

THREE - DIMENSIONAL MICROCOMPUTER GRAPHICS
6502/APPLE 11 ASSEMBLY LANGUAGE
by

Bruce A. Artwick

August 1979

Sublogic Company
201 W. Springfield Avenue
Champaign, Illinois 61820

First Edition
Second Printing
© Sublogic Co 1979
"All Rights Reserved"

Printed in U.S. A,

"pIpd 3dusIa94Rl WD moi

3561

uopoiady oN auou L1 VA dON
azi|piju| Aspg _ auou ol 91 LINI
uoIID3|2Gg MBIA JO pP|e! gsw 1z ‘qs| 1zo ‘qsw 14p ‘gs| 14D ‘qsw IxD ‘qgs| IxD 10 Gl alad
UOLID9|ag 9ZIG UIRIDG 19juad A “4ejued y ‘4ybiay usauog ‘yipim usalog 0 ¥l ZSYDS
uolypIauaq) Aouy indin up win || ssaippp Hpys Aoup jndino si y ataym gsw y ‘gs| Q0 £l AV YV
apoyy Buimpbi auiq jog|@ul|J0 AISN|OX2 | = U BUl] |DULOU () = U BIBYM u 0 A JA0W
dwn(eAljaidiaju ssauppp dwn| 3y4 51y ateym gsw y ‘gs| vy 04 Ll dWr
iulod qz 4old A'X V0 ol aZ1Nd
109|2G UIIDG MM Z @b6od mpip |0 =u | 3abod moip Q0 = u asaym u 60 60 MV
z°bod |1y go=u | efod |y 70 =u
uaaJDg asnI] | @6od aspia |0 =u | @bod aspie () = u aseym u 80 80 SY¥3
SY-IH 485 LG =U SPY~|H P32 QG =u
jos 7 9bod GG =u jas | @bod pG=u
poxiw jas £G = U pexiw ID3|d ZG =u
$99)ag uaaudg Apjdsi(q Ix8} jas |G =u $o1ydoib jes G = u asaym u /0 /0 dsla
Z O | Julod wouy aui] gz mpiQ ZA X LA "IX 90 90 QZNI
H'@'d "Z'A'X semeip H ‘9 'd'gsw Z ‘qs] Z ‘qsw A “gs] A “‘gsw X “gs| X G0 S0 IA3
Yo4IMG [oujuon) Jaddi|n jjodaddijo [=u ‘uoseddip (=u araym u 0 468} MSdT1D
Aoy Qg sutyaq qsw 7 ‘qs| Z ‘gsw A ‘gs| A “qsw X ‘gs| X £0 £0 AVY
lulod anuyuo) Qg euyeQ qsw Z ‘gs] Z ‘qsw A “‘gs| A ‘qsw X “gs| X 20 Z0 INdD
jutog Hpig gE 3uleg qsw 7 ‘gs| Z ‘qsw A ‘g8 A ‘gsw x ‘g8 X ro Lo INdS
julod ge sulyeQ qsw 7 ‘gs| 7 gsw A ‘g5 A ‘gsw x ‘gs) X 00 00 LNd
(x2y) (jowioap) IWVN
NOILDONN4 SINIWNOYY ANVWWOD | ONYWWOD | ANVWWOD

JdVDI JONIFHIJFH WVYHO0dd NOILVWINY ag 1dg-2V

TABLE OF CONTENTS

Introduction
The 3D to 2D Converter Concepf
Space and Screen Coordinates
3D Space Coordinates
2D Screen Coordinates . .
3D and 2D Coordinate Refchonshlps
Object Construction in Space Coordinates
Viewing Controls .
Viewer Location and Vvewmg D:recﬂon
Field of View
Order of Transformation .
Projection Modes and Clipping
Aspect Ratio and Screen Dimension Controf
: Special APPLE Il Functions :
Getting an Image On the Screen
Input Array Formats
Command Sheets
Subroutine Calling . .
Using BASIC and Other Softwore
A BAS|C Use Example
Output Array Generation Concepts
Display Smoothing oo
Selective Erase and Exclusive Ored Lmes

Using the A2-3D1 Package on Non APPLE 1} Systems

Line Drawing Methods
Setting Up 3D Scenes
Conclusion .

APPENDIX 1 - Memory Map . .

APPENDIX 2 - Graphic Principles

APPENDIX 3 - Application Notes

APPENDIX 4 - Miscellaneous Topics

APPENDIX 5 - Tape Loading . . .
APPENDIX 6 - Using the Internal Tng Funcnons .
APPENDIX 7 - Program Familiarization

APPENDI X 8 - Multiplier and Divider Patch Pomfs .

o~ O (I —

10
1
12
13
15
17
19
19
21
40
40
41
45
49
52

55
57
58

60
é1
67
74
80
81
82
83

(17 E R ———

LIST OF FIGURES

Figure

1

2

10

11

12

13

14

15

16

17

18

19

20

2]

22

The A2-3D1 program and its arrays
Three dimensional space coordinates
Two dimensional screen coordinates

3D and 2D coordinate alignment .

The conventional way of representing lines .

The A2-3D1's way of representing lines
Object construction in 3D space .
Object construction with ray points

Cube construction in 3D space

A scene with a few pure points

Viewer's location in space

Viewer's direction and field of view

The difference transformation order makes
Direction of movement conventions .
A2-3D1/APPLE Il system configuration guide
The screen coordinate system

An example input array

An example output array

The offects of exclusive ored line drawing
BASIC line drawing subroutine .

World size and movement trade-offs

A reasonable movement/world size trade-off

10
1
12

14

. 42
. 45
. 47

. 48

52

56

57

58

INTRODUCTION

7

Computer graphics is one of the most interesting areas of computer science.
Interest in this field has been increasing over the last few years due to the wide
variety of reasonably-priced graphics hardware that new integrated circuit tech-

nology makes possible. The 6502-based personal computer is one product that

&

is leading the way in this new "micro graphics” field. When loaded with the
proper software, a 6502-based system can yield some very impressive displays.

The Sublogic A2-3D1 three~dimensional graphics package is designed to
add to the graphics capabilities of the new 6502-based personal computers. The
package allows users to create scenes in three dimensional space, and view them
from any direction or location in space. This capability opens whole new fields
of 3D animation, architectural drawing, modeling and simulation, and en-
hances special effects in game programs. This program also brings. the sought-
after pan , zoom, rotation, and scaling functions to 2D displays.

The A2-3D1 program is designed to run on 6502-based microcomputers in
general, and on the APPLE Il computer in particular. The program internally
consists of two general parts: a 6502 3D-to-2D converter and a high performance
2D high-resolution driver for the APPLE 1l . The 6502 3D to 2D converter is use-
ful to anyone owning a 6502-based microcomputer. This part of the program is
device-independent and produces a list of line start and end points in memory.
This list of lines can be used to generate 2D projections of 3D scenes on plotters,

bit maps, terminals, or anything else that can plot points or draw lines.

2

The A2-3D1's high performance 2D driver allows Apple Il users to project these

lines on an Apple I high-resolution screen. The 2D driver is, in itself, a very pow-

erful graphics tool. 1t can be used seperately to increase the erase, line drawing,

and point plotting rates of programs currently using APPLESOFT's high-resolution

routines by 600, 500, and 1000 percent respectively. Table 1 presents the important

characteristics of the A2-3D1 package. c

TABLE 1. Sublogic 6502/APPLE i assembly language 3D
graphics package characteristics.

CHARACTERISTIC

DATA

Program Number

Program Language

Projection Method

Viewing Capabilities

Worid Size

Special Features

Execution Rate

User Aids

A2-3D1
6502 Optimized Assembly Language

3D to 2D wire frame perspective transformation
with 3D clipping.

X,Y,Z range: + or = 32767 units
3 axis freedom: 0 to 359 degrees in 256 even steps

1912 cubic miles using one foot units

Variable viewing window (telephoto to wide angle)
Variable screen aspect and bit size ratios

Clipped or nonclipped projection control

Start, continue, ray and pure point projection
High performance APPLE Il 2D driver

Screen display or output array selection

3D line drawing (including APPLE Il screen draw) =150/seq
APPLE Il 2D line drow (full screen width) =333 lines/sec
APPLE 1l point plotting = 10, 000 points/sec

APPLE |l screen erase= 22 erases/second

Seperate technical and load-and-go manuals
BASIC and assembly languoge interface programs.
Zero-page and register restore upon subroutine return.

3
The A2-3D1 program is a derivation of earlier Sublogic 3D drivers (Z-80 and 6800)

and also contains many of the advanced array handling features of our Universal
Graphics Interpreters. Every attempt was made to make the program as reliable as
possible. One of the biggest problems in developing any graphics software, however,
is testing it.

A 3D graphics program is actually an implementation of a large, conditional
mathematical expression. A 3-dimensional space with a range of + or - 32767
units in the X,Y, and Z directions has 2.6 x 10]4 (64000 cubed) possible coordinate
points. There are therefore 6.9 x 1028 possible straight lines. With such an ‘
enormous number of program input combinations, combinatorial program testing is
out of the question. To insure that the program is reliable (the equati@n is stable),
program segments are combinatorially tested. Continuous development and testing
of 3D graphics programs at Sublogic, combined with user feedback, promises to
increase program performance and reliability.

This manual describes the implementation and use of the A2-3D1 package.
Explicit instructions on how to get the program running on the APPLE Il as well as
algorithms, programs, and hints to help non-APPLE Il 6502 users are given. We
hope you find the performance and capabilities of this package to your liking and

welcome any comments concerning it.

