
21862

APPLE"
INTERFACING
JONATHAN A. TITUS DAVID G. LARSEN

CHRISTOPHER A. TITUS

1J OJ CONTINUING EDUCATION
IJWi!L fl.::JIJ ed1ted by Larsen. T1 tus & T1tus ·-----------

The Blacksburg Continuing Education1M Series

The Blacksburg Continuing Education SeriesT11 of books provide a laboratory-or experiment-
o riented approach to electronic topics. Present and forthcoming titles in this series include:

• Advanced 6502 Interfacing
• Analog Instrumentation Fundamentals
• Apple Interfacing
• Basic Business Software
• BASIC Programmer's Notebook
• Circuit Design Programs far the Apple II
• Circuit Design Programs for the TRS-80
• Design of Active Filters, With Experime nts
• Design of Op-Amp Circuits, With Experiments
• Design of Phase-locked loop Circuits, With Experiments
• Design of T ronsistor Circuits, With Experiments
• Design of VMOS Circuits, With Experiments
• 8080/ 8085 Software Design (2 Volumes)
• 8085A Cookbook
• Electronic Music Circuits
• 555 Timer Applications Sourcebook, With Experiments
• Guide to CMOS Basics, Circuits, & Experiments
• How to Program and Interface the 6800
• Introduction to FORTH
• Microcomputer-Analog Converter Software and Hardware Interfacing
• Microcomputer Interfacing With the 8255 PPI Chip
• Microcomputer Design and Maintenance
• NCR Basic Electronics Course, With Experiments
• NCR Data Communications Concepts
• NCR Data Processing Concepts Coune
• NCR EDP Concepts Course
• PET Interfacing
• Programming and Interfacing the 6502, With Experiments
• 16-Bit Microprocessors
• 6502 Software Design
• 6801, 68701, a nd 6803 Microcompute r Programming and Inte rfacing
• The 68000: Principles and Programming
• 6809 Microcomputer Programming & Interfacing, With Experiments
• TEA: An 8080/ 8085 Co-Resident Editor/ Assembler
• TRS-80 language Made Simple
• TRS-80 Interfacing (2 Volumes)
• TRS-80 More Than BASIC

In most COHS, tflese boob both text material and experiments, which permit one to
demonstrate and u:plore tloe C08Cepb that o re oovered in tile book. These books remain among
the very few that p.-ide iotstrvc6ons concerning how to learn basic electronic con-
cepts, wire octuol cirari1s,. test interfaces. and program computen based on popu-
lar microprocessor chips. We loaYe fooDCI that the boob ore very useful to the electronic novice
who desires to join tile " electroooics l'W'OOhrfio.,• with .ini•u• time and effort.

Jonathan A. Trtus, Christopher A. Trtus, and David G. Larsen
" The aladaburg Group"

Bog symbol tademertt N.notran, Inc.,. Bllcbburg. VA 24060

Downloaded from www.Apple20nline.com

APPLE®
INTERFACING

by

Jonathan A. Titus. David G. Larsen, and
Christopher A. Titus

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

J?ownloaded from www.Apple20nline.com

Copyright © 1981 by Jonathan A. Titus, Christopher A.
Titus, and David C. Larsen

FIRST EDITION
SECOND PRINTINC-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-21862-3
Library of Congress Catalog Card Number: 81-84282

Edited by: Bob Manville
illustrated by:]ill E . Martin

Printed in the United States of America.

Downloaded from www.Apple20nline.com

Preface
The purpose in writing this book is to introduce you to the signals

within the Apple®0 II computer and to show you how these signals
can be used to control external devices under the control of BASIC-
language programs. A general-purpose computer interface bread-
board has been developed to speed your circuit design and testing
so that you can easily perform the many interesting experiments that
are included in the book. By using a design system such as the one
described in this book, you will spend your time concentrating on
the ·principles involved, rather than troubleshooting your circuits.
However, you will have the opportunity to build and test many digi-
tal circuits, as well as circuits that use digital-to-analog and analog-
to-digital converters.

We have chosen to use the Apple II computer with 16K of read /
write memory, and the ApplesoftTMt BASIC interpreter program.
This software provides a great deal of flexibility and it is worth hav-
ing it available when you are using external interface circuits. The
Applesoft BASIC interpreter has two general-purpose commands
that can be used to transfer information to and from the computer.
These instructions are easily mastered, without requiring a detailed
understanding of the 6502 microprocessor integrated circuit (IC)
that is used as the "heart" of the Apple.

First we will introduce you to the control signals that are available
from the Apple computer for interfacing, and we will show you how
they are used. Some of the signals will not be described, since they
are generally not used in interface circuits, and are meant to be used
by special interface devices that are manufactured commercially.

Our next step is to show you how the Apple can identify or address
external devices through the use of two general-purpose instructions,
PEEK and POKE. These commands are central to the control of ex-
ternal devices; we spend some time covering their operation and the
use of a variety of circuits that can be used to identify specific input/
output, or l /0 devices. You will also see how the Apple can transfer
information to and from external devices over the bidirectional data

0 Apple and Apple II are registered trademarks of Apple Computer, Inc.
t Applesoft is a trademark of Apple Computer, Inc.

Downloaded from www.Apple20nline.com

bus; the basic circuits used for input ports and output ports are de-
scribed in detail. Real circuits are provided, so that you can quickly
use the many examples in designing your own interface devices.

You will also see the power of BASIC-language programs-as the
data is processed within the computer to provide meaningful results.
Simple control programs are provided to show you how BASIC-lan-
guage programs and I/ 0 devices can interact. You will be able to
write simple control and data processing programs to go along with
your l / 0 ports and devices.

Since the computer is not always synchronized to external devices,
there must be some interaction between the computer and the vari-
ous I / 0 devices so that each knows when the other is ready for some
appropriate action. This leads us to the topic of flags-those signals
that are used by the computer and by external l/0 devices to allow
information to be transferred in an orderly fashion. Since flags are
important, we spend some time on them and on the corresponding
circuits that are actually used in external devices. Software is covered
too, since the flag circuits are useless unless they can be sensed by a
control program.

We have assumed that you have a fairly good understanding of the
commands in Applesoft BASIC. If you are just getting started with
the Apple computer, we hope that you will take some time to review
the simple commands, such as FOR, GOTO, IF ... THEN, PRINT,
and INPUT. Other commands will be introduced in the text and ex-
periments, and we will provide the details of their operation. At the
end of this book, the use of these and other commands should be
second-nature.

In Chapter 6, we have provided 16 detailed, step-by-step experi-
ments that you can perform to reinforce the many interfacing prin-
ciples that have been developed in the text. You will also see the
power of BASIC-language programs for interface control and for
actually processing the information that is involved in transfers to
and from 1/0 devices. We have made an effort to cover a broad spec-
trum of interesting interface applications. Throughout the experi-
ments, you will see that the same basic principles apply to all of the
interface circuits, from the simplest to the most complex.

We realize that it is difficult to write a book like this for an audi-
ence that has a wide range of backgrounds, from the beginner to the
advanced user. Thus, we have chosen to start at some middle point.
We have chosen t o skip basic binary numbering, decimal-to-binary
conversions, basic digital electronics, and breadboarding. These top-
ics are covered in detail in other books, and the reader who is in the
middle of our assumed spectrum of readers probably has a good
understanding of these topics. In some places, a paragraph or two of
review material have been provided, just to serve as a refresher. We

Downloaded from www.Apple20nline.com

make no attempt to provide much detail here, simply enough to get
you started.

We have assumed some familiarity with SN7400-family digital in-
tegrated circuits, or chips, such as the SN7402 quad NOR gate and the
SN7475 quad latch chip. Other complex chips will be introduced and
explained in sufficient detail so that you can use them as shown in
the text or experiments. If you wish to use these devices in other
applications, we suggest that you obtain the necessary data sheets
from the manufacturers. The data sheets will provide the necessary
information for a wide variety of uses, and they will also reflect any
basic changes or modifications that may have been made to an "up-
dated" device, or one that has been "enhanced" with some special
feature.

The Apple II computer has eight general-purpose 50-conductor
interface connectors in its case. The basic bus signals used in the ex-
periments are derived from the signals at these connectors, so if you
decide to design and build some of your own interface circuits that
will be plugged into one of these "slots," you will find the same sig-
nals are readily available at the edge connectors. However, there are
also some special-purpose signals that are generated by the Apple to
make the interfacing task somewhat easier. These signals and their
uses are described in detail in Chapter 7. Since the signals are not
general purpose, but are specific to the Apple, and in many cases,
specific to a particular connector, they are described last. To show
you how these signals are used, a simple asynchronous-serial com-
munication interface circuit is described, and software to control it
is listed. This type of interface can be used to communicate with
other computers, serial printers, modems, and other interface devices
that use the asynchronous-serial data format.

We have not described assembly-language programming, since
this is a specialized topic and requires a great deal of background.
However, we have provided one simple assembly-language subrou-
tine for you to use in several of the experiments. There is a good
reason for including this subroutine; the equivalent function is not
readily available in Applesoft. The function required is the logical
ANDing of 8-bit bytes. The logical AND in Applesoft is simply a true-
or-false AND operation, and it cannot be easily used for bit ANDing.
The assembly-language subroutine also provides you with an intro-
duction to how such routines can be accessed by a BASIC-language
program. We have chosen to use the more complicated USR(X)
command, rather than the CALL command, since we think that
more will be learned.

We found that there were some limitations to the Apple. For ex-
ample, there is no simple "rounding'' command that can be used to
round a number to a specific number of decimal digits, for example

Downloaded from www.Apple20nline.com

4.1986 to 4.20. Likewise, the absence of a bit-by-bit ANDing command
was a limitation that was overcome with an assembly-language rou-
tine. We also found that the potentially useful WAIT command that
is used to test individual bits will "hang up" the computer if the con-
dition is not found . The computer continues to wait if the condition
is not met, and you must reset the computer to get your program
going again. A color display and nice graphics are available, al-
though we used a black/white monitor in our system.

Most of the special purpose chips, such as the analog converters,
have been chosen because of their simplicity, low cost, and avail-
ability. This is not meant to be an endorsement of these products. As
your interfacing sophistication increases, you will find other special-
purpose devices that can serve the same function, but perhaps with
added features, more resolution, different power supplies, etc. Our
aim is to get you started, and not to provide you with a sourcebook
of every possible interface to the Apple computer system. An impos-
sible task in any case.

If you are interested in some additional reading about more ad-
vanced topics, we recommend:

6502 Software Design (21656).
Programming & Interfacing the 6502, With Experiments (21651).
Microcomputer-Analog Converter Software and Hardware Inter-

facing (21540) .
We also recommend TRS-80 Interfacing, Book 2. While written

around the TRS-80 computer, this book details more advanced inter-
facing topics such as driving high-current/ high-voltage loads, serial
communications, remote control, analog converters, filtering and
data processing, and other interesting topics. You will quickly see
that the similarities between the TRS-80 and Apple are much greater
than their differences. Control signals and BASIC commands are al-
most identical. All of the books noted above are available from
Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis,
IN 46268.

The pin configuration figures used in most of the figures, unless
otherwise noted, are provided through the courtesy of Texas Instru-
ments, Incorporated. The names Apple and Applesoft are trade-
marks of Apple Computer, Inc., Cupertino, CA. The name TRS-80
is a registered trademark of Radio Shack.

We hope that you enjoy this book, and that it leads you to design
and build some interface circuits of your own.

JoNATHAN A. Trrus, CHRISTOPHER A. Trrus and DAviD G. LARSEN
"The Blacksburg Group"

Downloaded from www.Apple20nline.com

Contents

CHAPTER 1

6502 PRoCESsOR .

Memory-Input/Output (I / 0) Devices-Software 1/ 0 Control In-
structions

CHAPTER 2

APPLE INTERFACING .

I/ 0 Device Address Decoding-Device Addressing

CHAPTER 3

l/0 DEVICE INTERFACING .

Output Ports-Input Ports

CHAPTER 4

FLAGs AND D ECISIONS .

I/ 0 Device Synchronization- Logical Operations and Flags-Flag-
Detecting Software-Assembly-Language Logical Operations-Com-
plex Flags-Flag Circuits-Multiple Flags-Interrupts-Final Words

CHAPTER 5

BREADBOARDING WITH THE APPLE .

Basic Breadboard-Connections to the Apple-Other Considerations

Downloaded from www.Apple20nline.com

9

26

44

57

69

CHAPTER 6

APPLE INTERFACE EXPERIMENTS .

Introduction to the Experiments-Use of the Logic Probe-Use of the
Device Address Decoder-Using Device Select Pulses-Constructing
an Input Port-Multibyte Input Ports-Input Port Applications-In-
put Port Applications (II)-Constructing an Output Port-Output
Port and Input Port Interactions-Data Logging and Display-Simple
Digital-to-Analog Converter-Output Ports, BCD and Binary Codes
-Output Ports Traffic Light Controller-Logic-Device Tester-Sim-
ple Flag Circuits-A Simple Analog-to-Digital Converter

CHAPTER 7

86

ON 'IHE Bus . 164
lntedace Control Signals-An Intedacing Example

APPENDIX A

LoGIC FUNcriONS . 180

APPENDIX B

PARTS REQumED FOR 'IHE EXPERIMENTS . 183

APPENDIX C

6502 MICROPROCESSOR TECHNICAL DATA . 185

APPENDIX D

APPLE INTERFACE BREADBOARD pARTS . . 195

APPENDIX E

PRINTED-Cmcurr BoARD ARTWoRK . . 197

INDEX . 203

Downloaded from www.Apple20nline.com

CHAPTER 1

6502 Processor

The Apple II® (Apple®) computer system by Apple Computer,
Inc., uses the 6502-type of microprocessor integrated circuit. This
"chip" forms the heart of the central processing unit (CPU) of the
computer, the place where the actual mathematical, logical, decision-
making, and other operations take place. The 6502-type microproces-
sor chip is manufactured by MOS Technology (Norristown, PA
19401), Rockwell International (Anaheim, CA 92803) and Synertek
Corporation (Santa Clara, CA 95051).

The 6502 is an 8-bit processor. Thus, all of the mathematical, logi-
cal, data transfer, input and output operations operate on eight
binary bits at a time. Each bit, of course, can be either a logic one
or a logic zero. The 6502 uses an 8-bit data bus to transfer informa-
tion between itself and various memory locations and input/ output
(1/0) devices such as a keyboard, printer, etc. In cases where the
value of the information exceeds the limit of eight bits, multiples of
8-bit data words are used. Each 8-bit data word is generally referred
to as a byte.

You should realize that the maximum value that can be expressed
with eight bits is 11111llh or 25510• If larger values are to be oper-
ated on in an 8-bit computer system, then multibyte operations are
required. Generally, this means that corresponding data bytes in two
data words are operated on, followed by the operation being per-
formed on the next corresponding set of bytes in the large data
words. In this way large values, beyond the value of 255, may be
readily processed. It is important to remember, though, that the

Apple and Apple II are registered trademarks of Apple Computer, Inc.

9

Downloaded from www.Apple20nline.com

Apple CPU can only process and transfer eight bits or one byte at a
time.

The 6502 uses a single set of eight pins to make the connection
with the data bus in the computer. This data bus is used to transfer
information both to and from the computer. This type of a bus is
called bidirectional, since it allows information to flow in two dif-
ferent directions. This is much like a highway that is used to allow
vehicles to drive one way in the morning and to allow vehicles to
travel in the opposite direction in the evening.

The 6502 generates control signals on the integrated circuit that
are used both internally and externally to supervise and manage the
flow of information on the bus, in one direction at a time. We will
explore the generation and use of these signals later in this book.

MEMORY

All computer systems have some memory associated with them. In
general, the memory is used to store both a program that will control
the operation of the computer, as well as the information that is to
be processed. In the 6502 computer, each memory location can be
used to store eight bits of information, or one byte of data. Most
memories consist of multiples of these one-byte storage locations,
generally in multiples of 1024, abbreviated IK.

The memory locations must be addressed in some way so that the
computer knows exactly where it is to store data or obtain program
step information. The 6502 microprocessor chip has 16 address out-
puts allowing it to specify any one of 216 or 65,536 memory locations,
each of which can contain one byte. This is often shortened to 64K,
indicating that 64K bytes of information can be addressed. In almost
all microcomputer memory systems, each memory location is
uniquely addressed with a 16-bit address.

The address bus lines are labeled AO through Al5, corresponding
to the least-significant bit (LSB) through the most-significant bit
(MSB), respectively. The LSB and MSB can both be either a logic
one or a logic zero, but their position gives the LSB a value of zero
or one and the MSB a value of zero or 32,768. Since the 6502 is an
8-bit processor, the address lines are frequently split into two groups
of eight lines each, A 7 -AO and Al5-A8. The lines A 7 -AO are referred
to as the low or LO address, while lines Al5-A8 are referred to as the
high or HI address. In many 6502-based computers, the HI address
is also called the page address, since the memory may be arbitrarily
divided into 256 pages, with 256 bytes per page. The uses of the ad-
dress bus will be explored further when software instructions are dis-
cussed and when interface circuits are developed. Unlike the data
bus, the address bus is unidirectional, the address information flows

10

Downloaded from www.Apple20nline.com

Fig. 1-1. 6502 Microprocessor chip
pin conflgur•tion.

vss
ROY

mQ
N.C.

NMT
SYNC
vee

AO
Al
A2
A3
A4
AS
A6
A7
A8
A9

AlO
All

rn
s.o.
<l>o(IN)
N.C.
N.C.
R/W
DO
01
02
03
04
05
06
07
Al5
Al4
Al3
Al2
vss

in only one direction, from the CPU to the memory and to external
devices.

The pin configuration of the 6502 is shown in Fig. 1-1. Although
most of the other signals may be meaningless to you now, you should
be able to identify the 8 data bus input/ output pins and the 16
address output pins.

Since the memory section is being discussed, there are two basic
types of memory devices used in microcomputer systems. They are:

1. Read/Write-Read/Write (R/W) memory is used for the stor-
age of data that will be changed or updated. The computer
must be able to place the information in a memory location and
then be able to read it back. Programs that will change are also
stored in R/W memory for the same reason. The lowest cost
Apple computer contains 16,384 or 16K bytes of R/W memory.

2. Read-Only-Read-only memory (ROM) is used when data val-
ues and program steps will not be altered. The BASIC inter-
preter program in your Apple system is contained in read-only
memory chips. The Apple BASIC interpreter is stored in 12K
of ROM.

There are various sub-classes of these types of memory devices.
The R/W memories may be either static or dynamic. Static memory
chips will maintain the values stored in them until they are changed.
Dynamic memories require refreshing by external hardware every
few milliseconds or they will "forget" or lose the data stored in
them. The R/W memories in the Apple are dynamic, with the neces-

11

Downloaded from www.Apple20nline.com

sary refreshing circuitry contained on the computer printed-circuit
board.

There are many types of read-only memories. The various types
are generally all static, the differences occurring in the means of stor-
ing the 8-bit values in the memory locations. The two most important
types are mask-programmed and field-programmed. The mask-pro-
grammed devices have data values, program steps, etc., stored in
them during the various manufacturing steps. They are generally re-
ferred to as ROMs. The field-programmable devices require some
kind of special programming circuitry to store the logic ones and
zeros in the various locations. Some of the field programmable
ROMs, or PROMs, as they are generally called, can be erased under
high-intensity ultraviolet light. They can then be reprogrammed.
This is very useful when programs are being developed that will be
stored in read-only memory. It does not require the development of
masks and chips-an expensive process-each time a program bug is
found or a change is made.

A few final words are required about semiconductor memory de-
vices. The read-write devices are volatile, since data (your program
and values) will "evaporate" or disappear when power is removed
from the system. The read-only memories, on the other hand, are
considered to be nonvolatile, since they will maintain the data or
program steps (the BASIC interpreter) when the power has been
removed.

Most memory integrated-circuit packages or chips do not have all
16 of the address lines connected to them. They have only enough
address connections to uniquely address the memory locations within
the individual chip. Thus, a 64-byte chip, small by standards of to-
day, would only have 6 address line inputs while a 1024 (1K) byte
memory chip would have 10 address line inputs. Memory chips such
as these have an additional control or chip-enable input that allows
banks or groups of the chips to be selected, one set at a time. Various
decoding and selecting circuits may be used, thus allowing a 32K
block of memory to be constructed from 64-byte or 1K byte chips,
or even combinations of the two. The main point here is that the
memory chips do not require all 16 address lines to be connected
directly to them, although some combination of all 16 address bits
will be used to uniquely select one byte. You should not be confused
when you are confronted with a 1K X 4 bit memory that only has
10 address inputs and a chip enable input. This concept will be de-
veloped further as you study input/output data transfers.

One control signal is generated by the 6502 processor chip to con-
trol the flow of infonnation on the data bus. This signal is noted as
READ/WRITE, or more simply, R/W. Whenever a read, or a write,
operation is to take place, the 6502 must specify a J6-bit address to

12

Downloaded from www.Apple20nline.com

locate the memory "cell" that is to be involved in the transfer. In this
case, the cell is an 8-bit word or byte.

The "bar" over part of the signal notation indicates that when the
signal is a logic zero, a write operation is taking place; and when in
the logic one state, a read operation is taking place. Thus, a single
line controls all of the memory functions. In some 6502-based com-
puter systems and peripherals, you may see the signal "split,"
vide two memory control signals, memory read (MEMR or MR),
and memory write (MEMW or MW). This takes some additional
gating, so in most cases, the R/W signal is used by itself. It is avail-
able at pin 34 on the 6502 microprocessor chip.

You may also see the notation RAM used to incorrectly signify
read/write memory. The acronym RAM stands for random-access
memory. In fact, all of the modern, easy-to-use memory devices are
random access, since one may address one location and then any
other, without having to sequence through all of the locations be-
tween the two addresses.

Pin configurations for typical memory chips have been provided
in Fig. 1-2.

For additional information about memory devices, we refer you to

• Intel Memory Design Handbook, Intel Corporation, Santa
Clara, CA 95051, 1975.

"'
"•
As

A,

A,

A,

A,

ILS81 Ao

ILS8t Oo

o,

02

"''
Ao·At
01 ·0·

/WE

PIN CONFIGURATION
PIN CONFIGURATION LOGIC SYMBOL

z•
Ao At I 18 Vee
A9(1(As

""
A,
A3

Cs/WE Ao

2 17 A1 1/01
3 16 A a
4 2114 15 A9
5 14 110,

M27D8 lobo AI
A2

PROCRAM cs
GND

6 13 1/02 1/03
7 12 1/03
8 II 1104 1/04
9 10 WE

<>&

os

o.
03 PIN NAMES

Ao-A9 ADDRESS INPUTS Vee POWER (+ 5 V)

PIN NAMES WE WRITE ENABLE GND GROUND

ADDRESS INPUTS cs CHIP SELECT
OAT A OUTPUTS/ INPUTS
CH IP SELECT/WRITE ENABlE INPUT 1/0rl/04 DATA INPUT/OUTPUT

Fig. 1·2. Pin conflgur1tion for 2708 1K X 8 PROM 1nd 2114 lK X
4 R/W memory.

Downloaded from www.Apple20nline.com

13

• The 8080A/9080A MOS Microprocessor Handbook, Advanced
Micro Devices, Inc., Sunnyvale, CA 94086, 1977.

• Mostek Memory Products Catalog, Mostek Corporation, Car-
rollton, TX 75006, 1977.

• Bipolar and CMOS Memory Data Book, Harris Semiconductor
Prod. Div., Melbourne, FL 32901, 1978.

INPUT/OUTPUT (1/0) DEVICES

Most microcomputer-based systems are worthless without some
attached I/0 devices. These devices may be standard peripherals,
such as card readers, printers, displays, or they may be sensors, con-
trollers, and other devices that most people do not nonnally associate
with computers. The Apple is no exception. It already has several
I/0 devices associated with it: a television display, a cassette re-
corder, and a keyboard.

Other I/ 0 devices can be added to your computer. These devices
may be of your own design or they may be standard, commercially
available devices that are compatible with the Apple. These I/0
devices are much like the individual memory locations that were dis-
cussed in the previous section. The I/0 devices are attached to the
data bus, since data is transferred to them and from them, and they
are also connected to the address bus so that they may be uniquely
addressed by the 6502 microprocessor chip.

A control signal, READ/W'RITE or R/W, is used to synchronize
the Row of data to and from the I/0 devices. This signal is also used
in 6502-based computer systems to control the Row of information
to and from the memory chips. Thus, there is no differentiation be-
tween memory addresses and I/0 device addresses in 6502-based
computers. In computers that are based upon the 8085- or Z-80-type
microprocessor chips, there are different techniques that are used to
address memory and I/0 devices independently. Since only one syn-
chronizing signal is used to control memory and I/0 devices, the
Apple's 6502 processor will be either reading or writing at all times.
When the R/W signal is a logic one, the 6502 is reading information
from the data bus. When the R/W signal is a logic zero, the 6502 is
writing data to an external I/ 0 device, or to a memory location. The
"bar" over the vV simply means that the write operation takes place
when the R/W signal is a logic zero. You may see other signals with
such bars over their names. This simply means that the signals are
active in the logic zero state.

Since we will be concentrating on the use of I/ 0 devices with the
Apple, we have left a great deal of the specific discussion to the re-
maining sections.

14

Downloaded from www.Apple20nline.com

Review
At this point, you should understand that the 6502 transfers and

operates on eight bits of data at a time. Complex calculations and
operations often require multiple groups of eight bits or bytes. The
bytes are transferred to and from the 6502 CPU on an 8-bit bus.

Table 1-1. Control Signals Used for Interfacing

DATA 8US 07-DO An 8-bit bidirectional set of lines for transfer of
information between the CPU and 1/0 devices.

ADDRESS aus A15-AO A 16-bit unidirectional address bus used to ad·
dress both memory and 1/0 devices.

A15-A8 HI address bus, most-significant eight address
bits.

A7-AO LO address bus, least-significant eight address
bits.

CONTROL SIGNAL R/W Read/ write control signal.
NOTES: The " bar" notatoon, o.e., W, ondocates a logic zero os the " actove" state, the state that

causes the corresponding action to take place.
In each case in which a signal is enumerated, the numbers increase as the significance of the

bits increases, i.e., A15 = most-significant address bit (MSB).

The 6502 uses a 16-bit address bus to address individual memory
location and I / 0 devices. The address bus is frequently broken into
a HI and LO address bus, of eight bits each. The single control sig-
nal, R/W, controls the flow of information to and from the 6502 CPU.
The signals and their designations are noted in Table 1-l.

SOFTWARE 1/0 CONTROL INSTRUCTIONS
1/0 Commands

The Apple computer has a number of instructions that are used to
control I/0 devices. For the most part, though, these instructions are
used to control specific I/0 devices or to perform specific functions.
Without realizing it, you are already familiar with some, if not all,
of these I/0 instructions.

Here are some specific examples of these I/ 0 control instructions,
to refresh your memory.

The INPUT and PRINT commands are probably familiar to you.
The INPUT command causes a BASIC program to stop and wait for
an input from the keyboard. The PRINT command causes an answer
or string of characters to be "printed" on the tv screen.

Example 1-1. A Simple 1/0 Progr•m
10 INPUT "VALUE OF X IS"; X
20 PRINT " INPUT VALUE WAS"; X

Downloaded from www.Apple20nline.com

15

If you executed the program in Example 1-l, the value associated
with the variable, X, would have to be entered into the computer
before the program passed control to statement 20. These two types
of 1/0 statements are frequently used to allow an operator to enter
a value and to see it displayed. There are many variations of both the
INPUT and PRINT commands, but these two examples serve to il-
lustrate the point; you have already been using I/ 0 operations in
BASIC-language programs without difficulty.

You may have already discovered that there are also graphic dis-
play I/0 commands in BASIC, too. These are commands such as
HOME, PLOT X,Y and SCRN (X,Y). The HOME command clears
the screen, and places the blinking cursor at the "home" position in
the upper left-hand corner of the tv screen. The PLOT and SCRN
commands require the use of ''coordinates" to indicate where an
operation is to take place.

The program in Example 1-2 shows how some simple graphic dis-
play commands are used in a short program. This program generates
a display of randomly changing colored dots on the tv screen. If you
are using a black-and-white (b/w) tv, you will see the dots in vary-
ing shades of gray.

Example 1-2. A Random Color Pettern Gener.tor Using 1/0 Commands
10 GR
20 X = INT(40*RND(1)) + 1
30 Y = INT(40*RND(1)) + 1
40 COLOR= INT(15*RND(1)) + 1
50 PLOT X,Y
60 GOTO 20

There are two other commands that you may not have considered
to be I/0 commands. These are the LOAD and SAVE commands
that are used to read and store programs on cassette tapes. Each
command causes a preset series of operations to take place, control-
ling the cassette recorder. The use of these commands is fairly obvi-
ous, so we will not provide an example.

Other l/0 commands are the IN#X and PR#X operations that are
associated with special l/0 devices that can be substituted for the
keyboard and tv display. It is important that you realize that these
1/0 instructions are specific to the Apple computer and its BASIC-
language interpreter program. These instructions would be mean-
ingless to other 6502-based computer systems, unless they used the
Apple BASIC program. The instructions are also specific to one I/ 0
device, i.e., the HOME command will not have an effect on the cas-
sette recorder, or any other l/0 device. Likewise, the INPUT com-
mand controls the input of values only from the keyboard on the
console.

16

Downloaded from www.Apple20nline.com

General-Purpose 1/0 Commands
Although there are some general-purpose l/0 commands in the

INTEGER BASIC interpreter program for the Apple computer, for
this book we have chosen to use what we consider to be the more
flexible APPLESOFT BASIC interpreter program. If you wish to
convert your Apple computer to this program, a local Apple com-
puter dealer can assist you.

The two I / 0 device commands are PEEK and POKE. They are
used to transfer data to an external device from the computer
(POKE), and to the computer from an external device (PEEK).
There is a specific format for these instructions that must be used if
the instructions are to operate properly.

Input and output devices will be referred to as ports. Thus, an out-
put device will be an output port and an input device will be an in-
put port. This is standard nomenclature used throughout the micro-
computer industry.

The output instruction, POKE, must specify the address of the
1/ 0 device that is to be involved in the transfer of data and also the
value that is to be transferred to the addressed device. The actual
format for the POKE instruction is POKE, x,y, where the x value
represents the decimal address of the output device that is to receive
the data value, y. The data, y, must also be a decimal number. Since
the 6502 microprocessor chip can address 65536 memory locations,
the address must be within the range of 0 to 65535, inclusive. The
data value must be within the range of 0 to 255, inclusive, since the
computer uses an 8-bit data bus for all data transfers, and the largest
number that can be transferred on such a bus is 255.

The value 215 is sent to output port 12684 in the following state-
ment: POKE 12684,215.

The input instruction, PEEK, is similar to the POKE instruction,
except that no data value is incorporated into the command. We are
interested in determining the value present at the specific input de-
vice, so only the decimal address of the input device is specified ;
PEEK (x), where x is the decimal address of the input device.

It does little good to input a value without doing something with
it, so the input command is always incorporated in a complete state-
ment, rather than being a statement by itself. An example of this is
Q= PEEK (34579).

In this case, the variable, Q, is assigned the decimal value that has
been input from device 34579. It is important that you remember to
enclose the address of the input device in parentheses.

Whenever a PEEK command is used, the· value that is input will be
between 0 and 255, inclusive. Again, this is due to the limitation of
8-bit transfers.

17

Downloaded from www.Apple20nline.com

Table 1-2. Valid Input (PEEK) and Output (POKE) Command Structures

POKE 45124,98
POKE N,120
POKE 45124,X
POKE X,M

l = PEEK (231 09)
l = PEEK (Q)

The input and output commands may have variables specified
within them, rather than specific values for port addresses, and in the
case of the POKE command, data values. Thus, all of the PEEK and
POKE commands shown in Table 1-2 are valid. We have assumed,
of course, that the values for the variables, N, M, X and Q have been
specified somewhere in the program prior to the use of the instruc-
tions shown in Table 1-2.

Input and output commands in which the address values exceed
65535 will generate an ILLEGAL QUANTITY ERROR in the Apple
computer. An attempt to output a numerical data value that exceeds
255 will also generate an ILLEGAL QUANTITY ERROR.

We have provided some examples that show the use of the POKE
and PEEK commands. While the programs shown in Example 1-3
can be executed, they will not do anything useful, since you do not
have any external l/0 ports connected to your computer, at present.

Example 1-3. Simple 1/0 Programs for PEEK and POKE Commands

10 INPUT " OUTPUT PORT # =";P
20 INPUT " VALUE FOR OUTPUT"; V
30 POKE P,V
40 GOTO 10

10 INPUT " INPUT PORT # = "; M
20 PRINT " VALUE AT PORT ="; PEEK--(M),
30 GOTO 10

Since 6502-based computers cannot distinguish between memory
locations that are used for the temporary storage of programs and
data, and those that are being used for l /0 ports, the PEEK and
POKE instructions are frequently used to examine and alter the con-
tents of various memory locations within the Apple. If you POKE
information into read/write memory in an indiscriminate fashion,
you may "write over" important parts of your program, or informa-
tion that has been temporarily stored by the BASIC interpreter. The
net effect is a "crash" of the computer system, in which your program
and data will be lost or significantly altered. It is probably not a good
idea to randomly POKE information into various addresses, until
some specific guidelines are provided. Of course, you can use the
PEEK command to examine the contents of a memory location
whenever you wish, since this command will not alter the contents

18

Downloaded from www.Apple20nline.com

of an examined memory location. From the previous discussion of
memory devices, you should realize that the POKE operation will
have no effect on the read-only memory devices in the Apple.

Memory Maps
At this point it is a good idea to take a look at the "maps, of the

memory addresses that are used by the Apple. A complete 64K mem-
ory map is shown in Fig. 1-3. For the sake of convenience, the mem-
ory addresses are provided in both decimal (base-10) and hexadeci-
mal (base-16) notation. The hexadecimal numbers have a suffix of
"H" to distinguish them from the decimal numbers.

The memory space for the Apple computer has been divided into
four 16K blocks. Three of the blocks have been assigned for R/W
memory, and most Apple computers have the R/W #1 block "filled"
with read/write memory chips. The remaining R/W blocks may be
used for future expansion of R/W memory, if this is required for par-
ticular applications. In most cases, we have found that 16K of R/W
memory is sufficient. Add-on memory chip kits are available from
many suppliers, and most Apple users can probably add the addi-
tional memory chips to their system without much difficulty.

The remaining 16K block of memory has been set aside for both
ROM and I/0 port addressing. The system ROMs for the Apple,
which include the BASIC interpreter and the monitor programs, take
up 12K of this space. The remaining 4K space is divided into two 2K
spaces for I/ 0 addressing and future expansion of the Apple. The
I/0 block with addresses COOOH to C7FFH, inclusive, is the one
of major importance for interfacing, since it has been specifically set
aside for this purpose and it will never be used in Apple computer
systems for any other purpose. Some of the addresses within this 2K
block have been used by the Apple for controlling things such as the
speaker, the keyboard, and the cassette recorder. The actual address

49152 COOOH

0 OOOOH / 51199 C7FFH
2K 1/0 #1 / 51200 C800H

16383 3FFFH 2K 1/0 #2 53247 CFFFH
16384 4000H - 53248 DOOOH

32767 7FFFH 12K SYSTEM ROMS
32768 8000H - 65535 FFFFH

49151 BFFFH EXPANDED VIEW OF UPPER 16K
49152 COOOH

65535 FFFFH

Fig. 1-3. 64K Memory map for the Apple computer .

19

Downloaded from www.Apple20nline.com

assignments are shown in Table 1-3. We refer you to Basic Program-
ming Reference Manual, and Apple II Reference Manual, for details
on the actual use of these I/ 0 addresses. These manuals are provided
with the Apple II computer, and are also available from Apple Com-
puter, Inc., 10260 Bandley Dr., Cupertino, CA 95014.

The remaining 2K block of memory, C800H-CFFFH, has been set
aside for future expansion. You may use this space for additipnal
read-only memory, if you have long programs that you wish to have
readily available.

Table 1-3. Apple 1/0 Addresses and Their Uses

Address

Fun<tion Decimal* HeXildecimal

Keyboard data 49152 cooo
Clear-keyboard strobe 49168 COlO
Speaker 49200 C030
Cassette Output 49184 C020
Cassette Input 49256 C060
Flag Inputs 49249-49251 C061-C063
Analog Inputs 49252-49255 C064-C067
Analog Clear 49264 C070
Uti lity Strobe 49216 C040

.. *Only pos1t1ve addresses g1ven. To calculate negative addresses, lust add -65536 to the deci-
mal addresses provided.

In later sections of this book, the actual use of the I/ 0 addresses
will be described in detail. At this point, it is sufficient that you un-
derstand that a specific set of memory addresses has been set aside
for your particular applications. You should also realize that the
memory map shown in Fig. 1-3 is particular to the Apple computer.
Other 6502-based computers will probably have different memory
maps, with R/W memory, read-only memory, and 1/0 device ad-
dresses located in different areas of the map.

Software Commands and Interface Circuits
As you are probably aware by now, the PEEK and POKE instruc-

tions each cause some actions to take place, either at I/ 0 devices or
at memory locations, as a direct result of the use of the instruction.
Instructions such as A=l.359 will cause some values to be stored in
memory, but we do not know what memory locations the Apple has
assigned to the variable "A" and we do not know how the value 1.359
has been stored. The PEEK and POKE instructions each cause a
definite, known sequence of operations to take place, transferring
data bytes, generating control signals, and transferring address in-
formation on the address-bus lines. These definite and reproducible
actions allow us to use these commands to control 1/0 devices. We

20

Downloaded from www.Apple20nline.com

will now explore the actions that each of these software commands
causes to take place.

The PEEK and POKE instructions operate in a very similar man-
ner. In each, an address is specified, requiring 16 bits of informa-
tion. During the execution of either instruction, the address informa-
tion contained within the command is transferred to external devices
on the address-bus lines, A15-AO. In this way, the I / 0 device address
is available to all of the devices and circuits that are connected to
these address lines, both memory and I/ 0 devices.

When a POKE instruction is used in a program, the data value is
also output by the 6502 chip, but on the data-bus lines, D7-DO. Once
the data bits and the address bits are "stable" or present on their re-
spective buses in useable form, the 6502 asserts the READ /WRITE
signal on the control bus. This synchronizes the acquisition of the
data by the I/ 0 device that was addressed. Of course, external cir-
cuitry is required to "capture" the data, as well as to identify the se-
lected I/ 0 device and synchronize it with the 6502-based system. A
timing diagram for these signals, as they appear on the 6502 system,
in this case the Apple, is shown in Fig. 1-4. Of course, the POKE
command involves many assembly-language instructions, and the
timing diagram shows what happens only during the time of the
actual data transfer. At this poirit, we are only concerned with what
the 6502 does during a POKE operation.

When a PEEK instruction is executed, the data is not contained in
the instruction, but is acquired from an external I/0 device. Only
the address is specified. The 16-bit address is placed on the address-

f------------Tcyc----------1

01 (APPLE 911

(APPLE 00)

RIW

ADDRESS
FROM =MPc...::U--1,.........-

DATA
FROM MPU

T110S

Fig. 1-4. Write operation signal relationships. (See Appendix C.)

Downloaded from www.Apple20nline.com

21

bus lines when the PEEK instruction is executed. When the address
information is present, the corresponding 1/0 device must place its
data on the data bus so that it may be accepted by the 6502 proces-
sor. During a read operation, the R/W signal from the 6502 is a logic
one. Additional circuitry is required here, too, to select the I/ 0 de-
vice and to gate its data onto the data bus. A typical timing diagram
for the PEEK command is shown in Fig. 1-5.

ADDRESS
FROM MPU

DATA FROM
MEMORY

(APPLE 81)

(APPLE 00)

1--- - --TAcc---------1---
Fig. 1-.5. Read operation signal relationships. (See Appendix C.)

We will describe shortly some of the circuits that are used for in-
put and output ports. You have probably realized that while we have
described an I/0 port as one that can either receive data that is out-
put by the microcomputer or transmit data that is input by the micro-
computer, some I/0 devices may actually contain a number of indi-
vidual l/0 ports. Industrial controllers, data storage devices (disks,
cassettes), analog converters, and other 1/0 devices may have a
number of 1/0 ports, since they may require more than eight bits of
information from the computer and they may also need to transfer
more than eight bits of information to the computer. In any case,
transfers of data that contain more than eight bits always involve
the transfer of multiple bytes to and from the computer and the in-
dividualS-bit 1/0 ports. This is important to remember: information
is aluxlys transferred eight bits at a time.

