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IMPORTANT
Read This Notice

Any software or computer hardware modifications are done at your own risk.
Neither the PUBLISHER nor the AUTHOR assumes any responsibility or liability
for loss or damages caused or alleged to be caused directly or indirectly by applying
any modification or alteration to software or hardware described in this book,

including but not limited to any interruption of service, loss of business, anticipatory
profits or consequential damages resulting from the use or operation of such
modified or altered computer hardware or software. Also, no patent liability is
assumed with respect to the use of the information contained herein.

While every precaution has been taken in the preparation of this book, the
PUBLISHER and the AUTHOR assume no responsibility for errors or omissions.

The reader is the sole judge of his or her skill and ability to perform the
modifications and/or alterations contained in this book.



Editor’s Note
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and all the fine folks of IJG, Inc., for helping in so many ways.

Charles Trapp
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The Tools You Will Need

General Information

For those of you who have not previously done many hardware modifications or
detailed analyses of schematic diagrams, this general information section gives easy
to understand tips on the tools you will need, logic diagrams, binary and decimal
numbering systems, and wire-wrapping and soldering techniques.

The Tools You Will Need

Your basic APPLE II Computer, with some attachments and software, is a
thousand-dollar item. So I'll not encourage you to use dime-store tools. Buy the best
you can afford, keep them clean, and reserve them just for use onthe APPLE. Don’t
double up tools with the family auto. You may not need them all, but here is my
customizer’s toolbox:

A medium-sized flat-blade screwdriver and Phillips blade screwdriver
(areversible combination is ideal). With these you open cases and remove
cabinets.

A jeweler’s set of flat and Phillips blade screwdrivers; hex nut drivers
are optional. These drivers can be used to align tape heads, help make
delicate wire bends, adjust trimmer controls and even repair watches.

One very thin screwdriver for lifting integrated circuits out of sockets.
This will be its only purpose, but the first time you break the pins off a $10
jumper cable, you'll wish you’d used it!

Small scissor-type cutters (manicuring types are excellent). These will be
used for snipping leads in tight spots.

Small diagonal wire cutters and/or front-cutting ‘nippers’. Your general
purpose cutters. They are fast and easy to use, but not to be used for heavy
wire around the house.

The Custom Apple
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The Tools You Will Need

Needlenose pliers (two pairs, normal and 90-degree types). You'll need
these for bending leads, also extracting bits and pieces you've dropped into a
nest of wiring.

An X-acto type knife, with a strong blade and handle you feel comfortable
with. Since this will be used to cut delicate solder traces, you should be able
to handle it deftly. I use a single edged razor blade, but have leather fingers!

A scalpel, if you can get one. For very delicate trimming and scraping; a
dental pick for pulling off solder balls or lifting parts off a board (get this item
from an obliging dentist — they are often discarded when worn); tweezers
and needle point hooks. The latter comes in handy for tracing incorrect wire-
wrapping connections.

Rat-tail, triangular, and flat files. These are only for sprucing up the
cosmetics, so if you don’t care how it looks, save a few bucks.

A wire-wrapping tool. The decision on this can be tough. If you can afford
it, get one of the electrically operated slit-and-wrap types, stay away from
‘just wrap’ tools, since they depend on the sharpness and quality of the
sockets; also they are useless for wrapping capacitors or resistors. I use a
simple double-ended tool sold by Radio Shack for about $5. It wears out
after a thousand or so connections, but it fits my hand well, and is not clumsy
like some electric units.

A soldering iron. The decision is not easy. Should you spend top dollar and
get an expensive one or buy a cheap unit that can be discarded when it wears
out? I use a $5 soldering iron which can be junked when it gets beat, but my
editor uses the best he can get (a $30 temperature-controlled one). I file a set
of $1 tips to my satisfaction, and lubricate the threads with white heat sink
grease. This way I have a few different tips at my disposal. You never file
plated tips.

A Multimeter. The voltage regulators in your Apple are very good, so any
problems will usually show up as gross errors. This offers you a way out of

buying an expensive multimeter; for most of these projects, the $10 pocket
variety will suffice. However, for lots of repair work a better meter is in order;
I use a $40 type (not digital!) for my work.

An oscilloscope. For the projects, no. But for repairs, yes. Don’t panic
thinking of a thousand dollars for a digital scope, because an old color
television scope will do perfectly well; they can be found in the bargain bins
for $50 to $100. If it saves you a $100 repair bill, you’ve paid for it. Mine is an
old RCA type WO0-90Q, built for early color TV, and just fine for the bulk of
your Apple work.

You will also need supplies in the tool box. Among these are:

8 General Information

Solder. Get the best you can afford. There’s nothing so unpleasant as a great
glob of the stuff between two traces on a board. Order the multicore rosin
flux type, and stay away from most of the off-the-shelf stuff. Remember,
multicore rosin type only, and the finer the gauge the better. Never use acid
flux solder, as used by plumbers and electricians.



Schematics

Soldering wick. Marketed under the names Spirig, Solder Up and Solder
Wick, it’s a copper braid impregnated with soldering flux. When heated with
the soldering iron it absorbs Solder off the board, thus freeing components.

Don’t do without this stuff unless you like fried circuit boards and burnt
fingers.

Wirewrap wire. Also called by the tradename Kynar, thisis 28-or 30-gauge

single-strand wire used to interconnect the pins of wire wrap sockets. It
comes in an assortment of colors; get them all, so you can keep data, address,

power and ground lines separate.

Multiconductor cable. The more flexible wire is easier on the coordination,
but also the most expensive. Best buy is Spectra Twist, and its kin, from

surplus houses. If you need jumper cables, buy them; Making a two-ended,
40-pin jumper cable can be three hours of maddening work.

Bus wire. This is solid, uninsulated stuff. A small roll will do for a lifetime. 1
use it for wiring, securing bulky capacitors to circuit boards, holding bundles
of things together and for making special tools.

Miscellaneous. Sockets, perforated board, mounting hardware, and such
will always be needed.

Details about supplies needed for each project in this book will be presented
with the project. Except for integrated circuits, most of the items are available right
off the shelf at a local Radio Shack or other electronics supply house.

Schematics

Schematic drawings of electronic circuits are identical to maps. They show
routes, direction, junctions, relative importance and functions of locales, two-way
and one-way streets, traffic flow and congestion and so forth. At first, the symbols
may seem like the mysterious hieroglyphics of a secret society, but their symbolism
can soon become as familiar as a roadmap. Even strange places can be assessed
from afar.
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Schematics

First, the symbols. A line is a wire running from some point in the circuit to
another. Consider the sketches below:

A @ ®
@

8 & =5

co /M “#

Y — ]

E® 4 @

The first drawing is a simple wire. The electrical path moves from one point to
another, in either direction. By following the path of a wire point to another, in either
direction. By following the path of a wire through a circuit, the pattern of connections
can be discovered. When wires are forced to cross one another, but not to connect
with each other, it must be made clear. On a roadmap, non-intersecting roads are
shown either by a break in one of the intersecting lines, or in showing interstate
highways, merely by crossing one ‘below’ the other in a different color.

Sketches b, ¢ and d are the three ways of drawing wires which do not connect to
each other. The first, simple crossing them, is the most common. The second
method places a semicircular bump in the crossing path, and it used by Sams
Publications in this country and commonly in Europe. Occasionally the broken path
crossing shown in sketch d is used.

When wires connect, a dot is used to clarify that a connection is to be made.

Occasionally, you may come across earlier schematics which use the ‘bump’ method
of showing unconnected wires. On these schematics, the lack of a bump indicates

wires are connected.

The wires (or patterns of copper etched on circuit boards) connect electronic
components. Some of them are:

TRANSISTORS
RESISTOR 0 CAPACITORS

A AYA 1L+l
—p— T T roLarzzen

DIODE PNP NPN FET
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Schematics

Since this is a lesson in reading schematics and not electronic theory, I
recommend that you turn to an excellent book by Forrest Mims, ‘Engineer’s
Notebook’, sold by Radio Shack, for an introduction to what each of these parts
does. Briefly, the symbol for a resistor has the flavor of a long wire being
compressed, meaning the electrical flow is somehow being resisted. The innards of a
capacitor generally consist of metal foil separated by a non-conducting paper or
plastic, and the capacitor’'s schematic symbol is fairly representative, with two
plates facing each other but not joining.

Some capacitors are designed to fit into a circuit in only one direction; these
capacitors are identified on their bodies by a positive or negative sign. Another one
direction (polarized) device is the diode. It consists of an arrowhead striking a
barrier, implying that current may flow in the direction of the arrowhead, but not
back across the plate. The body of a diode may have the diode symbol imprinted on
it, or a band to indicate the ‘barrier’ end.

The transistor usually has three connections (such connections are called ‘leads’
on small parts such as these). These leads are identified as collector, base and
emitter or source, gate and drain, depending on the transistor type. This will be
shown on the diagram, and the transistor will be imprinted with the information, or it
will be provided on the package in which the transistor is sold.

A few other symbols are:

VARIABLE RESISTORS TRANSFORMER

yc Vv VARIABLE CAPACITOR

=[]~

CRYSTAL

The first is a transformer, whose job it is to take current fed into one coil and
induce that current, into a second coil. An iron or ferrite center (the parallel lines in
the symbol) aids in efficent transfer of that current.

The next three symbols look like resistors and capacitors, which they are. The
added arrows show that their values may be varied; hence, they are called variable

resistors and variable capacitors. The variable resistor is best known as the volume
control on a television, and the variable capacitor is found as the tuning control on a
table radio.

The Custom Apple
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Schematics

The last symbol is a crystal, a piece of cut quartz capable of vibrating
(resonating) under certain electrical conditions. Because a crystal is a very accurate,
fixed, molecular device, it’s capable of resonating (also called oscillating) at precise
intervals. It is used for the master control of all pulses in the APPLE.

A few directional symbols are now in order:

GROUNDS POWER
__>

LY T—C

EARTH  CHASSIS COMMON

The first are known as grounds, and they are used to indicate a potential of zero
or neutral voltage. The first of the trio is an earth ground, commonly used in radio,
television and hi-fi schematics, but purist use it only describe an actual connection
to a ground spike or cold water pipe. The second is a chassis ground, indicating an
electrical connection to the metal case which encloses the circuit. It is often (though
incorrectly) interchanged with the earth ground.

The last of the three grounds is a ‘common’ or neutral ground, and the one which
is used to indicate the zero voltage line in the computer. All other voltages within the
computer system are described in terms of their relation to this ground.

The next quartet of symbols indicate power. The up arrow generally points to an
actual voltage value (such as +5 or +12). The horizontal line indicates merely a

‘high’ is made to the normal positive power supply for the circuits in the system (+5
volts in the TRS-80).

Non-positive voltages have no standard symbols. Negative (or below ground)
voltages can have either a horizontal arrow or a down arrow, pointing to the voltage

desired at that point. The schematic tells you that a connection is made to the
voltage level shown.

Another use of a horizontal arrow is to point to important connections to be made
elsewhere on the schematic or on other sheets of the schematic. In the former case,
the arrow is used because actually drawing the wire may clutter the schematic,
making it illegible. When you see an arrow, be sure to find the other end of the
connection described (indicating words such as ‘clock’, ‘mem’ or ‘port FF’ may be
used as guides to where the connection is made).
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Schematics

Another useful symbol is the last of the group above, the pad. It indicates a
significant connection, usually to another device or circuit board. Using this symbol

makes it clear that the connection is to be made somewhere off the board on which
you are working.

The most common families of parts found in computer circuits are shown below:

1) ) >
L/
AND OR
—1 ) | >
—_— ]
NAND NOR
— >
l/
BUFFER (a) (b)
INVERTER

These symbols represent integrated circuits, those multiple lead, buglike
packages that handle the bulk of the work in the computer. Briefly, these are logical
building blocks. Sometimes there are several blocks in one integrated circuit, and
these various blocks may be scattered throughout the circuit diagram. This can be

confusing when actually building a circuit, but since pin (lead) numbers are given,
you only have to remember where you put the part.

Basically, that covers reading a schematic roadmap. Below is a section of circuit.
See how the logic elements are connected to each other. An arrowhead indicates a
wire leading off the board, and power and ground connections are shown. The
numbers on the logic elements are the pin numbers for the component connections:

1/0 Enable = 1/0-Select.

u2 [
2114 2114
8l
TS A9 CS A
5
16 | =——4A0
8 A

winlald o oo
»
o

Pin out 6522
Pinout 2114
Pin out 4050
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Be Tolerant

Be Tolerant

Every electronic component is manufactured to work within specific limits,
whether they be accuracy, temperature, speed, power use or other limit. These are

the components parameters or tolerance. The circuits in this book have been
designed to use the most commonly available parts, so the matter of tolerances is
rarely important. However, sometimes those tolerances are important, such as when
talking about memory speed or power supply voltages.

Power supply should be within five percent of the voltage specified; a supply
indicated at five volts may vary only from 4.5 volts to 5.5 volts. By using the power

supply regulators shown in the schematics, these voltages should not be of concern.
Unless you are familiar with power supply design, do not attempt to use other
methods of regulation.

Very few of the resistors have tolerances noted on the schematics. The rule of
thumb is one quarter watt at five percent, but if you can only obtain half watt units, or
10 or 20 percent resistors, don’t be concerned. The quarter watt resistors are a bit
less costly and are a bit more aesthetically appealing. Consider also that if a resistor

is specified as 1,000 ohms, a 20 percent deviation gives arange of 800 ohms to 1,200
ohms. Thus, the standard values of 910 ohms or 1,200 ohms should do as well.

Capacitors are notoriously sloppy in their tolerances, especialy electrolytic
types (those whose polarity is marked on the schematics). These normally vary from
20 percent low to more than 100 percent high — thus, when a 500 microfarad
capacitor is noted, it can range from 400 to 1,000 microfarads. Also, there is some

revision in the standard numbering method used for parts values: 470 microfarads is
now being called 500 microfarads, for example. So when you try to obtain a capacitor
value marked in the parts list, remember that a nearby higher value is fine.

Voltage parameters for polarized (electrolytic) capacitors are important. Never
get an electrolytic capacitor with a value less than that specified, but do not hesitate
to take one with a higher voltage parameter. That is, a capacitor specified at 47
microfarads, 16 volts, can be replaced with one specified at 50 microfarads, 35 volts.
It may be physically larger, but it will work equally well.

If you walk into a store and hand the sales clerk a parts list, don’t be surprised if
you are asked a few more questions. You might be faced with chosing between parts
which are identical as far as the parts list in this book is concerned, but which include
other parameters.

