

Inside the

Apple 1/c

Gary B. Little

Brady Communications Company, Inc.

A Simon & Schuster Publishing Company _

New York, NY 10020

Inside the Apple lie.

Copyright© 1985 by Brady Communications Company, Inc.
All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electroniC or mechanical, inch.).ding photocopying and
recording, or by any information storage and retrieval system, without permission in
writing from the publisher. For information, address Brady Communications Com
pany, Inc., A Simon & Schuster Publishing Company, 1230 Avenue of the Americas,
New York, NY 10020.

Library of Congress Cataloging in Publication Data

Little, Gary B., 1954-
Inside the Apple lie.

On t.p.IIc appears as //c.
Includes bibliographies and index.
1. Apple lie (Computer) I. Title: Inside the Apple

2c. II. Title: Inside the Apple two c. III. Title.
QA76.8.A66225L57 1985 001.64 84~27419

ISBN 0-89303-564-5

Printed ii1 the United States of America

85 86 87 88 89 90 91 92 93 94 95

Production Editor/Text Designer: Michael J. Rogers
Art Director: Don Sellers
Assistant Art Director: Bernard Vervin
Cover Photography: George Dodson
Manufacturing Director: John A. Komsa

Copy Editor: Rita Progler
Typesetting: Automated Graphic Systems, White Plains, MD
Printing: R. R. Donnelley & Sons Co., Harrisonburg, VA

2 3 4 5 6 7 8 9 10

Typefaces: Helvetica (display), Aster (text), and Universal Mono type #3 H-P (computer programs)

To my wife, Pamela

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in pre
paring this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

Note to Authors

Have you written a book related to personal computers? Do you have an
idea for developing such a project? If so, we would like to hear from you.
Brady produces a complete range of books for the personal computer market.
We invite you to write to Editorial Dept., Brady Communications Co., A Simon
& Schuster Publishing Company, 1230 Avenue of the Americas, New York,
NY 10020.

Trademarks of Material Mentioned in This Text

Apple //e, Applesoft, Apple II, Apple II Plus, Apple 1/c, Apple I, Integer BASIC,
DOS 3.3, Lisa, Macintosh, and ProDOS are trademarks of Apple Computer,
Inc.

Contents

Preface I xlll

1 An Introduction to Apple and the Apple //c I 1
A Condensed History of Apple Computer, Inc. I 1
Hardware and the Apple 1/c I 7
Learning the Fundamentals I 8
What Won't Be Covered I 9
Using the Optional Diskette I 9
Further Reading for Chapter 1 I 18

2 The 65C82 Microprocessor I 11
Important 65C02 Concepts I 12

Zero Page and the Stack I 12
65C02 Instruction Set I 13
65C02 Registers I 21

The Accumulator-A I 21
The Index Registers-X andY I 22
The Processor Status Register-P I 23

Carry Flag (C) I 23
Zero Flag (Z) I 24
Interrupt Disable Flag (I) I 24
Decimal Mode Flag (D) I 25
Break Flag (B) I 25
Overflow Flag (V) I 25
Negative Flag (N) I 26

The Stack Pointer-S I 26
The Program Counter-PC I 27

65C02 Addressing Modes I 27
Immediate I 28
Absolute I 29
Accumulator I 38
Implied I 38
Zero-Page Indexed Indirect I 38
Zero-Page Indirect I 31
Indirect Indexed I 31
Absolute Indexed I 32
Relative I 32
Absolute Indirect I 33
Absolute Indexed Indirect I 33

65C02 Input/Output Handling I 33
65C02 Interrupts I 34

Reset Interrupt I 36

v

vi c=J lnsidetheApple//c ----------------

Interrupt Request (IRQ) I 36
The BRK Instruction I 37

The 65C02 Memory Space on the llc I 38
RAM Memory I 38
Input/Output (IIO) Memory I 41
ROM Memory I 42

Further Reading for Chapter 2 I 42

3 The System Monitor I 45
The System Monitor Commands I 46

The DISPLAY Command : Displaying the Contents of Memory I 46
The STORE Command : Changing the Contents of M;emory I 49
The MOVE Command: Copying the Contents of Memory I 51
The VERIFY Command : Comparing Ranges of Memory I 53
The EXAMINE Command : Examining the 65C02 's Registers I 53
The GO Command : Running a Program I 54
The LIST Command: Disassembling Assembly-Language

Programs I 55
The NORMAL and INVERSE Commands: Changing Video Display

Modes I 57
The ADD and SUBTRACT Commands: Simple Arithmetic I 57
The BASIC and CONTINUE BASIC Commands : Entering

Applesoft I 57
The USER Command: User-Defined Command I 58
The KEYBOARD and PRINTER Commands : Redirecting Input and

Output I 59
Multiple Commands on One Line I 61
System Monitor Subroutines I 61
Further Reading for Chapter 3 I 65

4 Applesoft BASIC I 67
Applesoft Memory Map I 68
Tokenization of Applesoft Programs I 73

Keyword Tokens I 74
Storage of Applesoft Variables I 77

Storage of Simple Variables I 78
The Name Header I 79
The Data Field I 80
End of Simple Variables I 82

Storage of Array Variables I 83
The Name Header I 83
Dimensioning Bytes I 83
The Data Field I 85
End of Array Variables I 85

Representation of Integer Numbers I 85
Representation of Real Numbers I 87

----------------------.., Contents c:=J vii

Number Theory I 87
Binary Floating-Point Format I 87

How an Applesoft Program Runs I 89
'The CHARGET Subroutine I 91
Changing Program Flow I 93
Finding Line Numbers I 93

Linking Applesoft to Assembly-Language Programs I ,94
The CALL Command I 95
The & Command / 95
The USR Function I 96

Applesoft's Built-In Subroutines I 97
Using Applesoft's Built-ln Subroutines I 104

Locating Variables I 104
Evaluating Formulas I 108
Converting Numbers I 108

Further Reading for Chapter 4 I 112

5 The ProDOS Disk Operating System I 115
Formatting Diskettes I 116

ProDOS Memory Map I 116
:ProDOS Page 3 Vectors I 118

Filenames and Pathnames I 118
BASIC.SYSTEM Commands I 121

File Management Commands I 122
File Loading and Execution Commands I 123
File Input/Output Commands I 124
Miscellaneous Commands I 125

ProDOS File Storage I 126
Volume Bit Map I 126
Diskette Directory I 127

"Protecting" Files I 130
Storing File Data I 131
MLI-Accessing the Diskette Directly I 132
READ.BLOCK Program I 134

Further Reading for Chapter 5 I 140

6 Character Input and the Keyboard I 141
Standard Character Input Subroutines I 145

Reading One Character I 146
RDKEY ($FD0C) I 146
Keyboard Input I 148
Escape Sequences I 148
RDCHAR ($FD35) and ESCRDKEY ($CCED) I 150

Readiu'g a· Line of Characters I 150
Changing Input Devices :The Input Link I 152

How About Output? I 153

viii [=:J Inside the Apple //c ---------------

Designing a KSW Input Subroutine I 153
Replacing the Keyboard Input Subroutine I 153
ProDOS and the Input Link I 154

The Keyboard I 157
Encoding of Keyboard Characters I 157

Special Keys I 159
The "Apple" Keys I 159

Keyboard 110 Locations I 168
Modifying the Keyboard Input Subroutine I 164
Keyboard Auto-Repeat I 168
Resetting the Apple llc I 173

Special RESET Procedure I 173
Trapping "Soft" RESETs I 174

Trapping RESET from Assembly Language I 175
Trapping RESET from Applesoft I 176

Further Reading for Chapter 6 I 181

7 Character and Graphic Output and VIdeo Display Modes I 183
Text Mode I 184

The 80140 Switch I 185
Turning on the Text Display I 185
Text Mode Memory Mapping I 188

40-Column Text Mode I 189
80-Column Text Mode I 191

Using Page2 of Text I 192
Video Display Attributes: Normal, Inverse, Flash I 194

MouseText I 196
Standard Character Output Subroutines I 199

Video Output I 288
Video Screen Windowing I 282
How COUTl and C3COUT1 Set the Video Attribute I 283
Changing Output Devices : The OUTPUT Link I 285

Designing a CSW Output Subroutine I 206
Replacing the Video Output Subroutine I 206
ProDOS and the Output Link I 286

Low-Resolution Graphics Mode I 287
Turning on the Low-Resolution Graphics Display I 208
Low-Resolution Graphics Screen Memory Mapping I 209
Low-Resolution Graphics Colors I 209
Double-Width Low-Resolution Graphics I 210

Turning on Double-Width Low-Resolution Graphics I 210
Double~ Width Low-Resolution Graphics Screen Memory

Mapping I 212
Double-Width Low-Resolution Graphics Colors I 212

Built-In Support for Low-Resolution Graphics I 213 '
High-Resolution Graphics Mode I 214

--------------------- Contents c::=J ix

Turning on the High-Resolution Graphics Display I 215
High-Resolution Graphics Screen Memory Mapping I 217
High-Resolution Graphics Colors I 219
Animation with High-Resolution Graphics I 220
Double-Width High-Resolution Graphics I 221

Turning on Double-Width High-Resolution Graphics I 222
Double-Width High-Resolution Graphics Screen Memory

Mapping I 222
Double-Width High-Resolution Graphics Colors I 223

Built-In Support for High-Resolution Graphics I 223
Further Reading for Chapter 7 I 225

8 Memory Management I 229
16K Bank-Switched RAM Areas I 230

Using Bank-Switched RAM I 231
Reading the Status of Bank-Switched RAM Soft Switches I 232
Auxiliary Bank-Switched RAM I 234
Playing with Bank-Switched RAM I 235
Bank-Switched RAM and ProDOS I 236

Auxiliary RAM Memory Area I 236
Using Auxiliary Memory I 237

The ALTZP Switch I 237
The RAMRD and RAMWRT Switches I 239

Auxiliary Memory Support Subroutines I 241
AUXMOVE ($C311)-Transferring data to and from auxiliary

memory I 241
XFER ($C314)-Transferring control to a program from main or

auxiliary memory I 244
Running Co-Resident Programs I 245

Initialization of the Auxiliary Stack I 251
Using CONCURRENT I 251
Limitations of CONCURRENT I 252

Further Reading for Chapter 8 I 253

9 The Speaker I 255
Generating Musical Notes I 255
Generating Music I 259
Further Reading for Chapter 9 I 263

10 Mouse and Game Controller Input I 265
The Apple Mouse I 265

How the Mouse Works I 266
Mouse Operating Modes I 267

Passive (Transparent) Mode I 267
Movement Interrupt Mode I 268
Button Interrupt Mode I 268

x c::::J Inside the Apple //c ______ _.;... __________ _

Movement or Button Interrupt Mode I 268
Vertical Blanking Interrupts I 268

The Mouse and Applesoft I 269
Turning the Mouse On I 269
Turning the Mouse Off I 271
Reading the Mouse I 271
A Sample Program I 272

The Mouse and Assembly Language I 273
Mouse Screen Hole Locations I 274
Using the Mouse Subroutines I 275
Comparing the llc Mouse with the lie Mouse I 275
The Mouse Subroutines I 278
A Sample Program I 280

The Mouse as a Joystick I 280
Mouse 1/0 Locations I 285

The Game Controller Interface I 288
Game Controller Inputs I 289
Push Button Inputs I 293
Further Reading for Chapter 10 I 296

11 The Serial Interface Ports I 299
Serial Transmission of Data I 299

The RS-232-C Standard I 308
Data Communications Protocols for Serial

Communications I 388
Start Bit I 381
Data Bits I 381
Parity Bit I 382
Stop Bits I 302
Data Transmission Errors I 383

The 6551 ACIA I 303
655 i Control Register I 306
6551 Command Register I 387
6551 Status Register I 388
6551 Data Register I 318

Configuring the Serial Ports I 318
Characteristics of a Printer Port I 311
Characteristics of a Communications Port I 313

Terminal Mode I 314
changing the Default Configuration I 316
655i Interrupt Handling I 318

6551 Transmitter Interrupts /. 319
6551 Receiver Interrupts I 319
6551 Keyboard (DSR port 2) Interrupts I 321
6551 External (DSR port 1) Interrupts I 323

Further Reading for Chapter 11 I 324

--------------------- Contents [==:J xl

Appendix I I 325
American National Standard Code for Information Interchange (ASCII)

Character Codes

Appendix II I 331
65C02 Instruction Set and Cycle Times

Appendix Ill I 337
Apple llc Soft Switch, Status, and 110 Port Locations I 337

110 Port Locations I 343

Appendix IV I 347
Apple llc Page 3 Vectors

Appendix V For Beginners Only I 349
Numbering Systems I 349
Bit Numbering and "Significance" I 350
Pointers and Vectors I 351
Control Characters I 351
65C02 Assembly Language I 351
Running Assembly-Language Programs I 353

Appendix VI Periodicals of Interest I 355

Index I 357

Preface

If you bought your Apple //c in order to do all sorts of strange things to it:
POKE around in it, PEEK inside it, CALL subroutines, RUN programs, and
so on ... If you thrill in making a computer do things that its designers never
imagined ... If you write and debug programs for fun ... If you have an Apple
bumper sticker on your car ... This book is for you!

In this book, we're going to explore all the important software nooks and
crannies in the //c and see how to exploit the power that they hold. You will
be expected to be proficient in the Applesoft BASIC language; an understand
ing of 65C02 assembly language will also be invaluable.

Some of the major topics that will be covered are as follows:

• The 65C02 microprocessor that controls the //c. This will include a dis
cussion of 65C02 instructions, addressing modes, 110 handling, and inter
rupt handling.

• The //c system monitor commands, the structure of the Applesoft lan
guage, and the internal structure of ProDOS.

• How the //c handles character input and output. This includes a discus
sion of keyboard input and the various video display modes supported
by the //c (text, graphics, and double-width graphics).

• Memory management techniques.
• How to control the speaker, mouse, and game controller.
• How to use the lie's two built-in serial ports for communication with

printers and modems.

After you have read this book, you will know absolutely everything there is
to know about how the //c interacts with the outside wor}d and how it pro
cesses information. (Well, almost everything.) Descriptions of all the "soft
switches" that the //c uses to control its hardware environment will be pre
sented, as will examples of how to use the lie's 110 memory locations. Fur
thermore, many of the more important subroutines contained in the lie's
ROM area will be analyzed and explained.

Here are some of the more interesting programming examples that will be
presented in this book:

• How to speed up the auto-repeat rate of the cursor (using software tech
niques only).

• How to run two Applesoft programs concurrently (one in main memory
and the other in auxiliary memory).

• How to read mouse input using 65C02 interrupt techniques.
• How to read and write specific blocks on a ProDOS-formatted diskette.
• How to use the keyboard "type-ahead" feature.

Complete and commented source listings for these programs and several
others are included in the text. They are also available in machine-readable
form on an optional diskette.

xiii

xlv c=J Inside the Apple //c ----------------

I hope that you enjoy reading this book as much as I enjoyed writing it.
You'll find it a useful reference and an invaluable source of inspiration for
the development of your own software.

My thanks to Rich Williams and Apple Computer, Inc. in Cupertino for
helping me to decode the meaning of some of the more obscure code in the
lie's ROM. Rich should know-he wrote most of it.

Gary B. Little
Vancouver, British Columbia, Canada
March 1985

About the Author

Gary B. Little is an expert Apple II (and II Plus, 1/e,
1/c, ...) programmer who resides in Vancouver,
British Columbia. He is a founding member of the
Apples British Columbia Computer Society and of
SAGE (Serious Apple Group, Eh!) and is also an
active member of several business organizations that
promote and assist software developers. Gary has
written numerous articles for several computer
publications and is the author of one other micro
computer book published by Brady Communica
tions, Inside the Apple //e.

XV

1
An Introduction to Apple

and the Apple //c
The Apple 1/c is the newest member of Apple Computer Inc.'s highly popular

Apple II family of computers. The other members of this family are the original
Apple II (1977), the Apple II Plus (1979), and the Apple lie (1983).

In this book we will be taking an advanced "inside" look at the Apple 1/c
itself. Keep in mind, however, that much of what will be said will also apply
to its three predecessors because Apple has made a substantial effort to
maintain a high degree of compatibility with other members of the Apple II
family. We will be concentrating on the lie's built-in language and operating
system (Applesoft and the system monitor) and the ProDOS disk operating
system; other languages and operating systems will be mentioned only briefly.

A Condensed History of Apple Computer, Inc.

Before we begin our detailed examination of the Apple 1/c, let's take a brief
look at the history of Apple, the company. This history will reveal how the
original Apple II slowly evolved into the Apple 1/c in 1984 and will serve to
explain much of the rationale behind the design of the //c.

1976

In the beginning, Apple was made up of just two individuals: Stephen
Wozniak ("Woz") and Steven Jobs. Woz provided the hardware and software
expertise and almost single-handedly designed the company's first two com
puters, the Apple I and the Apple II (he had the help of Rod Holt who designed
the Apple II's power supply). A patent application was subsequently filed with
respect to the Apple II on April 11, 1977, and U.S. patent #4,136,359 was
eventually issued in early 1979. Jobs was largely responsible for marketing
and raising financing, and it was he who came up with the "Apple" name
(Jobs was apparently thinking of a job that he had recently had in an Oregon
orchard). In the early going, both partners were still working for other com-

1

2 c=J lnsidetheApple//c -------------~---

puter companies in California's Silicon Valley: Jobs with Atari and Woz with
Hewlett-Packard. Fortunately for Apple, Hewlett-Packard was not interested
in Woz's design for a personal computer and gave him a release so that he
could deal with it as he saw fit.

The Apple I was designed to be sold to and used by hobbyists only; in all,
only about 175 were sold. The Apple II, however, was designed with a much
larger market in mind (although Woz claims he simply wanted to build a
computer with which he could play Atari's "Breakout" game). That market
quickly materialized as a result of the startling combination (for 1977) of
exc.ellent hardware, attractive packaging, and the availability of informative
technical reference material.

Woz decided to use the MOS Technology 6502 microprocessor to control
the Apple II. This decision was dictated not by the 6502's reliability, powerful
instruction set, or any other design characteristic, but rather by its price.
Whereas other microprocessors were selling for hundreds of dollars in 1976
and were difficult to find, the 6502 was readily available and it cost only
about twenty dollars. The //c uses the newer 65C02 microprocessor, but it
recognizes all the instructions that the original 6502 uses and supports a few
new ones as well.

With assistance from Allen Baum, Woz wrote all the software for the orig
inal Apple II that was stored in its read-only memory (ROM). This included
a version of the BASIC programming language called Integer BASIC (which
can't handle decimal numbers but is great for games), a system monitor for
debugging and for handling fundamental input/output operations, a set of
mathematical subroutines, a mini-assembler for entering programs in assem
bly language, and "Sweet 16," a software-simulated 16-bit microprocessor
(Woz was way ahead of his time).

To raise a little money for their fledgling venture, Woz sold his Hewlett
Packard pocket calculator and Jobs sold his Volkswagen bus. Overhead expenses
were cut to the bare minimum by setting up operation in the garage of Jobs'
parents. As 1977 rolled around, however, it became clear that more money, a
lot more money, was going to be needed.

1977

Since Jobs was the partner responsible for marketing the Apple II, it was
he who began searching for venture capital. That search eventually led him
to Mike Markkula, a former marketing manager at Intel, an integrated-circuit
designing company. Markkula, Jobs, and Wozniak quickly struck a deal whereby
Markkula agreed to put a quarter of a million dollars into Apple in exchange
for an equal partnership interest. He then proceeded to use his expertise to
line up bank financing and additional capital funding. Apple was then finally
ready for the mass market!

-------- 1 I An Introduction to Apple and the Apple //c c=J 3

The Apple II was formally announced for sale at the first annual West
Coast Computer Faire in early 1977 and it was an instant success. The main
reasons for its early success were that it was easily expandable (more memory
could easily be added to it and eight slots were available for peripheral deviCes
when they became available), it had a full-size keyboard, and it had color
graphics. And, yes, it looked great!

Not that there weren't any problems, however. For example, lower case
characters could not be produced by the keyboard and the video display was
only forty columns wide. These shortcomings officially persisted until the
introduction of the Apple //e in 1983, although several other sources of upper
and lowercase keyboards and 80-column boards did pop up in the interim.

One software problem had to be remedied quickly. Integer BASIC did not
support decimal (floating-point) numbers or functions, and so business and
scientific use of the Apple II was necessarily limited. Apple began to take steps
to remedy this in the summer of 1977 when it negotiated the purchase of
about ten thousand lines of program source code for a floating-point version
of BASIC from Microsoft Corporation. This code was written in 6502 assembly
language and so could be readily adapted to run on the Apple II.

By this time Apple had a few employees, one of which was a young pro
grammer by the name of Randy Wigginton. Wigginton reworked the Microsoft
source code and came out with a preliminary version of a floating-point BASIC
that would run on the Apple II. This version was called "Applesoft-Extended
Precision Floating Point BASIC Language" and was released in October 1977.
Further work was required to polish Applesoft into a final product, and this
was done during the winter of 1977.

1978

The final version of Applesoft, Applesoft][,was finally released in May 1978;
this same version, with some minor changes, is still in use today on the Apple
//c. It was first available on cassette tape only, but was later provided in ROM
on a card that could be plugged into a slot on the Apple II; it eventually
replaced Integer BASIC on the motherboard when the Apple II Plus was
released in 1979.

The most important new product released in 1978 was probably the Disk
II disk drive and controller card peripherals that are now built in to the Apple
//c. The disk drive revolutionized the software business because for the first
time it was feasible to develop sophisticated programs that could be easily
loaded and that could quickly and reliably access large data bases. Until the
disk drive was released, all programs had to be saved to and loaded from
cassette tape, which was invariably an exercise in frustration. Many a cottage
software business started up after the disk drive became available, and in a
short time hundreds of commercial software products were being developed
for the Apple II.

4 c=J Inside the Apple //c -----------------

The Disk II was controlled by a program called the Disk Operating System
(DOS), first written by Bob Shepardson and later substantially modified by
Randy Wigginton, J. R. Huston, and Rick Auricchio. DOS has undergone
several revisions throughout the years and the current version is DOS 3.3.
This version still works with the Apple llc, although it has been superseded
by a new DOS called ProDOS.

1979

Sales really ballooned for Apple in 1979. Apple was able to increase sales
by a total of forty million dollars(!) over the previous year, to a total of forty
eight million dollars. By this time, the Apple II was selling not only because
it was an excellent hardware package but also because an ever-increasing
supply of software was available that could be run on it. One important piece
of software, VisiCalc, the very first financial spreadsheet program, is reputed
to have been directly responsible for stimulating the purchase of tens of
thousands of Apple II computers.

The Apple II underwent minor surgery in 1979 and came out of it with a
new name: Apple II Plus. The Apple II Plus is essentially the same as an Apple
II, except that its ROM chips contain Applesoft][rather than Integer BASIC
and its system monitor supports more powerful screen-editing commands
and the ability to automatically run a program from diskette whenever the
power is turned on. At the same time, a couple of handy debugging commands
(step and trace) were taken out of the system monitor, but they were not
missed by many users. The modifications to the system monitor were written
by John Arkley.

Apple announced its Pascal Operating System in 1979 as well. Because
Pascal requires a huge amount of memory in which to operate, Apple also
released a new peripheral card, called a language card, at the same time. The
language card effectively added another 16Kof memory to the Apple II, which
could "replace" the Applesoft ROMs when Pascal was being used. The lan
guage card was plugged into slot #0 of the Apple II but in the llc it is simulated
in the memory chips on the motherboard. These different implementations,
however, are transparent to the user.

1980-1982

Apple's sales continued to explode in the early eighties: $117 million in
1980, $334.8 million in 1981, and $583.1 million in 1982! Most of these sales
were generated by the Apple II Plus, which eventually set a record for monthly
sales in December 1982.

The infamous Apple Ill was released in 1980. For several reasons, notably
its early unreliability and high price, it never established a significant market
presence even though a modified version (known as the Apple Ill Plus) was

--------- 1 I An Introduction to Apple and the Apple //c c::=J 5

still being produced as late as 1984. It comes with an Apple II emulation
mode that allows it to run most, but not all, of the software that runs on the
Apple II ..

In the winter of 1980-81, Apple made a public offering of stock, which wa~
quickly snapped up. The proceeds were largely directed into intensive (and
expensive) research and development projects. We'll see in a moment what
those projects led to.

If imitation is the sincerest form of flattery, then Apple must surely be
blushing. Since about 1980, tens of thousands of unofficial Apple II "clones"
(euphemistically called "compatibles")have been manufactured, mostly by
Taiwanese concerns. To achieve absolute compatibility with the Apple II,
most of these clones contain ROMs that are direct copies of the Applesoft and
system monitor ROMs. Not surpr~singly, Apple considers this to be highly
improper and has successfully instituted legal proceedings in the United
States and many other countries against several manufacturers in order to
protect its copyrights and patent rights. The importation of Apple II clones
to the United States has also been reduced because Apple has registered its
copyrights with U.S. Customs. The Customs authorities have the power to
confiscate shipments of products that violate Apple's copyrights.

1983

At Apple's Annual General Meeting on January 19, 1983, two major
announcements were made. First, the Lisa computer was announced, a com
puter that was immediately recognized as a technological and innovative
triumph because of its ease of use and excellent operating system. Its retail
price, however, was initially too high for it to sell in the quantities that Apple
would have liked. Subsequent price reductions, coupled with increasing avail
ability of software, has helped to remedy this problem.

The second major announcement was the introduction of the successor to
the Apple II Plus, the Apple //e. The Apple //e was carefully designed to
maintain as high a degree of compatibility with the Apple II Plus as possible
so that the thousands of software packages developed for the Apple II Plus
would not have to be rewritten. Several new features were added to the. 1/e,
however, that make it a significantly different computer: built-in support for
an 80-column display, an upper- and lowercase keyboard, self-testing subrou
tines; and enhanced editing capabilities.

In addition, Apple significantly simplified the construction of the //e by
reducing the number of integrated circuits on the motherboard from 109 on
the Apple II Plus to only 31! It did this by designing two special integrated
circuits to replace many of the discrete components used on the II Plus.

The manager of the team that designed the Apple //e was Peter Quinn. The
hardware was designed by Walt Broedner and most of the modifications to
the old system monitor were made by Rick Auricchio and Bryan Stearns.

6 c:::::=J Inside the Apple //c -----------------

There was also a major change at the managerial level at Apple in 1983. On
AprilS, Apple announced that Mike Markkula had resigned as President and
that John Sculley had been named to succeed him. Sculley was formerly
president of Pepsi-Cola and it is reported that his salary is in excess of one
million dollars per year.

1984

At its January 24, 1984, Annual General Meeting Apple announced the
Macintosh computer ("Mac"), a scaled-down version of Lisa. Mac undoubt
edly represents another mass-market best seller for Apple because it is easy
to use and it is priced affordably. Within a month of its release, at least two
Mac-specific magazines and several books had been published. This is remi
niscent of what happened in 1979 when sales of the Apple II began to sky
rocket.

For users of Apple II computers, there was one major announcement at the
Annual General Meeting: the release of a successor to DOS 3.3 called ProDOS.
This disk operating system is significantly different from, but upwardly com
patible with, DOS 3.3. Most Applesoft programs, when transferred to ProDOS
formatted diskettes, will run without modification. The main advantages of
ProDOS are that it is faster, it is easier for programmers to use, it supports a
directory structure that is more convenient for use with larger-capacity dis
kettes or hard disks, and its disk format can be read by the Apple Ill.

On April 24, 1984, Apple formally introduced the portable Apple //c. In
keeping with Apple tradition, the //c is compatible with most software designed
for its predecessor, the Apple //e. However, the //c actually represents a radical
departure from the Apple II norm because of the way the hardware has bee~
packaged. For example, the peripheral expansion slots on the //e are gone and
have been replaced by built-in interfaces a,nd a built-in disk drive. This was
done primarily to reduce the size of the/unit to that of a true portable, and
also to make the //c appeal more to the large "plug 'n run" class of users.
Furthermore, the //c simply looks different than any of the earlier Apple II
computers.

The //cis a wonder of computer miniaturization. Not counting the sixteen
RAM chips that provide the //c with 128K of memory, there are only twenty.:
one integrated circuits (ICs) used in the system. Several of these ICs are custom
large-scale-integration (LSI) chips that perform tasks that are normally han
dled by several discrete ICs when conventional technology is used.

The manager of the //c design team was the same Peter Quinn who was in
charge of the //e project. The lie's firmware was written by Ernie Beemink,
Rich Williams, and James Huston; if you ever forget their names, press

--------- 1 I An Introduction to Apple and the Apple //c c=J 7

[control-RESET] right after you turn on the 1/c (before the disk has a chance
to boot up), and then type in and tun the following short Applesoft program:

11/Jf/J IN# 5: INPUT A$: PRINT A$

Surprise, surprise!

Hardware and the Apple //c

Although this book is primaril; concerned with software, let's begin by
taking a quick look at the hardware that makes up the Apple //c.

The keyboard is laid out in the standard QWERTY arrangement and con
tains all of the keys you would find em a standard typewriter plus a few extra
special ones io boot. Just above the keyboard are the reset button, the 80/40
switch, and the keyboard switch. The keyboard and these special switches
will be described in detail in Chapter 6.7

On the left side of the 1/c you will find the volume control wheel for the
speaker and the speaker headphone jack. You can't see the speaker because
it's under the hood. In Chapter 9 we will see how it can be used to generate
music.

On the other side of the 1/c is the built-in disk drive. This drive can read
diskettes formatted on all previous Apple II models.

We won't encourage you to take the 1/c apart to see the electronic circuitry
lurking beneath the surface since this is frowned on by the warranty people
at Apple. If you did, however, you would see the various integrated circuits
that make up the 1/c, including the 65C02 microprocessor that controls every
thing, the two 6551 serial communications adapters, and the RAM and ROM
memory chips.

The 1/c can be interfaced to the "real world" through one of seven connectors
that are located on its back panel (see Figure 1-1):

e The mouse/game connector: This is where the Apple Mouse or a joystick
can be connected. We will be examining it in Chapter 10.

• The modem port (serial port 2): A modem is a device that allows you to
communicate with other computers over standard telephone lines. See
Chapter 11.

• The video expansion connector: This connector allows the 1/c to be con
nected to any of several display options, including RGB (red-green-blue)
displays, flat-panel liquid-crystal displays, and ordinary black and white
or color television sets.

• The video monitor connector.

• The external disk drive connector: For those who can't survive with just
one drive.

8 c::::::J Inside the Apple //c -------,---,------.,..------

Figure 1-1. Back panel of the Apple //c.

• The printer port (serial port 1): A printer will undoubtedly be the first
peripheral that you add to your //c. See Chapter 11.

• The power connector: You can't do much without it!

Previous members of the Apple II family have several expansion slots that
can be used to hold interface cards that control external devices. The 1/c has
no such slots, but its built-in interfaces and supporting software have been
carefully designed so that they can be controlled by the same commands that
would be used on a slot-based Apple II. The only difference is a semantical
one: you refer to "port" numbers on the 1/c and to "slot" numbers on the
Apple //e, Apple II Plus, and Apple II. The numbers assigned to each port on
the //care shown in Table 1-1.

So much for the lie's hardware!

Learning the Fundamentals

Most of the readers of this book are expected to be intermediate to advanced
programmers who need no explanation of fundamental concepts such as
numbering systems, bits and bytes, pointers, vectors, assembly language, and
how to load and run programs.

1 I An Introduction to Apple and the Apple //c c:=J 9

Table 1-1. Port assignments on the Apple //c.

Port
Number

0
1
2
3
4
6
7

Description

Standard keyboard and video I/0 (see Chapters 6 and 7)
Serial interface for printer (see Chapter 11)
Serial interface for modem (see Chapter 11)
80-column video display (see Chapter 7)
Mouse interface (see Chapter 10)
Internal disk drive interface (see Chapter 5)
External disk drive interface (see Chapter 5)

If you feel a little uncomfortable with any of these concepts, then you should
first read Appendix V ("For Beginners Only") before attempting to tackle the
rest of this book. You will probably also feel more comfortable if you read an
introductory book on computer systems first.

What Won't Be Covered

There are a few topics that will not be discussed at length in this book.
Integer BASIC, the BASIC that was built into the first several thousand Apple
II's, will not be discussed because it is rarely used anymore and is fast becom
ing obsolete. In fact, the ProDOS disk operating system does not allow Integer
BASIC programs to be run at all.

The only high-level language that will be discussed at length will be Apple
soft. For more information on Apple Pascal, Fortran, or Logo, you will have
to consult other texts.

Using the Optional Diskette

This book can be purchased either with or without a ProDOS- formatted
program diskette, or the diskette can be purchased separately. The diskette
contains all the programs that are presented as examples in the following
chapters and will allow you to quickly load a program into memory, or modify
a program, without having to endure the pleasure of typing it in from scratch.

The files on the diskette are either Applesoft programs (marked by "BAS"
when you CATALOG the diskette), text files (marked by "TXT"), or binary
programs (marked by "BIN").

The text files on the diskette are the source-code listings for the binary
programs and are in the format expected by the Merlin Pro assembler (which
is available from Roger Wagner Publishing, Inc., 10761 Woodside Avenue,

10 c=J Inside the Apple //c _______ ________ _

Suite E, Santee, California). Most other assemblers are also able to read these
text files. Keep in mind, however, that the source-code formats used by dif
ferent assemblers do vary and it may be necessary to modify a source code
file to take into account any such differences before the file can be propedy
assembled.

The Applesoft programs and binary programs can usually be run by using
the standard RUN and BRUN commands, respectively, or the ProDOS "intel
ligent RUN command","-" (a dash), which automatically checks the file type
and will RUN an Applesoft program or BRUNa binary program. Some of the
binary programs, however, are designed to be' called from an Applesoft pro
gram only and should simply be loaded into memory using the BLOAD
command. Such exceptions will be noted in the discussions that relate to
these programs in this book.

Further Reading for Chapter 1

Historical background ...

"Photograph of Apple I", Apple Orchard, April1983, front cover. The original
Apple product.

A.L. Taylor III, "Striking it Rich", Time, February 15, 1982, pp. 42-47. Apple
makes the front cover of Time.

D. Garr, Woz: The Prodigal Son of Silicon Valley, Avon Books, 1984. An in
depth review of the history of Apple.

P. Freiberger and M. Swaine, Fire in the Valley: The Making ofthe Personal
Computer, Osborne/McGraw-Hill, 1984.

M. Moritz, The Little Kingdom: The Private Story of Apple Computer,
Morrow, 1984.

P. Lopiccola, "Core of a New Apple", Popular Computing, March 1983, pp.
114-117. How the Apple II Plus was transformed into the //c' s predecessor,
the Apple //e. '

J. Markoff, "The Apple lie Personal Computer", Byte, May 1984, pp. 276-
284. Refer to this article for pictures of the inside of the //c and a good
overview of the //c's hardware.

Standard reference work ...

TheApple//cReferenceManual, Volumes 1 and2,AppleComputer,Inc., 1984.
Includes detailed information on the hardware and software that makes
up the Apple //c. Source code for the //c system monitor is included.

The 65C02
Microprocessor

The "brains" of every microcomputer are represented by a complex inte
grated circuit called a microprocessor that controls the operation of the
system as a whole. The microprocessor used in the //cis called a 65C02.

The 65C02 is closely related to the 6502 microprocessor that is used in the
Apple 1/e, Apple II Plus, and Apple II. In fact, all programming instructions
supported by the 6502 are also supported by the 65C02. This is fortunate since
it means that no translation of specific 6502 instructions need be performed
before the program can be executed by the 65C02 microprocessor. (This does
not mean, of course, that any program written for the 6502-based Apple
systems will run on the //c. If the program accesses subroutines or 110 locations
that are not present on the 1/c, then it will obviously not run properly and
will have to be rewritten.)

It's not a two-way street, however. Assembly-language programs written
specifically for the 65C02 may have to be partially translated before they will
run on a computer using the 6502. This is because the 65C02 used on the //c
supports ten new instructions and some new memory addressing techniques
that the 6502 does not. If the 6502 is asked to interpret these new instructions,
it will fail miserably.

In this chapter we will be taking special note of these new instructions. If
you are writing software that must run on either a 65C02- or a 6502-based
Apple, then you must not use them.

By the way, the "C" in 65C02 stands for CMOS, an acronym for Comple
mentary Metal Oxide Semiconductor. This is the name for the process used
to manufacture the transistors that form the 65C02 integrated circuit. A CMOS
integrated circuit consumes far less power than a functionally identical circuit
built using conventional technology. It will run cooler and can be operated
by a smaller power supply. These are important factors when you want to
design a small, portable, computer like the //c.

The 65C02 is an example of what is usually called an" 8-bit" microprocessor.
These types of microprocessors can handle data only one byte (8 bits) at a

11

12 CJ lnsidetheApple//c -----------------

time and they typically use 16 lines to address memory. Since each of these
lines can be on or off, the 65C02 is capable of addressing 65,536 (2 A 16) memory
locations at any given time. (Since one "K" of memory is equal to 1,024 bytes,
this represents a "64K" memory space.) Contrast this with the newer wave
of 16-bit microprocessors that can manipulate two bytes of data at once and
have typical address spaces of one megabyte or more.

While the 65C02 is operating, it is continuously interpreting a stream of
bytes in order to determine what it should do next. The bytes in this stream
are controlled by the computer program that is being executed. This program
contains instructions that enable the 65C02 to perform data transfers, input/
output operations, logical operations, simple arithmetic, and other funda
mental control operations.

In this chapter, we will take a brief look at the 65C02 instruction set and
internal registers and describe how the 65C02 has been implemented on the
1/c. Note, however, that the purpose of this chapter is not to teach you 65C02
assembly-language programming, but rather to review some of the more
important principles relating to the 65C02 microprocessor. Consult the ref
erences at the end of the chapter for a list of books that are available to teach
you the art of programming the 65C02.

Important 65C02 Concepts

The 65C02 forms only one part of a microcomputer system such as the //c.
The other important parts are the system memory (RAM and ROM) and the
system input/output (110) devices. It is the 65C02, however, that is in charge
of controlling both the accessing of memory and the passing of data to and
from the 110 devices.

The 65C02 is told how and when to perform its chores by a series of instruc
tions that it is constantly interpreting. These instructions will be discussed
in the next section. In brief, they cause the 65C02 to perform a variety of data
manipulation tasks using a set of six internal registers that will be discussed
below in the section entitled "65C02 Registers."

Zero Page and the Stack

This is a convenient time to introduce you to two rather important areas
of memory that are used in special ways by the 65C02 microprocessor: zero
page and the stack.

Each 256 bytes of memory that starts at an address that is an integer
multiple of $100 (256), that is, $0000, $0100, $0200, $300, ... , $FF00 is called
a "page" of memory. For example, the area of memory from $BF00 through
$BFFF is referred to as page $BF. Zero page, the page of memory from
$0000 ... $00FF, is treated in a special way by the 65C02. Generally speaking,

-------------- 2 I The 65C02 Microprocessor c=J 13

whenever the address on which a 65C02 instruction acts is contained in zero
page, the highest two hexadecimal digits of the address do not have to be
specified (since they are always zero by definition). This not only reduces the
size of the program, it also allows the program to be executed more quickly.
No wonder, then, that zero page is prime real estate as far as the 65C02 is
concerned.

Page one of memory ($100 ... $1FF) holds the 65C02 stack. The stack is
used as a temporary data area by the 65C02 and several instructions can be
used to implicitly read data from it or store data to it. These instructions are
executed very quickly because they automatically calculate where to store
the data or where to read it from by examining a special internal65C02 "stack
pointer" register. This register always points to the next free position avail
able in the stack. When a byte is stored on the stack, it is stored at the position
within page one given by the stack pointer and then the stack pointer is
decremented by one. When a byte is removed from the stack, the stack pointer
is incremented by one and then the byte is taken from the position within
page one pointed to by the stack pointer.

We will be discussing the stack pointer, and other registers, in greater detail
below.

65C02 Instruction Set

There are 66 general types of instructions that the 65C02 is capable of
executing; they are listed in Table 2-1. These instructions include all 56
instructions supported by the standard 6502 microprocessor as well as 10
new ones used by the 65C02 only. The new instructions are marked with an
asterisk in Table 2-1.

(The //c uses the version of the 65C02 produced by NCR Corporation. Another
version, produced by Rockwell International Corporation, supports all of the
NCR instructions and four additional ones called SMB (set memory bit), RMB
(reset memory bit), BBS (branch on bit set), and BBR (branch on bit reset).
You cannot use these instructions on the //c.)

Each instruction is actually a binary number that is interpreted by the
65C02 but it is usually represented by a three-character mnemonic name that
is easier to remember. These mnemonics are used whenever an assembly
language program is being developed. The assembler that is used takes care
of translating them into the corresponding binary numbers (the "machine
language") that the 65C02 can execute directly.

The 65C02 instructions can be used to perform a wide variety of functions.
For example, they can be used to pass data between two registers or between
registers and memory, to perform simple arithmetic; to increment and dec
rement index registers and memory locations, to pass data between registers
and the stack, to perform logical functions, and so on. Figure 2-1 illustrates,

14 ~ lnsidetheApple//c -----------------

in a general way, how each of the 6SC02's instructions affect memory and the
65C02 registers.

As you might expect, it takes a finite period of time for any particular
instruction to be executed by the 65C02. The time required to execute one
instruction, however, is not necessarily the same as the time required to

Table 2-1. 65C02 instruction set mnemonics in alphabetical order.

ADC Add to accumulator LDX Load X register
AND "And" with accumulator LDY Load Y register
ASL Arithmetic bit-shift left LSR Logical bit-shift right

BCC Branch on carry clear NOP No operation
BCS Branch on carry set

ORA "Or" with accumulator BEQ Branch on result zero
BIT Test bits PHA Push accumulator on stack
BMI Branch on result minus PHP Push status on stack
BNE Branch on result not zero *PHX Push X register on stack
BPL Branch on result plus *PHY Push Y register on stack

*BRA Branch relative always PLA Pull accumulator from stack
BRK Software interrupt PLP Pull status from stack
BVC Branch on overflow clear *PLX Pull X register from stack
BVS Branch on overflow set *PLY Pull Y register from stack

CLC Clear carry flag ROL Rotate left through carry
CLD Clear decimal mode flag ROR Rotate right through carry
CLI Clear interrupt disable flag RTI Return from interrupt
CLV Clear overflow flag RTS Return from subroutine
CMP Compare with accumulator

SBC Subtract from accumulator CPX Compare with X register
CPY Compare withY register SEC Set carry flag

*DEA Decrement accumulator SED Set decimal mode flag

DEC Decrement memory by one SEI Set interrupt disable flag

DEX Decrement X register by one STA Store accumulator

DEY Decrement Y register by one STX Store X register
STY StoreY register

EOR "Exclusive-or" with *STZ Store zero in memory
accumulator

TAX Transfer accumulator to X
*INA Increment accumulator TAY Transfer accumulator toY

INC Increment memory by one *TRB Test and Reset with A
INX Increment X register by one *TSB Test and Set with A
INY Increment Y register by one TSX Transfer stack pointer to X

JMP Jump to new location TXA Transfer X to accumulator

JSR Jump + save return address TXS Transfer X to stack pointer
TYA Transfer Y to accumulator

LDA Load accumulator

*These instructions are not available on the 6502.

-------------- 2/ The 65C02 Microprocessor c=J 15

I

LOX STX CPX
I

TXA

INX

STACK
POINTER

PHA PLA PHP PLP
JSR RTS BRK RTI
PHX PLX PHY PLY

65C02 SYSTEM MEMORY

INC DEC STZ
ASL LSR ROL ROR

LOA S A
: CMP,ADC,SBC,TSB,TRB
I AND,ORA,EOR,BIT

ACCUMULATOR

LSR ROL
CMP ADC

Y-REGISTER

LOY
ORA EOR
INA

TAY INY DEY CPY

PLP PHP RTI B K

STATUS

CLC SEC CLD SED CLV
CLI SEI

PROGRAM
COUNTER

NOP

BEQ BNE
BPL BMI
BCC BCS
BVC BVS BRA

JMP

NOTE: Solid arrows indicate a transfer of data.
Dashed arrows indicate a transfer of information.

Figure 2-1. Usage chart of 65C02 instructions.

execute another. In fact, the time it takes to execute one general type of
instruction will even vary depending on how the instruction is told to access
the data on which it is to operate (that is, its "addressing mode").

Table 2-2 sets out the times required to execute each instruction in units of
65C02 "machine cycles" for each valid addressing mode (addressing modes
will be discussed in detail later in this chapter). The length of a 65C02 machine
cycle is fixed by the frequency of the clock signal fed into the 65C02 micro
processor. On the 1/c, this clock signal is 1.023 megahertz, which means that
every machine cycle takes 0.9775 (1/1.023) microsecond to perform.

It is often convenient to know exactly how long it will take to execute a
particular instruction when precise timing loops must be generated in soft
ware. We will see an example of this in Chapter 9, where a program is
presented that can generate musical notes of specific frequencies.

16 c::::=J Inside the Apple //c

Table 2-2. 65C02 instruction set and cycle times.

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

ADC #num 69 2 2
zpage 65 2 3
zpage,X 75 2 4

*(zpage) 72 2 5
(zpage,X) 61 2 6
(zpage),Y 71 2 5 (1)
abs 6D 3 4
abs,X 7D 3 4 (1)
abs,Y 79 3 4 (1)

AND #num 29 2 2
zpage 25 2 3
zpage,X 35 2 4

*(zpage) 32 2 5
(zpage,X) 21 2 6
(zpage),Y 31 2 5 (1)
abs 2D 3 4
abs,X 3D 3 4 (1)
abs,Y 39 3 4 (1)

ASL [accumulator] 0A 1 2
zpage 06 2 5
zpage,X 16 2 6
abs 0E 3 6
abs,X 1E 3 6 (3)

BCC disp 90 2 2 (2)

BCS disp B0 2 2 (2)

BEQ disp F0 2 2 (2)

BIT '~#num 89 2 2
zpage 24 2 3

*zpage,X 34 2 4
abs 2C 3 4

*abs,X 3C 3 4

BMI disp 30 2 2 (2)

BNE disp D0 2 2 (2)

BPL disp 10 2 2 (2)

BRA *disp 80 2 2 (2)

BRK [implied] 00 1 7

BVC disp 50 2 2 (2)

BVS disp 70 2 2 (2)
(continued)

Introducing the premier of -
Programming Access Tools to Accompany Inside the Apple lie

by Gary B. Little

Now you can discover the magic locked inside your Apple lie - faster and easier than
ever before! Programming Access Tools offers you virtually instant access to 20 major
programs (including 12 assembler source code files). With very little preparation or start -up
time, you'll be working with such programs as:

* Keyboard Input Routines * How to Reconfigure the Serial Ports * Speed Up Cursor Auto Repeat Rate * How to Control the Mouse * How to Use Auxiliary Memory * Generating Music

Here's How to Order
Enclose a check or money order for $25.00, plus sales tax, slip in this handy order envelope
and mail! No postage needed. Or charge it to your VISA or MasterCard. Simply complete

D YES! I want to unlock the magic inside my Apple lie. Please rush me
Programming Access Tools For Inside The Apple lie (05653-3). I have enclosed
payment of $25.00 plus sales tax.

Name _____________________________ ___

Address ------------------------------

City _________ State __ Zip. ___ _

Charge my Credit Card Instead

0 VISA 0 MasterCard

Account Number

Expiration Date

Signature as it appears on Card

B d Dept.Y r.a ysrady Communications co., Inc., New York, NY 10020
A Simon & Schuster Publishing Company

lilliiiiliil

It Ca~ne Fro~n Inside
The Apple lie!

See over for complete listings

I IIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 17 WEST NYACK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

PRENTICE-HALL, INC.
P.O. Box462
West Nyack, NY 1 0994

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

2 I The 65C02 Microprocessor c:::::J 17

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clocl~ Cycles Notes

CLC [implied] 18 1 2

CLD [implied] D8 1 2

CLI [implied] 58 1 2

CLV [implied] B8 1 2

CMP #num C9 2 2
zpage C5 2 3
zpage,X D5 2 4

*(zpage) D2 2 5
(zpage,X) C1 2 6
(zpage),Y D1 2 5 (1)
abs CD 3 4
abs,X DD 3 4 (1)
abs,Y D9 3 4 (1)

CPX #num E0 2 2
zpage E4 2 3
abs EC 3 4

CPY #num C0 2 2
zpage C4 2 3
abs cc 3 4

DEA ~'[accumulator] 3A 1 2

DEC zpage C6 2 5
zpage,X D6 2 6
abs CE 3 6
abs,X DE 3 6 (3)

DEX [implied] CA 1 2

DEY [implied] 88 1 2

EOR #num 49 2 2
zpage 45 2 3
zpage,X 55 2 4

*(zpage) 52 2 5
(zpage,X) 41 2 6
(zpage),Y 51 2 5 (1)
abs 4D 3 4
abs,X 5D 3 4 (1)
abs,Y 59 3 4 (1)

INA *[accumulator] 1A 1 2

(continued)

18 c:=J Inside the Apple //c

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

INC zpage E6 2 5
zpage,X F6 2 6
abs EE 3 6
abs,X FE 3 6 (3)

INX [implied] E8 1 2

INY [implied] C8 1 2

JMP abs 4C 3 3
(abs) 6C 3 6 (4)

*(abs,X) 7C 3 6

JSR abs 20 3 6

LDA #num A9 2 2
zpage AS 2 3
zpage,X BS 2 4

*(zpage) B2 2 5
(zpage,X) A1 2 6
(zpage),Y B1 2 5 (1)
abs AD 3 4
abs,X BD 3 4 (1)
abs,Y B9 3 4 (1)

LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs,Y BE 3 4 (1)

LDY #num A0 2 2
zpage A4 2 3
zpage,X B4 2 4
abs AC 3 4
abs,X BC 3 4 (1)

LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage,X 56 2 6
abs 4E 3 6
abs,X SE 3 6 (3)

NOP [implied] EA 1 2

ORA #num 09 2 2
zpage 05 2 3
zpage,X 15 2 4

*(zpage) 12 2 5
(continued)

2 I The 65C02 Microprocessor c=:J 19

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

(zpage,X) 01 2 6
(zpage),Y 11 2 5 (1)
abs 0D 3 4
abs,X 1D 3 4 (1)
abs,Y 19 3 4 (1)

PHA [implied] 48 1 3
PUP [implied] 08 1 3

PHX *[implied] DA 1 3

PHY *[implied] SA 1 3

PLA [implied] 68 1 4

PLP [implied] 28 1 4

PLX *[implied] FA 1 4

PLY *[implied] 7A 1 4

ROL [accumulator] 2A 1 2
zpage 26 2 5
zpage,X 36 2 6
abs 2E 3 6
abs,X 3E 3 6 (3)

ROR [accumulator] 6A 1 2
zpage 66 2 5
zpage,X 76 2 6
abs 6E 3 6
abs,X 7E 3 6 (3)

RTI [implied] 40 1 6

RTS [implied] 60 1 6

SBC #num E9 2 2
zpage ES 2 3
zpage,X FS 2 4

*(zpage) F2 2 5
(zpage,X) E1 2 6
(zpage),Y F1 2 5 (1)
abs ED 3 4
abs,X FD 3 4 (1)
abs,Y F9 3 4 (1)

SEC [implied] 38 1 2

SED [implied] F8 1 2
(continued)

20 c=J Inside the Apple //c

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

SEI [implied] 78 1 2

STA zpage 85 2 3
zpage,X 95 2 4

*(zpage) 92 2 5
(zpage,X) 81 2 6
(zpage),Y 91 2 5 (1)
abs 8D 3 4
abs,X 9D 3 4 (1)
abs,Y 99 3 4 (1)

STX zpage 86 2 3
zpage,Y 96 2 4
abs 8E 3 4

STY zpage 84 2 3
zpage,X 94 2 4
abs 8C 3 4

STZ *zpage 64 2 3
*zpage,X 74 2 4
*abs 9C 3 4
*abs,X 9E 3 5

TAX [implied] AA 1 2

TAY [implied] A8 1 2

TRB *zpage 14 2 5
*abs 1C 3 6

TSB *zpage 04 2 5
*abs 0C 3 6

TSX [implied] BA 1 2

TXA [implied] 8A 1 2

TXS [implied] 9A 1 2
TYA [implied] 98 1 2

Instructions marked with an asterisk are not available on the 6502.
Notes:

(1) Add one clock cycle if a page boundary is crossed.
(2) Add one clock cycle if a branch occurs to a location in the same page; add two

clock cycles if a branch occurs to a location in a different page.
(3) Add one clock cycle if a page boundary is crossed; always 7 cycles on the 6502.
(4) 5 cycles on the 6502.

See Table 2-3 for a description of the assembler operand formats.

-------------- 2 I The 65C02 Microprocessor c=J 21

65C02 Registers

While the 65C02 is executing a program, it makes use of the six internal
registers that are shown in Figure 2-2. These registers are used to manipulate
data in the manner dictated by the program that is executing and also to
make the 65C02 aware of various aspects of the status of the system: where
the next instruction to be executed is located, where the next free space in
the stack is located, and what the status of its seven internal flags is. A detailed
understanding of these registers is important before a 65C02 assembly-lan
guage program can be written. We will now take a closer look at each of the
six registers.

15

I

7 0

A I ACCUMULATOR

7 0

I y I INDEX REGISTER y

7 0

I X I INDEX REGISTER X

7 0

PCH I PCL I PROGRAM COUNTER

7 Ill

I I s I STACK POINTER

7 p
INIVI l 8 l 0 11 lzlciR

0 ROCESSOR STATUS
EGISTER, "P"

I CARRY

ZERO

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

UNUSED

OVERFLOW

NEGATIVE

Figure 2-2. The 65C02 registers.

The Accumulator-A

The 65C02 supports two simple arithmetic instructions: ADC (add with
carry) and SBC (subtract with carry). Both of them require that the first of

22 c:=J Inside the Apple //c -----------------

the two operands in the addition or subtraction be contained in the accu
mulator register, A. After the arithmetic has been performed, the result is
stored in A. This is how it gets its name-it "accumulates" the results of
arithmetic operations that are performed. The accumulator is an 8-bit register
and so can hold numbers from 0 to 255 only.

The accumulator is unique in that it is the only one of the 65C02's registers
that can be used to perform the logical instructions, namely, EOR (logical
"exclusive-or"), ORA (logical "or"), and AND (logical "and"), or any of the
bit-shifting instructions, namely, ASL (arithmetic shift left), LSR (logical shift
right), ROL (rotate left), and ROR (rotate right). (You should note, however,
that the bit-shifting instructions can also operate directly on memory loca
tions.)

Here are the 65C02 instructions that directly use and affect the accumula-
tor:

• Arithmetic: ADC, SBC

• Increment : INA (not on 6502)

• Decrement : DEA (not on 6502)

• Logical: AND, ORA, EOR, BIT, TRB (not on 6502), TSB (not on 6502)

• Bit-shifting : ASL, LSR, ROL, ROR

• Compare : CMP

• Store in memory : ST A

• Load from memory or with data : LDA

• Store on stack : PHA

• Load from stack : PLA

• Inter-register transfer: TAX, TAY, TXA, TYA

The Index Registers-X andY

Like the accumulator, the X andY index registers are eight bits in size and
can contain numbers from 0 to 255.

As their name suggests, the index registers are used primarily to locate
elements contained in data structures in memory, such as a series of elements
in a one-dimensional array. This is done by fixing the beginning address of
the data structure and then simply adjusting the index register so that the
sum of the beginning address and the index register is equal to the address
of the element that is to be accessed.

The 65C02 supports several special instructions that directly use and affect
the index registers:

• Increment : INX, INY

• Decrement : DEX, DEY

-------------- 2 I The 65C02 Microprocessor [=:J 23

• Inter-register transfer: TAX, TAY, TXA, TYA, TXS, TSX

• Store in memory: STX, STY

• Store on stack: PHX (not on 6502), PHY (not on 6502)

• Load from stack : PLX (not on 6502), PLY (not on 6502)

• Load from memory or with data: LDX, LDY

• Compare : CPX, CPY

Note that the logical instructions and bit-shifting instructions that can be
used with the accumulator cannot be used with the index registers.

The Processor Status Register-P

The 8-bit processor status register holds the states of seven one-bit flags or
"status" bits that are referenced by the 65C02 when it is executing many of
its instructions. (One bit in the processor status register, bit 5, is not used by
the 65C02.) Each of these flags has a specific meaning and can markedly affect
how instructions are executed. For example, the 65C02 supports a series of
"branch on condition" instructions (BCC, BCS, BPL, BMI, BEQ, BNE, BVC,
BVS), each of which can be used to examine the status of a particular flag
and to cause the program to "jump" to a new location if the condition is met
or to continue on with the next instruction in memory if it is not. (There is
also a "branch always" instruction, BRA, that will cause an unconditional
jump.)

Although almost all instructions will cause flags in the processor status
register to be adjusted after they have been executed, the following instruc
tions explicitly affect them:

• Clear and set the carry flag : CLC, SEC

• Clear and set the decimal flag : CLD, SED

• Clear and set the interrupt flag : CLI, SEI

• Clear the overflow flag : CL V

Let's take a look at each of these seven flags right now.

Carry Flag (C)

The 65C02 uses the carry flag in three quite different ways.
First, the carry flag represents the "ninth" bit in any unsigned addition

(ADC) or subtraction (SBC) operation that is performed. ("Unsigned" means
that all eight bits of a byte are used to represent the magnitude of a number.)
It can be examined after the addition or subtraction in order to determine
whether the result is outside the range of numbers that can be stored in the
8-bit accumulator. This allows for easy manipulation of numbers that use
more than one byte.

24 c=J Inside the Apple lie -------------------

The 65C02 can perform arithmetic in one of two modes: binary and decimal.
The mode used depends on the setting of the status register's decimal mode
flag (see below).

In binary mode, each byte is considered to represent a simple unsigned
binary number from 0 ... 255. When arithmetic operations are performed,
the standard rules for adding or subtracting two binary numbers are followed.

In decimal mode, however, each half of the byte is considered to represent
a single decimal digit from 0 to 9; this means that only those decimal numbers
from 00 ... 99 can be represented. When arithmetic operations are performed
on such numbers, the result is always stored in the same decimal format.

In either mode, before any arithmetic is performed, the carry flag must be
cleared with a CLC instruction, in the case of addition, or set with a SEC
instruction, in the case of subtraction. (If multibyte arithmetic is being per
formed, then the carry is adjusted only at the beginning of the sequence of
additions or subtractions.) If the state of the carry flag changes after an
addition operation, then the true answer is 256 (if in binary mode) or 100 (if
in decimal mode) more than the number in the accumulator. If the carry flag
changes after a subtraction, then the true answer is 256 (if in binary mode)
or 100 (if in decimal mode) less than the number in the accumulator.

The second use of the carry flag is as a ninth bit that participates whenever
the ASL, LSR, ROL, and ROR bit-shifting instructions are executed.

Third, the carry flag is used as a general-purpose flag that is acted on by
the BCC (branch if C-flag is clear, or 0) and BCS (branch if C-flag is set, or 1)
instructions. As with all of the 65C02's "branch on condition" instructions,
BCC and BCS allow control of the program flow to be manipulated by the
state of a flag in the processor status register (in this case, the carry flag).

Zero Flag (Z)

This flag is used to indicate whether the last data movement or arithmetic
operation involved a zero result. If it did, then the Z-flag will be set (1);
otherwise it will be cleared (0).

There are two branch instructions that examine the status of the Z-flag to
determine whether the branch should be performed: BEQ (branch if Z-flag is
1, that is, result was equal to zero) and BNE (branch if Z-flag is 0, that is,
result was not equal to zero).

Interrupt Disable Flag (I)

This flag is used to control how the 65C02 will react when the electrical
signal on its IRQ (interrupt request) pin is brought near 0 volts. Such an
interrupt can be generated by the Apple mouse or the lie's two serial ports
whenever they are ready to send information to, or receive information from,

-------------- 2 I The 65C02 Microprocessor CJ 25

the //c. If the I-flag is set using the SEI instruction, then all IRQ signals that
may be generated will be ignored. If, however, the I-flag is cleared using the
CLI instruction, then the 65C02 will respond to IRQ signals when they occur
by beginning a special interrupt sequence that is described in detail below in
the section entitled "65C02 Interrupts."

Decimal Mode Flag (D)

This flag is used to control how the 65C02 is to perform addition and
subtraction operations. If standard binary arithmetic is to be performed using
the ADC and SBC instructions, then this flag must be cleared to 0 using the
CLD instruction. As we saw when discussing the accumulator, in binary mode
bytes are treated as unsigned binary numbers from 0 to 255.

If, however, the D-flag is set to 1 using the SED instruction, all arithmetic
will be performed under the assumption that all numbers are stored in a
special decimal format. In this format, one byte is used to store exactly two
decimal digits from 0 to 9. The first digit is stored in the high-order four bits
and the other in the low-order four bits and the maximum number that can
be stored is 99. When arithmetic operations are performed, the results will
also be stored in this format.

Break Flag (B)

This flag is adjusted internally by the 65C02 whenever an IRQ (interrupt
request) interrupt is recognized by the 65C02 or a BRK (break) instruction is
executed. See the section below entitled "65C02 Interrupts" for more infor
mation on these types of interrupts. When an IRQ interrupt is recognized,
then the B-flag is cleared to 0; if a BRK instruction is executed, then it is set
to 1.

Whenever an IRQ or a BRK interrupt is generated, the 65C02 begins to
execute the same program (its address is held at locations $FFFE and $FFFF).
It is often convenient, however, to determine what the source of the interrupt
was so that a different action can be taken for each source. This is most easily
done by having the interrupt-servicing program examine the state of the B
flag.

Overflow Flag (V)

The overflow flag is used primarily when performing arithmetic operations
on signed numbers. Signed numbers are those that use bit 7 of a byte to hold
the sign of the number (1 for negative, 0 for positive). Bits 0 ... 6 are used to
store the magnitude of the number in a special "two's complement" format
that will be described in Chapter 4. If the result of an addition or subtraction
of two signed numbers is outside the range of numbers that can be stored in

26 c=J lnsidetheApple//c ----------------

this format (-128 ... + 127), then the V-flag will be set to 1; if the number is
in range, however, the V-flag will be cleared to 0.

The V-flag can be explicitly cleared by using the CLV instruction. Surpris
ingly, there is no corresponding instruction to explicitly set the V-flag.

The state of the V-flag can also be affected by using the BIT instruction. If
you "BIT" any memory location, then a copy of bit 6 of the byte stored there
will be placed in the V-flag.

Two branch instructions make use of the V-flag: BVS (branch if V-flag is 1)
and BVC (branch ifV-flag is 0).

Negative Flag (N)

The negative flag is used to indicate the sign of the last value that was
directly transferred into the A, X, or Y register or that was put there by an
instruction that performed an arithmetic operation (DEX, DEY, INX, INY,
ADC; SBC, and so on). The 65C02 considers any byte that contains a one in
bit 7 to be negative.

Two branch instructions make use of theN-flag: BPL (branch on plus, that
is, N-flag is 0) and BMI (branch on negative, that is, N-flag is 1).

A BIT instruction can also be used to directly affect the state of the N-flag.
When you "BIT" any memory address, a copy of bit 7 of the byte stored there
will be placed iri theN-flag. If bit 7 is used to hold the status of some condition,
then you can use BPL to branch if the status is off (0) or BMI to branch if it is
on (1). We will see in later chapters that the //c uses bit 7 of several locations
to represent the status of different hardware switches that can be controlled
by software.

The Stack Pointer-S

As we saw earlier in this chapter, the 65C02 uses the 256-byte area from
$100 to $1FF as a hardware stack. This is a "last-in, first-out" data area: the
most recent information stored on the stack is always removed first. Infor
mation is usually placed on the stack by the "push" instructions, PHA, PHP,
PHX, artd PHY, and removed from the stack by the "pull" instructions, PLA,
PLP, PLX, and PLY. (Information does not actually disappear after a pull, but
it will be overwritten as soon as more information is pushed on to the stack.)

The JSR Uump-to-subroutinennstruction also causes information to be
placed on the stack. When the JSR instruction is executed, the address of the
next instruction in memory after the JSR, minus one, is pushed on the stack
(high-order byte first). When the corresponding RTS (return-from-subroutine)
instruction is executed, this address is removed and the program resumes at
that address (plus 1).

-------------- 2 I The 65C02 Microprocessor c=J 27

The stack pointer register, S, is used to keep track of where in the 256-byte
stack area the bytes are to be pushed to or pulled from; it always points to
the next free space available in the stack area. When the system is first
initialized, Sis set equal to $FF. Then, whenever a byte is pushed on the stack,
it is stored at location $100+S and then the stack pointer is decremented by
one. Because Sis decremented, the stack grows downward in memory. When
bytes are pulled from the stack, they are taken from the top of the stack
(location $100+S+ 1). The stack pointer is automatically incremented each
time a byte is removed from the stack in this way.

Interrupt conditions and interrupt-related instructions also affect the stack
pointer (see the section below entitled "65C02 Interrupts" for a detailed
discussion of interrupts). When an interrupt is recognized, a two-byte address
and a copy of the processor status register is placed on the stack and the stack
pointer is decremented by three. When the corresponding R TI (return-from
interrupt) instruction is executed, the three bytes on top of the stack will be
placed in the status register and the program counter and the stack pointer
will be incremented by three.

Here are the 65C02 instructions that directly affect the stack pointer reg-
ister:

• Inter-register transfer: TXS, TSX

• Push data on stack: JSR, PHA, PHP, PHX, PHY, BRK

• Pull data from stack: PLA, PLP, PLX, PLY, RTS, RTI

The Program Counter-PC

The program counter (sometimes called the instruction pointer) is the only
16-bit register that the 65C02 supports and is used to hold the address of the
next instruction to be executed. This address will normally be that of the next
instruction in the program, but not necessarily. There are several instructions
that can be used to manipulate the flow of the program and to pass control
to other parts of the program by adjusting the program counter accordingly.
These are the JMP Uump) instruction, which acts like an Applesoft GOTO, the
JSR Uump-to-subroutine) and RTS (return-from-subroutine) instructions, which
act like an Applesoft GO SUB/RETURN combination, the branch-on-condition
instructions (BCC, BCS, BEQ, BNE, BPL, BMI, BVC, BVS), and the branch
always (BRA) instruction. The program counter is also affected by any hard
ware or software interrupt (BRK) and by the RTI (return-from-interrupt)
instruction.

65C02 Addressing Modes

A complete 65C02 instruction is either one, two, or three bytes long. The
first byte always represents the operation code (" opcode") for the instruction

28 c:::J lnsidetheApple//c ----------------

itself and the remaining bytes (if any) represent the operand; if an operand is
specified, it is either an address (one byte or two bytes) or immediate data
(one byte). If the operand represents a two-byte address, then the first byte is
always the lower two digits of the four-digit hexadecimal address (the allow
able addresses are in the range $0000 to $FFFF).

An address that is specified after an opcode is not necessarily the address
from which the instruction will read data or to which it will store data. In
many instances, the 65C02 uses this address to calculate another address
(called the "effective address") on which it does operate. Exactly how this
calculation is to be performed depends on which of several "addressing modes"
that can be used by that instruction has been selected. The 65C02 determines
which addressing mode has been selected by examining the value of the
opcode itself-each general type of instruction can have several opcode values
associated with it, one for each valid addressing mode. The value of the opcode
also dictates whether the operand is to be interpreted as immediate data
instead of an address.

We will now outline the various addressing modes that the 6SC02 supports.
Before beginning, you should note that not all instructions are permitted to
use each addressing mode. The ones that are supported by each instruction
are indicated by entries in Table 2-2. The names of each of the addressing
modes that the 65C02 uses, and the operand formats used to represent these
modes in an assembly-language program, are summarized in Table 2-3. Note
that these operand formats are those used by the Merlin Pro assembler that
was used to develop the examples presented in this book; other assemblers
may require that slightly different formats be used.

Immediate
Immediate addressing is used whenever you want an instruction to act on

a specific 8-bit number provided by the program rather than on a byte stored
somewhere in memory. This 8-bit number is stored in the byte immediately
following the opcode itself and forms the operand for the instruction.

The immediate addressing mode is most useful for initializing a register to
a constant value and for providing specific data on which an instruction is to
operate. To select this addressing mode when using an assembler, the "#"
symbol must be placed in {ront of the number in the instruction's operand:

LDA #49 load the accumulator with 49 (decimal)
L D X # $ 4 3 load X with $43 (hexadecimal)

It is often necessary to deal with the high-order or low-order byte of a two
byte address as an immediate quantity. To do this, you must use an assembler
operand of the form "#<ADDRESS" (for the low-order byte) and
"#>ADDRESS" (for the high-order byte), where "ADDRESS" is the address
being dealt with. Note, however; that the form of this type of operand applies
to the Merlin Pro assembler only; most other assemblers require that a dif-

-------------- 2 I The 65C02 Microprocessor [=:J 29

Table 2-3. 65C02 addressing modes and assembler operand formats.

Addressing
Mode

Immediate

Absolute

Accumulator

Implied

Indexed indirect

Indirect indexed

Absolute indexed

Relative*

Absolute Indirect

Assembler Operand Format

#num
#<abs
#>abs

abs
zpage

[Not applicable]

[Not applicable]

(zpage,X)
(abs,X)

(zpage),Y

abs,X
abs,Y
zpage,X
zpage,Y

disp

(abs)
(zpage)

Notes: "num" 1-byte number
"abs" 2-byte address

Example of
Instruction

LDA #$45
LDA #<$FD1B
LDA #>$FD1B

LDX $FE44
LDA $24

ASL

CLC

LDA ($E0,X)
JMP ($2000,X)

STA ($28),Y

LDA $2000,X
STA $0400,Y
LDA $28,X
STX $22,Y

BNE $BEAF

JMP($03EE)
STA ($E0)

"<abs" low-order byte of a 2-byte address (or constant)
">abs" high-order byte of a 2-byte address (or constant)
"zpage" 1-byte zero page address
"disp" 1-byte signed displacement

*Relative addressing: An absolute address is usually specified in the operand in the
program source code; the assembler converts the operand to a one-byte displace
ment to this address when the program is assembled.

ferent method be used to specify which half of an address is to be dealt with.
One assembler, the Apple 6502 Editor/Assembler, uses the same general method,
but it reverses the meaning: "#>" is used to specify the low-order byte and
"#<"is used to specify the high-order byte!

Absolute

The absolute addressing mode is used whenever the operand itself contains
the address in memory on which the opcode is to operate. The two bytes
required to store this address are stored low-byte first.

30 c=J Inside the Apple //c ----------------

Here are some examples of how to use the absolute addressing mode:

LDA $FE43 load the accumulator with the number stored at $FE43

STY $1 238 store theY register at location $1238

Some instructions support an important variant of the absolute addressing
mode, called zero page absolute, if the address specified is in the 65C02 zero
page (the first 256 bytes of memory). This mode is identified by a different
opcode byte. In this mode, the opcode is followed by a one-byte address only
because the high-order byte is implicitly zero. Most assemblers will recognize
when a zero page location is being specified and will automatically select this
addressing mode for you by changing the value of the opcode byte used by
the instruction when the program is assembled.

Accumulator

Accumulator addressing is the mode used by all those opcodes that act on
the accumulator alone and that require no address or immediate data on
which to operate. These are the DEA and INA instructions and the bit-shifting
instructions LSR, ASL, ROL, and ROR. There are no operand bytes for these
instructions. Note, however, that some assemblers other than Merlin Pro
(notably, the Apple 6502 Editor/Assembler) require that the letter "A" be
entered in the operand field before the program source code can be properly
assembled.

Implied

The 65C02 supports many opcodes that do not act on immediate data or on
memory locations, but rather on internal registers and status flags only. These
opcodes require no operands because their actions are implicitly defined by
the opcode itself and so the addressing mode used is called implied.

Here are some examples of opcodes that use the implied addressing mode:
PHA, PLA, PHP; PLP, CLD, CLI, BRK, DEX, INX, NOP, RTS, TAX.

Zero-Page Indexed Indirect

When the zero-page indexed indirect addressing mode is used, the operand
is only one byte long and represents a locati<m-~ z~ero page. The effective
address on which the instruction acts is calculated b~rst adding the contents
of the X register to the zero page location specified in\ the operand to obtain
a resultant address. The effective address is represented by the two bytes that
are stored at the resultant zero-page address and the very next address (low
order byte first).

-------------- 2 I The 65C02 Microprocessor c=J 31

For example, if X is 3 and the zero-page address is $E0, then the effective
address is stored at $E0 + 3 (low-order part) and $E0 + 4 (high-order part).

You can select this addressing mode when using an assembler by using an
instruction of the form

STA C$Eia,X)

where the parentheses indicate that the effective address is not $E0 +X but
rather the address stored at that location.

Zero.;.Page Indirect

The zero-page indirect addressing mode is unique to the 65C02 and is not
available on the 6502. The operand is one byte long and represents a location
in zero page. The effective address is simply the address that is stored at this
location and the very next one. Thus the zero-page indirect mode is the same
as the zero-page indexed indirect mode, but without the X indexing.

An assembler uses an instruction of the form

STA C$Eia>

to indicate that the zero-page indirect mode is to be used.

Indirect Indexed

Indirect indexed is a powerful addressing mode that is often used to access
a block of memory that may not always begin at the same location in memory
or that is longer than 256 bytes in length. The operand is one byte long arid
represents a zero page location; this zero page location, and the one imme
diately following it, contain the address (low-byte first) of the beginning of a
data block in memory. These locations are said to "point to" this data block.

When this addressing mode is used, the effective address on which the
instruction is to operate is calculated by first taking the address of this data
block from the zero page locations and then adding to it the contents of the
Y register.

Here is an example of how you would select the indirect indexed addressing
mode when using an assembler:

LOA C$2G>,Y

The parentheses around $26 mean "contents of"; it is the address stored at
$26 (and $27) that will be used to calculate the effective address, and not $26
itself. If theY-register contains $FE and the address $400 is stored at $26/$27
($00 in location $26 and $04 in location $27), then the accumulator will be
loaded with the contents of memory location $4FE ($4FE = $400 + $FE).

32 c=J Inside the Apple //c -----------------

Absolute Indexed

The operand for the absolute indexed addressing mode is two bytes long
and contains the absolute address of a memory location called a "base address."
The effective address on which the instruction is to operate is calculated by
taking this base address and adding to it the contents of the X register (if X
indexing is selected) or of theY register (if Y indexing is selected).

Here are some examples of the use of this addressing mode:

LDA $4 0 0 , X load the accumulator with the contents of the location
specified by $400 +X.

S T A $ A 0 3 2 , Y store the accumulator at the location specified by
$A032+ Y

There is a special version of this addressing mode, called zero page abso
lute indexed, that can be used by some instructions when the base address
is in page zero. In this case, the operand is only one byte long and represents
this zero page address. Most assemblers will automatically select this
addressing mode for you if the operand is, indeed, in page zero.

Relative

The 65C02 supports a series of two-byte branch instructions that examine
the 65C02 status register to determine whether a change in the flow of the
program should be made or not: BEQ, BNE, BPL, BMI, BCC, BCS, BVC, and
BVS. Another instruction, not available on the 6502, BRA, can be used to
unconditionally change the flow of the program.

The first byte represents, as usual, the opcode for the instruction. The second
byte represents the number that must be added to the address of the next
instruction in memory in order to calculate the destination address of the
branch. Because this byte represents a displacement from an instruction's
location rather than an absolute location, this addressing mode is called
"relative."

There are restrictions on how far you can branch using relative addressing.
In particular, you can only specify a relative address that is at most 127 bytes
higher in memory or 128 bytes lower in memory (as measured from the
address of the next higher instruction). Values from $00 ... $7F represent the
positive branches (0 ... 127), and values from $80 ... $FF represent the neg
ative branches (-128, -127, ... , -1). Note that the values for negative branches
are stored in a special" two's complement" format; see Chapter 4 for a detailed
description of this format.

If you must transfer control to a destination location that is outside this
range, you will have to use a JMP instruction instead.

-------------- 21 The 65C02 Microprocessor c:=::J 33

Absolute Indirect

This addressing mode is used by only one instruction, JMP. A two-byte
operand is used and these two bytes define a location in memory that contains
the low half of the address that is to be jumped to; the high half is stored in
the next memory location.

If you are using an assembler, then you would select this addressing mode
by entering an instruction that looks like this:

JMP ($1234)

The parentheses around the operand indicate that it is not $1234 that is
being jumped to but rather the address stored at $1234 (and $1235).

The absolute indirect addressing mode is useful in situations where the
ultimate destination of the jump instruction may be changed, perhaps by
another program. Even if this other program places a new address at the
operand address, the main program itself need not be changed. On the other
hand, if the absolute addressing mode were used instead, then it would be
necessary to modify the program and this may be difficult to do. The lie uses
the indirect addressing mode whenever it has to jump to its character input
or output subroutines. Whenever new input or output devices are activated,
all that need be done is to change the address stored at the address specified
in the operand-the main program will remain the same (see the discussion
of the lie's input and output links in Chapters 6 and 7).

Absolute Indexed Indirect

The absolute indexed indirect addressing mode is the other mode that is not
available on the 6502. It works with the JMP instruction only and is of the
form:

JMP ($1234,X>

The effective address that is jumped to is the one stored beginning at an
address that is equal to the address specified in the operand plus the contents
of the X-register.

65C02 Input/Output Handling

Unlike the instruction sets of some microprocessors, the 65C02 instruction
set does not include any instructions that are specifically designed to perform
input/output (110) operations like reading from the keyboard or writing to the
video screen. Instead, all 1/0 operations are performed by using standard
instructions to read data from or write data to addresses within the 65C02's
standard 64K address space to which 1/0 devices are "connected." These
addresses do not usually represent real RAM or ROM memory locations

34 c=J Inside the Apple //c -----------------

(memory that holds video display information is one exception) but, never
theless, are accessed in exactly the same way as if they did.

This method of handling 1/0 is called "memory-mapped 110" because the
1/0 devices form a logical part of the 65C02's 64K memory space itself and so
no special instructions are required to make use of them. The //c corttains
several addresses that are used to control various aspects of its hardware
environment. As we will see at the end of this chapter, except for those
addresses that relate to the video display, these addresses are all mapped to
locations from $C000 ... $C0FF. Note that some of these 1/0 locations can be
accessed in order to switch between one of two hardware states, for example,
text or graphics display, primary or alternative character set, and 40-column
or 80-column display. Thus, they are called "soft switch" 1/0 memory loca
tions.

65C02 Interrupts

There are three input pins on the 65C02 integrated circuit that are called
RESET, IRQ (interrupt request), and NMI (non-maskable interrupt); When
the electrical signals at each of these three pins is high (near + 5 volts) the
65C02 goes about performing its normal functions. If, however, one of these
pins is suddenly brought low (near 0 volts), one of three special "interrupt"
sequences may begin, depending on which pin has been affected. An interrupt
sequence can also be generated in software by using the 65C02 BRK (break)
irtstruction.

We won't concern ourselves with NMI interrupts because they are not used
on the //c. ·

RESET interrupts can be generated in three different ways on the //c: when
the power is turned on, when [control-RESET] is pressed, and when [control
OPEN-APPLE-RESET] is pressed. (See Chapter 6.) RESET signals are usually
used to initialize the system to its power-on state or to break out of a running
program.

IRQ interrupts are usually generated by I/0 devices whenever they have
information available to be read (input devices) or whenever they are ready
to receive information (output devices). Generally speaking, wheri the 65C02
detects an IRQ signal, it stqps executing the main program and starts exe
cuting a special interrupt-handling subroutine that has been installed. When
this subroutine finishes, control returns to the main program at the point
where it was inten"Upted and execution of that program continues.

Since the 65C02 cari be interrupted like this, it is not necessary for the main
program to continuously monitor (or "poll") the 1/0 devices to determine
when one is ready to be dealt with. This means that the program can execute
much more quickly and efficiently.

-------------- 2 I The 65C02 Microprocessor c:=J 35

IRQ interrupts may be generated on the //c in any of the following circum
stances:

• When the mouse is moved. (See Chapter 10.)

• When a video vertical blanking signal occurs. (This occurs every 1/60th
of a second; see Chapter 10.)

• When a serial port is ready to send or receive data. (See Chapter 11.)

• When the state of the signal on pin 5 of either of the two serial ports
changes. (This is the serial device's "data carrier detect" (DCD)'line; see
Chapter 11.)

• When a key is pressed or released. (See Chapter 11.)

• When the state of the signal on pin 9 of the external disk drive connector
changes. (This is called the "external interrupt" line; see Chapter 11.)

