

~ 1

i

Intermediate-Level Apple II®
Handbook

David L. Heiserman has been a freelance
writer since 1968 and is the author of more
than I 00 magazine articles and 17 technical
and scientific books. He studied applied
mathematics at Ohio State University. He is
especially interested in the history and phi
losophy of science.

Intermediate-Level Apple II®
Handbook

by

David L. Heiserman

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, IN DIANA 46268 USA

Copyright© 1983 by David L. Heiserman
Indianapolis, IN 46268

FIRST EDITION
FIRST PRINTING-1983

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect
to the use of the information contained herein. While
every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-21889-5
Library of Congress Catalog Card Number: 82-61963

Edited by: Richard Krajewski
lllusttated by: Kevin Caddell

Printed in the United States of America.

Pref ace
The Apple II®* computer is a marvelous machine. It compares quite

favorably with other brands of personal computers on the market today in
terms of performance and cost. And it's an easy machine to use. In the
jargon of this business, it is "user friendly." However, that notion applies
only as long as you stay on the beaten path. Attempt to get away from
either your own simple BASIC programs or ready-made programs, and you
are bound to run into a bit of difficulty.

The difficulty stems from the flexibility of the Apple. It is this great
flexibility that is responsible for the lengthy and sometimes confusing dis
sertations in the Apple operating manuals.

Most people who are buying and using Apple computers these days are
not aware of how to deal with the full potential of such a highly flexible
machine. Beginners prefer their instructions to be written in a clear-cut
ABC fashion: do this and this, and this is going to happen. That works out
quite well as long as the user is doing the simpler, more popular program
ming operations. But attempt to get away from the simple and popular
ideas, and things get a lot trickier.

The Apple is so flexible that an ABC approach teaches the user very
little. A wider approach is offered in the techni.cal manuals but it is too
general. Indeed, it is suitable only for those users who are both well ac
quainted with the Apple and well versed in the fundamentals of computer
technology. Unfortunately, that doesn't describe most users.

The purpose of this book is to fill in the gap between the ABC ap
proach and technical manual approach. It will lead you very gradually from
.the usual, popular way of doing things with the Apple into an environment
where careful thinking and planning is more important than the mechanics
of actually executing a program. It is an environment that promises a great
deal of satisfaction, but only at the cost of having to learn new ideas and
experiment with them on your own.

If you have already mastered the fundamentals of BASIC program-

*Apple II is a registered trademark of Apple Computer, Inc.

Preface • 5

ming and want to do more-a lot more-with your Apple, this is the book
for you.

Study the material carefully and run the recommended programs. The
programs in the book were prepared for an Apple II with ROM-based In
teger BASIC. Equally important, try devising applications of your own as
you go along. Above all, learn and have fun doing it.

DAVID L. HEISERMAN

6 • Preface

Contents
Chapter 1

You, YouR APPLE II, AND THIS BooK . 11
Which System Do You Need?-How This Book Is Organized
How To Get the Most From This Book

Chapter 2

DISPLAYING TEXT . 17
The Standard Text Format-Role of the Cursor-Controlling
Cursor Position With PRINT Statements-Setting the Cursor
Position With TAB Statements- Working With the Cursor
Position Registers-More Cursor-Related Operations

Chapter 3

ALTERNATIVE TEXT FORMATS . 43
Alternative Character Formats-Alternative Print Windows

Chapter 4

POKE TO VIDEO MEMORY

Organization of the Text Memories-Video Character Codes
Getting Some Help From the Monitor-Building and Using Mes
sage Blocks-Working With the Secondary Text Page

63

CONTENTS • 7

Chapter 5

THE KEYBOARD ENVIRONMENT . 85
Supplying Information With INPUT -Controlling Program Flow
With INPUT-Strobing the Keyboard With PEEK State
ments- Single- Keystroke Control of a Program -Decoding
Single Keystrokes for Control Purposes

Chapter 6

THE Low-RESOLUTION GRAPHICS ENVIRONMENT 111
The Elementary Principles-POKEing Colors to the Screen
Alternative Screen Formats

Chapter 7

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT 141
Reckoning With LOMEM and HIMEM-Initializing the Hi-Res
System-High-Resolution Colors and Screen Format-Doing
Some High-Resolution Graphics-Alternative Hi-Res Screen
Formats-Hi-Res Shape Tables-Hi-Res Video Addresses

Chapter 8

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC
A Few Useful Machine Instructions-Entering and Running
Machine-Language Routines-Calling Some Monitor Rou
tines-Passing Variables to a Machine-Language Routine
Passing Variables From a Machine-Language Routine

Chapter 9

195

THE MEMORY ENVIRONMENT . 225
Lower RAM Addresses $0000 Through $0BFF- Upper RAM
Addresses $0COO Through $BFFF-I/O Addresses $COOO
Through $CFFF-Main ROM Addresses $DOOO Through $FFFF

8 a CONTENTS

Chapter 10

PROGRAMMING WITH THE MINIASSEMBLER 255
A First Look at Some Assembly-Language Programming-Using
the Miniassembler-Preparing Assembly-Language Programs
Loading Through the Monitor-Debugging With the BRK In
struction

Appendix A

NUMBER-SYSTEM BASE CONVERSIONS 269

Appendix B

CHARACTER CODES FOR TEXT PRINTING OPERATIONS 277

Appendix C

ORGANIZATION OF THE TEXT/Low-RESOLUTION GRAPHICS

VIDEO MEMORY 280

Appendix D

CODES GENERATED BY KEYSTROKES 282

Appendix E

Low-RESOLUTION GRAPHICS COLORS 286

Appendix F

RANGE OF HIGH-RESOLUTION GRAPHICS VIDEO ADDRESSES 301

Appendix G

6502 INSTRUCTION SET . 313

Index ... 319

CONTENTS '" 9

You, Your Apple II, and
This Book

Do you remember the first day you fired up your brand-new
Apple Computer? You probably do. For most of us that was an ex
citing and rewarding experience.

1
One of the nice things about owning your own home computer is that

the feeling of having first-time adventures doesn't have to wear off; there is
always something new to learn and try. Learning something new, trying it,
and making it work can be just as much fun as turning on the computer for
the first time.

Certainly there are times when things don't go right and you feel like
throwing the whole system across the room. Things go wrong, they don't
work out as expected, and the frustration level grows to disheartening pro
portions. But that happens to everyone who works with computers and
computer programming, no matter how much or how little experience they
have and no matter how sophisticated or modest the computer system
might be.

Home computer programming, however, still retains all the potential
for being a continuously rewarding experience. All you have to do is learn
what you need to know as you go along, and apply the new found knowl
edge until it becomes second nature to you. Then you are ready to learn
something else. There is really no end to it. And it's great fun.

The key to maintaining an ongoing love affair with your computer is in
learning to do new things with it. Doing the same old things in the same old
fashion can become boring or tedious, no matter how well they work. But
there is excitement in learning.

The primary objective of this book is to help you get more fun out of
creating computer programs on your Apple II. The idea is to help you en
gage in that unending and rewarding adventure called learning.

How does this book help you? Basically, it describes some powerful
operating details that are usually mentioned too briefly or overlooked al-

YOU, YOUR APPLE II, AND THIS BOOK • 11

together in the standard user's manuals. These operating details make it
possible for you to take advantage of the flexibility of your computer.
There are plenty of examples and demonstrations to illustrate the operating
details, but you are the one who will have all the fun of putting the details
to work in your own programs.

WHICH SYSTEM DO YOU NEED? Apple computers are now
available in such a wide variety of configurations that it is impractical to
attempt writing a book that suits all of them equally well. It is thus neces
sary to draw some lines, meeting the needs of the largest number of readers
and hoping that others will find information that is useful to them and ap
plicable to their system configurations.

The examples and demonstrations in this book have been worked
around an Apple II having 48K of RAM- and ROM-based Integer BASIC.
However, you do not need a full 48K of RAM to use this book. A 16K
system will work quite well except with the material dealing with the sec
ondary page of high-resolution graphics.

The discussions generally apply equally well to cassette- or disk-based
systems. Disk operating systems (DOS) can cause some problems at times,
especially where DOS boots up in sections of RAM that serve other pur
poses. DOS users will have to consult their technical manuals to discover
ways to resolve any conflicts in RAM organization.

A line printer can be helpful in some of the discussions, but it is never a
critical requirement.

The discussions of color graphics require a color TV receiver or
monitor, but a black-and-white unit will do the job. Incidentally, the color
names used throughout the book are the same as those used by the Apple
company. Your interpretation of the colors might be slightly different.

HOW THIS BOOK IS ORGANIZED When most people are intr1)
duced to their first home computer, they get a lot of delight from running
BASIC programs listed in the user's manuals and, maybe, running a few
"canned" programs-usually game programs.

But we have to be honest here: Running simple BASIC programs and
prepared cassette or disk programs can wear thin after a while. Of course
you can buy more elaborate and expensive prepared programs, or start
entering some programs from published BASIC or machine-language list
ings; but even if they meet your expectations (and many of them won't),
they also become old hat after a while.

One way to overcome this sagging enthusiasm for your computer is to
begin writing your own programs. That can be a lot of fun, especially if you

12 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

know what you're doing. Learning to use conventional BASIC can keep
you going for a long time.

Indeed, writing custom programs in BASIC can serve a lot of personal
needs; however, it usually doesn't take long to become dissatisfied with the
limitations of BASIC. Experienced Apple BASIC programmers often begin
feeling straitjacketed by some of the built-in procedures. It is quite possible
to know exactly what you want to do but find that BASIC cannot handle
the job as effectively or adequately as you'd like.

Animated graphics, for instance, can fall flat in BASIC because of the
long execution times some BASIC statements have. Assigning more than
250 characters to a single string variable also causes problems in BASIC. In
such instances, the built-in relationships between BASIC and the hardware
system stand in your way.

There are many instances where the structure of the system and the
way BASIC works serve as roadblocks to effective programming.

One way to tackle this problem is by digging through the avalanche of
books and magazines written for people who want to get around the limita
tions of their present know-how. If you have tried that route, you have
probably been disappointed more than once. It isn't that there is anything
necessarily wrong with the available information; it can prove quite valu
able in many ways. But most of the literature dealing with Apple tricks and
techniques is very specific; they apply only to the particular situation the
author is describing. With such literature, you run the risk of missing the
principle behind the technique.

More often than not, the real value of a book or article lies in the
principles and gems of wisdom that are tucked away in the program listings
or accompanying text. Specific solutions for specific problems may or may
not be truly helpful, but the methods and ideas behind them can be invalu
able.

For example, an article describing how to move a colored spot of light
across the screen by depressing a certain key might not seem all that useful
or exciting to you; but the technique for sensing key depression or drawing
the moving spot of light can be applied in countless ways, once you grasp
the main principles behind those actions.

This is a book about main principles. You won't have to dig through
the program listings to uncover important ideas; they are clearly spelled out
in each case.

Yes, indeed, there are a lot of program listings in this book, but they
are intended only to illustrate the workings of the principles at hand. The
programs, by themselves, aren't all that useful or exciting. Instead, they
are to-the-point illustrations and not highly refined, fully developed pro
grams. They are trimmed to the bare bones so that the point they illustrate
will stand out as clearly as possible. Other programs not meant for educa-

YOU, YOUR APPLE II, AND THIS BOOK e 13

tional purposes tend to be cluttered with a lot of ''whistles and bells'' that
obscure the finer, more important details.

With this book, you will be able to grasp the essence of an idea, use it
in the program listing that illustrates the idea, and then fit it into some
programming schemes of your own.

You will find many ideas in this book, but little razzle-dazzle.
Be assured at this point that the book is not devoted exclusively to

machine-language programming. Many people who feel the itch to go
beyond BASIC are told-or at least get the impression-that the next step
in their programming experience must be in the direction of machine
language programming.

That is not true. Growing up in this business of computer programming
is an evolutionary process. Your knowledge ought to develop gradually and
smoothly. Moving directly from basic BASIC to pure machine-language
programming is hardly a gradual and smooth process. In fact, it is a terrible
mistake to drop BASIC and move to machine-language programming if
you've had little training or experience with it. The change in thinking and
technique is too big and too abrupt.

No, machine-language programming is not the first topic offered in this
book. It turns out that familiar old Integer BASIC can become exciting
again, once you know more about the internal workings of the Apple II.
You can access some very useful monitor routines from BASIC and do a
lot of things that will tear down some of the usual programming limitations.

And that's where this book starts.
Once you know more about the system from a BASIC viewpoint, you

will be ready to begin some assembly- and machine-language programming.
But even then it will be in combination with BASIC programming. The idea
is to let you wade into the deeper waters of machine language, while keep
ing a tight grasp on a familiar BASIC handle.

Toward the last part of the book, you will finally get to deal with pure
machine-language and assembly-language programming. By that time,
though, you will be well grounded in the Apple's internal workings and
better prepared to write successful machine-language programs of your
own.

In short, if you are getting a little tired of your Apple system, this book
ought to serve as a shot of adrenalin.

HOW TO GET THE MOST FROM THIS BOOK This is not really
a reference book, although it might have that general appearance in many
places. The book represents a step-by-step process. As such, you will get
more from it by working through it from beginning to end, as opposed to
dipping in at some point that seems interesting to you at the moment.

14 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

I!

I
l __

Since much of the first part of the book deals with decimal-oriented
BASIC procedures, all of the tables in that part show only decimal values
and addresses. To be sure, decimal addressing can be cumbersome, but it is
a boon to readers who do not feel comfortable with hexadecimal addressing
in the early going.

As the discussions flow in the direction of assembly-language and
machine-language programming, you will find an increasing number of ref
erences to hexadecimal notation. Appendix A will be especially valuable to
readers who have never used hex before.

You might do well to look through the extensive set of appendices in
the back of the book now. You will find a large number of useful tables that
present critical values and addresses in both hexadecimal and decimal
form.

This book is a guide-a self-teaching guide. You will get the most from
it by attempting to apply the new ideas in your own fashion. It is really
based on the old notion that you can keep a man alive for a day if you give
him a fish, but you can keep him alive for a good many years if you give
him some fishing equipment and show him how to use it.

You have all the equipment; here come the ideas.

YOU, YOUR APPLE II, AND THIS BOOK • 15

Displaying Text
The most conspicuous parts of your Apple computer system are 2 the keyboard and video screen, or crt. They ought to be the most

conspicuous parts because they are the primary links between the human
user and the sophisticated, fast-acting internal workings of the system.

Most of what goes into the system from the human operator enters via
the keyboard, and most of what comes out of the system to the human
operator is displayed on the crt. Unless you happen to be running a
graphics program, the computer will be communicating with you in a text
format, i.e., with symbols, code words, or messages.

It is thus fitting that this book begin with a discussion of the crt and
keyboard.

THE STANDARD TEXT FORMAT The video scheme of the Apple
is arranged in such a way that it can display up to 40 characters on each
horizontal line and up to 24 lines of text on the screen. That figures out to a
maximum of 960 characters that can appear on the screen at any given
moment. Of course, it is possible to print fewer than 40 characters per line
and use fewer than 24 lines of text-these are simply the maximum figures.

Fig. 2-1 shows the video screen blocked off into its 960 possible char
acter locations. The numerals across indicate the character, or column,
number for each line of text. The numerals along the side of the drawing
indicate the line, or row, numbers.

Notice that the character spaces, the blocks assigned to each character
location on the screen, are not exactly square. Rather, they are a bit taller
than they are wide.

Then notice how I have labeled the columns and rows beginning with
the numeral 0. There are indeed 40 columns, but they are labeled 0 through
39. And there are 24 rows, but they are labeled 0 through 23. This is be
cause zero is considered to be a counting number in the world of comput
ing. The character space in the extreme upper left-hand corner of the
screen is thus described by saying it is at column 0, row 0. A character

DISPLAYING TEXT • 17

39,___,__--L---L---1~-<---L--+---'~'---'--+--+-~I--_,__,__,__...~,___,___,___,.~,___,__
381--4--l---l---1---1~+-4--l---l---l---l~+--l--+---1---1---1~+--l---l--+---l~l---l
371---1---+----l--1---1~1--.J--l---l--l---l~l---l--1---1--l---l~l---l---l--+---l~l---l
361---1--1---1--1---1~1---1---1----1--1---1~1---1---1----1--1---11--1---1---1----1---1~1---1
351--4--l---l---1---1~+--+--+----1---1---1~+--l--+--+---l---ll--+--l--l--+---l~l---l
341---l--l---l--1---1~1--4--l----l--l---l~l---l--1----1--1---ll--l---l---l--+---l~l---l
33L--L---L---L---1'---<---L---L---'~'---'----1---'-~1--......... _.__,___.~,___...__,___.~,___..._
32.__,__,___,___,___,___,__,__,__,___,___,__.___.__,__..___,__,__,___,__,__,___,___.___.

31
,__,__.___..~_,__.___.~,___,_......___.,__..__.___.~,___,___,___,~...__.___.~,___,___,___,

301---l---+----l--1---1~1--4--1----1--1---l~l---l--1----1--l---l~+--1---1----1---1~1---1
291--4--l---l---1---1~+--+--+--+---l---l~+--l--+--+---l---l~+--1--1--+---1~1---1
281--4--l---l---1---1~+--+--+----l---l---l~l---l--+--+---l---l~+--1--1----1---1~1---1
271---1--l--l---11---l--l--+-----l~l---l---l--l-~l--4--1--+---l~+---l--+----l-~l---l---1
26

L-...l.....-L..---l~-'--'---'~'---'--'---1'---'---L...--'~,___,__,___.,__...__.___.~,___,___,___,

251--4--l---l---1---1~+-4--1----1---l---l~+--l--+--+---l---l'--+--l--l--+---l~l---l
241---1--l----l--1---1~+--l--l--+---l--l~l---l--1--+---l---ll--+---l---l----l---l~l---l

<./) 23,__,__,____,~...__,____.~,___,__,___.,___,_--L...__.~,___,___,___.,__..__.__,~,___,__,___,

~ 221--1--+---1~-i---l----l-~+--l--+--ll---l---l----l-~+--l--+---lf---l---l---l~+--+--+--I
ii:! 211--1--1---1~-1---1----1-~-1--1--+--11---1---1----1-~-1--1--+---1f---l---l---l~+--+--+--1
g 20.___,__,____,~...__.__,~,____,___,___.,__...___,__,~.__,___,_--l,__..___,____.~,__--1--_,_--1
~ 191--1--1---1~-i---l---l~-l--l--+--ll---l---l----l-~+--l--+---lf---l---l---l~+--+--+--I
~ 181--1--1---1~-1---1----1-~-1--1--+--11---1---1----1-~-1--1--+---1f---l---l---l~+--+--+--1
6 171--l--l-----l~-1---1----1-~+--l--+----ll---l---l----l-~+--l--+--ll---l---l---l~+--+--+--I
<:..:> 16

L-...l.....-1---1~..._--L...__.~..___,___.___.,___,__,___.~,___,__,___,,__..__,___.~,___,___.___,

151---1--l----l---1---1~+---l--l--+---l--l~+--l---1--+---l---ll--+--l--l----l---l~l---l
141---l--l----l--1---1~+---l--l--+---l--l~l---l--1----1---1---ll--+---l---l----l---l~l---l
131---l--l----l--1---1~+---l--l--+---l--l~l---l--1----1---1---ll--+---l---l----l---l~l---l
121---l---l---l---1--1--1---1---l----l---l---l---l---l---1---1---+----l-----l----l---l---l---l---l---1

111--1---l----l-~1---l---l---l---l~+---l---l----l-~1---i--+---l---l~+---l--+--l~+--l---1
101---l--l----l--1---11--+---l--l---l---l--ll--+---l---1--+---l--ll--+---l---l----l---I~~
91--1---1----1-~1---1---1---1---1~+---l---l----l-~l---i--+---l---l~+---+----l---l~+--+---1
81--l---l----l-~1---l--l---l---l~+---l---l----l-~1---i--+---l---l~+---1----1---l~+---+----I
71--l--l-----ll---i---1---l~-l--l----+-~l---1---1---l~+--l--+--ll---l---l---l~+---+--+--I
6.__,___.____,,__..__,____.~,___,__,_~.___,__,___.~,___,__,___,,__..__,____.~,___,__..__,

51--l--+----ll---i---1---l~-l--l----+-~l---1---1---l~+--l--+--ll---l---l---l~-l--+--+--I
41--l--+----ll---i---1---l~-l--l----+-~l---1---1---l~+--l--+--ll---l---l---l~+--+--+--I
3.__,__,____,,___,__,____.~,___,___._~,___,__,____.~.__,_......___,,__..___,__,~.__,__..~
2
L--L--L--IL--..__,__,~,____,___,_~.__..__,__,~.___,___,___,,___.__,__,~.._--1---1-~

1
S~ o1--1--1-----11---1---1---1~-1--1----+-~1---1---1---1~-1--1--+---1f---1---1---1~-1--1--+--1

~~fa -~M-~~~00=9=~~~~~~~~~~~~
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
§; 0 ROW ADDRESS

Fig. 2-1. Video screen character locations.

18 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

.1

located in the extreme lower right-hand corner is described as being at
column 39, row 23. A character location very near the middle of the screen
has a coordinate address of column 19, row 11.

Virtually all video display operations use this column-and-row number
ing format in one way or another. Normal video operations occur in a sys
tematic fashion, i.e., from left to right. It is possible, however, to defeat the
normal course of printing events and print a character at any column-and
row address you choose.

ROLE OF THE CURSOR In most kinds of video-printing operations,
the cursor keeps track of where the next character is to be printed on the
screen. The cursor is represented by a flashing rectangle of light in BASIC
or monitor programming mode. The system knows where to display the
cursor by referring to two specific memory locations that contain the
column-and-row coordinates of the cursor.

Suppose that you are in Integer BASIC programming mode-the
mode of operation signalled by a greater-than symbol at the beginning of a
line. As you type in any arbitrary sequence of letters and numerals, you
will see the flashing cursor symbol advancing along the line, always indicat
ing exactly where the next character will be printed. If you fill a line with
characters and continue typing more of them, the cursor automatically does
a linefeed and carriage return. That is, it drops down one line and moves to
the beginning of it. Screen printing then resumes from there. All through
this operation, the Apple system is adjusting column-and-row addresses to
reflect the position of the cursor.

The same sort of action occurs while the system is executing a pro
grammed statement that calls for printing text on the screen. The only
difference is that the cursor symbol is not displayed. There is simply no
need for the computer to display the flashing cursor symbol when it is print
ing out preprogrammed characters. In other words, the cursor is meant to
tell where the next character will be placed when someone is actually typ
ing on the keyboard.

Suppose you have written a BASIC program that includes a PRINT
"HELLO" statement. As the system executes that statement, it prints the
H character at a given column-and-row location on the screen, advances
the column address, prints the E, advances the column address, prints the
first L, and so on.

The cursor-positioning mechanism works the same way whether you
are operating in a programming or execution mode. The cursor, whether it
is actually displayed or not, still indicates the position of the next char
acter.

DISPLAYING TEXT • 19

CONTROLLING CURSOR POSITION WITH PRINT STATE
MENTS A BASIC PRINT statement causes the system to print either
alphanumeric strings or numeric values on the screen. And unless the com
puter is directed to do otherwise, the information is PRINTed one character
at a time, in a left-to-right fashion, with the "invisible" cursor leading the
way.

Simple PRINT Statements A simple PRINT statement in BASIC is
one that prints out a single PRINT element and then does an automatic
linefeed and carriage return operation. Unless directed otherwise, the
PRINTing begins in column 0 of the current line.

Suppose you execute this BASIC program:

10 FOR N=l TO 4
20 PRINT "HELLO"
30 NEXT N
40 END

On RUNning that little program, you should see something like this on
the screen:

HELLO
HELLO
HELLO
HELLO

The PRINT statement in program line 20 is executed four times in succes
sion. Each time, the printing begins at column 0 and ends with an auto
matic linefeed and carriage return.

Unless directed otherwise, the system inserts a
linefeed and carriage return at the end of every
PRINT statement in a BASIC program.

This automatic feature operates whether the system is printing strings
(as in the previous example) or numeric values: You will, for instance, see
the same mechanism at work by running this program:

10 FOR N=l TO 4
20 PRINT N
30 NEXT N
40 END

20 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

2
3
4

RUN that program, and you will see:

Yes, the automatic linefeed and carriage return feature is at work here, too.
At the end of each simple PRINT statement, the system automatically

sets the column address to 0 and increments the row address by I. (Unless,
of course, the next character is to appear below the last line on the screen.
In that case the row address remains at 23 and everything else is scrolled
up one line.)

Suppressing linefeed and Carriage Return You can suppress
the automatic linefeed and carriage return at the end of each PRINT opera
tion by ending that operation with a semicolon (;). When you do that, the
cursor picks up where it left off at the end of a previous PRINT statement.
Try this example:

10 FOR N=l TO 4
20 PRINT "HELLO";
30 NEXT N
40 END

The text on the screen should look like this:

HELLOHELLOHELLOHELLO

Sure enough, the automatic linefeed and carriage return is no longer auto
matic.

Concluding a PRINT statement in BASIC with a
semicolon suppresses the automatic linefeed and
carriage return.

The same idea applies to PRINTing numeric values:

10 FOR N=l TO 4
20 PRINT N;
30 NEXT N
40 END

DISPLAYING TEXT " 21

That one prints this sort of text:

1234

You can perform some useful and interesting text formatting by com
bining the automatic linefeed and carriage return feature with PRINT
statements that suppress it. Suppose that you want to print out a 4 x 6
array of X characters-6 lines of 4 Xs. Try this approach:

10 FOR ROW=l TO 6
20 FOR COL=l TO 4
30 PRINT .. x";
40 NEXT COL
50 PRINT
60 NEXT ROW
70 END

The resulting text looks like this:

xx xx
xx xx
xx xx
xx xx
xx xx
xx xx

There are two different kinds of PRINT statements in that program.
The one in line 30 prints a single X character on the screen and suppresses
the linefeed and carriage return. The PRINT statement in line 50 really
prints nothing onto the screen; but since it is not followed by a semicolon,
the system will respond by doing a linefeed and carriage return. The result
is that the "col" FOR-NEXT loop executes line 30 four times, creating a
row of four Xs. The "row" FOR-NEXT loop executes the "col" FOR
NEXT loop and line 50 six times, creating six rows of Xs.

By way of a different example, consider that many extended BASICs
include a STRING$(n,c) function. This function prints a string of char
acters, represented by c, n times in succession. Integer BASIC does not
include that function, but it's possible to simulate it this way:

The INPUT statements in line 20 let you specify the string character to
be printed (C$) and the number of them to be printed in succession (N).
The subroutine beginning at line 100 simulates the action of a STRING$
function. It features two kinds of PRINT statements: one ending with a
semicolon for suppressing the linefeed and carriage return operation, and

22 <> INTERMEDIATE-LEVEL APPLE II HANDBOOK

10 DIM C$(64)
20 INPUT N: INPUT C$
30 GOSUB 100
40 GOTO 20

100 FOR X=l TO N
110 PRINT C$;
120 NEXT X
130 PRINT
140 RETURN

one that does not conclude with a semicolon in order to execute the
linefeed and carriage return at the end of the function.

Setting Columns With Commas Another way to suppress the
linefeed and carriage return that normally occurs at the end of a PRINT
statement is to end that statement with a comma(,). Recall that a PRINT
statement ending with a semicolon allows the cursor to remain where it was
at the end of the PRINT operation; the next PRINT operation picks up
from there. A PRINT statement ending with a comma keeps the cursor on
the same line, but forces it to advance to the beginning of the next column
field.

The text screen can be divided into five equal fields of columns, each
having 9 columns, or character spaces, in them. Those column fields begin
at column addresses 0, 8, 16, 24 and 32. Try this demonstration program:

10 FOR N=l TO 5
20 PRINT "HELLO",
30 NEXT N
40 END

RUN that little program, and you will find HELLO printed five times along
the same line on the screen. Each HELLO begins at one of the well-defined
column addresses for the five fields. Whenever the computer completes the
task of printing the string HELLO, the comma in the program tells the
cursor to advance to the right until it comes to the column address repre
senting the beginning of the next field.

There are just 9 columns in each field, so it often happens that a
PRINT statement will print a text that is longer than that; say, 12 char
acters long. When that is the case, the text extends well into the second
field; but if it is ended with a comma, the cursor will begin printing the next
line of text from the beginning of the third field-at column address 16.
Comma suppression of the normal linefeed and carriage return is thus nor
mally limited to printing operations involving fewer than 9 characters
apiece.

DISPLAYING TEXT • 23

SETTING THE CURSOR POSITION WITH TAB STATEMENTS
PRINT statements in BASIC automatically adjust the cursor's hori

zontal and vertical position as necessary for the operation at hand. Ending
PRINT statements with a semicolon or comma provides the programmer
with some simple tools for controlling the automatic action of the cursor;
but BASIC' s TAB statements give the programmer full control over the
cursor.
The TAB Statement The TAB statement in Integer BASIC lets the
programmer set the column address of the cursor to any desired place
along the current line of text. The TAB statement is an absolute addressing
tool. That is to say, it makes no difference where the cursor was before
TAB is used. The cursor is always moved to the column indicated by the
TAB statement.

Unfortunately, an Apple TAB statement does not line up exactly with
the column-numbering format we are using throughout this book. As de
scribed earlier, the columns are labeled 0 through 39. By contrast, the TAB
statement uses labels 1 through 40. So doing a TAB 1 actually sets the
cursor to column number 0 of the current line; and doing a TAB 40 sets it to
the end.

For our purposes, then, the TAB statement has this syntax:

TAB c+1

where c is the column address for the cursor.
To see how this works, suppose that you want to print the string FOO

at column address 8 and HELP at column address 24 of the same line. The
following program does that for you:

10 TAB 9: PRINT "FOO";
20 TAB 25: PRINT "HELP"
30 END

The TAB 9 statement in line 10 sets the cursor to column address 8 of
the current line. Then, the PRINT statement prints FOO and suppresses
the linefeed and carriage return so that the HELP string appears on the
same line. The TAB 25 statement in line 20 then sets the cursor to column
address 24, and the PRINT statement prints HELP from that character
location.

TAB addressing is absolute. It makes no difference where the cursor is
located at the time the TAB statement is executed. You can demonstrate
that by rewriting the previous example in such a way that the computer
prints the right-hand string, HELP, first. 'fry this:

24 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

10 TAB 25: PRINT "HELP";
20 TAB 9: PRINT "FOO"
30 END

Line 10 calls for moving the cursor to column address 24 and printing
the string HELP from that point. The semicolon following that PRINT
statement prevents the system from doing a linefeed and carriage return.
The TAB 9 statement in program line 20 actually moves the cursor back
wards to column address 8 before the PRINT "FOO" statement is exe
cuted.

The next program is an example of some TAB trickery. When entering
the program, note that the MOVE string defined in line 10 is enclosed in
spaces.

Listing 2-1. TAB Special Effects.

10 DIM M$ (6): M$=" MOVE "
20 FOR COL=0 TO 33
30 TAB COL+l
40 PRINT M$;
50 FOR T=l TO 100: NEXT T
60 NEXT COL
70 FOR COL=33 TO 0 STEP -1
80 TAB COL+l
90 PRINT M$;

100 FOR T=l TO 100: NEXT T
110 NEXT COL
120 GOTO 20

Program lines 20 through 60 move the message string to the right one
TAB location at a time. The time delay routine in line 50 slows down the
action to an interesting pace. Lines 70 through 110 move that same mes
sage to the left.

Why are the PRINT statements in lines 40 and 90 terminated with a
semicolon? Why is the COL variable advanced only to 33? Why is the
MOVE message enclosed in spaces? If you find you cannot answer any one
of these questions with confidence, edit the program to alter the items em
phasized in the questions.

The VTAB Statement The VTAB statement is to row selection
what TAB is to column selection. The Apple text screen format has 24
rows, or lines, that are often labeled with numerals 0 through 23. Integer

DISPLAYING TEXT • 25

BASIC's VTAB statement is a row addressing function that uses numerals
1 through 24. The general syntax is:

VTAB r+1

where r is the row address.
The topmost row of characters is normally labeled row O; but if you

want to place the cursor there by means of a VTAB statement, a VTAB 1
would be appropriate. The following program illustrates its application:

5 CALL -936
10 FOR N=l TO 4
20 VTAB N
30 PRINT "HELLO";
40 NEXT N
50 END

Beginning from the top line on the screen, the display looks something like
this:

HELLO
HELLO

HELLO
HELLO

No matter where the cursor might be when you RUN this program, the
first HELLO appears on the first line of the screen. The fact that the
PRINT statement in program line 30 ends with a semicolon means that
each PRINT operation will not conclude with an automatic linefeed and
carriage return. Thus the H character beginning a new message lines up
against the 0 in the previous one, but on the next line down.

Try this variation of the same thing:

5 CALL -936
10 FOR N=l TO 4
20 VTAB 2*N
30 PRINT "HELLO"
40 NEXT N
50 END

26 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

Beginning from line address 1, the text display looks like this:

HELLO
HELLO
HELLO
HELLO

The successive VTAB values are 2, 4, 6 and 8. The actual row ad
dresses are 1, 3, 5 and 7. Since the overall text presentation might be clut
tered with characters you generated while entering the program, you might
want to clear the screen first by doing an ESC @ and then a RUN.

Like the column addressing of the TAB statement, VTABs are absolute
addresses. It makes no difference where the cursor might be located at the
time the VTAB statement is executed. Try this:

10 CALL -936
20 VTAB 1: PRINT "FOO"
30 VTAB 11: PRINT "HELP"
40 END

The CALL statement in line 10 clears the screen for you. Line 20
causes the string FOO to be printed on row address 0-the first line on the
screen. Then line 30 prints HELP on row address 10.

To make sure you are convinced that the position of the cursor is not
relevant when executing a VTAB, run this variation:

10 CALL -936
20 VTAB 11: PRINT "HELP"
30 VTAB 1: PRINT "FOO"
40 END

The resulting text appears identical to the previous example, but the
lower HELP message is printed before the FOO message is printed on row
address 0.

Using Combinations of TAB and VTAB Programming, espe
cially text formatting situations, can become a lot easier and more interest
ing when combining TAB and VTAB statements. Taken together, these two
simple BASIC statements allow you to print a character at any one of the
960 text character locations on the screen. Generally speaking, you only
have to make sure that you select the TAB and VTAB values so that the
text to be printed does not overflow a line or crash into some previously
printed text.

DISPLAYING TEXT • 27

Here is a program that demonstrates how it is possible to place a single
character just about anywhere on the screen:

10 CALL -936
20 PRINT "COLUMN ADDRESS (0-39)";
30 INPUT COL
40 PRINT "ROW ADDRESS (0-23)";
50 INPUT ROW
60 CALL -936
70 TAB COL+l: VTAB ROW+l
80 PRINT "X";
90 GOTO 90

The program requests the column and row addresses for the cursor.
Respond by entering a value in the designated range in each case. Once
you've entered those cursor addresses, the program clears the screen and
prints an X in that location. The program ends by looping to itself at pro
gram line 90, so you must do a CTRL C and another RUN to try a different
set of cursor coordinates,

The only problem with the whole idea is that it doesn't print the X
properly whenever you specify the last character location in the lower
right-hand comer of the screen-column 39, row 23. The program will in
deed print the X at that character location, but then the system does its
normal task of advancing the cursor to the next character location. In this
particular case, that means the entire display will scroll upward one line,
and the X will not remain in the designated position. None of the other 959
possible character locations will cause that undesirable scrolling effect.

Here is a short program that prints stars (asterisks) at randomly
selected character locations on the screen. Notice that it avoids printing
asterisks on the bottom line. Why? Because printing an asterisk at column
39 in row 23 would mess up the overall effect by scrolling it upward one
line.

10 CALL -936
20 TAB RND (39)+1
30 VTAB RND (22)+1
40 PRINT "*";
50 GOTO 20

The next program is a variation of the one just described. It still prints
asterisk characters at randomly selected places on the screen, but this time
it erases each one after displaying it for a short interval of time. The overall
effect is that of stars twinkling here and there.

28 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

10 CALL -936
20 COL= RND (39)+l:ROW= RND (23)+1
30 TAB COL: VTAB ROW
40 PRINT "*";
50 FOR T=l TO 10: NEXT T
60 TAB COL
70 PRINT " "
80 GOTO 20

Program line 20 selects random values that are appropriate for the TAB
and VTAB statements in line 30. Line 40 then prints the asterisk character
at the selected screen position, and line 50 does a short time delay.

Lines 60 and 70 work together to delete the asterisk at the end of the
time delay interval. The general idea is to plot a space character (program
line 70) over the asterisk; but without the TAB COL instruction in line 60,
the space would always be printed one column to the right of the asterisk.

Bear in mind that any PRINT statement, including those appended
with a semicolon to suppress the normal linefeed and carriage return, ad
vances the cursor to the next column, or character space. So, if the pro
gram happens to print the asterisk in row address 5 of some line, the cursor
will end up at row address 6. The TAB COL statement in line 60 of the
program "backs up", the cursor, placing it at the address of the asterisk
character and forcing the space of line 70 to print over it.

Of course the cursor. symbol is not displayed during the execution of a
program, so the program isn't disturbed by that flashing symbol. The
mechanisms for positioning the cursor are nevertheless at work here.

Simulating a PRINT @ Statement A lot of BASICs include a
PRINT @ statement that, in a fashion, performs the task of the combined
TAB and VTAB statements described in the previous section.

The Apple text screen is divided into 960 different character locations,
and we have been addressing those locations by means of some column
and-row coordinates-that is, by designating both a row address and a
column address. A PRINT@ statement accomplishes the same thing, but it
considers the addresses for the 960 character locations in a different man
ner.

A PRINT @ statement designates a single numeric value for each
character location on the screen. There are 960 character locations in the
Apple text format, so the range of PRINT @ addresses is 0 through 959.
The PRINT @ addresses begin with 0 in the extreme upper left-hand
comer of the screen, and progress in a column-by-column and row-by-row
order until they reach address 959 in the extreme lower right-hand corner.
PRINT @ address 39 is at the end of the first row, PRINT @ address 40 is
at the beginning of the second row, and so on.

DISPLAYING TEXT ., 29

The usual syntax for a PRINT @ statement is:

PRINT @ x,c

where,
x is the PRINT @ address (0-959)
c is the character to be printed at the designated address.

Here is a program that uses Integer BASIC's TAB and VTAB state
ments to simulate and demonstrate the PRINT @ operation.

Listing 2-2 PRINT @ Simulation.

10 CALL -936
20 PRINT "WHAT PRINT @VALUE (0 TO 959)";
30 INPUT X
40 IF X>=0 AND X<=959 THEN 70
50 PRINT "** RANGE ERR"
60 CALL -198: GOTO 20
70 PRINT "WHAT CHARACTER";
80 INPUT C$
90 CALL -936

100 GOSUB 200
110 GOTO 110
200 ROW=X/40
210 COL=X MOD 40
220 TAB COL+l: VTAB ROW+l
230 PRINT C$;
240 RETURN

Program line 20 requests a PRINT @ address in the range of 0 through
959. If you input a value outside that range, lines 50 and 60 print the famil
iar ** RANGE ERR message and beep the loudspeaker. After inputting a
valid PRINT @ address, lines 70 and 80 allow you to designate a string
character to be printed at that location.

The subroutine beginning at line 200 represents the real purpose of the
program: to demonstrate TAB and VTAB cursor positioning. That sub
routine calculates the individual ROW and COL addresses, line 220 sets up
the TAB and VTAB operations, and line 230 prints the designated string
character at that position on the screen. It's a matter of converting a
single-number address that is in the range of 0 through 959, into a pair of
TAB and VTAB values that are consistent with the operation of Apple In
teger BASIC.

The program, incidentally, loops to itself at line 110 after printing the
character. So you have to enter a CTRL C and RUN to try the PRINT @
demonstration again.

30 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

WORKING WITH THE CURSOR-POSITION REGISTERS There
are two memory locations in Apple RAM that spell out exactly where the
cursor is located at any given moment and under any operating mode. The
numeric values stored in those locations follow the same column-and-row
addressing format used throughout this chapter.

The Apple literature cites those two RAM addresses as CH and CV:

CH at RAM address 36-this register specifies the
cursor's column location (0-39).

CV at RAM address 37-this register specifies the
cursor's row location (0-23).

PEEKing and POKEing into those two addresses gives you total control
over the positioning of the print cursor.

PEEKing Into CH and CV Memory address 36 always holds the
cursor's current column address; so including a BASIC statement such as

PRINT PEEK(36)

in your program prints out that value for you. But if you try that statement
while in immediate execution mode, the system always responds by print
ing a 0. Why would CH be set to 0 in such a case? Because statements in
immediate mode are executed only after you strike the RETURN key.
Striking the RETURN key amounts to doing a linefeed and carriage return,
and that always forces the column address to 0. Hence a simple PRINT
PEEK(36) statement is virtually useless in the immediate execution mode
of operation.

Build a PRINT PEEK(36) into a program, though, and you can see the
column address register, CH, at work. Try this little demonstration:

10 FOR N=l TO 4
20 PRINT 11 *II;

30 NEXT N
40 PRINT PEEK (36)
50 END

Running that program turns up a text display that looks something like this:

****4

The FOR-NEXT statement prints asterisks in column addresses 0, 1,
2, and 3. The system advances the cursor to the next column, and then the

DISPLAYING TEXT • 31

PRINT PEEK(36) statement in line 40 prints out the current cursor column
address-column 4 in this case.

Here is a program that lets you experiment with the notion of PEEK
ing into CH:

10 PRINT "INPUT A COLUMN ADDRESS (0-39)";
20 INPUT COL
30 FOR.N=0 TO COL: PRINT "X";: NEXT N
40 HPOS= PEEK (36)
50 PRINT : PRINT HPOS
60 GOTO 10

The program first requests a column address for the current line of
text. Answer it by typing any integer value between 0 and 39. After doing
that, notice that the program prints a line of X characters from column
address 0 of the current line to the address you specified. Program line 40 is
the one of special interest here: it PEEKs into CH and assigns the current
column address to variable HPOS. Line 50 then prints that value on the
screen for you.

So if you respond to the input request with a column address of 20, the
program prints 21 X characters on the next line and then prints the numeral
21 on the line under that one. The program prints 21 X characters in this
particular case because it is filling in column addresses 0 through 20, which
consist of 21 locations. It prints a value of 21 for HPOS because the print
ing operation ended at column address 20, after which the cursor auto
matically advanced to the next column-column address 21.

Incidentally, if you omit the semicolon at the end of the PRINT state
ment in line 30, the program will always print a value of 0 for HPOS. Why?

Using the same line of thinking, you can assure yourself that CV
(RAM address 37) always carries the cursor's current row address. You can
take a look at the content of CV at any time by doing something such as:

PRINT PEEK(37)

Doing that, you will see a number anywhere between 0 and 23, depending
on the current row address.

Here is the program for PEEKing into the CV register:

10 PRINT "INPUT A ROW ADDRESS (0-23)";
20 INPUT ROW
30 CALL -936
40 FOR N=0 TO ROW: PRINT "X": NEXT N
50 VPOS= PEEK (37)
60 PRINT VPOS
70 GOTO 10

32 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

This one asks you to designate a cursor row address. The program
then clears the screen and prints X characters from the beginning of row
number 0 to the row address you specified. Line 50 then PEEKs into CV
and assigns the value to VPOS. Line 60 prints that value for you.

How can you find out where the cursor is located at any given mo
ment? Simply PEEK into address 36 to find the column address and PEEK
into address 37 to find the row address.

Some versions of BASIC include statements that PEEK into those
cursor-address locations for you. The syntax generally includes the use of a
dummy variable, so they take on this sort of form:

LET COL=HPOS(X)
LET ROW=VPOS(Y)

where X and Y are dummy variables. (They are required for proper execu
tion of the statement, but have no real significance beyond that.)

The hypothetical HPOS(X) function does the job of our PEEK(36),
and the VPOS(Y) does the job of our PEEK(37).

Would you like to come up with a PRINT @ address for the current
cursor_ location? One that expresses the cursor location as a single-number
value between 0 and 959? This sort of statement will do the job:

PAT= PEEK(36) + PEEK(37}*40

The PEEK(36) picks up the content of CH to get the cursor's column
address, and PEEK(37) looks into CV to get the row address. Multiplying
the content of CV by 40 and summing the result with CH generates a
PRINT @ sort of number that is assigned to variable PAT. It will always be
a number between 0 and 959, and it will indicate the cursor's position in a
form described for PRINT @ statements in "simulating a PRINT @ state
ment" on page 29.

POKEing Into CH and CV The Apple system refers to RAM ad
dresses CH and CV whenever it is necessary to use them for the sake of
knowing where the next character is to be printed on the screen. You found
in the previous section that you can find those addresses by PEEKing into
CH and CV. Now you will see that you can actually control the position of
the cursor by POKEing numbers-column and row addresses-into CH
and CV. In fact you will find that PO KEing into CH and CV lets you per
form described for PRINT @ statements in ''Simulating a PRINT @
Statement" on page 29.

This program demonstrates the feasibility of POKEing values into CH
in order to begin printing a message at a designated column address:

DISPLAYING TEXT " 33

10 CALL -936
20 PRINT "WHAT COLUMN STARTING ADDRESS (0-39)";
30 INPUT COL
40 POKE 36,COL
50 PRINT "HELP"
60 GOTO 20

Enter and run this program, responding to the request for a column
address with an integer value between 0 and 39. The program responds by
printing the HELP message beginning at the column address you specify.
How is that done? Line 40 in the program POKEs your COL value into
CH. The system then uses that value in CH to fix the starting column for
the message that is spelled out in line 50.

Try several different COL values, and convince yourself that the
HELP message in each case begins at the address value you specify.

Every time the system is called upon to print a text character, it refers
to the content of CH to determine the column address of the character.
After printing the character, the system increments the value in CH to
place the cursor at the next column address.

PO KEing values into CH and getting the desired result is a rather
straightforward procedure. Unfortunately, the Apple system isn't set up to
work with POKEs into CV in such a straightforward manner. The Apple
system ignores the row-address value in CV unless it is really needed; it
does not refer to that value after every character-printing operation.

The Apple system refers to the content of CV only after it sees a
linefeed and carriage return or notices that a printing operation is moving
the cursor beyond the right end of the current row. That makes the matter
of setting the row address by POKEing into CV (RAM address 37) a less
than-ideal formatting procedure.

For example, you might think this would be a good program for dem
onstrating the notion of setting the row address by POKEing into CV:

10 CALL -936
20 PRINT "WHAT ROW ADDRESS (0-23)";
30 INPUT ROW
40 POKE 37,ROW
50 PRINT "HELP"
60 GOTO 20

When you enter a value for variable ROW, program line 40 POKEs it
into CV. You might think that the system uses that value to determine the

34 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

I I
I i

I

I __

I

L-'--

I !

I ~
I

row address for printing the HELP message. But it doesn't! No matter
what value you input for ROW, the next format looks like this:

WHAT ROW ADDRESS (0-23)?
HELP

The HELP message appears on the row directly following the row-address
request.

Notice, however, that the next request for an address appears at the
row address you specified. The system does not refer to your specified row
address until after it prints the HELP message. I'll have to confess that it
took me some time to figure out what was going wrong when I tried this
sort of POKEing into CV.

The principle of the thing is that the Apple system, in the interests of
operating speed, does not refer to the content of CV until it is time to set
up a new line of text. It refers to CH after every character-printing opera
tion, but not CV. In this particular example, the system refers to the con
tent of CV only after printing the HELP message. Why does it look into ·
CV then? Because the PRINT "HELP" statement ends with an automatic
linefeed and carriage return. The process for doing a linefeed and carriage
return is one that makes the Apple check the value in CV.

So to set up the HELP messages at the desired ROW address, we have
to do something that makes the Apple refer to CV after POKE 27, ROW,
but before PRINT "HELP". Try adding the following line to the program
just described:

45 CALL -926 : CALL -998

Now you will find the program runs as expected.
The CALL statements in program line 45 do a linefeed and carriage

return followed by an upward linefeed. Both CALLs affect CV and force
the Apple to refer to it; the first CALL forces the cursor down a line, and
the second CALL puts it back, Everything works out nicely.

Of course you can combine these programs to take full control over
the horizontal and vertical positioning of the cursor:

10 CALL -936
20 PRINT "WHAT COLUMN ADDRESS (0-39)";
30 INPUT COL
40 PRINT "WHAT ROW ADDRESS (0-23)";
50 INPUT ROW
60 POKE 37,ROW
70 CALL -926: CALL -998
80 POKE 36,COL
90 PRINT "HELP"

100 GOTO 20

DISPLAYING TEXT • 35

Why do you suppose it is necessary to POKE the value of ROW into
CH and execute the two CALL statements (lines 60 and 70) before setting
COL into CH (line 80)? Hint: CALL -926 (a linefeed and carriage return) is
the key to the answer.

MORE CURSOR-RELATED OPERATIONS All of the cursor-
related operations described thus far deal with the cursor and its role in
printing characters on the screen. There is a family of other cursor-related
operations that perform other, equally important tasks. Those tasks include
moving the cursor up, down, and to the left or right from its present posi
tion; and clearing selected portions of the text display.

Many of these special cursor-related tasks can be executed by taking
advantage of some simple CALL routines to the Apple monitor. Others
cannot.

Homing the Cursor Home, as far as the cursor is concerned, is that
character position in the extreme upper left-hand corner of the text screen.
Homing the cursor is a process that places it there without disturbing any
other text on the screen.

A couple of previous discussions in this chapter offer some techniques
for homing the cursor from any other location.

First, you can TAB and VTAB it to home with statements such as:

TAB 1: VTAB 1

When using full-screen text, TAB and VTAB values of 1 represent home for
the cursor. Here is a demonstration program that uses this particular hom
ing technique:

10 DIM M$ (16)
20 TAB 1: VTAB 1
30 INPUT M$
40 GOTO 20

Program line 20 homes the cursor just prior to the execution of the INPUT
statement in line 30. So every INPUT routine begins from the upper left
hand corner of the screen.

Second, you can POKE zeros into CH and CV:

10 DIM M$(16)
20 POKE 37,0: CALL -926: CALL -998
30 POKE 36,0
40 INPUT M$
50 GOTO 20

36 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Lines 20 and 30 work together to home the cursor just before the program
executes the INPUT statement in line 40. The overall operation is identical
to the TAB/VTAB version cited before.

Unfortunately, the Apple monitor does not include an entry point that
simply homes the cursor by means of a CALL statement in BASIC. A
short machine-language routine will let you do the job in a custom fashion;
but that is a topic that we will discuss much later in this book.

Home the Cursor and Clear the Screen The most likely reason
that there is no simple CALL statement for just homing the cursor is that
most programmers want to link homing the cursor with clearing the entire
screen. Such a two-part operation should be called "home the cursor and
clear the screen," but it generally goes by the simple name of HOME.
HOME, in fact, is the designation assigned to this two-part operation in
most of the Apple literature.

Most Apple users, particularly those who use Integer BASIC, are well
acquainted with the HOME operation:

CALL -936

Executing that statement, either in the programming mode or the im
mediate execution mode, sends the cursor to its home position and clears
the entire text field.

HOME (-936) is the entry point for operations that
both home the cursor and clear the text screen.

If you have been entering and running the demonstration programs
offered so far in this chapter, you have been working with the CALL -936
instruction. So there is no need for citing any further examples.

You can also call up that home-and-clear operation from BASIC com
mand mode or from the monitor by doing an ESC-@ key function. Strike
the ESC key and then type an @. As you can see, that too homes the
cursor and clears the screen.

Clear to End of Line Sometimes it is helpful to clear a line of text
from the current cursor position to the end of the current line of text. Try
this demonstration program:

10 DIM M$ (39)
20 TAB 1: VTAB l
30 INPUT M$
40 CALL -868
50 GOTO 20

DISPLAYING TEXT • 37

When you get the program loaded and running, respond to the INPUT
statement by typing in an arbitrary string of characters-say, 16 or so. Do
a RETURN and input another string of characters that is somewhat shorter
than the first. When you do the RETURN for that second entry, you will
see the characters at the end of the previous entry cleared from the screen.

Line 20 in the program homes the cursor without clearing anything
from the screen, and line 30 lets you type in a string of characters from that
point. The statement in line 40 is the one that is important to the present
discussion. It CALLs an entry point in the Apple monitor that clears any
text that resides in the space from the current cursor position to the end of
the line. In the Apple literature, entry address -868 is called CLREOL
clear to end of line.

CLREOL (-868) is the entry point for operations
that clear text from the cursor's current column
address to the end of the current row, or line.

You can also execute CLREOL from the keyboard by doing an ESC
E-that is, by pressing ESC followed by E.

Clear to End of Page Just as CALLing CLREOL clears a line of
text from the current cursor position to the end of the current line,
CALLing CLREOP clears text from the current cursor position to the end
of the page.

Here is a CLREOP demonstration program:

10 FOR N=0 TO 39: FOR M=0 TO 23
20 PRINT "*";
30 NEXT M: NEXT N
40 TAB 1: VTAB l
50 PRINT "WHAT COLUMN NUMBER (0-39)";
60 INPUT COL
70 PRINT "WHAT ROW NUMBER (0-23)";
80 INPUT ROW
90 TAB COL+l: VTAB ROW+l

100 CALL -958
110 END

This one first fills the entire screen with asterisk characters (program
lines 10 through 30). Line 40 homes the cursor without erasing any of the
asterisks along the way, and lines 50 through 80 let you enter cursor
positioning addresses. Line 90 forces the cursor to the prescribed position

38 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

on the screen, and line 100 CALLs CLREOP at address -958 to clear the
screen from that cursor position to the end of the page.

CLREOP (-958) is the entry point for operations
that clear text from the current cursor location to
the end of the page.

You can also execute CLREOP from the keyboard by doing an ESC-F
command-that is, by pressing ESC followed by F.

Recall that CALLing HOME at address -936 both homes the cursor
and clears the entire text screen. It is possible to do the same thing this
way:

10 TAB 1: VTAB l
20 CALL -958
30 END

Line 10 homes the cursor and line 20 does a CLREOP to clear the screen
all the way from the home position to the end of the screen.

Advance the Cursor Another kind of monitor routine, called AD
VANCE, begins at address -1036. Its function is to advance the cursor one
character location to the right. ADVANCE differs from doing a SPACE
keystroke inasmuch as ADVANCE does not erase characters as it moves
the cursor position. What's more, ADVANCE will do an automatic linefeed
and carriage return when executed at the end of a line, and it will scroll the
entire screen upward when the cursor is at the last character position on
the last line.

So including an ADVANCE operation, CALL -1036 in a FOR-NEXT
loop lets you position the cursor in a left-to-right fashion without erasing
any of the characters that might be in the cursor's path.

ADVANCE (-1036) is the entry point for an opera
tion that moves the cursor one column address to
the right without erasing the current character.

An ESC-A combination of keystrokes from the keyboard calls up the
ADVANCE routine from the BASIC command mode or the monitor. Strik
ing the right-arrow key does essentially the same thing.

You might also take note of the fact that a series of successive AD
VANCE operations can do the same job as a TAB statement. There is one

DISPLAYING TEXT • 39

big difference, however. TAB statements use absolute column address
ing-that is, the value assigned to the TAB statement refers to the column
position as reckoned from the left-hand edge of the text field. So if the
cursor happens to be at column address 6 and you want to move it ten
spaces to the right, you have to take into account the cursor's current
position and specify a TAB 17. But doing ten ADVANCE operations in
succession will move the cursor ten column locations to the right from its
current location. That is an example of relative cursor addressing
addressing that is relative to the current cursor position.

Backspace the Cursor The BS routine in the monitor begins at ad
dress -1008, and its function is to move the cursor one space to the left.
Doing a succession of these backspace operations moves the cursor in a
right-to-left fashion without erasing any characters that might be in its way.

BS (-1008) is the entry point for an operation that
moves the cursor one column address to the left
without erasing the current character.

You have most likely used the routine a number of different times by
striking the left-arrow key. You can do the same thing by pressing the key
stroke combination, ESC-B.

Like ADVANCE, BS is an example of relative cursor addressing. In
serting a CALL -1008 into a FOR-NEXT loop backspaces the cursor a
number of locations relative to its starting position.

Downward Linefeed You can always do a downward linefeed by
striking the ESC key, followed by striking the C key. That moves the cur
sor down one line-straight down. A RETURN keystroke also moves the
cursor down one line, but to the beginning of that line.

You can include a downward linefeed operation in a BASIC program
by executing a CALL -922. That address marks the beginning of the
monitor's LF routine.

LF (-922) is the entry point for an operation that
moves the cursor down one line, or row, without
erasing any characters in its path.

The LF operation represents a relative-addressing version of BASIC's
VTAB statement.

Upward linefeed The monitor's UP routine, beginning at address
-998, moves the cursor straight up one line. One or more CALL -998

40 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

I I
, I

statements in a BASIC program effectively move the cursor upward with
out affecting the text.

UP (-998) is the entry point for an operation that
moves the cursor up one line, or row, without eras
ing any characters in its path.

An ESC-D operation lets you do the same thing from the keyboard.

DISPLAYING TEXT • 41

Alternative Text Formats

3 The Apple offers some alternatives to the standard text formats
described in Chapter 2. The alternatives include inverse and flashing
characters, and custom text windows. It is certainly possible to run some
useful and sophisticated text routines without using any of these alternative
formats, but their availability offers you a chance to turn a good program
into a great one.

ALTERNATIVE CHARACTER FORMATS Unless directed other-
wise, the Apple system prints text characters in a white-on-black format.
An initialization routine that is built into the Apple monitor automatically
sets up the standard white-on-black format whenever you turn on the sys
tem or do a RESET. You can, however, set up the text so that all char
acters appear in the inverse, black-on-white, format. You can also set up
the text so that the @symbol and all letters appear in the flashing format.

The key to setting up these formats is RAM location 50, otherwise
known as INVFLG to the Apple operating system. POKEing appropriate
values into INVFLG makes the text display normal, inverse, or flashing
(see Table 3-1).

Notice from the table that the normal and inverse text formats apply to
all printed characters, while the flashing text format does not. This is a
peculiarity of the Apple that can cause some frustration if you are not
aware of it.

The flashing text mode applies only to the @ sym
bol and the alphabet, but all characters may be
printed in the inverse format.

You can set the text modes directly from the keyboard in the command
mode of operation or you can write the appropriate POKEs into a BASIC
program.

ALTERNATIVE TEXT FORMATS • 43

Tab!e 3-1. Text Formats

Content of INVFLG
Text Format (RAM address 50) Example Notes

NORMAL 255 POKE 50,255 All characters are
printed in a normal,
white-on-black format.

INVERSE 63 POKE 50,63 All characters are
printed in an inverse,
black-on-white format.

FLASHING 127 POKE 50, 127 · The @ symbol and all
letters are printed
in a flashing format;
all other symbols and
numerals are printed
in the INVERSE format.

Setting Text Formats From the Keyboard The following series
of short experiments demonstrates how to set text formats from the
keyboard.

1. Enter this program:

10
20
30
40
50

CALL -936
FOR N=l TO 12
PRINT .. xii;

NEXT N
END

Line 10 homes the cursor and clears the screen. Lines 20 to 40 print
12 X characters in succession on the same row.

2. From the command mode, enter:

POKE 50,63
RUN

The POKE statement sets up the inverse text format so that when you
run the program, the 12 X characters appear black-on-white.

3. From the command mode, enter:

POKE 50,127
RUN

44 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

The POKE statement sets up the flashing text format, so you should
see the X characters flash.

4. From the command mode, enter:

POKE 50,255
RUN

That POKE statement returns the system to the normal, white-on
black text format, so the program ought to print the 12 X characters in
that fashion.

Steps 2, 3, and 4 demonstrate that you can set the format from the
keyboard prior to running a text-printing program.

5. From the command mode, enter:

POKE 50,63
RUN

The 12 X characters should appear in the inverse form.

6. Now, perform a RESET, a CTRL-C, and enter:

RUN

The X characters should now appear in the normal text format.

Steps 5 and 6 show that you can return to the normal text format by
resetting the system. Thus there are two ways to get back to the normal
text mode: by doing a POKE 50,255 or a RESET followed by a CTRL-C.

7. Rewrite line 30 in the program in Step 1 to read:

30 PRINT "3";

That simply replaces the 12 X characters with numeral 3 characters.

8. Repeat Steps 2, 3, and 4.

The numerals appear as one might expect them to appear in Steps 2
and 4-inverse and normal, respectively. But they do not appear in the
flashing-text mode following the POKE 50,127 as prescribed in Step 3. The
point of the demonstration is to show that numerals cannot be made to
flash.

ALTERNATIVE TEXT FORMATS " 45

Setting Text Formats Within a Program The previous set of
experiments showed how you can set the text format from the keyboard
prior to running a print-oriented program. The next program shows how
you can set the text modes within a program.

10 CALL -936
20 PRINT "WHAT CHARACTER?";
30 INPUT C$
40 CALL -936
50 POKE 50,63: GOSUB 100
60 POKE 50,127: GOSUB 100
70 POKE 50,255: GOSUB 100
80 PRINT : PRINT
90 GOTO 20

100 FOR N=l TO 12
110 PRINT C$;
120 NEXT N
130 PRINT
140 RETURN

Enter the program and run it. Respond to the WHAT CHARACTER
request by entering a single letter, numeral, or punctuation symbol. The
program will respond by printing three rows of 12 characters apiece, each
row having a different text format: inverse, flashing, and normal. Re
member, though, that characters other than @ and a letter of the alphabet
will not flash.

Here is an analysis of that program:

Line 10 homes the cursor and clears the screen.
Lines 20 and 30 request a character and input it as string variable C$.
Line 40 homes and clears again.
Line 50 sets the inverse text format and calls subroutine 100 to print 12

characters in a row.
Line 60 sets the flashing text format and calls subroutine 100 to print 12

characters in a row.
Line 70 sets the normal text format and calls subroutine 100 to print 12

characters in a row.
Lines 80 and 90 skip two lines on the screen and then loop back to pro

gram line 20 to request another character.
Lines 100 through 140 constitute a subroutine for printing 12 C$ char

acters in a row. The text format is set just prior to calling this sub
routine.

The program clearly demonstrates you can set the text format, and
indeed change it, during the execution of a program.

46 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Mixing Text Formats One of the most compelling reasons f.x using
inverse or flashing text formats is to make important segments of printed
text stand out clearly to get the user's attention. Mixing inverse or flashing
text with normal text is a simple matter of switching text formats at critical
points within a message-printing operation. Here is an example:

HJ CALL -936
20 POKE 50,255
30 PRINT "ENTER A NUMBER";
40 POKE 50,63
50 PRINT "BETWEEN 0 AND 9 II j

60 POKE 50,255
70 INPUT N
80 IF N>=0 AND N<=9 THEN 100
90 PRINT : POKE 50,127: GOTO 50

100 CALL -936
110 PRINT "YOUR NUMBER WAS II j

120 POKE 50,63
130 PRINT N
140 PRINT : PRINT
150 GOTO 20

Enter and run this program, and you will see the request: ENTER A
NUMBER BETWEEN 0 AND 9. The first part of the text, ENTER A
NUMBER, is written ill the normal, white-on-black form. The last part,
however, appears as inverse text. The idea is to emphasize BETWEEN 0
AND9.

If you respond to the request by entering some integer between 0 and
9, the program prints YOUR NUMBER WAS followed by the numeral you
specified. YOUR NUMBER WAS in printed in normal format, but the
numeral appears in inverse format to make it stand out from the rest of the
text. After doing that, the program loops back to request another number.

If you respond with an integer value that is outside the range of 0-9,
the program prints BETWEEN 0 AND 9 in flashing format. The idea is to
emphasize that you've made an error. In that error message, the words
BETWEEN and AND are flashing; numerals 0 and 9 are in inverse form
since numerals cannot be made to flash.

Bear in mind that the purpose of this program is to show how you can
insert statements that alter the text formats to emphasize ideas that are
important to the user. Here is a brief analysis of the operations:

Line IO homes the cursor and clears the screen.
Lines 20 and 30 set the normal text format and print ENTER A

NUMBER without the usual carriage return.
Lines 40 and 50 set the inverse text format and complete the request

message by printing BETWEEN 0 AND 9.

ALTERNATIVE TEXT FORMATS o 47

Lines 60 and 70 set the normal text format and input the numeral as
variable N.

Line 80 tests the value of N. If N is within the requested range of values,
jump to program line 100; otherwise it executes the program from line
90.

Line 90 skips a line on the screen, sets the flashing text format, and loops
back to program line 50 to print BETWEEN 0 AND 9 as an error
message.

Line 100 homes the cursor and clears the screen.
Line 110 prints YOUR NUMBER WAS in the normal text format set in

line 60.
Lines 120 and 130 set the inverse text format and print the value of vari

able N.
Lines 140 and 150 skip two lines on the screen and then loop back to

program line 20 to request another number.

Notice especially how one can use the same message statement, BE
TWEEN 0 AND 9 in line 50, to serve two different purposes. Printed in
inverse format, it simply emphasizes that the specified number should be in
that range. Printing the same message in flashing format makes it serve as
an eye-catching error message.

Mixing text formats within an operating program can transform an
otherwise humdrum program into something a lot more interesting for the
user. An example is the typical two-player high-low guessing game shown
in Listing 3-1. Enter the program, run it, and play with it for a while. Take
note of how it uses different text formats to add interest.

A step-by-step analysis of how the game works is left to you. It is
more important at this time to point out the ideas behind changing the text
modes.