Resistors can be carbon composition, carbon film, glass or wire-wound. These
days, carbon film is common and cheap, and that’s your first choice. Carbon
composition is the next choice at a lower quality, and glass is excellent but at a higher
cost. Forget wire wound, because they can contribute unwanted side effects.
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Those Colors

Ordinary capacitors are manufactured in many ways: ceramic, polstyrene,
polyester, silver mica, polycarbonate and paper. For the bypass capacitors
necessary for all the circuits in this book, ceramic types are your choice. Cheap. If
you get silver mica, so much the better, but you'll pay a price. Watch out for
polystyrenes or polyesters if you plan to solder, because they are delicate and you
can damage them with too much heat. Otherwise they are excellent, but quality
overkill. Polycarbonates are slick types, and you might consider using these if you
build the 8-track mass storage system. Run the other way if you see paper
capacitors. '

Electrolytic capacitors come in two basic types — metal cans (covered with
plastic), and those manufactured using tantalum (an expensive metal of great
strength and purity). For most digtal projects, choose the ordinary cans. Tantalums
of the same value, although smaller, high quality, and very pert looking, are costly
and not required here.

Digital integrated circuit part numbers are generic, which means that a 74 LS00
circuit might be sold as an SN74LS00 or an NEC-74L800. The prefix characters
refer to manufacturers. On the other hand, those parts whose numbers contain ‘LS’

may not be substituted by parts marked ‘S’ or ‘C’ or by those with no markings.
74LS00 may not be replaced by 7400, 74S00,or 74 C00, nor may they be exchanged
for each other. When integrated circuits are specified, try not to substitute with

other circuit ‘families’.

This section will not make you a master schematic reader; only practice will do
that. Pick up copies of the Engineer’s Notebook mentioned above, as well as various
of the project books sold by Radio Shack and others.

Those Colors: What They Mean and How to Read Them

The color codes used for resistors, capacitors and other parts are brought to you
by the same folks that brought your phrases like 10W-40 and RS-232C: the
standards-setting powers of the engineering industry. It becomes an international
shorthand.

The colors are black, brown, red, orange, yellow, green, blue, purple, grey and
white. If you can’t immediately remember that, then pick up a piece of multi-
conductor “rainbow” cable. The colors are all there in the same order. The table
below presents the color codes and how they can be read on the bodies of resistors,
capacitors and diodes.

The Custom Apple
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Those Colors

FIRST AND SECOND THIRD COLOR BAND
COLOR BANDS

BLACK 0 BLACK 0

BROWN 1 BROWN X 10

RED 2 RED X 100
ORANGE 3 ORANGE X 1000
YELLOW 4 YELLOW X 10,000
GREEN 5 GREEN X 100,000
BLUE 6 BLUE X 1,000,000
VIOLET 7 SILVER 100

GRAY 8 GOLD 10

WHITE 9

FOURTH COLOR BAND IS THE TOLERANCE
GOLD = 5% SILVER = 10% NONE = 20%

What do these values mean? Resistance is a kind of objection to electron flow,
measured in ohms (pronounced with a long O). The abbreviation is a Greek omega
( 2). Thousands of ohms are kilo-ohms, or just kilohms and abbreviated K (k in
Europe). Millions of ohms are megohms, abbreviated simply M. The ability of a
resistor to withstand electrical current is measured in Watts (W). Most computer
work is done with 1/4 Watt resistors.

For resistors without color bands, the values are stamped on using R (instead of
omega) for ohms, K and M.

Capacitance is the inclination of a non-conducting object to store an electrical
charge, measured in Farads. The abbreviation is a capital F. Since this is a very large
amount of capacitance, real work is generally done in millionths of Farads, or
microfarads (mF), and millionths of millionths of Farads, called picofarads (pF).
Since many of the more popular capacitance ranges for computer work fall between
these two figures, the abbreviation for thousandths of millionths of Farads, or
nanofarads (nF) is common in Europe. The ability of a capacitor to withstand
voltage is measured in voltage tolerance (V).

Capacitance is usually printed on the capacitor in mF; color bands are rare.

Picofarads are marked “p”’; the absence of an abbreviation indicated microfarads.
Note that these capacitor “base values” are equivalent: 18=20, 27=30, 39=40,
47=50.
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Copacetic Comprehension

Copacetic Comprehension

There will doubtless be a day when books like this will be unnecessary. Personal
computers will probably develop into the appliance area, with programmers,
hobbyists, hardware designers and language specialists present only in the distant
background of the market. But until then, we are all faced with being either frustated

users or solderer-programmers, tailoring machines according to our personal
demands.

To do this, certain skills are inevitably required. Among these are an understand-
ing of non-decimal number systems, digital logic devices, machine-level languages,
and a smattering of diagnostic sense. There are some fine books that cover all these
topics, so this chapter will only deal with them as far as needed to put this book to
work. Among them are:

® Binary, decimal and hexadecimal number systems, how they arose, how and why
they can be used, and where understanding them is essential.

® Common digital logic devices that appear in the Apple and these projects, and
how and where to use them.

@® Some of the basic elements of machine language, and a few personal considerations
on where it is best applied, and when BASIC is a better choice.

Number Systems

Numbering is the single most overrated problem in computer programming. The
answer (posed before the question) is this: numbers are merely counting names.
That is, it makes no difference whether we think in tenths of a mile or eighths of an
~inch. Nor does it bother us that a day is made up of 24 hours, while an hour is 60
minutes. That a year is 365 days frightens us not, nor that months are a motley
collection sizes.

In parking lots, does it bother us that our vehicle may be parked in Row N as
opposed to Row 14? There is no mystery when we mark off points with four
scratches and a crosshatch. And does a dozen always conjure up ‘twelve’, or is a
dozen something we have understood since youth?

Names are sizes are numbers; so it is with the number systems that we arbitrarily
assign for the convenience of working with computers. When we are talking about

electrical signals, it is clearest and easiest to think about ons and offs. Ons look pretty
much like ones, and offs look like zeros. It’s a nice, clean concept and one that
illuminates the way we can refer to the machinery.
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There’s more convenience to naming a computer data condition 10110100 than
to calling it an on off on on off on off off. Were data the only consideration, the binary

one and zero method might have been satisfactory, without resorting to other means
of stroking our memories.

Finding a location in a computer’s memory is a much more difficult task.
Although a memory location called . . .

111010001001101010
. might be easier to think about than . ..

onononoffonoffoffoffonoffoffononoffonoffon

... it could use another step forward. In music, a long string of sixteenth notes like
this —

I Y [N P e ®

—F = T e S y .
-

Illustration of Illegible Musical Notation

— is broken up to make it legible, so it looks instead like this —

TN\
I — S—w— >
y > Ve e i i | .

=
- e

Hllustration of Legible Musical Notation

Likewise, that long binary string can be broken up from 1101000100110101 into
convenient groups . . .

1101 0001 0011 0101

. .. although the legibility is improved, the human spark, the ability to look and
recognize (that aha!) is not there. So the next step is to set about naming the
sections. Since these on-off conditions can be written down as binary numbers, why
not write them down in their decimal equivalents?
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The question is rhetorical, of course, because not only can it be done, it is done.
The only question is how to do it. Were a computer capable of swallowing all sixteen
of those binary digits (bits) in one gulp, that question might be easily answered by
calculating the conversion of 1101 0001 0011 0101 using a binary-to-decimal
conversion table. The result, we find, is 53557.

But the computer, alas, cannot swallow all those bits in one bite . . . it can only
swallow one bite full of bits (pardon). In other words, though a computer may need
numbers sixteen bits long, only eight data lines exist to carry that data.

The component parts of the number 1101000100110101 are needed, eight bits at a
time: 11010001 00110101.

There’s the mathematical rub. 11010001 is 209 decimal, and 00110101is 54
decimal. This seems hardly related to 53,557. Another solution is necessary, and it is
a naming system as much as a numbering system. It names each of the sixteen
possible combinations of four binary digits:

gooo is named 0 and is equal to decimal O
0001 is named 1 and is equal to decimal 1
0010 is named 2 and is equal to decimal 2
0011 is named 3 and is equal to decimal 3
0100 is named 4 and is equal to decimal 4
0101 is named 5 and is equal to decimal 5
0110 is named 6 and is equal to decimal 6
0111 is named 7 and is equal to decimal 7
1000 is named 8 and is equal to decimal 8
1001 is named 9 and is equal to decimal 89
1010 is named A and is equal to decimal 10
1011 is named B and is equal to decimal 11
1100 is named C and is equal to decimal 12
1101 is named D and is equal to decimal 13
1110 is named E and is equal to decimal 14
1111 is named F and is equal to decimal 15

This may seem overdone; but A, B, C, D, E, and F are darn good names for binary

values which exceed the number nine. If you don’t have a name, make one up. For
practical purposes, keep it within the symbols everyone has on the typewriter.

Back to the number 1101000100110101. Crack it into those four legible pieces
(1101 0001 0011 0101), and it can be named D135. To convert it to decimal,
remember the old rule: the 5 is in the ones place, the 3 is this time in the sixteens
place, the 1 is in the two-hundred-fifty-sixes place, and the D is in the four-thousand-
ninety-sixes place. Thus, D135 is 5 plus 3 x 16 plus 1 x 256 plus (see the chart) 13 x
4,096, or . .. 53,557!
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So, now that long binary number can actually be digested by the computer as a
byte of D1 and a byte of 35. After a while, the number system comes easily. My
personal recommendation: work in it. Convert to decimal only when you absolutely
must. Think in hexadecimal and binary. They are the tools with which you can speak
to the computer.

Throughout this book, numbers in hexadecimal are printed in BOLD.

Converting Binary to Decimal

In the grade school years, students used to learn that a number like 5,163
contained a 3 in the ones place, a6 in the tens place, a 1 in the hundreds place,
and a 5 in the thousands place. It was to remind them that 5,163 was really 3
plus 60 (6 x 10) plus 100 (1 x 10 x 10) plus 5,000 (5 x 10 x 10 x 10).

The way other number systems are written follows this same pattern for
their own bases. In base eight the number 5,163 would have a 3 in the ones
place, a 6 in the eights place, a 1 in the sixty-fours place, and a 5 in the five-
hundred-twelves place. That means that 5,163 is really 3 plus 48 (6 x 8) plus
64 (1 x8 x8) plus 2,560 (5 x8 x8 x 8). But notice how that’s decimal thinking!
Really in base eight there could be no ‘8’ ... it would have to be called ‘10’! 1,
2,3,4,5,6,7,10,11,12, 13, 14, 15, 16, 17, 20, and so on. So 5,163 in base
eight is still 3 plus 60 plus 100 plus 5,000!

The binary system sneaks in the same way. A number like 1101 0001 0001
0011 turns into a 1 in the ones place, a 1 in the twos place, a 0 in the fours
place, a 0 in the eights place, all the way up to a 1 in the thirty-two-thousand-
seven-hundred-sixty-sevens place. In binary, the one on the far left is stilla 1
in the quadrillions place, don’t forget. But the message is how to convert all
this to decimal. And here it is:

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2
001

1
1 c 1 O©0 0O O 1 0 1 0 0 1 1

Just add the numbers: 1x1 +1x2 +0x4 +0x8 + 1x16... +1 times 32,768 +
41,619. Voila. No matter how long the number is, and in whatever base:

1. Start at the left and produce a chart of the base number’s powers, starting
with 0 (X to the 0 power is always 1).

2. Lay the number to be converted underneath the base number chart.
3. Multiply each base number power by the digit in its place.

4. Sum the resulting numbers.
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Does it work? Certainly. What is 163,341 in base 9? And in base 10?

Base 9 powers: 5 4 3 2 1 0

9 to that power: 59049 6561 729 81 9 1

Number to convert: 1 6 3 3 4 1

Multiplication: 1x59049 6x6561 3x729  3x81 4x8  1x1
Subtotals: 58048 +39366 +2187  +243 +36 +1

Converted result: 100882, base 10

Base 7 powers: 5 4 3 2 1 0

7 to that power: 16807 2401 343 49 7 1

Number to convert: 1 6 3 3 4 1

Multiplication: 1x16807 6x2401 3x343 3x49 4x7  1x1
Subtotals: 16807 +14406 +1029 +147 +28 +1
Converted result: 32418, base 10

Base 10 powers: 5 4 3 2 1 0

10 to that power: 100000 10000 1000 100 10 1

Number to convert: 1 6 3 3 4 1

Multiplication: 1x100000 6x10000 3x1000 3x100 4x10 1x1
Subtotals: 100000+60000 +3000 +300 +40 +1

Converted result: 163341, base 10

Digital Logic Devices

The binary number system and digital logic devices were developed togetheras a
way of solving a practical dilemma: how to mass produce computers which could
work quickly and accurately, and yet be inexpensive. The problems of creating
consistently accurate circuits, working with many different voltages levels, are
formidable. Thus, simple yes-no, on-off logic was developed.

The intimidating term Boolean algebra is being used for the first, and last, time in
this book — right in this sentence. You'll probably hear the phrase from time to time,
but no matter — it’s a professional’s buzzword to keep the masses out. Forget it.

Back to digital logic devices. The essence of digitallogicis to evaluate binary, on-
off input; sometimes to determine a pattern of similarity or difference, sometimes to
sense a change and sometimes to search for a signal. An appropriate result is
produced as a result of the logical operation.

One of the logic building blocks is called a gate. A gate electronically evaluates its
input to determine the pattern of similarity and difference of signals, and produces a
specific output. A simple gate is shown below:

—

Simple AND Gate

Its job is to determine if the first AND second inputs are both at the one (high)
level. Only under that condition will its output produce a high (one) signal. The table
below shows how this AND gate works.
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AND Gate
If input #1 is — If input #2 is — The output result is —
G 0 0
1 1] 0
0 1 o
1 1 1

AND Gate Action

The table is called a truth table, and its purpose is to present every possible input
and output condition for a given gate. Below is an OR gate. Stated in words, if either
the first OR the second input is high, the output will be high. Examine the OR gate

truth table; it really is quite logical.

—T>—

Simple OR Gate

OR Gate

Input 1 Input 2 Output

G 0 0
1 0 1
0 1 1
1 1 1

OR Gate Action

Given a huge set of interconnected gates and their known inputs, the final output
of the group can be determined by using truth tables like these. Gates may have
more than two inputs (some have sixteen), and may produce the opposite results
from the two described above (NOT-AND and NOT-OR gates, known as NAND and
NOR gates). Truth tables reveal how the integrated circuit’s design engineer
specified the pattern of binary logic inside the circuit.

In this way, given a desired output and a known number of input signals, it is
possible to determine what set of input values will trigger the desired output.

There are a number of other types of digital circuits. Most are created out of
gates like those described above, but their features are unique enough to think about
them separately. Among these other digital logic circuits are buffers, flip-flops,
counters, latches, multiplexers and shift registers.
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A buffer can be thought of as a two-input gate with both inputs tied together, like
this:

- b

Buffer as (a) Two-input Gate, (b) Buffer and (¢) Inverting Buffer

Its truth table is much simpler than that for two-input gates, because there are
now only two input conditions. Either both inputs are high, or both inputs are low.
Gates with ‘true’ outputs (AND, OR) will merely follow the input condition. When
the inputs are high, the output is high; if the inputs go low, the output becomes low.
Separate logic devices are manufactured that perform this ‘follow-the-leader’
function, and they are called buffers. They serve to isolate sections of a circuit, or
rejuvenate a signal so it can feed many dozens of inputs in a large machine.

