- |

o
e, s ! \—\—

e e —’—— ‘
A

USING YOUR APPLE CONPUTER

The Agple
House

JOHN BLANKENSHIP

Senior Professor
DeVry Institute of Technology

PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Blankenship, John (date)
The Apple house.

Includes index.

1. Dwellings—Automation—Data processing. 2. Apple
computer—Programming. I. Title.
TH4812.B53 1984 644'.028'54 83-16052
ISBN 0-13-038729-0
ISBN 0-13-038711-8 (pbk.)

Editoriallproduction supervision and interior design: Nancy Milnamow
Cover design: Jeannette Jacobs
Manufacturing buyer: Gordon Osbourne

© 1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10987 654321

ISBN 0-13-03&729-0
ISBN 0-13-038711-8 {PBK}

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Conteants

Preface

Partl THE GOAL

Chapter 1 What to Expect

Chapter 2 System Overview:
Hardware

Chapter 3 System Overview:

Software

Part il THE HARDWARE

Chapter 4 The Voice Recognition
System

Chapter 5 The Voice Synthesizer
System

Chapter 6 The System Clock

vi

15

20

26

31

iv

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

The Failsafe
System

The BSR Control
System

The Telephone
System

The Interrupt
System

The Tone Generator
Input/Output
(/0) Ports

Part lll THE SOFTWARE

The Software
Organization

The Primary Tasks

The Initialization
Module

The Voice Request
Module

The Phone Control
Module

The Security Module

The Event Timing
Module

The Monitor Movement
Module

Contents

35

39

44

50

54

59

65

72

82

86

98

103

109

114

Contents

Part IV THE SYSTEM

Chapter 21 Installation
and Maintenance 120

Chapter 22 Expansions
and Enhancements 123

APPENDICES

Appendix A Home Control Program

(BASIC Portion) 125
Appendix B Home Control Program

(Machine Language) 139
Appendix C Clock Set

and View Program 143
Appendix D Time Table Editor 145
Appendix E Vocabulary Generator

and Tester 148
Appendix F The HELLO Program 151

Appendix G Partial Product and Vendor Listing 152

Prelsce

The computer age is no longer coming. Its here! The number of personal
computers in the United States now numbers in the millions. Computer literacy is
becoming commonplace. Even grade school students are learning to use and
program computers.

But the really exciting news about computers is their steadily decreasing
price and increasing performance. With some models selling for under $100, it is
possible for anyone to own a computer. Unfortunately, getting a computer is the
easy part. Once you have one you need to find ways of making it work for you.

Hundreds of programs are available to make your computer a useful
appliance. It can become a friendly machine and play games with you. It can help
organize your life by cataloging your record collection or personal library. You
might even save some money by putting your budget and checkbook under the
supervision of your computer.

These features are wonderful indeed, but if you are like me, you will find
them a little less than exciting. I don’t think a home computer is one that you use
in the home. A home computer should control the home. It should handle
security, supervise the lights, control the heat, answer the phone, and much much
more.

The technology to computerize your home is available now. If the idea
excites you, then prepare to enter the computer age and make your house the first
APPLE HOUSE on the block.

JOHN BLANKENSHIP

Vi

What to Expect

Although computers are great for balancing checkbooks and formu-
lating household budgets, this book was written for those persons that
wish to extend the computer’s power into far more exciting areas.

Imagine the convenience of having your ‘‘house’’ keep track of how
many people are in each room and to turn off all the unnecessary lights. It
does not take long till you take for granted that the lights should come on
automatically when a room is entered.

Sometimes, of course, you will desire to take personal control and
override such automation. Fantasize for a moment about the ability to just
talk to your house to have your wishes carried out. And when you talk to
the house, it will answer back—in its own voice.

I’m talking about a home that can also answer the phone, monitor
security, and wake you up in the morning. And these are just a few of the
capabilities you can expect.

All this is not some pie in the sky dream. Such computerization is a
reality today in my home, and this book can make it a reality in yours.

The system described in this book is by no means the ultimate
computerized home. It is, however, a complete and workable system that
can have some very beneficial advantages. For example, you can expect to
save a few dollars on your heating costs. Mine went down 30 percent.

You can save in other areas, too. Security systems and phone-
answering devices are not cheap, and most will do far less for you than

1

2 The Goal Part |

your computerized home can. And my system is just the beginning. The
only limit to your computerized home is your imagination.

I first started thinking about putting a computer in control of my
home in 1976 when I bought my first Apple computer. It seemed so
obvious to me that low-cost computing power would lead to residential
automation.

Unfortunately, as the years passed it seemed that no one had both the
motivation and the skill to tackle a project of such size and complexity.
Finally, I gave up waiting and decided to do it myself.

I had five major goals in mind when I began the project. First, I
wanted to use off-the-shelf equipment whenever possible. With the
microcomputer becoming more of a consumer rather than a hobby item, I
felt sure that many nontechnical people would like to duplicate my efforts.

The second goal was to devise a system that would be easy to install.
I figured that even the most dedicated enthusiast would not want comput-
erization enough to completely rewire a home in order to control the lights.

I also wanted the system to be easily expanded and customized. The
same innovation and sense of adventure that would make a person want
such a home would also make them want it his or her way. I decided to
make the system as flexible as possible to ensure that subsystems could be
added or deleted as necessary. Such a design would also make adapting
the system to another brand of computer at least bearable.

Anytime that you add a lot of frills like voice recognition and speech
synthesis to a computer project, you can expect the cost to increase. I
wanted these frills though, and as my fourth goal I wanted to devise a
system that would make such frills at least somewhat cost effective. The
true value of some of the system’s capabilities can only be measured in
your desire to have them, but the increasing cost of energy has made any
substantial reduction in the use of gas and electricity extremely exciting.

Finally, I wanted the system to be usable. Any system, no matter
how cost effective, will not save anything if, because of the hassle of using
it, it stays turned off. I wanted it to be friendly and helpful. I wanted a
system that would be fondly missed the moment it broke down.

As you might guess, most people do not know what to expect from a
computerized home, let alone what the requirements might be to build
one. I would like to prepare you for what is to come and inform you of
what knowledge and skills you will find useful if you decide to computerize
your home.

If you wish to have your home computer set up exactly like mine, you
might be able to do so with a relatively small amount of knowledge. You

Chap. 1 What to Expect 3

can buy or build everything described in this book and then type in the
programs provided.

I suspect, however, that very few, if any, individuals are going to run
out and buy a microcomputer system just to control their home. It is much
more likely that this book is being read by someone that already has a
computer and is looking for a new and novel way of using it. Thus, I will
assume that you have read the literature that came with your system and
that you are reasonably familiar with programming in BASIC.

At least some knowledge of assembly language programming would
also be nice, but unless you wish to change my system considerably it is
not absolutely necessary.

If you feel you need help in any of the areas mentioned, many books
are available to help you. Microprocessors and Microcomputers (2nd ed.)
by R. Tocci and Laskowski can give you an in-depth look at both the
hardware and software associated with the 6502. Interface Projects for the
Apple II by R. Hallgren offers several specific and interesting examples.
Both of these books are published by Prentice-Hall, Inc., Englewood
Cliffs, N.J.

Radio Shack sells the Engineers Notebook by Forest Mims III. For a
very modest price it will provide you with a wide variety of electronic
hobby information.

Don’t feel limited to these suggestions. You can find a wide selection
of suitable books at almost every computer store. In your search, don’t
overlook the traditional bookstores in your local mall or shopping center.
Even they are now catering to the needs of the computer hobbyist.

Many of the pieces of equipment needed can be purchased from
various sources. If you happen to like construction projects, you can save
money by building some sections yourself. Complete schematics are given
for some of the more appropriate areas. There are a few things that just
cannot be purchased anywhere, and if you want them you will have to
make them yourself. For that reason, I suggest that for maximum benefit
of this book you have some general knowledge of electronics.

My home is controlled by an Apple II Plus from Apple Computer,
Inc. I chose this system because of the wide range of peripheral devices
that can be purchased for it and because of the ease of connecting these
devices to it.

This does not mean that if you own some other type of computer that
this book will not be of interest to you. The majority of the home control
system is written in BASIC and is easily used on almost any computer
system. This text is designed to not just show you what I did, but to

4 The Goal Part |

explain how it was accomplished and why a particular approach was
chosen.

I also will explain in as much detail as space permits why what I have
done works. With this information, an industrious person should be able to
not only implement this system on other microprocessor systems, but to
customize it to meet precisely his or her requirements.

If you have not purchased a computer yet and wish to do so, I would
strongly urge that you wait until you have finished the book as you will be
better prepared to determine if a given system can be easily adapted to
computerizing your home.

The home control system will have five basic functions. Although the
modules for each of these functions are described in detail later in this
book, I would like to discuss them briefly here. They are as follows:

Voice request

Phone control
Security management
Event timing
Monitor movement

The voice request module allows you to talk to the computer using a
microphone. I use wireless mikes and have them throughout the house in
strategic places. There are numerous submodules for this module that
allow you to control house lighting, ask what time it is, turn on the security
system, have the system place a phone call for you, shut off the stereo, and
much more.

The phone control module serves as an intelligent answering ma-
chine. Not only can the computer answer the phone and record a message
from the caller, but it will tell you when you get home how many messages
you have waiting. This module also allows you to call the computer and
request status information about the house or to control the lights or the
heating system from a remote location.

The module for security management can watch for movement
outside the home as well as monitor entry at doors and windows. If an
intruder is detected, appropriate action can be taken. Since the system is
intelligent, it can react differently if you are home or away or if the intruder
is outside or inside. It can even call a neighbor and inform them of the
situation.

Event timing provides a means to establish a predetermined sequence
of events that needs to be done on an ongoing basis. For example, the

Chap. 1 What to Expect 5

house might wake you at seven o’clock on weekdays but let you sleep till
ten on weekends. It should control the house lighting automatically to give
a lived in look whenever no one is home. The heat should be turned off or
down whenever no one is home and turned on again prior to your arrival.

The heart of the event timing module is an event table. Each entry in
the table represents an action to be taken and the time and conditions for it
to occur. For example, one entry might indicate that the heat should be cut
off at midnight, and another entry turns the heat on at seven o’clock the
next morning, but only if someone is home. If no one is home, a different
set of times and events is automatically used.

There will be a separate event or time table for each day of the week.
Once you have created the proper tables, the house can handle the
functions without further direction. The tables can be edited when
necessary to reflect changes in your life-style.

The internal movement module watches various sensors to allow the
system to keep track of where people are in the house. This information is
used to decide what lights should be on and off.

The overall organization of the program provides that you may use
any of these systems alone, all of them together, or even add some of your
own. This means that if you cannot afford the hardware for all the modules
at first, you may still enjoy the same functions now and easily add to them
later.

I don’t propose that the system here is perfect for everyone. There
are certainly many unexplored possibilities available to the imaginative
person. My hope is to provide you with one complete system with all the
whats, whys, and hows so that you can expand and customize until your
particular wants and needs are met.

This book is divided into four parts. Part I is an introduction and
overview of the entire system. It is very important because it prepares you
for the details to come by showing you the big picture.

Part II covers all the hardware required by the system. Things that
cannot be purchased are examined in much more detail than off-the-shelf
items. I chose to build several sections because of the financial incentives
and also I greatly enjoy the additional learning experience. If you do not
enjoy such tinkering do not be discouraged by the number of schematics in
Part II, because commercial substitutes can be purchased in most cases.

Part III covers the actual program coding used to implement each
program module. You will find the code well structured and easy to follow.
The explanations of each module’s operations will make your customizing
easy.

Part IV shows how to implement the hardware and software into a

6 The Goal Part |

complete system. It shows how to initialize the main program and explains
the utility programs that are used to maintain the required tables. The last
chapter discusses some ideas for additions and expansions.

The appendixes provide a complete listing of the entire home control
program and its related maintenance programs. They are listed directly
from my computer in order to ensure the absence of errors. There is also a
partial list of vendors to assist you in locating some of the items used in the
home control system.

I have tried to organize the book in a manner that will provide you
with the best possible understanding of how the entire system actually
works. This is especially important because, as I have mentioned, it is
doubtful that you will wish to duplicate exactly my work. I expect you to
improve on the system in every way you can. In fact, by the time you are
reading this I probably will have added several improvements to my own
computerized home.

Wherever applicable, I try to use novel approaches in my computer-
ization, especially if it makes the system more cost effective. You may
choose to use some of these approaches if you customize my system,
although perhaps in different ways. I hope that I have provided stimulation
in enough areas to ensure that you can create a system that meets your
specific needs.

The rest of Part I will provide you with a complete overview of the
system, both the hardware and the software. Read these chapters more
than once if you really are planning to add a computer to your home. Make
sure that you truly understand how the system is organized and what each
module’s responsibility is.

While you are reading, do not worry about the details of how a
module accomplishes its task, but rather concentrate on how the combina-
tion of modules forms a means of intelligent control. As an example, let us
assume we have a module that dials the phone. Do not be concerned with
how the phone is actually dialed. That will come later. For now observe
when and why the ‘‘dial phone’” module is called to perform its task.

Not only will this approach provide you with a better understanding
of the system, but it will make it easier to transfer this program to other
computers or to implement it with other peripherals.

Let me cite one more example to help make my point. One of the
modules in the system reads the electronic clock to find out what day it is
and the time. Numerous clocks are available for the Apple, not to mention
those for other computers. If you choose to buy a different clock from
mine, you would only have to rewrite the ‘‘read clock’ module, which is

Chap. 1 What to Expect 7

very short. All the modules that use the ‘‘read clock’ module could be

used without modification.

Since low-level modules, such as the ‘‘read clock’ module, have
single specific objectives, they are generally easy to rewrite. In fact, the
instruction manual for the peripheral involved should provide all the

necessary information to do so.

Sysiem
Overview:
Hardw3sre

Now that you have a good idea of where we are going, its time to get
started. In this chapter I will present an overview of the system hardware.
Remember, try not to worry about details. Later sections will discuss in
detail the schematics and/or sources for purchasing the items mentioned
here.

It is also important to mention that you are by no means limited to
using the hardware described in this book. The system is set up in such a
manner that you can very easily use alternative devices in almost every
case.

Figure 2.1 shows a block diagram of the entire home control system. I
realize this diagram is complicated, but I feel it is necessary to get a good
overview of the system. Later in the book a whole chapter will be devoted
to each item mentioned here.

Let us examine each part, starting from the top of the figure. The
voice recognition unit provides us with the primary means of communicat-
ing our commands to the home. It consists primarily of an analog-to-digital
(A/D) converter that transforms the amplitude variations of your voice into
patterns of 1’s and 0’s that the computer can analyze. It will be from this
analysis that the computer can determine what word or words are spoken.

As nice as it is to speak to a computer, you will probably find, as I
did, that the novelty wears off very fast if you have to walk halfway
through the house to get to the microphone to turn on a light. There are

8

WIRELESS
MICROPHONE

VOICE RADIO \

RECOGNITION RECEIVER

—

SPEAKERS
SPEECH J

SYNTHESIZER

APPLE COMPUTER SYSTEM

PHONE DIALIER/
RING DETECTOR [l > PHONE LINE

ON/OFF__ [INTERCOM
“| PHONE

)

e

GAME ——] |cASSETTE| |CASSETTE SOUND VOICE
CONNECTOR RECORDER| | PLAYER DETECTOR| |DETECTOR
ON/OFF} 1
ON/OFF
BSR REMOTES
ULTRA-
ULTRASONIC
CAL./ sonic] [sw swl___|
cLock > TRANS- e 1 2 [
DUCER (SYSTEM X-10} [[
110-VOLT HOUSE WIRING
= FLOOR
SWITCHES
Iyg:TT < MISCELLANEOUS
EXTERNAL MOVEMENT DETECTOR
DOORS
WINDOWS
INTERRUPT
SANITY
TIMER

Figure 2.1 Detailed block diagram of the complete home control system.

10 The Goal Part |

many possible solutions to this problem, but I chose to use a wireless
microphone, which is comprised of a small radio transmitter and receiver.

The wireless system must be of high quality or it will be difficult, if
not impossible, for the computer to understand your commands. Fortu-
nately, such systems are not as expensive as you might imagine. You may
even decide to have several microphones throughout the house at strategic
locations.

Naturally, if you are going to talk to the house, you will expect it to
talk back. You will notice that I sometimes refer to the house rather than
the computer. This transition may seem a bit harsh at the moment, but you
will find it to be a very natural adjustment.

The speech synthesizer will produce a voice that can easily be sent to
every room in the house. The speakers can be mounted in the ceiling or
placed in any convenient location. I prefer to have mine behind a plant or
otherwise camouflaged so that the illusion that the house is speaking is
further enhanced.

As you will see in later sections, the house will take on a personality.
The personality chosen for this book is meant to be somewhat neutral, but
you will be able to tailor yours to suit yourself. It will be a combination of
the personality and the fact that you can communicate with the house as
you would with a person (with speech) that will soon convince you that the
house and the computer have become one.

Some people might find such thoughts a bit disconcerting. I suspect,
however, that the idea of machine intelligence is somewhat intriguing to
you or you would not be reading this book to begin with.

Continuing down Figure 2.1, we come to the telephone portion of the
system. The major element is an intercom telephone. The phone itself, as
well as many of the associated controls, is interfaced to the computer
through the Apple game connector.

The game connector provides an easy means to connect external
devices to an Apple computer. It has three primary capabilities. They are
paddle inputs, switch inputs, and annunciator outputs.

Game paddles and joysticks are the most common items plugged into
the connector. For such devices, the paddle inputs convert the value of a
variable resistance into a number between 0 and 255. The switch inputs are
used to read the on/off condition of a switch, which usually controls a
game function in some manner.

The annunciator outputs are seldom used by the commercial devices
for the game connector. Since they are output pins, they can be used to
turn on or off a transistor, relay, or almost anything you desire.

The switch inputs and annunciator outputs are nothing more than

Chap. 2 System Overview: Hardware 11

one-bit input/output (I/0) ports. The home control system will use them to
read from or to control external devices. If you are not using an Apple to
computerize your house, you can easily substitute a standard bidirectional
port for these pins. Chapter 12 discusses input/output ports in detail and
will provide you with additional information.

The paddle inputs would be a little more difficult to simulate on
another computer. For this reason, I have chosen not to make use of them
in the home control system. Let’s look specifically now at the I/O pins of
the game connector and how they will be used.

The Apple’s game connector has four output pins that can be used to
control external devices, and it has three input pins for reading the status
of external data. One of the output pins is used to turn the intercom phone
on and off. This allows the computer to answer the phone for you and
permits you to talk over the intercom from anywhere in the room. The
phone dialer provides a means for the computer to call a requested party.
Proper control of these functions can mean that you never again have to
touch the phone.

A ring detector informs the computer when incoming phone calls
require processing. One of the computer’s responsibilities will be to act as
a phone-answering machine if you are not available to get to the phone.
Rather than have an electrical connection directly to the phone lines,
which requires special equipment and a notification to the phone compa-
ny, I decided to let the computer communicate with callers just as you
would—by speaking on the intercom phone.

The computer already has a voice, and it could easily be used to
inform the caller of your message. Unfortunately, most voice synthesizers
presently affordable by the average hobbyist take a little getting used to.
This should not imply that they are extremely difficult to understand; on
the contrary, after only a few minutes of practice most synthesizers
become reasonably clear.

A person calling on the phone, however, does not expect to be
greeted by an electronic voice and does not have time to get used to the
computer’s peculiar accent. Add to this any distortion added by the
intercom phone and you might have many of your callers simply hanging
up rather than leaving messages.

However, 1 just happened to have a couple of cheap cassette
recorders laying around from the days before disks and arrived at my final
phone answering system as follows.

One of these recorders is set in the playback mode using a 30-second
endless loop cassette. The other has a regular tape and is left in the record
state. Two more of the game connector output pins are used to control the

12 The Goal Part |

on/off condition of the two tape recorders. When the phone rings, the
computer can turn on the intercom, play the 30-second message, and then
record any reply from the caller.

A sound detector is used to allow the computer to determine if there
are sound changes or voices present. Using this capability, the system can
record only as long as the caller is actually talking. This permits messages
of any length and also keeps you from having a 30-second tape of a dial
tone if someone hangs up.

For most calls, all you will want the computer to do is record the
message. If it is you that is calling, however, you might want to
communicate with the computer to issue special requests. The computer
could then give you a status report for the house, this time in its own voice.
You might wish to tell the house to turn on the heat, turn off a light, or
anything else that the system is capable of handling.

Naturally, you will not want just anyone to be able to communicate
directly with the system, so a way must be devised to inform the house
that it is you calling. My method is simple. While the message is being
recorded, the computer will continue to monitor the sound detector,
watching for a particular sequence of sound. You can indicate it is you
calling by playing the proper sequence into the phone, using a small hand-
sized tone generator. As long as you have this generator, you can gain
access to the computer anytime you call the house.

Another detector is used by the system to determine when you are
trying to get the computer to respond to voice commands through the
wireless mike. The process of understanding speech is very difficult and
time consuming and will not be invoked unless it is required. Normally,
the computer will not bother to analyze sounds present at the A/D
converter. It will, however, watch the input from the voice detector,
which is very easy. If you should pick up a wireless mike and say
‘“‘computer’’ (or anything else for that matter), the computer will see the
voice detect pin change and respond by saying something like ‘‘Yes sir,
what can I do for you?’’ and then monitor the A/D converter for your
response.

The last output pin on the game connector is connected to an
ultrasonic transducer. This device is much like a loudspeaker for your
stereo except that it is much smaller and can produce ultrasonic waves,
which are sound waves above the range of human hearing.

To see the importance of such a capability, let’s discuss a commercial
device called the BSR System X-10 Ultrasonic Command Consol. This
device can be purchased in many department stores. Sears Roebuck even
markets the same device under their own name.

Chap. 2 System Overview: Hardware 13

The console plugs into any 110-volt outlet and generates coded pulses
for each button pressed on the console. These pulses travel throughout
your house on the existing house wiring. You can buy remote switches
from BSR that can replace wall switches and receptacles at appropriate
places in your house.

These remote switches contain electronic circuits that constantly
monitor the power lines for pulse codes from the command console that
can inform them to turn on or off. This allows you to control lights
throughout the house simply by pressing buttons on the command console.

The BSR system provides a relatively inexpensive means to control
many of your lights and appliances from a single location. The ultrasonic
model of the command console has an additional feature that makes it
especially attractive for our purposes.

Just as some TV sets can be controlled by aiming an ultrasonic unit at
them, the BSR ultrasonic console can be manipulated using a cordless
controller that generates ultrasonic pulses that can be received and
interpreted by the command console.