First notice program lines 1000, 2000, and 3000. Each does nothing
more than set a particular text format and return to the statement that calls
it as a subroutine. Line 1000 sets the normal text format, 2000 sets the
inverse format, and 3000 sets the flashing format. It isn't necessary to write
those text-setting POKE statements as subroutines, but I've done it here to
make them easy to use in other programs.

Thus, having the GOSUB 1000 statement in the main part of the pro
gram is the same as having a POKE 50,255 there, because they both set the
normal text format for any PRINT statements that follow. (See program
lines 50, 190, 210, 360, and 380.)

Along those same lines, GOSUB 2000 effectively sets up the inverse
text format, and GOSUB 3000 sets up the flashing format.

You should be able to get a good appreciation of how the mixed-text
scheme works if you run the program and follow the listing as you go
along.

48 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 3-1. High-Low Guessing Game.

10 DIM Pl$(16),P2$(16),PN$(16)
15 CALL -936
20 TAB 15: VTAB 10
30
40
50
60
70
80
90

GOSUB 2000: PRINT "HIGH-LOW GAME"
VTAB 16
GOSUB 1000:
GOSUB 2000:
GOSUB 1000:
INPUT S$
CALL -936

PRINT "STRIKE";
PRINT "RETURN";
PRINT " TO BEGIN ". • • o I

PRINT
INPUT
PRINT
INPUT
PN=l

"FIRST
Pl$

PLAYER'S NAME .. 0 II i

: PRINT
P2$

"SECOND PLAYER'S NAME

CALL -936:X= RND (99)+l:S=0
IF PN=l THEN PN$=Pl$
IF PN=2 THEN PN$=P2$
GOSUB 2000: PRINT PN$;

II j

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

GOSUB 1000: PRINT " I AM THINKING OF A NUMBER"
PRINT "BETWEEN 0 AND 100"

1000
2000
3000

GOSUB 1000
PRINT : PRINT "WHAT IS YOUR GUESS?"
INPUT G:S=S+l
IF G>=0 AND G<=l00 THEN 260
PRINT : GOSUB 3000: GOTO 200
CALL -936
PRINT PN$;" 'S GUESS NO. "; S;":"
PRINT : GOSUB 2000
PRINT G;" IS ";
IF G>X THEN 330
IF G=X THEN 340
GOSUB 2000: PRINT "TOO LOW": GOTO 210
GOSUB 2000: PRINT "TOO HIGH": GOTO 210
GOSUB 3000: PRINT "RIGHT ON"
PRINT : PRINT
GOSUB 1000: PRINT "STRIKE ";
GOSUB 2000: PRINT "RETURN";
GOSUB 1000: PRINT " TO CONTINUE THE GAME
INPUT S$
IF PN=l THEN 420
PN=l: GOTO 150
PN=2: GOTO 150
POKE 50,255: RETURN
POKE 50,63: RETURN
POKE 50,127: RETURN

".
• $ o I

ALTERNATIVE TEXT FORMATS " 49

ALTERNATIVE PRINT WINDOWS The Apple text environment is
organized into 24 rows, or lines, having 40-character columns in each. At
least that is the normal text environment. It represents the largest possible
print window-960 character locations as outlined in Fig. 2-1. If you type
for a while, you will find that you can print up to 40 characters on as many
as 24 different lines. Attempt to print on an imaginary 25th line, and you
will see the scrolling effect.

Recall that starting up the computer or doing a RESET operation
automatically sets the system for printing characters in their normal,
white-on-black form. The same sort of thing happens to the print window:
tum on the system or do a RESET, and the system automatically sets up
the 40 column, 24 row window. And just as you can switch formats from
the keyboard or during the execution of a program, you can also adjust the
size of the print window. Adjusting the window means adjusting the posi
tion of the first and last column of text, and the position of the first and
bottom row of text. You do this by POKEing the appropriate values into a
family of four special RAM addresses.

Setting the Starting Column of Text Recall that Fig. 2-1
showed each line of text organized into 40 different column locations that
were designated 0 through 39. Column address 0 represented a character
location at the extreme left-hand edge of the screen, and column address 39
represented a character location at the extreme right-hand edge.

There is a particular memory location in Apple RAM that determines
the column address for the first character to be printed on each line. That
memory location, called WNDLFT, is at decimal address 32. Thus any
reference to WNDLFT (address 32) has something to do with the left-hand
starting position of a line of text.

Normally the value stored in WNDLFT is zero. That means each line
of text will begin from column location 0-the extreme left-hand edge of
the screen. But you can alter the value saved in WNDLFT at will.

Try this experiment:

l. Working in the Integer BASIC command mode, do a RESET followed
by CTRL-C or CTRL-B. This action makes certain that the text win
dow is set to its normal, maximum size.

2. Enter the following:

PRINT PEEK(32)

This PEEKs into WNDLFT and prints the value stored in it, which is
0.

50 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

3. Enter:

POKE 32,15

You will see the cursor and prompt symbols jump immediately to a
position near the middle of a line. Do several RETURN keystrokes in
succession to confirm that each line of text is beginning at column
address 15.

4. Enter:

PRINT PEEK(32)

The response should be a 15 printed on the screen. This tells you that
Step 3 was successful.

5. Enter:

POKE 32,0

This returns the value in WNDLFT to that required for the normal,
40-character-per-line format. A few keystrokes and RETURN opera
tions will confirm that fact. Doing a PRINT PEEK(32) should turn up
a value of 0.

You can POKE a lot of other positive integer values into WNDLFT,
but only those in the range of 0 through 39 have meaning. When experi
menting with the content of WNDLFT, you should not overflow a line of
text when using a value other than 0. We can get away with it here, but
allowing a line to overflow upsets the general scheme and, more important
ly, forces data into RAM locations that aren't supposed to be affected by
text operations.

The next section of this chapter describes how to avoid the problems
inherent in overflowing a line when WNDLFT has some value other than 0
stored in it.

Setting the Number of Characters Per Line A special Apple
RAM location called WNDWDTH carries the number of characters that
can be printed on each line. WNDWDTH is at address 33, and it normally
carries a value of 40. You can work with WNDWDTH in much the same
way as you did with WNDLFT.

l. Do a RESET followed by a CTRL-C or CTRL-B. This sets up the
normal text window and BASIC's command mode.

2. Enter:

PRINT PEEK(32},PEEK(33)

ALTERNATIVE TEXT FORMATS " 51

This PEE Ks into WNDLFT and WNDWDTH, respectively, and
prints the values contained in them. Since the system is now set for
the normal text window, the values should be 0 and 40. This means
that the text begins at column address 0 on each line and that there
are a maximum of 40 characters per line.

3. Enter:

POKE 33,10

This operation sets WNDWDTH to carry a value of 10. Type in a long
string of arbitrary characters, and you will find that you can fit no
more than 10 characters on each line.

4. Enter:

PRINT PEEK(32),PEEK(33)

The response should be a 0 in WNDLFT and a IO in WNDWDTH.
The text thus begins at column address 0 on each line with up to 10
characters per line.

5. Enter:

POKE 33,40

This should return the system to the normal 40-character-per-line text
window. Confirm that by typing in long lines of text or by executing
the command in Step 4.

WNDLFT and WNDWDTH are used in conjunction with one another
to set the horizontal position and width of the text window. The possibility
of causing serious problems by overflowing a line of text can be eliminated
by a careful selection of values POKEd into WNDLFT and WNDWDTH.

To avoid line overflow and possible destruction of
data in other RAM locations, the sum of the values
stored in WNDLFT and WNDWDTH must be less
than or equal to 40.

Thus the following set of POKEs into WNDLFT and WNDWDTH
make up a legitimate adjustment of the text window:

POKE 32,10:POKE 33,15

The first statement sets WNDLFT value to 10 so that text printing begins at
the column-10 location on each line. The second statement POKEs 15 into

52 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

WNDWDTH, setting up the text for no more than 15 characters per line.
The text window, in other words, occupies column addresses 10 through
24.

Quite often a programmer who is setting up a custom text window is
more conscious of the column addresses at the beginning and end of each
line (as opposed to the column address of the first character and the
number of characters per line). A simple equation can keep things straight:

WNDWDTH = WNDRT-WNDLFT+ 1

where,
WNDWDTH is the content of address WNDWDTH,
WNDLFT is the content of address WNDLFT,
WNDRT is the column address for the last character on each line.

Suppose that you want to configure a text window in such a way that
the first character on each line is at column address 12 and the last char
acter is at column address 36. Entering a POKE 32, 12 sets WNDLFT to
the appropriate value. Solving the equation provides the value to be
POKEd into WNDWDTH:

WNDWDTH=36-12+ 1=25

Entering POKE 33,25 completes the task.

Setting the Position of the Top line The normal text window
allows up to 24 lines of text. As shown back in Fig. 2-1, those rows of text
can be assigned addresses of 0 through 23, with row 0 representing the top
row.

The row address of the topmost line of text is carried in Apple RAM
by WNDTOP, or address 34. The system usually sets the content of
WNDTOP to 0, indicating that the first line of text should appear at the
very top of the screen.

Try this experiment:

1. Do a RESET followed by a CTRL-C or CTRL-B. This sets the text
window for its normal 24-line format.

2. Enter:

PRINT PEEK(34)

The system should respond by printing a 0. The command PEEKs
into WNDTOP and prints the content for you. In the normal text win
dow, the content of WNDTOP is 0.

ALTERNATIVE TEXT FORMATS e 53

3. Enter:

POKE 34,10

This should set up the text window so that the first line is at row
address 10. But it is unlikely that you will see the cursor symbol snap
to that line position. Recall from discussions in the previous chapter
that the system doesn't set up cursor row parameters until it is forced
to do so. One way to force the issue in this case is to enter a CALL
-936 to home the cursor and clear the screen.

4. Enter:

CALL -936

This homes the cursor, but now you will find that home is no longer
the upper left-hand comer of the screen. Rather, it is located at the
beginning of row address 10-the value for WNDTOP entered in Step
3. What's more, you might find that this operation clears only that
part of the screen from row address 10 to the bottom. If you had some
text printed in row addresses 0 through 9, it would not have been
disturbed by the home-and-clear command.

5. Type in some keystrokes, including a lot of RETURNs. You will
notice that all text operations, including the scrolling effect, take place
from row address 10 through the bottom of the screen.

6. To set up WNDTOP, enter:

POKE 34,20
CALL -936

Now the text window begins at row address 20.
7. Return to the normal text window by entering:

POKE 34,0

or by performing a RESET followed by CTRL-C.
8. Assure yourself that the content of WNDTOP is now 0 by entering:

PRINT PEEK(34)

9. Enter:

GR

This sets up the Apple low-resolution graphics mode.

54 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

10. Enter:

PRINT PEEK(34)

PEEKing into WNDTOP while in the mixed low-resolution graphics
mode should show a value of 20. The Apple normally allows four lines
of text at the bottom of the low-resolution screen, so it should come
as no surprise that the Apple sets the content of WNDTOP to 20 in
that operating mode.

11. Enter:

TEXT

This returns the system to the text mode.
12. Enter:

PRINT PEEK(34)

You should find that the system has returned the content of WNDTOP
to 0.

There are 24 lines of text that can be labeled 0 through 23 for the
purposes of setting the value in WNDTOP. You will discover after some
experimenting, however, that WNDTOP works as described only for
values 0 through 22. You can POKE a value of 23 into WNDTOP, but
things get messed up if you do that, because the Apple expects the bottom
line to be different than the top line.

Values stored in WNDTOP are limited to the range
of positive integers from 0 through 22.

Setting the Position of the Bottom line Apple RAM address
35, usually called WNDBTM, carries the position of the text window's bot
tom line. A value of 24 in WNDBTM allows the last line of text to appear
at the very bottom of the screen.

The useful range of values that can be POKEd into WNDBTM is be
tween 1 and 24. Clearly the value of WNDBTM is not exactly represented
by the usual row addressing scheme that runs between 0 and 23. Most
Appk references cite the value of WNDBTM as being the desired row
address of the bottom line plus 1. The notion is a valid one, of course, but
it doesn't point to the rationale behind it. Consider this idea instead:

Number of lines= WNDBTM-WNDTOP

ALTERNATIVE TEXT FORMATS • 55

where,
WNDBTM is the content of WNDBTM,
WNDTOP is the content of WNDTOP.

If you happen to POKE a value of 20 into WNDBTM and a 12 into
WNDTOP, the equation says that you ought to end up with a text window
that has just eight lines in it. In other words, the difference in line
numbering makes it easier to find the number lines in the text window.

or

or

Try it for yourself:

1. Enter:

POKE 34,12
POKE 35,20
CALL -936

This sets up the text window just described.
2. Type in some arbitrary characters, including some RETURN key

strokes. You will find that the printing and scrolling operations are
confined to eight lines.

3. Enter:

PRINT PEEK(34),PEEK(35)

This PEEKs into WNDTOP and WNDBTM, respectively. The sys
tem should respond by printing 12 and 20.

4. Return to the full 24-line text window by entering:

TEXT

POKE 34,0

POKE 35,22

or by performing a RESET followed by CTRL-C. Any one of those
three techniques will return WNDTOP and WNDBTM to their normal
values of 0 and 22, respectively.

There are many programming situations, however, in which the pro
grammer is more aware of the desired row addresses for the top and bot-

56 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

tom of the screen than the value to be stored in WNDBTM. A simple
algebraic rearrangement of the equation puts matters into a more direct
light:

WNDBTM=Number oflines+WNDTOP

Suppose, then, that you want to set up a 10-line text window beginning
from row address 2. What value should be loaded into WNDBTM? From
the equation just cited, you should POKE a value of 10+2, or 12 into
WNDBTM.

Enter the following sequence to set up that particular text window:

POKE 34,2
POKE 35,12
CALL -936

Try it yourself.

Programming the Text Window Table 3-2 summarizes the RAM
addresses, names and range of values for the four text window parameters.
The following examples demonstrate how to manipulate all four of them to
achieve a desired result.

Example J. Prepare a BASIC program that sets up a text window hav
ing these specifications:

a. Twelve characters wide, beginning at column address 0.
b. Eight lines long, beginning at row address 0.

Table 3-2. RAM Names for Setting Text Window Sizes

RAM Meaning RAM Range of Normal
Address Values Value

WNDLFT Column address of the 32 0-39 0
first character in
each line

WNDWDTH Number of char- 33 1-40 40
acters in each line

WNDTOP Row address of the 34 0-22 0
top line

WNDBTM Number of lines 35 1-24 24
+ WNDTOP

ALTERNATIVE TEXT FORMATS • 57

The specifications, presented in that fashion, lead directly to the
values to be POKEd into WNDLFT, WNDWDTH, and WNDTOP:

POKE 32,0
POKE 33,12
POKE 34,0

An equation cited in the previous section leads to the value to be POKEd
into WNDBTM:

WNDBTM=Number of lines+WNDTOP
WNDBTM=8+0
WNDBTM=8

So POKE 35,8 is part of the program as well.
Here is a program that will do the job:

10 CALL -936
20 POKE 32,0: POKE 33,12
30 POKE 34,0: POKE 35,8
40 CALL -936
50 END

Enter and run the program. You will find that the text window is in
deed confined to a 12-column, 8-line format in the upper left-hand corner of
the screen.

The main purpose of the home-and-clear statement in line 10 is to clear
the entire screen before confining operations to the custom text window.
The second home-and-clear statement in line 40 gets the cursor to the
newly established home location. If, for any reason, you do not want to
clear the entire screen prior to setting up the smaller text window, simply
delete program line 10. That will leave all of the text that is outside the
smaller window intact.

Example 2. Suppose that while planning a relatively complex text
oriented program, you find that you need a small text window running be
tween column addresses 26 and 34, and between row addresses 18 and 22.
Prepare a BASIC routine for setting up that text window without disturbing
the text that might appear elsewhere on the screen.

The given specifications lead directly to the values to be POKEd into
WNDLFT and WNDTOP:

POKE 32,26
POKE 34,18

58 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

This equation provides the value to be loaded into WNDWDTH:

WNDWDTH = WNDRT- WNDLFT +I
WNDWDTH=34-26+ 1
WNDWDTH=9

And the value to be POKEd into WNDBTM is equal to the row address of
the bottom line plus I:

WNDBTM=row address+ I
WNDBTM=22+1
WNDBTM=23

So the desired BASIC routine should look like this:

10 POKE 32,26: POKE 33,9
20 POKE 34,18: POKE 35,23
30 CALL -936

Example 3. Write a BASIC routine that restores any custom text win
dow to the normal, full-screen format.

Here is one approach:

10 POKE 32,0: POKE 33,40
20 POKE 34,0: POKE 35,24

The idea is to POKE the normal values into WNDLFT, WNDWDTH,
WNDTOP, and WNDBTM, respectively.

But there is a far simpler way to accomplish the same thing:

10 TEXT

Remember that the TEXT statement automatically restores the normal text
window values. Given the choice, why not opt for the simpler approach?

Knowing how to program custom text windows ought to lead one to
begin thinking in terms of split-screen text activity-preparing programs
that run two or more custom text windows. Listing 3-2 is an example of
such an application.

Enter this program and run it. You will first see ENTER A 1-LINE
MESSAGE and the flashing cursor symbol just below the middle of the
screen-at row addresses 16 and 17 to be exact.

ALTERNATIVE TEXT FORMATS • 59

Listing 3-2. Split-Screen Example.

10 DIM M$(32)
20 TOP1=0:BOT1=8
30 TOP2=16:BOT2=18
40 TOPW=34:BOTW=35
50 CV=37:VPOS=0
60 CALL -936

100 GOSUB 1000
110 PRINT "ENTER A 1-LINE MESSSAGE"
120 INPUT M$
130 GOSUB 2000
140 PRINT M$
150 VPOS= PEEK (CV)
160 GOTO 100

1000 POKE TOPW,TOP2: POKE BOTW,BOT2
1010 CALL -936
1020 RETURN
2000 POKE TOPW,TOPl: POKE BOTW,BOTl
2010 POKE CV,VPOS: CALL -922: CALL -998
2020 RETURN

Respond by typing in a message string up to 32 characters long. End
this phase of the program by striking the RETURN key.

Immediately after that, you will see your message printed at the top of
the screen; then the ENTER message and flashing cursor will appear once
again just below the middle of the screen.

The next string you enter will appear below the first, the next string
after that will appear on the third line from the top, and so on. As you
continue entering messages, they appear in sequence at the top of the
screen, scrolling upward as you exceed eight message strings.

Just from observing the behavior of this program you should get the
idea that it is using two different text windows: a two-line text window for
entering the current message, and an eight-line text window at the top of
the screen for accumulating the series of messages. The upper text window
is allowed to scroll, but the lower one is not.

This is an example of a two-window format that splits the screen hori
zontally. Now let's look at the listing more closely.

Line 10 dimensions string variable M$ to carry up to 32 characters.
Line 20 sets the WNDTOP and WNDBTM values for the upper text

window. TOPl=O sets the value in WNDTOP for the upper text win
dow, and BOT1=8 sets the value in WNDBTM for that upper window.

Line 30 sets the WNDTOP and WNDBTM values for the lower text win
dow. TOP2= 16 sets the value to be POKEd into WNDTOP for the
lower text window, and BOT2= 18 sets the value in WNDBTM for the
lower text window.

60 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Line 40 points to the RAM addresses for WNDTOP and WNDBTM with
variables TOPW and BOTW. (Integer BASIC does not accept
WNDTOP and WNDBTM as variable names.)

Line 50 points to the address of RAM location CV, which carries the
current row address of the cursor. It initializes variable VPOS, which
will keep track of the cursor's vertical position in the upper text win
dow while the program is running operations in the lower window.

Line 60 clears the screen and homes the cursor.
Line 100 goes to subroutine 1000 to set the text window parameters for

working in the lower window.
Line 110 prints the prompt message.
Line 120 inputs the message to be printed in the upper window.
Line 130 goes to subroutine 2000 to readjust the window parameters for

working in the upper text window.
Line 140 prints the message in the upper text window.
Line 150 saves the current cursor line number in VPOS.
Line 160 loops back to program line 100 to repeat the sequence.
Line 1000 is the beginning of a subroutine that sets up the lower text

window. It begins by POKEing TOP2 into TOPW (16 into WNDTOP)
and BOT2 into BOTW (18 into WNDBTM).

Line 1010 homes the cursor within the lower window, and clears that
window.

Line 1020 returns to the mainline program.
Line 2000 marks the beginning of a subroutine that sets up operations for

the upper text window. It begins by POKEing TOPI into TOPW (0
into WNDTOP) and BOTl into BOTW (8 into WNDBTM).

Line 2010 sets the cursor at the position it held after printing the previous
message in the upper text window.

Line 2020 returns to the mainline program.

You can see that the program is divided into three main parts. Lines 10
through 60 initialize the program and define the variables. Lines 100
through 160 make up the mainline portion of the program. Finally, lines
1000 through I 020 and 2000 through 2020 are the window-setting sub
routines.

You can change the size and relative positions of these two text win
dows by altering the values assigned to the windowing variables in lines 20
and 30. Try that now. You can also extend the scheme to include more than
two such windows. Simply extend the assignments of variables, add more
window-setting subroutines, and rewrite the main portion of the program to
work in the new windows.

The next program, Listing 3-3, uses the above principles to split the
screen into two vertical windows. Enter the program, do a RUN, and play

ALTERNATIVE TEXT FORMATS • 61

with it for a while. You should be able to analyze the listing on your own,
using the analysis of the previous program as a general guide.

Listing 3-3. Second Split-Screen Example.

10 DIM M$(32)
20 LFT1=0:NCH1=19
30 LFT2=20:NCH2=16
40 LWND=32:RWND=33
50 CV=37:VPOS=0
60 TEXT : CALL -936

100 GOSUB 1000
110 POKE 50,63: PRINT "ENTER A MESSAGE"
120 POKE 50,255
130 INPUT M$
140 GOSUB 2000
150 PRINT M$
160 VPOS= PEEK (CV)
170 GOTO 100

1000 POKE LWND,LFT2: POKE RWND,NCH2
1010 CALL -936
1020 RETURN
2000 POKE LWND,LFTl: POKE RWND,NCHl
2010 POKE CV,VPOS: CALL -922: CALL -998
2020 RETURN

When the need arises, you should be able to devise text-oriented pro
grams that combine two or more text windows in both a horizontal and
vertical fashion. It's all a matter of setting up the values for WNDLFT,
WNDWDTH, WNDTOP, WNDBTM, and, on occasion, CV.

62 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

Poke to Video Memory
The BASIC PRINT statement is the most commonly used tool

for printing text on the Apple screen. But that isn't the only way to 4
print characters. The POKE statement also does the job. POKE isn't the
simplest way to print text, but it does offer some advantages under certain
circumstances. For example, some characters cannot be printed on the
screen except through POKE. Some of these characters do not even appear
on the keyboard. POKE can also display all characters in flashing format.
PRINT, you'll recall, cannot.

Finally, there is the matter of working with the secondary text
page-an entire screen that is available for alternate blocks of text. The
secondary screen is not readily accessible from Integer BASIC, but it is
wide open to POKE-type printing operations.

ORGANIZATION OF THE TEXT MEMORIES There is a direct,
one-for-one correspondence between each of the 960 character locations on
the screen and each of 960 address locations in RAM. POKEing a character
code into one of those RAM locations makes that character appear at a
well-defined place on the screen. So, generally speaking, POKEing char
acters onto the screen is a matter of PO KEing their character codes into
the video text RAM area.

Table 4-1 is a memory map of the video text memory for the primary
page. Generally speaking, it occupies most of the RAM addresses from
1024 to 2039.

Each line, taken alone, has a very logical and systematic dlocation of
RAM addresses. Line 0, for example, operates from addresses 1024
through 1063; address 1024 represents the first character in line 0, and ad
dress 1063 represents the last character in that same line. You would think
that line 1-the next line down on the screen-would use RAM addresses
1064 through 1103. It doesn't. That range of 40 consecutive RAM addresses
refers to line 8 on the screen. Strangely enough, the 80 consecutive RAM
addresses between 1024 and 1103 are equally divided between two non
consecutive lines on the screen-between lines 0 and 8.

POKE TO VIDEO MEMORY • 63

Table 4-1. Primary Text Page

Line Number Video RAM Addresses

0 1024-1063
1 1152-1191
2 1280-1319
3 1408-1447
4 1536-1575
5 1664-1703
6 1792-1831
7 1920-1959

8 1064-1103
9 1192-1231

10 1320-1359
11 1448-1487
12 1576-1615
13 1704-1743
14 1832-1871
15 1960-1999

16 1104-1143
17 1232-1271
18 1360-1339
19 1488-1527
20 1616-1655
21 1744-1783
22 1872-1911
23 2000-2039

Where is the next sequence of 40 RAM locations used? Line 16! It
uses the next series of 40 RAM addresses, 1104 through 1143.

So the sequences of RAM addresses begin at line 0, go to line 8, and
then to line 16. Now which line does address 1144 refer to? You won't find
that address on this memory map! RAM address 1144 isn't even part of the
video text environment. In fact, the next video text address is 1152 at the
beginning of line 1. This is because eight of the RAM addresses are used as
I!O slots.

The next series of addresses is divided among text lines 1, 9, and 17.
Then there is another gap of eight addresses, allocated for I/O slots. You
will find the third series of addresses, 1280 through 1399, allocated for text
lines 2, 10, and 18. It goes on like that through the entire text scheme.

It would seem to be enough to drive a sane programmer crazy. But
take heart in the fact that there are some mechanisms for dealing with this

64 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

seemingly awkward arrangement of the video memory, which we will dis
cuss later.

You will find the same sort of arrangement in the memory map of the
secondary text page shown in Table 4-2. The only difference is that this
map uses addresses 2048 through 3063. (Line-for-line, that means the sec
ondary page addresses are equal to the primary page addresses plus 1024.
This will be an important notion to remember later in this chapter.)

Try this short program to see how it is possible to POKE characters to
the screen:

HJ CALL -936
20 FOR N=0 TO 9
30 POKE 1024+N,112+N
40 NEXT N
50 END

After running that program, you will see that it is entirely possible to print
flashing numerals. This cannot be done with a simple PRINT statement,
even with the system set up for printing flashing characters.

The operation of this program is simple. Line 10 homes the cursor and
clears the screen. There is a O-to-9 FOR-NEXT loop between lines 20 and
40. Finally, line 30 POKES character codes from 112 to 121 into addresses
1024 through 1033.

The following program works just like the previous one, but POKEs
120 successive character codes into 120 successive video addresses.

10 CALL -936
20 FOR N=0 TO 119
30 POKE 1024+N,N
40 NEXT N
50 END

This program prints three full lines of text on lines 0, 8, and 16.
Now it is time to take a closer look at the character codes.

VIDEO CHARACTER CODES Every screen-printable character has
three code numbers assigned to it. The three numbers represent the three
text formats: inverse, flashing, and normal. Altogether, there are 256 dif
ferent character codes ranging from 0 through 255.

Inverse Character Codes Table 4-3 shows the Apple characters
and the corresponding codes for printing them in an inverse, black-on-

POKE TO VIDEO MEMORY • 65

Table 4-2. Secondary Text Page

Line Number Video RAM Addresses

0 2048-2087
1 2176-2215
2 2304-2343
3 2432-2471
4 2560-2599
5 2688-2727
6 2816-2855
7 2944-2983

8 2088-2127
9 2216-2255

10 2344-2383
11 2472-2511
12 2600-2639
13 2728-2767
14 2856-2895
15 2984-3023

16 2128-2167
17 2256-2295
18 2384-2423
19 2512-2551
20 2640-2679
21 2768-2807
22 2896-2935
23 3024-3063

white format. The codes range from 0 for an inverse @ symbol through 63
for an inverse question mark.

Here is a program that POKEs those characters onto the screen for
you:

10 CALL -936
20 FOR N=0 TO 63
30 POKE 1024+N,N
40 NEXT N
50 END

The program first homes the cursor and, what is more important,
clears the screen. After that, it POKEs the inverse-text character codes 0
through 63 into RAM addresses 1024 through 1087.

66 " INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

Table 4-3. Inverse Sc:reen Text Codes and Characters

Code Character Code Character Code Character Code Character

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@
A
B
c
D
E
F
G
H
I
J
K
L
M
N
0

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

p

Q
R
s
T
u
v
w
x
y
z
[
I
]

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

II

$
%
&

(
)

*
+

I

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
1
2
3
4
5
6
7
8
9

<

>
?

Flashing Character Codes A flashing character is one that alter
nates between inverse and normal display. The family of flashing char
acters can be displayed by POKEing their character codes into video text
memory. (See the flashing character set and their respective codes in Table
4-4.)

The 64 flashing-character codes begin where the inverse-character
codes end, running from 64 through 127. The following program lets you
POKE these codes to the text screen:

10 CALL -936
20 FOR N=0 TO 63
30 POKE 1024+N,N+64
40 NEXT N
50 END

The Normal Text Codes The Apple character generator has two
sets of normal, white-on-black, characters and character codes. For the
sake of keeping things straight, we have labeled the two groups
NORMAL-1 and NORMAL-2. (See Tables 4-5 and 4-6.)

The NORMAL-I family of text characters uses codes 128 through 191,
and the NORMAL-2 family uses codes 192 through 255. The reasons for
the differences in code numbers for two otherwise identical characters

POKE TO VIDEO MEMORY " 67

Table 4-4. Flashing Screen Text Codes and Characters

Code Character Code Character Code Character Code Character

64 @ 80 p 96 112 0
65 A 81 Q 97 ! 113 1
66 B 82 R 98 fl 114 2
67 c 83 s 99 # 115 3
68 D 84 T 100 $ 116 4
69 E 85 u 101 % 117 5
70 F 86 v 102 & 118 6
71 G 87 w 103 I 119 7
72 H 88 x 104 (120 8
73 I 89 y 105) 121 9
74 J 90 z 106 * 122
75 K 91 [107 + 123

'
76 L 92 I 108

'
124 <

77 M 93] 109 - 125 =

78 N 94
A

110 126 >
79 0 95 - 111 I 127 ?

aren't important at this time. It is sufficient to say that POKEing 129 to the
video memory and 193 to video memory both turn up a normal-format
character A on the screen.

The following program POKEs the NORMAL- I family of characters to
the screen:

10 CALL -936
20 FOR N=0 TO 63
30 POKE 1024+N,N+l28
40 NEXT N
50 END

And this next one POKEs the NORMAL-2 characters to the screen:

10 CALL -936
20 FOR N=0 TO 63
30 POKE 1024+N,N+l92
40 NEXT N
50 END

68 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

I

!

! ii
I' . I

Code

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Code

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Table 4-5. NORMAL-1 Screen Text Codes and Characters

Character Code Character Code Character Code Character

@ 144 p 160 176 0
A 145 Q 161 ! 177 1
B 146 R 162 II 178 2
c 147 s 163 # 179 3
D 148 T 164 $ 180 4
E 149 u 165 % 181 5
F 150 v 166 & 182 6
G 151 w 167 I 183 7
H 152 x 168 (184 8
I 153 y 169) 185 9
J 154 z 170 * 186
K 155 [171 + 187

'
L 156 I 172 '

188 <
M 157] 173 - 189 =

N 158
A

174 190 >
0 159 - 175 I 191 ?

Table 4-6. NORMAL-2 Screen Text Codes and Characters

Character Code Character Code Character Code Character

@ 208 p 224 240 0
A 209 Q 225 ! 241 1
B 210 R 226 II 242 2
c 211 s 227 # 243 3
D 212 T 228 $ 244 4
E 213 u 229 % 245 5
F 214 v 230 & 246 6
G 215 w 231 I 247 7
H 216 x 232 (248 8
I 217 y 233) 249 9
J . 218 z 234 * 250
K 219 [235 + 251

'
L 220 I 236

'
252 <

M 221] 237 - 253 =

N 222
A

238 254 >
0 223 - 239 I 255 ?

POKE TO VIDEO MEMORY • 69

You will see no difference between the two displays.
Of course if you want to see the entire Apple character set POKEd to

the screen, you can run the following version of the previous programs. It
POKEs character codes all the way through the set-from 0 through 255.

10 CALL -936
20 FOR N=0 TO 255
30 POKE 1024+N,N
40 NEXT N
50 END

Notice that characters running past the end of the first line on the
screen do not continue at the beginning of the second line. This program
POKEs into successively higher video RAM addresses, but the line format
on the screen doesn't follow a line-by-line format. The next section of this
chapter deals with that problem in some detail.

GETTING SOME HELP FROM THE MONITOR According to
Table 4-1, the last character in the first line of text is always loaded into
RAM address 1063. Try this:

POKE 1063,32

That should POKE a white rectangle, or inverse space character, into the
last character location on the top line of the screen.

Now try this:

POKE 1064,32

Does this command POKE the white rectangle to the beginning of the sec
ond line of text? After all, you've used the next-higher RAM address loca
tion. But as you can see, the white rectangle doesn't appear on the second
line. Instead, it appears at the beginning of a line somewhat lower on the
screen.

Referring back to Table 4-1, you will see that the beginning of the sec
ond line on the screen is represented by video RAM address 1152. Try this:

POKE 1152,32

That does the job; but you have to look up the starting address of each line
to POKE texts. Or so it would seem.

The question of where to POKE a character code becomes especially

70 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

important when attempting to POKE in a long string of characters that are
to occupy more than one line in succession. The most obvious trouble is
that you have to adjust the POKE address sequence to begin the next line.
A less obvious, but no less important, problem is that there are groups of
RAM addresses in the video text memory that have nothing at all to do
with video text. If you are careless about setting up the POKE addresses,
you will end up POKEing character data into those places; and that risks
upsetting the parameters for some important I/O functions.

As an extreme case, suppose that you want to fill the entire screen
with 960 white rectangles. And what's more, you want to POKE them onto
the screen in a left-to-right, top-to-bottom sequence.

Looking over the video memory map in Table 4-1, you find that the
addresses cover the range of 1024 through 2039. Anyone unfamiliar with
the unusual arrangement of addresses for the video memory might suppose
the program would look like this:

10 CALL -936
20 FOR N=l024 TO 2039
30 POKE N,32
40 FOR T=0 TO 10: NEXT T
50 NEXT N
60 GOTO 60

That program fills the screen with white rectangles, but not in a se
quential top-to-bottom fashion, even though it POKEs to RAM addresses
in a strict sequential fashion. And what's more, there are some I/O ports
being given character codes that they should not be receiving.

It's a problem, but there is a solution. The software designers for the
Apple company had to deal with the same problem, and they responded to
it by including some useful subroutines in the monitor ROM. Those sub
routines, which we'll discuss in greater detail later, take care of the sticky
task of calculating the RAM addresses for sequential plotting of characters
on the screen. We can use those subroutines to make the POKE-to-video
task a lot simpler for us.

The following program uses those subroutines to fill the screen with
white rectangles in a left-to-right, top-to-bottom fashion. It doesn't POKE
data into the I/O buffer spaces, either.

Notice that there are no references to absolute video memory address
locations. Indeed, this program shows that it is possible to do POKE text
operations without worrying about the RAM address of the next line of
text. (By the way, the address of the next line is considered to be the
address of the first character location in that line. This address is some
times called the base address of the line.)

POKE TO VIDEO MEMORY " 71

10 CALL -936
20 FOR N=0 TO 959
30 PT=256* PEEK (41)+ PEEK (40)+ PEEK (36)
40 POKE PT,32
50 FOR T=0 TO 10: NEXT T
60 CALL -1036
70 NEXT N
80 GOTO 80

The Role of BASL and BASH The Apple system uses two RAM
locations to keep track of the base address of the current line of text. The
RAM locations assigned to that task are called BASL and BASH, and they
are at RAM addresses 40 and 41, respectively. Try this:

PRINT PEEK(40),PEEK(41)

and you will see two numbers printed on the screen. They represent the
actual video memory address of the first column in the current row of text.

Why two numbers? Because the 1-byte memory capacity of each ad
dress location in the Apple can hold values no larger than 255. The video
memory addresses are much larger than that-1024 for the first character
in the first row, for instance. Thus it takes two bytes of memory to repre
sent those addresses.

BASL carries the lower-order byte, and BASH carries the higher
order byte of the video line address. You can come up with a more mean
ingful address number, then, by doing something such as this:

PRINT 256* PEEK(41) + PEEK(40)

The result is a number that designates the video memory address of the
first character in the current line of text. It will be one of the start-of-line
addresses shown in Table 4-1. (See Appendix A if you are not sure about
the technique for converting a decimal number spread out over 2 bytes into
a single decimal number.)

The Role of CH You have just seen that BASL and BASH provide
the absolute RAM address of the first character location in the current line
of text. That is a useful figure, of course, but suppose you wanted to find
the RAM address of the current character location. For that you would
have to add the column number of the current character location to the
base address of the line.

72 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

BASL and BASH carry the video memory ad
dress of the first character in the current line of
text.

BASL, at address 40, carries the least-significant
byte.

BASH, at address 41, carries the most
significant byte.

PRINT 256*PEEK(41)+PEEK(40) returns the
actual, full-decimal value of the video memory
address of the first character in the current line
of text.

Recall from Chapter 2 that a memory location called CH, at address
36, carries the current column address of the cursor. By definition, the
cursor has the same column address as the current character location.
Therefore, finding the full POKE address of a character location is a matter
of adding the content of CH to BASL and BASH. That is why line 30 in the
last full program shown here reads like this:

PT =256*PEEK(41) +PEEK(40) +PEEK(36)

This statement PEEKs into BASH and multiplies BASH's content by 256,
PEEKs into BASL and CH, and sums everything together. The overall
result is assigned to variable PT, but any variable could have been used.

As that white-line drawing program runs, variable PT takes on all of
the values for addresses in the primary page video RAM. If you were to
monitor the values of PT while running the program, you would find that
they follow the sequence shown in Table 4-1. A subroutine in the monitor is
taking care of setting up the RAM starting addresses for each new line of
text.

The Roles of ADVANCE and BASCALC Recall that Chapter 2
described ADVANCE, a monitor subroutine that advances the cursor one
column to the right. If the cursor is at the end of a line, ADVANCE sends
the cursor to the beginning of the next line on the screen. Recall further
that you can call the ADVANCE subroutine from BASIC with the state
ment CALL -1036.

You don't have to be working with the cursor to take advantage of
ADVANCE. The ADVANCE subroutine simply increments the content of
CH until the end of a line is reached. Once the content of CH indicates the
end of a line, ADVANCE calls BASCALC, another subroutine that calcu-

POKE TO VIDEO MEMORY • 73

lates the base address of the next line and places the address into BASL
and BASH. ADVANCE then resets CH back to 0.

The program that filled the screen with white rectangles from left to
right and from top to bottom used the ADVANCE subroutine to calculate
the proper video memory addresses. Unfortunately, we cannot write a
BASIC program that demonstrates BASCALC, because BASCALC cannot
be called directly from BASIC. We will be able to demonstrate BASCALC
later when we learn about assembly-language programming.

The Importance of All of This Why are we worrying about the
complications of POKE addressing for the video text environment? Why
not simply stay with the simpler PRINT and cursor-related operations?
There are some good answers.

For one, you have already seen that you cannot PRINT flashing nu
merals and punctuation marks. POKEing to video memory offers that op
portunity.

Second, you will soon find that POKE-oriented text operations offer
the only decent way to work with the secondary page of video text from
BASIC.

Finally, these text-POKEing techniques are practically identical to
those machine-language programs featured later in this book.

Indeed, there is sufficient reason for this current series of discussions.

BUILDING AND USING MESSAGE BLOCKS This section shows
you how to use what you've already learned to place blocks of characters
on the screen.

The simplest way to get a message string printed to the screen is by
means of a BASIC statement such as:

PRINT "HELLO"

But suppose that you want to POKE th.at same message to the screen. The
general idea is to assign each of the five characters in HELLO to a different
variable, and then POKE those variables to a selected portion of video
RAM. Try this program:

First notice the sequence of character codes assigned to array vari
ables C(O) through C(4) in program lines 130 and 140. If you compare them
with the NORMAL-2 codes in Table 4-6, you will find that they make up
the message string HELLO. The character code for the letter His assigned
to C(O), the code for Eis assigned to C(l), and so on. Such a group of code
assignments makes up a message block.

Program lines 150 through 170 run through the block of character

74 " INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

100 DIM C (64)
110 CALL -936
120 MP=l024
130 C(0)=200:C(l)=l97:C(2)=204:C(3)=204
140 C(4)=207
150 FOR N=0 TO 4
1-60 POKE MP+N,C(N)
170 NEXT N
180 END

codes and POKE them in sequence to the video RAM and, hence, the
screen. Variable MP sets the starting address of the message. The rest of
the message is displayed by the summation operation in line 160, which
increments the POKE addresses to place the message in a left-to-right
sequence.

Altering the value assigned to MP changes the starting address for the
message. Tinker with that variable, using Table 4-1 as a guide. Of course
you should make sure that your starting addresses do not allow the mes
sage to overflow at the end of a line or POKE data outside the video RAM
area.

Make up a short message of your own, look up the character codes for
each character, and assign them to the C array. Add some life to the mes
sage by using some flashing and inverse characters. Just remember that the
DIM statement in line 100 limits you to 65 characters.

Using Multiple Message Blocks Most practical message
POKEing situations call for working with more than one message block.
The program in Listing 4-1, for example, includes three message blocks.

The first message block is carried by array variables C(O) through C(4)
in program lines 1110 and 1120. That one spells out HELLO with
NORMAL-2 character codes.

The second block, assigned to array variables C(O) through C(6) in
lines 1210 and 1220, spells out BLOCK 2 with a flashing numeral 2. (That
cannot be done with a simple PRINT statement.)

The third block, 3RD MESSAGE, is assigned to array variables C(O)
through C(lO) in lines 1310 through 1330.

Each of those message blocks is imbedded in a short subroutine. Each
subroutine begins with assignment of a value to variable NC and ends with
a RETURN. The message blocks, in other words, are written as sub
routines that:

l. Assign a value to NC that represents the number of consecutive char
acters in the block.

POKE TO VIDEO MEMORY e 75

Listing 4-1. Multiple Message Blocks.

100 DIM C(32)
110 CALL -936
120 MP=l024
130 GOSUB 1100: GOSUB 2000
140 MP=l080
150 GOSUB 1200: GOSUB 2000
160 MP=ll04
170 GOSUB 1300: GOSUB 2000
180 END

1100 NC=4
1110 C(0)=200:C(l)=l97:C(2)=204:C(3)=204
1120 C(4)=207
1190 RETURN
1200 NC=6
1210 C(0)=194:C(l)=204:C(2)=207:C(3)=195
1220 C(4)=203:C(5)=224:C(6)=114
1290 RETURN
1300 NC=l0
1310 C(0)=243:C(l)=210:C(2)=196:C(3)=224
1320 C(4)=205:C(5)=197:C(6)=2ll:C(7)=211
1330 C(8)=193:C(9)=199:C(l0)=197
1390 RETURN
2000 FOR N=0 TO NC
2010 POKE MP+N,C(N)
2020 NEXT N
2030 RETURN

2. Assign character codes to array variable C.
3. RETURN to the calling main routine.

The subroutine for the first block occupies lines 1100 through 1190; the
subroutine for the second block occupies lines 1200 and 1290; and the sub
routine for the third block occupies lines 1300 through 1390. The three sub
routines are called from lines 130, 150, and 170, respectively. But it is not
enough to simply assign the character codes, as these subroutines do-the
codes have to be POKEd to the screen, too. That is the purpose of the
subroutine beginning at line 2000.

The subroutine occupying program lines 2000 through 2030 prints the
current message block to the video RAM and screen. It POKEs N + 1 char
acters in sequence, beginning from address MP. Thus, line 130 sets up the
number of characters to be printed, assigns the character codes to the array
variables, and POKEs them to the screen. The MP-1024 assignment in line
120 sets up the program for starting the first message at video address 1024.

In a similar way, lines 140 and 150 set up and POKE the second mes
sage block to the screen; and lines 160 and 170 set up and POKE the third
message to the screen.

76 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

I
I • , _ _J

I

i !

The program is thus divided into three main sections:

1. A main routine (lines 100 through 180) that establishes the sequence of
events and calls the appropriate subroutines.

2. The blocks of character codes for each message.
3. A POKEing subroutine that applies to all of the message-printing op

erations (lines 2000 through 2030).

This particular programming format makes it relatively easy to expand
the number of message blocks and alter their sequence and positions for
POKEing them to the screen. Add a few message-block subroutines of
your own, and call and print them from an extended version of the main
section of the program.

Listing 4-2 demonstrates how easy it is to change the entire operation
of a block-printing program by altering only the main portion of it. This
version lets you select the message block to be POKEd to the screen (pro
gram lines 20 to 50), and then prints it by selecting the appropriate setup
routine in lines 110, 120, or 130.
Notice that the program combines ordinary PRINT operations with
PO KE-oriented printing operations.

What is the purpose of line 80? (Hint: Delete line 80 and see what
happens when you run the program.)

Altering the Character Format Under certain circumstances,
you might want to change the print format during the execution of a pro
gram. In the previous examples, for instance, you might have wanted to
print the 3RD MESSAGE string as normal characters under some circum
stances, but as inverse or flashing characters under other circumstances. To
have done so would have been a simple matter of changing the POKE
subroutine at line 2000. There would have been no need to reassign codes
to the message blocks themselves.

The program in Listing 4-3 is an example of changing formats. It be
gins by POKEing the message, SYSTEM START, to the screen in the
normal, white-on-black format. There is a short delay, after which the same
message appears with START written in the inverse, black-on-white
format.

Then the display changes to SYSTEM START -all in the normal for
mat. After another delay, the START portion of the message changes to the
inverse format, and later to the flashing format.

The program ends by displaying SYSTEM GO in the flashing format.
The program has just four message blocks: SYSTEM, START,

READY, and GO. All are entered as NORMAL-2 characters.

POKE TO VIDEO MEMORY • 77

Listing 4-2. Choosing Message Blocks.

10 DIM C(32): CALL -936
20 PRINT "WHICH MESSAGE (1,2 OR 3)";
30 INPUT M
40 IF M=l OR M=2 OR M=3 THEN 60
50 GOTO 20
60 CALL -936
70 GOSUB 100+10*M
80 TAB 1: VTAB 1: CALL -868
90 GOTO 20

110 MP=l080: GOSUB 1100: GOSUB 2000: RETURN
120 MP=l080: GOSUB 1200: GOSUB 2000: RETURN
130 MP=l080: GOSUB 1300: GOSUB 2000: RETURN

1100 NC=4
lll0 C(0)=200:C(l)=l97:C(2)=204:C(3)=204
1120 C(4)=207
1190 RETURN
1200 NC=6
1210 C(0)=194:C(l)=204:C(2)=207:C(3)=195
1220 C(4)=203:C(5)=224:C(6)=114
1290 RETURN
1300 NC=l0
1310 C(0)=243:C(l)=210:C(2)=196:C(3)=224
1320 C(4)=205:C(5)=197:C(6)=2ll:C(7)=211
1330 C(8)=193:C(9)=199:C(l0)=197
1390 RETURN
2000 FOR N=0 TO NC
2010 POKE MP+N,C(N)
2020 NEXT N
2030 RETURN

But the program also has four different POKE subroutines: normal
character, inverse character, flashing character, and erase character.

It would be a good idea to enter and run the program before reading
the following analysis of the subroutines.

Lines 1110 through 1490 are the message block subroutines. Spe
cifically, lines 1110 through 1190 contain SYSTEM followed by a space;
lines 1200 through 1290 contain START; lines 1300 through 1390 contain
READY; and lines 1400 through 1490 contain GO. A GOSUB to one of
these subroutines sets up the system for POKEing a message block.

Lines 2000 through 23~ are the POKE-to-screen subroutines. Spe
cifically, lines 2000 through 2030 POKE NORMAL-2 characters; lines 2100
through 2130 POKE inverse characters; lines 2200 through 2230 POKE
flashing characters; and lines 2300 through 2330 POKE blanks, or spaces.
A GOSUB to one of these subroutines POKEs the current message block
to the screen.

The scheme assumes that the message blocks have NORMAL-2 char-

78 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 4-3. Altering Character Format.

100 DIM C(l6): CALL -936
110 MP=l064: GOSUB 1100: GOSUB 2000
120 MP=l071: GOSUB 1200: GOSUB 2000
130 GOSUB 900: GOSUB 2100: GOSUB 900: GOSUB 2300
140 MP=l071: GOSUB 1300: GOSUB 2000
150 GOSUB 900: GOSUB 2100: GOSUB 900
160 GOSUB 2200: GOSUB 900: GOSUB 2300
170 MP=l064: GOSUB 1100: GOSUB 2200
180 MP=l071: GOSUB 1400: GOSUB 2200
190 FOR N=l TO 4: GOSUB 900: NEXT N
200 END
900 FOR T=0 TO 1500: NEXT T: RETURN

1100 NC=6
1110 C(0)=2ll:C(l)=217:C(2)=2ll:C(3)=212
1120 C(4)=197:C(5)=205:C(6)=224
1190 RETURN
1200 NC=4
1210 C(0)=2ll:C(l)=212:C(2)=193:C(3)=210
1220 C(4)=212
1290 RETURN
1300 NC=4
1310 C(0)=210:C(l)=l97:C(2)=193:C(3)=196
1320 C(4)=217
1390 RETURN
1400 NC=l
1410 C(0)=199:C(l)=207
1490 RETURN
2000 FOR N=0 TO NC
2010 POKE MP+N,C(N)
2020 NEXT N
2030 RETURN
2100 FOR N=0 TO NC
2110 POKE MP+N,C(N)-192
2120 NEXT N
2130 RE'TURN
2200 FOR N=0 TO NC
2210 POKE MP+N,C(N)-128
2220 NEXT N
2230 RETURN
2300 FOR N=0 TO NC
2310 POKE MP+N,224
2320 NEXT N
2330 RETURN

acter codes. The POKE subroutine beginning at line 2000 works directly
with NORMAL-2 codes. The inverse-character POKE subroutine at line
2100, however, subtracts 192 from the NORMAL-2 codes, thus generating
character codes in the inverse format range. Likewise, the subroutine be
ginning at line 2200 subtracts 128 from the NORMAL-2 character codes,
thus POKEing flashing characters to the screen.

POKE TO VIDEO MEMORY " 79

The POKE-to-screen subroutine that begins at line 2300 ignores the
characters in the message block. It simply POKEs spaces to the screen,
thereby erasing the current message.

With those four message blocks and four POKE modes, you can struc
ture a wide range of operations from the main program. We'll now make a
detailed, line-by-line analysis of the main program:

Line 110 sets the starting video RAM address (MP), calls the SYSTEM
message at line 1100, and then calls the POKE subroutine at line 2000
to print SYSTEM in normal format.

Line 120 sets the starting address for the second part of the message,
calls the START message, and then calls the POKE subroutine at 2000
to print START in the normal format.

Line 130 calls the time delay subroutine at line 900, calls the subroutine
at 2100 to print START in inverse format, calls the delay again, and
then calls the erase subroutine.

Line 140 sets the starting address for the next message segment, calls the
READY message, and then calls the subroutine at 2000 to POKE the
message in the normal format.

Line 150 calls the time delay subroutine, the inverse character sub
routine, and then calls the time delay subroutine again.

Line 160 calls the flashing character subroutine, the time delay sub
routine, and then calls the erase subroutine.

Line 170 sets the starting address of a new message, calls the SYSTEM
message again, and then calls the flashing character subroutine.

Line 180 sets the starting address of the second part of the message, calls
the GO message, and then calls the flashing character subroutine.

Lines 190 and 200 calls the time delay subroutine four times in succes
sion and then ends the program.

Test your understanding of this scheme by devising and running a main
program of your own. By main program, of course, I mean the controlling
portion of the program (lines 100 through 900 in this particular case).

WORKING WITH THE SECONDARY TEXT PAGE Table 4-2 is
the memory map for a full second page of screen text. Usually called the
secondary page, it follows the same general map as the primary page. The
only difference is in the RAM addresses. Secondary-page RAM addresses
begin where the primary-page addresses leave off.

The designers of the Apple system did not devise the Integer BASIC
software with secondary-page applications in mind. Unless you take steps
to remedy the situation, you will find that Integer BASIC uses the second-

80 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

ary page for storing values of variables. Integer BASIC, in other words,
often stores valuable information in the secondary page, thus wrecking any
attempt to control the characters POKEd into it. Also, if you try POKEing
text characters into the secondary page, it is quite likely that you will dis
turb the operation of Integer BASIC itself.

But there is a simple remedy available: Do a LOMEM command from
the keyboard to exclude BASIC from the secondary-page RAM. Set
LOMEM to an address at the very top of the secondary page, and you will
still have a lot of RAM available for BASIC. Doing a single LOMEM:3071
before starting the following series of demonstrations will do the job. All
discussions in this section assume that you have done a LOMEM:3071
from the keyboard.

Switching Between the Primary and Secondary Pages
While the Apple features two text memories, only one can be dis

played on the screen at any given moment. Usually, that is the primary
page. Here's how you can change that:

POKE -16299,0 displays the secondary page of
text.

POKE -16300,0 displays the primary page of text.

The primary page, the one mapped for you in Table 4-1, is the one the
Apple system normally displays on the crt. You must do a POKE -16299,0
from the keyboard or in a BASIC program to get a look at the secondary
page.

Try this series of experiments:

1. From Integer BASIC's command mode, type and enter:

LOMEM:3071
POKE -16299,0

You will most likely see a lot of garbage on the screen. All of those
characters represent the content of the secondary text page (which
you probably haven't used since turning on the system today).

2. Type and enter:

POKE -16300,0

Surprise! You cannot see those characters as you type them. You are
viewing the secondary page of text, and all interaction with BASIC

POKE TO VIDEO MEMORY • 81

takes place on the primary page. In a manner of speaking, you have to
"type in the dark" when viewing the secondary page.

But if you type and enter the command properly, you will find the
system running with the primary page displayed once again. And
there is your command written out for you.

Try this little demonstration program:

10 FOR T=0 TO 500: NEXT T
20 POKE -16299,0
30 FOR T=0 TO 500: NEXT T
40 POKE -16300,0
50 GOTO 10

The program switches the crt display between the primary and secondary
pages of text, doing a short time delay between each display.

Two text memories and one display. That's the simple essence of the
Apple text scheme. That BASIC uses portions of the secondary-page
memory is easily fixed by LOMEMing BASIC out of that area. But there is
another problem that isn't so easy to fix: all cursor operations refer only to
the primary-page memory. And that means it is necessary to work with the
secondary page by means of POKE-text techniques.

Clearing the Secondary Page The first step in most kinds of
text-printing operations is to clear the screen. That is an easy task when
working with the primary page. Simply do a CALL -936. That operation
both homes the cursor and clears the primary-page RAM. There has to be
some procedure for clearing the secondary page as well.

First, look at this procedure for clearing the primary page of text:

10 TAB 1: VTAB 1
20 FOR N=0 TO 959
30 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),224
40 CALL -1036
50 NEXT N
60 END

Line 10 homes the cursor, and the remainder of the program POKEs
character 224 (a normal space) into all 960 character-location addresses in
primary-page RAM. (See "Getting Some Help From the Monitor" on page
70 for a detailed explanation of program lines 30 and 40.)

That program, in its cumbersome fashion, clears the primary page of
text. Look at the secondary page, however, and you will find that it is not
affected. It is probably still filled with garbage.

82 ,. INTERMEDIATE-LEVEL APPLE II HANDBOOK

Return to the primary page and modify line 30 to read like this:

30 POKE 256*PEEK(41) +PEEK(40) +PEEK(36) + 1024,224

Run the program while viewing the primary page, and you will see nothing
happening. There will be a delay before the program ends.

Now switch the display to the secondary page, and lo! it is cleared. If
it isn't cleared, you have most likely forgotten to begin this series of
demonstrations with a LOMEM:3071.

How does that routine work? Why does it affect only the secondary
text? The change in line 30 of the original version of the clearing program
adds 1024 to the current cursor location. The secondary page is formatted
in exactly the same way as the primary page-the addresses are simply
I 024 locations higher in memory. So the routine just cited clears either the
secondary or primary text memory, depending on whether you add 1024 to
the current cursor position or not.

Can you devise a way to modify the routine so that it clears both the
primary and the secondary pages?

POKEing Characters to the Secondary Page Everything
we've said about POKEing characters to the primary-page RAM area
applies equally well to secondary-page operations. Just step up the text
addresses by 1024. We'll repeat that:

Adding a value of 1024 to the address of any text
operation that would normally affect the primary
page will, instead, affect the secondary page.

Listing 4-4 is a secondary-page version of Listing 4-3. Compare List
ings 4-3 and 4-4, and you will find that the latter includes a screen-clearing
subroutine for the secondary page (program lines 1000 through 1050). Also,
you will find the starting addresses for the message blocks (variable MP)
are increased by 1024. The entire text, in other words, functions in the
secondary page; and line 110 calls up that page so that you can view it.

Set up some message blocks, a POKE-to-screen routine, and tell the
program to write your messages to the secondary screen. Just remember
to:

l. Do a LOMEM:3071 if you haven't done so already.
2. Include a POKE -16299,0 to view the secondary page.
3. Include a screen-clearing routine for the secondary page.
4. POKE the character codes into the secondary page (Table 4-2).
5. Include a POKE -16300,0 wherever you want to return to the primary

page.

POKE TO VIDEO MEMORY • 83

Listing 4-4. Using the Secondary Page.

100 DIM C(l6)
110 GOSUB 1000: POKE -16299,0
120 MP=2088: GOSUB 1100: GOSUB 2000
130 MP=2095: GOSUB 1200: GOSUB 2000
140 GOSUB 900: GOSUB 2100: GOSUB 900: GOSUB 2300
150 MP=2095: GOSUB 1300: GOSUB 2000
160 GOSUB 900: GOSUB 2100: GOSUB 900
170 GOSUB 2200: GOSUB 900: GOSUB 2300
180 MP=2088: GOSUB 1100: GOSUB 2200
190 MP=2095: GOSUB 1400: GOSUB 2200
200 FOR N=l TO 4: GOSUB 900: NEXT N
210 POKE -16300,0: END
900 FOR T=0 TO 1500: NEXT T: RETURN

1000 TAB 1: VTAB l
1010 FOR N=0 TO 959
1020 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36)+1024,224
1030 CALL -1036
1040 NEXT N
1050 RETURN
1100 NC=6
1110 C(0)=2ll:C(l)=217:C(2)=2ll:C(3)=212
1120 C(4)=197:C(5)=205:C(6)=224
1190 RETURN
1200 NC=4
1210 C(0)=2ll:C(l)=212:C(2)=193:C(3)=210
1220 C(4)=212
1290 RETURN
1300 NC=4
1310 C(0)=210:C(l)=l97:C(2)=193:C(3)=196
1320 C(4)=217
1390 RETURN
1400 NC=l
1410 C(0)=199:C(l)=207
1490 RETURN
2000 FOR N=0 TO NC
2010 POKE MP+N,C(N)
2020 NEXT N
2030 RETURN
2100 FOR N=0 TO NC
2110 POKE MP+N,C(N)-192
2120 NEXT N
2130 RETURN
2200 FOR N=0 TO NC
2210 POKE MP+N,C(N)-128
2220 NEXT N
2230 RETURN
2300 FOR N=0 TO NC
2310 POKE MP+N,224
2320 NEXT N
2330 RETURN

84 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

The Keyboard Environment

5 Just as the crt is the Apple's most-used output device, the
keyboard is its most-used input device. The keyboard input en
vironment isn't as sophisticated nor as versatile as the crt output environ
ment, but it is no less useful in the hands of a programmer who really
understands it.

In the immediate command mode of operation, the keyboard is nor
mally linked directly to the video text display system. Just about every sort
of keystroke produces some sort of response on the primary text screen,
printing characters or doing one of several cursor-related functions, such as
linefeeds, backspacings, and the like.

That normal link between the keyboard and video system is through
the Apple port-0 Input/Output (I/0) slot. Turning on the computer or doing
a RESET automatically activates that port-0 link.

If you have a printer attached to the system, however, you have the
option of linking the keyboard to that printer, usually through the Port- I
I/O slot. Doing a PR#l command then causes the keyboard operations to
affect the printer instead of the video text system. Doing a PR#O command
returns the keyboard to the video text system again.

Of course the keyboard can be used as an input device during the
execution of a program as well. The BASIC INPUT statement, for in
stance, halts the flow of a program, giving the user an opportunity to type
in values for numeric or string variables. Striking the RETURN key re
sumes the execution of the program.

It is also possible to PEEK into the keyboard system. Unlike the
INPUT statement, a properly designed PEEK-to-keyboard statement does
not necessarily interrupt the flow of a program.

SUPPLYING INFORMATION WITH INPUT INPUT statements
can be inserted into BASIC programs to give the user a chance to assign
values to numeric or string variables. Upon encountering an INPUT state
ment, the system halts the normal step-by-step execution of the program

THE KEYBOARD ENVIRONMENT e 85

until the user strikes the RETURN key-usually after entering the appro
priate information.

The general syntax of an INPUT statement is:

INPUT "message", variable

where message is an optional prompting message, and variable is a
numeric or string variable that is to take on the value typed in by the user.

Here is a common INPUT situation:

INPUT "WHAT IS YOUR NAME?",N$

On encountering that statement, BASIC responds by printing:

WHAT IS YOUR NAME?

It then shows the blinking cursor to signal the user it is time to type in a
response. When the user enters a string response and strikes the RETURN
key, the string is assigned to string variable N$. N$ then holds that string
until some later operation calls for a change.

The type of variable used must match the type of information to be
entered from the keyboard under the INPUT operation. In the previous
example, the information to be entered from the keyboard was a string
value-presumably your name. The variable that held that value, there
fore, had to have been a string variable.

Here is an INPUT statement that expects a numeric input:

INPUT "WHAT NUMBER (0-9)",N

Encountering that statement, BASIC prints:

WHAT NUMBER (0-9)?

followed by the blinking cursor symbol. The user is then expected to type
in a number and strike the RETURN key. From that point on, the number
is assigned to variable N.

Whether or not an INPUT statement calls for a numeric or a string
response, BASIC always inserts the flashing cursor symbol. But only the
numeric INPUT statement has a question mark automatically inserted after
the message. The string INPUT statement does not.

Suppose you want to prompt the user with a question in a string
INPUT statement. Simply include the question mark in the message por
tion of the INPUT statement:

INPUT "WHAT IS YOUR NAME? ",N$

86 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

The system responds by printing:

WHAT IS YOUR NAME?

followed by a space and the blinking cursor symbol.
Indeed, you have a lot of flexibility in phrasing prompting messages for

instead of a question, simply omit the question mark from the message:

INPUT "ENTER YOUR NAME ",N$

the system responds by printing:

ENTER YOUR NAME

followed by a space and the blinking cursor symbol.
Indeed, you have a lot of flexibility in phrasing prompting messages for

string INPUT statements. There are some minor difficulties, though, in
phrasing the prompting message for a numeric INPUT statement. The
difficulties are caused by the automatic insertion of the question mark.

Suppose you want the user to type in a numeric value between 0 and 9.
If you frame the prompting message without a question mark, as in:

INPUT "ENTER A NUMBER BETWEEN 0 AND 9",N

the system prints:

ENTER A NUMBER BETWEEN 0 and 9?

followed immediately by the cursor symbol. The automatically inserted
question mark can be quite misleading. The uninformed user might inter
pret the prompting message as asking whether or not a number between 0
and 9 should be entered.

You must be careful about phrasing the prompting message. Here is a
less confusing version:

INPUT "WHAT NUMBER (0-9)",N

In that case, the system prints:

WHAT NUMBER (0-9)?

followed by the cursor symbol.

THE KEYBOARD ENVIRONMENT " 117

The following is another way of doing the same thing:

100 PRINT "ENTER AN INTEGER VALUE BETWEEN 0 and 9"
110 INPUT "WHAT NUMBER",N

The user then sees this on the screen:

ENTER AN INTEGER VALUE BETWEEN 0 and 9
WHAT NUMBER?

That leaves little room for doubt about what the user is supposed to do.
An earlier comment in this chapter expressed the notion that it is pos

sible to omit the message portion of an input statement, thus reducing it to
either INPUT N$ or INPUT N.

The first of those two INPUT statements is expecting a string input,
and the second is expecting a numeric value. There is no message assigned
to either of them, so the system responds to the first by showing only the
blinking cursor, and to the second by showing a question mark followed by
the blinking cursor.

The advantage of using these abbreviated forms is that they allow you
to separate the prompting message from the blinking cursor, or question
mark and cursor. Consider the following set of statements:

100 PRINT "WHAT IS YOUR NAME?"
110 INPUT N$

In this case, the prompting message, WHAT IS YOUR NAME?, appears
on one line, and the cursor symbol appears at the beginning of the next line
on the screen.

Or try this:

10 DIM N$(15)
20 CALL -936
30 PRINT "ENTER YOUR NAME"
40 TAB 20: VTAB 22
50 IHPUT N$
60 TAB 1: VTAB 1
70 CALL -868
80 GOTO 80

Program line 20 both homes the cursor and clears the screen, and then
line 30 prints the prompting message, ENTER YOUR NAME, in the upper
left-hand corner. Line 40, however, sends the cursor down to the middle of

88 <> INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

row address 21, so the INPUT statement is executed at that point. In other
words, the blinking cursor and the user's keyboard entry appear there. The
statements in line 60 return the cursor to home, and line 70 dears to the
end of that line, erasing the prompting message. The user's key entry re
mains undisturbed near the bottom of the screen, however.