Each type of 65C02 interrupt is associated with a two-byte vector that holds
the address of the interrupt-handling subroutine that will be called when the
interrupt occurs. These vectors are all stored in the high end of of the 65C02
memory space from $FFFA to $FFFF. The specific vector locations for each
type of interrupt and the addresses of the interrupt-handling routines to which
they point are shown in Table 2-4. Note that all of the vector addresses change
when ProDOS is being used. Most of ProDOS resides in a special "bank
switched RAM" area from $0000 ... $FFFF that is normally occupied by
Applesoft and the system monitor ROMs (see Chapter 8). Thus, the interrupt
vectors within this RAM area (from $FFFA to $FFFF) can be changed as desired

. and they will take effect whenever bank-switched RAM is active.

The interrupt-handling routines on the //c ultimately pass control to other
addresses that are specified in user-definable vector locations. These user
vector locations are also shown in Table 2-4. Note that a user-defined interrupt

Table 2-4. 65C02-Apple //c interrupt locations.

Interrupt Type

RESET
IRQ
BRK

Interrupt
Vector Location

$FFFCI$FFFD
$FFFE/$FFFF
$FFFEI$FFFF

Address of
Interrupt Handler

$FA62 or $FFCB
$C803 or $FF9B
$C803 or $FF9B

Location of
User Vector

$03F2*
$03FE
$03F0

Lwhen the ProDOS
bank-switched
RAM area is active
only

*Control is passed to the Reset user vector only if the number stored at $3F4 (the
powered-up byte) is equal to the logical exclusive-OR of the number stored at $3F3
and the constant $AS. ~ ·

36 CJ Inside the Apple //c ------------------

subroutine that is used to handle interrupts generated by an IRQ signal, or a
BRK command, must end by executing an RTI (return-from-interrupt). Fail
ure to do this will cause the system to crash in an unpredictable way.

The three basic types of interrupts supported by the 65C02 on the Apple //c
will now be discussed in detail.

Reset Interrupt

The reset interrupt is used to cause the system to stop executing the current
program and to begin a sequence of instructions that start at the address
stored in the reset vector at $FFFCI$FFFD (low-order byte first). On the lie,
the reset vector points to a subroutine beginning at $FA62 (the ProDOS reset
vector actually points to another subroutine that ultimately calls $FA62). This
subroutine takes care of initializing the lie to a known state and will pass
control to a user-definable subroutine whose address is stored at $3F2 and
$3F3 (low-order byte first) if the logical exclusive-OR of the value stored at
$3F3 and the constant $AS is the same as the value stored at $3F4 (which is
called the powered-up byte). If it isn't, then the disk drive will start up just
as it does when the lie is first turned on.

The reset interrupt is automatically generated whenever the power to the
65C02 is first turned on. As we will see in Chapter 6, it can also be generated
by pressing the CONTROL and RESET keys on the lie's keyboard at the same
time. Specific examples of "trapping" the reset interrupt by adjusting the
user vector at $3F21$3F3 and the powered-up byte at $3F4 will also be given
in Chapter 6.

A reset interrupt is normally used only in panic situations where the pro
gram that is running must be stopped immediately or when you are running
programs that do not have an exit command.

Interrupt Request (IRQ)

The 65C02 will only respond to an active IRQ interrupt signal if the I-flag
in the processor status register is 0 (this flag is cleared using the CLI instruc
tion). If the I-flag is set to 1 (using the SEI instruction), then the IRQ signal
will be ignored and no further IRQ interrupts will be dealt with until after
the I-flag is cleared.

If the I-flag is 0 and an active IRQ signal is generated, then the 65C02
responds by first completing the current instruction being executed. The
following sequence of events then takes place:

• The current program counter is stored on the stack. (This will be the
address, less 1, of the next instruction in the program to be executed after
the interrupt has been dealt with.)

-------------- 2 I The 65C02 Microprocessor c=J 37

• The B-flag in the processor status register is cleared to 0 and then the
register is stored on the stack.

• The I-flag in the processor status register is set to 1. (This disables sub
sequent IRQ operations until the current interrupt is dealt with; see
below.)

After these operations have been performed, the program counter is loaded
with the address that is stored in the IRQ vector at $FFFE/$FFFF (low-order
byte first), and then the interrupt-handling program that begins at that address
is executed. The address stored in the IRQ vector on the //cis usually $C803,
or if ProDOS is processing data when the interrupt occurs, at $FF9B; the
ProDOS subroutine simply does a bit of housecleaning before 'calling $C803
itself.

The subroutine beginning at $C803 first determines whether the source of
the interrupt was an IRQ signal or a BRK instruction (BRK is discussed in
the next section). If the source was an IRQ signal, the subroutine calls two
ROM subroutines that are used to handle mouse port and serial port inter
rupts. These subroutines will either handle the interrupt internally or pass
control through to your own interrupt-handling subroutine, depending on the
values stored in certain memory locations. We will see how to manipulate
mouse port and serial port interrupts in Chapters 10 and 11.

If the interrupt is not handled internally by the //c, then control will pass
to the address stored at user vector locations $3FE and $3FF. Thus, to properly
handle an IRQ interrupt, an interrupt-handling subroutine must be placed in
memory and its starting address must be stored at $3FE/$3FF. This subroutine
must pass control back to the main program by ending with an RTI (return
from interrupt) instruction. (Alternatively, if ProDOS is being used, you can
install your interrupt-handling routine by using a special ProDOS interrupt
command. See Apple's ProDOS Technical Reference Manual for more infor
mation on this feature of ProDOS.)

The BRK Instruction

One of the 65C02's instructions allows you to simulate the effect of an IRQ
signal in software. This is the one-byte BRK (break) instruction represented
by a "00" byte. BRK is primarily used when debugging a program because
when a program encounters it, control is directed to a user-definable subrou
tine that can display information relating to the state of the program at that
particular point. For example, the contents of important memory locations
and of the 65C02 registers can be displayed. If the state is not as expected,
then you can start bug-hunting.

Whenever the 65C02 encounters a BRK instruction, the B-flag in the pro
cessor status register is set to 1 and then an interrupt sequence much like the
one generated by an IRQ signal is started (the main difference is that the

38 c=J Inside the Apple //c -----------------

address stored on the stack is the address of the BRK instruction plus two).
Since the address of the interrupt-handling routine used is the same one used
for IRQ interrupts, that routine should properly check the status of the B-flag
to determine what caused the interrupt. In fact, this is what is done on the //c.
Once the //c determines that the interrupt was caused by a BRK instruction,
control is passed to the address stored at the user vector locations $3F0 and
$3Fl (low-order byte first). This vector usually contains $FA59, the address
of the subroutine that displays the current contents of all the registers, but
can be changed to point to any other interrupt-handling routine that you care
to use.

The 65C02 Memory Space on the //c

In this section, we are going to take a look at the layout of the memory
space that is available to the 65C02 as implemented on the //c. This memory
space can be thought of as being composed of three general parts: RAM, ROM,
and input/output (110) memory addresses. The lie's main RAM memory map
is shown in Figure 2-3. Its ROM and 110 memory map is shown in Figure 2-4.

In the following sections, we will encounter several situations where the
same logical memory address is used by more than one actual physical mem
ory location. The lie uses a set of special "soft switches" to select which of
these locations is to be active at any given time. (A "soft switch" is a memory
location that, when accessed from a software program, causes a change in the
lie's hardware environment.) This is necessary because the 65C02 would become
hopelessly confused if several locations sharing the same address were active
at the same time. We will be looking at the soft switches that the lie uses to
manage its memory space in Chapter 8.

RAM Memory

The area of RAM memory that is most often used on the lie is that part of
"main" (as opposed to "auxiliary") memory that extends from locations $0000
to $BFFF. As indicated in Figure 2-3, some regions within this range are
dedicated for special uses. Here is a summary of the usage of the main RAM
memory locations:

• $0000-$00FF. This is the 65C02 zero page and it is used extensively by
all parts of the lie's operating system, including the system monitor (see
Chapter 3), the Applesoft interpreter (see Chapter 4), and the disk oper
ating system (see Chapter 5). Those locations available for use by your
own programs are shown in Table 2-5.

• $0100-$81FF. This is the 65C02 stack area and is also used for temporary
data storage by the Applesoft interpreter. (See Chapter 4.)

________;....._.:,.... ___ 2 I The 65C02 Microprocessor c::J 39

$FFFF

$F000 t------t

$E000 1--------1 .--------.,

$Dx BANK1 $Dx BANK2
$0000 L..-----'_ __ ~

$BFFFn
$600 0

$400 0

$2000

'~ $0Cf60
$081110
$04016
$0200

,..,..

j

$0000

HIGH-RES
PAGE2

HIGH-RES
PAGE1

-TEXT/LOW-RES PAGE2
~TEXT I LOW-RES PAGE1
~ZERO PAGE and STACK

Figure 2·3. Memory map of main RAM.

• $8288-$82FF. This area of memory is normally used as an input buffer
whenever character information is entered from the keyboard or from
diskette. (See Chapter 6.)

• $8388-$83CF. This area of memory is hot used by any of the built-in
programs in the //c and so is available for use by your own programs. It
is an ideal location for storing small assembly-language programs that
are called from Applesoft and most of the examples presented in this
book are to be loaded here.

e $83D8-$83FF. Portions of this area of memory are used by the disk
operating system, Applesoft, and the system monitor for the purpose of
storing position-independent vectors to important subroutines that can

40 [=::J Inside the Apple //c _..;,_ ______________ _

$FFFF

$F800

$F000

$E000

$0000

$C100

$C000

STANDARD
SYSTEM MONITOR

APPLESOFT
INTERPRETER

EXTENSIONS TO SYSTEM
MONITOR AND SUPPORT
SUBROUTINES FOR THE
BUILT-IN 1/0 DEVICES

1/0 MEMORY

Figure 2-4. Memory map of ROM and 1/0 memory.

be located anywhere in memory (such as interrupt-handling subrou
tines). See Appendix IV for a complete description of how this area is
used.

• $0400-$07FF. This is pagel of video memory that is used for displaying
both the primary text screen and the primary low-resolution graphics
screen. (See Chapter 7 .) It is also used for displaying one-half Qf the text
screen when in 80-column mode. Note that there are 64 bytes in this area
that are not actually used for the video display; they are called "screen
holes" and are used for data storage by the lie's built-in 1/0 devices.

• $0800-$0BFF. This is page2 of video memory that is used for displaying
both the secondary text screen and the secondary low-resolution graphics
screen. (See Chapter 7 .) Since page2 is rarely used, this area of memory
is normally used for programstorage; in fact, the default starting position
for an Applesoft program is $801.

• $0C00-$1FFF. This area of memory is free for use.

• $2000-$3FFF. This is pagel of video memory that is used for displaying
the primary high-resolution graphics screen. (See Chapter 7 .)

------------- 2 I The 65C02 Microprocessor c=J 41

• $4000-$5FFF. This is page2 of video memory that is used for displaying
the secondary high-resolution graphics screen. (See Chapter 7 .)

• $6000-$BFFF. This area of memory is normally free for use. However,
the upper part of it (above $9600) will be used if a disk operating system
is installed. (See Chapter 5.) ·

Main memory also contains an additional 16K of RAM memory that is
located from $0000 to $FFFF (the 4K block from $0000 to $0FFF is dupli
cated). The ProOOS disk operating system occupies most of this area and so
it cannot be safely used by other programs. This 16K area is called bank
switched RAM and will be discussed in detail in Chapter 8.

The lie also comes with64K of "auxiliary" RAM memory that can be used
for program and data storage. This memory occupies the same address spaces
as the 64K of main RAM memoryl\nd so can be thought of as a ''twin'' memory
space. There are slight differences, however, in how some of the areas within
this memory are interpreted. For example, the two memory areas correspond
ing to the page2 video areas in main memory are not reserved for those
purposes in auxiliary memory. Furthermore, the two areas corresponding to
pagel video areas are not used for video display purposes unless 80.column
text mode is active or unless a double-width graphics mode is active. These
differences will be discussed in greater detail in Chapter 7.

Input/Output (110) Memory

The lie's 110 memory space corresponds to those addresses from $C000 to
$C0FF. Although these addresses may be read from or written to in exactly
the same way as normal RAM or ROM memory locations, there is no memory
stored at these locations. Instead, whenever these locations are accessed, a
physical change in the system can be effected (for example, the graphics
display can be turned on, the character set can be changed, or the disk drive
motor can be turned on), the status of an 110 device can be read, or data can
be transferred to or from the I/O device. This method of handling 110 oper
ations is called memory-mapped 110. ·

For example, consider the lie's keyboard. The keyboard has been wired into
.. the system in such a way that it can be be controlled by using the locations
$C000 and $C010. (See Chapter 6.) To determine whether a key has been
pressed, address $C000 is examined; if bit 7 at this "location" (the keyboard
strobe bit) is 1, then a key has indeed been pressed. Address $C010 is accessed
to clear the keyboard strobe bit. Even though an address is accessed in order
to read and clear the keyboard, there is no memory chip on the lie that
corresponds to this address.

All of the lie's 110 memory locations will be discussed in later chapters. A
summary of the meaning of each ofthese locations is contained in Appendix
Ill.

42 C:=J lnsic!e the Apple //c -----------------

Table 2-5. 65C02 zero page locations not used by the system monitor,
Applesoft, or ProDOS.

A vallable Locations:

$06 $07 $08 $09
$19 $1A $18 $1C $10 $1E
$CE $CF
$07
$E3
$EB $EC $ED $EE $EF
$FA $FB $FC $FD $FE $FF

ROM Memory

As you can see from Figure 2-4, ROM memory on the //c extends from
locations $C100 to $FFFF. Here is a summary of ROM memory usage:

• $C100-$CFFF. This ROM area contains extensions to the system monitor
and subroutines to support the 80-column text display, the printer port,
the modem port, the mouse, and the disk drive.

• $D000-$F7FF. This is the Applesoft ROM space. (See Chapter 4.)

• $F800-$FFFF. This is the standard system monitor ROM space. (See
Chapter 3.)

The permanent programs contained within these ROM areas are often
called "firmware" to distinguish them from "software" that is loaded into
RAM memory from a diskette. ·

Note that the addresses used by the Applesoft and system monitor ROMs
($0000 ... $FFFF) are the same as the ones used by the lie's bank-switched
RAMspace. \

Further Reading for Chapter 2

On 6502 assembly-language programming ...

MCS6500 Microcomputer Family Programming Manual, MOS Technology,
Inc., 1976. This book comes straight from the manufacturer of the original
6502 microprocessor.

R. Zaks, Programming the 6502, Sybex, 1978.

L.A. Leventhal, 6502 Assembly Language Programming, Osborne/McGraw
Hill, 1979.

-------------- 2 I The 65C02 Microprocessor c=J 43

M.L. deJong, Programming & Interfacing the 6502, With Experiments,
Howard W. Sams & Co., Inc., 1980.

D. Inman and K. Inman, Apple Machine Language, Reston Publishing Com
pany, Inc., 1981.

R. Wagner, Assembly Lines: The Book, Softalk Books, 1982.

R.C. Haskell, Apple II 6502 Assembly Language Tutor, Prentice-Hall Inc.,
1983.

On the 65C02 microprocessor ...

S. Hendrix, "The CMOS 65C02", Byte, December 1983, pp. 443-452. This
article reviews some of the limitations of the 6502 and introduces the
new 65C02 microprocessor.

On machine cycle time ...

S. Wozniak, "Impossible Dream: Computing e to 116,000 Places With a
Personal Computer", Byte, June 1981, pp. 392-407. This article has inter
esting comments on the 6502's effective machine cycle time on the Apple
II (it's the same on the //c).

On memory usage by the 6502/Apple II ...

W.F. Luebbert, What's Where in the Apple, Micro Ink, Inc., 1982. This book
contains a comprehensive memory map for the Apple II.

Assemblers (software) ...

The following assemblers operate in ProDOS:

G. Bredon, Merlin Pro, Roger Wagner Publishing, Inc., 1984.

G. Bredon, BIG MAC.C, A.P.P.L.E., 1984. This assembler is identical to
Merlin Pro but is available to members of A.P.P.L.E. (Apple Pugetsound
Program Library Exchange) only.

ProDOS Assembler Tools, Apple Computer, Inc., 1983.

The following assemblers operate in DOS 3.3:

B. Sander-Cederlof, S-C Macro Assembler, S-C Software Corporation, 1983.

R. Hyde, LISA, Lazerware, 1981.

G. Bredon, Merlin Pro, Roger Wagner Publishing, Inc., 1984.

3
The System Monitor

The system monitor is a machine-language program that resides in the
lie's ROM area and whose "cold-start" entry point to a special command
interpreter is located at $FF59. It is called a "monitor" because it supports
several commands that allow you to quickly and easily view and modify the
contents of memory locations, programs loaded into memory, or 65C02 reg
isters. In addition, commands are available that can be used to run programs,
to assist in the debugging of programs, and to perform general housekeeping
functions (such as data movement or data comparison).

The subroutines that make up the system monitor take up two large parts
of the lie's ROM area. The first part resides from $F800 to $FFFF and the

.. second part from $C100 to $CFFF. Generally speaking, the first part is com
parable to the standard system monitor ROM that resided at the same loca
tions in the earlier Apple 1/e, Apple II Plus, and Apple II computers; the code
is not identical, but virtually all of the starting addresses for its commonly
used subroutines are the same as on older models. The internal ROM area
from $Cl00 to $CFFF provides the additional space needed for the longer
subroutines required to support the lie's 80-column video display. It also
holds the support subroutines for the built-in printer, modem, mouse, and
disk drive interfaces.

The subroutines contained within the system monitor perform most of the
fundamental input/output (110) tasks needed to support programs running on
the //c. Such tasks include reading a character from the keyboard, displaying
a character on the video screen, displaying graphics on the video screen, and
reading game controller input. Other subroutines required to support the
monitor commands themselves are also found here, of course. In addition,
there are numerous utility subroutines used by the code performing these
tasks and commands. In the last section of this chapter, we will identify some
of the more useful subroutines that can be accessed from Applesoft by using
the CALL command or from assembly language by using the JSR (jump-to
subroutine) or HdP (jump) instructions.

The usefulness of the system monitor is greatly enhanced by the fact that,
being in ROM, its subroutines and command interpreter are always easily
accessible. There are three main entry points to the system monitor command
interpreter-OLDRST ($FF59), MON ($FF65), and MONZ ($FF69)-and con-

45

46 c:=:J Inside the Apple //c ----------------

trol can be passed to them from Applesoft direct mode by entering the com
mands "CALL -167," "CALL -155," and "CALL -151," respectively. (Note
that Applesoft considers a "negative" decimal address to be equivalent to the
standard positive address minus 65536; for example, $FF69 can be repre
sented as 65385 or 65385-65536 = -151.) After this has been done, the system
monitor prompt symbol (the asterisk-"*") will appear and you can begin to
enter any of the commands that the system monitor supports (or, if ProDOS
is active, any valid ProDOS commands).

The //c reacts slightly differently to each of the above three CALLs to its
standard entry points. The cold-start entry point, OLDRST (-167), will ini
tialize "normal" video mode (white characters on a black background), select
the full-screen text video mode, and then enable the standard keyboard input
and video screen output subroutines. It also deactivates the//c's disk operating
system (ProDOS) so that it must be reactivated before returning to Applesoft
(see the discussion below of the BASIC and CONTINUE BASIC commands).
After this has been done, control passes to the primary warm-start entry
point, MON (-155), where the 65C02's decimal mode fhig is cleared (to force

·binary arithmetic) and the speaker is beeped. Control then passes to the
secondary warm-start entry point, MONZ (-151), which takes care of setting
up the"*" prompt symbol and interpreting commands that are entered from
the keyboard. MONZ (-151) is the entry point that is most commonly used to
enter the system monitor command interpreter.

The System Monitor Commands

The commands that the system monitor supports are summarized in Table
3-1. Before we take a detailed look at these commands, let's review the general
command entry rules that must be followed.

First of all, the system monitor "thinks" in hexadecimal. This means that
it displays all addresses or data in a standard hexadecimal format and that
all information must be provided to it in this format as well. Decimal numbers
cannot be used.

Addresses (from $0000 ... $FFFF) must normally be specified as four hex
adecimal digits but leading zeros may be omitted if you wish. If an address
is entered that is longer than four digits, only the last four digits specified are
used. Similarly, byte values (from $00 ... $FF) must normally be specified as
two hexadecimal digits but, again, a leading zero may be omitted. If more
than two digits are specified for a byte value, only the last two are used.

The DISPLAY Command : Displaying the Contents of
Memory

After you have entered the system monitor, you can quickly read and display
what is stored in any particular memory location by simply entering the

---------------- 3 I The System Monitor c=J 47

Table 3-1. Summary of System Monitor Commands.

Command Name

DISPLAY

STORE

MOVE

VERIFY

EXAMINE

GO

LIST

NORMAL

INVERSE

ADD

SUBTRACT

BASIC

Syntax Description

add r 1 . add r 2 Displays the contents of
memory from "addrl" to
"addr2".

add r 1 : b 1 b 2 . . . Stores the values of bytes
"b1", "b2", ... into
memory locations begin
ning at "addrl".

addr3<addr 1 . addr2M Moves the block of mem
ory from ''addr1'' to
"addr2" to the block
beginning at "addr 3".

addr3<addr1.addr2V Compares the block of
memory from '' addr 1 '' to
"addr2" to the block
beginning at "addr3" and
displays any differences.

[con t r o 1- E J Displays the values to be
stored in the 65C02 reg
isters when "G" is used.
Follow EXAMINE with
STORE to set these val
ues.

addr1G

addr1L

N

b1+b2

b1-b2

[control-BJ

Runs the program begin
ning at "addrl ".

Disassembles 20 lines of
a machine language pro
gram beginning at
"addr1 ".

Set normal video.

Set inverse video.

Adds the bytes "b1" and
"b2" and displays the
result.

Subtracts byte "b2" from
byte "b 1" and displays
the result.

Causes the system to
enter Applesoft (cold).

(continued)

48 [=:::J Inside the Apple //c -----------------

Table 3-1. Summary of System Monitor Commands (continued).

Command Name Syntax

CONTINUE BASIC [c on t r o 1 - C l

USER [control-Yl

KEYBOARD port[control-Kl

PRINTER port[control-Pl

b 1 , b 2 represent byte values (in hexadecimal)

Description

Causes the system to
enter Applesoft (warm).

Causes the system to
jump to location $3F8.

Causes the device in
"port" to become the
source of input.

Causes the device in
"port" to become the
current output device.

add r 1 , add r 2, add r 3 represent addresses of memory locations (in hexadecimal)
port represents a valid port number (1, 2, 3, 4, 6, 7)

hexadecimal address of the location and pressing [return]. For example, to
display the number that has been stored at $FD0C, you would enter

FDf.'JC [return]
and the system monitor will respond with

FDf.'JC- A4

where A4 is the hexadecimal value of the byte stored at $FD0C. You can also
just press [return] by itself to display the contents of the locations immedi
ately after the last one acted on, up to the edge of the next 8-byte boundary
(i.e., locations ending in "7" or "F").

The contents of an entire range of memory can be displayed at once by
typing in the first address, a period (" ."), and then the last address. For
example, to examine the 17 bytes of the system monitor ROM area from $F801
to $F811, you would enter

F8f.'J1.F811

(followed by [return], of course) and you would see the following values
displayed (this is called a "hex dump"):

F8f.'J1- es 20 47 FB 28 A9 0F
F8f(J8- 90 02 69 Ee 85 2E 81 26
F810- 45 30

After the first line, where only those bytes up to the edge of the next 8-byte
boundary are displayed, eight bytes will be displayed per line until the very
last line where the last few remaining bytes are displayed. The two-digit

---------------- 3 I The System Monitor c:::J 49

values after the dash in each line represent the bytes stored at the address
displayed immediately before the dash and in succeeding memory locations.

The STORE Command : Changing the Contents of
Memory

It is often handy to be able to quickly enter data into memory locations.
You may want to do this in order to provide data to a program, to enter the
program itself, or to make quick changes to the program. The system monitor
makes this easy by providing you with a convenient command to do this.

To change the contents of memory, you must first type in the address of the
first location to be changed, followed by the STORE command (a colon), and
then the values of the bytes to be stored in that location and succeeding
locations, separated by spaces. For example, to place the values $3E, $22,
$24, $00, and $29 into addresses $300 through $304, you would enter the
command: ·

390:3E 22 24 9 29

(The number of bytes that can be stored after the colon is limited by the
fact that only 255 characters can be entered before pressing [return] or else
the line will be cancelled. This allows about 83 .data bytes to be specified.)

To continue entering values at this point, you can simply type a colon
followed by more data bytes separated by spaces. The address at which the
first byte will be stored will automatically be assumed to be the one after the
last one that was accessed. Thus, if you entered the command

:44 33

immediately after entering the above command, address $305 would contain
$44 and address $306 would contain $33.

All of the machine language programs that will be presented in this book
can be entered using this technique. To understand how to do this, first refer
to Table 3-2, which sets out the assembler source listing of an example pro
gram after the assembly process has been completed. This program doesn't
do anything really useful, it just prints out all digits from 0 to 9 on the video
screen and then stops. What we are really interested in is seeing how to
interpret this listing and how it can be used to allow you to enter the program
into memory.

First remember that the assembler-listing format used in this book is that
used by the Merlin Pro assembler only and that if you are using any other
assembler the format may be different. Fortunately, however, formats from
one assembler to another are generally quite similar.

The assembler-listing format is made up of six general fields. The first field
is the address and data field and can be found at the far left of the listing.
Each line in this field contains an address used by the program followed by

Table 3-2. The format of a typical assembly-language program after the assembly process.

1
2
3
4
5
6
7
8

0300: A2 00 9
0302: SA 1 0
0303: 09 80 1 1
0305: 20 ED FD 1 2
0308: E8 13
0309: E0 0A 1 4
0308: D0 F5 1 5
030D: 60 16

'-v-'

Address: Data t
Line

Number

* EXAMPLE *

CDUT EQU $FDED

DRG $300

LDX #0
DIGITDUT TXA

ORA #$80
JSR COUT
INX
CPX #10
8NE DIG I TOUT
RTS

~'-v-' "------v-----'

Label t Operand

Instruction

;Character output subroutine

;Put digit in A
;Convert to ASCII digit

;Go to next digit
;Done?
;No, so loop

Comments

U'l
0

·o
::J
(J>

0:
<D

s:
<D
:l>
"0
"0
co
~

---------------- 3 I The System Monitor c::::::J 51

the data byte stored at that address and, in certain cases depending on the
type of instruction, at the following one or two addresses as well. This infor
mation is all you need to be able to enter the program from the monitor
because it is in exactly the same format used by the STORE command. To
enter the program, all you must do is enter the following STORE commands:

3011J:A2 0
302:8A
303:9 80
305:20 ED FD
308:EB
309:E0 A
311JB:D0 FS
30D:G0

Since the program is so short, you could also enter the whole program using
just one long STORE command: '

311J0:A2 Ill BA 9 Bill 2111 ED FD EB EIII,A Dill FS Gill

The rest of the fields in the listing simply relate to the source code that gave
rise to the machine language bytes that make up the program. These are, in
order, the line number field, the label field, the instruction field, the operand
field, and the comment field.

A faster way to enter a machine language program that is already stored
on diskette is, of course, to use the ProDOS BLOAD command. This is done
by entering the command

BLOAD FILENAME,Aaddr

where "FILENAME" represents the name of the binary file to be loaded and
"addr" represents the decimal starting address at ~hich it is to be loaded, or,
if the address is preceded by "$", the hexadecimal starting address. The
",Aaddr" suffix is optional; if the suffix is omitted, the program will be loaded
at the position it was in when it was originally saved to diskette using the
BSAVE command.

The MOVE Command : Copying the Contents of .
Memory

It is sometimes necessary to copy the contents of one block of memory to
another part of memory. Two common situations where such a move would
be performed are when an assembly-language program is being relocated or
when a data block is being duplicated because it may be overwritten by
subsequent operations and you don't want to lose it.

You could perform the move by examining the contents of all the memory
locations in question and then entering these values at the new locations

52 c::=J Inside the Apple //c ---------------

using the DISPLAY and STORE commands, but there is an easier way: you
can use the MOVE command. The syntax of this command is as follows:

{destination}<{sourceS}.{sourceE}M

where {destination} represents the address to which the block of memory is
to be moved (the destination address), {sourceS} represents the starting address
of the block to be moved (the source starting address), and {sourceE} repre
sents the ending address of the block to be moved (the source ending address).

For example, to move the program that you just entered in the previous
section,_ which resides from $300 through $300, to locations $1000 through
$1000, you would enter the command

1999<399.390M

To see that the move has, in fact, been performed, enter the following two
commands:

399.390
1999.1990

and compare the two hex dumps. They will be identical apart from the address
indicators. (You can also use the VERIFY command to do the comparison
automatically; see below.)

When moving a block of memory, you must ensure that the destination
address is not within the range of addresses defined by the source block. If it
is, then the block will not be properly moved because the area of the source
block from the destination location to the end of the block will be overwritten
before it is actually moved. This occurs because the byte stored at the lowest
addressed location in the source block is moved first, followed by the rest of
the bytes in increasing order of address until the end of the block is reached.
For example, if the MOVE command

391<399.390M

is entered, the block of memory from $301 to $30E will not contain an image
of $300 to $300 before the move but rather will be filled with the value of the
byte stored at $300. You can see why by visualizing the steps that are followed
to perform the move: first, the byte at $300 is moved into $301, then the byte
at $301 (which has just been overwritten) is moved into $302, and so on. This
type of move is handy for quickly storing the same values at locations through
out an area of memory, but not much else. For example, tb zero the area of
memory from $2000 to $3FFF, you would enter the commands

2999:9
2991<2999.2FFEM

One important note on using the MOVE command to relocate machine
language programs: many programs will not operate properly at their new
locations unless they are modified first.' Any program that uses JMP Uump)
or JSR Uump-to-subroutine) instructions to transfer control to areas that are

--------------- 3 I The System Monitor c=J 53

within the block being moved, or that read from or write to addresses within
that block, fall within this "unrelocatable" category. This problem arises
because such instructions refer to absolute memory locations, locations that
will not be meaningful after the program has been moved. The easiest way to
make a program operate at a new location is to reassemble it at the new
location and then enter the new data bytes that the assembler generates. This
can be done by changing the operand of the ORG (for "origin") statement in
the assembler source listing (see line 7 of the sample program in Table 3-2)
to reflect the new starting address of the program. You could also patch the
program manually to fix up all such absolute references in the program by
replacing them with the new absolute addresses (low-order byte first), but
this is time consuming and prone to error.

The VERIFY Command: Comparing Ranges of
Memory

Another useful chore that can be performed by the system monitor is the
comparison of the contents of two blocks of memory. Comparisons are com
monly made for the purposes of determining the locations at which two
similar programs (usually related revisions) differ from one another.

You could perform the comparison manually by repeatedly using the DIS
PLAY command but this would be tedious at best, especially for long data
blocks. The process can be automated, however, by using the VERIFY com
mand. The syntax for this command is as follows:

{block2}<{blockS}.{blockE}V

where {block2} represents the starting address of the block of memory to
which comparisons will be made, {blockS} represents the starting location of
the main block, and {blockE} represents the ending location of the main block.
When the command begins to execute, each byte in the main block will be
compared with its corresponding byte in the other block. If there are any
differences, then they will be printed out in the following format:

{address}-34 <EA>

where {add:t:ess} is the address of the byte in the main block that is different,
the first (unbracketed) data byte represents the value of that byte in the main
block and the second number represents the value of that byte in the other
block.

The EXAMINE Command: Examining the 65C02's
Registers

The system monitor reserves several locations in zero page for temporary
storage of the 65C02's internal registers, A, X, Y, P, and S. All ofthese registers

54 c:=:J Inside the Apple //c ----------------

(except for the stack pointer, S) are loaded with the values stored at these
locations whenever the monitor's GO command is entered (see below). This
allows you to properly initialize the 65C02 registers before executing any
assembly-language program.

The saved contents of the 65C02's internal registers can be examined at any
time by using the EXAMINE command by entering the following control
character:

[control-E)

(Recall that this notation means "press the CONTROL key and, while it is
being held down, press theE key.") When the EXAMINE command is entered,
the currently saved values of each of the five 65C02 registers will be displayed
in the following typical format:

A=02 X=CC Y=D8 P=00 5=87

In this list, A represents the accumulator, X andY represent the X andY
index registers, P represents the processor status register, and S represents
the stack pointer. The two-digit hexadecimal number after each "equal" sign
indicates the current value of the corresponding register.

Immediately after the [control-E) command has been entered and the con
tents of the registers have been displayed, you can set any of the register
locations to any value that you want by entering a colon followed by the new
values for the contents of the registers, separated by spaces. The new values
must be entered in the order in which the registers are displayed. If you want
to change some, but not all, of the registers, then you will have to enter the
current values for those of the other registers that are displayed before the
last one that you wish to change.

For example, if you want to set the X register to $33 and leave the other
registers unchanged, you would enter the command

:02 33

where 02 represents the current value of the accumulator.

The [control-E) command is primarily used as a debugging tool when
developing an assembly-language program. Program subroutines that require
certain registers to be initialized in certain ways before they will perform
properly can easily be tested by setting up the registers after entering [control
E) and then executing the subroutine.

The GO Command : Running a Program

You can run any machine language program that is contained in memory
by using the monitor's GO command. To do this, you must type in the starting
address of the program followed by "G" and then press [return]. Before

---------------- 3 I The System Monitor c::::=J 55

control is passed to the program, the 65C02's A, X, Y, and P registers are
loaded with the values last set by the EXAMINE command (see above). When
the program stops running, you will usually return to the system monitor
command interpreter and see the"*" prompt symbol once again.

For example, if you want to run a program that starts at location $300, then
you would enter the command

31111/JG

The LIST Command : Disassembling Assembly
Language Programs

The LIST command can be used to translate bytes in any area of memory
into the assembly-language mnemonics they represent and to display the
listing on the screen. This command essentially reverses the process per
formed by an assembler and so the function it performs is called "disassem
bly."

A disassembled listing of memory is much more comprehensible and infor
mative to a programmer than a simple hex dump that only displays raw
numbers. It is especially useful as an aid in debugging assembly-language
programs that have been loaded into memory. The syntax associated with
the LIST command is as follows:

{address}L

where {address} represents the address at which you want to begin the listing.
A total of twenty disassembled lines will be displayed for each "L" specified
after the address.

Let's examine an area of the lie's system monitor ROM to observe the format
in which the LIST command generates its output. As we will see later, the
basic character input routine used by the Monitor begins at location $FD0C
and is called RDKEY. To disassemble the RDKEY subroutine, enter the
command

FDIIICL
and you will see the following 20-line display:

FDIIIC- ~4 24 LDY $24
FDIIIE- 81 28 LDA C$28>,Y
FD1111- EA NOP
FD11- EA NOP
FD12- EA NOP
FD13- EA NOP
FD14- EA NOP
FD15- EA NOP

56 c=:J Inside the Apple //c

FD16- EA NOP
FD17- EA NDP
FD18- GC 38 00 JMP ($0038)
FD1B- 91 28 STA ($28>,Y
FD1D- 20 4C cc JSR $CC4C
FD20- 20 70 cc JSR $CC70
FD23- 1 0 FB BPL $FD20
FD25- 48 PHA
FD26- A9 08 LDA #$08
FD28- 2C FB 04 BIT $04FB
FD2B- 00 1D BNE $FD4A
FD2D- 68 PLA

Each line in this listing represents a starting address, the machine language
bytes representing the 65C02 instruction opcode and its operand, the three
letter mnemonic for the instruction, and the formatted operand. Note that
operands that have a"$" prefix represent an address and that those that have
a"#$" prefix represent immediate hexadecimal data. In addition, the operand
after any branch instruction (BEQ, BNE, BPL, and so on) is the absolute
address of the "branched-to" location rather than the relative address of that
location. The 65C02 uses relative addresses only, but it is the absolute address
that is usually more meaningful because it allows a programmer to more
easily follow the flow of the program.

Note that you can continue to disassemble twenty more lines beginning at
the address immediately after the last disassembled byte by entering the "L"
command without an address. Multiple "L"s can also be entered to disassem
ble more than twenty lines at once; for example, "LLLL" allows you to
disassemble eighty consecutive lines.

When you are disassembling an area of memory you may sometimes see a
"???" indicator in the opcode field instead of a standard 65C02 mnemonic.
The system monitor's disassembler subroutine uses this triad of question
marks whenever it is unable to convert the contents of memory into a valid
65C02 instruction. This might happen if you are attempting to disassemble
an area of memory that contains program data or encoded text rather than
instructions or if you begin disassembling in the "middle" of an instruction
(remember that 65C02 instructions can be up to three bytes long). If you
suspect that you have started in the middle of an instruction, try disassem
bling from a location that is one or two locations away from the original
starting location.

In many cases, a data area will erroneously be interpreted as a series of
valid instructions by the disassembler. For example, a zeroed out data area
would appear as a series of BRK instructions. This is because the machine
language byte for BRK is 00. Such data areas are usually obvious, however,
because the "program" they appear to define is clearly meaningless or out of
context.

--------------- 3 I The System Monitor c:=J 57

The NORMAL and INVERSE Commands : Changing
Video Display Modes

Monitor operations that affect the video display can be performed either in
normal video (white characters on a black background) or in inverse video
(black characters on a white background). To select the inverse video format,
enter the command

I [return]

To select the normal video format, enter the command

N [return]

You will probably not have to use these commands very often.

The ADD and SUBTRACT Commands : Simple
Arithmetic

You can perform simple one-byte hexadecimal arithmetic while in the
system monitor by taking advantage of its ADD and SUBTRACT commands.
To add two numbers together, you would enter the command

{number1}+{number2}

where {numberl} and {number2} represent the two one-byte hexadecimal
numbers to be added. The result of the addition will be shown on the next
video display line.

The subtraction command is similar. To subtract one number, say {number2},
from another, say {numberl}, you would enter the command

{number1}-{number2}

and the result will be calculated and displayed.

The result that either the ADD or SUBTRACT command displays is a one
byte number only. This means that any overflow or underflow in the arith
metic calculation is ignored.

The BASIC and CONTINUE BASIC Commands:
Entering Applesoft

The system monitor supports two commands that can be used to transfer
control from the monitor to Applesoft direct mode (as indicated by the "]"
prompt symbol). These are the [control-B] and [control-C] commands. There
are also subroutines that can be called to enter Applesoft that begin at $0000
(with or without ProDOS) and $03D0 and $3D3 (only when ProDOS is being
used).

5S c:=J Inside the Apple //c ----------------

The BASIC command, [control-Bj, is used to re-enter Applesoft in such a
way as to cause it to be reinitialized. This is called a "cold start" and will
cause any Applesoft program which may be residing in memory to be removed.

The CONTINUE BASIC command, [control-C), is used io re-enter Applesoft
in such a way that the existing Applesoft program and the values of its
variables are not affected at all. This is called a "warm start." An alternative
way to warm-start Applesoft is to call a subroutine that begins at $0000 by
entering the command "0G".

The effect on the ProDOS disk operating system must also be considered
when moving to Applesoft from the monitor. If you are using ProD OS and the
monitor was entered with either a CALL -151 or CALL -155 command (the
warm-start entry points), then ProDOS will still be active upon the return to
Applesoft using [control-C). The [control-B) command, however, will cause a
NO BUFFERS AVAILABLE error message to be displayed whenever a Pro DOS
1/0 command is attempted. This renders ProDOS useless and so you should
never use [control-B) to return to Applesoft when ProDOS is active.

If the monitor was entered via its cold-start entry point with a CALL -167
command, ProDOS will be deactivated after a [control-B) arid [control-C)
command is entered to cause a return to Applesoft. In this situation, ProDOS
can be reactivated by entering a CALL 976 command, but this causes the
values of any active Applesoft program variables to be cleared. Note, however,
that even after the CALL 976 is entered, ProDOS will still be rendered unus
able if it was entered with a [control-B) command for the reasons given in
the previous paragraph.

Applesoft can always be entered with ProDOS active by using a "3D0G"
command ($300 is the address of a subroutine that performs a warm start of
ProDOS), but this method is not recommended because of zero page memory
conflicts between Pro DOS and the system monitor and the fact that any active
Applesoft variables will be cleared.

In summary, to ensure that you never deactivate Pro DOS or clear the values
of any active Applesoft program variables, you should always enter the mon
itor at one of its two warm-start entry points (-1 51 or -1 55) and always return
to BASIC using the [control-C) command.

The USER Command : User-Defined Command
The system monitor is flexible enough to allow you to define the actions to

be taken whenever its special USER command, [control-Y], is entered. The
[control-Y] command causes the monitor to perform an unconditional jump
to location $3F8. By placing a 65C02 JMP instruction there (which behaves
like an Applesoft GOTO), followed by the two-byte address (low byte first) of
the start of the subroutine that you want to execute, you can easily make the
[control-Y] command execute any program you wish.

Let's take a look at a simple example of how to take advantage of the USER

--------------- 3 I The System Monitor c=J 59

command. The first thing you have to decide is what you want to happen
when [control-Y] is pressed-that's easy. Then you must write the program
to perform what it is you want to do-not so easy. We can, however, make
use of subroutines that already exist in the //c's ROM areas to perform many
useful chores. For example, there is a subroutine beginning at $FCS8 that can
be called to clear the video screen and a subroutine beginning at $FD0C to
read a key from the keyboard. To set things up so that when the USER
command is entered, the system pauses until a key is pressed and then clears
the screen, a "JMP $0300" instruction must be set up at $3F8 and then "JSR
$FD0C" and "JMP $FC58" instructions must be stored beginning at $300.
This can be done by using two STORE commands as follows:

3F8:4C 99 93

("4C" is the opcode for the JMP instruction and "00 03" is the address of the
user-defined subroutine-low-order byte first) and

399:29 9C FD 4C 58 FC

where "20 0C FD" are the data bytes for "JSR $FD0C" ($20 is the opcode for
the JSR instruction) and "4C 58 FC" are the data bytes for "JMP. $FC58".
Now when you enter [control-Y] the //c will wait until you press a key and
then the screen will be cleared!

Note that you cannot simply place the entire subroutine at $3F8, because
only locations $3F8 to $3FA are reserved for use by the USER command.
Locations after that are reserved for other purposes and must not be over
written.

Parameters can be passed to the USER command by storing them in mem
ory just before the monitor executes the USER command. This can be done
by using the STORE command. If the parameters to be passed represent
addresses, there is a much more convenient way to pass up to three of them.
For example, if the tJSER command is entered as follows:

addr1<addr2.addr3[control-Yl

then "addrl" will be stored at monitor locations A4L ($42) and A4H ($43),
"addr2" will be stored at AlL ($3C) and AlH ($3D), and "addr3" will be stored
at A2L ($3E) and A2H ($3F). Each of these addresses is stored with its lower
two digits in the first of the two memory locations specified for each param
eter. Two addresses can be passed (in AlL/AlH and A2LIA2H) by removing
the "addrl <"part in the above command line and one address can be passed
(in AlL/AlH) by removing the "addrl <addr2." part.

The KEYBOARD and PRINTER Commands:
Redirecting Input and Output

The system monitor provides two simple commands that allow you to easily
redirect the source of character input and output to one of the lie's built-in 1/0

60 c=J Inside the Apple //c ----------------

ports (the printer, modem, 80-column display, mouse, or disk drive). These
are the KEYBOARD, [control-K], and PRINTER, [control-P], commands,
respectively. They perform exactly same the functions as Applesoft's IN# and
PR# commands.

The syntax associated with bothof these commands is similar:

{port number}[control-Kl

for the KEYBOARD command and

{port number}[control-Pl

for the PRINTER command, where {port number} is a digit which can take
on the values 1 (printer port), 2 (modem port), 3 (80-column video port), 4
(mouse port), 6 (internal disk drive port), or 7 (external disk drive port) and
represents the port number of the device to which you wish to pass control.
You can also specify a slot number of 0; if you do this when entering the
KEYBOARD command, the keyboard will become the source of character
information. If you do this when entering the PRINTER command, the video
screen will become the current output device.

The KEYBOARD command is usually used to "connect" alternate input
devices such as an external keyboard or a modem to the lie by vectoring all
requests for input to them. The PRINTER command is usually used to activate
a printer so that you can obtain a hardcopy printout of your activities while
in the monitor. To tum on a printer that is connected to port 1 (the lie's
standard printer port) you would enter the command

1 [control-Pl

After this is done, all outputted characters will be sent to the printer instead
of the video screen.

Another common use for the PluNTER command is to "boot" the disk
drive. This can be done by entering the command:

6[control-Pl

Note that whenever the KEYBOARD or PRINTER command is entered,
the monitor jumps to location $Cs00 (where "s" is the port number specified),
which is the first address of a driver program for the particular port in
question. It is the driver program in ROM that dictates exactly how the 110
is to be redirected.

1/0 is redirected on the lie by changing the addresses stored in two vectors
in zero page, the input link and the output link. The use of these links will be
discussed in detail in Chapters 6 and 7.

Note that because of the way ProDOS, operates, the KEYBOARD and
PRINTER commands may not work properly in a Pro DOS environment. This
is because ProDOS is forever storing the addresses of its own input and output
subroutines in the 110 links; as soon as this is done, the new input or output

--------------- 3 I The System Monitor c:=J 61

device is disconnected. Methods of avoiding these problems will also be
discussed in Chapters 6 and 7. In summary, ifProDOS is active, then use its
PR# and IN# commands while in the system monitor and not the monitor's
KEYBOARD and PRINTER commands.

Multiple Commands on One Line

All of the examples that we have given so far have contained only one
monitor command per line. The monitor is not fussy about this, however, and
you can actually put as many commands on one line as that line can hold (a
line must be less than 256 characters long).

There are a few syntactical rules to follow, however. First of all, each
command on the line must be separated from the next one by a space unless
both adjacent commands are one of the letter commands (L, G, M, V, I, N),
in which case they can be jammed together. ·

Second, any command that immediately follows the data bytes after the
STORE command must be a letter command without a preceding address. A
convenient command to use for this purpose is the NORMAL command ("N")
since it is really a "do-nothing" letter command.

Let's look at a few examples of multiple command entry to see how it works.

1. 308LLL will disassemble 60 lines of a program beginning at $300 at
once.

2. 300:4C 3A FF N 308G will enter a short program beginning at $300 to
beep the speaker and then execute it (note the "N" after the data bytes
of the STORE command).

3. 308.328 888.830 will display two separate blocks of memory, $300 ... $320
and $800 ... $830 one after the other.

4. 3F8:4C 00 03 N 308:4C 58 FC N [control-Y] will set up the USER com
mand jump address, enter the program to be jumped to, and then execute
the USER command (which causes the screen to clear in this example).

System Monitor Subroutines

As we have already seen, the system monitor is made up of several useful
subroutines. Most of these subroutines can easily be accessed from Applesoft
or assembly-language programs.

Direct access from Applesoft is achieved by using the Applesoft CALL com
mand. Note, however, that only those monitor subroutines that require no
initialization of the 65C02 registers can be CALLed in this way because there
are no Applesoft commands available to you to set up these registers directly.

62 C] Inside the Apple //c ----------------

One way to access subroutines that require register initialization would be
to CALL a RAM-based program that would set up these registers explicitly
and then call the requested subroutine. An alternative method makes use of
the monitor's GO command and the fact that GO initializes the 65C02's
registers to the values stored in zero page by the EXAMINE command before
control is passed to the subroutine whose address is stored at $3A and $3B
(low-order byte first). The values of the registers A, X, Y, and Pare stored at
locations $45, $46, $47, and $48, respectively. To execute the subroutine, you
must first use the Applesoft POKE command to store the address of the
subroutine to be executed at $3A/$3B and to store the appropriate register
values at locations $45-$48. The final step is to execute the GO command by,
entering it at the point where it sets up the registers before passing control
to the address at $3A/$3B. This is location $FEB9 (65209).

For example, you can set up a simple decimal-to-hexadecimal conversion
program from Applesoft by calling a monitor subroutine called PRINTYX
($F940). This subroutine prints out theY and X registers as four hexadecimal
digits (the two most-significant digits are held in Y). To get the converter to
work, all you have to do is take your decimal number, divide it by 256, and
put the quotient in Y (this represents the decimal value of the, two high-order
digits) and the remainder in X (this represents the decimal value of the two
low-order digits). Here is an example of such a program:

190 DEF FN MD<Z> = Z - 256 * INT<Z I 256)
119 INPUT 11 ENTER A NUMBER: 11 ;N
129 ADDR = 63898 : REM ADDRESS OF 11 PRINTYX 11

($F949)
139 POKE 70,FN MD<N>:REM SET UP 11 X11

140 POKE 71 ,INT (N/256):REM SET UP nyu
150 POKE 58,FN MD<ADDR> : REM SET UP ADDR LOW
169 POKE 59,INT <ADDR/256) : REM SET UP

ADDR HIGH
179 CALL 65209 : REM CALL 11 G0 11 AT $FEB9

Line 100 in this program defines a "modulo 256" function that can be used
to calculate the decimal value of the lower two digits of a hexadecimal number
(0 ... 255).

These complications do not really arise when calling monitor subroutines
from an assembly-language program because the 65C02 has explicit com
mands for initializing registers (LOA, LOX, LOY, and so on). Once the registers
have been properly set up, you can execute the subroutine by using a JSR
instruction (like an Applesoft GOSUB) or a JMP instruction (like an Applesoft
GOO~. -

Some of the more useful subroutines available in the system monitor are
set out in Table 3-3. These subroutines are presented in increasing order of
address and a symbolic name for each address is shown immediately after
the address.

---------------- 3 I The System Monitor c:=:J 63

Table 3-3. Apple //c system monitor subroutines.

Address
Hex (Dec) Symbolic Name Description

$F940 (63808) PRINTYX

$FB1E (64286) PREAD

$FBC1 (64449) BASCALC

$FC22 (64546) VTAB

$FC42 (64578) CLREOP

$FC58 (64600) HOME

$FC62 (64610) CR

$FC9C (64668) CLREOL

Prints out the number held in X (low)
and Y (high) as four hexadecimal
digits.

Reads the current value of the game
controller input. On entry, X= game
controller number (0 or 1). On exit,
Y =game controller reading
(0 ... 255) and A is destroyed.

Calculates the address of the first
location used by the current video
line. On en try, A = video line number
(0 ... 23). On exit, the address is
stored in BASL ($28) and BASH ($29),
low byte first, and A is destroyed.

Moves the cursor to the video dis
play line indicated by CV ($25). On
entry, CV must contain the line num
ber required (0 ... 23). On exit, the
base address for the line is set up in
BASL ($28) and BASH ($29) and A is
destroyed.

Clears the screen display from the
current cursor position to the end of
the screen without changing the
position of the cursor. On exit, A and
Yare destroyed.

Clears the screen display and posi
tions the cursor at the left of the first
line on the screen. On exit, A andY
are destroyed.

Moves the cursor to the first position
of the next video display line (and
scrolls if required). On exit, A andY
are destroyed.

Clears the screen display from the
current cursor position to the end of
the line without changing the cursor
position. On exit, A and Y are
destroyed.

(continued)

64 CJ Inside the Apple //c -----------------

Table 3-3. Apple //c system monitor subroutines (continued).

Address
Hex (Dec) Symbolic Name Description

$FCA8 (64680) WAIT

$FD0C (64780) RDKEY

$FD1B (64795) KEYIN

$FD35 (64821) RDCHAR

$FD6A (64874) GETLN

$FDDA (64986) PRBYTE

Causes a delay of
0.5'~(26+27'~A+S*A'~A) microse
conds. On exit, A is destroyed.

Receives a character of information
from the currently active input device
(the address for the input subroutine
for this device is held in KSWL ($38)
and KSWH ($39)). On exit, A con
tains the inputted cqaracter and Y
is destroyed; other registers may be
destroyed, depending on the input
subroutine for the input device.

Receives a character of information
from the keyboard. On exit, A con
tains the inputted character and Y
is destroyed.

Receives a character of information
from the currently active input device
and enables escape sequences. On
exit, A contains the inputted char
acter andY is destroyed; other reg
isters may be destroyed, depending
on the input subroutine for the input
device.

Receives a line of information (ter
minated by [return]) from the cur
rently active input device and places
it into the input buffer at
$200 ... $2FF. On entry, the prompt
symbol to be used must be stored in
PROMPT ($33). On exit, the line is
stored in the input buffer beginning
at $200, X contains the number of
characters in the line, and A and Y
are destroyed.

Displays a byte as two hexadecimal
digits. On entry, A contains the byte
to be displayed. On exit, A is
destroyed.

(continued)

---------------- 31 The System Monitor c:=J 65

Table 3-3. Apple //c system monitor subroutines (continued).

Address
Hex (Dec) Symbolic Name Description

$FDED

$FDF0

$FF69

(65005) COUT

(65008) COUTl

(65385) MONZ

Sends a character of information to
the currently active output device
(the address for the output subrou
tine for this device is held in CSWL
($36) and CSWH ($37)). On entry, A
contains the byte to be sent. On exit,
registers may be destroyed, depend
ing on the output subroutine for the
output device.

Displays a character of information
on the video display screen at the
current cursor position. The display
mode is set by logically ANDing the
byte with INVFLG ($32). On entry,
A contains the byte to be displayed
(with its high bit set to one). On exit,
all registers are preserved.

Enters the lie's system monitor. On
exit, all registers are destroyed.

Table 3-3 by no means represents a complete list of the monitor's subrou
tines. To examine all the subroutines for yourself, you should consult Apple's
published source listing of the monitor ROM in "The Apple lie Reference
Manual", Volume 2.

Further Reading for Chapter 3

On system monitor subroutines ...

The Apple lie Reference Manual, Volume 2, Apple Computer, Inc., 1984.
This manual contains the source code for the system monitor on the lie.

W.E. Dougherty, The Apple II Monitors Peeled, Apple Computer, Inc., 1981.
A detailed look at the system monitors for the Apple II and Apple II Plus.

4
Applesoft BASIC

Applesoft BASIC is a high-level programming language interpreter that
occupies 10K of the lie's ROM space from location $0000 through location
$F7FF. (BASIC is an acronym for Beginner's All-Purpose Symbolic Instruction
Code.) It is yet another version of the "basic" BASIC developed by Microsoft
Corporation of Bellevue, Washington, and so is structurally similar to Micro
soft-developed BASICs running on many other personal computers, including
those manufactured by Tandy/Radio Shack, Commodore, and IBM.

The //c version of Applesoft is slightly different from the one used on the
Apple //e, Apple II Plus, and Apple II. The major changes that have been made
are as follows:

• The Applesoft cassette tape commands are accepted but are treated just
like the & (ampersand) command. These are the SHLOAD, RECALL,
STORE, LOAD, and SAVE commands.

• Applesoft commands can be entered in upper- or lowercase.

• Program lines are listed on the screen beginning in column two in order
to facilitate screen editing. (When you move the cursor up to edit the
line, it is now positioned over the first digit in the line number.)

• The low-resolution graphics commands have been modified in order to
support the lie's special double-width low-resolution graphics display
mode. (See Chapter 7 .)

Fortunately, none of these changes should affect the performance of the
vast majority of programs written for the previous version of Applesoft.

What exactly is the Applesoft programming language, anyway? Well, it's
really just another 65C02 assembly-language program, but one that has a
special goal: to allow you to easily write your own programs using straight
forward, English-like commands. These commands can be used in such a way
as to allow you to manipulate various types of data and to perform input/
output functions. In addition, Applesoft comes with a built-in editing envi
ronment that facilitates creation of its programs.

Applesoft is actually a language "interpreter" and a program is simply a
set of data that the Applesoft code in ROM is continuously analyzing (inter
preting) to determine what commands are to be executed and in what order.

67

68 CJ Inside the Apple //c ---------------

Other types of BASICs, called "compilers," are also available. Compilers are
simply preprocessors that convert your program source code into directly
executable machine language that can then be run just like any other machine
language program. Since directly executable code is generated, no interpre
tation is necessary when the code is actually executed (except, of course, by
the microprocessor) and so the program will run much faster than its inter
preted counterpart. Although Applesoft compilers are available, none have
been officially released by Apple itself.

The purpose of this chapter is not to teach you how to program in the
Applesoft language. In fact, you will be presumed to b.e familiar with Applesoft
already. What we are going to. do is take a close look at the internals of
Applesoft to see how the interpreter performs its various duties. This will
include a look at how an Applesoft program and its variables are stored and·
arranged in memory and how the program is actually executed by the Apple
soft interpreter. We will also take a look at how Applesoft can be linked to
machine-language subroutines to improve program speed and efficiency.

The study of the internal structure of Applesoft is difficult and frustrating
because no official source listing for its code has been made available by
Apple. Such a study is not totally futile, however, because it is possible to
disassemble the contents .of the Applesoft. RO~ (using the. monitor'.s :·L"
command or some other disassembler) to view the language m a convement
assembler-language form that can sometimes be made intelligible (if you're
lucky). In addition, at least two "unofficial" source listings of Applesoft have
been published (see the references at the end of this chapter).

Knowledge of the internal structure of Applesoft is important for three
main reasons. First, by analyzing the work of the professional programmers
who wro.te the hmguage you might develop better personal programming
practices. Second, you can generally write much more elegant and efficient
assembly-language routines to be used in conjunction with Applesoft pro
grams if the routines use the standard routines found in Applesoft because
this spares you from having to redevelop the same code from scratch. Third,
it is possible to write much more efficient Applesoft programs if you under
stand how they are being executed.

Applesoft Memory Map

The Applesoft interpreter in ROM uses most of the RAM space located from
$0000 to $95FF in the main memory area of the //c for program and variable
storage and for work areas. (The //c' s other memory area, "auxiliary" memory,
will be discussed in Chaper 8.) The area of RAM memory above this, from
$9600 to $BFFF, is reserved for use by BASIC.SYSTEM (a ProDOS/Applesoft
interface program) and the ProDOS disk operating system itself. (See Chapter
5). As we will see in Chapter 5, ProDOS actually "steals" space from Applesoft

---------------- 4 I Applesoft BASIC C::=J 69

when disk files are opened, but this is done in such a way that the operation
of the Applesoft program is not disturbed.

Much of the 6SC02 zero page ($0000 ... $00FF) is used by Applesoft to hold
short subroutines, temporary data areas, and several two-byte pointers that
contain the addresses of important data areas used by the program. For
example, there are painters that hold the starting and ending addresses of the
program itself, of the space reserved for simple variables and array variables,
and of the space reserved for string data. We'll be looking at these pointers in
greater detail later on in this section.

(To review, a pointer is a pair of bytes that are positioned in adjacent
memory locations and that contain the base address of an area in memory to
which they are said to be pointing. The lower half of this address is stored in
the byte that is lower in memory. To calculate the absolute address of the
area being pointed to, take the number held in the first location and add it to
256 times the number in the second location.)

Page one of memory ($100 ... $1FF) is implicitly used by Applesoft since
the 65C02 microprocessor uses this page as its stack. In addition, Applesoft
uses the stack area for temporary storage of information when it executes
instructions such as FOR/NEXT, GOSUBIRETURN, and ONERR GOTO that
need space to hold transfer-of-control information and when it converts binary
numbers into decimal numbers.

Applesoft uses page two of memory ($200 ... $2FF) as its character input
buffer. For example, whenever an Applesoft program executes the INPUT
command to read a line from the keyboard, it initially stores the response in
this buffer and then processes it and moves it up into a space reserved for
string data near the end of the RAM space reserved for use by Applesoft.

The lower part of page three of memory from $300 ... $3CF is not used by
Applesoft and so is a good place to store short assembly-language programs
or other data. However, the entire upper part ofthis page ,from $3 D0 ... $3FF,
is reserved for use by ProDOS, the system monitor (to hold the USER vector
and the 6SC02 RESET, IRQ, NMI, and BRK interrupt vectors), and by Apple
soft. Applesoft reserves the three bytes beginning with $3FS for use with its
& (ampersand) command. Thus, the upper part of page three should not be
overwritten unless it is for. the specific purpose of modifying the information
stored there. Appendix IV contains a complete memory map of the area in
page three from $3D0 ... $3FF.

Pages four through seven ($400 ... $7FF) are used for the lie's primary text
display screen. (A secondary text display screen can also be enabled that uses
pages eight through eleven ($800 ... $BFF), but it is rarely used.) See Chapter
7 for more information on how the lie interprets these pages.

The rest of the RAM space, from $800 up to $95FF, is usually available for
storage of the Applesoft program itself and of any variables that it may use.
Figure 4-1 shows a generalized Applesoft memory map that indicates the

70 c=J lnsidetheApple//c ---------------

$BFF F

$BF 00

SET BY
::-

HIM EM: (USUALLY
$9600)

$60

$40

$20

SET BY
LOMEM:

...

00

00

00

$08 01

Pro DOS

BASIC. SYSTEM

STRING DATA

FREE SPACE

HIGH-RES
PAGE 2

HIGH-RES
PAGE 1

FREE SPACE

ARRAY
VARIABLES

SIMPLE
VARIABLES

FREE SPACE

TOKENIZED
APPLESOFT
PROGRAM

~

!
~

t
t

1

MEMSIZ ($73)

FRETOP ($6F)

STREND ($60)

ARYT A,B ($6B)

VART AB ($69)

PRGEND ($AF)

TXTT AB ($67)
Figure 4-1. Applesoft memory map and data pointers.

relative positions of the program and its variable spaces. The pointers to these
areas are all held in zero page and are summarized in Table 4-1.

The Applesoft program itself is usually stored beginning at location $801,
which is the default value ofTXTTAB ($67), the start-of-program pointer. The
byte stored at the location immediately before this location (usually $800)
must always be zero. The space used to store information relating to program
variables usually starts immediately after the end of the program at the

4 I Applesoft BASIC c=J 71

Table 4-1. Applesoft pointer locations.

Pointer Location Description
Hex (Dec) Symbolic Name

$67 (103) TXTTAB (low) Start of Applesoft program (nor-
$68 (104) (high) mally $801),

$69 (105) VARTAB (low) Start of simple variable space. This
$6A (106) (high) space usually begins right after the

end of the program. However, it
can be set higher by using the
Applesoft LOMEM: command.

$6B (107) ARYTAB (low) Start of array space. This space
$6C (108) (high) begins right after the end of simple "

variable space.

$6D (109) STREND (low) End of variable space.
$6E (110) (high)

$6F (111) FRETOP (low) Start of string space. Applesoft
$70 (112) (high) strings are stored from here to just

before the address pointed to by
MEMSIZ ($73).

$73 (115) MEMSIZ (low) End of string space plus 1 and last
$74 (116) (high) location available to Applesoft plus

L Applesoft strings are stored from
this locations down to FRETOP
($6F). This location is usually $9600
(when using ProDOS) but can be
set lower by using the Applesoft
HIMEM: command.

$AF (175) PRGEND (low) End of Applesoft progam plus 1 or
$B0 (176) (high) 2. The end of an Applesoft program

is signified by three consecutive "0"
bytes. The first "0" is the end-of-
line marker for the last line in the
program and the next two "0'"s
are the "address" of the next line.

location pointed to by VARTAB ($69), the start-of-simple-variabies pointer.
The position of the start of variable space, however, can be selected by using
the Applesoft LOMEM: command before any variables have been defined in
the program. This allows you to create a free space between the end of the
program and the beginning of the variables that will not be overwritten and
that could be used to hold, for example, a machine-language subroutine that
is called by the Applesoft program.

72 c=J Inside the Apple //c -----------------

J\pplesoft supports two fundamental classes of variables: array variables
and simple variables. Array variables can hold real numbers, integer num
bers, or strings; simple variables can hold any of these three types of variables
and a special function variable as well (more on this later). An array variable
is one that is a member of a collection of variables that are referred to by the
same name but that are distinguished from one another by specifying a
subscript for ~ach dimension of the array. For example, the variable AB(3 ,4,2)
is the "3,4,2" element of a three-dimensional array called "AB". A simple
variable is simply one that is not an element of such an array and that is
specified by name only and not by a subscript.

Applesoft keeps information relating to simple variables in a contiguous
block of memory that begins at the address pointed to by V ARTAB ($69) and
ends at the address just before the one pointed to by ARYTAB ($6B). Infor
mation relating to array variables begins at the address pointed to by ARYT AB
and ends at the address pointed to by STREND ($6D).

After the end of the array variable space comes a free space that ends at the
address pointed to by FRETOP ($6F), the start-of-string-space pointer. Gen
erally speaking, the contents of string variables are stored from here to the
highest available location in memory (usually $95FF). The MEMSIZ ($73)
pointer contains this address plus 1. Strings grow down in memory, so that
when more strings are defined, they are placed in memory just below the
value contained in FRETOP and then FRETOP is reduced by the length of the
string.

The value of MEMSIZ can be lowered by using the Applesoft HIMEM:
command. This is usually done to provide a safe area for the storage of
machine-language programs (we'll present the details of how to do this in
Chapter 5), but it is also commonly done to avoid storing variable data within
either of the lie's two 8192-byte high-resolution graphics screen areas (if this
happens, the data will likely be destroyed when a graphics command is
executed). These two areas are located from $2000 ... $3FFF and from
$4000 ... $5FFF. For example, to "protect" the first high-resolution graphics
screen, you would enter the command HIMEM:7168. This sets MEMSIZ to
1024 bytes below the start of the graphics screen memory area ($2000-$400
is equal to 7168 decimal). You can't just set HIMEM: to 8192 ($2000) because
ProDOS uses the 1024 bytes above HIMEM: as a general purpose file buffer.
(See Chapter 5.)

Note that the free space between the end of the array variables and the
beginning of the string data will become smaller and smaller as more vari
ables are defined and as more strings are defined. When all of the free space
has been used up, an OUT OF MEMORY error message will be generated.

In the next few sections, we will discuss the data spaces used by Applesoft
in greater detail.

---------------- 4 I Applesoft BASIC c=J 73

Tokenization of Applesoft Programs

An Applesoft program is simply the data the Applesoft interpreter acts on
in order to determine exactly what instructions it is to execute and in what
order. This data is put into memory with a LOAD or RUN command or is
simply typed in from the keyboard.

You might think that an Applesoft program is stored in memory in exactly
the same format in which it is displayed when it is listed. To save valuable
memory space (an Applesoft program and its variables cannot use up more
than about 36,000 bytes when ProD OS is being used), and to speed up program
execution, however, each line of an Applesoft program is analyzed and com
pressed before it is actually inserted into the proper area of memory. This
process is called "tokenization" because it involves, among other things,
substituting one-byte tokens for Applesoft keywords. For example, if you enter
the line

1 frUJ HGR2

it is not stored as nine bytes in memory as it would be if you used a standard
line editor to create the source file (eight bytes of text plus one byte for the
carriage return that follows the line). Rather, it is stored as six bytes: two for
the line number, one for the token for the HGR2 keyword, and three for
overhead information (these overhead bytes will be described below).

It is the tokenized program that is analyzed by the Applesoft interpreter
and not the original source listing. By the way, listing a program is the same
as "detokenizing" it because the LIST command essentially converts tokens
back into their full keywords.

Let's take a detailed look at what happens when you add a new line to an
Applesoft program while in direct mode (that is, when the program is not
running and the"]" prompt symbol is being displayed).

When you type in a line of characters (each line can be up to 239 characters
in length) and then press the [return] key to enter it, Applesoft scans the input
line and checks to see whether it begins with a valid line number. If it doesn't,
then Applesoft thinks that this is a direct command and attempts to execute
it right away; if it does begin with a line number, then Applesoft usually
interprets it as a deferred command (that is, one that is to be executed only
when the program is executed) and will tokenize it and store it in the proper
position in memory. However, if a valid line number is entered by itself, the
Applesoft interpreter will delete that line in the program.

The line is placed in memory in such a way that the ascending numeric
sequence of the line numbers in the program is maintained. The lowest
numbered line is stored lowest in memory at the location pointed to by the
beginning-of-program pointer, TXTTAB ($67), and the higher-numbered lines
are stored sequentially upward in memory.

74 CJ Inside the Apple //c -----------------

The bytes that make up a tokenized line are arranged in memory as follows:

XX yy XX yy XX yy zz ... 00

LJ LJ I I t
address this tokens and ASCII end of
of next line characters for the line

line number contents of line marker

The "address of next line" and "this line number" fields are stored as two
bytes, with the least-significant byte coming first. The three bytes of overhead
that were mentioned above are made up of the two bytes allocated for the
address of the next line and the 00 byte that marks the end of the line.

Keyword Tokens

We will now take a closer look at what the tokenized part of the line (the
part between the line number and end-of-line marker) looks like. We will
begin with a description of the tokens used to replace the Applesoft keywords
in a program line. These keywords represent the Applesoft commands, func
tions, and mathematical and logical operators.

Each Applesoft keyword is assigned by the interpreter to a one-byte quantity
called a token. This is done for two main reasons: first, to conserve memory
space and, second, to improve the execution speed of the program.

The tokens that Applesoft assigns to each of its keywords are presented in
Table 4-2 together with the addresses of the subroutines within Applesoft that
are used to deal with the keyword command or function that they represent
(where applicable). You will notice that all of these tokens are greater than
or equal to $80. If the tokenized part of a program line contains bytes that
are less than $80, then these bytes are simply the ASCII codes for the char
acters that were typed in when the line was entered. (See Appendix I for the
ASCII codes used to represent characters.) This will include all digits (other
than those entered for the line number), all text between quotation marks
after PRINT, DATA, and REM statements, and all characters used to represent
variable names.

Before you get hopelessly confused, let's look at an example. From Applesoft
direct mode, enter NEW, and then enter the following line:

100 PI= 4 * ATN <1>: PRINT 11 PI = 11 ;PI: END

The bytes used to store this line in memory are as follows: (You can see
these bytes for yourself by first entering CALL -151 to enter the system
monitor, and then entering 801.81C to display the first few bytes of the
program. As we saw earlier, an Applesoft program is usually stored in memory
beginning at location $801.)

-------------- 4 I Applesoft BASIC c::::J 75

Table 4-2. Applesoft keyword tokens. (continued)

Token

$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F
$A0
$Al
$A2
$A3
$A4
$AS
$A6
$A7
$A8
$A9
$AA
$AB
$AC

Keyword

END
FOR
NEXT
DATA
INPUT
DEL
DIM
READ
GR
TEXT
PR#
IN#
CALL
PLOT
HUN
VLIN
HGR2
HGR
HCOLOR=
HPLOT
DRAW
XDRAW
HTAB
HOME
ROT=
SCALE=
SHLOAD
TRACE
NO TRACE
NORMAL
INVERSE
FLASH
COLOR=
POP
VTAB
HIMEM:
LOMEM:
ONERR
RESUME
RECALL
STORE
SPEED=
LET
GOTO
RUN

Address of
Subroutine

$D870
$D766
$DCF9
$D995
$DBB2
$F331
$DFD9
$DBE2
$F390
$F399
$F1ES
$F1DE
$F1DS
$F225
$F232
$F241
$F3D8
$F3E2
$F6E9
$F6FE
$F769
$F76F
$F7E7
$FC58
$F721
$F727
$03FS
$F26D
$F26F
$F273
$F277
$F280
$F24F
$D96B
$F256
$F286
$F2A6
$F2CB
$F318
$03FS
$03FS
$F262
$DA46
$D93E
$D912

(continued)

76 c=:J Inside the Apple //c

Table 4-2. Applesoft keyword tokens (continued).

Address of
Token Keyword Subroutine

$AD IF $D9C9
$AE RESTORE $D849
$AF & $03FS
$B0 GO SUB $D921
$B1 RETURN $D96B
$B2 REM $D9DC
$B3 STOP $D86E
$B4 ON $D9EC
$BS WAIT $E784
$B6 LOAD $03FS
$B7 SAVE $03FS
$B8 DEF $E313
$B9 POKE $E77B
$BA PRINT $DADS
$BB CONT $D896
$BC LIST $D6AS
$BD CLEAR $D66A
$BE GET $DBA0
$BF NEW $D649
$C0 TAB(
$C1 TO
$C2 FN
$C3 SPC(
$C4 THEN
$CS AT
$C6 NOT
$C7 STEP
$C8 +
$C9
$CA *
$CB I
$CC "
$CD AND
$CE OR
$CF >
$D0 =
$D1 <
$D2 SGN $EB90
$D3 INT $EC23
$D4 ABS $EBAF
$DS USR $000A
$D6 FRE $E2DE
$D7 SCRN($D412
$D8 PDL $DFCD
$D9 POS $E2FF

(continued)

--------------- 4/ Applesoft BASIC c:=J n

Table 4-2. Applesoft keyword tokens (continued).

Token

$DA
$DB
$DC
$00
$DE
$OF
$E0
$El
$E2
$E3
$E4
$ES
$E6
$E7
$E8
$E9
$EA

10 08
address
of next

line

BA
token

for
PRINT

64 00 50
line p

number

Keyword

SQR
RND
LOG
EXP
cos
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$

49 00
I token

for

34 CA E1 28
4 token token

for for
* ATN

22 50 49 20 3D 20 22 38 50 49 3A 80
p I p I token

for
END

31

Address of
Subroutine

$EE8D
$EFAE
$E941
$EF09
$EFEA
$EFF1
$F03A
$F09E
$E764
$E6D6
$E3CS
$E707
$E6ES
$E646
$E6SA
$E686
$E691

29 3A
)

00
end of

line
marker

Notice that the five keywords in this line, =, *, ATN, PRINT, and END,
have been replaced by their tokens, $00, $CA, $El, $BA, and $80, respectively.
Also notice that each character that is not part of a keyword is not tokenized
and is represented by its ASCII code.

Storage of Applesoft Variables

Now .that we have seen how an Applesoft program is stored in memory,
let's take a more detailed look at how and where the program's variables are
stored during program execution. Not only is the knowledge of the data
structures used to store variables fundamentally interesting, it will undoubt
edly be invaluable to those who wish to manipulate Applesoft variables from
within 6SC02 assembly-language subroutines that are called from Applesoft.

78 c=J Inside the Apple //c -----------------

Applesoft supports four fundamental variable types. There are three numeric
types (integer, real, and function) and one alphanumeric type (string). Integer
numbers are made up of all positive and negative whole numbers and zero,
that is, all numbers that have no fractional parts (Applesoft handles all those
integers between -32767 and 32767). Real numbers, also called floating-point
numbers, are made up of all numbers, including those that do have fractional
parts. Strings are simply sequences of characters; the characters are encoded
using the ASCII scheme (see Chapter 6). Functions are special variables that
are defined by the Applesoft DEF FN command and that are evaluated using
a user-specified mathematical expression. For example, if a function is defined
as follows:

DEF FN MD<X>=X-256*INT(X/256)

then whenever the value of MD(aexpr) is requested (where" aexpr" represents
an arithmetic expression) it is evaluated by substituting the value of" aexpr"
wherever "X" appears in the "X-256*INT(X/256)" formula and then calcu
lating the result.

The first character of an Applesoft variable name must begin with a letter
from A ... Z (you can enter it in upper- or lowercase on the //c-Applesoft will
automatically convert it to uppercase); subsequent characters can be either
letters or a digit from 0 ... 9. The variable name can be up to 239 characters
in length, but only the first two characters are significant (the rest are simply
ignored). This means that Applesoft considers the variables LESS and LESSEN,
for example, to be equivalent.

A variable name cannot be used that contains the names for any of the
keywords shown in Table 4-2. For example, the variable name "LETTER" is
illegal because it contains the LET keyword.

If an integer or string variable is being defined, a special variable identifier
symbol must be added to its name so that Applesoft can properly interpret it
and store its value. The variable identifier symbol for integer variables is"%"
and for string variables it is "$". No special identifier symbol is needed to
identify real or function variables. Table 4-3 sets out the variable identifier
symbols used by Applesoft.

When a variable is defined in a program, Applesoft stores its name and
value at the end of one of two memory spaces located after the end of the
program. One space is reserved for simple variables and functions and is
pointed to by VARTAB ($69). The other space is reserved for array variables
and is pointed to by ARYTAB ($6B). In the following sections, we will take a
look at how variables are represented in these two variable spaces.

Storage of Simple Variables

Whenever Applesoft has to make use of a certain variable, it has to locate
it within its variable space. It does this by searching the variable space

--------:----------- 4/ Applesoft BASIC CJ 79

Table 4-3. Applesoft variable identifier symbols.

Variable
Ide1Jtl6er
Symbol

[none]
%

[none]
$

Variable Type

real
integer
function
string

Example

AB
AB%
FN AB()
AB$

beginning with the first entry and continuing until it finds a match. Thus, the
farther into the space a variable is located, the longer it will take Applesoft
to find it. Since Applesoft stores variables in its variable space in the order in
which they are encountered when the program is executed, you can improve
program execution speed by ensuring that more frequently used variables
are defined before less frequently used ones. This is most easily done by
defining all the frequently-used variables in the desired order as soon as the
program starts executing. For example, if your program uses four variables,
say I, J, K, and L$, but you would like K to be accessed as quickly as possible,
then you should execute a line such as

10 K=QJ:I=QJ:J=QJ:L$= 1111

before any other line that defines or uses any variables.

Each entry in the simple variable space is exactly seven bytes long and
consists of two parts: the name header, which is used to store the variable's
name and type, and the data field, which contains the encoded value of the
variable or a pointer to its location. The storage format used for each type .of
variable is summarized in Figure 4-2.

The Name Header

The name header contains all the information related to the variable's type
and name so that it can be quickly located and accessed whenever it is referred
to during execution of the Applesoft program. The name header for a simple
variable is always exactly two bytes long. Stored in these two bytes are the
7-bit ASCII codes for the the first two characters of the variable's name; if
there is only one character used in the name, then the second character is
assumed to be the ASCII null character, $00. The high-order bits of each of
the two bytes are used to indicate the type of simple variable being referred
to. For example, for a string variable, these bits will be OFF (0) and ON (1),
respectively. For real and integer variables, theywill be OFF-OFF and ON
ON, respectively. Lastly, the bits will be ON-OFF if the name refers to a
function defined by the DEF FN command.

80 [:=J Inside the Apple //c -----------------

(a) Real variables. (b) Integer variables.

First name byte - First name byte -high bit OFF high bit ON

Second name byte Second name byte -high bit OFF high bit ON

Exponent + 128 Value (high)

Mantissa (highest) Value (low)

Mantissa [Not used]

Mantissa [Not used]

Mantissa (lowest) [Not used]

(c) String variables. (d) Function variables.

First name byte 1+- First name byte I-high bit OFF high bit ON

Second name byte ~ Second name byte r-high bit ON high bit OFF

Length of string Pointer to
function (low)

Pointer to Pointer to
string (low) function (high)

Pointer to
string (high)

Location of argument
data (low)

[Not used] Location of argument
data (high)

[Not used] First character following
"=" in FN definition

Figure 4-2. Storage formats for Applesoft simple variables.

The Data Field

The encoded data that relates to the value of the simple variable are stored
in five bytes just after the end of the two name header bytes. Despite the fact
that five bytes are always reserved for data storage, however, only real vari
ables and functions make use of them all. The number of bytes required for

---------------- 4/ApplesoftBASIC [=::J 81

the data for each type of variable is as shown in Table 4-4, as are the restric
tions on the values for each type of Applesoft variable.

Table 4-4. Storage requirements and limitations for Applesoft
variables.

Variable
Type

Integer
Real

String
Functions

Number of
Data Bytes
Required

2
5

3
5

Restrictions on Variable Value

- 32767 ... + 32767
2.9E-39 ... 1.7E + 38 (pos. or
neg.)
Length of string is 0: .. 255 .
One argument only

Let's take a look at the storage formats used for each type of variable.

Integer. The data for integer variables is stored in a signed "two's com
plement" format and occupies two bytes (most-significant byte followed by
least-significant byte). See the section below entitled "Representation oflnte
ger Numbers" for a detailed description of the two's complement storage
format. The high bit of the most-significant byte can be read to determine the
sign ofthe number. If this bit is 1, then the number is negative; if it is 0, then
the number is positive. The last three bytes of the data field are not used.

Real. The data for real numbers is stored in all five bytes. The first byte is
related to the exponent of the number and the next four bytes represent its
signed mantissa, most-significant byte first. The sign bit is the high bit of the
second byte of the five. See the section below entitled "Representation of Real
Numbers" for a detailed description of the method Applesoft uses to store
real numbers. ·

String. The data for string variables is really made up of two parts. The
first part is stored in the variable table itself and is a three-byte "descriptor"
that represents the length of the string (first byte) followed by a two-byte
pointer (low-order byte first) to a sequence of ASCII-encoded characters that
defines the string itself. The second part is, in fact, made up of those characters
that define the contents of the string.

