
lJ. 21862

APPLE®
INTERFACING
JONATHAN A. TITUS DAVI D G. LARSEN

CHRISTOPHER A. TITUS ,.

lj DI .ll,_ILC:.DUDP.! CONTINUING EDUCATION SERIES"'
IJWllL.11.:Jll 11� edited by Larsen, Titus & Titus

.

r

L

Tha Blacksburg Continuing Educ"lk;n SeriesTM of books prnvide " lciborntory-or experimenl

o:idented approach la eledronic lopico. l'resen·r and forthcoming !i!les in !his series i11dude:

® Advanced 6502 lnterfodng

@ Analog I nsl'rumenh:ltio11 Fundcmumtols

G Apple I 11terfodng

$ Basic Busines,s SoHwal'e

"' BASIC Programmer's Notebook
"' Circuit Design Programs for the Apple II

© Circuit Design Programs for the TRS-80

'ii Dedgn of Active filters, With hperimenh

® Design of Op�Amp CircuHsf V/Hh Experimenfa

® Design of Phase-lodrncl loop Circuits, Wilh Experiments

@ Design of Trcmsisior Circuitsf Vv'Hh Expedm@mis

Design of VMOS Circuits, Wit!i Experimen·rs
® 80SO/ll085 Soflwarn Design (2 Volumes)

"' S085A CookbMk

e Eledronic Music Circuits

'1l 555 Time,· ApplicoHons Soureebook, With Expecim&nls

9 Guide lo CMOS Basics, Circuit•, & Experiments

8 How lo Program and lnlerfoce the 6800

"' Introduction lo f-ORTH

® f.Aicroeomputer-Analog Converter So Hwa re and Hardware I nterfaeing

1:i> Microcompu!&r lnlerfodng Willi the 8255 Pl'I Chip

@ fv\icrocomputer Design and Mcdnlencrnce

" NCR Basic Eledreinies Course, With E::periments
® NCR Data Ccmmunkotion� Corie:epts

9 NCR Data Precessing Concepts Course

<ii NCR EDP Concepts Co<Jrs<>
PET lnlerfodng

® P�·cgn:miming oind interfoicing ¥he 6502, V"'Hh Experiments

� 16-Bit Mieroproces�ors

6502 Software Design

® 6801, 68701, and 6803 Microc<1mputer Programming ond I nlerfocing

® The 68000: Principles and Programming
Ill 6809 Microtomputer Progn::irmY1ing & [n·rerfadng, With Experimeni�

"' TEA: A" 8080/8085 Co-Resident Edil·or/ Assembler

"' fl'!S-80 Assembly language Made Simple

® TRS-80 lnterfad11g (2 Volume»)

TRS-80 More Thon BASIC

in most casesf the!G book� provide both f·ext material and expsriments,. which permit one io

demons!rate and "xplore !he concepts Iha!· are covered in the book. These books remain amcmg

the very few that provide step-by-;;tep inshudions concerning how ·fa ieorn basic electronic con

cepts, V.'ire actual drcui'fs, test microcomputer Interfaces, and program computers based on popu

lcr mkroprccessor chips. \A/e have found Hwt the bocks ore very U$eful Yo the electronic riovice

who desires ·i·o join the "eleetrcnics rev©lutlori/1 Vfith minimum time and efforL

Jonathan Titus, Christopher A. Titus, ond David G. larsen
"The Blacksburg Gnwp"

Bug symbol trademark NanoYrnn, Inc.,. Blacksburg, VA 2406-0

APPLE®

INTERFACING

by

Jonathan A. Titus, David G. Larsen, and

Christopher A. Titus

Howard W. Sams & Co.; Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

r

Copyright© 1981 by Jonathan A. Titus, Christopher A.
Titus, and David G. Larsen

FIRST EDITION

SECOND PflINTING-1982

AH rights reserved. No part of this book shall be
Ho1uHJu11'""u. stored in a retrieval system, or transmitted

any means, electronic, mechanical, photocopying,

recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
'Nhile every precaution has been taken in the
preparation of this book, the publisher assumes no

for errors or omissions. Neither is any
liability assmned for damages resulting from the use
of the info1·mation contained herein.

International Standard Book Number: 0-672-21862-3
Library of Congress Catalog Card Number: 81-84282

Edited by: Bob Manville
1llustrated by: Jill E. Martin

Printed in the United States of America.

Preface

The purpose in writing this book is to introduce you to the signals
within the Apple®"' II computer and to show you how these signals
can be used to control external devices under the control of BASIC
language programs. A general-purpose computer interface bread
board has been developed to speed your circuit design and testing
so that you can easily perform the many interesting experiments that
are included in the book. By using a design system such as the one
described in this book, you will spend your time concentrating on
the ·principles involved, rather than troubleshooting your circuits.
However, you will have the opportunity to build and test many digi
tal circuits, as well as circuits that use digital-to-analog and analog
to-digital converters.

We have chosen to use the Apple II computer with 16K of read/
write memory, and the Applesoft™t BASIC interpreter program.
This software provides a great deal of flexibility and it is worth hav
ing it available when you are using external interface circuits. The
Applesoft BASIC interpreter has two general-purpose commands
that can be used to transfer information to and from the computer.
These instructions are easily mastered, without requiring a detailed
understanding of the 6502 microprocessor integrated circuit (IC)
that is used as the "heart" of the Apple.

First we will introduce you to the control signals that are available
from the Apple computer for interfacing, and we will show you how
they are used. Some of the signals will not be described, since they
are generally not used in interface circuits, and are meant to be used
by special interface devices that are manufactured commercially.

Our next step is to show you how the Apple can identify or address
external devices through the use of two general-purpose instructions,
PEEK and POKE. These commands are central to the control of ex
ternal devices; we spend some time covering their operation and the
use of a variety of circuits that can be used to identify specific input/
output, or I/O devices. You will also see how the Apple can transfer
information to and from external devices over the bidirectional data

"Apple and Apple II are registered trademarks of Apple Computer, Inc.
f Applesoft is a trademark of Apple Computer, Inc.

1.

�"'-----�- �

bus; the basic circuits used for input ports and output ports are de
scribed in detaiL Real circuits are provided, so that you can quickly
use the many examples in designing your own interface devices.

You will also see the power of BASIC-language programs-as the
data is processed within the computer to provide meaningful results.
Simple control programs are provided to show you how BASIC-lan
guage programs and I/0 devices can interact. You will be able to
write simple control and data processing programs to go along with
your I/0 ports and devices.

Since the computer is not always synchronized to external devices,
there must be some interaction between the computer and the vari
ous I/ 0 devices so that each knows when the other is ready for some
appropriate action. This leads us to the topic of flags-those signals
that are used by the computer and by external I/0 devices to allow
information to be transferred in an orderly fashion. Since flags are
important, we spend some time on them and on the corresponding
circuits that are actually used in external devices. Software is covered
too, since the flag circuits are useless unless they can be sensed by a
control program.

We have assumed that you have a fairly good understanding of the
commands in Applesoft BASIC. If you are just getting started with
the Apple computer, we hope that you will take some time to review
the simple commands, such as FOR, GOTO, IF ... THEN, PRINT,
and INPUT. Other commands will be introduced in the text and ex
periments, and we will provide the details of their operation. At the
end of this book, the use of these and other commands should be
second-nature.

In Chapter 6, we have provided 16 detailed, step-by-step experi
ments that you can perform to reinforce the many interfacing prin
ciples that have been developed in the text. You will also see the
power of BASIC-language programs for interface control and for
actually processing the information that is involved in transfers to
and from I/ 0 devices. We have made an effort to cover a broad spec
trum of interesting interface applications. Throughout the experi
ments, you will see that the same basic principles apply to all of the
interface circuits, from the simplest to the most complex.

We realize that it is difficult to write a book like this for an audi
ence that has a wide range of backgrounds, from the beginner to the
advanced user, Thus, we have chosen to start at some middle point.
We have chosen to skip basic binary numbering, decimal-to-binary
conversions, basic digital electronics, and breadboarding. These top
ics are covered in detail in other books, and the reader who is in the
middle of our assumed spectrum of readers probably has a good
understanding of these topics. In some places, a paragraph or two of
review material have been provided, just to serve as a refresher. Vve

make no attempt to provide much detail here, simply enough to get
you started.

We have assumed some familiarity with SN7400-family digital in
tegrated circuits, or chips, such as the SN7 402 quad NOR gate and the
SN7475 quad latch chip. Other complex chips will be introduced and
explained in sufficient detail so that you can use them as shown in
the text or experiments. If you wish to use these devices in other
applications, we suggest that you obtain the necessary data sheets
from the manufacturers. The data sheets will provide the necessary
information for a wide variety of uses, and they will also reflect any
basic changes or modifications that may have been made to an "up
dated" device, or one that has been "enhanced" with some special
feature.

The Apple II computer has eight general-purpose 50-conductor
interface connectors in its case. The basic bus signals used in the ex
periments are derived from the signals at these connectors, so if you
decide to design and build some of your own interface circuits that
will be plugged into one of these "slots," you will find the same sig
nals are readily available at the edge connectors. However, there are
also some special-purpose signals that are generated by the Apple to
make the interfacing task somewhat easier. These signals and their
uses are described in detail in Chapter 7. Since the signals are not
general purpose, but are specific to the Apple, and in many cases,
specific to a particular connector, they are described last. To show
you how these signals are used, a simple asynchronous-serial com
munication interface circuit is described, and software to control it
is listed. This type of interface can be used to communicate with
other computers, serial printers, modems, and other interface devices
that use the asynchronous-serial data format.

We have not described assembly-language programming, since
this is a specialized topic and requires a great deal of background.
However, we have provided one simple assembly-language subrou
tine for you to use in several of the experiments. There is a good
reason for including this subroutine; the equivalent function is not
readily available in Applesoft. The function required is the logical
ANDing of 8-bit bytes. The logical AND in Applesoft is simply a true
or-false AND operation, and it cannot be easily used for bit ANDing.
The assembly-language subroutine also provides you with an intro
duction to how such routines can be accessed by a BASIC-language
program. We have chosen to use the more complicated USR (X)
command, rather than the CALL command, since we think that
more will be learned.

We found that there were some limitations to the Apple. For ex
ample, there is no simple "rounding" command that can be used to
round a number to a specific number of decimal digits, for example

4.1986 to 4.20. Likewise, the absence of a bit-by-bit ANDing command
was a limitation that was overcome with an assembly-language rou
tine. We also found that the potentially useful WAIT command that
is used to test individual bits will "hang up" the computer if the con
dition is not found. The computer continues to wait if the condition
is not met, and you must reset the computer to get your program
going again. A color display and nice graphics are available, al
though we used a black/white monitor in our system.

Most of the special purpose chips, such as the analog converters,
have been chosen because of their simplicity, low cost, and avail
ability. This is not meant to be an endorsement of these products. As
your interfacing sophistication increases, you will find other special
purpose devices that can serve the same function, but perhaps with
added features, more resolution, different power supplies, etc. Our
aim is to get you started, and not to provide you with a sourcebook
of every possible interface to the Apple computer system. An impos
sible task in any case.

If you are interested in some additional reading about more ad-
vanced topics, we recommend:

6502 Software Design (21656) .
Programming & Interfacing the 6502, With Experiments (21651).
Microcomputer-Analog Converter So�ware and Hardware Inter-

facing (21540) .

We also recommend TRS-80 Interfacing, Book 2. While written
around the TRS-80 computer, this book details more advanced inter
facing topics such as driving high-current/high-voltage loads, serial
communications, remote control, analog converters, filtering and
data processing, and other interesting topics. You will quickly see
that the similarities between the TRS-80 and Apple are much greater
than their differences. Control signals and BASIC commands are al
most identical. All of the books noted above are available from
Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis,
IN 46268"

The pin configuration figures used in most of the figures, unless
otherwise noted, are provided through the courtesy of Texas Instru
ments, Incorporated. The names Apple and Applesoft are trade
marks of Apple Computer, Inc., Cupertino, CA The name TRS-80
is a registered trademark of Radio Shack.

We hope that you enjoy this book, and that it leads you to design
and build some interface circuits of your own.

JONATHAN A. TITUS, C:aRISTOPHER A. Trrus and DAVID G. LARSEN
"The Blacksburg Group"

Contents

CHAPTER 1

6502 PROCESSOR

Memory-Input/Output (1/0) Devices-Software 1/0 Control In
structions

CHAPTER 2

APPLE INTERFACING .

1/0 Device Address Decoding-Device Addressing

CHAPTER 3

1/0 DEVICE INTERFACING .

Output Ports-Input Ports

CHAPTER 4

FLAGS AND DECISIONS .

1/0 Device Synchronization-Logical Operations and Flags-Flag
Detecting Software-Assembly-Language Logical Operations-Com
plex Flags-Flag Circuits-Multiple Flags-Interrupts-Final Words

CHAPTER S

BREADBOARDING WITH TIIE APPLE

Basic Breadboard-Connections to the Apple-Other Considerations

9

26

44

57

69

CHAPTER 6

APPLE INTERFACE EXPERIMENTS .

Introduction to the Experiments-Use of the Logic Probe-Use of the
Device Address Decoder-Using Device Select Pulses-Constructing
an Input Port-Multibyte Input Ports-Input Port Applications-In
put Port Applications (11)-Constructing an Output Port-Output
Port and Input Port Interactions-Data Logging and Display-Simple
Digital-to-Analog Converter-Output Ports, BCD and Binary Codes
-Output Ports Traffic Light Controller-Logic-Device Tester-Sim
ple Flag Circuits-A Simple Analog-to-Digital Converter

CHAPTER 7

86

ON THE Bus . 164

Interface Control Signals-An Interfacing Example

APPENDIX A

LOGIC FUNCTIONS • . 180

APPENDIX B

PARTS REQUIBED FOR THE EXPERIMENTS . 183

APPENDIX C

6502 MICROPROCESSOR TECHNICAL DATA . 185

APPENDIX D

APPLE INTERFACE BREADBOARD p ARTS . . 195

APPENDIX E

PRINTED-Cmcurr BoARD ARTWORK . . 197

INDEX . 203

CHAPTER 1

6502 Processor

The Apple II® (Apple®) computer system by Apple Computer,
Inc., uses the 6502-type of microprocessor integrated circuit. This
"chip" forms the heart of the central processing unit (CPU) of the
computer, the place where the actual mathematical, logical, decision
making, and other operations take place. The 6502-type microproces
sor chip is manufactured by MOS Technology (Norristown, PA
19401) , Rockwell International (Anaheim, CA 92803) and Synertek
Corporation (Santa Clara, CA 95051) .

The 6502 is an 8-bit processor. 'Oius, all of the mathematical, logi
cal, data transfer, input and output operations operate on eight
binary bits at a time. Each bit, of course, can be either a logic one
or a logic zero. The 6502 uses an 8-bit data bus to transfer informa
tion between itself and various memory locations and input/ output
(I/ 0) devices such as a keyboard, printer, etc. In cases where the
value of the information exceeds the limit of eight bits, multiples of
8-bit data words are used. Each 8-bit data word is generally referred
to as a byte.

You should realize that the maximum value that can be expressed
with eight bits is lllllllh or 25510• If larger values are to be oper
ated on in an 8-bit computer system, then multibyte operations are
required. Generally, this means that corresponding data bytes in two
data words are operated on, followed by the operation being per
formed on the next corresponding set of bytes in the. large data
words. In this way large values, beyond the value of 255, may be
readily processed. It is important to remember, though, that the

Apple and App
_
le II are registered trademarks of Apple Computer, Inc.

9

Apple CPU can only process and transfer eight bits or one byte at a
time.

The 6502 uses a single set of eight pins to make the connection
with the data bus in the computer. This data bus is used to transfer
information both to and from the computer. This type of a bus is
called bidirectional, since it allows information to flow in two dif
ferent directions. This is much like a highway that is used to allow
vehicles to drive one way in the morning and to allow vehicles to
travel in the opposite direction in the evening.

The 6502 generates control signals on the integrated circuit that
are used both internally and externally to supervise and manage the
flow of information on the bus, in one direction at a time. VV e will
explore the generation and use of these signals later in this book.

All computer systems have some memory associated with them. In
general, the memory is used to store both a program that will control
the operation of the computer, as well as the information that is to
be processed. In the 6502 computer, each memory location can be
used to store eight bits of information, or one byte of data. Most
memories consist of multiples of these one-byte storage locations,
generally in multiples of 1024, abbreviated lK.

The memory locations must be addressed in some way so that the
computer knows exactly where it is to store data or obtain program
step information. The 6502 microprocessor chip has 16 address out-

allowing it to specify any one of 216 or 65,536 memory locations,
each of which can contain one byte. This is often shortened to 64K,
indicating that 64K bytes of information can be addressed. In almost
all microcomputer memory systems, each memory location is
uniquely addressed with a 16-bit address.

The address bus lines are labeled AO through Al5, corresponding
to the least-significant bit (LSB) through i:he most-significant bit
(MSB), respectively. The LSB and MSB can both be either a logic
one or a logic zero, but their position gives the LSB a value of zero
or one and the MSB a value of zero or 32,768. Since the 6502 is an
8-bit processor, the address lines are frequently
of eight lines each, A7-AO and Al5-A8. The lines are referred
to as the low or LO address, while lines Al5-A8 are referred to as the
high or HI address. In many 6502-based computers, the HI address
is also called the page since the memory may be
divided into 256 pages, with 256 bytes per page. The uses of the
dress bus will be explored further when software i:nsh·uctions are dis-

and when interface circuits Unlike the data

vss 1 40 RES
ROY 2 39 <I>2(0UT)

<I>1(0UT) 3 38 s.o.
IRQ 4 37 <I>o(IN)
N.C. 5 36 N.C.
NMI 6 35 N.C.

SYNC 7 34 RtW
vcc 8 33 DO

AO 9 32 01
Fig. 1- 1. 6502 Microprocessor chip Al 10 31 02

pin configuration. A2 11 30 03
A3 12 29 04
A4 13 28 05
AS 14 27 06
A6 15 26 07
A7 16 25 A15
A8 17 24 A14
A9 18 23 A13

AlO 19 22 A12
All 20 21 vss

in only one direction, from the CPU to the memory and to external
devices.

The pin configuration of the 6502 is shown in Fig. 1-1. Although
most of the other signals may be meaningless to you now, you should
be able to identify the 8 data bus input/ output pins and the 16
address output pins.

Since the memory section is being discussed, there are two basic
types of memory devices used in microcomputer systems. They are:

1. Read/Write-Read/Write (R/W) memory is used for the stor
age of data that will be changed or updated. The computer
must be able to place the information in a memory location and
then be able to read it back. Programs that will change are also
stored in R/W memory for the same reason. The lowest cost
Apple computer contains 16,384 or 16K bytes of R/W memory.

2. Read-Only-Read-only memory (ROM) is used when data val
ues and program steps will not be altered. The BASIC inter
preter program in your Apple system is contained in read-only
memory chips. The Apple BASIC interpreter is stored in 12K
of ROM.

There are various sub-classes of these types of memory devices.
The R/W memories may be either static or dynamic. Static memory
chips will maintain the values stored in them until they are changed.
Dynamic memories require refreshing by external hardware every
few milliseconds or they will "forget" or lose the data stored in
them. The R/W memories in the Apple are dynamic, with the neces-

1 1

sary refreshing circuitry contained on the computer printed-circuit
board.

There are many types of read-only memories. The various types
are generally all static, the differences occurring in the means of stor
ing the 8-bit values in the memory locations. The two most important
types are mask-programmed and field-programmed. The mask-pro
grammed devices have data values, program steps, etc., stored in
them during the various manufacturing steps. They are generally re
ferred to as ROMs. The field-programmable devices require some
kind of special programming circuitry to store the logic ones and
zeros in the various locations. Some of the field programmable
ROMs, or PROMs, as they are generally called, can be erased under
high-intensity ultraviolet light. They can then be reprogrammed.
This is very useful when programs are being developed that will be
stored in read-only memory. It does not require the development of
masks and chips-an expensive process-each time a program bug is
found or a change is made.

A few final words are required about semiconductor memory de
vices. The read-write devices are volatile, since data (your program
and values) will "evaporate" or disappear when power is removed
from the system. The read-only memories, on the other hand, are
considered to be nonvolatile, since they will maintain the data or
program steps (the BASIC interpreter) when the power has been
removed.

Most memory integrated-circuit packages or chips do not have all
16 of the address lines connected to them. They have only enough
address connections to uniquely address the memory locations within
the individual chip. Thus, a 64-byte chip, small by standards of to
day, would only have 6 address line inputs while a 1024 (lK) byte
memory chip would have 10 address line inputs. Memory chips such
as these have an additional control or chip-enable input that allows
banks or groups of the chips to be selected, one set at a time. Various
decoding and selecting circuits may be used, thus allowing a 32K
block of memory to be constructed from 64-byte or lK byte chips,
or even combinations of the two. The main point here is that the
memory chips do not require all 16 address lines to be connected
directly to them, although some combination of all 16 address bits
will be used to uniquely select one byte. You should not be confused
when you are confronted with a lK X 4 bit memory that only has
10 address inputs and a chip enable input. This concept will be de
veloped further as you study input/ output data transfers.

One control signal is generated by the 6502 processor chip to con
trol the flow of information on the data bus. This signal is noted as
READ/WRITE, or more simply, R/W. Whenever a read, or a write,
operation is to take place, the 6502 must specify a Hl-bit address to

locate the memory "cell" that is to be involved in the transfer. In this
case, the cell is an 8-bit word or byte.

The "bar" over part of the signal notation indicates that when the
signal is a logic zero, a write operation is taking place; and when in
the logic one state, a read operation is taking place. Thus, a single
line controls all of the memory functions. In some 6502-based com
puter systems and peripherals, you may see the signal "split," t�o
vide two memory control signals, memory read (MEMR or MR) ,
and memory write (MEMW or MW). This takes some additional
gating, so in most cases, the R/W signal is used by itself. It is avail
able at pin 34 on the 6502 microprocessor chip.

You may also see the notation RAM used to incorrectly signify
read/write memory. The acronym RAM stands for random-access
memory. In fact, all of the modern, easy-to-use memory devices are
random access, since one may address one location and then any
other, without having to sequence through all of the locations be
tween the two addresses.

Pin configurations for typical memory chips have been provided
in Fig. 1-2.

For additional information about memory devices, we refer you to

• Intel Memory Design Handbook, Intel Corporation, Santa
Clara, CA 95051, 1975.

PIN CONFIGURATION

M2708

PIN NAMES
Ao·A9 ADDRESS INPUTS

24

01-0e DATA OUTPUTS/INPUTS

Vee

As

Ag Ill

Vee

CS/WE

\\Jo

PROGRAM

Os

05

04

03

CS/WE CHIP SELECT/WRITE ENABLE INPUT

As
A5
A4
A3
Ao
A1
A1
cs

GND

PIN CONFIGURATION LOGIC SYMBOL

1 18 Vee
Ao

2 17 Ai
A1 1101

3 16 As
Az

4 2114 15 Ag A3
1102 A4

5 14 1101 A5
6 13 1102 1/03
7 12 1/03 As

8 11 1/04 Ai 1/04
9 10 WE

As
A9 WE cs

PIN NAMES
Ao-A9 ADDRESS INPUTS Vee POWER (+5V)

WE WRITE ENABLE GND GROUND

cs CHIP SELECT

1101-1/04 DATA INPUT/OUTPUT

Fig. 1·2. Pin configuration for 2708 lK X 8 PROM and 2 1 14 lK X

4 R/W memory.

13

® The 8080A/9080A MOS Microprocessor Handbook, Advanced
Micro Devices, Inc., Sunnyvale, CA 94086, 1977.

® Mostek Memory Products Catalog, Mostek Corporation, Car
rollton, TX 75006, 1977.

© Bipolar and CMOS Memory Data Book, Harris Semiconductor
Prod. Div., Melbourne, FL 32901, 1978.

!NPUU / OIJlPIJT (! / 0) DEVICES

Most microcomputer-based systems are worthless without some
attached I/0 devices. These devices may be standard peripherals,
such as card readers, printers, displays, or they may be sensors, con
trollers, and other devices that most people do not normally associate
with computers. The Apple is no exception. It already has several
I/0 devices associated with it: a television display, a cassette re
corder, and a keyboard.

Other I/ 0 devices can be added to your computer. These devices
may be of your own design or they may be standard, commercially
available devices that are compatible with the Apple. These I/ 0
devices are much like the individual memory locations that were dis
cussed in the previous section. The I/ 0 devices are attached to the
data bus, since data is transferred to them and from them, and they
are also connected to the address bus so that they may be uniquely
addressed by the 6502 microprocessor chip.

A control signal, READ/WRITE or R/W, is used to synchronize
the flow of data to and from the I/O devices. This signal is also used
in 6502-based computer systems to control the flow of information
to and from the memory chips. Thus, there is no differentiation be
tween memory addresses and I/ 0 device addresses in 6502-based
computers. In computers that are based upon the 8085- or Z-80-type
microprocessor chips, there are different techniques that are used to
address memory and I/0 devices independently. Since only one syn
chronizing signal is used to control memory and 1/0 devices, the
Apple's 6502 processor will be either reading or writing at all times.
When the R/W signal is a logic one, the 6502 is reading information
from the data bus. When the R/W signal is a logic zero, the 6502 is
writing data to an external I/ 0 device, or to a memory location. The
"bar" over the W simply means that the write operation takes place
when the R/W signal is a logic zero. You may see other signals with
such bars over their names. This simply means that the signals are
active in the logic zero state.

Since we will be concentrating on the use of I/ 0 devices with the
Apple, we have left a great deal of the specific discussion to the re
maining sections.

l <I

IR.,view

At this point, you should understand that the 6502 transfers and
operates on eight bits of data at a time. Complex calculations and
operations often require multiple groups of eight bits or bytes. The
bytes are transferred to and from the 6502 CPU on an 8-bit bus.

DATA iii.IS D7-DO An 8-bit bidirectional set of lines for transfer of
information beiween the CPU and I / 0 devices.

Al1.)DR&:!iS i'IUS A15-AO A 16-bit unidirectional address bus used to ad-
dress both memory and 1/0 devices.

A15-A8 HI address bus, most-sig nifkan1 eight address
bits.

A7-AO LO address bus, least-significant eight address
bits.

cmn11.o� !ilGNAi R /W Read /write control signal.

NOTES: The "bar" notation, i.e., W, indicates a iogic zero is the "'active°' state, the state that
causes the corresponding action to take place.

In each case in which a signal is enumerated1 the numbers increase as the signiflcance of the
bits increases, i.e., A 15 == most-significant address bit (MSB).

The 6502 uses a 16-bit address bus to address individual memory
location and I/ 0 devices. The address bus is frequently broken into
a HI and LO address bus, of eight bits each. Th� single control sig
nal, R/W, controlls the flow of information to and from the 6502 CPU,
The signals and their designations are noted in Table 1-1.

sonw P,RE ! I 0 CONTROIL ifi%]STRIJCT!OIMS

C@mm@nd;;

The Apple computer has a number of instructions that are used to
control I/0 devices. For the most part, though, these instructions are
used to control specific I/0 devices or to perform functions.
Without realizing it, you are already familiar some, if not all,
of these I/ 0 instructions.

Here are some specific examples of these I/ 0 control instructions,
to refresh your memory.

The INPUT and PRINT commands are probably familiar to
The INPUT command causes a BASIC program to stop and wait
an input from the keyboard. The PRINT command causes an answer
or string of characters to be "printed" on the tv screen.

bampie 1-1. A Simpie l{O �'"'!!l'�"'

10 INPUT "VALUE OF)(IS";)(
20 PRINT " INPUT VALUE WAS"; X

15

If you executed the program in Example 1-1, the value associated
with the variable, X, would have to be entered into the computer
before the program passed control to statement 20. These two types
of I/ 0 statements are frequently used to allow an operator to enter
a value and to see it displayed. There are many variations of both the
INPUT and PRINT commands, but these two examples serve to il
lustrate the point; you have already been using If 0 operations in
BASIC-language programs without difficulty.

You may have already discovered that there are also graphic dis
p"lay I/O commands in BASIC, too. These are commands such as
HOME, PLOT X,Y and SCRN (X,Y) . The HOME command clears
the screen, and places the blinking cursor at the "home" position in
the upper left-hand corner of the tv screen. The PLOT and SCRN
commands require the use of "coordinates" to indicate where an
operation is to take place.

The program in Example 1-2 shows how some simple graphic dis
play commands are used in a short program. This program generates
a display of randomly changing colored dots on the tv screen. If you
are using a black-and-white (b/w) tv, you will see the dots in vary
ing shades of gray.

10 GR
20 X=INT(40*RND(1)) + 1
30 Y=INT(40*RND(1}) + 1
40 COLOR=INT(15*RND(1}) + 1
50 PLOT X,Y
60 GOTO 20

There are two other commands that you may not have considered
to be I/0 commands. These are the LOAD and SAVE commands
that a:re used to read and store programs on cassette tapes. Each
command causes a preset series of operations to take place, control
ling the cassette recorder. The use of these commands is fairly obvi
ous, so we will not provide an example.

Other I/0 commands are the IN#X and PR#X operations that are
associated with special I/ 0 devices that can be substituted for the
keyboard and tv display. It is important that you realize that these
I/0 instructions are specific to the Apple computer and its BASIC
language interpreter program. These instructions would be mean
ingless l:o other 6502-based computer systems, unless they used the
Apple BASIC program. The instructions are also specific to one I/ 0
device, i.e., the HOME command will not have an effect on the cas
sette recorder, or any other I/0 device. Likewise, the INPUT com
mand controls the input of values only from the keyboard on the
console.

Gei'!eral-fi!Jrp@S('; I/ 0 Commaru:li:>

Although there are some general-purpose I/0 commands in the
INTEGER BASIC interpreter program for the Apple computer, for
this book we have chosen to use what we consider to be the more
flexible APPLESOFT BASIC interpreter program If you wish to
convert your Apple computer to this program, a local Apple com
puter dealer can assist you.

The two If 0 device commands are PEEK and POKE. They are
used to transfer data to an external device from the computer
(POKE), and to the computer from an external device (PEEK).
There is a specific format for these instrnctions that must be used if
the instructions are to operate properly.

Input and output devices will be referred to as ports. Thus, an out
put device will be an output port and an input device will be an in

port. This is standard nomenclature used throughout the micro
computer industry.

The output instruction, POKE, must specify the address of the
I/0 device that is to be involved in the transfer of data and also the
value that is to be transferred to the addressed device. The actual
format for the POKE instruction is POKE, x,y, where the x value
represents the decimal address of the output device that is to receive
the data value, y. The data, y, must also be a decimal number. Since
the 6502 microprocessor chip can address 65536 memory locations,
the address must be within the range of 0 to 65535, inclusive. The
data value must be within the range of 0 to 255, inclusive, since the
computer uses an 8-bit data bus for all data transfers, and the largest
number that can be transferred on such a bus is 255.

The value 215 is sent to output port 12684 in the following state
ment: POKE 12684,215.

The input instruction, PEEK, is similar to the POKE instruction,
except that no data value is incorporated into the command. VVe are
interested in determining the value present at the specific input de
vice, so only the decimal address of the input device is specified;
PEEK (x), where x is the decimal address of the input device.

It does little good to input a value without doing something with
it, so the input command is always incorporated in a complete state
ment, rather than being a statement by itself. An example of this is
Q= PEEK (34579) .

In this case, the variable, Q, is assigned the decimal value that has
been input from device 34579. It is important that you remember to
enclose the address of the input device in parentheses.

Whenever a PEEK command is used, the value that is input will be
between 0 and 255, :inclusive. Again, this is due to the limitation of
8-bit transfers.

l)'

POKE 45124,98
POKE N,120
POKE 45124,X
POKE X,M

l = PEEK (23109)
l = PEEK (Q)

The input and output commands may have variables specified
within them, rather than specific values for port addresses, and in the
case of the POKE command, data values. Thus, all of the PEEK and
POKE commands shown in Table 1-2 are valid. We have assumed,
of course, that the values for the variables, N, M, X and Q have been
specified somewhere in the program prior to the use of the instruc
tions shown in Table 1-2.

Input and output commands in which the address values exceed
65535 will generate an ILLEGAL QUANTITY ERROR in the Apple
computer. An attempt to output a numerical data value that exceeds
255 will also generate an ILLEGAL QUANTITY ERROR.

We have provided some examples that show the use of the POKE
and PEEK commands. 'While the programs shown in Example 1-3
can be executed, they will not do anything useful, since you do not
have any external I/0 connected to your computer, at present.

hample 1·3. 5imple D/O l'rnsrnm• for li'El"K mu! �OK� Commailcl•

10 lf\IPUT "OUTPUT PORT # ="; P
20 lf\IPUT "VALUE FOR OUTPUT"; V
30 POKE P,V
40 GOTO 10

10 lf\IPUT "INPUT PORT # = "; M
20 _ PRl1'1T "VALUE AT PORT ="; PEEK-(M),
30 GOTO 10

Since 6502-based computers cannot between memory
locations that are used for the temporary storage of programs and
data, and those that are being used for I/ 0 ports, the PEEK and
POKE instructions are frequently used to examine and alter the con
tents of various memory locations within the Apple. If you POKE
information into read/write memory in an indiscriminate fashion,
you may "write over" important parts of your program, or informa
tion that has been tempornrily stored by the BASIC interpreter. The
net effect is a "crash" of the computer system, in which your program
and data 'Nill be lost or significantly altered. It is probably not a good
idea to randomly POKE information into various addresses, until
some specific guidelines are provided. Of course, you can use the
PEEK command to examine the contents of a memory location
v1henever you since this command will not alter the contents

of an examined memory location. From the previous discussion of
memory devices, you should realize that the POKE operation will
have no effect on the read-only memory devices in the Apple.

Memory Maps

At this point it is a good idea to take a look at the "maps" of the
memory addresses that are used by the Apple. A complete 64K mem
ory map is shown in Fig. 1-3. For the sake of convenience, the mem
ory addresses are provided in both decimal (base-10) and hexadeci
mal (base-16) notation. The hexadecimal numbers have a suffix of
"H'' to distinguish them from the decimal numbers.

The memory space for the Apple computer has been divided into
four 16K blocks. Three of the blocks have been assigned for R/W
memory, and most Apple computers have the R/W #1 block "filled"
with read/write memory chips. The remaining R/W blocks may be
used for future expansion of R/W memory, if this is required for par
ticular applications. In most cases, we have found that 16K of R/W
memory is sufficient. Add-on memory chip kits are available from
many suppliers, and most Apple users can probably add the addi
tional memory chips to their system without much difficulty.

The remaining 16K block of memory has been set aside for both
ROM and 1/0 port addressing. The system ROMs for the Apple,
which include the BASIC interpreter and the monitor programs, take
up 12K of this space. The remaining 4K space is divided into two 2K
spaces for I/ 0 addressing and future expansion of the Apple. The
I/ 0 block with addresses COOOH to C7FFH, inclusive, is the one
of major importance for interfacing, since it has been specifically set
aside for this purpose and it will never be used in Apple computer
systems for any other purpose. Some of the addresses within this 2K
block have been used by the Apple for controlling things such as the
speaker, the keyboard, and the cassette recorder. The actual address

49152 COOOH

0 OOOOH 51199 C7FFH
2K 1/0 #1 /51200

.
C800H

16K R/W#l
16383 3FFFH
16384 4000H

2K 110 #2 53247 CFFFH -53243 DOOOH
16K R/W#2 12K SYSTEM ROMS

32767 7FFFH
32768 8000H -65535 FFFFH

16K
49151 BFFFH EXPANDED VIEW OF UPPER 16K
49152 COOOH

16K
65535 FFFFH

Fig. 1-3. 64K Memory map for the Apple computer.

19

assignments are shown in Table 1-3. We refer you to Basic Program
ming Reference Manual, and App"le II Reference Manual, for details
on the actual use of these I/0 addresses. These manuals are provided
with the Apple II computer, and are also available from Apple Com
puter, Inc., 10260 Bandley Dr., Cupertino, CA 95014.

The remaining 2K block of memory, C800H-CFFFH, has been set
aside for future expansion. You may use this space for additional
read-only memory, if you have long programs that you wish to have
readily available.

Address

F•mdion Decimal* Hexade<irn�I

Keyboard data 49152 cooo
Clear-keyboard strobe 49168 COlO

Speaker 49200 C030
Cassette Output 49184 C020
Cassette Input 49256 C060
Flag Inputs 49249-49251 C061-C063
Analog Inputs 49252-49255 C064-C067
Analog Clear 49264 C070
Utility Strobe 49216 C040

*Only positive addresses given. To calculate negative addresses, just add -65536 to the deci
mal addresses provided.

In later sections of this book, the actual use of the I/ 0 addresses
will be described in detail. At this point, it is sufficient that you un
derstand that a specific set of memory addresses has been set aside
for your particular applications. You should also realize that the
memory map shown in Fig. 1-3 is particular to the Apple computer.
Other 6502-based computers will probably have different memory
maps, with R/W memory, read-only memory, and I/0 device ad
dresses located in different areas of the map.

Si@fh'lf<llre C@mm<u1ds ©11111d llr!l'erfaiee Cir«:uits

As you are probably aware by now, the PEEK and POKE instruc
tions each cause some actions to take place, either at I/ 0 devices or
at memory locations, as a direct result of the use of the instruction.
Instructions such as A=l.359 will cause some values to be stored in
memory, but we do not know what memory locations the Apple has
assigned to the variable "A" and. we do not know how the value 1.359
has been stored. The PEEK and POKE instructions each cause a
definite, known sequence of operations to take place, transferring
data bytes, generating control signals, and transferring address in
formation on the address-bus lines. These definite and reproducible
actions allow us to use these commands to control I/0 devices. \!Ve

will now explore the actions that each of these software commands
causes to take place.

The PEEK and POKE instructions operate in a very similar man
ner. In each, an address is specified, requiring 16 bits of informa
tion. During the execution of either instruction, the address informa
tion contained within the command is transferred to external devices
on the address-bus lines, Al5-AO. In this way, the 1/0 device address
is available to all of the devices and circuits that are connected to
these address lines, both memory and I/ 0 devices.