The general idea is to separate the prompting message and the user's
keyboard response to the subsequent INPUT operation by a lot of text
area-area that might include a lot of other text you might not want to
disturb.

The troublesome insertion of a question mark for INPUTing numeric
values can be brought under control by using combinations of PRINT and
INPUT statements. Consider this sequence of BASIC statements:

PRINT "ENTER A NUMBER BETWEEN 0 AND 9"
INPUT N

The response on the screen is:

ENTER A NUMBER BETWEEN 0 AND 9
?

The question mark is followed by a blinking cursor symbol, but at least the
prompting message appears to be more of a declaration than a question.

Other features of the INPUT statement, including the entry of a series
of values in response to a single INPUT line, are well documented in the
standard Integer BASIC literature.

CONTROLLING PROGRAM FLOW WITH INPUT The fact that
an INPUT statement halts the progress of a program until the user strikes
the RETURN key makes it a valuable tool for controlling the flow of events
within the program. The INPUT can thus represent a critical point in the
execution of a program.

A Common Example: The YES/NO Situation A lot of BASIC
programs execute a relatively long series of operations, and then reach a
critical point where the user has to decide whether to repeat the sequence
or end it. That generally comes down to responding to a string-type INPUT
statement that expects a YES or NO response from the keyboard.

Here is a sequence of statements that appears in a great many Integer
BASIC programs:

THE KEYBOARD ENVIRONMENT @ 89

100 INPUT "DO YOU WANT TO PLAY AGAIN (Y/N)? ",S$
110 IF S$="Y" THEN 10
120 IF S$="N" THEN END
130 GOTO 100

The prompting message imbedded in the INPUT statement asks the
program user to enter a Y or an N character. If the user responds by enter
ing a Y, the program goes to line 10 (presumably some meaningful entry
point for playing the game again); if he enters an N the conditional state
ment in line 120 is satisfied and the program comes to an END. But if the
user happens to enter anything but a simple Y or N, the program defaults
to line 130 to repeat the entire INPUT sequence. The routine, in other
words, is goof-proofed against erroneous keyboard responses to the
prompting message.

The real point of the example, however, is to show how INPUT state
ments can be used for controlling the flow of events in a program where
just one of two possible paths is available. The same idea applies equally
well to responses other than Y or N. For instance:

100 INPUT "DO YOU WANT NORMAL (N) OR FLASHING (F) CHARACTE
RS?",S$

110 IF S$# "N" THEN 130
120 POKE 50,255: GOTO 150
130 IF S$#"F" THEN 100
140 POKE 50,127
150 REM

Program Menus Program menus offer the user a wide range of
choices regarding what is to be done next. There is virtually no limit to the
number of items that may be offered in a menu.

Suppose you have written a series of subroutines in a BASIC program
that treat two numbers in an arithmetic fasbion. The menu task is to give
the user an opportunity to select execution of one of the following sub
routines:

Line 1000-ADD subroutine
Line 2000-SUBTRACT subroutine
Line 3000-MULTIPLY subroutine
Line 4000-DIVIDE subroutine

Through the following examples of menu operations, we will merely
refer to those subroutine line numbers and assume that they are complete,
operating subroutines.

90 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

There are a lot of different ways to format the menu for getting at one
of those subroutines. Here is one example:

100 CALL -936
110 PRINT "SELECT ONE (1,2,3,4 OR 5)"
120 PRINT
130 TAB 5: PRINT "1 ADD"
140 TAB 5: PRINT "2 SUBTRACT"
150 TAB 5: PRINT "3 MULTIPLY"
160 TAB 5: PRINT "4 DIVIDE"
170 TAB 5: PRINT "5 END THE PROGRAM"
180 PRINT
190 INPUT MS
200 IF MS>=l AND MS<=4 THEN GOTO MS*l000
210 IF MS=5 THEN END
220 PRINT
230 PRINT "ENTRY ERROR. TRY AGAIN
240 GOTO 110

Lines 110 through 180 are really little more than an extended,
PRINTed prompt message. It tells the user exactly what to do: enter a
number from 1 to 5. The INPUT statement in line 190 halts the progress of
the program until the user enters a numeric value.

Line 200 tests the values to make certain they fall within the allowed
range. If the entered value is a 1, 2, 3, or 4, the GOTO portion of that line
sends operations to routines beginning at lines 1000, 2000, 3000, or 4000,
respectively. If the user has entered a 5, line 210 detects that fact and
ENDs the program.

Program lines 220 through 240 make up a default routine that handles
incorrect responses to the INPUT statement. The routine informs the user
of the error and returns to line 110 to print the entire menu and give the
user a chance to INPUT a proper selection.

The next menu example accomplishes exactly the same task, but uses
a different input format. In this example the user is asked to enter a letter
instead of a number. The extended prompt message occupies program lines
110 through 170, and the corresponding INPUT statement appears in line
180.

The task of decoding the keyboard inputs is a bit more cumbersome
here because each input has to be decoded separately in lines 190 through
230.

If the user fails to enter one of the designated string characters, the
program defaults to the error routine in line 250. The error routine repeats
the list of valid characters to be entered and returns control to the INPUT
statement in line 180.

THE KEYBOARD ENVIRONMENT " 91

100 CALL -936
110 PRINT "ENTER YOUR SELECTION AS A,B,C,D ORE:"
120 PRINT
130 TAB 5: PRINT "(A) ADD"
140 TAB 5: PRINT "(B) SUBTRACT"
150 TAB 5: PRINT "(C) MULTIPLY"
160 TAB 5: PRINT "(D) DIVIDE"
170 TAB 5: PRINT "(E) END THE PROGRAM"
180 INPUT MS$
190 IF MS$="A" THEN 1000
200 IF MS$="B" THEN 2000
210 IF MS$="C" THEN 3000
220 IF MS$="D" THEN 4000
230 IF MS$="E" THEN 260
240 PRIN'r
250 PRINT "PLEASE ENTER A,B,C,D ORE": GOTO 180
260 INPUT "ARE YOU SURE YOU WANT TO QUIT (Y/N)?",S$
270 IF S$="Y" THEN END
280 GOTO 100

This particular example also asks the user to confirm the end-of
program selection. Upon INPUTing an E, the conditional statement in line
230 gives control to line 260, which PRINTs the prompt message, ARE
YOU SURE YOU WANT TO QUIT (Y/N)? The response is entered into
S$, and line 270 ends the program if the response is Y; otherwise every
thing starts all over from line 100.

A third kind of menu formatting asks the user to enter special symbols
that have some direct significance to the operations he or she wishes to
select. This next example asks for the arithmetic symbols for addition, sub-

100 CALL -936
110 PRINT "SELECT AN OPERATION:"
120 PRINT
130 TAB 5: PRINT "ENTER + FOR ADDITION"
140 'I'AB 5: PRINT "ENTER - FOR SUBTRACTION"
150 TAB 5: PRINT "ENTER * FOR MULTIPLICATION"
160 TAB 5: PRINT "ENTER I FOR DIVISION"
170 TAB 5: PRINT "ENTER Q IF YOU WANT TO QUIT"
180 PRINT
190 INPUT MS$
200 IF MS$="+" THEN 1000
210 IF MS$="-" THEN 2000
220 IF MS$="*" THEN 3000
230 IF MS$="/" THEN 4000
240 IF MS$="Q" THEN END
250 PRINT
260 PRINT "PLEASE ENTER +,-,*,/ OR Q. "
270 PRINT "TRY AGAIN ... "
280 GOTO 190

92 o INTERMEDIATE-LEVEL APPLE II HANDBOOK

traction, multiplication, and division. It also accepts a Q input for ending
the program.

As far as the keyboard environment is concerned, menu routines are
little more than simple combinations of the PRINT/INPUT statements de
scribed earlier in this chapter. The message portion can be quite involved,
but the INPUT variable is still quite simple. Of course the menu is mean
ingless unless you include an INPUT error-correcting routine and a vari
able decoding routine that calls the correct subroutine.

STROBING THE KEYBOARD WITH PEEK STATEMENTS The
INPUT statement of BASIC is not the only mechanism for entering key
stroke information during the execution of a program. The Apple system
has a place in RAM that is assigned to the keyboard strobe. We'll call that
location KBD, and its address is -16384.

PEEKing into KBD tells whether or not any key is depressed, and
which key it is.

There is a bit more to PEEKing into KBD than simply getting some
value out of it, however. Doing a PEEK to KBD, such as in C=PEEK
(-16384), not only assigns the current keyboard status to variable C, but
latches that value in KBD. KBD thus continues carrying that character
code until another instruction calls for PEEKing into KBD. That is not
always a desirable situation. It is necessary to reset, or clear, the content of
KBD to its no-key-depressed status; and that is done by POKEing a 0 to
the keyboard status register, called KBDSTB, at RAM address -16368.
Failing to clear KBDSTB can cause a programmer some confusing prob
lems.

A PEEK to keyboard operation involves two
separate steps:

PEEK(-16384)-PEEK to KBD and latch the
keyboard status in KBD.

POKE -16368,0-Clear the keyboard status to
its no-key-depressed condi
tion.

The Keyboard Character Codes On executing a PEEK(-16384),
the system looks at the content of KBD and moves on to the next instruc
tion. If, during that interval, no key is depressed, KBD will contain a value
that is less than 128. But if some key is depressed during the short execu
tion time of that PEEK-to-KBD operation, KBD will take on some value
between 128 and 222.

THE KEYBOARD ENVIRONMENT '" 93

Table 5-1 shows the keystrokes and their respective keyboard char
acter codes, or key codes. Notice that most of the key codes are generated
by single key depressions, while a few are the result of depressing the
CTRL key and a different key simultaneously.

Suppose, for example, that you want to use the CTRL-A combination
for some particular control purpose. What key code does that produce?
According to the table, that particular keyboard operation puts a code 129
into KBD.

Unquestionably, a table such as this one is vital for preparing pro
grams that PEEK to KBD to pick up keystroke entries and do something
meaningful with them.

Here is a little program that lets you confirm the information supplied
in Table 5-1:

100 CALL -936
110 C= PEEK (-16384)
120 IF C<l28 THEN 110
130 POKE -16368,0
140 PRINT C
150 GOTO 110

On running this program, strike some keys and notice the corresponding
key codes printed on the screen. Compare the results with the information
supplied in Table 5-1.

An analysis of the program is as follows:

Line 100 homes the cursor and clears the screen.
Line 110 strobes the keyboard by PEEKing into KBD, and assigns the

content of KBD to variable C.
Line 120 loops back to strobe the keyboard again if C is less than 128,

indicating that no key is depressed.
Line 130 resets the keyboard strobe by POKEing a zero into location

KBDSTB.
Line 140 prints the value that is assigned to variable C by line 110.
Line 150 loops back to line 110 to fetch the value of the next keystroke.

Program lines 120 and 130 are especially important to the proper op
eration of such programs. Delete line 120, f9r example, and see what hap
pens. Instead of seeing the key codes as you strike various keys, the pro
gram runs an endless list of numbers having values less than 128. Those are
the values that are loaded into KBD (and assigned to variable C by our
program) whenever a key is not being depressed. Depress a key, and you
will see the proper value appearing just once in that fast-moving list. Thus,
line 120 avoids the printing of a lot of meaningless values less than 128.

94 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 5-1. Keyboard Character Codes
Keystroke Key Code Keystroke Key Code

@ 192 3 179
A 193 4 180
B 194 5 181
c 195 6 182
D 196 7 183
E 197 8 184
F 198 9 185
G 199 186
H 200

'
187

I 201 < 188
J 202 = 189
K 203 > 190
L 204 ? 191
M 205 .;.--- 136
N 206 RETURN 141
0 207 -i> 149
p 208 ESC 155
Q 209 > 222
R 210 CTRL-@ 128 (Same as CTRL-H)
s 211 CTRL-A 129 (Same as CTRL-M)
T 212 CTRL-B 130 (Same as CTRL-U)
u 213 CTRL-C 131
v 214 CTRL-D 132
w 215 CTRL-E 133
x 216 CTRL-F 134
y 217 CTRL-G 135
z 218 CTRL-H 136

space 160 CTRL-1 137
! 161 CTRL-J 138
" 162 CTRL-K 139
163 CTRL-L 140
$ 164 CTRL-M 141
% 165 CTRL-N 142 (Same as .;.---)
& 166 CTRL-0 143
I 167 CTRL-P 144
(168 CTRL-Q 145
) 169 CTRL-R 146
* 170 CTRL-S 147 (Same as RETURN)
+ 171 CTRL-T 148
I 172 CTRL-U 149 (Same as _,.)

- 173 CTRL-V 150

• 174 CTRL-W 151
I 175 CTRL-X 152
0 176 CTRL-Y 153
1 177 CTRL-Z 154
2 178

THE KEYBOARD ENVIRONMENT " 95

Insert line 120 back into the program, and the routine will loop rapidly
between lines 110 and 120 until you strike a key.

Line 130 is the one that resets the keyboard strobe. Delete that line
and run the program again. You will see a long string of numbers again.
This time, however, striking a key causes the appropriate key code to ap
pear in the list; in fact it doesn't go away until you strike another key.
Indeed, PEEKing to KBD sets a flip-flop, or latch, function in the keyboard
system. Clearing, or resetting, that latch is a matter of doing a POKE-0 to
KBDSTB. Insert line 130 back into the program, and you'll find everything
working nicely once again.

If you compare the table of keystroke codes with the video text codes
in Table 4-5, you will find that many of them share the same characters and
codes. The following program lets you play around with keystrokes and the
text characters they might create on the screen:

100 CALL -936
110 C= PEEK (-16384)
120 IF C<l28 THEN 110
130 POKE -16368,0
140 PRINT C;
150 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36)+4,C
160 CALL -926
170 GOTO 110

The program prints both the key codes and a corresponding video text
character. It strobes the keyboard to pick up a valid key code, assigns it to
variable C, and resets the keyboard strobe as in the previous program. Line
140 prints the key code as before, but the semicolon suppresses the normal
linefeed and carriage return operation. Line 150 then comes up with the
current cursor position, adds four spaces, and then POKEs the character
code to the screen. POKEing the key code to the screen causes the vide9
system to print the character it represents. PRINTing to the screen, as in
line 140, merely prints the key code. There is an important distinction be
tween PRINTing a key code to the screen and POKEing it there.

An Example: Printing a lot of Text When working from the
Apple monitor, the BASIC immediate command mode, or with an INPUT
statement, you may enter no more than 256 consecutive characters. That is
a limitation imposed by the size of the GETLN input buffer that is de
scribed later in this book. Directly strobing the keyboard and POKEing the
characters to the video text RAM offers a chance to type in a string of
messages of an indefinite length.

96 s INTERMEDIATE-LEVEL APPLE II HANDBOOK

The following program POKEs characters to the video system as they
are entered at the keyboard. In a sense, it represents the beginning of a
primitive word processor.

100 CALL -936
110 C= PEEK (-16384)
120 IF C<l28 THEN 110
130 POKE -16368,0
140 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),C
150 CALL -1036
160 GOTO 110

Lines 110 through 130 strobe the keyboard, looking for a valid key
stroke. Upon finding one, it assigns the key code to variable C and resets
the keyboard strobe. Line 140 POKEs the character to the current cursor
address location, and line 150 advances the cursor to the next location.

You can type in a full screen of text, and the screen will scroll upward
in the normal fashion as you continue entering characters "below" the last
line. You can, in fact, set up a smaller text window (see Chapter 2) and
work the characters into that space on the screen.

From a word-processing viewpoint, however, the simple program suf
fers from some serious problems. For one, it has no editing features; you
cannot backspace and erase errors, for instance. The program doesn't
show the cursor symbol, either. So, if you do a series of spaces, you might
not be sure where the next character will appear on the screen.

Nevertheless, the program illustrates one kind of application of the
keyboard strobe feature of the Apple system. Later discussions in this
chapter show how to do some elementary editing.

SINGLE-KEYSTROKE CONTROL OF A PROGRAM The notion
of strobing the keyboard by PEEKing into KBD offers some fine tech
niques for controlling the flow of a program. This method rivals, and often
surpasses, the INPUT-statement control method.

Resuming Stopped Operations A lot of different kinds of text
and graphics programs call for halting the ongoing operations until the user
has a chance to view conditions on the screen. The user is then given the
option of striking a key to resume operations on the screen.

The following is an example of a program that uses PEEK to resume
operations upon the striking of any key:

THE KEYBOARD ENVIRONMENT " 97

100 N=0
110 L=0: CALL -936
120 PRINT N
130 N=N+l:L=L+l
140 IF L<20 THEN 120
150 PRINT : TAB 8
160 PRINT "STRIKE ANY I~EY TO CONTINUE ... "
170 IF PEEK (-16384)<128 THEN 170
180 POKE -16368,0
190 GOTO 110

(You will understand the following short analysis better if you first enter
and run the program.)

The conditional statement in program line 140 is responsible for halting
the progress of the counting operation. Lines 150 and 160 then format and
print the prompting message.

Lines 170 through 190 are the ones most important to the current dis
cussion. Line 170 strobes the keyboard and compares the content of KBD
with the value of 128. If the content of KBD is less than 128, it means that
the user has not yet made a keystroke in response to the prompting mes
sage. As long as that condition exists, the program "buzzes" on line 170.

The moment the user strikes any key, the value in KBD becomes 128
or greater, and the program goes to line 180 to reset the keyboard latch,

. and then to line 110 to resume the printing of successively larger numbers.
A BASIC statement of the form shown here in line 170 can always be

used to halt the flow of a program until the user strikes any key on the
keyboard. But you can accomplish the same thing with an INPUT state
ment:

160 INPUT "STRIKE RETURN KEY TO CONTINUE ... ",S$:GOTO 110

That one line replaces lines 160 through 190 in the PEEK-to-KBD version.
The only advantage of the PEEK-to-KBD version of this particular

application is that it allows the user to resume operations by striking any
key. Other situations, however, offer far more compelling advantages.
Consider the application described ~ext.

Stopping Ongoing Operations The following program is the in
verse of the one just described. Instead of using a single keystroke to re
sume operations, it uses a single keystroke to stop them.

Enter and run the program, striking any key to stop the counting op
erations. This particular version responds to the keystroke by going into a
loop, so you will have to do a CTRL-C to get out of the loop and RUN
again.

98 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

100 CALL -936
110 TAB 10: POKE 50,63
120 PRINT "STRIKE ANY KEY TO STOP ... "
130 POKE 50,255: POKE 34,1
140 N=0
150 PRINT N
160 N=N+l
170 IF PEEK (-16384)<128 THEN 150
180 POKE -16368,0
190 TEXT
200 TAB 1: VTAB 1: CALL -868
210 GOTO 210

The critical part of the program resides in lines 150 through 180. Lines
150 and 160 print the current value of variable N and increment it by 1.
Line 170 then PEEKs to KBD, and if the value is less than 128 (no key
depressed), the program loops back to line 150. The program thus cycles
continuously through lines 150, 160, and 170 until the user strikes a key.

When the PEEK-to-KBD statement in line 170 detects that a keystroke
has indeed occurred, the program goes to line 180 to reset the keyboard
latch and bring the program to a conclusion through the remaining lines.

Notice especially that the PEEK-to-KBD operation is a normal part of
the program's running cycle. There is no interruption of the program as
long as no key is depressed. That cannot be done with an INPUT state
ment; INPUT statements always interrupt the flow of a program. Therein
lies the real usefulness of PEEK-to-KBD operations.

The remaining lines in that program are merely window dressing, but
we will study them closely for the sake of reviewing some of the text
formatting techniques described earlier in this book.

Line 100 homes the cursor and clears the entire screen.
Line 100 performs a horizontal TAB and sets the system for printing

characters in inverse format.
Line 120 prints the prompting message (at TAB 10 on the top line and

using inverse text).
Line 130 returns the system to the normal format at the top of the next

window at row 1. Setting the top of the window at that point prevents
the prompting message from scrolling off the screen during the
number-printing operations that follow.

Line 140 initializes the counting variable N.
Lines 150 through 180 print and increment the value of N until a key

stroke occurs.
Line 190 restores the normal text window.

THE KEYBOARD ENVIRONMENT • 99

Line 200 homes the cursor without disturbing the current text, and then
clears the current line to get rid of the prompting message.

Line 210 loops to this line until the user interrupts with a CTRL-C or
RESET.

Toggling the Operations If a PEEK-to-KBD statement can be
used for resuming program operations, and if it can also be used for stop
ping operations, then it can be used for toggling the operations on and off.
A keystroke at one time can start an operation and a subsequent keystroke
can stop it.

Here is the same counting routine used in the previous examples. This
time, however, it includes two different kinds of PEEK-to-KBD
operations-one to start counting, and one to stop counting.

100 CALL -936
110 N=0
120 IF PEEK (-16384)<128 THEN 120
130 POKE -16368,0
140 PRINT N
150 N=N+l
160 IF PEEK (-16384)<128 THEN 140
170 POKE -16368,0
180 GOTO 120

The conditional statement in line 120 keeps the counting operation
stopped until the user strikes any key. That program line "buzzes" to itself
as long as it sees no key depression. In effect, it starts the program opera
tions as soon as the user strikes any key.

The statement in line 160 is quite similar to that in line 120; but as long
as this one is satisfied (as long as the content of KBD is less than 128), the
printing and counting operations take place. Line 160 is responsible for
detecting the keystroke that will stop the counting operation. As soon as
that keystroke occurs, line 170 clears the keyboard strobe, and line 180
returns the program to line 120.

Enter and run the program. You will find that the first keystroke starts
the counting operation and that the next keystroke stops it. Resume the
counting by striking any key again. You can thus toggle this counting op
eration on and off any number of times. Getting out of the whole program
is a matter of performing a CTRL-C or RESET.

I have omitted the prompting messages from this example so that the
real reason for presenting it will stand out more clearly. It is a bare-bones
version of a toggling program. The following listing uses the same toggling
mechanisms, but includes the prompting messages as well.

Incidentally, I generated this expanded version from the original one

100 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

by inserting the prompting and formatting statements, and then using the
Integer BASIC RENUM feature to get the line numbers back into an or
derly form.

100 CALL -936
110 N=0
120 TAB 10: VTAB 1
130 POKE 50,63
140 PRINT "STRIKE ANY KEY TO START"
150 POKE 50,255: POKE 34,l
160 IF PEEK (-16384)<128 THEN 160
170 POKE -16368,0
180 TAB 1: VTAB 1: CALL -868
190 TAB 10: POKE 50,63
200 PRINT "STRIKE ANY KEY TO STOP"
210 POKE 50,255
220 PRINT N
230 N=N+l
240 IF PEEK (-16384)<128 THEN 220
250 POKE -16368,0
260 GOTO 120

The following is a line-by-line analysis of the program:

Line 100 homes the cursor and clears the screen.
Line 110 initializes the counting variable.
Line 120 tabs the first prompting message.
Line 130 sets the inverse character format.
Line 140 prints STRIKE ANY KEY TO START (at TAB 10 on the top

line, using inverse characters).
Line 150 returns to normal format, and sets the top of the text window to

row l. (That prevents the subsequent operations from scrolling the
prompting message off the top of the screen.)

Line 160 holds up operations until a keystroke occurs.
Line 170 clears the keyboard strobe.
Line 180 sets the cursor to the beginning of the top line on the screen,

and clears to the end of that line. The purpose of this line is to erase
the current prompting message.

Line 190 tabs the next message on the top line, and sets the inverse
format.

Line 200 prints STRIKE ANY KEY TO STOP.
Line 210 sets the normal format.
Lines 220 through 240 print and increment the value of N until a key

stroke occurs.
Line 250 clears the keyboard strobe.
Line 260 goes back to line 120 to do the restart routine.

THE KEYBOARD ENVIRONMENT " 101

A Fuil Program Example Listing 5-1 represents a full, working
program that uses some single-keystroke operations for control purposes.
It is a reaction-time tester. It displays a square of white light on the screen
at some random time after you begin a delay cycle. From the moment the
square appears, the program shows the elapsed time in. seconds, tenths of
seconds and hundredths of seconds. The timer stops as soon. as you strike
any key.

Enter the program and play with it for a while before you read the
following analysis. You will find the program incorporates some PEEK
to-KBD techniques as well as some special text-formatting procedures de
scribed in earlier chapters.

Line 100 sets the normal format, homes the cursor, and dears the entire
screen.

Lines 110 through 140 tab and print a program title message and a
prompting message.

Line 150 holds up further execution of the program until the user strikes
any key.

Line 160 clears the keyboard strobe.
Lines 170 through 210 provide animation by scrolling the current mes

sages up one line at a time until they disappear from the screen.
Lines 220 through 330 print an extensive set of instructions (using the

normal format set in line 100).
Lines 340 through 370 tab the next message, set the inverse format, print

the prompting message STRIKE ANY KEY TO BEGIN THE DELAY
CYCLE, and wait for a keystroke.

Line 380 clears the keyboard strobe.
Line 390 homes the cursor and clears the screen.
Lines 400 through 420 perform an interruptible time delay of random

duration. Line 410 makes it possible to interrupt this timing sequence
by striking any key. If no keystroke occurs during this timing se
quence, the program goes to line 430 and then to 480. But if a key
stroke does occur, as sensed by the PEEK-to-KBD instruction in line
410, the timing sequence is aborted, and program control goes to line
440.

Lines 440 through 470 are called whenever the user strikes a key before
the white square appears on the screen. The routine clears the
keyboard strobe (originally set by striking a key at line 410), sets the
flashing format, and prints a message at the beginning of the top line on
the screen. (The cursor is set to that point by line 390.) Line 470 re
turns the program to line 340, where the user is prompted to start the
delay cycle all over again.

102 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 5-1. Reaction Time Tester.

100 POKE 50,255: CALL -936
110 VTAB 8: TAB 9
120 PRINT "** REACTION TIME TESTER **"
130 VTAB 16: TAB 1
140 PRINT "STRIKE ANY KEY TO START ... "
150 IF PEEK (-16384)<128 THEN 150
160 POKE -16368,0
170 VTAB 24
180 FOR N=0 TO 15
190 PRINT
200 FOR T=0 TO 100: NEXT T
210 NEXT N
220 CALL -936
230 PRINT "AFTER STARTING THE DELAY CYCLE, LOOK"
240 PRINT "FOR A WHITE SQUARE THAT WILL"
250 PRINT "APPEAR IN THE UPPER LEFT-HAND"
260 PRINT "CORNER OF THE SCREEN. RESPOND"
270 PRINT "BY STRIKING ANY KEY AS SOON AS"
280 PRINT "POSSIBLE. YOUR REACTION TIME"
290 PRINT "WILL THEN APPEAR IN THE UPPER"
300 PRINT "RIGHT-HAND CORNER."
310 PRINT
320 PRINT "DO NOT STRIKE THE KEY TOO SOON."
330 PRINT "THAT ABORTS THE CYCLE."
340 TAB 1: VTAB 16
350 POKE 50,63
360 PRINT "STRIKE ANY KEY TO BEGIN THE DELAY CYCLE."
370 IF PEEK (-16384)<128 THEN 370
380 POKE -16368,0
390 CALL -936
400 FOR T=0 TO 1000+ RND (4000)
410 IF PEEK (-16384)>127 THEN 440
420 NEXT T
430 GOTO 480
440 POKE -16368,0
450 POKE 50, 127
460 PRINT "TOO SOON. CALM DOWN."
470 GOTO 340
480 NH=48:NT=48:NU=48
490 POKE 1024,32
500 POKE 1054,NU
510 POKE 1055,46
520 POKE 1056,NT
530 POKE 1057,NH
540 IF PEEK (-16384)>127 THEN 620
550 NH=NH+l
560 IF NH<58 THEN 490
570 NH=48:NT=NT+l
580 IF NT<58 THEN 490
590 NT=48:NU=NU+l
600 IF NU>57 THEN 660
610 GOTO 490
620 POKE -16368,0
630 VTAB 1: TAB 1
640 PRINT "YOUR REACTION TIME:"
650 GOTO 340

660 VTAB 1: TAB 1
670 POKE 50,127
680 PRINT "YOU TOOK TOO LONG· FORGET IT•"
690 GOTO 340

THE KEYBOARD ENVIRONMENT " 103

Lines 480 through 610, discussed next, make up the program's elapsed-time
counting loop. Like the delay time sequence, this loop is interruptible by
means of the PEEK-to-KBD operation.

Line 480 initializes the three digits in the elapsed-time counter. NH car
ries hundredths of seconds, NT carries tenths of seconds, and NU
carries full seconds. They are initialized to 48 instead of to 0 because
later operations POKE those values to the screen. Recall that you
must POKE character codes, and not the values themselves, to video
memory. Character code 48 represents an inverse 0.

Line 490 POKEs the square of light to the screen. This is the signal that
the user is to strike a key.

Line 500 POKEs the current full-seconds character to the screen.
Line 510 POKEs an inverse period to the screen.
Lines 520 and 530 POKE tenths and hundredths of seconds to the

screen.
Line 540 performs a PEEK-to-KBD. If a key is depressed, control is

given to line 620; otherwise, the elapsed-time counter is incremented.
Lines 550 through 610 run the elapsed-time counter. If the time exceeds

9.99 seconds, as sensed by the conditional statement in line 600, then
the counting sequence is ended by going to line 660.

Lines 620 through 650 are executed if the user makes a proper response
to the beginning of the elapsed-time sequence. They reset the
keyboard strobe, format and print YOUR REACTION TIME, and re
turn control to line 340 to give the user a chance to begin a new delay
cycle.

Lines 660 through 690 are executed if the user allows the elapsed time to
run past 9.99 seconds. The routine prints YOU TOOK TOO LONG in
flashing characters, and then loops the program back to line 340.

The main points, in the context of this section on PEEK-to-KBD con
trol, are the interruptible timing sequences. The program runs along one
line of operations if no keystroke occurs, but enters a different routine if a
keystroke does occur. Such operations cannot be duplicated using INPUT
statements.

DECODING SINGLE KEYSTROKES FOR CONTROL PURPOSES
The single-keystroke control techniques described in the previous sec

tion are adequate for initiating a program sequence, halting or interrupting
a sequence, or toggling between two different program sequences. As long
as there are no more than two control options-no more than two events
that can occur as the result of doing a PEEK-to-KBD-it makes no differ
ence which key the user strikes. But of course there are many instances
where the user iµust ·be given the option of selecting two or more routes in

104 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

a program. That means it is necessary to define certain keystrokes for cer
tain purposes and decode the key codes as they arrive from the keyboard.

The YES/NO Situation Revisited An earlier topic in this chapter
demonstrated how it is possible to use INPUT statements to make a YES
or NO decision from the keyboard. Here is an example:

100 CALL -936
110 FOR N=0 TO 9
120 PRINT N
130 FOR T=0 TO 100: NEXT T
140 NEXT N
150 PRINT
160 PRINT "WANT TO DO THIS THING AGAIN (Y/N) ?II

170 INPUT C$
180 IF C$="Y" THEN 100
190 IF C$="N" THEN END
200 GOTO 170

The main part of the program occupies lines 100 through 140. It simply
clears the screen and prints numerals 0 through 9, with a short time delay
inserted between each printing. The control portion uses the remainder of
the program.

Line 150 leaves· a blank line, and then line 160 asks the user, WANT
TO DO THIS AGAIN? Line 170 uses an INPUT statement to assign the
user's response to variable C$. If the response is a Y, then control is
picked up from line 100 again. If the response is N, the program comes to
an end. Any other keyboard entry is handled by line 200, which repeats the
INPUT statement until the user gets it right.

There is nothing technically wrong with that INPUT control scheme.
The user strikes the Y or N key and enters that choice by striking the
RETURN key as well.

Now, compare that with this version of the same general program that
uses a decoded PEEK-to-KBD control instead of INPUT.

100 CALL -936
110 FOR N=0 TO 9
120 PRINT N
130 FOR T=0 TO 100: NEXT T
140 NEXT N
150 PRINT
160 PRINT "WANT TO DO THIS THING AGAIN (Y/N) ?"
170 C= PEEK (-16384): IF C<l28 THEN 170
180 POKE -16368,0
190 IF C=217 THEN 100
200 IF C=206 THEN END
210 GOTO 170

THE KEYBOARD ENVIRONMENT " 105

The two program listings are identical down to line 170. In the latter
version, line 170 PEEKS to the keyboard and continues doing so until it
detects a keystroke. Then lines 190 and 200 decode the result. If the user
strikes the Y key, variable C will be equal to 217. Line 190 handles that
situation by sending program control back to line 100 to repeat the counting
sequence. If the user responds to the prompting message by striking the N
key, the value of C becomes 206, and line 200 responds to that value by
bringing the program to an end. Finally, if the keystroke is neither an N nor
a Y, the program defaults to line 210 which, in turn, sends program control
back to line 170 to give the user another chance.

Line 180 clears the keyboard strobe latch immediately after any sort of
keystroke.

Both versions of the program do exactly the same overall task. But if
you enter and run both of them, you will find that the PEEK-to-KBD ver
sion seems to "feel" better from the user's point of view. There is an
immediate response to a Y or N keystroke, so there is no need to strike the
RETURN key at all. If you happen to strike any other key, nothing hap
pens.

A careful application of PEEK-to-KBD routines can transform a
mediocre program into a much more pleasing and exciting one.

The Menu Situation Revisited "Program Menus" (page 90) de
scribed the application of INPUT statements in program menu routines.
The idea was to select one of any number of possible paths through a prog
ram by INPUTing a numeral, letter, or symbol in response to a multiple
choice menu listing. Using an INPUT statement means that the user must
make at least two keystrokes to satisfy the menu routine: one to select the
menu item and a second (a RETURN keystroke) to complete the execution
of the INPUT statement.

As shown in this section, using a PEEK-to-KBD routine with a menu
reduces the number of keystrokes to just one-the one that selects the
menu item.

Enter and run Listing 5-2, and see if you agree that you get a positive
feeling of immediate interaction with it.

Here is a line-by-line analysis of the menu-selection and keystroke
decoding portion of that program:

Line 160 prints the menu prompting message.
Lines 170 and 180 set the normal format and leave a blank line.
Lines 190 through 250 print the menu listing and leave a blank line.
Lines 260 and 270 PEEK to KBD and assign the current value to variable

F. If there is no keystroke representing the key codes for numerals I
through 6, the program goes back to PEEK at KBD again. The pro-

106 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 5-2. Adder, Subtracter, Multiplier.

100 CALL -936
110 PRINT "ENTER TWO NUMBERS AS A,B"
120 PRINT : PRINT "(-100 THRU +100)"
130 PRINT
140 INPUT A,B
150 CALL -936
160 PRINT "SELECT A FUNCTION (1,2,3,4,5 OR 6) : "
170 POKE 50,255
180 PRINT
190 TAB 5: PRINT "1 A+B"
200 TAB 5: PRINT "2 A-B"
210 TAB 5: PRINT "3 B-A"
220 TAB 5: PRINT "4 A*B"
230 TAB 5: PRINT "5 SELECT NEW NUMBERS"
240 TAB 5: PRINT "6 QUIT THE PROGRAM"
250 PRINT
260 F= PEEK (-16384)
270 IF F<l77 OR F>l82 THEN 260
280 POKE -16368,0
290 CALL -868
300 IF F=l77 THEN 360
310 IF F=l78 THEN 380
320 IF F=l79 THEN 400
330 IF F=l80 THEN 420
340 IF F=l81 THEN 100
350 END
360 PRINT A;"+";B;"=";A+B
370 GOTO 430
380 PRINT A;"-";B;"=";A-B
390 GOTO 430
400 PRINT B; 11_11 ;A; "=II ;B-A
410 GOTO 430
420 PRINT A; 11 * 11 ;B; 11 =11 ;A*B
430 PRINT
440 PRINT "CURRENT NUMBERS: "
450 TAB 5: PRINT .. A= .. ;A
460 TAB 5: PRINT 11 B= 11 ;B
470 POKE 50,63
480 VTAB 1: TAB 1
490 GOTO 160

gram "buzzes" on these two lines until the user strikes one of the six
numeral keys designated in the menu listing.

Lines 280 and 290 clear the keyboard latch and clear to the end of the
current line of text. The program reaches this point only after the user
strikes one of the six keys in the menu listing. The CLREOL operation
simply clears the summary of the previous arithmetic operation from
the screen.

Lines 300 through 350 decode the legitimate keystroke and take the ap
propriate action.

THE KEYBOARD ENVIRONMENT e 107

The entire analysis is almost meaningless if you haven't realized that the
key code for numeral 1 is 177, 2 is 178, 3 is 179, and so on. (See Table 5-1.)

Thus far, most of the suggested applications of PEEK-to-KBD
routines are nice substitutes for the somewhat more awkward INPUT
routines. The next section in this chapter deals with an application that is
totally foreign to INPUT techniques.

An Improved Text Editor Earlier in this chapter we showed you a
primitive form of word processor, or text editor. The little program simply
POKEd to the screen any valid, printable character typed at the keyboard.
One of its real shortcomings was that the user could not alter any of the
text once it was committed to the screen. Now we are in a position to
change all that.

Listing 5-3 allows you to type in text and carry out some common
editing functions as well. The purpose of the demonstration is to show how
it is possible to use PEEK-to-KBD operations for both generating text and
setting up control functions.

Enter and run that program. Type in some normal alphanumeric char
acters and punctuation marks to convince yourself that the program can
indeed transfer such keystrokes to the video text system. Then try these
control functions:

CTRL-S homes the cursor without erasing any text.
CTRL-T causes an upward linefeed without erasing any text.
CTRL-D causes a downward linefeed without erasing any text.
CTRL-R advances the cursor without erasing any text.
CTRL-L backspaces the cursor without erasing any text.
The symbol ~ advances the cursor and erases current text.
The symbol ~ backspaces the cursor and erases current text.
CTRL-X erases all text from the cursor to the end of the page.
CTRL-F erases all text from the cursor to the end of the cmTent line.
RETURN causes a linefeed and carriage return.

You will also see that the program displays a text cursor. The more
primitive version of the program did not do that.

Here is an analysis of Listing 5-3:

Line 110 fetches the current cursor position and assigns it to variable CP.
Line 120 PEEKs at the current character, calculates the character code for

its inverse or flashing format, and POKEs it to the current cursor posi
tion. This line is responsible for generating the program's cursor symbol.

Lines 130 and 140 PEEK to KBD. If no key is depressed, they PEEK to
KBD again.

108 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

Listing 5-3. Improved Text Editor.

100 CALL -936
110 CP=256* PEEK (41)+ PEEK (40)+ PEEK (36)
120 POKE CP, PEEK (CP)-128
130 K= PEEK (-16384)
140 IF K<l28 THEN 130
150 POKE -16368,0
160 IF K<l60 THEN 200
170 POKE CP,K
180 CALL -1036
190 GOTO 110
200 POKE CP, PEEK (CP)+l28
210 IF K=l32 THEN 1320
220 IF K=l34 THEN 1340
230 IF K=l36 THEN 1360
240 IF K=l40 THEN 1400
250 IF K=l41 THEN 1410
260 IF K=l46 THEN 1460
270 IF K=l47 THEN 1470
280 IF K=l48 THEN 1480
290 IF K=l49 THEN 1490
300 IF K=l52 THEN 1520
310 GOTO 130

1320 CALL -922: GOTO 110
1340 CALL -868: GOTO 110
1360 POKE CP,160: GOTO 1400
1400 CALL -1008: GOTO 110
1410 CALL -926: GOTO 110
1460 CALL -1036: GOTO 110
1470 VTAB 1: TAB 1: GOTO 110
1480 CALL -998: GOTO 110
1490 POKE CP,160: GOTO 1460
1520 CALL -958: GOTO 110

Line 150 clears the keyboard strobe.
Line 160 jumps to line 200 to execute the control operation if the key-

stroke represents a control character.
Line 170 prints the character typed if it wasn't a control character.
Line 180 advances the cursor.
Line 190 returns to get the next keystroke.
Line 200 replaces the cursor symbol with the normal format version of

the current character.

Lines 210 through 310 decode the control keystroke and send opera
tions to the appropriate lines. Specifically:

Line 210 decodes CTRL-D.
Line 220 decodes CTRL-F.

THE KEYBOARD ENVIRONMENT s 109

Line 230 decodes left arrow.
Line 240 decodes CTRL-L.
Line 250 decodes RETURN.
Line 260 decodes CTRL-R. -
Line 270 decodes CTRL-S.
Line 280 decodes CTRL-T.
Line 290 decodes the right arrow key.
Line 300 returns to line 130 to get the next keystroke if the keystroke is

not a proper control character.
Line 1320 performs a downward linefeed (CTRL-D) and gets the next

keystroke.
Line 1340 erases to end of line (CTRL-F) and gets the next keystroke.
Line 1360 erases the current character and jumps to line 1400 to

backspace (left arrow).
Line 1400 backspaces (CTRL-L) and gets the next keystroke.
Line 1410 performs a linefeed and carriage return (RETURN) and gets

the next keystroke.
Line 1460 advances the cursor (CTRL-R) and gets the next keystroke.
Line 1470 homes the cursor (CTRL-S) and gets the next keystroke.
Line 1480 performs an upward linefeed (CTRL-T) and gets the next key-

stroke.
Line 1490 erases the current character and jumps to line 1460 to advance

the cursor (right arrow).
Line 1520 erases to the end of the page (CTRL-X) and gets the next

keystroke.

All of the CALL statements take advantage of the cursor-related
routines cited in Chapter 2.

110 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

The Low-Resolution
Graphics Environment

One of the truly appealing features of the Apple computer sys 6 tem is its versatile and colorful low-resolution graphics mode of op
eration. Properly used, this scheme can provide interesting, entertaining,
and useful color graphics functions.

The low-resolution graphics screen shares video RAM addresses with
the text screen. The two screens overlap exactly, so many of the special
text techniques described in an earlier chapter can be applied equally well
to the low-resolution graphics mode.

THE ELEMENTARY PRINCIPLES Integer BASIC includes a small
group of statements that are especially designed to simplify the program
ming of low-resolution graphics routines. Even if you have already mas
tered these principles, you might do well to follow this summary closely;
the ideas are the framework for more detailed discussions later in this chap
ter.

The GR and TEXT Statements Integer BASIC's GR and TEXT
statements are intended to switch the Apple system between its low
resolution and normal text modes. Doing a GR, either from the keyboard in
the command mode or within a BASIC program, sets the video system for
displaying normal, low-resolution graphics. Doing a TEXT, either from the
immediate command mode or within a program, returns the video system
to normal text.

The normal low-resolution graphics mode is one that is characterized
by a mixture of graphics and text locations on the screen. The text area
occupies the four lower lines (text rows 20 through 23), and the graphics
area fills the remainder of the screen.

The graphics area is divided into 40 rows of 40 graphics locations. That
figures out to 1600 separate places on the screen where you can plot small

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT ., 111

rectangles of color. The 40 columns in each row are addressed just as text
character locations are addressed-0 through 39. Likewise, the 40 rows of
low-resolution graphics locations can be labeled 0 through 39. (See the
normal graphics scheme illustrated in Fig. 6-1.)

You ought to be able to appreciate the fact that there are 40 rows of
graphics locations occupying the space that is normally allotted to 20 rows
of text. In other words, there are twice as many graphics rows in that
screen area than text rows.

Executing a GR statement sets up the normal graphics mode, clears
the low-resolution graphics portion of the screen, but does not affect the
text area. It is not uncommon, then, to see a GR statement in a program
immediately followed by a CALL -936. The latter statement clears the
four-line text window and homes the cursor within it.

Executing a TEXT statement simply returns the system to the full text
mode (40 columns, 24 rows) and does not clear anything. That is why you
often see a lot of seemingly meaningless text in the upper portion of the
screen after doing a TEXT statement to get out of the low-resolution
graphics mode. For that reason, the TEXT statement is frequently followed
by a CALL -936 to home the cursor and clear the screen.

The COLOR and PLOT Statements The COLOR statement de-
termines the color to be plotted on the screen. The COLOR codes and their
corresponding colors are shown in Table 6-1.

The syntax for the COLOR statement is:

COLOR=c

where c is the desired color code from Table 6-1. COLOR must precede the
PLOT statement, described next.

The PLOT statement plots the designated color to a screen location
determined according to the special row-and-column addressing format.
The syntax for the PLOT statement is:

PLOT x,y

where x is the desired column (0-39) and y is the low-resolution graphics
row (0-39).

112 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

r 43

TEXT 21
44

LINE NO 22 45

23
46

47

Fig. 6-1. Normal graphics scheme.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 113

Table 6-1. Color Codes

COLOR Code Color

0 Black
1 Magenta
2 Dark Blue
3 Purple

4 Dark Green
5 Grey 1

I
6 Medium Blue
7 Light Blue

8 Brown
9 Orange

10 Grey 2
11 Pink

12 Light Green
13 Yellow
14 Aquamarine
15 White

Consider the following program:

10 GR
20 CALL -936
30 COLOR=9
40 PLOT 20,20
50 COLOR=l3
60 PLOT 0,0
70 END

Lines 10 and 20 in that program set up the normal low-resolution
graphics mode and clear the text portion of the screen. Those two lines, in
effect, clear the entire screen because the execution of GR always clears
the graphics area.

Lines 30 and 40 work together to plot an orange rectangle near the
middle of the screen. Line 30 sets up the color according to Table 6-1, and
line 40 plots a rectangle of that color at column 20, graphics row 20. Then
lines 50 and 60 plot a yellow rectangle in the extreme upper left-hand
comer of the screen. Again, line 50 sets the color and line 60 plots that
color at the designated coordinates-0,0 in this case.

114 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Line 70 ends the program. You will find that the BASIC prompt sym
bol then appears in the text area at the bottom of the screen.

You can, of course, write programs that plot a number of low
resolution color blocks in sequence. Consider this idea:

10 GR
20 CALL -936
30 COLOR=3
40 FOR X=0 TO 39
50 PLOT X,0
60 NEXT x
70 END

This program plots a purple line across the top of the screen. Technically
speaking, it plots a series of 40 purple rectangles.

Enter the next program into your Apple, RUN it, and observe its be
havior. See if you can explain to yourself how it works.

100 GR
110 CALL -936
120 COLOR=4
130 FOR X=0 TO 39: FOR Y=0 TO 39
140 PLOT X, Y
150 NEXT Y: NEXT X
160 COLOR=l5
170 FOR X=0 TO 39
180 PLOT X,0: PLOT X,39
190 NEXT X
200 FOR Y=0 TO 39
210 PLOT 0,Y: PLOT 39,Y
220 NEXT y

230 END

The HUN and VLIN Statements Integer BASIC includes two
statements that are intended to simplify the programming task of drawing
straight horizontal or vertical lines on the low-resolution graphics screen.
HLIN draws horizontal lines at designated row positions, and VLIN draws
vertical lines at designated column positions.

The form of HLIN is:

HLIN xl,x2 AT y

This statement draws a horizontal line of a previously determined
color between columns xl and x2 at graphics row y . The range of values

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 115

for all three terms must be from 0 to 39, and x2 must be greater than xl
(HLIN always draws from left to right.)

The form of VLIN is:

VLIN yl,y2 AT x

This statement draws a vertical line between graphics rows yl and y2,
and at column x. Again, the range of values must be from 0 to 39. Since
VLIN always draws from top to bottom, y2 must be greater than yl.

Try this demonstration program:

10 GR
20 CALL -936
30 COLOR=7
40 HLIN 0,39 AT 20
50 VLIN 0,39 AT 20
60 END

The program draws a set of light blue horizontal and vertical lines that
intersect near the middle of the screen. Notice that the vertical line is wider
than its horizontal counterpart. That is not an effect created by the HLIN
and VLIN statements. Rather, it illustrates the fact that the low-resolution
graphics scheme uses rectangular blocks of color-blocks that are about
twice as wide as they are high.

If you would like to give those two lines the same width, you must
double the width of the horizontal line. There is no way to reduce the width
of the vertical line. So try this:

10 GR
20 CALL -936
30 COLOR=7
35 f'QR- N=0 TO 1
40 HLIN 0,39 AT 20+N
45 NEXT N
50 VLIN 0,39 AT 20
60 END

Lines 35 through 45 draw the horizontal line twice-once at graphics row
20 and then again at row 21.

116 • INTERMEDIATE-LEVEL APPLE II HANl;>BOOK

Enter, RUN, and observe the action of the following program:

100 GR
110 CALL -936
120 COLOR=4
130 FOR X=0 TO 39
140 VLIN 0,39 AT X
150 NEXT X
160 COLOR=l5
170 FOR Y=0 TO 39 STEP 39
180 HLIN 0,39 AT Y
190 NEXT Y
200 FOR X=0 TO 39 STEP 39
210 VLIN 0,39 AT X
220 NEXT X
230 END

This program does the same graphics task as an earlier one written
without the help of HUN and VLIN statements. The program listing, it
self, is not significantly shorter nor simpler, but it certainly executes the
drawing operation faster. This speed is the advantage that HLIN and VLIN
statements have over the PLOT statement.

The SCRN Statement The SCRN statement fetches the color code
of any low-resolution graphics point on the screen. The appropriate syntax
is:

SCRN(x,y)

where x is the column number and y is the low-resolution row number.
The following example assigns the color code of a graphics element at

location 12,35 to variable CC:

CC=SCRN(12,35)

Graphics Techniques The small size of the family of low-resolution
graphics statements belies its flexibility. Given the four statements, a pro
grammer can:

e Compose elaborate, full-color static (nonanimated) pictures on the
screen.

• Draw colorful and dynamic graphs.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 117

e Plot combinations of static images and simple moving objects.
e Compose interesting and entertaining full-color animation sequences.

Composing static pictures is a matter of planning the size, shape, posi
tion, and color of each of the elements of the picture, using a worksheet
such as the one in Fig. 6-1 as a guide. After doing the planning on such a
worksheet, the next step is to draw up sequences of COLOR, PLOT,
HLIN, and VLIN statements for each element. The idea is simple in prin
ciple, but it requires some time and effort on your part. If you haven't seen
many interesting low-resolution static pictures, it means that you haven't
encountered anyone who cares to take the time to write such programs.

Making up programs for drawing graphs is also quite simple in princi
ple. It is a matter of applying the numerical data you want to graph to the
small family of low-resolution graphics statements. Colorful bar graphs are
especially easy to work out on the Apple system.

Knowing how to create the impression of a simple moving object
against a colorful background can lead to a lot of exciting graphics-oriented
games. Moving that simple object on the screen is a matter of looking
ahead to its next position, saving the color code of that point by means of a
SCRN statement, plotting over the moving object with a previously saved
color code, and then plotting the moving object in its new position.

Full-screen animation sequences are difficult to generate without notic
ing a lot of flickering on the screen. But the job can be done quite satisfac
torily, especially if you can have access to the secondary low-resolution
graphics page. Again, if you haven't seen any good full-screen animations
on the Apple, it is because so few people have the necessary combination
of artistic imagination, skill, and patience.

The exact details for implementing any of these graphics techniques
are far beyond the scope of this book. The basic ideas are rather simple and
Integer BASIC includes all the necessary tools; the problem is that illustrat
ing the step-by-step procedures would fill an entire book.

Roie of the Apple Monitor All of the low-resolution graphics
statements in BASIC refer to the Apple monitor. The BASIC statements
are simply keywords for accessing the actual graphics routines in the
machine-language monitor. Dressing up the graphics techniques with
BASIC keywords slows down the drawing operations. That will be no big
surprise to you later on when we look at the graphics techniques again from
a purely machine-language point of view.

POKEING COLORS TO THE SCREEN Just as it is possible, and
often desirable, to PO KE text characters to the video text memory, it is
possible to POKE colors to the low-resolution memory.

1111 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

Organization of the low-Resolution Video Memory The
low-resolution video memory is formatted in exactly the same way as the
video text memory. In fact, they are one and the same. POKEing char
acters into the primary-page video memory under TEXT plots text char
acters. POKEing data into the primary-page video memory under GR plots
colored rectangles of light.

Tables 6-2 and 6-3 show the memory maps for the primary and secon
dary low-resolution graphics RAM. The maps are shown here only as a
matter of convenience; they are identical to the video text memory maps
shown earlier in Tables 4-1 and 4-2.

Table 6-2. Graphics Primary Page Memory Map

Line Address Range

0 1024-1063
1 1152-1191
2 1280-1319
3 1408-1447
4 1536-1575
5 1664-1703
6 1792-1831
7 1920-1959

8 1064-1103
9 1192-1231

10 1320-1359
11 1448-1487
12 1576-1615
13 1704-1743
14 1832-1871
15 1960-1999

16 1104-1143
17 1232-1271
18 1360-1399
19 1488-1527
20 1616-1655
21 1744-1783
22 1872-1911
23 2000-2039

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 119

Table 6-3. Graphics Secondary Page Memory Map

Line Address Range

0 2048-2087
1 2176-2215
2 2304-2343
3 2432-2471
4 2560-2599
5 2688-2727
6 2816-2855
7 2944-2983

8 2088-2127
9 2216-2255

10 2344-2383
11 2472-2511
12 2600-2639
13 2728-2767
14 2856-2895
15 2984-3023

16 2128-2167
17 2256-2295
18 2384-2423
19 2512-2551
20 2640-2679
21 2768-2807
22 2896-2935
23 3024-3063

The following experiment ought to convince you that the video text
and low-resolution graphics occupy the same RAM addresses and can be
accessed in the same fashion.

l. Enter and run this text-oriented program:

10 TEXT
20 CALL -936
30 FOR N=0 TO 39
40 POKE 1448+N,153
50 NEXT N
60 GOTO 60

120 " INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

The program uses text techniques described in Chapter 4 to POKE a
full line of 153 character codes (NORMAL- I Y character) to video
RAM addresses 1448 through 1487. It POKEs a full line of 40 Y char
acters to the screen. Since line 60 loops to itself, you must do a
CTRL-C to get out of the program.

2. Alter line 10 in that program to read GR instead of TEXT. Run the
program, which now looks like this:

HJ
20
30
40
50
60

GR
CALL -936
FOR N=0 TO 39
POKE 1448+N,153
NEXT N
GOTO 60

You should see a wide orange bar stretching horizontally across the
screen.

What is the difference between the program routines in Steps l and 2?
Both steps POKE code 153 to successively higher video RAM addresses,
from 1448 through 1487. Step 1, however, prints a series of white-on-black
Y characters, while Step 2 transforms those same Y characters into orange
rectangles of light.

3. Get out of the program in Step 3 by doing a CTRL-C.
4. Do a TEXT command from the keyboard. You will see that most of

the upper section of the text screen is filled with inverse @ char
acters. But the row of Y characters is there, too.

Returning from GR to TEXT causes the Apple system to interpret that
series of characters you POKEd into video RAM as text characters rather
than graphic characters. What is the meaning of all those inverse @ char
acters? Recall that executing the GR statement clears the low-resolution
screen to all black; the inverse@ character happens to be the text interpre
tation of graphic black.

The text interpretation of any graphics characters remains on the
screen when going from GR to TEXT because the system does not auto
matically clear the screen when switching modes in that direction.

The differences between the TEXT and GR interpretations of char
acter codes is the main subject of the next discussion. What is more impor
tant at this point is to realize that the video text and low-resolution graphics
memories are one and the same. That includes the secondary text/graphics
page as well.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT ., 121

So the overall effect of POKEs and PEEKs to video memory depends
on whether the system is running under the TEXT or the GR mode.
POKEing characters to video memory under TEXT prints text characters
to the screen. POKEing characters to video memory under GR plots low
resolution graphic blocks to the screen.

Graphics Color Codes Chapter 4 describes how it is possible to
POKE a family of 256 different text character codes to the primary or sec
ondary video RAM addresses. Those codes are numbered 0 through 255
and represent the entire range of printable characters, including inverse,
flashing, NORMAL-I, and NORMAL-2 characters. (See Tables 4-3 through
4-5.)

Since the low-resolution graphics scheme uses the same general video
environment, it follows that there are also 256 possible graphics codes that
are numbered 0 through 255. POKEing those codes to the primary or sec
ondary page plots different colors on the screen.

By way of an introduction to this idea, enter and run the following
text-related program:

100 TEXT
110 CALL -936
120 TAB l: VTAB l
130 FOR CC=0 TO 15
140 GOSUB 200
150 NEXT cc
160 VTAB 21
170 END
200 VTAB CC+l
210 FOR N=0 TO 39
220 POKE 256* PEEK (41)+ PEEK (40)+N,CC*l7
230 NEXT N
240 RETURN

The result appears to be largely meaningless. You should see rows of 16
different text characters: inverse @, inverse Q, inverse quotation mark,
inverse 3, flashing D, and so on. They represent a series of text codes from
0 through 255 in steps of 17.

The routine uses TAB and VTAB statements to set the lines of text in
an orderly fashion. Line 220 uses a procedure described earlier to POKE
characters to the current RAM address calculated from BASH and BASL.
It is the peculiar selection of character codes, and not the basic text
printing idea, that is new here.

Now, revise line 100 in that program to read GR instead of TEXT. The
result should look like this:

122 <> INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

100 GR
110 CALL -936
120 TAB 1: VTAB 1
130 FOR CC=0 TO 15
140 GO SUB 200
150 NEXT cc
160 VTAB 21
170 END
200 VTAB CC+l
210 FOR N=0 TO 39
220 POKE 256* PEEK (41)+ PEEK (40)+N,CC*l7
230 NEXT N
240 RETURN

When you run this version of the same program, the results on the
screen will be remarkably different and far more meaningful. You'll see the
16 low-resolution graphics colors plotted as horizontal bands. That "pecul
iar'' selection of character codes plots lines of different colors under the
GR mode of operation.

Table 6-4 summarizes those codes and the colors they create when
POKEd to the screen in the GR mode and in the TEXT mode. Those code
numbers, shown in increments of 17, represent the sequence of 16 colors
that can be PLOTted to.the screen. Compare them with the PLOT codes in
Table 6-1.

Using that series of code numbers, you can plot full-sized blocks of
color anywhere on the screen but at the four bottom lines. Notice that they
are full-sized blocks, and not the half-height blocks that appear in response
to a PLOT statement. Since you are getting into the low-resolution graphics
mode by doing a GR, you cannot plot colors in the lower four lines that are
dedicated to text operations. Try to POKE a color code in that text region,
and you will see a text character.

POKEing colors to the low-resolution graphics screen is a bit trickier
and more cumbersome than using the more traditional methods (using
COLOR, PLOT, HUN, and so on), but the notion offers some advantages
as well. One advantage is that you can POKE color codes to the secondary
video page. Like PRINT statements in the TEXT mode, PLOT-type state
ments in GR work only with the primary page of video. There are other
instances when it is advantageous to combine tradition.al graphics state
ments and POKE statements.

The discussion to this point deals with only 16 different colors that can
be POKEd to the graphics screen. There are supposed to be 256 possible
color codes. What about the remaining 240 codes?

The 16 codes cited in Table 6-4 represent the codes that POKE a full
block of a single color to the graphics screen.. They are not the half-height

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 123

blocks that you can PLOT to the screen by the traditional graphics
methods, but full-sized blocks that occupy an entire character space.
What's more, the full-sized block has a single color. Therein lies the differ
ence between the 16 codes in Table 6-4 and the remaining 240 of them.

Most codes that are POKEd to the graphics screen produce two-color
blocks. They are a pair of half-sized blocks that have different colors. The
following program lets you view all 256 color codes as they are POKEd in
sequence to the graphics screen:

100 GR
110 CALL -936
120 TAB 1: VTAB 1
130 FOR N=0 TO 127
140 GOSUB 290
150 NEXT N
160 VTAB 21: TAB 1
170 PRINT "CODES 0-127": PRINT
180 INPUT "STRIKE RETURN FOR MORE ... ",S$
190 CALL -936
200 VTAB 1: TAB 1
210 FOR N=l28 TO 255
220 GOSUB 290
230 NEXT N
240 VTAB 21: TAB 1
250 PRINT "CODES 128-255": PRINT
260 INPUT "WANT TO SEE FIRST SERIES AGAIN (Y/N)?",S$
270 IF S$="N" THEN END
280 CALL -936: GOTO 120
290 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),N
300 CALL -1036
310 CALL -1036
320 IF PEEK {36)=0 THEN CALL -926
330 RETURN

Enter and run the program, and you will see the first 128 color codes
as. they appear in the GR mode of operation. There will be a blank space
between each code. You can view the other 128 codes by striking the RE
TURN key when prompted to do so. Notice that most of them are two
colored blocks.

Incidentally, you should be able to follow the techniques used in this
particular program. They are really no different from the techniques used in
TEXT programs. The only difference between this program and a program
that prints out all of the Apple text characters, with a blank space between
characters and a blank between rows, is the GR statement in line 100.
Change that line to read TEXT, and you will see what we mean. Indeed,
there are no real differences between the techniques for POKEing text
(Chapter 4) and POKEing graphics.

124 <> INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

Table 6-4. Full Block Color Codes

POKE color Full-block Equivalent
code color text character

0 black inverse@
17 magenta inverse Q
34 dark blue inverse 11

51 purple inverse 3
68 dark green flashing D

85 grey 1 flashing U
102 medium blue flashing &
119 light blue flashing 7
136 brown NORMAL-1 H
153 orange NORMAL-1 Y

170 grey 2 NORMAL-1 *
187 pink NORMAL-1;
204 light green NORMAL-2 L
221 yellow NORMAL-2]
238 aquamarine NORMAL-2.

255 white NORMAL-2?

Table 6-5 lists all possible combinations of upper and lower colors and
the corresponding color codes for all 256 POKE values. It is an extensive
list, to be sure, but it is indispensable for planning low-resolution color
graphics. To determine which codes to use from the table, first decide on
the colors you want for the upper and lower halves of the block. Search the
UPPER part of the listing first for the upper color. After finding the proper
upper color codes, search that section for the color code of the LOWER
half of the block.