THE 3D TO 2D CONVERTER CONCEPT

Most 3D graphics users are primarily interested in putting 3D graphics to use
in their own special application. To these users, the process used to perform the
transformations and projections is considered to be of secondary importance. The

3D-to~-2D converter subroutine (the heart of the A2-3D1 package) was therefore

e

designed to be very easy to use without any graphics programming knowledge or
experience. The user simply sets up an input array (an array of 3D lines and
screen control commands in a preset format) in processor memory using BASIC
POKEs or an assembly language monitor. The user then CALLs the subroutine and-
the 3D imoge appear on the APPLE Il high resolution screen, Non-APPLE Il owners
will instead find all the lines to be plotted in an easy-to-use output array in
memory, ready for plotting (see the Using the A2-3D1 with Non-APPLE |l Systems
section). Figure 1 interrelates the input array, 3D-to-2D converter, and displayed
imoge. Notice that non-APPLE Il owners use the 3D-to-2D output directly.
Appendix 2 describes how the 3D-to-2D converter subroutine performs its

task. The rest of this section is devoted to the details of how to use the A2-3D1

program,

The A2-3D1 Program

Input Array | 3D-to-2D | APPLE Il Line Generator . APPLE 11
Converter Point Plotter, and Eraser HI-RES

! Screen
i Non APPLE Il Users
i
O utput Array--#=Users Line Drawing|-----s= User's Display
Software Device

Figure 1. The A2-3D1 program and its arrays.

SPACE AND SCREEN COORDINATES

The first concept that must be well understood is that of space and screen
coordinates. |t should be noted that the term screen used throughout this dis-
cussion implies plotters and other display devices as well as the APPLE Il screen.

3D SPACE COORDINATES. Every point in 3-dimensional space has an X, Y, Z

(5

space coordinate associated with it as figure 2a shows. A straight line is re-

presented by its start and end points as shown in figure 2b,

+Z

TG4

G) (] ’ 01 0) b)

Figure 2. Three dimensional space coordinates.

2D SCREEN COORDINATES, Every point appearing on the screen has a 2D screen

coordinate associated with it, Figure 3a shows a point on a screen, and a screen line

is represented by a screen start and end point as shown in figure 3b.

(+Y |) ([+Y £____0Q)
+---47,6) ‘ /Z

|
S 1 1(-5,2 ¢==7% {

<+
...... 1 P W S e
LN A

ALARE a RS n X : = Ry

~ D >N - X< I X /N> Bt

a) A screen point b) A screen line

Figure 3. Two dimensional screen coordinates.

6

3D AND 2D COORDINATE RELATIONSHIPS, The X,Y,Z space coordinate axes

directions were chosen to correspond in a graph axis fashion with the screen coordi-
nates. As figure 4 illustrates, the X andY space coordinate axes viewed through

a screen match the X and Y screen axes. The Z axis represents depth into the
screen. This X,Y axis match-up applies when the viewer's viewing direction is

0 degrees pitch, 0 degrees heading, and O degrees bank. c

[+Screen ¥)
+Space Y& +Z

30

29 Screen X

+Spagx

Figure 4. 3D and 2D coordinate alignment.

OBJECT CONSTRUCTION IN SPACE COORDINATES

The 3D-to-2D converter converts 3D space coordinates into corresponding
2D screen coordinates and projects them ;nfo the APPLE Il screen. Straight lines
in space are represented by two points in space: a start point and an end point. Wire-
frame objects and outlines can be constructed using many straight lines. An imoge

might therefore be described as a series of start and end points in a list (or array)

in memory as figure 5 illustrates.

40
30

20
10

30

20
10

” 30c Start pt. X,Y,Z End pt. X,Y,Z
10 ’é a ; Line a 20,10,10 40,10,10
Tt Line b 40,10,10 30,10, 20

e+ > Line ¢ 30,10,20 20,10,10
0 10 203040 50

Figure 5. The conventional way of representing lines.

Notice that line a's end point is the same as b's start point,and b‘spend point is
the same as c's start point. When creating outlines of objects, this end-to-end
form of line construction is so common that the "continue point" is used instead
of the "end point" in the A2-3D1 program. The triangular image is therefore

represented as shown in figure 6.

| Line Specifier (one or two points)

Line 20,10, 10 start 40,10, 10 continue
Line b 30,10, 20 continue
Line c 20,10, 10 continue

>

0 10 20 30 40 50 60
Figure 6. The A2-3D1's way of representing lines.
Line projection time and the amount of memory needed to represent a scene are
greatly reduced using start and continue rather than start and end points.
Although no official curves are allowed in the 3D scene, they can be drawn

with surprising realism as a long string of short, straight lines. Although very

- realistic curves can be generated using large numbers of line segments, projection

speed suffers as each line must be projected seperately. Figure 7 shows a polygon
and a curve drawing.
A group of many lines with a common vertex can efficiently be represented using

"ray points”. A ray point is similar to a continue point but the continuation of the

2 c (
c cont
c
start continue
_ J - J
a) Line drawing ‘ b) Curve construction

Figure 7. Object construction in 3D space
line doesn't advance with each new ray. Figure 8 illustrates an object constructed

using start, continue, and ray points.

4 r r B
ray
c
c
cont.
start
— Y,

Figure 8. Object construction with ray points.,

Rays are useful when drawing 3D polyhedra where one tends to "get stuck"
using only start and continue points. Cube drawing is a good example of this
situation. Up to nine edges (lines) of a twelve-edged cube may be drawn using
a single start and nine continue points, and three seperate start-continue pairs. must
be used to pickup the remaining three edges as shown in figure 9a. With ray points
these edges can be generated without having to use seperate start~continue point

pairs as figure 9b illustrates.

@) using start and continue points b) using start, continue, and ray points

Figure 9. Cube construction in 3D space.

<

Finally, if only points need to be projected, such as in an astronomy, molecular model,
or space flight application, pure point representation can be used. Figure 10 shows

a scene with a few pure points.

poinf®
[
P
®p
®p eP
N > W W WO N

Figure 10. A scene with a few pure points.

Once a user has decided what he wants in his data base, the scene must be
coded-up and put into the proper input array format in memory. The INPUT ARRAY

DETAILS section of this manual will discuss the exact input array formats.

10
VIEWING CONTROL

A few 3D to 2D converter control parameters are needed before a 3D-to-2D
conversion can be performed. The location, direction from which one wants to

view the scene and the field of view are required.

VIEWER LOCATION AND VIEWING DIRECTION. First the viewer's location

&

in space must be specified. Figure 11 illustrates what is meant by viewer's

location. An X,Y,Z viewer location must be submitted in the input array.

Movement of the viewer in the X,Y,Z directions is called transiation.

+Y Viewer's eye
7 i

Viewer's location
(1,2,4)

|
|

_ f
I +2Z
l

Figure 11. Viewer's location in space

Viewer's direction must also be specified as figure 12 illustrates. A pitch, bank and

heading are submitted. Change in the viewer's direction is called rotation.

11

Bank

4+ 3 Heading

Figure 12. Viewer's direction and field of view.

FIELD OF VIEW. Another parameter not related to viewer's movement and viewing -

direction may also be specified in the input array. This parameter controls the field
of view (similar to a comera's telephoto and wide angle effect) and lets the user
select wide angle, narrow angle, and medium angle views. Since the field of view
is continvously variable, zoom effects are possible. Only a limited field of view
, can fit into a viewing screen and the viewer must decide whether a wide angle or
telephoto view is desired. Figure 12 shows the field of view.

The 05 and OF command sheets cover viewer's location, direction and field of

view in greater detail.

12

ORDER OF TRANSFORMATION

The order in which transformations (X, Y, Z movement and pitch,bank and heading)
are performed by the 3D-t0-2D converter is of prime importance. The imoge projected
on the screen will be different if different orders of translation and rotation are applied.
For example, if a viewer's location in space is considered before his viewing direction,

(3
a different projection than if they were considered in reverse would result. Figure 13

shows these two orders of projection. Notice that the final results are different,

even though the same operations were applied.

>
VAN A%/AN % N

original X translation BANK rotation

a) X tronslation before BANK rotation,

A >) =

original BANK rotation X translation

b) X transiation after BANK rotation.
Figure 13. The difference transformation order makes.
The A2-3D1 graphics package performs transformations in the following order:
1. X,Y,Z translation
2. Heading (rotation about the Y axis)
3. Pitch (the angle of view to the X Z plane)

4. Bank (roll about the lateral axis)

13

Figure 14 shows the sense of direction of each of the transforms. |t should be
noted that the transform senses are dependent on one another. A positive change
in X causes an object to move to the left if the viewer is of @ O degree bank angle.
If the viewer is in a 90 degree bank, however, the cube appears to move down
instead.

Sometimes senses of rotation actually seem_to operaie in the %rong manner.
Changes in heading will produce exactly the same results as changes in bank
when looking straight down for instance. A little thought, however, convinces
one that this is indeed the way things should work.

It should be noted that posifivé Y represents the viewer being at a positive

altitude.

PROJECTION MODES AND CLIPPING

With full user freedom in scene design and viewing direction selection, scenes
invariably end up being fully or partially off the screen. If the object is behind the
viewer, it is not visible. The process of eliminating these off-screen lines and
cutting partially on-screen lines down to size is called clipping.

Elimination of off-screen lines is very simple computationally and presents no
problems. Clipping partially on-screen lines, on the other hand, is the hardest
and most time-consuming portion of the 3D projection process. The A2-3D1 program
hés full 3D clipping capabilities and even offers a selection of two different clipping

modes.

14

“SUOIJUBAUOD JUBWSAOW JO UOHDAI(Q ‘| =4nbiy

H

N/ -—

V

-

—\/

juswaAOW
aanlpbau Ja4yy

auads |putbu

juswasow
aAlyisod Jayyy

buipoay

ey

Y4ld

UoIp507 7

uolin30q A

USIIB30T X

15

The normal clipped projection mode performs the traditional clipping functions
of off-screen line elimination and partially on-screen line c“pping. The non-clip-
ped projection mode totally eliminates partially on-screen lines as we!l as off-screen
lines. This mode is preferable for small objects that tend to leave the screen very
quickly such as runway markers, trees at a distance, small windows on buildings,
etc. Using this mode on small objects keeps the 3D-t0~2D converter from wasting
valuable time clipping these trivial objects thereby increasing the overall projection
rate .