Under program control, the house computer will generate the appro-
priate ultrasonic pulses using the game connector and the transducer
previously mentioned. In this manner, the computer may control any
device in the house that is equipped with a BSR remote switch.

Naturally, we will want the computer to control lights and appliances
when verbally commanded to do so. In many cases, though, we will not
wish to be bothered with trivial matters and will wish the house to handle
them on its own.

Some examples of trivial actions would be turning off the heat every
night at midnight and then back on at seven the next morning. Since these
two actions occur on a regular basis, they should be handled automatical-
ly.

To provide a means for the house to handle such actions, a special
clock will be interfaced to the computer. It will tell the house what time
and what day it is. Using this clock, the house will be able to handle
routine tasks without any human intervention at all.

There is another type of action that the house should handle for you
automatically. As mentioned earlier, the system should monitor the
movement of people throughout the house and control the lights accord-
ingly. To provide the movement information, pressure-sensitive switches
are placed at strategic positions under the carpet. These switches are
connected to an input port so they may be read by the system.

This same port will monitor other switches and detectors that will
provide the information required by the house to monitor security matters.

14 The Goal Part |

The closure of any switch will trigger an interrupt to get the computer’s
attention. The computer’s reaction to interrupts is discussed in more detail
in the next chapter.

The last piece of hardware to be mentioned now is the system sanity
timer. It will ensure that the system software cannot fail even if unpredict-
able errors occur. A complete explanation of this subsystem will come
later, but for now just accept the fact that if the system ever fails due to
software faults the entire system will be reinitialized from disk and proper
control resumed.

Now that you have had your first glimpse of what the home control
computer will look like, let us start examining an overview of the software
required to give the house its intelligence.

Sysiem
Overview:
Softwsre

Now that we have an overall picture of the hardware needed to
computerize your house, its time to begin looking at how the programs will
be organized. The importance of understanding the software cannot be
overemphasized. Although the home control system presented in this
book is complete and usable as described, it can be enlarged and
customized in many different directions with very little if any additions to
the hardware. To do so, however, will require an in-depth knowledge of
the present program.

As with the overview on hardware, do not worry about details when
reading this section. Later in the book we will find out exactly how to
accomplish each function described here. At this point, however, you
should be striving to see how each module relates to the overall operation
of the program.

The flow chart in Figure 3.1 shows the primary organization of the
home control program. The system is organized into five major modules.
We will look at each separately.

The initialization module is only run when the system is powered up.
It checks to see what day it is and sets up the appropriate files. It can
adjust to the present status of events without human intervention. This is
particularly important if you are out of town and the system has to restart
itself after a temporary power failure.

Once initialization is complete, control passes to the four modules

15

16 The Goal Part |

HOME
CONTROL

INITIALIZATION

|

PROCESS
VOICE
REQUESTS

!

PROCESS
INCOMING
PHONE
CALLS

!

PROCESS
SECURITY
FLAGS

!

PROCESS
TIME

TABLE Figure 3.1 Flow chart showing the

primary modules in the home control
_J software.

that handle the primary actions. The functions of these four modules were
described in Chapter 1.

Usually, there is nothing happening that would require the attention
of any of these modules. Control is continually passed from one to
another, waiting, or if you prefer, watching for a situation to occur that
requires attention. For example, if the voice detector does not show that
someone is requesting to talk with the system, then control passes on to
the phone module.

If the phone is not presently ringing, then the security module takes
over. If conditions show that all is well, the time module processes the
next item in the present time table. Afterward, the entire process starts
over.

In this manner, the loop normally completes very quickly so that the
system appears to be watching all the potential situations simultaneously.
If, while the system is looping, any of the modules find that a task needs to
be done, the system will spend the time necessary in that module to
complete it. Once that task is completed, the looping will continue.

Let’s briefly look at lines 10 to 60 in Appendix A. As odd as it may
seem, these lines represent the main home control program. Of course,

Chap. 3 System Overview: Software 17

each of the subroutines called will have to be expanded and coded. I will
discuss each in detail as we move through the book.

Although the system can only process one thing at a time, usually it
will only take a second or so to respond to an external stimuli, such as an
intruder or the phone ringing. Such a small delay obviously presents no
real problem. If the system is busy in one of the modules though, it might
take much longer to respond.

At first glance, this possibility of lengthy delays appears to present a
real problem. Fortunately, there is very seldom a situation in which one
module needs to take immediate priority over another module. Further-
more, in almost every instance that a valid conflict occurs, there is a
human present to decide on which module should get control.

Perhaps some examples of such conflict can make this clearer.
Assume for a moment that you are talking with the computer, thus making
the voice module busy. If the phone should ring and you want the house to
process it, you may simply say ‘‘goodbye.’’ This would cause the voice
module to terminate, and the system would continue through the loop and
process the phone call.

If you were not home to tell the computer ‘‘goodbye,’’ there would be
no problem to begin with, because you would not have been talking to the
computer and it would have answered the phone automatically.

For a second example, assume that the computer is answering the
phone during the time an event, such as turning off the heat, is scheduled
in the time table. The event timing module is designed so that, even if the
scheduled time has passed, the event will occur the next time the module is
run.

Thus even in the worst case an event would be processed within a
minute or two of its scheduled time. Furthermore, remember that such a
delay will only occur if the phone just happens to ring when you are not at
home and just when an event is to be processed. The infrequent occur-
rence of such situations does not, at least for me, deserve enough attention
to increase considerably the complexity of the system.

If we go through a similar process for each possible situation it can be
shown that there are two situations that truly represent a potential
problem. One problem is that the security system is inactive while the
computer is acting as a phone-answering system. In this case, even a one-
minute delay might determine if an intruder could be easily scared away by
turning on appropriate lights and the radio. As before, no problem exists
unless just the proper set of events happens at just the right times. Even
so, I value security enough to see this as a major concern.

18 The Goal Part |

To solve this dilemma, the phone module will also monitor a security
flag (which indicates some kind of security problem exists) and, if
necessary, end the phone call and continue looping. The security module
would then react appropriately to whatever situation had occurred.

As you can see, because it is seldom that two tasks are required at
exactly the same time, the entire system can appear to be handling all the
tasks simultaneously even though the program is sequential in nature. It is
this sequential format that makes the system so easy to program.

The second problem is one that cannot be handled on the first come,
first served priority arrangement that I have shown so far. You may have
noticed that, although I mentioned earlier that the house would monitor
the movement of people, there is no module in the main loop to provide
this function. For this function the system needs the ability to respond
immediately, no matter what it is doing. After all, if you have to wait even
a few seconds for the lights to come on when entering a room, this module
looses its usability.

To provide this immediate action, all the floor switches as well as

INTERRUPT

READ
SWITCHES

SECURITY

INTERNAL
MOVEMENT

Y

UPDATE SET DOOR
MOVEMENT ORWINDOW
TABLES FLAG IF

REQUIRED
CONTROL SET
APPROPRIATE SECURITY
LIGHTS FLAG

Figure 3.2 An interrupt system
handles problems that cannot wait.

Chap. 3 System Overview: Software 19

security detectors will cause a computer interrupt to be generated. An
interrupt simply tells the computer to abandon what it is presently doing
and process some other program. When this second program is completed,
control is passed back to the original program at the point where the
interrupt occurred.

A functional flow chart of the interrupt program is shown in Figure
3.2. When an interrupt occurs, the computer will read the switches to
determine if it is a security problem or if residents are moving inside the
house. If it is a security situation, certain flags will be set (including the
security flag) to convey that information to the main program.

If it was internal movement of the residents that caused the interrupt,
the appropriate lights will be turned on and/or off. Since this interrupt
program always requires less than two seconds to run, it is unlikely that
any module presently active will even notice the interruption.

If you should feel unsure of how all this is going to be accomplished,
please don’t be discouraged. So far we have only touched the surface. Rest
assured that the details are coming.

By now you should, however, have a better idea of what the
computerized house can be expected to do. You should know what general
types of hardware will be necessary to allow the computer to gather
information and to communicate with the outside world.

You should also be starting to see how the program will handle the
many different types of tasks that will be required. If you are unsure of any
of these areas, you may wish to reread some parts of this section.
Otherwise, let’s move on to Part II and start examining the hardware in
detail.

The Yoice
Recogaition System

In this and the following chapters in this section, we will be looking at
the hardware required to automate your home. There are several things
that should be emphasized before we begin.

First, all the hardware discussed in this section is only a suggestion.
True, I have tested this particular combination of hardware and have
solved the problems related to it. In doing so though, I also tried to
develop a system that was very modular.

Each section of the hardware is interfaced to the system only through
its function. This means that any equipment that can provide the correct
function should be easily adaptable for use in the home control system.

As you read this section, you should also realize that the intelligence
in the home control system is found in the software and not the hardware.
This section is not intended to explain how the system works. What it will
do is to provide a thorough understanding of the environment that the
software must run in. With this in mind, let’s look first at the system that
processes voice requests.

Giving a computer the power to recognize speech is far from an easy
task. Fortunately, several companies have done a great deal of research in
this area and have produced commercial products for personal computers
that can aid us tremendously.

One such company was Heuristics. They produced two low-cost
voice recognition systems. Their Speech Lab could recognize 32 words

20

Chap. 4 The Voice Recognition System 21

and their Speech Link was capable of 64. Unfortunately, Heuristics went
out of business just after I had completed the computerizing of my home
using a Speech Link.

Some dealers may have Speech Links still in stock. If you cannot find
one, there is no need to worry. It will be very easy to interface virtually
any speech recognition system made for your computer to my software. I
will discuss equipment substitution in detail later.

The Speech Link is a user-trainable, isolated word recognition
system with a maximum standard vocabulary of 64 words. User-trainable
means that the prospective user must initially ‘‘say’’ each word for the
system so that it can create a template in memory of what each word looks
like. Each time a sound or word is to be recognized, a new template will be
formed and it will be compared against the templates in memory to find the
best match.

Isolated word recognition simply means that the system can only
recognize a word by itself. This is opposed to being able to pick a word out
of a sentence. If you were to read this paragraph out loud, it would become
quickly apparent that in normal speech there are very few pauses between
words. This lack of pauses is one of the major obstacles to be overcome if
a machine is to effectively understand human speech. To stay cost
effective, we will have to settle, at least for the present, for isolated word
recognition. You will see later that the proper software can make this
restriction much less binding.

The Speech Link is very easy to use. It effectively allows the Apple
command “‘INPUT A$’’ to wait, not for a keyboard entry, but for a word
to be spoken. This word may actually be a phrase of several words as long
as there is no significant pause between the words.

The software explained in Chapter 16 will utilize the contents of the
string variable (in this example A$) to determine the action required. For
now, however, we need to examine the special hardware requirements of
the system.

We will not examine the Speech Link itself in any detail. For such
information you should consult a Speech Link manual. Instead we will be
looking at some hardware that will make the Speech Link much more
usable for our application.

There are two major problems with most commercial speech recogni-
tion units. First, once the system is directed to recognize something, it
will, as you would suspect, wait until some sound has occurred and then
analyze it. On the surface, this appears very usable.

To see the problem, consider the structure of our home control
system. It normally loops from one module to another. If there is no verbal

22 The Hardware Part Il

input, we want the system to continue on through the loop to perform the
next task. If, during each loop, we ask the Speech Link to check for a
sound, it becomes quickly apparent that if no sound occurs the system will
‘“hang’’ in that module.

~ To solve this problem, we simply need some means for the main
program to know when someone wants to speak to the computer. We
might do this by simply connecting a switch to an input pin. Depending on
the position of the switch, the computer would get either a 1 or a 0 when
reading that pin. The computer could use this information to decide
whether or not to turn control over to the Speech Link.

We will return to the first problem in just a moment. Another problem
with using voice control of a house is that you may not be beside the
computer, or more specifically beside the microphone, when you wish to
issue a command. This problem can be solved in a variety of ways.

If you only have a couple of places in the house that you wish to issue
verbal commands from, you might actually run microphone cables to those
spots. A mixer could then be used to combine the signals before sending
them to the Speech Link.

Although this method can be very acceptable, I decided to add more
flexibility by using a radio transmitter and receiver. In this way, the
microphones are completely wireless and permit use anywhere in the
home.

The method chosen to solve the first problem will effect the solution
to the second. If, for example, you run cables to each mike, you could also
run wires for switches to tell the program when to turn control over to the
Speech Link. If you are using wireless mikes, though, you lose all their
flexibility if you must go to a specific place to press a switch in order to get
the computer’s attention.

Since I wanted to use wireless mikes, I solved this problem by having
a special circuit watch for sound changes at the receiver and place the
appropriate 1 or 0 on one of the Apple’s game connector input pins. There
are three of these pins on the Apple game connector, two of which are
normally connected to switches on the game paddles.

Figure 4.1 shows the schematic for the sound detection circuitry.
Note that the output of the circuit is connected to the game connector so
that a program could decide if there was any sound present by reading the
status of the appropriate address. This would be done in BASIC with the
PEEK command.

The operation of the circuit is straightforward. The output of the
receiver is sent to the first operational amplifier, which is used as a buffer
to prevent loading. The gain of the second amplifier is controlled by the

40L03NNOD
JNVYD 37ddV

oms

‘WA1SAS 9Y) 0] SPUBWIWIOD [BQIDA INSSI 0] SJUBM JUOIWOS JI JUIULIDIOP
ApoInb ued 19indwod 2y} Jeyl 0S 1019919P JI0A B SB SIAIIS JINDID SIY], [dIndiy

fetets]

™

vl

2A00¢

vZE WY

NG+

Al

SINIT
HO33dS
3001
+ AAN—
5001
= AN\
00l
vze W1
AAAY,
00l

1NdLNoO
oI

1NdLno
XNv

INOHJOYIIN
SS313HIM
vdnin

23

24 The Hardware Part Il

Figure 4.2 A wireless microphone allows you to talk to the computer from anywhere in the
house.

200K potentiometer. The amplifier output is turned upside down by the
7404 inverter. The pulse from the inverter is stretched by the 555 in order
to make it easier to recognize.

Whenever a sound is present at the wireless mike, the game connec-
tor pin will be held high. The main program can monitor this pin to
determine if it should stop and carry out verbal commands.

The wireless mike must be of a fairly high quality or the Speech Link
will not operate satisfactorily. I tried several units with very limited
success. Finally, I found one that seems to be perfect. It is a model WMS-
49 wireless microphone system by Mura. It is pictured in Figure 4.2 and
comes with a microphone and a receiver, both operated from 9-volt
batteries. Since the receiver needs to be left on continuously, I use a
battery eliminator.

Another nice feature of the Mura unit is that it has two outputs on the
receiver. The microphone output connects to the microphone input on the
Speech Link while I use the auxiliary output to drive the voice detection
circuitry as shown in Figure 4.1.

If you use some other wireless microphone system, you should
consider having the following features. The receiver and transmitter
should be crystal controlled to ensure drift-free reception. The frequency
response should be as wide as possible. The Mura unit is 30 to 18,000 hertz

Chap. 4 The Voice Recognition System 25

(Hz). A microphone output (in addition to an auxiliary output) is really
necessary to ensure a proper impedance match to the Speech Link.

The gain of the receiver should be adjusted to give the best results
with the Speech Link. The only way to make this adjustment is through
trial and error. Once that is done, you will need to adjust the 200K
potentiometer (Figure 4.1) so that the LED glows only when you speak
into the mike.

This completes the description of the hardware required to allow
voice command of the house computer. Even though I am using the
Speech Link, almost any voice recognition unit may be used. In later
chapters we will see how the proper software can give intelligence to the
recognition capability discussed here.

The Voice
Synthesizer System

Being able to talk to your computer is very nice. If the “‘conversa-
tion’’ is to be complete though, we will have to give the house the power to
talk for itself. With today’s technology, we have many methods to choose
from.

We could utilize an A/D (analog-to-digital) converter to sample an
actual voice. These samples could be stored in the computer’s memory
and then played back at any time by using a D/A converter. Using this
method, you can get excellent quality speech, but at a very high cost.
What you must give up is memory. It is not unreasonable to use well in
excess of 4000 bytes of memory for each second of speech using this
method.

Linear predictive coding (LPC) is another method for reproducing
speech. This technique is used in the Texas Instruments’ Speak & Spell.
The data compression technology used permits a second of speech to be
stored using only a few hundred bytes of memory, and the quality of
speech is still very good.

The problem with LPC is that the data used to generate the speech
are very complex and are provided to the user in the form of read-only
memory (ROM). There are many words and phrases offered, but you are,
for the most part, limited to a severely restricted vocabulary.

As I designed the home control system, it became quickly apparent

26

Chap. 5 The Voice Synthesizer System 27

that I needed a nearly unlimited vocabulary if the system was to communi-
cate in the manner I was planning. I also needed a method for storing
speech that was extremely efficient if my home was to say more than a few
sentences.

A company called Votrax has been utilizing a technology that differs
distinctly from the two methods just discussed. First, they do not copy or
reproduce a human voice. Instead they have developed a set of filters that
can simulate the human vocal track.

By sending codes to their system, you can instruct it to produce any
of the basic sounds used in the English language. These sounds are called
phonemes. Since each phoneme requested requires only one byte of
memory, and since most words require less than ten phonemes, the
amount of memory used is almost trivial.

In addition, you can have the computer say anything you wish, as
long as you can decide on the basic phonemes required for each word. As
you would expect, you do have to give up something in exchange for all
these pluses. The quality of the speech is somewhat less than with the
other methods.

At first it may be difficult to understand. My experience has been that
after only a little practice you get used to the peculiar ‘‘accent’’ found in
the Votrax synthesizers. Recently, Votrax introduced a single integrated
circuit that has all the filters on it. This has spurred the release of a new
type of product from several companies.

The new products not only have the capability to produce phonemes
on command, but they have a built-in microprocessor with the software to
convert standard English text into its appropriate phonemes. Some of
these products also add inflection to the speech, which makes it much
easier to understand. Any of these devices satisfy all the major require-
ments I had for giving a voice to my home.

I own two such voice synthesizers, a Votrax Type 'N Talk and a
Microvox from Micromint. They are shown in Figure 5.1. Either can
perform satisfactorily for your computerized home.

Although I have not done any scientific studies, I think the Type N
Talk makes fewer errors when it translates text to speech, although there
is not really much difference.

The Microvox is much faster and has less pause between the words
spoken. It also offers you the ability to control the pitch on individual
words or even syllables so that the quality of the speech can be greatly
improved. With a little work, you can even have it waking you each
morning to a song.

28 The Hardware Part Il

Figure 5.1 There are many speech synthesizers suitable for giving your home a voice.

The Type °'N Talk requires a serial port to connect it to a computer.
You may use either serial or parallel with the Microvox. If you really enjoy
construction projects, as I do, you will appreciate the fact that the
Microvox is available in kit form.

Whether you choose an assembled unit or the kit, the Microvox
comes with complete schematics and numbered parts. This is not true with
the Type °'N Talk.

Either system is about as easy to use as a printer. In fact, I connect
them to my computer using a standard RS-232C printer interface. You
activate it exactly as if it were a printer (PR#1 for example), and the
system simply says anything that would normally be printed.

Figure 5.2 shows the hardware organization for using a synthesizer.
A RS-232C serial card connects the unit to the Apple. The connecting
cable may need to be slightly different for different serial boards, but any
qualified dealer should be able to assist you.

There is an amplifier built into the speech synthesizers, but it is small
and only meant to drive one or two speakers. I connected the synthesizer
output to a 5-watt transistor amplifier that had been gathering dust in the
garage for years. Since I did not want a booming voice from the house, the
5 watts was plenty to drive several more speakers.

To keep the speaker load as close to 8 ohms as possible, you should
use a series—parallel arrangement such as the one in Figure 5.2. Depending
on the number of speakers you require, you may not be able to get an exact
match, but you should at least keep it in the right ball park.

The Type ’N Talk has a frequency control that allows you to control
the pitch of the voice manually. At the high end the computer sounds like a
chipmunk, and at the low end it is more like a 45 record playing at the 33

speed. Experiment a little with the frequency until you find a sound you
like.

"asnoy ay)
IN0Y3NoJy) pIeay aq 0} IJI0A PAZISAYIUAS Y} smo][e Jayldwe [euonippe uy 'S aIndig

29

advo
d3141TdNY 43ZISTHLNAS M » v d431NdINOD
olanv) HO33dS 18V ceesy mon/_qﬂan__ﬂw_.wz_ 371ddv

~

30 The Hardware Part Il

The Microvox defaults on power up to a mode similar to the Type N
Talk, that is, monotone speech. If you wish, you can insert your own pitch
variations under software control or even choose a mode where inflection
is added automatically, although somewhat arbitrarily.

Remember, this only provides the computer with the ability to speak.
The software is what will give it the intelligence to know what to say.

The
System Glock

One of the most important capabilities you can have in a home
control computer is the ability to tell time. This capability is not only
desirable but essential for many of the tasks we expect our home to
perform. Let’s look again at some of those tasks.

Whenever the system is first turned on, we will want it to initialize
itself. Part of this initialization is to establish if anyone is home. We will
see later that it will simply ask (verbally, of course) to see if anyone
answers. If a short power failure were to cause a system reinitialization in
the middle of the night though, we would not want the house to wake us
just to ask if we were home.

In such a case the system will be able to ascertain whether it should
check to see if anyone is home by reading the system clock. If the time
falls within a given range, the house will make some appropriate assump-
tions and carry on without disturbing anyone.

To handle the preceding situation, we need a system clock with two
capabilities. First, as with any clock, it must be able to keep track of the
time. It does not need to be extremely accurate. Hours, minutes, and
seconds will be more than ample for our needs. We will also need a means
to determine if it is A.M. or P.M.

The second requirement is the ability to operate in the event of a
power failure. This necessitates some form of battery backup. Let’s look

31

32 The Hardware Part Il

A3 A2 A1 A0 USE RANGE
0 0 0 0 LSD - SECONDS (0-9)
0 0 0 1 MSD - SECONDS (0-5)
0 0 1 0 LSD - MINUTES (0-9)
0 0 1 1 MSD - MINUTES (0-5)
0 1 0 0 LSD - HOURS (0-9)
0 1 0 1 MSD - HOURS *
0 1 1 0 DAY OF WEEK (0-6)
0 1 1 1 LSD - DATE (0-9)
1 0 0 0 MSD - DATE (0-3)
1 0 0 1 LSD - MONTH (0-9)
1 0 1 0 MSD - MONTH (0-1)
1 0 1 1 LSD - YEAR (0-9)
1 1 0 0 MSD - YEAR (0-9)
*D1 - D0 USED FOR HOURS))
D2 -0 FOR AM OR 1 FOR PM Figure 6.1 Functions available on the
D3 -0 FOR 12 HOURS OR 1 FOR 24 5832 clock chip.

at some of the other expected uses of our clock to see what other functions
will be needed.

