection has been
established, it enters the realm of possibility that the modem itself could do the dialing and
the answering. Enter the “Auto-dial/Auto-answer direct connect modem.”

Auto-Dial/Auto-Answer Modems

Nearly all direct connect modems have the ability of doing what amounts to taking the phone
off the hook to answer it when its starts to ring, as well as the ability to make a phone call
by electronically “taking the phone off the hook” and then electronically “dialing a number.”
The thorny problem is the “auto-answer” mode.

The ideal use of an auto-answer modem is to just leave it connected to your phone line so that
it will answer whenever a modem calls. The problem is that you don’t know in advance if it’s
a human or a modem that’s calling and you may not want all your incoming calls answered
with a high pitched squeal. The RS-232C convention provides three signal lines intended to
deal with this sort of problem. However, although there are several “auto-answer/auto-dial”
modems on the market that rely solely on the RS-232C conventions, these are not really
sufficient for a smoothly functioning system.

An auto-dial/auto-answer modem is typically (but not always) provided with a switch that
lets you disable the modulator/demodulator but leaves the on hook/off hook system, as well
as the dialing system, working. This feature lets you select a phone number from a list in
your computer’s memory by just typing in the name of the person you would like to speak to.
Your software looks up the number and causes the modem to dial it for you automatically.
Because the modulator/demodulator is turned off, you can pick up the handset on a telephone
connected to the same line and just begin talking without any annoying carrier tone squeal.

When a modem is placed in such a “conversational” mode, it turns off a line to the RS-232C
port called Data Set Ready (DSR; pin 6). As long as DSR is off the computer will not try to
use its DTR line to tell the modem to turn on its carrier tone.

The computer is also able to tell the modem whether or not to “take the receiver off the hook”
in answer to an incoming call by using a signal line called Data Terminal Ready (DTR; pin
20). The computer can make this decision if it is too busy doing something else, if no one is
home (i.e., there is no communications software running at the moment), or if it has been
instructed to let only humans answer the phone.

An important third part of this DSR/DTR system for deciding on how to handle the phoneis
an RS-232C signal line called Ring Indicator (RI; pin 22). In a typical auto-answer system,
the modem does not immediately answer the phone when it rings, rather it passes the ring
signals along to the computer as pulses on the RI line. The computer may have been told to
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wait for the sixth or seventh ring before answering, so nothing happens as long as you're
around to grab the phone before the sixth ring. After that, the computer turns on DTR which
causes the modem to answer. If the modem is set to conversational mode (DSR line off), your
computer can now turn on a voice answering machine; if DSR is on, the computer can instead
turn on RTS which causes the modem to send a carrier tone.

Originating Computer Answvering Computer

«—— (®osn psp()——

@om —— @ e me

off Hook (8) &———— DIR(7)

DIE
DTR

RD
RI
RIS
™

— o «—— psns(®)
«——— (dvsms —— r15(0
i9R18 ——> crs@d —
CD - Carrier Detect
CIS - Clear to Send (Modem has established carrier tone)
DCE

- Data Cornmunications Equipment (Modem)

DSR -~ Data Set Ready Modem is prepared to generate tone)
DERS - Data Signaling Rate Seleol (300 baud or 1200 bpe)

- Data Terminal Equipment (Comnputer or Terminal}
- Data Terminal Ready (Computer is payging attention lo Modem ,may send cormrmands to
smart modern via ID line)

= Receive Data (Asynchronous Serial bits reassembled from demodulated signial)
- Ring Indicator

~ Request to Send (tells Modermn to turn on carrier tone)
- Transmit Data (Asynchronous Serial bits sent to Modem for modulation and transmission)
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All this makes for a pretty creditable computer/telephone interaction system (see Figure 17.7
for an overview). Several modems on the market have the facilities for all this, including the
very inexpensive J-CAT 300 baud “portable” modem (it’s just about 5 X 2 X 1 inch, so it sort
of fits in your hand—$160.00) and the 212 AutoCAT ($770) 1200 bps modem, both from
Novation.

Carrier off ——— R1s 02 25)
On Hook on Hook @

Fig. 17.7 RS-232 modem control and operation sequence.

1and 2 Both modems are turned on.

345 Orginating computer indicates contact with its own modem and causes it
to dial.

6,7.8 The answering computer learns that a call has come in, and activates its com-
munication link with its own modem.

9,10,11,12 The answering computer orders its modem to generate a carrier tone at a
selected rate. The modem does so and reports this back to its computer.

13,14, 15 The orginating modem alerts its computer that it has received a carrier tone
from another modem and its computer orders it to generate and send its
own carrier.

16,17 The orginating modem sets up its carrier and reports this fact to its computer.

18,19,20,21 Data communication takes place between the two computers.

22,23 The orginating computer orders its modem to turn off its carrier.

24,25,26 The answering modem reports loss of a carrier to its computer, and so it is

told to turn off its carrier and “hang up the phone.”
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Smart Modems

You may be wondering: if you can put absolutely any information into the data stream for
transmission, why must you rely upon this sort of Dark Ages system of turning on and off
individual RS-232C wires to pass a tiny number of limited commands and status reports back
and forth between the modem and the computer? No good reason except that this system was,
in fact, worked out in the dark ages (sometime in the mid 1950s).

Dennis Hayes changed all that with the introeduction of the Micromodem I, an internalmodem
card for the Apple, and then with the development of the Smartmodem 300, the first true
external “smart modem.” Modem cards for installation in Apple slots are “smart” because
they are operated directly by the computer with the full facilities of the 50 signal lines on the
Apple peripheral slots, and direct real time supervision by the 6502 and its memory resources.

The Smartmodem is “smart” because it has its own microprocessor and memory resources.
The key functional difference between a smart modem and an average modem is the addition
of what is called a “local command state.” In an average modem, all communication between
the modem and the computer is conducted via RS-232C lines 4, 5, 6, 8, 20, and 22. The data
is carried on lines 2 and 3, but the modem makes no attempt to examine the data; it just
modulates it or demodulates it and passes it on as if it were so much meaningless electrical
noise.

In a smart modem, however, you can invoke the local command state in which the modem’s
own microprocessor intercepts the data coming in on line 2, interprets it, and executes any
number of commands. It is then able to report back to the computer on line 3. When everything
is squared away, the microprocessor can stop paying attention to the information in the data
line and just supervise its transmission and reception.

External Smart Modems versus Internal Modem Cards

External modems such as the Hayes Smartmodem 1200 (see Figure 17.3) are popular because
they can be used with any computer from any manufacturer, so there is usually a large body
of software available to take advantage of their features. This is especially important for
CP/M users, but in general, most communications software written for the Apple or various
Apple coprocessors will be capable of operating an external Hayes modem. If you buy another
kind of external modem you must be careful to find out if it is compatible with Hayes on the
software level. If it is not, don’t buy it unless the modem company can provide you with
software which handles all of your needs.

Self contained modem cards for the Apple II, I+ and //e simplify your task in buying and
setting up a modem system since you don’t need a separate serial communications card.
Further, they usually provide a variety of very sophisticated communication features which
just can’t be put into an external modem. Software for Apple modem cards is also dominated
by Hayes (the Micromodem II; see Figure 17.10).

The modem cards from other manufacturers such as Multi-Tech and Novation (see Figure
17.4) typically offer more features. These modems are interesting because of their “bells and
whistles.” However, most commercial communications software won’t let you do anything that
a Hayes Micromodem II can’t do, so all the nifty features will go unused. One important
exception is that you may be able to make your Micromodem-compatible software run at 1200
bps if you use it with the Era 2 1200 bps modem card from Microcom.
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External Smart Modems

In the Smartmodem 300 ($289), Hayes essentially took all of the features of the standard
auto-dial/auto-answer modem and caused them to be executed by ASCII coded commands
instead of by turning RS-232C signals on and off. This step alone greatly simplified modem
operations for programmers and hardware designers. However, each command was provided
with several additional options, and the modem was able to carry on many of the tasks while
no program was running in the computer.

Fig. 17.8 Password 1200 bps modem from U.S. Robotics.

The result of all this is a much more versatile and easily operated device. Other features of
the Smartmodem 300 include the ability to do touch tone dialing as well as “pulse” dialing
(equivalent to standard turning the dial with your finger). This device was also popular with
heavy industrial users because it provided simple control over a variety of modem features
which just couldn’t be altered on other modems.

The introduction of a 1200 bps version, the Smartmodem 1200 (§700) with essentially the
same command structure placed the Hayes Smartmodem at the center of a great deal of the
software development efforts of the past few years. This is why it is not wise to buy a smart
modem from another company unless it is Hayes compatible at the software level, no matter
how many extra features it offers. The Password modem (see Figure 17.7) uses more advanced
electronics to duplicate most of the functions of, and attain full software compatibility with,
the Smartmodem 1200, and still come in at a substantially lower cost. The Apple 1200 bps
modem (see Figure 17.9) is based on a design similar to that used in the Password.
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Fig. 17.9 Applemodem, a 1200 bps smart modem from Apple.

The Multi-Tech 212AD Intelligent Modem ($695) is an example of the current level of enhanced
modems available from other manufacturers. Multi-tech claims that the 212AD can be con-
figured for complete software compatibility with the Hayes Smartmodem 1200. It also provides
several very useful additional features. When it dials a number, it is capable of detecting a
busy signal. When a busy signal is encountered it can wait and redial the number, or it can
select from among six different telephone numbers in its own memory, each up to 31 digits
in length (for Sprint and MCI). It has a switch which lets you connect a regular hand set for
voice communications, and it can be used with “synchronous” as well as asynchronous RS-
232C and RS-422 systems (see Chapter 20). A second 212 compatible modem from Multi-Tech,
the 212AH ($545) is software compatible with the Hayes Smartmodem 1200, but lacks most
of the advanced features of the 212AD.

Another interesting entry in the 1200 bps smart modem marketplace is the Pro-Modem from
Prometheus Products. The Pro-Modem provides all the features of a Hayes Smartmodem and
has full software compatibility. The unique enhancement is the inclusion of a real time clock
which can be addressed by the microprocessor inside the modem. The modem can be instructed
to activate at a predetermined time, as well as to time stamp incoming files during unattended
operation. The time is always available to ProDOS or to any program running in the Apple,
whether or not the modem is being used for communication. At $495, this combined modem/
clock is a fairly good buy, particularly for //c owners who need a clock.

The Transmodem 1200 from SSM is not compatible with the large body of commercial software

written for Hayes, so you are limited to communications software from SSM. Its features are
similar to the Hayes Smartmodem 1200 except that it can store and redial one 32 digit number
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for MCI and Sprint. SSM sells the Transmodem in a package including one of their interface
cards (such as the AIO-II) and a series of “Transend” software packages, which are fairly
popular.

Modem cards for the Apple

The Micromodem II ($379) from Hayes serves conveniently as the standard with which the
various other modem cards can be compared. It is essentially an auto-dial/auto-answer 300
baud modem with a built-in serial interface (6850 ACIA). A cable runs from the card to the
outside of the Apple where a separate box contains the actual direct connect electronics and
a receptacle for a modular telephone jack. It cannot do touch tone dialing so is difficult to use
with Sprint or MCIL.

When the Hayes Micromodem II was first released it gained immediate acceptance because
of the variety of clever and useful programs and programming hints provided with it. During
the subsequent five years as the most popular Apple modem, dozens of programmers have
written excellent software for it. The software sold with the Micromodem from Hayes can
work with DOS, CP/M or Pascal operating systems, so there are no rigid limits on your software
or programming options. If, however, you're not happy with the Hayes software provided with
the Micromodem, Hayes will gladly provide you with their Communications Software Direc-
tory which lists dozens of compatible communications software packages from third party
sources including software for transmitting high res graphics images, for interactive work on
VisiCalc models, and many more.

Fig. 17.10 Hayes Micromodem //e.
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An important new arrival is the Hayes Micromodem //e (see Figure 17.10), a 1983 update of
the classic modem card. It adds automatic touch tone dialing and an attached speaker to hear
if you've gotten a busy signal, a human, or a phone company message. The contents of the
external coupler box have shrunk and been placed on the card itself. Hayes provides a modular
telephone jack receptacle which attaches to the back panel of the computer which makes
connecting and disconnecting very convenient. The new owner’s manual is also an amazing
thing—the inclusion of several dozen color photographs along with table charts and teaching
material is certainly without paraillel in the microcomputer industry.

The Modemcard from SSM ($299) is similar to the Micromodem //e in that it provides touch
tone dialing and requires no external box. The modular jack receptacle is mounted directly
on the card so there are no cables at all other than your regular telephone line, and SSM
claims complete software compatibility with the Hayes Micromodem. This is a reasonable
alternative and it includes a free subscription to The Source, a popular modem information
service. The documentation, unfortunately, retains SSM’s traditional orientation towards pro-
grammers rather than towards the non-programming user.

The Multi-Tech Modem II ($399) is quite similar to the original Micromodem II except for the
addition of some status lights on the external direct coupler box and the provision of an
additional jack for attachment of a regular handset. An updated Modem //e from Multi-Tech
does not require an external coupler box.

The Operator from Timecor ($169) is certainly the least expensive modem card, but despite
what the ads say the Operator cannot auto-dial either pulse or touch tone. This is a limited
feature modem and although Timecor claims software compatibility with the Micromodem,
some software options won’t work because the hardware is not fully compatible.

Advanced Feature Modem Cards

There are few single card, 1200 bps, 212 compatible modemcards. The ERA 2 from Microcom
was the first to come to market, so it set new standards of its own. This modem is designed
to be compatible with software written for the Hayes Micromodem, but to allow the user to
operate at 1200 bps (even on the //e) and provide software compatibility with the Smartmodem
1200 as well. The ERA 2 comes with a high accuracy data transmission protocol system (called
MNP) which can be used with other Microcom products for the IBM PC, DEC VAX, TRS 80,
etc., to assure near 100 percent reliability of data transfers. In addition, the ERA 2 comes
with terminal emulation software to let your Apple pass itself off as if it were an IBM 3101,
DEC VT-100, or VT-52 terminal.

Fig. 17.11 Novation Apple-Cat Il
w/accessories module.
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The Apple Cat II system from Novation is really in quite a different class from any of the
other Apple modem cards or external modems. Although the minimal configuration of the
Apple CAT ($389) is roughly similar in features to the Micromodem //e, the various enhance-
ments from Novation make this a very remarkable and interesting product. With the expansion
module attached to the back panel of the Apple, the Apple CAT does double duty as a printer
interface card, and it provides a BSR interface (see Chapter 14) which can send controlling
signals through your home or building’s AC power lines to operate lights, air conditioners,
electric door locks, etc.

The Apple Cat II can be configured to act as a normal voice telephone with the handset plugged
into the expansion module (see Figure 17.11), and if you call the modem from a distant loca-
tion, you can get it on line and then use the buttons on a touch tone phone to send itmessages—
i.e., tell it to turn off lights in your house, order it to make a phone call and send a file to
another modem, etc. Novation provides a disk with its Com Ware software for driving these
features as well as for getting the time of day from a clock card elsewhere in the Apple for
work scheduled by time of day. Novation offers an optional ROM chip containing Com Ware
II so that no program needs to be loaded from disk. Finally, a second card, the 212 upgrade
(see Figure 17.12), provides all of the previously mentioned features as well as 1200 bps high
speed communication. The complete 212-Apple CAT II system costs nearly $900, but when
fully installed it really makes your Apple work for its supper!
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Fig. 17.12 Apple-Cat {i w/212 upgrade for 1200 bps communications.
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Chapter 18

Interfaces for Terminals,
Modems and Printers

Communicating with Video Boards and
Terminals

The Apple //e 80 column text card is designed to behave in some ways as if it were an external
CRT terminal made by Datamedia. The trend toward mimicking Datamedia terminals has a
long history among the various Apple 80 column boards such as the Videoterm from Videx
and the Smarterm board from ALS. This mimicking takes place in a very limited way, at the
level of communications between the computer and the display system.

Fig. 18.1 Qume QVT-102 CRT terminal. Eighty
column cards intended for slot 3 in the Apple carry
most of the electronics of such a terminal. The //e
80 column card system is different electronically,
but shares many of the same software features.
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To clarify a bit, it’s handy to have in mind both an 80 column card (see Chapter 6, Figure 6.4)
and the CRT terminal in Figure 18.1. The 80 column card is roughly equivalent to the sum
total of the digital circuitry inside the CRT terminal, and it is operated in a somewhat similar
way.

The design of terminal electronics assumes that a computer will be sending characters to the
terminal via an RS-232C connection. Unlike the modem connection systems described in
Chapter 17, the RS-232C connections between a computer and a terminal are usually extremely
simple. Only the two signal lines, Receive Data (RD) and Transmit Data (TD) are used, and
communication is strictly limited to the passage of ASCII codes in asynchronous serial format
(see Chapter 16).

The standard ASCII codes are quite adequate for sending letters and numbers from a computer
to a terminal for display. However, there are some inadequacies. The computer must be able
to order the terminal to do a few other tricks.

Among the necessary additional tricks are clearing the screen, moving the cursor from place
to place, changing to inverse, etc. In fact, modern CRT terminals typically offer dozens of these
screen management and cursor control functions. However, the only means available to the
computer for telling the terminal to do these things is the passage of ASCII codes. This
requires that the terminal examine each incoming code and decide whether it is supposed to
pick the appropriate letter or number and display it on the screen or respond to the code by
changing its operation in some way.

Control Codes and Escape Sequences

The original ASCII system included 32 different “control codes” for this purpose, but many
manufacturers of terminals, as well as manufacturers of printers, modems and buffers, have
supplemented the original control codes with a much larger number of two and three key
“escape sequences.”

If you look at Table 18.1 you can see the positions of these control codes in the ASCII table.
However, although these control codes were made available for sending controlling messages
between the computer and the terminal, there has never been any agreement among terminal
manufacturers about which code is supposed to control which function.

For instance, the ASCII code you get by holding down the “control” key and then pressing
“L” is code number 12, (CTRL-L) and the designers of the code called this the Form Feed (FF)
function. This was meant as an instruction to a printing terminal that it should roll a new
sheet of paper into place. Great, but since CRT terminals do not have rolls of paper streaming
through, what does it mean when they’re told to do a form feed?

If you send a “CTRL-L” to a Datamedia type terminal, the cursor pops up to the top left corner
and the screen clears. This seems like a reasonable interpretation of a form feed on a CRT
screen. But the makers of the very popular Soroc IQ 120 terminal decided that the idea of a
form feed was just inappropriate, so when a Soroc terminal sees a CTRL-L it responds by
moving the cursor forward one space. This was a totally arbitrary choice of function, and it
is one of 25 or 30 such arbitrary assignments made by this manufacturer. Other manufacturers
made their own equally arbitrary and equally incompatible assignments.

For various historical reasons, most of the CP/M programs used by Apple owners (i.e., WordStar)
seem to want to act as if they were speaking to a Soroc IQ 120. If these programs were left
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ASCIl1 Code Table
Bits 7,6,5
000 001 010 011
Char Dec Hex |[Char Dec Hex [Char Dec Hex {Char Dec Hex
Bits 4,320
0 0000 noL 00) 00 SP 132} 20 ® 164} 40 ® 96| 60
0 0001 CTRL A SOH o1] o1 ! 33| 21 A |063| 41 a 97| o1
0 0010 CTRL B SIX 02| 02 " 34| 22 B 66 | 42 b 98] 62
0 0011 CTRL C EIX o3| 03 L 33| 23 [ 67| 43 c 00| 63
0 0100 jcrmL EOY 04| 04 ; ) 24 P 68| 44 a4 |100] o4
0 0101 CTRL E EnQ 03| 0S5 37| 23 E 69| 45 ] 101 63
0 0110 CIRL F ACK 06| 06 & 38| 26 r 70| 46 £ 102| ©66
o 0111 CTRL 6 BEL 071 07 J 30| 27 6 71| 47 i 103] 67
0 1000 iCtTRL B} BS 08| 08 ( 40| 28 H |72] 48 104} 68
0 100} CTRL I HT 09) 09 ] 41} 29 1 73] 49 i 105] ©9
0 1010 CTRL J LF 10] CA | = 42| 2A J 74| 4A i 106] G6A
0 1011 CTRL K ¥T 11 0B + 43] 2B K 75| 4B 107} 6B
0 1100 CTRL L ¥r 12| oC » 44 ] 2C L 76| 4C 1 108] 6C
0 1101 CTRL m] CR 13| op = 43| 2D m (77| 40 m |109| 6D
0 1110 (cm B S0 14{ OF . 461 2E n 78| 4E n 110 6E
0 1111 CTRL O SI 15| OF / 47| 2F o 79| 4F o 111} 6&F
1 0000 CTRL P DLE 16| 10 o 48| 0 » eo | SO P 112] 70
1 0001 CIRL Q DCl 171 11 1 491 31 Q 81| 351 q 113 71
1 0010 CTRLAR ] DC2 18] 12 2 90] 32 R 82| 52 r 114] 72
1 0011 cTeL S DC3 19 13 3 Si| 33 8 83| S3 = 11S} 73
1 0100 fcTRL T DC4 20| 14 4 52| 34 T 84| S4 b 1161 74
1 0101 ICTRL U ] RnAK 211 1S5 3 33] 395 o 83| S8 t 17| 5
1 0110 CTRL V] SYD 221 16 6 4] 36 ¥ 86| S6 v 118f 76
1 0111 CTRL V] EYIB 231 17 T 51 37 v 187} 57 w 119} 77
1 1000 CTRL X CAn 24| 18 ] 36| 38 x 88| 58 = 120} 78
1 1001 CTRL ¥ Em 23| 19 9 57| 39 Y 89| 39 | 1211 79
1 1010 ICTRL 2 SUB 26 1A 3 58| 3A F 90 | SA f 122| 7A
1 1011 ESC 27] 1B 3 S9| 3B o1 | SB 123} 7B
1 1100 fctRL A\ 1 FS 28| 1C | < 60| 3C A\ Je2( sC l 124 7C
1 1101 IcTRL 29| 1> | = 61| 3p ] || |} |1z3) ™
1 1110 CTRL “ RS 30| 1E > 62| 3E 94| SE 126| 7E
1 1111 CTRL us 31} 1F ? 63| 3F e 93| SF DEL | 127 7F
ksl sl bontt
ACK - Acknowledge FF - Form Feed
BEL - Bell FS - File Separator
BS - Backspace 68 - Gro parator
CAN - Cance HT - Horizontal Tab
CR - Carriage Return LF = Line Feed
DCl - Device Control 1 (XON) NAK - nﬁauw Acknowledge
DC2 - Device Control 2 nuL - 1
DC3 - Device Control 3 (XOFF) RS - Record Separator
DC4 - Device Control 4 1§ - ShiftIn
DEL - Delele SO - Shift Out
DLE - Data Link Escape SOH - Start of Heading
- End of Medium STX - Startof Text
EemQ - gmr SUB - Substitute
EOT - of Transmission SYN - Synchronous Idle
ESC -~ Escape US - Unilt Separator
ETB - End of Transmission Block ¥T -~ Vertical Tab
ETX - End of Text

Table 18.1 ASCHl Code Table.

to their own devices, the Apple’s Datamedia-type cursor would zoom from place to place at
inappropriate times, text would disappear erratically, etc. To prevent this, all Apple CP/M
operating systems intercept every one of the ASCII codes coming from a program before passing
them along to the 80 column card.

If a given code represents a letter or number, it is passed on immediately for display. If,
however, CP/M discovers that the code is a Soroc screen control function, it halts that code’s
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passage, stops to look up which code will cause the same function in a Datamedia terminal,
and then passes that Datamedia code to the 80 column card instead of what the program was
trying to send. The code that arrives at the screen is different from the code which was sent
by the program, but the screen does what the program wanted it to. Table 18.2 lists the control
codes used by the Apple //e 80 column card as well as those for the Videoterm, the Ultraterm,
and the Smarterm I.

This system for encoding control operations actually gets even more complicated, because the
32 available control codes just aren’t sufficient to provide for all the features that terminal
manufacturers like to include. Control codes are therefore supplemented by the escape se-
quences. There are a potentially unlimited number of escape sequences because they are
encoded differently from control codes.

The 32 control codes are real, actual and fixed ASCII symbols. Escape codes, however, are
always made up of at least two characters. The first of these is usually ESC, the “escape
control code” (ASCII 27 in Table 18.1). When most terminals receive ASCII code 27 they react
by treating the next one or two ASCII codes in a special way. These escape sequences (i.e.,
Escape A) are completely non-standard among terminal manufacturers and also require trans-
lation when sent from one kind of program to another kind of terminal, and Apple CP/M
performs some of these translations.
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Table 18.2 Video terminal card Escape and Control codes.

Apple Screen Escape versus Apple Screen Control

In the Apple itself there is a subtle but important distinction between the use of control codes
and escape sequences. The escape sequences are interpreted by the keyboard input system
which then sends appropriate groups of control codes to the 80 column card to produce the
function requested by the escape sequence. This means that you cannot make the escape
sequences work when they are “output” (by a PRINT statement) in a BASIC program. They
only work when they are typed at the keyboard and interpreted by the keyboard input system.

The control codes are interpreted by the screen management system, so they will work when
output from a program. These control codes also work when typed at the keyboard because
the keyboard input system simply takes them in and then outputs them to the screen system,
at which time they take effect.

The result of this difference between escape sequences and control codes in the Apple is that
Apple DOS software never includes escape sequences for the screen, but only uses the fairly
standard Datamedia control codes. Table 18.2 lists the escape sequences for the //e 80 column
text card, for the Videoterm, for the Ultraterm, and for the Smarterm.

Escape Sequences for Printers, Modems and Buffers

Modern dot matrix and letter quality printers make very extensive use of escape sequences.
This is how word processing and other programs control boldface, proportional spacing, tabs,
margins, etc. Escape sequences embedded in the ASCII data stream cause the printer to take
some special action other than just printing.
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You may spend weeks reading literature on printers before making your choice based on speed
and quality of character formation only to discover that letters, numbers, carriage returns
and line feeds are all you will ever get your printer to respond to. Escape sequences among
printers not too well standardized, so you can guide your purchase only by choosing a popular
and well known printer which your word processor or graphics software knows how to operate.
Newer or less popular printers should only be purchased if the manufacturer can guarantee
substantial escape code compatibility with some very popular and well known older printer,
such as the Diablo 630 or Qume Sprint 5 (see Chapter 19, Table 19.1).

The major innovation underlying the emergence of smart modems is the use of a local command
state which is invoked by an escape sequence. Modems cannot use ASCII code 27 (ESC) as
the escape sequence lead-in character because they must be able to pass “ESC” on down the
line for use by printers and CRT terminals. Hayes chose “+ + +” following a pause as the
way of indicating to the modem that the next few ASCII codes have special meaning. Other
modems may actually use the same command structure as Hayes, but not actually be com-
patible because they use a different “escape” lead-in character.

Fig. 18.2 Shuffie Buffer from
Interactive Structures. This is a
smart buffer which will touch
off a new flowering of printer
buffer escape codes.

The first “smart” printer buffer appeared in early 1984 (the Shuffle Buffer from Interactive
Structures; see Figure 18.2) and it uses the “@” sign as an escape sequence lead-in character
to let the computer embed instructions within the ASCII data stream.

Serial and Parallel Interface Protocols

There are lots of small particulars to keep in mind about control signals for modems (see
Chapter 17), nonetheless, when you want to connect a modem to a computer, your task is
extremely simple. You always use an RS-232C connector (a DB-25), and every time you do
this, no matter whose modem you use, it will work. Line 2 will always be Transmit Data and
line 4 will always be Request To Send.
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If you suspect printer interfacing is that simple, get ready for a shock. There are literally
dozens of different connection systems. There are at least six different types of connectors in
use, and even if your interface card and your printer have connectors which look physically
identical, there is absolutely no guarantee that the same wires will be connected to the same
pins at each end.

Finally, and most devastating, even if the connectors are the same and the wires are connected
to the same pins on both ends, the timing and voltage levels may make the two incompatible.
There are actually computer owners out there who had an interface card and a printer which
both claimed to be “Centronics Standard” (one of the most popular printer interfacing system),
but got smoke coming up out of their interface card when they plugged it all in (the“Centronics
pin 14 problem,” for the afficianados in the crowd). This is an inexcusable zoo.

What, you may ask, is wrong with these people? Why can’t printer designers get a hold of
themselves and sit down and work this thing out once and for all. Good question! Why can’t
they? The good news is that most computer owners have taken action by refusing to buy
printers from any company other than Epson or Leading Edge (C. Itoh), which always use
exactly the same kind of Centronics standard parallel connection system. So there is some
justice.

Serial Handshake Problems

The problem grows out of the early days when very few printers were being used with word
processing programs. Back then, the principal use for printers was to type out “listings” of
computer programs to give programmers “hardcopy” to look at. The divorce between printers
and CRT terminals was recent, and printer designers naturally chose to try to use the RS-
232C interface system described in detail above (in Chapter 17).

There is, however, a very fundamental and simple difference between the way a printer handles
characters and the way they are handled by a CRT terminal, modem or computer. The RS-
232C standard was set up to include a variety of control wires. The purpose of these wires
was to help the computer and the modem work together to set up a telephone link with some
other modem/computer pair. Once the link is established, RS-232C assumes that data canflow
freely at a steady baud rate. There is no provision in the RS-232C system for examining the
contents of the data stream. It just sets up the link.

Printers, however, are like typewriters. They do not just zip along continuously. If you listen
to a fast typist you will hear a steady rat-a-tata-tata until the end of the line arrives. A bell
rings, the typist reaches for the Return key, and then there is a break in the rhythm while
the print head zooms back to the left side (the carriage return) and the platten is rolled up
one line (the line feed), then the rat-a-tata-tata resumes, punctuated regularly by pauses for
carriage returns. After a while the typist gets to the bottom of the page and there is amuch
longer pause while the page is removed and a new piece of paper is rolled into place (the form
feed).

(The preceeding paragraph was directed at all of you folks who were brought up on word
processors and have never actually seen or heard a typewriter being used.)

But seriously, the point is that some characters must be followed by long pauses to allow the

print head to swing across the page or to allow the next page to roll into place. If you use a
simple RS-232C system, the characters will just keep flowing to the printer in a steady stream,
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and all the ones that come along during a carriage return or a form feed will be lost and never
get printed.

Fig. 18.3 The Amphenol 57-30360 connectoron the leftisusedin Centronics Standard interfaces
to plug into the printer. The 26 pin header connector on the right is used in a large number of dif-
ferent interface systems to plug directly into electronic circuit boards.

There are two kinds of solutions to this problem. One is a software solution. Just keep track
of when you’ve sent out the last character on a line, and then wait a little bit before sending
out the next character. The Apple Super Serial Card is set up to accommodate this sort of
solution in that it accepts instructions on how many characters will be printed in each line
and how long it should pause after each carriage return and after each form feed. However,
it does not know when it is supposed to cause a form feed and it can get in trouble if the form
feed is triggered automatically by the printer. Of course, any word processing program worth
its salt knows exactly when there will be a carriage return or form feed and can take care of
inserting pauses.

This all might have had a happy ending except that this sort of stuff requires a fairly so-
phisticated printer interface card, or a word processor which has a fairly rock solid time base;
two conditions which are rarely met.

Meanwhile, printer manufacturers came up with their own solution to this rhythm problem;
which turned out to be no solution at all and made the situation rather worse. This solution
was to include memory chips or “buffers” in the printers. The assumption was that the printer
could accept a steady stream of data from a standard RS-232C system, and whenever acarriage
return or form feed took place, the extra characters would pile up in the buffer to be printed
a few moments later without being lost. Sounds great. But there is this one little flaw.

With a buffer built into the printer, the interface card and the word processor do not have to
insert pauses after carriage returns and form feeds; however, what happens when the buffer
gets full? If characters are flowing in at the same rate that they are being printed (not actually
a good assumption) then with every carriage return and form feed a few more characters will
pile up in the buffer. The buffer also fills up if the computer sends characters faster than the
machine can type.

When the buffer is full, the computer must stop sending characters for a while. However,
unlike the simple situation with carriage return and form feed pauses, the computer has no
simple way of guessing in advance when some printer’s buffer is going to be full.
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All this points to the need for a printer to send signals to the computer to inform it as to
whether or not it is OK to send a character at that particular moment. Now those of you who
carefully worked your way through the sections on modem control by the RS-232C system are
probably wondering why these devices cannot make use of CTS, RTS, DTR or DSR (clear to
send, request to send, data terminal ready and data set ready, respectively). Well, there is a
fatal flaw in the system.

The designers of the RS-232C standard assumed that no one would consider sending data until
the control lines had already done their work to set up the telephone link. Similarly, they
assumed that no one would intentionally try to disconnect the phone link while data was
being transmitted. And so they left out one key element in the system. There is no link
between the time that a control signal is changed and the time that a given character is
completely sent or received. Nothing prevents the disconnect from occurring directly in the
middle of a character. If this were allowed to happen while you were printing out a document,
there would be a few garbled or absent characters scattered around in every printed document;
not very professional to say the least.

The RDY/BSY Approach and its Variants

This flaw is not simple to correct because the RS-232C signals are built into the chip design
of the ACIA 6850 and 6551 (see Chapter 16) and other serial interface devices. Somehow, there
was never a sufficient consensus on the issue to see that anything got done about it. Pro-
grammers could get around the flaw with what is called the Ready/Busy (RDY/BSY) system.
This just requires that the program check the interface card to see if the control signals have
changed before it hands over a character, and this should be done before every single character.

Most serial interfaces for printers now being sold use some variant of this RDY/BSY system.
The problem is that it is by no means clear which of RTS, CTS, DTR or DSR should be used
by the printer to signal that its buffer is full. Most printers which are sold with serial RDY/
BSY interfaces use DTR (pin 20) to signal when their buffer is full but, for instance, many
NEC printers use pin 19, the Texas Instruments 810 uses pin 11, the Heathkit H14 uses pin
15, and the Olympia ES-100 uses pin 4.

