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Pref ace 
The Apple II®* computer is a marvelous machine. It compares quite 

favorably with other brands of personal computers on the market today in 
terms of performance and cost. And it's an easy machine to use. In the 
jargon of this business, it is "user friendly." However, that notion applies 
only as long as you stay on the beaten path. Attempt to get away from 
either your own simple BASIC programs or ready-made programs, and you 
are bound to run into a bit of difficulty. 

The difficulty stems from the flexibility of the Apple. It is this great 
flexibility that is responsible for the lengthy and sometimes confusing dis
sertations in the Apple operating manuals. 

Most people who are buying and using Apple computers these days are 
not aware of how to deal with the full potential of such a highly flexible 
machine. Beginners prefer their instructions to be written in a clear-cut 
ABC fashion: do this and this, and this is going to happen. That works out 
quite well as long as the user is doing the simpler, more popular program
ming operations. But attempt to get away from the simple and popular 
ideas, and things get a lot trickier. 

The Apple is so flexible that an ABC approach teaches the user very 
little. A wider approach is offered in the techni.cal manuals but it is too 
general. Indeed, it is suitable only for those users who are both well ac
quainted with the Apple and well versed in the fundamentals of computer 
technology. Unfortunately, that doesn't describe most users. 

The purpose of this book is to fill in the gap between the ABC ap
proach and technical manual approach. It will lead you very gradually from 
.the usual, popular way of doing things with the Apple into an environment 
where careful thinking and planning is more important than the mechanics 
of actually executing a program. It is an environment that promises a great 
deal of satisfaction, but only at the cost of having to learn new ideas and 
experiment with them on your own. 

If you have already mastered the fundamentals of BASIC program-

*Apple II is a registered trademark of Apple Computer, Inc. 
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ming and want to do more-a lot more-with your Apple, this is the book 
for you. 

Study the material carefully and run the recommended programs. The 
programs in the book were prepared for an Apple II with ROM-based In
teger BASIC. Equally important, try devising applications of your own as 
you go along. Above all, learn and have fun doing it. 

DAVID L. HEISERMAN 
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You, Your Apple II, and 
This Book 

Do you remember the first day you fired up your brand-new 
Apple Computer? You probably do. For most of us that was an ex
citing and rewarding experience. 

1 
One of the nice things about owning your own home computer is that 

the feeling of having first-time adventures doesn't have to wear off; there is 
always something new to learn and try. Learning something new, trying it, 
and making it work can be just as much fun as turning on the computer for 
the first time. 

Certainly there are times when things don't go right and you feel like 
throwing the whole system across the room. Things go wrong, they don't 
work out as expected, and the frustration level grows to disheartening pro
portions. But that happens to everyone who works with computers and 
computer programming, no matter how much or how little experience they 
have and no matter how sophisticated or modest the computer system 
might be. 

Home computer programming, however, still retains all the potential 
for being a continuously rewarding experience. All you have to do is learn 
what you need to know as you go along, and apply the new found knowl
edge until it becomes second nature to you. Then you are ready to learn 
something else. There is really no end to it. And it's great fun. 

The key to maintaining an ongoing love affair with your computer is in 
learning to do new things with it. Doing the same old things in the same old 
fashion can become boring or tedious, no matter how well they work. But 
there is excitement in learning. 

The primary objective of this book is to help you get more fun out of 
creating computer programs on your Apple II. The idea is to help you en
gage in that unending and rewarding adventure called learning. 

How does this book help you? Basically, it describes some powerful 
operating details that are usually mentioned too briefly or overlooked al-
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together in the standard user's manuals. These operating details make it 
possible for you to take advantage of the flexibility of your computer. 
There are plenty of examples and demonstrations to illustrate the operating 
details, but you are the one who will have all the fun of putting the details 
to work in your own programs. 

WHICH SYSTEM DO YOU NEED? Apple computers are now 
available in such a wide variety of configurations that it is impractical to 
attempt writing a book that suits all of them equally well. It is thus neces
sary to draw some lines, meeting the needs of the largest number of readers 
and hoping that others will find information that is useful to them and ap
plicable to their system configurations. 

The examples and demonstrations in this book have been worked 
around an Apple II having 48K of RAM- and ROM-based Integer BASIC. 
However, you do not need a full 48K of RAM to use this book. A 16K 
system will work quite well except with the material dealing with the sec
ondary page of high-resolution graphics. 

The discussions generally apply equally well to cassette- or disk-based 
systems. Disk operating systems (DOS) can cause some problems at times, 
especially where DOS boots up in sections of RAM that serve other pur
poses. DOS users will have to consult their technical manuals to discover 
ways to resolve any conflicts in RAM organization. 

A line printer can be helpful in some of the discussions, but it is never a 
critical requirement. 

The discussions of color graphics require a color TV receiver or 
monitor, but a black-and-white unit will do the job. Incidentally, the color 
names used throughout the book are the same as those used by the Apple 
company. Your interpretation of the colors might be slightly different. 

HOW THIS BOOK IS ORGANIZED When most people are intr1)
duced to their first home computer, they get a lot of delight from running 
BASIC programs listed in the user's manuals and, maybe, running a few 
"canned" programs-usually game programs. 

But we have to be honest here: Running simple BASIC programs and 
prepared cassette or disk programs can wear thin after a while. Of course 
you can buy more elaborate and expensive prepared programs, or start 
entering some programs from published BASIC or machine-language list
ings; but even if they meet your expectations (and many of them won't), 
they also become old hat after a while. 

One way to overcome this sagging enthusiasm for your computer is to 
begin writing your own programs. That can be a lot of fun, especially if you 
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know what you're doing. Learning to use conventional BASIC can keep 
you going for a long time. 

Indeed, writing custom programs in BASIC can serve a lot of personal 
needs; however, it usually doesn't take long to become dissatisfied with the 
limitations of BASIC. Experienced Apple BASIC programmers often begin 
feeling straitjacketed by some of the built-in procedures. It is quite possible 
to know exactly what you want to do but find that BASIC cannot handle 
the job as effectively or adequately as you'd like. 

Animated graphics, for instance, can fall flat in BASIC because of the 
long execution times some BASIC statements have. Assigning more than 
250 characters to a single string variable also causes problems in BASIC. In 
such instances, the built-in relationships between BASIC and the hardware 
system stand in your way. 

There are many instances where the structure of the system and the 
way BASIC works serve as roadblocks to effective programming. 

One way to tackle this problem is by digging through the avalanche of 
books and magazines written for people who want to get around the limita
tions of their present know-how. If you have tried that route, you have 
probably been disappointed more than once. It isn't that there is anything 
necessarily wrong with the available information; it can prove quite valu
able in many ways. But most of the literature dealing with Apple tricks and 
techniques is very specific; they apply only to the particular situation the 
author is describing. With such literature, you run the risk of missing the 
principle behind the technique. 

More often than not, the real value of a book or article lies in the 
principles and gems of wisdom that are tucked away in the program listings 
or accompanying text. Specific solutions for specific problems may or may 
not be truly helpful, but the methods and ideas behind them can be invalu
able. 

For example, an article describing how to move a colored spot of light 
across the screen by depressing a certain key might not seem all that useful 
or exciting to you; but the technique for sensing key depression or drawing 
the moving spot of light can be applied in countless ways, once you grasp 
the main principles behind those actions. 

This is a book about main principles. You won't have to dig through 
the program listings to uncover important ideas; they are clearly spelled out 
in each case. 

Yes, indeed, there are a lot of program listings in this book, but they 
are intended only to illustrate the workings of the principles at hand. The 
programs, by themselves, aren't all that useful or exciting. Instead, they 
are to-the-point illustrations and not highly refined, fully developed pro
grams. They are trimmed to the bare bones so that the point they illustrate 
will stand out as clearly as possible. Other programs not meant for educa-
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tional purposes tend to be cluttered with a lot of ''whistles and bells'' that 
obscure the finer, more important details. 

With this book, you will be able to grasp the essence of an idea, use it 
in the program listing that illustrates the idea, and then fit it into some 
programming schemes of your own. 

You will find many ideas in this book, but little razzle-dazzle. 
Be assured at this point that the book is not devoted exclusively to 

machine-language programming. Many people who feel the itch to go 
beyond BASIC are told-or at least get the impression-that the next step 
in their programming experience must be in the direction of machine
language programming. 

That is not true. Growing up in this business of computer programming 
is an evolutionary process. Your knowledge ought to develop gradually and 
smoothly. Moving directly from basic BASIC to pure machine-language 
programming is hardly a gradual and smooth process. In fact, it is a terrible 
mistake to drop BASIC and move to machine-language programming if 
you've had little training or experience with it. The change in thinking and 
technique is too big and too abrupt. 

No, machine-language programming is not the first topic offered in this 
book. It turns out that familiar old Integer BASIC can become exciting 
again, once you know more about the internal workings of the Apple II. 
You can access some very useful monitor routines from BASIC and do a 
lot of things that will tear down some of the usual programming limitations. 

And that's where this book starts. 
Once you know more about the system from a BASIC viewpoint, you 

will be ready to begin some assembly- and machine-language programming. 
But even then it will be in combination with BASIC programming. The idea 
is to let you wade into the deeper waters of machine language, while keep
ing a tight grasp on a familiar BASIC handle. 

Toward the last part of the book, you will finally get to deal with pure 
machine-language and assembly-language programming. By that time, 
though, you will be well grounded in the Apple's internal workings and 
better prepared to write successful machine-language programs of your 
own. 

In short, if you are getting a little tired of your Apple system, this book 
ought to serve as a shot of adrenalin. 

HOW TO GET THE MOST FROM THIS BOOK This is not really 
a reference book, although it might have that general appearance in many 
places. The book represents a step-by-step process. As such, you will get 
more from it by working through it from beginning to end, as opposed to 
dipping in at some point that seems interesting to you at the moment. 
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Since much of the first part of the book deals with decimal-oriented 
BASIC procedures, all of the tables in that part show only decimal values 
and addresses. To be sure, decimal addressing can be cumbersome, but it is 
a boon to readers who do not feel comfortable with hexadecimal addressing 
in the early going. 

As the discussions flow in the direction of assembly-language and 
machine-language programming, you will find an increasing number of ref
erences to hexadecimal notation. Appendix A will be especially valuable to 
readers who have never used hex before. 

You might do well to look through the extensive set of appendices in 
the back of the book now. You will find a large number of useful tables that 
present critical values and addresses in both hexadecimal and decimal 
form. 

This book is a guide-a self-teaching guide. You will get the most from 
it by attempting to apply the new ideas in your own fashion. It is really 
based on the old notion that you can keep a man alive for a day if you give 
him a fish, but you can keep him alive for a good many years if you give 
him some fishing equipment and show him how to use it. 

You have all the equipment; here come the ideas. 
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Displaying Text 
The most conspicuous parts of your Apple computer system are 2 the keyboard and video screen, or crt. They ought to be the most 

conspicuous parts because they are the primary links between the human 
user and the sophisticated, fast-acting internal workings of the system. 

Most of what goes into the system from the human operator enters via 
the keyboard, and most of what comes out of the system to the human 
operator is displayed on the crt. Unless you happen to be running a 
graphics program, the computer will be communicating with you in a text 
format, i.e., with symbols, code words, or messages. 

It is thus fitting that this book begin with a discussion of the crt and 
keyboard. 

THE STANDARD TEXT FORMAT The video scheme of the Apple 
is arranged in such a way that it can display up to 40 characters on each 
horizontal line and up to 24 lines of text on the screen. That figures out to a 
maximum of 960 characters that can appear on the screen at any given 
moment. Of course, it is possible to print fewer than 40 characters per line 
and use fewer than 24 lines of text-these are simply the maximum figures. 

Fig. 2-1 shows the video screen blocked off into its 960 possible char
acter locations. The numerals across indicate the character, or column, 
number for each line of text. The numerals along the side of the drawing 
indicate the line, or row, numbers. 

Notice that the character spaces, the blocks assigned to each character 
location on the screen, are not exactly square. Rather, they are a bit taller 
than they are wide. 

Then notice how I have labeled the columns and rows beginning with 
the numeral 0. There are indeed 40 columns, but they are labeled 0 through 
39. And there are 24 rows, but they are labeled 0 through 23. This is be
cause zero is considered to be a counting number in the world of comput
ing. The character space in the extreme upper left-hand corner of the 
screen is thus described by saying it is at column 0, row 0. A character 
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39,___,__--L---L---1~-<---L--+---'~'---'--+--+-~I--_,__,__,__...~,___,___,___,.~,___,__ ..... 
381--4--l---l---1---1~+-4--l---l---l---l~+--l--+---1---1---1~+--l---l--+---l~l---l 
371---1---+----l--1---1~1--.J--l---l--l---l~l---l--1---1--l---l~l---l---l--+---l~l---l 
361---1--1---1--1---1~1---1---1----1--1---1~1---1---1----1--1---11--1---1---1----1---1~1---1 
351--4--l---l---1---1~+--+--+----1---1---1~+--l--+--+---l---ll--+--l--l--+---l~l---l 
341---l--l---l--1---1~1--4--l----l--l---l~l---l--1----1--1---ll--l---l---l--+---l~l---l 
33L--L---L---L---1'---<---L---L---'~'---'----1---'-~1--......... _.__,___.~,___...__,___.~,___..._ ..... 
32.__,__,___,___,___,___,__,__,__,___,___,__.___.__,__..___,__,__,___,__,__,___,___.___. 

31 
,__,__.___..~_,__.___.~,___,_......___.,__..__.___.~,___,___,___,~...__.___.~,___,___,___, 

301---l---+----l--1---1~1--4--1----1--1---l~l---l--1----1--l---l~+--1---1----1---1~1---1 
291--4--l---l---1---1~+--+--+--+---l---l~+--l--+--+---l---l~+--1--1--+---1~1---1 
281--4--l---l---1---1~+--+--+----l---l---l~l---l--+--+---l---l~+--1--1----1---1~1---1 
271---1--l--l---11---l--l--+-----l~l---l---l--l-~l--4--1--+---l~+---l--+----l-~l---l---1 
26 

L-...l.....-L..---l~-'--'---'~'---'--'---1'---'---L...--'~,___,__,___.,__...__.___.~,___,___,___, 

251--4--l---l---1---1~+-4--1----1---l---l~+--l--+--+---l---l'--+--l--l--+---l~l---l 
241---1--l----l--1---1~+--l--l--+---l--l~l---l--1--+---l---ll--+---l---l----l---l~l---l 

<./) 23,__,__,____,~...__,____.~,___,__,___.,___,_--L...__.~,___,___,___.,__..__.__,~,___,__,___, 

~ 221--1--+---1~-i---l----l-~+--l--+--ll---l---l----l-~+--l--+---lf---l---l---l~+--+--+--I 
ii:! 211--1--1---1~-1---1----1-~-1--1--+--11---1---1----1-~-1--1--+---1f---l---l---l~+--+--+--1 
g 20.___,__,____,~...__.__,~,____,___,___.,__...___,__,~.__,___,_--l,__..___,____.~,__--1--_,_--1 
~ 191--1--1---1~-i---l---l~-l--l--+--ll---l---l----l-~+--l--+---lf---l---l---l~+--+--+--I 
~ 181--1--1---1~-1---1----1-~-1--1--+--11---1---1----1-~-1--1--+---1f---l---l---l~+--+--+--1 
6 171--l--l-----l~-1---1----1-~+--l--+----ll---l---l----l-~+--l--+--ll---l---l---l~+--+--+--I 
<:..:> 16 

L-...l.....-1---1~..._--L...__.~..___,___.___.,___,__,___.~,___,__,___,,__..__,___.~,___,___.___, 

151---1--l----l---1---1~+---l--l--+---l--l~+--l---1--+---l---ll--+--l--l----l---l~l---l 
141---l--l----l--1---1~+---l--l--+---l--l~l---l--1----1---1---ll--+---l---l----l---l~l---l 
131---l--l----l--1---1~+---l--l--+---l--l~l---l--1----1---1---ll--+---l---l----l---l~l---l 
121---l---l---l---1--1--1---1---l----l---l---l---l---l---1---1---+----l-----l----l---l---l---l---l---1 

111--1---l----l-~1---l---l---l---l~+---l---l----l-~1---i--+---l---l~+---l--+--l~+--l---1 
101---l--l----l--1---11--+---l--l---l---l--ll--+---l---1--+---l--ll--+---l---l----l---I~~ 
91--1---1----1-~1---1---1---1---1~+---l---l----l-~l---i--+---l---l~+---+----l---l~+--+---1 
81--l---l----l-~1---l--l---l---l~+---l---l----l-~1---i--+---l---l~+---1----1---l~+---+----I 
71--l--l-----ll---i---1---l~-l--l----+-~l---1---1---l~+--l--+--ll---l---l---l~+---+--+--I 
6.__,___.____,,__..__,____.~,___,__,_~.___,__,___.~,___,__,___,,__..__,____.~,___,__..__, 

51--l--+----ll---i---1---l~-l--l----+-~l---1---1---l~+--l--+--ll---l---l---l~-l--+--+--I 
41--l--+----ll---i---1---l~-l--l----+-~l---1---1---l~+--l--+--ll---l---l---l~+--+--+--I 
3.__,__,____,,___,__,____.~,___,___._~,___,__,____.~.__,_......___,,__..___,__,~.__,__..~ 
2 
L--L--L--IL--..__,__,~,____,___,_~.__..__,__,~.___,___,___,,___.__,__,~.._--1---1-~ 

1 
S~ o1--1--1-----11---1---1---1~-1--1----+-~1---1---1---1~-1--1--+---1f---1---1---1~-1--1--+--1 

~~fa -~M-~~~00=9=~~~~~~~~~~~~ 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
§; 0 ROW ADDRESS 

Fig. 2-1. Video screen character locations. 
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located in the extreme lower right-hand corner is described as being at 
column 39, row 23. A character location very near the middle of the screen 
has a coordinate address of column 19, row 11. 

Virtually all video display operations use this column-and-row number
ing format in one way or another. Normal video operations occur in a sys
tematic fashion, i.e., from left to right. It is possible, however, to defeat the 
normal course of printing events and print a character at any column-and
row address you choose. 

ROLE OF THE CURSOR In most kinds of video-printing operations, 
the cursor keeps track of where the next character is to be printed on the 
screen. The cursor is represented by a flashing rectangle of light in BASIC 
or monitor programming mode. The system knows where to display the 
cursor by referring to two specific memory locations that contain the 
column-and-row coordinates of the cursor. 

Suppose that you are in Integer BASIC programming mode-the 
mode of operation signalled by a greater-than symbol at the beginning of a 
line. As you type in any arbitrary sequence of letters and numerals, you 
will see the flashing cursor symbol advancing along the line, always indicat
ing exactly where the next character will be printed. If you fill a line with 
characters and continue typing more of them, the cursor automatically does 
a linefeed and carriage return. That is, it drops down one line and moves to 
the beginning of it. Screen printing then resumes from there. All through 
this operation, the Apple system is adjusting column-and-row addresses to 
reflect the position of the cursor. 

The same sort of action occurs while the system is executing a pro
grammed statement that calls for printing text on the screen. The only 
difference is that the cursor symbol is not displayed. There is simply no 
need for the computer to display the flashing cursor symbol when it is print
ing out preprogrammed characters. In other words, the cursor is meant to 
tell where the next character will be placed when someone is actually typ
ing on the keyboard. 

Suppose you have written a BASIC program that includes a PRINT 
"HELLO" statement. As the system executes that statement, it prints the 
H character at a given column-and-row location on the screen, advances 
the column address, prints the E, advances the column address, prints the 
first L, and so on. 

The cursor-positioning mechanism works the same way whether you 
are operating in a programming or execution mode. The cursor, whether it 
is actually displayed or not, still indicates the position of the next char
acter. 
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CONTROLLING CURSOR POSITION WITH PRINT STATE
MENTS A BASIC PRINT statement causes the system to print either 
alphanumeric strings or numeric values on the screen. And unless the com
puter is directed to do otherwise, the information is PRINTed one character 
at a time, in a left-to-right fashion, with the "invisible" cursor leading the 
way. 

Simple PRINT Statements A simple PRINT statement in BASIC is 
one that prints out a single PRINT element and then does an automatic 
linefeed and carriage return operation. Unless directed otherwise, the 
PRINTing begins in column 0 of the current line. 

Suppose you execute this BASIC program: 

10 FOR N=l TO 4 
20 PRINT "HELLO" 
30 NEXT N 
40 END 

On RUNning that little program, you should see something like this on 
the screen: 

HELLO 
HELLO 
HELLO 
HELLO 

The PRINT statement in program line 20 is executed four times in succes
sion. Each time, the printing begins at column 0 and ends with an auto
matic linefeed and carriage return. 

Unless directed otherwise, the system inserts a 
linefeed and carriage return at the end of every 
PRINT statement in a BASIC program. 

This automatic feature operates whether the system is printing strings 
(as in the previous example) or numeric values: You will, for instance, see 
the same mechanism at work by running this program: 

10 FOR N=l TO 4 
20 PRINT N 
30 NEXT N 
40 END 
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3 
4 

RUN that program, and you will see: 

Yes, the automatic linefeed and carriage return feature is at work here, too. 
At the end of each simple PRINT statement, the system automatically 

sets the column address to 0 and increments the row address by I. (Unless, 
of course, the next character is to appear below the last line on the screen. 
In that case the row address remains at 23 and everything else is scrolled 
up one line.) 

Suppressing linefeed and Carriage Return You can suppress 
the automatic linefeed and carriage return at the end of each PRINT opera
tion by ending that operation with a semicolon (;). When you do that, the 
cursor picks up where it left off at the end of a previous PRINT statement. 
Try this example: 

10 FOR N=l TO 4 
20 PRINT "HELLO"; 
30 NEXT N 
40 END 

The text on the screen should look like this: 

HELLOHELLOHELLOHELLO 

Sure enough, the automatic linefeed and carriage return is no longer auto
matic. 

Concluding a PRINT statement in BASIC with a 
semicolon suppresses the automatic linefeed and 
carriage return. 

The same idea applies to PRINTing numeric values: 

10 FOR N=l TO 4 
20 PRINT N; 
30 NEXT N 
40 END 
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That one prints this sort of text: 

1234 

You can perform some useful and interesting text formatting by com
bining the automatic linefeed and carriage return feature with PRINT 
statements that suppress it. Suppose that you want to print out a 4 x 6 
array of X characters-6 lines of 4 Xs. Try this approach: 

10 FOR ROW=l TO 6 
20 FOR COL=l TO 4 
30 PRINT .. x"; 
40 NEXT COL 
50 PRINT 
60 NEXT ROW 
70 END 

The resulting text looks like this: 

xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
xx xx 

There are two different kinds of PRINT statements in that program. 
The one in line 30 prints a single X character on the screen and suppresses 
the linefeed and carriage return. The PRINT statement in line 50 really 
prints nothing onto the screen; but since it is not followed by a semicolon, 
the system will respond by doing a linefeed and carriage return. The result 
is that the "col" FOR-NEXT loop executes line 30 four times, creating a 
row of four Xs. The "row" FOR-NEXT loop executes the "col" FOR
NEXT loop and line 50 six times, creating six rows of Xs. 

By way of a different example, consider that many extended BASICs 
include a STRING$(n,c) function. This function prints a string of char
acters, represented by c, n times in succession. Integer BASIC does not 
include that function, but it's possible to simulate it this way: 

The INPUT statements in line 20 let you specify the string character to 
be printed (C$) and the number of them to be printed in succession (N). 
The subroutine beginning at line 100 simulates the action of a STRING$ 
function. It features two kinds of PRINT statements: one ending with a 
semicolon for suppressing the linefeed and carriage return operation, and 
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10 DIM C$(64) 
20 INPUT N: INPUT C$ 
30 GOSUB 100 
40 GOTO 20 

100 FOR X=l TO N 
110 PRINT C$; 
120 NEXT X 
130 PRINT 
140 RETURN 

one that does not conclude with a semicolon in order to execute the 
linefeed and carriage return at the end of the function. 

Setting Columns With Commas Another way to suppress the 
linefeed and carriage return that normally occurs at the end of a PRINT 
statement is to end that statement with a comma(,). Recall that a PRINT 
statement ending with a semicolon allows the cursor to remain where it was 
at the end of the PRINT operation; the next PRINT operation picks up 
from there. A PRINT statement ending with a comma keeps the cursor on 
the same line, but forces it to advance to the beginning of the next column 
field. 

The text screen can be divided into five equal fields of columns, each 
having 9 columns, or character spaces, in them. Those column fields begin 
at column addresses 0, 8, 16, 24 and 32. Try this demonstration program: 

10 FOR N=l TO 5 
20 PRINT "HELLO", 
30 NEXT N 
40 END 

RUN that little program, and you will find HELLO printed five times along 
the same line on the screen. Each HELLO begins at one of the well-defined 
column addresses for the five fields. Whenever the computer completes the 
task of printing the string HELLO, the comma in the program tells the 
cursor to advance to the right until it comes to the column address repre
senting the beginning of the next field. 

There are just 9 columns in each field, so it often happens that a 
PRINT statement will print a text that is longer than that; say, 12 char
acters long. When that is the case, the text extends well into the second 
field; but if it is ended with a comma, the cursor will begin printing the next 
line of text from the beginning of the third field-at column address 16. 
Comma suppression of the normal linefeed and carriage return is thus nor
mally limited to printing operations involving fewer than 9 characters 
apiece. 
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SETTING THE CURSOR POSITION WITH TAB STATEMENTS 
PRINT statements in BASIC automatically adjust the cursor's hori

zontal and vertical position as necessary for the operation at hand. Ending 
PRINT statements with a semicolon or comma provides the programmer 
with some simple tools for controlling the automatic action of the cursor; 
but BASIC' s TAB statements give the programmer full control over the 
cursor. 
The TAB Statement The TAB statement in Integer BASIC lets the 
programmer set the column address of the cursor to any desired place 
along the current line of text. The TAB statement is an absolute addressing 
tool. That is to say, it makes no difference where the cursor was before 
TAB is used. The cursor is always moved to the column indicated by the 
TAB statement. 

Unfortunately, an Apple TAB statement does not line up exactly with 
the column-numbering format we are using throughout this book. As de
scribed earlier, the columns are labeled 0 through 39. By contrast, the TAB 
statement uses labels 1 through 40. So doing a TAB 1 actually sets the 
cursor to column number 0 of the current line; and doing a TAB 40 sets it to 
the end. 

For our purposes, then, the TAB statement has this syntax: 

TAB c+1 

where c is the column address for the cursor. 
To see how this works, suppose that you want to print the string FOO 

at column address 8 and HELP at column address 24 of the same line. The 
following program does that for you: 

10 TAB 9: PRINT "FOO"; 
20 TAB 25: PRINT "HELP" 
30 END 

The TAB 9 statement in line 10 sets the cursor to column address 8 of 
the current line. Then, the PRINT statement prints FOO and suppresses 
the linefeed and carriage return so that the HELP string appears on the 
same line. The TAB 25 statement in line 20 then sets the cursor to column 
address 24, and the PRINT statement prints HELP from that character 
location. 

TAB addressing is absolute. It makes no difference where the cursor is 
located at the time the TAB statement is executed. You can demonstrate 
that by rewriting the previous example in such a way that the computer 
prints the right-hand string, HELP, first. 'fry this: 
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10 TAB 25: PRINT "HELP"; 
20 TAB 9: PRINT "FOO" 
30 END 

Line 10 calls for moving the cursor to column address 24 and printing 
the string HELP from that point. The semicolon following that PRINT 
statement prevents the system from doing a linefeed and carriage return. 
The TAB 9 statement in program line 20 actually moves the cursor back
wards to column address 8 before the PRINT "FOO" statement is exe
cuted. 

The next program is an example of some TAB trickery. When entering 
the program, note that the MOVE string defined in line 10 is enclosed in 
spaces. 

Listing 2-1. TAB Special Effects. 

10 DIM M$ ( 6): M$=" MOVE " 
20 FOR COL=0 TO 33 
30 TAB COL+l 
40 PRINT M$; 
50 FOR T=l TO 100: NEXT T 
60 NEXT COL 
70 FOR COL=33 TO 0 STEP -1 
80 TAB COL+l 
90 PRINT M$; 

100 FOR T=l TO 100: NEXT T 
110 NEXT COL 
120 GOTO 20 

Program lines 20 through 60 move the message string to the right one 
TAB location at a time. The time delay routine in line 50 slows down the 
action to an interesting pace. Lines 70 through 110 move that same mes
sage to the left. 

Why are the PRINT statements in lines 40 and 90 terminated with a 
semicolon? Why is the COL variable advanced only to 33? Why is the 
MOVE message enclosed in spaces? If you find you cannot answer any one 
of these questions with confidence, edit the program to alter the items em
phasized in the questions. 

The VTAB Statement The VTAB statement is to row selection 
what TAB is to column selection. The Apple text screen format has 24 
rows, or lines, that are often labeled with numerals 0 through 23. Integer 
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BASIC's VTAB statement is a row addressing function that uses numerals 
1 through 24. The general syntax is: 

VTAB r+1 

where r is the row address. 
The topmost row of characters is normally labeled row O; but if you 

want to place the cursor there by means of a VTAB statement, a VTAB 1 
would be appropriate. The following program illustrates its application: 

5 CALL -936 
10 FOR N=l TO 4 
20 VTAB N 
30 PRINT "HELLO"; 
40 NEXT N 
50 END 

Beginning from the top line on the screen, the display looks something like 
this: 

HELLO 
HELLO 

HELLO 
HELLO 

No matter where the cursor might be when you RUN this program, the 
first HELLO appears on the first line of the screen. The fact that the 
PRINT statement in program line 30 ends with a semicolon means that 
each PRINT operation will not conclude with an automatic linefeed and 
carriage return. Thus the H character beginning a new message lines up 
against the 0 in the previous one, but on the next line down. 

Try this variation of the same thing: 

5 CALL -936 
10 FOR N=l TO 4 
20 VTAB 2*N 
30 PRINT "HELLO" 
40 NEXT N 
50 END 
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Beginning from line address 1, the text display looks like this: 

HELLO 
HELLO 
HELLO 
HELLO 

The successive VTAB values are 2, 4, 6 and 8. The actual row ad
dresses are 1, 3, 5 and 7. Since the overall text presentation might be clut
tered with characters you generated while entering the program, you might 
want to clear the screen first by doing an ESC @ and then a RUN. 

Like the column addressing of the TAB statement, VTABs are absolute 
addresses. It makes no difference where the cursor might be located at the 
time the VTAB statement is executed. Try this: 

10 CALL -936 
20 VTAB 1: PRINT "FOO" 
30 VTAB 11: PRINT "HELP" 
40 END 

The CALL statement in line 10 clears the screen for you. Line 20 
causes the string FOO to be printed on row address 0-the first line on the 
screen. Then line 30 prints HELP on row address 10. 

To make sure you are convinced that the position of the cursor is not 
relevant when executing a VTAB, run this variation: 

10 CALL -936 
20 VTAB 11: PRINT "HELP" 
30 VTAB 1: PRINT "FOO" 
40 END 

The resulting text appears identical to the previous example, but the 
lower HELP message is printed before the FOO message is printed on row 
address 0. 

Using Combinations of TAB and VTAB Programming, espe
cially text formatting situations, can become a lot easier and more interest
ing when combining TAB and VTAB statements. Taken together, these two 
simple BASIC statements allow you to print a character at any one of the 
960 text character locations on the screen. Generally speaking, you only 
have to make sure that you select the TAB and VTAB values so that the 
text to be printed does not overflow a line or crash into some previously 
printed text. 
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Here is a program that demonstrates how it is possible to place a single 
character just about anywhere on the screen: 

10 CALL -936 
20 PRINT "COLUMN ADDRESS (0-39)"; 
30 INPUT COL 
40 PRINT "ROW ADDRESS (0-23)"; 
50 INPUT ROW 
60 CALL -936 
70 TAB COL+l: VTAB ROW+l 
80 PRINT "X"; 
90 GOTO 90 

The program requests the column and row addresses for the cursor. 
Respond by entering a value in the designated range in each case. Once 
you've entered those cursor addresses, the program clears the screen and 
prints an X in that location. The program ends by looping to itself at pro
gram line 90, so you must do a CTRL C and another RUN to try a different 
set of cursor coordinates, 

The only problem with the whole idea is that it doesn't print the X 
properly whenever you specify the last character location in the lower 
right-hand comer of the screen-column 39, row 23. The program will in
deed print the X at that character location, but then the system does its 
normal task of advancing the cursor to the next character location. In this 
particular case, that means the entire display will scroll upward one line, 
and the X will not remain in the designated position. None of the other 959 
possible character locations will cause that undesirable scrolling effect. 

Here is a short program that prints stars (asterisks) at randomly 
selected character locations on the screen. Notice that it avoids printing 
asterisks on the bottom line. Why? Because printing an asterisk at column 
39 in row 23 would mess up the overall effect by scrolling it upward one 
line. 

10 CALL -936 
20 TAB RND (39)+1 
30 VTAB RND (22)+1 
40 PRINT "*"; 
50 GOTO 20 

The next program is a variation of the one just described. It still prints 
asterisk characters at randomly selected places on the screen, but this time 
it erases each one after displaying it for a short interval of time. The overall 
effect is that of stars twinkling here and there. 
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10 CALL -936 
20 COL= RND (39)+l:ROW= RND (23)+1 
30 TAB COL: VTAB ROW 
40 PRINT "*"; 
50 FOR T=l TO 10: NEXT T 
60 TAB COL 
70 PRINT " " 
80 GOTO 20 

Program line 20 selects random values that are appropriate for the TAB 
and VTAB statements in line 30. Line 40 then prints the asterisk character 
at the selected screen position, and line 50 does a short time delay. 

Lines 60 and 70 work together to delete the asterisk at the end of the 
time delay interval. The general idea is to plot a space character (program 
line 70) over the asterisk; but without the TAB COL instruction in line 60, 
the space would always be printed one column to the right of the asterisk. 

Bear in mind that any PRINT statement, including those appended 
with a semicolon to suppress the normal linefeed and carriage return, ad
vances the cursor to the next column, or character space. So, if the pro
gram happens to print the asterisk in row address 5 of some line, the cursor 
will end up at row address 6. The TAB COL statement in line 60 of the 
program "backs up", the cursor, placing it at the address of the asterisk 
character and forcing the space of line 70 to print over it. 

Of course the cursor. symbol is not displayed during the execution of a 
program, so the program isn't disturbed by that flashing symbol. The 
mechanisms for positioning the cursor are nevertheless at work here. 

Simulating a PRINT @ Statement A lot of BASICs include a 
PRINT @ statement that, in a fashion, performs the task of the combined 
TAB and VTAB statements described in the previous section. 

The Apple text screen is divided into 960 different character locations, 
and we have been addressing those locations by means of some column
and-row coordinates-that is, by designating both a row address and a 
column address. A PRINT@ statement accomplishes the same thing, but it 
considers the addresses for the 960 character locations in a different man
ner. 

A PRINT @ statement designates a single numeric value for each 
character location on the screen. There are 960 character locations in the 
Apple text format, so the range of PRINT @ addresses is 0 through 959. 
The PRINT @ addresses begin with 0 in the extreme upper left-hand 
comer of the screen, and progress in a column-by-column and row-by-row 
order until they reach address 959 in the extreme lower right-hand corner. 
PRINT @ address 39 is at the end of the first row, PRINT @ address 40 is 
at the beginning of the second row, and so on. 
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The usual syntax for a PRINT @ statement is: 

PRINT @ x,c 

where, 
x is the PRINT @ address (0-959) 
c is the character to be printed at the designated address. 

Here is a program that uses Integer BASIC's TAB and VTAB state
ments to simulate and demonstrate the PRINT @ operation. 

Listing 2-2 PRINT @ Simulation. 

10 CALL -936 
20 PRINT "WHAT PRINT @VALUE (0 TO 959)"; 
30 INPUT X 
40 IF X>=0 AND X<=959 THEN 70 
50 PRINT "** RANGE ERR" 
60 CALL -198: GOTO 20 
70 PRINT "WHAT CHARACTER"; 
80 INPUT C$ 
90 CALL -936 

100 GOSUB 200 
110 GOTO 110 
200 ROW=X/40 
210 COL=X MOD 40 
220 TAB COL+l: VTAB ROW+l 
230 PRINT C$; 
240 RETURN 

Program line 20 requests a PRINT @ address in the range of 0 through 
959. If you input a value outside that range, lines 50 and 60 print the famil
iar ** RANGE ERR message and beep the loudspeaker. After inputting a 
valid PRINT @ address, lines 70 and 80 allow you to designate a string 
character to be printed at that location. 

The subroutine beginning at line 200 represents the real purpose of the 
program: to demonstrate TAB and VTAB cursor positioning. That sub
routine calculates the individual ROW and COL addresses, line 220 sets up 
the TAB and VTAB operations, and line 230 prints the designated string 
character at that position on the screen. It's a matter of converting a 
single-number address that is in the range of 0 through 959, into a pair of 
TAB and VTAB values that are consistent with the operation of Apple In
teger BASIC. 

The program, incidentally, loops to itself at line 110 after printing the 
character. So you have to enter a CTRL C and RUN to try the PRINT @ 
demonstration again. 
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WORKING WITH THE CURSOR-POSITION REGISTERS There 
are two memory locations in Apple RAM that spell out exactly where the 
cursor is located at any given moment and under any operating mode. The 
numeric values stored in those locations follow the same column-and-row 
addressing format used throughout this chapter. 

The Apple literature cites those two RAM addresses as CH and CV: 

CH at RAM address 36-this register specifies the 
cursor's column location (0-39). 

CV at RAM address 37-this register specifies the 
cursor's row location (0-23). 

PEEKing and POKEing into those two addresses gives you total control 
over the positioning of the print cursor. 

PEEKing Into CH and CV Memory address 36 always holds the 
cursor's current column address; so including a BASIC statement such as 

PRINT PEEK(36) 

in your program prints out that value for you. But if you try that statement 
while in immediate execution mode, the system always responds by print
ing a 0. Why would CH be set to 0 in such a case? Because statements in 
immediate mode are executed only after you strike the RETURN key. 
Striking the RETURN key amounts to doing a linefeed and carriage return, 
and that always forces the column address to 0. Hence a simple PRINT 
PEEK(36) statement is virtually useless in the immediate execution mode 
of operation. 

Build a PRINT PEEK(36) into a program, though, and you can see the 
column address register, CH, at work. Try this little demonstration: 

10 FOR N=l TO 4 
20 PRINT 11 *II; 

30 NEXT N 
40 PRINT PEEK (36) 
50 END 

Running that program turns up a text display that looks something like this: 

****4 

The FOR-NEXT statement prints asterisks in column addresses 0, 1, 
2, and 3. The system advances the cursor to the next column, and then the 
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PRINT PEEK(36) statement in line 40 prints out the current cursor column 
address-column 4 in this case. 

Here is a program that lets you experiment with the notion of PEEK
ing into CH: 

10 PRINT "INPUT A COLUMN ADDRESS (0-39)"; 
20 INPUT COL 
30 FOR.N=0 TO COL: PRINT "X";: NEXT N 
40 HPOS= PEEK (36) 
50 PRINT : PRINT HPOS 
60 GOTO 10 

The program first requests a column address for the current line of 
text. Answer it by typing any integer value between 0 and 39. After doing 
that, notice that the program prints a line of X characters from column 
address 0 of the current line to the address you specified. Program line 40 is 
the one of special interest here: it PEEKs into CH and assigns the current 
column address to variable HPOS. Line 50 then prints that value on the 
screen for you. 

So if you respond to the input request with a column address of 20, the 
program prints 21 X characters on the next line and then prints the numeral 
21 on the line under that one. The program prints 21 X characters in this 
particular case because it is filling in column addresses 0 through 20, which 
consist of 21 locations. It prints a value of 21 for HPOS because the print
ing operation ended at column address 20, after which the cursor auto
matically advanced to the next column-column address 21. 

Incidentally, if you omit the semicolon at the end of the PRINT state
ment in line 30, the program will always print a value of 0 for HPOS. Why? 

Using the same line of thinking, you can assure yourself that CV 
(RAM address 37) always carries the cursor's current row address. You can 
take a look at the content of CV at any time by doing something such as: 

PRINT PEEK(37) 

Doing that, you will see a number anywhere between 0 and 23, depending 
on the current row address. 

Here is the program for PEEKing into the CV register: 

10 PRINT "INPUT A ROW ADDRESS (0-23)"; 
20 INPUT ROW 
30 CALL -936 
40 FOR N=0 TO ROW: PRINT "X": NEXT N 
50 VPOS= PEEK (37) 
60 PRINT VPOS 
70 GOTO 10 
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This one asks you to designate a cursor row address. The program 
then clears the screen and prints X characters from the beginning of row 
number 0 to the row address you specified. Line 50 then PEEKs into CV 
and assigns the value to VPOS. Line 60 prints that value for you. 

How can you find out where the cursor is located at any given mo
ment? Simply PEEK into address 36 to find the column address and PEEK 
into address 37 to find the row address. 

Some versions of BASIC include statements that PEEK into those 
cursor-address locations for you. The syntax generally includes the use of a 
dummy variable, so they take on this sort of form: 

LET COL=HPOS(X) 
LET ROW=VPOS(Y) 

where X and Y are dummy variables. (They are required for proper execu
tion of the statement, but have no real significance beyond that.) 

The hypothetical HPOS(X) function does the job of our PEEK(36), 
and the VPOS(Y) does the job of our PEEK(37). 

Would you like to come up with a PRINT @ address for the current 
cursor_ location? One that expresses the cursor location as a single-number 
value between 0 and 959? This sort of statement will do the job: 

PAT= PEEK(36) + PEEK(37}*40 

The PEEK(36) picks up the content of CH to get the cursor's column 
address, and PEEK(37) looks into CV to get the row address. Multiplying 
the content of CV by 40 and summing the result with CH generates a 
PRINT @ sort of number that is assigned to variable PAT. It will always be 
a number between 0 and 959, and it will indicate the cursor's position in a 
form described for PRINT @ statements in "simulating a PRINT @ state
ment" on page 29. 

POKEing Into CH and CV The Apple system refers to RAM ad
dresses CH and CV whenever it is necessary to use them for the sake of 
knowing where the next character is to be printed on the screen. You found 
in the previous section that you can find those addresses by PEEKing into 
CH and CV. Now you will see that you can actually control the position of 
the cursor by POKEing numbers-column and row addresses-into CH 
and CV. In fact you will find that PO KEing into CH and CV lets you per
form described for PRINT @ statements in ''Simulating a PRINT @
Statement" on page 29. 

This program demonstrates the feasibility of POKEing values into CH 
in order to begin printing a message at a designated column address: 
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10 CALL -936 
20 PRINT "WHAT COLUMN STARTING ADDRESS (0-39)"; 
30 INPUT COL 
40 POKE 36,COL 
50 PRINT "HELP" 
60 GOTO 20 

Enter and run this program, responding to the request for a column 
address with an integer value between 0 and 39. The program responds by 
printing the HELP message beginning at the column address you specify. 
How is that done? Line 40 in the program POKEs your COL value into 
CH. The system then uses that value in CH to fix the starting column for 
the message that is spelled out in line 50. 

Try several different COL values, and convince yourself that the 
HELP message in each case begins at the address value you specify. 

Every time the system is called upon to print a text character, it refers 
to the content of CH to determine the column address of the character. 
After printing the character, the system increments the value in CH to 
place the cursor at the next column address. 

PO KEing values into CH and getting the desired result is a rather 
straightforward procedure. Unfortunately, the Apple system isn't set up to 
work with POKEs into CV in such a straightforward manner. The Apple 
system ignores the row-address value in CV unless it is really needed; it 
does not refer to that value after every character-printing operation. 

The Apple system refers to the content of CV only after it sees a 
linefeed and carriage return or notices that a printing operation is moving 
the cursor beyond the right end of the current row. That makes the matter 
of setting the row address by POKEing into CV (RAM address 37) a less
than-ideal formatting procedure. 

For example, you might think this would be a good program for dem
onstrating the notion of setting the row address by POKEing into CV: 

10 CALL -936 
20 PRINT "WHAT ROW ADDRESS (0-23)"; 
30 INPUT ROW 
40 POKE 37,ROW 
50 PRINT "HELP" 
60 GOTO 20 

When you enter a value for variable ROW, program line 40 POKEs it 
into CV. You might think that the system uses that value to determine the 
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row address for printing the HELP message. But it doesn't! No matter 
what value you input for ROW, the next format looks like this: 

WHAT ROW ADDRESS (0-23)? 
HELP 

The HELP message appears on the row directly following the row-address 
request. 

Notice, however, that the next request for an address appears at the 
row address you specified. The system does not refer to your specified row 
address until after it prints the HELP message. I'll have to confess that it 
took me some time to figure out what was going wrong when I tried this 
sort of POKEing into CV. 

The principle of the thing is that the Apple system, in the interests of 
operating speed, does not refer to the content of CV until it is time to set 
up a new line of text. It refers to CH after every character-printing opera
tion, but not CV. In this particular example, the system refers to the con
tent of CV only after printing the HELP message. Why does it look into · 
CV then? Because the PRINT "HELP" statement ends with an automatic 
linefeed and carriage return. The process for doing a linefeed and carriage 
return is one that makes the Apple check the value in CV. 

So to set up the HELP messages at the desired ROW address, we have 
to do something that makes the Apple refer to CV after POKE 27, ROW, 
but before PRINT "HELP". Try adding the following line to the program 
just described: 

45 CALL -926 : CALL -998 

Now you will find the program runs as expected. 
The CALL statements in program line 45 do a linefeed and carriage 

return followed by an upward linefeed. Both CALLs affect CV and force 
the Apple to refer to it; the first CALL forces the cursor down a line, and 
the second CALL puts it back, Everything works out nicely. 

Of course you can combine these programs to take full control over 
the horizontal and vertical positioning of the cursor: 

10 CALL -936 
20 PRINT "WHAT COLUMN ADDRESS (0-39)"; 
30 INPUT COL 
40 PRINT "WHAT ROW ADDRESS (0-23)"; 
50 INPUT ROW 
60 POKE 37,ROW 
70 CALL -926: CALL -998 
80 POKE 36,COL 
90 PRINT "HELP" 

100 GOTO 20 
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Why do you suppose it is necessary to POKE the value of ROW into 
CH and execute the two CALL statements (lines 60 and 70) before setting 
COL into CH (line 80)? Hint: CALL -926 (a linefeed and carriage return) is 
the key to the answer. 

MORE CURSOR-RELATED OPERATIONS All of the cursor-
related operations described thus far deal with the cursor and its role in 
printing characters on the screen. There is a family of other cursor-related 
operations that perform other, equally important tasks. Those tasks include 
moving the cursor up, down, and to the left or right from its present posi
tion; and clearing selected portions of the text display. 

Many of these special cursor-related tasks can be executed by taking 
advantage of some simple CALL routines to the Apple monitor. Others 
cannot. 

Homing the Cursor Home, as far as the cursor is concerned, is that 
character position in the extreme upper left-hand corner of the text screen. 
Homing the cursor is a process that places it there without disturbing any 
other text on the screen. 

A couple of previous discussions in this chapter offer some techniques 
for homing the cursor from any other location. 

First, you can TAB and VTAB it to home with statements such as: 

TAB 1: VTAB 1 

When using full-screen text, TAB and VTAB values of 1 represent home for 
the cursor. Here is a demonstration program that uses this particular hom
ing technique: 

10 DIM M$ ( 16) 
20 TAB 1: VTAB 1 
30 INPUT M$ 
40 GOTO 20 

Program line 20 homes the cursor just prior to the execution of the INPUT 
statement in line 30. So every INPUT routine begins from the upper left
hand corner of the screen. 

Second, you can POKE zeros into CH and CV: 

10 DIM M$(16) 
20 POKE 37,0: CALL -926: CALL -998 
30 POKE 36,0 
40 INPUT M$ 
50 GOTO 20 
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Lines 20 and 30 work together to home the cursor just before the program 
executes the INPUT statement in line 40. The overall operation is identical 
to the TAB/VTAB version cited before. 

Unfortunately, the Apple monitor does not include an entry point that 
simply homes the cursor by means of a CALL statement in BASIC. A 
short machine-language routine will let you do the job in a custom fashion; 
but that is a topic that we will discuss much later in this book. 

Home the Cursor and Clear the Screen The most likely reason 
that there is no simple CALL statement for just homing the cursor is that 
most programmers want to link homing the cursor with clearing the entire 
screen. Such a two-part operation should be called "home the cursor and 
clear the screen," but it generally goes by the simple name of HOME. 
HOME, in fact, is the designation assigned to this two-part operation in 
most of the Apple literature. 

Most Apple users, particularly those who use Integer BASIC, are well 
acquainted with the HOME operation: 

CALL -936 

Executing that statement, either in the programming mode or the im
mediate execution mode, sends the cursor to its home position and clears 
the entire text field. 

HOME (-936) is the entry point for operations that 
both home the cursor and clear the text screen. 

If you have been entering and running the demonstration programs 
offered so far in this chapter, you have been working with the CALL -936 
instruction. So there is no need for citing any further examples. 

You can also call up that home-and-clear operation from BASIC com
mand mode or from the monitor by doing an ESC-@ key function. Strike 
the ESC key and then type an @. As you can see, that too homes the 
cursor and clears the screen. 

Clear to End of Line Sometimes it is helpful to clear a line of text 
from the current cursor position to the end of the current line of text. Try 
this demonstration program: 

10 DIM M$ (39) 
20 TAB 1: VTAB l 
30 INPUT M$ 
40 CALL -868 
50 GOTO 20 
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When you get the program loaded and running, respond to the INPUT 
statement by typing in an arbitrary string of characters-say, 16 or so. Do 
a RETURN and input another string of characters that is somewhat shorter 
than the first. When you do the RETURN for that second entry, you will 
see the characters at the end of the previous entry cleared from the screen. 

Line 20 in the program homes the cursor without clearing anything 
from the screen, and line 30 lets you type in a string of characters from that 
point. The statement in line 40 is the one that is important to the present 
discussion. It CALLs an entry point in the Apple monitor that clears any 
text that resides in the space from the current cursor position to the end of 
the line. In the Apple literature, entry address -868 is called CLREOL
clear to end of line. 

CLREOL (-868) is the entry point for operations 
that clear text from the cursor's current column 
address to the end of the current row, or line. 

You can also execute CLREOL from the keyboard by doing an ESC
E-that is, by pressing ESC followed by E. 

Clear to End of Page Just as CALLing CLREOL clears a line of 
text from the current cursor position to the end of the current line, 
CALLing CLREOP clears text from the current cursor position to the end 
of the page. 

Here is a CLREOP demonstration program: 

10 FOR N=0 TO 39: FOR M=0 TO 23 
20 PRINT "*"; 
30 NEXT M: NEXT N 
40 TAB 1: VTAB l 
50 PRINT "WHAT COLUMN NUMBER (0-39)"; 
60 INPUT COL 
70 PRINT "WHAT ROW NUMBER (0-23)"; 
80 INPUT ROW 
90 TAB COL+l: VTAB ROW+l 

100 CALL -958 
110 END 

This one first fills the entire screen with asterisk characters (program 
lines 10 through 30). Line 40 homes the cursor without erasing any of the 
asterisks along the way, and lines 50 through 80 let you enter cursor
positioning addresses. Line 90 forces the cursor to the prescribed position 
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on the screen, and line 100 CALLs CLREOP at address -958 to clear the 
screen from that cursor position to the end of the page. 

CLREOP (-958) is the entry point for operations 
that clear text from the current cursor location to 
the end of the page. 

You can also execute CLREOP from the keyboard by doing an ESC-F 
command-that is, by pressing ESC followed by F. 

Recall that CALLing HOME at address -936 both homes the cursor 
and clears the entire text screen. It is possible to do the same thing this 
way: 

10 TAB 1: VTAB l 
20 CALL -958 
30 END 

Line 10 homes the cursor and line 20 does a CLREOP to clear the screen 
all the way from the home position to the end of the screen. 

Advance the Cursor Another kind of monitor routine, called AD
VANCE, begins at address -1036. Its function is to advance the cursor one 
character location to the right. ADVANCE differs from doing a SPACE 
keystroke inasmuch as ADVANCE does not erase characters as it moves 
the cursor position. What's more, ADVANCE will do an automatic linefeed 
and carriage return when executed at the end of a line, and it will scroll the 
entire screen upward when the cursor is at the last character position on 
the last line. 

So including an ADVANCE operation, CALL -1036 in a FOR-NEXT 
loop lets you position the cursor in a left-to-right fashion without erasing 
any of the characters that might be in the cursor's path. 

ADVANCE (-1036) is the entry point for an opera
tion that moves the cursor one column address to 
the right without erasing the current character. 

An ESC-A combination of keystrokes from the keyboard calls up the 
ADVANCE routine from the BASIC command mode or the monitor. Strik
ing the right-arrow key does essentially the same thing. 

You might also take note of the fact that a series of successive AD
VANCE operations can do the same job as a TAB statement. There is one 
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big difference, however. TAB statements use absolute column address
ing-that is, the value assigned to the TAB statement refers to the column 
position as reckoned from the left-hand edge of the text field. So if the 
cursor happens to be at column address 6 and you want to move it ten 
spaces to the right, you have to take into account the cursor's current 
position and specify a TAB 17. But doing ten ADVANCE operations in 
succession will move the cursor ten column locations to the right from its 
current location. That is an example of relative cursor addressing
addressing that is relative to the current cursor position. 

Backspace the Cursor The BS routine in the monitor begins at ad
dress -1008, and its function is to move the cursor one space to the left. 
Doing a succession of these backspace operations moves the cursor in a 
right-to-left fashion without erasing any characters that might be in its way. 

BS (-1008) is the entry point for an operation that 
moves the cursor one column address to the left 
without erasing the current character. 

You have most likely used the routine a number of different times by 
striking the left-arrow key. You can do the same thing by pressing the key
stroke combination, ESC-B. 

Like ADVANCE, BS is an example of relative cursor addressing. In
serting a CALL -1008 into a FOR-NEXT loop backspaces the cursor a 
number of locations relative to its starting position. 

Downward Linefeed You can always do a downward linefeed by 
striking the ESC key, followed by striking the C key. That moves the cur
sor down one line-straight down. A RETURN keystroke also moves the 
cursor down one line, but to the beginning of that line. 

You can include a downward linefeed operation in a BASIC program 
by executing a CALL -922. That address marks the beginning of the 
monitor's LF routine. 

LF (-922) is the entry point for an operation that 
moves the cursor down one line, or row, without 
erasing any characters in its path. 

The LF operation represents a relative-addressing version of BASIC's 
VTAB statement. 

Upward linefeed The monitor's UP routine, beginning at address 
-998, moves the cursor straight up one line. One or more CALL -998 
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statements in a BASIC program effectively move the cursor upward with
out affecting the text. 

UP (-998) is the entry point for an operation that 
moves the cursor up one line, or row, without eras
ing any characters in its path. 

An ESC-D operation lets you do the same thing from the keyboard. 
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Alternative Text Formats 

3 The Apple offers some alternatives to the standard text formats 
described in Chapter 2. The alternatives include inverse and flashing 
characters, and custom text windows. It is certainly possible to run some 
useful and sophisticated text routines without using any of these alternative 
formats, but their availability offers you a chance to turn a good program 
into a great one. 

ALTERNATIVE CHARACTER FORMATS Unless directed other-
wise, the Apple system prints text characters in a white-on-black format. 
An initialization routine that is built into the Apple monitor automatically 
sets up the standard white-on-black format whenever you turn on the sys
tem or do a RESET. You can, however, set up the text so that all char
acters appear in the inverse, black-on-white, format. You can also set up 
the text so that the @symbol and all letters appear in the flashing format. 

The key to setting up these formats is RAM location 50, otherwise 
known as INVFLG to the Apple operating system. POKEing appropriate 
values into INVFLG makes the text display normal, inverse, or flashing 
(see Table 3-1). 

Notice from the table that the normal and inverse text formats apply to 
all printed characters, while the flashing text format does not. This is a 
peculiarity of the Apple that can cause some frustration if you are not 
aware of it. 

The flashing text mode applies only to the @ sym
bol and the alphabet, but all characters may be 
printed in the inverse format. 

You can set the text modes directly from the keyboard in the command 
mode of operation or you can write the appropriate POKEs into a BASIC 
program. 
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Tab!e 3-1. Text Formats 

Content of INVFLG 
Text Format (RAM address 50) Example Notes 

NORMAL 255 POKE 50,255 All characters are 
printed in a normal, 
white-on-black format. 

INVERSE 63 POKE 50,63 All characters are 
printed in an inverse, 
black-on-white format. 

FLASHING 127 POKE 50, 127 · The @ symbol and all 
letters are printed 
in a flashing format; 
all other symbols and 
numerals are printed 
in the INVERSE format. 

Setting Text Formats From the Keyboard The following series 
of short experiments demonstrates how to set text formats from the 
keyboard. 

1. Enter this program: 

10 
20 
30 
40 
50 

CALL -936 
FOR N=l TO 12 
PRINT .. xii; 

NEXT N 
END 

Line 10 homes the cursor and clears the screen. Lines 20 to 40 print 
12 X characters in succession on the same row. 

2. From the command mode, enter: 

POKE 50,63 
RUN 

The POKE statement sets up the inverse text format so that when you 
run the program, the 12 X characters appear black-on-white. 

3. From the command mode, enter: 

POKE 50,127 
RUN 
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The POKE statement sets up the flashing text format, so you should 
see the X characters flash. 

4. From the command mode, enter: 

POKE 50,255 
RUN 

That POKE statement returns the system to the normal, white-on
black text format, so the program ought to print the 12 X characters in 
that fashion. 

Steps 2, 3, and 4 demonstrate that you can set the format from the 
keyboard prior to running a text-printing program. 

5. From the command mode, enter: 

POKE 50,63 
RUN 

The 12 X characters should appear in the inverse form. 

6. Now, perform a RESET, a CTRL-C, and enter: 

RUN 

The X characters should now appear in the normal text format. 

Steps 5 and 6 show that you can return to the normal text format by 
resetting the system. Thus there are two ways to get back to the normal 
text mode: by doing a POKE 50,255 or a RESET followed by a CTRL-C. 

7. Rewrite line 30 in the program in Step 1 to read: 

30 PRINT "3"; 

That simply replaces the 12 X characters with numeral 3 characters. 

8. Repeat Steps 2, 3, and 4. 

The numerals appear as one might expect them to appear in Steps 2 
and 4-inverse and normal, respectively. But they do not appear in the 
flashing-text mode following the POKE 50,127 as prescribed in Step 3. The 
point of the demonstration is to show that numerals cannot be made to 
flash. 
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Setting Text Formats Within a Program The previous set of 
experiments showed how you can set the text format from the keyboard 
prior to running a print-oriented program. The next program shows how 
you can set the text modes within a program. 

10 CALL -936 
20 PRINT "WHAT CHARACTER?"; 
30 INPUT C$ 
40 CALL -936 
50 POKE 50,63: GOSUB 100 
60 POKE 50,127: GOSUB 100 
70 POKE 50,255: GOSUB 100 
80 PRINT : PRINT 
90 GOTO 20 

100 FOR N=l TO 12 
110 PRINT C$; 
120 NEXT N 
130 PRINT 
140 RETURN 

Enter the program and run it. Respond to the WHAT CHARACTER 
request by entering a single letter, numeral, or punctuation symbol. The 
program will respond by printing three rows of 12 characters apiece, each 
row having a different text format: inverse, flashing, and normal. Re
member, though, that characters other than @ and a letter of the alphabet 
will not flash. 

Here is an analysis of that program: 

Line 10 homes the cursor and clears the screen. 
Lines 20 and 30 request a character and input it as string variable C$. 
Line 40 homes and clears again. 
Line 50 sets the inverse text format and calls subroutine 100 to print 12 

characters in a row. 
Line 60 sets the flashing text format and calls subroutine 100 to print 12 

characters in a row. 
Line 70 sets the normal text format and calls subroutine 100 to print 12 

characters in a row. 
Lines 80 and 90 skip two lines on the screen and then loop back to pro

gram line 20 to request another character. 
Lines 100 through 140 constitute a subroutine for printing 12 C$ char

acters in a row. The text format is set just prior to calling this sub
routine. 

The program clearly demonstrates you can set the text format, and 
indeed change it, during the execution of a program. 
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Mixing Text Formats One of the most compelling reasons f.x using 
inverse or flashing text formats is to make important segments of printed 
text stand out clearly to get the user's attention. Mixing inverse or flashing 
text with normal text is a simple matter of switching text formats at critical 
points within a message-printing operation. Here is an example: 

HJ CALL -936 
20 POKE 50,255 
30 PRINT "ENTER A NUMBER"; 
40 POKE 50,63 
50 PRINT "BETWEEN 0 AND 9 II j 

60 POKE 50,255 
70 INPUT N 
80 IF N>=0 AND N<=9 THEN 100 
90 PRINT : POKE 50,127: GOTO 50 

100 CALL -936 
110 PRINT "YOUR NUMBER WAS II j 

120 POKE 50,63 
130 PRINT N 
140 PRINT : PRINT 
150 GOTO 20 

Enter and run this program, and you will see the request: ENTER A 
NUMBER BETWEEN 0 AND 9. The first part of the text, ENTER A 
NUMBER, is written ill the normal, white-on-black form. The last part, 
however, appears as inverse text. The idea is to emphasize BETWEEN 0 
AND9. 

If you respond to the request by entering some integer between 0 and 
9, the program prints YOUR NUMBER WAS followed by the numeral you 
specified. YOUR NUMBER WAS in printed in normal format, but the 
numeral appears in inverse format to make it stand out from the rest of the 
text. After doing that, the program loops back to request another number. 

If you respond with an integer value that is outside the range of 0-9, 
the program prints BETWEEN 0 AND 9 in flashing format. The idea is to 
emphasize that you've made an error. In that error message, the words 
BETWEEN and AND are flashing; numerals 0 and 9 are in inverse form 
since numerals cannot be made to flash. 

Bear in mind that the purpose of this program is to show how you can 
insert statements that alter the text formats to emphasize ideas that are 
important to the user. Here is a brief analysis of the operations: 

Line IO homes the cursor and clears the screen. 
Lines 20 and 30 set the normal text format and print ENTER A 

NUMBER without the usual carriage return. 
Lines 40 and 50 set the inverse text format and complete the request 

message by printing BETWEEN 0 AND 9. 
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Lines 60 and 70 set the normal text format and input the numeral as 
variable N. 

Line 80 tests the value of N. If N is within the requested range of values, 
jump to program line 100; otherwise it executes the program from line 
90. 

Line 90 skips a line on the screen, sets the flashing text format, and loops 
back to program line 50 to print BETWEEN 0 AND 9 as an error 
message. 

Line 100 homes the cursor and clears the screen. 
Line 110 prints YOUR NUMBER WAS in the normal text format set in 

line 60. 
Lines 120 and 130 set the inverse text format and print the value of vari

able N. 
Lines 140 and 150 skip two lines on the screen and then loop back to 

program line 20 to request another number. 

Notice especially how one can use the same message statement, BE
TWEEN 0 AND 9 in line 50, to serve two different purposes. Printed in 
inverse format, it simply emphasizes that the specified number should be in 
that range. Printing the same message in flashing format makes it serve as 
an eye-catching error message. 

Mixing text formats within an operating program can transform an 
otherwise humdrum program into something a lot more interesting for the 
user. An example is the typical two-player high-low guessing game shown 
in Listing 3-1. Enter the program, run it, and play with it for a while. Take 
note of how it uses different text formats to add interest. 

A step-by-step analysis of how the game works is left to you. It is 
more important at this time to point out the ideas behind changing the text 
modes. 

First notice program lines 1000, 2000, and 3000. Each does nothing 
more than set a particular text format and return to the statement that calls 
it as a subroutine. Line 1000 sets the normal text format, 2000 sets the 
inverse format, and 3000 sets the flashing format. It isn't necessary to write 
those text-setting POKE statements as subroutines, but I've done it here to 
make them easy to use in other programs. 

Thus, having the GOSUB 1000 statement in the main part of the pro
gram is the same as having a POKE 50,255 there, because they both set the 
normal text format for any PRINT statements that follow. (See program 
lines 50, 190, 210, 360, and 380.) 

Along those same lines, GOSUB 2000 effectively sets up the inverse 
text format, and GOSUB 3000 sets up the flashing format. 

You should be able to get a good appreciation of how the mixed-text 
scheme works if you run the program and follow the listing as you go 
along. 
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Listing 3-1. High-Low Guessing Game. 

10 DIM Pl$(16),P2$(16),PN$(16) 
15 CALL -936 
20 TAB 15: VTAB 10 
30 
40 
50 
60 
70 
80 
90 

GOSUB 2000: PRINT "HIGH-LOW GAME" 
VTAB 16 
GOSUB 1000: 
GOSUB 2000: 
GOSUB 1000: 
INPUT S$ 
CALL -936 

PRINT "STRIKE"; 
PRINT "RETURN"; 
PRINT " TO BEGIN ". • • o I 

PRINT 
INPUT 
PRINT 
INPUT 
PN=l 

"FIRST 
Pl$ 

PLAYER'S NAME .. 0 II i 

: PRINT 
P2$ 

"SECOND PLAYER'S NAME 

CALL -936:X= RND (99)+l:S=0 
IF PN=l THEN PN$=Pl$ 
IF PN=2 THEN PN$=P2$ 
GOSUB 2000: PRINT PN$; 

II j 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 

GOSUB 1000: PRINT " I AM THINKING OF A NUMBER" 
PRINT "BETWEEN 0 AND 100" 

1000 
2000 
3000 

GOSUB 1000 
PRINT : PRINT "WHAT IS YOUR GUESS?" 
INPUT G:S=S+l 
IF G>=0 AND G<=l00 THEN 260 
PRINT : GOSUB 3000: GOTO 200 
CALL -936 
PRINT PN$;" 'S GUESS NO. "; S;":" 
PRINT : GOSUB 2000 
PRINT G;" IS "; 
IF G>X THEN 330 
IF G=X THEN 340 
GOSUB 2000: PRINT "TOO LOW": GOTO 210 
GOSUB 2000: PRINT "TOO HIGH": GOTO 210 
GOSUB 3000: PRINT "RIGHT ON" 
PRINT : PRINT 
GOSUB 1000: PRINT "STRIKE "; 
GOSUB 2000: PRINT "RETURN"; 
GOSUB 1000: PRINT " TO CONTINUE THE GAME 
INPUT S$ 
IF PN=l THEN 420 
PN=l: GOTO 150 
PN=2: GOTO 150 
POKE 50,255: RETURN 
POKE 50,63: RETURN 
POKE 50,127: RETURN 

". 
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ALTERNATIVE PRINT WINDOWS The Apple text environment is 
organized into 24 rows, or lines, having 40-character columns in each. At 
least that is the normal text environment. It represents the largest possible 
print window-960 character locations as outlined in Fig. 2-1. If you type 
for a while, you will find that you can print up to 40 characters on as many 
as 24 different lines. Attempt to print on an imaginary 25th line, and you 
will see the scrolling effect. 