Software Command-Data Transfer and Control
In most cases, the PEEK and POKE commands will be used to

transfer 8-bit data values between the 1/0 devices or memory loca-
tions and the 6502 computer. As we noted previously, some data

22

Downloaded from www.Apple20nline.com

transfers will require more than eight bits of information, so multi-
ple bytes are transferred, one byte at a time.

There are also cases in which the actual value of the data trans-
ferred is meaningless. The bits may be used to represent individual
two-state conditions that are unrelated to the positional values of
the bits. For example, a number of sensors could be connected to the
Apple indicating conditions such as tank empty-or-full, heater on-or-
off, value open-or-closed, and so on. A PEEK command could be
used to input the status of these indicator bits, through an 8-bit input
port. Thus, the value read from this input port might be 100, but the
port is sensing eight individual on or off (logic one or logic zero)
states, so the value of 10010 is meaningless. The individual binary
b"its each represent the state of an individual sensor. In this case:

10010 = 011001002
This indicates that three of the sensors are in the logic one state and
five are in the logic zero state.

The POKE and PEEK commands can also be used in a similar
manner to turn a device on or to tum a device off, based upon the
state of the individual bits that have been sensed elsewhere in a con-
trol program. In fact, many of the I/0 addresses used by the Apple
are assigned to simple on/ off devices such as the speaker. Thus, a
simple command:

A = PEEK(49200)
' will generate a 'blip" on the speaker in the Apple. You should under-

stand that the variable, A, is a "dummy," and its final value is not im-
portant, since the net effect of the simple BASIC statement is to
pulse the speaker once. The speaker control command may be used
in a loop to generate a low buzz from the speaker. This is shown in
Example 1-4.

Enmple 1-4. A Simple Speaker Control Program
10 A = PEEK(49200)
20 GOTO 10

The important point to remember here is that the PEEK and
POKE instructions are not limited simply to controlling the transfer
of information on the data bus. They may also be used for specific
control functions, such as pulsing a counter, turning on a pump, or
tilting a solar collector.

Assembly Language and BASIC
The BASIC-language programs that you write on your Apple com-

puter bear very little relationship to the actual instructions that the
6502 microprocessor chip can actually execute. Each of your BASIC

Downloaded from www.Apple20nline.com

statements and commands is interpreted by the BASIC interpreter
resident within the Apple computer. A programming manual for the
6502 chip, itself, would bear little relationship to the Apple software
manual The commands are very different.

The 6502 does not have a PRINT command, so it would not per-
form the following operation:

PRINT " THIS LOOKS LIKE FUN"

The BASIC interpreter determines that a PRINT operation is to take
place and it then executes a series of assembly language program in-
structions that actually place the codes for the alphabetical charac-
ters in the display memory to spell out, "THIS LOOKS LIKE FUN."
The assembly language steps consist of logic ones and zeros that
cause the necessary internal and external 6502 operations to take
place to transfer the message portion of the PRINT command to the
display memory.

While we will not use assembly language progranuning to any ex-
tent in this book, you should be aware that it is the "base" computer
language that causes the Apple to operate the way that it does.

The PEEK and POKE commands each cause many, many assem-
bly language commands to be executed to produce the overall effect
of data transfer: Since these BASIC language instructions must be
interpreted, even when used one right after another, or in a loop, the
interpretation software process can be slow. Two programs are
shown in Example 1-5, both of which control the speaker in the
Apple. Each series of program steps does the same thing; generating
a tone on the speaker. Simply by listening to the differences in the
two tones produced, you will be able to appreciate the difference in
the speeds of execution of these programs.
Example 1-5. Comparison of Assembly Language and BASIC Programs for Speaker Control

Basic Program
10 A = PEEK(49200)
20 GOTO 10

Assembly bnguage
GO LDY #$CO
LOOP LDA # $0C

JSR WAIT
LOA SPKR
DEY
BNE LOOP
JMP GO

The assembly language program generates a pleasing, even tone,
while the BASIC program generates a low rumble. The assembly lan-
guage program is similar to the one used by the Apple Monitor pro-
gram where the internal WAIT subroutine has been used to generate
a delay.

In some cases, assembly language programs have a five-hundred
to one advantage over BASIC programs, although the BASIC pro-

24

Downloaded from www.Apple20nline.com

grams are probably easier to write and debug. Assembly language
programming is generally not recommended for the novice.

\Ve will be mentioning assembly language programming very lit-
tle, concentrating on the use of BASIC language programming in-
stead. For further information on 6502 assembly language program-
ming, we recommend 6502 Software Design and Programming and
Interfacing the 6502, With Experiments (Howard W. Sams & Co.,
Inc., Indianapolis, IN 46268).

Binary and Decimal Numbering
The Apple computer system acquires, processes, and prints deci-

mal (base-10) numbers. This makes it coihpatible with the number-
ing used by most people today. It would be difficult for us to readily
understand and convert data values that were printed in a nondeci-
mal format. The data and address lines are directly connected to the
6502 microprocessor chip, so they are binary, having only two states-
a logic one or a logic zero. Thus, when we specify an I/ 0 port ad-
dress in a PEEK or POKE command, we must realize that the ad-
dress (0-65535) will appear in its binary form on the address bus
(0000000000000000-1111111111111111). You should be able to make
the conversion between decimal and binary, in either direction.

Likewise. the data values transferred to and from the computer
by the PEEK and POKE commands are also specified or acquired as
8-bit binary values, since the data bus is only eight bits "wide." The
8-bit data bus is a function of the data processing capability within
the 6502 chip. It is not a function of the Apple. Thus, we are limited
to 8-bit data transfers. Is this a great limitation? Generally not. In
spite of it, the Apple can process a great deal of information, and, as
you will see later, it is easy to interface to I/0 devices.

One final note on addresses is necessary before leaving this chap-
ter. The BASIC interpreter in the Apple computer has been set up
to handle both negative and positive addresses. lhis does, not mean
that there are actually negative addresses in the computer. Can you
imagine negative street numbers? The negative numbers are simple
due to the way in which the binary equivalents of the addresses are
stored in the Apple. Thus, the address for the speaker, 49200, is
equivalent to -16336. To avoid confusion, we strongly recommend
the use of the positive addresses. You can easily convert between
negative and positive addresses simply by (a) adding 65536 to a
negative address to yield the positive equivalent, or (b) by subtract-
ing 65536 from the positive address to yield the negative equivalent.
Both addresses, 49200 and -16336, generate the same 16-bit address,
but we think that you will agree that negative addresses can seem a
bit abstract and confusing.

25

Downloaded from www.Apple20nline.com

CHAPTER 2

Apple Interfacing

At this point, you are probably wondering:
• How does the Apple actually transfer information to l /0 de-

vices?
• How are the l /0 devices actually synchronized to the operation

of the computer?
• How are individual I/0 devices selected or identified?
• How do l / 0 devices place their data on the data bus and how

do they actually receive it from the data bus?
These are important questions, since the answers to them will pro-

vide the basis for your understanding of microcomputer interfacing.
We will be answering these questions in this and other chapters. We
will also provide some experiments that will reinforce the concepts
through hands-on experience.

A few examples of digital circuits will be provided in this chapter.
We have assumed that you can "read" and interpret a logic circuit
diagram, and that you are familiar with the more common SN7400-
series transistor-transistor logic (TTL) circuits

l/0 DEVICE ADDRESS DECODING

Before we can discuss the actual transfer of information between
I/ 0 devices and the computer, we must first understand the circuitry
and the signals that are used to identify or address the individual
l/0 devices. There are many schemes that may be used and we will
examine several of them. It is impossible to show every possible
scheme for addressing 1/0 devices, since modifications will be made
to suit special needs.

26

Downloaded from www.Apple20nline.com

When the Apple computer is programmed to perform a data trans-
fer using either of the general-purpose I/ 0 commands, PEEK or
POKE, certain signals are generated by the 6502 processor to syn-
chronize the flow of data. At this point, our main concern is the use
of the address bus lines. These are the 16 lines that address individ-
ual memory locations and l / 0 devices. You should recall that the
PEEK and POKE instructions each contain decimal address infor-
mation that is used to identify the addressed memory location or 1/ 0
device. Of course, the Apple computer has no way of distinguishing
between a memory location and an 1/ 0 port.

DEVICE ADDRESSING

Each 1/0 device that is to be used with the computer must be able
to recognize its own device address. Since the PEEK and POKE
commands use 16-bit addresses, each l / 0 device must monitor these
16 address lines, A15-AO, for the occurrence of its address. There are
three basic schemes that may be used by I / 0 device circuits to ac-
complish the monitoring for a specific address. These are:

• Gating-detecting a specific combination of logic signals.
• Decoding- a more flexible gating scheme in which many ad-

dresses may be detected.
• Comparing-comparing a preset or known address with the ad-

dress-bus signals until a match occurs.
Combinations of these three techniques are possible and there are
probably many variations that are possible. We will describe exam-
ples of each of the three basic address decoding schemes.

Using Gates for Address Decoding
In the scheme for decoding device addresses in which individual

gates are used, the address must be known so that the gates can be
properly configured. In this example, we will use the device address
10101000111101112 or 4325510. Since the binary notation is long, and
somewhat cumbersome, you might feel more comfortable with the
hexadecimal equivalent, A8F7H. Since NAND/ AND gates are the pre-
dominant type of gating logic available, we will use these types of
circuits in our logic.

To refresh your memory, the pin configurations for several types
of AND/ NAND gates are shown in Fig. 2-1, with the generalized truth
table for a two-input AND gate and an equivalent NAND gate shown
in Table 2-1. Since inverters such as the SN7404 are often found in
device addressing circuits, a pin configuration for this chip has been
included in Fig. 2-1. The truth tables in Table 2-1 also show the func-
tion of an inverter. In all cases, the logic one state is the higher volt-

27

Downloaded from www.Apple20nline.com

1A 18 1Y 2A 28 2Y GND

SN7400 SN7404

SN7408 SN7410

SN74H11

1A 18 2.A 2.8 ZC 2Y GND

Fig. 2-1 . Inverter and various AND/NAND gate pin configurations.

age (+2.8 to +5 volts) and the logic zero state is the lower voltage
(0.0 to 0.8 volt). The NAND gate functions are available with 2, 3, 4,
8, and 13 inputs, while the AND gates are available with 2, 3, or 4
inputs.

Since the unique output state, logic one for an AND gate and logic
zero for a NAND gate, occurs only when all of the inputs to an AND or
a NAND gate are all logic ones, we will have to configure the binary
address 10101000111101112 so that it generated 16 logic ones at the
input to the AND or NAND gate, when it is present on the 16-bit ad-
dress bus. You have probably realized that there are no 16-input AND
or NAND gates available commercially, so some other configuration
must be used instead. It is very easy to use a separate 8-input NAND
gate to detect a pattern of binary address bits on the high-address
bus (A15-A8) , and another 8-input NAND gate to detect a pattern of
binary bits on the low-address bus (A7-AO). Simple inverter func-

28

Downloaded from www.Apple20nline.com

TCible 2-1 . Truth TCibles for Cl Two-Input AND Gate,
NAND GCite Clnd Cln Inverter

AND Gate NAND Gate Inverter

Inputs Output Inputs O utput Input Output

A B Q A B Q A Q
0 0 0 0 0 1 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 0

tions are used to invert the logic zero address bits so that they apply
logic ones to their corresponding gate inputs, as shown in Fig. 2-2.
In this circuit, two inverters and a NAND gate have been used to com-
bine the output from each of the 8-input NAND gates, so that the out-
put of the circuit will be a logic zero only when the complete pattern
of 16 bits, 10101000111101112, is detected on the 16-bit address bus.

A15 1---------t
A14 0
A13
A12 0
All 0-----1
A10 0 ----l:>o------r-

A9 0 -----t ;,o0----1
A8 0 ---i.>c:>-----1

A7
A6
AS
A4 1 ---------t
A3
A2 1--------r--
A1
AO 1---------t

DECODED ADDRESS
4325510 = A8F7H

Fig. 2·2. Gating circuit used to decode address 43255 or A8F7H.

One of the disadvantages of this circuit is that some of the address
signals must go through four gates before reaching the decoded ad-
dress output from the 2-input NAND gate. Since each gate delays the
signal slightly, this might cause some timing problems in the circuit.
Actually, the time delays are fairly minor, and we will ignore them
for now. The delay can be reduced somewhat by using a NOR or OR
gate in the circuit to combine the outputs from the two 8-input NAND
gates. This is good design practice. NOR and OR gates are readily
available and are used quite extensively in computer interfacing. A

29

Downloaded from www.Apple20nline.com

1V lA 18 2't" 2A 28 GNO

SN7402 SN7432
Fig. 2-3. Typical NOR and OR gate IC pin configuration5.

typical NOR and OR gate are shown in Fig. 2-3, with the correspond-
ing truth tables provided in Table 2-2.

While the gating scheme shown in Fig. 2-2 is effective in decoding
a single address, and relatively inexpensive, it is inflexible. A more
flexible approach is shown in Fig. 2-4. This circuit illustrates the use
of a gating scheme in which inverters may be used to invert individ-
ual address bits, as required. The bits may also be used without in-
version. The jumpers allow the device address to be preset, as illus-
trated in Fig. 2-5. In this circuit, only the low-address bus gating has
been shown, for clarity. A duplicate gating circuit is required for the
high-address bus lines. In this type of a gating circuit, any one of the
65536 possible addresses may be selected, but only one at a time.

The programmable gating circuit provides broad flexibility, in
that addresses are easily changed to meet specific requirements for
an interface, but such a circuit can select only a single address, and
this is a severe limitation. When several I / 0 devices are located on
the same circuit board, each will require its own address gating cir-
cuit. This limitation can be overcome with other addressing schemes.

Unfortunately, the gating schemes that we have shown are not all
that is required to uniquely address and control an I/ 0 device. You
should recall from the discussion of the READ/WRITE (R/W)
signal in the previous chapter, that the R/W signal is used to synchro-
nize the flow of information to and from the computer. The l/0 de-
vices must also use this control signal, if they are to use the data bus
properly. In many intedaces that are designed for 6502-based com-

Table 2-2. Truth Tables for a Two-Input NOR Gate and OR Gate

NOR Gate OR Gate

Inputs Output Inputs Output

A B Q A B Q
0 0 1 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 0 1 1 1

30

Downloaded from www.Apple20nline.com

JUMPERS

l
_.o --4--:/

INPUTS : :l 4 :..----1--......

. 4
DECODED OUTPUT

Fig. 2-4. A simple 4-input gate that can be programmed for l's and O's.

puter systems, the R/W line is used to provide the logic-zero write
pulse, with the R/W signal being inverted to generate a separate
read pulse. The two resulting control signals, WRITE (WR) and
READ (liT>), are easy to use in interface circuits, since they are ac-
tive in the logic zero state. The use of these signals is shown in Fig.
2-6. In this circuit, the output from the 16-bit gating circuit is com-
bined with RD and WR to provide two signals for 1/0 port control.
These two control signals are a combination of the decoded address
and the WRITE pulse, and a combination of the decoded address
and the READ pulse. The resulting pulse from each gate is called an
address select pulse, or a device select pulse. More generally, a de-
coded address is gated with a function pulse (RD or WR) to gener-
ate a device select pulse. In the circuit diagram shown in Fig .. 2-6, the
RD 49280 pulse could be used to control an input port, while the
WR 49280 pulse could be used to control an output port. Note that
the notation for the WR 49280 pulse does not have a . "bar" over it.

FROM HIGH-ADDRESS GATE

Fig. 2-5. Programmable gate used for device address decoding. (High address
section is equivalent.)

Downloaded from www.Apple20nline.com

31

FROM HIGH-ADDRESS GATE

Fig. 2-6. Using RD and WR 5ignal5 to generate device select pulses for
device synchronization.

This means that the pulse is active in the logic one state, while the
RD 49280 pulse is active in the logic zero state. In this example, it is
quite proper to note the address on the I/0 ports by using a hexa-
decimal value, for example, RD C080H. .

Before going further, you should be sure that you understand that
a reading operation involves reading information into the computer
from an input port, while a writing operation involves the transfer of
information from the computer to an external device. It is also quite
proper and useful to use one address to control an input port and an
output port. Since the RD and WR pulses cannot be coincident,
there is no con.B.ict between an input port and an output port that
have been assigned the same address. You cannot assign two input
ports the same address, and you should not assign two output ports
the same address. In fact, you may find that even though an input
port and an output port have been assigned the same address, they
may be unrelated as to their function, and may be used on separate
interface circuits.

The concepts and the basic circuits that have been developed in
this section are very important and they will be carried forward to
other sections and chapters. It is important that you understand the
use of the signals that have been discussed to select devices. We have
not yet discussed what these input and output devices are, or how
they work, but we shall discuss this in the next chapter.

32

Downloaded from www.Apple20nline.com

Using Decoders
In many cases, it is easier to use decoder circuits in place of the

gate address detecting circuits, and, in some cases, in place of the
NOR-gate device select circuits, too. Why are decoders so useful?
Perhaps it is best to take a look at several types of decoders to see
what they look like and how they operate. As you examine the de-
coder circuits, keep in mind that they are simply coiiections of gates
that have been "integrated" into an easy-to-use decoder circuit.

Decoder circuits are generaily specified as x-line to y-line decod-
ers, where x Fepresents the number of binary inputs, say four inputs,
and where y represents the number of possible outputs, or the num-
ber of different binary states present on the x inputs. Thus, for the
four inputs, there would be 16 possible outputs, creating a 4-line to
16-line decoder or a 4- to 16-line decoder. This is, in fact, a real de-
coder circuit, as you will see.

Each of the binary inputs has two states, a logic one and a logic
zero. These inputs are independent of one another. The outputs are
also binary, in the sense that they have two possible values, but they
are not independent. There will only be one unique output from the
decoder, representing the value or "weight" present at the binary in-
puts. In most cases, the unique output state is a logic zero, with the
other outputs in their logic one state.

A typical decoder integrated circuit is the SN74LS139. This inte-
grated circuit actuaily contains two independent two-line to four-
line decoders, as shown in Fig. 2-7.

The truth table for the SN74LS139 is shown in Table 2-3.
Of course, the truth table applies to both of the decoders within

the SN74LS139 integrated-circuit package, or "chip." Most decoder
circuits incorporate an enabling input, so that the decoder may be

' LS139, 'S139

SELECT OATAOUT'VTS

Fig. 2·7. SN74LS139 decoder chip schematic diagram end pin configur1tion.

Downloaded from www.Apple20nline.com

DATA
OUTPVTS

33

Table 2-3. Truth Table for an SN74U139 Decoder

Inputs Outputs

En•ble Select
G B A YO Y1 Y2 Y3

H X X H H H H
L L L L H H H
l L H H L H H
L H L H H L H
L H H H H H L

H - hogh level l =low level X = orrelevant (don't care)

turned on or turned off by one logic input. This is the function of the
ENABLE or "G" input on each of the decoders in the SN74LS139.
Note that when the "G" input is a logic one, all of the outputs are
forced into the logic one state, regardless of the states of the A and
B inputs. This allows the decoder to be gated on or off. In the off
state, the power is not removed, but the outputs are all forced into
the logic one state.

Let us now examine a simple, rather trivial, example of the use of
a two-line to four-line decoder for device address decoding. We will
assume that we only have a few 1/0 devices, so that the decoders in
the SN74LS139 decoder package can handle our needs. A typical
decoder circuit is shown in Fig. 2-8. In this circuit, only two address
bits have been decoded, the rest have been ignored. Note that the
enable input has been grounded so that the outputs of the decoder
will operate properly. The added NOR and OR gates generate the
actual device select pulses.

The device select signals have been noted as RD X, RD Y, and WR
Y, since there is no specific address that will actuate each. Addresses
01010101 00000010, 00011101 11110110 and 00000000 11111110 will
all cause the RD X device select pulse to be generated, if they are

RD X

DECODER

>---- if5"Y

w
WR

»---WRY

Fig. 2·8. 2-Line-to-4-line decoder used for device addressing.

34

Downloaded from www.Apple20nline.com

used in PEEK commands, for example A=PEEK(2I762). This non-
absolute device addressing results because address bits AI5-A2 have
not been used in the decoding scheme. Nonabsolute addressing
means that there are several addresses that will actuate the selected
device. The circuit shown in Fig. 2-8 will decode four addresses and
thus eight individual devices may be selected, four input devices
and four output devices; additional NOR gates or OR gates are re-
quired, though. In a small system, this may be adequate, although
the decoding scheme does not provide a great deal of flexibility in
allowing the addition of new 1/0 devices beyond the original eight.
Although this scheme is not very flexible, let's take a closer look at
it, since it allows us to develop two other concepts that can be ap-
plied to other decoder schemes.

In Fig. 2-8, the enable input, "G,'' of the decoder is simply
grounded, to always enable the decoding action. This input can allow
the decoder to be used for absolute decoding. A gating circuit can be
used to supply an enabling signal to the decoder only when a preset
pattern of address bits, on address lines AI5-A2, is present. You have
already seen the use of multiple-input gating circuits; the circuit in
Fig. 2-5 is a good example. This circuit can be readHy adapted to
provide the enable input for a simple decoder. Since the AI and AO
inputs are being used as inputs to the decoder, they are not used as
inputs to the gating circuit that provides the decoder-enabling sig-
nal. A simple example of this is shown in Fig. 2-9. In this circuit, the
ADDRESS EN ABLE signal is generated by a gating circuit (Fig.
2-5). In this case, the jumpers associated with the AI and AO address
inputs are simply disconnected.

If we assume that the high-address gating circuit has been preset
for an address bit pattern of 11110000, and that the Al and AO inputs
to the circuit have been disconnected (see Fig. 2-5) , then the de-
coder shown in Fig. 2-9 will only be enabled for addresses I1110000
01101100 through I11IOOOO 01101111. Thus, in this circuit, the de-

ADDRESS ENABLE INPUT

Al
AO ----1 WR 61548

WR

Fig. 2-9. Decoder used for absolute address selection.

35

Downloaded from www.Apple20nline.com

R15 --+--+--i G

Al
AO

---4----tf-----i B ___ ___.,____, A

I OUTPUT DEVICE SELECTS

!INPUT DEVICE SELECTS

Fig. 2·10. Decoder enable inputs used with Wit and iii to generate device
select signals.

coder outputs of 0, 1, 2, and 3 correspond to device addresses 61,548
through 61,551, or FOOCH through FOOFH. Only the WR 61548 de-
vice select pulse has been generated in this example. Again, an oR
gate or a NOR gate is required for each device select pulse that is to
be generated.

36

o.t.TAOUTPUn

·Ls13B. ·s13B

{. '" SELECT B 421
4NPUT$

c

Fig. 2·11. SN74L$138 decoder.

DATA
OUT'ItUTS

Downloaded from www.Apple20nline.com

An alternate approach is to use both of the decoder circuits in the
SN74LS139 chip, using the RD and WR function pulses to enable the
decoders. In this way, the address selection is again nonabsolute, but
the device select gating is performed within the chip. This is shown
in Fig. 2-10. The NOR and OR gates are no longer required for each
device select pulse to be generated. While this circuit may not be
immediately useful, it does illustrate the use of the enable input of
the decoder to generate the device select pulse. The decoder gating
or enabling input may be used for device select pulse generation, or
for absolute decoding. In some cases, it may be used for both.

Large Decoders
There are additional decoder circuits that will be useful to you in

interfacing your Apple computer to external devices. These decod-
functional block diagram and schematics of inputs and outputs . .

;:::
_ ..._

....

... , ..).a-•
... ... "),1s. •

""T"").lui..
..
..
.. .)"a. ..

).= ..

fUNCTION TABLE

INPUTS OUTP'UTS
Gl G2 D c I A 0 1 2 3 • 5 ' 7 • • 10 11 12 13 1. 15
L L L L L L L H H H " H H H H H H H H H H H

L L L L L H H L H H H H H H H H H H H H H H

L L L L H L H H L H H H H H H H H H H H H H

L L L L H H H H H L H H H H H H H H H H H H

L L L H L L H H H H L H H H H H H H H H H H

L L L H L H H H H H H L H H H H H H H H H H

L L L H H L H H H H H H L H H H H H H H H H

L L L H H H H H H H H H H L H H H H H H H H

L L H L L L H H H H H H H H L H H H H H H H

L L H L L H H H H H H H H H H L H H H H H H
L L H L H L H H H H H H H H H H L H H H H H

L L H L H H H H H H H H H H H H H L H H H H

L L H H L L H H H H H H H H H H H H L H H H

L L H H L H H H H H H H H H H H H H H L H H

L L 'H H H L H H H H H H H H H H H H H H L H

L L H H H H H H H H H H H H H H H H H H H ·L
L H X X • • H H H H H H H H H H H H H H H H

H L • • • • H H H H H H H H H H H H H H H H

H H X X X X " H H H H H H H H H H H H H H H

Fig. 2·12. SN74154 decoder.

37

Downloaded from www.Apple20nline.com

H l l CY OU JI'UTS

Fig. 2-13. SN74155 decoder.

FUNCTION T ABI.IE$
2·LINE·To-4·liNE OECOOE. ..

OR t ·LINE·T0-4-t..INE DEMULTWLEXIER , .. .,.. OUTO\/TS
St:l.lCT STIIIOII! DATA 1YO 1'11 1'W'2 W J

1G 1C

I HOUTS OUTPUTS
SILICT sr-. ,.. 2Y3 • . 20 "' X X H X H H H H

L L L L L H H H

L H L L H L H H
H L L L H H L H

H H L L H H H L
X X x H H H H H

ers, depending on the type you choose, may have additional inputs,
enable lines, and outputs. Examples are shown in Fig. 2-11 for the
SN74LS138 decoder and in Fig. 2-12 for the SN74154 decoder. The
SN75155 decoder has also been included (Fig. 2-13) since it has two

31

1+5
24

20 D
21 c
22 B
23 A l A3

ADDRESS A2
BUS A1

AO

WR OR RD 19 G2

r G1

.l12

15
14
13
12
11
10
9
8
7
6 5
4
3
2
1
0

SN74154

17
16
15
14
13
11
.!¥-----+--8
7

6
5
4
3
2
1

···1r

16 DEVICE SELECT
PULSES

Fig. 2·14. SN74154 decoder uwd to produce 16 nonabsolute decoded device
wlect pulses.

Downloaded from www.Apple20nline.com

sections, but the address inputs, A and B, are common to both of the
dec:oder sections. Each section of the SN7 4155 has separate control
or enabling inputs.

A large decoder such as the SN74154 4-line to 16-line decoder pro-
vides broad address decoding flexibility. A single SN74154 decoder
may be used to nonabsolutely decode 16 addresses, and when either
WR or RD is used as one of the enable inputs, the SN75154 may be
used to directly generate 16 device select pulses, without the need
for additional gating. This is shown in Fig. 2-14.

Additional decoders or gates may be added to the basic circuit so
that absolutely decoded device select pulses are generated. A typical
example of this is shown in Fig. 2-15. Either the RD or WR signal
may be used to gate or enable the lower decoder. The NOR gates
have been used to gate together the address selection sigrwl from the
upper portion of the circuit and the address selection plus the func-
tion pulse from the lower decoder. Thus, the upper portion of the
circuit is used to "qualify" the outputs from the lower decoder to
make the address selection absolute. In this example, two device
select pulses have been shown. Although this circuit will work, it is
not particularly useful, since it can be simplified.

A15-----i
A14-----i
Al3-----i
Al2
All
AID ------r-
A9-----t
AS ____

/
SN 7 404(All)

SN74154

G2 15
Gl

A7 -----------t D
A6 C 2
AS B 1
A4 A Ot---,

SN74154

WR G2 15
Gl

A3 D 3
A2 c 2
AI B 1
AO A 0

SN7402

OUT "3"

OUT "0"

Fig. 2·15. Using SN74154 decoders and gating for absolute device Address selection.

Downloaded from www.Apple20nline.com

39

Since the SN74154 decoders have two enabling inputs, G1 and G2,
the NOR gates shown in Fig. 2-15 may be eliminated by using the
second enabling input as the "qualifier" that will enable the decoder.
The use of this type of circuit is shown in Fig. 2-16. In this example,
the lower decoder now has two enabling input signals, the RD con-
trol signal from the computer, and the enabling signal from the up-
per portion of the circuit. You should note that the upper decoder
has both of its enabling inputs used, so that it is enabled only for a
specific pattern of bits on the HI address bus. In this case, gating has
been used to generate the enabling signal for the upper decoder.

A third decoder could be added to this circuit to generate device
select pulses for output devices. The inputs to this additional decoder
would be the same as those to the lower decoder, except that the WR
signal would be used instead of the RD signal.

Many decoder schemes are possible, and you will have an oppor-
tunity to explore the use of decoders in the experiments. The main
point is that the use of decoders simplifies the process of device se-
lection and gating. Decoders are generally used in situations that re-
quire flexibility and the generation of several device select or deviCe
address signals in proximity to one another.

40

Al5 -----4
Al4 ------l
Al3 -----4
Al2

AlO -----r-
A9
AS

/
SN7 404 (ALL)

SN74154

G2 15
G1

A7 D
M C

B
A4 A

RD
A3
A2
Al
AO

)

16 INPUT
DEVICE SELECT

PULSES

Fig. 2-16. An improved device selection circuit.

Downloaded from www.Apple20nline.com

FUNCTION TABLES
COMPARING ounun

INPUT$ INPUTS A2.82 A I. 11 AO.IO A > l A < B A • B A > B A< B A• B
A3 :> Bl X X X X X X H l l
A3 < 83 X X X X X X l H l
AJ • 83 A2 > 82 X X X X X H l l
AJ • B:l A2 < 8 2 X X X X X l H l
AJ• 8 2 A2• 12 Al > II X X X X H l l
AJ• BJ A 2 • B1 A l < B l X X X X l H l
AJ • BJ A2• Bl A1 • 8 1 AO > BO X X X H l l
AJ • BJ A2• 8 ::1 A1•81 AO < BO X X X l H l
Al • BJ A 2 • Bl A 1 • 8 1 AO • 80 H l l H l l
AJ • BJ A2 • 82 A I • 8 1 AO • BO l H l l H l
AJ • BJ A2• 82 A1• 81 AO • BO l l H l l H

Fig. SN7485 four-bit magnitude compar.tor chip.

Using Comparators
The use of digital comparators for device address detection will be

the last technique discussed. The comparator-based schemes are rel-
atively straightforward and they are very similar to the "program-
mable-gate" schemes shown in Figs. 2-4 and 2-5. Remember that
comparators, too, are simply collections of gates, connected or inte-
grated , to perform a comparing function. The comparator circuits
allow us t o present an address that is constantly compared to the 16-

A7
A6
A5
A4

A'3
A2
AI
AO

+5

I
A'3 83
A2 82
AI Bl
AO 80

=

A3 83
A2 82
AI 81
AO BO

=

SN7485 ,--.
-r--..

_,........,

SN7485

-----f---., -1:-------...---[---..,

"

... ..

ADDRESS
JUMP

SELE CT
ERS

+5

ADDRESS = 205
Fig. 2-18. Two SN7485 comparators used to detect address 205.

Downloaded from www.Apple20nline.com

41

SN7485
15
13
12
10

Al5 --------7::-1
Al4

15
13
12
10

A11 -----!.;.t
AlO-----!.;.t

A9
A8 -----!.""!

A

A

A7 - -------:-1-:-t5 A
A6 --------:-l-:-t3
AS --------:-1:-tZ
A4 ____ -!.1"-10

2 1

=

3

B 1
14
11
9
3

B 1
14
11
9

1
B 14

11
9

6
SN74154

19
WR

G2 15 :--
--------:71 Gl · ·

A3 20 D : .
A2 21 C 2
AI 22 B 1 ·
AO 23 A 0 ___:___

/" r-...,
.....-r--.,
.,-r--,,

.....- -.,

.....- -.,

+5

16 OUTPUT DEVICE
SELECT PULSES

Fig. 2-19. Comp.,•tors •nd decoders used for •ddreu seledion.

bit values on the address bus. This comparing is done by gating
circuits within the comparator chips. A typical comparator is the
SN7485 4-bit magnitude comparator, shown in Fig. 2-17. Besides
the equal condition, the SN7485 can also detect the greater-than
and less-than conditions, but these are not used in address com-
parison. Caution: The SN74L85 version of the SN7485 chip is not
a pin-for-pin equivalent. Consult a manufacturer's data sheet for
additional information.

A typical address-comparison scheme is shown in Fig. 2-18 in
which only 8 of the 16 address bits have been shown for clarity.
The comparators have been preset to detect the address 205 or
ll00110h Like an 8-input gate circuit, this scheme can only detect
a single address, so most comparators are used with decoders for a

42

Downloaded from www.Apple20nline.com

flexible decoding scheme, as shown in Fig. 2-19. The unique "equal
condition" output of the SN7485 comparators is a logic one, so where
necessary, it has been inverted to provide the enabling signal to a
decoder chip. In this circuit, two additional comparators have been
used so that the device addresses are absolutely decoded. Now, the
outputs of the SN74154 decoder are only active when address bits
A15-A4 match the corresponding logic states that have been preset
at the inputs to the three comparator circuits. In this case, the ad-
dress bits must be 11101001 for A15-A8 and 0000 for A7-A4. Since
the \VR function pulse must also be present to enable the decoder,
you should realize that output device address selection signals are
being generated by this circuit, for addresses 59648 through 59655,
or E900H through E907H. Another SN74154 decoder could be added
to this circuit to generate 16 device address selection signals for in-
put devices. You would need parallel connections between the inputs
of both decoders except that the RD signal would be used in place
of the WR signal.

This completes our discussion of device addressing circuits and
the combinations of device addresses and function pulses to obtain
device select pulses. In future examples, we will expect that you will
recognize the notation WR 54390 as a logic-zero device select pulse,
generated by the proper gating of the WR function pulse and ad-
dress 54390. In some cases, the actual gating will be shown, but in
most cases, we will assume that you understand the origin of the
signal. While you will probably see many different device addressing
and selecting circuits in other books, magazine articles, etc., you will
quickly find that they all function in pretty much the same way-
gating an address signal with a function pulse to select a particular
device.

In some of the experiments, you will explore the use of device
select pulses to control devices. In the next chapter, you will learn
how these pulses are used to control the flow of 8-bit data bytes on
the data bus of the 6502.

Downloaded from www.Apple20nline.com

CHAPTER 3

1/0 Interfacing

Now that we have developed a number of ways of selecting and
identifying 1/0 devices, the actual construction and configuration of
the I/0 ports become very important. In this section, we will de-
velop some of the actual bus interfacing schemes that will allow I/ 0
devices to transfer 8-bit bytes to the computer and to receive bytes
transferred to them by the computer. As we found with the device
selecting circuits, there are many circuits for input ports and output
ports. Only a few sample circuits will be provided to illustrate the
basic principles of interfacing.

OUTPUT PORTS

Output ports are devices that receive data bytes from the com-
puter, controlled by POKE commands in the BASIC-language pro-
grams. You have already seen that there is a definite timing relation-
ship between data on the bus, the WR pulse and the device address,
when a POKE command is executed. This has been shown in Fig.
1-4. In the Apple computer, the duration of the WR pulse is about
500 nanoseconds. If we use the WR pulse to gate the data from the
data bus to an output device, through the use of the device select
pulse, the data is only presented to the output device for about 500
nanoseconds. This period is hardly long enough to allow the receiv-
ing device to perform a meaningful function. To eliminate this prob-
lem, each output port must be equipped with some sort of circuit
that can acquire data from the bus and "hold" it for as long as
needed, or until it is "updated" by another data transfer.

The type of circuit that can perform this function is called a latch,
since it can latch the information and hold it until it is updated or

44

Downloaded from www.Apple20nline.com

until the power is turned off. There are many different types of latch
circuits that offer different configurations of control and

data inputs and outputs. Rather than describe all of the various types
of latches, we have chosen to describe three general-purpose devices,
the SN7475, the SN74175, and the SN74LS373. The pin configura-
tions and function tables are shown in Fig. 3-1. While the SN7475
and SN74LS373 are true latch devices, the SN74175 really contains
lli.p-flops. The SN7475 latch chip contains four latch circuits and the
SN74175 contains four flip-flop circuits, so two SN7475 or two
SN74175 chips are required for each 8-bit output port. The
SN7 4LS373 contains eight latch circuits, so only one of these is
required to construct an 8-bit output port.

Let us briefly describe the operation of these latch circuits, so that
their use becomes apparent. We will use the SN7475 latch chip as
an example. The SN7475 latch circuits can be thought of as "gates
that remember." This is shown in the function table for the SN7475
latch, shown in Fig. 3-1. In examining this function table, you will
note that when the enable input (G) is a logic one, the data, or logic
level present !t the "D" input, is passed through the latch to the "Q"
output. The Q output is the inversion of the Q output. When the
enable input goes from a logic one to a logic zero, the level preset!!
at the D input at this time is latched or remembered by the Q and Q
outputs. The timing relationship shown in Fig. 3-2 illustrates these
operations.

As soon as the "G" input goes to the logic one level, the Q output
assumes the state of the "D" input even if the levels at the "D" input
are changing. The logic levels are passed from the "D" input to the
"Q" output when the "G" input is a' logic one; the "Q" output remains
at the level of the "D" input when the "G" input goes to a logic zero.
The SN7475 is divided into two sections, each of which can operate
independently of the other. The two gate inputs may be connected
to make the four latch circuits operate in tandem. Of course, the in-
puts and the outputs to the latches remain independent, so that four
input signals may originate from different places in a circuit. How-
ever, all four inputs will be latched at the same time if the separate
functions are operated in tandem.

The SN74LS373 operates in the same way as the SN7475, although
only one gating or enablins signal is used. In this ch ip, only the Q
outputs are provided. The Q outputs are not available. An additional
output control has been provided, but when the SN74LS373 is used
as an output port, this control signal, Output Control (pin 1), is usu-
a lly grounded.

The SN74175 chip contains four flip-flops that acquire and hold
information that is present on the positive-going edge of the clock
pulse. The outputs are only updated at this time, and the inputs are

Downloaded from www.Apple20nline.com

, ... u .
.OtDIOlOG

FUNCTION TABLE
(Eoch Lolchl

INPUTS OUTJ'UTS
0 G Q Q

L H L H
H H H L
X L ao Oo

H • high level, L • low level, X • Irrelevant
Clo • the level of Q before tM h igh-tO-lOW' tr8nsition of G

OUTPUT
CONTROL

L
L
L
H

'LS373, 'S373
FUNCTION TABLE

ENABLE
0

G
H H
H L
L X
X X

FUNCTION TABLE
lEACH FLIP·FLOPI

OUTPUT

H
L

Oo
z

INPUTS OUTPUTS
CLEAR CLOCK 0 Q at

L X X L H
H t H H L
H t L L H
H L X Oo Cio

Fig. 3·1 . Pin configurations and function tables for SN7475 (top), SN74LS373
(middle), and SN74175 (bottom) latch chips.

not continuously gated through the SN74175 on either the logic zero
or the logic one portion of the clock signal. This is what distinguishes
this flip-flop device from the latch devices, although in computer in-
terfacing, the net effect of both types of chips is the same.

A common clear input is also provided on the SN74175, so that the
flip-flops may be "cleared" (Q=O, Q=l), when this input is taken to

D INPUT

G INPUT

Q OUTPUT

Fig. 3·2. SN7475 latch circuit timing rel.ttionships.

46

Downloaded from www.Apple20nlihe.com

the logic zero state. In most cases, the clear input will be connected
to +5 volts (logic one) and will not be used.

Each of the integrated circuits may be used to latch and maintain
the data put out by the Apple computer during the execution of a
POKE command. It is a simple matter of using an output device
select pulse to activate the latch circuit once it has been properly
connected to the bus. A typical 8-bit output port is shown in Fig. 3-3.
In this circuit, a logic one output device select pulse is required to
cause the latch circuits to acquire and hold the information output
by the Apple.