Suppose, for instance, you want to plot a purple segment over an
orange segment at video address 1068. First search the table for the PUR
PLE listing as the UPPER portion of the block. After you find that, look
for the ORANGE listing as the LOWER portion in that section of the table.
The corresponding color code is 147. Since that purple-over-orange graphic
is to appear at address 1068, the appropriate statement for doing the job is:

POKE 1068,147

Try it. Get into the GR mode and execute the statement.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT ., 125

Table 6-5. Upper/Lower Color Codes
UPPER/LOWER COLOR

BLACK/BLACK
BLACK/MAGENTA
BLACK/DARK BLUE
BLACK/PURPLE
BLACK/DARK GREEN
BLACK/GREY 1
BLACK/MEDIUM BLUE
BLACK/LIGHT BLUE
BLACK/BROWN
BLACK/ORANGE
BLACK/GREY 2
BLACK/PINK
BLACK/LIGHT GREEN
BLACK/YELLOW
BLACK/AQUA
BLACK/WHITE

MAGENTA/BLACK
MAGENTA/MAGENTA
MAGENTA/DARK BLUE
MAGENTA/PURPLE
MAGENTA/DARK GREEN
MAGENTA/GREY 1
MAGENTA/MEDIUM BLUE
MAGENTA/LIGHT BLUE
MAGENTA/BROWN
MAGENTA/ORANGE
MAGENTA/GREY 2
MAGENTA/PINK
MAGENTA/LIGHT GREEN
MAGENTA/YELLOW
MAGENTA/AQUA
MAGENTA/WHITE

DARK BLUE/BLACK
DARK BLUE/MAGENTA
DARK BLUE/DARK BLUE
DARK BLUE/PURPLE
DARK BLUE/DARK GREEN
DARK BLUE/GREY 1
DARK BLUE/MEDIUM BLUE

126 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

CODE
0

16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

1
17
33
49
65
81
97

113
129
145
161
177
193
209
225
241

2
18
34
50
66
82
98

Table 6-5-cont. Upper/Lower Color Codes

UPPER/LOWER COLOR CODE

DARK BLUE/LIGHT BLUE 114
DARK BLUE/BROWN 130
DARK BLUE/ORANGE 146
DARK BLUE/GREY 2 162
DARK BLUE/PINK 178
DARK BLUE/LIGHT GREEN 194
DARK BLUE/YELLOW 210
DARK BLUE/AQUA 226
DARK BLUE/WHITE 242

PURPLE/BLACK 3
PURPLE/MAGENTA 19
PURPLE/DARK BLUE 35
PURPLE/PURPLE 51
PURPLE/DARK GREEN 67
PURPLE/GREY l 83
PURPLE/MEDIUM BLUE 99
PURPLE/LIGHT BLUE 115
PURPLE/BROWN 131
PURPLE/ORANGE 147
PURPLE/GREY 2 163
PURPLE/PINK 179
PURPLE/LIGHT GREEN 195
PURPLE/YELLOW 211
PURPLE/ AQUA 227
PURPLE/WHITE 243

DARK GREEN/BLACK 4
DARK GREEN/MAGENTA 20
DARK GREEN/DARK BLUE 36
DARK GREEN/PURPLE 52
DARK GREEN/DARK GREEN 68
DARK GREEN/GREY 1 84
DARK GREEN/MEDIUM BLUE 100
DARK GREEN/LIGHT BLUE 116
DARK GREEN/BROWN 132
DARK GREEN/ORANGE 148
DARK GREEN/GREY 2 164
DARK GREEN/PINK 180
DARK GREEN/LIGHT GREEN 196
DARK GREEN/YELLOW 212

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT e 127

Table 6-5-cont. Upper/Lower Color Codes

UPPER/LOWER COLOR CODE

DARK GREEN/AQUA 228
DARK GREEN/WHITE 244

GREY I/BLACK 5
GREY 1/MAGENTA 2I
GREY I/DARK BLUE 37
GREY I/PURPLE 53
GREY I/DARK GREEN 69
GREY 1/GREY I 85
GREY I/MEDIUM BLUE lOI
GREY I/LIGHT BLUE 117
GREY 1/BROWN 133
GREY I/ORANGE I49
GREY 1/GREY 2 I65
GREY I/PINK I8I
GREY 1/LIGHT GREEN I97
GREY 1/YELLOW 213
GREY I/AQUA 229
GREY I/WHITE 245

MEDIUM BLUE/BLACK 6
MEDIUM BLUE/MAGENTA 22
MEDIUM BLUE/DARK BLUE 38
MEDIUM BLUE/PURPLE 54
MEDIUM BLUE/DARK GREEN 70
MEDIUM BLUE/GREY I 86
MEDIUM BLUE/MEDIUM BLUE 102
MEDIUM BLUE/LIGHT BLUE I I8
MEDIUM BLUE/BROWN 134
MEDIUM BLUE/ORANGE 150
MEDIUM BLUE/GREY 2 I66
MEDIUM BLUE/PINK I82
MEDIUM BLUE/LIGHT GREEN I98
MEDIUM BLUE/YELLOW 2I4
MEDIUM BLUE/AQUA 230
MEDIUM BLUE/WHITE 246

LIGHT BLUE/BLACK 7
LIGHT BLUE/MAGENTA 23
LIGHT BLUE/DARK BLUE 39
LIGHT BLUE/PURPLE 55

128 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

c I L

r
I I

I I
i

Table 6-5-cont. Upper/Lower Color Codes
UPPER/LOWER COLOR CODE

LIGHT BLUE/DARK GREEN 71
LIGHT BLUE/GREY 1 87
LIGHT BLUE/MEDIUM BLUE 103
LIGHT BLUE/LIGHT BLUE 119
LIGHT BLUE/BROWN 135
LIGHT BLUE/ORANGE 151
LIGHT BLUE/GREY 2 167
LIGHT BLUE/PINK 183
LIGHT BLUE/LIGHT GREEN 199
LIGHT BLUE/YELLOW 215
LIGHT BLUE/AQUA 231
LIGHT BLUE/WHITE 247

BROWN/BLACK
BROWN/MAGENTA
BROWN/DARK BLUE
BROWN/PURPLE
BROWN/DARK GREEN
BROWN/GREY 1
BROWN/MEDIUM BLUE
BROWN/LIGHT BLUE
BROWN/BROWN
BROWN/ORANGE
BROWN/GREY 2
BROWN/PINK
BROWN/LIGHT GREEN
BROWN/YELLOW
BROWN/AQUA
BROWN/WHITE

ORANGE/BLACK
ORANGE/MAGENTA
ORANGE/DARK BLUE
ORANGE/PURPLE
ORANGE/DARK GREEN
ORANGE/GREY 1
ORANGE/MEDIUM BLUE
ORANGE/LIGHT BLUE
ORANGE/BROWN
ORANGE/ORANGE
ORANGE/GREY 2

8
24
40
56
72
88

104
120
136
152
168
184
200
216
232
248

9
25
41
57
73
89

105
121
137
153
169

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 129

Table 6-5-cont. Upper/Lower Color Codes

UPPER/LOWER COLOR CODE

ORANGE/PINK 185
ORANGE/LIGHT GREEN 201
ORANGE/YELLOW 217
ORANGE/AQUA 233
ORANGE/WHITE 249

GREY 2/BLACK 10
GREY 2/MAGENTA 26
GREY 2/DARK BLUE 42
GREY 2/PURPLE 58
GREY 2/DARK GREEN 74
GREY 2/GREY 1 90
GREY 2/MEDIUM BLUE 106
GREY 2/LIGHT BLUE 122
GREY 2/BROWN 138
GREY 2/0RANGE 154
GREY 2/GREY 2 170
GREY 2/PINK 186
GREY 2/LIGHT GREEN 202
GREY 2/YELLOW 218
GREY 2/AQUA 234
GREY 2/WHITE 250

PINK/BLACK 11
PINK/MAGENTA 27
PINK/DARK BLUE 43
PINK/PURPLE 59
PINK/DARK GREEN 75
PINK/GREY 1 91
PINK/MEDIUM BLUE 107
PINK/LIGHT BLUE 123
PINK/BROWN 139
PINK/ORANGE 155
PINK/GREY 2 171
PINK/PINK 187
PINK/LIGHT GREEN 203
PINK/YELLOW 219
PINK/AQUA 235
PINK/WHITE 251

LIGHT GREEN/BLACK 12

LIGHT GREEN/MAGENTA 28

130 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 6-5-cont. Upper/Lower Color Codes

UPPER/LOWER COLOR CODE

LIGHT GREEN/DARK BLUE 44
LIGHT GREEN/PURPLE 60
LIGHT GREEN/DARK GREEN 76
LIGHT GREEN/GREY 1 92
LIGHT GREEN/MEDIUM BLUE 108
LIGHT GREEN/LIGHT BLUE 124
LIGHT GREEN/BROWN 140
LIGHT GREEN/ORANGE 156
LIGHT GREEN/GREY 2 172
LIGHT GREEN/PINK 188
LIGHT GREEN/LIGHT GREEN 204
LIGHT GREEN/YELLOW 220
LIGHT GREEN/AQUA 236
LIGHT GREEN/WHITE 252

YELLOW/BLACK 13
YELLOW/MAGENTA 29
YELLOW/DARK BLUE 45
YELLOW/PURPLE 61
YELLOW/DARK GREEN 77
YELLOW/GREY 1 93
YELLOW/MEDIUM BLUE 109
YELLOW/LIGHT BLUE 125
YELLOW/BROWN 141
YELLOW/ORANGE 157
YELLOW/GREY 2 173
YELLOW/PINK 189
YELLOW/LIGHT GREEN 205
YELLOW/YELLOW 221
YELLOW/AQUA 237
YELLOW/WHITE 253

AQUA/BLACK 14
AQUA/MAGENTA 30
AQUA/DARK BLUE 46
AQUA/PURPLE 62
AQUA/DARK GREEN 78
AQUA/GREY 1 94
AQUA/MEDIUM BLUE 110
AQUA/LIGHT BLUE 126
AQUA/BROWN 142

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 131

Table 6-5-conL Upper/Lower Color Codes

UPPER/LOWER COLOR CODE
AQUA/ORANGE 158
AQUA/GREY 2 174
AQUA/PINK 190
AQUA/LIGHT GREEN 206
AQUA/YELLOW 222
AQUA/AQUA 238
AQUA/WHITE 254

WHITE/BLACK 15
WHITE/MAGENTA 31
WHITE/DARK BLUE 47
WHITE/PURPLE 63
WHITE/DARK GREEN 79
WHITE/GREY 1 95
WHITE/MEDIUM BLUE 111
WHITE/LIGHT BLUE 127
WHITE/BROWN 143
WHITE/ORANGE 159
WHITE/GREY 2 175
WHITE/PINK 191
WHITE/LIGHT GREEN 207
WHITE/YELLOW 223
WHITE/AQUA 239
WHITE/WHITE 255

Getting Help From the Cursor Registers Of course, you can
plan an elaborate, full-color picture to be drawn in low-resolution graphics,
use the table to determine the necessary color codes, and then write a
program that POKEs those codes to the appropriate video RAM addresses.
Even for ambitious graphics programmers, that represents a lot of tedious
work. It would be nice to simplify matters somewhere along the line. For
tunately, there is at least one technique that can simplify one major phase
of the task.

There is no need to POKE the graphics codes to absolute video mem
ory addresses; at least there is no need for figuring out a RAM address for
each and every graphic code to be POKEd to the screen. Since the text and
graphics modes share the same video memory, it is altogether possible, and
quite practical, to use many of the cursor-related operations already de
scribed for purely text-oriented programs. You can see some of the ideas in
some previous demonstration programs.

The key to applying cursor-type functions to low-resolution graphics is
the function:

132 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

256* PEEK(41) +PEEK(40) +PEEK(36)

This function generates the actual video RAM address based upon the con
tent of BASH, BASL and CH. It turns up a valid POKE address for a text
character or graphic color code.

The function can then be used in conjunction with several cursor
moving CALLs:

CALL -926 - Linefeed/cmTiage return.
CALL -1036- Advance.
CALL -1008- Backspace
CALL -922 - Downward linefeed.
CALL -998 - Upward linefeed.

And the function can be used with TAB and VTAB statements as well. In
fact, the only cursor-related functions that do not work well with low
resolution graphics are those that clear a portion or all of the screen. (A
CALL -868 in the TEXT mode erases to the end of the current line. Exe
cuted in GR, it leaves black-over-grey bars to the end of the line.)

The following program plots a large orange square near the middle of
the screen. It uses TAB and VTAB to establish the position of the upper
left-hand comer of the square, the ADVANCE function to plot the orange
codes along each line, and a CALL -922 to do a downward linefeed at the
beginning of each line.

100 GR
110 CALL -936
120 VTAB 8: TAB 18
130 FOR Y=0 TO 5
140 FOR X=0 TO 7
150 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36),153
160 CALL -1036
170 NEXT X
180 TAB 18
190 CALL -922
200 NEXT Y
210 VTAB 20
220 END

The scheme works nicely as long as the cursor remains within the
graphics area of the screen. However, if you allow it to move out of the
graphics area and into the four-line text area at the bottom of the screen,
the system prints the text version of the characters rather than the graphic
version of them.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT " 133

So what is the purpose of the VTAB 20 statement in program line 210?
Its purpose is to force the cursor out of the graphics area so that the sub
sequent END statement prints the prompt symbol in the text area. Delete
line 210 from the program and run it again. The little pattern of colors
added to the display represents the GR version of the prompt symbol.

ALTERNATIVE SCREEN FORMATS Executing the GR command
sets up the normal low-resolution graphics format. It displays the primary
text/graphics page, allocates most of the screen for graphics operations,
and leaves four lines for text at the bottom of the screen. There are some
desirable alternatives, however.

For one, you might want to work with a full screen of graphics, getting
rid of that lower four lines of text that can be an aesthetic nuisance at
times. Or perhaps you want to switch from the TEXT to low-resolution
graphics without having the system automatically dear the graphics portion
of the screen. You may also want that page of low-resolution graphics.

A few simple POKE statements will give you that control over the
video text/graphics system.

Table 6-6. Text/Graphics Software Switches

POKE Address Video Mode

-16299 Display the secondary page
-16300 Display the primary page

-16301 Display mixed text and graphics
-16302 Display all text or all graphics

-16303 Display a text mode
-16304 Display a graphics mode

The Screen Mode "Switches" Table 6-6 shows three pairs of
text/graphics "software switches." Together, they make up a selection of
three video modes. You can set one of the two conditions in each mode by
POKEing a 0 to the designated address.

The first pair of software switches uses addresses -16299 and -16300.
They determine whether the system displays the secondary or primary
page of video information. It makes no difference whether you are working

POKE -16299,0-Display the secondary video
page.

POKE -16300,0-Display the primary video page.

134 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

in the text or graphics modes. POKEing to these addresses sets up the
display for the primary or secondary page.

POKEing a 0 to either of those addresses sets the corresponding page to
the video screen and automatically resets its counterpart.

The second pair of addresses, -16301 and -16302, works together this
way:

POKE -16301,0-Display mixed text and graphics.
The bottom four lines are dedi
cated to text and the remainder
of the screen is set for low
resolution graphics.

POKE -16302,0-Display all text or all graphics.

Doing a GR command sets up the mixed text/graphics mode and auto
matically clears the graphics portion of the screen to black. A POKE
-16301,0 also sets up the mixed text/graphics mode, but it does not clear the
graphics part of the screen.

The third pair of software ''switches'' lets you determine whether you
are working in a text or graphics mode.

Having three pairs of software mode switches available means that
there are eight possible combinations of mode settings. Once you set up
one of those combinations, the system remains in that mode until you do
something to change it. A programmer rarely has to think in terms of eight
separate video mode combinations. Rather, a programmer thinks in terms
of POKE operations that are necessary for going from one mode combina
tion to another. You will see this notion at work in the following dis
cussions.

This program lets you play around with all the various video modes.
Enter the program and RUN it. It is a key-controlled program that re
sponds immediately to the following keystrokes:

S -Displays the secondary page.
P -Displays the primary page.
M-Displays mixed text/graphics.

1 I F -Displays all (full-screen) text/graphics.
I T -Sets a text mode.

G-Sets a graphics mode.

I 1 The program makes it possible for you to set up all possible combina-
tions of pages and text/graphics modes. Study the program carefully, and
you will see how it takes advantage of the information in Table 6-6.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 135

100 K= PEEK (-16384)
110 IF K<l28 THEN 100
120 POKE -16368,0
130 IF K=208 THEN 230
140 IF K=211 THEN 240
150 IF K=212 THEN 250
160 IF K=l99 THEN 210
170 IF K=l98 THEN 200
180 IF K=205 THEN 220
190 GOTO 100
200 POKE -16302,0: GOTO 100
210 POKE -16304,0: GOTO 100
220 POKE -16301,0: GOTO 100
230 POKE -16300,0: GOTO 100
240 POKE -16299,0: GOTO 100
250 POKE -16303,0: GOTO 100

Full-Screen Graphics Suppose that the system is in the normal,
full-screen text mode and is displaying the primary video page. If you exe
cute a GR statement from that mode, the system goes to mixed text/
graphics and clears the graphics portion of the primary page. But suppose
that you want to go from the normal, full-screen text mode to a full-screen,
low-resolution graphics mode. You want to work with low-resolution
graphics, but without having the four lower lines on the screen allocated for
text-only operations. Here is a combination of POKEs that accomplish that
feat:

POKE -16302,0
POKE -16304,0

The horizontal dimensions of the graphics area are identical for mixed
and full-screen graphics. The range of vertical plotting is greater for full
screen modes, however. Instead of being limited to vertical PLOT coordi
nates from 0 through 39, with full-screen graphics you can use coordinates
from 0 through 47. Now, the four lower lines on the screen are open to
low-resolution operations. In the same fashion, full-screen graphics extends
the vertical range of VLIN statements to 0 through 47.

136 " INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

Try the following full-screen graphics program:

100 POKE -16302,0
110 POKE -16304,0
120 COLOR=4
1,30 FOR Y=0 TO 47
140 HLIN 0, 39 AT Y
150 NEXT Y
160 COLOR=l5
170 FOR Y=0 TO 47 STEP 47
180 HLIN 0,39 AT Y
190 NEXT Y
200 FOR X=0 TO 39 STEP 39
210 VLIN 0,47 AT X
220 NEXT x
230 GOTO 230

The program plots a green background and surrounds it with a white bor
der. Notice that the image fills the entire screen. HLIN operations are still
limited to coordinates from 0 through 39, but the technique extends the
VLIN operations to coordinates from 0 through 47.

When using full-screen, low-resolution graphics, it is especially impor
tant that the program doesn't come to an end before you want it to. Line
230 in the preceding program, for instance, does a "loop-to-self" to pre
vent the program from executing an END-type operation. Delete line 230
or replace it with an END statement, run the program again, and notice the
undesirable result.

Try appending the program with these lines:

230 FOR T=0 TO 1000: NEXT T
240 TEXT
250 CALL -936
260 END

When you run the program modified in that fashion, the image is displayed
for a period determined by the delay loop in line 230. After that, line 240
returns the system to the text mode, line 250 clears the screen and homes
the cursor, and line 260 brings the program to an end.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 137

Line 240 in that modified version of the program demonstrates that you
can always return to a normal TEXT mode from full-screen graphics by
executing the TEXT statement. Alternatively, you can accomplish the
same thing by doing a POKE -16303,0. Why is this so? Replace line 240
with PO KE -16303, 0 and note the effect on the operation of the program.

To recapitulate, there are two ways to return from full-screen graphics
to full-screen text: TEXT or POKE -16303,0.

Just as the elementary low-resolution graphics statements work in
full-screen modes, so do the POKE-to-graphics techniques work. It is
possible to POKE color codes into those four lower lines on the screen and
see the color blocks appear there. There is one note of caution when
POKEing color codes to full-screen graphics: if you are using the
256*PEEK(4I)+PEEK(40)+PEEK(36) method, avoid the last character
space in the last line on the screen. POKEing a color code into that particu
lar position will cause the entire graphics screen to scroll upward.

Going to full-screen graphics from the normal text mode does not
automatically clear the screen to black. This poses no real problem if your
drawing routine refers to the entire screen, but there are occasions when
you will want to clear the graphics screen to black before beginning a draw
ing routine. The following program suggests a method for switching to fuU
screen graphics and clearing to black:

100 POKE -16302,0: POKE -16304,0
110 COLOR=0
120 FOR X=0 TO 39
130 VLIN 0,47 AT X
140 NEXT X
150 GOTO 150

See if you can figure out how and why it works. Try it for yourself.

Working With the Secondary Page Doing a POKE -16299,0
brings the secondary video page to the screen; and according to Table 6-6,
doing a POKE -16300,0 brings back the primary page. Whether you see a
text or low-resolution graphics mode on those pages depends on whether
you have POKEd a 0 to address -16303 (for text) or -16304 (for graphics).
What's more, you can choose full-screen text or graphics by doing a POKE
-16302,0 or mixed text/graphics by doing a POKE -16301,0. Obviously
there are a lot of options here.

Before demonstrating some of these options, it is important to recall
some of the main features of the secondary video page. Chapter 4 outlined
those features for text operations. The same features apply to low
resolution graphics as well.

138 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

First, you must do a LOMEM:3072 if you plan to work with the sec
ondary video page from BASIC. The execution of Integer BASIC often
places variables into RAM addresses used for the secondary page of video.
Doing the LOMEM:3072 forces BASIC to use RAM space above the sec
ondary page memory.

Second, it is not possible to PRINT text directly to the secondary
page. The best technique offered thus far for plotting text characters to the
secondary page is to POKE their codes into that video RAM area.
Likewise, you cannot directly use PLOT, HLIN, VLIN, or SCRN on the
secondary page. At this point in the book, the best way to draw graphics to
the secondary page is with POKE-color techniques.

Finally, it is important to know that the secondary page for low
resolution graphics occupies the same RAM addresses as the secondary
page for text. (See Table 6-3.) The video RAM addresses for the secondary
page are equal to those of the primary page plus 1024.

After executing a LOMEM:3072, enter and run the following program:

10 REM ** THIS PROGRAM LATCHES UP IF YOU FAIL TO DO A LO
MEM:3071 FIRST **

15 POKE -16302,0: POKE -16304,0
20 VTAB l: TAB l
30 FOR N=0 TO 959
40 CP=256* PEEK (41)+ PEEK (40)+ PEEK (36)
45 CALL -1036
50 POKE CP,0: POKE CP+l024,0
60 NEXT N
70 END

The program clears both the primary and secondary graphics pages to
black. You will most likely be watching the primary page during the execu
tion of this rather slow-running program, but you can check out the effect
on the secondary page by doing a POKE -16299,0 from the keyboard after
the program ends. Line 50 is responsible for clearing both pages to black.

The routine illustrates two points. First, you can POKE graphics to the
secondary page by thinking in terms of primary-page graphics and adding
1024 to the POKE addresses. Second, the drawing procedure is terribly
slow. Even if you shortened line 50 to POKE to just one of the pages, the
program wouldn't run much faster. The slow drawing speed of POKE
graphics can be made more tolerable by displaying a finished drawing on
one page while the program is drawing the text image on the other page.

Another useful trick is to use the primary graphics page for the faster
drawing operations of PLOT, HLIN, and VLIN, and the secondary page
for the slower POKE graphics.

THE LOW-RESOLUTION GRAPHICS ENVIRONMENT • 13!1

The situation doesn't have to be so complicated, however. You will
find in a later chapter that machine-language graphics run at the same high
speed on both the primary and secondary pages. Animated graphics, m
fact, demand the higher-speed, machine-language procedures.

140 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

! i

The High-Resolution
Graphics Environment

The high-resolution graphics environment is fertile ground for a lot 7 of intriguing experiments and programming work. It seems to be the
least-used scheme for most people, though, because it is the least devel
oped part of the Apple in terms of programmer convenience.

If you have had some difficulty in the past working with high
resolution graphics programs, you aren't alone. Most beginners have
trouble with it. However, the Programmer's Aid hi-res routines (included in
the Integer BASIC ROMs) help a lot. At least they allow you to approach
high-resolution graphics from BASIC. But, even then, hi-res programming
operations seem quite peculiar and often confusing to BASIC program
mers.

DOS users have an additional problem in that DOS boots up in sec
tions of memory that are otherwise used for hi-res graphics. In other
words, DOS and hi-res compete for RAM space.

This does not mean that high-resolution graphics is a no-man's land. It
does mean that hi-res requires special programming care and precise think
ing every step along the way.

RECKONING WITH LOMEM AND HIMEM When working with
high-resolution graphics from Integer BASIC, you need to reckon with
LOMEM and HIMEM. These two commands set the low memory and high
memory locations, respectively, of BASIC programs and related data.

Exactly how you should handle the LOMEM and HIMEM settings
depends a great deal on how much RAM is installed in your system. A brief
discourse on the nature of LOMEM and HIMEM operations will help you
understand how they affect your RAM space and high-resolution graphics
operations.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 141

HIMEM Settings Unless you direct the system to do otherwise, it
will automatically set HIMEM to the highest available RAM address plus
l. That is called the default HIMEM address. In other words, if you have
16K of RAM, the default HIMEM setting is 16384. If you have 32K of
RAM, the default HIMEM setting is 32768. Finally, if you have 48K of
RAM, the default HIMEM setting is -16384. The system sets up its default
HIMEM address whenever you initialize Integer BASIC with a CTRL-B
operation.

Integer BASIC programs always begin from the HIMEM address,
minus 1, and build downward toward lower addresses in RAM. So unless
you make a special effort to set HIMEM to something other than its default
value, Integer BASIC programs will always begin at the highest available
RAM address and build downward.

If you have a 16K system, your highest available RAM address is right
at the top of the primary page of high-resolution graphics. That's terrible!
Not only do you lack a secondary page for high-resolution work, but In
teger BASIC programming writes directly into the primary page that you
do have. Therefore, you cannot hope to use hi-res and Integer BASIC to
gether in a 16K system as long as HIMEM is at its default setting.

There is a way around the problem, though, and that is by entering a
HIMEM:8192 prior to writing Integer BASIC programs for high-resolution
graphics. Entering that command sets HIMEM to the bottom of the high
resolution video RAM area. Integer BASIC programs will then build
downward and away from that vital graphics area. However, whenever you
restart the Apple or do a CTRL-B, you must enter HIMEM:8192 again.

The HIMEM setting is a bit less critical if you have a 32K or 48K
system. In those instances, the default HIMEM settings are well above
even the secondary page of hi-res video RAM. With a 32K system, the
default HIMEM setting leaves lK of useful RAM and an additional lK if
you decide you won't need the secondary page of hi-res graphics. (If a total
of 2K of Integer BASIC programming RAM doesn't seem to be enough,
that's too bad. You'd better think about buying some more.) The default
HIMEM setting for a 48K system places the BASIC programming 24K
above any video memory, so that there is rarely any need to worry about
running out of RAM. Perhaps Apple engineers had a 48K system in mind
when they worked out the high-resolution graphics schemes.

LOMEM Settings The default setting for the LOMEM address is al
ways 2048, regardless of the amount of RAM in the Apple system. This
address marks the starting point of the variable table, which is used for
storing the values of variables that are generated during the execution of an
Integer BASIC program. The variable table builds upward from LOMEM.
So as you enter an Integer BASIC program, the program instructions begin

142 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

at HIMEM and build downward. As you execute that program, any vari
ables that it uses begin at LOMEM and build upward. The unused RAM in
between is narrowed down from both ends at the same time.

The default LOMEM setting is well below any high-resolution graphics
RAM space, so it would take a very unusual program to cause the Integer
BASIC tables to encroach on high-resolution graphics memory.

·Another important feature of LOMEM is that it specifies the default
entry address of shape tables. You can force the shape tables to be loaded
elsewhere, as explained later; otherwise they will load from cassette tape to
the LOMEM address and upward.

Now think about this: If Integer BASIC stores its variables from
LOMEM and up, and if shape tables load from cassette tape from LOMEM
and up, won't there be a conflict of RAM space? Not if you load the shape
tables from tape as spelled out in the Apple manuals.

Indeed, shape tables begin loading at the LOMEM address (unless you
clearly specify otherwise). But as the tables are loaded, the system pushes
the LOMEM address above the shape tables. So after loading a shape ta
ble, LOMEM will have some higher address value. Then, BASIC's vari
able table begins from the new LOMEM. That represents a nice piece of
software engineering.

One small matter: The default LOMEM address of 2048 puts it right
at the beginning of the secondary text/low-resolution graphics page. You
are in trouble if you plan to use that secondary page of low-resolution
graphics. But again, there is a way around that problem, and that is to set
LOMEM at the top of the secondary low-res video RAM by entering a
LOMEM:3072.

Suppose that you do set LOMEM above the low-res video memory.
What happens when you load a hi-res shape table? No problem. The table
begins loading at your LOMEM address and pushes LOMEM upward from
there.

Some Recommended LOMEM and HIMEM Settings Tables
7-1 and 7-2 show six arrangements of graphics modes. The first arrange
ment in each table is the simplest. It consists of only the primary page of
low-resolution graphics. The last arrangement is the worst. It consists of
both the primary and secondary pages of both high- and low-resolution
graphics.

The columns labeled LOMEM Setting and HIMEM Setting recom
mend what you should do, if anything, prior to entering the Integer BASIC
programming. The final column, Usable RAM, shows how much RAM is
then available for Integer BASIC programs and hi-res shape tables.

Table 7-1 applies to 16K systems, while Table 7-2 applies to 32K and
48K systems.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 143

Table 7-1. 16K LOMEM and HIMEM Settings

Graphics
Mode Combination LOMEM Setting HIMEM Setting

pri low-res default1 default2

pri low-res LOMEM:3072 default
sec low-res

pri low-res default HIMEM:8192
pri hi-res

pri low-res LOMEM:3072 HIMEM:8192
sec low-res
pri hi-res

pri low-res cannot be done
pri hi-res
sec hi-res

pri low-res cannot be done
sec low-res
pri hi-res
sec hi-res

1Default LOMEM is 2048
2Default HIMEM is 16384

Usable RAM

14K

13K

6K

5K

Suppose that you are using a 16K Apple system and you want to do
some graphics on both the primary and secondary pages of low resolution,
and a bit of primary-page hi-res work as well. According to Table 7-1, you
should begin by doing LOMEM:3072 and HIMEM:8192. Doing that from
the keyboard (in BASIC's command mode) leaves 5K of RAM for BASIC
programming and hi-res shape tables.

Or if you have a 48K system and want to use both pages of low- and
high-resolution graphics, you should set up the memory system by doing a
LOMEM:3072. There is no need to change the default HIMEM address in
this particular instance. That leaves about 45K of RAM for programming
and shape tables. (Doing the same thing on a 32K system leaves 29K of
usable RAM.)

Programming LOMEM and HiMEM Addresses Integer
BASIC does not support LOMEM and HIMEM statements within a pro
gram listing. That is unfortunate, because it would be nice to set LOMEM
and HIMEM at the beginning of a program, eliminating the need for having
to set it before loading the program.

Actually, it is possible to set LOMEM at the beginning of an Integer
BASIC program. The technique takes advantage of the fact that the

144 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-2. 32K and 48K LOMEM and HIMEM Settings

Graphics
Mode Combination LOMEM Setting

pri low-res default1, 3

pri low-res LOMEM:3072
sec low-res

pri low-res default
pri hi-res

pri low-res LOMEM:3072
sec low-res
pri hi-res

pri low-res default
pri hi-res
sec hi-res

pri low-res LOMEM:3072
sec low-res
pri hi-res
sec hi-res

132K Default LOMEM is 2048
232K Default HIMEM is 32768

IDMEM Setting Usable RAM

default2' 4 30K/46K

default 29K/45K

default 30K/46K

default 29K/45K

default 30K/46K

default 29K/45K

348K Default LOMEM is 2048
448K Default HIMEM is -16384

LOMEM is carried in two successive memory addresses, 74 and 75. Those
two RAM locations, known as LOMEML and LOMEMH, represent a
2-byte LOMEM address. Try this experiment:

1. Do a CTRL-B to initialize Integer BASIC.
2. Enter:

PRINT PEEK(74),PEEK(75)

You should see the result printed as

0 8

That is the 2-byte rendition of the current LOMEM address, and that
translates into ordinary decimal numeration as address 2048. (See Ap
pendix A if you are not sure about how to convert 2-byte decimal
numbers into ordinary decimal format.)

Indeed, initializing Integer BASIC sets LOMEM to address 2048 as
described earlier in this chapter.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 145

3. Enter:

POKE 74,0 : POKE 75, 12

POKEing those numbers into LOMEML and LOMEMH sets
LOMEM to 3072-one of the LOMEM addresses recommended for
many graphics applications.

Thus, you have the option of either setting LOMEM from the
keyboard prior to loading a program-by using the LOMEM:3072
command-or you can write the POKE statements just cited as the first
line in a BASIC program that uses that LOMEM setting. If you specify any
ordinary BASIC variables before POKEing in the LOMEM setting, those
variables will be lost to the program.

The current LOMEM setting is carried in RAM
addresses 74 and 75. The first, LOMEML, is the
low-order byte and the second, LOMEMH, is the
high-order byte.

Unfortunately, the HIMEM address still has to be set from the
keyboard prior to loading a program. Attempting to set HIMEM in any
'fashion after you've started loading some Integer BASIC programming will
confuse the system. Most, if not all, of the prior BASIC programming will
be lost.

There is a positive side to the picture, however. Not many program
ming situations call for setting HIMEM anywhere but at its default address,
and that means you need not change it at all.

But for the sake of completeness, you ought to know that HIMEM is
carried as a 2-byte number in memory locations 76 and 77.

The current HIMEM setting is carried in RAM ad
dresses 76 and 77. The first, HIMEML, is the
low-order byte and the second, HIMEMH, is the
high-order byte.

Although it is possible to adjust the HIMEM setting or PEEK at its
current value, it must be set prior to loading any Integer BASIC program
ming that uses it. Unless you are willing to lose existing BASIC program
ming, you should not adjust HIMEM after that programming is loaded into
the system.

146 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

INITIALIZING THE HI-RES SYSTEM After dealing with the
LOMEM and HIMEM settings as required for the sort of graphics job you
want to do, the next step is to write a series of at least two initialization
steps. The first defines some critical hi-res variables, and the second calls a
Programmer's Aid hi-res initialization routine.

Defining the Hi-Res Variables The first step in the initialization
procedure is to define some critical hi-res variables. This must be done
before writing any BASIC statements that include other variable names.
BASIC normally allows a programmer to define variables as they are
needed, but this initialization scheme demands defining certain hi-res vari
ables ahead of time.

There are as many as six different variables that must be defined at the
beginning of a hi-res BASIC program. You can name them just about any
thing you choose, within certain limits. The variables are summarized in
Table 7-3.

You are free to select alternative names for those variables, but your
names must have exactly the same number of characters as the original
name. You can, for example, use HX in place of XX; or you can use XO or
NN. But you cannot use a variable name that has just one character or
more than two. For instance, neither X nor XPLACE will work.

The same rule applies to any custom names for the COLR variable
name. It must be a four character variable name. And if you don't happen
to like the variable name of SHAPE, you can replace it with any other five
character name.

A 'second important rule is that the variables must be defined in the
same sequence as shown in Table 7-3. Defining them in any other order will
confuse the hi-res system.

Table 7-3. Hi-Res Variables

Variable Name Definition

xx Horizontal component of a point's
position on the hi-res screen (0-279).

yy Vertical component of a point's
position on the hi-res screen (0-159).

COLR Color code for a point or line to
be plotted on the hi-res screen (see Table 7-4).

SHAPE Numerical value assigned to one of
255 possible shapes that are stored in shape tables.

ROT Rotation factor for a figure that is
drawn from a shape table.

SCALE Scale factor for a figure that is
drawn from a shape table.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 147

You need not define all of those variables, however. If you do not plan
to use shape tables in your hi-res program, for example, you do not have to
define variables SHAPE, ROT, and SCALE. You always need XX, YY,
and COLR to do anything meaningful, though.

What if you want to scale a shape, but not rotate it? You must define
ROT anyway so that SCALE will end up in the correct position in the
variable table. If you skip ROT and follow SHAPE with SCALE, the Apple
system will interpret your SCALE variable as a bad attempt to rename
ROT, and you will get an error message every time you run your program.

So it is important to define the hi-res variable with a certain number of
characters and in a specific order. But how do you actually carry out the
defining procedure? You do that by writing Integer BASIC program lines
that equate those variable names to any value you wish.

Suppose that you will be using variables XX, YY, and COLR. Early in
the BASIC program-before specifying any other variables-you can
define them this way:

100 XX=O:YY=O : COLR=O

Line 100 sets the variables equal to 0. You can equate them to any other
value that strikes your fancy at the moment; it makes no difference what
that value is.

Because of a quirk in Integer BASIC, you can simplify the definition
procedure to this:

100 XX=YY=COLR

Or if you are planning to use all of the shape-table features:

100 XX=YY=COLR=SHAPE=ROT=SCALE

That initializes all six hi-res variables to the same value. There's no
telling what that value is, but that isn't important anyway. Again, the im
portant thing is to name the variables using the specified number of char
acters and placing the variables in the order shown in Table 7-3.

The idea is to make certain that those particular variables are placed at
the very beginning of the variable table. Otherwise, the Programmer's Aid
hi-res system won't be able to find them, because it always looks for them
at the beginning of the variable table.

Recall from an earlier discussion that Integer BASIC variables are
stacked from the current LOMEM setting and upward. If you insert a pro
gram statement such as A=25 before defining the special hi-res variables,
that definition of variable A will be in the variable stack ahead of the hi-res
variables and the scheme will blow up when you try to use them.

148 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Now suppose that you want to POKE a LOMEM address of 3072 to
the system before defining the hi-res variables. The programming in that
case must begin this way:

100 POKE 74,0 : POKE 75,12
110 XX=YY=COLR=SHAPE=ROT=SCALE

Notice that you don't have to define the special hi-res variables before
all other BASIC programming. You must, however, define those variables
before specifying any other BASIC variables.

Most of the hi-res programs in this chapter begin with those two pro
gram lines. They set LOMEM to 3072 and define all six of the special hi-res
variables.

CAlling the INIT Routine Recall that doing a GR statement
brings up the normal, primary page of low-resolution graphics. The key
to setting up the normal, primary page of high-resolution graphics is
CALL-12288.

CALL -12288 from Integer BASIC initializes the
normal high-resolution graphics mode.

CALLing that address instructs the system to execute a Programmer's
Aid routine known as INIT. It is an important routine because it not only
sets up the hi-res display, but also allows you to use the other hi-res fea
tures described in this chapter. Unless you CALL INIT, none of those
special hi-res operations will work from Integer BASIC.

What is the normal hi-res graphics mode? It's like the low-res mode in
most respects. That is, it leaves the four lower lines on the screen for text
operations, it clears the graphics portion of the screen, and it displays the
primary page of graphics.

There is one important difference, however: The INIT routine does
not automatically set WNDTOP (the text window top) to the fourth line
from the bottom of the screen. It also leaves the text page fully intact. That
can be an advantage, of course, in situations where you wish to call up
some hi-res graphics without disturbing primary-page text. But if you want
to place new text under the hi-res graphics follow the CALL -12288 state
ment with this one:

POKE 34,20 : CALL -936

That sets the top of the scrolling window (RAM address 34) to 20, and
clears the text portion of the screen.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 149

Try it for yourself. Do a RESET followed by a CTRL-B to get into the
command mode. Then enter a CALL -12288. That will bring up the normal
high-resolution graphics. Then, if you wish, do a POKE 34,20 followed by
a CALL -936 to clear the text portion of the display.

You cannot do anything further because this demonstration doesn't
define the critical hi-res variables. But at least it shows what the high
resolution screen is like.

Enter TEXT to return from hi-res to the normal low-res text mode.

The Complete Initialization Procedure Simply CALLing INIT
to get into the normal hi-res graphics mode is not enough. You must be able
to plot some points or draw lines to make use of it. As mentioned earlier,
you cannot do that without first defining at least three variables: XX, YY,
and COLR.

So if INIT is going to be of any use, you must define the hi-res parame
ters. Consider this series of opening program lines:

100 POKE 74,0: POKE 75,12
110 XX=YY=COLR
120 CALL -12288
130 POKE 34,20: CALL -936

Line 100 sets LOMEM to address 3072. That step isn't necessary,
however, if you are willing to use the default LOMEM of 2048 and you are
certain that no previous operations have set it anywhere else.

Line 110 defines three variables for hi-res graphics. Those are the three
that must always be used for hi-res graphics. If you plan to use the shape
table features, also, extend the line to include SHAPE, ROT, and SCALE.

Line 120 initializes the hi-res system by CALLing INIT, and line 130
sets the top of the text portion of the screen and homes the cursor within it.

HIGH-RESOLUTION COLORS AND SCREEN FORMAT Table
7-4 shows the six colors that are available for high-resolution graphics and
their respective color codes. You can specify color codes from 0 to 255, but
using any codes other than those shown here will cause the plotted points
and lines to take on complex color combinations. (The actual colors
created by codes might appear slightly different on your screen. The color
rendition depends a great deal on the TINT and COLOR settings on your
tv receiver or monitor.)

The normal high-resolution graphics screen allows four full lines of
text at the bottom of the screen. The upper portion is set up according to
the 280-by-160 format described in Fig. 7-1. Notice that there are 280 hori-

150 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-4. Hi-Res Color Codes

Color Code

BLACK 0 or 128
GREEN 42
VIOLET 85
WHITE 127 or 255
ORANGE 170
BLUE 213

zontal locations labeled 0 through 279, and 160 vertical locations labeled 0
through 159.

So there is a total of 44,800 hi-res plotting positions. You can access any
one of them by assigning coordinates to the horizontal and vertical parame
ters, XX and YY. The general idea is similar to plotting points on the low
resolution graphics screen. There are simply more points involved here.

DOING SOME HIGH-RESOLUTION GRAPHICS It is possible to
write some interesting and useful hi-res graphics programs without resort
ing to the use of special shape tables. Specifically, you can:

QI Fill in a background color.
• Position a point without actually drawing it.
~ Plot a single point.
e Plot a straight line.
~ Clear the entire screen to black.

This section describes those high-resolution graphics operations.
When going through the discussions and demonstrations in this sec

tion, bear in mind that they must be preceded at some point by the hi-res
initialization routines. The following lines must be written into all of the
programs, but I will not be showing them each and every time. It's up to
you to remember to insert these lines:

100 XX=YY=COLR
110 CALL -12288

Filling in a Background Color Calling the hi-res INIT routine
automatically clears the graphics portion of the screen to black. Most of the
time, however, you will want a somewhat more colorful background.

Setting up the background color is a two-step procedure. You must
first specify the color and then call a background routine.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT ., 151

279
l--+--+--l--+--+--+--1--l--l--l--l--1--1--l--1--11--11--11--l--ll--ll--l--ll--ll--I

273 l--+-+-l--+-+-+-1--l--l--l--l--1--1--l--1--11--11--11--11--11--11--11--11--11--1
266 l--+-+-l--+-+-+-1--l--l--l--l--1--1--l--1--11--11--11--11--11--11--11--11--11--1
259 l--+-+-l--+-+-+-1--l--l--l--l--1--1--l--1--11--11--11--11--11--11--11--11--11--1
2521--+-+-l--+-+-+-1--l--l--l--l--1--11--l--1--11--11--11--11--11--11--11--11--11--1
2451--+-+-l--l--l--1--1--l--l--1--11--11--11--11--11--11--11--11--11--11--11--11--11--11--1
2381--+-+-l--l--l--1--1--l--l--1--11--11--11--11--11--11--11--11--11--11--11--11--11--11--1
231 l--+-+-l--l--l--1--1--l--l--ll--ll--ll--li--11--11--11--11--11--11--11--11--11--11--11--1
2241--+--+--l--l--l--1--1--l--1--11--11--11--11--11--1---l--l--ll--l--l--l--l--l--l--l
2171--+--+--l--l--l--1--1--l--1--11--11--11--11--11--1---l--l--ll--l--l--l--l--l--l--l
210 l--+-+-1--1--1--1--1--l--l--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--ll--l---I
203

l--1--+--l--1--1--1--11--11--11--11--11--11--f--l--l--l--l---1---1---l---l---l---l---l--I
196 l--+--+--l--l--1--l--ll--ll--ll--ll--f--11--f--l--l---1---1---1--l---l---l---l---l---l--I
189 l--+--+--l--l--l--l-11--11--11--11--f--11--1--l--l---l---l---1---1---l---l---l---l---l--I

182 l--+--+--l--l--1--l--ll-11--11--11--f--1--1--l--l---l---l---1---1---l---l---l---l-+--I
175

l--t-t-l--l--l--1-11-11--11--11--f--1--1--l--l---l---l---l---1-+---l---l---l---l--I
168

l--t-+--l--l--l--1-11--11--11--11--f--1--l--l-'-1---l---l---l---1-+---l---l-+-+--I
161

l-+-+-+--+--+--+--1--l--l--l--1--1-11--11--1---l--l--l--1--l--l--l--l--l--I
154

l--l--+-1--1--1--1--11--11--11--11--11--11--11--11--1--+--+--+--+--+--+--+--+--+~

147 l--t--+-1--1--1--1--11--11--11--11--11--11--11--11--1--+--+--+--+--+--+--+--+---+~
140

l--1--+--l--l--1--1-11--11--11--f--l--l---1--l---I-+-+-+-+-+-+-+-+-+~

133 1--r-+--1--1--1--1-11--11--11--1--1--1---11--1---1-1--1--+-+-+-+-+-+-+~
126 t--1--+--l--1--1--1-11--11--11--f--l--l---1--l--I-+-+-+-+-+-+-+-+-+~
119 t--t-t-11--1-11--11--11--f--l--l--l--1---1---l---I-+-+-+-+-+-+-+-+-+~
112

t--t--t-11--1--11--11--11--1---l---ll--ll--l--+--+--+---+---+---+---+---+---+-l--l--I-~
105

t--t--t-11--1--11--11--11--1---l---11--11--1--+l--ll--l---+---+---+---+-l----+-l--l--I-~

98

91
84

77

70
63
56 t--t-t-11--1--11--11--f--l--l--l---l---I-+-+-+-+-+-+-+-+-+-+-+-+~

49
42 t--t-t-11--11--11--11--f--l--l--l---l---I-+-+-+-+-+-+-+-+-+-+-+-+~

35

28
21 t--t-t-11--11--11--11--1--1--l---l-+-+--+--+--+-+-+-+-+-+-+-+-+-+---l

14 t--t-t-11--11--11--11--f--l--l---l-+-+--+-+-+-+-+-+-+-+-+-+-+-+---l
7

0
/o oo

UPPER LEFT
CORNER

""0 ,._ 00

Fig. 7-1. Hi-res graphics character locations.

152 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

4 LINES OF
TEXT

WHEN USING
MIXED

TEXT/GRAPHICS

i !

Specifying the color is a matter of equating the color parameter,
COLR, to the desired background color from Table 7-4. So if you happen to
want a green background, the appropriate color-specifying statement is
COLR=42. But that simply defines the color. It is also necessary to call a
Programmer's Aid routine, called BKGND, at -11471. You can execute it
from BASIC by doing a CALL -11471.

CALL -11471 fills the hi-res screen with a color
specified by a preceding COLR statement.

Enter and run this Integer BASIC demonstration program:

100 XX=YY=COLR
110 CALL -12288
120 COLR=42: CALL -11471
130 END

Lines 100 and 110 initialize the hi-res system, line 120 specifies a green
color and calls the BKGND routine, and line 130 ends the program.

On running the program, you should see the entire low-res graphics
portion of the screen filled with a color that appears more or less green
(depending a lot on the tint setting of your TV monitor). You can, of
course, specify other· background colors by changing the value assigned to
the COLR variable in line 120. Use the color codes recommended in Table
7-4 first, then try some of the other codes between 0 and 255. Maybe you
will like some of those pretty striped patterns.

Setting the Plot Coordinate When you initialize the high
resolution graphics system, one of the first operations must be to set the
plotting coordinate or the starting point of a line. Like most other hi-res
operations, positioning a plotting point is a two-step procedure. First, you
specify the desired XX and YY coordinates, and then, you call a point
positioning routine in the Programmer's Aid package.

Suppose that you want to begin with a plot position of 0,0-the ex
treme upper left-hand comer of the screen. You can specify that coordinate
by entering XX=O : YY=O. That is just the first of two steps, however.
You must follow that statement by calling a routine known as POSN at
address -11527. Thus a complete point-positioning routine looks like this:

XX=O : YY=100 : CALL -11527

CALL -11527 sets the position of a point on the
hi-res screen according to the preceding values of
XX and YY.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 153

That POSN routine is also used when you want to plot two different
positions without having a line drawn between them. The following pair of
BASIC program lines sets the system for plotting first at position 0,0 and
then at 100, 100:

XX=O: YY=O: CALL-11527
XX=100 : YY=100 : CALL -11527

The POSN routine creates no noticeable visual effect on the screen. It
merely sets up the variables for a subsequent plotting operation.

Plotting Points Assuming that you have already written some pro
gram lines for initializing the hi-res system, you must carry out the follow
ing steps to plot a single point of hi-res color:

1. Position the point by setting up and executing the POSN routine.
2. Specify the desired plotting color by setting the COLR variable ac

cording to Table 7-4.
3. CALL the point-plotting routine, PLOT, at address -11506.

This program illustrates the entire plotting procedure. Give it a try by
loading and running it.

100 XX=YY=COLR
110 CALL -12288
120 COLR=42: CALL -11471
130 XX=l40:YY=80: CALL -11527
140 COLR=l27: CALL -11506
150 END

Lines 100 and 110 initialize the hi-res graphics system, and line 120 fills
in a green background. Line 130 sets the horizontal and vertical position of
a point to coordinate 140,80, which is very close to the middle of the hi-res
portion of the screen. Finally, line 140 sets the system for a white color and
plots the color at the prescribed position.

Perhaps that seems like a lot of programming work just to plot a white
dot in the middle of a green field, but that's the sort of demand that the
high-resolution graphics scheme places on a programmer.

CALL -11506 plots a point on the high-resolution
screen according to a color and position estab
lished earlier in the program.

154 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

I I

Horizontal plotting of colors is tricky, because you can't plot one color
at every horizontal coordinate. Table 7-5 shows the recommended color
codes and their actual plotting colors. You can see that the horizontal XX
position and background colors are critical.

Suppose for instance, that you want to plot some colored dots against
a black background. You can see from the table that you can plot green
points only at odd-numbered XX coordinates-I, 3, 5, and so on. Attempt
to plot green (code 42) at some even-numbered XX location and you will
see no response at all. (It would actually plot a black point against that
black background, or worse, plot a black dot over some other color that
might have been plotted there at an earlier time.)

Notice that using a black background offers the widest possible range
of hi-res colors for plotting operations. It is also possible to plot white
against a black background, but that is a two-step operation that we will
describe a bit later in this discussion.

A white background renders only black plots, but at least they can be
situated in any XX location. You can erase a previously drawn black point
by overlaying it with a white plot. ·

The four remaining background colors support only black or white vis
ible points and, even then, only in odd- or even-numbered XX positions.
Also notice that code 127 is used for plotting white against green and violet
backgrounds, while code 255 must be used for plotting white against orange
and blue backgrounds. Depart from the format suggested in Table 7-5 and
you will end up with some disappointing results.

Listing 7-1 is a program that lets you experiment with this notion of
plotting colored points in odd- or even-numbered XX locations and against
various background colors. If you intend to try any hi-res plotting of your
own, it is important to get this experience ahead of time.

Listing 7-1. Plotting Points.

100 REM
110 XX=YY=COLR
120 CALL -12288
130 POKE 34,20: CALL -936
140 PRINT "WHAT BACKGROUND COLOR:"
150 INPUT "(SEE TABLE 7-5)",FIELD
160 PRINT "WHAT PLOT COLOR:"
170 INPUT II (SEE TABLE 7-5) II I DOT
180 PRINT "WHAT XX LOCATION:"
190 INPUT "(0-279)",:XX
200 COLR=FIELD: CALL -11471
210 YY=l8: CALL -11527
220 COLR=DOT: CALL -11506
230 GOTO 140

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 155

Table 7-5. Hi-Res Color Codes With Different Backgiround Colors

Hi-Res
Backgrm.md. Color
Color Code Hi-Res Color

BLACK (0) 42 GREEN at odd-numbered XX locations
BLACK at even-numbered XX locations

85 VIOLET at even-numbered XX locations
BLACK at odd-numbered XX locations

I

170 ORANGE at odd-numbered XX locations
BLACK at even-numbered XX locations

213 BLUE at even-numbered XX locations
BLACK at odd-numbered XX locations

0 BLACK at all XX locations

WHITE (255) 0 BLACK at all XX locations

255 WHITE at all XX locations

GREEN (42) 0 BLACK at all odd-numbered XX locations
GREEN at all even-numbered XX locations

127 WHITE at all even-numbered XX locations
GREEN at all odd-numbered XX locations

VIOLET (85) 0 BLACK at all even-numbered XX locations
VIOLET at all odd-numbered XX locations

127 WHITE at all odd-numbered XX locations
VIOLET at all even-numbered XX locations

ORANGE (170) 128 BLACK at all odd-numbered locations
ORANGE at all even-numbered locations

255 WHITE at all even-numbered XX locations
ORANGE at all odd-numbered XX locations

BLUE (213) 128 BLACK at all even-numbered XX locations
BLUE at all odd-numbered XX locations

255 WHITE at all odd-numbered XX locations
BLUE at all even-numbered XX locations

156 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

Enter the program, run it, and respond to the prompt messages that
request a background color code, a plotting color code, and the XX com
ponent of the plotting position. (The program sets YY to a value of 18 in
every case.)

As long as you adhere to the values and limitations specified in Table
7-5, you will get the desired results. Depart from them, and you will get
dots of the wrong color, multicolored strokes of light, or nothing at all.

Here is a detailed analysis of how the program works. You can use it
as a review of matters discussed thus far.

Lines 110 and 120 define the hi-res variables and call the INIT routine.
Line 130 sets the top of the text window, homes the cursor, and clears

the text screen.
Lines 140 and 150 input the desired background color code as variable

FIELD.
Lines 160 and 170 input the desired plotting color code as variable DOT.
Lines 180 and 190 input the desired XX component of the plotting posi-

tion.
Line 200 fills the background with color FIELD.
Line 210 establishes the XX,YY position by calling the POSN routine.
Line 220 sets the dot color and calls the PLOT routine.
Line 230 returns to line 140 to start specifying another combination of

background color, dot color, and XX position.

Listing 7-2 uses these principles to create an interesting graphic-200
randomly positioned white dots against a blue background.

Listing 7-2. Random Points.

100 XX=YY=COLR
110 CALL -12288
120 POKE 34,20: CALL -936
130 TAB 12
140 PRINT "** STARRY SKY **"
150 COLR=213: CALL -11471
160 COLR=255
170 FOR N=0 TO 199
180 XX= RND (279):YY= RND (179)
190 CALL -11527
200 CALL -11506
210 NEXT N
220 END

See if you can justify every step in that program.
It is possible to plot white dots onto a black background, but only by

using a two-step plotting procedure. Given a black background, the idea is

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT 0 157

to plot a 127 WHITE color code at any horizontal XX position and another
at position XX+ 1. In other words, plot two 127s in successive XX loca
tions. The YY components of the coordinates are not relevant, but must be
equal.

Some BASIC programming for doing the job uses this series of state
ments:

COLR=127
XX=100: YY=80: CALL -11527: CALL -11506
XX=XX+1 : CALL -11527: CALL -11506

Try developing some simple hi-res programs of your own.

Drawing Straight lines It is possible to draw straight horizontal or
vertical lines of some prescribed color by doing a long series of PLOTs to
an equally long series of XX,YY coordinates. Not only is that a tedious
programming task, but it is also a slow drawing operation.

The alternative is to use a routine built into the Programmer's Aid
called LINE. You can execute a properly set up LINE operation by
CALLing -11500.

CALL -11500 draws a line of some prescribed
color between two previously established endpoint
coordinates.

In principle, executing the LINE routine is a three-step procedure:

1. Establish the XX, YY coordinate of the beginning of the line and do a
POSN operation.

2. Specify the XX,YY coordinate of the end of the line.
3. Specify a color and CALL the LINE routine.

You can establish the starting point of the line with a BASIC statement
such as:

XX=O:YY=100 : CALL -11527

That program line fixes the starting coordinate of the line at 0, 100 and calls
the POSN routine to fix those coordinates in memory.

As an example of the second line-drawing step, consider this:

XX=100 : YY=120

158 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

That establishes the final coordinate of the line at 100, 120. Do not CALL
the POSN routine after specifying the final coordinate of the line. If you do
that, you will be resetting the starting point.

Finally, you can set the color and call the LINE routine with:

COLR=255:CALL -11527

That series of steps will draw a more or less straight line between
coordinates 0,100 and 100,120. Here is a complete programming routine for
drawing a white version of that line against an orange background.

100 XX=YY=COLR
110 CALL -12288
120 COLR=l70: CALL -11471
130 XX=0:YY=l00: CALL -11527
140 XX=l00:YY=l20
150 COLR=255: CALL -11500
160 END

Program lines 100 and 110 initialize the hi-res system, and line 120 sets
the background color and calls the BKGND routine to fill in the field with
that ORANGE color. Line 130 is actually the first step in the line-drawing
procedure. It sets. up the starting coordinate and executes the POSN
routine. Line 140 then sets the end-of-line coordinate, while line 150 sets
the line color to WHITE and draws the line by calling the LINE routine.

There are a couple of ideas that will help simplify hi-res programming
routines. The first one is, if you do not specify an XX or YY component for
the end of the line, the system will default to the last-specified value. The
second idea is that executing LINE performs the equivalent of a POSN
routine using the coordinates specified for the end of the line. The
significance of the latter idea is that you need not use POSN to set the
coordinate for the next point or line if it is to be situated at the end of a line
you've just drawn. Consider the following program that draws a white
square onto a green background.

100 XX=YY=COLR
110 CALL -12288
120 COLR=42: CALL -11471
130 COLR=l27
140 XX=l20:YY=60: CALL -11527
150 XX=l60: CALL -11500
160 XX=l00: CALL -11500
170 XX=l20: CALL -11500
180 YY=60: CALL -11500
190 END

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 159

Here is how it works:

Lines 100 and 110 define the critical hi-res variables and initialize the
system.

Line 120 sets up and draws a green background.
Line 130 defines a WHITE color for the GREEN background.
Line 140 establishes the initial coordinate of the drawing by calling the

POSN routine.
Line 150 draws the first line between 120,60 and 160,60. (The default

value for the YY component is 60 from the previous program line.)
Line 160 draws the second line between 160,60 and 160,100. (The default

value for the XX component is 160 from the previous operation.)
Line 170 draws the third line from coordinate 160, 100 to 120, 100.
Line 180 draws the final line from coordinate 120, 100 to 120,60.

You can change the background color by altering the COLR assign
ment in program line 120, and you can specify other line colors in program
line 130. Use Table 7-4 as a guide for selecting the colors. See if you can
modify the program to draw a black square on a white background, for
example.

Listing 7-3 is a program that lets you experiment with drawing single
lines of any chosen color between any chosen sets of coordinates. It also
lets you select a background color.

Listing 7-3. Drawing Lines.

100 XX=YY=COLR
110 TEXT : CALL -936
120 PRINT "WHAT BACKGROUND COLOR:"
130 INPUT "(SEE TABLE 7-4)",BCOLR
140 INPUT "WHAT STARTING XX (0-279)",XS
150 INPUT "WHAT STARTING YY (0-159)",YS
160 INPUT "WHAT ENDING XX (0-279)",XE
170 INPUT "WHAT ENDING YY (0-159)",YE
180 PRINT "WHAT LINE COLOR:"
190 INPUT "(SEE TABLE 7-4)",LCOLR
200 CALL -12288
210 POKE 34,20: CALL -936
220 COLR=BCOLR: CALL -11471
230 XX=XS:YY=YS: CALL -11527
240 XX=XE:YY=YE
250 COLR=LCOLR: CALL -11500
260 PRINT
270 PRINT "STRIKE ANY KEY TO DO AGAIN
280 CALL -741
290 GOTO 110

160 <> INTERMEDIATE-LEVEL APPLE II HANDBOOK

Let us study the operation of this demonstration program:

Line 100 defines the critical hi-res variables.
Line 110 brings the system into the TEXT mode, homes the cursor, and

clears the screen.
Lines 120 and 130 ask for the background color code.
Lines 140 and 150 ask for the starting coordinates of the line.
Lines 160 and 170 ask for the ending coordinates of the line.
Lines 180 and 190 ask for the color code of the line.
Line 200 brings the system into the hi-res graphics mode by calling the

INIT routine.
Line 210 sets the top of the text window, homes the cursor, and clears

the screen.
Line 220 fills the background with color BCOLR.
Line 230 sets the starting coordinates to the values typed in earlier by the

user, and then CALLs the POSN routine.
Line 240 sets the ending coordinates to the values typed in earlier by the

user.
Line 250 sets the line color to the value typed in earlier by the user, and

then CALLs the LINE routine.

The remainder of the program simply prints a prompt message in the
text portion of the screen and waits for you to strike any key to do the
whole thing all over again.

You have probably noticed by now the hi-res, line-drawing routine is
something less than perfect. Almost without exception, there is some color
distortion at the beginning and end of any line. You will find that you can
plot any line color onto any background color as long as the line is per
fectly horizontal. But add a vertical component to the slope of the line, and
you will find some color distortion along the line as well as at the ends. The
worst distortion occurs when plotting a straight vertical line.

It is possible to get into some very heavy technical discussions of how
and why this whole family of color-distortion problems occurs and how to
remedy some of them. But even then, the complexity of the techniques do
not justify the less-than-satisfactory results.

In the most practical sense, the matter is best handled on a trial-and
error basis for each particular case. If you find that the color distortion is
intolerable in a particular instance, try shifting the coordinates one XX lo
cation to the left or right. That might not cure the problem altogether, but it
can produce more satisfactory results in many instances.

Another trick is to plot the line and then plot discrete points at the
places where the most serious color distortion occurs.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT @ 161

Clearing the Hi-Res Screen The Programmer's Aid package in
cludes a routine that clears the hi-res screen to all black. CALLing INIT
does that, too, but only at the beginning of the program. The special
screen-clearing routine, called CLEAR, begins at address -12274.

CALL -12274 clears the high-resolution portion of
the screen to all black.

Simplifying the CALLS By now you are aware of an almost over
whelming number of CALL routines for running hi-res graphics programs.
Having to remember or look up those CALL addresses every time you use
one of them can be troublesome and a source of possible programming
errors. So it's a good idea to set those CALL addresses equal to some
meaningful variable names at some place near the beginning of the
program-certainly after specifying the critical hi-res variables XX, YY,
and COLR. Here is an example:

100 XX=YY=COLR
110 INIT=-12288:BKGND=-11471.
120 POSN=-11527:PLOT=-11506:LINE=-11500
130 CLEAR=-12274

After doing that, you can initialize the hi-res system by executing a CALL
INIT, call the BKGND routine by executing a call BKGND, set a screen
position by executing a CALL POSN, and so on. The idea is to call the
main hi-res routines by name rather than number.

Listing 7-4 uses that technique for POSN, PLOT, and LINE. It
doesn't apply the idea to INIT and BKGND because they are used only
once in the entire program. Also notice in lines 130 through 150 that it is
possible to make similar assignments for the color codes.

Enter the program and run it. Study the listing to get some ideas about
drawing blocks of color with the LINE routine and overcoming certain
kinds of color distortion.

162 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 7-4. Winter Scene.

100 REM
110 XX=YY=COLR
120 POSN=-11527:PLOT=-11506:LINE=-11500
130 BLACK=0: LET GREEN=42:VIOLET=85
140 WHITEL=l27:0RANGE=l70:BLUE=213
150 WHITEH=255
160 POKE 34,20: CALL -936
170 CALL -12288
180 FOR PH=l TO 3: GOSUB PH*l000: NEXT PH
190 PRINT : PRINT : TAB 10
200 PRINT "** WINTER SCENE **"
210 PRINT : END

1000 REM ** PLOT BACKGROUND **
1010 COLR=BLUE: CALL -11471
1020 COLR=WHITEH
1030 FOR N=l TO 300
1040 XX= RND (279):YY= RND (159)
1050 CALL POSN: CALL PLOT
1060 NEXT N
1070 RETURN
2000 REM ** DRAW SNOW **
2010 COLR=WHITEH
2020 FOR N=0 TO 24
2030 XX=0:YY=l35+N: CALL POSN
2040 XX=279: CALL LINE
2050 NEXT N
2060 RETURN
3000 REM ** TREE **
3010 COLR=WHITEH
3020 FOR N=0 TO 99
3030 XX=l40-N/2:YY=l0+N: CALL POSN
3040 XX=l40+N/2: CALL LINE
3050 NEXT N
3060 COLR=GREEN
3070 FOR N=7 TO 99
3080 XX=l44-N/2:YY=l0+N: CALL POSN
3090 XX=l36+N/2: CALL LINE
3100 NEXT N
3110 COLR=BLACK
3120 FOR N=0 TO 30
3130 XX=l40-3:YY=ll0+N: CALL POSN
3140 XX=l40+5: CALL LINE
3150 NEXT N
3160 COLR=BLUE
3170 FOR N=0 TO 24
3180 XX=l40-5:YY=ll0+N: CALL PLOT
3190 NEXT N
3200 RETURN

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 163

ALTERNATIVE HI-RES SCREEN FORMATS There are two alter-
natives to the normal high-resolution graphics screen format: full-screen
graphics and the secondary hi-res screen.

Full-Screen Graphics The normal high-resolution graphics scheme,
called INIT, uses the primary page with mixed text and graphics. The
range of XX and YY coordinates is from 0 to 279, and 0 to 159, respec
tively. The four lower, text-sized lines are open for text operations.

Going to full-screen, hi-res graphics deletes the four lower lines of text
and opens them for the graphics operations. The screen format in that case
allows 280 horizontal XX positions, and 192 vertical YY positions.

There are several steps involved in setting up full-screen hi-res
graphics. Basically they amount to POKEing zeros into the screen "soft"
switch positions described earlier. Table 7-6 summarizes the list of "soft"
switches as extended to include some hi-res addresses.

Suppose, then, that you want to use a full screen of high-resolution
graphics. According to Table 7-6 an appropriate sequence of POKE state
ments would be:

POKE -16297 ,0 (Hi-res.)

POKE -16300,0 (Primary page.)

POKE -16302,0 (All graphics.)

POKE -16304,0 (Graphics mode.)

Try that sequence of POKEs from the keyboard, and you will see a full
screen of hi-res graphics.

CALLing INIT to set up mixed-screen graphics automatically clears
the graphics portion of the screen to black. This POKE sequence does not;

Table 7-6. Graphics Soft Switches

Graphics Mode POKE Address

Display high-resolution graphics -16297
Display low-resolution graphics -16298

Display the secondary page -16299
Display the primary page -16300

Display mixed text and graphics · -16301
Display all text or all graphics -16302

Display a text mode -16303
Display a graphics mode -16304

164 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

so you might want to conclude it with a CALL -12274, which is the
clear-to-black routine.

Here are some program lines that will get you started with full-screen
hi-res. Add your own ideas about plotting lines and points, remembering
that you can now extend the YY values to 191.

100 XX=YY=COLR
110 POKE -16297,0: POKE -16300,0
120 POKE -16302,0: POKE -16304,0
130 CALL -12274

Use TEXT to return to the normal, all-text mode.

Secondary-Page Graphics If you have a 16K system, this discus
sion is purely academic-you have no secondary page of hi-res graphics
available to you. Otherwise you may be in for a somewhat pleasant sur
prise: The secondary page of hi-res graphics is actually simpler to use than
the secondary page of lo-res graphics.

One of the truly positive features of the hi-res system is that you can
plot points and draw lines on the secondary page while displaying the pri
mary page, and vice versa. Recall that it is impossible to draw directly onto
the secondary page of low-res graphics.

The key to choosing the page that will get the result of hi-res pro
gramming is memory address 806. Doing a POKE 806,32 will cause any
hi-res drawing operations to take place on the primary page of graphics, no
matter which page is being displayed at the time. On the other hand, doing
a POKE 806,64 will cause drawing to take place directly on the secondary
page. Again, it makes no difference which is being displayed at the time.

POKE 806,32 allows you to draw on the primary
page of hi-res.

POKE 806,64 allows you to draw on the secondary
page of hi-res.

Drawing high-resolution pictures can, in many instances, be a rela
tively time-consuming process. Being able to draw on one page while dis
playing the other lets you mask the long drawing times by entertaining the
viewer with a finished picture on the other page. Or you can display some
meaningful text while the program is drawing some high-resolution graphics
on a "hidden" page. Then, when the drawing is done, simply replace the
text presentation with the hi-res picture. The viewer at least gets the
impression that the drawing operation took place instantaneously.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT e 165

HI-RES SHAPE TABLES Shape tables are a bit difficult (or at least
tedious) to design and enter into the system; but you ought to give them
serious consideration because of two advantages they have.

