
i --·
··· :· ..

. ... ".

' ...

• ,r ' ;. .. ,"
·1 -· : ' . ~ ..

·J"~::~.f-!.i• .· "."_ ~{·"'- ··~
1; ... '" :..--

~' j'- _:_; . : -~-!~~;-:7

. '· ::;~~~- .,..

··"; --: ...
:_ /f"·~ili_ ii,"S!i_l,.ili'Wi_-,~a.iim&flim!'fii. f§i"li!Ffii!i!ir<l!i?illl'!li'l!iWii11!Rillllfi±iilllllii!F•••1111111a••••m•1111r1111111111~=·•._m. llllliiilftlll'il'!lll········ ··· 1i.•. •. •••••111111111•111Blill!rl!"!llll'll@E. ii . ~I.~t:;!~ ~

- ··;.

,.

\. .:,· : . ·- ~ .

~·:.;.:

"·' -·~ -'"'• .·-.. .
. ·'.· ,·:~:~r;(·;~ ·};

., •.. -: ~S}:~:·b·::: . , . ~

• -~·t' ..,

-THREE - DIMENSIONAL MICROCOMPUTER GRAPHICS

6502/APPLE II ASSEMBLY LANGUAGE

by

Bruce A. Artwick

August 1979

Sublogic Company
201 W. Springfield Avenue
Champaign, Illinois 61820

First Edition
Second Printing

@Sublogic Co 1979
"All Rights Reserved"

Printed in U.S . A.

:::·

1

A
2

-3
D

I
3

0

A
N

IM
A

T
IO

N

P
R

O
G

R
A

M
 R

E
F

E
R

E
N

C
E

 C
A

R
D

C
O

M
M

A
N

D
 I

 C
O

M
M

A
N

D

C
O

M
M

A
N

D

I
A

R
G

U
M

E
N

T
S

I
F

U
N

C
T

IO
N

N

A
M

E
(d

ec
im

al
)

(h
ex

)

PN
T

00

00

X
 l

sb
,

X
 m

sb
,

Y
 l

sb
,

Y
 m

sb
,

Z
 l

sb
,

Z
 m

sb

D
ef

in
e

3D
 P

oi
nt

SP

N
T

01

~

X
 l

sb
,

X
 m

s!:
>,

Y
 l

sb
,

Y
 m

sb
1

Z
 l

sb
,

Z
 m

sb

D
ef

in
e

3D
 S

ta
rt

 P
oi

nt

C
PN

T

02

02

X
 l

sb
,

X
 m

sb
,

Y
 l

sb
,

Y
 m

sb
,

Z
 l

sb
,

Z
 m

sb

D
ef

in
e

3D
 C

on
ti

nu
e

Po
in

t
RA

Y

03

03

X
 l

sb
,

X
 m

sb
,

Y
 l

sb
,

Y
 m

sb
,

Z
 l

sb
,

Z
 m

sb

D
ef

in
e

3D
 R

ay

C
LP

 S
W

. ®

4
04

n

w
he

re

n
=

 0
cl

ip
pe

r
o

n
,

n
=

 1
cl

ip
pe

r
of

f
C

li
pp

er
 C

on
tr

ol
 S

w
it

ch

EY
E

05

05

X
 l

sb
,

X
 m

sb
,

Y
 l

sb
,

Y
 m

sb
,

Z
 l

sb
,

Z
 m

sb
,

P,

B
,

H

V
ie

w
er

's
X

,Y
,Z

,
P

,B
,H

L

IN
2D

06

06

X

l,
 Y

l,
 X

2,
 Y

2
D

ro
w

 2
D

 L
in

e
fr

om
 P

oi
nt

 1
 t

o
2

D
IS

P
07

07

n

w
he

re

n
=

 5
0

se

t
gr

ap
hi

cs
 n

 =
 51

se

t
te

xt

D
is

pl
ay

 S
cr

ee
n

S
el

ec
t

n
=

 5
2

cl
ea

r
m

ix
ed

n

=
 5

3
se

t
m

ix
ed

n

=
 5

4
pa

ge
 1

 s
et

n

=
 55

pa

ge
 2

 s
et

n

=
 56

cl

ea
r

H
I-

R
E

S
r.

=
 57

se

t
H

I-
R

E
S

ER
A

S
I

08

I
08

I

n
w

he
re

n

=
 00

er

as
e

pa
ge

 1
 n

 =
 01

er

as
e

pa
ge

 1

!E
ra

se
 S

cr
ee

n
n

=
 0

2
fi

ll
 ~
e
 1

n

=
 03

fi

ll
 p

ag
e

2
D

R
A

W

(J
i

(J
i

n
w

he
re

n

=
 00

dr

aw
 p

ag
e

1
n

=
 01

dr

aw
 p

ag
e

2
ri

te
 S

cr
ee

n
S

el
ec

t
PN

T
2D

10

OA

X

,Y

P
lo

t
2D

 P
oi

nt

JM
P

11

00

A
 l

sb
,

A
 m

sb

w
he

re
 A

 i
s

th
e

ju
m

p
ad

dr
es

s
In

te
rp

re
ti

ve
 J

um
p

LM
O

D
E

12

oc

n
w

he
re

n

=
 00

no

rm
al

 I
i n

e
n

=
 01

ex

cl
us

iv
e

or
 li

ne
 S

et
 l

in
e

D
ra

w
i1

"9
 M

od
e

A
R

R
A

Y

13

00

A
 l

sb
,

A
 m

sb

w
he

re
 A

 is
 o

ut
pu

t
ar

ra
y

st
ar

t
ad

dr
es

s
ur

n
O

n
 O

u
tp

u
t

A
rr

ay
 G

en
er

at
io

n
SC

R
SZ

14

C

f
S

cr
ee

n
w

id
th

,
S

cr
ee

n
he

ig
ht

,
X

 c
en

te
r,

 Y
ce

nt
er

S

cr
ee

n
S

iz
e

S
el

ec
ti

on

FI
EL

D

15

()
=

ax

r
ls

b,
 a

xr
 m

sb
,

ay
r

ls
b,

ay

r
m

sb
,

az
r

ls
b,

 o
zr

 m
sb

F

ie
ld

 o
f

V
ie

w
 S

el
ec

ti
on

IN

IT

16

10

no
ne

E

as
y

In
it

ia
li

ze

N
O

P

17

11

no
ne

N

o
O

pe
ra

ti
on

©
M

lID
W

G
IC

•S

a
vo

y,
 IL

 6
18

74

Pr
og

ra
m

 r
ef

er
en

ce
 c

ar
d.

TABLE OF CONTENTS

I ntrod•Jction
The 3D to 2D Converter Concept
Space and Screen Coordi notes

3D Space Coordi notes
2D Screen Coordinates . .
3D and 2D Coordinate Relationships

Object Construction in Space Coordi notes
Viewing Controls

Viewer Location and Viewing Directlon
Fie Id of View

Order of Transformation
Projection Modes and Clipping
Aspect Ratio and Screen Dimension Control
Special APPLE II Functions
Getting on I moge On the Screen

l nput Array Formats
Command Sheets
Subroutine Calling
Using BASIC and Other Software
A BASIC Use Example

Output Array Generation Conceph
Display Smoothing
Selective Erase and Exclusive Ored Lines ·
Using the A2-3D 1 Package on Non APPLE II Systems
Line Drawing Methods
Setting Up 3D Scenes
Conclusion

APPENDIX 1 - Memory Map
APPENDIX 2 - Graphic Principles
APPENDIX 3 - Application Notes
APPEND! X 4 - Miscellaneous Topi cs
APPENDIX 5 - Tape Loading . . .
APPENDIX 6 - Using the Internal Trig Functions
APPENDIX 7 - Program Familiarization ...
APPENDIX 8 - Multiplier and Divider Patch Points

iii

1
4
5
5
5
6
6 . 10

10
11
12
13
15
17
19
19
21
40
40
41
45
49
52
54
55
57
58

60
61
67
74
80
81
82
83

Figure

2

3

LIST OF FIGURES

The A2-3Dl program and i:s arrays

Three dimensional space coordinates

Two dimensional screen coordinates

4 3D and 20 coordinate alignment . ,

5 The conventional way of representirg lines

6 The A2-3D1 'sway of representirg lines

7 Object construction in 3D space .

8 Object construction with ray points

9 Cube construction in 3D space

10 A scene with a few pure points

11 Viewer's location in space

12 Viewer's direction and field of view

13 The difference transformation order makes

14 Di re ct ion of movement conventions .

15 A2-3D 1/ APPLE II system configuration guide

16 The screen coordinate system

17 An example input array

18 An example output array

19 The affects of exclusive ored line drawirg

20 BAS! C line drawirg subroutine .

21 World size end movement trade-offs

22 A reose>'1al:>le movement/world size trade-off

Page

4

5

5

6

7

7

8

8

9

9

10

11

12

14

42

45

47

48

52

56

57

58

iv

1

I NiRODUCTION

Computer graphics is one of the most interesting areas of computer science.

Interest in ·this field has been increasing over the lost few years due to the wide .

variety of reasonably-priced graphics hardware that new integrated circuit tech-

no logy makes possible. The 6502-based personal computer is one product that

is leading the way in this new "micro graphics" field. When loaded with the

proper software, a 6502-based system can yield some very impressive displays.

The Sublogic A2-3Dl three-dimensional graphics package is designed to

add to the graphics capabi Ii ties of -the new 6502-based personal computers. The

package al lows users to create scenes in three dimensional space, and view them

from any direction or location in space. This capability opens whole new fields

of 3D animation, architectural drawing, modeling and simulation, and en-

hences special effects in game programs. This program also brings the sought-

after pan , zoom, rotation, and sea Ii ng functions to 2D displays.

The A2-3Dl program is designed to run on 6502-based microcomputers in

general, and on the APPLE II computer in particular. The program internally

consists of two general parts~ a 6502 3D-to-2D converter and a high performance

2D high-resolution driver for the APPLE II. The 6502 3D to 2D converter is use-

ful to anyone owning a 6502-based microcomputer. This part of the program is

device-independent and produces a list of line start and end points in memory.

This list of lines can be used to generate 2D projections of 3D scenes on plotters,

bit maps, terminals, or anything else that can plot points or draw lines.

2

The A2-3D1 1s high performance 2D driver allows Apple II users to proiec t these

lines on an Apple II high-resolution screen. The 2D driver is, in itself, a very pow-

erful graphics tool . It can be used seperctely to increase the erase, line drawing,

and po i nt plotting rates of programs current ly using APPLESOFT 1s high-resolution

routines by 600, 500, and 1000 percent respectively . Table 1 presents the important

chorocte risti cs of the A2-3D 1 pack~e.

TABLE 1. Sublogic 6502/APPLE II assembly language 30
graphics package characteristics.

CHARACTER! STI C DATA

Program N umber A2-3D1

Program Language 6502 Optimized Assembly Language

Projection Method 30 to 20 wire frame perspective transformation
with 30 clipping.

Viewing Capabilities X, Y,Z range~+ or - 32767 units
3 axis freedom: 0 to 359 degrees in 256 even steps

World Size 1912 cubic miles using one foot uni ts

Special Features Variable viewing window (telephoto to wide angle)
Variable screen aspect and bit size ratios
Clipped or nonclipped projection control
Start, continue, ray and pure point projection
High performance APPLE II 2D driver
Screen display or output array selection

Execution Rate 30 line drawing (including APPLE II screen draw) =150/sec
APPLE II 2D line draw (full screen width) =333 lines/sec
APPLE II point plotting= 10,000 points/sec
APPLE 11 screen erase= 22 erases/second

User Aids Sepe rate technical and load-and-go manuals.
BASIC and assembly language interface programs.
Zero-page and register restore upon subroutine return.

3

The A2-3Dl program is a derivation of earlier Sub.logic 3D drivers (Z-80 and 6800)

and also contains many of the advanced array handling features of our Universal

Graphics lnterpr~t~rs. Every attempt was mode to make the program as reliable as

possible . One of the biggest problems in developing any graphics software, however,

is testing it.

A 3D graphics program is actually an implementation of o larg'e, conditional

mathematical expression . A 3-dimensionol space with o range of+ or - 32767

units in the X, Y, and Z directions has 2.6 x 1014 (64000 cubed) possible coordinate

points. There ore therefore 6.9 x 1028 possible straight lines. With such an

enormous number of program i~ut combinations, combinatorial program testing is

out of the question. To insure that the program is reliable (the equation is stable),

program segments are combinatorially tested. Continuous development and testing

of 3D graphics programs at Sublogic, combined with user feedback, promises to

increase program performance and reliability.

This manual describes the implementation and use of the A2-3D 1 package .

Explicit instructions on how to get the program running on the APPLE II os well as

algorithms, programs, and hints to help non-APPLE II 6502 users are give_D. We

hope you find the performance and capabilities of this package to your liking and

welcome any comments concerning it .

4

THE 30 TO 2D CONVERTER CON~EPT

Most 3D graphics users are primarily interested in putting 3D graphics to use

in their own special application . To these users, the process used to perfonn the

transformations and projections is considered to be of secondary importance . The

3D-to-2D converter subroutine (the heart of the A2-3Dl package) was therefore

designed to be very easy to use without any graphics programming knowledge or

experience. The user simply sets up an input array (an array of 3D lines and

screen control commands in a preset format) in processor memory using BASIC

POK Es or an assembly language monitor. The user then CALLs the subroutine and·

the 3D image appear on the APPLE II high resolution screen. Non-APPLE II owners

will instead find all the lines to be plotted in an easy-to-use output array in

memory, ready for plotting (see the Using the A2-3D1 with Non-APPLE II Systems

section). Figure l interrelates the input array, 3D-to-2D converter, and displayed

image. Notice that non-APPLE II owners use the 3D-to-2D output directly.

Appendix 2 describes how the 3D-to-2D converter subroutine performs its

task. The rest of this section is devoted to the detai Is of how to use the A2-3D l

program.

The A2-3Dl Program

APPLE II Line Generator Input Array 3D-to-2D
Con erter Point Plotter and Eraser~---~

APPLE II
HI-RES
Screen

I

! Non APPLE II Users

f ~ut Arrot Use~ Line Drawing
Software

Figure 1. The A2-3Dl program and its arrays.

User's Display
Device

l

SPACE AND SCREEN COORDINATES

The first concept that must be well understood is that of space and screen

coordinates. It should be noted that the term screen used throughout this dis-

cussion implies plotters and other display devices as well as the APPLE 11 screen.