When a buffer reverses the condition of its input, (a high input is output low, and
vice versa), the device is called an inverter. This kind of circuit can save the day in
some cases, as when trying to locate a given binary number. Assume a circuit needs
the binary number 1110 to turn on a pilot light. It is possible to choose four separate
gates, each of which would provide an output matching the desired number. These
would be connected through more gates, and eventually the number could be
discovered when the final signal was triggered properly. One way of detecting 1110
is shown below:

-] \ |
—

-

Bad Decoding Scheme for 1110
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But, although this circuit works, economy of cost and space and simple clarity
dictate another solution. The last input could be inverted before it is evaluated,
resulting in a pattern (1111) which could be quickly recognized by a multiple-input
gate. The result is electronic simplicity and legibility; an improved decoding circuit
is shown below. The ultimate result is the same.

; .
),

Good Decoding Scheme for 1110

A flip-flop is a ‘black box” which provides two outputs. When an input value is
high (one), the first output will be high, and the second will be low. When the input
value switches low (zero), the outputs will reverse. In other words, two opposite
outputs for the price of one. But there is another significant use of the flip-flop.

Flip-flops also have an important input called a clock trigger, which is triggered
only when its input returns to a given level. Only then will the outputs of the flip-flop
reverse. That is, a given flip-flop clock may receive a ‘zero’ pulse. Its outputs will
reverse. Then the zero pulse changes to a‘one’ pulse. Nothing happens, but the trap
is set to spring. When the one pulse changes back to a zero, the outputs reverse
again. For every two changes at the clock, there will be but one change at the output.
It takes four clock changes to produce two output changes.

Why is this useful? Because it is electronic, binary division. The truth table here
shows how it works.
Binary Division with a FLip—Flop
Output of First FLip—Flop Connected to Clock of Second
Flip-Flops Change State Each Time Input Returns Low

Clock FLlip-Flop Second Clock Second FLip—FLlop
Input Output Input Qutput

G 0 0 0

1 0 0 0

0 1 1 0

1 1 1 0

0 0 0 1

1 0 0 1

0 1 1 1

1 1 1 1
(Input) (Input/2) (Input/4)

Binary Division with a Flip-flop
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Digital logic devices known as counters are combinations of gates and flip-flops
that allow certain patterns be counted: Binary, Binary Coded Decimal (BCD, where
the highest number is decimal 10), Gray code and others.

Latches are very much like flip-flops, except that the input is ‘captured’ at the

output by a trigger signal called an enable, a select, or a gating pulse. The input may
change continuously, but the output only reflects the input when the enable is

activated. Latches are very useful when hundreds of thousands of signals are flying
around on one set of lines, and the computer must select only certain groups of
signals. The cassette output of data is a latch; only the 500-baud (bits per second)
pulses of data reach the cassette output, even though many different signals reach
its input.

Multiplexers are sometimes misunderstood, but mostly because of their formidable
name. A traffic light is a multiplexer — it allows several streams of traffic to meet at
one intersection, but only one stream to proceed. The multiplexer is the electronic
equivalent, having several inputs. Gating signals select which of the inputs may
reach the output. In a computer, this allows several devices to share a circuit (like the
video, which must be sent to the screen, but also sends and receives characters from
the rest of the computer).

Finally, shift registers treat bits of data like a bucket brigade sends up water: it
goes in one end, and at each electronic ‘go!’, the bucket is sent along one position.
The dots which make up the video display are produced by circuits which shift them

out to the screen one bit at a time, in synchronization with the monitor’s sweeping
electron beam.

Reading The Pins

Finding your way through digital circuits is much easier than finding your
way through an ordinary table radio. Industry standards have made the
process simple. Consumer integrated circuits are packaged in small, rectangu-
lar, plastic or ceramic cases with anywhere from 8 to 40 external connections
known as ‘pins’.

Earlier integrated circuits — and many of the audio types currently being
produced — were packaged in small metal cans and looked like transistors,
with many wires protruding from the bottom. The wires were arranged
around a keying tab on the edge of the can, and numbered like so:

Can-type IC Pin Numbering
The Custom Apple
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As such circuits developed into more sophisticated and powerful devices,
more pins were needed for input and output. A rectangular package was
developed, but it was still numbered in a circle, starting (when looking down
from the top) from left of the notch, so:

o] [-1 [1 [5]

T

Dip-type IC Pin Numbering (8 Pins)

All modern integrated circuits can be read from the top in this same way. 14-
and 16-pin types start from the top left and read around:

ElE A FEFE A FG

[ ] [e] ] [o] [51 [=]

T OO OO

14- and 16-Pin Dip IC Pin Numbering

DNgogEgoEoEnEEgEn

You canread the pinouts of 18-, 20-, 24-, 28-, and 40-pin circuits in the same
manner. The highest numbered pin sits just opposite the lowest numbered
pin. In the beginning this practice may seem confusing; it is. But after using
the circuits — and counting their pins over and again — you will probably feel
comfortable with the pin arrangement.

Just one thing: when you assemble Apple add-ons, most of your work will be
done from the bottom . .. which means reading backwards!

Wire-Wrapping Technique

It’s not without a bit of hesitation that I attacked many of the hardware projects
presented in this book. Some are simple, but many, particularly those using memory
circuits, need many connections. The wiring is not complicated, just tedious.

If you work carefullly, all is likely to be well; but even a touch of haste will encourage
confused connections. It is in these cases especially that wire-wrapping is the
technique to use.
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Wire-wrapping is not only easier than soldering, it is secure, simple, easier for
correcting mistakes — and less costly. For wire-wrapping, you will need wire-wrap
sockets, which are sold by most hobbyist supply houses including Radio Shack.
Likewise, wire-wrap wire and a simple hand tool are used for the process. Here are
the steps:

1. The wire, still connected to the spool, is inserted in the V-shaped stripping
slot. Insert beteen one half and one inch of wire. Pull downward from the V, and
the wire will slip out, leaving a piece of insulation in the stripper, where it can be
shaken out.

1. Insert stripped wire.

2. Look carefully at the end of the wire-wrap tool. There is a small hole, meant to
fit over the pins of a wire-wrap socket. Next to it is a half-circle, into which you
must slide the stripped wire. The stripped portion will slide up a groove in the
side of the tool, stopping where the insulation begins.

2. Slip over pin.
Hold wire firmly,
and slide fully aown,
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3. When the wire is in place, pull it sharply but gently upwards, and slide the tool
on the wire-wrap socket. Holding the wire firmly, spin the tool in your hand. The
wire will wind up on the socket pin, freeing itself from the tool. Remove the tool.
The wire-wrapping is complete for that end of the connection.

o

S. Spin wire — wrap tool.
Wire rises alcny pin,

4. Cut the wire to a length that will comfortably reach its destination, and then
some. Strip the end of it, and repeat the process above. The connection is
complete. Don’t forget to use different colors (white, yellow, red and blue are
generally available). This will help you distinguish your connection patterns if
changes become necessary.

~all

4. Finished connection
has no bare wire
protruding.

Soldering Technique

For projects from scratch, soldering should be considered the final process, the
actions of a self-assured, confident hobbyist. For modifications, it is a necessity. In
either case, and whether you are a micro-acrobat or distinctively clumsy like me, you
can solder well. The requirements are patience and good solder.

To start, make sure you are using an iron in the 25 to 40 watt range, never a
soldering gun. The solder should be high quality, multicore solder. It is expensive,
but will save many grief stricken hours tracing ‘cold solder joints’, or removing globs
of dull solder from between and under integrated circuits.
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Soldering Technique

1. Clean the soldering iron tip, and heat the iron. Flow fresh solder on the tip to
‘tin’ the tip, which will help the solder flow from the tip of the iron to the part to
be soldered. If the iron has been used, clean any encrusted material from the tip,
and use coarse emery paper to shine the solder. If the point gets deformed,
bent, or very corroded, file it sharp with a fine file, and re-tin the tip.

1. Tin the tip.

2. Keep an old sponge handy, slightly damp. Run the tip of the iron quickly over
it as you solder to remove the excess flux. Always use a soldering iron holder
(usually provided with an iron); if you don’t, you’ll wish you had the first time
you burn a large hole in your imitation walnut, vinyl-topped desk.

2. Briny solder, parts and
iron into contact.

3. Inthe olden days, the rule was ‘heat the parts, not the solder’. Forget it. Make
sure the iron is no hotter than 40 watts (and remember never to use a soldering
gun) and that the parts you are about to solder are very clean. Place the iron
against the part, making as much contact with it as possible along the angled tip
of the iron. Place the end of the solder at the junction of the iron and the part,
and flow just enough solder to make a clean, shiny, flowing connection.

3. Lift iron and
solder simultaneously.
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4. Remove the iron immediately and let the part cool. If a wire is being soldered,
hold it still until the solder becomes cloudy and cool, or else an incomplete
connection may result.

4. Finished
so lder connection.

5. If solder bridges develop between connections that are very close together,
don’t try to suck up the solder with the iron; you can only overheat the parts that
way, and end up with blobs of solder and flux. Instead, use solder wick or solder-
up to remove the excess solder, and start again. Let the parts cool before
soldering again (a half minute should be enough).

5. Bad solder connection —
no contact with boaru
(sideview]).

(6A topview) (6B sideview)

6. Baa soluer connection —
no contact with pin
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Tips on Handling Integrated Circuits

In the early days of microcomputers, there was a lot of user hesitation about
installing memory chips because of warnings about static electricity damaging the
memory devices. At that time the fear was reasonable; but today (with just a little
caution) there need be no problem.

1. Never place any integrated circuit on highly charged plastic material,
especially styrofoam.

2. Handle memory chips, CPU’s (such as the 6502), LSI devices (large-scale
integrated circuits, usually those with 28 or 40 pins), or any marked MOS,
CMOS or NMOS (metal-oxide semiconductors), with care. Hold them by their
ends, never by the connection pins.

3. Purchase a static-free workbench, which is a conductive cloth sheet with a

wrist strap and safe grounding cable. These can be obtained from Wescorp for
about $18.

4. Ground your soldering iron to an earth ground but only through a series-
connected one-megohm resistor— never directly! The grounding is not absolutely
essential, but helps if you live in a very dry, static-producing environment.

Grounding a Soldering Iron

5. Work with any integrated circuits with the power off. Make sure the
integrated circuit’s ground and power pins are all connected (soldered or in
sockets) before turning on the juice! A difference of a mere half a volt between
certain pins can kill an IC.

6. Use high-quality sockets for integrated circuits wherever you can. This will
not only keep excessive heat away from them, but will also save the day if one is
damaged. Unsoldering a 40-pin integrated circuit is not pleasant.

7. Above all, work slowly and carefully. By far the greatest villian is haste. Oh
yes — do keep furry animals out of the area!
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Introduction

Introduction

Why expand the Apple Computing System at all? What proud Apple owner has
never wished that the computer would do just this one more thing, to somehow be
able to perform the magic necessary to do that certain thing that would just exactly
fit your particular application. While there are a lot of interfaces and expansion
modules available on the market, none was really designed with the particular
application you had in mind. The purpose of this book is to provide you with an
expansion module that will be flexible enough that you will be able to adapt it to
any specific application you have in mind. Most people, when faced with the
arduous task of trying to make their Apple do one particular thing that would
make it perfect for their system, are really dismayed by how much special
knowledge they would need and how really complex it appears. A lot of people will
simply decide, “Oh well, I can probably get by without it.” The authors, in writing
this book, are providing a much better alternative to simply doing without that
special little goodie you would like. They are going to lead you step by step through
a series of projects and applications that will allow you to custom design exactly
the piece of hardware you need for that special application you have been wanting
to do ever since you got your computer.

Data Acquisition and Control Applications.

The Apple was originally called “T'he Appliance Machine’; however, it was
designed, at least to some degree, to also be used for data acquisition and control
applications. The way the Apple is usually configured, you will find that there are
four empty slots inside, and it would really be nice to utilize them in order to
expand the capabilities of your Apple II Computer.

An A/D and D/A Convertor

The analog to digital and digital to analog convertor will be one of the most
important projects you can put together and one of the most useful applications
presented in this book. The reason for this is that the real world is analog, not
digital, but the computer deals exclusively with digital information. Examples of
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analog would be temperature control and sensing, light control and sensors, and
the measurement of voltage levels. Virtually any type of sensor could be hooked to
an analog/digital convertor, allowing the computer to ‘see’ what’s going on.

There are things that would be really handy around the house: perhaps a hobby
environment such as model railroad control, a burglar alarm system that could be
monitored by your computer, and all of the peripheral devices that are already
available for the computer user at home. This book will prove invaluable to people
who have just bought a strange new device or a new printer, and wonder, “How can
I hook that to my Apple?” This book will give you the opportunity to control even
the most complex industrial or home applications at a very low price. Gastromatic
is a relatively new application where the home computer can be used in lowering
the energy costs of running your furnace. The ability to do this, before the advent
of the small home computer, would have cost many thousands of dollars and been
prohibitive for most people. With the interfaces and applications described in this
book you will find you have the ability to control machines in a way that only a few
years ago would have been absolutely impossible. Examples of this would be
driving step motors, automatic monitoring and remote control of drive motors and
fans, or the control of any machine that was previously controlled by mechanical
means. The basic concept of this book is to vastly improve the Apple I Computer’s
ability to communicate with and control the real world.
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The 6522VIA 1/0 Board.

The Apple II Computer, as configured at the factory, has practically no way to
interface with the real world, with the possible exception of playing a game with
the joysticks. Games are very impressive and fun, but after awhile you will begin
to wonder, “Now how do I get this nifty little machine to do something practical
and prove I didn’t just waste my money on a game-playing machine?”” One of the
biggest problems with trying to use the game playing input ports for transfer of
data is that they are limited to four bits or one nybble, which really limits the
amount of data that can be transferred in a given period of time. Because of the
severe I/O limitations of the Apple computer, the authors intend to show you how
to use the 6522 versatile application interface I/O board to move large amounts of
data in relatively short periods of time. Consequently, you will have the ability to
do a great many of the things people said couldn’t be done.

One of the first problems you will encounter, which is not known to many people,
is that the 6522 I/0 chip is not fast enough to pick up the clock pulse from the 6502
microprocessor chip. In order to make the 6522 compatible with the 6502
microprocesor, it is necessary to incorporate a time delay. We will use the small
4050 CMOS chip. This solution will work in 99% of the cases. For that 1% of the
time when it doesn’t, never fear, there will be further help outlined later in the
book. The 6522 I/0O board also has 1K of RAM built into it, of which 1/4 is usable
at any time. These 256 bytes are suitable for applications such as a small
machine-language monitor that you want to tuck safely out of BASIC’s way.