One advantage is that the Apple hi-res graphics system can draw
figures from tables a whole lot faster than it can draw from lists of PLOT
and LINE statements. This feature is especially important when attempting
to write programs that produce satisfactory animation sequences.

A second advantage is that the Apple system includes provisions for
scaling and rotating graphics produced from shape tables. So if you have a
graphic shape that you want to scale (change size) or rotate (tum about a
given point), then shape tables are your best bet.

High-speed drawing and the ability to scale and rotate a figure are the
positive attributes of shape-table graphics. The only negative attribute is
that they work in a fashion more akin to machine-language programming
than to BASIC. It's not a bad scheme; it simply appears unfamiliar and
awkward to anyone unaccustomed to machine-language techniques.

What Is a Shape Table? From one point of view, a shape table is a
block of RAM that is set aside for data related to a particular graphics
shape or, indeed, as many as 255 different graphics shapes. Whenever a
BASIC program executes a DRAW or DRAWl command, the system con
sults the shape table for the appropriate drawing information. The hi-res
ROT, SCALE, and FIND commands also refer to the shape table.

One of the preliminary steps in implementing shape tables is setting up
that block of RAM-specifying its starting address, for instance.

The table, itself, is divided into two main parts: the shape table index
and the shape data for each figure. A single index serves from 1 to 255
different shapes.

The index is simply a group of numbers that indicates the number of
different shapes in the table, and the number of address locations from the
beginning of the index to the beginning of the data for each shape. The size
of the index-that is, the number of codes in it-depends on the number
of different shapes in the table. The larger the number of shapes, the larger
the index.

The shape data for each figure consists of a set of codes that tells the
system to plot on or skip over a hi-res point on the screen. And equally
important, the data specifies where an imaginary hi-res cursor should move
to after doing the previous plotting or no-plotting operation. Finally, a
code-number 0 marks the end of the block of data for each shape in the
table.

The length of the data block for each shape in the table depends on
how complicated and how large the shape is. Generally speaking, the more
complex and larger the shape, the longer its data block is.

166 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Setting Up Shapes From BASIC As mentioned earlier, the Apple
draws shapes from the shape table via BASIC routines such as DRAW and
DRAWL But it is important to set up some other parameters in advance.

The first parameter is the screen position of the figure to be drawn
from the table. That parameter is specified by assigning position values to
the XX and YY variables, and then executing a POSN routine. That sets
the starting position for drawing a shape. Actually, any technique that
works for PLOT and LINE operations works equally well for shape tables.
Additionally, the DRAWl routine lets you begin drawing a second shape at
the point on the screen where the system completed drawing the first
shape.

The second parameter is the shape color. The color codes used are the
same as those summarized in Table 7-5. For a beginner, the safest all
around color combination is a white shape on a black background. The
actual color of the shape depends on its horizontal screen position and the
way you have arranged the plot and no-plot sequences within the shape
table.

The third parameter is the values for SCALE and ROT. Even if you
don't plan to scale or rotate the shape from its configuration specified in the
shape table, you must define those variables early in the program and set
them equal to 0 at some point prior to calling up the DRAW or DRA Wl
routine.

The final parameter is the shape number. The shapes in your table
must be specified with numeric values 1 through n, where n is the final
shape in the table. The variable required here is SHAPE. So including a
statement such as SHAPE=4 designates the fourth block of shape data in
the table. Of course you need four or more shapes in the table to use that
particular example. If you are playing around with just one shape, you
must include a SHAPE= 1 before calling the routines that scale, rotate, and
eventually draw the shape on the screen.

The shape table is loaded by means of POKE statements. This tech
nique is quite different from the one suggested in most of the Apple litera
ture. There, you are expected to enter the shape table as hexadecimal or
binary data files. The procedure offered here accomplishes the same goal
from a purely BASIC approach. To be sure, entering long strings of POKE
statements can be tiresome, but once the task is done, you can save and
reload the shape table and BASIC programming as a single BASIC
program.

It all might seem quite complicated and confusing at first. Perhaps it is.
But the whole thing can become rather routine after working with it for a
while. Besides, this is simply a preview. The remaining discussions in this
ch;1pter are more detailed.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 167

Preparing Data for the Shape Table The data block for a par-
ticular shape consists of code numbers, each one indicating the following:

1. Whether or not to plot at the current hi-res point on the screen.
2. Where to move on the screen after doing that plot or no-plot

operation.

The shape-table data carries no direct color information. That is set by
the COLR variable in the BASIC programming. All the shape table does is
indicate whether or not to plot a point, and then where to go from there.

Table 7-7 summarizes the most useful shape table codes. There are
many more possibilities, but these are the ones that cause the least amount
of confusion for people who are not already fully familiar with the scheme.

Notice in each case that it is possible to plot or not plot. Then there is
a direction of motion: up, down, right, or left. The general idea is to plot or
not plot, and then move away in one of those four directions.

Some instances allow multiple operations of the same kind. A code 36,
for example, does a plot-move combination twice in succession. It is the
same as doing two separate code-4 operations. And in three nonplotting

Table 7-7. Shape Table Acronyms and Codes

Acronym Code Meaning

lUN 128 Don't plot; move 1 space upward
lUP 4 Plot 1 space upward
2UP 36 Plot 2 spaces upward

lDN 2 Don't plot; move 1 space downward
2DN 18 Don't plot; move 2 spaces downward
3DN 146 Don't plot; move 3 spaces downward
IDP 6 Plot 1 space downward
2DP 54 Plot 2 spaces downward

lRN 1 Don't plot; move 1 space to right
2RN 9 Don't plot; move 2 spaces to right
3RN 73 Don't plot; move 3 spaces to right
lRP 5 Plot 1 space to right
2RP 45 Plot 2 spaces to right

lLN 3 Don't plot; move 1 space to left
2LN 27 Don't plot; move 2 spaces to left
3LN 129 Don't plot; move 3 spaces to left
lLP 7 Plot 1 space to left
2LP 63 Plot 2 spaces to left

168 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

instances, a single code number can move three consecutive spaces. Code
219, as an example, moves three points to the left without plotting anything
along the way.

The first step in preparing a shape table is to draw the desired figure on
a sheet of graph paper, allowing each square to represent one hi-res point
on the screen.

With a satisfactory figure thus drawn, pic}</a starting point and build a
list of shape-table codes, using Table 7-7 as a guide. Bear in mind that the
computer will draw the figure in the same sequence that you list the codes.
Finally, you must end the block of data for each shape with a code 0. If you
are using more than one shape in the table, each must end with a 0. The
system uses the 0 to know when it is time to stop drawing a particular
shape and return to the BASIC controlling routine.

If you are working with more than one shape, you will find it helpful in
the early going to count the number of codes, including the end-marking Os,
in each shape block. Keep track of those numbers for the time when you
are preparing the index.

Suppose that you want to draw the square figure in Fig. 7-2. Draw the
figure onto a sheet of graph paper, letting each square represent one hi-res
screen location. We aren't interested in the actual screen location, just the
position of each point relative to the chosen starting location.

In this particular case, we begin the shape in the upper left-hand
comer, proceed to the right along the top, go down the right-hand side, go
to the left along the bottom, and finally return to the starting point by mov
ing upward along the left-hand side of the figure. You can draw such a
figure in any sequence you like, and begin and end anywhere you choose.
The approach we use here simply seems to be the most direct one in this
instance.

At this stage of the operation, it is easier to think in terms of acronyms
than in code numbers. So the first step in the analysis is to represent the
drawing sequence in shorthand form: 2RP (plot two spaces to the right),
2RP (plot two spaces to the right), and so on around the figure. Note espe
cially how we deal with the corners.

Once you are satisfied with the sequence of acronyms, simply use
Table 7-7 to assign the corresponding code numbers. End the sequence
with a 0, count the number codes (including the end-marking 0), and the
table designing task is done.

Figure 7-3 shows a little character that might be familiar to most arcade
game aficionados. It represents a somewhat more complex figure than the
previous one, but its shape table lends itself to a more systematic preparation.

In this particular instance, it is easier to divide the shape into vertical
segments-SI, S2, S3, and so on. Beginning at the top of segment Sl, we
generate the acronyms for drawing that segment. The segment ends by
plotting a single point and moving one space to the right. That brings us to

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 169

START --+----+----+- SEGMENT 1 -'---'---'----'--~~~---'-----'--'

SEGMENT 4 SEGMENT 2

--+----'----'----'----'-----!- SEGMENT 3 -+-+--+----+----'-,_______+-

Segment 1 -- Segment 2 I Segment 3 -- Segment 4 j

2RP 45 2DP 54 2LP 63 2UP 36
2RP 45 2DP 54 2LP 63 2UP 36
2RP 45 2DP 54 2LP 63 2UP 36
2RP 45 2DP 54 2LP 63 2UP 36
2RP 45 2DP 54 2LP 63 2UP 36
2RP 45 2DP 54 2LP 63 2UP 36
2RP 45 2DP 54 2LP 63 2UP 36
!RP 5 !DP 6 !LP 7 !UP 4

END 0

TOTAL: 33 CODES

Fig. 7-2. Hi-res rectangle drawing sequence.

the bottom of segment S2 and the starting point for drawing that segment
from bottom to top. We continue the procedure until we reach the final
point at the bottom of segment S7.

We could have organized the shape into horizontal segments, but they
would have required more codes. Some shapes, however, lend themselves
to that horizontal "scanning" approach.

170 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

S3 S5

I I

S2 S4 S6

SI L.. S2 r- S3 L.. S4 r- S5 t_ S6 r- S7 +
START 2DP 54 !UN 128 2DP 54 !UN 128 2DP 54 !UN 128 IDN 2

2DP 54 !UN 128 IDN 2 !UN 128 IDN 2 !UN 128 3DP 54
!RP 5 2UP 36 2DP 54 2UP 36 2DP 54 2UP 36 2DP 54

2UP 36 !DP 6 2UP 36 !DP 6 !UP 4 END 0
!RN I !RP 5 !RP 5 !RP 5 !RP 5

TOTAL: 32 CODES

Fig. 7-3. Hi-res complex figure drawing sequence.

No matter how you approach the drawing sequence, you should end
up with a series of code numbers that concludes with a 0. That is the data
block for a given shape.

Completing the Shape Table With the Index Whether you
are using a single shape or a hundred of them, the shape table must begin
with a single index that indicates (1) the number of shapes in the table, and
(2) the starting position of each block of shape data.

An index for one shape is the simplest index. It contains four codes:
one code to indicate the number of shapes, an irrelevant number, and two
codes to indicate the starting position of the shape data. An index for two
shapes contains six codes: one code to indicate the number of shapes, that
irrelevant number again, and two pairs of codes indicating the starting
positions of the two shape-data blocks. An index for three shapes has eight
codes: one for the number of shapes, the irrelevant number, and three pairs
of codes pointing to the beginning of each shape-data block.

Clearly, the size of the index depends on the number of different
shapes specified in the shape table. It is always equal to twice the number
of shapes plus two.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 171

Assuming that you have already prepared shape data, take a sheet of
ordinary notebook paper and label each line with integer values from 0 to
twice the number of shapes plus two. Then continue labeling to some
number you figure will be adequate for listing all of the shape codes. (You
can always add or delete lines at the end.)

Line 0 marks the beginning of the index. You should know how many
shapes you are using, so write that number on line 0 of the chart. Write any
number you like on line 1. Then skip two lines for every shape in the table.
If you are using two shapes, skip two lines, if you have three shapes, skip 6
lines, and so on. That line-whatever it may be-marks the end of the
index. The shape data for the first figure begins on the line that follows.

Suppose that you are building a table for two different shapes. That
being the case, the index portion starts out looking something like Fig. 7-4.

LINE CODE NOTES

0 2 START OF INDEX

1 0

2
3~

4
5

6

7 -

8
9

L__..--

Fig. 7-4. Shape table worksheet.

Begin writing in the sequences of shape data. The first shape you enter
will be called shape 1 from then on, the second shape will be designated
shape 2, and so on. Continue entering the shape data until you get them all
into place on the worksheet.

Table 7-8 shows a shape table worksheet that includes the shape data
from Figs. 7-2 and 7-3. The rectangle is shape 1, and the little creature is
shape 2.

The table occupies lines 0 through 70. All that remains to be done is to
assign the shape starting codes to lines 2 through 5.

Now notice that shape 1 begins at line 6 and that shape 2 begins at line
39. Those are the numbers that are important to the index. They must be
entered as 2-byte decimal numbers, however. (See Appendix A.) That

172 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-8. Shape Table Worksheet

Line Code Table Section

0 2
1 0 PARTIAL INDEX
2 FOR 2 SHAPES
3
4
5

6 45
7 45
8 45
9 45

10 45
11 45
12 45
13 5
14 54
15 54
16 54
17 54 SHAPE I
18 54 DATA
19 54
20 54
21 6
22 63
23 63
24 63
25 63
26 63
27 63
28 63
29 7
30 36
31 36
32 36
33 36
34 36
35 36
36 36
37 4
38 0

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 173

Table 7-8-cont. Shape Table Worksheet

Line Code Table Section

39 54
40 54
41 5
42 128
43 128
44 36
45 36 SHAPE 2
46 1 DATA
47 54
48 2
49 54
50 6
51 5
52 128
53 128
54 6
55 36
56 5
57 54
58 2
59 54
60 6
61 5
62 128 --

63 128
64 36
65 4
66 5
67 2
68 54
69 54
70 0

Table 7-9. Completed Shape Index

LINE CODE

0 2
1 0
2 ~} LINES TO SHAPE 1
3
4 ~9 } LINES TO SHAPE 2
5

174 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

means the codes for shape 1 are 6 and O; and the codes for shape 2 are 39
and 0.

So write 6 and 0 into lines 2 and 3, respectively; and write 39 and 0
into lines 4 and 5, respectively. That completes all the work for the shape
table worksheet. Table 7-9 shows the completed shape index.

You have seen how to prepare shape tables. The next step is to write a
BASIC program that loads the table into your Apple system.

Writing the BASIC Shape-Table Loader The shape table that
you've prepared must be loaded into a block of RAM. At this point, the
actual RAM addresses aren't important. In fact, you should write the
BASIC loader routine in such a way that you can place the shape table
anywhere you choose. The basic idea is to prepare a series of POKE
statements that will PO KE the table into~ successive address locations.

Listing 7-5 represents the BASIC shape-table loader for the table illus
trated in Table 7-9. Variable ST represents the starting address of the shape
table. It isn't defined in this BASIC routine, but you will eventually assign
some value to it in a program that calls this subroutine. Do not attempt to
run this subroutine as shown here-that comes later.

Referring to Table 7-9, you can see that program lines 1010 through
1030 POKE the index into consecutive address locations ST+O through
ST+5. Throughout this program, the number summed with variable ST is
equal to the line number from the shape-table worksheet.

Program lines 1050 through 1120 load the shape data for shape 1. Since
there are foll! instances where the table calls for loading the same number
seven times in succession, using FOR-NEXT loops helps simplify the pro
gramming procedure. Loading shape 2 is not quite so simple, however.

Program lines 1140 through 1270 are responsible for loading the data
for shape 2. The technique used here might seem terribly cumbersome at
first glance, but after you see how it works, you will see that it is simpler
than typing in 32 individual POKE statements.

The idea is to set variable N in a FOR-NEXT loop that covers the
entire range of worksheet line numbers for shape 2-lines 39 through 70, in
this case. The loop includes a GOSUB to a small (a very small) subroutine
that assigns the current data value to variable K. On returning from the
subroutine, K is POKEd into the proper memory location for the shape
table.

The short subroutines occupying program lines 1239 through 1270 rep
resent the line-by-line shape data for shape 2. To get those lines into the
program, do an AUTO 1239,l and begin typing them in. It's easier than it
looks. And it is certainly easier than having to type in 32 separate POKE
statements.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 175

Listing 7-5. Shape-Table Loader.

1000 REM ** LOAD SHAPE TABLE **
1010 POKE ST+0,2: POKE ST+l,0
1020 POKE ST+2,6: POKE ST+3,0
1030 POKE ST+4,39: POKE ST+5,0
1040 REM ** SHAPE l **
1050 FOR N=6 TO 12: POKE ST+N,45: NEXT N
1060 POKE ST+l3, 5
1070 FOR N=l4 TO 20: POKE ST+N, 54: NEXT N
1080 POKE ST+21,6
1090 FOR N=22 TO 28: POKE ST+N,63: NEXT N
1100 POKE ST+29,7
1110 FOR N=30 TO 36: POKE ST+N,36: NEXT N
1120 POKE ST+37,4: POKE ST+38,0
1130 REM ** SHAPE 2 **
1140 FOR N=39 TO 70: GO SUB 1200+N
1150 POKE ST+N,K: NEXT N
1160 RETURN
1170 REM
1180 REM
1239 K=54: RETURN
1240 K=54: RETURN
1241 K=5: RETURN
1242 K=l28: RETURN
1243 K=l28: RETURN
1244 K=36: RETURN
1245 K=36: RETURN
1246 K=l: RETURN
1247 K=54: RETURN
1248 K=2: RETURN
1249 K=54: RETURN
1250 K=6: RETURN
1251 K=5: RETURN
1252 K=l28: RETURN
1253 K=l28: RETURN
1254 K=36: RETURN
1255 K=36: RETURN
1256 K=5: RETURN
1257 K=54: RETURN
1258 K=2: RETURN
1259 K=54: RETURN
1260 K=6: RETURN
1261 K=5: RETURN
1262 K=l28: RETURN
1263 K=l28: RETURN
1264 K=36: RETURN
1265 K=4: RETURN
1266 K=5: RETURN
1267 K=2: RETURN
1268 K=54: RETURN
1269 K=54: RETURN
1270 K=0: RETURN

176 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Overall, the idea is to POKE the shape table into RAM, beginning at
address ST. Use any programming procedure that suits you.

If you want to test the operation of this BASIC loader, first do a
LOMEM:3072 and then type in this short routine:

100 ST=2048: GOSUB 1000
110 FOR N=0 TO 70
130 PRINT PEEK (ST+N); "I"
140 NEXT N
150 END

It is important to do the LOMEM:3072 to raise system LOMEM to
that point, thereby leaving some room in the lower RAM area for the shape
table. Line 100 in the test program assigns address 2048 as the starting
address of the table, and then it calls the loader routine to POKE the table
into that area.

Lines 110 through 140 simply PEEK into the table, printing out the
data in the sequence it appears on your table worksheet. The slash simply
separates one code from the next.

Delete the test program after you've had a chance to check out the
operation of the table loading routine and the data. It is a good idea to save
the loading routine for later use.

The next, and final, step is to prepare a BASIC program that uses the
shape table.

The Hi-Res Main Program There are some special requirements
for a BASIC program that uses the shape table you have built. Generally
speaking, the main program should begin by:

1. Setting LOMEM up and away from the area to be occupied by the
shape table.

2. Specifying the starting address of the shape table.
3. Specifying the special hi-res and shape-table variables.
4. Calling the routine that loads the shape table.
5. Initializing the hi-res system.

Recall that you can set LOMEM from an Integer BASIC program by
POKEing the 2-byte version of the desired LOMEM address into addresses
74 and 75. Assuming that you want LOMEM to be at address 3072, the
appropriate POKE statements are:

POKE 74,0 : POKE 75, 12

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 177

You can set LOMEM anywhere you like, as long as it is higher than the
starting address of your shape table and leaves room for building up the
shape table below it. We will use a LOMEM of 3072 in the remaining
examples, and start the shape table at 2048.

After setting LOMEM, set the starting address of the shape table. That
address must be entered as a 2-byte number in addresses 808 and 809, with
the lower byte going into location 808. So using a table starting address of
2048, the appropriate POKE statements are:

POKE 808,0 : POKE 809,8

Addresses 808 and 809 carry the starting address of
the shape table. The starting address must be
entered as a 2-byte decimal number, with the
least-significant byte going into 808.

Again, you have the option of locating the start of the shape table
anywhere you wish, just as long as it is lower than your prescribed
LOMEM setting and leaves room below LOMEM for the entire table.
Thus, virtually every program that uses hi-res shape table techniques ought
to begin this way:

100 POKE 74,0: POKE 75,12
110 POKE 808,0: POKE 809,8

Recall that a program using hi-res operations must define variables
XX, YY, and COLR before doing anything else that uses a variable name.
When working with a shape table, that list of critical variables has to be
extended to include SHAPE, ROT, and SCALE. You can name them any
thing else you want as long as your custom names have the same number of
characters in them. We will be staying with SHAPE, ROT, and SCALE.

Incidentally, you must define all six of those variables, even if you do
not plan to use some of them. So the programming to this point ought to
look like this:

100 POKE 74,0: POKE 75,12
110 POKE 808,0: POKE 809,8
120 XX=YY=COLR=SHAPE=ROT=SCALE

178 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

The SHAPE variable indicates which shape you are dealing with. If
your table has four shapes in it, the legitimate values later assigned to the
SHAPE variable are 1, 2, 3, and 4.

The ROT variable is used for rotating the designated shape about its
starting point. The values assigned to ROT later in the program can be any
integer from 0 to 255, but you can see in Table 7-10 that values 0 through 64
are adequate for a full 360 degrees of rotation.

The SCALE variable fixes the size of the designated shape in relation
to its size as indicated in the table. The value ultimately assigned to
SCALE can be any integer value from 0 to 255. Using a scaling factor of 0
is pointless, because it reduces the size to nothing; attempting to use seal
. ing factors larger than 4 expands the shape to a size that renders it virtually
useless. A scaling factor of 1 causes the system to plot the shape in the
same point-for-point size you used in designing it originally. You probably
realize by now that the SCALE variable cannot properly reduce the size of
a figure relative to its original, shape-table specification. It does a nice job
of expanding it by factors of 2 or 3, however.

After the program line that defines the six hi-res variables, the next
line ought to call the table-loading routine. That is a matter of assigning the
full decimal starting address of the shape table to variable ST and doing a
GOSUB 1000. The value assigned to variable ST must be a full decimal
version of the 2-byte address POKEd into addresses 808 and 809. If you
forget to use the full 'decimal version, you will get some discouraging
results.

By now, the opening portion of the BASIC program should look like
this:

100 POKE 74,0: POKE 75,12
110 POKE 808,0: POKE 809,8
120 XX=YY=COLR=SHAPE=ROT=SCALE
130 ST=2048: GOSUB 1000

Now you are free to carry out any operations that aren't directly re
lated to high-resolution graphics. That would include some text and lo-res
operations. For our immediate purposes, though, assume that it is time to
get into the hi-res operating mode by CALLing INIT at -12288.

Once in the hi-res operating mode, you can fiddle around with the
normal PLOT and LINE techniques described earlier in this chapter. But
when it is time to draw one of the shapes in your shape table, you must
prepare the way by:

1. Making certain that the XX and YY starting position of the shape i.s
clearly defined.

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 179

Table 7-10. ROT Values

Angle of Rotation
ROT Value (degrees)

0 0.00
2 11.25
4 22.50
6 33.75

8 45.00
10 56.25
12 67.50
14 78.75

16 90.00
18 101.25
20 112.50
22 123.75

24 135.00
26 146.25
28 157.50
30 168.75

32 180.00
34 191.25
36 202.50
38 213.75

40 225.00
42 236.25
44 247.50
46 258.75

48 270.00
50 281.25
52 292.50
54 303.75

56 315.00
58 326.25
60 337.50
62 348.75

64 360.00

180 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

2. Assigning a color code for the shape to COLR.
3. Designating which shape you want to draw by assigning the shape

number to SHAPE.
4. Designating a ROT angle and SCALE factor.
5. CALLing the shape DRAW routine at address -11456.

All of that is illustrated for you in lines 150 through 190 in Listing 7-6.
Line 150 sets XX and YY to hi-res location 20,30 and calls the POSN

routine. Any other operation that leaves XX and YY at some clearly
defined position will suffice.

Lines 160 and 170 set the shape color to white and designate shape
number 2. Shape 2 in this case is the little creature of Fig. 7-3. Line 180
sets the rotation to 0 (no rotation at all), and then establishes a scale factor
of 2. Finally, line 190 calls the shape-drawing routine at address -11465.

DRAW at address -11465 draws the designated
shape.

Assuming that you already have the shape-table loading routine (pro
gram lines 1000 through 1270) loaded into the system, add the main pro
gram at lines 100 through 200, and give it a RUN.

Experiment with the SCALE factor in line 180, try changing the COLR
in line 160, and set up some different drawing positions in line 150. Specify
shape 1 in line 170 to see the rectangle figure from Fig. 7-2.

Can you think of a way to rewrite the program so that the system will
duplicate shape 2 a number of times and at different places on the screen?

Try drawing shape 2 at some position on the screen, and then set up
the program for drawing shape 1 by means of the DRAW! routine at ad
dress -11462. Do not specify a position for shape 1, and you will be able to
appreciate the purpose of DRAWL (It begins drawing shape 1 where shape
2 left off.)

CALLing the FIND routine at address -11780 automatically positions
the XX and YY variables at the last point specified for a shape just drawn
on the screen. After doing FIND, you can specify a PLOT or LINE from
that position.

DRAWl is a shape-linking function. FIND does the same sort of thing,
but links a PLOT or LINE to a previously drawn shape.

As you play around with shape tables, you will find that the colors of
the shapes often do some unexpected and often undesirable things. The
plotting of shapes against various background colors follows the same gen
eral limitations described earlier for plotting points and lines. A shape hav
ing a white color assigned to it might appear green or blue against a black
background, depending on whether the current XX value is even or odd.
Portions of a shape will appear white only if there are two points plotted in

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 181

Listing 7-6. Drawing Two Shapes.

100 POKE 74,0: POKE 75,12
110 POKE 808,0: POKE 809,8
120 XX=YY=COLR=SHAPE=ROT=SCALE
130 ST=2048: GOSUB 1000
140 CALL -12288
150 XX=20:YY=30: CALL -11527
160 COLR=l27
170 SHAPE=2
180 ROT=0:SCALE=2
190 CALL -11465
200 END

1000 REM ** LOAD SHAPE TABLE **
1010 POKE ST+0,2: POKE ST+l,0
1020 POKE ST+2,6: POKE ST+3,0
1030 POKE ST+4,39: POKE ST+5,0
1040 REM ** SHAPE 1 **
1050 FOR N=6 TO 12: POKE ST+N,45: NEXT N
1060 POKE ST+l3,5
1070 FOR N=l4 TO 20: POKE ST+N,54: NEXT N
1080 POKE ST+21,6
1090 FOR N=22 TO 28: POKE ST+N,63: NEXT N
1100 POKE ST+29,7
1110 FOR N=30 TO 36: POKE ST+N,36: NEXT N
1120 POKE ST+37,4: POKE ST+38,0
1130 REM ** SHAPE 2 **
1140 FOR N=39 TO 70: GOSUB 1200+N
1150 POKE ST+N,K: NEXT N
1160 RETURN
1170 REM
1180 REM
1239 K=54: RETURN
1240 K=54: RETURN
1241 K=5: RETURN
1242 K=l28: RETURN
1243 K=l28: RETURN
1244 K=36: RETURN
1245 K=36: RETURN
1246 K=l: RETURN
1247 K=54: RETURN
1248 K=2: RETURN
1249 K=54: RETURN
1250 K=6: RETURN
1251 K=5: RETURN
1252 K=l28: RETURN
1253· K=l28: RETURN
1254 K=36: RETURN
1255 K=36: RETURN
1256 K=5: RETURN
1257 K=54: RETURN
1258 K=2: RETURN
1259 K=54: RETURN
1260 K=6: RETURN
1261 K=5: RETURN
1262 K=l28: RETURN
1263 K=l28: RETURN
1264 K=36: RETURN
1265 K=4: RETURN
1266 K=5: RETURN
1267 K=2: RETURN
1268 K=54: RETURN
1269 K=54: RETURN
1270 K=0: RETURN

182 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

I '-

successive horizontal positions. Also, you will find a big difference be
. tween WHITE 127 and WHITE 255. As mentioned earlier, this particular

situation is beyond the scope of this book.

HI-RES VIDEO ADDRESSES It is possible to build fine hi-res
graphics by POKEing values directly to the primary or secondary pages of
hi-res video memory. Unfortunately, it is an exceedingly tricky procedure
to achieve the color combinations you want. Fortunately, the PLOT,
LINE, and DRAW routines already described in this chapter can do the
same sort of task equally well. For the sake of completeness, however,
Tables 7-11 and 7-12 show the line-by-line memory map for both the pri
mary and secondary pages of hi-res video memory.

Table 7-11. Hi-Res Primary-Page Memory Map

Line Address Range

LINE 0 8192-8231
LINE 1 9216-9255
LINE 2 10240-10279
LINE 3 11264-11303
LINE 4 12288-12327
LINE 5 13312-13351
LINE 6 14336-14375
LINE 7 15360-15399

LINE 8 8320-8359
LINE 9 9344-9383
LINE 10 10368-10407
LINE 11 11392-11431
LINE 12 12416-12455
LINE 13 13440-13479
LINE 14 14464-14503
LINE 15 15488-15527

LINE 16 8448-8487
LINE 17 9472-9511
LINE 18 10496-10535
LINE 19 11520-11559
LINE 20 12544-12583
LINE 21 13568-13607
LINE 22 14592-14631
LINE 23 15616-15655

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT • 183

Table 7-U-cont. Hi-Res Primary-Page Memory Map

Line Address Range

LINE 24 8576-8615
LINE 25 9600-9639
LINE 26 10624- I 0663
LINE 27 1I648-11687
LINE 28 12672-1271 I
LINE 29 13696-13735
LINE 30 14720-14759
LINE 31 15744-15783

LINE 32 8704-8743
LINE 33 9728-9767
LINE 34 10752-10791
LINE 35 11776-11815
LINE 36 12800-12839
LINE 37 13824-13863
LINE 38 14848-14887
LINE 39 15872-15911

LINE 40 8832-8871
LINE 41 9856-9895
LINE 42 10880-10919
LINE 43 11904-11943
LINE 44 12928-12967
LINE 45 13952- 13991
LINE 46 14976-15015
LINE 47 16000-16039

LINE 48 8960-8999
LINE 49 9984-10023
LINE 50 11008-11047
LINE 51 12032-12071
LINE 52 13056- 13095
LINE 53 14080-14119
LINE 54 15104-15143
LINE 55 16128-16167

LINE 56 9088-9127
LINE 57 10112-10151
LINE 58 11136-11175
LINE 59 12160-12199
LINE 60 13184-13223

184 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-11-cont. Hi-Res Primary-Page Memory Map

Line Address Range

LINE 61 14208-14247
LINE 62 15232-15271
LINE 63 16256-16295

LINE 64 8232-8271
LINE 65 9256-9295
LINE 66 10280-10319
LINE 67 11304-11343
LINE 68 12328-12367
LINE 69 13352- 13391
LINE 70 14376-14415
LINE 71 15400-15439

LINE 72 8360-8399
LINE 73 9384-9423
LINE 74 10408-10447
LINE 75 11432-11471
LINE 76 12456-12495
LINE 77 13480-13519
LINE 78 14504-14543
LINE 79 15528-15567

LINE 80 8488-8527
LINE 81 9512-9551
LINE 82 10536-10575
LINE 83 11560-11599
LINE 84 12584-12623
LINE 85 13608-13647
LINE 86 14632-14671
LINE 87 15656-15695

LINE 88 8616-8655
LINE 89 9640-9679
LINE 90 10664-10703
LINE 91 11688-11727
LINE 92 12712-12751
LINE 93 13736-13775
LINE 94 14760-14799
LINE 95 15784-15823

LINE 96 8744-8783

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT e 185

Table 7-11-cont. Hi-Res Primary-Page Memory Map

Line Address Range

LINE 97 9768-9807
LINE 98 10792-10831
LINE 99 11816-11855
LINE 100 12840-12879
LINE 101 13864-13903
LINE 102 14888-14927
LINE 103 15912-15951

LINE 104 8872-8911
LINE 105 9896-9935
LINE 106 10920-10959
LINE 107 11944-11983
LINE 108 12968-13007
LINE 109 13992-14031
LINE 110 15016-15055
LINE 111 16040-16079
LINE 112 9000-9039
LINE 113 10024-10063
LINE 114 11048-11087
LINE 115 12072-12111
LINE 116 13096-13135
LINE 117 14120-14159
LINE 118 15144-15183
LINE 119 16168-16207

LINE 120 9128-9167
LINE 121 10152-10191
LINE 122 11176-11215
LINE 123 12200-12239
LINE 124 13224-13263
LINE 125 14248-14287
LINE 126 15272-15311
LINE 127 16296-16335

LINE 128 8272-8311
LINE 129 9296-9335
LINE 130 10320-10359
LINE 131 11344-11383
LINE 132 12368-12407
LINE 133 13392-13431
LINE 134 14416-14455

186 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-11-cont. Hi-Res Primary-Page Memory Map

Line Address Range

LINE 135 15440-15479

LINE 136 8400-8439
LINE 137 9424-9463
LINE 138 10448-10487
LINE 139 11472-11511
LINE 140 12496-12535
LINE 141 13520-13559
LINE 142 14544-14583
LINE 143 15568-15607

LINE 144 8528-8567
LINE 145 9552-9591
LINE 146 10576-10615
LINE 147 11600-11639
LINE 148 12624-12663
LINE 149 13648-13687
LINE 150 14672-14711
LINE 151 15696-15735

LINE 152 8656-8695
LINE 153 9680-9719
LINE 154 10704-10743
LINE 155 11728-11767
LINE 156 12752-12791
LINE 157 13776-13815
LINE 158 14800- 14839
LINE 159 15824-15863

LINE 160 8784-8823
LINE 161 9808-9847
LINE 162 10832-10871
LINE 163 11856-11895
LINE 164 12880-12919
LINE 165 13904-13943
LINE 166 14928-14967
LINE 167 15952-15991

LINE 168 8912-8951
LINE 169 9936-9975
LINE 170 10960-10999

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT ., 187

- ->'!:"

Table 7-11-cont. Hi-Res Primary-Page Memory Map

Line Address Range

LINE 171 11984-12023
LINE 172 13008-13047
LINE 173 14032-14071
LINE 174 15056-15095
LINE 175 16080-16119

LINE 176 9040-9079
LINE 177 10064-10103
LINE 178 11088-11127
LINE 179 12112-12151
LINE 180 13136-13175
LINE 181 14160-14199
LINE 182 15184-15223
LINE 183 16208-16247

LINE 184 9168-9207
LINE 185 10192-10231
LINE 186 11216-11255
LINE 187 12240-12279
LINE 188 13264-13303
LINE 189 14288-14327
LINE 190 15312-15351
LINE 191 16336-16375

Table 7-12. Hi-Res Secondary-Page -~emory Map

Line

LINE 0
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7

LINE 8
LINE 9
LINE 10
LINE 11
LINE 12

Address Range

16384-16423
17408-17447
18432-18471
19456-19495
20480-20519
21504-21543
22528-22567
23552-23591

16512-16551
17536-17575
18560-18599
19584-19623
20608-20647

188 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-12-cont. Hi-Res Secondary-Page Memory Map

Line Address Range

LINE 13 21632-21671
LINE 14 22656-22695
LINE 15 23680-23719

LINE 16 16640-16679
LINE 17 17664-17703
LINE 18 18688-18727
LINE 19 19712-19751
LINE 20 20736-20775
LINE 21 21760-21799
LINE 22 22784-22823
LINE 23 23808-23847

LINE 24 16768-16807
LINE 25 17792-17831
LINE 26 18816-18855
LINE 27 19840-19879
LINE 28 20864-20903
LINE 29 21888-21927
LINE 30 22912-22951
LINE 31 23936-23975

LINE 32 16896-16935
LINE 33 17920-17959
LINE 34 18944-18983
LINE 35 19968- 20007
LINE 36 20992-21031
LINE 37 22016-22055
LINE 38 23040-23079
LINE 39 24064- 24103

LINE 40 17024- 17063
LINE 41 18048-18087
LINE 42 19072-19111
LINE 43 20096-20135
LINE 44 21120-21159
LINE 45 22144-22183
LINE 46 23168-23207
LINE 47 24192- 24231

LINE 48 17152-17191

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 189

Table 7-12-cont. Hi-Res Secondary-Page Memory Map

Line Address Range

LINE 49 18176-18215
LINE 50 19200-19239
LINE 51 20224- 20263
LINE 52 21248-21287
LINE 53 22272-22311
LINE 54 23296-23335
LINE 55 24320- 24359

LINE 56 17280-17319
LINE 57 18304-18343
LINE 58 19328-19367
LINE 59 20352-20391
LINE 60 21376-21415
LINE 61 22400-22439
LINE 62 23424-23463
LINE 63 24448-24487

LINE 64 16424-16463
LINE 65 17448-17487
LINE 66 18472-18511
LINE 67 19496-19535
LINE 68 20520-20559
LINE 69 21544-21583
LINE 70 22568-22607
LINE 71 23592-23631

LINE 72 16552-16591
LINE 73 17576-17615
LINE 74 18600-18639
LINE 75 19624-19663
LINE 76 20648-20687
LINE 77 21672-21711
LINE 78 22696-22735
LINE 79 23720-23759

LINE 80 16680-16719
LINE 81 17704-17743
LINE 82 18728-18767
LINE 83 19752-19791
LINE 84 20776-20815
LINE 85 21800-21839

190 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 7-12-cont. Hi-Res Secondary-Page Memory Map

Line Address Range

LINE 86 22824- 22863
LINE 87 23848-23887

LINE 88 16808-16847
LINE 89 17832-17871
LINE 90 18856-18895
LINE 91 19880-19919
LINE 92 20904-20943
LINE 93 21928-21967
LINE 94 22952-22991
LINE 95 23976-24015

LINE 96 16936-16975
LINE 97 17960- 17999
LINE 98 18984-19023
LINE 99 20008-20047
LINE 100 21032-21071
LINE 101 22056- 22095
LINE 102 23080-23119
LINE 103 24104-24143

LINE 104 17064-17103
LINE 105 18088-18127
LINE 106 19112-19151
LINE 107 20136-20175
LINE 108 21160-21199
LINE 109 22184-22223
LINE 110 23208-23247
LINE 111 24232-24271

LINE 112 17192-17231
LINE 113 18216-18255
LINE 114 19240-19279
LINE 115 20264-20303
LINE 116 21288-21327
LINE 117 22312-22351
LINE 118 23336-23375
LINE 119 24360-24399

LINE 120 17320-17359
LINE 121 18344-18383

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " ~91

Table 7-12-cont. Hi-Res Secondary-Page Memory Map

Line Address Range

LINE 122 19368-19407
LINE 123 20392-20431
LINE 124 21416-21455
LINE 125 22440-22479
LINE 126 23464- 23503
LINE 127 24488-24527

LINE 128 16464-16503
LINE 129 17488-17527
LINE 130 18512-18551
LINE 131 19536-19575
LINE 132 20560- 20599
LINE 133 21584-21623
LINE 134 22608-22647
LINE 135 23632-23671

LINE 136 16592-16631
LINE 137 17616-17655
LINE 138 18640-18679
LINE 139 19664-19703
LINE 140 20688- 20727
LINE 141 21712-21751
LINE 142 22736-22775
LINE 143 23760-23799

LINE 144 16720-16759
LINE 145 17744-17783
LINE 146 18768-18807
LINE 147 19792-19831
LINE 148 20816-20855
LINE 149 21840-21879
LINE 150 22864-22903
LINE 151 23888-23927

LINE 152 16848-16887
LINE 153 17872-17911
LINE 154 18896-18935
LINE 155 19920-19959
LINE 156 20944- 20983
LINE 157 21968-22007
LINE 158 22992- 23031

192 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

Table 7-12-cont. Hi-Res Secondary-Page Memory Map

Line Address Range

LINE 159 24016-24055

LINE 160 16976-17015
LINE 161 18000-18039
LINE 162 19024-19063
LINE 163 20048-20087
LINE 164 21072-21111
LINE 165 22096-22135
LINE 166 23120-23159
LINE 167 24144-24183

LINE 168 17104-17143
LINE 169 18128-18167
LINE 170 19152-19191
LINE 171 20176-20215
LINE 172 21200-21239
LINE 173 22224- 22263
LINE 174 23248-23287
LINE 175 24272-24311

LINE 176 17232-17271
LINE 177 18256-18295
LINE 178 19280-19319
LINE 179 20304-20343
LINE 180 21328-21367
LINE 181 22352-22391
LINE 182 23376-23415
LINE 183 24400- 24439

LINE 184 17360-17399
LINE 185 18384-18423
LINE 186 19408-19447
LINE 187 20432-20471
LINE 188 21456-21495
LINE 189 22480- 22519
LINE 190 23504- 23543
LINE 191 24528-24567

THE HIGH-RESOLUTION GRAPHICS ENVIRONMENT " 193

Using Short
Machine-Language Routines

With BASIC

Anyone who has done even a modest amount of programming in
Apple Integer BASIC ought to be familiar with some common
CALL statements. Perhaps the most-used of these is CALL -936.

8
That statement calls a subroutine within the Apple monitor that homes the
cursor and clears the text screen.

If you have been following the previous discussions, you are also
familiar with a whole family of useful CALL statements. Most of them deal
with setting the cursor position on the screen or clearing parts of the
screen. In all of those instances, the CALL statements refer to the starting
address of a monitor subroutine that is written in machine language. Those
machine-language subroutines all end with a code that returns the system
to the BASIC program that called the subroutine.

Fortunately for programmers who know nothing at all about machine
language programming, those commonly used CALL statements refer to
machine-language subroutines that are complete in themselves. Anyone
can use them without giving the slightest thought to machine-language
techniques.

The Apple monitor, however, is a vast repository of machine-language
routines that can be executed by doing a little bit of machine coding. Such
routines often run much faster than their BASIC counterparts. Once you
understand some of the fundamentals of machine-language programming, you
will be able to use these routines also. But they include a few lines of POKE
statements that deposit short machine-language subroutines into memory.

A FEW USEFUL MACHINE INSTRUCTIONS Most of the monitor
subroutines use the A, X, and Y registers in the microprocessor. These

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC "' 195

three registers may be thought of as special memory locations that can hold
decimal values from 0 to 255-the same range of values that can be
POKEd or PEEKed in any other memory location. These registers are dif
ferent, however, in that we cannot address them directly from BASIC. In
stead, we must use machine language to address them.

Loading Data to the Registers You can load a number between 0
and 255 into the A, X, and Y registers. The idea is quite similar to POKE
ing data to a RAM address in memory, but as mentioned earlier, the proce"
dure is a bit different.

There are three machine-language instructions for loading data to the
registers. They are 169, 162, and 160, and they load data into registers A,
X, and Y, respectively.

169 data loads data directly into the A register.
162 data loads data directly into the X register.
160 data loads data directly into the Y register.

In all three instructions, data is an integer between 0 and 255 that you
want to load into the designated register. So if you want to load a 27 into
the A register, you would write a program that deals with two numbers in
succession: 169 and 27. The first number, 169, tells the microprocessor to
accept data directly into its A register. The second number, 27, is the data
to be accepted by the A register.

On the other hand, if you want to load that number 27 to the X regis
ter, the appropriate sequence of numbers is 162 followed by 27. And if you
want to load the number to the Y register, the number sequence is 160 27.

You can also load the A, X, and Y registers with data from any address
in memory. The coding is a bit trickier than that required for loading just a
number, because you must break down the memory address into two dec
imal parts.

The problem, you see, is that machine language uses sequences of
code numbers having values limited to the range of 0 through 255, and most
RAM addresses have numbers much larger than that.

There are three machine-language instructions for loading data from
memory into the registers. They are 173, 174, and 172, and they load RAM
data into registers A, X, and Y, respectively.

Each of those instructions requires a sequence of three machine codes.
The first code is the instruction. It designates the nature of the operation
and points to a particular register. For instance, 173 designates a loading
operation from RAM into the A register. The two codes following the in
struction represent the address of the data. The least-significant, or low
portion, comes first, followed by the most-significant, or high portion.

196 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

173 addrL addrH loads the content of a memory
address represented as addrL and addrH into
the A register.

174 addrL addrH loads the content of a memory
address represented as addrL and addrH into
the X register.

172 addrL addrH loads the content of a memory
address represented as addrL and addrH into
the Y register.

What three codes are necessary for loading the A register with the data
in RAM address 825? Well, the first code in the sequence is 173. The two
following code numbers represent address 825, broken down into the low
and high decimal parts. In this case, addrL=57, and addrH=3. So the
proper code sequence is:

173 57 3

What would the following code sequence do?

172 44 2

The first number in the series indicates a loading operation to the Y register
from some memory address. The address, here coded as 44 2, is actually
address 554.

See if you can work out the coding sequence for loading the X register
with data contained in RAM address 1024.

Table 8-1 summarizes the six register-loading instructions cited thus
far. The list also includes the standard mnemonics (pronounced nee-MON
ics) for each coding sequence. The mnemonics describe the operations in a
shorthand form that is far more meaningful to programmers than the actual
machine-language sequences are.

Suppose you are preparing a program that will load a value of 55 di-

Table 8-1. Register-Loading Instructions

Mnemonic Machine Code Definition

LDA #data 169 data Loads data immediately to register A
LDA addr 173 addrL addrH Loads the content of addr to register A
LDX #data 162 data Loads data immediately to register X
LDX addr 174 addrL addrH Loads the content of addr to register X
LDY #data 160 data Loads data immediately to register Y
LDY addr 172 addrL addrH Loads the content of addr to register Y

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC " 197

rectly to the A register. As you saw earlier in this discussion, the proper
machine-language sequence would be:

169 SS

The microprocessor can understand the coding sequence, but programmers
find it difficult. A more human-oriented way to express the same operation
is by writing this:

LOA #SS

Literally interpreted, that assembly-language instruction says: Load a
value of 55 into the A register.

What, then, is the literal interpretation of the following assembly
language instruction?

LOY 1020

It means: Load the Y register with data contained in address 1020. The
machine-language sequence would be:

172 2S2 3

Storing Data from the Registers Just as there are machine
language instructions for loading data into the registers, there are machine
language instructions for storing the contents of the registers in memory.
There are just three such instructions used in this chapter. They are 141,
142, and 140, and they store data from registers A, X, and Y, respectively.

141 addr L addr H stores the content of the A regis
ter at an address represented by addrL and
addrH.

142 addrL addrH stores the content of the X regis
. ter at an address represented by addrL and

addrH.
140 addrL addrH stores the content of the Y regis

ter at an address represented by addrL and
addrH.

The instructions are all three-code sequences. The first code desig
nates the operation (store) and the register involved (A, X, or Y). The two
final codes indicate the address that is to accept the data.

198 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Suppose it is necessary to store the content of the A register at RAM
address 800. The appropriate machine-language sequence for doing that is:

141 32 3

where 141 is the instruction, 32 is addrL for address 800, and 3 is addrH for
address 800.

Table 8-2 summarizes these three instructions along with their
mnemonics.

The assembly-language version of the example just cited is

STA 800

It means: Store the content of register A at address 800.

Table 8-2. Register-Reading Instructions

Mnemonic Machine Code Definition

STA addr 141 addrL addrH Stores the content of register A at addr
STX addr 142 addrL addrH Stores the content of register X at addr
STY addr 140 addrL addrH Stores the content of register Y at addr

Going and Returning There are two more helpful machine
language instructions. One tells the microprocessor where to begin execut
ing a machine-language subroutine, and the other tells the system to return
to the main routine. They are much like the BASIC GOSUB and RETURN
statements. Table 8-3 shows those instructions and their assembly
language, mnemonic forms.

The assembly-language instruction JSR addr tells the microprocessor
to jump to a routine that begins at address addr, and keep track of where to
return when the routine is done. JSR 841, for example, means: Jump to a
routine beginning at address 841, and keep track of the place to return. The
corresponding machine-language version of that instruction is:

32 73 3

The first code, 32, is the instruction, 73 is the addrL part of address 841,
and 3 is the addrH part.

Table 8-3. Jump-to-Subroutine and Return Instructions

Mnemonic Machine Code Definition

JSR addr 32 addrL addrH Executes a subroutine that begins at addr
RTS 96 Returns operations to the calling routine

USING SHORT MACHINE-LJl.NGUAGE ROUTINES WITH BASIC • 199

The RTS assembly-language instruction is a one-code instruction-96.
Whenever the microprocessor encounters the number 96 as an instruction,
it returns to the place in a program that is previously saved by a JSR in
struction. Most machine-language routines end with an RTS instruction.

Some Preliminary Examples Before seeing exactly how machine
language ought to be presented to the microprocessor, consider a few
examples of the kind of thinking that goes into composing such programs.

Example I: Write a machine-language sequence that stores character code
20 at address 1024. Recall that 20 is the character code for an inverse space
and that 1024 is the video RAM address of the first point in the upper
left-hand corner of the screen. The routine, then, should plot a square of
light at that point on the screen.

The program sequence goes like this:

1. Load a value of 20 directly into the A register.
2. Store that value at address 1024.

The assembly-language version looks like this:

LDA #20
STA 1024

;LOAD INVERSE SPACE TO REGISTER A
;STORE IT TO VIDEO ADDRESS 1024

The explanations following each instruction and separated from the in
struction by a semicolon are called comments. Their only purpose, if they
are used at all, is to help the programmer remember the purpose of the
instruction. Comments in assembly-language programs are like REMs in
BASIC.

The microprocessor cannot understand the program as presented in
this assembly-language form. So one step remains-to tum the instructions
into their machine-language form. Referring to the tables shown earlier,
those two machine-language instructions look like this:

169 20
141 0 4

Combining both the assembly-language version (often called the
source-code version) and the machine-language version (object-code ver
sion) into a single presentation, we have:

169 20 LOA #20 ;LOAD INVERSE SPACE TO REGISTER A
141 0 4 STA 1024 ;STORE IT TO VIDEO ADDRESS 1024

200 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

The left-hand column, contammg the machine-language version of the
program, is the object-code field. The middle column, containing the
assembly-language version of the program, is the source-code field. The
last column, containing the comments, is the comment field.

Example 2: Fetch the character code from video address 1024 and load it
to ·video address 1025. In effect, we want to shift the character in the first
space in the upper left-hand comer of the screen one place to the right.

The programming sequence ought to go something like this:

1. Load the contents of address 1024 into the A register in the micro
processor.

2. Load the contents of the A register into address 1025 in the video
memory.

The assembly-language version of those two steps is:

LDA 1024
STA 1025

;FETCH THE CODE FROM ADDRESS 1024
;STORE THE CODE TO ADDRESS 1025

The machine-language version is:

173 0 4
141 1 4

Together, they look like this:

173 0 4
141 1 4

LDA 1024
STA 1024

;FETCH THE CODE FROM ADDRESS 1024
;STORE THE CODE TO ADDRESS 1025

Example 3: Set up a machine program that

1. Loads a value of 16 directly into the X register.
2. Loads a value of 44 directly into the A register.
3. Calls a machine-language subroutine that begins at address 845.
4. Returns to the calling routine.

We begin with the assembly-language version:

LDX #16
LDA #44
JSR 845
RTS

;LOAD 16 TO THE X REGISTER
;LOAD 44 TO THE A REGISTER
;CALL THE ROUTINE AT ADDRESS 845
;RETURN TO THE CALLING ROUTINE

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC • 201

Then, we generate the machine-language sequence:

162 16
169 44
32 77 3
96

Next, we put it all together:

162 16
169 44
32 77 3
96

LDS #16
LDA #44
JSR 845
RTS

;LOAD 16 TO THE X REGISTER
;LOAD 44 TO THE A REGISTER
;CALL THE ROUTINE AT ADDRESS 845
;RETURN TO THE CALLING ROUTINE

ENTERING AND RUNNING MACHINE-LANGUAGE ROUTINES
The microprocessor reads and executes machine language directly

from memory. The microprocessor expects to find the codes residing in a
strict sequential order and executes them that way. There are no line
numbers; rather, the codes reside in a block of memory. The memory ad
dresses, and not line numbers, are the only real organizers for machine
language programs.

So before you begin entering machine-language programs, you must
determine where they will be deposited in RAM. You certainly don't want
to put them into video RAM, because that memory is dedicated to another
application. And you shouldn't try putting them into RAM that might be
used by BASIC programs. In short, you must use RAM that will not be
used for anything else.

There happens to be some space in RAM that isn't used at all if you
are not running under DOS or using certain lineprinters. Even if you are
using DOS, this RAM space is used only while booting up the system, so
you can use the space as long as you don't boot up DOS after loading your
machine codes. This largely unused block of RAM extends from address
768 to 1023; it is just below the section devoted to low-resolution graphics
and text. That is a great place to deposit short machine-language routines
and any variables such routines might use.

Fig. 8-1 is a memory map that we will be using for most machine
language routines. It sets aside addresses 800 through 899 for short
machine-language routines. There is enough space for 100 individual codes
in that range. The upper part of that memory map can be used for saving
variables that are required for executing the routines. Such a block of
memory, here shown between addresses 900 and 924, is called a scratch
pad memory.

202 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

925---------~
MACHINE LANGUAGE

VARIABLES
1900-924)

U)

~ 900 I------------!
ex:
C>
C>
<>:
2
<>:
ex:

SHORT MACHINE-LANGUAGE
ROUTINES
1800899)

800 '-------------'

Fig. 8-1. Maclnine-language memory map.

In principle, you are free to use other RAM space anywhere else in the
usable part of memory, but I have chosen this block of memory because it
is never disturbed by BASIC programs.

When it is time to enter the machine-language routine, POKE the
codes into successively higher addresses in your block of memory. So if a
particular routine begins with a code sequence such as:

173 0 4

enter it this way:

POKE 800, 173
POKE 801,0
POKE 802,4

And if you want to continue the program with another sequence such as:

141 1 4

continue the entry process with:

POKE 803,141
POKE 804,1
POKE 805,4

The example thus far shows the two sequences of three codes occupy
ing RAM addresses 800 through 805. If there were more to the program,
you would continue POKEing codes into successively higher RAM ad
dresses until they were all stored.

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC " 203

Consider this complete routine:

169 30
141 44 0
169 15
160 12
32 25 248
96

lDA #30
STA 44
LDA #15
LDY #12
JSR -2023
RTS

;LOAD 30 TO REGISTER A
;STORE IT IN ADDRESS 44
;LOAD 15 TO REGISTER A
;LOAD 12 TO REGISTER Y
;CALL A ROUTINE AT -2023
;RETURN TO CALLING ROUTINE
;IN BASIC

The machine-language instructions in that routine are entered into the
system as follows:

POKE 800, 169
POKE 801,30
POKE 802, 141
POKE 803,44
POKE 804,0
POKE 805, 169
POKE 806,15
POKE 807, 160
POKE 808,12
POKE 809,32
POKE 810,25
POKE 811,248
POKE 812,96

That machine-language program now occupies RAM locations 800 through
812, and you can CALL 800 from BASIC to execute it.

Here is a complete rendition of the program, including the addresses of
the first code in each instruction:

800 169 30
802 141 44 0
805 169 15
807 160 12
809 32 25 248
812 96

LDA #30
STA 44
LDA #15
LDY #12
JSR -2023
RTS

;LOAD 30 TO REGISTER A
;STORE IT IN ADDRESS 44
; LOAD 15 TO REGISTER A
;LOAD 12 TO REGISTER Y
;CALL A ROUTINE AT -2023
;RETURN TO CALLING ROUTINE
;IN BASIC

That says everything that needs to be said about the program. In left-to
right order, it shows the address of the first code in each instruction, the
object-code version of each instruction, the source-code version of each
instruction, and an appropriate comment.

204 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

To check out the program, POKE the series of 13 codes into addresses
800 through 812. Then enter and run this BASIC routine:

10 CALL -936
20 GO SUB 100
30 GR
40 COLOR=9
50 CALL 800
60 END

If you have POKEd the machine-language routine into addresses 800
to 812, as suggested, you should see an orange line drawn on the screen.
Notice that the BASIC routine simply sets up the graphics mode and color
code 9. Line 40 CALLs your machine-language routine-a machine
language version of the BASIC HLIN statement. After executing the
machine-language program, the system returns to BASIC line 50 and comes
to an END.

You can now run that BASIC program any number of times, and each
time it will draw the line by calling up your machine-language routine. In
fact, you can do a NEW to wipe out the BASIC portion of the program
without disturbing the language routine. Try it, then re-enter the BASIC
program and run it. Indeed, the machine-language routine is not affected by
BASIC operations. Of course, turning off the computer erases the routine.
But you can save it by including the POKEing operation in the BASIC
program that uses it. Consider this:

10 CALL -936
20 GO SUB 100
30 GR
40 COLOR=9
50 CALL 800
60 END

100 POKE 800,169: POKE 801,30
110 POKE 802,141: POKE 803,44: POKE 804,0
120 POKE 805,169: POKE 806,15
130 POKE 807,160: POKE 808,12
140 POKE 809,32: POKE 810,25: POKE 811, 248
150 POKE 812,96
160 RETURN

That BASIC program POKEs the machine-language routine by means
of a subroutine in lines 100 through 160. After that, it executes the opera
tions for setting up the graphics mode and calling the machine-language
routine from program line 50. BASIC programs that call custom machine-

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC ., 205

language programs are generally written in this fashion. These BASIC
programs include the POKE subroutine (often called the loader routine)
necessary for loading the machine language into memory. They also in
clude the BASIC routines that call the machine-language routine at the
moment. The entire program can be saved on cassette or disk without hav
ing to worry about loading or saving the machine-language routine sepa
rately.

CALLING SOME MONITOR ROUTINES Recall from discussions
in previous chapters that there is a family of monitor routines that can be
called directly from BASIC. Those routines, summarized in Table 8-4, re
quire no special setup with machine-language instructions. However, there
is no reason machine language may not be used. For example, the normal
way to execute a HOME operation is by doing a CALL -936 from BASIC.
You can do the same thing with machine language by executing the se
quence 32 88 252. That sequence represents a JSR -936. The other instruc
tions in the table also begin with a code 32, or JSR, instruction.

The main purpose of this discussion, though, is to introduce some
other monitor routines that cannot be called directly from BASIC, or to be
more precise, that require some machine-language routines.

Printing With STOADV The STOADV routine prints a single char
acter on the screen and advances the cursor position. The routine begins at
address -1040, but it cannot be properly executed unless you first load the

Table 8-4. Monitor Routines Available to BASIC

From
From Machine

Routine BASIC Language

Linefeed/Carriage Return CALL -926 32 98 252
Home and clear CALL -936 32 88 252
Advance the cursor CALL -1036 32 244 251
Backspace the cursor CALL -1008 32 16 252
Upward linefeed CALL -998 32 26 252
Downward linefeed CALL-922 32 102 252
Clear to end of line CALL -868 32 156 252
Clear to end of page CALL -958 32 68 252
Clear top of mixed graphics CALL -1994 32 54 248
Clear full-screen graphics CALL -1998 32 50 248
Wait for any keystroke CALL -741 32 27 253

206 ., INTERMEDIATE-LEVEL APPLE II HANDBOOK

desired character code into the A register. Thus, an appropriate assembly
language routine using STOADV looks like this:

LDA #CHAR
JSR -1040
RTS

;LOAD DESIRED CHARACTER CODE TO A
;CALL STOADV TO PRINT IT
;RETURN TO BASIC

The operator CHAR represents the character code of the character to be
printed on the screen.

If the character to be printed happens to be a flashing X, the complete
machine program takes this form:

800 169 88 LDA #88
802 32 240 251 JSR -1040
805 96 RTS

;LOAD FLASHING XTO REGISTER A
;CALL STOADV TO PRINT IT
;RETURN TO BASIC

That would specify the setup routine in RAM locations 800 through 805. An
appropriate BASIC routine for doing the actual programming could look
like this:

100 POKE 800,169: POKE 801,88
110 POKE 802,32: POKE 803,240: POKE 804,251
120 POKE 805,96

Enter and run that basic program, and you will have the machine
language routine loaded into the system. You won't see anything happening
as the system executes that BASIC program-it simply loads the machine
language routine for you. To see the effect of STOADV, you must now
write a BASIC program that calls your machine-language routine. Try this:

10 CALL -936
20 FOR N=0 TO 255
30 CALL 800
40 NEXT N
50 END

Assuming that you have previously run the machine-language loader, run
ning this program clears the screen, homes the cursor, and calls the
machine-language subroutine 256 times to print the flashing-X characters
that many times on the screen.

If you want to change the number of flashing-X characters printed on

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC • 207

the screen, simply revise the BASIC program at line 20. But if you want to
change the character that the machine-language subroutine prints, you
must POKE a different character code into address 801. For instance, enter
POKE 801,32 and run the BASIC calling routine again. Notice this time
that the machine-language subroutine loads an inverse-space character into
register A.

Printing With COUT1 COUTl prints a character to the screen and
advances the cursor in much the same way that STOADV does. The only
real difference is that COUTJ cannot print any of the "control" character
codes between 128 and 159.

The COUTI monitor routine begins at address -528, and the character
to be printed must be residing in register A just prior to the execution of
that routine. The assembly-language form of a routine that uses COUTl
looks something like this:

LDA #CHAR
JSR -528
RTS

The machine-language and assembly-language versions, beginning from
RAM address 800, look like this:

800 169 24 LDA #24
802 32 240 253 JSR -528
805 96 RTS

;LOAD AN INVERSE XTO REGISTER A
;RUN THE COUT1 ROUTINE
;RETURN TO BASIC

That calls for loading character-code 24 into the A register, then printing it
to the screen via the COUTI monitor routine. The custom routine ends
with RTS to return control to the BASIC program that called it in the first
place.

Given the addresses and machine codes for this printing routine, enter
and run this BASIC loader for it:

100 POKE 800,169: POKE 801,24
110 POKE 802,32: POKE 803,240: POKE 804,253
120 POKE 805, 96

Once you have run that loading routine, you can delete it without disturb
ing the machine-language programming.

Try out the custom machine-language routine with a BASIC program
such as this one:

208 e INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

10 CALL -936
20 FOR N=0 TO 255
30 CALL 800
40 NEXT N
50 END

That calls the custom machine-language routine 256 times in succession,
printing an inverse-X character and advancing the cursor each time.

Printing Blanks With PRBL2 A monitor routine called PRBL2 lets
you print between 1 and 256 blanks in succession on the screen. Before it
can run properly, however, you must load the number of blanks to be
printed into the X register. The routine cannot print 0 blanks, so if you load
a 0 into the X register, PRBL2 will print 256 blanks in succession.

The general assembly-language form of a routine using PRBL2 looks
like this:

LDS #BLNK ;LOAD NUMBER OF BLANKS TO REGISTER X
JSR -1718 ;CALL THE PRBL2 MONITOR ROUTINE
RTS ;RETURN TO BASIC

The second instruction indicates that the space-printing routine in the
monitor begins at address -1718.

Assuming you want to begin such a routine at address 800, the assem
bled version takes this form:

800 162 40
802 32 74 249
805 96

LDX #40
JSR -1718
RTS

;LOAD 40 TO REGISTER X
;PRINT THE BLANKS
;RETURN TO BASIC

The idea is to have the routine print 40 blanks in succession. The BASIC
version of the machine-language loader can look like this:

100 POKE 800,162: POKE 801,40
110 POKE 802,32: POKE 803,74: POKE 804,249
120 POKE 805,96

After entering and running that machine-language loader, you can print
40 blanks in succession by doing a CALL 800 from BASIC. It is possible to
change the number of blanks by POKEing some number other than 40 into
address location 801.

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC " 209

Setting the Low-Resolution Color With SETCOL A monitor
routine that begins at address -1948 can set up the color to be plotted under
low-resolution graphics, provided that you load the color code into the A
register first. The routine is called SETCOL, and it is normally executed
before doing a different routine that does the actual low-resolution plotting.

Soon you will see how to set up some low-resolution plotting routines
from machine language. For now, however, it is more important to see how
SETCOL works. The general form is:

LDA #COL
JSR -1948
RTS

;LOAD THE COLOR CODE (0- 15) TO REGISTER A
; EXECUTE SETCOL
;RETURN TO BASIC

If we choose to load that program from address 800, then the source code
and object code look like this:

800 169 9
802 32 100 248
805 96

LDA #9
JSR -1948
RTS

An appropriate loader is:

100 POKE 800,169: POKE 801,9

;LOAD ORANGE TO REGISTER A
; EXECUTE SETCOL
;RETURN TO BASIC

110 POKE 802,32: POKE 803,100: POKE 804,248
120 POKE 805, 96

Enter and run that loader to get the custom machine-language routine
into memory. After that, test its operation with a BASIC program such as
this one:

10 GR
20 CALL 800
30 HUN 0,39 AT 10
40 END

The CALL 800 in this case replaces the usual COLOR statement in
BASIC. The color set by the machine-language routine is orange, so this
program plots an orange bar across the screen. To change the color, simply
POKE a different color code right into the custom machine-language pro
gram at address 801.

Using the Monitor Version of PLOT The PLOT statement in
BASIC is easy to use, but there is a machine-language version of it tucked

210 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

away at address -2048 in the monitor. Before using it, you must set up
some registers. Specifically, you must load the vertical coordinate into reg
ister A, and the horizontal coordinate into register Y.

