HAND-HOLDING BASIC

Witten By: NEIL BENNETT
In conjunction with Apple Computer, Inc.

NOTICE

Apple Computer Inc. reserves the right to make improvements in the product
described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. AND NEIL BENNETT MAKE NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE
DESCRIBED IN THIS MANUAL, 1ITS QUALITY, PZXFORMANCE, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD
OR LICENSED "AS 1S." THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH = THE BUYER. SHOULD THE PROGRAMS PR0VE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, ITS
RETAILER, OR NEIL BENNETT) ASSUMES THE ENTIRE COST OF ALL NECESSARY
SEFYICIKG, FF?QIR, OR CORRECTION, AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES, IN NO EVENT WILL APPLE COMPUTER INC. OR NEIL BENNETT BE LIABLE
FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED
OF TNE‘PPSStBIL!TY OF SUCH DAMAGES. SOME STATEZS DO NOT ALLOW THE EXCLUSION
OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY
TO YOU.

This manual is copyrighted. All rights are reserved. This document may
not, 1in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior

consent, in writing, from Apple Computer Imc.

1980 by APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

The word APPLE and the Apple logo are registered trademarks of APPLE
COMPUTER INC.

Special Delivery Softwvare is a trademark of Apple Computer, Inc.

SYSTEM AUTHOR’S
ACKNOWLEDGEMENTS

It is a pleasure to recognize the contributions of those who have helped to
bring Hand-Holding BASIC to 1its current state of development. I wish to
express my indebtedness to Rudi Hoess, of Sydney, Australia for providing much
guidance and encouragement; Roger Keating of Sydney, Australia for originating
the structural concept of levels and giving much advise on the educational
sspects of the system; Juris Reinfelds and Richard Miller, of the University
of Woolongong, Australia, for contributing many valuable suggestions;

and
Portia Isaaceon, of Dallas, Texas, for her encouragement.

1 would also 1like to thank the SPECIAL DELIVERY SOFTWARE team at APPLE
COMPUTER, INC. for helping to make the system into a producte.

1 am grateful to my wife Judy for her patience and understanding.

N. W. Bennett
September, 1988

FOREWORD

Hand-Bolding BASIC is an implementation of the BASIC prograsaing language
designed specifically with the novice programmer in mind. Presented in four
discrete units, 1t will hold the beginning programmer”s hand through
arithmetic expressiops, the concept of variables, and the systea-supplied
functions. It will guarantee correct entry of program statements and

expresésions. It includes a full range of programming, program examination,
and debugging.

Through the use of special screen displays and system commands, Hand-Holding
BASIC puts ouch of its internal workings on public display. As a beginning
brogrhnp-r. you will have the opportunity to see just what the computer is
dﬁihﬁ every step of the way. If you“ve had soze programming experience, but

it}l; are unsuré just how programs work, Hand-Holding BASIC will help show
yau.

TABLE OF CONTENTS
CHAPTER l. INTRODUCTION:«cocecosvesccsscanccsssosvascscsnacaccansvanasl
CHAPTER 2. ABOUT HAND-HOLDING BASIC..co:cesccccssesscccsncasacscsscscal
2,1 Scope Of This Chaptereecceeeasecssssccesscosannsassscccnsaccnccccsl
2.2 System Descriptiou...................................;............2
(1) Syntax Checking:iscesrcossesosinsssnsnasssansssnnssssasorsssssd
(2) Bcreen DISplayscccscceacarcsssarscnncscsssscssscreascannransesed
(3) Keywordsecceocoescsesancsancasssssarosssosancccsascesccancancesd
2.3 The Four Levels of Hand~Holding BASIC.sceeeesecccsccssccccancassssh
Level liuccecteravotcsessccscassncssenrosencacvcaccsssaccssccscnceced
ﬁev$l 2eeoessveastnsesareccnccscsscsnscsassascscssceseassassasccccsd
Level 3iuiorecccestioscccccrcnscccasenssscsssscncccccacssscnsscscnash
Lavel A cusnonsapsiansnnssinieonssionesonesnssssnassassnssosassssnsd
CHAPTER 3. USING HAND-HOLDING BASIC..evssesesnsonsnsarnsnsnsonsnnnsssd
1.{ Scope o} Chapter.eccpcececscecsseccccscossascssescsosansasaconcscsced
Brief System Description..ccceececscsceccnccecsscssnncescccacsacasd
Loading Hand-Holding BASIC Into Your Systemecccceccsscececscccscsld
3.2 Level 1..»,...;..........ll
Scope of Level l.oceececveoscccoccocsncssrssasvssascssosanssscscasall
Cg;iigga T PP § |
KeYuwords ,esesstssssscsrsnssosasnossssssnnarnensvssssassonssosasnsll
Control CharaCterS..ceceeccecccssssososasssosiossssnsssssscnsassneell
Arfthnetic SynfaX.ceceoesesacscccscocscsscccccscsccscscssccsccssssl?
Syntax Errors and Correctiof..eccecceccssccccoccsccscscsssessssasld
Arlthmetic Brrorsecceccecccccecscoscsssoosasascsccsssssasscascsasld
Order of EvaluatioNescecsccccsescecssocsssscvrsnssasoccsonescnccanssld

Making CorrectionS.cecececccsccsssscoccssccrsccccsoscosacccanaanssld

3.3

3,4

3.5

Level 2ccccaccsccccccecassccconscossrsscsccsccncsssssanssascnnnsssald
Scope Of Level 2.ccecicccccecececnscssaccccccnccncccccnssonssssesld
Keywords.ceeassosacsoescscasasscsseancncasssasessnsecsnssaascsasaaald
BASIC StatementB.cceccscecsscsssscvccccccascossssscccssansnsasasaalb
Using the StatementS.ececesscocescscnascsccsonscscssscsnssssssssssel?
{1) LET var=exp «cccccoccesccssvesssscoscasecscsscssaccnsscsssel?
{2) LET SEr=StreXPscescscecesrsesstcasssacsnsssssasannscansnseelf
Theé Syebol Tahleccesonsesvsasoassnssssannnsssssssssssasssasssssasodl
S T PP
Sco?? Of Level J.ceccccaccacvonssccossssscssassncesesccconcsnnansld
a3
Keywordsesscessesorscssiocccscsosasscsessssaconcssnascssccnascecsl
Mathematical OpPerators..eecerescsscecssssssnssossscesnsnccnsnnaasll
ATithmatic FUNCELONS. cebaccnecocacsorersssesssccssscansccanscacasld
%rié@nomegric FUNCLL1ONS.seasscvcnastsserassssosecssranssssscannsslld
EXpBHenzlallLosarithmlc FUNCLiONSeassessoccccscsccscscsaccscnnscald
gpectql Apple I1 FunctionSescesevoecsescccncoscscesssscasaccncnnsld
BhveL §a ¥ienivesnnsyarasnhasevnssnshsiersbantuod ssninsvosnrs funalS
Sgo?e of Level l......,..u.......................................25
sAs%c SEALENENEBa sy o sluasivain ol e nivs nainanisssaosncssisnonnssssassnssly
Control ﬁﬁatémants...26
INpUL SEAtEMENL.:eecsceccsosossacscassscscsosoansasassssnsssenesss2d
Data, Read, and Restore StatementSeccescsscsascssscnssascasccsccedd
Arrpx Dec]ara:ionz..............................;................30
Special Functions: PDL and BTNueeeerscocrerneseonsecrscnsosansesdl
KeyWwordsessseseseovocosrecsesencacscrerssssscasnonscsscssanssssseldl

.
SCrEeNBestescsssscsoccncsncrcscsesscacsensssoosscssoosccsccnsaneald

Command BCreeNccescscncsccscscsncosssscsccsscscscsscsccssssonssssasld

User Print ScreeNcccecececccsssssseccancscessscssscssccccncsancasnsald
L18t~Trace SCre@h.cccsasssssscnssccasasasssssssssesssssnsasacseechf
Chronological Trace SCreeN.ceecesascccceasscccccccacassaacsccscsssvif
MONLLOr SCreeNeccececceccsassssasscnssssossssocssosecsaccssccassssdl
FORLOOP SCreeNcccscesscecencssacecsaacnascssscscacncssssccessnsassdl
Summary of HAND-HOLDING BASIC Screen ControlSccceccccsccsscaccsssd
SLAtLC ETrOTB.ceccccccssccrccscscsccscacscscsnsccscesssssscccccsccedd
Dynamic Errorscccccccccccssscccccscrscccacsscsccsscrsssssecccnccedd
The Demonstration Program.cececceseccecceaccsscsesscsscccacanasseseed’
Fxpgtiuent; with the Demonstrationecccceccccocecoscscsccscncnncssdf
Lo#. Thy Nefghboreeceecaeeoececeocacccnccrccssccacccnscsscssnsnssd2
CRAPTER 4, APPENDICES.ccccecsscoscccccccsncsosonccccssosscssncsccsssdd
ArbENDIX A: Setting Up the Apple Il Systemeeccccerescccrcccscarcsaccdtf
APPENDIX B: Notes Regarding Copy Protection.seccececcecsccccscsancssssb2
APPENDIX C: .BASIC Statements Used In Hand~Holding BASIC.cccecsecccsss63

APPENDIX D: Hand-Holding BASIC KeyWords..oeeocoescccocscssscsosascassbl

CHAPTER 4
INTRODUCTION

The purpose of this manual is to teach the features of Hand-~Holding BASIC.
Chapter 1 describes the organization and scope of the manual; Chapter 2
presents an overview of Hand-Holding BASIC; Chapter 3 provides instructions om
how to use the system; and Chapter 4 contains Appendices.

To run Hand-Holding BASIC, you will need an Apple II, onoe disk drive (16
sector), and a minimum of 48K of memory. Additional features are provided
Ehat use the game paddles; however, these are not absolutely required.

While this wanual will teach you about Hand-Holding BASIC, it {8 not a
tutorial on programming techniques. For that kind of information, you will

have to refer to one of the many BASIC language programming tutorfals readily
available.

If you read Chapter 2 by itself, you will learn about the overall structure of
Hand-Holding BASIC. 1If you read Chapter 3 by 1itself, you will learn the
aystem functions and language statements. Chapters 2 and 3 are
cmplcuntiry. You should use them together.

You should also remember that learning to ptogrn a coaputer is, in a sense,
er learning to play chess or bridge. Yoo can”t be expected to read a book
of inltmctionl and then sit down and play a flawless game, or write a
laﬂleu program. There are certain kinds of knowledge that come only froa
expeﬂenc.. You should, therefore, read until you get curious enough to

xpériqen;. Then experlmant until you have to look back at this manual for an
exrlanatipn.

While the system is rather unyielding on rules of language ctructure, there
usually is ,more than one way to approach any problem. If you“re curfous, try
it first one way and then another way. Yo programming book in the world is
going to ',:ell you exactly how to do everything. There {8 nearly always a
bectex_- splution to any programming problem.

Perhaps the mogét important thing you can learn from your beginning programming
experientec 18 that you can gain as much from your mistakes as you can from
your successes. You should look carefully at all of the kinds of programming
errors that Hand-Holding BASIC will detect and then deliberately set up
situations to create each one of them. If you don”t know how to make an error

hapPen, then you may bave a difficult time finding the cause of errors when
they eeur.

You“ll never find out whether something will or won”t work unless you try it.
Expermént, experiment, experiment. Push your systea to its limits. You
can’t hreak your coamputer from the keyboard.

This manual assumes that your Apple 1I system is correctly set up. If you“re
not sure that the system 18 ready to go, sse Appendix A.

Page 1

CHAPTER 2
ABOUT HAND-HOLDING BASIC
24 Scope Of This Chapter

Chaptar 2 discuases the design of Hand-Holding BASIC. 1t does not provide
1nl;tu9tionl for using Hand-Holding BASIC. Its aim 1s to present the
background information that will make the system more understandable. Chapter
3 will present instructions for using the system, ending with a demonstration
progran that includes experiments, and a sanple problea for you to develop,
hodity, test, and adapt to your interests,

You nhqqld follow the suggeations in the fntroduction and take the time to
diligently read Chapters 2 and 3 of this manual.