The event timing module was mentioned briefly earlier. It will give us
the capability to arrange for events to occur at prescheduled times. These
events will be stored in time tables on the disk. For them to be effective,
there will be a separate table for each day of the week. You could, for
example, schedule different wake-up calls on different days or to turn the
TV off at 9 p.M. on weeknights.

For our system to provide us with such flexibility, we must provide it
with the ability to know what day it is. Our clock then should also include a
calendar. Actually, we can see that for our purposes we do not need a
complete date, but only the day of the week. There will be other uses for
the clock in our home control program, but the capabilities listed so far will
cover these uses.

To provide our system with such a clock, we only need to visit a local
computer store or flip through the pages of a personal computer magazine.
Many clock boards are available for the Apple computer, and nearly all
provide at least the capabilities that we have mentioned. Most in fact are
vastly superior to our modest needs.

Because of this and due to my love of tinkering with hardware, I
decided to build my own clock. After comparing several of the possible
alternatives, I decided to center my efforts on the MSMS5832 clock/
calendar chip from OKI. It had all the necessary requirements, including
the fact that it was inexpensive.

Some of its features are a crystal-controlled oscillator on the chip, a
single 5-volt supply, a 12- or 24-hour format, and a low power dissipation
for battery backup. The entire clock is packaged in an 18-pin DIP.

Data are sent to and read from the 5832 over four data lines. These

Chap. 6 The System Clock 33

data lines are connected internally to the clock chip’s 13 major registers.
The function of these registers is shown in Figure 6.1. If, for example, you
wish to find out what day it is, you could have a program read register 6.
The chip uses four address lines to select the register to be used.

For some functions you need to read two registers. The seconds are a
good example. Suppose the time was 28 seconds. Register 1 would hold a 2
and register 0 would be 8. By manipulating the address lines and then
reading the data lines, we can have access to the correct time and date. We
would set the time of course by writing to the same registers.

In addition to the address and data lines, four other lines control the
5832. These lines are the chip select, hold, read, and write. Figure 6.2
shows how all these lines will be connected to a peripheral interface
adapter (PIA) I/O chip. The PIA provides a convenient means to connect
something to a computer. Chapter 11 will discuss the PIA in more detail.
For now, just assume that the computer can read or write over any of the
port lines.

The four least significant bits of port A connect to the clock chip’s

DO
|
[l
o
O_
- e
= o[16 32.768KHz
PIA LR —II:—
17
B0 13 Do ‘—3: %é15-30pf
= D1 15 pf
< 12|22
& 4 5832 L
& AO =
g A1
A
D7 —E—A3 J|‘<}——+5V
—_— GERM.
DIODES
_/0—-—-—-———:-;-READ +
— ZWRITE auf <T1-6K
13
I 3v

Figure 6.2 The 5832 clock chip can easily and economically provide the house
with the time and day of the week.

34 The Hardware Part 11

data lines. Reading these will give the contents of one of the 13 registers,
depending on the address lines. In my case, I tied the most significant
address line to ground (pin 7). This means that only the registers 0 to 7 are
~available to be read from or written to. These eight registers are enough to
provide all the capability we discussed earlier.

I did not require the ability to set the time by writing to the clock’s
registers without my intervention, so I used a switch to manually select
either the read or the write line. This uses up all the lines on port A.
Unfortunately, we also need to control the chip select and the hold line.
These two lines can be connected together and will allow us to effectively
stop the clock momentarily. This is important during a read, because if a
register is changing at that time, extraneous data might result.

Since I had to use more than one port to control the clock, you might
wonder why I did not go ahead and use the second port to control the read
and write lines separately. I could also have used a line for address 3 rather
than grounding it. Such a method would certainly give the clock more
flexibility and power. My method results in all the capability I need, and it
leaves seven lines free on port B, which is enough to drive many
peripherals, such as a printer, or for expansion of the home control
system.

A crystal is connected between pins 16 and 17 to ensure accuracy.
Even so, you will need to make some minor adjustments with the
associated capacitors to fine tune the clock speed.

The battery backup circuit that I used is a little simpler than others
that I have seen. It is meant to be used with two ordinary nonrechargeable
batteries. I have been using AA cells for nearly a year with no need for
replacement. You should make sure the diodes used are germanium rather
than silicon in order to keep the supply voltage within tolerances. There is
one point that may be obvious, but it should be mentioned anyway. The
ground for the clock (and all peripherals) should be connected to the
Apple’s ground.

As simple as it looks, that’s all that is required to make a clock for our
system. Of course it will take the right software to read it and set it. This
software will be discussed in detail in later chapters, and I hope you will
find that it will be easier than you think.

I do wish to remind you that the home control program is designed to
work with just about any clock available for the Apple. As we will see,
only a few minor modifications will be necessary.

The Fsilssie
Sysiem

If I am going to have a computer control my home, I want that
computer to work—always! It must be able to contend with every
reasonable situation that I can anticipate and perhaps even some that I
cannot.

There will of course be some limitations. We cannot reasonably
expect it to work when someone unplugs it or attacks it with a hammer.
We can, however, make it intelligent enough to handle power outages and
perhaps even recover from its own software errors and intermittent
hardware problems.

Perhaps you are wondering why I am worrying about such a ‘‘trivial”’
problem. For those of you that fall into this category, a short explanation
can be beneficial.

When you put the computer in charge of your home, you are
delegating tremendous responsibility. Let’s examine some of the functions
given to the computer. One is to act as your alarm clock. Imagine how
inconvenient it would be if you could not depend on the house to get you
up at the correct time. Have you ever had a clock that was not
dependable? How long did it take you to get rid of it?

Consider getting up in the winter to a cold house because the
computer has failed to properly control the heat. Don’t forget how failures
in the phone answering or security system could affect you.

These and other functions represent very important tasks. If the

35

36 The Hardware Part [l

home control system is to really be valuable, it must be given responsible
tasks. If we are going to trust part of our daily activity to a computer, we
must make sure that it can react appropriately to problems that might
~occur.

I don’t mean to imply that personal computers are not reliable or that
software cannot be debugged completely. On the contrary, microcomputer
systems are extremely reliable and my software has gone through consid-
erable testing.

Even so, you never know when one of the thousands of tiny
transistors inside just one of the chips is going to fail. You never know
when just the right pattern of events will put the software through a
sequence that was never anticipated. It is unlikely that either of these
situations will occur, but neither you nor I can guarantee that they will not.

Furthermore, there are other potential failures that are nearly impos-
sible to predict. They all center around the power lines. No matter how
good a power company you have in your area, the line voltage is
constantly fluctuating because of changing loads like air conditioners and
other large appliances. In addition, there may occasionally be large noise
spikes on the line due to line switching at the power company, lightning
striking a transformer, or even a shorted vacuum cleaner at your neigh-
bor’s home. To keep things simple, we will group these types of power line
failures into two categories: (1) lengthy failures that cause the computer
(and everything else in your home) to be inoperative, and (2) short, but
large fluctuations in the line voltage.

Let’s examine each of these failures. Lengthy delays are probably the
easiest to deal with. The Apple computer has a power on reset and special
initialization software in its auto-start ROM. This may sound complicated,
but it boils down to the fact that an Apple computer will automatically
RUN the “HELLQO”’ program on whatever disk is in the drive whenever
the Apple is turned on.

Thus whenever a lengthy power failure occurs, the ‘“‘HELLO”
program will take control as soon as power is restored. To restart the
system, we need only have two things happen. First, the “HELLO”
program should perform any special initialization and then RUN the main
home control program. The home control program then has the responsi-
bility of finding out what is going on. It has to determine if anyone is home.
It can do that by just asking and seeing if anyone answers. You would not
want the system to wake you in the middle of the night just to ask if you
were home, though, so we will expect it to have some intelligence.

The house should check the time and determine if you should be

Chap. 7 The Failsafe System 37

asleep. If so, we will want it to make certain assumptions until such time as
they can be verified. We will discuss the actual assumptions in later
chapters, but I hope you get the idea. The computer has got to be able to
intelligently restart itself anytime there is a massive power failure.

If you have been following closely, you are probably wondering
about the short noise spikes that might occur. You can, and probably
should, purchase a noise suppressor at your local computer store. Such
devices are relatively cheap and will solve all but the largest spike
problems. Those will, unfortunately, cause us many problems when they
occur.

Notice I said when, not if. With the computer controlling your home,
it will be on 24 hours a day. Eventually, some spike is bound to happen,
and when it does the result usually is that a few memory locations will be
changed. It is possible, depending on the locations changed, that every-
thing will continue on as if nothing had happened; more likely, the system
will “‘hang’’ somewhere.

In this case the hardware is fine, but the software has failed. It has
become insane for all practical purposes. We need some means to prevent
such insanity from wrecking the integrity of our system. I wanted a simple
and inexpensive method to achieve the desired results. I realize that no
system can be perfect, but because of the responsibility delegated to this
system, I wanted it as failsafe as possible.

My solution was a System Sanity Timer. Functionally, it works like
this. The timer is nothing more than a resettable counter that is always
counting forward from zero. If it ever gets to 15, it will cause a system
reset. A reset, as we just described, will cause the system to rerun the
home control program. Our assumption is that the counter will never get to
15 unless the software is insane.

We will attempt to ensure this by having commands throughout the
program that will reset the counter to zero. As long as everything is going
well, the program will reset the counter before it reaches 15. If anything
causes the system to hang up, the counter will time out and the system will
completely reinitialize itself.

Figure 7.1 shows the circuitry required to implement a system sanity
timer. A 74191 counter chip is the basis for the timer. Any pulse on the
load line (pin 11) will cause the counter to clear by forcing a parallel load of
the data in, which is zero. The counter is driven from a 555 oscillator set to
produce one pulse every 3 seconds or so. This means we have around 45
seconds before the counter must be reset again.

If the switch S1 is open, the Apple’s reset line is not connected to the

38 The Hardware Part 11

+5V +5V
220K
L gl 4
APPLE 13 14 3 7
RESET ——" RC W cLo
‘ 555 110K
74191 6
1
3 12 11|LOAD L2 |
2 3 WD E G DATA IN)
17400 57404 5| 4] 8 15 1] 10| 9 10uf
RESTART -
INPUT)
(FIG. 12.2) —

Figure 7.1 A simple counter provides the basis for a unique failsafe system.

counter and the sanity timer is not functional. Since most programs will
not reset the counter, you will want to leave the switch open unless you
are running the home control software.

When the switch is closed, the sanity timer is enabled. Pin 13
produces a low pulse whenever the counter reaches 15. This will reset the
Apple and also the counter. The counter can also be cleared by pushing the
reset button on the Apple or by pulsing the restart input. This can be
connected to any output pin on the PIA. We will see how this is handled in
the chapter on I/O ports.

Under constant control of intelligent software, the system sanity
timer makes our home control computer almost invincible.

The BSK
Bontrol Sysiem

A primary capability needed in our home control computer is to be
able to manipulate lights and appliances throughout the house. There are
many approaches from which to choose.

One option would be to rewire the house. Each light could be
controlled using a relay or a solid-state switch such as an SCR or TRIAC.
Not only would we have to add these devices to each circuit we wished to
control, but we would also have to run control lines from one of the
computer’s output ports to each device. This approach is certainly
feasible, but hardly cost effective.

As mentioned in Chapter 2, the BSR System X-10 remote control
system provides the solution for us. Figure 8.1 shows some of the elements
in a BSR system. Let’s look at it now in more detail.

The center of the system is the command console. It has 16 buttons to
designate one of 16 lights to control and 6 additional buttons to indicate
what should be done to the lights. These six functions are ALL LIGHTS
ON, EVERYTHING OFF, DIM, BRIGHT, ON, and OFF. Let’s look at
each function in more detail.

The first thing you probably noticed is that the ALL ON refers to
lights only and the ALL OFF means everything. This distinction can be
made because the remote switches can be designated for use with
appliances or with lights. As we will see later, this can be very beneficial in
our home control system.

39

40 The Hardware Part Il

Figure 8.1 Lights and appliances can be easily controlled remotely using the BSR system.

The remote switches come in a variety of packages. The easiest to
install are just small boxes that plug into any standard outlet, just like a
mechanical timer. You may then plug a lamp or appliance into the
receptacle on the box. For those persons not wishing to have unsightly
boxes, there is a BSR receptacle that can completely replace your present
one. If you wish to control overhead lights, you may replace the normal
room switch with the appropriate BSR model designed for that purpose.

Each BSR remote has a concealed small switch that allows you to
specify its operating number. This has to be between 1 and 16, just like the
buttons on the command console. There is also a house code switch. Its
purpose is to make sure you and any neighbors that also have a BSR will
not interfere with each other’s units.

All the remotes, as well as the console, have some very sophisticated
electronics in them. There are no extra wires connecting the console to
any of the remotes. Each unit is attached only to the house wiring. When a
button is pressed on the console, a specific high-frequency code sequence
is injected into your house wiring. The amplitude of this signal is such that
it will be totally ignored by normal lights and appliances.

The BSR remotes have a special filter to trap out this special
frequency. Once isolated, the frequency is amplified and then decoded to

Chap. 8 The BSR Control System 41

determine its content. Let’s use an example to see how things are
controlled. Suppose the button marked 3 was pressed on the console. The
coded signal (indicating 3) would be added to the power lines. Every
remote would analyze that code. Only the module that finds a match
between its switch code and the one from the power lines will activate
itself.

If you were to press several other number buttons, let’s say 6 and 7,
on the console, there would be a total of three remotes activated. If we
now press the ON button, each of the active remotes will turn itself on.
Similarly, if we hold down the DIM button, they will each dim the light
they control. For the safety of your appliances, the appliance modules will
not respond to a DIM command.

This product alone can provide your home with a great deal of
flexibility. Imagine the things you could do if the computer could just press
the buttons on the command console. BSR makes a device that will help us
to dojust that. The command console also comes in an ultrasonic model. It
is identical to the standard model except that it can be controlled from
across the room using a BSR ultrasonic controller.

The ultrasonic controller sends coded signals to the command
console in much the same way as some TV sets are controlled remotely. If
we can produce the same signals as the controller, we can easily take
control of the command console and indirectly have control of up to 16
functions in the home.

To simulate the signals from the controller, we will have to know a
little more about them. I obtained information about the BSR signals from
an article by Steve Ciarcia in the January, 1980 issue of Byte magazine.
They are made up of short bursts of a 40-kilohertz tone. To make things
easier, let’s assume that the actual code is made up of 1I’s and 0’s. A 1 will
be 160 cycles of the 40-kilohertz tone followed by 4 milliseconds of silence.
A 0 will be 48 cycles, followed this time by a 6.8-millisecond pause. Figure
8.2 shows this more clearly.

Figure 8.3 shows how the 1’s and 0’s just described can be put
together to form the code word sent by the ultrasonic controller. The first

4 msec
LOGIC ONE —/\/\160\/\/\—’——“

40 KHz

6.8 msec Figure 8.2 The ultrasonic model of the
LOGIC ZE RO—/\/48/\/ - BSR System X-10 uses 40-kilohertz

tones to represent 1’s and 0’s.

42 The Hardware Part 11

START SAME 5 BITS 24 msec
BIT INVERTED DELAY
— s nY — T
| 1o o1 o111 1]o0]H1 | 0 N\WMNW——
|
: . i
5 DATA BITS 640 CYCLES
LSB FIRST 40KHz

Figure 8.3 The 40-kilohertz I's and 0’s can be combined to form data signals to
control the BSR unit.

bit in the word will always be a 1. It could be thought of as a start bit. The
function of this bit is to indicate the start of a new transmission so that the
receiving circuitry will be ready for it.

The next five bits make up the actual code indicating which button
was pressed. To prevent extraneous errors due to noise on the lines, the
same button code is transmitted again but in reverse order. The end of the
word is marked by 640 cycles of the 40-kilohertz tone, and there should be
at least 24 milliseconds of delay before the next word is sent.

Figure 8.4 lists the five-bit codes for each BSR button. With this
information, all we need do is figure out a way to control a 40-kilohertz
tone as previously described. We could do it with hardware, but I am one
of those people who would rather resort to software. Not only is it usually
cheaper, but I would rather change a program than unsolder and resolder
wires.

If you own an Apple or know someone that does, you have probably
heard it play music by toggling the output line going to the speaker.
Obviously, we can produce tones in such a manner. After a few calcula-
tions, I determined that it was possible to produce a 40-kilohertz tone
using the same technique.

Of course, I could not use a speaker owing to its low frequency

BUTTON CODE BUTTON CODE
1 6 12 13
2 7 13 0
3 4 14 1
4 5 15 2
5 8 16 3
6 9 ALL OFF 16
7 10 ALLL.ON 24
8 1 ON 20
9 18 OFF 28

10 15 DIM 18
1 12 BRIGHT 26 Figure 8.4 The table shows the data

codes required for each of the BSR
ALL CODES ARE IN DECIMAL buttons.

Chap. 8 The BSR Control System 43

APPLE GAME
COMPUTER
+5v|
AN3 =
40KHz Figure 8.5 An ultrasonic transducer
ULTRASONIC 41ows the Apple to control the BSR
TRANSDUCER it

response. I connected a 40-kilohertz transducer to the Apple game
connector, as shown in Figure 8.5. The proper software can easily
generate all the possible codes and allow the computer to control the BSR,
and thus anything that can be plugged into an outlet. The software for
generating the codes will be discussed further in Chapter 20.

The Teleghone
Sysiem

The ability to control the telephone is a very important part of the
home control system. The telephone is used in many of the modules. You
may, for example, verbally request the computer to call someone or to
answer the phone when you are home.

When you are not home, the house should be able to answer the
phone and record messages without any human intervention. You should
also be able to call the computer and get a status report or to control lights
in the house. If a security problem occurs, you should expect your house
to call you or a neighbor and report the problem.

As you can see, without the ability to control the phone, the
capabilities of the home control system would be significantly reduced. In
keeping with my overall philosophy, I will keep the hardware to a
minimum. I also will use commercially available equipment whenever
possible. This will be especially true when we actually connect something
to the phone lines.

The phone company has many regulations governing what may be
connected to their lines. This may seem unfair to you since you rent the
lines, but look at it from their point of view. The phone company has a
large quantity of expensive equipment that might be damaged if you were
to inject improper signals. Perhaps even more importantly, the service of
other phone company subscribers could be impaired or even eliminated for
a time if improper equipment is used.

44

Chap. 9 The Telephone System 45

Any manufacturer may apply to the FCC for permission to produce a
device for direct connection to the phone lines. Since there are many
devices on the market that are approved for direct connection, we will
utilize them for our interface. Although you are allowed to connect
approved items to the lines, you are required to notify the phone company
of the connection and of the FCC registration number, which should be
included either on the device itself or in the owner’s manual.

The first of these devices that we are going to use is the D.C. Hayes
Micromodem. A modem (modulator demodulator) is a device that con-
verts the digital signals in the computer to analog tones that can be easily
transmitted over the phone lines to another computer. In effect, a modem
makes it just as easy to talk to a computer in another state as it is to talk to
your printer.

The reasons for owning a modem are increasing everyday. Many
computer services are becoming available over the phone lines. In some
areas you may get your bank balance or order merchandise using a
personal computer equipped with a modem. You can also subscribe to
networks that contain enormous data bases that have the potential of
allowing a home computer to make truly useful decisions.

A D.C. Hayes Micromodem can provide your Apple with all these
capabilities. It also has some very special features that will aid us
tremendously in our home control telephone system. The Micromodem
has auto-dial and auto-answer, which means that it has the firmware and
hardware required to dial a number for you and to connect itself to the
phone lines whenever it detects a ring.

We will use these features whenever the home control program needs
to call someone or to determine when the phone is ringing. Since the
Micromodem is FCC approved for direct connection to the phone line, we
have these capabilities without any hassles with the phone company.

In addition to detecting rings and dialing the phone, we must also be
able to connect a cassette recorder and player to the phone lines if the
computer is to act as a phone answering system. Again I solved the
problem by going to a commercially available device. The Duofone 101 is
an electronic telephone amplifier from Radio Shack.

The amplifier connects directly to the phone lines and allows the
phone to perform like an intercom. Since the amplifier is powered from the
phone lines, it can be controlled very easily from the computer. All we
need do is replace the on/off switch on the Duofone with the contacts of a
relay. Anytime the computer wants the amplifier on, it only needs to
activate the relay.

Since the amplifier provides intercom-type operation, all our phone

46 The Hardware Part Il

company interfacing is solved. The computer can monitor the Micromo-
dem to determine if the phone is ringing. If you are home, the Duophone
can be activated so that you can talk from anywhere in the room.

If you are not home, the computer can activate the amplifier first and
then the cassette player. The player would play a 30-second endless loop
tape with a message for the caller. At the end of the tape the computer
should turn off the player and start the recorder. As long as someone is
talking, the recorder should be left on.

To perform all the functions just mentioned, we will need to build
some special hardware. Figure 9.1 shows the circuit we will need. We will
use three of the game connector outputs to control the telephone amplifier
and the two tapes.

The 7404 inverters are used to buffer the game connector outputs.
Each inverter controls a relay by turning on or off a transistor. The
telephone amplifier relay should have its contacts substituted for the
amplifier’s switch.

Most cassette recorders have a remote jack next to the microphone
jack. The relay contacts should be connected to plugs that will mate with
the remote jacks on the recorders. When they are plugged in and the play
and record buttons are depressed, your computer will have complete
control of both tape machines.

Controlling the telephone amplifier and the tape recorders is essential
for our system, but it is not enough. If the computer is to know when to
hang up on a caller, it must be able to ‘*hear’” when the call is over. Figure
9.2 shows a circuit to give the computer ears.

You might be wondering why we just don’t use the Speech Link for
this purpose. There are two reasons. First, the Speech Link is connected
into the computer by way of a wireless mike and is not active unless the
wireless mike is on. Second, we do not need to know what words are
actually being said. If we can just determine if there is a changing sound
present, we will have all the information that we need.

The circuit of Figure 9.2 is essentially the same as the one found in
Chapter 4 except that a crystal microphone is used as the input. As long as
a sound is present, the game connector pin will be a logic 1. The 200K
potentiometer can be used to control the sensitivity.

If we place the crystal microphone in front of the telephone amplifier,
someone leaving a message will cause the game connector pin to alternate
somewhat randomly between a 1 and a 0. If the person does not say
anything for a period of time, the input will remain 0. If the person hangs
up and produces a dial tone, the pin will remain high.