Even if two printers both use DTR, there may be disagreement about whether they are
supposed to turn it on when the buffer is full or whether they are supposed to turn it on when
it is empty. This is called a difference in “polarity,” so two printers may use the same connection
and the same protocol and the same pin, but have different polarities. So when you are told
that your printer has a serial RS-232C interface, you are dealing with at least one loose live
wire until you find out which of its RS-232C pins it is using for RDY/BSY, which pin your
interface card is expecting to see RDY/BSY on, and how the two of them feel about polarity.

The Transmit Data Approach and its Variants

Some printer manufacturers who became distressed about the variety of hardware connections
for the RDY/BSY system tried a different approach based on the data lines rather than the
control lines. These printers use the Transmit Data line to carry on conversations with the
computer about the status of their buffers.

The most popular of these protocols is called XON/XOFF. When these printers sense that their
buffer is about to be full, they use the TD line to send an XOFF signal (in the form of a special
ASCII code) back to the computer warning it to stop sending characters as soon as possible.
Once the buffer is nearly empty again, the printer sends a different ASCII code to the computer
which instructs it to resume. The XOFF character for stopping is a CTRL-S (ASCII code 19
= Device Control 3; DC3) and the XON code to call for more data is CTRL Q (ASCII code 17
= Device Control 1; DC1).
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A second of these TD based systems is called ETX/ACK. In this protocol, the computer sends
one full line (80 characters) of data followed by an End of Text (ETX) code (ASCII code 3 =
CTRL-C). The printer captures the line of data and goes about printing it, but when it when
it gets to the end of line and sees the ETX code, it sends an Acknowledge (ACK) code (ASCII
6 = CTRL-F) back to the computer to announce that it has room for a new line of text.

The third system is called ENQ/ACK, and in this system, the computer initiates the exchange
by sending an Enquiry (ENQ) character (ASCII 5 = CTRL-E} to the printer. If the printer
has space in its buffer for a line of text, it responds with an “ACK” code which it sends along
the TD line.

Parallel Protocols

While all this jockeying and fiddling was going on in pursuit of the ultimate serial printer
interface, other manufacturers tried to start from scratch, abandon the metaphor of “printer
as serial terminal,” and switch to a completely different interface system. The principal al-
ternative was to treat the printer as if it were on a sort of direct extension of the computer’s
data bus. All eight wires from the data bus would be extended directly out to the printer, and
the microprocessor would take direct control of passing the ASCII codes to the printer on a
character by character basis.

This sort of arrangement is called a “parallel” interface because the eight bits in each byte
proceed to the printer all at once side-by-side in the eight wires. Data transmission is much
simpler than in the RS-232C system because each character is sent as a single event rather
than as a stream of 10 serial bits. The signals are all 0 volts or 5 volts just as in anystandard
TTL system (see Chapter 13), but this means that cable length is limited to two or three feet
at the most rather than the 50 feet you can use with a serial RS-232C cable.

The various kinds of parallel printer interfaces all use the same system to control the flow of
characters to the printer. An ASCII code is loaded into the interface in preparation for trans-
mission, but nothing happens until the printer sends a brief pulse to the computer along a
wire called Acknowledge “ACK” (this ACK wire is not related to the ASCII code ACK used
in serial interfaces and discussed above; they probably used the same name just to throw
people off). The printer therefore has complete control over when each character will arrive.
There is no risk of overflowing buffers, lost characters, or characters chopped in half by a
poorly timed busy signal.

When a parallel interface receives an ACK signal from a printer it loads the next character
onto the eight data lines and then it sends a pulse to the printer on a tenth wire called Strobe
(STB). The printer watches the strobe line and when it sees a pulse it assumes that a new
ASCII code has arrived and may be “latched” in for printing or temporary storage.

This ACK/STB system is called “handshaking” because, unlike the various systems used for
serial interfaces, both the printer and the computer are involved. For every character sent
there is first an acknowledge from the printer and then a strobe from the computer.

Incompatibility Among Parallel Printer Interfaces

This 10 wire system of eight data lines and two control lines sounds so simple, straightforward
and appropriate that you might think it would be impossible to design parallel printer inter-
faces to be incompatible with each other. In sad truth, the actual situation is as bad or worse
than the situation among serial interfaces.
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The differences among the parallel printer interfaces are very trivial but extremely difficult
to deal with. The most fundamental problem is that at least three different connectors are
used, a DB-25 connector for IDS parallel printers (which makes these look like RS-232C serial
devices from the outside), a 3M 3464 connector for the Centronics 730 printer, and an Amphenol
57-30360 for the Centronics 779 printer.

Centronics Standard Parallel Interface

19 1 Data Strobe
20 2 Data 0

21 3 Datal

22 -~ - 4 Data 2

23 ————t - 5 Data 3

24 6 Data 4
25— — 7 Data S

26 8 Data &

27 9 Data 7
28— — 10 Acknowledge

29 11 (Busy)
30 12 (Paper Empty)

31 13 (Select)
32—t = 14 (Signal Ground)
33 15 Signal Ground
3¢ —rA = 16 Signal Ground

35 17 Earth Ground
18

Amphenol 57-30360 Connector

Fig. 18.4 Assignment of Centronics Standard signal lines to pins of Amphenol 57-30360 connector.

For no particular reason the 36-pin Amphenol connector used for the Centronics 779 printer
has become the standard connector used for most parallel printers. There is also some vari-
ability among manufacturers as to which wire is attached to which pin in these connectors,
but the standard system is to put the strobe wire on pin 1, the eight data lines on pins 2
through 9, in ascending order, and the acknowledge wire on pin 10. This pin arrangement is
shown in Figure 18.4 and it is usually called “Centronics Standard Parallel.”

Once you've gotten compatible connectors and a compatible arrangement of wires and pins in
a Centronics style interface, you still have to worry about the polarity of each signal. The
most common system has the strobe and acknowledge wires maintained with a steady +5
volt signal, which drops to 0 volts momentarily to signal the actual strobe or acknowledge.
This is called a “negative going” polarity. The data lines are usually handled in the reverse
fashion, resting normally at 0 volts but popping briefly up to 5 volts whenever a “1” is to be
sent.
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Parallel interfaces have one more source of incompatiblity even after all connectors, pins, and
polarities are settled, and that is the time duration of each pulse. This varies and causes
problems even among the most popular printers.

As you can see, interfacing a parallel printer is not any easier than interfacing a serial printer.
Therefore, it is just not worth anyone’s time to bother with this stuff. If you want to avoid
trouble, purchase the most popular printer on the market even if it does not suit your needs
exactly, then buy the printer interface card they recommend. One important reason for the
success of the Epson MX-80 and the Prowriter dot matrix printers is that they use strictly
standard centronics parallel interfaces, and every computer dealer in the country is able to
confidently instruct you on how to do the interface.

Another option is to buy a versatile interface card such as the AIO-II card from SSM since it
can be made to interface with many different kinds of printers. SSM makes it its business to
know the peculiarities of a very large number of printers and will provide you with the
appropriate cables and even tell you how to set the switches inside your printer. The downside
of buying an AIO-II is that it is so generalized that you must go through a setup procedure.

As long as you realize that you cannot just plug your printer into your interface without
checking first with someone, you'll probably be OK. If you do not know any computer owner
or dealer who has exactly the same printer and interface card you intend to buy, you should
exercise great caution and ask a lot of questions before buying.

Summary of Interface Compatibility

The preceeding sections on the art and magic of printer interfacing can be boiled down totwo
simple recommendations. First, it does not matter whether your printer has a “serial” or a
“parallel” interface. However, it does matter which of several kinds of serial interface or which
of several kinds of parallel interface your printer manufacturer has chosen. Second, there is
no such thing as a “one size fits all” printer interface card. Unless you know in advance exactly
what you need, you should choose a card which can adjust to as many different printers as
possible, but still be simple to set up.

The only advantages of a serial interface are that you can use a very long cable (up to 50
feet), and that you may be able to use the one serial interface card to interface with either
your printer or an external modem. In the balance, some parallel interface cards give you
control of special printing features in dot matrix printers which are very difficult to control
with a serial interface. Further, “graphics” parallel interface cards let you use a dot matrix
printer to print out “screen dumps” of high res graphics displays. Only the Apple Imagewriter
and Scribe printers provide convenient graphics screen dumps with a serial interface.

Among serial interfaces, your best chance is with a printer that controls the flow of characters
by using a system called RDY/BSY with the signal being on pin 20 of the RS-232C connector.
Parallel printers should use the Centronics Standard with a “negative going” strobe and
acknowledge. The terms in this paragraph will be undecipherable unless you plow through
quite a bit of stuff earlier in this chapter. Fortunately, you don’t have to know what they
mean, you just have to be sure that the folks who sell you your printer can guarantee that
their machine has one or the other.
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Fig. 18.5 AlO-Il parallel/serial interface card from SSM.

If you can’t find out how your chosen printer is supposed to be interfaced, you’re probably still
OK if you choose a very flexible interface card. Any serial printer can be successfully connected
to a Super Serial Card (from Apple), an SV622 from Microtek, or an AIO-II card from SSM
(see Figure 18.5). Interfacing odd printers with the Super Serial Card is tricky because Apple
gives you no advice on how to proceed. The AIO-II is a little better since SSM specializes in
knowing how to interface with just about anything and is set up to help you out. The Microtek
card is very flexible, but like the Super Serial Card doesn’t include information on specific
printers.

Printers with odd kinds of parallel interfaces are even easier to deal with. The most versatile
interface card is the Microtek Dumpling GX. This card can be set up to handle printers from
at least 15 different manufacturers. Better yet, the setup procedure requires that you know
nothing other than the name of your printer’s manufacturer; no strange codes, no jumpers,
no puzzling.

The AIO-II card from SSM can also be interfaced with just about any parallel printer. The
AIO-II is therefore the best choice if you are intent on buying a printer from a dealer who
can’t tell you if the machine uses a parallel or a serial interface. However, setting up the AIOQ-
II for an unusual printer can be a rather involved undertaking. Since the Microtek Dumpling
is easy to set up and offers a variety of extra graphics features not available on the AIO-II,
it is probably the best choice for use with parallel dot matrix printers.

Serial Interface Cards

Most Apple owners will want to set up their printer card once, close the top of the Apple and
never worry about serial interfacing again. Any serial card listed in Appendix G will work
just fine, with the exception of the CCS 7710D which only works with modems. The other
serial card from CCS, the 7710A, is incompatible with most serial printers making it a poor
choice unless you are quite certain it will work with your machine.

If you have any suspicion that your printer has an unusual interface, or if you have any plans
to occasionally connect your Apple to some other serial device (a friend’s letter quality printer,
a modem, a terminal, a plotter), then you should choose a full featured serial card which is
easy to convert from one operating mode to another.

319



Full Feature Serial Cards

The AIO-II card from SSM is the best of the full featured serial cards on the market for several
reasons. The first is the commitment of SSM to providing interface information and cables for
any printer, terminal or modem which has a serial port. The Apple Super Serial Card is fairly
versatile, but you may have a difficult time finding out how to interface it.

Both the Super Serial Card and the AIO-I can be reconfigured either from software or by
making hardware changes. The SSC uses DIP switches which are difficult to interpret without
a manual, but the AIO-II uses little jumper clips with each feature clearly labeled on the card.
A quick glance is always sufficient to find out how you've left the AIO-II configured. Although
the hardware setups can be overridden from software, it's very handy to know where you're
starting from when things aren’t working too well.

If you will be occasionally connecting a modem instead of a printer, the AI0-II contains a built-
in “null modem” (see Chapter 16) so that all you need to do is to move the cable to a different
position on the card. The Microtek SV-622 also provides both a printer and a modem connector
on the card.

Reconfiguring the SSC for modem operation requires the removal and replacement of a DIP
‘yumper block” and the CCS system requires you to actually buy a second card configured for
use with a modem. The AP-SIO from MPC Peripherals uses a jumper block like the SSC, but
also permits you to rewire the jumper block to adjust to unusual interfaces.

The Super Serial Card provides a more elaborate set of operation commands than are provided
with the AIQ-II. These commands will be most useful for programmers who wish to write their
own simple routines for listing programs, but since most modern printers provide a dazzling
variety of built-in commands, a programmable printer interface card is not as important as
it once was.

Operation of the //c Serial Ports

The two built-in serial ports in the //c are based on almost exactly the same chips that are
used in the Apple Super Serial Card, the AIQ-II, and similar serial interface cards. Each port
has its own 6551 ACIA (Asynchronous Communications Interface Adapter) chip, which is
described in some detail in Chapter 16.

Although the //c’s serial interface hardware is no more elaborate than what you get with a
serial card for the II, II+ or //e, the operation of the //c’s port system is far more sophisticated.
The principal difference between a //c port and a serial interface card is that the //c system
relies heavily on “interrupts.”

Use of Interrupts in Communications

Interrupts can play an important role in increasing the power of communication software and
the printing segment of such applications as word processors. Keep in mind that at a speed
of 1200 baud, it takes nearly one hundredth of a second for a single entire character to get
shipped out from the 6551 to the serial line along with start and stop bits, parity, etc. During
this time, the 6502 could be executing over 1000 instructions.
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If the system does not use interrupts, then the 65C02 must spend a considerable amount of
its time taking quick peeks at the 6551 to see if it is finished with one character and ready
for the next. With interrupts, the 65C02 never has to be responsible for checking with the
6551. Rather, whenever the 6551 requires attention, it can pull the 65C02’s “IRQ” line (see
Chapter 27).

Configuration Commands for Iic Serial Ports

Printer Modem

‘CTRL- CIRL-A Command Lead-In Character, must preceed each command

nnB nnB Set baud rate:
§
nn= } 2 3 4 S 6 7 8
Baud = S0 75 110 135 150 300 600 1200
q
nns= 9 10 11 12 13 14 15
Baud= 1800 2400 3600 4800 7200 9600 19200

nD nD Set data farmat:
§ q
n= 0 1 23 4567
DataBits = 8 7 6 5 8 7 6 5
StopBits= 1 1 1} 1 22 2 2
1 1 Echo output to the screen
K K $Auto line feed off
L L qAuto line feed on (generate and send LF after each CR)
nnnN nnni Set print width/line length to nnn =0- 255. (1=280)
nP nP Set Parity:
9
n=z 0 1 3 S 7

Parity= none odd even mark(l) space(0)

Q Quit ‘Terminal Mode®
R R Reset and exit from firmmware
8 8 Send 233 millisecond BREAK character
T Begin “Terminal Mode," act like dumb terminal,

enable RxD and Keyboard interrupts,
buffer all serial and keyboard input

z Z §2Zap, ignore all command characters and don't format
output

q - Defquilt setting for Port 1
§ - Default setting for Port 2

Table 18.3 Configuration commands for //c serial ports.
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Using the 6551 to Generate Interrupts

The 6551 is designed to generate interrupts under four different conditions. The first two
conditions have to do with sending and receiving individual characters. For transmission, the
65C02 loads a character into the 6551 Transmit Data (TxD) Register and the 6551 goes to
work. When it has finished with the character, the 6551 marks a TxD Empty flag in its status
register (see Chapter 16, Figure 16.1e) and pulls the IRQ line for attention. There is a similar
situation for incoming data, which involves setting a flag for Receive Data Register Full (RxD
Full) and then pulling the IRQ line.

The other two interrupt conditions for a 6551 have to do with the state of the external device
it is connected to via its RS-232C control lines (see Chapter 17, Figure 17.7 for overview).
From the 6551’s point of view, there are two conditions under which an external device should
cause it to generate an interrupt. The first occurs when the Data Set Ready (DSR) line turns
on. This happens when you turn on the power switch of a modem. The 6551 can generate an
interrupt at this time to let the 65C02 know that there is a working modem out there. The
second situation occurs when a modem has detected an incoming “carrier tone” on the phone
line and sends a Data Carrier Detect (DCD) signal to the computer.

Interrupts Available from the //c 6551s

In actual fact in the //c, the 65518’ DSR and DCD inputs are not used for these standard
modem connections. In the printer port, the 6551’s DCD line usually ends up being connected
to the Data Terminal Ready (DTR) output of a printer (see above). Many printers use this
DTR line to warn the computer that they have no room for additional characters in their
built-in buffer. The 6551 for the modem port is typically hooked up so that its DCD line goes
out of the Apple on a pin marked DSR, but which ultimately does get connected to the modem’s
DCD output.

That accounts for the DCD pin on the Port 1 6551 and for the DCD pin on the Port 2 6551.
The DSR pins on the 6551s are used for things that have absolutely nothing to do with the
RS-232C system. The DSR pin from the Port 1 6551 is connected to a signal line that runs
out through the external disk drive connector and is called EXTINT (external interrupt). This
line makes it possible for an external device such as a Z-80 coprocessor module or fancy disk
drive system to send an IRQ to the 65C02.

The DSR pin on the Port 2 6551 is connected to the keyboard data strobe line (see Chapter
8). This means that the Apple //c can generate a DSR interrupt everytime you push down a
key on the keyboard. When this pathway is activated, a running program can go about doing
whatever it wants to, pausing to get new characters from the keyboard only when new data
is actually presented.

Handling //c Interrupts

When the IRQ signal arrives at the 65C02, it stops what it is doing and starts scanning
through the //¢’s various interrupt source flags. First it checks the mouse flags in the IOU (see
Chapter 9), then the status register (see Chapter 16, Figure 16.1e) in the 6551 for Port 2 (the
modem port), and finally the status register in the 6551 for Port 1. There is a total of 11
possible interrupt sources in the //c:
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I0U

1. VBL (Vertical Blanking)
2. X0 (Mouse X-Move)
3. YO (Mouse Y-Move)

Port 1 6551

4. RxD (Receive Data Register Full)

5. TxD (Transmit Data Register Empty)

6. DCD (Usually the DTR line for Printer Buffer Full)
7. DSR (EXTINT from disk drive connector)

Port 2 6551

8. RxD (Receive Data Register Full)

9. TxD (Transmit Data Register Empty)
10. DCD (Data Carrier Detect from Modem)
11. DSR (KSTRB Keyboard Data Strobe)

Whenever the IRQ signal turns on, the 65C02 can do a quick scan through these 11 flags and
figure where the request came from.

Interrupts from the mouse get checked first because VBL gets cleared when its flag is read,
and because part of the X and Y position system requires attention within 40 millionths of a
second of an interrupt (see Chapter 9). The 65C02 then goes about sorting its way through
the 6551 interrupts.

When an interrupt occurs in a //c, there is built in firmware which can “service” some sources
automatically. This applies to the mouse interrupts, but it also applies to the two RxD inter-
rupts, the port 2 DCD interrupt, and the KSTRB interrupt. In any of these cases, you can get
the //c to respond properly without even loading any software. However, for any of the other
interrupts there must be a specially written interrupt handler in your software or else your
Apple will just hang.

Terminal Mode

The part of the built-in interrupt handler which deals mostly with serial port 2 is active in
the Terminal Mode of the Apple //c. This mode is actually a mini-communications software
package built into the //c ROMs. It really doesn’t do all that much, but it does showcase the
use of the //c’s very fancy communications capabilities.

The terminal mode is used to make the Apple //c simulate a dumb terminal. Some writers
have likened this to performing a lobotomy on a personal computer. When it is active, no
software and virtually none of the firmware will work. The Apple //c is turned into a very
modest CRT terminal for some other computer attached via the RS-232C port.

The keyboard can send characters to the other computer, it can “echo” these characters to the
screen, and it can display characters sent by the computer. However, nothing even gets stored
in RAM, never mind being available for the disk drive. Characters scroll off the top of the
screen and they are gone for good. All storage and processing must be done by the remote
computer the Apple is connected to. You can, by the way, connect two Apples this way, with
one playing the part of the remote computer and the other being the terminal. You type
CATALOG on the terminal Apple, but the disk drive turns on in the remote Apple.
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Buffers and Interrupts in Terminal Mode

Obviously, this is not intended to showcase the wonderful computational powers of the Apple
computer. Rather, it is intended to showcase the way the serial port firmware can handle
characters. The most important unique feature is the creation of two RAM buffers in the
auxiliary memory in the $0800 page (see Chapter 21). The first 128 bytes of the page (Aux.
$0800 to $087F) serve as a keyboard input buffer, while the remaining 128 bytes (Aux. $0880
to $08FF) are the serial character input buffer.

Each buffer has a pointer to where in the page the next incoming character should be stored
and a pointer to where the next character should be read from. These pointers are maintained
in screen hole locations in main RAM (see Chapter 21, Figure 21.6b) as follows:

$04F7—$C1 for portl, $C2 for port2
$057F—Store next serial character pointer
$05FF—Store next keyboard character pointer
$067F—Read next serial chararcter pointer
$06FF—Read next keyboard character pointer

The key sequence Closed Apple/CTRL-X clears the keyboard character buffer.

In a typical situation, characters from a modem would be flowing into the serial input buffer
at a steady rate, with the incoming character pointer advancing steadily for each new character.
Meanwhile, the video system firmware would be using the other pointer to read characters
for display at an irregular rate (due to scrolling) and it would be collecting them from the
keyboard buffer, the serial buffer or both. Thus the buffering system allows for some leeway
in the timing of keyboard and serial input vis a vis the video system. However, 128 bytes is
not all that much and its certainly easy to overflow the buffers if things get too far out of line.

The input to this system is interrupt driven. Before beginning, the command register of the
Port 2 6551 is set up to enable RxD (receive buffer full) and DSR (connected to keyboard data
strobe) interrupts. The terminal mode firmware reads the 6551 status register to find out
which of the two sources caused the IRQ and responds by grabbing the appropriate character
and using one of the pointers to stuff it into the right place in the appropriate Aux $0800
buffer.

Configuration Commands

Before either serial port is used, it must be configured with regards to the asynchronous output
format (number of stop bits, data word length, baud rate, parity checking). This information
i8 held in the command and control registers of the 6551 (see Chapter 16, Figure 16.1c and
d) when the port is being used, but there must be some simple way of putting the information
there and of channging it if necessary. Some serial cards use DIP switches or jumpers to create
a default set up format which can be changed from software. The //c default configuration is
set up for both ports by the firmware.

When the Apple is first turned on, the firmware copies its default settings into screen holes
in the auxiliary memory (see Chapter 21, Figure 21.6b) where they can be altered from
software. Later, when a port is activated (i.e., with a PR# or IN#) command, the firmware
copies the defaults from auxiliary memory screen holes into main memory screen holes and
shoves them into the 6551 registers. Thus, before a port is activated, you can change the
defaults in the auxiliary memory, but, after it is activated, you must either stuff the settings
into the registers directly, or change the main memory screen hole settings and call the
appropriate subroutine.

The easiest way, to configure a port, however, is just to use the CTRL-I and CTRL-A commands
as shown in Table 18.3. These commands are similar to those used by the Apple Super Serial
Card and other interface cards for the II, I+ and //e, but the command character (CTRL- or
CTRL-A) must preceed each command rather than simply preceeding an entire line of commands.
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Simple Parallel Printer Cards versus
General Parallel Cards

The simplest type of parallel printer card can support a straightforward Centronics Standard
parallel printer and can usually be modified to handle a few other kinds of printers. These
cards usually have ROM programs which let you control some detail of program listings such
as margins and characters per line. The Apple Parallel Printer Interface (see Figure 18.6) is
the only one of these still in wide distribution.

Fig. 18.6 Oid Apple parallel printer
interface card.

There are some parallel interface cards on the market which are not really designed for printer
interfacing. Rather, they are oriented toward the requirements of scientific laboratories or for
special effects systems. These cards often use a Motorola 6821 (AIQ-II, CCS parallel), or a
Synertek 6522 (Fly Board from Snave). The 6821 provides for a variety of special parallel
control and data exchange functions and simplifies the task of a programmer with a specialized
application. The 6522 is a recent update which adds some timing and simple serial output
functions. These kinds of functions are often termed “general parallel.”

The Eighth Bit for Controlling Dot Matrix Printers

The most important extra feature for dot matrix printers is the ability of some parallel cards
to fiddle around with the eighth bit of every byte. The eighth bit is special because it isnever
used in standard ASCII character codes. All the ASCII codes can be represented by patterns
using only the first seven bits of a byte, therefore, for years, printers and printer interface
cards paid no special attention to the eighth bit.

However, as printer manufacturers packed more and more features into their printers, some
began including features which depended on the contents of the eighth bit. Many of the best
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dot matrix printers now on the market can use eight bit codes. These expanded codes are used
to operate some special graphics abilities of the printers and in the newer Epson printers they
are used to call up italic characters and special international characters.

There is a problem, however; an Apple must have a special type of printer interface card to
use these features. A simple printer interface card may provide no means of using these new
printer features.

In fact, it is quite difficult to take advantage of these special eight bit graphics features when
one of these printers is connected to an Apple. The problem is that the Apple itself uses the
eighth bit for various and sundry internal signaling purposes when it is shuffling codes and
characters in a BASIC program. Although it is possible to get around this limitation if you
are a skilled machine Janguage programmer, just about everyone else must rely on a hardware
fix rather than a software fix. That hardware fix comes in the form of special parallel printer
cards with a feature called “eighth bit toggle.”

A number of printer interface manufacturers have designed their interface cards to accept
commands which can control the eighth bit. These cards take action after the byte has left
the Apple motherboard but before it leaves the printer interface card. Simple parallel interface
cards with this “eighth bit toggle” function include the SSM APPIC, the RV-611C from Mi-
crotek, the Ap-80 from MPC, the Orange Printer Interface (see Figure 18.7), and the Print
Max from MicroMax Systems. Parallel cards with an eighth bit toggle typically do not use a
6821 or 6522, but rather rely on a few simple logic gates and direct control from the
microprocessor.

CAREERNNNENERR

L 5

il

EOro« 1ge Micro
5 b=t e e

Fig. 18.7 Orange Printer Interface
card.

This eighth bit toggle feature lets the BASIC programmer take advantage of a wide variety
of graphics commands built into some dot matrix printers (i.e., Epson). Further, it is often
possible to trick your word processor into using the eighth bit toggle feature to make some
printers type special characters.

“Screen Dumps” for Controlling Printer Graphics

Although the obvious tendency is to think of printers as machines which type just letters and
numbers, it is also possible to use many printers to print pictures on paper. In a dot matrix
printer, graphics are produced by direct control of the dots in the matrix, and in a fancy letter
quality printer they are produced by typing an awful lot of periods and doing amazing things
with the print head and the platten.
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Many microcomputers have no built-in system for generating video graphics displays, and for
these machines, graphics printers provide the only means of drawing graphs, plots or pictures.
Apple owners can also use the printer graphics commands to create images if they so desire,
but there is a much simpler alternative.

The Apple has a built-in system for drawing graphic images on two high resolution graphics
“screens.” These images are drawn using commands from Applesoft BASIC, entered with a
digitizing drawing board, captured with a video camera, or generated by a wide variety of
business graphics and other illustration software.

The idea of a “screen dump” is to let an Apple owner use existing software to draw graphic
images on the video screen, but then to use special screen dump software to copy an exact dot
for dot replica of the image from the video screen out onto the paper in the printer. A screen
dump program examines the binary representation of a video image as it is stored in memory
and translates this into a series of commands to the printer’s graphics system. You use your
own familiar graphics software to generate the images on the screen, and the screen dump
software takes care of all the tedium of converting your screen graphic commands into printer
graphic commands.

Screen Dump Software and Screen Dump Cards

Screen dump programs come in two forms. In the early days of screen dumps it was necessary
to halt the program which had drawn the image, and then to load in the screen dump program
froni disk. When the screen dump was finished, you then had to reload your regular program
if you wanted to draw another image. Screen dump software of this type was written for many
dot matrix printers and it was also written for some very fancy letter quality printers.

The next and very important evolution in parallel printer cards was the inclusion of the screen
dump software in a ROM chip on the printer card itself. This is extremely important because
it makes it possible to call up the screen dump routine from within a running program without
any serious disruption or disk drive accesses.

These screen dump graphics printer cards are extremely easy to use. If a BASIC program
generates a high res graphics image, the image can be copied to the printer by the use ofa
simple two line statement: ’

100 PRINT CHR$(4);"PR#1"
110 PRINT CHR$(9),"G"

The first line is a simple instruction to turn on the printer card, and the second line isabsolutely
all you have to write to cause your interface card to make a perfect copy of whatever is being
displayed in high res screen 1. (For those who don’t read BASIC, line 110 simply sends two
ASCII codes to the printer card: CTRL-I and G.) When the printout finishes, your program
resumes on the next line with no further fuss.

Graphics Parallel Printer Cards

The first printer card to offer this feature was the Grappler from Orange Micro and this card
has become extremely popular. The current Grappler + offers a variety of additional graphics
output features. For instance, if you put in a “G2” instead of a “G” (see line 110 above), you
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get a copy of high res screen 2. Other options include the ability to reverse the image to get
white on black instead of black on white, to rotate the image 90 degrees on the paper, to double
its size or to use emphasized printing to smooth out some of the jagged lines.

Similar graphics parallel cards are manufactured by MBI and by Quadram, and this basic set
of features has also been included on several advanced feature graphics cards and special
“smart-buffered” printer interfaces described later. The newest version of the Grappler + can
be used with a Revision B Apple //e to print a full super high res image and with the new
Epson FX printer to alter the X/Y ratio of images it is printing.

The Grappler Interrupt Problem

Unfortunately, the Grappler has one serious design flaw and other manufacturers are now
offering cards with a wider variety of graphics dump features and without the flaw, the best
of these being the Dumpling GX from Microtek. The flaw is potentially very devastating if
you are using DOS rather than ProDOS. The newer Orange Printer Interface and Buffered
Grappler + show a redesign to correct the problem, but the Grappler+ is still being sold
without modification.

The problem is that although the 6502 and the Apple seem as though they ought to be able
to handle “interrupts,” there is a bug in the design of the Apple’s firmware which makes it
very dangerous to actually use them. Apple has been quite forthcoming about this bug (which
is described in Chapter 27) and has always warned peripheral manufacturers not to use
interrupts.

Some printer cards have interrupt circuitry for use in the Apple III, but all of these cards are
shipped with the interrupt line electrically disconnected for use in Apple II, II+ or //e com-
puters. The use of interrupts can cause intermittent and bizarre effects including the occasional
destruction of disk files. ProDOS can handle interrupts, but must be specially modified to do
so properly with the Grappler+. Apple //e’s sold after the summer of 1984 have a revised set
of Monitor and I/O ROMs which handle interrupts properly. These ROMs are available as an
upgrade for any //e.

The Grappler + uses interrupts to warn you if your printer isn’t ready to go. It stops everything
to flash a message on the screen telling you that your printer isn’t working (which you
presumably already know because you don’t hear it clacking away). Depending on exactly
what was going on in the computer when the interrupt was generated, this can have very
unpleasant consequences. If you are using a Grappler + with DOS you should be very careful
to be sure your printer is on line and ready to go whenever the Grappler tries to call it. The
Microtek Dumpling GX is an excellent alternative. Although the Buffered Grappler+ has
been redesigned to remove the interrupt circuitry altogether, it has other problems described
below.

Advanced Feature Graphics Printer Cards

The kinds of additional features appearing on other cards include screen dumps of selected
lines on any one of the text screens, text screen dump of lowercase letters in the //e, automatic
formatting of screen dumps of BASIC program listings (starting a new line at every colon),
and “transparent eight bit data transmission” where the toggle system is disabled (for simple
transmission of binary data); all of which are provided by the Dumpling GX.
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The Pkaso board from Prometheus can interpret lo res color data to vary gray scales on its
printouts, and both the Macrotech Graphics Parallel card and the GraphMax from MicroMax
add the ability to zoom in on any part of an image over 16 levels of magnification.

The most innovative and useful of all is the Print-It card from Tex Print (see Figure 18.8).
With this card installed you are able to press a button at any time during any program
including, for instance, Apple Writer on your Videx 80 column card, and get a complete image
copy of whatever is on the text screen. The board is based on the Apple Non-Maskable Interrupt
(NMI) line (see Chapter 27) which is used in some copy cards. It halts the processor, copies
the appropriate screen, and then returns you to whatever you were doing just before pressing
the button. In addition, the card can be operated in serial mode for screen dumps to Apple’s
serial Imagewriter.

Fig. 18.8 Print-It screen grab
printer interface from TexPrint.
The button uses the Apple’s NMI
system to halt the computer and
copy text or graphics from the
screen to the printer.

Multi-Function Interface Boards

For those fortunate Apple owners who have all of a dot matrix printer for fast text printouts
and graphics, a modem for communications, and a letter quality printer for formal documents,
a different sort of interfacing problem arises. Where do you put all those interface cards? One
solution i3 to attach all of them to the one card which has several ports. This may cut down
on the total you have to spend on interface cards, reduce the demands on your Apple’s power
supply, and leave more slots open for other cards. There are a few hitches, however.

In theory, the Apple is only able to speak to one device in each slot. Designers of multi-function
cards have chosen two routes to get around this Apple singlemindedness. The simpler of the
two approaches is used by SSM in its AIO-II board and by U-Micro in its multiple port serial
board. In these cards, several devices can be connected, but the Apple is aware of only one of
them at any given instant. If the card is in slot 2, then all of the devices attached to the card
are addressed as if they were really just one single occupant of slot 2.

A BASIC or machine language programmer can give commands to switch the output among

eight different serial ports on the U-Micro card. The AIO-II is a little more clever in that it
permits you to send each byte simultaneously to both a serial and a parallel port. The Apple
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is only aware of the serial port, but the parallel port gets a duplicate copy of everything passing
through the card. In this way, modem communications through the serial port can be “echoed”
to a parallel printer.

A more sophisticated approach is used in multifunction cards from Mountain Computer (the
CPS), from Videx (the PSIO), and from Prometheus (the Versacard). In these cards, some
rather subtle trickery is played on the Apple so that it thinks it is talking to several different
cards placed in several different slots, when in reality there is only one card present. The
details of this trick are explained in Chapter 22. However, it is a fairly simple trick and works
quite well.