22 Sysfem Description

Band*ﬂo!din; BASIC is an {mplementation of the BASIC programming language
dq-ignnd tpécilicllly for beginn!ng prograaners. It has been written in
con!ornldc- wi:h the American National Standards Institute (ANSI) standard for
l:lnll&l BASIC.
Th- el*ncntl of Hand-Holding BASIC are as follows:

ﬁul-Lte variables: A-Z & AP-Z9

One-dimensional arrays

Two-dimensional arrays

String variables: A$-2z$

End ; END

Implementation-supplied functions:

ABS ATN COS EXP INT LOG RND SGN SIN SQR TAN
Let : LET var=exp
LET str~strexp

LET strl=str2

Page 2

Control 3 GOTO louam
IF exp THEN loum
GOSUB lnum
RETURN

ON exp GOTO lnum,ceess,loum

STOP
For @ FOR var=expl TO exp2 STEP exp3
Next NEXT var
Print : ‘PRINT {tem p {tem p....p item.
Input : INPUT var,.c..,var
Data : DATA datum,...,datun

‘Read READ vaé,...,var

v

Restore ¢ RESTORE
Array 3 OPTION BASE n
DIM var(n), DIM var (a,m)
ﬁnd’mtu: RANDOMIZE
Remark 3 REM remark-string

The programming skills that you learn using Hand-Holding BASIC will be
directly transferable to other BASIC systems.

It is here that Hand-Holding BASIC”s similarities to other versions of BASIC
come to an end. The language set, the syntax, and the general computational
capabilities are the same, but the environment in which it 18 housed 18 not.
Hand-Holding BASIC makes its innermost workings accessible to the user in
three wpyi:' dynamic syntax checking; maintenance of six screen displays; and
a sdpeclal set of keywords that allow an unprecedented level of interaction.
These three factors are defined in more detail as follows:

(1) Syntax Checking
The word “syntax” refers to the "grammar™ of a computer language. Thus,
when we use the word "syntax”, the reader will know that we are referring

to the rules of grammar for Hand- Holding BASIC.

The syntax of any program statement must be correct im order for it to

Page 3

execute. In the course of typing a statement you may attempt to enter an
incorrect character. If 80, your system will reject the faulty
character. It will beep to let you know that you“ve made a mistake, and
then it will give you another chance. If you attempt to enter a second
incorrect character, the system will again reject it and beep. At this
point it will display a 1ist of those characters that are acceptable

(called the select array). It will not allow you to proceed further
until an acceptable character has been entered.

By doing syntax checking at the point of keyboard entry, Hand- Holding
BASIC teaches you correct syntax with instantaneous feedback and
precludes any syntax errors at execution tiae.

(2) Screen Displays

Every programmer dreams of the perfect program--~the one that executes
abaolutely perfectly the first time. This rarely happens. Programaers
must learn a set of diagnostic techniques along with their programaming
skills. These techniques usually involve such things as printing trace
sessa en . at certain program pointa, printing out intermediate values of
v&tiu lgp, or setting breakpoints at suspected trouble spots.

Ui:imately. an alert programmer will i{solate and correct his bugs. But
the trqditional diagnostic approach has drawbacks. When a fault -is
1solated, the pr grammcr normally notes the fault, halts executfonm, and
studies the progtn. 1isting to find out why the fault occurred.
Hand - Hold;ng BASIC will permit much of this diagnostic work to be done

dynanically without interrupting program execution through the use of its
eix screen displays.

You can also switch from screen to screen by the use of special control
thﬁractérll This will not affect the prograa”s execution. You can halt
executién at any time by pressing the space bar. Then restart it by
yrealln# the carrlage return (RETURN) key. You can switch from screen to
screen vhile execution 1s halted. You can also adjust program execution

speed from the key%oard or the Apple game paddles. You can single-step
thtqugh & program.

'}. , The Command Screen 1s the one froa which all normal keyboard
enttieq are made: Programming, editing, and system commands. The
Qoumqn? Screen also includes dynamic information about which program
atep 18 being executed, and FORLOOP and subroutine activity.

2. The User Print Screen displays only programs-directed. print and
input statements. Diagnostics occur while allowing the Output Screen
to remain intact.

If you are not viewing the User Print Screen whea an output 1s being
ptinlad, a flashing 0" will appear in the upper right hand portion of
the dcreen you're watching to let you know about it. If you watch a
program run to completion on the User Print Screem (when an END
statemeat {s executed), the display will automatically switch back to

Page 4

the Command Screen, and you will have to switch back to the User Print
Screen to see the final lines of ocutput.

3. The List-Trace Screen (LTRACE) displays the portion of the program
being executed 1n source listing form. The next statemeat to be
executed 1s highlighted. If you single-step through a program while

watching the List-Trace Screen, you can watch how the program {s
executing.

&, The Chronolog{cal Trace Screen (CTRACE) displays a listing of the
program statements as they are executed. It also shows the names of
variables and theifr values as they are calculated. Single-stepping
through a program while viewing the Chronological Trace Screen {s
another way of seeing exactly how a program is being executed.

5. The Monitor Screen displays a continuous record of the values of
up to eight nominated varfables and the program lines in which they
attained those values. It shows the lines from which currently active
subroutines have been called. The Monitor Screea will permit you to

check variables without having to watch the Chronological Trace
‘Sereen.

6. The word “loop™ in coaputer vocabulary refers to a group of
ptogram statements that are executed repeatedly. It is the repetitive
aspect of this technique that gives rise to this term “loop™ in the
context of nearly all computer languages. Although the word LOOP is
not a part of the Hand-Holding 3ASIC language, we will understand that
the term FORLOOP does refer to the general use of the word “loop”.

The FORLOOP Screen displays the FOR statement source 1line, the initial
value of the index, the limit of the index, thg index increment, and
the current value of the index. Use of the FORLOOP Screen will allow

you to check the values associated with a FORLOOP while the progranm is
running, without separate diagnostic print statements.

(3) Keywords

There are a number of special cocnands 4im Hand-Holding BASIC called
keywords, which give you wore information about what”s going on inside
the system. These keywords will be discussed in more detail in the next
gsection. Meanwhile, let an example suffice.

Suppose you were debugging a program in which the variable B8 was
suspect. In traditional systems, it would be up to you to find the
placés where B8 was used in the program listing, and then to imsert
messages or breakpoints as you saw fit. In Hand~Bolding BASIC, all you

would have to do is to type the keyword BREAKFIND B8 and the system would
find all occurrences of B8 and set breakpoints on them.

Page 5

in Levels 1 and 2. It will also detect and report function errors in the
case of function arguments that are out of bounds.

Level 4

Level 4 permits you to combine the lessons of Levels 1, 2, and 3 1into
real programming. It includes use of all the BASIC statements outlined
in Section 2.2, as well as two special functions that allow use of the
Apple game paddles: PDL (paddle) and 3IN (button). Level & introduces a
large set of keywords that pertain to prograzming, debugging, saving, and
retrieving your programs.

These keyvords are summarized as follows:

o s o 0 2 e e P e e e e

A1l of the following keywords pertaia to the setting or turning °
of f of breakpoints in various ways. The tera “lnua” refers to a
1ine number. . :

BREAK' 1num ity
BREAKFIND 1nun

BREAKFIND var

BREAKFIND vare

BREAKLIST

NOBREAK

NOBREAK 1lnum

g - e ——— [

ﬁelétc individual statements or groups of statements from a
program: - .
|

DEL lnum
PEL lnuml,lnum2

i 3
- - -

Edit a specific statement:

EDIT lnum

- - > T

. Find program statements containing the referenced items:

YI&D 1lnum
FIND var
FIND var=

Page 7

5 o 2 0 0 0 1t 0 00 0 0 0 o O e B Y S0 W P e o o e e 0 e

Set and remove variables to be displayed on the Monitor Screen:

MONITOR var
NOMONITOR
NOMONITOR var

List all variables specified for monitoring:

- MONITORLIST

Cledr the program:
NEW

o v v 2 O

aéjuy: program speed either from the keyﬁord.or by use
of a game paddiei -

" pACESn
PACE=PDL(n)

e Ep— - emmem- B

Save ptog;amn on a disk and later retrieve them:

ROLLOUT name
ROLLIN name

b

--—T- L3

-
- .

- 00 o0 0 o o e e e e o

Begin Prcgrau execution:

RUN

e - e e e e e 0 e e e e e e e—me——-

Level 4 gives you access to all six screen displays. Control characters
let ypu awitch from screem to screen. A special set of commands will
tl}ov ygu to halt (and restore) maintenance of four of the six screens in
otﬂet to speed up program execution. Special commands allow you to set
yrogtan Bppud at single-step or full speed during execution.

thn tha keyword RUN is entered, Hand-Holding BASIC checks the program

for estatic errors before execution begins. Static errors include
branching to non-existent lines, improper FORLOOP. structure, and multiple
or nissing END statements. Static errors will be reported with a

diagno;tic message, and execution will not take place.
Léevel & also checks for certain kinds of errors which can be detected

pnly during execution. If one of these {8 encountered, it will be
repor:ed with a diagnostic message, and execution will be halted.

Page 8

CHAPTER 3

USING HAND-HOLDING BASIC

3.4 Scope of This Chapter

Chapter 3 1s intended to help you learn the unique features of Hand-Holding
BASIC. It 18 not intended to be a tutorial on programming practice. To learn

BASIC programming, you should refer to one of the many beginning BASIC
tutorials that are available.

Hand-Holding BASIC was written in accordance with the American National
Standard for Minimal BASIC, ANSI publication X3.6@¢-1978. There are inevitably
miner variations from one version of BASIC to another. A summary list of the

functions and commands of Hand-Holding BASIC can be found in Chapter 4,
Appendix B.)

Brief System Description

Hand-Holding BASIC {8 built of the elements prescribed.as standard for BASIC.
thy you have learned how to program using Hand-Holding BASIC, you should be

gasdll&vtble to proceéd to Apple”s Integer BASIC, Applesoft BASIC, or Apple
{// Business BASIC and learn the enhancements that each has to offer.

There are two unique features of Hand-Holding BASIC. First, and at all

eveley 46 w1l noc perate you v enie o VinVERAG GUUGLDINE LOCONTACL

syntax. 8ccondly, at Level 4 Hand-Holding BASIC will let you see (painlessly)

a number of the things that happen during the execution of a computer
program. It is a powerful debugging tool as well as an instructional aid.

Hand~Holding BASIC 1is preoentﬁf in four levels, as follows:

Leyél 1¢ Permitg the evaluation of arithmetic expressiouns
only, including the use of parentheses.

Level 2: Includes all of Level 1; introduces the concept of
variables.

Lavel 3: Includes all of Levels 1 and 2; 1ntrLduces system=
defined functions.

Level 4: Includes all of Levels 1, 2, and 3; permits the full
range of programming, screen viewing options,
editing, and debugging tools.

In additiom to the normal BASIC commands, Hand-Holding BASIC includes a number

of control commands called keywords. Each level allows all the options

Page 9

contained 1in lower levels. Therefore these keywords are fntroduced and
explained once, and only once, where they first occur.

Even if you feel familiar with the BASIC language and method of arithmetic
evaluation, you should still look at the sections describing Levels 1, 2, and
3 to be sure that you recognize the keywords and understand what they do.

Loading Hand-Holding BASIC Into Your System

Ts igad Hand~Holding BASIC into yaur Apple II, insert the system -disk in

grl?@ 1 and turn the power un. Your Autoboot ROM should load the operating
system and program without further action on your part. (ILf you have trouble,
refer to Appendix A). :

The fi;-t screen you see should contain the name of the .program and the
copyright notice, etc. When that appears, press the space bar and your screen

should ook !!kaI!Le one shoun below.

FIGURE 1. Level 1 Screen.

Now you“re ready to proceed with Level 1.

Page 10

32 level1

Scope of Level 1

Level 1 instructs you in the method of the computer”s evaluation of arithmetic
expressions. It enforces the rules of arithmetic syntax and introduces the
associated Hand-Holding BASIC keywords.

