Appendix H Controlling the Apple Ilc Plus
Accelerator

This appendix describes how an assembly-language program can control the
cache glue gate array (CGGA) chip in the Apple lic Plus and provides code
samples that you can incorporate into your program. This information is
provided for the sake of completeness only. Any code that changes speed
settings for ports or that disables the CGGA cannot be run on any machine
other than the Apple llc Plus. Any code that does not strictly adhere to the
guidelines in this appendix is guaranteed not to work on future versions of
the Apple Ilc Plus. See the section “The Apple lic Plus Cache Glue Gate Array
(CGGA)” in Chapter 11 for a general description of the CGGA and for approved
methods of controlling the speed of the Apple Ilc Plus. =

625

When the Apple Ilc Plus is switched on or reset, ROM code for ports 1, 2, 5, and 6, and the code for the speaker
and game paddles cannot be cached; this code is restricted 1o running at 1.023 MHz. The code for ports 3, 4, and 7
can be cached, and so can run al up to 4 MHz. These seltings were chosen to allow code writlen for olher
Apple I computers to run on the Apple Ilc Plus; we recommend that you never change these seltings. Before
you decide whether or not to change these default seltings or disable the CGGA, consider the following points:

= Writing a 1 to any CGGA control word bits that are reserved can cause the system (o crash. The
Write command is described later in this appendix.

= Invalid data in 2 CGGA command can cause the system (o crash.

m Executing a CGGA command changes the state of the DHiRes switch, altering the state of
graphics screens. You must return the DHiRes switch Lo its original state when you are [inished
execuling any CGGA command.

m Ifyou speed up porl 2, the Wait routine in firmware (see Appendix F) runs at 4 MHz rather than
1 MHz. Use the Wait routine in the code sample at the end of this appendix instead.

s If you speed up port 2, modem code might fail to work correctly.
s If you speed up ports 5 and 6, the disk drives no longer function.

m If the ROM isn’t swilched in before you execute a CGGA command, the system will crash. If
RAM was switched in before you started, remember to return the RALCRAM soft switch to is
prior state before quilting.

s [f you attempt to speed up the game paddles, they no longer function.

= Executing the Write command to the CGGA when the CGGA is disabled causes unpredictable
results. You must be sure the CGGA is enabled before executing the Write command.

s There is no way o determine the state of the system's speed at any given time—many factors
cause it to change frequently.

a [f you execute a command to the CGGA on any machine other than the Apple Ilc Plus, the
system will crash.

m Making changes Lo the state of the CGGA can cause other applications to work incorrectly.

m Any or all of the above caveals may change with future revisions of the Apple 1ic Plus
hardware and firmware.

626 Apple 1lc Technical Reference

If your program makes any changes in CGGA settings, you must restore the CGGA to its original state before
your program exits. Any changes in CGGA settings can prevent another application from running properly. Each
time the system is reset, the Resel handler returns the CGGA to the default settings described at the beginning
of this section; if your application quits by resetting the system, your program does not have to reset the
CGGA.

CGGA commands

This section describes how to make calls Lo the CGGA 1o enable it, disable it, and change its mode of operation.

A Warning Modifying the acceleralor registers without a full understanding of the CGGA
and the Apple Ilc Plus hardware and firmware can render the system
inoperative, requiring the user to shut the machine off and turn it back on
again to regain control. a

To send a command lo the CGGA, you must first push the command parameters onto the stack, then execute a
JSR instruction to the accelerator entry point, $C7C7. The parameters consist of a pointer to a buffer (when
necessary) and a command number. For your convenience, sample code is provided with each command
description showing the proper way to set up the parameters for that call.

The CGGA firmware pulls the parameters off the stack and checks the command number to determine if it
corresponds to a valid command. If the command number is valid, the firmware performs the function
specified by the command and returns to the calling routine with a value of $00 in the A register (accumulator).
If the command number is not valid, the firmware returns the value $01 in the A register (o indicate an error. [n
either case, the ¢ (carry) flag is set. The calls themselves do not return errors. If the command number is valid,
the firmware assumes that the parameters provided are also valid.

APPENDIX H Controlling the Apple Ilc Plus Accelerator 627

Before sending a command to the CGGA, you must be sure that the lower half of the ROM (the main ROM) is
selected and that the ROM is switched in. To determine whelher the main ROM is selected, check the contents
of location $FCFF. If $FCFF contains a nonzero value, the main ROM is selected.