The Videx PSIO board can be set up to look as if it has a parallel printer port in slot 1 and
a serial modem port in slot 2. The Mountain CPS card can do the same thing, but it also
includes a real time clock/calendar which can be “phantomed” into slot 7. The most elaborate
of the multi-function boards is the Versacard from Prometheus. It provides a screen dump
graphics parallel port appearing in slot 1, a serial modem port for slot 2, a “BSR” power line
controller (to turn on/off various switches and controls around your house; see Chapter 14) in
slot 4, and a clock in slot 7 (these slot assignments are just examples and can be changed to
suit your system).

Printer Buffers and Intelligent Interface
Cards

One annoying aspect of using a printer to type long documents is that printers need constant
attention from a computer in order to keep working. They don’t require the computer to do
anything very fancy, but they uncompromisingly demand its steady, plodding and unbroken
attention. For most folks, this means that while their printer is working, the Apple is also
tied up and you can’t get any other work done until the printer is finished. If you saved money
by buying a slow printer, this can mean sitting around for hours watching your Apple work
without being able to use it.

The good news is that since the printer’s requirements are fairly unsophisticated, it is possible
to build a simple, inexpensive little “micro-micro” computer to supervise your printer, and a
number of manufacturers have done so. These devices usually have some sort of minimal
microprocessor, a sizeable amount of RAM memory, some control program stored in ROM, and
two interface ports in any mix of serial or parallel. Such printer supervising devices go by the
rather unassuming name of “Printer Buffers.”

The usual protocol is for the Apple to set up a high speed conversation with the printer buffer’s
microprocessor, and to hand across everything to be printed in a matter of seconds. The
microprocessor in the printer buffer stores everything in its own RAM memory and then goes
about the slow plodding process of spoon feeding the characters to the printer. For instance,
a 50 page document may take 90 minutes to print on a slow letter quality printer, but the
Apple will finish up all of its responsibilities in just a few minutes.

This is also very handy in graphics screen dumps from within a program. If you are drawing
graphs and charts on the video screen, the screen dump can be made to a printer buffer in a
few seconds. You go on to setting up the next graph almost immediately while the printer
plods along copying the image onto paper under supervision from the printer buffer’s
microprocessor.
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Sizes and Shapes of Printer Buffers

There is an enormous range of abilities among printer buffers, from very simple devices that
capture and transmit small 16K files to powerful stand alone devices with four times as much
memory as the Apple and capabilities for very sophisticated control of multiple documents
and graphics. The smartest and most advanced, the Shuffle Buffer from Interactive Structures
(see Figure 18.2) provides the only means for an Apple owner to conveniently insert charts
and displays within the body of text from a standard word processor.

The three major varieties of printer buffers are: one, Apple plug in cards which include both
the buffer system and the complete guts of a printer interface card; two, plug-in cards which
have only a buffer system; and three, external or “stand alone” buffers which are sort of
inserted into the cable between your printer interface card and your printer.

Fig. 18.9 Microbuffer II from
Practical Peripherals.

Buffered Printer Interface Cards and Buffer Boards

The Dumpling 64 from Microtek is the most elaborate buffered printer interface board. It is
similar to the Buffered Grappler from Orange Micro and the Microbuffer II+ ($349) from
Practical Peripherals, and like these other boards it has a maximum capacity of 64K for stored
documents. All of these cards provide a full range of graphic screen dump commands for
parallel printers and make it completely unnecessary to buy any other printer interface card.
The Microbuffer II+ (see Figure 18.9) is also offered as a serial interface without graphics
capabilities.

331



These three cards are, however, very different devices. The problem is that during a long
printout you may want to interrupt your printer momentarily to get a little temporary room
silence or to zip out a quick one page letter. The only way to stop the Buffered Grappler is to
hit reset or turn off the Apple; this may mean you will have to start over from the beginning.
The Microbuffer is only a little better since a CTRL-Z sent to it will cause it to stop, but will
also clear the buffer’s memory.

The Dumpling 64 is much more sophisticated. With this card, you can make the printing
pause at any time, bypass the buffer to send data directly to the printer, then resume printing
exactly where you left off. Several documents can be loaded into its memory along with
instructions to pause between documents for further instructions, and it can even be connected
to your telephone and be made to pause automatically whenever the phone is picked up.

Fig. 18.10 Grappler+ (bottom) and Buffered Grappler+ (top) from Orange Micro.

The Dumpling 64 also offers an important additional feature called Space Compression which
allows documents up to about 30K in length to be packed into its 64K of memory, and may
also permit up to 200K of graphics images to be squeezed in. Compression is based on counting
up strings of similar bit patterns and replacing them with a brief repeat instruction. In text,
for example, spaces can be replaced with tabs. In graphics, whole regions of light and dark
can be represented by very brief abbreviations. Since the Buffered Grappler (see Figure 18.10)
from Orange Micro offers only the Reset button and fewer graphics commands, the Dumpling
64 seems to be far and away the optimum choice for a buffered graphics parallel card.

If you already own a printer interface card you can purchase a card for an Apple slot which
provides just the buffering ability. These cards are sold by Orange Micro (the Bufferboard;
see Figure 18.11) and by Prometheus. Like the Buffered Grappler, the entry from Orange
Micro in this field can only be stopped with the Apple’s Reset key. The Prometheus Versabuffer
offers both a serial and a parallel port on the same card so you can feed data into it froma
parallel printer interface card, but interface with either a parallel or a serial printer.
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Fig. 18.11 Grappler+ with bufferboard.

External Printer Buffers for High Capacity and Extra
Features

Smart buffer systems that are placed on the table next to the Apple are made by MPC (the
Omnibuffer; see Figure 18.12), by Practical Peripherals (the Microbuffer; see Figure 18.12),
by Quadram (the Microfazer, and the Interfazer), by Microtek (the Buffer Box), and by Inter-
active Structures (the Shuffle Buffer which updates the Pipeline; see Figure 18.2). The Mi-
crofazer ($299) and the Omnibuffer are limited to 64K, but the Omnibuffer accepts either
serial or parallel input and connects to either parallel or serial printers. The Shuffle Buffer
and the Buffer Box can hold up to 128K of RAM, while the Microbuffer and the Interfazer
can be loaded with up to 256K of RAM chips.

Despite varying RAM capacity, all of these external buffers provide convenient pause features
and also can be set to generate multiple copies of whatever document is in their memory.
The serial version of the Microbuffer is unique in that it can handle bidirectional information
flow. This means it can capture data coming into it from a modem as well as send data to a
printer. The Microtek Buffer Box offers the data compression and remote pause features that
were described earlier for the Microtek Dumping 64 card, and the Quadram Interfazer can be
expanded to interface with several different computers and several different printers.

The Shuffle Buffer from Interactive Structures is much more sophisticated than the other
external buffers and is the only one which can really be called a “smart” buffer. This buffer
can be loaded with up to 63 different files, containing either text or graphics, but its truly
unique feature is that the various files can be printed out in any order the operator selects.
For instance, you could break up a long text into several short files, and then load it into the
Shuffle Buffer followed by 10 or 15 graphs and charts. The Shuffle Buffer is then given
instructions on the order in which to print the files. You could print some text, then have the
buffer insert a chart, then more text, etc. The order in which they are printed is independent
of the order in which they are fed into the printer, and can be supervised by a special command
file also loaded into the buffer for unattended operation.
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Fig. 18.12b Omnibuffer from MPC.

Fig. 18.12 External printer buffers.
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Chapter 19

Printers and Plotters

Printers are Not Like Typewriters

Some Apple owners who buy printers get badly burned by the experience because of a little
confusion about what kind of a beast a printer really is. The obvious analogy is to a typewriter,
s0 printer manufacturers happily snare potential buyers by advertising typing speed and the
appearance of characters on paper. These two features are important, but they are also quite
misleading. A letter quality printer such as the Qume Sprint 11 or Starwriter F-10 is more
like a very high strung typesetting machine than like a desktop typewriter.

Control Systems for Letter Quality Printers

A good word processing program, such as WordStar, working with the Starwriter has precise
control over the position of each letter on the page down to the level of less than 1/150th of
an inch. Strength of impact is varied for each character so all inking is equally dark, and
letters are positioned via a trick known best to calligraphers where thin letters are allotted
less space on a line than wide letters. There are in fact dozens of tiny subtle formatting
instructions that the Starwriter will respond to in the production of elegantly arranged printouts.

This all may sound very complex, but the beauty of the system is that all of this is done
without any awareness on your part. The bad news is that virtually each printer on the market
has its own coding system for the formatting controls. You may pay nearly $2000 for one of
these marvelous machines and never have even the slightest prospect of using it as anything
other than a crude but fast typewriter (or “teletype-like” printer) all because your word
processing program doesn’t know the codes for your printer. Worse still, many very well known
letter quality printers lack two or three crucial formatting commands which renders the whole
system inoperative; once again leaving you with a very expensive typewriter.

Dazzling Abilities from Dot Matrix Printers

Buyers of dot matrix printers often fall into an even worse version of the same trap. The
tendency of many buyers is to think of a dot matrix printer as a cheap alternative to a letter
quality printer with poorer looking characters but greater speed. Not so. The Epson FX-80
(see Figure 19.1), as shipped standard from the factory, can type in any one of over 100 different
type styles. It responds to more than 80 commands and gives the graphics programmer in-
dividual addressable control of over five million dot positions on each 8 1/2 by 11 sheet of

paper.

337



Fig. 19.1 Epson FX-80 dot matrix
printer.

Through crafty use of these innumerable commands, an Epson FX-80 or the slightly less
elaborate ProWriter 8510 can be made to simulate the typesetting abilities of a very fancy
letter quality printer. It is for instance possible to prepare a version of WordStar which operates
an Epson or a ProWriter so that the positions of the characters exactly mimic what would be
produced by a Starwriter including superscripting, subscripting, and spacing changes, but in
addition using shifts in type font for italics and various international or mathematical characters.

Compatibility and Documentation

The bad news once again is complete incompatibility of commands among the various dot
matrix printers. Software is readily available for effortless use of many of the features of the
Epson printer series, and for some of the features of the ProWriter, but other printers may be
reduced to operation as rough quality typewriters, and all the money you pay for the extra
abilities will be wasted.

The Apple Imagewriter (see Figure 19.2) is based on the mechanical parts of the ProWriter,
but the serial electronics, escape sequences and case have been redesigned to make themachine
run faster, do more tricks, and work more quietly (“53 dB” is the figure of merit you can use
for comparisons). The Imagewriter presents yet another set of unique escape codes built around
the needs of the bit graphics system of the Lisa and MacIntosh computers. You can’t expect
Epson or ProWriter software to fully utilize this machine, but the weight of Apple’s support
may make this a safe way to go.

If you are interested in learning to use the various special features on your own, as youlearn
to program in BASIC, then absolutely buy an Epson and no other dot matrix printer. This
caveat to go with the biggest manufacturer may offend some people but there is a goodreason,
and that reason is a book by David A. Lien titled The Epson MX Printer Manual which comes
with your printer. It is both a valuable BASIC tutorial (although a little rough around the
edges on Applesoft itself) and an excellent way to learn to control a dot matrix printer.

The manual distributed with the newer Epson FX-80 is not quite so entertaining, but it is
300 pages of clear writing. You must understand that the manual for the ProWriter covers
the same ground in about 60 pages and can be deciphered only by machine language pro-
grammers. Many other printers just don’t tell you how to use the features, and some others
don’t even have the features.
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Fig. 19.2 Apple Imagewriter dot matrix printer.

Selecting a Printer

There are over 100 dot matrix and letter quality printers on the market, and you can spend
weeks reading reviews that discuss character formation, speed and price. But all this misses
the point. Only a small handful of these printers are actually compatible with word processors
such as WordStar. Of these, not all are rugged and reliable. Worse, if your ribbon runs out at
3 in the afternoon and you have to submit an important document by 5, you are absolutely
out of luck if your local computer store doesn’t carry your printer’s kind of ribbon. Some
printers end up being shut down for weeks waiting for a new ribbon to arrive from a manu-
facturer. Really, this actually goes on. ’

Dot Matrix

If you want a reliable dot matrix printer at a good price which works hard and jumps through
hoops without any fuss, buy an Epson or a ProWriter (Imagewriter). There are less expensive
“compatible” printers which may handle the software, but be sure your dealer can handle
service and support. .

These printers use a print head which has nine hammer wires stacked one above the other
and which are struck home seven (MX-80, ProWriter) or nine (RX-80, FX-80) times in rapid
succession to form each character (see Chapter 2, Figure 2.2). Epsons and ProWriters are
available with fully standard versions of the parallel or serial interfaces, while the Imagewriter
is available only as a serial printer.



The ProWriter is the least expensive ($495), types at about 120 characters per second, and
does fairly good graphics, but the documentation is very poor. The Epson MX-80 ($525) is the
universal standard among dot matrix printers. It lacks some of the versatility of the ProWriter,
and only types at 80 characters per second, but it is the best documented printer for the BASIC
programmer. The souped up Imagewriter from Apple can do 180 characters per second. Its
documentation is better than for the ProWriter, but not as good as the Epson.

Of the two new printers from Epson, the RX-80 ($495) adds some graphics capabilities and
runs a bit faster than the MX and includes a built-in tractor feeder for standard paper.

The FX-80 is a marvelously versatile machine and there is really no other printer on the
market with this much speed (160 characters per second), this many type fonts (128 shipped
with the printer), this density of dot graphics (240 dots per inch), all together withcompatibility
with most dot matrix software on the market, reverse paper feed and backspace capability,
and a list price of $699. All of these printers are available in wide carriage models (see Figure
19.3) which cost a bit more.

Fig. 19.3 Epson FX-100 for wide paper.

You should note that the “characters per second” figure given for a printer doesn’t really tell
the whole speed story. In the literature from most manufacturers, this only describes the speed
at which the print head advanced along a single line of solid text. The speed at which the
head changes direction, speed of platten advance, and even form feed time can cut the “char-
acters per second” speed in half when measured for an entire document.

The Toshiba P1350 is the first of what will no doubt be a new generation of dot matrix printers.
It is the first dot matrix printer to really compete directly with daisy wheel printers for print
quality and formatting control. Most dot matrix printers have nine pins stacked one above
each other, so there will inevitably be spaces between the dots. The Toshiba P1350 has a
staggered pin arrangement so there are no blank spaces, the head of each pin is about one
half the diameter of the Epson pins, and the staggered array has 24 pins instead of nine.
Characters can be formed in a 24 by 18 matrix instead of the Epson FX-80’s nine by 11.

This high density head produces characters which are very hard to distinguish from daisy
wheel print, but which can be typed at 100 characters per second. One major technological
obstacle to this sort of print head has been the problem of keeping such fine wires fromgetting
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caught in the ribbon, and so Epson will soon be releasing a similar print head in which the
ink is applied to the pins without use of a ribbon.

Toshiba has also included a unique software control system. The P1350 is able to emulate a
Qume Sprint Five daisy wheel printer. This means that a word processing program such as
WordStar can be told to send “escape codes” which normally take care of proportional mi-
crospacing, superscripting, subscripting etc., for a Qume printer, and the Toshiba will execute
those commands.

If you are not concerned about software compatibility, are willing to be a bit of a pioneer, and
cannot tolerate printer noise, then there is an important new alternative. Siemens is now
selling a printer that acts like a high speed dot matrix machine, but uses a stack of nine ink
jets instead of nine wires. The ink sprays quietly onto the paper and there is no hammer.
The PT-88 is more than twice as quiet as an Epson even 4t 150 characters per second. A high
speed model, the 2712, can print almost as quietly at nearly 270 characters per second but
costs over $3000.

Letter Quality Printers

You will probably get very good performance out of letter quality printers from TEC, NEC,
Qume and Diablo, but, as you can see from Table 19.1, their escape codes vary from model to
madel even for a single manufacturer. The Letter Quality Printer from Apple Computer is

o8 »
s O i
§S (4N ug
Print Head Control |53 |8 B Paper Movements
Set Up A Ll L) : Set Up
left margin set L2} top margin set
“ clear - clear
right margin set bottom margin set
clear - clear
horiz. tab set set lines per page
“ clear vertical tab set
list of horiz.tabsset - clear
clear set vert. inorement

clear all tabs

set horiz. increment Motion Cornmands

- cleax line feed
Motion Comrnands reverse line feed
carriage return half line feed
horigontai tab negative half line feed
absolute horiz. tab form feed

absolute vertical tab
relative vertical tab

relative horiz.tab
back space

Vord Prooessing Format Controls Print Vheel Control
select lang/wheel size MY
program mode on

underline on
" off

bold printon - off
* off print spec.char.®l
shadow on print spec.char %2
“ off graphics mode on
bidireotional on - off

“ off
auto centering
Y off
auto justify on
" off
forward printing @
reverse printing IR
proportional spc. on M
“ off

Ribbon Control

Table 19.1 Escape and Control codes for letter quality printers.
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based on a Qume. The Starwriter from TEC (C. Itoh, Leading Edge) offers good performance
at a lower price though its codes are close to, but not the same as, Qume’s codes. The best
approach may be to first choose a word processing program and then select a printer only if
the software company says their program can operate it.

These printers are called “letter quality” because they use fully formed letters on a daisywheel
(see Chapter 2, Figure 2.3) or thimble to print their characters, but they really earn thisname
because of their powerful and professional control over character positioning. Most can be

Fig. 19.4 Qume Sprint11/40 widetrack (front) and standard 15 inch (back). Available with 130-character daisy wheel or
standard 96 character wheel (40 or 55 characters per second).
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programmed to use a wide variety of specialized daisy wheel character sets, all with appropriate
proportional spacing and hammer force. Manufacturers usually offer a slower 30 or 40 char-
acter per second model and a faster 55 cps version.

There are some very inexpensive letter quality printers such as the TP-1 from Smith-Corona,
but be forewarned that these machines are called letter quality only because they print fully
formed characters. The printouts look like they were typed on an inexpensive portable type-
writer, the machines lack all of the typesetting features (proportional spacing, superscripting
and subscripting, etc.), are often very noisy and at 12 characters per second drag on about
their work interminably. TP-1’s have been known to collapse from exhaustion after two or
three months of light work; so they really don’t save you any money. The CR-II from Comrex
(see Figure 19.5) is a pleasant surprise in this regard. It is an inexpensive, 12 cps daisy wheel
printer that is reliable and produces good quality text.

Fig. 19.5 Comrex CR-1! low cost, low speed letter quality printer.

Color Printers

Color printers are fairly similar in price to standard dot matrix printers. The color printers
from IDS and Transtar both use multicolored ribbons and a lot of fancy maneuvering with
the print head. The Scribe printer from Apple uses a new heat transfer technology. The pins
in the head heat up rather than snap forward. The ribbon has a wax-like base which responds
to the heat by melting some ink onto the paper (any kind of paper). Canon has produced a
much more reliable and much faster alternative in its A-1210 Ink Jet color printer. This
machine is quiet, produces very crisp, impressive color graphics, and comes in with an aston-
ishingly low price of $635.

One serious problem in computer color graphics has been the difficulty of reencoding a high
resolution color video display so that it can be sent to a color printer for duplication. This is
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an especially serious problem for the new very high resolution color video systems such as
the Number Nine Graphics Board (see Chapter 7). As a result, such images are often just
photographed off the video screen.

New color ink jet printers from ACT and Envision Technology provide an interesting solution.
You simply plug your video output into the printer. These printers contain decoding circuitry
and large amounts of RAM display memory which are used to recreate the bit pattern of the
video image. The printer then applies its own software to reencoding the image from itsdisplay
RAM into a pageful of printing commands.

Plotters for Professional Graphics Printouts

Most formal illustrations in business, science and commercial art must be drawn out with .
continuous lines and solid color fills so the “dot graphics” abilities of dot matrix printers and

letter quality printers are completely inadequate. Plotters are machines which do exactlywhat

graphic artists have always done with pens and cover overlays. The enormous advantage of

a plotter over standard drawing is the potential to rapidly edit and change an otherwise

beautiful and complete drawing. Graphic design with a plotter requires all the aesthetic skill

of traditional drawing, but the techniques for executing the drawings involve skill with BASIC

programming or the use of a new generation of “picture processing” software.

Plotter Graphics versus Dot Matrix Graphics

Computer graphic design with plotters also differs from dot graphics in that is often done
independently of the video graphics of the computer. Apple high res video graphics has a
resolution of 280 dots across about eight inches of your monitor screen so it comes out to about

Fig. 19.6 Plotters offer a sharp
increase in graphic resolution
relative to dot matrix printers.
This HP 7470A is operated by
the standard HP Graphics
Language.
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35 dots per inch. The Hewlett Packard 7470A plotter has control at a resolution of 1000 units
per inch, all in smoothly drawn connection.

Drawing out graphics on a plotter can be simpler than designing video images with Applesoft
BASIC commands, and it is infinitely simpler than doing graphic design with a dot matrix
printer. Although the high resolution Epson FX-80 dot matrix printer can generate graphics
with a density of 240 dots per inch, a program must be able to calculate the position of every
dot on the page and send commands to fire individual pins at specific locations at millions of
locations on a page.

This is not impossible, but it is difficult and there is little in the way of practical software
available to do this. It is for this reason that most graphics on dot matrix printers is done
through “screen dumps” where the computer calculates dot positions on the video screen using
complex machine language programs built into the Applesoft Language Interpreter, and then
the dots are copied out to the printer as the print head does its sweeps across the page.

Plotters are much simpler to program because they accept what are called “vector graphics”
commands. A simple command to draw a line from (0, 0) at the top left to point (7,500, 7,500)
at the bottom right causes the pen to zip across the page in a smooth straight line from the
first point to the second. To execute the same command on a dot matrix printer would require
the calculation of tens of thousands of individual points along the way, and none of the dot
matrix printers are able to do the calculations for you.

You can cause a dot matrix printer to generate smooth, well formed graphics if you use a high
powered computer such as the Lisa, or with an Apple II if you install a special high resolution
graphics board which uses the NEC 7220, a powerful vector math graphics microprocessor
(see the description of the Number Nine Graphics System in Chapter 7). A good plotter will
do all this work for you with simple convenient commands (see Figure 19.6).

The Plotter Software Problem

Plotters are oriented towards vector drawing and high resolution, but most of the graphics
software on the market is oriented towards dot graphics on low to medium resolution video
screens; you must therefore either purchase special software for your plotter or be prepared
to write your own BASIC programs to operate the plotters.

Each of the plotters on the market seems to have its own fairly limited set of commands.
Because the various command sets are incompatible, the market for plotter software is divided
into several small segments and this means there isn’t much software and that there may
never be very much. The limited set of commands on most plotters makes the task rather
difficult because a fairly large number of steps are required to construct complex objects.

The Hewlett-Packard Graphics Language and the
7470A ‘

As microcomputer owners started buying plotters and started running into the software bar-
rier, some began to notice that there is something special about Hewlett-Packard plotters in
the software realm. Because HP has been heavily involved in advanced graphics and plotter
systems for many years, there is a fair body of software written in BASIC using a set of
commands referred to as Hewlett-Packard Graphics Language or HP-GL. Further, if a busi-
nessman had purchased an HP plotter for an Apple, it was often possible to walk down the
hall to the company’s computer graphics lab and find a programmer who was “fluent” in HP-
GL.
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Hewlett-Packard has recently noticed just how interested microcomputer owners are in their
plotters and has responded by launching an ad blitz in the microcomputer magazines and by
slashing the price of their extremely powerful 7470A from $1600 down to a reasonably af-
fordable $1095. Other plotter manufacturers have responded to the software problem by in-
cluding only six or eight vector commands and three or four commands for drawing alphanumeric
characters (Sweet-P, Amdek DXY-100, Strobe-200) apparently in hopes of making their ma-
chines simple to program. Meanwhile, HP has maintained a powerful and expressive set of
20 vector graphics commands (including circles, arcs and special line patterns) which are
drawn out at 15 inches per second, and 15 commands for controlling labeling with numbers
and letters (including five different international and scientific character sets) which get drawn
at six characters per second; as good as a fast typist.

18,9 1560 18813 1982 1988
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Fig. 19.7 Sweet P plotter from Enter.

The HP 7470A also parts company with the other plotters in that it provides 10 commands
which cause the plotter to report back to the computer. These can be used to operate the plotter
as a crude digitizer, but are also very important for editing drawings. Owners of an HP 7470A
have the broadest selection of available software, and are likely to be able to find graphics
programmers familiar with their device; but if they decide to program on their own, HP
includes a really excellent 200 page programming guide and tutorial.

The Sweet-P from Enter Computer, Inc. ($795; see Figure 19.7) has one pen, a simple command
structure, and a resolution of 250 units per inch, but it permits its Y-axis to run out contin-
uously along a 10 foot roll of paper for strip chart recorder simulation. The Amdek DXY-100
($749) can handle 10 inch by 14 inch paper and can be enhanced with an extra ROM chip to
provide circle and arc commands. The Strobe-200 ($730) has fairly good resolution (500 units
per inch), and a respectable software base, but it is fairly slow (three inches per second) and
has an extremely simplified command structure. The Apple Color Plotter Model 410 (see Figure
19.8) draws at just four inches per second, but it is software compatible with the HP 7470A.
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Fig. 19.8 Apple Model 410 plotter.

Changing Pens to Get More Colors

All of the plotters on the market for microcomputers have just one “drawing hand,” so they
must change pens to draw different colors. If you are using a Sweet-P, an Amdek DXY-100,
or a Strobe, you must first do part of the drawing in one color, then cause the machine to stop
while you change to a different color pen before permitting it to continue. The HP 7470A has
a built-in holder for a second pen, so you can write pen changing commands into your program.
To get more than two colors, however, you must be present near the machine to switch the
pens at the right moment.

Particularly with slower plotters, the need to stand about waiting so you’re present to do the
pen changes when necessary can be very tiresome. Several manufacturers therefore offer
plotters with several pens and commands which make the plotting hand stop, put away its
current pen, and then pick up a pen with a different color before proceeding. Bausch and Lomb
(Houston Instruments) offers an eight pen system (the DMP-29, $2295), Strobe has a six pen
machine, and Amdek offers a fairly versatile six pen plotter for $1299. Hewlett Packard has
just released a six pen plotter ($1895; see Figure 19.9), but software must be enhanced to take
advantage of this additional feature.
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Fig. 19.9 The HP7470 {front) can switch between two pens, and the HP7475 (back) has six pens.
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Chapter 20

Local Area Networks
and IEEE-488

More Digital Connection Systems
Speed and Distance for Networks

Most of the discussion of communications so far has been taken up with a review of the RS-
232C and the Centronics Parallel connection systems. These two systems are just great for
connecting one modem to one computer or one printer to one computer, but there are a whole
range of other and very important communication functions at which these two fail miserably.

The three great failings of RS-232C and Centronics Parallel are in the realms of distance of
transmission, speed of transmission, and participation of more than two devices. Distance is
not a big issue when you're connecting a printer to an Apple, and that is very fortunate because
Centronics systems cannot manage secure transmission at distances over three or four feet.
RS-232C is a little better in that you can probably run a cable along the wall to another
machine on the other side of a big room, using up to 50 feet of wire, but that’s it.

Similarly, it’s no big deal if you can’t use really high speeds to send data to a printer ora
modem because, after all, printersjust can’t type all that fast, and, as reviewed above, telephone
lines only accept very slow transmissions. Let’s be clear about the meaning of slow. The 6502
shuffles data around at a rate of over five million bits per second, and the Apple’s video display
generator pumps information at just over 75 million bits per second. A very fancy Diablo
printer accepts data at 300 bits per second. That is what is meant by slow.

If you want to connect two Apples which are 60 feet apart (as the cable lies), and you are
willing to put up with a 99.99 percent reduction in speed to 300 baud, you're still going to
have to spend $300 or $400 on modem equipment. You may be thinking that there must be
another way, and indeed there is. Actually, there are several other ways.

Age Old Current Loop Returns for the
Distance

The mention of a “20 milliamp current loop” conjures up images from decades long gone by
of old mechanical teletypes tapping out characters on long rolls of yellow paper and blowing
air through holes in paper tape to read stored data. But consider this: the 20 mA current loop
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system uses the same asynchronous serial protocol that is so popular for RS-232C systems,
but a 20 mA currént loop can transmit at 9600 baud at distances up to 1500 feet. As a
consequence, 20 mA current loop has recently been experiencing something of a small scale
renaissance.

Among the factors which limit the length of RS-232C cables, the two chief culprits are “ca-
pacitance” (see Chapter 13), which slows the transition from -12 volts to + 12 volts, and “ground
loops,” which cause confusion about absolute voltage levels; both factors tend to get worse
with distance. The 20 mA current loop system is effective over long distances because a strong
current can be made much more resistant to capacitive effects as well as to voltage drops due
to resistance in the wire. The ground problem is much less serious because 20 mA current
loop does not depend on measurements of voltage for detection.

The old Apple Serial Interface Card includes a 20 mA current loop interface, so for $80 you
can have two Apples communicating at respectably high speed at opposite ends of one awfully
large building. If you spent $1000 to buy a couple of 1200 bps modems, you’d be spending 10
times as much money to get one tenth the communication speed. As if the economics weren’t
impressive enough, it’s nice to know that the protocol is logically identical to what is used for
data encoding in RS-232C systems so all of the standard, off the shelf communications software
will work just fine.

Another reason to keep 20 mA current loop in mind is that there are still tens of thousands
of lab instruments out there feeding data into teletyges, and equally many undergraduates
copying the information off of the yellow paper in order to type it into the laboratory Apple
for analysis. Instrument manufacturers who would like you to spend many thousands of dollars
for the new “smatt” version of their machine don’t seem to be too helpful on this point. However,
there is no need to continue in this fashion because it should be no secret that any machine
which will talk with a teletype will talk just as happily with an Apple.

A simple Apple card you can build to do the RS-232C/20 mA conversion is shown in Chapter
13, Figure 13.2 in case you already own a fancy seridl card, don’t want to replace it with an
Apple SIC, and want to add current loop capability cheaply. The actual transmission distance
for a given current loop system depends on the nature of the current source. A 1.5 volt battery
and a 75 ohm resistor yields a 1.5/75 = .02 amp current, but the 12 volt Apple supply with
a 600 ohm resistor generates a “stiffer” version of the same 12/600 = .02 amp current. A long
wire which adds 100 ohms of resistance is rather rough on the first current source, but has
comparativley little effect on the current from the second source. Consult your local engineer
for details on long line current loop connections.

Fifteen Devices On-line with IEEE-488

The current loop system just described offers a 30 fold increase in transmission distance over
RS-232C, (and 500 fold increase over Centronics Parallel), but it offers no real improvement
in speed over RS-232C, nor does it permit more than two devices to be connected together. A
completely different system called IEEE-488 operates over just slightly greater distances (65
feet) than the RS-232C system, but it permits communication at up to a million bits per second,
and provides a protocol which lets 15 different devices talk among each other on the same
interface cable.

The IEEE-488 is a fairly elaborate parallel communications interface which was born of the
concerns of manufacturers of “smart” laboratory instruments and industrial testing equip-

352



ment. The typical setup for an IEEE-488 system would be a room with two or three micro-
computers and a dozen fairly intelligent testing, monitoring and analysis instruments scattered
about performing automatic measuring chores.

Controllers, Talkers and Listeners

In this system, any of the devices, including the microcomputers, can send information to any
other device. Only one can speak at a time, but any number can listen. Although this system
provides for very rapid transmission of data, it must be configured before each round of
communication, and the configuration process is a bit clumsy.

At any given moment, just one of the devices is considered to be the “bus controller.” There
are 16 wires used in the bus, eight for passing data and addresses and eight used for a variety
of control and signaling functions. Whenever one of the devices has some information to send,
it places a 5 volt signal on one of the control lines called Service Request (SRQ). Thecontroller
can respond to this request by configuring the system for a little communication.

Configuring for Communication

To configure the system for a transmission, the controller puts a signal on a special control
wire called Attention (ATN) and all the devices respond by sort of tuning in to find out what
role they are supposed to play. Each of the devices has its own permanent address, and the
controller is able to load these addresses onto the eight wire data bus part of the IEEE-488
cable. For communication, the controller addresses the devices one by one to find out which
one pulled the SRQ line. When it finds out, it designates that device the “talker.” The con-
troller can either listen alone to what the talker has to say, or it can address several other
devices and tell them that they will all be listeners.

Talking and Listening

Once the bus is configured, ATN is turned off and communication can begin. The designated
talker now takes control of the data bus. All of the designated listeners are supposed to signal
when they are ready to receive data. They do so by trying to put a 5 volt signal on a control
wire called Not Ready For Data (NRFD), but that wire is set up electrically so that it willnot

. respond until all the listeners have attempted to put the signal on. The talker waits for NRFD
to change, and when it does, it puts a byte of information on the eight wire data bus and puts
a signal on a control wire called Data Valid (DAV). All the listeners turn off their NRFD
signal, and as each one captures the data, it tries to respond by putting a signal on another
control wire called Not Data Acknowledge (NDAC).

The sequence in the preceeding paragraph is repeated until the talker is finished with its
message which it indicates by putting a signal on another control wire called End Or Identify
(EOI). When the controller sees EOI, it knows it can go about looking for new SRQ request
signals. '

For those who are interested in a more complete explanation, there is a very nice discussion
of this system in Part 3 of Steve Leibson’s I/O primer (Byte: April, 1982, page 186) and a
somewhat less concise discussion in PET/CBM and the IEEE 488 Bus (GPIB) by Eugene
Fisher and C.W. Jensen (Osborne/McGraw Hill).
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Apples and IEEE-488

Although all the fiddling around described in the previous few paragraphs sounds quite com-
plex, it all takes place at a very good clip. The result is a fast and versatile system which has
enjoyed considerable popularity among instrument manufacturers. It can be used to provide
a comparatively inexpensive way of linking several nearby Apples (no two can be more than
12 feet apart, although the entire cable may be 65 feet in length). Communication takes place
at high speed and it is fairly easy to add devices to or remove devices from the system.
Nonetheless the primary use of IEEE-488 interconnections will be for connections with equip-
ment which can only speak in IEEE-488 format.