Caniage Retums

A!ter you type in a statement or a command, you should always press the RETURN
key to say to the the computer, "now 1it”s your turn™. We will use the
lymbol<CR> to refer to the RETURN key. This is also called a “catrlage
retirn” upon occasion. Therefore, remember that - whenever you see the

nyhbql(CR) on the screen or in the manual, we are .referring to the RETURN
keyh :

$EET

Keywords

Tﬁe kéyvdtdn introduced with Level 1 (and permissible with all other levels)
e
1, SELECT. The select function displays (above the line being entetéd)
those characters that are valid to be typed at the current point of
éntry. SELECT will be turned on ‘automstically whenever two consecutive’

§NY9K STIOTR 476 Bade and Guned off automatically when the next corraet

,entry is made.

It may also be turned on manually by entering SELECT{CR> whenever the
cursor ‘is at its leftmost position, and will remain on until turned off
by enterinq NOSELECTSCR> similarly. If the select function is turned on

manually, the gelect array will be presented with each keystroke whether
or not an error has been made.

2. NOSELECT. Turns off the select function.

3. FINETRACE. The FINETRACE function displays a series of 1lines that

show the steps teken to evaluate the exprzssion you have entered. One
step is displayed each time you press the space bar.

If you enter an expression that produces an arithmetic error, you will be
offered the opportunity to have the FINETRACE function show you where the
error occurred. You may accept that opportunity by pressing <CR>;
othervise, just continue as you wish. FINETRACE may also be turned on by
entering FINETRACECCR> whenever the cursor is at its leftmost positionm,

and will remain on until turned off by entering NOFINETRACELCR>
sintiarly.

Page 11

4. NOFINETRACE. Turns off the FINETRACE function.

S. LEVELn. Entering LEVELn<CR> takes the system to the Hand- Holding

BASIC level specified by n (in the case of Level 1, n can be 2, 3, or
4).

Control Characters

Control characters available in Level 1 and their functions are as follows:

CTRL=X cancels the 1ine currently on display and returns the screen to the
condition it was {n before the line was cancelled.

CTRL-1 opens a space for you to insert new characters at the position of the
cursor, It moves all the characters at or to the right of the cursor, further
to the Fight for each new character you insert.

CTRLPD deletes the character under the cursor and moves all the characters on
the right of the cursor to the left one position respectively.

Aihmefic Syntox

Level 1 allows the entry of numbers, the four arithmetic functions (add,
uub:knct, muleiply, apd divide), and parentheses. The general syntax for
Level { is i

operand operator operand...

where o‘efan@ is considered to be a- number, or an ‘expression’ eambedded {n

parentheses. An operator is one of the arithmetic symbols +,-,*, or /.
’ b

The exh?ptién to the operand-operator-OPZrand rule i{s that the + or - symbols,
when used following another operator, will be interpreted as.an indication-of
signed arithmetic:. Thus, while

64/3

and

6-#3

are not permissible,

Page 12

6/-3
are.

Numbers as operands (the definition of an operand will be expanded in Level
2) have a maximum permissible length of eight digits. Any number greater than
9999999 must be expressed {n scientific notation (as a power of 1§). Thus,
}9999909 (1 x 19°7) must be expressed as, and will be reported as, lE7.

1 ===

The symbo stands for exponentiation. This symbol is made on the Apple Il
keyboard by shife-N. ')

The dynamic range of the system is from -1.85E17 to 1.85E17. Numbers 4in the
range from @ to +~ 1.85E-19 will be treated as §..

?argn:heqaa may be nested up to seven levels deep, and arithmeric operations
may be chained together to the right limit o§ the screen, such as

;z;(3.(5/7._(a+<9-(6-(7--s/z+1)))))))

When you énter the eighth character from the right hand side of the screen,
the highlighted message END-8 will appear in the upper right corner of the
atgplay. . If you continue to enter characters, that message will change to
END-7, END=6, and so on, until 1t flashes AT END, after which no more

characters may be added.

If your statement i{s incomplete (as in the case of imbalanced parantheses),
you' will have to backspace to delete the statement, or else use CTRL-X in
order proceed any further.

M’mx Erors and Conection

Wheneyer ydu make & syntax error, your Apple will beep to let you know = about

1t. If you theh ‘enter a correct character, you may proceed in a normal
fashion.)

1f you make two syntax errors in a row, Hand-Holding BASIC will assume that
you need help and it will turn on the SELECT function. To go on from that
point, you must enter one of the characters presented in the SELECT ARRAY.

It would be well for you to experiment a bit to see how the syntax error and
correction work. Try -entering -these expressions—just as they appear below,
then see if you can make them correct. Also, note the contents of the SELECT
ARRAY each time it appears.

2444

34(6*7 <CR>

3+4*7) <CR>

Page 13

2..

1234567899
Arithmetic Enors

You“vé already learned that Hand-Holding BASIC will not permit you to make a
syntax error. Correct syntax is not, however, a guarantee against arithmetic
errors such as dividing by zero or calculating a result that”s outside the
numeric range of the system. For example, enter the expression:

(3%5-(7%2))/(3@8-(6*4)<(3*2))<CR>
1 The result should be:

ARITHMETIC ERROR 1/8

PRESS <CR> FOR SLOW MOTION REPLAY
The symbol “<CR>" means the RETURN key on the Apple keyboard.
This message indicates that you have attempted to divide by zero. Press <CR>
and then theé space bar two or three times. What you“re seeing are the steps
by wh#ch Hand-ﬂolding BASIC evaluated the expression. The error will be
rcportéd in the stép in which it occurred.
You ;an éalculate a result outside the numeric range of the system (called an
overflow condition) by dividing a very large number by a very small number or
by multiplying very large numbers. It is also possible to achieve a numeric
overflow through repetitive addition of numbers. 1In the case of an overflow,
the errors will be reported as:
r Ajurm'rm ERROR exp

where exp will be the arithmetic operation that caused the overflow.
o] fed iy

Order of Evaluation
As you mnight have guessed from watching the first FINETRACE example above,
there are rules for evaluating arithmetic expreesions. These are:

1. ;yg}ga:e parenthetical expressions: start with the innermost.

2. Perform signed arithmetic.

3. thiltiply or divide where possible (left to right).

4. Add or subtract where possible (left to right).

Page 14

An example of the order of evaluation will be shown in Level 2. However, 1t
is important that you understand the order of evaluation. Confusion could
result in puzzling answers in your later programming, expeclally when numbers

are stored into variables. For example, evaluate these four expressions using
Level 1.

9*4/12%2
4%9/12%2
9*(4/12%2)

(9*4)/(12#2)

Obviously, the same mix of numbers and operations has given us a variety of
-angwers.
In general, you can control the order of evaluation by using parentheses to

ngup operations so that the computations occur according to the order you
inténd.

}éok at the rules for the order of evaluation and see if you can figure out

why you got the answers you did.

. Making Comections

Soméwheie along the line you will fnevitably make a mistake. Not a syntax
error. You won“t be able to wmake one of those, but you may make a

:ypographical mistake such as inverting two numbers, putting in an extra
digit, or perhaps omitting a parenthesis.

You can edit 1linés as you are entering them, or by typing the edit command
EDIT rinnn) where nnnn is the line number to be edited.

1f you want to change a character, press the back arrow key until the cursor
is over .the incorrect character. Type the new character. It will replace
the 0ld one;, and the cursor will move one place to the right. Use the forward
arrov key to move the cursor back to where you waat 1t.

If you vant to delete a character, use the back arrow key to put the cursor
over the character you want to delete, then press CTRL-D. The unwanted
character will disappear, and the characters to the right of the cursor will
move left one place. If you wish to delete a series of characters, move the
curgor to the leftmost one, then press CTRL-D as many ' times as necessary.
Altérnatively, to delete rapidly, enter CTRL-D, then press the REPT key and
hold it down. The system will delete as many characters as you want, until
you litt your fingers.

Use the forward arrow key to move the cursor right again to the end of the
line, bince automatic syntax checking does not occur unless the cursor passes

Page 15

over each character in the statement.

If you want to insert characters, first keep in mind that they will be
inserted at the location of the cursor. Move the cursor to the desired
position and press CTRL-I. A blank space will appear at the the cursor, and
the other characters will be are pushed 1 position right. Type the characters

you want to insert,and use the forward arrow key to return the cursor to the
end of the line.

Returning the cursor to the end of the line is important because Hand-Holding
BASIC will enter (and guarantee correct syntax) only the characters that the
cursor has passed over.

Hake a few mistakes on purpose and experiment with the correction procedures
until you feel comfortable with them.

33 level2

Scope of Level 2

Level 2 xgtrodqcea the concept of variables and the LET definition statement.
Level 2 permits the evaluation of expressions containing varfables according
to the ryles established by Level 1. It reinforces the necessity of defining
6ar$ables before ;hex are used {r expressions, and lets you see (through the
use 'of the SYMBOLS tap*e), a list of variables and their current values.

|
== i
Keywords

The keywords introducéd with Level 2 (and then permissible with Levels 3 and

4) are listed below. All keywords introduced fn Level 1 remain permissible in
Level 2.

! ;
The SYMBOLS keyword switches the Level 2 display from the COMMAND- screen
to the MONITOR screen and causes all defined variables and their current
values to be displayed. To return to the Command Screen, press <CR>.

BASIC Statements

LET var=exp

The %LT statement means “assign to the varfable var the value of the
expression exp.” Var may be any single letter of the alphabet, A-Z, or a
letter followed by a digit in the range 0-9: A0, Al, A2, ..., A9; BO,...,
B9; ...; Z0-29. Exp may be a single number, a single variable, .or a
combinatfon of numbers and variables that conform to the rules of

Page 16

arithmetic syntax.

LET str=strexp

This LET statement means “assign to the string variable str the contents
of the string expression strexp”. Str may be any letter of the alphabet
followed by a dollar sign, AS$-Z$. The dollar sign identifies the
variable as a string variable, and A$ is as different from A or Al as A0
is from Z9. A string expression is another string variable or a literal.
“Literal™ constants can be part of a string expression. A "literal” is
any combination of alphanumeric characters except quotation wmarkse.
“Literal”™ constants must be enclosed in quotation marks.

Essentially, string variables mean words. A string variable can be all
numbers, such as in the example of LET A$="1981"7, but you cannot perform
arithmetic .operations among string variables or between string and
numerical variables. :

LET stringl=string2

This LET statement means “assign to the string variable strinigl the
alphapumeric contents presently stored in string variable string2.” Both
stringl and string2 must conform to the above definition of string.

Usipg the Statements

(1) LéT var=exp

Acé&rding to its definition, a LET statement of the type LET var=exp may
look like any of these: i

LET A=3
+ LET A=3+2

LET A=B

LET A=B+3 ’ S

LET A=B+C

LET -29=(3+2*(8/C))/7
Thg’mcst important concept to grasp about the LET statement is that
although it looks like an algébraic equation, it most definitely is not. -
What happens inside the computer is that the value of the expression on
the right side of the equal sign 1s placed in the memory location
reserved for the variable nace on the left. So, while an algebraic

equation suth as X = X + 1 would be meaningless, you can have a LET
statement that looks like this:

Page 17

LET X=X+1

What this statement means is "let the value of X plus 1 be placed in the
mewmory location reserved for X.” This statement, often called a counter,
{8 used time and again in programming. In order to understand how it

works, you must understand the difference between an algebralc equation
and the LET statement.

There are really only three rules you have to understand about LET
statements:

}. You must put a blank space between the word LET and the varfable name
that follows. it.

2. Whatever variables are on the right side of the equal sign must
already have been defined (given a value).)

3. Whatever 18 on the right side of the equal s8ign wmust follow the
byntax rules explained in Level 1.

Try, for example (don”t forget <CR>),
LET A=3
and then evaluate some expressions using A.
A3
A+S
A2
Now ééffne another variable
! LET B=2
and evaluate some expressions with it and A.
AtB
A+B+1
A+2*§ s
{A+B)*2

Pé@é of the emphasis of Level 2 1s to teach you that you must define
variables before you use thea in expressiona. Try evaluating:

A+BIC

You should receive the message:

Page 18

C NOT DEFINED, GIVE VALUE NOW
LET C=

This message means that the systea didn”t know what to do because {t
didn“t have all the information it needed.