An assembly-language version of a routine that uses PLOT takes this
form:

LDA #VERT
LDY #HORZ
JSR -2048
RTS

;LOAD VERTICAL COORDINATE TO REGISTER A
;LOAD HORIZONTAL COORDINATE TOY
;CALL MONITOR'S PLOT
;RETURN TO BASIC

The following routine begins at address 800 and plots a low-resolution
block at coordinates IO and 8:

800 169 8
802 160 10
804 32 0 248
807 96

LDA #8
LDY #10
JSR -2048
RTS

; LOAD VERTICAL 8 TO REGISTER A
; LOAD HORIZ 10 TO REGISTER Y
;CALL MONITOR'S PLOT ROUTINE
;RETURN TO BASIC

Its loader looks like:

100 POKE 800,169: POKE 801,8
110 POKE 802,160: POKE 803,10
120 POKE 804,32: POKE 805,0: POKE 806,248
130 POKE 807, 96

After entering and running that BASIC loader, test the customized
PLOT routine with this BASIC program:

10 GR
20 COLOR=2
30 CALL 800
40 END

The CALL 800 in this instance replaces the usual PLOT statement of
BASIC. The custom machine-language routine plots COLOR at coordi
nates 10 and 8. You can alter the coordinates specified by the machine
language routine by POKEing different values (from 0 to 39) into addresses
801 and 803.

You can also replace the color statement in line 20 of the BASIC pro
gram with a CALL to a second machine-language routine that sets the
plotting color. Or, you might include the SETCOL routine-described in
the previous section-the same custom machine-language routine that
PLOT is a part of. Consider this assembly-language program:

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC " 211

800 169 9
802 32 100 248
805 169 12
807 160 10
809 32 0 248
812 96

LDA #9
JSR -1948
LDA #12
LDY #10
JSR -2048
RTS

;ORANGE COLOR CODE TO REGISTER A
; EXECUTE SETCOL
;SET VERTICAL PLOT TO REGISTER A
;SET HORIZ PLOT TO REGISTER Y
; EXECUTE MONITOR'S PLOT
;RETURN TO BASIC

This custom machine-language program sets up color code 9, and plots
that color at coordinates IO and 12. The appropriate BASIC loader routine
can look like this:

100 POKE
110 POKE
120 POKE
130 POKE
140 POKE
150 POKE

800,169: POKE 801,9
802,32: POKE 803,100: POKE 804,248
805,169: POKE 806,12
807,160: POKE 808,10
809,32: POKE 810,0: POKE 811,248
812,96

Enter and run that loader. After that, check it out with this BASIC pro
gram:

10 GR
20 CALL 800
30 END

Notice that the BASIC loader for this two-phase machine-language
program is longer than the BASIC program that uses it. What's more, the
entire machine-language program could be replaced with two simple
BASIC statements, COLOR=9 and PLOT 10,12. Though BASIC seems
simpler now, you will later find you can do things with machine language
that are almost impossible to do with BASIC.

Drawing Horizontal Lines With HLINE The HLINE routine at
address -2023 draws a low-resolution horizontal line between two
prescribed points on the screen, using a prescribed color code. It is the
machine-language version of the BASIC HLIN statement.

Before running HLINE, the microprocessor must have the vertical
position of the line in its A register, the left-hand horizontal coordinate in
the Y register, and the right-hand horizontal coordinate in address location
44. So the general machine-language setup for the HLINE routine goes
something like this:

212 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

LOA #REND
STA 44
LDA #VERT
LDY #LEND
JSR -2023
RTS

; LOAD RIGHT COORDINATE TO REGISTER A
;STORE IT TO ADDRESS 42
; LOAD VERTICAL POSITION TO REGISTER A
;LOAD LEFT COORDINATE TO REGISTER Y
;EXECUTE THE MONITOR'S HLINE ROUTINE
;AND RETURN TO BASIC

Just as with HUN, the right-hand coordinate, left-hand coordinate, and
vertical position can be integers in the range from 0 to 39.

Assuming that you are setting the color code from BASIC and would
like to run such a routine from address 800, you would write the assembly
version like so:

800 169 20
802 141 00 44
805 169 10
807 160 5
809 32 25 248
812 96

LDA #20
STA 42
LDA #10
LDY #5
JSR -2023
RTS

;RIGHT COORDINATE OF 20
;STORE !TAT ADDRESS 42
;VERTICAL POSITION OF 10
;LEFT COORDINATE OF 5
; EXECUTE HLINE
;RETURN TO BASIC

That particular routine is set up to draw a horizontal line of some
prescribed color between horizontal coordinates 5 and 20 at vertical posi
tion 10. It amounts to doing a HLIN 5,20 AT 10 from BASIC.

Here is a suitable BASIC loader for that routine:

100 POKE 800,169: POKE 801,20
110 POKE 802,141: POKE 803,0: POKE 804,44
120 POKE 805,169: POKE 806,10
130 POKE 807,160: POKE 808,5
140 POKE 809,32: POKE 810,25: POKE 811, 248
150 POKE 812,96

Enter and run that loader, then call it up at any later time with this sort of
BASIC program:

10 GR
20 COLOR=4
30 CALL 800
40 END

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC • 213

This will draw the horizontal line using color code 4. If you want to change
the right-hand coordinate of the line, POKE the desired value into address
801. If you want to change the left-hand coordinate, POKE the new value
into address 808. Finally, if you want to change the vertical position,
POKE the new value into address 806.

Drawing Vertical lines With VUNE Just as the HLINE routine
draws horizontal lines, the VLINE routine at address -2008 draws vertical
lines. The necessary setup in this case is to get the top vertical coordinate
into register A, the bottom vertical coordinate into RAM address 45, and
the horizontal position into register Y, as shown here:

LDA #BEND ;BOTTOM COORDINATE TO REGISTER A
STA 45 ;STORE IT AT ADDRESS 45
LDA #TEND ;TOP COORDINATE TO REGISTER A
LDY #HORZ ;HORIZONTAL COORDINATE TO REGISTER Y
JSR -2008 ;EXECUTE MONITOR'S VLINE ROUTINE
RTS ; RETURN TO BASIC

The BEND, TEND, and HORZ values can be anywhere from 0 to 30, just
as long as BEND is greater than TEND. The BASIC equivalent of this is:

VLIN TEND,BENO AT HORZ

Use Tables 8-1, 8-2, and 8-3 to assemble that program (that is, convert
it to machine language), beginning from address 800. Make up and check
out a BASIC loader for it. The program will be quite similar to the one
illustrated for HLINE in the previous section of this chapter.

Getting Key Codes With RDKEY · A monitor routine located at
address -756 prints the blinking cursor on the screen and waits for the user
to make a keystroke. It loads the key code for the key into the A register,
and goes on from there. Doing a CALL -756 directly from a BASIC pro
gram can be a useful trick whenever you want to halt operations until the
user strikes any key; but the key code, itself, is lost when RDKEY is used
that way.

Recall that the monitor routine COUTl prints to the screen whatever
character is represented in the A register. You can now write a short
machine-language routine that calls RDKEY to fetch a key code to the A
register, then calls COUTl to print the character to the screen. The routine
is:

800 32 12 253 JSR RDKEY ;GET A KEY CODE TO A
803 32 240 253 JSR COUT1 ;PRINT IT TO THE SCREEN
806 96 RTS ;RETURN TO THE CALLING PROGRAM

214 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

The BASIC loader for this routine looks like this:

100 POKE 800,32: POKE 801,12: POKE 802,253
110 POKE 803,32: POKE 804,240: POKE 805,253
120 POKE 806,96

Enter and run that loader, then check its operation with this short BASIC
program:

10 CALL -936
20 CALL 800
30 GOTO 20

You should find that you can type away on the screen to your heart's
content and control the cursor's position. The program represents a full
screen text editor.

Table 8-5 summarizes the monitor routines that are featured in this
chapter. The table begins by showing the name of the routine, its starting
address, and the code sequence for executing it from your own machine
language routine. The accompanying comments describe what the routine
does and the required setup procedures.

PASSING VARIABLES TO A MACHINE-LANGUAGE
ROUTINE You might have noticed that all but the RDKEY routine
described thus far in this chapter require some preliminary setup data. The
COUT l routine, for example, requires that the desired character code be
loaded into register A. So far, you have been supplying this data by POKE
ing it to the X, Y, or A registers. But there is a better way to pass a
variable to machine-language routines, and that is by passing it through a
register of variables. This "register" occupies addresses 900 through 924,
as shown in Fig. 8-1.

Suppose that you want to use the STOADV routine to print out the
entire Apple character set. The idea is to pass the character codes one at a
time and in succession to a custom STOADV setup routine. Here is what
the machine-language portion of the program might look like:

LDA 900
JSR STOADV
RTS

;LOAD REGISTER A WITH THE CONTENT OF 900
;PRINT IT TO THE SCREEN
; RETURN TO THE CALLING PROGRAM

Whatever character code happens to be in address 900 is thus printed to the
screen by the subsequent STOADV routine. The idea is to POKE the de-

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC " 215

Table 8-5. Monitor Routines Not Available to BASIC

Mnemonic Machine Code Definition Requirement

STOADV -1040 32 240 251
Prints a character Load the char-
to the screen and acter code to reg-
advances the ister A prior to
cursor calling this

routine from ma-
chine language

COUTl -528 32 240 253 Prints all but a Load the char-
control character acter code to reg-
to the screen and ister A prior to
advances the calling this
cursor routine from ma-

chine language

PRBL2 -1718 32 74 249 Prints between 1 Load the number
and 256 con- of blanks to the
secutive blanks X register prior
on the screen to calling this

routine from ma-
chine language

SETCOL -1948 32 100 248 Sets the graphic Load the color
color for low- code (0-15) to the
resolution opera- A register prior
tions to calling this

routine from ma-
chine language

PLOT -2048 32 0 248 Plots a low- Prior to calling
resolution block this routine from
of a prescribed machine Ian-
color at graphic guage:
coordinates X Load the Y
and Y coordinate to reg-

ister A
Load the X

coordinate to reg-
ister Y

216 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 8-5-cont. Monitor Routines Not Available to BASIC

Mnemonic, Machine Code Definition Requirement

HLINE -2023 32 25 248 Plots a low- Prior to calling
resolution hori- this routine from
zontal line of a machine lan-
prescribed color guage:

Load the end-
ing X coordinate
to address 44

Load the Y
position to regis-
ter A

Load the start-
ing X coordinate
to register Y

VLINE -2008 32 40 248 Plots a low- Prior to calling
resolution verti- this routine from
cal line of a machine lan-
prescribed color guage:

Load the end-
ing Y coordinate
to address 45

Load the start-
ing Y coordinate
to register A

Load the X
position to regis-
ter Y

RD KEY -756 32 12 253 Prints the flash- Executing this
ing cursor and routine from ma-
waits for a key- chine language
stroke leaves the key

code in register
A

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC ., 217

sired character code to address 900 just prior to calling the machine
language routine.

You can assemble the machine-language routine this way:

800 173 132 3 LDA 900
803 32 240 251 JSR STOADV
806 96

and load it from BASIC this way:

;FETCH CHARACTER TO A
;PRINT IT
;RETURN TO CALLING ROUTINE

100 POKE 800,173: POKE 801,132: POKE 802,3
110 POKE 803,32: POKE 804,240: POKE 805,251
120 POKE 806,96

The BASIC program that uses that routine can have this form:

10 CALL -936
20 FOR N=0 TO 255
30 POKE 900,N
40 CALL 800
50 NEXT N
60 END

Line 30 in that program passes the value of variable N to address 900
just before calling the subroutine in line 40. So as the BASIC portion of the
program lets N cycle from 0 through 255, those values are passed to the
machine-language portion of the program through address 900.

Table 8-6 shows the scratchpad portion of our custom memory map,
addresses 900 through 924, broken down into addrL and addrH compo
nents. That should help you quite a bit when it comes to assembling
machine-language routines that refer to those address locations.

The BASIC program in Listing 8-1 passes four different variables to a
machine-language routine. The routine in this instance sets up and executes
the low-resolution graphics SETCOL and HLINE. SETCOL requires a
color code, so BASIC passes that code to the routine. HLINE requires an
X starting point, an X ending point, and a Y coordinate; BASIC passes
them to the machine-language routine as well.

Here is a line-by-line analysis of the BASIC portion of the program:

Line 10 goes to the loader subroutine at line 200.
Line 20 sets the TEXT mode and clears the screen.

218 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 8-6. High and Low Address Components of Scratchpad

Address addrL addrH

900 132 3
901 133 3
902 134 3
903 135 3
904 136 3

905 137 3
906 138 3
907 139 3
908 140 3
909 141 3

910 142 3
911 143 3
912 144 3
913 145 3
914 146 3

915 147 3
916 148 3
917 149 3
918 150 3
919 151 3

920 152 3
921 153 3
922 154 3
923 155 3
924 156 3

Lines 30 and 40 INPUT the desired color code CC, and POKE it to
scratchpad memory location 900.

Lines 50 and 60 INPUT the starting X coordinate as XSTRT and the Y
coordinate as YSTRT, and POKEs them to memory locations 901
and 902, respectively.

Line 70 INPUTS the desired line length as LNTH.
Line 80 calculates the ending X coordinate by summing XSTRT and

LNTH, and POKEs the result to address 903.
Lines 90 and 100 set the GR mode and call the machine-language sub

routine that draws the line on the screen.

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC • 219

Listing 8-1. Passing Variables to a Machine-Language Routine.

10 GOSUB 200
20 TEXT : CALL -936
30 INPUT "WHAT COLOR CODE (0-15)",CC
40 POKE 900,CC
50 INPUT "WHAT STARTING COORDINATE (AS X,Y)",XSTRT,YSTRT
60 POKE 901,XSTRT: POKE 902,YSTRT
70 INPUT "HOW LONG",LNTH
80 POKE 903,XSTRT+LNTH
90 GR

100 CALL 800
110 PRINT "STRIKE ANY KEY TO DO AGAIN
120 CALL -741: GOTO 20
200 POKE 800,173: POKE 801,132: POKE 802,3
210 POKE 803,32: POKE 804,100: POKE 805,248
220 POKE 806,173: POKE 807,135: POKE 808,3
230 POKE 809,141: POKE 810,44: POKE 811,0
240 POKE 812,173: POKE 813,134: POKE 814,3
250 POKE 815,172: POKE 816,133: POKE 817,3
260 POKE 818,32: POKE 819,25: POKE 820,248
270 POKE 821,96
280 RETURN

Lines 110 and 120 prompt the user to STRIKE ANY KEY TO DO
AGAIN, use a CALL -741 to wait for any keystroke, then loop back
to line 20 to give the user a chance to enter the parameters for draw
ing a different line.

Here is a memory map of the scratchpad memory for this program:

900-Variable CC, the color code.
901-Variable XSTRT, the starting X coordinate of the line.
902-Variable YSTRT, the Y position of the line.
903-Variable XEND, the sum of XSTRT and LNTH.

The machine-language portion of the program grabs those values as
they are needed. Here is a combined machine-language and assembly
language version of that routine:

800 173 132 3
803 32 100 248
806 173 135 3
809 141 44 0
812 173 134 3
815 172 133 3
818 32 25 248
821 96

LOA CC
JSR SETCOL
LOA XEND
STA 44
LOA YSTRT
LOY XSTRT
JSR HLINE
RTS

;FETCH CC FROM 900
;SET THE COLOR
;FETCH XEND FROM 903
;AND STORE IT TO 44
; FETCH YSTRT FROM 902
;XSTRT FROM 901 TO REGISTER Y
;DRAW THE LINE WITH HLINE
;RETURN TO CALLING PROGRAM

220 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 8-2. Passing Variables to Different Routines.

10 GOSUB 200
20 TEXT : CALL -936
30 INPUT "WHAT COLOR CODE (0-15)",CC
40 POKE 900,CC
50 INPUT "WHAT STARTING COORDINATE (AS X,Y)",XSTRT,YSTRT
60 POKE 901,XSTRT: POKE 902,YSTRT
70 INPUT "HOW LONG",LNTH
80 INPUT "HORIZONTAL OR VERTICAL (H/V)?", DIR$
90 IF DIR$="V" THEN 140

100 IF DIR$#"H" THEN 80
110 POKE 903,XSTRT+LNTH
120 GR : CALL 800
130 GOTO 160
140 POKE 903,YSTRT+LNTH
150 GR : CALL 822
160 PRINT "STRIKE ANY KEY TO DO AGAIN
170 CALL -741: GOTO 20
200 POKE 800,173: POKE 801,132: POKE 802,3
210 POKE 803,32: POKE 804,100: POKE 805,248
220 POKE 806,173: POKE 807,135: POKE 808,3
230 POKE 809,141: POKE 810,44: POKE 811,0
240 POKE 812,173: POKE 813,134: POKE 814,3
250 POKE 815,172: POKE 816,133: POKE 817,3
260 POKE 818,32: POKE 819,25: POKE 820,248
270 POKE 821,96
280 POKE 822,173: POKE 823,132: POKE 824,3
290 POKE 825,32: POKE 826,100: POKE 827,248
300 POKE 828,173: POKE 829,135: POKE 830,3
310 POKE 831,141: POKE 832,45: POKE 833,0
320 POKE 834,173: POKE 835,134: POKE 836,3
330 POKE 837,172: POKE 838,133: POKE 839,3
340 POKE 840,32: POKE 841,40: POKE 842,248
350 POKE 843,96
360 RETURN

Notice how it fetches the necessary variables from the little scratchpad
memory as they are needed for setting up and executing the SETCOL and
RUNE routines.

The BASIC listing in Listing 8-2 works much the same way, but gives
the user the option of selecting a horizontal or vertical line. This listing
illustrates the technique for passing variables to a machine-language
routine, and the notion of calling one of two different machine-language
routines from a BASIC main program.

Here is a detailed analysis of Listing 8-2:

Line 10 goes to the machine-language loader routine at line 200.
Line 20 sets the TEXT mode and clears the screen.

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC <> 221

Lines 30 and 40 INPUT the desired color code as variable CC, and
POKE it to scratchpad memory address 900.

Lines 50 and 60 INPUT the starting X and Y coordinates as variables
XSTRT and YSTRT, and POKE them to addresses 901 and 902,
respectively.

Line 70 INPUTs the desired line length as variable LNTH.
Line 80 INPUTs the desired line direction (H or V) as string variable

DIR$.
Line 90 goes to line 140 if the user specifies a vertical line.
Line 100 goes back to line 80 to INPUT DIR$ again if the direction is

neither H nor V.
Lines 110 through 130 set up and execute the routine for drawing a hori

zontal line. They POKE the ending X coordinate (XEND) to address
903 as the sum of XSTRT and LNTH, set the GR mode, CALL the
horizontal-drawing machine-language routine at address 800, and go
to line 160 to prompt the user's next move.

Lines 140 and 150 set up and execute the routine for drawing a vertical
line. They POKE the ending Y coordinate (YEND) to address 903 as
the sum of YSTRT and LNTH, set the GR mode, and CALL the
vertical-drawing portion of the machine-language routine at address
822.

Lines 160 and 170 prompt the user to STRIKE ANY KEY TO DO
AGAIN, wait for a keystroke, and return to line 20 to start the draw
ing INPUT routines again.

Here is the scratchpad memory map:

900-Variable CC, the color code.
901-Variable XSTRT, the starting X coordinate for a horizontal line, or

the X position for a vertical line.
902-Variable YSTRT, the starting Y coordinate for a vertical line, or

the Y position for a horizontal line.
903-XEND (the sum of XSTRT and LNTH) for a horizontal line,

YEND (the sum of YSTRT and LNTH) for a vertical line.

The machine-language portion of the routine is divided into two sepa
rate parts: one for setting up and executing a horizontal-line drawing
routine, and another for setting up and executing a vertical-line drawing
routine. The part that draws horizontal lines begins at RAM address 800,
and the portion that draws vertical lines begins at 822. So, to set up and
draw a horizontal line, the BASIC program should CALL 800. To set up
and draw a vertical line, the BASIC program should CALL 822. The ad
dresses 800 and 822 are the entry points for this machine-language routine:

222 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

800 173 132 3
803 32 100 248
806 173 135 3
809 141 44 0
812 173 134 3
815 172 133 3
818 32 25 248
821 96
822 173 132 2
825 32 100 248
828 173 135 3
831 141 45 0
834 173 134 3
837 172 133 3
840 32 40 248
843 96

LDA CC
JSR SETCOL
LDA XEND
STA 44
LDA YSTRT
LDY XSTRT
JSR HLINE
RTS
LDA CC
JSR SETCOL
LDA YEND
STA 45
LDA YSTRT
LDY XSTRT
JSR VLINE
RTS

;FETCH CC FROM 900
;SET THE COLOR
;FETCH XEND FROM 903
;STORE IT TO ADDRESS 44
; FETCH YSTRT FROM 902
;XSTRT FROM 901 TO REGISTER Y
;DRAW LINE FROM HLINE ROUTINE
; RETURN TO CALLING ROUTINE
; FETCH CC FROM 900
;SET THE COLOR
;FETCH YEND FROM 903
;AND STORE IT TO ADDRESS 45
; FETCH YSTRT FROM 902
;XSTRT FROM 901 TO REGISTER Y
;DRAW LINE FROM VLINE ROUTINE
;RETURN TO CALLING ROUTINE

PASSING VARIABLES FROM A MACHINE-LANGUAGE
ROUTINE RDKEY is a commonly used monitor routine that waits for
a keystroke from the keyboard. When that single keystroke occurs, the key
code is placed into register A. BASIC cannot get directly to any of the
registers in the microprocessor, but it can get to that information in an
indirect fashion-by a routine that passes the key code through a desig
nated RAM location.

You should be aware of the fact that executing a CALL - 741 from
BASIC causes the system to wait for any keystroke to occur. Suppose,
however, that you want the system to wait for a particular keystroke to
occur. You can CALL RDKEY from BASIC, wait for the keystroke, pass
the content of the A register back to BASIC, test the value and take appro
priate action from there.

Consider this simple routine:

800 32 12 253
803 141 132 3
806 96

JSR RDKEY ;WAIT FOR A KEYSTROKE
STA 900 ;SAVE KEY CODE IN 900
RTS ;RETURN TO CALLING ROUTINE

It simply executes the monitor's RDKEY routine. When the keystroke oc
curs, the key code in register A is passed to scratchpad address 900. List
ing 8-3 loads the routine and uses it from BASIC.

Enter this program, run it, and follow the prompting messages. As far
as the BASIC portion of the routine is concerned, a CALL 800 causes the
system to wait for a keystroke. When that keystroke occurs, the corre
sponding key code is found in address 900.

USING SHORT MACHINE-LANGUAGE ROUTINES WITH BASIC ,. 223

Listing 8-3. Passing Variables From a Machine-Language Routine.

10 GOSUB 200
20 CALL -936
30 PRINT "STRIKE SPACE BAR TO CONTINUE ... "
40 CALL 800
50 IF PEEK (900)<>160 THEN 40
60 PRINT "IT WORKED!!"
70 PRINT
80 PRINT "WANT TO DO AGAIN (Y/N)?"
90 CALL 800

100 IF PEEK (900)=217 THEN 20
110 IF PEEK (900)=206 THEN END
120 GOTO 90
200 POKE 800,32: POKE 801,12: POKE 802,253
210 POKE 803,141: POKE 804,132: POKE 805,3
220 POKE 806,96
230 RETURN

Line 40, for instance, calls this subroutine and returns with the key
code at address 900. Line 50 in the program tests that value by PEEKing
into 900 and comparing it with 160-the key code for a space-bar key
stroke. If the value in 900 is not 160, the BASIC program loops back to line
40 to check the keyboard again. Line 60, in other words, is not executed
until the user strikes the space bar.

The BASIC program calls the machine-language routine again in line
90. This time, however, the program is looking for either a Y (key code 20)
or an N (key code 206). Line 120 handles any other keystroke by looping
back to line 90 to call the machine-language routine again.

It is possible to do the same sort of thing without resorting to a custom
machine-language routine; a PEEK(-16384) strobes the keyboard in a simi
lar fashion and can assign the key code to any BASIC variable. That ap
proach, however, requires resetting the keyboard strobe by doing a POKE
-16368,0. What's more, PEEK doesn't print a flashing cursor on the screen.

So this is an instance where a short machine-language routine can
make a common programming situation run a bit simpler and smoother.
Bear in mind, though, that we are using it here as an example of passing a
variable from machine language to BASIC.

224 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

The Memory Environment
All personal computers have two kinds of memory: random

access memory (RAM) and read-only memory (ROM). The two dif 9
fer in that RAM may be read from or written to, but ROM may only be
read. Turning off the computer destroys data saved in RAM. Data in ROM,
on the other hand, is stored permanently. Therefore, turning off the system
doesn't affect the ROM. POKEing to ROM has no effect, either.

Incidentally, 255 is the largest decimal number that can be POKEd into
a RAM address location. Try POKEing a number larger than 255 and some
entirely different value will be stored there. Having a 1-byte limit on the
size of numbers that can be stored in RAM means that POKEing anything
besides integer values from 0 to 255 will cause problems.

The memory system is organized by addresses. Most of those ad
dresses are devoted to RAM and ROM devices, but there is a handful that
are used for memory-mapped 1/0 functions. We will describe these RAM,
ROM, and I/O addresses in this chapter, because knowing how memory is
organized and how it is used can help you set up better programs and avoid
some frustrating bugs.

The discussions also introduce hexadecimal notation. (If you aren't
sure about how to convert decimal to hexadecimal or hexadecimal back
into decimal notion, take some time to study Appendix A.) In keeping with
the Apple/6502 notation conventions, all hexadecimal notations are pre
ceded by a dollar sign; unless that dollar sign is shown, you can rightly
conclude that the value is in decimal form.

LOWER RAM ADDRESSES $0000 THROUGH $0BFF These
addresses are common to all systems, regardless of the amount of extra
RAM they might have. The very lowest address is $0000 (decimal 0) and
the highest address in this particular case is $0BFF (or 3071 decimal). Fig.
9-1 is an overall memory map of this RAM area.

Notice that the figure shows the starting address of each area. For
instance, the keyboard input buffer area starts at $0200, and ends at $02FF,

THE MEMORY ENVIRONMENT • 225

$0COO (3072)
SECONDARYPAGE VIDEO

TEXT/LOWRESOLUTION GRAPHICS

(1024 BYTES)
$0800 (2048)

PRIMARYPAGE VIDEO
TEXT/LOW RESOLUTION GRAPHICS

SOME SCRATCH PAD RAM
FOR PERIPHERAL SLOTS

(1024 BYTES)
$0400 (1024)

SOME USER RAM
MONITOR VARIABLES. VECTORS

(256 BYTES)
$0300 (768)

KEYBOARD INPUT BUFFER

$0200 (512)
(256 BYTES)

SYSTEM STACK
(256 BYTES)

$0100 (256)
ZERO-PAGE RAM

$0000 (0)
(256BYTES)

Fig. 9-1. Lower memory map.

HI

1

DEFAULT START OF
GHRESOLUTION GRAPHICS

SHAPE TABLES

DEFAULT START OF
INTEGER BASIC VARIABLES

DEFAULT LOMEM
F OR INTEGER BASIC

1

l

or decimal 1021. Knowing where these areas are located will help you plan
your use of RAM. In this way, your programs will not compete for the
same RAM space that the system uses.

Zero-Page RAM: $0000- $00FF The location of the zero-page
RAM area is fixed by the engineering of the 6502 microprocessor, and there
is no way to change it. The Apple monitor and Integer BASIC use this area
quite extensively for saving and retrieving important bytes of data, but you
can use it to some advantage. You have to know how the monitor and
Integer BASIC use the area and where the unused addresses are located.

This zero-page area is so important, that the 6502 instruction set in
cludes a number of instructions that refer exclusively to it. In these in
structions, the zero-page addressing is shortened to just two hexadecimal
characters-the notation omits the two leading zeros. You can still refer to
addresses in the zero-page area with the standard four-character format,
but two characters will suffice.

226 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Thus, zero-page address $1A is the same as address $001A. The
former uses fewer characters; if it is written into a machine-language pro
gram, it takes up just one byte of memory as opposed to two bytes for the
conventional four-character specification. Remember, though, that ab
breviated addressing applies only to the zero-page RAM area. All other
addresses in the system must be specified with the four-character format.
(Addresses in decimal form can always be specified with the leading zeros
omitted.)

Fig. 9-2 shows the details of the zero-page RAM area. All 256-byte
locations are shown, from 0 to 255. The actual address of a particular byte
is found by summing the decimal or hexadecimal value along the left side of
the diagram with the corresponding decimal or hexadecimal value along the
top. Address $55, or decimal 85, is the last monitor byte that is used in the
zero-page area, for example. The first location used exclusively for Integer
BASIC is at address $56, or 86.

H U U R M U U g U H U U K W ~ ~

0 $00

16 $10
32 $20
48 $30
64 $40
80 $50

96 $60

112 $70

128 $80
144 $90
160 $AO
176 $60
192 $CO

208 $DO

224 $EO

240 $FO

M
M
M
M

I
I
I
I

I

I
I

I

M
M
M
M

I

I
I

I

I

I
I
I

M= Monitor usage

M
M
M
M

I

I

I
I
I

I
I

I

I = Integer BASIC usage

M M
M M

M M
M M
I I

I I

I I
I I
I I

I I

I I
I I

Fig. 9-2. Zero-page memory map.

M M M
M M M
M M M

M I I
I I I
I I I
I I I
I I I

I I I
I I I
I I I
I I I

10 11 12 13 14 15

M M M M M M M M
M M M M M M M M

M M I I I I M M

I I I I I I I I

I I I I I I I I

I I I I I I I I
I I I I I I I I

I I I I I I I I

I I I I I I I I
I I I I I I I I

I I I I I I I I

I I I I I I I I

The diagram clearly shows two areas of zero-page memory that aren't
used by either the monitor or Integer BASIC. The first section extends
from address $00 through $1F, and the second is from $EO to $FF. Some of
those "unused" addresses are actually used when you first tum on the
computer or boot up DOS. But generally they are free for custom applica
tions after the system is up and running.

THE MEMORY ENVIRONMENT • 227

If you are working exclusively with machine-language programs, you
are also free to use the addresses designated for Integer BASIC. There is
no way, however, to get away from the system monitor-it is always at
work in the Apple ..

While it is important to avoid using zero-page addresses that are nor
mally assigned to the monitor and Integer BASIC, you can work with the
addresses as the system defines them. You were doing that when you were
setting up a custom text window by POKEing values for WNDLFT,
WNDWDTH, WNDTOP, and WNDBTM into the appropriate addresses in
zero-page RAM. Table 9-1 shows which addresses are available for your
applications, and which addresses are used by the monitor and Integer
BASIC and what they mean. The table doesn't account for all zero-page
addresses used for the monitor and Integer BASIC, but rather spells out
the purpose of those deemed most useful.

Table 9-1. Zero-Page Addresses

Address Mnemonic Definition

$20 (32) WNDLFT Column address of the left-
hand edge of the primary-
page text window. Range is
$00-$27 (0-39). Normal
value is $00 (0).

$21 (33) WNDWDTH Number of characters in
each line of video text.
Range is $01-$28 (1-40).
Normal value is $28 (40).

$22 (34) WNDTOP Row address of the top line
of video text. Range is
$00-$16 (0-22). Normal
value for full-screen text is
$00 (0); for mixed text/
graphics it's $14 (20).

$23 (35) WNDBTM Number of text window
lines plus the content of
WNDTOP. Range is $01-
$18 (1-24). Normal value is
$18 (24).

$24 (36) CH Current horizontal dis-
placement of the text cursor

228 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Address

$25 (37)

$26,$27 (38,39)

$28,$29 (40,41)

2C (44)

$2D (45)

$2E (46)

$30 (48)

Table 9-1-cont. Zero-Page Addresses

Mnemonic Definition

from WNDLFT. Range is 0
to WNDWDTH) minus l.

CV Current vertical displace
ment of the text cursor rel
ative to WNDTOP. Range
is $00-$17 (0-23).

GBASL and GBASH Low- and high-order bytes
of the video address of the
current cursor line for low
resolution graphics. Serves
the same purpose for high
r es o l u ti on graphics as
HBASL and HBASH.

BASL and BASH

H2

V2

MASK

[coLOR

Low- and high-order bytes
of the video text address for
the current cursor line.

Right endpoint of a low
resolution horizontal line
being drawn by the HLINE
function.

Bottom endpoint of a low
resolution vertical line being
drawn by the VLINE func
tion.

Selects whether a low
resolution color block is
plotted in the upper or
lower half of a screen loca
tion. Carries a value of $OF
(15) for plotting in the lower
half; $FO (240) for plotting
in the upper half.

Low-resolution graphics
color code.

THE MEMORY ENVIRONMENT " 229

Table 9-1-cont. Zero-Page Addresses

I Address I Mnemonic

$32 (50) INVFLG

$33 (51) PROMPT

$4A,$4B (74,75) LOMEML and
LOMEMH

$4C,$4D (76, 77) HIMEML and
HIMEMH

$4E,$4F (78, 79) RNDL and RNDH

$CA,$CB (202,203) BASSTL and
BASSTH

$CC,$CD (204,205) BASVRL and
BASVRH

230 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

I Definition

Video text format register;
use $FF (255) for normal
white-on-black, $7F (127)
for flashing text, or $3F (63)
for inverse black-on-white.

Text character code for
INPUT prompt.

Low- and high-order byte
for the current LOMEM
address.

Low- and high-order byte
for the current HIMEM ad
dress.

Two-byte number that in
crements rapidly during
several KEYIN-type
monitor routines. The pur
pose is to provide a random
number for many kinds of
programming applications.

Low- and high-order bytes
for the current address of
Integer BASIC program
ming. Usually set to
HIMEM if there is no
BASIC programming.

Low- and high-order bytes
for the current address of
variables stored by Integer
BASIC. Usually set to
LOMEM if there are no
variables in the list.

Table 9-1-cont. Zero-Page Addresses

Address Mnemonic Definition

$EO,$E I (224,225) HIRESXL and Low- and high-order bytes
HIRESXH of the current high-

resolution X coordinate.

$E2 (226) HIRESV Current high-resolution y
coordinate.

$E6 (230) HPAG High-resolution page for
plotting; use $20 (32) for
primary page; $40 (64) for
secondary page.

$E8,$E9 (232,233) SHPTR Low- and high-order bytes
of the beginning of the high-
resolution shape tables.

System Stack RAM: $0100- $01 FF Like the zero-page RAM
area, the location of the system stack is fixed-there is no way to alter it.
However, the system does not fully use the stack in normal operations.
This means that you can use some of the stack for your own machine
language programs.

Since the system uses the stack. at address $01FF and works down
ward from there, the space that you may use begins at the very bottom of
the stack, at $0100. Normally, you can save data at addresses $0100 to
$010F without fear of interfering with stack operations. However, you
shouldn't use more stack than that. To avoid all possibility of contention
with the system for RAM space, don't use the stack at all.

The Keyboard Input Buffer: $0200- $02FF This 256-byte
area of RAM is used for storing character codes that are entered from the
keyboard under normal monitor and Integer BASIC conditions. The area is
not fixed by the 6502 microprocessor, but rather by the original Apple
engineers. With some difficulty, you can write a machine-language
keyboard routine that puts the keyboard input buffer somewhere else in
RAM. It usually isn't worth all the trouble, though.

Any time you type in a command or respond to an INPUT statement
from the keyboard, those key codes are stacked in a bottom-up fashion in
the keyboard input buffer. They continue building up, one address at a

THE MEMORY ENVIRONMENT " 231

time, until you strike the RETURN key. If you are in a command mode of
operation, the system then reads the contents of the keyboard input buffer
and takes the appropriate action. If you are responding to an INPUT
statement in a BASIC program, striking the RETURN key causes the con
tents of the keyboard input buffer to be assigned to the designated numeric
or string variable.

The following Integer BASIC program allows you to type some char
acters into the keyboard buffer and then dump them to the video text
screen. Load the program and respond to the prompt symbol and flashing
cursor by entering some arbitrary string of keyboard characters. The in
stant you end that entry process by striking the RETURN key, the program
displays the content of the entire keyboard buffer. Notice that your string
of characters is reproduced at the top of the screen and that it always ends
with an M character. It is that M character (actually a representation of the
RETURN key entry) that the system uses to mark the end of the current
keyboard buffer entry.

10 CALL -936
20 CALL -662
30 CALL -936
40 FOR N=0 TO 255
50 POKE 256* PEEK (41)+ PEEK (40)+ PEEK (36), PEEK (512+N)
60 CALL -1036
70 NEXT N
80 VTAB 10: TAB 1
90 GOTO 20

100 XX=YY=COLR
110 INIT=-12288:BKGND=-11471
120 POSN=-11527:PLOT=-11506:LINE=-11500
130 CLEAR=-12274

Here is how it works:

Line 10 homes the cursor and clears the screen.
Line 20 calls the GETLIN monitor routine to enter keystrokes into the

keyboard buffer. GETLIN returns control to BASIC when the RE
TURN key is struck.

Line 30 homes the cursor and clears the screen.
Lines 40 through 70 display the contents of the keyboard buffer, from

addresses 512 through 767.
Lines 80 and 90 get the cursor symbol out of the way, and return to line

20 to input another series of keystrokes.

232 ., INTERMEDIATE-LEVEL APPLE II HANDBOOK

The series of characters that you type into the buffer ends with that M
character. The rest of the data in the keyboard buffer is garbage. It consists
of previously typed material. To illustrate this, enter a rather long series of
characters followed by a relatively short series. You will see the short mes
sage at the beginning of the buffer and the remainder of the long message
appearing after the message-ending M character.

_ Knowing how to get at the data in the keyboard buffer can be useful
when writing BASIC or machine-language programs that call for dumping
the result of a keyboard operation into some prescribed portion of user
RAM.

Variables, Vectors, and User RAM: $0300- $03FF Like the
zero-page RAM area, this is one of those segments of RAM that can be
used for custom programming of a limited sort. The only problem with
using this area for your own purposes is that it sometimes conflicts with
special monitor and BASIC operations.

For the most part, the lower addresses are used by the system only
during initial start-up operations: booting up DOS, for example. Addresses
$0320 through $032A are frequently used for high-resolution graphics
routines, especially those referring to the Programmer's Aid package. And
DOS makes extensive use of addresses $0399-$03EA. Addresses through
the remainder of this RAM area are used for monitor vectors, or addresses
that point to other machine-language subroutines.

The safest working area for custom machine-language programming is
thus at the lower end of the area, from $0300 through $0320. But if you
aren't using the special high-resolution graphics functions, you can use ad
dresses up to $0399.

If you find that your programs written into this area are "blowing up"
unaccountably, you have probably stumbled across a conflict of usage. The
best thing to do in that case is to look for another segment of RAM for your
program.

Primary-Page Text/Graphics: $0400- $07FF Earlier dis
cussions of text and low-resolution graphics began with a description of
this video RAM area. Table 9-2 outlines the video portion of that area
again, but with the addition of hexadecimal addresses. Table 9-3 sum
marizes the small sections of RAM in the primary-page area that are used
as a peripheral slot scratchpad rather than as video RAM.

In theory, it is altogether possible to enter custom machine-language
programs into this area of RAM. But it isn't a good idea in practice, be
cause the programming will be rendered as confusing garbage on the
screen. It is better to use the video RAM area for its intended purpose. You
can, however, use the small segments of scratchpad RAM as long as there

THE MEMORY ENVIRONMENT • 233

are no peripheral cards plugged into the locations. Again, the idea is to
avoid possible conflict of RAM usage.

Table 9-2. Primary-Page Video Addresses

Video Line Hex Address Decimal Address

0 $0400-$0427 1024-1063
1 $0480-$04A7 1152-1191
2 $0500-$0527 1280-1319
3 $0580-$05A 7 1408-1447
4 $0600-$0627 1536-1575
5 $0680-06A7 1664-1703
6 $0700-$0727 1792-1831
7 $0780-$07A7 1920-1959

8 $0428-$044F 1064-1103
9 $04A8-$04CF 1192-1231

10 $0528-$054F 1320-1359
11 $05A8-$05CF 1448-1487
12 $0628-$064F 1576-1615
13 $06A8-$06CF 1704-1743
14 $0728-$074F 1832-1871
15 $07A8-$07CF 1960-1999

16 $0450-$0477 1104-1143
17 $04D0-$04F7 1232-1271
18 $0550-$0577 1360-1399
19 $05D0-$05F7 1488-1527
20 $0650-$0677 1616-1655
21 $06D0-$06F7 1744-1783
22 $0750-$0777 1872-1911
23 $07D0-$07F7 2000-2039

Secondary-Page Text/Graphics: $0800- $0BFF As mentioned
in a preceding paragraph, it is possible, but rarely advisable, to write
machine-language programs into primary-page video RAM. It is likewise
possible, and often desirable, to write programs and data into secondary
page video RAM. In fact, even Integer BASIC uses secondary-page video
RAM for storing data. You will find that a good many commercially avail
able programs for the Apple load into this area. That's fine as long as you
have no intention of using it for secondary-page video applications. If you
avoid secondary-page video operations, you will have a full 1024 bytes of
RAM for programming purposes. Apple users who have the smaller 4K

234 0 INTERMEDIATE-LEVEL APPLE II HANDBOOK

Table 9-30 Peripheral Slot Scratchpad RAM

Byte SLOT NUMBER
Number 0 1 2 3 4 5 6 7

0 $0478 $0479 $047A $047B $047C $047D $047E $047F
1144 1145 1146 1147 1148 1149 1150 1151

l $04F8 $04F9 $04FA $04FB $04FC $04FD $04FE $04FF
1272 1273 1274 1275 1276 1277 1278 1279

2 $0578 $0579 $057A $057B $057C $057D $057E $057F
1400 1401 1402 1403 1404 1405 1406 1407

3 $05F8 $05F9 $05FA $05FB $05FC $05FD $05FE $05FF
1528 1529 1530 1531 1532 1533 1534 1535

4 $0678 $0679 $067A $067B $067C $067D $067E $067F
1656 1657 1658 1659 1680 1681 1682 1683

5 $06F8 $06F9 $06FA $06FB $06FC $06FD $06FE $06FF
1784 1785 1786 1787 1788 1789 1790 1791

6 $0778 $0779 $077A $077B $077C $077D $077E $077F
1912 1913 1914 1915 1916 1917 1918 1919

7 $07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $07FF
2040 2041 2042 2043 2044 2045 2046 2047

RAM systems are often forced to do that to get a sufficient amount of
working RAM.

Tables 9-4 and 9-5 show the complete memory map for this part of
RAM. Most of it is devoted to secondary-page video, but there are small
segments that aren't. Unlike the primary-page video section, these short
segments of RAM serve no particular purpose. They are open for your own
use.

UPPER RAM ADDRESSES $0COO THROUGH $BFFF The extent
of the upper RAM area depends on how much RAM you have installed in
your Apple. Even the very smallest memory scheme-one having just 4K
(4096) bytes of RAM - includes the lower RAM area just described plus an
upper lK (1024) bytes for user-generated programs. Unfortunately for such
users, there is no RAM space available for high-resolution graphics.

THE MEMORY ENVIRONMENT " 235

Table 9-4. Secondary-Page Video Addresses

Video Line Hex Address Decimal Address

0 $0800-$0827 2048-2087
1 $0880-$08A7 2176-2215
2 $0900-$0927 2304-2343
3 $0980-$09A7 2432-2471
4 $0A00-$0A27 2560-2599
5 $0A80-$0AA 7 2688-2727
6 $0B00-$0B27 2816-2855
7 $0B80-$0BA 7 2944-2983

8 $0828-$084F 2088-2127
9 $08A8-$08CF 2216-2255

10 $0928-$094F 2344-2383
11 $09A8-$09CF 2472-2511
12 $0A28-$0A4F 2600-2639
13 $0AA8-$0ACF 2728-2767
14 $0B28-$0B4F 2856-2895
15 $0BA8-$0BCF 2984-3023

16 $0850-$0877 2128-2167
17 $08D0-$08F7 2256-2295
18 $0950-$0977 2384-2423
19 $09D0-$09F7 2512-2551
20 $0A50-$0A77 2640-2679
21 $0AD0-$0AF7 2768-2807
22 $0B50-$0B77 2896-2935
23 $0BD0-$0BF7 3024-3063

Table 9-5. Unused RAM in Secondary-Page Area

Segment Hex Address Decimal Address

0 $0878-$087F 2168-2177
1 $08F8-$08FF 2296-2303
2 $0978-$097F 2424-2431
3 $09F8-$09FF 2552-2559
4 $0A 78-$0A 7F 2680-2687
5 $0AF8-$0AFF 2808-2815
6 $0B78-$0B7F 2936-2943
7 $0BF8-$0BFF 3064-3051

236 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

The present discussion deals with the upper RAM area for the larger
Apple systems, those having 16K, 32K, or 48K of RAM. Such systems
have enough memory for at least one page of high-resolution graphics and
some extra space for other programming applications.

The most important feature of the memory maps for these regions is
the way Integer BASIC uses them.

Integer BASIC programs begin at the HIMEM ad
dress and build downward from there.

Variable tables begin at the LOMEM address and
build upward from there.

Whenever you are using Integer BASIC (or Applesoft BASIC, although it
loads differently) you can count on the programming using RAM addresses
between the LOMEM and HIMEM settings. The idea is to avoid putting
custom machine-language programs anywhere in that area if you are using
them in conjunction with BASIC programs. If you are not using any
BASIC programming, the LOMEM and HIMEM settings have little rele
vance.

In instances where you do initialize Integer BASIC, the Apple system
automatically sets the LOMEM address to $0800, or 2048, and it sets
HIMEM at the upper end of the available RAM space: $4000 (16384) for a
16K system, $8000 (32768) for a 32K system, and $COOO (49152) for a 48K
system.

· You can, of course, change the LOMEM and HIMEM settings once
the system is up and running. The significance of that procedure is that it
lets you limit the RAM space that is used by BASIC programming, allow
ing you to use what's left for custom machine-language programming and
similar applications.

16K Systems Fig. 9-3 outlines the upper RAM section for a 16K
Apple system. It includes the secondary page of text/low-resolution
graphics, already described in some detail on page 234, and extends
through the primary page of high-resolution graphics to RAM address
$3FFF, or 16383.

There are just three main sections:

1. Secondary-page text/low-resolution graphics at RAM addresses $0800
through $0BFF (2148 through 3071).

2. User's RAM at addresses $0COO through $1FFF (3072 through 8191).
3. Primary-page, high-resolution graphics video at addresses $2000

through $3FFF (8192 through 16383).

THE MEMORY ENVIRONMENT • 237

END OF 16K RAM
$4000 (16384)

PRIMARYPAGE
HIGH-SOLUTION GRAPHICS

$2000 (8192)

USER PROGRAM
RAM

$1000 (4096) -

$0COO (3072)
SECONDARYPAGE VIDEO

$0800 (2048)
TEXT/LOW-RESOLUTION GRAPHICS

Fig. 9-3. Upper memory map for 16K systems.

~DEFAULT HIMEM

DEFAULT INTEGER BASIC
PROGRAMS

l DEFAULT INTEGER BASIC
VARIABLE LIST

DEFAULT LOMEM

Notice especially the default settings for LOMEM, HIMEM, and the
high-resolution shape tables. Those default addresses are the ones the sys
tem sets up for you unless you specify otherwise.

Of special concern to users of 16K systems is the fact that HIMEM is
set at the top of the high-resolution graphics video area. Unless you set
HIMEM to the lower end of that area-to $2000, or 8192-any BASIC
programming is going to be inserted into the high-resolution graphics area.
Attempting to use high-resolution graphics from Integer BASIC without
first setting HIMEM to 8192 will mess up both the program and the
graphics.

· Furthermore, the system automatically sets the LOMEM address at
the beginning of the secondary page of text/low-resolution graphics. If you
attempt to use the secondary page of text/low-resolution graphics without
first setting LOMEM to $0COO (3072) or higher, variable data from Integer
BASIC will mess up the graphics.

The worst-case situation is where you want to use Integer BASIC, the
secondary page of text/low-resolution graphics, and high-resolution
graphics at the same time. The LOMEM and HIMEM addresses just cited
solve the problem.

There are a number of different ways to set up the system in that
fashion. From the Integer BASIC command mode:

238 • INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

i
~ I

HIMEM:8192
LOMEM:3072

From the monitor command mode:

4A:OO OC 00 20

At the beginning of an Integer BASIC program:

POKE 74,0:POKE 75,12:POKE 76,0:POKE 77,32

As a machine-language routine:

LOA #0
STA 74
STA 76
LOA #12
STA 75
LDA #32
STA 77

There is one remaining difficulty that cannot be resolved on a 16K
system-the lack of a secondary-page, high-resolution graphics buffer, or
memory. There simply isn't enough RAM space available.

32K Systems A 32K system has RAM available from address $0000
through $7FFF (0-32767). The lower portion of that area is used as de
scribed earlier. What is of special importance to the current discussion is
the layout of the memory map for addresses $0800 through $7FFF (2048
through 32767). (See Fig. 9-4.)

The memory map shows five main sections:

1. Secondary-page text/low-resolution graphics at RAM addresses $0800
through $0BFF (2148 through 3071).

2. User's RAM at addresses $0COO through $1FFF (3072 through 8191).
3. Primary-page, high-resolution graphics video at addresses $2000

through $3FFF (8192 through 16383).
4. Secondary-page, high-resolution graphics at addresses $4000 through

$5FFF (16384 through 24575).
5. User's RAM at addresses $6000 through $7FFF (24576 through

32767).

THE MEMORY ENVIRONMENT " 239

$8000 (32768)

$6000 (24576)

$4000 (16384)

$2000 (8192)

$1000 (4096)
$0COO 13072)

$0800 (2048)

__,

END OF 32K RAM

USER PROGRAM
RAM

SECONDARYPAGE
HIGH RESOLUTION GRAPHICS

PRIMARY PAGE
HIGH RESOLUTION GRAPHICS

USER PROGRAM
RAM

-r
SECONDARY- PAGE

TEXT/LOW RESOLUTION GRAPH !CS

Fig. 9-4. Upper memory map for 32K systems.

DEFAULT HIMEM

DEFAULT INTEGER
BASIC PROGRAMS

1 DEFAULT INTEGER BASIC
VARIABLE LIST

-DEFAULT LOMEM

The default address for HIMEM is $8000, or 32768. That means that
Integer BASIC programs will begin at that address and build downward
from there. Fortunately, there are no competing uses for that upper end of
the RAM area. In fact, there is about 8K of programming RAM available
before BASIC begins encroaching on the upper end of the secondary-page
area for high-resolution graphics. (If a BASIC program has to be more than
SK-bytes long, you simply have to give up the secondary page of high
resolution graphics).

The default LOMEM address, as usual, is set at $0800 (2048). That
overlays the secondary-page text/low-resolution graphics area, so if you are
planning to use secondary-page text or graphics with Integer BASIC, you
ought to set LOMEM to a higher address, such as $1000 (4096).

The worst-case 32K programming situation is where you want to use
the full complement of graphics (both pages of low- and high-resolution
graphics) along with a combination of Integer BASIC and custom machine
language programs. Resetting LOMEM can put things in order for you. The
only question is where to set it.

If you choose to set LOMEM to $1000, or 4096, you will have plenty
of RAM for BASIC programming, but little room for high-resolution shape

240 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

tables and machine-language programming. If the machine-language pro
grams are short ones, you can try using the RAM area from $0300 to $03AF
as described in an earlier section, and leave $0COO through $0FFF for
shape tables.

ff your programming situation calls for full-capability graphics, long
machine-language programs or data files, and relatively short Integer
BASIC programs, you can set LOMEM at the top of the secondary page of
high-resolution graphics-to $6000, or 24576. That confines BASIC pro
gramming to the upper portion of user RAM, and allows you to use the
entire lower portion of user RAM for shape tables and machine-language
programs. You can, for example, load machine-language programs from
$1000 to $IFFF (4096 to 8191).

You might become a bit pinched for RAM in the upper user space if
you are using DOS and Integer BASIC. They share that upper region, and
you should consult your DOS manual to see where it loads.

48K Systems Users of 48K Apple systems have a very generous
amount of RAM available for programming applications. The usable RAM
area begins at $0000 and extends through $BFFF (0 through 49151). (See
the upper portion mapped for you in Fig. 9-5. The lower section was de
scribed in detail earlier in this chapter.)

The only thing that might be a nuisance in some instances is the default
setting of LOMEM. A lot of programmers like to begin loading machine
language programs from address $0800 (2040). Protecting that area from
BASIC is a simple matter of resetting LOMEM to some higher address
such as $6000, or 24576.

Setting LOMEM to $6000 leaves all four graphics pages available and
allows some 24K in the upper RAM area for BASIC programming. (DOS
uses some of that upper RAM area, too, but there is so much space avail
able that there is generally no need to give it any special thought.)

An Overall Summary If you do not intend to use any BASIC pro
gramming at all, you have the widest choice of RAM area available for
custom machine-language programming. You need not worry about
LOMEM and HIMEM settings at all. In fact, they aren't even set until you
do that CTRL-B command that initializes the Integer BASIC system.

If you have a 16K system, you often have to make some trade-offs
regarding the size of the program and the use of secondary-page text/low
resolution graphics or primary-page high-resolution graphics. The 32K and
48K systems, on the other hand, have enough RAM available for long
machine-language programs and full graphics capability.

The time to take special care is when you are setting up combinations
of full-capability graphics, machine language, and BASIC. Then it is gen-

THE MEMORY ENVIRONMENT e 241

$C000(-16384)

$6000 (24576)

$4000 (16384)

$2000 (8192)

$1000 (4096)
$0COO (3072)
$0800 (2048)

___,

END OF 48K RAM

USER PROGRAM
RAM

SECONDARY-PAGE
HIGH-RESOLUTION

GRAPHICS

PRIMARY-PAGE
HIGH-RESOLUTION

GRAPHICS

USER PROGRAM
RAM

SECONDARY PAGE
TEXT/LOW-RESOLUTION

GRAPHICS

Fig. 9-5. Upper memory map for 48K systems.

-DEFAULT HIMEM

DEFAULT
INTEGER BASIC

PROGRAMS

l DEFAULT INTEGER BASIC
VARIABLE LIST

-DEFAULT LOMEM

erally just a matter of setting LOMEM to a higher address, thereby pinch
ing BASIC into a smaller RAM area and protecting your machine-language
programming in the lower RAM segments.

It's all a matter of knowing how the Apple's RAM is organized, where
the default addresses are for your particular system, and how to tinker with
LOMEM and HIMEM to get the custom memory map you want. Taking an
hour to study the scheme just one time can save you countless hours of
frustration later on.

1/0 ADDRESSES $COOO THROUGH $CFFF All Apple systems,
regardless of the amount of RAM installed in them, feature a section of
addresses that refers to input/output (I/O) operations. Many of these ad
dresses are not RAM or ROM locations in the usual sense; rather, they are
memory-mapped I/O ports that can be addressed and otherwise treated as
though they were true RAM or ROM locations.

242 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

This special portion of memory occupies address locations $COOO to
$CFFF, or 49152 to 53247. Since the decimal versions of those addresses
are greater than 32767, you can work with them from Integer BASIC by
using a range of negative addresses between -16384 and -12289. (See Ap
pendix A if you aren't sure about how and why to use negative addresses.)

Fig. 9-6 is an overall memory map of this rather unusual addressing
range. The two lower and smaller sections are devoted to memory-mapped
I/O functions; they are not RAM or ROM locations in the usual sense,
but you can access them by referring to their addresses in an appropriate
fashion.

The two upper sections are relatively large and are set aside for ROM
operations from any cards that might be plugged into the peripheral card
slots 1 through 7. If you aren't using any of these seven slots, there will be
no memory devices in this range.

$CFFF 12289 --..c===J-----------,
EXPANSION ROM

(2048 BYTES)
$C80014336 ---------------1

~

256BYTE CUSTOM PROM
SPACE FOR PERIPHERAL

CARD SLOTS 1 7

11772 BYTES)
$Cl0016128

I/OS FOR PERIPHERAL CARD

$C080 16256
SLOTS 0 7 (128 BYTES)

BUILT IN MEMORY MAPPED 1/0

$COOO 16384
(128BYTES)

Fig. 9-6. I/0 memory map.

Built-In Memory-Mapped 1/0: $COOO- $C07F This small,
128-byte section of addressing is devoted exclusively to built-in functions
such as the game controls, loudspeaker, cassette tape IN and OUT,
keyboard strobing, and the text screen mode "soft" switches. Much of the
region is used by all Apple systems, regardless of the amount of RAM and
extra peripheral devices. Fig. 9-7 maps this region in detail.

THE MEMORY ENVIRONMENT • 243

$C80(-16256)
BEGINNING OF PERIPHERAL 1/0

GAME CONTROLLER STROBE

WRITE (POKE)

$C070(-16272)
(16 IDENTICAL BYTES)

SAME AS $C060-$C067 DON'T USE
$C068(-16280)

ANALOG INPUTS GCO-GC3 READ (PEEK)

$C064(-16284)
CASSETTE IN

PUSHBUTTON INPUTS PB1-PB3
READ (PEEK)

$C060(-16288)
ANNUNCIATOR "SOFT" SWITCHES

ANOAN3
(4 PAIRS OF BYTES)

WRITE (POKE)

$C058(-16296)
SCREEN "SOFT" SWITCHES

(4 PAIRS OF BYTES) WRITE !POKE)
$C050(-16304)

UTILITY STROBE OUTPUT
(16 IDENTICAL BYTES) READ (PEEK)

$C040(-16320)

LOUDSPEAKER TOGGLE
(16 IDENTICAL BYTES) READ (PEEK)

$C030(-16336)
CASSETTE OUT

(16 IDENTICAL BYTES) READ (PEEK)

$C020(-16352)

CLEAR KEYBOARD STROBE
(16 IDENTICAL BYTES) (WRITE (POKE)

$C010(-16368)

KEYBOARD STATUS INPUT
(16 IDENTICAL BYTES) READ (PEEK)

$C000(-16384)

Fig. 9-7. Built-in 1/0 function memory map.

Keyboard Status Input: $COOO-$COOF-AI1 of these 15 keyboard status
addresses contain the current status of the keyboard. They show whether
or not a key has been depressed and the key code for the most recent
keystroke. You can load any of those addresses to the A register from
machine language, or assign it to a BASIC variable by doing a PEEK addr,
where addr is the selected address. Most of the Apple literature, however,
suggests using the lowest address in this range, $COOO or -16384.

What kind of data can be found in that memory-mapped input area?
The high-order "flag" bit in the data will be a 0 or a 1, depending on
whether or not a keystroke has occurred. If a keystroke has occurred, that
most-significant bit will be set to 1. Otherwise, it will be cleared to 0. In

244 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

i
i

terms of hexadecimal notation, that means the value fetched from address
$COOO will be $80 or larger if a keystroke has occurred. Otherwise, it will
be $7F or less. From a decimal point of view, data PEEKed from -16384
will be 128, or greater, if the keystroke has occurred, but less than 128 if it
has not.

What about the 7 lower-order bits? They carry the key code of the
most recent keystroke whether the high-order ''flag'' bit is set or not.

Clear Keyboard Strobe: $COJO-$COJF-Any keystroke sets the high-order
''flag'' bit in the keyboard status input address locations just described. To
make the "flag" bit useful, there must be a provision for clearing it. You
can clear it by writing to the clear keyboard strobe addresses.

POKEing or loading any sort of data to this range of addresses clears,
or resets, the high-order keyboard input flag to 0. Most literature recom
mends loading a value of 0 to the lowest of these 15 addresses. Thus you
can reset the keyboard strobe by doing a POKE -16368,0 from Integer
BASIC, or by using this assembly language sequence:

LDA #$00
STA $C010

Failing to reset the keyboard strobe is tantamount to making a rapid
and continuous series of keystrokes; the system "sees" a perpetual key
stroke condition.

Cassette OUT: $C020-$C02F-This range of addresses memory-map di
rectly to the cassette OUT jack on the rear of the Apple machine. Of those
15 locations, address $C020, or -16352, is the one most recommended.
Reading that address causes a single "click" at the cassette OUT jack; if
you happen to have a cassette recorder running and set for recording, that
"click" will be recorded for you. As you might imagine, doing a rapid
series of read operations to that address causes a series of ''clicks'' that
becomes an audio tone. The more rapidly a program executes those
"clicks," the higher the recorded frequency. With a bit of imagination,
tinkering and time, you can write programs that record music onto cassette
tape, using little more than PEEK (-16352) on LDA $C020 instructions. The
Apple system, of course, uses a similar technique for saving data and prog
rams on tape-transforming entire blocks of ls and Os from memory into
high and low audio tones.

Loudspeaker Toggle: $C030-$C03F-Read from any one of these 15 ad
dresses, and you will get a single "click" from the loudspeaker. It is
difficult to hear a single "click," but a long series of them produces an

THE MEMORY ENVIRONMENT • 245

audio tone. The scheme is virtually identical to the cassette OUT opera
tion.

You can, for instance, produce a wide range of audio tones by setting
up a machine-language routine that does several series of LDA $C030 in
structions with different time intervals between instructions. The shorter
the delay between instructions, the higher the audio tone will be.

It is possible to do the same sort of thing from Integer BASIC by
executing a long series of PEEK(-16336) instructions. The only drawback
here is that BASIC, being an interpretive high-level language, runs too
slowly to produce the higher octaves of tones.

An interesting trick is to compose some tunes, using the loudspeaker
port address to listen to, extend, or edit the music as desired. And when
you are satisfied with it, change the memory-mapped 1/0 address reference
from the loudspeaker to the cassette OUT jack ($C020, or -16352). That
allows you to record the music directly to cassette tape in such a fashion
that it can be played from the tape without the aid of an Apple computer
system.

Utility Strobe Output: $C040-$C04F-Fig. 9-8 shows the layout of the
game controller socket that is located inside the Apple. This is the recep
tacle for the game-control paddles that are supplied with the system. Read
ing the utility strobe output addresses affects pin 5 of that socket.

Pin 5, the utility output pin, is normally at +5 V, but upon reading the
utility strobe address $C04F, the voltage level drops close to 0 V for about
0.5 microsecond. This function is used for strobing external, custom
equipment in much the same fashion as you might strobe the loudspeaker
or cassette OUT jack.

To generate that brief, negative-going pulse, simply do an LDA $C04F
from machine language or a PEEK(-16320) from BASIC.

0
+5VDC 1 16 NC

PBl 2 15 ANO
PB2 3 14 ANl
PB3 4 13 AN2

UTILITY 5 12 AN3

GCO 6 11 GC3
GC2 10 GCl
GND 9 NC

Fig. 9-8. Grune controller socket.

246 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Set Graphics or Text: $C050 and $C05 I -Writing to these two addresses
sets up the video system for displaying either the text or graphics mode.
These two "soft" switches behave in a mutually exclusive fashion; that is,
writing to one of the "soft" switches activates it and automatically deacti
vates the other. For instance, writing to address $C050, or -16304, sets the
graphics mode and deactivates the text mode. Test this by trying a POKE
-16304, 0 from Integer BASIC or a sequence such as:

LDA #0
STA $C050

from machine language. On the other hand, wntmg to address $C051
(-16303) sets the text mode and deactivates the graphics mode.

Set Full or Mixed-Screen Text/Graphics: $C052 and $C053-Wfiting a 0 to
address $C052 (-16302) sets up the video system for full-screen text or full
screen graphics. But writing a 0 to address $C053 (-16301) restores the
normal mixed text/graphics mode.

These are mutually exclusive operations; that is, writing to one of
them automatically disables the other.

Set Primary or Secondary Page: $C054 and $C055-Writing a value of 0 to
this set of "soft" switches sets up either the primary or secondary page of
text and graphics. It doesn't make much sense to attempt to view the pri
mary and secondary pages of text or graphics at the same time, so it fol
lows that these, too, are mutually exclusive switch settings.

POKEing or loading a zero to address $C054 (-16300) sets up the sys
tem for displaying the primary page of whatever text or graphics scheme is
active at the time. POKEing or loading a zero to address $C055 (-16299)
automatically deactivates the primary-page display and shows the second
ary page.

Set Text/Low-Resolution or High-Resolution: $C056 and $C057 - Writing to
this set of mutually exclusive "soft" switches sets up either the text/ low
resolution graphics mode or the high-resolution graphics mode. Writing to
$C056 (-16298) sets, up text/low-resolution graphics, while writing to its
counterpart, address $C057 (-16297), sets up the system for showing high
resolution graphics.

Set or Clear ANO-AN3 Outputs: $C058-$C05F-The diagram of the game
controller socket in Fig. 9-8 shows four pins, labeled ANO, AN 1, AN2, and
AN3. You can set any one of these four pins to + 5 V, or clear them to 0 V,
in the same way you can set or clear the screen modes just described.

THE MEMORY ENVIRONMENT " 247

These "soft" switch connections are available for special external-device
applications.

Table 9-6 shows that the functions are arranged in pairs of addresses.
PO KEing or loading a zero to the first in each pair clears the corresponding
AN pin on the game controller to about 0 V. POKEing or loading a zero
into the second address in each pair has the complementary effect: It sets
the pin to about + 5 V.

Cassette IN Jack: $C060-Address $C060 (-16288) is memory-mapped di
rectly to the cassette IN jack on the rear of the Apple. Reading data from
that address turns up a value of $80 (128) or greater if the voltage present at
that place is + 1 V or more. It turns up a value of $00 when the voltage is
less than + 1 V.

Of course, this is how the Apple monitor reads incoming data from
cassette tape. A voltage at the cassette IN jack that is +I V or more is
interpreted as a logic- I level, while a voltage that is less than + 1 V is read
as a logic-0 level.