DATA BUS

D7
D6
D5
D4

03
02
01
DO

DEVICE SELECT
PULSE

2
3
6
7

2
3
6
7

r-t

SH7475

D Q
D Q
D Q
D Q

G G

14 113

SN7475

D Q
D Q
D Q
D Q

G G

14 113

16
15
10
9

D7

\ D6
05
04

DATA
LATCHED

FOR
PERIPHERAL

16
15
10
9

03 I 02
D1
DO

Fig. 3-3. Two SN7475 latch chips used to form an output port.

In Fig. 3-4, two SN74175latch chips have been used as an output
port, with some sort of logic monitors being used to provide a visual
indication of the information that has been latched by the chips. The
'T' indication at the connections to the CLEAR inputs at the output
port means that these inputs are connected to +5 volts, or a logic one
level. The 'T' notation is used to distinguish a logic level connection
from a power-supplying connection, which is noted as +5 volts, or
+5V.

An SN74LS373 8-bit or octal latch has been used as an output port
as shown in Fig. 3-5. Only one integrated circuit is required for this
output port. The Output Control line has been grounded so that the
outputs are permanently enabled. Again, an output device select

47

Downloaded from www.Apple20nline.com

DATA BUS

D7
D6
D5
D4

D3
D2
D1
DO

DEVICE SELEC
PULSE

T J1...

SH74175
4 D Q 2

13 15
5

D Q
D Q 7

12 D Q 10

CK CR

__j9 L IlLOGIC!)

SN74175
4 D Q 2

13 15
5

D Q
D Q 7

12 10 D Q

CK CR

19 Ll

D7

\ D6
D5
D4

OUTPUT
PORT
DATA

D3 I D2
OJ
DO

Fig. 3-4. Two SN74175 latch chips used to form an output port.

pulse must be supplied from the device selection logic. Once an out-
put port has been properly connected to the data bus and a source
for the device select pulse, it can be accessed under control of soft-
ware commands. For example, the command, POKE 49312,0 would
transfer the value zero to the output port with the address 49312. If
there is actually an output port connected to the data bus, which cor-
responds to this address, then the value zero would be transferred
to it.

The program shown in Example 3-1 may be used to generate an
increasing binary count at output port 49320. The count will con-

41

+S GND

izo l1o SN74LS37

D7 3 D Q z
• 5
7 6
8 9

DATA BUS 13 12
14 15
17 16

DO 18 D Q 19

.• .J"""'L..._

OUTPUT DEVICE SELECT

3

D7

LATCHED OUTPUT
PORT DATA

DO

Rg. 3-5. SN74LS373 latch chip used to form an output port.

Downloaded from www.Apple20nline.com

tinue in sequence (in binary), 255, 255, 0, 1, 2 ... 254, 255, 0, 1, etc.
This program will be seen again, in the experiments.

Example 3-1. An 8-lit linary Counting Program for Port 49320
10 FOR N = 0 TO 255
20 POKE 49320,N
30 NEXT N
40 GOTO 10

Output ports are rather easy to construct. Most parallel-in, paral-
lel-out logic devices with internal latch capabilities can be used as
latches. Examples of devices that can be used as latches are the
SN74193 programmable binary counter, the SN74LS194A universal
shift register, the SN74198 shift register, etc.

Most output ports are readily configured with standard inte-
grated circuits, but some of the newer integrated-circuit devices that
are meant specifically for use with microcomputers are becoming
available with built-in latch functions. An example is the Signetics
NE5018 8-bit digital-to-analog converter chip which contains a latch
section.

Typical applications for output ports include the following:
Transfer data to a printer
Transfer data to a video display
Control a traffic light
Transfer data to a floppy disk
Actuate switches on a model railroad
Control valves and pumps in a chemical process
Control a plotter
Transfer data to a seven-segment display
Control another computer

In some applications, the value of the information is actually used,
while in others, the on or off state of each bit is used. Some devices
such as a printer may use a combination: ports for the transfer of the
data to be printed and ports for the control of the printer functions.
Displays made up of seven-segment LEDs frequently require the
use of several output ports, even though the display is considered to
be only one "device."

INPUT PORTS

Input ports are used with 1/0 devices so that they may transfer
information to the computer in 8-bit bytes. Unlike output ports that
must be able to accept and hold information that is placed on the bus
at a specific time, and may be continuously connected to the data
bus, input ports must be able to "disconnect" themselves from the

49

Downloaded from www.Apple20nline.com

DATA DATA DATA DATA

ONE-BIT DATA BUS

Fig. 3-6. Attempted use of g"tes on " dat" bus.

bus when they are not in use. The input ports must pass logic ones
and zeros to the CPU, but they must be configured so that they do
not interfere with the use of the bus when they are not selected.

Depending on the type of gate chosen, simple gates cannot be
used to gate data onto the data bus lines since their "unselected" out-
put state will be either a logic one or a logic zero, as shown in Fig.
3-6. Note that even when none of the gates is selected or enabled, the
outputs of the gates are at different logic levels, as noted by the
quoted logic levels. These levels "compete" for the use of the bus,
probably leading to one or more burned out chips. This should
clearly illustrate why gates alone are not used on data buses.

1C lA 1Y 2C 2A 2Y GNO

Fig. 3-7. SN74125 bus buffer chip
pin configuration.

Special integrated circuits with three-state outputs are available
to simplify the design of input ports. A typical three-state device is
the SN74125 bus buffer, shown in Fig. 3-7. The diagram of the four
devices should look familiar. It is simply a buffer (logic one in, logic
one out, etc.) , but with an additional control line, shown connected
to one of the angular sides of the buffer symbol. The buffer will pass
logic ones and zeros from its input to its output when it is enabled,
but unlike a simple gate, when it is disabled, the output appears to
be electrically disconnected from the bus, or other logic device, to
which it is connected. In three-state devices, this third state is often
called the HI-Z or high-impedance state, to note its disconnected
condition. The disconnecting and connecting is rapid, generally tak-
ing less than 20 nanoseconds.

In the SN7 4125 circuit, each three-state buffer has its own enable
input, which must be a logic zero for the data to be passed from the
input to the output. A logic one state on the enable input forces the
output into the high-impedance state. A similar integrated circuit,

50

Downloaded from www.Apple20nline.com

DATA BUS

SN74125
DATA A

DATA B

DATA C

DATA D

A
"§' BUS ENABLE

C INPUTS

L-------0
fig. 3-8. Typical three-state bus for four devices.

the SN74126, is a pin-for-pin replacement for the SN74125, except
that it is enabled with a logic one and disabled with a logic zero.
These chips serve to illustrate the action of three-state devices, but
they are not generally found in computer interface circuits, since
more useful devices are available.

For purposes of illustration, a typical bus is shown in Fig. 3-8. In
this circuit, four one-bit devices have been connected to the bus.
Only a one-bit bus is shown for clarity, although in an 8-bit bus sys-
tem, eight lines would be required. When one of the BUS ENABLE
INPUTS is placed in the logic zero state, the corresponding data bit
is passed through the buffer and onto the bus. We will assume that
there are no other devices connected to the bus. Thus, the truth table
shown in Table 3-1 applies to this simple bus circuit.

When none of the buffers bas been enabled or connected to the
bus, the bus is not connected to anything except the input of the
gates, memories, etc., that are the "receivers" of the data bit, so the

Table 3-1 . Truth Table for a Four-Device Three-State Bus

Enable
D c B A Bus Conte nt

1 1 1 1 Undetermined (all devices HI-Z)
1 1 1 D Data A
1 1 0 1 Data B
1 0 1 1 Data C
0 1 1 1 Data D
0 0 0 0 Not Allowed

51

Downloaded from www.Apple20nline.com

logic value of the bus is unknown. Whenever a logic zero is applied
to one of the bus buffer enable inputs, the selected buffer passes its
data onto the bus. The condition in which more than one buffer has
been enabled is not allowed, since bus conflicts will arise.

All of the devices that are to be used with the Apple computer
system to transfer information to the CPU must have three-state out-
puts. Thus, even memory chips must have three-state oU't:puts, as
they in fact do. The computer designer must be sure that the system
has been designed so that no two input devices are selected at the
same time. If such a multiple selection takes place, improper opera-
tion of the computer occurs.

Input ports that may be used to transfer information to the com-
puter are readily constructed using standard three-state integrated
circuits. In most cases, eight individual three-state buffers are used ,
one per bus line. In most cases, too, the enable inputs are all con-
nected in parallel, so that all eight buffers transfer their information
onto the bus simultaneously. In some cases, the common enabling in-
put is provided within the chip so that only a single pin on the chip
is required for the control of all eight bits ..

There are many chips that may be used to construct input ports,
but only a few of them are general enough to warrant our considera-
tion. The two main integrated circuits that will be used in our exam-
ples are the SN7 4365 and the SN7 4LS244. The SN7 4365 may also be
noted as the DM8095 (National Semiconductor Corp.), which is an
exact replacement. The pin configuration for these two chips is
shown in Fig. 3-9.

You will note quickly that while the SN7 4LS244 has eight three-
state buffers on one chip, the SN74365 has only six. If the SN74365
device is used to construct an input port, two of the integrated circuit
packages must be used . A typical 8-bit input port is shown in Fig.
3-10. In this case, only two of the three-state buffers in the lower
SN74365 chip have been used. Since the SN74365 contains built-in

52

Vee (;z IV SA &V U 4Y

,., 2A 2'1') A)Y GNO

SN74LS244 SN74365A SN74LS365

Fig. 3·9. SN74LS244 •nd SN74365 (DM8095) three·state bus driver chip
pin configuration.

Downloaded from www.Apple20nline.com

NOR gates tha t control the enabling of the three-state buffers, these
have been used to gate the RD function pulse and the device ad-
dress, 49321. If the device select signal, RD 49321, had already been
generated elsewhere in the interface circuit, it could be applied to
one of the enable inputs on both chips, while the other enable inputs
were grounded, or logic zero. This control scheme is shown in Fig.
3-11.

07
06
OS

INPUT PORT 04
03
02
01
DO

--

2
4
6

14
12
10

...----!-
.---!L

2
4

-

1
15

+5 GND

Ls ls SN74365

A y 3
5

07
06

7
13
11
9

OS
04 TO
03 DATA BUS

02

G1
G2----

Dl
DO

+5 Gr

Ls s
A y

0-

G1
G2

Fig. 3·10. Typical input port construded using SN74365 chips.

Using such an input port, data values may be input to the com-
puter through the use of the PEEK command, as shown in Example
3-2.

Example 3·2. Data Input Program for Port 49321

10 A = PEEK (49321)
20 PRINT A
30 GOTO 10

-=Th1 : SH74365

_ __,I i0H BOTH CHIPS)

"T

Fig. 3·11. Alternate control scheme for SN74365 thr .. -state chips.

Downloaded from www.Apple20nline.com

53

In this example, the 8-bit binary value is converted to a decimal
number between zero and 255 when it is input by the Apple using
the PEEK command at line 10 in the program. It is then "printed" on
the video monitor screen. It would have been just as valid to use the
following command:

10 PRINT PEEK(49321): GOTO 10

A similar input port may be constructed by using an SN7 4LS244
octal (8-bit) buffer. This chip contains two independent sets of four
buffers each, which are independently controlled with two enable
inputs, 2G and 1G. Since there are no built-in NOR gates in the SN74-
LS244, external device select gating is required. A typical input port
in which an SN74LS244 chip has been used is shown in Fig. 3-12.
Software steps similar to those shown in Example 3-2 would be used

SIH4LS244

D7 2 A y 18 D7
4 16
6 14
8 12

INPUT DATA 11 9 DATA BUS
13 7
15 5

DO 17 3 DO

lW TG
ADDRESS TG

Fig. 3·12. Input port con"---' wltll en SN74U244 chip.

to control the How of information from this port into the computer.
Both the SN74365 and the SN74LS244 have pin-for-pin equiva-

lent circuits that invert the data bits as they are passed through the
chips and onto the data bus. These buHers are the SN7 4366 and the
SN74LS240, respectively. The SN74366 is also equivalent to the
DN8096 chip. In most cases, the noninverting buffers will be the ones
used in interlace circuits.

In some cases, peripheral devices may generate more than eight
bits of information that must be read by the computer. An example
of such a device would be a 12-bit analog-to-digital converter. When
more than eight bits of information are to be input, the bits are di-
vided into groups of eight bits. In the case of the 12-bit converter,
there would be two groups, one containing 8 bits, and the other con-
taining the remaining four bits. Likewise, a 16-bit value would re-
quire two input ports, as would a 9-bit value. When not all eight bits
in an input port are used, the unused bits are generally placed in the
logic zero state by connecting them to ground, or logic zero. If the

Downloaded from www.Apple20nline.com

state of the unused bits cannot be determined, perhaps they have not
actually been constructed in the input port circuit. You can "elim-
inate" these bits by using appropriate software commands. These
commands "mask" these unused bits, so that they become zeros.

Since a 12-bit value may represent decimal values between 0 and
4095, some means must be found for converting the individual bytes
that have been input into a single value. We will assume that the
eight least-significant bits have been input as a single byte from port
49312, and that the four most-significant bits have been input from
input port 49313 at bit positions D3-DO. We will further assume that
the unused bits at input port 49313 have been grounded so that they
are logic zeros.

Now that the configuration of the input ports has been defined,
let's see how the information is manipulated so that the original value
is reconstructed from the two separate bytes of data from the two in-
put ports (Fig. 3-13). Since the least-significant bits can represent
values between 0 and 255 from the 12-bit interface device, these bits
do not require any "conversion," since the Apple will simply input

INPUT DATA

RO
AOOR

00------1
DATA BUS

01-----1

Fig. 3-13. Two-bit input port.

these eight bits and convert them to a value within the range of 0 to
255. However, if the four most-significant bits are considered apart
from the other bits, converting them to decimal will yield values be-
tween 0 and 15, rather than their original positional values of 0, 256,
512, and so on. These bits have been "offset" by a factor of 256 due
to the fact that .the 12-bit data value had to be "split" into smaller
pieces so that it could be input by the Apple. Remember that any
8-bit value that is input into the Apple will be automatically con-
verted into a decimal number with values in the range of 0 to 255.

When the two values have been input into the Apple, it is a simple
matter to "reconstruct" the data. If the information from the four
most-significant bits is multiplied by 256 and then added to the value
from the eight least-significant bits, a resulting value will represent
values between 0 and 4095, inclusive, the value that was originally
present as a 12-bit binary value at the interface device. The complete
software routine is shown in Example 3-3.

55

Downloaded from www.Apple20nline.com

Example 3-3. Program for a 12-llt Input Conversion
1 0 A = PEEK(49312)
20 8 = PEEK(49313)
30 C = (B * 256) + A
40 PRINT C

You could simplify this by placing all of the steps on one line:
10 PRINT(PEEK(49313) * 256) + PEEK(49312)

This simple program will print the decimal equivalent of the 12-bit
binary value that was present at the peripheral or interface device
when the program was run. The program can be used for interfaces
with from 9 to 16 binary outputs, but you must be careful to ground
the unused bits. You will see another method of "masking," or clear-
ing the bits in the experiments.

Input ports are used to transfer information from external devices
to the computer. This information may represent actual values of
weight, temperature, resistance, etc., or the information may be in-
terpreted as individual binary bits representing the state (on or off)
of individual devices, for example, empty I full, ready I busy, etc.
Some typical uses for input ports would include the following:

Transfer of traffic sensor information to the computer
Transfer of digital values from an instrument to the computer
Transfer of status (on-oH) bits from a printer to the computer

In interfacing applications, the main requirement for input ports is
that their outputs have three states so that they will not cause con-
flicts on the data bus when they are used.

56

Downloaded from www.Apple20nline.com

CHAPTER 4

Flags and Decisions

In almost all of the previous examples, we have assumed that there
is little synchronization required between the computer and the ex-
ternal II 0 devices. Thus, output ports have been assumed to always
be ready for more data to be transferred to them. In the case of input
ports, we have assumed that the data values are present and ready
for transfer to the computer, when the computer reaches a PEEK
command in a program. This may not always be the case. We must
often deal with I/ 0 devices that are slower than the computer.

1/0 DEVICE SYNCHRONIZATION

Since not all l/0 devices may be ready for the computer at all
times, a means of synchronizing the computer and the 1/0 devices
is required. The synchronization generally involves the use of signals
that are called flags. These signals are used to indicate that various
devices are busy or not busy, ready or not ready, converting or not
converting, and so on. Thus, "flags" indicate the status of devices, and
they are often called status flags.

For illustrative purposes, we will assume that we are required to
interface a device to an Apple computer. The device will provide
8-bit data values to the computer on an irregular basis. In most cases,
such devices also generate a flag signal that indicates that the device
is ready to transfer its information to the computer. Such a device is
shown' in Fig. 4-1. Note that a standard three-state input port has
been used to transfer the information to the computer. The READY
flag presents an interesting problem. How is the computer going to
monitor or check the condition of the READY Hag, so that it can
determine when a new data value is ready?

57

Downloaded from www.Apple20nline.com

INPUT DEVICE
READY/BUSY SYI'iCHRONIZING FLAG

D7 1----1
07 \

TO DATA BUS

DO 1----1 DO I
INPUT PORT_/

Fig. 4-1. Simple input device with synchronizing ft•g output.

As we stated previously, there is no rule that limits input ports to
the transfer of actual numeric values. The computer has no way of
knowing that the 8-bit value, OllOOlOOl, represents 100, rather than
five devices being off, and three devices being on. Thus, another in-
put port could setve quite well as a way of transferring the status flag
information from the input device to the computer. The other seven
bits at this input port may be unused, or they may be used to indicate
the status of other external devices. In this way, software steps may
be used to check the condition or status of external devices.

When the status of a flag is checked in a computer program, the
computer may be programmed to wait until a flag has changed to a
particular state before going on with the required action, or it may
be programmed to check the Hag periodically, going on about other
tasks in the meantime.

There are logic operations in assembly language and in BASIC
that allow us to check the status of individual flags , or bits, in an 8-bit
data word. In this way, the actual logic zero or logic one state of a
flag may be detected, with the computer making a decision based
upon the state of the flag.

LOGICAL OPERATIONS AND FLAGS

Probably the most useful operation, where flag detection is con-
cerned, is the logic AND operation. You should recall that two bits,
A and B, may be "ANoed" together, as shown in Fig. 4-2. The result
indicates that only when both of the bits are logic ones will the result
be a logic one. Another way to think of this is to treat the "A" bit as

51

(A)=D-
J1.I'LI"1...f' DATA (B) RESULT __n...ru

AND GATE
Fig. 4-2. Representation of logical AND oper•tion using DATA •nd MASK to

yield RESULT.

Downloaded from www.Apple20nline.com

VALUE 0011 1010 0001 1010 11 110000 00011111

11ASK 00100000 00100000 00100000 00100000

RESULT 00100000 00000000 00100000 00000000

Fig. 4-3. Example of AND operation in which eight bits of information are
operated on.

a "mask," and the "B" bit as information or data. When the mask is
a zero, the result is a zero. When the mask is a one, the data is passed
through the gate. In this way, selected bits may be masked, while
others are "passed through" the mask. If, for example, we wished to
check the state of bit D5 in the data word 00111010, a mask of
00100000 could be used. The mask is ANDed with the data word, as
shown in Fig. 4-3, for several different data words. In all cases, the
logic state of D5 was passed through to bit D5 in the result. All of
the other bits were masked, or set to zero. In this way, the total re-
sult was zero when bit D5 was zero, and the result was nonzero when
bit D5 was a one. This could be used as the basis for decision making
steps in a program. You must remember to convert the masks to their
decimal equivalent before trying to use them in a BASIC program.
In the case of bit D5, the mask would be converted to 32.

FLAG-DETECTING SOFTWARE

Once an interface has been constructed so that the states of the
various flags may be detected, as shown in Fig. 4-4, software may be
used to make decisions based upon the states of the Hags.

In some dialects of BASIC, there are logical operations that will
perform bit-by-bit AND operations, such as the ones shown in Fig.
4-3. In these cases, simple expressions may be used in BASIC pro-

INPUT DEVICE ONE-BIT INPUT PORT

" READY/BUSY

D7

DO

...rL

ln.

RD 49321

D7

DO

'TO DATA
BUS

RD 49320

Fig. 4-4. Complete interf.ce In which the flag is detected by software.

Downloaded from www.Apple20nline.com

59

Eumple 4-1 . A Logic Zero Used for Control
4010 A = PEEK(49321)
4020 IF (A AND 32) = 0 THEN 200
4030 •.. Continue here if flag = logic one

grams to perform the ANDing operations between two data words
that have values between 0 and 255. Keep in mind that the binary
equivalents are what is actually being ANDed. Examples 4-l and 4-2
illustrate how these AND operations could be used to detect a Hag
that is input at bit D5 from an input port, port 49321.

Example 4-2. A logic One Flag Used for Control
4010 A = PEEK(49321)
4020 IF (A AND 32) > 0 THEN 200
4030 . . . Continue here if flag = logic zero

In either case, when the proper condition is met, the program
would probably input data from an input port, or perform some other
action that is signaled by the presence of the flag.

Unfortunately, the Apple computer does not use its logical com-
mands in this way. In the Apple, an AND operation allows only the
ANDing of two distinct true-or-false conditions, so it is very difficult
to mask eight bits to determine the state on only one. Unless we wish
to spend a great deal of time in a complex BASIC routine, we must
consider the use of an assembly-language subroutine that will per-
form the logical operations for us rather quickly. Since you can easily
point the Apple to assembly-language routines, this is worth pursu-
ing a bit further. In fact, we will provide you with some simple, easy-
to-use routines.

ASSEMBLY -LANGUAGE LOGICAL OPERATIONS

The assembly-language instruction set for the 6502 microprocessor
contains an AND and an oR operation. Each of these instructions will
operate upon two 8-bit bytes, providing a single byte as the result of
the operation. Thus, we must write a short routine that will perform
the operation.

The Apple provides some "spare" read/write memory locations on
memory page 03H, and we have chosen to locate our routines on this
page, since it will make the routines independent of the total memory
size of your computer. A complete listing for the routine is provided
in Table 4-l. Note that both hexadecimal and decimal addresses and
data/instruction values are provided for you. You do not have to be
an expert in assembly language programming to use this routine, but
we have provided some comments so that you can follow the opera-
tion of the program, if you wish.

60

Downloaded from www.Apple20nline.com

Table 4-l . Asse mbly-Language Logic Subrout ine

Address Byte Data Byte

Hexadecimal Decimal Hexadecimal De cimal

0300 768 - - MASK Byte Goes Here
0301 769 - - DATA Byte Goes Here
0302 no - - ANSWER Found Here
0303 771 48 72 PHA Push Reg A
0304 772 AD 173 l OA load Reg A from
0305 773 00 0 MASK location
0306 774 03 3
0307 775 20 45 AND Reg A with DATA "
0308 776 01 1
0309 777 03 3
030A 778 80 141 STA Store result in
030B 779 02 2 ANSWER location
030C 780 03 3
0300 781 68 104 PLA Pull Reg A back
030E 782 60 96 RTS Return to BASIC

*Substitute ODH, or 13 dec1mal, for an OR operat1on.

Three read/write memory locations are used for the temporary
storage of the various data bytes, called MASK, BYTE, and AN-
SWER. The MASK location is loaded with the mask byte, and the
BYTE location is loaded with the byte that is to be operated on. Mter
the logical operation has taken place, the ANSWER location contains
the result.

To use this routine, you need to load the MASK information into
address 768, and the DATA byte into address 769. You can use
POKE operat ions to do this. Once this is done, you simply need to
call the assembly-language subroutine, so that the operation is per-
formed. How do you do this?

Calling an assembly-language subroutine from BASIC is not very
difficult. In the Apple computer, you simply need to put a three-byte
jump instruction in three successive locations, addresses 10, 11, and
12, or OA, OB, and OC, in hexadecimal notation. Since our routine
starts at address 771, or 0303H, you need to put the following infor-
mation in these three locations: a 76 in address 10, a 3 in address 11,
and a 3 in address 12. Once you have loaded this address information
into these three locations, you can access the assembly-language sub-
routine with a USR function. In this case, you need to first load the
MASK and BYTE information, and then use the USR function. This
is shown in Example 4-3.

In this case, the value 32 is the mask byte, and 129 is the value that
is to be ANned with it. The Q is a "dummy" variable that is required
for the use of the USR function, and the value 5 is a "dummy" value
that has no effect on the subroutine. You can use any variable for Q,

6l

Downloaded from www.Apple20nline.com

Example 4·3. Calling the Logical Subroutine
1590 POKE 768,32: POKE 769,129
1594 Q = USR(5)

as long as you don't use it elsewhere, and you may substitute any
value for the 5, say 0.

Once you have called the assembly-language subroutine, you will
find the result in location 770, and a PEEK operation may be used to
get at it. The program shown in Example 4-4 shows the complete use
of the subroutine. We have assumed that the subroutine has been
loaded, probably through the use of the monitor. In this example, the
three-byte jump instruction is loaded by using POKE operations.

Example 4-4. Using the Logic Oper•tion Subroutine

2030 POKE 10,76: POKE 11 ,3: POKE 12,3
2040 POKE 768,32: POKE 769,PEEK(49321)
2050 Q = USR(7)
2060 IF PEEK(770) > 0 THEN 3460
2070 •.• Continue here if flag = 0

In this example, the data to be used in the logical operation is ob-
tained from an input port by using a PEEK command and the ad-
dress for the device.

You can also perform an OR operation with the same subroutine,
simply by changing the operation code (op-code) for the AND opera-
tion from a 2DH to a ODH. Again, a POKE operation can do this just
before you use the subroutine. Thus, the subroutine provided in
Table 4-l can be used for both logical operations.

You should be able to load the subroutine into the read/write
memory by using the monitor for the Apple. We refer you to the
Apple II Reference Manual for information about the monitor. You
could also use 12 POKE commands to load the program steps, but
this invites errors.

It is unfortunate that you must resort to assembly language to per-
form the logical operations that are readily available in other BASIC
dialects. However, the assembly-language program is fairly simple,
and it has provided a simple example of the use of such programs,
and how they can be called from a BASIC program. If you are not
an assembly-language programmer, perhaps this has whetted your
appetite.

COMPLEX FLAGS

At this point, you may be asking, if the flag on the input device
shown in Fig. 4-4 is used to indicate the availability of an 8-bit value,
how does the device know when the computer has input, or ac-

62

Downloaded from www.Apple20nline.com

INPUT DEVICE

READY/BUSY

D7

DO

ClEAR FlAG 1 .J1_

RD 49321

07

DO

TO DATA
BUS

RO 49320
Fig. 4·5. Complete flag circuit in ·which flag cleared by computer-generated pulse.

cepted, the value that it has made available? In some cases, a signal
from the computer to the I/ 0 device is used to indicate that the flag
has been detected, and that the necessary action has taken place.
This signal "clears" the flag. The flag-clearing action may be per-
formed by a separate signal. The same signal that controls the input
port for the data may perform the flag-clearing action. This is shown
in Fig. 4-5, and a simple timing diagram is shown in Fig. 4-6.

READY/BUSY FLAG --·__j ____ fJ(nL._..._..Jn
RD49321 • _ _____.fl _ . - . _

R049320

Fig. 4-6. Flag timing diagram.

When the flag is placed in the logic one state, this indicates that
the device is ready to transfer a byte to the computer. The RD 49321
pulse represents the transfer of the flag status information to the
computer. When the computer tests the Bag and finds that it is a
logic one, it executes the steps that actually transfer the data from
the device to the computer. The RD 49320 pulse is used here to en-
able the three-state buffers at the correct time. This pulse is also used
to clear the internal flag circuit of the device.

The second RD 49321 pulse again reads the status of the flag, but
since the Rag is now a logic zero, the computer takes no further ac-
tion. The third time that the flag is tested, however, the flag is a logic
one, and the data is transferred to the computer and the flag is
cleared. A simple set of program steps that can be used to control the
interface is provided in Example 4-5. We have assumed that the logi-

63

Downloaded from www.Apple20nline.com

cal AND subroutine has been loaded, along with the three-byte
pointer.

Example 4-5. A Simple Flag Testing Program
1050 POKE 768,32: POKE 769,PEEK(49321)
1 060 Q = USR(O)
1070 IF PEEK(770) = 0 THEN 50
1080 D = PEEK(49320)
1090 ••. Continue here after data input

Typical devices that use flags in this way are keyboards, floppy
disks, analog-to-digital converters, and other devices that may pro-
vide data bytes at irregular periods.

FLAG CIRCUITS

In some cases, devices may not have the necessary flag circuits
within them for easy flag control, or they may not generate logic
levels that are stable for relatively "long" periods so that they can be
properly detected by the computer. In these cases, the "flag" may be
a very short pulse. In fact, some flag pulses are too short to be de-
tected by the computer, if they are simply input by means of a three-
state input port.

In cases such as this, it is necessary to design a circuit that will
"capture" the flag pulse so that it may be detected by the computer
sometime later. Even if the computer can test a flag bit every few
milliseconds, it will frequently "miss" short pulses of a few micro-
seconds duration.

Flip-flop or latch circuits are generally used to remember the pres-
ence of flag pulses. Typical flip-flop devices are the SN7474 D-type
flip-flop, and the SN7476 J-K flip-flop. Most introductory digital elec-
tronics books provide a good coverage of flip-flop devices if you need
to review their operation.

A typical flip-flop-based flag circuit is shown in Fig. 4-7. In this
circuit, the input device generates a READY pulse that clocks the
flip-flop, transferring the logic level from the D input to the Q out-
put. The Q output is detected by the computer through the use of an
input port that is separate from the input port that is used for the
transfer of the eight data bits. The status of the flag bit is easily
tested by the computer, as has been described. Once the necessary
action has taken place, in this case, the input of data from the input
device, the flag flip-flop is cleared. A logic zero pulse, CLEAR, ap-
plied to the clear input of the flip-flop serves this purpose. While the
RD 49360 pulse used to control the 8-bit input port could be used to
clear the flip-flop, we have shown a separate clear signal, so that the
timing relationships can be shown, as in Fig. 4-8.

64

Downloaded from www.Apple20nline.com

INPUT DEVICE INPUT PORT

D7 07

DATA BUS
D3

DO DO

READY I JL
RD49360

JL FLAG PULSE
J"L SN7474 RD49361

1- D Q

CK INPUT PORT
CR

""lJ'"" J"L
CLEAR

Fig. 4-7. Flip-Aop circuit used for detection of Ailg pulse.

In the timing diagram, the READY pulse sets the flip-flop, so that
its Q output is a logic one. This is detected when the status Hag in-
formation is input from port 49361. The logic one state of the Hag
causes the software to perform the steps that input the data byte and
then clear the flag. The separate CLEAR signal could be generated
by a POKE command, and appropriate circuitry, although the use
of the readily available RD 49360 pulse is probably easier.

DEVICE READY

FLAG OUTPUT (0)

FLAG TEST (IN 2!1)

DATA IN (IN 20)

CLEAR

Fig. 4-8. Fl•g flip-flop timing diilgrilm.

In this example, the Hag was tested twice while it was in the logic
zero state. Since this indicated that no new data was ready, no input
transfers or flag clears were initiated.

Several experiments at the end of this book involve the use of flags.

65

Downloaded from www.Apple20nline.com

MULTIPLE FLAGS

Many systems have a number of Hags that must be checked on a
regular basis. In some cases, a priority must be established, since
some devices are more important, or require faster attention, than do
others. The priority is easily set in the program, since the order in
which the various bits are tested determines which devices are "ser-
viced" before others. The program steps shown in Example 4-6 will
check several Hag bits in sequence, from bit D7 to bit D5, providing
a priority in the order in which the corresponding devices would be
serviced by the computer.

In this example, the Hag for bit D7 was detected when it was a
logic one, while the other two flags were detected when they were
logic zero. Other bit-sensing steps may be added for other flags , and
the order in which the bits are tested may be changed at any time,
simply by changing the program to reflect the new order. Note that
the data involved in the AND operation is not changed, and it only
needs to be input from the input port at the start of the sequence of
instructions.

4-6. Flag Priority Software Steps

300 POKE 769,PEEK(54098):POKE 768,128: Q = USR(O)
305 IF PEEK(770) > 0 THEN 1050
310 POKE 768,64:Q=USR(O)
315 IF PEEK(770) = 0 THEN 20
320 POKE 768,32:Q= USR(O)
325 IF PEEK(770) = 0 THEN 1010
330 . • . And so on for other bits

INTERRUPTS

In some cases, it is necessary for an 1/0 device to be serviced as
soon as it is ready. It may not be able to wait the many milliseconds,
or even longer periods, that the computer may require to check Hags
and make decisions based upon them. Almost all computers have at
least one interrupt input that allows you to "demand" immediate
servicing from the computer, irrespective of what it is doing. The
6502 processor chip used in the Apple computer has two interrupt
inputs ; an interrupt request input (IRQ) , and a nonmaskable inter-
rupt input (NMI). The IRQ input is sensitive to a logic zero, while
the NMI input is edge sensitive, being triggered by a logic one to
logic zero transition. These inputs are not used within the basic
Apple computer. However, they are readily available at the internal
interface connectors, and they may be used by add-on peripheral
devices and interfaces.

If a device is going to require extremely fast servicing, fast enough
to require the use of an interrupt, it goes without saying that assem-

66

Downloaded from www.Apple20nline.com

bly-language programming will also be required. Since this is be-
yond the scope of this book, we refer you to Programming & Inter-
facing the 6502, With Experiments and 6502 Software Design,
Howard W. Sams & Co., Inc., Indianapolis, IN 46268. Both books
discuss the use of interrupts in detail, providing examples and assem-
bly-language programs for the control of interrupts.

The Apple interrupts IRQ and NMI use specific memory locations
from which the 6502 processor "fetches" the address of the subrou-
tine that is to be used as the service routine for each interrupt. The
IRQ uses locations FFFEH and FFFFH, and the NMI uses locations
FFF AH and FFFBH. Since these locations are actually within the
read-only memory chips that contain the BASIC interpreter and the
monitor, the addresses in these four locations are fixed and you can-
not change them. However, these fixed addresses are simply used to
point to other locations in read/ write memory where you can ac-
tually change the pointers for the interrupt service subroutines. We
refer you to the Apple II Reference Manual for the details of how to
use these "vector" locations.

FINAL WORDS

A few final words are necessary before you leave this chapter. ·we
have chosen to introduce you to a simple assembly-language subrou-
tine for performing the logical A:-.ro or OR manipulation on two 8-bit
bytes, along with the use of the assembly-language subroutine call-
ing operation, USR. Actually, the Apple computer has a flag-check-
ing command in its instruction set: WAIT. This instruction can be
used to check individual flags , or groups of flags, and it can detect
logic one and logic zero flags, too. However, there is a limitation to
its use. If the proper flag pattern is not detected, then there is no way
for you to ever leave the flag-checking operation, and you must reset
the computer to get back control. Likewise, you cannot decide to
branch to one portion of a program if the flag or Hags are set , and to
branch in another direction if they are not set . If the WAIT com-
mand is used, you will simply continue to WAIT until the condition
is met. This is fairly inflexible, and we have chosen to avoid the use
of the WAIT command for this purpose.

We have introduced you to the USR command for calling assem-
bly-language subroutines, and if you expand your horizons and con-
tinue to learn more about assembly-language programming, you will
find that this inshuction is quite valuable. However, if you simply
want to access an assembly-lan!,ruage subroutine, such as the logical
AND subroutine, you can use the CALL command, followed by the
decimal address of the start of the subroutine. A CALL 771 opera-
tion can be used to call the logical AND subroutine. Of course, you

67

Downloaded from www.Apple20nline.com

r

' I"

must POKE the MASK and DATA bytes before you call the subrou-
tine.

The object here has been to show you a bit more of the power of
the Apple computer and how it can handle different tasks. The easy
path isn•t often the most interesting or educational

. '

61

Downloaded from www.Apple20nline.com

CHAPTER 5

Breadboarding
With the Apple

It has always been our philosophy that computers should be easy
to use, both for program development and for hardware or interface
development. Since the necessary signals for interfacing most com-
puters are readily available . somewhere in the computer system, it
was decided to develop some general-purpose interface circuits that
could be used with a number of different computers. These circuits
are fairly simple and are easily constructed and adapted to many
computers besides the Apple. A printed circuit was developed con-
taining all of the necessary circuits for interfacing purposes. A photo-
graph of the interface is shown in Fig. 5-l. A standard 40-conductor
flat cable is used to connect the interface breadboard to various com-
puters. While the interfacing circuits could have been breadboarded
and then used for the experiments, it was thought that this would
only provide additional points at which problems could surface.

BASIC BREADBOARD

The basic breadboard contains a number of useful circuits that al-
low interface designs to be easily set up and tested. The basic sec-
tions are Power Supply, Logic Probe, Device and Memory Decoders,
Bus Buffers, and Control Circuitry.

Power Supply
The power supply section of the breadboard may be operated in

one of two ways. An external + 5-volt power supply may be used, as

69

Downloaded from www.Apple20nline.com

lll:ll!ll l li!l ll ,lil

Fig. 5·1. Apple bre•dbCNtrd system.

long as it can supply I ampere of current, or an external transformer
may be used to supply I2.6 volts (ac) to the on-board power supply
circuits. In either case, the breadboard power supply is separate
from the computer power supply. A separate power supply is often
used because some computer systems cannot supply sufficient power
for their own circuits and the added interface circuits that you may
wish to test. 'Whenever an external power supply is used, you must
be sure that there is a good, low-resistance common ground connec-
tion between both power supplies. A power supply schematic is
shown in Fig. 5-2.

If the on-board power supply is to be used, the I2.6-V ac trans-
former is connected to pins I and 2 on plug number I (PI); the rec-
tifier diodes, DI-D4, the filter capacitor, CI, and the voltage regula-
tor, VR, are all installed. We suggest that a small heat sink be used
with the +5-volt regulator. When the breadboard is used in this
manner, +5 volts are available at pin 5, and ground is available at
pin 6, on Pl. These connections may be used for external devices, if
required.

If a separate +5-volt power supply is to be used, the power supply
parts DI-D4, CI, and VR are not needed and should be removed or
not installed. The +5-volt and ground connections are made at pins
5 and 6, respectively, at Pl.

Since other voltages are often required , such as ± I2 or ± I5 volts,
provision has been made at PI to connect additional external power

70

Downloaded from www.Apple20nline.com

5
+5 IN

AC

AC IN

GROUND

4
+V IN

3
- V IN

't_PLUG P·l

Fig. 5·2. Breadboard power-supply circuit schematic.

supplies. The positive voltage, + V, and negative voltage, - V, are
connected to pins 4 and 3, respectively, at Pl.

All of the voltages are available at the socket at position IC-16.
The available connections are shown in Table 5-l.

Table 5-1 . Power Supply Connections for the Power Socket, IC-16

Pin* Voltage

7,10 +s
5, 12 GND
3,14 + V (External)
1,16 - V (External)

• All other pons are unconnected.

Power for the integrated circuits on the printed-circuit board has
been derived from the +5-volt power supply. The connections at
IC-16 (socket) provide a means of easily obtaining power for the
experiments.

Logic Probe
The logic probe circuit, Fig. 5-3, is useful in determining the logic

state of various outputs, and also for detecting pulse activity at out-
puts. The logic-probe section of the breadboard contains a level de-
tector and a pulse detector circuit. An LM-319 (IC-15) comparator
has been used to detect the logic one and logic zero levels, while an
SN74LS123 (IC-14) has been used to detect and "stretch" pulses.
We have used a green light-emitting diode (LED) for the logic zero
indicator (D-7), a red LED for the logic one indicator (D-6) and a
yellow LED for the pulse indicator (D-5). The input to the probe
is available at pins 1-4 at IC socket IC-19. These inputs are marked

71

Downloaded from www.Apple20nline.com

"P." All of these inputs are in parallel, and any one may be used, but
do not try and connect the logic probe to two signals at the same
time. The logic probe should be thought of as two low-power Schot-
tky (LS) input loads.

PROBE " p "

IC-19 SOCKET, PillS
I, 2, 3 8 4

+5

3900 R6

R7 2200
12

R8 1000
3.3uf ce

47K R5

10 B

0 12

t5 B

+5

220 R3
IC- 15 ,J

RED " I "

06

,.J
GREEN "o"

07

+5

09 IN4148 (2)

/os 220 R2
+--+--ANV'-- + 5

'----'-j A 0 1-"---!4--..J
SN74 LS123

I C-14
,.

re 47 K R4

3.3 uf C7

Fig. 5-3. Logic probe circuit sche mat ic.