A special command may be submitted in the input array to switch between the

two clipping modes . The CLPSW command sheet (04) gives details of this command.
ASPECT RATIO AND SCREEN DIMENSION CONTROL

The A2-3D1 prt;gmm has total field of view, screen aspect ratio, screen
bit ratio, and screen centering control. In order to properly control these functions
it is first necessary to understand their operations. Since the four areas of control
work together,they will be described together.

Field of view is similar to the wide angle and telephoto characteristics of a
camera. A wide viewing angle will fit more of a scene into a projection. When
viewing an image on a screen, the geometricallly correct field of view is determined

by the screen width and viewer's distance from the screen.

W
|
e —
g scréen
_—
. - - H
viewer <J & — D - (S|
-~ —_
Bt Y j scene

16

Aspect ratio refers to the shape of o rectangular viewing window. A different
view is seen from a long, narrow viewing window than from a square one. The
3D to 2D converter must know the aspect ratio (the width to height ratio) of the

screen to know where to clip the lines.

-] e ° - E
W " . °
9 . 7" L
9" o
a) a 1:1 aspect ratio b) a 3:1 aspect ratio

It should be noted that most standard television sets have an aspect ratio of
approximately 4:3.

Bit ratio is strictly a display generator characteristic. Bit map displays come in
many sizes (64 x 96, 256 x 256, 270 x 192, etc) and few of them have 1:1 bit ratios.
In the final projection, the 3D to 2D converter has to know how many bits wide and
high the display device is in order to make sure the output values address the screen

properly and fully fill it.

! !

192 bits 256 bits
<—3§—280 bits— | e—}— 512 bits =
a) 280:192 bit ratio b) 512:256 bit ratio
(APPLE 1) (MATROX ALT-512)

Screen centering refers to the plocement of the rectangular projected frame on
the screen. When the bit ratio is set to fill the entire screen, the screen center should
be 0,0. When the bit ratio is reduced (for the purpose of putting a smaller image on the
screen in order to include some text perhaps), a 0,0 centered image will shrink toward

the center of the screen. By changing the centering or "screen bias", the small image

17

may be moved over to one side or corner of the screen. This makes screen splitting

effects possible

|t

Screen center at +X,+Y = 1]

/

T2 Small 3D image

CX-X-X-X-]

&

The CE and OF commands may be put into an in;;ut array to adjust the field of
view, aspect ratio, bit ratic and centering. The screen aspect ratio in the A2-3D1
program is setup to be correct for the APPLE Il screen using an average size (17" ¢
4:3 aspect ratio) television set, but non-APPLE |l users who use differen.r display -
devices, users desiring special effects, and perfectionists who demand 100% aspect
ratio and field of view correctness must use the OF and OE commands. See the OF and

0E command sheets for details and formats of these functions,
SPECIAL APPLE Il FUNCTIONS

The A2-3D1 high performance 2D driver section offers the user many features

above and beyond standard 3D line drawing. The following capabilities are provided:

1. 2D line drawing

2. page 1 or page 2 line draw selection

3. page 1 or page 2 black erasing

4. page 1 or page 2 white filling

5. page 1 or page 2 display select

6. 2D point plot

7. "exclusive or'line drawing for selective erase
8. screen initialization (versatile)

9. quick and easy screen initialization

18

The command sheets further describe these functions. Proper application of these
functions allow you to smooth=out flicker in animation, mix 3D and 2D imogery, set
mixed or full graphics, and much more. Sections of this manual will expand on these

functions.

A2}

19
GETTING AN IMAGE ON THE SCREEN

The basics of object construction in 3D space and display control have
already been covered. Briefly, objects consisting of points and lines must be
cunstructed with pure points, start points, continue points, and ray points. The
viewer may also control his X,Y,Z location and pitch, bank and heading. In
order to get images on the screen one must also know how to put :H of the commands
in an input array and how fo call the A2-3D1 subroutine. An understanding of

using the program with other software such as BASIC is also desirable. These items

will now be covered.

INPUT ARRAY FORMAT . The input array consists of a series of pure, start, continve,
and ray points and control commands stored sequentially in computer memory starting
at location 1B00 hex (6912 decimal). Each of the points consists of 7 bytes:

1. An 8-bit code indicating a pure, start, continue, or ray point.

2. A 2-byte 16-bit 2's complement, byte swapped, space cocrdinate X

3. A 2-byte 16-bit 2's complement, byte swapped, space coordinate Y

4. A 2-byte 16-bit 2's complement, byte swapped, space coordinate Z

The term byte swapped implies that the most significant half of the 16-bit word
appears in the lower addressed byte .

Each display control command consists of from one fo ten bytes (depending on the
control command). Like the point formats, the control commands always use the first
byte as an 8-bit code indicating the command. Command function control bytes follow
the command code byte. Points and control commands may appear in any order in
memory as long as they sequentially follow one another. The control commands given

in an input array apply to all points and lines following that control command.

Finally, an end of file code must end the input array. Any non-command code will do.

20

The general format is thus:

Address Dota Function

1800 10 "initialize the screen" code

1801, 1B0O2 {08, 00 erase the screen

1BO3 05 set X,Y,Z,pitch,bank, heading to:

1B0O4, 1B05 |01, 00 X value (byte swapped 0100 hex)

1B0S, 1BO7 [34,12 Y value (byte swapped 1234 hex)

1B08, 1B0? |79,19 Z value (byte swapped 1979 hex)

1BOA 00 0 degrees pitch °

1B0B 25 25 degrees bank

1BOC o1 01 degree heading

180D 01 start point code

1BCE 00, 01 X (100 hex)

1810 00, 02 Y (200 hex)

1B12 21,43 Z (4321 hex)

1B14 02 1 continue point code :

1B15-1B1B |x,y,z X, Y and Z coordinate of continue pt. (same as st. pt.)
1B1C 03 ray point code :

1B1D=-1B22 |x,y, z X,Y and Z coordinate of ray point (same as st. pt format
1823 08, 02 fill the screen with all white

1B25 79 end of file

This input array would initialize the screen, erase it, set the viewers location and
viewing direction to the values shown, draw 2 lines, and finally make the screen go
completely white. This would fake a total of approximately 200 milliseconds. Why
anyone would want to project this particular imoge is questionable since the lines
would appear as a flash before the screen turned completely white, but the sequential
interpretation of the input array would project precisely what was just described.

Two important points to note about this example are the start of the array address (1B00)
and the end of file code on the end (a 79 was used in this case).
The familiarization section of this manual takes a step-by-step approach to familiar-

ization of the input array concept and heips describe it. The output array section presents

2]
a large input and output array along with a good figure that is also helpful in

visualizing the input array concept. Input arrays are really quite easy to work
with as they are similar fo BASIC or assembly language programs: they execute
command (instruction) after command in a sequential order. The input array's

"instructions", however, are graphics commands.

COMMAND SHEETS. The following command sheets describe,in detail, the

commands available to the A2-3D1 user. |t is very important to understand the
input array concept before working with these commands. Before building large
data bases it is wise to get to know all commands and the RULES regarding their
use. |

Also note that not all commands must be used in an input array. All screen
control commands are, in fact, optional. The A2-3D1 program will assume a
0,0,0X,Y,Z viewer Ioc':ation, a wide ‘angle view, and an APPLE || screen unless
told otherwise.

Addresses used in the examples in the command sheets have no real significance.
They are there only to show how a particular command fits into a given area of memory.
X,Y, and Z coordinates of points are also chosen to be random, representative values

that have no special meaning.
The letters "Isb" and "msb" in the command sheets stand for least significant

byte and most significant byte respectively.

PURE POINT

OPERATION:

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

22
COMMAND = 00 hex PNT

This command specifies a point in space using X, Y, and
Z coordinates. The 3D=to-2D converter converts this info
a 2D point to be projected on a screen. The point is not
displayed if it falls off the screen.

7 bytes.
00, X Isb, Xmsb,Y Jsb,Y msb,Z Isb, Z msb irfsequential

memory locations where x,y, and z are double precision,
two's complement, byte-swapped values.

Input:
Address | Data | Meaning

1B39 00 PNT code

1B3A, 3B| 34,12 | X coordinate (1234 in this case)
1B3C, 30 79,19 | Y coordinate (1979 in this case}
1B3E,3F| 00,01 | Z coordinate (0100 in this case)

Result: The 3D point 1234, 1979, 0100 would be projected
onto the 2D screen.

Points are useful where single small dots are required (stars
for example). They are good for games, astronomy, space
flight, molecular modeling, and object detailing.

Any number of points may be used in any location in the input
array.

START POINT

OPERATION:

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

23

COMMAND = 01 hex SPNT
= 0l dec

SPNT specifies the beginning of a line in space using X,Y,Z
coordinates. The 3D=to-2D converter takes the start point
and the following continue point and projects @ 2D line on

the screen, The line will be eliminated if off the screen and
will be clipped if it is partially on the screen. If it is partially
on the screen and the clipper has specifically been turned off
the line will be eliminated. e

7 bytes.

01, x lsb, x msb, y Isb, y msb, z Isb, z msb in sequential
memory locations where x,y, and z are double precision,
two's complement, byte-swapped values.

input:

Result:

Address | Data Meaning

1Co8 01 SPNT code

1C0%,0A | 00,01 | X coordinate (0100 hex)

1C0B,0C | 77,00 | Y coordinate (0077 hex)

1COD, CE | 21,43 | Z coordinate (4321 hex)

1COF xx,xx | Continve point code and coordinates.

The line defined in 3D space by the start point and the
following continue point is projected as a 2D line on the screen.

The line is the most-used element in 3D projections, and every
line starts with a start point (directly or indirectly). Wherever
lines are needed, the start point will be useful.

A continue point must follow a start point. No other command
or type of point will do. If a continue point doesn't follow a
start point, the following command, whatever it may be, will
be assumed to be a continue point causing a bad line at best
and an out-of-command synchronization problem and subsequent
crash at worst.