30 SPACE COORDINATES. Every point in 3-dimensional space has an X, Y,Z

space coordinate associated with it as figure 2a shows. A straight line is re-

presented by its start and end points as shown in figure 2b .

+Y

2

+Z

- - - -- (3 1 4) I I I I

I I
I I -----7--r

-- ---{ /

2
a)

I I
I/

3 +

+Y

2
/

/

7.-
1

/1
/

Figure 2. Three dimensional space coordinates.

+Z

5

20 SCREEN COORDINATES. Every point appearing on the screen has a 20 screen

coordinate associated with it . Figure 3o shows a point on a screen, and a screen line

is represented by a screen start and end point as shown in figure 3b .

+Y
~--- ~7 6'

I I

I
l

(-5, 2)

+X +X

..)
.. fL .. ~Lil a:::n-'2.

a) A screen point b) A screen line

Figure 3. Two dimensional screen coordinates .

' . '

· ..
,. ,,

--

6

3D AND 2D COORDINATE RELATIONSHIPS The~, Y, Z space coordinate oxes

directions were chosen to correspond in a graph axis fashion with the screen coordi­

nates. As figure 4 illustrates, the X ondY space coordinate axes viewed through

a screen match the X end Y screen axes. The Z axis represents depth into the

screen. This X, Y axis match-up applies when the viewer's viewing direction is

0 degrees pitch, 0 degrees heeding, and 0 degrees bank. ~

2~ Screen X

Figure 4. 3D and 20 coordinate alignment.

OBJECT CONSTRUCTION IN SPACE COORDINATES

The 3D-to-2D converter converts 3D space coordinates into corresponding

2D screen coordinates and projects them onto the APPLE II screen. Straight lines

in space are represented by two points in space~ a start point and an end point. Wire­

frame objects and outlines con be constructed using many straight lines. An image

might therefore be described as a series of start and end points in a list (or array)

in memory as figure 5 illustrates.

.....

40

30

20

10

30

20

10

30 Start pt. X, Y_, Z End pt. X, Y, Z
20 ~ Line a 20/10,10 40, 10, 10 10 I Q
-----4 Line b 40, 10, 10 30, 1o,20 " " " Line c 30, 10, 20 20, 10, 10 ,,

0 10 20 30 40 50

Figure 5. The conventional way of representing lines.

Notice that line e's end point is the same as b1s start point,and b1s end point is
,;;

the same as e's start point. When creating outlines of objects, this end-to-end

form of line construction is so common that the "continue point" is used instead

of the "end point" in the A2-3D1 program. The triangular image is therefore

represented as shown in figure 6.

20 /s./1bnt.
10 st~nt.

0 1 0 20 30 40 50 60

Line a
Line b
Line c

Line S ecifier one or two ints

20, 10, 10 start 40, l O, 1 0 continue
30, l O, 20 continue
20, 10, 10 continue

Figure 6. The A2-3Dl's way of representing lines.

7

Line proiection time and the amount of memory needed to represent a scene are

greatly reduced using start and continue rather than start and end points.

Although no official curves are allowed in the 30 scene, they can be drawn

with surprising realism as a long string of short, straight lines. Although very

realistic curves can be generated using large numbers of line segments, projection

speed suffers as each line must be projected seperately. Figure 7 shows a polygon

and a curve drawing .

A group of many lines with a common vertex can efficiently be represented using

11 roy points". A ray point is similar to a continue point but the continuation of the

·:1

.. ;

8

:cJ.~"·
start cont1 nue c

a) Line drawing b Curve construction

Figure 7. Object construction in 30 space

Ii ne doesn't advance with each new ray. Figure 8 illustrates an object constructed

using start, continue, and ray points.

r r

c
c

Figure 8. Object construction with ray points.

Rays ere useful when drawing 30 polyhedra where one tends to 11get stuck"

using only start and continue points. Cube drawi1"9 is a good example of this

situation. Up to nine edges (lines) of a twelve-edged cube may be drawn using

a single start end nine continue points, end three ~perate start-continue pairs . must

be used to pickup the remaining three edges cs shown in figure 9a. With ray points

these edges con be generated without having to use seperate start-continue point

pairs as figure 9b illustrates.

._..

c c c
9

r
r

c c c
c c c

/ c
r c

c s c

a) using start and .ex>nti nue points b) using start, continue, and ray points·

Figure 9. Cube construction in 30 space.

Finally, if only points need to be proiected, such as in an astronomy, molecular model,

or space flight application, pure point representation can be used. Figure 10 shows

a scene with a few pure points .

point9

• p

•p

•p eP
-1"LliA A__rn___n_

Figure 10. A scene with a few pure points.

Once a user has decided what he wants in his data base, the scene must be

ooded-up and put into the proper input array fonnat in memory . The INPUT ARRAY

DET Al LS section of this manual wi 11 discuss the exact input array fonnats.

10

VIEWING CONTROL

A few 3D to 20 converter control parameters ere needed before o 3D-to-2D

conversion con be performed. The location, direction from which one wants to

view the scene and the field of view are required.

VIEWER LOCATION AND VIEWING DIRECTION. First the viewer's location

in space must be specified. Figure 1 i illustrates what is meant by viewer's

location. An X, Y,Z viewer location must be submitted in the input array.

Movement of the viewer in the X, Y,Z directions is called translation.

+Y Viewer'e eye

,.,----~ Viewer's location

J

/
2

1

/ (1,2,4)

Scene

Figure 11. Viewer's location in space

Viewer's direction must also be specified as figure 12 illustiates. A pitch, bank and

heeding ore submitted. Cha1"'9e in the viewer's direction is celled rotation .

11

Bank

2

1

Scene

3 4 5 7

Figure 12. Viewer's direction end field of view.

FIELD OF V1EW. Another p_arameter not related to viewer's movement and viewing -

direction may also be specified in the input array. This parameter controls the field

of view (similar to a comera's telephoto and wide angle effect) and lets the user

select wide angle, narrow angle, and medium angle views. Since the field of view

is continuously variable, zoom effects are possible . Only a limited field of view

can fit into a viewing screen end the viewer must decide whether o wide angle or

telephoto view is desired. Figure 12 shows the field of view.

The 05 and rs- command sheets cover viewer's location, direction and field of

view in greater detail.

~------·--

12

'
ORDER OF TRANSFORMATION

The order in which transformations (X, Y, Z movement end pitch, bank and heading)

ere performed by the 3D-to-2D converter is of prime importance . The image projected

on the screen wi 11 be different if different orders of translation and rotation ere applied.

For example, if o viewer's location in space is considered before his viewing direction,
a

o different projection than if they we~ considered in reverse would result. Figure 13
/

shows these two orders of proiection. Notice that the final results are different,

even though the some operations were applied.

original X translation BANK rotation

o) X translation before BANK rotation.

original
C>]

BANK rotation

(', c:::::?C>
I >
I.,

X translation

b) X translation after BANK rotation.

Figure 13. The diffe re nee tronsformat ion order makes.

The A2-3Dl graphics package performs transformations in the following orde~:

1 . X, Y, Z translation

2. Heading (rotation about the Y axis)

3. Pitch (the angle of view to the X, Z plane)

4. Bank (roll about the lateral axis)

13

Figure 14 shows the sense of direction of each of the tronsfonns. It should be

noted that the transfonn senses are dependent on one another. A positive change

in X causes an object to move to the left if the viewer is at a 0 degree bank angle .

If the viewer is in a 90 degree bank, how~ver, the cube appears to move down

instead.

Sometimes senses of rotation actually seem_ to ope rote in the 9'rong manner.

Changes in heading will produce exactly the same results as changes in bank

when looking straight down for instance. A little thought, however, convinces

one that this is indeed the way things should work.
,

It should be noted that positive Y represents the viewer being at a positive

altitude.

PR 0 J E CT I 0 N M 0 DE S AND C LI P PI N G

With full user freedom in scene design and viewing direction selection, scenes

invariably end up being fully or partially off the screen. If the object is behind the

viewer, it is not visible. The process of eliminating these off-screen lines and

cutting partially on-screen lines down to size is called clipping.

Elimination of off-screen lines is very simple computationally and presents no

problems. Clipping partially on-screen lines, on the other hand, is the hardest

and most time-consuming portion of the 30 projection process. The A2-3Dl program

has full 30 clipping capabilities and even offers a selection of two different clipping

modes.

A
ft

er
 p

o
si

ti
v

e
m

ov
em

en
t

0
ri

g
i n

al
 s

ee
 n

e

A
ft

er
 n

eg
at

iv
e

m
ov

em
en

t

I
X

 L
o

ca
ti

o
n

Y

 L
o

cQ
tj

o
n

Z

L

o
ca

ti
o

n

P
it

ch

D
 ... -

Di
-+

-

0
D

D

D

-+

-

-
Df

-±

-
Ll

.

F
ig

u
re

 1
4

.
D

il
'1

'c
ti

on
 o

f
m

ov
em

en
t

co
n

v
en

ti
o

n
s.

B
on

k
H

e
a

d
in

g

I--

-

T
 I

-I
-

I'!

--r
-

--
r-

-
-
l.

-

~

15

The normal clipped projection mode performs the troditional cl ipping functions

of off-screen line elimination and partially on-screen line clipping . The non-clip-

ped projection mode totally eliminates partially on-screen lines as well OS off-scree n

li nes. This mode is preferable fo r smal I objects that tend to leave the screen very

quickly such as runway markers, trees at a distance, small windows on buildings,

etc. Using this mode on small objects keeps t~e 3D-to-2D converter from wasting

valuable time clippi1"9 these trivial objects thereby increasing the overall projection

rate.

A special command may be submitted in the input array to switch between the

two clipping modes . The CLPSW command sheet (04) gives details of this command.

ASPECT RATIO AND SCREEN DIMENSION CONTROL

The A2-3Dl program has total field of view, screen aspect ratio, screen

bit ratio, and screen centering control. In order to properly control these functions

it is first necessary to understand their operotions . Since the four areas of control

work together,they will be described together.

Field of view is similar to the wide angle and telephoto characteristics of a

camera. A wide viewi1"9 angle wil l fit more of a scene into a projection. When

viewing an image on a screen, the geometricallly correct field of view is determined

by the screen width and viewer's distance from the screen .

viewer

------- l scene

16

Aspect ratio refe~ to the shape of o rectangular viewing window. A different

view is seen from a long, narrow viewing window than from o square one. The

3D to 2D converter must know the aspect ratio (the width to height ratio) of the

screen to know where to clip the lines .

911

911 21 11

a) a 1: 1 aspect ratio b) a 3: 1 aspect ratio

It should be noted that most standard television sets have an aspect ratio of

approximately 4:3 .

Bit ratio is strictly a display generator characteristic . Bit mop displays come in

many sizes (64 x 96, 256 x 256, 270 x 192, etc) and few of them hove 1:1 bit ratios.

In the final projection, the 3D to 2D converter has to know how many bits wide and

high the display device is in order to make sure the output values address the screen

properly and fully fi II it.

i
192 bits

• f 280 bits_.

a) 280:192 bit ratio
(APPLE II)

i
256 bits

• • 512 bits ...

b) 512:256 bit ratio
(MATROX ALT-512)

Screen centering refe~ to the placement of the recta1"9ular projected frame on

the screen. When the bit ratio is set to fill the entire screen, the screen center should

be 0, 0. When the bit ratio is reduced (for the purpose of putting a smaller image on the

screen in order to include some text perhaps), a 0, 0 centered image will shrink toward

the center of the screen. By changing the centering or 11 screen bias'' , the small image

17

may be moved over to one side or corner of the screen. · This make! screen splitting

effects possible

Screen center at +X,+Y

Smal I 30 image
00000

The Cf and CF commands may be put into an input array to adjust the fie Id of

view, aspect ratio, bit ratio and centering. The screen aspect ratio in the A2-3D1

program is setup to be correct for the APPLE II screen using an average size (17" •·

4:3 aspect ratio) television set, but non-APPLE II users who use different display·

devices, users desiring special effects, and perfectionists who demand 100'/o aspect

ratio and field of view correctness must use the ~ and Cf commands. See the CF and

Cf command sheets for detai Is and formats of these functions.

SPECIAL APPLE II FUNCTIONS

The A2-3Dl high performance 2D driver section offers the user many features

above and beyond standard 3D line drawing . The following capobi lities are provided~

1. 20 line drawing
2 . page 1 or page 2 line draw selection
3. page 1 or page 2 black erasing
4 . page 1 or page 2 white filling
5. page 1 or page 2 display select
6. 20 point plot
7 . "exclusive or'~ine drawi1"9 for selective erase
8. screen initialization (versatile)
9 . quick and easy screen initialization

18

The command sheets further describe these funct ions . Proper applicatio n of these

functions allow you to smooth-out flicker in animation, mix 3D a~d 2D imagery, set

mixed or full graphics, and much more. Sections of thi s manual will expand on these

functions .

19

GETTING AN IMAGE ON THE ·scREEN

The basics of object construction in 3D space and display control have

a lready bee n covered. Briefly, objects consisting of points and li nes must be

cunstructed with pure points, start points, continue points, and ray points. The

viewer may also control his X, Y, Z location and pitch, bank and heading. In

'1

order to get images on the screen one must als0 know how to put al I of the commands

in an input array and how to call the A2-3D1 subroutine . An understanding of

usi!'l1 the program with other software such as BASIC is also desirable . These items

will now be coirered.

INPLTr ARRAY FORMAT. The input array consists of a series of pure, start, continue, ·.

and ray points and control commands stored sequentially in computer memory starting

at location lBOO hex (6912 decimal). Each of the points consists of 7 bytes:

l. An 8-bit code indicati!'l1 a pure, start, continue, or ray point.
2. A 2-byte 16-bit 2's complement, byte swapped, space coordinate X
3. A 2-byte 16-bit 2's complement, byte swapped, space coordinate Y
4. A 2-byte 16-bit 2's complement, byte swapped, space coordinate Z

The term byte swapped implies that the most significa°" half of the 16-bit word

appears in the lower addressed byte.

Each display control command consists of from one to ten bytes (dependi!'l1 on the

control command). Like the point formats, the control commands always use the first

byte as an 8-bit code indicating the command. Command function control bytes follow

the command code byte. Points and control commands may appear in any order in

memory as long as they sequentially follow one another . The control commands given

in an input array apply to oil points and lines following that control command .

Finally, an end of file code must end the input array. Any non-command code will do .