1ayrdwe auoyda[d) B pue SIoplodal

ade) om) [013u0d uBd 191ndwod Y) ‘SAB[AI [[BWS PUEB JINJIID IALIP B JUIS[) [°¢ dIn31

Y3IQHOOTY Tdvl wl
- 1
HIAVId 3dvl i ——
I
H31417dWY INOHdITIL 3.H g m
-1 [voor

€59
NN\ 5 = ST LNV
e
V_ ——
y €59
ONV
AAA— %Am -
e
€99
e
. ZNV
'\ z ! el
e
vOvL
e
) 43LNdWOD
; IAYO 31ddV
. A 00
vooy — o |

A+

47

*s[ed auoyd 03 ud)si| 03 191ndwod Y} I0J sueaW B SIPIA0Id 10309)9p puUNosS y 7°6 dInsig

HOL03INNOD
JNVO 3T7ddV
IMS [~ _
> 3 Ml B
3002 —
710 =
9 —_—
vorL S Bl
] c / 3001 INOHJOHOIW
aan PN _ — IVLISAHO
¥ GGG s +
4 4 L Y001
L pL /_ . +
9 v 3 vovLT vze _>_|_m T
0ze 00l vZENTT 3001
AAVAY,
Y001
NG+

48

Chap. 9 The Telephone System 49

The home control program will sample this input pin on the game
connector and determine when to hang up on a caller that is leaving a
message. This completes the principal hardware required if the home
control program is to take charge of your phone. The only thing left out is
the ability to control your house by calling from a remote location. This
addition will be explored in Chapter 11.

The lnterrupt ln
Sysiem

As was mentioned earlier, the majority of the home control system is
sequential in nature. Each task is usually completed before the next is
started. Some tasks, though, such as watching for movement throughout
the house, require that the controlling module be running at the time of the
event that is being monitored.

The Apple’s microprocessor is a 6502, and it, as well as other
microprocessors, has an interrupt line. Actually, the 6502 has two inter-
rupt lines, a nonmaskable (NMI) and an interrupt request (IRQ). My
system will use the IRQ. When this line is pulsed low, the 6502 will
abandon the program that it is presently running and jump to a second
program. When the second program is complete, the original program is
continued as if nothing had happened.

The program to handle the special events that cause interrupts will be
covered later, but right now we want to look at the hardware required to
generate the interrupts at the appropriate times. To better understand the
requirements of this hardware, we need to examine each event that will
cause an interrupt.

One such event is the movement of people throughout the house. We
will detect this movement by using strategically placed switches under the
carpet. Refer to Figure 10.1 to see my switch arrangement, which handles
four rooms. Anytime someone walks from one room to another, the
person will step on two of the switches. The first switch pressed indicates

50

Chap. 10 The Interrupt System 51

OFFICE BEDROOM
BSR REMOTE # 1 REMOTE #3
I 1

® w @
B .-

GARAGE DEN _
REMOTE #2 REMOTE #4 Figure 10.1 Under-the-carpet switches

tell the computer about the movement
of people in the house.

the room the person came from and the second switch tells the computer
which room was entered.

You can buy pressure-sensitive switches for this purpose, but I found
it cheaper to make mine by attaching tape switch to a 12-inch square of
aluminum. Tape switch looks like a thick piece of tape, but it has two
conductors that touch whenever a few pounds of pressure is applied. You
can decrease the sensitivity by placing a sheet of foam rubber between the
aluminum and the floor. This will make sure that pets will not activate the
switches.

If you do not have carpet, you can still utilize the home control
program, but your switches will be much more expensive. Instead of a
physical switch at each doorway, you will need some kind of beam and a
way to detect if it is broken. You could use either a light or an ultrasonic
system, depending on your preference.

Regardless of what type of switch arrangement we use, we will need a
means for the computer to determine both when a switch is pressed and
which one it is. If we were to connect each of the four switches to four bits
of an eight-bit input port, the computer could read that port and determine
which was pressed. If the system could constantly monitor the port, it
could also tell when a switch was pressed.

Such monitoring would require so much attention that the system
would not be able to get much else done. If we could somehow generate an
interrupt whenever any of the switches is pressed, then the main program
would not have to keep checking and the interrupt program could easily
determine which switch caused the interrupt by reading the input port.

Figure 10.2 shows a circuit that will solve our problems. As you can
see from the drawing, there are eight switches instead of the four we have
been using. More on this later. Each switch is connected to a network of
two resistors and a capacitor that helps eliminate bounce (noise) that

52 The Hardware Part 1l

o 45V
1.5uf i
- STTEI T
S,
152 o> [I] v
ey d

L S7 o7 Il
S8 1]
o0
D7 D6 D5 D4 D3 D2 D1 DO
: INPUT PORT

SWITCH USE 17404 100K
S1 DEN 8 4
Y] BEDROOM
s3 OFFICE Vo
s4 GARAGE 555
S5 MISC.
6 WINDOWS 3 Sl
S7 DOORS “
s8 OUTSIDE 01 1
= +7404

JL u IRQ
INTERRUPT

Figure 10.2 Internal and external movement switches are connected to a computer port, as
well as to the interrupt line. When an interrupt occurs, the port can be read to determine the
exact cause.

occurs when mechanical contact is made. This network also ensures that
even if a switch is held closed for extended periods of time the pulse
generated will be only momentary.

All the inputs are sent to the input port. They are also functionally
ORed together using a NAND gate and an inverter. If any switch is closed,
the 555 monostable multivibrator will be triggered. It will produce a short
pulse, which is inverted again and sent to the Apple’s interrupt line.

Whenever any switch is stepped on, an interrupt is generated. This
will cause the interrupt program to be run. This program, which is
discussed in Chapter 20, will read the port and utilize the information

Chap. 10 The Interrupt System 53

obtained to determine the actual movement. Once the system determines
which lights should be altered, it will produce the required ultrasonic tones
to activate the BSR console.

The remaining four switches are intended for use in the security
system. A closure of any of these switches will also run the interrupt
program. If it determines that it was one of these switches that was
pressed, the program will set and clear some memory locations that
BASIC can PEEK at to determine what security problem has occurred.

One of my security inputs is connected to magnetic reed switches on
the doors. Since the doors are heavily deadbolted, activation of these
switches will imply that the owner of the house has returned. A second
input is connected to window switches in series so that any open window
will activate the pin. Such a signal will indicate that someone is entering
the house without proper authority.

My third security input is used to indicate movement outside the
house. Many commercially available sensors can provide such an indica-
tion. The least expensive are usually infrared beams or ultrasonic move-
ment detectors. If you wish to spend a little more, there are devices that
react to body heat. The actual type of sensor or sensors you use should be
based on the physical conditions around your house.

The fourth and last input for the security port is simply labeled
miscellaneous and generally is not used in the system described in this
book. Activation of this input will set a flag so that your software can react
as you see fit. A potential use for this input that I am exploring is a
driveway sensor. This would allow the system to determine when a car
enters or leaves the driveway.

As with most of the hardware in the home control system, the real
potential will not be apparent until the software is explained. We will soon
see how the software can utilize the limited information gained from a few
switches and create a system that can react intelligently to movement both
inside and outside the house.

The loae
Genersion

In Chapter 9 we discussed most of the telephone system. The only
capability left out in that chapter was the ability to control lights and other
items in the house when you are away by calling your home computer.

To provide a simple means to communicate with the computer by
phone, we will need some special hardware. We cannot use the Speech
Link system for two reasons. First, the Speech Link is connected through
the radio receiver and would not be able to listen to phone conversations.
Second, the distortion and noise on the phone line make the Speech Link
much less effective.

This does not cause us any real problems. We just need to analyze
our needs. The first thing the system must be able to do is to recognize the
difference between a standard caller trying to leave a message and you
wishing to control something in the house or wanting a status report.

Your system must also be able to understand what you want once it
has determined it is you calling. Without the luxury of using a speech
recognition system, we must severely limit the commands that we expect
the system to understand. One of my initial ideas was to use the tones on a
push-button phone. Each tone was to be used as a separate command. It
sounded like a good idea until I tried building the required tone decoder.

It turns out that such a tone decoder is either very unreliable or more
expensive than I was willing to accept. My next step was to consider
decoding only two tones, in order to keep the cost down. One of these

54

Chap. 11 The Tone Generator 55

tones would be used to answer ‘yes’” and the other for ‘‘no.”’ I figured that
the system could ask the proper questions, using the speech synthesizer,
and I could answer either yes or no.

It occurred to me that the system really did not need to be able to
recognize ‘yes’’ and ‘‘no.’”” Just ‘‘yes’” would be enough. A ‘‘no’” would
simply be the absence of a “‘yes.”” I also decided that if I used a short tone
sequence rather than the tone itself I would be able to recognize a “‘yes’’
using the sound detection hardware covered in Chapter 9. Some software
would be required, but the thought of avoiding additional decoding
hardware was very appealing.

We will need one piece of additional hardware, a tone sequence
generator. One of my objectives for the design of the generator was that
the code could be easily changed. I might want to change my own code
from time to time, and I felt certain that anyone duplicating my system
would want a code of his or her own.

Let’s look at the circuit I finally arrived at. It is shown in Figure i1.1.
It is made of two 555 timers acting as oscillators, an eight-switch DIP, and
a 74165 shift register. The principle of operation is really rather simple. We
want the speaker to produce a sequence that the computer can detect.
Figure 11.2 shows a possible sequence.

There is a short burst of tone first, followed by a pause. The second
burst is a little longer than the first. The length of time required for the two
bursts and the pause is labeled I, J, and K. It will be the responsibility of
the detecting software to measure these lengths and compare them to a
predetermined sequence for ‘‘yes.”” Any other sequence will be taken for
the word ‘‘no.”

The circuit of Figure 11.1 is used to produce the desired sequence.
The 555 timer on the left outputs a tone from pin 3 to the speaker. This
tone can be turned on or off by placing a logical 1 or 0 on pin 4. This
controlling signal will come from the serial output of the eight-bit shift
register. The on/off sequence of the tone will be equivalent to the one/zero
pattern in the shift register. The second 555 timer is used to clock the shift
register. It will run much slower than the first timer.

The actual frequencies of the two timers are not critical. The software
can adapt to almost any reasonable combination we wish to use. The
leftmost timer should produce a tone within the bandwidth of the phone
lines. Somewhere between 1000 and 2000 hertz is ideal.

The second timer needs to be slow enough to create a recognizable
sequence, and yet fast enough to complete the entire sequence within a
second or so. This implies a frequency of 5 to 10 hertz. The fact that your
frequencies are different from mine will just help make your system more

auoydafe) Aue WO WOy INOA [01IU0D UBD NOA [BUJIS SIY) Ul ‘pue)sIapun
ued 19)ndwod InoA A[uo jeyy 2pod anbiun B 91eAId SAYIIMS JI QUL T['II 2Indig

S3HOLIMS dIa
e — G0 —
- | H3INVIdS
1HVIS ls lalo 1s |v le loelesfer i z L z L o8
avo SLNdNI‘8vd 0S W
NoLing °] : . ¥ ”
HSNd oLvL 010 595 454 V_EM - e
= 2 € z €
v |8 8

98 219§

ol

440/NO vooy

56

Chap. 11 The Tone Generator 57

TIME ’4—1 o J ,}: K >i
0 0 1 1 1

SEQUENCE
Figure 11.2 The switch settings (see Figure 11.1) produce a tone sequence as
shown. The computer will measure the times and store the relative results in the
variables I, J, and K.

SHIFT REGISTER 1 1
PATTERN

0

secure. In addition to the frequencies, though, we will want to have
control of the tone sequence.

The sequence, remember, is reflective of the pattern in the shift
register. When pin 1 on the shift register is pulsed low, the shift register is
loaded with the data controlled by the eight dip switches. The open
switches will produce a tone. Likewise, closed switches will cause a
pause.

Any pattern can be detected, but my software will expect a tone, a
pause, and another tone. The length of each of these can be easily varied
by the setting of the DIP switches. As we will see in later chapters, the
software can be easily modified for any size of tones and pauses.It will
even be easy to have another pause and a third tone if you wish.

I use four AA cells as my power supply. If you use a small speaker,
the entire generator will fit easily in the palm of your hand. To use it, just
hold the unit so that the speaker is close to the telephone mouthpiece and
press the push button. The tone sequence, when played, will be ‘*heard”’
by the computer at the other end of the phone line.

As mentioned earlier, the circuitry used to allow the computer to
“listen’” will be the same circuit described in Chapter 9. The circuit was
used there to determine when a caller stopped talking so that the computer
could hang up at the end of the message. As you remember, the circuit
worked by sending the computer a logic 1 whenever the sound level
exceeded a preset threshold.

This same capability is all we need for the tone detector. When the
tone sequence is played over the phone, it will trigger the sound detector.
The software can monitor how long each tone and pause lasts. These times
can be compared to see if they are within tolerance. For these measure-
ments to be valid, the computer must know when to start taking readings.

The computer will not continually monitor the sound detector for the
presence of the tone sequence. The first time it watches for the sequence
will be when the caller starts to record his or her message. If the sequence

58 The Hardware Part Il

is not the first sound heard, the system will assume itis a standard call and
process it appropriately.

If the sequence is detected, though, the recorder will be turned off
and the computer will communicate using the speech synthesizer. It will
ask if a status report is desired. If the next sound conforms to the proper
tone sequence, the computer will interpret it as a ‘‘yes’” answer. Any other
sound will be a ‘‘no.”” The most obvious sound to use for ‘‘no’’ is to
actually say ‘‘no.”” Of course, any word, even ‘‘yes,”” would be interpret-
ed as a negative response since it will not match the expected tone
sequence.

After the status report the system will continue to ask questions and
act on the answers accordingly. We will see later that the software will ask
the questions in a manner that will provide easy remote control of the
home.

3

Input/Ouiput W 12
(1/0) Ports

In previous chapters several devices were connected to a computer
using some form of parallel input or output port. There are many such
ports on the market, but I chose to build my own. Even if you plan to
purchase your ports, this chapter may be of value to you as it discusses the
general software required to transfer data to and from a port.

To begin with, you need to realize that a port is nothing more than a
memory location made up of discrete components. Let’s look at an
example. Each memory chip in the Apple contains 16,384 memory cells. If
these cells were made out of individual gates or flip-flops, you could attach
wires to the flip-flop (F/F) outputs. If that wire controlled a transistor,
which in turn controlled a relay, then external devices could be turned on
and off by simply storing a 1 or 0 into that particular memory cell.

Using similar reasoning, external switches could be connected to the
set and clear inputs of a flip-flop cell. Software could easily be used to read
the state of that cell and thus determine the state of the external switch.
This simple example should demonstrate that there is nothing mysterious
about I/O ports. ;

Of course, we don’t build memories out of discrete flip-flops. Not
only would such memories be very expensive and consume much more
power than LSI memories, but they would also take up much more space.

59

60 The Hardware Part |l

In addition, all the discrete wiring would provide potential faults and make
such a system less reliable.

We can build an output port using F/Fs if we wish. We would need
one F/F for each data line. Whenever the 6502 executes a STORE
instruction to a particular address, the address and data lines will
simultaneously hold the data and the address of where those data are to be
stored. All we need do is to detect or decode the proper address and use
that signal to gate the data into the flip-flops at the end of the cycle.

It is equally simple to build an input port. Whenever the processor is
reading from a given address, it expects to find the proper data on the data
bus. If we again detect the appropriate address, we can use that signal to
let the data on the bus. This enabling will usually be done using tristate
buffers. When enabled, the tristates transfer their inputs to their outputs,
and when disabled the outputs have an infinite impedance.

Figure 12.1 shows simple output and input ports for an Apple
computer. The address decoding for the Apple is simple because 16
addresses have already been partially decoded for each slot on the mother
board. Any of these addresses will activate the device-select pin on the
slot. In this case we have not decoded the device-select any further. This
means that any of the 16 addresses could be used when addressing either
the input or the output port. A decoder chip could have been used to allow
15 more ports to be added to this one slot. The read/write line is used to
determine whether we are reading from or writing to the port.

You can certainly use I/O ports like those just discussed. There are
chips on the market, though, that offer several advantages over construct-
ing the port out of discrete gates and F/Fs. These chips are called PIAs
(peripheral interface adapters) and VIAs (versatile interface adapters).
Since we don’t need the advanced features found in VIAs, let’s examine
how to build a port using a PIA.

The 6820 PIA from Motorola has all the buffering and tristate
capabilities built in. It has six registers, of which two are used as the actual
input and output ports. The decoding required to select one of the six
registers is unique, as we will soon see, and is also builtinto the chip itself.

Another advantage of the PIA is that the pins of each eight-bit port
can be individually programmed to be either an output or an input. This
makes it extremely flexible and adds to the usability of the ports. Figure
12.2 shows an I/O design for an Apple that will give you four 8-bit ports,
any of which can be either input or output.

The 7442 is a decoder chip that aids in the selection of one of the 16

Chap. 12 Input/Output (I/0) Ports

APPLE PERIPHERAL CONNECTOR

DEV
R/W SELECT

DATA BUS
D7 D6*-*D1 DO

7475
D Q
—{CLO
D Q|
CLO
T
|
TOTAL
8 FI/F
1
D Q}
—CLO
D Q
L CLO

Figure 12.1 Input/output ports on an Apple are nothing more than special

memory locations.

NN

TOTAL
8 TRISTATES

/Y

74367

OUTPUT PORT

INPUT PORT

61

62

APPLE BUS

RESTART

The Hardware

I
o OTT (SANITY TIMER)
4BV uf
|
[l
20 =+
DO £ 10 LBS
1 5 F |
D2
30 @13 I
be 2] & '
D4 < xiia |
D5 28 a|15 |
D6 gé 16 ;
D7 6820 17 VISB
36| A LSB
w 3
35| 4
8 4 |
< <|5 |
=0 :
S |
8 |
9 |
CE MSB
23| 1|
2?— BV Auf
+5 ——{ i_—j
| 20
16 =
15 1 [33] 10
Fine - 32 11 LSP
A3—4] raa 2 31 12 I
DEV SEL—] 3 30)13 :
12 4 29 |14 |
28 s |
8 27 16 l
— 26 17 M'SB
6820 3
LSB
3 i
= 2 |
|E |
x| 6 |
Q7 |
8 |
¥
CE B MSB
23

Figure 12.2 PIA chips provide an efficient and versatile means to build input/out-

put ports.

—> EXPANSION

1

Part 1l

Chap. 12 Input/Output (I/0O) Ports 63

addresses reserved for each Apple slot. Any of these addresses will
activate the device select, which in turn activates the decoder.

Once enabled by the device select, the decoder uses address lines A2
and A3 to force one of its pins (1, 2, 3 or 4) to go low. These pins can be
used to enable four additional devices. Each device may have up to four
addresses, which should be selected with A0 and Al.

Two of the four possible devices will be PIAs. Pin 2 selects the top
PIA, while pin 3 enables the bottom PIA. Each PIA requires four
addresses for access to its internal registers. A0 and Al are used for this
purpose. These internal registers will be discussed momentarily.

This leaves two pins for other devices. Pin 1 is used to restart the
system sanity timer. This failsafe system was explained in Chapter 7.
Since we did not use the lower two address lines in this case, there will be
four different addresses that will restart the sanity timer.

The last pin, pin 4, can be used for expansion if you want to
experiment. It can handle any device with four addresses, so you could
easily add another PIA or even a serial port, using something like a 6850
communications chip.

For full use of the 6820 PIA chips, you should consult a Motorola
specification sheet. I will only discuss the necessary information required
for using the PIA in the context of the home control system.

There have been many needs in previous chapters for a parallel I/O
port. The system clock, for example, needed a full port and one pin from
another. The interrupt system also needed an eight-bit input port. My
voice output system used a serial port, but your particular choice might
require a parallel port. In all these cases, you can utilize one of the PIA
ports just described.

As I have mentioned, there are four addresses used for each PIA.
Since I also stated there are six different registers in the PIA, you should
be wondering how they all can be accessed. To explore this more
efficiently, we need to realize that each PIA has two separate ports. They
are referred to as port A and port B. There are two addresses and three
registers used for each.

Let’s examine port A for a moment. One address is for the control
register. Most of the bits in this register are used to control the handshake
lines. Since these lines are not used in the home control system, they will
not be discussed here. There is one bit in the control register, however,
that we will need to use. It allows the second address for port A to access
either one of the two remaining registers.

The important bit we are dealing with is data line 2 or D2. The data

64 The Hardware Part Il

lines are labeled from D0 through D7, where D7 is the most significant bit.
When D2 is set to a 1 in the control register, the second address of port A
becomes the I/O register. If bit D2 is cleared in the control register, the
second address provides access to the data direction register (DDR).

‘ The DDR provides the PIA I/O port with its flexibility. Each
individual bit in the DDR controls whether the corresponding bit in the I/O
register is to be used as an input or an output. A 1 indicates an output pin
whereas a 0 represents an input. The eight pins of the I/O port can be made
all inputs, all outputs, or any combination that you require.

The software must initialize the DDR before it tries to use the I/O
registers. We will see how this is done in Part III when we explore the
programs that make up the home control system. You can use any
commercially available I/O board as long as you follow the instructions
provided for its use. You may also use an I/O port instead of the Apple
game connector. This would be required if you prefer to keep your paddles
connected or if you are using some computer other than an Apple.

This completes our discussion of the hardware required for imple-
menting the home control system. Part III will cover the software that will
bring the hardware to life.

The Softwaee 13
Unganizstion

We are finally to the software, the heart of the home control system. I
hope you have read the previous two parts of the book first. I realize the
tendency, especially for those of you that detest hardware, will be to begin
your reading here. Even if you are not planning to actually computerize
your home and are just reading for information, I urge you to start at the
beginning.

I think my treatment of the hardware has been straightforward. I tried
not to get bogged down in detailed discussions of transistors and integrated
circuits. You should have found my discussions informative and easy to
follow. I have tried to center the discussion around what the hardware is
going to do for the software. And that is exactly why reading the book in
order is important.

In this chapter I have several objectives in mind. First, I want to
make sure you understand the principles of structured programming.
Second, I want to show you the flow charting symbols I will be using in the
chapters to follow. And, last, this chapter will serve as an overview of the
total software architecture of the system. A thorough understanding of
how the home control program is organized is very important if the
remaining chapters are to be easily digested.

Structured programming is the best thing to happen in the computer
industry in a long time. It has turned programming from an art into a
science. You hear all sorts of key words and phrases in a discussion of

65

66 The Software Part 11l

structured programming. Two of the most important are modular and top
down design.

Actually, structured programming is really so logical that after you
have been exposed to it you will probably find it very simple and obvious.
The real key to building a structured program is to plan the entire program
completely before any code is written. To plan completely, you must fully
define the problem.

In the past two sections of the book, I have tried to define the
problem of home control, or at least my approach to it. Since the problem
has been broken down into its fundamental parts, it will be easy to write
the program in modules called subroutines. Each subroutine will solve the
problems found in each of the fundamental parts.