24

CONTINUE POINT COMMAND =02 hex CPNT

=02 dec

OPERATION: CPNT specifies the continuation of a line in space using X, Y, Z

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

coordinates.” The 'line can be a continuation from a start point

or from another continue point or ray. The line ~/ill be projected
by the 3D-to-2D converter onto a 2D screen. The line will be
eliminated if off the screen and will be clipped if it is partially

on the screen and the clipping mode is in effect, If it is purtially
on the screen and the clipper has specifically been turned off,

the line will be eliminated. Future continue and ray points pick-up
where this continue point leaves-off.

7 bytes.
02, x Isb, x msb, y Isb, y msb, z Isb, z msb in sequential

memory locations where x,y, and z are double precision,
two's complement, byte-swapped values.

I nput:
Address | Daia Meaning
106 XXXX previous start, continue, or ray point
1f0d 02 CPNT code

1f0e, 0f | 00,34 | X coordinate (3400)
1£10,11 | 01,00 | Y coordinate (0001)
112,13 | 53,39 | Z coordinate (3953)

1f14 XXXX Continue point, ray or other command

As with the start point, the continue point will be useful
wherever lines are needed,

The CPNT has no specific rules as it will always continue

a line from where the last one was drawn. |t is wise to check

that o previous line was indeed drawn in the input array, otherwise
the continue point will assume a random location for the start

of the line it generates.

25

“AY POINT COMMAND =03 hex RAY
=03 dec

OPERATION: The RAY specifies the continuation of a string of lines in

' space using X, Y, Z coordinates, but unlike the continue
point {nat advances the line drawing "cursor" for the
following lines, the RAY leaves it at its original location.
The 3D-to-2D converter takes the start point (original
position of the line drawing cursor) and the ray point
and draws a 2D line on the screen, leaving the cursor
not updated. The line will be eliminated if off the screen
and will be clipped if partially on the screen. If it is
partially on the screen and the clipper has specifically
been turned off, the line will be eliminated.

BYTES: 7 bytes.

FORMAT: 03, x Isb, x msb, y isb, y msb, z Isb, z msb in sequential
memory locations where x,y, and z are double precision,
two's complement, byte-swapped values.

EXAMPLE:
I nput:
Address | Data Meaning
1606 XXXX previous continue or ray point
1b0d 03 RAY code
1b0Oe, Of | 00,F4 | X coordinate (F400)
110,11 | 12,34 | Y coordinate (3412)
112,13 1 00,0A | Z coordinate (0A00)
1b14 XXXX Continue point, ray or other command
Result: The ray defined in 3D space by the RAY point and the
previous cursor position is projected as a 2D line on the screen.
USES: Rays are useful where lines with a common vertex are required.
Starburst type patterns, polyhedra, and tick marks on a chain of
continue lines are just a few examples.
RULES: A ray point must never follow a start point. If it does, it will

be treated as o continue point. If you need a RAY dfter a
start point, simply turn the line around and us @ CONTINUE
point, RAYs may follow continue points and other RAY's with
no problems.

4

26

CLIPPER CONTROL COMMAND =04 hex CLPSW
- =04 dec

OPERATION: CLPSW enables the user to turn the 3D-to-2D converter's’
clipping function off or on. In clipped mode, lines that
fall tofally off the screen are elimincted and lines that
are partially on the screen are cut down to size. In
non clipped mode, any line that falls partially or totally
off the screen is eliminated.

BYTES: 2 bytes

DEFAULT: Upon 3D-to-2D converter entry the clipper is turned on.
Every time the 3D-to-2D converter is called, the clipper
is turned bock on before display file interpretation.

FORMAT: 04,00 insequential memory locations turn the clipper on
while 04, 01 in sequential memory locations turns the clipper
off. 04, n where n is onything but 00 or 01 aslo turns the clipper

off.
EXAMPLE:
fnput
Address | Data Meaning
1B0O XXXX Lines and other commands in clipped mode
1872,73 | 04,01 | turn clipper off
1b74 XXXX Lines and other commands in nonclipped mode
1C08, 09| 04,00 | turn clipper on
1C0A XXXX Lines and other commands in clipped mode
Results: The lines between 1b74 and 1C07 will be projected in non-
clipped mode.
USES: Nonclipped projection is primarily meant to be a time soving
feature. Small objects like small windows, runway markers,
objects at a distance, efc. don't cause any loss of realism if
they drop off the screen all at once, so it wastes time clipping
them. Nonclipped projection should be used in animation where
projection rafe is of prime importance.
RULES: The clipper can be turned on or off as desired. Although values

other than 01 will turn the clipper off, its a good idea to stick to
01 as a value since future versions of this program may make use
of some of these other variables,

¢

27

VIEWERS POSITION COMMAND =05 hex EYE
= 05 dec

OPERATION: EYE specifies the viewer's X,Y,Z location in space and
the viewer's Pitch, Bank, and Heading. The 3D=-to-2D
converfer uses this information to project the proper view
of the scene. ’

BYTES: 10 (decimal) bytes.

DEFAULT: Upon 3D-to-2D converter entry the viewer's location and
direction of view is set to x=0, y =0, z=0, pitch =0,
bank = 0 and heading = 0. The viewers location will remain
at this location until an 05 command is encountered.

FORMAT: 05, x Isb, x msb, y Isb, y msb, z Isb, z msb, pitch, bank,
heading in sequential memory locations provides the 3D-to-2D
converter with viewer's location and direction of view. The
X,Y, and Z values are 2's complement byte-swapped double
precision with a +and - 32767 range. The pitch, bank and
heading are "pseudo degrees" (256 divisiors to a circle).

EXAMPLE:
Input:
Address | Data Meaning
1b03 05 - | EYE code
1b04,05 | 00,06 | X viewer position (0600)
1b06,07 | C4,13 | Y viewer position (13C4)
1608, 09 | 25, E4 | Z viewer position (E425)
1b0a 00 Pitch (00 pseudodegrees)
1bOb 20 Bank (20 pseudodegrees)
1b0c Ae Heading (Ae pseudodegrees)
Result: All lines aofter 1b0Oc are projected with the X,Y,Z and
pitch, bank and heading given in the EYE command.
USES: The EYE command is used whenever one wants to change his
location in space or direction of view,
RULES: The EYE command can be used wherever desired in an input

array. There are no restrictions as to how many times it may
be used.

28

DRAW A 2D LINE COMMAND = 06 hex LIN2D
= 06 dec

OPERATION: LIN2D is a command that feeds line drawing information
directly into the APPLE Il 2D driver. |t takes a start and
end poin: specified in the command and draws it on the
APPLE Il high resolution screen in white. Aspect ratio,
bit ratio, screen centering and array turn-on commands have
no effect on this command.

BYTES: 5 bytes.

FORMAT: 06, x, y, x','y' in sequential memory locations plots the
line x,y to x',y' onthe APPLE Il screen. X values may
be in the range of + and - 45 hex (bb to 45) and Y values
may range from +5f to =5f (A1 to 5f hex). The screen is
layed out with 0, 0 at the center and increasing X and Y
to the right and up respectively.

’y=5F
x= bb 0o x=45
<= : -
y=Al
4
EXAMPLE:
Input:
Address | Data Meaning
1b0f 06 line code
1b10, 11| 02, ff line start point (x, y)
1b12,13} 40,32 | line end point (x', y*)
Results: The line from 02, ff to 40,32 is drawn.
USES: This command is used for drawing additional 2D images on the screen,
overlapping or around the borders of a 3D imoge .
RULES: This is strictly an APPLE Il command and should not be used on any

other machine. It puts no entry into the output array. NEVER USE
X,Y VALUES OUTSIDE OF THE SPECIFIED RANGE. If you do, you
will "overshoot" the line drawer's tables and draw outside of screen
memory, thereby destroying the program or BASIC,

[4

29

DISPLAY SCREEN SELECT ‘COMMAND =07 hex DISP
=07 dec

OPERATION: DISP feeds screen selection information to the APPLE Ii's
screen control unit. This command can specify text, mixed,
or full=screen graphics modes, displaypoge 1 or 2, and
high or low resolution modes.

BYTES: 2 bytes.

FORMAT: 07,n in sequential memory locations sets an APPLE |i
screen mode. The value n determines which mode will

be set.
n mode
50 hex | set color graphics mode
51 hex | set text mode
52 hex | clear mixed graphics mode
53 hex | set mixed graphics (4 text lines)
54 hex | set poge 1 graphics
55 hex | set page 2 graphics
56 hex | clear HI-RES mode
57 hex | set HI-RES mode
EXAMPLE:
Input ¢
Address | Data Meaning
1600 07,53 | set mixed graphics (4 lines text)
- 1b02 07,50 | set color graphics mode
1b04 07,57 | set high resolution modé
1606 07,55 | set page 2 graphics
Result: This sequence of commands would cause page 2, high
resolution mixed graphics mode to be displayed on the screen.
USES: This command is used to select which screen will be viewed and
can also control special effects such as ping-ponging between screens.
RULES: This command actually sends @ 0 out to memory location COXX where

XX is the value specified by n inthe command. Using other n
values will cause other control events to occur. Avoid using other
n values.

ERASE SCREEN

OPERATION:

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

30

COMMAND =08 hex ERAS
= 08 dec

ERAS causes the APPLE I screen to be erased or filled with
black or white. Page one or page two erasures are performed
depending on the user-specified vaiue following the command.

2 bytes.

08, n in sequential memory locations causes a screen erase or
fill to occur. The value n defines the action as follows:

n result

00 erase poge |

01 erase page 2

02 fill page 1 with all white
03 fill page 2 with all white

I nput:
Addressl Data lMeoning

1b94 l 08,00 | erase poge |

Result: Page 1 is erased.