When a POKE instruction is used in a program, the data value is
also output by the 6502 chip, but on the data-bus lines, D7-DO. Once
the data bits and the address bits are "stable" or present on their re
spective buses in useable form, the 6502 asserts the READ/WRITE
signal on the control bus. This synchronizes the acquisition of the
data by the I/0 device that was addressed. Of course, external cir
cuitry is required to "capture" the data, as well as to identify the se
lected I/ 0 device and synchronize it with the 6502-based system. A
timing diagram for these signals, as they appear on the 6502 system,
in this case the Apple, is shown in Fig. 1-4. Of course, the POKE
command involves many assembly-language instructions, and the
timing diagram shows what happens only during the time of the
actual data transfer. At this point, we are only concerned with what
the 6502 does during a POKE operation.

When a PEEK instruction is executed, the data is not contained in
the instruction, but is acquired from an external I/0 device. Only
the address is specified. The 16-bit address is placed on the address-

01

02

DATA
FROM MPU

i-----------Tcvc----------i

(APPLE 01)

(APPLE 00)

Fig. 1-4. Write operation signal relationships. (See Appendix C.)

21

bus lines when the PEEK instruction is executed. When the address
information is present, the corresponding I/ 0 device must place its
data on the data bus so that it may be accepted by the 6502 proces
sor. During a read operation, the R/W signal from the 6502 is a logic
one. Additional circuitry is required here, too, to select the I/ 0 de
vice and to gate its data onto the data bus. A typical timing diagram
for the PEEK command is shown in Fig. 1-5.

ADDRESS
FROM MPU

DATA FROM
MEMORY

--Tcvc-------;1
\ (APPLE 01) y-

I (APPLE 00)

t------�TAcc-----1--T DSU

We will describe shortly some of the circuits that are used for in
put and output ports. You have probably realized that while we have
described an I/0 port as one that can either receive data that is out
put by the microcomputer or transmit data that is input by the micro
computer, some I/0 devices may actually contain a number of indi
vidual I/ 0 ports. Industrial controllers, data storage devices (disks,
cassettes), analog converters, and other I/0 devices may have a
number of II 0 ports, since they may require more than eight bits of
information from the computer and they may also need to transfer
more than eight bits of inforn1ation to the computer. In any case,
transfers of data that contain more than eight bits always involve
the transfer of multiple bytes to and from the computer and the in
dividual 8-bit I/O ports" This is important to remember: information
is always transferred eight bits at a time.

Software Commai'ld-D&1ta Tr<1111dei' al'ld C@11\'rr@I

In most cases, the PEEK and POKE commands will be used to
transfer 8-bit data values between the I/O devices or memory loca
tions and the 6502 computer. As we noted previously, some data

transfers will require more than eight bits of information, so multi
ple bytes are transferred, one byte at a time.

There are also cases in which the actual value of the data trans
ferred is meaningless. The bits may be used to represent individual
two-state conditions that are unrelated to the positional values of
the bits. For example, a number of sensors could be connected to the
Apple indicating conditions such as tank empty-or-full, heater on-or
off, value open-or-closed, and so on. A PEEK command could be
used to input the status of these indicator bits, through an 8-bit input
port. Thus, the value read from this input port might be 100, but the
port is sensing eight individual on or off (logic one or logic zero)
states, so the value of 10010 is meaningless. The individual binary
bits each represent the state of an individual sensor. In this case:

10010 = 011001002

This indicates that three of the sensors are in the logic one state and
five are in the logic zero state.

The POKE and PEEK commands can also be used in a similar
manner to turn a device on or to turn a device off, based upon the
state of the individual bits that have been sensed elsewhere in a con
trol program. In fact, many of the I/0 addresses used by the Apple
are assigned to simple on/ off devices such as the speaker. Thus, a
simple command:

A = PEEK(49200)

will generate a 'blip" on the speaker in the Apple. You should under
stand that the variable, A, is a "dummy," and its final value is not im
portant, since the net effect of the simple BASIC statement is to
pulse the speaker once. The speaker control command may be used
in a loop to generate a low buzz from the speaker. This is shown in
��kU '

Example 1-4. A Simple Speaker Control Program

l 0 A = PEEK(49200)

20 GOTO 1 0

The important point to remember here i s that the PEEK and
POKE instructions are not limited simply to controlling the transfer
of information on the data bus. They may also be used for specific
control functions, such as pulsing a counter, turning on a pump, or
tilting a solar collector.

Assembly Language and BASIC

The BASIC-language programs that you write on your Apple com
puter bear very little relationship to the actual instructions that the
6502 microprocessor chip can actually execute. Each of your BASIC

23

statements and commands :is interpreted by the BASIC interpreter
resident within the Apple computer. A programming manual for the
6502 chip, itself, would bear little relationship to the Apple software
manual. The commands are very different.

The 6502 does not have a PRINT command, so it would not per
form the following operation:

PRINT "THIS LOOKS LIKE FUN"

The BASIC interpreter determines that a PRINT operation is to take
place and it then executes a series of assembly language program in
structions that actually place the codes for the alphabetical charac
ters in the display memory to spell out, "THIS LOOKS LIKE FUN."
The assembly language steps consist of logic ones and zeros that
cause the necessary internal and external 6502 operations to take
place to transfer the message portion of the PRINT command to the
display memory.

While we will not use assembly language programming to any ex
tent in this book, you should be aware that it is the "base" computer
language that causes the Apple to operate the way that it does.

The PEEK and POKE commands each cause many, many assem
bly language commands to be executed to produce the overall effect
of data transfer. Since these BASIC language instructions must be
interpreted, even when used one right after another, or in a loop, the
interpretation software process can be slow. Two programs are
shown in Example 1-5, both of which control the speaker in the
Apple. Each series of program steps does the same thing; generating
a tone on the speaker. Simply by listening to the differences in the
two tones produced, you will be able to appreciate the difference in
the speeds of execution of these programs.

Basic Program
l 0 A = PEEK(49200)

20 GOTO 10

Assembly la"!ii""'9"
GO LOY #$CO
LOOP lDA # $0C

JSR WAIT

LOA SPKR

DEY

BNE LOOP

JMP GO

The assembly language program generates a pleasing, even tone,
while the BASIC program generates a low rumble. The assembly lan
guage program is similar to the one used by the Apple Monitor pro
gram where the internal WAIT subroutine has been used to generate
a delay.

In some cases, assembly language programs have a five-hundred
to one advantage over BASIC programs, although the BASIC pro-

grams are probably easier to write and debug. Assembly language
programming is generally not recommended for the novice.

We will be mentioning assembly language programming very lit
tle, concentrating on the use of BASIC language programming in
stead. For further information on 6502 assembly language program
ming, we recommend 6502 Software Design and Programming and
Interfacing the 6502, With Experiments (Howard W. Sams & Co.,
Inc., Indianapolis, IN 46268).

Binary and Decimal Numbering

The Apple computer system acquires, processes, and prints deci
mal (base-10) numbers. This makes it compatible with the number
ing used by most people today. It would be difficult for us to readily
understand and convert data values that were printed in a nondeci
mal format. The data and address lines are directly connected to the
6502 microprocessor chip, so they are binary, having only two states
a logic one or a logic zero. Thus, when we specify an I/ 0 port ad
dress in a PEEK or POKE command, we must realize that the ad
dress (0-65535) will appear in its binary form on the address bus
(0000000000000000-1111111111111111). You should be able to make
the conversion between decimal and binary, in either direction.

Likewise, the data values transferred to and from the computer
by the PEEK and POKE commands are also specified or acquired as
8-bit binary values, since the data bus is only eight bits "wide." The
8-bit data bus is a function of the data processing capability within
the 6502 chip. It is not a function of the Apple. Thus, we are limited
to 8-bit data transfers. Is this a great limitation? Generally not. In
spite of it, the Apple can process a great deal of information, and, as
you will see later, it is easy to interface to 1/0 devices.

One final note on addresses is necessary before leaving this chap
ter. The BASIC interpreter in the Apple computer has been set up
to handle both negative and positive addresses. This does,n,ot mean
that there are actually negative addresses in the computer. Can you
imagine negative street numbers? The negative numbers are simple
due to the way in which the binary equivalents of the addresses are
stored in the Apple. Thus, the address for the speaker, 49200, is
equivalent to -16336. To avoid confusion, we strongly recommend
the use of the positive addresses. You can easily convert between
negative and positive addresses simply by (a) adding 65536 to a
negative address to yield the positive equivalent, or (b) by subtract
ir1g 65536 from the positive address to yield the negative equivalent.
Both addresses, 49200 and -16336, generate the same 16-bit address,
but we think that you will agree that negative addresses can seem a
hit abstract and confusing.

25

I

CHAPTER

Apple Interfacing

At this point, you are probably wondering:

® How does the Apple actually transfer information to
vices?

(i:ll How are the I/ 0 devices actually synchronized to the operation
of the computer?

� How are individual I/O devices selected or identified?
®' How do I/ 0 devices place their data on the data bus and how

do they actually receive it from the data bus?

These are important questions, since the answers to them will pro
vide the basis for your understanding of microcomputer interfacing,
We will be answering these questions in this and other chapters, 'lVe
will also provide some experiments that will reinforce the concepts
through hands-on experience,

A few examples of digital circuits will be in this chapter,
We have assumed that you can "read" interpret a circuit
diagram, and that you are familiar with the more common SN7 400-
series transistor-transistor logic (TTL) circuits

Before we can discuss the actual transfer of information between
I/O devices and the computer, we must first understand the circuitry
and the signals that are used to identify or address the individual
I/0 devices. There are many schemes that may be used and we will
examine several of them, It is impossible to show possible
scheme for addressing I/ 0 devices, since modifications be made
to suit special needs.

·when the Apple computer is progrnmmed to perform a data trans
fer using either of the general-purpose I/ 0 commands, PEEK or
POKE, certain signals are generated by the 6502 processor to syn
chronize the flow of data. At this point, our main concern is the use
of the address bus lines. These are the 16 lines that address individ
ual memory locations and I/ 0 devices. You should recall that the
PEEK and POKE instructions each contain decimal address infor
mation that is used to identify the addressed memory location or I/0
device. Of course, the Apple computer has no way of distinguishing
between a memory location and an I/ 0 port

DEVICE ADDIUiSSiNG

Each If 0 device that is to be used with the computer must be able
to recognize its own device address. Since the PEEK and POKE
commands use 16-bit addresses, each If 0 device must monitor these
16 address lines, Al5-AO, for the occurrence of its address. There are
three basic schemes that may be used by I/ 0 device circuits to ac
complish the monitoring for a specific address. These are:

® Gating-detecting a specific combination of logic signals.
® Decoding-a more flexible gating scheme in which many ad

dresses may be detected.
® Comparing-comparing a preset or known address with the ad-

dress-bus signals until a match occurs.

Combinations of these three techniques are possible and there are
probably many variations that are possible. We will describe exam
ples of each of the three basic address decoding schemes.

lBsillilg Gillies for Addre!ls Dee:@ding

In the scheme for decoding device addresses in which individual
gates are used, the address must be known so that the gates can be
properly configured. In this example, we will use the device address
1010100011110llb or 4325510. Since the binary notation is long, and
somewhat cumbersome, you might feel more comfortable with the
hexadecimal equivalent, A8F7H. Since NAND/ AND gates are the pre
dominant type of gating logic available, we will use these types of
circuits in our logic.

To refresh your memory, the pin configurations for several types
of AND/NAND gates are shown in Fig. 2-1, with the generalized truth
table for a two-input AND gate and an equivalent NAND gate shown
in Table 2-1. Since inverters such as the SN7404 are often found in
device addressing circuits, a pin configuration for this chip has been
included in Fig. 2-1. The truth tables in Table 2-1 also show the func
tion of an inverter. In all cases, the logic one state is the higher volt-

1A 18 lV 2A 28 2Y GNO

SN7400 SN7404

lA 18 2A 28 2C 2V GND

SN7408 SN7410

SN74H11

1A 18 2A 28 2C 2V GNO

�ig. 2-1. hwer�er and vari<>11s AND/NANli:I gate pin configurations.

age (+2.8 to +5 volts) and the logic zero state is the lower voltage
(0.0 to 0.8 volt). The NAND gate functions are available with 2, 3, 4,
8, and 13 inputs, while the AND gates are available with 2, 3, or 4
inputs.

Since the unique output state, logic one for an AND gate and logic
zero for a NAND gate, occurs only when all of the inputs to an AND or
a NAND gate are all logic ones, we will have to configure the binary
address 10101000111101112 so that it generated 16 logic ones at the
input to the AND or NAND gate, when it is present on the 16-bit ad
dress bus. You have probably realized that there are no 16-input AND
or NAND gates available commercially, so some other configuration
must be used instead. It is very easy to use a separate 8-input NAND
gate to detect a pattern of binary address bits on the high-address
bus (Al5-A8), and another 8-input NAND gate to detect a pattern of
binary bits on the low-address bus (A7-AO). Simple inverter func-

Y@bie ::!�1. VNth i<1bles fo� q;o Twc�li1lfill"li ffil.Hili G@ite,
NAN� G©Jte @mcll """ inwe�ter

AND Gate NA.ND Gate lmrerler ,
i"P"ls OOJlpul inp!llS 0!1ip"1 li>pul o .. 1p11t

A B Q A 13 Q A Q
0 0 0 0 0 1 0 1

0 1 0 0 1 1 1 0
1 0 0 1 0 l

1 l 1 1 l 0

tions are used to invert the logic zero address bits so that they apply
logic ones to their corresponding gate inputs, as shown in Fig. 2-2.
In this circuit, two inverters and a NAND gate have been used to com
bine the output from each of the 8-input NAND gates, so that the out
put of the circuit will be a logic zero only when the complete pattern
of 16 bits, 1010100011110llh, is detected on the 16-bit address bus.

1�---�-�---1
0 -----1 >o------1
1----------1
0 ----1 ;;:o----1

All 0 ------1 =>o----l
A!O 0 ----1 :>o-----r-
A9 0 -----; x:r---1
A8 0��--1.x>-�-4

A7
A6
AS
A4 l ----------!
A3 0 -----1 'X>----J
A2 1 ---------r-
Al 1 ________ _,

AO 1---------1

SN74LSOO

DECODED ADDRESS
4325510 = A8F7H

One of the disadvantages of this circuit is that some of the address
signals must go through four gates before reaching the decoded ad
dress output from the 2-input NAND gate. Since each gate delays the
signal slightly, this might cause some timing problems in the circuit.
Actually, the time delays are fairly minor, and we will ignore them
for now. The delay can be reduced somewhat by using a NOR or OR

in the circuit to combine the outputs from the two 8-input NAND
gates. This is good design practice. NOR and OR gates are readily
available and are used quite extensively in computer interfacing. A

1Y lA 18 2Y 2A 28 GNO

Si\17402

4A 4Y

lA 18 lY 2A 26 ZV GNO

SN7432

fig. 2·3. lypica! NOR all'Jd Oil ga�e IC pin <<>iif191nati1ms.

typical NOR and OR gate are shown in Fig. 2-3, with the correspond
ing truth tables provided in Table 2-2.

While the gating scheme shown in Fig. 2-2 is effective in decoding
a single address, and relatively inexpensive, it is inflexible. A more
flexible approach is shown in Fig. 2-4. This circuit illustrates the use
of a gating scheme in which inverters may be used to invert individ
ual address bits, as required. The bits may also be used without in
version. The jumpers allow the device address to be preset, as illus
trated in Fig. 2-5. In this circuit, only the low-address bus gating has
been shown, for clarity. A duplicate gating circuit is required for the
high-address bus lines. In this type of a gating circuit, any one of the
65536 possible addresses may be selected, but only one at a time.

The programmable gating circuit provides broad flexibility, in
that addresses are easily changed to meet specific requirements for
an interface, but such a circuit can select only a single address, and
this is a severe limitation. When several I/ 0 devices are located on
the same circuit board, each will require its own address gating cir
cuit. This limitation can be overcome with other addressing schemes.

Unfortunately, the gating schemes that we have shown are not all
that is required to uniquely address and control an I/O device. You
should recall from the discussion of the READ/WRITE (R/W)
signal in the previous chapter, that the R/W signal is used to synchro
nize the flow of information to and from the computer. The I/0 de
vices must also use this control signal, if they are to use the data bus
properly. In many interfaces that are designed for 6502-based com-

NOR Gate OR Gate

1,.puls ()y\'put inputs OOJlput

Jl. B Q A B Q
0 0 1 0 0 0
0 l 0 0 l l
1 0 0 1 0 1
l l 0 1 1 1

DECODED OUTPUT

puter systems, the R/W line is used to provide the logic-zero 'INTite
pulse, with the R/vV signal being inverted to generate a separate
read pulse. The two resulting control signals, WRITE (WR) and
READ (RD), are easy to use in interface circuits, since they are ac
tive in the logic zero state. The use of these signals is shown in Fig.
2-6. In this circuit, the output from the 16-bit gating circuit is com
bined with RD and WR to provide two signals for I/ 0 port control.

two control signals are a combination of the decoded address
the WRITE pulse, and a combination of the decoded address

and the READ pulse. The resulting pulse from each gate is called an
address select pulse, or a device select pulse. More generally, a de

address is gated with a function pulse (RD or WR) to gener
ate a device select pulse. In the circuit diagram shown in Fig. 2-6, the
RD 49280 pulse could be used to control an input while the
WR 49280 pulse could be used to control an output Note that
the notation for the VVR 49280 pulse does not have a "bar" over it.

0

FROM HIGH-ADDRESS GATE

I < DECODEU �J-- OUTPUT
SN74LS32

SN74LS30

fi!J. 2·5. l'rn!J•ammab!e gai® Msed for devi<e address deoodi11g. (i-li!Jh ;oddreso
sedi®" is eqMivaleroi .)

:n

0

0

0

FROM HIGH-ADDRESS GATE

A7 �
A6

DECODED OUTPUT

A5
49280 = C080H

A4

A3
WR

A2

Al

AO RD 49280

R/W q----------------1

�i9. 2·"'· llisi"!I �ll ""'I WR signals t@ !l"'"""'t" device •el<>d i>"lses for
clevi<e $1f"chro,.iuti@".

This means that the pulse is active in the logic one state, while the
RD 49280 pulse is active in the logic zero state. In this example, it is
quite proper to note the address on the I/0 ports by using a hexa
decimal value, for example, RD C080H.

Before going further, you should be sure that you understand that
a reading operation involves reading informaticrn into the computer
from an input port, while a writing operation involves the transfer
information from the computer to an external device. It is also quite
proper and useful to use one address to control an input port and an
output port. Since the RD and WR pulses cannot be coincident,
there is no conflict between an input port and an output port that
have been assigned the same address. You cannot assign two input
ports the same address, and you should not assign two output ports
the same address. In fact, you may nnd that even though an input
port and an output port have been assigned the same address, they
may be unrelated as to their function, and may be used on separate
interface circuits.

The concepts and the basic circuits that have been developed in
this section are very important and they will be carried forward to
other sections and chapters. It is important that you understand the
use of the signals that have been discussed to select devices. 'VVe have
not yet discussed what these input and output devices are, or hovv
they work, but we shall discuss this in the next

Using Decoders

In many cases, it is easier to use decoder circuits in place of the
gate address detecting circuits, and, in some cases, in place of the

. : NOR-gate device select circuits, too. Why are decoders so useful?
i,' '.Perhaps it is best to take a look at several types of decoders to see
''.·what they look like and how they operate. As you examine the de-

coder circuits, keep in mind that they are simply collections of gates
;that have been "integrated" into an easy-to-use decoder circuit.
· Decoder circuits are generally specified as x-line to y-line decod
ers, where x represents the number of binary inputs, say four inputs,

·· · and where y represents the number of possible outputs, or the num
;;;: ber of different binary states present on the x inputs. Thus, for the ��;� fo
6

u
1
� inp

d
uts,

d
there wo

4
uld b

1
e
6

1
1
� po

d
ssibl

d
e out

T
p
h

�ts,
.
cr�ati

f
"ng a 4-lin

1
e
d

to
;,::>J - me eco er or a - to - me eco er. is is, m act, a rea e};�· poder circuit, as you will see.
i�,(Each of the binary inputs has two states, a logic one and a logic
>;��� zero. These inputs are independent of one another. The outputs are
·,,�:,�lso binary, in the sense that they have two possible values, but they
il'"·/Ue not independent. There will only be one unique output from the

)¥�coder, representing the value or "weight" present at the binary in
:puts. In most cases, the unique output state is a logic zero, with the
pther outputs in their logic one state.

A typical decoder integrated circuit is the SN74LS 139. This inte
ated circuit actually contains two independent two-line to four-

ne decoders, as shown in Fig. 2-7 .
The truth table for the SN74LS139 is shown in Table 2-3.
Of course, the truth table applies to both of the decoders within
e S N74LS139 integrated-circuit package, or "chip." Most decoder

;.:rcuits incorporate an enabling input, so that the decoder may be

'LS139, '5139

Fig. 2-7. SN74LS139 decoder chip schematic diagram and pin configuration.

DATA

OUTPUTS

33

1.,p.,10 ().,!pl!!$

Eilable Sele<*

G '1 A 'ii'@ Yi V2 1f3

H x)(H H H H

L L H H H

H H H H

H H H L H

H H H H H

H = high level l =low level X == irrelevant (don't care)

turned on or turned off by one logic input. This is the function of
EN ABLE or "G" input on each of the decoders in the
Note that vvhen the "G" input is a logic one, all of the
forced into the logic one state, regardless of the states of the A
B This allows the decoder to be gated on or off. In the
state, the power is not removed, but the outputs are all forced
the logic one state.

Let us nov1 examine a simple, rather trivial, example of the use
a two-line to four-line decoder for device address decoding.
assume that we only have a few I/ 0 devices, so that the decoders
the SI•>J74LS139 decoder package can handle our needs. A
decoder circuit is shown in Fig. 2-8. In this circuit, only two
bits have been decoded, the rest have been ignored. Note that
enable has been grounded so that the outputs of the
will properly. The added NOR and OR gates generate the

select pulses.
The device select signals have been noted as RD RD Y, and WR

Y, since there is no specific address that will actuate eacho Addresses
01010101 00011101 11110110 and 00000000 11111110
all cause the RD X device select

DECODER

A1---o1
Ao--�-

to be generated, if they

� RDX

\VR Y

used in PEEK commands, for example A=PEEK (21762). This non
absolute device addressing results because address bits Al5-A2 have
not been used in the decoding scheme. Nonabsolute addressing
means that there are several addresses that will actuate the selected
device. The circuit shown in Fig. 2-8 will decode four addresses and
thus eight individual devices may be selected, four input devices
and four output devices; additional NOR gates or OR gates are re
quired, though. In a small system, this may be adequate, although
the decoding scheme does not provide a great deal of flexibility in
allowing the addition of new I/ 0 devices beyond the original eight.
Although this scheme is not very flexible, let's take a closer look at
it, since it allows us to develop two other concepts that can be ap
plied to other decoder schemes.

In Fig. 2-8, the enable input, "G," of the decoder is simply
grounded, to always enable the decoding action. This input can allow
the decoder to be used for absolute decoding. A gating circuit can be
used to supply an enabling signal to the decoder only when a preset
pattern of address bits, on address lines Al5-A2, is present. You have
already seen the use of multiple-input gating circuits; the circuit in
Fig. 2-5 is a good example. This circuit can be readily adapted to
provide the enable input for a simple decoder. Since the Al and AO
inputs are being used as inputs to the decoder, they are not used as
inputs to the gating circuit that provides the decoder-enabling sig
nal. A simple example of this is shown in Fig. 2-9. In this circuit, the
ADDRESS ENABLE signal is generated by a gating circuit (Fig.
2-5). In this case, the jumpers associated with the Al and AO address
inputs are simply disconnected.

If we assume that the high-address gating circuit has been preset
for an address bit pattern of 11110000, and that the Al and AO inputs
to the circuit have been disconnected (see Fig. 2-5), then the de
coder shown in Fig. 2-9 will only be enabled for addresses 11110000
01101100 through 11110000 01101111. Thus, in this circuit, the de-

ADDRESS ENABLE INPUT

DECODER

Fig. 2-9. Decoder used for absol..,ie ad<lrnss seledi<>n.

35

Al
AO

__ _,,__--11----11 B
------<1---1 A

} OUTPUT DEVICE SELECTS

} INPUT DEVICE SELECTS

Fig. 2·10. lle<<>cl"r l!!i!able i11p,.ts iSse<i with WR amil RD tc generate devi<e
sele<t si!ll11als.

coder outputs of 0, 1, 2, and 3 correspond to device "'-'.���::::=,
through 61,551, or F06CH through F06FH. Only the
vice select pulse has been generated in this example. Again, an
gate or a NOR gate is required for each device select pulse that is
be generated.

DATA OUTPUTS

��ou��UT

GNO

SELECT ENABLE

'lS138, 'S'l38

DATA

OUTPUTS

An alternate approach is to use both of the decoder circuits in the
SN74LS139 chip, using the RD and WR function pulses to enable the
decoders. In this way, the address selection is again nonabsolute, but
the device select gating is performed within the chip. This is shown
in Fig. 2-10. The NOR and OR gates are no longer required for each
device select pulse to be generated. While this circuit may not be
immediately useful, it does illustrate the use of the enable input of
the decoder to generate the device select pulse. The decoder gating
or enabling input may be used for device select pulse generation, or
for absolute decoding. In some cases, it may be used for both.

Large Decoders

There are additional decoder circuits that will be useful to you in
interfacing your Apple computer to external devices. These decod-

positive logic: see function table

INPUTS

G 1 G 2 0 C

L 'H

A

H,. high level, L =low level, X =Irrelevant

functional block diagram and schematics of inputs and outputs

FUNCTION TABLE

OUTPUTS

H
H

Fig. 2-12. SN74154 decoder.

10 11 12 13 1"4 15

37

FUNCTION TABLES

2-LINE-T0-4-LINE DECODER

OR 1-LINE·T0-4-LINE DEMULTIPLEXER

SELECT STROBE
OUTPUTS

OUTPUTS

ers, depending on the type you choose, may have additional
enable lines, and outputs. Examples are shown in Fig. 2-11 for
SN74LS138 decoder and in Fig. 2-12 for the SN74154 decoder. The
SN75155 decoder has also been included (Fig. 2-13) since it has

ADDRESS
BUS

20

A2
21

[A3

Al
___ 22

-1

A0 ---
23
4

WR OR RD ---1 9
-1

18

D

c
B

A

G2

Gl

+5
24

12

15

14

13
12
11

10

9

8

7
6
5

4

3

2

l
0

SN74154

-U "

16 DEVICE SELECT

PULSES

l'i!lJ. 2·1�. $11174154 d@<o<ier used�© ;:IW<><lu�@ 1'° """�bs@lute de<o:tde<i dewi�e
zeied r,mis®s.

sections, but the address inputs, A and are comrnon to both of the
decoder sections. Each section of the SN7 4155 has separate control
or enabling inputs.

A large decoder such as the SN74154 4-line to 16-line decoder pro
vides broad address flexibility. A Sr�T74154 decoder
may be used to nonabsolutely decode 16 addresses, and when either
WR or is used as one of the enable inputs, the SN75154 may be

to directly generate 16 device select pulses, the need
for additional gating. This is shown in 2-14.

Additional decoders or gates may be to the basic circuit so
that absolutely decoded device select pulses are
example of this is shown in Fig. 2-15. Either RD or Vv'R signal
may be used to gate or enable the lower decoder, The
have been used to gate together the address selection
upper of the circuit and the address selection
tion from the lower decoder. Thus, the upper nA•-l-icm

circuit is used to "qualify" the outputs from the lower decoder to
make the address selection absolute. In this example, two device
selecl: pulses have been shown. Although this circuit will it is
not particularly useful, since it can be simpli£ed.

/ SN74154
SN7 404(ALL)

G2 15

Gl

A7 D
A6 c
A5 B 1
114 A 0

SN74154

WR � G2 1< - " SM7402

Gl
A3 D OUT ''3"

A2
Al B
AO- A () OUT "O"

l

Since the SN74154 decoders have two enabling inputs, GI and
the NOR gates shown in Fig. 2-15 may be eliminated by using
second enabling input as the "qualifier" that will enable the decoder.
The use of this type of circuit is shown in Fig. 2-16. In this example,
the lower decoder now has two enabling input signals, the RD con
trol signal from the computer, and the enabling signal from the up"
per portion of the circuit. You should note that the upper decoder
has both of its enabling inputs used, so that it is enabled only for a

specific pattern of bits on the HI address bus. In this case, gating has
been used to generate the enabling signal for the upper decoder.

A third decoder could be added to this circuit to generate device
select pulses for output devices. The inputs to this additional decoder
would be the same as those to the lower decoder, except that the WR
signal would be used instead of the RD signal.

-

Many decoder schemes are possible, and you will have an oppor
h.mity to explore the use of decoders in the experiments. The main
point is that the use of decoders simplifies the process of device se
lection and gating. Decoders are generally used in situations that re
quire flexibility and the generation of several device select or device
address signals in proximity to one another.

Al5
Al4
Al3
Al2
All
AlO

A9
A8

/
SN7 404 (ALL)

A7
A6
A5
A4

iiD ���������--!
A3 ���������--o

A2
Al ���������--1
AO ���������--o

SN74154

G2 15
GI
D
G 2
B 1
A 0

SN74154

G2 15
Gl

D 3
c 2
B l
A 0 l

16 INPUT
DEVICE SELEG I

PULSES

Usi rug C1:nY!p<ar<ii�m;

fUNCTlON TABLES
COMPARING CASCADING

INPUTS INPUTS

A3, 83 A2, 82 Al, Bl AO, SO A>B

A3 > 83 x
A3 < 83

A3"' 83 A2 > 82

A3 c 83 A2 < 82

A3"' 82 A2 = 82

A3"' 83 A2"' B2 Al< B1

A3"' 83 A2"' 82 Al"' Bl AO> BO

A3"' 83 A2"' 82 Al= Bl

A3"' B3 A2"' 82 Al"' Bl AO"' BO

A3"' B3 A2"' 62 Al= 81 AO"' BO

A3"' 83 A2= 82 A1 "'81 AO= BO

'65, 'LS65, 'SSS

A3 = 83 A2"' 82 AO"' BO

A3,,,B3 A2=82 Al,,,81 A0"'80

A3,,,83 A2,,,B2 Al,,,81 AO=BO

....
x

x
L

OUTPUTS

A>B A<B

H

The use of digital comparators for device address detection will be
the last technique discussed. The comparator-based schemes are rel
atively straightforward and they are very similar to the "program
mable-gate" schemes shown in Figs. 2-4 and 2-5. Remember i:hat
comparators, too, are simply collections of gates, connected or inte
grated, to perform a comparing function. The comparator circuits
allow us to present an address that is constantly compared to the 16-

A7

AS

A5

A4

/.\3

A2

Al

AO

+5

I
A3 83

A2 82

Al 81

AO BO

=

A3 83

A2 82

Al 81

AO BO

=

SN7485 ,r
�

� -

,..--....,
,,---.,

SN7485

·---h ..,,..-
_,..--...

ef �
l

... __r-t_ ...

ADDRESS

JUMP

"'"

SELECT

ERS

ADDRESS= 205

�i!lJ. 2-lll. lwio !iN74!l5 (<>mparn!ors ""�":I�"' dlete�I :odclrnss 205.

41

Al5
lS

A
Al4 ----�1"'"""'3
Al3 ----�1""'12

Al2 _____ .._l0"-1

SN7485

All
!S

A

AlO -----�1"-1
3

A9 ------=-1=-s
Z

A8 ______ 10'-I

A7 15 A
A6 -----�13'-:1
AS ----�12""""'
A4 ----�10__,,

2 1

B l
�

14 ,...,
11

B 1
,--i

14 -:.., �
9 -r

SN74154

SNNr:404 � 6

19
18

G2 15 1-:--WR -------<Gl · ·

A3 20 � : .
A2

21
C 2

Al
22 B l

AO 23
A 0 r-:-

+5

16 OUTPUT DEVICE
SELECT PULSES

bit values on the address bus. This comparing is done by gating
circuits within the comparator chi.ps. A typical comparator is the
SN7485 4-bit magnitude comparator, shown in Fig. 2-17. Besides
the equal the SN7 485 can also detect the
and less-than but these are not u.sed in
�u.,�u•J Caution: The SN74L85 version the SN7485

flexible decoding scheme, as shown in Fig, 2-19, The unique "equal
condition" output of the SN7 485 comparators is a logic one, so where
necessary, it has been inverted to provide the enabling signal to a
decoder chip. In this circuit, two additional comparators have been
used so that the device addresses are absolutely decoded. Now, the
outputs of the SN7"1154 decoder are only active when address bits
Al5-A4 match the corresponding logic states that have been preset
at the inputs to the three comparator circuits. In this case, the ad
dress bits must be 11101001 for Al5-A8 and 0000 for A7-A4. Since
the WR function pulse must also be present to enable the decoder,
you should realize that output device address selection signals are
being generated by this circuit, for addresses 59648 through 59655,
or E900H through E907H. Another SN74154 decoder could be added
to this circuit to generate 16 device address selection signals for in
put devices, You would need parallel connections between the inputs
of both decoders except that the RD signal would be used in place
of the WR signal.

This completes our discussion of device addressing circuits and
the combinations of device addresses and function pulses to obtain
device select pulses. In future examples, we will expect that you will
recognize the notation WR 54390 as a logic-zero device select pulse,
generated by the proper gating of the WR function pulse and ad
dress 54390. In some cases, the actual gating will be shown, but in
most cases, we will assume that you understand the origin of the
signal. While you will probably see many different device addressing
and selecting circuits in other books, magazine articles, etc,, you will
quickly find that they all function in pretty much the same way
gating an address signal with a function pulse to select a particular
device.

In some of the experiments, you will explore the use of device
select pulses to control devices, In the next chapter, you will learn
how these pulses are used to control the flow of 8-bit data bytes on
the data bus of the 6502.

1/0 interfacing

Now that we have developed a number of ways of selecting
identifying 1/0 devices, the actual construction and configuration
the I/0 ports become very important. In this section, we will
velop some of the actual bus interfacing schemes that will allow I/ 0
devices to transfer 8-bit bytes to the computer and to receive bytes
transferred to them by the computer. As we found with the
selecting circuits, there are many circuits for input ports and output
ports. Only a few sample circuits will be provided to illustrate the
basic principles of interfacing.

Output ports are devices that receive data bytes from the com
puter, controlled by POKE commands in the BASIC-language pro
grams. You have already seen that there is a definite timing relation
ship between data on the bus, the WR pulse and the device address,
when a POKE command is executed. This has been shown in Fig.
1-4. In the Apple computer, the duration of the WR pulse is about
500 nanoseconds. If we use the WR pulse to gate the data from the
data bus to an output device, through the use of the device select
pulse, the data is only presented to the output device for about 500
nanoseconds. This period is hardly long enough to allow the receiv
ing device to perform a meaningful function. To eliminate this prob
lem, each output port must be equipped with some sort of circuit
that can acquire data from the bus and "hold" it for as long as
needed, or until it is "updated" by another data transfer.

The type of circuit that can perform this function is called a
since it can latch the information and hold it until it is updated or

44

until the power is turned off. There are many different types cf latch
integrated circuits that offer different configurations of control and
data inputs and outputs. Rather than describe all of the various types
of latches, we have chosen to describe three general-purpose devices,
the SN7475, the SN74175, and the SN74LS373. The pin configura
tions and function tables are shown in Fig. 3-L While �tb.��£Nl::!c7l5
�i;�.§J�I1L.SJ1�.�X�."tr.1!�.1l!::t£h .. 9�xiy§§, .th�N§N7JF§ .E��!!l: .S?l1t�il1s
flir;i«-<·';kii;;1s., The SN7475 latch chip contains four latch circuits and. the
SN74175 contains four flip-flop circuits, so two SN7 475 or two
SN7 417.5 chips are required for each 8-bit output port. The
SN74LS373 contains eight latch circuits, so- only one of these is
required to construct an 8-bit output port'.

Let us briefly describe the operation of these latch circuits, so that
their use becomes apparent. We will use the SN7475 latch chip as
an example. The SN7475 latch circuits can be thought of as "gates
that remember." This is shown in the function table for the SN7475
latch, shown in Fig. 3-1. In examining this function table, you will
note that when the enable input (G) is a logic one, the data, or logic
level present !!_t the "D" input, is passed through the latch to the "Q"
output. The Q output is the inversion of the Q output. When the
enable input goes from a logic one to a logic zero, the level presel!!:
at the D input at this time is latched or remembered by the Q and Q
outputs. The timing relationship shown in Fig. 3-2 illustrates these
operations.

As soon as the "G" input goes to the logic one level, the Q output
assumes the state of the "D" input even if the levels at the "D" input
are changing. The logic levels are passed from the "D" input to the
"Q" output when the "G" input is a' logic one; the "Q" output remains
at the level of the "D" input when the "G" input goes to a logic zero.
The SN7475 is divided into two sections, each of which can operate
independently of the other. The two gate inputs may be connected
to make the four latch circuits operate in tandem. Of course, the in
puts and the outputs to the latches remain independent, so that four
input signals may originate from different places in a circuit. How
ever, all four inputs will be latched at the same time if the separate
'm""c'�''J are operated in tandem.

The SN74LS373 operates in the same way as the SN7475, although
only one gating or enablin� signal is used. In this chip, only the Q
outputs are provided. The Q outputs are not available. An additional

control has been provided, but when the SN7 4LS373 is used
this control signal, Output Control (pin l), is usu-

SN7 4175 chip contains four flip-flops that acquire and hold
that is present on the positive-going edge of the clock

The outputs are only updated at this time, and the inputs are

ENABLE
1-2 GND 30 JG

1D 2D ENABLE Vee 30
,_,

FUNCTION TABLE
(Each Latch)

INPUTS OUTPUTS
0 G 0 0
L H L H
H H H L
x L Oo Go

H =high !evel, L = low level, X ""irrelevant
Oo =the level of Q before the high-to-low transition of

OUTPUT
CONTROL

H

'LS373, 'S373
FUNCTION TABLE

ENABLE
D

G
H H
H
L x
x x

FUNCTION TABLE
!EACH FLIP-FLOP)

H

0.0
z

INPUTS OUTPUTS
CLEAR CLOCK D Q Qt

L x x L H
H t H H L
H t L L H
H L x Oo Go

fig. 3-l. p;., cMlig.,ratio:ms am! famdi<>" tables for Sl\!7475 [¥op), SN74LS37:'l

(middle), and Sl\!741 75 (bonom) latd-1 chips.

not continuously gated through the SN7 4175 on either the logic zero
or the logic one portion of the clock signal. This is what distinguishes
this flip-flop device from the latch devices, although in computer in
terfacing, the net effect of both types of chips is the same.