There are two very different kinds of IEEE-488 boards available for the Apple. A very elegant
and easy to operate board is made by SSM and there is also an easily programmed IEEE-488
board available directly from Apple. The alternative is a low cost rough cut system from CCS.
The SSM board uses a special integrated circuit from Motorola, the 68488, to manage most
of the details of talking and listening, and also provides a sophisticated control program in
firmware.

The SSM A488 accepts a set of English commands which can be sent from BASIC, FORTRAN
or Pascal and reports results in English words. Since the various devices attached to the IEEE-
488 lines were designed without knowledge of the Apple’s idiosyncrasies, SSM has provided
buffering and data reception features which permit the Apple to accept a variety of otherwise
forbidden characters, and to accept strings of 1000 characters although BASIC is usually
limited to 256 characters. The bad news is that the board lists for $475.

A less expensive alternative is a sort of stripped down IEEE-488 interface from CCS, the 7490.
This card depends on several generalized chips to carry out the interface, so a great deal of
the firmware is devoted to housekeeping tasks done automatically by the 68488 on the SSM
card. As a result, programming the 7490 is a far more difficult task best undertaken by very
experienced programmers. The primary advantage of the CCS card is a much more attractive
price tag of $200.

Local Area Networks

The design objective for the ultimate Local Area Network is nothing less than permitting the
microprocessor in one microcomputer to send data to RAM chips in hundreds of other computers
scattered over several miles at the same speed that it speaks to its own chips a few inches
away. In this ultimate system, all makes and brands of computers communicate freely among
each other without regard for differences in operating systems, applications software, or com-
pany of origin. Communications should be secured for authorized users only, highly resistant
to noise and interference, and sufficiently flexible to permit the addition or removal of micro-
computers from the system without any interruption whatsoever.

This is one tall order.
There are a few obstacles impinging from the real world. For instance, during one clock cycle
of the Apple, a beam of light can only travel about 1000 feet. Even more obstinate than the

speed of light is the obstacle provided by computer manufacturers who depend on incompat-
ibility to encourage you to continue buying their company’s type of computer.
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With these obstacles in mind, it is a remarkable fact that most of the elements of the ultimate
Local Area Network exist and are in place in some American corporations, and the full system
should be operational and available very soon.

Network Architecture: OSI and SNA

The design strategy for this daunting engineering task has been to break the problem down
into a series of simpler elements. Each element, or “layer,” has been attacked as a distinct
problem, and then “interfaces” have been worked out to connect the layers together into a
complete system.

This breakdown into layers has been done for the purpose of making it easier to pin down
design problems, but the terms used to describe the layers are still very helpful for someone
approaching networks for the first time. The term used to describe a layering scheme is
“architecture.” There are two major views about the architecture of a network system, one is
the widely accepted product of the International Standards Organization (ISO) and it is called
Open System Interconnection (OSI). The other major view of network architecture comes from
IBM and it is called Systems Network Architecture (SNA).

The OSI architecture has had enormous impact in the design of nearly all local area network
systems. The SNA system, however, has had a fairly negative impact so far, because, like the
OSI system, it is not yet completed in workable form, but, unlike OS], it is a corporate secret
at IBM. Many manufacturers and users have postponed work on or purchases of OSI based
systems (such as Ethernet) in the knowledge that the impending release of the IBM system
must be taken into account. Nonetheless, as the years have gone by OSI architecture networks
have crept into thousands of facilities.

The Seven Layers of OSI

As befits a daunting engineering task of heroic proportions, the ISO architecture is universally
discussed in the terms of a sort of mythical catechism called the Seven Layers of OSI.

First is the Physical Layer, which determines the substance of the actual connections, next
is the Data Link Layer, which states the protocol for coding the data, and third is the Network
Layer, which addresses the “topology” and the routing of packets of information. These first
three layers are the only ones for which standards exist and for which compatibility caneven
be talked about.

The four higher layers are the Transport Layer, which permits a given member computer to
supervise the dispatch and arrival of completed messages, the Session Layer, which attends
to Log-On and data security, the Presentation Layer, which funnels information from, i.e.,
one company’s word processing program into a lingua franca understandable by all, and finally
the Applications Layer, which provides for software such as electronic mail programs whose
sole purpose is to let the user interact with other people by taking advantage of the services
provided by the six layers below.

The Physical Layer: RS-422A, Coax and Optical

The physical layer determines the speed and distance limitations of the network and can play
a large role in determining costs. The speed and distance properties of RS-232C are completely
inadequate, so network designers have looked to the successor of RS-232C, called RS-449.
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Like its popular predecessor, RS-449 includes a large number of control wires and the number
of pins is now boosted to 46 in a 37 pin and a nine pin connector. Fortunately, it is possible
to do away with 44 of these wires and use only the two data wires for network links. The
committee that designed RS-449 foresaw this limited use and wrote a partial standard called
RS-422A which describes only the properties of the data wires.

In a RS-422A system, data can be transmitted at a rate of one million bits per second (1 Mbs)
and the cable may be 2000 feet in length. The minimal configuration sends the data along
two wires at the same time. The two are twisted around each other (thus the name “twisted
pair”) and the improved speed and noise resistance actually results from this pairing system.
In the old RS-232C system, signals were measured as the voltage difference between the TD
line and a ground line, but the voltage of the ground line couldn’t be depended on for long
distances. In RS-422A, the signal is sent as a voltage difference between the two wires, so
local ground problems can be ignored. The twisting also helps limit noise broadcasts from the
wire which could interfere with other equipment.

This twisted pair system is fairly inexpensive to lay out, and is sufficiently flexible to bend
around corners and such, although costs go up if you need to run the wire inside conduit to
minimize noise. A more expensive alternative is to use coaxial cable where the signal and
the noise shield are built together into the wire.

Coaxial cables can carry signals at 10 Mbs and can be extended over greater distances than
RS-422A twisted pairs. Coaxial cable is a little more difficult to lay out and costs more by the
foot, but since conduit is not required and its performance is better than RS-422A, “coax” has
become extremely popular for networks and is used in Ethernet.

One way of completely eliminating the problem of electrical interference and noise generation
is to not use electricity in the connecting cables. Inexpensive lasers and photodectors can be
fabricated as silicon chips, and when they are connected by top quality optical fibers the
performance is very impressive. Transmission speeds can be in the hundreds of millions of
bits per second, and fibers can be many kilometers in length. Few computers can pump
information that fast, so optical fibers permit “multiplexing” of several different signals into
the same cable at the same time. The chief limits on current optical technology have to do
with problems in splicing multiple connections. Reception and retransmission at each node
pushes up cost and cuts down on speed, so coax still dominates for high speed systems.

The Data Link: Synchronous Serial and HDLC

It is the responsibility of the Data Link Layer to actually assemble the address, control, and
data information into a stream of bits, complete with services for error detection and correction.
The data link layer must figure out when an error has occurred and request a repeat trans-
mission of an information packet. In a sense, when this layer does its job correctly it makes
the data transmission lines appear error free. The Network Layer hands down information
to be sent and receives complete decoded characters back from the Data Link. Noise and
interference are detected by the Data Link Layer, and the Network Layer does not have to
get involved in such trivia.

Modem communications with RS-232C connectors usually use a coding scheme called “asyn-
chronous serial” (see Chapter 16). In that system, a slow “baud rate” is used and the sender
and receiver are expected to stay in synchrony for only 10 or 11 bits, and then to try again
when the next character is ready to go.
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All of the networks use a very different system in which the sender and receiver are expected
to get into synchrony and maintain timing while thousands of information bits pour in. This
sort of “synchronous serial” communication requires a completely different system for estab-
lishing speed, for establishing the beginning and end of data frames, and for error checking.

Older systems used a synchronous serial communications standard called Bisynch in which
ASCII control characters were placed at the beginning and end of a data stream to handle all
the management problems. Newer systems have achieved better performance and improved
compatibility among different kinds of computers by abandoning the “character orientation”
of Bisynch. The newer protocols treat the entire information stream as a bit pattern and do
various kinds of fiddling with the ones and zeros to encode synchronization, address and error
checking abilities. One version, called Serial Data Link Control (SDLC), was developed by
IBM, but the ISO has adopted a modified and more flexible version called High Level Data
Link Control (HDLC).

In HDLC, each “message frame” begins and ends with a “flag field” which is a special bit
pattern used both as a marker and to assist in synchronization. Immediately following the
flag field is an “address field;” in SDLC, the address can only be eight bits in length, so only
256 devices can be in the system. In HDLC, the address field can be as long as necessary.
Ethernet takes advantage of this to permit 1024 devices to be on the network and to permit
the addressing of several different locations within a given device.

The address field is followed by a “control field” which lets the receiving station know some-
thing about how to interpret the bits in the information field. The information field can contain
any number of bits in any code, limited only by the memory capacity of the receiving device.
The information field is followed by a “frame check” field which contains a mathematical
abbreviation for the contents of the information field. The receiving station recalculates this
check value from the incoming information and compares it to the value in the frame check
field. If the two numbers are different, than a transmission error must have occurred and the
receiver sends a message back to the sender requesting a retransmission. For a more complete
discussion of the various protocols see A Manager’s Guide to Local Networks by Frank Derfler
Jr. and William Stallings (Spectrum/Prentice Hall) or An Introduction to Microcomputers,
Volume 1 by Adam Osborne (Osborne/McGraw Hill).

The Network Layer: Stars, Rings, Buses and CSMA/CD

The three popular “topologies” for networks are shown in Figure 20.1. The star arrangement
implies a central controlling unit, and although this is the model for telephone PBX systems,
it has been unpopular for networks because a failure at the center wipes out the entire system.
The ring system’s greatest problem is that the whole network must be shut down whenever
any machine has trouble or whenever one machine is added or removed. It provides some
advantages for determining who will speak and when, and it is expected to be the basis of
IBM’s SNA network system.

In the ring configuration, one member device is able to seize control of the ring so it can send
packets of information without interruption from others. A “token” pattern such as “11111111”
is passed around the ring from one device to the next continuously until one of them has
something to say. It siezes control when it receives the token by sending out a modified pattern
such as “0111 1111.” All the other devices are restrained from sending messages and canonly
pass along the changed token and interpret addresses until the sender changes the tokenback
to the all clear form.
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Fig. 20.1 Network Topologies.

The bus system is preferred in the ISO system and is used in Ethernet. The outstanding
advantage of the Ethernet bus system is that all communications continue at full speed when
computers are added and removed, and a failure of one device has no effect on the system.
The address scheme is “dynamic” so that it can adjust to the addition or removal of devices.

The trick in a bus system is to ensure that only one device will be speaking at a time. Nearly
all bus networks use a system called Carrier Sense Multiple Access (CSMA) to maintain order
on the bus. There is no controller, no master, and no priority system. All that is required is
that each member take a quick listen before it tries to send. If it senses a “carrier” (meaning
that someone else is talking), it waits and tries again. Since a full CRT screenful of text takes
about 1/500th of a second to be transmitted at Ethernet speeds of 10 Mbs, the line ends up
not being used most of the time, and waits are rarely very long, even with hundreds of
computers on line.

One situation which is not handled very well by CSMA is when two devices attempt to begin
a message essentially simultaneously. Xerox has a “collision detection” system in which the
interference pattern from simultaneous access can be detected, both senders halt and then
attempt to restart after an essentially randomized interval. Bus systems with a full collision
detect mechanism (CSMA/CD) are usually more expensive than simple CSMA, and collisions
are fairly rare so many smaller systems do not include collision detect facilities.
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The Higher Layers

There are few standards for the higher layers, but the three dominant players are Transmission
Control Protocol (TCP) from the Department of Defense, Xerox Network System (XNS), and
BX.25 from Bell. These protocols attempt to provide a uniform software environment for the
transport, session and presentation layers. At present, the use of Ethernet for the lowest three
levels has been endorsed by Xerox, Digital Equipment Corporation, Intel, and a number of
other manufacturers, and Xerox’s newer XNS for layers four through six is gaining increasing
acceptance.

The price of an Ethernet/XNS system has begun to decrease with the development of specialized
integrated circuits to handle the interface. Another important factor is 3COM’s introduction
of Ethernet/XNS interfaces for IBM PCs, Lisa, and Apple II. There have been various rumors
about Apple Computer’s “Applenet.” Many advance reports suggested an RS-422A Applebus
twisted pair system, but Apple seems now to be waiting for IBM’s SNA.

Another important player is ARCnet from Datapoint Corporation. This system uses a unique
network topology which is a sort of hybrid between the bus and the star system. The use of
stars to connect buses permits an ARCnet system to sprawl over four miles. It does not use
the same kind of coax cable as Ethernet, so its transmission speed is a slower 2.5 Mbs, but
its cable is directly compatible with the cable used in IBM 3270 systems.

Rather than using a CSMA/CD system like other buses, ARCnet uses a token passing scheme
like the one described above for ring networks so it requires a comparatively simple interface
card. Nonetheless, ARCnet uses XNS for its higher layers so it offers software compatibility
with Ethernet systems. The Nestar PLAN 4000 is essentially an ARCnet system which pro-
vides interfaces for Apples and IBM PCs. A Nestar interface costs about $400 while an Ethernet
interface still costs nearly $1000.

The third major network system for Apples is Omninet from Corvus. Omninet uses a 1 Mbs,
RS-422A system and a fairly intelligent interface card. The Omninet system has its origins
as a successful effort to permit several Apples to share a single hard disk. The interface card
has its own 6801 microprocessor which sends and receives message packets and then uses
“DMA” (see chapter 27) to move messages in or out of Apple memory. These interfaces cost
about $500.

Apple Computer manufactures a 3270 Cluster Controller Emulator which can be used to
operate an Apple II as if it were an IBM 3270 terminal. The Apple communicates with the
Cluster Controller via a standard serial link, while the controller handles the details of the
signal and electrical interface.

There are versions of the controller available for a cluster of four or of seven Apples. “Apple

line” can be used to connect to an existing cluster controller from another manufacturer, and
there is also a “Protocol Card” to handle details of terminal emulation.
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Chapter 21

Main RAM and High ROM

The way the Apple uses its memory chips and its disk drives is best understood in terms of
three potentially unfamiliar entities: its address space, file buffers and bank switches.

You can appreciate these three things as follows. You sit back in a comfortable chair and put
your feet up with no intention of moving for the rest of the afternoon. You’re planning to scan
a huge mass of books and articles, all with as little muscular effort as possible. God forbid
you should have to get up and walk across the room to get something.

To your left is a bookshelf. It is within easy reach of your left arm and you can comfortably
put your hand on each and every book and article on the shelf without even having to put
down the cup of coffee in your right hand. That one bookshelf plays the part of the Apple’s
“address space.” "

This is a class operation, so, in addition to the books on the shelf, you've got a little switch
panel towards one end of the shelf. In easy reach, and at the touch of any one of several
buttons on the little panel, you can control video, sound, cassette tapes, etc.; a sort of complete
home entertainment center. That switch plate represents the Apple’s “$C000 space” (pro-
nounced “see thousand”), about which you will learn more shortly.

A single convenient bookshelf is just great, but remember that we were talking about a really
huge amount of reading. Still, we will never have to leave our chair. This is all made possible
by a couple of very high tech tricks. You see, one book on the shelf is very special because it
is sitting in what we will call the “file buffer.” The instant you remove a book from that one
space, a new one pops in behind it. This file buffer is, in fact, a sort of access chute leading
to a potentially enormous library equivalent to about 1000 bookshelves equal in size to your
own. The great improvement over going to the library and climbing stairs leading to long
aisles of book stacks, etc., is that all the books are available at that one single file buffer space
along your chairside bookshelf and they may be just as easily and accurately returned to their
proper place in the huge library simply by shoving them back out through the file buffer.

When you begin your work you sit down to a largely empty shelf, containing just the switch
plate, one book sitting in the file buffer, and a few permanent old standbys (i.e., the operating
manual for your high tech book shelf) off at one end of the shelf (here representing the Monitor
and Applesoft ROMs).

Tapping out your selections on the switch plate, the books and articles start showing up at

the file buffer. As each arrives, you remove it from the file buffer and put it where you want
it on the shelf for subsequent use. Pretty soon, you’ve brought in say 30 or 40 books and your
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shelf is quite stuffed. The problem is you know you just absolutely must have about 10 or 12
more in easy reach. No problem, you reach for the switch panel and hit a “bank switch.”

Poof, a bunch of books at one end of the shelf disappears, leaving some nice new empty shelf
space. You bring in those last few additional books via the file buffer, put them in place, and
tap the bank switch again. Poof, the recent arrivals disappear and are replaced by the ones
that had been there first. Just for kicks, you tap the bank switch a few more times, and the
two sets of books, both of which you put in that same part of the shelf, exchange one set for
the other set, all in order, instantly and en masse. Owners of an Apple /e or /c have an even
more powerful set of bank switches and can make the entire set of books along the whole
length of the address space exchange with another complete “auxiliary” set in an instant (an
“instant” here being defined as a little bit less than one millionth of a second).

A Map of the Apple’s Address Space

The address space of the Apple exists as a sort of creature of the 6502. It is defined by the
65,535 (64K) different addresses which can be loaded into the 6502's “address buffer” (see
Chapter 27). Once the 6502 is installed, the address space of the Apple has 64K locations
whether or not there are any RAM chips on the motherboard. No matter how much more
RAM or ROM is added, the address space stays the same; 65,535 locations. As described above,
additional RAM beyond 64K must be “bank switched” into the address in order to be used.

This “space” can be represented as a tall thin box which is eight bits “wide” and 65,535 bits
“tall.” Each byte in the space is a little one by eight rectangle, and the thousands of bits are
stacked one on top of another. Because it is a large and complicated two dimensional space,
much like the expanse of the Great Plains, the best way to find your way around in it is with
a “map.”

The “map” of the Apple’s address space (which has been drawn in Figure 21.1) has been
squashed and distorted in order to squeeze all 65,535 bytes into a reasonable amount of space
on the page. Each byte within it is no more than a very thin line. The byte on the bottom line
has been labeled OK and the top byte has been labeled 64K (actually byte number 65,535).
Between the top and the bottom of the space, marks have been placed every 4096th byte
(labeled 4K, 8K, 12K, etc.), thus dividing the address space into 16 blocks.

Numbering the Bytes

The numbers on the right side of the drawing show the number of each marked byte as it
appears in the hexadecimal numbering system. Hexadecimal notation is very important for
describing the way computers work. It is called hexadecimal because it uses 16 different digits:
0,1,23,4,5,6,7,8,9, A, B, C, D, E, F. This numbering system provides a clear and simple
way of marking off the organization of the Apple’s memory space because the 6502 can be
said to think in hexadecimal, rather than in decimal, as we do.

The trick to using hexadecimal numbers is just to use them without fanfare and not to worry
about them. Don’t try to convert to decimal unless you have to. It is much easier to remember
that the Apple’s input/output spaces begin at C000 than that they begin at 49,152. Whenever
a hexadecimal number is used, it will be preceeded by a dollar sign ($), i.e., $C000. Some folks
would call this number “C thousand” but most seem to prefer “hex see zero zero zero.” If you
want to be able to convert easily back and forth from hexadecimal to decimal you should
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consider buying a Hewlett-Packard 16C computer science calculator. The Apple can do the
“hex/dec” conversion for you (see Listing 21.1), but it’s often a bother to stop what you’redoing
to set up the conversion program.

If you refuse to put up with hexadecimal numbers, the rest of us will go along grudgingly.
Decimal numbers will be provided in parentheses unless they’re going to hopelessly clutter a
drawing.

(65,535) 64K $FFFF
(61,440) 60K $FO00
(57,344) 56K $E00U
(63,248) 52K $D000
(49,152) . 48K $C000
(45,056) 44K $B000
(40,960) 40K $A000
(36,864) 36K $9000
(32,768) 32K $8000
Pages
(28,672) 28K $7000
$OF 00 (3,840)
(24,576) 24K $6000 b
$0D 00 (3,328)
$0C 00 £3,072)
(20,480) 20K $5000
$0B 00 (2,816)
$0A 00 (2,560}
(16,384) 16K g
) 34000 $09 00 (2,304)
(12,288) 12K $3000 SRR Dty
$07 00 (1,792)
$06 00 (1,536)
®,192) 8K $2000 e e
$04 00 (1,024)
4,086) 4K $1000 S & S
$02 00 (3512)
(0) oK $0000 G
$00 00 0)

Fig. 21.1 Blank map of the address space. This is a standard way of representing locations in memory. The figure shows
65,535 bytes lying one on top of another. The numbering on the left is in standard decimal, but the numbers on the right
are in hexadecimal {(base 16) to conform with the internal organization of the computer. The blow up on the right shows
16 pages in the first 4K, each containing 256 bytes.
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210
230
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270
280

310
320
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410
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470
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Hex/Dec and Dec/Hex Conversion

HOME : PRINT CHR$(12) :

VTAB 2 : HTAB S : PRINT "***** HEX/DEC AND DEC/HEX CONVERTER *%®**“

PRINT : PRINT : HTAB 3 : PRINT "Please type the number of one of the options,
then hit 'RETURN'"

PRINT : HTAB S : PRINT °1 - From Decirnal to Hexadecimal®

PRINT : HTAB S ;: PRINT “2 - From Hexadecimal to Decimal®

PRINT : INPUT "":A$

IFA$ ="1" GOTO 100

IF A% = "2° GOTO 340

PRINT CHR$(7): GOTO 10

HOINE : PRINT CHR$(12)

VTAB 2 : HTAB 5 : PRINT "DECIMAL TO HEXADECIMAL CONVERSION®

PRINT : PRINT: HTAB 3 : PRINT “Type any number from ~65.535 to 85,535 then
hit ‘RETURN'”

X=S:PRINT

VTAB @ : HTAB X : GET B$ ‘REIN * Use GET for commas *

IFB$ =CHR$(B) THEN X=X -1:R=R -} : GOTO 140

VTAB 9 : HTAB X : PRINT B$

IF B$ = - THEN 8B =1: GOTO 200

IFB$ =" THENBS = "*

IF B$ = CHR$(13) GOTO 210

R=R+1:B§(R)=B}

X=X+1:GOTO 140

FORT=1TOR:C$ =C$ + B$(T) : NEXT : C = VAL(CS)

IFSB=] THENC=65536-C:5B=0

IF C > 65535 OR C ¢ 0 THEN PRINT CHR$(7) : CLEAR : GOTO 100

CR =C/256

POKE71,CR : REIN ** Set up for Monitor DEC/HEX Routine ***

E=CX* 256

ER=C-E

POKE 70.ER

POKE 59, 249

POKE 58, 64

VTAR 12: HTABS : PRINT “$" : VTAB 12 : HTAB 6

CALL 85209

CLEAR : VTAB 18 : PRINT "HIT ANY KEY TO CONTINUVE ° : GET H$ : GOTO 10

HOIE : PRINT CHR$(12)

VTAB 2 : HTAB S : PRINT "HEXADECIMAL TO DECIINAL CONVERSION®

PRINT : PRINT : HTAB 3 ; PRINT "Type any number from $0000 to $FFFF*

X=5:VTAB7:HTAB4:PRINT °§"

VTAB 7 :HTAB X : GET F$

IF F$ = "$* GOTO 370

IFF$ =CHR$(8) THEN X =X -1: Y=Y -1 : GOTO 380

VTAB7:HTABX :PRINTF$ : Y=Y+ 1

F = ASC(F$) : IF F = 13 GOTO 520

IFF>Q0 THENF=F - 32

IF F < 48 GOTO 470

IF F < 65 AQIND F > 58 GOTO 470

IF F > 70 GOTO 470

GOTO 480

PRINT CHR$(7) : CLEAR : GOTO 340

IFF<S8THENF=F-48

368



IFF>S8 THENF=F-55

F(Y)=F

X=X+1:GOTO 380

onYy -1 GOTo 330, 540, 550, 560
G=F(1) : GOTO 570

G=F(2) + (16 * F(1)) : GOT0 570

G=F(3) + (16 * F(2)) + (256 * F(1)) : GOTO 570
G=F(4) + (16 F(3)) + (256 * F(2)) + (4096 * F(1))
$70 VTABIS:PRINTG

580 VTAB 18:PRINT "HIT ANY KEY TO CONTINUVE®
S00 GET H$ : CLEAR : GOTO 10

§4L48SES

Listing 21.1 Hex/Dec and Dec/Hex conversion program. You might want to take out 15 or 20 miniutes now to load and
save this quick conversion program (be sure to boot DOS or ProDOS before entering it). It'll be handy while you're reading
this book and while dabbling around in the Monitor, but you'll have to append it as a subroutine if you want it available
while you're working in Applesoft.

The 6502 Divides Its Space Into Pages

One immediate consequence of the 6502’s hexadecimal view of its address space is that each
address can be considered to have two parts, a “page number” and an “offset.” These are all
16 bit addresses (two to the sixteenth is 65,536) and the first eight bits of an address are in
the page number byte while the second eight bits are in the offset byte.

Most of the Apple’s memory is organized by these “page numbers.” There are 256 pages of
Apple memory (see Figure 21.1). The lowest is page 0 and the highest is page $FF (255).
In each page, there are 256 bytes. For instance, in page $03 (3) the first byte’s full name is
$03 00 (768), the second byte is $03 01 (769), and the last byte is $03 FF (1023). In many
machine language programs the tendency is to bounce around within a single page so only
the offset byte will have to be changed.

Exploring the Landmarks in the Apple’s Address Space

The Apple’s address space is not a bland and homogenous box. Although the 6502’s address
buffer makes no special distinctions, other parts of the 6502 keep track of a few special
locations. Further, once the 6502 is placed in the Apple, its address space acquires a number
of relatively permanent features. These features can be considered as landmarks or semi-
permanent features of the space. Each will be drawn into the map as it is described.

Special Locations for the 6502

The 6502’s special locations are all at the very top and at the very bottom of the space. The
ones at the top are used to help the 6502 start its work when it wakes up, and the ones at
the bottom are used very heavily as a sort of scratchpad for all of the 6502’s work.

Some of you out there may have been long bothered by a seeming logical inconsistency in
everything you've learned about how programs are fed to the 6502. The way you make the
6502 begin to execute a program is to tell it to “jump” to the starting location of that program.
However, when the Apple is first turned on, how does the 6502 know where to begin? Who
tells it to turn on the disk drive and start reading in bytes?
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Vectors in High Addresses

The answer is that there is a “reset signal” which runs directly into the microprocessor. The
6502 responds to the reset signal by reading the contents of locations $FFFC and $FFFD and
using the number there as a guide as to where to find its first program. In all but the earliest
Apples, a reset signal is sent to the 6502 automatically a few moments after the machine is
turned on. You cause this special jump to take place whenever you press the “CTRL-Reset”
(simply “reset” in some Apples) keys.

Those two locations, $FFFC and $FFFD (65,532 and 65,533), are called the 6502’s “reset
vectors.” A few other bytes right up there at the top are used for similar abrupt and disorienting
events such as getting started again after an IRQ or BRK “interrupt” ($FFFE and $FFFF) or
“non-maskable interrupt” (JFFFA and $FFFB). Interrupts and resets are discussed in more
detail in Chapter 27, but all this should serve to show that it is very important to always
have meaningful information in locations 65,531 to 65,535 ($FFFA to $FFFF) in any computer
which uses a 6502. These are important places in the address space.

The Zero Page

The important locations at the bottom of the space have to do with the “page” concept discussed
earlier. Some of the 6502’s machine language instructions aren’t capable of dealing with page
numbers. They work only in offsets. These instructions are used heavily for work in what is
called the “Zero Page.” This refers to page number 0, the very first 256 bytes in the space.
Addresses in the zero page are also important in machine language programs which must be
very fast or very short. Using the zero page can be fast because you only have to set up the
offset byte, thereby cutting out any steps to set up a page number. Fewer steps mean less time
to execute and makes for slightly shorter programs.

These various features, devoted 6502 instructions, speed, and compactness, result in the 256
bytes of the zero page being very heavily used and sometimes bitterly contested for. The
Monitor, DOS, Applesoft, and a few other players are constantly vying for space in the zero
page and many of the worst program disasters and most mysterious bugs have to do with
collisions in the zero page. Figure 21.3 gives some idea of how easy it is for such collisions to
oceur.

The second page in the Apple’s memory is also staked out by a few special 6502 machine
language instructions. These instructions always use page number 01 and then fiddle with
offsets. This page is called the “Stack” because the 6502 piles special numbers into it whenever
it needs a little extra storage space and then pulls the numbers back into the 6502 off the
bottom of the “stack”. The 6502’s demands on this page are so critical that it is considered to
be completely off limits to all programs. The only permissible way in is to use 6502 stack
instructions.

The 6502’s landmarks are marked out in Figure 21.2 with some appropriate blow ups of the
critical regions. As you can see, the zero page, the stack and the special reset and interrupt
vectors don’t take up very much space and leave a great open expanse between page $02 and
page $FF (255). A memory map of a Rockwell or a Commodore computer will also show these
characteristic reserved areas.
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$TF FT (65,535)

IRQ/BRK

$FF 00 (65,280) Reset
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$E000
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$B00O

$A000

$9000

$8000

$7000

$6000

$5000

$4000

$3000

$2000

$1000

$01 FF  (S11)
$01 00 (236)
$00 00 )

0000 Stack
Zero Page

Fig. 21.2 Landmarks for the 6502. The first 512 bytes and the highest six bytes have special meanings for the
mMicroprocessor.

371



Zero Page Use
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Fig. 21.3 Zero page use.
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Special Places in the Apple

The landmarks in the Apple’s address space fall into four general categories. Starting from
the bottom, there is first a set of four pages ($00 to $04) which can be called a system scratch-
pad used as pigeonholes for a few important numbers. The next group is shared with the video
display system and it takes up a whopping 72 pages. This is such a huge amount of memory
that it hasn’t been strictly reserved. Most of it can be used for other purposes if desired.

The third area includes the 16 pages of the $C000 space. The lowest page in this space, page
$C0, is used for ports that help move information in and out of the Apple. It also serves asa
switch plate which the 6502 can use to operate various special features of the Apple. The
other 15 pages in the $C000 Space ($C1 to $CF) are usually reserved for special ROMs which
hold programs for operating the cards plugged into the slots or for operating the built-in ports
in the //c.

The fourth and highest area is taken up with permanently stored ROM programs including
the Monitor and the Applesoft Basic Interpreter. These four special areas are marked out in
Figure 21.4, and will be explored in detail shortly. The remainder can be considered free or
uncommitted space available to programs to be used in any way that’s useful.

Now that you're clear on the landmarks, you'll have to adjust to the fact that Apple “landmarks”
sometimes disappear out of the address space. In an Apple II or I+, the entire range from
OK to 52K, including the system scratchpad, video ranges, and $C000 space, are all permanent
fixtures. They are dependable landmarks which are always present and cannot be made to
move. However, it is a reasonably simple task to use some bank switches to slip some RAM
into the space from 52K to 64K which is normally taken up by the Monitor and Applesoft
ROM. ’

In a //c, the $C000 space always stays put, but everything else (0 to 48K and 52K to 64K)can
be replaced by “auxiliary bank switched RAM” (see Chapter 26). The /e is the most changeable
of all. It can replace everything except the $C000 space with RAM, but it also has a complete
alternate set of ROMs for pages $C1 through $CF.

The System Scratchpad in the Apple

Since the 6502 was going to tie up pages $00 and $01 anyway, Apple set aside a couple more
pages down at the bottom for what might be collectively called a system scratchpad (shown
in Figure 21.5). The whole scratchpad includes the zero page and the stack, as well as two
more pages which are reserved for special uses within the Apple.

The first of the purely Apple reserved spaces is page $02 and it is called the “line buffer.” No
matter what is going on in the Apple, this page is supposed to be kept clear to receive characters
typed in from the keyboard. As many of you know, the Apple seems to choke and gag after
you've typed in 256 characters without hitting Return. The reason for the problem is that you
have filled up all of the 256 available bytes in the page $02 line buffer.

The fourth and final reserved page is page $03 and it is a little different in its philosophy
because most of this page has been reserved for short machine language programs written by
users. At the top end of this page there are a few very critical numbers that serve to sort of
connect all of the machine language software in the Apple. These bytes are called “vectors”
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because each one points to the beginning of some important machine language routine. The
contents of some of these vectors are listed in Figure 21.5. As you can see, some of these
vectors are just about always set up by the monitor when it wakes up, but others are there
only when DOS or ProDOS are loaded.

For example, one of these DOS/ProDOS vectors at location $03D0 (976) points to the “entry
point” which starts running the Applesoft BASIC Interpreter. To test this out, get yourself
into the Monitor (type: CALL -151 in response to the square bracket prompt, then hit Return;
you should now see an asterisk prompt). Now type: 03D0G and hit return. You've just told
the 6502 to check the contents of the vector at $03DO0 and use it to find a program to run. If
you go back into the Monitor, you will find that other nearby numbers (i.e., $03D1 or $03CF)
just cause various disasters. If you try this same sequence without first loading DOS or ProDOS,
the Apple will just issue a confused and distressed beep.

The page $03 vectors only take up a little bit of space, and the first couple of hundred bytes
are unused. This is very important for programmers and users who need to use both Applesoft
BASIC and little bits of machine language. BASIC programs and data take up huge sweeps
of memory space and change in size as they run. The lower part of page $03 provides a sort
of protected “safe harbor” for short machine language programs which get called from within
large BASIC programs. These short machine language programs are typically loaded in be-
ginning at $0300 (768) and then run by issuing a CALL 768 statement in the BASIC program.

Video Display Ranges

The Apple’s video system is the subject of Chapters 5, 6, and 7, but the crucial idea of importance
here is that the Apple has a “video display generator” which runs 14 times the speed of the
6502 as it goes about its duties of placing dots on the video screen of your CRT monitor. The
video display generator works as a sort of TV camera, scanning an “image” and converting
it into signals which can control a scanning electron gun in the monitor’s picture tube. It is
different from a TV camera in that the “image” it scans is actually a pattern in the Apple’s
RAM.