Now enter 1 for C and see what happens.
Next, redefine variables A and B with:

LET A=3

LET B=6
and evaluate the expression:

A+(2*3+(A*B)+B)+7
If you didn”t make any mistakes, you should now see:

THE RESULT IS 49
How did the computer get from the expression to the result? It followed
exactly the same rules for the order of evaluation explained in Level 1,
except that {t substituted the variable values vhen they were needed.
Turn en the FINETRACE function (look back to the instructions for Level 1

if you don”t remember how), enter the expression -above, and begin
pressing the space bar. Your screen should develop like this:

A‘+(2*3P(3*B)+B)+7
@f(2*3+(3*6)+3)+7
M(2834(18)+B)+7
AF(243+18+B)+7
A+{6+18+B)+7
A+(2564B)+7
A+(2546)+7
A+(39)47

AF3IH7

3347

3N

49

Page 19

THE RESULT IS 49

Also, note how the parentheses were dropped when they vere no longer
necessary.

Now try:
A+(2*3+(A*D)+7
add the space bar.

You should have made it to the second step before you were asked to énte:
2 value for D. Enter 6 and start pressing the space bar again.

Nottce that the evaluation didn“t resume from where you left off, but
instead went back to the beginning. This will happen évery time you're
in FINETRACE and you“ve forgotten to define 'a varfable.

P&p*t forget to turn off the FINETRACE before going on.
(2) LET str=strexp

Accarding o 1ts definition, a LET statesent of the type
?i? itr-i}teral
may £bbﬁ like any of these:
LET A$="MY NAME"
Lsr'Asy"Egsx'
LET P$="PART NO; L3777A~
LET Z§="HIS NAME IS “JOHN""
A Lﬁ? statément of the type

LET str=strexp, which 18 the only kind of string manfpulation allowed
in Hand-Holding BASIC, has only one fora, such as:

LET A$=B$
or
LET M$=D$
There are three rules you have to follow with the string LET statements:
1. You must type a blank betveen the word LET and

the string variable name that follows it.

Page 20

2. A literal string to the right of the equal sign must
be inside quotation marks.

3. A literal string itself may not contain quotation
marks. You may use a single quote 1f you wish.

You won”t be able to do anything with literals or string variables until
you get to Level 4 where the PRINT statement is available but you can get
some idea of how they work im Level 2. First, enter:

LET N§="MY NAME"

Now enter:

N$<CR>

and observe the result. Now enter:

LET H$="HIS NAME"

followed by:

H$<CR>

Now try:

LET H§=N$

ands

) H$<CR> 3
Now you should be able to see the words:

MY NAME
The éfmﬁﬁl Table

From the l{ttle experiment with string variables, you may have guessed that
you can find the value of a variable by entering its name and then <CR>. You
can. Try it with A, B, aund C. i
There®s an easier way. Type:

SYMBOLSCCR>

. Ngu your screen should say MONITOR in the upper right and down the left side
should be the 1ist:

A 3

Page 21

H$ "MY NAME™
N$ "MY NAME®
and at the bottom:

6/6

This screen tells you three things. First, 1t {s a Monitor Screen. It tells
you what“s going on inside the computer. You can no longer define variables
or cvaIuate expressions as you could with the Command Screen. Second, it
gives you the Symbol Table, and the names and values of all the variables
you“ve defined so far. Third, it tells you how many varfables have been
listed so far and how many you’ve defined. The first 6 means six varfables
listed; the second 6 means six variables defined. The computer will 1ist
exght vartables at a time. For example, if you had defined 27 variables, the
firse page waould say 8/27. Press the space bar to get to a new page, and it
wouid say 16/27, and so on.

Any tiue you are looking at the Symbol Table on the Monitor Screen you can
re;urn to the Command Screen by pressing <CR>.

34 level 3
Scope bf Level 3

Level 3 introduces the mathematical operation of exponentiation and system

functions. Level 3 permits you to select whether arguments of trigonometric
“functions will be- expressed in radians or degrees.

Keywords

The keywords {ntroduced in Level 3 (which are then permissible 1in Level

4) are 1isted below. All keywords introduced in Levels 1 and 2 remain
permisaible in Level 3.

DEGREES. Causes the system to treat the arguments of trigometric
functions as expressed in degrees. Radians is the system default.

RADIANS, Returns the system to the state of treating arguments in
units of redians. Radians 18 the system default. -

Page 22

Mathematical Operators

The character ~ (shift N) causes the exponentiation of an expression and
the general form is AB, which means "A raised to the power of B". Thus,
2°2=4, 2°.5=1.41421; 2~(1/3)=1.259919.

In the definitions of functions that follow, all the functions that
accept arguments will be shown in the general form

FUNCTION (arg),

vhere “arg” represents the argument of the function. Arguments can be

conetants, variables, or expressions contalining constants, variables, or
other functions, as long as the expressions are consistent with the rules
of syntax. If the system encounters an unacceptable value for the.
argument, the function w{ll return the message FUNCTION ERROR, together
with the function at fault.

Arithmetic Functions

Ap§(.rg) returns the absolute value of arg.

!Ni(nrg)'retutnt the largest integer no greater than arg. For example
INT({3.14159) will be 3; INT(-3.14159) will be -4.

RND returns 2 pseudo~random fraction between 0,0 and 0,93999999; RND
lccept‘ no argumentu. See also RANDOMIZE in the discussion of Level 4.

SGN(arg) returns an indication of the algebraic sign of arg.

SGN(arg) is =1 1f arg is negative, O 1f arg 48 0, and 1 1If arg {is
poaitlye. - . : e ”)

SQR(: g8) returns the square root of arg. The value of arg for sqrlarg)
bhat be positive.

Trigodometric Functions

Siﬂ(éra) returns the sine of the angle whose value is equal to arg.

€0S(arg) returns the cosine of the angle whose value is equal to arg.
TAN(arg) returns the tangent of the angle whose value is equal to arg.
ATN{arg) returns the angle whose tangent is equal to the value of arg.

Resember, the system will assume the value of arg for SIN, COS, and TAN
to be in radians, and will return ATN in radians, unless degrees have

Page 23

been specified.
Exponential/Logarithmic Functions

EXP(arg) returns the value of the constant e (2.71828...) raised to the
arg power; that is, EXP(arg)=e“arg.

L0G(arg) returns the value of the natural logarithm of arg. The value of
arg for LOG(arg) must be positive.

Speclal Apple Il Functions

*DL(n) returna a number between § and 255 that reflects the setting on
the Apple game paddle specified by n. Permissible values of n are § and

H(n) rotbrnl a 1l or §, indicating whether or not the button on the

Appla gana paddle (specified by n) is depressed. It returns a 1l 1if it
ls and @ 1f 1t 1s not. Permissible values for n are ¢§ and 1.

RND is often used in computer simulations to determine the chance of an
event occurring such as slot machine wheels, the dealing of cards, or the
roXl of dice. An expression such as:

i.,‘er DL=INT{6*RND+1)
could represent the roll of a die.

boe. ot PDL and BTN will also be discussed briefly in Level 4.

egnuhlle, to get some idea of how ~ they work, you can ‘(after you
determine which paddle is which) enter

PDL(¢)<CR>

a few times with the knob at different settings and see what numbers come
back, and:

BTN(@)<CR>

Once High the button left alone, and once with it depressed.

.
)

?he following are some examples of lyntactiéally correct expressions
using fupctions. These are only examples and by no means suggest
lim!t tions or "the only way to do it.” You are, as always, encouraged to

experiment to learn as much as you can about how this portion of
Hand-Holding BASIC works.

LET C=SQR(A“2+B~2)

LET Rl=(=B+SQR(B~2-4*A*C))/(2*A)

Page 24 .

LET S=SQR(1-COS(Z2*P/180)~2)
LET Q2=Ql+4*EXP(Q0/2)

LET Z2=ATN(Y/X)

3.5 Scope of Level 4

Leveiv 4 brings you other tools youll need to write, debug, and execute
complete programs in BASICs These tools fall {aks three categorles:

1. 'Additional keywords which allow you to alter specific portlon. of a
program or to examine a progras in specific detail.

2. Six screen displays provide different perspectives about what”s going
on during program execution.

3. The BASIC statements themselves.

Flrst, let”s define the Hand~Holding BASIC statements.
BASIC Statements

Each BASIC statement must have a line number. Line numbers are limited to a
maxioum of four digits. Leading zero”s are not allowed. A blank space wmygg
follow the last digit fn the general format:

nnan STATEMENT

Once a statement number has been entered, you can press the space bar when
the next 1line number s to be entered, and the system will automatically
create a new ling number which will be ten greater than the previous one.

Only one statement per line is permitted.

A statement cannot be longer than the right hand side of the screen.

You mpay alsp delete individual statements by entering the line number and
{CR>. 1If you delete a line in this manner, you will receive a message:

finnn DELETED
End Statement

The END statement causes program execution to halt and returns control to
the system. After an END statement has been executed, program execution

Page 25

can be reinitiated by use of the keyword RUN. A program must contain
one, and only one, END sgtatement, and it must be the last statement in
the program. (See also STOP.) When an END statement is executed, display
automatically returnas to the Command Screen.

Control Stategents

GOTO lnum

The GOTO statement transfers program execution to the program line number
specified by lnum. A 1line with the number lnum wmust exist. A GOTO
statement may not transfer execution into a FORLOOP body. GOTO may also
be written: GO0 TO.

GOTO 120

GO TO 999

IF exp THEN lnua

1f the telationshiy expressed by exp 1s true, program execution 1is
;tansferrcd to the program line numbered loum. If it is false, executiom
passct to the next line in sequence. Legal relational operators are
equal to (=), greater than or equal to (>=), less than or equal to (<=),
greatér than (), less than (<), and not equal (). The line numbered
}ndq must exist. Execution cannot be transferred into a FORLOOP.

IF A=10 THEN 480

11 AZ#31€0 THEN 900

}F 2*A(=3%B THEN 200
IF A-B>.005 THEN 180
ddsu? 1num

The GOSUB statement transfers program execution to the subroutine
beginning at the program line numbered lnum: A line with the number Inum

must exist. Execution cannot be transferred into a FORLOOP.. GOSUB may
also be written: GO SUB.

RETURN

The RETURN statement passes control of program execution to the 1line
1nmed1qtely following the one from which ‘the subroutine call ({.e. the
)SUB) was made. For every GOSUB, there should be a RETURN statement.
Slmilarly, a RETURN statement may not be legally encountered in progran
execution without there having been a corresponding GOSUB statement.

Page 26

200 STATEMENT
(subroutine text)
25¢ RETURN
(program text)
499 cosus 209
999 G0 suB 1¢9p1
(progranm text).
1991 STATEMENT,
(subroutine text)
1950 RETURN

’

ON exp GOTO lnum,...,lduns

ON = GOTO transfers program execution to the statement numbered lnum whose
poaition in the list of 1line numbers corresponds to the rounded 1integer
evaluation of exp,

For example, in the statement ON X GOTO 199,299,399,499, 1f the value of X is
3, then execution will be transferred to line number 3P@. If exp is less than
1, or exp is greater than the number of line numbers in the 1list, program
execution will be halted. The referenced lines must exist. Execution may not
be transferred into the middle of a FORLOOP.

ON A+l GOTO 199,235,375,499

ON 3*B+7 GOTO 269,2¢8,249,289
$Top

The STOP statement forces program execution to halt at the current line
number, byt permits execution to resuze with the next statement in sequence by
pressing <CR>. When program execution has been halted by a STOP statement,
you may examine the values of variables and still resume execution with the
next statement number. If you change the program itself, however, you will
be able to reinitiate program execution oaly with the keyword RUN.

469 STOP

POR Var=Expl TO Exp2 STEP Exp3

{body)

Page 27

NEXT Var

The FORLOOP allows us to perform (repeatedly) the block of statements between
the FOR statement and the NEXT statement.

Var is any numeric variable which i1s not an array element. Var is to be used
as a counter variable, helping to control the proper number of repetitions
reguired in the FORLOOP. Var will receive a starting value, and will be
chaoged on each repetition of the FORLOOP.
Expl is the initial value to be assigned to the variable Var.

Exp2 {s the final value (limiting value) to be assigned to the variable Var.

Exp} is‘che amount by which var will be incremented on each repetition as Var
changes from the value Expl to Exp2.