A common clear input is also provided on the SN74175, so that the
flip-flops may be "cleared" (Q=O, Q=l), when this input is taken to

D INPUT

G INPUT

Q OUTPUT

the logic zero state. In most cases, the dear input will be connected
to +5 volts (logic one) and v.riH not be used.

Each of the integrated circuits may be used to latch and maintain
the data out by the Apple computer during the execution of a
POKE command. It is a simple matter of using an output device
select pulse to activate the latch circuit once it has been properly
connected to the bus. A typical 8-bit output port is shown in Fig. 3-3.
In this circuit, a logic one output device select pulse is required to
cause i:he latch circuits to acquire and hold the information output
by the Apple.

DATA BUS

D7

D6

D5

D4

D3

D2

0 1

DO

DEVICE SELECT
PULSE

,,

2

3

6

7

2

3

6

7

SN7475

D Q
0 Q
0 Q
D Q

G G

l 4 113

SN7475

D Q
D Q
D Q
D Q

G G

14 113

16

15

10

9

D7

\
D6

D5

04

DATA
LATCHED

FOR
PERIPHERAL

16

15

10

9

03

I 02

DJ

DO

.

In Fig. 3-4, two SN7 4175 latch chips have been used as an
port, with some sort of logic monitors being used to provide a visual
indication of the information that has been latched by the chipso The
'T' indication at the connections to the CLEAR inputs at the

means that these inputs are connected to +5 volts, or a logic one
The 'T' notation is used to distinguish a level connection
a power-supplying connection, which is noted as +5 or

Vo
An SN7 4LS373 8-bit or octal latch has been used as an

in Fig. 3-5. Only one integrated circuit is
The Output Control line has been

enabledo Again, an

SN74175

D7 D Q D7

D6
13

D Q 15
D6

\
D5

5
D Q D5

D4
12

D Q 10
D4

CK CR
OUTPUT

DATA BUS
I (LOGIC II

PORT
DATA

SN74175

I D3 D Q D3

D2
13

D Q 15
- 02

DI D Q DI

DO
12 D Q 10

DO

CK CR

DEVICE SELECT IL 9

PULSE

i'i9. 34. '1'"1m SN7'i!H'$!��d' <Mi>• l!ll•ecl !@ fowm �" GM!!"" f'©>i'.

pulse must be supplied from the device selection logic. Once an out
put port has been properly connected to the data bus and a source
for the device select pulse, it can be accessed under control of soft.:
ware commands. For example, the command, POKE 49312,0 would
transfer the value zero l:o the output port with the address 49312. If
there is actually an output port connected to the data bus, which cor
responds to this address, then the value zero would be transferred,
to ii:.

The program shown in Example 3-1 may be used to generate an
increasing binary count at output port 49320. The count will

D7
4

7
8

DATA BUS 13
14
17

DO
18

II

.--I"-...

OUTPUT DEVICE SELECT

+5

20

D

D

G

GND

10 SN74LS373

Q 2
07

6
9

LATCHED OUTPUT
12

PORT DATA
15
16

Q 19
DO

El�

ue in sequence (in binary) , 255, 255, 0, 1, 2 . .. 254, 255, 0, 1, etc.
is program will be seen again, in the experiments.

Example 3·1. An 8-Bit Binary Counting Program for Port 49320

FOR N = 0 TO 255

POKE 49320,N

NEXT N

GOTO 10

Output ports are rather easy to construct. Most parallel-in, paral
-out lo ic evice · inte h ca abilities can be used as
c Examples of devices that can be use as latches are the
74193 programmable binary counter, the SN74LS194A universal

ift register, the SN74198 shift register, etc.
Most output ports are readily configured with standard inte
ated circuits, but some of the newer integrated-circuit devices that
· meant specifically for use with microcomputers are becoming

ilable with built-in latch functions. An example is the Signetics
5018 8-bit digital-to-analog converter chip which contains a latch
tion.

Typical applications for output ports include the following:

Transfer data to a printer
Transfer data to a video display
Control a traffic light
Transfer data to a floppy disk
Actuate switches on a model railroad
Control valves and pumps in a chemical process
Control a plotter
Transfer data to a seven-segment display
Control another computer

n some applications, the value of the information is actually used,
· e in others, the on or off state of each bit is used. Some devices

as a printer may use a combination: ports for the transfer of the
to be printed and ports for the control of the printer functions.
lays made up of seven-segment LEDs frequently require the

•··of several output ports, even though the display is considered to
only one "device."

INPUT PORTS

pput ports are used with 1/0 devices so that they may transfer
mation to the computer in 8-bit bytes. Unlike output ports that
be able to accept and hold information that is placed on the bus
specific time, and may be continuously connected to the data
input ports must be able to "disconnect" themselves from the

49

DATA DATA DATA DATA

ONE - BIT DATA BUS

bus they are not in use. The input ports must pass logic o
and zeros to the CPU, but they must be configured. so that they
not interfere with the use of the bus when they are not selected.

Depending on the type of gate chosen, simple gates cannot
used to gate data onto the data bus lines since their "unselected" ou
put state will be either a logic one or a logic zero, as shown in F
3-6. Note that even when none of the gates is selected or enabled, t
outputs of the gates are at different logic levels, as noted by t
quoted logic levels. These levels "compete" for the use of the b
probably leading to one or more burned out chips. This shou
clearly illustrate why gates alone are not used on data buses.

Vee 4C 4A 4Y 3A 3Y

l'i�. :!l-7. �!1174125 b11s i>uffe• d1i1>

pi11 e@rofo91nati<>11.

1C 1A 1Y 2C 2A 2V GNO

Special integrated circuits with three-state outputs are
to simplify the design of input ports. A typical three-state device
the SN74125 bus buffer, shown in Fig. 3-7. The diagram of the
devices should look familiar. It is simply a buffer (logic one in, logi
one out, etc.) , but an additional control line, shown
l:o one of the angular sides of the buffer symbol The buffer will
logic ones and zeros from its input to its output when it is vuau'•�'�'

but unlike a simple gate, when it is disabled, the output appears
be electrically disconnected from the or other logic device, to

it is connected. In three-state devices. this third state is often
called the HI-Z or high-impedance state, to note its d.i:scc)rn1e(;te'C1
condition. The disconnecting and connecting is rapid, generally
ing less than 20 nanoseconds.

In the SI"-J7 4125 each three-state buffer has its own
zero for the data to be from the

one state on the enable input forces the
5'.tate. A similar integratsd.

DATA A

DATA B

DATA C

DATA D

DATA BUS

SN74125

A
B BUS ENABLE

C INPUTS

o
fig. 3·3. Typical three·•�awe b.,s fo� fom devioes.

SN74126, is a pin-for-pin replacement for the SN74125, except
it is enabled with a logic one and disabled with a logic zero.

These chips serve to illustrate the action of three-state devices, but
are not generally found in computer interface circuits, since
useful devices are available.

For purposes of illustration, a typical bus is shown in Fig. 3-8. In
circuit, four one-bit devices have been connected to the bus.
a one-bit bus is shown for clarity, although in an 8-bit bus sys
eight lines would be required. When one of the BUS ENABLE

is placed in the logic zero state, the corresponding data bit
through the buffer and onto the bus. We will assume that

are no other devices connected to the bus. Thus, the truth table
in Table 3-1 applies to this simple bus circuit.

none of the buffers has been enabled or connected to the
the bus is not connected to anything except the input of the

.··c,··i:i<l'l'�'v�, memories, etc., that are the "receivers" of the data bit, so the

Enable

[j c B A Bus C<1ntent

l Undetermined (all devices Hl·Z)
l 0 Data A

1 0 Data B
1 0 Data C
0 l 1 l Data D
0 0 0 0 Not Allowed

51

I
I

logic value of the bus is unknown. Whenever a logic zero is app
to one of the bus buffer enable inputs, the selected buffer passes
data onto the bus. The condition in which more than one buffer
been enabled is not allowed, since bus conflicts will arise.

All of the devices that are to be used with the Apple c.;v•uµut�F'J

system to transfer information to the CPU must have three-state o

puts. Thus, even memory chips must have three-state outputs,
they in fact do. The computer designer must be sure that the syst
has been designed so that no two input devices are selected at t
same time. If such a multiple selection takes place, improper ope
tion of the computer occurs.

Input ports that may be used to transfer information to the co

puter are readily constructed using standard three-state integrat
circuits. In most cases, eight individual three-state buffers are us
one per bus line. In most cases, too, the enable inputs are all co
nected in parallel, so that all eight buffers transfer their informati
onto the bus simultaneously. In some cases, the common enabling i
put is provided within the chip so that only a single pin on the chi
is required for the control of all eight bits.

There are many chips that may be used to construct input
but only a few of them are general enough to warrant our cons11ae:ra,
tion. The two main integrated circuits that will be used in our
pies are the SN74365 and the SN74LS244, The SN74365 may also
noted as the DM8095 (National Semiconductor Corp.) , which is
exact replacement. The pin configuration for these two chips
shown in Fig. 3-9.

You will note quickly that while the SN74LS244 has eight
state buffers on one chip, the SN74365 has only six. If the
device is used to construct an input port, two of the integrated
packages must be used. A typical 8-bit input port is shown in
3-10. In this case, only two of the three-state buffers in the lower
SN74365 chip have been used. Since the SN74365 contains built-in

SN74lS365
�·�· :'l-9. !>N74l!i2<M �"<ff Zi'<l:l'll36:ii (illl/!3�5) ril•'""'sl1'1® !:JMs <lwi'-'&• d1ip

�C!l'll c��flg;Mr.?di�@fi!.

R gates that control the enabling of the three-state buffers, these
ve been used to gate the RD function pulse and the device ad
ss, 49321. If the device select signal, RD 49321, had already been
erated elsewhere in the interface circuit, it could be applied to

e of the enable inputs on both chips, while the other enable inputs
re grounded, or logic zero. This control scheme is shown in Fig.

n.

D7

D6

D5
INPUT PORT D4

D3

D2

DI

DO

--

2

4

6

14

12

10
I

'151
,..-=-

2

4

..,
..,
..,
..,
I

I5

+5 GND

116 18

A y

GI

G2

+5 GND

lis ls
A y

GI

G2

SN74365

3

5
D7

D6
7

I3

11

9

D5

D4
TO

D3
DATA BUS

02

DI

.---- DO

3

� t--'---'
t-
t-
I-
I-

Fig. 3-10. Typical input port constructed using SN74365 chips.

·· using such an input port, data values may be input to the com
er through the use of the PEEK command, as shown in Example

Example 3-2. Data Input Program for Port 49321

A = PEEK (4932 1)

PRINT A

'r

I . ; SN74365

15
G

G.:_1

__ I
-

(ON BOTH CHIPS)

Fig. 3-11. Alternate control scheme for SN74365 three-state chips.

53

In this example, the 8-bit binary value is converted to a deci
number between zero and 255 when it is input by the Apple u

the PEEK command at line 10 in the progrnm. It is then "printed"
the video monitor screen. It would have been just as valid to use
following command:

1 0 PRINT PEEK(4932 1): GOTO 1 0

A similar input port may be constructed by using an SN7 4LS2
octal (8-bit) buffer. This chip contains two independent sets off
buffers �ch, which are independently controlled with two ena
inputs, 2G and lG. Since there are no built-in NOR gates in the SN
LS244, external device select gating is required. A typical input p
in which an SN74LS244 chip has been used is shown in Fig. 3-1
Software steps similar to those shown in Example 3-2 would be us

SN74LS244

07 A
18

D7
4 16

6 14

8 12
INPUT DATA 11 9 DATA BUS

13 7

15 5

DO
17 3

DO

Rii TG
A DDRESS 2G

!Fig. :>-12. h•p"i porl <@>nfiw�•�d wi�h 11n Si'!l1,.l52'14 �Mp.

to control the flow of information from this port into the '"'v''"JJ"-"'"'

Both the SN74365 and the SN74LS244 have "''�--.-..-.·r-"''"'

lent circuits that invert the data bits as they are passed ��,.., ..

chips and onto the data bus. These buffers are the SN74366
SN74LS240, respectively. The SN74366 is also equivalent to
DN8096 chip. In most cases, the noninverting buffers will be the
used in interface circuits.

In some cases, peripheral devices may generate more than eight
bits of information that must be read by the computer. An example
of such a device would be a 12-bit analog-to-digital converter. When
more than eight bits of information are to be input, the bits are di
vided into groups of eight bits. In the case of the 12-bit converter,
there would be two groups, one containing 8 bits, and the other con
taining the remaining four bits. Likewise, a 16-bit value would re
quire two input ports, as would a 9-bit value. When not all eight bits
in an input port are used, the unused bits are generally placed in the
logic zero state by connecting them to ground, or logic zero. If the

state of the unused bits cannot be determined, perhaps they have not
actually been constructed in the input port circuit. You can "elim

these bits by using appropriate software commands. These
commands "mask" these unused bits, so that they become zeros.

Since a 12-bit value may represent decimal values between 0 and
:4095, some means must be found for converting the individual bytes
;that have been input into a single value. We will assume that the
·· ·ght least-significant bits have been input as a single byte from port

312, and that the four most-significant bits have been input from
put port 49313 at bit positions D3-DO. We will further assume that
e unused bits at input port 49313 have been grounded so that they
e logic zeros.
Now that the configuration of the input ports has been defined,
's see how the information is manipulated so that the original value
reconstructed from the two separate bytes of data from the two in
f ports (Fig. 3-13). Since the least-significant bits can represent
ues between 0 and 255 from the 12-bit interface device, these bits
not require any "conversion," since the Apple will simply input

INPUT DATA

RD

ADDR

DO -----1

DATA BUS

Dl -----1

Fig. 3-13. Two-bit input port.

e eight bits and convert them to a value within the range of 0 to
However, if the four most-significant bits are considered apart
the other bits, converting them to decimal will yield values be-

0 and 15, rather than their original positional values of 0, 256,
and so on. These bits have been "offset" by a factor of 256 due
e. fact that the 12-bit data value had to be "split" into smaller

so that it could be input by the Apple. Remember that any
. value that is input into ·the Apple will be automatically con
.d into a decimal number with values in the range of 0 to 255.

en the two values have been input into the Apple, it is a simple
to "reconstruct" the data. If the information from the four

jgnificant bits is multiplied by 256 and then added to the value
e eight least-significant bits, a resulting value will represent

between 0 and 4095, inclusive, the value that was originally
t as a 12-bit binary value at the interlace .device. The complete
re routine is shown in Example 3-3.

55

!::><ample 3·3. i'r<>1;iram for a !:!-Bit hipui C@nv®•si@n

10 A = PEEK(493 1 2)

20 B = PEEK(493 1 3)

30 C = (B * 256) + A

40 PRINT C

You could simplify this by placing all of the steps on one line:

1 0 PRINT(PEEK(493 1 3) * 256) + PEEK(493 1 2)

This simple program will print the decimal equivalent of the 12-h'
binary value that was present at the peripheral or interface devi
when the program was run. The program can be used for
with from 9 to 16 binary outputs, but you must be careful to
the unused bits. You will see another method of "masking," or
ing the bits in the experiments.

Input ports are used to transfer information from external
to the computer. This information may represent actual values
weight, temperature, resistance, etc., or the information may be
terpreted as individual binary bits representing the state (on or
of individual devices, for example, empty/ full, ready/ busy,
Some typical uses for input ports would include the following:

Transfer of traffic sensor information to the computer
Transfer of digital values from an instrument to the computer
Transfer of status (on-o:ff) bits from a printer to the computer

In interfacing applications, the main requirement for input ports
that their outputs have three states so that they will not cause """- ""''' >·.

flicts on the data bus when they are used.

CHAPTER 4

Flags and Decisions

n almost all of the previous examples, we have assumed that there
•ttle synchronization required between the computer and the ex
nal 1/0 devices. Thus, output ports have been assumed to always
ready for more data to be transferred to them. In the case of input
ts, we have assumed that the data values are present and ready
transfer to the computer, when the computer reaches a PEEK
mand in a program. This may not always be the case. We must

en deal with 1/0 devices that are slower than the computer.

1/0 DEVICE SYNCHRONIZATION

Since not all I/ 0 devices may be ready for the computer at all
es, a means of synchronizing the computer and the 1/0 devices
equired. The synchronization generally involves the use of signals
t are called -flags. These signals are used to indicate that various
·ces are busy or not busy, ready or not ready, converting or not
verting, and so on. Thus, "flags" indicate the status of devices, and

are often called status fiags.
or illustrative purposes, we will assume that we are required to
rface a device to an Apple computer. The device will provide

it data values to the computer on an irregular basis. In most cases,
h devices also generate a flag signal that indicates that the device

ready to transfer its information to the computer. Such a device is
wn' in Fig. 4-1. Note that a standard three-state input port has
n used to transfer the information to the computer. The READY
presents an interesting problem. How is the computer going to

nitor or check the condition of the READY flag, so that it can
termine when a new data value is ready?

57

INPUT DEVICE
READY/BUSY SYNCHRONIZING FLAG

D7 ,__ __ _,

DO r�--->

4

IMPUT PORT _/

07 \
TO DATA BUS

DO I
'------ RDXYZ

As we stated previously, there is no rnle that limits input ports
the trnnsfor of actual numeric values. The computer has no way

that the 8-bit value, 011001002, represents 100, rather th
five devices being off, and three devices being on. Thus, another i
put port could serve quite well as a of transferring the status fl
information from the input device to computer. The other sev
bits at this input port may be unused, or they may be used to Jindica
the status of other external devices. fo this way, software steps m

be used to check the condition or status of external devices.
When the status of a flag is checked in a computer program, t

computer may be programmed to wait until a flag has changed. to
particular state before going on with the required action, or it ma

be programmed to check the flag periodically, going on about oth
tasks in the meantime.

There are logic operations in assembly language and in
that allow us to check the status of individual flags, or bits, in an
data word. In this way, the actual logic zero or logic one state of
flag may be detected, with the computer making a decision ����--,,,,,.,,

upon the state of the flag.

Probably the most useful operation, where Hag detection is
is the logic AND operation. You should recall two bits,

A and B, nriay be "ANDed" together, as sho'\Am in Fig. 4-2. The result
indicates that when both of the bits are ones wiH the result
be a one. Another vvay to think of this is to treai: the "A" bit as

_i- Mt\SI\ (A)

_rul.IlJcilJ 0,1\Ttl, (13) RESULT __ rt_r-i_s

fgg, ��2. Ro��·e�.�l8�£iH©FM �tIJ����� Ai�l) e,p�il'����:n �s�i:'�§ �AT�i f�A�K

�r�,,.J�cl ���HJ�7.

VALUE 00111010 00011010 11110000 00011111

MASK 00100000 00100000 00100000 00100000

RESULT 00100000 00000000 00100000 00000000

Fig. 4-3. Example of AND operation in which eight bits of information are

operated on.

"mask," and the "B" bit as information or data. When the mask is
zero, the result is a zero. When the mask is a one, the data is passed

ough the gate. In this way, selected bits may be masked, while
hers are "passed through" the mask. If, for example, we wished to
eek the state of bit D5 in the data. word 00111010, a mask of
100000 could be used. The mask is '}NOOd with the data word, as
own in Fig. 4-3, for several different data words. In all cases, the
gic state of D5 was passed through to bit D5 in the result. All of
e other bits were masked, or set to zero. In this way, the total re

. lt was zero when bit D5 was zero, and the result was nonzero when
't D5 was a one. This could be used as the basis for decision making
�ps in a program. You must remember to convert the masks to their
.eimal equivalent before trying to use them in a BASIC program .
. the case of bit D5, the mask would be converted to 32.

FLAG-DETECTING SOFTWARE

.Once an interface has been constructed so that the states of the
ious flags may be detected, as shown in Fig. 4-4, software may be
d to make decisions based upon the states of the flags.

In some dialects of BASIC, there are logical operations that will
rform bit-by-bit AND operations, such as the ones shown in Fig .
. In these cases, simple expressions may be used in BASIC pro-

INPUT DEVICE ONE·BIT INPUT PORT .------ RD 49321
...... J"L

READY/BUSY 1-------t >-----.

D7

DO t------t

t---+--D7

1-----DO

'TO DATA

BUS

.__..n... _ ____ RD 49320

Fig. 4-4. Complete interface in which the flag is detected by software.

59

!Example 4-1. A logi< :Zero ll•e<i for Conlrol

4010 A = PEEK(49321)

4020 IF (A AND 32) = 0 THEN 200

4030 . . . Continue here if flag = logic one

grams to perform the ANDing operations between two data word
that have values between 0 and 255. Keep in mind that the bina
equivalents are what is actually being ANDed. Examples 4-1 and 4-
illustrate how these AND operations could be used to detect a flagi
that is input at bit D5 from an input port, port 49321.

·

Example 4-2. A logic One Flag Used for C1mir<>I

4010 A = PEEl<(49321)

4020 IF (A AND 32) > 0 THEN 200

4030 . . . Continue here if flag = logic zero

In either case, when the proper condition is met, the
would probably input data from an input port, or perform some
action that is signaled by the presence of the flag.

Unfortunately, the Apple computer does not use its logical com"
mands in this way. In the Apple, an AND operation allows only the
ANDing of two distinct true-or-false conditions, so it is very difficult
to mask eight bits to determine the state on only one. Unless we wish
to spend a great deal of time in a complex BASIC routine, we must
consider the use of an assembly-language subroutine that will per
form the logical operations for us rather quickly. Since you can easily
point the Apple to assembly-language routines, this is worth pursu
ing a bit further. In fact, we will provide you with some simple, easy
to-use routines.

ASSEMEl.Y-1.ANGUAG� !..OG!CAl OPERATION§

The assembly-language instruction set for the 6502 microprocessor
contains an AND and an OR operation. Each of these instructions will
operate upon two 8-bit bytes, providing a single byte as the result of
the operation. Thus, we must write a short routine that will perform
the operation.

The Apple provides some "spare" read/ write memory locations on
memory page 03H, and we have chosen to locate our routines on this
page, since it will make the routines independent of the total memory
size of your computer. A complete listing for the routine is provided
in Table 4-1. Note that both hexadecimal and decimal addresses and
data/ instruction values are provided for you. You do not have to be
an expert in assembly language programming to use this routine, but
we have provided some comments so that you can follow the opera
tion of the program, if you wish.

••

...

..

.

Addr�ss Byte Da;a Syie

Mexacledm�i !.ledm;;I rlexadedmal !lledmal

0300 768 - - MASK Byte Goes Here

0301 769 - - DATA Byte Goes Here

0302 770 - - ANSWER Found Here

0303 771 48 72 PHA Push Reg A

0304 772 AD 173 LDA Load Reg A from

0305 773 00 0 MASK location

0306 774 03 3 I 0307 775 2D 45 AND Reg A with DATA *
0308 776 01 1

0309 777 03 3

030A 778 SD 141 STA Store result in

I 0308 779 02 2 ANSWER location

030C 780 03 3

030D 781 68 104 PLA Pul I Reg A back

030E 782 60 96 RTS Return to BASIC

*Substitute OOH, or 13 decimal, for an OR operation.

Three read/ write memory locations are used for the temporary
of the various data bytes, called MASK, BYTE, and AN
The MASK location is loaded with the mask byte, and the

location is loaded with the byte that is to be operated on. After
the logical operation has taken place, the ANSWER location contains

result.
To use this routine, you need to load the MASK information into

768, and the DATA byte into address 769. You can use
operations to do this. Once this is done, you simply need to

the assembly-language subroutine, so that the operation is per
·�,,., .. v�. How do you do this?

Calling an assembly-language subroutine from BASIC is not very
difficult. In the Apple computer, you simply need to put a three-byte

instruction in three successive locations, addresses 10, 11, and
or OB, and OC, in hexadecimal notation. Since our routine

at address 771, or 0303H, you need to put the following infor
,,,ucivu in these three locations: a 76 in address 10, a 3 in address 11,

a 3 in address 12. Once you have loaded this ad.dress information
these three locations, you can access the assembly-language sub

with a USR function. In this case, you need to first load the
and BYTE information, and then use the USR function. This

shown in Example 4-3.
In this case, the value 32 is the mask byte, and 129 is the value that
to be ANDed with it. The Q fa a "dummy" variable that is required

the use of the USR function, and the value 5 is a "dummy" value
has no effect on the subroutine. You can use any variable for Q,

E"amp!e 4-3. Camng t!.e l@giul Opom.ili<>" s.,brnuli"e

1590 POKE 768,32: POKE 769,129

1594 Q = USR(5)

as long as you don't use it elsewhere, and you may substitute an
value for the 5, say 0.

Once you have called the assembly-language subroutine, you wi
find the result in location 770, and a PEEK operation may be used
get at it. The program shown in Example 4-4 shows the complete
of the subroutine. We have assumed that the subroutine has
loaded, probably through the use of the monitor. In this example,
three-byte jump instruction is loaded by using POKE operations.

Example .li-4. Using lliie �@gi< Op<m•li@ll S!!brnutine

2030 POKE 10,76: POKE 11,3: POKE 12,3

2040 POKE 768,32: POKE 769,PEEK(49321}

2050 Q = USR(7)

2060 IF PEEK(770) > 0 THEN 3460

2070 . . . Continue here if flag = 0

In this example, the data to be used in the logical operation is
tained from an input port by using a PEEK command and the au-'!%'"-''
dress for the device.

You can also perform an OR operation with the same
simply by changing the operation code (op-code) for the AND opera-
tion from a 2DH to a ODH. Again, a POKE operation can do this just
before you use the subroutine. Thus, the subroutine provided
Table 4-1 can be used for both logical operations.

You should be able to load the subroutine into the read/write
memory by using the monitor for the Apple. We refer you to the
Apple II Reference Manual for information about the monitor.
could also use 12 POKE commands to load the program steps, but
this invites errors.

It is unfortunate that you must resort to assembly language to per
form the logical operations that are readily available in other BASIC
dialects. However, the assembly-language program is fairly simple,
and it has provided a simple example of the use of such programs,
and how they can be called from a BASIC program. If you are not
an assembly-language programmer, perhaps this has whetted your
appetite.

COMPLEX rFl.AGS

At this point, you may be asking, if the flag on the input device
shown in Fig. 4-4 is used to indicate the availability of an 8-bit value,
how does the device know when the computer has input, or ac-

INPUT DEVICE RD 49321

-

READY/BUSY

07

DO

CLEAR FLAG l IL

D7

DO

TO DATA

BUS

RD 49320

cepted, the value that it has made available? In some cases, a signal
from the computer to the I/ 0 device is used to indicate that the flag
has been detected, and that the necessary action has taken place.
This signal "clears" the fl.ag. The :flag-clearing action may be per
formed by a separate signaL The same signal that controls the input
port for the data may perform the flag-clearing action. This is shown
in Fig. 4-5, and a simple timing diagram is shown in Fig. 4-6.

When the flag is in the logic one state, this indicates that
the device is ready to transfer a byte to the computer. The RD 49321
pulse the transfer of the flag status information to the
computer, Vv'hen the computer tests the flag and finds that it is a
logic one, it executes steps that actually transfer the data from
the to the computer, The RD 49320 pulse is used here to en

buffers at the conect time, This pulse is also used
clear the internal flag circuit of the device.
The second RD 49321 reads the status of the flag, but

zero, the computer takes no further ac-
is tested, however, the is a logic

data is transferred to the and is
set of program steps that can

in 4-5. We assumed. that the logi-

cal AND subroutine has been loaded, along with the three-b
pointer.

F.xampie -11·5. A l&imple fi<>s Teoti1111 !'rogrnm

1050 POKE 768,32: POKE 769,PEEK(49321)

1060 Q = USR(O)

1070 IF PEEK(770) = 0 THEN 50

1080 D = PEEK(49320)

1090 . . . Continue here after data input

Typical devices that use flags in this way are keyboards, Hopp
disks, analog-to-digital converters, and other devices that may pro�
vide data bytes at irregular periods.

In some cases, devices may not the necessary .flag circuit
within them for easy :flag control, or they may not generate logic
levels that are stable for relatively "long" periods so that they can be
properly detected by the computer. In these cases, the "flag"
a very short pulse. In fact, some pulses are too short to be
tected by the computer, if they are simply input by means of a
state input port

In cases such as this, it is necessary to design a circuit that
"capture" the flag pulse SO that it may be detected the vV,CH!_)UC,JL
sometime later. Even if the computer can test a flag bit every
milHseco�ds , it will frequently "miss" short pulses of a few micro"
seconds duration.

Flip-flop or latch circuits are generally used to remember the
ence of flag pulses. Typical flip-fl.op devices are the SN7474
Hip-fl.op, and the SN7476 J-K flip-flop. Most introductory digital
tronics books provide a good coverage of flip-flop devices if you
to review their operation.

A typical flip-Hop-based flag circuit is shown in Fig. 4-7. In
circuit, the input device generates a READY pulse that clocks
flip-flop, transferring the logic level from the D input to the Q
put. The Q output is detected by the computer through the use of
input pmt that is separate from the input port that is used for th{)
transfer of the eight data bits. The status of the flag bit
tested by the computer, as has been described. Once the ne,ces:sai,·y
action has taken place, in this case, the input of data
device, the flag flip-flop is cleared. A logic zero pulse,
plied to the clear input of the flip-flop serves this purpose. While
RD 49360 pulse used to control the 8-bit input port could be used to
dear the flip-flop, we have shown a separate clear signal, so that the
timing relationships can be shown, as in 4-8.

INPUT DEVICE INPUT PORT

Dl Dl

DATA BUS
'

D3

DO DO

READY 1 J"L
RD49360

J"L FLAG PULSE J'"L
SN7474

t>-J 1- D Q

RD49361

CK INPUT PORT

CR

L..r ..IL
. CLEAR

Fig. 4-7. Flip-flop circuit used for detection of flag pulse.

n the timing diagram, the READY pulse sets the flip-flop, so that
Q output is a logic one. This is detected when the status flag in

ation is input from port 49361. The logic one state of the flag
es the software to perform the steps that input the data byte and
clear the flag. The separate CLEAR signal could be generated

a POKE command, and appropriate circuitry, although the use
e readily available RD 49360 pulse is probably easier.

(Q)

Fig. 4-8. Flag flip-flop timing .diagram.

this example, the flag was tested twice while it was in the logic
state. Since this indicated that no new data was ready, no input

ers or flag clears were initiated.
eral experiments at the end of this book involve the use of flags.

65

MULTIPLE FLAGS

Many systems have a number of Hags that must be checked
regular basis. In some cases, a priority must be established, s
some devices are more important, or require faster attention, tha
others. The priority is easily set in the program, since the orde
which the various bits are tested determines which devices are "
viced" before others. The program steps shown in Example 4-6
check several flag bits in sequence, from bit D7 to bit D5, provi
a priority in the order in which the corresponding devices would
serviced by the computer.

In this example, the flag for bit D7 was detected when it w
logic one, while the other two flags were detected when they w
logic zero. Other bit-sensing steps may be added for other flags,
the order in which the bits are tested may be changed at any ti
simply by changing the program to reflect the new order. Note
the data involved in the AND operation is not changed, and it o
needs to be input from the input port at the start of the sequence
instructions.

Example 4-6. Flag Priority Software Steps

300 POKE 769,PEEK(54098):POKE 768,128: Q=USR(O)

305 IF PEEK(770) > 0 THEN l 050

310 POKE 768,64:Q=USR(O)

315 IF PEEK(770) = 0 THEN 20

320 POKE 768,32:Q=USR(O)

325 IF PEEK(770) = 0 THEN 1010

330 . . • And so on for other bits

INTERRUPTS

In some cases, it is necessary for an 1/0 device to be serviced
soon as it is ready. It may not be able to wait the many millisecon
or even longer periods, that the computer may require to check Ha
and make decisions based upon them. Almost all computers have
least one interrupt input that allows you to "demand" immedia
servicing from the computer, irrespective of what it is doing. T
6502 processor chip used in the Apple computer has two interru
inputs; an interrupt request input (IRQ), and a nonmaskable inte
rupt input (NMI). The IRQ input is sensitive to a logic zero, whi
the NMI input is edge sensitive, being triggered by a logic one
logic zero transition. These inputs are not used within the bas·
Apple computer. However, they are readily available at the intern
interface connectors, and they may be used by add-on peripher
devices and interfaces.

If a device is going to require extremely fast servicing, fast enoug
to require the use of an interrupt, it goes without saying that asse

66

y-language programming will also be required. Since this is be
nd the scope of this book, we refer you to Programming & lnter
ing the 6502, With Experiments and 6502 So�ware Design,
ward W. Sams & Co., Inc., Indianapolis, IN 46268. Both books
uss the use of interrupts in detail, providing examples and assem-

-language programs for the control of interrupts.
he Apple interrupts IRQ and NMI use specific memory locations

ro which the 6502 processor "fetches" the address of the subrou
e that is to be used as the service routine for each interrupt. The

uses locations FFFEH and FFFFH, and the NMI uses locations
F AH and FFFBH. Since these locations are actually within the
d-only memory chips that contain the BASIC interpreter and the
nitor, the addresses in these four locations are fixed and you can
change them. However, these fixed addresses are simply used to
t to other locations in read/write memory where you can ac-

lly change the pointers for the interrupt service subroutines. We
er you to the Apple II Reference Manual for the details of how to

these "vector" locations.

FINAL WORDS

few final words are necessary before you leave this chapter. We
e chosen to introduce you to a simple assembly-language subrou
for performing the logical AND or OR manipulation on two 8-bit

es, along with the use of the assembly-language subroutine call
operation, USR. Actually, the Apple computer has a flag-check
command in its instruction set: WAIT. This instruction can be

to check individual flags, or groups of flags, and it can detect
'c one and logic zero flags, too. However, there is a limitation to
se. If the proper flag pattern is not detected, then there is no way

you to ever leave the flag-checking operation, and you must reset
computer to get back control. Likewise, you cannot decide to
ch to one portion of a program if the flag or flags are set, and to

nch in another direction if they are not set. If the WAIT com
d is used, you will simply continue to WAIT until the condition
et. This is fairly inflexible, and we have chosen to avoid the use

he WAIT command for this purpose.
e have introduced you to the USR command for calling assem

language subroutines, and if you expand your horizons and con
e to learn more about assembly-language programming, you will
that this instruction is quite valuable. However, if you simply

t to access an assembly-language subroutine, such as the logical
subroutine, you can use the CALL command, followed by the

l address of the start of the subroutine. A CALL 771 opera
can be used to call the logical AND subroutine. Of course, you

67

must POKE the MASK and DATA bytes before you call the sub
tine.

'

The object here has been to show you a bit more of the powe
the Apple computer and how it can handle different tasks. The
path isn't often the most interesting or educational.

68

CHAPTER 5

Breadboarding
01

With the Apple

It has always been our philosophy that computers should be easy
:use, both for program development and for hardware or interface
velopment. Since the necessary signals for interfacing most com
ters are readily available. somewhere in the computer system, it
s decided to develop some general-purpose interface circuits that

d be used with a number of different computers. These circuits
fairly simple and are easily constructed and adapted to many
puters besides the Apple. A printed circuit was developed con
ing all of the necessary circuits for interfacing purposes. A photo-

ph of the interface is shown in Fig. 5-1. A standard 40-conductor
cable is used to connect the interface breadboard to various com
ers. While the interfacing circuits could have been breadboarded

then used for the experiments, it was thought that this would
provide additional points at which problems could surface.

BASIC BREADBOARD

e basic breadboard contains a number of useful circuits that al
interface designs to be easily set up and tested. The basic sec

s are Power Supply, Logic Probe, Device and Memory Decoders,
Buffers, and Control Circuitry.

er Supply

e power supply section of the breadboard may be operated in
of two ways. An external +5-volt power supply may be used, as

69

long as it can supply l ampere of current, or an external
may be used to supply 12.6 volts (ac) to the on-board power
circuits. In either case, the breadboard pm•1er supply is
from the computer power supply. A separate power supply is
used because some computer systems cannot wpply sufficient
for their ovm circuits and the added interface circuits that you
wish to test. VVhenever an external power is used, you uu1xv•·"''"

be sure that there is a good, low-resistance common ground
tion between both power supplies. A power supply schematic
shown in. Fig. 5-2.

If the on-board power supply is to be used, the 12.6-V ac
former is connected to pins l and 2 on plug number l (Pl); the
i:iner diodes, Dl-D4, the filter capacitor, Cl, and the voltage

VR, are aH installed. We suggest that a small heat sink be
the +5-volt regulator. When the breadboard is used in

manner, +5 volts are available at pin 5, and ground is available
pin 6, on PL These connections may be used for external devices,
required.

If a separate +5-vol.t power supply is to be used, the power
parts Dl-D4, Cl, and VR are not needed and should be �=,�ff.,=-

�ot installed. The +5-volt and ground connections are made at ,�.,�· '"'c
5 and 6, respectively, at Pl.

Since other voltages are often required, such as ±12 or ±15
provision has been made at Pl to connect additional external nn,·wEor '�'''

:rn

5

IN40 0 1 (4)

,.___��'-'' N:...J LM309 1-o_u_T-+---<,__ __ -+--+-- + 5V

+
2200 uf

VR
GND C3 C2 C4 C5 C6

I uf O:iuf O.luf
6

.._ _ _.. _____ _.. ___ ._ ____.___,i,___... _ _._ __ GND

4 ... ------------------------+v
3 ... ------------------------ - v

l_ PLU G P-1

Fig. 5-2. Breadboard power-supply circuit schematic.

pplies. The positive voltage, +V, and negative voltage, -V, are
nnected to pins 4 and 3, respectively, at Pl.
All of the voltages are available at the socket at position IC-16.

e available connections are shown in Table 5-1.

Table 5-1. Power Supply Connections for the Power Socket, IC-16

Pin*

7,10

5,12

3,14

1,16

II other pins are unconnected.

Voltage Available

+5

GND

+ V (External)

-V (External)

ower for the integrated circuits on the printed-circuit board has
n derived from the +5-volt power supply. The connections at
16 (socket) provide a means of easily obtaining power for thi;
eriments.