Screen erase is used to clear the display screen before drawing
a new image. Screen fill is useful for black-on-white images
using the exclusive~-or line drawing function,

Care must be taken in erasing the screen as it actually wipes-out
8K of memory to perform the action. The proper screen must be
erased. Never erase page 2 if there is a program in the page 2
memory space. Likewise with page 1.

This is strictly an APPLE 1l command and shouldn't be use in

non APPLE |l applications (unless you need a very fast 8K memory
eraser!)

31

+RITE SCREEN SELECT COMMAND =09 hex DRAW

= 09 dec

OPERATION: DRAW selects which screen (page 1 or page 2) the APPLE 1!

BYTES:

DEFAULT:

FORMAT:

EXAMPLE:

USES:

RULES:

line drower will drow on.
2 bytes.

Unless specified otherwise, page 1 is selected for line drawing.
Page 1 is in effect upon program loading, but is not returned

to on every call of the 3D-to-2D subroutine. If page 2 is
selected, it remains selected until another write screen command
is encountered.

09, n in sequential memory locations selects pcge one or two
for line drawing and point plofting as follows:

n result
00 draw on page one
01 draw on page two

all others | drow on page two

I nput:
Address 'Ddfd] Meaning

1b79,7A ' 09, 01 l from now on, draw on page 2

This command is useful in system configurations where page 2
instead of poge 1 is to be used. It is also useful for special
effects such as screen ping-ponging in pursuit of display
smoothness.

This command must be used before all others in systems that

are using page 2 only as o display page. If a line is drawn
before this command, valuable program information in page 1
may be overwritten by the line. In screen ping-ponging cases,
one must realize that the page selected remains in effect unless
selected otherwise~ - even from call to call. This is because
this command used instruction modifying code to perform its task.

32

PLOT A 2D POINT COMMAND = 0A hex PNT2D

OPERATION:

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

=10 dec

PNT2D is a command that feeds point plotting information
directly into the APPLE Il 2D driver. It tokes the point
specified in X, Y,Z coordinates in the command and plots
it on the APPLE Il screen. Aspect ratio, bit ratio, screen
centering and array turn-on commands have ro effect on
this command.

3 bytes

0A, x, y,insaquentiol memory locations plots the point
x,y on the APPLE Il screen. X values may be in the
range of + and - 45 hex (bb to 45) and Y values may
range from +5f to =5F (A1 to 5f) . The screen is layed
out with 0, 0 at the center and increasing X and Y to the
right and up respectively. See the 06 command sheet
for a diogram of this coordinate system.

Input:
Address I Data I Meaning

PNT2D code

1b42 l 0A
x,y of the point to be plotted (X=24,Y=4F)

1643, 44 | 23, 4F

Results: The point 24, 4F is plotted on the screen

This command-is used for drawing additional 2D images on the screen,
overlapping or around the borders of a 3D imoge.

This is strictly an APPLE Il command and should not be used on any
other machine. |t puts no entry into the output array. NEVER USE
X,Y VALUES OUTSIDE OF THE SPECIFIED RANGE ., If you do, you
will "overshoot" the line drawer- point plotter's tables ond plot a

point outside of screen memory, possibly destroying a program or BASIC,

33

INTERPRETIVE JUMP COMMAND = (B hex JMP
=11 dec
OPERATION: This command causes the 3D-t0-2D converter to continue

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

reading the input array starting at a new address in memory.
The new address is specified in the JMP command. '

3 bytes.
0B, alsb, a msb will cause interpretation of the input

array to resume at address "a" where a is a byte-swapped
value.

tnput:
Address | Data Meaning

1b75 0] JMP command code
1676,77 | 08,20 | jump address (2008 hex)

2008 XXXX next point or command to be read

The JMP command can be used to break the input array into
a number of small pieces that can be placed at convenient
locations in memory. The JMP command can also be used
to jump to an output array that has just been created. This
output array will then be read as an input array of points
and lines. See the discussion on SMOOTHING in this

manual for more details.

The JMP command may be used at any time. Care should be
takentomake sure the address is byte-swapped, or the interpreter
will resume reading in a random location. I nput array segments
with a JMP at the end require no end of file mark, but at the
end of the final segment an end of file mark is required.

Be careful not to cause an array to jump to itself. The A2-3D1
program will go info an endless display generation loop if this

is done.

SET LINE DRAWING MODE

34

COMMAND = 0C hex LMODE
=12 dec

OPERATION: This command selects between normal ("or") line drowing-
and exclusive "or" line drawing, and turns off outpuf array

BYTES:

DEFAULT:

FORMAT:

EXAMPLE:

USES:

RULES:

generation.
2-bytes.

Upon 3D-to-2D converter loading, the normal line drowing

mode is entered. Once changed to exclusive "or" line drawing,
the program remains in this mode until specified otherwise- -
even from call-to-call.

0C, n insequential order in memory causes either normal or
exclusive "or" line drawing modes to be entered. An n of
00 specifies normal mode, and an n of 01 specifies exclusive

"or" mode.

Input:
Address |Data Meaning
1b80,81 |0C,01 | draw the following lines in exclusive "or" mode
1b82 XXXX lines to be drawn (in exclusive "or" mode)
1¢56 ,57 | 0C, 00 | switch back to regular line drawing
1c¢58 XXXX more lines fo be drawn (in normal mode)

Result: The first set of lines are drawn as exclusive "or" lines, and
the second set as normal lines.

Exclusive "or"lines can be used in a number of different ways.
They can be used to draw black on white, white on black or
can be used to selectively erase lines. The section on selective
erasing in this manual should be consulted for details.

This command can be used nearly anywhere in an input array.
Remember that the program will remain in the line drawing mode
it was last in until changed; even from call-to-call. This is
caused by the instruction modifying nature of this function,

35

TURN ON OUTPUT ARRAY COMMAND = 0D hex ARRAY
' =13 dec

OPERATION: This command causes an output array to be generated
instead of letting the scene be drawn on the APPLE I
screen, An arguement within the ARRAY command
specifies the address where the output array will start.

BYTES: 3-bytes.

DEFAULT: Upon input array entry, and every time the 3D-2D program
is called, the output array generating feature is turned off,

FORMAT: 0D,a Isb, @ msb in sequential memory locations causes
an output array to be generated starting at the location specified
by oddress o in the command. The a arguement is byte-swapped.
Array generation ends when an end of array command or 0C
(set line drowing mode) command is encountered. The end of
file is denoted by an end of array mark (a 79 hex).
The output array is identical in construction to the input array
and consists of 0A (points) and 06 (2D lines) only. The output
array may be interpreted as an input array by the A2-3D1 program.
The OC command turns off output array generation.
EXAMPLE:
Input:
Address | Data Meaning

1ed0 XXXX lines being drawn on APPLE Il screen
1d78 0D, turn on output array

-1d79,7a | 00, 1f | create array at 1f00 hex.

1d7b XXXX lines to be placed in ocutput array

Result: The lines starting at 1d7b are put into the output
array (ofter 3D-to-2D conversion).

USES: The output array is useful on non-APPLE Il machines where seperate
line drawing routines are being used. The output array can also be
used to save images for later display , and to hold-off projection
of 2D lines until all the 3D transformations have been done, resulting
in a smoother display.

RULES: Care shadd be taken in setting the output arrays address. |t
should not overlap a program or screen display area. APPLE |l
screen control commands should not be used while creating an
output array. They create no amray entries but still affect the
APPLE I screen functions and memory.

36

SCREEN SIZE SELECT COMMAND = 0t hex SCRSZ
= 14 dec

OPERATION: This command provides the 3D-to-2D converter with screen
~ . bit ratio and screen centering information. Arguments
in the command specify screen bit height and width, and
X and Y screen center locations.

BYTES: 5-bytes

DEFAULT: Screen size on program load-up is preset to correspond to
the APPLE Il screen in the white mode (width 140, height
192 decimal). The screen center is set to zero.

FORMAT: CE, scr. width, scr. height, scr. X center, scr. Y center, in
sequential memory bytes set the screen bit ratio and center.
Screen height and width can reach @ maximum of 256 x 256,
and screen center can be placed anywhere within a + and -

127 ronge.
EXAMPLE:
I nput:
Address | Data Meaning
1F19 0E SCRSZ code
1F1A 20,30 | bit ratio is 20= width and 30 = height.
iF1C FO,10 | screen center is Fo=Xand10 =Y
Result: The 3D imoges are projected onto the following screen:
20 /: Projected area center (FO, 10)
— i‘_‘l%:l Projected area (20 by 30 bits)
30] A F—=Bit map center
Co X 410 ./¢Full size bit map
’ g
] 8C l
USES: This command is useful for setting screen size on non-APPLE |l
devices, and for moving the screen around on all devices.
RULES: Donit center the screen in such a way as to cause the image to

fall outside of the display devices plotting boundaries. This
is especially true in the APPLE Il case as the line drawer will

destroy memory outside of the display page if you do.

FIELD OF VIEW SELECTION

37

OPERATION:

BYTES:

DEFAULT:

FORMAT:

EXAMPLE:

USES:

RULES:

COMMAND = OF hex FIELD
=15 dec

FIELD provides the 3D-to-2D converter with field of view
and aspect ratio information,

7-bytes.

Upon subroutine entry, the field of view is set to o wide cngle
view with a 4:3 aspect ratio,assuming an APPLE Il display device.

OF, axr Isb, axr msb, ayr Isb, ayr msb, azr Isb, azr msb, in
sequential order in memory set the aspect ratio and field of view.
Axr is the horizontal aspect ratio control. |t is a 2-byte 2's
complement value that compresses the imoge in the X dimension
thereby fitting more horizontal information into the screen,
Wide screens will use low value axrs. Axr is a fractional value
with 32767 representing 1.0. For a wide screen an axr value of
.5 (16384) may be appropriate.

Ayr is identical to axr but works in the vertical direction. Tall
screens use lower value ayrs. A very tall screen might use a .5
(16384) ayr.

Azr controls field of view. A very wide angie view is 32767,

A very narrow view is 4000,

Negative field values produce mimror and backward images.