When tha FOR statement is encountered, Var is assigned the initfal value
Expl- Execytion proceeds to the next statement 1in sequence. When the

statement NEXT s encountered, Var s ineremented By tha amsunt spaaified by
Exp3l. If Var is less than the 1limit quantity Exp2, execution returns to the
statement following the FOR statement. If Var is now greater than the limit,
the body of the FORLOOP will not be executed, and execution will pass to the
statement following the NEXT-statement.
The lncrenenF variable Exp3 may be negative, in which case the comparisons
] qescr!bed for a positive increment are just the reverse. If no increment is
expiicltly stated, it is assumed to be the value 1 (one). Execution may not
be’ trnnsfetred into the body of a FORLOOP.
FOR I=1 TO 10
(body)
NEXT I
FOﬁ J=4 TO 12 STEP A3
(body)
NEXT J
FOR K=67 TO 43 STEP -8
(body)
NEXT K
FOR Nl=A+3 TO 3*B STEP M+2

{BODY)

. Page 28

NEXT N1

PRINT Item P Item P ... P ltem.

The Print statement causes the specified items to be printed to the User Print
Screen. Item may be an expression, a tad specification, or a null. P may be
either a semicolon or a comma.

1f Item i3 a negative numeric expression, a minus sign will be placed in front
of it. If Item is positive, a blank space will be printed.

If the print statement is not followed bi a 1list of Items, the print cursor
will move to the beginning of the next line (and a blank line will be printed
on the screen).

If P is a semicolon, the print cursor types the output item, and then stops
immediately after the {tem.

1f P i; a comma, the cursor is advanced to the beginning of the next print
zone. (The comma provides an automatic tab function. The screen is divided

into three print zones: two zones are 16 spaces wide and one 1s 8 spaces.

The tab specification allows the print cursor to be placed at the specified
column.

C#lculated tab specifications are rounded rather than truncated, and a
calculated tab specification less than 1 will be set to l. The max{mum value
for a tab specification {s 255. Values larger than 40 will be reduced modulo

.

PRINT

PRINT (A2+B2);C

PRINT TAB(3);"ERROR"

PRINT X

PRINT A,B,C

PRINT TAB(Y+2/3);Y

PRINT “END OF MONTH BALANCE FOR™;BS$; ACCOUNT IS™;B

PRINT TAB(3);X;TAB(13);TAB(23);2
Input Statement)

INPUT var,...,var

The fnput statedent causes program execution to pause for data values to

Page 29

be entered from the keyboard. The data entered from the keyboard must
correspond to the type specified by the input statement.

INPUT X
3.14159

INPUT X,N§,B(7)
3,"SMITH",-5
INPUT A,B,C

2.5,9,3.77e-12
Data, Read, and Restore Statements

FATA dotu*,-..hntu-

DATA statement supplies the values sought by a READ statement. The
data in the DATA statement must correspond to the types specified by the
READ stateaent.

hEAD vars.h,var

Th READ statement causes data values specified in a data statement to be
Al lgned tb their correaponding variable names.

‘HEAD X,N5,A

DATA 3,"SMITH" -5
DATA “JAN",“FEB™,"MAR
READ A$,B§,C$

FOR I=1 TO §

READ A(T)

NEXT }

DATA 2,4,6,8,1¢9

RESTORE

The restore statement allows data to be reread by setting the data
poiuter back to the first datum in the list.

Arrcty Declarations

- Page 30

OPTION BASE n.

The OPTION statement determines whether array subscripts will have a

lower limit of O or 1 as specified by n. The OPTION statement, 1f used,
must be the first statement in a program.

DIM var(n),«..,var(n,m)

The dimension statement establishes the upper limit of an array’s .
subscripts. The maximum value for a one-dimensional array is 4095. For
a two-dimensional array the limits are 255 x 255. No array variable may
be redimensioned. If no option or dimension is specified, all arrays are
assumed to have a lower limit of 0 and an upper limit of 10. You should
note that array variables are distinct from other variables beginning
with the same 1letter. Thus, A, Al, A$, and A(l) are all different
variables, and all may be used in the same program without producing
system or logical errors.

OPTION BASE O
DIM A(50)

piM B(15),6(12,12),D(25,18)

RANDOMIZE

Edch time the program memory is cleared by use of the keyword NEW or
program execution is initfated by use of the keyword RUN, the
pseudorandom number generator is reset so that it will start with the
game number and then proceed with the same sequence. While this is a
usefvl debugging tool, it takes all the excitement out of situations
where the unpredictability of random numbers is desired. The randomize
statement cduses the pseudorandom number generator to start at an
unpredictsble value, and is therefore useful in simulations.

10 RANDOMIZE

REM remark-string

The REMARK statement allows you to provide internal documentation for a
program. Remark-string may be coamposed of any combination of
alphanumeric characters. The REMARK statement does not affect program

execution and is not printed on the user screen. It appears only in the
program listing.

Page 31

Special Functions: PDL and BTN

While the PDL and BTN functions were described with Level 3, no mention
was made there of how they might be used in a Hand~ Holding BASIC program
since programming wasn“t avallable fn Level 3. PDL and BTN are not
elements of the ANSI minfmal BASIC, but because game paddles are
available for the Apple, the ability to wuse them has been included in
Hand-Holding BASIC.

Keywords

The first set of keywords in Level 4 deals with breakpoints. A breakpoint 1s
a debugging tool that allows you to halt program execution at a predetermined
point. When execution halts at a breakpoint, ft tells you that the program
was just about to execute the referenced step. This 1is important since it
helps you trace the flow of execution.

ﬂhén execuytion is halted at a breakpoint, you may examine variables. As with
the STOP statement, you may not change the program and then continue. If you
change the pkogram, you will have to restart execution with the keyword RUN.
Whenever prpgran execution halts at a breakpoint, the message
Inum BREAKPOINT
will appear on the third line of the screen, where lnum is the line number at
which execution has halted. To resume execution after a breakpoint, press
<CR>, There is no 1ioit to the number of breakpoints that may be set.
BREAK l*ne

Sets & Lreakb&int at the line number specified by line.

BREAKFIND lnum

Sets a breakpoint at the lines which reference lnum 1lists those 1lines
with Inum highlighted. For example, BREAKFIND 10 might result ifn a list
such as: a

50 GoTO 10

90 IF B3 THEN 10

BREAKFIND Var

Page 32

Sets a breakpoint at the lines in which the variable Var appears and
1liata thege lines with Var highlighted. For example, BREAKFIND Bl might
result in a 1list such as:

49 LET Al=B143
19§ LET Bl=BP+2

7¢ IF BL<C4/3 THEN 499

BREAKFIND Var=
Sets a breakpoint only at the lines ia which the variable Var appears as
a dependent variable (a variable on the left side of an equals sign, for

instance) and lists those lines with var= highlighted. For example,
BREAKFIND X= might result in a 1list such as: . »

39 LET X=1
99 LET X=B2*COS(2*P1/18¢)

Note that the Var= 1i{st will aleso contain statements such as:

135 NEXT X

What actually happens {n the next statement is:

LET X=X+increment

BREAKLIST

Lists a1l lines {n vhich breakpoints are curreatly sets

NOBREAK

Turns off all breakpoints.

NOBREAK lnum

Turng off the breakpoint set at the line number laoum.

You have already learned that you can delete a single line of a program by
ente?lng its number and <CR. These next two keywords give you more
flexidility in deleting unwanted program statements.

DEL line

Page 33

Deletes the line number indicated by line.

DEL linel,line2

Deletes all program 1ines from 1ine '1 -through line 2 inclusive.
A keyword is provided for you to edit a specific line number.

EDIT lnum

Causes the line numbered lnum to be'dlcplayed on the screen just as it

appears in the program 1listing. You can then wuse CTRL-I and CTRL-D to
insert or delete characters as described in Level 1.

If you decide that you don“t want to edit a line after all or that you“d
like to go back and start over, entering CTRL-X will restore the line to
the condition it was in before you started editing. When you have
finished editing a line, don”“t forget to return the cursor to the right
end of the line. Remember: the system checks syntax only for those
¢haracters that the cursor passes over.

The next thiee keywords locate and 1list the indicated references, but they do
hot set a breakpoint.
FIND lnum
Findg the statements in which the line numbered 1lnum 1s referenced and
11Ets them with the line highlighted. For example, FIND 10 might result
in a st such as:
50 ON X+1 GOTO 60,40,10,50
110 IF Y2<100 THEN 10
FIND Vaf
Finds the statements in which the variable Var appears and lists them
wvith Var h;ghilghled. For example, FIND B3 might result in a list such
ag:
45 LET B3=SQA(A2+B2-C2)
830 LET Y2=2+Y1+B3
890 LET Z1=ATN(B3*Y/X))
FIND Vare

Finds Pnly the statements in which the variable Var appears as the
dependent variable and 1ists them with Var= highlighted. For example:

Page 34

FIND Nl=
might result in a list such as:
49 LET N1=N1+1
175 NEXT N1 (See BREAKFIND Var=.)

The LIST keywords allow you to examine the program you're working om.

LIST

The-LIST keyword causes the entire program to be listed. If there are

more program 1lines than can be displayed on one screen, the list will
scroll until the last statement has been printed. You can stop and
restart the scrolling by pressing the space bar.

LIST lnun

Causes the program line numbered lnum to be liated.

LIS* linel,ltne2

¢Bu9e- all program = 1lines from 1linel through 1ine2, fnclusive, to be
1listed.

Tgé néxt three keywords are used in conjunction with the monitor screen. You
will see the effect of them when you go through the demonstration program

presénted later is this section.
MONITOR Var
Causes the variable Var, its current value, and the line number inm which

it attained that value to be displayed in the format:

line var value
2¢ al 399.6
3¢9 z9 432.1

A maximum of eight variables wmay be specified for monitoring in this
fashion. Array variables may not be monitored. (All variables, however,

will be displayed with the Chronological Trace Screen and the Symbols
Table.))

NOMONITOR

Turns off the monitor function for all variables.

Page 35

NOMONITOR Var

Turns off the monitor function for the specified variable Var.

MONITORLIST

Lists all variables spécified for monitoring.

In learning computer programming, you will often be working with short
ﬁtaﬁrams or experlments, which, when comp!eteJ Hlll no !nngef Lé ﬂé!JéA Th!

next keyword allows you to delete your wotk area.

gzn

Cieqr: the user program and Symbol Table and resets the pseudorandom
numbct keneracot. In effect, it gives you a “"clean slate™ just as you
ﬁg when you first entered Level 4. While NEW saves you the trouble of
hnv!ng to reload the system every time you want to start a new program,
pe sure that you really want to use it before you do. Once you enter
EEH, whatever was in the program memory 1s gone. The only way you~1ll
be' able to get it back is to key it {n all over again.

Ons ﬁf ‘nf ypique features of Hand- Holding BASIC {s that it allows you to

aqjut the épaed at which a program executes. This may be done either from
the ﬁeyboard aof through the use of the game paddles. (See also the discussion

qf {he sereeny for other sffects on progran exgeution spesd:)

PACE=N

Allows you to adjust program execution speed from the keyboard by
ntering N between O and 255. PACE=0 halts program execution and permits
ou #o glngle~step through it by pressing the ESC key. The program will

execute one line each time the ESC key is pressed.

! T

?ACE-255 sets full speed for the system. With all screens beling
haintalned PACE%75 will result in an execution speed of approximately
oné line per second. Additionally, you may (during program execution)
set PACE=0 by pressing the back arrow (<--) key. Then use ESC to single
bteg. You may also- set PACE=255 by pressing the forward arrow key
(==>) ;

{
{

PACE=PDL(P)

Allows you to adjust program executfion speed by the use of game paddle P,
wvhere P may be either O or 1. As described in Level 3, the settirg of
the paddle will result in a pace from O to 255. If you have set the pace
bj the game paddle, you can change the pace during program execution jJust

Page 36

by turning the paddle. If pace is not 0, pressing the paddle button will
halt execution. Releasing it will cause execution to resume. If pace 1s
zero, you can use the button to single-step through the program. One
1ine will be executed each time the button is pressed. During execution,
pressing the "0" key will put. the system into the PACE=PDL(0) state.
Similarly, the "1" key will put the machine in the PACE=PDL(l) state.

More than likely you“ll develop some programs you“ll want to keep or you might
want to save a program in its current condition. The next keywords allow you
to save and recall program files to and from disk.