-

h: Probe

1he logic probe circuit, Fig. 5-3, is useful in determining the logic
e of various outputs, and also for detecting pulse activity at out
.. The logic-probe section of the breadboard contains a level de

r and a pulse detector circuit. An LM-319 (IC-15) comparator
been used to detect the logic one and logic zero levels, while an
4LS123 (IC-14) has been used to detect and "stretch" pulses.
ave used a gret{n light-emitting diode (LED) for the logic zero
ator (D-7) , a red LED for the logic one indicator (D-6) and a
w LED for the pulse indicator (D-5). The input to the probe
ailable at pins 1-4 at IC socket IC-19. These inputs are marked

71

"P." All of these inputs are in parallel, and any one may be used,
do not try and connect the logic probe to two signals at the s
time. The logic probe should be thought of as two low-power Sch
tky (LS) input loads.

+5

3900 R6

9 .,, LM-319N

7
PROBE "p"

IC - 19 SOCKET, PINS

r, 2, 3 & 4

le

R8 1000
3.3uf CB

10
B

A Q 12
··-··-··-··-··

+5

SN74LS123

IC-14

B

A Q

3.3 uf C7

+5

2 2 0
IC-15 ,../

RED "1"
D6

?
D7

+5

D9 IN4148 (2)

/ D5 220 R2

D8
YELLOW "PULSE"

If you have an external logic probe, the circuitry in this secti
may not be needed. If you wish, you do not have to construct
portion of the circuit. In any case, it will be useful to be able to aetec:r'�fti'�>.
pulses and also to be able to detect the state of pulses, etc. Vve
found the logic probe to be very useful in troubleshooting
boarded interface circuits.

Memory illll'lld Devii:e Dec@ders

A major portion of the circuitry on the breadboard is devoted
I/0 address decoding, as shown in Fig. 5-4. The decoders can
operated in either a device mode or a memory mode, '"'=�=�"
upon the type of computer in use. In device addressing, only the
address bits (A7-AO) are decoded, while in memory addressing,
of the address bits (Al5-AO) are decoded. The Apple computer
memory addressing to identify I/ 0 devices, since it is based upon
the 6502 microprocessor chip. Likewise, computers based upon the
6800 microprocessor also use memory addressing. Computers built
around the 8080, 8085, and Z-80 family of chips can use either

72

A15
AIO

A13

Al2

Al4

All
A9

AfJ

BUS
INPUTS

A7

AS

1\5

A4

IC-13

AO

A l
A2

A3

PINS

D

r �.LL-
M

IC-6

G
OUT I

83 A3
15

13
A2 82

14
10 AO BO 9
II

B l Al
12

IN IC-3

3
6

OUT 9
BO AO

10
II

B l A l
12

13
A2 82

14·
15

A3 B 3
I

IN IC-4

3

9 14 11 12 10 13 15 16
l

� J IC-I

e 3 6 5 7 4 2 I

a r
31
61
sl

SN74LSS5

7
41
2 I
11

SN74LSB5 I

_,, + 5

100 0 OHM

IC-2

,,,.
.,..--
___.,,,.

-
�

J?
--

Al5
AIO

Al3

Al2

HI
AODR

SELECT

Al4

All

A9

l.\S

� +5

3
IN IC-5 9

BO AO
II

Bl Al
12

13
A2 82

14
15

A3 83
I

II OUT

6
12 13 10

IC- 13

IC- 1 2 SN74154

�G 7 B
19 G 6

7

5
6

4
5

23
A 3

4
22

B 2
3

21 c I
2

20 D 0
I

SN74LS85

9 10 II 12
�

e 1 s 5 4 3 2

16

9
IC-

LO
ADDR 1-=-i SELECT

101 _,.,. Jl �l 111 -
121 _.,,,

l IC-7 I 000 OHM

I
+5

IC-20 (SOCKET)

8 9 7
I .;z__,, 10 6 I 6 II 5 I 5 12 4 I 4 13 3 "ADD RE

I 3 _,,,14 2 I �2 �15 T I I 16 0

8
AO I 7
A l I 6
A2 I 5

IC-19 (SOCKET)

of addressing. As you look over the schematic in Fig. 5-4, you sho
recognize that the address decoding uses a combination of digi
comparators and decoders.

·

In the device addressing mode, an SN74LS85 4-bit compara
(IC-5) is used to compare preset address bits to the address
present on the LO address bus lines A7-A4. The switches at IC-6
used to preset the logic levels that will be compared with the addr
bus. The package at IC-6 is a set of dual-in-line switches, so care
required in making the switch settings. The switch positions
clearly marked, "7," "6," "5," and "4" at the switch marked ''LO."
you are installing the switch, be sure that the open or off position
to the right (logic one position) . Pull-up resistors at IC-7 provide t
logic one inputs to the SN7 4LS85 when the switches are open, or
the logic one position.

When an address match occurs between the preset bits and a
dress bits A7-A4, the SN74154 decoder (IC-12) is enabled. Althou
the SN74154 decoder has the ability to decode address bits A3-A
into 16 unique address outputs, only the first 8 have been use
more than enough for breadboarding and interface testing.

Thus, if the address switches for bits 7-4 are set to 1011, the d
coder would decode addresses 101100002 through 10110llb, or a
dresses 176 through 183, decimal. For device addressing, the lowe
switch at IC-6 must be "open" or in the "D'' position. This places th
decoder in the correct mode.

The decoded-address outputs are present at the IC-20 socket. The
are labeled "O," "l," and so on, through "7." The entire section i
called "ADDRESS." Note that there is a bar over the address num
hers to indicate that the unique output state is a logic zero puls
The address notation, zero through seven, is a sequential addressin
that will help you in determining which pins are connected to th
device address outputs. In most cases, the numbers will have no rela
tionship to the actual addresses that have been decoded. In the ad�
dressing example cited previously, in which addresses 176 through
183 were decoded, the output labeled "O" would correspond to the
decoded address of 176. Table 5-2 details the decoder outputs that
are available at the address socket, IC-20.

Memory addresses are also easy to decode on the interface bread
b8ard. Two additional comparator chips, IC-3 and IC-4, are used to.
compare address-bus lines Al5-A8 with a preset HI address. The HI
address bits are set at the eight-switch dual-in-line package of
switches labeled HI, at IC-2. When using memory addressing, you
must be careful not to try and select addresses that have been as
signed to the internal Apple memory (ROM or R/W) . You must also
remember to convert the complete 16-bit address into the equivalent
decimal value for use in PEEK and POKE instructions.

74

In the memory address mode, must place the lowest switch at
IC-6 in Lhe "closed" or in the position. This allows the SN7 4154
decoder to be activated only V'!hen there is a match between address
bits Al5-A8 and the bits preset at the HI dip-switch and a match

address bits A7-A4 and the bits preset a1: the LO
addresses between XXXXXXXX XXXXOOOO and XXXXXXXX

are accessible, where X=l or 0. These decoded addresses
present as logic ze:ro pulses at the "ADDRESS" socket (IC-20) .

nc;u1c'""-''"'' that the first eight addresses in a selected 16-address
are available. Thus, if 10000001 is set for the HI address and

is set for the LO address (bits A 7 -A 4) , addresses 33248 through
would generate logic zero pulses at pins 1 through 8 at the

socket, respectively. Keep in mind that the SN74154
decoder decodes all 16 addresses; you only have access to the "lower"

!l'ir. 11c-:m) !Dle$ngnii%knll s��74154 0,,11,,,,; p;,.
1,16 ()
2, 15 1 2
3,14 2 3
4,13 3 4
5,12 4 5
6,11 5 6
7,10 6 7
8,9 7 8

"''·':::·:'/:. Connections for address-bus lines A3-AO (unbuffered) are avail
"" '"""'v on the breadboard at pins 8-5, respectively, on the socket at

These signals may be used in some experiments, but caution
required, since these signals are not buffered, and present a direct

to the Apple computer.
address decoder section of the breadboard will save you a

deal of time and effort, because you will not have to construct
address decoder circuits when you wish to implement I/ 0

or try some simple interface circuits.

Two 8216 noninverting bus buffer chips, IC-10 and IC-11, have
used to buffer the bus, as shown in Fig. 5-5. This means that the

is available with a foll fan-out of 30 (it can power 30 standard
-type inputs) and that it is isolated from the Apple data bus.

e eight bits on the data bus are available at the socket at IC-18.
The information in Table 5-3 shows the connections to the data

75

30 DO DO DB
DI

22 DI

3 2 D2

26 D3

IC· 11 8216 cs EN
15

18 D4 ----<o---'-l DO DB

P2 PINS

DI

CS EN
15

13

10

13

10

IC-10 8216
IC-13

IC -18 SOCKET

DO 10 DI II 02 1 2 D3 13 D4 14 D5 15 D6 16 DT

INPUT ENABLE

Fig. 5-5. 11'111s b,.®'er <ir<,.it schematic.

The bus buffers are always enabled, and the normal mode of op
eration is for the transfer of data from the Apple to the breadboard.
This means that without additional signal use, you could monitor the
bus "activity" by connecting logic probes or other suitable monitors
to the outputs of the bus buffer chips, D7-DO. Output ports are im
plemented by simply using the proper control signals (described in
the next section) to control an 8-bit latch. The eight latch inputs are
connected to D7-DO at the socket IC-18.

Input ports, however, must be implemented so that they turn the
bus buffers in the opposite direction to "drive" data into the Apple.
Actually, there are two bus buffers for each bus line, as shown in the
pin configuration shown in Fig. 5-6 for the 8216 buffer. The DIEN
input determines which set of buffers is enabled, thus directing data
to, or from, the Apple. All input operations must activate the proper

i'in (DC-Ill) Data l!'lus Signal

1,16 07

2,15 06

3,14 DS
4,13 04

5,12 03

6,11 D2

7,10 01

8,9 DO

'16

PIN CONFIGURATION LOGIC DIAGRAM
8216

DJ,

cs Vee DB0

DOo DIEN DO,

DB0 D03

DJ,
DJ, DB3

DB1

oo, 01, oo,

os, oo,

01,
01, OB,

DB2

GND 01, oo,

PIN NAMES 01,

�-----() oB,

DB0.oB3 DATA BUS
Bl-DIRECTIONAL

D'o-013 DATA INPUT

000-003 DATA OUTPUT

DIEN DATA IN ENABLE
DIRECTION CONTROL

cs CHIP SELECT

set of buffers so that the Apple receives the data properly. Special
'"!'::<'' <.>nnintr·ri1 circuitry has been provided to do this for input operations .

. ::}, · < DmtrnM Circuitry

The control circuitry on the breadboard is rather simple, consisting
of some general-purpose buffers to buffer control signals out
the computer. Six signals are provided, IN, RD, OUT, WR,

·.��nc; and INTAK. For Apple interfacing, you will only be con
/.�·VA>.•V� with the WR, RD, and RESET signals. The other signals are

. '.w'': · < '··>: y;''-'"L" when the breadboard is used with other computers. This con
circuitry is shown in Fig. 5-7. The general-purpose interrupt sig
is also buffered, but it is an input to the computer. Connections

the control signals are made at the socket at IC-17, as noted in
5-4.

The control circuitry also generates a signal that switches the 8216
bus buffers into the input mode, so that data may be transferred into
'fhe Apple. It would seem to be merely a matter of turning the bus
'�round whenever a memory read operation took place. If this were
fi:nplemented, the bus buffers on the breadboard would be placed in
the input mode, even when a memory chip was activated within the
�pple. This would cause a bus "conflict,'' so the bus on the bread
;�oard must be placed in the input mode only when an input device
' 11 the breadboard itself has been selected.

To handle input ports properly, the input port device select
is used to gate data onto the data bus and also to control the
of the 8216 bus buffers. In effect, up to four input port device select
pulses may be ORed together to place the breadboard bus buffers in
the input mode. You will probably not use more than four input ports

+5

RI 1000 OHMS

6
IC-17 SOCKET

21 INT IC-9 SN74365
15 RD 2 3 RD
14 INTAK

4
11\!TAf(3

13 WR 6 7
6 "WR

12 OUT
14 13

OUT

19 IN 12 1 1
a IN

2 RESET
10 9

7 RESET

P2 P INS
EN

EN

IC-17 S O CKET

w
16 9

x
1s I 10

INP REQ
y

14 I 12

z
13 I 13

IJ-6--'> TO TiifPTIT
ENABLE

fig. 5-7. C<mlrni <ir<Mit sd1emati<.

on the breadboard. Thus, these signals turn the bus around for the
input of data only when an input port device select signal is gener
ated on the breadboard, and it is wired by the user to one of the four
bus buffer enable inputs.

The "INPUT REQUEST" control pulses are required to be logic
zero pulses. They are applied to the pins labeled W, X, Y, and Z,
which are pins 16 through 13 on the socket at IC-17.

l'i11 (IC-11)

1

2
3

4
5
6

7

8

7!>

Control !ili9naB

INT

Not Used

INTAK

RD

OUT

WR

RESET

TN

Dirndion

Input

Outpu1'

Output

Output

Output

Output

Output

The actual ORing of these control signals is performed by the
SN74LS20 gate, IC-8. The INPUT REQUEST signal that is output

y this 4-input NAND gate is further gated with OUT and WR. This
ting provides a safety interlock, so that if your breadboard circuits

ave been improperly wired, the bus drivers cannot be placed in the
put mode when an output-type operation is taking place. The re
ltant "INPUT REQUEST, BUT NOT OUT OR WR" signal con
ols the input/ output mode of the 8216 bus buffers.
Since the Apple generates only the memory write signal, WR, this

�imply means that your interface will not be able to tum the bus
.itround for an input operation, when the computer is performing a

rite operation. The OUT signal is used for interfacing with 8080,
85, or Z-80 computers.
Two input ports are shown in Fig. 5-8. Each of these ports is con-
olled by a device select pulse that enables the three-state buffers.

is same signal is used as the input request signal, INP REQ, and
ch input port must generate its own input request signal. In this .
ample, the two input request signals have been connected to the

and Z pins at the INP REQ section of the socket at IC-17. It
ould have been just as easy to connect the lines to the X and Y pins.
The use of the interlocking INPUT REQUEST signal, and the as
ciated ·circuitry only applies to testing interface circuits on the

readboard. If you wish to construct an interface that will directly
lug into the Apple, and that will not use bidirectional bus buffering,
en you will not need to use such an interlock. The main purpose of
is circuitry is to protect your Apple computer from possible dam-

CONNECTIONS TO INPUT REQUEST

DATA

DATA

TO "W" TO "Z"

'---+----1----i

....._ ____ ,____,

INPUT PORT
DATA BUS

INPUT PORT

Fig. 5·8. Typical input ports showing use of INPUT REQUEST signal.

79

age caused by careless or incorrect wiring of a test circuit. Once a
circuit has been completely tested and debugged, you can probably
connect it directly to the data bus of the Apple without any problem.

Breadb@aird C@nstrrYdi@rt1

The breadboard circuits may be constructed using wire-wrap tech
niques, as shown in Fig. 5-9. In this case, the circuits could be ex
panded and modified through simple wiring changes, but the bread
board itself would be somewhat difficult to use.

To aid in interface construction and testing, a printed circuit has
been developed in which all of the necessary circuitry has been
placed on a single board. The power supply and logic probe circuitry
have been incorporated to make the breadboard easy to use. The
breadboard is shown in Fig. 5-10, and is available in kit or assembled
form from Group Technology, P.O. Box 87B, Check, VA 24072. A
large space has been left unused on the breadboard so that a solder
less breadboard socket may be mounted directly on the printed-cir
cuit board for easy experimentation. Typical breadboard sockets are
the "SK-10" from E & L Instruments, Derby CT 06418 and the "Super
Strip" from AP Products, Inc., Mentor, OH 44000. A complete list of
parts needed for the breadboard, along with the printed-circuit board
artwork is provided in the Appendix.

Since the interface breadboard uses a 40-conductor cable to con
nect to various computers, you will need a means of connecting the

Fig. 5·10. Packaged version of the interface.

e to one of the peripheral interface slots in the Apple . We rec-
end the use of a flat cable assembly such as shown in Fig. 5-11 .

is a printed circuit female edge connector assembly on one end
cable, and a 0.1-inch by 0.1-inch female pin grid connector

e other. The openings on both connectors must face in the same
tion. A ready made cable is available from Group Technology,
00-Cable, which uses a two-foot length of flat cable.

actual connections with the Apple bus signals are made with
11 adapter card. This card "twists" and "turns" the various sig
o that they are routed from the edge connector to the periph-
nnector in the Apple. You can easily put together an adapter

ng a Vector 4609 prototype card. This card plugs into one of

EDGE CONNECTOR

CABLE-APPROX. 2 FT.

Fig. 5·11. Cable for interface.

TI PIN CONTACTS

0.1" GRID
CONNECTOR

81

SIGNAL

1/0 SEL
·AO

Al
A2
A3
A4
A5
A6
A7
A8
A9

AlO
All
Al2
Al3
Al4
Al5
R/W
N/C

1/0 STROBE
ROY
OMA

INT OUT
OMA OUT

+5V

01

APPLE PIN INTERFACE PIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
2 2
2 3
2 4
2 5

N/C

__ Nt
_
c __

+-__,..
TO SN7400

PIN 14

25
27
40
34
31
35
38
36
11
17
4
9
5
6

10
7

ADDRESS BUS

11 o----- READ, RD. PIN 15

WRITE, WR, PIN 13

Fig. 5-12. Apple-lc-inlerhce

the peripheral connectors in the Apple, and it has a 40-conductor
edge connector that will connect directly to the interface cable. Of
course, if you wish, you may make direct solder connections to the
cable, but we do not recommend this. You can make direct soldered
connections between the corresponding signal conductors on each
edge connector by using short pieces of hookup wire. If you do not
wish to make soldered connections, you can solder wire-wrap pins
into the holes provided at each edge connector, making the connec
tions using wire-wrap wire.

The connections are shown in Fig. 5-12. If you choose to use the
Vector prototype card, there are several important things that you
must do before you start to make the connections between the two
edge connectors, no matter which wiring technique you choose to

SIGNAL APPLE PfN INTERFACE PIN

+12V 50 N/C
DO 49 30
Dl 48 22
02 47 32
D3 46 26 DATA BUS
04 45 18
05 44 28
D6 43 24
07 42 20

DEVICE SELECT 41
00 40

USER 1 39

01 38 TO SN7400, PINS 12 & 13
Q3 37
7M 36
N/C 35 ONLY ONE. NOT BOTH -

-5V

l! -------4--------- �
-12V

INH
RES RESET
IRQ 30 -------- ---------- 21
NMI 29 -------- ---------- 21 INTERRUPT

INT IN 28
OMA IN 27

GND 26

L TO SN7400, PIN 7

8.29,37 GROUND

= OPTIONAL CONNECTION

here are probably one or two printed circuit "foil runs," or con
.r paths between the 40-conductor connector and the +5-volt

ound contact pins on the 50-conductor Apple connector. All
onnections must be broken, so that the 40-conductor connector
ts are "free," and uncommitted to any signals. You can use a
razor knife to cut these connectors. We recommend making
ts through each conductor, about 2 or 3 millimeters apart. A

·ng iron can then be used to "lift" the cutout section by heat
You should do this to only the power connections which are
ted between the two connectors. All of the other pins are

the Vector prototype board does not use plated-through
e sure that you connect +5 volts and ground to the respective

83

power buses, and that the proper connections are made to th
SN7400 chip.

The SN7 400 chip is used to gate the read/ write (R/ W) signal wi
the main clock signal of the 6502 processor, Q°)l. This gating generat
the memory read signal, RD, and the memory write signal, WR. I
this gating is not done, the computer peripherals on the interface
breadboard will not work properly. In some computers, there
separate read and write signals. If you wish to use separate read
write signals for memory control in the Apple and other ""''"1-'''-'L'o•.

systems that are based on the 6502 microprocessor chip, you
generate them through the proper gating.

VECTOR 4609 CARD

COMPONENT SIDE
(FRONT VIEW)

INTERFACE
CONNECTOR

I \
24 25

\ I
::·)
!\

27 26

SIDE

The pin locations for the Vector card edge connectors are shown
in Fig. 5-13. Please note that this :Hgure shows the component side
of the card. Once you have made the needed connections between
the two edge connectors, and between the connectors and the
SN7 400, we suggest that you use an ohmmeter or other continuity
checking instrument, to be sure that there are no short circuits be
tween adjacent and opposite pins, and that the correct connections
have been made. These tests should be made with the SN7 400 chip
out of its socket. However, don't forget to plug it back in after you
have tested the connections!

If you wish to try and interface some of the 6502 family interface
chips, and even some of the nonfamily chips, you will :find that these

·.chips have rather slow access times when compared to the standard
hree-state input chips, such as the SN7 4365 and the SN7 4LS244.
ccess times for these large, programmable chips can be as long as
00 ns. Since the read/write timing for the 6502 chip is fairly critical,
ere will not be sufficient time for the data from these chips to be
cessed and placed on the bus if the extra delay caused by the 8216
s buffer chips and the interlocking circuits is taken into account.
erefore, if you wish to use the breadboard to test interface circuits

at use complex, programmable interface chips, you will need to
efeat" the interlock. You can do this rather simply by removing the
o 8216 bus buffer chips and by using short jumper wires at each
ket to connect the Apple data bus signals to the interface data bus
es. For example, you would need a jumper between pins 5 and 6,

·ns 2 and 3, pins 14 and 13, and pins 9 and 10 on each socket. We
.fer you to Fig. 5-5 for the circuit that �ses the 8216 bus buffer chips.
A word of caution is in order, howev�"---By removing the bus buf�
r chips, you are connecting your interface circuits directly onto the
rple data bus. Please use extreme caution when doing this so that
:µ do not cause any short circuits or bus conflicts in the Apple. We
;ve provided a simple interface example in Chapter 7 in which the
.ect bus interfacing is used.

85

CHAPTER

The purpose of the experiments in this section is to provide
with some hands-on experience in the use of latched oui:put port and
three-state input circuits that were developed in the
chapters. You find that these experiments use simple
series devices to transfer data to and from the Apple.

of circuits will be
complete list parts that will be is in Appendix B.
·we have assumed that you have had some experience in breadboard
ing simple logic circuits, and that you are familiar with the basic
breadboarding skills. Some auxiliary fonctions will be required in
the experiments to both monitor logic states and to generate them.
In general, we use lamp monitors or LEDs to indicate logic one (on)
and logic zero (off) , logic svvitches to generate logic levels, and de
bounced pu.lsers, or pulsers for short, to generate logic levels with
dean noise-free transitions between the logic levels. Some simple
schematic diagrams of these types of circuits are provided in the
Appendix. If you do not wish to build these circuits, they can be
breadboarded separately, or similar functions can be purchased from
companies such as E & L Instruments, Derby, CT 06418 or PAC
CON[, Redmond, WA 98052. In general, most of the experiments iJ1
this book can be done with a few simple circuits.

We have provided one experiment that illustrates the use of a

decoder circuit for device addressing. While many decoder schemes

are possible, we think that one experiment should illustrate the basic

principles. If you are interested in other decoder circuits, there are
many different ones described in 8085A Cookbook, and Program
ming & Interfacing the 6502, With Experiments (Howard W. Sams

Co., Inc., Indianapolis, IN 46268) . Actually, memory and I/ 0 de
addressing is pretty much the same, from one computer to the

'\,'' 11'·"'" In most interface circuits, the decoder circuit that is used on
interface breadboard will work quite well.

While this book tackles Apple interfacing at a fairly low level,
there are other important interfacing topics that you might wish to

Many of these are covered in TRS-80® Interfacing, Book 2
W. Sams & Co., Inc., Indianapolis, IN 46268) . The infor

-�,,,.ffm presented is fairly general, and it is easily applied to Apple
compun�r systems. Topics covered include: high-current, high-volt

driving, digital-to-analog and analog-to-digital converters,
data processing (smoothing, filtering, averaging, etc.) ,

communications, and remote control.
The photograph in Fig. 6-1 shows a typical Apple-breadboard lab

station that is used in performing the experiments in this
A 40-conductor cable has been used to connect the bread

and the Apple computer-Fig. 6-2. This cable has been de-
" ,L,UU''-'"' in Chapter 5. When you connect the interface breadboard

the Apple, be sure that the cable is oriented properly. The cable
point away from the component side of the card used to con

the interface to the App'le. At the interface-breadboard end of

the cable, the cable must be pushed onto the 40 pins so that the cable
is pointed either down or away from the printed-circuit board. If the
cable is connected improperly, the Apple will respond with a screen
full of random characters rather than the APPLE II banner, when
it is first turned on. This does not seem to cause any permanent dame
age to the Apple or to the interface as long as they are not connected
this way for too long.

Some experiments will build on, or use, the circuits or
developed in previous experiments. Please do not tum off power
to the computer, and do not disconnect circuits until you are told
do so, otherwise, you will spend a great deal of time reloading pro
grams and reconstructing interface circuits. There will be a reminder
at the end of some of the experiments just so that you don't forget
this tip.

Most readers will probably perform the experiments in sequence,
so there will not be too much difficulty in referring back to previous
experiments for the details of the interface circuits. However, if you
choose to skip over some experiments you may find this a bit confus
ing. To help everyone with the interface circuits, we have repro
duced the important input port, output port, and control circuits in
Fig. 6-27 at the end of this chapter. You can make a photocopy of
this figure, or you may remove it from the book so that it will be
nearby when you need it. The basic circuits shown in this figure are

in most of the experiments unless other.vise noted, and you can
these circuits to build general-purpose input and output ports as
need them.

If you are an instructor planning to use this book as the basis for
boratory experiments with the Apple, you will find that the pro

ms are easily loaded onto cassettes. In this way the programs are
adily available for the students, who do not have to spend their

me trying to debug programs. If you choose to use cassettes, you
ould use high quality tape, and once the programs have been re-
rded on the tape, the "write protect" tab on the back edge of the

assette should be removed. This will prevent students from acciden
lly recording programs over those already on tape.
Students may find it valuable to maintain cassettes of their own,
that their lab solutions and other programs are readily available,
her for exchange with other students or lab groups, or for refer

e during the next lab period.
The experiments in this chapter have been divided into two

groups, although no division, chapter subheading, or other note
J'narks the sections. The first 11 experiments provide a basic set of in
ierfacing and programming investigations for readers who are inter-

ed in basic interfacing concepts. These first experiments provide
basis for the laboratory portion of a first course in computer inter
cing and computer electronics.
The last few experiments provide additional lab investigations into

advanced topics, and they also provide projects that may be
:�'":"'"'''°,._,to supplement the basic set of experiments. Of course, all of the

1kperiments may be done, too.

EXPERIMtNT NO. 1
USE Of THIE lOGIC PROBE

rpo!le

The purpose of this experiment is to show you how the logic probe
uit on the breadboard may be used to detect logic levels and

e have assumed that you are using the breadboard logic probe,
ough other logic-probe circuits will work equally well. The steps

this experiment are useful in helping you to become familiar with
breadboard and the signals available.

Apple computer should be connected to its video monitor
also to the interface breadboard through the 40-conductor cable.

This connection h3;s been described in the introduction to the experi
ments.

Turn on the power to the Apple and to the breadboard. The com
puter should print "APPLE ff' and the flashing square cursor should
be seen. If this is not the case, turn off the power and check your con
nections. Be sure that the 40-conductor cable is securely pushed onto
the pins at the interface breadboard and onto the edge of the board
that connects it to the Apple. You should also check the orientation .
of the cable to be sure that it is correct. If you cannot locate the prob
lem, obtain assistance.

Step 2

With the power applied to the breadboard, connect a jumper
between one of the logic probe input pins, P, at the PROBE socket,
and one of the +5-volt power pins at the power socket. What is the
effect on the logic probe indicators?

The red LED is on, indicating the presence of the logic one state.
The probe jumper wire should now be moved from 'the +5-volt

power pin to one of the ground pins on the same power socket. What
is observed, once this connection is made?

The green LED is on, indicating the presence of a logic zero state at
the input to the probe circuit. You may have noticed that the pulse
detecting LED (yellow) flashed as you made the connection to +5
volts or to ground. This flash indicates that the probe detected a

change in the logic level. Either a logic-one-to-logic-zero, or a logic
zero-to-logic-one transition will cause the yellow LED to flash. This
makes it particularly useful for detecting pulses and logic transitions.

Connect the probe input to address line AO at IC-19. What do you
observe when this connection has been made? All of the LEDs are
on, probably at different intensities. This is due to the fact that the
6502 microprocessor chip is executing many, many assembly-lan
guage instructions in the BASIC and monitor ROMs, thus using the
address bus to address various memory locations. Move the logic
probe test wire to the other address bus lines, Al, A2, and A3. You
should be able to detect similar "activity" at these pins, too.

tep 3
You may wish to test other points on the breadboard with the logic
obe. The data . bus lines and the control signals may be easily

ed. You should keep in mind that the logic probe is only sensitive
the logic levels presented by the outputs of standard transistor
nsistor logic (TTL) chips used on the breadboard and in the ex
iments. Do not attempt to use the probe to measure anything but
se logic levels. If you connect the probe to voltages outside the

ro to +5-volt range, the probe circuit will be damaged.

�When you use the probe, you will notice that there are many com
ations of lit LEDs. For example, you may see that the red and
low LEDs are lit, while the green one is unlit. Do you have an
a of what ·this means?

·s means that a pulse is being detected, and that the normal logic
1 of the circuit being tested is a logic one. The green LED lights
briefly (you can't see it) , to indicate the fleeting presence of the

·c zero pulse. The pulse detecting circuit stretches the pulse and
ts the yellow LED so that you can "see" that a pulse has been

ught."
ou may also see ·the green and yellow LEDs on, with the red

off. What would this indicate?

gic zero level would be indicated, with short logic one pulses.
;is possible that all LEDs may be lit, too. In this case, the input

e logic probe is rapidly changing between logic one and logic

· some of the following experiments, the logic probe will be used
amine outputs and to detect logic states and pulses. This will
oted by, " . .. use your probe to examine . .. ," or perhaps by,
use the logic probe to measure " This simply means that you
o connect the logic probe to the circuit being tested, so that you
'.'see" what is happening.

rn your computer off.

91

EXPERIMENT NO 2
USIE OF THE DEVICE ADDRESS DECODER

Purpose •.
This experiment allows you to explore the use of the device ad

dress decoder circuit on the interface breadboard printed-circu
board. Since this decoder will be used in all of the experiments, yo
must have a good understanding of its use.

Discussiol'l

In this experiment, address bits Al5-AO will be used to ,,,,,,,,.,,.,,.
specific addresses for use by I/O devices. The address switches
be set up for a specific range of addresses, and the logic probe
be used to examine the action of the decoder circuit. You will ---,,. ;···�·
use an SN7 402 NOR gate integrated circuit.

Pin C@nfig11.m1tio!l'll of the Integrated Cireuit {Fig. 6-3)

1Y lA 18 2V 2A 28 GND

SN7402

Step 1

No circuits should be presently wired on your breadboard. If there
are any circuits present, remove them from the solderless bread
board. In this experiment, the entire 16-bit address bus will be used
by the decoder section of the interface. Be sure that the bottom
switch at the LO address dip switch (IC-6) is in the "M" position,
or in the "ON" position.

Step 2

Place the dip switches for all of the address bits, Al5-A4, in the
logic one position. Remember not to change the setting of the "M"
switch. Can you determine which set of addresses will be decoded
by the SN74154 decoder? What addresses in this block will be avail
able at the ADDRESS output socket? You may wish to examine the
schematic in Fig. 5-4.

,..,,.,....,�"'"' in the block from 65520 to 65535 will be decoded by the
decoder (SN7 4154) . Since the decoder only provides you

the "bottom" eight addresses, only addresses from 65520 to
527 will be available.

your computer on. If you are running a program, press the
RESET key. Use the logic probe to test the eight address outputs at

e ADDRESS socket. Are any of the decoder outputs active (puls
g)? Since you are not running a program, is this what you would

xpect?

Two of the outputs should be active, 0 and 4, corresponding to
65520 and 65524. While the computer is not running a

program, it is executing many assembly-language steps that
nitor the keyboard, etc. Remember that the address decoding cir

is always decoding addresses.

Wire the circuit shown in Fig. 6-4. Be sure that you connect the
wer pin, pin 14, to +5 volts and the ground pin, pin 7, to power

Ro
7'

10

13

*DECODER SOCKET POSITIONS

SN7 402(ALL)

und. Refer to Fig. 6-3 for the pin configuration of the SN7 402.
may substitute an SN74LS02 for this chip. The outputs of the

es, A, B, and C, are not connected to any circuit at this time.

hange the switch settings on the dip switches for bits Al5-A4 for
address of 49312. This is 11000000 101000002, and you should ig
e the four least-significant bits. What range of addresses will be
Hable when the address switches are set this way?

Addresses from 49312 through 49327 will be decoded, but only
dresses 49312 through 49319 will be available.

Step 6

Enter the following program into the computer and run it:

l 0 A = PEEK(493 l 8)

20 GOTO 10

Using the logic probe, monitor the outputs of the decoder, and note
your observations below:

You should see that the "6'' output is active, and one or more other
outputs may be active, too.

Now monitor the outputs of the gates, A, B, and C, and note any
activity, at these points, as determined with the logic probe, in the
space below:

A
B
c

Logic 0 Logic 1 Pulse

Is this what you would expect? Can you explain this?

Yes, this is what is expected, since the input (PEEK) command is
the program specified device 49318 as an input device, and the de
coded address is found at the "6" output from the decoder. Thus, only
output "B" should be active. No other input devices were specified
in the program, and no output devices were specified, either.

Step 7

Change the device address in line 10 so that address 49325 is se
lected. Line 10 should now be 10 A=PEEK (49325) . Run the pro
gram and test the gate outputs A, B, and C once again. Are any of
the outputs active, indicating the presence of pulses? Why?

94

None of the outputs should be active, since device address 49325 has
not been implemented in the circuit. Furthermore, address 49325 is
not readily available on the breadboard. Of the addresses in the
block 49312 through 49327, only addresses 49312 through 49319 are
available at the ADDRESS socket.

Change line 10 in the program so that it is now

10 A=PEEK(49318):B=PEEK(49319)

Where do you observe the pulses in the circuit when you run the
· odified program?

u should find that outputs A and B are active. Output C is not ac
e since it is an output control pulse, and there are no output
OKE) commands in the program.

Make another modification to your program. Change line 10 so
at you can control output device 49318. Your statement at line 10
ould look like this:

u can use any data value that is between 0 and 255, inclusive. Now
your program and test outputs A, B, and C. Which output do you

pect to be active? Is this what you found?

tput C is active, since the POKE command is an output-type com-
nd, and the address, 49318, corresponds to the "6" output pin from
decoder. You are probably surprised to see that the B output is
active. When a POKE instruction is executed by the BASIC in
reter in the Apple, the computer system does a read-before-write

!')ration, so that the selected address is read from, before being

95

written to, This must be kept in mind during the design of interface
circuits,

Step 1 0

Could you reconfigure the switches in the address decoder section
so that addresses 50944 through 50951 are generated the decoder?
How vvould you attempt to do this? Are these addresses really going
to be available?

Yes, you could change the switch settings to allow the decoder to
operate between these addresses, First, convert the first address into
its binary equivalent: 50944 = 11000111 00000000. Second, make the
changes in the switch settings for Al5-A8 and for A7-A4, Now, what
addresses would correspond to the "6" and "7" outputs from the de
coder? Test your answers by using PEEK commands in the simple
program that you have been using in this experiment You should be
able to see the pulses at the A and B outputs from the gates,

Once you have tested this, be sure to return the address switches to
their previous settings, corresponding to the binary value, 1 1000000
10100000,

Do not remove the circuit from your breadboard.. It will be used
again. The program will not be used, however, so you .may turn off
the power to your breadboard and computer.

l':XfFERU\IUlNT NO. 3
USING DIEV!CIE-SHECi PlllSl::S

In this experiment, you will observe the use of device-select pulses
to control an external device. Although generally used to control the
flow of information, the PEEK and POKE commands may also be
used to generate useful pulses to simply control external devices.

DiscYssi@n

In this experiment, a simple device wiU be turned on and off
through the use of device select pulses. The logic probe will be used
as the "device," and a simple flip-flop will be controlled by two soft
ware-generated pulses,

2
CLR 20 2 CK

Si\17474

The device select circuit used in Experiment No. 2 is also used in
is experiment. If it has not been wired, wire it as shown in Fig. 6-4.

Wire the SN7474 flip-Hop as shown in Fig. 6-6. The 'T' noted at
e "D" input to the SN7474 means that a logic one (+5 volts) is

c lied to this input. Likewise, a "O" would indicate a logic zero, or
und connection. The 0 and 1 notations are used to distinguish
·c level connections from power-carrying connections. The Q out-

t from the flip-Hop should be the only device connected to the
ic probe. Remember to make the power connections to the
7474 flip-flop; pin 14 to +5 volts and pin 7 to ground.

3

this circuit, the WR 49318 pulse (signal C) will dock the out
of the Hip-flop to a logic one, while the RD 49319 pulse (signal

} will clear it to a logic zero. Since a flip-fl.op is stable in either state,
e pulsed by RD 49319, its Q output will remain in the logic one

+5
14

D

n 3 FROM C CK
(WR 49318)

CLR

FROM A tr

(RD 49319)
-----"

GND

Q TO LOGIC PROBE

SN7474

state until power is removed, or until it is cleared to logic zero
a WR 49318 pulse.

Enter the following program in to your computer and run it.

10 A = PEEK(49319)

20 POKE 49318,0

30 FOR T = TO 300: NEXT T

40 A = PEEK(49319)

50 FOR T = 0 TO 300: NEXT T

60 GOTO 20

Disregard the flashing of the logic probe pulse LED. What is
effect on the logic one and logic zero LEDs?

They flash logic one, logic zero, logic one, etc., in sequence.

Step 4

Alter the time delay routine at line 50 to:

50 FOR T = 0 TO 1000: NEXT T

When this change has been made, run the program. What is
effect of this simple program change?

The logic zero LED is on for a longer period. Thus, it is possible
generate control pulses that are a known period apart, say I M:;,;vu . ..,•.c;

Step 5

Can you determine the software delay necessary in a FOR . . .
NEXT T statement to generate a I-second period? Modify your ..,,.r,,,,;·:

gram and test various delay counts until you closely approximate
second. You might want to try for a IO-second period and then
the count by 10 for a 1-second period. What delay count did
come up with? We found that a delay statement,

FOR T = 0 TO 780: NEXT T

required about I second to be executed.

Step 6
You can now use the power of BASIC to allow you to tell the com

puter how long each LED is to be ON . The following program may

entered and run, It first asks you for the period of each LED, in
onds, and then runs the program.