The general format is thus:

Address

lBOO
1BOl,1 B02
1B03
1B04, urns
1B06, lB 07
1B08, l B09
lBOA
1BOO
lBOC
lBOD
lBCl:
1Bl0
1B12
1B14
lB 15 _.TB lB
1B lC
1B1D-1B22
1823
1B25

Chta

10
08,00
05
01, 00
34, 12
79, 19
00
25
Oi
01
00, 01
00, 02
21,43
02
x, y,z
03
x,y,z
08,02
79

Function

"initialize the screen" code
erase the screen
set X, Y,Z,pitch,bank, heading to:
X value (byte sw~ped 0100 hex)
Y value (byte swapped ·1234 hex)
Z value (byte sw~ped 1979 hex)
0 degrees pitch o

25 degrees bank
Ol degree heading
Start point code
X (100 hex)
Y (200 hex}
Z (4321 hex)
continue point code

20

X, Y and Z coordinate of continue pt. (same as st. pt.)
ray point code
X, Y and Z coordinate of ray point (same as st. pt .format'
fill the screen with all white
end of file

This if1>ut array would initialize the screen, erase it, set the viewers location and

viewing direction to the values shown, draw 2 lines, and finally make the screen go

completely white. This would take a total of approximately 200 mi I Ii seconds. Why

anyone would want to project this particular imoge is questionable since the lines

would appear as a flash before the screen turned co"l'letely white, but the sequential

interpretation of the if1>ut array would project precisely what was just described.

Two important points to note about this example ore the start of the array address (lBOO)

and the end of file code on the end (a 79 was used in this case).

The familiarization section of this manual takes a step-by-step approach to familiar-

ization of the input array concept and helps describe it. The output array section presents

a large input and output array along with a good figure that is also helpful in

visualizing the input array concept. Input arrays are really quite easy to work

with as they ore similar to BASIC or assembly langu~e programs: they execute

command (instruction) after command in o sequential order. The input array's

"instructions", however, are graphics commands.

COMMAND SHEETS. The following command sheets describe,i~ detan the

ex>mmands available to the A2-3Dl user. It is very important to understand the

input array concept before working with these commands. Before building large

data bases it is wise to get to koow all commands and the RULES regarding their

use.

Also note that not all ex>mmands must be used in an input array. All screen

ex>ntrol commands are, in fact, optional. The A2-3Dl program will assume a

21

O, O, 0 X, Y, Z viewer location, a wide :·angle view, and an APP.LE II screen unless

told otherwise.

Addresses used in the examples in the command sheets have no real significance.

They are there only to show how a particular command fits into a given area of memory.

X, Y, and Z coordinates of points are also chosen to be random, representative values

that have no special meaning.

The letters 11 lsb 11 and "msb" in the command sheets stand for least significant

byte and most significant byte respectively.

22

PURE POINT COMMAND = 00 hex PNT

OPERATION: This command specifies a point in space usi1"9 X, Y, and
Z coordi notes . The 30-to-2D converter converts this i nto
a 2D point ro be projected on a screen. The point is not
displayed if it falls off the screen.

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

7 bytes.

00,X lsb,Xrnsb, Y Jsb, Y msb,Z lsb, Z msb irfsequential
memory locations where x, y, and z are double precision,
two's complement, byte-swapped values.

Input:
Address

1B39
1B3A, 3B
1B3C, 3
l83E, 3F

Data

00
34, 12
79, 19
00, Ol

Meaning

PNT code
X coordinate (1234 in this case)
Y coordinate (1979 in this case}
Z coordinate (0100 in this case)

Result: The 3D point 1234, 1979, 0100 would be projected
onto the 20 screen.

Points are useful where single small dots are required (sta~
for example). They are good for games, astronomy, space
flight, molecular modeltf"9 F and object detailing.

Any number of points may be used in any location in the input
OITCY.

L

START POINT

23

COMMAND = 01 hex SPNT
= 01 dee

OPERATION: SPNT specifies the beginning of a line in space using X, Y,Z
coordinates. The 3D-to-2D converter takes the start point
and the following continue point and projects a 20 line on
the screen. The line wi II be eliminated if off the screen and
will be clipped if it is partially on the screen. If it is partially
on the screen and the clipper has specifically been turned off
the line will be eliminated. o

BYTES: 7 bytes.

FORMAT: 01, x lib, x msb, y lsb, y rnsb, z lsb, z msb in sequential
mermry locations where x, y, and z are double precision,
two's complement, byte-sw~ped values.

EXAMPLE:

USES:

RULES:

Input:
Address

1C08
1C09,M
lCCB, OC
lCOO I Cf
1ca:

Data

01
00, 01
77,00
21,43
xx, xx

Meaning

SPNT code
X coordinate (0100 hex)
Y coordinate (0077 hex)
Z coordinate (4321 hex)
Continue point code and coordinates.

Result: The line defined in 30 space by the start point and the
following continue point is projected as a 20 line on the screen.

The line is the most-used element in 3D projections, and every
line starts with a start point (directly or indirectly). Wherever
lines are ·needed, the start point will be useful.

A continue point must follow a start point. No other command
or type of point wl11CJO. If a continue point doesn't follow a
start point, the following command, whatever it may be, will
be assumed to be a continue point causing a bad line at'best
and an out-of-command synchronization problem and subsequent
crash at worst.

24

CONTINUE POI NT COMMAND =02 hex CPNT

=02 dee

OPERATION: CPNT specifies t he continuation of a li ne in space usirig X, Y, Z
coordinates . · Th e ' li ne con be a continuo~ ion from a start point
or from aoother continue point or ray. The linlS ': 1il l be projected
by the 3D-to-2D converter onto a 2D screen. The line will be
eliminated if off the screen and will be clipped if it is partia l ly
on the screen and the clippi1"9 mode is in effect. If it is purtiolly
on the screen and the clipper has specifically been turned off,
the line will be eliminated. Future continue and ray points pick-up
where this continue point leaves-off.

BYTES: 7 bytes.

FORMAT: 02, x lsb, x msb, y lsb, y msb, z lsb, z msb in sequential
memory locations where x, y, and z ore double precision,
two's complement, byte-swapped values.

EXAMPLE:

USES:

RULES:

Input:
Address

lf06
lfOd
lfOe I Of
lfl o, 11
lfl 2, 13
lf14

Doto

xx xx
02
00,34
01, 00
53,39
xxxx

Meaning

previous start, continue, or ray point
CPNT code
X coordinate (3400)
Y coordinate (0001)
Z coordinate (3953j
Continue point, ray or other command

A_s with the start point, the continue point will be useful
wherever lines ore needed.

The CPNT has no specific rules as it will always continue
a Ii ne from where the lost one was drawn. It is wise to check
that a previous line was indeed drawn in the input array, otherwise
the continue point will assume a random location for the start
of the line it generates.

25

':. AY POI NT COMMAND =03 hex Mi_
=03 dee

OPERATION : The RAY spe cifi ~ ~ the co nt inuation of a st ring of lines in
space using X,Y,-z coordinates, but unlike the continue
point 1';1at advances the line drawing "cursor'' for the
following lines, the RAY leave~ it at its original location.
The 3D-to-2D converter tokes the start point (original
position of the line drawing cursor) and the ray point
and draws a 2D line on the screen, leaving the cursor
not updated. The line will be eliminated if off the screen
and will be clipped if partially on the screen. If it is
partially on the screen and the clipper has specifically
been turned off, the line will be eliminated .

BYTES: 7 bytes.

FORMAT: 03, x lsb, x msb, y lsb, y msb, z lsb, z msb in sequential
memory locations where x, y, and z are double precision,
two's complement, byte-swapped values.

EXAMPLE ~

USES:

RULES ~

Input:
Address Dato Meaning

lb06 xx xx previous continue or ray point
lbOd 03 RAY code
lbOe,Of OO,F4 X coordinate (F400)
lbl0,11 12,34 Y coordinate (3412)
1bl2, 13 00,0A Z coordinate (OAOO)
lb14 xx xx Continue point, ray or other command

Result: The ray defined in 3D space by the RAY point and the
previous cursor position is projec1·ed as a 2D line on the screen.

Rays ore useful where lines with a common vertex are requi red.
Starburst type patterns, polyhedra, and tick marks on a chain of
continue lines ore just a few examples.

A ray point must never follow a start poi nt. If it does, it will
be treated as a continue point. If you need a RAY after a
start point, simply turn the line around and us a CONTINUE
point. RAYs may follow continue points and other RAYs with
no problems .

CLIPPER CONTROL

26

COMMAND =04 hex CLPSW
=04 dee

OPERATION: CLPSW enables the user to turn the 3D-to-2D converter's
clipping funct ion off .or on . In clipped mode, lines that
fall tofally off the scr-ee'i'i· are eliminated and lines that
are partially on the screen are cut down to size . In

BYTES:

DEFAULT:

FORMAT:

EXAMPLE:

USES ~

RULES:

non clipped mode, any Ii ne that fol ls partially or totally
off the screen is e !i mi noted.

2 bytes

Upcn 3D-to-2D converter entry the clipper is turned on.
Every time the 3D-to-2D converter is cal led, the clipper
is turned back on before display file intt'?rpretation.

04, 00 in sequential memory locations turn the clipper on
whil.e 04, 01 in sequential memory locations turns the clipper
off. 04, n where n is anything but 00 or 01 as lo turns the clipper
off.

Input:
Address

lBOO
1872, 73
1b74
1C08 1 09
lCOA

Data

xx xx
04, 01
xxxx
04, 00
xxxx

Meaning

Lines and othe r commands in clipped mode
turn clipper off
Lines and other commands in nonclipped rnodt
turn clipper on
Lines and other commands in clipped mode

Results: The li nes between lb74 and 1(07 wi II be projected in non­
clipped mode .

~lonclipped proiection is primarily meant to be a time saving
feature. Small objects like small windows, runway markers,
obiects at o distance, etc. don't cause any loss of realism if
they drop off the screen all at once, so it wastes time clipping
them. Nonclipped proiection should be used in animation where
proiection rate is of prime importance.

The clipper con be turned on or off as desired . Although values
other than 01 will turn the clipper off, its a good idea to stick to
01 os o value since future versions of this program may make use
of some of these other variables.

27

VIEWERS POSITION COMMAND = 05 hex EYE
= 05 dee

OPERATION: EYE specifies the viewer's X, Y, Z location in space and
the viewer's Pitch, Bank, and Heading . The 3D-to-2D
converter uses this information to project the proper view
of the see ne . -.

BYTES: 10 (decimal) bytes.

DEFAULT: Upon 30-to-20 converter entry the viewer's location and
direction of view is set to x=O, y = 0, z=O, pitch= 0,
bank= 0 and heading= 0. The viewers location will remain
at this location unti I an 05 command is encountered.

FORMAT: 05, x lsb, x msb, y lsb, y msb, z lsb, z msb, pitch, bank,
heading in sequential memory locations provides the 3D-to-2D
converter with viewer's location and direction of view. The

EXAMPLE :

X, Y, and Z values are 2's complement byte-swapped double
precision with a +and - 32767 range. The pitch, bank and
heading are "pseudo degrees" (256 divisior'5 to a circle}.

Input~
Address Data Meaning

lb03 05 EYE code
1b04, 05 00, 06 X viewer position (0600)
lb06, 07 C4, 13 Y viewer position (13C4)
lb08, 09 25, E4 Z viewer position (E425)
lbOa 00 Pitch (00 pseudodegrees)

. l ba:i 20 Bank (20 pseudodegrees)
lbOc Ae Heading (Ae pseudodegrees)

Result~ All lines after lbOc are projected with the X, Y,Z and
pitch, bank and heading given in the EYE command.

USES~ The EYE command is used whenever one wonts to change his
location in space or direction of view.

RULE_S~ The EYE command con be used wherever desired in an input
array. There are no restrictions as to how many times it may
be used.

28

DRAW A 2D LI NE COMMAND = 06 hex LI N2D
= 06 dee

OPERATION: LIN2D is a command that feeds line drawing information
dh~ctly into the APPLE II 2D- .dr:~ver. It takes a start and
end po in : specified in the command and draws it on the
APPLE II high resolution screen in white. Aspect ratio,

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

bit ratio, screen centering and array turn-on commands have
no effect on this command.

5 bytes.

06, x, y, x', ·y 1 in sequential memory locations plots the
line x, y to x', y' on the APPLE II screen. X values may
be in the range of + and - 45 hex (bb to 45) and Y values
may range from +5f to -Sf (Al to 5f hex). The screen is
layed out with 0, 0 at the center and increasi1"9 X and Y
to the right and up respectively.

Input:

x= bb --

Address

lbOf
lblO, 11
1b12, 13

•y=5F

0, 0

• y=Al

Dato

06
02, ff
40, 32

x=45
_.,

Meaning

line code
line start point (x, y)
line end point (x' / y')

Results: The line from 02, ff to 40, 32 is drawn.

This command is used for drawing additional 2D images on the screen,
overlapping or around the borders of a 3D image .

This is strictly an APPLE II command and should not be used on any
other machine. It puts no entry into the output array. NEVER USE
X, Y VALUES OUTSIDE OF THE SPECIFIED RANGE. If you do, you
wi II 11overshoot" the ! i ne drawer's tables and draw outside of screen
memory, thereby destroying the program or BAS! C.

29

DISPLAY SCREEN SELECT ·COMfv\AND = 07 hex DI SP
= ·07 dee

OPERATION: DISP feeds screen selection information to the APPLE 11 's
screen control unit . This command can specify text, mixed,
or full-screen graphics modes, disployrpoge 1 or 2, and
high or low resolution modes.

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

2 bytes.

07, n in sequential memory locations sets on APPLE II
screen mode. The value n determines which mode will
be set.

Input:
Address

lbOO
--- 1b02

1b04
lb06

n

50 hex
51 hex
52 hex
53 hex
54 hex
55 hex
56 hex
57 hex

Dato

07,53
07,50
07,57
07,55

mode

set color graphics mode
set text mode
clear mixed graphics mode
set mixed graphics (4 text lines)
set pC>ije l graphics
set p0i3e 2 graphics
clear HI-RES mode
set HI-RES mode

Meaning

set mixed graphics (4 lines text)
set color grophi cs mode
set high resolution mode
set pC>ije 2 graphics

Result: This sequence of commands would cause page 2, high
resolution mixed graphics mode to be displayed on the screen.

This command is used to select which screen wi II be viewed and
can also control special effects such as ping-panging between screens.

This command actually sends a 0 out to memory location CCXX where
XX is the value specified by n in the command. Using other n
values will cause other control events to occur. Avoid using other
n values.

