
Appendix H Controlling the Apple He Plus
Accelerator

This appendix describes how an assembly-language program can control the

cache glue gate array (CGGA) chip in the Apple He Plus and provides code

samples that you can incorporate into your program. This information is

provided for the sake of completeness only. Any code that changes speed

settings for ports or lhat disables the CGGA cannot be run on any machine

other than the Apple lie Plus. Any code that does not strictly adhere to the

guidelines in this appendix is guaranteed not to work on future versions of

the Apple lie Plus. See the section The Apple lie Plus Cache Glue Gate Array

(CGGA)" in Chapter 11 for a general description of the CGGA and for approved

methods of controlling the speed of the Apple He Plus. •

625

When the Apple He Plus is switched on or reset, ROM code for ports 1,2,5, and 6, and the code for the speaker
and game paddles cannot be cached; this code is restricted to running at 1.023 MHz. The code for ports 3,4, and 7
can be cached, and so can run at up to 4 MHz. These settings were chosen to allow code written for other
Apple II computers to run on the Apple he Plus; we recommend that you never change these settings. Before
you decide whether or not to change these default settings or disable the CGGA, consider the following points:

• Writing a 1 to any CGGA control word bits thai are reserved can cause the system to crash. The
Write command is described later in this appendix.

• Invalid data in a CGGA command can cause the system to crash.

• Executing a CGGA command changes the state of the DHiRes switch, altering the state of
graphics screens. You must return the DHiRes switch to its original state when you are finished
executing any CGGA command.

• If you speed up port 2, the Wail routine in firmware (see Appendix F) runs al 4 MHz ralher than
1 MHz. Use the Wait routine in the code sample at the end of this appendix instead.

• If you speed up port 2, modem code might fail to work correctly.

• If you speed up ports 5 and 6, the disk drives no longer funclion.

• If the ROM isn't switched in before you execute a CGGA command, the system will crash. If
RAM was switched in before you started, remember to return the RdLCRAM soft switch to its
prior state before quitting.

• If you attempt to speed up the game paddles, they no longer function.

• Executing the Write command to the CGGA when the CGGA is disabled causes unpredictable
results. You must be sure the CGGA is enabled before executing lhe Write command.

• There is no way to determine the state of the system's speed at any given time—many factors
cause it to change frequently.

• If you execute a command to the CGGA on any machine other than the Apple He Plus, lhe
system will crash.

• Making changes to the state of the CGGA can cause other applications to work incorrectly.

• Any or all of the above caveats may change with future revisions of the Apple He Plus
hardware and firmware.

626 Apple He Technical Reference

r

If your program makes any changes in CGGA settings, you must restore the CGGA to its original state before
your program exits. Any changes in CGGA settings can prevent another application from running properly. Each
time the system is reset, the Reset handler returns the CGGA to the default settings described at the beginning
of this section; if your application quits by resetting the system, your program does not have to reset the
CGGA

CGGA commands

This section describes how lo make calls to the CGGA to enable it, disable it, and change its mode of operation.

• Warning Modifying the accelerator registers without a full understanding of the CGGA
and the Apple He Plus hardware and firmware can render the system
inoperative, requiring the user to shut the machine off and turn it back on
again to regain control, A

To send a command to the CGGA, you must first push the command parameters onto the stack, then execute a
JSR instruction to the accelerator entry point, $C7C7. The parameters consist of a pointer to a buffer (when
necessary) and a command number. For your convenience, sample code is provided with each command
description showing the proper way to set up the parameters for that call.

The CGGA firmware pulls the parameters off the stack and checks the command number to determine if it
corresponds to a valid command. If the command number is valid, lhe firmware performs lhe function
specified by the command and returns to the calling routine with a value of $00 in the A register (accumulator).
If the command number is not valid, the firmware returns the value $01 in the A register to indicate an error. In
either case, the c (carry) flag is set. The calls themselves do not relurn errors. If the command number is valid,
the firmware assumes that the parameters provided are also valid.