The 6502 goes about setting up a pattern in RAM, and the video display generator scans the
pattern and translates it into signals to be sent to the monitor for display. The area in the
address space in which the 6502 sets up the picture is called “video display memory.” The TV
camera can be pointed at any one of four different scenes, which each have their own areas
in memory. These same four display memory address areas are also used as the basis for the
more elaborate video systems in the //e and //c.

Text Screen One

The first of these four areas of video display memory is used so heavily in so many programs
that you can just about consider it to be a reserved area, nearly as inviolate as the addresses
of the zero page or line buffer. This area is called “text screen one” and it is the place that
the 6502 puts letters and numbers when it wants you to see them on the screen.

Text screen one is turned on automatically as the 40 column display you look at when the
Apple starts up. In the //e and //c, it is also used to provide 40 of the columns in the 80 column
display. Apple owners who have a video display card in slot 3 (Videx, Smarterm, etc.) are the
only ones who tend not to use text screen one since these cards have their own independent
display memory (see Chapter 6 for a complete description). Another use for this range of
memory is as “low resolution graphics” display memory one. When this memory is used for
lo res graphics, the video display generator interprets the bytes a little differently and the
6502 puts different kinds of things into them; all of which is explained in Chapter 7.
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Fig. 21.4 Landmarks in the Apple |l main address space.
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Fig. 21.8 Special “vector” locations in the $03 page with DOS 3.3 loaded.
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Fig. 21.8a Text screen Map. The somewhat scrambled mapping of screen memory locations to positions on the video
screen is a quirk which traces back to design difficulties in the original Apple I video display generator.



Screen Hole Address Allocation and lIc Assignments
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Fig. 21.6b Screen hole uses in the //c. When an interrupt occurs, the //c¢ Interrupt Handler routine will “service” the
interrupting device and then leave a fiag bit set in one of the three locations marked with heavy borders in the figure. By
reading these three locations, an application program can leamn the source of the interrupt.
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The 40 column display can have up to 24 lines of text, each with 40 letters or numbers. It
therefore needs 24 X 40 = 960 bytes of display memory. Those 960 bytes of display memory
are spread out among 1024 bytes in pages $04, $05, $06, and $07, as shown in Figure 21.4.

It might have been nice and simple if that area of memory was laid out as a neatly ordered
set of rows and columns mapping directly to the video screen. Unfortunately, the video display
generator has to do its own math at high speed with few resources. In order to make it a little
easier for the display generator to figure out which byte it should be looking at on a moment
by moment basis, Wozniak was forced to scramble the lines a little bit. The actual mapping
of RAM locations to screen locations is laid out in Figure 21.6a.

You can have a little fun with all this by violating the space of text screen one and shoving
things into it. To do this, let’s first clear the screen by responding to the squre bracket prompt
by typing: HOME then hitting Return. Now enter the machine language Monitor by typing:
CALL -151. After hitting Return you ‘hould see the asterisk prompt. Now type: 0S9E: C8
C9 then hit Return.

Asyou can see from Figure 21.6a, $059E refers to a screen position on line 4, column 31 of the text
display. What you just did was to shove “$C8” into the display RAM position for line four, column
30 and “$C9” into line four, column 32. Those two hexadecimal numbers each represent “ Apple
ASCII” codes (see Chapter 26, Table 26.2); one is the code for capital H, the second is the code for
capital I. If you don’t have DOS or ProDOS loaded, then the easiest way to get back out of the Mon-
itor is just to respond to the asterisk prompt by typing CTRL-C, then hitting Return.

The Screen Holes

The mathematically minded among you may have been bothered by the fact that text display
required just 960 bytes, but that it was spread out all the way through four pages of memory
totalling 1024 bytes. That leaves 1024 — 960 = 64 bytes unaccounted for. These bytes are
called “screen holes” because although they are scattered about within text screen one, nothing
shows up on the video screen when you put an ASCII code into one of them.

These screen hole bytes have a special and important role. They are unique because, like the
bottom part of page $03, they are guaranteed as safe protected space. However, unlike the
$03 space, they are scattered about in eight small clumps of eight bytes each which makes
them too fragmented to contain an actual program.

In the II/II+ and //e one byte in each of the eight clumps has been assigned for common system
use, and the others are assigned to slots 1-7. There is a roughly similar assignment system in the //c
(see Figure 21.6b). Since they are used by peripheral cards in the II/II+ and //e, the individual
locations have no permanent assignments. In the //c; however, the parts are all built-in, so many
of the locations do have assigned functions.

An alternative name for the screen holes in the IIII+ and //e is therefore“Peripheral Card
RAM.” These bytes ensure that every card gets eight guaranteed RAM locations on the moth-
erboard into which it can stuff valuable numbers for temporary storage. This relieves card
designers of the need to include any RAM on the card itself.

One use of the system screen holes by the peripheral cards is to keep track of which slot they are in.
A card usually starts its work by running a short, built-in program to find out the number of the
slot in which it has been placed. Once it has figured out which slot it is in, it writes that number into
one of the screen hole RAM locations for quick reference.
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TXTTAB and Text Screen 2

As you can see from Figure 21.4, the system scratchpad area, test screen one, and and the sereen
holes together take up the first 2K of RAM (pages $00 through $07). Most of the Apple’s first 2K
can pretty well be considered as reserved space where only the wizardly should tread.

The space between 2K and 48K (pages $08 through $BF), however, is pretty much open for
public use. As you type in the first line of a program in Applesoft BASIC, the unanalyzed
characters get dropped into the page $02 line buffer and copied into text screen one display
memory. However, once you hit the Return key, the Applesoft BASIC Interpreter goes to work
on your line and codes it into a series of “tokens” and numbers (see Chapter 38). That first
“tokenized” line is then placed into RAM memory at the beginning of page $08 (2K). As more
and more lines are entered, they are stacked one on top of another reaching steadily on upwards
into free space. Similarly, when a BASIC program is read in from disk, it makes its way to
the file buffer and then gets moved down in memory so that the first line begins at the start
of page $08.

The usual starting point at2K (2,048) is called “TXTTAB.” Before a BASIC programis loaded you
can change the setting of TXTTAB by responding to the square bracket prompt by typing: POKE
1083,1: POKE 104,12 (See Chapter 40) which sets it at 3K (page $0C). Once you've done this, the
next BASIC program typed in or loaded in from disk will get placed in RAM beginnning at 3K
instead of at 2K. One reason you might want to do this is that the extra 1K of RAM you’ve just
freed up can be used by the video system.

Switching Between the Text Screens

By flipping a few switches way up in the $C000 space you can “aim the TV camera” at the range of
memory between 2K and 3K instead of at the range between 1K and 2K where itis aimed when the
Apple is turned on. As shown in Figure 21.4, this second range of video display memory is called
“text screen two” and it sits just above text screen one.

Most BASIC programmers get themselves into big trouble when they try to use text screen
two. This is because it sits in exactly the same place as they’ve probably put their program.
If you try to clear the screen in text screen two, you erase your program. For this reason and
a few others, Apple hasn’t included any BASIC instructions that can cause the switch and
clear which could get you in trouble.

Nonetheless, for those of you who are up for a little fun with text displays, pull up to your
Apple, turn it off and on, and then hit reset (CTRL-reset) to stop the disk drive. First, type
in the following few lines in BASIC:

1@ HOME
20 VTAB 5
30 PRINT “THIS IS A TEST"

Each time you hit Return after typing in a line, that line gets tokenized and stored beginning
at $0800, which happens also to be in the range of text screen two. The line numbers and
commands get turned into things which are not easily recognizable, but the letters in quotes
get stored as ASCII codes.

Now we’re going to hit one of the screen switches up in the $C000 range at $C055 (49,237).
Type: POKE 49237,0 then hit Return. The three lines of BASIC you typed in are now displayed
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in their tokenized form along the top of display screen two (notice that only the letfers you
put between quotes are still recognizable because everything else has been tokenized).

To switch back, you’ll have to type some things which you won’t be able to see. As you type
them in, they will be put into text screen one for display, but the “T'V camera” isn’t looking
there anymore. Hit the Return key just to be safe, then carefully type: POKE 49236, followed
by a Return. By alternately hitting either side of the text screen switch ($C055 and $C054;
49,236 and 49,237), you can toggle back and forth.

One last trick worth doing while we're at it is to tell the video display generator to treat the top
part of the sereen as if it were lo-res graphics instead of text. To do this, you have to hit the switch
at $C050 by typing: POKE 49232,@followed by a Return. Just to close things out, why not take a
quick check to see what sereen two would look like if it also were treated as graphies. To do this,
type: POKE 489237, then hit Return. All frivolous stuff, but hopefully it gives you a sense of
what is meant by switches and memory display sereens. the various switches will be laid out a lit-
tle more clearly later on in the book when the $C000 space gets explored in detail.

The High Resolution Graphics Display Ranges

The last two ranges of address space which can be scanned by the video display generator are
used to set up high resolution graphics displays. The hi-res graphics display memory areas
are eight times larger than the text display areas. This is necessary because the Apple must
be able to individually address each dot on the screen whereas in the text mode, it is sufficient
to address much larger blocks of dots with each byte of information.

When one of the text screens is being scanned, each byte in display memory is used by the video
system to call up a complete character pattern accounting for seven dots in each of eight video
scan lines (see Chapter 5, Figure 5.9) or 7 x 8 = 56 dots. The 24 x 40 = 960 bytes in text display
memory therefore give instructions for 56 dots x 960 positions = 53,760 dots on the screen.

In high res mode, however, each byte controls only the seven dots in one single scan line (see Chap-
ter7). If you had just 960 of these bytes, you would only have enough information to plot out7 dots
x 960 bytes = 6,720 dots. Thus, to do the whole screen of 53,760 dots, you need eight times as many
bytes. In high res, you have much more precise control over individual dots, but the price you pay
is that you must have eight times as much memory set aside to lay out the entire display. Each of
the high res display pages is spread out over 960 times eight equals 7,680 bytes. Thefirst of the two
hi-res display memory ranges is placed between 8K ($2000) and 16K ($4000), while the second hi-
res screen is placed between 16K and 24K ($6000), all of which is laid out in Figure 21.4.

The mapping of graphics screen positions to graphics display memory locations is similar to the
text mapping (see Figures 21.6a and 21.7). The program in Listing 2 will step through the whole
display area and should help give you a clearer sense of how the mapping works.

Memory Clashes Between BASIC Programs and the Hi- Res Screens

Many BASIC programs use one or the other or both of the high res graphics display ranges
and so these areas are often forbidden zones for storing BASIC programs. When you switch
to one of the graphics displays by issuing a HGR command in a program, any program lines
which are stored within the high res display ranges get wiped out. If you use high resdisplay
one, your program has to fit between 2K and 8K. Chapter 40 is devoted in its entirety to
giving you straightforward ways to break out of this memory cage as well as to providing
ways which are much less straightforward.
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Demo Program for Hi Res Display Memory Mapping

883888885

100
110
- 120
130
140

HGR

POKE 40234, 0
REIM

FOR X = 8192 TO 10384
REM

POKE X, 127
REIN

REIM

PORY =1 TO 100
NEXT

REIM

NEXT

TEXT

END

: REIM ** NOINIX to see the full screen®

:REIN **  $2000 through $4000  **=*

:REIN ** Dbit pattern "0111 1111° ®®**

. Rm BUSEIUSISICESUNENEEEIBUSUNEND

:REIN ** This is a delay loop so you ***
: REIN **have time to watch closely®***

g Rm S EUBUSUTAETUSVS LTSIV ESITBINE

Listing 21.2 Hi-res Map demo program. When run, this program graphically depicts the scrambling. You can follow the
progress through the memory map, including pauses while it shoves bytes into the “screen holes.”
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Hi-Res Graphics 3Screen Blocks
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Fig. 21.7 Hi-res screen map. The layout is similar to the text screen but repeated eight times to handle the control of
individual scan lines.



Filling Out the First 48K of RAM

Although just about 99.9 percent of all Apple IIs out there now have at least 48K of RAM, it
wasn’t always that way. You have to appreciate that in 1977 a complete row of eight 4K RAM
chips cost over $100. Recall from Chapter 1 that each chip holds just one of the eight bits in
a byte so you need eight of these 4K RAM chips to get 4K bytes. So, although there is room
on the Apple II/II+ motherboard for three rows of eight RAM chips each, many Apples were
actually shipped with just 4K of RAM installed and the remaining rows left as empty sockets.

Looking back at Figure 21.4, you can see that if those 4K bytes of RAM were placed in the bottom
of the address space, you were able to have a fully functional system scratchpad, use text screen
and lo-res graphics one, and still have 2K for short programs. If you decided to shell out the
additional $200 for 16 more of these 4K RAM chips, you then had an additional 8K bytes of RAM,
but there was some question about where was the best place to put them within the Apple’s
address space. One popular space was to place them up between 8K and 16K so you could play
with high res graphics screen one.

When the 16K RAM chips first came out, they were very expensive, and many Apple owners
could only afford to shell out $300 or $400 for eight of them. Then the question was where to
put this new 16K bytes of RAM within the address space. The popular choice was to slip them
in between 8K and 24K and then to move a row of the older 4K chips down to bridge the gap
between 4K and 8K. This may all sound like it harkens back to some earlier dark ages, but
to appreciate how fast technology moves, consider that when the IBM PC was first released
in 1980, you could buy it with just 16K of RAM installed.

Fig. 21.8 RAM configuration blocks
(here marked 16K 16K 16K) were
used on old Apple Il motherboards
to adjust the system from the 4K
of RAM on the earliest, stripped
down Apple lls, on up to a massive
48K of RAM on very expensive
systems. They disappeared from
the motherboard shortly before the
advent of the Apple li+.
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Fig. 21.9 The astute observer will
notice that each of the three rows
of RAM is filled with 16K chips
from a different manufacturer;
strong circumstantial evidence that
this machine started out as a 16K
Apple, grew into a 32K set up,
later got boosted to 48K and
finally got up to 64K of RAM with
a 16K card seen in the left of the
photograph.

In order to accommodate all these customized arrangements and to accommodate the mixture of
4K and 16K RAM chips, all early Apples had “RAM configuration jumper blocks (see Figures21.8
and 21.9).” Thisincludes all Apple Il revision 0 through 6 boards. If you wanted to change the posi-
tion of your RAM within the address space or if you had bought some more RAM, you pulled out
the jumper blocks and rewired them.,

By the time the revision 7 board was designed, all Apples were being shipped with three rows
of 16K RAM chips, so the board was permanently wired for this configuration and the jumper
blocks disappeared from the motherboard. Apple II + production began shortly after the re-
vision 7 board was designed, so only Plain Jane Apple IIs have these blocks.

One modern descendant of this system is the CramApple modification which lets you install 64K
RAM chips on the Apple II or II+ motherboard so you can squeeze in 192K of RAM for a grand
total of $350. Part of this sits in the regular 48K address space and the rest is used as a simulated
disk drive (see Chapters 22 and 24) to feed the file buffers or is bank switched into the space. There
is also a version for using 256K chips in the //e.

The Apple //e is set up for eight 64K RAM chips. In 1983, those eight 64K RAM chips cost
$80. The new 256K RAM chips sold for about $900 for a set of eight in 1983, but as mass
production gets underway in 1984, 256K bytes of RAM will also come to cost less than $100.
In 1977, using 4K RAM Chips, that much memory would have cost over $6000 (!) and taken
up nearly four square feet of board space. Legend Industries sells a card for any Apple II or
III which can accommodate up to a megabyte of 256K RAM chips, the price of this board will
drop steadily throughout 1984, so Legend sells its S'Card with inexpensive 64K RAM chips
to be updated later when the price of 256K chips drops.
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Getting Addresses into RAM Chips

One thing which might be bothering some folks is that a 4K RAM chip takes 12 bit addresses
(two to the twelth equals 4,096) and a 256K RAM chip takes an 18 bit address (two to the
eighteenth equals 262,144), yet all the different kinds of RAM chips are equal in size, fit into
the same sockets, and have just 14 pins on their DIP packages. How do you get an 18 bit
address into a 14 pin chip?. Answer: do it in two shifts, nine at a time. That means you need
just nine pins for sending in addresses and you still have five pins left over to handle other
details.

This uniformity is in part the product of foresight by early RAM chip designers. They set up
the original 4K RAMs so that there would be plenty of extra pins 10 or 15 years later. The
“pin outs” for the various kinds of RAM chips are shown in Figure 21.10. The changes in pin
out with each increase in density are marked with asterisks. One important step between the
16K and the 64K variety was the simplification of the internal circuitry so that the chips only
needed a single +5 volt power supply instead of three different voltages as in the Apple II's
4K and 16K RAM chips.

4K 16K 64K 256K

*
-

-sv[1 6] anp | -sv[71] 6] end | nc[T] (o)end | as[1] [16] enp
[z [15] cas p[2 [15] cas p[2 15] cas p[2 15] cas
vz 14] @ v[3 [14] @ v[3 14] @ v[3 14] @
RAS[ 4 13]cer | mas[4] [13] 45 RAS E [13] A6 RAs [ 4] 13] A8
aols 2] A2 ao[5] 2] a3 aofs 2] a3 Ao[3] 2] 43
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Fig. 21.10 RAM chips of increasing capacity all fit into the same 16 pin package. The asterisks mark the pin
assignment changes for each new generation. D= Data in, W= Write, RAS= Row Address Strobe, CAS= Column
Address Strobe, Q= data out.



The address pins are labeled “A0” through “A8”. The one bit of data for each chip comes in
on pin 2 labeled “D”. These D pins are connected directly to the Apple’s data bus. Whenever
one of these chips is read, the one bit that comes out turns up on pin “Q”. In Apple IIs and
II +’s, the data goes first to a one byte storage buffer before getting onto the data bus; but in
the /e and //c, pins Q and D are just connected together and linked to the data bus directly
(see Appendix A).

The 6502 sends out a full 16 bit address, but this address always passes through several way
stations before it makes it onto the RAM address pins. In the Apple IIII +, the highest two
bits are used to select which of the three sets of eight RAM chips will get the addresses
and/or whether the address should be directed elsewhere above the first 48K. This is one point
at which the old RAM configuration jumper blocks intervened.

This leaves 14 bits of address which must be fed to the RAM chips in two groups of seven.
The internal dynamic storage cells of the RAM chips can be considered to be arranged in a
square matrix of 128 rows by 128 columns. There is a special clock signal in the Apple II'II +
called Address Multiplexer (AX) that operates a group of chips called the “row/column address
multiplexer.”

When AX is on, the “row address” of the seven bits is passed to the address pins of the RAM
chips. While this address is available, the Apple sends out a Row Address Strobe (RAS) signal
which causes the RAM chip to capture the row address. AX then turns off and the column
address now gets sent to the pins. A few instants later, the Apple sends out a Column Address
Strobe (CAS) signal which causes the RAM chip to capture the column address. Now it has
all 14 bits and can use them to single out one single dynamic storage cell to be read or written
to.

Most Apple IIII+ owners who have bought 16K or larger RAM cards have had to pull one
of the RAM chips out of the motherboard and run a cable down from the RAM card to plug
into the socket. The reason this is done is to get the RAS signal, as well as the row and
column addresses off the motherboard for use on the card. Newer RAM cards use various
tricks to avoid this necessity.

In the Apple //e and /¢, the splitting of addresses into two eight bit parts is done by the Memory
Management Unit (MMU) and it generates its own internal equivalent of the AX signal. The
addresses are put onto a special multiplexed RAM Address (RA) bus. This is, in fact, the only
address bus that runs up onto the /e auxiliary slot (see Appendices A and C). RAS and CAS
come from a Programmed Array Logic chip which is called a PAL chip in the /e, but called
TMG in the //c (see Chapter 5, Figures 5.6 and 5.8c).

Refresh

The “dynamic RAM” chips used in the II/II + and in the //e and //c forget what they have been
told to store if they are left alone for longer than two thousandths of a second. The other kind
of RAM chip called “static RAM” remembers what it has been told as long as the power is
on, and although static RAMs are low in power consumption and have very rapid access times,
they are large and have only recently become available in 16K units. Apple uses dynamic
RAMs and takes care to see that their memory is refreshed very frequently. To refresh an
entire dynamic RAM chip you must address all the rows every two milliseconds, but you don’t
have to send in any column addresses. Whenever one row is addressed, all the cells in that
row get refreshed.
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Many microcomputers devote a fair amount of computer time and circuitry to managing
refresh, but Apple II refreshing is one of the legendary Wozniak wonders since it requires no
extra circuitry and requires no extra time.

The trick has to do with the video display generator. The display generator shares the Apple
with the 6502. In each microsecond, the 6502 gets the first half, and then it has to sit there
quietly while the video system takes control of the address and data buses for the second half.
The video display generator is described in detail in Chapter 5, but, put simply, it has to
constantly scan at least part of the Apple’s memory at all times and it has to keep track of
where the electron beam is in the CRT. To do all this it counts clock pulses and generates
address signals.

It just so happens that out of the various counts and numbers that the video systemgenerates,
there are just enough addresses swept through to get a repeated scan through all of the RAM
rows. This takes place during the video system’s half of each microsecond, so it takes none of
the 6502’s time, and the 6502 doesn’t have to generate the addresses. If you would like to read
a really detailed explanation of this whole process, you should look into The Apple II Circuit
Description by Winston Gayler (Sams Books) or Understanding the Apple by Jim Sather
(Quality Software).

Exploring the High 16K from the Top Down

Looking back at the description of special locations for the 6502 in Figure 21.2, you will recall
that any computer which uses a 6502 must have some information available in its highest
bytes or else there is no way to make the 6502 start working. Some early computers had “front
panels” with levers and switches to let you manually set the contents of the highest bytes
before trying to start the microprocessor, but there is a much simpler and much more popular
solution which is to install some ROM chips in the top of the address space. These ROMs can
contain all the necessary start up programs. The Apple is designed to accept only ROM in the
entire top 12K of its address space (although it is possible to switch in some RAM after the
machine is turned on).

The standard layout of memory in a ROM chip is different from the layout in RAM. In the
various RAM chips, the typical setup is to have just one bit of each byte stored in a chip. This
is why you need eight of these “16K by one” RAM chips to get 16K bytes. ROM chips,however,
are usually built with a full eight bit data output. The ROMs used in the
Apple IVII + are “2K by eight” chips. This means that although there are 16K bits of memory
(like the 16K RAM chip), it is organized as 2K full bytes of ROM.

The Monitor ROM

The addresses for these 2K bytes are loaded in all at once via 11 address pins (two to the
eleventh equals 2,048) and the data comes out en masse as a complete byte. Early Apples
were shipped with sockets for six of these 2K ROM (see Figure 21.12) chips but in some
machines only the very highest (§F'8) ROM was installed. The $F8 ROM contains the Apple’s
Machine Language Monitor system. The Monitor ROM is mapped into the address space in
Figure 21.4, and it is expanded a bit to show up some of its contents in Figure 21.13
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INMONITOR ROIM Fixed Entry Points
for Monitor Subroutines
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Fig. 21.13 Map of Monitor ROM and standard entry points.



The exact programs in the Monitor ROM have been changed several times since the Apple
was released. All of them contain what are called “I/O subroutines” which take care of reading
in characters typed at the keyboard and take care of putting the characters in theirappropriate
places in the text screen memory for display. The monitor also handles some features of low
res graphics and is capable of reading and writing data to and from a cassette tape recorder.
It also provides several mathematical and programming services for folks who write in as-
sembly language.

There are five rather different versions of the Monitor used in various Apple IIs. The first
version of the Monitor was written in 1977 by Wozniak and Baum. It is still popular among
machine language programmers because it provided a variety of special features directed at
that audience.

The second version of the Monitor is often called the “Autostart ROM.” Putting an autostart
ROM into an Apple II more or less makes it an Apple II+. With the original Monitor, the
Apple just sort of sat there looking ornery when you turned it on. Early Apples also lacked
the automatic reset feature, so you had to hit reset and then type some commands at the
machine language level to get started. The Apple Il + was infinitely more “user friendly” in
that it woke up talking BASIC and automatically tried to turn on the disk drive. Some machine
language programmers who are not interested in owning a “user friendly” computer and who
are not happy with the things that had to be left out of the Autostart ROM still use the
original Monitor.

The original Apple /e Monitor ROM follows the II+ Autostart ROM fairly closely, but is
altered in a number of places to accommodate close interaction with the 80 column firmware
(see Chapter 33). The fourth version was written for the //c, and it is a major overhaul. Many
of the routines have been rewritten in 65C02 machine language. These routines are faster
and more compact. The cassette recorder routines have been removed, and the space that is
freed up is used to expand the Monitor’s “disassembler” (see Chapter 31) to accommodate the
new 65C02 instructions. In addition, the input routines have been altered to accept lowercase
characters in commands. The old, flawed interrupt routines have also been removed and are
now handled in various parts of the $C000 ROM (see Chapter 27).

A fifth version of the Monitor has been written for the //e. It corrects the interrupt bug (see
Chapter 27) and it includes a new “mini-assembler” (see Chapter 31), a feature absent since
the days of the original Apple II Monitor ROM.

Despite all the shuffling there are a few routines which Apple guarantees will always start
in the same place and these starting points are shown in Figure 21.13. Apple has always
published full “source listings” of the Monitor ROMs so it is fairly easy for machine language
programmers to find their way around. If you are interested in even more detailed descriptions
of the original and Autostart Monitors, you can buy Whats Where In the Apple by W. F.
Luebbert (Micro Ink), and you can also order a disk with a database listing of all the infor-
mation in the book.

The BASIC ROMs

The original version of BASIC available for the Apple is called Integer BASIC because it can
only deal with numbers which are integers between + 32,768 and -32,768. It was provided in
ROM chips in even the earliest Apples. Integer BASIC has been almost completely replaced
by Applesoft BASIC. ProDOS cannot be used with Integer BASIC.
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Fig. 21.14b System ROM in the //c (marked “342-0272"). The copyright marks near the ROM reflect
Microsoft's role in writing the original Applesoft Interpreter. This single 16K byte ROM chip contains the
Monitor, Interpreter, and 1/0 firmware.
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Fig. 21. 15 Map of Applesoft Interpreter ROM.
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The Applesoft BASIC Interpreter is actually a machine language program which is 10K in
length, so it fits neatly into the five remaining sockets for 2K ROMs on the Apple II/TI +
motherboard. Figure 21.15 includes a blow up of the address space for Applesoft with some
general comments on approximately what parts of the interpreter are grouped together.

In the Apple //e, the ROMs are 8K X 8, so there are only two of them. One called the “EF
ROM?” includes the Monitor and most of the Applesoft BASIC Interpreter and the other, called
the “CD ROM” (see Figure 21.14a), holds the remainder of the BASIC interpreter as well as
some “bank select” ROM which control the 80 column text card and manages the //e’s built-
in diagnostics (CTRL/closed Apple/Reset).

Things are even more compact in the //c. The Monitor, the Applesoft Interpreter, and nearly
4K of additional interrupt handling and IO routines are all packed together in a single 16K
X 8 ROM (see Figure 21.14b).

You can get a complete listing of the contents of the Monitor when you buy the Technical
Reference Manual for your Apple; however, you can’t get a fully annotated listing of the
contents of the Applesoft BASIC Interpreter (see Chapter 38). You see, the people at Apple
feel very put upon by two opposing parties. One bunch is always damning them for not
improving the performance of the interpreter by rewriting it every six or eight months. The
other bunch has built elaborate programs which use little tiny parts of the interpreter program
and these folks get upset whenever Apple changes even a single byte.

Apple has responded to all this by taking the official position that you are not allowed to know
what’s in the interpreter and that they therefore reserve the right to change or improve it at
any time. In practice, all of the really serious commercial programmers know the contents in
great detail and there have been very few updates of the Interpreter (see All About Applesoft;
Call APPL.E. in Depth).

A similar situation has developed with DOS (see Beneath Apple DOS by Don Worth and Pieter
Lechner; Quality Software), and Apple finally decided to abandon all attempts at DOS im-
provements and to start from scratch with ProDOS. Renewed efforts are being made to keep
the internals of ProDOS officially “secret.” Commercial programmers have been fully warned
that ProDOS will be continually updated, improved and expanded to help improve the overall
performance of the machine in the long term.
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Chapter 22

I/O0 ROM and Ports in the
$C000 Space

The $C000 Space

The 4K of address space between $C000 and $D000 is the most complex and intriguing area
of the Apple. In the standard Apple II/II + or //e this 4K range is always shipped with no RAM
and no ROM in it. The //e motherboard has some ROM that can be switched into the space,
but when you first turn on the Apple, this space is bare even in a //e. The $C000 space in a
/lc, however, is mostly filled with permanent ROM, and therefore lacks much of the mystery
and intrigue of IVII+ and //e $C000 addresses.

In all Apples, however, at the very bottom of this range of memory, within the 256 addresses
in the $CO0 page itself, there are little clumps of switch toggles, indicator signals, video controls,
and a variety of paths in and out of the Apple. These switches control all of the bank switching
mechanisms which can cause over a megabyte of RAM to snap in and out of the Apple’s address
space in no more than a few thousandths of a second. The $CO page also provides the route
through which five, 10, 20 or more megabytes of data can flow in and out of the Apple in
passage between a hard disk and the Apple’s file buffers.

The Expansion ROM Space

Leaving the best for last, a tour of the $C000 space can begin at the top in an empty range
called the “Expansion ROM Space.” This space takes up 2K of addresses in pages $C8 through
$CF (200 through 207). Figure 22.1 is an expanded view of the entire 4K $C000 space. On
the left it is represented in factory form, empty but for the lowest 128 addresses.

The purpose of the expansion ROM space in the I/II + and /e is to provide some address space
for larger programs stored in ROM on peripheral cards. In the //c, it contains many important
system management routines (see Figure 22.1b). The addresses in the Expansion space are
considered safe for use by the /c firmware for the obvious reason that there can be no peripheral
cards to compete for the addresses.

Each peripheral card is allowed to have a machine language program up to 2K bytes in length.
These ROMs are referred to as expansion ROMs or as “8C800 ROMs.” The expansion ROM
space is where these 2K $C800 ROMs along with their programs can be fit into the Apple’s
address space. Each of the peripheral cards is assigned the same set of addresses, but only
one card at a time is allowed to actually place its 2K of ROM into the address space.
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The seven blocks drawn out in Figure 22.1a represent the situation which occurs when you
have seven cards, each with a 2K ROM. Vying for position in just 2K of space is 14K of
program. Slot 0 doesn’t exist in the //e, and in the II/Il1 + it isn’t allowed to have any expansion
ROM.

The priority system for switching these various $C800 ROMs into the address space is based
on three signals. The first of these is called “I/O Select” and it arrives at each card on pin 1
of the 50-pin peripheral card connector (see Appendix B). We’ll say a little more about 'O
Select when Peripheral Card ROM Space is discussed below, but you can think of this signal
in some very concrete terms. When you type “PR#3” at the keyboard and then hit Return,
the /O Select line on slot 3 turns on. This is not sufficient to actually turn on the expansion
ROM, but it is the key selective part of the system that controls which of the 2K ROMs will
be moved into the space. The other two controls are called “I/O Strobe” and “$CFFF,” and
these will be described in the section on the Peripheral Card ROMs which control these signals.

Uses for Built-In Expansion ROM on Peribheral Cards

Now 2K is a very generous amount of space. Recall that the entire Apple II Monitor can be
fit into just one 2K ROM chip. In fact, most peripheral cards do not need to use the expansion
ROM space. As we will see shortly there is another shorter block of 256 bytes available for
each card, and that is usually sufficient. Only peripheral cards which carry out fairly complex
control tasks require the use of the expansion ROM space.

A good example of the kind of card which can use this 2K program space are the various 80
column cards such as the Videx Videoterm. These cards have to capture incoming keystrokes
from the keyboard, place the characters into their own display memories, take care of scrolling
and screen editing and even provide some graphics capabilities. Some of the coprocessor cards
have large support ROMs and they are also used in some fancy clock cards to provide various
easy to use services to BASIC programmers. ’

Although most printer cards and serial cards can get by with just the 256 bytes, several of
the high performance graphics parallel printer cards such as the Microtek Dumpling GX and
the Grappler+ (see Chapter 18) use $C800 expansion ROMs. This is partly because the
graphics screen dump programs are fairly large, but it is also because each card is sold with
several different versions of the program each set up for a different printer. The buyer looks
up a table in the manual and sets some switches on the card to let the ROM know which
printer it is going to be operating. The ROM can respond by running the correct program
whenever it is called on to do some work.

Putting More ROM into the Expansion ROM Space

As you will see shortly, there are quite a few places in the Apple’s address space into which
you can stuff additional bank switched memory, and it seems that absolutely every one of
these possible spaces has been staked out by at least one manufacturer. In the case of the
expansion ROM space, there is one long time entrant, Mountain Computer, and a new one,
Hollywood Hardware, which makes a very interesting and very useful product.

The advantage of using the expansion ROM space is that you can switch things in as good
size chunks of 2K, but you don’t have to worry about the tricky aspects of switching out any
of the regular landmark ROM or RAM areas in the Apple address space. The disadvantage
is that things can get a little complex when you'’re trying to use this ROM in coordination
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with expansion ROM on some other card, such as a video board. The Hollywood Hardware
folks claim to have this all worked out and actually offer some enhancements to the //e 80
column card’s operation.

The idea of these cards is to get in behind that 2K expansion ROM space, for instance, for
slot 2 and then to stack a whole series of 2K ROMs into that space. First you select that slot’s
expansion ROM, then you select which of several 2K ROMs you’d like to use (see Chapter 26,
Figure 26.7, Item 1). For years, Mountain Computer has sold a card called the Romplus+
(see Figure 22.2) which can hold six of these 2K ROMs. The idea was that folks could put all
their favorite utilities into permanent ROMs and then call them whenever needed without
ever having to look for a disk to shove in the drive. Mountain was also thinking of Apples
which get used in some industrial or laboratory settings doing the same fairly straightforward
control and supervision tasks most of the time.

Fig. 22.2 ROMplus from Mountain Computer.