If you have an external logic probe, the circuitry in this section
may not be needed. If you wish , you do not have to construct this
portion of the circuit. In any case, it will be useful to be able to detect
pulses and also to be able to detect the state of pulses, etc. We have
found the logic probe to be very useful in troubleshooting bread-
boarded interface circuits.

Memory and Device Decoders
A major portion of the circuitry on the breadboard is devoted to

1/0 address decoding, as shown in Fig. 5-4. The decoders can be
operated in either a device mode or a memory mode, depending
upon the type of computer in use. In device addressing, only the LO
address bits (A7-AO) are decoded, while in memory addressing, all
of the address bits (Al5-AO) are decoded. The Apple computer uses
memory addressing to identify l/0 devices, since it is based upon
the 6502 microprocessor chip. Likewise, computers based upon the
6800 microprocessor also use memory addressing. Computers built
around the 8080, 8085, and Z-80 family of chips can use either type

72

Downloaded from www.Apple20nline.com

7
4
6
5

10
9

17
II

Al5
AIO
Al3
Al2

Al4
All
A9
A8

IS- BIT
ADDRESS

BUS
INPUTS

36 A7
38 AS
35 A5
31 A4

IC-13

2 5 AO
2 r A I
40 A2
3 4 A3

P2 PINS

(

9 114 111 112110] 13 h +5
16

D
,...!... _. .!!--.. I IC·I 100 0 OHM

II

10

M
IC-S

6
OUT

I B3 A3 15
13 A2 82 14
10 AO 80 9
II 81 AI 12

IN IC-3
3

6
OUT

9 80 AO 10
II Bl AI 12
13 A2 - B2 14
15 A3 B3 I

IN IC-4
3

8 3 6 5 7 4 2 I

al
31
61
51

SN74LS85

7
41
21
II

SN74LS85 I

IC- 2

_..,.

--· ------·

Al5
AIO
Al3
Al2

HI
AOOR

SELECT

Al4
All
A9
A8

+5

3 IC- s LO
AODR

IN IC-5 SN74LS85 9 1 ..-. 9 80 AO
II 81 AI 12 101 --13 A2 82 14 Ill --15 A3 83 I 121

OUT I

Ia
AS
A5
A4

6
9 10 II 12 16

12 13

IIC-7 I
IC-13

000 OHM

8 17 6 J5 J4 p 1 2 I
+5

IC - 12 SN74 154 IC- 20 (SOCKET)

G 7 8 I 8 9 ..,
19 G s 7 I 7 10 6

5 6 I 6 II "'!'"
4 5 I 5 12 4

23 A 3 4 I 4 13 3 "ADORE
22 B 2 3 I 3 14 2
2 1 c I 2 I 2 15 T
20 0 0 I I I 16 0

ss"

8 AO I 7 AI I 6 A2 I 5 A3

IC-19 (SOCKET)

Fig. 5-4. Address decoder circuit schemiltic.

73

Downloaded from www.Apple20nline.com

of addressing. As you look over the schematic in Fig. 5-4, you should
recognize that the address decoding uses a combination of digital
comparators and decoders.

In the device addressing mode, an SN74LS85 4-bit comparator
(IC-5) is used to compare preset address bits to the address bits
present on the LO address bus lines A7-A4. The switches at IC-6 are
used to preset the logic levels that will be compared with the address
bus. The package at IC-6 is a set of dual-in-line switches, so care is
required in making the switch settings. The switch positions are
clearly marked , "7," "6," "5," and "4" at the switch marked "LO." If
you are installing the switch, be sure that the open or off position is
to the right (logic one position) . Pull-up resistors at IC-7 provide the
logic one inputs to the SN74LS85 when the switches are open, or in
the logic one position.

When an address match occurs between the preset bits and ad-
dress bits A7-A4, the SN74154 decoder (IC-12) is enabled. Although
the SN74154 decoder has the ability to decode address bits A3-AO
into 16 unique address outputs, only the first 8 have been used,
more than enough for breadboarding and interface testing.

Thus, if the address switches for bits 7-4 are set to 1011, the de-
coder would decode addresses 10110000:! through 10110111:.!, or ad-
dresses 176 through 183, decimal. For device addressing, the lowest
switch at IC-6 must be "open" or in the "D" position. This places the
decoder in the correct mode.

The decoded-address outputs are present at the IC-20 socket. They
are labeled "0," "1," and so on, through "7." The entire section is
called "ADDRESS." Note that there is a bar over the address num-
bers to indicate that the unique output state is a logic zero pulse.
The address notation, zero through seven, is a sequential addressing
that will help you in determining which pins are connected to the
device address outputs. In most cases, the numbers will have rw rela-
tionship to the actual addresses that have been decoded. In the ad-
dressing example cited previously, in which addresses 176 through
183 were decoded, the output labeled "0" would correspond to the
decoded address of 176. Table 5-2 details the decoder outputs that
are available at the address socket, IC-20.

Memory addresses are also easy to decode on the interface bread-
b :Jard. Two additional comparator chips, IC-3 and IC-4, are used to
compare address-bus lines A15-A8 with a preset HI address. The HI
address bits are set at the eight-switch dual-in-line package of
switches labeled HI, at IC-2. When using memory addressing, you
must be careful not to try and select addresses that have been as-
signed to the internal Apple memory (ROM or R/W) . You must also
remember to convert the complete 16-bit address into the equivalent
d ecimal value for use in PEEK and POKE instructions.

74

Downloaded from www.Apple20nline.com

In the memory address mode, you must place the lowest switch at
IC-6 in the "closed" or in the "M" position. This allows the SN74154
decoder to be activated only when there is a match between address
bits A15-A8 and the bits preset at the HI dip-switch and a match
between address bits A 7 -A4 and the bits preset at the LO dip-switch.
Thus, addresses between XXXXXXXX XXXXOOOO and XXXXXXXX
XXXX0111 are accessible, where X=1 or 0. These decoded addresses
are present as logic zero pulses at the "ADDRESS" socket (IC-20).
Remember that only the first eight addresses in a selected 16-address
block are available. Thus, if 10000001 is set for the HI address and
1110 is set for the LO address (bits A7-A4), addresses 33248 through
33256 would generate logic zero pulses at pins 1 through 8 at the
"ADDRESS" socket, respectively. Keep in mind that the SN74154
decoder decodes all 16 addresses; you only have access to the "lower"
eight.

Table 5-2. Address-Decoder Connections for the Address Socke t, IC-20

Pin (IC·20) Designation SN74154 Output Pin

1,16 0 1
2,15 1 2
3,14 2 3
4,13 3 4
5,12 4 5
6,11 5 6
7,10 6 7
8,9 7 8

Connections for address-bus lines A3-AO (unbuffered) are avail-
able on the breadboard at pins 8-5, respectively, on the socket at
IC-19. These signals may be used in some experiments, but caution
is required, since these signals are not buffered, and present a direct
connection to the Apple computer.

The address decoder section of the breadboard will save you a
great deal of time and effort, because you will not have to construct
device address decoder circuits when you wish to implement I /0
ports, or try some simple interface circuits.

Bus Buffers
Two 8216 noninverting bus buffer chips, IC-10 and IC-11, have

been used to buffer the bus, as shown in Fig. 5-5. This means that the
bus is available with a full fan-out of 30 (it can power 30 standard
7400-type inputs) and that it is isolated from the Apple data bus.
The eight bits on the data bus are available at the socket at IC-18.

The information in Table 5-3 shows the connections to the data
bus.

75

Downloaded from www.Apple20nline.com

0
l___L_ 30 DO

2
L____L 22 0 I

14
L__g_ 32 02

• LJ.L 20 03

IC-1 1 8216

5
L._!_ II 04

z
L....L 28 D5

14

L-..!!.. 24 06

• L....!.!... zo D7

P2 P INS

DO DB
6

01
3

r!L--
IC-18 so .. •

EN I 7 10

I tl 15 6 II
I 5 IZ
I 4 13
I 3 14
I 2 10

DO DB fL- I I II
Dl

13

10

IC-10 B2 16 cs EN

t , .. IC-13
2 I

INPUT ENABLE

Fig. 5-S. Bus buffer circuit sc!Mmatic.

CKET

DO
01
02
03
04
D5
D6
D7

DATA BUS

The bus buffers are always enabled, and the normal mode of op-
eration is for the transfer of data from the Apple to the breadboard.
This means that without additional signal use, you could monitor the
bus "activity" by connecting logic probes or other suitable monitors
to the outputs of the bus buffer chips, D7-DO. Output ports are im-
plemented by simply using the proper control signals (described in
the next section) to control an 8-bit latch. The eight latch inputs are
connected to D7-DO at the socket IC-18.

Input ports, however, must be implemented so that they turn the
bus buffers in the opposite direction to "drive" data into the Apple.
Actually, there are two bus buffers for each bus line, as shown in the
pin configuration shown in Fig. 5-6 for the 8216 buffer. The DIEN
input determines which set of buffers is enabled, thus directing data
to, or from, the Apple. All input operations must activate the proper

Tabla 5-3. Data Bus Connections at lt-11

Pin (IC-11) Data Bus Signal

1,16 0 7
2,15 06
3,14 05
4,13 04
5,12 03
6,11 02
7,10 01
8,9 DO

76

Downloaded from www.Apple20nline.com

PIN CONFIGURATION LOGIC DIAGRAM
8216

0\,

cs os.
oo. OiEN oo.
080 oo,

0 10 oe,
m,

os,
oo, 013 oo,

oe, oo,
m,

m, os, oe,
GND m, oo,

PIN NAMES 011

Dllo·DB3
DATA BUS
81-0IRECTIONAL

DIJ·DI3 DATA INPUT

000 ·003 DATA OUTPUT

OlEN DATA IN ENABLE
DIRECTtON CONTROl

cs CHIP SELECT

Fig. 5-6. The 8216 bus buffer chip pin conRguration.

set of buffers so that the Apple receives the data properly. Special
control circuitry has been provided to do this for input operations.

Control Circuitry
The control circuitry on the breadboard is rather simple, consisting

mainly of some general-purpose buffers to buffer control signals out-
put by the computer. Six signals are provided, IN, RD, OUT, WR,
RESET, and INTAK. For Apple interfacing, you will only be con-
cerned with the WR, RD, and RESET signals. The other signals are
useful when the breadboard is used with other computers. This con-
trol circuitry is shown in Fig. 5-7. The general-purpose interrupt sig-
nal is also buffered, but it is an input to the computer. Connections
to the control signals are made at the socket at IC-17, as noted in
Table 5-4.

The control circuitry also generates a signal that switches the 8216
bus buffers into the input mode, so that data may be transferred into
the Apple. It would seem to be merely a matter of turning the bus
around whenever a memory read operation took place. If this were
implemented, the bus buffers on the breadboard would be placed in
the input mode, even when a memory chip was activated within the
Apple. This would cause a bus "conflict," so the bus on the bread-
board must be placed in the input mode only when an input device
on the breadboard itself has been selected.

77

Downloaded from www.Apple20nline.com

To handle input ports properly, the input port device select signal
is used to gate data onto the data bus and also to control the mode
of the 8216 bus buffers. In effect, up to four input port device select
pulses may be ORed together to place the breadboard bus buffers in
the input mode. You will probably not use more than four input ports

+5

R l 1000 OHMS

6 IC- 17 SOCKET

21 INT IC· 9 SN74365 INTERRUPT
15 lW 2 3 R'O
14 INTAK 4 e 3 INTAK
13 Wif 6 7 6 Wlf"
12 lmT" 14 13 5 OiJT'"
19 IN 12 II 8 1N
2 RESET 10 9 1iES"E'i'"

P2 P INS EN
EN

IC-1 7 SOCKET

INP REQ

w
X
y 0.::

6
-- TO 1R15UT

z EN AB LE

Fig . 5-7. Control circuit schematic.

on the breadboard. Thus, these signals tum the bus around for the
input of data only when an input port device select signal is gener-
ated on the breadboard, and it is wired by the user to one of the four
bus buffer enable inputs.

The "INPUT REQUEST' control pulses are required to be logic
zero pulses. They are applied to the pins labeled W, X, Y, and Z,
which are pins 16 through 13 on the socket at IC-17.

Table 5-4. Control Signa l Connections a t IC-17

Pin (IC-17) Control Signal Direction

1 INT Input
2 Not Used - -
3 INTAK Output
4 RD Output
5 OUT Output
6 'WR Output
7 REm Output
8 iN Output

78

Downloaded from www.Apple20nline.com

The actual ORing of these control signals is performed by the
SN74LS20 gate, IC-8. The INPUT REQUEST signal that is output
by this 4-input NAND gate is further gated with OUT and WR. This
gating provides a safety interlock, so that if your breadboard circuits
have been improperly wired, the bus drivers cannot be placed in the
input mode when an output-type operation is takirl_g _ _Elace. The re-
sultant "INPUT REQUEST, BUT NOT OUT OR WR" signal con-
trols the input/ output mode of the 8216 bus buffers.

Since the Apple generates only the memory write signal, WR, this
simply means that your interface will not be able to tum the bus
around for an input operation, when the computer is performing a
write operation. The OUT signal is used for interfacing with 8080,
8085, or Z-80 computers.

Two input ports are shown in Fig. 5-8. Each of these ports is con-
trolled by a device select pulse that enables the three-state buffers.
This same signal is used as the input request signal, INP REQ, and
each input port must generate its own input request signal. In this
example, the two input request signals have been connected to the
W and Z pins at the INP REQ section of the socket at IC-17. It
would have been just as easy to connect the lines to the X and Y pins.

The use of the interlocking INPUT REQUEST signal, and the as-
sociated circuitry only applies to testing interface circuits on the
breadboard. If you wish to construct an interface that will directly
plug into the Apple, and that will not use bidirectional bus buffering,
then you will not need to use such an interlock. The main purpose of
this circuitry is to protect your Apple computer from possible dam-

CONNECTIONS TO INPUT REQUEST
TO "W" TO " Z"

INPUT PORT

DATA 1---1----1--1 DATA BUS

DATA

INPUT PORT

Fig. 5·8. Typical input ports showing use of INPUT REQUEST signal.

79

Downloaded from www.Apple20nline.com

fig. 5·9. Wir-rap version of the interface circuit.

age caused by careless or incorrect wiring of a test circuit. Once a
circuit has been completely tested and debugged, you can probably
connect it directly to the data bus of the Apple without any problem.

Breadboard Construction
The breadboard circuits may be constructed using wire-wrap tech-

niques, as shown in Fig. 5-9. In this case, the circuits could be ex-
panded and modified through simple wiring changes, but the bread-
board itself would be somewhat difficult to use.

To aid in interface construction and testing, a printed circuit has
been developed in which all of the necessary circuitry has been
placed on a single board. The power supply and logic probe circuitry
have been incorporated to make the breadboard easy to use. The
breadboard is shown in Fig. 5-10, and is available in kit or assembled
form from Group Technology, P.O. Box 87B, Check, VA 24072. A
large space has been left unused on the breadboard so that a solder-
less breadboard socket may be mounted directly on the printed-cir-
cuit board for easy experimentation. Typical breadboard sockets are
the "SK-10" from E & L Instruments, Derby CT 06418 and the "Super
Strip" from AP Products, Inc., Mentor, OH 44060. A complete list of
parts needed for the breadboard, along with the printed-circuit board
artwork is provided in the Appendix.

CONNECTIONS TO THE APPLE

Since the interface breadboard uses a 40-conductor cable to con-
nect to various computers, you will need a means of connecting the

10

Downloaded from www.Apple20nline.com

Fig. 5-10. Packaged version of the interface.

cable to one of the peripheral interface slots in the Apple. We rec-
ommend the use of a Hat cable assembly such as shown in Fig. 5-11.
There is a printed circuit female edge connector assembly on one end
of the cable, and a 0.1-inch by 0.1-inch female pin grid connector
on the other. The openings on both connectors must face in the same
direction. A ready made cable is available from Group Technology,
BG-100-Cable, which uses a two-foot length of Hat cable.

The actual connections with the Apple bus signals are made with
a small adapter card. This card "twists" and "turns" the various sig-
nals so that they are routed from the edge connector to the periph-
eral connector in the Apple. You can easily put together an adapter
by using a Vector 4609 prototype card. This card plugs into one of

PC BOARD EDGE

EDGE CONNECTOR

CABLE·APPROX. 2 FT.
Fig. 5-11. Cable for interface.

Tt PIN CONTACTS

0.1 • GRID
CONNECTOR

Downloaded from www.Apple20nline.com

81

SIGNAL

1/0 SEL
· AD

AI
A2
A3
A4
AS
A6
A7
AS
A9

AID
All
AI2
Al3
A14
Al5
R/W
NJC

1/0 STROBE
ffDY
DMA

INT OUT
DMA OUT

+5V

81

APPLE PIN

l
2
3
4
5
6
7
8
9

ID
11
12
13
I4
15
16
17
18
19
2D
2I
22
23

N/C

INTERFACE PIN

25
27
40
34
31
35
38
36
11
17
4
9
5
6

10
7

ADDRESS BUS

24
25 __ N_IC--+--TO SN7400

PIN I4

WRITE. WR. PIN I3

Fig. 5-12. Apple-to-interface

the peripheral connectors in the Apple, and it has a 40-conductor
edge connector that will connect directly to the interface cable. Of
course, if you wish, you may make direct solder connections to the
cable, but we do not recommend this. You can make direct soldered
connections between the corresponding signal conductors on each
edge connector by using short pieces of hookup wire. If you do not
wish to make soldered connections, you can solder wire-wrap pins
into the holes provided at each edge connector, making the connec-
tions using wire-wrap wire.

The connections are shown in Fig. 5-12. If you choose to use the
Vector prototype card, there are several important things that you
must do before you start to make the connections between the two
edge connectors, no matter which wiring technique you choose to

82

Downloaded from www.Apple20nline.com

SIGNAL APPLE PIN INTERFACE PIN

+12V 50 N/C
DO 49 30
01 48 22
02 47 32
03 46 26 DATA BUS 04 45 18
05 44 28
06 43 24
07 42 20

DEVICE SELECT 41
eo 40

USER 1 39
81 38 TO SN7400. PINS 12 & 13
Q3 37
7M 36
N/C 35 DNL Y ONE. NOT BOTH -

-5V

34 4 -12V n -
INH -
RES 31 -------- --------- 2 RESET
IRQ 30 -------- ---------- 21
NMI 29 -------- ---------- 21 INTERRUPT

INT IN 28
DMA IN 27

GND 26 L TO SN7400. PIN 7
8.29.37 GROUND

= OPTIONAL CONNECTION

ceaaectors connections.

use. There are probably one or two printed circuit "foil runs," or con-
ductor paths between the 40-conductor connector and the +5-volt
and ground contact pins on the 50-conductor Apple connector. All
such connections must be broken, so that the 40-conductor connector
contacts are "free," and uncommitted to any signals. You can use a
small razor knife to cut these connectors. We recommend making
two cuts through each conductor, about 2 or 3 millimeters apart. A
soldering iron can then be used to '1ift" the cutout section by heat-
ing it. You should do this to only the power connections which are
connected between the two connectors. All of the other pins are
"'free."

Since the Vector prototype board does not use plated-through
holes, be sure that you connect +5 volts and ground to the respective

83

Downloaded from www.Apple20nline.com

power buses, and that the proper connections are made to the
SN7400 chip.

The SN7400 chip is used to gate the read/write (R/W) signal with
the main clock signal of the 6502 processor, <l>l. This gating generates
the memory read signal, ITD, and the memory write signal, WR. If
this gating is not done, the computer peripherals on the interface
breadboard will not work properly. In some computers, there are
separate read and write signals. If you wish to use separate read and
write signals for memory control in the Apple and other computer
systems that are based on the 6502 microprocessor chip, you must
generate them through t he proper gating.

VECTOR 4609 CARO

COMPONENT SlOE
(FRONT VIEW)

INTERFACE
CONNECTOR

Fig. 5· 13. Vector 4609 card contacts and interface contact arrangements.

The pin locations for the Vector card edge connectors are shown
in Fig. 5-13. Please note that this figure shows the component side
of the card. Once you have made the needed connections between
the two edge connectors, and between the connectors and the
SN7 400, we suggest that you use an ohmmeter or other continuity-
checking instrument, to be sure that there are no short circuits be-
tween adjacent and opposite pins, and that the correct connections
have been made. These tests should be made with the SN7400 chip
out of its socket. However, don't forget to plug it back in after you
have tested the connections!

OTHER CONSIDERATIONS

If you wish to try and interface some of the 6502 family interface
chips, and even some of the nonfamily chips, you will find that these

84

Downloaded from www.Apple20nline.com

chips have rather slow access times when compared to the standard
three-state input chips, such as the SN74365 and the SN74LS244.
Access times for these large, programmable chips can be as long as
200 ns. Since the read/write timing for the 6502 chip is fairly critical,
there will not be sufficient time for the data from these chips to be
accessed and placed on the bus if the extra delay caused by the 8216
bus buffer chips and the interlocking circuits is t aken into account.
Therefore, if you wish to use the breadboard to test interface circuits
that use complex, programmable interface chips, you will need to
· defeat" the interlock. You can do this rather simply by removing the
two 8216 bus buffer chips and by using short jumper wires at each
socket to connect the Apple data bus signals to the interface data bus
lines. For example, you would need a jumper between pins 5 and 6,
pins 2 and 3, pins 14 and 13, and pins 9 and 10 on each socket . We
refer you to Fig. 5-5 for the circuit that uses the 8216 bus buffer chips.

A word of caution is in order, however. By removing the bus buf-
fer chips, you are connecting your interface circuits directly onto the
Apple data bus. Please use extreme caution when doing this so that
you do not cause any short circuits or bus conflicts in the Apple. We
have provided a simple interface example in Chapter 7 in which the
direct bus interfacing is used.

85

Downloaded from www.Apple20nline.com

CHAPTER 6

Apple Interface
Experiments

The purpose of the experiments in this section is to provide you
with some hands-on experience in the use of latched output port and
three-state input port circuits that were developed in the previous
chapters. You will find that these experiments use simple SN7400-
series devices to transfer data to and from the Apple.

INTRODUCTION TO THE EXPERIMENTS

Breadboarding of circuits will be required in this chapter, and a
complete list of parts that will be used is provided in Appendix B.
We have assumed that you have had some experience in breadboard-
ing simple logic circuits, and that you are familiar with the basic
breadboarding skills. Some auxiliary functions will be required in
the experiments to both monitor logic states and to generate them.
In general, we use lamp monitors or LEDs to indicate logic one (on)
and logic zero (off), logic switches to generate logic levels, and de-
bounced pulsers, or pulsers for short, to generate logic levels with
clean noise-free transitions between the logic levels. Some simple
schematic diagrams of these types of circuits are provided in the
Appendix. If you do not wish to build these circuits, they can be
breadboarded separately, or similar functions can be purchased from
companies such as E & L Instruments, Derby, CT 06418 or PAC-
COM, Redmond, W A 98052. In general, most of the experiments in
this book can be done with a few simple circuits.

We have provided one experiment that illustrates the use of a
decoder circuit for device addressing. While many decoder schemes

86

Downloaded from www.Apple20nline.com

are possible, we think that one experiment should illustrate the basic
principles. If you are interested in other decoder circuits, there are
many different ones described in 8085A Cookbook, and Program-
ming & Interfacing the 6502, With Experiments (Howard W. Sams
& Co., Inc., Indianapolis, IN 46268). Actually, memory and I / 0 de-
vice addressing is pretty much the same, from one computer to the
next. In most interface circuits, the decoder circuit that is used on
the interface breadboard will work quite well.

While this book tackles Apple interfacing at a fairly low level,
there are other important interfacing topics that you might wish to
study. Many of these are covered in TRS-80® Interfacing, Book 2
(Howard W. Sams & Co., Inc., Indianapolis, IN 46268). The infor-
mation presented is fairly general, and it is easily applied to Apple
computer systems. Topics covered include: high-current, high-volt-
age load driving, digital-to-analog and analog-to-digital converters,
practical data processing (smoothing, filtering, averaging, etc.),
serial communications, and remote control.

The photograph in Fig. 6-1 shows a typical Apple-breadboard lab-
oratory station that is used in performing the experiments in this
chapter. A 40-conductor cable has been used to connect the bread-
board and the Apple computer-Fig. 6-2. This cable has been de-
scribed in Chapter 5. When you connect the interface breadboard
to the Apple, be sure that the cable is oriented properly. The cable
must point a'UI'(LY from the component side of the card used to con-
nect the interface to the Apple. At the interface-breadboard end of

Fig. 6·1. Apple computer and breadboard in experimental use.

87

Downloaded from www.Apple20nline.com

Fig. 6-2. Interface cable. (Note connector orientation on same side of flat cable.)

the cable, the cable must be pushed onto the 40 pins so that the cable
is pointed either down or away from the printed-circuit board. If the
cable is connected improperly, the Apple will respond with a screen
full of random characters rather than the APPLE II banner, when
it is first turned on. This does not seem to cause any permanent dam-
age to the Apple or to the interface as long as they are not connected
this way for too long.

Some experiments will build on, or use, the circuits or programs
developed in previous experiments. Please do not tlli11 off the power
to the computer, and do not disconnect circuits until you are told to
do so, otherwise, you will spend a great deal of time reloading pro-
grams and reconstructing interface circuits. There will be a reminder
at the end of some of the experiments just so that you don't forget
this tip.

Most readers will probably perform the experiments in sequence,
so there will not be too much difficulty in referring back to previous
experiments for the details of the interface circuits. However, if you
choose to skip over some experiments you may find this a bit confus-
ing. To help everyone with the interface circuits, we have repro-
duced the important input port, output port, and control circuits in
Fig. 6-27 at the end of this chapter. You can make a photocopy of
this figure, or you may remove it from the book so that it will be
nearby when you need it. The basic circuits shown in this figure are

88

Downloaded from www.Apple20nline.com

used in most of the experiments unless otherwise noted, and you can
use these circuits to build general-purpose input and output ports as
you need them.

If you are an instructor planning to use this book as the basis for
laboratory experiments with the Apple, you will find that the pro-
grams are easily loaded onto cassettes. In this way the programs are
readily available for the students, who do not have to spend their
time trying to debug programs. If you choose to use cassettes, you
should use high quality tape, and once the programs have been re-
corded on the tape, the "write protect" tab on the back edge of the
cassette should be removed. This will prevent students from acciden-
tally recording programs over those already on tape .

Students may find it valuable to maintain cassettes of their own,
so that their lab solutions and other programs are readily available,
either for exchange with other students or lab groups, or for refer-
ence during the next lab period.

The experiments in this chapter have been divided into two
groups, although no division, chapter subheading, or other note
marks the sections. The first 11 experiments provide a basic set of in-
terfacing and programming investigations for readers who are inter-
ested in basic interfacing concepts. These first experiments provide
a basis for the laboratory portion of a first course in computer inter-
facing and computer electronics.

The last few experiments provide additional lab investigations into
more advanced topics, and they also provide projects that may be
used to supplement the basic set of experiments. Of course, all of the
experiments may be done, too.

EXPERIMENT NO. 1
USE OF THE LOGIC PROBE

Purpose
The purpose of this experiment is to show you how the logic probe

circuit on the breadboard may be used to detect logic levels and
pulses.

Discussion
We have assumed that you are using the breadboard logic probe,

although other logic-probe circuits will work equally well. The steps
in this experiment are useful in helping you to become familiar with
the breadboard and the signals available.

Step 1
Your Apple computer should be connected to its video monitor

and also to the interface breadboard through the 40-conductor cable.

89

Downloaded from www.Apple20nline.com

This connection has been described in the introduction t o the experi-
ments.

Turn on the power to the Apple and to the breadboard. The com-
puter should print "APPLE II" and the flashing square cursor should
be seen. If this is not the case, turn off the power and check your con-
nections. Be sure that the 40-conductor cable is securely pushed onto
the pins at the interface breadboard and onto the edge of the board
that connects it to the Apple. You should also check the orientation
of the cable to be sure that it is correct . If you cannot locate the prob-
lem, obtain assistance.

Step 2
With the power applied to the breadboard, connect a jumper wire

between one of the logic probe input pins, P, at the PROBE socket ,
and one of the + 5-volt power pins at ·the power socket. \1\That is the
effect on the logic probe indicators?

The red LED is on, indicating the presence of the logic one state.
The probe jumper wire should now be moved from 'the +5-volt

power pin to one of the ground pins on the same power socket. What
is observed, once this connection is made?

The green LED is on, indicating the presence of a logic zero state at
the input to the probe circuit. You may have noticed that the pulse
detecting LED (yellow) flashed as you made the connection to + 5
volts or to ground. This flash indicates that the probe detected a
clw.nge in the logic level. Either a logic-one-to-logic-zero, or a logic-
zero-to-logic-one transition will cause the yellow LED to flash. This
makes it particularly useful for detecting pulses and logic transitions.

Connect the probe input to address line AO at IC-19. What do you
observe when this connection has been made? All of the LEDs are
on, probably at different intensities. This is due to the fact that the
6502 microprocessor chip is executing many, many assembly-lan-
guage instructions in the BASIC and monitor ROMs, thus using the
address bus to address various memory locations. Move the logic
probe test wire to the other address bus lines, Al, A2, and A3. You
should be able to detect similar "activity" at these pins, too.

90

Downloaded from www.Apple20nline.com

Step 3
You may wish to test other points on the breadboard with the logic

probe. The data bus lines and the control signals may be easily
tested. You should keep in mind that the logic probe is only sensitive
to the logic levels presented by the outputs of standard transistor-
transistor logic (TTL) chips used on the breadboard and in the ex-
periments. Do not attempt to use the probe to measure anything but
these logic levels. If you connect the probe to voltages outside the
zero to +5-volt range, the probe circuit will be damaged.

Step 4
When you use the probe, you will notice that there are many com-

binations of lit LEDs. For example, you may see that the red and
yellow LEDs are lit, while the green one is unlit. Do you have an
idea of what this means?

This means that a pulse is being detected, and that the normal logic
level of the circuit being tested is a logic one. The green LED lights
very briefly (you can't see it) , to indicate the fleeting presence of the
logic zero pulse. The pulse detecting circuit stretches the pulse and
lights the yellow LED so that you can "see" that a pulse has been
"caught."

You may also see the green and yellow LEDs qn, with the red
LED off. What would this indicate?

A logic zero level would be indicated, with short logic one pulses.
It is possible that all LEDs may be lit, too. In this case, the input

to the logic probe is rapidly changing between logic one and logic
zero.

In some of the following experiments, the logic probe will be used
to examine outputs and to detect logic states and pulses. This will
be noted by, " .. . use your probe to examine .. . ," or perhaps by,
" ... use the logic probe to measure " This simply means that you
are to connect the logic probe to the circuit being tested, so that you
can "see" what is happening.

Turn your computer off.

91

Downloaded from www.Apple20nline.com

EXPERIMENT NO 2
USE OF THE DEVICE ADDRESS DECODER

Purpose
This experiment allows you to explore the use of the device ad-

dress decoder circuit on the interface breadboard printed-circuit
board. Since this decoder will be used in all of the experiments, you
must have a good understanding of its use.

Discussion
In this experiment, address bits Al5-AO will be used to identify

specific addresses for use by I/ 0 devices. The address switches will
be set up for a specific range of addresses, and the logic probe will
be used to examine the action of the decoder circuit. You will also
use an SN7 402 NOR gate integrated circuit.

Pin Configuration of the Integrated Circuit {Fig. 6-3)

Fig. 6-3. SN7402 NOR11ate pin configuration.

SN7402

Step 1
No circuits should be presently wired on your breadboard. If there

are any circuits present, remove them from the solderless bread-
board. In this experiment, the entire 16-bit address bus will be used
by the decoder section of the interface. Be sure that the bottom
switch at the LO address dip switch (IC-6) is in the "M" position,
or in the "ON" position.

Step 2
Place the dip switches for all of the address bits, Al5-A4, in the

logic one position. Remember not to change the setting of the "M"
switch. Can you determine which set of addresses will be decoded
by the SN74154 decoder? What addresses in this block will be avail-
able at the ADDRESS output socket? You may wish to examine the
schematic in Fig. 5-4.

92

Downloaded from www.Apple20nline.com

Addresses in the block from 65520 to 65535 will be decoded by the
4-to-16 decoder (SN74154). Since the decoder only provides you
with the "bottom" eight addresses, only addresses from 65520 to
65527 will be available.

Step 3
Tum your computer on. If you are running a program, press the

RESET key. Use the logic probe to test the eight address outputs at
the ADDRESS socket. Are any of the decoder outputs active (puls-
ing)? Since you are not running a program, is this what you would
expect?

Two of the outputs should be active, 0 and 4, corresponding to
addresses 65520 and 65524. While the computer is not running a
BASIC program, it is executing many assembly-language steps that
monitor the keyboard, etc. Remember that the address decoding cir-
cuitry is always decoding addresses.

Step 4
Wire the circuit shown in Fig. 6-4. Be sure that you connect the

power pin, pin 14, to +5 volts and the ground pin, pin 7, to power
6

)()"-- A

SN7402(All)

13

'DECODER SOCKET POSITIONS

Fig. 6-4. Fundion pulse-generi!tion circuit.

ground. Refer to Fig. 6-3 for the pin configuration of the SN7 402.
You may substitute an SN74LS02 for this chip. The outputs of the
gates, A, B, and C, are not connected to any circuit at this time.

Step 5
Change the switch settings on the dip switches for bits A15-A4 for

an address of 49312. This is 11000000 1010000(h, and you should ig-
nore the four least-significant bits. What range of addresses will be
available when the address switches are set this way?

93

Downloaded from www.Apple20nline.com

Addresses from 49312 through 49327 will be decoded, but only ad-
dresses 49312 through 49319 will be available.

Step 6
Enter the following program into the computer and run it:

10 A = PEEK(49318)
20 GOTO 10

Using the logic probe, monitor the outputs of the decoder, and note
your observations below:

You should see that the "6" output is active, and one or more other
outputs may be active, too.

Now monitor the outputs of the gates, A, B, and C, and note any
activity, at these points, as determined with the logic probe, in the
space below:

A
B
c

Logic 0 Logic 1 Pulse

Is this what you would expect? Can you explain this?

Yes, this is what is expected, since the input (PEEK) command is
the program specified device 49318 as an input device, and the de-
coded address is found at the "6" output from the decoder. Thus, only
output "B" should be active. No other input devices were specified
in the program, and no output devices were specified, either.

Step 7
Change the device address in line 10 so that address 49325 is se-

lected. Line 10 should now be 10 A=PEEK(49325). Run the pro-
gram and test the gate outputs A, B, and C once again. Are any of
the outputs active, indicating the presence of pulses? Why?

94

Downloaded from www.Apple20nline.com

None of the outputs should be active, since device address 49325 has
not been implemented in the circuit. Furthermore, address 49325 is
not readily available on the breadboard. Of the addresses in the
block 49312 through 49327, only addresses 49312 through 49319 are
available at the ADDRESS socket.

Step 8
Change line 10 in the program so that it is now

10 A= PEEK(49318):B = PEEK(49319)

Where do you observe the pulses in the circuit when you run the
modified program?

You should find that outputs A and Bare active. Output Cis not ac-
tive since it is an output control pulse, and there are no output
(POKE) commands in the program.

Step 9
Make another modification to your program. Change line 10 so

that you can control output device 49318. Your statement at line 10
should look like this:

10 POKE 49318,0

You can use any data value that is between 0 and 255, inclusive. Now
run your program and test outputs A, B, and C. 'Vhich output do you
expect to be active? Is this what you found?

Output C is active, since the POKE command is an output-type com-
mand, and the address, 49318, corresponds to the "6" output pin from
the decoder. You are probably surprised to see that the B output is
also active. When a POKE instruction is executed by the BASIC in-
terpreter in the Apple, the computer system does a read-before-write
operation, so that the selected address is read from, before being

95

Downloaded from www.Apple20nline.com

written to. This must be kept in mind during the design of interface
circuits.

Step 10
Could you reconfigure the switches in the address decoder section

so that addresses 50944 through 50951 are generated by the decoder?
How would you attempt to do this? Are these addresses really going
to be available?

Yes, you could change the switch settings to allow the decoder to
operate between these addresses. First, convert the first address into
its binary equivalent: 50944 = 11000111 00000000. Second, make the
changes in the switch settings for Al5-A8 and for A7-A4. Now, what
addresses would correspond to the "6" and "7" outputs from the de-
coder? Test your answers by using PEEK commands in the simple
program that you have been using in this experiment. You should be
able to see the pulses at the A and B outputs from the gates.

Once you have tested this, be sure to return the address switches to
their previous settings, corresponding to the binary value, 11(}()()()()()
10100000.

Do not remove the circuit from your breadboard. It will be used
again . The program will not be used, however, so you .may turn off
the power to your breadboard and computer.

Purpose

EXPERIMENT NO. 3
USING DEVICE-SELECT PULSES

In this experiment, you will observe the use of device-select pulses
to control an external device. Although generally used to control the
How of information, the PEEK and POKE commands may also be
used to generate useful pulses to simply control external devices.

Discussion
In this experiment, a simple device will be turned on and off

through the use of device select pulses. The logic probe will be used
as the "device," and a simple Hip-Bop will be controlled by two soft-
ware-generated pulses.

96

Downloaded from www.Apple20nline.com

Pin Configuration of the Integrated Circuits (Fig. 6-5)

SN7474

Fig. 6-5. SN7402 1nd SN7474 chip pin conflgur1tions.

Step 1
The device select circuit used in Experiment No. 2 is also used in

this experiment. If it has not been wired, wire it as shown in Fig. 6-4.

Step 2
Wire the SN7474 flip-flop as shown in Fig. 6-6. The "1" noted at

the "D" input to the SN7474 means that a logic one (+5 volts) is
applied to this input. Likewise, a "0" would indicate a logic zero, or
ground connection. The 0 and 1 notations are used to distinguish
logic level connections from power-carrying connections. The Q out-
put from the flip:..flop should be the only device connected to the
logic probe. Remember to make the power connections to the
SN7474 flip-flop; pin 14 to +5 volts and pin 7 to ground.

Step 3
In this circuit, the WR 49318 pulse (signal C) will clock the out-

put of the flip-flop to a logic one, while the RD 49319 pulse (signal
A) will clear it to a logic zero. Since a flip-flop is stable in either state,
once pulsed by RD 49319, its Q output will remain in the logic one

+5 GNO

14

D Q TO LOGIC PROBE

SN7474
FROM C CK (WR 49318) CLR

I
FROM A -u-

(RD 49319) -----'

Fig. 6-6. Slmpl• flip-flop controller circuit.

97

Downloaded from www.Apple20nline.com

state until power is removed, or until it is cleared to logic zero with
a WR 49318 pulse.

Enter the following program in to your computer and run it.
10 A = PEEK(49319)
20 POKE 49318,0
30 FOR T = TO 300: NEXT T
40 A = PEEK(49319)
50 FOR T = 0 TO 300: NEXT T
60 GOTO 20

Disregard the flashing of the logic probe pulse LED. What is the
effect on the logic one and logic zero LEDs?

They flash logic one, logic zero, logic one, etc., in sequence.

Step 4
Alter the time delay routine at line 50 to:

50 FOR T = 0 TO 1000: NEXT T

When this. change has been made, run the program. What is the
effect of this simple program change?

The logic zero LED is on for a longer period. Thus, it is possible to
generate control pulses that are a known period apart, say 1 second.

Step 5
Can you determine the software delay necessary in a FOR . ..

NEXT T statement to generate a 1-second period? Modify your pro-
gram and test various delay counts until you closely approximate 1
second. You might want to try for a 10-second period and then divide
the count by 10 for a 1-second period. What delay count did you
come up with? We found that a delay statement,

FOR T = 0 TO 780: NEXT T

required about 1 second to be executed.

Step 6
You can now use the power of BASIC to allow you to tell the com-

puter how long each LED is to be ON. The following program may

98

Downloaded from www.Apple20nline.com

entered and run, It first asks you for the period of each LED, in
and then runs the program.

A = PEEK(49319)
2) INPUT " RED LED PERIOD " ;Q
3:l INPUT " GREEN LED PERIOD "; R
.C) PRINT "TOTAL CYCLE PERIOD "; Q+R; " SECONDS"
50 POKE 49318,0
60 FOR S = 1 TO Q
1'0 FOR T = 0 TO 780: NEXT T
a:> NEXT S
90 A = PEEK(49319)

100 FOR S = 1 TO R
110 FOR T = 0 TO 780: NEXT T
12D NEXT S
130 GOTO 50

nen the program is run, the time delays may be somewhat length-
r:oed. Why?