The contents of strings are normally stored in the high end of memory in a
string space beginning at a location pointed to by MEMSIZ ($73) and ending
lower in memory just before the location pointed to by FRETOP ($6F). When
ever a new string is entered from the keyboard or a diskette file, or an old one
is manipulated using any of Applesoft's string-handling commands, it is placed
in memory just before the address to which FRETOP points in such a way
that the first character in the string is located lowest in memory and the last

82 c=J Inside the Apple //c ----------------

character is located at the location pointed to by FRETOP. After this is done,
FRETOP is adjusted downward so that it points to the byte immediately
before the beginning of the string just stored.

When a string variable is redefined using Applesoft's string-handling com
mands, its new definition is placed in the string space in the upper part of
memory as if it were a newly defined variable; however, itsJormer characters
are not immediately removed from the string space even though it is no longer
used. This means that if strings are continuously being redefined, a lot of
unused information will accumulate in the string space and eventually the
address stored in FRETOP will come very close to the address stored in the
end-of-variable pointer, STREND ($6D).

When this happens, a procedure is initiated that maximizes the available
free space by removing the unused string characters, packing the currently
active string characters up to the high end of memory, and resetting FRETOP.
This procedure is called "garbage collection" or, more euphemistically, "house
cleaning". Applesoft' sown garbage collection routine can last anywhere from
a few seconds to a few minutes, depending on the number of string variables
that have been defined in the program. However, when an Applesoft program
is running in a ProDOS environment, a garbage collection routine within the
BASIC.SYSTEM program that interfaces Applesoft to ProDOS (see Chapter
5) is used instead and it handles the collection virtually instantaneously.

Note, however, that if a string is explicitly defined within the program
itself, for example, in a program line that looks like this:

111H'J A$= 11 THIS IS A TESP'

then the string pointer in the variable's data field will point to the definition
inside the program itself and not to a location within the usual string space.
Such a string will be moved into the string space only if it is operated on by
an Applesoft string-handling command.

Functions. The data for functions is stored in five bytes. The first two
bytes act as a pointer to the boqy of the function's definition within the
program (that is, the part after the"=" sign in the DEF FN definition). The
next two bytes contain the address of the data field for the variable repre
senting the function's argument. The last byte contains the first byte in the
function definition.

End of Simple Variables

ARYTAB ($6B) points to the Applesoft array variable space located imme
diately after the end of the simple variable space. Whenever a new simple
variable is defined, the whole of the array variable space is moved up in
memory by seven bytes to make room for the new simple variable definition
and the end-of-variables pointer, STREND ($6D), is adjusted accordingly.

--------------- 4/ Applesoft BASIC c=J 83

The name header and data bytes for the variable are then stored beginning
at ARYTAB. ARYTAB is then increased by seven so that it equals the new
starting position of the array space.

The simple and array variable spaces are also moved upward and down
ward in memory as program lines are added to or deleted from the program.

Storage of Array Variables

Each entry in the array variable space is made up of a name header, special
dimensioning bytes that indicate the size of the array and how it is indexed,
and a data field. The storage format used for each type of array variable is
summarized in Figure 4-3. Note that arrays are permitted for each Applesoft
variable type except functions.

The Name Header

Just as for simple variables, entries for array variables begin with a name
header. The name headers for array variables are identical to those for the
corresponding simple variables discussed in the previous section (for exam
ple, the header for an array dimensioned as AB(5,6) is the same as for AB).

Dimensioning Bytes

When array variables are stored, a series of bytes that describe the number
of dimensions of the array and their sizes are placed in memory just after the
header.

First, two bytes are used to store a number that is equal to the number of
bytes that the array occupies in the array variable space. This number is
simply the offset from the name header of this array to the next array and is
stored here so that the address of the next array variable in the array space
can be quickly and easily calculated when Applesoft is searching for an array.
The number is stored with the low-order byte first.

The next byte is equal to the number of array indexes (or "dimensions")
and can be from 1 to 255. For example, an array dimensioned as AB(3,5,2)
would have a value of 3 stored in this byte.

Pairs of bytes follow this last byte that indicate the size of the indexes of
the array, with the number of elements in the last index being stored in the
first pair and the number of elements in the first index being stored in the
last pair. The high-order byte is stored first in each pair. The numbers stored
here will be one higher than the number used when the array was first
dimensioned (using the DIM statement) since it starts counting the elements
from 1 rather than 0.

84 c=J Inside the Apple //c -----------------

Let's look at an example. The name header bytes and dimensioning bytes
for an array dimensioned as AB(3,5,2) would be as follows:

41 42 73 01 03 00 03 00 06

LJ LJ t LJ I I
name
(AB)

offset to
next array

#of
indexes

size of
3rd index

size of
2nd index

00 04

LJ
size of

1st index

Header used by all three array variable types:

(a) Real variables.

Exponent + 128

Mantissa (high)

Mantissa

Mantissa

Mantissa (low)

~~ ..;:/

Exponent+ 128

Mantissa (high)

Mantissa

Mantissa

Mantissa (low)

first
element

last
element

First name byte

Second name byte

Offset to next
array variable
(low byte first)

Number of dimensions

Size of last
dimension

(high byte first)

--:;/
/

..;:/

Size of first
dimension

(high byte first)

(b) Integer variables.

Value (high)

Value (low)

..;:
y 1-/

Value (high) } Value (low)

first
element

last
element

(c) String variables.

Length of string

Pointer to
string (low)

Pointer to
string (high)

~/ ..;:~

Length of string

Pointer to
string (low)

Pointer to
string (high)

NOTE: Array elements are stored in such a way that

first
element

last
element

the right-most dimensioning index increases slowest (see text).

Figure 4-3. Storage formats for Applesoft array variables.

---------------- 4 I Applesoft BASIC c:::=J 85

The Data Field

After the dimensioning bytes come the actual data bytes for each array
element. They are stored in exactly the same formats used by the correspond
ing simple variables except that, in the case of integer and string arrays, the
data bytes are packed. This means that the unused bytes that are stored in
the simple variable data space for these two types of variables are not stored.

The array elements are stored in memory in such a way that the rightmost
dimensioning index ascends most slowly. Thus, if an array is dimensioned as
A(l,l), then A(0,0) is stored first, followed by A(1,0), A(0,1), and then A(l,l).

End of Array Variables

STREND ($60) points to one byte past the end of the array variable space.
It also points to the beginning of Applesoft free space. When a new array
variable is defined, its header and data are stored beginning at this location
and then the value STREND is increased by the size of the entry for the array.

Representation of Integer Numbers

Applesoft stores the data for its integer variables in a special two-byte
format called "two's complement." As we will see, the advantage of using
this format is that it allows both negative and positive numbers to be repre
sented in a way that greatly simplifies the execution of the two basic signed
arithmetic operations, addition and subtraction.

The most-significant byte of the pair of data bytes reserved for an integer
is stored first (note that this is just the opposite of how two-byte quantities
are usually stored). The high-order bit of this byte is used to indicate the sign
of the number. If it is 1, then the number is negative; if it is 0, then it is
positive. The remaining 7 bits of this byte, and the 8 bits of the least-significant
byte, are used to represent the magnitude of the integer. For a positive integer,
the 15-bit magnitude is simply represented by the standard unsigned binary
pattern for the integer. For example,

is used to represent + 259 ($0103).

The 15 bits used to represent a negative integer are determined somewhat
differently. To determine what they are, you must first take the binary pattern
for the absolute value of the integer (that is, its positive counterpart), com
plement it by changing all its 1 bits to 0 and vice versa, and then add one to
the result. The most-significant bit will then be 1, indicating that the number

86 c=J Inside the Apple //c ----------------

is negative. For example, the representation for the integer -11 would be
calculated as follows:

0000000 00001011 (+ 11)
1111111 11110100 (complement)

+ 1 (add 1)

1111111 11110101 (-11 in two's complement)

Using the two-byte two's complement format, it is possible to define integers
thatrangefrom-32768 (10000000 00000000) to+ 32767 (0111111111111111).
Note, however, that even though the number -32768 can be represented in
the two-byte two's complement format, Applesoft does not allow its integer
variables to take on this value. The lowest value that is allowed is -32767.

Applesoft stores its integers in this apparently strange format to simplify
the way in which binary arithmetic can be performed. By using the two's
complement format, positive and negative numbers can be easily added and
subtracted without having to perform the complicated adjustments needed
to account for the different signs of the numbers if any other representation
is used. (Another representation may be the conventional "sign plus magni
tude" (S + M), where a positive integer and its negative counterpart are iden
tical except for the value of the sign bit.) When using the two's complement
representation, it is only necessary to add the 16-bit representations of the
two integers (be they positive or negative) as if they were just two standard
unsigned binary numbers. The result, and its sign, will then automatically
be correct if the result is viewed as another two's complement integer (which
it is).

Let's take a look at an example to see what we mean by this. Consider the
problem of adding the integer + 8 to the integer -5. If these numbers were
stored in their normal binary representations with the sign bit being the
most-significant bit, then the calculation to be performed would be

00000000 00001000 (+ 8)
+ 10000000 00000101 (-5 inS+ M binary)

10000000 00001101 (-13 inS+ M binary)

This result is, of course, wrong. Thus, if this representation is used, special
programs must be written to avoid these erroneous results. On the other hand,
if the integers are represented in the two's complement format, then the
calculation becomes

00000000 00001000 (+ 8)
+ 11111111 11111011 (-5 in two's complement)

00000000 00000011 (+ 3)

This result is, of course, correct. If you experiment with other integers, you
will see that the signed result is always correct (unless the result is out of the
allowable range).

--------------- 4 I Applesoft BASIC [==:J 87

Representation of Real Numbers

As we have seen, Applesoft real numbers are stored in the simple variable
space and array variable space in a binary floating-point format. This special
format will be described in detail now.

Knowledge of this format will be of use mainly to those who write 65C02
assembly-language programs that access Applesoft numeric variables. How
ever, even if you never intend to write such a program, the following infor-
mation should prove to be interesting. ·

Number Theory

Even though numbers are commonly entered·into a computer in a "deci
mal" or "base 10" format, they are generally stored internally in some sort
of compressed binary format to reduce data storage space and to make it easy
for programs to manipulate them.

Decimal integer numbers can be stored in a binary form without loss of
accuracy due to rounding or truncation (provided that the integers are within
the numeric range supported by the computer) because they do not contain
fractional parts. On the other hand, floating-point numbers (that is, real
numbers), which do have fractional parts, can only be "approximated" by a
binary representation unless the decimal number is exactly equal to a sum
of powers of two. Because approximations have to be made in most cases,
you will sometimes find that if you multiply a number by its reciprocal in
Applesoft that the number calculated is not equal to one!

Floating-point real numbers are often expressed in "scientific notation"
that looks like this:

134.56 X 19"6

The first part of this representation is called the mantissa and the second
pari is called the exponent (the exponent is actually the number to which the
number base being used has been raised). An understanding of scientific
notation is important because it is a binary mantissa and exponent that are
stored by Applesoft when real numbers are saved in its variable spaces.

Binary Floating-Point Format

Real numbers are stored in the variable spaces of Applesoft in a "binary
floating-point" format. As indicated in Figure 4-4, this is a five-byte format in
which one byte is reserved for exponent information and four bytes for man
tissa information. The mantissa contains the binary representation of the
fractional part of the number.

The lowest-addressed byte in the fivesome is the exponent byte. The value

88 c::=J Inside the Apple //c ----------------

stored here is actually not the exponent itself but rather the value of the
exponent plus 128. Because this method is used to store the exponent, the
exponent is said to be "biased" by 128.

Before a number is stored in the binary floating-point format, it is "nor
malized;" Normalization is the process whereby the binary point of the binary
number (as opposed to a decimal point for a decimal number) is adjusted so
that there is a" 1" to its immediate right and no" C' 's to the left of it. Thus,
after normalization, the mantissa of the number will be between 0.1 and
0.11111111 ... (in binary). For each movement of the binary point to the left,
the exponent is increased by one; for each movement to the right, the exponent
is reduced by one. For example, consider the binary number "1101.11". To
normalize this number, the binary point must be moved four places to the
left; thus, the initial exponent (0) must be increased by four.

In the binary floating-point representation, the high-order bit of the second
byte represents the sign of the number. If this bit is 1, then the number is
negative; if it is 0, then the number is positive.

The remaining 7 bits of the second byte and the remaining three bytes are
used to represent the mantissa of the number, most-significant byte first.
Within a particular byte, the 7th bit is the most significant and the 0th bit
the least significant. As has been explained, the mantissa has been normalized
so that there is a "1" to the immediate right of the decimal point; this "1" is
implicit and is not stored. Thus, a floating-point number has 32-bit precision
(about nine decimal digits) even though only 31 bits are actually used to hold
the mantissa.

Any number whose exponent byte is equal to zero is considered to be zero
by the Applesoft interpreter even though its mantissa bytes may be nonzero.

The decimal range of numbers that is allowed using the five-byte binary
floating-point format is as follows:

+I- 2 .9387355E-39 to +/- 1. 79141183E+38

To calculate a decimal number from its binary format, multiply the value
of each mantissa bit by its corresponding binary weight, add the implied 0.5
(which is the decimal equivalent of binary 0.1), and then multiply the total
by 2 raised to the value of the exponent byte minus 128. The binary weight
of a particular mantissa bit is given by (1/2)A(32-BN), where BN is the bit
number. The bit numbers range from the most-significant bit 30 (bit 6 of byte
2) to the least-significant bit 0 (bit 0 of byte 5).

For example, consider the decimal number '8.67'. It is stored by Applesoft
as the following five bytes:

BYTEl
$84

BYTE2
$0A

BYTE3
$B8

and the corresponding binary number is

BYTE4
$51

BYTES
$EB

---------------- 4 I Applesoft BASIC c=J 89

+.HHJ~1~1~ t byte2

1~111~~~ ~1~1~~~1 111~1~11 * 2$84-$8~
byte3 byte4 byteS bytel

implicit

To convert this binary number to its corresponding decimal number, you
must add the implicit 0.5 to the sum of each binary digit multiplied by its
binary weight. The resultant calculation is as follows:

~,5+(1/2)A5+(1/2)A7+(1/2)A9+(1/2)A11+(1/2)A12

+(1/2)A13+(1/2)A18+(1/2)A2~+(1/2)A24+(1/2)

A25+(1/2)A26+(1/2)A27+(1/2)A29+(1/2)A31
+(1/2)A32

If you calculate this quantity, you will get 0.541875. It then must be mul
tiplied by the exponential part (which is 2A4 or 16) in order to yield the final
result: 8.67.

Note that the high bit of BYTE2 in the above example is zero indicating
that the number is positive.

If you wish to look at the bytes that Applesoft uses to store other numbers,
use the program found in Table 4-5. When you RUN this program, you will
be asked to enter a number to be analyzed (X). The program locates the data
bytes used to store this number by recognizing the fact that since X is the
first simple variable defined in the program, its five data bytes must be stored
two bytes from the beginning of the simple variable space (remember that
the first two bytes are reserved for the name header). The address of the
beginning ofthis space is simply PEEK(105)+256*PEEK(106) since the pointer
to the beginning of the simple variable space is located at $69 and $6A.

BYTE #1 I I BYTE #2 I BYTE #3 I I BYTE #4 I I BYTE #5

Exponent t Mantissa
+ 128 (highest)

sign
bit

Figure 4-4. Applesoft binary floating-point format.

How an Applesoft Program Runs

Mantissa
(lowest)

Right after you enter the RUN command to begin execution of an Applesoft
program, at least two important things happen. First, all the pointers to the
variable spaces are initialized, effectively destroying any variables that may
have been active when the program last stopped running. Then, just before
the program starts to be executed, a special pointer, called TXTPTR ($B8/

90 c::::J lnsidetheApple//c -----------------

Table 4-5. REAL.NUMBERS-a program to display the bytes that
are used to represent an Applesoft real variable.

0 REM "REAL.NUMBERS"
100 TEXT : HOME : PRINT "DECIMA

L ---> BINARY FLOATING-POINT
II

110 VTAB 5
120 INPUT "ENTER NUMBER TO BE C

ONVERTED: ";X
130 DIM HX$(15>: FOR I = 0 TO

5: READ HX$<1>: NEXT
140 XD = PEEK <105) + 256 * PEEK

<106) + 2: REM LOCATION OF
DATA FOR X

150 PRINT : PRINT "THE FLOATING
-POINT REPRESENTATION IS:": PRINT

160 FOR I = XD TO XD + 4
170 D = PEEK <I>:D1 = D
180 PRINT "BYTE #11 ; I - XD + 1 ; II

• II • . ' 190 FOR J = 7 TO 0 STEP - 1
200 T = INT <D I <2 J)): PRINT

T;
210 D = D- T * <2 J)
220 NEXT J: PRINT II ($";HX$(INT

<D1 I 16>>;HX$<D1 - 16 * INT
<D1 I 16>>;"> ";

230 READ DS$: PRINT DS$
240 NEXT 1: PRINT
250 PRINT "BIT 7 OF BYTE #2 IS

THE SIGN BIT": PRINT "<0 -->
POSITIVE, 1 --> NEGATIVE>"

260 DATA 0,1 ,2,3,4,5,6,7,8,9,A,
B,C,D,E,F

270 DATA EXPONENT + 128,MANTISS
A HIGH,.,. ,MANTISSA LOW

$B9), is initialized so that it contains the address of the beginning of the
program. This address is normally $801.

TXTPTR is an important pointer as far as the interpreter is concerned
because it always contains the address of the location within the program
that the interpreter is acting on. Whenever the interpreter wants to examine
the next byte of the tokenized program, it simply increments this pointer and
then reads the new byte to which it points.

---------------- 4 I Applesoft BASIC c=J 91

The CHARGET Subroutine

Since TXTPTR must be incremented by many different subroutines in the
interpreter, one special subroutine is used to take care of it. This subroutine
is called CHARGET (for CHARacter GET) and is located in page zero from
location $B1 to location $C8. A source listing of CHARGET appears in Table
4-6. Another subroutine, called CHARGOT, is contained within CHARGET;
this subroutine reads the current byte being pointed to without incrementing
TXTPTR. An image of the CHARGET subroutine is loaded into its page zero
locations from the Applesoft ROM area by the Applesoft interpreter when
Applesoft is first initialized. It must be placed in a RAM area because, as we
will see, it contains self-modifying code.

TXTPTR is actually located within this subroutine at location $B8/$B9 and
it forms the operand of an LDA instruction that retrieves the value of the byte
pointed to by TXTPTR.

When CHAR GET is called, TXTPTR is incremented, the 65C02 accumulator
is loaded with the byte located at the new address it points to, certain pro
cessor flags are set, and then the routine ends. Exactly how the flags are set
depends on the value of the byte loaded into the accumulator. If it is an end
of-line marker (0) or end-of-statement byte ($3A), then the zero flag (Z) is set;
otherwise, it is cleared. In addition, if the byte is a digit (that is, its ASCII
code is between $30 and $39), then the carry flag (C) will be clear; otherwise,
it will be set. The reason for testing for these conditions in the CHARGET
subroutine is that many of Applesoft's internal subroutines are constantly
checking for end-of-line conditions or for the presence or absence of numbers
and this is an efficient way of providing that information. If it wasn't done
this way, then wasteful duplication of code would be required because every
subroutine that needed the information would have to perform its own sep
arate testing procedures.

Let's get back to our program, which was just starting to run with TXTPTR
set to $801 when we last left it. Since the first four bytes of the program
($801 ... $803) are simply the line number and the address of the next line,
they are skipped over by increasing TXTPTR by four so that the next time
CHARGET is called the first byte in the token field of the program line will
be read.

The next step, of course, is to call CHARGET and get that first byte and
analyze it. This is where Applesoft really starts its interpretation chores. If
the byte happens to be an end-of-line marker (0), then TXTPTR is bumped by
four positions so that it points to the byte just before the token field of the
next line. If it's a colon separator ($3A), then CHARGET is called again to
load the next byte (which will be the first byte in the token field of the next
statement on that line).

If the byte is a keyword token (that is, it is greater than or equal to $80),
then, assuming it is not out of context, the appropriate subroutine in the

Table 4-6. CHARGET -the subroutine that is used to parse an Applesoft program.

1
2
3
4
5
6
7
8

00B1 : E6 B8 9
00B3: 00 02 10
00B5: E6 B9 11
00B7: AD FF FF 12
00BA: C9 3A 13
00BC: B0 0A 14
00BE: C9 20 15
00C0: F0 EF 16
00C2: 38 17
00C3: E9 30 18
00C5: 38 19
00C6: E9 00 20
00C8: 60 21

* CHARGET *

TXTPTR EQU

DRG

CHARGET INC
BNE
INC

CHARGDT LDA
CMP
BCS
CMP
BEQ
SEC
SBC
SEC
SBC

EX IT RTS

$B8

$B1

TXTPTR
CHARGOT
TXTPTR+1
$FFFF
#$3A
EX IT
#$20
CHARGET

#$30

#$00

;<NOTE: This is CHARGOT+1)

;Bump the text pointer
; by one position

;Get the byte pointed to
; and compare it to ":"
;Branch if >= ":"
;Is this a blank?
;Yes, so get next byte

;If digit, carry will be clear

CD
N

D
::I
en
0.:
<D -=r
<D
)>
"0
"0
<D

~

---------------- 4 I Applesoft BASIC c=J 93

interpreter that handles that command or function to which it refers will be
called. That subroutine will, among other things, evaluate numerical or string
expressions and perform syntax checking; it will do this by making extensive
use of CHARGET to analyze the bytes "surrounding" the keyword. When the
keyword has been dealt with, CHARGET will point to the next byte to be
interpreted.

If the byte is not a keyword token or an end-of-line or end-of-statement
marker, then, depending on the context, it may be considered to be a variable
name, a piece of data, or maybe nothing at all (in which case you will see the
dreaded ?SYNTAX ERROR). As long as no syntax errors are detected, TXTPTR
will continue incrementing and interpreting new bytes until such time as the
token for END or STOP is encountered or until the last line in the program,
denoted by a pair of zero bytes where the next line pointer would normally
be found, has been executed.

Changing Program Flow

Because Applesoft always relies on the value of TXTPTR to determine what
part of the program to execute next, you can easily cause Applesoft to skip
certain parts of the program and to continue executing elsewhere merely by
adjusting TXTPTR. In fact, this is exactly how the Applesoft GOTO and
GOSUB commands work. When the interpreter encounters either of these
commands, it performs a number of tasks, the most important of which are
to determine the target line number, to find that line humber in memory, and
then to store the address of the line's token field in TXTPTR. Then, when
Applesoft continues interpreting the program by calling CHAR GET, the com
mands there will begin to be executed.

Finding Line Numbers

We have just seen how TXTPTR is adjusted when either a GOTO or GOSUB
command is executed. What we did not explain is how the interpreter deter
mines where the line is located to which control is to be passed by either of
these commands.

There are two different methods Applesoft uses, depending on whether the
high-order byte of the destination line number is greater than the high-order
byte of the current line number. If it is, then the interpreter starts looking for
a line with the proper number beginning with the next line in memory. If it
is not, then the interpreter begins with the first line of the program. The
interpreter can quickly skip over lines whose numbers don't match by exam
ining the link field address (the first two bytes of the tokenized line) to deter
mine the address of the next line of the program.

What this means is that GOTO and GOSUB commands that transfer control

94 CJ Inside the Apple //c ----------------

to line numbers just before the current line will execute more slowly than
those that transfer control to lines nearer the start of the program or to lines
just after the current line.

In should be obvious, then, that to increase program execution speed,
"backward" GOTO and GOSUB statements should transfer control to lines
that are as close to the beginning of the program as possible. By placing
commonly used subroutines near the beginning of a program in decreasing
order of activity, program speed can be noticeably increased.

Linking Applesoft to Assembly-Language
Programs

The execution speed of an Applesoft program can be improved dramatically
by linking it to assembly-language subroutines. This is because the code
generated by the assembly process is directly executable by the microproces
sor and does not have to be interpreted first. Such subroutines can be accessed
from Applesoft by using one of three Applesoft commands: CALL, USR, and
& (ampersand). These three commands are summarized in Table 4-7.

Assembly-language subroutines often need to make use of zero page loca
tions to take advantage of some of the 65C02's more powerful addressing
modes. As we have seen, however, several locations in zero page are reserved
for use by Applesoft pointers. Others are used by Applesoft, the system mon
itor, or ProDOS for other purposes. Table 2-5 at the end of Chapter 2 contains
a complete list of those zero page locations that are not used and that are
available for use by an assembly-language program.

Table 4-7. Applesoft to assembly-language commands.

Command Description

CALL aexpr Transfers control to the memory location specified by
"aexpr".

X = USR(aexpr) Evaluates "aexpr" and places the result in the floating
point accumulator (see text) and then transfers control to
$000A. On return, the value of the function is set equal to
the value in the FAC.

& Transfers control to $3FS.

Note: "aexpr" represents an arithmetic expression.

-......-------------......-- 4 I Applesoft BASIC c=J 95

The CALL command

The CALL command is the one that is usually used to link Applesoft pro
grams with assembly-language subroutines. If such a subroutine begins at a
memory location represented by "aexpr," then you would use the command

CALL aexpr

to invoke the subroutine. The value of "aexpr" that you use must be a literal
decimal number (not hexadecimal) or, alternatively, a mathematical expres
sion that evaluates to an integer number.

For example, to execute a subroutine from Applesoft that begins at location
$300 (768 decimal), you would use the command

CALL 768
When the subroutine finishes executing, you will normally return to Apple

soft and the next statement in the Applesoft program will be executed.

You can try using the CALL command without even writing any assembly
language subroutines simply by accessing subroutines that are already con
tained in the system monitor ROM. For example, to clear the screen you
would use the command CALL 64600 since $FC58 is the address of the screen
clear command. As explained in Chapter 3, there are many other subroutines
in the monitor, some of which require that data be provided to them first or
that registers be set up in certain ways.

If the subroutine that you are calling requires that data be provided to it
before it can perform its duties, you would normally precede your CALL with
several POKE commands that would place the appropriate information at
the locations expected by the subroutine. Similarly, you will usually have to
use the PEEK command to examine any numerical results that the program
may store in memory.

It is possible, however, using more advanced techniques, to pass the values
of named variables to and from your called subroutines. These techniques
will be described below in the section entitled "Using Applesoft's Built-in
Subroutines." ·

The & Command

The & (ampersand) command is similar to the CALL command and is used
for similar purposes. Whenever the Applesoft interpreter comes across the &
command, it immediately causes the system to transfer control to location
$3FS, thus causing the subroutine that is located there to be executed. In the
usual case, a 6SC02 JMP Uump) instruction is stored at this location that
passes control to some other location where the main body of the subroutine
begins.

96 c=J Inside the Apple //c ------------------

If you want to use the & command to access assembly-language subroutines,
you must first set up the jump at location $3FS (1013) so that it points to the
desired subroutine. This can be done by using the following three POKE
commands:

POKE 1e!13,76
POKE 1014,YY
POKE 1el15,XX

REM 76 ($ 4C > is the 65C02 JMP opcode

REM Y Y is the low address of the sub.

REM X X is the high address of the sub.

To calculate the high and low halves of the address of the subroutine, you
can use the following formulas:

XX = INT<ADDRESS/256>
YY = ADDRESS - 256*XX

After you install the subroutine at the proper location, you can then execute
the & command to access it.

As with the CALL statement, no built-in provisions have been made for the
passing of variables to and from & subroutines. However, the program that
is called can be written to do this for itself. See the section below entitled
"Using Applesoft's Built-in Subroutines."

The USR Function

The USR function can also be used to link Applesoft to assembly-language
subroutines. The syntax of the USR function is as follows:

Y = USR(aexpr)

where "aexpr" represents a mathematical expression that is called the argu
ment of the function. When the USR function is encountered by the inter
preter, the formula is evaluated, the result of the evaluation is placed in an
internal floating-point accumulator (FAC) in zero page and a jump to location
$000A is performed. By setting up a 65C02 JMP instruction at $000A, you can
transfer control to the beginning of an assembly-language program that has
been loaded anywhere in memory.

After the program has finished executing, control will return to Applesoft
and theY variable in the above equation will be set equal to the current value
of the FAC. This is why USR is called the "user-defined function."

Let's take a look at a specific application involving the USR command. In
particular, let's calculate the sine of the argument by using Applesoft's inter
nal sine evaluation subroutine located at $EFF1. As we will see later in this
chapter, this subroutine calculates the sine of the number in the FAC and
returns the result there. The subroutine required to perform the conversion
is simple: JMP $EFF1. You can install it at location $300 by entering CALL-
151 to enter the system monitor, and then entering the command

........ ----------------- 4 I Applesoft BASIC CJ 97

300: 4C F1 EF

To link this subroutine to the USR command, a JMP $300 instruction must
be placed at the USR locations frorri $A to $C. This can be done by ente~ing
the following monitor command:

A:4C 00 03

where 4C is the JMP opcode and 00 03 represents the address of the subroutine
(low-order byte first). Note that you could have also entered all this infor
mation using Applesoft POKE statements.

To try out the USR routine, enter and RUN the following short program
after entering the data at $300 and $0A to $0C as discussed above:

100 X = 3
200 PRINT
300 PRINT

USR <X>
SIN <X>

As you will see after the program has executed, USR is indeed calculating
the sine of X.

USR is not a popular Applesoft function for two main reasons. First, only
a single numeric expression can be passed to the USR subroutine. Second,
the structure of the internal floating-point accumulator has never been offi
cially described by Apple. However, as we shall see in the section below
entitled "Useful Applesoft Built-in Subroutines," there are many built-in
subroutines in Applesoft that can be used to facilitate manipulation of the
FAC.

Applesoft's Built-In Subroutines

The Applesoft interpreter is made up of many subroutines that are used to
perform several different functions: evaluating functions, performing arith
metic operations, locating variables, handling errors, and so on. Many of
them make use of the previously described CHARGET subroutine and the
TXTPTR ($B8) pointer to perform their duties. Table 4-8 describes some of
the more useful and commonly used Applesoft subroutines. The addresses of
these subroutines are called "entry points."

Many of the Applesoft subroutines make use of special locations in the lie's
zero page. The locations)that are referred to in connection with the subrou
tines in Table 4-8 are shown in Table 4-9.

Many of the subroutines contained in Table 4-8 deal with floating-point
real numbers. Applesoft uses two seven-byte areas in zero page, one from $9D
to $A3 and the other from $AS to $AB, to store binary floating-point numbers
whenever mathematical operations are being performed on real numbers or
functions are being evaluated. These areas are called the primary floating
point accumulator (FAC) and argument register (ARG), respectively. Note

98 [=:J lnsidetheApple//c -----------------

Table 4-8. Applesoft built-in subroutines.

(a) Locating Variables, Data, and Line Numbers
Address

Hex (Dec) · SymboliC Name Description

$00B1 (177) CHARGET

$00B7 (183) CHARGOT

$DFE3 (57315) PTRGET

$F7D9 (63449) GETARYPT

$D61A (54810) FNDLIN

Increments TXTPTR by one position
and returns the next byte in the pro"
gram in the A-register. Certain flags
are also set: if A is a colon (": ") or a
zero, then the zero flag is set; other
wise, it is cleared; If A is an ASCII
digit ("0" to "9"), then the carry flag
is cleared; otherwise it is set.

Returns the current byte in the pro
gram pointed to by TXTPTR in the
A register. The flags are set in the
same way as for CHAR GET.

Finds the address of the beginning
of the data field within the variable
space for any Applesoft variable. On
entry, TXTPTR must b~ pointing to
the first character of the variable's
name. On exit, the address can be
found in VARPNT ($83/$84) and in
Y (high) and A (low).

Finds the addi:-ess of the name header
for . any array variable. On entry,
TXTPTR must be pointing to the first
character in the variable's name. On
exit, the address can be found in
LOWTR ($9B/$9C).

Locates the line in the program whose
number is in LINNUM ($50/$51). On
exit, if the line is found, the carry
flag is clear and LOWTR ($9A/$9B)
points to the start of the line. If the
line was not found, then the carry
flag will be set and LOWTR will point
to the next higher line.

(continued)

---------------- 4 I Applesoft BASIC c::::=J 99

Table 4-8. Applesoft built-in subroutines (continued).

(b) Evaluating Formulas

Address Symbolic Name Description
Hex (Dec)

$DD67 (56679) FRMNUM

$E6F8 (59128) GETBYT

$DD7B (56699) FRMEVL

(c) Converting Numbers

Evaluates a mathematical formula
and stores the result in the FAC. On
entry, TXTPTR must be pointing to
the first character in the formula. On
exit, the result is placed in the FAC
unless a syntax error is detected in
which case an appropriate error
message is displayed.

Evaluates a mathematical formula
that will yield a result in the range
0 ... 255. On entry, TXTPTR must
be pointing to the first character in
the formula. On exit, the result is
stored in the X-register and FACLO
($Al).

Evaluates a mathematical or string
formula and stores the result in the
FAC. On entry, TXTPTR must be
pointing to the first character in the
formula. On exit, if a string formula
is being evaluated, $A0 (low) and $Al
(high) points to the 3-byte string
descriptor.

Address Symbolic Name Description
Hex (Dec)

$E2F2 (58098) GIV A YF

$E6FB (59131) CONINT

Converts the 2-byte signed integer in
A (high) and Y (low) into floating"
point format and stores it in the FAC.

Converts the number in the FACto
a single byte integer. On entry, the
number to be converted must be in
the FAC. On exit, the single byte inte
ger is contained in the X-register and
FACLO ($Al) unless the result is not
in the range 0 ... 255 in which case
an "ILLEGAL QUANTITY ERROR"
message is displayed.

(continued)

100 c::J lnsidetheApple//c -----------------

Table 4-8. Applesoft built-in subroutines (continued).

(c) Converting Numbers
Address Symbolic Name Description

Hex (Dec)

$E752 (59218) GETADR

$ED24 (60708) LINPRT

Converts the number in the FAC into
an unsigned 2-byte integer
(0 ... 65535) in LINNUM ($50/$51).
If the number is negative, then 65535
is added to its value.

Converts the unsigned hexadecimal
number in X (low) and A (high) into
a decimal number and displays it.

$ED2E (60718) PRNTFAC Prints the number contained in the
FAC (in decimal format). The FAC is
destroyed by this process.

(d) Applesoft Real-Number Mathematics

Before executing any of the following subroutines, a number must be loaded
into the FAC. All of these subroutines first move the number in memory
pointed to by Y (high) and A (low) into the ARG and perform the mathematical
operation. The result is placed in the FAC.

Address Symbolic Name Description
Hex (Dec)

$E7A7

$E7BE

$E97F

$EA66

(59303) FSUB

(59326) FADD

(59775) FMULT

(60006) FDIV

(e) Applesoft String Handling

Subtract the FAC from the ARG.

Add the FACto the ARG.

Multiply the ARG by the FAC.

Divide the ARG by the FAC.

Address Symbolic Name Description
Hex (Dec)

$E452 (58450) GETSPACE Reduces the start-of-strings pointer,
FRETOP ($6F), by the number spec
ified in the A-register (the string
length) and sets up FRESPC ($71) so
that it equals FRETOP. After this has
been done, A remains unaffected and
Y (high) and X (low) point to the
beginning of the space. The string
can then be moved into place in upper
memory by using MOVESTR.

(continued)

---------------- 4/ Applesoft BASIC c=J 101

Table 4-8. Applesoft built-in subroutines (continued).

(e) Applesoft String Handling

Address Symbolic Name Description
Hex (Dec)

$E484 (58500) GARBAGE

$E5E2 (58850) MOVESTR

$ED34 (60724) FOUT

$DB3A (56122) STROUT

$DB3D (56125) STRPRT

Clears out old string definitions that
are no longer being used and adjusts
FRETOP ($6F) accordingly. (Each
time that a string is redefined, its old
definition is kept in memory but is
not used.) This process is called
"garbage collection" and is per
formed automatically whenever the
start-of-strings address, FRETOP,
comes close to the end-of-variables
address, STREND ($6D). Note that
under ProDOS this routine is never
called since BASIC.SYSTEM does its
own faster garbage collection first.

Copies the string that is pointed to
by Y (high) and X (low) and that has
a length of A to the location pointed
to by FRESPC ($71).

Converts the FAC into an ASCII char
acter string that represents the num
ber in decimal form (like Applesoft's
STR$ function). The string is fol
lowed by a $00 byte and is pointed
to by Y (high) and A (low) so that
STROUT can be used to print the
string.

Prints the string pointed to by Y (high)
and A (low). The string must be fol
lowed immediately by a $00 or a $22
byte. All of these conditions are set
up byFOUT.

Prints the string whose 3-byte
descriptor (a length byte followed by
a two-byte pointer) is pointed to by
$A0/$A 1. FRMEVL sets up such a
pointer when calculating string for
mulas.

(continued)

102 c=:J lnsidetheApple//c -----------------

Table 4-8. Applesoft built-in subroutines (continued).
(f) Applesoft Real-Number Functions

In executing the following subroutines, Applesoft expects the argument to be
in the FAC. After the result has been calculated, it will be placed in the FAC.

Address Symbolic Name Description
Hex (Dec)

$E941 (59713) LOG

$EBAF (60335) ABS

$EE8D (61069) SQR

$EF09 (61193) EXP

$EFEA (61418) cos
$EFF1 (61425) SIN

$F03A (61498) TAN

$F09E (61598) ATN

(g) Miscellaneous Subroutines

Address Symbolic Name
Hex (Dec)

$DA0C (55820) LINGET

$D412 (54290) ERROR

$DEBE (57022) CHKCOM

Calculate the natural logarithm

Calculate the absolute value

Calculate the square root

Calculate "e to the power of"

Calculate the cosine (in radians)

Calculate the sine (in radians)

Calculate the tangent (in radians)

Calculate the arctangent (in radians)

Description

Loads a line number into LINNUM
($50/$51). On entry, TXTPTR must
point to the first digit of the line
number.

Handles any Applesoft error condi
tions that may occur during the run
ning of a program. The subroutine
first checks ERRFLAG ($D8) to see if
an ONERR GOTO statement is in
effect; if ERRFLAG > = $80, then
error handling has been enabled and
control passes to the appropriate line
number. IfERRFLAG <$80, then an
error message is printed (the error
number code is in X) and the pro
gram stops.

Checks that TXTPTR ($B8) is point
ing to a comma and, if it is, bumps
TXTPTR by one. If TXTPTR is not
pointing to a comma, then a syntax
error will be generated.

(continued)

---------------- 4 I Applesoft BASIC c=J 103

Table 4-8. Applesoft built-in subroutines (continued).

(g) Miscellaneous Subroutines
Address Symbolic Name Description

Hex (Dec)

$E000 (57344) COLD

$E003 (57347) WARM

Performs an Applesoft cold start (the
program in memory is destroyed).

Performs an Applesoft warm start
(the program in memory remains
intact).

Table 4-9. Some important zero page locations used by Applesoft's
built-in subroutines.

Address
Hex (Dec) Symbollc Name Description

$50 (80) LINNUM (low) These are the locations, used by
$51 (81) (high) GETADR, that contain the; result of

the conversion of the FACto a 2-byte
integer.

$71 (113) FRESPC (low) This is a temporary pointer, used by
$72 (114) (high) GETSPACE and MOVESTR, that con-

tains the address of the location to
which a string is to be moved.

$83 (131) VARPNT (low) This is a temporary pointer, used by
$84 (132) (high) PTRGET, that contains the location

of the data bytes for the last variable
that was found using PTRGET.

$9B (155) LOWTR (low) A pointer used by FNDLIN and
$9C (156) (high) GETARYPT.

$Al (161) FACLO This is a byte in the FAC that contains
the result of CONINT and GETBYT.

$B7 (183) TXTPTR (low) This is a pointer to the position within
$B8 (184) (high) the program that is currently being

acted on by the interpreter. It is part
of the CHARGET subroutine.

$08 (216) ERRFLAG This is the ONERR GOTO flag. If it's
> = $80, then ONERR is active.

104 c=J lnsidetheApple//c ----------------

that despite the use of the words "accumulator" and "register," these are not
6SC02 registers, but merely special data storage areas. Although the format
Applesoft uses to store numbers in both FAC and ARG is not quite the same
as the five-byte format used to store real numbers in the Applesoft simple and
array variable spaces, it will not be described here since knowledge of it is
not necessary to make use of Applesoft's built-in floating-point mathematical
subroutines.

The FAC is used by Applesoft to hold the argument for those calculations
that require only one argument (for example, the calculation of a sine). If two
arguments are required, however, the first argument is kept in the ARG and
the second is kept in the FAC. In either case, the answer is returned in the
FAC.

Remember the Applesoft USR command? The argument that is evaluated
when this command is executed is stored in the FAC, as is the returned result.

Using Applesoft's Built-In Subroutines

Applesoft's built-in subroutines can be used in conjunction with your own
assembly-language programs to greatly simplify those programs and to allow
you to dispense with having to rewrite programs that have already been
written. In most cases, it is not even necessary to understand exactly how the
Applesoft subroutine operates as long as you understand what the entry
conditions are and what effect the subroutine has on the system.

There are literally hundreds of useful subroutines within the Applesoft
interpreter that can be accessed, but only a few of them have been listed in
Table 4-8. Three of the more important classes of subroutines will be discussed
in detail here: those used to locate variables, those used to evaluate formulas,
and those used to convert numbers between different formats.

Locating Variables

We have already seen how Applesoft keeps track of its variables and how it
"stores them. Using that information, it would be a fairly simple chore to write
a program to locate and retrieve any particular one. All you would have to
do would be to check the name bytes of each variable in the variable table
that begins at the start of simple variable space until a match was found.
Applesoft already contains a program to do this, however, so why bother?
This program is called PTRGET and begins at $DFE3.

To find the location of a variable, all you must do is adjust TXTPTR ($B8/
$B9) so that it points to the first character in the variable name, and then
execute a JSR PTRGET instruction. When the subroutine ends, VARPNT ($83/
$84) will contain the address of the beginning of the variable's data field.

---------------- 4 I Applesoft BASIC c:=:J 105

PTRGET can be used to simplify the passing of Applesoft variables to and
from an assembly-language program. Variables are usually passed by tacking
their names, separated by commas, on to a CALL or & command. For example,
to pass two variables, say F% and L%, to a program starting at $300, you
could use the following command:

CALL 768,F%,L%

Immediately after the CALL 768 command is executed, TXTPTR is pointing
to the location occupied by the comma separator. Before we can use PTRG E T,
TXTPTR must be advanced by one position. This is done at the beginning of
the subroutine being called by using a subroutine called CHKCOM ($DEBE)
that ensures that the current character is indeed a comma, and then incre
ments TXTPTR. Once this has been done, everything is ready for a call to
PTRGET. After it has been called, VARPNT ($83/$84) can be examined to
determine where the data for that variable is located. Since the storage format
of the data is known, it is a simple matter to read and interpret it. In summary,
the method to be used to locate a variable is as follows:

JSR CHKCDM ;Skip over the II II separator ,
JSR PTRGET ;Find the variable and put ptr

in VARPNT
LDY #fa
LDA <VARPNT>,Y ;Get first byte of variable's

data

INY
LDA <VARPNT>,Y ;Get second byte of variable's

data

After PTRGET has been called, TXTPTR points to the byte after the last
character of the variable's name. This means that you would perform another

JSR CHKCDM
JSR PTRGET

sequence to retrieve the next variable specified after the CALL statement.

Let's look at a complete example to see how to use these subroutines. Table
4-10 shows a program called UPPER that is designed to convert any lowercase
characters in a string variable to their corresponding uppercase characters.
Once the program has been installed, it can be called from Applesoft as
follows:

CALL 768,A$

where A$ is the string variable to be modified.

Notice how the program works. The first step is to skip over the comma by
calling CHKCOM. After that has been done, TXTPTR will be pointing to the

Table 4-10. UPPER, a program to convert the lower-case characters in a string variable to upper-case.

1
2
3
4
5
6
7
8
9
H~
11
1 2
13
14

0309: 29 BE DE 15
9393: 29 E3 DF 16
0396: A9 99 17
9398: B1 83 18
039A: AA 19
939B: C8 29
939C: B1 83 21
939E: 85 96 22

* UPPER *
* * * CALL 768,A$ *
* Convert A$ to upper case *

STRING
VARPNT
CHKCDM
PTRGET

EQU
EQU
EQU
EQU

ORG

JSR
JSR
LDY
LDA
TAX
INY
LDA
STA

$6
$83
$DEBE
$DFE3

$399

CHKCOM
PTRGET
#9
CVARPNT>,Y

;Pointer to string elements
;Pointer to variable's data
;Check for comma and move on
;Find address of variable

;Skip over comma separator
;Locate string variable

;Get length of string
; and put it in X

CVARPNT>,Y ;Get string pointer (low)
STRING

....
i

D
5'
Ill c:
CD -~
CD
)>

"'C
"'C
CD"
::::::
0

"31": cs 23 INY
"311 : B1 S3 24 LDA CVARPNT>,Y ;Get string pointer (high>
"313: S5 "7 25 STA STRING+1

26
"315: SA 27 TXA
"316: AS 2S TAY ;Put length in Y
"317: c" "" 29 CPY #" ;Null string?
"319: F" 16 3" BEQ ALLDONE ; Yes, so done
"31B: ss 31 SCAN DEY ;Move to previous element
"31C: C" FF 32 CPY #$FF ;At the end?
"31E: F" 11 33 BEQ ALLDONE
"32": B1 "6 34 LDA CSTRING>,Y ;Get string element
"322: C9 61 35 CMP #'a ;Is it less than 11 a 11 ?
"324: 9" F5 36 BCC SCAN ;Yes, so branch
"326: C9 7B 37 CMP #'z+1 ; I s it greater than 11 2 11 ?
"32S: B" F1 3S BCS SCAN ;Yes, so branch
"32A: 29 DF 39 AND #$DF ;Convert to u.c.
"32C: 91 "6 4" STA CSTRING>,Y ; and put it into string.
"32E: 4C 1B "3 41 JMP SCAN
"331 : 6" 42 ALLDONE RTS ~ ..._

)>
"0
"0
m
rJ)
0 --Ill
)>
(/)

0

D
....
0

108 c=J lnsidetheApple//c ----------------

"A" in A$ and PTRGET can be called to locate the three data bytes used to
describe the string (one byte for the length and two bytes representing its
location). The pointer to the first of these three bytes is automatically stored
in VARPNT ($83/$84), so that the three bytes can be examined by using
indirect indexed instructions as follows:

LOA < VARPNT >, Y

where Y=0,1,2. After the length and pointer have been determined, it is a
simple task to scan through the bytes in the string to see whether their ASCII
codes are between those for "a" and "z" and, if they are, to convert them to
uppercase by performing an AND #$DF operation. (This essentially subtracts
32 from the lowercase ASCII code, thus converting it to the corresponding
uppercase ASCII code.) If you print A$ after calling UPPER, you will see that
all of its lowercase characters have, indeed, been converted to uppercase.

Evaluating Formulas

Not surprisingly, there are also several built-in Applesoft subroutines that
can be used to evaluate mathematical formulas. Again, you could write such
programs yourself, but they would need to be exceedingly complex and would
be difficult to develop.

The main Applesoft subroutine for evaluating a mathematical formula is
called FRMNUM and is located at $DD67. To use it, you must first ensure
that TXTPTR is, as usual, pointing to the location of the first character in the
formula. Once this has been done, FRMNUM can be called; after this subrou
tine has finished executing, the result of the calculation will be stored in the
FAC. You can then use other built-in subroutines to massage this number as
you see fit, for example, to print it out or to convert it to an integer.

Let's look at an example of the use of FRMNUM. The program in Table 4-
11, called FORMULA, evaluates any mathematical formula that is passed to
it and displays the result. To CALL it from Applesoft, you must enter the
command

CALL 768,aexpr

where "aexpr" represents the Applesoft formula that is to be evaluated.

The first part of the program should look familiar. It is the "standard" JSR
CHKCOM instruction that skips over the comma after the CALL statement.
Once this has been performed, the formula can be evaluated by a JSR FRMNUM
and the result will be placed in the primary FAC. To see the result it is simply
necessary to perform a JSR PRNTFAC ($ED2E).

Converting Numbers

Number conversion plays an important role in the Applesoft interpreter.
Numbers are normally handled internally in a binary format, but whenever

Table 4-11. FORMULA-a program to demonstrate the use of Applesoft's formula evaluation subroutines.

1
2
3
4
5
6
7
8
9
1 9
1 1
1 2
13
1 4
1 5
16

9399: 2~ BE DE 17
18
19
29
21
22

~393: 29 67 DO 23
24
25
26
27
28

9396: 29 2E ED 29
3~

~399: 6~ 31

*
*
*
*

FORMULA

CALL 768,[formula]

*
*
*
* * This program evaluates *

* and displays an Applesoft *
* mathematical formula. *

FRMNUM EQU $0067 ;Evaluate formula
CHKCDM EQU $DEBE ;Check for comma and move on
PRINTFAC EQU $ED2E ;Display the result

DRG $3~~

JSR CHKCDM ;Skip over comma

* Evaluate the formula and put *
* it in the FAC. *

JSR FRMNUM

* Convert the number in FAC *
* to decimal and display it.*

JSR PRINTFAC

RTS

separator
.;>.

)>
"0
"0
<D
(/)

g
Ill
)>
en
0

0
.....
0
CD

110 c=:J lnsidetheApple//c ----------------

they are to be displayed they must be converted to more recognizable decimal
numbers. Conversely, numbers that are inputted, say from the keyboard by
a user, are normally inputted in decimal form and must be converted to
binary form before they can be processed.

In addition to the above types of conversions, it is often necessary to convert
an integer number to a floating-point number and vice versa. This is handled
by the Applesoft GIVAYP subroutine and by the CONINT or GETADR sub
routines, respectively. The latter two subroutines are especially useful because
quite often only integer quantities are being manipulated and, as we have
seen, whenever a formula is evaluated by performing a JSR PRMNUM, the
result is placed in the PAC, which is difficult to interpret. By using CONINT
or GETADR, the PAC can be quickly converted to an easy-to-handle one- or
two-byte integer format.

The program in Table 4-12, CONVERT, shows how the CONINT subroutine
can be used to convert the contents of the PAC to a one-byte integer in the
range 0 ... 255. As usual, CONVERT is designed to be called from Applesoft,
using the command

CALL 768,aexpr

where "aexpr" represents a mathematical formula that will evaluate into an
integer within the 0 ... 255 range.

The first step is to skip over the comma with a JSR CHKCOM. Then, the
formula is evaluated and placed in the primary PAC with a JSR PRMNUM.
At this stage, we would like to convert the PAC into an easier format to handle:
a one-byte number. This is done by executing a JSR CONINT; after CONINT
has been executed, the one-byte number will be found in the X register.
CONVERT then stores the value in the X register at location $6 where it can
be read with an Applesoft PEEK (6) command.

If the integer result is going to be larger than 255, then GETADR must be
used instead of CONINT. After a JSR GETADR, the value of the integer will
be contained in LINNUM ($50/$51), so that the decimal result will be
PEEK(80)+ 256*PEEK(81).

Table 4-12. CONVERT-a program to demonstrate the use of Applesoft's number conversion
subroutines.

1
2
3
4
5
6
7
8
9
1 ~
1 1
1 2
1 3
1 4

~3~~: 2~ BE DE 1 5
~3~3: 2~ 67 DD 16
~3~6: 2~ FB E6 1 7

18
~3~9: 86 ~6 19
~3~B: 6~ 2~

*
*

CONVERT *
*

* CALL 768,(formula] *

RESULT EQU $6

CHKCOM EQU $DEBE
FRMNUM EQU $DD67
CONI NT EQU $E6FB

ORG $3~~

JSR CHKCOM
JSR FRMNUM
JSR CONI NT

STX RESULT
RTS

;Store the answer here

;Check for comma and move on
;Evaluate a formula
;Convert FAC to integer

;Skip over comma
;Evaluate the formula
;Put one-byte answer in X

;Store the answer

.,..
)>

"'C
"'C
<D
(/)
0
~

lD
)>
en
0

0

112 c:=J lnsidetheApple//c -----------------

Further Reading for Chapter 4
Standard reference works ...

Applesoft BASIC Programmer's Reference Manual, Volumes 1 and 2, Apple
Computer, Inc., 1982.

All About Applesoft, Call-A.P.P.L.E., 1981. A useful source of internal infor
mation about Applesoft.

BASIC Programming with ProDOS, Apple Computer, Inc., 1983.

On Applesoft entry points .•.

J. Crossley, "Applesoft Internal Entry Points", Apple Orchard, March/April
1980. The seminal work on Applesoft entry points. Unfortunately, it con
tains numerous typographical errors and incorrect addresses-these cor
rections have been made in a reprint of the article which appears in "All
About Applesoft", above.

R.M. Mottola, "Applesoft Floating Point Routines", Micro, August 1980, p.
53. A detailed look at Applesoft's built-in subroutines that support real
number mathematics.

C. Bongers, "In the Heart of Applesoft", Micro, February 1981, p. 31. A
comprehensive look at the internals of the Applesoft interpreter.

"Using Applesoft ROMs from Assembly Language", Apple Assembly Line,
November 1981, pp. 2-13. More on accessing Applesoft's built-in subrou
tines.

C. Bongers, Applesoft's CHARGET Routine, Call-A.P.P.L.E., March 1982, p.
21. Suggestions for improvements to CHAR GET.

B. Sander-Cederlof, "All About PTRGET & GETARYPT", Apple Assembly
Line, March 1983, pp. 2-9. A look at two useful entry points to Applesoft.

On Applesoft data storage ...

V. Golding, "Applesoft From Bottom to Top", Call-A.P.P.L.E., March 1979,
p.3. A look at the internal structure of Applesoft. A revised version of this
article appears in "All About Applesoft", above.

G.A. Lyle, "Float, Float, Float Your Point (F.P. Representation)", Apple
Orchard, Winter 1980, pp. 37-39. A description of how Applesoft stores
real variables.

E.E. Goez, "Real Variable Study", Call-A.P.P.L.E., January 1981, pp. 8-23.
A detailed look at how Applesoft deals with real variables. A revised
version of this article appears in" All About Applesoft", above.

C.K. Mesztenyi, "Applesoft Internal Structure", Call -A.P.P.L.E., January
1982, p.9.

A. Moss, "Playing With Program Pointers", Nibble, Vol. 4, No. 3 (1983), pp.
69-81. A look at the various Applesoft pointers.

---------------- 4/ Applesoft BASIC CJ 113

On linking to assembler language ...

B. Sander-Cederlof, "Using USR for a WEEK", Apple Assembly Line, October
1982, p. 30. A program is presented which uses USR to calculate the value
of a two-byte pointer.

D. Lingwood, "The Return of the Mysterious Mr. Ampersand", Call-A.P.P.L.E.,
May 1980, p.26. Examples of uses for the & command.

Source Code for the Applesoft interpreter

Available from:

(1) Roger Wagner Publishing, P.O. Box 582, Santee, CA 92071
(comes with and requires Merlin Assembler).

(2) S-C Software Corporation, P.O. Box 280300, Dallas, TX 75228
(requires S-C Macro Assembler).

5
The ProDOS Disk
Operating System

The disk drive is the primary mass storage device used by the //c. It can be
used to quickly and reliably access units of information (called "files") that
are stored on standard 5.25-inch floppy diskettes. These files can contain
programs, data, readable text, or any other type of information.

Information is passed to and from a diskette by using special disk operating
system (DOS) commands that are available for use by an Applesoft program
after a DOS diskette is first started up ("booted"). Assembly-language pro
grams can access the diskette by calling documented DOS subroutines. The
DOS that comes with the lie is called ProDOS and we will be examining it in
detail in this chapter.

ProDOS was first released by Apple in January 1984 for use with its Apple
II family of computers. ProDOS is intended to be the successor to Apple's
older disk operating system (called DOS 3.3). DOS 3.3 is essentially the same
operating system that has been in use since Apple first introduced its disk
drive peripheral for the original Apple II in 1978.

The lie comes with a built-in disk drive that is functionally identical to the
Apple Disk II drives that are used on the Apple 1/e, Apple II Plus, and Apple
II. A second disk drive can also be added by attaching it to the special disk
port at the back of the //c.

The built-in disk drive is the lie's port 6 device. The diskette in this drive
will automatically boot when the power to the //cis turned on. Alternatively,
you can boot it by entering a "PR#6" command from Applesoft direct mode,
a "6[control-P]" command from the system monitor, or by pressing [control
OPEN- APPLE-RESET] at any time.

The external drive is sometimes interpreted as a port 7 device, but ProDOS,
for DOS 3.3 compatibility reasons, considers it to be drive 2 of the port 6
device. This means that the external drive cannot be booted using a "PR#7"
command, as you might otherwise expect. However, you can use the system
monitor "7[control-P]" command to boot it.

The primary purpose of this chapter is not to teach you how to use the

115

116 c=J lnsidetheApple//c ---------------

ProDOS commands but rather to explain the methods used by ProDOS to
organize information on diskettes and to provide you with an insight into the
internal operation of ProDOS. Let's get started right now.

Formatting Diskettes

Before a diskette can be used by ProDOS it must be formatted into a state
that ProDOS recognizes. (To do this, select the "FORMAT A DISK" command
in the program found on Apple's System Utilities diskette for the //c.) When
you format a diskette, templates for 35 "tracks" on the diskette are created
(numbered from 0 to 34), each of which can hold 4096 bytes of information.
These tracks are arranged in concentric rings around the central hub of the
disk, with track 0 being located at the outside edge and track 34 at the inside
edge. ProDOS can access any track by causing a special read/write head
(located inside the disk drive) to move over the desired track. This is done
using 1/0 locations that activate a small motor (called a "stepping" motor)
that controls the motion of a metal arm to which the read/write head is
connected. This arm moves along a radial path beginning at the outside edge
of the diskette (track 0) and ending at the inside ec;lge (track 34).

Each of the 35 tracks that are formatted on a diskette are subdivided into
sixteen smaller units called "sectors." The sectors that make up a track are
numbered from 0 to 15 and each can hold exactly 256 bytes of information.
If you do the mathematics, you will quickly determine that a diskette can
hold 560 sectors (140K) of information.

Note, however, that when ProDOS organizes files on a diskette it uses the
512-byte block as the basic unit of file storage; each block is made up of two
sectors. An initialized diskette is considered to be made up of 280 blocks
(numbered from 0 ... 279), but it is rarely necessary to know where these
blocks are actually located on the diskette since ProDOS assigns block num
bers to physical locations internally.

ProDOS Memory Map

When a ProDOS diskette is first booted, a file called PRO DOS is loaded into
memory and executed (it is a ProDOS "system" file). This file contains the
fundamental 1/0 subroutines that are used to read and write blocks of data
from and to the diskette. PRODOS then loads and executes another system
file into memory; the one loaded has a name of the form xxxx.SYSTEM (the
first file having such a name when the disk is catalogued will be used).

If an Applesoft programming environment is to be supported, this file must
be BASIC.SYSTEM (it is found on the ProDOS system diskette). As we will
see below, BASIC.SYSTEM contains the subroutines that "add" the standard
ProDOS commands to the Applesoft programming language. It also takes care

---------- 5/ The ProDOS Disk Operating System [:==J 117

of parsing these commands, doing syntax checking, and calling the PRO DOS
I/0 subroutines when required. For convenience, we will be referring to the
resultant PRODOS-BASIC.SYSTEM program combination as "ProDOS" even
though this is technically not the case.

After ProDOS has been loaded as described, it will occupy the following
memory locations:

• $9A00-$BFFF in main RAM

• $D000-$DFFF in bankl of main bank-switched RAM and $D100- to $D3FF
in bank2 of main bank-switched RAM

• $E000-$FFFF in main bank-switched RAM
(See Chapter 8 for a discussion of bank-switched RAM.) In addition, a

general-purpose file buffer will be set up from $9600 to $99FF and the Apple
soft HIMEM location will be set equal to $9600. (HIMEM refers to the value
of the Applesoft end-of-string pointer at $73/$74-see Chapter 4.) Thus, the
area used for storage of Applesoft string variables will not conflict with areas
used by Pro DOS.

The $400-byte buffer just above Applesoft HIMEM is always used by ProDOS
as a buffer for directory blocks whenever the diskette is CATALOGued. This
buffer does not always begin at $9600, however, since HIMEM could be
changed in the following instances:

• By using the Applesoft HIMEM: command or the GETBUFR ($BEFS)
subroutine in BASIC.SYSTEM

• By opening and closing diskette files using the Pro DOS OPEN and CLOSE
commands

The Applesoft HIMEM: command simply places the address specified after
the command directly into the HIMEM pointer.

The GETBUFR ($BEFS) subroutine can be called from an assembly- lan
guage program if you want to lower HIMEM by a given number of 256-byte
pages. To do this, call GETBUFR with the number of pages in the accumu
lator; upon exit, the carry flag will be clear if there was enough free space to
lower HIMEM, or it will be set if there wasn't.

It is not immediately obvious how or why the OPEN and CLOSE commands
affect the value of HIMEM. Whenever a file is opened, ProDOS creates a $400-
byte file buffer by moving HIMEM down in memory by that number of bytes
and then reserving the- $400 byte area beginning at the original HIMEM
position for use by the file. Whenever a file is closed, HIMEM is moved up by
$400 bytes. While doing all this, ProDOS takes all steps necessary to ensure
that Applesoft's string variables are not overwritten.

It is often convenient to reserve a safe area of memory where assembly
language programs can be stored without fear of being overwritten by either
ProDOS or Applesoft. In DOS 3.3 days, such an area could be reserved simply
by lowering HIMEM and then storing the program between the new and old

118 c=J Inside the Apple //c ---------------

HIMEM addresses. You can't do this with ProDOS, however, because of the
way HIMEM changes when files are opened or closed. When ProDOS is being
used, however, a safe area can be reserved that resides just above the $400-
byte directory buffer that sits above HIMEM. The steps that must be followed
to do this are as follows:

• Close all files using the ProDOS CLOSE command.

• Lower HIMEM by a multiple of $100 (256) bytes using the Applesoft
HIMEM: command or the GETBUFR ($BEFS) subroutine.

If you are using the HIMEM: command to lower HIMEM, these steps must
be performed before any Applesoft variables liave been defined, since the
Applesoft string space will be overwritten. After these two steps have been
completed, the area from HIMEM + $400 to $99FF can be used for storage of
machine-language programs without danger of having them overwritten by
ProDOS operations.

Keep in mind one important restriction that applies when using ProDOS:
if HIMEM is being changed (that is, the $73/$74 end-of-string pointer is being
changed), it must be changed in multiples of 256 bytes only! You can't go
wrong if you use GETBUFR, of course, since it can only be used to lower
HIMEM by page multiples. Be very careful, however, when you use the Apple
soft HIMEM: command, because Applesoft does not check to see that the
address specified in the command is an integral multiple of 256.

ProDOS Page 3 Vectors

Apple has reserved the entire area from $300 ... $3EF for use by ProDOS
even though the current version (1.1) uses only the first six locations. As
indicated in Table 5-1, these six locations hold two JMP instructions to the
warm-start entry point of ProDOS (location $BE00).

Pro DOS also initializes all of the system vectors that appear in page 3 from
$3F0 ... $3FF. These are the interrupt vectors for BRK, Reset, IRQ, and NMI
(see Chapter 2), the vector for the system monitor's [control-Y] USER com
mand (see Chapter 3), and the vector for the Applesoft & command (see
Chapter 4). Descriptions of all the vector subroutines installed by ProDOS
are given in Table 5-2.

Filenames and Pathnames

When a file is stored on a diskette, it is assigned a unique filename that is
used to identify it thereafter. A ProDOS filename can be up to 15 characters
long. It must begin with an alphabetic letter (A-Z), but the other characters
may be any combination of letters, digits (0-9), and periods (.). Lowercase

---------- 5/The ProDOS Disk Operating System c=J 119

Table 5-1. ProDOS page 3 vectors.

Address Description of Vector

$300-$302 A JMP instruction to the ProDOS warm-start entry point. A call
to this vector will reconnect DOS without destroying the Apple
soft program in memory. Use the "3D0G" command to move
from the system monitor to Applesoft.

$303-$305 Another JMP instruction to the ProDOS warm-start entry point.

letters may also be used, but ProDOS automatically converts them to upper
case. Here are some examples of valid ProDOS filenames:

CRACKED.WHEAT
CANNED.HEAT
MY.PROGRAM
When a file is saved to diskette, it can be stored in any one of several

"directories" that can be created on the diskette. These directories are some
what analagous to file folders in that they are usually used to hold groups of
related files. For example, you may use one directory to hold word processing
documents, another to hold Applesoft programs, and so on. The ability to
create separate directories on a diskette makes it easier to deal with large
numbers of files.

When a diskette is first formatted, only one directory, called the "volume"
directory, exists; you name the volume directory when the diskette is for
matted (the rules for naming directories are the same as for naming files).
You can create additional directories (called "subdirectories") within the
volume directory using the ProDOS CREATE command. Indeed, you can even
create subdirectories within subdirectories (up to 64levels are permitted).

The directory in which a file is to be saved is normally specified by tacking
on a special prefix to the filename to create a unique identifier called a
"pathname." A pathname is made up of the names of a series of directories,
beginning with the name of the volume directory and continuing with the
names of all the directories that must be passed through to reach the directory
you want, followed by the filename itself; each directory name is separated
from the next by a slash("/") and a slash must precede the name of the volume
directory. The list of directory names must define a continuous path: each
directory specified must be contained within the preceding directory.

For example, consider a diskette that has a volume directory called BASE
BALL and two subdirectories within BASEBALL called AMERICAN and
NATIONAL. If you want to save a file called NY .YANKEES in the AMERICAN
subdirectory, then you would specify the following pathname:

/BASEBALL/AMERICAN/NY.YANKEES

120 CJ lnsidetheApple//c -----------------

Table 5-2. Initialization of page 3 system vectors by ProDOS.

Vector Name Address Contents Description

BRK $3F0-$3Fl $FA59 Address of a subroutine to that
displays the 65C02 registers
and then enters the system
monitor.

RESET $3F2-$3F3 $BE00 Address of the ProD OS warm
start entry point (reconnects
ProDOS).

& $3FS-$3F7 "JMP $BE03" Jump to ProDOS's external
entry point for command
strings (see Apple's ProDOS
Technical Reference Man
ual).

USER $3F8-$3FA "JMP $BE00" Jump to ProDOS's warm-start
entry point.

NMI $3FB-$3FD "JMP $FF59" Jump to the system monitor's
cold-start entry point.

IRQ $3FE-$3FF $BFEB Address of the special ProDOS
interrupt handler (see Chap
ter 2).

Note: The addresses stored at each vector location are stored with the low-order byte
first.

If you simply specified NY.YANKEES, then the file would be saved in the
currently active directory, which is usually the volume directory (unless it
has been changed using the PREFIX command that we are about to describe).

If all files of interest are contained in the same subdirectory, it becomes
annoying to have to specify the same chain of directory names leading up to
the file every time one is to be used. To alleviate this annoyance, ProDOS
supports a PREFIX command that can be used to set the chain of directory
names to which any filename specified in a ProDOS command will be auto
matically appended. For example, if PREFIX is set by entering the following
ProDOS command:

PREFIX/BASEBALL/AMERICAN/

then any file contained in the directory at the end of this path (AMERICAN)
can be referred to by entering its filename only. A name that is a continuation
of the prefix could also be entered to access files in lower-level subdirectories;
such a name is called a "partial pathname." If PREFIX is set as just described
and if AMERICAN contains a subdirectory called CHAMPS which contains a

----------- 51 The ProDOS Disk Operating System c=J 121

file called TIGERS.1984, then you would access the file by specifying a partial
pathname of CHAMPS/TIGERS.1984.

The advantage of subdirectories is often not readily apparent to users of
floppy diskettes, but becomes obvious when a hard disk system is used where
there is enough room to hold thousands of files. If all the files were held in
one directory you might have to wait a long time to spot your file when the
disk was catalogued, and even then you could well miss it amidst the multi
tude of other files. Fortunately, the hierarchical directory structure provided
by ProDOS allows related files to be grouped within the same subdirectory
for easy access.

By the way, when ProDOS is first booted, it treats the 64K of auxiliary
memory as if it was storage space on a diskette and assigns it the volume
directory name of /RAM. A total of 119 blocks on this volume are available
for file data storage. The /RAM volume can be used to load and save programs
extremely quickly since "I/O" operations involve nothing more than the move
ment of data between memory locations; no slow mechanical parts need be
controlled. Remember, however, that any information stored in the /RAM
volume will disappear as soon as the //c is turned off or when ProDOS is
rebooted. If you want to permanently save any files on the /RAM volume, you
must transfer them to a diskette first.

BASIC.SYSTEM Commands

After ProDOS (version 1.1) is booted and the BASIC.SYSTEM system pro
gram is executed, 31 commands become available for use within an Applesoft
program (many can also be used from Applesoft direct mode). Most of these
commands provide ready access to files for I/0 operations (OPEN, READ,
POSITION, WRITE, APPEND, FLUSH, and CLOSE), or general file manage
ment (CAT, CATALOG, CREATE, DELETE, LOCK, PREFIX, RENAME,
UNLOCK, and VERIFY), or program file loading and execution(-, BLOAD,
BRUN, BSAVE, EXEC, LOAD, RUN, SAVE) There are also commands used
to effect I/0 redirection (IN#, PR #), to perform garbage collection of Applesoft
variables (FRE), to save and load Applesoft variables to and from files (STORE
and RESTORE), to transfer control from one Applesoft programs to another
without destroying existing variables (CHAIN), and to disconnect
BASIC.SYSTEM and run a ProDOS system program (BYE).

To use an Applesoft command from within a program, you must use the
PRINT statement to print a [control-D) character, the ProDOS command, the
command arguments, and then a carriage return. For example, to list all the
files in the //c's /RAM volume, you would execute a line that looks something
like this:

1~~ PRINT CHR$(4); 11 CATALOG/RAM 11

In this example, the CHR$(4) statement generates the [control-D) character,

122 c:::J lnsidetheApple//c ----------------

the ProDOS command is CATALOG, and the command argument is /RAM.
The required carriage return is automatically generated by the PRINT state
ment.

If you're entering a ProDOS command directly from the keyboard in Apple
soft direct mode, then you don't have to worry about the [control-D]. All that
you have to do is type in the command followed by the command arguments.
The keyboard equivalent of the CATALOG command is simply

CATALOG/RAM
You should be aware, however, that ProDOS does not permit all of its

commands to be entered from the keyboard in this way.

Most of the ProDOS commands accept an argument that is simply the file
name, pathname, or partial pathname of the file that is to be acted on. The
major exceptions are the PR#, IN#, and FRE commands.

Let's take a quick look at each of the 31 ProDOS commands right now. (You
can refer to Apple's manual, "BASIC Programming with ProDOS", for detailed
information on these commands.) They can be divided into four distinct
categories: file management commands, file loading and execution com
mands, file input/output commands, and miscellaneous commands.

File Management Commands
CAT. This command is used to display a list of the names of the files on
the diskette. Only the names of the files in the directory specified in the
argument following the CAT command will be displayed (if no argument is
specified, then the currently active directory will be used). CAT will also
display the type of each file (as a three-character mnemonic such as BAS,
BIN, TXT, SYS, and so on; see Table S-6), the number of blocks it occupies,
and the date on which it was last modified.

CATALOG. This command is very similar to CAT. It displays the very
same information for each file as well as its time of last modification, its
creation date and time, its size (in bytes), and its "subtype" entry (which is
either the default loading address for a binary file or the record length for a
textfile).

CREATE. This command is used to create a file on the diskette. It is most
often used to create subdirectory files since the other common types of Pro DOS
files (Applesoft programs, binary files, and text files) are automatically created
by other Pro DOS commands (SAVE, BSAVE, and OPEN). For example, if the
volume directory is active and you want to create a subdirectory called
DEMO.PROGRAMS, then you would enter the command

CREATE DEMO.PROGRAMS
from the keyboard. When you do this, the subdirectory will appear as a file
entry when you catalog the directory in which it is contained. The file type
mnemonic used to identify it in the catalog listing is DIR.

---------- 5/ The ProDOS Disk Operating System c:::J 123

DELETE. This command is used to erase a file from the diskette. Only
unlocked files can be erased with the DELETE command. (See the description
of the LOCK command.)

LOCK. This command is used to protect a ProDOS file from accidental
deletion or modification. Once a file has been locked, it cannot be deleted or
modified unless it is first unlocked. You can tell which files on a diskette are
locked by cataloguing the diskette (using the CAT or CATALOG commands);
if the name of the file is preceded by an asterisk("*"), it is locked.

PREFIX. This command is used to define the chain of directory names to
which any filename or partial pathname specified will automatically be
appended to generate the full pathname (see above). It is this pathname on
which the ProDOS commands will act.

RENAME. This command is used to change the name of any file on the
diskette.

UNLOCK. This command unlocks a file that is locked.

VERIFY. This command checks to see if a file exists on the diskette. If it
doesn't, an error message will be displayed.

File Loading and Execution Commands

-(dash). This is the ProDOS "intelligent" run command. Its argument can
be the name of an Applesoft program, a binary program, or a textfile, in which
cases the - will behave exactly like a RUN, BRUN, or EXEC command,
respectively.

BLOAD. This command is used to transfer the data from a file to a contig
uous block of memory. The most common form of this command is:

BLDAD MY.FILE,Aaddr

where "addr" is the address of the beginning of the block to which the file is
to be transferred. "addr" can be a decimal or hexadecimal number; as usual,
hexadecimal addresses are preceded by"$." The BLOAD command can also
be used without the" ,Aaddr" suffix; in this case, the file will be loaded at the
location from which it was originally saved to diskette using the BSAVE
command (this address appears in the "subtype" column when the diskette
is catalogued using the CATALOG command).

BRUN. This command is the same as BLOAD except that after the file is
loaded, it will automatically be executed. Execution begins at the loading
address.

BSAVE. This command is used to save the contents of a range of memory
to a file. (The default file type used is binary (BIN) but you can override this

124 CJ lnsidetheApple//c ----------------

default.) For example, to save the contents of memory from $300 to $3CF to
a binary file called PAGE.THREE, you would enter the command:

BSAVE PAGE.THREE,A$300,E$3CF
or

BSAVE PAGE.THREE,A$300,L$D0
where the" ,A$300" suffix indicates the starting address of the range," ,E$3CF"
indicates the ending address, and ",L$D0" indicates the number of bytes to
be saved. You can also use decimal numbers to specify addresses and numbers.

EXEC. This command is used to redirect subsequent requests for input to
the specified file instead of the keyboard until everything in the file has been
read. For example, suppose you have defined a file called MY.STARTUP that
contains the following two lines: '

HOME
CATALOG

When you enter EXEC MY.STARTUP from direct mode, the screen will clear
and then the diskette will be catalogued, just as if you had entered the two
commands directly from the keyboard.

LOAD. This command is used to load an Applesoft program into memory
from a file.

RUN. This command is the same as the LOAD command except that after
the program is loaded, it will automatically be executed.

SAVE. This command is used to save an Applesoft program to a file. The
file type mnemonic for a program file is BAS.

File Input/Output Commands

OPEN. This command is used to open a file, usually a textfile, for either
reading or writing. If the filename specified does not exist, then a new file will
be created. A file must be opened before it can be accessed using the ProDOS
READ, WRITE, APPEND, FLUSH, and POSITION commands. Textfiles can
be opened as one of two basic types: sequential or random-access. A sequential
textfile is one in which in which lines of information are stored one after
another, with no gaps in between; usually, if you want to access information
anywhere in the file, you have to read all the information that precedes it.

A random-access file is one that is organized as a series of fixed-length
records that hold related groups of information; any record can be accessed
"randomly" (that is, without reading all previous records first) simply by
specifying its record number when using the READ command. The record
length is assigned to a random-access textfile when it is first created or opened;
it is displayed in the subtype column of a CATALOG listing in the form

---------- 5 I The ProDOS Disk Operating System c=J 125

"R = $xxxx." For example, if the record length is 127, then the subtype entry
would be "R=$007F."

READ. This command is used to redirect subsequent requests for input to
an open file instead of the keyboard.

POSITION. This command is used to adjust the position in the file at
which subsequent read and write operations will operate.

WRITE. This command is used to redirect subsequent output to an open
file instead of to the video screen.

APPEND. , This command is used to open a file and to redirect subsequent
output to the end of it.

FLUSH. When a ProDOS file is opened, a 512-byte file buffer is allocated
to it in memory. Data that is written to the file is not normally stored to disk
until this buffer becomes full; when it does, the buffer is saved to disk and
then it is cleared. The FLUSH command is used to force any data stored in
the buffer to be saved to diskette even if the buffer is not yet full. This
minimizes the risk of data loss in the event of an unexpected exit from the
program (caused by a loss of power, pressing RESET, and so on) but it slows
down diskette write operations considerably.

CLOSE. This command is used to close a file that has been opened using
the OPEN command.

Miscellaneous Commands
BYE. This command is used to disconnect BASIC.SYSTEM and execute a
ProDOS system program. When the command is entered, you will be prompted
to enter the prefix and partial pathname of the system program. After you do
this, the program will be executed.

CHAIN. This command is used to transfer control from one Applesoft pro
gram to another while maintaining the names and current values of all the
variables in the program from which control is'being passed. This allows very
large programs to be executed on the //c by breaking them into separate
modules and chaining them together.

FRE. This command is used to force garbage collection of Applesoft string
variables. (See Chapter 4 for a description of this procedure.) This garbage
collection command is much faster than the one built in to the Applesoft
interpreter.

IN#. This command is used to redirect subsequent requests for input to a
port or to a specified memory location. (See Chapter 6.)

PR#. This command is used to redirect subsequent output to a port or to
a specified memory location. (See Chapter 7 .)

126 c:=J Inside the Apple //c ----------------

RESTORE. This command is used to initialize the names and values of
the variables in an Applesoft program to those contained in the file specified
in the argument. This file must be of type VAR (this is the type created by the
STORE command).

STORE. This command is used to save the names and current values of
all the variables in an Applesoft program to a file. The mnemonic for the file
type code assigned to the file is VAR.

ProDOS File Storage

We are now ready to examine the method that ProDOS uses to store infor
mation on a diskette. This will include an analysis of the structures of the
directories that hold information concerning files, of the volume bit map that
keeps track of block usage on the diskette, and of the index blocks that are
used to locate the data blocks that are used by each file. We'll also see how to
read and write blocks on the diskette using internal ProDOS subroutines.

Before we continue, keep in mind that the descr~ptions that follow relate
to ProDOS only and not to its predecessor, DOS 3.3.; the older DOS 3.3
organizes files on a diskette in a less efficient, and wholly incompatible,
manner. A utility program called CONVERT is included with ProDOS, how
ever, that allows most files to be transferred between DOS 3.3 and ProDOS
formatted diskettes so that they can be used by either operating system.

Volume Bit Map

Of the 280 blocks on a ProDOS diskette, the first seven (numbered from 0
to 6) are reserved for specific purposes. Blocks 0 and 1 contain a program that
is loaded into memory whenever the diskette is booted. This program is called
the bootstrap loader and is responsible for loading and executing the PRO DOS
system file. Blocks 2 through 5 represent the four blocks that contain the
volume directory information and will be described in the next section. Block
6 contains the volume bit map for the diskette.

The volume bit map is used to keep track of which areas of the diskette are
in use and which are free. Only the first 35 bytes (280 bits) in the volume bit
map block are actually used and each bit in each byte corresponds to a unique
block number. The byte number (from 0 to 34), and the bit number within
that byte (from 0 to 7), that corresponds to any given block number (from 0
to 279) can be calculated using the following Applesoft formulas:

BYTENUM = INT<BLDCKNUM/8)
BITNUM = 7 - BLDCKNUM - 8 * BYTENUM
If the bit associated with a particular block is one, then that block is free.

If it is zero, then it is being used by a file on the diskette.

---------- 5 I The ProDOS Disk Operating System c:::=:J 127

Diskette Directory

As was explained earlier, ProDOS allows multiple directories to be created
on one diskette. With the exception of the volume directory (the one through
which all the others must be accessed), these directories can be stored just
about anywhere on the diskette since they are treated similarly to standard
files. The volume directory, however, is always located in blocks 2 through 5
of the diskette.

Each block used by any directory can hold up to thirteen 39-byte file entries.
(This means that the four-block volume directory can hold a total of 52 entries,
one of which is the volume name entry.) These entries completely describe
the files by specifying the name, type, and size of the file. The map of a
directory block is shown in Table S-3.

The first block used by a directory (or subdirectory) is called the "key block"
and is configured slightly differently than the others. The 39-byte entry that
normally describes the first file in the block is instead used to describe the
directory itself. This entry is called the directory header.