A Warning The system will crash if you send a command Lo the CGGA when the main
ROM is not both selected and switched in. a

628 Apple llc Technical Reference

$01

Enable Accelerator

Description 1t is possible for an application program to disable the CGGA completely. The Enable
Acceleralor command reenables the CGGA.
Command number $01
Parameter list Command number
Exanlplc lda %501 ;Enable Accelerator command
pha ;Command pushed on stack
jsr Accelerator_ Entry ;Jump to the Accelerator
;jentry point
$02 Disable Accelerator
Description The Disable Accelerator command disables the CGGA completely. The Apple [Ic Plus
operates at 1 MHz as if there were no CGGA chip installed.
Command number $02

Parameter list

Example

Command number

lda $502 ;Disable Accelerator command
pha ;Command pushed on stack
jsr Accelerator_Entry ;Jump to the Accelerator

;entry point

APPENDIX H Controlling the Apple Ilc Plus Accelerator 629

$03

Description

Command number
Parameter list

Example

Lock Accelerator

The Lock Accelerator command locks the CGGA so that it cannot receive any commands

except for the Unlock Accelerator command.

03

Command number

lda #503
pha
jsr Accelerator Entry

;Lock Accelerator command
;Command pushed on stack
;Jump to the Accelerator
;enctry point

$04

Description

Command number
Parameter list

Example

Unlock Accelerator

The Unlock Accelerator command reverses the effect of the Lock Accelerator command,

making it possible for the CGGA Lo accept all commands.

$4

Command number

lda #504
pha
jsrt Accelerator_Entry

630 Apple Iic Technical Reference

;Unlock Accelerator command
;Command pushed on stack
;Jump to the Accelerator
;jentry point

S05 Read Accelerator

Description The Read Accelerator command reads the CGGA registers, codes the state of the registers
into a 2-byte word known as the controf word, and places the control word in a buffer
defined by the calling routine. The coding for the control word is shown in Table H-1.

m Table H-1 Accelerator control word

Bit Meaning

Low byte

7 Speaker speed (1 = fast)
6 Port7speed (1 = fast)
5 Port 6speed (1 = fast)
4 Port5speed (1="fast)
3 Port 4 speed (1 = fast)
2 Port3speed (1= fas)
1 Port 2speed (1 = fast)
0 Port1speed (1 = fast)
High byte

7 Reserved

6 Paddle speed (1 = slow)
5 Reserved

4 Reserved

3 CGGA enable (1 = disabled)*
2 Reserved

1 Reserved

0 Reserved

* This bit is set and cleared by the Disable Accelerator and Enable Accelerator
commands, not by the Write Accelerator command. For the Write Accelerator
command, this bit is reserved.

APPENDIX H Conrolling the Apple Iic Plus Accelerator 631

Command number $05

Parameter list

Command number

Pointer to buffer in which to store the control word

Example lda

632

pha
lda
pha
lda
pha
jsr

¥<buffer ;High byte of buffer address
;Byte pushed on stack

#>buffer ;Low byte of buffer address
;Byte pushed on stack

#s$05 ;Read Accelerator command
;Command pushed on stack

Accelerator Entry ;Jump to the Accelerator

;entry point

Apple llc Technical Reference

$06

Description

Command number

Parameter list

Example

Write Accelerator

The Write Accelerator command sends a control word o the CGGA, resetlting the values in
the CGGA's internal registers. You can use this command to control which ports in the
Apple Illc run at 1 MHz and which run at 4 MHz. The CGGA control word is shown in Table
H-1. Notice that you use the Enable Accelerator and Disable Accelerator commands to set
or clear bit 3 of the high byte; do not write to this bit. All other bits are set by the Write
Accelerator command.

Important Executing the Write command to the CGGA when the CGGA is disabled
causes unpredictable results. Use the Read command—and then the Enable
command if necessary—o make sure the CGGA is enabled before executing
the Write command. &

$06

Command number
Pointer to buffer in which the control word is stored

lda #<buffer ;High byte of buffer address
pha ;Byte pushed on stack

lda #>buffer ;Low byte of buffer address
pha ;Byte pushed on stack

lda 4506 ;Write Accelerator command
pha ;Command pushed on stack

jsr Accelerator Entry ;Jump to the Accelerator

jentry point

APPENDIX H Conurolling the Apple Ic Plus Accelerator 633

Code sample

The following code sample constitutes a shell that goes around any calls you make to the CGGA. Several
roulines are provided; use only those that you need. The code sample includes the following routines:

m The main routine that calls the other subroutines.