A = PEEK(49319)

INPUT "RED LED PERIOD ";Q

INPUT " GREEN LED PERIOD "; R

PRINT "TOTAL CYCLE PERIOD "; Q+R; " SECONDS"

POKE 49318,0

FORS = l TO Q

FOR T = 0 TO 780: NEXT T

NEXT S

A = PEEK(49319)

FOR S = l TO R

FOR T = 0 TO 780: NEXT T

NEXT S

GOTO 50

hen the program is run, the time delays may be somewhat length
ed. Why?

e additional software steps (FOR S = 1 TO Q, FOR S = 1 TO R
d NEXT S) , add time to the overall execution time of the pro
am, although you will not see appreciable lengthening of the pro
am.
What does this program show you?

illustrates many principles; the use of simple programs and simple
cuits to control external devices. It also illustrates the power of
SIC to control external devices through relatively simple software
ps. Remember, though, that BASIC is relatively slow.

ven though PEEK and POKE commands were used, the success
the Hip-flop interface did not depend on the actual transfer of any

or information. The flip-Hop was controlled, or switched,
ugh the use of device select pulses, alone. This principle is often

d when a control signal or control pulse is required, but no data
transferred.

lease remember that when a POKE command is used in the
SIC interpreter in the APPLE computer, a read and a write opera

are performed. Thus, if you choose to use a POKE command to
erate a device select pulse for control purposes, you must remem

r that the APPLE will a"lso perform a read from the same address.

99

If you are using two control pulses with the same address, say,
XYZ and RD XYZ, the RD xyz will also be activated during a wri
operation caused by a POKE XYZ command.

The SN7474 flip-flop circuit may be removed from your brea
board, but the SN7 402 circuit should be retained. The program wi
not be used again, so you may remove power from your system.

Purpose

EXPERIMENT NO. 4
CONSTRUCTING AN INPUT PORT

The purpose of this experiment is to construct an input port usi
three-state buffer circuits.

Discussion

The simple 8-bit input port that you will construct as a part of th"
experiment will provide a means of entering data into the compute
Several additional experiments will use this input port. The devic
select circuit used previously will be used in this experiment. Th
SN74365 or DM8095 three-state buffer chips will be used in this.
experiment.

Pin Configuration of the Integrated Circuit (Fig. 6-7)

Vee a2 8A llV 5A 5V 4A 4Y

Step 1

1A lV 2A 2Y JA 3V GND

SN74365A

SN74LS365

Fig. 6-7. SN74365, or DM8095 three·

state buffer chip pin configuration.

The gating circuit developed in Experiment No. 2 will be used in
this experiment. If this circuit is not present on your breadboard,
refer to Fig. 6-4 for the circuit details, and wire the circuit shown.
Your computer and breadboard power should be off.

Step 2

Wire the 8-bit input port circuit shown in Fig. 6-8. Two SN74365
(D M8095) three-state integrated circuits are required.

100

+5 Gl\ID

16 6 Si\174365

A
2 3

D?
LOGIC

B
4 5

c 6 7
SWITCHES

D
14 13
12 I I DATA BUS

10 9

0 I GI 15
G2

DO

+5 Gl\ID

LOGIC
A

B
16

c 2
SWITCHES

D
4

SN74365

DEVICE SELECT
I GI

0 15
G2

Fi!ll. 6-11. $imple 11-bil inpu� perl.

Note that in this circuit only one of the two enabling inputs to the
three-state buffer chips has been used. The unused input has been
grounded, or connected to logic zero. Thus, the internal gate will not
be used for combining a function pulse and a device address. The
enabling signal will simply be transferred through the gate to the
Th>'<>f>-CTQU> buffer circuits within the chip.

Connect the DEVICE SELECT line to point A (pin 1 on the
SN7 402) , as shown in Fig. 6-4. This is the signal for RD 49319.

The notation LOGIC SWITCHES in Fig. 6-8 is used to represent
switches that can generate logic one or logic zero signals at the eight
individual inputs to the input port. Simple jumper wires to the +5-
volt and ground power supply buses may be used. There is addi
tional information in the Appendix about this type of logic function.

Once the input port has been constructed and the device select
pulse has been provided from the SN7 402 NOR gate, enter and run
the following test program:

10 PR INT PEEK(49319): GOTO 10

What is displayed on the screen when the program is running? Do
changing the logic switches have any effect on the displayed value
Is this what you would expect?

The value 255 is displayed, corresponding to lllllllh Changing:
the logic switches had no effect on the values that were displayed.
At first, you might have expected the values to change as
changed the switch settings, but this was not observed. Why?

The interface circuit was not provided with an input request
REQ) signal that is used to place the two bus buffers in the uu.•uvc�
mode.

Step 5

Make a connection between the SN7 402 A, or RD 49319, signal and
the W input at the INP REQ section of the CONTROL SIGNALS
socket. This signal will place the 8216 bus buffers in the input mode.

Now that this connection has been made, restart your program and
change the switch settings. Are the changes in the switch settings
shown as changes in the numbers being displayed? You should
several different settings.

The switch values are now transferred to the computer, converted
into decimal numbers and displayed on the monitor screen.

If you would rather see the values in binary form, the following
program may be run. It will display the binary numbers continu
ously.

10 A = 128
20 B = PEEK(49319)
30 FOR Q = 1 TO 8
40 IF B-A<O THEN GOTO 100
50 PRINT "1";
60 B = B-A
65 A = A/2
70 NEXT Q
75 PR INT
80 GOTO 10

1«12

PR INT "O";
GOTO 65

If you wish to change a switch setting and then obtain its binary
change line 10 to:

·

whenever you wish to display the binary value of the logic
setting at the input port, simply depress the RETURN key

the Apple keyboard. Of course, the switch settings are already in
format, so the correlation between the displayed binary value
individual bits at the input port should be easy.

Do not remove the circuit from your breadboard, and do not tum
the power. Both the program and the circuit will be used in the

experiment.

Purp@$®

IEXf'ERIMIENi NO. 5
MIJl.TIBYTE INPUT PORTS

The purpose of this experiment is to show you how multiple bytes
information may be input and processed by a BASIC program.

all input devices transfer only one byte of information to the
computer. Some devices may require 9 or more bits. In this

will simulate two input ports through the use of the
port was constructed in Experiment No. 4. Refer to Exper-
No. 4 for construction details of the input port. We recom

' iJucu.u that you work through Experiment No. 4 before proceeding
this experiment, if you have not already performed it.

If you do not have an input port connected to your Apple com
we refer you to Experiment No. 4. The circuit developed in

experiment must be used.

In handling multibyte data, the Apple must be programmed so
that the various bytes are ordered from most-significant to least-sig

byte. In this experiment, we shall use byte "M" as the most
byte (MSBY) and "L" as the least-significant byte

) . Since the Apple will interpret 8-bit values as decimal num
between 0 and 255, can you suggest an equation or series of

operations that can be used to obtain the decimal equivalent for··
two-byte binary number?

Since the MSBY is "offset" by a factor of 256, you can use the follow;
ing relationship:

VALUE = (M * 256) + l

where VALUE is the final decimal value of the 16-bit word.

Step 3

To test this equation, enter the following program into the
puter:

200 INPUT "SET MSBY ON SWITCHES ";A$
210 M = PEEK(49319)
220 INPUT "SET LSBY ON SWITCHES ";A$
230 L = PEEK (49319)
240 V = (256 * M) + l
250 PR INT V
260 GOTO 200

Now run the program, starting it by entering GOTO 200, and press
ing the RETURN key. When the computer asks, "SET MSBY ON
SWITCHES?" set the eight bits for the value of the MSBY on the
eight switches. Depress the RETURN key on the keyboard. When
the computer asks, "SET LSBY ON SWITCHES?" change the eight
switches so that they represent the eight bits that you wish to enter
for the LSBY value. When the switches have been set, depress the
RETURN key so that the computer will know that you are ready.
Now the decimal value should be displayed on the video monitor,
Some typical 16-bit values that you might wish to try are listed be
low. Fill in the decimal value for each, as generated by the Apple.
You should be able to check these fairly quickly with the aid of a
calculator.

MSBY
11001010
11000111
00000001

�SBY
11000001
0001l l 01
10000001

You should find values of 51905, 50973, and 385.

S�ep 4

The following program is a combination of the binary output pro-

ram, and the two-byte decimal calculation program. It will allow
u to input two 8-bit bytes to represent a 16-bit value, display the

ecimal value and the binary value.

A = 32768
FOR S = l TO 2
FOR Q = l TO 8
IF B-A<O THEN GOTO 100
PR INT "l";
B = B-A
A = A/2
NEXT Q
PR INT " ";:NEXT S
PR INT: GOTO 200
PR INT "O";
GOTO 65
INPUT "SET MSBY ON SWITCHES "; A$
M = PEEK(49319)
INPUT "SET LSBY ON SWITCHES "; A$
l = PEEK(49319)
V = (256 * M) + l
HOME: PR INT V
B = V: GOTO 10

.Run the program by entering a GOTO 200 command and then de
ssing the RETURN key. Set values for the MSBY and LSBY on
switches. There should be a correlation between your switch set

gs and the binary bits that are displayed on the screen. You should
able to convert the binary value into a decimal value fairly easily.
e 16-bit binary value has been "split" into two 8-bit values so that

· can easily compare the bits with your switch settings.
Now that you have seen how the Apple can operate on two 8-bit
• es to reconstruct a 16-bit value, you should realize that other
es of operations could have been performed, too. Although only a
gle input port has been used in this experiment, it would be easy
construct another one with a new device address to provide the
itional byte of data required in the 16-bit application that has
n simulated in this experiment.
ou probably noticed that a new variable, A$, was used in this ex
·ment, and in the last one. This is a "dummy" variable that has
n used so that the program can be halted at a predetermined
t so that the experimental conditions could be changed before
computer is allowed to go on. The A$ variable is a string vari
' and when the RETURN key is pressed a null, or "nothing,"
g of characters is assigned to this variable. This is just a "trick"

t halts the computer until we depress the RETURN key.

105

The interface circuit used in this experiment will be used in th.
following experiment, so it should be saved. The software will n
be used, so the computer and interface may be turned off.

Purpose

EXPERIMENT NO. 6
INPUT PORT APPLICATIONS

The purpose of this experiment is to show you how an input port
may be used for control applications.

Discussion

In this experiment, the 8-bit input port will be used to transfer in
formation to the Apple, but the Apple will process the eight bits of
data in a nonnumeric fashion. In this way, the state of eight external
devices will be monitored.

Step 1

If you do not have an input port connected to your Apple computer,
we refer you to Experiment No. 4. The input port described in that
experiment will be used in.the following steps.

Step 2

In many cases, the computer will be used to process nonnumeric
information that tells the computer about the status or state of ex
ternal' devices. In such a way, it is easy to determine when devices
are on or off, valves open or close\!, elevators up or down, and so on.

Enter the following program into your computer and run it. This
program demonstrates how a value may be used to cause the com
puter to take a preprogrammed course of action:

10 INPUT A$: HOME
20 A = PEEK(49319)
30 IF

.
A> 127 THEN GOTO 70

40 PR INT " INPUT <= 127"
50 GOTO 10
70 PR INT " INPUT > 127"
BO GOTO 10

Step 3

You must press the RETURN key to cause the computer to execute
the input and comparison steps. Set the logic switches at the input
port to a value that is less than 127 (00000000 to 01111110) and press
RETURN. What happens? Try this with a value of 127 or greater
(01111111 to 11111111) . What happens? What happens when the
binary value is equal to 127 (01111111)? You should see the correct

106

for each value that is input to the computer. This program
strates how the computer can be used to make a decision based

on a value. In some cases, the value of an individual bit may be
d as the basis for a decision. The binary conversion program pro
ed in Experiment No. 4 allowed you to see a binary equivalent for

decimal value. This program made decisions based upon the value
individual bits, so that it could determine whether to display a

e in each bit position.

tep 4
Jn this step, the basic binary-display routine will be used, but
ther than display ones and zeros, the computer will display "ON,"
ta logic one and "OFF," for a logic zero. You should be able to
odify the program from Experiment No. 4 to do this, just by chang
g the PRINT statements, but the following program is provided for

Note that the program from Experiment No. 4 has been
" or relocated to higher line numbers. Before you enter this

remember to delete the old one, if you have not already
so by turning off the power. The NEW command may be used

the old program. Simply type NEW and then press the
key.

INPUT A$: HOME: A 128
B = PEEK (49319)
FOR Q = l TO 8
IF B-A <O THEN GOTO 500
PR INT "ON "
B = B-A
A = A/2
NEXT Q
GOTO 410
PRINT "OFF "
GOTO 470

There are two spaces after ON, and one space after OFF. This
equal spacing.

the program. Remember that the switches should be set, and
the RETURN key pressed, to perform the "conversion" and dis-
You should see that a line of ON and OFF messages is dis

with the ON notation for the logic one bits, and the OFF no
"''''"· '·'·"'"rn'n for the logic zero bits. The PRINT statements in the program

be changed to display OPEN and CLOSED, UP and DOWN,
other similar notations for the bits.

the simple program in Step 4 has some uses, the display of
and OFF messages in column format may be more useful.

· --· .. ----------�--�----

The HTAB and VTAB commands in BASIC may be used to genera
such a vertical display of the conditions. The same basic progra
used, with the necessary changes marked (•) . You need to leave
spaces after ON and OFF in lines 450 and 500, respectively.

*400 H = 20: V = 8
410 INPUT A$: HOME : A = 128
420 8 = PEEK(49319)
430 FOR Q = 1 TO 8
440 IF B-A<O THEN GOTO 500

*450 HTAB H: VTAB V: PRINT "ON ";
460 B = B-A

*470 A = A/2: V = V+l
480 NEXT Q

*490 GOTO 400
*500 HTAB H: VTAB V: PRINT "OFF ";

510 GOTO 470

You should now observe that the display of ON and OFF conditio
is vertical, since the HT AB and VT AB commands have been used t
"move" the cursor in a vertical fashion.

Thus, the ON and OFF conditions can be displayed in a numb
of ways. In fact, in some computers, graphical representations an
alphanumeric characters may be mixed so that the ON/ OFF condi:
tions may be displayed near a pictorial representation of the devic
or process being monitored.

While the program is running, make changes to the switch setting
to confirm that the program and the input port are working prop"
erly.

Step 6

You may want to run the program continuously, so that the
switches may be changed, and the ON/ OFF conditions monitored,
without the need to press the RETURN key each time a new display
is needed. The INPUT A$ is the "dummy" input command that
causes the computer to stop and wait for you to press the RETURN
key. Remove this statement from the program, so that line 410 looks
like this:

410 HOME: A = 128

Now run the program. Does this provide a reasonable display? Why?

Our display flickered badly, since the HOME command clears the
entire screen and positions the cursor in the upper left-hand corner

108

of the monitor screen each time the computer restarts the program.
This takes time, and it slows down the display. Can you suggest any
further changes to the program to reduce or eliminate the flicker?

7

By removing the HOME command, you can reduce the time that
the Apple takes to clear the entire screen and "home" the cursor to
the upper left-hand corner of the video display area. When the
HT AB and VT AB commands are used, they position the cursor at
exactly the right place to print each ON or OFF on each line, one

bit. If no spaces are left after the "ON" at line 450, the printing
the ON would not cover the last F in OFF, and you would see

ONF, instead of ON. Thus, the spaces are needed to "erase" any
characters remaining on a line.

We suggest that you use the following for line 410 in your pro-

410 A = 128

Now, start the program by typing in HOME:GOTO 400, and then
pressing ENTER. If you do not use the HOME command, the pro
gram will simply write over whatever is on the screen. The HOME
command clears the screen for you just before the program is started.

Step 8

The VT AB and HT AB commands can also be used to generate
titles or captions for each of the eight lines of information in the dis
play. Several captions follow, and you may add or change the ones
provided:

5 HOME
10 VTAB 8: HTAB l
15 PRINT "ACID PUMP";
20 VTAB 9: HTAB 1
25 PRINT "BASE PUMP";
30 VTAB 10: HTAB 1
35 PRINT "HEATER";
40 VTAB 11: HTAB l
45 PRINT "MIXER";
50 VTAB 12: HTAB 1
55 PRINT "FLUSH CYCLE";
60 VTAB 13: HTAB 1
65 PRINT "DISHWASHER";
70 VTAB 14: HTAB 1

1M

75 PR INT "VACUUM":
80 VTAB 15: HTAB 1
85 PR INT "DRYER";

We suggest that you add these lines to your program if you plan
go ahead with Experiment No. 7. You should test your program aft
you add these lines.

The hardware and the software used in this experiment will be
used in the next experiment, so you should not dismantle your
cuit, nor should you remove power to the computer.

EXPERIMENT NO. 7
INPUT PORT APPUCATIONS (i!)

Purpose

The purpose of this experiment is to show you how logical
tions may be performed on data.

Discussion

This experiment will use ·AND operations, and they will be per
formed on the ON/OFF information from eight external "sensors."
The conditions of these sensors will be used to trigger actions in
computer.

Step l

The program used in this experiment is the same as the one used
in Experiment No. 6. If it has not been completely entered into your
computer, you must enter it and test it. If it has been entered and
tested in the previous experiment, you may wish to check it against
the following listing:

5 HOME
10 VTAB 8: HTAB 1
15 PR INT "AC ID PUMP";
20 VTAB 9: HTAB 1
25 PR INT "BASE PUMP";
30 VTAB 10: HTAB 1
35 PR INT "HEATER";
40 VTAB 11: HTAB 1
45 PR INT "MIXER";
50 VTAB 12: HTAB l
55 PR INT "FLUSH CYCLE";
60 VTAB 13: HTAB 1
65 PR INT "D ISHWASHER";
70 VTAB 14: HTAB 1
75 PRINT "VACUUM";
80 VTAB 15: HTAB l
85 PRINT "DRYER";

400 H = 20: v = 8

A = 128
420 B = PEEK(493 l 9)
430 FOR Q = 1 TO 8
440 IF B-A<O THEN GOTO 500
450 HTAB H: VTAB V: PRINT "ON ";
460 B = B-A
470 A = A/ 2: V = V + l
480 NEXT Q
490 GOTO 400
500 HTAB H: VTAB V: PRINT "OFF ";
510 GOTO 470

When successfully loaded and tested, the program should generate
a display such as that shown in Table 6-1. The various ON and OFF
conditions shown by your computer will probably be different, based
upon the logic switch settings at your input port.

Step 2

Make notes alongside of Table 6-1 to indicate which bits at the
input port correspond to the different labels. You can do this by

ACID PUMP ON
BASE PUMP OFF
HEATER ON
MIXER ON
FLUSH CYCLE ON
DISHWASHER ON
VACUUM OFF
DRYER OFF

testing the input bits, or by analyzing your program. You should
find that bit D7 is the "ACID PUMP," bit D6 is the "BASE PUMP,"
and so on, down to bit DO, which is the "DRYER."

Refer to Chapter 4, Example 4-3 and use the Apple monitor to
enter this assembly-language program into the computer. You can
simply type CALL -151 and then RETURN to enter the monitor.
Check that your program has been entered correctly. Remember that
the monitor program uses hexadecimal numbers. If you do not know
how to use the monitor, refer to Apple II Reference Manual, or fol
low these steps:

l. Press the RESET key and type CALL -151, and press the
RETURN key. The Apple should respond with an asterisk (") .

2. Type 0300:00 00 00 48 AD 00 03 2D 01 03 8D 02 03 68 60 Leave

U 1

a space between the two-digit groups. Use 00 for the first three
values in the program.

3. Press the RETURN key, type 02FF, press the RETURN
then press the RETURN key twice, and check the data against
what is in the listing in Example 4-3, and what is noted above.

�tep 4

To test the assembly-language program, enter the program shown
below into the computer and run it. Make the necessary decimal-to
binary and binary-to-decimal conversions on scrap paper to check
your results. Press RESET to return to BASIC.

1000 POKE 10,76:POKE 11,0J:POKE 12,03
1010 INPUT "MASK BYTE "; M: POKE 768,M
1020 INPUT "DATA BYTE "; D: POKE 769,D
1030 Q = USR(O): PRINT "ANSWER "; PEEK(770)
1040 GOTO 1010

If your answers prove to check with those that you calculate by
hand, go on to the next step. If noi:, carefully check that the assem
bly-language steps have been entered correctly, and test the program
again. Remember, the errors could be in your "hand" calculations.

Step S

We now want you to modify your program so that it will detect
when any of the appliances, DISHWASHER, DRYER, or VACUUM
are on, and whenever the ACID PUMP and BASE PUMP are both
on. The logical AND assembly-language subroutine can be used, al
though there are probably other solutions that will also work.

Can you suggest a method of making these determinations? We
suggest that you review the logical AND operation, as presented in
Chapter 4. Think about the operations as they are presented in
Table 6-2.

Step 6

The logical AND operation can be used to mask out the unwanted
bits, D5-DO for the pump test, and bits D7-D3 for the appliance test.
Thus, two "masks" must be established, one for the pumps, and one
for the appliances. What would these masks be, in decimal and in
binary?

SI
(
y
0

il!!l�ie �-2. <l:e<citr©i Coiiilditi@rns i© !!.e �eie��ed

06 1)5 D4 D'.> 02 Dl D@

x x x x x x ACID A ND BASE PUMPS
BOTH ON

x x x x x 0 0
x x x x x 0 0
x x x x x 0 I

x x x x 0 0 ANY APPLIANCE ON
x x x x 0
x x x x 0
x x x x -

)(== Don't care, logic one or zero.

mask for the pumps would be 110000002, or 192, while the mask
the appliances would be 000001112, or 7. When these masks are

with the input values from the sensors, or logic switches, the
bits will be "filtered" through the mask

Now that the two masks have been established, suggest some soft
steps that could be used to determine the state of the "filtered"

You need to think of the individual bits, as well as the decimal
for the bits. You may use new variables, if you need to.

used a new variable, C, to represent the value input from the
This allows the variable B to be used independently in the

display portion of the program. If you use the variable B,
will find that it is always zero. We will let you try and find

why. We used either:

POKE 768,7:POKE 769:C:Q=USR(O)
IF PEEK(770) = 0 THEN . . .

or
POKE 768,7:POKE 769,C:Q=USR(O)
IF PEEK(770) > 0 THEN . . .

to detect the appliances, and similar steps to detect the pumps.
each case, the THEN . . . statement is executed on one conditi
and the program continues on in the other.

Step 8

In order to test your program ideas, add steps to the basic fl
detecting program so that DANGER is printed on the display
both pumps are on, and APPLIANCES is printed if any of the a
pliances are on. Write your program steps in the following spa
and review them carefully before you change the program. Reme
ber that you will need a line just like line 1000 in the program giv
in Step 4, if you are going to use the assembly-language subroutiri
This program line initializes the three locations used by the US
command so that it points the computer to the start of the corre
subroutine.

Your program steps will probably look like these:

420 B = PEEK(49319): C = B

490 GOTO 600

600 POKE 768,7: POKE 769,C
605 Q = USR(O)
610 IF PEEK(770) = 0 THEN 700
615 HTAB 20:VTAB 17: PR INT "APPLIANCES";
620 POKE 768, 192
625 Q = USR(O)
630 IF PEEK(770) <> 192 THEN 800
635 HTAB 20:VTAB 18: PR INT "DANGER";
640 GOTO 400
700 HTAB 20:VTAB 17: PRINT "
710 GOTO 620
800 HTAB 20:VTAB 18: PR INT "
810 GOTO 400

program. You may forgotten steps to dear the AP-
and DANGER displays from your screen. You may also

forgotten to use three POKE commands to load the informa-
required by the USR command. You can do this without add

another step to your program, simply type in the POKE com
mands, followed by a RETURN. They only need to be executed

The commands for printing spaces at lines 700 and 800 are used
clear the APPLIANCES and DANGER signals that are displayed.

program could be much more complex, containing steps to use
�""'"n',_, video, or to fl.ash the display when an emergency condition

sensed by the program. You should realize by now that the soft-
can handle both mathematical and logical operations. You

also see that the use of assembly-language subroutines is not
difficult

You may tum off the computer, although the assembly-language
operation program will be used again. The input port will also

used again, so do not dismantle your circuit.

EXPERIMENT NO. 8
CONSTIU.!ICTiNG AN OUTPUT PORT

The purpose of this experiment is to have you construct a simple
output port and investigate its use.

In this experiment, a simple 8-bit latch circuit will be used to
construct an output port. The output port will be used in this ex
periment, and in some of the following experiments, in which it
will be necessary to transfer information to external devices. Two

quad latch integrated circuits will be used.

FUNCTION TABLE
(Each Latch)

INPUTS OUTPUTS
0 G a Q
L H L H
H H H L
x L Oo 50

H =high level, L = low level, X =irrelevant
0o =the level of 0 before the high-to�low transition of G

115

Step l

The gating circuit used in Experiment No. 2 will be used in this'
experiment. If this circuit is not available on your solderless bread·
board, we suggest that you perform Experiment No. 2 and then this
experiment. The gating circuit may also be wired and used directly,
Refer to Fig. 6-4 for the circuit details.

:!iitep 2

Wire the circuit shown in Fig. 6-10. Two SN7475 latch
circuits are required, along with eight individual lamp monitors,

DEV. SEL.

4 G 13 G

,___ ___ ___, A

>-------' B

'-'-'-------'C

LA MP

�-----1 D MONITORS

!------IA

1-'-'------I B
LAMP

,__ ___ ___, � MON If ORS

SN7475

equivalent logic level detecting circuits. Do not connect the device
select input, DEV SEL, at this time.

$�ep 3

Refer to the circuit shown in Fig. 6-4. Try to determine which of
the three control outputs, A, B, or C, would be used to control the
latch enable inputs that are connected to the DEV SEL line. Which
one would you use? Why?

e

The A output, RD 49319, has already been used and RD 49318
not work, since it is decoded for an input port. The WR 49318

output (C) would be the choice to use. It provides a positive pulse
which. is the same type of pulse required by the SN7475 latch chips.
This output is a�o de£.oded for an output device. You should re
member that the 7 and 6 output pins from the decoder on the printed
circuit board actually correspond to decoded addresses 49319 and
49318, respectively.

Make a connection between pin 13 on the SN7402 and pins 4 and
13 on both of the SN7475 latch chips. This is the DEV SEL connec
tion shown in Fig. 6-10.

To test the output port, enter the following program into your
computer:

10 A = 0
20 POKE 49318,A
30 END

Preset the variable A to zero, as shown, and run the program. What
happens to the lamp monitors?

They should be unlit, since zero has been transferred to the output
pmt Now set A to 255 and nm the program again. You should see
all of the LEDs light. If these conditions have not been found, re
check your circuit and the test program.

The program may be changed so that you can easily enter new
values from the keyboard. The new program is:

10 INPUT A
20 POKE 49318,A
30 GOTO 10

You may try any values that you choose, but we suggest that you
try powers of two first, 0, 1, 2, 4, 8, etc., since these will test the indi
vidual LEDs.

117

Since an 8-bii: output port can only display values between
and 255, what happens when you try to output a value that is ()
side of this range? VVould you expect to see a "portion" of the val
say the eight least-significant bits? Try running the program Vi
the value 256. What happens?

The Apple displays

? ILLEGAL QUANT ITY ERROR IN 20

which indicates that the value was not within the proper range
the function that was requested. The line number for the "err
is provided in the error message. Negative numbers are also "caugh
in this way.

Step 6

Restart the program and enter a value of 90. You should observe
a display of 01011010 on the lamp monitors. Now try and enter a
value of -24. When the error is detected, and the
displayed, does the displayed value change?

No. Error conditions are detected prior to any attempted use of
POKE function. How do you think the Apple will handle
numbers? Enter a decimal fraction, such as 6.01. What is

The Apple will "strip off" the decimal portion of the number.
may wish to experiment with some other numbers, too.

£tep 7

Can you write a short program that could be used to increment
a value from 0 to 255, displaying each new value on the LEDs?
Write your program in the space below, and test it. What do you
observe? Can you make the program loop back on itself so that the
incrementing counting is displayed again and again?

used the following program:

FOR A = 0 TO 255
POKE 49318,A
NEXT A
GOTO 10

: >v,i:;u'"""'-"'' that you cannot go above 255, or below 0, without gen
an error message. You may wish to put a short time delay

your program so that the LEDs do not flash on and o:ff so quickly.
example of such a time-delay step is:

should see that it is fairly simple to construct an output port,
l'!nd to control it with simple software commands.

The output port will be used in the following experiment, but the
· .i .. mm�r may be shut off.

IEXPIERIM�NT NO. 9
OUTPUT-PORT AND INPUT0PO�T INTERACTIONS

The purpose of this experiment is to show you how input-port
output-port commands can be used in the same program.

In many cases, input ports and output ports will be used together
interface circuits. They will be controlled by PEEK and POKE

.<cOmlm:inc1s within the same program, and there frequently will be
of information between the ports. In this experiment, you

observe how such ports may be used together in a simple circuit.

The simple input port (Experiment No. 7) and output port (Ex
.nPr1n,,,y,,- No. 8) used previously will be used in this experiment.

refer you to Experiment Nos. 2, 3, and 8 for the appropriate
. · m � � .. ,r details.

Once the input port and output port have been constructed, enter
following program into your computer and run it. It is used to
the I/ 0 port circuits.

A = PEEK(49319)
POKE 49318,A
GOTO 10

As you actuate the logic switches at the input port, you should
the corresponding bits at the output port change, consistent
the switch actions. If this is not the case, recheck your circuits
your program.

Step 3

In this step, two values will be entered from the keyboard
then displayed on the LEDs. At this point, you should be able
write a short program to do this. Make an attempt in the sp
provided:

We used the following program, in which a most-significant b
(MSBY) and a least-significant byte (LSBY) were simulated:

10 INPUT "MSBY ";A$: M = PEEK(49319)
20 INPUT "LSBY ";A$: l = PEEK(49319)
30 POKE 49318,M
40 INPUT A$
50 POKE 49318,l
60 GOTO 10

In this program, the string variable, A$, has been used as a "dumm
variable to "stop" the computer so that you can perform the nee
sary actions before the program goes on.

Step 4

Run your program. You should be able to enter two values in
the computer. When you type RUN RETURN, the computer
ready for you to set the MSBY on the switches. After you have don
this, press the RETURN key, so that the computer can perform th
data acquisition step. Then, set the LSBY on the switches and agai
press RETURN. When the LSBY has been acquired, the MSBY wil
be displayed. By pressing RETURN, you will cause the compute
to display the LSBY.

Step S
This program shows how the computer can acquire and store val

ues for later display. Eight bits of information are easy to manipu
late. How could a number between 0 and 65535 be displayed on'
two output ports?

120

numbers would have to be "split" into an 8-bit MSBY and an
8-bit LSBY. Can you suggest how this might be done?

number could be divided by 256 to get the MSBY as the integer
of the answer. For example, if we start with the number

integer portion of the result, 42, when converted into an 8-bit
number, would be the MSBY of the value. The LSBY can
calculated:

- (42 * 256) = 171

the 171 must also be converted into its 8-bit binary equivalent
be the LSBY.
A BASIC program can be written for the Apple to perform these

Could you write it?

We developed the following program to make the "conversion:"

INPUT "VALUE "; V
M = V/256
l = V - INT(M) * 256
PRINT INT(M), l
INPUT A$
POKE 49318,M
INPUT A$
POKE 49318,l
GOTO 10

MSBY and the LSBY will be displayed on the video monitor i:n
decimal form. The INT command has been used to "strip" the

· """"'""' fraction from the value for M, for clarity. This is not re
for the POKE operation, since the decimal fraction will be

Step 7
Enter our program, or yours, into the computer and test it. Yo

will have to press the RETURN key to display the MSBY on t
LEDs, and you must press it a second time to display the LSB

Can you enter values greater than 65535? Can they be converte
and displayed?

Yes, you can enter them, and they will be converted, but you c,aJurnJ�')!lf!l��� , t'hi
display them, since they will generate results that are greater • .,�··cl§J<' ..

256 in the MSBY. This generates an error condition. Can you
anything to prevent this?

You can add some steps to your program that will check the
of the value before attempting the conversion. Steps can also
added to remove any fractional portions of the number. The toJllO'W"'�l·· ...
ing steps can be used:

12 IF V < = 65535 AND V > = 0 THEN 18
14 PRINT "VALUE OUT OF RANGE, TRY AGAIN": GOTO TO
18 V = INT(V)

You might want to try adding these steps to your program. Prr,O'r<>m

steps such as these prevent errors, and they orient the program
toward the user. Keep this type of programming in mind when you
write complex programs of your own.

Purpose

EXPERIMENT NO. 10
DA.TA LOGGING .AND DISPi.AV

The purpose of this experiment is to show you how the input port
may be used to acquire information, and how the computer can
store this information for later display at the LEDs.

Discusskm

In this experiment, a set of 10 data values will be acquired from
the three-state input port, and will be displayed on the LEDs at a
later time. More flexible display ideas will also be developed and
larger lists of data acquired.

'
y

tep 1

The input port and output port described previously will be used
this experiment. By now, you should be familiar with these types
ports, but we refer you to Experiment Nos. 2, 3, and 8 for the

cessary details. If you have not performed these experiments, we
ommend that you do so before going on with this experiment.

In this experiment, you will use the computer to acquire and dis
ay a set of values that are acquired from the input port. While
ese may be acquired with software steps such as:

INPUT A$
Q = PEEK(49319)
INPUT A$
R = PEEK(49319)

·stakes a great number of software steps to acquire a small amount
information. Can you suggest an alternative?

ist of values can be acquired by using a loop, and an array can
used to store the information, so that a new variable need not
assigned to each new data value. Can you write a short program
t could be used to acquire 10 data points?

used the following program, which should look somewhat like
s. Note the use of an array to store the information.

DIM A(lO)
PRINT "START"
FOR P = 1 TO 10

0 INPUT A$
A(P) = PEEK(49319)
NEXT P
PRINT "START DISPLAY • • . "

123

80 FOR P = 1 TO 10
90 GET A$

100 PRINT A(P): POKE 49318,A(P)
110 NEXT P
120 PRINT "END OF RUN": END

In this program, you must press the RETURN key to cause
computer to acquire a value. When the computer prints "ST A
DISPLAY . . . " on the screen, it will display a value that it has sto
each time you press RETURN. The value will also be displayed
the LEDs in binary form. Note that a GET A$ command has
used here, instead of an INPUT A$. Is there any difference?

Yes, the GET A$ command suppresses the question mark (?) , a
any character key (A, &, 1, etc.) may be used in place of the R
TURN key. The alphanumeric symbol is not displayed. This "cle
up" the display of the data values.

Ste§> 3

Run either your program, or ours, to acquire 10 data values. On
the values have been acquired, use the computer to display tn1�rn,,�F <
What results do you observe?

You should find that your values have been stored properly,
that they are also displayed and printed on the video monitor. If
do not require the values at the output port, could you modify
program so that it only displays the values on the monitor?

Yes. Simply change line 100 to:

100 PRINT A(P)

and. remove line 90.

Step 4

The low-resolution graphics mode on the Apple could also
used to display the values in graphical form. We suggest that
attempt to use the HLIN command to draw a horizontal set of

124

�0'"""c"y'·i- the relative values that have been input from the port.
n,-,1,.,.., ,�. that there are limits on the dimensions of the screen area

the HLIN command. These limits are 39 points in each direction.
Note your display program steps in the following space:

used the following steps to generate a horizontal bar graph of
information:

GR: COLOR = 5
FOR P = 1 TO 10
D = A(P)/6.5
HLIN O,D AT P
NEXT P
END

steps were added to the program that we developed in Step 2.
your program, or the one shown here.
this set of program steps, the data value has been divided by

so that instead of having a range between 0 and 255, the range
"condensed" to be 0 to 39. The subscript for the array has also

used to increase the starting position of each horizontal line.
data starts at the top of the screen for A (l), and proceeds down
screen for the later data values. You could also use the value

P to change the color for each of the horizontal lines.

Additional changes can be made to the program so that a time
routine is used in place of the INPUT A$ command. This
mean that data values would be obtained at definite intervals,

programmed in the delay routine. You would no longer need to
the RETURN key to have a new data value acquired.

Change your program so that a time delay routine is used in place
the INPUT A$ command at line 40. Make the delay fairly long,

2 or 3 seconds. Here is an example of a useful routine:

FOR T = 0 to 2000: NEXT T

Connect the logic probe to the "A" output, pin 1, on the SN7402
gate. The acquisition of a data value from the three-state in-

put port will cause the logic probe to fl.ash the yellow LED.
will tell you that a value has been acquired.

You may want to change your program to acquire more
points. With the simple display routine, you can acquire
39 values.

Make the necessary changes to your program so that a time d
is used to synchronize the acquisition of the data from the in
port. Run your program. You may want to increase the delay
that you can easily change the switches.

Your program should now look something like this:

10 DIM A(lO)
20 PRINT "START"
30 FOR P = l TO lO
40 FOR T = 0 TO 2000: NEXT T
50 A(P) = PEEK(493 l 9)
60 NEXT P
70 PRINT "START DISPLAY ... "
80 GR: COLOR = 5
90 FOR P = l TO 10

100 D = A(P)/6.5
110 HLIN O,D AT P
120 NEXT P
130 END

Have you noticed that not all of your values cause changes in
display? Try entering values of 0, 1, 2, 3, and so on up to 9. You
need to slow down the delay, or to go back to the INPUT A$ co
mand at line 40 so that you have sufficient time to make the chang
to the switches. What do you find in the display when you. ent
these numbers? Why?

The values 0-6 show the same value on the display, and the values
also show the same value, but one "square" greater than the ,... ,..,�"'"''·�c�<>

values, 0-6. The reason for this is that all the values are
to be between 0 and 39, so the resolution is cut from vuco-oJ,uc-u.-"'uv.·

to one-part-in-40. Thus while the data has 256 discrete values,
display only can accommodate 40 different values. The division
the value by 6.5 "compresses" it to fit in the space available on
display. You will also note that a value of zero still "lights" one
square on the video monitor. Unfortunately, the BASIC
will generate one "lit" square for the command HLIN
wherever X is on the screen.

The point of this experiment is that the computer can be used
to acquire information and display it, or use it, in many ways. The

and output ports are simply additional ways of getting infor
mation into and out of the computer.

EXPERIMENT NO. 11
SIMPLE DiGITAL-TO-ANAi.OG CONVERTER

Purp@se

The purpose of this experiment is to show you how a simple 8-bit
digital-to-analog converter (DAC or D /A) can be interfaced to
the Apple.