The additional software steps (FOR S = 1 TO Q, FOR S = 1 TO R
and NEXT S), add time to the overall execution time of the pro-
gram, although you will not see appreciable lengthening of the pro-
gram.

\Vhat does this program show you?

It illustrates many principles; the use of simple programs and simple
circuits to control external devices. It also illustrates the power of
BASIC to control external devices through relatively simple software
steps. Remember, though, that BASIC is relatively slow.

Even though PEEK and POKE commands were used, the success
of the Hip-flop interface did not depend on the actual transfer of any
data or information. The Hip-flop was controlled, or switched,
through the use of device select pulses, alone. This principle is often
used when a control signal or control pulse is required, but no data
is transferred.

Please remember that when a POKE command is used in the
BASIC interpreter in the APPLE computer, a read and a write opera-
tion are perfonned. Thus, if you choose to use a POKE command to
generate a device select pulse for control purposes, you must remem-
ber that the APPLE will also perform a read from the same address.

99

Downloaded from www.Apple20nline.com

If you are using two control pulses with the same address, say, WR
XYZ and RD XYZ, the RD xyz will also be activated during a write
operation caused by a POKE xyz command.

The SN7474 flip-flop circuit may be removed from your bread-
board, but the SN7402 circuit should be retained. The program will
not be used again, so you may remove power from your system.

Purpose

EXPERIMENT NO. 4
CONSTRUCTING AN INPUT PORT

The purpose of this experiment is to construct an input port using
three-state buffer circuits.

Discussion
The simple 8-bit input port that you will construct as a part of this

experiment will provide a means of entering data into the computer.
Several additional experiments will use this input port. The device
select circuit used previously will be used in this experiment. The
SN74365 or DM8095 three-state buffer chips will be used in this
experiment.

Pin Configuration of the Integrated Circuit (Fig. 6-7)

Vee a1 lA IV 5A 5V U 4V

Ct 1A ,... lA lV JA JY (iND

Step 1

SN74365A
SN74LS365

Fig. 6-7. SN74365, or DM8095 thr-
state buffer chip pin configuration.

The gating circuit developed in Experiment No. 2 will be used in
this experiment. If this circuit is not present on your breadboard,
refer to Fig. 6-4 for the circuit details, and wire the circuit shown.
Your computer and breadboard power should be off.

Step 2
Wire the 8-bit input port circuit shown in Fig. 6-8. Two SN74365

(DM8095) three-state integrated circuits are required.

100

Downloaded from www.Apple20nline.com

+5 GND

J., 1, SN7436
A 2 3

LOGI C 8 4 5
07

c 6 7
SWITCHES D 14 13

12 II DATA BUS
10

o.....L Gi -
G2 r- DO

+S Gr
LOG I C A r-- 16 I B

c 2 rL-SWITCHES
D 4 5

SN74 36

DEVICE SELECT I Gi
0.....!.!.

Fig . 6-8 . Simple 8-bit input port.

Step 3
Note that in this circuit only one of the two enabling inputs .to the

three-state buffer chips has been used. The unused input has been
grounded, or connected to logic zero. Thus, the internal gate will not
be used for combining a function pulse and a device address. The
enabling signal will simply be transferred through the gate to the
three-state buffer circuits within the chip.

Connect the DEVICE SELECT line to point A (pin 1 on the
SN7402), as shown in Fig. 6-4. This is the signal for RD 49319.

The notation LOGIC SWITCHES in Fig. 6-8 is used to represent
switches that can generate logic one or logic zero signals at the eight
individual inputs to the input port. Simple jumper wires to the + 5-
volt and ground power supply buses may be used. There is addi-
tional information in the Appendix about this type of logic function.

Step 4
Once the input port has been constructed and the device select

pulse has been provided from the SN7402 NOR gate, enter and run
the following test program:

10 PRI NT PEEK(493 19): GOTO 10

101

Downloaded from www.Apple20nline.com

What is displayed on the screen when the program is running? Does
changing the logic switches have any effect on the displayed value?
Is this what you would expect?

The value 255 is displayed, corresponding to lllllllh Changing
the logic switches had no effect on the values that were displayed.
At first, you might have expected the values to change as you
changed the switch settings, but this was not observed. Why?

The interface circuit was not provided with an input request (INP
REQ) signal that is used to place the two bus buffers in the input
mode.

Step 5
Make a connection between the SN7402 A, or RD 49319, signal and

theW input at the INP REQ section of the CONTROL SIGNALS
socket. This signal will place the 8216 bus buffers in the input mode.

Now that this connection has been made, restart your program and
change the switch settings. Are the changes in the switch settings
shown as changes in the numbers being displayed? You should test
several different settings.

The switch values are now transferred to the computer, converted
into decimal numbers and displayed on the monitor screen.

If you would rather see the values in binary form, the following
program may be run. It will display the binary numbers continu-
ously.

102

10 A = 128
20 B = PEEK(49319)
30 FOR Q = 1 TO 8
40 IF B- A < O THEN GOTO 100
50 PRINT " 1";
60 B = B-A
65 A = A/2
70 NEXT Q
75 PRINT
80 GOTO 10

Downloaded from www.Apple20nline.com

100 PRINT "0" ;
110 GOTO 65

If you wish to change a switch setting and then obtain its binary
equivalent, change line 10 to:

10 INPUT A$: HOME: A = 128

Now, whenever you wish to display the binary value of the logic
switch setting at the input port, simply depress the RETURN key
on the Apple keyboard. Of course, the switch settings are already in
binary format, so the correlation between the displayed binary value
and the individual bits at the input port should be easy.

Do not remove the circuit from your breadboard, and do not turn
off the power. Both the program and the circuit will be used in the
next experiment.

Purpose

EXPERIMENT NO. 5
MULTIBYTE INPUT PORTS

The purpose of this experiment is to show you how multiple bytes
of information may be input and processed by a BASIC program.

Discussion
Not all input devices transfer only one byte of information to the

Apple computer. Some devices may require 9 or more bits. In this
experiment, you will simulate two input ports through the use of the
input port that was constructed in Experiment No. 4. Refer to Exper-
iment No. 4 for construction details of the input port. We recom-
mend that you work through Experiment No. 4 before proceeding
with this experiment, if you have not already performed it.

Step 1
If you do not have an input port connected to your Apple com-

puter, we refer you to Experiment No. 4. The circuit developed in
that experiment must be used.

Step 2
In handling multibyte data, the Apple must be programmed so

that the various bytes are ordered from most-significant to least-sig-
nificant byte. In this experiment, we shall use byte "M" as the most-
significant byte (MSBY) and "L" as the least-significant byte
(LSBY). Since the Apple will interpret 8-bit values as decimal num-
bers between 0 and 255, can you suggest an equation or series of

103

Downloaded from www.Apple20nline.com

operations that can be used to obtain the decimal equivalent for a
two-byte binary number?

Since the MSBY is "offset" by a factor of 256, you can use the follow-
ing relationship:

VALUE = (M * 256) + L

where VALUE is the final decimal value of the 16-bit word.

Step 3
To test this equation, enter the following program into the com-

puter:

200 INPUT "SET MSBY ON SWITCHES " ;A$
210 M = PEEK(49319)
220 INPUT "SET LSBY ON SWITCHES ";A$
230 L = PEEK (49319)
-240 V = (256 * M) + L
250 PRINT V
260 GOTO 200

Now run the program, starting it by entering GOTO 200, and press-
ing the RETURN key. When the computer asks, "SET MSBY ON
SWITCHES?" set the eight bits for the value of the MSBY on the
eight switches. Depress the RETURN key on the keyboard. When
the computer asks, "SET LSBY ON SWITCHES?" change the eight
switches so that they represent the eight bits that you wish to enter
for the LSBY value. When the switches have been set, depress the
RETURN key so that the computer will know that you are ready.
Now the decimal value should be displayed on the video monitor.
Some typical 16-bit values that you might wish to try are listed be-
low. Fill in the decimal value for each, as generated by the Apple.
You should be able to check these fairly quickly with the aid of a
calculator.

MSBY
11001010
11000111
00000001

LSBY
11000001
00011101
10000001

VALUE

You should find values of 51905, 50973, and 385.

Step 4
The following program is a combination of the binary output pro-

104

Downloaded from www.Apple20nline.com

gram, and the two-byte decimal calculation program. It will allow
you to input two 8-bit bytes to represent a 16-bit value, display the
decimal value and the binary value.

10 A = 32768
20 FOR S = 1 TO 2
30 FOR Q = 1 TO 8
40 IF 8-A<O THEN GOTO 100
50 PRINT "1 ";
60 8 = B-A
65 A = A/2
70 NEXT Q
75 PRINT " ";:NEXT S
80 PRINT: GOTO 200

100 PRINT " 0" ;
110 GOTO 65
200 INPUT "SET MSBY ON SWITCHES "; A$
210 M = PEEK(49319)
220 INPUT " SET LSBY ON SWITCHES "; A$
230 l = PEEK(49319)
240 V = (256 * M) + l
250 HOME: PRINT V
260 8 = V: GOTO 10

Step 5
Run the program by entering a GOTO 200 command and then de-

pressing the RETURN key. Set values for the MSBY and LSBY on
the switches. There should be a correlation between your switch set-
tings and the binary bits that are displayed on the screen. You should
be able to convert the binary value into a decimal value fairly easily.
The 16-bit binary value has been "split" into two 8-bit values so that
you can easily compare the bits with your switch settings.

Now that you have seen how the Apple can operate on two 8-bit
bytes to reconstruct a 16-bit value, you should realize that other
types of operations could have been performed, too. Although only a
single input port has been used in this experiment, it would be easy
to construct another one with a new device address to provide the
additional byte of data required in the 16-bit application that has
been simulated in this experiment.

You probably noticed that a new variable, A$, was used in this ex-
periment , and in the last one. This is a "dummy" variable that has
been used so that the program can be halted at a predetermined
point so that the experimental conditions could be changed before
the computer is allowed to go on. The A$ variable is a string vari-
able, and when the RETURN key is pressed a null, or "nothing,"
string of characters is assigned to this variable. This is just a "trick"
that halts the computer until we depress the RETURN key.

105

Downloaded from www.Apple20nline.com

The interface circuit used in this experiment will be used in the
following experiment, so it should be saved. The software will not
be used, so the computer and interface may be turned off.

Purpose

EXPERIMENT NO. 6
INPUT PORT APPLICATIONS

The purpose of this experiment is to show you how an input port
may be used for control applications.

Discussion
In this experiment, the 8-bit input port will be used to transfer in-

formation to the Apple, but the Apple will process the eight bits of
data in a nonnumeric fashion. In this way, the state of eight external
devices will be monitored.

Step 1
If you do not have an input port connected to your Apple computer,
we refer you to Experiment No. 4. The input port described in that
experiment will be used in the following steps.

Step 2
In many cases, the computer will be used to process nonnumeric

information that tells the computer about the status or state of ex-
ternal devices. In such a way, it is easy to determine when devices
are on or off, valves open or closed, elevators up or down, and so on.

Enter the following program into your computer and run it. This
program demonstrates how a value may be used to cause the com-
puter to take a preprogrammed course of action:

10 INPUT A$: HOME
20 A = PEEK(49319)
30 IF. A > 127 THEN GOTO 70
40 PRINT " INPUT < = 127"
50 GOTO 10
70 PRINT "INPUT > 127"
80 GOTO 10

Step3
You must press the RETURN key to cause the computer to execute

the input and comparison steps. Set · the logic switches at the input
port to a value that is less than 127 (00000000 to 01111110) and press
RETURN. What happens? Try this with a value of 127 or greater
(01111111 to 11111111) . What happens? What happens when the
binary value is equal to 127 (011lllll)? You should see the correct

106

Downloaded from www.Apple20nline.com

message for each value that is input to the computer. This program
illustrates how the computer can be used to make a decision based
upon a value. In some cases, the value of an individual bit may be
used as the basis for a decision. The binary conversion program pro-
vided in Experiment No.4 allowed you to see a binary equivalent for
a decimal value. This program made decisions based upon the value
of individual bits, so that it could determine whether to display a
one in each bit position.

Step 4
In this step, the basic binary-display routine will be used, but

rather than display ones and zeros, the computer will display "ON,"
for a logic one and "OFF," for a logic zero. You should be able to
modify the program frpm Experiment No.4 to do this, just by chang-
ing the PRINT statements, but the following program is provided for
you. Note that the program from Experiment No. 4 has been
"moved," or relocated to higher line numbers. Before you enter this
program, remember to delete the old one, if you have not already
done so by turning off the power. The NEW command may be used
to delete the old program. Simply type NEW and then press the
RETURN key.

410 INPUT A$: HOME: A = 128
420 8 = PEEK (49319)
430 FOR Q = 1 TO 8
440 IF 8-A <O THEN GOTO 500
450 PRINT "ON "
460 8 = 8-A
470 A = A/2
480 NEXT Q
490 GOTO 410
500 PRINT "OFF ";
510 GOTO 470

Note: There are two spaces after ON, and one space after OFF. This
generates equal spacing.
Run the program. Remember that the switches should be set, and
then the RETURN key pressed, to perform the "conversion" and dis-
play. You should see that a line of ON and OFF messages is dis-
played, with the ON notation for the logic one bits, and the OFF no-
tation for the logic zero bits. The PRINT statements in the program
could be changed to display OPEN and CLOSED, UP and DOWN,
and other similar notations for the bits.

Step 5
While the simple program in Step 4 has some uses, the display of

the ON and OFF messages in column format may be more useful.

107

Downloaded from www.Apple20nline.com

The HTAB and VTAB commands in BASIC may be used to generate
such a vertical display of the conditions. The same basic program is
used, with the necessary changes marked (0

) • You need to leave the
spaces after ON and OFF in lines 450 and 500, respectively.

*400 H = 20: V = 8
410 INPUT A$: HOME : A = 128
420 B = PEEK(49319)
430 FOR Q = 1 TO 8
440 IF B-A<O THEN GOTO 500

*450 HTAB H: VTAB V: PRINT "ON ";
460 B = S- A

*470 A = A/2: V = V+1
480 NEXT Q

* 490 GOTO 400
*500 HTAB H: VTAB V: PRINT "OFF ";
510 GOTO 470

You should now observe that the display of ON and OFF conditions
is vertical, since the HTAB and VTAB commands have been used to
"move" the cursor in a vertical fashion.

Thus, the ON and OFF conditions can be displayed in a number .
of ways. In fact, in some computers, graphical representations and
alphanumeric characters may be mixed so that the ON/OFF condi-
tions may be displayed near a pictorial representation of the device
or process being monitored.

While the program is running, make changes to the switch settings
to confirm that the program and the input port are working prop-
erly.

Step 6
You may want to run the program continuously, so that the

switches may be changed, and the ON/OFF conditions monitored,
without the need to press the RETURN key each t ime a new display
is needed. The INPUT A$ is the "dummy, input command that
causes the computer to stop and wait for you to press the RETURN
key. Remove this statement from the program, so that line 410 looks
like this:

410 HOME: A = 128

Now run the program. Does this provide a reasonable display? Why?

Our display flickered badly, since the HOME command clears the
entire screen and positions the cursor in the upper left-hand corner

108

Downloaded from www.Apple20nline.com

of the monitor screen each time the computer restarts the program.
This takes time, and it slows down the display. Can you suggest any
further changes to the program to reduce or eliminate the flicker?

Step 7
By removing the HOME command, you can reduce the time that

the Apple takes to clear the entire screen and "home" the cursor to
the upper left-hand corner of the video display area. When the
HT AB and VT AB commands are used, they position the cursor at
exactly the right place to print each ON or OFF on each line, one
per bit. If no spaces are left after the "ON" at line 450, the printing
of the ON would not cover the last Fin OFF, and you would see
ONF, instead of ON. Thus, the spaces are needed to "erase" any
characters remaining on a line.

We suggest that you use the following for line 410 in your pro-
gram:

410 A = 128

Now, start the program by typing in HOME:GOTO 400, and then
pressing ENTER. If you do not use the HOME command, the pro-
gram will simply write over whatever is on the screen. The HOME
command clears the screen for you just before the program is started.

Step 8
The VT AB and HT AB commands can also be used to generate

titles or captions for each of the eight lines of information in the dis-
play. Several captions follow, and you may add or change the ones
provided :

5 HOME
10 VTAB 8: HTAB 1
15 PRINT "ACID PUMP";
20 VTAB 9: HTAB 1
25 PRINT " BASE PUMP";
30 VTAB 10: HTAB 1
35 PRINT "HEATER";
40 VTAB 11 : HTAB 1
45 PRINT "MIXER";
SO VTAB 12: HTAB 1
55 PRINT "FLUSH CYCLE";
60 VTAB 13: HTAB 1
65 PRINT " DISHWASHER" ;
70 VTAB 14: HTAB 1

Downloaded from www.Apple20nline.com

109

75 PRINT " VACUUM":
80 VTAB 15: HTAB 1
85 PRINT " DRYER";

We suggest that you add these lines to your program if you plan to
go ahead with Experiment No.7. You should test your program after
you add these lines.

The hardware and the software used in this experiment will be
used in the next experiment, so you should not dismantle your cir-
cuit, nor should you remove power to the computer.

Purpose

EXPERIMENT NO. 7
INPUT PORT APPLICATIONS (II)

The purpose of this experiment is to show you how logical opera-
tions may be performed on data.

Discussion
This experiment will use AND operations, and they will be per-

formed on the ON/OFF information from eight external "sensors."
The conditions of these sensors will be used to trigger actions in the
computer.

Step 1
The program used in this experiment is the same as the one used

in Experiment No. 6. If it has not been completely entered into your
computer, you must enter it and test it. If it has been entered and
tested in the previous experiment, you may wish to check it against
the following listing:

5 HOME
10 VTAB 8: HTAB 1
15 PRINT " ACID PUMP";
20 VTAB 9: HTAB 1
25 PRINT " BASE PUMP";
30 VTAB 10: HTAB 1
35 PRINT " HEATER";
40 VTAB 11: HTA8 1
45 PRINT " MIXER";
50 VTAB 12: HTAB 1
55 PRINT " FlUSH CYClE";
60 VTAB 13: HTAB 1
65 PRINT " DISHWASHER";
70 VTAB 14: HTAB 1
75 PRINT " VACUUM";
80 VTAB 15: HTAB 1
85 PRINT "DRYER";

400 H = 20: V =8

110

Downloaded from www.Apple20nline.com

410 A = 128
420 B = PEEK(49319)
430 FOR Q = 1 TO 8
440 IF B-A<O THEN GOTO 500
450 HTAB H: VTAB V: PRINT "ON ";
460 B = B-A
470 A = A/2: V = V + 1
480 NEXT Q
490 GOTO 400
500 HTAB H: VTAB V: PRINT "OFF ";
510 GOTO 470

When successfully loaded and tested, the program should generate
a display such as that shown in Table 6-1. The various ON and OFF
conditions shown by your computer will probably be different, based
upon the logic switch settings at your input port.

Step 2
Make notes alongside of Table 6-1 to indicate which bits at the

input port correspond to the different labels. You can do this by

Table 6-1. Control Program Output

ACID PUMP ON
BASE PUMP OFF
HEATER ON
MIXER ON
FLUSH CYCLE ON
DISHWASHER ON
VACUUM OFF
DRYER OFF

testing the input bits, or by analyzing your program. You should
find that bit D7 is the "ACID PUMP," bit D6 is the "BASE PUMP,"
and so on, down to bit DO, which is the "DRYER."

Step 3
Refer to Chapter 4, Example 4-3 and use the Apple monitor to

enter this assembly-language program into the computer. You can
simply type CALL -151 and then RETURN to enter the monitor.
Check that your program has been entered correctly. Remember that
the monitor program uses hexadecimal numbers. If you do not know
how to use the monitor, refer to Apple II Reference Manual, or fol-
low these steps:

1. Press the RESET key and type CALL -151, and press the
RETURN key. The Apple should respond with an asterisk (0).

2. Type 0300:00 00 00 48 AD 00 03 2D 01 03 8D 02 03 68 60 Leave

111

Downloaded from www.Apple20nline.com

a space between the two-digit groups. Use 00 for the first three
values in the program.

3. Press the RETURN key, type 02FF, press the RETURN key,
then press the RETURN key twice, and check the data against
what is in the listing in Example 4-3, and what is noted above.

Step 4
To test the assembly-language program, enter the program shown

below into the computer and run it. Make the necessary decimal-to-
binary and binary-to-decimal conversions on scrap paper to check
your results. Press RESET to return to BASIC.

1000 POKE 10,76:POKE 11,03:POKE 12,03
1010 INPUT "MASK BYTE "; M: POKE 768,M
1020 INPUT "DATA BYTE "; D: POKE 769,0
1030 Q = USR(O): PRINT "ANSWER " ; PEEK(770)
1040 GOTO 1010

If your answers prove to check with those that you calculate by
hand, go on to the next step. If not, carefully check that the assem-
bly-language steps have been entered correctly, and test the program
again. Remember, the errors could be in your "hand" calculations.

Step 5
we now want you to modify your program so that it wm detect

when any of the appliances, DISHWASHER, DRYER, or VACUUM
are on, and whenever the ACID PUMP and BASE PUMP are both
on. The logical AND assembly-language subroutine can be used, al-
though there are probably other solutions that will also work.

Can you suggest a method of making these determinations? We
suggest that you review the logical AND operation, as presented in
Chapter 4. Think about the operations as they are presented in
Table 6-2.

Step 6
The logical AND operation can be used to mask out the unwanted

bits, D5-DO for the pump test, and bits D7-D3 for the appliance test.
Thus, two "masks" must be established, one for the pumps, and one
for the appliances. What would these masks be, in decimal and in
binary?

112

Downloaded from www.Apple20nline.com

6-2. Control Conditions To h Detected

D7 D6 D5 D4 D3 D2 Dl DO

1 1 X X X X X X ACID AND BASE PUMPS
BOTH ON

X X X X X 0 0 I
X X X X X 0 1 0
X X X X X 0 1 1
X X X X X 1 0 0 ANY APPLIANCE ON
X X X X X 1 0 I
X X X X X I 1 0
X X X X X 1 1 I

X = Don't care, logec one or zero.

The mask for the pumps would be 11()()()()()()..!, or 192, while the mask
for the appliances would be 000001112, or 7. When these masks are
ANDed with the input values from the sensors, or logic switches, the
desired bits will be "filtered" through the mask.

Step 7
Now that the two masks have been established, suggest some soft-

ware steps that could be used to determine the state of the "filtered"
bits. You need to think of the individual bits, as well as the decimal
equivalents for the bits. You may use new variables, if you need to.

We used a new variable, C, to represent the value input from the
sensors. This allows the variable B to be used independently in the
ON/OFF display portion of the program. If you use the variable B,
you will find that it is always zero. We will let you try and find
out why. We used either:

POKE 768,7:POKE 769:C:Q=USR(O)
IF PEEK(770) = 0 THEN . . .

or
POKE 768,7:POKE 769,C:Q=USR(O)
IF PEEK(770) > 0 THEN ...

Downloaded from www.Apple20nline.com

113

to detect the appliances, and similar steps to detect the pumps. In
each case, the THEN . . . statement is executed on one condition,
and the program continues on in the other.

Step 8
In order to test your program ideas, add steps to the basic flag-

detecting program so that DANGER is printed on the display if
both pumps are on, and APPLIANCES is printed if any of the ap-
pliances are on. Write your program steps in following space
and review them carefully before you change the program. Remem-
ber that you will need a line just like line 1000 in the program given
in Step 4, if you are going to use the assembly-language subroutine.
This program line initializes the three locations used by the USR
command so that it points the computer to the start of the correct
subroutine.

Your program steps will probably look like these:

420 B = PEEK(49319): C = B

490 GOTO 600

600 POKE 768,7: POKE 769,C
605 Q = USR(O)
610 IF PEEK(770) = 0 THEN 700
615 HTAB 20:VTAB 17: PRINT "APPliANCES";
620 POKE 768,192
625 Q = USR(O)
630 IF PEEK(770) <> 192 THEN 800
635 HTAB 20:VTAB 18: PRINT "DANGER";
640 GOTO 400
700 HTAB 20:VTAB 17: PRINT "
710 GOTO 620
BOO HTAB 20:VTAB 18: PRINT "
810 GOTO 400

114

";

,
'

Downloaded from www.Apple20nline.com

Test your program. You may have forgotten steps to clear the AP-
PLIANCES and DANGER displays from your screen. You may also
have forgotten to use three POKE commands to load the informa-
tion required by the USR command. You can do this without add-
ing another step to your program, simply type in the POKE com-
mands, followed by a RETURN. They only need to be executed
once.

The commands for printing spaces at lines 700 and 800 are used
to clear the APPLIANCES and DANGER signals that are displayed.
This program could be much more complex, containing steps to use
reverse video, or to Hash the display when an emergency condition
is sensed by the program. You should realize by now that the soft-
ware can handle both mathematical and logical operations. You
should also see that the use of assembly-language subroutines is not
too difficult.

You may tum off the computer, although the assembly-language
AND operation program will be used again. The input port will also
be used again, so do not dismantle your circuit.

Purpose

EXPERIMENT NO. 8
CONSTRUCTING AN OUTPUT PORT

The purpose of this experiment is to have you construct a simple
8-bit output port and investigate its use.

Discussion
In this experiment, a simple 8-bit latch circuit will be used to

construct an output port. The output port will be used in this ex-
periment, and in some of the following experiments, in which it
will be necessary to transfer information to external devices. Two
SN7475 quad latch integrated circuits will be used.

Pin Configuration of the Integrated Circuit (Fig. 6-9)

FUNCTION TABLE
IEoc;h Lotchl

INPUTS OUTPUTS
D G Q Q

L H L H
H H H L
X L Co Co

H • high 1eve1, L • low lewl , X • Irrelevant
Oo • the level of a before the high· tO·Iow transition of G

Fig . 6-9. SN7475 .W,it match chip pin configuration.

115

Downloaded from www.Apple20nline.com

Step 1
The gating circuit used in Experiment No. 2 will be used in this

experiment. If this circuit is not available on your solderless bread-
board, we suggest that you perform Experiment No. 2 and then this
experiment. The gating circuit may also be wired and used directly.
Refer to Fig. 6-4 for the circuit details.

Step 2
Wire the circuit shown in Fig. 6-10. Two SN7475latch integrated

circuits are required, along with eight individual lamp monitors, or

0 7

DATA
BUS --

0 o-

OEV. · SEL.

-

+5 GNO

15 L
2 0 Q
3
6
7

____.!. G
G

+r: Gr
12

r--!-
3

0 Q

6
7

G
13 G

16 A
15 B LAMP
10 c
9 0 MONITORS

SN7475

16 A
15 B LAMP
10 c
9 0 MONITORS

SN7475

Fig. 6-10. Simple a.bit output port schem•tic.

equivalent logic level detecting circuits. Do not connect the device
select input, DEV SEL, at this time.

Step 3
Refer to the circuit shown in Fig. 6-4. Try to determine which of

the three control outputs, A, B, or C, would be used to control the
latch enable inputs that are connected to the DEV SEL line. Which
one would you use? Why?

116

Downloaded from www.Apple20nline.com

The A output, RD 49319, has already been used and RD 49318
would not work, since it is decoded for an input port. The WR 49318
output (C) would be the choice to use. It provides a positive pulse
which is the same type of pulse required by the SN7475latch chips.
This output is also decoded for an output device. You should re-
member that the 7 and 6 output pins from the decoder on the printed
circuit board actually correspond to decoded addresses 49319 and
49318, respectively.

Make a connection between pin 13 on the SN7402 and pins 4 and
13 on both of the SN7475latch chips. This is the DEV SEL connec-
tion shown in Fig. 6-10.

Step 4
To test the output port, enter the following program into your

computer:

10 A = 0
20 POKE 49318,A
30 END

Preset the variable A to zero, as shown, and run the program. What
happens to the lamp monitors?

They should be unlit, since zero has been transferred to the output
port. Now set A to 255 and run the program again. You should see
all of the LEDs light. If these conditions have not been found, re-
check your circuit and the test program.

StepS
The program may be changed so that you can easily enter new

values from the keyboard. The new program is:

10 INPUT A
20 POKE 49318,A
30 GOTO 10

You may try any values that you choose, but we suggest that you
try powers of two first, 0, 1, 2, 4, 8, etc., since these will test the indi-
vidual LEDs.

117

Downloaded from www.Apple20nline.com

Since an 8-bit output port can only display values between zero
and 255, what happens when you try to output a value that is out-
side of this range? Would you expect to see a "portion" of the value,
say the eight least-significant bits? Try running the program with
the value 256. What happens?

The Apple displays

?IllEGAl QUANTITY ERROR IN 20

which indicates that the value was not within the proper range for
the function that was requested. The line number for the "error"
is provided in the error message. Negative numbers are also "caught"
in this way.

Step 6
Restart the program and enter a value of 90. You should observe

a display of 01011010 on the lamp monitors. Now try and enter a
value of - 24. When the error is detected, and the error message
displayed, does the displayed value change?

No. Error conditions are detected prior to any attempted use of the
POKE function. How do you think the Apple will handle fractional
numbers? Enter a decimal fraction, such as 6.01. What is displayed?

The Apple will "strip ofF' the decimal portion of the number. You
may wish to experiment with some other numbers, too.

Step 7
Can you write a short program that could be used to increment

a value from 0 to 255, displaying each new value on the LEDs?
Write your program in the space below, and test it. What do you
observe? Can you make the program loop back on itself so that the
incrementing counting is displayed again and again?

118

Downloaded from www.Apple20nline.com

We used the following program:

10 FOR A = 0 TO 255
20 POKE 49318,A
30 NEXT A
40 GOTO 10

Remember that you cannot go above 255, or below 0, without gen-
erating an error message. You may wish to put a short time delay
in your program so that the LEOs do not Hash on and off so quickly.
An example of such a time-delay step is:

25 FOR T = 0 TO 500: NEXT T

You should see that it is fairly simple to construct an output port,
and to control it with simple software commands.

The output port will be used in the following experiment, but the
power may be shut off.

EXPERIMENT NO. 9
OUTPUT-PORT AND INPUT-PORT INTERACTIONS

Purpose
The purpose of this experiment is to show you how input-port

and output-port commands can be used in the same program.

Discussion
In many cases, input ports and output ports will be used together

in interface circuits. They will be controlled by PEEK and POKE
commands within the same program, and there frequently will be
transfers of information between the ports. In this experiment, you
will observe how such ports may be used together in a simple circuit.

Step 1
The simple input port (Experiment No. 7) and output port (Ex-

periment No. 8) used previously will be used in this experiment.
We refer you to Experiment Nos. 2, 3, and 8 for the appropriate
circuit details.

Step 2
Once the input port and output port have been constructed, enter

the following program into your computer and run it. It is used to
test the 1/ 0 port circuits.

10 A = PEEK(49319)
20 POKE 49318,A
30 GOTO 10

Downloaded from www.Apple20nline.com

119

As you actuate the logic switches at the input port, you should see
the corresponding bits at the output port change, consistent with
the switch actions. If this is not the case, recheck your circuits and
your program.

Step 3
In this step, two values will be entered from the keyboard and

then displayed on the LEDs. At this point, you should be able to
write a short program to do this. Make an attempt in the space
provided:

We used the following program, in which a most-significant byte
(MSBY) and a least-significant byte (LSBY) were simulated:

10 INPUT "MSBY ";A$: M = PEEK(49319)
20 INPUT "LSBY ";A$: l = PEEK(49319)
30 POKE 49318.M
40 INPUT A$
50 POKE 49318,l
60 GOTO 10

In this program, the string variable, A$, has been used as a "dummy"
variable to "stop" the computer so that you can perform the neces-
sary actions before the program goes on.

Step 4
Run your program. You should be able to enter two values into

the computer. When you type RUN RETURN, the computer is
ready for you to set the MSBY on the switches. After you have done
this, press the RETURN key, so that the computer can perform the
data acquisition step. Then, set the LSBY on the switches and again
press RETURN. When the LSBY has been acquired, the MSBY will
be displayed. By pressing RETURN, you will cause the computer
to display the LSBY.

Step 5
This program shows how the computer can acquire and store val-

ues for later display. Eight bits of information are easy to manipu-
late. How could a number between 0 and 65535 be displayed on
two output ports?

120

Downloaded from www.Apple20nline.com

These numbers would have to be "split" into an 8-bit MSBY and an
8-bit LSBY. Can you suggest how this might be done?

The number could be divided by 256 to get the MSBY as the integer
portion of the answer. For example, if we start with the number
10923:

10923/256 = 42.668

The integer portion of the result, 42, when converted into an 8-bit
binary number, would be the MSBY of the value. The LSBY can
also be calculated:

10923 - (42 * 256} = 171

Here, the 171 must also be converted into its 8-bit binary equivalent
to be the LSBY.

A BASIC program can be written for the Apple to perform these
functions. Could you write it?

Step 6
We developed the following program to make the "conversion:"

10 INPUT "VALUE "; V
20 M = V/256
30 l = V - INT(M} * 256
40 PRINT INT(M), l
50 INPUT A$
60 POKE 49318,M
70 INPUT A$
80 POKE 49318,l
90 GOTO 10

The MSBY and the LSBY will be displayed on the video monitor in
their decimal form. The INT command has been used to "strip" the
decimal fraction from the value for M, for clarity. This is not re-
quired for the POKE operation, since the decimal fraction will be
ignored.

121

Downloaded from www.Apple20nline.com

Step7
Enter our program, or yours, into the computer and test it. You

will have to press the RETURN key to display the MSBY on the
LEDs, and you must press it a second time to display the LSBY.

Can you enter values greater than 65535? Can they be converted
and displayed?

Yes, you can enter them, and they will be converted, but you cannot
display them, since they will generate results that are greater than
256 in the MSBY. This generates an error condition. Can you do
anything to prevent this?

You can add some steps to your program that will check the range
of the value before attempting the conversion. Steps can also be
added to remove any fractional portions of the number. The follow-
ing steps can be used:

12 IF V < = 65535 AND V > = 0 THEN 18
14 PRINT "VAlUE OUT OF RANGE, TRY AGAIN": GOTO 10
18 V = INT(V)

You might want to try adding these steps to your program. Program
steps such as these prevent errors, and they orient the program
toward the user. Keep this type of programming in mind when you
write complex programs of your own.

Purpose

EXPERIMENT NO. 10
DATA LOGGING AND DISPLAY

The purpose of this experiment is to show you how the input port
may be used to acquire information, and how the computer can
store this information for later display at the LEDs.

Discussion
In this experiment, a set of 10 data values will be acquired from

the three-state input port, and will be displayed on the LEDs at a
later time. More flexible display ideas will also be developed and
larger lists of data acquired.

122

Downloaded from www.Apple20nline.com

Step 1
The input port and output port described previously will be used

in this experiment. By now, you should be familiar with these types
of ports, but we refer you to Experiment Nos. 2, 3, and 8 for the
necessary details. If you have not performed these experiments, we
recommend that you do so before going on with this experiment.

Step 2
In this experiment, you will use the computer to acquire and dis-

play a set of values that are acquired from the input port. While
these may be acquired with software steps such as :

50 INPUT A$
60 Q = PEEK(49319)
70 INPUT A$
80 R = PEEK(49319)

this takes a great number of software steps to acquire a small amount
of information. Can you suggest an alternative?

A list of values can be acquired by using a loop, and an array can
be used to store the information, so that a new variable need not
be assigned to each new data value. Can you write a short program
that could be used to acquire 10 data points?

We used the following program, which should look somewhat like
yours. Note the use of an array to store the information.

10 DIM A(lO)
20 PRINT " START"
30 FOR P = 1 TO 10
40 INPUT A$
50 A(P) = PEEK(49319)
60 NEXT P .
70 PRINT " START DISPLAY • • • "

Downloaded from www.Apple20nline.com

123

80 FOR P = 1 TO 1 0
90 GET A$

100 PRINT A(P): POKE 49318,A(P)
110 NEXT P
120 PRINT " END OF RUN": END

In this program, you must press the RETURN key to cause the
computer to acquire a value. When the computer prints "START
DISPLAY ... "on the screen, it will display a value that it has stored,
each time you press RETURN. The value will also be displayed on
the LEDs in binary form. Note that a GET A$ command has been
used here, instead of an INPUT A$. Is there any difference?

Yes, the GET A$ command suppresses the question mark (?), and
any character key (A, &, 1, etc.) may be used in place of the RE-
TURN key. The alphanumeric symbol is not displayed. This "cleans
up" the display of the data values.

Step3
Run either your program, or ours, to acquire 10 data values. Once

the values have been acquired, use the computer to display them.
What results do you observe?

You should find that your values have been stored properly, and
that they are also displayed and printed on the video monitor. If you
do not require the values at the output port, could you modify the
program so that it only displays the values on the monitor?

Yes. Simply change line 100 to :

100 PRINT A(P)

and remove line 90.

Step4
The low-resolution graphics mode on the Apple could also be

used to display the values in graphical form. We suggest that you
attempt to use the HLIN command to draw a horizontal set of lines

124

Downloaded from www.Apple20nline.com

that represent the relative values that have been input from the port.
Remember that there are limits on the dimensions of the screen area
for the HLIN command. These limits are 39 points in each direction.

Note your display program steps in the following space:

We used the following steps to generate a horizontal bar graph of
the information:

80 GR: COLOR = 5
90 FOR P = 1 TO 10

100 D = A(P)/6.5
110 HLIN 0,0 AT P
120 NEXT P
130 END

These steps were added to the program that we developed in Step 2.
Try your program, or the one shown here.

In this set of program steps, the data value has been divided by
6.5, so that instead of having a range between 0 and 255, the range
is "condensed" to be 0 to 39. The subscript for the array has also
been used to increase the starting position of each horizontal line.
The data starts at the top of the screen for A (I), and proceeds down
the screen for the later data values. You could also use the value
of P to change the color for each of the horizontal lines.

Step 5
Additional changes can be made to the program so that a time-

delay routine is used in place of the INPUT A$ command. This
would mean that data values would be obtained at definite intervals,
as programmed in the delay routine. You would no longer need to
press the RETURN key to have a new data value acquired.

Change your program so that a time delay routine is used in place
of the INPUT A$ command at line 40. Make the delay fairly long,
about 2 or 3 seconds. Here is an example of a useful routine:

40 FOR T = 0 to 2000: NEXT T

Connect the logic probe to the "A" output, pin 1, on the SN7402
gate. The acquisition of a data value from the three-state in-

125

Downloaded from www.Apple20nline.com

put port will cause the logic probe to Bash the yellow LED. This
will tell you that a value has been acquired.

You may want to change your program to acquire more than 10
points. With the simple display routine, you can acquire up to
39 values.

Make the necessary changes to your program so that a time delay
is used to synchronize the acquisition of the data from the input
port. Run your program. You may want to increase the delay so
that you can easily change the switches.

Your program should now look something like this :

10 DIM A(10)
20 PRINT "START"
30 FOR P = 1 TO 10
40 FOR T = 0 TO 2000: NEXT T
50 A(P) = PEEK(49319)
60 NEXT P
70 PRINT "START DISPLAY ... "
80 GR: COLOR = 5
90 FOR P = 1 TO 1 0

100 D = A(P)/6.5
110 HLIN O,D AT P
120 NEXT P
130 END

Have you noticed that not all of your values cause changes in the
display? Try entering values of 0, l , 2, 3, and so on up to 9. You may
need to slow down the delay, or to go back to the INPUT A$ com-
mand at line 40 so that you have sufficient time to make the changes
to the switches. What do you find in the display when you enter
these numbers? Why?

The values 0-6 show the same value on the display, and the values 7-9
also show the same value, but one "square" greater than the previous
values, 0-6. The reason for this is that all the values are "compressed"
to be between 0 and 39, so the resolution is cut from one-part-in-256
to one-part-in-40. Thus while the data has 256 discrete values, the
display only can accommodate 40 different values. The division of
the value by 6.5 "compresses" it to fit in the space available on the
display. You will also note that a value of zero still "lights" one
square ·on the video monitor. Unfortunately, the BASIC program
will generate one "lit" square for the command HLIN 0,0 at X,
wherever X is on the screen.