ERASE SCREEN COM!v\AND = 08 hex ERAS
= 08 dee

30

OPERATION: ERAS causes the APPLE II screen to be erased or filled with
black or white. P03 e one or pag e two erosures are performed
depending on the use r-specified vcii ue "fo !lowing the command.

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

2 bytes.

08, n in sequential memory locations causes a screen erase or
fi 11 to occur. The value n defines the or.ti on as follows:

n result

00 erase page 1
01 erase p03e 2
02 fi 11 page 1 with all white
03 fi II page 2 with ali white

Input:
Address Data Meoni ng

1 b94 08, 00 erase page 1

Result: P03e 1 is erased.

Screen erase is used to clear the display screen before drawing
a new im03e. Screen fill is useful for black-on-white i_mages
using the exclusive-or line drawing function.

Care must be taken in erasing the screen as it actually wipes-out
8K of memory to perform the action. The proper screen must be
erased. Never erase page 2 if there is a program in the page 2
memory space. Likewise with page 1 .

This is strictly on APPLE II command and shouldn't be use in
non APPLE II applications (unless you need a very fast BK memory
eraser!)

','.'RITE SCREEN SELECT COMMAND = 09 hex DRAW
= 09 dee

OPERATION: DRAW selects which screen (p03e 1 or page 2) the APPLE II
Ii ne drawer wi 11 drc:f'N on.

BYTES:

DEFAULT:

FORMAT:

EXAMPLE:

USES:

RULES:

2 bytes.

Unless specified otherwise, page 1 is selected for line dr-aWing.
Page 1 is in effect upon program loading, but is not returned
to on every coll of the 3D-to-2D subroutine. If p03e 2 is
selected, it remains selected until another write screen command
is encountered.

09, n in sequential memory locations selects pr..ge one or two
for line drowi ng and point plotting as fol lows:

n result

00 draw on page one
01 draw on page two
al I others draw on page two

Input:
Address I Data I Meani1"9

1 b79, 7 A I 09, 01~ now._o_n_, _d_r_aw_o_n __ p_og_e_2 __

This command is useful in system configurations where page 2
instead of page 1 is to be used. It is also useful for special
effects such as screen ping-ponging in pursuit of display
smoothness .

This command must be used before all others in systems that
are using page 2 only as a display page. If a line is drawn
before this command, valuable program information in p09e
may be overwritten by the line. In screen ping-panging coses,
one must realize that the page selected remains in effect unless
selected otherwise- - even from call to call. This is because
this commend used instruction modifying code to perform its task.

32

PLOT A 2D POI NT COM!v\AND = OA hex PNT2D
= 10 dee

OPERATION:
" , . ~y

BYTES:

FORMAT:

EXAMPLE:

USES~

RULES~

PNT2D is a command that feeds point plotting information ..
directly into the APPLE II 2D dri ver. It takes the po ~,nt
specified in X, Y, Z coordinates in the command and plots
it on the APPLE II screen. Aspect ratio, bit ratio, screen
centering and array turn-on commands have no effect on
this command.

3 bytes

Or\, x, y,in 5aquentiol memory locations plots the point
x, yon the APPLE II screen. X values may be in the
range of+ and - 45 hex (bb to 45) and Y values may
range from +5f to -SF (A 1 to 5f) . The screen is layed
out with O, 0 at the center and increasing X and Y to the
right and up respectively . See the 06 command sheet
for a diogrom of this coordinate system.

Input:
Address Date Meaning

1b42 OA PNT2D code
1b43,44 I 23, 4F x,y of the point to be plotted (X=24, Y=4F)

Results: The point 24, 4F is plotted on the screen

This command -is used for drawing additional 2D im~es on the screen,
overl~ping or around the borders of a 3D im~e.

This is strictly an APPLE II command and should not be used on any
other machine. It puts no entry into the output array. NEVER USE
X" Y VALUES OUTS! DE OF THE SPECIFIED RANGE. If you do, you
wi 11 "overshoot" the line drawer- point plotter1s tables and plot a
point outside of screen memory, possibly destroying a program or BAS! C.

33

INTERPRETIVE JUMP COMMAND = 00 hex JMP
= 11 dee

OPERATION: This rommond causes the 3D-to- 2D converter to continue
reading the input array starting at a new address in memory.

The new address is specified in the JMP command.

BYTES: 3 bytes.

FORMAT: OB , a lsb, a msb will cause interpretation of the input
array to resume at address 11 0 11 where a is a byte-swapped
value.

EXAMPLE:

USES~

RULES:

Input:
Address
lb75
lb76,77

2008

Data
00
08, 20

xx xx

Meoni
J MP command code
jump address (2008 hex)

next point or command to be read

The JMP command can be used to break the input array into
a number of smal I pieces that can be placed at convenient
locations in memory. The JMP command can also be used
to iump to an output array that has just been created. This
output array wi II then be read as an input array of points
and lines. See the discussion on SMOOTH! NG in this
manual for more details.

The JMP command may be used at any time. Core should be
taken to make sure the address is byte-swapped, or the interpreter
will resume reading in a random location. Input array segments
with a JMP at the end require no end of file mark, but at the
end of the final segment an end of file mark is required.
Be careful not to cause on array to jump to itself. The A2-3Dl
program wi II go into an endless display gene rot ion loop if this
is done.

34

SET LI NE DRAWi NG MODE COMMAND = OC: hex LMODE
= 12 dee

OPERATION: This command selects between nonna l ("or") line drowing­
and exclusive 11or11 line drawi ng, and turns off output'a~ray '
generation.

BYTES: 2-bytes.

DEFAULT: Upon 3D-to-2D converter loading, the normal line drawing
mode is entered. Once changed to exclusive 11or11 line drawing,
the program remains in this mode until specified otherwise- -
even from call-to-call.

FORMAT: OC, n in sequential order in memory causes either normal or
exclusive "or" line drawing modes to be entered. An n of

EXAMPLE:

USES:

RULES:

00 specifies normal mode, and an n of 01 specifies exclusive
"or" mode,

Input:
Address Data

1b80,81 OC,01
1b82 xxxx
1 C56 f 57 QC I 00
1c58 xxxx

Meaning

draw the following lines in exclusive 11or" mode
Ii nes to be drawn (in exclusive "or" mode)
switch back to regular line drawing
more lines to be drawn (in normal mode)

Result: The first set of lines are drawn as exclusive 11or11 lines, and
the second set as normal lines.

Exclusive "or"lines can be used in a number of different ways.
They can be used to draw black on white, white on black or
can be used to selectively erase lines. The section on selective
erasing in this manual should be consulted for detaih:.

This command can be used nearly anywhere in an input array.
Remember that the program will remain in the line drawing mode
it was last in until changed; even from call-to-call. This is
caused by the instruction modifying nature of this function .

..

35

TURN ON OLJTPLJT ARRAY COMMAND =OD hex ARRAY
= 13 dee

OPE RAT! ON: . This command causes an output array to be gene roted
instead of letting the scene be drawn on the APPLE 11
screen. An orguement within the ARRAY command
specifies the address where the output array will start.

BYTES: 3-bytes.

DEFAULT: Upon input array entry, and every time the 3D-2D program
is called, the output array generating feature is turned off.

FORMAT: 00,a lsb, a msb in sequential memory locations causes

EXAMPLE:

USES~

RULES:

on output array to be generated starting at the location specified
by address a in the command. The a orguement is byte-swapped.
Array generation ends when on end of array command or OC
(set line drawing mode) command is encountered. The end of
file is denoted by an end of array mark (o 79 hex).
The output array is identical in construction to the input array
and consists of OA (points) and 06 (20 Ii nes) only. The output
array may be interpreted as an input array by the A2-3D1 program.
The OC command turns off output array generation.

Input:
Address Data Meaning

lcdO xx xx Ii nes being drown on APPLE II screen
1d78 OD , turn on output array

-1d79,7a 00, lf create array at HOO hex.
1d7b xx xx lines to be placed in output array

Result: The Ii nes starting at 1 d7b are put into the output
array (after 3D-to-2D conversion).

The output array is useful on non-APPLE II machines where seperote
line drawing routines are being used. The output array can also be
used to save images for later display, and to hold-off projection
of 2D lines until all the 3D transformations hove been done, resulting
in a smoother display.

Care shrud be taken in setting the output orra~ address. It
should not overlap a program or screen display area . APPLE II
screen contro I commands should not be used while ere at i ng on
output array. They create no array entries but sti 11 affect the
APPLE 11 screen functions and memory . •

I

I

I

36

SCREEN SIZE SELECT COMMAND =~hex SCRSZ
= 14 dee

OPERATION: This command provides the 3D-to-2D converter with screen
bit ratio and scree n ce nte ring informatio n . Argum~nts

BYTES:

DEFAULT:

FORMAT:

EXAMPLE:

USES:

RULES~

in the command specify screen bit height and width, and _ _,,~u -
X and Y screen center locations.

5-bytes

Screen size on program load-up is preset to correspond to
the APPLE II screen in the white mode (width 140, height
192 decimal). The screen center is set to zero.

Cf 1 scr. width, scr. height1 scr. X center, scr. Y center, in
sequential memory bytes set the screen bit ratio and center.
Screen height and width can reach a maximum of 256 x 256,
and screen center can be placed anywhere within a+ and -
127 range.

Input:
Address

lf 19
lFlA
1F1C

Data

oc
20,30
FO, 10

Meani0i3

SCRSZ code
bit ratio is 20= width and 30 =height.
screen center is FO = X end 10 = Y

Result: The 3D im03es are projected onto the following screen:

T
co .

F01

SC

~-..--- Projected area 'center (FO, 10)
- ~--1-~ Projected area (20 by 30 bits)

Bit map center
Full size bit mop

This command is useful for setting screen size on non-APPLE 11
devices, and for mo vi Oi3 the screen around on a 11 devices.

Don't center the screen in such a way as to cause the iITT03e to
fal I outside of the display devices plotting boundaries . This
is especially true in the APPLE II case as the line drawer will
dest,roy memory outside of the display p03e if you do.

-.... ~-

37

FIELD OF VIEW SELECTION COMMAND = OF hex Fl ELD
= 15 dee

OPERATION: FIELD provides the 3D-to-2D converter with field of view
and cspect ratio information.

BYTES: ·

DEFAULT:

FORMAT:

EXAMPLE:

USES:

RULES:

7-bytes.

Upon subroutine entry, the field of view is set to a wide cngle
view with a 4:3 aspect ratio,ass urning on APPLE II display device.

OF, axr lsb, axr msb1 ayr lsb, ayr msb 1 azr lsb, azr msb1 in
sequential order in memory set the aspect ratio end field of view .
Axr is the horizontal aspect ratio control. It is o 2-byte 2 1s
complement value that compresses the image in the X dimension
thereby fitting more horizontal information into the screen.
Wide screens will use low value axrs. Axr is a fractional value
with 32767 representing 1. 0. For a wide screen an axr value of
.5 (16384) may be appropriate.
Ayr is identical to axr but works in the vertical direction. T al I
screens use lower value ayrs. A very toll screen might use a .5
(16384) cyr.
Azr controls field of view. A very wide angle view is 32767.
A very narrow view is 4000.
Negative field values produce mirror and backward images.

Input:
Address

1F09
lFOa
lFOc
lFOe

Data

OF
FF 1 5F
FF I 7f
45,25

Meaning

Field of view code
axr value = 24575 (wide screen axr)
ayr ~clue = 32767 (normal height)
ozr value= 9541 (telephoto view)

note: values after'~ sign" is decimal equiv. of Data

Result: A 4:3 aspect ratio (wide screen) telephoto view wi 11
be projected.

Field of view is used to create proper screen geometry for the
display device being used. Field of view may also be used for
zoom, mirror imaging and other special effects.

Field of view, once changed1 remains the same from call-to-call
unless intentionally changed 03ain.

38

EASY INITIALIZE COMMAND = l 0 hex I NIT
= 16 dee

OPERATION: This command puts the APPLE 11 screen into the high
resolution, split graphics/text, page 1 yiewing
mode.

BYTES:

FORMAT:

EX .ANIP LE:

USES:

RULES:

1 byte.

10 in a memory location in the input array initializes the
screen.

Input:
Address Data Meani1"9

lbOO 10 initialize the screen

Result: The screen goes into high resolution, split graphics/text,
p~e 1 viewing mode.

This command is o good way to start most page l input arrays.
It puts the screen in an easy to use mode since 4 lines of text
are provided on the bottom of the screen. This command
avoids having to use 3 seperate 07 (display screen select)
commands.

It is a good idea to use this at the beginning of input arrays.
There are no location restrictions however.

39

NO OPERATION COMN\AND = 11 hex NOP
= 17 dee

OPERATION: This command performs no operation and is skipped-over
by the 3D- to-2D converter.

BYTES:

FORMAT:

EXAMPLE:

USES:

RULES:

l byte.

An l 1 in the irput array is ignored and skipped-over.

Input:
Address Dato Meaning

1e05 11 NOP code
1e06 11 NOP code
1e07 - xx xx valid points and commands

Result: The two NOPs ore skipped and the valid points and
commands at 1e07 are processed.

The NOP is good for filling space that might be used later
(especially at the beginning of an input array where initializes,
erases, and location information maybe put). It is also
good for eliminating unwanted commands without compressing
the entire array to fi I I-up the gap left by the command's
removal.

NOPs may be used anywhere. There are no restrictions.

SUBROUTINE CALLING. After the input array hos been created and loaded at

lBOO hex (6912 decimal), the 3D-to-2D converter must be called using c BASIC

CALL or os5embly language JSR instruction.

40

The general purpose cal:ing address of the A2-3Dl program is 0800 hex (2048

decimal). When cal led at th is address, there is no need to worry about the 6502's

zero page,X ,Y, stack, A or P registers being modified by the 3D program.

The program uses this memory and these registers, but it restores them before it

returns from the subroutine. When working with large data bases, the saving

and restoring of the zero p~e takes a very small fraction of a percent of the

conversion time .

For very ~mall data bases and the performance-minded user, a second

subroutine col I address is provided at 0803 hex (2051 decimal). This is the "fast

calling address". Entry at this address side steps the 1.6 millisecond zero page

and register save/restore sequence and gets right down to the 3D conversion. The

destruction of zer6 page variables 60 to DO hex and the processor registers (except

for the stock pointer) is the price paid for this extra speed.