Burning your Own ROMs

For the most part, this has never really caught on very big because most folks aren’t quite
sure how to go about “burning” their own ROMs. Mountain Computer provides another card
for this purpose called the RomWriter. It comes with fairly easy instructions for loading in a
program and causing the RomWriter to make it permanent.

This works with a kind of ROM called an EPROM (for Erasable Programable Read Only
Memory). These ROMs can be erased with a special kind of ultraviolet light, and then written
again. Cards for writing ROMs are also sold by MPC (The AP-EP PROM It EPROM Devel-
opment System) and by Hollister Microsystems (The HMS3264). The Hollister card is the
most versatile since it has three different kinds of sockets and thus can burn and run a wide
variety of ROMs; but it is also the most expensive, cashing in at $395.

Buying your Extra ROMs Already Burned

Actually, a ROM card with frequently used programs is a great idea, if only you didn’t have
to worry about making the ROMs yourself. This is what makes the UltraROM board from
Hollywood Hardware such a great product (see Figure 22.3). These folks have selected a whole
number of popular and available utility programs such as GPLE and a whole slew of “am-
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persand utilities” for BASIC programmers (see Chapter 38) and put them into ROM for you.
You can buy the card with a full 32K of programs permanently stored in ROM. The board
comes with a 180 page manual and is a really excellent tool to have around if you're going
to be doing much heavy duty programming in BASIC. These programs can either be used in
place on the card or copied out into some other area of RAM where they are easier to get to.

BISE233

B
B S
G m B ek
Y T
ek ms s,
CEB BRSNS

AERR BN

3
*
13
s
®
*
.
®
»
¥
»
»

Fig. 22.3 Ultra ROM board from Hollywood Hardware.

The Peripheral Card ROM Space

Moving on down through the $C000 space you come to the “Peripheral Card ROM Space”
which is made up of seven pages from $C1 through $C7. As you can see from Figure 22.1a,
these pages are handled differently from those in the expansion ROM space. They are not
bank switched. Each page is permanently assigned to one of the slots. They're fairly easy to
keep track of since $C1 goes to slot 1, $C2 goes to slot 2, etc. (Unless of course you persist in
referring to their decimal designations in which case page 193 goes to slot 1, 194 goes to slot
2, etc.).

As with the expansion ROM space, there is no ROM in the Peripheral Card ROM Space when
an Apple IIII+ or /e is shipped from the factory. Once again, the //e does have some built-in
ROM which can be switched into the space after the Apple is turned on.

The //c has permanently installed ROM in these spaces, but retains some semblance of the
IVII+ and //e port assignment scheme (see Figure 22.1b). It is configured as if you had a
printer interface in slot 1, a serial modem interface in slot 2, a video card in slot 3, a mouse
in slot 4, and a disk controller in slot 6. The mouse routines spill over into the unused area
for slot 5, and the slot 7 space is used for an entry for booting from the external drive, some
testing routines, and for a mouse extension for the BASIC Interpreter.

Although $C800 expansion ROMs are optional on a card, these Peripheral Card ROMs (also
called $CN0OO ROMs because “N” changes for each slot) are all but standard equipment. In
order for a card to respond to a “PR#” or an “IN#” statement in BASIC, it must have a$CN00
Peripheral Card ROM.
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The principal exception to this rule is for cards which were put into slot 0 in the II/II+. As
you can see from Figure 22.1a, slot 0 is not assigned a page. The $CO page is taken up for
other important functions. The one kind of card that can function well without $CN00 ROM
is a “RAM card.” These have traditionally been placed in slot 0 of the Apple IIII+. These
RAM cards (see below for more detail) also work perfectly well in the other slots as long as
you don’t try to activate them with a PR# or IN# command which results in a hopelessly
hung computer which must be reset or turned off. In fact, the PR#0 and IN#0 commands
have nothing to do with slot 0, but are used for other purposes.

The Contents of the Peripheral Card ROMs

The $CNOO Peripheral Card ROMs have three broad functions. First, they are supposed to
contain what are called “signature bytes.” These are flags which let the Apple or a coprocessor
test the water so to speak in order to find out what kinds of cards are installed. This will
explain the surprising response you get when you select option “S” in the ProDOS main menu
(see Figure 22.4). ProDOS goes out and checks each slot to see if it has a $CN00 ROM and
whenever it finds a ROM, it then reads the signature byte to find out what kind of card it is.
This is the basis of the report you get. Not all cards follow this signature convention, which
is why ProDOS .is sometimes unsure about what exactly it is you have out there.
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These signature bytes are extremely important for disk drive controller cards. ProDOS can
operate a broad variety of disk drives, but it must be able to find out from the signature bytes
exactly what kind of storage media it is working with, its capacity, etc.

The $CN00 ROMs also contain short machine language programs which are used to operate
the cards. An application program can read the signature bytes and decide whether it thinks
it can operate the card itself or whether it should use the program stored in the $CN00 ROM
as a subroutine whenever it wants the card to do something.

A card is usually “turned on” by causing the 6502 to begin executing the program stored in
the $CN0O0 ROM. For instance if you want to boot a disk with the controller card in slot 6,
you can do it by making the 6502 start executing the program at $C600. If you'd like to try
this out for yourself, go over to your Apple, take any disks out of the drive, and then turn the
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Apple off and on. Hit reset (CTRL-reset) to make the driv. stop spinning. Now place a DOS
diskette in the drive and close the door. Respond to the square bracket prompt by typing:
CALL-151 and once you've hit return you should see the asterisk prompt of the Monitor. Now,
to do our little exercise, type: C600G and hit Return. You can try other numbers but only
€600 will work.

Address Decoding for Peripheral Card ROMs

In order for a card to figure out if the 6502 is trying to talk to it, it has to “decode” the address
on the address bus. For instance, for a card in slot 2, if the address is between $C200 and
$C2FF, then it must pay careful to the last eight bits of the address in order to find out which
byte the 6502 is trying to read. However, for the 65,279 other addresses, it doesn’t have to
pay attention.

Apple figured that they could save everybody a lot of money if they relieved the peripheral
cards of the responsibility of decoding the address bus. The Apple motherboard containsspecial
circuitry which watches the address bus and then, whenever one of the $CN00 ROMs is being
addressed, it turns on the I/O Select line which runs out to that card. This line is usually
connected directly to the ROM chip as what is called an “enable” signal. Therefore, on most
peripheral cards the address lines which pick the page aren’t even connected onto the card.
The ROM just watches for the I/O Select line (see Appendix B) and the address offset. Apple
hoped that this would simplify the circuitry on peripheral cards and thus make them less
expensive.

Phantom Cards

One trend in high performance peripheral cards is to put several functions on a single card
but make the the whole thing seem to act as if each function was in a different slot. For
instance, the Versacard from Prometheus has a paraliel printer port for slot 1, a serial modem
port for slot 2, a clock for instance for slot 7, and a few other odds and ends. All of this stuff
is actually on just one card which you could put into for instance slot 4. Once it was set up,
you'd type “PR#1” and your printer would turn on. A PR#2 would send characters to your
modem, etc.

This little trick is called “phantom slots” and it is also used in cards from Mountain Computer
(CPS) and from Videx (PSIO). The way these cards are able to do this is to decode the page
address for themselves, and not rely on the 'O Select line. When the 6502 sends out $C200,
the motherboard decoding circuitry tries to turn on slot 2. Meanwhile, the Versacard has been
sitting there in slot 4 with its ears open, and when it picks up the $C200 signal on the address
bus, it circumvents protocol and turns on its serial modem function.

The Ultraterm //e Trick

Apple was rightfully proud of its elegant and simple 80 column text system on the //e, infact,
they were so happy with it that they decided to make it impossible to run one of the older
video boards in slot 3. To do this, the /e motherboard was wired so that if a card is installed
in the auxiliary slot, the I/O Select line for slot 3 never gets turned on.

The //e 80 column card system does have a few limitations which some people aren’t happy
with. For one, it doesn’t do to well with 1200 baud modems (see Chapters 6 and 17) and for
another it generates a five by seven dot character matrix while many IVII + users had grown
accustomed to nine by 11 dot or at least seven by nine characters. However, the Apple //e
reference manual says on page 133: “Installing an 80-column text card in the auxiliary slot
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makes it impossible to run any peripheral card that has built-in firmware in slot 3.” This is
a problem if you want both a 64K card in the auxiliary slot for super high res graphics and
a high resolution, “slot 3” 80 column card.

How many of you have guessed what the folks at Videx did for their new Ultraterm card?
That'’s right, they ignore 1/O Select and decode the bus themselves. Immediately upon waking
up the Ultraterm swats out the //e 80 column firmware and then goes about its business
unperturbed. Besides being able to use an Ultraterm and still have something in the auxiliary
slot, there is an added bonus. The Apple’s high res video display is completely independent of -
the whole slot card I/0O system. It is therefore still possible to use extra RAM in the auxiliary
slot to display super high res graphics at the same time that the Ultraterm is displaying text.
To do this you need two video monitors, one connected to the Apple’s regular video port for
the graphics and the other connected directly to the Ultraterm for text (see Figure 22.5).

80 Column Text
on Monitor #1 Y-conneotor

/ Hi Res Graphics
on Monitor #2
e

'

Fig. 22.5 With any 80 column card in slot 3, you can see hi-res graphics on one monitor simultaneous with text on a
second monitor. This is very helpful when programming full screen graphics. If you have a card in the auxiliary slot of the //e,
however, this only works with an Ultraterm board.

Using the $CN0OO ROM to Control the $C800 ROM

The system for turning on the $C800 2K expansion ROMs is a two tiered process. Usually,
the expansion ROMs are turned on by the $CNQO programs. If you will recall, the /O Select
line is also used as part of the enable system for the bank switched $C800 ROMs. However,
the Apple motherboard provides some additional decoding for the expansion ROMs. Whenever
someone, usually one of the §CN00 ROMs, refers to any of the addresses in the $C800 space,
a signal called “I/O Strobe” on pin 20 of the expansion bus is turned on at all of the slots. For
an expansion ROM to be turned on, it must have both an I/O Select signal (which tells it that
its slot is being used) and an I/O Strobe signal (which tells it that an address in the expansion
space is being called).

The third and final element of the system is a switch for turning off all of the expansion ROMs.
This is done simply by referring to address $CFFF, the highest address in the $C000 space.
All expansion ROMs are supposed to respond to this signal by turning off.

The whole sequence for using a program from an expansion ROM goes as follows. First,

someone turns on one of the peripheral cards by causing the I/O Select line to be turned on
for that card, i.e., with a PR# command. If the peripheral card ROM on that card wishes to
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use its own $C800 expansion ROM, it first hits the $CFFF switch which forces any active
$C800 ROM out of the address space. It follows up by calling any address in the range of
$C800 to $CFFE and this makes the I/O Strobe signal turn on. The $C800 address space is
now clear, and the combination of I/O Select and I/O Strobe then switches the expansion ROM
on the active peripheral card into the $C800 address space (see Appendix B).

Making the Peripheral Card ROM Space Work Even
Harder

As mentioned earlier, if there is a nook or a cranny in the Apple’s address space, someone will
have built a card to shove extra memory into it, and the Peripheral Card ROM Space is no
exception. The participants in this particular derby include Axlon and Microtek, and we’re
now starting to talk about really serious amounts of memory. The Axlon systems include a
320K external box (see Figure 22.6) that physically looks like a disk drive and a more con-
ventional looking 128K card, and there are two cards from Microtek; the BAM 128 and the
Q-Disc.

Fig. 22.6 The Axlon RAMdisk 320 to the left of the Apple is about the same size as a standard disk drive.

All of these systems use an on-card bank switching system to move little 256 byte chunks of
RAM into a sort of window provided by the Peripheral Card (SCN00) ROM space assigned to
the card (see Chapter 6, Figure 6.7, Item 2). In the 128K systems there are 512 of these 256
byte pages and they are selected by putting a number between 0 and 255 into a control port
(explained later) and either a 0 or a 1 into a second control port to select which set of 256
pages should be used. The difference between the two Microtek cards is that the BAM 128
can only be used for storing data from BASIC programs and for running large VisiCalc models,
while the Q-disc has got added hardware and firmware which lets it simulate a “plug and
run” extra disk drive. .
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These are just a few of the numerous “RAM disk” systems, the rest of which will bediscussed
later. The term RAM disk means that data is stored in and retrieved from RAM instead of
from a disk drive, but that the data is brought into the computer via the DOS file buffer as
if it were coming from the disk. This means that it never has to be in the Apple’s address
space until it is ready to get moved into the file buffer.

This is a nice approach to the problem of how to get access to all that memory, because when
it is time to move some data into the file buffer, it requires absolutely no address space other
than the 256 byte peripheral card ROM space which is already permanently assigned to it.
Most of the other systems are just marginally faster because they use bank switching of very
large chunks of RAM, but the larger the area that gets switched, the greater the potential
for disruption of some other vital function in the machine. Yet other “RAM disks” do no bank
switching at all but instead feed all the data through a single “port” one byte at a time, which
is a comparatively slow approach. These various systems will all be compared when all of
them have been described in more detail.

One important thing to remember about these systems is that they operate very differently
from the most other bank switched type RAM disks or RAM expansion cards which are based
on the high 16K of the address space (see Chapter 25) or on the /e auxiliary RAM (see Chapter
26). RAM expansion software written for the other systems cannot readily be modified to work
with these systems.

The Axlon 320K Ramdisk is a particularly nice package if you're prepared to spend a large
sum of money on a high performance system. A typical application where this much RAM
comes in handy is the use of one of the large spelling checker programs. There is enough space
to load the proofreading program, its dictionary, and your text all onto a single RAM disk, so
that all of the activities in the proofreading process benefit from the high speed.

You can get nearly this much RAM with the Synetix card (see Chapter 24), but Axlon has
three advantages. First, it uses an external power supply built into its box; second, it has
little flashing lights that indicate when the drive is in use; lastly, it has battery backup. You
don’t realize how much you depend on the whirring noises of a drive to confirm activity until
one day you find yourself wishing you had auditory confirmation that your RAM disk actually
was engaged in that dBase sort. The disadvantage of the Axlon box relative to the more
expensive Pion box (see Chapter 24) is that the Pion system can be upgraded to one megabyte.

The Mountain Expansion Chassis

If all your slots are full, and you feel you absolutely must have just a few more cards, you
can sometimes solve your problem by adding eight additional slots in the form of a Mountain
Computer Expansion Chassis (see Figure 22.7). However, there are a number of limitations
on how this device can be used. And it’s expensive, so you should make certain beforehand
that it’s appropriate to your problem.

There is absolutely no way that the Apple can be made to address more than eight slots;
however, it is possible to apply the concept of bank switching to the actual physical slots
themselves. This is the principal behind the Expansion Chassis. You don’t actually get to work
with 16 ordinary slots, rather you have a choice of which set of eight will be active at a given
time.
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Fig. 22.7 Inside the Mountain Expansion Chassis.

When you install the Expansion Chassis you pull a crucial chip out of the Apple I/II+
motherboard (the LS138 at F12 for those who count) and plug a cable from the chassis’ interface
card into the empty socket. This connection gives the interface card control over the I/Q Select
and Device Select lines. When properly instructed, the interface will make sure that none of
the slots in the Apple receive a select signal when they are addressed, and it will generate
its own select signals to send out to the new slots in the external chassis.

Mountain has chosen to use the address of the cassette port ($C020) as an operating switch.
However, this is not a simple one bit on/off arrangement, because you can select any one of
four different chassis in a single Apple, depending on what value you write to $C020. One
nice feature is that you don’t have to throw all eight slots at once. You can set switches on
the interface card which will effectively lock selected slots into the Apple. For instance, if you
have your disk drive controller in the Apple’s slot 6, you might lock that slot into the Apple.
Otherwise, when you were working in the chassis, you would have no access to the disk drives.
The bad side of this is that until you turn the machine off and alter the switch, the chassis’
sixth slot is out of commission.

This may sound great so far, but there are three crucial flies in the ointment. The first is just
a fault in the electrical design. There is enough stray capacitance (see Chapter 13) andrelated
problems that the connection between the chassis and the Apple introduces a “propagation
delay” for signals passing between the two. For most cards, this is no problem; however, for
such coprocessor cards as the popular Microsoft SoftCard, this delay overwhelms the extremely
precise timing demands for complex control of the bus (see Chapter 24). A second problem is
mechanical; the very longest cards, such as the Vista A800, do not physically fit into the
chassis.
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The third problem is a little more subtle but it is the one which imposes the most severe
limitations. When you throw control out to the chassis, you also throw the $C800 space out
there. Unfortunately, if you were using an 80 column card, your video display ROM is now
swinging in the wind, cut off from the 6502. Next time the Apple tries to send a character to
the screen, blammo, you have a hung Apple. To avoid this, you must carefully turn off the
video with a PR#0 (we’re talking II/II+ here) and then hit $C020 to go out to the chassis.
While you're out there, you can’t send anything to the screen. When you finish your work in
the chassis, you can come back up into the Apple, reactivate the video board and then continue.

To partially solve this problem, Mountain lets you lock the $C800 space to the Apple. If you
do this, however, then you can’t use any cards with expansion ROM in the chassis. What you
really need is slot by slot control over whether the Apple or the chassis has the $C800 space.
There is a way of rigging that up, but it’s not included with the chassis. An alternate solution
in many cases is to buy a second video board just for the chassis. This leads to some interesting
possibilities for multiple displays, but it also adds to the expense.
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Fig. 22.8 Slot8 from Legend. This unit plugs into slot 7 and holds two cards which extend horizontally. Only one is active
at a time, and you must turn off the Apple to switch between them.

In summary, if you have a fairly good conception of what’s going on out there, you can program
and work your way around most of the problems. If you are using simple interfaces such as
A/D converters, timers, “dumb parallel ports,” etc., then the expansion chassis provides a very
handy means of putting a large number of device interfaces under the control of a single
Apple. Smarter cards with expansion ROMs cause a bit more trouble and very smart cards,
such as the Microsoft Z-80, just won’t work. A much more limited slot expansion system that
does work with any card is shown in Figure 22.8.

The $CO Page

The tour has now progressed down into the deepest level of the $C000 space, the $CO page
itself. As you can see from Figure 22.1a, this page represents just one small 256 byte part of
the total $C000 space, but as you can also see if you peek ahead at Chapter 26, Figure 26.1,
it has sure got one awful lot of densely packed chunks of Apple landmarks.
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There are two fairly distinct parts of the $C0 page. The highest 128 addresses are collectively
called the “Peripheral Card I/O Space” while the lowest 128 bytes are called the “Buiit-In I/
O Space.” In the //c, everything comes built-in, so there is no obvious distinction between the
top and bottom half. Further, some features in the page are not really related to I/O. Thus,
the entire $CO page in the //c can be more appropriately referred to as the “Hardware page.”

Throughout the $CO page, you will find a resounding absence of RAM and ROM. Instead, this
page is filled with such things as switches, toggles, strobes and latches. These are made up
of various kinds of circuit components which can behave rather differently from RAM or ROM
chips. Many of the addresses can pass only one bit of information rather than a whole byte.
Some of them can be written to but can’t be read. Many of the locations aren’t even connected
to the data bus and some never get any real contact with the address bus.

In the Built-In I/0 Space, it is possible to give.an exact description of every important part.
The Peripheral Card /O Space, on the other hand, contains whatever happens to be on the
cards that get shoved into it.

For the most part, however, throughout the $CO page there are three broad categories into
which the residents of the addresses fall. The greatest number can be called “control ports,”
through which the 6502 is able to modify the behavior of devices outside the address space.
There are also a fair number of “status ports” which permit the 6502 to get readable reports
about the behavior of these devices, and finally there are “data ports,” the actual locations
through which individual bytes or bits enter or leave the address space.

The Peripheral Card 1/0 Space

In the top half of the $CO page, each slot, including slot 0, is assigned 16 addresses. It is a
little trickier to keep track of these than it was with the $CN0O0 ROM addresses. Slot 0 is
assigned addresses $C080 through $CO8F (49,280 through 49,295), slot 1 gets $C090 through
$CO9F, slot 2 is $COAO through $COAF, etc. Collectively, they can be referred to as “$COn0”
addresses and they are all fairly easy to pick out from Figure 22.1a.

Much like the Apple address decoding system described above for the /O Select line, there is
a second decoding system for the Peripheral Card I/O Space. Whenever an address between,
for instance, $COEO and $COEF appears on the address bus, the Apple’s motherboard decoding
system sends a signal to slot 6 called “Device Select.” This is a signal which appears on pin
41 of the connector slot (see Appendix B).

If you look at the address $COEOQ laid out in binary form you’ll get an idea of what this can
mean for a peripheral card:

C 0 E 0
1100 0000 1110 0000

As long as any address beginning with $COEx has been called, the Device Select line to card
6 will be turned on. Therefore, only the last four address lines have to be watched. Combinations
of on or off signals in these four lines can be used to operate various AND gates and OR gates,
ete., to switch various functions on or off. This is a very important and distinct concept. These
last four address bits are being used to throw switches rather than to identify some location
within a memory chip.



In the //c, there is a system which is similar to the II/II+ and //e Device Select, and it is based
on a Programmed Array Logic (PAL) chip called the General Logic Unit (GLU). Whenever
the Memory Management Unit (MMU) in the //c detects an address in the lower half of the
$CO0 page (equivalent to the Built-In I/O Space) it turns on its SELIO line. It also turns this
line on if it detects an address in the upper half of the $C0 page, but only for slot 1, slot 2
and slot 6.

The GLU detects this SELIO signal and looks at address bus bits 0, 3, 4, 5, 6 and 7 to decide
what is being addressed. It can respond by activating the IWM disk controller (see Chapter
23), by selecting the two serial ports, or by passing the information along to the IOU via its
own “IOU SELIO” line (see Appendix A).
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Fig. 22.9 The GLU (General Logic Unit) handles most of the I/O selection chores in the //c.
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Chapter 23

Disk Drive Function
The Disk Il Control System

To demonstrate how the Peripheral Card I/O space works, the Disk II system will be described
in detail. It can serve as an example of a control/status/data port and the kind of functlons
which can be performed by sending signals to the lowest four address pins.

The other good reasons for pausing at this point to talk about disks and disk drives are that
one, it is through location $COEC/D (49,388/49,389; the effective data port on the disk II
interface card) that most information passes in and out of most Apples in the world, and two,
much of the rest of the discussion of the $C0 page has to do with using bank switched RAM
in the place of disk drives. It is best to have a clear idea of the true meaning of disks before
plunging on.

The Apple’s Other Address Spaces

One recurring theme up to this point has been that the Apple has only one address space.
This space is defined by the 65,535 possible numbers which can appear in the 6502’s 16 bit
address buffer (see Chapter 21). However, it would in fact be more accurate to say instead
“The 6502 has only one address space.” The Apple itself can have more than one.

Each of the Apple’s other address spaces is defined by a simulated address register made out
of two bytes of RAM. Into one of these simulated address registers you can, of course, put any
number between 0 and 65,535. There can be several of these simulated address registers, each
with its own 64K address space. Since these registers are not actually inside the 6502, they
are managed by instructions to the Apple’s operating system rather than by direct commands
to the 6502.

Keeping Track of Megabytes

It would be nice, but no really big deal, if each location in one of these extra address spaces
held a byte of information. You’d get supervision of an additional 64K bytes of data with each
new simulated address register. In fact, the situation is much better.

ProDOS has some of these extra address spaces, but each location can contain 512 bytes instead
of just one byte. In a full 65,535 location address space, with 512 bytes in each location, you
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get a faﬁrly good degree of supervision over 65,535 times 512 equals 33,553,920 bytes (32
megabytes). Even in 1984, very few microcomputer owners can afford that much RAM, so the
standard way of taking advantage of these huge extra address spaces is to put disk drives
into them. ) :

Locations in the ProDOS/DOS Address Spaces

In ProDOS, each location is called a “block,” and each address space is assigned to a “block
storage device.” If you want to use 64 megabytes of information, you’re going to have to
convince ProDOS that you have two disk drives and then it will happily set up a second address
register to create a second extra address space.

There is a very similar system in DOS 3.3, but each location can only contain 256 bytes, so
the maximum in one space is 16 megabytes. Another difference is that DOS 3.3 is very
determined to think of anything in its address spaces as if they were disk drives. Much like
the system in the 6502 address space, DOS 3.3 deals with its addresses as if they had two
parts. The first byte describes what is called a “track,” and the second byte describes what is
called a “sector.” The terms track and sector refer to details of the inner workings of disk
drives and this makes it a little bit tricky to put RAM chips instead of a disk drive into a
DOS address space.

Much worse than the expectation of a disk drive in DOS is the additional expectation that
the disk drive will be a standard Disk II with just 35 tracks and 16 sectors on each track.
This tends to limit you to 35 times 16 times 256 equals 143K bytes which just doesn’t holda
candle to 32 megabytes.

That was fine in 1978, but that is also part of the reason that Apple is starting to abandon
DOS 3.3 in 1984. Part of DOS 3.3 actually can handle big storage devices, but other parts of
the DOS program aren’t so willing. A variety of companies manufacture large capacity storage
devices for the Apple, but each of them has had to write their own version of DOS all of which
has resulted in an incompatibility nightmare. ProDOS alleviates all this.

File Buffers for Moving Data from One Space to
Another

In any case, the way the whole thing works with ProDOS (or DOS or just about any operating
system) is that some program such as a word processor or data base program asks ProDOS
to see if it can find a chunk of information called a file. The program may have in mind a
small file containing just two or three bytes, or it might be looking for a file containing a
mailing list of all the Democrats in the state of Alaska (16 megabytes?). ProDOS is responsible
for discovering whether such a file is within one of its address spaces and for preparing to
move individual blocks from that address space into the 6502’s address space.

Once such a 512 byte block has arrived in the 6502’s address space, the word processor is able
to move it around and feed it to other parts of the program. Note, however, that each individual
location in the ProDOS address space will take up 512 locations in the 6502’s address space
the moment it arrives. In order to make sure there is room, ProDOS opens up what is called
a “file buffer” which includes a string of 512 locations in the 6502’s address space. ProDOS is
always able to move the entire contents of one of its locations, en masse, into one file buffer.
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This ability to move entire 512 byte blocks is very important because it means that ProDOS
never has to worry about what is inside the block. It can treat it as one single entity. Just
deliver it to the file buffer and then let the word processor worry about what’s inside it. It is
because of this breezy ability to abbreviate that ProDOS is able to keep track of over 33 million
bytes in its address space while the 6502 can only deal directly with a little more than 65,000.

An Overview of the Disk Access Process

Given that ProDOS knows which block it wants to read, the process of actually getting the
data from the block into the file buffer can be fairly involved. If the block storage device is
actually some sort of RAM card somewhere in the Apple, then ProDOS can probably move
the information by making the 6502 throw some bank switches and then telling the 6502
which area of switched RAM contain the blocks of data. There are a wide variety of these
“RAM disk” schemes, all of which are reviewed a little later.

If, however, the block storage device is actually a disk drive, then ProDOS will have to use a
special device called a “disk drive controller” to get at the data in the drive. ProDOS tells the
controller the address of the block it’s interested in, and the controller is supposed to be able
to come up with the data.

The controller’s task can be broken down into four steps. First, it has to prepare the drive
mechanically, which can include both of turning on the drive motor to make the disk spin,
and using a second motor to physically move a “read/write head” to a precise position over
part of the disk. Second, it must sort through a long stream of incoming signals to determine
when that part of the disk which is actually holding the specified block of data has spun into
position over the read/write head.

Once all this positioning is complete, the controller must decode the incoming “raw data signal”
to extract the actual bytes of information. This raw signal includes both data and various
timing marks, and it must be cleaned up before it is handed to the Apple’s data bus. As a
fourth and final step, most disk drive controller systems are expected to assist in the transfer
of the data into the ProDOS file buffer.

The RWTS/Disk Il Interface Card System

A full featured disk drive controller card can do all of these tasks and more with remarkable
efficiency, versatility and at very high speed. Most of the work can be supervised by a dedicated
disk controller chip such as the WD 1797 from Western Digital. However, a full featured
controller like this (i.e., the Vista A800/801) can be rather expensive ($550).

The Disk II Interface Card from Apple (see Figure 23.1a) is a little bit less than a full controller
system. To operate, it requires the full and undivided attention of the 6502 under supervision
of a special machine language program called Read/Write Track Sector (RWTS). RWTS gets
involved with operating the disk drive at a very tedious level and it relies on such remarkable
arcania as the exact execution time in microseconds of some of the 6502 machine language
instructions in order to time events taking place near the surface of the spinning disk.

Wozniak wrote the first version of RWTS (on the back of an envelope just hours before the
Disk II would be unveiled at a trade show, according to legend) when mini-floppy disk drives
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were the hottest new wonder from Southern California. RWTS has been modified a few times
since then, but it is in fact just one of those machine language wonders whose performance
just about no one can improve on. And for the most part no one would want to since these
things are all done automatically now by drive controller chips. In fact, Apple has been so
happy with the system that it has now been frozen in silicon in the form of the Integrated
Woz Machine (IWM) chip which is used as the disk controller device in the MacIntosh and in
the //c (see Figure 23.1Db). :

Fig. 23.1a Disk I interface card. The
electronics are simple and most of the
work is done from software.

Fig. 23.1b The IWM (Integrated Woz
Machine) chip replaces all of the
circuitry on the Disk Il interface card.
The //c's internal drive plugs into a
connector on the motherboard directly
behind the external drive connector.

The advantage of the RWTS/Interface Card system has been that the card was very inexpen-
sive. The disadvantage is that RWTS has gotten Apple DOS tied down in what are now fairly
low capacity, low performance disk drives (i.e., the Disk II). ProDOS can use a version of
RWTS when it works with the Disk II Interface Card and Disk II, but it has been designed
to operate a full scale controller card if it finds one, including elaborate hard disk controllers.
Similarly, a different software driver can use the same Disk II Interface/IWM hardware to
operate much higher capacity drives than the standard Disk II or Disk //c.
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Organization of Data into Tracks

The data stored on a disk is laid out in a perfectly round circle called a “track.” There are
always several of these tracks on a disk, all one inside the other as concentric rings (see Figure
23.2). The number of tracks squeezed onto one surface of a 5 1/4 inch disk ranges from 35 (the
Disk II) to 306 (the Seagate 406 hard disk), but in all cases a track contains about 65,500 bits
in a single “serial” stream. The Disk II interface card has to use about half of these bits as
timing signals, so the Disk II gets about 4K bytes of data into a track. More advanced con-
trollers can use nearly all of the bits for data so that a full 8K bytes can be stored in a track.

The timing problem in which the Disk II interface invests so many bits is a very tricky one.
A disk drive reads data one bit at a time by the use of a “read/write” head. The read/write
head stays in one place as the disk spins by, and the stream of passing bits is read off into
the drive circuitry. The disk spins at a fairly steady speed so the bits of data come in at a
steady rate.

Timing Tricks and Disk Data Encoding ,

In the Disk II, a drive motor spins the disk at 300 revolutions per minute, and in each track
there are 65,000 data bit positions plus about 30,000 positions taken up in the necessities of
formatting. This all means that a new bit passes by the read/write head about once every two
millionths of a second (two microseconds). The controller can look at the bit stream every two
microseconds and check whether a one or a zero has just come in as it works along recon-
structing the stored bytes. It can reasonably expect to package up a complete byte in 16
microseconds and to send the byte off to the computer.

The problem is that it is not difficult to imagine little snags and warbles which could throw
off the rotation speed by one or two millionths of a second. And, in fact, lots of things do throw
off the rotation speed. Let’s take, for example, the ASCII code for the letter O “0100 1111,”
and assume a snag occurs between the two zeros. If the controller just looked blindly at the
data stream at an exact rate of once every two microseconds, it might think it was seeing
three zeros (0100 0111) when in fact it was just a matter of the second zero arriving a little
late.

And what if it happens to take 18 microseconds instead of 16 for a whole byte to pass by the
read/write head? If the controller launches off the byte on its way to the computer after just
16 microseconds, it will be an incomplete byte. Worse still, it will then mistakenly consider
that last late bit as if it were actually the first bit of the next byte in the stream thus producing
a “framing error” which could garble all the subsequent data in that stream. But fear not,
steps have been taken to prevent this particular set of disasters from occurring.

The way out of the bind is to provide the controller with an exact and instantaneous means
of monitoring the actual speed of the disk drive before it reads each bit. With the Disk II
interface card, this is accomplished by intermixing data bits with “clock bits,” as shown in
Figure 23.2 There will thus never be a chance for two zeros to come along directly in a row.

There are actually a few more constraints on which bit patterns are allowed. Those that are
considered likely to confuse the controller are simply forbidden and a complex recording scheme
is used to eliminate them. The consequence of this scheme is that out of every 16 bits in the
stream, eight are clock bits, six bits are used for data, and two more are taken up by the
coding system. This “six and two group coded recording” or “6/2 GCR” system is explained in
some detail in Beneath Apple DOS by Don Worth and Pieter Lechner (Quality Software).
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Fig. 23.2 Data is coded in 8/2 GCR format, interspersed with clock bits, and recorded as magnetic patches. Each of the
16 sectors in a track has an address field (V=volume, T=track number, and S=sector number) and a data field separated
by a gap made up of synch bytes.
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The Vista A800/801 floppy controller and most hard disk controllers use a more sophisticated
clocking system called Modified Frequency Modulation (MFM). The electronics are a bit subtle
and involve a kind of circuit called a “phase locked loop.” The result of this system is that an
MFM controller can detect extremely small variations in the time at which each bit arrives.
A full explanation of MFM is beyond the scope of this book, but the result is that effectively
all of the 65,000 bit positions can be used for data and none have to be reserved for clockbits.
This is why each track in an MFM system holds 8K bytes of data rather than 4K bytes.