The point of this experiment is that the computer can be used
to acqliire information and display it, or use it, in many ways. The

126

Downloaded from www.Apple20nline.com

input and output ports are simply additional ways of getting infor-
mation into and out of the computer.

EXPERIMENT NO. 11
SIMPLE DIGITAL-TO-ANALOG CONVERTER

Purpose
The purpose of this experiment is to show you how a simple 8-bit

digital-to-analog converter (DAC or D/A) can be interfaced to
the Apple.

Discussion
A simple D/ A converter, the Signet ics NE5018 8-bit converter,

will be interfaced to the Apple. Although we have not discussed
analog converters, they have been thoroughly described in Micro-
computer-Analog Converter Software and Hardware Interfacing
(Howard W. Sams & Co., Inc., Indianapolis, IN 46268). We refer
you to this book for additional information about these devices.
Other topics, such as sample and hold ampli£ers, analog multiplex-
ers and instrumentation ampli£ers are also described.

Pin Configuration of the Integrated Circuit {Fig. 6-11)

Fig. 6-11 . Signetics NE5018 8-bit
D/ A converter chip
pin configuration.

Step 1
Two additional power supplies are required in this experiment,

+ 12 and - 12 volts. They wi1l be used to power the D/ A converter
integrated circuit. Be sure that these power supplies are available,
and that they are adjusted for the proper voltages before proceeding.

Wire the circuit shown in Fig. 6-12. The device-select pulse is ob-
tained from the SN7402 NOR gate circuit that has been used in
previous experiments. The device-select signal is available from

127

Downloaded from www.Apple20nline.com

-12 + 12

19

DO z
Dl 3

D2 4

DATA D3 5 NE 5018
BUS D4 •

D5 7 18
8 VDAC

D6
01 9

14
4 . 7 K

...
10

DEVICE SEL ECT
Fig. 6-12. Schematic for simple D/ A converter interface, using NE5018 D/A

converter chip.

point C (Fig. 6-4), but it must be inverted before it can be used
by the NE5018 chip. An SN7404 inverter chip may be used for this,
as shown in Fig. 6-13. Wire this inverter circuit, too, connecting
the input of the SN7404 inverter to pin 13 on the SN7402, and wiring
the output of the SN7404 inverter to the DEVICE SELECT input
on the NE5018 converter.

+5

SN7404

JL 2
;>o-=;D:;:EV;;:;;IC:;:E S;;E;:;LE::,.,CT L.r DEVICE SELECT

Fig . 6-13. Simple device-select puiH-inverter circuit.

At this point, carefully check the + 12 and - 12-volt power supply
connections to be sure that they are correct. If you are using sepa-
rate power supplies, you must be sure that there is a low-resistance
ground connection in common to all of them and to the breadboard.

Step 2
The NE5018 D/A converter will convert values between 0 and

255 to ··voltages between 0 and + 10 volts. Since the 0- to 10-volt

121

Downloaded from www.Apple20nline.com

range has been divided into 256 values, or 255 steps, the voltage in-
crement available is:

10 volts/255 steps= 39 millivolts/step

You can probably write a short program that would increment an
8-bit count and output it to the DA converter. Don't worry about the
internal operation of the D/ A converter, just treat it like an output
port. Your program will generate a slowly increasing positive volt-
age ramp. Develop your program in the space below:

We used the program:

1 0 FOR V = 0 TO 255
20 POKE 43918,V
30 NEXT V
40 GOTO 10

A simple voltmeter or volt-ohm-milliammeter (vom) may be used
to monitor the voltages. Connect the meter between ground and the
NE5018 VDAC output (VDAC is positive). Try your program. Does
the voltage increase slowly? What happens when the voltage reaches
about + 10 volts?

The voltage increases slowly to + 10 volts. When it reaches this
value, it quickly changes to zero volts, or ground, and it starts to
increase slowly once again.

You can slow the voltage ramp by introducing a short time delay
routine in your program. We used the following:

25 FOR T = 0 TO 100: NEXT T

Step 3
Develop a program that will generate a negative-going ramp, and

one that will generate a triangular ramp (slow-up then slow-down).

We used the following programs:

Neg•tive ramp
10 FOR V = 255 TO 0 STEP -1

129

Downloaded from www.Apple20nline.com

20 POKE 49318, V
30 NEXT V
40 GOTO 10
Triangular output
1 0 FOR V = 0 TO 255
20 POKE 49318, V
30 NEXT V
40 FOR V = 254 TO 1 STEP -1
50 POKE 49318, V
60 NEXT V
70 GOTO 10

You may wish to try either of these programs, or the ones that
you wrote. Why is the range in one of the triangular output loops
254 to 1 instead of 255 to 0?

If the range is 255 to 0, these two values will be output twice, al-
though you probably couldn't tell the difference on the meter. A
time delay, or delays, may be useful in these programs.

Step 4
Since you know that the voltage from 0 to 10 volts corresponds

to steps from 0 to 255, can you write a program that would allow
you to enter a voltage from the keyboard and that would generate
this voltage on the meter? Use the following space for your program:

We developed the following program, which you may wish to try:

10 INPUT " VOLTAGE ";V
20 R = V * 25.5
30 POKE 49318, R
40 GOTO 10

Step 5
Try your program, too. Does it generate a voltage from the D/ A

converter that closely matches the voltage that you entered? Our
program seemed to work well, considering inaccuracies in the meter.
This program does not have any "error detecting" steps, so you can
also try and generate a + 15-volt signal from the converter. What do
you think will happen? Will the converter burn out?

130

Downloaded from www.Apple20nline.com

The converter will not bum out, since it can only accept an 8-bit
value, which corresponds to an output of + 10 volts. The "15" input
for 15 volts will cause an ILLEGAL QUANTITY ERROR, since we
are trying to transfer the value 382 to an 8-bit device. It just can't
be done with eight bits.

Step 6
At this point, you should be able to write a program that will al-

low you to enter an upper voltage and a lower voltage, and to have
the Apple generate a triangular wave between them. Use your best
programming skills.

We used the following program:

10 INPUT " UPPER VOLTAGE"; H
20 IF H <= 10 AND H >= 0 THEN 40
30 PRINT " VOLTAGE OUT OF BOUNDS": GOTO 10
40 INPUT "LOWER VOLTAGE"; L
50 IF L <= 10 AND L >= 0
60 PRINT " VOLTAGE OUT OF BOUNDS" : GOTO 40
70 IF H > L THEN 90
BO PRINT " UPPER V MUST BE HIGHER THAN LOWER V" : GOTO 10
90 H = H * 25.5: L = L * 25.5

1 00 FOR V = L TO H
110 POKE 49318, V
120 NEXT V
130 FOR V = H- 1 TO L + 1 STEP - 1
140 POKE 49318, V
150 NEXT V
160 GOTO 100

Run your program and test it. You should be able to make the meter
needle "swing" between the upper and lower voltages. You may use
a time delay, or delays, if you wish to slow the meter movement so
that you can easily watch it.

This experiment clearly shows you how a simple D I A converter
may be interfaced to your computer. The NE5018 used internal
latches, and much of the analog circuitry has been placed on the
converter chip. D/ A converters find use in applications that require
the computer to control voltage-dependent devices, such as servo
motors, amplifiers, etc.

You will not use the NE5018 D/ A converter again, so you may
remove it from your breadboard. The SN7 402 NOR gate chip should
be retained, but the SN7404 inverter may be removed. Power may
be turned off. Carefully remove the connections to the + 12- and

131

Downloaded from www.Apple20nline.com

-12-volt power supplies, so that they will not come in contact with
any of the circuits.

EXPERIMENT NO. 12
OUTPUT PORTS, BCD, AND BINARY CODES

Purpose
The purpose of this experiment is to explore the use of an SN74-

LS373 chip as an output port.

Discussion
Newer integrated circuits, such as the SN74LS373 octal latch, are

availab1e to simplify the task of output-port construction. In this
experiment, you will construct an 8-bit output port using one of
these chips, and the use of binary-coded decimal numbers will be
exp1ored.

Pin Configuration of the Integrated Circuit (Fig. 6-14)
lNA.IU

Vee 10 Kt 10 10 .:t 10 50 50 G

ounur 10 10 20 20 30 3D •o -a GNO
CONT-.Ol

Fig. 6-14. SN7 4LS373 octal latch chip pin configuration.

Step 1
Wire the circuit shown in Fig. 6-15. You may use output "C,"

pin 13, on the NOR gate circuit shown in Fig. 6-4 as the "G" input
to the SN74LS373 chip. If this NOR gate circuit is not wired on
your breadboard, refer to Experiment No. 2.

Step 2
Note that the SN74LS373 chip has two contro] inputs, G and OC.

The G input controls the latch, and the OC input controls the latch
outputs, which are three-state. Thus, the latch may be used not only
to obtain information from a bus, but to pass it on to another bus,
as well. The relationships of the signals are shown in Table 6-3.

132

Downloaded from www.Apple20nline.com

07

DATA
BUS

DO

3
4
7
8
13
14
17
18

o-L
...LL

+ l) GNO

to i.o
0 Q 2

5
6 LAMP

12 MONITORS
15
16

oc
G SN74LS373

Fig. 6-15. Using SN74l5373 octal latch chip as output port.

Table 6-3. Control Signal Truth Table for the SN74LS373

Output Control Enable (G) Data Output

L H H H
l H l L
l l X Q o
H X X z

When the Output Control (OC) signal is a logic one, the outputs
have been disabled, or placed in the high-impedance state (HI-Z) .
When the enable or Gating input (G) is a logic one, the informa-
tion present at the D inputs is passed through latch circuits to
the Q outputs. This is the same type of operation that was observed
for the SN7475 latch chip.

In this experiment, the OC input should be grounded (logic zero),
so that the outputs are always enabled.

Step3
Once the output port has been wired, test it by writing a short

program that will take values from the keyboard and display them
in binary at the output port. A binary incrementing-count program
can also be used to test the port. You should be able to write pro-
grams such as these without any further assistance.

Step4
Enter the following program into your computer and run it.

I 0 FOR C = 0 TO 255
20 POKE 49318, C
30 FOR T = 0 TO 500: NEXT T
40 NEXT C
50 GOTO 10

Downloaded from www.Apple20nline.com

133

What do you observe at the LEOs?

You should see a slowly incrementing binary count. You may in-
crease the length of the time delay at line 30, if you wish.

Now that the LEOs are displaying an increasing binary count,
carefully remove the connection between the OC pin, pin 1, on the
SN74LS373 chip and ground. What happens to the display, or
LEOs? When you replace this connection, what do you observe?

In our set of LEOs, all of the LEOs became unlit when the con-
nection was removed . When the OC input pin was again grounded,
the count was found to be continuing. The Output Control signal
did not affect the count. Even though the outputs were disabled and
placed into their high-impedance state, the counting continued, and
the latches were "updated" with new information by the computer.
In our system, the high-impedance state of the outputs caused the
LEDs to be turned off. This may be different from your observations,
but you should see that the latch outputs change dramatically when
the OC input pin is not at ground.

The SN74LS373 chip is called a three-state octal latch chip, since
it has three-state outputs on eight latch functions. This chip is par-
ticularly useful in computer interface circuits, since it contains all
eight latches, and since its outputs may be placed in the high-imped-
ance state. The SN7 4LS373 can be used in complex interfaces that
are connected to several different computer buses. In fact, the SN-
7 4LS373 could be used as part of a communication circuit that could
link two or more computers.

Step 5
Now that you have another input port wired on your breadboard,

we will use it to further explore some of the manipulations that can
be performed by the Apple. In past examples, we have used the
computer to control an incrementing binary count. This is not the
only code that is in digital electronic equipment. Another popular
code is the binary-coded decimal format, in which decimal digits
are each assigned their own binary code, independent of the other
digits. Of course, this code is still "binary," in the sense that only
two states are possible for each bit. For example, the decimal num-
ber 9530 would be represented as 1001 0101 0011 0000 in binary-
coded decimal, or bed. Note the separation between each set of
four bits. One set of four bits is used to represent the decimal digit

134

Downloaded from www.Apple20nline.com

for each decade. The bed code is used in many electronic devices,
and is used to control seven-segment displays and other decimally
oriented devices.

We would like you to try and write a program that will "split" a
number into its bed equivalents. The output port will be used to
display the different groups, two bed digits at a time. The ten's and
one's bed digits should be displayed at the output port first, followed
by the thousand's and hundred's bed digits. You may use the RE-
TURN, or other key to "stop" the computer between displays of
the digits.

We used the following program:

10 INPUT "VAlUE "; A
20 IF A < 10000 THEN 30 ELSE 10
30 GOSU8 1000
40 POKE 49318, A+C
50 GET A$:A = 8
60 GOSU 8 1000
70 POKE 49318, A+C
80 GOTO 10

1000 8 = 0: c = 0
1010 IF A > 99 THEN 1100
1020 IF A < 10 THEN RETURN
1030 C = C+16: A = A-10
1040 GOTO 1020
1100 A = A-100: B = 8+1
1110 GOTO 1010

In the subroutine, the variables are A, B, and C. In this case, the
A represents the decimal value to be converted to bed (the starting
value), B represents the "hundreds," while C represents the "tens."

135

Downloaded from www.Apple20nline.com

At the end of the subroutine, A represents the units, or "ones." You
could have used a new variable for this purpose, if you wished .

In some cases, it may be difficult for you to remember that you
are tricking the Apple into generating bed values for you, since you
are really interested in the binary codes that are being output to
the port. Thus, while you have tricked the Apple into outputting
the binary pattern 10011001, which represents 99 in bed, the Apple
really thinks that it is outputting a decimal 153, which is the num-
ber that causes the binary pattern, 10011001, to appear on the LEDs.
There are many different ways in which you can "fool" the com-
puter into working with odd codes, or codes that do not match the
ones that it normally uses.

If you are going to go on to further experiments, you may want
to leave the SN74LS373 output port on your breadboard. However,
if you already have another output port already available, the SN-
74LS373 circuit may be removed. Power may be turned off.

Purpose

EXPERIMENT NO. 13
OUTPUT-PORTS TRAFFIC-LIGHT CONTROLLER

The purpose of this experiment is to show you how the Apple
computer may be used as a controller in a real application.

Discussion
While the control of a traffic light may not seem like a realistic

problem for us to tackle with the computer, it does illustrate the
ability of the computer to make decisions and control external
events.

Step 1
An 8-bit output port will be used in this experiment. If you have

one already connected to your computer, you can use it as long as
it can control some LEDs. If you have completed one of the output
port experiments, you may use one of the output port circuits used
in the experiment. If you need to construct an output port, we refer
you to Experiment No.8.

Lamp monitors or individual LEDs may be used to simulate the
lamps of the traffic light. Only six LEDs are needed, since the north-
south and east-west lamps would be the same, with a red, yellow,
and green lamp for each. We used colored LEDs and we adopted
the following convention:

136

Downloaded from www.Apple20nline.com

liT
DO
D1
D2

Step 2

LED BIT
RED } D3
YELLOW ELM D4
GREEN D5

LED
RED }
YELLOW MAIN
GREEN

You must now determine the patterns of logic ones and zeros that
are required to turn the individual LEDs on or off. In our circuit,
the latch chips were used to drive the LEDs directly, and a zero
turned a LED on, while a one turned a LED off. What values are
you going to use to turn the various LEDs on and off?

We found that the following binary values were needed. The deci-
mal equivalents have also been provided for you.

ELM Red 254 11111110
ELM Yellow 253 11111101
ELM Green 251 11111011

Step 3

MAIN Red 247 1ll10ll1
MAIN Yellow 239 11101111
MAIN Green 223 11011111

To start the traffic-light control operation, write a program that
will flash the yellow light on Main Street and the red light on Elm
Street; one second on and one second off. What is the "on" pattern,
and what is the "ofF' pattern?

The off pattern is 255, or all logic ones, while the on pattern has
bits D4 and DO both as logic zeros, or 23810• We used the following
program:

10 POKE 49318,255
20 FOR T = 0 TO 770: NEXT T
30 POKE 49318,238
40 FOR T = 0 TO 770: NEXT T
50 GOTO 10

Downloaded from www.Apple20nline.com

137

Step 4
Determine the lamp patterns that will be required for normal

traffic light operation. How many are used? What are they? How can
they be stored in the computer?

There are only four patterns. They are (a) red on Elm, green on
Main (222) , (b) red on Elm, yellow on Main (238), (c) green on
Elm, red on Main (243), and (d) yellow on Elm, red on Main (245).
The values could be stored through the use of DATA statements,
subscripted variables, or just as variables, one per lamp pattern.

Step 5
In the remainder of this experiment, we will assume a "yellow

period" of two seconds. Thus, if Elm Street is on a 10-second period,
the green light will be on for 10 seconds, followed by a 2-second
yellow, before the signal goes to red.

Write a program that will allow you to sequence through the
light patterns, with a 6-second period on Elm and a 10-second pe-
riod on Main Street.

We used the following program:

138

10 M = 10: E = 6: P = 49318
20 DATA 222, 238, 243, 245
30 READ L
40 POKE P,L
50 FOR R = 1 TO M

Downloaded from www.Apple20nline.com

60 FORT= 0 TO 770: NEXT T
70 NEXT R
80 READ L
90 POKE P,L

100 GOSUB 1000
110 READ L
120 POKE P,L
130 FOR R = 1 TO E
140 FORT = 0 TO 770: NEXT T
150 NEXT R
160 READ L
170 POKE P,L
180 GOSUB 1000
190 RESTORE
200 GOTO 30

1000 FOR R = 1 TO 2
1010 FOR T = 0 TO 770: NEXT T
1020 NEXT R
1030 RETURN

Step 6
While the program listed in the previous step will operate cor-

rectly, many of the steps are repetitive. Could you suggest a new
program that could be written in a simpler way? How would you
simplify the program?

In the program in Step 5, the only changes in the four basic sections
of the program are to the time delays and the light patterns. By us-
ing an array of values, one simple loop may be used. We found that
the following program worked well:

10 A(l) = 222: A(2) = 238: A(3) = 243: A(4) = 245
20 M(1) = 0 : M(2) = 2: M(3) = 0: M(4) = 2
30 INPUT "MAIN DELAY "; M(l)
40 INPUT "ELM DELAY "; M(3)
50 FOR Q = 1 TO 4
60 POKE 49318, A(Q)
70 FOR R = 1 TO M(Q)
80 FOR T = 0 TO 770: NEXT T
90 NEXT R

100 NEXT Q
110 GOTO 50

Downloaded from www.Apple20nline.com

139

In this new program, the A array stores the light patterns, while the
M array stores the time intervals.

Step 7
So far, the computer has served only as a sequencer, generating

the proper lamp patterns and time delays. In this step, some control
steps will be added to the traffic-light control program.

The traffic on Main Street is usually heavy, so the normal mode
for the traffic light should be green on Main and red on Elm. The
program should be able to detect a single car waiting on Elm, so
that it may be given the green light. However, Main Street must
be given at least 30 seconds of "green time," before any cars are
sensed on Elm Street. This means that every car waiting on Elm
Street will not automatically trigger a green-on-Elm sequence. To
make things even more interesting, there is a sensor on Main Street,
too. If five or more cars are waiting on Main Street at a red light,
Main Street will be given the green light, and the cars on Elm will
have to wait.

In order to program this, you may wish to draw a simple flowchart
of the problem. An input port could be used to simulate the two road
sensors, but to teach you a bit more about the Apple, the keyboard
will be used instead.

The keyboard uses two memory addresses for control Address
49152 contains the keyboard data, and address 49168 is used as a
Bag-clear pulse output.

Enter the following program into your computer and run it:

2000 PRINT PEEK(49152): GOTO 2000

Press some of the keys on the keyboard and note what happens on
the display. What do you observe?

There is a new decimal value displayed whenever a new key is
pressed, and the value continues to be displayed until a new key
is actuated. Thus, the information at input port 49152 represents the
code of the last key that was pressed.

Step 8
We would like to have the computer input a value from the key-

board input port only when a key has been pressed. To do this, you
must use the keyboard flag bit, which is bit D7 at input port 49152.
If this bit is a logic zero, all values from this port will be less than 128.
If this bit is a logic one, the values will be 128 or greater, up to 255.

140

Downloaded from www.Apple20nline.com

Thus, by testing the value input from the input port, you can deter-
mine if a key has been pressed. Of course, after a key is "detected,"
you must reset the flag bit, with a read operation to address 49168.

Enter the following program into your computer and run it:

2000 IF PEEK(49152) >= 128 THEN PRINT PEEK(49152)
2010 Z = PEEK(49168)
2020 GOTO 2000

Now press some of the keys, one at a time. What is displayed? Is the
decimal code for each key displayed as you press it?

You have probably found that some keys are "missed," once in a
while. Since the keyboard Hag is cleared during every pass through
the loop, it is possible to have the Apple clear a keyboard flag before
it is detected. You would really want to have the Hag cleared only
after a key has been detected.

Step 9
Write a short keyboard control program that will detect every

key, only once, and print its decimal equivalent.

We used the following program that constantly checked the key-
board, but which only printed a character when the flag was set,
and only then cleared the keyboard Hag.

2000 IF PEEK(49152) < 128 GOTO 2000
2010 PRINT PEEK(49152)
2020 Z = PEEK(49168)
2030 GOTO 2000

Note that the variable, Z, is a dummy variable, provided simply so
that the keyboard Hag may be cleared with the PEEK(49168) com-
mand.

If you want to use the decimal value for a key, without the flag
bit, simply subtract 128.

Step 10
Write your traffic-light controller program and test it, using the

"E" key as the Elm Street sensor, and the "M" key as the Main Street

141

Downloaded from www.Apple20nline.com

sensor. Of course, you will have to determine the corresponding key
codes.

We used approximately 10-second periods, for test purposes, with
2-second yellow periods. The program that we used is listed for you:

10 A = 0: P = 49318
20 POKE P, 222
30 FOR R = 0 TO 1 0
40 FOR T = 0 TO 770: NEXT T
50 NEXT R
55 Z = PEEK(49168)
60 IF PEEK(49152) = 197 GOTO 80
70 GOTO 60
80 Z = PEEK(49168): POKE P, 238
90 FOR R = 1 TO 2

100 FOR T = 0 TO 770: NEXT T
110 NEXT R
120 POKE P, 243
130 FOR R = 0 TO 1000
150 IF PEEK(49152) = 205 THEN 190
170 NEXT R
180 GOTO 210
190 Z = PEEK(49168): A = A+1
200 IF A < 5 THEN 170
210 POKE P, 245
220 FOR R = 1 TO 2
230 FOR T = 0 TO 770: NEXT T
240 NEXT R
250 GOTO 10

You should note that the keyboard Hag is reset before it is tested at
line 60. This clears any keyboard entries that are made during the
first 10-second period. You can remove this step, if you want the
Elm Street sensor to "remember" any cars that trip it during this
period.

The Bag-detecting step at line 150 has been embedded in the over-
all timing loop. This means that the Hag is always being checked,
and that these Bag-detecting steps must be figured into the overall
delay period. You can do this by testing various values of the delay
constant at line 130.

There are many other things that this program could do. For ex-
ample, many intersections have pedestrian control signals, left-hand
turn signals, Hashing lights, and other special features. You could
make the program as complex as you wish. In this situation, the
timing is not particularly critical. It wouldn't really matter if the
cars had to wait an extra second or two while a Hag is tested . How-
ever, periods of 10 or 20 seconds could be annoying to drivers. Keep
this in mind as you program. In some cases, the time requirements
will be so strict, and the time periods so short, that assembly-lan-
guage programming is dictated.

142

Downloaded from www.Apple20nline.com

The six LEDs should be removed from the breadboard, but the
output port should be retained, since you will use it in the next ex-
periment. Power may be turned off.

Purpose

EXPERIMENT NO. 14
LOGIC-DEVICE TESTER

The purpose of this experiment is to show you how the computer
can be used to test an electronic device. In this case, simple gates
are used.

Discussion
Most logic chips that contain gates may be t ested by applying

known logic levels to their inputs and then comparing the outputs
with the truth-table for the device being tested . In this experiment,
the computer will be used in such a manner. One input port and one
output port are required. Various devices, such as SN7400, SN7402,
SN7 408, etc., may be test ed. The test is a functional test , and not
a test for dynamic properties, such as switching time, propagation
delay, and other parameters.

Step 1
You will need to construct an input port and an output port for

use in this experiment. You should be able to construct such ports
without further assistance. Many of the previous experiments have
detailed this for you. You may wish to use an SN74LS373 chip as

+5

QUAD 2-INPUT NAND

DD I D 3 DO Dl " I :! D . D2 Dl FROM D3 TO
OUTPUT ::I DI" INPUT
PORT D4 D2 PORT

D5

D6 03 D7

Fig. 6-16. Schematic for the SN7400 NAND gate test circuit.

143

Downloaded from www.Apple20nline.com

the input port. When these ports have been constructed and tested,
go on to the next step.

Step 2
The test configuration for an SN7400 NAND-gate package is shown

in Fig. 6-16. For the pin configuration of other chips, we refer you
to Fig. 6-17.

SN7400 SN7402

1A 11 1Y ZA 21 2Y GNO

SN7408 SN7410

08 U. 4V 38 lA 3V

1A 11 1v 2A 28 2V GNO

SN7430 SN7486

Fig. 6-17. Pin configurations of some stand•rd gates.

Wire the test circuit as shown in Fig. 6-16. Remember to connect
the +5-volt and ground inputs to both the interlace chips and to the
circuit that is to be tested. The unused inputs at the input port should
be grounded.

144

Downloaded from www.Apple20nline.com

You should be able to develop the truth tables for the various
gates shown in Fig. 6-17, starting with the NAND gate. For a two-
input gate, there are only four combinations of inputs. How many
combinations would there be for four gates in a single integrated
circuit package?

Possibly you said 16 combinations, four for each of the four gates,
or 256 combinations, the number possible with eight binary inputs.
Actually, there are only four meaningful combinations, since all of
the gates are tested at the same time. Knowing that one gate is bad
for one particular combination of inputs does not serve much pur-
pose. If one gate is bad, then the entire "package" is bad.

Step 3
What are the four combinations of eight bits that will be used at

the output port to test the NAND gate? You should write down both
the decimal and binary values for these numbers.

Our values were:

00 00 00 00 = 0
01 01 01 01 = 85
10 10 10 10 = 170
11 11 11 11 = 255

Since the outputs have been connected to input bits 03-DO, we
would expect them to be all ones or all zeros, that is 0 or 15, de-
pending upon the test pattern. To "remove" the unused bits, D7-D4,
we have grounded them. What will they be when they are input?
Will this affect the results? Can you suggest another way of "re-
moving" these bits from the test data?

The bits will be input as logic zeros, and they should not affect the
data. If the bits are not grounded, a logical AND operation could be
used to mask them. The assembly-language subroutine could be
used.

Step 4
Develop a short program that will test the NAND gate that you

have interfaced. Your program may closely resemble the traffic-light

145

Downloaded from www.Apple20nline.com

control program shown in Experiment No. 13, Step 6. The program
does not have to be very complex.

The following program worked quite well in this application:

10 T(l) = 0: T(2) = 85: T(3) = 170: T(4) = 255
20 R(l) = 15: R(2) = 15: R(3) = 15: R{4) = 0
30 FOR S = 1 TO 4
40 POKE 493 18, T(S)
50 IF PEEK(49319) <> R(S) THEN 100
60 NEXT S
70 PRINT " TEST OK": END

100 PRINT " FAILURE": END

Step 5
Since the pin configurations for the SN7400, SN7408 and SN7486

are equivalent, that is, inputs and outputs are at the same positions
on the chips, cou1d a generalized test program be developed for
them? How?

Yes, a generalized test program could be developed so that the user
could enter the device name, while the computer set up the appro-
priate t ruth-table information to be used in the tests. The truth ta-
bles are provided in Table 6-4.

You should note that the test patterns are all the same, only the
results change.

We used the following test program:

Table 6-4. Truth Tables for the NAND, AND, and EXOR Gates

5N7400 SN7408 SN7486
A B OUT A B OUT A B OUT

0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 1 1 1 1 1 0

146

Downloaded from www.Apple20nline.com

10 INPUT "LAST TWO DIGITS " ;A$
20 IF A$ = " 00" THEN 200
30 IF A$ = "08" THEN 300
40 IF A$ = "86" THEN 400
50 PRINT "TEST NOT AVAILABLE": GOTO 10
60 T(l) = 0: T(2) = 85: T(3) = 170: T(4) = 255
70 FOR S = 1 TO 4
BO POKE 49318, T(S)
90 IF PEEK(49319) <> R(S) THEN 120

100 NEXT S
110 PRINT "TEST OF SN74" ;A$;" OK":END
120 PRINT "FAILURE": END
200 R(l) = 15: R(2) = 15: R(3) = 15: R(4) = 0
210 GOTO 60
300 R(l) = 0: R(2) = 0: R(3) = 0: R(4) = 15
310 GOTO 60
400 R(1) = 0: R(2) = 15: R(3) = 15: R(4) = 0
410 GOTO 60

The last two digits that are requested by the program are the last
two digits in the device number; that is, 00 for SN7400, 08 for SN-
7408, and so on. If several SN7400, SN7408 or SN7486 chips are
available, you may wish to test these devices. You may wish to re-
move an input or an output connection to simulate a fault to check
the interface and your program.

Step 6
It should also be possible for the computer to test logic devices

such as Rip-flops and counters. If you are familiar with the SN7493
4-bit binary counter, you may wish to try the following steps. If not,
you may find it worthwhile to read through these steps.

The pin configuration and schematic diagram for the SN7 493
counter are provided in Fig. 6-18. In order to test this device, the
counter outputs must be available to the computer, and the com-
puter must be able to reset and clock the counter chip. We will not
try to test the counter exhaustively, but we will test the ability to
reset the counter, and the counting function.

Fig. 6-18. SN7493 4-bit counter
pin configurAtion.

Downloaded from www.Apple20nline.com

147

Step7
Wire the SN7493 counter as shown in Fig. 6-19. You will need to

use the input port and the output port from the previous steps in
this experiment. You will also need two NOR gates, as shown in
Fig. 6-19. A single SN7 402 chip will provide these gates. Do not

DO

8 DI

c 8 02
TO INPUT

PORT•
0 II 03

10 SN7493

•GROUND INPUT BITS 07-04

Fig. 6-19. Test circuit schematic used to chock SN7493 counter chips.

substitute an SN74L93 counter for the SN7493. Remember to ground
the unused inputs on the input port.

Step 8
Write a short test program that will exercise the reset function

on the counter, and one that will test the ability of the computer
to clock the counter and increment its count by one.

We used the following program:

10 POKE 49318,0
20 IF PEEK(49319) > 0 THEN 1000
30 PRINT " RESET TEST OK"
40 FOR C = 1 TO 15
50 POKE 49317, 0
60 IF PEEK(49319) <> C THEN 1010
70 NEXT C
80 PRINT " COUNT TEST OK": END

1000 PRINT " RESET FAILURE":END
1010 PRINT "COUNT FAILURE AT "; C: END

148

Downloaded from www.Apple20nline.com

The program first tests the reset and then starts the necessary tests
to test the ability of the chip to increment its count by one for each
pulse that is received at the INP A pin.

Step 9
This program does not test all 16 counter states. The last count

from lUI to 0000 is not tested. Could you change the program to
take care of this?

It should not be difficult for you to add the final test to the program.
There are several ways in which you could do this. Here is one:

90 POKE 49317,0
100 If PEEK{49319) <> 0 THEN 1010
110 PRINT " COUNT TEST OK": END

In this case, a final count has been generated and the "wrap-around"
count from llll to 0000 has been tested.

The output port will not be used again, so you may remove it
from your breadboard. The input port will be used again. The power
may be turned off, since the program will not be used again.

Purpose

EXPERIMENT NO. 15
SIMPLE FLAG CIRCUITS

The purpose of this experiment is to demonstrate the construction
and use of simple Hag circuits.

Discussion
Flags are signals that are used by the computer and I/ 0 devices

so that their operations are synchronized. Flags are commonly used
to indicate one of two possible conditions, ready/busy, full/empty,
hot/ cold, and other combinations that relate the conditions of an
interface to the computer. Experiment No. 6 illustrated the use of
input ports to transfer nonnumeric information to the computer.
This experiment will develop this concept further. An 8-bit input
port is required in this experiment.

149

Downloaded from www.Apple20nline.com

Pin Configuration of the Integrated Circuit (Fig. 6-20)

Step 1

Fig. 6-20. SN7474 dual D-type flip-flop chip
pin configuration.

An input port will be required in this experiment. You should be
able to construct an input-port circuit without further instructions.
Many of the previous experiments have detailed the construction
of such ports, and we recommend that you use one of these circuits.
Once your input port has been wired and tested, go on to the next
step.

Step 2
One of the previous experiments investigated the use of simple

switches as sensor or flag inputs. This experiment will use flip-flop
circuits in place of the mechanical switches or jumper wires. Wire
the circuit shown in Fig. 6-21.

A jumper wire should be used as the connection between +5 volts
and the clear input, pin 1, so that you can clear the flag by moving
the wire from +5 volts to ground and then back to +5 volts. The
pulser circuit may be a pair of cross-coupled NAND gates, or an
equivalent circuit that will generate "clean" noise-free logic transi-
tions. This type of function is described in the appendix.

+5 GNO

14 7

z 0 Q 5 DO TO INPUT
PORT

3 SN7474
PULSER 0 CK

CR

JUMPER

+!I

Fig. 6-21 . Simple flip-flop-based fl•g circuit.

150

Downloaded from www.Apple20nline.com

Step 3
How would you program the computer so that the logic state at

bit DO of the input port could be monitored? Assume that there are
two possible conditions:(a) the other bits are grounded (logic zero),
or (b) the other bits may be used for other flag inputs.

If the other bits are grounded, then the value from the input port
will be zero when the flag is cleared, and nonzero when it is set.
If the other bits are used for flag inputs, then the "unwanted" bits
must be masked. The masking operation uses the logical AND opera-
tion, so an assembly-language subroutine would have to be used.

Step 4
In this case, you will enter the assembly-language program that

is used to perform the AND operation on two data bytes. Follow these
steps to enter the program:

1. Press the RESET key and type CALL -151 and press the RE-
TURN key. The Apple should respond with an asterisk (0)

when it is in the Monitor mode.
2. Type 0300:00 00 00 48 AD 00 03 2D 01 03 8D 02 03 68 60 Leave

a space between the two-digit groups as shown. Use 00 for the
first three values in the program.

3. Press the RETURN key, type 02FF and press the RETURN
key three times. Now, check the data shown on the display
with the information that you entered.

To test this assembly-language routine, you may use the follow-
ing program. Since the AND operation will use binary numbers, you
will have to convert your test numbers into binary so that you can
check the results.

1 000 POKE 1 0,76: POKE 11 ,03: POKE 12,03
1010 INPUT " MASK BYTE ";M: POKE 768,M
1020 INPUT " . DATA BYTE ";0: POKE 769,0
1030 Q = USR(O): PRINT " ANSWER "; PEEK(770)
1040 GOTO 1010

If the program does not provide the proper results, re-enter the
Monitor mode and check the data bytes that you have entered.

151

Downloaded from www.Apple20nline.com

You should realize that the POKE commands in line 1000 are used
to set up pointer address bytes so that the USR command can "lo-
cate" the assembly-language subroutine that you entered. We refer
you to Chapter 4 and to Experiment No. 7 for more information
about this type of assembly-language subroutine use.

Step 5
Now that you have entered the assembly-language program that

will AND two bytes to yield an 8-bit result, you will use it to test the
Hag bit. What would you use as the mask byte?

Since the Hag is being input to the computer at bit DO, only the
least-significant bit (LSB) would be "set," so the mask would be
OOOOOOO}z, or I 10• The mask byte is placed in address 768, as you can
probably tell from the test program in the previous step.

Step 6
Write a short program that could be used to test the Hip-Bop Bag

circuit. The Apple should print a "0" if the Bag is cleared, or a "1"
if the Bag is set. You can reset the flag manually by moving the
jumper wire that connects flip-Hop pin I and +5 volts so that pin I
is momentarily connected to ground.

We used the following program:

10 POKE 10,76: POKE 11,3: POKE 12,3
20 POKE 768,1
30 POKE 769,PEEK(49319)
40 Z = USR(O)
50 IF PEEK(770) = 0 THEN 80
60 PRINT "1"
70 GOTO 30
80 PRINT "0"
90 GOTO 30

This program seemed to work very well. Could you "invert" the
program so that a logic 0 would be sensed as the on condition, and
so that a logic one would be sensed as the off condition?

152

Downloaded from www.Apple20nline.com

Yes. Simply reverse the commands at lines 60 and 80. You can easily
"invert" the sense of a flag in software.

Step 1
In this step, you will use a short program that will count the

number of times that the flag is set. Again, the assembly-language
subroutine will be used. You may wish to add another pulser circuit
to provide the flag-clearing operation to replace the jumper wire
between pin 1 on the SN7474 and +5 volts.

Enter the following program and run it :

10 POKE 10,76: POKE 11,3: POKE 12,3
20 POKE 768,1
30 HOME: C = 0
40 POKE 769, PEEK(49319)
50 Z = USR(O)
60 IF PEEK(770) = 0 THEN 40
70 C = C+1: HTAB 1: VTAB 1: PRINT C
80 GOTO 40

Be sure that the flip-Hop is cleared before you test the program.
With the program running, actuate the pulser and set the flip-flop.
What do you observe? Is this what you expected?

We found that the count started as soon as the flip-flop was set, and
that it continued for as long as the Hag remained set. Clearing the
flip-flop stopped the count. What we really wanted was one count
each time the flip-flop was set.

Why didn't this happen as expected? The set state of the flip-flop
continued to be tested and detected by the program. We could not
reset the flip-flop fast enough by hand to stop the counting at one
count per pulser actuation.
Step 8

In most computer systems, the computer, or the Hag-containing
device clears the flag after it has been detected. To allow your inter-
face to clear the flip-flop, add the circuit shown in Fig. 6-22. You will
need an SN7402 NOR-gate chip. Be sure that you wire the + 5-volt
power supply to pin 14, and ground to pin 7, on the SN7402 chip.
Since the NOR-gate circuit will provide the reset signal for the flip-

153

Downloaded from www.Apple20nline.com

mrs
WR

TO SN7474 PIN l

Fig. 6-22. Simple flag-clearing circuit schematic.

flop, be sure that you remove the wire that was used to connect + 5
volts to pin l on the SN7474 flip-flop.

The circuit shown in Fig. 6-22 will allow you to clear the flip-Hop
with a POKE 49318 command.

Modify your program so that line 65 is added:

65 POKE 49318,0

When this command is executed, the Hag will be cleared. Since you
may not know the state of the Hag when you start the program, you
might want to add a flag-clearing command at the start of the pro-
gram, too. Now run the program. When the flag is detected, the flag
is immediately cleared. Then the count is incremented and dis-
played.

One of the benefits of using this type of flag, and using the assem-
bly-language subroutine to check the flag, is that you do not "stall"
the computer waiting for a Hag, unless you want to. Thus, you can
write a program to check for a flag. If the flag is not present, the
computer goes about some other task. If the flag is set, the device
associated with it is serviced, and the computer then goes on.

The BASIC interpreter in the Apple has a Hag-checking command
called WAlT. This command may be used to test for a Hag, but if
the flag is not found, the program continues to wait for it, and it
cannot do anything else. If a program "hangs up" waiting for a flag
that never occurs, you must press the RESET key to re-establic;h
control of the Apple. We refer you to Basic Programming Reference
Manual for the Apple for more information about the WAIT com-
mand. This command does not incorporate any Hag-clearing com-
mands.

EXPERIMENT NO. 16
A SIMPLE ANALOG-TO-DIGITAL CONVERTER

Purpose
In this experiment, you will interface an 8-bit analog-to-digital

converter to the computer. Several different types of measurements
will be made.

Discussion
>

There are many applications for analog-to-digital converters, or
AID converters in computer systems. The A/D converters allow the

154

Downloaded from www.Apple20nline.com

computer to measure analog voltages such as those that would arise
from various signal sources and transducers. In this experiment, a
simple 8-bit A/D converter will be used. The converter is a National
Semiconductor ADC0804-type converter. This converter has three-
state outputs, so it can be interfaced directly to a microcomputer
data bus without difficulty. However, the three-state outputs have
an access time that can be as long as 200 nanoseconds. Thus, if you
attempt to use the ADC0804 AID converter on your interface bread-
board, you will find that the additional time required to actuate the
bus interlocking circuitry to turn the data bus around for input will
be too long. The data from the converter will be "missed" by the
computer.