USING BASIC AND OTHER SOFTWARE. Using the A2-3Dl program with BASIC

and other software is a simple proposition as long as the 0800 hex (2048 decimal)

subroutine call is used . The only memory area the 3D graphics program uses under

these conditions is the area between 800 and lAFF hex. The chosen graphics display

page on the APPLE II {locations 2000-3FFF or 4000-SFFF) is also modified if the A2-3D1

line drawerr point plotter or erase functions ore used. No zero page variable or

. , '

41

register modification problems arise because all registers and the zero page are left

intact .

The first thirg to do when getting the A2-3Dl program up is to decide where in

memory things should reside. Figure 15 shows a few possibilities, and one of these

is likely to fit your system. Notice that disk systems runnirg Disk APPLESOFT must

have 48K of memory. With 10.5K of DOS, 12K APPLESOFT, 4.75K A2-3Dt, and

an 8K display page (35.25 K total), even a 36K system is inadequate. Tape or ROM

APPLESOFT is therefore recommended for small and medium memory sized systems.

When usirg the program with any BAS! C or DOS, two cautionary measures should

be taken. First, make sure to set HIMEM and LOMEM to the proper rarge. If you

dont, BASIC wi 11 write over A2-3D 1 . Also make sure not to e rose or draw Ii nes on

a page you aren't usirg. if you do, A2-3D 1 wi 11 write over BAS! C or DOS. This

is particularly important if you are usirg page 2 graphics. A write screen select

command must precede your lines and points in the input array.

A BASIC USE EXAMPLE. An example of the use of the A2-3Dl program is in order at '

this time. Configuration B of figure 15 will be used. This configuration requires 16K

of memory and Integer Basic. APPLESOFT ROM or APPLE PLUS BASIC will also work

in this configuration although LOMEM and HIMEM must be written into the program

using these two BASI Cs.

The followirg procedure can be used to gtt the program goirg:

1) Load the A2-3D1 tape (see the loadirg instructions in the appendix sections)
2) Get into Integer BASIC (ctrl B return)
3) Set LOMEM and HI MEM:

HtMEM: 8191
LO ME M: Tl 68·

(sets HI MEM to lFFF)
(sets LOMEM to 1 COO)

~

~
~
-

-
~
~
~

1.

B
its

 a
nd

 p
ie

ce
s

of
 z

er
o

pa
ge

 a
nd

 3
00

-3
F

D
 a

v
ai

la
b

le
.

S
ee

 A
PP

LE
 I

I
re

fe
re

nc
e

m
an

ua
l.

2.

S

et
 L

O
M

E
M

 a
nd

 H
IM

E
M

 i
ns

id
e

B
A

SI
C

 p
ro

gr
am

.
3.

D

ou
bl

e
bu

ff
er

ed
 s

cr
ee

ns
 f

or
 s

m
oo

th
 a

ni
m

at
io

n.

4
.

U
se

 i
nt

er
pr

et
iv

e
ju

m
p

to
 b

re
ak

 i
np

ut
 a

rr
ay

 i
nt

o
tw

o
 p

ie
ce

s
if

 n
ee

de
d.

co

oa
__

5.

If

 n
o

D
O

S
 i

s
us

ed
,

th
is

 a
re

a
us

ab
le

 a
s

pr
og

ra
m

 a
nd

 i
np

ut
 a

rr
ay

 a
re

a
6

.
lB

O
O

to

 l
D

O
O

 i
s

in
pu

t
ar

ra
y,

lD

O
O

 t
o

lF
FF

 i
s

as
se

m
bl

y
la

ng
ua

ge
 p

ro
gr

am
.

BO
OO

_

7
.

1 B
OO

to

 L
O

M
E

M
 i

s
in

pu
t

ar
ra

y,

L
O

M
E

M
 t

o
HI

 M
EM

(l

FF
F)

 i
s

B
A

SI
C

 d
at

a
.

c
D

E

F

G

H

AO
OO

 -
r
-
-
-
-
-
-
-
-
-
.
.
.
.
,

I A
 =

=
1 n

pu
t

A
rr

ay

AR
==

 A
pp

le
 R

es
er

ve
d

A
ss

em
bl

y
L

an
gu

ag
e

A
ss

em
bl

y
L

an
gu

ag
e

D
ou

bl
e

B
uf

fe
re

d

I
B

A
SI

C

I
B

A
SI

C

or

or

A
PP

L
E

SO
FT

D

O
S

T
ap

e
B

A
SI

C

I
B

A
SI

C

90
00

....

1 ==
H

i
m

em
or

y
HI

 fl
l..E

M

==
Lo

 m
em

or
y

L
O

M
E

M

8
0

0
Q

_

70
00

60
00

-

A

B

50
00

A

ss
em

bl
y

-
L

an
gu

ag
e

4
oo

a_
_

,__
_ _

__

_,

30
00

-

D
is

pl
ay

P

ag
e

l

20
00

-
~
-
-
-
-
1

n
o

te
 6

I
B

as
ic

or

A

PP
LE

 S
O

FT

R
O

M

D
is

pl
ay

P

ag
e

l

n
o

te
 7

 l

A
ss

em
bl

y
P

ro
g.

IA

4

D
is

pl
ay

P

ag
e

1

1A

4

IA

4

D
is

pl
ay

P

ag
e

2

p
i
~
­

po
ng

3

D
is

pl
ay

P

ag
e

1

IA

4

A
PP

LE
SO

FT

A
PP

L
E

SO
FT

R

O
M

R

O
M

IA

D
is

pl
ay

Pa

ge
 2

B
A

SI
C

D

a
ta

~

D
ou

bl
e

B
uf

fe
re

d

B
A

SI
C

 I
D

at
a

IA

4

D
is

pl
ay

P

ag
e

2

:.
p

jn
g

­
po

ng

3

D
is

pl
ay

P

ag
e

1

IA

4

IA

or

A
PP

LE
 S

O
FT

R

O
M

A
2-

3D
1

I
I D

O
S

D
is

pl
ay

Pa

ge
 2

B
A

SI
C

 1

D
at

o 2

B
A

SI
C

 I
D

a1
·a

D
is

pl
ay

P

ag
e

1

lt
A

4

i:
::

~"
""

'
1"

A
?
-1

0
1

/A

PP
LE

 I
I

~
.. ,

re
m

 c
on

fi
!'.

}u
ra

tio
n

g
u

id
e.

I B
A

SI
C

or

A

PP
LE

 S
O

FT

R
O

M

A
ss

m
bl

.
Pr

og
ra

m

or

B
A

SI
C

D

at
;

IA

4 _.f

D
is

pl
ay

Pa

ge
 2

3

D
is

pl
ay

pa

ge
 1

i
l
l
-
~

D
is

k
B

A
SI

C

A
PP

LE
 S

O
FT

TA

PE

D
O

S
5

B
A

SI
C

D

at
a

IA

4

A
2

-3
D

l

D
is

pl
ay

P

ag
e

2

IA

4 ~

N

it

43

Note that LOMEM and HIMEM must be written into the BASIC program in APPLESOFT.

At this point, the A2-3Dl program, o small test cube and edge line input array at lfQO,

and a lK BASIC work area from 7168 to 8191 exis t in memory . The input array at lBOO is:

Address Data

lBOO 10
lBOl 05, 00, 00, 00, 00, 00, 00
1B08 00, 00, 00
lBOO 08,00
lBOD 01, 001 ff, 00, ff I 00, 03
lB 14 02, 00, 01, 00, ff I 00, 03
lBlB 02, 00, 01, 00, 01, 00, 03
1B22 02, 00, ff, 00, 01, 00, 03
1B29 02, 00, ff I 00, ff I 00, 03
1B30 02, 001 ff I 00, ff f 00, 05
1837 02, 001 01, 00, ff I 00,05
1B3E 03, 00, Ol, 00, ff, 00, 03
1B45 02, 00, 01, 00, 01, 00, 05
1B4C 03,00,01,00,0l,00,03
lB53 02, 00, ff' 00, 01, 00, 05
1B5A 03, 00, ff, 00, 01, 00, 03
1B61 02, 001 ff, 00, ff I 00,05
1B68 01, 00, 00, 00, 01, 00, 03
1B6F 02, 00, 00, 80, 00, 00, 03
1B76 79

100-

000-

FFoo-FFoa oooq 01001

2

Meaning

Initialize the APPLE II screen
Location in space X, Y,Z
Pitch, Bank, Heading
Erase the screen
Line 1 start
Line 1 continue
Line 2 continue
Line 3 continue
Line 4 continue
Line 5 continue
Line 6 continue cube
Line 7 ray
Line 8 continue
Line 9 ray
Line 10 continue
Line 11 roy
Line 12 continue
Line 13 start J edge line
Line 13 continue
End of array

8

~ 400
~300

You may examine it with PEEKs to verify it if you wish. The subroutine call

address is 2048 decimal. The cube may be proiected now by typing:

>CALL 2048

The cube should appear on the APPLE II screen.

44

Notice that address 1B09 in the input array is the BANK parameter. This may be

changed usi1"9 POKEs. Enter the followi1"9 program:

le 10 A=256
20 A=A-1 decrement BANK angle
25 POKE 6921,A note: 1B09 hex= 6921 dee
30 CALL 2048 proiect cube
40 IF A> 0 THEN GOTO 20
60 END end -~-e_s---.

.___--..~ no

Running this program yields a rotati1"9 cube. The cube will rotate 256 pseudodegrees

(one full rotation) and the program wi II end. Changi1"9 the POKE address to the PITCH

parameter's address (1B08 hex, 6920 decimal) causes pitch changes, end changing it

to the HEAD! NG parameter's address causes heading changes.

Similar procedures should be used in getti1"9 any configuration up and runni1"'9. The

tape loading section tells how to get the 6000 origin ve~ion of the A2-3D1 program

into mem6ry if your system requires it (see figure 15, configurations G and J). Remember

to use the subroutine call addresses shown in the map if the 6000 origin ve~ion is

used.

The watchword in getti1"'9 any program up and running is "ovoid program-to-program

overlap end interference". Never perform a screen erase over BASIC or o LOMEM-

HI tv'IEM over the A2-3D 1 program .

OUTPUT ARRAY GENERATION CONCEPTS

Command Cf (tum on the output array) is described in the command sheets
of this manual. This command is useful for non APPLE II owners who dont need
or want the APPLE II screen projection and APPLE II owners who want smoother­
running displays. It is necessary to understand exactly what this command does
before it can be properly used, however.

The 6502 30-to-20 converter takes the input array of 30 lines and trans­
forms them, one-by-one, into start and end points of lines to be projected
onto a screen. APPLE II. users usually want lines to appear on the screen,
and lines are automatically fed to the high speed line projector for the
APPLE II - - unless the user has previously turned on the output array with the
Cf command. If an output array is requested, the 30-to.:.20 converter builds
an output array that is very similar to the input array in memory and supresses
the APPLE II screen display.

The output array consists of start and end points of 20 screen lines. Ent­
ries in the output array have the following format:

LINES POINTS

address data address data

1F94 06 line code 192A OA point code
1F95 x start pt. X 192B x point X
1F96 y start pt. Y 192C y point Y
1F97 x' end pt. X
1F98 y' end pt. Y

Notice that the coordinates have a range of+ and - 127 units since they
are sing le byte parameters.

45

The output array represents lines in the Sub logic Uni versa I Grap hi cs Interpreter
format: the center of the screen is 0,0 and X and Y increase in value moving to the
right and up respectively. Figure 16 illustrates the screen coordinate system.

•127 decimal

-128 0, 0 127 --

~ -128

Figure 16. The screen coordinate system.

The Cf and CE commands may be used to scale the field of view, bit width,
or aspect ratio to suit the user's display device .

The 06,07,08,09,0A,OC, and 10 commands (20 points and lines, APPLE II
screen select, erase, write, exclusive or lines , and screen initialize) produce
no outputs in the output array as these ore strictly !\PPl:E II 2D driver functions.
These functions ore not de- activated during array generation, however, so one
must be careful rot to erase output arrays generated in the high or low graphics
page in memory (addresses 4000-5FFF and 2000, 3FFF respectively).

Figure 17 illustrates a good-size input array, and figure 18 shows the resulting
output array.

Upon subroutine return or APPLE II line generation turn-on with the OC
command, an end of file mark (79) is placed in the output array.

The output array may be used in a number of different ways . Non APPLE 11
computers con use the array to generate images using line drawers suited to
their particular display peripheral. The line drawing techniques section of this
manual is o good place to start in generating these custom line drawer programs.
The output array feature may also be used to save images on tape or disk. An
image can be dumped and played-back later. The display smoothing section of
this manualdescribes how output arrays may be used to reduce flicker in displays.

46

' ' ' ' ' ' '

L

80 •••
70

c:::::7

600

500 ~
400

30 1&
20

100
" ' '----1--- /

" /

Three points (code 00)

Verti cc! square nonclipped

,/
" /

Hori zontcl ang !es c I i¢~d
/

" /
/

" ;

Pyramid c li~ed
/

/ ,,
;

/

" ,,
/

" /

screen ', / 100 200 300 400 500 600 700

OD
OOlF
OE
?FFF
0000
01
0001
0000
0003
02
0002
0000
0003
OJ
8001
0001
800J
02
8001
0000

l
' /

viewer

Turn on output
array at l F 00

Screen = 256x256
bits (decimal)

Pyramid
clipped

01
0001
0004
0006
02
0001
0004
0005
03

Horizontal 5001
0004 angles
0006 (clipped)
OJ
0002
0004
5005
OJ
0002
0004
0005

/
/

"' /

0004 0401] Turn off clipper
OJ 01
8001 0001
0001 OOfc Vertical 800J 0007
02 02 square

0001 0002 (nonclipped)
0000 OOfc
OOOJ 0007
02 02
8001 0002
0001 OOfd
800J 0007

/
/

" /
/

/

02
0001
OOfd
0007
02
0001
OOfc
0007
00
0001
8000
0008
00
8001
cOOO
0008
00
0002
8000
0008
79 J

Figure 17. An example input array (see next page for output).