Recall that starting up the computer or doing a RESET operation 
automatically sets the system for printing characters in their normal, 
white-on-black form. The same sort of thing happens to the print window: 
tum on the system or do a RESET, and the system automatically sets up 
the 40 column, 24 row window. And just as you can switch formats from 
the keyboard or during the execution of a program, you can also adjust the 
size of the print window. Adjusting the window means adjusting the posi
tion of the first and last column of text, and the position of the first and 
bottom row of text. You do this by POKEing the appropriate values into a 
family of four special RAM addresses. 

Setting the Starting Column of Text Recall that Fig. 2-1 
showed each line of text organized into 40 different column locations that 
were designated 0 through 39. Column address 0 represented a character 
location at the extreme left-hand edge of the screen, and column address 39 
represented a character location at the extreme right-hand edge. 

There is a particular memory location in Apple RAM that determines 
the column address for the first character to be printed on each line. That 
memory location, called WNDLFT, is at decimal address 32. Thus any 
reference to WNDLFT (address 32) has something to do with the left-hand 
starting position of a line of text. 

Normally the value stored in WNDLFT is zero. That means each line 
of text will begin from column location 0-the extreme left-hand edge of 
the screen. But you can alter the value saved in WNDLFT at will. 

Try this experiment: 

l. Working in the Integer BASIC command mode, do a RESET followed 
by CTRL-C or CTRL-B. This action makes certain that the text win
dow is set to its normal, maximum size. 

2. Enter the following: 

PRINT PEEK(32) 

This PEEKs into WNDLFT and prints the value stored in it, which is 
0. 
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3. Enter: 

POKE 32,15 

You will see the cursor and prompt symbols jump immediately to a 
position near the middle of a line. Do several RETURN keystrokes in 
succession to confirm that each line of text is beginning at column 
address 15. 

4. Enter: 

PRINT PEEK(32) 

The response should be a 15 printed on the screen. This tells you that 
Step 3 was successful. 

5. Enter: 

POKE 32,0 

This returns the value in WNDLFT to that required for the normal, 
40-character-per-line format. A few keystrokes and RETURN opera
tions will confirm that fact. Doing a PRINT PEEK(32) should turn up 
a value of 0. 

You can POKE a lot of other positive integer values into WNDLFT, 
but only those in the range of 0 through 39 have meaning. When experi
menting with the content of WNDLFT, you should not overflow a line of 
text when using a value other than 0. We can get away with it here, but 
allowing a line to overflow upsets the general scheme and, more important
ly, forces data into RAM locations that aren't supposed to be affected by 
text operations. 

The next section of this chapter describes how to avoid the problems 
inherent in overflowing a line when WNDLFT has some value other than 0 
stored in it. 

Setting the Number of Characters Per Line A special Apple 
RAM location called WNDWDTH carries the number of characters that 
can be printed on each line. WNDWDTH is at address 33, and it normally 
carries a value of 40. You can work with WNDWDTH in much the same 
way as you did with WNDLFT. 

l. Do a RESET followed by a CTRL-C or CTRL-B. This sets up the 
normal text window and BASIC's command mode. 

2. Enter: 

PRINT PEEK(32},PEEK(33) 
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This PEE Ks into WNDLFT and WNDWDTH, respectively, and 
prints the values contained in them. Since the system is now set for 
the normal text window, the values should be 0 and 40. This means 
that the text begins at column address 0 on each line and that there 
are a maximum of 40 characters per line. 

3. Enter: 

POKE 33,10 

This operation sets WNDWDTH to carry a value of 10. Type in a long 
string of arbitrary characters, and you will find that you can fit no 
more than 10 characters on each line. 

4. Enter: 

PRINT PEEK(32),PEEK(33) 

The response should be a 0 in WNDLFT and a IO in WNDWDTH. 
The text thus begins at column address 0 on each line with up to 10 
characters per line. 

5. Enter: 

POKE 33,40 

This should return the system to the normal 40-character-per-line text 
window. Confirm that by typing in long lines of text or by executing 
the command in Step 4. 

WNDLFT and WNDWDTH are used in conjunction with one another 
to set the horizontal position and width of the text window. The possibility 
of causing serious problems by overflowing a line of text can be eliminated 
by a careful selection of values POKEd into WNDLFT and WNDWDTH. 

To avoid line overflow and possible destruction of 
data in other RAM locations, the sum of the values 
stored in WNDLFT and WNDWDTH must be less 
than or equal to 40. 

Thus the following set of POKEs into WNDLFT and WNDWDTH 
make up a legitimate adjustment of the text window: 

POKE 32,10:POKE 33,15 

The first statement sets WNDLFT value to 10 so that text printing begins at 
the column-10 location on each line. The second statement POKEs 15 into 
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WNDWDTH, setting up the text for no more than 15 characters per line. 
The text window, in other words, occupies column addresses 10 through 
24. 

Quite often a programmer who is setting up a custom text window is 
more conscious of the column addresses at the beginning and end of each 
line (as opposed to the column address of the first character and the 
number of characters per line). A simple equation can keep things straight: 

WNDWDTH = WNDRT-WNDLFT+ 1 

where, 
WNDWDTH is the content of address WNDWDTH, 
WNDLFT is the content of address WNDLFT, 
WNDRT is the column address for the last character on each line. 

Suppose that you want to configure a text window in such a way that 
the first character on each line is at column address 12 and the last char
acter is at column address 36. Entering a POKE 32, 12 sets WNDLFT to 
the appropriate value. Solving the equation provides the value to be 
POKEd into WNDWDTH: 

WNDWDTH=36-12+ 1=25 

Entering POKE 33,25 completes the task. 

Setting the Position of the Top line The normal text window 
allows up to 24 lines of text. As shown back in Fig. 2-1, those rows of text 
can be assigned addresses of 0 through 23, with row 0 representing the top 
row. 

The row address of the topmost line of text is carried in Apple RAM 
by WNDTOP, or address 34. The system usually sets the content of 
WNDTOP to 0, indicating that the first line of text should appear at the 
very top of the screen. 

Try this experiment: 

1. Do a RESET followed by a CTRL-C or CTRL-B. This sets the text 
window for its normal 24-line format. 

2. Enter: 

PRINT PEEK(34) 

The system should respond by printing a 0. The command PEEKs 
into WNDTOP and prints the content for you. In the normal text win
dow, the content of WNDTOP is 0. 
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3. Enter: 

POKE 34,10 

This should set up the text window so that the first line is at row 
address 10. But it is unlikely that you will see the cursor symbol snap 
to that line position. Recall from discussions in the previous chapter 
that the system doesn't set up cursor row parameters until it is forced 
to do so. One way to force the issue in this case is to enter a CALL 
-936 to home the cursor and clear the screen. 

4. Enter: 

CALL -936 

This homes the cursor, but now you will find that home is no longer 
the upper left-hand comer of the screen. Rather, it is located at the 
beginning of row address 10-the value for WNDTOP entered in Step 
3. What's more, you might find that this operation clears only that 
part of the screen from row address 10 to the bottom. If you had some 
text printed in row addresses 0 through 9, it would not have been 
disturbed by the home-and-clear command. 

5. Type in some keystrokes, including a lot of RETURNs. You will 
notice that all text operations, including the scrolling effect, take place 
from row address 10 through the bottom of the screen. 

6. To set up WNDTOP, enter: 

POKE 34,20 
CALL -936 

Now the text window begins at row address 20. 
7. Return to the normal text window by entering: 

POKE 34,0 

or by performing a RESET followed by CTRL-C. 
8. Assure yourself that the content of WNDTOP is now 0 by entering: 

PRINT PEEK(34) 

9. Enter: 

GR 

This sets up the Apple low-resolution graphics mode. 
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10. Enter: 

PRINT PEEK(34) 

PEEKing into WNDTOP while in the mixed low-resolution graphics 
mode should show a value of 20. The Apple normally allows four lines 
of text at the bottom of the low-resolution screen, so it should come 
as no surprise that the Apple sets the content of WNDTOP to 20 in 
that operating mode. 

11. Enter: 

TEXT 

This returns the system to the text mode. 
12. Enter: 

PRINT PEEK(34) 

You should find that the system has returned the content of WNDTOP 
to 0. 

There are 24 lines of text that can be labeled 0 through 23 for the 
purposes of setting the value in WNDTOP. You will discover after some 
experimenting, however, that WNDTOP works as described only for 
values 0 through 22. You can POKE a value of 23 into WNDTOP, but 
things get messed up if you do that, because the Apple expects the bottom 
line to be different than the top line. 

Values stored in WNDTOP are limited to the range 
of positive integers from 0 through 22. 

Setting the Position of the Bottom line Apple RAM address 
35, usually called WNDBTM, carries the position of the text window's bot
tom line. A value of 24 in WNDBTM allows the last line of text to appear 
at the very bottom of the screen. 

The useful range of values that can be POKEd into WNDBTM is be
tween 1 and 24. Clearly the value of WNDBTM is not exactly represented 
by the usual row addressing scheme that runs between 0 and 23. Most 
Appk references cite the value of WNDBTM as being the desired row 
address of the bottom line plus 1. The notion is a valid one, of course, but 
it doesn't point to the rationale behind it. Consider this idea instead: 

Number of lines= WNDBTM-WNDTOP 
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where, 
WNDBTM is the content of WNDBTM, 
WNDTOP is the content of WNDTOP. 

If you happen to POKE a value of 20 into WNDBTM and a 12 into 
WNDTOP, the equation says that you ought to end up with a text window 
that has just eight lines in it. In other words, the difference in line
numbering makes it easier to find the number lines in the text window. 

or 

or 

Try it for yourself: 

1. Enter: 

POKE 34,12 
POKE 35,20 
CALL -936 

This sets up the text window just described. 
2. Type in some arbitrary characters, including some RETURN key

strokes. You will find that the printing and scrolling operations are 
confined to eight lines. 

3. Enter: 

PRINT PEEK(34),PEEK(35) 

This PEEKs into WNDTOP and WNDBTM, respectively. The sys
tem should respond by printing 12 and 20. 

4. Return to the full 24-line text window by entering: 

TEXT 

POKE 34,0 

POKE 35,22 

or by performing a RESET followed by CTRL-C. Any one of those 
three techniques will return WNDTOP and WNDBTM to their normal 
values of 0 and 22, respectively. 

There are many programming situations, however, in which the pro
grammer is more aware of the desired row addresses for the top and bot-
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tom of the screen than the value to be stored in WNDBTM. A simple 
algebraic rearrangement of the equation puts matters into a more direct 
light: 

WNDBTM=Number oflines+WNDTOP 

Suppose, then, that you want to set up a 10-line text window beginning 
from row address 2. What value should be loaded into WNDBTM? From 
the equation just cited, you should POKE a value of 10+2, or 12 into 
WNDBTM. 

Enter the following sequence to set up that particular text window: 

POKE 34,2 
POKE 35,12 
CALL -936 

Try it yourself. 

Programming the Text Window Table 3-2 summarizes the RAM 
addresses, names and range of values for the four text window parameters. 
The following examples demonstrate how to manipulate all four of them to 
achieve a desired result. 

Example J. Prepare a BASIC program that sets up a text window hav
ing these specifications: 

a. Twelve characters wide, beginning at column address 0. 
b. Eight lines long, beginning at row address 0. 

Table 3-2. RAM Names for Setting Text Window Sizes 

RAM Meaning RAM Range of Normal 
Address Values Value 

WNDLFT Column address of the 32 0-39 0 
first character in 
each line 

WNDWDTH Number of char- 33 1-40 40 
acters in each line 

WNDTOP Row address of the 34 0-22 0 
top line 

WNDBTM Number of lines 35 1-24 24 
+ WNDTOP 
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The specifications, presented in that fashion, lead directly to the 
values to be POKEd into WNDLFT, WNDWDTH, and WNDTOP: 

POKE 32,0 
POKE 33,12 
POKE 34,0 

An equation cited in the previous section leads to the value to be POKEd 
into WNDBTM: 

WNDBTM=Number of lines+WNDTOP 
WNDBTM=8+0 
WNDBTM=8 

So POKE 35,8 is part of the program as well. 
Here is a program that will do the job: 

10 CALL -936 
20 POKE 32,0: POKE 33,12 
30 POKE 34,0: POKE 35,8 
40 CALL -936 
50 END 

Enter and run the program. You will find that the text window is in
deed confined to a 12-column, 8-line format in the upper left-hand corner of 
the screen. 

The main purpose of the home-and-clear statement in line 10 is to clear 
the entire screen before confining operations to the custom text window. 
The second home-and-clear statement in line 40 gets the cursor to the 
newly established home location. If, for any reason, you do not want to 
clear the entire screen prior to setting up the smaller text window, simply 
delete program line 10. That will leave all of the text that is outside the 
smaller window intact. 

Example 2. Suppose that while planning a relatively complex text
oriented program, you find that you need a small text window running be
tween column addresses 26 and 34, and between row addresses 18 and 22. 
Prepare a BASIC routine for setting up that text window without disturbing 
the text that might appear elsewhere on the screen. 

The given specifications lead directly to the values to be POKEd into 
WNDLFT and WNDTOP: 

POKE 32,26 
POKE 34,18 
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This equation provides the value to be loaded into WNDWDTH: 

WNDWDTH = WNDRT- WNDLFT +I 
WNDWDTH=34-26+ 1 
WNDWDTH=9 

And the value to be POKEd into WNDBTM is equal to the row address of 
the bottom line plus I: 

WNDBTM=row address+ I 
WNDBTM=22+1 
WNDBTM=23 

So the desired BASIC routine should look like this: 

10 POKE 32,26: POKE 33,9 
20 POKE 34,18: POKE 35,23 
30 CALL -936 

Example 3. Write a BASIC routine that restores any custom text win
dow to the normal, full-screen format. 

Here is one approach: 

10 POKE 32,0: POKE 33,40 
20 POKE 34,0: POKE 35,24 

The idea is to POKE the normal values into WNDLFT, WNDWDTH, 
WNDTOP, and WNDBTM, respectively. 

But there is a far simpler way to accomplish the same thing: 

10 TEXT 

Remember that the TEXT statement automatically restores the normal text 
window values. Given the choice, why not opt for the simpler approach? 

Knowing how to program custom text windows ought to lead one to 
begin thinking in terms of split-screen text activity-preparing programs 
that run two or more custom text windows. Listing 3-2 is an example of 
such an application. 

Enter this program and run it. You will first see ENTER A 1-LINE 
MESSAGE and the flashing cursor symbol just below the middle of the 
screen-at row addresses 16 and 17 to be exact. 
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Listing 3-2. Split-Screen Example. 

10 DIM M$(32) 
20 TOP1=0:BOT1=8 
30 TOP2=16:BOT2=18 
40 TOPW=34:BOTW=35 
50 CV=37:VPOS=0 
60 CALL -936 

100 GOSUB 1000 
110 PRINT "ENTER A 1-LINE MESSSAGE" 
120 INPUT M$ 
130 GOSUB 2000 
140 PRINT M$ 
150 VPOS= PEEK (CV) 
160 GOTO 100 

1000 POKE TOPW,TOP2: POKE BOTW,BOT2 
1010 CALL -936 
1020 RETURN 
2000 POKE TOPW,TOPl: POKE BOTW,BOTl 
2010 POKE CV,VPOS: CALL -922: CALL -998 
2020 RETURN 

Respond by typing in a message string up to 32 characters long. End 
this phase of the program by striking the RETURN key. 

Immediately after that, you will see your message printed at the top of 
the screen; then the ENTER message and flashing cursor will appear once 
again just below the middle of the screen. 

The next string you enter will appear below the first, the next string 
after that will appear on the third line from the top, and so on. As you 
continue entering messages, they appear in sequence at the top of the 
screen, scrolling upward as you exceed eight message strings. 

Just from observing the behavior of this program you should get the 
idea that it is using two different text windows: a two-line text window for 
entering the current message, and an eight-line text window at the top of 
the screen for accumulating the series of messages. The upper text window 
is allowed to scroll, but the lower one is not. 

This is an example of a two-window format that splits the screen hori
zontally. Now let's look at the listing more closely. 

Line 10 dimensions string variable M$ to carry up to 32 characters. 
Line 20 sets the WNDTOP and WNDBTM values for the upper text 

window. TOPl=O sets the value in WNDTOP for the upper text win
dow, and BOT1=8 sets the value in WNDBTM for that upper window. 

Line 30 sets the WNDTOP and WNDBTM values for the lower text win
dow. TOP2= 16 sets the value to be POKEd into WNDTOP for the 
lower text window, and BOT2= 18 sets the value in WNDBTM for the 
lower text window. 
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Line 40 points to the RAM addresses for WNDTOP and WNDBTM with 
variables TOPW and BOTW. (Integer BASIC does not accept 
WNDTOP and WNDBTM as variable names.) 

Line 50 points to the address of RAM location CV, which carries the 
current row address of the cursor. It initializes variable VPOS, which 
will keep track of the cursor's vertical position in the upper text win
dow while the program is running operations in the lower window. 

Line 60 clears the screen and homes the cursor. 
Line 100 goes to subroutine 1000 to set the text window parameters for 

working in the lower window. 
Line 110 prints the prompt message. 
Line 120 inputs the message to be printed in the upper window. 
Line 130 goes to subroutine 2000 to readjust the window parameters for 

working in the upper text window. 
Line 140 prints the message in the upper text window. 
Line 150 saves the current cursor line number in VPOS. 
Line 160 loops back to program line 100 to repeat the sequence. 
Line 1000 is the beginning of a subroutine that sets up the lower text 

window. It begins by POKEing TOP2 into TOPW (16 into WNDTOP) 
and BOT2 into BOTW (18 into WNDBTM). 

Line 1010 homes the cursor within the lower window, and clears that 
window. 

Line 1020 returns to the mainline program. 
Line 2000 marks the beginning of a subroutine that sets up operations for 

the upper text window. It begins by POKEing TOPI into TOPW (0 
into WNDTOP) and BOTl into BOTW (8 into WNDBTM). 

Line 2010 sets the cursor at the position it held after printing the previous 
message in the upper text window. 

Line 2020 returns to the mainline program. 

You can see that the program is divided into three main parts. Lines 10 
through 60 initialize the program and define the variables. Lines 100 
through 160 make up the mainline portion of the program. Finally, lines 
1000 through I 020 and 2000 through 2020 are the window-setting sub
routines. 

You can change the size and relative positions of these two text win
dows by altering the values assigned to the windowing variables in lines 20 
and 30. Try that now. You can also extend the scheme to include more than 
two such windows. Simply extend the assignments of variables, add more 
window-setting subroutines, and rewrite the main portion of the program to 
work in the new windows. 

The next program, Listing 3-3, uses the above principles to split the 
screen into two vertical windows. Enter the program, do a RUN, and play 
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with it for a while. You should be able to analyze the listing on your own, 
using the analysis of the previous program as a general guide. 

Listing 3-3. Second Split-Screen Example. 

10 DIM M$(32) 
20 LFT1=0:NCH1=19 
30 LFT2=20:NCH2=16 
40 LWND=32:RWND=33 
50 CV=37:VPOS=0 
60 TEXT : CALL -936 

100 GOSUB 1000 
110 POKE 50,63: PRINT "ENTER A MESSAGE" 
120 POKE 50,255 
130 INPUT M$ 
140 GOSUB 2000 
150 PRINT M$ 
160 VPOS= PEEK (CV) 
170 GOTO 100 

1000 POKE LWND,LFT2: POKE RWND,NCH2 
1010 CALL -936 
1020 RETURN 
2000 POKE LWND,LFTl: POKE RWND,NCHl 
2010 POKE CV,VPOS: CALL -922: CALL -998 
2020 RETURN 

When the need arises, you should be able to devise text-oriented pro
grams that combine two or more text windows in both a horizontal and 
vertical fashion. It's all a matter of setting up the values for WNDLFT, 
WNDWDTH, WNDTOP, WNDBTM, and, on occasion, CV. 
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Poke to Video Memory 
The BASIC PRINT statement is the most commonly used tool 

for printing text on the Apple screen. But that isn't the only way to 4 
print characters. The POKE statement also does the job. POKE isn't the 
simplest way to print text, but it does offer some advantages under certain 
circumstances. For example, some characters cannot be printed on the 
screen except through POKE. Some of these characters do not even appear 
on the keyboard. POKE can also display all characters in flashing format. 
PRINT, you'll recall, cannot. 

Finally, there is the matter of working with the secondary text 
page-an entire screen that is available for alternate blocks of text. The 
secondary screen is not readily accessible from Integer BASIC, but it is 
wide open to POKE-type printing operations. 

ORGANIZATION OF THE TEXT MEMORIES There is a direct, 
one-for-one correspondence between each of the 960 character locations on 
the screen and each of 960 address locations in RAM. POKEing a character 
code into one of those RAM locations makes that character appear at a 
well-defined place on the screen. So, generally speaking, POKEing char
acters onto the screen is a matter of PO KEing their character codes into 
the video text RAM area. 

Table 4-1 is a memory map of the video text memory for the primary 
page. Generally speaking, it occupies most of the RAM addresses from 
1024 to 2039. 

Each line, taken alone, has a very logical and systematic dlocation of 
RAM addresses. Line 0, for example, operates from addresses 1024 
through 1063; address 1024 represents the first character in line 0, and ad
dress 1063 represents the last character in that same line. You would think 
that line 1-the next line down on the screen-would use RAM addresses 
1064 through 1103. It doesn't. That range of 40 consecutive RAM addresses 
refers to line 8 on the screen. Strangely enough, the 80 consecutive RAM 
addresses between 1024 and 1103 are equally divided between two non
consecutive lines on the screen-between lines 0 and 8. 
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Table 4-1. Primary Text Page 

Line Number Video RAM Addresses 

0 1024-1063 
1 1152-1191 
2 1280-1319 
3 1408-1447 
4 1536-1575 
5 1664-1703 
6 1792-1831 
7 1920-1959 

8 1064-1103 
9 1192-1231 

10 1320-1359 
11 1448-1487 
12 1576-1615 
13 1704-1743 
14 1832-1871 
15 1960-1999 

16 1104-1143 
17 1232-1271 
18 1360-1339 
19 1488-1527 
20 1616-1655 
21 1744-1783 
22 1872-1911 
23 2000-2039 

Where is the next sequence of 40 RAM locations used? Line 16! It 
uses the next series of 40 RAM addresses, 1104 through 1143. 

So the sequences of RAM addresses begin at line 0, go to line 8, and 
then to line 16. Now which line does address 1144 refer to? You won't find 
that address on this memory map! RAM address 1144 isn't even part of the 
video text environment. In fact, the next video text address is 1152 at the 
beginning of line 1. This is because eight of the RAM addresses are used as 
I!O slots. 

The next series of addresses is divided among text lines 1, 9, and 17. 
Then there is another gap of eight addresses, allocated for I/O slots. You 
will find the third series of addresses, 1280 through 1399, allocated for text 
lines 2, 10, and 18. It goes on like that through the entire text scheme. 

It would seem to be enough to drive a sane programmer crazy. But 
take heart in the fact that there are some mechanisms for dealing with this 
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seemingly awkward arrangement of the video memory, which we will dis
cuss later. 

You will find the same sort of arrangement in the memory map of the 
secondary text page shown in Table 4-2. The only difference is that this 
map uses addresses 2048 through 3063. (Line-for-line, that means the sec
ondary page addresses are equal to the primary page addresses plus 1024. 
This will be an important notion to remember later in this chapter.) 

Try this short program to see how it is possible to POKE characters to 
the screen: 

HJ CALL -936 
20 FOR N=0 TO 9 
30 POKE 1024+N,112+N 
40 NEXT N 
50 END 

After running that program, you will see that it is entirely possible to print 
flashing numerals. This cannot be done with a simple PRINT statement, 
even with the system set up for printing flashing characters. 

The operation of this program is simple. Line 10 homes the cursor and 
clears the screen. There is a O-to-9 FOR-NEXT loop between lines 20 and 
40. Finally, line 30 POKES character codes from 112 to 121 into addresses 
1024 through 1033. 

The following program works just like the previous one, but POKEs 
120 successive character codes into 120 successive video addresses. 

10 CALL -936 
20 FOR N=0 TO 119 
30 POKE 1024+N,N 
40 NEXT N 
50 END 

This program prints three full lines of text on lines 0, 8, and 16. 
Now it is time to take a closer look at the character codes. 

VIDEO CHARACTER CODES Every screen-printable character has 
three code numbers assigned to it. The three numbers represent the three 
text formats: inverse, flashing, and normal. Altogether, there are 256 dif
ferent character codes ranging from 0 through 255. 

Inverse Character Codes Table 4-3 shows the Apple characters 
and the corresponding codes for printing them in an inverse, black-on-
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Table 4-2. Secondary Text Page 

Line Number Video RAM Addresses 

0 2048-2087 
1 2176-2215 
2 2304-2343 
3 2432-2471 
4 2560-2599 
5 2688-2727 
6 2816-2855 
7 2944-2983 

8 2088-2127 
9 2216-2255 

10 2344-2383 
11 2472-2511 
12 2600-2639 
13 2728-2767 
14 2856-2895 
15 2984-3023 

16 2128-2167 
17 2256-2295 
18 2384-2423 
19 2512-2551 
20 2640-2679 
21 2768-2807 
22 2896-2935 
23 3024-3063 

white format. The codes range from 0 for an inverse @ symbol through 63 
for an inverse question mark. 

Here is a program that POKEs those characters onto the screen for 
you: 

10 CALL -936 
20 FOR N=0 TO 63 
30 POKE 1024+N,N 
40 NEXT N 
50 END 

The program first homes the cursor and, what is more important, 
clears the screen. After that, it POKEs the inverse-text character codes 0 
through 63 into RAM addresses 1024 through 1087. 
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Table 4-3. Inverse Sc:reen Text Codes and Characters 

Code Character Code Character Code Character Code Character 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

@ 
A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

p 

Q 
R 
s 
T 
u 
v 
w 
x 
y 
z 
[ 
I 
] 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

II 

# 
$ 
% 
& 

( 
) 

* 
+ 

I 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

< 

> 
? 

Flashing Character Codes A flashing character is one that alter
nates between inverse and normal display. The family of flashing char
acters can be displayed by POKEing their character codes into video text 
memory. (See the flashing character set and their respective codes in Table 
4-4.) 

The 64 flashing-character codes begin where the inverse-character 
codes end, running from 64 through 127. The following program lets you 
POKE these codes to the text screen: 

10 CALL -936 
20 FOR N=0 TO 63 
30 POKE 1024+N,N+64 
40 NEXT N 
50 END 

The Normal Text Codes The Apple character generator has two 
sets of normal, white-on-black, characters and character codes. For the 
sake of keeping things straight, we have labeled the two groups 
NORMAL-1 and NORMAL-2. (See Tables 4-5 and 4-6.) 

The NORMAL-I family of text characters uses codes 128 through 191, 
and the NORMAL-2 family uses codes 192 through 255. The reasons for 
the differences in code numbers for two otherwise identical characters 
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Table 4-4. Flashing Screen Text Codes and Characters 

Code Character Code Character Code Character Code Character 

64 @ 80 p 96 112 0 
65 A 81 Q 97 ! 113 1 
66 B 82 R 98 fl 114 2 
67 c 83 s 99 # 115 3 
68 D 84 T 100 $ 116 4 
69 E 85 u 101 % 117 5 
70 F 86 v 102 & 118 6 
71 G 87 w 103 I 119 7 
72 H 88 x 104 ( 120 8 
73 I 89 y 105 ) 121 9 
74 J 90 z 106 * 122 
75 K 91 [ 107 + 123 

' 
76 L 92 I 108 

' 
124 < 

77 M 93 ] 109 - 125 = 

78 N 94 
A 

110 126 > 
79 0 95 - 111 I 127 ? 

aren't important at this time. It is sufficient to say that POKEing 129 to the 
video memory and 193 to video memory both turn up a normal-format 
character A on the screen. 

The following program POKEs the NORMAL- I family of characters to 
the screen: 

10 CALL -936 
20 FOR N=0 TO 63 
30 POKE 1024+N,N+l28 
40 NEXT N 
50 END 

And this next one POKEs the NORMAL-2 characters to the screen: 

10 CALL -936 
20 FOR N=0 TO 63 
30 POKE 1024+N,N+l92 
40 NEXT N 
50 END 
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! 

! ii 
I' . I 

Code 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 

Code 

192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 

Table 4-5. NORMAL-1 Screen Text Codes and Characters 

Character Code Character Code Character Code Character 

@ 144 p 160 176 0 
A 145 Q 161 ! 177 1 
B 146 R 162 II 178 2 
c 147 s 163 # 179 3 
D 148 T 164 $ 180 4 
E 149 u 165 % 181 5 
F 150 v 166 & 182 6 
G 151 w 167 I 183 7 
H 152 x 168 ( 184 8 
I 153 y 169 ) 185 9 
J 154 z 170 * 186 
K 155 [ 171 + 187 

' 
L 156 I 172 ' 

188 < 
M 157 ] 173 - 189 = 

N 158 
A 

174 190 > 
0 159 - 175 I 191 ? 

Table 4-6. NORMAL-2 Screen Text Codes and Characters 

Character Code Character Code Character Code Character 

@ 208 p 224 240 0 
A 209 Q 225 ! 241 1 
B 210 R 226 II 242 2 
c 211 s 227 # 243 3 
D 212 T 228 $ 244 4 
E 213 u 229 % 245 5 
F 214 v 230 & 246 6 
G 215 w 231 I 247 7 
H 216 x 232 ( 248 8 
I 217 y 233 ) 249 9 
J . 218 z 234 * 250 
K 219 [ 235 + 251 

' 
L 220 I 236 

' 
252 < 

M 221 ] 237 - 253 = 

N 222 
A 

238 254 > 
0 223 - 239 I 255 ? 
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You will see no difference between the two displays. 
Of course if you want to see the entire Apple character set POKEd to 

the screen, you can run the following version of the previous programs. It 
POKEs character codes all the way through the set-from 0 through 255. 

10 CALL -936 
20 FOR N=0 TO 255 
30 POKE 1024+N,N 
40 NEXT N 
50 END 

Notice that characters running past the end of the first line on the 
screen do not continue at the beginning of the second line. This program 
POKEs into successively higher video RAM addresses, but the line format 
on the screen doesn't follow a line-by-line format. The next section of this 
chapter deals with that problem in some detail. 

GETTING SOME HELP FROM THE MONITOR According to 
Table 4-1, the last character in the first line of text is always loaded into 
RAM address 1063. Try this: 

POKE 1063,32 

That should POKE a white rectangle, or inverse space character, into the 
last character location on the top line of the screen. 

Now try this: 

POKE 1064,32 

Does this command POKE the white rectangle to the beginning of the sec
ond line of text? After all, you've used the next-higher RAM address loca
tion. But as you can see, the white rectangle doesn't appear on the second 
line. Instead, it appears at the beginning of a line somewhat lower on the 
screen. 

Referring back to Table 4-1, you will see that the beginning of the sec
ond line on the screen is represented by video RAM address 1152. Try this: 

POKE 1152,32 

That does the job; but you have to look up the starting address of each line 
to POKE texts. Or so it would seem. 

The question of where to POKE a character code becomes especially 
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important when attempting to POKE in a long string of characters that are 
to occupy more than one line in succession. The most obvious trouble is 
that you have to adjust the POKE address sequence to begin the next line. 
A less obvious, but no less important, problem is that there are groups of 
RAM addresses in the video text memory that have nothing at all to do 
with video text. If you are careless about setting up the POKE addresses, 
you will end up POKEing character data into those places; and that risks 
upsetting the parameters for some important I/O functions. 

As an extreme case, suppose that you want to fill the entire screen 
with 960 white rectangles. And what's more, you want to POKE them onto 
the screen in a left-to-right, top-to-bottom sequence. 

Looking over the video memory map in Table 4-1, you find that the 
addresses cover the range of 1024 through 2039. Anyone unfamiliar with 
the unusual arrangement of addresses for the video memory might suppose 
the program would look like this: 

10 CALL -936 
20 FOR N=l024 TO 2039 
30 POKE N,32 
40 FOR T=0 TO 10: NEXT T 
50 NEXT N 
60 GOTO 60 

That program fills the screen with white rectangles, but not in a se
quential top-to-bottom fashion, even though it POKEs to RAM addresses 
in a strict sequential fashion. And what's more, there are some I/O ports 
being given character codes that they should not be receiving. 

It's a problem, but there is a solution. The software designers for the 
Apple company had to deal with the same problem, and they responded to 
it by including some useful subroutines in the monitor ROM. Those sub
routines, which we'll discuss in greater detail later, take care of the sticky 
task of calculating the RAM addresses for sequential plotting of characters 
on the screen. We can use those subroutines to make the POKE-to-video 
task a lot simpler for us. 

The following program uses those subroutines to fill the screen with 
white rectangles in a left-to-right, top-to-bottom fashion. It doesn't POKE 
data into the I/O buffer spaces, either. 

Notice that there are no references to absolute video memory address 
locations. Indeed, this program shows that it is possible to do POKE text 
operations without worrying about the RAM address of the next line of 
text. (By the way, the address of the next line is considered to be the 
address of the first character location in that line. This address is some
times called the base address of the line.) 
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10 CALL -936 
20 FOR N=0 TO 959 
30 PT=256* PEEK (41)+ PEEK (40)+ PEEK (36) 
40 POKE PT,32 
50 FOR T=0 TO 10: NEXT T 
60 CALL -1036 
70 NEXT N 
80 GOTO 80 

The Role of BASL and BASH The Apple system uses two RAM 
locations to keep track of the base address of the current line of text. The 
RAM locations assigned to that task are called BASL and BASH, and they 
are at RAM addresses 40 and 41, respectively. Try this: 

PRINT PEEK(40),PEEK(41) 

and you will see two numbers printed on the screen. They represent the 
actual video memory address of the first column in the current row of text. 

Why two numbers? Because the 1-byte memory capacity of each ad
dress location in the Apple can hold values no larger than 255. The video 
memory addresses are much larger than that-1024 for the first character 
in the first row, for instance. Thus it takes two bytes of memory to repre
sent those addresses. 

BASL carries the lower-order byte, and BASH carries the higher
order byte of the video line address. You can come up with a more mean
ingful address number, then, by doing something such as this: 

PRINT 256* PEEK(41) + PEEK(40) 

The result is a number that designates the video memory address of the 
first character in the current line of text. It will be one of the start-of-line 
addresses shown in Table 4-1. (See Appendix A if you are not sure about 
the technique for converting a decimal number spread out over 2 bytes into 
a single decimal number.) 

The Role of CH You have just seen that BASL and BASH provide 
the absolute RAM address of the first character location in the current line 
of text. That is a useful figure, of course, but suppose you wanted to find 
the RAM address of the current character location. For that you would 
have to add the column number of the current character location to the 
base address of the line. 
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BASL and BASH carry the video memory ad
dress of the first character in the current line of 
text. 

BASL, at address 40, carries the least-significant 
byte. 

BASH, at address 41, carries the most
significant byte. 

PRINT 256*PEEK(41)+PEEK(40) returns the 
actual, full-decimal value of the video memory 
address of the first character in the current line 
of text. 

Recall from Chapter 2 that a memory location called CH, at address 
36, carries the current column address of the cursor. By definition, the 
cursor has the same column address as the current character location. 
Therefore, finding the full POKE address of a character location is a matter 
of adding the content of CH to BASL and BASH. That is why line 30 in the 
last full program shown here reads like this: 

PT =256*PEEK(41) +PEEK(40) +PEEK(36) 

This statement PEEKs into BASH and multiplies BASH's content by 256, 
PEEKs into BASL and CH, and sums everything together. The overall 
result is assigned to variable PT, but any variable could have been used. 

As that white-line drawing program runs, variable PT takes on all of 
the values for addresses in the primary page video RAM. If you were to 
monitor the values of PT while running the program, you would find that 
they follow the sequence shown in Table 4-1. A subroutine in the monitor is 
taking care of setting up the RAM starting addresses for each new line of 
text. 

The Roles of ADVANCE and BASCALC Recall that Chapter 2 
described ADVANCE, a monitor subroutine that advances the cursor one 
column to the right. If the cursor is at the end of a line, ADVANCE sends 
the cursor to the beginning of the next line on the screen. Recall further 
that you can call the ADVANCE subroutine from BASIC with the state
ment CALL -1036. 

You don't have to be working with the cursor to take advantage of 
ADVANCE. The ADVANCE subroutine simply increments the content of 
CH until the end of a line is reached. Once the content of CH indicates the 
end of a line, ADVANCE calls BASCALC, another subroutine that calcu-
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lates the base address of the next line and places the address into BASL 
and BASH. ADVANCE then resets CH back to 0. 

The program that filled the screen with white rectangles from left to 
right and from top to bottom used the ADVANCE subroutine to calculate 
the proper video memory addresses. Unfortunately, we cannot write a 
BASIC program that demonstrates BASCALC, because BASCALC cannot 
be called directly from BASIC. We will be able to demonstrate BASCALC 
later when we learn about assembly-language programming. 

The Importance of All of This Why are we worrying about the 
complications of POKE addressing for the video text environment? Why 
not simply stay with the simpler PRINT and cursor-related operations? 
There are some good answers. 

For one, you have already seen that you cannot PRINT flashing nu
merals and punctuation marks. POKEing to video memory offers that op
portunity. 

Second, you will soon find that POKE-oriented text operations offer 
the only decent way to work with the secondary page of video text from 
BASIC. 

Finally, these text-POKEing techniques are practically identical to 
those machine-language programs featured later in this book. 

Indeed, there is sufficient reason for this current series of discussions. 

BUILDING AND USING MESSAGE BLOCKS This section shows 
you how to use what you've already learned to place blocks of characters 
on the screen. 

The simplest way to get a message string printed to the screen is by 
means of a BASIC statement such as: 

PRINT "HELLO" 

But suppose that you want to POKE th.at same message to the screen. The 
general idea is to assign each of the five characters in HELLO to a different 
variable, and then POKE those variables to a selected portion of video 
RAM. Try this program: 

First notice the sequence of character codes assigned to array vari
ables C(O) through C(4) in program lines 130 and 140. If you compare them 
with the NORMAL-2 codes in Table 4-6, you will find that they make up 
the message string HELLO. The character code for the letter His assigned 
to C(O), the code for Eis assigned to C(l), and so on. Such a group of code 
assignments makes up a message block. 

Program lines 150 through 170 run through the block of character 
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100 DIM C ( 64) 
110 CALL -936 
120 MP=l024 
130 C(0)=200:C(l)=l97:C(2)=204:C(3)=204 
140 C(4)=207 
150 FOR N=0 TO 4 
1-60 POKE MP+N,C(N) 
170 NEXT N 
180 END 

codes and POKE them in sequence to the video RAM and, hence, the 
screen. Variable MP sets the starting address of the message. The rest of 
the message is displayed by the summation operation in line 160, which 
increments the POKE addresses to place the message in a left-to-right 
sequence. 

Altering the value assigned to MP changes the starting address for the 
message. Tinker with that variable, using Table 4-1 as a guide. Of course 
you should make sure that your starting addresses do not allow the mes
sage to overflow at the end of a line or POKE data outside the video RAM 
area. 

Make up a short message of your own, look up the character codes for 
each character, and assign them to the C array. Add some life to the mes
sage by using some flashing and inverse characters. Just remember that the 
DIM statement in line 100 limits you to 65 characters. 

Using Multiple Message Blocks Most practical message
POKEing situations call for working with more than one message block. 
The program in Listing 4-1, for example, includes three message blocks. 

The first message block is carried by array variables C(O) through C(4) 
in program lines 1110 and 1120. That one spells out HELLO with 
NORMAL-2 character codes. 

The second block, assigned to array variables C(O) through C(6) in 
lines 1210 and 1220, spells out BLOCK 2 with a flashing numeral 2. (That 
cannot be done with a simple PRINT statement.) 

The third block, 3RD MESSAGE, is assigned to array variables C(O) 
through C(lO) in lines 1310 through 1330. 

Each of those message blocks is imbedded in a short subroutine. Each 
subroutine begins with assignment of a value to variable NC and ends with 
a RETURN. The message blocks, in other words, are written as sub
routines that: 

l. Assign a value to NC that represents the number of consecutive char
acters in the block. 
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Listing 4-1. Multiple Message Blocks. 

100 DIM C( 32) 
110 CALL -936 
120 MP=l024 
130 GOSUB 1100: GOSUB 2000 
140 MP=l080 
150 GOSUB 1200: GOSUB 2000 
160 MP=ll04 
170 GOSUB 1300: GOSUB 2000 
180 END 

1100 NC=4 
1110 C(0)=200:C(l)=l97:C(2)=204:C(3)=204 
1120 C(4)=207 
1190 RETURN 
1200 NC=6 
1210 C(0)=194:C(l)=204:C(2)=207:C(3)=195 
1220 C(4)=203:C(5)=224:C(6)=114 
1290 RETURN 
1300 NC=l0 
1310 C(0)=243:C(l)=210:C(2)=196:C(3)=224 
1320 C(4)=205:C(5)=197:C(6)=2ll:C(7)=211 
1330 C(8)=193:C(9)=199:C(l0)=197 
1390 RETURN 
2000 FOR N=0 TO NC 
2010 POKE MP+N,C(N) 
2020 NEXT N 
2030 RETURN 

2. Assign character codes to array variable C. 
3. RETURN to the calling main routine. 

The subroutine for the first block occupies lines 1100 through 1190; the 
subroutine for the second block occupies lines 1200 and 1290; and the sub
routine for the third block occupies lines 1300 through 1390. The three sub
routines are called from lines 130, 150, and 170, respectively. But it is not 
enough to simply assign the character codes, as these subroutines do-the 
codes have to be POKEd to the screen, too. That is the purpose of the 
subroutine beginning at line 2000. 

The subroutine occupying program lines 2000 through 2030 prints the 
current message block to the video RAM and screen. It POKEs N + 1 char
acters in sequence, beginning from address MP. Thus, line 130 sets up the 
number of characters to be printed, assigns the character codes to the array 
variables, and POKEs them to the screen. The MP-1024 assignment in line 
120 sets up the program for starting the first message at video address 1024. 

In a similar way, lines 140 and 150 set up and POKE the second mes
sage block to the screen; and lines 160 and 170 set up and POKE the third 
message to the screen. 
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The program is thus divided into three main sections: 

1. A main routine (lines 100 through 180) that establishes the sequence of 
events and calls the appropriate subroutines. 

2. The blocks of character codes for each message. 
3. A POKEing subroutine that applies to all of the message-printing op

erations (lines 2000 through 2030). 

This particular programming format makes it relatively easy to expand 
the number of message blocks and alter their sequence and positions for 
POKEing them to the screen. Add a few message-block subroutines of 
your own, and call and print them from an extended version of the main 
section of the program. 

Listing 4-2 demonstrates how easy it is to change the entire operation 
of a block-printing program by altering only the main portion of it. This 
version lets you select the message block to be POKEd to the screen (pro
gram lines 20 to 50), and then prints it by selecting the appropriate setup 
routine in lines 110, 120, or 130. 
Notice that the program combines ordinary PRINT operations with 
PO KE-oriented printing operations. 

What is the purpose of line 80? (Hint: Delete line 80 and see what 
happens when you run the program.) 

Altering the Character Format Under certain circumstances, 
you might want to change the print format during the execution of a pro
gram. In the previous examples, for instance, you might have wanted to 
print the 3RD MESSAGE string as normal characters under some circum
stances, but as inverse or flashing characters under other circumstances. To 
have done so would have been a simple matter of changing the POKE 
subroutine at line 2000. There would have been no need to reassign codes 
to the message blocks themselves. 

The program in Listing 4-3 is an example of changing formats. It be
gins by POKEing the message, SYSTEM START, to the screen in the 
normal, white-on-black format. There is a short delay, after which the same 
message appears with START written in the inverse, black-on-white 
format. 

Then the display changes to SYSTEM START -all in the normal for
mat. After another delay, the START portion of the message changes to the 
inverse format, and later to the flashing format. 

The program ends by displaying SYSTEM GO in the flashing format. 
The program has just four message blocks: SYSTEM, START, 

READY, and GO. All are entered as NORMAL-2 characters. 
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Listing 4-2. Choosing Message Blocks. 

10 DIM C(32): CALL -936 
20 PRINT "WHICH MESSAGE (1,2 OR 3)"; 
30 INPUT M 
40 IF M=l OR M=2 OR M=3 THEN 60 
50 GOTO 20 
60 CALL -936 
70 GOSUB 100+10*M 
80 TAB 1: VTAB 1: CALL -868 
90 GOTO 20 

110 MP=l080: GOSUB 1100: GOSUB 2000: RETURN 
120 MP=l080: GOSUB 1200: GOSUB 2000: RETURN 
130 MP=l080: GOSUB 1300: GOSUB 2000: RETURN 

1100 NC=4 
lll0 C(0)=200:C(l)=l97:C(2)=204:C(3)=204 
1120 C(4)=207 
1190 RETURN 
1200 NC=6 
1210 C(0)=194:C(l)=204:C(2)=207:C(3)=195 
1220 C(4)=203:C(5)=224:C(6)=114 
1290 RETURN 
1300 NC=l0 
1310 C(0)=243:C(l)=210:C(2)=196:C(3)=224 
1320 C(4)=205:C(5)=197:C(6)=2ll:C(7)=211 
1330 C(8)=193:C(9)=199:C(l0)=197 
1390 RETURN 
2000 FOR N=0 TO NC 
2010 POKE MP+N,C(N) 
2020 NEXT N 
2030 RETURN 

But the program also has four different POKE subroutines: normal 
character, inverse character, flashing character, and erase character. 

It would be a good idea to enter and run the program before reading 
the following analysis of the subroutines. 

Lines 1110 through 1490 are the message block subroutines. Spe
cifically, lines 1110 through 1190 contain SYSTEM followed by a space; 
lines 1200 through 1290 contain START; lines 1300 through 1390 contain 
READY; and lines 1400 through 1490 contain GO. A GOSUB to one of 
these subroutines sets up the system for POKEing a message block. 

Lines 2000 through 23~ are the POKE-to-screen subroutines. Spe
cifically, lines 2000 through 2030 POKE NORMAL-2 characters; lines 2100 
through 2130 POKE inverse characters; lines 2200 through 2230 POKE 
flashing characters; and lines 2300 through 2330 POKE blanks, or spaces. 
A GOSUB to one of these subroutines POKEs the current message block 
to the screen. 

The scheme assumes that the message blocks have NORMAL-2 char-
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Listing 4-3. Altering Character Format. 

100 DIM C(l6): CALL -936 
110 MP=l064: GOSUB 1100: GOSUB 2000 
120 MP=l071: GOSUB 1200: GOSUB 2000 
130 GOSUB 900: GOSUB 2100: GOSUB 900: GOSUB 2300 
140 MP=l071: GOSUB 1300: GOSUB 2000 
150 GOSUB 900: GOSUB 2100: GOSUB 900 
160 GOSUB 2200: GOSUB 900: GOSUB 2300 
170 MP=l064: GOSUB 1100: GOSUB 2200 
180 MP=l071: GOSUB 1400: GOSUB 2200 
190 FOR N=l TO 4: GOSUB 900: NEXT N 
200 END 
900 FOR T=0 TO 1500: NEXT T: RETURN 

1100 NC=6 
1110 C(0)=2ll:C(l)=217:C(2)=2ll:C(3)=212 
1120 C(4)=197:C(5)=205:C(6)=224 
1190 RETURN 
1200 NC=4 
1210 C(0)=2ll:C(l)=212:C(2)=193:C(3)=210 
1220 C(4)=212 
1290 RETURN 
1300 NC=4 
1310 C(0)=210:C(l)=l97:C(2)=193:C(3)=196 
1320 C(4)=217 
1390 RETURN 
1400 NC=l 
1410 C(0)=199:C(l)=207 
1490 RETURN 
2000 FOR N=0 TO NC 
2010 POKE MP+N,C(N) 
2020 NEXT N 
2030 RETURN 
2100 FOR N=0 TO NC 
2110 POKE MP+N,C(N)-192 
2120 NEXT N 
2130 RE'TURN 
2200 FOR N=0 TO NC 
2210 POKE MP+N,C(N)-128 
2220 NEXT N 
2230 RETURN 
2300 FOR N=0 TO NC 
2310 POKE MP+N,224 
2320 NEXT N 
2330 RETURN 

acter codes. The POKE subroutine beginning at line 2000 works directly 
with NORMAL-2 codes. The inverse-character POKE subroutine at line 
2100, however, subtracts 192 from the NORMAL-2 codes, thus generating 
character codes in the inverse format range. Likewise, the subroutine be
ginning at line 2200 subtracts 128 from the NORMAL-2 character codes, 
thus POKEing flashing characters to the screen. 
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The POKE-to-screen subroutine that begins at line 2300 ignores the 
characters in the message block. It simply POKEs spaces to the screen, 
thereby erasing the current message. 

With those four message blocks and four POKE modes, you can struc
ture a wide range of operations from the main program. We'll now make a 
detailed, line-by-line analysis of the main program: 

Line 110 sets the starting video RAM address (MP), calls the SYSTEM 
message at line 1100, and then calls the POKE subroutine at line 2000 
to print SYSTEM in normal format. 

Line 120 sets the starting address for the second part of the message, 
calls the START message, and then calls the POKE subroutine at 2000 
to print START in the normal format. 

Line 130 calls the time delay subroutine at line 900, calls the subroutine 
at 2100 to print START in inverse format, calls the delay again, and 
then calls the erase subroutine. 

Line 140 sets the starting address for the next message segment, calls the 
READY message, and then calls the subroutine at 2000 to POKE the 
message in the normal format. 

Line 150 calls the time delay subroutine, the inverse character sub
routine, and then calls the time delay subroutine again. 

Line 160 calls the flashing character subroutine, the time delay sub
routine, and then calls the erase subroutine. 

Line 170 sets the starting address of a new message, calls the SYSTEM 
message again, and then calls the flashing character subroutine. 

Line 180 sets the starting address of the second part of the message, calls 
the GO message, and then calls the flashing character subroutine. 

Lines 190 and 200 calls the time delay subroutine four times in succes
sion and then ends the program. 

Test your understanding of this scheme by devising and running a main 
program of your own. By main program, of course, I mean the controlling 
portion of the program (lines 100 through 900 in this particular case). 

WORKING WITH THE SECONDARY TEXT PAGE Table 4-2 is 
the memory map for a full second page of screen text. Usually called the 
secondary page, it follows the same general map as the primary page. The 
only difference is in the RAM addresses. Secondary-page RAM addresses 
begin where the primary-page addresses leave off. 

The designers of the Apple system did not devise the Integer BASIC 
software with secondary-page applications in mind. Unless you take steps 
to remedy the situation, you will find that Integer BASIC uses the second-
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ary page for storing values of variables. Integer BASIC, in other words, 
often stores valuable information in the secondary page, thus wrecking any 
attempt to control the characters POKEd into it. Also, if you try POKEing 
text characters into the secondary page, it is quite likely that you will dis
turb the operation of Integer BASIC itself. 

But there is a simple remedy available: Do a LOMEM command from 
the keyboard to exclude BASIC from the secondary-page RAM. Set 
LOMEM to an address at the very top of the secondary page, and you will 
still have a lot of RAM available for BASIC. Doing a single LOMEM:3071 
before starting the following series of demonstrations will do the job. All 
discussions in this section assume that you have done a LOMEM:3071 
from the keyboard. 

Switching Between the Primary and Secondary Pages 
While the Apple features two text memories, only one can be dis

played on the screen at any given moment. Usually, that is the primary 
page. Here's how you can change that: 

POKE -16299,0 displays the secondary page of 
text. 

POKE -16300,0 displays the primary page of text. 

The primary page, the one mapped for you in Table 4-1, is the one the 
Apple system normally displays on the crt. You must do a POKE -16299,0 
from the keyboard or in a BASIC program to get a look at the secondary 
page. 

Try this series of experiments: 

1. From Integer BASIC's command mode, type and enter: 

LOMEM:3071 
POKE -16299,0 

You will most likely see a lot of garbage on the screen. All of those 
characters represent the content of the secondary text page (which 
you probably haven't used since turning on the system today). 

2. Type and enter: 

POKE -16300,0 

Surprise! You cannot see those characters as you type them. You are 
viewing the secondary page of text, and all interaction with BASIC 
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takes place on the primary page. In a manner of speaking, you have to 
"type in the dark" when viewing the secondary page. 

But if you type and enter the command properly, you will find the 
system running with the primary page displayed once again. And 
there is your command written out for you. 

Try this little demonstration program: 

10 FOR T=0 TO 500: NEXT T 
20 POKE -16299,0 
30 FOR T=0 TO 500: NEXT T 
40 POKE -16300,0 
50 GOTO 10 

The program switches the crt display between the primary and secondary 
pages of text, doing a short time delay between each display. 

Two text memories and one display. That's the simple essence of the 
Apple text scheme. That BASIC uses portions of the secondary-page 
memory is easily fixed by LOMEMing BASIC out of that area. But there is 
another problem that isn't so easy to fix: all cursor operations refer only to 
the primary-page memory. And that means it is necessary to work with the 
secondary page by means of POKE-text techniques. 

Clearing the Secondary Page The first step in most kinds of 
text-printing operations is to clear the screen. That is an easy task when 
working with the primary page. Simply do a CALL -936. That operation 
both homes the cursor and clears the primary-page RAM. There has to be 
some procedure for clearing the secondary page as well. 

First, look at this procedure for clearing the primary page of text: 

10 TAB 1: VTAB 1 
20 FOR N=0 TO 959 
30 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),224 
40 CALL -1036 
50 NEXT N 
60 END 

Line 10 homes the cursor, and the remainder of the program POKEs 
character 224 (a normal space) into all 960 character-location addresses in 
primary-page RAM. (See "Getting Some Help From the Monitor" on page 
70 for a detailed explanation of program lines 30 and 40.) 

That program, in its cumbersome fashion, clears the primary page of 
text. Look at the secondary page, however, and you will find that it is not 
affected. It is probably still filled with garbage. 
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Return to the primary page and modify line 30 to read like this: 

30 POKE 256*PEEK(41) +PEEK(40) +PEEK(36) + 1024,224 

Run the program while viewing the primary page, and you will see nothing 
happening. There will be a delay before the program ends. 

Now switch the display to the secondary page, and lo! it is cleared. If 
it isn't cleared, you have most likely forgotten to begin this series of 
demonstrations with a LOMEM:3071. 

How does that routine work? Why does it affect only the secondary 
text? The change in line 30 of the original version of the clearing program 
adds 1024 to the current cursor location. The secondary page is formatted 
in exactly the same way as the primary page-the addresses are simply 
I 024 locations higher in memory. So the routine just cited clears either the 
secondary or primary text memory, depending on whether you add 1024 to 
the current cursor position or not. 

Can you devise a way to modify the routine so that it clears both the 
primary and the secondary pages? 

POKEing Characters to the Secondary Page Everything 
we've said about POKEing characters to the primary-page RAM area 
applies equally well to secondary-page operations. Just step up the text 
addresses by 1024. We'll repeat that: 

Adding a value of 1024 to the address of any text 
operation that would normally affect the primary 
page will, instead, affect the secondary page. 

Listing 4-4 is a secondary-page version of Listing 4-3. Compare List
ings 4-3 and 4-4, and you will find that the latter includes a screen-clearing 
subroutine for the secondary page (program lines 1000 through 1050). Also, 
you will find the starting addresses for the message blocks (variable MP) 
are increased by 1024. The entire text, in other words, functions in the 
secondary page; and line 110 calls up that page so that you can view it. 

Set up some message blocks, a POKE-to-screen routine, and tell the 
program to write your messages to the secondary screen. Just remember 
to: 

l. Do a LOMEM:3071 if you haven't done so already. 
2. Include a POKE -16299,0 to view the secondary page. 
3. Include a screen-clearing routine for the secondary page. 
4. POKE the character codes into the secondary page (Table 4-2). 
5. Include a POKE -16300,0 wherever you want to return to the primary 

page. 
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Listing 4-4. Using the Secondary Page. 

100 DIM C(l6) 
110 GOSUB 1000: POKE -16299,0 
120 MP=2088: GOSUB 1100: GOSUB 2000 
130 MP=2095: GOSUB 1200: GOSUB 2000 
140 GOSUB 900: GOSUB 2100: GOSUB 900: GOSUB 2300 
150 MP=2095: GOSUB 1300: GOSUB 2000 
160 GOSUB 900: GOSUB 2100: GOSUB 900 
170 GOSUB 2200: GOSUB 900: GOSUB 2300 
180 MP=2088: GOSUB 1100: GOSUB 2200 
190 MP=2095: GOSUB 1400: GOSUB 2200 
200 FOR N=l TO 4: GOSUB 900: NEXT N 
210 POKE -16300,0: END 
900 FOR T=0 TO 1500: NEXT T: RETURN 

1000 TAB 1: VTAB l 
1010 FOR N=0 TO 959 
1020 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36)+1024,224 
1030 CALL -1036 
1040 NEXT N 
1050 RETURN 
1100 NC=6 
1110 C(0)=2ll:C(l)=217:C(2)=2ll:C(3)=212 
1120 C(4)=197:C(5)=205:C(6)=224 
1190 RETURN 
1200 NC=4 
1210 C(0)=2ll:C(l)=212:C(2)=193:C(3)=210 
1220 C(4)=212 
1290 RETURN 
1300 NC=4 
1310 C(0)=210:C(l)=l97:C(2)=193:C(3)=196 
1320 C(4)=217 
1390 RETURN 
1400 NC=l 
1410 C(0)=199:C(l)=207 
1490 RETURN 
2000 FOR N=0 TO NC 
2010 POKE MP+N,C(N) 
2020 NEXT N 
2030 RETURN 
2100 FOR N=0 TO NC 
2110 POKE MP+N,C(N)-192 
2120 NEXT N 
2130 RETURN 
2200 FOR N=0 TO NC 
2210 POKE MP+N,C(N)-128 
2220 NEXT N 
2230 RETURN 
2300 FOR N=0 TO NC 
2310 POKE MP+N,224 
2320 NEXT N 
2330 RETURN 
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The Keyboard Environment 

5 Just as the crt is the Apple's most-used output device, the 
keyboard is its most-used input device. The keyboard input en
vironment isn't as sophisticated nor as versatile as the crt output environ
ment, but it is no less useful in the hands of a programmer who really 
understands it. 

In the immediate command mode of operation, the keyboard is nor
mally linked directly to the video text display system. Just about every sort 
of keystroke produces some sort of response on the primary text screen, 
printing characters or doing one of several cursor-related functions, such as 
linefeeds, backspacings, and the like. 

That normal link between the keyboard and video system is through 
the Apple port-0 Input/Output (I/0) slot. Turning on the computer or doing 
a RESET automatically activates that port-0 link. 

If you have a printer attached to the system, however, you have the 
option of linking the keyboard to that printer, usually through the Port- I 
I/O slot. Doing a PR#l command then causes the keyboard operations to 
affect the printer instead of the video text system. Doing a PR#O command 
returns the keyboard to the video text system again. 

Of course the keyboard can be used as an input device during the 
execution of a program as well. The BASIC INPUT statement, for in
stance, halts the flow of a program, giving the user an opportunity to type 
in values for numeric or string variables. Striking the RETURN key re
sumes the execution of the program. 

It is also possible to PEEK into the keyboard system. Unlike the 
INPUT statement, a properly designed PEEK-to-keyboard statement does 
not necessarily interrupt the flow of a program. 

SUPPLYING INFORMATION WITH INPUT INPUT statements 
can be inserted into BASIC programs to give the user a chance to assign 
values to numeric or string variables. Upon encountering an INPUT state
ment, the system halts the normal step-by-step execution of the program 
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until the user strikes the RETURN key-usually after entering the appro
priate information. 

The general syntax of an INPUT statement is: 

INPUT "message", variable 

where message is an optional prompting message, and variable is a 
numeric or string variable that is to take on the value typed in by the user. 

Here is a common INPUT situation: 

INPUT "WHAT IS YOUR NAME?",N$ 

On encountering that statement, BASIC responds by printing: 

WHAT IS YOUR NAME? 

It then shows the blinking cursor to signal the user it is time to type in a 
response. When the user enters a string response and strikes the RETURN 
key, the string is assigned to string variable N$. N$ then holds that string 
until some later operation calls for a change. 

The type of variable used must match the type of information to be 
entered from the keyboard under the INPUT operation. In the previous 
example, the information to be entered from the keyboard was a string 
value-presumably your name. The variable that held that value, there
fore, had to have been a string variable. 

Here is an INPUT statement that expects a numeric input: 

INPUT "WHAT NUMBER (0-9)",N 

Encountering that statement, BASIC prints: 

WHAT NUMBER (0-9)? 

followed by the blinking cursor symbol. The user is then expected to type 
in a number and strike the RETURN key. From that point on, the number 
is assigned to variable N. 

Whether or not an INPUT statement calls for a numeric or a string 
response, BASIC always inserts the flashing cursor symbol. But only the 
numeric INPUT statement has a question mark automatically inserted after 
the message. The string INPUT statement does not. 

Suppose you want to prompt the user with a question in a string 
INPUT statement. Simply include the question mark in the message por
tion of the INPUT statement: 

INPUT "WHAT IS YOUR NAME? ",N$ 
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The system responds by printing: 

WHAT IS YOUR NAME? 

followed by a space and the blinking cursor symbol. 
Indeed, you have a lot of flexibility in phrasing prompting messages for 

instead of a question, simply omit the question mark from the message: 

INPUT "ENTER YOUR NAME ",N$ 

the system responds by printing: 

ENTER YOUR NAME 

followed by a space and the blinking cursor symbol. 
Indeed, you have a lot of flexibility in phrasing prompting messages for 

string INPUT statements. There are some minor difficulties, though, in 
phrasing the prompting message for a numeric INPUT statement. The 
difficulties are caused by the automatic insertion of the question mark. 

Suppose you want the user to type in a numeric value between 0 and 9. 
If you frame the prompting message without a question mark, as in: 

INPUT "ENTER A NUMBER BETWEEN 0 AND 9",N 

the system prints: 

ENTER A NUMBER BETWEEN 0 and 9? 

followed immediately by the cursor symbol. The automatically inserted 
question mark can be quite misleading. The uninformed user might inter
pret the prompting message as asking whether or not a number between 0 
and 9 should be entered. 

You must be careful about phrasing the prompting message. Here is a 
less confusing version: 

INPUT "WHAT NUMBER (0-9)",N 

In that case, the system prints: 

WHAT NUMBER (0-9)? 

followed by the cursor symbol. 
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The following is another way of doing the same thing: 

100 PRINT "ENTER AN INTEGER VALUE BETWEEN 0 and 9" 
110 INPUT "WHAT NUMBER",N 

The user then sees this on the screen: 

ENTER AN INTEGER VALUE BETWEEN 0 and 9 
WHAT NUMBER? 

That leaves little room for doubt about what the user is supposed to do. 
An earlier comment in this chapter expressed the notion that it is pos

sible to omit the message portion of an input statement, thus reducing it to 
either INPUT N$ or INPUT N. 

The first of those two INPUT statements is expecting a string input, 
and the second is expecting a numeric value. There is no message assigned 
to either of them, so the system responds to the first by showing only the 
blinking cursor, and to the second by showing a question mark followed by 
the blinking cursor. 

The advantage of using these abbreviated forms is that they allow you 
to separate the prompting message from the blinking cursor, or question 
mark and cursor. Consider the following set of statements: 

100 PRINT "WHAT IS YOUR NAME?" 
110 INPUT N$ 

In this case, the prompting message, WHAT IS YOUR NAME?, appears 
on one line, and the cursor symbol appears at the beginning of the next line 
on the screen. 

Or try this: 

10 DIM N$(15) 
20 CALL -936 
30 PRINT "ENTER YOUR NAME" 
40 TAB 20: VTAB 22 
50 IHPUT N$ 
60 TAB 1: VTAB 1 
70 CALL -868 
80 GOTO 80 

Program line 20 both homes the cursor and clears the screen, and then 
line 30 prints the prompting message, ENTER YOUR NAME, in the upper 
left-hand corner. Line 40, however, sends the cursor down to the middle of 
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row address 21, so the INPUT statement is executed at that point. In other 
words, the blinking cursor and the user's keyboard entry appear there. The 
statements in line 60 return the cursor to home, and line 70 dears to the 
end of that line, erasing the prompting message. The user's key entry re
mains undisturbed near the bottom of the screen, however. 

The general idea is to separate the prompting message and the user's 
keyboard response to the subsequent INPUT operation by a lot of text 
area-area that might include a lot of other text you might not want to 
disturb. 

The troublesome insertion of a question mark for INPUTing numeric 
values can be brought under control by using combinations of PRINT and 
INPUT statements. Consider this sequence of BASIC statements: 

PRINT "ENTER A NUMBER BETWEEN 0 AND 9" 
INPUT N 

The response on the screen is: 

ENTER A NUMBER BETWEEN 0 AND 9 
? 

The question mark is followed by a blinking cursor symbol, but at least the 
prompting message appears to be more of a declaration than a question. 

Other features of the INPUT statement, including the entry of a series 
of values in response to a single INPUT line, are well documented in the 
standard Integer BASIC literature. 

CONTROLLING PROGRAM FLOW WITH INPUT The fact that 
an INPUT statement halts the progress of a program until the user strikes 
the RETURN key makes it a valuable tool for controlling the flow of events 
within the program. The INPUT can thus represent a critical point in the 
execution of a program. 

A Common Example: The YES/NO Situation A lot of BASIC 
programs execute a relatively long series of operations, and then reach a 
critical point where the user has to decide whether to repeat the sequence 
or end it. That generally comes down to responding to a string-type INPUT 
statement that expects a YES or NO response from the keyboard. 

Here is a sequence of statements that appears in a great many Integer 
BASIC programs: 
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100 INPUT "DO YOU WANT TO PLAY AGAIN (Y/N)? ",S$ 
110 IF S$="Y" THEN 10 
120 IF S$="N" THEN END 
130 GOTO 100 

The prompting message imbedded in the INPUT statement asks the 
program user to enter a Y or an N character. If the user responds by enter
ing a Y, the program goes to line 10 (presumably some meaningful entry 
point for playing the game again); if he enters an N the conditional state
ment in line 120 is satisfied and the program comes to an END. But if the 
user happens to enter anything but a simple Y or N, the program defaults 
to line 130 to repeat the entire INPUT sequence. The routine, in other 
words, is goof-proofed against erroneous keyboard responses to the 
prompting message. 

The real point of the example, however, is to show how INPUT state
ments can be used for controlling the flow of events in a program where 
just one of two possible paths is available. The same idea applies equally 
well to responses other than Y or N. For instance: 

100 INPUT "DO YOU WANT NORMAL (N) OR FLASHING (F) CHARACTE 
RS?",S$ 

110 IF S$# "N" THEN 130 
120 POKE 50,255: GOTO 150 
130 IF S$#"F" THEN 100 
140 POKE 50,127 
150 REM 

Program Menus Program menus offer the user a wide range of 
choices regarding what is to be done next. There is virtually no limit to the 
number of items that may be offered in a menu. 