Table 5-3. Map of a ProDOS directory block.

Byte number in
Directory Block

$000-$001

$002-$003

$004-$02A

$02B-$051
$052-$078
$079-$09F
$0A0-$0C6
$0C7-$0ED
$0EE-$114
$115-$13B
$13C-$162
$163-$189
$18A-$1B0
$1B1-$1D7
$1D8-$1FE

$1FF

Meaning of Entry

Block number of the previous directory block (low byte
first). This will be zero if this is the first directory block.

Block number of the next directory block (low byte first).
This will be zero if this is the last directory block.

Directory entry for file # 1 OR, if this is the first block of
the directory (bytes $00 and $01 are 0), the directory header.

Directory entry for file #2
Directory entry for file #3
Directory entry for file #4
Directory entry for file #5
Directory entry for file #6
Directory entry for file #7
Directory entry for file #8
Directory entry for file #9
Directory entry for file #10
Directory entry for file # 11
Directory entry for file #12
Directory entry for file # 13
<Not used>

128 [=::J lnsidetheApple//c ----------------

The meaning of each of the 39 bytes that make up a directory header are
shown in Table 5-4. Notice the differences between the header for a volume
directory and the header for a subdirectory.

Table 5-4. Map of a ProDOS directory header.

Byte number
in Key Block

$04

$05-$13

$14-$1B

$1C-$1D

$1E-$1F

$20

$21

$22

$23

$24

$25-$26

$27-$28

$29-$2A

$29

$2A

Description (usual entries in parentheses)

High four bits: storage type
-$0F for a volume directory
-$0E for a subdirectory

Low four bits: length of directory name

Directory name (in ASCII). The length of the name is con
tained in the low-order half of byte $04.

<Reserved>

The date on which this directory was created (format:
MMMDDDDD YYYYYYYM)

The minute (byte $1E) and hour (byte $1F) at which this
directory entry was created.

The version number of ProDOS that created this directory.

The lowest version of ProDOS that is capable of using this
directory.

Access code for this directory (see Figure 5-1)

The number of bytes occupied by each directory entry (39).

The number of directory entries that can be stored on each
block (13).

The number of active files in this directory (not including
the directory header)

VOLUME DIRECTORY: The block where the volume bit
map is located (6) SUBDIRECTORY: the block in which
the entry defining this subdirectory is located (this is in
the parent directory of the subdirectory).

VOLUME DIRECTORY: The size of the volume in blocks
(280).

SUBDIRECTORY: The directory entry number within the
block given by $27/$28 that defines this subdirectory (1 to
13).

SUBDIRECTORY: The number of bytes in each directory
entry of the parent directory (39).

---------- 5 I The ProDOS Disk Operating System CJ 129

All directory entries that do not represent directory headers represent either
standard data files (for example, binary files, text files, and Applesoft pro
grams) or subdirectory files. The formats of the directory entries for both of
these two types of files are virtually identical and are as shown in Table 5-5.

Table 5-5. Map of a ProDOS directoryfile entry.

Relative
Byte Number

$00

$01-$0F

$10

$11-$12

$13-$14

$15-$17

$18-$19

$1A-$1B

$1C

$1D

$1E

$1F-$20

$21-$22

$23-$24

$25-$26

Meaning of Entry

High four bits: storage type (see text)
-$00 for an inactive file
-$01 for a seedling file
-$02 for a sapling file
-$03 for a tree file -$00 for a subdirectory file

Low four bits: length of file name

File name (in ASCII with bit 7 = 0)

File type code (see Table 5-6)

Key pointer. If a subdirectory, the block number of the key
block of the subdirectory. If a standard file, the block num
ber of the index block of the file (or the data block if this
is a seedling file).

Size of the file in blocks.

Size of the file in bytes (low-order bytes first).

The date on which this file was created (format:
MMMDDDDD YYYYYYYM).

The minute (byte $1A) and hour (byte $1B) at which this
file was created.

The version number of ProDOS that created this file.

The lowest version of ProDOS that is capable of using this
file.

Access code for this file (see Figure 5-1).

For a binary file, the load address of the file; for a random
access text file, its record length.

The date on which this file was last modified (format:
MMMDDDDD YYYYYYYM).

The minute (byte $23) and hour (byte $24) at which this
file was created.

The block number of the key block of the directory that
holds this file entry.

130 C=:J lnsidetheApple//c -----------------

The only way to determine what type of file a particular file entry corre
sponds to is to examine the file type code that appears at relative position
$10 within the entry. Although 256 different codes are possible, only a few
are commonly used by ProDOS, and it is these that are shown in Table 5-6.
The three-character mnemonics used to represent these file types in a CAT
ALOG listing are also shown in Table 5-6. For a list of all ProDOS file types,
even the obscure ones, refer to the ProDOS Technical Reference Manual.

Table 5-6. ProDOS file type codes.

File Type
Code

$04
$06
$0F
$19
$1A
$1B
$EF
$F0
$FA
$FB
$FC
$FD
$FE
$FF

CATALOG
Mnemonic

TXT
BIN
DIR
ADB
AWP
ASP
PAS
CMD
INT
IVR
BAS
VAR
REL
SYS

"Protecting" Files

TypeofFile

ASCII text file (with bit 7 = 0)
Binary file
Directory file
AppleWorks database file
Apple Works word processing file
AppleWorks spreadsheet file
Pascal file
ProDOS added command file
Integer BASIC program file
Integer BASIC variable file
Applesoft program file
Applesoft variable file
EDASM relocatable code file
ProDOS system file

ProDOS allow files to be protected using the LOCK command. If a file is
locked, then it cannot be altered or renamed unless it is first unlocked. If a
file is locked, then an asterisk will appear at the far left of the line in which
the file name appears when the directory is catalogued.

ProDOS reserves a one-byte access code in its directory entries to indicate
the write status of the file (at relative byte $1E in each directory entry). Four
bits in this byte are used to individually control the read, write, rename, and
delete status of the file. A fifth bit acts as a flag to indicate whether the file
has been modified since the last time it was backed up (it is the backup
program's responsibility to clear this bit to 0 when the file is backed up).
These bits are described in Figure 5-1.

Unfortunately, there is no ProDOS command that can be used from Apple
soft to adjust these bits individually. The LOCK command turns off the write,
rename, and delete bits together and the UNLOCK command turns them all
back on again. The bits can be changed, however, by directly reading the

---------- 5/The ProDOS Disk Operating System c:=J 131

-DELETE (1 =enabled)

-RENAME (1 =enabled)

- BACKUP (1 =make a backup)

- (RESERVED)

- (RESERVED)

- (RESERVED)

-WRITE/SAVE (1 =enabled)

- READ/LOAD (1 =enabled)

Figure 5-1. ProDOS access codes bit map.

block that contains the directory entry, changing the access code, and then
writing the block back to diskette. The READ.BLOCK program listed in Table
5-9 will allow you to do this (this program will be described later on).

Storing File Data

The method ProDOS uses to keep track of where a standard file's data is
stored on the diskette varies depending on the size of the file. ProDOS uses
the following "woodsy" file classifications:

Seedling file
Sapling file
Tree file

: 1 to 512 bytes (1 block orless)
: 513 to 131,072 (128K) bytes
: 131,073 (128K + 1) to 16,777,215 (16M-1) bytes

ProDOS determines what type of file it is dealing with by examining the
four highest bits of relative byte $00 in the directory entry for the file: the
number stored here is 1 for a seedling file, 2 for a sapling file, and 3 for a tree
file.

ProDOS uses these three different file structures to reduce the amount of
space needed to manage a file on the diskette to the absolute minimum. This
permits ProDOS to deal with a file as quickly as possible and frees up valuable
disk space for the storage of other files.

The directory entry's key pointer (relative bytes $11 and $12) points to the
key block on the diskette for the file. Let's take a look at how ProD OS interprets
this key block for each of the three types of files.

Seedling File. A seedling file, which, by definition, cannot exceed 512
bytes in length, obviously uses only one block on the diskette for data storage.
It is this block that is pointed to by the key pointer. This means that the key
block is, in fact, also the sole data block for the file.

132 c::=J lnsidetheApple//c ---------------

Sapling File. The key pointer in the directory entry for this type of file
points to an index block that contains an ordered list of the block numbers
on the diskette that are used to store that file's data. Table 5-7 shows what an
index block for a sapling file looks like. Since block numbers can exceed 255,
two bytes are needed to store each block number. The low part of the block
number is always stored in the first half of the block and the high part is
stored 256 bytes further into the block. The maximum size of a sapling file is
128K; it cannot be larger than this since only 256 blocks (of 512 bytes each)
can be pointed to by the index block.

Table 5-7. Map of the ProDOS index block for a sapling file.

Byte Number

$000
$001
$002

$0FF
$100
$101
$102

$1FF

Meanlng

Block number of 0th data block (low)
Block number of 1st data block (low)
Block number of 2nd data block (low)

Block number of 255th data block (low)
Block number of 0th data block (high)
Block number of 1st data block (high)
Block number of 2nd data block (high)

Block number of 255th data block (high)

Tree File. If the file is a tree file, then the key pointer points to a master
index block that contains an ordered list of the block numbers of up to 128
sapling-file-type index blocks. The structure of a master index block is shown
in Table 5-8. Just as for sapling files, each of the index blocks pointed to by
the master index block contains an ordered list of block numbers on the
diskette that the file uses to store its data. The maximum size of a tree file is
16 megabytes (less one byte, which is reserved for an end-of-file marker)!

ProDOS takes care of all conversions that might become necessary if a file
changes its type because it has either grown or shrunk. All this happens
invisibly and it is not necessary to know what type of file is being dealt unless
special programs are being used that do not use the standard ProDOS com
mands to access files.

MLI-Accessing the Diskette Directly

ProDOS supports a special machine-language interface (MLI) protocol that
makes it extremely simple for assembly-language programs to perform stan-

---------- 5 I The ProDOS Disk Operating System CJ 133

Table 5-8. Map of the ProDOS master index block for a tree file.

Byte Number

$000
$001
$002

$07F
$100
$101
$102

$17F

Meaning

Block number of 0th index block (low)
Block number of 1st index block (low)
Block number of 2nd index block (low)

Block number of 127th index block (low)
Block number of 0th index block (high)
Block number of 1st index block (high)
Block number of 2nd index block (high)

Block number of 127th data block (high)

dard diskette I/0 commands. The MLI is explained in detail in Chapter 4 of
Apple's ProDOS Technical Reference Manual.

The same general type of subroutine is used to invoke all MLI commands.
The code used to invoke an MLI command looks like this (to review, "DFB"
is a Merlin Pro assembler directive that causes the byte specified in the
operand to be stored in memory):

JSR $8F00
DFB CMDNUM
DFB #<CMDLIST
DFB #>CMDLIST
BCS ERROR

;Call the MLI
; and execute this command #
;Low part of address
;High part of address
;Error if carry flag set

where $BF00 is the entry point to the MLI, CMDNUM is the command number
that ProDOS has assigned to the requested command, and CMDLIST is the
address of the parameter list associated with the command. (Recall from
Chapter 2 that if you are using the Apple 6502 Assembler/Editor rather than
Merlin Pro, then you should replace"#>" with"#<" and vice versa in the
above example.) The parameter list contains the values of variables that the
command needs in order to execute properly; result codes are also stored in
the parameter list.

After the command is executed, control passes to the code that begins
immediately after the three bytes stored after the "JSR $BF00" instruction.
If an error occurs, then the carry flag is set, the zero flag is cleared and the
error code number is placed in the accumulator. You can transfer control to
an error-handling subroutine by using a BCS instruction (as shown in the
example) or a BNE instruction.

134 [==:J lnsidetheApple//c -----------------

There are two MLI commands that can be used to read from and write to
individual blocks on the diskette directly. The command numbers for these
commands are $80 (READ_BLOCK) and $81 (WRITE_BLOCK). The parameter
lists for these commands are identical and are constructed as follows:

1st byte: number of parameters (always $03)
2nd byte: disk drive to be accessed
3rd byte: 512-byte data buffer address (low part)
4th byte: 512-byte data buffer address (high part)
5th byte: block number to be accessed (low part)
6th byte: block number to be accessed (high part)

The second byte in the parameter list contains information relating to the
location of the diskette to be accessed. The number stored here is $60 for the
internal disk drive or $E0 for the external disk drive.

For example, if a diskette is in the external disk drive and you want to read
the contents of block number 260 on that diskette into a buffer beginning at
location $2000, you would use a program that looks like this:

JSR
DFB
DFB
DFB
BCS

RTS
IOERRDR

RTS
CMDLIST DFB

DFB
DFB
DFB
DFB
DFB

$BF00
$80
#<CMDLI ST
#>CMDLIST
IDERRDR

$03
$E0
$00
$20
$04
$01

;(Code for READ>

;(Got it!>

;(Didn't get it!>

;External Drive
;Buffer address $2000

;Block 260 ($0104>

The same program can be used to write a block to the diskette simply by
changing the command code from $80 to $81.

READ.BLOCK Program
Table 5-9 shows an extremely useful program called READ.BLOCK that

can be used to examine any of the 280 blocks of data on a ProDOS diskette,
to edit the contents of a block, and to write a modified block back to the
diskette. READ.BLOCK makes use of the MLI READ_BLOCK and
WRITE_BLOCK commands.

With READ.BLOCK, you can easily look at real examples of the types of
blocks we have been discussing in this chapter, for example, the volume bit
map, the directory blocks, the index blocks, and a file's data blocks themselves.

--------- 5/ The ProDOS Disk Operating System CJ 135

Table 5-9. READ.BLOCK-a program to read any block on a
ProDOS diskette.

fll REM 11 READ.BLDCK 11

1fllfll FOR I = 768 TO 892: READ X:
POKE I,X: NEXT

11fll DEF FN MD<X> X - 16 * INT
<X I 16>

12fll DEF FN M2<X> = X - 256 * INT
<X I 256)

13fll D$ = CHR$ <4>
14fll BM = 279: REM NUMBER OF BLOC

KS
15fll TEXT: PRINT CHR$ <21>: HOME

:PRINT TAB< 16>;: INVERSE
: PRINT 11 READ BLDCK 11 : NORMAL
: PRINT TAB< 11l; 11 <C> 1984
GARY L I TTLC1

16fll VTAB 1 fll: CALL - 958: PRINT
11 ENTER BASE BLOCK NUMBER (f/l-
11 ; BM ; : I N puT II) : II ; T $: I F T $

1111 THEN 1 6fll
17fll BL = INT (VAL <T$)): IF BL

= fll AND T$ < > 11 fll 11 THEN 16
fll

18fll IF BL < fll DR BL > BM THEN 1
6fll

19fll RW = 1 28
2fllfll POKE 782, FN M2<BL>: REM BL

DCK# <LOW>
21 fll POKE 783, I NT <BL I 256): REM

BLOCK# <HIGH>
220 POKE 771 , RW: REM READ= 128 I

WRITE=129
23fll CALL 768
240 IF PEEK <8> < > fll THEN PRINT

: INVERSE: PRINT 11 DISK IID .
ERROR 11 : NORMAL : PRINT 11 PRES
S ANY KEY TO CONTINUE: 11 ;: GET
A$: PRINT A$: GOTO 15fll

1fllfll0 VTAB 4: CALL - 958: PRINT
TAB< 11); 11 CDNTENTS OF BLOCK
11 ;BL: PRINT : POKE 34,5

1fll1fll Q = 1
102fll HOME : GOSUB 2fllfllfll: CALL 79

4:Q = Q + 1: IF Q = 5 THEN 1
fll5fll

1fll3fll IF PR = fll THEN GET A$: IF
A$ = CHR$ <27> THEN 1fll5fll

(continued)

136 c=:J lnsidetheApple//c ---------------

Table 5-9. READ.BLOCK-a program to read any block on a
ProDOS diskette (continued).

1041!1 GOTO 11!121!1
11!151!1 Q = Q - 1 :PR = 1!1: PRINT D$;

"PR#0":B = 1!1
11!160 HTAB 1: VTAB 23: CALL - 9

58: PRINT "ENTER COMMAND <B,
C,D,E,N,P,Q,W,HELP>: ";:GET
A$: IF A$ = CHR$ (13) THEN
A$ = II II

11!171!1 PRINT A$
11!181!1 IF~$ < > 11 D11 THEN 1111!1
11!190 Q = Q - 1 : IF Q = 1!1 THEN Q

4
111!11!1 HOME : GOSUB 21!11!10: CALL 79

4: GOTO 11!161!1
1110 IF A$ 11 H11 THEN 501!11!1
1120 IF A$ IIQII THEN 1261!1
1131!1 IF A$ 11 E11 THEN 1271!1
1141!1 IF A$ upu THEN 1 221!1
1151!1 IF A$= 11 N11 THEN 1241!1
1160 IF A$= 11 8 11 THEN 151!1
1170 IF A$ = 11 C11 THEN VTAB 23:

CALL - 958: PRINT TAB< 6)
; : INVERSE : PRINT 11 TURN ON
PRINTER IN SLOT #1 11 : NORMAL
:PR = 1: PRINT D$; 11 PR#1 11 : PRINT
: GOTO 11!11!11!1

1181!1 IF A$< > 11 W" THEN 1211!1
1190 POKE 782,BL: POKE 771,129:

VTAB 23: CALL - 958: PRINT
11 PRESS 'Y' TO VERIFY WRITE:
11 ;: GET A$: IF A$= CHR$ (1
3) THEN A$ = II II

121!11!1 PRINT A$: IF A$ = uyu THEN
CALL 768:RW = 128: VTAB 23:
CALL - 958: PRINT 11 WRITE C

OMPLETED. PRESS ANY KEY: 11 ;:

GET A$: GOTO 11!161!1
1211!1 GOTO 501!10
1220 BL = BL - 1 : IF BL = - 1 THEN

BL = 279
1 231!1 GOTO 191!1
1240 BL = BL + 1 : IF BL > 279 THEN

BL = 1!1
1250 GOTO 191!1
1261!1 TEXT : HOME : END

(continued)

--------- 5 I The ProDOS Disk Operating System c=J 137

Table 5-9. READ.BLOCK-a program to read any block on a
ProDOS diskette (continued).

1270 V = 8:H = 3: VTAB
TABC 6 >; : INVERSE

I=UP M=DOWN J=LEFT

5: PRINT
: PRINT II
K=RIGHT 11 :

NORMAL
1280 HTAB 1:

58: PRINT
: INVERSE
: PRINT II

1290 REM

VTAB 23: CALL - 9
TAB(6); 11 PRESS 11 ;

: PRINT 11 ESC 11 ;: NORMAL
TO LEAVE EDITOR 11

1300 GOSUB 1500: GET A$
1 31 0 LC = 16384 + 1 28 * C Q - 1 > +

8 * V + H:Y = PEEK CLC>:X =
ASC CA$)

1320 IF A$ = CHR$ (27) THEN HTAB
1: VTAB 5: CALL - 868: GOTO
1060

1330 IF A$ < > 11 I 11 THEN 1370
1 34 0 B = 0: V = V - 1 : IF V > =

0 THEN 1300
1 35 0 V = 1 5: Q = Q - 1 : IF Q <

Q = 4
1360 GOSUB 2000: HOME : CALL 79

4: -tOTO 1280
1370 IF A$ = IIJII THEN B = 0:H =

H - 1 : IF H = - 1 THEN H =
7

1380 IF A$ = 11 K11 THEN B = 0:H =
H + 1 : IF H = 8 THEN H = 0

1390 IF A$ <) 11M11 THEN 1430

THEN

1 4 0 0 B = 0: V = V + 1 : IF V < 16 THEN
1300

141 0 V = 0: Q = Q + 1 : IF Q = 5 THEN
Q = 1

1420 GOTO 1360
1430 IF B = 0 THEN Y =

> + 16 * C X - 48 > *
57> + 16 * C X - 55)
65)

FN MDCV
ex < =
* ex > =

1440 IF B =
CY I 16>
57> + ex

1 THEN Y = 16 * I NT
+ ex - 48> * ex < =
~ 55> * ex > = 65>

1450 X = ASC CA$): IF CX > = 4
8 AND X < = 57> OR ex > =
65 AND X < = 70) THEN PRINT
A$;: POKE e PEEK C40> + 256 *

(continued)

138 c=J lnsidetheApple//c ---------------

Table S-9. READ.BLOCK-a program to read any block on a
ProDOS diskette (continued).

PEEK (41)
LC,Y: IF B
5"":B = 1

+ 31 + H>,Y: POKE
= " THEN CALL 64

146" IF X 8 AND B = 1 THEN B =

" 147" IF X = 21 AND B = " THEN B

148"
149"
15"0

= 1
GOTO 1300
CALL - 167
VTAB V + 6: HTAB 3 * H + 7

+ B: RETURN
2""" IF Q = 1 THEN POKE 795,":

POKE 799,64
2010 IF Q = 2 THEN POKE 795,12

8: POKE 799,64
2020 IF Q = 3 THEN POKE 795,":

POKE 799,65
203" IF Q = 4 THEN POKE 795,12

8: POKE 799,65
2"4" RETURN
5""" HOME : PRINT TAB< 1"); 11 SU

MMARY OF COMMANDS 11 : PRINT TAB<
10>; .. =================== 11 : PRINT

501" PRINT 11 B--RESET BASE BLO
CK 11

5"20 PRINT 11 C--COPY BLOCK CON
TENTS TO PRINTER 11

503" PRINT 11 0--DISPLAY PREVIO
US 1/4 BLOCK ..

5"4" PRINT 11 E--EDIT THE CURRE
NT BLOCK 11

5050 PRINT 11 N--READ THE NEXT
BLOCK 11

506" PRINT 11 P--READ THE PREVI
OUS BLOCK ..

5"7" PRINT IIQ--QUIT THE PROGR
AM 11

5080 PRINT 11 W--WRITE THE BLOC
K TO DISK 11

5"9" PRINT : PRINT 11 PRESS ANY K
EY TO CONTINUE: 11 ;: GET A$: PRINT
A$: GOTO 110"

80"0 DATA 32,0,191 ,128,10,3,144
,8,176,11 ,3,96,",64,",",169,
",133,8,96,169,1 ,133,8,96,16
9,0,133,6

(continued)

---------- 5 I The ProDOS Disk Operating System c::=J 139

Table 5-9. READ.BLOCK-a program to read any block on a
ProDOS diskette (continued).

8010 DATA 1G9,G4,133,7,1G2,0,1G
0,0,SG,1G5,7,233,G4,32,218,2
53,1GS,G,32,218,253,1G9,18G,
32,237,253,1G9,1G0,32,237

8020 DATA 253,177,G,32,218,253,
1G9,1G0,32,237,253,200,192,8
,208,241 ,1G9,1G0,32,237,253,
1G0,0,177,G,9,18,201 ,160,17
G

8030 DATA 2,1G9,174,32,237,253,
2 0 0 , 1 92 , 8 , 2 0 8 , 2 38, 1 G9, 1 41 , 32
,237,253,24,1GS,G,105,8,133,
G,1G5,7,105,0,133,7,232

8040 DATA 224,1G,208,1G8,9G

You should be careful when writing a block to a diskette, however, as it is
easy to accidentally render the diskette unreadable; you should always exper
iment on a backup copy of the original diskette.

When READ.BLOCK is first run, you will be asked to enter a base block
number. After this information has been provided, the block corresponding
to that location on tht: diskette will be read into memory and displayed on
the screen in a special format. Because of 40-column screen size limitations,
only one-quarter of the block can be represented at once (you have to press
the "D" key to display the other quarters).

The contents of a block are displayed in 64 rows, each of which contains an
offset address from the beginning of a block followed by the hexadecimal
representations of the eight bytes stored from that location onward in the
block. At the far right of each row are the ASCII representations of each of
these eight bytes. Note that only 16 rows are displayed at any one time.

After the entire block has been displayed, you will be asked to enter one of
eight commands. The meanings of each of these commands are as follows:

"B"-reset the base block
"C"-copy the contents of the block to the printer (in port 1)
"D"-display the next quarter of the current block
"E"-edit the current block'
"N"-read and display the next block on the diskette
"P"-read and display the previous block on the diskette
"Q"-quit the program
"W"-write the block back onto the diskette

The functions that most of these commands perform are obvious. The only
"tricky" one is the "E" (Edit) command. When the Edit command is entered,

140 c=J lnsidetheApple//c ---------------

the cursor will move into the middle of the 8x16 array of hexadecimal digits
that represent the contents of one-quarter of the block. To change any of these
digits, use the I, J, K, and M keys to move the cursor up, left, right, and down,
respectively, and then enter the new two-digit hexadecimal entry for that
position. You can leave editing mode at any time by pressing the ESC key.
Once you have left editing mode, you can save the changes to diskette by
using the "W" (Write) command.

Further Reading for Chapter 5

Standard reference works ...

ProDOS Technical Reference Manual, Apple Computer, Inc., 1983.

ProDOS User's Manual, Apple Computer, Inc., 1983.

BASIC Programming with ProDOS, Apple Computer, Inc., 1983.

On Applesoft and ProDOS ...

R.D. Norling, "Running APPLESOFf Programs with ProDOS", Call -
A.P.P.L.E., July 1984, pp. 43-50.

On the internal structure of ProOOS •••

B. Sander-Cederlof, "Commented Listing of ProDOS", Apple Assembly Line:
a. $F90C-$F995, $FD00-$FE9A, $FEBE-$FFFF: December 1983, pp. 2-

11
b. $F800-$F90B, $F996-$FEBD: November 1983, pp. 2-14

Reviews of ProDOS ...

R. Moore, "ProDOS", Byte, February 1984, pp. 252-262.

C. Fretwell, "ProDOS and Friends", Call-A.P.P.L.E., January 1984, pp. 65-
69.

G.W. Charpentier and D. Sparks, "Taking the 'Pro' out of ProDOS", Call
A.P.P.L.E., November 1983, pp. 9-14.

S. Mossberg, "An Introduction to ProDOS", Nibble, March 1984, pp. 153-
159.

T. Weishaar, "Breaking the Floppy Barrier: An Introduction to Apple's
ProDOS", Softalk, January 1984, pp. 112-118.

6
Character Input and the

Keyboard
The //c, like most other microcomputers, usually deals with information

that is delivered to it in one-byte (8-bit) chunks (from a keyboard or a disk
drive, for example). This information is commonly referred to as "character"
input because the bytes usually represent the encoded representations of
letters of the alphabet, numbers, and other printable characters. Although
any encoding scheme that the input device cares to use could be dealt with
by the //c, it is the American National Standard Code for Information Inter
change (ASCII) standard that is usually used to encode characters. Two other
incompatible encoding schemes, Extended Binary-Coded Decimal Inter
change Code (EBCDIC) and Baudot, are also in widespread use, the first by
all large IBM computers (except the IBM PC series) and compatibles and the
second by some older TeleType terminals.

ASCII is a seven-bit code and is used by virtually all microcomputers. A
total of 128 (2A7) codes are defined by the ASCII standard and each code fits
nicely into one byte with one bit (bit 7) to spare. Table 6-1 contains a list of
these codes, their standard names or symbols, and the keys on the keyboard
(or combination of keys) that must be pressed to enter them.

When the //c performs character input/output operations, the ASCII code
for the character is stored in bits 0, through 6 of the byte being inputted or
outputted and bit 7 of the byte is normally set equal to "1 ". Since a" 1" in bit
7 is often used to indicate that the value stored in that byte is negative, this
"variant" of ASCII is called "negative ASCII"; if bit 7 is 0, then "positive
ASCII" is being used.

Note that all but the first 32 ASCII codes and ASCII code 127 (rubout) are
used to represent visible symbols. The first 32 codes are called "control
characters" and are usually sent to a video display or printer controller to
cause it to perform some special action. Some of the more important control
characters on the 1/c are as follows (in negative ASCII):

141

142 c=J Inside the Apple //c

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes.

ASCII
Code

Hex Dec Symbol Keys to Press

$00 000 NUL (Null) CONTROL@
$01 001 SOH (Start of header) CONTROL A
$02 002 STX (Start of text) CONTROLB
$03 003 ETX (End of text) CONTROLC
$04 004 EOT (End of transmission) CONTROLD
$05 005 ENQ (Enquiry) CONTROLE
$06 006 ACK (Acknowledge) CONTROLF
$07 007 BEL (Bell) CONTROLG
$08 008 BS (Backspace) LEFT -ARROW or

CONTROLH
$09 009 HT (Horizontal tabulation) TAB or CONTROL I
$0A 010 LF (Line feed) DOWN-ARROW or

CONTROLJ
$0B 011 VT (Vertical tabulation) UP-ARROW or CONTROL K
$0C 012 FF (Form feed) CONTROL L
$0D 013 CR (Carriage return) RETURN or CONTROL M
$0E 014 so (Shift out) CONTROLN
$0F 015 SI (Shift in) CONTROLO
$10 016 DLE (Data link escape) CONTROL P
$11 017 DC1 (Device control 1) CONTROLQ
$12 018 DC2 (Device control 2) CONTROLR
$13 019 DC3 (Device control 3) CONTROLS
$14 020 DC4 (Device control4) CONTROLT
$15 021 NAK (Negative acknowledge) RIGHT -ARROW or

CONTROL U
$16 022 SYN (Synchronous idle) CONTROLV
$17 023 ETB (End of transmission block)

CONTROLW
$18 024 CAN (Cancel) CONTROL X
$19 025 EM (End of medium) CONTROL Y
$1A 026 SUB (Substitute) CONTROL Z
$1B 027 ESC (Escape) ESC or CONTROL [
$1C 028 FS (Field separator) CONTROL\
$1D 029 GS (Group separator) CONTROL]
$1E 030 RS (Record separator) CONTROL"
$1F 031 us (Unit separator) CONTROL_
$20 032 (Space) SPACEBAR
$21 033 ! SHIFT 1
$22 034 " SHIFT'
$23 035 # SHIFT 3
$24 036 $ SHIFT 4
$25 037 % SHIFT 5
$26 038 & SHIFT 7

6/ Character Input and the Keyboard [:=J 143

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII
Code

Hex Dec Symbol Keys to Press

$27 039 I

$28 040 (SHIFT 9
$29 041) SHIFT0
$2A 042 * SHIFT 8
$2B 043 + SHIFT=
$2C 044 I

$2D 045 -
$2E 046
$2F 047 I I
$30 048 0 0
$31 049 1 1
$32 050 2 2
$33 051 3 3
$34 052 4 4
$35 053 5 5
$36 054 6 6
$37 055 7 7
$38 056 8 8
$39 057 9 9
$3A 058 SHIFT;
$3B 059 I I

$3C 060 < SHIFT I

$3D 061
$3E 062 > SHIFT.
$3F 063 ? SHIFT I
$40 064 @ SHIFT 2
$41 065 A SHIFT A
$42 066 B SHIFTB
$43 067 c SHIFTC
$44 068 D SHIFT D
$45 069 E SHIFT E
$46 070 F SHIFT F
$47 071 G SHIFT G
$48 072 H SHIFTH
$49 073 I SHIFT I
$4A 074 J SHIFT J
$4B 075 K SHIFT K
$4C 076 L SHIFT L
$4D 077 M SHIFT M
$4E 078 N SHIFT N
$4F 079 0 SHIFT 0
$50 080 p SHIFTP
$51 081 Q SHIFT Q

144 c=:J Inside the Apple //c

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII
Code

Hex Dec Symbol Keys to Press

$52 082 R SHIFT R
$53 083 s SHIFTS
$54 084 T SHIFT T
$55 085 u SHIFT U
$56 086 v SHIFTY
$57 087 w SHIFTW
$58 088 X SHIFT X
$59 089 y SHIFTY
$SA 090 z SHIFT Z
$5B 091 [[
$5C 092 \ \
$5D 093]]
$5E 094 1\ SHIFT 6
$SF 095 - SHIFT-
$60 096 ' '
$61 097 a A
$62 098 b B
$63 099 c c
$64 100 d D
$65 101 e E
$66 102 f F
$67 103 g G
$68 104 h H
$69 105 I
$6A 106 j J
$6B 107 k K
$6C 108 1 L
$6D 109 m M
$6E 110 n N
$6F 111 0 0
$70 112 p p
$71 113 q Q
$72 114 r R
$73 115 s s
$74 116 t T
$75 117 u u
$76 118 v v
$77 119 w w
$78 120 X X
$79 121 y y
$7A 122 z z
$7B 123 { SHIFT [
$7C 124 I SHIFT\

----------- 6/ Character Input and the Keyboard c::J 145

Table 6-1. American National Standard Code for Information
Interchange (ASCII) character codes (continued).

ASCII
Code

Hex Dec Symbol

$70 125 }
$7E 126
$7F 127 • (Rubout)

$87 (bell)-causes the speaker to beep

Keys to Press

SHIFT]
SHIFT I

DELETE

$88 (backspace)-causes the cursor to move back one position
$8A (line feed)-causes the cursor to move down one line
$80 (carriage return)-causes the cursor to move to the beginning of the

current line

Some of the names associated with the control characters (see Table 6-1)
are somewhat archaic in that they refer to various aspects of the operation of
old TeleType terminals. Other names relate to the codes used by certain
standard data-interchange protocols that are used in telecommunications
networks (for example, Start of Text (STX), End of Text (ETX), and Cancel
(CAN)).

In this chapter, we will take a look at how the lie requests and reads
character input from any device interfaced to it, including the keyboard. In
doing so, we will examine thee built-in ROM subroutines that the lie normally
uses whenever it requires character input. ~---

You will be abl~ to follow this chapter a lot more eas(iy if you have by your
side a copy of the source code listings for the Apple lie monitor ROM. They
can be found in "The Apple lie Reference Manual", volume 2.

Standard Character Input Subroutines

There are three special, general-purpose character input subroutines in the
lie's system monitor that are used to fetch characters so that they can be used
and interpreted by other parts of the system, including Applesoft and the
system monitor. These routines are usually referred to by the symbolic names
of RDKEY, RDCHAR, and GETLN. (A fourth subroutine, ESCRDKEY, is
functionally identical to RDCHAR.) They, in turn, usually make use of two
other subroutines that are used to read information from the keyboard; these
are called KEYIN and C3KEYIN. Each of these subroutines are briefly described
in Table 6-2. Let's take a closer look at them.

146 c=J lnsidetheApple//c ----------------

Table 6-2. Built-in input subroutines.

Address
Hex (Dec)

$FD0C (64780)

$FD35 (64821)
$CCED (52461)

$FD1B (64795)

Symbolic Name

RDKEY

RDCHAR
ESCRDKEY

KEYIN

Descrlptlon

Reads a character from the currently
active input device and places its neg
ative ASCII code in the accumulator.

Both use RDKEY to read a character
from the currently active input device
and both enable escape sequences.

Keyboard input routine used when 80-
column firmware is not being used.
The negative ASCII code for the char
acter is returned in the accumulator.

$C305 (51446) C3KEYIN Keyboard input routine used when 80-
column firmware is being used. The
negative ASCII code for the character
is returned in the accumulator.

$FD6A (64874) GETLN Reads a line of information into the
input buffer at $200 by making
repeated calls to ESCRDKEY.

Reading One Character

RDKEY ($FD0C)

t. Because RDKEY is the fundamental character input subroutine that is
eventually called by the other two, it is the most important of the three. This
subroutine is used to scan any input device that has been designated as being
active (usually, but not necessarily, the keyboard) until a character has been
entered, and to return the ASCII code for that character (with its high bit set
to one) in the 65C02's accumulator. The Applesoft GET command calls RDKEY
directly.

As soon as RDKEY is called, it loads the character stored at the currently
active video position (as calculated from the values of CH ($24) and CV ($25),
the horizontal and vertical cursor coordinates). The code that does this looks
like this:

LDY CH
LDA <BASL>, Y
NOP

;Get horilontal position
;Get the ~creen byte

; (·Seven more NDPs)

------------ 6 I Character Input and the Keyboard CJ 147

where BASL ($28) is the first of two zero page locations that together contain
the base address for the line number held in CV. (See Chapter 7 .)

After the screen character has been obtained, the following code is executed:

JMP <KSWL>
which effectively passes control to the body of a user-selectable input subrou
tine whose address is held at KSWL ($38) and KSWH ($39). This input
subroutine is responsible for returning the ASCII code for an inputted char
acter as soon as the input device being used makes one available. For the
purposes of this discussion, we will assume that the input device is the lie's
keyboard. We will see later on how other input devices can be linked into the
RDKEY subroutine instead by simply storing the address of the input sub
routine for the alternative input device at KSWL and KSWH.

The lie's ProDOS disk operating system is integrated into the system by
storing the address of its special input subroutine at KSWL and KSWH. This
input subroutine will read input from either a diskette file or the keyboard,
depending on whether or not a ProDOS READ command is in effect. It will
also cause special disk operations to be performed if a valid Pro DOS command
is entered from the keyboard (for example, LOAD a file and CATALOG the
diskette). When it reads information from the keyboard, it uses one of the
lie's two built-in subroutines available for this purpose.

The keyboard input subroutine that is used will depend on whether the lie's
internal 80-column firmware ROM is being used. This firmware is not on
when you first turn on the lie but can be selected by entering aPR# 3 command
from Applesoft. Once you have selected the 80-column firmware in this way,
you can flip between an 80-column display and a 40-column display by using
the two-keystroke "escape sequence"

ESC 4
to go from 80-column mode to 40-column mode and

ESC 8
to go from 40-column mode to 80-column mode. (An escape sequence is
entered by pressing the ESC key, releasing it, and then pressing the second
key; the [return] key must not be pressed.)

You can usually tell whether the 80-column firmware is being used by
looking at the cursor. If it's a blinking "checkerboard," then the 80-column
firmware is not in use; if it's a nonflashing, inverse-video square, then it is.
The 80-column firmware can be deactivated by entering an ESC [control-Q]
sequence from the keyboard or printing a [control-U] character; either method
returns you to standard 40-column mode. (You can also use the PR#0 com
mand to return to standard 40-column mode, but only if ProDOS is not being
used. This method will not work at all on the Apple lie, however.)

We will be looking at the video display modes in considerably more detail
in Chapter 7.

148 c=J lnsidetheApple//c ----------------

Keyboard Input

If the 80-column firmware on the //cis not being used, then the //c usually
uses a subroutine called KEYIN ($FD 1B) to handle keyboard input. If the 80-
column firmware is active, then the C3KEYIN ($C305) subroutine is used
instead. C3KEYIN, however, simply calls the KEYIN subroutine to handle
keyboard input. KEYIN behaves slightly differently for each video mode,
however; it determines which mode is active by examining the contents of
certain memory locations that are set up when the video modes are initialized.

The first thing that KEYIN does is to set up a cursor on the screen by calling
SHOWCUR ($CC4C). SHOWCUR examines location CURSOR ($7FB) to deter
mine what type of cursor to set up. If the number stored there is $FF, then a
"checkerboard" cursor will be displayed; this is the cursor that is normally
used when the standard 40-column display is active. If the number stored at
CURSOR is 0, then the cursor used is an inverse block; this is the one that is
normally used when the 80-column firmware is active. If you store any other
number at CURSOR, you can generate all sorts of interesting blinking cursors.
For example, by storing 186 at CURSOR, the cursor will be a blinking colon.

The blinking cursors used by the //care generated by using software timing
loops. For example, to display the checkerboard cursor, the //c alternates
between the display of the checkerboard character (ASCII code $FF) and the
true screen character at fixed intervals.

When a key that generates an ASCII code is entered, the cursor is removed
by placing the screen character back on the screen, and then the ASCII code
representing the entered key is placed in the 65C02's accumulator (with the
high bit set to one).

At this point, KEYIN moves on to the GOTKEY ($FD25) subroutine. This
subroutine examines bit 3 of location VMODE ($4FB), the escape enable bit,
to determine whether it should just pass the keyboard character along to the
caller or whether to process it further.

If bit 3 of VMODE is 0, then KEYIN ends with the character code still in
the accumulator. If it is 1, however, then GOTKEY checks to see if the char
acter that was entered was the ESC key. If it wasn't, then the escape enable
bit of VMODE is turned off and KEYIN ends.

Escape Sequences

If, however, the ESC key is pressed, then KEYIN does something quite
different: control passes to NEWESC ($CCCC), which causes the cursor to
change to an inverse"+" sign and "escape mode" to be turned on. Whenever
the //cis in this mode, it reads the keyboard once again and then executes a
special function dictated by the key that is read. This two-key combination
is commonly referred to as an "escape sequence." A list of all of the valid
escape sequences and the functions they perform are listed in Table 6-3.

----------- 6/ Character Input and the Keyboard CJ 149

Table 6-3. Escape sequences.

Escape
Sequence

ESC@

ESCA

ESCB

ESCC

ESCD

ESCE

ESCF

ESCI
ESC t
ESCJ
ESC+-

ESCK
ESC-+

ESCM
ESC!

ESC4

ESCS

ESC [control-Q]

ESC [control-D)

ESC [control-E)

Descrlptlon

Clears the video screen window and places the cursor
in the top left-hand comer.

Moves the cursor one position to the right.

Moves the cursor one position to the left.

Moves the cursor down one line.

Mdves the cursor up one line (if not already at top).

Clears the screen from the current cursor position to
the end of the line. The cursor position does not change.

Clears the screen from the current cursor position to
the end of the window. The cursor position does not
change.

Moves the cursor up one line and keeps escape mode
active.

Moves the cursor one position to the left and keeps
escape mode active.

Moves the cursor one position to the right and keeps
escape mode active.

Moves the cursor down one line and keeps escape mode
active.

Switches to 40-column mode from 80-column mode.

Switches to 80-column mode from 40-column mode.

Deselects the 80-column firmware and returns to s(an
dard 40-column mode.

Disables the printing of control characters when the
80-column firmware is active (other than carriage return,
line feed, backspace, and bell).

Enables the printing of all control characters.

Most of the escape sequences that have been defined on the //c are used to
move the cursor around the screen or to affect the video display in some way
and are adequately explained in Table 6-3. Two of them are somewhat unusual:
they are ESC [control-D) and ESC [control-E).

ESC [control-D) is used to disable any special interpretation of control
characters that are sent to the standard output subroutine other than the

150 c=J lnsidetheApple//c ----------------

codes for carriage return ($8D), line feed ($8A), backspace ($88), and bell ($87).
As we will see in Chapter 7, the //c reacts in special ways to several other
control characters that are sent to its output subroutine when the 80-column
firmware is being used. For example, if a [control-U] character is printed, you
can move from the 80-column display to a 40-column display. This is a handy
way of exiting 80-column mode, but what if you happen to be communicating
with a remote computer through the modem port when you receive a [control
U] character that the computer uses to indicate that a file is ready to be
transferred? Before you know it, you will pop out of 80-column mode and you
will be left scratching your head wondering what happened. To avoid this
type of trouble it is best to enter the ESC [control-D) sequence before running
such a program. You can re-enable the handling of the control codes later by
entering the ESC [control-E) sequence.

In general, escape mode ends immediately after the key after ESC has been
pressed and, if you want to re-enter escape mode, you must press ESC once
again. The I,J,K,M and arrow-key sequences, however, behave somewhat
differently. If you enter any of these sequences, then escape mode remains
active until any other key that generates an ASCII code that is not part of an
escape sequence is pressed. This means that you can quickly move the cursor
around the screen by pressing ESC once and then pressing any sequence of
cursor-movement keys until the cursor is properly positioned. You can then
press another key (the space bar is convenient) to leave escape mode.

When escape mode ends, the keyboard character that was last pressed is
returned in the accumulator and KEYIN ends.

RDCHAR ($FD35) and ESCRDKEY ($CCED)

The RDCHAR and ESCRDKEY subroutines simply turn on the escape
enable bit in VMODE ($4FB) before jumping to the start of the RDKEY • subroutine to get input. This tells the RDKEY subroutine to handle any escape
sequences that may be entered before a standard character code is returned.

The RDCHAR subroutine is actually identical to the ESCRDKEY subrou
tine since it simply jumps to the start of ESCRDKEY as soon as it is called.
It has been made available for the sake of compatibility with the earlier Apple
II models which had a similar subroutine located at $FD35.

Reading a Line of Characters

RDKEY, RDCHAR, and ESCRDKEY read only one character at a time. A
much more useful and general subroutine is one that allows you to enter a
whole line of information at once (a line being defined as a series of characters
that is entered before [return] is pressed). Such a subroutine does exist on the
//c and is called GETLN ($FD6A).

------------ 6/ Character Input and the Keyboard c=J 151

The GETLN subroutine is used by the //c whenever you are entering com
mands in the system monitor or in Applesoft direct mode. In addition, the
Applesoft INPUT command uses this subroutine directly.

As soon as GETLN is called, a special symbol, called a prompt symbol, is
displayed. The code for this symbol is always read from PROMPT ($33). This
symbol serves two purposes: it tells you what part of the //cis currently active
(the system monitor or Applesoft, for example) and it reminds you that the
//cis expecting you to enter a line of information. Table 6-4 sets out the various
prompts symbols commonly used by the //c.

Table 6-4. //c prompt symbols.

Prompt Symbol

*
]

?

Meaning

the system monitor is waiting for a command.

Applesoft is waiting for you to enter a command or a
program line.

Applesoft is waiting for you to respond to an INPUT
statement.

Note: The ASCII code for the prompt symbol is kept in PROMPT ($33).

After the prompt symbol has been displayed, GETLN calls ESCRDKEY
again and again until the [return] key is pressed. The characters returned by
the series of RDCHAR calls are stored in consecutive locations in a 256-byte
character input buffer located in page two of memory beginning at IN ($200).
When [return] is pressed, the subroutine ends and the number of characters
in the buffer is returned in the X register.

When a line is entered using GETLN, all those escape sequences that are
normally available can be used. In addition, GETLN supports several simple
editing commands that can be used when the line is being entered. These
editing commands will now be discussed.

Left-Arrow Key. This key allows you to backspace over the previous item
in the input buffer and, thus, to remove it from the buffer. The cursor moves
one position to the left on the video screen when the left-arrow key is pressed.

Right-Arrow Key. This key allows you to copy the character on the video
screen beneath the cursor into the input buffer.

Ctri-X. This key allows you to erase everything that is currently in the
input buffer. When it is pressed, a backslash (''\")will be displayed after the
characters that have already been typed in and the cursor will be placed at
the far left of the next line on the screen. Note that the line will automatically

152 c::=J lnsidetheApple//c ----------------~

be canceled like this if you attempt to enter more than 255 characters before
pressing [return]. Beeps will be sounded after every character entered after
the 248th one to remind you that the buffer is almost full.

Return. This key indicates to GETLN that the current line is completed
and is to be entered.

Changing Input Devices: The Input Link

The most common source of character input to the //cis the keyboard. It is
possible, however, to redirect it to other input devices which can be connected
to the //c through its built-in expansion ports. A familiar example of such a
source is the lie's disk drive.

The //c uses a very flexible method for handling the problems associated
with having many possible sources of character input. Even though the source
of the input may vary, calls are still always made to the RDKEY subroutine
whenever a character from any device, in general, is required. To activate a
particular device, the destination of a jump instruction that RDKEY uses to
locate the character input subroutine is set to the address of the device's input
subroutine. This means that your program's input commands (for example,
INPUT and GET in Applesoft) can always be used regardless of the source of
input.

Let's take a closer look at the mechanics of this procedure. We saw earlier
that whenever RDKEY is called to obtain another character, control ulti
mately passes to an instruction that looks like this:

JMP C$1H'J38>

The addressing mode used by the jump instruction here is called "indirect."
This means that the destination of the jump is not location $38 itself but
rather the address stored at locations $38 (low byte) and $39 (high byte). This
address is normally a subroutine within ProDOS that ultimately calls KEYIN
($FD1B) or C3KEYIN ($C305), the system monitor's standard keyboard input
routines (unless input is being requested from a diskette file). By simply
changing the address stored at $38/$39, however, you can force the //c. to
execute any subroutine that you want whenever input is requested, including
one associated with an alternative input device.

The symbolic name for locations $38/$39 is KSW (for keyboard switch);
$38 by itself is called KSWL and $39 is called KSWH. Since these locations
are used to incorporate new input routines into the system, KSW is commonly
referred to as the "input link" or "input hook."

The address of the input subroutine for a peripheral input device is usually
placed in KSWL and KSWH by using the Applesoft "IN#s" command. This
command causes the //c to transfer control to a program beginning at location
$Cs00 (where "s" is a valid port number) that is the first location in a ROM

------------ 6 I Character Input and the Keyboard c:=J 153

area reserved for that port. The program in the ROM area will modify KSW
so that it will point to a new input routine also contained in that ROM. Note
that if an IN#0 command is entered, then the address ofKEYIN ($FD1B), the
lie's standard 40-column input subroutine, will be stored at KSWL and KSWH.

You can also change the input hook by using the Applesoft POKE command
to store the address of the new input routine directly into KSW at $38 and
$39; this address can be in a ROM area or a RAM area.

How About Output?

You may well be wondering whether the lie uses the same method to handle
its output that it uses to handle its input. The answer is, you guessed it, "yes,"
but we're going to defer discussion of output until Chapter 7. For those of you
who just can't wait, the lie uses an output link called CSW ($361$37) to point
to the output subroutine that is to take control whenever the standard output
subroutine, COUT ($FDED), is called. The PR# command can be used to
transfer control to a port in much the same way that IN# can be.

Designing a KSW Input Subroutine

A KSW input subroutine must be designed carefully to ensure that it adheres
to certain rules that restrict its usage of 65C02 registers. The most important
rule is that when the subroutine ends, the inputted character must be con
tained in the accumulator with its high-order bit set to one. Furthermore, the
X andY registers must contain the same values they held when the subroutine
was first entered. Thus, if X andY are to be changed by the KSW subroutine,
they must first be saved in a safe place (such as the stack) and then restored
just before the subroutine ends.

Replacing the Keyboard Input Subroutine

As we saw earlier, the lie comes with a built-in keyboard input subroutine
called KEYIN ($FD1B). This subroutine takes care of setting up the cursor
and of scanning the keyboard until a key has been pressed. There is nothing
magic about this particular subroutine, however, and you could easily replace
it with another program that would still get input from the keyboard, but
would do it differently. In fact, this is essentially what is done whenever you
enter a PR#3 command to turn on the lie's 80-column display. As we have
seen, when this is done, RDKEY uses a new keyboard input routine called
C3KEYIN which changes the type of cursor that is used.

You can use your own imagination to dream up some useful features that
could be added to a keyboard input subroutine. Some interesting ones to
think about are as follows:

154 c=J lnsidetheApple//c -----------------

• The ability to prevent certain characters from being entered.

• Allowing additional escape sequences.

• Allowing for macro keys. (A macro key is one that, when pressed, causes
a whole string of characters to be entered.)

Later in this chapter, after we have seen how to read the keyboard, we will
present some examples of modifying the keyboard input subroutine to meet
special requirements such as these.

It is fairly simple to redefine the keyboard input subroutine so that it
operates properly in whatever video mode is currently active. In fact, only
five basic steps need be performed:

• Set up a cursor.

• Wait for a key to be pressed (while blinking the cursor, if desired).

• Remove the cursor.

• Handle escape sequences (if desired).

• Return with the key code in the accumulator.

The //c's KEYIN ($FD1B) subroutine is, of course, the perfect example of a
KSW subroutine that performs these five steps when it is called. We looked
at how KEYIN works earlier in this chapter, but let's quickly relate its activ
ities to each of the five steps.

KEYIN first sets up a cursor (step 1) by calling SHOWCUR ($CC4C) to
display the character stored at CURSOR ($7FB) at the currently active cursor
position. It then repeatedly calls the UPDATE ($CC70) subroutine until a key
has been pressed (step 2). The UPDATE subroutine takes care of blinking the
cursor at the proper rate (if necessary) and will remove the cursor after a key
is pressed by calling STORY ($C3B3) with the original screen character in
the accumulator (step 3). After a key has been pressed, KEYIN calls the
GOTKEY ($FD25) subroutine to handle any valid escape sequences that may
be entered (step 4). Finally, KEYIN ends with the ASCII code for the keyboard
character in the accumulator with its high bit set to 1 (step 5).

The basic subroutines used by KEYIN to perform its duties are summarized
in Table 6-5. These are built-in to the //c's ROM and may be used by your own
programs, if desired.

ProDOS and the Input Link

The ability to change the KSW input link is somewhat restricted if ProDOS
is active. (Similar restrictions apply if the CSW output link is to be changed.)
When ProDOS is first activated, the address stored in the KSW input link is
placed in another input link located within ProDOS itself. A special KSW
input subroutine is then installed that is responsible for detecting and exe
cuting any ProDOS commands that are entered (when Applesoft direct mode

----------- 6 I Character Input and the Keyboard c=:J 155

Table 6-5. Built-In subroutines used by KEYIN ($FD1B).

Address
Hex (Dec) Symbolic Name Description

$CC4C (52300) SHOWCUR

$CC70 (52336) UPDATE

$C3B3 (50099) STORY

$FD25 (64805) GOTKEY

Displays the character stored at CUR
SOR ($7FB) at the current cursor posi
tion and designates it as the active cur
sor.

Causes the cursor to blink at the proper
rate (if non-zero) and scans the key
board for input. If a key is pressed, then
the N-flag in the processor status reg
ister is set to 1, the character code is
placed in the accumulator, and the cur
sor is removed by calling STORY
($C3B3) to restore the original screen
character. If a key is not pressed, then
theN-flag is set to 0.

Stores the byte in the accumulator on
the video screen at the current cursor
position.

If escape sequences are enabled, checks
to see if ESC was pressed; if it was, then
the keyboard is read again and any valid
escape sequence is executed. Escape
sequences are enabled if input is
requested by the Applesoft INPUT
command or the monitor's GETLN
($FD35) subroutine. They are not
enabled by the Applesoft GET com
mand.

is active) and for redirecting the source of input to a diskette file if a ProDOS
READ command is in effect. If a READ command is not in effect, then ProDOS
uses the subroutine whose address is stored in its own input link to get input.
The address stored here is initially that of one of the standard keyboard input
subroutines.

If standard attempts are made to modify KSW, then ProDOS could be
temporarily disconnected. With one exception, this means that you must not
use any of the following methods to install a new input subroutine:

• Using an Applesoft "IN#s" command (as opposed to the ProDOS PRINT
CHR$(4);"IN#s" command) from within a program.

• Using Applesoft POKE commands to place new values directly into KSWL
andKSWH.

156 CJ lnsidetheApple//c --------,----------

• Using the Applesoft CALL command or the system monitor GO command
(as opposed to the ProDOS BRUN command) to execute an assembly
language program that stores values directly into KSWL and KSWH.

The exception relates to the use of the BRUN command. If an assembly
language program is loaded and executed directly from diskette by using the
BRUN command, then the program is permitted to modify the contents of
KSW and both ProDOS and the new input subroutine will still remain active.
This is because just before the program that is BRUN ends, ProDOS checks
to see whether the input link has changed. If it has, it moves the link address
into its own input link and places the address of its input subroutine back
into KSW.

You can also successfully store a new input subroutine by storing its address
directly into the ProDOS input links found at $BE32 and $BE33 instead of
into KSW.

If you want to use an IN# command within an Applesoft program in order
to redirect input to a particular port, you must use the ProDOS "version" of
that command by printing a [control-D) character (ASCII code 4), immedi
ately followed by" IN #s" (where "s" is the port number) and a carriage return.
The [con,trol-D] signifies to ProDOS that a ProDOS command is about to be
presented; it can be generated using the Applesoft CHR$ function. For exam
ple, to redirect input to serial port 2 when ProDOS is being used, execute the
following statement from within a program:

PRINT CHR$(4);"IN#2"

instead of the Applesoft "IN#2" command. After this is done, both ProDOS
and the new input subroutine will be active.

ProDOS supports a special form of the IN# command that its predecessor,
DOS 3.3, does not. This special IN# command can be used to properly install
an input subroutine that is located anywhere in memory and not just to pass
control to a program located at a port. The only restriction on its use is that
the first byte of the new input subroutine must be a 65C02 "CLD" (clear
decimal flag) instruction. To install any such input subroutine, you must
execute the statement

where "addr" represents either the decimal starting address of the new input
subroutine or, if preceded by "$", the hexadecimal starting address. For
example, if your new input subroutine begins at $300 (decimal 768), then you
would execute either of the following two statements:

PRINT CHR$(4);"IN# A$300"
or

PRINT CHR$<4>;"IN# A768"

----------- 6 I Character Input and the Keyboard c=J 157

and the new input subroutine will be properly installed in the ProDOS input
link.

The Keyboard

The keyboard is one of the most important input/output device attached to
the //c. It is one of two primary sources of input (the disk drive being the other
one) and without it you would not be able to interact conveniently with any
program running on the //c.

We are now going to take a close look at the keyboard. We will explain how
it is used to enter information and present examples of how to modify the
handling of keyboard input to meet special requirements.

Encoding of Keyboard Characters

The lie's keyboard is made up of 62 typewriter-like keys that include most
of the ones that you would see on a standard typewriter as well as a few more
special ones. The keycaps are spatially arranged in the standard QWERTY
(Sholes) configuration that is familiar to all typists. You should note, however,
that as far as the //c is concerned, the mapping of keys to characters is not
dictated by the keycaps, but rather by the setting of the "keyboard" switch
which is found just above the keyboard to the right of the "reset" button and
the "80/40" switch.

With the keyboard switch in its normal position (up), a QWERTY (Sholes)
mapping scheme is used and the keycap does, indeed, indicate the character
that is entered when a key is pressed. However, if the keyboard switch is
down, then the keys are mapped to the Dvorak keyboard configuration shown
in Figure 6-1. The characters on the Dvorak keyboard are arranged in such a
way as to permit a typist to maximize typing speed. This is possible because
the more frequently used letters are placed on the home row (where the fingers
of a touch typist normally sit) so that they can be located and struck more
rapidly than if they were located elsewhere. Conversely, the Sholes keyboard
arrangement was designed to minimize typing speed so that the striking
hammers in the original mechanical typewriters would not become tangled.

All of the keys on the keyboard except for the two "Apple" keys that flank
the space bar, are used to generate the ASCII codes that the //c uses to represent
the 52 alphabetic characters (26 uppercase and 26lowercase), 10 digits (0 ... 9),
34 special symbols, and 32 "control" codes that it recognizes.

Some keys on the keyboard do not generate ASCII codes when pressed by
themselves, but are used to affect the code that is normally generated by
another key that is pressed at the same time. These keys are the two SHIFT
keys, the CONTROL key, and the CAPS LOCK key.

158 c=J lnsidetheApple//c -----------------

Ia)

(b)

Figure 6-1. The Sholes and Dvorak keyboard layouts.

You can probably guess how the SHIFT keys affect the character codes
already. Ignoring the effect of the CAPS LOCK key for the moment, if you
press any alphabetic key by itself, you will generate an ASCII code for a
lowercase character. If either SHIFT key is pressed at the same time, however,
the ASCII code for the corresponding uppercase character is generated instead.
The SHIFT key is also pressed to select the ASCII code for the top symbol on
those keys that have two symbols marked on them.

The CAPS LOCK key, if in the down position, merely causes any lowercase
alphabetic character code that is entered to be converted to the code for the
corresponding uppercase character.

The CONTROL key acts in a similar way as the SHIFT keys. If you hold the
CONTROL key down and then press any of the 26 alphabetic keys, then an
ASCII code for a control character will be selected and not the code for the
alphabetic key itself. (The remaining six control characters are generated by
pressing the CONTROL key together with one of the following special sym
bols: @, [, \,], ", and_).

----------- 6 I Character Input and the Keyboard c::=J 159

Special Keys

There are several special keys on the lie's keyboard that you probably won't
see on a standard typewriter. These ar~ the ESC (for ESCape), TAB, DELETE,
UP-ARROW, DOWN-ARROW, LEFT-ARROW, RIGHT-ARROW, OPEN-APPLE,
and SOLID-APPLE keys as well as the CONTROL key that was discussed
~~. ..

The ESC, TAB, DELETE, and the four arrow keys all generate specific ASCII
codes when they are pressed and they are often referred to as "editing" keys.
Refer to Table 6-1 for the ASCII codes generated by these keys.

Different programs will perform different tasks when an editing key is
pressed. It is hoped, however, that the tasks performed will relate in a mean
ingful way to the name or the symbol on the keycap. That is, it would be
preferable if the ESC key actually caused you to ESCape (or exit) some part
of a program and the TAB key caused the cursor to move several spaces to
the right, and so on. It would be, incredibly annoying, for example, if when
you pressed the down-arrow key your cursor moved up or if you pressed the
DELETE and the cursor moved five spaces to the right.

The "Apple" Keys

The OPEN-APPLE and SOLID-APPLE keys that flank the space bar are
actually equivalent to push buttons #0 and # 1, respectively, on a joystick or
a pair of game controllers that are interfaced to the mouse/game connector
at the back of the //c. These push buttons will be described in detail in Chapter
10. Although these keys cannot be used to generate ASCII codes, they could
be used, with appropriate software, to act as special shift keys. The software,
after reading a key, could check to see whether an "Apple" key was being
pressed; if one was, then a different action could be taken than if the key were
pressed by itself. For example, Apple has issued design guidelines urging
software developers to consider the question mark key as a "HELP" key if it
is pressed at the same time as the OPEN-APPLE key. Here is how you would
implement a help function in an Applesoft program:

UJ PRINT 11 Enter a command: 11 ; :GET A$
29 IF A$= 11 ? 11 AND PEEK<49249>>127 THEN 1999

1999 REM PLACE 11 HELP 11 CODE HERE
Memory location 49249 is the address of the location that holds the state

of the OPEN-APPLE key. (49250 is used for the SOLID-APPLE key.) If the
value read from this location is greater than 127 (that is, bit 7 is on}, then
OPEN-APPLE is being pressed.

The OPEN-APPLE key can also be used to modify the effect of resetting the
1/c. This is discussed in the last section of this chapter.

160 c=J lnsidetheApple//c -----------------

Keyboard 1/0 Locations

The Apple //c reserves two 110 memory locations for use by the keyboard
110 device. These two locations are $C000 and $C010 and their meanings are
summarized in Table 6-6.

Table 6-6. Keyboard 1/0 locations.

Address
Hex (Dec)

$C000 (49152)

Symbolic Name Meaning

KBD Keyboard data and strobe. Keyboard
data is stored in bits 0 ... 6. Bit 7 rep
resents the keyboard strobe and will
be 1 if keyboard data is ready to be
read.

$C010 (49168) KBDSTRB
orAKD

Clear keyboard strobe and read any
key-down status. Reading or writing
this location will clear the keyboard
strobe bit at $C000. Bit 7 indicates
whether a key is being pressed; if it is
1, then a key is being pressed.

KBD ($C000) is used to hold the 7-bit ASCII code for any keyboard character
that is entered as well as a 1-bit "strobe" flag. The strobe flag is held in bit 7
of KBD and indicates whether a key has been pressed and is ready to be
presented to the system. If the bit is set to 1, then keyboard data is ready to
be read; if it is cleared to 0, then no keyboard character has yet been entered
since the last time the strobe was cleared. The lower 7 bits of KBD always
contains the ASCII code of the last key entered. The keyboard strobe is also
connected to an input line on the integrated circuit that controls serial port
2 at the back of the //c; this has been done in such a way that interrupts can
be generated whenever a key is pressed. We will be looking at these keyboard
interrupts in Chapter 11. ·

The second keyboard 110 locatio11 is KBDSTRB ($C010). This location is
used for two purposes. First, if any read or write operation is performed on
this location, such as a PEEK or a POKE, th~n the keyboard strobe bit (in
KBD) will be cl,eared to zero. This tells the //c's built-in keyboard input
subroutines that the keyboard data has already been dealt with and that no
further information should be read from the keyboard until the strobe flag
becomes set once again.

----------- 6 I Character Input and the Keyboard c=:J 161

Second, bit 7 of KBDSTRB ($C010), also called AKD ($C010), indicates the
status of the "any-key-down" flag. If it is 1, then a key is being pressed; if it
is 0, then no key is being pressed. This flag is not the same as the strobe flag
because, as we will see later on, there are times when even though a key is
being pressed, it has not yet been "officially" strobed into the system.

Here is a simple assembly-language program to read data from the key
board:

WAITFORKEY LDA $C000 ;Get key~oard data + strobe
BPL WAITFORKEY ;Loop until strobe is set
STA $C010 ;Clear keyboard strobe

The branch-on-plus (BPL) instruction will cause this program to loop until
KBD becomes "negative," that is, until bit 7 of KBD (the strobe bit) becomes
1.

In Applesoft, this program would be written as follows:

100 IF PEEK<49152)<12S THEN 100 : REM WAIT FOR STROBE
110 POKE 49168,0 : REM CLEAR KEYBOARD STROBE

It is important that the keyboard strobe be cleared after reading data from
the keyboard. If it isn't, the program will keep thinking that a key has just
been pressed whenever it checks for more keyboard data.

Let's look at a simple program, called TYPING.TIMER, that makes use of
the AKD ($C010) flag; it is shown in Table 6-7. This program analyzes your
typing speed by displaying the length of time your finger stays on each key
that you press and the time delay between successive keystrokes. It does this
by simply monitoring the status of the AKD flag and keeping track of the
elapsed time using a software counter. In a fully developed program of this
sort, you would be able to quickly pinpoint a typist's problem areas.

After you enter the program, you can run it by entering CALL 768 from
Applesoft direct mode. After you do this, type in four characters from the
keyboard as fast as you can. After you have done this, a set of six times (in
units of 20 microseconds) will be displayed. The meanings of each of these
times are as follows:

First
Second
Third
Fourth
Fifth
Sixth

:ON time for first key
:delay between first and second keys
:ON time for second key
:delay between second and third keys
:ON time for third key
:delay between third and fourth keys

To convert the displayed numbers into milliseconds, simply divide them
by fifty. You should take note of how the decimal values for these times are
displayed. The program makes use of an Applesoft subroutine called LINPR T
($ED24); this subroutine takes a binary number that is in X (low byte) and A
(high byte) and displays it as an unsigned decimal number.

....
Table 6-7. TYPING.TIMER-a program to measure your typing speed. 0)

N

1 **************** D 2 * TYPING.TIMER *
3 ****************
4 :::J

C/)

5 CHARS EQU 3 ;Number of chars. to be typed a:
<D 6 -:::J'" 7 AKD EQU $CI/J11/J ;Any-key-down flag <D

8)>
"0

9 HEXDEC EQU SED24 ;Hex-to-decimal conversion "0
CD"

1 Ill CROUT EQU SFD8E ;Send a CR ::::::::

1 1 (')

12 ORG $31/JI/J
1 3

11131/JI/J: A2 1/JI/J 1 4 LDX #Ill
11131112: 21/J 41 1113 1 5 JSR RELEASE
IIJ31/J5: 21/J 2C 1113 16 NEXTKEY JSR PRESS ;Get a keystroke
IIJ31/J8: E8 1 7 INX
11131119: E8 18 INX
11131/JA: E8 19 INX
11131/JB: E8 21/J INX
11131/JC: EIIJ 1/JC 21 CPX #CHARS*4
11131/JE: Dill F5 22 BNE NEXTKEY

23
24 * Display the results:

111311/J: Alii 1/JI/J 25 LDY #1/l
111312: 89 58 1113 26 TIMEDSP LDA TIMEON,Y
111315: AA 27 TAX
111316: B9 59 1113 28 LDA TIMEON+1, Y
111319: 8C 57 1113 29 STY YSAVE
IIJ31C: 21/J 24 ED 31/J JSR HEX DEC ;Display in decimal
IIJ31F: 21/J 8E FD 31 JSR CROUT

8322: AC 57 83 32 LOY YSAVE
8325: C8 33 INY
8326: C8 34 INY
8327: cs sc 35 CPY #CHARS*4
8329: DS E7 36 BNE TIMEDSP
8328: 68 37 RTS

38
39 * <Loop time-~s -28 microsec.)

832C: A9 88 48 PRESS LOA #8
832E: 90 59 83 41 STA TIMEON+1 ,X ;Initialize 11 0I·.P• timer
8331: 90 58 83 42 STA TIMEON,X
8334: FE 58 83 43 KEYWAIT INC TIMEON,X ;Bump the time count
8337: DS 83 44 BNE KEYWAIT1
8339: FE 59 83 45 INC TIMEON+1 ,X 0) --833C: 2C 18 CS 46 KEYWA I T1 BIT AKD ;Is key still pressed? (")

~ 833F: 38 F3 47 BMI KEYWAIT ;Yes, so wait Ill
48 Ill

0

8341 : A9 88 49 RELEASE LOA #8 -<D
8343: 90 58 83 58 STA TIMEOFF+1 ,X ;Initialize 11 0FF 11 timer :;
8346: 90 SA 83 51 STA TIMEOFF,X "'C

c:
8349: FE SA 83 52 RELWAIT INC TIMEOFF,X ;Bump the time count -Ill
834C: DB 83 53 BNE RELWAIT1 ::::J

a.
834E: FE 58 83 54 INC TIMEOFF+1 ,X -~
8351: 2C 18 CS 55 RELWA I T1 BIT AKD ;Has key been released? <D

" 8354: 18 F3 56 BPL RELWAIT ; No, so wait <D
'<

8356: 68 57 RTS C"
0

58 Ill
59 YSAVE DS 1 a.

68

D 61 TIMEON DS 2 ;Duration of keypress
62 TIMEOFF DS 2 ;Duration of key release
63 DS CHARS*4-4 ;Data for other keystrokes

en
(,.)

164 c::J lnsidetheApple//c -----------------

Modifying the Keyboard Input Subroutine

Earlier in this chapter, we saw how it was possible to replace the subroutine
that the 1/c uses in order to obtain character input by simply changing the
input link at KSW ($38/$39). At that time, we indicated that it would be
possible to install a wide variety of subroutines that would still obtain input
from the keyboard but would do it in different, more useful, ways.

Look at the program called MACRO.ENTRY in Table 6-8. It must be installed
by using the BRUN command to execute it directly from diskette. This pro
gram allows you to automatically enter a commonly used command phrase
from the keyboard simply by pressing the OPEN-APPLE key at the same time
as one of three other keys, C, H, or L. These keys will generate the following
sequences of characters:

C ~ CATALOG,Dl (followed by [return])
H ~ HOME (followed by [return])
L ~ LOAD (followed by [space])

A key that is used to enter a whole string of other characters is called a
macro key. With MACRO.ENTRY installed, it is a simple matter to catalog
the disk, clear the screen, or to "type in" LOAD before specifying the name of
a program. All you must do is press OPEN-APPLE and the appropriate macro
key.

The first part of MACRO.ENTRY simply sets up the new input link so that
it points to NEWIN, the start of the new input routine. This means that every
time a program requests input from the //c by calling the standard RDKEY
($FD0C) input subroutine, control will eventually pass to NEWIN instead of
the standard keyboard input subroutine.

When NEWIN is entered, some registers that will be used are first saved
and then a location (called MACROFLG) is checked to see whether a
macro entry is currently being processed. If not, the program enters a
tight loop until a keypress is detected. After a key has been pressed, the
character is loaded into the accumulator and the status of the OPEN-APPLE
key is examined with a BIT OPENAPL instruction. If it is not being pressed,
then the following BPL instruction will succeed (because bit 7 of OPENAPL
will be 0) and control will return to the calling program as usual.

However, if OPEN-APPLE is being pressed, then the MACROKEY table is
scanned to see whether it contains the keyboard character that has been
entered. If it doesn't, then control returns to the calling program. If it does,
then the high-order bit of MACROFLG is set and the first character of the
entry in the PHRASES table is returned to the calling program. Each time
that input is requested after this, the next character in the macro phrase will
be returned to the calling program. This will continue until all characters
have been returned, at which time MACROFLG is cleared.

Table 6-8. MACRO.ENTRY-a program to define macro keys.

1 ***************
2 * MACRD.ENTRY *
3 ***************
4
5 * <BRUN this program from disk)
6
7 MTDTAL EQU 3 ;Number of macro keys in MACRDKEY
8
9 KSW EQU $38 ;Input '"link'"
11/J
11 DPENAPL EQU $CIIJ61 ;OPEN-APPLE switch C>

12 SHDWCUR EQU $CC4C --(')
13 UPDATE EQU $CC711J =r

14 GDTKEY EQU $FD25 ;Handle ESC sequenc~
Ill ...
Ill

15 (") -<D
16 DRG $31/JIIJ ... _

17 :;
"0

18 c * Set up new input 1 ink: s.
19 Ill

:::::1

IIJ311JIIJ: A9 IIJ9 21/J LDA #<NEWIN a.
~

IIJ311J2: 85 38 21 STA KSW <D

IIJ311J4: A9 IIJ3 22 LDA #>NEW IN "' <D

IIJ311J6: 85 39 23 STA KSW+1 '<
C"

IIJ311J8: 61/J 24 RTS 0
Ill

25
...
a.

26 * This is the new input routine:
27 0 IIJ311J9: 8E 74 IIJ3 28 NEW IN STX X SAVE

lll311JC: 8C 75 IIJ3 29 STY YSAVE
IIJ311JF: 2C 77 IIJ3 31/J BIT MACRDFLG ;Are we processing a macro?

G)

IIJ312: 31/J 42 31 BM-1 GETMAC ;Yes, so branch (continued) Ul

Table 6-8. MACRO.ENTRY-a program to define macro keys (continued).

0314: 20 4C CC 32 NEWIN2 JSR SHOWCUR
Q)

0317: 20 70 cc 33 NEWIN3 JSR UPDATE ;Look for key Q)

031A: 10 F8 34 8PL NEWIN3

D 031C: 2C 61 C0 35 BIT DPENAPL ;Is OPEN-APPLE being pressed?
031F: 10 4C 36 8PL EX IT ; No, so exit
0321 : A2 00 37 LDX #0

:::J

0323: DD 79 03 38 DRIGSCAN CMP MACRDKEY,X ;Is this a command key? !:!?.
c..

0326: F0 07 39 8EQ FINDMAC ; Yes, so branch CD

0328: ES 40 INX ;Go on to next item in table -:::r
CD

0329: E0 03 41 CPX #MTOTAL ;At end of table?)>

0328: D0 F6 42 8NE DRIGSCAN ; No, so keep looking 1:l
1:l

0320: F0 3E 43 8EQ EX IT m
032F: A9 80 44 FINDMAC LDA #$80 :::::::

()

0331: SD 77 03 45 STA MACRDFLG ;Set "macro in effect" flag
0334: SE 76 03 46 STX CMDNUM
0337: A2 00 47 LDX #0
0339: SE 78 03 48 STX MACROPOS
033C: A0 00 49 LDY #0
033E: cc 76 03 50 FINDMAC1 CPY CMDNUM ;Have we found the macro?
0 341 : F0 1 3 51 8EQ GETMAC ;Yes, so branch
0343: AE 78 03 52 SKIPMAC LDX MACROPOS
0346: 8D 7C 03 53 LDA PHRASES,X ;Get macro character
0349: F0 05 54 8EQ FINDMAC2 ;Branch if past end
0348: EE 78 03 55 INC MACRDPDS ; else move to next position
034E: D0 F3 56 8NE SKIPMAC
0350: EE 78 03 57 FINDMAC2 INC MACRDPOS
0353: cs 58 INY ;Increment macro count
0354: D0 ES 59 8NE FINDMAC1
0356: AE 78 03 60 GETMAC LDX MACRDPOS
0359: 8D 7C 03 61 LDA PHRASES,X ;Get new character
035C: EE 78 03 62 INC MACROPOS ;Update position within macro
035F: C9 00 63 CMP #0 ; At the end?
0361 : D0 07 64 8NE EX IT1 ;No, so exit

rll363: A9 rllrll 65 LOA #r/l
rll365: 80 77 rll3 66 STA MACROFLG ;Clear "macro in effect" flag
rll368: Frll AA 67 BEG NEWIN2 ; and get a keystroke
rll36A: AC 75 rll3 68 EX IT1 LDY YSAVE
rll36D: AE 74 rll3 69 EX IT LOX X SAVE
rll37rll: 2rll 25 FD 7rll JSR GOTKEY ;Handle ESC seguence
rll373: 6rll 71 RTS

72
73 X SAVE DS 1
74 YSAVE DS 1
75 CMDNUM DS 1

rll377: rllrll 76 MACROFLG DFB riJ ;rll=no macro I $8rll=macro
rll378: rllrll 77 MACROPOS DFB riJ

78 0>

79 * Table of macro keys: ---()

8rll * (high bit must be on) ::r
II)

rll379: C3 81 MACROKEY ASC "C"
II)
()

rll37A: C8 82 ASC "H" (j)

rll378: cc 83 ASC "L"
.....
:J

84 "0
c::

85 * Table of macro phrases:
II)

86 * (each entry must end with a riJ) ~
a.

rll37C: C3 C1 04
::r

rll37F: C1 CC CF (!)

rll382: C7 AC C4 r:
(!)

rll385: 81 87 PHRASES ASC "CATALOG,D1" '<
CJ
0

rll386: 80 rllrll 88 DFB $8D,rll II)
rll388: C8 CF CD a.

rll388: C5 89 ASC "HOME"

D rll38C: 80 rllrll 9rll DFB $8D,rll
rll38E: CC CF C1
rll391: C4 Arll 91 ASC "LOAD II

rll393: rllrll 92 DFB
...L

riJ CJ),

168 c=J lnsidetheApple//c -----------------

If you want to change the macro commands and associated entries, then
you must modify the MACROKEY and PHRASES tables. The ASCII code for
each command key must be stored in the MACROKEY table with the high
bit on. The corresponding macro phrases for each key must be stored, in
order, in the PHRASES table; each phrase must be terminated by a 00 byte.
In addition, you must set MTOTAL equal to the number of macro keys in the
MACROKEY table before reassembling the program.

Recall that only locations $300 through $3CF are available for use in page
three of memory. You must ensure that your macro tables are short enough
that you do not spill over the $3CF boundary.

Keyboard Auto-Repeat

When you enter a key that corresponds to a particular ASCII code, that
code will begin to repeat after you have kept the key pressed for longer than
about 900 milliseconds. (This time could be shorter, but heavy-handed typists
might then encounter difficulties.) Once this "pre-repeat" period has elapsed,
the code will begin to repeat itself 15 times per second (that is, once every
66.7 milliseconds). The auto-repeat phenomenon is generated by circuitry on
the lie's motherboard.

The auto-repeat feature is useful if you are editing programs or if are you
are using word-processing programs. In both cases, it is often necessary to
repeat character sequences or use an arrow key several times in succession
to move the cursor to a new position. These tasks can be done easily merely
by pressing the appropriate key and holding it down until the key is repeated
as many times as is required.

The timing diagram for the keyboard's auto-repeat function is shown in
Figure 6-2. As soon as a key is first pressed, the AKD ($C010) flag is turned on
and, a few microseconds later, the keyboard strobe is turned on. The keyboard
strobe will then stay on until it is cleared by accessing KBDSTRB ($C010).
This is done right after the keyboard is read by the standard keyboard input
subroutines. Note, however, that if the key is still being pressed, the AKD flag
will remain on even after the strobe has been cleared.

After the strobe is cleared, and if the key is still being pressed, there is a
short delay of about 900 milliseconds (called the "pre-repeat" delay) and then
the keyboard strobe is turned on again. As usual, it will stay on until KBDSTRB
is accessed once again. The width of the strobe pulse will depend on how
rapidly the strobe is cleared after the strobe is turned on. Figure 6-2 was
prepared by assuming that this is happening soon after the strobe is high and
certainly much faster than the rate at which the key repeats.

At this stage, the keyboard strobe will automatically be turned on once
every 66.7 milliseconds after it has been cleared and until the key is finally
released. Even while the keyboard strobe is being turned on and off, however,
the AKD flag remains on; in fact, AKD is turned off only when the key is

----------- 6 I Character Input and the Keyboard c=J 169

ON

I:RE-REPEAT PERIOD ~REPEAT PERIOD
90111 msec. ..,.. ""66.7 msec.

b c d

OFFr-----~~--~~---~
,__ ___ KEYBOARD STROBE

SIGNAL ($C000)

ON

OFFt------' ANY-KEY-DOWN
....__ ___ SIGNAL ($C010)

f KEY FIRST PRESSED f KEY RELEASED

NOTE: The keyboard strobe is cleared at
points "a", "b", "c", and "d" by
accessing KBDSTRB ($CIIl111l).

Figure 6·2. Keyboard auto-repeat timing diagram.

finally released. Thus, there are substantial periods of time when even though
the AKD flag is on (that is, a key is being pressed), the keyboard strobe is not
on.

Since most keyboard input subroutines, including the standard ones used
in the 1/c, rely on the keyboard strobe to detect the presence or absence of a
valid key code, the key code will be repeated at the same rate that the strobe
is turned on (this is fixed by the lie's internal circuitry). If, however, an
alternative input subroutine is used that examines the AKD flag and returns
a key code if it is on continuously for a given time period (even though, at the
end of the period, the keyboard strobe may not be on), then a different repeat
rate can be generated in software.