ROLLOUT Name

Permits you to save the program in memory to disk with the system in
exactly its current status. Name may be from one to six characters in

hag!h Tha Flvab ahavactar aust ba o Lactar; subsequent characiers can

be either letters or nuambers.

Examples of permissible program names are: A, DEMO, MYPRO, PROG99. 1If
you have only one disk drive, entering ROLLOUT name vill display the
following message:

PLACE ROLLIN-ROLLOUT DISC IN DRIVE 1
PRESS SPACE TO CONTINUE

After your program has been stored on the disk, a second screen message
will appear that says:

PLACE HHB SYSTEM DISC IN DRIVE 1
PRESS SPACE TO CONTINUE

1f you have twp disk drives, be sure that your program storage disk 1s in

drive 2 and then type ROLLOUT name,2. Uhea your program has basn sterad
on the dxék, you will be returned to the command screen.

Note: If you do use the drive 2 option, then drive 2 will become the
system default for all other storage and retrieval operations. If you
wanF to use drive 1 you will have to do so by entering ROLLOUT naoe,l.

{
ROLLIN name
Permits you to read the program name from disk back into the system. If
you have only one disk drive, entering ROLLIN name will get you a screen

message that says:

PLACE ROLLIN-ROLLOUT DISC IN DRIVE 1
PRESS SPACE TO CONTINUE

After your program has been read in from the disk, a second screen
message will appear that says:

Page 37

PLACE HHB SYSTEM DISC IN DRIVE 1

PRESS SPACE TO CONTINUE

If you have two disk drives, be sure that your program storage disk is in
drive 2 and then type ROLLIN name,2. When your program has been read in
from the disk, you will be returned to the Cozmcand Screen.

Note: 1f you do use the drive 2 option, then drive 2 will become the
system default for all storage and retrieval operations, and if you want
to use drive 1 only, you will have to do so by entering ROLLIN name,l.

When the program comes back 1in, the system will be in exactly the sanme
condftfon it was in when you rolled the program out. All the screen
Belecrions will be the same, the breakpoints will be the same, the point

uf execution will be the same, and so on. 1If you were debugging, you“ll
be able to pick up right where you left off.

Finally, at some point, you're gOing (o vani to make @& program etart
hxgcutiﬂg.

RUN

#aﬁgég two sets of actions to occar.

First:
1, The g?mhal table is cleared.
3. 1he éﬁeudbrandom number generator is reset.
3, The data pointer is reset to the first itea.

4. A1l branching statements (GOTO, ON-GOTO, GOSUB, and IF-
I‘ﬁﬂ) are checked to be sure their destinations exist.

§. All FOR-LOOPs are checked for proper structure.

6. All branching statements (except RETURN) are
chécked to make sure they do not transfer execution into the
ﬁody of a FORLOOP. s

7. The existence of only one END statezeat is assured.

Second, if the program passes all the tests, then RUN also causes program
execution to begin.

It is fuwportant for you to know about items 1-3 s0 that you understand
why your program executes as {t does.

If any errors of the types described in itens 4~7 are encountered, a

diaénoa;i; tessage will be issued and executifon will not take place.
Thege error messages are described in detail {un the section “Static

Page 38

Errors.” There are other possible programming errors that cannot be
detected until execution time. Messages resulting from those errors are
described in detail in the section "Dynamic Errors.”

Screens

“‘“d H?i““‘ BAFIS Paintaing information onm six kinds of activity during

program execution. It can put this information on display in six different
screen formats at any time. These screen formats and the information they
contain will be described in conjunction with the demonstration program. A
reference summary of the screen descriptions and control keys is presented
here for your convenience.

Additionally, you will be offered the abflity to "halt” and restore the
maintenance of four of the six screens at any time during program execution.
Theag screens contain a great deal of information. They can show you exactly
how your program is executing and serve as a powerful debugging tool.
Maintn$n1ng all the special screen information 1is quite costly in terms of
exec tiou speed. At some point in the development of a program, you will no
lon ; need to keep the special screens up-to-date. Stopping all screen
maln:enance can speed up your program execution by a factor of about four and

a half. ‘If you da decide that you want a special screen back, you can always
festore its maintenance.

H%eh you halt a screen, the halt number will appear highlighted under the name

of the screen or display. When you restore a screen, the highlighted haltr
number will be removed.

Comadand. Screen

This is the screen from which you”ll do all your programming, editing,
and other activities normally associated with the programming process.
The Command Screen i1s maintained at all times and cannot be halted. If
you are vXewing another screen and wish to switch back to the Command

Screen, press CTRL'C (1f execution has paused for a system command, or
Just C 4if fnput is not being requested).

User Print Screen

Th1§ s¢reen is analogous to a printer. It shows information that the
program has determined to print, including usual outputs as well as other
items such as prompts for input made during program execution. Whenever
you run a program, the screen display automatically switches from command
to user print, and to leave it you will have to use one of the screen
control characters.

The User Print Screen is maintained at all times and cannot be halted.
1f You are viewing another screen and wish to switch back to the User
Print Screen, press CTRL-E 1f execution has paused for a system command,
or Just E {f input is not being requested. If you are not viewing the
User Print Screen when an output is printed, a flashing "0" will appear

Page 39

in the upper right hand portifon of the screen you“re watching to let you
know about {t.

If you watch a program rum to completion on the User Print Screen,
when an END statement is executed, the display will automatically switch
back to the Command Screen and you will have to switch again to the User
Print Screen to see the final lines of output.

“List-Trace Screen

This screen maintains a listing of the portion of the program that {is
#urren:ly being executed, with the next line to be executed highlighted.
Single-stepping through a program in the list-trace mode will show you
the sequence in which the program lines are executing.

This s8creen 1s a dynamic instructional aid as well as a debugging tool.
If you are viewing another screen and wish to switch to the List-Trace
Screen, enter CTRL-Z (1f execution has paused for a system command), or
just Z 1f input 1s not being requested. To halt maintenance of the
List-Trace Screen, enter 2. To restore it, enter 3.

faiee
I

éhrorjobgiccl Trace Screen

Tﬁia ééreen maintainsg a 1list of the program lines as they are executed,
anng with the name and value of any variable changed in a program 1line.
IE might be thought of as a printed record of the activity shown on the
List-Trace Screen, and serves a8 an {natruatisnal and debugglog ald In
the same way. If you are viewing another screen and wish to switch to
the chironological trace screen, enter CTRL-T if execution has paused for
a; system compmand or Jjust T if input {s not being requested. To halt

maintenance of the Chronological Trace Screen, enter 4. To restore 1it,
enter 5.

Monitor Screen

fhis aéfeén 8hows a 1ist of the program line numbers from which currently
actlvé] pubroytines were called, a record of all variables specified for
monitoring by the keyword MONITOR var, their current values, and the
prograﬁ 1ine numbers in which they attained their current values. If you
are viewing another ‘screen and wish to swgtch to the Monitor Screen,
entet CTRL-Q {f execution has paused for a system command or just Q 1if
1nput i8 not being requested. To halt maintenance of the Monitor Screen,
ey:ef 6. To restore it, enter 7.

Caut§od. When you halt the Monitor Screen, it stops right where it is
and keeps the information that was on display when it was halted. If you
h.i: the Monitor Screen during subroutine processing and then restore it
when the subroutines are no longer being used, it will display historical
information which is no longer valid subroutine information.

Page 40

FORLOOP Screen

This screen displays, for each currently active FORLOOP, a listing of the
program line containing the FOR statement, the initfal value of the
index, the limit of the index, the increment, and the current value of
the index. The FORLOOP screen is a particularly valuable debugging tool
when using calculated loop indexes. 1f you are viewing a different
screen and wish to switch to the FORLOOP Screen, press CTRL-F ({if
execution has paused for a system cozmand) or just F if input 1is not

being requested. To halt maintenance of the FORLOOP Screen, enter 8. To
restore it, enter 9.

Caution: Whea you halt the FORLOOP Screen, it stops right where it is and
saves the information that was on display when it was halted. If you halt
he FORLOOP Screen during FORLOOP exascutfon and then restore it when no

FORLOOPs are being used, it will display historical, no longer valid
FORLOOP information.

Page 41

Summary Of HAND-HOLDING BASIC Screen Controls

Screen Input No Input Halt Restore
Command CTRL-C c

Usaw Bslat (L2

L-Trace CTRL~2 z 2 3
Chron Trace CTRL~-T T 4 5
Monitor CTRL-Q Q 6 7
For-Loop CTRL-F F 8 9

Static Errors

In the Aefihitldn of the keyword RUN, we learned how the system makes a series
of thqckb on the program before executicn beginas. These are the messages that
‘%c printed as a result of those checks.

APOV? GOTQ TARGETS ARE NOT DEFINED
Ihtsx?elsagt meana that you have tried to transfer program execution to a
8

nonexistent line number. It will also list the lines in which the errors
occurred with the faulty target line number highlighted, such as:

49 cOTO 291

99 ON N2 GOTO 149,18¢,49,309
75 cosus 3919

142 IF J/2<DINT(J/2) THEN 1@

OPTION BASK MUST BE 1ST STATEMENT

If you bave chosen to define the option base, you must do so as the first
program 1ine.

LISTED END STATEMENT SHOULD BE STOP

This message will also list the line where the erroneous END statement
wvas found, such as:

Page 42

99 END

A program can contain only one END statement which must be the last
physical line of the program. Any logical halts must be forced by a STOP
statement.

END STATEMENT MISSING

A program must contain an END statecent as its last physical line.

MORE THAN 5 DEEP FOR-LOOPS

For-loops can be nested only five deep.

INDEX REPEATED

The same index is repeated in two FOR statements without an intervening
NEXT statement.

INDEX DOES NOT MATCH

This message means that the index variable in the listed next statement
is not the same as the index variable in the FOR statement to which {t
should correspond. This message will list the line io which the error
occuréd, such as:

620 NEXT 29

Remember that next statements have ro be worked back from the inside out
ahd make sure you don”t have two of thea backwards.

NEXT MISSING

This message means that there is no next statement to correspond with a
FOR statenment.

ABOVE TARGETS JUMP INTO FOR-LOOPS

This message means that you have tried to transfer program execution into
the middle of a FORLOOP body, which is not permissible. It will also
list the lines in which the errors occurred with the faulty line number
highlighted as with the undefined GOTO targets.

Dynami¢ Errors

Page 43

Dynamic errors are those errors that occur during program execution. When a
dynamic error is encountered, execution will be terminated and the error type
will be reported. The messages listed below describe the dynamic error
conditions. Besides these full messages, the errors will also be reported in
the upper left portion of the screen (in an abbreviated way) in the general

formatr:
lnum MESSAGE

here Inym 1s the number of the 1ine in which the error occurred. The

abbreviated messages are shown in the descriptions that follow as (lnum
MESSAGE).

1f you look at the List-Trace Screen after an error has been reported, the
highlighted 1ine will be the one in which the error occurred.

1¢ you look at the Chronological Trace Screen after an error has been
‘reported, the last (lowest) line shown will be the one in which the error
dcfurred.

ON INDEX an IS OUT OF RANGE (lnum ON ERROR)

This wmessage means that the index in an ON-GOTO statement is less than-
one br greater than the number of target lines in the list; nn {s the bad
Index value:

"READ-DATA MISMATCH (lnum READ-DATA MISMATCH)
This message means that a datum 1in a DATA statement was not the type
sEecified in the READ statement. That is, an attempt was made to read a
string value into a numerical variable, or vice versa. The mismatched
variable name and datum will also be listed under the error message in a
form like: 3

Al="ABCD? or

B§=7.85

READ 1S OUT OF DATA (1lnum OUT OF DATA)

This message means that a READ statement cag find no more data items to
read. i

VARIABLE TABLE FULL (lnum VAR TAB OFLOW)

This message means that you“ve defined more variables than the Symbol
Table can hold (255 maximum).

Page 44

FOR-LOOPS SIX DEEP (lnum FOR-LOOP 6 DEEP)

This message means that you“ve nested FORLOOPs more than the allowable
five deep

TAB (nnn) IS OUT OF RANGE (lnum TAB RANGE ERROR)

This message means that you have issued a tab call that i{s greater than
255; nnn 1s the bad tab value.