In order to perform this experiment, you must have access to the
"bare" Apple data bus. This is explained in the following steps.

Pin Configuration of the Integrated Circuit {Fig. 6-23)

Fig. 6-23. Pin configur•tion of the ADC0804
A/ D converter.

Step 1

cs
Ill

ill

CUll

IITII

•cal-l

•cal-l

ACID

•oEfll

D GID

ADC080X
Dual-In-line Package

TD,YIEW

Vcc con0u >

cu•
OHCWI

011

OIZ

013

014

oa

oa

017 •• ,

In this experiment, you will interface the ADC0804 AID converter
directly to the data bus as it comes from the Apple. To do this, care-
fully remove the two 8216 bus buffer chips at IC-10 and IC-11 on
your interface breadboard.

Step 2
Wire the ADC0804 integrated circuit as shown in Fig. 6-24. The

data bus lines are placed into the corresponding holes at the sockets
for IC-10 and IC-11. If the wires do not fit into the holes very easily,
we suggest placing a 16-pin socket with larger access holes in the
sockets at IC-10 and IC-11. This will allow you to make the connec-
tions without having to force the wires in the small holes. The wires
should fit into the corresponding holes without much force. If exces-
sive force is used, you may bend the socket contacts so that they

155

Downloaded from www.Apple20nline.com

TO APPLE
DATA BUS

D7

+ 5

{ J.t- ADC0804
20

11 19 !OK
12 D7 4
13
14 ANALOG INPUT
15 v,"+ 6 \
16
17 v,"-
18 DO +5
1 CS' 1K
3 -
2 WR VREF/2 9

1m
N/C---1 iRTR 1K

J§ J!O
Fig. 6-24. ADC0804 interface circuit schematic.

+

+5V

lK

20K OR
!OK

1K

do not make proper contact with the 8216 chips when they are re-
inserted into their respective sockets.

Step 3
Enter the following program into your computer and run it:

10 POKE 49319,0
20 FOR T = 0 TO 100: NEXT T
30 PRINT PEEK(49319)
40 GOTO TO

What does the program do? What is displayed on the video screen?

The program exercises the A/D converter, starting a conversion, pro-
viding a time delay so that the conversion can be performed, and
then reading and displaying the data. Slowly adjust the potentiom-
eter as you observe the data to confirm that the converter is oper-
ating.

As you change the voltage setting of the potentiometer, you should
see a corresponding change in the value displayed by the Apple.
What is the minimum value? What is the maximum value? Does this
seem to be what you would expect?

156

Downloaded from www.Apple20nline.com

The minimum value should be in the range of 0 or 1. The maximum
value should be between 253 and 255. This is what is expected from
an 8-bit device, since it can only generate values between 0 and 255.

Step 4
The ADC0804 chip has a flag output that can be used to monitor

the status of the converter; that is, busy or ready. This output is a
logic zero when data is ready for the computer, and it is a logic one
when the converter is performing a conversion. This output is really
the output of a Hag circuit, and the Hag is reset when the eight data
bits are read into the computer. Since the converter can perform
many thousands of conversions in a second, is there any need to
monitor this flag signal?

Probably not, since the converter will complete the conversion pro-
cess before the data can be accessed by a BASIC-language program.

Can you suggest some possible uses for the Hag output?

The Hag could be used for assembly-language AID converter pro-
gramming. In assembly-language programs, the Hag could be tested
as an input to an input port, or it could be used with the interrupt
on the 6502 microprocessor chip. Since these are high-speed appli-
cations, it would be useful to monitor the Hag to determine when the
converter had finished a conversion.

Step 5
Remove line 20 from your program and run the program. What do

you find?

The data values are the same as those observed when the program
was used with the time delay steps. Thus, the converter is "outrun-
ning" the BASIC control program.

Step 6
The values displayed on the screen do not represent the actual

voltage that is being measured, but are an 8-bit binary representa-

157

Downloaded from www.Apple20nline.com

tion. Write a program that will perform the conversion to voltages.
You may add the steps to the program already in use.

We used the following steps which simply perform a mathematical
conversion of the decimal value 0 to 255 to a corresponding voltage
0 to + 5 volts.

10 POKE 49319,0
20 FOR T = 0 TO 100: NEXT T
30 PRINT (PEEK(49319)*5/255)
40 GOTO 10

Try our program, or your own. Does it work?

It should. You will see that the computer prints many decimal digits,
probably too many, since the converter is only accurate to a maxi-
mum of one part in 256, or about 0.25%. Unfortunately, rounding
is not a trivial task h1 the Apple. You can perform either a mathe-
matical rounding, or you can use a string operation to print only a
selected number of digits after the decimal point. You can use the
following if you wish:

30 A$ = STR$(PEEK(49319)*5/255)
40 PRINT LEFT$ (A$,4)
50 GOTO 10

Remember that this routine simply limits the displayed value to four
decimal digits. It does not perform any rounding.

Step 7
Try to write a routine that will use the high-resolution graphics

capability of the Apple computer, so that the program will plot the
voltage values with respect to time. The measurements should be
taken at a regular time (time-delay program), and a continuous
line-plot should be drawn. If you are not familiar with the high-
resolution graphics formats and commands, use the program pro-
vided below:

100 HRG: HCOLOR = 3: Y1 = 0
110 FOR X = 0 TO 249
120 POKE 49319,0

158

Downloaded from www.Apple20nline.com

130 Y2 = PEEK(49319)/1.594
140 HPLOT X,Y1 TO X+1, Y2
150 Y1 = Y2
160 NEXT X
170 END

Try this program. Vary the potentiometer setting as the program is
running. The plot should appear as the changes are made. A con-
stant voltage will give you a horizontal line on the screen.

Step 8
Can you suggest a simple experiment that would demonstrate the

use of the A/D converter and the graphics program?

There are several simple experiments that you might like to try.
Each involves measuring a voltage that is proportional to the physi-
cal measurement that is being made. For example, you could mea-
sure the voltage across a photocell in changing light conditions, a
voltage across a charging capacitor, or a voltage that is proportional
to temperature.

Wire the circuit shown in Fig. 6-25. In this circuit, you will use
the A/D converter and computer to measure a charging voltage
across a large electrolytic capacitor.

Fig. 6-25 . Capacitor-charging
cir<uit diagram. JUMPER

+5

33K

+ I l00!LFI16WVDC

Use the jumper wire to discharge the capacitor, and leave it in
place until after you have started the program. Once the program
is running, remove the jumper to ground. You should see the volt-
age slowly increase, as the capacitor is charged. Why does the graph
show the zero-voltage point on the top of the screen, and the high-
voltage point on the bottom?

159

Downloaded from www.Apple20nline.com

The computer plots from the top to the bottom in increasing values,
so if you want to invert the display, you will have to "invert" the
values from the converter. This means that you will need to convert
a zero into 159, and a 159 into a zero. To do this, simply change line
130 to:

130 Y2 = 160-(PEEK(49319)/ 1.594)

Step 9
You can also use the A/D converter to measure temperature. An

LM335 temperature sensor may be used to generate a voltage that
is proportional to temperature, at a rate of 10 m VI K. The Kelvin
scale of temperature uses the same units of degrees as the Celsius
scale, except that 0°C = 273K. Thus, a room temperature of 20°C
will be the equivalent of 293K, and the LM335 will generate 293 X
10 mV as its output, or 2.93 volts.

To measure temperature, wire the circuit shown in Fig. 6-26.
Be sure that the potentiometer or capacitor-charging circuit is not
connected to the A/ D converter input at the same time as the tem-
perature sensor.

You can use the same graphical display program that was used
in the previous step, but you may wish to add a time-delay step at
line 155:

155 FOR T = 0 TO 100: NEXT T

This will delay the display, since the temperature changes will be
slower than the capacitor-charging voltage changes.

Run the program. Heat the sensor with your fingers. Do you ob-
serve any change? What do you expect to see?

BOTTOM VIEW
LM335

+5

2200
OUTPUT +----- lOmVf•K

+
AOJ (N/CJ

Fig. 6·26. Schem1tic for • circuit, 1nd pin conflguretion for
LM335 chip.

160

Downloaded from www.Apple20nline.com

You probably will not see much change, since the display is set up
for a range of 0 to 500K, as represented by 0 volts to + 5 volts from
the sensor. If you see more than a few "points" increase in the dis-
play, you have significantly warmed the sensor. You can more readily
cool the sensor with some moisture, or with a can of freeze-spray that
is used to cool electronic components. If this is not available, a piece
of ice can be used to cool the sensor.

Could you "expand" the display to provide a more useful display
of the temperature changes? How could you do this?

There are several ways of "expanding" the display. If you know that
the temperatures will only vary between 200 and 300K, you could
change the software so that the display on the screen represented
voltages between +2 and + 3 volts. However, keep in mind that you
have not increased the resolution of the converter in doing this.
There will still be the same number of discrete voltage steps in the
converter's range. You have only expanded the display of these
values.

You could also use some other circuits. Operational amplifiers
could be used to scale the voltage range of +2 to + 3 volts to 0-5
volts, so that the entire temperature range of 200 to 300K would
generate 0-5 volts. This could be measured by the converter and
displayed on the screen. Now, the resolution has been increased,
since the entire 256 different voltages are used in the temperature
range of interest.

There is much more to analog-converter interfacing, but we hope
that this experiment has interested you in the use of these important
devices. For additional interfacing ideas and techniques, we refer
you to TRS-80 Interfacing, Book 2, and Microcomputer-Analog Con-
verter Software and Hardware Interfacing (Howard W. Sams & Co.,
Inc., Indianapolis, IN 46268).

Please note that in this experiment, we generated a reference volt-
age of +2.5 volts by using two 1000-ohm resistors to divide the +5-
volt supply in half. In precision analog-converter applications, a
+2.500-volt reference is used in place of the resistors. We have
chosen to use the resistors in this experiment because they are in-
expensive and easy to set up. However, they produce results that
are not as accurate as would be needed for precision measurements.
There are many reference devices and circuits available, as noted in
the references mentioned above.

161

Downloaded from www.Apple20nline.com

-t
u

D7 0
D6 ;:l D5 0 D4 tl)

0. D3 (l)
0. D2
::t> INPUT PORT
0 EXPERIMENTS 0 a 4,5.6.7 .9,10,14.15

"0 :!! I I D1 '£ '!2 DO (l)
N t 0 :"' 2. 0 s· • :II • (l) ..

0 (; !.. I
0 =· a II..

.::::.
0

TO INP REQ , I ! .. • :II
II..

" 0 a
i

-- -
__1 3

=i 5
7 l4 13 12 11 lo 9 ls 4 ii2

Gi

eND
16 8

3
5

1 liT

"1I
.__ DEVICE SELECT

v

2 D
3

Q 16
15

6 10
7 9

4 G r-rt G

+51 l GND
5 12

2 D 16
3 Q 15
6 10
7

4 G
G

..Il..

DEVICE SELECT

D7

D4

D3

DO

OUTPUT PORT
EXPERIEMENTS

8.9,10,13.14

tj
0

:::;l
0
Ql
0.
(1)
0.

0
3

.G-
"0
(i"
N
0
2.. s·
01
(")
0
3

!!.
c .. ,.

J.
i'
f • 1 r
I

...
t

TO APPLE DATA
BUS

•DECODER SOCKET POSITIONS

D7
D6
DS
D4
D3
D2
D1
DO

DEVICE SELECT

+51 liGN
20 10

3 D
4 Q
7
R

13
14
17
18

0_..1 oc 11 G

D7
D6
DS
04
03
D2
Dl
DO

)o. • "A"

SN7402 (All)

' ., J
}olO • "8"

mR +' J

"" >
):>13 • "C"

OUTPUT PORT
EXPERIMENT 12

1/0 PORT CONTROL
EXPERIMENTS
2.3.4,5.6.7.8

9.10.11.12.13.14.15 & 16

CHAPTER 7

On the Bus

While many readers will be content to perform some of the experi-
ments in the previous chapter, and go no further with the design and
development of interfaces, there are others who will be interested
in developing special-purpose interface circuits that will become a
permanent part of their computer system. This chapter is written for
this reader. We will describe how you can design special interface
circuits that can take advantage of many of the built-in features of
the Apple computer.

If you want to construct an interface circuit that will be used again
and again, you will want to construct it on something other than a
solderless breadboard. Breadboarded circuits take up workspace,
they are messy and frequently come apart at the worst possible mo-
ment. The alternative is to construct the interface circuit in some
permanent form, so that it can be mounted out of harm's way, inside
the Apple case.

When the Apple computer was designed, it must have been obvi-
ous to the engineers that people would be interested in expanding
the system so that various standard peripherals and nonstandard cir-
cuits could be added to the computer. Thus, they provided eight fe-
male edge connectors at the rear of the main printed circuit board,
so that the important computer signals would be readily available for
anyone who wanted to use them. You have already used some of
these signals, since the interface that was described previously plugs
into one of the available "slots."

The slots are numbered 0-7, and you can use all but slot 0, which
has been reserved by the manufacturer for special expansions of the
computer. Slots 1-7 are available for you to use as you wish. There

164

Downloaded from www.Apple20nline.com

Pin
1

2-17
18
19

20

21
22
23
24
25

26
27
28
29

30

31

32

33

34

35

36
37
38
39

40

41

42-49
50

Table 7- 1. Apple Bus Signals a nd Descriptions

N•me
1/0 SELECT

A15-AO
R/W
SYNC

1/0 STROBE

ROY
OMA
INT OUT
DMA OUT
+5 volts

GND
DMA IN
INT IN
NMi

iRQ

m
iiiiH

- 12 v
- 5 v

COLOR REF

7M
Q3
<I>•
USER 1

cPo
DEVICE SELECT

07-00
+ 12 v

Description
A logic zero signal, active at slot n, when the computer
addresses locations CnOOH-CnFFH. Active during <I>o.
Not available at slot 0. (10)*
Buffered address bus lines. (5)
Buffered read/ write control signal. (2)
Video timing synchronization signal. Available only at
slot 7. (?)
A logic zero signal, active at all slots when the com·
puter addresses locations C800H·CFFFH. Active during
<I>o. (4)
Ready control input to 6502 processor.
Direct-memory access control input.
Interrupt daisy chain signal to adjacent slot.
DMA daisy chain signal to adjacent slot.
+ 5-volt power supply connection. 500 rnA maximum
available to a II cards.
System electrical ground.
DMA daisy chain signal to adjacent slot.
Interrupt daisy chain signal to adjacent slot.
Nonmaskable interrupt input to 6502 chip. Vectors pro·
cessor to subroutine at 03FBH.
Maskable interrupt input to 6502 chip. Address of in-
terrupt subroutine in 03FE and 03FF.
Input/output line. When pulled low, the Apple is reset.
Interface may monitor or generate a reset.
When pulled to a logic zero, all internal ROMs are dis·
a bled .
-12-volt power supply connection. Total of 200 rnA
available to •II cards.
-5-volt power supply connection. Total of 200 mA
avai I able to all cards.
This 3.580 MHz color reference signal is only present at
slot 7. (?)
A standard 7 .1 59 MHz reference signa I. (2)
A standard 2.046 MHz reference signal. (2)
Standard 1.023 MHz microprocessor clock signal. (2)
Logic zero input. When pulled low, all internal 1/0 de-
vices are disabled.
Standard 1.023 MHz microprocessor clock signal. Com·
plement of <I> 1. (2)
logic zero signal, one per slot. Active for 16 addresses
per slot (see Table 7-3). (10)
Buffere d data bus signals. (1)
+ 12-volt power supply connection. Total of 250 rnA
available to all cards.

*Number on parentheses 1nd1cates the number of SN74LSOO-famlly onputs that each sognal can
drive per interface slot.

are many companies that sell plug-compatible interfaces, and you
can plug these into these slots without further ado.

In Chapter 5, some of the common interface signals were de-

165

Downloaded from www.Apple20nline.com

scribed; the address bus signals, the data bus signals, and some of
the control signals. There are other useful signals provided at the
seven available interface edge connectors. The signals are listed and
described in Table 7-1.

Since you are already familiar with the data bus and address bus
signals, they will not be discussed any further. Some of the other
signals are important, too, and they can be used to greatly simplify
the construction of interface circuits.

INTERFACE CONTROL SIGNALS
1/0 SELECT

The I I 0 SELECT signal (pin 1) is active when it is a logic zero,
as indicated by the "bar" above the same of the signal. Each of the
seven available interface slots, 1-7, has its own I/ 0 SELECT signal,
thus this signal may be used to select a specific card. The I/0 SE-
LECT signal for a card slot, n, is active when the address bus lines
are set at addresses CnOO through CnFF, inclusive. For example, if
the Apple addresses location C5AB, the I/ 0 SELECT signal at slot
5 will be a logic zero. None of the I/0 SELECT signals at the other
slots will be active at this time. There will also be times when rnme
of these signals is active. The range of addresses that affect the I/0
SELECT signals is shown in Table 7-2.

Table 7-2. 1/0 SELECT Address Allocations

Interface Slot Address Range

1 C100-C1FF 49408--49663
2 C200-C2FF 49664-49919
3 C300-C3FF 49920-50175
4 C400-C4FF 50176--50431
5 C500-C5FF 50432- 50687
6 C600-C6FF 50688--50943
7 C700-C7FF 50944-51199

There are a number of possible uses for this signal. Since it is ac-
tive when the Apple addresses a contiguous block of 256 addresses,
or one page, the signal could be used to enable a memory chip with
256 addresses. It could also be used to enable a device address de-
coder that could address 256 I/ 0 devices. These applications are
shown in block diagram form in Figs. 7-1 and 7-2.

You might be wondering why anyone would want to add a block
of 256 bytes of memory to an Apple computer system, when the
Apple can easily contain 48K of memory by itself. In some applica-
tions, it is necessary to have short assembly-language routines that
can "drive" an interface. The assembly-language programs do their

166

Downloaded from www.Apple20nline.com

1/0 SELECT
MEMORY

-"'\ 256 X 8 " I A7-AO D7-DO :) -v ROM DR
DATA BUS ADDRESS BUS

RfN
RfN

Fig. 7-1 . Using 1/0 SELECT to control a page of memory.

job very efficiently. Such "driver routines" can be placed in read-only
memory (ROM), and the ROM chip may be used in the interface
circuit. In this way, the driver routines are a part of the overall inter-
face, and they are "loaded" when the interface card is plugged in.
They do not have to be loaded from cassette or disk, and they do not
take any of the other memory space.

1/0 SELECT

ADDRESS BUS A7-AO /
I'

DECODER
CIRCUITS

I--····

I--···· l UP TO 256
DEVICE ADDRESS

OUTPUTS

Fig. 7-2. Using 1/0 SELECT to control a memory addren decode r.

Sometimes an interface will require a small amount of read/write
(R/W) memory for temporary storage. You can also use the 1/ 0
SELECT line to control a 256-byte block of R/ W memory.

Remember that each interface slot has its own 1/0 SELECT sig-
nal, and each signal is active when the Apple addresses a specific
"page" of memory.

1/0 STROBE
:=-:-=--===-== The 1/0 STROBE signal is a logic zero signal that is provided at

all of the interface slots. It is common to all of the connectors, and
is not specific to any one. This signal will be a logic zero whenever
the Apple accesses a location within the range C800H to CFFFH, in-
clusive. Thus, every card will be signalled when the address on the
address bus is within this range, which covers 2048 addresses, or 2K
of memory.

You may use this signal to enable memory chips and 1/0 devices,
but you will probably want to further "qualify" this signal by gating
it with some of the address bus lines, AlO-AO. A simple block dia-
gram of how this signal could be used is shown in Fig. 7-3. In this

167

Downloaded from www.Apple20nline.com

1/0 STROBE
A10 MEMORY ENABLE

SIGNAL

1 K OF
ROM D7-DO TO DATA BUS

Fig. 7-3. Using 1/0 STROBE for 1 K memory block control.

circuit , the I/0 STROBE signal has been used to select a 1K block
of ROM on an interface card. The remaining 1024 addresses could
be divided among the other interfaces as you wish. We urge that you
use caution in using this signal, however, since you may find that
some manufacturers have used this line to decode memory and I/ 0
device addresses in just this manner. Thus, you may find that you
have a conflict in addressing between a commercial interface that
you wish to add to your system, and one that you have already de-
signed, built, and installed.

DEVICE SELECT
This signal is specific to each interface slot, and it has a range of

only 16 addresses for each slot, as shown in Table 7-3. The DEVICE
SELECT signal is active in the logic zero state. Since the DEVICE
SELECT signal is active for only a 16-address block, its use will be
fairly well limited to I/0 device addressing, as shown in Fig. 7-4. In
this circuit, the DEVICE SELECT signal has been used to enable a
4-to-16-line decoder. If a particular interface has only a single func-
tion, and only requires a single enable signal, you may decide to use
the DEVICE SELECT signal by itself, without any further decod-
ing. This is permissible, as long as you realize that the device selected
in this way will be active at 16 different addresses, COnOH to COnFH,

168

AO
A1
A2
A3

DEVICE SELECT

SN74154

]

16 DECODED DEVICE
ADDRESSES

Fig. 7-4. Using DEVICE SELECT to enable e 16-address decoder.

Downloaded from www.Apple20nline.com

Table 7-3. DEVICE SELECT Address Allocatlona

Interface Slot Addresa Rana-

0 coao-coaF 49280-49295
1 C09Q-C09F 49296-49311
2 COAQ-COAF 49312-49327
3 COBO-COBF 49328-49343
4 coco-cocF 49344- 49359
5 cooo-cooF 49360-49375
6 COEo-cOEF 49376-49391
7 COFQ-COFF 49392-49407

inclusive. This use of the signal also limits your ability to add other
functions to the interface, should you decide to expand it at a later
time.

IRQ and NMI
These are the two interrupt inputs to the 6502 microprocessor

chip. The IRQ (interrupt request) is maskable, and it can be dis-
abled by using the appropriate software steps. The NMI (nonmask-
able interrupt) is always active.

These interrupt input lines are common to all of the seven inter-
face slots, with the IRQ signal connected at pin 30, and the NMI
signal connected at pin 29. In most interface circuits, the NMI line
would be dedicated to one peripheral, and that must be recognized,
no matter what. The IRQ line would be shared among many inter-
face circuits. Appropriate software steps would be required within
the interrupt service subroutine so that the computer could detect
which device had actually requested the interrupt. Each of the inter-
rupting devices could have a 1-bit input port that could be read to
determine the status of its interrupt flag. A typical interrupt flag cir-
cuit is shown in Fig. 7-5. Notice that the flag is cleared under soft-
ware control.

+ 5

PT _n_ INTERRU
REQUES T

IK

.....--
SN7474

D Q ... TO DATA BUS BIT
SN74125

CK Q TO IRQ
SN7407

l
(FLAG CLEAR)

RD

fig . 7-S. Interrupt flag circuit diagram.

Downloaded from www.Apple20nline.com

169

If this type of a "polled" interrupt is used, with the computer poll-
ing each of the devices that could have generated an interrupt, a pri-
ority can be established in the software. Thus, if the computer checks
the devices in the order A, B, C, and so on, device A has the highest
priority, since it will be checked first when an interrupt is detected.

The interlace slots also have two other interrupt lines that may be
of interest, depending upon your application. These signals are the
interrupt input (INT IN) at pin 28, and the interrupt output (INT
OUT) at pin 23. These signals are used to "daisy chain" interrupt
signals form one card to the next. The signals are only connected be-
tween the interface connectors, as shown in Fig. 7-6. Thus, the INT
OUT signal on slot 1 is connected to the INT IN signal on slot 2, the
INT OUT on slot 2 is connected to the INT IN on slot 3, and so on.
The INT IN and IN OUT lines are only connected to the adjacent
inte1face slot, and they do not go any further.

REAR OF APPlE

0 2 7

28 23

INT OUT INT IN

•NOTATIONS ARE INTERCHANGEABlE, DEPENDING UPON USE.

Fig. 7·6. INT IN and INT OUT bus signals.

A simple daisy-chained interrupt scheme is shown in Fig. 7-7. The
lower-priority interrupting devices are further down the chain, fur-
ther from the INT connection to the 6502 microprocessor chip. In
this circuit, a higher priority device can pass its interrupt request up
the chain, blocking any interrupt requests from the lower priority
devices that are further down the chain. Once the higher-priority
device has been serviced and its interrupt Bag has been cleared, it
will "open" its gate and allow the lower priority interrupt request to
pass on to the computer.

As you can see, the computer still needs some way of determining
which device is generating the interrupt, so that it can select the cor-
responding interrupt service subroutine. This type of interrupt

170

Downloaded from www.Apple20nline.com

SLOT 3

tj :n • 0

::I)o
0 A.,

;" 0.. 'l 28
(1)

:I" I 0.. • INT IN ::p ;-
0 t

+5

lK

a I • 2
'2
IL • :II t. "0

v
LOCAL INTERRUPT
LOWEST PRIORITY

" 'E.. ! (1)
N
0 g. l s·
(1)

n
0 a

...
::!

23

SLOT 4

+5

lK

28

LOCAL INTERRUPT
LOW PRIORITY

INDIVIDUAL FLAGS & INPUT BITS
NOT SHOWN

SLOT 6

+5

lK

iT OUT ... 28! I I
/INTIN

CONNECTION
MUST

BE MADE!

v
LOCAL INTERRUPT
HIGHEST PRIORITY

TO IRQ
PIN 30

scheme is quite complex, and we recommend using the simple inter-
rupt flag circuit provided in Fig. 7-5. This should be sufficient for
most uses. In the daisy-chain configuration, you cannot have "empty,"
or open, slots between interface circuit boards, since this will break
the INT IN /INT OUT circuit "chain." Enough said about interrupts.
For more information, we refer you to Programming & Interfacing
the 6502, With Experiments (Howard W. Sams & Co., Inc., Indian-
apolis, IN 46268).

DMA
The DMA input is used to allow an external device to address

memory locations without first having to go through the 6502 micro-
processor. Thus, the external device has direct memory access, or
DMA. Since several devices could request a direct memory access
transfer of information, a daisy-chained set of peripherals is possible,
since the interface slots have DMA IN and DMA OUT pins that con-
nect to the adjacent interface connectors. Direct memory access in-
terfaces are not trivial design projects, and we recommend that you
thoroughly understand the operation of the 6502 microprocessor chip
and its associated circuitry before you attempt to use this feature.

RES
The reset line at pin 31, RES, is actually a bidirectional signal line.

You can use this line to reset your interface circuits, since it will be
a logic zero when the Apple is reset when power is applied, or when
the RESET pushbutton is pressed. You can also force the Apple into
a reset condition by grounding this line. If you choose to use this line
to reset the Apple from your interface, a high-current open-collector
gate or buffer must be used to pull the line to ground. An SN7407
open-collector buffer chip could be used in this type of circuit. The
RES signal line is common to all of the interface slots.

INti
In the Apple computer, you can substitute your own assembly-

language programs for stored in the BASIC interpreter
ROMs. By pulling the INH line at pin 32 to ground, you will inhibit
all of the BASIC interpreter and Monitor ROMs, so that your own
programs can control the entire system. Since there is some room
already available for this type of operation, you probably won't use
this function, since you would not have access to any of the useful
subroutines within the standard ROMs supplied with the Apple. It
would be difficult, for example, to control the display, without the
subroutines in the BASIC interpreter ROMs. You will need an open-
collector buffer chip to pull this line to ground, if you choose to use
this function.

172

Downloaded from www.Apple20nline.com

USER 1
This input will allow you to inhibit the generation of all of the

170 SELECT and DEVICE SELECT signals within the Apple com-
puter, so that you can "turn oH'' all of the l/0 devices. This line must
be pulled down to a logic zero to cause this action. To prevent the
accidental use of this line, you must use a wire jumper to connect two
solder pads on the main printed circuit board of the Apple, before
the USER I signal can be used. We refer you to the Apple II Refer-
ence Manual for the necessary details.

Since your primary purpose in using the I /0 SELECT and DE-
VICE SELECT signals is to simplify your interface design, there is
probably no need to use this line, unless you wish to do some sort of
expansion of the computer system with 1/0 devices that are external
to the basic system, or that might use some of the memory addresses
that have been assigned to the I/0 SELECT and DEVICE SELECT
signals. The USER I signal is present at pin 39 on the interface con-
nectors.

ROY
There are times when it is necessary to slightly "delay" the 6502

microprocessor so that an external l/0 device, or memory chip will
have sufficient time to access its data and present it on the data bus.
The ready input (RDY) found at pin 2I on each of the interface con-
nectors can be used to put the 6502 in a "wait" condition when it is
grounded. This input must be synchronized with the microprocessor
clock, and it should change its during the <1>1 clock logic one
state. The RDY input was used in older 6502-based computers, since
older memory devices could not access their data as fast as required
by the computer. Thus, when they were addresses, they had to put
the 6502 into a "wait" condition for several clock cycles until their
data was available. We doubt that you will find much use for this
signal, except in specialized interfaces.

Clock Signals
There are six dock signals that are available for interface use.

These are <1>0, <1>1, Q3, 1M, COLOR REF, and SYNC. The <1>0 and
<1>1 are the main timing clock signals, running at I MHz. The clock
signals are the inverse of one another. These signals are used to co-
ordinate external I /0 operations with the normal flow of data on the
bus. As shown in Fig. 5-I2, the <1>1 signal is used to control the gener-
ation of the RD and WR signals for external II 0 devices. The fT(J
SELECT arul DEVICE SELECT sigruils at the I/0 connectors have
already been gated, or "qualified," with the cf>1 clock signal.

The Q3 signa! is a 2 MHz clock signal that is asymmetric; that is,

173

Downloaded from www.Apple20nline.com

r-500 nSEC--t-- 500 nSEC--j

7M (7.159MHz}

Q3

L 8o (L023MHz)

... J ,. 01
f-Joo-j

ADDR BUS

WRITE OPN DATA BUS ..
-i 100 1-

READ OPN x=x:: DATA BUS

TIMES IN NANOSECONDS (NSEC}

Fig. 7-8. Timing diagram for various Apple clock signals.

it is not a square wave. The 7M signal is a 7 MHz clock signal that is
a square wave. The clock signals are derived from the main clock
circuitry within the Apple, and their timing relationships are shown
in Fig. 7-8. We refer you to a complete data sheet for the 6502 mi-
croprocessor for additional information about the 6502 timing rela-
tionships.

The COLOR REF and SYNC signals are available only at inter-
face slot 7. The COLOR REF signal is the 3.5 MHz color reference
signal generated by the video clock circuit in the Apple. The SYNC
signal is the video timing synchronization signal. You will probably
not use· these signals in your interface designs unless you will be
using video control circuits.

Power
The interface connectors provide access to four standard voltages

and to ground. The voltages provided are + 12, -12, +5, and -5
volts. The current for each of these voltages is limited to a few hun-
dred milliamperes, so you should consider the use of low-power in-
terface chips, such as those found in the SN74LSOO family.

Other Considerations
The bus-driving capability of the interface signals is quite limited,

with most signals limited to driving only a few SN74LSOO-type in-

174
Downloaded from www.Apple20nline.com

puts. You must be careful in your design that you do not overload
these signals by expecting them to drive more chip inputs than they
can. If you need additional power from these signals so that they can
drive more inputs on an interface card, you must buffer the signals
with appropriate buffer chips. Just keep in mind that the buffers will
need some additional power from the power supplies, and there is
not a great deal of "extra" power at the interface connectors. Thus,
you must balance your needs for signal buffering with the available
power. You could always use an external power supply to power
some of the interface cards, but this defeats the purpose behind put-
ting the interface circuits in the Apple enclosure in the first place.

AN INTERFACING EXAMPLE

Now that most of the useful interface signals have been described,
let's take a close look at a typical interface circuit that can be used
with the Apple computer. In many applications, it is necessary for
the computer to communicate with other devices. These may include
printers, controllers, remote data acquisition stations, and maybe
even other computers. In most cases, a form of serial communication
is used, so that long lengths of multiconductor cables are not re-
quired. Most serial communication schemes use three or four wires,
so that the information that is to be exchanged is transmitted in serial
fashion, bit by bit, over the wire. One set of wires is used for trans-
mitting, and the other set is used for receiving. Such communication
is usually called asynchronous-serial communication, since there is
no common clock signal, or referen9e, that connects the two systems.

Most of the microprocessor chip manufacturers have developed
some type of communication chip for their family of microprocessors.
In fact, you can even "cross" families, so that a communication chip
that was developed for the 8080A family can be used with a 6502
processor. In fact, that is exactly what we plan to do in this example;
an 8251 universal synchronous/ asynchronous receiver-transmitter
chip will be interfaced to the Apple computer, right at the interface
slot. We will not provide you with a great deal of detail about the
operation of the USART chip, since this has been covered in detail
in TRS-80 Interfacing, Book 2 (Howard W. Sams & Co., Inc., Indi-
anapolis, IN 46268). A magazine article covering the subject is also
available. See "Cross-Pollinating the Apple," Byte, April, 1979, p. 24.

Since the 8251 USART chip is a bus-compatible chip, it should not
be too difficult to interface the Apple. A pin configuration and block
diagram for the USART are providedirLFig. 7-9. You should be able
to recognize the data bus inputs, the RD and WR control inputs and
a chip select input, CS. Since the USART contains two sets of regis-
ters, there must be some way of distinguishing between them. The

175

Downloaded from www.Apple20nline.com

176

DSR
DTR

GTS
RTS

PIN CONFIGURATION

o, o,
o, '?.

v"
GNO fi';C

o, D'iii
o, ru
o, Oiii
o, RESET

r.f C<K
Wo T.O
c;

c/0 m
;;;; IV NOlET

lllltROY

BLOCK DIAGRAM

""N-
07·0·
C/0 oo
Wo cs
CL<
fU:SET
TiC
T•O

•• o
..... ov
T"'tOV

'l"
D•• ... • l8 t.ohl

TRANSMIT
BUFFER

IPS)

TRANSMIT
CONTROL

RECEIVE
BUFFER

IS P)

RECEIVE
COMTROL

CotoctOI,.DatlliiiDM'I'IIIut..., OI' Rutl

Olitlfll ...
O«• f'\>lw tTTLI ._
Tr-netC:Ioc• ,,_,_o.u
"--<---'*"-"-t\\ (l'llltNr.cwbiOIOl
T•-f'W dw. "- .-o1

TXD

TXRDY

TXE

TXC

RXD

RXRDY

SYNDET

.... .. _ ,,,F,.nc:t..,..
os• D•t•S.tiiiiMCiv
I5Tll DIIIT!l<'Mtfl ... Ruofy
SYNDET S¥'flo(0HtU
ffl_,, Ul klldO.tl
ffi c: ... to S...dO..t.a
T•E Tr-.mintrf"'P''I'

"" •6 Volt Supply
CNO .._ ..

Fig. 7-9. Pin cOftflguratl• ancl block cliagram for the 8251A USART chip.

Downloaded from www.Apple20nline.com

CONTROL/DATA input at pin 12 (C/D) performs this function.
A logic one selects the control mode, or command mode, while a
logic zero selects the data mode. One of the address bits can be con-
nected to this input to allow the computer to access each of the inter-
nal registers by using one address for the command register and an-
other address for the data register.

Since the USART will be communicating with other asynchronous-
serial devices, there are standard data rates that must be used to as-
sure that the data rates of the transmitting instrument and the receiv-
ing computer are fairly close. A Motorola MC14411 bit rate generator
chip has been chosen to perform this function, since it is crystal con-
trolled. There are other popular clock-generating schemes, too.

Since the standard logic levels provided by SN7400 family tran-
sistor-transistor logic (TTL) devices cannot be used to drive long
communication lines, you will need to choose whether you wish to
use 20 rnA current-loop signals or standard RS-232C control levels.
The necessary level-conversion circuits are easy to obtain, and they
are detailed in the references noted previously.

Since any sort of communication interface is useless without the
software to drive it, you will need some software routines that can
drive the USART chip. For the most part, these will be simple, and
you may wish to use BASIC-language programs for control purposes.
If you choose to use assembly-language programming, you might
consider putting your control programs in ROM, and putting the
ROM right on the interface board. Since there are 256 bytes of ad-
dress space available for each interface slot, a small ROM can be
accommodated. The 256-byte space is quite enough for some USART
control programs. You can use the Monitor to test your assembly-
language programs before they are put into ROM.

A complete USART interface is shown in Fig. 7-10. This circuit
has been wired and tested in our Apple computer. If you wish to use
this circuit in your computer, we suggest that you obtain the data
sheets for the 8251 or 8251A USART chip, and the Motorola MC-
14411 bit-rate generator chip, so that you will understand how they
work. In Fig. 7-11, we have provided a general addressing circuit for
a 256-byte block of ROM, which could be used to store the assembly-
language USART control routines. The actual circuit would depend
upon the particular ROM chip, or chips that you choose to use. In
this circuit, Fairchild 93427 ROMs have been used. These are fast,
bipolar, fusible-link ROMs. Each chip contains 1024 bits, organized
in 256 4-bit words, so two chips are required for a complete 8-bit
word. Slow, erasable PROM chips are not recommended, since their
access times are fairly slow, and they could cause problems. Most of
these devices contain many more locations than you can use.

You can build this circuit on a standard interface wire-wrap card,

177

Downloaded from www.Apple20nline.com

or on another type of suitable prototype card that can be plugged
into one of the available interface slots. If you use the wire-wrap
prototype technique, you will find that the wire-wrap pins and the
chips stick out from both sides of the card, making it difficult to use
the adjacent interface slots.

+ 5 8251A USART APPLE BUS SIGNALS 26
D7 42 8 D7

43 7 D6 RX D 3 DATA TO USART 6 44
5

D5
DATA 45 D4 TXD 19 DATA FROM USART 2 BUS 46 D3

47 I D2
48 28 Dl

DO 49 27 DO PINS NOT SHOWN ARE
LEFT UNCONNECTED

AO 2 12 C/D

RES 31 CTS 17

RiW 18 R XC .

T xC

CLOCK · 20

4

1.8432MHz
AI 3 \
A2 4
A3 5 Fl5 18
OS 41

+ 5 F5 3

MC14411

Fig. 7-10. Simple USART-to-Apple interfece circuit schemilfic.

In our computer system, we used the USART interface in slot 3,
so that the USART was addressed as devices 49328 and 49329. The
registers at address 49328 are the receiver and transmitter registers,
while the registers at address 49329 are the control and flag registers.
Keep in mind that you can have two registers for each address, since
one is a write-to register, and the other is a read-from register. If you

178

Downloaded from www.Apple20nline.com

ADDRESS
BUS

R/W
UO SEL

93427 OR EQUIV ROM

D1
256 x 4 L_A7-AO / ROM v D4

1L TO DATA BUS

D3 256 x4
v ROM

DO

...... '"11
v l

Fig. 7-11. A 256-byte memory circuit

moved the card to another interface slot, the addresses for the
USART would change, as noted in Table 7-3.

To use the USART interface, you must first initialize the chip with
some control information that is sent as two consecutive bytes to the
control register. Don't worry about sending two bytes to the same
register, the USART "knows" what to do with them. After the
USART has been initialized, you can use it to transmit and receive
asynchronous-serial streams of information. The program shown in
Example 7-1 can be used to transmit an 8-bit byte of data, while the
program shown in Example 7-2 can be used to receive an 8-bit byte.

Example 7-1. USART Transmitter Control Subroutine

1010 POKE 49328, TX
1020 WAIT 49329, 1
1030 RETURN

Example 7-2. USART Receiver Control Subroutine
1050 WAIT 49329, 2
1060 RX = PEEK(49328)
1070 RETURN

The software checks the necessary flags so that the transmitter trans-
mits its data only when it is ready, and the receiver only provides
data when it has actually received some.

The main point here has been to develop a simple interface that
uses many of the Apple bus interface control signals, so that you can
see how they work. It is also nice to know that the interface example
actually works, and that it can be used in some real applications. We
hope that you have seen how easy it is to develop an interface for
the Apple, based upon the concepts of port addressing, port control,
and flags, that we introduced throughout the book.