This principle of structured programming does not stop here though.
Each subroutine should be further divided into simpler problems that will
also be solved by additional subroutines. And those subroutines can be
further divided, and so on. This process, starting at the top and working
down, should continue until the tasks to be solved are trivial.

Figure 13.1 shows the symbols used to indicate tasks. Simple tasks
are represented by just a box. If the box has vertical lines on each side, it
indicates a subroutine. The subroutine boxes should be described in more
detail by using a separate flow chart. A slanted box indicates an input or
output operation.

The process previously described will yield a program made up of
fundamental actions that are linked together to build larger and more
complex actions. This linking is accomplished with logical control struc-
tures. We will call these constructs for short. Figures 13.2 through 13.5
show the primary constructs we will be using. Modules A, B, and C
represent tasks and are used for example purposes only.

The IF-THEN-ELSE construct is used to decide which of two

PROCESS
OR TASK

INPUT OR
OUTPUT
PROCESS

Figure 13.1 These symbols will be
used to identify functions in the home
control flow charts.

SUBROUTINE

Chap. 13 The Software Organization 67

BEGIN

IF
CONDITION
TRUE

THEN

Y Figure 13.2 The IF-THEN-ELSE
control structure is the basis for all
decision making.

modules, or groups of modules, is to be executed based on some
condition. Many BASIC interpreters have such a statement. Applesoft
only has an IF-THEN, but it can be used along with a GOTO to perform
the IF-THEN-ELSE.

A special case of the IF statement occurs if we wish to do one of
several things depending on the value of some variable. Figure 13.3
describes such a situation using IF statements. Figure 13.4 shows the
much easier to follow construct, the CASE of X. In both of these
situations, module A is performed if X = 1, module B is performed when
X = 2, and module C is performed when X = 3.

Some of the most powerful constructs are based on a loop structure.
There are three forms of loops. These are the WHILE, the UNTIL, and
the ITERATE loop. Although any of the three loops can be created using
only IF and GOTO statements, Apple BASIC only has ITERATE loops.
Applesoft implements them using FOR/NEXT statements. To keep things
as simple as possible for the reader, I have chosen to use only ITERATE
loops in this book. The symbol I will use for a loop is shown in Figure 13.5.
The dotted line is shown here only for clarity. Normally it will be omitted.

The architecture of the home control program is going to be top
down, as I have described. At the bottom of the pyramid of tasks will be
those that are very basic and fundamental. As it turns out, these
fundamental tasks are very important for several reasons.

They are important primarily because they form the center core of the
program. Knowing how they work will provide you with a true under-
standing of how larger tasks can be created by linking smaller ones

68 The Software Part lll

Figure 13.3 The IF-THEN-ELSE can
be used to select more than just two
alternatives.

CASE
X =
L A
2 B >
< c >
y
N\
A
Figure 13.4 Special constructs provide
diagrams that are easier to read and
END follow than combinations of IF-THEN-

ELSE blocks.

Chap. 13 The Software Organization

BEGIN ’

ITERATE
| FROM
1TO 20

69

Figure 13.5 To keep the flow charts
from looking like spaghetti, loops will
be drawn as shown, but without the
dotted line.

together. They are also important because they provide an easy means to
transfer the home control program to a system other than an Apple

computer.

Examples of the fundamental tasks are dialing the phone, recognizing
a spoken word, pausing for a specific period of time, and pushing a button

LINE NOS. USE
1-99 MAIN PROGRAM

100-149 CHECK FOR PHONE RINGING

150-199 CHECK FOR SOUND CHANGE

200-249 DELAY SC SECONDS

250-299 CHECK FOR OWNER CODE

300-374 SAY MESSAGE NUMER ME

375-399 INITIALIZE SPEECH LINK

400-449 DELAY BASE ON DE

450-474 CHECK FOR WIRELESS MIKE ON

475-499 LOAD TIME TABLE

500-524 TURN THINGS ON BY PHONE

525-599 TURN THINGS OFF BY PHONE

600-649 READ TIME

650-699 DIAL PHONE

700-749 STATUS REPORT

750-799 PUSH BUTTON BU ON BSR

800-849 RECOGNIZE VERBAL YES/NO

850-899 RECOGNIZE A WORD

900-949 MAIN INITIALIZATION

950-999 VARIABLE INITIALIZATION
1000-1999 PROCESS VOICE COMMANDS
2000-2999 PROCESS PHONE CALLS
3000-3999 PROCESS SECURITY FLAGS
4000-4999 PROCESS TIME TABLE
5000-5999 | TIME TABLE SUBROUTINES

Figure 13.6 This table summarizes
where each module in the home control
program is located.

70 The Software Part Il

on the BSR unit. Each of these routines is very short and is explained
individually in Chapter 14. If any of the major modules wishes to perform a
fundamental task, it simply calls that subroutine. If your computer or
peripheral operates differently than mine, you can change the appropriate
-fundamental subroutines and have the program working on your system
with minimal effort.

Figure 13.6 shows the line numbers reserved for different areas of the
home control program. The main program lies between lines 1 and 99. The
fundamental subroutines occupy from 100 to 999. The major modules are
each given 1000 possible lines. There is nothing special about my choices
in this matter. Other line numbers could just as easily have been used.

In addition to the BASIC program, we will also need a machine
language program to process interrupts and an area of memory to store the
vocabulary templates for the Speech Link. Both of these situations will be
discussed in detail in later chapters. At this point, however, you can refer

HEX USAGE DECIMAL
0000 0
APPLE SYSTEM
0400 1024
SCREEN MEMORY
0800 2048

HOME CONTROL
MACHINE LANGUAGE
SUBROUTINES
0BB8 3000
SPEECH LINK
DATA STORAGE

19CE 6600

HOME CONTROL
BASIC PROGRAM
AND VARIABLES

9600 38400

DISK OPERATING SYSTEM

C000 49152
INPUT/OUTPUT Figure 13.7 This memory map shows
D000 53248 where each section of the home control
BASIC INTERPRETER program resides. Note that the normal
Apple LOMEM has been altered to
F800 61440 make room for special programs and

FFFE SYSTEM MONITOR 65535 e

Chap. 13 The Software Organization 71

to the memory map in Figure 13.7 to see the areas of memory reserved for
different parts of the home control system.

You should now have a good overview of how the software is
organized. The main program consists primarily of a few GOSUBS that
call the major modules in the proper order. These major modules use
constructs to link together the fundamental tasks in such a manner that an
intelligent system is created. In the next chapter we will look at the
fundamental tasks in detail.

The Primsny 14
Tasks

A primary task in the home control system is one of the fundamental
functions used to build larger modules. These simple, almost trivial actions
form the foundation of the entire system. The tremendous power of the
home control program comes from the intelligent linking of subroutines
that perform the actions required to solve trivial tasks.

In this chapter I wish to cover all the primary tasks in considerable
detail. A good understanding of these tasks and how the computer
performs them will aid you greatly when we look at the major modules in
later chapters. The name of each task and its starting line number were
given in Figure 13.6. The actual program listings can be found in Appendix
A. Let’s look at each of them separately.

The first module, as its name implies, checks to see if the phone is
ringing. Anytime the main program wants to know such information, it will
call this subroutine. This subroutine, as well as several others, will use the
variable YES to pass status information back to the calling program. In
this case, when the program returns, the variable YES will equal a 1 if the
phone is ringing and a 0 if it is not.

As previously mentioned, you can refer to Appendix A to see the
code for this module. It begins at line 100. As you can see, it is very short,
so short in fact that no flow charts will be used to describe this or any of
the fundamental tasks. The subroutine is very simple. First, the phone is
assumed not to be ringing, so YES is set to 0. A FOR loop causes the

72

Chap. 14 The Primary Tasks 73

system to check a location of the Micromodem card 30 times. The variable
RING has been set equal to the actual address of this location.

This Micromodem location is special. It was designed to contain a
number smaller than 128 whenever the phone is ringing. The program
checks for such a situation and sets YES equal to 1 when it exists.

At this point, I hope you are thinking, ‘‘Boy, he wasn’t kidding when
he said the fundamental tasks would be simple.”” Remember, if you
happen to be using a different commercial device for detecting a ring, you
will need to change this routine. Once that is done, any module that needs
to know if the phone is ringing will GOSUB 100 and check the value of the
variable YES upon return.

If you do not wish to buy special hardware, you should refer to back
issues of such magazines as Byte, Microcomputing, and Micro. These
magazines are filled with many interesting and informative articles that can
aid those of you that wish to design and construct circuits of your own. Of
course, my hardware chapters have given you some ideas, but I suspect
many will wish to alter my initial ideas to match particular objectives.

You should also check the book section of your local computer store.
There are many books available on subjects ranging from telephone
projects to interfacing the Apple computer. I point all this out because you
should now realize how simple it is to adapt my program to any hardware
you might have or want to build.

For completeness, I should discuss the magic number 128. Many
peripheral input pins, such as the location RING and the Apple game
connector input pins, are each connected only to the most significant bit of
an input port. The remaining 7 pins are left unconnected and therefore
appear to be random 1°s and 0’s when read. Any external event forcing the
most significant bit to 0 will appear, when read, as a number smaller than
128, no matter what state the rest of the bits are in.

The second fundamental task is to check for a changing sound from
the microphone and its associated amplifier discussed in Chapter 9. This
subroutine also passes its answer in the variable YES, like the ring
detection module. It is not quite as easy though to detect a change as it is a
simple presence.

The problem is as follows. Usually, when no one is talking, the input
pin will be zero. For example, if someone called and just quit talking, the
input pin would stay low. If they hung up, though, the dial tone would be a
continuous sound that would result in a 1 on the input pin. To ensure that
someone is still talking, the computer must check to see if the input pin is
alternating between 1 and 0.

To do this, the subroutine starts by assuming there is no change,

74 The Software Part 111

which again means that YES is set to 0. The location SOUND has been set
to the address of one game connector input pin. Depending on whether
SOUND contains a number greater or less than 127, the temporary
variable S(6) is set to a 1 or a 0. For a couple of seconds the system loops
and checks to see if the location SOUND still contains the same informa-
tion. If it does not, a change has occurred and the variable YES is set to 1.

This subroutine does not return as soon as it detects a sound, but
always checks for the same period of time. This will provide an easy
means to monitor how long a call is taking. Using this information, the
phone module (Chapter 17) can easily impose a maximum limit on the
length of recorded messages. The listing for this fundamental task, as for
all the others, is in Appendix A.

There are two delay routines, one at 200 and another at 400. Let’s
look at both of them now. The one at 200 will delay a number of seconds
equal to the contents of the variable SC. It performs this task by setting up
the variable DE and calling the general-purpose delay routine at 400.

You might be wondering why I did not use the clock for these
routines. For many situations the clock would be excellent. Remember,
however, that my clock is only accurate to 1 second. The delay at 400 is
accurate to one cycle of the FOR loop, about 1/400 of a second. This
accuracy was needed to time the 30-second message tape. If the tape
stopped a half-second early each time, it would not take many phone calls
to have it starting up in the middle of the message.

There is one line that I did not mention in the explanation. It PEEKSs
at the location SANITY. This statement will occur throughout the home
control system. Its purpose is to reset the system sanity timer as discussed
in Chapter 7.

At line 250 we have a subroutine that checks for the special tone
sequence described in Chapter 11. The principle of its operation is not very
difficult. The program monitors the same microphone as the subroutine at
line 150, which detects sound changes. The difference is that this module
will measure how long the first sound, the first pause, and finally the
second sound last. The relative lengths of these three periods are stored in
the variables I, J, and K. This is done in lines 262 through 286.

At line 292 the measured values are checked to see if they are within
tolerance of the code values. If they are, then YES is set to 1; otherwise it
is set to 0. The lines prior to 262 are used to wait for a sound to start. If it
does not start within a few seconds, the subroutine will return with YES
equal to 0. .

The PRINT statement at line 293 is not required for normal operation.
If you are changing your code or starting up your system for the first time,

Chap. 14 The Primary Tasks 75

you may use this line to help you decide on your ranges forI, J, and K. The
easiest way to do this is to simply call your computer while you are out
running an errand and play your tone sequence. Since it will not match, the
computer will hang up on you; but when you get home, it will have printed
the values it found on the screen and you can alter lines 294 through 298.

The Say a Message module at line 300 may appear to be long at first,
butthe program itself is really very short. Most of the listing is made up of
the messages. To use the message module, you need only to set the
variable MESSAGE equal to a number between 1 and 64 and call this
subroutine. Not only will the corresponding message be said, but the delay
routine will be called to force a pause so that the message and the program
will stay in sync.

This need to stay in sync may not be very obvious, so let me discuss it
further. Suppose the computer asks you a question such as, ‘“What do you
wish me to do to the floodlights?’’ You would be expected to respond by
saying either “‘Turn it on’’ or ‘‘Shut it off.”’

Once the computer has sent the message to the speech synthesizer, it
will then enable the speech recognition unit in order to hear your reply. If
the system begins ‘‘listening’’ too early, it will hear itself talking. This is
possible because of the buffer in the voice synthesizer. If the wait is too
long, you might begin speaking before the system is ready to listen. The
solution to this problem is to have the computer pause whenever it speaks
for just the right amount of time.

Line 303 is used to enable the speech synthesizer. Depending on the
variable MESSAGE, one of the print statements will send a phrase to the
synthesizer. If MESSAGE is 1, line 311 will be executed. If MESSAGE is
2, line 312 will be spoken. Each print statement must end with a RETURN
in order to send the program flow back to line 306.

In line 306 the variable SC is set to an element in the array MT. The
variable MESSAGE is used to select which element is to be used. Each
element in the array has been initialized to equal the number of seconds
required to say each corresponding message. When the subroutine at 200
is called, a pause of SC seconds will be generated. Note that the delay
routine we are using is also one of the fundamental tasks.

By reading through the messages, you can see the phrases that my
house can say. You can easily customize these to give your home the
personality you desire. If you wish, you can add additional messages in
lines 365 through 374. If you need more than ten additional messages to
customize your home, you will have to expand line 305.

The last thing done in this module is to turn off the speech synthesizer
using a PR#0 command.

76 The Software Part 11l

The next task is to initialize Speech Link. The Speech Link voice
recognition system needs to have memory set aside for work space. It also
needs to know where the word templates are stored. Once all this has been
done, a control ‘I’ must be sent to the slot holding the Speech Link
board.

If you own a Speech Link, you can get a full description of what is
happening in this module from your manual. If you are using some other
recognition system, I will not bother you with the details about mine.

The subroutine at line 450 checks to see if the wireless mike is on. It
looks at the Apple game connector pin that is connected to the wireless
mike (see Chapter 4) and sets the variable YES equal to 1 or 0 depending
on the value found. Whenever the wireless mike is off, the RF radiation
from my early model Apple keeps the input pin high, which means that the
reading will be 128 or greater. If the mike is turned on, the receiver locks
onto the carrier, and the reading will drop to 127 or lower. Because of this,
I can get the computer’s attention by just turning on the microphone.

If you are using a later model Apple or any computer that is well
shielded, or if you have a different type of wireless mike than mine, you
may have to alter this routine somewhat, although I doubt it. If you should
need to make changes, you will just have to experiment a little with your
equipment. In general, though, if my subroutine is not suitable, the Check
For Sound Change routine at line 150 should work if the variable SOUND
is replaced with the variable VOICE. Copy it at line 450 and make the
appropriate changes.

Don’t forget that the sensitivity of the hardware discussed in Chapter
4 can be varied using a potentiometer.

Atline 475 there is a subroutine to perform another fundamental task.
In this case it loads a two-dimensional array from disk. This array contains
the time table information that the main program will use to control the
automatic actions preprogrammed by you. A complete discussion of the
contents of this array will come later. The listing for this subroutine is
relatively short. The variable D$ is equal to a control ““D’’ as required by
the Apple for recognition of disk commands.

We need to skip ahead just a little in the program listing to the module
at line 750. This routine utilizes a machine language program (details in
Chapter 20) to ‘“‘push’’ a button on the BSR unit. To use this subroutine,
the variable BU should be set to the appropriate code for the button
desired. The codes were listed in Figure 8.4.

The subroutines at 500 and 525 are used to turn things ON and OFF
using the telephone. They both use other fundamental tasks to help

Chap. 14 The Primary Tasks 77

perform their functions. These subroutines are only called if the main
program has determined that something is to be controlled. Let’s look first
at the Turn On By Phone module.

The program immediately goes to the subroutine at 540. Using the
Say Message task, the computer will say, “Give me a yes to each valid
device’’ (message 38). A FOR loop is then used to say the seven items that
my program can control from a telephone. After each is said, the caller can
respond by saying the word ‘‘no”’ or playing the proper tone sequence for
a “‘yes.”” The subroutine at 250 is used to check for the code. If a YES was
given (YES = 1), the correct button on the BSR will be pressed.

When all seven items have been said, a RETURN sends the program
back to line 510. At this point the ON button is pressed, which will turn on
every item whose button was pressed earlier. The only difference in the
OFF subroutine is that the OFF button is pressed in line 534. The power of
using fundamental tasks to create more powerful functions should be
becoming very clear. If it is not clear at this point, I urge you to study the
listings in Appendix A for the modules discussed so far.

At line 600 there is a routine that will read the time from the clock
circuit discussed in Chapter 6. This time is stored in two ways. The first
way uses the array T(X), where X ranges from 0 to 6. When this subroutine
is exited, T(1) and T(0) will contain the present time in seconds. T(0)
contains the least significant digit. Likewise, T(3) and T(2) contain the
minutes information. The hours are found in T(5) and T(4). T(6) will
contain a number from 0 to 6 indicating the day of the week.

Each of these digits is read using the subroutine at line 620. It sets up
the proper data direction on the I/O port, sends the proper address, and
reads in the digit desired. During the read operation the clock is disabled
from counting so that false reads will not occur. The variables used here
are A, B, CA, and CB, which represent data registers A and B and their
associated control registers.

A small machine language subroutine (Appendix B) is called from line
630. Its purpose is to mask the top four bits of the digit being read to 0.

Line 616 converts the present time in minutes and hours to a single
number, which is stored in the variable TM. Since my clock chip adds 4 to
the most significant digit of hours if the time is P.M., each time will have a
unique TM. If you are using a different clock board, simply replace this
routine with one that reads your clock and puts the appropriate data into
the variables T(X) and TM. If you do write your own routine, don’t forget
to indicate A.M. and P.M. by adding 4 to the most significant hours digit to
indicate P.M.

78 The Software Part Ill

The Dial the Phone module does exactly as its name implies. Before
calling this routine, PN$ should be set equal to the desired phone number.
Line 655 activates the D.C. Hayes Micromodem, which is in slot MSLOT.
The phone is actually dialed by sending a control Q, the phone number,
and a line feed to the modem. When the modem receives this sequence, it
will dial and attempt to communicate with a computer at the other end of
the line.

Since we don’t want such a communication to take place, the modem
must be instructed to hang up by sending it a control Z. This would
normally disconnect us from the phone line. To solve this problem, we
activate the intercom phone in line 665 before the control Z is sent. The
variable TN is the game connector pin controlling the phone. TN stands
for telephone on. Location TF turns the phone off.

After the modem is completely turned off with a PR#0, the variable
S5 is set to a 1. This serves as a flag to other modules so they will know
that the phone is off the hook.

At line 700 there is a module to verbally report the present status of
the house. Variables S8 and S9 keep track of the number of outside and
inside triggers of the security sensors This module uses the Message
module to notify you of any security problems if S8 or S9 are not equal to
0. It also uses the variable NC (number of calls) to let you know how many
phone calls have occurred that day.

Three modules are associated with the Speech Link voice recognition
unit. The initialization routine at line 375 was discussed earlier. The other
two are at lines 800 and 850. Let’s look at 850 first.

This routine is highly dependent on the Speech Link. If you own one,
the code should be obvious. If not, you will have to create a similar
program to perform the same functions. Lines 858 to 865 cause the Speech
Link to wait until a word is spoken. If the word is recognized, it is stored in
the variable W$. If no match is found, W$ will be an empty or null string.

If recognition does not occur, the computer will respond (line 870) by
asking you to repeat your request. The rest of this routine is a little
peculiar and will require a little more information about the Speech Link
system.

The Speech Link not only puts the recognized word in W$, but it also
puts the number of the word recognized in a location we can PEEK at.
Since I said each word three times during training, I needed to map three
different word numbers into the desired number. This is accomplishd by
the formula in line 875. Essentially, if the peeked location contains a 0, 1,

Chap. 14 The Primary Tasks 79

or 2, the word number (WN) will be 1. If itis 3, 4, or 5, then WN will be 2.
This continues for all the possible words.

You could set WN using IF-THEN statements, but this feature of the
Speech Link is much more efficient. A second feature of the Speech Link
is selective recognition. This means that the word to be recognized can be
compared to less than all the words in the vocabulary. This is not always a
useful feature. In many cases, however, an intelligent program can
determine that the next input should be one of several particular words.

For example, if the command given to the house is a room name, like
kitchen, the system will ask, ‘“What do you wish me to do to the kitchen?”’
It will expect you to give only one of the following four commands.

Turn it on
Shut it off
Dim it
Nevermind

The first three obviously control the light. Notice that I have tried to
make each command sound as different as possible. The last command is
used to get out of the sequence. It is used primarily to cancel a
misunderstood command. Suppose you said ‘‘kitchen’ and the house
replied, ‘““What do you wish me to do to the bedroom,” because it
misunderstood the word ‘‘kitchen.”” By replying ‘‘nevermind’’ the com-
mand will be aborted.

Since only four different words are expected, the system can be much
more accurate if it compares a spoken word to only the four possible and
not to all 63 in the vocabulary. To select which words to use during the
recognition process, the Speech Link has a table that starts at the location
specified by the variable MASK.

Lines 880 to 890 set each element of the table equal to zero so that the
corresponding word will be ignored during the recognition process. Any
module wanting to recognize a word will be required to set up the MASK
table for the words it expects before calling this module. Since the home
control program is intelligent, it will always know what type of command
or response it expects from you.

I should remind you that this chapter makes no attempt at explaining
how actions such as the preceding one are accomplished. The intelligence
of the system will be explained in detail in the chapters that follow. All you
are expected to understand now is what each fundamental task does.

80 The Software Part 1l

The last task associated with the Speech Link resides at line 800. Itis
very similar to the word recognition module, except a control V is sent to
the Speech Link before and after a word is recognized. The control V is
used to toggle the speech system into and out of a special form of
recognition. In this mode it can recognize only two words, ‘‘yes’’ and
““no.”

As in other modules with such a response, the variable YES will be
set to a 1 for “‘yes’” and a 0 for ‘‘no.” This mode is particularly nice
because it is speaker independent and does not require training.