Figure 1.2 demonstrates how you can use the 1K byte RAM on your 6522 I/0
board. On each board there are two 2114 1K by 4-bit static RAMs for your
machine-language programs. But out of this 1K RAM you can really only use 256
bytes at a time. The addresses for that 1/4K bytes of RAM depend on the slot in
which the board is plugged. For instance, if you want to put a small
machine-language program in the RAM on the board while it’s plugged into slot 4,
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# TIEIS £0us-q00 S IO
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Figure 1.1 The Four Empty Slots in the Apple
you can write your program into the RAM area starting at C400. You need not be

concerned about which 1/4 of the RAM your program is in, because you may select
any 1/4 you wish by using the two switches on the I/O board. Note that every 1/4K
block on each board is addressed using similar addresses (for example,

C500-C5FF in slot 5).
+5V
Slot 2 Slot 3 Siot 4 Slot 5 15K 15K
256 256 256 256
— 29 —
256 256 256 256 s ]
.—
256 256 256 256 . A8 S~
C2FF C3FF C4FF C5FF si* Y
256 256 256 256 A
€200 €300 C400 €500 =

Figure 1.2 Block Diagram of the 1K On-board RAM S = SWITCH
Sl S2

I. 1/4k | off | off

2. 14k | on off

3. 1/4k | off | on

4. 1/4k | on on

Suppose you need four different machine-language programs for a particular
application. You could write these four routines into address C500-C5FF (with
the I/O card in slot 5) while setting the two switches to the four different positions.
Then the four programs (each being 256 bytes or less) are in that 1K RAM block.
By setting the switches, you can now address four different programs in the same

area of memory.
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The 6522VIA I/0 Board

Different 1/4’s of the 1K RAM in 256 Byte chunks can easily be accessed
by simply flipping the switches on the board itself.

The clear area on the left side of the board is a prototype area free for you to use
for your own experimentation and custom applications. The 6522 /0O board can be
programmed and controlled from virtually any language, whether it’s store
instructions from machine-language or POKE and PEEK commands used with
the higher level languages. A section of this book is devoted to showing you how
this is done, whether it’s from machine-language, or a higher level language such
as PASCAL or BASIC. The 6522 has two ports, A and B, and 8 bi-directional data
lines. It also contains 2 timers, 1 eight-bit shift register, and 4 hand-shaking lines.

The hand-shaking lines are used to communicate with the other devices that are
capable of sensing a READY or NOT READY condition.

CA1,CA2 l

CB1,CB2

I
] RO R/W DEVSEL J-

Figure 1.3 Block Diagram of the 6522 Board

6522

r

Figure 1.4 Photo of the 6522 Board
The Custom Apple 37



The 6522VIA 1I/0 Board

board 6522
in slot Hex Decimal
from to from to

2 COAO COAF —16224 —16209
3 COBO COBF —16208 —16193
4 C0oCo COCF —-16192 —16177
5 CoDO CODF —16176 —16161

board RAM

in slot Hex Decimal
2 C200 C2FF —15862 —15617
3 C300 C3FF —15616 —15361
4 C400 C4FF —15360 —i5105
5 C500 C5FF —15104 —14849

Figure 1.5 Address Table

Also, the addresses of the table in Figure 1.5 are from 0 to 15, 0r 00 to OF. The
following table gives the relative memory addresses, depending on which slot the
board is plugged into.

Since the 6522 is memory mapped, the table above gives the actual memory
addresses you use to communicate with and control the 6522 I/O board.

INTERRUYT
COMTROL
L]

(DORA}

DATA F oo
DATA ourmT BUFFERS
s - S— T PORT A
s | suFFERs _ o A
PERIPHERAL oata O
L

_____ FOR A
ALpaLIARY REGISTERS
(acn
FORC i PORT A — cal
CONTROL N S — Y]
=
[ VT roat e
e My A
- ] HANDSHAKE
COunTER | COUNTER CONTROL
My mc-y
T o1 LG o
all Le—————+
W~y
7 —o ",‘,"‘::', PCRT 8 REGISTERS
51— - —— = NPT
W —a] M counter | Countee arr
ACCESS M- ax-y R
#50 —8  conmor T L{ ourur surrens
ns) ——d z - 1one) Y PORY 8
#51 —— “oata o,
5 —of (5008)

From ‘6502 Programming Manual’ for Rockwell R6500
Microcomputer System.

Figure 1.6 Block Diagram of the 6522
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Programming the Ports of the 6522VIA Board

Register Description SLOT 2 SLOT 3 SLOT 4 SLOT 6
Desig. Write Read HEX DEC HEX DEC HEX DEC HEX DEC
ORB/IRB | Output Register “‘B* Input Register ‘B*’ COAO0 —16224 | COBO —16208 | COCO —16192 CoDO —16176
ORA/IRA | Output Register “A" Input Register “A* COAlI —16223 | coBI —16207 | coClI —16191 CoDI —16175
DDRB Data Direction Register ‘B CO0A2 —16222 | COB2 —16206 | COC2 —16190 CoD2 —16174
DDRA Data Direction Register “A” COA3 —16221 CcoB3 —16205 | COC3 —16189 | COD3 —16173
TIC-L T1 Low-Order Latches l T1 Low-Order Counter COA4 —16220 | coB4 —16204 | CoC4 —16188 CoD4 —16172
- TIC-H TI1 High-Order Counter COA5 —16219 CcoB5 —16203 | COC5 —16187 CoD5 —16171
TIL-L TI Low-Order Latches COA6 —16218 CcoB6 —16202 | COC6 —16186 CoD6 —16170
TIL-H TI High-Order Latches COA7 —16217 coB7 —16201 coc7 —16185 CoD7 —16169
T2C-L T2 Low-Order Latches | T2 Low-Order Counter | COA8 —16216 CcoB8 —16200 | cocs —16184 CcoD8 —16168
T2C-H T2 High-Order Counter COA9 —16215 CoB9 —16199 CoC9 —16183 CoD9 —16167
SR Shift Register COAA —16214 COBA —16198 COCA —16182 CODA —16166
ACR Auxiliary Control Register COAB —16213 C0oBB —16197 COocCB —16181 CcobB —16165
PCR Peripheral Control Register COAC —16212 CoBC -16196 | cocC —16180 cobc —16164
IFR Interrupt Flag Register COAD —l16211 CoBD —16195 cocD —16179 CoDD —16163
IER Interrupt Enable Register COAE —16210 COBE —16194 COCE —16178 CODE —16162
ORA/IRA | Same as RegA Except No ““Handshake"’ COAF —16209 | COBF —16193 COCF —16177 CODF —16161

Figure 1.7 Register Addresses of the 6522 Board

Programming the Ports of the 6522VIA Board.

Ports A and B are programmed using the internal data registers DDRA and
DDRB. If the bit is set to 1 in DDRA or DDRB, that means the corresponding line
in Port A or Port B, respectively, will be used for input. If the bit in DDRA or
DDRB is set to 0, it will signal the chip that the corresponding line in Port A or B,
respectively, will be used for output. As an example, loading DDRA with 255 or FF
will signal the chip that all lines of Port A are used for output. Loading either
of the data registers can be accomplished (in machine-language) by loading the
Accumulator with the number desired, then storing it in that memory location. It
can also be done from BASIC by POKEing the corresponding memory address
with the number desired. Once the bits and the data registers are set, they will
remain in the same configuration until the computer is forced through its
power-up sequence. This can be accomplished by resetting the machine, by
shutting it off and turning it back on, or by loading a new number into the data
register. Upon reset or power-up of the computer all Port lines will set to 0. That
will indicate all lines are to be used for input. They will remain in that state until
altered by software running within the computer.

Programming a Visual Display Indicator.

To get you right into using the 6522VIA board, the first application will be a
visual display indicator. We will show you how to light any configuration of 8
LED’s, depending on the conditions existing within the 6522VIA chip. In order to
do this you will need 8 LED’s plus 8 current-limiting resistors.

Connect the anode of each LED to a corresponding bi-directional data line on
the 6522. Connect the cathode of each LED through a 220 ohm limiting resistor to

ground.
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GND I e CA1 e—e PBO
e CA2 e PB1
- PAD e PB2
—o—0 PA1 e—e PB3
+—o PA2 TORA e—e PB4 TORB
—o PA3 e—e PB5
e PA4 e—e PBG
oo PAS e—e PB7
o PAG I e CB1
-5 PA7 GND e e CB2

Figure 1.8 How to Connect LEDs to the Port

Figure 1.9 Bar Graph 1

10 REM BARGRAPH 1
20 REM BOAARD IN SLOT 4

30 DDRA = - 16189:TA = - 16191
40 POKE DDRA,255
50 A =1

60 POKE TA,A

70 GOSUB 200

80 A=A * 2

90 IF A = 256 THEN A =1
100 GOTO 60

200 REM TIME DELAY

210 FOR I =1 TO 50

220 NEXT I: RETURN

Using the LED Visual Display.

This demonstration program assumes that the 6522 I/0 board is in slot 4. In line
30 we assign a variable to the internal register DDRA. TA is also initialized to the
memory location memory-mapped to Port A at this time. In line 40 the POKE
statement sets all of the Port A lines to outputs. Line 50 assigns the value of 1 to
the variable A to be used in line 60 to output the number 1 to Port A. Line 70 calls
a time delay routine at line 200. This is necessary so that we can see the LED’S
change. Through each loop of the program, the variable A will be shifted left one
place in order to turn off the light that was on and to light the next one in sequence.
The way this is set up only one light will be on at a time. Line 90 is used to
re-initialize the variables to start the lights through their pattern again.

Bar Graph 2 Demonstration

This demonstration program will show you how to make a true bar graph
display. This means that the highest light lit will cause all lights lower than it in the
sequence to be on at the same time. Line comments of the Bar Graph 2
demonstration program follow:



Programming the 6522 Internal Timer

Figure 1.10 Bar Graph 2
LIST

10 REM BARGRAPH 2

20 REM BOARD IN SLOT 4
30 DDRA = - 16189:TA = - 16191
40 POKE DDRA,255

50 B=1:A=1

60 POKE TA,B

70 GOSUB 200

80 A=A * 2:B =B + A
90 IF A = 256 THEN 50
100 GOTO 60

200 REM TIME DELAY

210 FOR I =1 TO 50

220 NEXT I: RETURN

Up through line 40 the programs are identical. In line 50, A will be set to 1 as in
the previous program, and variable B will also be set to 1. In line 60 the variable B
will be output to Port A. The GOSUB 200 will still be a time delay as in the
previous program. In line 80 the value of A is multiplied by two to shift it left. Then
the variable B will be set equal to B plus A. The reason for this is to insure that all
less significant lights will be lit whenever a more significant light is lit. Line 90 is
used as a counter reset to re-initialize the variables when A reaches 256.

Programming the 6522 Internal Timer

The 6522 internal timer consists of two eight-bit latches and a 16-bit counter.
The two latches are referred to as T1L/L and T1L/H. The 16-bit counteris divided
into two eight-bit parts, referred to as T1C/L and T1C/H. The lower part of the
counter T'1C/L has a different function depending on whether you are reading or
writing. Writing into T1C/L is the same as if you had written into T1L/L. It
behaves much the same way as the memory location would. If you read T1C/L you
will get the low byte of the counter. A write command to T1C/H will cause the
counter to start. During this operation the contents of T1L/L are transferred to
T1C/L. The contents of the counter T1C/L are decremented with each clock pulse
received from B2. Each time the counter is decremented by one, a check is made
to see if the counter has reached zero. If, after decrementing, the counter is zero,
then one of two things will occur, depending on the operating mode that was set
prior to initializing the counter sequence. Either an interrupt will be generated or
bit 7 of Port B will be set. At this time the contents of T1L/L and T1L/H will be
transferred into the counter again. This will have the effect of causing the timer to
continously cycle. The operating mode is determined by setting bit 6 and bit 7 of
the auxiliary control register ACR. The following table shows the different
configurations possible and what the status of the operating mode is for each
configuration.
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ACR7 | ACR6 Mode
0 0 Oneshot, only Interrupt, no Signal at PB7
Running Interrupts, no Signal at PB7

0 |
| 0 Oneshot, Interrupt, negative Pulse at PB7
I I Free running, square wave at PB7

Figure 1.11 Operating Modes of the Timer

Timer Operating Modes

If bit 6 of the auxiliary control register is 1 and bit 7 is also equal to 1, then the
operating mode of the timer will be in a free-running or continously cycling state.
Every time the lower 8 bits of the timer register become zero, the polarity of the
signal at bit 7 of Port B will reverse. This causes pin 7 of Port B to act as a
square-wave generator. The value entered into the timer controls the duration of
the cycle of the square wave being generated. For instance, if a 2 is placed in the
timer, a square wave with a 2 microsecond positive peak followed by a two
microsecond negative peak will be generated, giving you a full cycle of 4
microseconds. The total square wave cycle generated will always be double the
value placed in the timer. The following program listing is an example of making
a square-wave generator using a 6522VIA board. The square-waves generated by
this program will be 100 millisecond cycles.

Line Comments: Square-Wave Generator Using the 6522.

Inlines 12-15 we use the pseudo-Op to equate and assign the values to the labels
used in the program. In line 18 we set the operating mode with LDA COH. In lines
20-22 we load the timer with the values to be used in this demonstration program.
The timer will be loaded with C47F or 51023. Line 23 starts the timer. Note that
in the listing, instead of putting 50,000 into the timer, we put 51023 in the timer.
The reason for this is that the clock of the Apple II computer is not exactly one
megahertz. You will be happy to hear that your Apple runs a little faster than
advertised. Once the timer sequence has been initiated, the timer will continue to
run without any help from the CPU and will run independently of whatever else is
going on in the machine at that time. It will continue to run until the computer is
reset, or forced through its power-up cycle, or the registers are changed. Any one
of these three conditions signal the timer to stop its free-running or continous
cycling mode. If you wish to change the frequency at which the program is running,
you only need to load the new values into the two latches, T1L/L and T1L/H.
When you load in the new values, the cycle of the square-wave already being
generated will be completed. But once the timer has reached zero, the new values
will be accepted, and the new frequency will be generated.