Disc1,1ssi@n

A simple D/ A converter, the Signetics NE5018 8-bit converter,
be interfaced to the Apple. Although we have not discussed

analog converters, they have been thoroughly described in Micro
Converter So�ware and Hardware Interfacing

(Howard W. Sams & Co., Inc. , Indianapolis, IN 46268) . We refer
you to this book for additional information about these devices.
Other topics, such as sample and hold amplifiers, analog multiplex
ers and instrumentation amplifiers are also described.

Configuration @f the Integrated Circuit (fig. 6-11)

fig. 6-11. Signetics NE5018 8-bit
rJJ /A converter chip

pi" cc.,foguraticn.

Two additional power supplies are required in this experiment,
+ 12 and -12 volts. They will be used to power the D /A converter
integrated circuit. Be sure that these power supplies are available,
and that they are adjusted for the proper voltages before proceeding.

Wire the circuit shown in Fig. 6-12. The device-select pulse is ob
tained from the SN7 402 NOR gate circuit that has been used in
previous experiments. The device-select signal is available from

127

-12 +12

19

DO z

DI 3

02 4

DATA 03 5
NE 5018

<!US 04 6

05 7 18
11 l:lAC

06 s

IJ7 9

14
4. 7 K

"'

2 2 10

"'

DEVICE SELECT
�i11. 6·12. Schematic for •imple D/ A �'""'"'"'" iffiierface, 11si1111 NIE5@1S D/ A

<©1111erter chip.

point C (Fig. 6-4), but it must be inverted before it can be us

by the NE5018 chip. An SN7404 inverter chip may be used for
as shown in Fig. 6-13. Wire this inverter circuit, too, connecti
the input of the SN7404 inverter to pin 13 on the SN7402, and wiri
the output of the SN7404 inverter to the DEVICE SELECT inp
on the NE5018 converter.

+5

SN7404

DEVICE SELECT
>o=;D;;;EV;:;:;:IC;;::E::.:;S;;,EL:;:EC;,,.T Lr

At this point, carefully check the + 12 and -12-volt power
connections to be sure that they are correct. If you are using
rate power supplies, you must be sure that there is a
ground connection in common to all of them and to the ...,"�""'-"'·""'"'

Step 2

The NE5018 D /A converter will convert values between 0 and
255 to voltages between 0 and + 10 volts. Since the 0- to

e has been divided into 256 values, or 255 steps, the voltage in
ent available is:

10 volts I 255 steps = 39 millivolts/ step

can probably write a short program that would increment an
ount and output it to the DA converter. Don't worry about the

nal operation of the D/ A converter, just treat it like an output
, Your program will generate a slowly increasing positive volt
ramp. Develop your program in the space below:

. FOR V = 0 TO 255

POKE 43918,V
NEXT V

c GOTO 10

'Simple voltmeter or volt-ohm-rnilliammeter (vom) may be used
onitor the voltages. Connect the meter between ground and the

18 VDAC output (VDAC is positive). Try your program. Does
oltage increase slowly? What happens when the voltage reaches
t + 10 volts?

voltage increases slowly to + 10 volts. When it reaches this
e, it quickly changes to zero volts, or ground, and it starts to
ase slowly once again.
u can slow the voltage ramp by introducing a short time delay

in your program. We used the following:
·

= 0 TO 100: NEXT T

evelop a program that will generate a negative-going ramp, and
that will generate a triangular ramp (slow-up then slow-down).

·used the following programs:

e •�mp

FOR V = 255 TO 0 STEP -l

20 POKE 4931 B, V
30 NEXT V
40 GOTO 10
ir;a"g"law <>11?pui

l 0 FOR V = 0 TO 255
20 POKE 4931 B, V
30 NEXT V
40 FOR V = 254 TO l
50 POKE 4931 B, V
60 NEXT V
70 GOTO 10

STEP -1

You may wish to try either of these programs, or the ones
you wrote. Why is the range in one of the triangular output lo
254 to 1 instead of 255 to O?

H the range is 255 to 0, these two values will be output twice,
though you probably couldn't tell the difference on the meter.
time delay, or delays, may be useful in these programs.

Sile� 4

Since you know that the voltage from 0 to 10 volts correspon
to steps from 0 to 255, can you write a program that would allo
you to enter a voltage from the keyboard and that would genera
this voltage on the meter? Use the following space for your progra

We developed the following program, which you may wish to

10 INPUT "VOLTAGE ";V
20 R = V * 25.5
30 POKE 49318, R
40 GOTO 10

Step 5

Try your program, too. Does it generate a voltage from the
converter that closely matches the voltage that you entered?
program seemed to work well, considering inaccuracies in the
This program does not have any "error detecting" steps, so you
also try and generate a + 15-volt signal from the converter. What
you think will happen? Will the converter burn out?

130

e converter will not burn out, since it can only accept an 8-bit
l�e, which corresponds to an output of + 10 volts. The "15" input

15 volts will cause an ILLEGAL QUANTITY ERROR, since we
trying to transfer the value 382 to an 8-bit device. It just can't

done with eight bits.

t this point, you should be able to write a program that will al
you to enter an upper voltage and a lower voltage, and to have

:?tite Apple generate a triangular wave between them. Use your best
���togramming skills.

e used the following program:

INPUT "UPPER VOLTAGE"; H
IF H <= 10 AND H >= 0 THEN 40
PRINT "VOLTAGE OUT OF BOUNDS": GOTO 10
INPUT "LOWER VOLTAGE"; L
IF L <= 10 AND L >= 0
PRINT "VOLTAGE OUT OF BOUNDS": GOTO 40
IF H > L THEN 90
PRINT "UPPER V MUST BE HIGHER THAN LOWER V": GOTO 10
H = H * 25.5: L = L * 25.5
FOR V = l TO H
POKE 49318, V
NEXT V
FOR V = H - 1 TO L + 1 STEP - 1
POKE 49318, V
NEXT V
GOTO 100

";n your program and test it. You should be able to make the meter
edle "swing" between the upper and lower voltages. You may use
time delay, or delays, if you wish to slow the meter movement so

t can easily watch it.
experiment clearly shows you how a simple DI A converter

y be interfaced to your computer. The NE5018 used internal
tches, and much of the analog circuitry has been placed on the
nverter chip. D/ A converters find use in applications that require
e computer to control voltage-dependent devices, such as servo
tors, amplifiers, etc.
ou will not use the NE5018 D/ A converter again, so you may

it from your breadboard. The SN7 402 NOR gate chip should
retained, but the SN7 404 inverter may be removed. Power may
turned off. Carefully remove the connections to the + 12- and

131

-12-volt power supplies, so that they will not come in contact
any of the circuits.

EXPEl!UMENT NOo 12
OUTPllJT PORTS, BCD, AND BINARY CODES

Purpose

The purpose of this experiment is to explore the use of an SN
LS373 chip as an output port.

Discl!.!lssi@n

Newer integrated circuits, such as the SN74LS373 octal latch,
available to simplify the task of output-port construction. In t
experiment, you will construct an 8-bit output port using one
these chips, and the use of binary-coded decimal numbers will
explored.

Pin Ccw11flg1.mitior1 of the lntegll'<ited Circuit (Fig. 6-14)
ENABLE

Vee SQ �D 70 70 00 80 50 50 G

OUTPUT 10 10 20 20 30 30 .!ID "lQ GND
CONTROL

Step 1

Wire the circuit shown in Fig. 6-15. You may use output
pin 13, on the NOR gate circuit shown in Fig. 6-4 as the "G" :�r•nt.c'�'c.
to the SN74LS373 chip. If this NOR gate circuit is not
your breadboard, refer to Experiment No. 2.

Step 2

Note that the SN74LS373 chip has two control inputs, G and
The G input controls the latch, and the OC input controls the
outputs, which are three-state. Thus, the latch may be used not
to obtain information from a bus,. but to pass it on to another
as well. The relationships of the signals are shown in Table

07

DATA
BUS

DO

3

4

7

a

13

14

17

18

o_!_
.1.!..

+ 5 GND

lo_t
D Q 2

5

6 LAllllP
9

12 MONITORS
15

16

19

oc
G SN74LS373

fig. 6-15. Usi"g SN74LS373 "dai ialdo <Mp as ""ti'"� per!.

!:"able (G) Dal a
H H
H l

x
H x x

Output

H
L

Qo
z

When the Output Control (OC) signal is a logic one, the outputs
e been disabled, or placed in the high-impedance state (HI-Z) .

.. hen the enable or Gating input (G) is a logic one, the informa
(tf(:m present at the D inputs is passed through the latch circuits to
tile Q outputs. This is the same type of operation that was observed
·· ·· rthe SN7475 latch chip.

In this experiment, the OC input should be grounded (logic zero),
the outputs are always enabled.

the output port has been wired, test it by writing a short
ogram that will take values from the keyboard and display them
binary at the output port. A binary incrementing-count program

also be used to test the port. You should be able to write pro
such as these without any further assistance.

Enter the following program into your computer and run it.

FOR C = 0 TO 255
POKE 49318, C
FOR T = 0 TO 500: NEXT T
NEXT C
GOTO 10

133

What do you observe at the LEDs?

You should see a slowly incrementing binary count. You may
crease the length of the time delay at line 30, if you wish.

Now that the LEDs are displaying an increasing binary
carefully remove the connection between the OC pin, pin 1, on
SN74LS373 chip and ground. What happens to the
LEDs? When you replace this connection, what do you

In our set of LEDs, all of the LEDs became unlit when the
nection was removed. When the OC input pin was again
the count was found to be continuing. The Output Control -"'·v·w1.,,.,,,,.

did not affect the count. Even though the outputs were
placed into their high-impedance state, the counting continued,
the latches were "updated" with new information by the cOJTIP,uti�r .. �t:
In our system, the high-impedance state of the outputs
LEDs to be turned off. This may be different from your ""'',...'""'"
but you should see that the latch outputs change dramatically
the OC input pin is not at ground.

The SN74LS373 chip is called a three-state octal latch chip, "'u""''''''

it has three-state outputs on eight latch functions. This chip is
ticularly useful in computer interface circuits, since it contains
eight latches, and since its outputs may be placed in the """"
ance state. The SN74LS373 can be used in complex
are connected to several different computer buses. In fact, the
7 4LS373 could be used as part of a communication circuit that
link two or more computers.

Step S

Now that you have another input port wired on your breadboard,
we will use it to further explore some of the manipulations that can
be performed by the Apple. In past examples, we have used the
computer to control an incrementing binary count. This is not the
only code that is in digital electronic equipment. Another
code is the binary-coded decimal format, in which �Vv••··�·

are each assigned their own binary code, independent of the
digits. Of course, this code is still "binary," in the sense that only
two states are possible for each bit. For example, the decimal nmn
ber 9530 would be represented as 1001 0101 0011 0000 in binary
coded decimal, or bed. Note the separation between each set of
four bits. One set of four bits is used to represent the decimal digit

foi
an

ori

'

each decade. The bed code is used in many electronic devices,
is used to control seven-segment displays and other decimally

devices.
We would like you. to try and write a program that will "split" a

into its bed equivalents. The output port will be used to
the different groups, two bed digits at a time. The ten's and

digits should be displayed at the output port first, followed
the thousand's and hundred's bed digits. You may use the RE

other key to "stop" the computer between displays of

We used the following program:

10 IN PUT "VAL U E "; A

2 0 IF A < 10000 TH E N 30 ELS E 10

30 GOSUB 1000

40 POKE 49 318, A+C

50 G ET A$:A = B

6 0 GOSUB 1000

70 POKE 49 31 8, A +C

80 GOTO 10

1000 B = 0: C = 0

1010 IF A > 99 TH EN 1100

1020 IF A < 10 TH EN R ET URN

1030 C = C + 16: A = A -1 0

104 0 GOT O 1020

11 00 A = A-100: B = B+l

1110 GOTO 1010

In the subroutine, the variables are A, B, and C. In this case, the
A represents the decimal value to be converted to bed (the starting
value), B represents the "hundreds," while C represents the "tens."

At the end of the subroutine, A represents the units, or "ones."
could have used a new variable for this purpose, if you wished.

In some cases, it may be difficult for you to remember that
are tricking the Apple into generating bed values for you, since yQ
are really interested in the binary codes that are being output ·

the port. Thus, while you have tricked the Apple into outputti
the binary pattern 10011001, which represents 99 in bed, the App
really thinks that it is outputting a decimal 153, which is the nu

her that causes the binary pattern, 10011001, to appear on the LED
There are many different ways in which you can "fool" the co
puter into working with odd codes, or codes that do not match t
ones that it normally uses. ,

If you are going to go on to further experiments, you may wan
to leave the SN74LS373 output port on your breadboard. However
if you already have another output port already available, the SN·
74LS373 circuit may be removed. Power may be turned off.

IPYrfHll5e

EXPERIMENT NO. 13

OUTPUT-PORTS TRA.f�IC-IJGHT CONTROIJ.ER

The purpose of this experiment is to show you how the
computer may be used as a controller in a real application.

Di:;c;yssi@11

While the control of a traffic light may not seem like a
problem for us to tackle with the computer, it does illustrate
ability of the computer to make decisions and control
events.

S�ep 1

An 8-bit output port will be used in this experiment. If you
one already connected to your computer, you can use it as long as
it can control some LEDs. If you have completed one of the output
port experiments, you may use one of the output port circuits used
in the experiment. If you need to construct an output port, we refer
you to Experiment No. 8.

Lamp monitors or individual LEDs may be used to simulate the
lamps of the traffic light. Only six LEDs are needed, since the north
south and east-west lamps would be the same, with a red, yellow,
and green lamp for each. We used colored LEDs and we adopted
the following convention:

LED BIT
RED } D3

Y ELLOW EL M D4

GRE E N D 5

LED
RED }
Y ELLOW MAIN

GREEN

You must now determine the patterns of logic ones and zeros that
required to turn the individual LEDs on or off. In our circuit,
latch chips were used to drive the LEDs directly, and a zero
ed a LED on, while a one turned a LED off. What values are

. u going to use to turn the various LEDs on and off?

e found that the following binary values were needed. The deci
. equivalents have also been provided for you.

Red 254 11111110
Yellow 253 11111101
Green 251 11111011

MAIN Red 247 11110111
MAIN Yellow 239 11101111
MAIN Green 223 11011111

To start the traffic-light control operation, write a program that
'II flash the yellow light on Main Street and the red light on Elm
reet; one second on and one second off. What is the "on" pattern,
d what is the "off' pattern?

e off pattern is 255, or all logic ones, while the on pattern has
ts D4 and DO both as logic zeros, or 23810• We used the following

POKE 49318,255

FOR T = 0 TO 770: NEXT T

POKE 49318,238

FOR T = 0 TO 770: N EXT T

GOTO 10

137

Step 4

Determine the lamp patterns that will be required for norma
traffic light operation. How many are used? What are they? How ca
they be stored in the computer?

There are only four patterns. They are (a) red on Elm, green o
Main (222) , (b) red on Elm, yellow on Main (238) , (c) green on
Elm, red on Main (243) , and (d) yellow on Elm, red on Main (245).
The values could be stored through the use of DAT A statements,
subscripted variables, or just as variables, one per lamp pattern.

Step 5

In the remainder of this experiment, we will assume a "yellow
period" of two seconds. Thus, if Elm Street is on a 10-second period,
the green light will be on for 10 seconds, followed by a 2-second
yellow, before the signal goes to red.

Write a program that will allow you to sequence through the.
light patterns, with a 6-second period on Elm and a 10-second pe
riod on Main Street.

We used the following program:

138

10 M = 10: E = 6: P = 49318

20 DAT A 222, 238, 243, 245

30 R EAD L

40 POKE P,L

50 FOR R = l TO M

FOR T = 0 TO 770 : NEXT T

NEXT R

READ L

POKE P,L

GOSUB 1 00 0

READ L

POKE P,L

F OR R =l TO E

FOR T = 0 TO 770 : NEXT T

NEXT R

READ L

POKE P,L

GOSUB 1 000

RESTORE

GOTO 30

FOR R = 1 TO 2

F OR T = 0 TO 770 : NEXT T

NEXT R

RETURN

bile the program listed in the previous step will operate cor
tly, many of the steps are repetitive. Could you suggest a new
gram that could be written in a simpler way? How would you
plify the program?

the program in Step 5, the only changes in the four basic sections
the program are to the time delays and the light patterns. By us

an array of values, one simple loop may be used. We found that
following program worked well:

0 A(l) = 222: A(2) = 238 : A(3) = 243 : A(4) = 245

M(l) = 0 : M(2) = 2: M(3) = 0 : M(4) = 2

I NPUT "M AI N DELAY "; M(l)

I NPUT "EL M DEL AY "; M(3)

FOR Q = 1 TO 4

POKE 4931 8 , A(Q)

F OR R = 1 TO M(Q)

F OR T = 0 TO 770 : NEXT T

NEXT R

NEXT Q

GOT O 5 0

139

In this new progra�, the A array stores the light patterns, while th
M array stores the time intervals.

Step 1

So far, the computer has served only as a sequencer, generati
the proper lamp patterns and time delays. In this step, some contr
steps will be added to the traffic-light control program.

The traffic on Main Street is usually heavy, so the normal mod
for the traffic light should be green on Main and red on Elm.
program should be able to detect a single car waiting on Elm,
that it may be given the green light. However, Main Street m
be given at least 30 seconds of "green time," before any cars a

sensed on Elm Street. This means that every car waiting on El
Street will not automatically trigger a green-on-Elm sequence. T
make things even more interesting, there is a sensor on Main Stree
too. If five or more cars are waiting on Main Street at a red ligh
Main Street will be given the green light, and the cars on Elm wi
have to wait.

In order to program this, you may wish to draw a simple flowch
of the problem. An input port could be used to simulate the two road
sensors, but to teach you a bit more about the Apple, the keyboard
will be used instead.

·

The keyboard uses two memory addresses for control. Address
49152 contains the keyboard data, and address 49168 is used as a

flag-clear pulse output.
Enter the following program into your computer and run it:

2000 PRINT PEEK(49152): GOTO 2000

Press some of the keys on the keyboard and note what happens
the display. What do you observe?

There is a new decimal value displayed whenever a new key is
pressed, and the value continues to be displayed until a new key
is actuated. Thus, the information at input port 49152 represents the
code of the last key that was pressed.

Step S

We would like to have the computer input a value from the key
board input port only when a key has been pressed. To do this, you
must use the keyboard flag bit, which is bit D7 at input port 49152.
If this bit is a logic zero, all values from this port will be less than 128.
If this bit is a logic one, the values will be 128 or greater, up to 255.

Thus, by testing the value input from the input port, you can deter
mine if a key has been pressed. Of course, after a key is "detected,"
you must reset the flag bit, with a read operation to address 49168.

Enter the following program into your computer and run it:

2000 IF PEEK(49152) >= 128 THEN PRINT PEEK(49152)
2010 Z = PEEK(49168)
2020 GOTO 2000

Now press some of the keys, one at a time. What is displayed? Is the
decimal code for each key displayed as you press it?

You have probably found that some keys are "missed," once in a
while. Since the keyboard flag is cleared during every pass through
the loop, it is possible to have the Apple clear a keyboard flag before
it is detected. You would really want to have the flag cleared only
after a key has been detected.

Step 9

Write a short keyboard control program that will detect every
key, only once, and print its decimal equivalent.

We used the following program that constantly checked the key
board, but which only printed a character when the flag was set,
and only then cleared the keyboard Hag.

2000 IF PEEK(49152) < 128 GOTO 2000
2010 PRINT PEEK(49152)
2020 Z = PEEK(49168)
2030 GOTO 2000

Note that the variable, Z, is a dummy variable, provided simply so
that the keyboard flag may be cleared with the PEEK (49168) com
mand.

If you want to use the decimal value for a key, without the flag
bit, simply subtract 128.

Step �o

Write your traffic-light controller program and test it, using the
"E" key as the Elm Street sensor, and the "M" key as the Main Street

sensor. Of course, you will have to determine the corresponding key
codes.

·

We used approximately 10-second periods, for test purposes, with
2-second yellow periods. The program that we used is listed for you:

10 A = 0: P = 49318
20 POKE P, 222
30 FOR R = 0 TO 10
40 FOR T = 0 TO 770: NEXT T
50 NEXT R
55 Z = PEEK(49168)
60 IF PEEK(49152) = 197 GOTO 80
70 GOTO 60
80 Z = PEEK(49168): POKE P, 238
90 FOR R = 1 TO 2

100 FOR T = 0 TO 770: NEXT T
110 NEXT R
120 POKE P, 243
130 FOR R = 0 TO 1000
150 IF PEEK(49152) = 205 THEN 190
170 NEXT R
180 GOTO 210
190 Z = PEEK(49168): A A+l
200 IF A < 5 THEN 170
210 POKE P, 245
220 FOR R = l TO 2
230 FOR T = 0 TO 770: NEXT T
240 NEXT R
250 GOTO 10

You should note that the keyboard Hag is reset before it is tested at
line 60. This clears any keyboard entries that are made during the
first IO-second period. You can remove this step, if you want the
Elm Street sensor to "remember" any cars that trip it during this
period.

The flag-detecting step at line 150 has been embedded in the over
all timing loop. This means that the flag is always being checked,
and that these flag-detecting steps must be figured into the overall
delay period. You can do this by testing various values of the delay
constant at line 130.

There are many other things that this program could do. For ex
ample, many intersections have pedestrian control signals, left-hand
tum signals, :flashing lights, and other special features. You could
make the program as complex as you wish. In this situation, the
timing is not particularly critical. It wouldn't really matter if the
cars had to wait an extra second or two while a flag is tested. How
ever, periods of 10 or 20 seconds could be annoying to d1ivers. Keep
this in mind as you program. In some cases, the time requirements
will be so strict, and the time periods so short, that assembly-lan
guage programming is dictated.

he six LEDs should be removed from the breadboard, but the
put port should be retained, since you will use it in the next ex
iment. Power may be turned off.

rpose

EXPERIMENT NO. 14
LOGIC-DEVICE TESTER

The purpose of this experiment is to show you how the computer
be used to test an electronic device. In this case, simple gates
used.

Most logic chips that contain gates may be tested by applying
own logic levels to their inputs and then comparing the outputs
th the truth-table for the device being tested. In this experiment,

computer will be used in such a manner. One input port and one
tput port are required. Various devices, such as SN7 400, SN7 402,
7 408, etc., may be tested. The test is a functional test, and not

test for dynamic properties, such as switching time, propagation
lay, and other parameters.

You will need to construct an input port and an output port for
e in this experiment. You should be able to construct such ports
'thout further assistance. Many of the previous experiments have
tailed this for you. You may wish to use an SN7 4LS373 chip as

+5 � SN7400 QUAD 2-INPUT NANO

DO ID 3
DO DI 2 I

I :!D 02 6 DI FROM 03 TO
OUTPUT

::ID I,,
INPUT

PORT 04
02

PORT
05

,,[DI. 06
03

07

·e=p
Fig. 6-16. Schematic for the SN7400 NAND gate test circuit.

143

the input port. VVhen these ports have been constructed and
go on to the next step.

Step 2

The test configuration for an SN7400 NAND-gate package is showfl'
in Fig. 6-16, For the pin configuration of other chips, we refer you
to Fig. 6-17.

lA 18 1Y 2A 28 2Y GND 1Y lA 18 2Y 2A 28 GND

SN740!l SN7402

lA 18 2A 28 2C 2Y GND

Sl\!7410

4B 4A 4V 38 JA 3V

1A 18 1Y 2A 2B 2Y GND
Sl\!7430 S!\17486

Wire the test circuit as shown in Fig. 6-16. Remember to connect
the +5-volt and ground inputs to both the interface chips and to the
circuit that is to be tested. The unused inputs at the input port should
be grounded.

Yo'1 should be able to develop the truth tables for the various
. gates shown in Fig. 6-17, starting with the NAND gate. For a two

gate, there are only four combinations of inputs. How many
,.t;viuc, �_.,,,.� would there be for four gates in a single integrated

'"'·v�-- package?

Possibly you said 16 combinations, four for each of the four gates,
256 combinations, the number possible with eight binary inputs.

there are only four meaningful combinations, since all of
gates are tested at the same time. Knowing that one gate is bad
one particular combination of inputs does not serve much pur

If one gate is bad, then the entire "package" is bad.

What are the four combinations of eight bits that will be used at
output port to test the NAND gate? You should write down both

'·'"''· ···. <'"" decimal and binary values for these numbers.

values were:

00 00 00 00 0
01 01 01 01 85
10 10 10 10 170
11 11 11 11 255

the outputs have been connected to input bits D3-DO, we
expect them to be all ones or all zeros, that is 0 or 15, de

"""".1""""' upon the test pattern. To "remove" the unused bits, D7-D4,
have grounded them. What will they be when they are input?

this affect the results? Can you suggest another way of "re
these bits from the test data?

'the bits will be input as logic zeros, and they should not affect the
If the bits are not grounded, a logical AND operation could be
to mask them. The assembly-language subroutine could be

Develop a short program that will test the NAND gate that you
interfaced. Your program may closely resemble the traffic-light

control program shown in Experiment No. 13, Step 6. The progfa
does not have to be very complex.

The following program worked quite well in this application:

l 0 T(l) = 0: T(2) = 85: T(3) = 170: T(4) = 255
20 R(l) = 15: R(2) = 15: R(3) =15: R(4) = O
30 FOR S = l TO 4
40 POKE 49318, T(S)
50 IF PEEK(49319) <> R(S) THEN 100
60 NEXT S
70 PRINT "TEST OK": END

JOO PRINT "FAILURE": END

§tep 5

Since the pin configurations for the SN7400, SN7408 and SN74
are equivalent, that is, inputs and outputs are at the same positio
on the chips, could a generalized test program be developed
them? How?

Yes, a generalized test program could be developed so that the use�
could enter the device name, while the computer set up the appr
priate truth-table information to be used in the tests. The truth t
bles are provided in Table 6-4.

You should note that the test patterns are all the same, only th
results change.

We used the following test program:

sr.i;v400 $!'!7403 SN'.1486

A !!I Ol!JT A s OUT A s om

0 0 0 0 0 0 0 0
0 0 1 0 0

0 0 0 0 l
0 0

1'!6

INPUT "LAST TWO DIGITS ";A$
IF A$ = "00" THEN 200
IF A$ = "08" THEN 300
IF A$ = "86" THEN 400
PRINT "TEST NOT AVAILABLE": GOTO 10
T(l) = 0: T(2) = 85: T(3) = 170: T(4) = 255
FOR S = l TO 4
POKE 49318, T(S)
IF PEEK(49319) <> R(S) THEN 120
NEXT S
PRINT "TEST OF SN74";A$;" OK":END
PRINT "FAILURE": END
R(l) = 15: R(2) = 15: R(3) = 15: R(4) = 0
GOTO 60
R(l) = 0: R(2) 0: R(3) = 0: R(4) = 15
GOTO 60
R(l) = 0: R(2) 15: R(3) = 15: R(4) = 0
GOTO 60

last two digits that are requested by the program are the last
o digits in the device number; that is, 00 for SN7400, 08 for SN

'1408, and so on. H several SN7400, SN7408 or SN7486 chips are
"'"' ,,�. you may wish to test these devices. You may wish to re

an input or an output connection to simulate a fault to check
interface and your program.

It should also be possible for the computer to test logic devices
as flip-flops and counters. If you are familiar with the SN7 493
binary counter, you may wish to try the following steps. If not,

may find it worthwhile to read through these steps.
The pin configuration and schematic diagram for the SN7 493

are provided in Fig. 6-18. In order to test this device, the
outputs must be available to the computer, and the com

must be able to reset and clock the counter chip. We will not
y to test the counter exhaustively, but we will test the ability to

the counter, and the counting function.

fig. �HI. 51117493 4-bii "'"''"te•
pi" <<>nfi!IJ"ratio111.

INPUT
A NC QA ao GNO OB Oc

141

Step7

Wire· the SN7493 counter as shown in Fig. 6-19. You will nee
use the input port and the output port from the previous steps
this experiment. You will also need two NOR gates, as shown
Fig. 6-19. A single SN7402 chip will provide these gates. Do

+5

SN7402
49317 14 INP A A 12 DO

WR
INP B B DI
RO D2 TO INPUT

49319 PORT*
RO D 11 D3

10 SN7493

*GROUND INPUT BITS D7-D4

Fig. 6-19. Test circuit schematic used to check SN7493 counter chips.

substitute an SN74L93 counter for the SN7493. Remember to gro
the unused inputs on the input port.

Step 8

Write a short test program that will exercise the reset functi
on the counter, and one that will test the ability of the comput
to clock the counter and increment its count by one.

We used the following program:

10 POKE 49318,0
20 IF PEEK(49319) > 0 THEN 1000
30 PRINT "RESET TEST OK"
40 FOR C = 1 TO 15
50 POKE 49317, 0
60 IF PEEK(49319) <> C THEN 1010
70 NEXT C
80 PRINT "COUNT TEST OK": END '

1000 PRINT "RESET FAILURE":END
1010 PRINT "COUNT FAILURE AT "; C: END

148

tfhe program first tests the reset and then starts the necessary tests
to test the ability of the chip to increment its count by one for each

pulse that is received at the INP A pin,

Step 9

This program does not test all 16 counter states, The last count
om llll to 0000 is not tested, Could you change the program to
ke care of this?

should not be difficult for you to add the final test to the program,
here are several ways in which you could do this, Here is one:

90 POKE 49317,0
JOO IF PEEK(49319) <> 0 THEN 1010
110 PRINT "COUNT TEST OK": END

this case, a final count has been generated and the "wrap-around"
from 1111 to 0000 has been tested,

The output port will not be used again, so you may remove it
your breadboard, The input port will be used again, The power
be turned o:ff, since the program will not be used again,

EXPERIMENT NO, 1 5
SIMPLE fl.AG CIRCUITS

The purpose of this experiment is to demonstrate the construction
d use of simple Hag circuits,

Flags are signals that are used by the computer and If 0 devices
sb that their operations are synchronized, Flags are commonly used
�oindicate one of two possible conditions, ready/busy, full/empty,
,}xot/ cold, and other combinations that relate the conditions of an.
0.nterface to the computer, Experiment No, 6 illustrated the use of
nput ports to transfer nonnumeric information to the computer,
his experiment will develop this concept further, An 8-bit input

is :required in this experiment,

Pin Configuration' of the Integrated Circuit (Fig. 6-20)

Step 1

Fig. 6-20. SN7474 dual D-type flip-flop
pin configuration.

An input port will be required in this experiment. You shoul
able to construct an input-port circuit without further instruct·
Many of the previous experiments have detailed the constru
of such ports, and we recommend that you use one of these cir
Once your input port has been wired and tested, go on to the
step.

Step 2

One of the previous experiments investigated the use of si
switches as sensor or flag inputs. This experiment will use flip
circuits in place of the mechanical switches or jumper wires.
the circuit shown in Fig. 6-21.

A jumper wire should be used as the connection between +5 v.
and the clear input, pin 1, so that you can clear the flag by mo
the wire from +5 volts to ground and then back to +5 volts.
pulser circuit may be a pair of cross-coupled NAND gates, or
equivalent circuit that will generate "clean" noise-free logic tra ·

tions. This type of function is described in the appendix.

+' GND

14 7

2 0 Q 5 DO TO INPUT
PORT

3 SN7474
PULSER 0 CK

CR

JUMPER

+5

Fig. 6-21. Simple flip.flop-based flag circuit.

150

would you program the computer so that the logic state at
of the input port could be monitored? Assume that there are

ossible conditions:(a) the other bits are grounded (logic zero) ,
) the other bits may be used for other Hag inputs.

e other bits are grounded, then the value from the input port
e zero when the flag is cleared, and nonzero when it is set.
other bits are used for flag inputs, then the "unwanted" bits

'be masked. The masking operation uses the logical AND opera
so an assembly-language subroutine would nave to be used.

this case, you will enter the assembly-language program that
d to perform the AND operation on two data bytes. Follow these
to enter the program:

Press the RESET key and type CALL -151 and press the RE
TURN key. The Apple should respond with an asterisk (0)
when it is in the Monitor mode.
Type 0300: 00 00 00 48 AD 00 03 2D 01 03 8D 02 03 68 60 Leave
a space between the two-digit groups as shown. Use 00 for the
first three values in the program.
Press the RETURN key, type 02FF and press the RETURN
key three times. Now, check the data shown on the display
with the information that you entered.

test this assembly-language routine, you may use the follow
program. Since the AND operation will use binary numbers, you
have to convert your test numbers into binary so that you can
k the results.

POKE 10,76: POKE 11,03: POKE 12,03
INPUT " MASK BYTE ";M: POKE 768,M

0 INPUT " DATA BYTE ";D: POKE 769,D
Q = USR(O): PRINT "ANSWER "; PEEK(770)

0 GOTO 1010

e program does not provide the proper results, re-enter the
pitor mode and check the data bytes that you have entered.

151

L

You should realize that the POKE commands in line 1000 are used
to set up pointer address bytes so that the USR command can
cate" the assembly-language subroutine that you entered. We
you to Chapter 4 and to Experiment No. 7 for more
about this type of assembly-language subroutine use.

Ste� 5

Now that you have entered the assembly-language program
will AND two bytes to yield an 8-bit result, you will use it to test
flag bit. What would you use as the mask byte?

Since the flag is being input to the computer at bit DO, only
least-significant bit (LSB) would be "set," so the mask would
OOOOOOOlz, or 110• The mask byte is placed in address 768, as you can

probably tell from the test program in the previous step.

Step 6

Write a short program that could be used to test the flip-Hop
circuit. The Apple should print a "O" if the fl.ag is cleared, or a
if the flag is set .. You can reset the flag manually by moving
jumper wire that connects :flip-flop pin 1 and +5 volts so that pin l
is momentarily connected to ground.

We used the following program:

10 POKE 10,76: POKE 11,3: POKE 12,3
20 POKE 768, l
30 POKE 769,PEEK(49319)
40 Z = USR(O)
50 IF PEEl<(770) = 0 THEN 80
60 PRINT "l"
70 GOTO 30
80 PRINT "O"
90 GOTO 30

This program seemed to work very well. Could you "invert" the
program so that a logic 0 would be sensed as the on condition, and
so that a logic one would be sensed as the off condition?

152

Yes. Simply reverse the commands at lines 60 and 80. You can easily
"invert" the sense of a flag in software.

In this step, you will use a short program that will count the
number of times that the flag is set. Again, the assembly-language
subroutine will be used. You may wish to add another pulser circuit
to provide the flag-clearing operation to replace the jumper wire
between pin 1 on the SN7474 and +5 volts.

Enter the following program and run it:

POKE 10,76: POKE 11,3: POKE 12,3
POKE 768,l
HOME: C = 0
POKE 769, PEEK(49319)
Z = USR(O)
IF PEEK(770) = 0 THEN 40
C = C+l: HTAB l: VTAB l: PRINT C
GOTO 40

Be sure that the Hip-flop is cleared before you test the program.
With the program running, actuate the pulser and set the Hip-flop.

hat do you observe? Is this what you expected?

We found that the count started as soon as the flip-Hop was set, and
that it continued for as long as the Hag remained set. Clearing the

'p-flop stopped the count. What we really wanted was one count
.each time the flip-Hop was set.
·· Why didn't this happen as expected? The set state of the Hip-flop
eontinued to be tested and detected by the program. We could not
reset the flip-Hop fast enough by hand to stop the counting at one
count per pulser actuation.

In most computer systems, the computer, or the flag-containing
.device clears the flag after it has been detected. To allow your inter
face to clear the Hip-flop, add the circuit shown in Fig. 6-22. Y-ou will
need an SN7402 NOR-gate chip. Be sure,that you wire the' +5-volt

ower supply to pin 14, and ground to pin 7, on the SN7402 chip.
Since the NOR-gate circuit will provide the reset signal for the Hip-

1 53

49318
WR

TO SN7474 PIN 1

Fig. 6-22. Simple flag-clearing circuit schematic.

flop, be sure that you remove the wire that was used to connect·+
volts to pin 1 on the SN7474 HiJ?�flop.

The circuit shown in Fig. 6-22 will allow you to clear the flip-Ho
with a POKE 49318 command.

Modify your program so that line 65 is added:

65 POKE 49318,0

When this command is executed, the flag will be cleared. Since yo .
may not know the state of the flag when you start the program, you
might want to add a flag-clearing command at the start of the pro
gram, too. Now run the program. When the flag is detected, the Ha
is immediately cleared. Then th� count is incremented and dis
played. .

One of the benefits of using this type of flag, and using the assem
bly-language subroutine to check the flag, is that you do not "staff
the computer waiting for a flag, unless you want to. Thus, you ca
write a program to check for a flag. If the flag is not present, th
computer goes about some other task. If the flag is set, the device
associated with it is serviced, and the computer then goes on.

The BASIC interpreter in the Apple has a flag-checking command
called WAIT. This command may be used to test for a flag, but if
the flag is not found, the program continues to wait for it, and it
cannot do anything else. If a program "hangs up" waiting for a flag
that never occurs, you must press the RESET key to re-establish
control of the Apple. We refer you to Basic Programming Reference
Manual for the Apple for more information about the WAIT com"
mand. This command does not incorporate any flag-clearing com
mands.

EXPERIMENT NO. 16
A SIMPLE ANALOG-TO-DIGITAL CONVERTER

Purpose

In this experiment, you will interface an 8-bit analog-to-digital
converter to the computer. Several different types of measurements
will be made.

Discussion

There are many applications for analog-to-digital converters, or
AID converters in computer systems. The A/D converters allow the

154

· computer to measure analog voltages such as.those that would arise
various signal sources and transducers. In this experiment, a

8-bit A/D converter will be used. The converter is a National
::ie1,1w0vi.1u'U'-'''u1 ADC0804-type converter. This converter has three

outputs, so it can be interfaced directly to a microcomputer
bus without difficulty. However, the three-state outputs have

access time that can be as long as 200 nanoseconds. Thus, if you
. attempt to use the ADC0804 A/D converter on your interface bread

board, you will find that the additional time required to actuate the
bus interlocking circuitry to turn the data bus around for input will
be too long. The data from the converter will be "missed" by the

In order to perform this experiment, you must have access to the
Apple data bus. This is explained in the following steps.