At line 950 there is a module that initializes all the major variables.
Refer to the listing in Appendix A as I discuss the use for each variable.

In lines 955 to 960, PF, PN, RF, RN, TF, and TN stand for tape
PLAYER off/on, tape RECORDER off/on, and PHONE off/on. Any
access of these variables, such as a PEEK or a POKE, will perform the
named operation. Refer to the appropriate hardware chapters for more
information on the use of these game connector locations.

The variable VOICE is equal to the location that indicates whether
the wireless mike is off or on. Similarly, SOUND is a location that
indicates if a noise exceeds the preset threshold. Lines 965 to 967 establish
which slots the Speech Link, the Voice Synthesizer, and the Modem are
in. RING is the Micromodem location that indicates if the phone is ringing.

At line 969 the array SP contains the Security Phone numbers. These
numbers will be called in case of an emergency. Lines 970 to 971 set up the
addresses for the PIA ports, A and B, and their respective control
registers. The next line sets SANITY equal to the address of the system
sanity timer. There will be accesses of the sanity timer throughout the
program so that it will not cause a reset.

The array MT stands for message time. It is initialized to the number
of seconds required to say each message in the lines 973 to 975. Next, N1$
and N2$ are set to the names of the two people for whom you have set up
vocabularies. The respective vocabularies must be saved on disk under the
same names.

Lines 979 to 980 set up the array DAY as the days of the week. PN$
in line 981 holds the phone numbers you can ask the computer to call. If
you have single-digit dialing on your phone, you may increase the dialing
speed by using a one-digit code.

Lines 984 to 986 establish the variables TEEN$ and TN$. These will
be used to allow the Speech Synthesizer to announce the time correctly.
Lines 987 to 992 set up the addresses for the tables, work space, and
control characters used by the Speech Link.

Chap. 14 The Primary Tasks 81

Line 993 dimensions the time table array TT. This table will contain
the events that should occur automatically, as well as their scheduled
times. The appropriate codes mentioned in Chapter 8 for the BSR buttons
are put in the array BU at lines 995 to 996.

The control codes used by the Modem are established in line 997.
Line 998 makes sure that the phone and the two tapes are all off.

This completes the fundamental tasks required to control the hard-
ware for the computerized home. All that is left to do is to see how these
tasks can be linked together to create an intelligent system.

The lnitializationls
Module

In this and the following five chapters I am going to discuss the major
modules that actually form the home control program. As you recall from
earlier chapters, these modules are initialization, voice request, phone
control, security, event timing, and monitor movement. The initialization
module is run only once and then control is passed sequentially among
each of the other modules until conditions indicate that a particular
function is needed.

These chapters will be presented differently than Chapter 14, which
covered the fundamental tasks. Each of the tasks was small and, although
important, they were lacking in overall complexity. The tasks are also the
most probable sections of the program to be rewritten if your system is not
identical to mine. For these reasons, the fundamental tasks were discussed
in the context of their actual code.

The major modules are much larger and more complex. Rather than
exploring their code, I will discuss them in terms of flow charts. Even
though they are more complex, you should not hesitate to examine them.
As you will see, their increased complexity does not necessarily mean that
they must appear more complicated. Remember, these modules are little
more than a series of control structures that link the fundamental tasks
together in such a manner that a larger goal is accomplished.

Figure 15.1 shows the flow chart for the initialization module. The

82

INITIALIZATION

INITIALIZE
VARIABLES

INITIALIZE
SPEECH LINK

LOAD MACHINE
LANGUAGE
PROGRAMS

LOAD SPEECH
LINK
VOCABULARY

LOAD
APPROPRIATE
TIME TABLE

$1=3 NOT HOME

S2 =0 ASLEEP

S3 =0 WAKE UP
CALLON

$4=0 SECURITY
ALARM ON

S6=0 PHONE OFF

$8=0 NUMBER OF
OUTSIDE PROB.

§9=0 NUMBER OF
INSIDE PROB. |

NC =0 NUMBER OF

PHONE CALLS

IS ANYONE
HOME"

ISIT
BETWEEN
8AM AND
11PM

S1=1
STATUS
UNKNOWN S1=2 AT HOME
S2=1 AWAKE
|' $3=1 NO WAKE UP
S4=1 ALARM OFF
SET ALARM
EQUAL TOS4
ENABLE
INTERRUPTS

RETURN

Figure 15.1 The initialization routine makes appropriate choices, even ifno one
is home.

84 The Software Part Ill

first two items are calls to fundamental tasks to initialize the variables and
the Speech Link hardware. Next the module loads the machine language
portions of the home control program, including the vocabulary templates
for the Speech Link. The final disk transfer is used to load the appropriate
time table (depending on what day it is).

Except for enabling interrupts, the rest of this module is used to
initialize some very special variables that are used as flags or status
indicators. The contents of these flags provide a means for the system to
remember important status information. The primary status variables will
be S1, S2, .. ., S9. I will define each of them as they are initialized in the
flow chart.

S1 can be one of three values. If it is a 2, it means someone is home. A
3 means the computer thinks the house is empty and a 1 means that the
status is unknown. At this point in the initialization, S1 is set to 1, thus
making the assumption that no one is home.

The variable S2 can only be a 1 or a 0. A 0 means that everyone is
asleep, while a 1 indicates they are awake. The initial assumption is that
they are asleep.

Both S3 and S4 are alarm indicators. S3 is for alarm clock or wake-up
calls, while S4 refers to the security or burglar alarm. In both cases a 0
means the alarm is on, whereas a 1 indicates off.

S5 is a 0 whenever the phone is hung up and a ! if it is in use. S8 and
S9 keep track of how many outside and inside security breaches have
occurred while the house was empty. A special variable NC is used to
keep track of the number of phone calls. S6 and S7 are reserved for
temporary variables and do not have any global significance.

Once the computer makes the initial assumptions and sets the flags
accordingly, it then attempts to confirm or change as many of the
assumptions as possible. It will do this primarily by asking verbally if
anyone is home. To prevent the system from waking you in the middle of
the night just to confirm its decision, I added an additional check.

If the clock shows that people should be sleeping, the computer will
not make the announcement. Instead, it will alter only the S1 flag to show
that the status is unknown. If the clock indicates that people should not be
sleeping, it proceeds to ask if anyone is there.

If someone responds to the question by turning on the wireless mike,
four of the flags are changed. The house will now assume someone is
home, that they are awake, and that no alarms have been set.

The last portion of this module POKES the security alarm value of S4

Chap. 15 The Initialization Module 85

into a memory location called ALARM. This location is used as a flag to
the machine language portion of the home control system and causes it to
act differently depending on the value. The actions of the machine
language program will be discussed in Chapter 20.

You can refer to Appendix A to see the actual code used to
implement this and the other major modules of the home control program.
The initialization module begins at line 900.

The Yoice
Request Module

The purpose of the voice request module is to provide a means to
control the house using verbal commands. Because of its complexity,
much of this module is broken down into submodules, which are in turn
made up of primary tasks.

Figure 16.1 shows the first-level flow chart for the main module.
Let’s examine the chart in detail. You can refer to Appendix A for a
complete listing of the program if you wish to see how the flow chart is
implemented in code.

The voice request module begins by using a fundamental task to
determine if the wireless microphone is on or off. If the mike is off, the
control returns to the main program loop. If the mike is on, it means that
someone wants to verbally command the house to do something.

Assuming someone turned the microphone on, the flags are set to
show that someone is home and that they are awake. The security alarm is
shut off, as is the wake-up call function. These operations are repre-
sentative of how the home control program is intelligent. The user does not
have to ‘‘tell’’ the computer that he is home or that she is no longer in bed.
These conclusions are ‘‘inferred’” by the system.

If, for example, you wake up early and ask the computer to turn on
the bedroom light, it will automatically, because of the flags, act different-
ly. It will not try to wake you up later as it was scheduled to do. It won’t

86

PROCESS
VOICE REQUESTS

1S
MICROPHONE
ON

THEN

RETURN

S1=2 S2=1
S3=1 S4=1
ALARM =S4

HANG UP

""HANG UP"

SET MASK
1-13

A WORD
RETURN

1,2,3,4,5,6,0R7

> CONTROL —‘

8 TIME OF
DAY =
THEN
RETURN 9 DIAL
- PHONE

“ANYTHING
ELSE |
CAN DO"

CONVERSE —>

YES/NO 1 CHANGE

VOCABULARY

12

GOODNIGHT | |

13

—> BYE BYE

“GOODBY
RETURN

Figure 16.1 This section of the voice control module passes control to one of
seven submodules.

88 The Software Part 1l

mind if inside security sensors are triggered because it will now assume it
is you and not an intruder.

Thenextitemin the flow chart is to check to see if the phone is off the
hook. This needs a little explanation before we look further at the flow
chart. Later in this chapter and in Chapter 17 we will find that you can
command the computer to dial or answer the phone for you and place the
call on the intercom phone. Once that is done the program will set a flag to
indicate that the phone is off the hook, and it will proceed to handle other
tasks.

The assumption will be that if you are talking on the phone you will
not be giving verbal commands to the house. Consequently, whenever the
phone is off the hook and the computer sees the microphone on, it will
assume that the phone call is over and it will terminate the call. This may
seem complicated now, but it will seem simpler after we have discussed it
in more detail later.

For now, we can see from the flow chart that if the microphone is
turned on while the phone is in use, then the computer will hang up, say it
has hung up, and set the flag to indicate that the phone is no longer in use.

At this point in the flow chart we can assume that someone really
wants to give the computer a verbal command. The command must be one
of the 13 that is expected, so the mask is set to only allow recognition of
the proper words. A fundamental task is called to do the actual recogni-
tion. This task, as discussed in Chapter 14, will set the variable WN (word
number) equal to the appropriate number between 1 and 13.

Depending on WN, control is passed to one of seven secondary or
submodules that process the command given. We will look at each of these
modules in a moment. For the sake of continuity, though, let’s complete
our discussion of Figure 16.1. After the appropriate secondary module
performs its task, the flow proceeds down the flow chart.

If a flag shows the phone is off the hook, which would indicate that
the system has just been requested verbally to make a phone call, then the
program returns to continue processing other tasks. Otherwise, the
computer asks if there is anything else you want and waits for a verbal yes
or no. If YES, it says that it is ready and waits for a new command. If NO,
the system will say goodbye and return to loop until another situation
requires attention.

You should note that the computer always responds verbally to the
commands you give. When a human talks to a machine, some type of
feedback to the user is very important in order to convey that the machine
is understanding.

Let’s look at each of the seven secondary modules that execute the

Chap. 16 The Voice Request Module 89

verbal commands. The first of these is the control module. It is called
when the word spoken was one of the items that can be controlled, such as
office, stereo, or bedroom. The flow chart for this module is shown in
Figure 16.2.

In the first block of the flow chart we can see that the variable BU is
set to the correct button code for the BSR unit. The button codes were
stored in the BU array during initialization. The word number WN is used
to select the correct code.

The computer uses a fundamental task to ask what you wish to do to
the item specified. Since the name of the item being controlled is stored in
the variable W$, the house can call the item by name. The mask is then
prepared to recognize only one of four words. The acceptable words are
“turn it on,” ‘‘shut it off,”” ‘‘dim it,”” and ‘‘nevermind.”’ Another
fundamental task is called to determine what you responded with. I should
point out that the words ‘‘on’” and ‘‘off”” were not used alone because the
recognition system had trouble telling them apart.

This is a good time to reemphasize the importance of the fundamental
task subroutines. They handle all the drudgery associated with the task. In
this case, for example, if the human response is not recognized, the task
subroutine will ask you to repeat the answer. This verbal response from
the computer is handled by still another task, which also takes care of all
the little details associated with its job. With the tasks taking care of all the
details, the major modules become not only simple to understand but also
very easy to write.

Let’s continue with the flow chart. If the user’s response was
“‘nevermind,’’ the program simply returns to the main module. Otherwise,
we can be sure that WN is 14, 15, or 16, because those were the only words
that were acceptable. Since the item in question is going to be turned ON,
OFF, or DIMMED, a fundamental task first ‘‘presses’ a button to select
the item.

Control is then passed to one of three sections of the module to press
the ON or OFF button or in the case of DIM to press the button 50 times.
This completes the control module.

If the verbal command is ‘‘Time Please,’’ the time of day submodule
is called. Figure 16.3 shows the organization of this routine. It first calls
the read time task in order to set the array T to the individual digits.

These digits are analyzed, converted to their English equivalents, and
announced verbally by the speech synthesizer. You can refer to the flow
chart to see how this is accomplished. The reason for it should be obvious.
Suppose the time is 10945. If the synthesizer read those numbers, you
would have to translate them yourself.

The Software Part 11l

90

CONTROL

BU = BU (WN)
WT$ = W$

“WHAT DO
YOU WISH ME

TODO TO
THE” WT$

SET MASK
14-17

RECOGNIZE
A WORD

THEN

RETURN

PRESS BU
ON BSR

CASE
WN=

14 (ON) 15 (OFF)

16 (DIM)

BU =28

BU =20

BU=18

PRESS
BU

“NOW ON"

RETURN

RETURN

ITERATE

1TO50 /

“NOW
DIMMED"

PRESS
BU

ITERATE

PRESS
BU

“NOW OFF"

RETURN

Figure 16.2 This submodule allows youto control lights using verbal commands.

READ TIME
ASSUME AM
THEN
IF PM
CONVERT
STRINGTOPM
I
IF THEN
) V—I
HOURS = T(4)
]
IF THEN
T(5)=1
HOURS = TEEN
EQUIVALENT
OF T(4)
|
IF
T(3) & T(4) THEN
=0
MINUTES =
""CLOCK"
]
IF THEN
T(2) >0 -]
MINUTES = T(2)

IF THEN
T@) =1

MINUTES = TEEN
EQUIVALENT
OF T(2)

|

IF THEN
L I

MINUTES = TENS

EQUIVALENT
OF T(3) PLUS
OLD MINUTES
J
USE STRINGS
TO ANNOUNCE i S
TIME Figure 16.3 The numeric time from

the clock must be converted to its
string equivalent so that the voice
synthesizer can properly announce it.

RETURN

91

92 The Software Part Il

The program will convert 10945 into ‘‘“Monday 9 forty five A.M.”
This string of characters will be used by the voice output task to announce
the time.

If the input word was ‘‘telephone,’’ control is passed to the submod-
ule shown in Figure 16.4. The computer begins by asking who you wish to
call. Since there are only five acceptable answers, four names or places
plus ‘‘nevermind,’’ the mask is set to allow only words with numbers 17 to
21.

The task to recognize a word is called again, and if the answer is not
“‘nevermind,’’ then message task states that the phone call is being made.
The number is looked up in the array PN$ and then dialed by a

VOICE CTL
OF PHONE
“WHO DO YOU
WISH TO CALL"”

SET MASK
17-21

l

RECOGNIZE
A WORD

RETURN

“I AM NOW
CALLING"”

LOOK uP
PHONE NUMBER

DIAL PHONE

I

SET FLAG
S5=1
(OFF HOOK)

Figure 16.4 Using this module, you
can ask the computer to call someone
for you.

Chap. 16 The Voice Request Module 93

fundamental task. Finally, a flag is set to convey the information that the
phone is off hook to other modules.

The conversation mode is entered in response to the command ‘‘are
you busy?’’ This module simulates a conversation between you and the
house. All the questions asked by the computer expect a YES or NO
answer, or some short phrase that is ignored. There is no real intelligence
displayed here except that the computer’s response will be appropriate for
YES or NO answers. This mode was added more for fun than to serve a
useful purpose. If you don’t want such a mode, you can easily add another
command or extra phone numbers for verbal calling. I think if you try it
though you might find it has some value.

I find it most useful when someone visits that has heard about my
“‘computerized home’ and yet knows nothing about computers. They
seldom are impressed when it dials the phone or turns on lights, but they
never cease to be amazed when it appears to be conversing with me.

This module is actually very simple as it is made up only of a couple
of fundamental tasks. Refer to Figure 16.5 to see how the conversation is
created. :

The next submodule allows you to change vocabularies while the
program is running. Since the Speech Link must be trained for each user, I
placed two vocabularies on the disk. In my case, one of these is saved
under the name JOHN and the other as WANDA. Chapter 21 discusses
some utility programs, one of which can create these vocabulary files.

A couple of techniques are used here that make the house seem
intelligent. Initially, the variables N 1$ and N2$ are set equal to JOHN and
WANDA, respectively. Whenever the house is talking, it refers to the
person as N1$. For example, it might say, ‘“What can I do for you ‘*‘N1$*’?
This makes the comments much more personal.

When training my vocabulary, I said all my commands but one. I had
Wanda say the phrase, ‘‘This is Wanda.’’ Likewise, in her vocabulary I
said the phrase ‘‘This is John.”” If when the computer says, ‘‘What can I
do for you ‘“N1$’’? the variable N1$ is JOHN, then Wanda can respond
with ““This is Wanda.’’ The recognition of that phrase as a command word
will send control to the change vocabulary submodule shown in Figure
16.6.

As you can see from the flow chart, the computer will apologize to
Wanda (or the alternate person) and then load her vocabulary. Afterward
the contents of N1$ and N2$ are exchanged so that everything works
equally well for either person.

The next command is ‘‘goodnight.”” When this command is issued,

94 The Software Part 11l

CONVERSE

“DID YOU
HAVE A GOOD
DAY"

YES/NO

THEN

/ “I'M SORRY" / [”THAT’S GREAT"/

“DID SOMETHING
SPECIAL HAPPEN"

YES/NO

“I KNOW HOW

YES/NO
YOU FEEL"”

"THAT'S

INTERESTING"

“COULD WE GET
A COMPUTER"

YES/NO

THEN

[Fow] []

"“GOT TO
GO NOW”

RETURN

Figure 16.5 The simulated
conversation provided by this module
can really impress a nontechnical user.

Chap. 16 The Voice Request Module 95

CHANGE
VOCABULARY

"EXCUSE ME"
N2$
“LET ME CHANGE
VOCABULARIES)"

LOAD
VOCABULARY
FOR N2$

I

EXCHANGE
N1$ & N2$

Figure 16.6 My system will allow two
separate vocabularies to alternate

automatically, depending on who is
talking to the computer.

GOOD NIGHT
“I WILL WATCH
THE HOUSE"”

S2=0 ASLEEP

S4=0 ALARM ON
ALARM = S4

ENABLE INTERRUPTS

“SHALL |
WAKE YOU”

YES/NO
IF THEN
YES]
S3=1
WAKE UP ON
S3=0
NO WAKE UP
“IWILL
WAKE YOU”

“I' WILL LET
YOU SLEEP”

RETURN

Figure 16.7 Telling the house
‘‘goodnight’’ tells the system to adjust
the status of the alarms.

RETURN

96 The Software Part 11l

the system will assume you are going to bed. As you can see from Figure
16.7, it will first tell you that it will watch the house for you. This means
that the security system is enabled.

The flags are set to indicate that you are asleep and the security alarm
is on. The machine language program that handles security (Chapter 20) is
notified of the change by poking ALARM with the value of S4. By

BYE BYE
“ARE YOU
LEAVING”

YES/NO
IF THEN
NOT YES j
S4=1
NO ALARM
S1=-3 ALARM =S4

NO ONE HOME
NC=0
RETURN

“SHALL | HANDLE
SECURITY FOR

You”

YES/NO

IF THEN

NOT YES

“I WILL WATCH
THE PHONE"
"I WILL TAKE
CARE OF

EVERYTHING” -1
ALARM OFF
ALARM =S4
WAIT 45
SECONDS
|
S4=0
ALARM ON
ALARM = S4
ENABLE
INTERRUPTS

Figure 16.8 When you leave, the
house will set flags so that it will

answer the phone and handle security.

Chap. 16 The Voice Request Module 97

enabling the interrupts we are insured that the machine language program
is operational.

The system will ask if you wish to be awakened in the morning.
Depending on your answer, the wake-up flag is altered and the appropriate
verbal response is given.

The computer will continue to remember that youare asleep and the
status of the wake-up alarm until one of two things happens. If the house
was instructed to wake you, it will verbally try to arouse you at the correct
time. This will be discussed in detail in Chapter 19. At that time the system
will assume that you are awake and adjust all the appropriate flags.

The second way that the flags can be altered is for someone to turn on
the wireless mike and try to issue a command. As mentioned earlier, such
an action will cause the house to assume that you have gotten up early.

The last verbal command is ‘‘bye-bye.’’ I used this instead of ‘‘good-
bye’’ because it was easier for the system to tell it apart from ‘‘good-
night.”” Figure 16.8 shows the flow chart for its implementation. It begins
by asking you if you are leaving. If your answer is ‘‘no,’’ it turns off the
security alarm and returns.

If you said ‘‘yes’’ you were leaving, then it sets up a flag to indicate
that no one is home. This flag will be used primarily by the telephone
answering module and the automatic event scheduler. These modules will
be discussed in detail in later chapters.

The house will then ask if you want the security alarm on. If not, it
announces that it will handle phone calls, sets the appropriate flags, and
returns. If you answered ‘‘yes,’’ it acknowledges your request and waits
for 45 seconds so that you can get out of the house before it turns on the
alarm.

This concludes the discussion on the modules that process the verbal
commands. Although you should now understand how the commands are
carried out, I expect that some of the interactions this module has with
other modules might still be a little confusing. I suggest that you read on
and get the details on the other major modules first and then return to this
chapter if you are still unsure of some details.

The Phone 17

Sontrol Module

We saw in the last chapter that you could verbally command the
phone to place a call for you. In this chapter we are going to examine the
module that handles incoming phone calls.

Figure 17.1 shows how this module begins. A major task is used to
determine if the phone is ringing. If not, the program returns and continues
the major loop. If the phone is ringing, two things happen.

First, a variable that keeps track of the number of phone calls is
incremented. This variable will be used later in the status report module to
tell you how many calls have been received.

The system must now decide what to do about the call. This depends
on the status flag S1. Depending on its value, control will be passed to one
of three sections of this module. These three sections handle three
different situations, which are ‘‘someone home,”’ ‘‘no one home,’’ and
“‘unsure if anyone is home.’’ This last situation could occur only if there
had been a power failure and the system had to be reinitialized.

Let’s look at each of these situations individually. I will start with
section A, which is shown in Figure 17.2. It handles the phone when no
one is home, which means it must function like an answering machine. It
begins by turning on the intercom phone and the tape player. This is done
by POKEing the appropriate game connector addresses. The system then
waits in a loop for just enough time for the endless loop message tape to

LR

98

Chap. 17 The Phone Control Module 99

INCOMING
PHONE CALLS

CHECK
FOR RING

THEN

RETURN

©

INCREMENT
NUMBER OF
CALLS

CALLS
S1=

e

(NO ONE HOME)

(SOMEONE HOME) Figure 17.1 When the phone rings, the
phone may be handled in one of three

(STATUS UNKNOWN) —

finish. My timing loop is based on my tapes, which may be different from
yours. Experiment with the delay a little to get it just right for your system.