Another Project with the 6522 Timer

In this application we will use the timer as a single-shot or mono-flop
square-wave pulse generator. In order to do this we need to change the operating
mode from its current value of CO to a new value of 80. The program listing to
make the mono-flop or single-shot square-wave pulse generator follows:



Another Project With the 6522 Timer

Figure 1.12 Square-wave Generator

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0802
0805
0807
080A
080C
080F
0812
0812

A9CO
8DCBCO
A94E
8DC4CO0
A9C4
8DC5CO0
4C59FF

Tl ol =l S S S ey -
NP WNHFOWL U S WN

Figure 1.13 Monoflop

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0802
0805
0807
080A
080C
080F
0812
0814
0816
0817
0817

A980
8DCBCO
A94E
8DC4CO0
A9C4
8DC5CO0
ADCDCO
2940
FOF9
60

e
NMHOWO~NA U R WN

e
Ul W

DCM "PR#1"

~e weo we

ekkkhkhkhkhkhkhhhhkhkhhkhhkkhkdhhkhhhhkhdkk

. % *
’
;* SQUAREWAVE GENERATOR WITH *
;* A PERIOD OF 100.0 MS *
. % *
’

ekkkkkhkkhkkhkkhkhkhkhhkhhkkhkdhhkhhkhhkhkkk

—-e =

ACR EQU S$COCB
T1CL EQU $CO0C4
T1CH EQU $CO0C5
MONITO EQU SFF59

4

.
4

LDA #$CO ; SET OPERATION MODE
STA ACR

LDA #S$S4E ; LOAD LO BYTE

STA TI1CL

LDA #$C4 ; LOAD HI BYTE

STA TI1CH ;AND START TIMER

JMP MONITO

~e

DCM "PR#1"

~e o

EEREEEEEEEEEEEEEEEEEEEEEEEE SRS
*

* MONOFLOP/ONESHOT *
*

ekkkhkkhkkkkhkkhhkkkhhkhkkhkkhkhkhkhkkhhkhihk

*

~e weo we =
*

~e =

ACR EQU S$COCB
T1CL EQU $CO0C4
T1CH EQU $CO0C5
IFR EQU $COCD

7
MONOFL LDA #$80 ; SET OPERATIONMODE
STA ACR
LDA #S4E ; LOAD LO BYTE
STA T1CL
LDA #$C4 ; LOAD HI BYTE
STA T1CH ; START TIMER IFR6 SET TO 1
M LDA IFR
AND #$40
BEQ M
RTS

-e

END
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Using the Timer as a Counter

The timer can be used to count negative pulses which appear on bit 6 of Port B.
Bit 5 of the ACR determines whether the timer will be used as a mono-flop
square-wave pulse generator or as a pulse counter. If this bit is set to 1, the timer
will be a pulse counter, and if the bit is set to 0, it will be a mono-flop pulse
generator. The following program will illustrate how to use one of the timers to
generate a pulse that can be counted by the other timer. If we connect pin 6 of Port
B to pin 7 of Port B, and we use timer 2 as the counter and timer 1 as a free-running
continous cycle pulse generator, we can create an ideal timer to measure the
running time of various routines and programs. The following demonstration
program to illustrate using the timer as a stopwatch will consist of two parts: a
short BASIC program and a machine-language program. The machine-language
part sets the operating mode and starts the timer with its address at C40C. The
two programs are very similar. The part of the program that will have the elapsed
time in it starts at C4C6. The time value is stored as one-hundredth of a second
and is stored in C4FE and C4FF. The BASIC program accesses this data, using
it to calculate the amount of time that has elapsed during the running of the
program. The machine-language program we are describing is stored in the RAM
on the interface board, currently in slot 4. This makes it completely independent
of BASIC and the rest of the memory in the machine, so you don’t have to worry
about it being overwritten by the BASIC programs you have running. Line 1000 is
the test subroutine that we are going to measure the execution time of. In line 100
we start the time measurement. In line 110 we call the subroutine we are going to
measure. When we return from the subroutine we call the routine to stop the timer;
then the program goes to the routine that will calculate the amount of elapsed time
that has occurred. Line 994 shows the routine that will calculate the time elapsed
in hundredths of a second and then display it.

Figure 1.14 BASIC ‘Running Time’ Timer

1 REM RUNTIME TEST

10 START = - 15348:FIN = - 15322:LO0 = - 15106
15 HI = - 15105

20 DS = CHRS (4)

25 PRINT D$;"BLOAD ETIME"

100 CALL START

110 GOSUB 1000

200 CALL FIN: GOSUB 990: END

990 PRINT "EXECUTION TIME=";

992 H% = PEEK (HI):L% = PEEK (LO)

994 PRINT (H% * 256 + L%) / 100;" SECONDS"

999 RETURN

1000 REM PROGRAM UNDER TEST

1010 Q = 2.5:B = 1.2:C = 3.4

1020 E=1 /0

1030 FOR I =1 TO 100

1040 A = (B +C) *Q

1050 NEXT I

1060 RETURN Listing Continued . .



Programming the Internal Shift Register

Continued Listing

CALL-151

*C400LL

C400- 20 0C C4 JSR $C40C
C403- 4C 59 FF JMP SFF59
C406- 20 26 C4 JSR SC426
C409- 4C 59 FF JMP SFF59

Cc40C- A9 EO LDA #SEO

C40E- 8D CB CO STA $COCB
C411- A9 01 LDA #S01

C413- 8D C8 CO STA $Ccocs
C416- A9 00 LDA #S00

C418- 8D C9 CO STA $C0C9
C41B- A9 EC LDA #SEC

C41D- 8D C4 CO STA $Coc4
C420- A9 13 LDA $#S13

C422- 8D C5 CO STA $CO0C5
C425- 60 RTS

C426- AD C8 CO LDA $COC8

C429- 8D FE C4 STA SCAFE
c42cC- AD C9 CO LDA $C0C9

C42F- 8D FF C4 STA SCAFF
C432- 38 SEC

C433- A9 00 LDA #S00
C400.C443

C400- 20 0C C4 4C 59 FF 20 26
C408- C4 4C 59 FF A9 EO 8D CB

C410- CO A9 01 8D C8 CO A9 00
C418- 8D C9 CO A9 EC 8D C4 CO

C420- A9 13 8D C5 CO 60 AD C8

C428- CO 8D FE C4 AD C9 CO 8D
C430- FF C4 38 A9 00 ED FE C4

C438- 8D FE C4 A9 00 ED FF C4
5‘3440— 8D FF C4 60

Programming the Internal Shift Register.

The internal shift register acts as a serial I/O Port. You can pass parallel
information from the CPU to it and have it output it serially to an external
peripheral device, or you can input serial data and then give it to the CPU in
parallel, 8 bits at a time. In order to make the shift register function in this manner
you can use an external clock, the clock of the CPU, or you could design your own
timer clock pulse with the timer within the 6522. In this case the operating mode
will be set by bits 2, 3 and 4 of the auxilary control register. The following table
shows the different operating modes and the bit configuration that will set them.
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ACR4 | ACR3 | ACR2 Mode
0 0 0 Shift Register Disabled
0 0 | Shift in under control of Timer 2
0 | 0 Shift in at System Clock Rate
L 0 I | Shift in under control of external input pulses

Figure 1.15 Operating Modes of the Shift Register

The pin designated as CB2 on a 6522 is used as a serial I/O pin. Through this pin,
serial I/O can be written to or read from the shift register. If you are going to use
an external clock for your serial I/0 you will need to feed the clock signal to CB1.
In the internal clock you would use CB1 as a strobe to synchronize the data coming
out of CB2 or going into CB2.

Whether CB1 is used as a sync pulse, outputs a clock pulse, or accepts an input
of an external clock pulse depends on the bit configuration of bits 2, 3 and 4 of the
auxilary control register (ACR). If you use the timer as your internal clock, it will
only be an 8-bit timer used in conjunction with the shift register. The lowest shift
frequency would then be about 0.5 milliseconds because reads or writes to the shift
register can only be done on every other occurance of zero.

A Variable Duty-cycle Square-wave Generator.

Changing the bit configuration and shift register will alter the duty cycle of the
square-wave being generated. Changing the counter latch, T2L/L, allows you to
change the clock frequency of the square-wave generator. The following program,
written in FORTH, you can use to control the 8 output pins of Port A. This
program in the FORTH language is included because FORTH is a very common
language in control applications. Also, writing a program in FORTH is much easier
than writing in machine-language, and much faster than a BASIC program would
be. To demonstrate this program we will perform the following tasks. There are 8
LED’s connected to Port A of the 6522 chip. Instead of using LED’s, any device
could be connected provided there were an interface to assure the voltages were
proper for operating the external device, without drawing too much current from
the computer. The LED’s are numbered from 1 to 8. LED 1 is controlled by bit 0
of Port A, the least significant bit and LED 8 is controlled by bit 7, the most
significant bit of Port A. This program will make it possible to turn the LED’s on
and off by simply typing the number of the LED followed by the word ON or OFF.

The following is the line comments of the FORTH program. In the first line of
the program we define the word START. This will set the data direction register
for Port A, located at memory address COC3, with 255, signaling that it is to be
used for output. We put zero as the first element on the top of the stack. In the
second line we define the word AN, and we put it into location COC 1. In the third
line we define the variable NR as the number of the LED that should be switched
on or off. Before calling NR, this number is on top of the stack. Entering the DO
loop, the top of the stack is 1, and N is the upper boundary of the index limit of the



Square-wave Generator

Figure 1.16 Variable Square-wave Generator

PR#1
0800 1 DCM "PR#1"
0800 2 ;
0800 3
0800 4 pkkkkkkkkkkkkkkkkkkkkkkkkkhkkk
0800 5 ;% *
0800 6 ;* VARIABLE DUTY CYCLE *
0800 7 :* SQUAREWAVE GENERATOR *
0800 8 ;* *
0800 9 pkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
0800 10 ;
0800 11 ;
0800 12 ;
0800 13 ACR EQU $COCB
0800 14 T2LL EQU $C0C8
0800 15 SR EQU $COCA
0800 16 MONITO EQU SFF59
0800 17 ;
0800 AOSFF 18 LDA #SFF ;SET TIMER 2 FOR SLOWEST
0802 8DC8CO 19 STA T2LL ;s FREQUENCY
0805 A910 20 LDA #$10 ; SET OPERATION MODE
0807 8DCBCO 21 STA ACR
080A A90F 22 LDA #SOF ;4 TIMES ZERO AND 4 TIMES
080C 8DCACO 23 STA SR ;ONE TO THE SR
080F 4C59FF 24 JMP MONITO
0812 25
0812 26 ;
27 END

*%*%** END OF ASSEMBLY

Figure 1.17 FORTH Listing — Lamp Driver
: START HEX 00 FF COC3 1! ;
: AN COC1!;
: NR102UNDERSWAP DO 2+ LOOP 2/ ;
: NEW 2 UNDER OR DUP ;
: ON NR NEW AN ;
: NEC 2 UNDER SWAP COMPLEMENT AND DUP ;
: OFF NR NEC AN ;

START
20N
30N
2 OFF

loop. In the loop, the 1 on the top of the stack will be shifted left N number of times
by multiplying by two, in order to indicate which LED is the target. For example,
with N = 4 we set bit 4 of Port A to 1. This bit is assigned to LED 5. This is one too
high, so we must shift right one time. This is done by dividing by 2. If you switch on
another LED, all LED’s that are already on should stay on. To switch the lamp off it
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Figure 1.19 Printed Circuit Board
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Constructing the 6522 I/0 Board

is necessary to complement the number used to switch it on; then erase the bit by
doing an AND function to mask out the unwanted bit of the existing pattern. This is
done in program part NEC. You can turn out LED 5 by typing in 5 OFF. The
program is started by the word START, which initializes all of the ports of the 6522.

In Figure 1.18 you see the complete schematic of the 6522 I/O board. The two
RAM'’S are located in the upper right hand corner (if you are holding the board as
though you were plugging it into the machine). They are numbered U2 and U3.
They are selected by the IL select line from the Apple. The 6522 is selected by the
device select signal from the Apple computer. The select lines RSO to RS3 are
connected to address lines A0 to A3. The U4, as previously mentioned, gives us the
time delay for the Phi 2 clock. The output lines are brought out to two different
connectors. You can identify each set on the left hand side by looking at the
schematic.

Constructing the 6522 I/0 Board.

The I/O board is available in kit form from Technopak. A picture of parts
placement is provided with all the parts in the places where they should go, and we
recommend putting each IC in a socket. There are also two places where you will
have to attach jumper wires as shown in the parts placement figure.

TOP VIEW (COMPONENT SIDE)

Don’t forget these two connectors
on the solder side

’ ‘ ¢ ¢ v 1°:°6522 - 2114 l 2114
=y =] ‘ 2 pol DIL
Prototyping area EE - F:' oll= I[ switches
= f =] 2 x 2K7
connectors & - - .
=== s050
:: : M-: 24 1 hdd L e
XY - @By
' - : T
e
~ II +f| 10 uF
? q MU". Tantal
J + Capacitor

Pin 20 to 24 —, 20 #
ef MDF 227 / [ ) !

I ] ] 25

Figure 1.20 Component Layout
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Constructing the 6522 I/0 Board

Figure 1.21 Parts List for the 6522 I/O Board

Qty Description

Capacitor tantal 10 uF/35V

DIP switch, 2 poles / 3 poles

Connectors with 20 pin each, for port A and B connectors
40 pin socket DIL

18 pin socket DIL

16 pin socket DIL

6522 VIA (Rockwell)

4050 Motorola

2114 L RAM chips Synelec or Rockwell

6522 /| / Board

—N—T—-—-N—N— -

52 Chapter 1



Sound Generation

Sound and Noise Generation Using the AY-3-8912

The PSG (Programmable Sound Generator) generates sound or noise through
mixing of three programmable square-wave frequencies and one noise generator.
Using a D/A convertor, all three frequencies are output on three different
channels. Each of the output channels can be connected to an amplifier separately,
or all three channels can be tied together through one amplifier. The envelope of
the output signal can be controlled by an envelope generator. All functions are
controlled by 16 registers shown in the table in Figure 2.1.