47

x

Pure points

End of file

" ;: ~ ··' . ,.)'; ' "" :

Note:

06r 2a
00
54
00

06] OJ
02
54
00

06] 54
00
2f
00

06] OJ
02
2f
00

06] 2f
00
2a·
00

06] 2a
00
OJ
02

Screen Y

3 Points

~ Horizontal a !es

•
• •

D

Pyramid

~d~oree l"\ X
Square

x, y I z I p I BI H = 00 Screen Height and Width = 256, Center= 0, 0

15 24
54 ca
19 12

48

o~ 061
6

Horizontal
ca

Square (continued)

06] 06] 19 Angles 12
65 ca

The Pyramid lb 12
54 b8

06] o~J 19 Of
65 07

3 Points 2f Oal Sf 17
Ob

Oal lf ~l]J 07
7 9]] End of file mark

06] 12
b8
24
b8 Square

06] 24
b8
24
ca

Figure 18. An example output array (generated by
input array of Figure 17}

•

DISPLAY SMOOTHING

A smoothly flowi~ display is very desirable in any form of animation whether
it be film, televi sion, or 3D computer graphics. While film animators go to high
frGme rcie ca meras and television people go ro high persistance phosphors, com-"
pu1e r 91apr :cs users rely on douc te buffering, screen ping-panging , adapt ive sc reen
erasing and arroy-bcseci projections to achi eve low flicker and realistic results.
The A2-3Dl package hos enoug h graphics commands to reduce flicker very subs tan­
tially i'.. L·sed properiy . Methods of smoothing displays wi 11 now be covered.

Two characteristics are important in display smoothness~ frame-to-frame in­
cremental difference and frame-to-frame discontinuity . l ncremental difference
refers to the degree of difference of two adjacent frames in an animation sequence.
lf there is little or no difference between frames, a very slow frame p;ojection
rate is S',jfficient for smooth animation. An animarion of a clock's hour hand would
!ook just as smooth at 5 frames pe r second as at one frame per minute.

Frame-to-frame discontinuity refers to actions duri~ or between frame pro­
jection thor tend to break up a sequence of frames' flow. Screen erasure is one
example of a discontinuity. If a screen goes blank for a noticable time between
frames, flicker is introduced, even if there is very little or nothi~ movi~ in the
frame sequence.

The A2-3D1 program attacks the incremental difference problem through the
use of hand-optimized assembly language and integer arithmetic. Fast proiections
ore required for high frame rates,andassembly la~uage is the fastest running

49

la~uage of all . There are a couple of things that can be done to improve frame rote:

1 . Keep the scenes as well organized as possible. Large strings of start ,
continue, and ray points can effectively double 3D-to-2D conversion

rate when compared to their start-continue pair equivalents.

2. Don't use clipped projection on lines rhat ·don't need it . The clipping
of ti ny objects offers no display accu racy gain and reduces frame rates.

Frame-to-frame discontinuity can be a real problem on memory-based displays
sue~ as the APPLE II since it tokes a lo~ time to erase the screen's memo ry. A fast
erase command helps smooth a di$play, and the A2-3Dl program has one. The 45
m'. l!isecond erase time (22 erases per second) is ;;ti 11 quite slow on o human perception
sec le however .

The type of erase perfonned is also important in discontinuity reductio n . An
erase that seems to make all portions of the picture simultaneously fade-out is

superior to one that sw~eps from one side of the screen to the other or 11 folds the
screen" like a set of blinds. This is due to the fact that the eye notices a few large
sweeping motion$ more than many thousands of small fodi ng motions. Increased
intensity in the lost-erased portion of the screen during a series of sweepirg erases
i~ al_~ very noticable. Keeping these factors in mind, the A2-3Dl's erase has
been designed to fade the screen in 0 checkerboard pattern as quick fy as possible.

Th·s order of projection, transformation, and screen erasure also makes a difference
in screen flicker. The standard projection sequence in 30 animation is:

transform a 30 Ii ne
draw the 20 line on screen 9 ms display
transform a 30 line
draw the 2D line on screen 6 ms display

transfonn a 30 line J
:~: t:~ ~-l~n~ ~=~c:ee~-----~~~~~~l~yj __ _

This form of projection sequence hos rwo problems. Lines in the display are
on the screen for vastly different lengths of time, and the last lines are erased
immediately after they are drawn. The first lines in the display will be very
bright, and the last lines will be dimmly flickering. Screen flicker con be reduced
by equalizing the amount of time lines ore on the screen, and increasing the line
erase after draw time.

This is where the array generating feature becomes useful to the APPLE II owner.
By building an output array of the new frame while the old frame is on the screen,
the screen erase con be delayed until the array of 2D screen lines is ready for pro­
jection. As an added bonus, only line drawing time is required between lines since
the 3D-to-2D conversion hos already been performed. The line generator generates
the lines at a faster rote thereby reducing the time between display lines on the screen:

erase the screen
drcm the 20 line 7.5 ms display I
draw the 2D line 6.0 ms display

draw the 20 Ii ne 4. 5 ms display I j
transform the 30 line (for next line drawing) l -
transform the 30 line
transformthe3D line ______________________ J ________ _

Array display con be automatically performed by putting an interpretive jump
(00 commend) to the output array on the end of the input array . The A2-301
program can interpret the input array's resulting output array and display the
image by projecting lines. The price paid for the resulting smoothness is memory
size. The output array must use a new area of memory.

50

The best screen discontinuity reductions are achievable through the use
of both display pages of memory. This tokes 16K for the display pages alone
(on the APPLE II) and requires at least 32K of memory in an APPLE II system.
The idea is to get one page ready with the next image while the other page
is being displayed. When e verything is ready, the display screen select
commend (07) is used to turn-on the ready page, thereby freeing the old page
for an erase and subsequent image generation. The display screen select (07)
command, erose screen high and low command (08) and the write screen
select command (09)can be used to ping-pong between screens.

Variations of the double buffering scheme described above ore also possible
on other machines. The prerequisites include the ability to switch rapidly
between two screen memories, and the avai labi I ity of two screen memories.
You must o~so be able to write into the non-displayed screen memory.

51

SE LE CTI VE ERASE AND EXCLUSIVE ORED LINES

While memory-based display systems bring erase speed and line drawing
speed. d,i~odvontages, they also bring a few advantages. The ab ility to reai;L.

·~ ~ ' - ~ - ~ .. 1 . . ,1.~ .

a screen image is one of these advantages. The A2-3Dl program is designed
to make use of this advantage through on exclusive ored line and
ored line drawing capability.

Plotting a point on the APPLE II requires a bit in a byte in screen memory
to be turned on by setting it to one. 0 ne must be sure to leave the other
bits in the byte undisturbed, however, as they represent other points that were
plotted earl ier. This requires by.te reading, bit turn-on (by oring it with one),
and byte wri te-bcck. Points are turned off in the some manner . Instead of
turning a bit on, a bit is turned off . It is therefore possible to erase points
and lines selectively. This enables extremely complex images to be drawn on
a screen with one small simple object that freely moves about using selective
line generation and erase of the small object. The whole scene needn't be
regenerated so flicker is minimized.

All seems well.and fine with this scheme until one notes that everything
the small moving object moves across disappears. Selectively erasing an object
in this manner not only erases the. object itself, but every object with overlapping
points.

It is possible to create a list of all the overlapped points and somehow restore
them later, but there is a much cleverer way of obtaining nearly the some results:
by using exclusive ors instead of simple ors to set and reset the points. If a point
is plotted-on block by exclusive oring it with a one, the point turns on. If plotted
on white, the point turns off . The some exclusive or operation can therefore turn
a point on or off, effectively toggling the point .

Turning points on and off are the components of a successful selective draw and
erase capability, but there is more to this particular draw-erase poi; than meets the
eye. Figure 19 illustrates what happens when two exclusive ored lines intersect.
Notice that the intersection point is turned off by the intersecting line when it is
drawn and is restored when it is selectively erased.

52

a) original line b) intersecting line c) erased intersecting line

Figure 19. The affects of exclusive ored line drawing

The original line is actually restored to its original condition . If desired, the
intersecti1""9 line could be mode to sweep wildly across a screen filled with complex
images without disturbing a single line.

The OC command turns the exclusive ored line feature on (see the command
sheets). Small objects may be projected ond selectively erased by:

l. projecting the object into on output orroy
2. drawing the object with exclusive ored lines
3. drawing the object again with exclusive ored lines (thereby erasing it)

Output orroys needn't be used as the 30 converter performs the same sequence
if called twice in a row, but there is no need to put the same image through the
3D-to-2D converter twice. The above method saves a great deal of time.

Experimentation with the exclusive ored line drawing function is necessary
before using it extensively. Lines with intersections turned off give poor results
in some applications.

Exclusive ored lines may also be used to draw block on white images. The
screen must be initially filled with solid white using the 08 (erase/fill) command.
Exclusive ored lines will turn points off as it draws across the white field.

53

USING THE A2-3Dl PACKAGE ON NON APPLE II SYSTEMS

The output array generating feature is provided specifically for non APPLE 11
30 graphics use~. As the output array generation section describes, on output
array of start and end po ints of lines can be generated and the APPLE II 2D
generator turned off altogether. By simply feeding the output array to a line
drawing subroutine (see the section on line drawing methods in this manual), the
image can be disp layed on any display device.

Since the APPLE II line drawing routines aren't required in a non APPLE II
opp Ii cation, this area of memory may be used for other programs . Addresses
for the start point change as new ver.;ions of A2-3Dl are released, but you con
find the start of the line drawer in memory by looking for the following
sequence of bytes:

3, c, 30, C0, 6, 18, 60 hex repeated o~er and over again.

This is the line drawer's mask table and anything from this point on may be
eliminated. Remember not to use any of the APPLE II line drawer commands
(commands that dent generate output array entries) as these will call the APPLE 11
line drawer that no longer exists.

54

LINE DRAWING METHODS

The outpt!t array generated by the 3D-to-2D converter in the A2-3D l package
consists of start and end points of lines, so a display de vi ce that is capable of

55

drawing lines is requi red to reconstruc t the 20 image. Many display de vices don 't

have this capability due to a leek of hardware or software support by the manufacturer.
This section presents line drawing methods that will reduce this line drawing
requirement down to the ability to plot a point . Software presented in this section
is capable of calculating all the points that need to be turned-on on a screen to
generate any given line.

A Ii ne on o display screen is a series of points that hove been turned on. 0 n
a roster scan bit mop (such as on APPLE II display screen) these points don't line
up perfectly with an ideal line between the two end points because the bit map
is arranged in a square matrix. The closest approximation to the line is generated.
Software is required to determine which of these points should be turned on.

When writing programs that perform line drawing functions it is best to think
of a line as a ratio of X movement to Y movement. A diagonal Ii ne may move one
unit up for every three units across for example. In mathematical terms ~

3Y=X

A computer plot of o line with o simple ratio of 3 to 1 is easy to visualize . The
computer simply starts at the start point of the line, draws three dots across, moves
up one unit, draws three dots across, moves up a unit, and so on, until the end point
is reached. A computer con keep track of when to make the upward movement by
setting up a variable in a program. A one can be subtracted from this variable every
time a move to the right is mode,and an upward movement and the addition of three
to the variable can be performed during an upward movement. This variable is
called the sum. The computer makes the upward movement when the sum is iess
than or equal to zero. Since the sum is being counted up by three and down by
one in the above case, three times as many horizontal as vertical moves are made~

sum Ii ne dravvi ng action

3 move right and subtract 1 (change in Y) from sum.
2 move right and subtract 1 (change in Y) from sum.
1 move right and subtract 1 (change in Y) from sum.
0 move up and add 3 (change in X) from sum
3 move right and subtract 1

Notice that for every X (right) movement the change in Y is subtracted from the
sum end for every Y(upward) movement the change in X is added to the sum .

A "sum-tracking" algorithm has just been described. This method works with
more complex line ratios cs well. A 15 to 17 ratio, for example, works as wel I

56

as a 3 to 1 ratio. This method only requires simple odds, subtracts end conditional
branches, so it is particularly well suited to assembly language implementations.

The BASIC program .oLfigure 20 shows a simple implementation of the Ii ne
drawer. It con be run in any BASIC and uses terminal input and print-outs for
fami ! iorization purposes.

G90C HD~ LILE GDiEHATGR - - - - - - - -
8903 REL A .'.::ilJM ':LRACKING ALGGRIThl1 IS USLD '.l'C
0906 REL GFJ,i:HA1E ALIJ PIXEL::; .D2'i WEEl'. TWC; KHi~TS.
3909 REL THIS FhOGHAl1 li.IILL ASK :tOri A .START AIW liiD
3912 RE~. POii~T "X 1, 11 Al1D X2, 1211 JUiL WILL PhINT
8915 REL TH:l E~XELS. ONLY II,TEGLRS JJ~E J.J..10\,E.U.
891C HEJ.: Lil1E GF..kE.RJJ'OR - - - - - - - -
0921 PRINT ., ENTEB TEE .SCiiFFh rOILt1' 1. 1, Y1"
8924 INF UT .A 1, Y1
8927 PRii~T .,ENTER THE SCREF:ii POINT 12, Y~ 11

B93C INlUT .X2,Y2
b933 S=O
8936 M:::1
893S N=1
E3942 D=X2-X 'i
894? I.F D<O THEJ, N~ 1
o94b IF D<O THEl1 1.,'b-D
8951 IF D=O TH.21. S--1
C.3954 E=-Y2-Y1
8957 IF E<O THEt. N=-· 1
8960 IF E<O THEI; E----f:
8963 PRINT "PIXEL= ";X1,Y1
896(; IF X 1=}.2 THEN <;OTO 099C
896 ~; L:' .S<O J.'HD; GOJ.O 05:81
8972 X1=X1+:1
897? S=S-E
8970 G010 3St3
8981 Y1=Y1-ti-i
t3984 S=S+D
8987 GO'.iO 8So3
8990 IF Y1=Y2 '.fHE.N GOTO 0921
2993 G010 8S69
8996 REL PROGRA~. EllL

Figure 20. BAS! C line drawing subroutine.

SETTING - UP 3D SCENES

Although points in 3 coordinate space hove a range of 32767 int eger

units in every direction, the actuo! rcmge capability of the dis p! o ; p f"DS :Om

is limited by the viewer's position and direction of view. Since i t is the

world and not the viewer which actually moves, care must be take n to

insure that the world always sta1s inside the 32767 unit limit. Too much

translation and too big a data base si:z.e will cause intege~ o verflow in the

display program. flgure 21 a illustrates this condition. Figure 21 b shows

that rotation can cause integer overflow due to the sq•Jare world boundary.

In most applications, limiting the scene to 10000 units in each d i rection

will allow for good resolution, freedom of movement, and translation as

figure22 illustrates.

lj
Jl 0
l r::i -

.,,_ J
0 If

0 °1
0

U1 J
I/ :L

Larg,e JD scene-1

32767 "world lir;it"

.n

a

0

integer
overflow

32767
world . it

La r ~ e Jr:; s c er. e

57

a) Overflow caused by large
translation and large world
size.

b) 0 verflow caused by ro­
tation and c laroe world
size.

Figure 21 Wor! d size and movement trade-offs .