GOSUB STACK FULL (1lnum GOSUB OFLOW)

This message means that you have i{ssued more than twenty GOSUB calls
without encountering a RETURN statesent. While there is no limit to the
number of subroutines you can have, the GOSUB stack can maintain only

twenty RETURN targets. Mile eceor a!ght oedut Uhéﬂ Y8u h!U! HA! Bl!!!d 1

RETURN where you really intended it to be, or a subroutine is erroneously
re-calling itself.

RETURN & GOSUB STACK EMPTY (1num GOSUB UFLOW)

fﬁlc message means that exécutlon has encountered a RETURN stateoment
without a corresponding GOSUB statesent.

var kOT DEFINED (lnum UNDEFINED VAR)

Thia Begsags §ndicates that the variable var was not found in the Symbol
Table. Unlike Level 2, Level 4 does not permit you to assign a value for
vat . and then continue. You have to go back and define wvar with a LET
statement in your program and then run it again.

tar{) OUT OF RANGE (Inum -ARRAY RANGE ERR)

This statement means that you have atteapted to use an array subscript

beyond the limits established by the OPTION statezent or var’s dimension
statement. The expression var{) will appear in a form such as:

A(12)
B(88,
or
N(5,99)

where the last subscript shown is the bad one.

Page 45

var HAS WRONG NUMBER OF SUBSCRIPTS (lnum WRONG # SUBSCRIPTS).

This message means that you“ve supplied either two subscripts for
one-dimensional array variable or only one subscript for a
two-dimensional array variable.

STRING TABLE OVERFLOW (lnum STRING TABLE OFLOW)

This message means that you’ve tried to define too many string variables
(6 maximum). ’

var HAS NOT BEEN DIM ED (lnum ARRAY NOT DIM?ED)

This message means that you“ve used a subscript greater than 10 without
first dimensioning the array.

ARRAY var IS DIM"ED TWICE (lnum TWICE DIM)

This message means that you have attempted to dimension var after it”s
already been dimensioned.

Tha Demonstration Program

é ﬁeﬁon;tratlon progra@ has been included on your Hand-Holding BASIC disk to
give you some experience with using the screen controls and Level 4 keywords,
and to show you exactly ‘what information each of the screens contain.

1

*fﬁyou have just started reading here from Chapter 2 to run the demonstration
program; put the Hand-Holding BASIC disk in drive 1 and then turn the power
on. The program should load automatically without any further action on your
parts (If you have trouble, refer to Appendix A.)

When the progras has loaded, your screen .should be displaying the program
name, the capyright notice, and so on. Press the space bar, and the screen
should be blank except for the words "LEVEL 1" in the upper left hand corner,
with a flashing cursor below them.

The symbol “¢CR>" will be used to mean "press the key marked RETURN on your
Apple kéyboard". .

Typg LEVEL4 {CR>, and the LEVEL 1 in the upper left corner should switch to
LEVEL 4. Now you're all set to go on. Enter ROLLIN DEMO <CR>. You will get
a screen message that says: |

PLACE ROLLIN-ROLLOUT DISC IN DRIVE 1

PRESS SPACE TO CONTINUE

Page 46

Since the demonstration program 1s on the system disk in drive 1, you can just
press the space bar. After the program has been read from the disk, you will
get the same message. Agaln, Jjust press the space bar. Now you should be
looking at a command screen with the program listing shown in Figure 2. The
program 1itself is a do-nothing infinite counter whose sole purpose in life is

18 darve aa 2 deasnabealisn of Nandullelding RASIC.

So that you“1l understand what”s happening when you single-step through fit,
here’s how 1t works. Statement 1@ defines the initfal value of the variable

N. The program then goes through statements 2@ and 39, where the indexes for
the X1 and X2 FORLOOPs are set up. At statement 49 it calls a subroutine

starting at statement 8¢, which sends it to a subroutine starting at statement

99. At statement 108, N is incremented by one and printed on the User Print
Screen.

fﬁe first time the program encounters the RETURN statement at line 12¢ {t will
return to the target set by the most recent subroutine call, GOSUB 199 in line
90, clear that return target from the COSUB stack, and land at line 109
again. The second time it encounters the RETURN statement it will go to the
héxt return target in the GOSUB stack, the one set by COSUB in line 8¢, which
.18 }ne 99). The third time ft encounters the RETURN -statement the return
&irket,uill‘be the one set by line 9¢, or line 188, and N gets Incremented and
printed again (and the return target set by line 99 is cleared). The fourth

(100 100 DRORTAR ROCOURTENH U RTURY BCaiedem, ohe nly fenum targes et

ba Ekg 808U keack 1s tLg one set Ly todus 95 {n e ld, ot Une 18, Nov, if

all of 'this 1s correct, the sequence of events from line 49 should be (and -
yqy‘i!‘havé a chance to check 1t out):
4

49 89 99 199 119 129

199 119 129

99 199 113 129

199 119 129

56

M 86 59 199 119 129
gnd 80 on.

After the X1 FORLOOP body of statements has been ; executed four

times, the
program goes back to line 28, and the count goes gn.

The - information at the top of the screen is present on all screens except the
ser Print Screen. The message in the upper 1left corner tells you which
ﬁaqd-ﬂalding BASIC level you’re in, and, 1in the middle of the top line,

vhéther the system is treating angular values as being expressed in degrees or
in radians.

At the left end of the second line, the number 12¢ indicates that program
statemant 120 will be the next one executed. When you see the term SPACE BAR
this means that execution was halted by pressing the space bar.

Page 47

FIGURE 2. Command Screen.

Page 47a

At the right end of the second 1ine, the nushar 7 fndieates that tha progras

is currently two deep in FORLOOP s, and *he number 3 indicates that it is
three deep in subroutines. The word COMMAND tells you that you're on the
Coomand - Screen. The other screen names will appear as LTRACE (list-trace),
CTRACE (chronological trace),, MONITOR, and FORLOOP.

At the far left on the third line, the highlizhted letters ESC 1indicate that
pace has been set to zero from the keyboard and that you can single-step
through the program by pressing the ESC key. 1If the program were running at a

pace less than 255, the numerical value of the pace would be shown in this
_ area.

Now press CTRL-E to switch to the User Print Screen. There yoy~ll see a golumy
of cutputs as shown in Figure 3. All cutputs froa progras print statements
appear on the user primt screen, and there is a0 other inforzation there so

that you can have full use of the 4@-character by 24-1line screen, just as you
would with any other BASIC systenm.

FIGURE 3. Output Screen.

Press CTRL-Z to switch to the List Trace Screen. It should show, as in Figure

4, the same top-of-screen information described with the Command Screen,

Page 48

together with a 1isting of the program. But now line 120 1s highlighted.
This display of line in veverse video (black on white) {ndicates the next

1ine to be executed. If you view the List-Trace 8creen vhile a program 1a
executing, you will see the highlight hLopping around from statement to
statement following execution. The screen display *(the portion of the program

shown) may change 41f the whole progran is too long to appear on a single
screen according to the following rules.

If the next statement to be executed {s already on the screen, the highlight
will ﬁiuply move to 1it.

¥f the next statement is at the bottom of the screen, the program listing will
saroll up, and the highlight will be on the second 1last line of the screen.

Otherwise, the next statement to be executed, together with the highlight,
will appear at the top of the screen with succeeding program statements
follouing.

1f you ¢ncoqnter'- dynamic error, the highlighted statement will be the one in

WhACh tha areor sccurreds |

FIGURE 4. LTRACE Screen.

Now press CTRL-T to switch to the Chronological Trace Screen. There you will
see, a mixture of program statements and variable names and values with line
129 at the bottom of the screen. The Chronological Trace Screen shows the
next projram statement to be executed. After execution, the name and value of

2t Page 49

any variable that was changed in that statement is also shown. Blank lines
between statements mean that executfon isn”t sequential. If you encounter a
dynamic error, the last statement shown on the Chronological Trace Screen will

be the one in which the error occurred, as explained in the List Trace
Screen. o

et
B
R e

G

FIGURE 5. CTRACE Screen.

Now press CTRL-Q to switch to the monitor screen. In the upper right portion
of the screen you should see the numbers:

apr
8+
op+

* I3

The number 3 next to the screen name means that you are three deep in
subroutines, The numbers 4§, 8@, and 99 are the line numbers from which the
subroutine calls were issued (a representation of the GOSUB stack). The “+°
following each 1line number means that a RETURN statement will transfer

execution back to the first statement following the one from which the
subroutine call was issued.

Page 50

FIGURE 6. Monitor Screen.

i
Ngw egs CTRL-F to switch to the FORLOOP screen. There will appear, as shown
v pre

18 r%gure 7, the two FOR statements plus two lines of information under each
FOR statement. The number 2 to the left of the screen name means that you are
two deep {n FORLOOP“s. These are the two FORLOOP”s currently on the
For each FORLOOP, the information appearing below it is:

screen.
STAR* = the initfal value of the FOR index
|
FINAL = the 1limit of the FOR index
STEP = the index increment

INDEX = the current value of the index

The FORLOOP screen can be particularly valuable when you are using calculated
indexea.

Page 51

FIGURE 7. FORLOCP Screen.

Experiments with the Demonstration Program

1.

2.

3.

Press CTRL-C to return to the Command Screen. Then press {CR> to resume
execution (which will automatically switch you to the User Print Screen)
and set the pace at 255 by pressing the forward arrow key. One by one
how, gwitch through the screens (using the appropriate letter--the CTRL
géy;iyfhot necessary when the prograa 18 executing). Watch what”s
vap'éning on each of them. Make sure you stay on the MONITOR and FORLOOP
screens long enough to see the GOSUB stack and FORLOO?P information come
and go a couple of times.

Return to the monitor screen and note that there isn”t much on 1t except
the GOSUB stack. Press the space bar to stop execution. From the
Coammand Screen, enter:

MONITOR NCCRO
MONITOR X1<CR>
HONITOR X2<CR>
Now press <CR> one more time and watch what happens.

Stop execution again (by pressing the spacebar) and eanter:

PACE=g<CRO

Page 52

4,

5.

RUNSCR>

Now switch to the List-Trace Screen. The highlight should be on 1line
19. Press ESC three times to get to line 4f. - Single-step through the
program to check the action of the highlight againat the program
description. You should be sure you understand what”s happening.

When you“ve single-stepped through the prograa as far as you like, return
to pace 255 by pressing the forward arrow key (-->). Watch the highlight
wove until you have a good feeling for how fast the program is ruaning.
Now stop the maintenance of the Chronological Trace, Monitor, and the
ORLOOP screens by pressing (not too rapidly) 4, 6, and then 8.

Watch how the speed of the highlight increases when the maintenance of
theac screens {s not being performed. Also note that as you stop

naintenance of the screens, the control numbers appear highlighted
“ﬂﬂﬁiﬂﬁl}h the scrsen namee

?ou wmay, 1f you wish, restore maintenance of those screens. by pressing
5,7, and 9, and watch execution speed slow down again. If you want the
diagnoatica, leave the screens on. If you want speed, you can turn thenm
off.
Ll i
1f you juiiped to the demonstration program froa Chapter 2, you should now
go back pnd read the instructioms. If not, then proceed with:
Stop exécutfon again, then enter:

LIST{CR>
and you will see a new program listing come up on the screen (you can

aluays get a'1isting in this vay). Now enter!
NEW<CR>

and try listing the program again. 1It”s gone! That”s what the keyword

Ntw doFs. Also try running the program again. It won"t work because you
can”t run a program that”s not there.

With the user program cleared, you“re now ready to go on to the problem.

Page 53

Love Thy Neighbor

Rete®s the problem: a number of points are distributed at random on a straight
line. What is the probability that a point is 1t”s nearest neighbor”s nearest
neighbor (in magnitude)? For example, if point 1 is the “nearest neighbor”™ to
point 7, what is the probability that point 7 is point 1”8 nearest neighbor?

The situation 1s shown in the 1ist of points below:

Point Number Value
1 1898498
2 61465654
3 .$2129971
4 .1151428
5 4426269
6 +755371
7 149414
8 .837921

L VARY
L1

Aéﬁumins that no computer were available, an empirical (experimental) solutfon
to ‘the . problem céuld be developed using a pencil and paper and a book of
random numbers. As you might imagine, the more numbers you choose (and hence

the clo:ek you got to a real solution) the more tedious this problem would be
to solve manually.