Suppose you have written a series of subroutines in a BASIC program 
that treat two numbers in an arithmetic fasbion. The menu task is to give 
the user an opportunity to select execution of one of the following sub
routines: 

Line 1000-ADD subroutine 
Line 2000-SUBTRACT subroutine 
Line 3000-MULTIPLY subroutine 
Line 4000-DIVIDE subroutine 

Through the following examples of menu operations, we will merely 
refer to those subroutine line numbers and assume that they are complete, 
operating subroutines. 

90 • INTERMEDIATE-LEVEL APPLE II HANDBOOK 



There are a lot of different ways to format the menu for getting at one 
of those subroutines. Here is one example: 

100 CALL -936 
110 PRINT "SELECT ONE (1,2,3,4 OR 5)" 
120 PRINT 
130 TAB 5: PRINT "1 ADD" 
140 TAB 5: PRINT "2 SUBTRACT" 
150 TAB 5: PRINT "3 MULTIPLY" 
160 TAB 5: PRINT "4 DIVIDE" 
170 TAB 5: PRINT "5 END THE PROGRAM" 
180 PRINT 
190 INPUT MS 
200 IF MS>=l AND MS<=4 THEN GOTO MS*l000 
210 IF MS=5 THEN END 
220 PRINT 
230 PRINT "ENTRY ERROR. TRY AGAIN 
240 GOTO 110 

Lines 110 through 180 are really little more than an extended, 
PRINTed prompt message. It tells the user exactly what to do: enter a 
number from 1 to 5. The INPUT statement in line 190 halts the progress of 
the program until the user enters a numeric value. 

Line 200 tests the values to make certain they fall within the allowed 
range. If the entered value is a 1, 2, 3, or 4, the GOTO portion of that line 
sends operations to routines beginning at lines 1000, 2000, 3000, or 4000, 
respectively. If the user has entered a 5, line 210 detects that fact and 
ENDs the program. 

Program lines 220 through 240 make up a default routine that handles 
incorrect responses to the INPUT statement. The routine informs the user 
of the error and returns to line 110 to print the entire menu and give the 
user a chance to INPUT a proper selection. 

The next menu example accomplishes exactly the same task, but uses 
a different input format. In this example the user is asked to enter a letter 
instead of a number. The extended prompt message occupies program lines 
110 through 170, and the corresponding INPUT statement appears in line 
180. 

The task of decoding the keyboard inputs is a bit more cumbersome 
here because each input has to be decoded separately in lines 190 through 
230. 

If the user fails to enter one of the designated string characters, the 
program defaults to the error routine in line 250. The error routine repeats 
the list of valid characters to be entered and returns control to the INPUT 
statement in line 180. 
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100 CALL -936 
110 PRINT "ENTER YOUR SELECTION AS A,B,C,D ORE:" 
120 PRINT 
130 TAB 5: PRINT "(A) ADD" 
140 TAB 5: PRINT "(B) SUBTRACT" 
150 TAB 5: PRINT "(C) MULTIPLY" 
160 TAB 5: PRINT "(D) DIVIDE" 
170 TAB 5: PRINT "(E) END THE PROGRAM" 
180 INPUT MS$ 
190 IF MS$="A" THEN 1000 
200 IF MS$="B" THEN 2000 
210 IF MS$="C" THEN 3000 
220 IF MS$="D" THEN 4000 
230 IF MS$="E" THEN 260 
240 PRIN'r 
250 PRINT "PLEASE ENTER A,B,C,D ORE": GOTO 180 
260 INPUT "ARE YOU SURE YOU WANT TO QUIT (Y/N)?",S$ 
270 IF S$="Y" THEN END 
280 GOTO 100 

This particular example also asks the user to confirm the end-of
program selection. Upon INPUTing an E, the conditional statement in line 
230 gives control to line 260, which PRINTs the prompt message, ARE 
YOU SURE YOU WANT TO QUIT (Y/N)? The response is entered into 
S$, and line 270 ends the program if the response is Y; otherwise every
thing starts all over from line 100. 

A third kind of menu formatting asks the user to enter special symbols 
that have some direct significance to the operations he or she wishes to 
select. This next example asks for the arithmetic symbols for addition, sub-

100 CALL -936 
110 PRINT "SELECT AN OPERATION:" 
120 PRINT 
130 TAB 5: PRINT "ENTER + FOR ADDITION" 
140 'I'AB 5: PRINT "ENTER - FOR SUBTRACTION" 
150 TAB 5: PRINT "ENTER * FOR MULTIPLICATION" 
160 TAB 5: PRINT "ENTER I FOR DIVISION" 
170 TAB 5: PRINT "ENTER Q IF YOU WANT TO QUIT" 
180 PRINT 
190 INPUT MS$ 
200 IF MS$="+" THEN 1000 
210 IF MS$="-" THEN 2000 
220 IF MS$="*" THEN 3000 
230 IF MS$="/" THEN 4000 
240 IF MS$="Q" THEN END 
250 PRINT 
260 PRINT "PLEASE ENTER +,-,*,/ OR Q. " 
270 PRINT "TRY AGAIN ... " 
280 GOTO 190 

92 o INTERMEDIATE-LEVEL APPLE II HANDBOOK 



traction, multiplication, and division. It also accepts a Q input for ending 
the program. 

As far as the keyboard environment is concerned, menu routines are 
little more than simple combinations of the PRINT/INPUT statements de
scribed earlier in this chapter. The message portion can be quite involved, 
but the INPUT variable is still quite simple. Of course the menu is mean
ingless unless you include an INPUT error-correcting routine and a vari
able decoding routine that calls the correct subroutine. 

STROBING THE KEYBOARD WITH PEEK STATEMENTS The 
INPUT statement of BASIC is not the only mechanism for entering key
stroke information during the execution of a program. The Apple system 
has a place in RAM that is assigned to the keyboard strobe. We'll call that 
location KBD, and its address is -16384. 

PEEKing into KBD tells whether or not any key is depressed, and 
which key it is. 

There is a bit more to PEEKing into KBD than simply getting some 
value out of it, however. Doing a PEEK to KBD, such as in C=PEEK 
(-16384), not only assigns the current keyboard status to variable C, but 
latches that value in KBD. KBD thus continues carrying that character 
code until another instruction calls for PEEKing into KBD. That is not 
always a desirable situation. It is necessary to reset, or clear, the content of 
KBD to its no-key-depressed status; and that is done by POKEing a 0 to 
the keyboard status register, called KBDSTB, at RAM address -16368. 
Failing to clear KBDSTB can cause a programmer some confusing prob
lems. 

A PEEK to keyboard operation involves two 
separate steps: 

PEEK(-16384)-PEEK to KBD and latch the 
keyboard status in KBD. 

POKE -16368,0-Clear the keyboard status to 
its no-key-depressed condi
tion. 

The Keyboard Character Codes On executing a PEEK(-16384), 
the system looks at the content of KBD and moves on to the next instruc
tion. If, during that interval, no key is depressed, KBD will contain a value 
that is less than 128. But if some key is depressed during the short execu
tion time of that PEEK-to-KBD operation, KBD will take on some value 
between 128 and 222. 
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Table 5-1 shows the keystrokes and their respective keyboard char
acter codes, or key codes. Notice that most of the key codes are generated 
by single key depressions, while a few are the result of depressing the 
CTRL key and a different key simultaneously. 

Suppose, for example, that you want to use the CTRL-A combination 
for some particular control purpose. What key code does that produce? 
According to the table, that particular keyboard operation puts a code 129 
into KBD. 

Unquestionably, a table such as this one is vital for preparing pro
grams that PEEK to KBD to pick up keystroke entries and do something 
meaningful with them. 

Here is a little program that lets you confirm the information supplied 
in Table 5-1: 

100 CALL -936 
110 C= PEEK (-16384) 
120 IF C<l28 THEN 110 
130 POKE -16368,0 
140 PRINT C 
150 GOTO 110 

On running this program, strike some keys and notice the corresponding 
key codes printed on the screen. Compare the results with the information 
supplied in Table 5-1. 

An analysis of the program is as follows: 

Line 100 homes the cursor and clears the screen. 
Line 110 strobes the keyboard by PEEKing into KBD, and assigns the 

content of KBD to variable C. 
Line 120 loops back to strobe the keyboard again if C is less than 128, 

indicating that no key is depressed. 
Line 130 resets the keyboard strobe by POKEing a zero into location 

KBDSTB. 
Line 140 prints the value that is assigned to variable C by line 110. 
Line 150 loops back to line 110 to fetch the value of the next keystroke. 

Program lines 120 and 130 are especially important to the proper op
eration of such programs. Delete line 120, f9r example, and see what hap
pens. Instead of seeing the key codes as you strike various keys, the pro
gram runs an endless list of numbers having values less than 128. Those are 
the values that are loaded into KBD (and assigned to variable C by our 
program) whenever a key is not being depressed. Depress a key, and you 
will see the proper value appearing just once in that fast-moving list. Thus, 
line 120 avoids the printing of a lot of meaningless values less than 128. 
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Table 5-1. Keyboard Character Codes 
Keystroke Key Code Keystroke Key Code 

@ 192 3 179 
A 193 4 180 
B 194 5 181 
c 195 6 182 
D 196 7 183 
E 197 8 184 
F 198 9 185 
G 199 186 
H 200 

' 
187 

I 201 < 188 
J 202 = 189 
K 203 > 190 
L 204 ? 191 
M 205 .;.--- 136 
N 206 RETURN 141 
0 207 -i> 149 
p 208 ESC 155 
Q 209 > 222 
R 210 CTRL-@ 128 (Same as CTRL-H) 
s 211 CTRL-A 129 (Same as CTRL-M) 
T 212 CTRL-B 130 (Same as CTRL-U) 
u 213 CTRL-C 131 
v 214 CTRL-D 132 
w 215 CTRL-E 133 
x 216 CTRL-F 134 
y 217 CTRL-G 135 
z 218 CTRL-H 136 

space 160 CTRL-1 137 
! 161 CTRL-J 138 
" 162 CTRL-K 139 
# 163 CTRL-L 140 
$ 164 CTRL-M 141 
% 165 CTRL-N 142 (Same as .;.---) 
& 166 CTRL-0 143 
I 167 CTRL-P 144 
( 168 CTRL-Q 145 
) 169 CTRL-R 146 
* 170 CTRL-S 147 (Same as RETURN) 
+ 171 CTRL-T 148 
I 172 CTRL-U 149 (Same as _,.) 

- 173 CTRL-V 150 

• 174 CTRL-W 151 
I 175 CTRL-X 152 
0 176 CTRL-Y 153 
1 177 CTRL-Z 154 
2 178 
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Insert line 120 back into the program, and the routine will loop rapidly 
between lines 110 and 120 until you strike a key. 

Line 130 is the one that resets the keyboard strobe. Delete that line 
and run the program again. You will see a long string of numbers again. 
This time, however, striking a key causes the appropriate key code to ap
pear in the list; in fact it doesn't go away until you strike another key. 
Indeed, PEEKing to KBD sets a flip-flop, or latch, function in the keyboard 
system. Clearing, or resetting, that latch is a matter of doing a POKE-0 to 
KBDSTB. Insert line 130 back into the program, and you'll find everything 
working nicely once again. 

If you compare the table of keystroke codes with the video text codes 
in Table 4-5, you will find that many of them share the same characters and 
codes. The following program lets you play around with keystrokes and the 
text characters they might create on the screen: 

100 CALL -936 
110 C= PEEK (-16384) 
120 IF C<l28 THEN 110 
130 POKE -16368,0 
140 PRINT C; 
150 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36)+4,C 
160 CALL -926 
170 GOTO 110 

The program prints both the key codes and a corresponding video text 
character. It strobes the keyboard to pick up a valid key code, assigns it to 
variable C, and resets the keyboard strobe as in the previous program. Line 
140 prints the key code as before, but the semicolon suppresses the normal 
linefeed and carriage return operation. Line 150 then comes up with the 
current cursor position, adds four spaces, and then POKEs the character 
code to the screen. POKEing the key code to the screen causes the vide9 
system to print the character it represents. PRINTing to the screen, as in 
line 140, merely prints the key code. There is an important distinction be
tween PRINTing a key code to the screen and POKEing it there. 

An Example: Printing a lot of Text When working from the 
Apple monitor, the BASIC immediate command mode, or with an INPUT 
statement, you may enter no more than 256 consecutive characters. That is 
a limitation imposed by the size of the GETLN input buffer that is de
scribed later in this book. Directly strobing the keyboard and POKEing the 
characters to the video text RAM offers a chance to type in a string of 
messages of an indefinite length. 
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The following program POKEs characters to the video system as they 
are entered at the keyboard. In a sense, it represents the beginning of a 
primitive word processor. 

100 CALL -936 
110 C= PEEK (-16384) 
120 IF C<l28 THEN 110 
130 POKE -16368,0 
140 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),C 
150 CALL -1036 
160 GOTO 110 

Lines 110 through 130 strobe the keyboard, looking for a valid key
stroke. Upon finding one, it assigns the key code to variable C and resets 
the keyboard strobe. Line 140 POKEs the character to the current cursor 
address location, and line 150 advances the cursor to the next location. 

You can type in a full screen of text, and the screen will scroll upward 
in the normal fashion as you continue entering characters "below" the last 
line. You can, in fact, set up a smaller text window (see Chapter 2) and 
work the characters into that space on the screen. 

From a word-processing viewpoint, however, the simple program suf
fers from some serious problems. For one, it has no editing features; you 
cannot backspace and erase errors, for instance. The program doesn't 
show the cursor symbol, either. So, if you do a series of spaces, you might 
not be sure where the next character will appear on the screen. 

Nevertheless, the program illustrates one kind of application of the 
keyboard strobe feature of the Apple system. Later discussions in this 
chapter show how to do some elementary editing. 

SINGLE-KEYSTROKE CONTROL OF A PROGRAM The notion 
of strobing the keyboard by PEEKing into KBD offers some fine tech
niques for controlling the flow of a program. This method rivals, and often 
surpasses, the INPUT-statement control method. 

Resuming Stopped Operations A lot of different kinds of text 
and graphics programs call for halting the ongoing operations until the user 
has a chance to view conditions on the screen. The user is then given the 
option of striking a key to resume operations on the screen. 

The following is an example of a program that uses PEEK to resume 
operations upon the striking of any key: 
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100 N=0 
110 L=0: CALL -936 
120 PRINT N 
130 N=N+l:L=L+l 
140 IF L<20 THEN 120 
150 PRINT : TAB 8 
160 PRINT "STRIKE ANY I~EY TO CONTINUE ... " 
170 IF PEEK (-16384)<128 THEN 170 
180 POKE -16368,0 
190 GOTO 110 

(You will understand the following short analysis better if you first enter 
and run the program.) 

The conditional statement in program line 140 is responsible for halting 
the progress of the counting operation. Lines 150 and 160 then format and 
print the prompting message. 

Lines 170 through 190 are the ones most important to the current dis
cussion. Line 170 strobes the keyboard and compares the content of KBD 
with the value of 128. If the content of KBD is less than 128, it means that 
the user has not yet made a keystroke in response to the prompting mes
sage. As long as that condition exists, the program "buzzes" on line 170. 

The moment the user strikes any key, the value in KBD becomes 128 
or greater, and the program goes to line 180 to reset the keyboard latch, 

. and then to line 110 to resume the printing of successively larger numbers. 
A BASIC statement of the form shown here in line 170 can always be 

used to halt the flow of a program until the user strikes any key on the 
keyboard. But you can accomplish the same thing with an INPUT state
ment: 

160 INPUT "STRIKE RETURN KEY TO CONTINUE ... ",S$:GOTO 110 

That one line replaces lines 160 through 190 in the PEEK-to-KBD version. 
The only advantage of the PEEK-to-KBD version of this particular 

application is that it allows the user to resume operations by striking any 
key. Other situations, however, offer far more compelling advantages. 
Consider the application described ~ext. 

Stopping Ongoing Operations The following program is the in
verse of the one just described. Instead of using a single keystroke to re
sume operations, it uses a single keystroke to stop them. 

Enter and run the program, striking any key to stop the counting op
erations. This particular version responds to the keystroke by going into a 
loop, so you will have to do a CTRL-C to get out of the loop and RUN 
again. 
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100 CALL -936 
110 TAB 10: POKE 50,63 
120 PRINT "STRIKE ANY KEY TO STOP ... " 
130 POKE 50,255: POKE 34,1 
140 N=0 
150 PRINT N 
160 N=N+l 
170 IF PEEK (-16384)<128 THEN 150 
180 POKE -16368,0 
190 TEXT 
200 TAB 1: VTAB 1: CALL -868 
210 GOTO 210 

The critical part of the program resides in lines 150 through 180. Lines 
150 and 160 print the current value of variable N and increment it by 1. 
Line 170 then PEEKs to KBD, and if the value is less than 128 (no key 
depressed), the program loops back to line 150. The program thus cycles 
continuously through lines 150, 160, and 170 until the user strikes a key. 

When the PEEK-to-KBD statement in line 170 detects that a keystroke 
has indeed occurred, the program goes to line 180 to reset the keyboard 
latch and bring the program to a conclusion through the remaining lines. 

Notice especially that the PEEK-to-KBD operation is a normal part of 
the program's running cycle. There is no interruption of the program as 
long as no key is depressed. That cannot be done with an INPUT state
ment; INPUT statements always interrupt the flow of a program. Therein 
lies the real usefulness of PEEK-to-KBD operations. 

The remaining lines in that program are merely window dressing, but 
we will study them closely for the sake of reviewing some of the text
formatting techniques described earlier in this book. 

Line 100 homes the cursor and clears the entire screen. 
Line 100 performs a horizontal TAB and sets the system for printing 

characters in inverse format. 
Line 120 prints the prompting message (at TAB 10 on the top line and 

using inverse text). 
Line 130 returns the system to the normal format at the top of the next 

window at row 1. Setting the top of the window at that point prevents 
the prompting message from scrolling off the screen during the 
number-printing operations that follow. 

Line 140 initializes the counting variable N. 
Lines 150 through 180 print and increment the value of N until a key

stroke occurs. 
Line 190 restores the normal text window. 
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Line 200 homes the cursor without disturbing the current text, and then 
clears the current line to get rid of the prompting message. 

Line 210 loops to this line until the user interrupts with a CTRL-C or 
RESET. 

Toggling the Operations If a PEEK-to-KBD statement can be 
used for resuming program operations, and if it can also be used for stop
ping operations, then it can be used for toggling the operations on and off. 
A keystroke at one time can start an operation and a subsequent keystroke 
can stop it. 

Here is the same counting routine used in the previous examples. This 
time, however, it includes two different kinds of PEEK-to-KBD 
operations-one to start counting, and one to stop counting. 

100 CALL -936 
110 N=0 
120 IF PEEK (-16384)<128 THEN 120 
130 POKE -16368,0 
140 PRINT N 
150 N=N+l 
160 IF PEEK (-16384)<128 THEN 140 
170 POKE -16368,0 
180 GOTO 120 

The conditional statement in line 120 keeps the counting operation 
stopped until the user strikes any key. That program line "buzzes" to itself 
as long as it sees no key depression. In effect, it starts the program opera
tions as soon as the user strikes any key. 

The statement in line 160 is quite similar to that in line 120; but as long 
as this one is satisfied (as long as the content of KBD is less than 128), the 
printing and counting operations take place. Line 160 is responsible for 
detecting the keystroke that will stop the counting operation. As soon as 
that keystroke occurs, line 170 clears the keyboard strobe, and line 180 
returns the program to line 120. 

Enter and run the program. You will find that the first keystroke starts 
the counting operation and that the next keystroke stops it. Resume the 
counting by striking any key again. You can thus toggle this counting op
eration on and off any number of times. Getting out of the whole program 
is a matter of performing a CTRL-C or RESET. 

I have omitted the prompting messages from this example so that the 
real reason for presenting it will stand out more clearly. It is a bare-bones 
version of a toggling program. The following listing uses the same toggling 
mechanisms, but includes the prompting messages as well. 

Incidentally, I generated this expanded version from the original one 
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by inserting the prompting and formatting statements, and then using the 
Integer BASIC RENUM feature to get the line numbers back into an or
derly form. 

100 CALL -936 
110 N=0 
120 TAB 10: VTAB 1 
130 POKE 50,63 
140 PRINT "STRIKE ANY KEY TO START" 
150 POKE 50,255: POKE 34,l 
160 IF PEEK (-16384)<128 THEN 160 
170 POKE -16368,0 
180 TAB 1: VTAB 1: CALL -868 
190 TAB 10: POKE 50,63 
200 PRINT "STRIKE ANY KEY TO STOP" 
210 POKE 50,255 
220 PRINT N 
230 N=N+l 
240 IF PEEK (-16384)<128 THEN 220 
250 POKE -16368,0 
260 GOTO 120 

The following is a line-by-line analysis of the program: 

Line 100 homes the cursor and clears the screen. 
Line 110 initializes the counting variable. 
Line 120 tabs the first prompting message. 
Line 130 sets the inverse character format. 
Line 140 prints STRIKE ANY KEY TO START (at TAB 10 on the top 

line, using inverse characters). 
Line 150 returns to normal format, and sets the top of the text window to 

row l. (That prevents the subsequent operations from scrolling the 
prompting message off the top of the screen.) 

Line 160 holds up operations until a keystroke occurs. 
Line 170 clears the keyboard strobe. 
Line 180 sets the cursor to the beginning of the top line on the screen, 

and clears to the end of that line. The purpose of this line is to erase 
the current prompting message. 

Line 190 tabs the next message on the top line, and sets the inverse 
format. 

Line 200 prints STRIKE ANY KEY TO STOP. 
Line 210 sets the normal format. 
Lines 220 through 240 print and increment the value of N until a key

stroke occurs. 
Line 250 clears the keyboard strobe. 
Line 260 goes back to line 120 to do the restart routine. 
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A Fuil Program Example Listing 5-1 represents a full, working 
program that uses some single-keystroke operations for control purposes. 
It is a reaction-time tester. It displays a square of white light on the screen 
at some random time after you begin a delay cycle. From the moment the 
square appears, the program shows the elapsed time in. seconds, tenths of 
seconds and hundredths of seconds. The timer stops as soon. as you strike 
any key. 

Enter the program and play with it for a while before you read the 
following analysis. You will find the program incorporates some PEEK
to-KBD techniques as well as some special text-formatting procedures de
scribed in earlier chapters. 

Line 100 sets the normal format, homes the cursor, and dears the entire 
screen. 

Lines 110 through 140 tab and print a program title message and a 
prompting message. 

Line 150 holds up further execution of the program until the user strikes 
any key. 

Line 160 clears the keyboard strobe. 
Lines 170 through 210 provide animation by scrolling the current mes

sages up one line at a time until they disappear from the screen. 
Lines 220 through 330 print an extensive set of instructions (using the 

normal format set in line 100). 
Lines 340 through 370 tab the next message, set the inverse format, print 

the prompting message STRIKE ANY KEY TO BEGIN THE DELAY 
CYCLE, and wait for a keystroke. 

Line 380 clears the keyboard strobe. 
Line 390 homes the cursor and clears the screen. 
Lines 400 through 420 perform an interruptible time delay of random 

duration. Line 410 makes it possible to interrupt this timing sequence 
by striking any key. If no keystroke occurs during this timing se
quence, the program goes to line 430 and then to 480. But if a key
stroke does occur, as sensed by the PEEK-to-KBD instruction in line 
410, the timing sequence is aborted, and program control goes to line 
440. 

Lines 440 through 470 are called whenever the user strikes a key before 
the white square appears on the screen. The routine clears the 
keyboard strobe (originally set by striking a key at line 410), sets the 
flashing format, and prints a message at the beginning of the top line on 
the screen. (The cursor is set to that point by line 390.) Line 470 re
turns the program to line 340, where the user is prompted to start the 
delay cycle all over again. 
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Listing 5-1. Reaction Time Tester. 

100 POKE 50,255: CALL -936 
110 VTAB 8: TAB 9 
120 PRINT "** REACTION TIME TESTER **" 
130 VTAB 16: TAB 1 
140 PRINT "STRIKE ANY KEY TO START ... " 
150 IF PEEK (-16384)<128 THEN 150 
160 POKE -16368,0 
170 VTAB 24 
180 FOR N=0 TO 15 
190 PRINT 
200 FOR T=0 TO 100: NEXT T 
210 NEXT N 
220 CALL -936 
230 PRINT "AFTER STARTING THE DELAY CYCLE, LOOK" 
240 PRINT "FOR A WHITE SQUARE THAT WILL" 
250 PRINT "APPEAR IN THE UPPER LEFT-HAND" 
260 PRINT "CORNER OF THE SCREEN. RESPOND" 
270 PRINT "BY STRIKING ANY KEY AS SOON AS" 
280 PRINT "POSSIBLE. YOUR REACTION TIME" 
290 PRINT "WILL THEN APPEAR IN THE UPPER" 
300 PRINT "RIGHT-HAND CORNER." 
310 PRINT 
320 PRINT "DO NOT STRIKE THE KEY TOO SOON." 
330 PRINT "THAT ABORTS THE CYCLE." 
340 TAB 1: VTAB 16 
350 POKE 50,63 
360 PRINT "STRIKE ANY KEY TO BEGIN THE DELAY CYCLE." 
370 IF PEEK (-16384)<128 THEN 370 
380 POKE -16368,0 
390 CALL -936 
400 FOR T=0 TO 1000+ RND (4000) 
410 IF PEEK (-16384)>127 THEN 440 
420 NEXT T 
430 GOTO 480 
440 POKE -16368,0 
450 POKE 50, 127 
460 PRINT "TOO SOON. CALM DOWN." 
470 GOTO 340 
480 NH=48:NT=48:NU=48 
490 POKE 1024,32 
500 POKE 1054,NU 
510 POKE 1055,46 
520 POKE 1056,NT 
530 POKE 1057,NH 
540 IF PEEK (-16384)>127 THEN 620 
550 NH=NH+l 
560 IF NH<58 THEN 490 
570 NH=48:NT=NT+l 
580 IF NT<58 THEN 490 
590 NT=48:NU=NU+l 
600 IF NU>57 THEN 660 
610 GOTO 490 
620 POKE -16368,0 
630 VTAB 1: TAB 1 
640 PRINT "YOUR REACTION TIME:" 
650 GOTO 340 

660 VTAB 1: TAB 1 
670 POKE 50,127 
680 PRINT "YOU TOOK TOO LONG· FORGET IT•" 
690 GOTO 340 
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Lines 480 through 610, discussed next, make up the program's elapsed-time 
counting loop. Like the delay time sequence, this loop is interruptible by 
means of the PEEK-to-KBD operation. 

Line 480 initializes the three digits in the elapsed-time counter. NH car
ries hundredths of seconds, NT carries tenths of seconds, and NU 
carries full seconds. They are initialized to 48 instead of to 0 because 
later operations POKE those values to the screen. Recall that you 
must POKE character codes, and not the values themselves, to video 
memory. Character code 48 represents an inverse 0. 

Line 490 POKEs the square of light to the screen. This is the signal that 
the user is to strike a key. 

Line 500 POKEs the current full-seconds character to the screen. 
Line 510 POKEs an inverse period to the screen. 
Lines 520 and 530 POKE tenths and hundredths of seconds to the 

screen. 
Line 540 performs a PEEK-to-KBD. If a key is depressed, control is 

given to line 620; otherwise, the elapsed-time counter is incremented. 
Lines 550 through 610 run the elapsed-time counter. If the time exceeds 

9.99 seconds, as sensed by the conditional statement in line 600, then 
the counting sequence is ended by going to line 660. 

Lines 620 through 650 are executed if the user makes a proper response 
to the beginning of the elapsed-time sequence. They reset the 
keyboard strobe, format and print YOUR REACTION TIME, and re
turn control to line 340 to give the user a chance to begin a new delay 
cycle. 

Lines 660 through 690 are executed if the user allows the elapsed time to 
run past 9.99 seconds. The routine prints YOU TOOK TOO LONG in 
flashing characters, and then loops the program back to line 340. 

The main points, in the context of this section on PEEK-to-KBD con
trol, are the interruptible timing sequences. The program runs along one 
line of operations if no keystroke occurs, but enters a different routine if a 
keystroke does occur. Such operations cannot be duplicated using INPUT 
statements. 

DECODING SINGLE KEYSTROKES FOR CONTROL PURPOSES 
The single-keystroke control techniques described in the previous sec

tion are adequate for initiating a program sequence, halting or interrupting 
a sequence, or toggling between two different program sequences. As long 
as there are no more than two control options-no more than two events 
that can occur as the result of doing a PEEK-to-KBD-it makes no differ
ence which key the user strikes. But of course there are many instances 
where the user iµust ·be given the option of selecting two or more routes in 
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a program. That means it is necessary to define certain keystrokes for cer
tain purposes and decode the key codes as they arrive from the keyboard. 

The YES/NO Situation Revisited An earlier topic in this chapter 
demonstrated how it is possible to use INPUT statements to make a YES 
or NO decision from the keyboard. Here is an example: 

100 CALL -936 
110 FOR N=0 TO 9 
120 PRINT N 
130 FOR T=0 TO 100: NEXT T 
140 NEXT N 
150 PRINT 
160 PRINT "WANT TO DO THIS THING AGAIN (Y/N) ?II 

170 INPUT C$ 
180 IF C$="Y" THEN 100 
190 IF C$="N" THEN END 
200 GOTO 170 

The main part of the program occupies lines 100 through 140. It simply 
clears the screen and prints numerals 0 through 9, with a short time delay 
inserted between each printing. The control portion uses the remainder of 
the program. 

Line 150 leaves· a blank line, and then line 160 asks the user, WANT 
TO DO THIS AGAIN? Line 170 uses an INPUT statement to assign the 
user's response to variable C$. If the response is a Y, then control is 
picked up from line 100 again. If the response is N, the program comes to 
an end. Any other keyboard entry is handled by line 200, which repeats the 
INPUT statement until the user gets it right. 

There is nothing technically wrong with that INPUT control scheme. 
The user strikes the Y or N key and enters that choice by striking the 
RETURN key as well. 

Now, compare that with this version of the same general program that 
uses a decoded PEEK-to-KBD control instead of INPUT. 

100 CALL -936 
110 FOR N=0 TO 9 
120 PRINT N 
130 FOR T=0 TO 100: NEXT T 
140 NEXT N 
150 PRINT 
160 PRINT "WANT TO DO THIS THING AGAIN (Y/N) ?" 
170 C= PEEK (-16384): IF C<l28 THEN 170 
180 POKE -16368,0 
190 IF C=217 THEN 100 
200 IF C=206 THEN END 
210 GOTO 170 
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The two program listings are identical down to line 170. In the latter 
version, line 170 PEEKS to the keyboard and continues doing so until it 
detects a keystroke. Then lines 190 and 200 decode the result. If the user 
strikes the Y key, variable C will be equal to 217. Line 190 handles that 
situation by sending program control back to line 100 to repeat the counting 
sequence. If the user responds to the prompting message by striking the N 
key, the value of C becomes 206, and line 200 responds to that value by 
bringing the program to an end. Finally, if the keystroke is neither an N nor 
a Y, the program defaults to line 210 which, in turn, sends program control 
back to line 170 to give the user another chance. 

Line 180 clears the keyboard strobe latch immediately after any sort of 
keystroke. 

Both versions of the program do exactly the same overall task. But if 
you enter and run both of them, you will find that the PEEK-to-KBD ver
sion seems to "feel" better from the user's point of view. There is an 
immediate response to a Y or N keystroke, so there is no need to strike the 
RETURN key at all. If you happen to strike any other key, nothing hap
pens. 

A careful application of PEEK-to-KBD routines can transform a 
mediocre program into a much more pleasing and exciting one. 

The Menu Situation Revisited "Program Menus" (page 90) de
scribed the application of INPUT statements in program menu routines. 
The idea was to select one of any number of possible paths through a prog
ram by INPUTing a numeral, letter, or symbol in response to a multiple
choice menu listing. Using an INPUT statement means that the user must 
make at least two keystrokes to satisfy the menu routine: one to select the 
menu item and a second (a RETURN keystroke) to complete the execution 
of the INPUT statement. 

As shown in this section, using a PEEK-to-KBD routine with a menu 
reduces the number of keystrokes to just one-the one that selects the 
menu item. 

Enter and run Listing 5-2, and see if you agree that you get a positive 
feeling of immediate interaction with it. 

Here is a line-by-line analysis of the menu-selection and keystroke
decoding portion of that program: 

Line 160 prints the menu prompting message. 
Lines 170 and 180 set the normal format and leave a blank line. 
Lines 190 through 250 print the menu listing and leave a blank line. 
Lines 260 and 270 PEEK to KBD and assign the current value to variable 

F. If there is no keystroke representing the key codes for numerals I 
through 6, the program goes back to PEEK at KBD again. The pro-
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Listing 5-2. Adder, Subtracter, Multiplier. 

100 CALL -936 
110 PRINT "ENTER TWO NUMBERS AS A,B" 
120 PRINT : PRINT "(-100 THRU +100)" 
130 PRINT 
140 INPUT A,B 
150 CALL -936 
160 PRINT "SELECT A FUNCTION (1,2,3,4,5 OR 6) : " 
170 POKE 50,255 
180 PRINT 
190 TAB 5: PRINT "1 A+B" 
200 TAB 5: PRINT "2 A-B" 
210 TAB 5: PRINT "3 B-A" 
220 TAB 5: PRINT "4 A*B" 
230 TAB 5: PRINT "5 SELECT NEW NUMBERS" 
240 TAB 5: PRINT "6 QUIT THE PROGRAM" 
250 PRINT 
260 F= PEEK (-16384) 
270 IF F<l77 OR F>l82 THEN 260 
280 POKE -16368,0 
290 CALL -868 
300 IF F=l77 THEN 360 
310 IF F=l78 THEN 380 
320 IF F=l79 THEN 400 
330 IF F=l80 THEN 420 
340 IF F=l81 THEN 100 
350 END 
360 PRINT A;"+";B;"=";A+B 
370 GOTO 430 
380 PRINT A;"-";B;"=";A-B 
390 GOTO 430 
400 PRINT B; 11_11 ;A; "=II ;B-A 
410 GOTO 430 
420 PRINT A; 11 * 11 ;B; 11 =11 ;A*B 
430 PRINT 
440 PRINT "CURRENT NUMBERS: " 
450 TAB 5: PRINT .. A= .. ;A 
460 TAB 5: PRINT 11 B= 11 ;B 
470 POKE 50,63 
480 VTAB 1: TAB 1 
490 GOTO 160 

gram "buzzes" on these two lines until the user strikes one of the six 
numeral keys designated in the menu listing. 

Lines 280 and 290 clear the keyboard latch and clear to the end of the 
current line of text. The program reaches this point only after the user 
strikes one of the six keys in the menu listing. The CLREOL operation 
simply clears the summary of the previous arithmetic operation from 
the screen. 

Lines 300 through 350 decode the legitimate keystroke and take the ap
propriate action. 
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The entire analysis is almost meaningless if you haven't realized that the 
key code for numeral 1 is 177, 2 is 178, 3 is 179, and so on. (See Table 5-1.) 

Thus far, most of the suggested applications of PEEK-to-KBD 
routines are nice substitutes for the somewhat more awkward INPUT 
routines. The next section in this chapter deals with an application that is 
totally foreign to INPUT techniques. 

An Improved Text Editor Earlier in this chapter we showed you a 
primitive form of word processor, or text editor. The little program simply 
POKEd to the screen any valid, printable character typed at the keyboard. 
One of its real shortcomings was that the user could not alter any of the 
text once it was committed to the screen. Now we are in a position to 
change all that. 

Listing 5-3 allows you to type in text and carry out some common 
editing functions as well. The purpose of the demonstration is to show how 
it is possible to use PEEK-to-KBD operations for both generating text and 
setting up control functions. 

Enter and run that program. Type in some normal alphanumeric char
acters and punctuation marks to convince yourself that the program can 
indeed transfer such keystrokes to the video text system. Then try these 
control functions: 

CTRL-S homes the cursor without erasing any text. 
CTRL-T causes an upward linefeed without erasing any text. 
CTRL-D causes a downward linefeed without erasing any text. 
CTRL-R advances the cursor without erasing any text. 
CTRL-L backspaces the cursor without erasing any text. 
The symbol ~ advances the cursor and erases current text. 
The symbol ~ backspaces the cursor and erases current text. 
CTRL-X erases all text from the cursor to the end of the page. 
CTRL-F erases all text from the cursor to the end of the cmTent line. 
RETURN causes a linefeed and carriage return. 

You will also see that the program displays a text cursor. The more 
primitive version of the program did not do that. 

Here is an analysis of Listing 5-3: 

Line 110 fetches the current cursor position and assigns it to variable CP. 
Line 120 PEEKs at the current character, calculates the character code for 

its inverse or flashing format, and POKEs it to the current cursor posi
tion. This line is responsible for generating the program's cursor symbol. 

Lines 130 and 140 PEEK to KBD. If no key is depressed, they PEEK to 
KBD again. 
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Listing 5-3. Improved Text Editor. 

100 CALL -936 
110 CP=256* PEEK (41)+ PEEK (40)+ PEEK (36) 
120 POKE CP, PEEK (CP)-128 
130 K= PEEK (-16384) 
140 IF K<l28 THEN 130 
150 POKE -16368,0 
160 IF K<l60 THEN 200 
170 POKE CP,K 
180 CALL -1036 
190 GOTO 110 
200 POKE CP, PEEK (CP)+l28 
210 IF K=l32 THEN 1320 
220 IF K=l34 THEN 1340 
230 IF K=l36 THEN 1360 
240 IF K=l40 THEN 1400 
250 IF K=l41 THEN 1410 
260 IF K=l46 THEN 1460 
270 IF K=l47 THEN 1470 
280 IF K=l48 THEN 1480 
290 IF K=l49 THEN 1490 
300 IF K=l52 THEN 1520 
310 GOTO 130 

1320 CALL -922: GOTO 110 
1340 CALL -868: GOTO 110 
1360 POKE CP,160: GOTO 1400 
1400 CALL -1008: GOTO 110 
1410 CALL -926: GOTO 110 
1460 CALL -1036: GOTO 110 
1470 VTAB 1: TAB 1: GOTO 110 
1480 CALL -998: GOTO 110 
1490 POKE CP,160: GOTO 1460 
1520 CALL -958: GOTO 110 

Line 150 clears the keyboard strobe. 
Line 160 jumps to line 200 to execute the control operation if the key-

stroke represents a control character. 
Line 170 prints the character typed if it wasn't a control character. 
Line 180 advances the cursor. 
Line 190 returns to get the next keystroke. 
Line 200 replaces the cursor symbol with the normal format version of 

the current character. 

Lines 210 through 310 decode the control keystroke and send opera
tions to the appropriate lines. Specifically: 

Line 210 decodes CTRL-D. 
Line 220 decodes CTRL-F. 
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Line 230 decodes left arrow. 
Line 240 decodes CTRL-L. 
Line 250 decodes RETURN. 
Line 260 decodes CTRL-R. -
Line 270 decodes CTRL-S. 
Line 280 decodes CTRL-T. 
Line 290 decodes the right arrow key. 
Line 300 returns to line 130 to get the next keystroke if the keystroke is 

not a proper control character. 
Line 1320 performs a downward linefeed (CTRL-D) and gets the next 

keystroke. 
Line 1340 erases to end of line (CTRL-F) and gets the next keystroke. 
Line 1360 erases the current character and jumps to line 1400 to 

backspace (left arrow). 
Line 1400 backspaces (CTRL-L) and gets the next keystroke. 
Line 1410 performs a linefeed and carriage return (RETURN) and gets 

the next keystroke. 
Line 1460 advances the cursor (CTRL-R) and gets the next keystroke. 
Line 1470 homes the cursor (CTRL-S) and gets the next keystroke. 
Line 1480 performs an upward linefeed (CTRL-T) and gets the next key-

stroke. 
Line 1490 erases the current character and jumps to line 1460 to advance 

the cursor (right arrow). 
Line 1520 erases to the end of the page (CTRL-X) and gets the next 

keystroke. 

All of the CALL statements take advantage of the cursor-related 
routines cited in Chapter 2. 
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The Low-Resolution 
Graphics Environment 

One of the truly appealing features of the Apple computer sys 6 tem is its versatile and colorful low-resolution graphics mode of op
eration. Properly used, this scheme can provide interesting, entertaining, 
and useful color graphics functions. 

The low-resolution graphics screen shares video RAM addresses with 
the text screen. The two screens overlap exactly, so many of the special 
text techniques described in an earlier chapter can be applied equally well 
to the low-resolution graphics mode. 

THE ELEMENTARY PRINCIPLES Integer BASIC includes a small 
group of statements that are especially designed to simplify the program
ming of low-resolution graphics routines. Even if you have already mas
tered these principles, you might do well to follow this summary closely; 
the ideas are the framework for more detailed discussions later in this chap
ter. 

The GR and TEXT Statements Integer BASIC's GR and TEXT 
statements are intended to switch the Apple system between its low
resolution and normal text modes. Doing a GR, either from the keyboard in 
the command mode or within a BASIC program, sets the video system for 
displaying normal, low-resolution graphics. Doing a TEXT, either from the 
immediate command mode or within a program, returns the video system 
to normal text. 

The normal low-resolution graphics mode is one that is characterized 
by a mixture of graphics and text locations on the screen. The text area 
occupies the four lower lines (text rows 20 through 23), and the graphics 
area fills the remainder of the screen. 

The graphics area is divided into 40 rows of 40 graphics locations. That 
figures out to 1600 separate places on the screen where you can plot small 
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rectangles of color. The 40 columns in each row are addressed just as text 
character locations are addressed-0 through 39. Likewise, the 40 rows of 
low-resolution graphics locations can be labeled 0 through 39. (See the 
normal graphics scheme illustrated in Fig. 6-1.) 

You ought to be able to appreciate the fact that there are 40 rows of 
graphics locations occupying the space that is normally allotted to 20 rows 
of text. In other words, there are twice as many graphics rows in that 
screen area than text rows. 

Executing a GR statement sets up the normal graphics mode, clears 
the low-resolution graphics portion of the screen, but does not affect the 
text area. It is not uncommon, then, to see a GR statement in a program 
immediately followed by a CALL -936. The latter statement clears the 
four-line text window and homes the cursor within it. 

Executing a TEXT statement simply returns the system to the full text 
mode (40 columns, 24 rows) and does not clear anything. That is why you 
often see a lot of seemingly meaningless text in the upper portion of the 
screen after doing a TEXT statement to get out of the low-resolution 
graphics mode. For that reason, the TEXT statement is frequently followed 
by a CALL -936 to home the cursor and clear the screen. 

The COLOR and PLOT Statements The COLOR statement de-
termines the color to be plotted on the screen. The COLOR codes and their 
corresponding colors are shown in Table 6-1. 

The syntax for the COLOR statement is: 

COLOR=c 

where c is the desired color code from Table 6-1. COLOR must precede the 
PLOT statement, described next. 

The PLOT statement plots the designated color to a screen location 
determined according to the special row-and-column addressing format. 
The syntax for the PLOT statement is: 

PLOT x,y 

where x is the desired column (0-39) and y is the low-resolution graphics 
row (0-39). 
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Fig. 6-1. Normal graphics scheme. 
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Table 6-1. Color Codes 

COLOR Code Color 

0 Black 
1 Magenta 
2 Dark Blue 
3 Purple 

4 Dark Green 
5 Grey 1 

I 
6 Medium Blue 
7 Light Blue 

8 Brown 
9 Orange 

10 Grey 2 
11 Pink 

12 Light Green 
13 Yellow 
14 Aquamarine 
15 White 

Consider the following program: 

10 GR 
20 CALL -936 
30 COLOR=9 
40 PLOT 20,20 
50 COLOR=l3 
60 PLOT 0,0 
70 END 

Lines 10 and 20 in that program set up the normal low-resolution 
graphics mode and clear the text portion of the screen. Those two lines, in 
effect, clear the entire screen because the execution of GR always clears 
the graphics area. 

Lines 30 and 40 work together to plot an orange rectangle near the 
middle of the screen. Line 30 sets up the color according to Table 6-1, and 
line 40 plots a rectangle of that color at column 20, graphics row 20. Then 
lines 50 and 60 plot a yellow rectangle in the extreme upper left-hand 
comer of the screen. Again, line 50 sets the color and line 60 plots that 
color at the designated coordinates-0,0 in this case. 
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Line 70 ends the program. You will find that the BASIC prompt sym
bol then appears in the text area at the bottom of the screen. 

You can, of course, write programs that plot a number of low
resolution color blocks in sequence. Consider this idea: 

10 GR 
20 CALL -936 
30 COLOR=3 
40 FOR X=0 TO 39 
50 PLOT X,0 
60 NEXT x 
70 END 

This program plots a purple line across the top of the screen. Technically 
speaking, it plots a series of 40 purple rectangles. 

Enter the next program into your Apple, RUN it, and observe its be
havior. See if you can explain to yourself how it works. 

100 GR 
110 CALL -936 
120 COLOR=4 
130 FOR X=0 TO 39: FOR Y=0 TO 39 
140 PLOT X, Y 
150 NEXT Y: NEXT X 
160 COLOR=l5 
170 FOR X=0 TO 39 
180 PLOT X,0: PLOT X,39 
190 NEXT X 
200 FOR Y=0 TO 39 
210 PLOT 0,Y: PLOT 39,Y 
220 NEXT y 

230 END 

The HUN and VLIN Statements Integer BASIC includes two 
statements that are intended to simplify the programming task of drawing 
straight horizontal or vertical lines on the low-resolution graphics screen. 
HLIN draws horizontal lines at designated row positions, and VLIN draws 
vertical lines at designated column positions. 

The form of HLIN is: 

HLIN xl,x2 AT y 

This statement draws a horizontal line of a previously determined 
color between columns xl and x2 at graphics row y . The range of values 
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for all three terms must be from 0 to 39, and x2 must be greater than xl 
(HLIN always draws from left to right.) 

The form of VLIN is: 

VLIN yl,y2 AT x 

This statement draws a vertical line between graphics rows yl and y2, 
and at column x. Again, the range of values must be from 0 to 39. Since 
VLIN always draws from top to bottom, y2 must be greater than yl. 

Try this demonstration program: 

10 GR 
20 CALL -936 
30 COLOR=7 
40 HLIN 0,39 AT 20 
50 VLIN 0,39 AT 20 
60 END 

The program draws a set of light blue horizontal and vertical lines that 
intersect near the middle of the screen. Notice that the vertical line is wider 
than its horizontal counterpart. That is not an effect created by the HLIN 
and VLIN statements. Rather, it illustrates the fact that the low-resolution 
graphics scheme uses rectangular blocks of color-blocks that are about 
twice as wide as they are high. 

If you would like to give those two lines the same width, you must 
double the width of the horizontal line. There is no way to reduce the width 
of the vertical line. So try this: 

10 GR 
20 CALL -936 
30 COLOR=7 
35 f'QR- N=0 TO 1 
40 HLIN 0,39 AT 20+N 
45 NEXT N 
50 VLIN 0,39 AT 20 
60 END 

Lines 35 through 45 draw the horizontal line twice-once at graphics row 
20 and then again at row 21. 
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Enter, RUN, and observe the action of the following program: 

100 GR 
110 CALL -936 
120 COLOR=4 
130 FOR X=0 TO 39 
140 VLIN 0,39 AT X 
150 NEXT X 
160 COLOR=l5 
170 FOR Y=0 TO 39 STEP 39 
180 HLIN 0,39 AT Y 
190 NEXT Y 
200 FOR X=0 TO 39 STEP 39 
210 VLIN 0,39 AT X 
220 NEXT X 
230 END 

This program does the same graphics task as an earlier one written 
without the help of HUN and VLIN statements. The program listing, it
self, is not significantly shorter nor simpler, but it certainly executes the 
drawing operation faster. This speed is the advantage that HLIN and VLIN 
statements have over the PLOT statement. 

The SCRN Statement The SCRN statement fetches the color code 
of any low-resolution graphics point on the screen. The appropriate syntax 
is: 

SCRN(x,y) 

where x is the column number and y is the low-resolution row number. 
The following example assigns the color code of a graphics element at 

location 12,35 to variable CC: 

CC=SCRN(12,35) 

Graphics Techniques The small size of the family of low-resolution 
graphics statements belies its flexibility. Given the four statements, a pro
grammer can: 

e Compose elaborate, full-color static (nonanimated) pictures on the 
screen. 

• Draw colorful and dynamic graphs. 
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e Plot combinations of static images and simple moving objects. 
e Compose interesting and entertaining full-color animation sequences. 

Composing static pictures is a matter of planning the size, shape, posi
tion, and color of each of the elements of the picture, using a worksheet 
such as the one in Fig. 6-1 as a guide. After doing the planning on such a 
worksheet, the next step is to draw up sequences of COLOR, PLOT, 
HLIN, and VLIN statements for each element. The idea is simple in prin
ciple, but it requires some time and effort on your part. If you haven't seen 
many interesting low-resolution static pictures, it means that you haven't 
encountered anyone who cares to take the time to write such programs. 

Making up programs for drawing graphs is also quite simple in princi
ple. It is a matter of applying the numerical data you want to graph to the 
small family of low-resolution graphics statements. Colorful bar graphs are 
especially easy to work out on the Apple system. 

Knowing how to create the impression of a simple moving object 
against a colorful background can lead to a lot of exciting graphics-oriented 
games. Moving that simple object on the screen is a matter of looking 
ahead to its next position, saving the color code of that point by means of a 
SCRN statement, plotting over the moving object with a previously saved 
color code, and then plotting the moving object in its new position. 

Full-screen animation sequences are difficult to generate without notic
ing a lot of flickering on the screen. But the job can be done quite satisfac
torily, especially if you can have access to the secondary low-resolution 
graphics page. Again, if you haven't seen any good full-screen animations 
on the Apple, it is because so few people have the necessary combination 
of artistic imagination, skill, and patience. 

The exact details for implementing any of these graphics techniques 
are far beyond the scope of this book. The basic ideas are rather simple and 
Integer BASIC includes all the necessary tools; the problem is that illustrat
ing the step-by-step procedures would fill an entire book. 

Roie of the Apple Monitor All of the low-resolution graphics 
statements in BASIC refer to the Apple monitor. The BASIC statements 
are simply keywords for accessing the actual graphics routines in the 
machine-language monitor. Dressing up the graphics techniques with 
BASIC keywords slows down the drawing operations. That will be no big 
surprise to you later on when we look at the graphics techniques again from 
a purely machine-language point of view. 

POKEING COLORS TO THE SCREEN Just as it is possible, and 
often desirable, to PO KE text characters to the video text memory, it is 
possible to POKE colors to the low-resolution memory. 
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Organization of the low-Resolution Video Memory The 
low-resolution video memory is formatted in exactly the same way as the 
video text memory. In fact, they are one and the same. POKEing char
acters into the primary-page video memory under TEXT plots text char
acters. POKEing data into the primary-page video memory under GR plots 
colored rectangles of light. 

Tables 6-2 and 6-3 show the memory maps for the primary and secon
dary low-resolution graphics RAM. The maps are shown here only as a 
matter of convenience; they are identical to the video text memory maps 
shown earlier in Tables 4-1 and 4-2. 

Table 6-2. Graphics Primary Page Memory Map 

Line Address Range 

0 1024-1063 
1 1152-1191 
2 1280-1319 
3 1408-1447 
4 1536-1575 
5 1664-1703 
6 1792-1831 
7 1920-1959 

8 1064-1103 
9 1192-1231 

10 1320-1359 
11 1448-1487 
12 1576-1615 
13 1704-1743 
14 1832-1871 
15 1960-1999 

16 1104-1143 
17 1232-1271 
18 1360-1399 
19 1488-1527 
20 1616-1655 
21 1744-1783 
22 1872-1911 
23 2000-2039 
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Table 6-3. Graphics Secondary Page Memory Map 

Line Address Range 

0 2048-2087 
1 2176-2215 
2 2304-2343 
3 2432-2471 
4 2560-2599 
5 2688-2727 
6 2816-2855 
7 2944-2983 

8 2088-2127 
9 2216-2255 

10 2344-2383 
11 2472-2511 
12 2600-2639 
13 2728-2767 
14 2856-2895 
15 2984-3023 

16 2128-2167 
17 2256-2295 
18 2384-2423 
19 2512-2551 
20 2640-2679 
21 2768-2807 
22 2896-2935 
23 3024-3063 

The following experiment ought to convince you that the video text 
and low-resolution graphics occupy the same RAM addresses and can be 
accessed in the same fashion. 

l. Enter and run this text-oriented program: 

10 TEXT 
20 CALL -936 
30 FOR N=0 TO 39 
40 POKE 1448+N,153 
50 NEXT N 
60 GOTO 60 
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The program uses text techniques described in Chapter 4 to POKE a 
full line of 153 character codes (NORMAL- I Y character) to video 
RAM addresses 1448 through 1487. It POKEs a full line of 40 Y char
acters to the screen. Since line 60 loops to itself, you must do a 
CTRL-C to get out of the program. 

2. Alter line 10 in that program to read GR instead of TEXT. Run the 
program, which now looks like this: 

HJ 
20 
30 
40 
50 
60 

GR 
CALL -936 
FOR N=0 TO 39 
POKE 1448+N,153 
NEXT N 
GOTO 60 

You should see a wide orange bar stretching horizontally across the 
screen. 

What is the difference between the program routines in Steps l and 2? 
Both steps POKE code 153 to successively higher video RAM addresses, 
from 1448 through 1487. Step 1, however, prints a series of white-on-black 
Y characters, while Step 2 transforms those same Y characters into orange 
rectangles of light. 

3. Get out of the program in Step 3 by doing a CTRL-C. 
4. Do a TEXT command from the keyboard. You will see that most of 

the upper section of the text screen is filled with inverse @ char
acters. But the row of Y characters is there, too. 

Returning from GR to TEXT causes the Apple system to interpret that 
series of characters you POKEd into video RAM as text characters rather 
than graphic characters. What is the meaning of all those inverse @ char
acters? Recall that executing the GR statement clears the low-resolution 
screen to all black; the inverse@ character happens to be the text interpre
tation of graphic black. 

The text interpretation of any graphics characters remains on the 
screen when going from GR to TEXT because the system does not auto
matically clear the screen when switching modes in that direction. 

The differences between the TEXT and GR interpretations of char
acter codes is the main subject of the next discussion. What is more impor
tant at this point is to realize that the video text and low-resolution graphics 
memories are one and the same. That includes the secondary text/graphics 
page as well. 
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So the overall effect of POKEs and PEEKs to video memory depends 
on whether the system is running under the TEXT or the GR mode. 
POKEing characters to video memory under TEXT prints text characters 
to the screen. POKEing characters to video memory under GR plots low
resolution graphic blocks to the screen. 

Graphics Color Codes Chapter 4 describes how it is possible to 
POKE a family of 256 different text character codes to the primary or sec
ondary video RAM addresses. Those codes are numbered 0 through 255 
and represent the entire range of printable characters, including inverse, 
flashing, NORMAL-I, and NORMAL-2 characters. (See Tables 4-3 through 
4-5.) 

Since the low-resolution graphics scheme uses the same general video 
environment, it follows that there are also 256 possible graphics codes that 
are numbered 0 through 255. POKEing those codes to the primary or sec
ondary page plots different colors on the screen. 

By way of an introduction to this idea, enter and run the following 
text-related program: 

100 TEXT 
110 CALL -936 
120 TAB l: VTAB l 
130 FOR CC=0 TO 15 
140 GOSUB 200 
150 NEXT cc 
160 VTAB 21 
170 END 
200 VTAB CC+l 
210 FOR N=0 TO 39 
220 POKE 256* PEEK (41)+ PEEK (40)+N,CC*l7 
230 NEXT N 
240 RETURN 

The result appears to be largely meaningless. You should see rows of 16 
different text characters: inverse @, inverse Q, inverse quotation mark, 
inverse 3, flashing D, and so on. They represent a series of text codes from 
0 through 255 in steps of 17. 

The routine uses TAB and VTAB statements to set the lines of text in 
an orderly fashion. Line 220 uses a procedure described earlier to POKE 
characters to the current RAM address calculated from BASH and BASL. 
It is the peculiar selection of character codes, and not the basic text
printing idea, that is new here. 

Now, revise line 100 in that program to read GR instead of TEXT. The 
result should look like this: 
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100 GR 
110 CALL -936 
120 TAB 1: VTAB 1 
130 FOR CC=0 TO 15 
140 GO SUB 200 
150 NEXT cc 
160 VTAB 21 
170 END 
200 VTAB CC+l 
210 FOR N=0 TO 39 
220 POKE 256* PEEK (41)+ PEEK (40)+N,CC*l7 
230 NEXT N 
240 RETURN 

When you run this version of the same program, the results on the 
screen will be remarkably different and far more meaningful. You'll see the 
16 low-resolution graphics colors plotted as horizontal bands. That "pecul
iar'' selection of character codes plots lines of different colors under the 
GR mode of operation. 

Table 6-4 summarizes those codes and the colors they create when 
POKEd to the screen in the GR mode and in the TEXT mode. Those code 
numbers, shown in increments of 17, represent the sequence of 16 colors 
that can be PLOTted to.the screen. Compare them with the PLOT codes in 
Table 6-1. 

Using that series of code numbers, you can plot full-sized blocks of 
color anywhere on the screen but at the four bottom lines. Notice that they 
are full-sized blocks, and not the half-height blocks that appear in response 
to a PLOT statement. Since you are getting into the low-resolution graphics 
mode by doing a GR, you cannot plot colors in the lower four lines that are 
dedicated to text operations. Try to POKE a color code in that text region, 
and you will see a text character. 

POKEing colors to the low-resolution graphics screen is a bit trickier 
and more cumbersome than using the more traditional methods (using 
COLOR, PLOT, HUN, and so on), but the notion offers some advantages 
as well. One advantage is that you can POKE color codes to the secondary 
video page. Like PRINT statements in the TEXT mode, PLOT-type state
ments in GR work only with the primary page of video. There are other 
instances when it is advantageous to combine tradition.al graphics state
ments and POKE statements. 

The discussion to this point deals with only 16 different colors that can 
be POKEd to the graphics screen. There are supposed to be 256 possible 
color codes. What about the remaining 240 codes? 

The 16 codes cited in Table 6-4 represent the codes that POKE a full 
block of a single color to the graphics screen.. They are not the half-height 
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blocks that you can PLOT to the screen by the traditional graphics 
methods, but full-sized blocks that occupy an entire character space. 
What's more, the full-sized block has a single color. Therein lies the differ
ence between the 16 codes in Table 6-4 and the remaining 240 of them. 

Most codes that are POKEd to the graphics screen produce two-color 
blocks. They are a pair of half-sized blocks that have different colors. The 
following program lets you view all 256 color codes as they are POKEd in 
sequence to the graphics screen: 

100 GR 
110 CALL -936 
120 TAB 1: VTAB 1 
130 FOR N=0 TO 127 
140 GOSUB 290 
150 NEXT N 
160 VTAB 21: TAB 1 
170 PRINT "CODES 0-127": PRINT 
180 INPUT "STRIKE RETURN FOR MORE ... ",S$ 
190 CALL -936 
200 VTAB 1: TAB 1 
210 FOR N=l28 TO 255 
220 GOSUB 290 
230 NEXT N 
240 VTAB 21: TAB 1 
250 PRINT "CODES 128-255": PRINT 
260 INPUT "WANT TO SEE FIRST SERIES AGAIN (Y/N)?",S$ 
270 IF S$="N" THEN END 
280 CALL -936: GOTO 120 
290 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),N 
300 CALL -1036 
310 CALL -1036 
320 IF PEEK {36)=0 THEN CALL -926 
330 RETURN 

Enter and run the program, and you will see the first 128 color codes 
as. they appear in the GR mode of operation. There will be a blank space 
between each code. You can view the other 128 codes by striking the RE
TURN key when prompted to do so. Notice that most of them are two
colored blocks. 

Incidentally, you should be able to follow the techniques used in this 
particular program. They are really no different from the techniques used in 
TEXT programs. The only difference between this program and a program 
that prints out all of the Apple text characters, with a blank space between 
characters and a blank between rows, is the GR statement in line 100. 
Change that line to read TEXT, and you will see what we mean. Indeed, 
there are no real differences between the techniques for POKEing text 
(Chapter 4) and POKEing graphics. 

124 <> INTERMEDIATE-LEVEL APPLE 11 HANDBOOK 



Table 6-4. Full Block Color Codes 

POKE color Full-block Equivalent 
code color text character 

0 black inverse@ 
17 magenta inverse Q 
34 dark blue inverse 11 

51 purple inverse 3 
68 dark green flashing D 

85 grey 1 flashing U 
102 medium blue flashing & 
119 light blue flashing 7 
136 brown NORMAL-1 H 
153 orange NORMAL-1 Y 

170 grey 2 NORMAL-1 * 
187 pink NORMAL-1; 
204 light green NORMAL-2 L 
221 yellow NORMAL-2] 
238 aquamarine NORMAL-2. 

255 white NORMAL-2? 

Table 6-5 lists all possible combinations of upper and lower colors and 
the corresponding color codes for all 256 POKE values. It is an extensive 
list, to be sure, but it is indispensable for planning low-resolution color 
graphics. To determine which codes to use from the table, first decide on 
the colors you want for the upper and lower halves of the block. Search the 
UPPER part of the listing first for the upper color. After finding the proper 
upper color codes, search that section for the color code of the LOWER 
half of the block. 