BIT
B7 B6 BS B4 B3 B2 B1 BO
REGISTER
RO ) 8-BIT Fine Tune A
= Channel A Tone Period //////////////////A 2 DIT Cosree Tune A
R2 . 8-BIT Fine Tune B
™ Channel B Tone Period ///////////////ﬂ 2BIT Coaree Tune B
R4 . 8-BIT Fine Tune C
e Channel C Tone Period //////////////////A T BIT Cosres Tura ©
R6 | Noise Period 227 5-BIT Period Control
_ IN/OUT Noise Tone

R7 Enable

10| 10A| C B A C B A
R10 | Channel AAmplitude P04 m | 3 | L2 | u Lo
R11 | Channel B Amplitude ¥/ A M L3 L2 L1 Lo
R12 | Channel CAmplituse 7200001 M | L3 L2 L | Lo
R13 8-BIT Fine Tune E

Envelope Period

R14 8-BIT Coarse Tune E
R15 | Envelope Shape/Cycle ] cont] ATT [ ALT | HOLD
R16 1/0 Port A Data Store 8-BIT PARALLEL /O on Port A
R17 | /O Port B Data Store 8-BIT PARALLEL I/0 Port B

Figure 2.1 PSG Register Functions

The generation of a single tone is performed by frequency division. A clock
signal, which has to be applied to the chip, must first be divided by 16, and then it
will be divided by 12 using a counter. This 12 bit word for channel A will now be put
into register RO (8 lower bits), with the remaining 4 bits put into register R1. For
a given clock frequency you can calculate the tone period (tp) as follows:
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Sound Generation

tp = fclock/(f*16)

f = the desired frequency
fclock = clock frequency applied to the chip
Both values used are in HZ

Example: f = 440 HZ
fclock = 1,000,000 HZ
tp = 1.000,000/440*16 = 142.04

If you convert 142 into a 12-bit binary number. you will get 8E (in HEX). With
an 8E in register RO and a 0 in register R1, you will get a signal with a frequency
of 440 HZ. The rounding of 142.04 gives you an error of course, so the resulting
frequency will be 440.14 HZ. The difference between the calculated and real
frequency at different clock frequencies is shown in the following table:

Frequency 1 MHz 1.78977 MHz
1046.496 (C6) 1041.666 | 1045.428
7040.00 (A8) 6944.444 | 6991.299

Figure 2.2 Frequencies

To calculate the HEX numbers for the different clock frequencies, you may use
the following table:

Figure 2.3 Clock Frequencies

LIST

10 REM CALCULATING THE CONTENTS OF THE REGISTERS
20 REM FOR THE PSG AY-3-8912

30 REM CLOCKFREQUENCY 1MHZ (FC)

40 REM OUTPUT OF THE 12-BIT VALUES IN HEX

50 REM DESIRED AND TRUE FREQUENCY IS PRINTED
100 INPUT "F= ";F

110 FC = 1000000

120 TP = FC / (16 * F)

130 MSD = INT (TP / 256)

140 TP = TP - MSD * 256

150 NSD = INT (TP / 16)

160 LSD = INT (TP - NSD * 16 + 0.5)

165 FI = FC / ((MSD * 256 + NSD * 16 + LSD) * 16)
170 GOSUB 200

180 END

200 IF MSD > 9 THEN MSD = MSD + 7

210 MSD = MSD + 48:A$ = CHRS (MSD)

220 IF NSD > 9 THEN NSD = NSD + 7

230 NSD = NSD + 48:B$ = CHRS (NSD)

240 IF LSD > 9 THEN LSD = LSD + 7

250 LSD = LSD + 48:C$ = CHRS (LSD)

260 PRINT F;" ";AS$;BS;CS;" ".FI

270 RETURN
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How the Internal Registers Work

The next figure shows how to generate a clock frequency with a 3.579545 MHZ
crystal. Then the signal is divided using the CMOS chip (4013). In most

applications, it will be more than sufficient to use the 1 MHZ clock of your
computer system.

PSG

EITHER CLOCK o1 7897725MHz
TO MICRQ
COMPUTER 0 8948863MH

ISPEC DEPENDENT) SaMHe

3 579545MHz
CRYSTAL

1 7897725MHz

‘——] CLOCK TO PSG
1

4013

4069 4069

Figure 2.4 Clock Generator Circuit

How the Internal Registers Work.

The registers RO - R5 are used to program tone periods for the three channels A,
B, and C. Register R6 is used to program the noise generator; therefore, you only
have to use the 5 lowest bits of this register. The lowest noise frequency will be
achieved by placing a 1F into the lowest 5 bits (All 5 bits are 1). The highest
possible noise frequency is created by using a 01 in that part of the register. The
clock frequency is now divided, first by 16, then by the 5-bit word. The noise period
may be calculated with the following equation:

NP = fclock/(16*fn)

fclock = input clock frequency
NP = noise period.
fn = desired noise frequency

With a clock frequency of 1 MHZ you can generate noise within a range from 2
MHYZ - 75 MHZ. Register 7 controls the sound and noise output of each separate
channel. How the sound channels work with the sound or noise output is shown in
the following chart:

Bt 7 6 5 4 3 2 | 0
1/0 Noise Sound
c|B[A]Jc]BJA

Figure 2.5
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How the Internal Registers Work

When one bit of register A is set to zero (0) the appropriate channel is opened.

Example: Sound on channel A = 00111110 = 3E
Noise on channel B and
Sound on channels A and C = 00101010 = 2A

The two most significant bits are used for the data transfer via the I/O port of the
PSG chip. You don’t need them for sound generation. Registers R8, R9 and R10
are responsible for the value of the sound output of channels A, B and C
respectively. The first 4 bits set the volume to one of 16 different levels for each
channel. This setting is not linear; rather, it is logarithmic.

NORMALIZED
VOLTAGE

v ’—15 3

NOTE: THIS IS THE ENVELOPE
ONLY—NOISE AND TONES
ARE DISABLED.

707V

.5V '
DECIMAL VALUE
OF E3 E2 E1 EO
(SEE AMPLITUDE
CONTROL,
SECTION 3.4)
.303V
.25V
1515V
125V
0

EP=ENVELOPE PERIOD

Figure 2.6 Envelope Period

If, in one of these registers, bit 5 is set to alogical 1, the amplitude of that channel
is controlled by the envelope generator, which can be programmed via registers
R11,R12 and R13. R11 and R10 form a 16-bit counter to generate the length of the
period of the envelope. The clock frequency is divided by 256 and then by the
contents of registers R11 and R12. R12 is now the least significant bit.
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Programming the GI Soundchip

A 1 MHZ clock frequency gives you envelope periods from 0.06 HZ to 4000 HZ.
To calculate the period use:

EP = fclock/(256%*fe)

fe = frequency of the envelope
EP = Envelope Period (or Duration)

The 16 bit binary value for EP is written into registers R11 and R12. For that
calculation, use the program above after changing line 120 to EP = FC/(256*F). The
least significant bit of R13 defines the configuration of the envelope.

R15 BITS
B3 B2 B1 B0
A
c L
o T
N|A|E
T| T|R
1| T| N| H
N|A| A|O GRAPHIC REPRESENTATION
ulc|T|L OF ENVELOPE GENERATOR
E| K| E|D OUTPUT E3 E2 E1 EO.

o] ] "N
i

o
(=]
o

1oov\

-
(=]
-
o

1 0 1 1 N

-
-
o
(=]

1101/

%

1 1 1 1 /
. s '-— EP IS THE ENVELOPE PERIOD
Figure 2.7 Envelopes (DURATION OF ONE CYCLE)

The second waveform, with R13 = 04, generates a tone of increasing volume with
a period of EP. At the end of period EP the volume will suddenly decrease.

Programming the GI Soundchip.

Control lines BDIR and BC2 are used to select a register. The third control line
is connected to + 5V. Data lines and control lines can be controlled by the 6522 VIA.
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Programming the GI Soundchip

PR#1

0800
0800
coco
Co0cCo
C0CO
coco
C0Co
C0CoO
0800
0800
0801
0803
0806
0809
080C
080E
0811
0813
0816
0817
081A
081C
081F
0821
0824

A8
A9FF
8DC3CO0
8DC2CO0
8EC1CO
A903
8DCOCO
A900
8DCOCO
98
8DC1CO
A902
8DCOCO
A900
8DCOCO
60

58 Chapter 2

In our application we used the Phi 2 clock of the 6502 microprocessor for our sound
chip clock.

The data lines, DAO - DA7, are connected to Port A of the 6522. The control lines
BC1 and BDIR are hooked to PBO and PBI. To feed the data into the appropriate
register, you first have to send the address and data through the data lines. The data
lines are controlled by the control lines BDIR and BC1 (see Figure 2.8).

Figure 2.8 PSG Functions

- = oo BDIR

—o—-o BC1

PSG
FUNCTION

INACTIVE.

READ FROM PSG.
WRITE TO PSG.
LATCH ADDRESS.

>— BDIR

——  PROCESSOR S 8C2

>—— BC1

— FROM

PSG

ANALOG CHANNEL A, B, C (outputs): pins 4, 3, 38 (AY-3-8910)
pins 5, 4, 1 (AY-3-8912)

The number of the appropriate register is stored in the X register, and the data

is stored in the accumulator of the 6502 CPU and then passed to the subroutine
called OUT.

Figure 2.9 Program OUT

WO~V WM -

= e
BWNH O

b
W oo~ oYU

NN
WO

[\
S

25

~e

TORB

TORA
DDRB
DDRA

ouT

DCM

ORG
EQU
EQU
EQU
EQU

ORG
TAY
LDA
STA
STA
STX
LDA
STA
LDA
STA
TYA
STA
LDA
STA
LDA
STA
RTS

"PR$1"
$C0CO
*

*+11
*+12
*+13

$800

#SFF
DDRA
DDRB
TORA
#503
TORB
#S00
TORB

TORA
#502
TORB
#500
TORB

;<A> -=> YREG

; PORTA AND B ARE QUTPUTS

; OUTPUT ADDRESS
;BDIR UND BC1l =1

;BDIR UND BC1l =0

;<Y> --> AKKU
;BDIR=1 BC1l=0

;BDIR=0 BC1l=0

Listing Continued . . .

The PSG at this time is not enabled. When the address is outputted, BDIR and
BC1 go high for a very short period of time; when the data is outputted, only BDIR
goes high.



Programming the GI Soundchip

Another way to program the PSG is to put the contents of the register into a
table. Then you can use a program to write the values into the PSG.

Continued Listing

0825
0825
0825
0825
0827
082A
082D
082E
0830
0832

The programs we have seen so far only affect the registers of the sound chip. To
generate sound and noise you need a few more program parts. They will be
comprised substantially of delay routines and checking procedures. Program

A200
BD0010
200008
E8
EO10
DOF5
60

26
27
28
29
30
31
32
33
34
35

TAB

7
LOAD
M

EQU

LDX
LDA
JSR
INX
CPX
BNE
RTS

$1000

#$00
TAB,X
ouT

#16
M

WAIT in Fig. 2.11 shows such a delay loop.

Figure 2.11 Program WAIT

0833
0833
0834
0835
0837
0839
083A
083C
083E
083F
083F

38
48
E901
DOFC
68
E901
DOF6
60

36
37
38
39
40
41
42
43
44
45
46

WAIT
W2
W3

~e

SEC
PHA
SBC
BNE

PLA
SBC
BNE

RTS

#$01
W3

#501
w2

Example: Generating sound A with highest volume on channel A.

Figure 2.10 Generating Tone A

083F
083F
0841
0843
0846
0848
084A
084D
084F
0851
0854
0855

A98E
A200
200008
A93E
A207
200008
A90QF
A208
200008
00

47
48
49
50
51
52
53
54
55
56
57
58

Viachannel A, for approximately 1 second, a440 HZ tone is outputted; after that
a tone of 187 HZ is generated for 1 second (assuming the clock frequency is 1

.
14

.
’

LDA
LDX

JSR
LDA

LDX
JSR
LDA
LDX
JSR
BRK

#S8E
#$00
ouT
#S3E
#7
OUT
#SOF
#8
ouT

;440 HZ AT FT=1MHZ

; SOUND ONLY ON CHANNEL A

;VOLUME SET TO MAXIMUM

MHZ). We use it in the following program called SIREN.
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Programming a Gunshot

Figure 2.12 Program SIREN

0855
0855
0855
0857
0859
085C
085E
0860
0863
0865
0867
086A A900
086C A201
086E
0871
0873
0876
0878
087A
087D
087F
0881
0884
0886
0889 18
088A 90D7
088C

A93E
A207

A90F
A208

A98E
A200

A9FF

A901
A201

A94E
A200

A9FF

200008

200008

200008

200008
203308

200008

200008
203308

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

;
i
SIREN

°
’

LDA
LDX
JSR
LDA
LDX
JSR
LDA
LDX
JSR
LDA
LDX
JSR
LDA
JSR
LDA
LDX
JSR
LDA
LDX
JSR
LDA
JSR
CLC
BCC

#S3E
#7
OuUT
#SOF
#8
ouT
#S8E
#500
ouT
#S00
#01
ouT
#SFF
WAIT
#S01
#$01
ouT
#S4E
#S00
ouT
#SFF
WAIT

S

Programming a Gunshot.

To simulate a gunshot, you only need the noise generator for the envelopes. We
set up a table in memory, and if a button is pushed, the contents of the table are
brought into the PSG. If you change the content of location 1006 (noise
frequency) to 00 (highest noise period) and location 100C to 40 (envelope

;ONLY CHANNEL A

; VOLUME SET TO MAXIMUM

; 440 HZ

;WAIT FOR 350 MS
;187 HZ

approximately 2 seconds), you can simulate an explosion.
Figure 2.13 Program GUNSHOT

088C 86
088C 87
088C 88
088C 202508 89
088F 2035FD 90
0892 18 91
0893 90F7 92
0895 93
0895 94
1000 95
1000 000000 96
1003 000000

1006 OF 97
1007 07 98
1008 101010 99
100B 0010 100
100D 00 101

102

60 Chapter 2

14
KEY

SHOT

~e we

EQU

JSR
JSR
CLC
BCC

ORG
HEX

HEX
HEX
HEX
HEX
HEX
END

SFD35

LOAD
KEY

SHOT

$1000
000000000000

OF
07

101010

0010
00

;NO SOUND

;MEDIUM NOISE FREQUENCY
;NOISE ON ALL CHANNELS

;VOLUME SET TO MAXIMUM

; ENVELOP PERIOD 0.6 S
;ONLY ONE CYCLE



Programming a Gunshot

HEX dump of all the demo programs with the following starting addresses:

083F ... SOUND
0855 ... SIREN
088C ... GUNSHOT

0800- A8 A9
0808- CO 8E
0810- CO A9
0818- C1 CO
0820- 00 8D
0828- 00 10
0830- DO F5
0838- FC 68
0840- B8E A2
0848- A2 07
0850- 08 20
0858- 07 20
0860- 20 00
0868- 00 08
0870- 08 A9
0878- A2 01
0880- 00 20
0888- 08 18
0890- 35 FD
*

11000.100D

1000- 00 00
1008- 10 10
*

00
10

8D
Cco
8D
02
Cco
00
38
01
20
00
08
08
A9
00
20
00
08
D7
90

00
00

C3
A9
Cco
8D
60
08
48
DO
00
08
00
A9
8E
A2
33
08
A9
20
F7

00
10

co
03
Co
co
A2
E8
E9
F6
08
A9
A9
OF
A2
01
08
A9
FF
25
90

00
00

8D
8D
98
co
00
EO
01
60
A9
OF
3E
A2

20

A9
4E

20
08

OF

07
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Program PIANO

Program PIANO

This program simulates the sound of a piano. The keys 1 - 8 refer to the musical
notes of the C scale. The table of that program is placed in memory area 1010 to
1017. Each toneis mixed with a tone of half the frequency and a tone which differs
slightly from the basic tone. Then a descending envelope with about a 0.85-second
period is superimposed. The program starts at 0900 and uses the routines OUT,