Pushbutton Inputs PB! -PB3: $C06! -$C063-Referring to Fig. 9-8, the
diagram of the game controller socket, you will find three pin locations that
are labeled PBl, PB2, and PB3. These are user-available versions of the
cassette IN memory-mapped port just described. Reading from any one of
these three addresses will yield a value of $80 (128) or greater if the voltage
at the corresponding game controller pin is + l V or more. On the other
hand, reading from the addresses will produce a value of $00 (0) if the
voltage at the pin is less than +I V.

Table 9-6. Set or Clear ANO-AN3 Outputs

Hex Decimal Function
Address Address

$C058 -16296 Clear ANO (pin 15) to 0 V
$C059 -16295 Set ANO (pin 15) to 5 V

$C05A -16294 Clear AN l (pin 14) to 0 V
$C05B -16293 Set ANl (pin 14) to 5 V

$C05C -16292 Clear AN2 (pin 13) to 0 V
$C05D -16291 Set AN2 (pin 13) to 5 V

$C05E -16290 Clear AN3 (pin 12) to 0 V
$C05F -16289 Set AN3 (pin 12) to 5 V

248 @ INTERMEDIATE-LEVEL APPLE II HANDBOOK

There is some discrepancy in the literature regarding the labeling of
these so-called pushbutton inputs. The labeling convention used in this
book implies that the three pushbutton terminals on the game controller
socket are simple extensions of the cassette IN connection. But if you are
using the game paddles supplied with most Apple systems, you will find the
pushbuttons on them labeled PBO and PB 1. Actually those pushbutton
switches are plugged into pins 2 and 3 of the game controller socket, and
ought to be labeled PB I and PB2.

That need not create any real problems, however, as long as you refer
to them with the appropriate addresses:

$C061 (-16287) PB 1 (pin 2)
$C062 (-16286) PB2 (pin 3)
$C063 (-16285) PB3 (pin 4)

Analog Inputs: $C064-$C067-These four input ports are available at the
four game controller pins that are labeled GCO, GCl, GC2, and GC3. Once
they are properly set (as described in connection with address $C070 be
low), these terminals show a value of $80 (128) or greater for a period of
time that is directly proportional to the value of a potentiometer setting (see
Fig. 9-9). The closer the potentiometer wiper arm is set to its + 5 V con
nection, the longer it takes the analog value to drop below $80. The
maximum time is on the order of 3 milliseconds.

150 n
POTENTIOMETER

+ 5V __ .__PIN 1

GCO PIN 61 - GCl PIN 10 GAME CONTROLLER
GC2 PIN 7 SOCKET
GC3 PIN 11

,__ __ PIN 8

GNO

Fig. 9-9. Game controller potentiometer.

PEEK or load register A from the following addresses to pick up the
status of the analog inputs:

$C064 (-16284) GCO (pin 6)
$C065 (-16283) GC 1 (pin 10)
$C066 (-16282) GC2 (pin 7)
$C067 (-16281) GC3 (pin 11)

THE MEMORY ENVIRONMENT e 249

Analog Input Clear: $C070-You must read this address to start the timing
operation for the four analog input ports just described. Writing to this ad
dress begins all four timing operations simultaneously.

Peripheral Card 1/0: $C080- $COFF This is a special memory
mapped I/O section of addresses that refers to functions included on any of
the boards that might be inserted in the peripheral card slots. There are no
standards for how these addresses may be used-it depends on how the
cards' manufacturers want to use them. They can refer to memory loca
tions on the cards or to I/O devices that are mapped to the addresses.

In any event, it is possible to read from or write to any one of 16
memory-mapped byte locations on each of the eight peripheral card slots.
Table 9-7 summarizes all of those addresses.

Table 9-7" Peripheral Card 1/0 Addresses

Byte Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

0 $C080 $C090 $COAO $COBO $COCO $CODO $COEO $COFO
-16256 -16240 -16224 -16208 -16192 -16176 -16160 -16144

1 $C081 $C091 $COA1 $COB1 $COC1 $CODI $COE1 $COF1
-16255 -16239 -16223 -16207 -16191 -16175 -16159 -16143

2 $C082 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2
-16254 -16238 -16222 -16206 -16190 -16174 -16158 -16142

3 $C083 $C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3
-16253 -16237 -16221 -16205 -16189 -16173 -16157 -16141

4 $C084 $C094 $COA4 $COB4 $COC4 $COD4 $COE4 $COF4
-16252 -16236 -16220 -16204 -16188 -16172 -16156 -16140

5 $C085 $C095 $COA5 $COB5 $COC5 $COD5 $COE5 $COF5
-16251 -16235 -16219 -16203 -16187 -16171 -16155 -16139

6 $C086 $C096 $COA6 $COB6 $COC6 $COD6 $COE6 $COF6
-16250 -16234 -16218 -16202 -16186 -16170 -16154 -16138

7 $C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7
-16249 -16233 -16217 -16201 -16185 -16169 -16153 -16137

8 $C088 $C098 $COA8 $COB8 $COC8 $COD8 $COE8 $COF8
-16248 -16232 -16216 -16200 -16184 -16168 -16152 -16136

250 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

,--
i
i

i I

I

Table 9-7-cont. Peripheral Card 1/0 Addresses

Byte Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

9 $C089 $C099 $COA9 $COB9 $COC9 $COD9 $COE9 $COF9
-16247 -16231 -16215 -16199 -16183 -16167 -16151 -16135

10 $C08A $C09A $COAA $COBA $COCA $CODA $COEA $COF A
-16246 -16230 -16214 -16198 -16182 -16166 -16150 -16134

11 $C08B $C09B $COAB $COBB $COCB $CODB $COBB $COFB
-16245 -16229 -16213 -16197 -16181 -16165 -16149 -16133

12 $C08C $C09C $COAC $COBC $COCC $CODC $COEC $COFC
-16244 -16228 -16212 -16196 -16180 -16164 -16148 -16132

13 $C08D $C09D $COAD $COBD $COCD $CODD $COED $COFD
-16243 -16227 -16211 -16195 -16179 -16163 -16147 -16131

14 $C08E $C09E $COAE $COBB $COCE $CODE $COEE $COFE
-16242 -16226 -16210 -16194 -16178 -16162 -16146 -16130

15 $C08F $C09F $COAF $COBF $COCF $CODF $COEF $COFF
-16241 -16225 -16209 -16193 -16177 -16161 -16145 -16129

Suppose that a custom peripheral card is inserted into slot 5 and you
want to write data $80 to byte location 3 on that particular card. According
to the table, you can access that device or memory location with address
$COD3, or -16173. Writing a $80 (128) to that location is a matter of doing:

LDA #128
STA -16173 or

LDA #$80
STA $COD3

from a machine-language routine. Or working in Integer BASIC, you can
accomplish the same thing with:

POKE -16173,128

Peripheral Card ROM: $C100- $C7FF Most commercially
available peripheral cards for the Apple include some on-board ROM. This
ROM contains built-in machine-language programming and data that are
relevant to the function of the board. The Apple system sets aside some
address locations especially for this purpose: 256 byte locations for cards 1
through 7. (Slot 0 is omitted from this function because it is dedicated to
the same function in virtually every Apple.)

THE MEMORY ENVIRONMENT • 251

Table 9-8 maps the available ROM addressing range for each peripheral
card slot. Reading from addresses in the range of $C100 through $C1FF
(-16128 through -15873), for example, refers to addresses set aside for a
256-byte ROM on peripheral card number 1.

Table 9-8. Peripheral Card ROM Addresses

Slot Hex Address Decimal Address

1 $C100-$CIFF -16128-15873
2 $C200-$C2FF -15872-15617
3 $C300-$C3FF -15616-15361
4 $C400-$C4FF -15360-15105
5 $C500-$C5FF -15104-14849
6 $C600-$C6FF -14848-14593
7 $C700-$C7FF -14592-14337

Expansion ROM Space: $C800- $CFFF If peripheral-card appli
cations call for more than 256 bytes of ROM, you are free to use 2048
additional bytes located from address $C800 through $CFFF (-14336
through -12289). Reading from any address in this range automatically en
ables any ROM device located there. That can be a single, large 2K ROM
or a series of smaller ones that are distributed among the peripheral cards.

MAIN ROM ADDRESSES: $0000 THROUGH $FFFF It is the
fundamental nature of the 6502 microprocessor that makes it most feasible
to place ROM at the very top of the addressing range. This area contains all
of the built-in machine-language programming that makes the Apple per
form as it does.

Fig. 9-10 maps this area for you, assuming that your system is using
the Integer BASIC ROMs.

With the standard Apple ROMs for Integer BASIC, the lower portion
of the map is dedicated to the special Programmer's Aid #1, which consists
of:

HIGH-RESOLUTION GRAPHICS at $DOOO through $D3FF (-12288
through -11265).

RENUMBER and APPEND at $D400 through $D4D4 (-11264 through
-11060).

RELOCATE at $D4DC through $D5D2 (-11044 through -10798).
TAPE VERIFY at $D535 through $D5AA (-10955 through -10938).
RAM TEST at $D5BC through $D691 (-10820 through -10607).
MUSIC at $D717 through $D795 (-10473 through -10347).

252 0 INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

$FFFF(-l)

$F800(-2048)
$F666(-2458)
$F500(-2816)

$E000(-8192 I

$D800(-10240 I

$D000(-12288)

Fig. 9-10. ROM map.

END OF APPLE MEMORY

SYSTEM MONITOR

NOT USED
MINIASSEMBLER

INTEGER BASIC

NOT USED

PROGRAMMERS AID #1

The ROM area from $D800 to $DFFF (-10240 through -8193) refers to
ROM Socket D8 in the Apple hardware, but is largely unused by the In
teger BASIC scheme and monitor. (ROM-based Applesoft uses this area,
however.)

The machine-language programming for running Integer BASIC oc
cupies ROM addresses $EOOO through $F4FF (-8192 through -2817). The
so-called "cold" entry point for Integer BASIC is at address $EOOO (-8192).
This address is called by doing a CTRL-B keystroke. You can accomplish
that same "cold" BASIC restart by doing a CALL -8192 or JSR $EOOO.

The "warm" entry-point address for Integer BASIC is at address
$E003 (-8189). You can get to that point by doing a CTRL-C, CALL -8189,
or JSR $E003.

The miniassembler, described more fully in the next chapter, occupies
ROM addresses $F500 through $F668 (-2816 through -2456). This feature is
available only as long as you are using the Integer BASIC ROMs. In fact, it
is this access to the miniassembler that has dictated the use of Integer
BASIC (as opposed to Applesoft BASIC) throughout this book.

The system monitor, common to all Apple ROM configurations, takes
up the very top portion of the addressing range: $F800 through $FFFF
(-2048 through -1). Although the monitor programming begins at $F800, its
entry points are at higher addresses:

$FF59 (-167)- "Cold" entry point, same as doing RESET.
$FF65 (-155)-"Warm" entry point, usually used to get from BASIC

to the monitor without destroying the values of any variables.

THE MEMORY ENVIRONMENT ., 253

Programming With the
Miniassembler

The material in Chapter 8 included some 6502 machine-language, Q
instructions. As useful as those few instructions were, they hardly
represent the full power of the 6502 and the Apple system. In this chapter,
we will tell you the rest of the story. We will tell you how to prepare, load,
test, debug, and execute a wide range of machine-language programs. The
discussion features the Apple miniassembler-a good assembly-language
programming aid that is built into the Integer BASIC ROMs.

Recall from discussions in Chapter 8, if you will, that a complete
machine-language listing includes both a source-code and an object-code
version. The source-code, or assembly-language, version is written by hand
in a semi-plain English form, using standard mnemonic expressions, labels,
and comments. Its data and addresses may be expressed in either a decimal
or hexadecimal form. It is a programming format that is tailored specifically
to human understanding.

Once the programmer is satisfied with the assembly-language version,
he or she has to employ some mechanism for translating the source-code
instructions into a machine-compatible object-code version. Up until now,
that has been done by hand by looking up the machine-language instruc
tions for each of the assembly-language instructions. That is called a hand
assembly process. As you might suspect, hand assembling a program can
be a tedious, time consuming and error-prone job.

There is an alternative to hand assembly, however. All you need is a
particular kind of utility computer program that does the translating job
automatically. Such a program, called an assembler, accepts the humanly
understandable assembly-language instructions and translates them into
their machine-language counterparts.

The ROMs for Integer BASIC include a small, but quite useful,
assembler routine. This so-called miniassembler lacks the most powerful
features of some of the more sophisticated assemblers, but at least it elimi-

PROGRAMMING WITH THE MINIASSEMBLER e 255

nates a lot of tedious work and lessens the chance of human error in trans
lating from source code to object code.

When a programmer translates the original assembly-language program
into machine language by hand or through an assembler, the next step in
the procedure is to load the object-code version into the computer.

If you have assembled the program by hand for some reason, you can
load the machine codes directly into RAM, one byte at a time, through the
system monitor. But using the miniassembler is better because it will load
the machine codes for you as you type in the source-codes from the
keyboard. It is difficult to make a convincing case against using the mini
assembler most of the time.

Once loaded into the system, the machine-language programs ought to
be executed, tested, and debugged. The Apple disassembler feature is an
invaluable aid in this respect. Being just the converse of the miniassembler,
the disassembler reads machine-language instructions and translates them
back into source-code mnemonics, for display on the screen or printing to a
line printer. The miniassembler doesn't store your source-code listing, so
being able to disassemble the machine-language version is an invaluable
testing and debugging aid.

A working machine-language program ought to be saved on tape or
disk for reloading at some later time. The Apple monitor handles such tasks
quite well.

The overall purpose of this chapter is to deal with the procedures for
preparing an assembly-language program, entering and assembling the
program through the miniassembler, testing and debugging the program
with the aid of the disassembler, and saving and reloading the program.

That is a lot of ground to cover in a single chapter, but we assume that
you already have a basic understanding of the 6502 and its instruction set,
and that you can handle hexadecimal expressions.

A FIRST LOOK AT SOME ASSEMBLY-LANGUAGE PRO
GRAMMING As mentioned earlier in this chapter, the Apple monitor
includes a disassembler routine. It resides in the monitor ROMs that are
common to all Apple systems and not in the Integer BASIC ROMs as the
miniassembler does. The disassembler lets you explore any part of the
Apple memory system, picking up blocks of machine-language instructions
and translating them into source-code mnemonics on the screen. Try this:

1. Do a RESET to get the system running in the monitor mode. You
know you are in the monitor when you see the asterisk as a prompt
symbol.

2. Enter EOOOL from the keyboard. The screen should fill with 20 lines
of assembly-language programming. (See Listing 10-1.)

256 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

Listing 10-1. Disassembled ROM Listing.

EOOO- 20 00 FO JSR $FOOO
E003- 4C B3 E2 JMP $E2B3
EOOG- 85 33 STA $33
E008- 4C ED FD JMP $FDED
EOOB- 60 RTS
EOOC- 8A TXA
EOOD- 29 20 AND #$20
EOOF- FO 23 BEQ $E034
EOll - A9 AO LOA #$AO
E013- 85 E4 STA $E4
E015- 4C ED FD JMP $FDED
E018- A9 20 LOA #$20
EOlA- CS 24 CMP $24
EOlC- BO QC BCS $E02A
EOlE- A9 80 LOA #$80
E020- AO 07 LOY #$07
E022- 20 ED FD JSR $FDED
E025- A9 AO LOA #$AO
E027- 88 DEY
E028- DO F8 BNE $E022

Entering something such as EOOOL from the monitor instructs the sys-
1 tern to disassemble 20 machine-language instructions, beginning at the des-

i I ignated address-$EOOO in this case. The general form of the disassembly
command is

addrL

where addr is the hexadecimal starting address of the code to be disas
sembled, and the L suffix instructs the system to List the program in a
standard assembly-language format. In this particular case, the disassembly
begins at the beginning of the Integer BASIC ROM programming.

The left-hand column of four-character hexadecimal numbers that you
see on the screen represents the address of the first machine-language code
in each instruction. The first instruction in this example begins at address
$EOOO, the second begins at $E003, the third at $E006, and so on.

The machine-language version of the program appears in the second
major column. They, too, are in a hexadecimal format (as opposed to the
decimal versions shown in Chapter 8). Note that some are 1-byte codes,
some are 2-byte codes, and several are 3-byte codes.

The right-hand columns show the 6502 mnemonics and their respective
operands-the values of data or addresses that must be associated with
many of them. (See the 6502 instruction set in the appendices for a brief
interpretation of those mnemonics.)

You can, in principle at least, disassemble the entire Apple ROM sys
tem and discover in detail how it works and how you might use it to your

PROGRAMMING WITH THE MINIASSEMBLER • 257

advantage. That is a lot of work, though, and it calls for a good understand
ing of 6502 programming.

For the disassembler to be truly useful, you must list the code from an
address that holds the first code in an instruction. If you specify a listing
from anywhere else, you will see a lot of the mnemonics replaced with
question marks (???).

To see that idea at work, begin the disassembly in the middle of an
instruction-code sequence by doing EOOlL from the monitor. That starts
the disassembly from the second byte in the JSR $FOOO instruction shown
in Listing 10-1. The result is a jumble of "nonsense" instructions and
question marks in the first part of the listing on the screen. It does, how
ever, manage to straighten itself out by the time it gets to address $E066.

So whenever you are playing around with the disassembler and you
see a lot of question marks appearing in the listings, one of two things is
happening: Either you are beginning the disassembly in the middle of an
otherwise valid instruction-code sequence, or you are attempting to disas
semble a block of data.

To see the latter at work, do a OL. That begins the disassembly at
address $0000-at the beginning of zero-page memory. That RAM space
normally carries data bytes and 2-byte sequences that point to addresses
elsewhere in the system. The disassembler cannot make sense of RAM
space because it doesn't contain machine-language instructions at all.

If you want to look at a sequence of disassembled instructions that is
more than 20 instructions long, begin by entering the starting address fol
lowed by an L command. After observing the first 20 instructions, simply
strike the L key again. That will cause the system to display the next 20
instructions. You can proceed in that fashion as long as you wish. And if
you are using a line printer and want to print out a long series of disassem
bled instructions, do something such as this:

EOOOLLLLLLLL

That will print out eight consecutive groups of 20 disassembled instruc
tions-a total of 160 instructions. Simply append the starting address with
one L for each page of 20 instructions you want to prinL

This disassembly technique is an especially powerful debugging tool
for custom machine-language programs. Once you have entered a
machine-language program, you can check its disassembled version at any
later time by specifying a disassembly from the beginning of the program or
at any other point that represents the first byte of a valid instruction.

USING THE MINIASSEMBLER The miniassembler is part of the In
teger BASIC ROM set and you must have Integer BASIC in your system,
even though you might not use BASIC programming at all.

258 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

' '

I Entering the Miniassembler The entry-point address for the
miniassembler is $F666 (-2458). There are a couple of ways to reach that
entry point, depending on whether you are using the monitor or Integer
BASIC.

To enter the miniassembler from:
The system monitor, enter F666G.
Integer BASIC, enter CALL -2458.

(Whenever you are operating from the monitor, entering an address fol
lowed by a G character instructs the system to begin executing a routine
from that address.)

As soon as you execute either of those commands, the system enters
the miniassembler mode as indicated by an exclamation point (!) prompt
symbol.

Getting Out of the Miniassembler The procedure for getting
out of the miniassembler depends on where you want to go from there. The
logical choices are the system monitor, Integer BASIC, or any other
routine residing in ROM or RAM.

To leave the miniassembler and go to:
The system monitor, RESET or enter $FF69G.
Integer BASIC, enter $E003G.
Address addr, enter $addrG.

So answering the exclamation point prompt symbol by striking the
RESET key or entering a $FF69G returns the system to the monitor com
mand mode. Using $FF69G is a bit more elegant than doing a brute-force
RESET because the former does not clear a lot of system variables to their
default values. And getting to Integez_BASIC from the miniassembler by
executing $E003G also preserves any BASIC programming and variables
you might have in the system at the time.

Loading Programs Through the Miniassembler Once the
miniassembler is up and running (as signalled by the exclamation point
prompt symbol), you can specify an address for the first instruction, type
that instruction, and continue typing source-code instructions until you are
done. It is necessary to specify the address of the first instruction; the
miniassembler takes care of all subsequent addressing.

Suppose that you have a short assembly-language routine that looks
like this:

PROGRAMMING WITH THE MINIASSEMBLER • 259

;INITIALIZE Y
;INITIALIZE X
;INITIALIZE A

LDY #$FF
LDX #$FF
LDA #$00
RTS ;RETURN ro-cALUNG ROUTINE

The only additional information required is the starting address of the
routine. Let's make it $0320.

Now, get into the miniassembler and respond to the exclamation point
prompt symbol by typing the starting address, a semicolon, and the first
instruction. Before you conclude that operation by striking the RETURN
key, check to see if the screen looks like this:

!320:LDY #FF

Striking the RETURN key at this point causes the system to assemble the
instruction and enter the machine-language codes into the appropriate ad
dress locations in RAM. The line you just typed is replaced with this:

0320- AO FF lDY #$FF

The prompt symbol indicates that the miniassembler is ready for the
next instruction. For this point on, you no longer have to enter the
address-just type a space followed by the next source-code instruction.
Before you strike the RETURN key, the display should look something
like this:

0320- AO FF LDY #$FF
! LDX #FF

And after striking the RETURN key:

0320-
0322-

AO FF
A2 FF

LDY
LDX

#$FF
#$FF

Just don't forget to precede every instruction other than the first one
with a space. Failing to type at least one space will bring up the mini
assembler error symbol-a caret (A).

After entering the entire source-code program listed earlier, the screen
should look like this:

0320- AO FF
0322- A2 FF

LDY
lDX

#$FF
#$FF

260 s INTERMEDIATE-LEVEL APPLE II HANDBOOK

0324-
0326-

A9 00
60

LDA
RTS

#$00

What you should do next depends on whether you want to enter
further programming, try running the program just entered, save it on tape
or disk, or quit for the day. Let's suppose that you want to run it.

Running a Program from the Miniassembler Once you have
entered a legitimate assembly-language program through the miniassem
bler, you can run it by answering the exclamation point prompt symbol
with a dollar sign, the desired starting address, and a G character.

Suppose that you want to run the program just described, beginning at
address $0320. This is what the display should look like:

!$320G

The system prints the exclamation point, but you type the dollar sign, ad
dress 320, and the G character. Notice that you must use the dollar sign
ahead of the address and that there is no space between the prompt symbol
and dollar sign. Omitting the dollar sign will bring up the miniassembler
caret-symbol error marker.

If you have been following these discussions by actually typing in the
program, you will find that this particular program does nothing of any
apparent use. It is important to notice, however, that the RTS instruction
at the end of the program returns the system to the miniassembler.

Incidentally, you can execute any self-contained machine-language
routine from the miniassembler mode. Try this command from the mini
assembler mode:

!$FC58

That executes a subroutine beginning from address $FC58. That happens to
be a monitor subroutine that homes the cursor and clears the screen. After
that happens, the system returns to the miniassembler with the prompt
symbol appearing in the upper left-hand comer of the screen.

Running new programs from the miniassembler is a good technique
during the testing and debugging phases of the programming task.

Running a Program From the Monitor Of course it isn't abso
lutely necessary to run a program loaded under the miniassembler mode
from that same mode of operation. You can execute the program at a later
time from the monitor.

PROGRAMMING WITH THE MINIASSEMBLER • 261

Consider the short program described earlier. It begins at address
$0320, and loads $FF to the X and Y registers and #00 to the A register
before returning to the calling routine. Get out of the miniassembler and
into the monitor mode by striking the RESET key or responding to the
prompt symbol with $FF69G.

Then, from the monitor, enter 320G. That will execute the little
machine-language routine and return to the monitor.

Can that same routine be executed from Integer BASIC? Certainly it
can. Get into Integer BASIC and do a CALL 800. That calls the routine by
using the decimal version of the starting address. The system then executes
the routine and returns to BASIC.

If you would like to work with a more convincing example, get back
into the miniassembler mode and enter the program shown in Listing
10-2A. When you are done, the display should look like the one in Listing
10-2B.

Listing 10-2. Loudspeaker Beeper.

LDY #$OF ;SET FOR 15 BEEPS 0320- AO OF LOY #$OF
JSR $FF3A ;BEEP THE LOUDSPEAKER 0322- 20 3A FF JSR $FF3A
DEY :DECREMENT THE COUNTER 0325- 88 DEY
BNE $0322 ;IF NOT DONE. BEEP AGAIN 0326- DO FA BNE $0322
RTS ;ELSE RETURN TO CALLING ROUTINE 0328- 60 RTS

(A) (B)

Try the program by doing a $320G from the miniassembler. It should
beep the loudspeaker 15 times and then return to the miniassembler.

Next, get into the system monitor mode and respond to the asterisk
prompt symbol by entering 320G. The beeping routine will run again and
return to the monitor mode.

Finally, get into Integer BASIC and execute a CALL 800 command.
That, too, runs the beeping routine and returns to BASIC.

Saving and Loading Tapes From Miniassembler Saving and
reloading machine-language programs is a vital part of any machine
language venture. It's a rather simple procedure as long as you can keep
track of the first and last address used. The program in Listing 10-2B, for
instance, uses RAM addresses $0320 through $0328, and you must keep a
written record of that fact.

Saving that program on cassette tape from the miniassembler mode of
operation is a matter of responding to the exclamation print prompt symbol
with:

$320.328W

262 e INTERMEDIATE-LEVEL APPLE II HANDBOOK

Do not strike the RETURN key, however, until the cassette machine is
running in the record mode. With the cassette running in the record mode,
strike the RETURN key. The system will record that block of machine
language and return to the miniassembler.

Of course you can accomplish the same feat from the monitor mode as
well. It is only slightly easier because you do not have to prefix the address
range with a dollar sign. The miniassembler requires that first dollar sign.

Getting a previously saved machine-language program back into the
system calls for the same command, but appended with an R instead of a
W. So the program just described can be loaded into the same address
range by typing:

$320.328R

The cassette machine is then started in its play mode, and the RETURN
key is struck. The system then loads the program and returns to the mini
assembler.

PREPARING ASSEMBLY-LANGUAGE PROGRAMS The Apple
miniassembler was specifically designed to use just a few bytes of RAM
and enter machine language directly into specified addresses as the user
types in the source-code program. Those are truly exciting features and a
lot of the more sophisticated assemblers cannot make those claims.

But there are some serious trade-offs, too. Specifically, the Apple
miniassembler cannot accept, or support, comments and labels. Com
ments, you recall, serve the same function as REM statements in BASIC;
they provide a means for tacking on plain-English messages that explain
what is going on at critical places in the program. Most assemblers do sup
port comments, but the Apple accepts only assembly-language mnemonics
and hexadecimal numbers. And labels, as you will soon see, provide a con
venient and clear way to identify addresses that are to be used in an
assembly-language program. The Apple miniassembler cannot accept
labels.

The ROM listings in the back of the Apple II Reference Manual are a
fine example of fully documented assembly-language programming. They
were not done through the miniassembler, but on a full-blown, highly
sophisticated assembler system. But what we do here by hand and with the
miniassembler will work together to produce some documentation that is
just as complete and useful.

Using and Defining labels The first part of the ROM listings in
your Apple II Reference Manual consists of a list of label definitions.

PROGRAMMING WITH THE MINIASSEMBLER ., 263

Labels LOCO and LOCl, for instance, are defined as zero-page addresses
$00 and $01, respectively. In the main body of the program, then, refer
ences to LOCO and LOCl actually refer to their addresses. Thus a source
code instruction such as LDA LOCI is really identical to LDA $01.

Using such labels in place of the addresses they represent makes it
easier to write and read an assembly-language program. It is easier for most
people to understand and remember what a label such as WNDLFT means
than an address such as $20. LDA $20? What does that mean? LDA
WNDLFT-ahh, yes. It means load the A register with the content of the
WNDLFT address.

When preparing an assembly-language program, make generous use of
labels. Use standard Apple labels wherever possible, but of course there
will be many instances where you will have a chance to dream up some of
your own. The important thing is to keep a running list of addresses that
those labels represent.

Labels not only represent address locations of important bytes of data,
but also critical entry points and special addresses within the program
itself. Looking through the ROM listing, you will find a number of instruc
tions such as JSR GBASCALC. A JSR instruction is supposed to be
followed by a 2-byte address, but for the sake of convenience and some
clarity, the programmers used the label GBASCALC instead. Look
through the listing and you will find that GBASCALC is representing ad
dress $F847.

Listing 10-3A shows a source-code listing that defines and uses labels.
Labels SPKR and WAIT refer to addresses in the standard Apple system.
SPKR EQU $C030 means that label SPKR is identical to address $C030-
an address that represents the I/O port for the loudspeaker. And label
WAIT refers to a monitor subroutine that executes a time delay propor-

Listing 10-3. Demonstration of Labels.

ORG
SPKR
WAIT

START
CLICK

START
CLICK

EQU
EQU
EQU

LOY
LOA
TYA
JSR
DEY
BNE
BEQ

EQU
EQU

$0320
$C030
$FCA8

#$FF :INITIALIZE LONG DELAY
SPKR :CLOCK THE LOUDSPEAKER

:GET DELAY FROM Y
WAIT :DO A TIME DELAY

:DECREMENT DELAY IN Y
CLICK :IF NOT DONE, CLICK AGAIN
START :OTHERWISE START OVER

(A)

264 " INTERMEDIATE-LEVEL APPLE 11 HANDBOOK

0320- AO FF LOY $$FF
0322- AD 30 CO LOA $C030
0325- 98 TYA
0326- 20 A8 FC JSR $FCA8
0329- 88 DEY
032A- DO F6 BNE $0322
032C- FO F2 BEQ $0320

(B)

tional to the value of a number in the A register. It is defined by WAIT
EQU $FCA8.

START and CLICK, on the other hand, are home-brewed labels that
refer to addresses within the program itself. START EQU $0320 means that
address START is at $0320; it marks the address of the first instruction in
the program. Use any other label you like, but I think that START is quite
appropriate. Then there is the CLICK label. CLICK refers to the address
of the LDA SPKR instruction, and the BNE instruction near the end of the
program uses it.

Labels indicating critical points in an assembly-language program are
especially important because the programmer does not have to keep track
of the actual addresses. Let the miniassembler do that for you later on.

That source-code listing is what you should have at hand when you
approach the miniassembler. After loading the program, you should be able
to list it as shown in Listing 10-3B. Between those two listings-your
source-code version and the disassembled version -your documentation is
as complete as it ever has to be.

Loading Through the Miniassembler Given a complete
source-code program listing, the next step is to enter the program into the
Apple system via the miniassembler. We are going to show how to load the
program in Listing 10-3A. Follow along carefully, because it demonstrates
how to deal with the labels.

With Listing 10-3A at hand, get into the miniassembler and type in the
ORG address, $320, and the first instruction. Just prior to striking the
RETURN key, the display looks something like this:

!320:LOY #FF

After striking the RETURN key, the presentation changes to this:

0320- AO FF LOY #$FF

That first address, $0320, also represents the address for the START
label. Make a note of that fact on your source-code listing.

The next instruction refers to label SPKR, but the miniassembler
won't accept the label-it needs the address it represents. So looking back
to your source-code listing to get that address, type in the instruction as:

! LOA C030

After striking the RETURN key, the screen should show this sequence:

PROGRAMMING WITH THE MINIASSEMBLER • 265

0320-
0322-

AO FF LDY
AD 30 CO LDA

#$FF
$C030

Address $0322 marks the special CLICK label in the source-code list
ing. Make a note of that on the listing. You will need it later.

Enter the TYA instruction and then the JSR instruction, using $FCA8
in place of the WAIT label. Things are fairly straightforward for the last
two instructions. Enter the BNE instruction using $0322 in place of CLICK
and $0320 in place of START.

When the job is done, the listing should appear as in Listing 10-3B.
Since the miniassembler does not support labels, you must define the

ones you know in advance and keep track of those you discover as you go
along.

This particular example lets you see the address for label CLICK be
fore you need it later in the program. There are some instances where you
need a label address before you get far enough along in the program to
know what it will be. One trick for handling that situation is to use any old
address-perhaps something quite distinctive such as $0000-when you
need it. Then after you find out what that address really is, you can edit the
listing to insert the proper address.

As an exercise in interpreting labels, see if you can load the source
code program in Listing 10-4. Complete the documentation by indicating
the addresses for labels START and CLICK.

Listing 10-4. Exercise in Use of Labels.

ORG EQU $0320
HOME EQU $FC58
SPKR EQU $C030
GOUT! EQU $FDFO
WAIT EQU $FCA8

START JSR HOME :HOME CURSOR AND CLEAR SCREEN
LOY #$FF :SET INITIAL DELAY IN Y

CLICK LOA SPKR :CLOCK THE SPEAKER
LOA #$IA :LOAD INVERSE Z CHARACTER
JSR GOUT! :PRINT IT
TYA :GET CURRENT DELAY FROM Y
JSR WAIT :DO A TIME DELAY
DEY :DECREMENT DELAY IN Y
BNE CLICK :IF NOT DONE. CLICK AGAIN
BEQ START :OTHERWISE. START OVER

START EQU
CLICK EQU

266 • INTERMEDIATE-LEVEL APPLE II HANDBOOK

LOADING THROUGH THE MONITOR If you must work in ma
chine language, it is more convenient to load through the monitor. Loading
hexadecimal bytes through the monitor is a simple matter of specifying the
starting address of the sequence of bytes, typing a colon, and then typing in
the bytes, each separated by a space. When Listing 10-3 is loaded in this
fashion, the presentation on the screen looks something like this:

*320:AO FF AD 30 CO 98 20 AS FC 88 DO F6 FO F2

That loads the machine-language program, beginning at address $032;
striking the RETURN key signals the end of the operation. After that, you
can see the disassembled version of the program by executing a 320L from
the monitor. It will look just like the version in Listing 10-3B. Running the
program is then a matter of executing a 320G from the monitor.

Most programmers agree that it is easier and faster to type in machine
language through the monitor than through the miniassembler as long as
you must use machine language. One area in which you should use ma
chine language is data tables. Data tables have no mnemonics; they are
strictly numerical. That means you are better off loading data tables as
hexadecimal bytes-an operation better performed through the monitor.

Finally, the monitor offers the most convenient means for altering a
single byte or two within an existing machine-language program. Perhaps it
is desirable to change an existing LDA #$FF statement to LDA #$OF.
Rather than getting into the miniassembler and typing the entire instruc
tion, determine the address of the byte to be changed and write over it by
entering the revised version through the monitor.

The disassembled version of the instruction will look like this:

E011- A9 FF LDA #$FF

To change the #$FF to #$OF from the monitor, do this:

E012:FF

and strike the RETURN key.
The FF byte, you see, is located at address E011-the byte im

mediately following the EOl l address shown in the disassembled version of
the program. After making that change, the disassembled version will look
like this:

E011- A9 OF LOA #$OF

PROGRAMMING WITH THE MINIASSEMBLER " 267

DEBUGGING WITH THE BRK INSTRUCTION Machine-language
programs generally run very fast-far too fast to follow in detail. About all
you can know for sure is the status of the system at the beginning and the
end of the execution of such a program. Keeping continuous track of
events taking place during the program is an impossible task. But keeping
track of events is important for debugging purposes.

The BRK instruction offers some hope for keeping track of events
through the execution of a machine-language program. Insert a temporary
BRK instruction at the beginning of any other instruction in the program,
and things come to a halt as soon as the system executes the BRK. And the
Apple is set up so that it automatically displays the contents of the internal
registers at the conclusion of a BRK operation.

So let's suppose that you are working with a machine-language pro
gram such as the one in Listing 10-3, and you find it isn't working right.
Disassemble it to find the address of some critical instruction, then load a
00 (the machine code for BRK) at that address, through the monitor. Run
the program, and it stops at the BRK instruction and prints out the con
tents of the registers. You can also examine other memory locations
through the monitor while the system is stopped. Then when you want to
get the program running normally again, simply replace the BRK instruc
tion with the original one.

Two additional debugging tools, STEP and TRACE, amount to a pow
erful family of troubleshooting aids. Both of these are well documented in
the standard Apple reference manuals.

268 " INTERMEDIATE-LEVEL APPLE II HANDBOOK

Appendix

Number-System Base
Conversions

Just about any computer (certainly the Apple II) is essentially a A
binary machine; the 6502 microprocessor does all of its control,
arithmetic, and logic operations in a base 2, or binary, number system. And
it so happens that the 6502 works with 8-bit binary numbers-a full byte of
them.

People do not think and work with binary numbers very well, how
ever. Such numbers, being made up exclusively of Os and ls, are very
cumbersome. One alternative to purely binary representations of numbers
is hexadecimal numbers. The hexadecimal (base 16) number system looks
at binary numbers in groups of four; every group of four binary numbers
(sometimes called a nibble) can be represented by a single hexadecimal
number. So, instead of having to work with strings of eight Os and ls in
base 2 binary, it is possible to work with just two hexadecimal characters.

While, indeed, many machine-language programmers can learn to
work with hexadecimal numbers with great proficiency, the general popu
lation still prefers the ordinary decimal (base 10) number system. Apple
engineers were aware of that fact, and Integer and Applesoft BASIC are
built around the decimal number system exclusively.

As long as one works with Apple BASIC in its most elementary
fashion-doing no special addressing or machine-language work-there is
no need to be aware of hexadecimal or binary numbers. But hexadecimal
numbers become quite helpful when doing extensive machine-language
programming.

APPENDIX A e 259

Thus, programmers who are working their way deeper and deeper into
the Apple II system will find themselves having to make conversions be
tween decimal and hexadecimal numbers and, eventually, between binary
and hexadecimal numbers. The purpose of this appendix is to make such
conversion tasks as simple as possible.

There are many ways to approach the conversions between these three
different number systems; the following are the most straightforward.

HEXADECIMAL-TO-DECIMAL CONVERSIONS In the Apple II
system, data is carried as a 1-byte (two-hexadecimal-number) code. Ad
dresses are carried as I-byte codes for the zero-page memory and as 2-byte
codes for the remainder of the usable memory space. Table A-1 can be very
helpful for translating hexadecimal numbers into their decimal counter
parts. This sort of situation often arises when one is writing programs in
both BASIC and machine language.

The table can be used for converting up to four hexadecimal places, or
nibbles, to their decimal counterpart. Notice that there are four major col
umns, labeled 1 through 4. These column numbers represent the relative
positions of the hexadecimal characters as they are usually written, with
the least-significant nibble on the right and the most-significant nibble on
the left.

Table A-1. Hexadecimal/Decimal Conversion

MSB LSB
4 3 2 1

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
c 49152 c 3072 c 192 c 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

270 ., APPENDIX A

To see how the table works, suppose that you want to convert the
hexadecimal value $1A3F into decimal. The first character on the left takes
a decimal equivalent shown in column 4-4096. The second character from
the left takes on the value from column 3-2560. The last two figures get
their decimal equivalents from columns 2 and 1-48 and 15, respectively.
Then, to get the true decimal value, add those decimal equivalents:
4096+2560+48+ 15, or 6719. In other words, $1A3F is equal to 6719 in
decimal.

If you are converting a two-place hexadecimal number, just use col
umns 2 and I. Hexadecimal $C3, for instance, is equal to 192+3, or dec
imal 195.

Table A-1 is adequate for hexadecimal-to-decimal conversions for all
the usual sort of work on the Apple.

DECIMAL-TO-HEXADECIMAL CONVERSIONS When working
back and forth between BASIC and machine-language routines, it is often
necessary to convert decimal data and addresses into hexadecimal nota
tion. Table A-1 comes to the rescue again. The procedure is a rather
straightforward one, but it involves several steps.

Suppose, for example, that you want to convert decimal 65 into its
hexadecimal counterpart. First, find the decimal number on the table that is
equal to, or less than, the desired decimal number. The decimal number in
this example is 65, and the closest value less than 65 is 64. The 64 is equiva
lent to a hexadecimal $4 in column 2. Thus the most-significant number in
the hexadecimal representation is 4.

Next, subtract that 64 from the number that you are working with:
65-64= 1. Then look up the hexadecimal value of the 1 in the next-lower
column of the table-column 1 in this instance. The hexadecimal version
of that number is $1. Putting together those two hexadecimal characters,
you get a $41. Indeed, decimal 65 translates into hexadecimal $41.

By way of a somewhat more involved conversion, suppose that you
must convert decimal 19314 into hexadecimal notation.

Looking through the columns of decimal numbers in the table, you find
that 16384 is the next-lower value; it translates into hexadecimal $4 in col
umn 4. So you are going to end up with a four-digit hexadecimal number,
with the digit on the left being a 4.

To get the next-lower place value, subtract the table value 16384 from
19314: 19314-16384=2930. The next-lower decimal value in this case is 2816
from column 3; that turns up a $B as the next hexadecimal character. So
far, the number is $4B.

Now subtract the table value 2816 from 2930: 2930-2816= 114. The
next-lower decimal value from column 2 is 112, and its hexadecimal coun
terpart is 7. And to this point, the hexadecimal number is $4B7.

APPENDIX A • 271

Finally, subtract the table value 112 from 114: 114-112=2. From col
umn 1, decimal 2 is the same as hexadecimal $2; so the final hexadecimal
character is $2.

Putting this all together, it turns out that decimal 19314 is the same as
hexadecimal $4B72. Fig. A-1 summarizes the operation.

HEXADECIMAL
EQUIVALENT

i~~::: _COLUMN ,J f 1
-16384

2930 - COLUMN 3
-2816

114 - COLUMN 2
-112

2

2-COLUMN 1------'

19314 !decimal) = $4872 !hexadecimal)

*COLUMN numbers refer to Table A-1

Fig. A-1. Converting decimal to hexadecimal.

CONVENTIONAL DECIMAL TO 2-BYTE DECIMAL FOR
MAT When POKEing addresses as 2-byte numbers into memory, it is
necessary to convert the address to be affected into a 2-byte format. In
decimal, such an operation isn't easy, but it is all a part of setting up ad
dress locations in decimal-oriented BASIC.

By way of an example, suppose that you are to load a 2-byte version of
decimal address 1234 into memory addresses 16787 and 16788. That
number to be stored, 1234, is too large for either of those 1-byte addresses,
so it has to be broken up into two parts: one for each of the address loca
tions.

Before a decimal number can be divided into a 2-byte version, it must
be converted into hexadecimal form. Using the decimal-to-hexadecimal
conversion described in the previous section, you find that decimal 1234 is
equal to hexadecimal $04D2.

Next, you divide that hexadecimal version of the number into two
bytes: the most-significant byte (MSB) is $04, and the least-significant byte
(LSB) is $D2. Divided that way, you end up with two 1-byte hexadecimal
values: $04 and $D2.

Finally, convert those two sets of hexadecimal numbers into their dec
imal equivalents, treating them as two separate hexadecimal values. Thus
$04 converts to decimal 4, and $D2 converts to 210.

272 • APPENDIX A

I ----

1

The 2-byte version of decimal 1234 is thus 4 and 210, with 4 being the
MSB and 210 being the LSB.

That takes care of the conversion of an ordinary decimal number into a
2-byte version, also in decimal. Now you must POKE these numbers into
decimal addresses 16787 and 16788.

If you place the LSB of the 2-byte number into the lower-numbered
address, the BASIC operation for satisfying the requirements of the exam
ple looks like this:

POKE 16787,210 : POKE 16788,4

No, it isn't a simple procedure to convert an ordinary decimal number into
a 2-byte decimal format, but it's the price that must be paid for working
with a byte-oriented machine in a decimal-oriented BASIC language.

TWO-BYTE DECIMAL TO CONVENTIONAL DECIMAL
FORMAT Suppose that you are analyzing a machine-language routine
that is presented in a decimal-oriented, BASIC format. Under that condi
tion, a 2-byte address appears as a set of two decimal numbers; if you want
to get that pair of numbers into a conventional decimal format, you have to
play with them a bit.

Consider an instance where 223 turns up as the LSB in decimal, and
104 is the MSB. What address, or 2-byte decimal number, do they repre
sent?

First, convert both sets of numbers into their hexadecimal counter
parts: decimal 223=$DF, and decimal 104=$68. Since $DF is the MSB and
$68 is the MSB, the overall hexadecimal representation of that 2-byte dec
imal format is $DF68.

All that remains to be done is to convert that hexadecimal number into
its full decimal counterpart: $DF68=24567+2048+208+ 15=26849. That's
it-the conventional representation of the original 2-byte decimal values.
The combination of decimal numbers 223 and 104 actually points to decimal
26849.

CONVERTING LARGE DECIMAL VALUES TO SMALLER
NEGATIVE VALUES Integer BASIC allows numbers having values
from -32767 to 32767. Try working with a number outside that range, and
you immediately get a 32767 ERR message. The possible range of Apple II
addressing is different; it runs from 0 to 65535-all positive values. So
there is bound to be some difficulty when attempting to CALL a machine
language routine that begins at memory addresses above 32767 (and there
are a good many valuable monitor routines between 32768 and 65535).

APPENDIX A • 273

The way around the problem is to CALL a negative address. It is a
simple procedure as long as you can remember a "magic" number: 65536.
Whenever you want to CALL an address that is greater than 32767, simply
subtract the address from 65536 and stick a minus sign in front of it. That's
all there is to it.

Suppose that you want to call a routine that is located at address
40668. You can't do a CALL 40668 without getting 32767 ERR from Integer
BASIC. So subtract 40668 from 65536, and put a minus sign in front of it:
-24868. Then you can get to that routine by doing a CALL -24868.

CONVERTING NEGATIVE DECIMAL VALUES TO LARGER
POSITIVE VALUES Anyone who has used Integer BASIC knows that
CALL -936 homes the cursor and clears the screen. That CALL refers to
the starting address of a home-and-clear routine in the Apple II monitor.
But what is the actual decimal address?

The conversion is a simple one if you use the "magic" number, 65536.
In this case, 65536-936=64600. The actual address of -936 is 64600. Just add
the negative address to 65536.

BINARY-TO-DECIMAL CONVERSION In practice, most
binary-to-decimal conversions are carried out with 1-byte (or 8-bit) binary
numbers, although there are occasions when it is necessary to do the con
version from 2-byte (16-bit) numbers.

Fig. A~2 shows the breakdown of an 8-bit binary number. The posi
tions are labeled 0 through 7, with zero indicating the least-significant bit
position. Each of those 8-bit locations contains either a 0 or a 1.

MSB LSB.

l11615141312l1lol

Fig. A-2. Eight-bit binary number.

Suppose that you want to POKE 01101011. But you have to use a
decimal version of that binary number from BASIC. Here is how to go
about determining that decimal version.

First, multiply the 0 or 1 in each bit location by 2n, where n is the bit
place value in each case. Then simply add the results. (See the example in
Fig. A-3.)

The same idea applies to converting 16-bit binary to a decimal equiva
lent. The place values run from 0 to 15 in that case, and Table A-2 can help
you determine those larger powers of 2.

274 • APPENDIX A

/ __ _

[0 I 1I1 I 0 I 1I0I1 I 1 J BINARY

l
.....

01101011 BINARY = 108 DECIMAL

Fig. A-3. Converting binary to decimal.

lx20=1Xl=l

1 x 21 = 1 x 2 = 2

ox 22 =ox 4 = o
1 x 23 = 1 x 8 = 8
0 x 24 = 0 x 16 = 0

1 x 2s = 1 x 32 = 32

1 x 26 = 1 x 64 = 64

o x 27 = 1 x 128 = o
108 decimal

Table A-2. Powers of Two Table A-3. Binary/Hexadecimal Conversion

n 2n Binary Hexadecimal

0 1 0000 $0
1 2 0001 $1
2 4 0010 $2
3 8 0011 $3
4 16 0100 $4
5 32 0101 $5
6 64 0110 $6
7 128 0111 $7
8 256 1000 $8
9 512 1001 $9

10 1 024 1010 $A
11 2 048 1011 $B
12 4 096 1100 $C
13 8 192 1101 $D
14 16 384 1110 $E
15 32 768 1111 $F

BINARY-TO-HEXADECIMAL CONVERSION Converting a bi
nary number into a hexadecimal format is perhaps the simplest of all the
conversion operations. All you have to do is group the binary number into
sets of 4 bits each, beginning with the least-significant bit, and then find the
hexadecimal value for each group. Table A-3 helps with the latter opera
tion.

APPENDIX A • 275

Suppose the binary number is 10011101. There are two sets of 4 bits
(or nibbles) here, 1001 and 1101. The hexadecimal equivalent is 9 for the
first set, and D for the second set, as Table A-3 shows. Therefore, the
hexadecimal version of that 8-bit binary number is $9D.

The same procedure works equally well for 16-bit numbers; the only
difference is that you end up with four hexadecimal characters instead of
just two.

HEXADECIMAL-TO-BINARY CONVERSION Converting a
hexadecimal number to its binary form is a simple matter of applying Table
A-3 to change each hexadecimal character into the appropriate groups of 4
binary bits.

Example: Convert address $404D into a binary format. According to
the table, that hexadecimal number can be represented as 0100 0000 0011
1101.

DECIMAL-TO-BINARY CONVERSION There are several com
monly cited algorithms for mathematically converting any decimal number
into its binary format. But it is simpler in the long run, and probably more
accurate, to use a two-step procedure.

The general idea is to convert the decimal number into its hexadecimal
counterpart as described earlier in this appendix. Then convert the
hexadecimal characters into their binary versions as described in the previ
ous section.

Example: Convert 1234 decimal into binary. First, as described earlier,
calculate the hexadecimal version of decimal 1234. Your answer should
come out to be $04D2. And that hexadecimal number, expressed in binary
(from Table A-3) is 0000 0100 1101 0010. Thus 1234 is equal to binary
10011010010. You may include the five leading zeros if you wish.

276 • APPENDIX A

Appendix

Character Codes for Text
Printing Operations

The following tables show the hexadecimal (Hex) and decimal B
(Dec) codes that can be loaded or POKEd to video memory to print
the designated character (Char).

Table B-1. Inverse Screen Text Characters

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

$00 (0) @ $10 (16) p $20 (32) $30 (48) 0
$01 (1) A $11 (17) Q $21 (33) ! $31 (49) 1
$02 (2) B $12 (18) R $22 (34) II $32 (50) 2
$03 (3) c $13 (19) s $23 (35) # $33 (51) 3
$04 (4) D $14 (20) T $24 (36) $ $34 (52) 4
$05 (5) E $15 (21) u $25 (37) % $35 (53) 5
$06 (6) F $16 (22) v $26 (38) & $36 (54) 6
$07 (7) G $17 (23) w $27 (39) I $37 (55) 7
$08 (8) H $18 (24) x $28 (40) ($38 (56) 8
$09 (9) I $19 (25) y $29 (41)) $39 (57) 9
$0A (10) J $1A (26) z $2A (42) * $3A (58)
$OB (11) K $1B (27) [$2B (43) + $3B (59)

'
$0C (12) L $1C (28) \ $2C (44)

'
$3C (60) <

$OD (13) M $1D (29)] $2D (45) - $3D (61) =

$OE (14) N $1E (30)
A

$2E (46) $3E (62) >
$OF (15) 0 $1F (31) - $2F (47) I $3F (63) ?

APPENDIX B • 277

Table B-2. Flashing Screen Text Characters

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

$40 (64) @ $50 (80) p $60 (96) $70 (112) 0
$41 (65) A $51 (81) Q $61 (97) ! $71 (113) 1
$42 (66) B $52 (82) R $62 (98) II $72 (114) 2
$43 (67) c $53 (83) s $63 (99) # $73 (115) 3
$44 (68) D $54 (84) T $64 (100) $ $74 (116) 4
$45 (69) E $55 (85) u $65 (101) % $75 (117) 5
$46 (70) F $56 (86) v $66 (102) & $76 (118) 6
$47 (71) G $57 (87) w $67 (103) I $77 (119) 7
$48 (72) H $58 (88) x $68 (104) ($78 (120) 8
$49 (73) I $59 (89) y $69 (105)) $79 (121) 9
$4A (74) J $5A (90) z $6A (106) * $7A (122)
$4B (75) K $5B (91) [$6B (107) + $7B (123)

' $4C (76) L $5C (92) \ $6C (108)
'

$7C (124) <
$4D (77) M $5D (93)] $6D (109) - $7D (125) =

$4E (78) N $5E (94)
A

$6E (110) $7E (126) >
$4F (79) 0 $5F (95) - $6F (111) I $7F (127) ?

Table B-3. NORMAL-1 Screen Text Characters

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

$80 (128) @ $90 (144) p $AO (160) $BO (176) 0
$81 (129) A $91 (145) Q $Al (161) ! $Bl (177) 1
$82 (130) B $92 (146) R $A2 (162) II $B2 (178) 2
$83 (131) c $93 (147) s $A3 (163) # $B3 (179) 3
$84 (132) D $94 (148) T $A4 (164) $ $B4 (180) 4
$85 (133) E $95 (149) u $A5 (165) % $B5 (181) 5
$86 (134) F $96 (150) v $A6 (166) & $B6 (182) 6
$87 (135) G $97 (151) w $A7 (167) I $B7 (183) 7
$88 (136) H $98 (152) x $A8 (168) ($B8 (184) 8
$89 (137) I $99 (153) y $A9 (169)) $B9 (185) 9
$8A (138) J $9A (154) z $AA (170) * $BA (186)
$8B (139) K $9B (155) [$AB (171) + $BB (187)

'
$8C (140) L $9C (156) \ $AC (172)

'
$BC (188) <

$8D (141) M $9D (157)] $AD (173) - $BD (189) =

$8E (142) N $9E (158) $AE (174) $BE (190) >
$8F (143) 0 $9F (159) - $AF (175) I $BF (191) ?

278 • APPENDIX B

Table B-4. NORMAL-2 Screen Text Characters

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

$CO (192) @ $DO (208) p $EO (224) $FO (240) 0
$Cl (193) A $Dl (209) Q $El (225) ! $Fl (241) 1
$C2 (194) B $D2 (210) R $E2 (226) If $F2 (242) 2
$C3 (195) c $D3 (211) s $E3 (227) # $F3 (243) 3
$C4 (196) D $D4 (212) T $E4 (228) $ $F4 (244) 4
$C5 (197) E $D5 (213) u $E5 (229) % $F5 (245) 5
$C6 (198) F $D6 (214) v $E6 (230) & $F6 (246) 6
$C7 (199) G $D7 (215) w $E7 (231) I $F7 (247) 7
$C8 (200) H $D8 (216) x $E8 (232) ($F8 (248) 8
$C9 (201) I $D9 (217) y $E9 (233)) $F9 (249) 9
$CA (202) J $DA (218) z $EA (234) * $FA (250)
$CB (203) K $DB (219) [$EB (235) + $FB (251)

'
$CC (204) L $DC (220) \ $EC (236)

'
$FC (252) <

$CD (205) M $DD (221)] $ED (237) - $FD (253) =

$CE (206) N $DE (222) $EE (238) $FE (254) >
$CF (207) 0 $DF (223) - $EF (239) I $FF (255) ?

APPENDIX B • 279

Appendix

Organization of the
Text/Low-Resolution Graphics

Video Memory

These tables show the range of hexadecimal and decimal ad- c
dresses for each of the 24 lines of text and low-resolution graphics.

Table C-1. Primary-Page Memory Addresses

Line Hex Range Dec Range

0 $0400-$0427 1024-1063
1 $0480-$04A7 1152-1191
2 $0500-$0527 1280-1319
3 $0580-$05A7 1408-1447
4 $0600-$0627 1536-1575
5 $0680-$06A7 1664-1703
6 $0700-$0727 1792-1831
7 $0780-$07A7 1920-1959

8 $0428-$044F 1064-1103
9 $04A8-$04CF 1192-1231

10 $0528-$054F 1320-1359
11 $05A8-$05CF 1448-1487
12 $0628-$064F 1576-1615
13 $06A8-$06CF 1704-1743
14 $0728-$074F 1832-1871
15 $07 A8-$07CF 1960-1999

280 • APPENDIX C

Table C-1-cont. Primary-Page Memory Addresses

16 $0450-$0477 1104-1143
17 $04D0-$04F7 1232-1271
18 $0550-$0577 1360-1399
19 $05D0-$05F7 1488-1527
20 $0650-$0677 1616-1655
21. $06D0-$06F7 1744-1783
22 $0750-$0777 1872-1911
23 $07D0-$07F7 2000-2039

Table C-2. Secondary-Page Memory Addresses

Line Hex Range, Dec Range

0 $0800-$0827 2048-2087
1 $0880-$08A7 2176-2215
2 $0900-$0927 2304-2343
3 $0980-$09A7 2432-2471
4 $0A00-$0A27 2560-2599
5 $0A80-$0AA7 2688-2727
6 $0B00-$0B27 2816-2855
7 $0B80-$0BA 7 2944-2983

8 $0828-$084F 2088-2127
9 $08A8-$08CF 2216-2255

10 $0928-$094F 2344-2383
11 $09A8-$09CF 2472-2511
12 $0A28-$0A4F 2600-2639
13 $0AA8-$0ACF 2728-2767
14 $0B28-$0B4F 2856-2895
15 $0BA8-$0BCF 2984-3023

16 $0850-$0877 2128-2167
17 $08D0-$08F7 2256-2295
18 $0950-$0977 2384-2423
19 $09D0-$09F7 2512-2551
20 $0A50-$0A 77 2640-2679
21 $0AD0-$0AF7 2768-2807

i '
L,,

22 $0B50-$0B77 2896-2935
23 $0BD0-$0BF7 3024-3063

APPENDIX C • 281

Appendix

Codes Generated by
Keystrokes

These tables indicate the hexadecimal and decimal codes that D are generated by a keystroke from the keyboard.

Table D-1. Hexadecimal and Decimal Key Codes (Ordinary Keys)

Keystroke Hex Dec

@ $CO 192
A $CI 193
B $C2 194
c $C3 195
D $C4 196
E $C4 197
F $C5 198

G $C7 199
H $C8 200
I $C9 201
J $CA 202
K $CB 203
L $CC 204
M $CD 205
N $CE 206

0 $CF 207
p $DO 208

282 • APPENDIX D

Table D-1-cont. Hexadecimal and Decimal Key Codes (Ordinary Keys)

Keystroke Hex Dec

Q $DI 209
R $D2 210
s $D3 211
T $D4 212
u $D5 213
v $D6 214

w $D7 215
x $D8 216
y $D9 217
z $DA 218
space $AO 160
! $Al 161
II $A2 162
$A3 163

$ $A4 164
% $A5 165
& $A6 166
I $A7 167
($A8 168
) $A9 169
* $AA 170
+ $AB 171

'
$AC 172

- $AD 173
$AE 174

I $AF 175
0 $BO 176
1 $Bl 177
2 $B2 178
3 $B3 179

4 $B4 180
5 $B5 181
6 $B6 182
7 $B7 183
8 $B8 184
9 $B9 185

APPENDIX D • 283

Table D-1-cont. Hexadecimal and Decimal Key Codes (Ordinary Keys)

Keystroke Hex Dec

$BA 186

' $BB 187

< $BC 188
= $BD 189
> $BE 190
? $BF 191
<0---- $88 136 (Same as CTRL-H)
RET $SD 141 (Same as CTRL-M)
-i> $95 149 (Same as CTRL-U)
ESC $9B 155

~

$DE 222

284 " APPENDIX D

Table D-2. Hexadecimal and Decimal Key Codes (Control Keys)

Keystroke Hex Dec

CTRL-@ $80 128
CTRL-A $81 129
CTRL-B $82 130
CTRL-C $83 131
CTRL-D $84 132
CTRL-E $85 133
CTRL-F $86 134

CTRL-G $87 135
CTRL-H $88 136 (Same as +---)
CTRL-I $89 137
CTRL-J $8A 138
CTRL-K $8B 139
CTRL-L $8C 140
CTRL-M $8D 141 (Same as RETURN)
CTRL-N $8E 142

CTRL-0 $8F 143
CTRL-P $90 144
CTRL-Q $91 145
CTRL-R $92 146
CTRL-S $93 147
CTRL-T $94 148
CTRL-U $95 149 (Same as~)
CTRL-V $96 150

CTRL-W $97 151
CTRL-X $98 152
CTRL-Y $99 153
CTRL-Z $9A 154

APPENDIX D ., 285

Appendix

Low-Resolution Graphics Colors

The normal low-resolution plotting operations plot a color to E
one-half of a character space on the screen. The colors and their
codes for such operations are shown here in Table E-1.

Tables E-2 and E-3 show the two-color combinations that result from
POKEing or loading codes directly to the primary or secondary page of
low-resolution video memory.