APPENDIX H Controlling the Apple He Plus Accelerator 627

Before sending a command to the CGGA, you must be sure that the lower half of lhe ROM (lhe main ROM) is
selected and that the ROM is switched in. To determine whether lhe main ROM is selected, check the contents
of location $FCFF. If SFCFF contains a nonzero value, the main ROM is selected.

• Warning The system will crash if you send a command to lhe CGGA when lhe main
ROM is not both selected and switched in. •

628 Apple lie Technical Reference

$01 Enable Accelerator

Description It is possible for an application program to disable the CGGA completely. The Enable
Accelerator command reenables the CGGA.

Command number $01

Parameter list Command number

Example Ida
pha
jsr

#$01

Accelerator_Entry

/Enable Accelerator command
/Command pushed on stack
/Jump to the Accelerator
/entry point

$02 Disable Accelerator

Description The Disable Accelerator command disables the CGGA completely. The Apple lie Plus
operates at 1 MHz as if there were no CGGA chip installed.

Command number $02

Parameter list Command number

Example Ida
pha
j s r

#302

Acce l e r a to r_En t ry

/ D i s a b l e A c c e l e r a t o r command
/Command pushed on s t ack
/Jump t o t h e A c c e l e r a t o r
/ e n t r y p o i n t

APPENDIX H Controlling the Apple Be Plus Accelerator 629

$03 Lock Accelerator

Description The Lock Accelerator command locks the CGGA so that it cannot receive any commands

except for the Unlock Accelerator command.

Command number $03

Parameter list Command number

Example Ida
pha
jsr

#$03

Accelerator_Entry

/Lock Accelerator command
/Command pushed on stack
/Jump to the Accelerator
/entry point

$04 Unlock Accelerator

Description The Unlock Accelerator command reverses the effect of the Lock Accelerator command,
making it possible for the CGGA to accept all commands.

Command number $04

Parameter list Command number

Example Ida
pha
jsr

#$04

Accelerator_Entry

/Unlock Accelerator command
/Command pushed on stack
/Jump to the Accelerator
/entry point

630 Apple lie Technical Reference

$05 Read Accelerator

Description The Read Accelerator command reads the CGGA registers, codes the state of the registers
into a 2-byte word known as the control word, and places the control word in a buffer
defined by the calling routine. The coding for the control word is shown in Table H-l.

Table H-l Accelerator control word

Bit Meaning

Low byte

7
6
5
4
3
2
1
0

Speaker speed (1
Port 7 speed (1 •
Port 6 speed (1 :

Port 5 speed (1 '
Port 4 speed (1 =
Port 3 speed (1 =
Port 2 speed (1 •
Port 1 speed (1 =

High byte

7
6
5
4
3
2
1
0

Reserved
Paddle speed (1 •
Reserved
Reserved
CGGA enable (1 •
Reserved
Reserved
Reserved

= fast)
• fast)
• fast)
= fast)
• fast)
• fast)
• fast)
= fast)

slow)

disabled)'

• This bit is set and cleared by the Disable Accelerator and Enable Accelerator
commands, not by the Write Accelerator command. For the Write Accelerator
command, this bit is reserved.

APPENDIX H Controlling the Apple He Plus Accelerator 631

Command number $05

Parameter list Command number
Pointer to buffer in which to store the control word

Example ^da #<buffer /High byte of buffer address
/Byte pushed on stack
/Low byte of buffer address
/Byte pushed on stack
/Read Accelerator command
/Command pushed on stack
/Jump to the Accelerator
/entry point

Ida
pha
Ida
pha
Ida
pha
jsr

#<buffer

#>buffer

#$05

Accelerator Entry

632 Apple He Technical Reference

$06 Write Accelerator

Description The Write Accelerator command sends a control word to the CGGA, resetting the values in
the CGGA's internal registers. You can use this command to control which ports in the
Apple lie run at 1 MHz and which run at 4 MHz. The CGGA control word is shown in Table
H-l. Notice that you use the Enable Accelerator and Disable Accelerator commands to set
or clear bit 3 of the high byte; do not write to this bit. All other bits are set by the Write
Accelerator command.