Suppose, for instance, you want to plot a purple segment over an 
orange segment at video address 1068. First search the table for the PUR
PLE listing as the UPPER portion of the block. After you find that, look 
for the ORANGE listing as the LOWER portion in that section of the table. 
The corresponding color code is 147. Since that purple-over-orange graphic 
is to appear at address 1068, the appropriate statement for doing the job is: 

POKE 1068,147 

Try it. Get into the GR mode and execute the statement. 
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Table 6-5. Upper/Lower Color Codes 
UPPER/LOWER COLOR 

BLACK/BLACK 
BLACK/MAGENTA 
BLACK/DARK BLUE 
BLACK/PURPLE 
BLACK/DARK GREEN 
BLACK/GREY 1 
BLACK/MEDIUM BLUE 
BLACK/LIGHT BLUE 
BLACK/BROWN 
BLACK/ORANGE 
BLACK/GREY 2 
BLACK/PINK 
BLACK/LIGHT GREEN 
BLACK/YELLOW 
BLACK/AQUA 
BLACK/WHITE 

MAGENTA/BLACK 
MAGENTA/MAGENTA 
MAGENTA/DARK BLUE 
MAGENTA/PURPLE 
MAGENTA/DARK GREEN 
MAGENTA/GREY 1 
MAGENTA/MEDIUM BLUE 
MAGENTA/LIGHT BLUE 
MAGENTA/BROWN 
MAGENTA/ORANGE 
MAGENTA/GREY 2 
MAGENTA/PINK 
MAGENTA/LIGHT GREEN 
MAGENTA/YELLOW 
MAGENTA/AQUA 
MAGENTA/WHITE 

DARK BLUE/BLACK 
DARK BLUE/MAGENTA 
DARK BLUE/DARK BLUE 
DARK BLUE/PURPLE 
DARK BLUE/DARK GREEN 
DARK BLUE/GREY 1 
DARK BLUE/MEDIUM BLUE 
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0 

16 
32 
48 
64 
80 
96 

112 
128 
144 
160 
176 
192 
208 
224 
240 

1 
17 
33 
49 
65 
81 
97 

113 
129 
145 
161 
177 
193 
209 
225 
241 

2 
18 
34 
50 
66 
82 
98 



Table 6-5-cont. Upper/Lower Color Codes 

UPPER/LOWER COLOR CODE 

DARK BLUE/LIGHT BLUE 114 
DARK BLUE/BROWN 130 
DARK BLUE/ORANGE 146 
DARK BLUE/GREY 2 162 
DARK BLUE/PINK 178 
DARK BLUE/LIGHT GREEN 194 
DARK BLUE/YELLOW 210 
DARK BLUE/AQUA 226 
DARK BLUE/WHITE 242 

PURPLE/BLACK 3 
PURPLE/MAGENTA 19 
PURPLE/DARK BLUE 35 
PURPLE/PURPLE 51 
PURPLE/DARK GREEN 67 
PURPLE/GREY l 83 
PURPLE/MEDIUM BLUE 99 
PURPLE/LIGHT BLUE 115 
PURPLE/BROWN 131 
PURPLE/ORANGE 147 
PURPLE/GREY 2 163 
PURPLE/PINK 179 
PURPLE/LIGHT GREEN 195 
PURPLE/YELLOW 211 
PURPLE/ AQUA 227 
PURPLE/WHITE 243 

DARK GREEN/BLACK 4 
DARK GREEN/MAGENTA 20 
DARK GREEN/DARK BLUE 36 
DARK GREEN/PURPLE 52 
DARK GREEN/DARK GREEN 68 
DARK GREEN/GREY 1 84 
DARK GREEN/MEDIUM BLUE 100 
DARK GREEN/LIGHT BLUE 116 
DARK GREEN/BROWN 132 
DARK GREEN/ORANGE 148 
DARK GREEN/GREY 2 164 
DARK GREEN/PINK 180 
DARK GREEN/LIGHT GREEN 196 
DARK GREEN/YELLOW 212 
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Table 6-5-cont. Upper/Lower Color Codes 

UPPER/LOWER COLOR CODE 

DARK GREEN/AQUA 228 
DARK GREEN/WHITE 244 

GREY I/BLACK 5 
GREY 1/MAGENTA 2I 
GREY I/DARK BLUE 37 
GREY I/PURPLE 53 
GREY I/DARK GREEN 69 
GREY 1/GREY I 85 
GREY I/MEDIUM BLUE lOI 
GREY I/LIGHT BLUE 117 
GREY 1/BROWN 133 
GREY I/ORANGE I49 
GREY 1/GREY 2 I65 
GREY I/PINK I8I 
GREY 1/LIGHT GREEN I97 
GREY 1/YELLOW 213 
GREY I/AQUA 229 
GREY I/WHITE 245 

MEDIUM BLUE/BLACK 6 
MEDIUM BLUE/MAGENTA 22 
MEDIUM BLUE/DARK BLUE 38 
MEDIUM BLUE/PURPLE 54 
MEDIUM BLUE/DARK GREEN 70 
MEDIUM BLUE/GREY I 86 
MEDIUM BLUE/MEDIUM BLUE 102 
MEDIUM BLUE/LIGHT BLUE I I8 
MEDIUM BLUE/BROWN 134 
MEDIUM BLUE/ORANGE 150 
MEDIUM BLUE/GREY 2 I66 
MEDIUM BLUE/PINK I82 
MEDIUM BLUE/LIGHT GREEN I98 
MEDIUM BLUE/YELLOW 2I4 
MEDIUM BLUE/AQUA 230 
MEDIUM BLUE/WHITE 246 

LIGHT BLUE/BLACK 7 
LIGHT BLUE/MAGENTA 23 
LIGHT BLUE/DARK BLUE 39 
LIGHT BLUE/PURPLE 55 
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Table 6-5-cont. Upper/Lower Color Codes 
UPPER/LOWER COLOR CODE 

LIGHT BLUE/DARK GREEN 71 
LIGHT BLUE/GREY 1 87 
LIGHT BLUE/MEDIUM BLUE 103 
LIGHT BLUE/LIGHT BLUE 119 
LIGHT BLUE/BROWN 135 
LIGHT BLUE/ORANGE 151 
LIGHT BLUE/GREY 2 167 
LIGHT BLUE/PINK 183 
LIGHT BLUE/LIGHT GREEN 199 
LIGHT BLUE/YELLOW 215 
LIGHT BLUE/AQUA 231 
LIGHT BLUE/WHITE 247 

BROWN/BLACK 
BROWN/MAGENTA 
BROWN/DARK BLUE 
BROWN/PURPLE 
BROWN/DARK GREEN 
BROWN/GREY 1 
BROWN/MEDIUM BLUE 
BROWN/LIGHT BLUE 
BROWN/BROWN 
BROWN/ORANGE 
BROWN/GREY 2 
BROWN/PINK 
BROWN/LIGHT GREEN 
BROWN/YELLOW 
BROWN/AQUA 
BROWN/WHITE 

ORANGE/BLACK 
ORANGE/MAGENTA 
ORANGE/DARK BLUE 
ORANGE/PURPLE 
ORANGE/DARK GREEN 
ORANGE/GREY 1 
ORANGE/MEDIUM BLUE 
ORANGE/LIGHT BLUE 
ORANGE/BROWN 
ORANGE/ORANGE 
ORANGE/GREY 2 

8 
24 
40 
56 
72 
88 

104 
120 
136 
152 
168 
184 
200 
216 
232 
248 

9 
25 
41 
57 
73 
89 

105 
121 
137 
153 
169 
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Table 6-5-cont. Upper/Lower Color Codes 

UPPER/LOWER COLOR CODE 

ORANGE/PINK 185 
ORANGE/LIGHT GREEN 201 
ORANGE/YELLOW 217 
ORANGE/AQUA 233 
ORANGE/WHITE 249 

GREY 2/BLACK 10 
GREY 2/MAGENTA 26 
GREY 2/DARK BLUE 42 
GREY 2/PURPLE 58 
GREY 2/DARK GREEN 74 
GREY 2/GREY 1 90 
GREY 2/MEDIUM BLUE 106 
GREY 2/LIGHT BLUE 122 
GREY 2/BROWN 138 
GREY 2/0RANGE 154 
GREY 2/GREY 2 170 
GREY 2/PINK 186 
GREY 2/LIGHT GREEN 202 
GREY 2/YELLOW 218 
GREY 2/AQUA 234 
GREY 2/WHITE 250 

PINK/BLACK 11 
PINK/MAGENTA 27 
PINK/DARK BLUE 43 
PINK/PURPLE 59 
PINK/DARK GREEN 75 
PINK/GREY 1 91 
PINK/MEDIUM BLUE 107 
PINK/LIGHT BLUE 123 
PINK/BROWN 139 
PINK/ORANGE 155 
PINK/GREY 2 171 
PINK/PINK 187 
PINK/LIGHT GREEN 203 
PINK/YELLOW 219 
PINK/AQUA 235 
PINK/WHITE 251 

LIGHT GREEN/BLACK 12 

LIGHT GREEN/MAGENTA 28 
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Table 6-5-cont. Upper/Lower Color Codes 

UPPER/LOWER COLOR CODE 

LIGHT GREEN/DARK BLUE 44 
LIGHT GREEN/PURPLE 60 
LIGHT GREEN/DARK GREEN 76 
LIGHT GREEN/GREY 1 92 
LIGHT GREEN/MEDIUM BLUE 108 
LIGHT GREEN/LIGHT BLUE 124 
LIGHT GREEN/BROWN 140 
LIGHT GREEN/ORANGE 156 
LIGHT GREEN/GREY 2 172 
LIGHT GREEN/PINK 188 
LIGHT GREEN/LIGHT GREEN 204 
LIGHT GREEN/YELLOW 220 
LIGHT GREEN/AQUA 236 
LIGHT GREEN/WHITE 252 

YELLOW/BLACK 13 
YELLOW/MAGENTA 29 
YELLOW/DARK BLUE 45 
YELLOW/PURPLE 61 
YELLOW/DARK GREEN 77 
YELLOW/GREY 1 93 
YELLOW/MEDIUM BLUE 109 
YELLOW/LIGHT BLUE 125 
YELLOW/BROWN 141 
YELLOW/ORANGE 157 
YELLOW/GREY 2 173 
YELLOW/PINK 189 
YELLOW/LIGHT GREEN 205 
YELLOW/YELLOW 221 
YELLOW/AQUA 237 
YELLOW/WHITE 253 

AQUA/BLACK 14 
AQUA/MAGENTA 30 
AQUA/DARK BLUE 46 
AQUA/PURPLE 62 
AQUA/DARK GREEN 78 
AQUA/GREY 1 94 
AQUA/MEDIUM BLUE 110 
AQUA/LIGHT BLUE 126 
AQUA/BROWN 142 
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Table 6-5-conL Upper/Lower Color Codes 

UPPER/LOWER COLOR CODE 
AQUA/ORANGE 158 
AQUA/GREY 2 174 
AQUA/PINK 190 
AQUA/LIGHT GREEN 206 
AQUA/YELLOW 222 
AQUA/AQUA 238 
AQUA/WHITE 254 

WHITE/BLACK 15 
WHITE/MAGENTA 31 
WHITE/DARK BLUE 47 
WHITE/PURPLE 63 
WHITE/DARK GREEN 79 
WHITE/GREY 1 95 
WHITE/MEDIUM BLUE 111 
WHITE/LIGHT BLUE 127 
WHITE/BROWN 143 
WHITE/ORANGE 159 
WHITE/GREY 2 175 
WHITE/PINK 191 
WHITE/LIGHT GREEN 207 
WHITE/YELLOW 223 
WHITE/AQUA 239 
WHITE/WHITE 255 

Getting Help From the Cursor Registers Of course, you can 
plan an elaborate, full-color picture to be drawn in low-resolution graphics, 
use the table to determine the necessary color codes, and then write a 
program that POKEs those codes to the appropriate video RAM addresses. 
Even for ambitious graphics programmers, that represents a lot of tedious 
work. It would be nice to simplify matters somewhere along the line. For
tunately, there is at least one technique that can simplify one major phase 
of the task. 

There is no need to POKE the graphics codes to absolute video mem
ory addresses; at least there is no need for figuring out a RAM address for 
each and every graphic code to be POKEd to the screen. Since the text and 
graphics modes share the same video memory, it is altogether possible, and 
quite practical, to use many of the cursor-related operations already de
scribed for purely text-oriented programs. You can see some of the ideas in 
some previous demonstration programs. 

The key to applying cursor-type functions to low-resolution graphics is 
the function: 
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256* PEEK(41) +PEEK(40) +PEEK(36) 

This function generates the actual video RAM address based upon the con
tent of BASH, BASL and CH. It turns up a valid POKE address for a text 
character or graphic color code. 

The function can then be used in conjunction with several cursor
moving CALLs: 

CALL -926 - Linefeed/cmTiage return. 
CALL -1036- Advance. 
CALL -1008- Backspace 
CALL -922 - Downward linefeed. 
CALL -998 - Upward linefeed. 

And the function can be used with TAB and VTAB statements as well. In 
fact, the only cursor-related functions that do not work well with low
resolution graphics are those that clear a portion or all of the screen. (A 
CALL -868 in the TEXT mode erases to the end of the current line. Exe
cuted in GR, it leaves black-over-grey bars to the end of the line.) 

The following program plots a large orange square near the middle of 
the screen. It uses TAB and VTAB to establish the position of the upper 
left-hand comer of the square, the ADVANCE function to plot the orange 
codes along each line, and a CALL -922 to do a downward linefeed at the 
beginning of each line. 

100 GR 
110 CALL -936 
120 VTAB 8: TAB 18 
130 FOR Y=0 TO 5 
140 FOR X=0 TO 7 
150 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),153 
160 CALL -1036 
170 NEXT X 
180 TAB 18 
190 CALL -922 
200 NEXT Y 
210 VTAB 20 
220 END 

The scheme works nicely as long as the cursor remains within the 
graphics area of the screen. However, if you allow it to move out of the 
graphics area and into the four-line text area at the bottom of the screen, 
the system prints the text version of the characters rather than the graphic 
version of them. 
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So what is the purpose of the VTAB 20 statement in program line 210? 
Its purpose is to force the cursor out of the graphics area so that the sub
sequent END statement prints the prompt symbol in the text area. Delete 
line 210 from the program and run it again. The little pattern of colors 
added to the display represents the GR version of the prompt symbol. 

ALTERNATIVE SCREEN FORMATS Executing the GR command 
sets up the normal low-resolution graphics format. It displays the primary 
text/graphics page, allocates most of the screen for graphics operations, 
and leaves four lines for text at the bottom of the screen. There are some 
desirable alternatives, however. 

For one, you might want to work with a full screen of graphics, getting 
rid of that lower four lines of text that can be an aesthetic nuisance at 
times. Or perhaps you want to switch from the TEXT to low-resolution 
graphics without having the system automatically dear the graphics portion 
of the screen. You may also want that page of low-resolution graphics. 

A few simple POKE statements will give you that control over the 
video text/graphics system. 

Table 6-6. Text/Graphics Software Switches 

POKE Address Video Mode 

-16299 Display the secondary page 
-16300 Display the primary page 

-16301 Display mixed text and graphics 
-16302 Display all text or all graphics 

-16303 Display a text mode 
-16304 Display a graphics mode 

The Screen Mode "Switches" Table 6-6 shows three pairs of 
text/graphics "software switches." Together, they make up a selection of 
three video modes. You can set one of the two conditions in each mode by 
POKEing a 0 to the designated address. 

The first pair of software switches uses addresses -16299 and -16300. 
They determine whether the system displays the secondary or primary 
page of video information. It makes no difference whether you are working 

POKE -16299,0-Display the secondary video 
page. 

POKE -16300,0-Display the primary video page. 
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in the text or graphics modes. POKEing to these addresses sets up the 
display for the primary or secondary page. 

POKEing a 0 to either of those addresses sets the corresponding page to 
the video screen and automatically resets its counterpart. 

The second pair of addresses, -16301 and -16302, works together this 
way: 

POKE -16301,0-Display mixed text and graphics. 
The bottom four lines are dedi
cated to text and the remainder 
of the screen is set for low
resolution graphics. 

POKE -16302,0-Display all text or all graphics. 

Doing a GR command sets up the mixed text/graphics mode and auto
matically clears the graphics portion of the screen to black. A POKE 
-16301,0 also sets up the mixed text/graphics mode, but it does not clear the 
graphics part of the screen. 

The third pair of software ''switches'' lets you determine whether you 
are working in a text or graphics mode. 

Having three pairs of software mode switches available means that 
there are eight possible combinations of mode settings. Once you set up 
one of those combinations, the system remains in that mode until you do 
something to change it. A programmer rarely has to think in terms of eight 
separate video mode combinations. Rather, a programmer thinks in terms 
of POKE operations that are necessary for going from one mode combina
tion to another. You will see this notion at work in the following dis
cussions. 

This program lets you play around with all the various video modes. 
Enter the program and RUN it. It is a key-controlled program that re
sponds immediately to the following keystrokes: 

S -Displays the secondary page. 
P -Displays the primary page. 
M-Displays mixed text/graphics. 

1 I F -Displays all (full-screen) text/graphics. 
I T -Sets a text mode. 

G-Sets a graphics mode. 

I 1 The program makes it possible for you to set up all possible combina-
tions of pages and text/graphics modes. Study the program carefully, and 
you will see how it takes advantage of the information in Table 6-6. 
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100 K= PEEK (-16384) 
110 IF K<l28 THEN 100 
120 POKE -16368,0 
130 IF K=208 THEN 230 
140 IF K=211 THEN 240 
150 IF K=212 THEN 250 
160 IF K=l99 THEN 210 
170 IF K=l98 THEN 200 
180 IF K=205 THEN 220 
190 GOTO 100 
200 POKE -16302,0: GOTO 100 
210 POKE -16304,0: GOTO 100 
220 POKE -16301,0: GOTO 100 
230 POKE -16300,0: GOTO 100 
240 POKE -16299,0: GOTO 100 
250 POKE -16303,0: GOTO 100 

Full-Screen Graphics Suppose that the system is in the normal, 
full-screen text mode and is displaying the primary video page. If you exe
cute a GR statement from that mode, the system goes to mixed text/ 
graphics and clears the graphics portion of the primary page. But suppose 
that you want to go from the normal, full-screen text mode to a full-screen, 
low-resolution graphics mode. You want to work with low-resolution 
graphics, but without having the four lower lines on the screen allocated for 
text-only operations. Here is a combination of POKEs that accomplish that 
feat: 

POKE -16302,0 
POKE -16304,0 

The horizontal dimensions of the graphics area are identical for mixed 
and full-screen graphics. The range of vertical plotting is greater for full
screen modes, however. Instead of being limited to vertical PLOT coordi
nates from 0 through 39, with full-screen graphics you can use coordinates 
from 0 through 47. Now, the four lower lines on the screen are open to 
low-resolution operations. In the same fashion, full-screen graphics extends 
the vertical range of VLIN statements to 0 through 47. 
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Try the following full-screen graphics program: 

100 POKE -16302,0 
110 POKE -16304,0 
120 COLOR=4 
1,30 FOR Y=0 TO 47 
140 HLIN 0, 39 AT Y 
150 NEXT Y 
160 COLOR=l5 
170 FOR Y=0 TO 47 STEP 47 
180 HLIN 0,39 AT Y 
190 NEXT Y 
200 FOR X=0 TO 39 STEP 39 
210 VLIN 0,47 AT X 
220 NEXT x 
230 GOTO 230 

The program plots a green background and surrounds it with a white bor
der. Notice that the image fills the entire screen. HLIN operations are still 
limited to coordinates from 0 through 39, but the technique extends the 
VLIN operations to coordinates from 0 through 47. 

When using full-screen, low-resolution graphics, it is especially impor
tant that the program doesn't come to an end before you want it to. Line 
230 in the preceding program, for instance, does a "loop-to-self" to pre
vent the program from executing an END-type operation. Delete line 230 
or replace it with an END statement, run the program again, and notice the 
undesirable result. 

Try appending the program with these lines: 

230 FOR T=0 TO 1000: NEXT T 
240 TEXT 
250 CALL -936 
260 END 

When you run the program modified in that fashion, the image is displayed 
for a period determined by the delay loop in line 230. After that, line 240 
returns the system to the text mode, line 250 clears the screen and homes 
the cursor, and line 260 brings the program to an end. 
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Line 240 in that modified version of the program demonstrates that you 
can always return to a normal TEXT mode from full-screen graphics by 
executing the TEXT statement. Alternatively, you can accomplish the 
same thing by doing a POKE -16303,0. Why is this so? Replace line 240 
with PO KE -16303, 0 and note the effect on the operation of the program. 

To recapitulate, there are two ways to return from full-screen graphics 
to full-screen text: TEXT or POKE -16303,0. 

Just as the elementary low-resolution graphics statements work in 
full-screen modes, so do the POKE-to-graphics techniques work. It is 
possible to POKE color codes into those four lower lines on the screen and 
see the color blocks appear there. There is one note of caution when 
POKEing color codes to full-screen graphics: if you are using the 
256*PEEK(4I)+PEEK(40)+PEEK(36) method, avoid the last character 
space in the last line on the screen. POKEing a color code into that particu
lar position will cause the entire graphics screen to scroll upward. 

Going to full-screen graphics from the normal text mode does not 
automatically clear the screen to black. This poses no real problem if your 
drawing routine refers to the entire screen, but there are occasions when 
you will want to clear the graphics screen to black before beginning a draw
ing routine. The following program suggests a method for switching to fuU
screen graphics and clearing to black: 

100 POKE -16302,0: POKE -16304,0 
110 COLOR=0 
120 FOR X=0 TO 39 
130 VLIN 0,47 AT X 
140 NEXT X 
150 GOTO 150 

See if you can figure out how and why it works. Try it for yourself. 

Working With the Secondary Page Doing a POKE -16299,0 
brings the secondary video page to the screen; and according to Table 6-6, 
doing a POKE -16300,0 brings back the primary page. Whether you see a 
text or low-resolution graphics mode on those pages depends on whether 
you have POKEd a 0 to address -16303 (for text) or -16304 (for graphics). 
What's more, you can choose full-screen text or graphics by doing a POKE 
-16302,0 or mixed text/graphics by doing a POKE -16301,0. Obviously 
there are a lot of options here. 

Before demonstrating some of these options, it is important to recall 
some of the main features of the secondary video page. Chapter 4 outlined 
those features for text operations. The same features apply to low
resolution graphics as well. 
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First, you must do a LOMEM:3072 if you plan to work with the sec
ondary video page from BASIC. The execution of Integer BASIC often 
places variables into RAM addresses used for the secondary page of video. 
Doing the LOMEM:3072 forces BASIC to use RAM space above the sec
ondary page memory. 

Second, it is not possible to PRINT text directly to the secondary 
page. The best technique offered thus far for plotting text characters to the 
secondary page is to POKE their codes into that video RAM area. 
Likewise, you cannot directly use PLOT, HLIN, VLIN, or SCRN on the 
secondary page. At this point in the book, the best way to draw graphics to 
the secondary page is with POKE-color techniques. 

Finally, it is important to know that the secondary page for low
resolution graphics occupies the same RAM addresses as the secondary 
page for text. (See Table 6-3.) The video RAM addresses for the secondary 
page are equal to those of the primary page plus 1024. 

After executing a LOMEM:3072, enter and run the following program: 

10 REM ** THIS PROGRAM LATCHES UP IF YOU FAIL TO DO A LO 
MEM:3071 FIRST ** 

15 POKE -16302,0: POKE -16304,0 
20 VTAB l: TAB l 
30 FOR N=0 TO 959 
40 CP=256* PEEK (41)+ PEEK (40)+ PEEK (36) 
45 CALL -1036 
50 POKE CP,0: POKE CP+l024,0 
60 NEXT N 
70 END 

The program clears both the primary and secondary graphics pages to 
black. You will most likely be watching the primary page during the execu
tion of this rather slow-running program, but you can check out the effect 
on the secondary page by doing a POKE -16299,0 from the keyboard after 
the program ends. Line 50 is responsible for clearing both pages to black. 

The routine illustrates two points. First, you can POKE graphics to the 
secondary page by thinking in terms of primary-page graphics and adding 
1024 to the POKE addresses. Second, the drawing procedure is terribly 
slow. Even if you shortened line 50 to POKE to just one of the pages, the 
program wouldn't run much faster. The slow drawing speed of POKE 
graphics can be made more tolerable by displaying a finished drawing on 
one page while the program is drawing the text image on the other page. 

Another useful trick is to use the primary graphics page for the faster 
drawing operations of PLOT, HLIN, and VLIN, and the secondary page 
for the slower POKE graphics. 
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The situation doesn't have to be so complicated, however. You will 
find in a later chapter that machine-language graphics run at the same high 
speed on both the primary and secondary pages. Animated graphics, m 
fact, demand the higher-speed, machine-language procedures. 
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The High-Resolution 
Graphics Environment 

The high-resolution graphics environment is fertile ground for a lot 7 of intriguing experiments and programming work. It seems to be the 
least-used scheme for most people, though, because it is the least devel
oped part of the Apple in terms of programmer convenience. 

If you have had some difficulty in the past working with high
resolution graphics programs, you aren't alone. Most beginners have 
trouble with it. However, the Programmer's Aid hi-res routines (included in 
the Integer BASIC ROMs) help a lot. At least they allow you to approach 
high-resolution graphics from BASIC. But, even then, hi-res programming 
operations seem quite peculiar and often confusing to BASIC program
mers. 

DOS users have an additional problem in that DOS boots up in sec
tions of memory that are otherwise used for hi-res graphics. In other 
words, DOS and hi-res compete for RAM space. 

This does not mean that high-resolution graphics is a no-man's land. It 
does mean that hi-res requires special programming care and precise think
ing every step along the way. 

RECKONING WITH LOMEM AND HIMEM When working with 
high-resolution graphics from Integer BASIC, you need to reckon with 
LOMEM and HIMEM. These two commands set the low memory and high 
memory locations, respectively, of BASIC programs and related data. 

Exactly how you should handle the LOMEM and HIMEM settings 
depends a great deal on how much RAM is installed in your system. A brief 
discourse on the nature of LOMEM and HIMEM operations will help you 
understand how they affect your RAM space and high-resolution graphics 
operations. 
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HIMEM Settings Unless you direct the system to do otherwise, it 
will automatically set HIMEM to the highest available RAM address plus 
l. That is called the default HIMEM address. In other words, if you have 
16K of RAM, the default HIMEM setting is 16384. If you have 32K of 
RAM, the default HIMEM setting is 32768. Finally, if you have 48K of 
RAM, the default HIMEM setting is -16384. The system sets up its default 
HIMEM address whenever you initialize Integer BASIC with a CTRL-B 
operation. 

Integer BASIC programs always begin from the HIMEM address, 
minus 1, and build downward toward lower addresses in RAM. So unless 
you make a special effort to set HIMEM to something other than its default 
value, Integer BASIC programs will always begin at the highest available 
RAM address and build downward. 

If you have a 16K system, your highest available RAM address is right 
at the top of the primary page of high-resolution graphics. That's terrible! 
Not only do you lack a secondary page for high-resolution work, but In
teger BASIC programming writes directly into the primary page that you 
do have. Therefore, you cannot hope to use hi-res and Integer BASIC to
gether in a 16K system as long as HIMEM is at its default setting. 

There is a way around the problem, though, and that is by entering a 
HIMEM:8192 prior to writing Integer BASIC programs for high-resolution 
graphics. Entering that command sets HIMEM to the bottom of the high
resolution video RAM area. Integer BASIC programs will then build 
downward and away from that vital graphics area. However, whenever you 
restart the Apple or do a CTRL-B, you must enter HIMEM:8192 again. 

The HIMEM setting is a bit less critical if you have a 32K or 48K 
system. In those instances, the default HIMEM settings are well above 
even the secondary page of hi-res video RAM. With a 32K system, the 
default HIMEM setting leaves lK of useful RAM and an additional lK if 
you decide you won't need the secondary page of hi-res graphics. (If a total 
of 2K of Integer BASIC programming RAM doesn't seem to be enough, 
that's too bad. You'd better think about buying some more.) The default 
HIMEM setting for a 48K system places the BASIC programming 24K 
above any video memory, so that there is rarely any need to worry about 
running out of RAM. Perhaps Apple engineers had a 48K system in mind 
when they worked out the high-resolution graphics schemes. 

LOMEM Settings The default setting for the LOMEM address is al
ways 2048, regardless of the amount of RAM in the Apple system. This 
address marks the starting point of the variable table, which is used for 
storing the values of variables that are generated during the execution of an 
Integer BASIC program. The variable table builds upward from LOMEM. 
So as you enter an Integer BASIC program, the program instructions begin 
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at HIMEM and build downward. As you execute that program, any vari
ables that it uses begin at LOMEM and build upward. The unused RAM in 
between is narrowed down from both ends at the same time. 

The default LOMEM setting is well below any high-resolution graphics 
RAM space, so it would take a very unusual program to cause the Integer 
BASIC tables to encroach on high-resolution graphics memory. 

·Another important feature of LOMEM is that it specifies the default 
entry address of shape tables. You can force the shape tables to be loaded 
elsewhere, as explained later; otherwise they will load from cassette tape to 
the LOMEM address and upward. 

Now think about this: If Integer BASIC stores its variables from 
LOMEM and up, and if shape tables load from cassette tape from LOMEM 
and up, won't there be a conflict of RAM space? Not if you load the shape 
tables from tape as spelled out in the Apple manuals. 

Indeed, shape tables begin loading at the LOMEM address (unless you 
clearly specify otherwise). But as the tables are loaded, the system pushes 
the LOMEM address above the shape tables. So after loading a shape ta
ble, LOMEM will have some higher address value. Then, BASIC's vari
able table begins from the new LOMEM. That represents a nice piece of 
software engineering. 

One small matter: The default LOMEM address of 2048 puts it right 
at the beginning of the secondary text/low-resolution graphics page. You 
are in trouble if you plan to use that secondary page of low-resolution 
graphics. But again, there is a way around that problem, and that is to set 
LOMEM at the top of the secondary low-res video RAM by entering a 
LOMEM:3072. 

Suppose that you do set LOMEM above the low-res video memory. 
What happens when you load a hi-res shape table? No problem. The table 
begins loading at your LOMEM address and pushes LOMEM upward from 
there. 

Some Recommended LOMEM and HIMEM Settings Tables 
7-1 and 7-2 show six arrangements of graphics modes. The first arrange
ment in each table is the simplest. It consists of only the primary page of 
low-resolution graphics. The last arrangement is the worst. It consists of 
both the primary and secondary pages of both high- and low-resolution 
graphics. 

The columns labeled LOMEM Setting and HIMEM Setting recom
mend what you should do, if anything, prior to entering the Integer BASIC 
programming. The final column, Usable RAM, shows how much RAM is 
then available for Integer BASIC programs and hi-res shape tables. 

Table 7-1 applies to 16K systems, while Table 7-2 applies to 32K and 
48K systems. 
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Table 7-1. 16K LOMEM and HIMEM Settings 

Graphics 
Mode Combination LOMEM Setting HIMEM Setting 

pri low-res default1 default2 

pri low-res LOMEM:3072 default 
sec low-res 

pri low-res default HIMEM:8192 
pri hi-res 

pri low-res LOMEM:3072 HIMEM:8192 
sec low-res 
pri hi-res 

pri low-res cannot be done 
pri hi-res 
sec hi-res 

pri low-res cannot be done 
sec low-res 
pri hi-res 
sec hi-res 

1Default LOMEM is 2048 
2Default HIMEM is 16384 

Usable RAM 

14K 

13K 

6K 

5K 

Suppose that you are using a 16K Apple system and you want to do 
some graphics on both the primary and secondary pages of low resolution, 
and a bit of primary-page hi-res work as well. According to Table 7-1, you 
should begin by doing LOMEM:3072 and HIMEM:8192. Doing that from 
the keyboard (in BASIC's command mode) leaves 5K of RAM for BASIC 
programming and hi-res shape tables. 

Or if you have a 48K system and want to use both pages of low- and 
high-resolution graphics, you should set up the memory system by doing a 
LOMEM:3072. There is no need to change the default HIMEM address in 
this particular instance. That leaves about 45K of RAM for programming 
and shape tables. (Doing the same thing on a 32K system leaves 29K of 
usable RAM.) 

Programming LOMEM and HiMEM Addresses Integer 
BASIC does not support LOMEM and HIMEM statements within a pro
gram listing. That is unfortunate, because it would be nice to set LOMEM 
and HIMEM at the beginning of a program, eliminating the need for having 
to set it before loading the program. 

Actually, it is possible to set LOMEM at the beginning of an Integer 
BASIC program. The technique takes advantage of the fact that the 
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Table 7-2. 32K and 48K LOMEM and HIMEM Settings 

Graphics 
Mode Combination LOMEM Setting 

pri low-res default1, 3 

pri low-res LOMEM:3072 
sec low-res 

pri low-res default 
pri hi-res 

pri low-res LOMEM:3072 
sec low-res 
pri hi-res 

pri low-res default 
pri hi-res 
sec hi-res 

pri low-res LOMEM:3072 
sec low-res 
pri hi-res 
sec hi-res 

132K Default LOMEM is 2048 
232K Default HIMEM is 32768 

IDMEM Setting Usable RAM 

default2' 4 30K/46K 

default 29K/45K 

default 30K/46K 

default 29K/45K 

default 30K/46K 

default 29K/45K 

348K Default LOMEM is 2048 
448K Default HIMEM is -16384 

LOMEM is carried in two successive memory addresses, 74 and 75. Those 
two RAM locations, known as LOMEML and LOMEMH, represent a 
2-byte LOMEM address. Try this experiment: 

1. Do a CTRL-B to initialize Integer BASIC. 
2. Enter: 

PRINT PEEK(74),PEEK(75) 

You should see the result printed as 

0 8 

That is the 2-byte rendition of the current LOMEM address, and that 
translates into ordinary decimal numeration as address 2048. (See Ap
pendix A if you are not sure about how to convert 2-byte decimal 
numbers into ordinary decimal format.) 

Indeed, initializing Integer BASIC sets LOMEM to address 2048 as 
described earlier in this chapter. 
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3. Enter: 

POKE 74,0 : POKE 75, 12 

POKEing those numbers into LOMEML and LOMEMH sets 
LOMEM to 3072-one of the LOMEM addresses recommended for 
many graphics applications. 

Thus, you have the option of either setting LOMEM from the 
keyboard prior to loading a program-by using the LOMEM:3072 
command-or you can write the POKE statements just cited as the first 
line in a BASIC program that uses that LOMEM setting. If you specify any 
ordinary BASIC variables before POKEing in the LOMEM setting, those 
variables will be lost to the program. 

The current LOMEM setting is carried in RAM 
addresses 74 and 75. The first, LOMEML, is the 
low-order byte and the second, LOMEMH, is the 
high-order byte. 

Unfortunately, the HIMEM address still has to be set from the 
keyboard prior to loading a program. Attempting to set HIMEM in any 
'fashion after you've started loading some Integer BASIC programming will 
confuse the system. Most, if not all, of the prior BASIC programming will 
be lost. 

There is a positive side to the picture, however. Not many program
ming situations call for setting HIMEM anywhere but at its default address, 
and that means you need not change it at all. 

But for the sake of completeness, you ought to know that HIMEM is 
carried as a 2-byte number in memory locations 76 and 77. 

The current HIMEM setting is carried in RAM ad
dresses 76 and 77. The first, HIMEML, is the 
low-order byte and the second, HIMEMH, is the 
high-order byte. 

Although it is possible to adjust the HIMEM setting or PEEK at its 
current value, it must be set prior to loading any Integer BASIC program
ming that uses it. Unless you are willing to lose existing BASIC program
ming, you should not adjust HIMEM after that programming is loaded into 
the system. 
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INITIALIZING THE HI-RES SYSTEM After dealing with the 
LOMEM and HIMEM settings as required for the sort of graphics job you 
want to do, the next step is to write a series of at least two initialization 
steps. The first defines some critical hi-res variables, and the second calls a 
Programmer's Aid hi-res initialization routine. 

Defining the Hi-Res Variables The first step in the initialization 
procedure is to define some critical hi-res variables. This must be done 
before writing any BASIC statements that include other variable names. 
BASIC normally allows a programmer to define variables as they are 
needed, but this initialization scheme demands defining certain hi-res vari
ables ahead of time. 

There are as many as six different variables that must be defined at the 
beginning of a hi-res BASIC program. You can name them just about any
thing you choose, within certain limits. The variables are summarized in 
Table 7-3. 

You are free to select alternative names for those variables, but your 
names must have exactly the same number of characters as the original 
name. You can, for example, use HX in place of XX; or you can use XO or 
NN. But you cannot use a variable name that has just one character or 
more than two. For instance, neither X nor XPLACE will work. 

The same rule applies to any custom names for the COLR variable 
name. It must be a four character variable name. And if you don't happen 
to like the variable name of SHAPE, you can replace it with any other five 
character name. 

A 'second important rule is that the variables must be defined in the 
same sequence as shown in Table 7-3. Defining them in any other order will 
confuse the hi-res system. 

Table 7-3. Hi-Res Variables 

Variable Name Definition 

xx Horizontal component of a point's 
position on the hi-res screen (0-279). 

yy Vertical component of a point's 
position on the hi-res screen (0-159). 

COLR Color code for a point or line to 
be plotted on the hi-res screen (see Table 7-4). 

SHAPE Numerical value assigned to one of 
255 possible shapes that are stored in shape tables. 

ROT Rotation factor for a figure that is 
drawn from a shape table. 

SCALE Scale factor for a figure that is 
drawn from a shape table. 
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You need not define all of those variables, however. If you do not plan 
to use shape tables in your hi-res program, for example, you do not have to 
define variables SHAPE, ROT, and SCALE. You always need XX, YY, 
and COLR to do anything meaningful, though. 

What if you want to scale a shape, but not rotate it? You must define 
ROT anyway so that SCALE will end up in the correct position in the 
variable table. If you skip ROT and follow SHAPE with SCALE, the Apple 
system will interpret your SCALE variable as a bad attempt to rename 
ROT, and you will get an error message every time you run your program. 

So it is important to define the hi-res variable with a certain number of 
characters and in a specific order. But how do you actually carry out the 
defining procedure? You do that by writing Integer BASIC program lines 
that equate those variable names to any value you wish. 

Suppose that you will be using variables XX, YY, and COLR. Early in 
the BASIC program-before specifying any other variables-you can 
define them this way: 

100 XX=O:YY=O : COLR=O 

Line 100 sets the variables equal to 0. You can equate them to any other 
value that strikes your fancy at the moment; it makes no difference what 
that value is. 

Because of a quirk in Integer BASIC, you can simplify the definition 
procedure to this: 

100 XX=YY=COLR 

Or if you are planning to use all of the shape-table features: 

100 XX=YY=COLR=SHAPE=ROT=SCALE 

That initializes all six hi-res variables to the same value. There's no 
telling what that value is, but that isn't important anyway. Again, the im
portant thing is to name the variables using the specified number of char
acters and placing the variables in the order shown in Table 7-3. 

The idea is to make certain that those particular variables are placed at 
the very beginning of the variable table. Otherwise, the Programmer's Aid 
hi-res system won't be able to find them, because it always looks for them 
at the beginning of the variable table. 

Recall from an earlier discussion that Integer BASIC variables are 
stacked from the current LOMEM setting and upward. If you insert a pro
gram statement such as A=25 before defining the special hi-res variables, 
that definition of variable A will be in the variable stack ahead of the hi-res 
variables and the scheme will blow up when you try to use them. 
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Now suppose that you want to POKE a LOMEM address of 3072 to 
the system before defining the hi-res variables. The programming in that 
case must begin this way: 

100 POKE 74,0 : POKE 75,12 
110 XX=YY=COLR=SHAPE=ROT=SCALE 

Notice that you don't have to define the special hi-res variables before 
all other BASIC programming. You must, however, define those variables 
before specifying any other BASIC variables. 

Most of the hi-res programs in this chapter begin with those two pro
gram lines. They set LOMEM to 3072 and define all six of the special hi-res 
variables. 

CAlling the INIT Routine Recall that doing a GR statement 
brings up the normal, primary page of low-resolution graphics. The key 
to setting up the normal, primary page of high-resolution graphics is 
CALL-12288. 

CALL -12288 from Integer BASIC initializes the 
normal high-resolution graphics mode. 

CALLing that address instructs the system to execute a Programmer's 
Aid routine known as INIT. It is an important routine because it not only 
sets up the hi-res display, but also allows you to use the other hi-res fea
tures described in this chapter. Unless you CALL INIT, none of those 
special hi-res operations will work from Integer BASIC. 

What is the normal hi-res graphics mode? It's like the low-res mode in 
most respects. That is, it leaves the four lower lines on the screen for text 
operations, it clears the graphics portion of the screen, and it displays the 
primary page of graphics. 

There is one important difference, however: The INIT routine does 
not automatically set WNDTOP (the text window top) to the fourth line 
from the bottom of the screen. It also leaves the text page fully intact. That 
can be an advantage, of course, in situations where you wish to call up 
some hi-res graphics without disturbing primary-page text. But if you want 
to place new text under the hi-res graphics follow the CALL -12288 state
ment with this one: 

POKE 34,20 : CALL -936 

That sets the top of the scrolling window (RAM address 34) to 20, and 
clears the text portion of the screen. 
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Try it for yourself. Do a RESET followed by a CTRL-B to get into the 
command mode. Then enter a CALL -12288. That will bring up the normal 
high-resolution graphics. Then, if you wish, do a POKE 34,20 followed by 
a CALL -936 to clear the text portion of the display. 

You cannot do anything further because this demonstration doesn't 
define the critical hi-res variables. But at least it shows what the high
resolution screen is like. 

Enter TEXT to return from hi-res to the normal low-res text mode. 

The Complete Initialization Procedure Simply CALLing INIT 
to get into the normal hi-res graphics mode is not enough. You must be able 
to plot some points or draw lines to make use of it. As mentioned earlier, 
you cannot do that without first defining at least three variables: XX, YY, 
and COLR. 

So if INIT is going to be of any use, you must define the hi-res parame
ters. Consider this series of opening program lines: 

100 POKE 74,0: POKE 75,12 
110 XX=YY=COLR 
120 CALL -12288 
130 POKE 34,20: CALL -936 

Line 100 sets LOMEM to address 3072. That step isn't necessary, 
however, if you are willing to use the default LOMEM of 2048 and you are 
certain that no previous operations have set it anywhere else. 

Line 110 defines three variables for hi-res graphics. Those are the three 
that must always be used for hi-res graphics. If you plan to use the shape
table features, also, extend the line to include SHAPE, ROT, and SCALE. 

Line 120 initializes the hi-res system by CALLing INIT, and line 130 
sets the top of the text portion of the screen and homes the cursor within it. 

HIGH-RESOLUTION COLORS AND SCREEN FORMAT Table 
7-4 shows the six colors that are available for high-resolution graphics and 
their respective color codes. You can specify color codes from 0 to 255, but 
using any codes other than those shown here will cause the plotted points 
and lines to take on complex color combinations. (The actual colors 
created by codes might appear slightly different on your screen. The color 
rendition depends a great deal on the TINT and COLOR settings on your 
tv receiver or monitor.) 

The normal high-resolution graphics screen allows four full lines of 
text at the bottom of the screen. The upper portion is set up according to 
the 280-by-160 format described in Fig. 7-1. Notice that there are 280 hori-
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Table 7-4. Hi-Res Color Codes 

Color Code 

BLACK 0 or 128 
GREEN 42 
VIOLET 85 
WHITE 127 or 255 
ORANGE 170 
BLUE 213 

zontal locations labeled 0 through 279, and 160 vertical locations labeled 0 
through 159. 

So there is a total of 44,800 hi-res plotting positions. You can access any 
one of them by assigning coordinates to the horizontal and vertical parame
ters, XX and YY. The general idea is similar to plotting points on the low
resolution graphics screen. There are simply more points involved here. 

DOING SOME HIGH-RESOLUTION GRAPHICS It is possible to 
write some interesting and useful hi-res graphics programs without resort
ing to the use of special shape tables. Specifically, you can: 

QI Fill in a background color. 
• Position a point without actually drawing it. 
~ Plot a single point. 
e Plot a straight line. 
~ Clear the entire screen to black. 

This section describes those high-resolution graphics operations. 
When going through the discussions and demonstrations in this sec

tion, bear in mind that they must be preceded at some point by the hi-res 
initialization routines. The following lines must be written into all of the 
programs, but I will not be showing them each and every time. It's up to 
you to remember to insert these lines: 

100 XX=YY=COLR 
110 CALL -12288 

Filling in a Background Color Calling the hi-res INIT routine 
automatically clears the graphics portion of the screen to black. Most of the 
time, however, you will want a somewhat more colorful background. 

Setting up the background color is a two-step procedure. You must 
first specify the color and then call a background routine. 
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279 
l--+--+--l--+--+--+--1--l--l--l--l--1--1--l--1--11--11--11--l--ll--ll--l--ll--ll--I 

273 l--+-+-l--+-+-+-1--l--l--l--l--1--1--l--1--11--11--11--11--11--11--11--11--11--1 
266 l--+-+-l--+-+-+-1--l--l--l--l--1--1--l--1--11--11--11--11--11--11--11--11--11--1 
259 l--+-+-l--+-+-+-1--l--l--l--l--1--1--l--1--11--11--11--11--11--11--11--11--11--1 
2521--+-+-l--+-+-+-1--l--l--l--l--1--11--l--1--11--11--11--11--11--11--11--11--11--1 
2451--+-+-l--l--l--1--1--l--l--1--11--11--11--11--11--11--11--11--11--11--11--11--11--11--1 
2381--+-+-l--l--l--1--1--l--l--1--11--11--11--11--11--11--11--11--11--11--11--11--11--11--1 
231 l--+-+-l--l--l--1--1--l--l--ll--ll--ll--li--11--11--11--11--11--11--11--11--11--11--11--1 
2241--+--+--l--l--l--1--1--l--1--11--11--11--11--11--1---l--l--ll--l--l--l--l--l--l--l 
2171--+--+--l--l--l--1--1--l--1--11--11--11--11--11--1---l--l--ll--l--l--l--l--l--l--l 
210 l--+-+-1--1--1--1--1--l--l--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--l---I 
203 

l--1--+--l--1--1--1--11--11--11--11--11--11--f--l--l--l--l---1---1---l---l---l---l---l--I 
196 l--+--+--l--l--1--l--ll--ll--ll--ll--f--11--f--l--l---1---1---1--l---l---l---l---l---l--I 
189 l--+--+--l--l--l--l-11--11--11--11--f--11--1--l--l---l---l---1---1---l---l---l---l---l--I 

182 l--+--+--l--l--1--l--ll-11--11--11--f--1--1--l--l---l---l---1---1---l---l---l---l-+--I 
175 

l--t-t-l--l--l--1-11-11--11--11--f--1--1--l--l---l---l---l---1-+---l---l---l---l--I 
168 

l--t-+--l--l--l--1-11--11--11--11--f--1--l--l-'-1---l---l---l---1-+---l---l-+-+--I 
161 

l-+-+-+--+--+--+--1--l--l--l--1--1-11--11--1---l--l--l--1--l--l--l--l--l--I 
154 

l--l--+-1--1--1--1--11--11--11--11--11--11--11--11--1--+--+--+--+--+--+--+--+--+~ 

147 l--t--+-1--1--1--1--11--11--11--11--11--11--11--11--1--+--+--+--+--+--+--+--+---+~ 
140 

l--1--+--l--l--1--1-11--11--11--f--l--l---1--l---I-+-+-+-+-+-+-+-+-+~ 

133 1--r-+--1--1--1--1-11--11--11--1--1--1---11--1---1-1--1--+-+-+-+-+-+-+~ 
126 t--1--+--l--1--1--1-11--11--11--f--l--l---1--l--I-+-+-+-+-+-+-+-+-+~ 
119 t--t-t-11--1-11--11--11--f--l--l--l--1---1---l---I-+-+-+-+-+-+-+-+-+~ 
112 

t--t--t-11--1--11--11--11--1---l---ll--ll--l--+--+--+---+---+---+---+---+---+-l--l--I-~ 
105 

t--t--t-11--1--11--11--11--1---l---11--11--1--+l--ll--l---+---+---+---+-l----+-l--l--I-~ 

98 

91 
84 

77 

70 
63 
56 t--t-t-11--1--11--11--f--l--l--l---l---I-+-+-+-+-+-+-+-+-+-+-+-+~ 

49 
42 t--t-t-11--11--11--11--f--l--l--l---l---I-+-+-+-+-+-+-+-+-+-+-+-+~ 

35 

28 
21 t--t-t-11--11--11--11--1--1--l---l-+-+--+--+--+-+-+-+-+-+-+-+-+-+---l 

14 t--t-t-11--11--11--11--f--l--l---l-+-+--+-+-+-+-+-+-+-+-+-+-+-+---l 
7 

0 
/o oo 

UPPER LEFT 
CORNER 

""0 ,._ 00 

Fig. 7-1. Hi-res graphics character locations. 
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Specifying the color is a matter of equating the color parameter, 
COLR, to the desired background color from Table 7-4. So if you happen to 
want a green background, the appropriate color-specifying statement is 
COLR=42. But that simply defines the color. It is also necessary to call a 
Programmer's Aid routine, called BKGND, at -11471. You can execute it 
from BASIC by doing a CALL -11471. 

CALL -11471 fills the hi-res screen with a color 
specified by a preceding COLR statement. 

Enter and run this Integer BASIC demonstration program: 

100 XX=YY=COLR 
110 CALL -12288 
120 COLR=42: CALL -11471 
130 END 

Lines 100 and 110 initialize the hi-res system, line 120 specifies a green 
color and calls the BKGND routine, and line 130 ends the program. 

On running the program, you should see the entire low-res graphics 
portion of the screen filled with a color that appears more or less green 
(depending a lot on the tint setting of your TV monitor). You can, of 
course, specify other· background colors by changing the value assigned to 
the COLR variable in line 120. Use the color codes recommended in Table 
7-4 first, then try some of the other codes between 0 and 255. Maybe you 
will like some of those pretty striped patterns. 

Setting the Plot Coordinate When you initialize the high
resolution graphics system, one of the first operations must be to set the 
plotting coordinate or the starting point of a line. Like most other hi-res 
operations, positioning a plotting point is a two-step procedure. First, you 
specify the desired XX and YY coordinates, and then, you call a point
positioning routine in the Programmer's Aid package. 

Suppose that you want to begin with a plot position of 0,0-the ex
treme upper left-hand comer of the screen. You can specify that coordinate 
by entering XX=O : YY=O. That is just the first of two steps, however. 
You must follow that statement by calling a routine known as POSN at 
address -11527. Thus a complete point-positioning routine looks like this: 

XX=O : YY=100 : CALL -11527 

CALL -11527 sets the position of a point on the 
hi-res screen according to the preceding values of 
XX and YY. 

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 153 



That POSN routine is also used when you want to plot two different 
positions without having a line drawn between them. The following pair of 
BASIC program lines sets the system for plotting first at position 0,0 and 
then at 100, 100: 

XX=O: YY=O: CALL-11527 
XX=100 : YY=100 : CALL -11527 

The POSN routine creates no noticeable visual effect on the screen. It 
merely sets up the variables for a subsequent plotting operation. 

Plotting Points Assuming that you have already written some pro
gram lines for initializing the hi-res system, you must carry out the follow
ing steps to plot a single point of hi-res color: 

1. Position the point by setting up and executing the POSN routine. 
2. Specify the desired plotting color by setting the COLR variable ac

cording to Table 7-4. 
3. CALL the point-plotting routine, PLOT, at address -11506. 

This program illustrates the entire plotting procedure. Give it a try by 
loading and running it. 

100 XX=YY=COLR 
110 CALL -12288 
120 COLR=42: CALL -11471 
130 XX=l40:YY=80: CALL -11527 
140 COLR=l27: CALL -11506 
150 END 

Lines 100 and 110 initialize the hi-res graphics system, and line 120 fills 
in a green background. Line 130 sets the horizontal and vertical position of 
a point to coordinate 140,80, which is very close to the middle of the hi-res 
portion of the screen. Finally, line 140 sets the system for a white color and 
plots the color at the prescribed position. 

Perhaps that seems like a lot of programming work just to plot a white 
dot in the middle of a green field, but that's the sort of demand that the 
high-resolution graphics scheme places on a programmer. 

CALL -11506 plots a point on the high-resolution 
screen according to a color and position estab
lished earlier in the program. 
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Horizontal plotting of colors is tricky, because you can't plot one color 
at every horizontal coordinate. Table 7-5 shows the recommended color 
codes and their actual plotting colors. You can see that the horizontal XX 
position and background colors are critical. 

Suppose for instance, that you want to plot some colored dots against 
a black background. You can see from the table that you can plot green 
points only at odd-numbered XX coordinates-I, 3, 5, and so on. Attempt 
to plot green (code 42) at some even-numbered XX location and you will 
see no response at all. (It would actually plot a black point against that 
black background, or worse, plot a black dot over some other color that 
might have been plotted there at an earlier time.) 

Notice that using a black background offers the widest possible range 
of hi-res colors for plotting operations. It is also possible to plot white 
against a black background, but that is a two-step operation that we will 
describe a bit later in this discussion. 

A white background renders only black plots, but at least they can be 
situated in any XX location. You can erase a previously drawn black point 
by overlaying it with a white plot. · 

The four remaining background colors support only black or white vis
ible points and, even then, only in odd- or even-numbered XX positions. 
Also notice that code 127 is used for plotting white against green and violet 
backgrounds, while code 255 must be used for plotting white against orange 
and blue backgrounds. Depart from the format suggested in Table 7-5 and 
you will end up with some disappointing results. 

Listing 7-1 is a program that lets you experiment with this notion of 
plotting colored points in odd- or even-numbered XX locations and against 
various background colors. If you intend to try any hi-res plotting of your 
own, it is important to get this experience ahead of time. 

Listing 7-1. Plotting Points. 

100 REM 
110 XX=YY=COLR 
120 CALL -12288 
130 POKE 34,20: CALL -936 
140 PRINT "WHAT BACKGROUND COLOR:" 
150 INPUT "(SEE TABLE 7-5)",FIELD 
160 PRINT "WHAT PLOT COLOR:" 
170 INPUT II (SEE TABLE 7-5) II I DOT 
180 PRINT "WHAT XX LOCATION:" 
190 INPUT "(0-279)",:XX 
200 COLR=FIELD: CALL -11471 
210 YY=l8: CALL -11527 
220 COLR=DOT: CALL -11506 
230 GOTO 140 
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Table 7-5. Hi-Res Color Codes With Different Backgiround Colors 

Hi-Res 
Backgrm.md. Color 
Color Code Hi-Res Color 

BLACK (0) 42 GREEN at odd-numbered XX locations 
BLACK at even-numbered XX locations 

85 VIOLET at even-numbered XX locations 
BLACK at odd-numbered XX locations 

I 

170 ORANGE at odd-numbered XX locations 
BLACK at even-numbered XX locations 

213 BLUE at even-numbered XX locations 
BLACK at odd-numbered XX locations 

0 BLACK at all XX locations 

WHITE (255) 0 BLACK at all XX locations 

255 WHITE at all XX locations 

GREEN (42) 0 BLACK at all odd-numbered XX locations 
GREEN at all even-numbered XX locations 

127 WHITE at all even-numbered XX locations 
GREEN at all odd-numbered XX locations 

VIOLET (85) 0 BLACK at all even-numbered XX locations 
VIOLET at all odd-numbered XX locations 

127 WHITE at all odd-numbered XX locations 
VIOLET at all even-numbered XX locations 

ORANGE (170) 128 BLACK at all odd-numbered locations 
ORANGE at all even-numbered locations 

255 WHITE at all even-numbered XX locations 
ORANGE at all odd-numbered XX locations 

BLUE (213) 128 BLACK at all even-numbered XX locations 
BLUE at all odd-numbered XX locations 

255 WHITE at all odd-numbered XX locations 
BLUE at all even-numbered XX locations 

156 " INTERMEDIATE-LEVEL APPLE II HANDBOOK 



Enter the program, run it, and respond to the prompt messages that 
request a background color code, a plotting color code, and the XX com
ponent of the plotting position. (The program sets YY to a value of 18 in 
every case.) 

As long as you adhere to the values and limitations specified in Table 
7-5, you will get the desired results. Depart from them, and you will get 
dots of the wrong color, multicolored strokes of light, or nothing at all. 

Here is a detailed analysis of how the program works. You can use it 
as a review of matters discussed thus far. 

Lines 110 and 120 define the hi-res variables and call the INIT routine. 
Line 130 sets the top of the text window, homes the cursor, and clears 

the text screen. 
Lines 140 and 150 input the desired background color code as variable 

FIELD. 
Lines 160 and 170 input the desired plotting color code as variable DOT. 
Lines 180 and 190 input the desired XX component of the plotting posi-

tion. 
Line 200 fills the background with color FIELD. 
Line 210 establishes the XX,YY position by calling the POSN routine. 
Line 220 sets the dot color and calls the PLOT routine. 
Line 230 returns to line 140 to start specifying another combination of 

background color, dot color, and XX position. 

Listing 7-2 uses these principles to create an interesting graphic-200 
randomly positioned white dots against a blue background. 

Listing 7-2. Random Points. 

100 XX=YY=COLR 
110 CALL -12288 
120 POKE 34,20: CALL -936 
130 TAB 12 
140 PRINT "** STARRY SKY **" 
150 COLR=213: CALL -11471 
160 COLR=255 
170 FOR N=0 TO 199 
180 XX= RND (279):YY= RND (179) 
190 CALL -11527 
200 CALL -11506 
210 NEXT N 
220 END 

See if you can justify every step in that program. 
It is possible to plot white dots onto a black background, but only by 

using a two-step plotting procedure. Given a black background, the idea is 
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to plot a 127 WHITE color code at any horizontal XX position and another 
at position XX+ 1. In other words, plot two 127s in successive XX loca
tions. The YY components of the coordinates are not relevant, but must be 
equal. 

Some BASIC programming for doing the job uses this series of state
ments: 

COLR=127 
XX=100: YY=80: CALL -11527: CALL -11506 
XX=XX+1 : CALL -11527: CALL -11506 

Try developing some simple hi-res programs of your own. 

Drawing Straight lines It is possible to draw straight horizontal or 
vertical lines of some prescribed color by doing a long series of PLOTs to 
an equally long series of XX,YY coordinates. Not only is that a tedious 
programming task, but it is also a slow drawing operation. 

The alternative is to use a routine built into the Programmer's Aid 
called LINE. You can execute a properly set up LINE operation by 
CALLing -11500. 

CALL -11500 draws a line of some prescribed 
color between two previously established endpoint 
coordinates. 

In principle, executing the LINE routine is a three-step procedure: 

1. Establish the XX, YY coordinate of the beginning of the line and do a 
POSN operation. 

2. Specify the XX,YY coordinate of the end of the line. 
3. Specify a color and CALL the LINE routine. 

You can establish the starting point of the line with a BASIC statement 
such as: 

XX=O:YY=100 : CALL -11527 

That program line fixes the starting coordinate of the line at 0, 100 and calls 
the POSN routine to fix those coordinates in memory. 

As an example of the second line-drawing step, consider this: 

XX=100 : YY=120 
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That establishes the final coordinate of the line at 100, 120. Do not CALL 
the POSN routine after specifying the final coordinate of the line. If you do 
that, you will be resetting the starting point. 

Finally, you can set the color and call the LINE routine with: 

COLR=255:CALL -11527 

That series of steps will draw a more or less straight line between 
coordinates 0,100 and 100,120. Here is a complete programming routine for 
drawing a white version of that line against an orange background. 

100 XX=YY=COLR 
110 CALL -12288 
120 COLR=l70: CALL -11471 
130 XX=0:YY=l00: CALL -11527 
140 XX=l00:YY=l20 
150 COLR=255: CALL -11500 
160 END 

Program lines 100 and 110 initialize the hi-res system, and line 120 sets 
the background color and calls the BKGND routine to fill in the field with 
that ORANGE color. Line 130 is actually the first step in the line-drawing 
procedure. It sets. up the starting coordinate and executes the POSN 
routine. Line 140 then sets the end-of-line coordinate, while line 150 sets 
the line color to WHITE and draws the line by calling the LINE routine. 

There are a couple of ideas that will help simplify hi-res programming 
routines. The first one is, if you do not specify an XX or YY component for 
the end of the line, the system will default to the last-specified value. The 
second idea is that executing LINE performs the equivalent of a POSN 
routine using the coordinates specified for the end of the line. The 
significance of the latter idea is that you need not use POSN to set the 
coordinate for the next point or line if it is to be situated at the end of a line 
you've just drawn. Consider the following program that draws a white 
square onto a green background. 

100 XX=YY=COLR 
110 CALL -12288 
120 COLR=42: CALL -11471 
130 COLR=l27 
140 XX=l20:YY=60: CALL -11527 
150 XX=l60: CALL -11500 
160 XX=l00: CALL -11500 
170 XX=l20: CALL -11500 
180 YY=60: CALL -11500 
190 END 
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Here is how it works: 

Lines 100 and 110 define the critical hi-res variables and initialize the 
system. 

Line 120 sets up and draws a green background. 
Line 130 defines a WHITE color for the GREEN background. 
Line 140 establishes the initial coordinate of the drawing by calling the 

POSN routine. 
Line 150 draws the first line between 120,60 and 160,60. (The default 

value for the YY component is 60 from the previous program line.) 
Line 160 draws the second line between 160,60 and 160,100. (The default 

value for the XX component is 160 from the previous operation.) 
Line 170 draws the third line from coordinate 160, 100 to 120, 100. 
Line 180 draws the final line from coordinate 120, 100 to 120,60. 

You can change the background color by altering the COLR assign
ment in program line 120, and you can specify other line colors in program 
line 130. Use Table 7-4 as a guide for selecting the colors. See if you can 
modify the program to draw a black square on a white background, for 
example. 

Listing 7-3 is a program that lets you experiment with drawing single 
lines of any chosen color between any chosen sets of coordinates. It also 
lets you select a background color. 

Listing 7-3. Drawing Lines. 

100 XX=YY=COLR 
110 TEXT : CALL -936 
120 PRINT "WHAT BACKGROUND COLOR:" 
130 INPUT "(SEE TABLE 7-4)",BCOLR 
140 INPUT "WHAT STARTING XX (0-279)",XS 
150 INPUT "WHAT STARTING YY (0-159)",YS 
160 INPUT "WHAT ENDING XX (0-279)",XE 
170 INPUT "WHAT ENDING YY (0-159)",YE 
180 PRINT "WHAT LINE COLOR:" 
190 INPUT "(SEE TABLE 7-4)",LCOLR 
200 CALL -12288 
210 POKE 34,20: CALL -936 
220 COLR=BCOLR: CALL -11471 
230 XX=XS:YY=YS: CALL -11527 
240 XX=XE:YY=YE 
250 COLR=LCOLR: CALL -11500 
260 PRINT 
270 PRINT "STRIKE ANY KEY TO DO AGAIN 
280 CALL -741 
290 GOTO 110 
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Let us study the operation of this demonstration program: 

Line 100 defines the critical hi-res variables. 
Line 110 brings the system into the TEXT mode, homes the cursor, and 

clears the screen. 
Lines 120 and 130 ask for the background color code. 
Lines 140 and 150 ask for the starting coordinates of the line. 
Lines 160 and 170 ask for the ending coordinates of the line. 
Lines 180 and 190 ask for the color code of the line. 
Line 200 brings the system into the hi-res graphics mode by calling the 

INIT routine. 
Line 210 sets the top of the text window, homes the cursor, and clears 

the screen. 
Line 220 fills the background with color BCOLR. 
Line 230 sets the starting coordinates to the values typed in earlier by the 

user, and then CALLs the POSN routine. 
Line 240 sets the ending coordinates to the values typed in earlier by the 

user. 
Line 250 sets the line color to the value typed in earlier by the user, and 

then CALLs the LINE routine. 

The remainder of the program simply prints a prompt message in the 
text portion of the screen and waits for you to strike any key to do the 
whole thing all over again. 

You have probably noticed by now the hi-res, line-drawing routine is 
something less than perfect. Almost without exception, there is some color 
distortion at the beginning and end of any line. You will find that you can 
plot any line color onto any background color as long as the line is per
fectly horizontal. But add a vertical component to the slope of the line, and 
you will find some color distortion along the line as well as at the ends. The 
worst distortion occurs when plotting a straight vertical line. 

It is possible to get into some very heavy technical discussions of how 
and why this whole family of color-distortion problems occurs and how to 
remedy some of them. But even then, the complexity of the techniques do 
not justify the less-than-satisfactory results. 

In the most practical sense, the matter is best handled on a trial-and
error basis for each particular case. If you find that the color distortion is 
intolerable in a particular instance, try shifting the coordinates one XX lo
cation to the left or right. That might not cure the problem altogether, but it 
can produce more satisfactory results in many instances. 

Another trick is to plot the line and then plot discrete points at the 
places where the most serious color distortion occurs. 

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT @ 161 



Clearing the Hi-Res Screen The Programmer's Aid package in
cludes a routine that clears the hi-res screen to all black. CALLing INIT 
does that, too, but only at the beginning of the program. The special 
screen-clearing routine, called CLEAR, begins at address -12274. 

CALL -12274 clears the high-resolution portion of 
the screen to all black. 

Simplifying the CALLS By now you are aware of an almost over
whelming number of CALL routines for running hi-res graphics programs. 
Having to remember or look up those CALL addresses every time you use 
one of them can be troublesome and a source of possible programming 
errors. So it's a good idea to set those CALL addresses equal to some 
meaningful variable names at some place near the beginning of the 
program-certainly after specifying the critical hi-res variables XX, YY, 
and COLR. Here is an example: 

100 XX=YY=COLR 
110 INIT=-12288:BKGND=-11471. 
120 POSN=-11527:PLOT=-11506:LINE=-11500 
130 CLEAR=-12274 

After doing that, you can initialize the hi-res system by executing a CALL 
INIT, call the BKGND routine by executing a call BKGND, set a screen 
position by executing a CALL POSN, and so on. The idea is to call the 
main hi-res routines by name rather than number. 

Listing 7-4 uses that technique for POSN, PLOT, and LINE. It 
doesn't apply the idea to INIT and BKGND because they are used only 
once in the entire program. Also notice in lines 130 through 150 that it is 
possible to make similar assignments for the color codes. 

Enter the program and run it. Study the listing to get some ideas about 
drawing blocks of color with the LINE routine and overcoming certain 
kinds of color distortion. 
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Listing 7-4. Winter Scene. 

100 REM 
110 XX=YY=COLR 
120 POSN=-11527:PLOT=-11506:LINE=-11500 
130 BLACK=0: LET GREEN=42:VIOLET=85 
140 WHITEL=l27:0RANGE=l70:BLUE=213 
150 WHITEH=255 
160 POKE 34,20: CALL -936 
170 CALL -12288 
180 FOR PH=l TO 3: GOSUB PH*l000: NEXT PH 
190 PRINT : PRINT : TAB 10 
200 PRINT "** WINTER SCENE **" 
210 PRINT : END 

1000 REM ** PLOT BACKGROUND ** 
1010 COLR=BLUE: CALL -11471 
1020 COLR=WHITEH 
1030 FOR N=l TO 300 
1040 XX= RND (279):YY= RND (159) 
1050 CALL POSN: CALL PLOT 
1060 NEXT N 
1070 RETURN 
2000 REM ** DRAW SNOW ** 
2010 COLR=WHITEH 
2020 FOR N=0 TO 24 
2030 XX=0:YY=l35+N: CALL POSN 
2040 XX=279: CALL LINE 
2050 NEXT N 
2060 RETURN 
3000 REM ** TREE ** 
3010 COLR=WHITEH 
3020 FOR N=0 TO 99 
3030 XX=l40-N/2:YY=l0+N: CALL POSN 
3040 XX=l40+N/2: CALL LINE 
3050 NEXT N 
3060 COLR=GREEN 
3070 FOR N=7 TO 99 
3080 XX=l44-N/2:YY=l0+N: CALL POSN 
3090 XX=l36+N/2: CALL LINE 
3100 NEXT N 
3110 COLR=BLACK 
3120 FOR N=0 TO 30 
3130 XX=l40-3:YY=ll0+N: CALL POSN 
3140 XX=l40+5: CALL LINE 
3150 NEXT N 
3160 COLR=BLUE 
3170 FOR N=0 TO 24 
3180 XX=l40-5:YY=ll0+N: CALL PLOT 
3190 NEXT N 
3200 RETURN 
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ALTERNATIVE HI-RES SCREEN FORMATS There are two alter-
natives to the normal high-resolution graphics screen format: full-screen 
graphics and the secondary hi-res screen. 

Full-Screen Graphics The normal high-resolution graphics scheme, 
called INIT, uses the primary page with mixed text and graphics. The 
range of XX and YY coordinates is from 0 to 279, and 0 to 159, respec
tively. The four lower, text-sized lines are open for text operations. 

Going to full-screen, hi-res graphics deletes the four lower lines of text 
and opens them for the graphics operations. The screen format in that case 
allows 280 horizontal XX positions, and 192 vertical YY positions. 

There are several steps involved in setting up full-screen hi-res 
graphics. Basically they amount to POKEing zeros into the screen "soft" 
switch positions described earlier. Table 7-6 summarizes the list of "soft" 
switches as extended to include some hi-res addresses. 

Suppose, then, that you want to use a full screen of high-resolution 
graphics. According to Table 7-6 an appropriate sequence of POKE state
ments would be: 

POKE -16297 ,0 (Hi-res.) 

POKE -16300,0 (Primary page.) 

POKE -16302,0 (All graphics.) 

POKE -16304,0 (Graphics mode.) 

Try that sequence of POKEs from the keyboard, and you will see a full 
screen of hi-res graphics. 

CALLing INIT to set up mixed-screen graphics automatically clears 
the graphics portion of the screen to black. This POKE sequence does not; 

Table 7-6. Graphics Soft Switches 

Graphics Mode POKE Address 

Display high-resolution graphics -16297 
Display low-resolution graphics -16298 

Display the secondary page -16299 
Display the primary page -16300 

Display mixed text and graphics · -16301 
Display all text or all graphics -16302 

Display a text mode -16303 
Display a graphics mode -16304 
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so you might want to conclude it with a CALL -12274, which is the 
clear-to-black routine. 

Here are some program lines that will get you started with full-screen 
hi-res. Add your own ideas about plotting lines and points, remembering 
that you can now extend the YY values to 191. 

100 XX=YY=COLR 
110 POKE -16297,0: POKE -16300,0 
120 POKE -16302,0: POKE -16304,0 
130 CALL -12274 

Use TEXT to return to the normal, all-text mode. 

Secondary-Page Graphics If you have a 16K system, this discus
sion is purely academic-you have no secondary page of hi-res graphics 
available to you. Otherwise you may be in for a somewhat pleasant sur
prise: The secondary page of hi-res graphics is actually simpler to use than 
the secondary page of lo-res graphics. 

One of the truly positive features of the hi-res system is that you can 
plot points and draw lines on the secondary page while displaying the pri
mary page, and vice versa. Recall that it is impossible to draw directly onto 
the secondary page of low-res graphics. 

The key to choosing the page that will get the result of hi-res pro
gramming is memory address 806. Doing a POKE 806,32 will cause any 
hi-res drawing operations to take place on the primary page of graphics, no 
matter which page is being displayed at the time. On the other hand, doing 
a POKE 806,64 will cause drawing to take place directly on the secondary 
page. Again, it makes no difference which is being displayed at the time. 

POKE 806,32 allows you to draw on the primary 
page of hi-res. 

POKE 806,64 allows you to draw on the secondary 
page of hi-res. 

Drawing high-resolution pictures can, in many instances, be a rela
tively time-consuming process. Being able to draw on one page while dis
playing the other lets you mask the long drawing times by entertaining the 
viewer with a finished picture on the other page. Or you can display some 
meaningful text while the program is drawing some high-resolution graphics 
on a "hidden" page. Then, when the drawing is done, simply replace the 
text presentation with the hi-res picture. The viewer at least gets the 
impression that the drawing operation took place instantaneously. 