The AUTO .REPEAT program in Table 6-9 shows you how to adjust the auto
repeat rate in software. This program must be installed by using the BRUN
command to load and execute it directly from diskette. AUTO.REPEAT mod
ifies the input link so that it points to the code beginning at NEWIN. After
this has been done, all requests for keyboard input will be processed by this
subroutine' and a much faster auto-repeat rate will be observed.

The first thing the new input subroutine does when it is called is to deter
mine whether a new character was entered the last time it was called (RPTFLAG
= $00) or whether an old one was being repeated (RPTFLAG = $80). If a new
character was entered, then the accumulator is loaded with the number given
by PREDELAY (the pre-repeat delay time); if not, it is loaded with the smaller
number given by RPTDELAY (the auto-repeat time interval).

Table 6-9. AUTO.REPEAT-a program to speed up the auto-repeat rate of the keyboard.

1 ***************
2 * AUTO.REPEAT *
3 ***************
4
5 * CBRUN this program from disk>
6
7 PREDELAY EQU 150 ;Delay before repeating begins
8 RPTDELAY EQU 20 ;Delay between repeats
9
10 KSW EQU $38 ;Input "link"
1 1 CURSOR EQU $7FB ;Cursor to use
1 2
1 3 KBD EQU $C000 ;Keyboard data + strobe
1 4 KBDSTRB EQU $C010 ;Clear keyboard strobe
1 5 AKD EQU $C010 ;Any-key-down flag
16
1 7 STORY EQU $C3B3 ;Store char at cursor position
18 SHOWCUR EQU $CC4C ;Display cursor
19 GOTKEY EQU $FD25 ;Handle ESC sequences
20
21 ORG $300
22
23 * Install new input subroutine:
24

0300: A9 BE 25 LDA #<NEW IN
0302: 85 38 26 STA KSW
0304: A9 03 27 LDA #>NEW IN
0306: 85 39 28 STA KSW+1
0308: A9 00 29 LDA #0
030A: 8D FB 07 30 STA CURSOR ;Use non-flashing cursor

.....
~

D
::I
(/l

a:
(I)

s:
(I)

)>
"'C
"'C
<D
~

030D: 60 31 RTS
32

030E: 48 33 NEW IN PHA ;Save 5Creen character
030F: ac GG 03 34 STY YSAVE ;Save Y-regi5ter
0312: 211l 4C CC 35 JSR SHOWCUR ;Set up cur5or

36
37 * Wait before repeating:
38

lll315: A9 14 39 LDA #RPTDELAY ;Get auto-repeat counter
lll317: 2C 65 lll3 40 BIT RPTFLAG ;Are we repeating?
lll31A: 30 02 41 BMI WAIT ;Ye5, 50 branch
031C: A9 96 42 LDA #PREDELAY ;U5e pre-repeat counter in5tead
031E: 38 43 WAIT SEC
031F: Alll Sill 44 WAIT1 LDY #128 en

lll321 : 2c 10 c0 45 WAIT2 BIT AKD ;Key !till being pre55ed?
..._
0

0324: 10 20 46 BPL RPTOFF ;No, 50 go to 5tandard input ::r
Ill

0326: 88 47 DEY
....
Ill
0

lll327: Dill F8 48 BNE WAIT2 -(I)
lll329: E9 01 49 SBC #1 5"
032B: D0 F2 511l BNE WAIT1 "'0

""' c:
51 -Ill
52 * If we've reached here, we are repeating (unle55 another ::I

c.
53 * key wa5 pre55ed before relea5ing the fir5t one). The -::r
54 * following code read5 the keyboard (before it5 code (I)

"' 55 * ha5 been 5trobed in) and 5et5 the high bit a5 per (I)
'<

56 * the 5tandard input protocol: t:T
0

57 Ill
032D: AD 00 Clll 58 LDA KBD ;Get key code c.

03311l: 2c 111l c0 59 BIT KBDSTRB ;Clear 5trobe (ju5t in ca5e)

0 0333: lll9 Sill Gill ORA #$811l ;Set high bit
lll335: CD 64 03 61 CMP OLDKEY ;Same a5 previou5 key?
lll338: Fill 04 62 BEG RPTON ;Ye5, 50 we're repeating
lll33A: A0 00 63 LDY #Ill ;Repeat off (continued)

Table 6-9. AUTO.REPEAT-a program (continued)
_.

"" 1\)

033C: F0 02 64 BEQ F I XRPT ;(always taken)

0 033E: Ala 80 65 RPTON LDY #$80 ;Repeat on
0340: 8C 65 03 66 FIXRPT STY RPTFLAG ;Adjust the repeat flag
0343: 4C 53 03 67 JMP GETKEY1 5"

68 ~-
69 * Key was lifted, so wait for standard keypress: a.

(1)

70 -::T

0346: A9 00 71 RPTOFF LDA #0
(1)

)>

0348: 8D 65 03 72 STA RPTFLAG ;Repeat off "0
"0

73 m
0348: AD aa ca 74 GETKEY LDA KBD ;Has a key been strobed in? :::::::

0

034E: 1 0 FB 75 BPL GETKEY ; No, so branch
0350: 2c 1 a c a 76 BIT KBDSTRB ;Clear keyboard strobe
0353: 8D 64 03 77 GETKEY1 STA DLDKEY ;Save key code for next time

78
0356: 68 79 PLA ;Get old screen character
0357: AC 66 03 80 LDY YSAVE ;Restore Y-register
035A: 20 83 C3 81 JSR STORY ;Restore screen char.
035D: AD 64 03 82 LDA DLDKEY ;Get the key code
0360: 20 25 FD 83 JSR GOTKEY ;Handle ESC sequences
0363: 60 84 RTS

85
0364: 00 86 OLDKEY DFB a ;Last key pressed
0365: 00 87 RPTFLAG DFB a ;0=not repeating I $80=repeating

88 YSAVE DS 1 ;Temporary storage area for Y

----------- 6 I Character Input and the Keyboard CJ 173

A delay loop is then entered during which the status of the AKD flag is
repeatedly checked. If the flag is turned off (that is, the key is released) at any
time before the loop finishes, then RPTFLAG is set equal to $00 (to indicate
that repeating has ended) and then keyboard input is requested in the stan
dard way (by waiting for the keyboard strobe to be turned on). After a key
board character is received, it is stored in OLD KEY.

If a key remains pressed until the timing loop finishes, then the keyboard
data is immediately read from KBD ($C000), even though the strobe may not
actually be on. This data will usually equal the code stored in OLDKEY (the
previous key strobed in). If at some time during the loop, however, another
key was pressed before the previous one was released, it will be different. If
the key code is the same (the usual case), RPTFLAG is set equal to $80. This
indicates that an auto-repeat sequence is in effect so that the next time input
is requested, the shorter "RPTDELAY" delay loop will be selected. Otherwise,
RPTFLAG is set to $00. In either case, the key code is stored in OLDKEY
before the subroutine finishes.

The important point to note here is that the keyboard data will always be
read after the key has been pressed for the length of time set by the loop
counter (PREDELA Y or RPTDELA Y). Thus, we can select both the auto-repeat
rate and the predelay time simply by changing the RPTDELA Y and PRE
DELAY constants. You may want to try out different repeat rates and predelay
times by changing these constants in the program. Be warned, however, that
if you set RPTDELA Y too low, your reflexes may not be fast enough to control
the speeding cursor! You should also be careful not to set PREDELAY too low
or else you may not be able to press and release a key before it starts to repeat!

Resetting the Apple //c

The RESET button is located above the upper left-hand comer of the
keyboard just above the ESC key. It should really be called a "panic" button
since it is usually used to interrupt the running of a program when all else
fails. After a reset signal is generated by pressing the RESET button, the //c
generally returns to Applesoft direct mode from where you can easily examine
the program that was just running or you can load and run another one.

Actually, the RESET button does nothing really important if you press it
by itself. If you press it while you are also holding down the CONTROL key,
however, then the reset pin on the 65C02 microprocessor will be held in a low
state, causing the 65C02 to begin its standard reset procedure. This procedure
was described in Chapter 2.

Special RESET Procedure

If the OPEN-APPLE key is held down when [control-RESET] is pressed,
then a "cold" reset procedure will begin that always allows you to restart the

174 [::=:J Inside the Apple //c -----------------

1/c. This means that the diskette in the lie's built-in disk drive will start to
boot up just as it did when the power was first turned on. This reset procedure
cannot be prevented and will destroy any program that may be in memory
when it is requested.

Trapping "Soft" RESETs

The reset procedure just mentioned cannot be avoided using software tech
niques because it is wholly contained within the lie's ROM. It is possible,
however, to redirect a standard "soft" reset (invoked by pressing [control
RESET] by itself) to any routine that you want to use to trap such a condition.

When [control-RESET]'is pressed, the 6SC02 microprocessor jumps to a
location stored at locations $FFFC/$FFFD (low byte first). On the //c, these
locations are stored either in the system monitor ROM area or in the bank
switched RAM area that shares the same address space as the system monitor,
depending on which one was enabled when the reset signal occurred. (See
Chapter 8 for a discussion of bank-switched RAM.) The ROM locations always
hold the address of RESET ($FA62) in the system monitor but any address
can be stored in bank-switched RAM. If ProDOS is being used, the address
stored is $FFCB, which is the start of a ProDOS subroutine that re-enables
the system monitor ROM and then passes control to the standard reset handler
at RESET ($FA62).

The subroutine that begins at $FA62 takes care of some general-purpose
housekeeping chores (like setting normal video, selecting the keyboard and
video screen for 110, and so on), checks for the special OPEN-APPLE reset,
and then, if the special reset has not been requested, checks to see whether a
user-defined reset handling routine should be executed.

If the result of the logical exclusive-OR of the value stored at SOFTEVH
($3F3) with the constant $AS is stored at PWREDUP ($3F4), the //c will jump
to a subroutine whose address is tained in SOFTEV ($3F2/$3F3) (low-order
byte first). If this test fails, then the the diskette in the disk drive will be
rebooted. The important reset locations are summarized in Table 6-10.

Thus, to trap a RESET condition, two things must be done:

• The address of the subroutine that is to take control after a reset must
be stored at SOFTEV.

• The byte stored at $3F3 must be logically exclusive-ORed with $AS, and
the result stored at $3F4. This can be done by executing the follow\ng
instructions:

LDA $3F3
EOR #$AS
STA $3F4

Right after the //c is turned on, SOFTEV is initialized to $E000, the cold

----------- 6 I Character Input and the Keyboard c=J 175

Table 6-10. Reset interrupt locations.

Address
Hex (Dec) Symbolic Name

$FFFC (65532) RESETV (low)
$FFFD (65533) (high)

$03F2 (1010) SOFTEV (low)
$03F3 (1011) (high)

$3F4 (1012) PWREDUP

Description

Reset vector. These locations con
tain the address of the subroutine
that is called when a reset signal
occurs.

User-defined reset vector. These
locations contain the address of a
user-installed subroutine to which
control is passed when a reset signal
occurs (if PWREDUP is set up prop
erly).

Powered-up byte. If the value stored
here is the same as the result of the
logical exclusive-OR of the value at
$3F3 with $AS, then control will pass
to the user-defined subroutine spec
ified by SOFTEV.

start for Applesoft, and then, after [control-RESET] has been pressed once,
to $E003, the warm start for Applesoft. IfProDOS is being used, then SOFTEV
will later be adjusted so that it points to a reset handler within ProDOS itself.
This handler takes care of reconnecting ProDOS after RESET is pressed and
of entering Applesoft direct mode. (When RESET is pressed, the addresses of
the standard keyboard input and output subroutines are stored in the input
and output links, thus effectively "removing" ProDOS from the system.)

By the way, the reason for storing the "funny" number at PWREDUP is to
allow the //c to detect whether or not it has just been turned on. If it has been,
then it is highly unlikely that PWREDUP will be properly "related" to SOF
TEVH, and the //c will interpet this to mean that the diskette must be auto
matically booted.

Trapping RESET from Assembly Language

If an assembly-language program is being executed, any reset condition
that may occur can be easily trapped by setting up SOFTEV and PWREDUP
as indicated above as soon as the program begins. The error-handling routine
to which SOFTEV points must handle the reset in an orderly manner; its
main duty will be to ensure that the data areas of the program still make
sense and to take appropriate action if they do not. For example, if RESET is
pressed after one byte of a two-byte pointer has been set up, then the reset

176 c=::J Inside the Apple //c ----------------

handler had better detect this and fix it or else the next time that the program
uses this (incomplete) pointer it will disappear into outer space.

It is also important to ensure that the reset-handling routine adjusts the
stack pointer to a suitable value. Remember that RESET can be pressed at
any time, including times when there are several bytes of information stored
on the stack. If you don't adjust the stack pointer downward in these situa
tions, it might eventually "overflow," allowing you to overwrite important
information stored on the stack. A simple way of handling this problem is to
always reset the stack pointer to its value when the program was first entered.
To do this, execute the following two instructions when beginning your assem
bly-language program:

TSX
STX STACKSV

where STACKSV refers to a memory location. In the reset-handling routine,
the original stack pointer can be restored by executing the following instruc
tions:

LDX STACKSV
TXS

and then the remainder of the reset-handling routine can be executed.

Another important chore for the reset-handling routine to perform is to
reconnect ProDOS (recall that ProDOS is deactivated whenever the //c is
reset). This is most easily done by initially saving the ProDOS addresses stored
in the input and output links (at $36 ... $39) in safe locations so that the links
to ProDOS can be restored when RESET is trapped.

Trapping RESET from Applesoft

RESET can be trapped while running an Applesoft program by using Apple
soft's built-in error-handling subroutine. If this is done properly, then every
time the //c is reset, the program can be caused to go to the line number that
is specified in the currently active ONERR GOTO statement.

The following steps must be performed by the subroutine that traps reset
when Applesoft is active:

• The ProDOS 110 addresses must be stored in the 110 links to reactivate
Pro DOS.

• The value stored at VFACTV ($67B) must be set equal to the value stored
there before the //c was reset. VFACTV is used as a flag by the video
firmware to determine whether the 80-column firmware is to be used to
perform video operations. IfVFACTV is greater than 127, then standard
40-column mode is active; otherwise, the 80-column firmware is active.

• The 80-column video display must be turned on (but only if it was on
before the //c was reset).

----------- 6 I Character Input and the Keyboard c=J 177

• A subroutine at $D683 must be called to properly configure the 65C02
stack.

• The program should put an error code number in the X register and then
execute a "JMP $D412" to pass control to the Applesoft ONERR GOTO
handler. (The handler will place the error code number in location 222.)

To install such a subroutine, its starting address must be stored in SO~EV
(low-order byte first) and PWREDUP must be properly adjusted as discussed
above.

You can reactivate ProDOS using the technique mentioned at the end of
the last section: save the values of the 1/0 links when the reset-handling
subroutine is first installed and then restore them when RESET is pressed.

When RESET is pressed, the //c automatically turns off the 80-column
display and a $00 byte is stored at VFACTV ($67B) to indicate that the 80-
column firmware is not in use. Thus, the reset-trapping subroutine must take
care of restoring VFACTV to its value just before RESET was pressed and of
re-enabling the 80-column display, if necessary, by writing to 80COLON
($C00D). Note, however, that this last step is only to be performed if the 80-
column display was active when RESET was pressed. The only way for the
reset handler to determine whether it was is to examine a flag that contains
the contents of the 80COL ($C01F) status location immediately before the //c
was reset. This flag can be initialized in the subroutine that sets up the reset
vector, but it must be updated whenever the display mode is changed. Simi
larly, the value of VFACTV must be stored in a safe temporary location so
that it can be restored properly after RESET has been pressed.

The subroutine at $D683 must be called in order to fix a bug in Applesoft
which arises when an error (that is not handled by the Applesoft RESUME
command) occurs within a FOR/NEXT loop or a GOSUB/RETURN subrou
tine. This bug causes incorrect information to be left on the 65C02 stack after
the error is processed.

Applesoft and ProDOS all store error code numbers in location $DE (222)
whenever an error occurs. The ONERR GOTO error-handling routine can
then examine this location using a PEEK(222) command to determine what
kind of error occurred. (See Table 6-12 for a list of Applesoft and ProDOS
error code numbers.) Several error code numbers are not used by either
Applesoft or ProDOS, including number 253. Thus, if the X register is loaded
with 253 just before calling $D412, the Applesoft error-handling subroutine
will be able to detect a reset" error" by determining whether PEEK(222) = 253.
PEEK(222) = 253.

Table 6-11 contains a program that will set up the reset vector so that it
points to a subroutine that traps reset when an Applesoft program is being
run. To use it effectively, an ONERR GOTO statement must always be active;
that is, error-trapping should never be turned off with a POKE 216,0 com-

Table 6-11. TRAP.RESET-a program to trap reset presses when an Applesoft program is running.,
co

1 **************
2 * TRAP.RESET * D 3 **************
4
s DRG $ 311HJ ::;

!':!?.
6 a.

(I)

7 csw EQU $36 ;Output Link -~
8 KSW EQU $38 ;Input Link (I)

)> 9 "C

1 9 SOFTEV EQU $3F2 ;RESET soft entry vector "C
(i)

1 1 PWREDUP EQU $3F4 ;Power-up byte ::::::::

1 2
()

13 VFACTV EQU $678
1 4 COL890N EQU $C99D ;Turn on 89-column mode
1 s COL89 EQU $C91F ;Read status of 89COL
16
1 7 ERRFN EQU $D412 ;Applesoft DNERRGDTD handler
18 FIXSTACK EQU $D683 ;Fix stack 11 bug 11

19
29 * Set up RESET vector:

9399: A9 39 21 LDA #<ERRHNDL
9392: 8D F2 93 22 STA SOFTEV
939S: A9 93 23 LDA #>ERRHNDL
9397: 8D F3 93 24 STA SOFTEV+1
939A: 49 AS 2S EDR #$AS ;Adjust the power-up byte
939C: 8D F4 93 26 STA PWREDUP ; to prevent rebooting

27
939F: AD 1F C9 28 LDA COL89 ;Get video status
9312: 8D SE 93 29 STA FLAG89 ; and save i t .
931S: AD 78 96 39 LDA VFACTV
9318: 8D SF 93 31 STA VFTEMP

32

0318: AS 38 33 LDA KSW ;Save current DOS links
0310: 80 SA 03 34 STA KSWTEMP
0320: AS 39 35 LOA KSW+1
0322: 80 58 03 36 STA KSWTEMP+1
0325: AS 36 37 LOA csw
0327: 80 sc 03 38 STA CSWTEMP
032A: AS 37 39 LOA CSW+1
032C: 80 SD 03 40 STA CSWTEMP+1
032F: 60 41 RTS

42
43 * RESET handler:

0330: AD SA 03 44 ERRHNDL LOA KSWTEMP ;Restore DDS input link
0333: 85 38 45 STA KSW
0335: AD 58 03 46 LOA KSWTEMP+1 0>

0338: 85 39 47 STA KSW+1 --()
033A: AD SC 03 48 LOA CSWTEMP ;Restore DOS output link =r

Ill

0330: 85 36 49 STA csw
Ill

033F: AD SD 03 50 LOA CSWTEMP+1 0 co
0342: 85 37 51 STA CSW+1

52
5"

"'0

0344: AD SF 03 53 LOA VFTEMP ;Restore VFACTV flag c -
0347: 80 78 06 54 STA VFACTV

Ill
:I

034A: 2C SE 03 55 BIT FLAG80 ;Was 80-column mode active? c.. -0340: 10 03 56 BPL ERRHNDL1 ;No, so branch =r
<D

034F: 80 00 C0 57 STA COL80DN ;Yes, so turn it on again " <D

58 '<
0'"

0352: 20 83 06 59 ERRHNDL1 JSR FIXSTACK ;Fix stack bug 0
Ill

0355: A2 FD 60 LOX #253 ;RESET = error code #253 c..

0357: 4C 12 04 61 JMP ERRFN ;Go to DNERRGDTD handler
62 D 63 KSWTEMP DS 2 ;DDS input hook
64 CSWTEMP DS 2 ;DOS output hook
65 FLAG80 DS 1 ;>=$80 if 80-column mode

"""' 66 VFTEMP DS 1 ;VFACTV before RESET CD

180 [=:J lnsidetheApple//c ---------------

Table 6-12. Applesoft and ProDOS error codes and messages.

Error Code Error Message

0 no error occurred [ProDos] or NEXT WITHOUT FOR
[Applesoft]

2 RANGE ERROR
3 NO DEVICE CONNECTED
4 WRITE PROTECTED
5 ENDOFDATA
6 PATH NOT FOUND
7 PATH NOT FOUND
8 I/0 ERROR
9 DISKFULL

10 FILE LOCKED
11 INVALID PARAMETER
12 NO BUFFERS AVAILABLE
13 FILE TYPE MISMATCH
14 PROGRAM TOO LARGE
15 NOT DIRECT COMMAND
16 SYNTAX ERROR
17 DIRECTORY FULL
18 FILE NOT OPEN
19 DUPLICATE FILE NAME
20 FILEBUSY
21 FILE(S) STILL OPEN
22 DIRECT COMMAND [ProDOS] or RETURN WITHOUT

GOSUB [Applesoft]
42 OUTOFDATA
53 ILLEGAL QUANTITY
69 OVERFLOW
77 OUT OF MEMORY
90 UNDEFINED STATEMENT

107 BAD SUBSCRIPT
120 REDIMENSIONED ARRAY
133 DIVISION BY ZERO
163 TYPE MISMATCH
176 STRING TOO LONG
191 FORMULA TOO COMPLEX
224 UNDEFINED FUNCTION
254 BAD RESPONSE TO INPUT STATEMENT
255 [control-C) PRESSED

----------- 6/ Character Input and the Keyboard c:::=J 181

mand. The error-trapping subroutine must be installed by loading into mem
ory and then executing a CALL 768 command. It must not be BRUN directly
from diskette.

Further Reading for Chapter 6

On changing the input link ...

G. Little, "Zoom and Squeeze", Micro, July 1980, pp. 37-38. This article
shows how the input link can be changed to control keyboard input.

On ProOOS and the input link ...

C. Fretwell, "Setting 110 Hooks in ProDOS", Call -A.P.P.L.E., April 1984,
p.39

On trapping RESET ...

E.A. Seiden, "ProDOS Reset Trap", Nibble, October 1984, p.107. This article
presents an alternative way to trap RESET when ProDOS is active.

7
Character and Graphic

Output and Video Display
Modes

In this chapter, we will be discussing the primary output device supported
by the //c: the video display monitor. This will include an analysis of how
both text and graphic information are generated and how alternative output
devices can be easily integrated into the system.

The //cis capable of controlling the video display in such a way as to support
three general classes of output modes:

• Text mode

• Low-resolution graphics mode

• High-resolution graphics mode

All of these modes can exist in a standard single-width format or in a special
double-width format (which includes an 80-column text mode).

Text mode is used whenever the standard character symbols represented
by ASCII codes or the special limited graphics character set called Mouse Text
are to be displayed on the screen. Both graphics modes are used to illuminate
distinct blocks (low-resolution graphics) or points (high-resolution graphics)
on the screen so that a variety of shapes can be generated. Whereas text can
be displayed in black-and-white only, both graphics modes can be used to
generate colored images if a color monitor or television set is connected to
the //c.

The //c uses a "memory-mapped" video display technique. This means that
the display of information on the video screen can be controlled simply by
storing bytes of information in special memory locations that make up part
of the 65C02's 64K address space; these locations are mapped to unique
positions on the screen display. Similarly, information shown on the video
screen can be retrieved by reading the contents of these memory locations.
These memory locations are connected to the //c's video display support

183

184 c=J lnsidetheApple//c -----------------

circuitry in such a way that the bytes stored are converted into appropriate
pictorial representations on the video display monitor.

Text Mode

The //cis capable of displaying text in either a 40-column-by-24-row mode
or a double-width 80-column-by-24-row mode.

There are actually two versions of 40-column text mode supported by the
//c. The "standard" 40-column mode is easily identified by its characteristic
"checkerboard" cursor that is displayed whenever keyboard information is
being requested. The other version is the "special" 40-column mode that is
available when the lie's 80-column firmware is being used; in this mode the
cursor is an inverse block that does not flash.

The 80-column text mode can be invoked in several ways. The most common
are as follows:

• Entering a PR#3 command from Applesoft direct mode

• Executing a PRINT CHR$(4);"PR#3" command from within an Applesoft
program

• Entering the ESC 8 escape sequence whenever the //cis requesting a line
of information

All of these commands activate the lie's special80-column firmware which
is capable of displaying information properly on the 80-column text screen.
This is done by changing the addresses stored in the lie's input and output
links and setting various flags in memory locations that are examined by the
system monitor's subroutines.

Once you are in 80-column mode, you can switch between the 80-column
mode and the special 40-column mode whenever keyboard information is
being requested by using the two special escape sequences discussed in Chap
ter 6: ESC 4 and ESC 8. For example, if you are in 80-column mode and you
want to enter the special40-column mode, enter tl}e sequence

ESC 4

If you want to go in the opposite direction, enter the sequence

ESC 8

To leave either the special40-column mode or 80-column mode and go back
to the standard 40-column mode, you can do one of two things (apart from
resetting the system). First, you can enter ESC [control-Q] from the keyboard
or you can print a [control-U] character (by using a PRINT CHR$(21) com
mand).

If you are not using ProDOS, you can also use the PR#0 and IN#0 com
mands to reconnect the standard 40-column input and output subroutines,

--- 7 I Character and Graphic Output and Video Display Modes c=J 185

KEYIN ($FD1B) and COUT1 ($FDF0), and to turn off the 80-column screen
display. ProDOS will ignore these commands, however, for the sake of com
patability with the Apple //e. (On the Apple //e, entering PR#0 when the 80-
column display is enabled will reconnect the standard 40-column I/0 links
alright, but will not turn off the 80-colu~n display. Not a pretty sight!)

In the following sections, we will be taking a closer look at the memory
mapped video RAM areas, the standard character output subroutines that
are built into the 1/c, and the soft switches used to select the video display
mode.

The BQJ/4QJ Switch

Before we go on, a word about the "80/40" switch that is located just above
the keyboard to the right of the "reset" button. Despite its name, this switch,
has no effect at all on the video display mode. Its purpose is to indicate to
any program that is running whether the vi~eo display device that is being
used is capable of displaying 80 columns of text. If you are using a normal
television set, then it will be nearly impossible to read an 80-column line and
so this switch should be put in the down (40) position. However, if you are
using a video monitor, then you can put it in the up (80) position.

This method of indicating whether you can support an 80-column screen is
not foolproof, however. If the program that is running does not check the
switch, then you may well be treated to an unreadable 80-column display on
your television set. The only solution is to modify the software so that it takes
the setting of the switch into consideration.

The status of the 80/40 switch can be determined by reading a soft switch
at RD80SW ($C060). If the number read is greater than 127, then the switch
is in the 40-column position (down); otherwise it is in the 80-column position.

Turning on the Text Display

The //c uses several input/output (110) memory locations as soft switches to
control various aspects of the video display as well as several locations that
can be read to determine the states of these switches. These locations are
summarized in Table 7-1 and we will be referring to them throughout this
chapter. Notice !hat the soft switches are arranged in pairs of locations, one
of which turns the switch on and another which turns it off.

To activate a particular soft switch, other than those from $C050 ... $C057,
you must write to its location using an Applesoft POKE command or an
assembly-language write instruction like STA. You can activate any of the
switches from $C050 ... $C057 by either reading or writing. Each pair of on/
off soft switches is associated with a status location that can be read to
determine the state of the switch. The status is kept in bit 7 which means that
the associated switch will be on if the value read from the status location is
greater than or equal to 128.

....
Table 7-1. Video display soft switch and status locations. C»

0)

Address 0 Hex (Dec) Usage Symbolic Name. Action Taken Note

$C000 (49152) w 80STOREOFF Allow PAGE2 to switch between video page1 and 1 5"
page2 !!!.

a.
$C001 (49153) w 80STOREON Allow PAGE2 to switch between main and aux. 1 CD -video memory :::r

CD

$C018 (49176) R7 80S TORE 1 = PAGE2 switches main/aux. 1)>
"0

0 = PAGE2 switches video pages "0
co

$C00C (49164) w 80COLOFF Turn off 80-column display ::::::
0

$C00D (49165) w 80COLON Turn on 80-column display
$C01F (49183) R7 80COL 1 = 80-column display is on

0 = 40-column display is on

$C050 (49232) RW TEXT OFF Select graphics mode
$C051 (49233) RW TEXT ON Select text mode
$C01A (49178) R7 TEXT 1 = a text mode is active

0 = a graphics mode active
$C052 (49234) RW MIXEDOFF Use full-screen for graphics 2
$C053 (49235) RW MIXEDON Use graphics with four lines of text 2
$C01B (49179) R7 MIXED 1 = mixed graphics and text 2

0 = full screen graphics

$C054 (49236) RW PAGE20FF Select page1 display (or main video memory) 1
$C055 (49237) RW PAGE20N Select page2 display (or aux. video memory) 1
$C01C (49180) R7 PAGE2 1 = video page2 selected OR aux. video page 1

selected

$C056 (49238) RW HIRESOFF Select low-resolution graphics 1,2
$C057 (49239) RW HIRES ON Select high-resolution graphics 1,2
$C01D (49181) R7 HIRES 1 = high-resolution graphics 1,2

0 = low-resolution graphics

$C05E
$C05F
$C07F

(49246)
(49247)
(49279)

RW
RW
R7

DHIRESON
DHIRESOFF
DHIRES

Enable double-width graphics
Disable double-width graphics
1 = double-width enabled
0 = double-width disabled

The "Usage" column in this table indicates how a particular location is to be accessed:

"W" means "write to the location."
"RW" means "read from or write to the location."
"R7" means "read and check bit 7 to determine the status."

Notes:

3
3
3

1. If 80STORE is ON, then PAGE20FF activates main video RAM ($400-$7FF) and PAGE20N activates auxiliary video RAM.
If HIRES is also ON, then PAGE20FF also activates main high-resolution video RAM ($2000-$3FFF) and PAGE20N also
activates auxiliary high-resolution video RAM.

If 80STORE is OFF, then PAGE20FF turns on text pagel mode and PAGE2 turns on text page2 mode. If HIRES is also ON,
then PAGE20FF also selects high-resolution pagel mode and PAGE20N selects high-resolution page2 mode.

2. The HIRES and MIXED switches are meaningful only if the TEXT switch is OFF (i.e., a graphics mode is active).
3. The DHIRES switches only take effect if 80COL is ON. DHIRESON and DHIRESOFF can only be accessed after writing to

IOU OFF ($C07E).

"'-1

0
:y
Ill
Ill
0 -(I)
.....
Ill
:I
a.
G)
.....
Ill
'0
:y

0

0
c: -'0

s.
Ill
:I
a.
< a:
(I)

0
0 c;;·
'0
ii)
'<
s::
0
a.
(I)
en

D
....
co
......

188 CJ lnsidetheApple//c -----------------

The //c uses the TEXT and 80COL switches to select the video display mode
to be used. The TEXT switches are used to select either a graphics mode or a
text mode. To select text mode, the TEXT ON ($C05 1) switch must be accessed
(by a read or write operation). This can be done by executing a PEEK(49233)
command from Applesoft or a LDA $C05 1 command from assembler language.
Alternatively, you can use the Applesoft TEXT command.

The //c uses the 80COLOFF ($C00C) and 80COLON ($C00D) soft switches to
control whether a 40- or 80-column text screen is to be displayed. If you write
to 80COLOFF, then the 40-column display will be turned on. To turn on the
80-column display instead, write to 80COLON. A program can always deduce
which display mode is currently active by reading the 80COL ($C01F) status
location. If the number read is greater than 127 (that is, bit 7 is on), then the
80-column display is on.

Of course, the PR#3 command that is usually used to enter 80-column mode
automatically takes care of properly setting the 80COL switches. Hence, you
will usually not have to deal with them directly.

You can see for yourself how the 80COL soft switches work by entering the
system monitor so that you can easily access them. Before doing this, make
sure that the standard 40-column mode is active by resetting the //c. Then
enter CALL -151 from Applesoft and wait for the monitor's "*" prompt to
appear. To tell the lie's internal hardware to display an 80-column screen,
store any number at 80COLON ($C00D) by entering the command

C11111JD:I1J

As you will recall from Chapter 3, this command causes a 0 to be stored at
$C00D. (Any other number could also have been stored.) As soon as you do
this, the 80-column display will be turned on. Since the special 80-column
firmware required to fully support this display mode is not being used, how
ever, the system monitor's video output subroutine will not function properly
and only the odd-numbered columns in the display will be used when infor
mation is sent to it. To return to a normal 40-column display, enter the
command

C011JC:I1J

to activate the 80COLOFF ($C00C) switch. Again, any number, not just 0, can
be stored at a soft switch location in order to activate the switch.

Text Mode Memory Mapping

There are significant differences in the method the //c uses to display 40-
column and 80-column text. We will begin with a discussion of the 40-column
text display and then move on to explain how the 80-column text display
differs.

--- 7 I Character and Graphic Output and Video Display Modes c::::::::J 189

40-Column Text Mode

In the 40-column text mode, the screen can be considered to be a matrix of
40 columns by 24 rows. The video subroutines within the system monitor
number the rows starting with 0 at the top and ending with 23 at the bottom;
the columns are numbered starting with 0 at the left and ending with 39 at
the right. Unfortunately, the Applesoft cursor positioning commands, VTAB
and HTAB, start numbering the rows and columns with 1. We shall be using
the system monitor's numbering system in this section.

In 40-column text mode, the //c translates the contents of one of two 1024-
byte blocks of memory (called video RAM) into appropriate images on the
video display. The first of these two blocks extends from $400 ... $7FF and is
referred to as page1 of text; the other block extends from $800 ... $BFF and
is referred to as page2 of text. Note that the word "page" in this context means
a block of 1024 bytes of video RAM.

Each character that appears on the 40-column video display screen is
defined by one byte in the currently active video page. This means that 64 of
the bytes in the 1024-byte block are not used because there are only 960
(40x24) screen locations to be displayed. These unused locations are called
"screen holes" and are reserved for use by the firmware that controls the lie's
various I/0 devices.

To make things as simple as possible, it would be nice if the memory
locations used by the video display were mapped linearly to th~ir correspond
ing coordinates on the video display. If this were the case, then the memory
location corresponding to any screen location would be given by
BASE+(40xLINE)+COLUMN, where BASE is the starting address of the
video page, LINE is the line number (0 ... 23), and COLUMN is the column
number (0 ... 39). Unfortunately for all programmers, this is not how the //c
handles its mapping of the video display.

Instead, the //c assigns a unique base address to each line on the video
screen that is not simply forty positions further into the video memory area
from the start of the previous line. The byte at this address and the thirty
nine bytes that immediately follow it in memory are used to represent the
forty characters on that video line. Table 7-2 shows the base addresses that
are used for the page1 video display and shows how to calculate the address
of the byte corresponding to any position on the video display (add 1024 to
these addresses to calculate the corresponding page2 addresses). In general
terms, if the video line number (0 ... 23), in binary notation, is given by

000abcde
where a ... e represent bit values, then the 2-byte base address is given by

000001cd eabab000
for page 1 addresses or

000010cd eabab000
for page2 addresses.

190 CJ Inside the Apple //c

Table 7-2. Text screen video RAM addresses.

Line Number Base Address Line Number Base Address

0 $400 12 $628
1 $480 13 $6A8
2 $500 14 $728
3 $580 15 $7A8
4 $600 16 $450
5 $680 17 $4D0
6 $700 18 $550
7 $780 19 $5D0
8 $428 20 $650
9 $4A8 21 $6D0
10 $528 22 $750
11 $5A8 23 $7D0

(a) 40-COLUMN SCREEN (columns 0 ... 39). The address corresponding to a position
on the screen is equal to the base address for the line plus the column number.

(b) 80-COLUMN SCREEN (columns 0 ... 79). The address corresponding to a position
on the screen is equal to the base address for the line plus one-half of the column
number. If the column number is even, then this address in auxiliary memory is
used; if it is odd, then the address in main memory is used.

The base address for the line in which the cursor is currently located is
always stored in two zero page locations, called BASL ($28) and BASH ($29).
To calculate the decimal value of the base address for a given line on the
page1 video display from Applesoft, simply move the cursor to the line and
then calculate the quantity PEEK(40) + 256*PEEK(41). You can add 1024 to
this result to convert it to a page2 base address. Table 7-3 shows a short
program that does just this. It positions the cursor with the VTAB command
and then calculates the base address using the method just described.

If you want to calculate the base address for a line from assembly language,
then use the following instructions:

LDA #LINENUM
JSR BASCALC

;LINENUM=9. . 23
;BASCALC = $FBC1

BASCALC is a subroutine within the system monitor ($FBC1) that does the
base address calculation for you. The result will be stored in BASL/BASH
($28/$29) and will be equal to the page1 base address. To convert it to the
corresponding page2 base address, add $04 to BASH.

Why does the //c use this strange video mapping scheme? Well, back when
the original Apple II was being designed, the main concern was not simplicity
of software but rather simplicity of hardware. By changing to this mapping
scheme, several chips from the original hardware design could be eliminated,
thus making the Apple II less expensive and easier to manufacture. Seven

---- 7 I Character and Graphic Output and Video Display Modes C::=J 191

Table 7-3. BASE.ADDRESSES-a program to display the base
addresses for each line on the video screen.

f/J
Sf/J
60
1f/Jf/J
2f/Jf/J
3f/Jf/J

4f/Jf/J
Sf/Jf/J
6f/Jf/J

7f/Jf/J

REM 11 BASE.ADDRESSES 11

TEXT : HOME
DIM RW<24>

FOR I = 1 TO 24
VTAB I

RW<I>
(41)

NEXT
HOME

PEEK <40> + 256 *

PRINT 11 THE BASE ADDRESSES F
DR EACH LINE ARE: 11 : PRINT

FOR I = 1 TO 24 STEP 2

PEEK

8f/Jf/J PRINT 11 LINE # 11 ; I - 1 ; 11 : 11 ; TAB<
11>;RW<I>;

9f/Jf/J PRINT TAB< 2f/J); 11 LINE # 11 ;I;
11 : 11 ; TAB< 31>;RW<I>

1f/Jf/Jf/J NEXT : PRINT

years later the new and improved lie was released but, for the sake of com
patibility, the video mapping scheme was not changed.

80-Column Text Mode

Since the 80-column screen displays twice as many characters as its 40-
column counterpart, another 1024-block of video memory is required to sup
port it. This additional block is not located in the lie's main built-in memory;
if this were the case, then the llc would be unacceptably incompatible with
its older brothers. Instead, a lK block of memory that is contained in the
auxiliary memory area is used.

This "extra" lK block actually shares the same addresses used by the main
display page, $400 ... $7FF, but, as we have just said, it is in a different
physical location. When the lie's 80-column display is active, the video cir
cuitry maps the standard pagel video page locations in main memory to the
odd-numbered column positions on the 80-column screen and the auxiliary
memory locations to the even-numbered postions. So for any given line on
the screen, the contents of columns 0,2,4, ... ,78 are found in auxiliary mem
ory and the contents of columns 1,3,5, ... ,79 are found in main memory. The
base addresses for each line are the same as for the 40-column screen, however.
The mapping scheme used by the 80-column screen is explained in Table 7-
2.

192 c:J lnsidetheApple//c ----------------

You should now be able to see why only odd-numbered columns were used
when you experimented with the 80COLON switch earlier. The standard
system monitor video output subroutine presumes that a 40-column display
is being used and so it accesses the $400 ... $7FF area in main memory only.
When 80COL is ON, these locations correspond to odd-numbered columns on
the video display; the locations corresponding to even-numbered columns are
never accessed by this monitor subroutine.

It is not permissible, of course, to have two physical memory locations,
which share the same logical address, active at the same time. The //c uses
soft switches to control which of the two $400 ... $7FF areas is to be active
so that data can be stored to or read from any 80-column screen position
directly. The switches used are PAGE20FF ($C054) and PAGE20N ($C055).
They are used to select the main memory video RAM block and the auxiliary
memory video RAM block, respectively, provided that the 80STORE switch
is ON. If 80STORE is not ON, then, as we will see below, the PAGE2 switches
are used to select between the two different 40-column video pages.

The procedure to follow to store any value to a particular 80-column screen
location is as follows:

1. Select the proper mode for the PAGE2 switches by storing any number
at 80STOREON ($C001).

2. Determine the base address for the line required.

3. Divide the required horizontal position (0 ... 79) by two and add it to
the base address.

4. If the horizontal position is odd, then turn on the main $400 ... $7FF
video page by storing any number at PAGE20FF ($C054). If the position
is even, then turn on the auxiliary $400 ... $7FF video page by storing
any number at PAGE20N ($C055).

5. Store the byte at the address calculated in step 4.

6. Reselect main memory by accessing PAGE20FF ($C054).

This is a fairly elaborate procedure but it is handled automatically if you
are using the 80-column firmware for video output. It must be followed
strictly, however, if you want to POKE data directly into the video screen
from your own programs. Table 7-4 shows an Applesoft program called POKE80
that uses this technique to display information on the video screen.

Using Page2 of Text

We have seen how the PAGE2 switches can be used to select between main
and auxiliary memory if 80STORE is ON. If 80STORE is OFF, then PAGE2
behaves in quite a different way. That is, it is used to select which of the two
available 40-column text pages is to be displayed, the one from $400 ... $7FF
(pagel) or the one from $800 ... $BFF (page2).

--- 7 I Character and Graphic Output and Vi~eo Display Modes c=J 193

Table 7-4. POKE80-a program to store any data byte in the 80-
column video RAM area.

0 REM 11 POKE80 11

1 0 0 HOME : PRINT CHR,$ (4); 11 PR#
311

140 INPUT 11 ENTER LINE# <0 ... 23
>: u;L

1 50 INPUT 11 ENTER COLUMN # < 0 ...
79) : II ; C

160 INPUT 11 ENTER VALUE OF BYTE
TO BE POKED TO SCREEN <0 ... 2
55>: 11 ;BY,

180 VTAB L + 1: REM MOVE CURSOR
TO PROPER LINE

190 BA = PEEK <40> + 256 * PEEK
<41): REM GET BASE ADDRESS

200 BA = BA + INT <C I 2>: REM
ADD HORIZI2

210 IF 2 * INT <C I 2) < > C THEN
POKE 49236,0: GOTO 230

220 POKE 49237,0: REM SELECT AU
X MEMORY IF EVEN

230 POKE BA,BY
240 POKE 49236,0: REM SELECT MA

IN MEMORY
260 VTAB 22: END

To select pagel, the PAGE20FF ($C054) switch must be accessed and to
select page2-you guessed it-the PAGE20N ($C055) switch must be accessed.
You can always tell which page has been selected by reading the PAGE2
($C01C) status location. Ifthe number read is greater than 127, page2 is active.

Pagel of the video display is the one that is invariably used by programs,
especially if those programs are written in Applesoft. There are two good
reasons for this. First, the lie's standard video output suqroutines always
write screen information to the pagel memory area; if you wanted to send
output in the usual way to page2, you would have to write your own subrou
tines to do this. Second, Applesoft programs are normally stored beginning
at location $801, that is, within page2, which means that your program will
be overwritten when the screen display changes. Although it is possible to
load an Applesoft program so that it starts beyond page2 at $C01, this involves
using an awkward "preloading" program that tlooks something like this:

100 POKE 103,1 :POKE 104,12:POKE 3072,0
200 PRINT CHR$(4); 11 RUN YOUR.PROGRAM 11

where YOUR.PROGRAM is the name of the program that you want loaded
above page2. Line 100 in the above program stores $C01 in the Applesoft

194 c::::J lnsidetheApple//c ----------------

beginning-of-program pointer, TXTTAB ($67), and puts a $00 byte at $C00.
(A zero byte must always be stored immediately before the start of a tokenized
Applesoft program.) See Chapter 4 for a discussion of TXTTAB and other
Applesoft pointers.

Page2 does have its uses, however. For example, while pagel is being
displayed, a program can be busily writing information on page2 and then,
when page2 is complete, the PAGE20N switch can be accessed to immediately
display page2. Then, while page2 is being displayed, pagel can be modified
and later switched in by accessing PAGE20FF. If this process is repeated,
extremely good animation effects can be achieved and pages of written infor
mation can be displayed very smoothly.

Note that a second 80-column text page (from $800 ... $BFF in main and
auxiliary memory) can be selected using PAGE20N with 80STORE set to
OFF and 80COL set to ON. This display mode is not supported by the lie's
firmware.

Video Display Attributes: Normal, Inverse, Flash

The lie text screens support three fundamental video display attributes:

• Normal video (white characters on a black background)

• Inverse video (black characters on a white background)

• Flash video (blinking characters)

Every printable ASCII character (that is, those with negative ASCII codes
greater than $9F) can be displayed in normal video without restriction. There
are restrictions, however, on what characters can be displayed in inverse and
flash video, and these restrictions will depend on which of two possible
characters sets available for the lie is currently active.

The two characters sets that the lie supports are called the "primary"
character set and the "alternative" character set. When the lie's primary
character set is in effect, it is not possible to display flashing or inverse
lowercase characters. On the other hand, when the alternative character set
is in effect, you will be able to display inverse lowercase characters but you
will not be able to display flashing characters. The alternative character set
also supports a set of 32 special symbols and icons called MouseText which
the primary character set does not. We'll talk more about MouseText later in
this section.

One character set or the other can be selected by writing to one of the
following two soft switch memory locations:

A LTC H A R SET 0 F F ($ C 0 0 E) to select the primary character set

or

A LTC H A R SET 0 N ($ C 0 0 F) to select the alternative character set

--- 7 I Character and Graphic Output and Video Display Modes c=J 195

When the //c is in its standard 40-column mode, the default setting of
ALTCHARSET is off; when the 80-column firmware is active, the default
setting is on. The setting of ALTCHARSET can easily be cnanged at any time,
however, in order to allow either character set to be used in both text modes.

You can determine which character set is currently active by reading the
ALTCHARSET status location at $C01E. If this location is greater than 127
(that is, bit 7 is on), then the alternative set is currently active; otherwise,
the primary set is active. The soft switch and status locations that relate to the
lie's character sets are summarized in Table 7-5.

Table 7-5. Character set soft switches and status location.

Address
Hex (Dec)

$C00E

$C00F

(49166)

(49167)

$C01E (49182)

Symbolic Name

ALTCHARSETOFF

ALTCHARSETON

ALTCHARSET

Description

Select primary character set

Select alternative character
set

Status of character set
switch (> = $80 if
alternative set is active)

The //c examines the two most-significant bits (bits 7 and 6) of each byte
that has been stored within the video RAM area in order to determine which
attribute is to be used to display the character that it represents. (We will
examine the standard monitor subroutines used to store characters in the
video RAM area later in this chapter.)

If these two bits are "10" or "11," then the character will be displayed in
normal video. If they are "00," the character will be displayed in inverse
video. Finally, if they are "01," then the character will be displayed either in
flash video, if the primary character set is active, or in inverse video, if the
alternative character set is active. These rules are summarized in Table 7-6.

Table 7-6. Video attribute control bits.

Bit7 Bit6 Video Attribute

1 1 Normal

1 0 Normal

0 1 Flash (primary character set)
Inverse or MouseText (alternative character set)

0 0 Inverse

196 [=::J lnsidetheApple//c ----------------

Table 7-7 shows how the lie interprets each of the 256 possible values that
can be stored in its video display memory area, for both the primary and
alternative character sets. You can see that the only difference between the
two sets is that codes $40 ... $7F represent flashing alphabetic characters
and special symbols when the primary set is active, whereas they represent
the 32-byte MouseText character set and the inverse lowercase alphabetic
and special characters when the alternative set is active.

The program in Table 7-8 will show you visually how the lie's video system
interprets each of the 256 possible bytes that might be stored in a video RAM
memory location. When you run this program, the name of the currently
active character set will be shown at the top of the screen and then eight rows
of 32 characters will be displayed, which represent bytes $00 through $FF.
You can easily select the character set that you want to view by pressing "P"
for primary or "A" for alternative after the symbols corresponding to each of
the 256 bytes have been displayed. Notice how fast the display changes after
you change the character set-this is indicative of a hardware-controlled
change rather than a software-controlled change.

Mouse Text

MouseText symbols and icons are displayed on the video screen whenever
a byte between $40 and $SF is stored in video RAM memory. As its name
suggests, Mouse Text is primarily used by software that uses the Apple Mouse
input device to point to and select commands and functions.

Special subroutines in the lie's 80-column firmware make it fairly simple
to display Mouse Text using standard Applesoft PRINT statements. To do this,
you must follow these steps (after the 80-column firmware has been activated
and ALTCHAR is ON):

• Turn on inverse video.

• Enable the firmware's handling of MouseText.

• Print the standard keyboard characters that correspond to the special
MouseText characters that are to be displayed.

• Turn on normal video.

• Disable the firmware's handling of MouseText.

Here is an example of a short, program that does just this:

100

200
300

400

PRINT

PRINT
PRINT

PRINT

CHR$<4) ;,11 PR#311 : REM SELECT 80-
COLUMN FIRMWARE

CHR$<27>;
CHR$<15); 11 ®ABCDEFGHIJKLMNOPQRSTUVWXYZ[l 11

;CHR$<14>;
CHR$<24>

Table 7-7. Text screen character display and attributes.

Value of
Bytes in
Video Page

$00-$1F
$20-$3F

$40-$5F
$60-$7F

$40-$5F
$60-$7F

$80-$9F
$A0-$BF

~ $C0-$DF
$E0-$FF·

Symbols Displayed

®ABCDEFGHIJKLMNOPQRSTUVWXYZ[\JA
!"#$%&'()*+,-./0123456789: ;<=>?

®ABCDEFGHIJKLMNOPQRSTUVWXYZ[\JA
! 11 #$%&'()*+,-./0123456789: ;<=>?

Mou5eText (5ee below)
'abcdefghijklmnopqr5tuvwxyz{l}~l

®ABCDEFGHIJKLMNOPQRSTUVWXYZ[\JA
! 11 #$%&'()*+,-./0123456789: ;<=>?

®ABCDEFGHIJKLMNOPQRSTUVWXYZ[\JA
'abcdefghijklmnopqr5tuvwxyz{l}~i

Here are the MouseText characters and their corresponding ASCII characters:

Display Attribute

Inverse
Inverse

Flash (primary)
Flash (primary)

Normal (alternative)
Inverse (alternative)

Normal
Normal
Normal
Normal

Iii o_X v m ~ ~- t::- ... ~ t - .-1 • l: i: ..; ~ - L ~ 5 M c ::. I+= ~~ !J I
®ABCDEFGHIJKLMNO PQRSTUVWXY Z[\)A

--.J

(')
::r
I»
a;
0
<D ...
Cl
:I
a.
G>
a;
'0
::r
0

0
c: -'0
c: -Cl
:I
a.
< a:
CD
0
0 c;;·
'0

~
s::
0
a.
CD en

0
....
~

198 c=J lnsidetheApple//c ----------------

Table 7-8. CHAR.SETS-a program to display the //c's primary and
auxiliary characters sets.

0 REM "CHAR.SETS"
100 PRINT CHR$ <21>: TEXT HOME

110 GOSUB 500
120 FOR I = 0 TO 255
1 30 HTAB 1 + I - 32 * < I NT <I I

32))
140 VTAB 3 + I I 32
150 SL = PEEK <40> + 256 * PEEK

<41> + PEEK <36)
160 POKE SL,I
170 NEXT
180 GOSUB 500
190 VTAB 20: HTAB 1: CALL - 95

8
200 PRINT "<P>RIMARY OR <A>LTER

NATIVE?";: GET A$: PRINT A$

210 IF A$ = "P" OR A$ = "p" THEN
POKE 49166,0: GOTO 180

220 IF A$ = "A" OR A$ = "a" THEN
POKE 49167,0: GOTO 180

230 IF A$ = CHR$ <27> THEN HOME
: END

240 GOTO 180
500 VTAB 1: HTAB 1: CALL - 868

: PRINT "THE ";
510 IF PEEK <49182> > 127 THEN

PRINT "ALTERNATIVE";: GOTO
530

520 PRINT "PRIMARY";
530 PRINT " CHARACTER SET IS:"
540 RETURN

We're getting a bit ahead of ourselves because this program uses four control
characters that won't be discussed until the next section (see Table 7-11).
Here's what they mean:

• CHR$(27)-Tell the firmware to display MouseText characters.

• CHR$(15)-Turn on inverse video.

• CHR$(14)-Turn on normal video.

• CHR$(24)-Turn off the MouseText feature.

--- 7 I Character and Graphic Output and Video Display Modes c=J 199

When the firmware is told to display MouseText and inverse video is on,
the 80-column firmware maps the characters from ASCII code $C0 ('@')
through $DF ('_')to the MouseText characters having codes from $40 through
$SF. Thus, in the above program you will not see an inverse video display of
keyboard symbols, but rather the complete MouseText character set.

Standard Character Output Subroutines

There is just one standard output subroutine that is used when a program
running on the //c wants to send a character to the currently active output
device; it is called COUT ($FDED), which stands for Character OUTput. The
Applesoft PRINT command makes use of this subroutine. If the active output
device is the video display screen, however, then COUT usually makes use of
two other built-in subroutines called COUTl ($FDF0), and C3COUT1 ($C307)
to display the character at the proper position on the screen. These subrou
tines are summarized in Table 7-9.

Table 7-9. Built-in output subroutines

Address
Hex (Dec) Symbolic Name

$FDED (65005) COUT

$FDF0 (65008) COUTl

$C307 (49927) C3COUT1

Description

Sends a character to the cur
rently active output device. The
negative ASCII code for the
character is in the accumulator.

Video output routine used when
standard 40-column mode is
active.

Video output routine used when
the 80-column firmware is being
used (this includes 80-column
mode and the special 40-col
umnmode).

As soon as COUT is called, the following code is executed:

JMP <CSWL>
which causes the //c to jump to a subroutine that begins at the address stored
at CSWL ($36) and CSWH ($37). This subroutine is responsible for properly
handling the character to be outputted (which is in the accumulator). If the
current output device being used is the video display, then this usually means
displaying the character on the screen at the current cursor position and
advancing the cursor (and scrolling when necessary). If a special control

200 c::J Inside the Apple //c ----------------

character is being outputted, then special video control subroutines may be
invoked instead. (See below.) Note that by simply changing the address stored
at CSWLICSWH, any output subroutine can be installed on the //c. We will
see how to do this later on.

When ProDOS is being used, the address stored at CSWL and CSWH is
actually that of a special ProDOS output subroutine. This subroutine will
either store information on diskette or display it on the video screen, depend
ing on whether a diskette file is being written to. It also continuously checks
to see whether a valid ProDOS command has been printed so that it can
execute it immediately. ProDOS commands are easily identified because they
are always preceded by a [control-D) character.

If the ProDOS output subroutine needs to display the output on the video
screen, then one of two built-in video output subroutines is used. One is called
COUTl ($FDF0), which is used when in standard 40-column mode. The other
is called C3COUT1 ($C307) and is used when the 80-column firmware is being
used. Before calling either of these subroutines, the 65C02 accumulator must
be loaded with the ASCII code for the character to be printed (usually with
the high bit set to one). If the high bit is zero, the character will be displayed
with a special display attribute (either inverse or flashing).

Let's take a closer look right now at exactly what happens when a character
is sent to the video display through the lie's output link.

Video Output

As we have seen, COUT will normally pass control to one of two video
output subroutines, depending on whether the 80-column firmware is active:

• Control passes to COUTl ($FDF0) if the //c is in standard 40-column
mode.

• Control passes to C3COUT1 ($C307) if the 80-column firmware is active.

These subroutines deal with the task of properly displaying a character on
the screen or performing special video functions.

After doing some initial housekeeping, both of these subroutines call VID
WAIT ($FB78), VIDWAIT will, if a carriage return (ASCII code $8D) is being
printed, check the keyboard to see whether a [control-S] has been pressed. If
it has, then VIDWAIT pauses until other ASCII code is entered before allowing
the character to be printed.

If the character being printed is not a control character (that is, its ASCII
code is not between $80 and $9F), then control passes to VIDOUT ($FBFD) if
standard 40-column mode is active, or STORCH ($C3B8) if the 80-column
firmware is active. Both of these subroutines store the character in the video
RAM page at the currently active cursor position. After the character has been
displayed, the cursor is advanced and the subroutine ends. By the way, if

---- 7 I Character and Graphic Output and Video Display Modes c::=J 201

standard 40-column mode is active, the position of the cursor is defined by
the values stored at CH ($24) and CV ($25), the horizontal and vertical cursor
coordinates, respectively. If the 80-column firmware is being used, then the
coordinates are kept at OURCH ($57B) and OURCV ($5FB) instead,

If the character is a control character, then the subroutines VIDOUT1
($FC04) and DOCTL ($FBF4) will be used to determine whether a special
action should be performed. VIDOUTl is used when standard 40-column
mode is active and it reacts in a special way to four control characters only:
[control-G) (bell), [control-H) (backspace), [control-J] (line feed), and [control
M] (carriage return). The actions that are taken when,any of these control
characters is encountered are spawn in Table 7-10. All other control characters
are ignored by VIDOUTl.

Table 7-10. Special control codes used by both COUTl and
C3COUT1.

Control Code

[control-G) $87

[control-H) $88

[control-J] $8A

[control-M] $8D

Description

Bell. Beep the speaker

Backspace. Move the cursor one position to the left or
to the end of the previous line if already at left edge.

Line feed, Move the cursor down one line.

Carriage return. Initiates a carriage return/line feed
sequence that moves the cursor to the left position of
the next line.

DOCTL is used when the 80-column firmware is active. The first thing it
does is to call the VIDOUTl subroutine in order to handle a [control-G),
[control-H), [control-J], or [control-M] character. If the character was one of
these four, then DOCTL ends: If not, then tests are made for the presence of
several other control characters which are listed in Table 7-11. If one of these
special control characters is found, then the special function associated with
it will generally be executed. It is possible, however, to disable these functions
by entering an ESC [control-D) escape sequence from the keyboard before
printing the control character. This sequence was discussed in Chapter 6, as
was the ESC [control-E) sequence that is used tore-enable the special control
characters.

After, a control character is handled by VIDOUTl or DOCTL, the video
output subroutine ends and control is passed back to the calling subroutine.

202 CJ Inside the Apple //c -----------------

Table 7-11. Special control codes used by C3COUT l (80-column
firmware only).

Control Code

[control-K] $8B

[control-L] $8C

[control-N] $8E

[control-0] $8F

[control-Q] $91

[control-R] $92

[control-U] $95

[control-V] $96

[control-W] $97

[control-X] $98

[control-Y] $99

[control-Z] $9A

[control-[] $9B

[control-\] $9C

[control-]] $9D

[control-_] $9F

Description

Clear to end of screen. Clear from the current cursor
position to the end of the screen.

F ann feed. Clear the screen and move the cursor to the
home position (top left-hand corner).

Nonnal. Turn on normal video display.

Inverse. Turn on inverse video display.

4UJ-column. Keep 80-column firmware active, but move
to a 40-column display.

8UJ-column. Move to an 80-column display.

8UJ-off Turn off the 80-column firmware and return to
40-column format.

Scroll down. Scroll the display down one line leaving
the cursor where it is.

Scroll up. Scroll the display up one line leaving the
cursor where it is.

Mouse characters off Disable the displaying of the spe
cial mouse character set.

Home. Move the cursor to the home position.

Clear line. Clear the entire line on which the cursor is
positioned.

Mouse characters on. Enable the displaying of the spe
cial mouse character set.

Forward. Move the cursor forward one space with
wraparound.

Clear to end of line. Clear the screen from the current
cursor position to the end of the line.

Move cursor up one line (in the same column). If the
cursor is already at the top, it will not move.

Video Screen Windowing

When the //cis first turned on, the standard output subroutines will auto
matically use the entire video screen for text display. It is possible to define
a smaller "window," however, into which all output is to be confined. The

--- 7 I Character and Graphic Output and Video Display Modes c=:J 203

advantage of defining such a window is that information outside the window
will not usually be overwritten. When it becomes necessary to perform a
scrolling operation, only the contents of the window will be moved; the
information outside of the window will stay put.

The dimensions of the text window can be set by adjusting four locations
in zero page, described in Table 7-12. These locations are used to set the
leftmost column position of the window (WNDLFT), the first line number
used by the window (WNDTOP), the bottom line number used by the window
plus one (WNDBTM), and the width, in characters, of the window (WNDWDTH).

You can change the window parameters with simple Applesoft POKE state
ments. If you do change them, however, keep in mind the following two rules:

• WNDBTM must always be greater than WNDTOP.

• WNDWDTH + WNDLFT must not exceed the maximum display width
(40 or 80).

Table 7-12. Text window parameters.

Address
Hex (Dec)

$20 (32)

$21 (33)

$22 (34)

$23 (35)

Symbolic Name

WNDLFT

WNDWDTH

WNDTOP

WNDBTM

Description

Left side of window
(40 col.: 0 ... 39)
(80 col.: 0 ... 79)

Width of window
(40 col.: 1 ... 40)
(80 col.: 1 ... 80)

Top of window (0 ... 23)

Bottom of window + 1 (1 ... 24)

After the window parameters have been changed, you can quickly and easily
restore them to their initial default values by entering the Applesoft TEXT
command.

How COUT1 and C3COUT1 Set the Video Attribute

As we have seen, a character is normally displayed on the video screen by
loading the 6SC02 accumulator with its ASCII code (with the high bit on) and
then calling COUT ($FDED). COUT, in turn, calls either COUTl ($FDF0), if
the standard 40-column mode is active, or C3COUT1 ($C307), if the 80-column
firmware is being used. These subroutines take care of displaying the char
acter at the proper position on the screen.

204 c::=J Inside the Apple //c ----------------

How, then, does the //c determine whether to display the character in
normal, inverse, or flash video? The answer depends on whether COUT1 or
C3COUT1 is being used.

If COUTl is being used, then just before a printable ASCII code (that is,
everything above $9F) is sent on to the main part of the video output routine,
it is logically ANDed with the number stored at INVFLG ($32). The purpose
of doing this is to adjust bits 6 and 7 of the outgoing character code so that
they are equal to the values needed to select the required video attribute (see
Table 7-6). The value stored at INVFLG is called a "mask" because it will
hide (clear to 0) those bits in the character code that are 0 in the INVFLG
byte, but will leave unaffected those bits that are 1 in the INVFLG byte. The
three values for INVFLG, which are used to select the normal, flash, and
inverse attributes, respectively, are set out in Table 7-13.

Table 7-13. INVFLG mask values

Value of
INVFLG

$FF
$7F
$3F

Video Attribute

Normal video
Flash video
Inverse video

INVFLG is location $32.

Effect on Character Code

No effect
Clears bit 7
Clears bits 7 and 6

Note: With $7F in INVFLAG, characters with values from $A0 ... $BF will not flash,
they will be displayed in inverse video (see text).

With some exceptions, if you take any printable ASCII code and logically
AND it with each of the three values for INVFLG, you will see that the bits
will be set in accordance with the rules set out in Table 7-6. The exceptions
relate to the use of the flash mask ($7F) with those characters having ASCII
codes from $A0 ... $BF. Bit 6 of these codes is 0, so when bit 7 is cleared to 0
by the flash mask, the attribute bits for an inverse character are set up and
so the character won't flash. In an assembly-language program, you can
circumvent this problem by always logically ORing a character code with
the value $40 to force bit 6 to 1 before calling COUTl. This is exactly what is
done by the Applesoft interpreter when you are running an Applesoft program.

If C3COUT 1 is being used, then INVFLG is still examined before storing the
character code in the video RAM area, but only bit 7 is checked. If it is one,
the character will be displa"yed in normal video; if it is zero, it will be displayed
in inverse video. Although it is possible to display a flashing character on the
80-column screen, the 80-column firmware does not support this attribute.

The Applesoft NORMAL, FLASH, and INVERSE commands are all used to
select the value stored at INVFLG. Keep in mind, however, that if the 80-
column firmware is being used, the FLASH command will only cause an

--- 7 I Character and Graphic Output and Video Display Modes c::::J 205

inverse video display; if you want to display flashing characters, you will
have to POKE bytes directly to the video RAM area.

Changing Output Devices: The OUTPUT Link

Character output on the lie is usually sent to built-in system monitor sub
routines that control the lie's 40-column or 80-column video display screens.
It is possible, however, to send output to other peripheral devices that are
connected to the lie through its built-in interface ports. Examples of such
devices are a disk drive, a printer, and a modem.

The lie uses the same general method to handle output to such devices that
it uses to handle input. This method was discussed in detail in Chapter 6 in
the section describing the lie's input link.

We mentioned earlier that the first instruction in the standard COUT char
acter output routine looks like this:

JMP ($1!11!136)

As we explained when discussing the input link, this is called an "indirect
jump" instruction and it will cause the lie to transfer control to the address
stored at location $36 (low byte) and location $37 (high byte). If you are using
the standard 40-column output routine, $361$37 will contain the address of a
subroutine in ProDOS that in turn usually calls COUTl ($FDF0). (It could
also call another subroutine to write information to a diskette file instead.)
By changing the address stored at $361$37, you can redirect the lie to any
other output subroutine that you care to execute, including one used by an
alternative output device.

The symbolic name for locations $361$37 is CSW (for character switch); $36
by itself is called CSWL and $37 is called CSWH. CSW is commonly referred
to as the "output link" or "output hook."

You will recall from Chapter 6 that the Applesoft "IN#s" command can be
used to redirect input to port "s". In a similar way, you can use "PR#s" to
redirect output to port "s". When "PR#s" is entered, a program beginning at
location $Cs00 (where sis the port number), which is the first location in a
ROM area dedicated to that port, is executed. Typically, the program begin
ning at this location will modify CSW so that it will point to a new output
routine also contained in ROM. Note that if a PR#0 command is entered,
then the address of COUTl ($FDF0), the lie's standard 40-column output
subroutine, will be stored at CSW.

Subject to complications that arise whenever ProDOS is being used (see
below), you can also change the output link directly by using the Applesoft
POKE command or the assembler's STA command to store the address of the
new input routine directly into CSW at $36 and $37. This address can be in
either ROM or RAM.

206 c:=:J lnsidetheApple//c ---------------

Designing a CSW Output Subroutine

Any CSW output subroutine that will be used to replace the standard ones
used by the //c must adhere to certain rules relating to the usage of 65C02
registers. First of all, the output subroutine must examine the accumulator
to determine which character code is being passed to it. Second, the subrou
tine must end with the A, X, andY registers unaffected. If it is necessary to
change the contents of these registers in the body of the subroutine, the
registers must first be saved and then restored just before the subroutine ends.

Replacing the Video Output Subroutine

One common reason for changing the CSW output subroutine is simply to
modify to the manner in which character output to the video display is
handled. For example, you may want to perform one of the following tasks:

• Redefine the effect of control characters on the video display or define
special actions to be performed by previously unused control characters.

• Prevent certain characters from being displayed.

• Translate character codes from one encoding system to another.

For relatively minor changes such as these, it is not necessary to rewrite all
the underlying code that takes care of positioning the cursor and displaying
characters on the video display. What can be done instead is to install a new
output subroutine that performs its special chores and then, if necessary,
passes control to the standard output subroutine that can then handle the
relatively complex chores of displaying a character on the screen and execut
ing special video-control commands.

Here is an example of a short input subroutine that preprocesses character
output before passing it on (if necessary) to the standard output subroutine:

NEWOUT CMP #$87 ;Is this a bell?
BNE NOCHANGE ;No, so branch
RTS ;Yes, so do nothing

NOCHANGE JMP COUT1 ;Perform normal output

This subroutine will prevent a bell character from ever being sent to the
standard output subroutine (meaning that you won't hear that annoying beep
when you make an error). It works by continually comparing each character
code that is printed with the ASCII "bell" code (code $87) and by simply
executing an RTS instruction if one is found. If the character code is not a
bell, control passes directly to the standard video output subroutine.

ProDOS and the Output Link

The same restrictions referred to in Chapter 6 that apply when changing
the input link when ProDOS is active also apply when changing the output

--- 7 I Character and Graphic Output and Video Display Modes c:=J 207

link. When ProDOS is first activated, the address stored in CSW is copied to
an internal ProDOS output link location and then the address of a special
ProDOS output subroutine is placed in CSW. This subroutine is responsible
for detecting and handling any ProDOS commands that are printed (they are
preceded by a [control-D) character) and for writing information to a diskette
file if a ProDOS WRITE or APPEND command is in effect. If ProDOS is not
currently writing to a file, then it will send output to the subroutine whose
address is stored in the ProDOS output link. This is initially one of the
standard video output subroutines.

Normal attempts to store new addresses directly to CSW will obviously
lead to a disconnection of ProD OS. Rather than repeat the explanations given
in Chapter 6, we shall simply state how the output link must be changed to
ensure that both ProDOS and the new output subroutine will be active. Any
one of the following procedures may be used:

• Use the PR# command while in Applesoft direct mode (not within a
program) or use the command

PRINT CHR$<4>;"PR#s"

from within a program (where "s" represents the port number).

• Use the BRUN command to load and execute an assembly-language
program that stores the new output address into CSW.

• Use the POKE command to store the new input address directly into the
ProDOS output link locations at $BE30 and $BE31. Alternatively, use
the Applesoft CALL command or the system monitor GO command to
execute an assembly-language program that stores the address directly
into $BE30 and $BE31.

If you are using ProDOS, you can also use a special form of the PR#
command to properly install an output subroutine that is located anywhere
in memory and not just in the ROM area for a port. The output subroutine
must, however, begin with a 65C02 "CLD" (clear decimal) instruction. To
install the output subroutine, execute a statement of the form

PRINT CHR$C4l;"PR# Aaddr"

from within an Applesoft program, where "addr" represents either the deci
mal starting address of the new output subroutine or, if preceded by "$ ", the
hexadecimal starting address.

Low-Resolution Graphics Mode

The //c also supports two general graphic display modes called low-reso
lution graphics and high-resolution graphics. These modes are primarily used
to present non-text information such as pictures, graphs, and maps and will
now be described in detail, beginning with low-resolution graphics mode.

208 c::=J Inside the Apple //c ----------------

Turning on the Low-Resolution Graphics Display

The easiest way to activate the //c's low-resolution graphics display is to
enter the Applesoft GR command from Applesoft direct mode. This command,
however, selects only one of four possible versions of low-resolution graphics
(namely, pagel with mixed graphics/text). As we will see later, other versions
must be activated by directly setting some of the //c's video soft switches.

When the standard low-resolution graphics mode is in effect, colored "blocks"
are displayed on the screen instead of text symbols. The dimensions of the
screen are 40 blocks wide by 48 blocks deep (or 40 blocks deep if a special
mixed mode is in effect-see below). Column positions range from 0 on the
left to 39 on the right; row positions range from 0 on the top to 47 on the
bottom.

There are two possible pages of low-resolution graphics that can be dis
played on the //c. The video RAM area that defines the first display screen
(pagel) extends from $400 ... $7FF, and the area that defines the second
(page2) extends from $800 ... $BFF. These are the same video RAM areas
used to support the two pages of text mode.

To turn on either page of standard low-resolution graphics, you must first
ensure that the PAGE2 switches (PAGE20FF and PAGE20N) can be used to
select which of the two graphics pages is to be used rather than to select
whether main memory or auxiliary memory is to be used. This can be done
by writing to 80STOREOFF ($C000). (To be safe, you might also want to write
to IOUDISON ($C07E) and DHIRESOFF ($C05F) to ensure that double-width
low-resolution graphics·are not accidentally enabled. As we shall see in the
next section, these commands will cause the circuitry that enables this special
graphics mode to be disabled.)

To turn on pagel of low-resolution graphics, the following switches must
be "thrown" by reading from or writing to all of the following soft switch
memory locations:

TEXTOFF ($C050)-selects a graphics mode
HIRESOFF ($C056)-selects low-resolution graphics
PAGE20FF ($C054)-selects pagel

To turn on page2, throw the following switches by reading from or writing
to all of the following locations: '

TEXTOFF ($C050)
HIRESOFF ($C056)
PAGE20N ($C055) -selects page2

In addition, it will be necessary to throw one of two other switches that
control whether full screen graphics will be displayed or whether four lines
of text will be "mixed in" at the bottom of the screen with 40 lines of low
resolution graphics above them. The switches that control this are MIXEDON

___ 7 I Character and Graphic Output and Video Display Modes CJ 209

($C053), which enables mixed graphics and text, and MIXEDOFF ($C052),
which enables full-screen graphics. Simply read from or write to these mem
ory locations to activate these switches.

The switches that must be accessed to turn on the four different combina
tions of low-resolution graphics display modes are summarized in Table 7-
14.

Table 7-14. Low-resolution graphics display modes.

Pagel of Low-Resolution
Graphics (full-screen mode)

TEXTOFF
HIRES OFF
MIXEDOFF
PAGE20FF

($C050)
($C056)
($C052)
($C054)

Pagel of Low-Resolution
Graphics (mixed mode)

TEXT OFF
HIRES OFF
MIXEDON
PAGE20FF

($C050)
($C056)
($C053)
($C054)

Page2 of Low-Resolution
Graphics (full-screen mode)

TEXT OFF
HIRES OFF
MIXEDOFF
PAGE20N

($C050)
($C056)
($C052)
($C055)

Page2 of Low-Resolution
Graphics (mixed mode)

TEXTOFF
HIRES OFF
MIXEDON
PAGE20N

($C050)
($C056)
($C053)
($C055)

Low-Resolution Graphics Screen Memory Mapping

Each block on the low-resolution graphics screen is defined by one-half of
a byte (four bits) that is stored within the currently active video RAM area
($400 ... $7FF for page1 or $800 ... $BFF for page2). The number stored in
this half byte is the color code for the block (see the next section). Table 7-15
shows the mapping scheme for each block on page1 of the low-resolution
graphics screen; page2 addresses can be calculated by adding 1024 to the
corresponding addresses for page1. Note that the base addresses for each pair
of lines in the graphics screen (that is, 0/1, 2/3, 4/;i, ... ,46/47 are the same as
those for text lines 0, 1, 2, ... ,23.)

Low-Resolution Graphics Colors

A special color code is stored in 4 bits of the byte in the video RAM page
that corresponds to a particular block position. As Table 7-15 indicates, these
4 bits are found in the top half of the byte (bits 4 ... 7) or the bottom half
(bits 0 ... 3), depending on the block's position on the screen. Table 7-16
contains a list of the color codes that can be stored in the byte in video RAM
in order to generate the sixteen different colors that the low-resolution graph
ics mode supports.

210 c:::::=J lnsidetheApple//c ----------------

Table 7-15. Low-resolution graphics video RAM screen addresses.

Line Number Base Address Line Number Base Address

0,1 $400 24,25 $628
2,3 $480 26,27 $6A8
4,5 $500 28,29 $728
6,7 $580 30,31 $7A8
8,9 $600 32,33 $450
10,11 $680 34,35 $4D0
12,13 $700 36,37 $550
14,15 $780 38,39 $5D0
16,17 $428 49,41 $650
18,19 $4A8 42,43 $6D0
20,21 $528 44,45 $750
22,23 $5A8 46,47 $7D0

(a) STANDARD LOW-RESOLUTION GRAPHICS (columns 0 ... 39). The address cor
responding to a position on the screen is equal to the base address for the line plus
the column number. If the line number is even, then the lower 4 bits of the byte
stored at this address are used to store the color code; if it is odd, the upper 4 bits
are used.

(b) DOUBLE-WIDTH LOW-RESOLUTION GRAPHICS (columns 0 ... 79). The address
corresponding to a position on the screen is equal to the base address for the line
plus one-half of the column number. If the column number is even, then this address
in auxiliary memory is used; if it is odd, the address in main memory is used. If
the line number is even, then the lower 4 bits of the byte stored at this address are
used to store the color code; if it is odd, the upper 4 bits are used.

Double-Width Low-Resolution Graphics

The 1/c also supports a special double-width low-resolution graphics mode
that is not available on the earlier Apple II and Apple II Plus models. It is
available as an option on the Apple //e but the big difference is that the
Applesoft low-resolution graphics commands have been modified on the 1/c
so that they will support this new mode. With the 1/e you have to write your
own graphics commands before you can efficiently use this mode.

Unlike standard low-resolution graphics, only one page of double-width
graphics is available. Just as for 80-column text mode, the PAGE2 switches
normally used to flip between display pages are instead used to select whether
the part of the double-width graphics video page within main memory or
auxiliary memory is to be used.

Turning on Double-Width Low-Resolution Graphics

The double-width low-resolution graphics can be displayed by first setting
the TEXTOFF ($C050) soft switch to select a graphics mode, HIRESOFF

--- 7 I Character and Graphic Output and Video Display Modes CJ 211

Table 7-16. Low-resolution graphics color codes.

Color Code

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F

Color

Black
Magenta
Dark blue
Purple
Dark green
Grayl
Medium blue
Light blue
Brown
Orange
Gray2
Pink
Light green
Yellow
Aquamarine
White

Note: these codes relate to bytes in main memory only (see Table 7-17 for the corre
sponding codes for bytes in auxiliary memory when using double-width low-resolution
graphics).

($C056) to select low-resolution graphics, and either MIXEDOFF ($C052) to
select full-screen graphics or MIXEDON ($C053) to select 40lines of graphics
with 4 lines of text. This can be done by executing the following assembly
language instructions:

STA $CIIJ51/J
STA $CI/J56
STA $CIIJ52 <or STA $CIIJ53)

If you do this while you are in standard 40-column mode, the normal-width
low-resolution graphics screen will be displayed. To enable the double-width
graphics, three further soft switches must be set: 80COLON ($C00D), IOU
DISON ($C07E), and DHIRESON ($C05E). As we saw when discussing 80-
column text mode, the 80COLON switch is used to turn on the double-width
display mode. The IOUDISON switch simply enables access to the DHIRE
SON switch. (As we will see in Chapter 10, the I/0 locations used by the
DHIRES switches are used by some mouse switches as well; the IOUDIS
switch is used to select which switches are to be active.) The DHIRESON
switch allows you to turn on the double-width graphics support circuitry. (It
can be turned off by writing to IOUDISON ($C07E) and DHIRESOFF ($C05F).)
To perform these steps from an assembly-language program, you would use
the following three instructions:

212 c:=J lnsidetheApple//c ---------------

STA $C00D
STA $C07E
STA $C05E
An easier way to turn on the double low-resolution graphics screen is to

use standard Applesoft commands. To throw the same series of switches that
we have just outlined from Applesoft, you would use this program segment:

100 PRINT CHRH4>;"PR#3": REM This 5ets 80COLON
200 POKE 49278,0: REM Enable acce5s to DHIRES switch
300 POKE 49246,0: REM Access DHIRESON
400 GR : REM This sets low-res graphics switches
Once you have turned on double-width low-resolution graphics in this way,

you can use the Applesoft graphics commands to draw on the screen. For
example, to put a white border around the screen, execute the following
program lines:

500 COLOR= 15: REM Select white blocks
600 HLIN 0,79 AT 0: VLIN 0,39 AT 79: REM Top, Right
700 HLIN 0,79 AT 39: VLIN 0,39 AT 0: REM Bottom, Left

Double-Width Low-Resolution Graphics Screen
Memory Mapping

The //c displays double-width low-resolution graphics in much the same
way that it displays its 80-column text screen. That is, the region of memory
from $400 ... $7FF that resides on the 80-column text card (auxiliary mem
ory) is interleaved with the same region of memory on the motherboard (main
memory). For a given low-resolution graphics screen line, all even locations
are mapped to locations in auxiliary memory and all odd locations are mapped
to locations in main memory. This mapping scheme is described in Table 7-15.

You can select which area of screen memory is to be accessed by first
ensuring that the 80STORE switch is on (by writing to location $C001). This
allows the PAGE2 switches to be used to select between main and auxiliary
memory rather than pagel and page2 of graphics. PAGE20FF ($C054) is used
to select main memory and PAGE20N ($C055) is used to select auxiliary
memory. As you can see, writing to the double-width low-resolution graphics
screen is done in exactly the same way as writing to the 80-column text screen.
After accessing auxiliary memory in this way, you should always turn off
PAGE2 by accessing PAGE20FF ($C054).

Note that there is a second page of double-width low-resolution graphics
that occupies $800 ... $BFF in main and auxiliary memory. It can be selected
by setting 80STOREOFF, 80COLON, and PAGE20N

Double-Width Low-Resolution Graphics Colors
Because of timing differences in interpreting auxiliary memory, the color

codes stored in auxiliary memory to set the color of the low-resolution graph-

---- 7 I Character and Graphic Output and Video Display Modes c=J 213

ics blocks are different from the standard ones set out in Table 7-16. These
new color codes are set out in Table 7-17 in the standard color order of Table
7-16.