m A routine that checks the ID bytes of the computer to determine if it is an Apple Ilc Plus. If
you are certain that the machine is an Apple lic Plus, you don't have to check it again, but
remember that any CGGA call causes any Apple 11 compuler other than an Apple lic Plus to
crash.

m A routine that saves the states of the DHiRes and 80Col soft switches and turns off 80-column
mode before you send any commands to the CGGA. If you can make your calls to the CGGA at
the beginning of your program before selting the DHiRes swilch and 80Col switch, then you
do not have to use this routine. Just be sure to set the DHiRes and 80Col switches to the
seltings you want after you have finished sending commands to the CGGA. Remember also to
switch in the main ROM before sending any commands to the CGGA, and to return the
RALCRAM soft switch to ils prior state when you are finished.

m A routine that restores the saved state of the machine.

m A routine that unlocks the CGGA so that it can receive commands. You must use this routine
before sending any commands to the CGGA.

m A routine that locks the CGGA so that no additional commands can be sent lo it during normal
system use. You must use this routine before quitting.

m A routine that you can use instead of the firmware version of the Wait routine (described in
Appendix F) if your program speeds up port 2.

634 Apple Iic Technical Reference

K T X M KK A KA A A XA N AR AR NN A AR I A A AN AN T T XXX XXT R AN TR NN kN

*using the accelerator:

*

*This code implements any of the calls documented
*in this section that talk to the accelerator in the IIc Plus,

*

* Entry:

x
* Exit:
*

*

HHKKHEHKAKA KK AH I AN KA RKRAFNAXNKAAN KK AAFRA AR A XK E "X Ak kkokk ko hok o odowox ok

use.accel
accel.entry equ

jsr
bcc
jsr
jsr

x

*add your call(s) here. See descriptions of calls for format

x

*

jsr
dont res

ROM must be enabled
C=0
A=0
X,Y undefined

sCcCc? ;entry point to talk to accelerator
check . id ;must be at least a IIc Plus

dont ;won't work on any other machine
save.state ;save state if you don't know what it
unlock ;jmust unlock it before anything else

lock ;must lock it when all finished

restore.state

;must restore it if you saved it

is

;go back to the calling routine or user

APPENDIX H Controlling the Apple Ilc Plus Accelerator

635

A K X K X X T T XN T XA KT AN XA AT AT A X XA N KT ENKF TR I N IRANN KK XK

*check.id: Calls to the accelerator can ONLY be made on
x a IIc Plus. If this call is made on any cther
* Apple II machine, the program WILL crash!
* This routine checks for the current IIc Plus
b and beyond (for future compatability).
* Eatry: ROM must be enabled
-
x Exit: C=0 if not Ilc Plus
* C=1 if IIc Plus
* A,X,Y undefined
IS SRS SRR AR RS E RS RS R SRR S SRR R R R R R SRR R SRR R E R E RS EREE RS
check.id
id1 equ SFBB3
id2 equ SFBCO
id3 equ $FBBF
lda idl ;should be 506
cmp #5006
bne no ;1f not IIc Plus then quit
lda id2
bne no :should be $00 -- if not then quit
lda id3 ;should be $2 5
bmi no ;make sure it's not the orig IIc with ¥SFF
cmp $50S
bcs done ;1f ¢=0 then it failed-- make sure it does!
no
clc ;clear carry means wrong machine
done res ;g0 back with status of test

636 Apple llc Technical Reference

KX H KN KK XA AN X AN A KRN AK A ALK A A A KA N XX XXX TXXEXXLCKRXTKE NN KN K ®xhokw

*save/unsave state:

*

*

*

*

*NOTE :

x

*

*

x

* Entry:
*

* Exit:
*

*

This routine saves and restores the states
of the double hires and 80 column soft
switches. It turns off 80 column mode

so that talking to the accelerator can't
accidently turn on double hires.