Input:
Address | Data Meaning

1FO9 oF Field of view code

1FOa FF,5F | axr value = 24575 (wide screen axr)
1F0c FF,7f | ayr value = 32767 (normal height)
1F Qe 45,25 | azr value = 9541 (telephoto view)

note: values after's sign” is decimal equiv. of Data

Result: A 4:3 aspect ratio (wide screen) telephoto view will
be projected.

Field of view is used to create proper screen geometry for the
display device being used. Field of view may also be used for
zoom, mirror imaging and other special effects.

Field of view, once changed, remains the same from call-to=all
unless intentionally changed ogain.

[4

38

EASY INITIALIZE COMMAND =10hex INIT
= 16 dec

OPERATION: This command puts the APPLE Il screen into the high
resolution, split graphics/text, page 1 viewing

mode.

BYTES: 1 byte.

FORMAT: 10 in a memory location in the input array initializes the
screen,

EXAMPLE:

Input:
Address I Data t Meaning
1b00 10 initialize the screen

Result: The screen goes into high resolution, split graphics/text,
page 1 viewing mode.

USES: This command is a good way to start most page 1 input arrays.
It puts the screen in an easy to use mode since 4 lines of text
are provided on the bottom of the screen. This command
avoids having to use 3 seperate 07 (display screen select)
commands.

RULES: It is @ good idea to use this at the beginning of input arrays.

There are no location restrictions however.

39

NO OPERATION COMMAND =11 hex NOP

=17 dec

OPERATION: This command performs no operation and is skipped-over

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

by the 3D~to-2D converter.
1 byte.

An 11 in the input array is ignored and skipped-over.

I nput:
Address | Data Meaning
1605 11 NOP code
106 11 NOP code
1e07 XXXX valid points and commands

Result: The two NOPs are skipped and the valid points and
commands at 1e07 are processed.

The NOP is good for filling space that might be used later
{especially ot the beginning of an input array where initializes,
erases, and location information may be put). |t is also

good for eliminating unwanted commands without compressing
the entire array to fill-up the gap left by the command's
removal .

NOPs may be used anywhere. There are no restrictions.

40

SUBROUTINE CALLING. After the input array has been created and loaded at

1B0O hex (6912 decimal), the 3D-to-2D converter must be called using a BASIC
CALL or assembly language JSR instruction.

The general purpose calling address of the A2-3D1 program is 0800 hex (2048
decimal). Whel;\ called at this address, there is no need to worry about the 6502's
zero page, X,Y, stack, A or P registers being modified by the 3D program.

The program uses this memory and these registers, but it restores them before it
returns from the subroutine. When working with large data bases, the saving
and restoring of the zero page takes a very small fraction of a percent of the
conversion time,

For ver;l small data bases and the performance-minded user, a second
subroutine call address is provided at 0803 hex (2051 decimal). This is the "fast
calling address". Entry at this address side steps the 1.6 miHise-cond zero poge
and register save/restore sequence and gets right down to the 3D conversion. The
destruction of zero page variables 60 to DO hex and the processor registers (except

for the stack pointer) is the price paid for this extra speed.

USING BASIC AND OTHER SOFTWARE. Using the A2-3D1 program with BASIC

and other software is a simple proposition as long as the 0800 hex (2048 decimal)
subroutine call is used. The only memory area the 3D graphics program uses under
these conditions is the area between 800 and 1AFF hex. The chosen graphics display
page on the APPLE Il (locations 2000-3FFF or 4000-5FFF) is also modified if the A2-3D1

line drawer, point plotter or erase functions are used. No zero page variable or

41

register modification problems arise because all registers ond. the zero page are left
intact.
The first thing to do when getting the A2-3D1 program up is to decide where in
memory things should reside. Figure 15 shows a few possibilities, and one of these
is likely to fit y<'wr system. Notice that disk systems running Disk APPLESOFT must
have 48K of memory. With 10.5K of DOS, 12K APPLESOFT, 4.75K A2-3D1, ond
an 8K display page (35.25 K total), even a 36K system is inadequate. Tape or ROM
APPLESOFT is therefore recommended for small and medium memory sized systems.
When using the program with any BASIC or DOS, two cautionary measures should
be taken. First, make sure to set HHMEM and LOMEM to the proper range. If you
dont, BASIC will write over A2-3D1. Also make sure not to erase or draw lines on
a page you aren't using. if you do, A2-3D1 will write over BASIC or DOS. This
is particularly important if you are using page 2 graphics. A write screen select

command must precede your lines and points in the input array.

A BASIC USE EXAMPLE, An example of the use of the A2-3D1 program is in order at

this time. Configuration B of figure 15 will be used. This configuration requires 16K
of memory and I nteger Basic. APPLESOFT ROM or APPLE PLUS BASIC will also work
in this configuration although LOMEM and HIMEM must be written into the prog/ram
using these two BASICs,

The following procedure can be used to get the program going:

1) Load the A2-3D1 tape (see the loading instructions in the appendix sections)
2) Get into Integer BASIC (ctrl B return)
3) Set LOMEM and HIMEM:
HIMEM: 8191 (sets HIMEM to 1FFF)
LOMEM: 7168 (sets LOMEM to 1C00)
€

‘epinb uolbInbljuos Wa) f] 31ddV/ LdL=¢v uL =ia
.
A8¥ A8y ACE ACE ACE prA% ACE ACE A9l 291
Y'Y ¥V 'Y 'Y Y EE yv [[T ¥V WV Ty [0000
140S 1408 0080
-31ddV Lae-ty Lae-ey =31ddV Lae-ev Lae-¢v lae-ey Lae-¢y Lae-ev lag-¢v | — 000l
ado | ado |
10 351 y ¥l vy VI v v A / @jou geUa
j , F__ VI r vi] |4 —
| ebod | eboy | eboy pipQ | @boy | @boy | aboy | aboy
Aojdsi Aojdsi 515 Apjdsi DIsve Apjdsi Apjdsi Ap|dsi Ao1ds1a | — ooe
vy vl
DIVE 1 buod | | ¢ Buod
Z eboy Z #boy Riog Z 9boy Z oboy Z @boy Z aboy VI 140S31ddY
Aojdsig Ap|dsiq Jlsvd Apo|dsiq Ap|dsig Ap|dsig Aojdsig 10 9bonbuoy 000S
o1sDg | Ajquessy
"Bauy e
Vvl v Vi Vi vy Vi A quiassy m < 0009
Lae-¢v SOd lge-ey
4 pioQq —
vVl %ea vi o N7 0004
Qlsvd
© paisyng HaRe
oie@) | ueibold WO s|gnoq WIWOT Aowsw o7= H
Jlsvd 1Y | 1405 31ddY WOY WOY paieyng WIW IH Aowsw =+ |
0 140$31ddv 1405T1ddv elgnog paniasay ajddy =yy | v 0006
G OISve | DIsve ade] 10 10 ebonbuny eBonbup Aowury 4ndu| = y|
s0d SOQ 140531ddY OISV | JIsval Ajquessy Ajquessy ~ 000V
: ‘Apup jndui si : — 0004
2iop D15V Q St (d441) WIWIH & WIWOT dndul st WIWOT © 008l £
+ " woibord aBonBup| A|quesso si1 444 o1 00l ‘Apab 4ndul st 00l © 00gl 9
paip Apwup jndu) puo woiBaid so e|qosn DalD SiyY ‘pasn sI GO M §| G ~000D
3dvl WO ‘papasu ji se091d om} ojul Abuip yndut paiq o dwnl sapjaudisqul espy
._..._Omm“_u.ﬂ_m“.q ._LOmm,L,M%Q "UOI{DWIUD Y{OOWS 104 SUe8IDS Palayng ajgnoq "€
SV ‘ wp4Boud apisul up jeg -
$51q Dlsva | D1ISv4a *PIsUl WIWIH PUP WIWOT 48§ m

"|PNUDW 20UBIRYBL || TddY 995 " 9|qR|IPAD (4E€-00€ pup 8bod cuaz jo seoeid pup siig

43

Note that LOMEM and HIMEM must be written into the BASIC program in APPLESOFT,
At this point, the A2-3D1 program, a small test cube and edge line input array at 1BQ0,

and @ 1K BASIC work area from 7168 to 8191 exist in memory. The input array at 1BOO is:

Address Data Meaning
1800 10 intialize the APPLE Il screen
1BO1 05, 00, 00, 00, 00, 00, 00 Location in space X,Y,Z
1B08 00, 00, 00 Pitch, Bank, Heading
1B0B 08,00 Erase the screen
1BOD 01, 00, ff, 00, ff, 00, 03 Line 1 start]
1B14 02, 00, 01, 00, ff, 00, 03 Line 1 continue
1B1B 02, 00, 01, 00, 01, 00, 03 Line 2 continue
1B22 02, 00, ff, 00, 01, 00, 03 Line 3 continue
1B29 02, 00, ff, 00, ff, 00, 03 Line 4 continue
1830 02, 00, ff, O, ff, 00,05 Line 5 continue
1837 02, 00, 01, 00, ff, 00,05 Line 6 continue cube
1B3E 03, 00, 01, 00, ff, 00, 03 Line 7 ray
1B45 02, 00, 01, 00, 01, 00, 05 Line 8 continue
1B4C 03, 00, 01, 00, 01, 00, 03 Line 9 ray
1B53 02, 00, ff, 00, 01, 00, 05 Line 10 continue
1B5A 03, 00, ff, 00, 01, 00, O3 Line 11 ray
1B61 02, 00, ff, 00, ff, 00,05 Line 12 continue
1B68 01, 00, 00, 00, 01, 00, 03 Line 13 start] edge line
1B6F 02, 00, 00, 80, 00, 00, 03 Line 13 continue
1876 79 End of array -
10
100 — AT
1 :
4 12
000 — 2
5 400
1 300

FFOO™ FFoa 000d 0100f
You may examine it with PEEKs to varify it if you wish. The subroutine call

address is 2048 decimal. The cube may be projected now by typing:

> CALL 2048

The cube should appear on the APPLE Il screen.