A Important Executing the Write command to the CGGA when the CGGA is disabled
causes unpredictable results. Use the Read command—and then the Enable
command if necessary—to make sure the CGGA is enabled before executing
the Write command, A

Command number $06

Parameter list Command number
Pointer to buffer in which the control word is stored

Example Ida
pha
Ida
pha
Ida
pha
jsr

#<buffer

#>buffer

#S06

Accelerator Entry

/High byte of buffer address
/Byte pushed on stack
/Low byte of buffer address
/Byte pushed on stack
/Write Accelerator command
/Command pushed on stack
/Jump to the Accelerator
/entry point

APPENDIX H Controlling the Apple He Plus Accelerator 633

Code sample

The following code sample constitutes a shell that goes around any calls you make to the CGGA. Several
routines are provided; use only those that you need. The code sample includes the following routines:

• The main routine that calls the other subroutines.

• A routine that checks the ID bytes of the computer to determine if it is an Apple lie Plus. If
you are certain that the machine is an Apple He Plus, you don't have to check it again, but
remember that any CGGA call causes any Apple II computer otherlhan an Apple lie Plus to
crash.

R A routine that saves the states of the DHiRes and 8OC0I soft switches and turns off 80-column
mode before you send any commands to the CGGA. If you can make your calls to the CGGA at
lhe beginning of your program before selling the DHiRes switch and 8OC0I switch, then you
do not have to use this routine. Just be sure to set the DHiRes and 8OC0I switches to the
settings you want after you have finished sending commands to the CGGA. Remember also to
switch in the main ROM before sending any commands to the CGGA, and to return the
RdLCRAM soft switch to its prior state when you are finished.

• A routine that restores the saved state of the machine.

• A routine that unlocks the CGGA so that it can receive commands. You must use this routine
before sending any commands to the CGGA.

• A rouline that locks the CGGA so that no additional commands can be sent to it during normal
system use. You must use this routine before quitting.

• A routine that you can use instead of the firmware version of the Wait routine (described in
Appendix F) if your program speeds up port 2.

634 Apple lie Technical Reference

*using the accelerator:
*
•This code implements any of the calls documented
*in this section that talk to the accelerator In the lie Plus.

* Entry: ROM must be enabled
w

* Exit: C=0
* A=0
* X,Y undefined

/entry point to talk to accelerator

/must be at least a H e Plus
/won't work on any other machine
/save state if you don't know what it is

/must unlock it before anything else

*
•add your call(s) here. See descriptions of calls for format

jsr lock /must lock it when all finished

jsr restore. state /must restore it if you saved it
dont rts ;go back to the calling routine or user

use.accel
accel.entry equ

jsr
bec
jsr

jsr

$C7C7

check . id
dont
save.state

unlock

APPENDIX H Controlling the Apple He Plus Accelerator 635

r w * * W * r * w * * * * * # K * * * * * * l r » # * * * i r w * * * * « * * i

"check.id: Calls to the accelerator can ONLY be made on
* a lie Plus. If this call is made on any ether
* Apple II machine, the program WILL crash!
* This routine checks for the current lie Plus

and beyond (for future compatability).
*
* Entry: ROM must be enabled
*
* Exit: C=0 if not lie Plus
* C=l if H e Plus

A,X,Y undefined
r # * * * * * W * * * * * * * * * 1 r * * - * * * * * * * * * * * - * - * * * *

check.id
idl
id2
id3

equ
equ
equ

SFBB3
SFBC0
SFBBF

Ida idl
emp #$06
bne no

/should be $06

/if not He Plus then quit

Ida
bne

id2
no /should be $00 — if not then quit

Ida
bmi
emp
bcs

id3
no
#$05
done

/should be $> 5
/make sure it's not the orig lie with #SFF

;if c=0 then it failed-- make sure it does!

done
clc
rts

/clear carry means wrong machine
/go back with status of test

636 Apple lie Technical Reference

*save/unsave s t a t e :

f * * * * » f t * * * * * * * * » » * * I » * » » « * < t » I * * * * * l l * » * * l (* l [X

This routine saves and restores the states
of the double hires and 80 column soft
switches. It turns off 80 column mode
so that talking to the accelerator can't
accidently turn on double hires.