Table E-1. Low-Resolution Color Codes

Color Hex Dec

BLACK $00 0
MAGENTA $01 1
DARK BLUE $02 2
PURPLE $03 3
DARK GREEN $04 4

GREY 1 $05 5
MEDIUM BLUE $06 6
LIGHT BLUE $07 7
BROWN $08 8
ORANGE $09 9

GREY2 $0A 10
PINK $OB 11
LIGHT GREEN $0C 12
YELLOW $OD 13
AQUA $OE 14

WHITE $OF 15

286 • APPENDIX E

Table E-2. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

BLACK/BLACK $00 0
BLACK/MAGENTA $10 16
BLACK/DARK BLUE $20 32
BLACK/PURPLE $30 48
BLACK/DARK GREEN $40 64
BLACK/GREY 1 $50 80
BLACK/MEDIUM BLUE $60 96
BLACK/LIGHT BLUE $70 112
BLACK/BROWN $80 128
BLACK/ORANGE $90 144
BLACK/GREY 2 $AO 160
BLACK/PINK $BO 176
BLACK/LIGHT GREEN $CO 192
BLACK/YELLOW $DO 208
BLACK/AQUA $EO 224
BLACK/WHITE $FO 240

MAGENTA/BLACK $01 1
MAGENTA/MAGENTA $11 17
MAGENTA/DARK BLUE $21 33
MAGENTA/PURPLE $31 49
MAGENTA/DARK GREEN $41 65
MAGENTA/GREY I $51 81
MAGENTA/MEDIUM BLUE $61 97
MAGENTA/LIGHT BLUE $71 113
MAGENTA/BROWN $81 129
MAGENTA/ORANGE $91 145
MAGENTA/GREY 2 $Al 161
MAGENTA/PINK $Bl 177
MAGENTA/LIGHT GREEN $Cl 193
MAGENTA/YELLOW $DI 209
MAGENTA/AQUA $El 225
MAGENTA/WHITE $Fl 241

DARK BLUE/BLACK $02 2
DARK BLUE/MAGENTA $12 18
DARK BLUE/DARK BLUE $22 34
DARK BLUE/PURPLE $32 50
DARK BLUE/DARK GREEN $42 66
DARK BLUE/GREY 1 $52 82
DARK BLUE/MEDIUM BLUE $62 98

APPENDIX E • 287

Table E-2-cont. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

DARK BLUE/LIGHT BLUE $72 114
DARK BLUE/BROWN $82 130
DARK BLUE/ORANGE $92 146
DARK BLUE/GREY 2 $A2 162
DARK BLUE/PINK $B2 178
DARK BLUE/LIGHT GREEN $C2 194
DARK BLUE/YELLOW $D2 210
DARK BLUE/AQUA $E2 226
DARK BL DE/WHITE $F2 242

PURPLE/BLACK $03 3
PURPLE/MAGENTA $13 19
PURPLE/DARK BLUE $23 35
PURPLE/PURPLE $33 51
PURPLE/DARK GREEN $43 67
PURPLE/GREY I $53 83
PURPLE/MEDIUM BLUE $63 99
PURPLE/LIGHT BLUE $73 115
PURPLE/BROWN $83 131
PURPLE/ORANGE $93 147
PURPLE/GREY 2 $A3 163
PURPLE/PINK $B3 179
PURPLE/LIGHT GREEN $C3 195
PURPLE/YELLOW $D3 211
PURPLE/AQUA $E3 227
PURPLE/WHITE $F3 243

DARK GREEN BLACK $04 4
DARK GREEN/MAGENTA $14 20
DARK GREEN/DARK BLUE $24 36
DARK GREEN/PURPLE $34 52
DARK GREEN/DARK GREEN $44 68
DARK GREEN/GREY 1 $54 84
DARK GREEN/MEDIUM BLUE $64 100
DARK GREEN/LIGHT BLUE $74 116
DARK GREEN/BROWN $84 132
DARK GREEN/ORANGE $94 148
DARK GREEN/GREY 2 $A4 164
DARK GREEN/PINK $B4 180
DARK GREEN/LIGHT GREEN $C4 196
DARK GREEN/YELLOW $D4 212

288 <> APPENDIX E

Table E-2-cont. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

DARK GREEN/AQUA $E4 228
DARK GREEN/WHITE $F4 244

GREY 1/BLACK $05 5
GREY I/MAGENTA $I5 2I
GREY 1/DARK BLUE $25 37
GREY 1/PURPLE $35 53
GREY 1/DARK GREEN $45 69
GREY I/GREY I $55 85
GREY I/MEDIUM BLUE $65 101
GREY I/LIGHT BLUE $75 117
GREY 1/BROWN $85 133
GREY 1/0RANGE $95 149
GREY I/GREY 2 $A5 165
GREY I/PINK $B5 I81
GREY I/LIGHT GREEN $C5 197
GREY I/YELLOW $D5 213
GREY 1/AQUA $E5 229
GREY 1/WHITE $F5 245

MEDIUM BL DE/BLACK $06 6
MEDIUM BLUE/MAGENTA $16 22
MEDIUM BLUE/DARK BLUE $26 38
MEDIUM BLUE/PURPLE $36 54
MEDIUM BL DE/DARK GREEN $46 70
MEDIUM BLUE/GREY 1 $56 86
MEDIUM BLUE/MEDIUM BLUE $66 102
MEDIUM BLUE/LIGHT BLUE $76 118
MEDIUM BLUE/BROWN $86 134
MEDIUM BLUE/ORANGE $96 150
MEDIUM BLUE/GREY 2 $A6 166
MEDIUM BLUE/PINK $B6 182
MEDIUM BL DE/LIGHT GREEN $C6 198
MEDIUM BLUE/YELLOW $D6 214
MEDIUM BLUE/AQUA $E6 230
MEDIUM BLUE/WHITE $F6 246

LIGHT BLUE/BLACK $07 7
LIGHT BLUE/MAGENTA $17 23
LIGHT BLUE/DARK BLUE $27 39
LIGHT BLUE/PURPLE $37 55

APPENDIX E • 289

Table E-2-cont. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

LIGHT BLUE/DARK GREEN $47 71
LIGHT BLUE/GREY 1 $57 87
LIGHT BLUE/MEDIUM BLUE $67 103
LIGHT BLUE/LIGHT BLUE $77 119
LIGHT BLUE/BROWN $87 135
LIGHT BLUE/ORANGE $97 151
LIGHT BLUE/GREY 2 $A7 167
LIGHT BLUE/PINK $B7 183
LIGHT BLUE/LIGHT GREEN $C7 199
LIGHT BLUE/YELLOW $D7 215
LIGHT BLUE/AQUA $E7 231
LIGHT BLUE/WHITE $F7 247

BROWN/BLACK $08 8
BROWN/MAGENTA $18 24-
BROWN/DARK BLUE $28 40
BROWN/PURPLE $38 56
BROWN/DARK GREEN $48 72
BROWN/GREY 1 $58 88
BROWN/MEDIUM BLUE $68 104
BROWN/LIGHT BLUE $78 120
BROWN/BROWN $88 136
BROWN/ORANGE $98 152
BROWN/GREY 2 $A8 168
BROWN/PINK $B8 184
BROWN/LIGHT GREEN $C8 200
BROWN/YELLOW $D8 216
BROWN/AQUA $E8 232
BROWN/WHITE $F8 248

ORANGE/BLACK $09 9
ORANGE/MAGENTA $19 25
ORANGE/DARK BLUE $29 41
ORANGE/PURPLE $39 57
ORANGE/DARK GREEN $49 73
ORANGE/GREY 1 $59 89
ORANGE/MEDIUM BLUE $69 105
ORANGE/LIGHT BLUE $79 121
ORANGE/BROWN $89 137
ORANGE/ORANGE $99 153
ORANGE/GREY 2 $A9 169

290 • APPENDIX E

Table E-2-cont. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

ORANGE/PINK $B9 185
ORANGE/LIGHT GREEN $C9 201
ORANGE/YELLOW $D9 217
ORANGE/AQUA $E9 233
ORANGE/WHITE $F9 249

GREY 2/BLACK $0A 10
GREY 2/MAGENTA $IA 26
GREY 2/DARK BLUE $2A 42
GREY 2/PURPLE $3A 58
GREY 2/DARK GREEN $4A 74
GREY 2/GREY 1 $5A 90
GREY 2/MEDIUM BLUE $6A 106
GREY 2/LIGHT BLUE $7A 122
GREY 2/BROWN $8A 138
GREY 2/0RANGE $9A 154
GREY 2/GREY 2 $AA 170
GREY 2/PINK $BA 186
GREY 2/LIGHT GREEN $CA 202
GREY 2/YELLOW $DA 218
GREY 2/AQUA $EA 234
GREY 2/WHITE $FA 250

PINK/BLACK $OB 11
PINK/MAGENTA $1B 27
PINK/DARK BLUE $2B 43
PINK/PURPLE $3B 59
PINK/DARK GREEN $4B 75
PINK/GREY 1 $5B 91
PINK/MEDIUM BLUE $6B 107
PINK/LIGHT BLUE $7B 123
PINK/BROWN $8B 139
PINK/ORANGE $9B 155
PINK/GREY 2 $AB 171
PINK/PINK $BB 187
PINK/LIGHT GREEN $CB 203
PINK/YELLOW $DB 219
PINK/AQUA $EB 235
PINK/WHITE $FB 251

LIGHT GREEN/BLACK $0C 12

APPENDIX E • 291

Table E-2-cont. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

r--r_:IGHT GREEN/MAGENTA $1C 28
LIGHT GREEN/DARK BLUE $2C 44
LIGHT GREEN/PURPLE $3C 60
LIGHT GREEN/DARK GREEN $4C 76
LIGHT GREEN/GREY 1 $5C 92
LIGHT GREEN/MEDIUM BLUE $6C 108
LIGHT GREEN/LIGHT BLUE $7C 124
LIGHT GREEN/BROWN $8C 140
LIGHT GREEN/ORANGE $9C 156
LIGHT GREEN/GREY 2 $AC 172
LIGHT GREEN/PINK $BC 188
LIGHT GREEN/LIGHT GREEN $CC 204
LIGHT GREEN/YELLOW $DC 220
LIGHT GREEN/AQUA $EC 236
LIGHT GREEN/WHITE $FC 252

YELLOW/BLACK $OD 13
YELLOW/MAGENTA $1D 29
YELLOW/DARK BLUE $2D 45
YELLOW/PURPLE $3D 61
YELLOW/DARK GREEN $4D 77
YELLOW/GREY 1 $5D 93
YELLOW/MEDIUM BLUE $6D 109
YELLOW/LIGHT BLUE $7D 125
YELLOW/BROWN $8D 141
YELLOW/ORANGE $9D 157
YELLOW/GREY 2 $AD 173
YELLOW/PINK $BD 189
YELLOW/LIGHT GREEN $CD 205
YELLOW/YELLOW $DD 221
YELLOW/AQUA $ED 237
YELLOW/WHITE $FD 253

AQUA/BLACK $OE 14
AQUA/MAGENTA $1E 30
AQUA/DARK BLUE $2E 46
AQUA/PURPLE $3E 62
AQUNDARK GREEN $4E 78
AQUA/GREY 1 $5E 94
AQUNMEDIUM BLUE $6E 110
AQUNLIGHT BLUE $7E 126

292 • APPENDIX E

Table E-2-cont. Low-Resolution Upper/Low Color Codes

Upper/Lower Hex Dec

AQUA/BROWN $8E 142
AQUA/ORANGE $9E 158
AQUA/GREY 2 $AE 174
AQUA/PINK $BE 190
AQUA/LIGHT GREEN $CE 206
AQUA/YELLOW $DE 222
AQUA/AQUA $EE 238
AQUA/WHITE $FE 254

WHITE/BLACK $OF 15
WHITE/MAGENTA $IF 31
WHITE/DARK BLUE $2F 47
WHITE/PURPLE $3F 63
WHITE/DARK GREEN $4F 79
WHITE/GREY I $5F 95
WHITE/MEDIUM BLUE $6F 111
WHITE/LIGHT BLUE $7F 127
WHITE/BROWN $8F 143
WHITE/ORANGE $9F 159
WHITE/GREY 2 $AF 175
WHITE/PINK $BF 191
WHITE/LIGHT GREEN $CF 207
WHITE/YELLOW $DF 223
WHITE/AQUA $EF 239
WHITE/WHITE $FF 255

Table E-3. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec

BLACK/BLACK $00 0
BLACK/MAGENTA $01 1
BLACK/DARK BLUE $02 2
BLACK/PURPLE $03 3
BLACK/DARK GREEN $04 4
BLACK/GREY 1 $05 5
BLACK/MEDIUM BLUE $06 6
BLACK/LIGHT BLUE $07 7
BLACK/BROWN $08 8
BLACK/ORANGE $09 9
BLACK/GREY 2 $0A 10
BLACK/PINK $OB 11
BLACK/LIGHT GREEN $0C 12

APPENDIX E • 293

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec
BLACK/YELLOW $OD 13
BLACK/AQUA $OE 14
BLACK/WHITE $OF 15

MAGENTA/BLACK $10 16
MAGENTA/MAGENTA $11 17
MAGENTA/DARK BLUE $12 18
MAGENTA/PURPLE $13 19
MAGENTA/DARK GREEN $14 20
MAGENTA/GREY 1 $15 21
MAGENTA/MEDIUM BLUE $16 22
MAGENTA/LIGHT BLUE $17 23
MAGENTA/BROWN $18 24
MAGENTA/ORANGE $19 25
MAGENTA/GREY 2 $1A 26
MAGENTA/PINK $1B 27
MAGENTA/LIGHT GREEN $1C 28
MAGENTA/YELLOW $1D 29
MAGENTA/AQUA $1E 30
MAGENTA/WHITE $1F 31

DARK BLUE/BLACK $20 32
DARK BLUE/MAGENTA $21 33
DARK BLUE/DARK BLUE $22 34
DARK BLUE/PURPLE $23 35
DARK BLUE/DARK GREEN $24 36
DARK BLUE/GREY 1 $25 37
DARK BLUE/MEDIUM BLUE $26 38
DARK BLUE/LIGHT BLUE $27 39
DARK BLUE/BROWN $28 40
DARK BLUE/ORANGE $29 41
DARK BLUE/GREY 2 $2A 42
DARK BLUE/PINK $2B 43
DARK BLUE/LIGHT GREEN $2C 44
DARK BLUE/YELLOW $2D 45
DARK BLUE/AQUA $2E 46
DARK BLUE/WHITE $2F 47

PURPLE/BLACK $30 48
PURPLE/MAGENTA $31 49
PURPLE/DARK BLUE $32 50

294 • APPENDIX E

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec
PURPLE/PURPLE $33 51
PURPLE/DARK GREEN $34 52
PURPLE/GREY l $35 53
PURPLE/MEDIUM BLUE $36 54
PURPLE/LIGHT BLUE $37 55
PURPLE/BROWN $38 56
PURPLE/ORANGE $39 57
PURPLE/GREY 2 $3A 58
PURPLE/PINK $3B 59
PURPLE/LIGHT GREEN $3C 60
PURPLE/YELLOW $3D 61
PURPLE/ AQUA $3E 62
PURPLE/WHITE $3F 63

DARK GREEN/BLACK $40 64
DARK GREEN/MAGENTA $41 65
DARK GREEN/DARK BLUE $42 66
DARK GREEN/PURPLE $43 67
DARK GREEN/DARK GREEN $44 68
DARK GREEN/GREY 1 $45 69
DARK GREEN/MEDIUM BLUE $46 70
DARK GREEN/LIGHT BLUE $47 71
DARK GREEN/BROWN $48 72
DARK GREEN/ORANGE $49 73
DARK GREEN/GREY 2 $4A 74
DARK GREEN/PINK $4B 75
DARK GREEN/LIGHT GREEN $4C 76
DARK GREEN/YELLOW $4D 77
DARK GREEN/AQUA $4E 78
DARK GREEN/WHITE $4F 79

GREY I/BLACK $50 80
GREY I/MAGENTA $51 81
GREY 1/DARK BLUE $52 82
GREY I/PURPLE $53 83
GREY I/DARK GREEN $54 84
GREY I/GREY 1 $55 85
GREY 1/MEDIUM BLUE $56 86
GREY 1/LIGHT BLUE $57 87
GREY l/BROWN $58 88
GREY 1/0RANGE $59 89

APPENDIX E ., 295

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec
GREY I/GREY 2 $5A 90
GREY I/PINK $5B 9I
GREY 1/LIGHT GREEN $5C 92
GREY 1/YELLOW $5D 93
GREY 1/AQUA $5E 94
GREY I/WHITE $5F 95

MEDIUM BLUE/BLACK $60 96
MEDIUM BLUE/MAGENTA $6I 97
MEDIUM BLUE/DARK BLUE $62 98
MEDIUM BLUE/PURPLE $63 99
MEDIUM BLUE/DARK GREEN $64 100
MEDIUM BLUE/GREY I $65 lOI
MEDIUM BLUE/MEDIUM BLUE $66 102
MEDIUM BLUE/LIGHT BLUE $67 103
MEDIUM BLUE/BROWN $68 104
MEDIUM BLUE/ORANGE $69 105
MEDIUM BLUE/GREY 2 $6A 106
MEDIUM BLUE/PINK $6B 107
MEDIUM BLUE/LIGHT GREEN $6C 108
MEDIUM BLUE/YELLOW $6D 109
MEDIUM BLUE/AQUA $6E 110
MEDIUM BLUE/WHITE $6F 11I

LIGHT BLUE/BLACK $70 112
LIGHT BLUE/MAGENTA $7I 113
LIGHT BLUE/DARK BLUE $72 114
LIGHT BLUE/PURPLE $73 115
LIGHT BLUE/DARK GREEN $74 116
LIGHT BLUE/GREY I $75 117
LIGHT BLUE/MEDIUM BLUE $76 118
LIGHT BLUE/LIGHT BLUE $77 119
LIGHT BLUE/BROWN $78 120
LIGHT BL VE/ORANGE $79 12I
LIGHT BLUE/GREY 2 $7A I22
LIGHT BLUE/PINK $7B 123
LIGHT BLUE/LIGHT GREEN $7C I24
LIGHT BLUE/YELLOW $7D I25
LIGHT BLUE/AQUA $7E I26
LIGHT BLUE/WHITE $7F 127

296 • APPENDIX E

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec
BROWN/BLACK $80 128
BROWN/MAGENTA $81 129
BROWN/DARK BLUE $82 130
BROWN/PURPLE $83 131
BROWN/DARK GREEN $84 132
BROWN/GREY I $85 133
BROWN/MEDIUM BLUE $86 134
BROWN/LIGHT BLUE $87 135
BROWN/BROWN $88 136
BROWN/ORANGE $89 137
BROWN/GREY 2 $8A 138
BROWN/PINK $8B 139
BROWN/LIGHT GREEN $8C 140
BROWN/YELLOW $8D 141
BROWN/AQUA $8E 142
BROWN/WHITE $8F 143

ORANGE/BLACK $90 144
ORANGE/MAGENTA $91 145
ORANGE/DARK BLUE $92 146
ORANGE/PURPLE $93 147
ORANGE/DARK GREEN $94 148
ORANGE/GREY 1 $95 149
ORANGE/MEDIUM BLUE $96 150
ORANGE/LIGHT BLUE $97 151
ORANGE/BROWN $98 152
ORANGE/ORANGE $99 153
ORANGE/GREY 2 $9A 154
ORANGE/PINK $9B 155
ORANGE/LIGHT GREEN $9C 156
ORANGE/YELLOW $9D 157
ORANGE/AQUA $9E 158
ORANGE/WHITE $9F 159

GREY 2/BLACK $AO 160
GREY 2/MAGENTA $AI 161
GREY 2/DARK BLUE $A2 162
GREY 2/PURPLE $A3 163
GREY 2/DARK GREEN $A4 164
GREY 2/GREY 1 $A5 165
GREY 2/MEDIUM BLUE $A6 166

APPENDIX E ® 297

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec
GREY 2/LIGHT BLUE $A7 167
GREY 2/BROWN $A8 168
GREY 2/0RANGE $A9 169
GREY 2/GREY 2 $AA 170
GREY 2/PINK $AB 171
GREY 2/LIGHT GREEN $AC 172
GREY 2/YELLOW $AD 173
GREY 2/AQUA $AE 174
GREY 2/WHITE $AF 175

PINK/BLACK $BO 176
PINK/MAGENTA $BI 177
PINK/DARK BLUE $B2 178
PINK/PURPLE $B3 179
PINK/DARK GREEN $B4 180
PINK/GREY 1 $B5 181
PINK/MEDIUM BLUE $B6 182
PINK/LIGHT BLUE $B7 183
PINK/BROWN $B8 184
PINK/ORANGE $B9 185
PINK/GREY 2 $BA 186
PINK/PINK $BB 187
PINK/LIGHT GREEN $BC 188
PINK/YELLOW $BD 189
PINK/AQUA $BE 190
PINK/WHITE $BF 191

LIGHT GREEN/BLACK $CO 192
LIGHT GREEN/MAGENTA $Cl 193
LIGHT GREEN/DARK BLUE $C2 194
LIGHT GREEN/PURPLE $C3 195
LIGHT GREEN/DARK GREEN $C4 196
LIGHT GREEN/GREY l $C5 197
LIGHT GREEN/MEDIUM BLUE $C6 198
LIGHT GREEN/LIGHT BLUE $C7 199
LIGHT GREEN/BROWN $C8 200
LIGHT GREEN/ORANGE $C9 201
LIGHT GREEN/GREY 2 $CA 202
LIGHT GREEN/PINK $CB 203
LIGHT GREEN/LIGHT GREEN $CC 204
LIGHT GREEN/YELLOW $CD 205

298 • APPENDIX E

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec

LIGHT GREEN/AQUA $CE 206
LIGHT GREEN/WHITE $CF 207

YELLOW/BLACK $DO 208
YELLOW/MAGENTA $Dl 209
YELLOW/DARK BLUE $D2 210
YELLOW/PURPLE $D3 211
YELLOW/DARK GREEN $D4 212
YELLOW/GREY 1 $D5 213
YELLOW/MEDIUM BLUE $D6 214
YELLOW/LIGHT BLUE $D7 215
YELLOW/BROWN $D8 216
YELLOW/ORANGE $D9 217
YELLOW/GREY 2 $DA 218
YELLOW/PINK $DB 219
YELLOW/LIGHT GREEN $DC 220
YELLOW/YELLOW $DD 221
YELLOW/AQUA $DE 222
YELLOW/WHITE $DF 223

AQUA/BLACK $EO 224
AQUA/MAGENTA $El 225
AQUA/DARK BLUE $E2 226
AQUA/PURPLE $E3 227
AQUA/DARK GREEN $E4 228
AQUA/GREY 1 $E5 229
AQUA/MEDIUM BLUE $E6 230
AQUA/LIGHT BLUE $E7 231
AQUA/BROWN $E8 232
AQUA/ORANGE $E9 233
AQUA/GREY 2 $EA 234
AQUA/PINK $EB 235
AQUA/LIGHT GREEN $EC 236
AQUA/YELLOW $ED 237
AQUA/AQUA $EE 238
AQUA/WHITE $EF 239

WHITE/BLACK $FO 240
WHITE/MAGENTA $Fl 241
WHITE/DARK BLUE

I
$F2 242

WHITE/PURPLE $F3 243

APPENDIX E • 299

Table E-3-cont. Low-Resolution Lower/Upper Color Codes

Lower/Upper Hex Dec

WHITE/DARK GREEN $F4 244
WHITE/GREY 1 $F5 245
WHITE/MEDIUM BLUE $F6 246
WHITE/LIGHT BLUE $F7 247
WHITE/BROWN $F8 248
WHITE/ORANGE $F9 249
WHITE/GREY 2 $FA 250
WHITE/PINK $FB 251
WHITE/LIGHT GREEN $FC 252
WHITE/YELLOW $FD 253
WHITE/AQUA $FE 254
WHITE/WHITE $FF 255

300 • APPENDIX E

Appendix

Range of High-Resolution
Graphics

Video Addresses

These tables show the range of hexadecimal and decimal ad- F
dresses for each of the 192 high-resolution graphics lines. The first
table represents the primary page, and the second table shows the ranges
for the secondary high-resolution page.

Table F-1. High-Resolution Primary-Page Addresses

Line Hex Range Dec Range

0 $2000-$2027 8192-8231
1 $2400-$2427 9216-9255
2 $2800-$2827 10240-10279
3 $2C00-$2C27 11264-11303
4 $3000-$3027 12288-12327
5 $3400-$3427 13312-13351
6 $3800-$3827 14336-14375
7 $3C00-$3C27 15360-15399

8 $2080-$20A7 8320-8359
9 $2480-$24A7 9344-9383

10 $2880-$28A7 10368-10407
11 $2C80-$2CA7 11392-11431
12 $3080-$30A 7 12416-12455
13 $3480-$34A7 13440-13479
14 $3880-$38A7 14464-14503

APPENDIX F • 301

Table F-1-cont. High-Resolution Primary-Page Addresses

Line Hex Range Dec Range

15 $3C80-$3CA7 15488-15527

16 $2100-$2127 8448-8487
17 $2500-$2527 9472-9511
18 $2900-$2927 10496-10535
19 $2D00-$2D27 11520-11559
20 $3100-$3127 12544-12583
21 $3500-$3527 13568-13607
22 $3900-$3927 14592-14631
23 $3D00-$3D27 15616-15655

24 $2180-$21A7 8576-8615
25 $2580-$25A7 9600-9639
26 $2980-$29A7 10624-10663
27 $2D80-$2DA 7 11648-11687
28 $3180-$31A7 12672-12711
29 $3580-$35A7 13696-13735
30 $3980-$39A7 14720-14759
31 $3D80-$3DA 7 15744-15783

32 $2200-$2227 8704-8743
33 $2600-$2627 9728-9767
34 $2A00-$2A27 10752-10791
35 $2E00-$2E27 11776-11815
36 $3200-$3227 12800-12839
37 $3600-$3627 13824-13863
38 $3A00-$3A27 14848-14887
39 $3E00-$3E27 15872-15911

40 $2280-$22A 7 8832-8871
41 $2680-$26A7 9856-9895
42 $2A80-$2AA 7 10880-10919
43 $2E80-$2EA7 11904-11943
44 $3280-$32A7 12928-12967
45 $3680-$36A7 13952-13991
46 $3A80-$3AA 7 14976-15015
47 $3E80-$3EA 7 16000-16039

48 $2300-$2327 8960-8999
49 $2700-$2727 9984-10023
50 $2B00-$2B27 11008-11047

302 • APPENDIX F

Table F-1-cont. High-Resolution Primary-Page Addresses

Line Hex Range Dec Range
f--

51 $2F00-$2F27 12032-12071
52 $3300-$3327 13056- 13095
53 $3700-$3727 14080-14119
54 $3B00-$3B27 15104-15143
55 $3F00-$3F27 16128-16167

56 $2380-$23A 7 9088-9127
57 $2780-$27 A 7 10112-10151
58 $2B80-$2BA7 11136-11175
59 $2F80-$2F A 7 12160-12199
60 $3380-$33A 7 13184-13223
61 $3780-$37A7 14208-14247
62 $3B80-$3BA 7 15232-15271
63 $3F80-$3FA7 16256-16295

64 $2028-$204F 8232-8271
65 $2428-$244F 9256-9295
66 $2828-$284F 10280-10319
67 $2C28-$2C4F 11304-11343
68 $3028-$304F 12328-12367
69 $3428-$344F 13352-13391
70 $3828-$384F 14376-14415
71 $3C28-$3C4F 15400-15439

72 $20A8-$20CF 8360-8399
73 $24A8-$24CF 9384-9423
74 $28A8-$28CF 10408-10447
75 $2CA8-$2CCF 11432-11471
76 $30A8-$30CF 12456-12495
77 $34A8-$34CF 13480-13519
78 $38A8-$38CF 14504-14543
79 $3CA8-$3CCF 15528-15567

80 $2128-$214F 8488-8527
81 $2528-$254F 9512-9551
82 $2928-$294F 10536-10575
83 $2D28-$2D4F 11560-11599
84 $3128-$314F 12584-12623
85 $3528-$354F 13608-13647
86 $3928-$394F 14632-14671
87 $3D28-$3D4F 15656-15695

APPENDIX F " 303

Table F-1-cont. ffigh-Resolution Primary-Page Addresses

Line Hex Range Dec Range

88 $21A8-$21CF 8616-8655
89 $25A8-$25CF 9640-9679
90 $29A8-$29CF 10664-10703
91 $2DA8-$2DCF 11688-11727
92 $31A8-$31CF 12712-12751
93 $35A8-$35CF 13736-13775
94 $39A8-$39CF 14760-14799
95 $3DA8-$3DCF 15784-15823

96 $2228-$224F 8744-8783
97 $2628-$264F 9768-9807
98 $2A28-$2A4F 10792-10831
99 $2E28-$2E4F 11816-11855

100 $3228-$324F 12840-12879
101 $3628-$364F 13864-13903
102 $3A28-$3A4F 14888-14927
103 $3E28-$3E4F 15912-15951

104 $22A8-$22CF 8872-8911
105 $26A8-$26CF 9896-9935
106 $2AA8-$2ACF 10920-10959
107 $2EA8-$2ECF 11944-11983
108 $32A8-$32CF 12968-13007
109 $36A8-$36CF 13992-14031
110 $3AA8-$3ACF 15016-15055
111 $3EA8-$3ECF 16040-16079

112 $2328-$234F 9000-9039
113 $2728-$274F 10024-10063
114 $2B28-$2B4F 11048-11087
115 $2F28-$2F4F 12072-12111
116 $3328-$334F 13096-13135
117 $3728-$374F 14120-14159
118 $3B28-$3B4F 15144-15183
119 $3F28-$3F4F 16168-16207

120 $23A8-$23CF 9128-9167
121 $27A8-$27CF 10152-10191
122 $2BA8-$2BCF 11176-11215
123 $2F A8-$2FCF 12200-12239
124 33A8- 33 F $ $ c 13224-13263

304 • APPENDIX F

Table F-1-cont. High-Resolution Primary-Page Addresses

Line Hex Range Dec Range

125 $37 A8-$37CF 14248-14287
126 $3BA8-$3BCF 15272-15311
127 $3F A8-$3FCF 16296-16335

128 $2050-$2077 8272-8311
129 $2450-$2477 9296-9335
130 $2850-$2877 10320-10359
131 $2C50-$2C77 11344-11383
132 $3050-$3077 12368-12407
133 $3450-$3477 13392-13431
134 $3850-$3877 14416-14455
135 $3C50-$3C77 15440-15479

136 $20D0-$20F7 8400-8439
137 $24D0-$24F7 9424-9463
138 $28D0-$28F7 10448-10487
139 $2CD0-$2CF7 11472-11511
140 $30D0-$30F7 12496-12535
141 $34D0-$34F7 13520-13559
142 $38D0-$38F7 14544-14583
143 $3CD0-$3CF7 15568-15607

144 $2150-$2177 8528-8567
145 $2550-$2577 9552-9591
146 $2950-$2977 10576-10615
147 $2D50-$2D77 11600-11639
148 $3150-$3177 12624-12663
149 $3550-$3577 13648-13687
150 $3950-$3977 14672-14711
151 $3D50-$3D77 15696-15735

152 $21D0-$21F7 8656-8695
153 $25D0-$25F7 9680-9719
154 $29D0-$29F7 10704-10743
155 $2DD0-$2DF7 11728-11767
156 $31D0-$31F7 12752-12791
157 $35D0-$35F7 13776- 13815
158 $39D0-$39F7 14800-14839
159 $3DD0-$3DF7 15824-15863

160 $2250-$2277
I

8784-8823
161 $2650-$2677 9808-9847

APPENDIX F • 305

Table F-1-cont. High-Resolution Primary-Page Addresses

Line Hex Range Dec Range

162 $2A50-$2A 77 10832-10871
163 $2E50-$2E77 11856-11895
164 $3250-$3277 12880-12919
165 $3650-$3677 13904-13943
166 $3A50-=-$3A77 14928-14967
167 $3E50-$3E77 15952-15991

168 $22D0-$22F7 8912-8951
169 $26D0-$26F7 9936-9975
170 $2AD0-$2AF7 10960-10999
171 $2ED0-$2EF7 11984-12023
172 $32D0-$32F7 13008-13047
173 $36D0-$36F7 14032-14071
174 $3AD0-$3AF7 15056-15095
175 $3ED0-$3EF7 16080-16119

176 $2350-$2377 9040-9079
177 $2750-$2777 10064-10103
178 $2B50-$2B77 11088-11127
179 $2F50-$2F77 12112-12151
180 $3350-$3377 13136-13175
181 $3750-$3777 14160-14199
182 $3B50-$3B77 15184-15223
183 $3F50-$3F77 16208-16247

184 $23D0-$23F7 9168-9207
185 $27D0-$27F7 10192-10231
186 $2BD0-$2BF7 11216-11255
187 $2FD0-$2FF7 12240-12279
188 $33D0-$33F7 13264-13303
189 $37D0-$37F7 14288-14327
190 $3BD0-$3BF7 15312-15351
191 $3FD0-$3FF7 16336-16375

Table F-2. High-Resolution Secondary-Page Addresses

Line Hex Range Dec Range

0 $4000-$4027 16384-16423
1 $4400-$4427 17408-17447
2 $4800-$4827 18432-18471
3 $4C00-$4C27 19456-19495

306 • APPENDIX F

Table F-2-cont. High-Resolution Secondary-Page Addresses

Line Hex Range Dec Range

4 $5000-$5027 20480- 20519

5 $5400-$5427 21504-21543

6 $5800-$5827 22528- 22567

7 $5C00-$5C27 23552-23591

8 $4080-$40A7 16512-16551
9 $4480-$44A7 17536-17575

10 $4880-$48A7 18560-18599
11 $4C80-$4CA7 19584-19623
12 $5080-$50A7 20608-20647
13 $5480-$54A7 21632-21671
14 $5880-$58A 7 22656- 22695
15 $5C80-$5CA7 23680-23719

16 $4100-$4127 16640-16679
17 $4500-$4527 17664-17703
18 $4900-$4927 18688-18727
19 $4D00-$4D27 19712-19751
20 $5100-$5127 20736-20775
21 $5500-$5527 21760-21799
22 $5900-$5927 22784-22823
23 $5D00-$5D27 23808-23847

24 $4180-$41A7 16768-16807
25 $4580-$45A7 17792-17831
26 $4980-$49A 7 18816-18855
27 $4D80-$4DA 7 19840-19879
28 $5180-$51A7 20864-20903
29 $5580-$55A7 21888-21927
30 $5980-$59A7 22912-22951
31 $5D80-$5DA7 23936-23975

32 $4200-$4227 16896-16935
33 $4600-$4627 17920-17959
34 $4A00-$4A27 18944-18983
35 $4E00-$4E27 19968-20007
36 $5200-$5227 20992-21031
37 $5600-$5627 22016-22055
38 $5A00-$5A27 23040-23079
39 $5E00-$5E27 24064-24103

APPENDIX F " 307

Table F-2-cont. High-Resolution Secondary-Page Addresses

Line Hex Range Dec Range

40 $4280-$42A7 17024-17063
41 $4680-$46A 7 18048-18087
42 $4A80-$4AA7 19072-19111
43 $4E80-$4EA7 20096-20135
44 $5280-$52A 7 21120-21159
45 $5680-$56A7 22144-22183
46 $5A80-$5AA 7 23168- 23207
47 $5E80-$5EA7 24192-24231

48 $4300-$4327 17152-17191
49 $4700-$4727 18176-18215
50 $4B00-$4B27 19200-19239
51 $4F00-$4F27 20224- 20263
52 $5300-$5327 21248-21287
53 $5700-$5727 22272-22311
54 $5B00-$5B27 23296-23335
55 $5F00-$5F27 24320-24359

56 $4380-$43A 7 17280-17319
57 $4780-$47 A 7 18304-18343
58 $4B80-$4BA 7 19328-19367
59 $4F80-$4FA7 20352-20391
60 $5380-$53A 7 21376-21415
61 $5780-$57 A 7 22400- 22439
62 $5B80-$5BA 7 23424-23463
63 $5F80-$5FA7 24448-24487

64 $4028-$404F 16424-16463
65 $4428-$444F 17448-17487
66 $4828-$484F 18472-18511
67 $4C28-$4C4F 19496-19535
68 $5028-$504F 20520- 20559
69 $5428-$544F 21544-21583
70 $5828-$584F 22568-22607
71 $5C28-$5C4F 23592-23631

72 $40A8-$40CF 16552-16591
73 $44A8-$44CF 17576-17615
74 $48A8-$48CF 18600-18639
75 $4CA8-$4CCF 19624-19663
76 $50A8-$50CF 20648-20687

308 • APPENDIX F

Table F-2-cont. High-Resolution Secondary-Page Addresses

Line Hex Range Dec Range

77 $54A8-$54CF 21672-21711
78 $58A8-$58CF 22696- 22735
79 $5CA8-$5CCF 23720-23759

80 $4128-$414F 16680-16719
81 $4528-$454F 17704-17743
82 $4928-$494F 18728-18767
83 $4D28-$4D4F 19752-19791
84 $5128-$514F 20776-20815
85 $5528-$554F 21800-21839
86 $5928-$594F 22824- 22863
87 $5D28-$5D4F 23848-23887

88 $41A8-$41CF 16808-16847
89 $45A8-$45CF 17832-17871
90 $49A8-$49CF 18856-18895
91 $4DA8-$4DCF 19880-19919
92 $51A8-$51CF 20904-20943
93 $55A8-$55CF 21928-21967
94 $59A8-$59CF 22952-22991
95 $5DA8-$5DCF 23976-24015

96 $4228-$424F 16936-16975
97 $4628-$464F 17960- 17999
98 $4A28-$4A4F 18984-19023
99 $4E28-$4E4F 20008-20047

100 $5228-$524F 21032-21071
101 $5628-$564F 22056-22095
102 $5A28-$5A4F 23080-23119
103 $5E28-$5E4F 24104-24143

104 $42A8-$42CF 17064-17103
105 $46A8-$46CF 18088-18127
106 $4AA8-$4ACF 19112-19151
107 $4EA8-$4ECF 20136-20175
108 $52A8-$52CF 21160-21199
109 $56A8-$56CF 22184- 22223
110 $5AA8-$5ACF 23208- 23247
111 $5EA8-$5ECF 24232-24271

112 $4328-$434F 17192-17231
113 $4728- 474F $ 18216-18255

APPENDIX F " 309

Table F-2-cont. High-Resolution Secondary-Page Addresses

Line Hex Range Dec Range

114 $4B28-$4B4F 19240-19279
115 $4F28-$4F4F 20264-20303
116 $5328-$534F 21288-21327
117 $5728-$574F 22312-22351
118 $5B28-$5B4F 23336-23375
119 $5F28-$5F4F 24360-24399

120 $43A8-$43CF 17320-17359
121 $47A8-$47CF 18344-18383
122 $4BA8-$4BCF 19368-19407
123 $4FA8-$4FCF 20392-20431
124 $53A8-$53CF 21416-21455
125 $57A8-$57CF 22440-22479
126 $5BA8-$5BCF 23464-23503
127 $5FA8-$5FCF 24488-24527

128 $4050-$4077 16464-16503
129 $4450-$4477 17488-17527
130 $4850-$4877 18512-18551
131 $4C50-$4C77 19536-19575
132 $5050-$5077 20560-20599
133 $5450-$5477 21584-21623
134 $5850-$5877 22608-22647
135 $5C50-$5C77 23632-23671

136 $40D0-$40F7 16592-16631
137 $44D0-$44F7 17616-17655
138 $48D0-$48F7 18640-18679
139 $4CD0-$4CF7 19664-19703
140 $50D0-$50F7 20688-20727
141 $54D0-$54F7 21712-21751
142 $58D0-$58F7 22736-22775
143 $5CD0-$5CF7 23760-23799

144 $4150-$4177 16720-16759
145 $4550-$4577 177 44-17783
146 $4950-$4977 18768-18807
147 $4D50-$4D77 19792-19831
148 $5150-$5177 20816-20855
149 $5550-$5577 21840-21879

310 • APPENDIX F

Table F-2-cont. High-Resolution Secondary-Page Addresses

Line Hex Range Dec Range

150 $5950-$5977 22864-22903
151 $5D50-$5D77 23888- 23927

152 $4ID0-$41F7 16848-16887
153 $45D0-$45F7 17872-17911
154 $49D0-$49F7 18896-18935
155 $4DD0-$4DF7 19920-19959
156 $51D0-$51F7 20944- 20983
157 $55D0-$55F7 21968- 22007
158 $59D0-$59F7 22992- 23031
159 $5DD0-$5DF7 24016-24055

160 $4250-$4277 16976-17015
161 $4650-$4677 18000-18039
162 $4A50-$4A77 19024-19063
163 $4E50-$4E77 20048- 20087
164 $5250-$5277 21072-21111
165 $5650-$5677 22096-22135
166 $5A50-$5A77 23120-23159
167 $5E50-$5E77 24144-24183

168 $42D0-$42F7 17104-17143
169 $46D0-$46F7 18128-18167
170 $4AD0-$4AF7 19152-19191
171 $4ED0-$4EF7 20176-20215
172 $52D0-$52F7 21200-21239
173 $56D0-$56F7 22224- 22263
174 $5AD0-$5AF7 23248- 23287
175 $5ED0-$5EF7 24272-24311

176 $4350-$4377 17232-17271
177 $4750-$4777 18256-18295
178 $4B50-$4B77 19280-19319
179 $4F50-$4F77 20304-20343
180 $5350-$5377 21328-21367
181 $5750-$5777 22352-22391
182 $5B50-$5B77 23376-23415
183 $5F50-$5F77 24400- 24439

184 $43D0-$43F7 17360-17399
185 $47D0-$47F7 18384-18423

APPENDIX F • 311

Table F-2-cont. High-Resolution Secondary-Page Addresses
--

Line Hex Range Dec Range

186 $4BD0-$4BF7 19408-19447
187 $4FD0-$4FF7 20432-20471
188 $53D0-$53F7 21456-21495
189 $57D0-$57F7 22480- 22519
190 $5BD0-$5BF7 23504-23543
191 $5FD0-$5FF7 24528-24567

312 " APPENDIX F

Appendix G
6502 Instruction Set

Table G-1. 6502 Instruction Set

Mnemonic Machine Language Comments

ADS #data 69 byte
ADA addr0 65 byte
ADC addr ·6D byte byte
ADC addr0 ,X 75 byte Add with carry
ADC addr,X 7D byte byte
ADC addr,Y 79 byte byte
ADC (data ,X) 61 byte
ADC (data),Y 71 byte

AND #data 29 byte
AND addr0 25 byte
AND addr 2D byte· byte
AND addr0 ,X 35 byte
AND addr,X 3D byte byte Logical AND
AND addr,Y 39 byte byte
AND (data ,X) 21 byte
AND (data),Y 31 byte
ASLA OA
ASL addr0 06 byte
ASL addr OE byte byte Shift left
ASL addr0 ,X 16 byte
ASL addr,X 1E byte byte

APPENDIX G • 313

Table G-1-cont. 6502 Instruction Set

Mnemonic Machine Language Comments

BCC disp 90 byte
BCS disp BO byte
BEQ disp FO byte
BMI disp 30 byte
BNE disp DO byte Branch
BPL disp IO byte
BVC disp 50 byte
BVS disp 70 byte

BIT addr0 24 byte
BIT addr 2C byte byte Bit test

BRK 00 Break

CLC 18 Clear Cs status

CLD D8 Clear decimal status

CLI 58 Clear interrupt status

CLV B8 Clear overflow status

CMP #data C9 byte
CMP addr0 CS byte
CMP addr CD byte byte
CMP addr0 ,X D5 byte Compare accumulator
CMP addr,X DD byte byte
CMP addr,Y D9 byte byte
CMP (data ,X) Cl byte
CMP (data),Y Dl byte

CPX #data EO byte
CPX addr0 E4 byte Compare register X
CPX addr EC byte byte

CPY #data CO byte
CPY addr0 C4 byte Compare register Y
CPY addr CC byte byte

DEC addr0 C6 byte
DEC addr CE b te b te y y

314 • APPENDIX G

Table G-1-cont. 6502 Instruction Set

Mnemonic Machine Language Comments

DEC add0 ,X D6 byte
DEC addr,X DE byte byte Decrement
DEX CA
DEY 88

EOR #data 49 byte
EOR addr0 45 byte
EOR addr 4D byte byte
EOR addr0 ,X 55 byte Logical EXCLUSIVE-OR
EOR addr,X SD byte byte
EOR addr,Y 59 byte byte
EOR (data ,X) 41 byte
EOR (data),Y 51 byte

INC addr0 E6 byte
INC addr EE byte byte
INC addr0 ,X F6 byte Increment
INC addr,X FE byte byte
INX E8
INY C8

JMP addr 4C byte byte
JMP (addr) 6C byte byte Jump
JSR addr 20 byte byte

LDA #data A9 byte
LDA addr0 A5 byte
LDA addr AD byte byte
LDA addr0 ,X B5 byte Load accumulator
LDA addr,X BD byte byte
LDA addr,Y B9 byte byte
LDA (data ,X) Al byte
LDA (data),Y Bl byte

LDX #data A2 byte
LDX addr0 A6 byte
LDX addr AE byte byte Load X register
LDX addr0 ,Y B6 byte
LDX addr Y BE b te b te y y

APPENDIX G • 315

Table G-1-cont. 6502 Instruction Set

Mnemonic Machine Language Comments

LDY #data AO byte
LDY addr0 A4 byte
LDY addr AC byte byte Load Y register
LDY addr0 ,X B4 byte
LDY addr,X BC byte byte

LSRA 4A
LSR addr0 46 byte
LSR addr 4E byte byte Left Shift
LSR addr0 ,X 56 byte
LSR addr,X 5E byte byte

NOP EA No operation

ORA #data 09 byte
ORA addr0 05 byte
ORA addr OD byte byte
ORA addr0 ,X 15 byte
ORA addr,X lD byte byte Logical OR
ORA addr,Y 19 byte byte
ORA (data ,X) 01 byte
ORA (data),Y 11 byte

PHA 48 Push accumulator to stack
PHP 08 Push flag register to stack

PLA 68 Load stack to accumulator
PLP 28 Load stack to flag register

ROLA 2A
ROL addr0 26 byte
ROL addr 2E byte byte Rotate left through
ROL addr0 ,X 36 byte carry
ROL addr,X 3E byte byte

RORA 6A
ROR addr0 66 byte Rotate right through
ROR addr 6E byte byte carry
ROR addr0 ,X 76 byte
ROR addr X 7E b te b te y y

316 " APPENDIX G

Table G-1-cont. 6502 Instruction Set

Mnemonic Machine Language Comments

RTI 40 Return from interrupt

RTS 60 Return from subroutine

SBC #data E9 byte
SBC addr0 ES byte
SBC addr ED byte byte
SBC addr0 ,X FS byte Subtract with carry
SBC addr,X FD byte byte (borrow)
SBC addr,Y F9 byte byte
SBC (data ,X) El byte
SBC (data),Y Fl byte

SEC 38 Set C's flag

SED F8 Set decimal status

SEI 78 Set interrupt status

STA addr0 85 byte
STA addr 8D byte byte
STA addr0 ,X 95 byte
STA addr0 ,X 9D byte byte Store accumulator
STA addr,Y 99 byte byte
STA (data ,X) 81 byte
STA (data),Y 91 byte

STX addr0 86 byte
STX addr 8E byte byte Store X register
STX addr0 ,Y 96 byte

STY addr0 84 byte
STY addr 8C byte byte
STY addr0 ,X 94 byte

TAX AA Transfer A to X

TAY A8 Transfer A to Y

TSX BA Transfer SP to X

APPENDIX G • 317

Mnemonic

TXA

TXS

TYA

Table G-1-cont. 6502 Instruction Set

15
I

r

Machine Language Comments

SA

9A

98

A

x
y

SP

PC

F

Transfer X to A

Transfer X to SP

Transfer Y to A

ACCUMULATOR
18 BITS)

} GENERAL-PURPOSE
REGISTERS 18 BITS)

STACK POINTER 18 BITS)

PROGRAM COUNTER 116 BITS)

FLAG REGISTER 18 BITS)

6502 REGISTERS

B7 BG BS B4 B3 B2 Bl BO

Is Iv I I Bl DI 1 I z !cs I
6502 FLAG

REGISTER DETAIL

S, SIGN BIT
V. OVERFLOW-STATUS BIT
B, BREAK-STATUS BIT
D. DECIMAL-STATUS BIT
I. INTERRUPTSTATUS BIT
Z. ZEROSTATUS BIT
Cs. CARRY-STATUS BIT

--------'

Fig. G-1. Diagram of 6502 registers.

318 • APPENDIX G

A

Absolute column-addressing, 40
ADVANCE, 39, 73-74
Advance cursor, 39-40
Altering the character format, 77-80
Alternative

character formats, 43-49
hi-res formats, 164-165
print windows, 50-62
screen formats, 134-140

Analog
input clear, 250
inputs, 249

APPEND, 252
Assembler, 255
Assembly language

and the miniassembler, 255-268
from machine language, 256-258
program preparation, 263-266
instruction set, 313-318

Backspace cursor, 40
BASCALC, 73-74
BASH, 72-73
BASL, 72-73
Binary, 269

B

-to-decimal conversion, 274-275
-to-hexadecimal conversion, 275-276

BKGND routine, 153
BRK instruction, 268
BS routine, 206; see also monitor
Building and using message blocks 74-80
Built-in memory mapped 1/0, 243-250
Byte, 269

c
CALL statement; see also monitor

- 741, 206
- 756, 214

CALL statement-cont
-868, 38
-922, 40
-926, 35
-936, 37
-998, 35
-1008, 206
-1036, 39
-1994, 206
-1998, 206
-2008, 214
-2023, 212
-11465, 181
-11471, 153
-11500, 158
-11506, 154
-11527, 153
-12274, 162
-12288, 149

Index

CALLing the INIT routine, 149-150; see also
high-resolution graphics

Carriage return
forced, 35
suppressing, 21-23

Cassette
IN jack, 248
OUT, 245

CH register, 30, 73
Character codes; see also text codes

flashing, 67
inverse, 65-67

Clear keyboard strobe, 245
CLEAR routine, 162
Clear to end of; see also clearing

line, 37-38
page, 38-39

Clearing; see also clear to end of
hi-res screen, 162
screen, 27
secondary page, 82-83

CLREOL routine, 38
CLREOP routine, 38-39

INDEX • 319

CLRSCR routine, 206
CLRTOP routine, 206
Color codes

full block, 125
hi-res, 156
low-resolution, 286; see also color codes

with COLOR statement
low-resolution upper/lower, 126-132, 287-

300
with COLOR statement, 114; see also

color codes, low-resolution
COLOR statement, 112-115
COLR variable; see also shape table

definition of, 147
values, 151

Column-addressing, absolute, 40
Column field, 23
Comma, 23
Controlling

cursor position with PRINT statements,
20-23

program flow with INPUT, 89-92
Conventional decimal to 2-byte decimal for

mat, 272-273
Converting

large decimal values to smaller negative
values, 273-27 4

negative decimal values to larger positive
values, 274

COUTl routine, 208-209
CR routine, 206; see also monitor
CTRL-B, 50
CTRL-C, 28
Cursor, 19

and CALL functions, 133
column address, 73
-positioning registers, 31-36

getting help from, 132-134
CV register, 30

D

Debugging with BRK instruction, 268
Decimal-to-hexadecimal conversions, 271-

272
Decoding single keystrokes for control pur-

poses, 104-110
Defining the hi-res variables, 147-149
Disassembler, 256
Disassembly command, 257
Downward linefeed, 40
DRAW routine, 181
Drawing

horizontal lines with HLINE, 212-214
straight lines, 158-161
vertical lines with VLINE, 214

320 • INDEX

ESC-A, 39
ESC-C, 40
ESC-D, 41
ESC-E, 38
ESC-, 27

E

Expansion ROM space $C800-$CFFF, 252

F

Flashing
character codes, 67-68; see also flashing

text codes
text codes, 68, 278; see also flashing char

acter codes
text format, 43

Forced linefeed and carriage return, 35
48K systems, 241
Full-screen graphics, 135-138, 164-165

Game controller
potentiometer, 249
socket, 246

Getting help from

G

cursor registers, 132-134
monitor, 70-74

GR statement, 111-112
Graphics, high-resolution

and DOS, 141
and HIMEM and LOMEM, 141-146
color codes, 156
full screen, 164-165
initializing, 147-150
programmer's aid routines, 141
secondary page, 165, 188-193
software switches, 164
variables, 147

Graphics, low-resolution
and cursor registers, 132-134
color codes, 120
full-screen, 135-138
primary page, 119
secondary page, 138-140
software switches, 134
techniques, 117-118

Hand assembly, 255
Hexadecimal

numbers, 269

H

-to-binary conversion, 276
-to-decimal conversions, 270-271

Hi-res shape tables, 166-183; see also high
resolution graphics

High-resolution graphics
and DOS, 141
and HIMEM and LOMEM, 141-146
background color, 151-153
BKGND routine, 153
CLEAR routine, 162
clearing the screen, 162
color codes, 156
colors and screen format, 150-151
full screen, 164-165
INIT routine, 149
initializing, 147-150
line drawing, 158-161
LINE routine, 158
plot coordinates, 153-158
PLOT routine, 154
POSN routine, 153
primary page, 183-188
programmer's aid routines, 141
secondary page, 165, 188-193
shape tables, 166-183
variables, 147
video addresses, 183-193
without shape tables, 151-163

HIMEM
and high-resolution graphics, 141-146
and Integer BASIC, 237
programming of, 144-146
settings, 142-145

HIMEMH, 146
HIMEML, 146
HUN statement, 115-117
HLINE routine, 212-214
Home, 36
HOME, 37
Home cursor and clear screen, 37
Homing cursor, 36-37
How this book is organized, 12-14
How to get most from this book, 14-15

INIT routine, 147
Initializing the hi-res system, 147-150
INPUT statement

and menus, 90-92
and program flow, 89-92
and question marks, 86-89
and yes/no decisions, 89-90
syntax of, 86

Integer BASIC programming mode, 19
Inverse

character codes, 65-67; see also inverse
text codes

text codes, 67, 277
text format, 43

I/O
addresses $COOO-$CFFF, 242-252
port-0 slot, 85
port-1 slot, 85

K

Key codes; see also keyboard character
codes

control keys, 285
ordinary keys, 282-284

Keyboard
character codes, 93-96; see also key codes
status input, 244-245
-to-video link, 85

KEYIN routine, 206

L

LF routine, 40, 206; see also linefeed
LINE routine, 158
Linefeed; see also LF routine

downward, 40
forced, 35
suppressing, 21-23
upward, 35, 40-41

Loading through the
miniassembler, 265-266
monitor, 267

LOMEM, 81
and high-resolution graphics, 141-146
and Integer BASIC, 237
programming, 144-146
settings, 142-144

LOMEMH, 146
LOMEML, 146
Loudspeaker Toggle, 245-246
Low RAM addresses $0000-$0BFF, 225-235

M

Machine language
calling a subroutine with, 199
disassembly of, 256-258
examples of, 200-202
instruction set, 313-318
loading data with, 196-198
loading of, 202-205
passing variables from, 223-224
passing variables to, 215-223
returning from a subroutine with, 199-200
running of, 205-206
storing data with, 198-199

Main ROM addresses $DOOO-$FFFF, 252-253
Memory map

of built-in I/O, 244
of I/O, 243

INDEX ., 321

Memory map-cont
of primary page

hi-res graphics, 183-188
low resolution graphics, 199
text, 64

of ROM, 253
of secondary page

hi-res graphics, 188-193
low-resolution graphics, 120
text, 66

of upper RAM
for 16K systems, 238
for 32K systems, 240
for 48K systems, 242

Menus, 90-92
Message blocks, 74-80
Miniassembler, 255, 258-263

entering, 259
getting out of, 261
loading programs through, 259-261, 265-266
running a program from, 261
saving and loading tapes from, 262-263

Mixing text formats, 47-49
Monitor, 70-74

and low-resolution graphics, 118
BS routine, 206
CLRSCR routine, 206
CLRTOP routine, 206
COUTl routine, 208-209
CR routine, 206
getting help from, 70-74
KEYIN routine, 206
LF routine, 206
loading programs through, 267
PRBL2 routine, 209
RDKEY routine, 214-215
routine CALLing, 206-215
routines available to BASIC, 206
routines not available to BASIC, 216-217
running a program from, 261-262
SETCOL routine, 210
STOADV routine, 206-208
UP routine, 206

More -cursor-related operations, 36-41
MUSIC routine, 252

Nibble, 269
Normal

N

low-resolution graphics, 111-112
text

codes, 67-70
format, 44

NORMAL-1 text codes, 69, 278
NORMAL-2 text codes, 69, 279

322 • INDEX

0

Organization of
low-resolution video memory, 119-122
text memories, 63-65

p

Passing variables
from machine-language routine, 223-224
to machine-language routine, 215-223

PEEK statements
and menus, 106-108
and registers CH and CV, 31-33
and resuming stopped operations, 97-98
and stopping ongoing operations, 98-100
and strobing the keyboard, 92-97
and toggling operations, 100-102
and yes/no decisions, 105-106

PEEKing into CH and CV, 31-33
Peripheral card

1/0, 250-251
ROM, 251-252

Peripheral slot scratchpad RAM, 235
PLOT routine, 154
PLOT statement

in BASIC, 112-115
in monitor, 210-212

POKE statement
and CH register, 33-36
and CV register, 33-36
and low-resolution color graphics, 118-134

POKEing
characters to secondary page, 83-84
into CH and CV, 33-36

Port-0 1/0 slot, 85
Port-1 1/0 slot, 85
POSN routine, 153
PRBL2 routine, 209
Preparing assembly-language programs, 263-

266
Primary page

hi-res memory map, 183-188, 301-306
text and low-resolution graphics

displaying, 81
memory map, 64; 234, 280-281
uses, 233-234

PRINT statement, 20, 29
Program menus, 90-92
Programmer's Aid routines, 141

APPEND, 252
BKGND (background color), 153
CLEAR (clearing the hi-res screen), 162
DRAW (shape-drawing), 181
IDGH-RESOLUTION GRAPHICS, 252
INIT (initalize primary page hi-res

graphics), 149
LINE (line-drawing), 158

Programmer's Aid routines-cont
MUSIC, 252
PLOT (point-plotting), 154
POSN (point-positioning), 153
RAM TEST, 252
RENUMBER, 252
TAPE VERIFY, 252

PR# 1 command, 85
PR#2 command, 85
Pushbutton inputs PB1-PB3, 248

R

RAM, 225
keyboard input buffer, 231-233
lower addresses $0000-$0BFF,. 225-235
peripheral slot scratchpad, 234
primary page text/graphics, 233-234
system stack, 231
TEST, 252
unused in secondary text page, 236
upper addresses $0COO-$BFFF, 235-242
variables, vectors, and user, 233
zero-page, 226-231

RDKEY routine, 214-215
Registers

A, 195
and low-resolution graphics, 132-134
CH, 30
cursor-positioning, 31-36
CV, 30
6502, 318
X, 195
Y, 195

RELOCATE, 252
RENUMBER, 252
Resuming stopped operations, 97-98
Role of

ADVANCE and BASCALC, 73-74
cursor, 19-20
BASL and BASH, 72-73
CH, 73

ROM, 225
ROT

definition of, 147
values, 180

SCALE variable, 147; see also shape table
Scratchpad addresses, 219
Screen mode switches, 134-135
SCRN statement, 117
Secondary page

hi-res memory map, 188-193, 306-312
high-resolution graphics, 165
text and low-resolution graphics

clearing, 82-83
definition of, 63

Secondary page-cont
text and low-resolution graphics

displaying, 81
memory map, 66, 236, 281
POKEing characters to, 83-84
unused RAM in, 236
uses, 234-235
working with, 80-84

Semicolon, 21
Set

full or mixed-screen text/graphics, 247
graphics or text, 247
or clear ANO-AN3 outputs, 247-248
primary or secondary page, 247
text/low-resolution or high-resolution, 247

SETCOL routine, 210
Setting

columns with commas, 23
cursor position with TAB statements, 24-30
number of characters per line, 51-53
position of top line, 53-55
position of the bottom line, 55-57
starting column of text, 50-51
text formats

from keyboard, 44-45
within a program, 46

Shape table
acronyms, 168
codes, 168
definition of, 166
index of, 171-175
loader, 175-177
preparing data for, 168-171
requirements for BASIC main program,

177-183
ROT values, 180
setting up from BASIC, 167
starting address, 178

SHAPE variable, 147; see also shape table
Simple PRINT statements, 20-21
Simplifying CALLs, 162-163
Simulating a PRINT @ statement, 29-30
Single-keystroke control of a program, 97-104
16K systems, 237-239
6502 instruction set, 313-318
6502 registers, 318
Split-screen, 59-62
Standard text format, 17-19
STEP, 268
STOADV, routine, 206-208
Stopping ongoing operations, 98-100
STRING$ function, 22
Strobing keyboard with PEEK statements,

92-97
Supplying information with INPUT, 85-89
Suppressing linefeed and carriage return,

21-23
with comma, 23

INDEX • 323

Suppressing linefeed and carriage return-cont
with semicolon, 21

Switching between primary and secondary
pages, 81-82

TAB statement, 24-25
TAPE VERIFY, 252
Text

T

codes; see also character codes
inverse, 67
flashing, 68
normal, 67-70
NORMAL- I, 69, 278
NORMAL-2, 69, 279

editor
improved, 108-110
primitive, 96-97

format, 17
inverse, 43
flashing, 43
normal, 44
mixing, 47-49
setting, 44-46

software switches, 134
windows, 50-62

TEXT statement, 59, 111-112
32K systems, 239-241
Toggling operations, 100-101
TRACE, 268
Two-byte decimal to conventional decimal

format, 273

u

Unused RAM in secondary text page, 236
UP routine, 40-41, 206
Upper RAM addresses $0COO-$BFFF, 235-

242
Upward linefeed, see UP routine

324 o INDEX

Using
and defining labels, 263-265
combinations of TAB and VTAB, 27-29
miniassembler, 258-263
multiple message blocks, 75-77

Utility Strobe output, 246

v
Video character codes, 65-70; see also char-

acter codes and text codes
VLIN statement, 115-117
VLINE routine, 214
VTAB statement, 25-27

w
Which system do you need, 12
WNDBTM

definition of, 5 5, 57
values, 55, 57

\l\TNDLFT
definition of, 50, 57
values, 52, 57

WNDRT, 53
WNDTOP

definition of, 53, 57
values, 55, 57

WNDWD'IH
definition of, 51, 57
values, 52, 57

Working with
cursor-positioning registers, 31-36
secondary low-resolution graphics page,

138-140
secondary text page, 80-84

X, y

XX variable, 147; see also shape table
YY variable, 147; see also shape table

' 1~l SAMS APPLE® BOOKS
: Many thanks for your interest in this Sams Book about Apple II® microcomputing. Here are a few
more Apple-oriented Sams products we think you'll like:

: POLISHING YOUR APPLE®
: Clearly written, highly practical, concise assembly of all procedures needed for writing, disk-filing,
and printing programs with an Apple II. Positively ends your searches through endless manuals to
find the routine you need! By Herbert M. Honig. 80 pages, 51/z x 81/z, comb. ISBN 0-672-22026-1.
© 1982.
Ask for No. 22026 ... $4.95

THE APPLE II® CIRCUIT DESCRIPTION
Provides you with a detailed circuit description of the Revision 1 Apple II motherboard, including the
keyboard and power supply. Compares Revision 1 with other revisions, and includes timing diagrams
for major signals. By Winston D. Gayler. 176 pages plus foldouts, 81/z x 11, comb. ISBN 0-672-21959-X.

: © 1983.
Ask for No. 21959 .. $22.95

INTERMEDIATE LEVEL APPLE II® HANDBOOK
·: Hands-on aid for exploring the entire internal firmware of your Apple II and finding out what you can
'accomplish with its 6502 microprocessor through machine- and assembly-language programming.
By David L. Heiserman. 328 pages, 6 x 9, comb. ISBN 0-672-21889-5. © 1983.

· Ask for No. 21889 .. $16.95

APPLE® FORTRAN
Only fully detailed Apple FORTRAN manual on the market! Ideal for Apple programmers of all skill
levels who want to try FORTRAN in a business or scientific program. Many ready-to-run programs
provided. By Brian D. Blackwood and George H. Blackwood. 240 pages, 6 x 9, comb. ISBN
0-672-21911-5. © 1982.
Ask for No. 21911 .. $14.95

APPLE II® ASSEMBLY LANGUAGE Ii.
· Shows you how to use the 3-character, 56-word vocabulary of Apple's 6502 to create powerful, fast

acting programs! For beginners or those with little or no assembly language programming experi
ence. By Marvin L. De Jong. 336 pages, 51/z x 81/z, soft. ISBN 0-672-21894-1. © 1982.

, Ask·forNo.21894 '· $15.95

ENHANCING YOUR APPLE II® - Vol. 1
Shows you how to mix text, LORES, and HIRES anywhere on the screen, how to open up whole new
worlds of 3-D graphics and special effects with a one-wire modification, and more. Tested goodies
from a trusted Sams author! By Don Lancaster. 232 pages, 81/z x 11, soft. ISBN 0-672-21846-1. © 1982.
Ask for No. 21846 (. $15.95

CIRCUIT DESIGN PROGRAMS FOR THE APPLE II® lJ.
Programs quickly display "what happens if" and "what's needed when" as they apply to periodic
waveform, rms and average values, design of matching pads, attenuators, and heat sinks, solution of
simultaneous equations, and more. By Howard M. Berlin. 136 pages, 81/z x 11, comb. ISBN
0-672-21863-1. © 1982.
Ask for No. 21863 .. $15.95

APPLE® INTERFACING lJ.
Brings you real, tested interfacing circuits that work, plus the necessary BASIC software to connect
your Apple to the outside world. Lets you control other devices and communicate with other com-

: puters, modems, serial printers, and more! By Jonathan A. Titus, David G. Larsen, and Christopher A.
Titus. 208 pages, 51/z x 81/z, soft. ISBN 0-672-21862-3. © 1981.
Ask for No. 21862 .. $10.95

INTIMATE INSTRUCTIONS IN INTEGER BASIC
Explains flowcharting, loops, functions, graphics, variables, and more as they relate to Integer
BASIC. Used with App/esoft Language (No. 21811), it gives you everything you need to program
BASIC with your Apple II or Apple II Plus. By Brian D. Blackwood and George H. Blackwood. 160
pages, 5112 x 8112, soft. ISBN 0-672-21812-7. © 1981.
Ask for No. 21812 ... $8.95

APPLESOFT® LANGUAGE
Only complete text available on Applesoft BASIC! Self-teaching format simplifies learning and lets
you use what you learn FAST. Ideal for businessmen, hobbyists, and professionals! Many programs
included. By Brian D. Blackwood and George H. Blackwood. 256 pages, 5112 x 8112, soft. ISBN
0-672-21811-9. © 1981.
Ask for No. 21811 .. $10.95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE II®, BOOK 1
Twenty-eight debugged, fun-and-serious BASIC programs you can use immediately on your Apple II.
Includes a telephone dialer, digital stopwatch, utilities, games, and more. By Howard Berenbon. 160
pages, 8112 x 11, comb. ISBN 0-672-21789-9. © 1980.
Ask for No. 21789 .. $12.95

MOSTLY BASIC: APPUCATIONS FOR YOUR APPLE II®, BOOK 2
A second gold mine of fascinating BASIC programs for your Apple 11, featuring 3dungeons,11 house
hold programs, 6 on money or investment, 2 to test your ESP level, and more - 32 in all! By Howard
Berenbon. 224 pages, 8112 x 11, comb. ISBN 0-672-21864-X. © 1981.
Ask for No. 21864 .. $12.95

You can usually find these Sams products at better computer stores, bookstores, and electronic
distributors nationwide.

If you can't find what you need, call Sams at 800-428-3696 toll-free or 317-298-5566, and charge it to
your MasterCard or Visa account. Prices subject to change without notice.

For a free catalog of all Sams Books available, write P.O. Box 7092, Indianapolis IN 46206.

SAMS BRINGS YOU MIND TOOLS™ FOR FINANCIAL PLANNING IN BUSINESS
Special, ready-to-use software that temporarily interlocks with the spreadsheet in your regular ver
sion of Multiplan® or VisiCalc® so you can immediately perform 17 common financial planning cal
culations without wasting time manually setting up the sheet. All you do is enter the data - the
proper formulas and column headings are there automatically!

Mind Tools allow you to instantly calculate present, net present, and future values, yields, internal
and financial management rates of return, and basic statistics.

Also lets you do break-even analyses, depreciation schedules, and amortization tables, as well as
compute variable- and graduated-rate mortgages, wraparound mortgages, and more!

Allows you to use your regular spreadsheet as you always have, at any time. Ideal for any business
man with financial planning responsibilities, as well as for business students and instructors.

Supplied with complete documentation, including 136-page text and 68-page quick-reference guide,
all in a binder with the proper disk to match the brand of spreadsheet program you own.

Currently available for use with Multiplan or VisiCalc on the Apple II as follows:

EXECUTIVE PbANNING WITH MULTIPLAN
Apple Ii Version, ISBN 0-672-22058'X.
Ask for No. 22058 .. $79.95

EXECUTIVE PLANNING WITH VISICAlC
Apple II Version, ISBN 0-672-22059-8.
Ask for No. 22059 .. $79.95

! i

_J

TO THE READER
Sams Computer books cover Fundamentals - Programming - ~nterfacing -
Technology written to meet the needs of computer engineers, professionals,
scientists, technicians, students, educa!ors, business owners, personal com
puterists and home hobbyists.

Our Tradition is to meet your needs
and so doing we invite tell us what

needs and terests are
the

1. I need books on the following topics:

2. I have the following Sams titles:

3. My occupation is:

__ Scientist, Engineer

__ Personal computerist

__ Technician, Serviceman

__ Educator

__ Student

__ D P Profession~!

__ Business owner

__ Computer store owner

___ Home hobbyist

Other

Narne(print) ______________________ _

Address _______________________ _

City State _____ Zip ____ _

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 21889

-z
-I m . ,
::D
I:
m
S!
~
"' I

rm
<
"' r-
> ,, ,,
r
m --@

::z:
> z
Cl
m
0
0
~

I
m
(./')
m
JJ
:s::
~ z

•
I\)

co
co
<D

TM