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT e 165 



HI-RES SHAPE TABLES Shape tables are a bit difficult (or at least 
tedious) to design and enter into the system; but you ought to give them 
serious consideration because of two advantages they have. 

One advantage is that the Apple hi-res graphics system can draw 
figures from tables a whole lot faster than it can draw from lists of PLOT 
and LINE statements. This feature is especially important when attempting 
to write programs that produce satisfactory animation sequences. 

A second advantage is that the Apple system includes provisions for 
scaling and rotating graphics produced from shape tables. So if you have a 
graphic shape that you want to scale (change size) or rotate (tum about a 
given point), then shape tables are your best bet. 

High-speed drawing and the ability to scale and rotate a figure are the 
positive attributes of shape-table graphics. The only negative attribute is 
that they work in a fashion more akin to machine-language programming 
than to BASIC. It's not a bad scheme; it simply appears unfamiliar and 
awkward to anyone unaccustomed to machine-language techniques. 

What Is a Shape Table? From one point of view, a shape table is a 
block of RAM that is set aside for data related to a particular graphics 
shape or, indeed, as many as 255 different graphics shapes. Whenever a 
BASIC program executes a DRAW or DRAWl command, the system con
sults the shape table for the appropriate drawing information. The hi-res 
ROT, SCALE, and FIND commands also refer to the shape table. 

One of the preliminary steps in implementing shape tables is setting up 
that block of RAM-specifying its starting address, for instance. 

The table, itself, is divided into two main parts: the shape table index 
and the shape data for each figure. A single index serves from 1 to 255 
different shapes. 

The index is simply a group of numbers that indicates the number of 
different shapes in the table, and the number of address locations from the 
beginning of the index to the beginning of the data for each shape. The size 
of the index-that is, the number of codes in it-depends on the number 
of different shapes in the table. The larger the number of shapes, the larger 
the index. 

The shape data for each figure consists of a set of codes that tells the 
system to plot on or skip over a hi-res point on the screen. And equally 
important, the data specifies where an imaginary hi-res cursor should move 
to after doing the previous plotting or no-plotting operation. Finally, a 
code-number 0 marks the end of the block of data for each shape in the 
table. 

The length of the data block for each shape in the table depends on 
how complicated and how large the shape is. Generally speaking, the more 
complex and larger the shape, the longer its data block is. 
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Setting Up Shapes From BASIC As mentioned earlier, the Apple 
draws shapes from the shape table via BASIC routines such as DRAW and 
DRAWL But it is important to set up some other parameters in advance. 

The first parameter is the screen position of the figure to be drawn 
from the table. That parameter is specified by assigning position values to 
the XX and YY variables, and then executing a POSN routine. That sets 
the starting position for drawing a shape. Actually, any technique that 
works for PLOT and LINE operations works equally well for shape tables. 
Additionally, the DRAWl routine lets you begin drawing a second shape at 
the point on the screen where the system completed drawing the first 
shape. 

The second parameter is the shape color. The color codes used are the 
same as those summarized in Table 7-5. For a beginner, the safest all
around color combination is a white shape on a black background. The 
actual color of the shape depends on its horizontal screen position and the 
way you have arranged the plot and no-plot sequences within the shape 
table. 

The third parameter is the values for SCALE and ROT. Even if you 
don't plan to scale or rotate the shape from its configuration specified in the 
shape table, you must define those variables early in the program and set 
them equal to 0 at some point prior to calling up the DRAW or DRA Wl 
routine. 

The final parameter is the shape number. The shapes in your table 
must be specified with numeric values 1 through n, where n is the final 
shape in the table. The variable required here is SHAPE. So including a 
statement such as SHAPE=4 designates the fourth block of shape data in 
the table. Of course you need four or more shapes in the table to use that 
particular example. If you are playing around with just one shape, you 
must include a SHAPE= 1 before calling the routines that scale, rotate, and 
eventually draw the shape on the screen. 

The shape table is loaded by means of POKE statements. This tech
nique is quite different from the one suggested in most of the Apple litera
ture. There, you are expected to enter the shape table as hexadecimal or 
binary data files. The procedure offered here accomplishes the same goal 
from a purely BASIC approach. To be sure, entering long strings of POKE 
statements can be tiresome, but once the task is done, you can save and 
reload the shape table and BASIC programming as a single BASIC 
program. 

It all might seem quite complicated and confusing at first. Perhaps it is. 
But the whole thing can become rather routine after working with it for a 
while. Besides, this is simply a preview. The remaining discussions in this 
ch;1pter are more detailed. 
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Preparing Data for the Shape Table The data block for a par-
ticular shape consists of code numbers, each one indicating the following: 

1. Whether or not to plot at the current hi-res point on the screen. 
2. Where to move on the screen after doing that plot or no-plot 

operation. 

The shape-table data carries no direct color information. That is set by 
the COLR variable in the BASIC programming. All the shape table does is 
indicate whether or not to plot a point, and then where to go from there. 

Table 7-7 summarizes the most useful shape table codes. There are 
many more possibilities, but these are the ones that cause the least amount 
of confusion for people who are not already fully familiar with the scheme. 

Notice in each case that it is possible to plot or not plot. Then there is 
a direction of motion: up, down, right, or left. The general idea is to plot or 
not plot, and then move away in one of those four directions. 

Some instances allow multiple operations of the same kind. A code 36, 
for example, does a plot-move combination twice in succession. It is the 
same as doing two separate code-4 operations. And in three nonplotting 

Table 7-7. Shape Table Acronyms and Codes 

Acronym Code Meaning 

lUN 128 Don't plot; move 1 space upward 
lUP 4 Plot 1 space upward 
2UP 36 Plot 2 spaces upward 

lDN 2 Don't plot; move 1 space downward 
2DN 18 Don't plot; move 2 spaces downward 
3DN 146 Don't plot; move 3 spaces downward 
IDP 6 Plot 1 space downward 
2DP 54 Plot 2 spaces downward 

lRN 1 Don't plot; move 1 space to right 
2RN 9 Don't plot; move 2 spaces to right 
3RN 73 Don't plot; move 3 spaces to right 
lRP 5 Plot 1 space to right 
2RP 45 Plot 2 spaces to right 

lLN 3 Don't plot; move 1 space to left 
2LN 27 Don't plot; move 2 spaces to left 
3LN 129 Don't plot; move 3 spaces to left 
lLP 7 Plot 1 space to left 
2LP 63 Plot 2 spaces to left 

168 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK 



instances, a single code number can move three consecutive spaces. Code 
219, as an example, moves three points to the left without plotting anything 
along the way. 

The first step in preparing a shape table is to draw the desired figure on 
a sheet of graph paper, allowing each square to represent one hi-res point 
on the screen. 

With a satisfactory figure thus drawn, pic}</a starting point and build a 
list of shape-table codes, using Table 7-7 as a guide. Bear in mind that the 
computer will draw the figure in the same sequence that you list the codes. 
Finally, you must end the block of data for each shape with a code 0. If you 
are using more than one shape in the table, each must end with a 0. The 
system uses the 0 to know when it is time to stop drawing a particular 
shape and return to the BASIC controlling routine. 

If you are working with more than one shape, you will find it helpful in 
the early going to count the number of codes, including the end-marking Os, 
in each shape block. Keep track of those numbers for the time when you 
are preparing the index. 

Suppose that you want to draw the square figure in Fig. 7-2. Draw the 
figure onto a sheet of graph paper, letting each square represent one hi-res 
screen location. We aren't interested in the actual screen location, just the 
position of each point relative to the chosen starting location. 

In this particular case, we begin the shape in the upper left-hand 
comer, proceed to the right along the top, go down the right-hand side, go 
to the left along the bottom, and finally return to the starting point by mov
ing upward along the left-hand side of the figure. You can draw such a 
figure in any sequence you like, and begin and end anywhere you choose. 
The approach we use here simply seems to be the most direct one in this 
instance. 

At this stage of the operation, it is easier to think in terms of acronyms 
than in code numbers. So the first step in the analysis is to represent the 
drawing sequence in shorthand form: 2RP (plot two spaces to the right), 
2RP (plot two spaces to the right), and so on around the figure. Note espe
cially how we deal with the corners. 

Once you are satisfied with the sequence of acronyms, simply use 
Table 7-7 to assign the corresponding code numbers. End the sequence 
with a 0, count the number codes (including the end-marking 0), and the 
table designing task is done. 

Figure 7-3 shows a little character that might be familiar to most arcade 
game aficionados. It represents a somewhat more complex figure than the 
previous one, but its shape table lends itself to a more systematic preparation. 

In this particular instance, it is easier to divide the shape into vertical 
segments-SI, S2, S3, and so on. Beginning at the top of segment Sl, we 
generate the acronyms for drawing that segment. The segment ends by 
plotting a single point and moving one space to the right. That brings us to 
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START --+----+----+- SEGMENT 1 -'---'---'----'--~~~---'-----'--' 

SEGMENT 4 SEGMENT 2 

--+----'----'----'----'-----!- SEGMENT 3 -+-+--+----+----'-,_______+-

Segment 1 -- Segment 2 I Segment 3 -- Segment 4 j 

2RP 45 2DP 54 2LP 63 2UP 36 
2RP 45 2DP 54 2LP 63 2UP 36 
2RP 45 2DP 54 2LP 63 2UP 36 
2RP 45 2DP 54 2LP 63 2UP 36 
2RP 45 2DP 54 2LP 63 2UP 36 
2RP 45 2DP 54 2LP 63 2UP 36 
2RP 45 2DP 54 2LP 63 2UP 36 
!RP 5 !DP 6 !LP 7 !UP 4 

END 0 

TOTAL: 33 CODES 

Fig. 7-2. Hi-res rectangle drawing sequence. 

the bottom of segment S2 and the starting point for drawing that segment 
from bottom to top. We continue the procedure until we reach the final 
point at the bottom of segment S7. 

We could have organized the shape into horizontal segments, but they 
would have required more codes. Some shapes, however, lend themselves 
to that horizontal "scanning" approach. 
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S3 S5 

I I 

S2 S4 S6 

SI L.. S2 r- S3 L.. S4 r- S5 t_ S6 r- S7 + 
START 2DP 54 !UN 128 2DP 54 !UN 128 2DP 54 !UN 128 IDN 2 

2DP 54 !UN 128 IDN 2 !UN 128 IDN 2 !UN 128 3DP 54 
!RP 5 2UP 36 2DP 54 2UP 36 2DP 54 2UP 36 2DP 54 

2UP 36 !DP 6 2UP 36 !DP 6 !UP 4 END 0 
!RN I !RP 5 !RP 5 !RP 5 !RP 5 

TOTAL: 32 CODES 

Fig. 7-3. Hi-res complex figure drawing sequence. 

No matter how you approach the drawing sequence, you should end 
up with a series of code numbers that concludes with a 0. That is the data 
block for a given shape. 

Completing the Shape Table With the Index Whether you 
are using a single shape or a hundred of them, the shape table must begin 
with a single index that indicates (1) the number of shapes in the table, and 
(2) the starting position of each block of shape data. 

An index for one shape is the simplest index. It contains four codes: 
one code to indicate the number of shapes, an irrelevant number, and two 
codes to indicate the starting position of the shape data. An index for two 
shapes contains six codes: one code to indicate the number of shapes, that 
irrelevant number again, and two pairs of codes indicating the starting 
positions of the two shape-data blocks. An index for three shapes has eight 
codes: one for the number of shapes, the irrelevant number, and three pairs 
of codes pointing to the beginning of each shape-data block. 

Clearly, the size of the index depends on the number of different 
shapes specified in the shape table. It is always equal to twice the number 
of shapes plus two. 
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Assuming that you have already prepared shape data, take a sheet of 
ordinary notebook paper and label each line with integer values from 0 to 
twice the number of shapes plus two. Then continue labeling to some 
number you figure will be adequate for listing all of the shape codes. (You 
can always add or delete lines at the end.) 

Line 0 marks the beginning of the index. You should know how many 
shapes you are using, so write that number on line 0 of the chart. Write any 
number you like on line 1. Then skip two lines for every shape in the table. 
If you are using two shapes, skip two lines, if you have three shapes, skip 6 
lines, and so on. That line-whatever it may be-marks the end of the 
index. The shape data for the first figure begins on the line that follows. 

Suppose that you are building a table for two different shapes. That 
being the case, the index portion starts out looking something like Fig. 7-4. 

LINE CODE NOTES 

0 2 START OF INDEX 

1 0 

2 
3~ 

4 
5 

6 

7 -

8 
9 

L__..--

Fig. 7-4. Shape table worksheet. 

Begin writing in the sequences of shape data. The first shape you enter 
will be called shape 1 from then on, the second shape will be designated 
shape 2, and so on. Continue entering the shape data until you get them all 
into place on the worksheet. 

Table 7-8 shows a shape table worksheet that includes the shape data 
from Figs. 7-2 and 7-3. The rectangle is shape 1, and the little creature is 
shape 2. 

The table occupies lines 0 through 70. All that remains to be done is to 
assign the shape starting codes to lines 2 through 5. 

Now notice that shape 1 begins at line 6 and that shape 2 begins at line 
39. Those are the numbers that are important to the index. They must be 
entered as 2-byte decimal numbers, however. (See Appendix A.) That 
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Table 7-8. Shape Table Worksheet 

Line Code Table Section 

0 2 
1 0 PARTIAL INDEX 
2 FOR 2 SHAPES 
3 
4 
5 

6 45 
7 45 
8 45 
9 45 

10 45 
11 45 
12 45 
13 5 
14 54 
15 54 
16 54 
17 54 SHAPE I 
18 54 DATA 
19 54 
20 54 
21 6 
22 63 
23 63 
24 63 
25 63 
26 63 
27 63 
28 63 
29 7 
30 36 
31 36 
32 36 
33 36 
34 36 
35 36 
36 36 
37 4 
38 0 
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Table 7-8-cont. Shape Table Worksheet 

Line Code Table Section 

39 54 
40 54 
41 5 
42 128 
43 128 
44 36 
45 36 SHAPE 2 
46 1 DATA 
47 54 
48 2 
49 54 
50 6 
51 5 
52 128 
53 128 
54 6 
55 36 
56 5 
57 54 
58 2 
59 54 
60 6 
61 5 
62 128 --

63 128 
64 36 
65 4 
66 5 
67 2 
68 54 
69 54 
70 0 

Table 7-9. Completed Shape Index 

LINE CODE 

0 2 
1 0 
2 ~} LINES TO SHAPE 1 
3 
4 ~9 } LINES TO SHAPE 2 
5 
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means the codes for shape 1 are 6 and O; and the codes for shape 2 are 39 
and 0. 

So write 6 and 0 into lines 2 and 3, respectively; and write 39 and 0 
into lines 4 and 5, respectively. That completes all the work for the shape 
table worksheet. Table 7-9 shows the completed shape index. 

You have seen how to prepare shape tables. The next step is to write a 
BASIC program that loads the table into your Apple system. 

Writing the BASIC Shape-Table Loader The shape table that 
you've prepared must be loaded into a block of RAM. At this point, the 
actual RAM addresses aren't important. In fact, you should write the 
BASIC loader routine in such a way that you can place the shape table 
anywhere you choose. The basic idea is to prepare a series of POKE 
statements that will PO KE the table into~ successive address locations. 

Listing 7-5 represents the BASIC shape-table loader for the table illus
trated in Table 7-9. Variable ST represents the starting address of the shape 
table. It isn't defined in this BASIC routine, but you will eventually assign 
some value to it in a program that calls this subroutine. Do not attempt to 
run this subroutine as shown here-that comes later. 

Referring to Table 7-9, you can see that program lines 1010 through 
1030 POKE the index into consecutive address locations ST+O through 
ST+5. Throughout this program, the number summed with variable ST is 
equal to the line number from the shape-table worksheet. 

Program lines 1050 through 1120 load the shape data for shape 1. Since 
there are foll! instances where the table calls for loading the same number 
seven times in succession, using FOR-NEXT loops helps simplify the pro
gramming procedure. Loading shape 2 is not quite so simple, however. 

Program lines 1140 through 1270 are responsible for loading the data 
for shape 2. The technique used here might seem terribly cumbersome at 
first glance, but after you see how it works, you will see that it is simpler 
than typing in 32 individual POKE statements. 

The idea is to set variable N in a FOR-NEXT loop that covers the 
entire range of worksheet line numbers for shape 2-lines 39 through 70, in 
this case. The loop includes a GOSUB to a small (a very small) subroutine 
that assigns the current data value to variable K. On returning from the 
subroutine, K is POKEd into the proper memory location for the shape 
table. 

The short subroutines occupying program lines 1239 through 1270 rep
resent the line-by-line shape data for shape 2. To get those lines into the 
program, do an AUTO 1239,l and begin typing them in. It's easier than it 
looks. And it is certainly easier than having to type in 32 separate POKE 
statements. 
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Listing 7-5. Shape-Table Loader. 

1000 REM ** LOAD SHAPE TABLE ** 
1010 POKE ST+0,2: POKE ST+l,0 
1020 POKE ST+2,6: POKE ST+3,0 
1030 POKE ST+4,39: POKE ST+5,0 
1040 REM ** SHAPE l ** 
1050 FOR N=6 TO 12: POKE ST+N,45: NEXT N 
1060 POKE ST+l3, 5 
1070 FOR N=l4 TO 20: POKE ST+N, 54: NEXT N 
1080 POKE ST+21,6 
1090 FOR N=22 TO 28: POKE ST+N,63: NEXT N 
1100 POKE ST+29,7 
1110 FOR N=30 TO 36: POKE ST+N,36: NEXT N 
1120 POKE ST+37,4: POKE ST+38,0 
1130 REM ** SHAPE 2 ** 
1140 FOR N=39 TO 70: GO SUB 1200+N 
1150 POKE ST+N,K: NEXT N 
1160 RETURN 
1170 REM 
1180 REM 
1239 K=54: RETURN 
1240 K=54: RETURN 
1241 K=5: RETURN 
1242 K=l28: RETURN 
1243 K=l28: RETURN 
1244 K=36: RETURN 
1245 K=36: RETURN 
1246 K=l: RETURN 
1247 K=54: RETURN 
1248 K=2: RETURN 
1249 K=54: RETURN 
1250 K=6: RETURN 
1251 K=5: RETURN 
1252 K=l28: RETURN 
1253 K=l28: RETURN 
1254 K=36: RETURN 
1255 K=36: RETURN 
1256 K=5: RETURN 
1257 K=54: RETURN 
1258 K=2: RETURN 
1259 K=54: RETURN 
1260 K=6: RETURN 
1261 K=5: RETURN 
1262 K=l28: RETURN 
1263 K=l28: RETURN 
1264 K=36: RETURN 
1265 K=4: RETURN 
1266 K=5: RETURN 
1267 K=2: RETURN 
1268 K=54: RETURN 
1269 K=54: RETURN 
1270 K=0: RETURN 

176 • INTERMEDIATE-LEVEL APPLE II HANDBOOK 



Overall, the idea is to POKE the shape table into RAM, beginning at 
address ST. Use any programming procedure that suits you. 

If you want to test the operation of this BASIC loader, first do a 
LOMEM:3072 and then type in this short routine: 

100 ST=2048: GOSUB 1000 
110 FOR N=0 TO 70 
130 PRINT PEEK ( ST+N); "I" 
140 NEXT N 
150 END 

It is important to do the LOMEM:3072 to raise system LOMEM to 
that point, thereby leaving some room in the lower RAM area for the shape 
table. Line 100 in the test program assigns address 2048 as the starting 
address of the table, and then it calls the loader routine to POKE the table 
into that area. 

Lines 110 through 140 simply PEEK into the table, printing out the 
data in the sequence it appears on your table worksheet. The slash simply 
separates one code from the next. 

Delete the test program after you've had a chance to check out the 
operation of the table loading routine and the data. It is a good idea to save 
the loading routine for later use. 

The next, and final, step is to prepare a BASIC program that uses the 
shape table. 

The Hi-Res Main Program There are some special requirements 
for a BASIC program that uses the shape table you have built. Generally 
speaking, the main program should begin by: 

1. Setting LOMEM up and away from the area to be occupied by the 
shape table. 

2. Specifying the starting address of the shape table. 
3. Specifying the special hi-res and shape-table variables. 
4. Calling the routine that loads the shape table. 
5. Initializing the hi-res system. 

Recall that you can set LOMEM from an Integer BASIC program by 
POKEing the 2-byte version of the desired LOMEM address into addresses 
74 and 75. Assuming that you want LOMEM to be at address 3072, the 
appropriate POKE statements are: 

POKE 74,0 : POKE 75, 12 

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 177 



You can set LOMEM anywhere you like, as long as it is higher than the 
starting address of your shape table and leaves room for building up the 
shape table below it. We will use a LOMEM of 3072 in the remaining 
examples, and start the shape table at 2048. 

After setting LOMEM, set the starting address of the shape table. That 
address must be entered as a 2-byte number in addresses 808 and 809, with 
the lower byte going into location 808. So using a table starting address of 
2048, the appropriate POKE statements are: 

POKE 808,0 : POKE 809,8 

Addresses 808 and 809 carry the starting address of 
the shape table. The starting address must be 
entered as a 2-byte decimal number, with the 
least-significant byte going into 808. 

Again, you have the option of locating the start of the shape table 
anywhere you wish, just as long as it is lower than your prescribed 
LOMEM setting and leaves room below LOMEM for the entire table. 
Thus, virtually every program that uses hi-res shape table techniques ought 
to begin this way: 

100 POKE 74,0: POKE 75,12 
110 POKE 808,0: POKE 809,8 

Recall that a program using hi-res operations must define variables 
XX, YY, and COLR before doing anything else that uses a variable name. 
When working with a shape table, that list of critical variables has to be 
extended to include SHAPE, ROT, and SCALE. You can name them any
thing else you want as long as your custom names have the same number of 
characters in them. We will be staying with SHAPE, ROT, and SCALE. 

Incidentally, you must define all six of those variables, even if you do 
not plan to use some of them. So the programming to this point ought to 
look like this: 

100 POKE 74,0: POKE 75,12 
110 POKE 808,0: POKE 809,8 
120 XX=YY=COLR=SHAPE=ROT=SCALE 
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The SHAPE variable indicates which shape you are dealing with. If 
your table has four shapes in it, the legitimate values later assigned to the 
SHAPE variable are 1, 2, 3, and 4. 

The ROT variable is used for rotating the designated shape about its 
starting point. The values assigned to ROT later in the program can be any 
integer from 0 to 255, but you can see in Table 7-10 that values 0 through 64 
are adequate for a full 360 degrees of rotation. 

The SCALE variable fixes the size of the designated shape in relation 
to its size as indicated in the table. The value ultimately assigned to 
SCALE can be any integer value from 0 to 255. Using a scaling factor of 0 
is pointless, because it reduces the size to nothing; attempting to use seal
. ing factors larger than 4 expands the shape to a size that renders it virtually 
useless. A scaling factor of 1 causes the system to plot the shape in the 
same point-for-point size you used in designing it originally. You probably 
realize by now that the SCALE variable cannot properly reduce the size of 
a figure relative to its original, shape-table specification. It does a nice job 
of expanding it by factors of 2 or 3, however. 

After the program line that defines the six hi-res variables, the next 
line ought to call the table-loading routine. That is a matter of assigning the 
full decimal starting address of the shape table to variable ST and doing a 
GOSUB 1000. The value assigned to variable ST must be a full decimal 
version of the 2-byte address POKEd into addresses 808 and 809. If you 
forget to use the full 'decimal version, you will get some discouraging 
results. 

By now, the opening portion of the BASIC program should look like 
this: 

100 POKE 74,0: POKE 75,12 
110 POKE 808,0: POKE 809,8 
120 XX=YY=COLR=SHAPE=ROT=SCALE 
130 ST=2048: GOSUB 1000 

Now you are free to carry out any operations that aren't directly re
lated to high-resolution graphics. That would include some text and lo-res 
operations. For our immediate purposes, though, assume that it is time to 
get into the hi-res operating mode by CALLing INIT at -12288. 

Once in the hi-res operating mode, you can fiddle around with the 
normal PLOT and LINE techniques described earlier in this chapter. But 
when it is time to draw one of the shapes in your shape table, you must 
prepare the way by: 

1. Making certain that the XX and YY starting position of the shape i.s 
clearly defined. 
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Table 7-10. ROT Values 

Angle of Rotation 
ROT Value (degrees) 

0 0.00 
2 11.25 
4 22.50 
6 33.75 

8 45.00 
10 56.25 
12 67.50 
14 78.75 

16 90.00 
18 101.25 
20 112.50 
22 123.75 

24 135.00 
26 146.25 
28 157.50 
30 168.75 

32 180.00 
34 191.25 
36 202.50 
38 213.75 

40 225.00 
42 236.25 
44 247.50 
46 258.75 

48 270.00 
50 281.25 
52 292.50 
54 303.75 

56 315.00 
58 326.25 
60 337.50 
62 348.75 

64 360.00 
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2. Assigning a color code for the shape to COLR. 
3. Designating which shape you want to draw by assigning the shape 

number to SHAPE. 
4. Designating a ROT angle and SCALE factor. 
5. CALLing the shape DRAW routine at address -11456. 

All of that is illustrated for you in lines 150 through 190 in Listing 7-6. 
Line 150 sets XX and YY to hi-res location 20,30 and calls the POSN 

routine. Any other operation that leaves XX and YY at some clearly 
defined position will suffice. 

Lines 160 and 170 set the shape color to white and designate shape 
number 2. Shape 2 in this case is the little creature of Fig. 7-3. Line 180 
sets the rotation to 0 (no rotation at all), and then establishes a scale factor 
of 2. Finally, line 190 calls the shape-drawing routine at address -11465. 

DRAW at address -11465 draws the designated 
shape. 

Assuming that you already have the shape-table loading routine (pro
gram lines 1000 through 1270) loaded into the system, add the main pro
gram at lines 100 through 200, and give it a RUN. 

Experiment with the SCALE factor in line 180, try changing the COLR 
in line 160, and set up some different drawing positions in line 150. Specify 
shape 1 in line 170 to see the rectangle figure from Fig. 7-2. 

Can you think of a way to rewrite the program so that the system will 
duplicate shape 2 a number of times and at different places on the screen? 

Try drawing shape 2 at some position on the screen, and then set up 
the program for drawing shape 1 by means of the DRAW! routine at ad
dress -11462. Do not specify a position for shape 1, and you will be able to 
appreciate the purpose of DRAWL (It begins drawing shape 1 where shape 
2 left off.) 

CALLing the FIND routine at address -11780 automatically positions 
the XX and YY variables at the last point specified for a shape just drawn 
on the screen. After doing FIND, you can specify a PLOT or LINE from 
that position. 

DRAWl is a shape-linking function. FIND does the same sort of thing, 
but links a PLOT or LINE to a previously drawn shape. 

As you play around with shape tables, you will find that the colors of 
the shapes often do some unexpected and often undesirable things. The 
plotting of shapes against various background colors follows the same gen
eral limitations described earlier for plotting points and lines. A shape hav
ing a white color assigned to it might appear green or blue against a black 
background, depending on whether the current XX value is even or odd. 
Portions of a shape will appear white only if there are two points plotted in 
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Listing 7-6. Drawing Two Shapes. 

100 POKE 74,0: POKE 75,12 
110 POKE 808,0: POKE 809,8 
120 XX=YY=COLR=SHAPE=ROT=SCALE 
130 ST=2048: GOSUB 1000 
140 CALL -12288 
150 XX=20:YY=30: CALL -11527 
160 COLR=l27 
170 SHAPE=2 
180 ROT=0:SCALE=2 
190 CALL -11465 
200 END 

1000 REM ** LOAD SHAPE TABLE ** 
1010 POKE ST+0,2: POKE ST+l,0 
1020 POKE ST+2,6: POKE ST+3,0 
1030 POKE ST+4,39: POKE ST+5,0 
1040 REM ** SHAPE 1 ** 
1050 FOR N=6 TO 12: POKE ST+N,45: NEXT N 
1060 POKE ST+l3,5 
1070 FOR N=l4 TO 20: POKE ST+N,54: NEXT N 
1080 POKE ST+21,6 
1090 FOR N=22 TO 28: POKE ST+N,63: NEXT N 
1100 POKE ST+29,7 
1110 FOR N=30 TO 36: POKE ST+N,36: NEXT N 
1120 POKE ST+37,4: POKE ST+38,0 
1130 REM ** SHAPE 2 ** 
1140 FOR N=39 TO 70: GOSUB 1200+N 
1150 POKE ST+N,K: NEXT N 
1160 RETURN 
1170 REM 
1180 REM 
1239 K=54: RETURN 
1240 K=54: RETURN 
1241 K=5: RETURN 
1242 K=l28: RETURN 
1243 K=l28: RETURN 
1244 K=36: RETURN 
1245 K=36: RETURN 
1246 K=l: RETURN 
1247 K=54: RETURN 
1248 K=2: RETURN 
1249 K=54: RETURN 
1250 K=6: RETURN 
1251 K=5: RETURN 
1252 K=l28: RETURN 
1253· K=l28: RETURN 
1254 K=36: RETURN 
1255 K=36: RETURN 
1256 K=5: RETURN 
1257 K=54: RETURN 
1258 K=2: RETURN 
1259 K=54: RETURN 
1260 K=6: RETURN 
1261 K=5: RETURN 
1262 K=l28: RETURN 
1263 K=l28: RETURN 
1264 K=36: RETURN 
1265 K=4: RETURN 
1266 K=5: RETURN 
1267 K=2: RETURN 
1268 K=54: RETURN 
1269 K=54: RETURN 
1270 K=0: RETURN 
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successive horizontal positions. Also, you will find a big difference be
. tween WHITE 127 and WHITE 255. As mentioned earlier, this particular 

situation is beyond the scope of this book. 

HI-RES VIDEO ADDRESSES It is possible to build fine hi-res 
graphics by POKEing values directly to the primary or secondary pages of 
hi-res video memory. Unfortunately, it is an exceedingly tricky procedure 
to achieve the color combinations you want. Fortunately, the PLOT, 
LINE, and DRAW routines already described in this chapter can do the 
same sort of task equally well. For the sake of completeness, however, 
Tables 7-11 and 7-12 show the line-by-line memory map for both the pri
mary and secondary pages of hi-res video memory. 

Table 7-11. Hi-Res Primary-Page Memory Map 

Line Address Range 

LINE 0 8192-8231 
LINE 1 9216-9255 
LINE 2 10240-10279 
LINE 3 11264-11303 
LINE 4 12288-12327 
LINE 5 13312-13351 
LINE 6 14336-14375 
LINE 7 15360-15399 

LINE 8 8320-8359 
LINE 9 9344-9383 
LINE 10 10368-10407 
LINE 11 11392-11431 
LINE 12 12416-12455 
LINE 13 13440-13479 
LINE 14 14464-14503 
LINE 15 15488-15527 

LINE 16 8448-8487 
LINE 17 9472-9511 
LINE 18 10496-10535 
LINE 19 11520-11559 
LINE 20 12544-12583 
LINE 21 13568-13607 
LINE 22 14592-14631 
LINE 23 15616-15655 
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Table 7-U-cont. Hi-Res Primary-Page Memory Map 

Line Address Range 

LINE 24 8576-8615 
LINE 25 9600-9639 
LINE 26 10624- I 0663 
LINE 27 1I648-11687 
LINE 28 12672-1271 I 
LINE 29 13696-13735 
LINE 30 14720-14759 
LINE 31 15744-15783 

LINE 32 8704-8743 
LINE 33 9728-9767 
LINE 34 10752-10791 
LINE 35 11776-11815 
LINE 36 12800-12839 
LINE 37 13824-13863 
LINE 38 14848-14887 
LINE 39 15872-15911 

LINE 40 8832-8871 
LINE 41 9856-9895 
LINE 42 10880-10919 
LINE 43 11904-11943 
LINE 44 12928-12967 
LINE 45 13952- 13991 
LINE 46 14976-15015 
LINE 47 16000-16039 

LINE 48 8960-8999 
LINE 49 9984-10023 
LINE 50 11008-11047 
LINE 51 12032-12071 
LINE 52 13056- 13095 
LINE 53 14080-14119 
LINE 54 15104-15143 
LINE 55 16128-16167 

LINE 56 9088-9127 
LINE 57 10112-10151 
LINE 58 11136-11175 
LINE 59 12160-12199 
LINE 60 13184-13223 
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Table 7-11-cont. Hi-Res Primary-Page Memory Map 

Line Address Range 

LINE 61 14208-14247 
LINE 62 15232-15271 
LINE 63 16256-16295 

LINE 64 8232-8271 
LINE 65 9256-9295 
LINE 66 10280-10319 
LINE 67 11304-11343 
LINE 68 12328-12367 
LINE 69 13352- 13391 
LINE 70 14376-14415 
LINE 71 15400-15439 

LINE 72 8360-8399 
LINE 73 9384-9423 
LINE 74 10408-10447 
LINE 75 11432-11471 
LINE 76 12456-12495 
LINE 77 13480-13519 
LINE 78 14504-14543 
LINE 79 15528-15567 

LINE 80 8488-8527 
LINE 81 9512-9551 
LINE 82 10536-10575 
LINE 83 11560-11599 
LINE 84 12584-12623 
LINE 85 13608-13647 
LINE 86 14632-14671 
LINE 87 15656-15695 

LINE 88 8616-8655 
LINE 89 9640-9679 
LINE 90 10664-10703 
LINE 91 11688-11727 
LINE 92 12712-12751 
LINE 93 13736-13775 
LINE 94 14760-14799 
LINE 95 15784-15823 

LINE 96 8744-8783 
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Table 7-11-cont. Hi-Res Primary-Page Memory Map 

Line Address Range 

LINE 97 9768-9807 
LINE 98 10792-10831 
LINE 99 11816-11855 
LINE 100 12840-12879 
LINE 101 13864-13903 
LINE 102 14888-14927 
LINE 103 15912-15951 

LINE 104 8872-8911 
LINE 105 9896-9935 
LINE 106 10920-10959 
LINE 107 11944-11983 
LINE 108 12968-13007 
LINE 109 13992-14031 
LINE 110 15016-15055 
LINE 111 16040-16079 
LINE 112 9000-9039 
LINE 113 10024-10063 
LINE 114 11048-11087 
LINE 115 12072-12111 
LINE 116 13096-13135 
LINE 117 14120-14159 
LINE 118 15144-15183 
LINE 119 16168-16207 

LINE 120 9128-9167 
LINE 121 10152-10191 
LINE 122 11176-11215 
LINE 123 12200-12239 
LINE 124 13224-13263 
LINE 125 14248-14287 
LINE 126 15272-15311 
LINE 127 16296-16335 

LINE 128 8272-8311 
LINE 129 9296-9335 
LINE 130 10320-10359 
LINE 131 11344-11383 
LINE 132 12368-12407 
LINE 133 13392-13431 
LINE 134 14416-14455 
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Table 7-11-cont. Hi-Res Primary-Page Memory Map 

Line Address Range 

LINE 135 15440-15479 

LINE 136 8400-8439 
LINE 137 9424-9463 
LINE 138 10448-10487 
LINE 139 11472-11511 
LINE 140 12496-12535 
LINE 141 13520-13559 
LINE 142 14544-14583 
LINE 143 15568-15607 

LINE 144 8528-8567 
LINE 145 9552-9591 
LINE 146 10576-10615 
LINE 147 11600-11639 
LINE 148 12624-12663 
LINE 149 13648-13687 
LINE 150 14672-14711 
LINE 151 15696-15735 

LINE 152 8656-8695 
LINE 153 9680-9719 
LINE 154 10704-10743 
LINE 155 11728-11767 
LINE 156 12752-12791 
LINE 157 13776-13815 
LINE 158 14800- 14839 
LINE 159 15824-15863 

LINE 160 8784-8823 
LINE 161 9808-9847 
LINE 162 10832-10871 
LINE 163 11856-11895 
LINE 164 12880-12919 
LINE 165 13904-13943 
LINE 166 14928-14967 
LINE 167 15952-15991 

LINE 168 8912-8951 
LINE 169 9936-9975 
LINE 170 10960-10999 
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Table 7-11-cont. Hi-Res Primary-Page Memory Map 

Line Address Range 

LINE 171 11984-12023 
LINE 172 13008-13047 
LINE 173 14032-14071 
LINE 174 15056-15095 
LINE 175 16080-16119 

LINE 176 9040-9079 
LINE 177 10064-10103 
LINE 178 11088-11127 
LINE 179 12112-12151 
LINE 180 13136-13175 
LINE 181 14160-14199 
LINE 182 15184-15223 
LINE 183 16208-16247 

LINE 184 9168-9207 
LINE 185 10192-10231 
LINE 186 11216-11255 
LINE 187 12240-12279 
LINE 188 13264-13303 
LINE 189 14288-14327 
LINE 190 15312-15351 
LINE 191 16336-16375 

Table 7-12. Hi-Res Secondary-Page -~emory Map 

Line 

LINE 0 
LINE 1 
LINE 2 
LINE 3 
LINE 4 
LINE 5 
LINE 6 
LINE 7 

LINE 8 
LINE 9 
LINE 10 
LINE 11 
LINE 12 

Address Range 

16384-16423 
17408-17447 
18432-18471 
19456-19495 
20480-20519 
21504-21543 
22528-22567 
23552-23591 

16512-16551 
17536-17575 
18560-18599 
19584-19623 
20608-20647 
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Table 7-12-cont. Hi-Res Secondary-Page Memory Map 

Line Address Range 

LINE 13 21632-21671 
LINE 14 22656-22695 
LINE 15 23680-23719 

LINE 16 16640-16679 
LINE 17 17664-17703 
LINE 18 18688-18727 
LINE 19 19712-19751 
LINE 20 20736-20775 
LINE 21 21760-21799 
LINE 22 22784-22823 
LINE 23 23808-23847 

LINE 24 16768-16807 
LINE 25 17792-17831 
LINE 26 18816-18855 
LINE 27 19840-19879 
LINE 28 20864-20903 
LINE 29 21888-21927 
LINE 30 22912-22951 
LINE 31 23936-23975 

LINE 32 16896-16935 
LINE 33 17920-17959 
LINE 34 18944-18983 
LINE 35 19968- 20007 
LINE 36 20992-21031 
LINE 37 22016-22055 
LINE 38 23040-23079 
LINE 39 24064- 24103 

LINE 40 17024- 17063 
LINE 41 18048-18087 
LINE 42 19072-19111 
LINE 43 20096-20135 
LINE 44 21120-21159 
LINE 45 22144-22183 
LINE 46 23168-23207 
LINE 47 24192- 24231 

LINE 48 17152-17191 
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Table 7-12-cont. Hi-Res Secondary-Page Memory Map 

Line Address Range 

LINE 49 18176-18215 
LINE 50 19200-19239 
LINE 51 20224- 20263 
LINE 52 21248-21287 
LINE 53 22272-22311 
LINE 54 23296-23335 
LINE 55 24320- 24359 

LINE 56 17280-17319 
LINE 57 18304-18343 
LINE 58 19328-19367 
LINE 59 20352-20391 
LINE 60 21376-21415 
LINE 61 22400-22439 
LINE 62 23424-23463 
LINE 63 24448-24487 

LINE 64 16424-16463 
LINE 65 17448-17487 
LINE 66 18472-18511 
LINE 67 19496-19535 
LINE 68 20520-20559 
LINE 69 21544-21583 
LINE 70 22568-22607 
LINE 71 23592-23631 

LINE 72 16552-16591 
LINE 73 17576-17615 
LINE 74 18600-18639 
LINE 75 19624-19663 
LINE 76 20648-20687 
LINE 77 21672-21711 
LINE 78 22696-22735 
LINE 79 23720-23759 

LINE 80 16680-16719 
LINE 81 17704-17743 
LINE 82 18728-18767 
LINE 83 19752-19791 
LINE 84 20776-20815 
LINE 85 21800-21839 
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Table 7-12-cont. Hi-Res Secondary-Page Memory Map 

Line Address Range 

LINE 86 22824- 22863 
LINE 87 23848-23887 

LINE 88 16808-16847 
LINE 89 17832-17871 
LINE 90 18856-18895 
LINE 91 19880-19919 
LINE 92 20904-20943 
LINE 93 21928-21967 
LINE 94 22952-22991 
LINE 95 23976-24015 

LINE 96 16936-16975 
LINE 97 17960- 17999 
LINE 98 18984-19023 
LINE 99 20008-20047 
LINE 100 21032-21071 
LINE 101 22056- 22095 
LINE 102 23080-23119 
LINE 103 24104-24143 

LINE 104 17064-17103 
LINE 105 18088-18127 
LINE 106 19112-19151 
LINE 107 20136-20175 
LINE 108 21160-21199 
LINE 109 22184-22223 
LINE 110 23208-23247 
LINE 111 24232-24271 

LINE 112 17192-17231 
LINE 113 18216-18255 
LINE 114 19240-19279 
LINE 115 20264-20303 
LINE 116 21288-21327 
LINE 117 22312-22351 
LINE 118 23336-23375 
LINE 119 24360-24399 

LINE 120 17320-17359 
LINE 121 18344-18383 
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Table 7-12-cont. Hi-Res Secondary-Page Memory Map 

Line Address Range 

LINE 122 19368-19407 
LINE 123 20392-20431 
LINE 124 21416-21455 
LINE 125 22440-22479 
LINE 126 23464- 23503 
LINE 127 24488-24527 

LINE 128 16464-16503 
LINE 129 17488-17527 
LINE 130 18512-18551 
LINE 131 19536-19575 
LINE 132 20560- 20599 
LINE 133 21584-21623 
LINE 134 22608-22647 
LINE 135 23632-23671 

LINE 136 16592-16631 
LINE 137 17616-17655 
LINE 138 18640-18679 
LINE 139 19664-19703 
LINE 140 20688- 20727 
LINE 141 21712-21751 
LINE 142 22736-22775 
LINE 143 23760-23799 

LINE 144 16720-16759 
LINE 145 17744-17783 
LINE 146 18768-18807 
LINE 147 19792-19831 
LINE 148 20816-20855 
LINE 149 21840-21879 
LINE 150 22864-22903 
LINE 151 23888-23927 

LINE 152 16848-16887 
LINE 153 17872-17911 
LINE 154 18896-18935 
LINE 155 19920-19959 
LINE 156 20944- 20983 
LINE 157 21968-22007 
LINE 158 22992- 23031 
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Table 7-12-cont. Hi-Res Secondary-Page Memory Map 

Line Address Range 

LINE 159 24016-24055 

LINE 160 16976-17015 
LINE 161 18000-18039 
LINE 162 19024-19063 
LINE 163 20048-20087 
LINE 164 21072-21111 
LINE 165 22096-22135 
LINE 166 23120-23159 
LINE 167 24144-24183 

LINE 168 17104-17143 
LINE 169 18128-18167 
LINE 170 19152-19191 
LINE 171 20176-20215 
LINE 172 21200-21239 
LINE 173 22224- 22263 
LINE 174 23248-23287 
LINE 175 24272-24311 

LINE 176 17232-17271 
LINE 177 18256-18295 
LINE 178 19280-19319 
LINE 179 20304-20343 
LINE 180 21328-21367 
LINE 181 22352-22391 
LINE 182 23376-23415 
LINE 183 24400- 24439 

LINE 184 17360-17399 
LINE 185 18384-18423 
LINE 186 19408-19447 
LINE 187 20432-20471 
LINE 188 21456-21495 
LINE 189 22480- 22519 
LINE 190 23504- 23543 
LINE 191 24528-24567 
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Using Short 
Machine-Language Routines 

With BASIC 

Anyone who has done even a modest amount of programming in 
Apple Integer BASIC ought to be familiar with some common 
CALL statements. Perhaps the most-used of these is CALL -936. 

8 
That statement calls a subroutine within the Apple monitor that homes the 
cursor and clears the text screen. 

If you have been following the previous discussions, you are also 
familiar with a whole family of useful CALL statements. Most of them deal 
with setting the cursor position on the screen or clearing parts of the 
screen. In all of those instances, the CALL statements refer to the starting 
address of a monitor subroutine that is written in machine language. Those 
machine-language subroutines all end with a code that returns the system 
to the BASIC program that called the subroutine. 

Fortunately for programmers who know nothing at all about machine
language programming, those commonly used CALL statements refer to 
machine-language subroutines that are complete in themselves. Anyone 
can use them without giving the slightest thought to machine-language 
techniques. 

The Apple monitor, however, is a vast repository of machine-language 
routines that can be executed by doing a little bit of machine coding. Such 
routines often run much faster than their BASIC counterparts. Once you 
understand some of the fundamentals of machine-language programming, you 
will be able to use these routines also. But they include a few lines of POKE 
statements that deposit short machine-language subroutines into memory. 

A FEW USEFUL MACHINE INSTRUCTIONS Most of the monitor 
subroutines use the A, X, and Y registers in the microprocessor. These 
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three registers may be thought of as special memory locations that can hold 
decimal values from 0 to 255-the same range of values that can be 
POKEd or PEEKed in any other memory location. These registers are dif
ferent, however, in that we cannot address them directly from BASIC. In
stead, we must use machine language to address them. 

Loading Data to the Registers You can load a number between 0 
and 255 into the A, X, and Y registers. The idea is quite similar to POKE
ing data to a RAM address in memory, but as mentioned earlier, the proce" 
dure is a bit different. 

There are three machine-language instructions for loading data to the 
registers. They are 169, 162, and 160, and they load data into registers A, 
X, and Y, respectively. 

169 data loads data directly into the A register. 
162 data loads data directly into the X register. 
160 data loads data directly into the Y register. 

In all three instructions, data is an integer between 0 and 255 that you 
want to load into the designated register. So if you want to load a 27 into 
the A register, you would write a program that deals with two numbers in 
succession: 169 and 27. The first number, 169, tells the microprocessor to 
accept data directly into its A register. The second number, 27, is the data 
to be accepted by the A register. 

On the other hand, if you want to load that number 27 to the X regis
ter, the appropriate sequence of numbers is 162 followed by 27. And if you 
want to load the number to the Y register, the number sequence is 160 27. 

You can also load the A, X, and Y registers with data from any address 
in memory. The coding is a bit trickier than that required for loading just a 
number, because you must break down the memory address into two dec
imal parts. 

The problem, you see, is that machine language uses sequences of 
code numbers having values limited to the range of 0 through 255, and most 
RAM addresses have numbers much larger than that. 

There are three machine-language instructions for loading data from 
memory into the registers. They are 173, 174, and 172, and they load RAM 
data into registers A, X, and Y, respectively. 

Each of those instructions requires a sequence of three machine codes. 
The first code is the instruction. It designates the nature of the operation 
and points to a particular register. For instance, 173 designates a loading 
operation from RAM into the A register. The two codes following the in
struction represent the address of the data. The least-significant, or low 
portion, comes first, followed by the most-significant, or high portion. 
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173 addrL addrH loads the content of a memory 
address represented as addrL and addrH into 
the A register. 

174 addrL addrH loads the content of a memory 
address represented as addrL and addrH into 
the X register. 

172 addrL addrH loads the content of a memory 
address represented as addrL and addrH into 
the Y register. 

What three codes are necessary for loading the A register with the data 
in RAM address 825? Well, the first code in the sequence is 173. The two 
following code numbers represent address 825, broken down into the low 
and high decimal parts. In this case, addrL=57, and addrH=3. So the 
proper code sequence is: 

173 57 3 

What would the following code sequence do? 

172 44 2 

The first number in the series indicates a loading operation to the Y register 
from some memory address. The address, here coded as 44 2, is actually 
address 554. 

See if you can work out the coding sequence for loading the X register 
with data contained in RAM address 1024. 

Table 8-1 summarizes the six register-loading instructions cited thus 
far. The list also includes the standard mnemonics (pronounced nee-MON
ics) for each coding sequence. The mnemonics describe the operations in a 
shorthand form that is far more meaningful to programmers than the actual 
machine-language sequences are. 

Suppose you are preparing a program that will load a value of 55 di-

Table 8-1. Register-Loading Instructions 

Mnemonic Machine Code Definition 

LDA #data 169 data Loads data immediately to register A 
LDA addr 173 addrL addrH Loads the content of addr to register A 
LDX #data 162 data Loads data immediately to register X 
LDX addr 174 addrL addrH Loads the content of addr to register X 
LDY #data 160 data Loads data immediately to register Y 
LDY addr 172 addrL addrH Loads the content of addr to register Y 
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rectly to the A register. As you saw earlier in this discussion, the proper 
machine-language sequence would be: 

169 SS 

The microprocessor can understand the coding sequence, but programmers 
find it difficult. A more human-oriented way to express the same operation 
is by writing this: 

LOA #SS 

Literally interpreted, that assembly-language instruction says: Load a 
value of 55 into the A register. 

What, then, is the literal interpretation of the following assembly
language instruction? 

LOY 1020 

It means: Load the Y register with data contained in address 1020. The 
machine-language sequence would be: 

172 2S2 3 

Storing Data from the Registers Just as there are machine
language instructions for loading data into the registers, there are machine
language instructions for storing the contents of the registers in memory. 
There are just three such instructions used in this chapter. They are 141, 
142, and 140, and they store data from registers A, X, and Y, respectively. 

141 addr L addr H stores the content of the A regis
ter at an address represented by addrL and 
addrH. 

142 addrL addrH stores the content of the X regis
. ter at an address represented by addrL and 

addrH. 
140 addrL addrH stores the content of the Y regis

ter at an address represented by addrL and 
addrH. 

The instructions are all three-code sequences. The first code desig
nates the operation (store) and the register involved (A, X, or Y). The two 
final codes indicate the address that is to accept the data. 
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Suppose it is necessary to store the content of the A register at RAM 
address 800. The appropriate machine-language sequence for doing that is: 

141 32 3 

where 141 is the instruction, 32 is addrL for address 800, and 3 is addrH for 
address 800. 

Table 8-2 summarizes these three instructions along with their 
mnemonics. 

The assembly-language version of the example just cited is 

STA 800 

It means: Store the content of register A at address 800. 

Table 8-2. Register-Reading Instructions 

Mnemonic Machine Code Definition 

STA addr 141 addrL addrH Stores the content of register A at addr 
STX addr 142 addrL addrH Stores the content of register X at addr 
STY addr 140 addrL addrH Stores the content of register Y at addr 

Going and Returning There are two more helpful machine
language instructions. One tells the microprocessor where to begin execut
ing a machine-language subroutine, and the other tells the system to return 
to the main routine. They are much like the BASIC GOSUB and RETURN 
statements. Table 8-3 shows those instructions and their assembly
language, mnemonic forms. 

The assembly-language instruction JSR addr tells the microprocessor 
to jump to a routine that begins at address addr, and keep track of where to 
return when the routine is done. JSR 841, for example, means: Jump to a 
routine beginning at address 841, and keep track of the place to return. The 
corresponding machine-language version of that instruction is: 

32 73 3 

The first code, 32, is the instruction, 73 is the addrL part of address 841, 
and 3 is the addrH part. 

Table 8-3. Jump-to-Subroutine and Return Instructions 

Mnemonic Machine Code Definition 

JSR addr 32 addrL addrH Executes a subroutine that begins at addr 
RTS 96 Returns operations to the calling routine 
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The RTS assembly-language instruction is a one-code instruction-96. 
Whenever the microprocessor encounters the number 96 as an instruction, 
it returns to the place in a program that is previously saved by a JSR in
struction. Most machine-language routines end with an RTS instruction. 

Some Preliminary Examples Before seeing exactly how machine 
language ought to be presented to the microprocessor, consider a few 
examples of the kind of thinking that goes into composing such programs. 

Example I: Write a machine-language sequence that stores character code 
20 at address 1024. Recall that 20 is the character code for an inverse space 
and that 1024 is the video RAM address of the first point in the upper 
left-hand corner of the screen. The routine, then, should plot a square of 
light at that point on the screen. 

The program sequence goes like this: 

1. Load a value of 20 directly into the A register. 
2. Store that value at address 1024. 

The assembly-language version looks like this: 

LDA #20 
STA 1024 

;LOAD INVERSE SPACE TO REGISTER A 
;STORE IT TO VIDEO ADDRESS 1024 

The explanations following each instruction and separated from the in
struction by a semicolon are called comments. Their only purpose, if they 
are used at all, is to help the programmer remember the purpose of the 
instruction. Comments in assembly-language programs are like REMs in 
BASIC. 

The microprocessor cannot understand the program as presented in 
this assembly-language form. So one step remains-to tum the instructions 
into their machine-language form. Referring to the tables shown earlier, 
those two machine-language instructions look like this: 

169 20 
141 0 4 

Combining both the assembly-language version (often called the 
source-code version) and the machine-language version (object-code ver
sion) into a single presentation, we have: 

169 20 LOA #20 ;LOAD INVERSE SPACE TO REGISTER A 
141 0 4 STA 1024 ;STORE IT TO VIDEO ADDRESS 1024 
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The left-hand column, contammg the machine-language version of the 
program, is the object-code field. The middle column, containing the 
assembly-language version of the program, is the source-code field. The 
last column, containing the comments, is the comment field. 

Example 2: Fetch the character code from video address 1024 and load it 
to ·video address 1025. In effect, we want to shift the character in the first 
space in the upper left-hand comer of the screen one place to the right. 

The programming sequence ought to go something like this: 

1. Load the contents of address 1024 into the A register in the micro
processor. 

2. Load the contents of the A register into address 1025 in the video 
memory. 

The assembly-language version of those two steps is: 

LDA 1024 
STA 1025 

;FETCH THE CODE FROM ADDRESS 1024 
;STORE THE CODE TO ADDRESS 1025 

The machine-language version is: 

173 0 4 
141 1 4 

Together, they look like this: 

173 0 4 
141 1 4 

LDA 1024 
STA 1024 

;FETCH THE CODE FROM ADDRESS 1024 
;STORE THE CODE TO ADDRESS 1025 

Example 3: Set up a machine program that 

1. Loads a value of 16 directly into the X register. 
2. Loads a value of 44 directly into the A register. 
3. Calls a machine-language subroutine that begins at address 845. 
4. Returns to the calling routine. 

We begin with the assembly-language version: 

LDX #16 
LDA #44 
JSR 845 
RTS 

;LOAD 16 TO THE X REGISTER 
;LOAD 44 TO THE A REGISTER 
;CALL THE ROUTINE AT ADDRESS 845 
;RETURN TO THE CALLING ROUTINE 
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Then, we generate the machine-language sequence: 

162 16 
169 44 
32 77 3 
96 

Next, we put it all together: 

162 16 
169 44 
32 77 3 
96 

LDS #16 
LDA #44 
JSR 845 
RTS 

;LOAD 16 TO THE X REGISTER 
;LOAD 44 TO THE A REGISTER 
;CALL THE ROUTINE AT ADDRESS 845 
;RETURN TO THE CALLING ROUTINE 

ENTERING AND RUNNING MACHINE-LANGUAGE ROUTINES 
The microprocessor reads and executes machine language directly 

from memory. The microprocessor expects to find the codes residing in a 
strict sequential order and executes them that way. There are no line 
numbers; rather, the codes reside in a block of memory. The memory ad
dresses, and not line numbers, are the only real organizers for machine
language programs. 

So before you begin entering machine-language programs, you must 
determine where they will be deposited in RAM. You certainly don't want 
to put them into video RAM, because that memory is dedicated to another 
application. And you shouldn't try putting them into RAM that might be 
used by BASIC programs. In short, you must use RAM that will not be 
used for anything else. 

There happens to be some space in RAM that isn't used at all if you 
are not running under DOS or using certain lineprinters. Even if you are 
using DOS, this RAM space is used only while booting up the system, so 
you can use the space as long as you don't boot up DOS after loading your 
machine codes. This largely unused block of RAM extends from address 
768 to 1023; it is just below the section devoted to low-resolution graphics 
and text. That is a great place to deposit short machine-language routines 
and any variables such routines might use. 

Fig. 8-1 is a memory map that we will be using for most machine
language routines. It sets aside addresses 800 through 899 for short 
machine-language routines. There is enough space for 100 individual codes 
in that range. The upper part of that memory map can be used for saving 
variables that are required for executing the routines. Such a block of 
memory, here shown between addresses 900 and 924, is called a scratch
pad memory. 
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925 .....---------~ 
MACHINE LANGUAGE 

VARIABLES 
1900-924) 

U) 

~ 900 I------------! 
ex: 
C> 
C> 
<>: 
2 
<>: 
ex: 

SHORT MACHINE-LANGUAGE 
ROUTINES 
1800899) 

800 '-------------' 

Fig. 8-1. Maclnine-language memory map. 

In principle, you are free to use other RAM space anywhere else in the 
usable part of memory, but I have chosen this block of memory because it 
is never disturbed by BASIC programs. 

When it is time to enter the machine-language routine, POKE the 
codes into successively higher addresses in your block of memory. So if a 
particular routine begins with a code sequence such as: 

173 0 4 

enter it this way: 

POKE 800, 173 
POKE 801,0 
POKE 802,4 

And if you want to continue the program with another sequence such as: 

141 1 4 

continue the entry process with: 

POKE 803,141 
POKE 804,1 
POKE 805,4 

The example thus far shows the two sequences of three codes occupy
ing RAM addresses 800 through 805. If there were more to the program, 
you would continue POKEing codes into successively higher RAM ad
dresses until they were all stored. 
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Consider this complete routine: 

169 30 
141 44 0 
169 15 
160 12 
32 25 248 
96 

lDA #30 
STA 44 
LDA #15 
LDY #12 
JSR -2023 
RTS 

;LOAD 30 TO REGISTER A 
;STORE IT IN ADDRESS 44 
;LOAD 15 TO REGISTER A 
;LOAD 12 TO REGISTER Y 
;CALL A ROUTINE AT -2023 
;RETURN TO CALLING ROUTINE 
;IN BASIC 

The machine-language instructions in that routine are entered into the 
system as follows: 

POKE 800, 169 
POKE 801,30 
POKE 802, 141 
POKE 803,44 
POKE 804,0 
POKE 805, 169 
POKE 806,15 
POKE 807, 160 
POKE 808,12 
POKE 809,32 
POKE 810,25 
POKE 811,248 
POKE 812,96 

That machine-language program now occupies RAM locations 800 through 
812, and you can CALL 800 from BASIC to execute it. 

Here is a complete rendition of the program, including the addresses of 
the first code in each instruction: 

800 169 30 
802 141 44 0 
805 169 15 
807 160 12 
809 32 25 248 
812 96 

LDA #30 
STA 44 
LDA #15 
LDY #12 
JSR -2023 
RTS 

;LOAD 30 TO REGISTER A 
;STORE IT IN ADDRESS 44 
; LOAD 15 TO REGISTER A 
;LOAD 12 TO REGISTER Y 
;CALL A ROUTINE AT -2023 
;RETURN TO CALLING ROUTINE 
;IN BASIC 

That says everything that needs to be said about the program. In left-to
right order, it shows the address of the first code in each instruction, the 
object-code version of each instruction, the source-code version of each 
instruction, and an appropriate comment. 
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To check out the program, POKE the series of 13 codes into addresses 
800 through 812. Then enter and run this BASIC routine: 

10 CALL -936 
20 GO SUB 100 
30 GR 
40 COLOR=9 
50 CALL 800 
60 END 

If you have POKEd the machine-language routine into addresses 800 
to 812, as suggested, you should see an orange line drawn on the screen. 
Notice that the BASIC routine simply sets up the graphics mode and color 
code 9. Line 40 CALLs your machine-language routine-a machine
language version of the BASIC HLIN statement. After executing the 
machine-language program, the system returns to BASIC line 50 and comes 
to an END. 

You can now run that BASIC program any number of times, and each 
time it will draw the line by calling up your machine-language routine. In 
fact, you can do a NEW to wipe out the BASIC portion of the program 
without disturbing the language routine. Try it, then re-enter the BASIC 
program and run it. Indeed, the machine-language routine is not affected by 
BASIC operations. Of course, turning off the computer erases the routine. 
But you can save it by including the POKEing operation in the BASIC 
program that uses it. Consider this: 

10 CALL -936 
20 GO SUB 100 
30 GR 
40 COLOR=9 
50 CALL 800 
60 END 

100 POKE 800,169: POKE 801,30 
110 POKE 802,141: POKE 803,44: POKE 804,0 
120 POKE 805,169: POKE 806,15 
130 POKE 807,160: POKE 808,12 
140 POKE 809,32: POKE 810,25: POKE 811, 248 
150 POKE 812,96 
160 RETURN 

That BASIC program POKEs the machine-language routine by means 
of a subroutine in lines 100 through 160. After that, it executes the opera
tions for setting up the graphics mode and calling the machine-language 
routine from program line 50. BASIC programs that call custom machine-
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language programs are generally written in this fashion. These BASIC 
programs include the POKE subroutine (often called the loader routine) 
necessary for loading the machine language into memory. They also in
clude the BASIC routines that call the machine-language routine at the 
moment. The entire program can be saved on cassette or disk without hav
ing to worry about loading or saving the machine-language routine sepa
rately. 

CALLING SOME MONITOR ROUTINES Recall from discussions 
in previous chapters that there is a family of monitor routines that can be 
called directly from BASIC. Those routines, summarized in Table 8-4, re
quire no special setup with machine-language instructions. However, there 
is no reason machine language may not be used. For example, the normal 
way to execute a HOME operation is by doing a CALL -936 from BASIC. 
You can do the same thing with machine language by executing the se
quence 32 88 252. That sequence represents a JSR -936. The other instruc
tions in the table also begin with a code 32, or JSR, instruction. 

The main purpose of this discussion, though, is to introduce some 
other monitor routines that cannot be called directly from BASIC, or to be 
more precise, that require some machine-language routines. 

Printing With STOADV The STOADV routine prints a single char
acter on the screen and advances the cursor position. The routine begins at 
address -1040, but it cannot be properly executed unless you first load the 

Table 8-4. Monitor Routines Available to BASIC 

From 
From Machine 

Routine BASIC Language 

Linefeed/Carriage Return CALL -926 32 98 252 
Home and clear CALL -936 32 88 252 
Advance the cursor CALL -1036 32 244 251 
Backspace the cursor CALL -1008 32 16 252 
Upward linefeed CALL -998 32 26 252 
Downward linefeed CALL-922 32 102 252 
Clear to end of line CALL -868 32 156 252 
Clear to end of page CALL -958 32 68 252 
Clear top of mixed graphics CALL -1994 32 54 248 
Clear full-screen graphics CALL -1998 32 50 248 
Wait for any keystroke CALL -741 32 27 253 
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desired character code into the A register. Thus, an appropriate assembly
language routine using STOADV looks like this: 

LDA #CHAR 
JSR -1040 
RTS 

;LOAD DESIRED CHARACTER CODE TO A 
;CALL STOADV TO PRINT IT 
;RETURN TO BASIC 

The operator CHAR represents the character code of the character to be 
printed on the screen. 

If the character to be printed happens to be a flashing X, the complete 
machine program takes this form: 

800 169 88 LDA #88 
802 32 240 251 JSR -1040 
805 96 RTS 

;LOAD FLASHING XTO REGISTER A 
;CALL STOADV TO PRINT IT 
;RETURN TO BASIC 

That would specify the setup routine in RAM locations 800 through 805. An 
appropriate BASIC routine for doing the actual programming could look 
like this: 

100 POKE 800,169: POKE 801,88 
110 POKE 802,32: POKE 803,240: POKE 804,251 
120 POKE 805,96 

Enter and run that basic program, and you will have the machine
language routine loaded into the system. You won't see anything happening 
as the system executes that BASIC program-it simply loads the machine
language routine for you. To see the effect of STOADV, you must now 
write a BASIC program that calls your machine-language routine. Try this: 

10 CALL -936 
20 FOR N=0 TO 255 
30 CALL 800 
40 NEXT N 
50 END 

Assuming that you have previously run the machine-language loader, run
ning this program clears the screen, homes the cursor, and calls the 
machine-language subroutine 256 times to print the flashing-X characters 
that many times on the screen. 

If you want to change the number of flashing-X characters printed on 
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the screen, simply revise the BASIC program at line 20. But if you want to 
change the character that the machine-language subroutine prints, you 
must POKE a different character code into address 801. For instance, enter 
POKE 801,32 and run the BASIC calling routine again. Notice this time 
that the machine-language subroutine loads an inverse-space character into 
register A. 

Printing With COUT1 COUTl prints a character to the screen and 
advances the cursor in much the same way that STOADV does. The only 
real difference is that COUTJ cannot print any of the "control" character 
codes between 128 and 159. 

The COUTI monitor routine begins at address -528, and the character 
to be printed must be residing in register A just prior to the execution of 
that routine. The assembly-language form of a routine that uses COUTl 
looks something like this: 

LDA #CHAR 
JSR -528 
RTS 

The machine-language and assembly-language versions, beginning from 
RAM address 800, look like this: 

800 169 24 LDA #24 
802 32 240 253 JSR -528 
805 96 RTS 

;LOAD AN INVERSE XTO REGISTER A 
;RUN THE COUT1 ROUTINE 
;RETURN TO BASIC 

That calls for loading character-code 24 into the A register, then printing it 
to the screen via the COUTI monitor routine. The custom routine ends 
with RTS to return control to the BASIC program that called it in the first 
place. 

Given the addresses and machine codes for this printing routine, enter 
and run this BASIC loader for it: 

100 POKE 800,169: POKE 801,24 
110 POKE 802,32: POKE 803,240: POKE 804,253 
120 POKE 805, 96 

Once you have run that loading routine, you can delete it without disturb
ing the machine-language programming. 

Try out the custom machine-language routine with a BASIC program 
such as this one: 
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10 CALL -936 
20 FOR N=0 TO 255 
30 CALL 800 
40 NEXT N 
50 END 

That calls the custom machine-language routine 256 times in succession, 
printing an inverse-X character and advancing the cursor each time. 

Printing Blanks With PRBL2 A monitor routine called PRBL2 lets 
you print between 1 and 256 blanks in succession on the screen. Before it 
can run properly, however, you must load the number of blanks to be 
printed into the X register. The routine cannot print 0 blanks, so if you load 
a 0 into the X register, PRBL2 will print 256 blanks in succession. 

The general assembly-language form of a routine using PRBL2 looks 
like this: 

LDS #BLNK ;LOAD NUMBER OF BLANKS TO REGISTER X 
JSR -1718 ;CALL THE PRBL2 MONITOR ROUTINE 
RTS ;RETURN TO BASIC 

The second instruction indicates that the space-printing routine in the 
monitor begins at address -1718. 

Assuming you want to begin such a routine at address 800, the assem
bled version takes this form: 

800 162 40 
802 32 74 249 
805 96 

LDX #40 
JSR -1718 
RTS 

;LOAD 40 TO REGISTER X 
;PRINT THE BLANKS 
;RETURN TO BASIC 

The idea is to have the routine print 40 blanks in succession. The BASIC 
version of the machine-language loader can look like this: 

100 POKE 800,162: POKE 801,40 
110 POKE 802,32: POKE 803,74: POKE 804,249 
120 POKE 805,96 

After entering and running that machine-language loader, you can print 
40 blanks in succession by doing a CALL 800 from BASIC. It is possible to 
change the number of blanks by POKEing some number other than 40 into 
address location 801. 
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Setting the Low-Resolution Color With SETCOL A monitor 
routine that begins at address -1948 can set up the color to be plotted under 
low-resolution graphics, provided that you load the color code into the A 
register first. The routine is called SETCOL, and it is normally executed 
before doing a different routine that does the actual low-resolution plotting. 