Notice that address 1B09 in the input array is the BANK parameter. This may be

changed using POKEs. Enter the following program:

v
l initialize BANK ongle1

10 A=256

20 A=A-1 s % L decrement BANK angle
25 POKE 6921,A note: 1BOY hex = 6921 dec

30 CALL 2048 [project cube]

40 IF A> 0 THEN GOTO 20

Running this program yields a rotating cube. The cube will rotate 256 pseudodegrees

no

(one full rotation) and the program will end. Changing the POKE oddress to the PITCH
parameter's address (1B08 hex, 6920 decimal) causes pitch changes, and changing it
to the HEADING parameter's address causes heading changes.

Similar procedures should be used in getting any configuration up and running. The
tape loading section tells how to get the 4000 origin version of the A2-3D1 program
into memory if your system requires it (see figure 15, configurations G and J). Remember
to use the subroutine call addresses shown in the maop if the 6000 origin version is
used.

The watchword in getting any program up and running is "avoid program-to-program
overlap and interference". Never perform a screen erase over BASIC or a LOMEM-

HIMEM over the A2-3D1 program.

45

OUTPUT ARRAY GENERATION CONCEPTS

Command OE (turn on the output array) is described in the command sheets
of this manual. This command is useful for non APPLE Il owners who dont need
or want the APPLE |l screen projection and APPLE Il owners who want smoother-
running displays. It is necessary to understand exactly what this command does
before it can be properly used, however.

The 6502 3D-to-2D converter takes the input array of 3D lines and trans-
forms them, one-by-one, into start and end points of lines to be projected
onto a screen. APPLE Il users usually want lines to appear on the screen,
and lines are automatically fed to the high speed line projector for the
APPLE I} = = unless the user has previously turned on the output array with the
OE command. If on output array is requested, the 3D-to-2D converter builds

an output array that is very similar to the input array in memory and supresses
the APPLE Il screen display.

The output array consists of start and end points of 2D screen lines. Ent-
ries in the output array have the following format:

LINES POINTS
address data address data
1F94 06 line code 192A 0A point code
1F95 x start pt. X 1928 X point X
1F96 y start pt. Y 192C y point Y
1F97 x! end pt. X
1F98 y! end pt. Y

Notice that the coordinates have a range of + and = 127 units since they
are single byte parameters.

The output array represents lines in the Sublogic Universal Graphics I nterpreter
format: the center of the screen is 0,0 and X and Y increase in value moving to the
right and up respectively. Figure 16 illustrates the screen coordinate system.

“1 27 decimal
-128 0,0 127
AL 2/
¥_128

Figure 16. The screen coordinate system.

The OE and OF commands may be used to scale the field of view, bit width,
or aspect ratio to suit the user's disploy device.

The 06,07,08,09,0A,0C, and 10 commands (2D points and lines, APPLE Ii
screen select, erase, write, exclusive or lines, and screen initialize) produce
no outputs in the output array as these are strictly APPLE 1} 2D driver functions.
These functions are not de-activated during array generation, however, so one
must be careful not to erase output arrays generated in the high or low graphics
page in memory (addresses 4000-5FFF and 2000, 3FFF respectively).

Figure 17 illustrates o good-size input array, and figure 18 shows the resulting
oufput array,

Upon subroutine return or APPLE |1 line generation turn-on with the 0C
command, an end of file mark (79) is placed in the output array.

The output array may be used in a number of different ways. Non APPLE |1
computers can use the array to generate imoges using line drawers suited to
their particular display peripheral. The line drawing techniques section of this
manual is o good place to start in generating these custom line drawer programs.
The output array feature may also be used to save imoges on tape or disk. An
image can be dumped and played-back later. The display smoothing section of
this manualdescribes how output arrays may be used to reduce flicker in displays.

1 ¢ ®e Three points (code 00)

= Vertical square nonclipped .
Ve

4
e
500} lé{/_ Horizontal angles c!?g;fgd
Jd
400 e

- 7/
309, & Pyramid i:!/ipﬁ’ed

L i 1 i Il

47

001F
0L

IFFF
0000

0001
0000
0003
02

0002
0000
0003

8001
0001
8003
02

8001
0000
0004
03

8001
0001
8003

0001
0000
0003

8001
0001
8003

It

I
|70 200 300 400 500 600 700

viewer

Turn on output 8%01
FO
array at 1F00 000k
Screen = 256x256 0006
bits (decimal) 02
0001
0004
0005
2801 Horizontal
0004 angles
0006 (clipped)
Pyramid 8(3)02
clipped 000k
5005
03
0002
0004
0005
0401
01
0001
886; Vertical
02 square
0002 (nonclipped)
00fc
0007
02
0002
00fd
N007

Turn off clipper

T

02

0001
00fd
0007

0001
0Cfc
0007

0001
8000
0008
00

8001
c000
0008
00

0002
8000
0008

79

Pure points

|
] End of file

Figure 17. An example input array (see next page for output).

06]
2a
00
54
00-
06
03
02
54
00
06]
54
00
2f
00
06
03
02
2f
004
06]
2f
00
2a
00
067
2a
00

03

Screen Y —1
48
/S v Horizontal apgles
Pyrcm?d
3Points | . ° . A
. M-«gcreen X
Square
- J
Note: X,Y,Z,P,B,H =00 Screen Height and Width = 256, Center = 0,0

06]] 06]
15 24
54 ca
é9 12
02'- Horizontal 82: Square (continued)
19 Angles 12
65 ca

The Pyramid 1b 12
54.] b8::
06] Oa
29 of
2% 82: 3 Points
51 17
06 Ob)
19 Oa
65 if
32 07
65). 79]) End of file mark
067]
12
b8
24
b8l1| Square
06]
24
b8
24
cal

021]

Figure 18. An example output array (generated by
input array of Figure 17)

49
DISPLAY SMOOTHING

A smoothly flowing display is very desirable in any form of animation whether
it be film, television, or 3D computer graphics. While film animators go to high
frume rcie cameras and felevision people go to high persistance phosphors, com-
puter grapr.cs users rely on doutle buffering, screen ping-ponging, odaptive screen
erasing and arroy-based projections to achieve fow flicker and realistic results.
The A2-3D1 packege has enough graphics commands to reduce flicker very substan-
tially if vsed properly. Methods of smoothing displays will now be covered.

Two characteristics are important in display smoothness: frame-to-frame in-
cremental difference and frame-to-frame discontinuity. Incremental difference
refers ic the degree of difference of two adjacent frames in an animation sequence.
If there is little or no difference between frames, a very slow frame projection
rate is sufficient for smooth animation. An animarion of a clock's hour hand would
took just as smooth at 5 frames per second as at one frame per minute.

Frame-to-frame discontinuity refers fo actions during or between frame pro-~
jection thai tend to break up a sequence of frames' flow. Screen erasure is one
example of a discontinuity. |f a screen goes blank for a noticable time between
frames, flicker is introduced, even if there is very little or nothing moving in the
frame sequence.

The A2-3D1 program cttacks the incremental difference problem through the
use of hand-optimized assembly language and integer arithmetic. Fast projections
are required for high frame retesandassembly language is the fostest running
language of all. There are a couple of things that can be dene to improve frame rate:

1. Keep the scenes as well organized as possible. Largestrings of start ,
continue, and ray points can effectively double 3D-t0-2D conversion
rate when compared to their start~continue pair equivalents.

2. Don't use clipped projection on lines that don't need it. The clipping
of tiny objects offers no display accuracy gain and reduces frame rates.

Frame-to-frame discontinuity can be o real problem on memory-based displays
such as the APPLE 1! since it takes a fong time to erase the screen's memory. A fast
erase command helps smooth a display, and the A2-3D1 progrom has one. The 45
miilisecond erase time (22 erases per second) is still quite slow on @ human perception
scaie however.

The type of erase performed is also important in discontinuity reduction. An
erase that seems to make all portions of the picture simultaneously fade-out is

superior to one that sweeps from one side of the screen to the other or "folds the
screen” like a set of blinds. This is due to the fact that the eye notices a few large
sweeping motions more than many thousands of small fading motions. Increased
intensity in the last-erased portion of the screen during a series of sweeping erases
is also very noticable. Keeping these foctors in mind, the A2-3D1's erase has

. been designed to fade the screen in a checkerboard pattern as quickiy as possible .

The order of projection, transformation, and screen erasure also makes a difference
in screen flicker. The standard projection sequence in 3D animation is:

transform ¢ 3D line

draw the 2D line on screen ? ms display

transform a 3D line

draw the 2D line on screen é ms display

transform a 3D line

draw the 2D line on screen 3 ms display

€rQSE — — — — — — ——— — e _$ _§¥_ 8 ________

This form of projection sequence has two problems. Lines in the display are
on the screen for vastly different lengths of time, and the last lines are erosed
immediately after they are drawn. The first lines in the display will be very
bright, and the last lines will be dimmly flickering. Screen flicker can be reduced
by equalizing the amount of time lines are on the screen, and increasing the line
erase after draw time.

This is where the array generating feature becomes useful to the APPLE Il owner.
By building an output array of the new frame while the old frame is on the screen,
the screen erase can be delayed until the array of 2D screen lines is ready for pro-
jection. As an added bonus, only line drawing time is required between lines since
the 3D=t0-2D conversion has already been performed. The line generator generates

the lines at a faster rate thereby reducing the time between display lines on the screen:

erase the screen

draw the 2D line 7.5 ms display
draw the 2D line 6.0 ms display,
draw the 2D line 4.5 ms displcy!

l

l-_,]’_ S

Array display can be autometically performed by putting an interpretive jump
(0B command) to the output array on the end of the input array. The A2-3D1
program can interpret the input array's resulting output array and display the
image by projecting lines. The price paid for the resulting smoothness is memory
size. The output array must use o new area of memory.

transform the 3D line
transform the 3D line

transform the 3D line (for next line drawing) l

50

The best screen discontinuity reductions are achievable through the use
of both display pages of memory. This takes 16K for the display pages alone
(on the APPLE Il) and requires at least 32K of memory in an APPLE Il system.
The ideq is to get one poge ready with the next imoge while the other page
is being displayed. When everything is ready, the display screen select
command (07) is used to turn-on the ready page, thereby freeing the old page
for an erase and subsequent image generation. The disploy screen select (07)
command, erase screen high and low command (08) and the write screen
select command (09)can be used to ping-pong between screens.