Table 7-17. Low-resolution graphics color codes for auxiliary
memory locations.

Color Code

$00
$08
$01
$09
$02
$0A
$03
$0B
$04
$0C
$05
$0D
$06
$0E
$07
$0F

Color

Black
Magenta
Dark blue
Purple
Dark green
Gray1
Medium blue
Light blue
Brown
Orange
Gray2
Pink
Light green
Yellow
Aquamarine
White

Built-In Support for Low-Resolution Graphics

The easiest way to manipulate the standard low-resolution graphics screen
is to use the Applesoft commands designed for this purpose. These commands
are briefly summarized in Table 7-18. These commands will work with both
the single- and double-width low-resolution graphics modes.

Table 7-18. Applesoft low-resolution graphics commands.

Command

GR

COLOR=

PLOT

HUN

VLIN

SCRN

Description

Turns on page1 of low-resolution graphics in mixed mode and
clears the display.

Selects a low-resolution color number.

Plots a block on the screen.

Draws a horizontal line on the screen.

Draws a vertical line on the screen.

Gets the color code at a given screen position.

214 [==:J lnsidetheApplel/c -----------------

Support for low-resolution graphics is also afforded by a series of subrou
tines contained within the lie's system monitor. These subroutines are described
in Table 7-20 and the zero page locations that they use are set out in Table 7-
19. Note that some zero page locations must be properly set up before calling
these subroutines. In particular, COLOR ($30) must contain the desired 4-bit
color code (in both halves of the byte), H2 ($2C) must contain the destination
location of a horizontal line before HLINE ($F819) is called, and V2 ($2D)
must contain the destination location of a vertical line before VLINE ($F828)
is called. Note, however, that these subroutines do not work properly when
the double-width low-resolution graphics mode is enabled. Refer to Rob
Moore's article entitled "80-Column lie Low-Res Graphics" (noted in the
references at the end of this chapter) for examples of assembly-language
subroutines that do support the double-width mode.

Table 7-19. Zero page locations used by low-resolution graphics
subroutines.

Address
Hex (Dec)

$26 (38)

$27 (39)

$2C (44)

$2D (45)

$2E (46)

$30 (48)

Symbolic Name

GBASL

GBASH

H2

V2

MASK

COLOR

Description

Low byte of graphics screen line base
address.

High byte of graphics screen line base
address.

Horizontal destination location for
drawing a horizontal line.

Vertical destination location for
drawing a vertical line.

Contains $F0 or $0F and is used to
clear out the proper 4-bit area before
setting the color for a low-resolution
block.

Contains the color code for the low
resolution block in the upper 4 bits
and the lower 4 bits.

High-Resolution Graphics Mode

Of the two main graphics modes that the lie supports, high-resolution
graphics mode is probably the most useful and exciting. This is because, as
the name of this mode suggests, the points that can be plotted on the screen
(called "pixels", for picture elements) are much smaller than low-resolution
graphics blocks, thus allowing you to draw much finer shapes. This allows

7 I Character and Graphic Output and Video Display Modes c::=J 215

Table 7-20. System monitor low-resolution graphics subroutines.

Address
Hex (Dec) Symbolic Name Description

$F800 (63488) PLOT Plot a block using the current color
at the position given by A (verti-
cal) andY (horizontal).

$F819 (63513) HLINE Draw a horizontal line beginning
from the position given by A (ver-
tical) andY (horizontal). The end-
ing horizontal position is stored
at H2 ($2C).

$F828 (63528) VLINE Draw a vertical line beginning
from the position given by A (ver-
tical) andY (horizontal). The end-
ing vertical position is stored at
V2 ($2D).

$F832 (63588) CLRSCR Clear the full low-resolution
graphics screen to black.

$F836 (63542) CLRTOP Clear the top 40 lines of the low-
resolution graphics screen to
black.

$F847 (63559) GBASCALC Put the base address for the line
number contained in the accu-
mulator (0 ... 47) into GBASL
($26) and GBASH ($27).

$F864 (63558) SETCOL Set up the color mask at location
COLOR ($30). On entry, A con-
tains the color code (0 ... 15).

$F871 (63601) SCRN Determine the color code stored
at the location given by A (verti-
cal) andY (horizontal).

you not only to place easily recognizable images on the screen but also to
place more images on the screen. No wonder that virtually all popular games
now being released for the //c use high-resolution graphics.

Turning on the High-Resolution Graphics Display

The //c supports two pages of high-resolution graphics, each of which are
defined by a block of 8192 bytes. Pagel of high-resolution graphics is mapped
to the area from $2000 ... $3FFF and page2 is mapped to $4000 ... $5FFF.

216 c=J lnsidetheApple//c ----------------

The dimensions of the full-size high-resolution screens are 280 pixels wide
by 192 pixels high. A mixed mode can also be defined, however, where the
bottom 32 lines of pixels are replaced by 4lines of text so that the dimensions
of the graphics screens become 280x160. Numbering of both the pixel rows
and the pixel columns begin at 0 and the (0,0) position is at the top left-hand
corner of the screen.

Each pixel on the display screen is controlled by one bit of a byte in the 8K
area associated with that screen and can be made to appear as one of eight
colors, with some restrictions. If that bit is off, then a black dot will be
displayed on the screen; if it is on, one of the five other colors (white, green,
violet, orange, or blue) will be displayed. The two other colors are a duplicate
white and black. We'll take a closer look at how to generate colored images
later in this chapter.

You can quickly turn on the two high-resolution screens from Applesoft by
using the HGR and HGR2 commands. HGR turns on mixed-mode page1 high
resolution graphics, and HGR2 turns on full-screen page2 high-resolution
graphics. Let's take a closer look at how the lie's video soft switches can be
used directly to select the various high-resolution graphics display modes.

To turn on either page of standard high-resolution graphics, you must first
ensure that the PAGE2 switches (PAGE20FF and PAGE20N) can be used to
select which of the two graphics pages is to be used rather than to select
whether main memory or auxiliary memory is to be used. This can be done
by writing to 80STOREOFF ($C000). (To ensure that double-width high
resolution graphics are not accidentally enabled, you should also write to
IOUDISON ($C07E) and DHIRESOFF ($C0SF). As we shall see in the next
section on double-width high-resolution graphics, this will disable the cir
cuitry that enables this special graphics mode.)

The high-resolution graphics displays are turned on in much the same way
as the low-resolution displays. In fact, the only difference is that the HIRES ON
($C057) soft switch must be accessed instead of the HIRESOFF ($C056) soft
switch. To turn on page1, read from or write to the following locations (with
80S TORE in the off position):

TEXTOFF ($C050)-selects a graphics mode
HIRESON ($C057)-selects high-resolution graphics
PAGE20FF ($C054)-selects page1

To turn on page2, simply access PAGE20N ($C055) instead of PAGE20FF.

You can also control whether full screen graphics are to be displayed or
whether four lines of text are to appear at the bottom of the screen instead of
the last 32 lines of the graphics page. The switches to use to control these two
options are MIXEDON ($C053), which selects the graphics-text combination,
and MIXEDOFF ($C052), which selects full-screen graphics.

Table 7-21 summarizes the switches that must be set to select each of the
four possible combinations of high-resolution display modes.

--- 7 I Character and Graphic Output and Video Display Modes CJ 217

Table 7-21. High-resolution graphics display modes.

Pagel of High-Resolution
Graphics (full-screen mode)

TEXT OFF
HIRES ON
MIXED OFF
PAGE20FF

($C050)
($C057)
($C052)
($C054)

Pagel of High-Resolution
Graphics (mixed mode)

TEXTOFF
HIRES ON
MIXED ON
PAGE20FF

($C050)
($C057)
($C053)
($C054)

Page2 of High-Resolution
Graphics (full-screen mode)

TEXT OFF
HIRES ON
MIXED OFF
PAGE20N

($C050)
($C057)
($C052)
($C055)

Page2 of High-Resolution
Graphics (mixed mode)

TEXTOFF
HIRES ON
MIXEDON
PAGE20N

($C050)
($C057)
($C053)
($C055)

High-Resolution Graphics Screen Memory Mapping

The //c uses 40 consecutive bytes in the applicable high-resolution screen
video RAM memory area ($2000 ... $3FFF, page1, or $4000 ... $5FFF, page2)
to define the contents of each 280-pixel graphics line. The most-significant bit
of each of these bytes, however, is not used for display purposes (it is used to
select which of two sets of four colors can be displayed). Each of the 40x7 = 280
active bits in these 40 bytes corresponds to a unique column position. The
seven pixels corresponding to each byte in memory are displayed on the screen
in reverse order of their positions within the byte. That is, the first pixel
displayed on the screen (the one farthest to the left) corresponds to bit 0, the
next one corresponds to bit 1, and so on. If a bit is set to "1 ", then the pixel
will be illuminated; if it is cleared to "0", it will be turned off.

As with the text screen, the high-resolution pagel and page2 memory areas
are not mapped linearly to the video screen. To determine the memory address
corresponding to a particular pixel, it is first necessary to calculate the base
address for the line in which it appears. Reverting to binary notation for a
moment, if the line number (0 ... 191) is given by

abcdefgh

(where a ... h represent values of bits 7 ... 0, respectively), then the base
address for that line is given by the two bytes

0ppfghcd eabab000

where

pp 01 for page1
pp = 10 for page2

218 c:=J lnsidetheApple//c ----------------

The base addresses for each line of the high-resolution display are set out
in Table 7-22. To convert these addresses to the corresponding page2 addresses,
add $2000 (8192).

Table 7-22. High-resolution graphics video RAM screen addresses.

Line Number Base Address Line Number Base Address

0-7 $2000 + $400xRLN 96-103 $2228 + $400xRLN
8-15 $2080 + $400xRLN 104-111 $23A8 + $400xRLN
16-23 $2100 + $400xRLN 112-119 $2328 + $400xRLN
24-31 $2180 + $400xRLN 120-127 $23A8 + $400xRLN
32-39 $2200 + $400xRLN 128-135 $2050 + $400xRLN
40-47 $2280 + $400xRLN 136-143 $20D0 + $400xRLN
48-55 $2300 + $400xRLN 144-151 $2150 + $400xRLN
56-63 $2380 + $400xRLN 152-159 $21 D0 + $400xRLN
64-71 $2028 + $400xRLN 160-167 $2250 + $400xRLN
72-79 $20A8 + $400xRLN 168-175 $22D0 + $400xRLN
80-87 $2128 + $400xRLN 176-183 $2350 + $400xRLN
88-95 $22A8 + $400xRLN 184-191 $23D0 + $400xRLN

RLN = relative line number. This number is equal to the actual line number minus
the first line number in the group of eight within which it falls in the above table. For
example, RLN for line #83 is 3 (83-80).

(a) STANDARD HIGH-RESOLUTION GRAPHICS (columns 0 ... 279). The address
of the byte corresponding to a pixel position is equal to the base address for the
line plus the horizontal pixel position divided by 7. The bit position within this
byte corresponding to the pixel is the horizontal pixel position modulo 7.

(b) DOUBLE-WIDTH HIGH-RESOLUTION GRAPHICS (columns 0 ... 559). The address
of the byte corresponding to a pixel position is equal to the base address for the
line plus the horizontal pixel position divided by 14. If the horizontal pixel position
modulo 14 is between 0-6, this address in auxiliary memory is used; if it is between
7-13, this address in main memory is used. The bit position within the byte
corresponding to the pixel is the horizontal pixel position modulo 7.

The byte position number (0 ... 39) for a particular pixel column (remem
ber that 7 columns are defined by one byte) is given by the quotient of

X/7

where X is the column number (0 ... 279). To access this byte, the 65C02
indirect-indexed addressing mode, "(zp),Y", can be used ("zp" refers to any
zero page location that contains the low half of the base address for the line;
zp + 1 contains the high half). The bit number within this byte that is mapped
to the column is given by the remainder generated by the X/7 calculation
(that is, X modulo 7). This is the bit that can be set to 1 to illuminate a pixel
on the screen or cleared to 0 to turn it off.

--- 7 I Character and Graphic Output and Video Display Modes c::=J 219

High-Resolution Graphics Colors

Pixels on the high-resolution graphics screen can be one of eight colors:
black1, black2, white1, white2, green, orange, violet, and blue. These are the
eight colors that can be set using the Applesoft HCOLOR = command. Because
of the way the high-resolution graphics circuitry works on the //c, however,
you cannot display all colors at all positions on the high-resolution screen.
For example, green and orange pixels can appear only in odd-numbered
columns, and violet and blue pixels can appear only in even-numbered col
umns. In addition, in some circumstances that we will refer to in a moment,
you cannot display blue and orange pixels close to green and violet pixels,
and vice versa.

If you are plotting points in a particular color, you must ensure that, even
if a particular column is selected, you do not illuminate pixels in that column
if it is a restricted column for that color, or else the color will be wrong. This
is handled automatically by the Applesoft high-resolution graphics com
mands and can be done from assembly language by logically ANDing the byte
that is to be stored in the video page with the appropriate color mask. This
mask will ensure that no "1 "s can appear in restricted columns. Table 7-23
sets out the column restrictions and color masks for each of the eight allowed
high-resolution graphics colors.

Table 7-23. High-resolution screen display information.

Value of
Applesoft High-Order Bit Display Byte Mask Column

Color HCOLOR= of Display Byte Even Byte Odd Byte Restr.

Black1 0 0 $00 $00 None
Green 1 0 $2A $55 Odd only
Violet 2 0 $55 $2A Even only
White1 3 0 $7F $7F None
Black2 4 1 $80 $80 None
Orange 5 1 $AA $05 Odd only
Blue 6 1 $05 $AA Even only
White2 7 1 $FF $FF None

Not all colors can be used at the same time. The most- significant bit of the
byte that defines the pixel must be cleared to 0 in order to have a I 1 I in the
byte displayed as green/violet or set to 1 to have it displayed as orange/blue
(for an odd/even column). A side effect of this phenomenon is that it is not
possible to generate green and violet pixels if they are defined by bits in the
same byte as orange and blue pixels.

220 c=J Inside the Apple //c -----------------

To get white displayed on the screen, two horizontally adjacent pixels on
the screen must be set to 1. If this is done, then both pixels will be displayed
as white. Note that there are two different types of white, white1 and white2.
The only difference between these two colors is the status of the high-order
bit within the byte that defines the two adjacent pixels. Note, also, that it is
not possible to get a single white dot surrounded by black because an isolated
'1' bit will be interpreted as either green/violet or orange/blue.

In summary, the standard high-resolution screen looks at each horizontally
adjacent pair of bits to determine which of four colors is to be displayed:
black1 (00), white1 (11), green (01),or violet (10), if bit 7 in the byte in which
they are contained is off; or black2 (00), white2 (11), orange (01), or blue (10),
if bit 7 is on.

It should now be clear that because of the column restrictions on colors
other than black and white, the effective screen resolution is only 140x192 for
color graphics even though it is possible to control the states of all 280
horizontal pixels individually.

Animation with High-Resolution Graphics

One of the main reasons for including two high-resolution graphics pages
on the //c was to allow you to generate high-quality animation effects. Ani
mation is typically simulated on a computer by first drawing a shape, pausing,
erasing the original shape, and then redrawing it at its new position. By
repeating this procedure, the effect of motion is created.

If this procedure is used in connection with one display screen only, then
the problem of "flickering" can arise and the first shape will not appear to
change smoothly into the next. This effect is observed because the screen is
continually being "redrawn" by the electronic circuitry within the video
display unit before the first shape has been completely erased and redrawn.
If the shape is complex enough, a partially erased or partially redrawn shape
will be displayed for discernible periods of time.

One way of getting around this problem is to draw the next shape in an
animation sequence on the graphics page that is not being displayed and
then, after it has been so drawn, to throw the switch that activates that page
of graphics. Then, while that page is being displayed, the shape on the other
page can be erased and repositioned, and then that page can be displayed
again. The net effect is that all erasing and redrawing is done on the screen
that is not being displayed and so flickering will be eliminated. If Applesoft
graphics commands are being used, the page that is being written to can be
controlled simply by adjusting the value of the byte located at $E6. To write
to page1, this byte must be set equal to $20; to write to page2, it must be set
equal to $40.

One problem with using the two pages of high-resolution graphics in this
way, however, is that another 8K of memory must be devoted for use by the

--- 7 I Character and Graphic Output and Video Display Modes c=J 221

display screen and is unavailable for use by the program. For larger programs,
this can be a major limitation indeed.

Fortunately, there is an alternative method that can be used to achieve
flicker-free animation: moving a shape while the video display unit is not
actually refreshing the screen. This method can be used on the //c and //e only
and not on the earlier Apple II and Apple II Plus models.

The video display unit is continually "refreshing" the screen by redrawing
all the scan lines that define the display screen. It does this by moving an
electron beam in a zig-zag motion across the display screen from top to
bottom. After all of the video scan lines have regenerated in this way, there
is a synchronization delay during which the electron beam is repositioned to
the upper left-hand corner of the screen awaiting the arrival of the next video
frame. This delay occurs every 1/60 of a second.

The delay between the end of one zig-zag scan and the beginning of the next
one is called the vertical blanking interval, and during this time the screen
display is not being altered in any way. Thus, if during this vertical blanking
interval we could change the data bytes that define the screen display image
in such a way as to cause the shape being animated to be erased and reposi
tioned, there would be no discernible flickering.

Well, we can! It is possible, under software control, to enable a special
vertical blanking (VBL) interrupt signal, that will interrupt the 65C02 at the
beginning of every vertical retrace operation (that is, 60 times per second). If
your interrupt- handling subroutine is properly set up, you can use it to erase
and redraw your animated shape before the retracing operation ends (it lasts
for about 12,000 machine cycles) so that there will be no flickering.

We'll defer a complete discussion of how to activate the VBL interrupt to
Chapter 10 where we'll also discuss how it is used in connection with the
Apple Mouse.

Double-Width High-Resolution Graphics

The //c also supports an impressive double-width high-resolution graphics
display mode. When it is used, the other "half" of the double-width graphics
screen is stored in auxiliary memory. Unlike the double-width low-resolution
graphics mode, however, neither Applesoft nor the system monitor contains
any commands or subroutines that allow you to use this mode directly.
Programs are available, however, that will allow you to take advantage of the
power of this graphics mode; some of them are listed in the references at the
end of this chapter.

The double-width high-resolution graphics mode has a pixel resolution of
560x192, rather than the standard 280x192, and allows a total of sixteen
colors! These colors are the same ones that can be displayed when using
standard low-resolution graphics.

222 C=:J Inside the Apple //c ----------------

Turning on Double-Width High-Resolution Graphics

It is relatively simple to activate the double-width high-resolution graphics
mode. The first step is to turn on pagel of high-resolution graphics mode as
you would normally. This can be done by executing the following sequence
of instructions:

STA $C050-TEXTOFF (enables graphics)
STA $C057-HIRESON (high-resolution)
STA $C053-MIXEDON (mixed graphics/text)

The next step is to enable the double-width mode by setting the 80COLON
($C00D), IOUDISON ($C07E), and DHIRESON ($C05E) switches to enable
the double-width graphics circuitry. You can set these switches by executing
these three instructions:

STA $C00D-80COLON (sets double-width switch)
STA $C07E-IOUDISON (enables access to DHIRES switch)
STA $C05E-DHIRESON (enables double-width graphics)

You can also turn on the same series of switches from Applesoft by running
the following program:

190 PRINT CHR$C4);"PR#3": REM THIS SETS 80COLON
200 POKE 49278,0: REM ENABLE ACCESS TO DHIRES SWITCH
300 POKE 49246,0: REM ACCESS DHIRESON
400 HGR : REM THIS SETS HIGH-RES GRAPHICS SWITCHES

Once the double-width-graphics screen has been activated, the next step is
to draw something on it. This is easier said than done, however, because the
Applesoft high-resolution graphics commands work only with the standard
280-column screen. If you attempt to use them, you will see rather strange
effects, since only the screen area in main memory will be used. For example,
try entering the Applesoft commands

HCOLOR=3
HPLOT 0,0 TO 279,0

If you were to do this for normal-width high-resolution graphics you would
see a horizontal white line drawn across the top of the screen. With double
width graphics enabled, however, the white line is "broken" at forty different
positions. The data bytes for these positions are contained in auxiliary mem
ory and are not dealt with by Applesoft.

See the references at the end of this chapter for sources of programs that
support double-width high-resolution graphics.

Double-Width High-Resolution Graphics Screen Memory
Mapping

You will recall that when the //cis displaying double-width text (that is, 80
columns of text) or double-width low-resolution graphics, it interleaves the

--- 7 I Character and Graphic Output and Video Display Modes c::=J 223

video RAM bytes in main memory with those contained at the same addresses
in auxiliary memory. Well, double-width high-resolution graphics works in
exactly the same way. The region of memory from $2000 ... $3FFF in main
memory is interleaved with an 8K block of memory having the same addresses
on the extended 80-column text card in such a way that of the 80 consecutive
bytes used to define the contents of one line (recall that only 40 were required
for standard high-resolution graphics), the even ones (0, 2, 4, ... ,78) are found
in auxiliary memory and the odd ones in main memory. The mapping scheme
used is summarized in Table 7-22.

Just as in standard high-resolution graphics mode, each of the. 80 bytes
corresponds to seven consecutive pixels on the screen. The first pixel is con
trolled by bit 0, the next one by bit 1, and so on. Bit 7 is no~t used.

The 80STORE switch enables you to select which of the two $2000 ... $3FFF
blocks you want to read from or write to. By setting 80STOREON (by writing
to location $C001), the PAGE2 switches can be used to select either the 8K
block in main memory, by accessing PAGE20FF ($C054), or the 8K block in
auxiliary memory, by accessing PAGE20N ($C055). After you have written to
screen memory, you should always access PAGE20FF ($C054) tore-enable
main video memory.

Note that there is a second page of double~width high-resolution graphics
that occupies $4000 ... $5FFF in main and auxiliary memory. It can be selected
by setting 80STOREOFF, 80COLON, and PAGE20N ..

Double-Width High-Resolution Graphics Colors
When we discussed normal high-resolution graphics, we saw how the llc

interprets two adjacent pixels as one of four colors. Not surprisingly, when
double-width graphics are used, the llc interprets four adjacent pixels as one
of sixteen different colors (2 "4 = 16). The 4-bit pixel patterns that give rise to
these colors are set out in Table 7-24. Since pixels are displayed on the video
screen in the reverse order that they appear in the video RAM data bytes,
these patterns must be reversed to obtain the con::esponding bit patterns that
must be stored in memory to generate them. ·

Note that the high bit of each of the 80 bytes that is used to store information
for each line of double-width graphics is not used at all-not even to affect
the colors generated by the bits within that byte (as it is in normal high
resolution graphics).

Built-In Support for High-Resolution Graphics
Applesoft contains several commands that are used to control various aspects

of the two standard high-resolution graphics screens. These commands are
summarized in Table 7-25.

The lie's system monitor does not support high-resolution graphics at all.
The Applesoft ROM does, however, contain several built-in subroutines that
can be used from an assembly-language program in order to draw points,

224 c=:J Inside the Apple //c -----------------

Table 7-24. Bit patterns for the sixteen double-width high-resolution
graphics colors.

Color

Black
Dark red
Dark blue
Purple
Dark green
Gray1
Medium blue
Light blue
Brown
Orange
Gray2
Pink
Green
Yellow
Light green
White

Bit Pattern

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Table 7-25. Applesoft high-resolution graphics commands.

Command

HGR

HGR2

HCOLOR=

HPLOT

DRAW

XDRAW

ROT=

SCALE=

Description

Turns on page1 of high-resolution graphics in mixed mode
and clears the screen.

Turns on page2 of high-resolution graphics in full-screen
mode and clears the screen.

Selects the high-resolution color number.

Plots pixels and draws lines on the screen.

Draws a shape on the screen in the color set by HCOLOR =.

Draws a shape on the screen using the complement of the
color already existing at each plotted point.

Sets the rotation factor used when drawing shapes.

Sets the scale factor used when drawing shapes.

lines, and shapes. These subroutines are set out in Table 7-27 and the zero
page locations that they use are set out in Table 7-26.

Note that these commands and subroutines do not support double-width
high-resolution graphics at all.

--- 7 I Character and Graphic Output and Video Display Modes CJ 225

Table 7-26. Zero page locations used by the Applesoft high
resolution graphics subroutines.

Address
Hex (Dec) Symbolic Name Description

$E0 (224) HHORIZ (low) Horizontal coordinate (0 ... 279).
$E1 (225) (high)

$E2 (226) HVERT Vertical coordinate (0 ... 191).

$E4 (228) HMASK High-resolution color mask.

$E6 (230) HPAG High-resolution page designation~
Set tliis byte to $20 for page 1 and
to $40 for page2.

$E7 (231) SCALE Applesoft SCALE= factor for
shapes.

$F9 (249) ROT Applesoft ROT= factor for shapes.

Further Reading for Chapter 7

Standard reference works ...

80-Column Text Card Manual, Apple Comptiter, Inc., 1982.

Extended 80-Column Text Card Supplement, Apple Computer, Inc., 1982.

Note: the above two reference manuals are written for' the optional 80-
column text card used on the Apple //e only. However, much of the
information in them is directly applicable to the built-in 80-column dis
play on the //c as well.

On changing the output link ...

G. Little, "Paged Printer Output for the Apple", Micro, October 1980, pp.
47-48. This article demonstrates how to change the output link so that
the format of printed output can be controlled.

On ProDOS and the output link .•.

C. Fretwell, "Setting 1/0 Hooks in ProDOS", Call -A.P.P.L.E., April 1984,
p.39

On high-resolution graphics ...

B. Bishop, "Apple II Hires Picture Compression", Micro, November 1979,
p. 17.

226 c=J Inside the Apple //c ----------------

L. Spurlock, "Understanding Hi-Res Graphics", Call -A.P.P.L.E., January
1980, p. 6. An analysis of the high-resolution mapping scheme.

B. Bishop, "Apple II Hi-Res Graphics: Resolving the Resolution Myth",
Apple Orchard, Fall1980, pp. 7-10. Discussion of the mapping of the high
resolution graphics screen.

E.C. So, "Picture Compression", Call-A.P.P.L.E., May 1982, p. 21.

R.T. Simoni, Jr., "A New Shape Subroutine for the Apple", Byte, August
1983, pp. 292-309. A new method for drawing high-resolution shapes that
leads to flicker-free animation.

On double-width graphics ...

R. Moore, "80-Column lie Low-Res Graphics", Call-A.P.P.L.E., July 1983,
pp. 9-13. A set of subroutines supporting double-width low-resolution
graphics is presented in this article.

D. Worth, "Hi-Res Double Play", Softalk, July 1983, pp. 120-126. A descrip
tion of the Apple lie's double-width high-resolution graphics. It is appli
cable to the llc as well.

P. Baum and L. Roddenberry, "Applesoft Brushes for Double Hi-Res Art",
Softalk, September 1983, pp. 82-99. Programs are presented that support
double-width high-resolution graphics.

A. Watson III, "True Sixteen-Color Hi-Res", Apple Orchard, January 1984,
pp. 26-46. An excellent discussion of the theory of double-width high
resolution graphics. A set of assembly-language driver programs are also
presented which can be called from Applesoft.

Extended 80-Column Text Card Supplement, Apple Computer, Inc., 1982.

R.R. Devine, "Double Hi-Res Graphics I", Nibble, May 1984, pp. 81-96.
Another detailed discussion of the double-width display mode.

R.R. Devine, "Double Hi-Res Graphics II", Nibble, August 1984, pp. 122-
129.

R.R. Devine, "Double Hi-Res Graphics III", Nibble, September 1984, pp.
139-144.

On video display theory ...

J. Hockenhull, "Video Interfacing", Call-A.P.P.L.E., June 1982, pp. 9-13. A
good discussion of the theory of video display technology.

J. Mazur, "Hardtalk", Softalk, April1983, pp. 215-225. A technical analysis
of the Apple II video display system.

J. Mazur, "Hardtalk", Softalk, May 1983, pp. 91-98. A technical analysis of
the Apple II video display system.

R.H. Sturges, Jr., "Double the Apple II's Color Choices", Byte, November
1983, pp. 449-463. A good explanation of how the Apple II generates
colored images.

7 I Character and Graphic Output and Video Display Modes CJ 227

Table 7-27. Applesoft ROM high-resolution graphics subroutines.

Address
Hex (Dec) Symbolic Name Description

$F3D8 (62424) HGR2 Turns on high-resolution page2
(full-screen) and clears it to black.

$F3E2 (62434) HGR Turns on high-resolution pagel
(with 4 lines of text) and clears
it to black.

$F457 (62551) HPLOT Plots a colored dot at the posi-
tion given by A (vertical), Y (hor-
izontal high) and X (horizontal
low).

$F53A (62778) HUN Draws a line from the last plot-
ted dot to the position given by
Y (vertical), X (horizontal high),
and A (horizontal low).

$F601 (62977) DRAW Draws the shape whose data area
is pointed to by Y (high) and X
(low) using the rotation factor in
A. The shape is drawn by invert-
ing the existing screen bits that
are used by the shape.

$F65D (63069) XDRAW Same as DRAW except that when
the shape is plotted, the existing
screen bits and the shape bits
are logically exclusive-ORed with
each other to determine the new
value of the screen bit.

$F6EC (63212) SETH COL Sets the active code to the value
of :X:, (0 ... 7). These are the eight
colors defined by the Applesoft
HCOLOR = command.

8
Memory Management

As we saw in Chapter 2, the 65C02 microprocessor that controls the //cis
capable of addressing only 65536 (64K) different logical memory locations.
These locations have addresses that range from $0000 to $FFFF. A standard
//c, however, contains many more physical memory locations than this.

A detailed memory map of the //c was presented at the end of Chapter 2. In
summary, the memory that is built-in to the //cis as follows:

• 64 K of main RAM memory

• 1 0K of ROM memory for Applesoft

• 2K of ROM memory for the standard system monitor

• 0.25K of 1/0 memory

• 3.75K of ROM memory that contains extensions to the standard system
monitor and support for built-in peripheral devices (two serial ports,
mouse port, disk drive, and 80-column display)

• 64K of auxiliary RAM memory (lK of which is used by the 80-column
display circuitry)

If you add up all the numbers, the total comes to 144K. This may seem a
bit surprising since we just said that the //c's 65C02 microprocessor is capable
of addressing only 64K locations. How is all that extra memory used? To
answer this, you must realize that the 65C02 can use as much memory as you
care to provide to it so long as there are never more than 64K physical memory
locations active at the same time and so long as no two active memory
locations are associated with the same address. Several soft switches are
available on the //c that allow you to easily select which one of those duplicated
memory areas is to be active. The technique used to select memory in this
way is called "bank-switching."

In this chapter, we will be looking at the soft switches that the //c uses to
control usage of its duplicated memory areas, and we will show how they can
be used to take advantage of all of the memory available on the //c.

229

230 c:=J Inside the Apple //c -----------------

16K Bank-Switched RAM Areas

The //c comes with 64K of main RAM memory which is normally used by
Applesoft and ProDOS. This memory, however, is not mapped to one contig
uous area of memory encompassing the entire 64K space that the 65C02 is
capable of addressing. The first 48K of this memory space corresponds to the
contiguous block of memory from $0000 ... $BFFF but the remaining 16K of
memory, which is called "bank-switched RAM," corresponds to one 8K region
of memory from $E000 ... $FFFF and two 4K regions of memory from
$D000 ... $DFFF.

The addresses used by bank-switched RAM are exactly the same as those
used by the Applesoft ROM and the standard system monitor ROM. A memory
map of the alternative main memory areas from $D000 ... $FFFF is shown
in Figure 8-1.

$FFFF-------

$F800

$E000 J..----------1

(THERE ARE TWO
$Dx BANKS)

$0000_ __ l __ ___.
MAIN

BANK-SWITCHED
RAM

STANDARD
SYSTEM MONITOR

APPLESOFT
INTERPRETER

t
ROM

Figure 8-1. Alternative main memory areas from $0000 ... $FFFF.

The 16K bank-switched RAM on the //c traces its roots to the earlier Apple
II or Apple II Plus models. On those models, the 16K of bank-switched RAM
was introduced to the system by inserting a special16K memory expansion
card into slot 0 of those systems. The original reason for adding this memory
was to provide needed space for the extremely large Apple Pascal Operating
System. The extra memory, however, can also be used for conventional data
and program storage. In fact, ProDOS occupies much of bank-switched RAM.

The //c reserves several I/0 memory locations for use as soft switches to
control whether bank-switched RAM or the corresponding ROM space is to
be active. As we will see in the following section, we can even set these switches

--------------- 8 I Memory Management c:=J 231

in such a way that the RAM area will be active for write operations at the
same time that the corresponding ROM area is active for read operations, or
so that the RAM area can be read from but not written to.

Using Bank-Switched RAM

As we have seen, the 16K of bank-switched main RAM in the //cis made up
of one 8K area that is mapped to the addresses $E000 ... $FFFF and two
different 4K areas that are mapped to the addresses $D000 ... $DFFF. These
4K areas are commonly referred to as "banks."

Unfortunately, there are two schools of thought on how to refer to these
two 4K memory banks: sometimes they are referred to as banks 0 and 1 and
sometimes as banks 1 and 2. For our purposes, we will use the latter nomen-
clature. ·

The sixteen 110 addresses in the range $C080 $C08F are used as soft
switches to control the operation of the bank-switched RAM. Switches are
available to select which of the two 4K banks is to be used, to enable the
bank-switched RAM for reading, for writing, or for both reading and writing.
Note that the bank-switched RAM does not have to be enabled for reading
and writing at the same time. This means that you can be writing to the RAM
area while running a program that uses subroutines in the ROM that occupies
the same memory locations (that is, subroutines in Applesoft and the system
monitor).

To activate the particular mode of operation that is desired, it is necessary
to select the appropriate soft switch address and then perform any kind of
read operation at that address, for example, an LDA, LDY, LDX, or BIT
instruction in assembly language or a PEEK from Applesoft.

The addresses that are to be used to control the operation of bank-switched
RAM are of the form $C08X, where X represents the four least-significant bits
of the address. Figure 8-2 indicates the general function of each of these bits;
only three of these bits are used.

X=

1/0 Address: $C08X

BANK-
SELECT UNUSED

bit 3 bit 2

1 =bank 1

0=bank 2

READ-
SELECT

. bit 1

1
0
1
0

WRITE-
SELECT

bit 0

1
1
0
0

- read RAM/write RAM
-read ROM/write RAM
- read ROM/write ROM
- read RAM/write ROM

Figure 8·2. Bank-switched RAM control bits.

232 [=:J Inside the Apple //c -----------------

The functions of each of the three active bits are as follows:

Bank-Select Bit (bit 3). This bit indicates whichofthe two $D000-$DFFF
memory banks is to be used. If the bit is set to 1, then bank 1 will be selected;
if it is cleared to 0, then bank 2 will be selected.

Read-Select Bit (bit 1). This bit, in conjunction with the write-select
bit, indicates the read status of bank-switched RAM. If the bit is set equal to
the value of the write-select bit, then locations in bank-switched RAM will be
read from when an address in the range $D000 ... $FFFF is specified; other
wise, the corresponding locations in ROM will be used.

Write-Select Bit (bit 0). This bit indicates the write status of bank
switched RAM. If the bit is 1, and the I/0 address is read twice in succession,
then locations in bank-switched RAM will be written to when an address in
the range $D000 ... $FFFF is specified; otherwise, the corresponding loca
tions in ROM will be used.

There are eight different ways of turning on and off these three control bits,
and each of the eight different addresses generated controls bank-switched
RAM in an unique way. The function of each of the eight unique bank-switched
RAM soft switches is summarized in Table 8-1.

Table 8-1. Bank-switched RAM soft switches.

Address Active Read Write
Hex (Dec) Symbolic Name $DxBank From to RAM?

$C080 (49280) READBSR2 2 RAM No
$C081 (49281) WRITEBSR2 2 ROM Yes'~

$C082 (49282) OFFBSR2 2 ROM No
$C083 (49283) RDWRBSR2 2 RAM Yes*
$C088 (49288) READBSR1 1 RAM No
$C089 (49289) WRITEBSR1 1 ROM Yes*
$C08A (49290) OFFBSR1 1 ROM No
$C08B (49291) RDWRBSR1 1 RAM Yes*

A location must be read from to perform the indicated function.

*Read twice in succession to write-enable bank-switched RAM.

Reading the Status of Bank-Switched RAM Soft Switches

Any program that changes the soft switches that control the state of bank
switched RAM should properly restore them to their original states when the
program ends. (If it doesn't, the next program executed may not perform
properly.) This can easily be done on the //c because there are two I/0 status
locations, called RDBANK2 ($C011) and RDLCRAM ($C012), that can be read

--------------- 8 I Memory Management CJ 233

to determine the current state of the bank-switched RAM switches. These two
locations are summarized in Table 8-2.

Table 8-2. Bank-switched RAM status locations.

Address
Hex (Dec)

$C011 (49169)

$C012 (49170)

Symbolic Name

RDBANK2

RDLCRAM

Description

If this location is > = $80, then
Bank2 of bank-switched RAM has
been selected; if not, Bankl has
been selected.

If this location is > = $80, then
bank-switched RAM has been read
enabled; if not, the corresponding
ROM locations are enabled.

A program that saves the two bank-switched RAM status values and then
uses them to restore the original state of bank-switched RAM would look
something like this:

SETROM

SETBANK1

SETROM1

LDA RDBANK2
STA BANKSAVE
LDA RDLCRAM
STA READSAVE

;Save bank status

;Save read-enable status

[the program fiddles with
bank-switched RAM here]

LDA BANKS AVE ;Get bank status
BPL SETBANK1 ;Branch if bank1 selected
LDA READS AVE ;Get read-enable status
BPL SETRDM ;Branch if ROM selected
LDA $Ces3 ;Read RAM, bank2
LDA $Ces3 ; (write-enable)
RTS
LDA $Ces1 ;Read ROM, bank2
LDA $C0S1 ; (write-enable>
RTS
LDA READS AVE ;Get read-enable status
BPL SETROM1 ;Branch if ROM selected
LDA $CeSB ;Read RAM, bank 1
LDA $Cess ; (write-enable)
RTS
LDA $Cess ;Read ROM, bank1
LDA $Cess ; (write-enable>
RTS

234 c=J Inside the Apple //c -----------------

Since there is no status location available for determining the write-enable
status of bank-switched RAM, you always have to "guess" what it was. The
best guess is that it was write-enabled because even if your guess is wrong,
no program should be trying to write to bank-switched RAM without first
write-enabling it anyway. In keeping with this, those soft switches that write
enable bank-switched RAM were used in the above example (remember that
they must be read twice in succession).

Auxiliary Bank-Switched RAM

There is another 16K bank-switched RAM area available in the lie's 64K
auxiliary memory space.

The same soft switches that are used to control the main bank-switched
RAM area are used to control the bank-switched RAM area in auxiliary
memory. Before you can read to or write from this part of auxiliary memory,
however, you will also have to use another set of switches that control, among
other things, which of the two bank-switched RAM areas is to be used. These
switches are ALTZPOFF ($C008) and ALTZPON ($C009) and are described in
Table 8-3. The status of the switch is held in ALTZP ($C016).

Table 8-3. Auxiliary bank-switched RAM soft switches.

Address
Hex (Dec) Symbolic Name Description

$C008 (49160) ALTZPOFF Enable main bank-switched RAM
+ main zero page/stack

$C009 (49161) ALTZPON Enable auxiliary bank-switched
RAM + auxiliary zero page/stack

$C016 (49174) ALTZP Status:>= $80 is ON, <$80 is OFF

The ALTZP switches are used not only to select which of the two bank
switched RAM areas is to be used, but also to select which of two 65C02 zero
pages ($00 ... $FF) and stacks ($100 ... $1FF) are to be used. As you might
expect, the lie keeps its "spare" zero page and stack in auxiliary memory and
the ''original'' ones in main memory. This means that as soon as the AL TZPO N
switch is set, the main zero page and stack are disengaged and unless the
program that is running realizes this and adjusts for it, it might just end up
in the twilight zone.

To avoid such problems, the program must always set ALTZPOFF as soon
as it is finished dealing with auxiliary bank-switched RAM but after it has
returned from all subroutines that it has called since it first set ALTZPON.
The return addresses for these subroutines are stored in the auxiliary stack

--------------- 8/ Memory Management C:=J 235

and not the main stack and will be lost when the main stack is restored. For
similar reasons, the program must never return from a subroutine that was
called before ALTZPON was set until ALTZPOFF is restored. Furthermore,
before setting ALTZPON, the program should move to a safe part of memory
all zero page locations that it will be using while ALTZP is ON. Once ALTZP
is ON, it can move them into the same locations in the auxiliary zero page. It
should repeat this process when going in the other direction (that is, from
ALTZPON to ALTZPOFF) so that no zero page information is lost.

Playing with Bank-Switched RAM

If you want to store information (programs or data) in bank-switched RAM,
then you must first write-enable the portion of bank-switched RAM that you
want to write to, store the information at the desired locations in the
$D000 ... $FFFF address space, and then write-protect bank-switched RAM.
The programming sequence to use to do this would be as follows:

LDA $CQI81

LDA $CQJ81
[store information]
LDA $CQI82

;Two accesses will write
enable

;Bank-switched RAM <bank 2>

;Write-protect and set
ROM read

To read information (programs or data) contained in bank-switched RAM,
or to execute programs that reside there, you must first enable bank-switched
RAM for reading, read the information or execute the program, and then re
enable reading of the ROMs. The programming sequence would be as follows:

LDA $C080

[read information]
LDA $CQI82

;read-enable bank-switched
RAM (bank 2>

;re-enable ROM read

The latter method can be used to execute assembly-language programs
only. The reason that Applesoft programs cannot be made to execute while
residing in bank-switched RAM is that the place where the program is stored
and the Applesoft ROM area must be active at the same time and this just
isn't possible because bank-switched RAM and the Applesoft interpreter use
the same addresses.

Note that if you are running assembly-language programs that reside in
bank-switched RAM, you must make absolutely sure that those programs do
not use subroutines contained in the Applesoft or standard system monitor
ROMs. The reason is simple: as far as the //cis concerned, as soon as you read
enable bank-switched RAM, the //c doesn't think the ROMs exist and so the
system will "hang" when it attempts to execute a ROM subroutine. If you
really must use these ROM subroutines, you must first execute a JSR instruc
tion to a location in normal RAM that contains code that first deselects bank-

236 c:::=J Inside the Apple //c ----------------

switched RAM for reading and selects the ROMs ($C082), calls the ROM
subroutine, and then read-enables bank-switched RAM ($C080) and executes
an RTS instruction to return to the program in bank-switched RAM.

To avoid these software complexities, you could move the ROM code that
you need to use into bank-switched RAM by write-enabling bank-switched
RAM and then performing a memory move from the ROMs to the same
memory locations in bank-switched RAM. When this is done, the program
can call the "pseudo-ROM" locations directly.

You should bear in mind one more important consideration when using
bank-switched RAM. Do not attempt to deselect bank-switched RAM for
reading while running a program that is contained in bank-switched RAM. If
you try to do this, the motherboard ROMs will immediately be enabled and
your program, which is still executing at the same address in RAM, will
suddenly enter limbo because its code has been "replaced" by the internal
ROM code. Any deselection of bank-switched RAM must be done by a program
segment that resides in "normal" RAM (from $0000 ... $BFFF).

Bank-Switched RAM and ProDOS

If you are using ProDOS then you should not try to use the main bank
switched RAM area for data or program storage. The reason for this is simple:
ProDOS uses this area of memory to hold its operating system subroutines.
If you overwrite this area, you will almost certainly crash the system. Use the
bank-switched RAM area in auxiliary memory instead.

Auxiliary RAM Memory Area
"Auxiliary" memory is an extra 64K memory space which is built into the

1/c and is mapped to addresses in exactly the same way as main RAM memory.
As we saw in Chapter 7, lK of auxiliary memory from $400 ... $7FF is used
to support the lie's 80-column display mode and another 8K from
$2000 ... $3FFF is used to support the double-width high-resolution graphics
display mode. In addition, auxiliary memory is used as a special RAMdisk
volume called /RAM when ProDOS is active. In the following sections, we
will be describing in detail how to use auxiliary memory.

There are several soft switches that are used to control auxiliary memory.
We have already discussed some of these in Chapter 7, when we looked at
how to control the 80-column text display and double-width graphics dis
plays. In addition, in the previous section, we saw that the upper 16K of
auxiliary memory is functionally identical to main memory's bank-switched
RAM and can be selected or deselected by making use of the ALTZPON and
ALTZPOFF switches.

--------------- 8/ Memory Management [=:::::J 237

In this section, we will examine all the other soft switches that control
auxiliary memory and elaborate further on the ones that have previously been
discussed.

Using Auxiliary Memory

There are three main groups of switches that control the status of auxiliary
memory. These are the AL TZP switches (' 'ALTernate Zero Page''), the RAMRD
("RAM ReaD") switches, and the RAMWRT ("RAM WRiTe") switches; they
are summarized in Table 8-4.

Table 8-4. Auxiliary memory soft switch and status locations.

Address
Hex (Dec) Symbolic Name Description

$C002 (49154) RAMRDOFF Read main memory from $200-
$BFFF

$C003 (49155) RAMRDON Read aux. memory from $200-
$BFFF

$C013 (49171) RAMRD Status: > = $80 is ON, <$80 is OFF

$C004 (49156) RAMWRTOFF Write main memory from $200-
$BFFF

$C005 (49157) RAMWRTON Write aux. memory from $200-
$BFFF

$C014 (49172) RAMWRT Status:>= $80 is ON, <$80 is OFF

$C008 (49160) ALTZPOFF Select main memory from $0-$1FF
and enable main 16K bank from
$D000-$FFFF

$C009 (49161) ALTZPON Select aux. memory from $0-$1FF
and enable aux. 16K bank from
$D000-$FFFF

$C016 (49174) ALTZP Status:>= $80 is ON, <$80 is OFF

The AL TZP Switch

We briefly discussed ALTZP earlier in this chapter when we looked at the
bank-switched RAM contained in auxiliary memory. The ALTZP switches
control two- blocks of memory that are duplicated in main and auxiliary
memory. First, they are used to select whether the 65C02 zero page and stack
areas ($0000 ... $01FF) in main memory or in auxiliary memory are to be
used. Second, they are used to select whether main bank-switched RAM or
auxiliary bank-switched RAM is to be used.

238 c:=J Inside the Apple //c -----------------

The ALTZPON ($C009) switch is used to select auxiliary memory and the
ALTZPOFF ($C008) switch is used to select main memory. The current status
of this switch can be determined by reading ALTZP ($C016); if the value read
from this location is greater than 127, then ALTZP is ON; otherwise it is OFF.
Note that you must write to the ALTZPON and ALTZPOFF switches in order
to use them. Figure 8-3 indicates which memory areas are switching whenever
the ALTZP switches are written to.

$FFFF

$E000

$0000
$BFFF

$4000

$2000

$0800

$0400
$0200

$0100

$0000

HIGH-RES
PAGE1 RAM

TEXT PAGE1
RAM

II MAIN-AUXILIARY SWITCHING

0 NOT SWITCHING

Figure 8-3. The effect of switching ALTZP.

As was mentioned earlier, great care must be taken when using the ALTZP
switches to ensure that vital zero page and stack information is not "lost."
All65C02 operations that affect the stack (this includes PHA, PLA, PHX, PLX,
PHY, PLY, PHP, PLP, JSR, and RTS instructions) use the stack that is cur
rently selected by ALTZP, which is not necessarily the stack in main memory.

---------------- 8 I Memory Management c:::::J 239

So, if ALTZP is on and information is stored on the stack in auxiliary memory,
don't expect it to be on the stack in main memory when ALTZP is turned off.

Keep in mind that it is extremely important that the value of the 65C02
stack pointer be saved before changing ALTZP and then restored when ALTZP
is changed to its original state. If this is not done and the stack pointer is
changed while in the other state, then the program will become hopelessly
confused and will crash. The following program segment will do the trick:

TSX
STX SAVESP
STA ALTZPON

;Put stack pointer in X
; and save it somewhere in memory
;Turn on ALTZP

[execute instructions]

STA ALTZPOFF
LOX SAVESP
TXS

;Turn off ALTZP
;Get original stack pointer in X
; and restore it

Any zero page locations that need to be used after ALTZP has been changed
will have to be duplicated in the other portion of memory before they can be
properly used. To do this, it is necessary to move the contents of zero page
into a part of memory that the ALTZP switches do not affect, say $200 ... $2FF,
set the appropriate ALTZP switch, and then move this area of memory back
down into the new zero page. This process should be repeated when setting
ALTZP back to its original position.

The RAM RD and RAMWRT Switches

The RAMRD switches are used to control whether read operations are to
use the memory locations from $200 ... $BFFF in main memory or the same
locations in auxiliary memory. The RAMWRT switches control write oper
ations for the same area of memory.

If RAMRDON ($C003) or RAMWRTON ($C005) is selected, and the
80STOREOFF ($C000) switch is active, then the entire block of auxiliary
memory from $200 ... $BFFF will be selected for reading or writing, respec
tively. If RAMRDOFF ($C002) or RAMWRTOFF ($C004) is selected, then main
memory will be selected for reading or writing, respectively, instead. The
memory areas that are switched by RAMRD or RAMWRT in each of three
different situations are summarized in Figure 8-4.

The area of memory that is affected when the RAMRD and RAMWRT
switches are used is slightly different if the switching occurs when 80STOREON
($C001) is active. As you will recall from Chapter 7, the 80STORE switches
are used to define the effect of the lie's PAGE2 switches. If 80STORE is ON,
then PAGE20N ($C055) and PAGE20FF ($C054) are used to select whether
the text screen video RAM page ($400 ... $7FF) in auxiliary or main memory
is to be selected. In addition, if HIRESON ($C057) is active, then the PAGE2

240 CJ Inside the Apple //c

$FFFF

BANK- BANK- BANK-
SWITCHED SWITCHED SWITCHED

RAM RAM RAM

$E000
(THERE ARE TWO (THERE ARE TWO (THERE ARE TWO

$0000
$Dx BANKS) $Dx BANKS) $Dx BANKS)

$BFFF

$4000

$2000

$0800

$0400

$0200
6502 STACK 6502 STACK 6502 STACK

$0100
ZERO PAGE ZERO PAGE ZERO PAGE

$0000
with ... with ... with ...

80STOREOFF 8CIJSTOREON 80STOREON
HIRESOFF HIRESON

II MAIN-AUXILIARY SWITCHING

D NOT SWITCHING

Figure 8-4. The effect of switching RAMWRT or RAMRD.

switches will also select whether the high-resolution graphics screen video
RAM page ($2000 ... $3FFF) in auxiliary or main memory is to be selected.
The important point to note is that whenever 80STORE is ON, the PAGE2
switches take priority over the RAMRD and RAMWRT switches and so these
latter two switches cannot be used to control which of the video RAM areas
are active. The effect of switching PAGE2 with 80STOREON is summarized
in Figure 8-5.

-------------- 8 I Memory Management c::J 241

$FFFF
BANK

SWITCHED
RAM

$E000 t--------i
(THERE ARE TWO

$Dx BANKS)
$0000_ ___ ___,

$BFFF

BANK
SWITCHED

RAM

(THERE ARE TWO
$Dx BANKS)

6502 STACK

ZERO PAGE

with ...

80STOREON
HIRESON

~~ MAIN-AUXILIARY SWITCHING

D NOT SWITCHING

Figure 8-5. The effect of switching PAGE2.

Auxiliary Memory Support Subroutines

The //c has two useful subroutines contained in its system monitor ROM
area that facilitate the use of auxiliary memory. These subroutines are called
AUXMOVE ($C311) and XFER ($C314).

AUXMOVE ($C311)-Transferring data to and from auxiliary
memory

AUXMOVE is used to transfer blocks of data contained within the memory
range $200 ... $BFFF from main memory to auxiliary memory or vice versa.

242 CJ Inside the Apple //c -----------------

Before using this subroutine, six locations in zero page must be set so that
they hold the parameters of the block move. These are summarized in Figure
8-6.

The beginning address of the block to be moved must be stored at locations
AlL ($3C) and AlH ($3D) and the ending address at A2L ($3E) and A2H ($3F).
Finally, the destination address must be stored at A4L ($42) and A4H ($43).
As is usually the case on the 1/c, the low-order part of each address is stored
in the first byte of each zero-page pair.

The state of the 65C02 carry flag is used to tell AUXMOVE the direction of
the block move. If the carry flag is set, then the move will be performed from
main memory to auxiliary memory. If it is clear, the move will take place in
the opposite direction. The state of the carry flag can be set by using the
65C02's CLC (clear carry) and SEC (set carry) instructions. There is no simple
way, however, of setting these flags using Applesoft commands; the best that
can be done is to call a short machine-language subroutine that clears or sets
the carry flag before calling AUXMOVE.

I Source Block

f A1L/A1H
($3C/$3D)

I ..
f A2L/A2H

($3E/$3F}

Destination Block

f A4L/A4H
($42/$43)

Carry Flag Set (1) : Move from Main to Auxiliary memory
Carry Flag Clear (0): Move from Auxiliary to Main memory

Figure 8·6. AUXMOVE ($C311) subroutine parameters.

The Applesoft program in Table 8-5 shows how you might transfer an area
of memory between main and auxiliary memory. It saves a main-memory
high-resolution graphics screen to auxiliary memory and then brings it back
again.

The program first installs a short four-byte machine-language program
beginning at location 768 ($300) by POKEing into memory those DATA state
ment values that appear in lines 120 and 130. These values define the following
simple program:

SEC
JMP AUXMDVE
The program then turns on high-resolution graphics and draws a diagonal

line on it before setting up the parameters for the block move. In this case,
the area of memory to be moved is $2000 ... $3FFF and it will be moved to
the area beginning at $4000 in auxiliary memory. (You shouldn't try to move
it to $2000 ... $3FFF in auxiliary memory because if the 80STORE switch is
ON-and it will be if the 80-column firmware is being used-and high-reso
lution graphics are being displayed, then the RAMRD and RAMWRT switches

------------ 8/ Memory Management [=::J 243

Table 8-5. AUXMOVE-a program to demonstrate how to move
data between main and auxiliary memory.

0 REM 11 AUXMOVE 11

100 PRINT CHR$ C4>; 11 PR#3 11

11 0 FOR I = 768 TO 771 : READ X:
POKE I,X: NEXT

120 DATA 56: REM 11 SEC 11

130 DATA 76,17,195: REM 11 JMP $C
311 11

140 HGR : HCOLOR= 3: HPLOT 10,1
0 TO 150,150

150 HOME : VTAB 22: PRINT TABC
17>; 11 MAIN <---> AUXILIARY ME
MORY TRANSFER DEM0 11

160 HTAB 2: VTAB 23
170 PRINT 11 PRESS ANY KEY TO SAV

E THE SCREEN IN AUXMEM: 11 ;: GET
A$

180 REM SET UP THE PARAMETERS 0
F THE MOVE:

190 POKE 60,0: POKE 61,32: REM
FROM $2000

200 POKE 62,255: POKE 63,63: REM
THROUGH $3FFF

210 POKE 66,0: POKE 67,64: REM
TO $4000 CAUX>

220 CALL 768: REM PERFORM THE M
OVE

230 HTAB 2: VTAB 23: CALL - 95
8

240 PRINT 11 PRESS ANY KEY TO CLE
AR THE SCREEN: 11 ;: GET A$: HGR

250 HTAB 2: VTAB 23: CALL - 95
8

260 PRINT 11 PRESS ANY KEY TO RES
TORE THE SCREEN FROM AUXMEM:

11 i: GET A$
270 POKE 768,24: REM PUT IN A II

CLC 11

280 REM SET UP THE PARAMETERS 0
F THE MOVE:

290 POKE 60,0: POKE 61,64: REM
FROM $4000

300 POKE 62,255: POKE 63,95: REM
THROUGH $5FFF

310 POKE 66,0: POKE 67,32: REM
TO $2000 CMAIN>

320 CALL 768: REM PERFORM THE M
OVE

244 c:::J Inside the Apple //c ----------------

that AUXMOVE uses when performing the transfer will not affect this area
of memory and no transfer will take place.)

After the screen has been saved to auxiliary memory, you can press a key
to clear the screen, and then press another key to restore the line that was
drawn on the screen. The line is restored by simply moving the 8K of screen
memory that was saved in auxiliary memory back into main memory and
not by redrawing the line.

To transfer a block of memory in the opposite direction, the first instruction
in the four-byte machine-language subroutine must be changed from SEC to
CLC. This is done in line 270 by POKEing 24 into location 768. The number
24 is the value of the CLC instruction.

XFER ($C314)-Transferring control to a program from main or
auxiliary memory

XFER is used to transfer control to a program in either main or auxiliary
memory and, at the same time, to select which stack and zero page is to be
used when the new program takes over. This is done by setting up certain
parameters and executing a JMP Uump) instruction to XFER at $C314.

As with AUXMOVE, certain parameters and 65C02 flags must be set up
before XFER is called. These are summarized in Table 8-6. First of all, the
address of the program that is going to take control must be placed at locations
$3ED and $3EE (low-order byte first). Then, the carry flag must be adjusted
to indicate the direction of transfer: it must be set (1) if control is being
transferred from a program in main memory to a program in auxiliary mem
ory and clear (0) if transferring control in the reverse direction. Finally, the
65C02 overflow flag must be adjusted to indicate which of the two zero pages
and stacks the new program is to use: if it is set (1), then the auxiliary zero
page and stack will be used and if it is clear (0), then the main zero page and
stack will be used.

Table 8-6. XFER ($C314) subroutine parameters.

Parameter

Transfer address

Carry flag

Overflow flag

Description

$3ED/$3EE (low-order byte first). This contains the
starting address of the program to which control is
to be transferred.

Carry set (1) means "transfer from main to auxiliary
memory." Carry clear (0) means "transfer from aux
iliary to main memory."

Overflow set (1) means "use auxiliary stack and zero
page." Overflow clear (0) means "use main stack and
zero page."

---------------- 8/ Memory Management c::::::::J 245

The CL V (clear overflow) instruction can be used to clear the 65C02 overflow
flag to zero. There is no similar command, however, that can be used to set
the overflow flag to one. One method of forcing the overflow flag to one is to
use the BIT instruction to test any memory location that holds a byte that
has a "1" in bit 6. A convenient location to use is $FF58 because there is an
RTS instruction located there and it has an opcode value of $60.

Of course, before you transfer control to a program in the other memory
area, you had better make sure that the program has been loaded there. This
is easily done for programs residing in main memory but is a bit more tricky
for those residing in auxiliary memory. The easiest way to load a program
into auxiliary memory is to use the AUXMOVE subroutine.

Note that the same concerns that were raised about the stack and the stack
pointer when discussing the ALTZP switches apply to the use of XFER. It is
good practice to save the stack pointer immediately before jumping to XFER
and then to restore it if and when a reverse transfer is made. In addition, if
the two programs are both using the same stack, care must be taken to avoid
overwriting any information that the other program has left on the stack ..
This is most easily done by saving the whole stack when control is transferred
and then restoring it just before returning to the calling program. Alterna
tively, the two programs should each use a different stack; however, this
cannot be done without using two zero pages as well and this may be incon
venient.

Running Co-Resident Programs

As we have seen, the 64K of auxiliary RAM memory is virtually a mirror
image of the 64 K of main RAM memory. Both of these memory spaces span
exactly the same logical addresses, each has its own 65C02 stack and zero
page, and each has a 16K area of bank-switched RAM. One important area of
difference, however, lies in the use of locations $400 ... $7FF. When in 40-
column text mode, only these locations in main memory are used to define
the video display; the same locations in auxiliary memory have no effect on
the video display. When the 80-column display is active, locations $400 ... $7FF
in main memory define the odd-numbered columns in the display while the
same locations in auxiliary memory define the even-numbered columns.

The similarities between these two 64K spaces are great enough, however,
that it is conceivable that different programs could be loaded into each space
and then run independently of one another (well, almost independently of
one another). After all, since each program can have its own stack and zero
page, there is not a strong temptation for either program to interfere with the
other's use of these important areas of memory. The video display will have
to be shared, however, for the reasons just given.

The CONCURRENT program in Table 8-7 is a short assembly-language
program that allows you to run one of two Applesoft programs that can be

Table 8-7. CONCURRENT-a program to allow switching between Applesoft programs in main and I\)

auxiliary memory. ~

1
2
3
4
5
6
7
8
9
u
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

* CONCURRENT *

* <BRUN this program from disk)

SPSAVE
OLDCSW

EQU $6
EQU $7

CSW EQU $36

;Stack pointer save area
;Initial value of CSW (aux. only>

* Parameter locations for AUXMOVE:
A1 EQU $3C
A2 EQU $3E
A4 EQU $42

* Memory switches:
STOR800N EQU
RAMRDOFF,EQU
RAMRDON EQU
RAMWRTOF EQU
RAMWRTON EQU

ALTZPOFF EQU
ALTZPON EQU
ALTZP EQU

$C001
$C002
$CfU3
$C004
$C005

$C008
$C009
$C016

AUXMOVE EQU $C311

APPLSOFT EQU $E000-1

;Don't switch $400 ... $7FF
;Read main from $200 ... $BFFF
;Read auxiliary from $200 ... $BFFF
;Write main from $200 ... $BFFF
;Write auxiliary from $200 ... $BFFF

;Select main zero page+stack
;Select auxiliary zero page+stack
;ALTZP status: on if >=$80

;AUX <--> M~IN move subroutine

;Cold start to Applesoft <less 1>

D
::J
rJI
a:
CD -;;r
CD
)>

"'0
"'0
iD

~

32 * Monitor initialization subroutines:
33 IN IT EQU $FB2F
34 HOME EQU $FC58
35 SETNORM EQU $FE84
36 SETVID EQU $FE93
37 SETKBD EQU $FE89
38
39 ORG $2B3
4f/J
41 * Copy SWITCH to auxiliary memory:

f/J2B3: A9 f/JI/J 42 LDA #<SWITCH
f/J2BS: 85 3C 43 STA A1
f/J2B7: 85 42 44 STA A4
f/J2B9: A9 f/13 45 LDA #>SWITCH
fll2BB: 85 3D 46 STA A 1 + 1
f/J2BD: 85 43 47 STA A4+ 1
f/J2BF: A9 4A 48 LDA #<SWLAST
f/J2C1 : 85 3E 49 STA A2
f/J2C3: A9 f/13 Sf/J LDA #>SWLAST co

f/J2CS: 85 3F 51 STA A2+1 s:
f/J2C7: 38 52 SEC ;<Move to aux. mem) <D

3
f/J2C8: 2fll 1 1 C3 53 JSR AU X MOVE 0

'<
54 s:

f/J2CB: BD f/19 Cf/J 55 STA ALTZPON ;Select aux. zero page + stack Ill
::J

56 Ill
<0

57 * Initialize the monitor's auxiliary zero-page usage: <D
3

f/J2CE: DB 58 CLD . <D

fll2CF: 2fll 84 FE 59 JSR SETNORM ;Set normal video ;a

fll2D2: 2f/J 2F FB 6f/J JSR INIT ;Set full-screen text mode
fll2DS: 2fll 93 FE 61 JSR SETVID ;Set for standard 4f/J-column output 0 f/J2D8: 2f/J 89 FE 62 JSR SETKBD ;Set for standard 4fll-column input

fll.2DB: 2fll 58 FC 63 JSR HOME ;Clear the screen
N

64 .a:=.

65 * Redefine output 1 ink to keep 8f/JSTOREON:
.....

f/J2DE: AS 36 66 - LDA csw (continued)

Table 8-7. CONCURRENT -a program to allow switching between Applesoft programs in main and
auxiliary memory (continued).

02E0: 85 07 67
02E2: AS 37 68
02E4: 85 08 69

70
02E6: A9 44 71
02E8: 85 36 72
02EA: A9 03 73
02EC: 85 37 74

75
76

02EE: A9 DF 77
02F0: 80 FF 01 78
02F3: A9 FF 79
02FS: 80 FE 01 80
02F8: A2 FD 81
02FA: 86 06 82

83
02FC: 80 08 C0 84

85
02FF: 60 86

87
88

0300: 8E 41 03 89
0303: 8C 42 03 90
0306: 80 40 03 91
0309: 08 92
030A: 68 93
0308: 80 43 03 94
030E: BA 95
030F: 86 06 96
0311:80 01 C0 97

STA
LDA
STA

LDA
STA
LDA
STA

* Initialize
LDA
STA
LDA
STA
LDX
STX

OLDCSW
CSW+1
OLDCSW+1

#<NEWOUT
csw
#>NEWDUT
CSW+ 1

auxiliary memory stack:
#>APPLSDFT ;Set up a return to the cold
$1rF ; start entry point for
#<APPLSOFT ; Applesoft the first time
$1FE ; you enter auxiliary memory
#$FD ;Set up initial stack pointer
SPSAVE ; and save it in aux. memory

STA ALTZPOFF ;Select main zero page + stack

RTS

* SWITCH. is used to move between aux. and main:
SWITCH STX XSAVE ;Save X, Y, A, P, S

STY YSAVE
STA ASAVE
PHP
PLA
STA PSAVE
TSX
STX SPSAVE
STA STDR80DN ;Don't switch video RAM

N
~ co

D
::I
(f)

a:
<D -=r
<D
)>

"0
"0
m
:::::::
0

0314: AD 16 C0 98 LDA ALTZP ;Check ALTZP status
0317: 30 18 99 8MI TOMAIN ;Go to main if in aux.
0319: 8D 09 C0 1 00 STA ALTZPON ;Turn on aux. ZP+stack·
031C: 8D 03 C0 101 STA RAMRDON ;Turn on aux. memory
031F: 8D 05 C0 102 STA RAMWRTON
0322: A6 06 103 RESTORE LDX SPSAVE ;Restore all registers
0324: 9A 104 TXS
0325: AE 41 03 105 LDX X SAVE
0328: AC 42 03 106 LDY YSAVE
0328: AD 43 03 107 LDA PSAVE
032E: 48 108 PHA
032F: AD 40 03 109 LDA A SAVE
0332: 28 110 PLP
0333: 60 1 1 1 RTS
0334: 8D 08 C0 11 2 TOMAIN STA ALTZPOFF ;Turn on main ZP+stack
0337: 8D 02 C0 11 3 STA RAMRDOFF ;Turn on main memory
033A: 8D 04 C0 11 4 STA RAMWRTOF
033D: 4C 22 03 11 5 JMP RESTORE

116
(X)

11 7 A SAVE DS 1 s::

(1)

118 X SAVE DS 1 3
119 YSAVE DS 1

0
~

120 PSAVE DS 1 s::
1 21 Ill

::J

122 * The following new input subroutine is really needed only Ill
(0

123 * when Applesoft is first initialized. When Applesoft is (1)

3
124 * initialized, it writes to $C000, thus turning 80STOREOFF (1)

125 * and preventing the program in auxiliary memory from ~

126 * using the 40-column video RAM (in main memory>.

D 0344: 8D 01 C0 127 NEWOUT STA STOR800N
0347: 6C 07 00 128 JMP COLDCSW)

129 N
130 SWLAST EQU * -'=" <D

250 c::=J Inside the Apple //c ----------------

loaded into memory at the same time, one in main memory and the other in
auxiliary memory, and to easily switch between the two programs. It must
be activated by using the BRUN command to load and execute it directly
from diskette; you must be in standard 40-column mode before doing this.

The first thing that CONCURRENT does is to copy its SWITCH and NEW OUT
subroutines from main to auxiliary memory by using the AUXMOVE subrou
tine. The SWITCH subroutine is responsible for transferring control from
main to auxiliary memory and vice versa, and so a copy of it must be stored
in both these memory areas to ensure that it is always available. There is one
other important reason for duplicating SWITCH in this way. Part way through
the subroutine, the area of memory (main or auxiliary) that is currently active
will be turned off and replaced by the other, thus causing the current copy of
SWITCH to temporarily vanish. This would normally cause the system to
hang because the instruction at the next address at which SWITCH resumes
executing after switching would no longer be available and the program
would behave unpredictably. If SWITCH is present at exactly the same loca
tions in the other area of memory, however, then one copy will always be
active and no problems will be encountered.

After CONCURRENT has moved SWITCH to auxiliary memory, it enables
the zero page and stack in auxiliary memory (ALTZPON) and then calls five
system monitor initialization routines (SETNORM, INIT, SETVID, SETKBD,
and HOME) that will cause the auxiliary zero page to be properly initialized
so that system monitor I/0 subroutines will work properly.

The next task that CONCURRENT performs is to redefine the standard
character output subroutine by storing the address of the NEWOUT subrou
tine at the CSWLICSWH ($36/$37) output link in auxiliary memory. The
NEWOUT subroutine must be used to handle output because of a complica
tion that arises wh~n Applesoft is first initialized in auxiliary memory.

When Applesoft is first initialized, it determines how much RAM memory
is installed in the //c by storing and reading numbers at the first location of
each memory page (beginning with page $08) until it finds that the number
read is not the same as the number stored. When such a discrepancy occurs,
then a non-RAM location must have been reached.

On the //c, the first non-RAM address written to will be $C000, which is the
first address in the lie's IIO memory space. Unfortunately, this has the side
effect of turning off the 80STORE soft switch that resides at that location.
This means that if the RAMRD and RAMWRT switches are on (that is, aux
iliary memory from $200 ... $3FF and $800 ... $BFFF is active), then the
auxiliary memory space from $400 ... $7FF will be active as well. (Remember
that this same space in main memory-which represents the video RAM for
the 40-column text screen-will remain active if 80STORE is on.) This aux
iliary memory space has no effect on the 40-column screen display, however,
and so the screen display will not change when attempts are made to update

--------------- 8 I Memory Management c:J 251

it by calling the standard video subroutines (that only affect the currently
active $400 ... $7FF space).

If we could turn the 80STORE switch on before Applesoft tries to perform
its first video operation after initialization (the displaying of its "]" prompt
symbol), then we could avoid the problem of having the "wrong" $400 ... $7FF
space active. This is done by replacing the standard output subroutine with
the nearly identical NEWOUT subroutine. In fact, the only difference is that
NEWOUT first writes to 80STOREON ($C001) to ensure that the video RAM
area from $400 ... $7FF in main memory will be active.

Initialization of the Auxiliary Stack

After the new output link address is set up in auxiliary memory, CONCUR
RENT initializes the auxiliary stack by placing the address, less 1, of the cold
start entry point to Applesoft ($E000) at the first two stack locations, $1FF
and $1FE. The high-order part of this address is stored at $1FF and the low
order part at $1FE. After this has been done, the value $FD is stored at
SPSAVE, a temporary storage location. The first time that auxiliary memory
is enabled by calling SWITCH, the 65C02 stack pointer register will be loaded
from SPSAVE, meaning that when the RTS is executed at the end of the
SWITCH subroutine, control will be returned to $E000, the Applesoft cold
start entry point. The subroutine at $E000 takes care of initializing Applesoft
in auxiliary memory by setting up all its program and data pointers that are
contained in zero page.

The last thing that CONCURRENT does is re-enable zero page and the stack
in main memory and then end. At this point the //cis configured in such a
way as to allow you to easily switch between programs in main and auxiliary
memory.

Using CONCURRENT

CONCURRENT is simple to use. Whenever you want to leave main memory
and resume running the program in auxiliary memory, or vice versa, you
must activate the SWITCH subroutine by entering a CALL 768 command.
This subroutine determines which bank of memory is active (by examining
the status of the ALTZP switch) and then enables the other bank of memory
from $0000 ... $BFFF (except for the $400 ... $7FF video RAM area) for
reading and writing by adjusting the ALTZP"RAMRD, and RAMWRT switches
accordingly. The $400 ... $7FF video RAM area in main memory is kept active
by writing to 80STOREON ($C001) before accessing the RAMRD and RAMWRT
switches.

When the SWITCH subroutine ends, it executes an RTS instruction that
instructs the 65C02 to return to the address (plus 1) that is stored on the top
of the stack. Unless some tricky programming is done, this address is that of

252 c=J Inside the Apple //c ---------------

the instruction immediately following the JSR instruction that called the
subroutine. Such is not the case, however, when calling SWITCH because just
before its RTS instruction is executed, the other stack is reactivated and its
stack pointer is set equal to the value it had when SWITCH was last called.
What this means is that as soon as SWITCH is called, the //c begins executing
those instructions right after the CALL 768 that activated the switch in the
first place.

To see a simple example of how CONCURRENT works, first install SWITCH
by executing CONCURRENT. Then enter the following Applesoft program:

1~~ IF PEEK <49152> = 155 THEN
POKE 49168,~: CALL 768

2~~ PRINT "MAIN MEMORY": GOTO 1~~

and RUN it. This program doesn't do much but continuously print out "MAIN
MEMORY" on the screen. However, the program is constantly monitoring
the keyboard for an ESC character in line 100. If ESC is pressed, then the
keyboard strobe is cleared (POKE 49168,0) and then SWITCH is called by
executing a CALL 768 command.

When SWITCH is called for the first time, you will be put into Applesoft
direct mode in auxiliary memory. While you are there for the first time, enter
this program:

1~~ IF PEEK <49152> = 155 THEN
POKE 49168,~: CALL 768

2~~ PRINT "AUXILIARY MEMORY": GOTO 1~~

This is the same as the previous program, except that it prints out "AUX
ILIARY MEMORY." Now type RUN to start this program and then press the
ESC key. As soon as ESC is pressed, you will switch back to main memory
and the program there will resume executing right where it left off and will
start printing "MAIN MEMORY." By pressing ESC again and again, you can
see that you are indeed switching between the two programs!

Limitations of CONCURRENT

The major limitation of CONCURRENT is that the program running in
auxiliary memory cannot use any ProDOS commands. Although a copy of
ProDOS could be transferred to auxiliary memory and used by the program
running there, several problems could arise that would be difficult to solve
in software. For example, special "lockout" flags would have to be used to
prevent one program from modifying a file until the other had finished using
it. If this was not done, then the data in the file could easily become scrambled.
Rather than complicate the CONCURRENT program and obscure its useful
ness as an example of how to use main and auxiliary memory, no attempt
has been made to allow the program in auxiliary memory to use ProDOS.

Other problems arise because the two programs must share the same video

--------------- 8 I Memory Management c:::J 253

screen. This means that information placed on the screen by one program
could easily be overwritten by the other. One solution to this problem is to
define nonoverlapping text windows for each program by modifying the win
dow parameters held in zero page. (See Chapter 7 .)

Since auxiliary memory is initialized by installing the standard 40-column
input and output subroutines (by calling SETVID and SETKBD), you should
not enter auxiliary memory when 80-column mode is active. If you wish to
use CONCURRENT with an 80-column display, the "JSR SETVID" and "JSR
SETKBD" instructions should be replaced by a" JSR $C300" instruction; the
latter instruction takes care of installing the 110 subroutines that support the
80-column display. Alternatively, you can simply turn 80-column mode on
by entering PR#3 after installing CONCURRENT.

Finally, you should note that you must not write to 80STOREOFF ($C000)
while in auxiliary memory. If this is done, then the auxiliary memory space
from $400 ... $7FF will become active and, as explained above, you will not
be able to display anything on the video screen.

Further Reading for Chapter 8

Standard reference works ...

80-Column Text Card Manual, Apple Computer, Inc., 1982.

Extended 80-Column Text Card Supplement, Apple Computer, Inc., 1982.

Note: the above two reference manuals are written for the optional 80-
column text card used on the Apple //e only. However, much of the
information in them is directly applicable to the built-in 80-column dis
play on the //c as well.

On uses for auxiliary memory •..

D.C. Johnson, "Using Auxiliary Memory in the //e", Apple Assembly Line,
August 1983, pp. 2-12. Another program to switch between main and
auxiliary memory.

9
The Speaker

In this chapter, we will examine another built-in I/0 device that the 1/c
supports: the speaker.

The lie's speaker can be used to add the dimension of sound to programs.
In many cases, this simply means that you will hear a short (but suitably
aggravating) beep whenever you make an error. However, some programs,
notably educational software and games, exercise the speaker in much more
dramatic ways to generate complex sound effects and recognizable musical
patterns that tend to dramatically liven up these types of programs. We will
look at the techniques used to generate music later in this chapter.

You can make the lie's speaker beep at you by entering or printing the ASCII
"bell" character (ASCII code 7). This can be done by pressing [control-G) on
the keyboard or by printing CHR$(7) from Applesoft. (If you don't hear any
thing, turn up the volume by adjusting the control wheel on the left side of
the //c). With appropriate software, the speaker can also be used to generate
music and sound effects and even to reproduce (though crudely) the human
voice.

The sounds that the speaker generates are caused by the in and out move
ment of the speaker cone; the frequency (also called the pitch) of a sound is
the same as the frequency of the cone's movement. The position of the cone
is controlled by a voice coil and a permanent magnet located near the base
of the cone. When this coil is turned on, the cone moves out and when it is
turned off, the cone moves in. Thus, you can select the frequency of the tone
to be emitted merely by switching this coil on and off at the desired frequency.

There is one special I/0 memory location reserved for the speaker that
allows you to control it in this way. As indicated in Table 9-1, this is SPEAKER
($C030). This is yet another soft switch location; each time that it is read
(using Applesoft's PEEK or an assembler's LDA) the state of the speaker
changes from off to on (if it was last off) or from on to off (if it was last on).

Generating Musical Notes

Let's take a close look at how you can use the 1/c to generate musical notes.
First, recognize that the sound wave generated by a single musical note is

255

256 c=J l~side the Apple //c ----------------

Table 9-l. Speaker 1/0 memory location.

Address
Hex (dec)

$C030 (49200)

Symbolic Name

SPEAKER

Description

Speaker output. Reading this
location toggles the state of the
speaker.

merely a smoothly varying sine wave, as shown in Figure 9-1 (a). Since,
however, we can only turn the lie's speaker on or off (that is, we cannot
smoothly vary the amplitude of its output), we can only generate square
waves like the one shown in Figure 9-1 (b). For most frequencies, however,
this square wave is an acceptable approximation of its sine wave equivalent
and the sound that is generated is close to what you would normally expect
to hear.

(a) Sine wave for pure tone.

t
Amplitude

(b) Square wave approximation of pure tone.

Amplitude
~-----r------+------+------;------;------.-Time~

Figure 9·1. Sine waves and square waves.

Before a specific note can be generated, you will have to know its frequency
(or "pitch"). Table 9-2 contains a list of two octaves of musical notes from
Low "C" through Middle "C" to High "C", their frequencies on the standard

----------------- 9 I The Speaker c=J 257

Even-Tempered Scale in hertz (cycles/second), and their periods. The period
is equal to the time it takes to finish one complete sinusoidal cycle and is
equal to the reciprocal of the frequency.

To generate the waveform for any note, the speaker must be turned on for
one-half of its period and off for the other half. Given this information, the
procedure to follow for generating a note is as follows:

• Turn the speaker on

• Wait one-half period

• Turn the speaker off

• Wait one-half period

• Return to step 1

Table 9-2. Frequencies and periods of musical notes on the even
tempered scale.

Note Frequency (Hz)

C (Low "C")
C#
D
D#
E
F
F#
G
G#
A
A#
B
C (Middle "C")
C#
D
D#
E
F
F#
G
G#
A (Concert "A")
A#
B
C (High "C")

*See text.

131
139
147
156
165
175
185
196
208
220
233
247
262
277
294
311
330
349
370
392
415
440
466
494
523

Period (p.sec)

7,634
7,194
6,803
6,410
6,061
5,714
5,405
5,102
4,808
4,545
4,292
4,049
3,817
3,610
3,401
3,215
3,030
2,865
2,703
2,551
2,410
2,273
2,146
2,024
1,912

HALFTIME*

112
106
100
94
89
84
79
75
71
67
63
60
56
53
50
47
45
42
40
38
35
33
32
30
28

258 c=J Inside the Apple //c ----------------

Since the status of the speaker toggles between on and off every time you
access its soft switch at SPEAKER ($C030), you can simplify this flowchart
by removing steps 3 and 4.

The above procedure must be repeated for the duration of the note; if you
are playing a note from a piece of music, this duration will depend on the
type of note that is being played (a whole note, half-note, quarter-note, and
so on) and the tempo of the music.