At the time when the tape should be finished, the player is turned off
and the recorder is turned on. Immediately, the system begins watching
for the special code that indicates that you are calling. If it does not get the
proper code as the first sound, it records the caller’s message and turns
everything off. Although a maximum time is allotted for each message, the
system will hang up early if there are no changes from the sound sensor.

If it was determined that it was you calling, the system reacts by
turning off the recorder and asking if you want a status report. Again it
checks for the special code. If it does not occur, the status report task is
not called.

It then will ask you if you want to turn something on. If you give the
code for YES, a task module is called to let you select the items to be
turned on. Similarly, you are given the choice to turn off items in the
house. When all this is complete, the house will say ‘‘good-bye’’ and hang
up.

Section B of this module is shown in Figure 17.3. It handles calls
when you are at home. It begins by asking you if you would like for it to get

100

PHONE ON
PLAYER ON

WAIT LENGTH
OF TAPE

PLAYER OFF
RECORDER ON

CHECK FOR
CODE

WAIT 60 SECONDS
OR UNTIL NO
CHANGE FOR

3 SECONDS

RECORDER OFF
PHONE OFF

RETURN

RECORDER OFF

“DO YOU WANT
A STATUS
REPORT"

CHECK FOR
CODE

THEN
STATUS
REPORT
J
“WANT
SOMETHING
TURNED ON"
CHECK FOR
CODE
IF THEN
YES
ON BY
PHONE

“WANT
SOMETHING
TURNED OFF"

CHECK FOR
CODE

“GOODBYE"

RETURN

The Software Part 111

Figure 17.2 If no one is home, the
house becomes an answering machine
that can also accept commands from
you,

Chap. 17 The Phone Control Module 101

“SHALL |
GET THE
PHONE"

WATCH MIKE
FOR MAX OF
3 SECONDS

RETURN

PHONE ON

SET FLAG
$6=1

Figure 17.3 Even if you are home, the
house can help when the phone rings
by turning on the intercom phone.

the phone for you. The system will wait about 3 seconds for your reply,
which in this case is simply turning on the wireless microphone.

If you fail to turn it on in the prescribed time, the house will assume
you answered the phone yourself and will tend to other tasks. If the mike
did come on, the system will turn on the intercom phone so that you may
talk with the caller. A flag is set so that all modules will know the phone is
presently turned on.

Figure 17.4 shows how section C handles a call if the system is unsure
if anyone is home. It waits for several seconds to give you a chance to
answer the phone. If it is still ringing, it assumes that no one is home and
proceeds to section A to handle the phone call in the proper manner.

Even though it assumes you are not home if the phone is still ringing,
it will not assume the opposite if the ringing has stopped. The reason for
this is that it is possible that the caller just hung up. This means that,
although the house can assume incorrectly at times, I have tried to make
the default assumptions the best choice.

In this case, for example, an assumption of you being home when you
are not would cause the burglar alarm to be deactivated. Since I find this
inexcusable, my system will not allow it. The opposite case, however,
assuming you are away when you are really home, is acceptable. If you do
happen to be home and you set off the alarm, you can easily deactivate it.

102

7

WAIT 3
SECONDS

CHECK
FOR RING

S1=3
ASSUME NO
ONE HOME

®

THEN

RETURN

The Software Part 11l

Figure 17.4 If the computer is unsure
of whether you are home, it will take
advantage of a ringing phone to find
out.

Remember that this type of assumption is not an everyday occur-
rence. It can only happen if there is a power failure at night and you
receive a phone call before morning that hangs up early. If the power
failure happened during the day, the system would have verbally inquired
to see for sure if anyone was home. After all, your house should be polite
and not wake you in the middle of the night just to see if you are home—
even if that means a potentially incorrect assumption now and then.

The Security 18
Module

Many of the capabilities of the home control system can be consid-
ered a bit frivolous. After all, how many people do you know with a house
that talks to them? The security aspect of the system, though, is very
practical. If you price a full-featured commercial security system for your
home, you may find the computerized home to have some attractive
economical advantages, especially when you consider all its other capabil-
ities.

I don’t wish to imply that the security program offered here will
provide total security. With custom changes in the program, however, its
capabilities can be increased to almost any degree that you wish.

You might be asking yourself why I did not publish the ‘‘perfect’”’
security module. The answer is really very simple. First, as you see from
the module given, I think the best security must be designed to function in
a particular environment. The best for my home would probably not be the
best for yours.

The second and probably the most important reason for not publish-
ing the perfect security module is that, if you can read it to see how it
works, then an intruder can also read it to see how to overcome it. My
intention will be to show you a workable security system. Using it as a
guide, I hope you will customize it to meet your particular needs.

In my system there will be several groups of sensors that can indicate
a security problem. The doors and windows should have some kind of

103

104 The Software Part 1l

magnetic or contact switches. Refer to Figure 18.1 to see how these
switches may be connected to an input port on the computer.

Most input ports will ‘‘float’” high, which means they will read as a 1
if nothing is connected to them. If this happens not to be true for your
ports, you can force it to happen by using a SK pull-up resistor as shown.
Such a resistor is always a good idea, even for ports that float high.

Since the port will normally be high, any closure of a switch will short
it to ground and cause a 0. Sensory switches may be purchased in normally
open or normally closed varieties. This means that you can have a 0
indicate that the door is open or closed, depending on your choice of
switches.

You can add an inverter between the switch and the port if you
cannot find the type of switch that you prefer. In all my examples, a 0 on
the port will indicate a security problem. You should also notice from the
figure that you do not need a separate input pin for each switch. By
paralleling all the window switches, for example, any window opening will
force a 0 at that pin.

Another type of sensor should be used to indicate outside movement.
This could be an ultrasonic motion detector or an infrared beam that
triggers if broken. There are even sophisticated sensors on the market that
can detect the body heat of someone near your home. The type of sensor
or sensors you choose will depend on your home and its surroundings. I
will assume that the appropriate external sensors have been paralleled so
that we have a single pin indicating external movement.

Similar types of sensors could also be used inside the house to

+5V

5K —

mMALLY

- OPEN

E+
C

P =S Figure 18.1 The security switches may
J-_— NORMALLY ‘157404 I be combined in many combinations as
- CLOSED required.

ZERO INDICATES A SWITCH
IS PRESSED

Chap. 18 The Security Module 105

SECURITY

IF
SECURITY
FLAG
ON

RETURN

IF
DOOR FLAG
ON

THEN

“IS THAT
YOU JOHN"

IF
OUTSIDE

FLAG
ON TURN DEN
LIGHT ON
WATCH
MIKE FOR
10 SECONDS
ELSE THEN
4 \
©) © O
OUTSIDE INSIDE OWNER
PROBLEM PROBLEM ENTERING

Figure 18.2 If the security flag has been set, the indicator flags will be checked
and an appropriate action taken. (a) When you come home, you are asked if you
want a status report, which summarizes the day’s activity, including such things
as the number of phone calls received. (b) An inside problem requires drastic
measures. The computer will call you and your neighbors and inform them of the
situation. (c) In response to an outside problem, the house will attempt to scare off
an intruder by turning on lights and playing the radio.

indicate internal movement. Since I have floor switches already installed, I
decided to let them act as the internal sensors when the security alarm was
on.

All the security port inputs will be ORed together so that any of them
can trigger an interrupt. This will run a machine language program that will
set up several memory locations to indicate whether there is a security
problem and, if so, if it was a door or window or if the problem was
internal or external.

The details of the machine language program and the interrupt
circuitry will be discussed in Chapter 20. For now, let’s just assume we
can make such determinations. The flow chart in Figure 18.2 shows the
security module.

106 The Software Part 111

“DO YOU WANT
A STATUS
REPORT"

YES/NO °

LIGHTS ON
IN BEDROOM
DEN OFFICE

AND KITCHEN

TUS

0K - ORT
GOODBYE REPEAT TWO
FOR NOW" TIMES

CALL NEXT
NUMBER

- CLEARALL
S1=2 MACHINE
S2=1 LANGUAGE
S3=1 FLAGS GIVE
S4 = WARNING
S8=0] MESSAGE
S9=0
SECURITY =0 INCR EMENT
- NUMBER OF
WINDOW = 0
MISC. = 0 INSIDE HANG UP
DOOR =0 PROBLEMS
NUMBER OF RETURN
PEOPLE IN DEN - SEVCAO'LSS
EQUAL 1
Figure 18-2A Figure 18-2B

A PEEK at the proper location will first determine if any security
problems have occurred. If not, the program returns to its normal state of
looping. If a problem is indicated, another location is checked to see if it is
a door opening. Since my doors are heavily deadbolted, the house will
assume that a door opening means that I have come home.

The house will react to my presence by turning on a light and asking if
it is me. If the wireless mike is not turned on within 10 seconds, it will
assume that I am an intruder. More on this in a moment. If the mike is
turned on, the house asks if I want a status report. Depending on my
answer, either one is given or the system says good-bye. Finally, all the
flags are set to appropriate conditions. This includes such things as
someone being home, that there is one person in the den, which is where I
normally enter the house, and that the alarm is now off.

Chap. 18 The Security Module 107

7

BEDROOM ON
STEREO ON

WAIT 15
SECONDS

OUTSIDE
LIGHTS ON

|

WAIT 15
SECONDS

RN

ALL LIGHTS
ON

CLEAR ALL
MACHINE
LANGUAGE
FLAGS

i

WAIT 60
SECONDS

TURN
EVERYTHING
OFF

;iiiiiiiiiii;
Figure 18-2C

Backing up the flow chart, we can see what would have happened if
the security problem had not been a door. The system will then check to
see if outside movement caused the indication. If so, it turns on various
lights and the radio in the hope that an intruder will assume someone is
home and leave.

In this example, the same thing is done if the intrusion is in the
daytime or at night, if you are home or if you are away. I figured the radio
would work either day or night and that if I was home I would certainly be
warned of an external intruder by all the lights flashing, even if I was
asleep.

You could easily modify this module so that special sequences could
occur for different situations. Remember, there are task modules that can

108 The Software Part Il

easily turn on or off any light, wait for a specific amount of time, dial the
phone, or do almost anything else that you would want to do.

Going back to the original flow chart, we can see that if the problem
was not the door or an outside movement then it is assumed that an
intruder is inside the house. In this case, several lights are turned on and
phone calls are placed sequentially to the phone numbers established
during initialization.

Since the intruder and the person called on the intercom phone can
both hear the message, we will want something that will not only inform
the person being called that a break-in is occurring, but that may also serve
as a deterent to the intruder. My message indicates that the owner has
already been contacted and that now someone else is being called. This
type of activity should convince almost anyone that some other house is
better suited for a robbery than yours.

Please don’t hesitate to customize this section to meet your needs.
Carefully study the code that implements these charts and I think you will
see how simple programming is when you use task modules.

The Eveat
Timing Module

The event timing module adds the ability to automatically schedule
events such as waking you up in the morning or controlling the lights to
give a lived-in look while you are away. I have 20 events in my program,
but you can easily add more or alter mine to your preference.

The heart of this module is the time table array. It is stored in the
program under the variable name TT(I,J). Figure 19.1 shows how this two-
dimensional array is organized. The index J allows access to any row in the
table. Each row contains the information for scheduling one event.

The index I provides access to one of three columns in each entry.
Column 1 holds the time that this event should occur. Column 2 always
contains the number 1, 2, or 3, which indicates if this event should be done
always, only if someone is home, or only if no one is home. The third
column contains the number of the actual event to be scheduled, which in
my case is between 1 and 20.

A utility program is described in Chapter 22 for creating and editing
the time tables. You will need to create seven tables, one for each day of
the week. These tables are stored on diskette and are named TT.0 for
Sunday’s table, TT.1 for Monday’s, and so on. This allows you to have
total flexibility when scheduling events. Such flexibility will not only
create a more lived-in look when you are away, but it can also add to your
convenience when you are home.

For example, the house could be used to remind you on Thursday

109

110 The Software Part 11l

1 FIRST EVENT

J 2 SECOND EVENT
TIME FOR | conpiTION| EVENT
3| _EVENT CODE NUMBER
TO OCCUR

L

Figure 19.1 My time table can handle
up to 20 preprogrammed events per
LAST EVENT day. Each event can occur based on

I several conditions explained in the text.

mornings at 8:15 that you should pick up doughnuts for the office. It might
announce the bedtime for the kids at 8:30 on weeknights and 9:30 on
weekends. Even the morning wake-up calls are handled using an event in
the time table array. The possibilities are endless. Use your imagination.

One very economical use I found for the time table was controlling
my heating system. Since I already had a usable BSR system for remote
control, I decided to use it to control the heat. An inspection of my
thermostat showed that the OFF switch simply disconnected it from the
furnace. I used a 12-volt multipole relay to perform the disconnection
when activated. A 12-volt wall transformer provides the power for the
relay. The secret of my control is that the wall transformer is just plugged
into a BSR remote unit. This means I can enable the furnace by pressing
buttons on the BSR command console, or the computer can do it using my
BSR interface.

Using this method, you cannot really turn down the heat. Either its
off completely or it runs normally based on the thermostat. I found,
though, that I could leave the heat off entirely from the time I went to bed
until 15 minutes before I got up and never notice the drop in temperature.
Granted, my house is well insulated and I use an electric blanket. If you
have problems with the temperature dropping too low, you can easily
schedule the heat to come back on several times during the night for 10 or
15 minutes.

Figure 19.2 shows the list of my events. You can see that they are
very easily implemented because they are almost entirely made up of calls
to the primary tasks. You should also notice that the wake-up call

Chap. 19 The Event Timing Module 111

EVENT
NUMBER ACTION

1 TURN DEN LIGHT ON

2 TURN DEN LIGHT OFF

3 TURN KITCHEN LIGHT ON

4 TURN KITCHEN LIGHT OFF

5 TURN FLOODLIGHTS ON

6 TURN FLOODLIGHTS OFF

7 TURN OFFICE LIGHTS ON

8 TURN OFFICE LIGHTS OFF

9 TURN ALL LIGHTS ON

10 TURN ALL LIGHTS OFF
1 TURN STEREO ON

12 TURN STEREO OFF
13 TURN HEAT ON
14 TURN HEAT OFF
15 WAKE UP CALL
16 ENABLE INTERRUPTS
1; ?SSS%NEBE(;Q{IWEUGHT on Figure 19.2 The events in the time
19 TURN BEDROOM LIGHT OFF tgble can be chosen from the list of
20 DISABLE INTERRUPTS Figure 19.1. You can, of course, create
any activity that your needs dictate.

subroutine is conditional based on the flags S2 and S3, which indicate if
someone is awake and if the sleep alarm is on. The sleep alarm, remember,
was set when you used the verbal command ‘‘goodnight.”’

There are a couple of requirements concerning the construction of a
time table. First, a special numbering system must be used to indicate the
time an event is scheduled (column 1). Figure 19.3 shows some example
translations you should use if you are using my clock. The reason for these
is that my clock, as discussed in Chapter 6, adds 4 to the most significant
digit of the hours to indicate p.M.

My event timing algorithm requires that the times from my clock from
midnight to midnight be in numeric order. The automatic addition of 4000
to p.M. numbers by my clock helps to make this true since P.M. numbers
will always be larger than A.M. numbers. To have proper order, I also had
to convert 12:00 to zero or 4000, depending on whether it was A.M. or P.M.

What this all boils down to is that the time 8:12 A.M. should be

ACTUAL TABLE
TIME ENTRY
MIDNIGHT 0
12:15 AM 15
8:00 AM 800
8:12 AM 812
11:30 AM 1130
NOON 4000
12:30 PM 4030
00,5V 4100 Figure 19.3 Standard times must be
8:12 PM 4812 . .
11:20 PM 5120 converted for use in the time table.
Some example entries are shown.

112 The Software Part 1l

entered into the time table as the number 812. Ifit was 8:12 p.M. you would
use 4812. If your clock has a 24-hour format, you can eliminate much of
the preceding. I decided to write my program for a 12-hour clock to
provide more information for those using other hardware.

PROCESS
TIME TABLE

ALL ENTRIES

RETURN

READ TIME

LOAD TIME
TABLE

I

WAIT TILL
™ =1

IF
STILL TOO
EARLY

THEN

RETURN

YES

DO
ALWAYS

IF
AT HOME
STATUS DOES
NOT AGREE

THEN

INC TP

RETURN
PERFORM

APPROPRIATE
EVENT

INC TP

Figure 19.4 Each item in the time

table is processed sequentially. A table
pointer (TP) keeps track of the present
position.

Chap. 19 The Event Timing Module 113

The second requirement of the time table is that all entries have to be
in chronological order. The reason for this is that my algorithm does not
search the table to find events that need executing. This would be too time
consuming for my sequential system. If the events are in order, it need
only check to see if it is time for the next event. If not, it loops again to see
if any other modules require attention. Once an item is executed, a pointer
(the variable TP) is moved on to the next entry in the table.

Figure 19.4 shows the flow chart for the event timing module. If all
the items in the present table have been completed, the system returns
without any further checking. If the time is zero (midnight), then it is time
to load a new table. The system clock is checked to see what day it is, and
the corresponding table is transferred from the disk.

If the present time is smaller than the time of the item presently being
considered (pointed to by TP), nothing happens. Once the time equals or
exceeds the scheduled time, the item is processed depending on whether
the present ‘‘at home status’’ matches column 2 of the table. In any event,
the pointer TP is incremented to the next line of the table.

The Monitor 2[]
Movemeat Module

For the average reader of this book, this module will probably be the
hardest to understand. It is not that this section is really any more difficult,
but because of the speed requirements it is written entirely in machine
language. Even if you are not familiar with machine language, though, I
think you can understand the principles here by following the flow charts.

You will recall from Chapter 18 that all the security and under-the-
carpet switches are connected to the Apple interrupt pin. When any of
these switches are activated, a machine language program is automatically
run. This chapter discusses that program. Even though this program can
be viewed pretty much as an independent package, it must communicate
with the other major modules in the home control system.

The major information passed to this module from the main program
is whether the security alarm is on or off. Location 822H will serve as a
flag to the machine language program and contains a 0 when the alarm is
on. A 1 will indicate it is off. BASIC can turn the alarm on and off by
POKING location 2082, which is the decimal equivalent of 822H.

The machine language program has the responsibility of performing
one of two different tasks depending on the status of the alarm. If the alarm
is on, the input port must be read and the cause of the interrupt
determined. Four memory locations are used to keep track of the number
of violations that have occurred at a door, window, outside, or at the
miscellaneous switch mentioned earlier.

114

Chap. 20 The Monitor Movement Module 115

Whenever the program determines that a window has been opened,
for example, it will increment the location associated with the window
violations. In this case the location is 820H or 2080 decimal. If a door
switch caused the interrupt, location 81FH would be incremented.

In addition to a location for a door, window, and so on, a second
location will also be incremented. This location is 81DH. Its use was
discussed in Chapter 18. The main program will not take the time to check
each flag for the doors, windows, and so on, unless the security flag
(81DH) is greater than 1. It is the responsibility of the main program to
clear each of these locations after the security problem has been attended
to.

The second task given to this module is to handle interrupts when the
alarm is off. In this case, the switches to be monitored are those under the
carpets. Refer to Figure 10. 1 for the placement of my switches. They were
arranged by trial and error to get a spot that would always get stepped on
when someone walks between rooms.

It takes the tripping of two switches to determine movement. For
example, if the computer determines that switch 1 was pressed followed
by closure at switch 2, it should be obvious that someone left the den and
went to the bedroom. A pulse from switch 2 followed by switch 3 would
indicate movement from the bedroom to the office.

There are of course some other possibilities. Two people could have
tried to enter the hall from different rooms at the same time. Such actions
will definitely confuse my house. In practice, though, I found that such
occurrences were very rare. I can easily tolerate such errors, especially
since a foolproof system would be immensely more complicated.

The computer must keep track of the number of people remaining in
each room and tend to the lights accordingly. To control lights, a
submodule of this program is used for producing the BSR codes as
described in Chapter 8.

Figure 20.1 shows the flow chart for the complete machine language
module. When an interrupt occurs, the program first saves all the 6502’s
registers. It then waits for about 1 millisecond to let any contact bounce
from the switches subside. Then the switches are read from the port. If
none are pressed, the program assumes that noise caused the interrupt and
returns to the original program by way of DONE.

If a switch is pressed, the program handles it in one of two ways,
depending on the status of the alarm byte. If the alarm byte is a 0, meaning
on, the security section is performed. If it is a 1, the internal switches are
checked.

Let’s look first at the flow chart for the security section in Figure

116

INTERRUPT

SAVE
REGISTERS

I

WAIT 1 ms
(DEBOUNCE)

READ SWITCHES

(INTERNAL

(SECURITY)

SWITCHES)

\/
o)

IF
A SWITCH IS
STILL PRESSED

WAIT .1 msec

1

RESTORE
REGISTERS

RETURN FROM
INTERRUPT

The Software Part 11l

Figure 20.1 The interrupt program
passes control to one of two sections
depending on whether the security
alarm is on or off.

20.2. Each bit in the input byte is checked to see which switches are
pressed. Everytime a closed switch is found, the appropriate indicator
byte is incremented. Finally, a byte is incremented to indicate to BASIC
that some kind of security problem has occurred. The program then
returns through DONE.

Chap. 20 The Monitor Movement Module 117

If the alarm is off, only the internal switches need monitoring. Figure
20.3 shows the details of this section. If one of the internal switches is not
pressed, the program returns. The normal action, though, is for the
program to determine which switch (0, 1, 2, or 3) is pressed and save it as
the FROM room. The program then waits until that switch is released so
that it will not be read as the second switch.

If someone is actually moving from one room to another, a second
switch should be pressed fairly quickly. I have my program watch for the
second switch for about 2 seconds. If the second press does not occur in
the allotted time, a return is forced.

The second switch is stored as TO. We now have the room number
that someone came from and the room they went to. Four locations are
used as counters to keep track of how many people are in each room. A
room that is entered for the first time will have its light turned on, while a
room that is empty will have its light turned off. As an effort to correct
errors on its own, the system will not decrement the number in a room
below 0.

A special subroutine called SSONIC is used to “‘press’’ the buttons
on the BSR controller. This routine presses each button twice to ensure

IF
OUTSIDE
SWITCH

THEN

SET OUTSIDE
FLAG

IF
DOOR
SWITCH

SET DOOR
FLAG

IF
WINDOW
SWITCH

SET WINDOW
FLAG

<—.J

SET SECURITY
FLAG

Figure 20.2 Security problems cause

flags (memory locations) to be changed.
The main program monitors these flags
and takes the appropriate actions.