Fortunately, a computer is available. Ten numbers will be used to outline a

solution, and the probles will be modeled and the program developed in five
steps.

1. Place ten numbers at random on a straight line.

2. ﬁgtermina which point each point considers as its nearest
neighbor.

3, Test the program so far.

4., Detérmine which pairs of points regard each other as mutual nearest
neighbors.

5. Count and report the number of pairs of mutual nearest neighbors.

Thé following sequence will model placing ten random points between @ and 1 on
a straight line. Key it in.

Page 54

1¢ DIM X(19)
2@ FOR N=1 TO 19

39 LET X(N)=RND

49 NEXT N
59 20D

This sequence just fills each of the ten arrdy slets with a random numbar.
Run 1t, and while 1t”s running, look at the List- Trace and FORLOOP screens
and watch what happens as it executes (you can run it more than once if you
want to). When it”s finished, use the keyword SYMBOLS to look at the symbol
Lﬁbla and see what numbers have been generated and stored.

The next step 1s to determi{ne which point any given point considers as its
nfﬁféﬁt neighbor. What determines a nearest neighbor {s the smallest
Q;ffé:unce between the test number and all the other numbers. The method that
will be used ta fiéd the smallest difference 1is sometimes called “swapping
out”, dod, in gereral, it works like this:

1. Initialize an impossible value as the smallest difference.

#r Find thé difference between two points (new difference) and

90mrare it to the smallest difference.

3. 1f the hnew difference 1s smaller than the current smallest
difference, then replace the scallest difference with the new
difference, record which point produced the new smallest difference,
and go to the next point.

4. 1f the new difference s not smaller than the current smallest
distdnceé, just go on to the next point.

The following sequence will swap out, searching for the smallest difference,
and record the point number that caused the smallest difference. The
vatriables are:

S = smallest difference

|

N = any point number

Tl = the point whose-nearest-neighbor i{s being-sought

ﬁ - thg difference between the test point and any other point

T2 = the point that caused the smallest difference
(the nearest neighbor)

8909 LET S~199

Page 55

8§19 FOR N=1 TO 19

892@ IF N=T1 THEN 8979

8939 LET D=ABS(X(T1)=-(X(N))

8p49 IF D>S THEN 8979

8359 LET S=D

8069 LET T2=N

8978 N!XT N

How shia 'qquqnqq fungtions gqgfgrgd to the iqneral si{tuation of svapping out
aight be expreased like thiai

8999.

B914.
8929.

8p3g.

8949,
8959.
8969,

8979.

Initialize an impossible smallest difference. Since you know that
all the differences here are going to be less tham one, a value
of S=1§¢ will fail the first test in statement 8@4P, and the
first real difference will become the first smallest difference.

Set up the for-loop counters to check all tea points.

If the current point is the same as the test point, go on to the

next polnt (8979); that 1s, don"t check the test point against
itself.

Define D as the difference between the test point and the current

point.’ The absolute difference is used because only magnitude,
not direction, 18 important.

See 4f the new difference 18 1larger than the current smallest
difference. If it is, go to the next point (8979); if not,

Replaceé the old smallest difference with the new smallest
difference.

Define T2 as the point that caused the smallest difference (the
nearest neighbor).

Establish the next point (and go to 8¥2@) or quit (and go on to
the next statement).

#ey those eight lines in, then make a sub}outine out of them by adding:

8989 RETURN

Now 1t”s time to test what you“ve entered. To do that, add these statements:

50 LET T1=5 (and notice that you“re overwriting the previous 5@ END)
69 COSUB 8999

Page 56

79 PRINT T2
8¢ sTOP

99¢9 END

List the program out to be sure i1t”s okay, then run it. As before, look at
the 1list-trace and for-loop screens and watch the program execute (and, as
before, you can run it more tham once if you want to). According to
statements 58-8J, you're going to use subroutine 89¢¢g to find point 578
nearest neighbor, then print out what it is and stop. When the prograa has

tlninhed execution, use Ctrl-E to go to the user print screen and see what
pntnt 5”8 nearest neighbor is. It should de 2.

lf you got the right answer, you can modify the program slightly to allow you
to check a few more points. (If you didn”t get the right anawer, you'd better
list out your program and find out what®s wrong.) Go back to the command

peuasn and snteri
50 FRINT “2NPUT TL°
35 INPUT T1
8¢9 GOTO 59

ppy the pew program and try 5 again. Then try 2--its nearest neighbor is 10.
Try 19-~1t¢ nearest neighbor 18 6. Try 6--its nearest neighbor is 1¢.

Out of the four ohservations you“ve made, two points out of four regard each
c:hat as nearest neighbors, which might teapt you to infer that chances are
59-5 ? that a point will be its nearest neighbor®s nearest neighbor.

Now you
can alter the program a little more to test your hypothesis.

$rég¥ out 6f the {nput loop by entering a number and pressing the space bar
before tha program has finished executing. Delete line 55 with DEL 55, then
enter these new lines.

11 DIH ¢(19)

59 FOR Tl=1 TO 19

79 LET C(T1)=T2

88 ERINT T1,T2

99 NEXT T1

189 STOP

What this portion of the program will do is set up the test points (Tl) with a
for-loop rather than having you enter them from the keyboard, and then store
81l the npearest neighbors (T2) 4n the C array. Run it and watch the user
print screen: the left column of pumbers is the test points; the right coluan

is the nearest neighbors. (Use SYMBOLS to have a look at all the variables

Page 57

you're maintaining now.) By observation, you could count up the mutual
nearest neighbors~-but why not go on to step five of the original plan and let
the computer do the counting? Add:

199 LET Z=0

119 FOR Tl=1 TO 19

13 et 18-c{11)

139 IF C(T2)<>T1 THEN 15¢

140 LET Z=Z+1

159 NEXT T1
168 PRINT Z
17¢ sToP

]

Zn this sequence, Z is used as a counter for the number of mutual neighbors.
tatéments 11¢-15¢ loop through all tea points; statements 128 and 13¢ check

to see whether Tl”s nearest neighbor regards Tl as its nearest neighbor. 1f

80, Z is incremented by one; if not, the next point is tried.

Now | Yun tﬁ. program and watch the results on the user print screen. At the
té@tgu of the 1ist of neighbors you should see the number of wmutual nearest
neighbors reported as 6, or, at least for this trial, it looks like chances
ate 6 4n 19 of any number”s being one of a pair-of mutual nearest neighbors.

riqqily, so that you aren”t using the saze nunbers every time, add:

15 RANDOMIZE

Run the program as many times as you like and see what kind of answers you
get.

On your own, you might want to try building a larger loop around such portions
of this program as are nmecessary to get it to execute 1§, 58, 198 or more
times, and find the average number of mutual nearest neighbors for all runs.
Or, refer to the June 1980 issue of OMNI magazine (page 198), from which this
problem was adapted.

Bappy computing.

Page 58

CHAPTER 4
APPENDICES

Page 59

APPENDIX A

SETTING UP THE APPLE I1 SYSTEM

This appendix includes a list of the equipment you“ll need to run Hand-

Holding Basic on your Apple 11. You do not need to read all the manuals, but
they should be on hand to answer questions that may arise in operating the

aquipaant (gey how to boot & diskette).

Huhdfﬂagding BASIC 1is written lﬂ 6502 Machine Code. To use the program,
you 1} need the following equipment:

o an Apple 11 with 48K bytes RAM; or

o an Apple 11 Plus with 48K bytes RAM and an Integer BASIC Firmware
Card; oc

o an Apple 11 Plus with the Apple Language Systea.

o an -Apple Disk -II with Controller (l6-Sector PROMs) - (two disks
preferred);

@ a Video Monitor or Television;
0 game paddles {preferred, but not necessary).
For refefarce, you should have on hand a copy of the following manuals:
é This Manual (A User”s Cuide to the Programs);
© an Apple 11 BASIC Programming Manual (Setting up the Apple II);

o DOS Manudl (How to Boot the Diskettes).

Page 60

Putting The Pieces Together

Here are the steps to follow to put your systea together:

(1)

(2)

To set up your Apple II, follow the imstructions in the Apple II BASIC
Programming Manual. You may not need to attach the Game Controllers,
although there is no harm in doing so. Your Apple II must have at least

@hg winimum amount of memory listed under the equipment description for
you to use the programs.

If you already have a Disk Operating System, and are using a version of
DOS that runs in 13 sectors (DOS 3.2.1 or earlier), you will need to
change e proms on your diak sonkrelier card to update your ayatem to 16
sectdrs. Any version of DOS earlier than release 3.3 will need to be
Upﬁated. These proms are also the saze proms that coce with the Pascal
Language System. Consult a DOS 3.3 manual for these procedures.

Page 61

Appendix B

NOTES REGARDING COPY PROTECTION

Special Delivery Software 1s copy protected, except in the case of

program utilities or template-applicatious for major products (e.g. Apple
PILOT).

In order to provide you with a backup capability, we enclose a second
diskette. You should definitely store your backup {in a safe location,
and NOT use it. In the event your main diskette becomes damaged within
the time period of Special Delivery Software”s wmedia warranty, you may
return the main diskette to us for replacement, and continue to use your
backup until we can send you a replacement.

Unlike most other copy protection schemes, our method is selective;
protected and unprotected files may reside on the same disk. On this
diskette, HANDHOLDING BASIC 1s protected, but the DEMO files are not.
Also, program files you create from HANDHOLDING BASIC will not be
ptotected. If you boot from DOS 3.3, you will be able to catalog this
diskette. FID will enable you to transfer unprotected files between this
diskette and other disks 1in either direction, provided of course, that
there is sufficient space on the destination disk and it {s not
write~protected. In short, the unprotected files are normal DOS files
with 211 the properties thereof. On the other hand, the protected files
can only be run by booting from the disk on which they reside. Any
attempt to copy, load, run, or verify them from normal DOS will result in
an 1/0 ERROR. No damage 1s done; the fact is merely that normal DOS
cannot access these files.

Memory protection is also in effect. If an unauthorized form of access

il detected, the pemory protection procedurs will sare out a1l manory!

{s procedure 18 prippered by presaing the RESET Lkey. Once triggered,
your screen will be filled with R”s (or Q7s) on a white background. You
will have to re-power your system to re-start any new application.

Page 62

APPENDIX C
BASIC STATEMENTS USED IR

HAND-HOLDING BASIC

DATA
DIM

END
FOR-NEXT
GOSUB
GOTO
IF-THEN
INPUT
ON-GOTO
OPTION .
PRINT
RANDOMIZE
READ
REM -
RESTORE
RETURN
STOP

Functlons: ABS ATN BIN COS EXP
i “INT LOG PDL RND SCN
SQR TAN

Variables: A-Z; A0-29
) One-dimensional arrays
Two-dimensional arrays
A$-Z$)

Page 63

APPENDIX D

HAND-HOLDING BASIC KEYWORDS

BREAK line
BREAKFIND line
BREAKFIND var

IRWIND VIr'
AT

NO BREAK

NO BREAK var
DEL llnc
DEL llnel.l!nez
EDIT 1ine
FINETRACE
" | NOFINETRACE
FIND llne
FIND var
FIND var=
LEVELn
KONITOR var
NOMONITOR
NOMONITOR var

KONITOR LIST
NEW

PACE=y
Paci-fob{n)
ROULIN name

ROLLOUT name
RUN

SELg
OSELECT
SYHBOLS

Page 64

SYSTEM AUTHOR”S
ACKNOWLEDGEMENTS

1t is a pleasure to recognize the contributions of those who have helped to
bring Hand-Holding BASIC to 1ts current state of development. I wish to
express my indebtedneas to Rudi Hoess, of Sydney, Australia for providing much
guidance and encouragement; Roger Keating of Sydney, Australia for originating
the structural concept of levels and giving much advise on the educational
aspects of the system; Juris Reinfelds and Richard Miller, of the University

of Woolongong, Australls, for eontributing many valusble suggestions; &nd
Basbli Lannoann, of Bills, Do, ot Dot aneoutpizatl, '

F would also 1like to thank the SPECIAL DELIVERY SOFTWARE team at APPLE
COMPUTER, INC. for helping to make the system into a product.

1 as grateful to my wife Judy for her patience and understanding.

N. W. Bennett
September, 198¢

NOTES

Page 66

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073