Table 9-3 shows the NOTE program that uses the lie's speaker to produce
a note of a specified frequency and duration. This program toggles the speaker
whenever the X register, which at the beginning of every tone cycle contains
a code number related to the period of the note, is reduced to zero by successive
DEX instructions. The X register is reduced by one unit every 34*HALFTIME
microseconds, where HALFTIME is this code number and 34 happens to be
the length of an internal software delay loop that has been used. The code
number is simply equal to the number of 34-microsecond loops that must be
performed before one-half of the period of the note elapses.lt can be calculated
by dividing one-half of the period time (in microseconds) by 34. For example,
the value of HALFTIME for an "A" note (440 Hz) would be equal to 1136 (one
half its period in microseconds) divided by 34, which is equal to 33. In this
way, you can easily calculate the HALFTIME values for all the other notes
that you may wish to generate; they are listed in Table 9-2 for your conve
nience.

NOTE also allows you to specify the duration of the note to be played by
adjusting the LENGTH constant. A temporary value of LENGTH, called
LTEMP, is decremented each time the program executes 255 of the afore
mentioned 34-microsecond loops, that is, once every 8670 microseconds. Thus,
to play a note for one second (1,000,000 microseconds), LENGTH would be
set equal to 1,000,00018670, or 115.

The loop time in the NOTE program has been calculated by determining
exactly how many 65C02 machine cycles take place between successive reduc
tions of the loop counters (that control the frequency and duration of the note)
and multiplying that number by the period of the 65C02 microprocessor's
clock. Since the lie's clock is operating at about 1 MHz, it turns out that the
loop time (in microseconds) is simply equal to the number of machine cycles
needed to perform the instructions in the loop. To calculate the total number
of machine cycles being performed in the loop, you must first determine what
instructions are being executed in the loop and then add up their individual
cycle times. The cycle times for each 65C02 instruction are listed in Appendix
II. Note that the number of cycles depends not only on the particular instruc
tion being executed but also on the addressing mode that is being used by
that instruction.

It should be obvious by now that because of the meticulous timing loops
that music programs require to produce precise frequencies, it is really not
possible to create quality music by directly accessing SPEAKER ($C030) using

----------------- 9 I The Speaker c=J 259

the Applesoft PEEK statement and FOR/NEXT loCj>pS. Applesoft delay times
simply cannot be adjusted as finely as can assembler delay times and, even if
they could be, they could actually change depending on the location of the
loop in the program. So stick to assembly language if you want to create
music. Applesoft programs can be used, however, to POKE frequency and
duration information into an assembly-language program's data area and to
CALL the assembly-language program. We will see how to do this next.

Generating Music

Now that we have written a program to generate one musical note, it will
be almost trivial to develop a program that actually plays a short tune. All
we have to do is link single notes together in the orders, and for the durations,
dictated by the sheet music for the tune.

Consider the Applesoft SONG program in Table 9-4. This program contains
several DATA statements that contain the HALFTIME and LENGTH values
needed by NOTE for each of the notes in the first part of the theme from the
television series "M'~ A *S*H." The LENGTH values have been calculated by
assuming that a whole note has a duration of one second; if this is the case,
then LENGTH= 115, as explained earlier. To play the tune defined by the
DATA statements, first ensure that the NOTE program has been saved to
diskette and then enter the Applesoft RUN command. SONG plays the tune
by executing an Applesoft FOR/NEXT loop that reads the HALFTIME and
LENGTH values for a note, POKEs them into the NOTE program data area,
and then CALLs the NOTE program to generate the tone. After all the notes
have been played in this way, the program ends.

You can easily play your own favorite song by translating its notes into
HALFTIME and LENGTH values and placing these values into the DATA
statements of the SONG program. The last pair of values in the DATA state
ments must be zeros so that SONG will know when all the notes have been
read.

You may well be wondering whether you can play chords of music, that is,
more than one note at once, in order to improve the quality of the sound that
is generated. The short answer is "yes, you can!" but the software required
to do this is much more complex. For example, to play two notes at once, you
would have to intertwine two timing loops, one for each note, and you would
have to ensure that the speaker was being toggled at the proper rate for each
note. This is not an impossible feat to be sure, but it is left as an exercise for
the more interested reader.

Table 9-3. NOTE-a program to play a musical note on the //c's speaker.

1 ********
2 * NOTE *
3 ********
4
5 SPEAKER EQU $C030 ;Speaker I/0 location
6
7 ORG $300
8

0300: 21 9 HALFTIME DFB 33 ; = (1/frequency)/(2*34)
0301 : 1D 10 LENGTH DFB 29 ;Duration in units of 34*255 usee

1 1
0302: A0 FF 1 2 NOTE LDY #255 ;The program starts here
0304: AD 01 03 1 3 LDA LENGTH
0307: 8D 2F 03 1 4 STA LTEMP
030A: AE 00 03 1 5 NOTE1 LDX HALFTIME ;X contains the length of the note
030D: AD 30 C0 16 LDA SPEAKER ;Toggle the speaker
0310: 4C 1A 03 1 7 JMP STALL1
0313: EA 18 STALL NOP ;These NOPs compensate for
0314: EA 19 NOP ; branches to NOTE1 from line 37

g

0
:J
en
0:
CD

s:
CD
)>

"0
"0
m
~

0315: EA 20 NOP ;They ensure that the overall loop
0316: EA 21 NOP ; times are the same so that the
0317: EA 22 NOP ; units of "length" don't vary
0318: EA 23 NOP ; with the frequency
0319: EA 24 NOP
031A: 88 25 STALL1 DEY ;Loop time is 34 cycles
0318: D0 07 26 BNE STALL2
031D: CE 2F 03 27 DEC LTEMP ;Reduce this every 34*255 cycles
0320: F0 0C 28 BEG EX IT
0322: D0 05 29 BNE STALL3
0324: EA 30 STALL2 NDP ;These NOPs compensate even
0325: EA 31 NOP ; out the loop time when the code
0326: EA 32 NDP ; in lines 27-29 is not executed
0327: EA 33 NOP
0328: EA 34 NOP
0329: CA 35 STALL3 DEX ;Loop time is 34 cycles
032A: D0 E7 36 BNE STALL
032C: F0 DC 37 BEQ NOTE1
032E: 60 38 EX IT RTS

39
40 LTEMP DS

<.0 ---f
:::;,-
<D
(J)

"'C
<D
Ql
':1\
<D

D
N
Q)

262 c=J lnsidetheApple//c ---------------

Table 9-4. SONG-a program that plays a song on the lie's speaker.

0 REM 11 SONG 11

100 PRINT CHR$ (4); 11 BLOAD NOTE
II

110 READ HT: READ LN: REM READ
HALFTIME AND LENGTH

120 IF HT = 0 AND LN = 0 THEN 1
60

130 POKE 768,HT: POKE 769,LN
140 CALL 770: REM PLAY THE TONE

150 GOTO 110: REM AND GET NEXT
NOTE

160 END
1000 REM NAME THAT TUNE!!
1010 DATA 63,29,67,29,63,29,67,

29,63,29,67,29,75,58
1020 DATA 67,29,75,29,67,29,75,

29,67,29,75,29,84,29,67,29,7
5,29,84,29,75,29,84,29

1030 DATA 75,29,84,29,89,29,75,
29,84,29,89,29,84,29,89,29,8
4,29,75,29,67,58

1040 DATA 67,58,56,29,50,29,56,
29,50,29,56,29,50,29,56,58,5
6,29

1050 DATA 50,29,56,29,50,29,56,
29,50,29,56,58,56,29,67,29,5
6,29r50,29,42,29

1060 DATA 38,29,42,29,50,29,56,
29

1070 DATA 50,115,50,58,50,29,56
,29,67,29,56,29,50,29,42,29

1080 DATA 38,29,42,29,50,29,56,
29,50,115,50,58

1090 DATA 0,0: REM END OF DATA
MARKER

----------------- 9 I The Speaker c::::::::J 263

Further Reading for Chapter 9

On the speaker ...

"Apple Noises and Other Sounds", Apple Assembly Line, February 1981, pp.
2-9. Generating sound effects using the speaker.

B.C. Detterich, "Apple Free Speech", Call-A.P.P.L.E., September 1981, pp.
9-14. Using the Apple II speaker to generate voice and sound.

J.H. Bender, "Pitch and Rhythm on the Apple", Call-A.P.P.L.E., June 1982,
p. 15. More on music for the Apple.

B. Sander-Cederlof, "Your Apple Can Talk", Apple Assembly Line, November
1982,pp.2-9

10
Mouse and Game

Controller Input
In this chapter we will be examining in detail how to use the 1/0 connector

located on the back panel of the //cat the far left (as viewed from the back
end). This port is primarily used to interface two types of related input devices
to the //c: the Apple mouse and the game controller. These two devices are
related in that they both provide positional information to the //c. That is, it
is possible for the 1/c to determine where a mouse is located on the desktop
or how far a game controller knob has been rotated.

Unfortunately, you cannot simultaneously connect a game controller and
a mouse to the 1/c because both devices use the same connector. Fortunately,
however, this limitation is recognized by the lie's built-in firmware and it is
possible to read positional information from the mouse as if it was a real
game controller. This means that you can use the mouse with most software
that is designed for use with standard game controllers. We'll see how to do
this later in the chapter.

The Apple Mouse

What is a mouse, anyway? Well, it's simply another input device that can
be used to transmit useful information to the //c. The information that it
transmits, however, is not like the ASCII codes that a keyboard delivers, or
the 8-bit bytes of data that a disk drive delivers, but rather is information
relating to the position of the mouse on a two-dimensional X-Y plane (that's
mathtalk for desktop). Software can easily be written to translate the mouse's
position into a coordinate on the video screen so that a cursor or pointer can
be displayed that keeps in step with the movement of the mouse.

One of the main advantages of mouse-based software is that you usually
don't have to use the keyboard in order to select options or enter commands.
Instead, all you have to do is move the mouse until the screen pointer is
positioned in the area of the screen that contains the symbolic representation
of the command you want performed (either a pictorial icon or a command

265

266 c:::J Inside the Apple //c -----------------

phrase), and then click the mouse button. People who can't type like this
technique a lot! As all users of the Apple Macintosh computer know, mouse
driven software can also be incredibly easy to learn.

As far as the //cis concerned, the mouse is a port 4 device. This means that
the firmware that controls it can be accessed by using the Applesoft PR#4
and IN#4 commands. We'll see examples of this later on in this chapter.

How the Mouse Works

The mouse is quite an interesting device. The actual mouse unit itself is a
small, rectangular, box-like structure with a flat push button on top. The
status of the mouse button ("pressed" or "not pressed") can be monitored by
reading a special I/0 location in the lie's memory. Electrical signals from the
mouse unit are transmitted to the mouse connector at the back of the //c
through a long cord (the ''tail").

Inside the mouse is some special electronic circuitry that is responsible for
translating the motion of the mouse into a stream of electrical signals that
the //c can decode and transform into horizontal (X) and vertical (Y) coordi
nate information. This information can then be used to position a cursor or a
pointer on the video screen.

If you turn the mouse unit over, you will see a small rubber ball poking out
of a cavity inside. When the mouse is moved across the table, this ball rotates;
it is this rotational movement that allows the mouse to transfer positional
information to the //c.

Inside the cavity that the ball occupies are two small, cylindrical rollers
that have been arranged at a 90 degree angle to one another so that one will
turn when the mouse is moved in an up/down (Y) direction and the other will
turn in response to left/right (X) movement. Of course, if the mouse is moved
diagonally, then both rollers will be set in motion.

Passing through the centre of each roller is a long metal axle, one end of
which is connected to the centre of a small flat disk that has several slits
symmetrically arranged around its circumference. As the roller turns, so does
the axle and the disk. The movement of the disk will cause a narrow beam of
light that is aimed from a tiny infrared light source on one side of the disk to
a photoreceptor on the other side to alternately pass through unaffected or
be blocked, depending on whether or not a slit is in the path of the beam.
Thus, the electrical output from the photoreceptor will either be 1 (light beam
not blocked) or 0 (light beam blocked) and a square wave signal will be
generated when the mouse is moved. This square wave is passed down the
mouse's tail to the //c where it can be used to generate a 65C02 IRQ interrupt
on each rising edge (or, alternatively, each falling edge) of the square wave.
The two square waves that are generated (one for each roller) are called X0
and Y0.

----------- 10/ Mouse and Game Controller Input ~ 267

When an interrupt is generated by movement of the mouse, you can deter
mine the axis of movement (X or Y, or both) by examining two 1/0 status
memory locations. Electronic circuitry inside the mouse also provides infor
mation on the direction of movement along each axis (up or down, left or
right) and this information can be read by examining two other 110 memory
locations.

The //c has a special built-in interrupt-handling subroutine that responds
to mouse interrupts and is responsible for monitoring the mouse's position
and button status. Whenever a program needs updated mouse information,
it simply calls a built-in firmware subroutine. We will be looking at how to
do this later in this chapter.

Mouse Operating Modes

The mouse can be operated in one of four fundamental modes:

• Passive (or transparent) mode

• Movement interrupt mode

• Button interrupt mode

• Movement or button interrupt mode

A mode is selected by sending a command to the port 4 firmware that is
built-in to the //c. We will see how to do this in later sections of this chapter.
(In summary, it involves calling a subroutine called SETMOUSE with a mode
control byte in the accumulator.)

If you will be using one of the interrupt modes, then you must make abso
lutely sure to install an interrupt-handling subroutine first. As we saw in
Chapter 2, this can be done by loading the subroutine into memory and then
placing its starting address in locations $3FE and $3FF (low-order byte first).
If you don't do this, you will likely enter limbo when the first interrupt occurs.

You should note that mouse interrupts are synchronized with the lie's
vertical blanking (VBL) interrupt signal that we briefly discussed in Chapter
7. This means that a mouse interrupt signal will not actually be recognized
until such time as the video display starts a vertical retrace operation (this
happens every 1160 of a second).

Passive (Transparent) Mode

In passive mode, the mouse position and button status are constantly being
updated "behind the scenes" and no interrupts are passed through to a user
installed interrupt-handling subroutine when they change. It is the respon
sibility of the program that is running to periodically read the mouse coor
dinates and button status to see if they have changed.

268 c=J Inside the Apple //c ----------------

You should note, however, that even in passive mode, mouse interrupts are
still occurring since this is the only way in that the //c can properly track
mouse motion. These interrupts are serviced internally, however, and are not
passed through to the user.

Movement Interrupt Mode

If movement interrupt mode is selected, the //c will pass control to your
own interrupt-handling subroutine whenever the mouse is moved. This sub
routine can identify the source of the interrupt as the mouse button by calling
the READMOUSE subroutine and then checking to see if bit 1 of MOUSTAT
($77C) is set to 1. The READMOUSE subroutine and the MOUSTAT status
location will be discussed in detail later in this chapter.

Button Interrupt Mode

At the beginning of this chapter, when we reviewed how the mouse works,
we mentioned that the mouse generates interrupts whenever it is moved. We
did not mention, however, anything about a button interrupt signal. There
was a very good reason for this, of course: the mouse button has not been
designed to generate interrupts! How then can a button interrupt mode be
supported? With software mirrors of course!

When button interrupt mode is selected, the //c automatically enables the
VBL interrupts and when such an interrupt occurs, the status of the mouse
button is examined. If the button is being pressed, the //c passes control to
your own interrupt-handling subroutine that can identify the source of the
interrupt as the mouse button by calling the READMOUSE subroutine and
then checking to see if bit 2 of MOUSTAT ($77C) is set to 1.

Movement or Button Interrupt Mode

This mode is simply a combination of the movement interrupt mode and
the button interrupt mode. In this mode, a 65C02 interrupt will be passed
through whenever the mouse button is pressed or the mouse is moved.

Vertical Blanking Interrupts

It is also possible to interrupt the //c every 1/60 second by enabling the
vertical blanking (VBL) interrupt signal. As we saw in Chapter 7, this interrupt
is generated immediately after the video display has been refreshed when the
video electron beam begins retracing to the top left-hand corner of the screen.
The //c allows you to enable or disable VBL interrupts when any other mouse
mode is selected or even when the mouse is off.

----------- 10 I Mouse and Game Controller Input L=:J 269

The Mouse and Applesoft

Perhaps the simplest way to become acquainted with the mouse is to learn
how it can be controlled from an Applesoft program. This is simple because
there are really only three commands with which we need be concerned.
These commands perform the following functions:

• Turning the mouse on

• Turning the mouse off

• Reading the mouse coordinates and the mouse button

If you want the mouse to perform fancier tricks, such as interrupting the
system whenever it is moved or its button is pressed, then you will have to
rely on assembly language instead. Let's leave that particular subject for
later, however. In the meantime, let's look at the three mouse-control func
tions that can be executed directly from Applesoft. These functions are sum
marized in Table 10-1.

Turning the Mouse On

The mouse can be turned on by executing an Applesoft program line that
looks something like this:

HHl PRINT CHR$ <4>;"PR#4": PRINT CHR$<1>

Pretty simple, isn't it? This Applesoft statement simply redirects output to
the port 4 firmware that controls the mouse interface (with a PR#4 command)
and then sends ASCII code 1 (CONTROL-A) to the firmware. This code is
interpreted by the mouse firmware to mean "turn on the mouse." Only when
the mouse is on can its position and button status be read.

After the mouse has been turned on in this way, it is a good idea to execute
a line such as this:

21111/l PRINT CHR$ <4>;"PR#I/l"

in order to ensure that any subsequent output gets sent to the video screen
instead of the mouse firmware. (Change that PR#0 to a PR#3 if you are in
80-column mode.)

You can also turn the mouse on by entering commands from the keyboard
when in Applesoft direct mode (that is, when then"]" prompt symbol is being
displayed). To do this, first enter

PR#4 [return]

and then press [control-A] followed by the [return] key. After you've done
this, enter

Table Ut-1. Controlling the mouse from Applesoft.

Mouse ON:

100 PRINT CHR$ C4); 11PR#4 11 :PRINT CHR$(1)

PR#4 [return] [control-A] [return] PR#0 [return]

Mouse OFF:

100 PRINT CHR$ C4>; 11 PR#4 11 :PRINT CHR$(0)

PR#4 [return] [control-®] [return] PR#0 [return]

Mouse READ:

100 PRINT CHR$ C4); 11 IN#4 11

200 INPUT 1111 ;X,Y,B

X is the horizontal mouse position (0 ... 1023).
Y is the vertical mouse position (0 ... 1023).
B is the button status code (see Table 10-2).

+- program line

~

D
:::::1
!!!.
a.
CD -=r
CD
)>
"0
"0
<D

+- from the keyboard :::::
0

+- program line

+- from the keyboard

----------- 10 I Mouse and Game Controller Input CJ 271

PR#f(J [return]

or

PR#3 [return]

to redirect output to the video screen.

Turning the Mouse Off

The procedure to follow to turn the mouse off is as simple as the one used
to turn it on. To turn it off, execute the following program line:

1(()(() PRINT CHR$ <4>;"PR#4": PRINT CHR$((())

The mouse firmware interprets ASCII code 0 (the null) as the mouse off
command. The above line should always be followed by one that redirects
output to the video display:

2(()(() PRINT CHR$ <4>;"PR#f(J": REM 4(()
COLUMN DISPLAY ON

or

2(()(() PRINT CHR$ <4>;"PR#3":REM 8(()
COLUMN DISPLAY ON

The series of keyboard commands that can be entered to turn off the mouse
are as follows:

PR#4 [return]
[control-@] [return]
PR#f(J [return] or PR#3 [return]

Reading the Mouse

Now we know how to turn the mouse on and off. This information isn't
much good to us, however, unless we also know how to read the data that
defines the mouse's position and the status of its button. Read on to find out
how to do this.

Before valid mouse data can be read, the mouse must be turned on as
described above. When the mouse is on, its data can be read by selecting the
mouse firmware in port 4 for input by executing a program line like this:

1(()(() PRINT CHR$ <4>;"IN#4"

Once this has been done, the current X andY coordinates of the mouse, and
the status of its button, can be read by executing the following statement:

2(()(() INPUT "";X,Y,B

where X, Y, and B represent any three Applesoft numeric variables. You
should note two important features of this INPUT statement:

272 CJ Inside the Apple //c -----------------

• The null string in the INPUT statement has been included to prevent the
display of the question mark prompt that an INPUT statement usually
uses.

• The three variables are all part of the same INPUT statement. The
variables cannot be read in with separate INPUT statements.

After the INPUT statement has been executed, the mouse's horizontal (X)
position will be in variable X, the vertical (Y) position in variable Y, and the
mouse button status code in variable B.

The X andY coordinates of the mouse will be in the range 0 ... 1023. The
absolute value of the button status code represents the current status of the
mouse button and its status the last time the mouse was read. These status
codes are summarized in Table 10-2.

Table 10-2. Button status codes for the mouse.

Status
Code*

1
2
3
4

Description

Button is being pressed and was pressed last time.
Button is being pressed and was released last time.
Button is released and was pressed last time.
Button is released and was released last time.

*Absolute value. If the status code is negative, then a key has been pressed.

For example, if the button status code is 3 (or -3), then the mouse button
is not being pressed, but it was being pressed the last time that you requested
mouse data.

If any key that generates an ASCII code has been pressed on the lie's key
board, then the button code will be negative. In this situation, you should
always read the keyboard (with a PEEK(49152) command) to get the keystroke
and then clear the keyboard strobe (with a POKE 49168,0 command). If you
don't clear the keyboard strobe, then the button code will remain negative
even though no new key has been entered.

A Sample Program

All of the techniques we have described above have been used in the pro
gram called MOUSE.DEMO in Table 10-3. The body of this program is a
simple loop that continually reads the mouse and displays its current X and
Y coordinates and button status code on the screen.

Move the mouse around on your desktop while this program is running and
notice how the X andY coordinates change. As expected, they always range
between 0 and 1023.

---------- 10 I Mouse ancl Game Controller Input c=J 273

Table 10-3. MOUSE.DEMO-a program to demonstrate how to read
the mouse from an Applesoft program.

0 REM 11 MOUSE.DEM0 11

100 D$ = CHR$ <4>
110 KB = 49152: REM KEYBOARD I/O

LOCATION
120 KS = 49168: REM KEYBOARD ST

ROBE I/0 LOCATION
130 TEXT : PRINT CHR$ <21>: HOME

: POKE 34,3
140 PRINT 11 APPLE //c MOUSE DEMO

[Press ESC to endl 11

150 PRINT 11 X VALUE Y VALU
E BUTTON ..

160 PRINT D$; 11 PR#4 11 : PRINT CHR$
<1>: PRINT D$; 11 PR#0 11 : REM TU
RN ON MOUSE

170 PRINT D$; 11 IN#4 11 : REM READ M
OUSE

180 INPUT 1111 ;X,Y,B
190 IF B < 0 THEN KY = PEEK <K

B>: POKE KS,0: IF KY = 155 THEN
230

210 VTAB 5: PRINT X, Y, B
220 GOTO 180
230 PRINT D$; 11 IN#0 11 : REM DON'T

READ MOUSE
240 TEXT . HOME : END .

You will also notice that the button status code is 4 if you haven't touched
the mouse button; referring to Table 10-2, this means "the button is released
and it was released the last time, too." If you quickly press the mouse button
and then release it (that is, you "click" it), however, the button status will
first change to 2, and then 3, before returning to 4 again. If you press the
mouse button, keep it down for a while, and then release it (that is, you
"press" it), the button status will first change to 2, then to 1 until you release
the button, then to 3, and finally back to 4. You can see that these codes make
sense by referring to their descriptions in Table 10-2.

The Mouse and Assembly Language

Controlling the mouse from an assembly-language program would be a
rather complex chore if it was necessary to write the fundamental 110 drivers

274 c=::J Inside the Apple lie ----------------

needed to communicate with it. Fortunately, the lie's firmware contains a set
of eight useful subroutines that can be used to control the mouse without the
necessity of dealing directly with machine-specific 110 locations. The starting
addresses for th~se subroutines are stored in the form of offsets from the start
of page $C4 of memory in a table beginning at location $C412 in the lie's ROM
area. Thus, if an entry in this table is $3D, the starting address for the
subroutine defined by that entry is $C43D. The names for these subroutines,
and their positions in the table of offsets is shown in Table 10-4.

Table 10-4. Offset locations for mouse subroutines.

Subroutine Name

SETMOUSE
SERVEMOUSE
READMOUSE
CLEARMOUSE
POSMOUSE
CLAMPMOUSE
HOMEMOUSE
INITMOUSE

Location Where Offset Stored

$C412
$C413
$C414
$C415
$C416
$C417
$C418
$C419

The easiest way to call a mouse subroutine is to store its starting address
in two consecutive memory locations (low-order byte first, of course) and then
use an indirect JMP instruction to pass control to it. For example, if you
determine the starting address to be $C43D, then you can call the subroutine
by storing $3D in location $300, $C4 in location $301, and then executing a
"JMP ($0300)" instruction.

You should make it a practice to always communicate with the mouse by
using the built-in niouse subroutines in this way. If you do, then your software
will be compatible with the version of the mouse used with earlier members
of the Apple II family.

Mouse Screen Hole Locations

The mouse firmware makes use of several main memory screen holes for
data storage. As you will recall from Chapter 7, screen holes are memory
locations that, although they are located within the lie's primary text page
from $400 ... $7FF, are not used for video display purposes and are not
affected by the lie's built-in video output subroutines. The main memory
screen holes used by the mouse firmware are summarized in Table 10-5. The
corresponding locations in auxiliary memory are also used by the mouse for
the storage of default parameters.

----------- 10 I Mouse and Game Controller Input c::::J 275

Using the Mouse Subroutines

There are three important points to keep in mind before a mouse subroutine
is called:

• 65C02 interrupts must be disabled before calling the subroutine and
re-enabled after the subroutine ends. A program that does this will
look something like this:

PHP ;Save status
SEI ;Disable interrupts

[call mouse subroutine]

PLP ;Restore status
(including interrupts)

• The mouse X coordinate, MOUXL ($47C) and MOUXH ($57C), Y coor
dinate, MOUYL ($4FC) and MOUYH ($SFC), and status byte, MOUSTAT
($77C), must be moved to data areas within your program before re
enabling interrupts after calling a mouse subroutine. If you don't do this
and you try to read mouse data directly from the screen holes after calling
a mouse subroutine, the data you read will be wrong if another mouse
interrupt occurs before you have done so.

• The 65C02 X andY registers must be set equal to $C4 and $40, respectively
("4" is the mouse port number). ·

Comparing the //c Mouse with the //e Mouse

Before we take a close look at each of the mouse subroutines, let's outline
the important differences between the llc mouse and the mouse that is used
with earlier members of the Apple II family (for convenience, we'll call it the
"lie mouse").

The lie mouse is interfaced to the Apple lie through an interface card that
is inserted into one of its seven peripheral expansion slots. This card contains
a special microprocessor that is solely responsible for monitoring the status
of the mouse and for sending an active interrupt signal to the IRQ line on the
lie's 6502 microprocessor only when a mouse interrupt mode has been selected.
When current mouse data is needed, it must be transferred from this interface
card into the lie's screen hole locations.

The llc, on the other hand, contains no alternative microprocessor dedicated
to the control of the mouse. Mouse control is the responsibility of the same
6SC02 that executes all your programs. In order to keep tabs on what the
mouse is up to, the llc fixes things up so that a 65C02 IRQ interrupt signal is
always generated whenever the mouse is moved. The llc's built-in interrupt-

Table 10-5. Screen holes used by the mouse firmware.

Location Symbolic
Hex (Dec) Name

$478 MINL
$4F8 MINH
$578 MAXL
$5F8 MAXH

$47C MOUXL
$4FC MOUYL
$57C MOUXH
$5FC MOUYH
$67C MOUARM
$6FC
$77C MOUSTAT

Description

Clamping minimum to set (low)
Clamping minimum to set (high)
Clamping maximum to set (low)
Clamping maximum to set (high)

X coordinate (low)
Y coordinate (low)
X coordinate (high)
Y coordinate (high)
Interrupt "arming" byte
[reserved]
Mouse status byte:

bit 7: 1 = mouse button down
bit 6 : 1 = mouse button down on last read and is still down
bit 5 : 1 = mouse has moved since last read
bit 4 : [reserved]
bit 3 : 1 = VBL interrupt has occurred
bit 2 : 1 = button interrupt has occurred
bit 1 : 1 = movement interrupt has occurred
bit 0 : [reserved]

~

0
::J
~.
a.
<D -::J"
<D
)>
"0
"0
<D
:::::::
()

$7FC

$47D
$4FD
$57D
$SFD
$67D
$6FD
$77D
$7FD

MOUMODE

MIN XL
MINYL
MINXH
MINYH
MAXXL
MAXYL
MAXXH
MAXYH

Mouse mode byte:
bit 7 : [reserved]
bit 6 : [reserved]
bit 5 : [reserved]
bit 4 : [reserved]
bit 3 : 1 = VBL interrupts enabled
bit 2 : 1 = button interrupts enabled
bit 1 : 1 = movement interrupts enabled
bit 0 : 1 = mouse on

X clamping minimum (low)
Y clamping minimum (low)
X clamping minimum (high)
Y clamping minimum (high)
X clamping maximum (low)
Y clamping maximum (low)
X clamping maximum (high}
Y clamping maximum (high)

......
0

s::
0
c:
en
CD
Ill ::s
a.
G>
Ill
3
CD
0
0
::s -Q.
iD ..,
:;

"'C
c: -
0
~

278 C] Inside the Apple //c ______ .:..__ _________ _

handling subroutine traps this interrupt before it can get to the user-installed
interrupt-handling subroutine, updates the mouse's X andY coordinates in
the main memory screen holes, and changes MOUSTAT ($77C) to reflect the
new status of the mouse. This interrupt is only passed on to the user-installed
interrupt-handling subroutine if a mouse movement interrupt mode is active.
Mouse button interrupts are generated by enabling VBL interrupts when this
mode is selected, polling the button I/0 location, RD63 ($C063), whenever a
VBL interrupt occurs, and passing the interrupt through if the button is being
pressed.

The key differences between the //e mouse and the //c mouse are as follows:

• The //e mouse never tries to interrupt the 6502 unless a mouse interrupt
mode is active; the //c mouse always tries to interrupt the 65C02 when
the mouse is moved (assuming that the mouse is on, of course).

• The current data for the //e mouse is stored on the mouse interface card
until it is specifically transferred to the main memory screen holes; the
current data for the //c mouse is always found in the main memory screen
holes.

• The //c mouse will not appear to function in passive mode if 65C02
interrupts have been disabled with a SEI instruction because its move
ment interrupts will be ignored; the state of the interrupt flag has no
effect on the operation of the //e mouse in passive mode.

In the descriptions of the mouse subroutines that follow, you will see ref
erences to "mouse position registers." These are the mouse data registers that
are located on the //e mouse interface card only; they do not exist on the //c.
It is important, however, to pretend that they do exist on the //c so that any
software that you do develop will work properly with the //e mouse. For
example, the READMOUSE subroutine is used to transfer data from the
mouse position registers to the screen hole locations corresponding to the X
andY coordinates and the mouse status location. We know that this really
isn't necessary on the //c because those registers don't exist and the current
mouse data is already in the right place, ready to be read, but if you choose
not to call READ MOUSE whenever you want to get mouse data, your program
won't run properly with the //e mouse.

The Mouse Subroutines

Let's take a close look at each of the subroutines right now.

SETMOUSE. This subroutine is used to set up the mouse mode. This is
done by placing the mouse mode code in the accumulator and then calling
this subroutine. The valid modes are as indicated in Table 10-6. On exit, the
65C02 carry flag will be clear if the mode was valid; it will be set if it was
invalid.

----------- 10 I Mouse and Game Controller Input c=J 279

Table 10-6. Valid mouse mode bytes.

Mouse Mode Byte

$00
$01
$03
$05
$07

Description

Mouse off
Passive (transparent) mode
Movement interrupt mode
Button interrupt mode
Movement or button interrupt mode

Note: Add 8 to the mode byte value if vertical blanking interrupts are to be active.

SERVEMOUSE. This subroutine should be called as part of an interrupt
handling subroutine to determine whether the mouse or vertical blanking
signal was the source of the interrupt. If either one was responsible, then the
65C02 carry flag will be clear (0); otherwise, it will be set (1). This subroutine
also sets up the mouse status location, MOUSTAT ($77C), so that it can be
examined to determine the exact type of mouse interrupt that occurred. A
complete description of MOUSTAT can be found in Table 10-5.

READMOUSE. This subroutine must be called to read the mouse position
registers and place them in the memory locations used to store the mouse's
X andY coordinates. These memory locations are as follows:

X coordinate : $47C (low), $57C (high)
Y coordinate : $4FC (low), $5FC (high)

This subroutine also clears bits 1, 2, and 3 ofMOUSTAT ($77C), the interrupt
bits, and adjust bits 5, 6, and 7, the movement and button status bits, as
necessary.

CLEARMOUSE. This subroutine sets the mouse's X and Y coordinates
and position registers to 0. The button and interrupt bits in MOUSTAT ($77C)
are not changed.

POSMOUSE. This subroutine sets the mouse position registers to the
same values stored in its X andY coordinates.

CLAMPMOUSE. This subroutine is used to set the clamping boundaries
for the X andY coordinates. Any mouse position below the clamping mini
mum will automatically be set to that minimum. Similarly, any position
above the clamping maximum will be set to that maximum. Before calling
this subroutine, the new clamping limits must be set up as follows:

$478 (low), $4F8 (high)
$578 (low), $5F8 (high)

for clamping minimum
for clamping maximum

and the accumuJator must be set equal to 0 if the clamping limits for the X
coordinate are being set, or to 1 if the clamping limits for Yare being set.

280 c=J Inside the Apple //c -----------------

HOMEMOUSE. This subroutine changes the mouse position registers to
the coordinates of the upper left corner of the clamping window.

INITMOUSE. This subroutine is normally the one that is called before the
mouse is used. It sets up the initial default values for the mouse: a clamping
window from $0 to $3FF for the X andY coordinates and an initial position
of (0,0).

A Sample Program

The MOUSE.IRQ program in Table 10-7 shows how the mouse subroutines
and mouse interrupts can be handled by an assembly-language program.
When this program is executed, it first stores the address of a mouse interrupt
handling subroutine at $3FE/$3FF, the IRQ user-vector locations. The mouse
is then initialized by calling INITMOUSE.

The mouse button/movement interrupt mode is then set by calling SET
MOUSE with the appopriate mouse mode code ($07) in the accumulator.
Finally, the mouse coordinates are zeroed by calling CLEARMOUSE and
65C02 interrupts are enabled by executing a CLI instruction.

After this has been done, when the mouse is moved or its button is pressed,
the lie's firmware will pass the interrupt that is generated on through to the
IRQHNDL interrupt handler. This subroutine does what all good mouse
interrupt handlers should: it calls SERVEMOUSE to see if the mouse caused
the interrupt. If the mouse is not responsible, the carry flag is set. If it is a
mouse interrupt, then MOUSTAT is examined to see what caused it (a move
ment or a button press). If it is a movement interrupt (bit 1 of MOUSTAT is
1), then a "M" is displayed on the video screen; if it is a button interrupt (bit
2 of MOUSTAT is 1), then a "B" is displayed.

You should take particular note of the MOUSER subroutine that is called
to execute all mouse subroutines that MOUSE.IRQ uses. On entry to MOUSER,
the X register must contain the number of the mouse subroutine that is to be
called; this number is simply the relative position of the subroutine's offset
within the table starting at $C412 (0 for SETMOUSE, 1 for SERVEMOUSE,
and so on). MOUSER gets the proper offset and stores it at MOUSE so that
the subroutine can be jumped to with a "JMP (MOUSE)'' instruction. It then
disables interrupts and calls the mouse subroutine before ending.

The Mouse as a Joystick

Many games available for the //c require the use of a game controller or a
joystick. (A joystick is essentially the same as two game controllers, one that
controls the X direction and the other that controls theY direction.) Since
these devices can only be connected to the same interface that the mouse uses,

Table 10-7. MOUSE.IRQ-an example of how to use the mouse subroutines and handle mouse
interrupts.

1 *************
2 * MOUSE.IRQ *
3 *************
4
5 MOUSTAT EQU $77C ;Mouse status byte
6
7 MTABLE EQU $C412 ;Start of mouse ROM table
8
9 * Mouse subroutine numbers:
10 SETM EQU B
1 1 SERVEM EQU 1
1 2 READM EQU 2
1 3 CLEARM EQU 3
1 4 POSM EQU 4
1 5 CLAMPM EQU 5
16 HOMEM EQU 6
1 7 INITM EQU 7
18
19 IRQLOC EQU $3FE ;User IRQ vector
20
21 COUT EQU $FDED ;Standard output
22
23 ORG $30B
24
25 * Install the interrupt handler:
26

0300: A9 1 D 27 LDA #<IRQHNDL
0302: 8D FE 03 28 STA IRQLOC
0305: A9 03 29 LDA #>IRQHNDL

(continued)

.....
0_

s::
0
c:
en
CD
Ill
::J
c.
G)
Ill
3
CD
(')
0
~
0

CD
5"

"'0

s.

0
N co

Table 18-7. MOUSE.IRQ-an example of how. to use the mouse subroutines and handle mouse
interrupts (continued).

8387: 8D FF .83 38
31
32
33

838A: A2 87 34
038C: 28 41 03 35

36
838F: A2 88 37
8311: A9 87 38
8313: 28 41 83 39

40
8316: A2 ~3 41
&318: 20 41 &3 4a

43
B31B: 58 44
831C: 68 45

46
47
48
49

8310: 48 58
831E: SA 51
831F: 48 52
8328: A2 01 53
8322: 28 41 03 54
0325: BB 16 55
8327: AD 7C 07 56
032A: 4A 57
032B: 4A 58

STA I RGLOC+ 1

* P~epare the mouse:

LDX #INITM
JSR MOUSER

LDX #SETM
LDA #$87
JSR MOUSER

LDX #CLEARM
JSR MOUSER

CLI
RTS

;Initialize the mouse

;(Movement/button interrupt mode)
;Set the mouse mode

;Clear mouse position

;Enable 6582 interrupts

***************************~*****
* This is the interrupt handler *

IRGHNDL PHA

TXA
PHA
LDX
JSR
BCS
LDA
LSR
LSR

#SERVEM
MOUSER
I NTEX IT
MOUSTAT

;Service mouse interrupt
;Branch if not mouse interrupt
;Get status

;Movement bit in carry

N

~

D
::::1
en
0:
<D -· =r
<D
)>
"0
"0
CD"
::::::
0

032C: 90 07 59 BCC CHECKBTN ;Branch if no movement
032E: 48 60 PHA
032F: A9 CD 61 LOA #$CD
0331 : 20 ED FD 62 JSR COUT ;Display "M"
0334: 68 63 PLA
0335: 4A 64 CHECKBTN LSR ;Button bit in carry
0336: 90 05 65 BCC I NTEX IT ;Branch if no press
0338: A9 C2 66 LOA #$C2
033A: 20 ED FD 67 JSR COUT ;Display "B"
0330: 68 68 INTEXIT PLA
033E: AA 69 TAX
033F: 68 70 PLA
0340: 40 71 RTI ;<Don't use RTS! !) 0

72
..._

s:::
73 ** 0

74 * MOUSER executes the mouse subroutine
c

* (/)
CD

75 * specified by the code in the X * Ql

76 * register. *
::J
0.

77 ** G>
Ql

0341 : 48 78 MOUSER PHA 3
342: BD 1 2 C4 79 LOA MTABLE,X ;Get low byte of subroutine addr CD

()

345: 80 65 03 80 STA MOUSE ; and set up for indirect JMP. 0
::J

348: 68 81 PLA
0

349: 08 82 PHP m
34A: 78 83 SEI ;Interrupts off for this! !

34B: 8E SC 03 84 STX X SAVE 3"
"0

34E: 8C 50 03 85 STY YSAVE s.
351 : 20 SE 03 86 JSR DOMOUSE ;Execute subroutine
354: AC 50 03 87 LOY YSAVE 0 357: AE SC 03 88 LOX X SAVE
35A: 28 89 PLP
35B: 60 90 RTS N

Q)

91 (continued) (o)

Table 18-7. MOUSE.IRQ-an example of how to use the mouse subroutines and handle mouse
interrupts (continued).

92 X SAVE OS
93 YSAVE OS
94

035E: A2 C4 95 OOMOUSE LOX #$C4
0360: A0 40 96 LOY #$40
0362: 6C 65 03 97 JMP <MOUSE>

98
99 MOUSE OS 1 ;Subroutine address <low)

0366: C4 100 OFB $C4 ;<High part is always $C4)

:
0
:;,
!!!.
a.
<D -=r
<D
)>
-c
-c
(j)
::::::
0

----------- 10 I Mouse and Game Controller Input [=:J 285

you would think that you would have to disconnect the mouse and connect
the game paddles or joystick before you could use these games.

Fortunately, the 1/c can be configured in such a way as to "trick" it into
thinking that the mouse is a joystick. Once the lie has been so configured, the
standard Applesoft paddle reading commands, PDL(0) and PDL(l), or the
system monitor paddle reading subroutine, PREAD ($FB1E), will take their
values from the position of the mouse and will not attempt to read the position
of the non-existent joystick.

If you want the 1/c to interpret the mouse as a joystick, then all you need do
is turn on the mouse in passive mode. You will recall that this can be done
by entering the following series of commands from the keyboard:

PR#4 [return] [control-A] [return] PR#~ [return]

After this has been done, your game disk can be booted and it should work
fine with the mouse. Note, however, that if the software that you are using
does not use the Applesoft PDL(0) and PDL(l) commands or the system mon
itor PREAD subroutine, then this technique will not work.

Mouse 1/0 Locations

The //c supports several soft switch and status locations that can are used
to monitor the status of the mouse and the vertical blanking signal. These are
summarized in Table 10-8.

Since the mouse primarily communicates with the 1/c by generating inter
rupt signals, it is not surprising that most of the mouse I/0 locations have
something to do with interrupts. Most of them perform one of the following
functions:

• Select when an interrupt is to be generated

• Enable and disable interrupts

• Read the interrupt status

• Clear interrupt conditions

• Read the status of the interrupt enable/disable soft S\Vitches

For example, RX0EDGE ($C0SC) and FX0EDGE ($C0SD) can be used to
select whether a mouse interrupt is to occur on the rising or falling edge,
respectively, of the mouse's X0 signal. The corresponding locations for the Y0
signal are RY0EDGE ($C0SE) and FY0EDGE ($C05F).

Mouse X0 and Y0 interrupts can be enabled by accessing ENBXY ($C059)
or disabled by accessing DISXY ($C058). Similarly, vertical blanking inter
rupts can be enabled by accessing ENVBL ($C0SB) or disabled by accessing
DISVBL ($C0SA).

Note that the eight soft switches we have just referred to (from
$C058 ... $C05F) can only be used if IOUDISOFF ($C07F) is first written to.

Table 10-8. Mouse Soft Switch and Status 1/0 Locations.

Address
Hex (Dec) Usage

$C015 (49173) R7

$C017 (49175) R7

$C019 (49177) R7

$C040 (49216) R7

$C041 (49217) R7

$C042 (49218) R7

$C043 (49219) R7

Symbolic Name

MOUSEXINT

MOUSEYINT

VB LINT

RDXYMSK

RDVBLMSK

RDX0EDGE

RDY0EDGE

Action Taken

1 = mouse X0 interrupt has occurred
0 = no mouse X0 interrupt
1 = mouse Y0 interrupt has occurred
0 = no mouse Y0 interrupt
l = a VBL interrupt has occurred
0 = no VBL interrupt

1 = mouse interrupts enabled
0 = mouse interrupts disabled
1 = VBL interrupts enabled
0 = VBL interrups disabled
1 = interrupt on falling X0 edge
0 = interrupt on rising X0 edge
1 = interrupt on falling Y0 edge
0 = interrupt on rising Y0 edge

$C048 (49224) R RSTXY Clear X0/Y0 mouse interrupt condition

[The action taken for the soft switches from $C058 ... $C05F is only taken if access has first been enabled by
writing to IOUDISOFF ($C07F).]

$C058 (49240) RW DISXY
$C059 (49241) RW ENBXY
$C05A (49242) RW DISVBL
$C05B (49243) RW ENVBL
$C05C (49244) RW RX0EDGE
$C05D (49245) RW FX0EDGE
$C05E (49246) RW RY0EDGE
$C05F (49247) RW FY0EDGE

Disable mouse X0/Y0 interrupts
Enable mouse X0/Y0 interrupts
Disable VBL interrupts
Enable VBL interrupts
Interrupt on rising mouse X0
Interrupt on falling mouse X0
Interrupt on rising mouse Y0
Interrupt on falling mouse Y0

N
Q)
C»

0
:I
(/)

c:
<D
:::T
<D
)>
"0
"0
(i)
:::::::
()

$C063

$C066
$C067
$C070
$C07E
$C07F

(49251)

(49254)
(49255)
(49264)
(49278)
(49279)

R7

R7
R7
R
w
w

RD63

MOUX1
MOUY1
PTRIG
IOUDISON
IOUDISOFF

1 = mouse button is not pressed
0 = mouse button is pressed
1 = mouse has moved to right
1 = mouse has moved up
Clear the VBL interrupt condition
Disable $C058-$C05F IOU access
Enable $C058-$C05F IOU access

NOTE: The "Usage" column in the above table indicates how a particular location is to be accessed:

"W" means "write to the location."
"R" means "read from the location."
"RW" means "read from or write to the location."
"R7" means "read and check bit 7 to determine the status." ~

0

s:::
0
c:
~
Ill
::I
c..
G)
Ill
3
CD
()
0
::I
Q.
(i)
.....
::I
'0
c:

0
N

~

288 c=J Inside the Apple //c -----------------

When an interrupt occurs, it is nice to know what caused it. This can be
deduced by examining one of several status I/0 locations. If the interrupt was
caused by the up/down movement of the mouse, bit 7 of MOUSEYINT ($C017)
will be 1 (that is, if you PEEK this location, the result will be greater than
127). The corresponding location to check for left/right movement is MOUS
EXINT ($C015). Vertical blanking interrupts can be detected by examining
bit 7 ofVBLINT ($C019).

After an interrupt signal is generated, it must be cleared by reading another
I/0 location. If this is not done, then other interrupt signals will be generated
even though no new interrupt has actually occurred. A mouse movement
interrupt condition can be cleared by reading RSTXY ($C048). A vertical
blanking interrupt can be cleared by reading PTRIG ($C070).

You can always determine exactly how the interrupt disable/enable switches
have been configured by examining bit 7 of another set of status locations. To
check whether mouse movement interrupts are enabled, look at RDXYMSK
($C040); if bit 7 is 1, then they are. Similarly bit 7 of RDVBLMSK ($C041)
indicates whether vertical blanking interrupts are enabled. RDX0EDGE ($C042)
and RDY0EDGE ($C043) can be read to determine whether interrupts are to
be generated on the falling or rising edge ofX0 and Y0, respectively.

The direction of mouse movement along an axis can be determined by
reading bit 7 of locations MOUX1 ($C066) and MOUY1 ($C067). If a mouse
X0 interrupt has occurred, bit 7 of MOUX1 will be 1 if the mouse has been
moved to the right or 0 if it has been moved to the left. MOUYl can be
examined after a Y0 interrupt to determine whether the motion was up or
down.

The status of the mouse button can be determined by reading RD63 ($C063).
If bit 7 is 1 then the button is not pressed; otherwise it is.

As you can probably appreciate, writing a program to control the mouse is
a fairly complex chore when you are dealing with the mouse at the lowest
level by directly monitoring I/0 locations. Fortunately, however, you should
never need to use any of these I/0 locations. Instead, you can use the lie's
built-in firmware subroutines and interrupt handler to simplify dialog with
the mouse.

The Game Controller Interface

The game controller interface is a very versatile one. As its name suggests,
it is primarily used to interface devices that allow you to play video games:
devices such as paddles, joysticks, and push buttons. When interfaced to the
appropriate supporting circuitry, however, it can also be used to detect light
levels, measure the temperature, and perform many other interesting and
useful feats.

----------- 10 I Mouse and Game Controller Input c=J 289

5 4 3 2 1
0 0 0 0 0

POLO N.C. GNO -l-5V PB1
9 8 7 6
0 0 0 0

N.C. POL 1 PBO N.C.

NOTES: PB =push button (switch) input
POL =game controller (paddle) input
GND =electrical ground
+5v = +5 volts
N.C. =not used

DB-9 connector
(looking in)

Figure 10-1. Pinout diagram for the game connector.

A pinout diagram for the game connector is shown in Figure 10-1. We will
be referring to this diagram throughout the remainder of this chapter as we
propose several simple interfacing projects that use the signals available
through the game connector.

Of the 9 pins on the main game connector, three are not used, two are used
for the power supply connections (+ 5 volts and electrical ground) and four
are used for one-bit inputs (2 switch inputs and 2 analog inputs). All of these
signals will be discussed in detail in the following sections.

Game Controller Inputs

There are two game controller input pins (also called "paddle" inputs) on
the game connector (PDL0 and PDLl), that are normally used to interface
two game paddles or one joystick to the //c. These inputs are also often referred
to as the analog inputs. Each PDL input is associated with a unique 1/0
memory location, as shown in Table 10-9. Only bit 7 of these locations is
meaningful as we will see shortly.

The game controller inputs are designed to be used with analog devices
capable of changing their internal resistances in the range 0-150K ohms in
response to a physical phenomenon that is to be measured (such as the
position of a game paddle or joystick, the temperature, or air pressure). Such
devices are called "transducers" because they are converting a physical phe
nomenon into an electrical quantity (resistance) that can be quantified by a
digital computer like the //c.

Each PDL input is part of an analog-to-digital (A/D) conversion circuit that
allows an analog resistance value to be converted (by software) into a digital
quantity the //c can handle. The resistor forms part of a simple "RC" (resistor
capacitor) timing circuit that sets the time constant of a special integrated
circuit called a NE556 Timer. When this timer is reset, by accessing PTRIG

290 c=J Inside the Apple //c -----------------

Table 10-9. Game controller 1/0 memory locations.

Address
Hex (Dec) Usage Symbolic Name Action Taken (or Status)

$C064 (49252) R7 PDL0 1 game controller 0 has
not timed out

$C065 (49253) R7 PDLl game controller 1 has
not timed out

$C070 (49264) R PTRIG Reset the game controllers

Note: "R7" means "read and check bit 7 to determine the status."
"R7" means "read from the location."

($C070), bit 7 of each PDL 110 memory location becomes high (1) but will
eventually become low (0) when the timer "times out," that is, the period of
time equal to the time constant for both "RC" circuits has elapsed.

To interface a variable-resistor device, all you need to do is connect one of
its leads to + 5v (pin 2) and the other to one of the PDL input pins. A simplified
diagram for one such circuit is presented in Figure 10-2. Since the maximum
"R" value recommended by Apple is 150,000 ohms and the "C" value is 0.022
microfarad, the maximum time constant for this circuit is 0.022 x 150,000
ohms = 0.0033 second. That is, when the resistance is at its maximum, the
time required for the NE556 Timer to bring bit 7 of the PDL 1/0 memory
location low (0) is about 3.3 milliseconds. The time required to do this will
change whenever the resistance of the device changes because the RC time
constant will also change.

By setting up a program that periodically checks to see whether the NE556
Timer has timed out (by examining bit 7 of the PDL 110 memory location)
and increments a counter if it has not, you can easily convert the resistance
to a numerical value that varies linearly with resistance. In fact, Applesoft's
built-in paddle-reading functions, PDL(0) and PDL(l), do this for you auto
matically-the counter value they return is an integer between 0 and 255.
(You can examine the assembly-language subroutine that these functions use
by looking at the PREAD ($FB1E) subroutine located in the system monitor;
it checks for a timeout condition every 11 microseconds.) You should note,
however, that the PDL functions assume that your input resistance is in the
range 0-150K ohms. This roughly translates to a time constant that ranges
from 0 to 2.8 milliseconds and to PDL readings between 0 and 255. (Remember
that the PDL subroutine's counter increments every 11 microseconds until
the timer has timed out. This means that the maximum allowable time
constant is 255*11 microseconds, or 2.8 milliseconds.) If the upper limit of
the resistance is higher than 150K ohms, then there will be a "dead area"
where the resistance may change but the value calculated stays at 255; if it
is lower, then the highest PDL value that can be generated will be less than
255.

PDL 1/0
LOCATION
$C064 (#0)
$C065 (#1) NE556

TIMER

PTRIG
($C070)

1 _L_ (~ +5 volts

C = 0.022 pF r t (pin 2)
T R = 0-150K ohm

(variable resistor)

PDL INPUT
pin 5 (#0)
pin 8 (#1)

NOTE: the RC time constant varies from 0 to 3.3 milliseconds.

Figure 10-2. Block diagram of game controller circuitry.

.....
0_

~
0
c:
(/)
(1)

lll
:::1
a.
G)
lll
3
(1)

()
0
~
0

co
:::1

"0

s.

D
N
CD

292 c=::J Inside the Apple //c -----------------

The PTRIG ($C070) signal initiates the AID conversion procedure for both
game controller circuits at the same time. Since the NE556 Timer will time
out at different times for each game controller (unless their resistances are
·identical), it is possible that after reading one PDL value that the other game
controller is still timing out. If an attempt is made to read this other controller
immediately after reading the first one, only the time needed to complete the
timing-out process from the first PTRIG will be measured. This leads to a
spurious game controller signal that is lower than expected. To avoid this
"crosstalk" between paddles, you should wait about 3 milliseconds before
reading the other game controller; this delay gives the other game controller
a chance to time out. This can be done in Applesoft by placing a short FOR/
NEXT loop between the two PDL functions. Here is an example of how to do
this:

1 Ill Ill X = P D L < Ill > : F 0 R I = 1 TO 1 Ill : N E X T : Y = P D L < 1 >
Two devices that are commonly interfaced to the game controller inputs

are the game paddle and the joystick. A game paddle is a device that controls
the signal at one PDL input only; it typically takes the form of a knob that
you can rotate with your hand. As the knob is rotated, the resistance value
changes linearly. A joystick allows you to control both PDL inputs at once in
such a way that the two-dimensional position of the joystick can be easily
detected by reading the two game controller values.

There is no reason to restrict the game controller inputs to use with game
paddles and joysticks, however. Any device that provides a fluctuating resis
tance value within the 0-150K range could also be interfaced and its resis
tance converted to a value between 0 and 255 using the Applesoft PDL()
commands or their assembly-language equivalents.

Examples of two such useful devices are a thermistor and a photoresistor.
A thermistor is a device that changes resistance with temperature. Several
types of thermistors are available, including types that will generate resis
tances within the 0-150K ohm range for most temperatures that you would
want to measure. Unfortunately, most thermistors are not sensitive to small
temperature changes, such as those that might occur in a home, so the range
of PDL values read may not be large. In addition, the values generated may
not vary linearly with temperature. Nevertheless, you can calibrate the ther
mistor by preparing a table of actual temperatures (measured with a standard
thermometer) and their associated paddle readings. This will at least allow
you to estimate the temperature from a given "paddle" reading.

A photoresistor is a device that changes resistance with the amount of light
shining on it. The greater the light intensity, the lower the resistance. You
would calibrate this device by preparing a table of light intensities (as mea
sured by a light meter) and their assodated "paddle" readings.

Let's hook up a photoresistor to the game connector to show you how it
works. A handy photoresistor to use is a cadmium sulfide one that is readily
available from Radio Shack (part number 276-116). All you have to do to

----------- 10 I Mouse and Game Controller Input C=:J 293

interface it to a game controller input, say PDL0, is to connect one leg of the
photoresistor to + 5 volts (pin 2) and the other leg to PDL0 (pin 5). Once you
have done this, you can read its current setting by using the Applesoft PDL(0)
command. Enter the following program and then run it:

100 PRINT PDL <0>
200 GDTO 100

While the program is running, turn off the room lights to verify that the
"paddle" value increases when there is less light. If you have a dimmer light
switch, slowly turn the light intensity up and see how the value slowly decreases
until it goes to 0 in very bright light.

Push Button Inputs

There are two one-bit input ports on the game connector that are normally
used to read the state of external switches connected to them. These are the
so-called "push-button" input ports. These ports, and the switches them
selves, are usually referred to by their descriptive names: PB0 and PB1 (or
sometimes SW0 and SWl).

The //c assigns one 1/0 memory location to each of the push-button input
ports, but only bit 7 at that location is actually used. These locations are
shown in Table 10-10. By reading the memory location for a particular push
button input (using an Applesoft PEEK or an assembler LDA) and examining
bit 7, you can determine whether a switch is being pressed or not. By conven
tion, if the bit is set to 1, then the switch is considered to be on (that is,
pressed); if it is cleared to 0, the switch is considered to be off(that is, released).
You should note, however, that it is possible for a switch to be connected in
such a way that exactly the opposite result is observed. More on this later.

A switch is a simple electrical component. It is typically used to allow you
to complete an electrical circuit between its two contacts in order to turn
something on and to break this circuit in order to turn something off. (Some

Table 10-10. Push button 1/0 memory locations.

Address
Hex (Dec)

$C061 (49249)

$C062 .(49250)

Usage Symbolic Name Action Taken (or Status)

R7 PB0 1 = push button 0 or
OPEN-APPLE is pressed

R7 PB1 1 = push button 1 or
SOLID-APPLE is
pressed

Note: "R7" means "read and check bit 7 to determine the status."

294 c=J Inside the Apple //c -----------------

switches can have more than two contacts, but we'll ignore them for the
moment.) There are many varieties of switches, but the variety that is com
monly connected to the push button inputs is, you guessed it, the push button.
This is because they are ideally suited as triggers for such video game weap
onry as laser cannons, machine guns, and so on.

Switches can be classified into one of two categories: "momentary contact"
or "fixed contact." A momentary-contact switch is one that returns to its
initial "resting" position immediately after you take your finger off it. All of
the keys on the lie's keyboard (except the CAPS LOCK key) are examples of
such a switch.

A fixed-contact switch is one that can be turned on or off and that will stay
on or off, as the case may be, after you have taken your finger off it. Examples
of fixed-contact switches are the CAPS LOCK key on the lie's keyboard, a
standard light switch, and a toggle switch.

Two other special terms are used to describe the operation of momentary
contact switches: "normally open" and "normally closed." A switch is said
to be normally open if, when it is not being pressed, no connection is made
between its contacts. Conversely, a normally closed switch is one in which
the contacts are closed when it is not pressed.

It is important to know whether the momentary-contact switch that you
wish to interface to the game connector is normally open or normally closed,
because the interface circuit that you must build will be different for each
type of switch. Figure 10-3 sets out the two alternative circuits. These circuits
have been designed in such a way that if the switch is not being pressed, then
the input to the push button pin is grounded and when it is being pressed, it
is connected to 5 volts. This ensures compatibility with Apple's on/off push
button convention referred to earlier.

It is easy to install your favorite type of switch, be it momentary contact or
fixed contact, normally open or normally closed, to the game connector. You
must install it, however, when the power to the 1/c is off! Let's assume you
have a normally open push button switch and you want to install it as PB1.
Following Figure 10-3 (a), connect a wire from one switch contact to the + Sv
line (pin 2 on the game connector), another wire from the other contact to
PB1 (pin 1), and then connect a 1,000-ohm resistor between PB1 (pin 1) and
ground (pin 3). (This resistor ensures that the input to the connector will not
"float" between 1 and 0 when the switch is not pressed and will also prevent
a short-circuit when the switch is pressed.)

You can easily determine whether or not a push button is being pressed by
examining bit 7 of the I/0 memory location that the 1/c reserves for that
button. As explained earlier, if this bit is on (1), then the button is being
pressed; if it is off (0), the button is not being pressed. This means that if you
PEEK this memory location from Applesoft, then the number you read is
greater than or equal to 128 if the button is pressed or less than 128 if it is
not.

---------- 10/ Mouse and Game Controller Input c.::J 295

(a) normally-open push button

.J.:USH BUTTON

PB 11------..-------• • 11 +5 v (pin 2)
Input l

pin 7 (#0) ·
pin 1 (#1) 1000 ohms

GROUND (pin 3)

(b) normally-closed push button
1 PUSH BUTTON

PB ~~~----""T-------,w ~~~ GROUND (pin 3)
Input i

pin 7 (#0)
pin 1 (#1) . 1000 ohms

+5 v (pin 2)

Figure 10·3. Interfacing push buttons to the game

Two keys on the lie's keyboard are actually directly connected to the game
connector's push-button input lines. These are the OPEN-APPLE and SOLID
APPLE keys that flank the space bar. These two keys are connected to PB0
and PBl, respectively.

The presence of these two keys enables you to easily experiment with the
concept of game-paddle switches without having to do any circuit design at
all. Let's write a simple little program to test the status of PB0, the OPEN
APPLE key.

The 110 memory location reserved for PB0 is 49249. To read this location
from an Applesoft program, you would use the PEEK(49249) command. Enter
the following simple Applesoft program and run it:

11HJ IF PEEKC49249>>127 THEN PRINT 11 DOWN WE G0! 11

200 IF PEEKC49249)<128 THEN PRINT II

BACK UP AGAIN! 11

300 GOTO 100

While the program is running, periodically press and release the OPEN
APPLE key. You will find that when it is pressed, the message

DOWN WE GO!

will appear, and that when it is released, you will see the message

BACK UP AGAIN!

By changing the address that is PEEKed, you can easily test the status of
any of the other push buttons, including the one you wired up yourself.

296 c=:::J Inside the Apple //c ----------------

Remember that the switches connected to the push-button inputs on the
game connector need not be push buttons. Any type of switch can be con
nected, including toggle switches, reed switches, blow switches, pressure
switches, and magnetic switches.

Further Reading for Chapter 10

Note: All of the game connector experiments referred to in the following
articles use the 16-pin game connector that is found on the motherboard of
the Apple 1/e, the Apple II Plus, and the Apple II. This connector does not exist
on the //c. However, the connector signals used in the experiments are avail
able on the lie's mouse/game connector.

On paddle input in general ...

P. Baum, "Nibbling at the Game Paddle Port", Nibble, October 1984, pp.
100-105. A comparison of the game paddle circuitry in the Apple //c and
earlier models.

On reading the game paddles ...

B. Sander-Cederlof, "Reading Two Paddles At the Same Time", Apple Assembly
Line, March 1982, p.1. A program to simultaneously read two game paddle
inputs.

On interfacing a lie detector ...

D.B. Curtis, "To Tell the Truth", Kilobaud Microcomputing, August 1981,
pp. 87-89. How to hook up a lie-detecting device to the game paddle
inputs.

On interfacing a joystick ...

"Dual Joysticks for Under $15.00", Nibble, Vol. 1, No.2 (1980), p. 13. How
to hook up a joystick to the game paddle inputs.

On interfacing a thermistor ...

C.J. Kershner, "A Digital Thermometer for the Apple II", Micro, March
1980, p.21. How to hook up a thermistor to the game paddle inputs.

On interfacing a light pen ...

D.J. Lilja, "Build a Simple Light Pen for the Apple II", Byte, June 1983, pp.
395-406. How to hook up a light pen to the push button inputs.

On interfacing a weather map receiver ...

K.H. Sueker, "Apple FAX: Weather Maps on a Video Screen", Byte, June
1984, pp. 146-151. This fascinating article describes how you can receive

----------- 10 I Mouse and Game Controller Input [=:J 297

broadcasted weather maps by connecting some circuitry to a push button
input.

On TTL logic and digital electronics in general ...

D. Lancaster, TTL Cookbook, Howard W. Sams and Co., Inc., 1976.

11
The Serial Interface Ports

Not counting the disk drive, the two most common peripherals attached to
a microcomputer seem to be a printer and a modem. The reasons for the
popularity of printers are obvious, so we won't touch on them here.

Modems are used to communicate with other computers over standard
telephone lines. These computers can be large mainframes that contain enor
mous databases or simply other personal computers like the //c. Modems are
becoming increasingly popular as more people begin to appreciate the con
venience of being able to interactively tap the information stored on a remote
computer, information that would be difficult to locate in any other way.

The //c has two built-in interfaces, called serial ports, that allow devices
such as printers and modems to be easily connected to it. You can take a look
at these ports by turning the //c around so that its back panel is facing you.
Serial port 1 is the special S-pin connector (called a DIN-S connector) near
the far right with the small drawing of a printer just above it Serial port 2 is
on the left side, next to the mouse/game connector, and it has a drawing of a
telephone handset above it.

In this chapter we will be examining in detail how to make use of these
serial ports. Included will be discussions of serial interfaces in general, the
two "6SS1" integrated circuits that simplify the data transmission process,
and the built-in firmware that can be used to control how data is sent to and
read from serial devices such as printers and modems.

Serial Transmission of Data

There are two main methods that are used to transfer data from a computer
to an external device: the parallel method and the serial method.

When the parallel method is used, each bit of a byte is simultaneously
transmitted to the device along eight wires (one for each bit). This method
typically uses a few extra control (or "handshaking") lines: a "busy" line that
the receiver can use to indicate that it is not yet ready to receive more data
and a "ready" line that the transmitter can use to notify the receiver that
data is ready to be sent.

299

300 c:::::=J Inside the Apple //c -----------------

The serial method is the one we are more interested in because it is the one
used by the //c. When this method is used, a byte is decomposed into a series
of bits and transmitted down one wire only; logical" 1 "sand "0"s are differ
entiated by using a different voltage level for each. Handshaking lines similar
to those used in a parallel transfer are also often used to control various
aspects of the communications link.

The RS-232-C Standard

There are probably an infinite number of ways that two serial devices can
be physically connected to permit a useful transfer of information to take
place. Even so, it is very desirable that a standard method be used so that
any serial device can communicate with any other, even if the devices are
manufactured by different companies.

The Electronics Industries Association published its now famous RS-232-C
standard in 1969 in an attempt to define a common hardware protocol to be
used for serial data communications. ("RS-232-C" stands for "recommended
standard number 232, revision C.") This standard defines the functions of the
electrical signals that are permitted to be sent from one serial device to
another, the voltage levels of these signals, and even the physical conn~ctors
that must be used. The //c does not rigidly adhere to the RS-232-C standard,
but the differences will not normally prevent you from communicating with
most serial devices that do.

Data Communications Protocols for Serial
Communications

Even if the hardware link between two serial devices has been properly set
up, the devices will still not be able to understand each other unless they both
use the same protocol for exchange of data.

Such a protocol will first define a transmission speed which is to be used
for sending and receiving the serial bit stream. The speed is called the baud
rate and, for most purposes, is simply equal to the number of bits transmitted
per second. Common baud rates for modems are 110, 300, and 1200. Serial
printers like the Apple Imagewriter operate at 9600 baud.

The protocol will also define the following key factors:

• The character encoding scheme (ASCII, EBCDIC, Baudot)

• The method used to synchronize the data flow

• The number of data bits

• The order in which data bits are transmitted

• The error-checking method used (parity, checksum)

-------------- 11 I The Serial Interface Ports C=::J 301

The protocol that is usually used on microcomputers to transmit data to
another serial device is the one shown in Figure 11-1. This method involves
the transmission (for each byte to be sent) of a stream of bits in the following
order (common values are given in parentheses):

• One start bit

• The data bits (5, 6, 7, or 8)

• An optional parity bit (even, odd, mark, space)

• The stop bit or bits (1, 1.5, 2)

The number of data bits, the parity, and the number of stop bits are said
to define the" data format" of the transmission. The serial receiver and trans
mitter must be using the same data format in order for a successful commu
nications link to be established.

MARK---,

I 001 01 I 021 03 I ::: I On I P I
start data bits parity stop bits

SPACE

bit n = 5, 6, 7, or 8 bit 1, 1.5, or 2
(even, odd,
mark, space

or none)

data flow
Figure 11-1. The asynchronous serial character transmission protocol ..

Let's take a closer look at this protocol right now.

Start Bit

The transmit line is normally kept at a "mark" level (logic "1 ") until a
character is ready to be sent. A" start bit" is then sent by changing the transmit
line to a "space" level (logic "0") for one bit time; this start bit acts as a signal
to the receiver that the data bits for one character are about to follow. When
an asynchronous transmission method (such as the one we are discussing) is
being used, the receiver must be able to recognize when each character being
sent and it is the use of a start bit that allows it to do so.

Data Bits

After the start bit has been sent, the actual data bits are transmitted, one
by one, at the rate dictated by the baud rate. Bit 0 of the byte being transmitted

302 [==:J Inside the Apple //c ----------------

is sent first, then bit 1, bit 2, and so on. The number of data bits which are
sent will depend on the particular data format being used by the two serial
devices; it normally ranges from 5 to 8 bits. When ASCII codes are being
transmitted, 7 or 8 bits are sent; if binary data bytes are being sent, 8 bits
must be sent.

Parity Bit

Once all the data bits have been sent, a parity bit will be sent if the data
format being used requires it. There are four different types of parity schemes
that can be used:

• Mark parity (always 1)

• Space parity (always 0)

• Even parity

• Odd parity

If mark or space parity is being used then the parity bit is always fixed to
1 or 0, respectively. If even parity is used, then the parity bit is adjusted so
that the total number of" 1 "s in the data bits and the parity bit is an even
number. When odd parity is used, the adjustment is made so that the total
number of"1"s is odd. For example, if the data bits being sent are represented
by "10100011", and you are using odd parity, the parity bit would be set to
1; this provides an odd total of" 1 "s (five).

A parity bit is inserted into the bit stream to permit the receiver of the data
to determine if a transmission error occurred. If the receiver is using the same
data format as the transmitter and an incorrect parity bit is received, then
the bit stream must have been inadvertently garbled. Such errors invariably
arise from noise and electrical interference. The parity method of checking
for errors is certainly not foolproof, however, since multiple bit errors could
easily cancel each other out. Far more elaborate methods must be used if you
want to ensure that the data received is, indeed, the same as the data trans
mitted.

Stop Bits

To indicate the end of the transmission of the data byte, the transmitter
sends one or more stop bits to the receiver. These stop bits are equivalent to
"1" bits in that the transmitter signal is kept in the mark state. The number
of stop bits sent will depend on the data format agreed upon between trans
mitter and receiver. The most common values are 1, 1.5, and 2. After the stop
bits have been sent, the transmitter will stay in the marking state until the
next data byte is ready to be sent.

------------- 11 I The Serial Interface Ports c=J 303

Data Transmission Errors

There are three general classes of errors that a receiver of data can easily
detect:

• Framing errors

• Overrun errors

• Parity errors

Framing errors occur when the receiver fails to detect a stop bit when it
expects one. This type of error usually occurs when the receiver and trans
mitter are not using the same data format or baud rate.

Overrun errors occur when a data byte that is received by a serial device is
not read by the microcomputer that controls that device before another byte
arrives.

Parity errors occur if the parity bit that is received is not consistent with
the data bits that have been read. If parity errors consistently occur, then the
transmitter and receiver are probably using different baud rates or data
formats. If they occur occasionally, then they are probably due to transmission
noise that has scrambled the bit stream.

The 6551 ACIA

Each serial port on the //c is controlled by a complex integrated circuit
called a 6551 ACIA (Asynchronous Communications Interface Adapter). The
main functions that the 6551 performs are as follows:

• Parallel to serial conversion of outgoing data

• Serial to parallel conversion of incoming data

• Handshaking control

• Interrupt handling

When you want to send a byte out the serial interface, all you need do is
present it to the 6551. The 6551 automatically converts the parallel data (the
byte) into a serial bit stream and frames it by adding the start bit, the proper
number of stop bits, and the proper parity bit. The 6551 also takes care of
transmitting the bits at the proper baud rate.

A block diagram of the 6551 is shown in Figure 11-2. This diagram shows
the correspondence between the various I/0 lines on the 6551 and the pins on
the DIN-S port connector on the back panel of the //c. Three-character mne
monics are used to refer to the transmit, receive, and handshaking lines used
by the 6551. These mnemonics come from the RS-232-C standard and have
the following meanings: ·

304 c:::=J Inside the Apple //c -----------------

8 data
lines-~-+f

to
6502
IRQ

6551
A CIA

n.c.

RTS

DCD
RXD

TXD

keyboard strobe (port 2)
external interrupt (port 1)

GROUND

DIN-5 connector
on back panel
(looking in)

Recommended pin connections to RS-232-C equipment:

FROM TO
DIN-5 signal Modem (DCE) Printer (DTE)
RTS (pin 1) DTR (20) DSR (6)
TXD (pin 2) TXD (2) RXD (3)
GND (pin 3) GND (7) GND (7)
RXD (pin 4) RXO (3) TXD (2)
DCD (pin 5) DSR (6) DTR (20)

NOTE: The pin numbers given for DCE and DTE refer to pins on the DB-25 connector defined by
the RS-232-C standard.

Figure 11-2. Block diagram of the 6551 ACIA.

TXD-Transmit Data
RXD-Receive Data
RTS-Request to Send
CTS-Clear to Send
DTR-Data Terminal Ready
DSR-Data Set Ready
DCD-Data Carrier Detect

The //c is a member of a class of devices that the RS-232-C standard calls
data terminal equipment (DTE). DTE devices are usually the primary sources
or destinations of data in a communications link; common DTE devices are
terminals and printers. The other class of devices defined by the RS-232-C
standard is called data communications equipment (DCE). DCE devices are
usually data-link intermediaries that are responsible for maintaining a con
nection and passing data between two DTE devices. A modem is the standard
example of a DCE device.

The RS-232-C signals on both DTE and DCE are labeled from the point of
view of DTE only. For example;!, a DCE device does not transmit data on its
TXD line; rather, data is transmitted to it (from a DTE device) on that line.
Similarly, a DCE device does not receive data on the RXD line; in fact, the
DTE device receives data from the DCE device on that line.

-------------- 11 I The Serial Interface Ports c:=J 305

DTE devices are usually connected to DCE devices by an electrical cable
that simply connects each line on the DTE to the corresponding line on the
DCE. However, when two DTE devices are being connected (such as the //c
and a serial printer), you can't do this because both devices would be sending
information on the very same lines. To enable two DTEs (or two DCEs) to
communicate properly, you have to cross some wires so that one device's
output lines are connected to the other's input lines. Here is an example of
one wire-crossing scheme that is commonly used:

TXD~RXD

RXD~TXD

RTS~CTS

CTS~ RTS
DSR~DTR

DTR~ DSR
DCD ~ DCD (unaffected)

This crossing of wires can either be done inside the RS-232-C cable itself
(Apple has done this with its Imagewriter printer cable) or by attaching a
special device called a "modem eliminator" or a "null modem" to a standard
cable.

Let's take a look at each of the RS-232-C signals used by the 6551 right now
and see how they are used to communicate with modems (or any other DCE
device) and printers (or any other DTE device).

TXD. The TXD signal is a 6551 output. It is connected to a modem's TXD
line or a printer's RXD line. The serial bit stream is sent down this line to the
remote device.

RXD. The RXD signal is a 6551 input. It is connected to a modem's RXD
line or a printer's TXD line. The 6551 monitors this line in order to read the
incoming serial bit stream.

RTS. The RTS signal is a 6551 output. It is usually connected to a modem's
RTS line or a printer's CTS line, but on the //cit is meant to be connected to
the external device's DTR (modem) or DSR (printer) line instead. The remote
device monitors the status of this line and will not send data to the 6551 until
it is in a low (0) state.

CTS. The CTS signal is a 6551 input. It is supposed to be a signal originating
from a modem's CTS line or a printer's RTS line to indicate that the external
device is ready to receive data. However, on the //c, the CTS line is not
connected to the DIN-S plug and is always kept in a low voltage (0) state.

DTR. The DTR signal is a 6551 output. It is usually connected to a modem's
DTR line or a printer's DSR line to indicate that the power to to 6551 is on
and that it is functioning properl:Y. On the //c, however, the DTR signal is not
used.

306 c=J Inside the Apple //c ----------------

DSR. The DSR signal is a 6551 input. It is usually connected to a modem's
DSR line or a printer's DTR line so that the 6551 can detect whether the
remote device is powered up and ready to receive data. On the lie, however,
the DSR input on serial port 2 is connected to the lie's keyboard strobe signal
and, on serial port 1, to one of the input lines on the external disk drive
connector. These connections have been made to allow a 6551 interrupt signal
to be generated by the keyboard or by a device connected to the disk drive
connector (although the add-on disk drive for the lie currently does not use
this signal). We will be discussing 6551 interrupts at the end of this chapter.

DCD. The DCD signal is a 6551 input. It is primarily used with modems to
indicate whether a proper telephone connection has been established with
the remote computer. If it has, then the DCD input signal will be low (0). For
the 1/c, however, Apple has recommended that the DCD input come from a
modem's DSR line or a printer's DTR line. If this is done, then the state of
DCD simply reflects whether the remote device is powered up and ready to
receive data and does not relate to the state of the telephone connection at
all.

The 6551 contains four 8-bit registers that are mapped to locations in the
lie's IIO memory space. These registers are used to control various aspects of
the communications link to devices that are attached to the serial ports. Let's
look at each of them now and see how they are used.

6551 Control Register

The control register is a write-only register that is used to set the following
communications parameters:

• The baud rate

• The number of data bits (word length)

• The number of stop bits

• Whether an internal clock or external baud rate clock is to be used (The
lie does not support the external clock option.)

The address of the port 1 control register is $C09B; the port 2 control register
is found at $C0AB. The meanings of each of the bits in the control register are
shown in Figure 11-3.

For example, to set up port 1 for a baud rate of 1200 baud, a word length
of 8 bits, and one stop bit, you would execute the following instructions:

LDA #$18
STA $CI!J9B

This sets up a bit pattern of (/)(/)(/)11(/)(/)(/) in the control register. You can see
by examining Figure 11-3 that this is the pattern required for this configu
ration.

------------- 11 I The Serial Interface Ports c:::=J 307

7 6 5 4 3 2 0

SBN WL1 WL2 RCS SBR3 SBR2 SBR1 SBR0

I
BAUD RATE (BR):
0 0 0 0 16x External Clock

RECEIVER
CLOCK SOURCE
(RCS):
0 =external
1 =internal

WORD
LENGTH (WL):
0 0 8 bits
0 1 7 bits
1 0 6 bits
1 1 5 bits

STOP BIT NUMBER (SBN):
0 = 1 stop bit
1 = 2 stop bits

= 1.5 stop bits
(for WL =5 and no parity)

= 1 stop bit
(for WL =8 and parity)

1/0 address: $C09B (port 1)
$C0AB (port 2)

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 11-3. The 6551 control register.

6551 Command Register

50 baud
75 baud
109.92 baud
134.58 baud
150 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
3800 baud
4800 baud
7200 baud
9600 baud
19200 baud

The command register can be used to control the operating modes of the
6551 as well as the parity bit of the data being transmitted. It is located at
$C09 A for port 1 or $C0AA for port 2. The meaning of each bit in the command
register is summarized in Figure 11-4.

You can control the state of two handshaking lines on the serial interface
using the 6551 command register: DTR and RTS. As we saw in the previous
section, the DTR signal is not connected in the 1/c implementation of the 6551;
nevertheless, it must be set low before the 6551 will operate properly. This
can be done by storing a 1 in bit 0 of the 6551 command register. The RTS
signal must also be set low in normal operating modes; if it is set high, the
remote device will not send any data to you.

The command register can also be used to enable or disable transmitter
and receiver interrupts. For example, if bit 1 is 0, then whenever the 655l's
receiver register is full (that is, data has arrived and is ready to be read), a

308 c::=J Inside the Apple //c -----------------

7 6

PMC1 I PMC2

I
PARITY MODE
CONTROL:
0 0 odd parity
0 1 even parity
1 0 mark parity
1 1 space parity

5 4

PME REM

RECEIVER
ECHO MODE
(REM):
0 =normal
1 =echo

PARITY MODE
ENABLED (PME):
0 = no parity bit
1 = parity bit(s) used

3

Tl1

2

Tl0

0

IRD DTR

I
DATA TERMINAL
READY (DTR):
0 =not ready

(OTR high)
1 =ready

(OTR low)

INTERRUPT REQUEST
DISABLED (IRD):
0 =enable receiver

interrupts
1 =disable receiver

interrupts

TRANSMJTTER INTERRUPT
CONTROL (TIC):
0 0 RTS high/no xmit interrupt
0 1 RTS low /xmit interrupt
1 0 RTS low/no xmit interrupt

I/O address: $C09A (port 1) 1 1 RTS low/no xmit interrupt
$C0AA (port 2) [transmit break signal]

Figure 11-4. The 6551 command register.

65C02 IRQ interrupt will be generated. A similar interrupt will be generated
when the transmitter register is empty (that is, the 6551 is ready to send data)
if bits 3 and 2 are set to 0 and 1, respectively. We will be discussing 6551
interrupts in greater detail at the end of this chapter.

6551 Status Register

The 6551 status register is located at $C099 (port 1) and $C0A9 (port 2).
This register can be examined to determine the status of various 6551 func
tions and to detect whether receiver errors have occurred. The meaning of
each bit in the status register is summarized in Figure 11-5.