10000
scene

\

32767
"world limit"

Figure 22 A reasonable movement/world size trade-off.

The simplest way to code a data base is to lay out the desired scene on a

large piece of graph paper. Coordinates can then be loaded into the computer's

memory in the proper format.

CONCLUSION

58

The A2-3D1 program was designed to be easy to use end will add a new dimension

to engineering, architecture, simulation and game programs. The assembly language

version is designed to be as fast-running as possible and trades-off accuracy for speed.

l f you are interested in super precision end don't mind slow projections, our APPLE II

or general 3D Graphics BASIC version wi II augment th is package nicely.

We are interested in hearing about your work in 3D graphics.We constantly try to

improve, debug , and speed-up our 3D to 2D converters,and the more feedback from the

field we get, the better our products will get. Once again, thank you for ordering the

Sublogic A2-3D 1 graphics package .

APPENDIX

S E'CT ID N

59

lBOO Input array
start address

APPENDIX ONE

A2-3Dl MEMORY MAP

7300 Input array
start address

lAFF -·------- 72FF -.--------

A2-3D1 Program

0800 origin ve rs.

0800 - .._ ______ --l

Entry Points (hex)

800 Normal entry
803 High Speed entry
806 Trig entry Sine
809 Trig entry Cosine
BOC Trig argument

6000

A2-3D 1 Program

6000 origin vers.

6000
6003
6006
6009
600C

Normal entry
High Speed entry
Trig entry Sine
Trig entry Cosine
Trig argument

60

APl'ENDIX 2- GRAPHIC PRINCIPLES

A translation, rotation, clipping ar.d projection

algorithlll must be applied to each line submitted to the 3D

to 2D converter program. The details of the four step

proCtSS will no~ be discussed ~

foint Transl&tion

The viewer's location in space is always cor,sidered to

be at O,G,O in 3 coordinate space. ~/hen the program user

specifies a location other than 0,0,0 the points in the data

base are translated and the viewer remains at O,O,O. In

other words, the whole world moves and the viewer re.ma.ins

stationary. Each individual point in the data base has an

.X, Y, and Z translational value added to it. Figure a2-1

illustrates translation.

· Point Rotation

As with translation, it's the world which rotates

around the viewer when point rotation is performed. Through

geometric principles, a 3 x 3 matrix, which when multiplied

by a 3 element vector (a 3D space coordinate) rotates it

about the origin, was derived and is shown in figure a2-2.

This matrix need only be created once per each viewing

direction since it applies to all points for that view.

Sines and cosines of the pitch, lank and heading (the

61

! · '·
r t
i '·

I

I
Z tra;islation

Viewer

+Z

+

Viewer's
pyramid

Figure A2-1. Point translation of a data base

r-

Cos H Cos B
+

-Cos H Sin B i Sin H Cos
+

Sin H Sin p Sin H Sin p
Sin B Cos B

Y • z J = ~ Y z] ~~s
-- -- . -1-

p Sin Bj !cos I -Sin p Cos Bl p

-Sin H Cos B Sin H Sin B (Cos H Cos

+ +
Cos H Sin p Cos H Sin p

Sin B Coe B
·-- ·

n.ere (i' Y' z :J = Transformed (rotated) point.
c1 y z J = Original point.

p = Pltc.ft
B = Bank:
H = Heading

Figure A2-2. The rotational matrix being multiplied
by the original JD space coordinate point
(row vector) yielding the rotated point

62

pl

p~

direction of view) must be computed to generate this matrix.

In the interest of speed, lookup tables are used in the 3D

Licrocomputer Graphics Package (assembly vereiona only).

Line Clipping and Coding

The operation which takes the longest in the 3D

LTaphics program is that of clipping and eliwinating lines

that fall off or partially off the screen. Figure a2-3

illustrates a line in need of clipping. The mathematics of

clipping a line and pushil1£ end points to screen boundaries

are quite simple but deciding which way to push them is ~hat

takes up the time.

63

Pyramid intersection
on the Z=X plane

Pyramid inter
on the Z=-X
plane

Start
Point

Viewer

iewer's :pyramid

+Z

~+X
Figure A2-J. A line in need of clipping

:-. ·~ "

Every line"s start and end points are assigned code

values which indicate which side of the viewing pyra.I:lid the
'

points fall . The viewing pyramid consists of four

intersecting planes whose apex is at the vie\./er's eye. A

pyramid cross section represents the screen onto which

objects are projected. The equations of the four planes

After translation and rotation, a 4 bit code is set up

for each point in space. The four bits indicate:

CO= 1 point to left of -X=Z plane
C1= 1 = point to right of X=Z plane
C2= 1 = roint is above the Y=Z plane
C3= 1 = J.X)int is below the -Y=Z plane

If a point"s code is all zeros, the point is within

the viewing pyramid. If it has some ones in it, it is off

the screEn but may represent a line which intersects the

scre€n. The line's start and end point's codes are compared

to check if the line is off the screen. One sure off-screen

test is to see if the start and end points are off the

scre€n in the same direction (both to the right of the

screen fer example). By simply 11 anding11 the two codes, any

common off-sides condition can be found.

It is not always this easy however. Suppose the start

64

point is to the left of the screen and the end point is to

the right. In this case, the coaes are 1000 and 01CC. The

11 and" of the codes is 0000 which means the line might be on

the screen .rartially. The 1000 code indicates that the

start point is to the left of the screen and must be pushed

right while the 0100 code means the end point is too far to

the right and must be pushed left. The push mathematics are

:performeo for the right push:

k=(z(a)+x~al)/>x(a)-x(b)-z(b)+z(a))

;>~i~~~~<~ =~'~n~~~:~ .
z(a =-x(a)

and for the left push:

k=(z(a)-x}a~)/>x(b)-x(a)-z(b)+z(a))

~>~J~~=~~(~~=~(:B:~l:~
z~a =x(a)

and the line is ready to be projected onto the screen.

Essentially the following has been done:

Push
~-... -

Push

Sometimes after one push, it becomes appa.rent that the

line will not intersect the viewine; pyramid after all and

the line must be eli~inated.

65

Projection

After the line has been clipped, the 3D to 2D

perspective projection must be performed. By plotting s}llce

coorcinates X/Z and Y/Z for every point within the viewi11£

i.:.yra.mid, a true perspective image can be generate:d on the

display device. Division by the point's depth (Z) causes

objects in the the distance to appear smaller • .., c.are must be

taken to avoid projectint; points lying at the tase of the

viewing pyramid (X=Y=Z=O) as division by zero will result.

A peint at the base of the wiewing pramid is not definable

because it implies a view of an infinitesimally small point

from a distance of zero (at the viewer's eye).

Integer Graphics

Integer arithmetic is, speed~ise, far superior to

floating point and was thus chosen for the assembly language

3D graphics :package. Double precision 8 bit words are used

for all space coordinates providing a range of 32767 units

in each direction. 1ne boundaries of the 3D scene, however,

should bE less since the viewer's translational offsets will

be added to each point. In order to increase processing

speed, no overflow checking is performed in additions and

multiplications and points which overflow will end up on the

wrong side of the scene resulting in display distortion.

66

APPENDIX J
APPLICATION NOTES - - - PLIGHT SIMULATION

Much of the existing information and many of the
accomplishmente in the JD graphics field are a direct
result of flight simula~ion research. Plight simula­
tion is an ar•a where JD graphics has many advantages
over the real thing. Flight training costs are lowered,
thenie no interference from bad weAther,and there is
no ri~k of crashing.

Pilots using a JD graphics equipped simulator can
learn more about the flight characteristics of an air­
craft L Spins, eteep dives, near crashes and generally
pushing the plane to and beyond its limite are all safe
maneuvers and a pilot can learn what to expeot in any
of these situations.

Hidden line elimination adds very little . to flight
simulation once a viewer is more than a few feet above
the ground. This makes very realistic, fast simulations
possible at a low cost.

67

APPLICATION NOTE - - - cillC"'J"!.ER ART

The SubLogic JD Microcomputer Gra.phica package aakea
a very good computer art tool. It e.£..""l ~ thinge which
would be nearly impossible using str>dard 2D techniquea •
. An . . example or th ie ie the spiral i~ triangle . By ~lacing

-·· a.. t riangle at a great dil5tance and !.lovly approac-tung
it while increasing the bank angle , a very interesting
picture results. Frame erasing betw9'9n frames has been
turned off as figure a illustrates.

· By rotating, superimposing and mov~ in space,
dramatie curved and radially spiraling .iguree are
generated. Very complex figures as well as simple
triangles can be used.

Motion effects are also possible by superimposing
J or 4 frames with different reference !rames.

Film makers can also utilize JD graphics as an
animation aid . Add i tional real ism ie possible since
accurate perspectives are always gene r~ted.

68

f

69
APPLICATION NOTE - - - ARCHITECTURAL DESIGN

Architectural models have bean ueed in the development
of buildings and other atructtirea for centuries. Cemputer
generation of views of buildings, however. is a relatively
recent innovation. eomputer generated projection• offer
a few important advantagee over more conventional modal• •

t. They are leas expensive when implemented with
a microcomputer baaed aystem

2. They are easily constructed and modified

J. The user nae the ability to ob•erve the
scene from between and inside the buildings.

Hidden line elimination is vary beneficial to archi­
tectural projections.

The BASIC version or the microcomputer graphics
package is well suited to architectural deaign graphica.
Taking a few minutes to generate a complex scene ia ac- ·
ceptable and high precision is a must.

·-....

APPLICATION NOTE - - - DRIVING SIMULATICJti

Driver :tr2!.ining is one are-a where very ff!'ff ~~­
si~tione are currently used. The main rea.sa::. ll ~~..r ·
it is not cost effective. A whole !leet of C=ive= ~~~~
ti~ cars cRn be bought for the price of a si;_g2.~
dedie2··t ed JD graphics generator. The microcorrr:-~= · :.­
conj"':lction with the SubLogic JD Microcomputer ~~.:::E
Package can change thie.

3y projecting a training couree on an inei~:'T"t
prcjection television in front of the driver, he •E~
pnctice driving all day with out an instructor. ~:.tt
to~ rising gas and auto prices and droppin~ e~~­
cOE~. this sort of simulation gets even more a-r-:sr":.:""""

M witbl flight simulation, you can do tt~...gs •=-~
a driving simulator which you would never do on a ~·­
A stu1er.t 'I! emergency procedures can be teste6 ty hE"«"~~
ancr!:~~r car pull out in front of him unexpectedly.
DriTer control at high speeds can also be test~t.

APPLICATION NOTE - - - ROOM LAYOUT VISUALIZATION

Using sketches and cardboard cut-outs to visualize
a room layout before moving or buying furniture is help­
ful,but the fiaal result never quite looke like what you
expected it to. The JD microcompute r graphic~ package
can pro j e ct views of ' r oome with t rue pers pective . Once
the data base is in the computer you will be able to
look at a room from any angle and location. Walls and
ceilings can aleo be included in the simulation

APPLICATION NOTE - - - JD GAMES

71

Computer games have always been popular bu~ is seems
that half the microcomputer applications now-a-days involve
a game of some sort. Most of the games involve 2D displays.
Three dimensional graphics can add a whole new dimension to
these games but imagine games like"JD tank" or JD dog-fight.
Two WW 1 aces can be flying in each others data bases. An
actual two playeraerial battle is possible.

IF I REI

APPLICATION NOTE - - - ENGINEERING DRAWING 72

Traditional engineering drawings help an engineer
design and get a good idea of what his finished product
will look like. Typically, three oblique views are pro­
jected (a top, front and side view) and a perspective
JD view is often included. The engineer or draftsman
must do all th~ calculations to determine what the views .Ar~ ~
will be. Th~s amounts to four drawings and a lot of
work. Three dimensional microcomputer graphics can be a
great benefit in the construction of these drawings.

Every engineering graphics student learns about
the two ways to calculate cross sectional views of objects.
There are the standard graphics methods which arnot1ht to
drawing lines from the original to a projection line and
back to another view, and there is the much more accurate
but very difficult analytic method which uses equations
to project lines. The JD graphics package uses the ana­
lytic method resulting in more accurate as well as faster
drawings.

An engineering drawing can be set up using the JD
Microcomputer Graphics Package as followsa

1. The object (machine, architectural structure, road,
bridge, etc.) should be put into a JD data base form
and loaded into computer memory.

2. A telephoto view of the object from a great distance
should be projected. An oblique •iew will result.

J. A top, side and front view, as well as any desired
cross-sectional views should be projected,

4. Finally, a close-up view with a wide angle field
of view can be projected resulting in a dramatic
perspective view.

With a little work and imagination even more impres­
sive things can be done. An interface program can be set
up to take 4 passes through the data base before an object
is projected. Four views at once can then be put on the
screen as figure a shows. The coMputer can do in seconds
what would have taken a draftsman hours. Needless to say,
a high resolution graphics device is very desirable in
this application.

D

~ Ill lll lll Ill Ill 0 J

Figure a. An engineering drawing generated
using JD microcomputer graphics

73

APPENDIX 4 74

MISCELLANEOUS TOPIC - - - ADVANCED GRAPHICS CONCEPTS

Three dimensional wire-frame projections are a very
simple form of computer graphics. More realistic projections
can be generated using more advanced and much more difficult
projection algorithms .

Hidden line elimination is a very desirable feature.
Lines which are blocked by other surfaces in space are
clipped against them or eliminated. The problem with hidden
line elimination is computation time. A number of hidden
line elimination algorithms exist. These algorithms either
compare every line against every surface or use ~nondetermin­
istic methods to look for conflicts and try to resolve them.
Both methods are very time consuming,

A simple line projection program can not easily be con­
verted into a hidden line algorithm program. In hidden line
elimination alg~ritnms, surfaces and planes are dealt with.
A whole different method of representing objects is the re­
sult. Figure a illustrates hidden line elimination.

1) a wire frame object 2) hidden lines removed

Figure a. Hidden line elimination

A number of interesting problems can exist when working
with hidden line and hidden surface situations. Figure b,
for example, shows a condition where two surfaces block
one-another.

Figure b. Hidden surface conflict

I ' O,.. ~

75

Problems like these can be handled by breaking surfaces
into smaller surfaces, but this takes even more computHtion
time. A very good article concerning ten hidden line and
surface algorithms can be found in Computing Surveys mag­
azine, March 1974.

Another advanced graphics techniqu e i s shading.
Surfaces at different angles have different color shades
when projected due to light angle and viewing angle. Shading
adds a very realistic effect to JD pictures when used with
hidden surface elimination.