179

Downloaded from www.Apple20nline.com

APPENDIX A

Logic Functions

In the experiments in this book, several logic functions are re-
quired. These functions are noted as lamp monitors, logic switches,
and pulsers. In each case, the equivalent circuits are simple, but
rather than duplicate them in each schematic diagram, block dia-
grams have been used. The following sections describe each of the
functions that are required.

LAMP MONITORS

Lamp monitors are simply light-emitting diodes, or other on-off
indicating devices that . are used to indicate the state of a logical
output. We have adopted the convention of logic one being the lit,
or on state, and logic zero being the unlit, or off, state. The two cir-
cuits shown in Fig. A-1 may be used to construct lamp monitors. The

180

LED 220

INPUT

7404 or 7405

Fig. A-1. Schematics of two simple lamp-monitor circuits that may be used
in experiments.

Downloaded from www.Apple20nline.com

use of red LEOs is recommended, since they are inexpensive and
readily seen. You will require at least eight of the individual lamp
monitors to do the experiments in this book.

LOGIC SWITCHES

Logic switches are simply switches that have been configured to
provide either the logic one or the logic zero voltages to the TTL-
compatible integrated circuits used in the experiments. A typical
logic switch is shown in Fig. A-2. A single-pole, single-throw toggle
switch or slide switch may be used. At least eight of the logic-switch
circuits will be required in the experiments.

Fig. A-2. Schematic of simple logic-
switch circuit that may be uMOd to

generate logic one or logic
zero output.

PULSERS

1000 c+5
OUTPUT

The pulser circuit is used in the experiments to provide "clean"
outputs that are free of the "bounce" that is normally associated
with mechanical switches. Since most switches use spring-like metal
contacts, the contacts will often open and close several times after
the switch has been opened or closed. If such a mechanical switch
is used to provide pulses to a counter, up to 30 to 40 pulses may be
counted, depending on the type of switch used. Since there are many
cases in which a clean logic one to logic zero, or logic zero to logic
one, transition is required, a debounced switch is frequently useful.
Mechanical switches are easily debounced, if they have contacts of
the single-pole, double-throw form. A typical debouncing circuit is
shown in Fig. A-3. In this case, two NAND gates have been used to
form a flip-flop that may be set, or reset, by the switch. As shown in

fig. A-3. Schematic for debounced
pulser in which "cross-coupled"
NAND gate has been used to

eliminate contact bounce.

1000

1000

Downloaded from www.Apple20nline.com

181

Fig. A-3, two outputs are available. With the switch in the position
shown, the normal logic states are shown at the outputs of the two
gates. When the switch is moved to the other position, the outputs
of the NAND gates will switch. It is suggested that a momentary
switch be used in the pulser circuits.

Lamp monitors, logic switches, and pulsers are all useful devices
when breadboarding logic circuits. While the circuits shown in Figs.
A-1 through A-3 are simple, you may not wish to build them your-
self. Several companies produce digital breadboarding devices that
incorporate lamp monitors, logic switches, and pulsers, as well as
other digital functions. We suggest that you write to the following
companies for information about their digital-electronic bread-
boarding systems:

112

E & L Instruments, Inc.
61 First Street
Derby, CT 06418

AP Products, Inc.
Mentor, OH 44060

PACCOM
14825 NE 40th, Suite 340
Redmond, W A 98025

Downloaded from www.Apple20nline.com

APPENDIX B

Parts Required for
the Experiments

4 SN7402 Quad NOR-gate integrated circuit (IC)
2 SN7474 dual D-type Hip-Hop IC
2 DM8095 or SN74365 three-state input buffer (2@ per input

port)
2 SN7475 Quad latch IC
1 NE5018 eight-bit D I A converter IC (Signetics Corporation)
1 SN7404 hex inverter IC
2 SN74LS373 three-state octal latch IC
1 0.01-f.l.F, disc ceramic capacitor
1 4700-ohm, %-watt resistor
6 220-ohm, 1j4-watt resistors
6 Visible LEDs (2@ red, 2@ green, and 2@ yellow)
1 10K, potentiometer trimmer-type
1 10K, %-watt resistor
1 100-fLF electrolytic capacitor 16 WVDC
1 33K, %-watt resistor
1 150-pF disc capacitor
1 2200-ohm, %-watt resistor
1 ADC0804 analog-to-digital converter (National Semiconductor

Corp.)
1 LM335 temperature sensor
4 1000-ohm, %-watt resistors

Downloaded from www.Apple20nline.com

183

Besides the parts listed, you will need an assortment of SN7400,
SN7408, SN7402, SN7410, SN7486, SN7430, and SN7493 integrated
circuits for use in the logic-tester program in Experiment No. 14. We
suggest that you read through this experiment to determine exactly
what circuits you will want to test.

Other useful equipment: a ±12-volt power supply (for use with
the D I A converter circuit), hook-up wire, an extra solderless bread-
board, pulsers, logic switches, lamp monitors, and a voltmeter or
vom.

Information about the analog converters is available from:
ADC0804 A/ D Converter NE5018 D I A Converter
National Semiconductor Corp. Signetics Corporation
2900 Semiconductor Drive 811 East Arques Avenue
Santa Clara, CA 95051 Sunnyvale, CA 94086

Integrated circuits and components are available from many man-
ufacturers, and we suggest that you check the many advertisements
in the last pages of Radio-Electronics, Popular Electronics, Kilobaud
Microcomputing, and other electronic magazines. We have tried to
use standard parts wherever possible.

184

Downloaded from www.Apple20nline.com

APPENDIX c

6502 Microprocessor
Technical Data

The following pages contain some technical information pertain-
ing to the 6502 microprocessor chip. This information has been ab-
stracted from the 1980 Component Data Catalog, from MOS Tech-
nology, Inc., 950 Rittenhouse Rd., Norristown, PA 19403. For more
complete information about the 6502 processor and its associated
family of functions, we suggest that you write to the manufacturer
for a complete data sheet.

The 6502 chip is also available from:
Rockwell International
3310 Miraloma A venue
Anaheim, CA 92803

Synertek, Inc.
3001 Stender Way
Santa Clara, CA 95051

These manufacturers can also provide you with information about
their 6502 microprocessor chip, and related devices.

185

Downloaded from www.Apple20nline.com

MCS6500 Microprocesso rs

• +SV Supply
• N-Owlnnel, Slllcon-Gite, DepleliooH.OAd T ecllnoloSY
........... l'rocessi"'
• .56 lnltrudions
• Oecimll and llirwy Arithmetic

::M:SCRPTION

• u--.-.
• ,.,.......-SI.KIII'ointe<and SI.KII
• Us.1lble With Any Type or Speed
• 1 or 2 MHz Operation
• Ardlite<Me

The MCS6SOO Series microprocessors represent the total y software-comp.otible microprocessor family. This family
of products includes a range of software-compatible microprocessors which provide a sele<:tton of addressable memory
range, interrupt input options and on-chip dock osciHators and drivers. All of the microprocessors in the MCS6SOO group
are software-comp.otible within the group and are bus compatible with the M61100 product offering.

The family includes five microprocessors with on-bo.ud clock oscillators and drivers and fotX mK:roprocenon driven by
external clocks. The on·chip clock versions are ainled at high-performance, low·cost applications where single-phase
inputs, crystal or RC inputs provide the time base. The external clock versions are geared for multi-processor system
applications where maximum timing control Aft of the microprocessors are available in 1 MHz and
2 MHz ('A" suffix on product numbers) maximum operating frequeocies.

MEMI8lS Of THE FAMILY

l'lostic
MCS6502
MCS6503
MCS6504
MCS6505
MCS6506
MCS6507
MCS6512
MCS6513
MCS6514
MCS6515

I'IN IU'K110NS

Clocks (<1>1 and <1>2)

Ce<.wnic
MCS6502
MCS6503
MCS6504
MCS6505
MCS6506
MCS6507
MCS6512
MCS6513
MCS6514
MCS6515

Clocks Pins
40
28 . 28 . 28 . 28 . 28

External 40 . 28 . 28 . 28

The MCS651X requires a two·phase, non·overlapping
dock that runs at the Vee voltage level.

The MCS6SOX docks ore supplied with an internal dock
gene<ator. The of these clocks is externaUy con·
trolled. Details of this feature are discussed in the
MCS6502 portion of this data sheet.

Addmo Ius (AO.A 15)
(See sections on each processor for respective address
lines on those devices.)

These outputs ore TIL-compatible, cap.oble of drivi"' one
standard m load and 130pf.

186

•Q NMI lOY Adcnui"'

v v v 16 (64 K)
v v 12 (4 K)
v 13 (8 K)
v v 12(4K) v 12 (4 K)

v 13 (8 K)
v v v 16(64 K)
v v 12 (4 K)
v 13(8K) v v 12 (4 K)

Eight pins are used for the data bus. This is a bi-directional
bus, transferring data to and from the device and
peripheral• . The output. are three-state buffers capable of
driving one standard TTlloid and 130pf.

Data Ius Enable (0.)
This m -compatible input allows external control of the
three·slate data output buffers and will enable the
microprocessor bus driver when in the high state. In nor-
mal operation, DBE would be driven by phase two (+2)
dock, thus alowing data input from microprocessor only
dlling <1>2. Duri"' the read cycle, the data bus drivers are
internaly disabled, becomiing essentialy •n open crcU!.
To disable data bus drivers exte<naly, DBE should be held
low.

Downloaded from www.Apple20nline.com

ludy(IDY)
This input sign<ol allows the user to single·cycle the
microprocessor on .- cycle. except write cycles. A neg.·
tive tr...sition to the low state during or coincident with
phase one (+1) wil holt the microprocessor with the out·
put add'ess IOies reflecti118 the rurrent address being
fetdled. Ths condtion wil remm tlrough a subsequen(
phase two (+2) in which the Ready signal is low. Ths
feature ollows microprocessor interfarng with low-spet'd
PROMS as well as fast (max. 2 cycle) Direct Memory Ac·
cess (DMA). Ready is low cilring a write cycle, it is
ignored unti the following read operation.

lnlmupt lequest
Ths m -<:ompatible si8nol that an interrupt se-
quence begin within microprocessor. The
microprocessor wil complete the current instruction being
exeruted before recognizing the request. At that time, the
inte<rupt mask bit in the Slatus Code Register will be exam-
ined . If the interrupt mask flag is not set , the
microprocessor will begin an intl!fNpt The Pro-
w am eo.n.,.. ond Processor Status Register are stored in
the stack. The microprocessor wl then set the intl!fNpt
mask flq hi8h so that no fllthl!f interrupts may ocax. At
the end of this cycle, the prosrom counter low wil be
loaded from address FffE, ond program counte< high from
location FFFf, transferr'n& prosram control to the me<nory
vector located at these addresses. The RDY signal must be
in the high state for any interrupt to be re<OIP'ized. A 3KO
exterN! resistor should be used for proper wire-OR
operation.

................. (iiiii)
A ed8e on this input requests that a non-
mukablo interrupt sequence be generated within the
microprocessor.

I'M is an unconcitionol interrupt. Folowing con-pietion of
the rurrent instruction, the sequence of operations
fined for 1m wl be performed, regordess of the state ol
the interrupt mask flq. The vector address loaded into the
prosram counte<, low ond high, are locations FFFA and
FFFB respectively, transferring pr08fam COI'Itrol to the
me<nory vector located at these addresses. The instruc-
tions loaded at these locations cause the microprocessor
to branch to a interrupt routine in memory.

NMI also requires an exte<nal 3KJl registl!f to Vee for
proper wire-OR operations.

and NMI are hardware interrupts ines that are
+2 ond wl begin the appropriate interrupt

routine on the +1 folowing the completion of the current
instruction.

Set Overflow flas (S.O.)
A NEGATIVE-going edge on this input sets the overnow bit
in the Slatus Code Registe<. This si(!nal is sampled on the
trailing edge of +1.

SYNC
This output ine is provided to those cycles wring
which the microprocessor is doing an OP CODE fetch. The
SYNC line goes high during +1 of an OP CODE fetch and
stays hi(!h for the remainder of that cycle. If the RDY line is
puled low duril18 the +1 clock ptjse in which SYNC went
high, the processor will stop in its current state and will
re<Niin in the state unti the RDY ine goes high. In this
manner, the SYNC si8nol can be used to control RDY to
cause single instruction execution. ·-This input is used to reset or start the microprocessor from
a poWe< down condition. During the time that this line is
held low, writing to or from the microprocessor is inhbit·
ed. When a positive edge is detected on the input, the
microprocessor wl imme<iately begin the reset sequence.

Afte< a system initialization time of six clock cydes,
the mask interrupt flag wil be set ond the microprocessor
wilload the prosram counte< from memory vector loca·
lions FFFC ond FFFD. This is the start location for program
control.

Ahe< Vee reaches 4.is volts in • pow.,.. up routine, reset
rrust be held low for at least two clod< cycles. At this time
the R/W and (SYNC) signal wil become vale!.

When the reset signal goes hiSh following these two clock
cycle., the microprocessor wil proceed with the normal
reset proce<Ue detailed above.

187

Downloaded from www.Apple20nline.com

188

.......

r
..
... .. ,
...
...

NOTU

- UGISTla SU'nofl

lECf:IIILI

11 • •anLINt

l •t l lfLaN"I.

1. Oodr: Gfn«M« a not ird.ldtd on ll.tCS&S12.11.14.15

flt .. l1 MCS651l ,U ,14,1S

hllflll J
= l MCS6S01,),4,S,6

,,.., ,,..,. ...

2. AdchBrc c.p.billy ¥'d control optioM VMy with INCh of,,. MCS6SOO

Downloaded from www.Apple20nline.com

NSTIIUCTION SET - AI.PH.UET1CAI. SfQUENCI
AOC Add Memory to AccurniAator wilh CNry
AND 'Ai'D" MemoiY with Acc..nulator
ASl Shift left One Bit (MemoiY or Accumuator)

BCC Branch on Carry Clear
8CS Branch on Cany Set
BEQ Branch on Res<At Zero
BIT T ...t Bits in Memory with Accumulator
8MI Branch on Result Minus
8NE Branch on ResUt no! Zero
BPI. Branch on Rf!SIAt Plus
BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry Flag
ao Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC De<rement Memory by One
DEX De<rement Index X by One
DEY De<rement Index Y by One

EOR Memory with Accumulator

NC Increment Memory by One
INX Increment Index by One
INY Increment Index Y by One

IMP to New Location
JSR to New Location Saving Return Address

LOA Load Accumulator with Memory
LOX Load Index X with MeiTlOI)'
LOY Load Index Y with Memory
l.SR Shift One Bit Ri8ht (Memory or Accurrulator)

NOP No Operation

ORA 'OR· MemoiY with Accumulator

PHA I'IJSh Accumulator on Slack
PHP I'IJSh Proci!Ssor Status on Stack

MCS6500

PlA Pul Accumulator from Stack
PLP Pul Processor Slatus from Stack

ROL Rotate One Bit Left (Memory 01' Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTf Relurn from Interrupt
RTS Return from Subroutine

SBC Subtract Memory from Accurrulator with BOI'row
SEC Set Carry Flag
SED Set Decilml Mode
SEI Set Interrupt Disable Slatus
ST A Store AccurniAator in MemoiY
STX Store Index X in Memory
STY Slcu Index Y in Memory

TAX Transfe< AcC<nlUiatOI' to Index X
TAY Transfe< AccurrulatOI' to Index Y
TSX T ronsfer Stack Pointer to Index X
TXA Transfer Index X to Aca.mulator
TXS Transfer Index X to Stack Pointer
TVA Transfer Index Y to Accurrulator

Adcftsllnll. This form of addressing is repre-
sented with a one-byte instructm, implying an operation
on the accurrulator.

lrnmediote In immediate addressing. the
operand is contained n the second byte of the instruction,
with no further rneiTlOI)' add'essing

Absolute AdclreMina- In absolute add'essing, the second
byte of the instruction specifoes the eight low-order bits
of the effective add'ess while the thrd byte specifoes
the eight high-order bits. Thus, the absolute addressing
mode alows access to the entire 65K bytes of addressable
rneiTlOI)'.

Zero P•e AdclreMina- The zero page nstructions alow
for shorter code and execution times by oi-ly fetching the
second byte of the instruction and assuming a zero high-
oddress byte. Careful use of the zero page can result in
significant increas<! in code efficiency.

119

Downloaded from www.Apple20nline.com

MCS6500

lndrxed Zero P"'e Adoftuins. (X. Y indexint!)- This form
of is used in conjunction with the index register
and is referred to as ·zero Page. x· or ·zero Page, v·. The
effective address is ukuloted by iddng the second byte
to the contents of the index register . Since this is a form of
·zero Page· addressing, the content of the second byte
references a location in p..ge zero. Addtionally due to the
·zero Page· addressing noture of this mode, no carry is
added to the high order 8 bits of memory and crossing of
page bourldilries does not occur.

Indexed Absolule Adoftuins. (X, Y indel(ing)- This form
of is used in conjunction with X and Y index
register and is referred toilS· Absolute, x·, and 'Absolute,
v·. The effective iddress is formed by iddng the contents
of X or Y to the address contained in the second and thrd
bytes of the instruction. This mode allows the index
ter to contain the index or count md the instruction
to contain the base address. This type of indexing alows
ilny location referencing and the index to modify multiple
f;.,lds resulting in reduced codr4! ind execution time.

In addressing mode, the
address contanng the oper•nd is inlplicit.ly stated in the
operation code ol the instruction.

INIM Relotive ilddressing is used only with
branch instructions •nd estobishes a destination for the
conditional branch. The second byte of the instruction
becomes the operand which Is an offset added to the
contents of the lower eight bits of the program counter
when the counter is set ot the next instruction. The range
of the offset is -128 to+ 127 bytes from the next instruc·
tion.

-- lndftd Adclmllna- In indexed indrect ilddiess·
ing (referred to ..s Indirect. X), the second byte of the
instruction is added to the contents ol the X index register,
disurding the carry. The result of this ackition points to a
memory location oo page zero whose rontet.ts is the low-

190

order eight bits of the effective address. The next memory
location in page zero contains the high-order eight bits of
the effective address. 8oth memory locations specifying
the high ilnd low-order bytes of the effective address ll'lJst
be in page zero.

lndftd Indexed Adcftooin&. In indrect indexed address·
it'@ (referred to ..s Indirect, Y), the second byte of the
instruction points to a memory loc•rion in page zero. The
contents oo this memory location is added to the contents
ol theY index register, the result being the low-order e;ght
bits of the effective address. The carry from tl-6 addition is
•dded to the contents of the next page zero memory
locotion, the result being the higl>-order eight bits of the
effective address.

Absolute Indirect. The second byte of the instruction con-
t•ins the low-order eight bits of a memory location. The
high-order eight bits of that memory locotion is contained
in the third byte of the instruction. The contents of the fuly
spedfted memory location is the low-order byte of the
effective address. The next memory location contains the
high-order byte ol the effective address which is loaded
into the 1&-bit program counter.

llaq Value Unit
Supply Voltage Vee -0.3 to + 7.0 Vdc

Input Volt•ge VN -0.3 to +7.0 Vdc

Oper•ting Temperature TA 0 to +70 ·c
Storage Temperature Tsrc -ss to +150 •c

CAUllON
ThiJ device contM>< input prot«tion 4ainst c»rnage rue
to hi8Jt swic or 68Js; however, preau-
tions should be taken ro avoid applbtiofl ol
higher rtwn the tNXim<.m rarrw.

Downloaded from www.Apple20nline.com

1s

-MIJI '"A•

_ ,.., ..•..

ADDK•I , ...

·-

fo (IN)

t ,IOUTI

I a tOUT)

F0a WIIIINO DATA TO
MEMOn oa u .. :a.\lS

Downloaded from www.Apple20nline.com

191

MCS6500

IUCTRJCAI. CHARAClfiiiiSllCS !Vee- s.cN ± 5%, Vss o. r.-2s•q
0 1, 02 applies to MCS6512, 13, 14, 15, 00 lin) apples to MCS6502, OJ, 04, OS and 06

Symbol Min Typ Mu Unit T HI Concltlon

v .. Input High Voltage Vss + 2.4 Vee Vdc logic , 00 hnl
Vee- 0.2 Vee + 0.25 e,. 02

v. Input Low Voltase Vss- 0.3 Vs,s + 0.4 Vdc Logic, 0o[onj
Vss - 0.3 Vs,s+ 0.2 e,. e,

v Input High TIYeshold Vss + 2.0 Vdc NMI, Data, S.O .
Voltage

Vu Low Tlveshold Vss + 0.8 Vdc RES, NMI, ROY. D•to. 5.0.
Voltoge

IN Input Leakage Current (VN • 0 to 5.25V, Vee • 0)
2.5 .,A Logic (Excl. ROY. 5.0 .)
100 0,, 0,
10.0 "" 0 o(n)

Three-State (OH State) 10 pA (VN • 0.4 to 2.4V, Vee • S.2SV)
lrput (lOTent Oota Lines

Voo Output High Voltase Vs,s+ 2.4 Vdc CltoAO • -1oo,.Adc, Vee • 4.75V)
SYNC, Dat•. Ao-A 15, R!W

v,,. Output Low Voltage Vss + 0.4 Vdc CltOAO • 1.6mAdc. Vee • 4.75V)
SYNC, Data. Ao-A 15, R/ W

Po Power Dissipation .25 .70 w
c Capacitance pf (VN • o. r. • 2s·c. t • 1MHz)
eN 10 Logic

15 Data
CooT 12 Ao-A 15, RI W , SYNC
c0o[n) 50 0orn)
c0, 30 50 0,
Ce2 50 80 0,

NOn
mj 1M requO-e 31< pul-..p resistors.

aocx T1MIIIG-MCS6SOl 03, 04, os. 06

2 . • v
eo ON) ••
e, coun

ez (OUTl .t-·15V 3
l" A-.-. _ 82 -----

192

Downloaded from www.Apple20nline.com

MCS6SOO

ClOCK 11, 14,15

SynDol OlaroKteriltk Min Typ Mu lMil

Tcve CydeTme 1<XXl nsec
PWH.;1 Clock Pulse Wodth .1 430 nsec PWH.;2 (Me..ured ot Vee- 0.2 V) .;2 470

T, Fall Time (Measured from 0.2 V to Vee - 0.2 V) 25 nsec

To D&y Tme Between Clocks (M<!osured at 0.2 V) 0 nsec

Cl()Q(TIMING-M06SOl, 03, 04, 05, 06

SynDol ChorKtorlotic: Min Typ Mu Unit

Tcvc Cycle Time 1000 ns
.;. (N) Pulse Width (measured at 1.5 V) 460 520 ns

TR.;., TF.;. .. (N) Rise, Fall Time 10 ns

To o&y Time llelween Clocks (measured at 1.5 V) 5 ns
•• (OUT) Pulse Wtdth (rt"'NSW'ed at 1.5 V) PWH.; ... -20 PWH.;ol. ns
••(OUT) Pulse Wtdth (meosured at 1.5 V) PWH.;.,..-10 ns

To. T, •• (OUT}., <OUTJ Rise, Fal Tome 25 ns
(measured .8 V to 2.0 V)
(load • 30pF + 1 TIL)

SynDol Olarlldorlotic: Min Typ Mu Unit
Tows Read/ Write Setup Tme From MCS6500 100 300 ns

TAOS Address Setup T me From MCS6SOO 100 300 ns

T,ec Memory Read Access Time 575 ns

Tosu Data Stability Time Period 100 ns
T,. Data Hold Time- Read 10 ns
T......, Data Hold Time - Write 30 60 ns

TM06 Dato Setup Tme From MCS6SOO 150 200 ns

Toov ROY. 5.0 . Setup Time 100 ns

TsvNC SYNC Setup Time From MCS6SOO 350 ns

T..,. Address Hold Time 30 60 ns

T,.w R/ W Hold Time 30 60 ns

193

Downloaded from www.Apple20nline.com

MCS6SOO

aoac 13, 14, 1s, 16

Syrrbol Min Typ Mu lMit

Tcvc 500 nsec
PWH4>1 Oodc Pulse Wodlh .1 215
PWH4>2 (MeaS<red at Vee- 0.2 V) .2 235 nsec

T, F .. Tme from 0.2 V to Vee- 0.2 V) 12 nsec
To Delay rme Between Oodcs (Me ed at 0.2 V) 0 nsec

aoac TIMINC--MCS6502. 03. 04, os, 06

Symbol O..Kteristlc Min Typ Mu Unit
Teve Cycle Tome 500 ns

•o (NJ Pulse Width (me-red at 1.5 Vl 240 260 ns
TR • .,. TF_.0 •o(N) Rise, FaQ Time 10 ns

To Delay rme Between Clocks (meaSIM"ed at 1.5 V) 5 ns
_., (OUT) Nse Wtdth (me....ed at 1.5 V) ... -20 ... ns
., fOliTl Nse Width (me.....-ed at 1.5 V) ... --40 ... -10 ns

T0• T, •• ., IOUTl Rise, Fal Time 25 ns
(measured .8 V to 2.0 V)
(load • 30pf + 1 TILl

Syrrbol Our Min Typ Mu Unit

Tows Setup From MCS6500A 100 150 ns
TAOS Address Setup Time From MCS6500A 100 150 ns
TAeC Memory Access rme 300 ns
TDSU Data 5tabity Time Period 50 ns
THI Data Hold Time - Read 10 ns

THW Data Hold Time- Write 30 60 ns

TMOS Data Setup Tine From MCS6500A 75 100 ns

Toov ROY, S.O. Setup 50 ns

Tsv..: SYNC Setup Time From MCS6500A 17S ns

T..,. Address Hold Time 30 60 ns

THiw R!W Hold rome 30 60 ns

194

Downloaded from www.Apple20nline.com

APPENDIX D

Apple Interface
Breadboard Parts

Parts required for the construction of the Apple Interface Bread-
board:

IC 1 & 7

IC 2 & 6
IC 3,4, & 5

IC 8
IC 9
IC 10 & 11
IC 12
IC 13
IC 14
IC 15
IC 16, 17, 18,

& 20

IC 19

Dl- D4
D5
D6
D7
D8 & D9

16-pin resistor network, eight independent 1000-
ohm resistors

8-position DIP switch (on-off)
SN74LS85 Quad comparator IC (Do Not Substi-

tute SN1 4185)
SN74LS20 dual four-input NAND gate IC
SN74365 or DM8095 three-state buffer
8216 noninverting bus buffer, Intel or equivalent
SN74154 decoder IC
SN7404 inverter IC
SN74123 or SN74SL123 dual monostable IC
LM319N dual comparator (14-pin package)

High-quality 16-pin IC sockets, Augat 516-AG-
lOD, or equivalent

High-quality 8-pin IC socket, Augat 508-AG-10D,
or equivalent

1N4001 50 piv, !-ampere diodes 0

Yellow LED
Red LED
Green LED
1N4148 or 1N4154, small-signal diodes

195

Downloaded from www.Apple20nline.com

Rl & R8
R2 & R3
R4 & R5
R6
R7
Cl
C2, 4 & 5
C3 & C6
C7 & C8
VR
Pl

P2

Tl
Misc.

1000-ohm, ¥4-watt resistor
220-ohm, ¥4-watt resistor
47K, %-watt resistor
3900-ohm, %-watt resistor
2200-ohm, %-watt resistor
2200-J.LF, 16 V dew electrolytic capacitor (axial) 0

disc ceramic, 50-volt capacitors
1-J.LF, 35 V dew tantalum electrolytic capacitors
3.3 J.LF, 50 V dew electrolytic capacitors (axial)
LM309K 5-volt, l -amp voltage. regulator0

Molex right-angle 6-pin connector (PN 09-75-
1061) optional

Requires 1@ mating female housing (PN09-50-
7061) and 6@ connector pins (PN 08-50-0106
or 08-50-0108)

40-pin right-angle jumper header, AP Products
923875R, or equivalent

12.6 V ac transformer 1 amp
1116-pin IC sockets
3 14-pin IC sockets
1 24-pin IC socket
Cable assembly: 40-pin header on one end, with

a 40-pin card edge connector on the other, fac-
ing the same direction

Solderless breadboard socket, SK-10, Superstrip,
or equivalent, 4@ 4-40 X o/s Hat-head mach.
screws, 4@ #4 internal-tooth lock washers, 4@
#4 hex nuts.

Heat sink for VR, 2@ 4-40 X 1h mach. screws,
2@ #4 internal-tooth lockwashers, 2@ #4 hex
nuts, mica insulator, thermal grease (optional) .

Power cord

The parts marked with "0
" are not required if an external +5-volt

power supply will be used to power the system.

196
Downloaded from www.Apple20nline.com

APPENDIX E

Printed-Circuit
Board Artwork

This appendix contains artwork that may be used to make a
printed-circuit board of the Apple interfacing breadboard. Since the
artwork has been reduced, it must be enlarged before it can be used.
We recommend that you have a print shop make a high-contrast film
negative, or positive, depending on the process that you will use.
The long thick black line in each of the three diagrams should be
enlarged so that it is four (4) inches long. The process-camera
operator should be able to correct the enlarging process so that the
resulting film is the right size for the printed-circuit board. You may
not choose to use the parts overlay, but it has been provided as a
guide to the placement of the various parts.

197

Downloaded from www.Apple20nline.com

-------- -
- 0 0 -----
--- -- -- -- -- ---

0 0

0 0

Fig. E-1. Printed-circuit bnrd •rtwork for component side of interface breadboard
(right re•ding).

191

Downloaded from www.Apple20nline.com

•

0 0

0

•
• 0 0

0 00 0 0
0 •

Fig. E-2. Printed-circuit board artwork for solder side of interface brei1dbo01rd
(reverse ruding).

Downloaded from www.Apple20nline.com

199

t.

•

200

..

_ , ____ _
+

. . . . - --

.. ...

I I I c ;: .. I• I

Downloaded from www.Apple20nline.com

- .. -- "'_
•

I
I

0

" :r
0 0 I

I

R • I ..
::::>
0 a=
(.!)

0 0 (.!)
a=
::::> co en :::.:::
u <
...J co
w
.....
co
0 w z
(.!)

0 0 en w
0

.a.: ..:J

Fig. IE-4. Co•ponont n-nc!.turo ovorf.y superimposed • c_,.........clo foil
,..nom, ••J be used •• parts plac-t guiclo.

201

Downloaded from www.Apple20nline.com

.. ;

...

,,

';; .. ;
.1>
'
:;.

$

.

-.-
.. .

. ..
l

...

....... .. .
•t:

..

.. ... ::·- ' .. ,

Downloaded from www.Apple20nline.com

• : !"

.
' , .

·

..

Index

ACID PUMP, 111
Address

A

bus, 15
comparison, 42
decoding, 26-27
decoder circuit, 73

use, 92-96
lines, 27
negative, 25
page, 10
positive, 25
select pulse, 31
selection signal, 39
16-bit, 27

Addressing, device, 27-43
Analog-to-digital converter, 154-161
Arm gates, 27
ANSWER,61
APPLESOFT BASIC, 17
Assembly

language, 23-25
logical operations, 60-62

'
a

BASE PUMP, Ill
BASIC, 23-25

interpreter, 24
Bar

graph, horizontal, 125
notation, 15

BCD, 132-136
Bidirectional, 10
Binary

codes, 132-136
notation, 27
numbering, 25

Bit, least-significant, 152
Breadboard

basic, 69-80
construction, 80

Buffer enable, 52
Bus

buffer chips, 155
circuit, 76

-compatible chip, 175
low address, 28

Byte, 9, 61
least significant, 103
most significant, 103

c
CALL, 67
Capacitor-charging circuit, 159
Card readers, 14
Chip-enable input, 12
CLEAR, 47
Clock signals, 173
Comparators, using, 41-43
Comparing, 27
Connections to Apple, 80-84
Control signal, 15

Downloaded from www.Apple20nline.com

203

Controllers, 14
Converter

analog-to-digital, 154-161
digital-to-analog, 127-132

Crash, 18

D

D/ A converter, 127
DAC, 127
Daisy chain, 170
Data, 61

bits, 54
bus, 15
control, 22-23
display, 122-127
logging, 122-127
transfer, 22-23

Debounced pulser cireuit, 181
Debug, 25
Decimal numbering, 25
Decoded address, 31
Decoders

device, 72-75
large, 37-40
memory, 72-75
using, 33-37
x-line, 33
y-line, 33

Decoding, 27
DEV SEL, 116
Device

decoders, 72-75
select pulse, 31, 96-100

Digital-to-analog converter, 127-132
Dip switch, 92
Display(s), 14

memory, 24
DMA, 172
DRYER, 111
Dummy variable, 61
Dynamic memory, 11

E

8-bit output port, 116
ENABLE, 34
Experiments, introduction, 86-89

204

F

Fetches, 67
Field-programmed, 12
Flag(s), 58-59

circuits, 64-65, 149-154
clearing, 63

commands, 154
complex, 62-64
-detecting software, 59-60
multiple, 66
priority, 66
status, 57
testing, 64
timing, 63

Flip-flop
circuit, 65
timing, 65

Floppy disks, 64
Full/ empty, 149
Function pulse, 31

G input, 34
G

Gates, address decoding, 27-32
Gating, 27

circuit, 29
input, 133
logic, 27
programmable, 30

H

High-impedance state, 133
HOME, 16
Horizontal bar graph, 125
Hot/cold, 149

INH, 172
Input

/ output (IjO) devices, 14-15
port(s), 17,49-56

applications, 106-U5
constructing, 100-103
interactions, 119-122
multibyte, 103-106

Downloaded from www.Apple20nline.com

INTEGER BASIC, 17
Interface

circuits, 20-22
control signals, 166-175

Interfacing, 175-179
Interrupt (s) , 66-67

flag circuit, 169
polled, 170
request, 66, 169-172

Inverted signal, 31
I j O

commands, 15-16
device address decoding, 26-27

synchronization, 57-58
program, 15
SELECT, 166-167
STROBE, 167-168

IRQ, 66, 169-172

L

Lamp
monitor(s), 136, 180
circuit, 180

Latch, octal, 47
Least

-significant bit , 152
byte, 103

LED,71
Light-emitting diode, 71
LOAD,16
Logic

chips, 143
-device tester, 143-149
levels, 143
monitors, 47
one, 27

used for control, 60
probe, 71-72

circuit, 72
use, 89-91

-switch circuit, 181
switches, 181
zero, 28

used for control, 60
Logical

operation (s) , 58-59
subroutine, 62

Low
-address bus, 28
-power Schottky, 72

LS,72
LSB, 152
LSBY, 120

M
Maps, memory, 19-20
Mask, 61

-progranuned, 12
Memory, 10-14

decoders, 72-75
display, 24
dynamic, 11
map, 19-20
static, 11

MEMR, 13
MEMW, 13
Monitors, lamp, 180
Most-significant byte, 103
MR, 13
MSBY, 120
Multibyte input ports, 103-106
MW,13

N

NAND gates, 27
Negative address, 25
NMI, 66, 169-172
Nonmaskable interrupt, 66, 169-172
NOR gates, 29

0
Octal, latch, 47
Operational amplifiers, 161
OR gates, 29
Output

port(s), 17,44-49, 132-136
constructing, 115-119
interactions, 119-122

three-state, 50

p

Page address, 10
PEEK commands, 18
Peripherals, 14
Pin configuration

ADC0804, 155
LM335, 160
NE5018, 127
SN7402, 92

205

Downloaded from www.Apple20nline.com

Pin configuration-coot
SN7474, 150
SN7475, 46
SN7493, 147
SN74125, 50
SN74LS139, 33
SN74175, 46
SN74LS244, 52
SN74365, 52
SN74LS373, 46
2114, 13
2708,13
6502, 11
8216, 77
8251A, 176

PLOT, 16
POKE commands, 18
Polled interrupt, 170
Port(s), 17

constructing input, 100-103
output, 115-119

input, 49-56
multibyte input, 103-106
output, 44-49, 132-136

Positive address, 25
Power, 174

supply, 69-71
PRINT, 15
Printers, 14
Programmable

gate, 41
gating, 30

Pulse(s)
address select, 31
device select, 31
function, 31
-generation circuit, 93
-inverter circuit, 128
software generated, 96
using device-select, 96-100

Pulsers, 181-182

QUalifier; 40

RAM, 13
Random

Q

R

access memory, 13
color pattern generator, 16

206

RD,53
RDY, 173
Read

-from register, 178
only, 11
/write, 11

Ready/busy, 149
Refreshing, 11
Register

read-from, 178
write-to, 178

RES, 172
ROM,11
R/W, 11

SAVE, 16
s

Schottky, low power, 72
SCRN, 15
Sensors, 14
Sequencer, 140
Software

commands, 20-22
flag detecting, 59-60
-generated pulses, 96
1/ 0 control instructions, 15-25

Speaker control program, 22
Static memory, 11
Status Bags, 57
Switch, dip, 92

T

Tester, logic device, 143-149
Timing diagram, 22
Traffic-light controller, 136-143
Truth tables, 29
12-bit input conversion, 56
256-byte memory expansion circuit,

179

Unbuffered, 75
USART

chip, 175

u

receiver control subroutine, 179
-to-Apple interface circuit, 178
transmitter control subroutine, 179

USER 1,173

Downloaded from www.Apple20nline.com

READER SERVICE CARD
To better serve you, the reader, please take a moment to fill out

this card, or a copy of it, for us. Not only will you be kept up to date
on the Blacksburg Series books, but as an extra bonus, we will
randomly select five cards every month, from all of the cards sent to
us durin& the previous month. The names that are drawn will win,
absolutely free, a book from the Blacksburg Continuin& Education
Series. Therefore, make sure to indicate your choice in the space
provided be1ow. For a complete listing of all the books to choose
from, refer to the inside front cover of this book. Please, one card
per person. Give everyone a chance.

In order to find out who has won a book in your area, call (703)
953-1861 anytime during the night or weekend. When you do call,
an answering machine will let you know the monthly winners. Too
good to be true? Just give us a call. Good luck.

If I win, please send me a copy of:

I understand that this book will be sent to me absolutely free, if my
card is selected.

For our information, how about telling us a little about
yourself. Weare interested in your occupation, how and where you
normally purchase books and the books that you would like to see
in the Blacksburg Series. We are also interested in finding authors
for the series, so if you have a book idea, write to The Blacksburg
Group, Inc., P .O. Box 242, Blacksburg, VA 24060 and ask for an
Author Packet. We are also interested in TRS-80, APPLE, OSI
and PET BASIC programs.

My occupation is -.,....----------------
1 buy books through/ from -------------
Would you buy books through the mail? --------
I'd like to see a book about -------------
Name
Address
City--------------------
State --------------- Zip ___ _

MAIL TO: BOOKS, BOX 715, BLACKS!JURG, VA 24060
!!!!!PLEASE PRINT!!!!!

21862

Downloaded from www.Apple20nline.com

The Blacksburg Group
According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LSI "chips" are creating a second industrial revolution that will qukkly involve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advances that are being made. It is also becoming difficult far newcomers
to " get on board."

It has been our objective, as The Blacksburg Group, to develop timely and efiective educational
materials that will permit students, engineers, scientists, technicians and others to quickly learn
how to use new technologies and e lectronic techniques. We continue to do this through several
means, textbooks, short courses, seminars ond through the development of special electronic de·
vices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia. While we didn't actively start our group collaboration until the Spring
of 1974, members of our group have been involved in digital electronics, minicomputers and
microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

-The design and development of what is considered to be the first popular hobbyist computer.
The Mark·B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, including the MMD-1 system. Our most recent computer is an 8085-based
computer for educational use, and for use in small controllers.

-The Blacksburg Continuing Education Series Till covers aubjects ranging from basic electronics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and
examples to reinforce bask concepts. This series originally started as our Bugbook series and many
titles are now being translated into Chinese, Japanese, German and Italian.

-We have pioneered the use of small, self-contained computers in hands-on courses for micro·
computer users. Many of our designs have evolved into commercial products that are marketed
by E&l Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA
24072.

-Qur short courses and seminar programs have been presented throughout the world . Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi-
sion. Each series of courses provides hands-on experience with real computers and e lectronic
devices. Courses and seminars are provided on a regular basis, and are also provided for groups,
companies and schools at a site of their choosing. We are strong believers in practical labora-
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc.. (703)
951-9030 or from Dr. linda lefiel, Virginia Tech Continuing Education Center (703) 961...5241.

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Che.-
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blocbburg
Group, all af Blacksburg, VA.

Downloaded from www.Apple20nline.com

Downloaded from www.Apple20 nline.com