Soon you will see how to set up some low-resolution plotting routines 
from machine language. For now, however, it is more important to see how 
SETCOL works. The general form is: 

LDA #COL 
JSR -1948 
RTS 

;LOAD THE COLOR CODE (0- 15) TO REGISTER A 
; EXECUTE SETCOL 
;RETURN TO BASIC 

If we choose to load that program from address 800, then the source code 
and object code look like this: 

800 169 9 
802 32 100 248 
805 96 

LDA #9 
JSR -1948 
RTS 

An appropriate loader is: 

100 POKE 800,169: POKE 801,9 

;LOAD ORANGE TO REGISTER A 
; EXECUTE SETCOL 
;RETURN TO BASIC 

110 POKE 802,32: POKE 803,100: POKE 804,248 
120 POKE 805, 96 

Enter and run that loader to get the custom machine-language routine 
into memory. After that, test its operation with a BASIC program such as 
this one: 

10 GR 
20 CALL 800 
30 HUN 0,39 AT 10 
40 END 

The CALL 800 in this case replaces the usual COLOR statement in 
BASIC. The color set by the machine-language routine is orange, so this 
program plots an orange bar across the screen. To change the color, simply 
POKE a different color code right into the custom machine-language pro
gram at address 801. 

Using the Monitor Version of PLOT The PLOT statement in 
BASIC is easy to use, but there is a machine-language version of it tucked 
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away at address -2048 in the monitor. Before using it, you must set up 
some registers. Specifically, you must load the vertical coordinate into reg
ister A, and the horizontal coordinate into register Y. 

An assembly-language version of a routine that uses PLOT takes this 
form: 

LDA #VERT 
LDY #HORZ 
JSR -2048 
RTS 

;LOAD VERTICAL COORDINATE TO REGISTER A 
;LOAD HORIZONTAL COORDINATE TOY 
;CALL MONITOR'S PLOT 
;RETURN TO BASIC 

The following routine begins at address 800 and plots a low-resolution 
block at coordinates IO and 8: 

800 169 8 
802 160 10 
804 32 0 248 
807 96 

LDA #8 
LDY #10 
JSR -2048 
RTS 

; LOAD VERTICAL 8 TO REGISTER A 
; LOAD HORIZ 10 TO REGISTER Y 
;CALL MONITOR'S PLOT ROUTINE 
;RETURN TO BASIC 

Its loader looks like: 

100 POKE 800,169: POKE 801,8 
110 POKE 802,160: POKE 803,10 
120 POKE 804,32: POKE 805,0: POKE 806,248 
130 POKE 807, 96 

After entering and running that BASIC loader, test the customized 
PLOT routine with this BASIC program: 

10 GR 
20 COLOR=2 
30 CALL 800 
40 END 

The CALL 800 in this instance replaces the usual PLOT statement of 
BASIC. The custom machine-language routine plots COLOR at coordi
nates 10 and 8. You can alter the coordinates specified by the machine
language routine by POKEing different values (from 0 to 39) into addresses 
801 and 803. 

You can also replace the color statement in line 20 of the BASIC pro
gram with a CALL to a second machine-language routine that sets the 
plotting color. Or, you might include the SETCOL routine-described in 
the previous section-the same custom machine-language routine that 
PLOT is a part of. Consider this assembly-language program: 
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800 169 9 
802 32 100 248 
805 169 12 
807 160 10 
809 32 0 248 
812 96 

LDA #9 
JSR -1948 
LDA #12 
LDY #10 
JSR -2048 
RTS 

;ORANGE COLOR CODE TO REGISTER A 
; EXECUTE SETCOL 
;SET VERTICAL PLOT TO REGISTER A 
;SET HORIZ PLOT TO REGISTER Y 
; EXECUTE MONITOR'S PLOT 
;RETURN TO BASIC 

This custom machine-language program sets up color code 9, and plots 
that color at coordinates IO and 12. The appropriate BASIC loader routine 
can look like this: 

100 POKE 
110 POKE 
120 POKE 
130 POKE 
140 POKE 
150 POKE 

800,169: POKE 801,9 
802,32: POKE 803,100: POKE 804,248 
805,169: POKE 806,12 
807,160: POKE 808,10 
809,32: POKE 810,0: POKE 811,248 
812,96 

Enter and run that loader. After that, check it out with this BASIC pro
gram: 

10 GR 
20 CALL 800 
30 END 

Notice that the BASIC loader for this two-phase machine-language 
program is longer than the BASIC program that uses it. What's more, the 
entire machine-language program could be replaced with two simple 
BASIC statements, COLOR=9 and PLOT 10,12. Though BASIC seems 
simpler now, you will later find you can do things with machine language 
that are almost impossible to do with BASIC. 

Drawing Horizontal Lines With HLINE The HLINE routine at 
address -2023 draws a low-resolution horizontal line between two 
prescribed points on the screen, using a prescribed color code. It is the 
machine-language version of the BASIC HLIN statement. 

Before running HLINE, the microprocessor must have the vertical 
position of the line in its A register, the left-hand horizontal coordinate in 
the Y register, and the right-hand horizontal coordinate in address location 
44. So the general machine-language setup for the HLINE routine goes 
something like this: 
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LOA #REND 
STA 44 
LDA #VERT 
LDY #LEND 
JSR -2023 
RTS 

; LOAD RIGHT COORDINATE TO REGISTER A 
;STORE IT TO ADDRESS 42 
; LOAD VERTICAL POSITION TO REGISTER A 
;LOAD LEFT COORDINATE TO REGISTER Y 
;EXECUTE THE MONITOR'S HLINE ROUTINE 
;AND RETURN TO BASIC 

Just as with HUN, the right-hand coordinate, left-hand coordinate, and 
vertical position can be integers in the range from 0 to 39. 

Assuming that you are setting the color code from BASIC and would 
like to run such a routine from address 800, you would write the assembly 
version like so: 

800 169 20 
802 141 00 44 
805 169 10 
807 160 5 
809 32 25 248 
812 96 

LDA #20 
STA 42 
LDA #10 
LDY #5 
JSR -2023 
RTS 

;RIGHT COORDINATE OF 20 
;STORE !TAT ADDRESS 42 
;VERTICAL POSITION OF 10 
;LEFT COORDINATE OF 5 
; EXECUTE HLINE 
;RETURN TO BASIC 

That particular routine is set up to draw a horizontal line of some 
prescribed color between horizontal coordinates 5 and 20 at vertical posi
tion 10. It amounts to doing a HLIN 5,20 AT 10 from BASIC. 

Here is a suitable BASIC loader for that routine: 

100 POKE 800,169: POKE 801,20 
110 POKE 802,141: POKE 803,0: POKE 804,44 
120 POKE 805,169: POKE 806,10 
130 POKE 807,160: POKE 808,5 
140 POKE 809,32: POKE 810,25: POKE 811, 248 
150 POKE 812,96 

Enter and run that loader, then call it up at any later time with this sort of 
BASIC program: 

10 GR 
20 COLOR=4 
30 CALL 800 
40 END 
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This will draw the horizontal line using color code 4. If you want to change 
the right-hand coordinate of the line, POKE the desired value into address 
801. If you want to change the left-hand coordinate, POKE the new value 
into address 808. Finally, if you want to change the vertical position, 
POKE the new value into address 806. 

Drawing Vertical lines With VUNE Just as the HLINE routine 
draws horizontal lines, the VLINE routine at address -2008 draws vertical 
lines. The necessary setup in this case is to get the top vertical coordinate 
into register A, the bottom vertical coordinate into RAM address 45, and 
the horizontal position into register Y, as shown here: 

LDA #BEND ;BOTTOM COORDINATE TO REGISTER A 
STA 45 ;STORE IT AT ADDRESS 45 
LDA #TEND ;TOP COORDINATE TO REGISTER A 
LDY #HORZ ;HORIZONTAL COORDINATE TO REGISTER Y 
JSR -2008 ;EXECUTE MONITOR'S VLINE ROUTINE 
RTS ; RETURN TO BASIC 

The BEND, TEND, and HORZ values can be anywhere from 0 to 30, just 
as long as BEND is greater than TEND. The BASIC equivalent of this is: 

VLIN TEND,BENO AT HORZ 

Use Tables 8-1, 8-2, and 8-3 to assemble that program (that is, convert 
it to machine language), beginning from address 800. Make up and check 
out a BASIC loader for it. The program will be quite similar to the one 
illustrated for HLINE in the previous section of this chapter. 

Getting Key Codes With RDKEY · A monitor routine located at 
address -756 prints the blinking cursor on the screen and waits for the user 
to make a keystroke. It loads the key code for the key into the A register, 
and goes on from there. Doing a CALL -756 directly from a BASIC pro
gram can be a useful trick whenever you want to halt operations until the 
user strikes any key; but the key code, itself, is lost when RDKEY is used 
that way. 

Recall that the monitor routine COUTl prints to the screen whatever 
character is represented in the A register. You can now write a short 
machine-language routine that calls RDKEY to fetch a key code to the A 
register, then calls COUTl to print the character to the screen. The routine 
is: 

800 32 12 253 JSR RDKEY ;GET A KEY CODE TO A 
803 32 240 253 JSR COUT1 ;PRINT IT TO THE SCREEN 
806 96 RTS ;RETURN TO THE CALLING PROGRAM 
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The BASIC loader for this routine looks like this: 

100 POKE 800,32: POKE 801,12: POKE 802,253 
110 POKE 803,32: POKE 804,240: POKE 805,253 
120 POKE 806,96 

Enter and run that loader, then check its operation with this short BASIC 
program: 

10 CALL -936 
20 CALL 800 
30 GOTO 20 

You should find that you can type away on the screen to your heart's 
content and control the cursor's position. The program represents a full
screen text editor. 

Table 8-5 summarizes the monitor routines that are featured in this 
chapter. The table begins by showing the name of the routine, its starting 
address, and the code sequence for executing it from your own machine
language routine. The accompanying comments describe what the routine 
does and the required setup procedures. 

PASSING VARIABLES TO A MACHINE-LANGUAGE 
ROUTINE You might have noticed that all but the RDKEY routine 
described thus far in this chapter require some preliminary setup data. The 
COUT l routine, for example, requires that the desired character code be 
loaded into register A. So far, you have been supplying this data by POKE
ing it to the X, Y, or A registers. But there is a better way to pass a 
variable to machine-language routines, and that is by passing it through a 
register of variables. This "register" occupies addresses 900 through 924, 
as shown in Fig. 8-1. 

Suppose that you want to use the STOADV routine to print out the 
entire Apple character set. The idea is to pass the character codes one at a 
time and in succession to a custom STOADV setup routine. Here is what 
the machine-language portion of the program might look like: 

LDA 900 
JSR STOADV 
RTS 

;LOAD REGISTER A WITH THE CONTENT OF 900 
;PRINT IT TO THE SCREEN 
; RETURN TO THE CALLING PROGRAM 

Whatever character code happens to be in address 900 is thus printed to the 
screen by the subsequent STOADV routine. The idea is to POKE the de-
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Table 8-5. Monitor Routines Not Available to BASIC 

Mnemonic Machine Code Definition Requirement 

STOADV -1040 32 240 251 
Prints a character Load the char-
to the screen and acter code to reg-
advances the ister A prior to 
cursor calling this 

routine from ma-
chine language 

COUTl -528 32 240 253 Prints all but a Load the char-
control character acter code to reg-
to the screen and ister A prior to 
advances the calling this 
cursor routine from ma-

chine language 

PRBL2 -1718 32 74 249 Prints between 1 Load the number 
and 256 con- of blanks to the 
secutive blanks X register prior 
on the screen to calling this 

routine from ma-
chine language 

SETCOL -1948 32 100 248 Sets the graphic Load the color 
color for low- code (0-15) to the 
resolution opera- A register prior 
tions to calling this 

routine from ma-
chine language 

PLOT -2048 32 0 248 Plots a low- Prior to calling 
resolution block this routine from 
of a prescribed machine Ian-
color at graphic guage: 
coordinates X Load the Y 
and Y coordinate to reg-

ister A 
Load the X 

coordinate to reg-
ister Y 
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Table 8-5-cont. Monitor Routines Not Available to BASIC 

Mnemonic, Machine Code Definition Requirement 

HLINE -2023 32 25 248 Plots a low- Prior to calling 
resolution hori- this routine from 
zontal line of a machine lan-
prescribed color guage: 

Load the end-
ing X coordinate 
to address 44 

Load the Y 
position to regis-
ter A 

Load the start-
ing X coordinate 
to register Y 

VLINE -2008 32 40 248 Plots a low- Prior to calling 
resolution verti- this routine from 
cal line of a machine lan-
prescribed color guage: 

Load the end-
ing Y coordinate 
to address 45 

Load the start-
ing Y coordinate 
to register A 

Load the X 
position to regis-
ter Y 

RD KEY -756 32 12 253 Prints the flash- Executing this 
ing cursor and routine from ma-
waits for a key- chine language 
stroke leaves the key 

code in register 
A 
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sired character code to address 900 just prior to calling the machine
language routine. 

You can assemble the machine-language routine this way: 

800 173 132 3 LDA 900 
803 32 240 251 JSR STOADV 
806 96 

and load it from BASIC this way: 

;FETCH CHARACTER TO A 
;PRINT IT 
;RETURN TO CALLING ROUTINE 

100 POKE 800,173: POKE 801,132: POKE 802,3 
110 POKE 803,32: POKE 804,240: POKE 805,251 
120 POKE 806,96 

The BASIC program that uses that routine can have this form: 

10 CALL -936 
20 FOR N=0 TO 255 
30 POKE 900,N 
40 CALL 800 
50 NEXT N 
60 END 

Line 30 in that program passes the value of variable N to address 900 
just before calling the subroutine in line 40. So as the BASIC portion of the 
program lets N cycle from 0 through 255, those values are passed to the 
machine-language portion of the program through address 900. 

Table 8-6 shows the scratchpad portion of our custom memory map, 
addresses 900 through 924, broken down into addrL and addrH compo
nents. That should help you quite a bit when it comes to assembling 
machine-language routines that refer to those address locations. 

The BASIC program in Listing 8-1 passes four different variables to a 
machine-language routine. The routine in this instance sets up and executes 
the low-resolution graphics SETCOL and HLINE. SETCOL requires a 
color code, so BASIC passes that code to the routine. HLINE requires an 
X starting point, an X ending point, and a Y coordinate; BASIC passes 
them to the machine-language routine as well. 

Here is a line-by-line analysis of the BASIC portion of the program: 

Line 10 goes to the loader subroutine at line 200. 
Line 20 sets the TEXT mode and clears the screen. 
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Table 8-6. High and Low Address Components of Scratchpad 

Address addrL addrH 

900 132 3 
901 133 3 
902 134 3 
903 135 3 
904 136 3 

905 137 3 
906 138 3 
907 139 3 
908 140 3 
909 141 3 

910 142 3 
911 143 3 
912 144 3 
913 145 3 
914 146 3 

915 147 3 
916 148 3 
917 149 3 
918 150 3 
919 151 3 

920 152 3 
921 153 3 
922 154 3 
923 155 3 
924 156 3 

Lines 30 and 40 INPUT the desired color code CC, and POKE it to 
scratchpad memory location 900. 

Lines 50 and 60 INPUT the starting X coordinate as XSTRT and the Y 
coordinate as YSTRT, and POKEs them to memory locations 901 
and 902, respectively. 

Line 70 INPUTS the desired line length as LNTH. 
Line 80 calculates the ending X coordinate by summing XSTRT and 

LNTH, and POKEs the result to address 903. 
Lines 90 and 100 set the GR mode and call the machine-language sub

routine that draws the line on the screen. 
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Listing 8-1. Passing Variables to a Machine-Language Routine. 

10 GOSUB 200 
20 TEXT : CALL -936 
30 INPUT "WHAT COLOR CODE (0-15)",CC 
40 POKE 900,CC 
50 INPUT "WHAT STARTING COORDINATE (AS X,Y)",XSTRT,YSTRT 
60 POKE 901,XSTRT: POKE 902,YSTRT 
70 INPUT "HOW LONG",LNTH 
80 POKE 903,XSTRT+LNTH 
90 GR 

100 CALL 800 
110 PRINT "STRIKE ANY KEY TO DO AGAIN 
120 CALL -741: GOTO 20 
200 POKE 800,173: POKE 801,132: POKE 802,3 
210 POKE 803,32: POKE 804,100: POKE 805,248 
220 POKE 806,173: POKE 807,135: POKE 808,3 
230 POKE 809,141: POKE 810,44: POKE 811,0 
240 POKE 812,173: POKE 813,134: POKE 814,3 
250 POKE 815,172: POKE 816,133: POKE 817,3 
260 POKE 818,32: POKE 819,25: POKE 820,248 
270 POKE 821,96 
280 RETURN 

Lines 110 and 120 prompt the user to STRIKE ANY KEY TO DO 
AGAIN, use a CALL -741 to wait for any keystroke, then loop back 
to line 20 to give the user a chance to enter the parameters for draw
ing a different line. 

Here is a memory map of the scratchpad memory for this program: 

900-Variable CC, the color code. 
901-Variable XSTRT, the starting X coordinate of the line. 
902-Variable YSTRT, the Y position of the line. 
903-Variable XEND, the sum of XSTRT and LNTH. 

The machine-language portion of the program grabs those values as 
they are needed. Here is a combined machine-language and assembly
language version of that routine: 

800 173 132 3 
803 32 100 248 
806 173 135 3 
809 141 44 0 
812 173 134 3 
815 172 133 3 
818 32 25 248 
821 96 

LOA CC 
JSR SETCOL 
LOA XEND 
STA 44 
LOA YSTRT 
LOY XSTRT 
JSR HLINE 
RTS 

;FETCH CC FROM 900 
;SET THE COLOR 
;FETCH XEND FROM 903 
;AND STORE IT TO 44 
; FETCH YSTRT FROM 902 
;XSTRT FROM 901 TO REGISTER Y 
;DRAW THE LINE WITH HLINE 
;RETURN TO CALLING PROGRAM 
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Listing 8-2. Passing Variables to Different Routines. 

10 GOSUB 200 
20 TEXT : CALL -936 
30 INPUT "WHAT COLOR CODE (0-15)",CC 
40 POKE 900,CC 
50 INPUT "WHAT STARTING COORDINATE (AS X,Y)",XSTRT,YSTRT 
60 POKE 901,XSTRT: POKE 902,YSTRT 
70 INPUT "HOW LONG",LNTH 
80 INPUT "HORIZONTAL OR VERTICAL (H/V)?", DIR$ 
90 IF DIR$="V" THEN 140 

100 IF DIR$#"H" THEN 80 
110 POKE 903,XSTRT+LNTH 
120 GR : CALL 800 
130 GOTO 160 
140 POKE 903,YSTRT+LNTH 
150 GR : CALL 822 
160 PRINT "STRIKE ANY KEY TO DO AGAIN 
170 CALL -741: GOTO 20 
200 POKE 800,173: POKE 801,132: POKE 802,3 
210 POKE 803,32: POKE 804,100: POKE 805,248 
220 POKE 806,173: POKE 807,135: POKE 808,3 
230 POKE 809,141: POKE 810,44: POKE 811,0 
240 POKE 812,173: POKE 813,134: POKE 814,3 
250 POKE 815,172: POKE 816,133: POKE 817,3 
260 POKE 818,32: POKE 819,25: POKE 820,248 
270 POKE 821,96 
280 POKE 822,173: POKE 823,132: POKE 824,3 
290 POKE 825,32: POKE 826,100: POKE 827,248 
300 POKE 828,173: POKE 829,135: POKE 830,3 
310 POKE 831,141: POKE 832,45: POKE 833,0 
320 POKE 834,173: POKE 835,134: POKE 836,3 
330 POKE 837,172: POKE 838,133: POKE 839,3 
340 POKE 840,32: POKE 841,40: POKE 842,248 
350 POKE 843,96 
360 RETURN 

Notice how it fetches the necessary variables from the little scratchpad 
memory as they are needed for setting up and executing the SETCOL and 
RUNE routines. 

The BASIC listing in Listing 8-2 works much the same way, but gives 
the user the option of selecting a horizontal or vertical line. This listing 
illustrates the technique for passing variables to a machine-language 
routine, and the notion of calling one of two different machine-language 
routines from a BASIC main program. 

Here is a detailed analysis of Listing 8-2: 

Line 10 goes to the machine-language loader routine at line 200. 
Line 20 sets the TEXT mode and clears the screen. 
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Lines 30 and 40 INPUT the desired color code as variable CC, and 
POKE it to scratchpad memory address 900. 

Lines 50 and 60 INPUT the starting X and Y coordinates as variables 
XSTRT and YSTRT, and POKE them to addresses 901 and 902, 
respectively. 

Line 70 INPUTs the desired line length as variable LNTH. 
Line 80 INPUTs the desired line direction (H or V) as string variable 

DIR$. 
Line 90 goes to line 140 if the user specifies a vertical line. 
Line 100 goes back to line 80 to INPUT DIR$ again if the direction is 

neither H nor V. 
Lines 110 through 130 set up and execute the routine for drawing a hori

zontal line. They POKE the ending X coordinate (XEND) to address 
903 as the sum of XSTRT and LNTH, set the GR mode, CALL the 
horizontal-drawing machine-language routine at address 800, and go 
to line 160 to prompt the user's next move. 

Lines 140 and 150 set up and execute the routine for drawing a vertical 
line. They POKE the ending Y coordinate (YEND) to address 903 as 
the sum of YSTRT and LNTH, set the GR mode, and CALL the 
vertical-drawing portion of the machine-language routine at address 
822. 

Lines 160 and 170 prompt the user to STRIKE ANY KEY TO DO 
AGAIN, wait for a keystroke, and return to line 20 to start the draw
ing INPUT routines again. 

Here is the scratchpad memory map: 

900-Variable CC, the color code. 
901-Variable XSTRT, the starting X coordinate for a horizontal line, or 

the X position for a vertical line. 
902-Variable YSTRT, the starting Y coordinate for a vertical line, or 

the Y position for a horizontal line. 
903-XEND (the sum of XSTRT and LNTH) for a horizontal line, 

YEND (the sum of YSTRT and LNTH) for a vertical line. 

The machine-language portion of the routine is divided into two sepa
rate parts: one for setting up and executing a horizontal-line drawing 
routine, and another for setting up and executing a vertical-line drawing 
routine. The part that draws horizontal lines begins at RAM address 800, 
and the portion that draws vertical lines begins at 822. So, to set up and 
draw a horizontal line, the BASIC program should CALL 800. To set up 
and draw a vertical line, the BASIC program should CALL 822. The ad
dresses 800 and 822 are the entry points for this machine-language routine: 
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800 173 132 3 
803 32 100 248 
806 173 135 3 
809 141 44 0 
812 173 134 3 
815 172 133 3 
818 32 25 248 
821 96 
822 173 132 2 
825 32 100 248 
828 173 135 3 
831 141 45 0 
834 173 134 3 
837 172 133 3 
840 32 40 248 
843 96 

LDA CC 
JSR SETCOL 
LDA XEND 
STA 44 
LDA YSTRT 
LDY XSTRT 
JSR HLINE 
RTS 
LDA CC 
JSR SETCOL 
LDA YEND 
STA 45 
LDA YSTRT 
LDY XSTRT 
JSR VLINE 
RTS 

;FETCH CC FROM 900 
;SET THE COLOR 
;FETCH XEND FROM 903 
;STORE IT TO ADDRESS 44 
; FETCH YSTRT FROM 902 
;XSTRT FROM 901 TO REGISTER Y 
;DRAW LINE FROM HLINE ROUTINE 
; RETURN TO CALLING ROUTINE 
; FETCH CC FROM 900 
;SET THE COLOR 
;FETCH YEND FROM 903 
;AND STORE IT TO ADDRESS 45 
; FETCH YSTRT FROM 902 
;XSTRT FROM 901 TO REGISTER Y 
;DRAW LINE FROM VLINE ROUTINE 
;RETURN TO CALLING ROUTINE 

PASSING VARIABLES FROM A MACHINE-LANGUAGE 
ROUTINE RDKEY is a commonly used monitor routine that waits for 
a keystroke from the keyboard. When that single keystroke occurs, the key 
code is placed into register A. BASIC cannot get directly to any of the 
registers in the microprocessor, but it can get to that information in an 
indirect fashion-by a routine that passes the key code through a desig
nated RAM location. 

You should be aware of the fact that executing a CALL - 741 from 
BASIC causes the system to wait for any keystroke to occur. Suppose, 
however, that you want the system to wait for a particular keystroke to 
occur. You can CALL RDKEY from BASIC, wait for the keystroke, pass 
the content of the A register back to BASIC, test the value and take appro
priate action from there. 

Consider this simple routine: 

800 32 12 253 
803 141 132 3 
806 96 

JSR RDKEY ;WAIT FOR A KEYSTROKE 
STA 900 ;SAVE KEY CODE IN 900 
RTS ;RETURN TO CALLING ROUTINE 

It simply executes the monitor's RDKEY routine. When the keystroke oc
curs, the key code in register A is passed to scratchpad address 900. List
ing 8-3 loads the routine and uses it from BASIC. 

Enter this program, run it, and follow the prompting messages. As far 
as the BASIC portion of the routine is concerned, a CALL 800 causes the 
system to wait for a keystroke. When that keystroke occurs, the corre
sponding key code is found in address 900. 
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Listing 8-3. Passing Variables From a Machine-Language Routine. 

10 GOSUB 200 
20 CALL -936 
30 PRINT "STRIKE SPACE BAR TO CONTINUE ... " 
40 CALL 800 
50 IF PEEK (900)<>160 THEN 40 
60 PRINT "IT WORKED!!" 
70 PRINT 
80 PRINT "WANT TO DO AGAIN (Y/N)?" 
90 CALL 800 

100 IF PEEK (900)=217 THEN 20 
110 IF PEEK (900)=206 THEN END 
120 GOTO 90 
200 POKE 800,32: POKE 801,12: POKE 802,253 
210 POKE 803,141: POKE 804,132: POKE 805,3 
220 POKE 806,96 
230 RETURN 

Line 40, for instance, calls this subroutine and returns with the key 
code at address 900. Line 50 in the program tests that value by PEEKing 
into 900 and comparing it with 160-the key code for a space-bar key
stroke. If the value in 900 is not 160, the BASIC program loops back to line 
40 to check the keyboard again. Line 60, in other words, is not executed 
until the user strikes the space bar. 

The BASIC program calls the machine-language routine again in line 
90. This time, however, the program is looking for either a Y (key code 20) 
or an N (key code 206). Line 120 handles any other keystroke by looping 
back to line 90 to call the machine-language routine again. 

It is possible to do the same sort of thing without resorting to a custom 
machine-language routine; a PEEK(-16384) strobes the keyboard in a simi
lar fashion and can assign the key code to any BASIC variable. That ap
proach, however, requires resetting the keyboard strobe by doing a POKE 
-16368,0. What's more, PEEK doesn't print a flashing cursor on the screen. 

So this is an instance where a short machine-language routine can 
make a common programming situation run a bit simpler and smoother. 
Bear in mind, though, that we are using it here as an example of passing a 
variable from machine language to BASIC. 
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The Memory Environment 
All personal computers have two kinds of memory: random

access memory (RAM) and read-only memory (ROM). The two dif 9 
fer in that RAM may be read from or written to, but ROM may only be 
read. Turning off the computer destroys data saved in RAM. Data in ROM, 
on the other hand, is stored permanently. Therefore, turning off the system 
doesn't affect the ROM. POKEing to ROM has no effect, either. 

Incidentally, 255 is the largest decimal number that can be POKEd into 
a RAM address location. Try POKEing a number larger than 255 and some 
entirely different value will be stored there. Having a 1-byte limit on the 
size of numbers that can be stored in RAM means that POKEing anything 
besides integer values from 0 to 255 will cause problems. 

The memory system is organized by addresses. Most of those ad
dresses are devoted to RAM and ROM devices, but there is a handful that 
are used for memory-mapped 1/0 functions. We will describe these RAM, 
ROM, and I/O addresses in this chapter, because knowing how memory is 
organized and how it is used can help you set up better programs and avoid 
some frustrating bugs. 

The discussions also introduce hexadecimal notation. (If you aren't 
sure about how to convert decimal to hexadecimal or hexadecimal back 
into decimal notion, take some time to study Appendix A.) In keeping with 
the Apple/6502 notation conventions, all hexadecimal notations are pre
ceded by a dollar sign; unless that dollar sign is shown, you can rightly 
conclude that the value is in decimal form. 

LOWER RAM ADDRESSES $0000 THROUGH $0BFF These 
addresses are common to all systems, regardless of the amount of extra 
RAM they might have. The very lowest address is $0000 (decimal 0) and 
the highest address in this particular case is $0BFF (or 3071 decimal). Fig. 
9-1 is an overall memory map of this RAM area. 

Notice that the figure shows the starting address of each area. For 
instance, the keyboard input buffer area starts at $0200, and ends at $02FF, 
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$0COO (3072) 
SECONDARYPAGE VIDEO 

TEXT/LOWRESOLUTION GRAPHICS 

(1024 BYTES) 
$0800 (2048) 

PRIMARYPAGE VIDEO 
TEXT/LOW RESOLUTION GRAPHICS 

SOME SCRATCH PAD RAM 
FOR PERIPHERAL SLOTS 

(1024 BYTES) 
$0400 (1024) 

SOME USER RAM 
MONITOR VARIABLES. VECTORS 

(256 BYTES) 
$0300 (768) 

KEYBOARD INPUT BUFFER 

$0200 (512) 
(256 BYTES) 

SYSTEM STACK 
(256 BYTES) 

$0100 (256) 
ZERO-PAGE RAM 

$0000 (0) 
(256BYTES) 

Fig. 9-1. Lower memory map. 

HI 

1 

DEFAULT START OF 
GHRESOLUTION GRAPHICS 

SHAPE TABLES 

DEFAULT START OF 
INTEGER BASIC VARIABLES 

DEFAULT LOMEM 
F OR INTEGER BASIC 

1 

l 

or decimal 1021. Knowing where these areas are located will help you plan 
your use of RAM. In this way, your programs will not compete for the 
same RAM space that the system uses. 

Zero-Page RAM: $0000- $00FF The location of the zero-page 
RAM area is fixed by the engineering of the 6502 microprocessor, and there 
is no way to change it. The Apple monitor and Integer BASIC use this area 
quite extensively for saving and retrieving important bytes of data, but you 
can use it to some advantage. You have to know how the monitor and 
Integer BASIC use the area and where the unused addresses are located. 

This zero-page area is so important, that the 6502 instruction set in
cludes a number of instructions that refer exclusively to it. In these in
structions, the zero-page addressing is shortened to just two hexadecimal 
characters-the notation omits the two leading zeros. You can still refer to 
addresses in the zero-page area with the standard four-character format, 
but two characters will suffice. 
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Thus, zero-page address $1A is the same as address $001A. The 
former uses fewer characters; if it is written into a machine-language pro
gram, it takes up just one byte of memory as opposed to two bytes for the 
conventional four-character specification. Remember, though, that ab
breviated addressing applies only to the zero-page RAM area. All other 
addresses in the system must be specified with the four-character format. 
(Addresses in decimal form can always be specified with the leading zeros 
omitted.) 

Fig. 9-2 shows the details of the zero-page RAM area. All 256-byte 
locations are shown, from 0 to 255. The actual address of a particular byte 
is found by summing the decimal or hexadecimal value along the left side of 
the diagram with the corresponding decimal or hexadecimal value along the 
top. Address $55, or decimal 85, is the last monitor byte that is used in the 
zero-page area, for example. The first location used exclusively for Integer 
BASIC is at address $56, or 86. 

H U U R M U U g U H U U K W ~ ~ 

0 $00 

16 $10 
32 $20 
48 $30 
64 $40 
80 $50 

96 $60 

112 $70 
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208 $DO 

224 $EO 

240 $FO 

M 
M 
M 
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I 
I 
I 
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I 
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M 

I 

I 
I 

I 

I 

I 
I 
I 

M= Monitor usage 

M 
M 
M 
M 

I 

I 

I 
I 
I 

I 
I 

I 

I = Integer BASIC usage 
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Fig. 9-2. Zero-page memory map. 
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The diagram clearly shows two areas of zero-page memory that aren't 
used by either the monitor or Integer BASIC. The first section extends 
from address $00 through $1F, and the second is from $EO to $FF. Some of 
those "unused" addresses are actually used when you first tum on the 
computer or boot up DOS. But generally they are free for custom applica
tions after the system is up and running. 
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If you are working exclusively with machine-language programs, you 
are also free to use the addresses designated for Integer BASIC. There is 
no way, however, to get away from the system monitor-it is always at 
work in the Apple .. 

While it is important to avoid using zero-page addresses that are nor
mally assigned to the monitor and Integer BASIC, you can work with the 
addresses as the system defines them. You were doing that when you were 
setting up a custom text window by POKEing values for WNDLFT, 
WNDWDTH, WNDTOP, and WNDBTM into the appropriate addresses in 
zero-page RAM. Table 9-1 shows which addresses are available for your 
applications, and which addresses are used by the monitor and Integer 
BASIC and what they mean. The table doesn't account for all zero-page 
addresses used for the monitor and Integer BASIC, but rather spells out 
the purpose of those deemed most useful. 

Table 9-1. Zero-Page Addresses 

Address Mnemonic Definition 

$20 (32) WNDLFT Column address of the left-
hand edge of the primary-
page text window. Range is 
$00-$27 (0-39). Normal 
value is $00 (0). 

$21 (33) WNDWDTH Number of characters in 
each line of video text. 
Range is $01-$28 (1-40). 
Normal value is $28 (40). 

$22 (34) WNDTOP Row address of the top line 
of video text. Range is 
$00-$16 (0-22). Normal 
value for full-screen text is 
$00 (0); for mixed text/ 
graphics it's $14 (20). 

$23 (35) WNDBTM Number of text window 
lines plus the content of 
WNDTOP. Range is $01-
$18 (1-24). Normal value is 
$18 (24). 

$24 (36) CH Current horizontal dis-
placement of the text cursor 

228 • INTERMEDIATE-LEVEL APPLE II HANDBOOK 



Address 

$25 (37) 

$26,$27 (38,39) 

$28,$29 (40,41) 

2C (44) 

$2D (45) 

$2E (46) 

$30 (48) 

Table 9-1-cont. Zero-Page Addresses 

Mnemonic Definition 

from WNDLFT. Range is 0 
to WNDWDTH) minus l. 

CV Current vertical displace
ment of the text cursor rel
ative to WNDTOP. Range 
is $00-$17 (0-23). 

GBASL and GBASH Low- and high-order bytes 
of the video address of the 
current cursor line for low
resolution graphics. Serves 
the same purpose for high
r es o l u ti on graphics as 
HBASL and HBASH. 

BASL and BASH 

H2 

V2 

MASK 

[coLOR 

Low- and high-order bytes 
of the video text address for 
the current cursor line. 

Right endpoint of a low
resolution horizontal line 
being drawn by the HLINE 
function. 

Bottom endpoint of a low
resolution vertical line being 
drawn by the VLINE func
tion. 

Selects whether a low
resolution color block is 
plotted in the upper or 
lower half of a screen loca
tion. Carries a value of $OF 
(15) for plotting in the lower 
half; $FO (240) for plotting 
in the upper half. 

Low-resolution graphics 
color code. 
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Table 9-1-cont. Zero-Page Addresses 

I Address I Mnemonic 

$32 (50) INVFLG 

$33 (51) PROMPT 

$4A,$4B (74,75) LOMEML and 
LOMEMH 

$4C,$4D (76, 77) HIMEML and 
HIMEMH 

$4E,$4F (78, 79) RNDL and RNDH 

$CA,$CB (202,203) BASSTL and 
BASSTH 

$CC,$CD (204,205) BASVRL and 
BASVRH 
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I Definition 

Video text format register; 
use $FF (255) for normal 
white-on-black, $7F (127) 
for flashing text, or $3F (63) 
for inverse black-on-white. 

Text character code for 
INPUT prompt. 

Low- and high-order byte 
for the current LOMEM 
address. 

Low- and high-order byte 
for the current HIMEM ad
dress. 

Two-byte number that in
crements rapidly during 
several KEYIN-type 
monitor routines. The pur
pose is to provide a random 
number for many kinds of 
programming applications. 

Low- and high-order bytes 
for the current address of 
Integer BASIC program
ming. Usually set to 
HIMEM if there is no 
BASIC programming. 

Low- and high-order bytes 
for the current address of 
variables stored by Integer 
BASIC. Usually set to 
LOMEM if there are no 
variables in the list. 



Table 9-1-cont. Zero-Page Addresses 

Address Mnemonic Definition 

$EO,$E I (224,225) HIRESXL and Low- and high-order bytes 
HIRESXH of the current high-

resolution X coordinate. 

$E2 (226) HIRESV Current high-resolution y 
coordinate. 

$E6 (230) HPAG High-resolution page for 
plotting; use $20 (32) for 
primary page; $40 ( 64) for 
secondary page. 

$E8,$E9 (232,233) SHPTR Low- and high-order bytes 
of the beginning of the high-
resolution shape tables. 

System Stack RAM: $0100- $01 FF Like the zero-page RAM 
area, the location of the system stack is fixed-there is no way to alter it. 
However, the system does not fully use the stack in normal operations. 
This means that you can use some of the stack for your own machine
language programs. 

Since the system uses the stack. at address $01FF and works down
ward from there, the space that you may use begins at the very bottom of 
the stack, at $0100. Normally, you can save data at addresses $0100 to 
$010F without fear of interfering with stack operations. However, you 
shouldn't use more stack than that. To avoid all possibility of contention 
with the system for RAM space, don't use the stack at all. 

The Keyboard Input Buffer: $0200- $02FF This 256-byte 
area of RAM is used for storing character codes that are entered from the 
keyboard under normal monitor and Integer BASIC conditions. The area is 
not fixed by the 6502 microprocessor, but rather by the original Apple 
engineers. With some difficulty, you can write a machine-language 
keyboard routine that puts the keyboard input buffer somewhere else in 
RAM. It usually isn't worth all the trouble, though. 

Any time you type in a command or respond to an INPUT statement 
from the keyboard, those key codes are stacked in a bottom-up fashion in 
the keyboard input buffer. They continue building up, one address at a 
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time, until you strike the RETURN key. If you are in a command mode of 
operation, the system then reads the contents of the keyboard input buffer 
and takes the appropriate action. If you are responding to an INPUT 
statement in a BASIC program, striking the RETURN key causes the con
tents of the keyboard input buffer to be assigned to the designated numeric 
or string variable. 

The following Integer BASIC program allows you to type some char
acters into the keyboard buffer and then dump them to the video text 
screen. Load the program and respond to the prompt symbol and flashing 
cursor by entering some arbitrary string of keyboard characters. The in
stant you end that entry process by striking the RETURN key, the program 
displays the content of the entire keyboard buffer. Notice that your string 
of characters is reproduced at the top of the screen and that it always ends 
with an M character. It is that M character (actually a representation of the 
RETURN key entry) that the system uses to mark the end of the current 
keyboard buffer entry. 

10 CALL -936 
20 CALL -662 
30 CALL -936 
40 FOR N=0 TO 255 
50 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36), PEEK (512+N) 
60 CALL -1036 
70 NEXT N 
80 VTAB 10: TAB 1 
90 GOTO 20 

100 XX=YY=COLR 
110 INIT=-12288:BKGND=-11471 
120 POSN=-11527:PLOT=-11506:LINE=-11500 
130 CLEAR=-12274 

Here is how it works: 

Line 10 homes the cursor and clears the screen. 
Line 20 calls the GETLIN monitor routine to enter keystrokes into the 

keyboard buffer. GETLIN returns control to BASIC when the RE
TURN key is struck. 

Line 30 homes the cursor and clears the screen. 
Lines 40 through 70 display the contents of the keyboard buffer, from 

addresses 512 through 767. 
Lines 80 and 90 get the cursor symbol out of the way, and return to line 

20 to input another series of keystrokes. 
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The series of characters that you type into the buffer ends with that M 
character. The rest of the data in the keyboard buffer is garbage. It consists 
of previously typed material. To illustrate this, enter a rather long series of 
characters followed by a relatively short series. You will see the short mes
sage at the beginning of the buffer and the remainder of the long message 
appearing after the message-ending M character. 

_ Knowing how to get at the data in the keyboard buffer can be useful 
when writing BASIC or machine-language programs that call for dumping 
the result of a keyboard operation into some prescribed portion of user 
RAM. 

Variables, Vectors, and User RAM: $0300- $03FF Like the 
zero-page RAM area, this is one of those segments of RAM that can be 
used for custom programming of a limited sort. The only problem with 
using this area for your own purposes is that it sometimes conflicts with 
special monitor and BASIC operations. 

For the most part, the lower addresses are used by the system only 
during initial start-up operations: booting up DOS, for example. Addresses 
$0320 through $032A are frequently used for high-resolution graphics 
routines, especially those referring to the Programmer's Aid package. And 
DOS makes extensive use of addresses $0399-$03EA. Addresses through 
the remainder of this RAM area are used for monitor vectors, or addresses 
that point to other machine-language subroutines. 

The safest working area for custom machine-language programming is 
thus at the lower end of the area, from $0300 through $0320. But if you 
aren't using the special high-resolution graphics functions, you can use ad
dresses up to $0399. 

If you find that your programs written into this area are "blowing up" 
unaccountably, you have probably stumbled across a conflict of usage. The 
best thing to do in that case is to look for another segment of RAM for your 
program. 

Primary-Page Text/Graphics: $0400- $07FF Earlier dis
cussions of text and low-resolution graphics began with a description of 
this video RAM area. Table 9-2 outlines the video portion of that area 
again, but with the addition of hexadecimal addresses. Table 9-3 sum
marizes the small sections of RAM in the primary-page area that are used 
as a peripheral slot scratchpad rather than as video RAM. 

In theory, it is altogether possible to enter custom machine-language 
programs into this area of RAM. But it isn't a good idea in practice, be
cause the programming will be rendered as confusing garbage on the 
screen. It is better to use the video RAM area for its intended purpose. You 
can, however, use the small segments of scratchpad RAM as long as there 
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are no peripheral cards plugged into the locations. Again, the idea is to 
avoid possible conflict of RAM usage. 

Table 9-2. Primary-Page Video Addresses 

Video Line Hex Address Decimal Address 

0 $0400-$0427 1024-1063 
1 $0480-$04A7 1152-1191 
2 $0500-$0527 1280-1319 
3 $0580-$05A 7 1408-1447 
4 $0600-$0627 1536-1575 
5 $0680-06A7 1664-1703 
6 $0700-$0727 1792-1831 
7 $0780-$07A7 1920-1959 

8 $0428-$044F 1064-1103 
9 $04A8-$04CF 1192-1231 

10 $0528-$054F 1320-1359 
11 $05A8-$05CF 1448-1487 
12 $0628-$064F 1576-1615 
13 $06A8-$06CF 1704-1743 
14 $0728-$074F 1832-1871 
15 $07A8-$07CF 1960-1999 

16 $0450-$0477 1104-1143 
17 $04D0-$04F7 1232-1271 
18 $0550-$0577 1360-1399 
19 $05D0-$05F7 1488-1527 
20 $0650-$0677 1616-1655 
21 $06D0-$06F7 1744-1783 
22 $0750-$0777 1872-1911 
23 $07D0-$07F7 2000-2039 

Secondary-Page Text/Graphics: $0800- $0BFF As mentioned 
in a preceding paragraph, it is possible, but rarely advisable, to write 
machine-language programs into primary-page video RAM. It is likewise 
possible, and often desirable, to write programs and data into secondary
page video RAM. In fact, even Integer BASIC uses secondary-page video 
RAM for storing data. You will find that a good many commercially avail
able programs for the Apple load into this area. That's fine as long as you 
have no intention of using it for secondary-page video applications. If you 
avoid secondary-page video operations, you will have a full 1024 bytes of 
RAM for programming purposes. Apple users who have the smaller 4K 
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Table 9-30 Peripheral Slot Scratchpad RAM 

Byte SLOT NUMBER 
Number 0 1 2 3 4 5 6 7 

0 $0478 $0479 $047A $047B $047C $047D $047E $047F 
1144 1145 1146 1147 1148 1149 1150 1151 

l $04F8 $04F9 $04FA $04FB $04FC $04FD $04FE $04FF 
1272 1273 1274 1275 1276 1277 1278 1279 

2 $0578 $0579 $057A $057B $057C $057D $057E $057F 
1400 1401 1402 1403 1404 1405 1406 1407 

3 $05F8 $05F9 $05FA $05FB $05FC $05FD $05FE $05FF 
1528 1529 1530 1531 1532 1533 1534 1535 

4 $0678 $0679 $067A $067B $067C $067D $067E $067F 
1656 1657 1658 1659 1680 1681 1682 1683 

5 $06F8 $06F9 $06FA $06FB $06FC $06FD $06FE $06FF 
1784 1785 1786 1787 1788 1789 1790 1791 

6 $0778 $0779 $077A $077B $077C $077D $077E $077F 
1912 1913 1914 1915 1916 1917 1918 1919 

7 $07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $07FF 
2040 2041 2042 2043 2044 2045 2046 2047 

RAM systems are often forced to do that to get a sufficient amount of 
working RAM. 

Tables 9-4 and 9-5 show the complete memory map for this part of 
RAM. Most of it is devoted to secondary-page video, but there are small 
segments that aren't. Unlike the primary-page video section, these short 
segments of RAM serve no particular purpose. They are open for your own 
use. 

UPPER RAM ADDRESSES $0COO THROUGH $BFFF The extent 
of the upper RAM area depends on how much RAM you have installed in 
your Apple. Even the very smallest memory scheme-one having just 4K 
( 4096) bytes of RAM - includes the lower RAM area just described plus an 
upper lK (1024) bytes for user-generated programs. Unfortunately for such 
users, there is no RAM space available for high-resolution graphics. 
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Table 9-4. Secondary-Page Video Addresses 

Video Line Hex Address Decimal Address 

0 $0800-$0827 2048-2087 
1 $0880-$08A7 2176-2215 
2 $0900-$0927 2304-2343 
3 $0980-$09A7 2432-2471 
4 $0A00-$0A27 2560-2599 
5 $0A80-$0AA 7 2688-2727 
6 $0B00-$0B27 2816-2855 
7 $0B80-$0BA 7 2944-2983 

8 $0828-$084F 2088-2127 
9 $08A8-$08CF 2216-2255 

10 $0928-$094F 2344-2383 
11 $09A8-$09CF 2472-2511 
12 $0A28-$0A4F 2600-2639 
13 $0AA8-$0ACF 2728-2767 
14 $0B28-$0B4F 2856-2895 
15 $0BA8-$0BCF 2984-3023 

16 $0850-$0877 2128-2167 
17 $08D0-$08F7 2256-2295 
18 $0950-$0977 2384-2423 
19 $09D0-$09F7 2512-2551 
20 $0A50-$0A77 2640-2679 
21 $0AD0-$0AF7 2768-2807 
22 $0B50-$0B77 2896-2935 
23 $0BD0-$0BF7 3024-3063 

Table 9-5. Unused RAM in Secondary-Page Area 

Segment Hex Address Decimal Address 

0 $0878-$087F 2168-2177 
1 $08F8-$08FF 2296-2303 
2 $0978-$097F 2424-2431 
3 $09F8-$09FF 2552-2559 
4 $0A 78-$0A 7F 2680-2687 
5 $0AF8-$0AFF 2808-2815 
6 $0B78-$0B7F 2936-2943 
7 $0BF8-$0BFF 3064-3051 
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The present discussion deals with the upper RAM area for the larger 
Apple systems, those having 16K, 32K, or 48K of RAM. Such systems 
have enough memory for at least one page of high-resolution graphics and 
some extra space for other programming applications. 

The most important feature of the memory maps for these regions is 
the way Integer BASIC uses them. 

Integer BASIC programs begin at the HIMEM ad
dress and build downward from there. 

Variable tables begin at the LOMEM address and 
build upward from there. 

Whenever you are using Integer BASIC (or Applesoft BASIC, although it 
loads differently) you can count on the programming using RAM addresses 
between the LOMEM and HIMEM settings. The idea is to avoid putting 
custom machine-language programs anywhere in that area if you are using 
them in conjunction with BASIC programs. If you are not using any 
BASIC programming, the LOMEM and HIMEM settings have little rele
vance. 

In instances where you do initialize Integer BASIC, the Apple system 
automatically sets the LOMEM address to $0800, or 2048, and it sets 
HIMEM at the upper end of the available RAM space: $4000 (16384) for a 
16K system, $8000 (32768) for a 32K system, and $COOO (49152) for a 48K 
system. 

· You can, of course, change the LOMEM and HIMEM settings once 
the system is up and running. The significance of that procedure is that it 
lets you limit the RAM space that is used by BASIC programming, allow
ing you to use what's left for custom machine-language programming and 
similar applications. 

16K Systems Fig. 9-3 outlines the upper RAM section for a 16K 
Apple system. It includes the secondary page of text/low-resolution 
graphics, already described in some detail on page 234, and extends 
through the primary page of high-resolution graphics to RAM address 
$3FFF, or 16383. 

There are just three main sections: 

1. Secondary-page text/low-resolution graphics at RAM addresses $0800 
through $0BFF (2148 through 3071). 

2. User's RAM at addresses $0COO through $1FFF (3072 through 8191). 
3. Primary-page, high-resolution graphics video at addresses $2000 

through $3FFF (8192 through 16383). 
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END OF 16K RAM 
$4000 (16384) 

PRIMARYPAGE 
HIGH-SOLUTION GRAPHICS 

$2000 (8192) 

USER PROGRAM 
RAM 

$1000 (4096) -

$0COO (3072) 
SECONDARYPAGE VIDEO 

$0800 (2048) 
TEXT/LOW-RESOLUTION GRAPHICS 

Fig. 9-3. Upper memory map for 16K systems. 

~DEFAULT HIMEM 

DEFAULT INTEGER BASIC 
PROGRAMS 

l DEFAULT INTEGER BASIC 
VARIABLE LIST 

DEFAULT LOMEM 

Notice especially the default settings for LOMEM, HIMEM, and the 
high-resolution shape tables. Those default addresses are the ones the sys
tem sets up for you unless you specify otherwise. 

Of special concern to users of 16K systems is the fact that HIMEM is 
set at the top of the high-resolution graphics video area. Unless you set 
HIMEM to the lower end of that area-to $2000, or 8192-any BASIC 
programming is going to be inserted into the high-resolution graphics area. 
Attempting to use high-resolution graphics from Integer BASIC without 
first setting HIMEM to 8192 will mess up both the program and the 
graphics. 

· Furthermore, the system automatically sets the LOMEM address at 
the beginning of the secondary page of text/low-resolution graphics. If you 
attempt to use the secondary page of text/low-resolution graphics without 
first setting LOMEM to $0COO (3072) or higher, variable data from Integer 
BASIC will mess up the graphics. 

The worst-case situation is where you want to use Integer BASIC, the 
secondary page of text/low-resolution graphics, and high-resolution 
graphics at the same time. The LOMEM and HIMEM addresses just cited 
solve the problem. 

There are a number of different ways to set up the system in that 
fashion. From the Integer BASIC command mode: 
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HIMEM:8192 
LOMEM:3072 

From the monitor command mode: 

4A:OO OC 00 20 

At the beginning of an Integer BASIC program: 

POKE 74,0:POKE 75,12:POKE 76,0:POKE 77,32 

As a machine-language routine: 

LOA #0 
STA 74 
STA 76 
LOA #12 
STA 75 
LDA #32 
STA 77 

There is one remaining difficulty that cannot be resolved on a 16K 
system-the lack of a secondary-page, high-resolution graphics buffer, or 
memory. There simply isn't enough RAM space available. 

32K Systems A 32K system has RAM available from address $0000 
through $7FFF (0-32767). The lower portion of that area is used as de
scribed earlier. What is of special importance to the current discussion is 
the layout of the memory map for addresses $0800 through $7FFF (2048 
through 32767). (See Fig. 9-4.) 

The memory map shows five main sections: 

1. Secondary-page text/low-resolution graphics at RAM addresses $0800 
through $0BFF (2148 through 3071). 

2. User's RAM at addresses $0COO through $1FFF (3072 through 8191). 
3. Primary-page, high-resolution graphics video at addresses $2000 

through $3FFF (8192 through 16383). 
4. Secondary-page, high-resolution graphics at addresses $4000 through 

$5FFF (16384 through 24575). 
5. User's RAM at addresses $6000 through $7FFF (24576 through 

32767). 
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$8000 (32768) 

$6000 (24576) 

$4000 (16384) 

$2000 (8192) 

$1000 (4096) 
$0COO 13072) 

$0800 (2048) 

__, 

END OF 32K RAM 

USER PROGRAM 
RAM 

SECONDARYPAGE 
HIGH RESOLUTION GRAPHICS 

PRIMARY PAGE 
HIGH RESOLUTION GRAPHICS 

USER PROGRAM 
RAM 

-r 
SECONDARY- PAGE 

TEXT/LOW RESOLUTION GRAPH !CS 

Fig. 9-4. Upper memory map for 32K systems. 

DEFAULT HIMEM 

DEFAULT INTEGER 
BASIC PROGRAMS 

1 DEFAULT INTEGER BASIC 
VARIABLE LIST 

-DEFAULT LOMEM 

The default address for HIMEM is $8000, or 32768. That means that 
Integer BASIC programs will begin at that address and build downward 
from there. Fortunately, there are no competing uses for that upper end of 
the RAM area. In fact, there is about 8K of programming RAM available 
before BASIC begins encroaching on the upper end of the secondary-page 
area for high-resolution graphics. (If a BASIC program has to be more than 
SK-bytes long, you simply have to give up the secondary page of high
resolution graphics). 

The default LOMEM address, as usual, is set at $0800 (2048). That 
overlays the secondary-page text/low-resolution graphics area, so if you are 
planning to use secondary-page text or graphics with Integer BASIC, you 
ought to set LOMEM to a higher address, such as $1000 (4096). 

The worst-case 32K programming situation is where you want to use 
the full complement of graphics (both pages of low- and high-resolution 
graphics) along with a combination of Integer BASIC and custom machine
language programs. Resetting LOMEM can put things in order for you. The 
only question is where to set it. 

If you choose to set LOMEM to $1000, or 4096, you will have plenty 
of RAM for BASIC programming, but little room for high-resolution shape 
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tables and machine-language programming. If the machine-language pro
grams are short ones, you can try using the RAM area from $0300 to $03AF 
as described in an earlier section, and leave $0COO through $0FFF for 
shape tables. 

ff your programming situation calls for full-capability graphics, long 
machine-language programs or data files, and relatively short Integer 
BASIC programs, you can set LOMEM at the top of the secondary page of 
high-resolution graphics-to $6000, or 24576. That confines BASIC pro
gramming to the upper portion of user RAM, and allows you to use the 
entire lower portion of user RAM for shape tables and machine-language 
programs. You can, for example, load machine-language programs from 
$1000 to $IFFF (4096 to 8191). 

You might become a bit pinched for RAM in the upper user space if 
you are using DOS and Integer BASIC. They share that upper region, and 
you should consult your DOS manual to see where it loads. 

48K Systems Users of 48K Apple systems have a very generous 
amount of RAM available for programming applications. The usable RAM 
area begins at $0000 and extends through $BFFF (0 through 49151). (See 
the upper portion mapped for you in Fig. 9-5. The lower section was de
scribed in detail earlier in this chapter.) 

The only thing that might be a nuisance in some instances is the default 
setting of LOMEM. A lot of programmers like to begin loading machine
language programs from address $0800 (2040). Protecting that area from 
BASIC is a simple matter of resetting LOMEM to some higher address 
such as $6000, or 24576. 

Setting LOMEM to $6000 leaves all four graphics pages available and 
allows some 24K in the upper RAM area for BASIC programming. (DOS 
uses some of that upper RAM area, too, but there is so much space avail
able that there is generally no need to give it any special thought.) 

An Overall Summary If you do not intend to use any BASIC pro
gramming at all, you have the widest choice of RAM area available for 
custom machine-language programming. You need not worry about 
LOMEM and HIMEM settings at all. In fact, they aren't even set until you 
do that CTRL-B command that initializes the Integer BASIC system. 

If you have a 16K system, you often have to make some trade-offs 
regarding the size of the program and the use of secondary-page text/low
resolution graphics or primary-page high-resolution graphics. The 32K and 
48K systems, on the other hand, have enough RAM available for long 
machine-language programs and full graphics capability. 

The time to take special care is when you are setting up combinations 
of full-capability graphics, machine language, and BASIC. Then it is gen-
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$C000(-16384) 

$6000 (24576) 

$4000 (16384) 

$2000 (8192) 

$1000 (4096) 
$0COO (3072) 
$0800 (2048) 

___, 

END OF 48K RAM 

USER PROGRAM 
RAM 

SECONDARY-PAGE 
HIGH-RESOLUTION 

GRAPHICS 

PRIMARY-PAGE 
HIGH-RESOLUTION 

GRAPHICS 

USER PROGRAM 
RAM 

SECONDARY PAGE 
TEXT/LOW-RESOLUTION 

GRAPHICS 

Fig. 9-5. Upper memory map for 48K systems. 

-DEFAULT HIMEM 

DEFAULT 
INTEGER BASIC 

PROGRAMS 

l DEFAULT INTEGER BASIC 
VARIABLE LIST 

-DEFAULT LOMEM 

erally just a matter of setting LOMEM to a higher address, thereby pinch
ing BASIC into a smaller RAM area and protecting your machine-language 
programming in the lower RAM segments. 

It's all a matter of knowing how the Apple's RAM is organized, where 
the default addresses are for your particular system, and how to tinker with 
LOMEM and HIMEM to get the custom memory map you want. Taking an 
hour to study the scheme just one time can save you countless hours of 
frustration later on. 

1/0 ADDRESSES $COOO THROUGH $CFFF All Apple systems, 
regardless of the amount of RAM installed in them, feature a section of 
addresses that refers to input/output (I/O) operations. Many of these ad
dresses are not RAM or ROM locations in the usual sense; rather, they are 
memory-mapped I/O ports that can be addressed and otherwise treated as 
though they were true RAM or ROM locations. 
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This special portion of memory occupies address locations $COOO to 
$CFFF, or 49152 to 53247. Since the decimal versions of those addresses 
are greater than 32767, you can work with them from Integer BASIC by 
using a range of negative addresses between -16384 and -12289. (See Ap
pendix A if you aren't sure about how and why to use negative addresses.) 

Fig. 9-6 is an overall memory map of this rather unusual addressing 
range. The two lower and smaller sections are devoted to memory-mapped 
I/O functions; they are not RAM or ROM locations in the usual sense, 
but you can access them by referring to their addresses in an appropriate 
fashion. 

The two upper sections are relatively large and are set aside for ROM 
operations from any cards that might be plugged into the peripheral card 
slots 1 through 7. If you aren't using any of these seven slots, there will be 
no memory devices in this range. 

$CFFF 12289 --..c===J-----------, 
EXPANSION ROM 

(2048 BYTES) 
$C80014336 ---------------1 

~ 

256BYTE CUSTOM PROM 
SPACE FOR PERIPHERAL 

CARD SLOTS 1 7 

11772 BYTES) 
$Cl0016128 

I/OS FOR PERIPHERAL CARD 

$C080 16256 
SLOTS 0 7 (128 BYTES) 

BUILT IN MEMORY MAPPED 1/0 

$COOO 16384 
(128BYTES) 

Fig. 9-6. I/0 memory map. 

Built-In Memory-Mapped 1/0: $COOO- $C07F This small, 
128-byte section of addressing is devoted exclusively to built-in functions 
such as the game controls, loudspeaker, cassette tape IN and OUT, 
keyboard strobing, and the text screen mode "soft" switches. Much of the 
region is used by all Apple systems, regardless of the amount of RAM and 
extra peripheral devices. Fig. 9-7 maps this region in detail. 

THE MEMORY ENVIRONMENT • 243 



$C80(-16256) 
BEGINNING OF PERIPHERAL 1/0 

GAME CONTROLLER STROBE 

WRITE (POKE) 

$C070(-16272) 
(16 IDENTICAL BYTES) 

SAME AS $C060-$C067 DON'T USE 
$C068(-16280) 

ANALOG INPUTS GCO-GC3 READ (PEEK) 

$C064(-16284 ) 
CASSETTE IN 

PUSHBUTTON INPUTS PB1-PB3 
READ (PEEK) 

$C060(-16288 ) 
ANNUNCIATOR "SOFT" SWITCHES 

ANOAN3 
(4 PAIRS OF BYTES) 

WRITE (POKE) 

$C058(-16296) 
SCREEN "SOFT" SWITCHES 

(4 PAIRS OF BYTES) WRITE !POKE) 
$C050(-16304 ) 

UTILITY STROBE OUTPUT 
(16 IDENTICAL BYTES) READ (PEEK) 

$C040(-16320 ) 

LOUDSPEAKER TOGGLE 
(16 IDENTICAL BYTES) READ (PEEK) 

$C030(-16336) 
CASSETTE OUT 

(16 IDENTICAL BYTES) READ (PEEK) 

$C020(-16352) 

CLEAR KEYBOARD STROBE 
(16 IDENTICAL BYTES) (WRITE (POKE) 

$C010(-16368) 

KEYBOARD STATUS INPUT 
(16 IDENTICAL BYTES) READ (PEEK) 

$C000(-16384) 

Fig. 9-7. Built-in 1/0 function memory map. 

Keyboard Status Input: $COOO-$COOF-AI1 of these 15 keyboard status 
addresses contain the current status of the keyboard. They show whether 
or not a key has been depressed and the key code for the most recent 
keystroke. You can load any of those addresses to the A register from 
machine language, or assign it to a BASIC variable by doing a PEEK addr, 
where addr is the selected address. Most of the Apple literature, however, 
suggests using the lowest address in this range, $COOO or -16384. 

What kind of data can be found in that memory-mapped input area? 
The high-order "flag" bit in the data will be a 0 or a 1, depending on 
whether or not a keystroke has occurred. If a keystroke has occurred, that 
most-significant bit will be set to 1. Otherwise, it will be cleared to 0. In 
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terms of hexadecimal notation, that means the value fetched from address 
$COOO will be $80 or larger if a keystroke has occurred. Otherwise, it will 
be $7F or less. From a decimal point of view, data PEEKed from -16384 
will be 128, or greater, if the keystroke has occurred, but less than 128 if it 
has not. 

What about the 7 lower-order bits? They carry the key code of the 
most recent keystroke whether the high-order ''flag'' bit is set or not. 

Clear Keyboard Strobe: $COJO-$COJF-Any keystroke sets the high-order 
''flag'' bit in the keyboard status input address locations just described. To 
make the "flag" bit useful, there must be a provision for clearing it. You 
can clear it by writing to the clear keyboard strobe addresses. 

POKEing or loading any sort of data to this range of addresses clears, 
or resets, the high-order keyboard input flag to 0. Most literature recom
mends loading a value of 0 to the lowest of these 15 addresses. Thus you 
can reset the keyboard strobe by doing a POKE -16368,0 from Integer 
BASIC, or by using this assembly language sequence: 

LDA #$00 
STA $C010 

Failing to reset the keyboard strobe is tantamount to making a rapid 
and continuous series of keystrokes; the system "sees" a perpetual key
stroke condition. 

Cassette OUT: $C020-$C02F-This range of addresses memory-map di
rectly to the cassette OUT jack on the rear of the Apple machine. Of those 
15 locations, address $C020, or -16352, is the one most recommended. 
Reading that address causes a single "click" at the cassette OUT jack; if 
you happen to have a cassette recorder running and set for recording, that 
"click" will be recorded for you. As you might imagine, doing a rapid 
series of read operations to that address causes a series of ''clicks'' that 
becomes an audio tone. The more rapidly a program executes those 
"clicks," the higher the recorded frequency. With a bit of imagination, 
tinkering and time, you can write programs that record music onto cassette 
tape, using little more than PEEK (-16352) on LDA $C020 instructions. The 
Apple system, of course, uses a similar technique for saving data and prog
rams on tape-transforming entire blocks of ls and Os from memory into 
high and low audio tones. 

Loudspeaker Toggle: $C030-$C03F-Read from any one of these 15 ad
dresses, and you will get a single "click" from the loudspeaker. It is 
difficult to hear a single "click," but a long series of them produces an 
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audio tone. The scheme is virtually identical to the cassette OUT opera
tion. 

You can, for instance, produce a wide range of audio tones by setting 
up a machine-language routine that does several series of LDA $C030 in
structions with different time intervals between instructions. The shorter 
the delay between instructions, the higher the audio tone will be. 

It is possible to do the same sort of thing from Integer BASIC by 
executing a long series of PEEK(-16336) instructions. The only drawback 
here is that BASIC, being an interpretive high-level language, runs too 
slowly to produce the higher octaves of tones. 

An interesting trick is to compose some tunes, using the loudspeaker 
port address to listen to, extend, or edit the music as desired. And when 
you are satisfied with it, change the memory-mapped 1/0 address reference 
from the loudspeaker to the cassette OUT jack ($C020, or -16352). That 
allows you to record the music directly to cassette tape in such a fashion 
that it can be played from the tape without the aid of an Apple computer 
system. 

Utility Strobe Output: $C040-$C04F-Fig. 9-8 shows the layout of the 
game controller socket that is located inside the Apple. This is the recep
tacle for the game-control paddles that are supplied with the system. Read
ing the utility strobe output addresses affects pin 5 of that socket. 

Pin 5, the utility output pin, is normally at +5 V, but upon reading the 
utility strobe address $C04F, the voltage level drops close to 0 V for about 
0.5 microsecond. This function is used for strobing external, custom 
equipment in much the same fashion as you might strobe the loudspeaker 
or cassette OUT jack. 

To generate that brief, negative-going pulse, simply do an LDA $C04F 
from machine language or a PEEK(-16320) from BASIC. 

0 
+5VDC 1 16 NC 

PBl 2 15 ANO 
PB2 3 14 ANl 
PB3 4 13 AN2 

UTILITY 5 12 AN3 

GCO 6 11 GC3 
GC2 10 GCl 
GND 9 NC 

Fig. 9-8. Grune controller socket. 
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Set Graphics or Text: $C050 and $C05 I -Writing to these two addresses 
sets up the video system for displaying either the text or graphics mode. 
These two "soft" switches behave in a mutually exclusive fashion; that is, 
writing to one of the "soft" switches activates it and automatically deacti
vates the other. For instance, writing to address $C050, or -16304, sets the 
graphics mode and deactivates the text mode. Test this by trying a POKE 
-16304, 0 from Integer BASIC or a sequence such as: 

LDA #0 
STA $C050 

from machine language. On the other hand, wntmg to address $C051 
(-16303) sets the text mode and deactivates the graphics mode. 