Pin C@il'lfigurati@n of �he Integrated Cirtl!Jit (fig. 6·23)

.,_2:!. !'iii <<mfigsm•tion of t!.e ADCIJ3()4
A/rll conve•le•.

cs

ITTi

Wli

cucm

INTA

V1f�(+)

VrniH

AGVW

VREf/2

0 l3f\lD

ADC080X
Duail-hi·Une P;;,clrnge

15

14

13

12

10 11

Vee (OR VFJeF)

CUt.R

mw ttsB)

081

002

""

01!4

DOS

00,

- DB7 (f.1S0)
TOfV!E�'.l

In this experiment, you will interface the ADC0804 A/ D converter
directly to the data bus as it comes from the Apple. To do this, care
fully remove the two 8216 bus buffer chips at IC-10 and IC-11 on

interface breadboard.

Wire the ADC0804 integrated circuit as shown in Fig. 6-24. The
data bus lines are placed into the corresponding holes at the sockets

IC-10 and IC-11. If the wires do not fit into the holes very easily,
we suggest placing a 16-pin socket with larger access holes in the
sockets at IC-10 and IC-11. This will allow you to make the connec
tions without having to force the wires in the small holes. The wires
should fit into the corresponding holes without much force. If exces
sive force is used, you may bend the socket contacts so that they

155

r-l
.,,. 0.1

D7 ---"
l""'ll D7

12

13
14

+5

20

ADC0804

19 lOK

,__,,�- 1-i 4
150pF -,,,-

ANALOG INPUT

+5V

lK

TO APPLE
DATA BUS

15 \ 20K OR
V1N+ r----e------< !OK 16

17

D0 --�18'-1 DO

49319 cs
WR WR 9

RD Ri'i VREF/2 1---�

N/C INTR

+5
lK

lK

lK

do not make proper contact with the 8216 chips when they are
inserted into their respective sockets.

Step 3

Enter the following program into your computer and run it:

10 POKE 49319,0
20 FOR T = 0 TO 100: NEXT T
30 PRINT PEEK(49319)
40 GOTO 10

What does the program do? What is displayed on the video screen?

The program exercises the A/ D converter, starting a conversion, pro
viding a time delay so that the conversion can be performed, and
then reading and displaying the data. Slowly adjust the potentiom
eter as you observe the data to confirm that the converter is oper
ating.

As you change the voltage setting of the potentiometer, you should
see a corresponding change in the value displayed by the Apple.
What is the minimum value? What is the maximum value? Does this
seem to be what you would expect?

he minimum value should be in the range of 0 or 1. The maximum
alue should be between 253 and 255. This is what is expected from
n 8-bit device, since it can only generate values between 0 and 255.

tep 4

The ADC0804 chip has a Hag output that can be used to monitor
e status of the converter; that is, busy or ready. This output is a
gic zero when data is ready for the computer, and it is a logic one
hen the converter is performing a conversion. This output is really
e output of a flag circuit, and the flag is reset when the eight data

its are read into the computer. Since the converter can perform
any thousands of conversions in a second, is there any need to
onitor this Hag signal?

robably not, since the converter will complete the conversion pro
ss before the data can be accessed by a BASIC-language program.
Can you suggest some possible uses for the Hag output?

e flag could be used for assembly-language A/D converter pro
amming. In assembly-language programs, ,the flag could be tested

s an input to an input port, or it could be 'used with the interrupt
on the 6502 microprocessor chip. Since thesei.are high-speed. appli
cations, it would be useful to monitor the flag ;to determine when the
converter had finished a conversion.

Remove line 20 from your program and run the program. What do
OU find?

The data values are the same as those observed when the program
was used with the time delay steps. Thus, the converter is "outrun
' ·ng" the BASIC control program.

The values displayed on the screen do not represent the actual
voltage that is being measured, but are an 8-bit binary representa-

157

tion. Write a program that will perform the conversion to volta
You may add the steps to the program already in use.

We used the following steps which simply perform a mathemat·
conversion of the decimal value 0 to 255 to a corresponding volt
0 to +5 volts.

10 POKE 49319,0
20 FOR T = 0 TO 100: NEXT T
30 PRINT (PEEK(49319)*5/255)
40 GOTO 10

Try our program, or your own. Does it work?

It should. You will see that the computer prints many decimal digi
probably too many, since the converter is only accurate to a ma
mum of one part in 256, or about 0.25%. Unfortunately, roundi
is not a trivial task in the Apple. You can perform either a math
matical rounding, or you can use a string operation to print only
selected number of digits after the decimal point. You can use t
following if you wish:

30 A$ = STR$(PEEK(49319)*5/255)
40 PRINT LEFT$ (A$,4)
50 GOTO 10

Remember that this routine simply limits the displayed value to fou
decimal digits. It does not perform any rounding.

Step 7

Try to write a routine that will use the high-resolution graphic
capability of the Apple computer, so that the program will plot th
voltage values with respect to time. The measurements should b
taken at a regular time (time-delay program) , and a continuou
line-plot should be drawn. If you are not familiar with the high
resolution graphics formats and commands, use the program pro
vided below:

100 HRG: HCOLOR = 3: Yl = O
110 FOR X = 0 TO 249
120 POKE 49319,0

158

130 Y2 = PEEK(49319)/ 1.594
140 HPLOT X,Yl TO X+l, Y2
150 Y1 = Y2

160 NEXT X
170 END

Try this program. Vary the potentiometer setting as the program is
running. The plot should appear as the changes are made. A con
stant voltage will give you a horizontal line on the screen.

Can you suggest a simple experiment that would demonstrate the
use of the A/D converter and the graphics program?

There are several simple experiments that you might like to try.
Each involves measuring a voltage that is proportional to the physi
cal measurement that is being made. For example, you could mea
sure the voltage across a photocell in changing light conditions, a
voltage across a charging capacitor, or a voltage that is proportional
to temperature.

Wire the circuit shown in Fig. 6-25. In this circuit, you will use
the A/D converter and computer to measure a charging voltage
across a large electrolytic capacitor.

Fig. 6-25. Capadi1>r·d1ar9ir19
drcuili' diagram.

F
JUMPER c·""" ----._;;1 l i 100µF/16WVDC

Use the jumper wire to discharge the capacitor, and leave it in
until after you have started the program. Once the program

running, remove the jumper to ground. You should see the volt
slowly increase, as the capacitor is charged. Why does the graph

the zero-voltage point on the top of the screen, and the high
,, ''""'� point on the bottom?

The computer plots from the top to the bottom in increasing values,
so if you want to invert the display, you will have to "invert" the
values from the converter. This means that you will need to convert
a zero into 159, and a 159 into a zero. To do this, simply change line
130 to:

130 Y2 l 60-(PEEl<(49319)/ 1.594)

Step 9

You can also use the A/ D converter to measure temperature. A
LM335 temperature sensor may be used to generate a unir<>crP

is proportional to temperature, at a rate of 10 m V / K. The
scale of temperature uses the same units of degrees as the
scale, except that 0°C = 273K. Thus, a room temperature of 20°C
will be the equivalent of 293K, and the LM335 will generate 293 X
10 m V as its output, or 2.93 volts.

To measure temperature, wire the circuit shown in Fig. 6-26.
Be sure that the potentiometer or capacitor-charging circuit is
connected to the A/ D converter input at the same time as the
perature sensor.

You can use the same graphical display program that was
in the previous step, but you may wish to add a time-delay step at
line 155:

155 FOR T = 0 TO 100: NEXT T

This will delay the display, since the temperature changes will be
slower than the capacitor-charging voltage changes.

Run the program. Heat the sensor with your fingers. Do you ob
serve any change? What do you expect to see?

(TI®l
�

BOTTOM VIEW

e:�g. 6m26. S(;;hamQlff'g(·�or a b'emp@ra�uremmea$Mtr�raa dr�E..�ii6 �nd pirt e:@rnflguir.;:iti@�; for

Ull�35 d1il'.

You probably will not see much change, since the display is set up
for a range of 0 to 500K, as represented by 0 volts to +5 volts from
the sensor. If you see more than a few "points" increase in the dis
play, you have significantly warmed the sensor. You can more readily
cool the sensor with some moisture, or with a can of freeze-spray that
is used i:o cool electronic components. If this is not available, a piece
of ice can be used to cool the sensor.

Could you "expand" the display to provide a more useful display
of the temperature changes? How could you do this?

There are several 'Nays of "expanding" the display. If you know that
temperatures will only vary between 200 and 300K, you could

the software so that the display on the screen represented
vv'"<"''-�� between +2 and +3 volts. However, keep in mind that you

not increased the resolution of the converter in doing this.
will still be the same number of discrete voltage steps in the

range. You have only expanded the display of these

You could also use some other circuits. Operational amplifiers
be used to scale the voltage range of +2 to +3 volts to 0-5
so that the entire temperature range of 200 to 300K would

0-5 volts. This could be measured by the converter and
on the screen. Now, the resolution has been increased,

entire 256 different voltages are used in the temperature
of interest.

is much more to analog-converter interfacing, but we hope
this experiment has interested you in the use of these important

;'devices. For additional interfacing ideas and techniques, we refer
to TRS-80 Interfacing, Book 2, and Microcomputer-Analog Con

Software and Hardware Interfacing (Howard W. Sams & Co.,
Indianapolis, IN 46268) .

Please note that in this experiment, we generated a reference volt
. . <·> .. ·.·�"'- of +2.5 volts by using two 1000-ohm resistors to divide the +5-

in half. In precision analog-converter applications, a
reference is used in place of the resistors. We have

to use the resistors in this experiment because they are in
and easy to set up. However, they produce results that

·.11re not as accurate as would be needed for precision measurements.
· · here are many reference devices and circuits available, as noted in

references mentioned above.

();"
 ,:, '.''i -- t) �., "' "�

,, !CD � 2,
,

IN
PU

T
PO

RT

EX
PE

RI
M

EN
TS

4 , 5
 ,6
,7
'9,
10
,14
, 15

07

06

D 5

04

03

02

Dl

DO

TO
 ffif

f'RE
Q

--
----� --

---,--�-

-
��

2,

-
3

4
5

6
7

14

13

12

11

10

9
.-i

i G2

j
l

Gl

+
51
1
1

GN
D

16

8
2

3
4

5

�
GT

1 5
 G2

�
 DEVIC

E
SE

LE
C1

-
-

2
D

3
Q

0

6 7 4
G

r-
-J3

G
!-

-= +
51

L

GN

5

12

2
0

3
Q

6 7 4
G

�

�

G

..IL

DE
VI

CE
 S

EL
EC

T

07

04

D3

DO

DU
TP

UT
 P

DR
T

EX
PE

RI
EM

EN
TS

8,9
,10
,13
,14

- t

.. .. :r

CD i ;;·
 f r i §· CD F

TO
 A

PP
LE

 D
AT

A
BU

S

*D
EC

OD
ER

 S
OC

KE
T

PO
SI

TI
ON

S

+
5

I

D7

_l

I
l

31
 D

D6

T

 1

4

D5

I

1
D

4
8

D3

13

D2

14

Dl

17

D
O

18

o=]j
oc

DE
VI

CE
 S

EL
EC

T
�

G

,,

Ri5

6

7•

1
5
)

20

SN
7 4

02
 (A

LL
)

D7

D6

D5

D4

D3

D2

Dl

DO

'b
-

•
"A

"

6·

.J
10

"B

"

Wli

·�

13

"C
"

OU
TP

UT
 P

OR
T

EX
PE

RI
M

EN
T

12

1/0
 P

OR
T

CO
NT

RO
L

EX
PE

RI
M

EN
TS

2,

3,
4,

5,
6,

7,
8

9,
10

,1
1,

12
,1

3,
14

,1
5

&
16

CHAPTER

On the Bus

'While many readers will be content to perform some of the
ments in the previous chapter, and go no further with the design
development of interfaces, there are others who will be intpu•oh•.rl
in developing special-purpose interface circuits that will become
permanent part of their computer system. This chapter is written
this reader. We will describe how you can design special initerl::ac�e
circuits that can take advantage of many of the built-in features of
the Apple computer.

If you want to construct an interface circuit that will be used again
and again, you will want to construct it on something other than a

solderless breadboard. Breadboarded circuits take up workspace,
they are messy and frequently come apart at the worst possible mo
ment. The alternative is to construct the interface circuit in
permanent form, so that it can be mounted out of harm's way, inside
the Apple case.

When the Apple computer was designed, it must have been obvi
ous to the engineers that people would be interested in expanding
the system so that various standard peripherals and nonstandard cir
cuits could be added to the computer. Thus, they provided eight fe
male edge connectors at the rear of the main printed circuit board,
so that the important computer signals would be readily availab!e for
anyone who wanted to use them. You have already used some of
these signals, since the interface that was described previously plugs
into one of the available "slots."

The slots are numbered 0-7, and you can use all but slot 0, which
has been reserved by the manufacturer for special expansions of the
computer. Slots 1-7 are available for you to use as you wish. There

ll'i!i Name

1 1/0 SELECT

2- 17 A 15-AO
18 R/W
19 SY NC

20 1/0 STROBE

2 1 RDY
22 DMA
23 INT OUT
24 DMA OUT
25 +5 volts

26 G ND
27 DMA I N
28 INT I N
29 NMI

30 IRQ

3 1 RES

32 I NH

33 - 12 v

34 -5 v

35 COLOR REF

36 7M
37 Q3
38 <I> 1
39 USER 1

40 <Po

4 1 DEVICE SELECT

42-49 D7-DO
50 +12 v

A logic zero signal, active at slot n, when the computer
addresses locations CnOOH-CnFFH. Active during $0.
Not available at slot O. (10)*
Buffered address bus lines. (5)
Buffered read/ write control signal. (2)
Video timing synchronization signal. Available only at
slot 7. (?)
A logic zero signa!, active at all slots when the com
puter addresses locations CBOOH-CFFFH. Active during
<I>o. (4)
Ready control input to 6502 processor.
Direct-memory access control input.
Interrupt daisy chain signal to adjacent slot.
DMA daisy chain signal to adjacent slot.
+5-volt power supply connection. 500 mA maximum
available to all cards.
System electrical ground.
DMA daisy chain signal to adjacent slot.
Interrupt daisy chain signal to adjacent slot.
Nonmaskable interrupt input to 6502 chip. Vectors pro
cessor to subroutine at 03FBH.
Maskable interrupt input to 6502 chip. Address of in
terrupt subroutine in 03FE and 03FF.
Input/ output line. When pulled low, the Apple is reset.
Interface may monitor or generate a reset.
When pulled to a logic zero, all internal ROMs are dis
abled.
- 12-volt power supply connection. Total of 200 mA
available to all cards.
-5-volt power supply connection. Total of 200 mA
available to all cards.
This 3.580 MHz color reference signal is only present at
slot 7. (?)
A standard 7 . 159 MHz reference signal. (2)
A standard 2.046 MHz reference signal. (2)
Standard l .023 MHz microprocessor clock signal. (2)
Logic zero input. When pulled low, all internal 1/0 de
vices are disabled.
Standard 1.023 MHz microprocessor clock signal. Com
plement of '1>1. (2)
logic zero signal, one per slot. Active for 16 addresses
per slot (see Table 7-3). (10)
Buffered data bus signals. (1)
+12-volt power supply connection. Total of 250 mA

available to all cards.

''Number in parentheses indicates the number of SN74LSOO-family inputs that each signal can
drive per interface slot.

are many companies that sell plug-compatible interfaces, and you
can plug these into these slots without further ado.

In Chapter 5, some of the common interface signals were de-

scribed; the address bus signals, the data bus signals, and some of
the control signals. There are other useful signals provided at
seven available interface edge connectors. The signals are listed
described in Table 7-1.

Since you are already familiar with the data bus and address
signals, they will not be discussed any further. Some of the
signals are important, too, and they can be used to greatly
the construction of interface circuits.

1/0 SEl.ECi

The I/ 0 SELECT signal (pin 1) is active when it is a logic
as indicated by the "bar" above the same of the Each of
seven available interface slots, 1-7, has its own
thus this signal may be used to select a specific card. The
LECT signal for a card slot, n, is active when the address bus lines
are set at addresses CnOO through CnFF, inclusive. For example, if
the Apple addresses location C5AB, the J/ 0 SELECT signal at slot
5 will be a logic zero. None of the I/0 SELECT signals at the other
slots will be active at this time. There will also be times when none
of these signals is active. The range of addresses that affect the I/ 0
SELECT signals is shown in Table 7-2.

ini®rface Slo!' A<l<lr<>ss R�"9"

ClOO-Cl FF 49408-49663

2 C200-C2FF 49664-49919

3 C300-C3FF 49920-50175

4 C400-C4FF 50176-50431

5 C500-C5Ff 50432-50687

6 C600-C6FF 50688-50943

7 C700-C7FF 50944-51199

There are a number of possible uses for this signal. Since it is ac
tive when the Apple addresses a contiguous block of 256 addresses,
or one page, the signal could be used to enable a memory chip with
256 addresses. It could also be used to enable a device address de
coder that could address 256 1/0 devices. These applications are
shown in block diagram form in Figs. 7-1 and 7-2.

You might be wondering why anyone would want to add a block
of 256 bytes of memory to an Apple computer system, when the
Apple can easily contain 48K of memory by itself. In some applica
tions, it is necessary to have short assembly-language routines that
can "drive" an interface. The assembly-language programs do their

ADDRESS BUS A7-AO :>

R/W

MEMORY
256 x 8

ROM OR
R/W

D7-DO DATA BUS

job very efficiently. Such "driver routines" can be placed in read-only
memory (ROM) , and the ROM chip may be used in the interface
circuit. In this way, the driver routines are a part of the overall inter
face, and they are "loaded" when the interface card is plugged in.
They do not have to be loaded from cassette or disk, and they do not
take any of the other memory space.

ADDRESS BUS A7-AO
DECODER
CIRCUITS

j UP TO 256
DEVICE ADDRESS

OUTPUTS

Sometimes an interface will require a small amount of read/ write
(R/W) memory for temporary storage. You can also use the 1/0
SELECT line to control a 256-byte block of R/W memory.

Remember that each interface slot has its own I/ 0 SELECT sig
nal, and each signal is active when the Apple addresses a specific
"page" of memory.

1/0 STROBE

The I/0 STROBE signal is a logic zero signal that is provided at
all of the interface slots. It is common to all of the connectors, and
is not specific to any one. This signal will be a logic zero whenever
the Apple accesses a location within the range C800H to CFFFH, in
clusive. Thus, every card will be signalled when the address on the
address bus is within this range, which covers 2048 addresses, or 2K
of memory.

You may use this signal to enable memory chips and l/0 devices,
but you ·will probably want to further "qualify" this signal by gating
it with some of the address bus lines, AlO-AO. A simple block dia
gram of how this signal could be used is shown in Fig. 7 -3. In this

11117

1/0 STROBE
AlO

A9-AO

MEMORY ENABLE
SIGNAL

l K Or
ROM 07-DO TO DATA BUS

circuit, the I/0 STROBE signal has been used to select a lK block
of ROM on an interface card. The remaining 1024 addresses could
be divided among the other interfaces as you wish. We urge that you
use caution in using this signal, however, since you may find that
some manufacturers have used this line to decode memory and I/0
device addresses in just this manner. Thus, you may find that you
have a conflict in addressing between a commercial interface that
you wish to add to your system, and one that you have already de
signed, built, and installed.

DEVICE S!:l!Et'f

This signal is specific to each interface slot, and it has a range of
only 16 addresses for each slot, as shown in Table 7-3. The DEVICE
SELECT signal is active in the logic zero state. Since the DEVICE
SELECT signal is active for only a 16-address block, its use will be
fairly well limited to I/ 0 device addressing, as shown in Fig. 7-4. In
this circuit, the DEVICE SELECT signal has been used to enable a
4-to-16-line decoder. If a particular interface has only a single func
tion, and only requires a single enable signal, you may decide to use
the DEVICE SELECT signal by itself, without any further decod
ing. This is permissible, as long as you realize that the device selected
in this way will be active at 16 different addresses, COnOH to COnFH,

SN74154

AO A 15

1 Al B
A2 c

16 DECODED DEVICE A3 D ADDRESSES
2

DEVICE SELECT G l
G 0

!n!erfac" Slel Addwess lta"%Je

0 C080-C08F 49280-49295

l C090-C09F 49296--49311

2 COAO-COAF 49312-49327

3 COBO-COBF 49328-49343

4 COCO-COCF 49344-49359

5 CODO-CODF 49360-49375

6 COEO-COEF 49376-49391

7 COFO-COFF 49392-49407

inclusive. This use of the signal also limits your ability to add other
functions to the interface, should you decide to expand it at a later
time.

IRQ and NMI

These are the two interrupt inputs to the 6502 microprocessor
chip. The IRQ (interrupt request) is maskable, and it can be dis
abled by using the appropriate software steps. The NMI (nonmask
able interrupt) is always active.

These interrupt input lines are common to all of the seven inter
face slots, with the IRQ signal connected. at pin 30, and the NMI
signal connected at pin 29. In most interface circuits, the NMI line
would be dedicated tQ_QQ.e peripheral, and that must be recognized,
no matter what. The IRQ line would be shared among many inter
face circuits. Appropriate software steps would be required within
the interrupt service subroutine so that the computer could detect
which device had actually requested the interrupt. Each of the inter
rupting devices could have a 1-bit input port that could be read to
determine the status of its interrupt fJ.ag. A typical interrupt flag cir
cuit is shown in Fig. 7-5. Notice that the :flag is cleared under soft
ware control.

SN7474

lK

INTERRUPT _ri_ ----11 CK REQUEST

Q 1------1>---"""TO DATA BUS BIT
SN74125

Q 1----1 :>---"'"" TO IRQ
SN7407

�---- RD QRS
(FLAG CLEAR)

If this type of a "polled" interrupt is used, with the computer poll
ing each of the devices that could have generated an interrupt, a pri
ority can be established in the software. Thus, if the computer checks
the devices in the order A, B, C, and so on, device A has the highest
priority, since it will be checked first when an interrupt is detected.

The interface slots also have two other interrupt lines that may be
of interest, depending upon your application. These signals are the
interrupt input (INT IN) at pin 28, and the interrupt output (INT
OUT) at pin 23. These signals are used to "daisy chain" interrupt
signals form one card to the next. The signals are only connected be
tween the interface connectors, as shown in Fig. 7-6. Thus, the INT
OUT signal on slot 1 is connected to the INT IN signal on slot 2, the
INT OUT on slot 2 is connected to the INT IN on slot 3, and so on.
The INT IN and IN OUT lines are only connected to the adjacent
interface slot, and they do not go any further.

REAR OF APPLE

0

23 28 23 23 28

INT OUT INT IN

*NOTATIONS ARE INTERCHANGEABLE, DEPENDING UPON USE.

A simple daisy-chained interrupt scheme is shown in Fig. 7-7, The
lower-priority interrupting devices are further down the chain, fur
ther from the INT connection to the 6502 microprocessor chip. In
this circuit, a higher priority device can pass its interrupt request up
the chain, blocking any interrupt requests from the lower priority
devices that are further down the chain. Once the higher-priority
device has been serviced and its interrupt flag has been cleared, it
will "open" its gate and allow the lower priority interrupt request to
pass on to the computeL

As you can see, the computer still needs some way of determining
which device is generating the interrupt, so that it can select the cor-
responding service subroutine. This type of

- ::l

..
.

.p·
 � > =- 1" :I"

.. ;· .. a.

a· .. ::: c "!

.. .a·

:I !.
.

" 0 :I :a

la
 i. �

SL
OT

 3

+
5

lK

IN
T

IN
 28

--
---<..__-1

Lr

LO
CA

L
IN

TE
RR

UP
T

LO
W

ES
T

PR
IO

RI
TY

SL
OT

 4

+
5

lK

IN
T

OU
T

28

23

28

�
""
/

IN
T

IN

Lr

LO
CA

L
IN

TE
RR

UP
T

LO
W

 P
RI

OR
IT

Y

IN
DI

VI
DU

AL
 F

LA
GS

 &
 IN

PU
T

BI
TS

NO

T
SH

OW
N

CO
NN

EC
TI

ON

M
US

T
BE

 M
AD

E!

SL
OT

 6

+
5

lK
 Lr

LO
CA

L
IN

TE
RR

UP
T

HI
GH

ES
T

PR
IO

RI
TY

TO
IR

Q
PI

N
30

scheme is quite complex, and we recommend using the simple inter
rupt flag circuit provided in Fig. 7 -5. This should be sufficient for
most uses. In the daisy-chain configuration, you cannot have "empty,"
or open, slots between interface circuit boards, since this will break
the INT IN /INT OUT circuit "chain." Enough said about interrupts.
For more information, we refer you to Programming & Interfacing
the 6502, With Experiments (Howard W. Sams & Co., Inc., Indian
apolis, IN 46268) .

DMA

The DMA input is used to allow an external device to address
memory locations without first having to go through the 6502 micro
processor. Thus, the external device has direct memory access, or
DMA. Since several devices could request a direct memory access
transfer of information, a daisy-chained set of peripherals is possible,
since the interface slots have DMA IN and DMA OUT pins that con
nect to the adjacent interface connectors. Direct memory access in
terfaces are not trivial design projects, and we recommend that you
thoroughly understand the operation of the 6502 microprocessor chip
and its associated circuitry before you attempt to use this feature.

R.!:S

The reset line at pin 31, RES, is actually a bidirectional signal line.
You can use this line to reset your interface circuits, since it will be
a logic zero when the Apple is reset when power is applied, or when
the RESET pushbutton is pressed. You can also force the Apple into
a reset condition by grounding this line. If you choose to use this line
to reset the Apple from your interface, a high-current open-collector
gate or buffer must be used to pull the line to ground. An SN7407
open-collector buffer chip could be used in this type of circuit. The
RES signal line is common to all of the interface slots.

!NH

In the Apple computer, you can substitute your own assembly
language programs for the programs stored in the BASIC interpreter
ROMs. By pulling the INH line at pin 32 to ground, you will inhibit
all of the BASIC interpreter and Monitor ROMs, so that your own
programs can control the entire system. Since there is some room
already available for this type of operation, you probably won't use
this function, since you would not have access to any of the useful
subroutines within the standard ROMs supplied with the Apple. It
would be difficult, for example, to control the display, without the
subroutines in the BASIC interpreter ROMs. You will need an open
collector buffer chip to pull this line to ground, if you choose to use
this function.

USER 1

This input will allow you to inhibit the generation of all of the
1/0 SELECT and DEVICE SELECT signals within the Apple com
puter, so that you can "turn off' all of the 1/0 devices. This line must
be pulled down to a logic zero to cause this action. To prevent the
accidental use of this line, you must use a wire jumper to connect two
solder pads on the main printed circuit board of the Apple, before
the USER 1 signal can be used. We refer you to the Apple II Refer
ence Manual for the necessary details.

Since your primary purpose in using the 1/0 SELECT and DE
VICE SELECT signals is to simplify your interface design, there is
probably no need to use tl;iis line, unless you wish to do some sort of
expansion of the computer system with 1/0 devices that are external
to the basic system, or that might use some of the memory addresses
that have been assigned to the I/ 0 SELECT and DEVICE SELECT
signals. The USER 1 signal is present at pin 39 on the interface con
nectors.

RDY

There are times when it is necessary to slightly "delay" the 6502
microprocessor so that an external 1/0 device, or memory chip will
have sufficient time to access its data and present it on the data bus.
The ready input (RDY) found at pin 21 on each of the interface con
nectors can be used to put the 6502 in a "wait" condition when it is
grounded. This input must be synchronized with the microprocessor
clock, and it should change its st�te during the <1>1 clock logic one
state. The RDY input was used in older 6502-based computers, since
older memory devices could not access their data as fast as required
by the computer. Thus, when they were addresses, they had to put
the 6502 into a "wait" condition for several clock cycles until their
data was available. We doubt that you will find much use for this
signal, except in specialized interfaces.

Clock Signals

There are six clock signals that are available for interface use.
These are <1>0, <l>i, Q3, 7M, COLOR_REF, and SYNC. The <1>0 and
<1>1 are the main timing clock signals, running at 1 MHz. The clock
signals are the inverse of one another. These signals are used to co
ordinate external 1/0 operations with the normal flow of data on the
bus. As shown in Fig. 5-12, the <1>1 signal is used to control the gener
ation of the RD and WR signals for external 1/0 devices. The I/0
SELECT and DEVICE SELECT signals at the' I/0 connectors have
a"lready been gated, or "qualified," with the cp1 clock signal.

The Q3 signal is a 2 MHz clock signal that is asymmetric; that is,

173

READ OPN

7M

Q3

0o

,- 01

ADDR BUS

DATA BUS ..
-j 100 f-

x=x::: DATA BUS

TIMES IN NANOSECONDS (NSEC)

(7.159MHz)

(l.023MHz)

Fig. 7-8. Timing diagram for various Apple clock signals.

it is not a square wave. The 7M signal is a 7 MHz clock signal that is
a square wave. The clock signals are derived from the main clock
circuitry within the Apple, and their timing relationships are shown
in Fig. 7-8. We refer you to a complete data sheet for the 6502 mi
croprocessor for additional information about the 6502 timing rela
tionships.

The COLOR REF and SYNC signals are available only at inter
face slot 7. The COLOR REF signal is the 3.5 MHz color reference
signal generated by the video clock circuit in the Apple. The SYNC
signal is the video timing synchronization signal. You will probably
not use· these signals in your interface designs unless you will be
using video control circuits.

Power

The interface connectors provide access to four standard voltages
and to ground. The voltages provided are + 12, -12, +5, and -5
volts. The current for each of these voltages is limited to a few hun
dred milliamperes, so you should consider the use of low-power in
terface chips, such as those found in the SN7 4LSOO family.

Other Considerations

The bus-driving capability of the interface signals is quite limited,
with most signals limited to driving only a few SN7 4LSOO-type in-

174

puts. You must be careful in your design that you do not overload
these signals by expecting them to drive more chip inputs than they
can. If you need additional power from these signals so that they can
drive more inputs on an interface card, you must buffer the signals
with appropriate buffer chips. Just keep in mind that the buffers will
need some additional power from the power supplies, and there is
not a great deal of "extra" power at the interface connectors. Thus,
you must balance your needs for signal buffering with the available
power. You could always use an external power supply to power
some of the interface cards, but this defeats the purpose behind put
ting the interface circuits in the Apple enclosure in the first place.

AN INTERFACING EXAMPLE

Now that most of the useful interface signals have been described,
let's take a close look at a typical interface circuit that can be used
with the Apple computer. In many applications, it is necessary for
the computer to communicate with other devices. These may include
printers, controllers, remote 'data acquisition stations, and maybe
even other computers. In most cases, a form of serial communication
is used, so that long lengths of multiconductor cables are not re
quired. Most serial communication schemes use three or four wires,
so that the information that is to be exchanged is transmitted in serial
fashion, bit by bit, over the wire. One set of wires is used for trans
mitting, and the other set is used for receiving. Such communication
is usually called asynchronous-serial communication, since there is
no common clock signal, or referen�e, that connects the two systems.

Most of the microprocessor chip manufacturers have developed
some type of communication chip for their family of microprocessors.
In fact, you can even "cross" families, so that a communication chip
that was developed for the 8080A family can be used with a 6502
processor. In fact, that is exactly what we plan to do in this example;
an 8251 universal synchronous/ asynchronous receiver-transmitter
chip will be interfaced to the Apple computer, right at the interface
slot. We will not provide you with a great deal of detail about the
operation of the USART chip, since this has been covered in detail
in TRS-80 Interfacing, Book 2 (Howard W. Sams & Co., Inc., Indi
anapolis, IN 46268) . A magazine article covering the subject is also
available. See "Cross-Pollinating the Apple," Byte, April, 1979, p. 24.

Since the 8251 USART chip is a bus-compatible chip, it should not
be too difficult to interface the Apple. A pin configuration and block
diagram for the USART are provided in Fig. 7JLYou should be able
to recognize the data bus inputs, the RD and WR control inputs and
a chip select input, CS. Since the USART contains two sets of regis
ters, there must be some way of distinguishing between them. The

175

RESET
CLK
CID
RD
WR

cs

DSR
DTR

CTS
RTS

DATA
BUS

BUFFER

READ/WRITE
CONTROL

LOGIC

MODEM
CONTROL

�Ilf\l CONFIGURATION

o,
o,

""'----�

OSR
RESET

hEMPTY

ill
SYNOET

TxROY

BLOCK DIAGRAM

Pin Name Pm Function

DataBm(Sbjts)

TRANSMIT
BUFFER

(P S)

TRANSMIT
CONTROL

RECEIVE
BUFFER

(S P)

RECEIVE
CONTROL

Dr Do
CID

RD
Control or Data;, to be Wnnen or Read

WR

cs
CLK

RESET

hl

Rud Data Comm�nd

Write Data or Control Command

Chip Enable

Cloc!t Pul<e ITTL)

Tranomi11erClock

TxD Ttansmitler Dau

Ai<C Re<:o•verClod

Rcrcaiver Data

RxROY R�coivEr Audy (ha• chatacrnr far 9080)
T�RDY Ttamm;tw• R��dy lre<Jdy for char. from li080)

DSR

m
SYNDET

ffi
ffi
Voe
GND

TXD

TXRDY

,.. TXE

TXC

RXD

RXRDY

SYNDET

PmFunctoon

Data S.t Ready

Data Terminal Ready

Sync Detect

Request to Send Oota

Clour to Send Data

Tran•mmer Empty

+SVolt Supply

CONTROL/ DATA input at pin 12 (C/D) performs this function.
A logic one selects the control mode, or command mode, while a
logic zero selects the data mode. One of the address bits can be con
nected to this input to allow the computer to access each of the inter
nal registers by using one address for the command register and an
other address for the data register.

Since the USART will be communicating with other asynchronous
serial devices, there are standard data rates that must be used to as
sure that the data rates of the transmitting instrument and the receiv
ing computer are fairly close. A Motorola MC14411 bit rate generator
chip has been chosen to perform this function, since it is crystal con
trolled. There are other popular clock-generating schemes, too.

Since the standard logic levels provided by SN7 400 family tran
sistor-transistor logic (TTL) devices cannot be used to drive long
communication lines, you will need to choose whether you wish to
use 20 mA current-loop signals or standard RS-232C control levels.
The necessary level-conversion circuits are easy to obtain, and they
are detailed in the references noted previously.

Since any sort of communication interface is useless without the
software to drive it, you will need some software routines that can
drive the USART chip. For the most part, these will be simple, and
you may wish to use BASIC-language programs for control purposes.
If you choose to use assembly-language programming, you might
consider putting your control programs in ROM, and putting the
ROM right on the interface board. Since there are 256 bytes of ad
dress space available for each interface slot, a small ROM can be
accommodated. The 256-byte space is quite enough for some USART
control programs. You can use the Monitor to test your assembly
language programs before they are put into ROM.

A complete USART interface is shown in Fig. 7-10. This circu�t
has been wired and tested in our Apple computer. H you wish to use
this circuit in your computer, we suggest that you obtain the data
sheets for the 8251 or 8251A USART chip, and the Motorola MC-
14411 bit-rate generator chip, so that you will understand how they
work. In Fig. 7-11, we have provided a general addressing circuit for
a 256-byte block of ROM, which could be used to store the assembly
language USART control routines. The actual circuit would depend
upon the particular ROM chip, or chips that you choose to use. In
this circuit, Fairchild 93427 ROMs have been used. These are fast,
bipolar, fusible-link ROMs. Each chip contains 1024 bits, organized
in 256 4-bit words, so two chips are required for a complete 8-bit
word. Slow, erasable PROM chips are not recommended, since their
access times are fairly slow, and they could cause problems. Most of
these devices contain many more locations than you can use.

You can build this circuit on a standard interface wire-wrap card,

or on another type of suitable prototype card that can be plugged
into one of the available interface slots. If you use the wire-wrap
prototype technique, you will find that the wire-wrap pins and the
chips stick out from both sides of the card, making it difficult to uise
the adjacent interface slots.

+5 8251A USART
APPLE BUS SIGNALS 26

D7 42 8
D7

43
7

D6 RXD DATA TO USART
44

6 D5

DATA 45
5

D4 TXD
19

DATA FROM USART
2 BUS 46 D3

47 l
D2

48 28
Dl

DO 49 27
DO PINS NOT SHOWN ARE

LEFT UNCONNECTED

AO
12

C/D

RES 31 RESET CTS
17

R/W 18 R x C
25

R5 TX C
4

I
11 20

SN74LS04 cs CLOCK

i4

+5
l.8432MHz 24

Al 3 15 \ XTAL
A2 4

14

A3 5
13

XTAL Fl5
18

12 iiS 41

+5
22

B FS

23
A MC!44ll

i12

:In our computer system, we used the USART interface in slot 3,
so that the USART was addressed as devices 49328 and 49329. The
registers at address 49328 are the receiver and transmitter registers,
while the registers at address 49329 are the control and flag registers.
Keep in mind that you can have two registers for each address, since
one is a V\Trite-to and the other is a read-from register. If you

93427 OR EQUIV ROM

1------ D7
ADDRESS

BUS
..-------'''- 256 x 4 1-----

ROM
1------ D4

256 x 41---+-+-
ROM

R/W -----t :::o---+......_ _ __.
l/O SEL -----------

D3

DO

TO DATA BUS

Fig. 7-11. A 256-byte memory expansion circuit diagram.

oved the card to another interface slot, the addresses for the
USART would change, as noted in Table 7-3.

To use the USART interface, you must first initialize the chip with
me control information that is sent as two consecutive bytes to the

ontrol register. Don't worry about sending two bytes to the same
gister, the USART "knows" what to do with them. After the
SART has been initialized, you can use it to transmit and receive

synchronous-serial streams of information. The program shown in
xample 7-1 can be used to transmit an 8-bit byte of data, while the
rogram shown in Example 7-2 c� be used to receive an 8-bit byte.

Example 7-1. USART Transmitter Control Subroutine

POKE 49328, TX

WAIT 49329, l
RETURN

Example 7-2. USART Receiver Control Subroutine

WAIT 49329, 2

RX = PEEK(49328)

RETURN

e software checks the necessary flags so that the transmitter trans
•ts its data only when it is ready, and the receiver only provides

ata when it has actually received some.
The main point here has been to develop a simple interface that

ses many of the Apple bus interface control signals, so that you can
e how they work. It is also nice to know that the interface example

ctually works, and that it can be used in some real applications. We
ope that you have seen how easy it is to develop an interface for
e Apple, based upon the concepts of port addressing, port control,

nd flags, that we introduced throughout the book.

179

'
l.