LOAD and KEY.
Figure 2.14 Program PIANO
0800 1 DCM "PR#1"
0800 2
Ccoco 3 ORG $COCO
coco 4 TORB EQU *
C0Co 5 TORA EQU *+!1
C0cCo 6 DDRB EQU *+12
C0Co 7 DDRA EQU *+13
CcocCo 8
Ccoco 9 KEY EQU $FD35
coco 10 ;
0800 11 ORG $800
0800 A8 12 our TAY :<A> -=> YREG
0801 A9FF 13 LDA #SFF ;PORTA AND B ARE QUTPUTS
0803 8DC3CO 14 STA DDRA
0806 8DC2CO 15 STA DDRB
0809 8ECI1CO 16 STX TORA ;OUTPUT ADDRESS
080C A903 17 LDA #$03 ;BDIR UND BCl =1
080E 8DCOCO 18 STA TORB
0811 A900 19 LDA #$00 ;BDIR UND BCl =0
0813 8DCOCO 20 STA TORB
0816 98 21 TYA :1<Y¥> ==> AKKU
0817 8DC1CO 22 STA TORA
081A A902 23 LDA #$02 :BDIR=1 BCl=0
081C 8DCOCO 24 STA TORB
081F A900 25 LDA #$00 ;BDIR=0 BCl=0
0821 8DCOCO 26 STA TORB
0824 60 27 RTS
0825 28 ;
0825 29
0825 A200 30 LOAD LDX #S$00
0827 BD5BO0S8 31 M LDA TAB,X .
082A 200008 32 JSR OUT
082D EB8 33 INX
082E EO010 34 CPX #16
0830 DOF5 35 BNE M
0832 60 36 RTS
0833 37
0833 38 38 WAIT SEC
0834 48 39 w2 PHA
0835 E901 40 w3 SBC #S501
0837 DOFC 41 BNE W3
0839 68 42 PLA
083A E901 43 SBC #501
083C DOF6 44 BNE W2
083FE 60 45 RTS Listing Continued . . .
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Continued Listing

083F
083F
083F
0842
0844
0845
0846
0849
084cC
084D
084E
0851
0852
0855
0858
085B
085B
085B
085E
0861
0863
0866
0869
086B
086E
0871

2035FD
290F
AA

CA
BD6B08
8D5B08
AA

CA
8E5D08
4A
8D5F08
202508
4C3F08

000000
000000
0038
101010
000A00
0000
EFD5BE
B39F8E
TF75

46 ;

47 ;

48 PIANO

49

50

51

52

53

54

55

56

57

58

59

60

61 ;

62 ;

63 TAB

64

65

66

67

68 FTAB
69 FIN
0800~ A8 A9
0808- CO 8E
0810- CO A9
0818- C1 CO
0820- 00 8D
0828- 5B 08
0830~ DO F5
0838~ FC 68
0840- 35 FD
0848- 08 8D
0850- 08 4A
0858- 4C 3F
0860- 00 00
0868- 00 00
0870- 8E 7F

JSR
AND
TAX
DEX
LDA
STA
TAX
DEX
STX
LSR
STA
JSR
JMP

HEX

HEX
HEX
HEX
HEX
HEX

END

Program PIANO

KEY
#SOF

FTAB,X
TAB

TAB+2

TAB+4

LOAD
PIANO

000000000000 ; FILLED BY PROGRAM

0038 ; SOUND ON ALL CHANNELS
101010 ; VOLUME SET TO MAXIMUM
000A00 ; ENVELOPE DECAY 0.8 S
0000

EFD5BEB39F8E7F75 ;FREQUENCY TABLE

FF 8D C3 CO 8D C2
Cl CO A9 03 8D CO
00 8D CO CO 98 8D
A9 02 8D CO CO A9
CO CO 60 A2 00 BD
20 00 08 E8 EO 10
60 38 48 E9 01 DO
E9 01 DO F6 60 20
29 OF AA CA BD 6B
5B 08 AA CA 8E 5D

8D 5F 08 20 25 08
08 00 00 00 00 0O
38 10 10 10 00 oOaA

00 EF D5 BE B3 9F

75
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Sound Demo for the AY-3-8912

Figure
100
110
120
130
140
150
200
210
220
230
240
250
260
270
280
290
300
310
320
330
500
510
520
530
540
1000
1010
1020
1030
1040
2000
2010
2020

2030
2040

64 Ch

2.15 BASIC Sound Demo

POKE 687,169: POKE 688,3

POKE 689,141: POKE 690,192: POKE 691,192
POKE 692,169: POKE 693,0

POKE 694,141: POKE 695,192: POKE 696,192 «
POKE 697,96

POKE - 16190,255: POKE - 16189,255
DIM D(14)

HOME : HTAB (3): VTAB (5)

PRINT "SOUND DEMO"

FOR X = 1 TO 3000: NEXT

READ GS$

HTAB (3): PRINT G$

GOSUB 500

FOR X = 1 TO 5000: NEXT

IF GS = "SUEF" THEN FOR X = 1 TO 10000: NEXT
Y =Y + 1: IF Y < 5 THEN 320
A = 7:D(A) = 255: GOSUB 1000
Y = 0: RESTORE : GOTO 210
A = 7:D(A) = 255: GOSUB 1000
GOTO 240

FOR A = 0 TO 13

READ D(A)

GOSUB 1000

NEXT A °

RETURN

POKE - 16192,0: POKE - 16191,A
POKE 688,3: CALL 687

POKE - 16192,0: POKE - 16191,D(A)
POKE 688,2: CALL 687

RETURN

DATA "PIANO",200,0,201,0,100,0,0,248,16,16,16,0,20,8
DATA "gxpLosion",0,0,0,0,0,0,31,7,16,16,16,0,20,0

pATA "GUNSHOT" ,0,0,0,0,0,0,15,7,16,16,16,0,16,0

DATA 'LocomoTrIVE",0,0,0,0,0,0,15,199,16,16,16,180,2,12
DATA "surr",0,0,0,0,0,0,31,199,16,16,16,16,255,60,14

Sound-DEMO for the AY-3-8912

This program shows you how to program the register in the GI sound chip in
BASIC. The contents of the registers RO - R13 are placed in data statements. The
special feature of this program is that it contains a machine-language routine
which supplies the pulse for bringing the information over to the sound chip.
During program development, we found that a pulse which was generated with a
POKE command in BASIC was too slow and caused unpredictable functions in the
AY-3-8912 chip.

Program Description:

Lines 100 - 150 : Pokeing the machine-language

Line 200 : Setting the data direction registers

Lines 210 - 330 : Waiting loops and reading of the data

Lines 1000 - 1040 : Filling the registers with the data D(A) using the
machine-language routine

Lines 2000 - 2040 : Data for the different sounds
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Assembling a Sound Generator Board

Assembling the Board

To construct your sound generator board, you first have to assemble the 6522

VIA board previously described in this book. Then you use the prototyping area on
the left-hand side of the board to assemble the sound circuitry. Place the
AY-3-8912 sound chip so that the input lines DAO - DA7 match with the outputs
PAO - PA7 of the 6522 VIA (See schematic). Next you cut the lines which connect
the sound chip to the pins PB0O - PB3 (four lines). Pin 20 of the sound chip has to
be connected to pin 10 of the 6522; pin 19 to +5V; pin 18 to pin | of the 6522; pin

and pin 3to +5V.

NF

1004

10K |-

1

— 1K ¢}

[7t0 +5V:pin 16 to pin 34 of the 6522; pin 15 to pin 25 of the 6522; pin 6 to ground

{JAusg.OBID A0S
rest 1 DA1
——Vee DA2
—{"JAusg.B DA3
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Figure 2.16 Schematic of the Sound Board
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Assembling the Board

Component Side
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Pins 1, 4 and 5 are the common output of the AY-3-8912. You can hook them to
the next convenient foil on the PC board. From this foil, connect a 1K resistor to
ground. Then connect a 10,000 Ohm resistor with a 100 microfarad capacitor to the
output which goes to your audio amplifier. At the 6522 VIA chip, connect pin 2
with pin 20. On the component side of the PC board you need jumpers (see
schematic) and a wire through the board to bring the + 5V supply voltage over from

the soldering side.
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An 8-Bit D/A and A/D Convertor

An 8-Bit D/A and A/D Convertor

This chapter outlines an application using a digital to analog and analog to
digital convertor. Our first project will be an 8-bit digital to analog convertor using
the Ferranti Digital to Analog convertor kit (ZN428E). If you want to use your
Apple II personal computer for data acquisition, sensing conditions and
controlling systems in the home or industrial environment, you will often have to
convert a certain number-value into a voltage level (a digital/analog conversion).
For instance, if you want to convert a certain voltage level with your program, you
have to generate a digital number first, then convert this digital number into a
voltage level. The value of the digital number has to be made such that after
converting it, the appropriate voltage level is achieved. The opposite of this
function is the analog to digital convertor, which converts a voltage level into a
digital number. Those conversions can be performed with the digital-analog
convertor (ZN428E). The conversion itself is accomplished by software in the
computer.

The picture below shows you the complete schematic of the 8-bit digital to
analog and analog to digital convertor. In this project the 6522 VIA board is just
the interface between the convertor and the computer. The data input lines of the
ZN428E chip are connected with Port A of the 6522. Port line A0 is connected with
the least significant bit of the data line of the D to A convertor, and port data line
A7 is connected with the most significant bit or line of the digital to analog
convertor. The 2N428E is enabled using pin PBO of the 6522 VIA board. When
PBO0 = 0all inputs of the digital/analog convertor can accept data from the computer
through Port A of the 6522. If pin PBO goes high (which means PBO = 1) all inputs
are locked immediately and must remain at that state until PBO becomes 0. The value
which was applied last is then stored in the convertor. The output voltage range is set
by an operational amplifier (one quarter of a TLO74). The internal reference voltage
(VRF)equaling 2.5 volts is used on the ZN428. Figure 3.2 is the block diagram. which
shows how to set the output voltage range.
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An 8-Bit D/A and A/D Convertor

The schematic in Figure 3.1 shows a circuit that will deliver an output voltage
which is variable between 0 and + 5 or 0 and - 5. It cannot be an alternating voltage,
and will always be either positive or negative. The formula for calculating this
unipolar output voltage (VFS) is:

VES = (I1+RI1/R2)*VRF

The range of this voltage, calculated by the above formula, is between OV and the
maximum value, (VFS). Resulting resistance, created by resistors R1 and R2 in
parallel, should approximately equal the internal resistance of the converting
network. This resistance should be approximately 4000 ohms. For an output voltage
range between 0 and + 5 volts and a reference voltage of VRF = 2.5 volts, Rl = R2
= 8000 ohms.

In our schematic R2 = 8200 ohms and R is equal to the combination of the 4700
ohm resistor and the 5000 ohm potentiometer in this series. With this configuration
the maximum value of the output voltage is a + 5 volts. To achieve this you can use
the following program:

RI
o AVA A
R2 L
op
ZN 428E 5 /

Figure 3.2 D/A Block Diagram

The ZN 428E is manufactured by Ferranti in the U K.

:

Figure 3.3 Convertor Adjustment
10 REM **kkkkkkhkkhkhkhhkkhhkkkkhhkkk

20 REM * CONVERTER ADJUST *
30 REM **kkkkkkkkhkkkhkkkkhkhkkhhhhhhkk

100 REM PROGRAMMING THE PORTS

110 REM PORTA SET TO OUTPUT
120 POKE - 16189,255

130 REM PORTB SET TO OUTPUT
140 POKE - 16190,01

200 REM OUTPUT OF NUMBERS

210 INPUT " NUMBER=";Z

220 POKE - 16191,%

230 PRINT "MORE (Y/N)";: GET W$
240 IF WS < > "N" THEN 210

250 END

The addresses of Port A and Port B of the 6522 VIA are COC1 and COCO when
the board is plugged into slot 4 of the Apple. The equivalent decimal addresses are
-16192 for Port A and -16191 for Port B. The addresses of the data direction
registers DDRB and DDRA are COC2 (decimal is -16190) and COC3 (decimal is
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-16189) respectively. After starting our little program (Figure 3.3) the computer
asks us to put in a number. If we type in 255, we set the convertor to its maximum
output voltage. Next we use the 5000 ohm potentiometer to adjust the voltage
down to + 5 volts minus 20 millivolts. which equals 4.98 volts. To make this precise
voltage adjustment we recommend using a digital voltmeter. Because + 5 voltsequals
256, we can only come up to FF, which equals 255. Therefore we have to deduct the
20 millivolts from the maximum value. These 20 millivolts correspond exactly to
one LSB (least significant bit). If you answer the question ‘number’ from the
program above with an input of zero, the output voltage must be zero. If you want
to fool around a little bit, try a few other values like 128 or 64 and so on, and watch
the output at pin 8 of the TLO74 operational amplifier. With an input of 128, the
output voltage should be 2.5 volts.

Now we are going to show you the following three programs in 6502
machine-code to demonstrate how your digital/analog convertor works in the
Apple Il computer:

1. A sawtooth generator

Figure 3.7 Program SAWTOOTH

0800 1 DCM "PR#1"

0800 2 ;

0800 3 ;

0800 4 ;*****************************
0800 5 ;% *
0800 6 ;* SAWTOOTH *
0800 7 ;% *
0800 8 ;*****************************
0800 9

0800 10 ;

0800 11 DDRA EQU $C0C3

0800 12 DDRB EQU $CO0C2

0800 13 TORA EQU $cCo0cCl

0800 14 TORB EQU $CO0CO0

0800 15 ;

0800 A9FF 16 LDA #SFF

0802 8DC3CO 17 STA DDRA

0805 A901 18 LDA #$01

0807 8DC2CO 19 STA DDRB

080A A200 20 LDX #S00

080C 8EC1CO 21 M STX TORA

080F ES8 22 INX

0810 18 23 CLC

0811 90F9 24 BCC M

0813 25

26 END



2. A triangle generator

Figure 3.8 Program TRIANGLE
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DDRB
TORA
TORB

M1

M2

-e

TRIANGLE

EQU
EQU
EQU
EQU

LDA
STA
LDA
STA
LDX
STX
INC
BNE
DEC
BNE
BEQ

END

$COC3
$CocC2
$COC1
$C0CO

#SFF
DDRA
#S01
DDRB
#$00
TORA
TORA
M1

TORA
M2

M1

*
*
*

khkkkkhkkhkhkkhkkhkhkhkhkhdhhkhkhkhkhkkk

45%“5§#hf?:";75f.*}i%fﬁﬁ'

3. A binary noise generator
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Figure 3.9 Program BINARY NOISE

0800 1 DCM "PR#1"
0800 2
0800 3
0800 4 ;*****************************
0800 5 3% x
0800 6 ;* BINARY NOISE *
0800 7 % *
0800 8 ;*****************************
0800 9 ;
0800 10 ;
0800 11 DDRA  EQU $COC3
0800 12 DDRB  EQU $COC2
0800 13 TORA EQU $COC1
0800 14 TORB EQU $COCO
0800 15 ;
0800 16 ZAHL  EPZ $10
0800 A9FF 17 LDA #$FF
0802 8DC3CO 18 STA DDRA
0805 A901 19 LDA #$01
0807 8DC2CO 20 STA DDRB
080A 201308 21 M JSR RANDO
080D 8DC1CO 22 STA TORA
0810 18 23 CLC
0811 90F7 24 BCC M
0813 25 ;
0813 38 26 RANDO SEC
0814 8511 27 STA ZAHL+1
0816 6514 28 ADC ZAHL+4
0818 6515 29 ADC ZAHL+5
081A 8510 30 STA ZAHL
081C A204 31 LDX #$04
081E B510 32 71 LDA ZAHL,X
0820 9511 33 STA ZAHL+1,X
0822 CA 34 DEX
0823 10F9 35 BPL 71
0825 60 36 RTS
0826 37
38 END

The following is a description of the listings of the above three programs:

The sawtooth (Figure 3.7) is generated by incrementing the X register and
storing the contents of that register in Port A of the 6522. The program starts by
setting Port A and PBO of Port B as outputs. This is done by loading the
accumulator with FF and storing this to DDRA, and loading the accumulator with
a one and sending it to DDRB.
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The triangle generator program (Figure 3.8) starts the same way as the previous
program, setting the Ports A and B to the same values. Then a zero is stored in Port
A. The triangle is generated by incrementing the contents of Port A until it is zero.
Then the port will be decremented until it again reaches zero. This loop isrepeated
indefinitely.