Set Full or Mixed-Screen Text/Graphics: $C052 and $C053-Wfiting a 0 to 
address $C052 (-16302) sets up the video system for full-screen text or full
screen graphics. But writing a 0 to address $C053 (-16301) restores the 
normal mixed text/graphics mode. 

These are mutually exclusive operations; that is, writing to one of 
them automatically disables the other. 

Set Primary or Secondary Page: $C054 and $C055-Writing a value of 0 to 
this set of "soft" switches sets up either the primary or secondary page of 
text and graphics. It doesn't make much sense to attempt to view the pri
mary and secondary pages of text or graphics at the same time, so it fol
lows that these, too, are mutually exclusive switch settings. 

POKEing or loading a zero to address $C054 (-16300) sets up the sys
tem for displaying the primary page of whatever text or graphics scheme is 
active at the time. POKEing or loading a zero to address $C055 (-16299) 
automatically deactivates the primary-page display and shows the second
ary page. 

Set Text/Low-Resolution or High-Resolution: $C056 and $C057 - Writing to 
this set of mutually exclusive "soft" switches sets up either the text/ low
resolution graphics mode or the high-resolution graphics mode. Writing to 
$C056 (-16298) sets, up text/low-resolution graphics, while writing to its 
counterpart, address $C057 (-16297), sets up the system for showing high
resolution graphics. 

Set or Clear ANO-AN3 Outputs: $C058-$C05F-The diagram of the game 
controller socket in Fig. 9-8 shows four pins, labeled ANO, AN 1, AN2, and 
AN3. You can set any one of these four pins to + 5 V, or clear them to 0 V, 
in the same way you can set or clear the screen modes just described. 
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These "soft" switch connections are available for special external-device 
applications. 

Table 9-6 shows that the functions are arranged in pairs of addresses. 
PO KEing or loading a zero to the first in each pair clears the corresponding 
AN pin on the game controller to about 0 V. POKEing or loading a zero 
into the second address in each pair has the complementary effect: It sets 
the pin to about + 5 V. 

Cassette IN Jack: $C060-Address $C060 (-16288) is memory-mapped di
rectly to the cassette IN jack on the rear of the Apple. Reading data from 
that address turns up a value of $80 (128) or greater if the voltage present at 
that place is + 1 V or more. It turns up a value of $00 when the voltage is 
less than + 1 V. 

Of course, this is how the Apple monitor reads incoming data from 
cassette tape. A voltage at the cassette IN jack that is +I V or more is 
interpreted as a logic- I level, while a voltage that is less than + 1 V is read 
as a logic-0 level. 

Pushbutton Inputs PB! -PB3: $C06! -$C063-Referring to Fig. 9-8, the 
diagram of the game controller socket, you will find three pin locations that 
are labeled PBl, PB2, and PB3. These are user-available versions of the 
cassette IN memory-mapped port just described. Reading from any one of 
these three addresses will yield a value of $80 (128) or greater if the voltage 
at the corresponding game controller pin is + l V or more. On the other 
hand, reading from the addresses will produce a value of $00 (0) if the 
voltage at the pin is less than +I V. 

Table 9-6. Set or Clear ANO-AN3 Outputs 

Hex Decimal Function 
Address Address 

$C058 -16296 Clear ANO (pin 15) to 0 V 
$C059 -16295 Set ANO (pin 15) to 5 V 

$C05A -16294 Clear AN l (pin 14) to 0 V 
$C05B -16293 Set ANl (pin 14) to 5 V 

$C05C -16292 Clear AN2 (pin 13) to 0 V 
$C05D -16291 Set AN2 (pin 13) to 5 V 

$C05E -16290 Clear AN3 (pin 12) to 0 V 
$C05F -16289 Set AN3 (pin 12) to 5 V 
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There is some discrepancy in the literature regarding the labeling of 
these so-called pushbutton inputs. The labeling convention used in this 
book implies that the three pushbutton terminals on the game controller 
socket are simple extensions of the cassette IN connection. But if you are 
using the game paddles supplied with most Apple systems, you will find the 
pushbuttons on them labeled PBO and PB 1. Actually those pushbutton 
switches are plugged into pins 2 and 3 of the game controller socket, and 
ought to be labeled PB I and PB2. 

That need not create any real problems, however, as long as you refer 
to them with the appropriate addresses: 

$C061 (-16287) PB 1 (pin 2) 
$C062 (-16286) PB2 (pin 3) 
$C063 (-16285) PB3 (pin 4) 

Analog Inputs: $C064-$C067-These four input ports are available at the 
four game controller pins that are labeled GCO, GCl, GC2, and GC3. Once 
they are properly set (as described in connection with address $C070 be
low), these terminals show a value of $80 (128) or greater for a period of 
time that is directly proportional to the value of a potentiometer setting (see 
Fig. 9-9). The closer the potentiometer wiper arm is set to its + 5 V con
nection, the longer it takes the analog value to drop below $80. The 
maximum time is on the order of 3 milliseconds. 

150 n 
POTENTIOMETER 

+ 5V __ .__PIN 1 

GCO PIN 61 - GCl PIN 10 GAME CONTROLLER 
GC2 PIN 7 SOCKET 
GC3 PIN 11 

,__ __ PIN 8 

GNO 

Fig. 9-9. Game controller potentiometer. 

PEEK or load register A from the following addresses to pick up the 
status of the analog inputs: 

$C064 (-16284) GCO (pin 6) 
$C065 (-16283) GC 1 (pin 10) 
$C066 (-16282) GC2 (pin 7) 
$C067 (-16281) GC3 (pin 11) 
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Analog Input Clear: $C070-You must read this address to start the timing 
operation for the four analog input ports just described. Writing to this ad
dress begins all four timing operations simultaneously. 

Peripheral Card 1/0: $C080- $COFF This is a special memory
mapped I/O section of addresses that refers to functions included on any of 
the boards that might be inserted in the peripheral card slots. There are no 
standards for how these addresses may be used-it depends on how the 
cards' manufacturers want to use them. They can refer to memory loca
tions on the cards or to I/O devices that are mapped to the addresses. 

In any event, it is possible to read from or write to any one of 16 
memory-mapped byte locations on each of the eight peripheral card slots. 
Table 9-7 summarizes all of those addresses. 

Table 9-7" Peripheral Card 1/0 Addresses 

Byte Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 

0 $C080 $C090 $COAO $COBO $COCO $CODO $COEO $COFO 
-16256 -16240 -16224 -16208 -16192 -16176 -16160 -16144 

1 $C081 $C091 $COA1 $COB1 $COC1 $CODI $COE1 $COF1 
-16255 -16239 -16223 -16207 -16191 -16175 -16159 -16143 

2 $C082 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2 
-16254 -16238 -16222 -16206 -16190 -16174 -16158 -16142 

3 $C083 $C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3 
-16253 -16237 -16221 -16205 -16189 -16173 -16157 -16141 

4 $C084 $C094 $COA4 $COB4 $COC4 $COD4 $COE4 $COF4 
-16252 -16236 -16220 -16204 -16188 -16172 -16156 -16140 

5 $C085 $C095 $COA5 $COB5 $COC5 $COD5 $COE5 $COF5 
-16251 -16235 -16219 -16203 -16187 -16171 -16155 -16139 

6 $C086 $C096 $COA6 $COB6 $COC6 $COD6 $COE6 $COF6 
-16250 -16234 -16218 -16202 -16186 -16170 -16154 -16138 

7 $C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7 
-16249 -16233 -16217 -16201 -16185 -16169 -16153 -16137 

8 $C088 $C098 $COA8 $COB8 $COC8 $COD8 $COE8 $COF8 
-16248 -16232 -16216 -16200 -16184 -16168 -16152 -16136 
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Table 9-7-cont. Peripheral Card 1/0 Addresses 

Byte Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 

9 $C089 $C099 $COA9 $COB9 $COC9 $COD9 $COE9 $COF9 
-16247 -16231 -16215 -16199 -16183 -16167 -16151 -16135 

10 $C08A $C09A $COAA $COBA $COCA $CODA $COEA $COF A 
-16246 -16230 -16214 -16198 -16182 -16166 -16150 -16134 

11 $C08B $C09B $COAB $COBB $COCB $CODB $COBB $COFB 
-16245 -16229 -16213 -16197 -16181 -16165 -16149 -16133 

12 $C08C $C09C $COAC $COBC $COCC $CODC $COEC $COFC 
-16244 -16228 -16212 -16196 -16180 -16164 -16148 -16132 

13 $C08D $C09D $COAD $COBD $COCD $CODD $COED $COFD 
-16243 -16227 -16211 -16195 -16179 -16163 -16147 -16131 

14 $C08E $C09E $COAE $COBB $COCE $CODE $COEE $COFE 
-16242 -16226 -16210 -16194 -16178 -16162 -16146 -16130 

15 $C08F $C09F $COAF $COBF $COCF $CODF $COEF $COFF 
-16241 -16225 -16209 -16193 -16177 -16161 -16145 -16129 

Suppose that a custom peripheral card is inserted into slot 5 and you 
want to write data $80 to byte location 3 on that particular card. According 
to the table, you can access that device or memory location with address 
$COD3, or -16173. Writing a $80 (128) to that location is a matter of doing: 

LDA #128 
STA -16173 or 

LDA #$80 
STA $COD3 

from a machine-language routine. Or working in Integer BASIC, you can 
accomplish the same thing with: 

POKE -16173,128 

Peripheral Card ROM: $C100- $C7FF Most commercially 
available peripheral cards for the Apple include some on-board ROM. This 
ROM contains built-in machine-language programming and data that are 
relevant to the function of the board. The Apple system sets aside some 
address locations especially for this purpose: 256 byte locations for cards 1 
through 7. (Slot 0 is omitted from this function because it is dedicated to 
the same function in virtually every Apple.) 
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Table 9-8 maps the available ROM addressing range for each peripheral 
card slot. Reading from addresses in the range of $C100 through $C1FF 
(-16128 through -15873), for example, refers to addresses set aside for a 
256-byte ROM on peripheral card number 1. 

Table 9-8. Peripheral Card ROM Addresses 

Slot Hex Address Decimal Address 

1 $C100-$CIFF -16128-15873 
2 $C200-$C2FF -15872-15617 
3 $C300-$C3FF -15616-15361 
4 $C400-$C4FF -15360-15105 
5 $C500-$C5FF -15104-14849 
6 $C600-$C6FF -14848-14593 
7 $C700-$C7FF -14592-14337 

Expansion ROM Space: $C800- $CFFF If peripheral-card appli
cations call for more than 256 bytes of ROM, you are free to use 2048 
additional bytes located from address $C800 through $CFFF (-14336 
through -12289). Reading from any address in this range automatically en
ables any ROM device located there. That can be a single, large 2K ROM 
or a series of smaller ones that are distributed among the peripheral cards. 

MAIN ROM ADDRESSES: $0000 THROUGH $FFFF It is the 
fundamental nature of the 6502 microprocessor that makes it most feasible 
to place ROM at the very top of the addressing range. This area contains all 
of the built-in machine-language programming that makes the Apple per
form as it does. 

Fig. 9-10 maps this area for you, assuming that your system is using 
the Integer BASIC ROMs. 

With the standard Apple ROMs for Integer BASIC, the lower portion 
of the map is dedicated to the special Programmer's Aid #1, which consists 
of: 

HIGH-RESOLUTION GRAPHICS at $DOOO through $D3FF (-12288 
through -11265). 

RENUMBER and APPEND at $D400 through $D4D4 (-11264 through 
-11060). 

RELOCATE at $D4DC through $D5D2 (-11044 through -10798). 
TAPE VERIFY at $D535 through $D5AA (-10955 through -10938). 
RAM TEST at $D5BC through $D691 (-10820 through -10607). 
MUSIC at $D717 through $D795 (-10473 through -10347). 
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$FFFF(-l) 

$F800(-2048) 
$F666(-2458) 
$F500(-2816) 

$E000(-8192 I 

$D800(-10240 I 

$D000(-12288) 

Fig. 9-10. ROM map. 

END OF APPLE MEMORY 

SYSTEM MONITOR 

NOT USED 
MINIASSEMBLER 

INTEGER BASIC 

NOT USED 

PROGRAMMERS AID #1 

The ROM area from $D800 to $DFFF (-10240 through -8193) refers to 
ROM Socket D8 in the Apple hardware, but is largely unused by the In
teger BASIC scheme and monitor. (ROM-based Applesoft uses this area, 
however.) 

The machine-language programming for running Integer BASIC oc
cupies ROM addresses $EOOO through $F4FF (-8192 through -2817). The 
so-called "cold" entry point for Integer BASIC is at address $EOOO (-8192). 
This address is called by doing a CTRL-B keystroke. You can accomplish 
that same "cold" BASIC restart by doing a CALL -8192 or JSR $EOOO. 

The "warm" entry-point address for Integer BASIC is at address 
$E003 (-8189). You can get to that point by doing a CTRL-C, CALL -8189, 
or JSR $E003. 

The miniassembler, described more fully in the next chapter, occupies 
ROM addresses $F500 through $F668 (-2816 through -2456). This feature is 
available only as long as you are using the Integer BASIC ROMs. In fact, it 
is this access to the miniassembler that has dictated the use of Integer 
BASIC (as opposed to Applesoft BASIC) throughout this book. 

The system monitor, common to all Apple ROM configurations, takes 
up the very top portion of the addressing range: $F800 through $FFFF 
(-2048 through -1). Although the monitor programming begins at $F800, its 
entry points are at higher addresses: 

$FF59 (-167)- "Cold" entry point, same as doing RESET. 
$FF65 (-155)-"Warm" entry point, usually used to get from BASIC 

to the monitor without destroying the values of any variables. 

THE MEMORY ENVIRONMENT ., 253 





Programming With the 
Miniassembler 

The material in Chapter 8 included some 6502 machine-language, Q 
instructions. As useful as those few instructions were, they hardly 
represent the full power of the 6502 and the Apple system. In this chapter, 
we will tell you the rest of the story. We will tell you how to prepare, load, 
test, debug, and execute a wide range of machine-language programs. The 
discussion features the Apple miniassembler-a good assembly-language 
programming aid that is built into the Integer BASIC ROMs. 

Recall from discussions in Chapter 8, if you will, that a complete 
machine-language listing includes both a source-code and an object-code 
version. The source-code, or assembly-language, version is written by hand 
in a semi-plain English form, using standard mnemonic expressions, labels, 
and comments. Its data and addresses may be expressed in either a decimal 
or hexadecimal form. It is a programming format that is tailored specifically 
to human understanding. 

Once the programmer is satisfied with the assembly-language version, 
he or she has to employ some mechanism for translating the source-code 
instructions into a machine-compatible object-code version. Up until now, 
that has been done by hand by looking up the machine-language instruc
tions for each of the assembly-language instructions. That is called a hand 
assembly process. As you might suspect, hand assembling a program can 
be a tedious, time consuming and error-prone job. 

There is an alternative to hand assembly, however. All you need is a 
particular kind of utility computer program that does the translating job 
automatically. Such a program, called an assembler, accepts the humanly 
understandable assembly-language instructions and translates them into 
their machine-language counterparts. 

The ROMs for Integer BASIC include a small, but quite useful, 
assembler routine. This so-called miniassembler lacks the most powerful 
features of some of the more sophisticated assemblers, but at least it elimi-
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nates a lot of tedious work and lessens the chance of human error in trans
lating from source code to object code. 

When a programmer translates the original assembly-language program 
into machine language by hand or through an assembler, the next step in 
the procedure is to load the object-code version into the computer. 

If you have assembled the program by hand for some reason, you can 
load the machine codes directly into RAM, one byte at a time, through the 
system monitor. But using the miniassembler is better because it will load 
the machine codes for you as you type in the source-codes from the 
keyboard. It is difficult to make a convincing case against using the mini
assembler most of the time. 

Once loaded into the system, the machine-language programs ought to 
be executed, tested, and debugged. The Apple disassembler feature is an 
invaluable aid in this respect. Being just the converse of the miniassembler, 
the disassembler reads machine-language instructions and translates them 
back into source-code mnemonics, for display on the screen or printing to a 
line printer. The miniassembler doesn't store your source-code listing, so 
being able to disassemble the machine-language version is an invaluable 
testing and debugging aid. 

A working machine-language program ought to be saved on tape or 
disk for reloading at some later time. The Apple monitor handles such tasks 
quite well. 

The overall purpose of this chapter is to deal with the procedures for 
preparing an assembly-language program, entering and assembling the 
program through the miniassembler, testing and debugging the program 
with the aid of the disassembler, and saving and reloading the program. 

That is a lot of ground to cover in a single chapter, but we assume that 
you already have a basic understanding of the 6502 and its instruction set, 
and that you can handle hexadecimal expressions. 

A FIRST LOOK AT SOME ASSEMBLY-LANGUAGE PRO
GRAMMING As mentioned earlier in this chapter, the Apple monitor 
includes a disassembler routine. It resides in the monitor ROMs that are 
common to all Apple systems and not in the Integer BASIC ROMs as the 
miniassembler does. The disassembler lets you explore any part of the 
Apple memory system, picking up blocks of machine-language instructions 
and translating them into source-code mnemonics on the screen. Try this: 

1. Do a RESET to get the system running in the monitor mode. You 
know you are in the monitor when you see the asterisk as a prompt 
symbol. 

2. Enter EOOOL from the keyboard. The screen should fill with 20 lines 
of assembly-language programming. (See Listing 10-1.) 
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Listing 10-1. Disassembled ROM Listing. 

EOOO- 20 00 FO JSR $FOOO 
E003- 4C B3 E2 JMP $E2B3 
EOOG- 85 33 STA $33 
E008- 4C ED FD JMP $FDED 
EOOB- 60 RTS 
EOOC- 8A TXA 
EOOD- 29 20 AND #$20 
EOOF- FO 23 BEQ $E034 
EOll - A9 AO LOA #$AO 
E013- 85 E4 STA $E4 
E015- 4C ED FD JMP $FDED 
E018- A9 20 LOA #$20 
EOlA- CS 24 CMP $24 
EOlC- BO QC BCS $E02A 
EOlE- A9 80 LOA #$80 
E020- AO 07 LOY #$07 
E022- 20 ED FD JSR $FDED 
E025- A9 AO LOA #$AO 
E027- 88 DEY 
E028- DO F8 BNE $E022 

Entering something such as EOOOL from the monitor instructs the sys-
1 tern to disassemble 20 machine-language instructions, beginning at the des-

i I ignated address-$EOOO in this case. The general form of the disassembly 
command is 

addrL 

where addr is the hexadecimal starting address of the code to be disas
sembled, and the L suffix instructs the system to List the program in a 
standard assembly-language format. In this particular case, the disassembly 
begins at the beginning of the Integer BASIC ROM programming. 

The left-hand column of four-character hexadecimal numbers that you 
see on the screen represents the address of the first machine-language code 
in each instruction. The first instruction in this example begins at address 
$EOOO, the second begins at $E003, the third at $E006, and so on. 

The machine-language version of the program appears in the second 
major column. They, too, are in a hexadecimal format (as opposed to the 
decimal versions shown in Chapter 8). Note that some are 1-byte codes, 
some are 2-byte codes, and several are 3-byte codes. 

The right-hand columns show the 6502 mnemonics and their respective 
operands-the values of data or addresses that must be associated with 
many of them. (See the 6502 instruction set in the appendices for a brief 
interpretation of those mnemonics.) 

You can, in principle at least, disassemble the entire Apple ROM sys
tem and discover in detail how it works and how you might use it to your 
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advantage. That is a lot of work, though, and it calls for a good understand
ing of 6502 programming. 

For the disassembler to be truly useful, you must list the code from an 
address that holds the first code in an instruction. If you specify a listing 
from anywhere else, you will see a lot of the mnemonics replaced with 
question marks (???). 

To see that idea at work, begin the disassembly in the middle of an 
instruction-code sequence by doing EOOlL from the monitor. That starts 
the disassembly from the second byte in the JSR $FOOO instruction shown 
in Listing 10-1. The result is a jumble of "nonsense" instructions and 
question marks in the first part of the listing on the screen. It does, how
ever, manage to straighten itself out by the time it gets to address $E066. 

So whenever you are playing around with the disassembler and you 
see a lot of question marks appearing in the listings, one of two things is 
happening: Either you are beginning the disassembly in the middle of an 
otherwise valid instruction-code sequence, or you are attempting to disas
semble a block of data. 

To see the latter at work, do a OL. That begins the disassembly at 
address $0000-at the beginning of zero-page memory. That RAM space 
normally carries data bytes and 2-byte sequences that point to addresses 
elsewhere in the system. The disassembler cannot make sense of RAM 
space because it doesn't contain machine-language instructions at all. 

If you want to look at a sequence of disassembled instructions that is 
more than 20 instructions long, begin by entering the starting address fol
lowed by an L command. After observing the first 20 instructions, simply 
strike the L key again. That will cause the system to display the next 20 
instructions. You can proceed in that fashion as long as you wish. And if 
you are using a line printer and want to print out a long series of disassem
bled instructions, do something such as this: 

EOOOLLLLLLLL 

That will print out eight consecutive groups of 20 disassembled instruc
tions-a total of 160 instructions. Simply append the starting address with 
one L for each page of 20 instructions you want to prinL 

This disassembly technique is an especially powerful debugging tool 
for custom machine-language programs. Once you have entered a 
machine-language program, you can check its disassembled version at any 
later time by specifying a disassembly from the beginning of the program or 
at any other point that represents the first byte of a valid instruction. 

USING THE MINIASSEMBLER The miniassembler is part of the In
teger BASIC ROM set and you must have Integer BASIC in your system, 
even though you might not use BASIC programming at all. 
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I Entering the Miniassembler The entry-point address for the 
miniassembler is $F666 (-2458). There are a couple of ways to reach that 
entry point, depending on whether you are using the monitor or Integer 
BASIC. 

To enter the miniassembler from: 
The system monitor, enter F666G. 
Integer BASIC, enter CALL -2458. 

(Whenever you are operating from the monitor, entering an address fol
lowed by a G character instructs the system to begin executing a routine 
from that address.) 

As soon as you execute either of those commands, the system enters 
the miniassembler mode as indicated by an exclamation point ( !) prompt 
symbol. 

Getting Out of the Miniassembler The procedure for getting 
out of the miniassembler depends on where you want to go from there. The 
logical choices are the system monitor, Integer BASIC, or any other 
routine residing in ROM or RAM. 

To leave the miniassembler and go to: 
The system monitor, RESET or enter $FF69G. 
Integer BASIC, enter $E003G. 
Address addr, enter $addrG. 

So answering the exclamation point prompt symbol by striking the 
RESET key or entering a $FF69G returns the system to the monitor com
mand mode. Using $FF69G is a bit more elegant than doing a brute-force 
RESET because the former does not clear a lot of system variables to their 
default values. And getting to Integez_BASIC from the miniassembler by 
executing $E003G also preserves any BASIC programming and variables 
you might have in the system at the time. 

Loading Programs Through the Miniassembler Once the 
miniassembler is up and running (as signalled by the exclamation point 
prompt symbol), you can specify an address for the first instruction, type 
that instruction, and continue typing source-code instructions until you are 
done. It is necessary to specify the address of the first instruction; the 
miniassembler takes care of all subsequent addressing. 

Suppose that you have a short assembly-language routine that looks 
like this: 
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;INITIALIZE Y 
;INITIALIZE X 
;INITIALIZE A 

LDY #$FF 
LDX #$FF 
LDA #$00 
RTS ;RETURN ro-cALUNG ROUTINE 

The only additional information required is the starting address of the 
routine. Let's make it $0320. 

Now, get into the miniassembler and respond to the exclamation point 
prompt symbol by typing the starting address, a semicolon, and the first 
instruction. Before you conclude that operation by striking the RETURN 
key, check to see if the screen looks like this: 

!320:LDY #FF 

Striking the RETURN key at this point causes the system to assemble the 
instruction and enter the machine-language codes into the appropriate ad
dress locations in RAM. The line you just typed is replaced with this: 

0320- AO FF lDY #$FF 

The prompt symbol indicates that the miniassembler is ready for the 
next instruction. For this point on, you no longer have to enter the 
address-just type a space followed by the next source-code instruction. 
Before you strike the RETURN key, the display should look something 
like this: 

0320- AO FF LDY #$FF 
! LDX #FF 

And after striking the RETURN key: 

0320-
0322-

AO FF 
A2 FF 

LDY 
LDX 

#$FF 
#$FF 

Just don't forget to precede every instruction other than the first one 
with a space. Failing to type at least one space will bring up the mini
assembler error symbol-a caret (A). 

After entering the entire source-code program listed earlier, the screen 
should look like this: 

0320- AO FF 
0322- A2 FF 

LDY 
lDX 

#$FF 
#$FF 
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0324-
0326-

A9 00 
60 

LDA 
RTS 

#$00 

What you should do next depends on whether you want to enter 
further programming, try running the program just entered, save it on tape 
or disk, or quit for the day. Let's suppose that you want to run it. 

Running a Program from the Miniassembler Once you have 
entered a legitimate assembly-language program through the miniassem
bler, you can run it by answering the exclamation point prompt symbol 
with a dollar sign, the desired starting address, and a G character. 

Suppose that you want to run the program just described, beginning at 
address $0320. This is what the display should look like: 

!$320G 

The system prints the exclamation point, but you type the dollar sign, ad
dress 320, and the G character. Notice that you must use the dollar sign 
ahead of the address and that there is no space between the prompt symbol 
and dollar sign. Omitting the dollar sign will bring up the miniassembler 
caret-symbol error marker. 

If you have been following these discussions by actually typing in the 
program, you will find that this particular program does nothing of any 
apparent use. It is important to notice, however, that the RTS instruction 
at the end of the program returns the system to the miniassembler. 

Incidentally, you can execute any self-contained machine-language 
routine from the miniassembler mode. Try this command from the mini
assembler mode: 

!$FC58 

That executes a subroutine beginning from address $FC58. That happens to 
be a monitor subroutine that homes the cursor and clears the screen. After 
that happens, the system returns to the miniassembler with the prompt 
symbol appearing in the upper left-hand comer of the screen. 

Running new programs from the miniassembler is a good technique 
during the testing and debugging phases of the programming task. 

Running a Program From the Monitor Of course it isn't abso
lutely necessary to run a program loaded under the miniassembler mode 
from that same mode of operation. You can execute the program at a later 
time from the monitor. 
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Consider the short program described earlier. It begins at address 
$0320, and loads $FF to the X and Y registers and #00 to the A register 
before returning to the calling routine. Get out of the miniassembler and 
into the monitor mode by striking the RESET key or responding to the 
prompt symbol with $FF69G. 

Then, from the monitor, enter 320G. That will execute the little 
machine-language routine and return to the monitor. 

Can that same routine be executed from Integer BASIC? Certainly it 
can. Get into Integer BASIC and do a CALL 800. That calls the routine by 
using the decimal version of the starting address. The system then executes 
the routine and returns to BASIC. 

If you would like to work with a more convincing example, get back 
into the miniassembler mode and enter the program shown in Listing 
10-2A. When you are done, the display should look like the one in Listing 
10-2B. 

Listing 10-2. Loudspeaker Beeper. 

LDY #$OF ;SET FOR 15 BEEPS 0320- AO OF LOY #$OF 
JSR $FF3A ;BEEP THE LOUDSPEAKER 0322- 20 3A FF JSR $FF3A 
DEY :DECREMENT THE COUNTER 0325- 88 DEY 
BNE $0322 ;IF NOT DONE. BEEP AGAIN 0326- DO FA BNE $0322 
RTS ;ELSE RETURN TO CALLING ROUTINE 0328- 60 RTS 

(A) (B) 

Try the program by doing a $320G from the miniassembler. It should 
beep the loudspeaker 15 times and then return to the miniassembler. 

Next, get into the system monitor mode and respond to the asterisk 
prompt symbol by entering 320G. The beeping routine will run again and 
return to the monitor mode. 

Finally, get into Integer BASIC and execute a CALL 800 command. 
That, too, runs the beeping routine and returns to BASIC. 

Saving and Loading Tapes From Miniassembler Saving and 
reloading machine-language programs is a vital part of any machine
language venture. It's a rather simple procedure as long as you can keep 
track of the first and last address used. The program in Listing 10-2B, for 
instance, uses RAM addresses $0320 through $0328, and you must keep a 
written record of that fact. 

Saving that program on cassette tape from the miniassembler mode of 
operation is a matter of responding to the exclamation print prompt symbol 
with: 

$320.328W 
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Do not strike the RETURN key, however, until the cassette machine is 
running in the record mode. With the cassette running in the record mode, 
strike the RETURN key. The system will record that block of machine 
language and return to the miniassembler. 

Of course you can accomplish the same feat from the monitor mode as 
well. It is only slightly easier because you do not have to prefix the address 
range with a dollar sign. The miniassembler requires that first dollar sign. 

Getting a previously saved machine-language program back into the 
system calls for the same command, but appended with an R instead of a 
W. So the program just described can be loaded into the same address 
range by typing: 

$320.328R 

The cassette machine is then started in its play mode, and the RETURN 
key is struck. The system then loads the program and returns to the mini
assembler. 

PREPARING ASSEMBLY-LANGUAGE PROGRAMS The Apple 
miniassembler was specifically designed to use just a few bytes of RAM 
and enter machine language directly into specified addresses as the user 
types in the source-code program. Those are truly exciting features and a 
lot of the more sophisticated assemblers cannot make those claims. 

But there are some serious trade-offs, too. Specifically, the Apple 
miniassembler cannot accept, or support, comments and labels. Com
ments, you recall, serve the same function as REM statements in BASIC; 
they provide a means for tacking on plain-English messages that explain 
what is going on at critical places in the program. Most assemblers do sup
port comments, but the Apple accepts only assembly-language mnemonics 
and hexadecimal numbers. And labels, as you will soon see, provide a con
venient and clear way to identify addresses that are to be used in an 
assembly-language program. The Apple miniassembler cannot accept 
labels. 

The ROM listings in the back of the Apple II Reference Manual are a 
fine example of fully documented assembly-language programming. They 
were not done through the miniassembler, but on a full-blown, highly 
sophisticated assembler system. But what we do here by hand and with the 
miniassembler will work together to produce some documentation that is 
just as complete and useful. 

Using and Defining labels The first part of the ROM listings in 
your Apple II Reference Manual consists of a list of label definitions. 
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Labels LOCO and LOCl, for instance, are defined as zero-page addresses 
$00 and $01, respectively. In the main body of the program, then, refer
ences to LOCO and LOCl actually refer to their addresses. Thus a source
code instruction such as LDA LOCI is really identical to LDA $01. 

Using such labels in place of the addresses they represent makes it 
easier to write and read an assembly-language program. It is easier for most 
people to understand and remember what a label such as WNDLFT means 
than an address such as $20. LDA $20? What does that mean? LDA 
WNDLFT-ahh, yes. It means load the A register with the content of the 
WNDLFT address. 

When preparing an assembly-language program, make generous use of 
labels. Use standard Apple labels wherever possible, but of course there 
will be many instances where you will have a chance to dream up some of 
your own. The important thing is to keep a running list of addresses that 
those labels represent. 

Labels not only represent address locations of important bytes of data, 
but also critical entry points and special addresses within the program 
itself. Looking through the ROM listing, you will find a number of instruc
tions such as JSR GBASCALC. A JSR instruction is supposed to be 
followed by a 2-byte address, but for the sake of convenience and some 
clarity, the programmers used the label GBASCALC instead. Look 
through the listing and you will find that GBASCALC is representing ad
dress $F847. 

Listing 10-3A shows a source-code listing that defines and uses labels. 
Labels SPKR and WAIT refer to addresses in the standard Apple system. 
SPKR EQU $C030 means that label SPKR is identical to address $C030-
an address that represents the I/O port for the loudspeaker. And label 
WAIT refers to a monitor subroutine that executes a time delay propor-

Listing 10-3. Demonstration of Labels. 

ORG 
SPKR 
WAIT 

START 
CLICK 

START 
CLICK 

EQU 
EQU 
EQU 

LOY 
LOA 
TYA 
JSR 
DEY 
BNE 
BEQ 

EQU 
EQU 

$0320 
$C030 
$FCA8 

#$FF :INITIALIZE LONG DELAY 
SPKR :CLOCK THE LOUDSPEAKER 

:GET DELAY FROM Y 
WAIT :DO A TIME DELAY 

:DECREMENT DELAY IN Y 
CLICK :IF NOT DONE, CLICK AGAIN 
START :OTHERWISE START OVER 

(A) 
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0320- AO FF LOY $$FF 
0322- AD 30 CO LOA $C030 
0325- 98 TYA 
0326- 20 A8 FC JSR $FCA8 
0329- 88 DEY 
032A- DO F6 BNE $0322 
032C- FO F2 BEQ $0320 

(B) 



tional to the value of a number in the A register. It is defined by WAIT 
EQU $FCA8. 

START and CLICK, on the other hand, are home-brewed labels that 
refer to addresses within the program itself. START EQU $0320 means that 
address START is at $0320; it marks the address of the first instruction in 
the program. Use any other label you like, but I think that START is quite 
appropriate. Then there is the CLICK label. CLICK refers to the address 
of the LDA SPKR instruction, and the BNE instruction near the end of the 
program uses it. 

Labels indicating critical points in an assembly-language program are 
especially important because the programmer does not have to keep track 
of the actual addresses. Let the miniassembler do that for you later on. 

That source-code listing is what you should have at hand when you 
approach the miniassembler. After loading the program, you should be able 
to list it as shown in Listing 10-3B. Between those two listings-your 
source-code version and the disassembled version -your documentation is 
as complete as it ever has to be. 

Loading Through the Miniassembler Given a complete 
source-code program listing, the next step is to enter the program into the 
Apple system via the miniassembler. We are going to show how to load the 
program in Listing 10-3A. Follow along carefully, because it demonstrates 
how to deal with the labels. 

With Listing 10-3A at hand, get into the miniassembler and type in the 
ORG address, $320, and the first instruction. Just prior to striking the 
RETURN key, the display looks something like this: 

!320:LOY #FF 

After striking the RETURN key, the presentation changes to this: 

0320- AO FF LOY #$FF 

That first address, $0320, also represents the address for the START 
label. Make a note of that fact on your source-code listing. 

The next instruction refers to label SPKR, but the miniassembler 
won't accept the label-it needs the address it represents. So looking back 
to your source-code listing to get that address, type in the instruction as: 

! LOA C030 

After striking the RETURN key, the screen should show this sequence: 
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0320-
0322-

AO FF LDY 
AD 30 CO LDA 

#$FF 
$C030 

Address $0322 marks the special CLICK label in the source-code list
ing. Make a note of that on the listing. You will need it later. 

Enter the TYA instruction and then the JSR instruction, using $FCA8 
in place of the WAIT label. Things are fairly straightforward for the last 
two instructions. Enter the BNE instruction using $0322 in place of CLICK 
and $0320 in place of START. 

When the job is done, the listing should appear as in Listing 10-3B. 
Since the miniassembler does not support labels, you must define the 

ones you know in advance and keep track of those you discover as you go 
along. 

This particular example lets you see the address for label CLICK be
fore you need it later in the program. There are some instances where you 
need a label address before you get far enough along in the program to 
know what it will be. One trick for handling that situation is to use any old 
address-perhaps something quite distinctive such as $0000-when you 
need it. Then after you find out what that address really is, you can edit the 
listing to insert the proper address. 

As an exercise in interpreting labels, see if you can load the source
code program in Listing 10-4. Complete the documentation by indicating 
the addresses for labels START and CLICK. 

Listing 10-4. Exercise in Use of Labels. 

ORG EQU $0320 
HOME EQU $FC58 
SPKR EQU $C030 
GOUT! EQU $FDFO 
WAIT EQU $FCA8 

START JSR HOME :HOME CURSOR AND CLEAR SCREEN 
LOY #$FF :SET INITIAL DELAY IN Y 

CLICK LOA SPKR :CLOCK THE SPEAKER 
LOA #$IA :LOAD INVERSE Z CHARACTER 
JSR GOUT! :PRINT IT 
TYA :GET CURRENT DELAY FROM Y 
JSR WAIT :DO A TIME DELAY 
DEY :DECREMENT DELAY IN Y 
BNE CLICK :IF NOT DONE. CLICK AGAIN 
BEQ START :OTHERWISE. START OVER 

START EQU 
CLICK EQU 
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LOADING THROUGH THE MONITOR If you must work in ma
chine language, it is more convenient to load through the monitor. Loading 
hexadecimal bytes through the monitor is a simple matter of specifying the 
starting address of the sequence of bytes, typing a colon, and then typing in 
the bytes, each separated by a space. When Listing 10-3 is loaded in this 
fashion, the presentation on the screen looks something like this: 

*320:AO FF AD 30 CO 98 20 AS FC 88 DO F6 FO F2 

That loads the machine-language program, beginning at address $032; 
striking the RETURN key signals the end of the operation. After that, you 
can see the disassembled version of the program by executing a 320L from 
the monitor. It will look just like the version in Listing 10-3B. Running the 
program is then a matter of executing a 320G from the monitor. 

Most programmers agree that it is easier and faster to type in machine 
language through the monitor than through the miniassembler as long as 
you must use machine language. One area in which you should use ma
chine language is data tables. Data tables have no mnemonics; they are 
strictly numerical. That means you are better off loading data tables as 
hexadecimal bytes-an operation better performed through the monitor. 

Finally, the monitor offers the most convenient means for altering a 
single byte or two within an existing machine-language program. Perhaps it 
is desirable to change an existing LDA #$FF statement to LDA #$OF. 
Rather than getting into the miniassembler and typing the entire instruc
tion, determine the address of the byte to be changed and write over it by 
entering the revised version through the monitor. 

The disassembled version of the instruction will look like this: 

E011- A9 FF LDA #$FF 

To change the #$FF to #$OF from the monitor, do this: 

E012:FF 

and strike the RETURN key. 
The FF byte, you see, is located at address E011-the byte im

mediately following the EOl l address shown in the disassembled version of 
the program. After making that change, the disassembled version will look 
like this: 

E011- A9 OF LOA #$OF 
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DEBUGGING WITH THE BRK INSTRUCTION Machine-language 
programs generally run very fast-far too fast to follow in detail. About all 
you can know for sure is the status of the system at the beginning and the 
end of the execution of such a program. Keeping continuous track of 
events taking place during the program is an impossible task. But keeping 
track of events is important for debugging purposes. 

The BRK instruction offers some hope for keeping track of events 
through the execution of a machine-language program. Insert a temporary 
BRK instruction at the beginning of any other instruction in the program, 
and things come to a halt as soon as the system executes the BRK. And the 
Apple is set up so that it automatically displays the contents of the internal 
registers at the conclusion of a BRK operation. 

So let's suppose that you are working with a machine-language pro
gram such as the one in Listing 10-3, and you find it isn't working right. 
Disassemble it to find the address of some critical instruction, then load a 
00 (the machine code for BRK) at that address, through the monitor. Run 
the program, and it stops at the BRK instruction and prints out the con
tents of the registers. You can also examine other memory locations 
through the monitor while the system is stopped. Then when you want to 
get the program running normally again, simply replace the BRK instruc
tion with the original one. 

Two additional debugging tools, STEP and TRACE, amount to a pow
erful family of troubleshooting aids. Both of these are well documented in 
the standard Apple reference manuals. 
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Appendix 

Number-System Base 
Conversions 

Just about any computer (certainly the Apple II) is essentially a A 
binary machine; the 6502 microprocessor does all of its control, 
arithmetic, and logic operations in a base 2, or binary, number system. And 
it so happens that the 6502 works with 8-bit binary numbers-a full byte of 
them. 

People do not think and work with binary numbers very well, how
ever. Such numbers, being made up exclusively of Os and ls, are very 
cumbersome. One alternative to purely binary representations of numbers 
is hexadecimal numbers. The hexadecimal (base 16) number system looks 
at binary numbers in groups of four; every group of four binary numbers 
(sometimes called a nibble) can be represented by a single hexadecimal 
number. So, instead of having to work with strings of eight Os and ls in 
base 2 binary, it is possible to work with just two hexadecimal characters. 

While, indeed, many machine-language programmers can learn to 
work with hexadecimal numbers with great proficiency, the general popu
lation still prefers the ordinary decimal (base 10) number system. Apple 
engineers were aware of that fact, and Integer and Applesoft BASIC are 
built around the decimal number system exclusively. 

As long as one works with Apple BASIC in its most elementary 
fashion-doing no special addressing or machine-language work-there is 
no need to be aware of hexadecimal or binary numbers. But hexadecimal 
numbers become quite helpful when doing extensive machine-language 
programming. 
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Thus, programmers who are working their way deeper and deeper into 
the Apple II system will find themselves having to make conversions be
tween decimal and hexadecimal numbers and, eventually, between binary 
and hexadecimal numbers. The purpose of this appendix is to make such 
conversion tasks as simple as possible. 

There are many ways to approach the conversions between these three 
different number systems; the following are the most straightforward. 

HEXADECIMAL-TO-DECIMAL CONVERSIONS In the Apple II 
system, data is carried as a 1-byte (two-hexadecimal-number) code. Ad
dresses are carried as I-byte codes for the zero-page memory and as 2-byte 
codes for the remainder of the usable memory space. Table A-1 can be very 
helpful for translating hexadecimal numbers into their decimal counter
parts. This sort of situation often arises when one is writing programs in 
both BASIC and machine language. 

The table can be used for converting up to four hexadecimal places, or 
nibbles, to their decimal counterpart. Notice that there are four major col
umns, labeled 1 through 4. These column numbers represent the relative 
positions of the hexadecimal characters as they are usually written, with 
the least-significant nibble on the right and the most-significant nibble on 
the left. 

Table A-1. Hexadecimal/Decimal Conversion 

MSB LSB 
4 3 2 1 

HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 
1 4096 1 256 1 16 1 1 
2 8192 2 512 2 32 2 2 
3 12288 3 768 3 48 3 3 
4 16384 4 1024 4 64 4 4 
5 20480 5 1280 5 80 5 5 
6 24576 6 1536 6 96 6 6 
7 28672 7 1792 7 112 7 7 
8 32768 8 2048 8 128 8 8 
9 36864 9 2304 9 144 9 9 
A 40960 A 2560 A 160 A 10 
B 45056 B 2816 B 176 B 11 
c 49152 c 3072 c 192 c 12 
D 53248 D 3328 D 208 D 13 
E 57344 E 3584 E 224 E 14 
F 61440 F 3840 F 240 F 15 
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To see how the table works, suppose that you want to convert the 
hexadecimal value $1A3F into decimal. The first character on the left takes 
a decimal equivalent shown in column 4-4096. The second character from 
the left takes on the value from column 3-2560. The last two figures get 
their decimal equivalents from columns 2 and 1-48 and 15, respectively. 
Then, to get the true decimal value, add those decimal equivalents: 
4096+2560+48+ 15, or 6719. In other words, $1A3F is equal to 6719 in 
decimal. 

If you are converting a two-place hexadecimal number, just use col
umns 2 and I. Hexadecimal $C3, for instance, is equal to 192+3, or dec
imal 195. 

Table A-1 is adequate for hexadecimal-to-decimal conversions for all 
the usual sort of work on the Apple. 

DECIMAL-TO-HEXADECIMAL CONVERSIONS When working 
back and forth between BASIC and machine-language routines, it is often 
necessary to convert decimal data and addresses into hexadecimal nota
tion. Table A-1 comes to the rescue again. The procedure is a rather 
straightforward one, but it involves several steps. 

Suppose, for example, that you want to convert decimal 65 into its 
hexadecimal counterpart. First, find the decimal number on the table that is 
equal to, or less than, the desired decimal number. The decimal number in 
this example is 65, and the closest value less than 65 is 64. The 64 is equiva
lent to a hexadecimal $4 in column 2. Thus the most-significant number in 
the hexadecimal representation is 4. 

Next, subtract that 64 from the number that you are working with: 
65-64= 1. Then look up the hexadecimal value of the 1 in the next-lower 
column of the table-column 1 in this instance. The hexadecimal version 
of that number is $1. Putting together those two hexadecimal characters, 
you get a $41. Indeed, decimal 65 translates into hexadecimal $41. 

By way of a somewhat more involved conversion, suppose that you 
must convert decimal 19314 into hexadecimal notation. 

Looking through the columns of decimal numbers in the table, you find 
that 16384 is the next-lower value; it translates into hexadecimal $4 in col
umn 4. So you are going to end up with a four-digit hexadecimal number, 
with the digit on the left being a 4. 

To get the next-lower place value, subtract the table value 16384 from 
19314: 19314-16384=2930. The next-lower decimal value in this case is 2816 
from column 3; that turns up a $B as the next hexadecimal character. So 
far, the number is $4B. 

Now subtract the table value 2816 from 2930: 2930-2816= 114. The 
next-lower decimal value from column 2 is 112, and its hexadecimal coun
terpart is 7. And to this point, the hexadecimal number is $4B7. 
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Finally, subtract the table value 112 from 114: 114-112=2. From col
umn 1, decimal 2 is the same as hexadecimal $2; so the final hexadecimal 
character is $2. 

Putting this all together, it turns out that decimal 19314 is the same as 
hexadecimal $4B72. Fig. A-1 summarizes the operation. 

HEXADECIMAL 
EQUIVALENT 

i~~::: _COLUMN ,J f 1 
-16384 

2930 - COLUMN 3 
-2816 

114 - COLUMN 2 
-112 

2 

2-COLUMN 1------' 

19314 !decimal) = $4872 !hexadecimal) 

*COLUMN numbers refer to Table A-1 

Fig. A-1. Converting decimal to hexadecimal. 

CONVENTIONAL DECIMAL TO 2-BYTE DECIMAL FOR
MAT When POKEing addresses as 2-byte numbers into memory, it is 
necessary to convert the address to be affected into a 2-byte format. In 
decimal, such an operation isn't easy, but it is all a part of setting up ad
dress locations in decimal-oriented BASIC. 

By way of an example, suppose that you are to load a 2-byte version of 
decimal address 1234 into memory addresses 16787 and 16788. That 
number to be stored, 1234, is too large for either of those 1-byte addresses, 
so it has to be broken up into two parts: one for each of the address loca
tions. 

Before a decimal number can be divided into a 2-byte version, it must 
be converted into hexadecimal form. Using the decimal-to-hexadecimal 
conversion described in the previous section, you find that decimal 1234 is 
equal to hexadecimal $04D2. 

Next, you divide that hexadecimal version of the number into two 
bytes: the most-significant byte (MSB) is $04, and the least-significant byte 
(LSB) is $D2. Divided that way, you end up with two 1-byte hexadecimal 
values: $04 and $D2. 

Finally, convert those two sets of hexadecimal numbers into their dec
imal equivalents, treating them as two separate hexadecimal values. Thus 
$04 converts to decimal 4, and $D2 converts to 210. 
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1 

The 2-byte version of decimal 1234 is thus 4 and 210, with 4 being the 
MSB and 210 being the LSB. 

That takes care of the conversion of an ordinary decimal number into a 
2-byte version, also in decimal. Now you must POKE these numbers into 
decimal addresses 16787 and 16788. 

If you place the LSB of the 2-byte number into the lower-numbered 
address, the BASIC operation for satisfying the requirements of the exam
ple looks like this: 

POKE 16787,210 : POKE 16788,4 

No, it isn't a simple procedure to convert an ordinary decimal number into 
a 2-byte decimal format, but it's the price that must be paid for working 
with a byte-oriented machine in a decimal-oriented BASIC language. 

TWO-BYTE DECIMAL TO CONVENTIONAL DECIMAL 
FORMAT Suppose that you are analyzing a machine-language routine 
that is presented in a decimal-oriented, BASIC format. Under that condi
tion, a 2-byte address appears as a set of two decimal numbers; if you want 
to get that pair of numbers into a conventional decimal format, you have to 
play with them a bit. 

Consider an instance where 223 turns up as the LSB in decimal, and 
104 is the MSB. What address, or 2-byte decimal number, do they repre
sent? 

First, convert both sets of numbers into their hexadecimal counter
parts: decimal 223=$DF, and decimal 104=$68. Since $DF is the MSB and 
$68 is the MSB, the overall hexadecimal representation of that 2-byte dec
imal format is $DF68. 

All that remains to be done is to convert that hexadecimal number into 
its full decimal counterpart: $DF68=24567+2048+208+ 15=26849. That's 
it-the conventional representation of the original 2-byte decimal values. 
The combination of decimal numbers 223 and 104 actually points to decimal 
26849. 

CONVERTING LARGE DECIMAL VALUES TO SMALLER 
NEGATIVE VALUES Integer BASIC allows numbers having values 
from -32767 to 32767. Try working with a number outside that range, and 
you immediately get a 32767 ERR message. The possible range of Apple II 
addressing is different; it runs from 0 to 65535-all positive values. So 
there is bound to be some difficulty when attempting to CALL a machine
language routine that begins at memory addresses above 32767 (and there 
are a good many valuable monitor routines between 32768 and 65535). 

APPENDIX A • 273 



The way around the problem is to CALL a negative address. It is a 
simple procedure as long as you can remember a "magic" number: 65536. 
Whenever you want to CALL an address that is greater than 32767, simply 
subtract the address from 65536 and stick a minus sign in front of it. That's 
all there is to it. 

Suppose that you want to call a routine that is located at address 
40668. You can't do a CALL 40668 without getting 32767 ERR from Integer 
BASIC. So subtract 40668 from 65536, and put a minus sign in front of it: 
-24868. Then you can get to that routine by doing a CALL -24868. 

CONVERTING NEGATIVE DECIMAL VALUES TO LARGER 
POSITIVE VALUES Anyone who has used Integer BASIC knows that 
CALL -936 homes the cursor and clears the screen. That CALL refers to 
the starting address of a home-and-clear routine in the Apple II monitor. 
But what is the actual decimal address? 

The conversion is a simple one if you use the "magic" number, 65536. 
In this case, 65536-936=64600. The actual address of -936 is 64600. Just add 
the negative address to 65536. 

BINARY-TO-DECIMAL CONVERSION In practice, most 
binary-to-decimal conversions are carried out with 1-byte (or 8-bit) binary 
numbers, although there are occasions when it is necessary to do the con
version from 2-byte (16-bit) numbers. 

Fig. A~2 shows the breakdown of an 8-bit binary number. The posi
tions are labeled 0 through 7, with zero indicating the least-significant bit 
position. Each of those 8-bit locations contains either a 0 or a 1. 

MSB LSB. 

l11615141312l1lol 

Fig. A-2. Eight-bit binary number. 

Suppose that you want to POKE 01101011. But you have to use a 
decimal version of that binary number from BASIC. Here is how to go 
about determining that decimal version. 

First, multiply the 0 or 1 in each bit location by 2n, where n is the bit 
place value in each case. Then simply add the results. (See the example in 
Fig. A-3.) 

The same idea applies to converting 16-bit binary to a decimal equiva
lent. The place values run from 0 to 15 in that case, and Table A-2 can help 
you determine those larger powers of 2. 
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[ 0 I 1I1 I 0 I 1I0I1 I 1 J BINARY 

l 
..... 

01101011 BINARY = 108 DECIMAL 

Fig. A-3. Converting binary to decimal. 

lx20=1Xl=l 

1 x 21 = 1 x 2 = 2 

ox 22 =ox 4 = o 
1 x 23 = 1 x 8 = 8 
0 x 24 = 0 x 16 = 0 

1 x 2s = 1 x 32 = 32 

1 x 26 = 1 x 64 = 64 

o x 27 = 1 x 128 = o 
108 decimal 

Table A-2. Powers of Two Table A-3. Binary/Hexadecimal Conversion 

n 2n Binary Hexadecimal 

0 1 0000 $0 
1 2 0001 $1 
2 4 0010 $2 
3 8 0011 $3 
4 16 0100 $4 
5 32 0101 $5 
6 64 0110 $6 
7 128 0111 $7 
8 256 1000 $8 
9 512 1001 $9 

10 1 024 1010 $A 
11 2 048 1011 $B 
12 4 096 1100 $C 
13 8 192 1101 $D 
14 16 384 1110 $E 
15 32 768 1111 $F 

BINARY-TO-HEXADECIMAL CONVERSION Converting a bi
nary number into a hexadecimal format is perhaps the simplest of all the 
conversion operations. All you have to do is group the binary number into 
sets of 4 bits each, beginning with the least-significant bit, and then find the 
hexadecimal value for each group. Table A-3 helps with the latter opera
tion. 
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Suppose the binary number is 10011101. There are two sets of 4 bits 
(or nibbles) here, 1001 and 1101. The hexadecimal equivalent is 9 for the 
first set, and D for the second set, as Table A-3 shows. Therefore, the 
hexadecimal version of that 8-bit binary number is $9D. 

The same procedure works equally well for 16-bit numbers; the only 
difference is that you end up with four hexadecimal characters instead of 
just two. 

HEXADECIMAL-TO-BINARY CONVERSION Converting a 
hexadecimal number to its binary form is a simple matter of applying Table 
A-3 to change each hexadecimal character into the appropriate groups of 4 
binary bits. 

Example: Convert address $404D into a binary format. According to 
the table, that hexadecimal number can be represented as 0100 0000 0011 
1101. 

DECIMAL-TO-BINARY CONVERSION There are several com
monly cited algorithms for mathematically converting any decimal number 
into its binary format. But it is simpler in the long run, and probably more 
accurate, to use a two-step procedure. 

The general idea is to convert the decimal number into its hexadecimal 
counterpart as described earlier in this appendix. Then convert the 
hexadecimal characters into their binary versions as described in the previ
ous section. 

Example: Convert 1234 decimal into binary. First, as described earlier, 
calculate the hexadecimal version of decimal 1234. Your answer should 
come out to be $04D2. And that hexadecimal number, expressed in binary 
(from Table A-3) is 0000 0100 1101 0010. Thus 1234 is equal to binary 
10011010010. You may include the five leading zeros if you wish. 
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Appendix 

Character Codes for Text 
Printing Operations 

The following tables show the hexadecimal (Hex) and decimal B 
(Dec) codes that can be loaded or POKEd to video memory to print 
the designated character (Char). 

Table B-1. Inverse Screen Text Characters 

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char 

$00 (0) @ $10 (16) p $20 (32) $30 (48) 0 
$01 (1) A $11 (17) Q $21 (33) ! $31 (49) 1 
$02 (2) B $12 (18) R $22 (34) II $32 (50) 2 
$03 (3) c $13 (19) s $23 (35) # $33 (51) 3 
$04 (4) D $14 (20) T $24 (36) $ $34 (52) 4 
$05 (5) E $15 (21) u $25 (37) % $35 (53) 5 
$06 (6) F $16 (22) v $26 (38) & $36 (54) 6 
$07 (7) G $17 (23) w $27 (39) I $37 (55) 7 
$08 (8) H $18 (24) x $28 (40) ( $38 (56) 8 
$09 (9) I $19 (25) y $29 (41) ) $39 (57) 9 
$0A (10) J $1A (26) z $2A (42) * $3A (58) 
$OB (11) K $1B (27) [ $2B (43) + $3B (59) 

' 
$0C (12) L $1C (28) \ $2C (44) 

' 
$3C (60) < 

$OD (13) M $1D (29) ] $2D (45) - $3D (61) = 

$OE (14) N $1E (30) 
A 

$2E (46) $3E (62) > 
$OF (15) 0 $1F (31) - $2F (47) I $3F (63) ? 
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Table B-2. Flashing Screen Text Characters 

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char 

$40 (64) @ $50 (80) p $60 (96) $70 (112) 0 
$41 (65) A $51 (81) Q $61 (97) ! $71 (113) 1 
$42 (66) B $52 (82) R $62 (98) II $72 (114) 2 
$43 (67) c $53 (83) s $63 (99) # $73 (115) 3 
$44 (68) D $54 (84) T $64 (100) $ $74 (116) 4 
$45 (69) E $55 (85) u $65 (101) % $75 (117) 5 
$46 (70) F $56 (86) v $66 (102) & $76 (118) 6 
$47 (71) G $57 (87) w $67 (103) I $77 (119) 7 
$48 (72) H $58 (88) x $68 (104) ( $78 (120) 8 
$49 (73) I $59 (89) y $69 (105) ) $79 (121) 9 
$4A (74) J $5A (90) z $6A (106) * $7A (122) 
$4B (75) K $5B (91) [ $6B (107) + $7B (123) 

' $4C (76) L $5C (92) \ $6C (108) 
' 

$7C (124) < 
$4D (77) M $5D (93) ] $6D (109) - $7D (125) = 

$4E (78) N $5E (94) 
A 

$6E (110) $7E (126) > 
$4F (79) 0 $5F (95) - $6F (111) I $7F (127) ? 

Table B-3. NORMAL-1 Screen Text Characters 

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char 

$80 (128) @ $90 (144) p $AO (160) $BO (176) 0 
$81 (129) A $91 (145) Q $Al (161) ! $Bl (177) 1 
$82 (130) B $92 (146) R $A2 (162) II $B2 (178) 2 
$83 (131) c $93 (147) s $A3 (163) # $B3 (179) 3 
$84 (132) D $94 (148) T $A4 (164) $ $B4 (180) 4 
$85 (133) E $95 (149) u $A5 (165) % $B5 (181) 5 
$86 (134) F $96 (150) v $A6 (166) & $B6 (182) 6 
$87 (135) G $97 (151) w $A7 (167) I $B7 (183) 7 
$88 (136) H $98 (152) x $A8 (168) ( $B8 (184) 8 
$89 (137) I $99 (153) y $A9 (169) ) $B9 (185) 9 
$8A (138) J $9A (154) z $AA (170) * $BA (186) 
$8B (139) K $9B (155) [ $AB (171) + $BB (187) 

' 
$8C (140) L $9C (156) \ $AC (172) 

' 
$BC (188) < 

$8D (141) M $9D (157) ] $AD (173) - $BD (189) = 

$8E (142) N $9E (158) $AE (174) $BE (190) > 
$8F (143) 0 $9F (159) - $AF (175) I $BF (191) ? 
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Table B-4. NORMAL-2 Screen Text Characters 

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char 

$CO (192) @ $DO (208) p $EO (224) $FO (240) 0 
$Cl (193) A $Dl (209) Q $El (225) ! $Fl (241) 1 
$C2 (194) B $D2 (210) R $E2 (226) If $F2 (242) 2 
$C3 (195) c $D3 (211) s $E3 (227) # $F3 (243) 3 
$C4 (196) D $D4 (212) T $E4 (228) $ $F4 (244) 4 
$C5 (197) E $D5 (213) u $E5 (229) % $F5 (245) 5 
$C6 (198) F $D6 (214) v $E6 (230) & $F6 (246) 6 
$C7 (199) G $D7 (215) w $E7 (231) I $F7 (247) 7 
$C8 (200) H $D8 (216) x $E8 (232) ( $F8 (248) 8 
$C9 (201) I $D9 (217) y $E9 (233) ) $F9 (249) 9 
$CA (202) J $DA (218) z $EA (234) * $FA (250) 
$CB (203) K $DB (219) [ $EB (235) + $FB (251) 

' 
$CC (204) L $DC (220) \ $EC (236) 

' 
$FC (252) < 

$CD (205) M $DD (221) ] $ED (237) - $FD (253) = 

$CE (206) N $DE (222) $EE (238) $FE (254) > 
$CF (207) 0 $DF (223) - $EF (239) I $FF (255) ? 
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Appendix 

Organization of the 
Text/Low-Resolution Graphics 

Video Memory 

These tables show the range of hexadecimal and decimal ad- c 
dresses for each of the 24 lines of text and low-resolution graphics. 

Table C-1. Primary-Page Memory Addresses 

Line Hex Range Dec Range 

0 $0400-$0427 1024-1063 
1 $0480-$04A7 1152-1191 
2 $0500-$0527 1280-1319 
3 $0580-$05A7 1408-1447 
4 $0600-$0627 1536-1575 
5 $0680-$06A7 1664-1703 
6 $0700-$0727 1792-1831 
7 $0780-$07A7 1920-1959 

8 $0428-$044F 1064-1103 
9 $04A8-$04CF 1192-1231 

10 $0528-$054F 1320-1359 
11 $05A8-$05CF 1448-1487 
12 $0628-$064F 1576-1615 
13 $06A8-$06CF 1704-1743 
14 $0728-$074F 1832-1871 
15 $07 A8-$07CF 1960-1999 
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Table C-1-cont. Primary-Page Memory Addresses 

16 $0450-$0477 1104-1143 
17 $04D0-$04F7 1232-1271 
18 $0550-$0577 1360-1399 
19 $05D0-$05F7 1488-1527 
20 $0650-$0677 1616-1655 
21. $06D0-$06F7 1744-1783 
22 $0750-$0777 1872-1911 
23 $07D0-$07F7 2000-2039 

Table C-2. Secondary-Page Memory Addresses 

Line Hex Range, Dec Range 

0 $0800-$0827 2048-2087 
1 $0880-$08A7 2176-2215 
2 $0900-$0927 2304-2343 
3 $0980-$09A7 2432-2471 
4 $0A00-$0A27 2560-2599 
5 $0A80-$0AA7 2688-2727 
6 $0B00-$0B27 2816-2855 
7 $0B80-$0BA 7 2944-2983 

8 $0828-$084F 2088-2127 
9 $08A8-$08CF 2216-2255 

10 $0928-$094F 2344-2383 
11 $09A8-$09CF 2472-2511 
12 $0A28-$0A4F 2600-2639 
13 $0AA8-$0ACF 2728-2767 
14 $0B28-$0B4F 2856-2895 
15 $0BA8-$0BCF 2984-3023 

16 $0850-$0877 2128-2167 
17 $08D0-$08F7 2256-2295 
18 $0950-$0977 2384-2423 
19 $09D0-$09F7 2512-2551 
20 $0A50-$0A 77 2640-2679 
21 $0AD0-$0AF7 2768-2807 

i ' 
L,, 

22 $0B50-$0B77 2896-2935 
23 $0BD0-$0BF7 3024-3063 
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Appendix 

Codes Generated by 
Keystrokes 

These tables indicate the hexadecimal and decimal codes that D are generated by a keystroke from the keyboard. 

Table D-1. Hexadecimal and Decimal Key Codes (Ordinary Keys) 

Keystroke Hex Dec 

@ $CO 192 
A $CI 193 
B $C2 194 
c $C3 195 
D $C4 196 
E $C4 197 
F $C5 198 

G $C7 199 
H $C8 200 
I $C9 201 
J $CA 202 
K $CB 203 
L $CC 204 
M $CD 205 
N $CE 206 

0 $CF 207 
p $DO 208 
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Table D-1-cont. Hexadecimal and Decimal Key Codes (Ordinary Keys) 

Keystroke Hex Dec 

Q $DI 209 
R $D2 210 
s $D3 211 
T $D4 212 
u $D5 213 
v $D6 214 

w $D7 215 
x $D8 216 
y $D9 217 
z $DA 218 
space $AO 160 
! $Al 161 
II $A2 162 
# $A3 163 

$ $A4 164 
% $A5 165 
& $A6 166 
I $A7 167 
( $A8 168 
) $A9 169 
* $AA 170 
+ $AB 171 

' 
$AC 172 

- $AD 173 
$AE 174 

I $AF 175 
0 $BO 176 
1 $Bl 177 
2 $B2 178 
3 $B3 179 

4 $B4 180 
5 $B5 181 
6 $B6 182 
7 $B7 183 
8 $B8 184 
9 $B9 185 
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Table D-1-cont. Hexadecimal and Decimal Key Codes (Ordinary Keys) 

Keystroke Hex Dec 

$BA 186 

' $BB 187 

< $BC 188 
= $BD 189 
> $BE 190 
? $BF 191 
<0---- $88 136 (Same as CTRL-H) 
RET $SD 141 (Same as CTRL-M) 
-i> $95 149 (Same as CTRL-U) 
ESC $9B 155 

~ 

$DE 222 
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Table D-2. Hexadecimal and Decimal Key Codes (Control Keys) 

Keystroke Hex Dec 

CTRL-@ $80 128 
CTRL-A $81 129 
CTRL-B $82 130 
CTRL-C $83 131 
CTRL-D $84 132 
CTRL-E $85 133 
CTRL-F $86 134 

CTRL-G $87 135 
CTRL-H $88 136 (Same as +---) 
CTRL-I $89 137 
CTRL-J $8A 138 
CTRL-K $8B 139 
CTRL-L $8C 140 
CTRL-M $8D 141 (Same as RETURN) 
CTRL-N $8E 142 

CTRL-0 $8F 143 
CTRL-P $90 144 
CTRL-Q $91 145 
CTRL-R $92 146 
CTRL-S $93 147 
CTRL-T $94 148 
CTRL-U $95 149 (Same as~) 
CTRL-V $96 150 

CTRL-W $97 151 
CTRL-X $98 152 
CTRL-Y $99 153 
CTRL-Z $9A 154 
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Appendix 

Low-Resolution Graphics Colors 

The normal low-resolution plotting operations plot a color to E 
one-half of a character space on the screen. The colors and their 
codes for such operations are shown here in Table E-1. 

Tables E-2 and E-3 show the two-color combinations that result from 
POKEing or loading codes directly to the primary or secondary page of 
low-resolution video memory. 