•NOTE: If you put any calls to the accelerator
BEFORE you set the state of the machine
at the beginning of your program, then
this routine will not be necessary. Simply
make sure your initialization routine
sets the 80 column switch and the double
hires switches to the state your program
requires after making any calls to the
accelerator.

Entry: nothing

Exit: A scrambled
80Col firmware is turned off
X,Y unchanged

save.state

r * * * * * * * * * * * * * * * * * *

rd80col
rddhires
on.80col
off.80col
on.dhires
off.dhires

ei

unsave. state

31

02
done2

equ
equ
equ
equ
equ
equ

Ida
asl
bee
sta

Ida
php
pla
sta
rts

Ida
pha
pip
bee

sta
bmi
sta
bpl
sta
rts

$C01F
$C07F
SC00D
SCOOC
SC05E
$C05F

rdSOcol
a
@1
off.80col

rddhires

temp

temp

01

on .80col
02
on .dhires
done2
off.dhires

/if bit 7 =1 then 80col is on
/if bit 7 = 0 then dhires is on
/writing turns on 80 col
/writing turns off 80 col
/writing turns on dhires
/writing turns off dhires

/see if 80 column is on
/save state
/if branch then it's off
/turn it off first

/see if double hires on
/save c and n flags on stack

/store result of both tests
/return to caller

/get back the status flags

/want status flags back in P reg
/branch if 80Col should be off
/because it already is
/should be on - so turn it on
/branch if dhires is off
/restore dhires to on
/branch unconditionally
/restore dhires to off

temp dfb $00 /used for temp storing of states

APPENDIX H Controlling the Apple lie Plus Accelerator 637

•unlock: Unlocks the accelerator so it can be accessed. This
* must be done before anything else.
*
*NCTE: Please note that the state of some soft switches

* will be affected by this call. (See save/restore.state)

'Entry: nothing

•Exit: C=0
A=0

**
unlock

Ida #$0-1 ; cmd to unlock
pha /store it on stack
jsr accel.entry /call ROM
rts /back to caller

**
*lock: Locks the accelerator so that normal system
* use cannot affect it. This must be the last
* call made to the accelerator.
*
•Entry: nothing
*
•Exit: C=0

A=0
**
lock

Ida If$03 /cmd to lock accelerator
pha /store it on stack
jsr accel.entry /call ROM
rts /back to caller

638 Apple lie Technical Reference

r * * * * * * * * * * * » r * * * * * * * * * * » r * * * * * w .

'Wait.ram: This replaces the ROM version of the wait routine
* if your program speeds up port 2.

'NOTE: Your program must call this routine and not the one in
ROM. You may put this in the language card and disable
the ROM if you are not using any other ROM routines.

'NOTE: This routine will run correctly at either fast or normal
speed. It can also be run on any other version of the lie
or lie without harm.

•Entry: A=$00 - SFF depending on the amount of time to wait:
Min delay = 1/2 (50 + 25A+5A"2)+29
Delay is at least as great as caused by the wait routine in ROM,
and in most cases is exactly the same.
This routine has A-12 fewer cycles than the wait routine
in ROM.
X,Y,P undefined

•Exit: X, Y unchanged
A=$00
P undefined

wait.ram

**

kbd equ $C000 :address offset for port I/O

81

02

phy
ldy
phx
sec
txa

Ida
txa

sbc
bne
dex
bne
plx
ply
rts

#$D0

kbd, Y

#$01
82

91

/save X and Y
;$C0D0 is guaranteed 50 ms slow
/on lie Plus but won't hurt other
/He or He's
/save wait value

/this starts the slow down
/new version of wait routine

/min delay = 1/2(50+25A+5A"2)+29
/timing is at least that of the old
/one and in most cases exact timing!

/restore X and Y

APPENDIX H Controlling the Apple He Plus Accelerator 639