The binary noise program (Figure 3.9) uses a subroutine called RANDO to
generate a random number between 0 and 255. The program uses the memory
locations defined by the labels ZAHL to ZAHL + 5 to shift and add certain
numbers. These numbers are transferred to the 6522 and then to Port A. which is
connected to the digital to analog convertor.

You can easily generate other wave-form shapes when you set up your own tables.
You can store the exact sequence of each value as numbers in a table in your Apple
[T computer. If you then pull these values out of the table, perhaps using a time delay,
you can even generate very complex functions on your computer.

Until now we have only discussed the ZN428E digital to analog covertorin a digital
to analog application. This powerful chip also allows you to construct an analog to
digital convertor using special software within the Apple II. Digital computers
operate with fixed voltages and can only recognize the binary digits, one and zero
(low. high). Most of the signals around us are analog. If you think of such things as the
temperature, pressure, light. sound intensity, and every signal which comes out of a
transducer, these signals are voltages or currents in analog form. To feed that analog
information into a computer, you have to convert the voltage level into digital
information.

Voltage Level

7
Analog /

SENSOR Digital
Converter Computer

_4

8 Bit Word

Figure 3.10 Block Diagram of the A/D Convertor

There are several ways to convert an unknown voltage to a digital number. First
there are integrating ADC’s. These convertors use an analog integrator and a
comparator. When the switch (S) in Fig. 3.11 is closed by a pulse, the integrator
starts a ramp function.
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INTEGRATOR COMPARATOR

Figure 3.11 Schematic of the Integrator/Comparator

This voltage is compared with the unknown voltage, designated by U uK. When
the ramp function voltage is equal to this voltage, the comparator switches from
zero to one. The time between the start pulse and the switching of the comparator
1s measured with a digital counter.

Startpulse r

Rampfunction

Comparator

Figure 3.12 Digital Conversion with a RAMP Function

This basic circuit is used in several ways, such as a single slope, dual slope, or
triple slope convertor. Another way to convert a voltage to a number uses a digital
ramp function.
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Resolution

Step J

Figure 3.13 RAMP Function Waveform

This ramp function is compared with the unknown voltage.

When they are equal, counting stops and the number of steps is equal to the
unknown voltage. This is a very slow conversion. A third method is the successive
approximation method, which we use in our application. Details are discussed
later.

Today there are very cheap analog to digital convertors on the market. With a
few resistors and a 555 timer circuit, you can even build one for less than five
dollars. These convertors are not very precise and are used mostly for joysticks,
paddles, and low quality temperature measurement and control applications. If
somebody talks about analog to digital convertors, you always hear words like
resolution, accuracy, linearity, settling time and clock rate. We will discuss the
more important specifications here to give you a feeling of what an analog to digital
convertor can do and what it cannot do.

Resolution

Resolution describes the amount of input voltage change that is required to
increment the output of an A to D covertor between one code change and the next
code change. A convertor with N switches can resolve one part in two tothe Nth
parts.

The input signal is simulated approximately by a series of digital steps.
Resolution may be expressed in full scale or in binary bits. For example: an ADC
with 12-bit resolution could resolve one part in two to the twelfth, which means one
part out of 4096 (or 1/4096) equals 0.0245 ¢ of the full scale. A convertor with ten
volts full scale could resolve a 2.45 millivolt input change. If you now compare this
with an 8-bit ADC, you will only have one part out of 256 (1/256), which equals
0.3906 . On a ten-volt full scale this gives you a resolution of 39 millivolts.
Resolution is a design parameter rather than a performance specification. It says
nothing about accuracy or linearity.

Accuracy

Accuracy describes the difference between the actual input voltage and the full
scale weighted equivalent of the binary output code. Included are quantizing
errors and all other errors. A twelve-bit ADC is stated to be plus or minus one LSB
accurate. This is equivalent to 0.0245 ¢, or twice the minimum possible quantizing
error of 0.0122¢ .
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Quantizing Error

Quantizing error is the maximum deviation from a straight linear transfer
function on a perfect ADC, as you will note in Figure 3.14

110

o T

100

oll

010
001 T i
|
000 ; : : . .
T | \ 2 3 4 5
« . ’
1/2 Lsg  Decision Analog Level in (V)

LEVEL
Offset on Zero
Figure 3.14 Quantized Input Signal

<+ —— — =

The ADC quantizes the analog input into a finite number of output codes.

Conversion/Clock Rates

Conversion rate is the speed at which the ADC can make repetitive data
conversions. It is affected by propagation delay in counting events, ladder switches
and comparators. The conversion rate is specified as the number of conversions
per second or as the number of microseconds to complete one conversion
(including the effects of settling time). The clock rate is the minimum or maximum
pulse rate at which ADC counters may be driven.

The 8-Bit D/A and A/D Convertor, Part Two

For the analog to digital conversion we use a digital to analog convertor.
Therefore, it must be supplemented by software in the computer itself. This
program uses a technique called successive approximation. The unknown input
voltage of the ZN428E is compared with one-half of the full range voltage. This
voltage, in our case, is a positive 5 volts. If the Input voltage is now higher than
one-half of the full range, the computer starts another comparison with three
quarters of the full range of the output voltage. If the input voltage is lower, a
comparison with one quarter of the full range voltage will be performed. At the
next comparison, the remaining interval is divided again by two and in this way the
unknown voltage is approximated.
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After eight comparisons, the conversion is finished. The input voltage is now

recognized with a precision of + 20 millivolts.

2,5V

DA - CONVERTER

ov

\\
COMPARATOR
r— CONVERSION - TIME —_—

tcs tee
Figure 3.15 A/D Conversion by Successive Approximation

In Fig. 3.15 you can see the sequence of an analog to digital conversion utilizing
a digital/analog convertor and a comparator. In the upper half is the output of the
digital/analog convertor; in the lower-half the output of the comparator is shown.
The conversion starts at time tcs. The state of the comparator prior to this time is
undetermined. The input voltage is compared with 2.5 Volts and with a low level
output from the comparator before the input voltage is accepted. First the input
voltage is compared with 2.5V plus 1.25V (=3.75V). The comparator responds with
a one, to show that this voltage is higher than the input voltage; so this voltage is not
accepted. The second comparison is made with 2.5V plus 0.625V (= 3.125V). This
voltage won’t be accepted either, and the output of the comparator will be one. The
next comparison voltage i1s then 2.5V plus 0.3125V (= 2.8125 Volts). The
comparator accepts this voltage, responding with a zero at the output. In the
computer, the acceptance of a voltage level is marked with a one. Up to this point, the
four highest bits of the digital number are 1001. The conversion continues: accepting
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the next voltage level, refusing the next one. and accepting the two next ones. The
whole digital number finally becomes 10011011 = 9B. This corresponds to a
voltage of 3.099 Volts. Because of the quantization error, the level of the input
voltage lies somewhere between 3.099 =+ 20 millivolts. The conversion is completed
at tee.

[f you want to measure a ten-volt input voltage. you have to use a voltage divider
circuit, and your error will be doubled, (+40 millivolts). The output signal of
comparator C2 (see Figure 3.1) will be a positive to negative 12 volts. To connect that
output to the PB7 input of the 6522 chip we have to convert that level into a TTL

compatible level. The program you need to perform the analog to digital conversion
will be found below.

Figure 3.16 Successive Approximation Program

0800 1 DCM "PR#1"

0800 2

0800 3 gk kkkkkkkkkkkkkkkkkkkkkkkkk %
0800 4 ;* *
0800 5 ;* ANALOG-DIGITAL-CONVER- *
0800 6 ;* SION BY SUCCESSIVE *
0800 7 ;* APPROXIMATION WITH A *
0800 8 ;* 8-BIT DA-CONVERTER *
0800 9 ;* *
0800 10 pHhkkkkkkkkkhkkhkhhkhkkhkkkkkkk
0800 11 ;

0800 12 DDRA EQU $CO0C3

0800 13 DDRB EQU $C0C2

0800 14 TORA EQU $CO0C1

0800 15 TORB EQU $CO0CO

0800 16 VALUE EQU S$CA4FF

0800 17 2 EPZ $10

0800 18 PRTBYT EQU SFDDA

0800 19 ;

0800 2000cC4 20 JSR INIT

0803 200BC4 21 JSR CONVER

0806 ADFFC4 22 LDA VALUE

0809 20DAFD 23 JSR PRTBYT

080C 00 24 BRK

C400 25 ORG $C400

C400 26 ;

C400 27 ;SET THE 6522 PORTS

C400 28 ;

C400 A901 29 INIT LDA #S501

C402 8DC2CO 30 STA DDRB

C405 A9FF 31 LDA #SFF

C407 8DC3CO 32 STA DDRA

C40A 60 33 RTS

C40B 34 ;

C40B 35 ; CONVERT

C40B 36 ;

C40B A980 37 CONVER LDA #S$80

C40D 8510 38 STA Z Listing Continued . . .
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Continued Listing

C40F A97F 39 LDA #S7F
C411 8DC1CO 40 WO STA TORA
C414 EA 41 NOP

C415 EA 42 NOP

C41l6 43 ;ONLY NECESSARY BECAUSE
C416 44 ;OF SLOW COMPARATOR
C416 EA 45 NOP

C417 EA 46 NOP

C418 ACCOCO 47 LDY TORB
C41B 1002 48 BPL Wl

C41D 0510 49 ORA 7

C41F 4610 50 Wl LSR Z

C421 BOO4 51 BCS FIN

C423 4510 52 EOR Z

C425 90EA 53 BCC WO

C427 8DFFC4 54 FIN STA VALUE
C42A 60 55 RTS

C42B 56

C42B 57

In lines 29 to 33 the data direction registers are set. The conversion program
starts with line 37. We initialize memory location Z by setting bit 7 to logical 1. The
first comparison takes place with 7F. If the input voltage is higher, no BPL will be
taken in line 48. Then the OR instruction in line 52 will set the bit-7 of the
accumulator to logical 1. After Z is shifted right one bit, it is equal to 40. By an
EOR instruction, bit 6 in the accumulator will be cleared. The contents, which are
now BF, are stored in Port A. Before you can read out the contents of Port B via
the LDY instruction, the convertor must be allowed to settle. The ZN428E is very
fast, so after 800 microseconds the new analog input can be read. But, on the other
hand, the comparator built with the TL.074 is slow. To solve that problem, you
must insert four NOP instructions in the program. The conversion is finished
when LSR Z brings the marked bit into the carry bit.

Figure 3.17 Plotting Program

10 REM *kkkkkkkkhkkkhhkhkkhkhkkhkkk

12 REM * PLOTTING A CURVE *
14 REM * ON THE APPLESCREEN *
18 REM IEE R R E R E R RIS ERIEEE SRR LR R & &
50 DS = CHRS (04)

60 PRINT DS$;"BLOAD ADWC400.B"

100 INIT = - 15360:WA = - 15349
110 vA = - 15105

120 CALL INIT

200 HGR : COLOR= 15

210 X =0
220 CALL WA
230 W = PEEK (VA)

240 P = 160 - W / 2

250 HPLOT X,P

260 X = X + 1

270 IF X < 280 THEN 220
280 END
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The BASIC program in Figure 3.17 brings the converted voltage values onto the
Apple screen. Since there are 255 different voltages, but only 160 pixels available
for us to use in a vertical direction on the screen, we will divide each voltage value
by two before displaying it. This means that we will be using only 127 pixel range
to display all voltage values. The zero point of the graph is located 160 pixels down
from the top of the screen. After each measurement, the X value will be
incremented by one. If you want to reduce the measuring rate, you can insert a
delay loop before line 270.

Figure 3.18 ADW C400.B Program

C400- A9 01 LDA #501
C402- 8D C2 CO STA $C0C2
C405- A9 FF LDA #SFF
C407- 8D C3 CO STA SCoc3
C40A- 60 RTS

C40B- AS 80 LDA #$80
C40D- 85 10 STA $10
C40F- A9 7F LDA #STF

C411- 8D Cl CO STA $cocl
C414- 20 2A C4 JSR SC42A
C417- AC CO CO LDY $CO0CO

C41A- 10 02 BPL SC41E
C41cC- 05 10 ORA $10
C41E- 46 10 LSR $10
C420- BO 04 BCS SC426
C422- 45 10 EOR $10
C424- 90 EB BCC $C411
C426- 8D FF C4 STA SCAFF
C429- 60 RTS
C42A- A2 10 LDX #S10
c42¢C- CA DEX
C42D- DO FD BNE Sc42cC
C42F- 60 RTS
C400.C42F

C400- A9 01 8D C CO A9 FF 8D
C408- C3 CO 60 A9 80 85 10 A9
C410- 7F 8D C1 CO 20 2A C4 AC
C418- CO CO 10 02 05 10 46 10
C420- BO 04 45 10 90 EB 8D FF
C428- C4 60 A2 10 CA DO FD 60
*

The conversion program ADWC400.B (see Figure 3.18) is put into a little
on-board RAM on the 6522 I/0 board. It is safe and protected against any collision
with the BASIC program there. If you have plugged the 6522 VIA card into slot 4
of vour Apple, the starting address of the program in the RAM area is C400. The
subroutine INIT sets the data directional registers. WA is the conversion program.
The converted value will be stored in the memory location C4FF, which equals
decimal -15105 (see listing in Figu