APPENDIX

logic Functions

In the experiments in this book, several logic functions are re
quired. These functions are noted as lamp monitors, logic switches,
and pulsers. In each case, the equivalent circuits are simple, but
rather than duplicate them in each schematic diagram, block dia
grams have been used. The following sections describe each of the
functions that are required.

Lamp monitors are simply light-emitting diodes, or other on-off
indicating devices that are med to indicate the state of a logical
output. We have adopted the convention of logic one being the lit,
or on state, and logic zero being the unlit, or off, state. The two cir
cuits shown in Fig. A-1 may be used to construct lamp monitors. The

L�---

INPUT

LED 220
.-----,,�---�� + 5

LED 220
IMPUT �+5

7404 or 7405
Fi>!. A· i. !idi@m@ti<s ef lw© dmu>ie l�mp0m©01if©r cimJolz ;i,,.; mav bo ws®d

iITTl e:u:per�m@!i1ho

use of red LEDs is recommended, since they are inexpensive and
readily seen. You will require at least eight of the individual lamp
monitors to do the experiments in this book.

LOGIC SWITCHES

Logic switches are simply switches that have been configured to
provide either the logic one or the logic zero voltages to the TTL
compatible integrated circuits used in the experiments. A typical
logic switch is shown in Fig. A-2. A single-pole, single-throw toggle
switch or slide switch may be used. At least eight of the logic-switch
circuits will be required in the experiments.

fig. A-2. Schematic of simple logic

switch circuit that may be used to
generate logic one or logic

zero output.

PULSERS

1000

c+s � OUTPUT

The pulser circuit is used in the experiments to provide "clean"
outputs that are free of the "bounce" that is normally associated
with mechanical switches. Since most switches use spring-like metal
contacts, the contacts will often open and close several times after
the switch has been opened or closed. If such a mechanical switch
is used to provide pulses to a counter, up to 30 to 40 pulses may be
counted, depending on the type of switch used. Since there are many
cases in which a clean logic one to logic zero, or logic zero to logic
one, transition is required, a debounced switch is frequently useful.
Mechanical switches are easily debounced, if they have contacts of
the single-pole, double-throw form. A typical debouncing circuit is
shown in Fig. A-3. In this case, two NAND gates have been used to
form a flip-Hop that may be set, or reset, by the switch. As shown in

fig. A-3. Schematic for debounced
pulser in which "cross-coupled"
NAND gate has been used to

eliminate contact bounce.

1000

1000

181

Fig. A-3, two outputs are available. With the switch i11 the .,�'""'�"'

shown, the normal logic states are shown at the outputs of two
gates. When the switch is moved to the other position, the outputs
of the NAND gates will switch. It is suggested that a momentary
switch be used in the pulser circuits.

Lamp monitors, logic switches, and pulsers are all useful devices
when breadboarding logic circuits. While the circuits shown in Figs.
A-1 through A-3 are simple, you may not wish to build them your
self. Several companies produce digital breadboarding devices that
incorporate lamp monitors, logic switches, and pulsers, as wen as
other digital functions. We suggest that you write to the following
companies for information about their digital-electronic bread
boarding systems :

E & L Instrnments, Inc.
61 First Street
Derby, CT 06418

AP Products, Inc.
Mentor, OH 44060

PACCOM
14825 NE 40th, Suite 340
Redmond,WA 98025

APPENDIX B

Parts Required for

the Experiments

4 SN7402 Quad NOR-gate integrated circuit (IC)
2 SN7474 dual D-type Hip-Hop IC
2 DM8095 or SN74365 three-state input buffer (2@ per input

port)
2 SN7475 Quad latch IC
1 NE5018 eight-bit DI A converter IC (Signetics Corporation)
1 SN7404 hex inverter IC
2 SN74LS373 three-state octal latch IC
1 0.01-µ,F, disc ceramic capacitor
1 4700-ohm, %-watt resistor
6 220-ohm, %-watt resistors
6 Visible LEDs (2@ red, 2@ green, and 2@ yellow)
1 lOK, potentiometer trimmer-type
1 lOK, %-watt resistor
1 100-µ,F electrolytic capacitor 16 WVDC
1 33K, %-watt resistor
1 150-pF disc capacitor
1 2200-ohm, %-watt resistor
1 ADC0804 analog-to-digital converter (National Semiconductor

Corp.)
1 LM335 temperature sensor
4 1000-ohm, %-watt resistors

183

L

Besides the parts listed, you will need an assortment of SN7 400
SN7408, SN7402, SN7410, SN7486, SN7430, and SN7493 integrate
circuits for use in the logic-tester program in Experiment No. 14. W
suggest that you read through this experiment to determine exact!
what circuits you will want to test.

Other useful equipment: a ±12-volt power supply (for use with
the DI A converter circuit), hook-up wire, an extra solderless bread'
board, pulsers, logic switches, lamp monitors, and a voltmeter or
vom.

Information about the analog converters is available from:

ADC0804 AI D Converter NE5018 D/ A Converter
National Semiconductor Corp. Signetics Corporation
2900 Semiconductor Drive 8ll East Arques A venue
Santa Clara, CA 95051 Sunnyvale, CA 94086

Integrated circuits and components are available from many man-
ufacturers, and we suggest that you check the many advertisements
in the last pages of Radio-Electronics, Popular Electronics, Kilobaud
Microcomputing, and other electronic magazines. We have tried to
use standard parts wherever possible.

184

APPENDIX

6502 Microprocessor

Technical Data

The following pages contain some technical information pertain
ing to the 6502 microprocessor chip. This information has been ab
stracted from the 1980 Component Data Catalog, from MOS Tech
nology, Inc., 950 Rittenhouse Rd., Norristown, PA 19403. For more
complete information about the 6502 processor and its associated
family of functions, we suggest that you write to the manufacturer
for a complete data sheet.

The 6502 chip is also available from:

Rockwell International
3310 Miraloma A venue
Anaheim, CA 92803

Synertek, foe.
3001 Stender Way
Santa Clara, CA 95051

These manufacturers can also provide you with information about
their 6502 microprocessor chip, and related devices.

111•11
MCS6500 Microprocessors

• Single +sv Supply • 13 Addressing Modes
• N-Channel, Silicon-Gate, Depletion-Load Technology • Programmable Stack Pointer and Variable-Length Stack
• 8-Bit Parallel Processing • Usable With Any Type or Speed Memory
• 56 Instructions • 1 or 2 MHz Operation
• Decimal and Binary Arithmetic • Pipelined Architecture

DESCRIPTION

The MCS6500 Series microprocessors represent the first totally software-compatible microprocessor family. This family
of products includes a range of software-compatible microprocessors which provide a selection of addressable memory
range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the MCS6500 group
are software-compatible within the group and are bus compatible with the M6800 product offering.

The family includes five microprocessors with on-board clock oscillators and drivers and four microprocessors driven by
external clocks. The on-chip clock versions are aimed at high-performance, low-cost applications where single-phase
inputs, crystal or RC inputs provide the time base. The exteriial clock versions are geared for multi-processor system
applications where maximum timing control is mandatory. All versions of the mi�roprocessors are available in 1 MHz and
2 MHz rA· suffix on product numbers) maximum operating frequencies.

MEMBERS OF THE FAMILY

Part Numben

Plastic

MCS6502
MCS6503
MCS6504
MCS6505
MCS6506
MCS6507
MCS6512
MCS6513
MCS6514
MCS6515

PIN FUNCTIONS

Clocks (4>1 and 4>2)

Ceramic

MCS6502
MCS6503
MCS6504
MCS6505
MCS6506
MCS6507
MCS6512
MCS6513
MCS6514
MCS6515

Clocks Pins

On-;hip 40
28

" 28
" 28
" 28
" 28

External 40
" 28
" 28
" 28

The MCS651X requires a two-phase, non-overlapping
clock that runs at the V cc voltage level.

The MCS650X clocks are supplied with an internal clock
generator. The frequency of these clocks is externally con
trolled. Details of this feature are discussed in the
MCS6502 portion of this data sheet.

Address Bus (AO-A 15)
(See sections on each processor for respective address
lines on those devices.)

These outputs are TIL-compatible, capable of driving one
standard m load and 130pF.

186

IRQ NMI RDY Addressing

v v v 16 (64K)
v v 12 (4 K)
v 13 (8 K)
v v 12 (4 K)
v 12 (4 K)

v 13 (8 K)
v v v 16 (64 K)
v v 12 (4 K)
v 13 (8 K)
v v 12 (4 K)

Data Bus (DO-D7)
Eight pins are used for the data bus. This is a bi-directional
bus, transferring data to and from the device and
peripherals. The outputs are three-state buffers capable of
driving one standard m load and 130pF.

Data Bus Enable (DBE)
This rn-compatible input allows external control of the
three-state data output buffers and will enable the
microprocessor bus driver when in the high state. In nor
mal operation, DBE would be driven by the phase two (4>2)
clock, thus allowing data input from microprocessor only
during 4>2. During the read cycle, the data bus drivers are
internally disabled, becoming essentially an open circuit.
To disable data bus drivers externally, DBE should be held
low.

MC§f.500

�IE1lriy {�D"i)
This input signal. allows the user to single-cycle the
microprocessor on all cycles e�cept write cycles. A nega
tive transition to the low state during or coincident with
phase one (4'1) will halt the microprocessor with the out
put address lines reflecting the current address being
fetched. This condition will remain through a subsequent
phase two (�2) in which the Ready signal is low. This
feature allows microprocessor interfacing with low-speed
PROMS as well as fast (max. 2 cycle) Direct Memory Ac
cess (OMA). If Ready is low during a write cycle, it is
ignored until the follovving rec:id operation.

ln!eoru;>I !!eqyesl (li!Q)
This TTL -compatible signal requests that an interrupt se
quence begin with in the microprocessor . The
microprocessor will complete the current instruction being
executed before recognizing the request. At that time, the
interrupt mask bit in the Status Cod� Register will be exam
ined. If the interrupt mask f lag is not set , the
microprocessor will b£gin an interrupt sequence. The Pro
gram Counter and Processor Status Register are stored in
the stack. The microprocessor will then set the interrupt
mask flag high so that no further interrupts may occur. At
the end of this cycle, the program counter low will be
loaded from address FFFE, and program counter high from
location FFFF, transferring program control to the memory
vector located at these addresses. The ROY signal must be
in the high state for any interrupt to be recognized. A 3Kn
external resistor should be used for proper wire-OR
operation.

Nv01-�!e l•!errupt (NIW)
A negative-going edge on this input requests that a non
maskable interrupt sequence be generated within the
microprocessor.

N/v\! is an unconditional interrupt. Following completion of
the current instruction, the sequence of operations de
fined for IRQ will be performed, regardless of the state of
the interrupt mask flag. The vector address loaded into the
program counter, low and high, are locations FFF A and
HFB respectively, transferring program control to the
memory vector located at these addresses. The instruc
tions loaded at these locations cause the microprocessor
to branch to a non-maskab!e interrupt routine in memory.

Nfvl.I also requires an external 3KQ register to \J cc for
proper wire-OR operations.

Inputs lRQ and NMI are hardware interrupts lines that are
sampled during 4'2 and will begin the appropriate interrupt
routine on the �1 following the completion of the current
instruction.

5'!1 O"e'1llliw flag \S.O.)
A NEGATIVE-going edge on this input sets the overflow bit
in the Status Code Register. This signal is sampled on the
trailing edge of q,1.

SVNC
This output line ls provided to identify those cycles during
which the microprocessor is doing an OP CODE fetch. The
SYNC line goes high during ®1 of an OP CODE fetch and
stays high for the remainder of that cycle. If the ROY line is
pulled low during the �1 clock pulse in which SYNC went
high, the processor will stop in its current state and will
remain in the state until the RDY line goes high. In this
manner, the SYNC signal can be used to control ROY to
cause single instruction execution.

�e§et
This input is used to reset or start the microprocessor from
a power down condition. During the time that this line is
held low, writing to or from the microprocessor is inhibit·
ed. When a positive edge is detected on the input, the
microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles,
the mask interrupt flag will be set and the microprocessor
will load the program counter from memory vector loca
tions FFFC and FFFD. This is the start location for program
control.

After Vee reaches 4,75 volts in a power up routine, reset
must be held low for at least two clock cycles. At this time
the R/W and (SYNC) signal will become valid.

When the reset signal goes high following these two clock
cycles, the microprocessor will proceed with the normal
reset procedure detailed above.

MCS6500
INmlNAL AROllTECTURE

188

ADDRESS
BUS

r'" '
"

"'

"'

NOTES

- REGISTER S£CTION

ft •llBITLINE

I �I BITLINE

1. Clock Generalor is not included on MCS6512, 13,14,15
2. Addressing Ca�bility and control options vary with each of the MCS6500

Products.

-----ROY

''UNI 1
MCS6512,13,14,15

'2UNI J
CLOCK }
INPIJT MCS650'l,3,4,5,6

f10l1T
fl OUT

R/W

INSTilUCTION SH-ALPHABETICAL SEQUENn
ADC Add Memory to Accumulator with Carry
AND 'AND� Memory with Accumulator
ASL Shift left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero
BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry Flag
CLO Clear Decimal Mode
CU Clear Interrupt Disable Bit
Cl V Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR 'Exclusive-or� Memory with Accumulator

INC Increment Memory by One
INX Increment Index by One
INY Increment Index Y by One

JMP Jump to New Location
JSR Jump to New Location Saving Return Address

LOA Load Accumulator with Memory
LOX Load Index X with Memory
LOY Load Index Y with Memory
LSR Shift One Bit Right (Memory or Accumulator)

NOP No Operation

ORA �aR� Memory with Accumulator

PHA Push Accumulator on Stack
PHP Push Proc.essor Status on Stack

MCS6500

PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTI Return from Interrupt
RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry flag
SEO Set Decimal Mode
SEI Set Interrupt Disable Status
ST A Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory

TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TY A Transfer Index Y to Accumulator

ADDRESSING MODES

Acrumuiator Addresski;g. This form of addressing is repre
sented with a one-byte instructidn, implying an operation
on the accumulator.

Immediate Addressing. In immediate addressing, the
operand is contained in the second byte of the instruction,
with no further memory addressing required.

Absolute Addressing. In absolute addressing, the second
byte of the instruction specifies the eight low-order bits
of the effective address while the third byte specifies
the eight high-order bits. Thus, the absolute addressing
mode allows access to the entire 6SK bytes of addressable
memory.

Zem �aige Arlll'.h'essing. The zero page instructions allow
for shorter code and execution times by olily fetching the
second byte of the instruction and assuming a zero high
address byte. Careful use of the zero page can result in
significant increase in code efficiency.

MCS6500

lndeKed Zero Page Addressirog. (X, Y indexing)- This form
of addressing is used in conjunction with the index register
and is referred to as -zero Page, x- or -zero Page, y-. The
effective address is calculated by adding the second byte
to the contents of the index register. Since this is a form of
-zero Page· addressing, the content of the second byte
references a location in page zero. Additionally due to the
-zero Page· addressing nature of this mode, no carry is
added to the high order 8 bits of memory and crossing of
page boundaries does not occur.

Indexed A.hsoh.11fte Add:res§iilig. (X, Y indexing)- This form
of addressing is used in conjunction with X and Y index
register and is referred to as -Absolute, x·, and -Absolute,
y·. The effective address is formed by adding the contents
of X or Y to the address contained in the second and third
bytes of the instruction. This mode allows the index regis
ter to contain the index or count value and the instruction
to contain the base address. This type of indexing allows
any location referencing and the index to modify multiple
fields resulting in reduced coding and execution time.

Implied Agdressing. In the implied addressing mode, the
address containing the operand is implicitly stated in the
operation code of the instruction.

Relative Addl!'essing. Relative addressing is used only with
branch instructions and establishes a destination for the
conditional branch. The second byte of the instruction
becomes the operand which is an offset added to the
contents of the lower eight bits of the program counter
when the counter is set at the next instruction. The range
of the offset is -128 to + 127 bytes from the next instruc
tion.

tnden:ed !ndired Addre:;!iing. In indexed indirect address
ing (referred to as Indirect, X), the second byte of the
instruction is added to the contents of the X index register,
discarding the carry. The result of this addition points to a
memory location on page zero whose conte'nts is the low-

of the Y index register,
bits of the effective address.
added to the contents of the next page zero
location, the result being the high-order eight bits of
effective address.

Absolute Indirect. The second byte of the instruction corr
tains the low-order eight bits of a memory location. The
high-order eight bits of that memory location is contained
in the third byte of the instruction. The contents of the fully
specified memory location is the low-order byte of the
effective address. The next memory location contains the
high-order byte of the effective address which is loaded
into the 16-bit program counter.

A!!§OUJTE MAXIMUM !!A TINGS

Rating Symbol Vah.lle U•il

Supply Voltage Vee -0.3 to +7.0 Vde

Input Voltage VIN -0.3 to +7.0 Vdc

Operating Temperature TA 0 to +70 'C

Storage Temperature Tsrc -55 to +150 'C

CAU'ilON
Th;s device contains input protection against damage due
to high static voltages or electric fields; however, precau
tions should be taken to avoid application of voltages
higher than the maximum rating.

,,

,,

lllo (If�)

01 (OUT)

"REF: me�ns Reference Points on clocb

T!M!NG Il-01! READING DI\ TA f!!OM
M�MO!lY 0!! f<i!IPlirnAl.5

TIMING fO� W!!!1"1NG DATA TO
Ml:MO�Y Oil Pt�IPHrnALS

�1�v�

---� �P�H01

f1i--- PWffl'2 � � ''.' \ REF A o<- REF "8'

ELECTRICAL CHARACTERISTICS

Symbol Parameter

Input High Voltage

Vil Input Low Voltage

V1HT Input High Threshold
Voltage

VILT Input Low Threshold
Voltage

l1N Input Leakage Current

lrs1 Three-State (Off State)
Input Current

VoH Output High Voltage

VOL Output Low Voltage

Po Power Dissipation

c Capacitance
C1N

NOTE

MCS6500

(Vee= 5.0V ± 5%, Vss = 0, TA= 25'C)
01, 02 applies to MCS6512, 13, 14, 15, 00 (in) applies to MCS6502, 03, 04, 05 and 06

Min Typ Max Unit Test Condition

Vss+ 2.4
Vee - 0.2

v55-o.3
Vs5-o.3

Vss+ 2.0

Vss + 2.4

.2S

30
50

Vee
Vee + 0.25

Vss + 0.4
Vss+ 0.2

V55+ 0.8

2.5
100
10.0

10

Vss+0.4

.70

10
1S
12
so
so
80

Vde Logic, 00 (in)
0,, 0,

Vde logic, 00 (in)
0,, 0,

Vdc RES, NMI, RDY, iRQ, Data, S.O.

Vdc RES, NMI, RDY, IRQ, Data, S.O.

(V1N = 0 to S.25V, Vee= 0)
µA Logic (Exel. RDY, S.O.)
µA 0,, 0,
µA 0oQn)

µA (V,N = 0.4 to 2.4V, Vee= 5.25V)
Data Lines

Vdc (ILOAD = -100µAdc, Vee= 4.75V)
SYNC, Data, AO-A 15, R/W

Vdc (�OAD = 1.6mAdc, Vee= 4.7SV)
SYNC, Data, AO-A 1S, R/W

w

pF (V1N = 0, TA= 2S'C, f = 1MHz)
Logic
Data

AO-A 1S, R/W, SYNC
0o(inJ
0,
0,

iRQ and NMI require 3K pull-up resistors.

CLOCK TIMING-MCS6502, 03, 04, 05, 06

0o (IN)

01 (OUT)

PWH01

15 V .4V
:. REF "A"

02(0UT)

192

MCS<.500

a.oa Tll\.41MG-MCS65U, 13, 14, 15

Symb<ii ChMaderistk Min Typ M•x Unit

Tcvc Cycle Time 1000 nsec

PWH ¢1 Clock Pulse Width ¢1 430
PWH ¢2 (Measured at Vee - 0.2 V) q,2 470 nsec

T, Fall Time (Measured from 0.2 V to Yee - 0.2 V) 25 nsec

To Delay Time Between Clocks (Measured at 0.2 V) 0 nsec

UOC!l T!MING-MCS65112, 03, 611, 05, IJ6

Sym00! Charaderisik Min Typ Max Un ii

TCYc Cycle Time 1000 ns

PWH¢0 <!>o(IN) Pulse Width (measured at 1.5 V) 460 520 ns

TR¢0, TF¢0 ¢0 (IN) Rise, Fall Time 10 ns

To Delay Time Between Clocks (measured at 1.5 V) 5 ns

PWH¢1 4>11ou11 Pulse Width (measured at 1.5 V) PWH<J>0t-20 PWH¢01 ns

PWH¢2 ¢11ou11 Pulse Width (measured at 1.5 V) PWH¢0H-40 PWH¢0H-10 ns

TR, T, <P1 (OUT)· </J2 (OLJT) Rise, Fall Time 25 ns
(measured .8 V to 2.0 V)
(load = 30pF + 1 TIL)

!IMO/Wl'lln TIMING

SyivIDol Ch.@;raderis�k Mi� Typ Max Unit

TRWS Read/Write Setup Time From MCS6500 100 300 ns

TADS Address Setup Time From MCS6500 100 300 ns

TAcc Memory Read Access Time 575 ns

Tosu Data Stability Time Period 100 ns

THR Data Hold Time - Read 10 ns

THw Data Hold Time- Write 30 60 ns

Trv\DS Data Setup Time From MCS6500 150 200 ns

TROY RDY, 5.0. Setup Time 100 ns

TsYNC SYNC Setup Time From MC56500 350 ns

THA Address Hold Time 30 60 ns

THRW R/W Hold Time 30 60 ns

MCS6500

2MHETIM!NG

CLOOI: TIM!NG-MCS6512, 13, 14, 15, 16

Symbol Ctwaci:eristic Min lyp Ma• Unit

Tcvc Cycle Time 500 nsec

PWH ¢1 Clock Pulse Width ¢1 21S
PWH ¢2 (Measured at V cc - 0.2 V) ¢2 235 nsec

Tr Fall Time (Measured from 0.2 V to V cc - 0.2 V) 12 nsec

To Delay Time Between Clocks (Measured at 0.2 V) 0 nsec

CLOCK TIM!NG-MCS6502, 03, 04, 05, 06

Symbol Characteristic Min Typ Max Unit

Tcvc Cycle Time soo ns

PWH\(>0 \(>0 (IN) Pulse Width (measured at 1.5 V) 240 260 ns

TR¢0, TF</>0 ¢0 (JN) Rise, Fall Time 10 ns

To Delay Time Between Clocks (measured at 1.5 V) s ns

PWH\(>1 <1>1 (OUT) Pulse Width (measured at 1.S V) PWHef>0t-20 PWHef>ot ns

PWHq,2 <1>2 (OUT) Pulse Width (measured at 1.S V) PWHef>0H-40 PWHef>0H-10 ns

T,, T, ¢1 (OUTJ, 4'2 (OUT) Rise, Fall Time 2S ns
(measured .8 V to 2.0 V)
(Load = 30pF + 1 TIL)

!IEAD!WllITT TIMING

Symbol Omaderistic Min Typ Max Unit

TRWS Read/Write Setup Time From MCS6SOOA 100 150 ns

TADS Address Setup Time From MCS6SOOA 100 1SO ns

TACC Memory Read Access Time 300 ns

Tosu Data Stability Time Period so ns

THR Data Hold Time - Read 10 ns

THW Data Hold Time - Write 30 60 ns

TMDS Data Setup Time From MCS6500A 7S 100 ns

TROY RDY, S.0. Setup Time so ns

TsvNc SYNC Setup Time From MCS6SOOA 17S ns

THA Address Hold Time 30 60 ns

THRW R/W Hold Time 30 60 ns

APPENDIX D

Apple Interface

Breadboard Parts

Parts required for the construction of the Apple Interface Bread
board:

IC 1 & 7

IC 2 & 6
IC 3,4, & 5

IC 8
IC 9
IC 10 & 11
IC 12
IC 13
IC 14
IC 15
IC 16, 17, 18,

& 20

IC 19

Dl - D4
D5
D6
D7
DB & D9

16-pin resistor network, eight independent 1000-
ohm resistors

8-position DIP switch (on-off)
SN74LS85 Quad comparator IC (Do Not Substi-

tute SN7 4L85)
SN74LS20 dual four-input NAND gate IC
SN74365 or DM8095 three-state buffer
8216 noninverting bus buffer, Intel or equivalent
SN74154 decoder IC
SN7404 inverter IC
SN74123 or SN74SL123 dual monostable IC
LM319N dual comparator (14-pin package)

High-quality 16-pin IC sockets, Augat 516-AG-
lOD, or equivalent

High-quality 8-pin IC socket, Augat 508-AG-lOD,
or equivalent

1N4001 50 piv, 1-ampere diodes"'
Yellow LED
Red LED
Green LED
1N4148 or 1N4154, small-signal diodes

195

Rl & RB
R2 & R3
R4 & R5
R6
R7
Cl
C2, 4 & 5
C3 & C6
C7 & CB
VR
Pl

P2

Tl
Misc.

1000-ohm, 1/4-watt resistor
' 220-ohm, %-watt resistor

47K, %-watt resistor
3900-ohm, %-watt resistor
2200-ohm, %-watt resistor
2200-µ.F, 16 V dew electrolytic capacitor (axial)"
0.1-µF disc ceramic, 50-volt capacitors
1-µ,F, 35 V dew tantalum electrolytic capacitors
3.3 µF, 50 V dew electrolytic capacitors (axial)
LM309K 5-volt, I-amp voltage. regulator"
Molex right-angle 6-pin connector (PN 09-75-

1061) optional
Requires l@ mating female housing (PN09-50-

7061) and 6@ connector pins (PN 08-50-0106
or 08-50-0108)

40-pin right-angle jumper header, AP Products
923875R, or equivalent

12.6 V ac transformer 1 amp
11 16-pin IC sockets
3 14-pin IC sockets
1 24-pin IC socket
Cable assembly: 40-pin header on one end, with

a 40-pin card edge connector on the other, fac
ing the same direction

Soldedess breadboard socket, SK-10, Superstrip,
or equivalent, 4@ 4-40 X % flat-head mach.
screws, 4@ #4 internal-tooth lock washers, 4@
#4 hex nuts.

Heat sink for VR, 2@ 4-40 X 1h mach. screws,
2@ #4 internal-tooth lockwashers, 2@ #4 hex
nuts, mica insulator, thermal grease (optional).

Power cord

The parts marked with """ are not required if an external +5-volt
power supply will be used to power the system.

APPENDIX E

Printed-Circuit

Board Artwork

This appendix contains artwork that may be used to make a
printed-circuit board of the Apple interfacing breadboard. Since the
artwork has been reduced, it must be enlarged before it can be used.
We recommend that you have a print shop make a high-contrast film
negative, or positive, depending on the process that you will use.
The long thick black line in each of the three diagrams should be
enlarged so that it is four (4) inches long. The process-camera
operator should be able to correct the enlarging process so that the
resulting film is the right size for the printed-circuit board. You may
not choose to use the parts overlay, but it has been provided as a
guide to the placement of the various parts.

197

: 0 0

:

-
-
:
:

Fig. E-1. Printed-circuit board artwork for component side of interface breadboard
(right reading).

198

!'i9. E-2. Printecl-<n•(11i� board arlwork for s@liler side of ii'i�e<f<><e breadb@ard

(reverse reading).

t.

..
=�

+

0

Fig. E-3. Nomenclature overlay for interface breadboard (right reading).

200

0

"

0....
::>
0
c::
<..!:l
<..!:l
c::
::>
CD
Cl)
:::.:::
(..)
<(
_J
CD
LU
:c
I-
>
CD
Cl
LJJ
z
<..!:l
Cl)
LU
Cl

�

F

t •

I
a...
:::::>
0
a:
(!>

0 (!>
a:
:::::>
co

1: en
:::£
u
<t:
_J
co
w
:I:
I-
>-
co
0
w
z
(!>

0 en
w
o,

+: -:!

Fig. E-4. Component nomenclatUt"e overlay superimposed on component-side foil
pattern, may be used as parts placement guide.

201

Index

ACID PUMP, 111
Address

A

bus, 15
comparison, 42
decoding, 26-27
decoder circuit, 73

use, 92-96
lines, 27
negative, 25
page, 10
positive, 25
select pulse, 31
selection signal, 39
16-bit, 27

Addressing, device, 27-43
Analog-to-digital converter, 154-161
AND gates, 2r;
ANSWER, 61
APPLESOFT BASIC, 17
Assembly

language, 23-25
logical operations, 60-62

'

B

BASE PUMP, 111
BASIC, 23-25

interpreter, 24
Bar

graph, horizontal, 125
notation, 15

BCD, 132-136
Bidirectional, 10
Binary

codes, 132-136
notation, 27
numbering, 25

Bit, least-significant, 152
Breadboard

basic, 69-80
construction, 80

Buffer enable, 52
Bus

buffer chips, 155
circuit, 76

-compatible chip, 175
low address, 28

Byte, 9, 61
least significant, 103
most significant, 103

c

CALL,67
Capacitor-charging circuit, 159
Card readers, 14
Chip-enable input, 12
CLEAR,47
Clock signals, 173
Comparators, using, 41-43
Comparing, 27
Connections to Apple, 80-84
Control signal, 15

203

Controllers, 14
Converter

analog-to-digital, 154-161
digital-to-analog, 127-132

Crash, 18

D
(

DIA converter, 127
DAC, 127
Daisy chain, 170
Data, 61

bits, 54
bus, 15
control, 22-23
display, 122-127
logging, 122-127
transfer, 22-23

Debounced pulser circuit, 181
Debug,25
Decimal numbering, 25
Decoded address, 31
Decoders

device, 72-75
large, 37-40
memory, 72-75
using, 33-37
x-line, 33
y-line, 33

Decoding, 27
DEV SEL, 116
Device

decoders, 72-75
select pulse, 31, 96-100

Digital-to-analog converter, 127-132
Dip switch, 92
Display(s), 14

memory, 24
DMA, 172
DRYER, 111
Dummy variable, 61
Dynamic memory, 11

E

8-bit output port, 116
ENABLE, 34
Experiments, introduction, 86-89

204

F

Fetches, 67
Field-programmed, 12
Flag (s) , 58-59

circuits, 64-65, 149-154
clearing, 63

commands, 154
complex, 62-64
-detecting software, 59-60
multiple, 66
priority, 66
status, 57
testing, 64
timing, 63

Flip-Hop
circuit, 65
timing, 65

Floppy disks, 64
Full/empty, 149
Function pulse, 31

G input, 34

G

Gates, address decoding, 27-32
Gating, 27

circuit, 29
input, 133
logic, 27
programmable, 30

H

High-impedance state, 133
HOME, 16
Horizontal bar graph, 125
Hot/cold, 149

INH, 172
Input

/output 0/0) devices, 14-15
port(s), 17, 49-56

applications, 106-115
constructing, 100-103
interactions, 119-122
multibyte, 103-106

INTEGER BASIC, 17
Interface

circuits, 20-22
control signais, 166-175

Interfacing, 175-179
Interrupt (s), 66-67

flag circuit, 169
polled, 170
request, 66, 169-172

Inverted signal, 31
I/O

commands, 15-16
device address decoding, 26-27

synchronization, 57-58
program, 15
SELECT, 166-167
STROBE, 167-168

IRQ, 66, 169-172

Lamp
monitor(s), 136, 180
circuit, 180

Latch, octal, 47
Least

-significant bit, 152
byte, 103

LED, 71
Light-emitting diode, 71
LOAD,16
Logic

chips, 143
-device tester, 143-149
levels, 143
monitors, 47
one,27

used for control, 60
probe, 71-72

circuit, 72
use, 89-91

-switch circuit, 181
switches, 181
zero, 28

used for control, 60
Logical

operation(s), 58-59
subroutine, 62

Low
-address bus, 28
-power Schottky, 72

LS, 72
LSB, 152
LSBY, 120

M

Maps, memory, 19-20
Mask, 61

-programmed, 12
Memory, 10-14

decoders, 72-75
display, 24
dynamic, 11
map, 19-20
static, 11

MEMR, 13
MEMW, 13
Monitors, lamp, 180
Most-significant byte, 103
MR, 13
MSBY, 120
Multibyte input ports, 103-106
MW, 13

NAND gates, 27
Negative address, 25
NMI, 66, 169-172
Nonmaskable interrupt, 66, 169-172
NOR gates, 29

Octal, latch, 47
Operational amplifiers, 161
OR gates, 29
Output

port(s), 17, 44-49, 132-136
constructing, 115-119
interactions, 119-122

three-state, 50

Page address, 10
PEEK commands, 18
Peripherals, 14
Pin configuration

ADC0804, 155
LM335, 160
NE5018, 127
SN7402, 92

Pin configuration-cont
SN7474, 150
SN7475, 46
SN7493, 147
SN74125, 50
SN74LS139, 33
SN74175, 46
SN7 4LS244, 52
SN74365, 52
SN74LS373, 46
2114, 13
2708, 13
6502, 11
8216, 77
8251A, 176

PLOT, 16
POKE commands, 18
Polled interrupt, 170
Port(s), 17

constructing input, 100-103
output, 115-119

input, 49-56
multibyte input, 103-106
output,44-49, 132-136

Positive address, 25
Power, 174

supply, 69-71
PRINT, 15
Printers, 14
Programmable

gate, 41
gating, 30

Pulse(s)
address select, 31
device select, 31
function, 31
-generation circuit, 93
-inverter circuit, 128
software generated, 96
using device-select, 96-100

Pulsers, 181-182

Qualifier, 40

RAM, 13
Random

Q

R

access memory, 13
color pattern generator, 16

206

RD, 53
RDY, 173
Read

-from register, 178
only, 11
/write, 11

Ready/busy, 149
Refreshing, 11
Register

read-from, 178
write-to, 178

RES, 172
ROM, 11
R/W, 11

SAVE, 16

s

Schottky, low power, 72
SCRN, 15
Sensors, 14
Sequencer, 140
Software

commands, 20-22
flag detecting, 59-60
-generated pulses, 96
1/0 control instructions, 15-25

Speaker control program, 22
Static memory, 11
Status flags, 57
Switch, dip, 92

T

Tester, logic device, 143-149
Timing diagram, 22
Traffic-light controller, 136-143
Truth tables, 29
12-bit input conversion, 56
256-byte memory expansion circuit,

179

Unbuffered, 75
USART

chip, 175

u

receiver control subroutine, 179
-to-Apple interface circuit, 178
transmitter control subroutine, 179

USER 1, 173

�
�
�
��

READER. SER.VICE CARD

To better serve you, the reader, please take a moment to fill out
this card, or a copy of it, for us. Not only will you be kept up to date
on the Blacksburg Series books, but as an extra bonus, \We wm
riandomny s€liect fiw� cal!'�h nerry month, from an ofthe cards g;eird to
'I.TIS duriii� t!rne prevfo�@ month. The mm�§ that t!f<e dniwn wm wm,
absoiMteiy fr�e, � book from the Dhu:irnbmr!Jl Coilltimlling Edm:l'!tno1n
Series. Therefore, make sure to indicate your choice in the space
provided befow. For a complete listing of all the books to choose
from, refer to the inside front cover of this book. Please, one card
per person. Give everyone a chance.

In order to find out who has won a book in your area, call (703)
953-Hl61 anytime during the night or weekend. When you do call,
an answering machine will let you know the mon1:hly winners. Too
good to be true? Just give us a call. Good luck.

If I win, please send me a copy of:

I understand that thi!l book win be §ent to me absolutely free, if my
card is selected.

For our information, how about telling us a little about
yourself. We are interested in your occupation, how and where you
normally purchase books and the books that you would like to Bee

in the Blacksburg Series. We are also interested in finding authors
for the series, so if you have a book idea, write to The Blacksburg
Group, P.O. Box 242, Bl&cksburg, VA 24060 and ask for iain
Author Packet. We are also interested in TRS-80, APPLE, OSI
and PET BASIC programs.

My occupation is
I books through/ from

Would you books through the mail? ---------

I'd like to see a book about I 10 �� a�.
Address Y.

City-------------------------� State Zip . �, � MAIL TO: BOOKS, BOX 7 BLACKS3URG, VA 24060 �
��

!!!PPLEASE PRINT!!!!! �{ ������

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LSI "chips" are creating a second industrial revolution that will quickly involve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advonces that are being made. It is also becoming difficult for newcomers
to "get on board."

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials that will permit students, engineers, scientists, technicians and others to quickly learn
how to use new technologies and electronic techniques. We continue to do this through several
means, textbooks, short courses, seminars and through the development of special electronic de
vices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of

southwestern Virginia. While w.e didn't actively start our group collaboration until the Spring
of 1974, members of our group have been involved in digital electronics, minicomputers and
microcomputers for some time.

Some of our post experiences and on-going efforts include the following:

-The design and development of what is considered to be the first popular hobbyist computer.
The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, including the MMD-I system. Our most recent computer is an 8085-bosed
computer for educational use, and for use in small controllers.

-The Blacksburg Continuing Education SeriesT" covers subjects ranging from basic electronics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We ore strong believers in the use of detailed experiments and
examples to reinforce basic concepts. This series originally started as our Bugbook series and many

titles are now being translated into Chinese, Japanese, German and Italian.

-We have pioneered the use of small, self-contained computers in hands-on courses for micro
computer us.ers. Many of our designs have evolved into commercial products that ore marketed
by E&L Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA
24072.

-Our short courses and seminar programs have been presented throughout the world. Programs
ore offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi
sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses and seminars are provided on a regular basis, cmd are also provided for groups,
companies and schools at a site of their choosing. We ore strong believers in practical labora
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703)
951-9030 or from Dr. Linda Leffel, Virginia Tech Continuing Education Center (703) 961-5241.

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chem

istry at Virginia Tech, and Ors. Jon Titus and Chris Titus who work full-time with The Blacksburg
Group, all of Blacksburg, VA.

	Preface
	Contents
	Chapter 1: 6502 Processor
	Chapter 2: Apple Interfacing
	Chapter 3: I/O Interfacing
	Chapter 4: Flags and Decisions
	Chapter 5: Breadboarding With the Apple
	Chapter 6: Apple Interface Experiments
	Chapter 7: On the Bus
	Appendix A: Logic Functions
	Appendix B: Parts Required for the Experiments
	Appendix C: 6502 Microprocessor Technical Data
	Appendix D: Apple Interface Breadboard Parts
	Appendix E: Printed-Circuit Board Artwork
	Index