If you put any calls to the accelerator
BEFORE you set the state of the machine

at the beginning of your program, then

this routine will not be necessary. Simply
make sure your initialization routine

sets the 80 column switch and the double
hires switches to the state your program
requires after making any calls to the
accelerator.

nothing
A scrambled

80Col firmware is turned off
X,Y unchanged

YKk A N e S ok R R K KR K K ok ke ok ok sk ok ok ok W o Ak ok ok kR K ke e e Xk XK ok R K Wk e A e R R ke

save.state

rd80col equ
rddhires equ
on.80col equ
off.80col equ
on.dhires equ
off.dhires equ
lda
asl
bce
sta
Ql
lda
php
pla
sta
rts

unsave,.state
lda
pha
plp
bcec

sta
@1 bmi
sta
bpl
Q2 sta
done?2 res

temp dfb

$CO1F ;if bit 7 =1 then 80col is on
$CO7F ;1f bit 7 = 0 then dhires is on
SCO0D ;writing turns on 80 col
scooc ;writing turns off 80 col
SCOSE ;writing turns on dhires
SCOSF ;writing turns off dhires
rd80Ocol ;see if 80 column is on
a ;save state
Q1 ;1f branch then it‘'s off
off.80col ;turn it off first
rddhires ;see if double hires on
;save ¢ and n flags on stack
temp ;store result of both tests
;return to caller
temp ;get back the status flags

;want status flags back in P reg
Q1 ;branch 1f 80Col should be off
;because it already is

on.80col ;should be on - so turn it on
Q2 sbranch if dhires is off
on.dhires ;restore dhires to on

done?2 ;branch unconditionally

off.dhires ;restore dhires to off

500 ;used for temp storing of states

APPENDIX H Controlling the Apple lIc Plus Accelerator

637

KA A XA N A XA KX XL L AT KX KA AR AN N KNI A KN AT T AR ETXXEXIAXIATEAX AR IACKR ALK KKK H N X TN XK

*unlock: Unlocks the accelerator so it can be accessed. This
* must be done before anything else.
x
*NOTE : Please note that the state of some soft switches
* will be affected by this call. (See save/restore.state)
*
*Entry: nothing
*
*Exit: C=0
* A=0
AR R RS S R R R R SRS SR SRR A RS R R SRS R R SR R SRS R R R RS RN EEEEEEREERES
unlock
lda #5041 ;emd to unlock
pha ;store it on stack
jsr accel.entry ;call ROM
res ;back to caller
KA KKK IA N T X H XX TAXTAAANT AR T A AN H A XX KA X T AN A IR T AN LRE KRN XN T kA Aok kv ok okowk %Kk
*lock: Locks the accelerator so that normal system
* use cannot affect it. This must be the last
b call made to the accelerator.
«
*Entry: nothing
x
*Exit: Cc=0
* A=0
IR SRS RS EEEEEEEE RS KRN R R K W K K Rk K ok kb ek K e R K Ik Wk W R ok o K o e o kAW Kk koK ko ko ke
lock
lda #3503 ;emd to lock accelerator
pha ;store it on stack
jsr accel.entry ;call ROM
rts :back te caller

638 Apple Ilc Technical Reference

X A R X KX KT A K A A F R X XA X XK T K AR TR I T A X X A T A KX K A A N E X KX N X A XA XXX TN T A KN AN X AT

*Wait.ram: This replaces the ROM version of the wait routine

* if your program speeds up port 2.

*

*NOTE: Your program must call this routine and not the one in

* ROM, You may put this in the language card and disable
- the ROM if you are not using any other ROM routines.
*NOTE : This routine will run correctly at either fast or normal
* speed. It can also be run on any other version of the IIc
N or Ile without harm.

*

*Entry: A=$00 - SFF depending on the amount of time to wait:

* Min delay = 1/2(50+25A+5A"2)+29

* Delay is at least as great as caused by the wait routine in ROM,
* and in most cases 1s exactly the same.

* This routine has A-12 fewer cycles than the wait routine
* in ROM.

* X,Y,P undefined

*

*Exit: X, Y unchanged

* A=500

* P undefined

KA K H AR KKK KKK AKX A XA A X R A XA N A A AR A AN A XK LI R AKX TK AT IR K XK KKK KK K KKK h ok kok ok ok Aok ok

wait.ram
kbd equ

phy
ldy
phx
sec
txa

(]
—

lda
txa
@2
sbe
bne
dex
bne
plx
ply
res

$C000

#5D0

kbd, Y

#s501
@2

@1

. ;address offset

;save X and Y

+SCODO is guaranteed 50 ms slow
;on ITc Plus but won't hurt other

;I1Ic or Ile's
;save walt value

;this starts the

for port I/0O

slow down

;new version of wait routine

smin delay = 1/2(50+25A+5A"2)+29
;timing is at least that of the old
;one and 1n most cases exact timing!

;restore X and Y

APPENDIX H Controlling the Apple llc Plus Accelerator

639