The status register is most often used to determine when it is possible to
read incoming data or send outgoing data. For example, if you want to send
data out the serial port, you would wait until the transmitter data register is
empty (it's empty when bit 4 of the status register is 1) and then store the
data in the data register (see below). Similarly, you can read incoming data
by waiting until the receiver data register is full (it's full when bit 3 of the
status register is 1) and then reading the data from the data register.

------------- 11 I The Serial Interface Ports [==:J 309

7 6 5 4 3

IRQ DSR DCD TOR RDR
2

OE
0

FE PE
I
PARITY ERROR
0 =no error
1 =error

FRAMING ERROR
0 =no error
1 =error

OVERRUN ERROR
0 =no error
1 =error

RECEIVER OAT A
REGISTER FULL
0 =not full
1 =full

TRANSMITTER DATA
REGISTER EMPTY
0 =not empty
1 =empty

DATA CARRIER DETECT
0 = DCD low (detected)
1 = DCD high (not detected)

DATA SET READY
0 = DSR low (ready)
1 = DSR high (not ready)

INTERRUPT
0 = no interrupt
1 = interrupt occurred

1/0 address: $C099 (port 1)
$C0 A9 (port 2)

Figure 11-5. The 6551 status register.

The status register can also be used to monitor the states of two incoming
handshaking lines, DCD and DSR, which were described earlier. Briefly, the
state of the DCD line can be tested to determine whether the remote device

310 [=:J lnsidetheApple//c ----------------

is ready to receive data; if it is, then DCD will be low (that is, bit 5 of the
status register will be 0). The DSR bit can be examined to determine the state
of the keyboard strobe (port 2 only) or the external interrupt line (port 1 only).
We'll be examining these signals in detail at the end of the chapter.

You can also check the status register to determine whether a 6551 interrupt
condition has occurred. When an interrupt occurs, bit 7 of the status register
will be 1.

6551 Data Register

The data register is located at $C098 (port 1) and $C0A8 (port 2). This is
where you store bytes that you want to send out the serial port and also where
you read incoming bytes.

The data register should only be read when the receiver data register is full
and only be written to when the transmitter data register is empty. The states
of the receiver and transmitter data registers can be determined by examining
the relevant bits in the 6551 status register.

Configuring the Serial Ports

The two external serial ports on the //care identical. This means that, in
principle, in doesn't really matter which port an external serial device is
connected to. However, you have a choice of two built-in firmware subroutines
to control usage of each port. These subroutines are used to configure a serial
port as either a printer port or a communications port.

When you are communicating with a device like a printer that can receive,
but not transmit, data, then the serial port to which it is connected should be
configured as a printer port. When this is done, several special commands
become available that can be used to adjust parameters that affect the data
sent to a printer.

On the other hand, if you are communicating with a device that can both
receive and transmit data, then the serial port should be configured as a
communications port. Such devices include other personal computers, modems,
and terminals.

When the //cis first turned on, serial port 1 is automatically configured as
a printer port and serial port 2 as a communications port. Although it is
possible to change this configuration (keep reading to find out how), it is a
good idea to always connect a printer to port 1 and a modem (or other two
way communications device) to port 2.

We're now going to take a closer look at the characteristics of a printer port
and a communications port. In the examples which follow, we will assume,
for convenience, that port 1 is the printer port and port 2 is the communica
tions port.

-------------- 11 I The Serial Interface Ports c=J 311

Characteristics of a Printer Port

When the lie is first turned on, it automatically configures serial port 1 as a
printer port having the following characteristics:

• A baud rate of 9600

• A data format of 8 data bits, no parity, 2 stop bits

• An 80-column line width (This means that a carriage return character is
automatically printed whenever 80 characters are printed without an
intervening carriage return.)

• A line feed character is sent after every carriage return character

If you don't like these parameters, you can select different ones by using
special printer commands that we'll be looking at shortly.

All you have to do to direct character output to a port 1 printer is to enter
a PR#1 command from the keyboard or to execute the following Applesoft
statement:

PRINT CHR$<4);"PR#1"

from within an Applesoft program. You can use the PR#0 or PR#3 command
after everything has been printed to direct output to the video _display once
again.

Once printer port 1 has been turned on with a PR#1 command, there are
several commands that can be sent to the printer port firmware to modify
the printer port characteristics. These commands, and the functions they
perform, are summarized in Table 11-1. These commands can be entered by
typing them in from the keyboard or by using the Applesoft PRINT command
to send them directly to the printer port.

To select a printer command, you must first enter a special command prefix
character, followed by the command itself. The def~11h command prefix char
acter is [control-!], but this can be changed to anoth~~ control character by
entering the current prefix character followed by the new one. You will want
to do this in situations where it is necessary to send the prefix character itself
to the printer without it being eaten by the firmware.

For example, if the current command character is [control-!] and you want
to change it to [control-K], you would type (or print) the two characters

[control-IJ [control-KJ

Note that you must not change the prefix character to [control-A], [control
C), [control-H], [control-J], [control-L], [control-M], or [control-Y]. These
control characters are used for special purposes by the lie's firmware.

Let's look at a couple of examples of how to enter printer commands.
Suppose your printer operates at 1200 baud and that it automatically advances
the paper after it receives a carriage return code. You will not be able to

312 c=J lnsidetheApple//c ----------------

Table 11-1. Printer port commands.

Command

nnn

nnB

nD

I

K

L

nnnN

nP

Description

Set the new line width to nnn (1 ... 255). Follow this com
mand with [return] or N.

Set the baud rate to the value corresponding to the nn code:

Baud Baud
nn Rate nn Rate

1 50 9 1800
2 75 10 2400
3 110 11 3600
4 135 12 4800
5 150 13 7200
6 300 14 9600
7 600 15 19200
8 1200

Set the data format to the value corresponding to then code:

Data Stop
n Bits Bits

0
1
2
3
4
5
6
7

8
7
6
5
8
7
6
5

1
1
1
1
2
2
2
2

Send printer output to the video screen as well.

Don't automatically send a line feed character after every
carriage return character. If your printer is double spacing
all output, then you must enter this command.

Automatically send a line feed character after every carriage
return character. If your printer is not advancing the paper
after the printing of each line, then you must enter this com
mand.

Set the new line width to nnn (1 ... 255) and don't send printer
output to the video screen.

Set the parity to the state corresponding to then code:

n Parity

0,2,4,6
1

None
Odd (continued)

-------------- 11 I The Serial Interface Ports c::J 313

Table 11-1. Printer port commands (continued).

Command

R

s

z

Description

3 Even
5 Mark (1)
7 Space (0)

Reset the 6551 ACIA and turn off the printer port.

Send a 233 millisecond break signal to the printer. This signal
is used to synchronize some printers with the serial output
stream.

Ignore further command characters until the next PR# 1 or
[control-RESET]. Disable the automatic insertion of carriage
return characters.

communicate with this printer right after the //c is turned on because the
default baud rate is 9600 baud. To fix this up, enter PR#1 from Applesoft
direct mode and then enter the command:

[control-Il BB

As soon as you enter [control-!] you will see a question mark prompt begin
to flash; after you enter the "8B" command to set the baud rate to 1200 it will
disappear. You can now send data to the printer in the normal way. Your
problems are not over, however, because all your output will be double
spaced. This happens because the printer automatically advances the paper
one line after it receives a carriage return code but it advances it one more
line in response to the line feed code that the //c automatically inserts after
every carriage return. To disable the line feed insertion, enter the command:

[control-IlK

and everything will work fine.

You could also have entered the printer commands by using the Applesoft
PRINT command within a program. Here is a line that you could execute to
do this:

100 PRINT CHR$C4); 11 PR#1 11 : PRINT CHR$C9); 11 8B 11

; CHR$(9); 11 K11 ;

Characteristics of a Communications Port

Serial port 2 is automatically configured as a communications port when
the //cis first turned on. The initial characteristics of that port are as follows:

314 c=J lnsidetheApple//c -----------------

• A baud rate of 300

• A data format of 8 data bits, no parity, 1 stop bit

• A line feed character is not automatically inserted after each carriage
return character.

• Output is not displayed on the video screen.

Once a communications device has been attached to port 2, you can tell the
1/c to get character input from it (or from the keyboard) by entering the IN#2
command. Similarly, you cari send character output to it by entering the
PR#2 command. After you enter an IN#2/PR#2 sequence like this, the //c is
said to be in remote-control mode; in this mode the remote device has com
plete control over the //c and its operator can load and run programs, catalog
the disk, and so on, in the very same way that the operator of the //c can.

You've got to be a little careful if both the IN#2 and PR#2 commands are
active at the same time, however. In this situation, all input from the remote
device will be echoed back to it. This is fine unless the external device is also
echoing its input; if this is the case, the //c and the remote device will begin
to play volleyball with the first character transmitted from either end. Use
the [control-RESET] panic button to recover control if this happens.

The commands supported by the communications port indude all those
defined by the printer port and two more that are needed to use a special
terminal mode that we'll discuss below. These additional commands are
summarized in Table 11-2.

The communications port commands can only be entered after a PR#2 or
IN#2 command has been entered and each must be preceded by a special
command prefix character, [control-A]. Except for the "nnn" command, it is
not necessary to press [return] after entering a command from the keyboard.

You can change the communications port prefix character using the same
method used to change the printer port prefix character. For example, to
change the prefix from [control-A] to [control-E), you would enter the com
mand:

[control-A] [control-E)

You should note, however, that the prefix should not be changed to [control
B), [control-C], [control-H], [control-!], [control-J], [control-L], [control-M],
or [control-Y]. These control characters are reserved for use by the //c's firm
ware.

Terminal Mode

We've just seen that the communications port supports two extra com
mands that relate to something called terminal mode. Terminal mode is just
a fancy name for a short program in the //c's firmware that permits the //c to
have a dialog with the remote device without interfering with Applesoft or

Table 11-2. Additional commands supported by the communications port.

Command Description

Q Exit terminal mode.

T Enter terminal mode. This command must be entered after an IN#2 command only. If you want all
incoming data to be echoed to the sender, then you must follow the IN#2 command with a PR#2
command. Here are the two full command sequences:

IN# 2 [return l [con t r o 1- A l T (doesn't echo input)
IN# 2 [return l P R # 2 [return l [con t r o 1- A l T (echoes input)

-1
=r
(I)

en
(I)
§:
::::l

<D
or
()
(I)

'"0
0
:4 en

D
Co)
c.n

316 c=:J lnsidetheApplellc -----------------

ProDOS. While you are in terminal mode, the characters that you type in or
that are sent to you by the remote device are displayed on the screen but are
not passed through to the underlying operating system.

To get into terminal mode, first activate remote control mode by entering
IN#2 (followed by PR#2 if you want to echo all input to output), and then
enter [control-A] T. When terminal mode is active, a blinking underline cursor
will appear and you can begin to converse with the remote device by typing
in messages from the keyboard. Since these messages are not passed through
to Applesoft or ProDOS, you can type in anything you want and you will not
see an Applesoft ?SYNTAX ERROR message or overwrite the program in
memory.

To exit terminal mode, you can either enter [control-A] Q from the lie's
keyboard or wait for a [control-R] to be sent by the remote device. The remote
device can also pop the lie back into terminal mode from remote-control mode
by sending a [control-T] character.

Changing the Default Configuration

The default configurations for the two serial ports are defined by two sets
of four bytes in the lie's ROM. When the lie is first turned on, these bytes are
transferred to screen holes in auxiliary memory; they are read from here
whenever a serial port is activated with aPR# or IN# command. The locations
used to store the configuration bytes for each port and a functional description
of each byte can be found in Table 11-3.

The first two bytes in each quartet contain the values that must be stored
in the 6551 's control and command registers in order to select the desired
baud rate and data format.

Three bits in the third byte are used as flags to set whether the port is to
send output to the video display as well as the external serial device, whether
it is to automatically insert line feeds after carriage returns, and whether the
port is a communications port or a printer port.

The last byte holds the printer width byte and will normally be zero for a
communications port.

You can easily redefine a port's default configuration by storing the appro
priate values in the auxiliary memory screen holes. For example, if you want
port 1 to be configured as a communications port when it is initialized, just
store a byte at $47 A that has bit 0 equal to 1. This configuration change will
persist until the lie's power is turned off, even if another diskette is booted.

When changing the configuration bytes you must keep in mind that it is
bytes in auxiliary memory, not main memory, that must be accessed. To
change these bytes you will have to write a small program that first throws
the 80STOREON ($C001) switch, turns on auxiliary memory by writing to

-------------- 11 I The Serial Interface Ports c:=:J 317

Table 11-3. Configuration bytes used by the serial ports.

Location
Hex (Dec)

$478 (1144)

$479 (1145)

$47A (1146)

$47B (1147)

$47C (1148)

$47D (1149)

$47E (1150)

$47F (1151)

Description

Port 1: Contents of 6551 control register
(Default == $9E : 8 data bits, 2 stop bits, 9600

baud)

Port 1: Contents of 6551 command register
(Default == $0B : no parity)

Port 1: Flags
(Default == $40: no echo, LF after CR, printer

port)

Bit Bit == 1 means ...

7 Echo output on video screen.
6 Insert line feed after carriage return.

5-1 [not used]
0 Configure as a communications port (0 ==

configure as a printer port).

Port 1: Number of non-carriage-return characters to
send before automatically sending a carriage
return ("printer width"). If zero, then don't
insert carriage returns. (Default == $50 : 80
columns)

Port 2: Contents of 6551 control register (Default = $16
: 8 data bits, 1 stop bits, 300 baud)

Port 2: Contents of 6551 command register (Default =
$0B: no parity)

Port 2: Flags
(Default = $01 :echo on, no LF after CR,

communications port)

Bit Bit = 1 means ...

7 Echo output on video screen.
6 Insert line feed after carriage return.

5-1 [not used]
0 Configure as a communications port (0 ==

configure as a printer port).

Port 2: Number of non-carriage-return characters to
send before automatically sending a carriage
return ("printer width"). If zero, then don't
insert carriage returns.
(Default = $00 : no CR insertion)

Note: All locations are in the auxiliary memory screen holes.

318 c:::=J Inside the Apple //c ----------------

PAGE20N ($C055), POKEs the new configuration bytes into the screen holes,
and then re-enables main memory by writing to PAGE20FF ($C054). An
example of such a program is given in Table 11-4. This program configures
port 1 as a 1200 baud communications port and sets up a data format of 8
data bits, no parity, and one stop bit.

Table 11-4. CHANGE.PORT-a program to change the default
configurations of the //c's serial ports.

0 REM "CHANGE. PDRP'
1 REM THIS PROGRAM CHANGES THE
2 REM STARTUP CONFIGURATION OF
3 REM SERIAL PORT 1 DR 2
100 PN = 1: REM SERIAL PORT 1
11 0 AD = 0: IF PN = 2 THEN AD =

4
120 POKE 49153,0: REM 80STOREDN

130 POKE 49237,0: REM SELECT AU
XILIARY MEMORY

140 POKE 1144 + AD,24: REM 8N1,
1200 BAUD

150 POKE 1145 + AD, 11 : REM NO P
ARITY

160 POKE 1146 + AD,1: REM CDMM.
PORT

170 POKE 1147 + AD,0: REM NO CR
INSERTION

180 POKE 49236,0: REM SELECT MA
IN MEMORY

6551 Interrupt Handling

The 6551 ACIA can also be programmed to generate 65C02 IRQ interrupts
in the following situations:

• When the receiver register is full

• When the transmitter register is empty

• When the DCD line changes state

• When the DSR line changes state

These interrupts will be recognized and acted upon by the 65C02 only if
the interrupt flag in the processor status register is 0. This condition can be
forced by executing a CLI (clear interrupt) instruction.

-------------- 11 /The Serial Interface Ports c=J 319

To permit the 6551 to generate interrupts, you must always ensure that its
DTR line is in a low state. This can be done by storing a 1 in bit 0 of the 6551
command register. In addition, you must store a 0 in bit 1 of the command
register to enable receiver interrupts, or a 0 in bit 3 and a 1 in bit 2 of the
command register to enable transmitter interrupts. (The DCD and DSR inter
rupts cannot be selectively disabled and enabled.) When an interrupt occurs,
bit 7 of the status register will be set to 1.

We saw in Chapter 10 that the lie's ROM contains a complex interrupt
handling subroutine that is responsible for managing mouse and VBL inter
rupts. It's no surprise, then, to learn that it also contains an equally complex
subroutine to handle interrupts emanating from the serial ports.

The lie will either handle the serial interrupt internally or will pass it along
to your own interrupt-handling subroutine. It decides what to do with an
interrupt by examining the types of serial interrupts that have been enabled
and the contents of special flag bytes stored in the screen holes of the lie's
main memory space. A flowchart of the lie's internal interrupt- handling
subroutine is shown in Figure 11-6.

6551 Transmitter Interrupts

Transmitter interrupts are enabled by storing a 0 in bit 3 and a 1 in bit 2
of the 6551 command register. After this has been done, the 6551 will generate
an interrupt whenever the transmitter data register becomes empty.

Transmitter interrupts are never serviced by the lie's internal interrupt
handler and are always passed through to the one that you have installed. In
fact, if transmitter interrupts are enabled, all 6551 interrupts are passed
through.

You can clear a transmitter interrupt condition by reading the 6551 status
register.

6551 Receiver Interrupts

Receiver interrupts are enabled by storing a 0 in bit 1 of the 6551 control
register. When this is done, the 6551 will cause an interrupt whenever the
receiver data register becomes full.

The lie's internal serial interrupt handler will always pass through receiver
interrupts to your own interrupt handler if transmitter interrupts have also
been enabled. If transmitter interrupts have not been enabled, however, receiver
interrupts will only be passed through if the value stored at ACIABUF ($4FF)
is not equal to $Cn, where "n" is the number of the serial port that caused
the interrupt (1 or 2).

If ACIABUF does contain $Cn, then the lie services the interrupt by reading
the 6551 data register and placing the data in a 128-byte receiver buffer that

320 CJ Inside the Apple //c -....,----------------

SEC

Put keyboard
data in CLC
buffer.

TYPEHED = $5FA (port 2), $5FB (port 1)
ACIABUF = $4FF

Put serial
data in
buffer.

Put DSR bit
in carry

flag.

Keyboard Buffer: $880 ... $8FF (aux. memory)
Serial Buffer: $800 ... $87F (aux. memory)

YES

To read serial buffer, call XRDSER ($C835) withY= 0. If data is present, the carry flag will
be set and the data will be in A.
On exit: If carry flag is set, interrupt passes through.

If carry flag is clear, interrupt is serviced internally.

Figure 11-6. A flowchart of the internal interrupt handler that services 6551
serial interrupts.

is located from $800 ... $87F in auxiliary memory. This buffer can be read
by calling the XRDSER ($C8CS) subroutine with theY register set to 0 or by
reading from the serial port firmware (assuming that the appropriate IN#

-------------- 11 I The Serial Interface Ports c=J 321

command is active). On exit from this subroutine, the carry flag will be clear
if the buffer is empty; if it isn't, then the carry flag will be set and the character
will be in the accumulator.

If a receiver interrupt is passed through, the interrupt must be serviced by
reading the 6551 status register. Remember that a receiver interrupt will be
passed through if it occurs when ACIABUF ($4FF) contains a value other than
$C1 or $C2.

The receiver interrupt is probably the most useful type of interrupt that the
6551 supports, at least as far as the //cis concerned. Why? Because at baud
rates of 1200 or higher, the //c is often not capable of polling for serial input
fast enough to prevent the loss of incoming characters. For example, in the
time it takes the //c to scroll its full80-column screen, two or three characters
may arrive at the serial port. Since the lie's scrolling subroutine does not poll·
the serial ports while it executes, these characters will be missed. If receiver
interrupts are enabled, however, these characters can be placed in a buffer
from which they can be read when the program has the time to handle serial
input.

6551 Keyboard (DSR port 2) Interrupts

The //c makes rather ingenious use of the DSR input lines on its two 6551s.
The port 2 DSR line is connected to the lie's keyboard strobe line. As we saw
in Chapter 7, the keyboard strobe is normally low (0) but goes high (1) when
a key is pressed on the keyboard. Such a transition will cause a 6551 DSR
interrupt signal to be generated from serial port 2.

The lie's built-in interrupt-handling subroutines can be told to service the
keyboard interrupt and place the keycode into a 128-byte buffer in auxiliary
memory (the buffer extends from $880 to $8FF). The lie's standard keyboard
input subroutine will, in these circumst~nces, examine the buffer for presence
of input; the keyboard I/0 location, KBD ($C000), will only be polled if the
buffer is empty.

Contrast this method of handling keyboard input with the one that is
traditionally used; the traditional method is to repeatedly scan the keyboard
strobe line until it goes high and then read KBD ($C000) to get the keycode.
This method is called "polling" because the software is continually "asking"
the keyboard whether it has a character available. One consequence of using
the polling method is that if you try to enter characters from the keyboard
when the //c is not actually polling the keyboard, then all those characters
will be "missed" except for the last one entered.

The advantage of using the keyboard interrupt technique should be obvious:
unless the interrupts are turned off by the software (using a SEI instruction),
all characters entered from the keyboard will be saved in the buffer (assuming
that it is not full) and will be available to the program even if the program is
not, at the time of the keypress, reading the keyboard. Thus, you can "type

322 [=::J Inside the Apple //c ----------------

ahead" of the program and wait for it to read your already entered jnput
later, when it is ready to receive it.

If you want the lie's internal serial interrupt-handling subroutines to sup
port an interrupt-driven keyboard, then five simple steps must be performed:

• Disable 65C02 interrupts by executing a SEI instruction.

• Enable the interrupt handler's buffering of keyboard data by setting bit
7 of TYPHED ($5FA) to 1 and bit 6 to 0. (This can be done by storing $80
in $5FA.)

• Clear the keyboard buffer by setting locations TWKEY ($5FF) and TRKEY
($6FF) to $80. TWKEY points to where the next key will be stored and
TRKEY points to where the next key will be read from.

• Set DTR low by storing a 1 in bit 0 of the 6551 command register at
$C0AA (port 2).

• Enable 65C02 interrupts by executing a CLI instruction.

The short assembly-language subroutine that does all this looks something
like this:

SEI
LDA #$80
STA $SFA
STA $SFF
STA $6FF
LOA #$01
STA $C0AA
LDA #$80
STA $5FA
CLI
RTS
Let's see if it works. Enter and run the following trivial program after

executing the preceding subroutine:

100 FOR I= 1 TO 2000: NEXT

and theh start typing madly away at the keyboard. When the program finishes,
all the keystrokes that you entered should be displayed after the Applesoft
prompt symbol!

By the way, the type-ahead buffer can be cleared (or "flushed") at any time
by entering [control-X] from the keyboard while holding down the OPEN
APPLE key. You may want to flush the buffer in situations where you have
typed in incorrect characters but the program has not yet used them.

There is one severe limitation to the type-ahead feature as implemented on
the lie: it will miss characters that are typed in when the disk drive is being
used. This is because ProDOS turns off interrupts during all disk accesses in
order to ensure that time-critical disk I/0 subroutines are not disturbed.

-------------- 11 I The Serial Interface Ports c=J 323

Keyboard interrupts can either be serviced by the lie's interrupt-handler or
your own. The keyboard interrupt will be passed through to you if transmitter
interrupts are enabled for port 2's 6551, or if transmitter interrupts are
disabled and bit 6 of TYPHED ($5FA) is 1.

If transmitter interrupts are enabled when a keyboard interrupt occurs,
your interrupt-handling subroutine must service the interrupt by performing
the following steps:

• Read the 6551 status register ($C0A9) to check that the IRQ bit (bit 7) is
"1" (that is, that the serial port is the source of the interrupt) and that
the DSR bit (bit 6) is "1" (that is, that the keyboard caused the serial
interrupt).

• Read KBD ($C000) to get the keyboard data and accessing KBDSTRB
($C010) to clear the keyboard strobe.

• Read the 6551 status register once again to clear the interrupt caused by
the 1 to 0 transition on the DSR line that occurs when the keyboard
strobe is cleared.

If, however, the keyboard interrupt is passed through because bit 6 of
TYPHED ($5FA) is 1 and transmitter interrupts are not enabled, the interrupt
handling subroutine cannot read the 6551 status register to check the state
of the IRQ bit. This is because the lie's internal interrupt handler clears this
bit by reading the status register itself before relinquishing control. Fortu
nately, however, it stores a copy of the value read from the status register at
location $4FA so that it can be examined instead. Before the interrupt-han
dling subroutine ends it must clear the interrupt by storing a 0 in $4FA.

6551 External (DSR port 1) Interrupts

The port 1 DSR line is connected to another line that comes in through pin
9 on the lie's external disk drive connector. It is not currently used by the
standard external disk drive supplied by Apple, and its intended use is still a
mystery. To enable the interrupt signal that is generated when this line
changes state, bit 0 of the 6551 control register for port 1 ($C09A) must be set
to 1.

The lie's serial interrupt-handler monitors the state of the external DSR
interrupt line but does not do much with it. If transmitter interrupts are
enabled for port 1's 6551, however, or if they're not but bit 6 of EXTINT2
($5F9) is 1, the interrupt will be passed on through to your own interrupt
handling subroutine so that you can deal with it yourself.

Note that the 1/c has been configured in such a way that even if bit 6 of
EXTINT2 is 1, a port 1 DSR interrupt will only be passed through when high
(1) to low (0) transitions of the DSR line take place Uust the opposite to port
2). From this we can assume that any device that generates an external

324 c=J Inside the Apple //c ----------------

interrupt will be expected to keep the interrupt line high and to bring it low
only when an interrupt occurs.

The port 2 DSR interrupt can be serviced in the same general way as the
corresponding interrupt for port 1. First, you must read the status register to
check the state of DSR and clear the IRQ bit. Then, you must deal with the
device that caused the interrupt in such a way that its interrupt signal will
be turned off. (Without knowing what the device is we can't really say what
to do.) Finally, the status register must be read once again in order to clear
the interrupt caused by the reverse transition of the external interrupt line
after the device turns off its interrupt signal.

Further Reading for Chapter 11

On serial communications in general ...

E.A. Nichols, J .C. Nichols, and K.R. Musson, Data Communications for
Microcomputers, 1982, McGraw-Hill Book Company. This book describes
the RS-232-C standard in detail as well as various transmission protocols.

Appendix I
American National
Standard Code for

Information Interchange
(ASCII) Character Codes

325

w
ASCII Code

N
0')

Hex Dec Symbol Keys to Press

D $00 000 NUL (Null) CONTROL@
$01 001 SOH (Start of header) CONTROL A
$02 002 STX (Start of text) CONTROLB ::J

~-
$03 003 ETX (End of text) CONTROLC a.

CD
$04 004 EOT (End of transmission) CONTROLD -=r
$05 005 ENQ (Enquiry) CONTROLE CD

$06 006 ACK (Acknowledge) CONTROLF
)>
"0

$07 007 BEL (Bell) CONTROLG "0
ro

$08 008 BS (Backspace) LEFT-ARROW or.CONTROL H ::::::
$09 009 HT (Horizontal tabulation) TAB or CONTROL I

0

$0A 010 LF (Line feed) DOWN-ARROW or CONTROL J
$0B 011 VT (Vertical tabulation) UP-ARROW or CONTROL K
$0C 012 FF (Form feed) CONTROLL
$0D 013 CR (Carriage return) RETURN or CONTROL M
$0E 014 so (Shift out) CONTROLN
$0F 015 SI (Shift in) CONTROLO
$10 016 DLE (Data link escape) CONTROLP
$11 017 DC1 (Device control 1) CONTROLQ
$12 018 DC2 (Device control2) CONTROLR
$13 019 DC3 (Device control3) CONTROLS
$14 020 DC4 (Device control 4) CONTROLT
$15 021 NAK (Negative acknowledge) RIGHT-ARROW or CONTROL U
$16 022 SYN (Synchronous idle) CONTROLV
$17 023 ETB (End of transmission block) CONTROLW
$18 024 CAN (Cancel) CONTROL X
$19 025 EM (End of medium) CONTROL Y
$1A 026 SUB (Substitute) CONTROLZ
$1B 027 ESC (Escape) ESC or CONTROL [
$1C 028 FS (Field separator) CONTROL\

$1D 029 GS (Group.separator) CONTROL]
$1E 030 RS (Record separator) CONTROL"
$1F 031 us (Unit separator) CONTROL_

$20 032 (Space) SPACEBAR
$21 033 ! SHIFT 1
$22 034 " SHIFT'
$23 035 # SHIFT 3
$24 036 $ SHIFT 4
$25 037 % SHIFT 5
$26 038 & SHIFT 7
$27 039 ' '
$28 040 (SHIFT 9
$29 041) SHIFT 0
$2A 042 * SHIFT 8
$2B 043 + SHIFT=
$2C 044
$2D 045
$2E 046
$2F 047 I I
$30 048 0 0
$31 049 1 1
$32 050 2 2
$33 051 3 3)>

$34 052 4 4 "0
"0

$35 053 5 5
CD
::J

$36 054 6 6
a.
:;;:·

$37 055 7 7
$38 056 8 8

D $39 057 9 9
$3A 058 SHIFT;
$3B 059 ' ' w
$3C 060 < SHIFT, N

(continued)
......

w
ASCII Code

1\)
():)

Hex Dec Symbol Keys to Press

D $3D 061 = =
$3E 062 > SHIFT.
$3F 063 ? SHIFT I :;-

(/)

$40 064 @ SHIFT 2 a:
<D $41 065 A SHIFT A :T

$42 066 B SHIFT B <D

$43 067 c SHIFTC)>
"0

$44 068 D SHIFTD "0
(i)

$45 069 E SHIFT E :::::::
(')

$46 070 F SHIFT F
$47 071 G SHIFTG
$48 072 H SHIFTH
$49 073 I SHIFT I
$4A 074 J SHIFT J
$4B 075 K SHIFT K
$4C 076 L SHIFT L
$4D 077 M SHIFT M
$4E 078 N SHIFT N
$4F 079 0 SHIFTO
$50 080 p SHIFT P
$51 081 Q SHIFTQ
$52 082 R SHIFTR
$53 083 s SHIFTS
$54 084 T SHIFTT
$55 085 u SHIFTU
$56 086 v SHIFTV
$57 087 w SHIFTW
$58 088 X SHIFT X
$59 089 y SHIFTY

$SA 090 z SHIFT Z
$5B 091 [[
$5C 092 \ \
$50 093]]
$5E 094 " SHIFT 6
$SF 095 - SHIFT-
$60 096 ' '
$61 097 a A
$62 098 b B
$63 099 c c
$64 100 d D
$65 101 e E
$66 102 f F
$67 103 g G
$68 104 h H
$69 105 i I
$6A 106 j J
$6B 107 k K
$6C 108 1 L
$60 109 m M
$6E 110 n N
$6F 111 0 0
$70 112 p p
$71 113 Q

)>
q "'0

$72 114 R "'0
r CD

$73 115 s ::J
s a.

$74 116 t T X -
$75 117 u u
$76 118 v v

D $77 119 w w
$78 120 X X
$79 121 y y w

1\)

$7A 122 z z CD
(continued)

w w
ASCII Code 0

Hex Dec Symbol Keys to Press

D $7B 123 { SHIFT [
$7C 124 I SHIFT\ :;-
$7D 125 } SHIFT] (/)

a: $7E 126 ~ SHIFT' (1)

$7F 127 I (Rubout) DELETE :T
(1)

)>
"'0
"'0
(j)
::::::::
(')

Appendix I I
65C02 Instruction Set and

Cycle Times
Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

ADC #num 69 2 2
zpage 65 2 3
zpage,X 75 2 4

*(zpage) 72 2 5
(zpage,X) 61 2 6
(zpage),Y 71 2 5 (1)
abs 6D 3 4
abs,X 7D 3 4 (1)
abs,Y 79 3 4 (1)

AND #num 29 2 2
zpage 25 2 3
zpage,X 35 2 4

*(zpage) 32 2 5
(zpage,X) 21 2 6
(zpage),Y 31 2 5 (1)
abs 2D 3 4
abs,X 3D 3 4 (1)
abs,Y 39 3 4 (1)

ASL [accumulator] 0A 1 2
zpage 06 2 5
zpage,X 16 2 6
abs 0E 3 6
abs,X 1E 3 6 (3)

BCC disp 90 2 2 (2)

BCS disp B0 2 2 (2)

BEQ disp F0 2 2 (2)

(continued)

331

332 c:::J Inside the Apple //c

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

BIT *#num 89 2 2
zpage 24 2 3

*zpage,X 34 2 4
abs 2C 3 4

*abs,X 3C 3 4

BMI disp 30 2 2 (2)
BNE disp D0 2 2 (2)

BPL disp 10 2 2 (2)
BRA *disp 80 2 2 (2)

BRK [implied] 00 1 7

BVC disp 50 2 2 (2)

BVS disp 70 2 2 (2)
CLC [implied] 18 1 2

CLD [implied] D8 1 2
CLI [implied] 58 1 2

CLV [implied] B8 1 2

CMP #num C9 2 2
zpage C5 2 3
zpage,X D5 2 4

*(zpage) D2 2 5
(zpage,X) C1 2 6
(zpage),Y D1 2 5 (1)
abs CD 3 4
abs,X DD 3 4 (1)
abs,Y D9 3 4 (1)

CPX #num E0 2 2
zpage E4 2 3
abs EC 3 4

CPY #num C0 2 2
zpage C4 2 3
abs cc 3 4

DEA *[accumulator] 3A 1 2
DEC zpage C6 2 5

zpage,X D6 2 6
abs CE 3 6
abs,X DE 3 6 (3)

DEX [implied] CA 1 2
(continued)

Appendix II CJ 333

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

DEY [implied] 88 1 2

EOR #num 49 2 2
zpage 45 2 3
zpage,X 55 2 4

*(zpage) 52 2 5
(zpage,X) 41 2 6
(zpage),Y 51 2 5 (1)
abs 4D 3 4
abs,X SD 3 4 (1)
abs,Y 59 3 4 (1)

INA *[accumulator] lA 1 2

INC zpage E6 2 5
zpage,X F6 2 6
abs EE 3 6
abs,X FE 3 6 (3)

INX [implied] E8 1 2

INY [implied] C8 1 2

JMP abs 4C 3 3
(abs) 6C 3 6 (4)

*(abs,X) 7C 3 6

JSR abs 20 3 6

LDA #num A9 2 2
zpage AS 2 3
zpage,X BS 2 4

*(zpage) B2 2 5
(zpage,X) Al 2 6
(zpage),Y Bl 2 5 (1)
abs AD 3 4
abs,X BD 3 4 (1)
abs,Y B9 3 4 (1)

LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs,Y BE 3 4 (1)

LDY #num A0 2 2
zpage A4 2 3
zpage,X B4 2 4
abs AC 3 4
abs,X BC 3 4 (1)

(continued)

334 [=:J Inside the Apple //c

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage,X 56 2 6
abs 4E 3 6
abs,X SE 3 6 (3)

NOP [implied] EA 1 2

ORA #num 09 2 2
zpage 05 2 3
zpage,X 15 2 4

*(zpage) 12 2 5
(zpage,X) 01 2 6
(zpage),Y 11 2 5 (1)
abs 0D 3 4
abs,X 1D 3 4 (1)
abs,Y 19 3 4 (1)

PHA [implied] 48 1 3

PHP [implied] 08 1 3

PHX *[implied] DA 1 3

PHY *[implied] SA 1 3

PLA [implied] 68 1 4

PLP [implied] 28 1 4

PLX *[implied] FA 1 4

PLY *[implied] 7A 1 4

ROL [accumulator] 2A 1 2
zpage 26 2 5
zpage,X 36 2 6
abs 2E 3 6
abs,X 3E 3 6 (3)

ROR [accumulator] 6A 1 2
zpage 66 2 5
zpage,X 76 2 6
abs 6E 3 6
abs,X 7E 3 6 (3)

RTI [implied] 40 1 6

RTS [implied] 60 1 6

SBC #num E9 2 2
zpage ES 2 3
zpage,X FS 2 4

(continued)

Appendix II CJ 335

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

*(zpage) F2 2 5
(zpage,X) E1 2 6
(zpage),Y F1 2 5 (1)
abs ED 3 4
abs,X FD 3 4 (1)
abs,Y F9 3 4 (1)

SEC [implied] 3S 1 2

SED [implied] FS 1 2

SEI [implied] 7S 1 2

STA zpage S5 2 3
zpage,X 95 2 4

*(zpage) 92 2 5
(zpage,X) S1 2 6
(zpage),Y 91 2 5 (1)
abs SD 3 4
abs,X 9D 3 4 (1)
abs,Y 99 3 4 (1)

STX zpage S6 2 3
zpage,Y 96 2 4
abs 8E 3 4

STY zpage S4 2 3
zpage,X 94 2 4
abs SC 3 4

STZ *zpage 64 2 3
*zpage,X 74 2 4
*abs 9C 3 4
*abs,X 9E 3 5

TAX [implied] AA 1 2

TAY [implied] AS 1 2

TRB *zpage 14 2 5
*abs 1C 3 6

TSB *zpage 04 2 5
*abs 0C 3 6

TSX [implied] BA 2

TXA [implied] SA 1 2

TXS [implied] 9A 1 2

TYA [implied] 9S 1 2

(continued)

336 c=J Inside the Apple //c -----------------

*Instructions marked with an asterisk are not available on the 6502.
Notes:

(1) Add one clock cycle if a page boundary is crossed.
(2) Add one clock cycle if a branch occurs to a location in the same page; add two

clock cycles if a branch occurs to a location in a different page.
(3) Add one clock cycle if a page boundary is crossed; always 7 cycles on the 6502.
(4) 5 cycles on the 6502. ·

See Table 2-3 for a description of the assembler operand formats.

Appendix Ill
Apple //c Soft Switch,

Status, and 1/0 Port
Locations

NOTE: The "Usage" column in the following tables indicates how a par
ticular location is to be accessed:

"W" means "write to the location."
"R" means "read from the location."
"RW" means "read from or write to the location."
"R7" means "read and check bit 7 to determine the status."
"RR" means "read from the location twice in succession."

The term "aux." refers to the auxiliary block of 64K memory and "main"
refers to the main block of 64K memory. "BSR" refers to the lie's 16K bank
switched RAM space from $D000-$FFFF.

337

Address c.,)
c.,)

Hex (Dec) Usage Symbolic Name Action· Taken Note co

$C000 (49152) R KBD Keyboard data (bits 0 ... 6) D R7 KBD 1· = keyboard strobe is on
0 = keyboard strobe is off 3"

$C000 (49152) w 80STOREOFF Allow PAGE2 to switch between video page1 1 !!!.
and page2 c.

CD

$C001 (49153) w 80STOREON Allow PAGE2 to switch between main and aux. 1 :;:
video memory

CD
;p

$C002 (49154) w RAMRDOFF Read-enable main memory from $200-$BFFF 4 "0
"£

$C003 (49155) w RAMRDON Read-enable aux. memory from $200-$BFFF 4 CD

$C004 (49156) w RAMWRTOFF Write-enable main memory from $200-$BFFF 4 ::::::
0

$C005 (49157) w RAMWRTON Write-enable aux. memory from $200-$BFFF 4
$C006 (49158) [Reserved]
$C007 (49159) [Reserved]
$C008 (49160) w ALTZPOFF Enable main memory from $0000-$01FF and

make main BSR available
$C009 (49161) w ALTZPON Enable aux. memory from $0000-$01FF and

make aux. BSR available
$C00A (49162) [Reserved]
$C00B (49163) [Reserved]
$C00C (49164) w 80COLOFF Turn off 80-column display
$C00D (49165) w 80COLON Turn on 80-column display
$C00E (49166) w ALTCHARSETOFF Turn off alternative characters
$C00F (49167) w ALTCHARSETON Turn on alternative characters
$C010 (49168) RW KBDSTRB Clear keyboard strobe

R7 AKD 1 = a key is being pressed 3
0 = all keys are released

$C011 (49169) R7 RDBANK2 1 = bank2 of BSR is available
0 = bankl of BSR is available

$C012 (49170) R7 RDLCRAM 1 = BSR is active for read.operations
0 = $D000-$FFFF ROM is active for read

operations

$C013 (49171) R7 RAMRD 1 = aux. $200-$BFFF is active for read 4
operations

0 = main $200-$BFFF is active for read
operations

$C014 (49172) . R7 RAMWRT 1 = aux. $200-$BFFF is active for write 4
operations

0 = main $200-$BFFF is active for write
operations

$C015 (49173) R7 MOUSEXINT 1 = mouse X0 interrupt has occurred

$C016 (49174) R7
0 = no mouse X0 interrupt

ALTZP 1 = aux. zero page+ stack is active; aux. BSR is
available

0 = main zero page+ stack is active; main BSR
is available

$C017 (49175) R7 MOUSEYINT 1 = mouse Y0 interrupt has occurred
0 = no mouse Y0 interrupt

$C018 (49176) R7 80S TORE 1 = PAGE2 switches main/aux. 1
0 = PAGE2 switches video pages

$C019 (49177) R7 VB LINT 1 = a VBL interrupt has occurred
0 = no VBL interrupt

$C01A (49178) R7 TEXT 1 = a text mode is active
0 = a graphics mode active

)> $C01B (49179) R7 MIXED 1 = mixed graphics and text 2 -o
0 = full-screen graphics -o

<D

$C01C (49180) R7 PAGE2 1 = video page2 selected OR aux. video page 1 :::1
a.

selected x·
$C01D (49181) R7 HIRES 1 = high-resolution graphics 1,2 -

0 = low-resolution graphics

D $C01E (49182) R7 ALTCHARSET 1 = alternative character is on
0 = primary character is on

$C01F (49183) R7 80COL 1 = 80-column display is on w 0 = 40-column display is on w
(continued)

CD

w
Address .l=o

0

Hex (Dec) Usage Symbolic Name Action Taken Note

D $C020 (49184)
through [Reserved] 5" $C02F (49199) en

a:
$C030 (49200) <D

:T through R SPEAKER Toggle the state of the speaker <D

$C03F (49215))>
"'0
"'0

$C040 (49216) R7 RDXYMSK 1 = mouse interrupts enabled 1D
0 = mouse interrupts disabled ::::::

0

$C041 (49217) R7 RDVBLMSK 1 = VBL interrupts enabled
0 = VBL interrups disabled

$C042 (49218) R7 RDX0EDGE 1 = interrupt on falling X0 edge
0 = interrupt on rising X0 edge

$C043 (49219) R7 RDY0EDGE 1 = interrupt on falling Y0 edge
0 = interrupt on rising Y0 edge

$C044 (49220) [Reserved]
$C045 (49221) [Reserved]
$C046 (49222) [Reserved]
$C047 (49223) [Reserved]
$C048 (49224) R RSTXY Clear X0N0 mouse interrupt condition
$C049 (49225) [Reserved]
$C04A (49226) [Reserved]
$C04B (49227) [Reserved]
$C04C (49228) [Reserved]
$C04D (49229) [Reserved]
$C04E (49230) [Reserved]
$C04F (49231) [Reserved]
$C050 (49232) RW TEXTOFF. Select graphics mode
$C051 (49233) RW TEXT ON Select text mode

$C052 (49234) RW MIXEDOFF Use full screen for graphics 2
$C053 {49235) RW MIXEDON Use graphics with four lines oftext 2
$C054 (49236) RW PAGE20FF Select page1 display (or main video memory) 1
$C055 (49237) RW PAGE20N Select page2 display (or aux. video memory) 1
$C056 (49238) RW HIRESOFF Select low-resolution graphics 1,2
$C057 (49239) RW HIRESON Select high-resolution graphics 1,2

[The action for the following soft switches from $C058 ... $C05F is only taken if access has first been enabled by
writing to IOUDISOFF ($C07F).]

$C058 (49240) RW DISXY Disable mouse X0/Y0 interrupts
$C059 {49241) RW ENBXY Enable mouse X0/Y0 interrupts
$C05A (49242) RW DISVBL Disable VBL interrupts
$C05B (49243) RW ENVBL Enable VBL interrupts
$C05C {49244) RW RX0EDGE Interrupt on rising mouse X0
$C05D (49245) RW FX0EDGE Interrupt on falling mouse X0
$C05E (49246) RW RY0EDGE Interrupt on rising mouse Y0
$C05F (49247) RW FY0EDGE Interrupt on falling mouse Y0

[The action for the following soft switches from $C058 ... $C05F is only taken if access has first been enabled by
writing to IOUDISON ($C07E).]

$C058 (49240)
through

$C05D {49245)
$C05E (49246)
$C05F (49247)

$C060 (49248)

$C061 (49249)
$C062 (49250)
$C063 (49251)

$C064 (49252)

RW
RW

R7

R7
R7
R7

R7

DHIRESON
DHIRESOFF

RD80SW

PB0
PB1
RD63

PDL0

[Reserved]

Enable double high-resolution
Disable double high-resolution

1 = 40/80 switch is down
0 = 40/80 switch is up
1 = push button 0 or OPEN-APPLE is pressed
1 =push button 1 or SOLID-APPLE is pressed
1 = mouse button is not pressed
0 = mouse button is pressed
1 = game controller 0 not timed out

(continued)

)>
"0
"0
CD
::l
a. x·

D
~

Co)
.a:o.

Address N

Hex (Dec) Usage Symbolic Name Action Taken Note

D $C065 (49253) R7 PDLl 1 = game controller 1 not timed out
$C066 (49254) R7 MOUX1 1 = mouse has moved to right

3" $C067 (49255) R7 MOUY1 1 = mouse has moved up !!!.
$C068 (49256) a.

CD

through [Reserved] -:::r
$C06F (49263) CD

>
Reset the game controllers and clear the VBL

"0
$C070 (49264) R PTRIG "0

ro interrupt condition
~ $C071 (49265)

through [Reserved]
$C077 (49271)
$C078 (49272) R7 [Same as $C07E]

w [Same as $C07E]
$C079 (49273) R7 [Same as $C07F]

w [Same as $C07F]
$C07A (49274) R7 [Same as $C07E]

w [Same as $C07E]
$C07B (49275) R7 [Same as $C07F]

w [Same as $C07F]
$C07C (49276) R7 [Same as $C07E]

w [Same as $C07E]
$C07D (49277) R7 [Same as $C07F]

w [Same as $C07F]
$C07E (49278) R7 RDIOUDIS 1 = IOU access is off

0 = IOU access is on
w IOUDISON Disable $C058-$C05F IOU access and enable the

DHIRES switches.
$C07F (49279) R7 DHIRES 1 = double high-res is on

w

Notes:

IOUDISOFF Enable $C058-$C05F IOU access and disable the
DHIRES switches.

1. If 80STORE is ON, then PAGE20FF activates main video RAM ($400-$7FF) and PAGE20N activates auxiliary video RAM. If
HIRES is also ON, then PAGE20FF also activates main high-resolution video RAM ($2000-$3FFF) and PAGE20N also activates
auxiliary high-resolution video RAM.

If 80STORE is OFF, then PAGE20FF turns on text pagel mode and PAGE2 turns on text page2 mode. If HIRES is also ON,
then PAGE20FF also selects high-resolution pagel mode and PAGE20N selects high-resolution page2 mode.

2. The HIRES and MIXED switches are meaningful only if the TEXT switch is OFF (that is, a graphics mode is active).
3. Reading this switch will cause the keyboard strobe (bit 7 of $C000) to be cleared.
4. The RAMRD and RAMWRT switches do not affect the video RAM area from $400-$7FF if the 80STORE switch is ON or the

high-resolution graphics area from $2000c$3FFF if the HIRES switch is ON as well. In these situations, these RAM areas are
controlled by the PAGE2 switches.

1/0 Port Locations

Address
Hex (Dec) Usage Symbolic Name Action Taken

$C080 (49280) R READBSR2 Select Bank2, read BSR, write-protect BSR
$C081 (49281) RR WRITEBSR2 Select Bank2, read ROM, write-enable BSR
$C082 (49282) R OFFBSR2 Select Bartk2, read ROM, write-protect BSR
$C083 (49283) RR RDWRBSR2 Select Bank2, read BSR, write-enable BSR
$C084 (49284)

. through [Reserved]
$C087 (49287)
$C088 (49288) R READBSRl Select Bankl, read BSR, write-protect BSR
$C089 (49289) RR WRITEBSRl Select Bankl, read ROM, write-enable BSR
$C08A (49290) R OFFBSRl Select Bankl, read ROM, write-protect BSR
$C08B (49291) RR RDWRBSRl Select Bankl, read BSR, write-enable BSR

(continued)

:t>
"'0
"'0
(1)
::I
c.
X

D
w
~
w

1/0 Port Locations w
-'=" -'="

Address D Hex (Dec) Usage Symbolic Name Action Taken Note

$C08C (49292) 5"
through [Reserved] In

c:
$C08F (49295) (J) --~
$C090 (49296) (J)

through [Reserved] ~-
"'0 $C097 (49303) <D

$C098 (49304) R DATAREG1 6551 receive data register(port 1) ::::::
0

w DATAReG1 6551 transmit data register (port 1)
$C099 (49305) R STATUS1 6551 status register (port 1)

w RESETl 6551 programmed reset (port 1)
$C09A (49306) RW COMMAND1 6551 command register (port 1)
$C09B (49307) RW CONTROLl 6551 control register (port 1)
$C09C (49308)

through [Reserved]
$C09F (49311)

$C0A0 (49312)
through . [Reserved]

.$C0A7 (49319)
$C0A8 (49320) R DATAREG2 65:51-receive data register (port 2)

·w DATAREG2 6551 tr~nsmit data register(port 2)
$C0A9 (49321) R STATUS2 6551 status register (port 2)

w RESET2 6551 programmed reset (port 2)
$C0AA (49322) RW COMMAND2 6551 command register (port 2)
$C0AB (49323) RW CONTROL2 6551 control register (port 2)
$C0AC (49324)

through [Reserved]
$C0AF (49327)

$C0B0 (49328)
through

$C0DF (49375)

$C0E0 (49376)
through

$C0EF (49391)
$C0F0 (49392)

through
$C0FF (49408)

[Reserved]
[Reserved]
[Reserved]

Used for disk drive control (port 6)

[Reserved]

)>
"'0
"'0
<D
::I
a.
X

D
(,)
.l:oo
U1

Appendix IV
Apple //c Page 3 Vectors

Address

$3D0-$3D2

$3D3-$3DS

$3D6-$3EC

$3ED-$3EE

$3EF

$3F0-$3Fl

$3F2-$3F3

$3F4

$3FS-$3F7

$3F8-$3FA

Contents

JMP $BE00

JMP $BE00

$FA59

$BE00

$1B

JMP $BE03

JMP $BE00

Description

A JMP instruction to the ProDOS warm
start entry point. A call to this vector will
reconnect DOS without destroying the
Applesoft program in memory. Use the
"3D0G" command to move from the sys
tem monitor to Applesoft.

A JMP instruction to the ProDOS warm
start entry point.

[Reserved by ProDOS]

The address of the subroutine to be called
by XFER ($C314) is stored here.

[Reserved by ProDOS]

The address of the subroutine to which
control is to be passed when a BRK
instruction is executed (low-order byte
first).

The address of the subroutine to which
control is to be passed when a RESET
interrupt is generated (low-order byte first).

POWERED-UP BYTE. The reset vector at
$3F2 is used only if the number stored
here is equal to the logical exclusive-OR
of the number stored at $3F3 and the con
stant $AS.

A JMP instruction to the subroutine to
which control is to be passed when the
Applesoft "&"command is executed.

A JMP instruction to the subroutine to
which control is to be passed when the
system monitor's USER command ([con
trol-Y]) is entered.

(continued)

347

348 c.J Inside the Apple //c -----------------

Address

$3FB-$3FD

$3FE-$3FF

Contents

JMP $FF59

$BFEB

Description

[Reserved by system monitor]

The address of the subroutine to which
control is to be passed when an IRQ inter
rupt is generated (low-order byte first).

Note: All addresses are stored with the low-order byte first.

Appendix V
For Beginners Only

The purpose of this appendix is to familiarize novice programmers with a
few of the more important fundamental computer concepts. By mastering
these concepts before reading the main body of this book, you should be able
to more easily understand the technical descriptions and programming exam
ples that will be presented.

For more detailed information on these topics, more general books on
computing should be consulted. Many of the references included at the end
of each chapter in this book will be useful in this regard.

Numbering Systems

We are all familiar with the decimal numbering system that makes use of
ten fundamental digits. This system, however, is not sacred and we could, if
we preferred, use other systems that use fewer or more digits.

When dealing with computers, it is often convenient to use the binary
numbering system and the hexadecimal numbering system. The binary num
bering system uses only two digits, 0 and 1. The hexadecimal system uses the
following sixteen digits:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

which represent decimal numbers 0 through 15, respectively.

The 65C02 microprocessor that controls the Apple //c performs all its inter
nal operations using binary numbers because it has available to it thousands
of logic cells that can easily be turned either "on" or "off" to represent the
binary digits "1" or "0," respectively. Binary numbers, however, are usually
not used when writing a program because they are difficult to read and are
prone to transcription errors. Decimal-number equivalents of binary numbers
are often used instead, but the pattern of binary ones and zeros to which they
refer are often not immediately obvious (quick now, what is the binary rep
resentation of 225 ?). The hexadecimal numbering system, however, is an ideal
alternative because each hexadecimal digit defines exactly one of the sixteen
four-digit patterns of binary ones and zeros, making conversion between
binary and hexadecimal very easy.

349

350 c::::=J Inside the Apple //c ----------------

In this book, hexadecimal numbers will be preceded by"$" to distinguish
them from decimal numbers. They will be used when referring to data values
or to memory addresses.

Bit Numbering and "Significance"

The basic unit of storage in the Apple //c, and most other microcomputers,
is the byte. As far as the 65C02 microprocessor is concerned, each byte is
made up of eight bits, each of which can be either on or off (a computer likes
things that can exist in only one of two states). This means that binary
numbers from 00000000 to 11111111 (0 to 255 decimal) can be stored in one
byte.

Each bit in a byte is associated with a certain binary weight equal to the
number that the byte would represent if that bit were on and all the other
bits were off. These binary weights are as shown in Figure V-1.

7 1 6 1 s 1 4 1 3 1 2 1 1 1 0 1 .-bit numbers

128 64 32 16 8 4 2 1 .-binary weights
Figure V-1. Binary weights of each bit in a byte.

(Notice that the bits within the byte are numbered from 0 to 7 and not from
1 to 8 .) To determine the decimal representation of the bit pattern, it is simply
necessary to add up the binary weights of all bits in the byte that are on.
Since bit 7 contributes most, it is called the most-significant bit or "high
order" bit. Conversely, bit 0 is referred to as the least-significant bit or "low
order" bit.

Bit 7 of a byte is also called the "sign bit" because it is often used to indicate
whether the number stored in the byte is positive or negative (if it is 1, then
the number is considered to be negative). The 65C02 microprocessor that
controls the //c uses a special internal status register which, among other
things, holds a flag that represents the sign of any number being dealt with.
(See Chapter 2.) Special65C02 instructions are available that can change the
flow of a program depending on the state of this sign flag (they are called
"BPL," branch on plus, and "BMI," branch on minus). The //c uses bit 7 of
several special memory locations to hold information relating to the state of
the system. When these status locations are examined in an assembly-lan
guage program, BPL can be used to transfer control if the status is off (bit 7
is 0) and BMI can be used to transfer control if the status is on (bit 7 is_ 1). The
same thing can be done from an Applesoft program by using the PEEK
command to read the number stored at the status location. If bit 7 is on, then
the value read will be greater than or equal to 128 (since the binary weight
of bit 7 is 128).

------------------- Appendix V CJ 351

Situations where more than one byte is required to store a number (that is,
the number is larger than 255) are quite common. In these cases, the byte
that contains information on the highest-weighted bits for the number is
called the most-significant byte or high-order byte, and the byte that contains
information on the lowest-weighted bits is called the least-significant byte or
low-order byte.

Pointers and Vectors

In Chapter 2 you will see that the 65C02 microprocessor is capable of
controlling a memory space that is mapped to the addresses from
$0000 ... $FFFF. Since one byte can hold exactly two hexadecimal digits, any
address in the 65C02's memory space can be stored in two bytes.

A pointer or "vector" is a pair of memory locations that contains the address
of another location to which the pointer is said to be pointing. The least
significant byte of the pair is always stored in the first memory location and
the other byte in the next higher location. To determine the address stored in
a pointer, you can use the following Applesoft formula:

ADDR = PEEK<X>+256*PEEK<X+1)

where X represents the first memory location which the pointer occupies. The
second byte in the pair is multiplied by 256 since it represents the number of
256-byte units that make up the address.

The 65C02 microprocessor makes extensive use of pointers to access data
arrays and to handle interrupts. (See Chapter 2.) Applesoft also maintains a
great many pointers for keeping track of its many data areas. (See Chapter
4.)

Control Characters

Control characters are special characters that are entered from the key
board by using the CONTROL key. Although they do not represent visible
symbols, they often cause the 1/c to perform special functions. Such characters
will be denoted in this book by [control-X], where X refers to any alphabetic
character (A ... Z) or one of the following special symbols: @ [\] " _.The
CONTROL key acts just like another SHIFT key in that it and one other key
must be pressed at the same time in order to enter a control character from
the keyboard. The procedure involves first pressing the CONTROL key and
then, while still holding it down, pressing the other key ("X" in the above
example).

65C02 Assembly Language

Many of the programs presented in this book are written in a programming
language that can be used to generate a series of bytes (which represent

352 c=J Inside the Apple //c ---------------

microprocessor instructions and data) that can be interpreted and directly
executed by the //c's 65C02 microprocessor. This programming language is
called "65C02 assembly language."

There are two steps involved in developing an assembly-language program.
First, a source code for the program must be entered that defines the program
in a human-readable form using symbolic labels for addresses and data,
special three-character mnemonics for the permitted 65C02 instructions, and
special symbols to indicate the addressing modes used by the instructions.
(See Chapter 2 for a detailed discussion of 65C02 instructions and addressing
modes.)

A typical line of source code looks something like this:

LABEL LOA C$28>,Y ;Thi~ is a comment

and is made up of four distinct fields . .The first field is the label field and it
holds the symbolic name (if any) for the current location within the program.
The next field is the instruction field and it holds the three-character mne
monic for the 6SC02 instruction ("LDA" in the example). It is immediately
followed by the operand field, which holds the aqdressing mode used by the
instruction, that is, information relating to the method the instruction is to
use to access the data or memory location on which it is to act, the actual
address or data itself, or an expression that evaluates to that address or data
("($28),Y" in the example). The last field is the comment field and is used for
documenting the program. Each field is separated from the other by at least
one blank space; in addition, most assemblers require comments to be pre
ceded by a semicolon.

The second step is to interpret or" assemble" the program source code using
a 65C02 assembler. This is done in order to produce a file that contains the
bytes defined by the program in a format that the 65C02 can directly execute
(the "object code" or "machine language").

The assembly-language programs presented in this book were all entered
and assembled using the Merlin Pro assembler published by Roger Wagner
Publishing, Inc. (10761 Woodside Avenue, Suite E, Santee, California 92071).
If you want to modify and reassemble the programs presented in this book
and you are not using Merlin Pro, then you will likely have to make several
changes to the program source codes to account for any differences in syntax
and command structure. Differences usually arise in the area of "pseudo
instructions"; these are assembler-specific commands that appear in the 65C02
instruction field of a line of source code, but that represent commands to the
assembler rather than 65C02 instructions. They can be used to place data
bytes at specific locations within the program (DFB, DS, and ASC), to define
symbolic labels (EQU), to indicate the starting address of the program (ORG),
and for several other purposes.

Here are descriptions of some of Merlin Pro's more commonly used
pseudo-opcodes:

------------------ Appendix V c:=J 353

DFB-Define a byte of data
DS-Define a data space
ASC-Define an ASCII string
EQU-Equate a symbolic label to a number or a memory location
ORG-Specify origin (starting address) of object code

Some of the more popular assemblers available for the //c are listed in the
references at the end of Chapter 2.

Running Assembly-Language Programs

To run an assembly-language program, two steps must take place. The first
step is obvious: the program must be loaded into memory. This can be done
by storing the bytes that make up the programs into the appropriate area of
memory by using Applesoft POKE statements or by using the system monitor
STORE command. (See Chapter 3.) The easier method, however, is to load it
from the binary file on diskette in which it is contained ("BIN" is displayed
to the right of a binary file's name when a diskette is CATALOGued) by using
the ProDOS BLOAD command. The BLOAD command must be entered while
you are in Applesoft and is of the form:

BLDAD FILENAME,Aaddr
where "FILENAME" represents the name of the binary program and "addr"
represents the memory location at which it is to be loaded, in hexadecimal
(if preceded by"$") or decimal notation. The" ,Aaddr" suffix can be omitted
if you wish; if it is, then the file will be loaded into memory at the same
position it was in when the BSAVE command was used to save it to diskette.

The second step is to actually run the program. This can be done by using
the Applesoft CALL command, which is of the form

CALL start
where "start" represents the decimal starting address of the program. For
example, to run a program that begins at location $300 (768 decimal), you
would enter the command CALL 768. The alternative way of starting the
program is to use the system monitor's GO command. (See Chapter 3.) This
can be done by entering the system monitor from Applesoft using a CALL-
151 command and then, for a program beginning at location $300, entering
the command "300G".

Some of the programs in this book will not operate properly if they are
loaded and called in this way (they will be specifically noted). Instead, the
ProDOS BRUN command must be used to load and execute them directly
from diskette. This command can be entered as follows:

BRUN F I LENM1E

where "FILENAME" represents the name of the binary program. When the

354 [==:J Inside the Apple //c ----------------

BRUN command is used, the program will be loaded into memory at the
location from which it was saved to diskette using the ProDOS BSAVE com
mand. To save a copy of a binary program that you have already entered into
memory to a diskette, enter the command:

BSAVE FILENAME,Aaddr,Lnum
where "addr" represents the starting address of the program and "num"
represents the number of bytes in the program, or the command:

BSAVE FILENAME,Aaddr1 ,Eaddr2

where "addrl" and "addr2" represent the starting and ending addresses,
respectively, of the program.

Appendix VI
Periodicals of Interest

The following magazines are excellent sources of information on the Apple
1/c (and related products). The address given for each magazine is that of the
subscription department, which is not necessarily the same as the editorial
department.

1. A+ , The Independent Guide for Apple Computing
Price: $24.97/year ($36.97 in Canada)
Address: P.O. Box 2965

Boulder, Colorado
80321

2. Apple Assembly Line
Price: $18/year ($21 in Canada)
Address: P.O. Box 280300

Dallas, Texas
75228

3. Apple Orchard
Price: $24.00/year ($30.00 in Canada)
Address: P.O. Box 6502

Cupertino, California
95015

4. Call-A.P.P.L.E.
Price: $21.00/year ($36.00 in Canada)
Address: 290 S.W. 43rd

Renton, Washington
98055

5. inCider
Price:
Address:

$25.00/year ($27.97 in Canada)
P.O. Box 911
Farmingdale, New York
11737

6. Nibble, The Reference for Apple Computing
Price: $26.95/year ($39.95 in Canada)
Address: 45 Winthrop Street

Concord, Massachusetts
01742

355

Index

-(dash) 123
& (ampersand) 95
/RAM 121
6502 2, 11
65C02 2, 11-43

address space 12, 38-41
addressing modes 27-33
cycle time 13
I/0 handling 33-34
instruction set 13-20
interrupts 34-38
registers 21-27
stack 12-13, 26-27, 38
stack pointer 13, 26-27
status flags 23-26
zero page 12-13, 38

6551 ACIA 299, 303-310
interrupt handling 318-324

80/40 switch 157, 185
80COL switches 177, 188, 192, 194,

211, 212, 222
80STORE switches 192, 194, 208,

212,216,239-240,242,
250-251,316

ABS 102
ACIABUF 319, 321
access code 130
accumulator 21-22
addressing modes 27-33

absolute 29-30
absolute indexed 32
absolute indexed indirect 33
absolute indirect 33
accumulator 30
immediate 28-29
implied 30
indirect indexed 31
relative 32
zero-page indexed indirect 30-31
zero-page indirect 31

AKD 160-161, 168-173
ALTCHARSET switches 194-196
ALTZP switches 234-235,236-239

357

alternative character set 194-196
ampersand command 95
animation 220-221
any-key-down switch (see "AKD")
APPEND 125
Apple I 2
Apple II

announcement 3
clones 5
patent 1

Apple II Plus 3, 4
Apple'//c

announcement 6
back panel 7-8

Apple //e 5
Apple Ill 4-5
Applesoft 3, 4, 67-113

linking to assembly language
94-97

memory map 68-72
source code 68
tokenization 72-77
variables 72

argument register (ARG) 97, 104
arithmetic

binary 24,25-26
decimal24, 25-26

Arkley, John 4
array variables 83-85
ARYTAB 71, 72, 78, 82-83
ASCII codes 141-145

negative and positive 141
assembler

formats 49-51
ATN 102
Auricchio, Rick 4, 5
auto-repeat 168-173
AUXMOVE 241-244, 250
bank-switched RAM 41, 230-236
bank switching 229
BASCALC 63, 190
BASIC.SYSTEM 116

commands 121-126

358 c:::=J Inside the Apple //c ---------------

BASL 190
Baudot code 141
Baum, Allen 2
Beernink, Ernie 6-7
BLOAD command 51, 123
blocks 116
break instruction (BRK) 34, 37-38
BRK (see "break instruction")
Broedner, Walt 5
BRUN 123, 156
BSAVE 123
BYE 125
C3COUT1 199-200, 203-205
C3KEYIN 145, 148, 152
CALL 95
CAT 122
CATALOG 122
CH 146,201
CHAIN 125
character input subroutines

145-150
character output subroutines

199-201
CHARGET 91-93,97,98
CHARGOT98
CHKCOM 102, 105, 108, 110
CLAMPMOUSE 279
CLEARMOUSE 279, 280
CLOSE 125
CLREOL63
CLREOP 63
CLRSCR215
CLRTOP 215
co-resident programs 245-253
COLD 103
COLOR214
COLOR= 213
colors

high-resolution 219-220,223
low-resolution 209, 212-213

communications port 313-314
CONINT 99, 110
cos 102
COUT 65, 199,203-205
COUTl 65, 185, 199-200, 203-205
CR63
CREATE 122

CSW153,199-200,205-206
CURSOR 148, 153
cv 146,201
cycle time 15, 258
data bit 301-302
data format 301-303
DELETE 123
DHIRES switches 208,211,216,

222
Disk II 3-4, 115
directories 119-121

format of 127-130
directory file entry 129
directory header 128
disk drive 115

booting 115
external 115

diskettes
formatting 116

display attributes 194-196
DISVBL 285
DISXY 285
DOCTL201
DOS 3.3 4
DRAW 224,226
Dvorak keyboard 157
EBCDIC codes 141
effective address 28
ENBXY 285
ENVBL 285
ERRFLAG 102, 103
ERROR 102
escape sequences 148-150
ESCRDKEY 145, 150
EXEC 124
EXP 102
EXTINT2 323
FADD 100
FACLO 99, 103
FDIV 100
filenames 118-121
file types 130
flags (see "status flags")
flash video 194-196,203-205
floating point accumulator (FAC)

96-97,99,100,101,104,110
FLUSH 125

--Index c==J 359

PMULT 100
PNDLIN 98
POUT 101
PRE 125
PRESPC 100, 101, 103
PRETOP 71, 72, 79, 81-82, 100, 101
PRMEVL 99, 101
PRMNUM 99, 108
PSUB 100
functions 82
FX0EDGE 285
FY0EDGE 285
game controller 265, 288-293
GA~BAGE 101
garbage collection 82, 101, 125
GBASCALC 215
GBASL214
GETADR 100, 110
GETARYPT98
GETBUFR 117-118
GETBYT99
GETLN 64, 145, 150-152
GETSPACE 100
GivAYP 99, 110
GOTKEY 148, 154
GR213
H2 214
HCOLOR= 224
HGR 224,226
HGR2 224, 226
HHORIZ 225
high-resolution graphics mode

214-227
animation 220-221
commands 223-225
double-width 221-223
double-width colors 223
double-width memory mapping

222-223
single-width colors 219-220
single-width memory mapping

217-218
turning on double-width
turning on single-width 215-217.

HIMEM: 71,72
and ProDOS 117-118

HIRES switches 208,210,222,
239-240

HLIN (high-res) 226
HLIN (low-res) 213
HLINE215
HMASK225
Holt, Rod 1
HOME63
HOMEMOUSE 280
HPAG 225
HPLOT 224,226
Huston, J.R. 4, 6-7
HVERT225
IN# 125, 152-153, 155-157
index registers .22-23
INITMOUSE 280
input buffer 39, 69
Input/Output memory 41-42
input link 147, 152-153

effect of Pro:bOS 154-157
ProDOS link 156

instruction pointer (see
"program counter")

instructions (65C02) 13-20
Integer BASIC 2, 3
integer numbers 85-86
interrupt requests (IRQ) 34, 36-37
interrupts 24-25, 34-38

external 323-324
mouse 267-268, 280
serial interlace 318-324

inverse video 194-196,203-205
INVPLG 204
IOUDIS switches 208,211,216,

222,285
IRQ (see "interrupt requests")
Jobs, Stephen 1-2
KBD 160-161, 173,321-323
KBDSTRB 160-161, 168-173,323
key block 127
keyboard 157-181

80/40 switch 157
auto-repeat 168-173
1/0 locations 160-161
interrupts 321-323
keyboard switch 157

360 c::J Inside the Apple //c ---------------

reset key 173-181
strobe 160-161

keyboardinput148-150
modifying 153-154, 164-168

KEYIN 64, 145, 148, 152-154, 185
keywords 7 4-77
KSW 147, 152-153, 164
Language Card 4
line input subroutines 150-152
LINGET 102
links 60, 147
LINNUM 98, 100, 102, 103, 110
LINPRT 100
Lisa 5
LOAD 124
LOCK 123, 130
LOG 102
LOMEM: 71
low-resolution graphics mode

207....:214
commands 213-214
double-width 210-213
double-width colors 212-213
double-width memory mapping

212
single-width colors 209
single-width memory mapping

209
turning on double-width

210-211
turning on single-width

208-209
LOWTR 98, 103
machine language interface

132-134
Macintosh 6
Markkula, Mike 2, 6
MASK214
memory map

auxiliary RAM memory 41,
236-245

bank-switch,ed RAM 41
Input/Output memory 41-42
main RAM memory 38-41
ROM memory 42

memory-mapped 1/0 33-34,

183-184
MEMSIZ 71, 72,81
Merlin Pro assembler 9-10,49
Microsoft 3, 6 7
MIXED switches 208-209, 210,

216;222
MLI (see "machine language

) interface")
MON 45-46
MONZ 45-46,65
mouse 265-288

Applesoft control 269-273
assembly language control

273-280
comparison with //e mouse

275-278
how it works 266-267
joystick emulation 280-281
operating modes 267-268
screen hole usage 274

MouseText183, 196-199
MOUSEXINT 288
MOUSEYINT 288
MOUSTAT 268,278,279,280
MOUX1288
MOUY1288
MOVESTR 100, 101
musical notes 255-259
NEWESC 148
NMI (see "non-rriaskable

interrupts")
non-maskable interrupts (NMI) 34
OFFBSR1232
OFFBSR2 232
OLDRST 45-46
opcode 27-28
OPEN 124
OPEN-APPLE key 159, 173-174,

295,322
OURCH201
OURCV 201
output link 153, 199-200, 205-207

effect of ProDOS 206-207
PAGE2switches 192-194,208,212,

216,239-240
page 3 vectors 118

---Index c==J 361

page of memory (definition) 12
parity bit 302
Pascal4, 230
pathnames 118-121
PDL inputs 289-293
photoresistor 292-293
pixels 214, 216
PLOT (high-res) 215
PLOT (low-res) 213
port assignments 9
port selection 60
POSITION 125
POSMOUSE 279
PR# 125,205,207
PRBYTE64
PREFIX 120-121, 123
PRGEND71
PREAD 63, 285, 290
prefix 120-121
primary character set 194-196
printer port 311-313
PRINTYX 62, 63
PRNTFAC 100, 108
processor status register 23
ProDOS 115-140

announcement 6
memory map 116-118

program counter 27
prompt symbols 151
PTRIG 288, 289-290, 292
PTRGET 98, 104-108
push buttons 293-296
PWREDUP 174-175
Quinn, Peter 5
RAMRD switches 237, 239-240,

250-251
RAMWRT switches 237, 239-240,

250-251
RD63 288
RD80SW 185
RDBANK2 232-234
RDCHAR 64, 145, 150
RDKEY 64, 145-150, 152
RDLCRAM 232-234
RDVBLMSK 288
RDX0EDGE 288

RDY0EDGE 288
RDXYMSK288
READ 125
READBSR1 232
READBSR2 232
READMOUSE 268,278,279
real numbers 87-89
registers 21-27

accumulator 21-22
index (X and Y) 22-23
processor status 23
program counter 27

RENAME 123
RESET 174
reset interrupt 34, 36, 173-181

trapping reset 17 4-181
RESTORE 126
ROM memory 42
ROT 225
ROT= 224
RS-232-C standard 300, 304-305
RSTXY 288
RUN 124
RX0EDGE285
RY0EDGE285
sapling file 131-132
SAVE 124
SCALE 225
SCALE= 224
SCRN (high-res) 215
SCRN (low-res) 213
Sculley, John 6
seedling file 131
serial interface 299-303

configuration 310
SERVEMOUSE 279,280
SETCOL 215
SETHCOL 226
SETMOUSE 278
Shepardson, Bob 4
Sholes keyboard 157
SHOWCUR 148, 154
simple variables 78-83
SIN 102
SOFTEV 174-175
SOLID-APPLE key 159,295

362 c=J Inside the Apple //c --------------~--

speaker 255-263
110 location 255

SQR 102
stack 12-13,26-27, 38,69
stack pointer 13, 26-27
start bit 301
status flags 23-26

break 25
carry 23-24
decimal mode 25
interrupt disable 24-25
negative 26
overflow 25-26
zero 24

Stearns, Bryan 5
stop bit 302
STORCH200
STORE 126
STORY 154
STREND 71, 72, 78, 82, 85
STROUT 101
STRPRT 101
"Sweet 16" 2
system monitor 45-65

ADD command 57
BASIC command 57
command syntax 46, 61
CONTINUE BASIC command

57-58
DISPLAY command 46, 48-49
entry points 45-46
EXAMINE command 53-54, 62
GO command 54-55,62
INVERSE command 57
KEYBOARD command 59-61
LIST command 55-56
MOVE command 51-53
NORMAL command 57
PRINTER command 59-61
STORE command 49-51
subroutines 61-65
SUBTRACT commanq 57
USER command 58-59
VERIFY command 53
TAN 102
terminal mode 314-316

text mode 184-207
memory mapping 188-194
turning it on 185-188

TEXT switches 188,208,210,216,
222

thermistor 292
tree file 131-132
TRKEY 322
TWKEY322
two's complement 85-86
TXTPTR 90-94, 98, 98, 99, 102,

103, 104-108
TXTTAB 70, 73, 194
TYPHED 322,323
UNLOCK 123, 130
UPDATE 154
USR 96.:_97, 104
V2 214
variables 72, 77-:-85

evaluating 108
locating 104-108

VARPNT 98, 103, 104-108
VARTAB 71, 72, 78
VBL interrupt 221,267,268,278
VBLINT 288
VERIFY 123
vertical blanking interrupt (see

"VBL interrupt")
VFACTV 176-177
video RAM

auxiliary memory 191-192
high-resolutipnpages 40-41,72,

215-218,222-223,236
low-resolution pages 208-209,

212
text pages 40, 69, 189-194,236

VIDOUT 200
VIDOUTl 201
VIDWAIT 200
VisiCalc 4
VLIN213
VLINE 215
VMODE 148, 150
volume bit map 126
VTAB 63
WAIT64

-- Index c==J 363
WARM 103
Wigginton, Randy 3, 4
Williams, Rich 6-7
windows 202-203
WNDBTM203
WNDLFT 203
WNDTOP203
WNDWDTH203
Wozniak, Stephen 1-2

WRITE 125
WRITEBSR1 232
WRITEBSR2 232
XDRAW 224,226
XFER 244-245
XRDSER 320
zero page 12-13, 38, 69

free space chart 41

RELATED RESOURCES SHELF

Apple 1/c:
An Introduction to Applesoft BASIC

Lois Graff, Larry Joel Goldstein
Designed for both novices and experienced users, this unique
guide leads you through the fundamentals of BASIC while
familiarizing you with the many capabilities of your Apple //c.

0 1984/371 pp/paper/02913-4/$16.95

Apple //c User Guide Gary Phillips, Donald Scellato
Presents a clear account of the programming capabilities and ap
plications for the Apple //c. Friendly, step-by-step instructions are
delivered throughout.

o 1984/369pp/paper/D3073-6/$14.95
0 Book-Diskette/1984/02921-7/$34.95
0 Diskette/1984/D293X-3/$20.00

Brain Games for Kids and Adults Using the Apple 11/lle/llc
John W. Stephenson, Ph.D., Robert L. Randell, Ph.D.
(Softsync)
This remarkable book packs an enormous amount of information
in just a few lines of code to give you more than games alone. It's
a learning tool! Guess at the solutions or work them out logically.

0 1984/231 pp/paper/03626-1/$13.95
D Diskette/1984/03669-1/$20.00

TO ORDER, simply clip or photocopy this entire page, check off
your selection, and complete the coupon below. Enclose a check
or money order for the stated amount. (Please add $2.00 postage
and handling per book plus local sales tax.)

Mail to: Prentice-Hall, Inc., P.O. Box 462, West Nyack, NY 10994

Name --------------------~----~-----------
Address --------------------------
City/State/Zip ---~----------------------
Charge my credit card instead: D MasterCard D Visa
Account# ___________ _ Expiration Date ________ _
Signature _______________________________ _
Dept.Y Y0510-88(5)

Prices subject to change without notice.

"What can I say that is not superlative . . . this book has the potential of being
the definitive technical guide on the Apple 1/c!"

"For a technical orientation, no other book covers the variety of topics this
does!"

INSIDE THE APPLE //c
Gary B. Little

Now-a comprehensive look at the advanced features and capabilities of the
Apple //c! This book presents an insider's view of the 65C02 microprocessor
that controls the 1/c, ProDOS, the //c system monitor commands; how the //c
handles character input and output; memory management techniques; how to
control the speaker, mouse, and game controller; how to use the //c's two
built-in serial ports for communications with printers and modems, plus much
more.

Here are just a few of the many interesting programming examples you'll find
in this book:

• How to speed up the auto-repeat rate of the cursor (using
software techniques only)

• How to run two Applesoft programs concurrently (one in
main memory and the other in auxiliary memory)

• How to read mouse input using 65C02 interrupt techniques
• How to read and write specific blocks on the ProDOS

formatted diskette
• How to use the keyboard "type-ahead" feature

CONTENTS
An Introduction to Apple and the Apple //c • The 65C02 Microprocessor • The
System Monitor • Applesoft BASIC • The ProDOS Disk Operating System •
Character Input and the Keyboard • Character and Graphic Output and Video
Display Modes • Memory Management • The Speaker • Mouse and Game
Controller Input • The Serial Interface Ports • Appendix 1: American national
Standard Code for Information Interchange (ASCII) Character Codes • Appen
dix II: 65C02 Instruction Set and Cycle Times • Appendix Ill: Apple //c Soft
Switch, Status, and 110 Port Locations • Appendix IV: Apple //c Page3 Vectors
• Appendix V: For Beginners Only • Appendix VI: Periodicals of Interest • Index

0
ISBN 0-89303-564-5

	Inside the Apple //c
	Contents
	Preface
	About the Author
	Chapter 1: An Introduction to Apple and the Apple //c
	Chapter 2: The 65C02 Microprocessor
	Chapter 3: The System Monitor
	Chapter 4: Applesoft BASIC
	Chapter 5: The ProDOS Disk Operating System
	Chapter 6: Character Input and the Keyboard
	Chapter 7: Character and Graphic Output and Video Display Modes
	Chapter 8: Memory Management
	Chapter 9: The Speaker
	Chapter 10: Mouse and Game Controller Input
	Chapter 11: The Serial Ports
	Appendix I: American National Standard Code for Information Interchange (ASCII) Character Codes
	Appendix II: 65C02 Instruction Set and Cycle Times
	Appendix III: Apple //c Soft Switch, Status, and I/O Port Locations
	Appendix IV: Apple //c Page 3 vectors
	Appendix V: For Beginners Only
	Appendix VI: Periodicals of Interest
	Index
	Related Resources Shelf