Although there are many manufacturers of Apple compatible floppy disk drives and disk drive
controllers, nearly all of them have avoided using MFM systems in order to keep their con-
troller cards inexpensive. Some of these systems pack more bytes onto a disk than a Disk II
does because they can use more than 35 of these 4K tracks. The Vista A800/A801 MFM
controller is used to operate “industry standard eight inch disk drives” (meaning that the
same disks can be read by just about any microcomputer with an eight inch disk system) and
high density 5 1/4 inch Amlyn drives (see Chapter 24).

Selecting a Track

Once ProDOS has decided which block of data it wants, it must figure out which track in
which disk drive the block is stored in. It then orders the controller to prepare to access that
track. The process of accessing a track is a mechanical thing, with spinning motors and sliding
arms, but it must be done with great speed and enormous precision. In the worst case, you
might have four Seagate 419 drives attached to a single controller card and therefore have to
bring a read/write head over to one of 7,000 tracks. Even if you have just one Disk II drive
with 35 tracks, the head positioning task is time consuming and demanding.

Drive Select

The first step in the sequence is for RWTS (or the A800) to activate one of the drives attached
to the controller card. Hard disks can take between 15 seconds and a full minute to get up to
speed. If you had to wait this long every time you wanted a little information, hard disks
would be pretty impractical. Fortunately, in a hard disk, the read/write head floats above the
surface of the disk on a cushion of air, so it is OK to turn on a hard disk and just leave it
spinning for hours or days without fear of wearing down the disk surface. The process of
“selecting” one of these drives is simply a matter of telling it that it is the drive which is
supposed to respond to the next set of track commands.

In the Disk II, the disk is clamped directly into contact with the read/write head as long as
the drive door is closed (see Chapter 1, Figure 1.6), so it is not wise to leave the disk spinning.
Each time ProDOS selects one of the drives, its main motor is turned on and ProDOS waits
for a little over half a second to allow the drive to get up to speed before it tries to read or
write. The drive is then turned off again after each access to help extend the life of the diskettes.

The larger eight inch disk drives can take a full two seconds to get up to speed, so many
manufacturers leave these drives spinning as long as the computer is on. To cut down on wear
and tear they usually include an additional mechanical system which can lift the read/write
head off the surface of the disk except for the few moments when a read or write is actually
taking place.
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You may recall that we had been talking about part of the Apple’s $CO page when we broke
off to review disks. In particular, if you refer back to Chapter 22, you should remember that
each of the Apple’s slots is assigned 16 locations in the Peripheral Card /0 Space. When a
Disk II Interface Card is installed in slot 6, it uses these I/O locations in the fashion shown
in Chapter 22, Figure 22.1a, which includes a blow up of the 16 bytes between $COEOQ (49,376)
and $COEF (49,391).

At this point you should pay particular attention to location $COE9 (49,385) labeled “motor
on.” Those of you who like to actually try these things out should go to your Apples and get
ready to make like RWTS by throwing a few switches on the Interface Card. Turn the Apple
off and on and then hit reset (CTRL-reset) to make the drive stop spinning as usual. Now,
respond to the square brackets prompt by typing: POKE 439385,0 and when you hit Return,
the drive should turn on.

NS I NE
ar8e

»ony e e W om

Fig. 23.3 This fourdrive controllerfrom Rana is identical to a Disk Il interface except that it
extends the drive select function to handle more drives.

To stop it type: POKE 49384 ,@. The chart in Chapter 22, Figure 22.1a should give you enough
information to also do the “drive select” function to turn on your other drive instead (see Figure
23.3). No other self-respecting disk drive controller card would let you do that sort of thing, but
since the Disk II control system involves both RWTS and the card, it is a partially open system in
which you can intervene (for educational purposes only, of course).
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Stepping the Head

You can think of the tracks in a disk drive as a collection of 4K (or 8K) storage areas. The
task during a track access is to move a read/write head into one of these areas. Although the
tracks are actually concentric rings, the drive can bring the head into any one of the rings
by moving it back and forth along a single line as shown in Figure 23.2. The act of moving
between tracks is called “stepping,” and it is therefore no surprise that the equipment which
moves the head is called a “stepper motor system.” A stepper motor is a fundamentally digital
version of our old friend the electric motor. Instead of spinning continuously, its shaft turns
in little tiny steps. A stepper motor has inputs for digital pulses and each time it gets a pulse,
it turns its shaft one more step.

There are several ways of converting the stepping rotation of the stepper motor’s drive shaft
into linear motions of the read/write head, and Figures 23.4a and 23.4b show the system used
in the Disk II. The mechanical guts of the drive are the standard Shugart SA400. The elec-
tronics have been modified by Apple in the Disk II, so you cannot just go out and buy an
SA400 for your Disk II controller (Electrovalue sells a kit which lets you modify an SA400
for use as an Apple drive). The Apple //c has an ALPS drive which is very different mechanically
from the Disk II, and has a much more precise head stepping mechanism (see Figure 23.4c).

To operate a stepper motor in the drive, an A800 controller system sends a direction signal
which tells the device whether to move in or out from its current position, and stepping pulses
which tell it how many tracks to step through. A full controller system such as the A800
remembers the current position of the read/write head. ProDOS tells the controller which
track number it would like to use next. The controller calculates the necessary direction signal
and the number of step pulses.

The Disk Il Interface Stepper System

If you look back at Chapter 22, Figure 22.1, you’ll see that the addresses between $COEO
(49,376) and $COE7 (49,383) are labeled as Phi 0 on/off, Phi 1 on/off, etc. These four pairs of
locations are the stepper motor controls. The symbols stand for Phase 0, Phase 1, Phase 2 and
Phase 3. Each of these motor phases has an on and an off position. When RWTS is given a
track number it decides on a direction and then starts fiddling with these motor phase addresses.

To turn the stepper motor shaft, RWTS addresses each of these locations in order. To move
the head in toward the center of the drive it calls $COEOQ, 1, 2, 3, 4, 5, 6, 7, 0, 1, etc. To move
the head back towards the outside, it addresses them in reverse order, $COE7, 6, 5, 4, etc. To
step from one track to the next, it has to turn two phases off and then on. There aretherefore
two steps per track. If you only do one step, then you are between tracks—a place called a
“half-track.” Some copy protection schemes take advantage of this “half tracking” capability
to put crucial pieces of information in places where RWTS and most copy programs can’t find
them. The protector then provides a special version of RWTS which can get at the half tracks.

Limits on Tracks Per Inch

Although the stepper system in an SA400 is capable of moving to 70 different but narrow
track locations, there are two factors which limit the SA400/Disk II to just 35 wider tracks of
usable information: the accuracy of head positioning, and the sensitivity of the read/write
head.
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Read/Write Head

Fig. 23.4a Disk || head positioning mechanism. The stepper motor rotates a wheel with a special spiral groove
into one of 35 different positions. The read/write head slides in and out from the center of the disk along guide
bars. Its position is controlled by the spiral groove.
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Fig. 23.4¢ Disk //c head positioning mechanism. This is called a band positioning system because of the metal
band that runs around the two metal wheels. This is a much more precise system than the Disk |I's spiral, but the
differences conflict with some hardware based copy protection schemes used on disks for the Disk Il, causing
some disk incompatibility between the two different types of drives.

423




When the fully coded digital signals arrive at the read/write head for writing, the head converts
the pulses into little panels of magnetic charge. Each pulse is stored as a pair of opposite
magnetic signals. At each panel, the first half of the little bar magnets are made to point
south, followed by a second bunch pointing north. When the read/write head passes over the
pool later for a read, it senses this “Aux change.” The inside and outside edges of each track
are simultaneously trimmed by a pair of erase heads so that a neat, clean track is laid out.

To help assure the reliability of reading and writing, the designers of this system wanted to
use the smallest possible panel in order to get the most bits on the disk. However, the smaller
the panel, the weaker the signal and the greater the chance for error. Each panel is therefore
laid out as a rectangle which is more than 100 times wider than it is long (see Figure 23.2).
The SA400 can pack in these flux change panels at a density of over 5,000 per inch (5,000 fci)
when they are stacked side by side, but when they are stacked along their long sides, the
density is 100 times lower, 48 tracks per inch (48 tpi).

More Tracks in New Drives

There has been only a little progress during the past six or seven years in increasing the Flux
Change per Inch (fci). Newer hard disks and very high density floppy disks get by with about
9,500 fci. However, there have been dramatic improvements in the number of tracks per inch.
The new 3 1/2 inch microfloppies, used in the MacIntosh, are recorded at a density of 135
tracks per inch, and the highest tpis among 5 1/4 inch floppies are provided by drives from
Drivetec and Amlyn, which support 170 tpi. The Amlyn mechanism became available to Apple
owners in 1983 as the Vista V1200 and it can store 1.2 megabytes on one side of a 5 1/4 inch
floppy, The Drivetec system is sold by Rana as a two sided drive (see Chapter 24) that gets
2.5 megabytes onto a disk. The new 3 1/2 inch Sony floppies provide 400K bytes on one side
of the disk in a very convenient package.

Fig. 23.5 Inside a
Profile hard disk.
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The fact that floppy disks are floppy puts some limits on the tracks per inch. They are subject
to various deformations and shape changes which make high tpi very challenging technolog-
ically. It has been possible to build 170 tpi hard disks since 1978 (Shugart SA1000 eight inch
hard disk), and the very popular Seagate 506 (see Figure 23.5), a 5 1/4 inch hard disk, has
260 tpi. The newest hard disk drives (Shugart SA706 series and Seagate ST 406 series) achieve
densities of 345 tpi. (In case you're getting confused between Shugart and Seagate, yoy should
know that the president of Seagate is Alan Shugart.)

Traveling Time for Stepping Heads

Unfortunately, stepper motors do not move nearly so fast as microprocessors. In fact it takes
about 20 milliseconds for each track to track step in the Disk II, and once the read/write head
arrives at the proper position, it takes another 15 milliseconds for it to stop shaking and settle
down to work. That comes to 35 milliseconds for one track. If the Disk II head has to travel
from track 0 to track 35, it will take 715 milliseconds, or nearly a second. Throw five or six
of these into a file read, and you've got a three or four second wait for just a few blocks of
data.

DOS and ProDOS try to get around this by saving related blotks of information close together
on the disk, preferably all in a single track or at worst in two directly neighboring tracks.
The new Seagate 419 hard disk packs in 1,836 tracks, so what was a problem with 35 tracks
would be really big trouble in this hard disk (maximum of 35 seconds to change tracks?).
Fortunately, the Seagate 406 handles things a good bit more elegantly.

One improvement is that the “track to track access time” is only three milliseconds instead
of 20 milliseconds. This “three ms” stepping rate is actually a holdover from years past, since
eight inch floppies and hard disks have been using 3 ms stepping rates for years. In fact, the
stepping rate is the most serious drag on the performance of many hard disk systems. The
settling time on arrival is also an unimproved 15 ms.

Fig. 23.6 Hard disk platters.
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One of the ways that Seagate squeezes higher performance out of the system is to organize
its 1,836 tracks into just 306 concentric “cylinders.” Each cylinder is sliced by three disk
platters, and there is a recording surface on the top and bottom of each surface (see Figure
23.6). The read/write head system actually has six heads, each assigned to its own disk surface
and all of which move together.

The other major improvement is to use a “smart” disk drive which intercepts the stepping
signals coming from the controller and calculates a smooth acceleration, glide and deceleration
for long jumps. As a result of these and other tricks, the actual maximum, worst case access
time, including settling, is 205 ms. This maximum access time of 205 ms for any one of 1,836
tracks compares very favorably with the Disk I which can take 715 milliseconds for 35 tracks.
In fact, this is an improvement of about 200 fold and this factor is the major speed advantage
of hard disks, access to very large amounts of information very rapidly.

The typical “figure of merit” that is used to describe all this is not the maximum, but the
“average access time” which estimates how long a typical access will take. The Disk II average
access time is given by Shugart as 275 ms, while the average access time for the Seagate 406
is just 85 ms. This means that for steady use of a limited amount of information the actual
access by a hard disk is only about two or three times as fast. The true advantage of the hard
disk is that this average access time stays the same despite the addition of 1,800 more tracks.

Picking Out a Sector

All of the maneuvering with drive selection and track access described up to this point has
finally prepared the system to start reading in bits from one of the tracks. As you will recall,
a track contains about 4K bytes of data (or 7 to 8K if you've got an MFM controller card),
and if the read/write head just stays where it is, it will collect a fairly continuous stream of
bits, with the whole thing repeating every time the disk finishes sweeping by in a complete
circuit.

The objective, however, was to fill up just one file buffer in the 6502’s address space. In DOS
3.3, the file buffer could hold just 256 bytes and so the 4K in an Apple Disk II track islaid
out as 16 “sectors,” each containing 256 bytes. These sectors would appear as short segments
along the track (see Figure 23.2). Although ProDOS uses 512 byte file buffers, it organizes
its tracks into 256 byte sectors, which helps make it much easier to convert DOS 3.3 files into
ProDOS files. When ProDOS needs to read a block, it reads in two of these 256 byte sectors.

Formatted Disks Have Addresses for Their Sectors

When the read/write head arrives at a spinning track, there is no way of predicting which
sector will be passing by at that moment. The read/write head must therefore sit and wait,
scanning the data stream until the sector it wants spins by.

When the disk is first formatted, ProDOS records a unique track and sector number at the
beginning of each sector (see Figure 23.2). Later, when ProDOS wants to do a read or a write,
it tells RWTS (or the complete controller) the address of the sector it wants to use. The controller
system scans the stream until it sees the appropriate sector address and then begins its read
or write. If you want full details on the contents of the address label, you should consult
Beneath Apple DOS by Don Worth and Peter Lechner.
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The worst possible case in terms of time would be the situation in which the desired sector
had just gone by as the head arrived at the track. In this case, the head would have to wait
patiently, reading through 15 sector addresses before the correct one finally came around
again. This waiting time is called “latency,” and it is determined directly by the speed at
which the disk is spinning.

The standard speed for 5 1/4 inch floppy disk drives is 300 rounds per minute (rpm) and this
results in an “average latency” of 100 milliseconds. The new 3 1/2 inch drives are sold in
several versions; one runs at 300 rpm, while a second version, used in the Hewlett Packard
computers, is spun at 600 rpm. In the MacIntosh, the 3 1/2 inch drive has a variable speed
control; 600 rpm at the inside, 390 rpm for the outermost track. This helps maintain the same
information density (fci) on inner and outer tracks. The speed for eight inch floppies is always
360 rpm (average latency of 83 milliseconds), but hard disk drives are operated at the much
greater speed of 3,600 rpm. This is why it takes 10 to 15 seconds to get one of these drives up
to speed, but it also means that the average latency is cut to just 8.3 milliseconds.

The total time to get to a sector therefore includes motor start up (if applicable), stepping
time, settling time, and latency. If we assume that the Disk II was already on and spinning
at the start of the access, then average access time (275 ms) plus average latency (100 ms)
comes to 375 ms for each sector that is read. A hard disk drive’s total comes to just 85 ms
plus 8.3 ms equals 93.3 ms. You have to turn on the Apple drive at the beginning of a read,
so you must add another 500 milliseconds and then the comparison is 875 ms versus 93 ms
to get at the first sector in a read.

Sector Skewing for DOS, ProDO0S3, and Pascal

Physical Sector Logical Sector

Table 23.1 Sector Skewing. The sectoraddresses in a track are scrambled to improve reading efficiency. When ProDOS
needs block 0, it reads logical sector O, misses a sector, and then reads logical sector 1. This minimizes the effects of

latency in a block read.
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Skewing of Sectors for Improved Performance

ProDOS achieves some improvement in performance through skillful use of a technique called
skewing or interleaving. When a drive reads in a 256 byte sector, the Apple requires a few
milliseconds to consolidate the data in the Apple’s memory. By the time it goes back to the
drive, it will be too late to spot the beginning of the next sector. If the next bunch of data it
needs is in that next sector, then it would have to wait 200 milliseconds for a full rotation.

To avoid this problem, data is recorded in order but in every other sector. As a result, although
ProDOS will not yet be ready when the next physical sector spins by, it will be ready when
the one after that appears, and it is this one which actually contains the second half of the
block. The ProDOS interleave scheme is laid out in Table 23.1. It is the same as the scheme
used for Apple Pascal, but it is different from the DOS skewing arrangement.

Getting the Data Into the File Buffer

Once the controller system has accessed the correct track and located the desired sector, the
bytes can start streaming their way towards the file buffer. In the Disk II and Disk //c, the
first step is to pass through a “floppy disk read amp” chip called the Motorola 3470 on the
analog board inside the drive cabinet. This chip is used in both the Disk II/SA400 and in the
Disk IIc¢/ALPS drives. The chip converts the complex frequency and amplitude information of
the read head data stream into a series of digital clock and data bits.

Fig. 23.7 Duodisk controller. This is identical to the old Disk |} interface card, butitis impossible to plug the
drives in incorrectly.
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This digital stream is sent through the drive cable to the Disk II Interface Card (see Figure
23.7) in the Apple. There, a very strangely configured ROM chip called the P6A “state machine”
uses a variety of tricks to pick the data bits out from among the clock bits (see Understanding
the Apple by Jim Sather). Finally, the serial stream of data is loaded into a shift register one
bit at a time to assemble a full parallel byte. The IWM in the //c works in a functionally
identical way, but the internal details have been changed slightly. These slight changes cause
trouble only for some of the most elaborate “copy protection” schemes.

Looking back at Chapter 22, Figure 22.1a, which displays the addresses for the controller
card, you can see that the highest two bytes are labeled “set for output” and “set for input.”
To read a byte, RWTS sends a pulse to $COEE (49,390) simply by addressing it, and this causes
the data port to be “configured” for a read. Next, RWTS does an address to $COEC (49,388)
and this causes the shift register to dump its byte of data out onto the Apple data bus where
the 6502 can grab it for further processing by RWTS.

When RWTS is collecting in data, it must go through this sequence 256 times at exactly the
same rate at which the bytes are arriving at the register. Similarly, during a write operation,
RWTS must set $COEF and then keep hitting $COED as the register is fed its 256 bytes at a
very exact rate tied to the rotation speed of the disk drive.

The Data Bottleneck for High Speed Drives

Disk drive controllers which do not use RWTS need to handle the data transfer a little
differently. Hard disk controllers usually have a 256 byte RAM “sector data buffer” into which
decoded data is dumped. DOS must then be modified to manage the exchange between the
file buffer and the controller’s sector data buffer. ProDOS can handle these sorts of special
requirements much more gracefully since it only expects to use RWTS for a Disk II type drive.

In either case, this process of transferring the data from the controller’s sector buffer to the
Apple’s file buffer can completely destroy any speed advantage the hard disk might otherwise
provide. When the ad tells you that a hard disk can transfer data at five million bits per
second, this only means that it can get the data into the controller’s sector buffer at that speed.
Moving the 256 bytes of data from the sector buffer can take five milliseconds, so that your
actual rate of delivering data to the Apple is about 500K bits per second, 10 times slower than
advertised.

But that’s not the worst of it. Apple DOS can take its own good time about emptying the file
buffer to prepare for the next read. The ultimate effect may be that data transfer from your
very high powered hard disk takes place at the galling speed of about 5,000 bits per second.
That’s right, a thousand times slower than advertised! '

ProDOS and CP/M are streamlined and do a little bit better, but the operating system software
in the Apple itself can tower above all other factors in determining disk reading speed in the
Apple.

DMA and High Speed with the Vista AS800

There is a way out of this speed bind. Folks who use the Vista A800 controller card (see Figure
23.8) with an eight inch floppy system or high density Amlyn floppy can read data into the
Apple 20 times faster than our hapless hard disk because of two tricks. The first is to skip
the slow transfer of information into Apple memory by using a process called Direct Memory
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Access (DMA; see Chapter 27). Simply put, the A800 uses some special circuitry on the Apple
motherboard to disconnect the 6502 and seize control of the data and address buses. It deter-
mines beforehand where the data should go, and then pumps it in to its destination byte by
byte as soon as it arrives from the disk drive. In this fashion, data is delivered directly to the
file buffer as fast as it is read off the disk.

The second trick is a bit of software called Quickcharge, which bypasses the slow process by
which DOS moves the data out of the file buffer to its intended location in the 6502 address
space.

The Vista A800/801 hardware and software system points up a very frustrating aspect of the
market for high density and high speed disk storage products for the Apple. A company may
be the country’s leading manufacturer of disk drives or disk drive controllers, but if they don’t
know the Apple inside and out, their product will have miserable performance. Thus there’s
a lot of drive hardware out there that works OK, but that comes nowhere near full potential.

'
¥
%
¥

Fig. 23.8 Vista ABOO MFM controller for 8 inch disk drives.
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Write Protect

The only address in the Interface Card’s address area which hasn’t been covered yet is$COED.
When the input signal at $COEE has first been toggled for a read, then $COED can signal
whether or not there is a write protect tab on the diskette. In fact, when there is such a tab
on the disk, a switch is thrown (see Figure 23.9) and the electronics of the read/write head is
partly disabled inside the disk drive, so there is no way to override the write protect feature
from software. The reason why the write protect status is also reported to the Apple is that
this is the only way the Apple can find out that its attempted write has failed withoutactually
trying to reread the data.

Fig. 23.9 Write protect switch. The leveris pushed down while the disk is sliding in, but then pops back up into the notch
on the side of the diskette. A write protect tab prevents the lever from popping up.
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Chapter 24

Getting More Disk Capacity

Buying a Disk Drive System

One of the best investments you can possibly make to enhance your Apple is to buy a second
disk drive. The two principal benefits are that one, you will find it much easier to make backup
copies of your work (the disasters you can avoid through careful backup can double or triple
the worth of your system), and two, there are many powerful programs available for the Apple
which you cannot use unless you have two drives.

The two broadest categories of additional drives are an Apple Disk II (see Figure 24.1) or Disk
II compatible drive and a drive system that offers some sort of enhanced features but does not
offer full Disk II compatibility.

If the principal use of your Apple is with CP/M (preferably PCPI CP/M which is easiest to
adapt for non-standard drives), then just about any kind of disk drive or related mass storage
device will be compatible both with your software and with any second or third unusual
storage system you choose to buy. You are also in a reasonably good position if you use ProDOS
or Microsoft CP/M software.

However, if you are not using a Z-80 card of some sort, watch out. DOS 3.3 is allergic to non-
Apple drives. Those of you who only use your Apples for writing your own BASIC programs
may find DOS 3.3 much more flexible, but if you use commercial software tread with great
caution.

Fig. 24.1 Disk Il.
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The Disk IIFRWTS System Demands Apple Compatible
Drives

If you ran through the little exercise in Chapter 23, you can appreciate the fact that the Disk
II drive control system is open to fiddling. Such fiddling is done quite often by commercial
software companies and is better known as “copy protection.”

Most commercial Apple software is copy protected, and this usually means that it takes
advantage of subtle details of the RWTS program or of the Disk II drive mechanics to make
it difficult to read the software in any way other than the way it was intended, i.e., for use
and not for copying. An unfortunate side effect of these protection schemes is that you cannot
use the software for its intended purpose if you try to use a disk drive system which does not
use the complete Apple system (RWTS/Apple Disk Interface Card/Disk II). This is why some
“protected” games and business packages won’t boot on the //c drives unless you get a “//c
version.”

Because the Disk II is now a relatively low capacity, low performance system, Apple released
ProDOS, which can accommodate many of the newer high performance drive systems and can
improve the performance of the Disk II. However, there is no reason to assume that a particular
piece of software will work with a particular disk system unless the respective manufacturers
have tried it out and are willing to make claims for compatibility.

Fig. 24.2 SA400 drive from Rana.

Disk II Compatible Drives

The Apple Disk II is a modified version of the Shugart SA 400 disk drive. The exact performance
of a Disk II is due to both of the unique aspects of the SA 400 (see Figure 24.2) mechanism
and the special features of the Apple “analog board” inside the drive cabinet. Although there
are many “Apple compatible” drives on the market, very few of them work just like a Disk
1I.
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The term “Disk II compatible” seems to have come to mean that the drive in question; one,
can be plugged directly into the Disk II interface card, and two, can be operated by DOS
without any special “preboots” or changes in the software. Drives which meet these conditions
sell for as little as $200 and are manufactured by a variety of companies. All of these drives
will work reasonably well, but most of them will not “boot” copy protected software. This is
because few companies take the time to adjust various electronic components on the analog
board to properly duplicate all the quirks of the Disk II.

The only compatible drive which has gained a really strong reputation among dealers for full
compatibility is the MicroSci A2. However, this drive lists for $479, about the same as a Disk
I1. Apple has not always produced enough Disk Ils to supply everyone who wants two of them,
and MicroSci has been taking up the slack. Similar drives from Fourth, Quentin, Mitac, and
Vista (the Solo) cost about half as much and work fairly well for most purposes, but don’t
expect to be able to boot Frogger (this, by the way, is the litmus test for full compatibility and
“boot drive” status).

This situation is less critical for add-on drives for the //c. You will almost always use the built-
in drive as your boot drive. If you do have a system that lets you boot from an external drive,
then that system must have its own, specially modified, version of ProDOS.

Fig. 24.3a ALPS drive mechanism
used in //c internal drive.

Fig. 24.3b Halif-height drive
mechanism manufactured by
Qume. Both of these drives are
half-height, but the internal
design is completely different. If
you want full //c compatibility, you
may need to get an ALPS
mechanism.
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Fig. 24.4a Duodisk half-height drives.

Fig. 24.4b The //c built in drive.

Disk II Compatible Drives with Added Features

Several companies offer drives which can be operated in two modes, either as a strict Disk II-
like drive or as an enhanced drive. However, to use any enhanced feature, you've got to modify
DOS and this means you can’t use copy protected software. Once again, CP/M users are in
good shape and ProDOS users have a good chance. Unfortunately, the “Disk II mode” on these
drives is not always a perfect replication, although you're probably OK as long as you have
a real Disk II for a “boot drive.”

The added features available with various drives include increased storage per disk, faster
access time, and smaller physical size for the drive. The half-height or “thinline” drives are
manufactured by several companies (see Figure 24.3), the most prominent of which are Teac
and ALPS. The Disk //c and the DuoDisk (see Figure 24.4) use slightly different mechanisms,
and other drives are bundled and sold by Vista (Duet and Quartet), Lazer Microsystems,
Comrex and Mitac.

The problem with these half height drives is a bit ironic. They are very well designed and
they spin the disk at a very precisely controlled speed. The Disk II, however, has some char-
acteristic irregularities in its speed control, and some copy protection schemes take advantage
of these irregularities. This renders the Teac drives “too good” to boot some protected software.
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IBM PC Drives, Quadlink and Rana

The Quadlink ($680) is a complete Apple computer which is built on a card that can be installed
inside an IBM PC (see Chapter 29). The installation procedure involves intercepting the drive
control cables inside the PC so that the Quadlink can sieze control of the IBM drives. This is
a very sophisticated hardware and software system whose principal design objective was to
be able to boot copy protected Apple DOS software. For the most part, Quadram Corporation
has succeeded admirably.

This system does not permit the PC itself to read Apple diskettes. When the Quadlink board
is active, the IBM PC is usually disabled. Only the second version of Quadlink makes it
possible to pass information from the Quadlink environment to the regular IBM environment.

There are two ways to actually exchange disks between an Apple and an IBM PC. One method
is a bit of overkill in that it involves purchasing eight-inch disk drives for both systems. You
have to use CP/M 86 on the PC and purchase a Vista Diskmaster and an eight-inch drive
system. This permits direct exchange with a similarly equipped Apple or any other eight-inch
CP/M 80 system for that matter. The second and much more reasonable approach is to get
the Rana 8086/2 system (see Chapter 30). This is no less expensive, but it lets you run regular
PC disks on an Apple peripheral as well as adding a complete PC compatible computer to the
Apple. In this case, though, you can’t count on any existing utilities to copy your data stored
in DOS into the IBM format.

Although there is a great deal of game and educational software available only on Apple
disks, the principal use for the Quadlink will probably be for folks who have an Apple at home
and a PC at work or vice versa; you can take your Apple VisiCalc work from one machine to
another. The powerful statistical packages which run in Apple Pascal are steadily migrating
into IBM’s Pascal, but the Quadlink system doesn’t permit the use of Apple CP/M disks, so
other business and professional uses will probably be limited.

Other Choices for Storage

The three major reasons why people choose to buy storage devices which do not use standard
Apple disks are to get more storage space per disk, to speed up the operation of their drive
system, or to use a kind of storage medium which can be exchanged among computers from
various manufacturers.

The only type of drive system which gets you big gains in all three of these categories arethe
eight-inch drives from Vista. Hard disks and the Vista V1200 Amlyn system can provide 50
to 100 times the storage of an Apple disk, but everything has to be chopped back down to
Disk I1 size if you want to carry information from your machine to another computer.

Many of these systems can provide some improvement in the time it takes to load a large
program, but this is usually a matter of a modest increase in convenience. However, if you
make heavy use of database systems for sorts of large files, the right choice here can completely
change the way you do your work.

Using dBase II with the 6 MHz PCPI card (see Chapter 30), a 100K file with 1000 entries
takes about 45 minutes to sort with a Disk II. That time drops to 25 minutes with a Vista
eight inch system and to about 11 minutes with a good hard disk. Using a Neptune Ramdisk
can cut the time to about seven minutes, but a PCPI Ramdisk extender will do it in about 90
seconds. Inserting a record in the file with a Disk II can take 15 minutes, but it’s done in 15
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or 20 seconds with a PCPI Ramdisk system. This means that you could do a month’s work in
a few hours one afternoon, but what it really means is that you can undertake tasks which
you otherwise never would have seriously considered attempting.

Increased Storage Capacity

The least expensive approach to increasing storage capacity is to get a drive which can be
operated by the Disk II Interface Card. To review, a “track” that can be read by the Disk II
Interface card holds about 4K bytes of data. The Disk II drive has 35 tracks (at a density of
48 tracks per inch or tpi) so you get 35 x 4 = 140K. In practice, most word processors maintain
multiple copies of your text on the disk and you end up with a practical working maximum
of about 40K for word processing text files, which is equal to about 25 pages of double spaced
typed text.

If you want to use larger files, you need to have more tracks on your digsk. Using the same 48
tpi technology, it is possible to build a drive which can use a full 40 tracks, and this provides
about 160K, a modest increase. Another option is to put a second read/write head into the
drive cabinet. One head scans 40 tracks on the top of the disk, the other head scans the bottom,
and you get 80 tracks total.

For several years, it has been possible to build 5 1/4 inch floppy disk drives with a density of
96 tpi and several companies offer 70 or 80 track drives based on this technology. The 70 track
drives provide about 290K of storage, while the 80 track systems bring this up to 320K. The
tracks written by these drives are so thin, however, that disks written with one of these
systems may be unreadable on your Disk II drive.

You can get 40 track, 160K drives from Microsci (the A40 for $449) and from Rana (the Elite
1 for $379). Only Microsci markets a 290K 70 track drive (the A70 $599). The Visa Duet is
a double sided, 40 track drive with a total of 80 tracks, but Vista likes to sell two Duets side
by side in a single box, which they call the Quartet. This gets you a total of 160 tracks for
640K ($849 for the pair). These drives can be operated in Disk I emulation mode with standard
DOS where they act like two 35 track drives.

Fig. 24.5 MicroSci AB2 high capacity 5%
inch drive.
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The reason that it is a good idea to buy high density drives in pairs is that if you have one
high density drive and one Apple floppy, there’s no way you can make a backup copy of a very
large file without first breaking it up. MicroSci (A82; see Figure 24.5) and Rana (Elite 2) sell
single sided 80 track drives providing 330K. The Rana Elite 2 (see Figure 24.6) goes for $649
or you can get the Elite 3 which is a double sided drive with 80 tracks on either side of the
diskette (650K for $849). Although the Vista Quartet provides for easy back up, the Elite 3
performs a little bit better in terms of speed and accuracy of disk accesses.

Fig. 24.6 The Rana ELite One, Two, and Three offer 160K, 320K, and 640K of storage.

One particularly interesting way to buy Rana Elite 2 type drives is with an IBM PC wrapped
around them. This is, in effect, what the Rana 8086/2 (see Chapter 30) makes possible. It is
a box which contains two slim line equivalents of the Elite 2 and which you can use from
DOS 3.3, ProDOS and CP/M. Part of the interface card and the drive controller are built along
standard Apple compatible lines. However, if you insert an IBM PC type disk (MFM instead
of GCR; see Chapter 23) a different part of the controller card is activated, and several
additional circuit boards within the box are activated. These boards inciude a complete PC
compatible computer with 256K of RAM, an 8086, and an extended set of PC graphics modes.

Microfloppies

The least expensive high capacity drive is the Amdisk-1 from Amdek (see Figure 24.7). This
drive actually uses three inch diskettes, but it plugs into the Disk II Interface Card and, from
the controller card’s point of view, looks as if it were a 5 1/4 inch drive. This kind of “microfloppy”
diskette is based on advances in drive technology which permit recording at 135 tpi as well
as an increase in the density within each track. The tracks are shorter, but they contain just
as much information. The capacity which results from all this is 286K bytes, and the drive
costs just $299. The three inch diskettes are sold by Amdek for $7 per diskette.

439



Fig. 24.7 Amdek's “Amdisk” 3 inch disk
drives use a mechanism from Hitachi
rather than the 3%2 inch Sony mechanism
in the Macintosh. Unlike the Sony drives,
they provide good emulation of a standard
Disk 1.

There are several different kinds of sub-5 1/4 inch diskettes. Sony is producing a 3 1/2 inch
diskettes, Dysan is backing 3 1/4 inch drive, and Hitachi (with Maxell) has been backing the
three inch system used by Amdek. The market is sorting out rapidly in favor of the Sony
3 1/2 inch diskettes. One version of the Sony system spins the disks at 600 rpm. This improves
the performance of the drive, but makes it incompatible with 5 1/4 inch controllers and
software. The most popular version is spun at 300 rpm and is fully compatible with existing
controllers and software.