Shadowing is a difficult task and adds little to
the realism of a picture other than the feeling that light
is striking objects from a certain direction. It is very
interesting to experiment with, however. Figure c shows
shadowing.

Figure c. Shadowing

Atmospheric degradation makes objects fade away as
they get farther away. The effect can be used to simulate
fog or haze.

Specialized hardware which produces JD graphics with
shading, hidden surface elimination, and atmospheric
degradation at the rate of JO frames per second currently
exists but is very expensive. Instead of having a subroutine
perform a function, this equipment hae a logic card perform
the function.

I

76

NISCELLAhEOUS TOPIC - - - GfiOUND TEXTURE

Dynamic 3D fraphics is very useful in flight and
c.riving simulations. The technique of grouna texture
reneration can l::>€ used to dramatica]Jy increase the realism
and enhance the user's -abi lity t o t ell wbere and how he i s
moving in space. By , laying out a grid on the ground in t.he
jD scene, an illusion of a solid ground surface is creatt:d
(see figure a).

,.

Figure a. A runway and a gro~nd grid

hotice tlie difference in the final result on the screens of
figure b. The orientation of the runway is .much clearer
when the ground grid is present, not to .mention the more
dral':\B.tic look. Perspective is also ILore obvious.

1) the runway 2) the runway with
ground texture

Fig1.1re b. The difference ground texture makes

A ground grid provides a good vertical and horizontal
movement queue also. At large distances from the airport,
aircraft movement can tie sensed as you fly over the crid
lines. Additional realism is created by the creation 01~ a
"horizon" at the end of the grid. This is something
everyone is used to seeing and can judge ba.nk by.

.. . ;,

MISCELLANEOUS TOPIC - - - DYNAMIC DATA BASES 77

There ie no reaeon why the data baee or ecene which
will be projected must remain static. In many applications
a moving object in a scene ie desirable.

A driving simulation is a good example o! the uee of
a dynami c data bae e . Other care, on the road should be
able to move, dar t out in front of you and cut you off
just like they do in real life.

There are two ways to create a dynamic data baee,
One is by actually manipulating the data base values with
a user written subroutine. Values can be added and sub­
tracted from every coordinate point. Using Giff erent ref­
erence frames is another way to make objects move. Actually.
both methods are the same. Using another reference frame
lets the JD to 2D converter add and subtract the of fsete
for you.

MISCELLANEOUS TOPIC - - - GENERATING DATA BASES

Laying out a JD scene on a large sheet of graph paper
ie a hard way to generate a JD data base. If many data
base• are going to be used, it may be worth while to have
your computer help you with the task of generating them.
There are a !ew aethods ranging from very expensive to
no cost at all which can be used. .

A data tablet can be used to specify lines in JD space.
Just drawing the lines on the tablet will automatically
calculate JD epace coordinates and enter them in the data
base. Data tablets are very expensive.

A joystick arrangement is just as versatile as the
data tablet. By directing a scene-drawing cursor with the
joyetick a JD da~a base can be entered.

The least erpensive method,which anyone can use,
consists of a keyboard controlled relative movement
program. Instead of entering every point in the JD data
base, the user s~cifiee wherein space the next point should
be, relative to the last. Commands such as +JOI would
generate array er.tries corre5ponding to the absolute location.
To initially start the cursor or to start a new start . point,
an absolute command such aa A 25,1050,JS could be used
to specify the I.Y and Z values.

MISCELLANEOUS TOPIC - - - INDEPENDENT REFERENCE FRAMES
AND THE HORIZON LINE

78

The JD to 2D converter subroutine can be used to
handle many different input arrays in a single program.
A ground grid array can be transformed followed by an
airport array and so on . . :~~is br i nge up t he possibili t y
of not only transforming arrays eeperately , but differently
as well. By changing viewer• s information and creating
new transformation arrays between JD to 2D conversions ,
objects in different reference frames can be generated.
Take a driving aimulation as an example. Yo~ may wish te
project the view out the windshield. The view of the
world will depend on X, Y and Z viewer location but the
hood of the car will always be right out in front of the
viewer. By setting up two data bases, one for the car and
one for the world, and using two reference frames, two
arrays can be transformed into the desired image.

By having a separate reference frame with a 180
degree heading, and a very small screen width pa-rameter.,
and wit~ a little biasing, a rear view mirror could even
be set up!

A very good use for the variable reference frame ie
in horizon line generation. The edge of a ground grid can
be used as a horizon but it is not •n accurate horizon.
First of all, it does not represent the true location at
infinity where the horizon should be. The closer you get
to the horizon (ground grid edge) the worse the the dis­
tortion becomes (see figure a)

viewer - ground grid

small angular horizon error

' edge -true horizon at -

viewer ~e j.~~_ge angular horizon error

' ground grid edge true horizon at CllD

Figure a. Horizon error

A better horizon can be generated by putting a square
boundary around the edge of the horizon data base and
transforming it eeperately. When transforming, however,
the viewer's location should be set to 0,0,0 and only
rotation (P,B and H) should be performed. The result will
be a true horizon which you can never fly up to or over.

' ' ·" '

79

MISCELLANEOUS TOPIC - - - TRANSFORMATION MATRIX DERIVATION

The 30 graphics program "rotates the world" by multiplying each point in
the data base by o transformation matrix, as described in the graphics principlei
section. This transformation matrix is actually a concatenation of three mctriciea,
These matricies would rotate the world about the X, Y, and Z oxes if applied
seperctely. The concatenated matrix performs all three rotations simultaneously.
The order of matrix concatenation is very important. In the 3D graphics package
the heading matrix, pitch matrix, and final I)" the bank matrix are applied,

The matrix concatenation mathematics will now be shown.

The following symbols will be used:

SP= Sine (Pitch)
SB= Sine (Bank)
SH= Sine (Heading)

The pitch matrix "P" is:

The bank matrix 11 811 is:

The heading matrix "H" is:

H = r~:
Concatenating the P and B motricies:

L CB -SB
-SOP] PB = SBCP CBCP =

SPSB SPCB CP

CP= Cosine (Pitch}
CB= Cosine (Bank)
CH=Cosine JHeading)

0
CP
SP

-SB
CB
0

0
I
0

G

·o j
-SP
CP

n
s~J
CH

0
CP
SP -~~ x

CP

~CB -SB ol
SB CB oj
0 0 1J

Concatenating the H and PB motricies results in the final transformation matrix "T':

CH B + -CHSB + SHC
HSPSB SHSPCB

[CH
0 SH~ ~CB -Sf T = HPB p I C:BC:P I 8:[J

-~H 1 0 X SSCP C&O = =
SBSH + lcHCPI 0 CH SPSS SPQ
CHS PCB

This is the some transformation shown in the graphics principles section.

-f !
,. !

-~ !
r_;. :

...

i'
I

I

APPENDIX FIVE

TAPE LOADING PROCEDURE

... ,- .• <; ••

The A2-3D1 program comes on a standard APPLE Ii format tape . This
tape may be read usit"9 the standard loader in the APPLE 1s monitor using c
"R" command.

The tape loads from location 800 hex to 2FFF hex. There ore actually
two copies of the program that load. The 800 hex orig in copy loaels at its
actual location, and the 6000 origin copy loads from lCOO to 2EFF. The
two areas from 1800 to 1Bff and 2FOO to 2FFF contain the test cube data base.
The 6000 origin copy must of course be moved(using the APPLE 11 's move
command)to memory location 6000 to 73FF hex before use. After the load

the memo] looks like this:
2FFF
2F 00 Test cube i npvt array
2EFF

i:~J ;:~c::: ~=~~ ::~:Dl
lAFF
0800 800 origin A2-3Dl

Use this command to move the 6000 origin version to 6000 hex:

*6000-:1C00.2FFFM

Use this command to initially load the tape:

*800.2FFFR

Consult the APPLE II REFERENCE MANUAL for tape recorder volume settings
and loading methods for cassette tapes.

The tape contains two copies of the above-mentioned programs. The first

80

copy is near the beginning of side one of the tape. The second copy is approximately
a minute away from the first copy.

There are other programs and subroutines on the tape as well. The load and go
manual for this pock~e tells where they are and how they can be used. These are
mostly BASIC programs.

~.•'.'' P-'
t
L

APPENDIX SI X

USING THE INTERNAL TRIG FUNCTIONS

Control prog rams that mo ve o viewe r throug h space often require t rig
functions . BAS! C trig functions ore so slow, however, that one conn't
seriously consider using them in a real-time simulation application. The
A2-3D 1 high performance trig generation routines may be used to lookup
sine and cosine functions to so lve this problem .

~

The A2-3D1 1s sine and cosine generator can generate a 16-bit sine
or cosine in approximately 50 us. (20, 000 cosines per second). This
generator is table-driven.

Angles given to the sil'\i{/cosine generator must be in 11pseuclodegrees 11 •

A pseuclodegree is defined as 1 .40625 regular degrees. There ore 256
pseuclodegrees in a circle. The angle may therefore be expressed in one
byte.

INPUT: The angle in pseudodegrees should be poked into memory location
2060 decimal (BOC hex}. Pseudodegrees are oriented exacly the
same way as regular degrees, but there are only 256 of them instead
of 360.

CALL: For sine generation the routine at 806 hex should be used. A BASIC
CALL 2054 will perfonn a sine function .
For cosine generation, the routine at 809 hex should be used. A BASIC
CALL 2057 wi II generate the cosine function ,

OUTPlJT: A 16-bit result will appear in byte-swapped order ct location
~OC, 800 hex in memory (2060,2061 decimal). The result is
expressed in standard fractional notation, The 16-bit value will
range from -32768 to 32767 thereby represent values from -1. 0 to
. 99997. The value 25323 would therefore be equi,valent to~

2s323;32?68 =I. 77281

Pseuclodegrees are quite coarse, but very good approximations of half
pseudodegrees and even quarter pseudodegrees are obtainable through linear
interpolation. A circle with 512 or 1024 divisions is fine enough for almost
any graphics application, and the trig generator is so fast that looking up two
values wastes nearly no time at all.

81

~ ,\·) · ..

APPENDIX SEVEN

PROGRAM FAMILIARIZATION

The user is referred to the A2-3D 1 lood ond go manua l for program
familiarization purposes.

82

83

APPENDIX EIGHT

MULTIPLIER AND DIVIDER PATCH POlNTS

The A2- 3D 1 gr~hics program is very heavil y multiply and divide weighted .
Significant speedups can be obtained throUCJh the use of a high performance multiplier
or divider unit. The AMD 9511 or the TRW MPY 16 AJ are two chips that work
well in this application. No high performance chips have been tried on the APPLE II
at Sublogic Co . at this time, but if you have one on your system you may wish to
give it a try. "

There are two main problems in interfaci1"9 external hardware or software
multipliers to the A2-3Dl pack<>Je. Entry points may change as new versions
are released, and each routine has many different entry Points that are used in
different ways. The following discussion will attempt to overcome these problems.

MULTIPLY ROUTINES: There are Qctually two multiplier routines in the A2-3D-1
program. One is a large 16 x 16 signed twos complement multiplier, and the other
is a small, fast Sx 8 multiplier. The 16 x 16 multiplier has many entries, but they
all end up going to one routine called MULT. This routine multiplies MPYER by
MCAND and leaves a 16-bit most significant bit result in registers X(msb) and
A (lsb). The addresses are:

MCAND = 7 A, 78 byte swq:>ped
MPYER = 78, 79 byte swapped
RESULT = %X, %A {% signifies register)(%X=msb, %A=lsb)

The multiply should be arranged so that fractionals times integers yield cc;>rrect
results. In other words, 32767 x 32767 should equal approximately 32767.
Likewise, 32767 x -32768 should yield approximately -32767. You may have to
write a small overflow saturation routine to prevent the generation of a wro1"9
answer when multiplyifl1 fuft scale negative by full scale negative numbers;
mainly -:-32768 x -32768. This combination should saturate to 32767.

The current MULT address is CB47, but this constantly changes. Find it by
looking for the instructions A5,79,45,7B. The address with the A5 is MULT's
address. MULT goes all the way to the RTS (60) about 1 OB bytes later. You can see
exactly what MULT does by disassembling it. There should be enough room in this
quarter K area for your chip's interface program.

The small multiplier is at address 1 OC3 (approximately). It begins with 49, FF, 85, 78.
This routine perfonns % Ax %X = %A where % signifies register. Again, these ore
fractional multip lies and 7F x 7F should equal c:ix>ut 7F.

In replacing either multiply routine you must be careful not to disturb any registers
or zero page variables . If you do, restore them before you exit your routine.

$ '

DIV! DE ROUTINE: The divide subroutine resides at about C53 and begins
with 09, 00, 30. This routine perfomis the followi~ action:

O(oA, 0/oX / MCAND = MPYER

where %A is the -most significant and %X is the least signi fttcirit half of a
16-bit number. MCAND and MPYER have the same addresses end byte-sw~ped
charocteristi cs as they did in the do_uble precision rnultiplier section. Note that
the significance of %X and %A is reversed in the multiply and the divide routine.
In the multiply %X is most significant, while %A is most significant in the divide.
The end of the divide routine is at about CE2 and is an RTS (60finstruction.

The divide handles fractionals in the same way as the multipliers, only in
reverse. The_ f~llowi~ results should be obtained by your divider substitute:.

32767 / 32767 = 32767 (decimal calculations)
t 2345/23485 = 17224
-125/589 = -6954

Basically, its like doi~ a division on your calculator and multiplyi~ the
fractional result by 32767.

The A2-3D 1 program is setup so that the top of the fraction wi II never exceed
the bottom. The result should therefore always be less than or equal to 32767,
and will therefore never cause a 2-byte overflow problem.

IMPLEMENTATION: Its a good idea to disassemble the code at the locations to

84

fin;t find the subroutine, then to see how it works. Remember -to leave the registers
and zero pc:Jde intact, and not to overwrite any routines other than the ones you are
reploci03. Also, it is wise to replace these routines in a step-by-step process. Dorft.
replace them aft at once, run the program, and hope it works.

We are interested in heori~ about your custom applications. Performance
figures are particularly desirable since we have oo idea how fast one of the new
high performance chips will make the 3D program run (other than our feeiiOd that
the 3D conversion process is about 80'/o multiply/divide weighted).

lmplementi~ these patches on an APPLE Ii, usirg the standard Sublogic
APPLE II screen driver, will probably double the projection rote at best. This is
because line drawi~ . (which requires oo multiplies or divides) presently takes
nearly half the image generation time.