Table E-1. Low-Resolution Color Codes 

Color Hex Dec 

BLACK $00 0 
MAGENTA $01 1 
DARK BLUE $02 2 
PURPLE $03 3 
DARK GREEN $04 4 

GREY 1 $05 5 
MEDIUM BLUE $06 6 
LIGHT BLUE $07 7 
BROWN $08 8 
ORANGE $09 9 

GREY2 $0A 10 
PINK $OB 11 
LIGHT GREEN $0C 12 
YELLOW $OD 13 
AQUA $OE 14 

WHITE $OF 15 
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Table E-2. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

BLACK/BLACK $00 0 
BLACK/MAGENTA $10 16 
BLACK/DARK BLUE $20 32 
BLACK/PURPLE $30 48 
BLACK/DARK GREEN $40 64 
BLACK/GREY 1 $50 80 
BLACK/MEDIUM BLUE $60 96 
BLACK/LIGHT BLUE $70 112 
BLACK/BROWN $80 128 
BLACK/ORANGE $90 144 
BLACK/GREY 2 $AO 160 
BLACK/PINK $BO 176 
BLACK/LIGHT GREEN $CO 192 
BLACK/YELLOW $DO 208 
BLACK/AQUA $EO 224 
BLACK/WHITE $FO 240 

MAGENTA/BLACK $01 1 
MAGENTA/MAGENTA $11 17 
MAGENTA/DARK BLUE $21 33 
MAGENTA/PURPLE $31 49 
MAGENTA/DARK GREEN $41 65 
MAGENTA/GREY I $51 81 
MAGENTA/MEDIUM BLUE $61 97 
MAGENTA/LIGHT BLUE $71 113 
MAGENTA/BROWN $81 129 
MAGENTA/ORANGE $91 145 
MAGENTA/GREY 2 $Al 161 
MAGENTA/PINK $Bl 177 
MAGENTA/LIGHT GREEN $Cl 193 
MAGENTA/YELLOW $DI 209 
MAGENTA/AQUA $El 225 
MAGENTA/WHITE $Fl 241 

DARK BLUE/BLACK $02 2 
DARK BLUE/MAGENTA $12 18 
DARK BLUE/DARK BLUE $22 34 
DARK BLUE/PURPLE $32 50 
DARK BLUE/DARK GREEN $42 66 
DARK BLUE/GREY 1 $52 82 
DARK BLUE/MEDIUM BLUE $62 98 
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Table E-2-cont. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

DARK BLUE/LIGHT BLUE $72 114 
DARK BLUE/BROWN $82 130 
DARK BLUE/ORANGE $92 146 
DARK BLUE/GREY 2 $A2 162 
DARK BLUE/PINK $B2 178 
DARK BLUE/LIGHT GREEN $C2 194 
DARK BLUE/YELLOW $D2 210 
DARK BLUE/AQUA $E2 226 
DARK BL DE/WHITE $F2 242 

PURPLE/BLACK $03 3 
PURPLE/MAGENTA $13 19 
PURPLE/DARK BLUE $23 35 
PURPLE/PURPLE $33 51 
PURPLE/DARK GREEN $43 67 
PURPLE/GREY I $53 83 
PURPLE/MEDIUM BLUE $63 99 
PURPLE/LIGHT BLUE $73 115 
PURPLE/BROWN $83 131 
PURPLE/ORANGE $93 147 
PURPLE/GREY 2 $A3 163 
PURPLE/PINK $B3 179 
PURPLE/LIGHT GREEN $C3 195 
PURPLE/YELLOW $D3 211 
PURPLE/AQUA $E3 227 
PURPLE/WHITE $F3 243 

DARK GREEN BLACK $04 4 
DARK GREEN/MAGENTA $14 20 
DARK GREEN/DARK BLUE $24 36 
DARK GREEN/PURPLE $34 52 
DARK GREEN/DARK GREEN $44 68 
DARK GREEN/GREY 1 $54 84 
DARK GREEN/MEDIUM BLUE $64 100 
DARK GREEN/LIGHT BLUE $74 116 
DARK GREEN/BROWN $84 132 
DARK GREEN/ORANGE $94 148 
DARK GREEN/GREY 2 $A4 164 
DARK GREEN/PINK $B4 180 
DARK GREEN/LIGHT GREEN $C4 196 
DARK GREEN/YELLOW $D4 212 
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Table E-2-cont. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

DARK GREEN/AQUA $E4 228 
DARK GREEN/WHITE $F4 244 

GREY 1/BLACK $05 5 
GREY I/MAGENTA $I5 2I 
GREY 1/DARK BLUE $25 37 
GREY 1/PURPLE $35 53 
GREY 1/DARK GREEN $45 69 
GREY I/GREY I $55 85 
GREY I/MEDIUM BLUE $65 101 
GREY I/LIGHT BLUE $75 117 
GREY 1/BROWN $85 133 
GREY 1/0RANGE $95 149 
GREY I/GREY 2 $A5 165 
GREY I/PINK $B5 I81 
GREY I/LIGHT GREEN $C5 197 
GREY I/YELLOW $D5 213 
GREY 1/AQUA $E5 229 
GREY 1/WHITE $F5 245 

MEDIUM BL DE/BLACK $06 6 
MEDIUM BLUE/MAGENTA $16 22 
MEDIUM BLUE/DARK BLUE $26 38 
MEDIUM BLUE/PURPLE $36 54 
MEDIUM BL DE/DARK GREEN $46 70 
MEDIUM BLUE/GREY 1 $56 86 
MEDIUM BLUE/MEDIUM BLUE $66 102 
MEDIUM BLUE/LIGHT BLUE $76 118 
MEDIUM BLUE/BROWN $86 134 
MEDIUM BLUE/ORANGE $96 150 
MEDIUM BLUE/GREY 2 $A6 166 
MEDIUM BLUE/PINK $B6 182 
MEDIUM BL DE/LIGHT GREEN $C6 198 
MEDIUM BLUE/YELLOW $D6 214 
MEDIUM BLUE/AQUA $E6 230 
MEDIUM BLUE/WHITE $F6 246 

LIGHT BLUE/BLACK $07 7 
LIGHT BLUE/MAGENTA $17 23 
LIGHT BLUE/DARK BLUE $27 39 
LIGHT BLUE/PURPLE $37 55 
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Table E-2-cont. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

LIGHT BLUE/DARK GREEN $47 71 
LIGHT BLUE/GREY 1 $57 87 
LIGHT BLUE/MEDIUM BLUE $67 103 
LIGHT BLUE/LIGHT BLUE $77 119 
LIGHT BLUE/BROWN $87 135 
LIGHT BLUE/ORANGE $97 151 
LIGHT BLUE/GREY 2 $A7 167 
LIGHT BLUE/PINK $B7 183 
LIGHT BLUE/LIGHT GREEN $C7 199 
LIGHT BLUE/YELLOW $D7 215 
LIGHT BLUE/AQUA $E7 231 
LIGHT BLUE/WHITE $F7 247 

BROWN/BLACK $08 8 
BROWN/MAGENTA $18 24-
BROWN/DARK BLUE $28 40 
BROWN/PURPLE $38 56 
BROWN/DARK GREEN $48 72 
BROWN/GREY 1 $58 88 
BROWN/MEDIUM BLUE $68 104 
BROWN/LIGHT BLUE $78 120 
BROWN/BROWN $88 136 
BROWN/ORANGE $98 152 
BROWN/GREY 2 $A8 168 
BROWN/PINK $B8 184 
BROWN/LIGHT GREEN $C8 200 
BROWN/YELLOW $D8 216 
BROWN/AQUA $E8 232 
BROWN/WHITE $F8 248 

ORANGE/BLACK $09 9 
ORANGE/MAGENTA $19 25 
ORANGE/DARK BLUE $29 41 
ORANGE/PURPLE $39 57 
ORANGE/DARK GREEN $49 73 
ORANGE/GREY 1 $59 89 
ORANGE/MEDIUM BLUE $69 105 
ORANGE/LIGHT BLUE $79 121 
ORANGE/BROWN $89 137 
ORANGE/ORANGE $99 153 
ORANGE/GREY 2 $A9 169 
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Table E-2-cont. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

ORANGE/PINK $B9 185 
ORANGE/LIGHT GREEN $C9 201 
ORANGE/YELLOW $D9 217 
ORANGE/AQUA $E9 233 
ORANGE/WHITE $F9 249 

GREY 2/BLACK $0A 10 
GREY 2/MAGENTA $IA 26 
GREY 2/DARK BLUE $2A 42 
GREY 2/PURPLE $3A 58 
GREY 2/DARK GREEN $4A 74 
GREY 2/GREY 1 $5A 90 
GREY 2/MEDIUM BLUE $6A 106 
GREY 2/LIGHT BLUE $7A 122 
GREY 2/BROWN $8A 138 
GREY 2/0RANGE $9A 154 
GREY 2/GREY 2 $AA 170 
GREY 2/PINK $BA 186 
GREY 2/LIGHT GREEN $CA 202 
GREY 2/YELLOW $DA 218 
GREY 2/AQUA $EA 234 
GREY 2/WHITE $FA 250 

PINK/BLACK $OB 11 
PINK/MAGENTA $1B 27 
PINK/DARK BLUE $2B 43 
PINK/PURPLE $3B 59 
PINK/DARK GREEN $4B 75 
PINK/GREY 1 $5B 91 
PINK/MEDIUM BLUE $6B 107 
PINK/LIGHT BLUE $7B 123 
PINK/BROWN $8B 139 
PINK/ORANGE $9B 155 
PINK/GREY 2 $AB 171 
PINK/PINK $BB 187 
PINK/LIGHT GREEN $CB 203 
PINK/YELLOW $DB 219 
PINK/AQUA $EB 235 
PINK/WHITE $FB 251 

LIGHT GREEN/BLACK $0C 12 
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Table E-2-cont. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

r--r_:IGHT GREEN/MAGENTA $1C 28 
LIGHT GREEN/DARK BLUE $2C 44 
LIGHT GREEN/PURPLE $3C 60 
LIGHT GREEN/DARK GREEN $4C 76 
LIGHT GREEN/GREY 1 $5C 92 
LIGHT GREEN/MEDIUM BLUE $6C 108 
LIGHT GREEN/LIGHT BLUE $7C 124 
LIGHT GREEN/BROWN $8C 140 
LIGHT GREEN/ORANGE $9C 156 
LIGHT GREEN/GREY 2 $AC 172 
LIGHT GREEN/PINK $BC 188 
LIGHT GREEN/LIGHT GREEN $CC 204 
LIGHT GREEN/YELLOW $DC 220 
LIGHT GREEN/AQUA $EC 236 
LIGHT GREEN/WHITE $FC 252 

YELLOW/BLACK $OD 13 
YELLOW/MAGENTA $1D 29 
YELLOW/DARK BLUE $2D 45 
YELLOW/PURPLE $3D 61 
YELLOW/DARK GREEN $4D 77 
YELLOW/GREY 1 $5D 93 
YELLOW/MEDIUM BLUE $6D 109 
YELLOW/LIGHT BLUE $7D 125 
YELLOW/BROWN $8D 141 
YELLOW/ORANGE $9D 157 
YELLOW/GREY 2 $AD 173 
YELLOW/PINK $BD 189 
YELLOW/LIGHT GREEN $CD 205 
YELLOW/YELLOW $DD 221 
YELLOW/AQUA $ED 237 
YELLOW/WHITE $FD 253 

AQUA/BLACK $OE 14 
AQUA/MAGENTA $1E 30 
AQUA/DARK BLUE $2E 46 
AQUA/PURPLE $3E 62 
AQUNDARK GREEN $4E 78 
AQUA/GREY 1 $5E 94 
AQUNMEDIUM BLUE $6E 110 
AQUNLIGHT BLUE $7E 126 
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Table E-2-cont. Low-Resolution Upper/Low Color Codes 

Upper/Lower Hex Dec 

AQUA/BROWN $8E 142 
AQUA/ORANGE $9E 158 
AQUA/GREY 2 $AE 174 
AQUA/PINK $BE 190 
AQUA/LIGHT GREEN $CE 206 
AQUA/YELLOW $DE 222 
AQUA/AQUA $EE 238 
AQUA/WHITE $FE 254 

WHITE/BLACK $OF 15 
WHITE/MAGENTA $IF 31 
WHITE/DARK BLUE $2F 47 
WHITE/PURPLE $3F 63 
WHITE/DARK GREEN $4F 79 
WHITE/GREY I $5F 95 
WHITE/MEDIUM BLUE $6F 111 
WHITE/LIGHT BLUE $7F 127 
WHITE/BROWN $8F 143 
WHITE/ORANGE $9F 159 
WHITE/GREY 2 $AF 175 
WHITE/PINK $BF 191 
WHITE/LIGHT GREEN $CF 207 
WHITE/YELLOW $DF 223 
WHITE/AQUA $EF 239 
WHITE/WHITE $FF 255 

Table E-3. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 

BLACK/BLACK $00 0 
BLACK/MAGENTA $01 1 
BLACK/DARK BLUE $02 2 
BLACK/PURPLE $03 3 
BLACK/DARK GREEN $04 4 
BLACK/GREY 1 $05 5 
BLACK/MEDIUM BLUE $06 6 
BLACK/LIGHT BLUE $07 7 
BLACK/BROWN $08 8 
BLACK/ORANGE $09 9 
BLACK/GREY 2 $0A 10 
BLACK/PINK $OB 11 
BLACK/LIGHT GREEN $0C 12 
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Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 
BLACK/YELLOW $OD 13 
BLACK/AQUA $OE 14 
BLACK/WHITE $OF 15 

MAGENTA/BLACK $10 16 
MAGENTA/MAGENTA $11 17 
MAGENTA/DARK BLUE $12 18 
MAGENTA/PURPLE $13 19 
MAGENTA/DARK GREEN $14 20 
MAGENTA/GREY 1 $15 21 
MAGENTA/MEDIUM BLUE $16 22 
MAGENTA/LIGHT BLUE $17 23 
MAGENTA/BROWN $18 24 
MAGENTA/ORANGE $19 25 
MAGENTA/GREY 2 $1A 26 
MAGENTA/PINK $1B 27 
MAGENTA/LIGHT GREEN $1C 28 
MAGENTA/YELLOW $1D 29 
MAGENTA/AQUA $1E 30 
MAGENTA/WHITE $1F 31 

DARK BLUE/BLACK $20 32 
DARK BLUE/MAGENTA $21 33 
DARK BLUE/DARK BLUE $22 34 
DARK BLUE/PURPLE $23 35 
DARK BLUE/DARK GREEN $24 36 
DARK BLUE/GREY 1 $25 37 
DARK BLUE/MEDIUM BLUE $26 38 
DARK BLUE/LIGHT BLUE $27 39 
DARK BLUE/BROWN $28 40 
DARK BLUE/ORANGE $29 41 
DARK BLUE/GREY 2 $2A 42 
DARK BLUE/PINK $2B 43 
DARK BLUE/LIGHT GREEN $2C 44 
DARK BLUE/YELLOW $2D 45 
DARK BLUE/AQUA $2E 46 
DARK BLUE/WHITE $2F 47 

PURPLE/BLACK $30 48 
PURPLE/MAGENTA $31 49 
PURPLE/DARK BLUE $32 50 
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Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 
PURPLE/PURPLE $33 51 
PURPLE/DARK GREEN $34 52 
PURPLE/GREY l $35 53 
PURPLE/MEDIUM BLUE $36 54 
PURPLE/LIGHT BLUE $37 55 
PURPLE/BROWN $38 56 
PURPLE/ORANGE $39 57 
PURPLE/GREY 2 $3A 58 
PURPLE/PINK $3B 59 
PURPLE/LIGHT GREEN $3C 60 
PURPLE/YELLOW $3D 61 
PURPLE/ AQUA $3E 62 
PURPLE/WHITE $3F 63 

DARK GREEN/BLACK $40 64 
DARK GREEN/MAGENTA $41 65 
DARK GREEN/DARK BLUE $42 66 
DARK GREEN/PURPLE $43 67 
DARK GREEN/DARK GREEN $44 68 
DARK GREEN/GREY 1 $45 69 
DARK GREEN/MEDIUM BLUE $46 70 
DARK GREEN/LIGHT BLUE $47 71 
DARK GREEN/BROWN $48 72 
DARK GREEN/ORANGE $49 73 
DARK GREEN/GREY 2 $4A 74 
DARK GREEN/PINK $4B 75 
DARK GREEN/LIGHT GREEN $4C 76 
DARK GREEN/YELLOW $4D 77 
DARK GREEN/AQUA $4E 78 
DARK GREEN/WHITE $4F 79 

GREY I/BLACK $50 80 
GREY I/MAGENTA $51 81 
GREY 1/DARK BLUE $52 82 
GREY I/PURPLE $53 83 
GREY I/DARK GREEN $54 84 
GREY I/GREY 1 $55 85 
GREY 1/MEDIUM BLUE $56 86 
GREY 1/LIGHT BLUE $57 87 
GREY l/BROWN $58 88 
GREY 1/0RANGE $59 89 
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Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 
GREY I/GREY 2 $5A 90 
GREY I/PINK $5B 9I 
GREY 1/LIGHT GREEN $5C 92 
GREY 1/YELLOW $5D 93 
GREY 1/AQUA $5E 94 
GREY I/WHITE $5F 95 

MEDIUM BLUE/BLACK $60 96 
MEDIUM BLUE/MAGENTA $6I 97 
MEDIUM BLUE/DARK BLUE $62 98 
MEDIUM BLUE/PURPLE $63 99 
MEDIUM BLUE/DARK GREEN $64 100 
MEDIUM BLUE/GREY I $65 lOI 
MEDIUM BLUE/MEDIUM BLUE $66 102 
MEDIUM BLUE/LIGHT BLUE $67 103 
MEDIUM BLUE/BROWN $68 104 
MEDIUM BLUE/ORANGE $69 105 
MEDIUM BLUE/GREY 2 $6A 106 
MEDIUM BLUE/PINK $6B 107 
MEDIUM BLUE/LIGHT GREEN $6C 108 
MEDIUM BLUE/YELLOW $6D 109 
MEDIUM BLUE/AQUA $6E 110 
MEDIUM BLUE/WHITE $6F 11I 

LIGHT BLUE/BLACK $70 112 
LIGHT BLUE/MAGENTA $7I 113 
LIGHT BLUE/DARK BLUE $72 114 
LIGHT BLUE/PURPLE $73 115 
LIGHT BLUE/DARK GREEN $74 116 
LIGHT BLUE/GREY I $75 117 
LIGHT BLUE/MEDIUM BLUE $76 118 
LIGHT BLUE/LIGHT BLUE $77 119 
LIGHT BLUE/BROWN $78 120 
LIGHT BL VE/ORANGE $79 12I 
LIGHT BLUE/GREY 2 $7A I22 
LIGHT BLUE/PINK $7B 123 
LIGHT BLUE/LIGHT GREEN $7C I24 
LIGHT BLUE/YELLOW $7D I25 
LIGHT BLUE/AQUA $7E I26 
LIGHT BLUE/WHITE $7F 127 

296 • APPENDIX E 



Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 
BROWN/BLACK $80 128 
BROWN/MAGENTA $81 129 
BROWN/DARK BLUE $82 130 
BROWN/PURPLE $83 131 
BROWN/DARK GREEN $84 132 
BROWN/GREY I $85 133 
BROWN/MEDIUM BLUE $86 134 
BROWN/LIGHT BLUE $87 135 
BROWN/BROWN $88 136 
BROWN/ORANGE $89 137 
BROWN/GREY 2 $8A 138 
BROWN/PINK $8B 139 
BROWN/LIGHT GREEN $8C 140 
BROWN/YELLOW $8D 141 
BROWN/AQUA $8E 142 
BROWN/WHITE $8F 143 

ORANGE/BLACK $90 144 
ORANGE/MAGENTA $91 145 
ORANGE/DARK BLUE $92 146 
ORANGE/PURPLE $93 147 
ORANGE/DARK GREEN $94 148 
ORANGE/GREY 1 $95 149 
ORANGE/MEDIUM BLUE $96 150 
ORANGE/LIGHT BLUE $97 151 
ORANGE/BROWN $98 152 
ORANGE/ORANGE $99 153 
ORANGE/GREY 2 $9A 154 
ORANGE/PINK $9B 155 
ORANGE/LIGHT GREEN $9C 156 
ORANGE/YELLOW $9D 157 
ORANGE/AQUA $9E 158 
ORANGE/WHITE $9F 159 

GREY 2/BLACK $AO 160 
GREY 2/MAGENTA $AI 161 
GREY 2/DARK BLUE $A2 162 
GREY 2/PURPLE $A3 163 
GREY 2/DARK GREEN $A4 164 
GREY 2/GREY 1 $A5 165 
GREY 2/MEDIUM BLUE $A6 166 
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Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 
GREY 2/LIGHT BLUE $A7 167 
GREY 2/BROWN $A8 168 
GREY 2/0RANGE $A9 169 
GREY 2/GREY 2 $AA 170 
GREY 2/PINK $AB 171 
GREY 2/LIGHT GREEN $AC 172 
GREY 2/YELLOW $AD 173 
GREY 2/AQUA $AE 174 
GREY 2/WHITE $AF 175 

PINK/BLACK $BO 176 
PINK/MAGENTA $BI 177 
PINK/DARK BLUE $B2 178 
PINK/PURPLE $B3 179 
PINK/DARK GREEN $B4 180 
PINK/GREY 1 $B5 181 
PINK/MEDIUM BLUE $B6 182 
PINK/LIGHT BLUE $B7 183 
PINK/BROWN $B8 184 
PINK/ORANGE $B9 185 
PINK/GREY 2 $BA 186 
PINK/PINK $BB 187 
PINK/LIGHT GREEN $BC 188 
PINK/YELLOW $BD 189 
PINK/AQUA $BE 190 
PINK/WHITE $BF 191 

LIGHT GREEN/BLACK $CO 192 
LIGHT GREEN/MAGENTA $Cl 193 
LIGHT GREEN/DARK BLUE $C2 194 
LIGHT GREEN/PURPLE $C3 195 
LIGHT GREEN/DARK GREEN $C4 196 
LIGHT GREEN/GREY l $C5 197 
LIGHT GREEN/MEDIUM BLUE $C6 198 
LIGHT GREEN/LIGHT BLUE $C7 199 
LIGHT GREEN/BROWN $C8 200 
LIGHT GREEN/ORANGE $C9 201 
LIGHT GREEN/GREY 2 $CA 202 
LIGHT GREEN/PINK $CB 203 
LIGHT GREEN/LIGHT GREEN $CC 204 
LIGHT GREEN/YELLOW $CD 205 
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Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 

LIGHT GREEN/AQUA $CE 206 
LIGHT GREEN/WHITE $CF 207 

YELLOW/BLACK $DO 208 
YELLOW/MAGENTA $Dl 209 
YELLOW/DARK BLUE $D2 210 
YELLOW/PURPLE $D3 211 
YELLOW/DARK GREEN $D4 212 
YELLOW/GREY 1 $D5 213 
YELLOW/MEDIUM BLUE $D6 214 
YELLOW/LIGHT BLUE $D7 215 
YELLOW/BROWN $D8 216 
YELLOW/ORANGE $D9 217 
YELLOW/GREY 2 $DA 218 
YELLOW/PINK $DB 219 
YELLOW/LIGHT GREEN $DC 220 
YELLOW/YELLOW $DD 221 
YELLOW/AQUA $DE 222 
YELLOW/WHITE $DF 223 

AQUA/BLACK $EO 224 
AQUA/MAGENTA $El 225 
AQUA/DARK BLUE $E2 226 
AQUA/PURPLE $E3 227 
AQUA/DARK GREEN $E4 228 
AQUA/GREY 1 $E5 229 
AQUA/MEDIUM BLUE $E6 230 
AQUA/LIGHT BLUE $E7 231 
AQUA/BROWN $E8 232 
AQUA/ORANGE $E9 233 
AQUA/GREY 2 $EA 234 
AQUA/PINK $EB 235 
AQUA/LIGHT GREEN $EC 236 
AQUA/YELLOW $ED 237 
AQUA/AQUA $EE 238 
AQUA/WHITE $EF 239 

WHITE/BLACK $FO 240 
WHITE/MAGENTA $Fl 241 
WHITE/DARK BLUE 

I 
$F2 242 

WHITE/PURPLE $F3 243 
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Table E-3-cont. Low-Resolution Lower/Upper Color Codes 

Lower/Upper Hex Dec 

WHITE/DARK GREEN $F4 244 
WHITE/GREY 1 $F5 245 
WHITE/MEDIUM BLUE $F6 246 
WHITE/LIGHT BLUE $F7 247 
WHITE/BROWN $F8 248 
WHITE/ORANGE $F9 249 
WHITE/GREY 2 $FA 250 
WHITE/PINK $FB 251 
WHITE/LIGHT GREEN $FC 252 
WHITE/YELLOW $FD 253 
WHITE/AQUA $FE 254 
WHITE/WHITE $FF 255 
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Appendix 

Range of High-Resolution 
Graphics 

Video Addresses 

These tables show the range of hexadecimal and decimal ad- F 
dresses for each of the 192 high-resolution graphics lines. The first 
table represents the primary page, and the second table shows the ranges 
for the secondary high-resolution page. 

Table F-1. High-Resolution Primary-Page Addresses 

Line Hex Range Dec Range 

0 $2000-$2027 8192-8231 
1 $2400-$2427 9216-9255 
2 $2800-$2827 10240-10279 
3 $2C00-$2C27 11264-11303 
4 $3000-$3027 12288-12327 
5 $3400-$3427 13312-13351 
6 $3800-$3827 14336-14375 
7 $3C00-$3C27 15360-15399 

8 $2080-$20A7 8320-8359 
9 $2480-$24A7 9344-9383 

10 $2880-$28A7 10368-10407 
11 $2C80-$2CA7 11392-11431 
12 $3080-$30A 7 12416-12455 
13 $3480-$34A7 13440-13479 
14 $3880-$38A7 14464-14503 
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Table F-1-cont. High-Resolution Primary-Page Addresses 

Line Hex Range Dec Range 

15 $3C80-$3CA7 15488-15527 

16 $2100-$2127 8448-8487 
17 $2500-$2527 9472-9511 
18 $2900-$2927 10496-10535 
19 $2D00-$2D27 11520-11559 
20 $3100-$3127 12544-12583 
21 $3500-$3527 13568-13607 
22 $3900-$3927 14592-14631 
23 $3D00-$3D27 15616-15655 

24 $2180-$21A7 8576-8615 
25 $2580-$25A7 9600-9639 
26 $2980-$29A7 10624-10663 
27 $2D80-$2DA 7 11648-11687 
28 $3180-$31A7 12672-12711 
29 $3580-$35A7 13696-13735 
30 $3980-$39A7 14720-14759 
31 $3D80-$3DA 7 15744-15783 

32 $2200-$2227 8704-8743 
33 $2600-$2627 9728-9767 
34 $2A00-$2A27 10752-10791 
35 $2E00-$2E27 11776-11815 
36 $3200-$3227 12800-12839 
37 $3600-$3627 13824-13863 
38 $3A00-$3A27 14848-14887 
39 $3E00-$3E27 15872-15911 

40 $2280-$22A 7 8832-8871 
41 $2680-$26A7 9856-9895 
42 $2A80-$2AA 7 10880-10919 
43 $2E80-$2EA7 11904-11943 
44 $3280-$32A7 12928-12967 
45 $3680-$36A7 13952-13991 
46 $3A80-$3AA 7 14976-15015 
47 $3E80-$3EA 7 16000-16039 

48 $2300-$2327 8960-8999 
49 $2700-$2727 9984-10023 
50 $2B00-$2B27 11008-11047 
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Table F-1-cont. High-Resolution Primary-Page Addresses 

Line Hex Range Dec Range 
f--

51 $2F00-$2F27 12032-12071 
52 $3300-$3327 13056- 13095 
53 $3700-$3727 14080-14119 
54 $3B00-$3B27 15104-15143 
55 $3F00-$3F27 16128-16167 

56 $2380-$23A 7 9088-9127 
57 $2780-$27 A 7 10112-10151 
58 $2B80-$2BA7 11136-11175 
59 $2F80-$2F A 7 12160-12199 
60 $3380-$33A 7 13184-13223 
61 $3780-$37A7 14208-14247 
62 $3B80-$3BA 7 15232-15271 
63 $3F80-$3FA7 16256-16295 

64 $2028-$204F 8232-8271 
65 $2428-$244F 9256-9295 
66 $2828-$284F 10280-10319 
67 $2C28-$2C4F 11304-11343 
68 $3028-$304F 12328-12367 
69 $3428-$344F 13352-13391 
70 $3828-$384F 14376-14415 
71 $3C28-$3C4F 15400-15439 

72 $20A8-$20CF 8360-8399 
73 $24A8-$24CF 9384-9423 
74 $28A8-$28CF 10408-10447 
75 $2CA8-$2CCF 11432-11471 
76 $30A8-$30CF 12456-12495 
77 $34A8-$34CF 13480-13519 
78 $38A8-$38CF 14504-14543 
79 $3CA8-$3CCF 15528-15567 

80 $2128-$214F 8488-8527 
81 $2528-$254F 9512-9551 
82 $2928-$294F 10536-10575 
83 $2D28-$2D4F 11560-11599 
84 $3128-$314F 12584-12623 
85 $3528-$354F 13608-13647 
86 $3928-$394F 14632-14671 
87 $3D28-$3D4F 15656-15695 
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Table F-1-cont. ffigh-Resolution Primary-Page Addresses 

Line Hex Range Dec Range 

88 $21A8-$21CF 8616-8655 
89 $25A8-$25CF 9640-9679 
90 $29A8-$29CF 10664-10703 
91 $2DA8-$2DCF 11688-11727 
92 $31A8-$31CF 12712-12751 
93 $35A8-$35CF 13736-13775 
94 $39A8-$39CF 14760-14799 
95 $3DA8-$3DCF 15784-15823 

96 $2228-$224F 8744-8783 
97 $2628-$264F 9768-9807 
98 $2A28-$2A4F 10792-10831 
99 $2E28-$2E4F 11816-11855 

100 $3228-$324F 12840-12879 
101 $3628-$364F 13864-13903 
102 $3A28-$3A4F 14888-14927 
103 $3E28-$3E4F 15912-15951 

104 $22A8-$22CF 8872-8911 
105 $26A8-$26CF 9896-9935 
106 $2AA8-$2ACF 10920-10959 
107 $2EA8-$2ECF 11944-11983 
108 $32A8-$32CF 12968-13007 
109 $36A8-$36CF 13992-14031 
110 $3AA8-$3ACF 15016-15055 
111 $3EA8-$3ECF 16040-16079 

112 $2328-$234F 9000-9039 
113 $2728-$274F 10024-10063 
114 $2B28-$2B4F 11048-11087 
115 $2F28-$2F4F 12072-12111 
116 $3328-$334F 13096-13135 
117 $3728-$374F 14120-14159 
118 $3B28-$3B4F 15144-15183 
119 $3F28-$3F4F 16168-16207 

120 $23A8-$23CF 9128-9167 
121 $27A8-$27CF 10152-10191 
122 $2BA8-$2BCF 11176-11215 
123 $2F A8-$2FCF 12200-12239 
124 33A8- 33 F $ $ c 13224-13263 
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Table F-1-cont. High-Resolution Primary-Page Addresses 

Line Hex Range Dec Range 

125 $37 A8-$37CF 14248-14287 
126 $3BA8-$3BCF 15272-15311 
127 $3F A8-$3FCF 16296-16335 

128 $2050-$2077 8272-8311 
129 $2450-$2477 9296-9335 
130 $2850-$2877 10320-10359 
131 $2C50-$2C77 11344-11383 
132 $3050-$3077 12368-12407 
133 $3450-$3477 13392-13431 
134 $3850-$3877 14416-14455 
135 $3C50-$3C77 15440-15479 

136 $20D0-$20F7 8400-8439 
137 $24D0-$24F7 9424-9463 
138 $28D0-$28F7 10448-10487 
139 $2CD0-$2CF7 11472-11511 
140 $30D0-$30F7 12496-12535 
141 $34D0-$34F7 13520-13559 
142 $38D0-$38F7 14544-14583 
143 $3CD0-$3CF7 15568-15607 

144 $2150-$2177 8528-8567 
145 $2550-$2577 9552-9591 
146 $2950-$2977 10576-10615 
147 $2D50-$2D77 11600-11639 
148 $3150-$3177 12624-12663 
149 $3550-$3577 13648-13687 
150 $3950-$3977 14672-14711 
151 $3D50-$3D77 15696-15735 

152 $21D0-$21F7 8656-8695 
153 $25D0-$25F7 9680-9719 
154 $29D0-$29F7 10704-10743 
155 $2DD0-$2DF7 11728-11767 
156 $31D0-$31F7 12752-12791 
157 $35D0-$35F7 13776- 13815 
158 $39D0-$39F7 14800-14839 
159 $3DD0-$3DF7 15824-15863 

160 $2250-$2277 
I 

8784-8823 
161 $2650-$2677 9808-9847 
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Table F-1-cont. High-Resolution Primary-Page Addresses 

Line Hex Range Dec Range 

162 $2A50-$2A 77 10832-10871 
163 $2E50-$2E77 11856-11895 
164 $3250-$3277 12880-12919 
165 $3650-$3677 13904-13943 
166 $3A50-=-$3A77 14928-14967 
167 $3E50-$3E77 15952-15991 

168 $22D0-$22F7 8912-8951 
169 $26D0-$26F7 9936-9975 
170 $2AD0-$2AF7 10960-10999 
171 $2ED0-$2EF7 11984-12023 
172 $32D0-$32F7 13008-13047 
173 $36D0-$36F7 14032-14071 
174 $3AD0-$3AF7 15056-15095 
175 $3ED0-$3EF7 16080-16119 

176 $2350-$2377 9040-9079 
177 $2750-$2777 10064-10103 
178 $2B50-$2B77 11088-11127 
179 $2F50-$2F77 12112-12151 
180 $3350-$3377 13136-13175 
181 $3750-$3777 14160-14199 
182 $3B50-$3B77 15184-15223 
183 $3F50-$3F77 16208-16247 

184 $23D0-$23F7 9168-9207 
185 $27D0-$27F7 10192-10231 
186 $2BD0-$2BF7 11216-11255 
187 $2FD0-$2FF7 12240-12279 
188 $33D0-$33F7 13264-13303 
189 $37D0-$37F7 14288-14327 
190 $3BD0-$3BF7 15312-15351 
191 $3FD0-$3FF7 16336-16375 

Table F-2. High-Resolution Secondary-Page Addresses 

Line Hex Range Dec Range 

0 $4000-$4027 16384-16423 
1 $4400-$4427 17408-17447 
2 $4800-$4827 18432-18471 
3 $4C00-$4C27 19456-19495 
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Table F-2-cont. High-Resolution Secondary-Page Addresses 

Line Hex Range Dec Range 

4 $5000-$5027 20480- 20519 

5 $5400-$5427 21504-21543 

6 $5800-$5827 22528- 22567 

7 $5C00-$5C27 23552-23591 

8 $4080-$40A7 16512-16551 
9 $4480-$44A7 17536-17575 

10 $4880-$48A7 18560-18599 
11 $4C80-$4CA7 19584-19623 
12 $5080-$50A7 20608-20647 
13 $5480-$54A7 21632-21671 
14 $5880-$58A 7 22656- 22695 
15 $5C80-$5CA7 23680-23719 

16 $4100-$4127 16640-16679 
17 $4500-$4527 17664-17703 
18 $4900-$4927 18688-18727 
19 $4D00-$4D27 19712-19751 
20 $5100-$5127 20736-20775 
21 $5500-$5527 21760-21799 
22 $5900-$5927 22784-22823 
23 $5D00-$5D27 23808-23847 

24 $4180-$41A7 16768-16807 
25 $4580-$45A7 17792-17831 
26 $4980-$49A 7 18816-18855 
27 $4D80-$4DA 7 19840-19879 
28 $5180-$51A7 20864-20903 
29 $5580-$55A7 21888-21927 
30 $5980-$59A7 22912-22951 
31 $5D80-$5DA7 23936-23975 

32 $4200-$4227 16896-16935 
33 $4600-$4627 17920-17959 
34 $4A00-$4A27 18944-18983 
35 $4E00-$4E27 19968-20007 
36 $5200-$5227 20992-21031 
37 $5600-$5627 22016-22055 
38 $5A00-$5A27 23040-23079 
39 $5E00-$5E27 24064-24103 
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Table F-2-cont. High-Resolution Secondary-Page Addresses 

Line Hex Range Dec Range 

40 $4280-$42A7 17024-17063 
41 $4680-$46A 7 18048-18087 
42 $4A80-$4AA7 19072-19111 
43 $4E80-$4EA7 20096-20135 
44 $5280-$52A 7 21120-21159 
45 $5680-$56A7 22144-22183 
46 $5A80-$5AA 7 23168- 23207 
47 $5E80-$5EA7 24192-24231 

48 $4300-$4327 17152-17191 
49 $4700-$4727 18176-18215 
50 $4B00-$4B27 19200-19239 
51 $4F00-$4F27 20224- 20263 
52 $5300-$5327 21248-21287 
53 $5700-$5727 22272-22311 
54 $5B00-$5B27 23296-23335 
55 $5F00-$5F27 24320-24359 

56 $4380-$43A 7 17280-17319 
57 $4780-$47 A 7 18304-18343 
58 $4B80-$4BA 7 19328-19367 
59 $4F80-$4FA7 20352-20391 
60 $5380-$53A 7 21376-21415 
61 $5780-$57 A 7 22400- 22439 
62 $5B80-$5BA 7 23424-23463 
63 $5F80-$5FA7 24448-24487 

64 $4028-$404F 16424-16463 
65 $4428-$444F 17448-17487 
66 $4828-$484F 18472-18511 
67 $4C28-$4C4F 19496-19535 
68 $5028-$504F 20520- 20559 
69 $5428-$544F 21544-21583 
70 $5828-$584F 22568-22607 
71 $5C28-$5C4F 23592-23631 

72 $40A8-$40CF 16552-16591 
73 $44A8-$44CF 17576-17615 
74 $48A8-$48CF 18600-18639 
75 $4CA8-$4CCF 19624-19663 
76 $50A8-$50CF 20648-20687 
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Table F-2-cont. High-Resolution Secondary-Page Addresses 

Line Hex Range Dec Range 

77 $54A8-$54CF 21672-21711 
78 $58A8-$58CF 22696- 22735 
79 $5CA8-$5CCF 23720-23759 

80 $4128-$414F 16680-16719 
81 $4528-$454F 17704-17743 
82 $4928-$494F 18728-18767 
83 $4D28-$4D4F 19752-19791 
84 $5128-$514F 20776-20815 
85 $5528-$554F 21800-21839 
86 $5928-$594F 22824- 22863 
87 $5D28-$5D4F 23848-23887 

88 $41A8-$41CF 16808-16847 
89 $45A8-$45CF 17832-17871 
90 $49A8-$49CF 18856-18895 
91 $4DA8-$4DCF 19880-19919 
92 $51A8-$51CF 20904-20943 
93 $55A8-$55CF 21928-21967 
94 $59A8-$59CF 22952-22991 
95 $5DA8-$5DCF 23976-24015 

96 $4228-$424F 16936-16975 
97 $4628-$464F 17960- 17999 
98 $4A28-$4A4F 18984-19023 
99 $4E28-$4E4F 20008-20047 

100 $5228-$524F 21032-21071 
101 $5628-$564F 22056-22095 
102 $5A28-$5A4F 23080-23119 
103 $5E28-$5E4F 24104-24143 

104 $42A8-$42CF 17064-17103 
105 $46A8-$46CF 18088-18127 
106 $4AA8-$4ACF 19112-19151 
107 $4EA8-$4ECF 20136-20175 
108 $52A8-$52CF 21160-21199 
109 $56A8-$56CF 22184- 22223 
110 $5AA8-$5ACF 23208- 23247 
111 $5EA8-$5ECF 24232-24271 

112 $4328-$434F 17192-17231 
113 $4728- 474F $ 18216-18255 
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Table F-2-cont. High-Resolution Secondary-Page Addresses 

Line Hex Range Dec Range 

114 $4B28-$4B4F 19240-19279 
115 $4F28-$4F4F 20264-20303 
116 $5328-$534F 21288-21327 
117 $5728-$574F 22312-22351 
118 $5B28-$5B4F 23336-23375 
119 $5F28-$5F4F 24360-24399 

120 $43A8-$43CF 17320-17359 
121 $47A8-$47CF 18344-18383 
122 $4BA8-$4BCF 19368-19407 
123 $4FA8-$4FCF 20392-20431 
124 $53A8-$53CF 21416-21455 
125 $57A8-$57CF 22440-22479 
126 $5BA8-$5BCF 23464-23503 
127 $5FA8-$5FCF 24488-24527 

128 $4050-$4077 16464-16503 
129 $4450-$4477 17488-17527 
130 $4850-$4877 18512-18551 
131 $4C50-$4C77 19536-19575 
132 $5050-$5077 20560-20599 
133 $5450-$5477 21584-21623 
134 $5850-$5877 22608-22647 
135 $5C50-$5C77 23632-23671 

136 $40D0-$40F7 16592-16631 
137 $44D0-$44F7 17616-17655 
138 $48D0-$48F7 18640-18679 
139 $4CD0-$4CF7 19664-19703 
140 $50D0-$50F7 20688-20727 
141 $54D0-$54F7 21712-21751 
142 $58D0-$58F7 22736-22775 
143 $5CD0-$5CF7 23760-23799 

144 $4150-$4177 16720-16759 
145 $4550-$4577 177 44-17783 
146 $4950-$4977 18768-18807 
147 $4D50-$4D77 19792-19831 
148 $5150-$5177 20816-20855 
149 $5550-$5577 21840-21879 
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Table F-2-cont. High-Resolution Secondary-Page Addresses 

Line Hex Range Dec Range 

150 $5950-$5977 22864-22903 
151 $5D50-$5D77 23888- 23927 

152 $4ID0-$41F7 16848-16887 
153 $45D0-$45F7 17872-17911 
154 $49D0-$49F7 18896-18935 
155 $4DD0-$4DF7 19920-19959 
156 $51D0-$51F7 20944- 20983 
157 $55D0-$55F7 21968- 22007 
158 $59D0-$59F7 22992- 23031 
159 $5DD0-$5DF7 24016-24055 

160 $4250-$4277 16976-17015 
161 $4650-$4677 18000-18039 
162 $4A50-$4A77 19024-19063 
163 $4E50-$4E77 20048- 20087 
164 $5250-$5277 21072-21111 
165 $5650-$5677 22096-22135 
166 $5A50-$5A77 23120-23159 
167 $5E50-$5E77 24144-24183 

168 $42D0-$42F7 17104-17143 
169 $46D0-$46F7 18128-18167 
170 $4AD0-$4AF7 19152-19191 
171 $4ED0-$4EF7 20176-20215 
172 $52D0-$52F7 21200-21239 
173 $56D0-$56F7 22224- 22263 
174 $5AD0-$5AF7 23248- 23287 
175 $5ED0-$5EF7 24272-24311 

176 $4350-$4377 17232-17271 
177 $4750-$4777 18256-18295 
178 $4B50-$4B77 19280-19319 
179 $4F50-$4F77 20304-20343 
180 $5350-$5377 21328-21367 
181 $5750-$5777 22352-22391 
182 $5B50-$5B77 23376-23415 
183 $5F50-$5F77 24400- 24439 

184 $43D0-$43F7 17360-17399 
185 $47D0-$47F7 18384-18423 
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Table F-2-cont. High-Resolution Secondary-Page Addresses 
--

Line Hex Range Dec Range 

186 $4BD0-$4BF7 19408-19447 
187 $4FD0-$4FF7 20432-20471 
188 $53D0-$53F7 21456-21495 
189 $57D0-$57F7 22480- 22519 
190 $5BD0-$5BF7 23504-23543 
191 $5FD0-$5FF7 24528-24567 
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Appendix G 
6502 Instruction Set 

Table G-1. 6502 Instruction Set 

Mnemonic Machine Language Comments 

ADS #data 69 byte 
ADA addr0 65 byte 
ADC addr ·6D byte byte 
ADC addr0 ,X 75 byte Add with carry 
ADC addr,X 7D byte byte 
ADC addr,Y 79 byte byte 
ADC (data ,X) 61 byte 
ADC (data),Y 71 byte 

AND #data 29 byte 
AND addr0 25 byte 
AND addr 2D byte· byte 
AND addr0 ,X 35 byte 
AND addr,X 3D byte byte Logical AND 
AND addr,Y 39 byte byte 
AND (data ,X) 21 byte 
AND (data),Y 31 byte 
ASLA OA 
ASL addr0 06 byte 
ASL addr OE byte byte Shift left 
ASL addr0 ,X 16 byte 
ASL addr,X 1E byte byte 
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Table G-1-cont. 6502 Instruction Set 

Mnemonic Machine Language Comments 

BCC disp 90 byte 
BCS disp BO byte 
BEQ disp FO byte 
BMI disp 30 byte 
BNE disp DO byte Branch 
BPL disp IO byte 
BVC disp 50 byte 
BVS disp 70 byte 

BIT addr0 24 byte 
BIT addr 2C byte byte Bit test 

BRK 00 Break 

CLC 18 Clear Cs status 

CLD D8 Clear decimal status 

CLI 58 Clear interrupt status 

CLV B8 Clear overflow status 

CMP #data C9 byte 
CMP addr0 CS byte 
CMP addr CD byte byte 
CMP addr0 ,X D5 byte Compare accumulator 
CMP addr,X DD byte byte 
CMP addr,Y D9 byte byte 
CMP (data ,X) Cl byte 
CMP (data),Y Dl byte 

CPX #data EO byte 
CPX addr0 E4 byte Compare register X 
CPX addr EC byte byte 

CPY #data CO byte 
CPY addr0 C4 byte Compare register Y 
CPY addr CC byte byte 

DEC addr0 C6 byte 
DEC addr CE b te b te y y 
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Table G-1-cont. 6502 Instruction Set 

Mnemonic Machine Language Comments 

DEC add0 ,X D6 byte 
DEC addr,X DE byte byte Decrement 
DEX CA 
DEY 88 

EOR #data 49 byte 
EOR addr0 45 byte 
EOR addr 4D byte byte 
EOR addr0 ,X 55 byte Logical EXCLUSIVE-OR 
EOR addr,X SD byte byte 
EOR addr,Y 59 byte byte 
EOR (data ,X) 41 byte 
EOR (data),Y 51 byte 

INC addr0 E6 byte 
INC addr EE byte byte 
INC addr0 ,X F6 byte Increment 
INC addr,X FE byte byte 
INX E8 
INY C8 

JMP addr 4C byte byte 
JMP (addr) 6C byte byte Jump 
JSR addr 20 byte byte 

LDA #data A9 byte 
LDA addr0 A5 byte 
LDA addr AD byte byte 
LDA addr0 ,X B5 byte Load accumulator 
LDA addr,X BD byte byte 
LDA addr,Y B9 byte byte 
LDA (data ,X) Al byte 
LDA (data),Y Bl byte 

LDX #data A2 byte 
LDX addr0 A6 byte 
LDX addr AE byte byte Load X register 
LDX addr0 ,Y B6 byte 
LDX addr Y BE b te b te y y 
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Table G-1-cont. 6502 Instruction Set 

Mnemonic Machine Language Comments 

LDY #data AO byte 
LDY addr0 A4 byte 
LDY addr AC byte byte Load Y register 
LDY addr0 ,X B4 byte 
LDY addr,X BC byte byte 

LSRA 4A 
LSR addr0 46 byte 
LSR addr 4E byte byte Left Shift 
LSR addr0 ,X 56 byte 
LSR addr,X 5E byte byte 

NOP EA No operation 

ORA #data 09 byte 
ORA addr0 05 byte 
ORA addr OD byte byte 
ORA addr0 ,X 15 byte 
ORA addr,X lD byte byte Logical OR 
ORA addr,Y 19 byte byte 
ORA (data ,X) 01 byte 
ORA (data),Y 11 byte 

PHA 48 Push accumulator to stack 
PHP 08 Push flag register to stack 

PLA 68 Load stack to accumulator 
PLP 28 Load stack to flag register 

ROLA 2A 
ROL addr0 26 byte 
ROL addr 2E byte byte Rotate left through 
ROL addr0 ,X 36 byte carry 
ROL addr,X 3E byte byte 

RORA 6A 
ROR addr0 66 byte Rotate right through 
ROR addr 6E byte byte carry 
ROR addr0 ,X 76 byte 
ROR addr X 7E b te b te y y 
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Table G-1-cont. 6502 Instruction Set 

Mnemonic Machine Language Comments 

RTI 40 Return from interrupt 

RTS 60 Return from subroutine 

SBC #data E9 byte 
SBC addr0 ES byte 
SBC addr ED byte byte 
SBC addr0 ,X FS byte Subtract with carry 
SBC addr,X FD byte byte (borrow) 
SBC addr,Y F9 byte byte 
SBC (data ,X) El byte 
SBC (data),Y Fl byte 

SEC 38 Set C's flag 

SED F8 Set decimal status 

SEI 78 Set interrupt status 

STA addr0 85 byte 
STA addr 8D byte byte 
STA addr0 ,X 95 byte 
STA addr0 ,X 9D byte byte Store accumulator 
STA addr,Y 99 byte byte 
STA (data ,X) 81 byte 
STA (data),Y 91 byte 

STX addr0 86 byte 
STX addr 8E byte byte Store X register 
STX addr0 ,Y 96 byte 

STY addr0 84 byte 
STY addr 8C byte byte 
STY addr0 ,X 94 byte 

TAX AA Transfer A to X 

TAY A8 Transfer A to Y 

TSX BA Transfer SP to X 
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Mnemonic 

TXA 

TXS 

TYA 

Table G-1-cont. 6502 Instruction Set 

15 
I 

r 

Machine Language Comments 

SA 

9A 

98 

A 

x 
y 

SP 

PC 

F 

Transfer X to A 

Transfer X to SP 

Transfer Y to A 

ACCUMULATOR 
18 BITS) 

} GENERAL-PURPOSE 
REGISTERS 18 BITS) 

STACK POINTER 18 BITS) 

PROGRAM COUNTER 116 BITS) 

FLAG REGISTER 18 BITS) 

6502 REGISTERS 

B7 BG BS B4 B3 B2 Bl BO 

Is Iv I I Bl DI 1 I z !cs I 
6502 FLAG 

REGISTER DETAIL 

S, SIGN BIT 
V. OVERFLOW-STATUS BIT 
B, BREAK-STATUS BIT 
D. DECIMAL-STATUS BIT 
I. INTERRUPTSTATUS BIT 
Z. ZEROSTATUS BIT 
Cs. CARRY-STATUS BIT 

--------' 

Fig. G-1. Diagram of 6502 registers. 
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A 

Absolute column-addressing, 40 
ADVANCE, 39, 73-74 
Advance cursor, 39-40 
Altering the character format, 77-80 
Alternative 

character formats, 43-49 
hi-res formats, 164-165 
print windows, 50-62 
screen formats, 134-140 

Analog 
input clear, 250 
inputs, 249 

APPEND, 252 
Assembler, 255 
Assembly language 

and the miniassembler, 255-268 
from machine language, 256-258 
program preparation, 263-266 
instruction set, 313-318 

Backspace cursor, 40 
BASCALC, 73-74 
BASH, 72-73 
BASL, 72-73 
Binary, 269 

B 

-to-decimal conversion, 274-275 
-to-hexadecimal conversion, 275-276 

BKGND routine, 153 
BRK instruction, 268 
BS routine, 206; see also monitor 
Building and using message blocks 74-80 
Built-in memory mapped 1/0, 243-250 
Byte, 269 

c 
CALL statement; see also monitor 

- 741, 206 
- 756, 214 

CALL statement-cont 
-868, 38 
-922, 40 
-926, 35 
-936, 37 
-998, 35 
-1008, 206 
-1036, 39 
-1994, 206 
-1998, 206 
-2008, 214 
-2023, 212 
-11465, 181 
-11471, 153 
-11500, 158 
-11506, 154 
-11527, 153 
-12274, 162 
-12288, 149 

Index 

CALLing the INIT routine, 149-150; see also 
high-resolution graphics 

Carriage return 
forced, 35 
suppressing, 21-23 

Cassette 
IN jack, 248 
OUT, 245 

CH register, 30, 73 
Character codes; see also text codes 

flashing, 67 
inverse, 65-67 

Clear keyboard strobe, 245 
CLEAR routine, 162 
Clear to end of; see also clearing 

line, 37-38 
page, 38-39 

Clearing; see also clear to end of 
hi-res screen, 162 
screen, 27 
secondary page, 82-83 

CLREOL routine, 38 
CLREOP routine, 38-39 
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CLRSCR routine, 206 
CLRTOP routine, 206 
Color codes 

full block, 125 
hi-res, 156 
low-resolution, 286; see also color codes 

with COLOR statement 
low-resolution upper/lower, 126-132, 287-

300 
with COLOR statement, 114; see also 

color codes, low-resolution 
COLOR statement, 112-115 
COLR variable; see also shape table 

definition of, 147 
values, 151 

Column-addressing, absolute, 40 
Column field, 23 
Comma, 23 
Controlling 

cursor position with PRINT statements, 
20-23 

program flow with INPUT, 89-92 
Conventional decimal to 2-byte decimal for

mat, 272-273 
Converting 

large decimal values to smaller negative 
values, 273-27 4 

negative decimal values to larger positive 
values, 274 

COUTl routine, 208-209 
CR routine, 206; see also monitor 
CTRL-B, 50 
CTRL-C, 28 
Cursor, 19 

and CALL functions, 133 
column address, 73 
-positioning registers, 31-36 

getting help from, 132-134 
CV register, 30 

D 

Debugging with BRK instruction, 268 
Decimal-to-hexadecimal conversions, 271-

272 
Decoding single keystrokes for control pur-

poses, 104-110 
Defining the hi-res variables, 147-149 
Disassembler, 256 
Disassembly command, 257 
Downward linefeed, 40 
DRAW routine, 181 
Drawing 

horizontal lines with HLINE, 212-214 
straight lines, 158-161 
vertical lines with VLINE, 214 
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ESC-A, 39 
ESC-C, 40 
ESC-D, 41 
ESC-E, 38 
ESC-, 27 

E 

Expansion ROM space $C800-$CFFF, 252 

F 

Flashing 
character codes, 67-68; see also flashing 

text codes 
text codes, 68, 278; see also flashing char

acter codes 
text format, 43 

Forced linefeed and carriage return, 35 
48K systems, 241 
Full-screen graphics, 135-138, 164-165 

Game controller 
potentiometer, 249 
socket, 246 

Getting help from 

G 

cursor registers, 132-134 
monitor, 70-74 

GR statement, 111-112 
Graphics, high-resolution 

and DOS, 141 
and HIMEM and LOMEM, 141-146 
color codes, 156 
full screen, 164-165 
initializing, 147-150 
programmer's aid routines, 141 
secondary page, 165, 188-193 
software switches, 164 
variables, 147 

Graphics, low-resolution 
and cursor registers, 132-134 
color codes, 120 
full-screen, 135-138 
primary page, 119 
secondary page, 138-140 
software switches, 134 
techniques, 117-118 

Hand assembly, 255 
Hexadecimal 

numbers, 269 

H 

-to-binary conversion, 276 
-to-decimal conversions, 270-271 

Hi-res shape tables, 166-183; see also high 
resolution graphics 



High-resolution graphics 
and DOS, 141 
and HIMEM and LOMEM, 141-146 
background color, 151-153 
BKGND routine, 153 
CLEAR routine, 162 
clearing the screen, 162 
color codes, 156 
colors and screen format, 150-151 
full screen, 164-165 
INIT routine, 149 
initializing, 147-150 
line drawing, 158-161 
LINE routine, 158 
plot coordinates, 153-158 
PLOT routine, 154 
POSN routine, 153 
primary page, 183-188 
programmer's aid routines, 141 
secondary page, 165, 188-193 
shape tables, 166-183 
variables, 147 
video addresses, 183-193 
without shape tables, 151-163 

HIMEM 
and high-resolution graphics, 141-146 
and Integer BASIC, 237 
programming of, 144-146 
settings, 142-145 

HIMEMH, 146 
HIMEML, 146 
HUN statement, 115-117 
HLINE routine, 212-214 
Home, 36 
HOME, 37 
Home cursor and clear screen, 37 
Homing cursor, 36-37 
How this book is organized, 12-14 
How to get most from this book, 14-15 

INIT routine, 147 
Initializing the hi-res system, 147-150 
INPUT statement 

and menus, 90-92 
and program flow, 89-92 
and question marks, 86-89 
and yes/no decisions, 89-90 
syntax of, 86 

Integer BASIC programming mode, 19 
Inverse 

character codes, 65-67; see also inverse 
text codes 

text codes, 67, 277 
text format, 43 

I/O 
addresses $COOO-$CFFF, 242-252 
port-0 slot, 85 
port-1 slot, 85 

K 

Key codes; see also keyboard character 
codes 

control keys, 285 
ordinary keys, 282-284 

Keyboard 
character codes, 93-96; see also key codes 
status input, 244-245 
-to-video link, 85 

KEYIN routine, 206 

L 

LF routine, 40, 206; see also linefeed 
LINE routine, 158 
Linefeed; see also LF routine 

downward, 40 
forced, 35 
suppressing, 21-23 
upward, 35, 40-41 

Loading through the 
miniassembler, 265-266 
monitor, 267 

LOMEM, 81 
and high-resolution graphics, 141-146 
and Integer BASIC, 237 
programming, 144-146 
settings, 142-144 

LOMEMH, 146 
LOMEML, 146 
Loudspeaker Toggle, 245-246 
Low RAM addresses $0000-$0BFF, 225-235 

M 

Machine language 
calling a subroutine with, 199 
disassembly of, 256-258 
examples of, 200-202 
instruction set, 313-318 
loading data with, 196-198 
loading of, 202-205 
passing variables from, 223-224 
passing variables to, 215-223 
returning from a subroutine with, 199-200 
running of, 205-206 
storing data with, 198-199 

Main ROM addresses $DOOO-$FFFF, 252-253 
Memory map 

of built-in I/O, 244 
of I/O, 243 
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Memory map-cont 
of primary page 

hi-res graphics, 183-188 
low resolution graphics, 199 
text, 64 

of ROM, 253 
of secondary page 

hi-res graphics, 188-193 
low-resolution graphics, 120 
text, 66 

of upper RAM 
for 16K systems, 238 
for 32K systems, 240 
for 48K systems, 242 

Menus, 90-92 
Message blocks, 74-80 
Miniassembler, 255, 258-263 

entering, 259 
getting out of, 261 
loading programs through, 259-261, 265-266 
running a program from, 261 
saving and loading tapes from, 262-263 

Mixing text formats, 47-49 
Monitor, 70-74 

and low-resolution graphics, 118 
BS routine, 206 
CLRSCR routine, 206 
CLRTOP routine, 206 
COUTl routine, 208-209 
CR routine, 206 
getting help from, 70-74 
KEYIN routine, 206 
LF routine, 206 
loading programs through, 267 
PRBL2 routine, 209 
RDKEY routine, 214-215 
routine CALLing, 206-215 
routines available to BASIC, 206 
routines not available to BASIC, 216-217 
running a program from, 261-262 
SETCOL routine, 210 
STOADV routine, 206-208 
UP routine, 206 

More -cursor-related operations, 36-41 
MUSIC routine, 252 

Nibble, 269 
Normal 

N 

low-resolution graphics, 111-112 
text 

codes, 67-70 
format, 44 

NORMAL-1 text codes, 69, 278 
NORMAL-2 text codes, 69, 279 
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0 

Organization of 
low-resolution video memory, 119-122 
text memories, 63-65 

p 

Passing variables 
from machine-language routine, 223-224 
to machine-language routine, 215-223 

PEEK statements 
and menus, 106-108 
and registers CH and CV, 31-33 
and resuming stopped operations, 97-98 
and stopping ongoing operations, 98-100 
and strobing the keyboard, 92-97 
and toggling operations, 100-102 
and yes/no decisions, 105-106 

PEEKing into CH and CV, 31-33 
Peripheral card 

1/0, 250-251 
ROM, 251-252 

Peripheral slot scratchpad RAM, 235 
PLOT routine, 154 
PLOT statement 

in BASIC, 112-115 
in monitor, 210-212 

POKE statement 
and CH register, 33-36 
and CV register, 33-36 
and low-resolution color graphics, 118-134 

POKEing 
characters to secondary page, 83-84 
into CH and CV, 33-36 

Port-0 1/0 slot, 85 
Port-1 1/0 slot, 85 
POSN routine, 153 
PRBL2 routine, 209 
Preparing assembly-language programs, 263-

266 
Primary page 

hi-res memory map, 183-188, 301-306 
text and low-resolution graphics 

displaying, 81 
memory map, 64; 234, 280-281 
uses, 233-234 

PRINT statement, 20, 29 
Program menus, 90-92 
Programmer's Aid routines, 141 

APPEND, 252 
BKGND (background color), 153 
CLEAR (clearing the hi-res screen), 162 
DRAW (shape-drawing), 181 
IDGH-RESOLUTION GRAPHICS, 252 
INIT (initalize primary page hi-res 

graphics), 149 
LINE (line-drawing), 158 



Programmer's Aid routines-cont 
MUSIC, 252 
PLOT (point-plotting), 154 
POSN (point-positioning), 153 
RAM TEST, 252 
RENUMBER, 252 
TAPE VERIFY, 252 

PR# 1 command, 85 
PR#2 command, 85 
Pushbutton inputs PB1-PB3, 248 

R 

RAM, 225 
keyboard input buffer, 231-233 
lower addresses $0000-$0BFF,. 225-235 
peripheral slot scratchpad, 234 
primary page text/graphics, 233-234 
system stack, 231 
TEST, 252 
unused in secondary text page, 236 
upper addresses $0COO-$BFFF, 235-242 
variables, vectors, and user, 233 
zero-page, 226-231 

RDKEY routine, 214-215 
Registers 

A, 195 
and low-resolution graphics, 132-134 
CH, 30 
cursor-positioning, 31-36 
CV, 30 
6502, 318 
X, 195 
Y, 195 

RELOCATE, 252 
RENUMBER, 252 
Resuming stopped operations, 97-98 
Role of 

ADVANCE and BASCALC, 73-74 
cursor, 19-20 
BASL and BASH, 72-73 
CH, 73 

ROM, 225 
ROT 

definition of, 147 
values, 180 

SCALE variable, 147; see also shape table 
Scratchpad addresses, 219 
Screen mode switches, 134-135 
SCRN statement, 117 
Secondary page 

hi-res memory map, 188-193, 306-312 
high-resolution graphics, 165 
text and low-resolution graphics 

clearing, 82-83 
definition of, 63 

Secondary page-cont 
text and low-resolution graphics 

displaying, 81 
memory map, 66, 236, 281 
POKEing characters to, 83-84 
unused RAM in, 236 
uses, 234-235 
working with, 80-84 

Semicolon, 21 
Set 

full or mixed-screen text/graphics, 247 
graphics or text, 247 
or clear ANO-AN3 outputs, 247-248 
primary or secondary page, 247 
text/low-resolution or high-resolution, 247 

SETCOL routine, 210 
Setting 

columns with commas, 23 
cursor position with TAB statements, 24-30 
number of characters per line, 51-53 
position of top line, 53-55 
position of the bottom line, 55-57 
starting column of text, 50-51 
text formats 

from keyboard, 44-45 
within a program, 46 

Shape table 
acronyms, 168 
codes, 168 
definition of, 166 
index of, 171-175 
loader, 175-177 
preparing data for, 168-171 
requirements for BASIC main program, 

177-183 
ROT values, 180 
setting up from BASIC, 167 
starting address, 178 

SHAPE variable, 147; see also shape table 
Simple PRINT statements, 20-21 
Simplifying CALLs, 162-163 
Simulating a PRINT @ statement, 29-30 
Single-keystroke control of a program, 97-104 
16K systems, 237-239 
6502 instruction set, 313-318 
6502 registers, 318 
Split-screen, 59-62 
Standard text format, 17-19 
STEP, 268 
STOADV, routine, 206-208 
Stopping ongoing operations, 98-100 
STRING$ function, 22 
Strobing keyboard with PEEK statements, 

92-97 
Supplying information with INPUT, 85-89 
Suppressing linefeed and carriage return, 

21-23 
with comma, 23 
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Suppressing linefeed and carriage return-cont 
with semicolon, 21 

Switching between primary and secondary 
pages, 81-82 

TAB statement, 24-25 
TAPE VERIFY, 252 
Text 

T 

codes; see also character codes 
inverse, 67 
flashing, 68 
normal, 67-70 
NORMAL- I, 69, 278 
NORMAL-2, 69, 279 

editor 
improved, 108-110 
primitive, 96-97 

format, 17 
inverse, 43 
flashing, 43 
normal, 44 
mixing, 47-49 
setting, 44-46 

software switches, 134 
windows, 50-62 

TEXT statement, 59, 111-112 
32K systems, 239-241 
Toggling operations, 100-101 
TRACE, 268 
Two-byte decimal to conventional decimal 

format, 273 

u 

Unused RAM in secondary text page, 236 
UP routine, 40-41, 206 
Upper RAM addresses $0COO-$BFFF, 235-

242 
Upward linefeed, see UP routine 

324 o INDEX 

Using 
and defining labels, 263-265 
combinations of TAB and VTAB, 27-29 
miniassembler, 258-263 
multiple message blocks, 75-77 

Utility Strobe output, 246 

v 
Video character codes, 65-70; see also char-

acter codes and text codes 
VLIN statement, 115-117 
VLINE routine, 214 
VTAB statement, 25-27 

w 
Which system do you need, 12 
WNDBTM 

definition of, 5 5, 57 
values, 55, 57 

\l\TNDLFT 
definition of, 50, 57 
values, 52, 57 

WNDRT, 53 
WNDTOP 

definition of, 53, 57 
values, 55, 57 

WNDWD'IH 
definition of, 51, 57 
values, 52, 57 

Working with 
cursor-positioning registers, 31-36 
secondary low-resolution graphics page, 

138-140 
secondary text page, 80-84 

X, y 

XX variable, 147; see also shape table 
YY variable, 147; see also shape table 
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your MasterCard or Visa account. Prices subject to change without notice. 

For a free catalog of all Sams Books available, write P.O. Box 7092, Indianapolis IN 46206. 

SAMS BRINGS YOU MIND TOOLS™ FOR FINANCIAL PLANNING IN BUSINESS 
Special, ready-to-use software that temporarily interlocks with the spreadsheet in your regular ver
sion of Multiplan® or VisiCalc® so you can immediately perform 17 common financial planning cal
culations without wasting time manually setting up the sheet. All you do is enter the data - the 
proper formulas and column headings are there automatically! 

Mind Tools allow you to instantly calculate present, net present, and future values, yields, internal 
and financial management rates of return, and basic statistics. 

Also lets you do break-even analyses, depreciation schedules, and amortization tables, as well as 
compute variable- and graduated-rate mortgages, wraparound mortgages, and more! 

Allows you to use your regular spreadsheet as you always have, at any time. Ideal for any business
man with financial planning responsibilities, as well as for business students and instructors. 

Supplied with complete documentation, including 136-page text and 68-page quick-reference guide, 
all in a binder with the proper disk to match the brand of spreadsheet program you own. 

Currently available for use with Multiplan or VisiCalc on the Apple II as follows: 

EXECUTIVE PbANNING WITH MULTIPLAN 
Apple Ii Version, ISBN 0-672-22058'X. 
Ask for No. 22058 .................................................................. $79.95 

EXECUTIVE PLANNING WITH VISICAlC 
Apple II Version, ISBN 0-672-22059-8. 
Ask for No. 22059 .................................................................. $79.95 
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TO THE READER 
Sams Computer books cover Fundamentals - Programming - ~nterfacing -
Technology written to meet the needs of computer engineers, professionals, 
scientists, technicians, students, educa!ors, business owners, personal com
puterists and home hobbyists. 

Our Tradition is to meet your needs 
and so doing we invite tell us what 

needs and terests are 
the 

1. I need books on the following topics: 

2. I have the following Sams titles: 

3. My occupation is: 

__ Scientist, Engineer 

__ Personal computerist 

__ Technician, Serviceman 

__ Educator 

__ Student 

__ D P Profession~! 

__ Business owner 

__ Computer store owner 

___ Home hobbyist 

Other 

Narne(print) ______________________ _ 

Address _______________________ _ 

City State _____ Zip ____ _ 

Mail to: Howard W. Sams & Co., Inc. 
Marketing Dept. #CBS1/80 
4300 W. 62nd St., P.O. Box 7092 
Indianapolis, Indiana 46206 21889 
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