Variations of the double buffering scheme described above are also possible
on other machines. The prerequisites include the ability to switch rapidly
between two screen memories, and the availability of two screen memories.
You must also be able to write into the non-displayed screen memory .

51

SELECTIVE ERASE AND EXCLUSIVE ORED LINES

While memory-based display systems bring erase speed and line drawing
speed disadvantages, they also bring a few advantages. The ability to read
a screen image is one of these advantages. The A2-3D1 progrom is designed
to make use of this advantage through an exclusive ored line and
ored line drawing capability.

Plotting a point on the APPLE Il requires a bit in a byte in screen memory
to be turned on by setting it to one. One must be sure to leave the other
bits in the byte undisturbed, however, as they represent other points that were
plotted earlier. This requires byte reading, bit turn-on (by oring it with one),
and byte write-back. Points are turned off in the same manner. |nstead of
turning a bit on, a bit is turned off, |t is therefore possible to erase points
and lines selectively. This enables extremely complex images to be drawn on
a screen with one small simple object that freely moves about using selective
line generation and erase of the small object. The whole scene needn't be
regenerated so flicker is minimized.

All seems well.and fine with this scheme until one notes that everything
the small moving object moves across disappears. Selectively erasing an object
in this manner not only erases the object itself, but every object with overlapping

points.

It is possible to create a list of all the overlapped points and somehow restore

them later, but there is @ much cleverer way of obtaining nearly the same results:

by using exclusive ors instead of simple ors to set and reset the points. If a point
is plotted-on black by exclusive oring it with a one, the point turns on. If plotted
on white, the point turns off. The same exclusive or operation can therefore furn
a point on or off, effectively toggling the point.

Turning points on and off are the components of a successful selective draw and

52

erase capability, but there is more to this particular draw-erase pair than meets the

eye. Figure 19 illustrates what happens when two exclusive ored lines intersect.
Notice that the intersection point is turned off by the intersecting line when it is
drawn and is restored when it is selectively erased.

a) original line b) intersecting line c) erased intersecting line

Figure 19. The affects of exclusive ored line drawing

53

The original line is actually restored to its original condition, |f desired, the
intersecting line could be made to sweep wildly across a screen filled with complex
images without disturbing a single line.

The 0OC command tumns the exclusive ored line feature on (see the command
sheets). Small objects may be projected ond selectively erased by:

1. prolecting the object into an output array
2. drawing the object with exclusive ored lines
3. drawing the object again with exclusive ored lines (thereby erasing it)

Ovutput arrays needn't be used as the 3D converter performs the same sequence
if called twice in o row, but there is no need to put the same image through the
3D-t0-2D converter twice. The above method saves a great deal of time.

Experimentation with the exclusive ored line drawing function is necessary
before using it extensively. Lines with intersections turned off give poor results
in some applications, ‘

Exclusive ored lines may also be used to draw black on white images. The
screen must be initially filled with solid white using the 08 (erase/fill) command.
Exclusive ored lines will turn points off as it draws across the white field.

USING THE A2-3D1 PACKAGE ON NON APPLE Il SYSTEMS

The output array generating feature is provided specifically for non APPLE 1|
3D grophics users. As the output array generation section describes, an output
array of start and end points of lines can be generated and the APPLE i 2D
generator turned off altogether. By simply feeding the output array to a line
drawing subroutine (see the section on line drawing methods in this manual), the
image can be displayed on any display device.

Since the APPLE Il line drewing routines aren't required in a non APPLE i
application, this area of memory may be used for other programs. Addresses
for the start point change as new versions of A2-3D1 are released, but you can
find the start of the line drawer in memory by looking for the following
sequence of bytes:

3,¢,30,C0,6,18,60 hex repeated over and over again.

This is the line drawer's mask table and anything from this point on may be
eliminated. Remember not to use any of the APPLE Il line drawer commands
(commands that dont generate output array entries) as these will call the APPLE Ii
line drawer that no longer exists.

55

LINE DRAWING METHODS

The output array generated by the 3D-to-2D converter in the A2-3D1 package
consists of start and end points of lines, so a display device that is capable of
drawing lines is required to reconstruct the 2D image. Many display devices don't
have this capability due to o lack of hardware or software support by the manufacturer.
This section presents line drawing methods that will reduce this line drawing
requirement down to the ability to plot o point. Software presented in this section
is capable of calculating all the points that need to be turned-on on a screen to
generate any given line.

A line on a display screen is a series of points that have been turned on. On
a raster scan bit map (such as an APPLE |l display screen) these points dont line
up perfectly with an ideal line between the two end points because the bit map
is arranged in a square matrix. The closest approximation to the line is generated.
Software is required to determine which of these points should be turned on.

When writing programs that perform line drawing functions it is best to think
of a line as a ratio of X movement to Y movement. A diogonal line may move one
unit up for every three units across for example. In mathematical terms:

3y=X

A computer plot of a line with a simple ratio of 3 to 1 is easy to visualize. The
computer simply starts at the start point of the line, draws three dots across, moves
up one unit, draws three dots across, moves up a unit, and so on, until the end point
is reached. A computer can keep track of when to make the upward movement by
setting up a variable in a program. A one can be subtracted from this variable every
time a move to the right is mode,and an upward movement and the addition of three
to the variable can be performed during an upward movement. This varicble is
called the sum. The computer makes the upward movement when the sum is less
than or equal to zero. Since the sum is being counted up by three and down by
one in the above case, three times as many horizontal as vertical moves are made ¢

sum line drawing action

3 move right and subtract 1 (change in Y) from sum.
2 move right and subtract 1 {change in Y) from sum.
] move right and subtract 1 {change in Y) from sum.
0 move up and add 3 (change in X) from sum

3 move right and subtract 1.

Notice that for every X (right) movement the change in Y is subtracted from the
sum and for every Y(upward) movement the change in X is added to the sum.

56

A “"sum~tracking" algorithm has just been described. This method works with
more complex line ratios as well. A 15 to 17 ratio, for example, works as well
asa 3tol ratic. This method only requires simple adds, subtracts and conditional
branches, so it is particularly well suited to assembly language implementations.

The BASIC program of figure 20 shows a simple implementation of the line
drower. |t can be run in any BASIC and uses terminal input and print-outs for
familiarization purposes.

&900
&90%
890¢
3909
3912
8915
891¢C
8921
8924
8927
8950
933
39%6
8954
68942
594“
5848
8951
8954
8957
3560
8963
896¢
896¢
8972
8975
8976
8G&1
8984
8987
B89SC
8953
8996

REM LILE GENERAICH — = = = = = = =

RER. SUM TRACKING ALGORIThHM IS USLD 1C
REF GELWeRATE ALL PIXELS BriWEEDN TWC POINTS.
KE THIS FPrOGRAh WILL ASK (rOx A START AND L.iD
REN POINT "X1,Y1 AuD Xe,¥Y2" ANL WILL PHINT
REN THE PIXELS. CHLY IInTL(;I_r{S ARE ALIOVWEL.
REr LILE GENERATOR = = = = = = = =

PRINT YENTER TEE SCrEEL FOINT al,Y1"
INFUT X1,Y1

PRINT "ENTER THE SCREEN POINT XZ,Ye
INFUT X2,YZ

S=0

M=1

N=1

De=X2-17

IF D<O THEl M==1

IF DKO THEL D==D

IF D=0 TH&i. S=1

E=Y2-Y1

IF E<O THEN N=-1

IT¥ E<O THEl E=-FE

PRINT YPIXEL = ";X1,Y1

IF X1=x2 THEN GOTO o990

I7 35<0 THEN GO1IC uS81

X1=X1+1

S=S-C

G010 3¢&3

Yi=Y1+iv

S=5+D

G010 8%03

IF YT-—VQ TEEN COTO &38<1

G010 3%69

KE} PROGRAD. EINL

Figure 20. BASIC line drawing subroutine.

SETTING - UP 3D SCENES

Although points in 3 coordinate space have a range of 32767 integer

units in every direction, the actual range capability of the disploy progrom
is limited by the viewer's position and direction of view. Since it is the
world and not the viewer which actually moves, care must be taken to
insure that the world always stays inside the 32767 unit limit. Too much
translation and too big a data base size will cause integer overflow in the
display program. Figure 21 a illustrates this condition. Figure 21 b shows
that rotation can cause integgr overflow due to the square world boundary .
In most applications, limiting the scene to 10000 units in each direction
will allow for good resolution, freedom of movement, and translation as

figure22 illustrates,

integer
overflow

Large 3D sceneé

32767 "world linit"

a) Overflow caused by large b) Overflow caused by ro-
translation and large world tation and ¢ large world
size. size.

Figure 21 World size and movement trade-offs.

10000 limited

\
scene /'

58

32767
"world limit"

Figure 22 A reasonable movement/world size trade-off.

The simplest way to code @ data base is to lay out the desired scene on a
large piece of graph paper. Coordinates can then be loaded into the computer's

memory in the proper format.
CONCLUSION

The A2-3D1 program was designed to be easy to use and will add o new dimension
to engineering, architecture, simulation and game programs. The assembly language
version is designed to be as fast-running as possible and trades-off accuracy for speed.
If you are interested in super precision and dont mind slow projections, our APPLE 1l
or general 3D Graphics BASIC version will augment this package nicely.

We are interest<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>