The Apple Macintosh uses a Sony drive with variable speed (see Chapter 23), which is con-
trolled by the same IWM chip used in the //c. The diskette is packaged inside a rigid plastic
cassette and has a spring loaded sliding door to keep dust out when the cassette is not in the
drive

Double Density Controllers for Very High Capacity

A different approach to increasing the storage capacity is to increase the information stored
in each track using a process called “MFM recording” (see Chapter 23). This can’t be done
with a Disk II interface card, so you have to buy both a high density controller and a high
density drive. Buying a completely different controller card means that you must be very
careful to make sure that there is adequate software support. Further, data will be read off
the disk at twice the speed, and this means that DOS may be overpowered by the rate of
information flow. Fortunately, the one popular high density controller, the Vista A800/801,
has excellent software support, and uses DMA (see Chapter 27) to provide an enormous increase
in access speed over standard Apple DOS. Some programs will load 20 times as fast as with
a Disk II.

The Vista A800/801 controller costs $379 before you even buy the drive, so it doesn’t make
sense to buy it unless you’re going to get a really substantial amount of increased storage.
Once again, the situation is quite good. The Vista A801 is sold with a six megabyte floppy
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Fig. 24.9 The 2.5 megabyte floppy drive from Rana. This
double-sided drive offers twice as much storage per disk as
the V1200, and is more reliable because it does not use a
mechanical disk picker.

Fig. 24.8 The Vista V1200 uses a cartridge
with five 1.2 megabyte floppies.

system called the V1200 (see Figure 24.8). This system has just one read/write head, but it
works at a density of 170 tpi and uses the A801 to get MFM double density in each track.
This results in a storage capacity of 1.2 megabytes on one side of a special 5 1/4 inch floppy.

The V1200 also includes a “disk picker” mechanism which selects any one of five floppies
packaged together in a cassette. Although only 1.2 megabytes is on line at any one time, the
V1200 can move to another platter in about two seconds. It is possible to remove diskettes
from the cassette, which is nice for backup. You can copy a one megabyte file from one platter
to another, but this requires a great deal of disk picking and is a bit slow. This is a wonderful
system for backing up files from a hard disk, but it is also a very economical choice for a high
density floppy system. The controller and drive list for $1,550, and each six megabyte cartridge
costs $50. This means 10 times the storage of a Rana Elite 3 for twice the cost. Note, however,
that the V1200 uses very new technology and that always means you're taking a few chances.

The 2.5 megabyte 5 1/4 inch floppy from Rana (see Figure 24.9) uses a similar technology but
writes on both sides of a disk. It uses just one disk at a time so there is no “disk picker” to
go awry as in the V1200.

Eight Inch Drives for Compatibility and Capacity

The Vista A800 controller is used to operate standard eight inch double sided double density
drives such as the Shugart 851. Eight inch disk drives are extremely rugged and reliable and
today’s drives reflect 10 to 12 years of experience in large scale manufacturing. The capacity
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of a Shugart 851 is 1.2 megabytes, and the drive itself is similar in cost to a Disk 1I. However,
to set up a complete eight inch drive system, you need a cabinet, a power supply, a fan and
some cables.

An eight inch system with two drives and the A800 controller can be bought for anywhere
between $1,200 and $2,500 depending on the quality of the components you choose. Vistasells
several different eight inch system configurations. The most popular includes their V1000
cabinet which is nicely designed table top or rack mount arrangement with a very quiet fan.
You have your choice of installing just one single sided single density drive, on up through
two double sided double density Shugart 851’s ($1,800). Vista also sells a half height dual
eight inch system called the V1100 ($2,200).

These drives use the standard IBM 3470 or System 34 format, so you can freely exchange
disks with an 8-100, Xerox, similarly equipped IBM PC, or just about any other CP/M micro-
computer which can use eight inch disk drives. Within the Apple environment, the A800/801
is compatible with CP/M from Microsoft and PCPI, MS-DOS from the ALF 8088 card (see
Chapter 30), Pascal 1.1, Pascal IV.0 and Pascal IV.1. Many good programmers own this card,
so there are even utilities and copy programs which are traded around among A800 owners.
Note, however, that the A800 is a very high performance card which makes strong demands
on the Apple. Some older Apples and some early Apple //e’s (revision A) don’t do too well when
the A800 is used in conjunction with another DMA device such as the Microsoft Z-80. The
PCPI Z-80B, which does not use DMA, is a better partner for the A800 in the //e.

The eight inch drive systems from Lobo and Taurus can’t match Vista’s software support, but
these companies may be able to offer a better price. Sorrento Valley Associates makes single
density controller cards for eight inch drives, but it is difficult to justify the cost of the controller
because the storage capacity of the resulting drive system is not very great.

Laing Electronics assembles eight inch systems based on the Vista A800, and often canprovide
better prices than Vista without sacrificing on the software. And then, of course, the hobbyists
in the crowd can always buy an A800 and then trundle down to their local computer junkyard,
pick up a couple of aged “Shugies” and forge together a two megabyte floppy system for less
than $1000.

Comparison Shopping for Hard Disk Drives

Contrary to popular belief, not all hard disk systems are alike. If you read the detailed “spec
sheets” for any hard disk system, all of them have exactly the same numbers. This isbecause
nearly all of them use the Seagate 406/412/419 series drives, and if they don’t use Seagate
drives then they use drives from some other company which claims full Seagate compatibility.

The actual drives may all be the same, but the drive is just one of four parts of a hard disk
system. The second part is a controller card (see Figure 24.10) which directs all accesses to
the information tracks, manages formatting, and is responsible for error detection and cor-
rection. The third part is a “host computer adapter” which supervises communication between
the Apple’s motherboard and the controller card and determines most of the speed and per-
formance characteristics of the system. The fourth part is the software which operates the
other three parts.
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Fig. 24.10 A hard disk control
system usually involves a “host
computer adapter” in the Apple
slot and a generalized controller,
such as this WD-1000, in the
drive cabinet. The data rate of §
million bits per second describes
only the transfer from the disk
surface to the buffers on the
controller. Transfer from the
controller to the host computer
adapter is far slower.

Reliability of the Drive Itself

The Seagate drive hardware is discussed in several places in Chapter 23. For the most part,
if you buy a five, 10 or 15 megabyte 5 1/4 inch drive, all you need to worry about is whether
or not it’s a real Seagate. Hard disks are assembled in dust free “clean rooms” by people
wearing masks and gloves, and the drives should be thoroughly tested on an individual basis.
Nonetheless, hard disks do “crash” occasionally with fairly disastrous results, and your best
protection is to be sure you get a Seagate, Miniscribe or Quantum mechanism in the first
place.

Percom, for instance, uses a Seagate look-alike from CMI, but the CMI manual is quite frank;
all of the specifications listed are identical to the Seagate except that they say that their drive
is about 30 percent more likely to fail than a Seagate. This probably saves the buyer $200 to
$300 at initial purchase, but you probably pay dearly later on. The code words are “MTBF:
8,000 POH” which you probably would never guess means “mean time between failure is
about 8,000 hours of use.”

Flexibility of the Formatting System

Formatting a hard disk is a tedious process which can take over half an hour. Since many
people buy hard disks in order to speed up their work, formatting is not something you want
to do very often. It would be nice if you could format the drive when it first arrived andnever
go through the process again. However, many Apple users do some of their work in DOS, some
in Pascal, and some in CP/M, and each of these operating systems requires a different kind
of formatting. On most of the popular hard disk drives it is possible to “partition” the drive
into three regions, each formatted for one of the three operating systems. -

If you decide at the outset to divide the space equally between each of the three operating
systems, your five megabyte drive will force you to work in a 1.6 megabyte space at any one
given time, and that’s less storage than two boxes of Apple floppies. If you also use ProDOS,
you’ll probably need four areas. Corvus makes the situation a bit simpler since its drives
cannot work with CP/M at all. It does force you to make an early decision about how much
will go for Pascal and how much for DOS, and you have to erase everything and reformat if
you guessed wrong. In fact, the drives from Corona, Corvus, Davong, Mitac, Percom and Xebec
all require reformatting if you want to rearrange the partition.
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This “pre-allocation” requirement also applies to the organization of information within the
operating system partition. Information on a hard disk is stored in “volumes” which are the
logical equivalent of individual floppy disks. If a volume is too large, it can get hard to read
the directory. If it is too small, some file might not fit. If you chose to set up 200K volumes
at the time you bought your disk, than you’re going to be just plain stuck when your data
base reaches 201K; it’s too big to copy onto an Apple floppy, and you’ll have to erase and
reformat the entire drive if you want to make the volume larger.

Alone among Apple hard disk manufacturers, Mountain Computer Products offers “Dynamic
Volume Allocation.” This means that you can rearrange your volume sizes as you work in
order to fit your current needs. CP/M users who buy the Mountain hard disk can designate
eight different volumes as, for instance, drives C:, D:, E:, etc., a process called “mounting” the
volume. The Corona Starfire also allows eight active CP/M volumes, but Percom, Mitac and
Xebec permit just two, and Corvus allows none.

i . s ‘a#  Fig. 24.11 Profile hard disk.
ProDOS compatibility is one other concern to keep in mind. There is nothing very difficult in
designing drive control software to work with ProDOS, but many of the current systems will
have to be rewritten. One company with a slight edge is Apple itself, since the Profile (see
Figure 24.11) for the Apple II is sure to have proper ROMs on the interface for ProDOS.
Quark’s hard disk for the //c is also a good choice for ProDOS software since Quark also
publishes Word Juggler and several other ProDOS-based software packages.

The Speed Bottleneck

The major determinant of the speed of the system is how fast the “host computer adapter”
card can hand data across to the modified operating system. All of the drive manufacturers
advertise a “Data Transfer Rate” of five million bits per second, but that is completely mean-
ingless. It actually does describe the speed at which the drive sends data to the controller
card, but the speed at which it gets from the controller card into the Apple is all that you
care about and that speed is over 1000 times slower.

The reasons for this speed bottleneck are described in Chapter 23. The only way around it is
to build a fairly elaborate host computer adapter card and write some very good operating
system software. None of the hard disk manufacturers have done this. Corona and Mountain
each include large storage buffers to capture incoming data, and this greatly improves the
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efficiency of the transfers, but the hard fact is that the Vista A800 controller for eight inch
floppy disks loads data faster than most hard disk drives.

The reason for this bizarre situation is that most manufacturers of hard disk systems are
interested in selling to a broad variety of people with different kinds of microcomputers. They
can use the same drive and the same controller for all computers, but must design a host
computer adapter and software for each different microcomputer. The drives come from Sea-
gate, the controllers come from Xebec or Western Digital, and the companies you actually
deal with may know very little about Apples, as well as very little about coaxing performance
out of a controller.

The entry of Mountain Computer into the Apple hard disk market, however, bodes well for
the future. This company has been producing high performance Apple peripherals for nearly
five years and certainly has the ability to design a good Apple interface. Their dynamic volume
allocation system already makes the Mountain hard disk the one outstanding hard disk drive
currently available for the Apple.

The other major new current in Apple hard disks is the entry of Apple itself. ProDOS permits
the use of Apple’s ProFile hard disk drive. This is a system that uses an older Seagate drive
called the ST 506. ProDOS is very well suited to managing huge numbers of files on a hard
disk and does not require any preallocation of volumes.

Hard Disk in Networks

A single high capacity hard disk can provide enough space for several microcomputers, so
Davong, Percom and Corvus all offer means of connecting their drives into a “network” which
links several computers. The various types of networks are discussed in Chapter 20. The
Corvus network is Omninet, while both Percom and Davong use Arcnet style systems. The
Davong system permits one large drive (see Figure 24.12) to run all of MS-DOS, CP/M 86,
CP/M 80, DOS 3.3, and Pascal, so it can be used by IBM PCs, Apples and a variety of other
microcomputers. The Davong “Multi-OS” network system is quite close to full OSIarchitecture
and has a very thorough software base.

>

Fig. 24.12 Davong hard disk. Fig. 24.13 Davong tape backup system.
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Hard Disk Backup

A hard disk “crash” is approximately equivalent to someone dropping a load of bricks onto
your drawerful of 100 Apple floppies, instantly and completely destroying all of your program
and data files. And hard disks do crash. During transport, the disk’s read/write head is stowed
over a special transport track, and when the drive is not running, the head is usually sitting
on a “landing pad” within the drive.

However, when the drive is running, the head skims along over the surface of the disk at a
height of 20 thousandths of an inch, supported only by a cushion of air. Many manufacturers
warn that an “acceleration of 1G” can crash the disk. This means that if you hold a running
drive about one inch above a flat surface and let go, the head will crash and destroy the disk
the instant the drive begins to fall and no additional damage will be done by the actual impact.

Don’t get anxious, make backups.

The problem with backing up a five or 10 megabyte hard disk has to do with the question of
where to put all that data. Presumably, you bought the drive in order to have large files; but
if your only backup device is an Apple floppy, none of your files can be much larger than they
were before you bought the hard disk. If you happen to have an older Video Cassette Recorder
(VCR) around the office which doesn’t have color correction circuitry, then you can just plug
a Corvus drive into the VCR and the Corvus “Mirror” system will automatically copy the
entire contents of the hard disk onto the cassette and reload it later if desired. Otherwise,
you're going to have to consider purchasing some sort of alternative backup system.

A streaming tape system (see Figure 24.13) can copy a 10 megabyte disk in one or two minutes,
but these systems can cost as much as the hard disk. One new option is buy a V1200 six
megabyte floppy system from Vista. By itself this a very formidable disk storage device, but
since it can accept high speed transfers of up to 1.2 megabytes on each of its five platters, it
also makes an ideal and competitively priced hard disk backup system.

Although removable hard disks from such companies as Axlon and Digital Electronic Systems
are often advertised as principal storage media, many of these devices are actually being used
for backup of fixed disks. The successful operation of a removable hard disk depends on being
able to lift the read/write head mechanism off the disk surface and then opening a cassette
to actually get the disk completely free for removal. There is substantial risk of getting dust
or even cigarette smoke into the cassette during this process, thus leading to a crash. As a
backup medium, however, such a crash is not really any sort of disaster because the cassettes
themselves are not extremely expensive. ’

Another important new consideration in hard disk backup has to do with ProDOS. The op-
erating system will automatically “flag” each file that you use as you use it. At the end of the
day, these ProDOS “use flags” can signal which files need to be backed up. As they are copied,
ProDOS “clears” the flags to prepare for the next round of use. This way, you can avoid both
the waste of recopying the whole five or 10 megabytes every time you do backup, and you can
also avoid the tedium of sitting there at the end of the day, scanning directories to remember
which files need to be backed up.

Nine Track Magnetic Tape
A standard 10 1/2 inch magnetic i:ape can store 40 megabytes of data and can stream the

information into an Apple at over 70K bytes per second, which is faster than most hard disks.
However, these system can take a great deal of time to access a file before it can be read in.
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Fig. 24.14 Nine-track mag tape
can be used for bulk transfer of
large amounts of data between
micro and mainframe. IDT selis
tape transports as well as
controllers.

Magnetic tape has an enormous advantage over a hard disk in that you can take your 40
megabytes out of the “tape transport,” carry it over to the local mainframe computer (DEC,
IBM, Control Data, etc.), and continue your work. This is also a simple means of gaining
access to several commercially available databases and government data files which are dis-
tributed only on magnetic tape.

On a magnetic tape, data is stored as parallel bytes with a ninth parity bit for each byte. The
read/write head has nine elements side by side and they lay out nine tracks along the tape.
Block size is variable and can range from 256 bytes up to 32K bytes of uninterrupted data.
The bytes are stored at a density of 800 bytes per inch with Non Return to Zero Inverted
(NRZI) or at a density of 1,600 bytes per inch Phase Encoded (P.E.).

Two companies sell complete nine track magnetic tape systems for the Apple. Electrovalue
Industrial provides a controller and software for $900. The controller plugs directly into an
Apple slot and can be connected to a variety of commercial drives. This controller is only
capable of writing and reading NRZI data (800 bpi). Electrovalue also sells the Pertec 7000
tape transport which operates at 18.75 inches per second and can only manage seven inch
tapes ($900), and the Wangco/Perkin Elmer Model 1025 which handles full sized 10 1/2 inch
tapes and runs at 25 inches per second ($2,100).

A more versatile and more expensive system is available from Innovative Data Technology
(see Figure 24.14). These folks use a very elaborate external controller (series 2600 formatter/
controller) which connects to the Apple via an RS-232C or IEEE-488 interface. Some models
of the controller can be provided with a 32K RAM buffer, so it is fairly convenient to work
with full-sized blocks. Commands and data are sent to the controller along these standard
interfaces, so it has been a simple task for IDT to manufacture interfaces for IBM PC, Apple
II and III, TRS-80, PET and other microcomputer, minicomputer and mainframe systems.

IDT assembles their own high performance tape transports. The TD 1012 series has a streaming
tape mode of 100 inches per second and a read mode of 12.5 inches per second. These drives
offer both 800 bpi NRZI and 1600 bpi P.E. recording. A complete system including the TD
1012 tape transport and formatter/controller costs $6,495. There is a higher performance model,
the TD 1054, which reads at 45 inches per second and in which a 32K buffer as well as the
controller/formatter are built into the drive cabinet ($8,500). '

447



Disk Drives without Moving Parts

Looking back to Chapter 23, you will recall that the role a disk drive plays in a computer
system has nothing fundamental to do with the fact that there is actually a spinning magnetic
disk out there. Much of this part of the book has been devoted to an exploration of the 6502’s
address space, and the sections on drives have been treated as an exploration of “extra address
spaces” which exist only in the mind of DOS or ProDOS. These extra address spaces are
organized (in ProDOS) as an ordered, addressable set of 65,535 blocks, with each block con-
taining 512 bytes of information. Each of these ProDOS address spaces can therefore manage
65,535 by 512 equals 32 megabytes of data, so the trend has been to put disk drives into these
address spaces.

ProDOS, however, cares little about whether the bytes are spinning around on plastic disks
or loaded into huge banks of RAM memory chips, as long as the appropriate 512 bytes shows
up when it calls up a specific block. Apple floppy disks, high density floppies, and hard disks
all have their special features, advantages and disadvantages, but there are other kinds of
“block storage devices” which may be more appropriate for certain tasks. There are now more
than 20 companies which sell various kinds of block storage devices with no moving parts.

Soiid State “Disk Drives” and Bank Switched
RAMdisks

All but one of these solid state block storage devices use RAM chips instead of disks to hold
the data and the odd one out (MPC) uses a newer technology called a “magnetic bubble.” The
ones made from RAM chips are collectively called “RAMdisks” and MPCs can be called a
“Bubdisk.” Most of the RAMdisks can be used either as a bank switched addition to the 6502’s
memory space for use by running programs, or as a block storage device for DOS, ProDOS,
CP/M or Pascal. These “bank switch RAMdisks” are discussed in Chapters 22, 25 and 26. The
Bubdisk and the remainder of the RAMdisks can’t be bank switched, and thus can only be
used as “solid state disk drives.”

In general, the bank switched RAMdisks generally offer greater speed and greater versatility
than the solid state disk drives. In bank switching, a large range of RAM is temporarily moved
directly into the 6502’s address space. Some RAM disks can deliver nearly 48K in less than
a microsecond (millionth of a second). A pure solid state disk drive that does not do bank
switching must feed the bytes into the Apple one by one, usually at a rate of about 10 micro-
seconds per byte. Further, when ProDOS calls for access to a different block, the solid state
drives must provide a mechanism for rearranging the flow of data in response.

Fig. 24.16 The PCP! 128K Applidisk RAM extender mounts on the side of the PCPI Z-80B co-processor card.
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All of these considerations aside, the real problem with speed is similar to the situation with
hard disks. Delivery of the bytes to the file buffer may be quite rapid, but the operating system
which must move the data out of the file buffer to its intended destination can be the real
bottleneck. .

Nearly all RAMdisks provide a speed increase of between two and 10 times over an Apple
floppy, depending on the particular task. The only RAMdisk that is far faster than this is the
PCPI RAMextender (see Figure 24.15). When operating with DOS and the 6502 it is similar
in speed to the other RAMdisks, but when operating with the PCPI Z-80 board it provides a
speed increase of nearly 30 times over an Apple floppy. When the same PCPI Z-80 is used
with a standard RAMdisk this speed advantage disappears.

Advantages of Solid State Drives

Although these devices cannot be used by the Apple’s main memory, some of them offer unique
advantages that you cannot get from a bank switched RAMdisk. One of these has already
been mentioned, and that is the spectacularly high speed of the PCPI RAMextender operating
with the PCPI Z-80 coprocessor. The high speed of this system is due to three factors. The
first is that the PCPI Z-80B co-processor itself operates at very high speed. However, this
processing speed advantage is lost when any other RAMdisk is used because all other RAM-
disks must use the Apple’s 6502 to deliver each byte to the Z-80.

Second, the PCPI RAMextender plugs into the side of the Z-80 card so the bytes don’t have
to travel the complex path through the Apple. The third reason is that the designers of the
hardware chose to hire one of the top machine language programmers in the country to write
the operating system software. This choice is evident in a variety of ways (good eror handling,
easy to use command menus, etc.), but a dBase II sort which runs in 90 seconds instead of 45
minutes is enough of a testimonial.

The Bubdisk for Use Near Jackhammers

One weakness of floppy disk drives (and fatal weakness of hard disk drives) is that theirhigh
speed, high precision mechanical parts are very sensitive to vibration, abrupt temperature
changes, and the ravages of very young or very casual users (i.e., visitors to a display in
Disneyland, etc.). The Apple itself is legendary as a rugged and nearly indestructible device,
but since it’s relatively useless without disk drives, it is usually relegated to clean quiet desk
tops where it never gets a chance to show how tough it is.

Any RAMdisk is fairly immune to the mechanical disruptions which impair or destroy disk
drives, but the problem is that since RAMdisks lose their information when the power is
turned off, you still can’t transport a RAMdisk-equipped Apple without bringing along a disk
drive. That is, unless you have a Bubdisk rather than a RAMdisk.

The MPC Bubdisk (see Figure 24.16) uses a kind of storage device called Magnetic Bubble
Memory (MBM). A single MBM chip such as the Intel 7110-4 used by MPC can store 128K
bytes, and unlike a RAM chip it does not lose its memory when the power is turned off. An
MBM chip is very different from a RAM chip and in fact from any other kind of electronic
chip. It is not made of silicon and is not a semiconductor, but instead is made of a thin film
of garnet and gallium and gandolinium sandwiched between two permanent magnets.
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Fig. 24.16 MPC Bubdisk. This solid state drive is based on a 128K magnetic bubble memory device from Intel.

The garnet film normally contains randomly arranged magnetic domains, but the permanent
magnets are used to organize these into discrete “magnetic bubbles” within the plane of the
film. The rest of the chip is designed to marshal these bubbles into rows and columns and to
actually move them around within the garnet in thousands of neat little loops for reading or
writing. There is a fairly thorough description of the details of all this in Handbook of Semi-
conductor and Bubble Memories by Walter A. Triebel and Alfred Chu (Prentice Hall). The
access time for bringing a particular set of bubbles over to the read sensors is just a little
better than for a floppy, so this is not the best choice for high speed solid state disk operations.

In use, the MPC card is just plugged into an Apple slot and treated as if it were a disk drive.
You can transfer programs and data into the Bubdisk, then turn the Apple off, remove the
disk drives, and carry the whole thing off into a “hostile environment” for extended use.

Solid State Drives Made with RAM Chips

The solid state RAMdisk from Pion is built to look like a disk drive in that, like the Axlon
Ramdisk 320 (see Chapter 23), the RAM chips are in a separate box outside the Apple. The
Pion Interstellar Drive ($1,095) comes with 256K bytes, but can be expanded up to one me-
gabyte at a cost of $595 for each additional 256K bytes. RAM chips can require a lot of electrical
power, so Pion has arranged to have the device plug into the 120 Volt AC wall socket on its
own. This is important because the Apple power supply is easily overtaxed. There is also
provision for short term battery backup so you don’t lose everything whenever you have to
turn the Apple on and off or if there is a power failure.

The Pion system includes some fairly sophisticated circuitry which handles the detection of
errors in transmission and the insulation of the RAM chips from electrical noise generated
by the Apple when it is turned on or off. Like some hard disk controllers, Pion includes an
error checking and correction system which involves storing “cyclical redundancy check”
information along with the data.

The Pion box is actually an intelligent RAM device in that on board circuitry is responsible
for selecting and presenting bytes to the Apple. This pertains to an important distinction to
be made in evaluating the speed of data transfers in a RAM disk device. There are really two
events involved in getting data from a RAM disk to a file buffer. The first is getting “visibility”
for the RAM i.e., making it possible for the 6502 to address it. The second is the actual transfer.
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When you do bank switching of large amounts of RAM, the rate at which large numbers of
bytes gain visibility is very high; in a few microseconds, 16,000 bytes pop into the 6502’s line
of view. Then the 6502 must go about moving the bytes. To do this, it chooses the starting
point of its read and the starting point of its destination and begins incrementing along through
both. The cycle is index the read location, get the byte, index the write location, store it, etc.

In the Pion system, only one byte is presented at a time, but it is always presented at the
same location of the single data port on the interface card. Therefore, the transfer cycle doesn’t
require an index of the read location: get the byte, index the write, store it, etc. Thus the
transfer cycle is faster with the Pion system than with a bank switched system. So although
the visibility rate is extremely fast for a bank switched system, the real bottleneck is in the
transfer.

The solid state RAMdisks from Sorrento Valley Associates and from Synetix (see Figure 24.17;
147K for $395 and 294K for $695) are complete on a single board and plug directly into one
slot in the Apple. However, they don’t offer battery backup, do draw a fair amount of power,
and can’t be used as direct memory extensions by the 6502.

It might have been possible for these companies to make their boards look exactly like a real
Disk II from the point of view of DOS and RWTS. However, this would have pushed the price
up and cut down on the available space for RAM chips on the board. As a result, you don’t
even get to use protected commercial DOS software. The Synetix and SVA systems are OK
for use with CP/M, and may yet be adapted for full use with ProDOS commercial software.
They do offer more RAM than similarly priced “bank switch” RAMdisks, but you lose a great
deal of performance to get this improvement in price.

Fig. 24.17 Flashcard from Synetix.
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Chapter 25

Bank Switching the High 16K
Bank Switches in the $CO Page

Before proceeding, it might be helpful to take a quick look back to Chapter 21, Figure 21.4
and refresh your memory about the general layout of the 6502’s address space in the Apple.
In Chapter 21 we swept upward from $0000 to just below $C000 (49,152) thus covering the
first 48K of RAM. Next we jumped to the very top at $FFFF (65,535) and worked down through
the 12K of ROM chips that contain the Apple’s Monitor and the Applesoft BASIC Interpreter
until we got down to $D000 (53,248).

The final remaining 4K of addresses between $C000 and $D000 are covered in Chapter 22.
To review, Chapter 22, Figure 22.1a, the top 2K of this $C000 space (“see thousand” space),
is called the expansion ROM space and provides a shared area into which any peripheral card
can switch its own 2K ROM chip. The switching of these Expansion or “$C800” ROMs is
managed by several control lines as explained in Chapter 22. In the //c, there is no switching
in this space since everything in the area is in permanent ROM.

In the space just below this, each peripheral card is assigned one page (256 bytes) of Peripheral
Card or “6CN00” ROM address space. Each slot (except slot 0) has its own exclusive page so
there’s no need to do any switching. The Axlon system, Microtek BAM 128 and Q-Disk card,
however, do their own on-card switching to bring any one of 512 extra pages of RAM into the
space and thus implement one type of “bank switched RAMdisk.”

The last range of Apple memory remaining to be discussed consists of the 256 bytes of the
$CO page itself. This page rarely contains any RAM or ROM. The locations are used as
“switches” to operate external devices, to cause those devices to dump data or status reports
into the Apple, and to cause those devices to grab data off of the Apple’s data bus.

These “switch plate” areas are clumped together in groups of 16. The first eight “switch plate
groups” are formally called the Peripheral Card I/O or “6COn0” spaces, and the last eight are
called the On Board I/O spaces. In the //e, slot 0 has disappeared and its switch plate can be
included with the “built-in” set, and in the //c, all active locations in the $CO page are built
in. .

So far, we have paused to look in detail at the switch plate assigned to slot 6 (see Chapter 22,
Figure 22.1a, and Chapter 23) since this is the nearly permanent and ubiquitous home of the
Disk II Interface Card. The next one to get close scrutiny will be the switch plate assigned to
slot 0, in addresses $C080 through $CO8F (49,280 through 49,295). This set of addresses is
configured identically in most 64K Apple II/Il +s, and in all //es and //cs.
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The D-E-F Bank Switches

The set of switches beginning at $C080 are used to force the Apple’s Monitor and Applesoft
ROMs out of the highest 12K of the 6502’s address space and to bring in RAM instead. Since
we’re talking about the D thousand, E thousand, and F thousand spaces (see Figure 25.1), it
will be helpful to call these switches the “D-E-F bank switches.”

64K $FFFF
$F800 F - RAM
60K ° $FO00
= E-RAM
56K ¥ $E000
: D-RAMN |[€—) D*-RAM
52K | $D000
asx F i scooo
44K | {1 $BOOO
40K $A000
36K | $9000
32K $8000
28K | $7000
24K $6000
\\\\\\\‘ﬁ
R

20K mn 2N $5000

16K $4000
// // Fig. 25.1 D*/D-E-F bank switching. The I/0
12K $3000 addresses between 48K and 52K can never be
/ / / switched out of the address space, but the 12K
8K $2000 assigned to the Monitor and Applesoft Interpreter
ROM can be switched with 16K of RAM. This
4K | { $1000 switching system is built into all Apple //e and //c
computers and is used by all Apple II/11+
oK 20s Tem)] $0000 computers with 16K cards.

In the Apple //e, this RAM comes from the row of 64K RAM chips along the front of the
motherboard, which also provides RAM for the first 48K of the 6502’s address space. In the
/le, it is in the first eight RAM chips towards the front of the machine (see Chapter 1, Figure
1.4). When the Apple is first turned on, only the first 48K of RAM locations is in the address
space, and the switches in the $C080 group must be used to let the 6502 have access to the
remainder of the storage cells in those chips.

So far, this means that you can actually use 48K plus 12K equals 60K out of your first 64K
of RAM chips. Having 4,096 storage locations just sitting there unused seems wasteful, so
some additional bank switches are included which can remove the 4K of RAM that had just
been switched into the D Thousand space and replace it with that last 4K of memory cells.
Thus we have 4K of RAM assigned to the F Thousand space, 4K assigned to the E Thousand
space, and two ranges of 4K of RAM both of which are assigned to the D Thousand space. In
order to get a little clarity, we’ll call the first 4K that gets switched in the “D Bank” and the
one which can then replace it the “D* Bank” (the Dee Star Bank; see Figure 25.1).
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What Happens When You “Switch” a Bank
of RAM or ROM

The case of the D ROM, the D Bank RAM, and the D* Bank RAM provides a good opportunity
to pause for a moment and say something about what “bank switching” actually does. For
purposes of explanation, it has been handy to talk about an “address space” defined by the
65,535 locations which can be described by the 6502’s 16 bit address buffer. The convenient
mental abbreviation is of a real physical space which various chips get moved in and out of.
Of course, if you peek in under the hood, you’ll see that nothing actually moves on the
motherboard.

In the //e and the //c, the D space switching is actually done in two different ways. The first
approach is to connect a ROM chip and a RAM chip to what amounts to the same address
lines. When the 6502 announces an address in the $D000 range, one byte in the ROM chip
and one byte in the RAM are identified simultaneously. Both have the same address.

Conflict is avoided by controlling which of the two will actually respond to the address. A
“response” would be defined as grabbing a byte from the data bus in a “write,” or dumping a
byte onto the data bus in a “read.” In this mode, then, we can better define “bank switching”
as a means of controlling the “data bus response” of two memory devices which both have the
same address.

Control Lines for ROM and RAM

Controlling the response of a ROM chip is very straightforward, because all ROM chips require
an enable signal to operate. The detailed chores are handled by the Apple’'s Memory Man-
agement Unit (MMU). When the MMU wants information from the Applesoft ROM, it sends
out an enable signal along with the address, and this permits the ROM chip to respond by
dumping a byte onto the data bus.

At the same time, however, it is important to be sure that the byte of RAM with the same
address does not respond. RAM chips do not have an enable signal (see Chapter 21, Figure
21.10), so the control problem is a little trickier. If you refer back to Chapter 21, you willrecall
that a 64K RAM chip has just eight pins for receiving a 16 bit address, so the address is sent
in two waves. First the eight bit “row address” gets put onto the “RA address bus” and the
Apple’s timing circuitry (the PAL in a /e, the TMG in the //c) sends a signal called Row Address
Strobe (RAS). This causes the RAM chip to seize the row address. Next, the MMU forwards
the remaining eight bits of the full address onto the same “RA address bus,” but this time
the PAL sends a Column Address Strobe (CAS). The CAS signal causes the RAM chip to grab
the rest of the address, pick out the appropriate bit of information, and dump the data onto
the data bus. '

When the MMU wants to disable the RAM chips on the motherboard, it fiddles with this CAS
signal. It’s a little trickier, in fact, since what actually has to happen is for the MMU to tell
the PAL not to send the CAS. Because the column address strobe never arrives, the RAM chip
. never finishes its cycle, so there'’s never a data bus response.

One cute additional trick the MMU can play is to do all its reading from one bank, but all its

writing to the other bank. The MMU just watches the read/write signal coming out of the
6502, and when it’s a read, it enables the ROM and kills CAS. If it’s a write, it turns on CAS,
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but doesn’t send its ROM enable signal. This provides a simple way of copying a range of
information from one bank to another (read address, write address, move to the next address,
read address, etc.).

Address Modification for the D* Bank

The MMU has a second and completely different way of bank switching which it must use
when it switches between the D Bank and the D* Bank on the motherboard. Obviously, the
ROM enable signal will be of no help, and it can’t use CAS since that would kill the data
response of both the D Bank and the D* Bank.

To do the D/D* switching, the MMU actually recalculates the address coming in from the
6502. When it is supposed to use the D* bank, and it receives an address between $D000 and
$E000, it internally cha