118

IF
NOT AN
INTERNAL
SWITCH

THEN

DONE

SAVE “FROM"
ROOM

IF
A SWITCH

ISSTILL
PRESSED

WAIT .1 msec

REPEAT
FOR TWO
SECONDS

IF
INTERNAL
SWITCH IS
PRESSED

END LOOP

TURN THAT
LIGHT ON

| -

THEN

SAVE “TO"
ROOM

INCREMENT
NUMBER IN
“TO" ROOM

DECREMENT
NUMBER IN
“FROM” ROOM

IF
“TO"” ROOM
HAS ONE
PERSON

THEN

TURN THAT
LIGHT OFF

| -

IF
“FROM"”
ROOM IS
EMPTY

(DONE)

Figure 20.3 Internal movement is monitored so that the system can turn lights on

and off as required.

Chap. 20 The Monitor Movement Module 119

reliability. Typically, SSONIC sends the code in the accumulator. BASIC
also uses this routine by POKEing the code to be sent into location 2093
and CALLing 2300. Refer to Chapter 8 to review what the requirements of
SSONIC are.

Although the BASIC portion of my home control program does not
utilize all the information created here (such as the number of people in
each room), you could use PEEK statements to retrieve it if you should
want such data for your modifications.

As I said at the beginning of this chapter, this portion of the program
looks more complicated than it is simply because it is written in machine
language. If you take the time to go through it using the flow chart, I think
you will find it very easy to follow, even if you are not a programming
whiz.

The principles used here can be utilized for most houses, especially if
you only want to automate the lights in three or four major rooms.
Actually, a few rooms are usually very acceptable. If you do need more
rooms, you will have to make extensive modifications to the program, but
the basic principles still apply.

The key thing to remember here is that the only things implemented
in machine language are the things that absolutely require it. The security
flags are a good example of this. The machine language program only sets
the flags. BASIC still is used to determine what action is to be taken. This
approach provides the speed and flexibility of machine language interrupts
and still maintains the ease of modification of BASIC.

The computer’s capability to monitor movement, either inside or
outside the house, is contingent on interrupts, Because of this, you can
easily stop the monitoring by telling the Apple to ignore interrupts. For the
convenience of persons requiring this action, I have provided two rou-
tines, which are also listed in Appendix B. To use them from BASIC, just
CALL 2058 to enable interrupts and CALL 2075 to disable them.

Instslistion
300 Msinteasace

In previous chapters I have covered each module of the home control
program. Unlike many pieces of software, you cannot just type these
programs into the computer and run them. Many of the modules require
special data tables or machine language sections.

Not only do we need a means to create and maintain these items, but
we also have to reserve sections of memory for them to fit in. This chapter
will offer a number of programs that can aid us in these tasks.

First, refer to Chapter 8, where we discussed the hardware needed to
build your own clock. Although the home control program contains the
subroutines needed to use the clock, you will also need a program that will
allow you to set the time and to test the clock by observing it in operation.

Appendix C contains a listing of a program to perform these tasks.
When it is run, you are asked if you wish to set or observe the clock. The
program is very short and is well commented to help you see how each
section works.

The next program maintains the speech recognition system. As was
discussed in Chapter 4, the Speech Link has to be trained by each user.
The words and their templates can be stored on the disk so that programs
can utilize speech input without being retrained each time they are run.

The program in Appendix E can be used to create these templates, as
well as to perform several other useful tasks. For instance, it provides a

120

Chap. 21 Installation and Maintenance 121

means for you to test different words in a vocabulary. This will allow you
to try substitutes for a word that is hard to recognize and then to retrain
and test the vocabulary. The program also serves as a structured tutorial
for many of the functions of the Speech Link.

You can try new words by altering the DATA statements. I use each
word three times to increase the recognition capabilities. Each word must
be different if Speech Link is to differentiate among them, so I create two
additional words by adding a period and an exclamation point to the
original word.

If you retrain the words without reinitializing, the Speech Link will
average the present templates with the new word. Further information can
be obtained from the Speech Link manual for those of you that plan to use
it in your home control program.

We also need to create the time tables used for the event timing
module. The program to do this is shown in Appendix D. Like the other
maintenance programs, this program is menu driven and self-prompting to
make it easy to use. It not only allows you to create but also to edit the
time tables specified in Chapter 19.

Each of these programs is well commented and almost self-explana-
tory. Because of this, as well as the fact that they are only maintenance
programs, I will not go into lengthy explanations of their operations. I
think you will find them pleasantly easy to follow if you decide to examine
them in detail.

Now that we have looked at how the data sections for the home
control program are created, let’s see how the space for these sections is
reserved. To put the initialization procedure into proper perspective, we
need to pause for a moment and reexamine the requirements of a system
start-up.

If you refer to Chapter 7, you will remember that the failsafe system
will force a reset whenever the software becomes so ‘‘insane’’ that it can
no longer keep retriggering the system sanity timer. This reset must cause
the disk to reboot. The HELLO program, the one that runs automatically
after a boot, must set up everything required and then run the home
control program itself.

This HELLO program is our next topic. You can find a complete
listing for it in Appendix F. The program is actually very short, but it
performs several vital functions. First, it must POKE a 0 into the power-up
byte, which is decimal 1012. Doing this will make an Apple with an
autostart ROM reboot if a reset occurs.

The program must now reserve the space for the machine language

122 The System Part IV

sections of the program. It does this by POKEing a new LOMEM address
of 6600 into locations 103 and 104. In addition, a 0 must be stored into 6600
to meet the requirements of Applesoft.

When this is done, the area from 2048 to 6600 is no longer used by
BASIC and is free for our machine language programs and data. You can
refer to your Apple documentation for more details concerning the
movement of the start of a BASIC program.

The last thing the HELLO program must do is to RUN the home
control program, which will in turn load all the appropriate data and
machine language programs into the space just created. The sanity timer
will be triggered just before each disk operation to ensure that a reset will
not occur during the transfer.

At this point you should be able to install the home control system
software in your Apple. First, initialize a diskette with the HELLO
program just discussed. That diskette should also contain all the programs
listed in the appendixes. Use the maintenance programs to create the
required data tables and you are all set.

For the convenience of those persons not wishing to spend their
weekends typing, you may receive a diskette prepared as just described by
sending $12.50 to

John Blankenship
P.O. Box 47934
Doraville, GA 30362.

Expsasions 22

300 Enhsacements

In the last 21 chapters I have described a complete home control
system that can automate your home. I have tried to create a system that
offers as much power per dollar as possible. Wherever I could, I used
commercially available equipment so that tinkering with hardware would
not be a major undertaking when computerizing your home.

I have tried to design the system so that it is not only cost effective
but also usable. No matter how many features I add or how many ways I
come up with to make your home easier to live in, I suspect that each of
you will want to change one little item here or add something there.

And because of that, my most important goal when creating the
system was to make it easy to alter and expand. Everything is modular,
and although interaction between modules is essential, I hope you will be
able to make your modifications as painlessly as possible.

Although I believe that modifications can be relatively easy, there is
no way around the fact that you must understand my system in order to
make them. And you must understand it in detail. I believe the proper use
of this text can provide you with that understanding.

There are many areas open to you for expanding the system, and this
book would not be complete if it did not at least mention a few. One of the
easiest to implement would be to add an automatic lawn sprinkler system.
BSR has recently added an electric valve to their list of accessories. With
it, some plastic pipe, and the proper entries into the time tables, you have

123

124 The System Part IV

established the basis for the system. To make it intelligent, you might
connect some type of moisture-sensitive resistance to the Apple paddle
ports. Your program could then decide if the grass needs watering and
then use the clock to decide when during the day to actually perform the
operation.

The Apple paddle inputs could also be used to make my suggested
heating system more intelligent. For example, a thermistor could enable
the software to determine the temperature in the house and therefore
provide a more elaborate basis for controlling the heating system.

If you interfaced a smoke detector to an input pin, your house could
deal with a fire in a manner similar to how security problems are handled.
There is no way to put a price tag on the safety and peace of mind such a
system could offer.

If you have an electric garage door opener, your computerized home
can decrease the possibility of someone else being able to open it. The
opener could be plugged into a BSR remote. The computer would only
energize the remote during the time you are expected home. Once this is
done, even if someone had the transmitter, they would not be able to
activate the door except for the brief periods during the day when the
computer is programmed to permit entry.

You might also consider wiring your doorbell to an input pin. The
computer could then handle someone at the door in much the same manner
as it monitors the telephone. The possibilities for this one enhancement
can be almost limitless.

In fact there are almost unlimited possibilities in almost every area
you can imagine. So let your imagination run wild. Don’t rule out anything
you are interested in having. Anything and everything is possible. You
might have to make compromises or develop a creative strategy, but in the
end any goal can be met.

Computerizing my home has been one of my most exciting and
rewarding projects. I hope you find the same satisfaction as you computer-
ize yours.

Appendix

Home Conirol
Program

BASIC Portion

E
I

JLIST

1 REM lo==g===========m==a=====s==1|
2 REM ! APPLE II HOME CONTROL !
3 REM ! PROGRAM !
4 REM ! BY !
S REM ! JOHN BLANKENSHIP !
6 REM ! COPYRIGHT JUNE 1982 !
7 REM l======m==a=====casz=======u!
8 REM

9 REM

10 GOSUB 900: REM INITIALIZATION
20 GOSUB 1000: REM PROCESS VOICE REQUESTS

30 GOSUB 2000: REM PROCESS INCOMING PHONE

CALLS

40 GOSUB 3000: REM PROCESS SECURITY INFOR
MATION

50 GOSUB 4000: REM PROCESS NEXT TIME TAB

LE ENTRY
60 GOTO 20: REM LOOP BACK AND DO IT AGAIN

100 REM } o m oo ____ '

101 REM ! CHECK FOR PHONE RINGING !
102 REM ! YES = 1 IF RINGING !
103 REM ! YES = 0 IF NOT !
104 REM R i !
110 LET YES = 0

115 FOR I = 1 TO 30
120 IF PEEK (RING) < 128 THEN YES = 1: RETURN

130 NEXT 1
140 RETURN

125

150
151
152
153
154
155
160
165
170
175
180
185
180
185
200
202
204
205
210
215
220
225
230
250
251
252
253
254
256

258
260
262
264

266
268
270
272

274
276
278
280

282
284
286
288
290
292
293
294
296
298
299
300
301
302
303
304

126

REM L e !
REM ! CHECK FOR SOUND CHANGE !
REM ! FOR PERIOD OF 4 SEC. !
REM ! YES =1 IF CHANGE !
REM e !

LET YES = 0

LET S6é6 = 0

IF PEEK (SOUND) > 127 THEN Sé
FOR I1 = 1 TO 400

]
-

LET S7 = 0

IF PEEK (SOUND) > 127 THEN S7 = 1
IF S6 <« > S7 THEN YES = 1

NEXT I1

RETURN

REM e e = = !

REM ! DELAY OF SC SECONDSs !

REM e R i) 4
DE = 420

FOR S7 = 1 TO SC

LET Z = PEEK (SANITY)
GOSUB 400

NEXT S7

RETURN

RIEMEENISIC oY R R B e 1
REM | CHECK FOR OWNER CODE !
REM | oo e 1
LET YES = 0

FOR I = 1 TO 2000

I1E PEEK (SOUND)> > 127 THEN 262: REM
SOUND STARTED

NEXT I

RETURN : REM NO TONE IN TIME

FOR I = 1 TO 200

IF PEEK (SOUND) < = 127 THEN 270: REM
SOUND STOPPED

NEXT I

RETURN : REM TONE TOO LONG

FOR J = 1 TO 30

1F PEEK (SOUND) > 127 THEN 278: REM
SOUND RESTARTED

NEXT J
RETURN : REM PAUSE TOO LONG
FOR X = 1 TO 100

IF PEEK (SOUND) < = 127 THEN 286: REM
SOUND STOPPED

NEXT K

RETURN : REM ZND TONE TOO LONG

REM AT THIS POINT I,J,&K =

REM LENTH OF TONE1l,LENTH OF PAUSE
REM AND LENTH OF TONEZ RESPECTIVELY
LET YES = 1

PRINT 1,J.K

IF I ¢ 95 OR I > 110 THEN YES = 0
IF J ¢ 13 OR J > 21 THEN YES = 0
IF K ¢ 55 OR K > 70 THEN YES = 0
RETURN

REM 1L == _=s-= 1
REM ! SAY MESSAGE # ME |
REM # = — - ___ '
PRINT : PRINT D$"“PR#"VSLOT

ON MESSAGE GOsSuB 311,312,313,314,315,3
16 ,317,318,319,320,321,322,323,324,325
,326,327,328,329,330,331,332,333,334,3
35,336,337,338,339,340,3491,342,343,344
,345,346,347,348,349,350

305

306
307
308
309
310
311
312

313
314

315
316
317
318

319

320
321

3zz2

323

324

325

326

327

328

329

330

331

332

333

334

335

336
337

338
339

340

341

IF MESSAGE > 40 THEN ON (MESSAGE - 40
) GOsuB 351,352,353,354,355,356,357,35
8,359,360,361,362,363,364,365,366,367,
368.369,370,371,372,373,374
SC = MT(MESSAGE): REM SET DELAY TIME
GOSUB 200
PRINT D$"PR#0"

IF MESSAGE (> 50 THEN Z = PEEK (SAN

ITY)

RETURN

PRINT "“YES "N1s" HOW CAN I HELP YOU": RETURN

PRINT "“CAN I DO ANYTHING ELSE FOR YOU"
RETURN

PRINT “I AM READY": RETURN

PRINT "0 K GOOD BYE FOR NOW": RETURN

PRINT "“WHAT DO YOU WISH ME TO DO TO TH
E "W$: RETURN

PRINT "“THE "“WT$" IS NOW ON": RETURN
PRINT "“THE "“WT$" IS NOW OFF": RETURN
PRINT “THE "WTs$" IS NOW DIMMED'": RETURN
PRINT "WHO DO YOU WISH TO CALL": RETURN

PRINTI ‘I AM NOW CALLING "Ws: RETURN
PRINT "“PLEASE EXCUSE ME "N2s$" I'LL CHA

NGE VOCABULARIES": RETURN

PRINT "“THE PHONE IS NOW HUNG UP": RETURN
PRINT "“NOT RIGHT NOW DID Y

OU HAVE A GOOD DAY": RETURN

PRINT "THAT'S REALLY GREAT": RETURN

PRINT "I'M SORRY ABOUT THAT": RETURN

PRINT "“DID SOMETHING SPECIAL HAPPEN": RETURN
PRINT "WHAT WAS IT": RETURN

PRINT “I NO HOW YOU FEEL

NOTHING SPECIAL HAPPENED HERE EITHER"
RETURN

PRINT "“THAT'S REALLY INTERESTING": RETURN

PRINT "SAY "N1ls$" DO YOU THINK WE COULD
GET ANOTHER COM PEWTER": RETURN
PRINT "“"DON'T SAY NO WITHOUT THINKING I
T OVER EVEN A LITTLE ONE WO
ULD BE O K": RETURN

PRINT "“BOY THAT'S GREAT I wWOULD
LOVE TO HAVE SOME COM PAN E WHEN YOU A
RE NOT HERE": RETURN

PRINT "WELL I'D BETTER GET BACK TO WOR
K I HAVE LOTS OF THINGS PILI
NG UP GOOD BYE FOR NOW": RETURN

PRINT “GOODNIGHT I WILL WATCH THE H

OUSE FOR YOU": RETURN

PRINT "“SHAL I WAKE YOU IN THE MORNING"
RETURN

PRINT "I WILL LET YOU SLEEP IN THEN": RETURN

PRINT "I'LL WAKE YOU AT THE CORRECT TI

ME": RETURN

PRINT "“ARE YOU LEAVING'": RETURN

PRINT "SHAL I HANDLE SECURITY FOR YOU"
RETURN

PRINT "“O K I'LL WATCH THE PHONE FOR

YOU TILL YOU GET BACK": RETURN

PRINT "HAVE A GOOD TIME I WILL TAK

E CARE OF EVERYTHING'": RETURN

127

150 REM ! o mm e e 1

151 REM ! CHECK FOR SOUND CHANGE !
152 REM 4 FOR PERIOD OF 4 SEC. !
153 REM ! YES =1 IF CHANGE !

154 REM L e R R !
155 LET YES = 0

160 LET S6 = 0

165 IF PEEK (SOUND) > 127 THEN S6 = 1
170 FOR I1 = 1 TO 400

175 LET s7 = 0

180 IF PEEK (SOUND) > 127 THEN S7 = 1
185 IF S6 < > S7 THEN YES = 1

180 NEXT Il

185 RETURN

200 REM I !

202 REM ! DELAY OF SC SECONDS !
204 REM e]
205 DE = 4720

210 FOR 87 = 1 TO scC

215 LET Z = PEEK (SANITY)

220 GOSUB 400

225 NEXT S7

220 RETURN

250 REM g |

251 REM ! CHECK FOR OWNER CODE !
52 REM e e - '
253 LET YES = 0

254 FOR I = 1 TO 2000

256 IF PEEK (SOUND) > 127 THEN 262: REM
SOUND STARTED

258 NEXT I

260 RETURN : REM NO TONE IN TIME

262 FOR I = 1 TO 200

264 IF PEEK (SOUND) < = 127 THEN 270: REM
SOUND STOPPED

266 NEXT 1

268 RETURN : REM TONE TOO LONG

270 FOR J = 1 TO 30

272 IF PEEK (SOUND) > 127 THEN 278: REM
SOUND RESTARTED

274 NEXT J

276 RETURN : REM PAUSE TOO LONG

278 FOR K = 1 TO 100

280 IF PEEK (SOUND) < = 127 THEN 286: REM
SOUND STOPPED

282 NEXT K

284 RETURN : REM ZND TONE TOO LONG

286 REM AT THIS POINT I.,J,&K =

288 REM LENTH OF TONE1l,LENTH OF PAUSE
290 REM AND LENTH OF TONEZ RESPECTIVELY
292 LET YES = 1

293 PRINT I1,J.K

294 IF I ¢ 95 OR I > 110 THEN YES = 0

296 IF J ¢ 13 OR J > 21 THEN YES = 0
298 IF K ¢ 55 OR K » 70 THEN YES = 0
299 RETURN

300 REM L e !

301 REM ! SAY MESSAGE # ME !
302 REM L !
303 PRINT : PRINT D$"PR#"VSLOT

304 ON MESSAGE GOSUB 311,312,313,314,315,3
16,317,318,319,320,321,322,323,324,325
,326,327,328,329,330,331,332,333,334,3
35,336,337,338,339,340,341,342,343,344
,345,346,347,348,349,350

126

305

306
307
308
309
310
311
312

313
314

315
316
317
318
319

320
3z1

3z2

323

324

325

326

327

328

329

330

331

332

333

334

335

336
337

338
339

340

341

IF MESSAGE > 40 THEN ON (MESSAGE - 40
) GOsuB 351,352,353,354,355,356,357,35
8,359,360,361,362,363,364,365,366,367,
368.369,370,371,372,373,374
SC = MT(MESSAGE): REM SET DELAY TIME
GOSUB 200
PRINT D$"PR#0"

IF MESSAGE < > 50 THEN Z = PEEK (SAN

ITY)

RETURN

PRINT “YES “N1l$" HOW CAN I HELP YOU": RETURN

PRINT "CAN I DO ANYTHING ELSE FOR YOU"
RETURN

PRINT "I AM READY": RETURN

PRINT "0 K GOOD BYE FOR NOW": RETURN

PRINT “WHAT DO YOU WISH ME TO DO TO TH
E "Ws: RETURN

PRINT "“THE "WT$" IS NOW ON": RETURN
PRINT "“THE "WTs$" IS NOW OFF": RETURN
PRINT "“THE "“WT$" IS NOW DIMMED'": RETURN
PRINT "WHO DO YOU WISH TO CALL": RETURN

PRIN™I ‘I AM NOW CALLING "Ws: RETURN
PRINT “PLEASE EXCUSE ME "N2Z2s$" I'LL CHA

NGE VOCABULARIES": RETURN

PRINT "“THE PHONE IS NOW HUNG UP": RETURN
PRINT “NOT RIGHT NOW DID Y

OU HAVE A GOOD DAY": RETURN

PRINT "“"THAT'S REALLY GREAT": RETURN

PRINT "I'M SORRY ABOUT THAT": RETURN

PRINT “DID SOMETHING SPECIAL HAPPEN": RETURN
PRINT "“WHAT WAS IT": RETURN

PRINT "I NO HOW YOU FEEL

NOTHING SPECIAL HAPPENED HERE EITHER"
RETURN

PRINT "THAT'S REALLY INTERESTING": RETURN

PRINT "SAY '"N1ls$" DO YOU THINK WE COULD
GET ANOTHER COM PEWTER": RETURN

PRINT "“DON'T SAY NO WITHOUT THINKING I
T OVER EVEN A LITTLE ONE WO
ULD BE O K": RETURN

PRINT "“BOY THAT'S GREAT I WOULD

LOVE TO HAVE SOME COM PAN E WHEN YOU A
RE NOT HERE": RETURN

PRINT "“WELL I'D BETTER GET BACK TO WOR
K I HAVE LOTS OF THINGS PILI
NG UP GOOD BYE FOR NOW": RETURN

PRINT “GOODNIGHT I WILL WATCH THE H

OUSE FOR YOU": RETURN

PRINT "“SHAL I WAKE YOU IN THE MORNING"
RETURN

PRINT “I WILL LET YOU SLEEP IN THEN": RETURN

PRINT "“I'LL WAKE YOU AT THE CORRECT TI

ME": RETURN

PRINT "ARE YOU LEAVING": RETURN

PRINT "SHAL I HANDLE SECURITY FOR YOU"
RETURN

PRINT "“O K I'LL WATCH THE PHONE FOR
YOU TILL YOU GET BACK": RETURN

PRINT "HAVE A GOOD TIME I WILL TAK

E CARE OF EVERYTHING": RETURN

127

342 PRINT “DO YOU WISH A STATUS REPORT": RETURN

343 PRINT "DO YOU WISH SOMETHING TURNED ON

“: RETURN

344 PRINT "“DO YOU WISH SOMETHING TURNED OF
F'": RETURN

345 PRINT "IS THAT YOU MASTER": RETURN

346 PRINT "PLEASE EXCUSE ME DUE TO A TE
CHNICAL PROBLEM I AM RE INITIALIZING

IS ANY ONE HOME": RETURN
347 PRINT "“WARNING WARNING WARNING

THE OWNER HAS ALREADY BEEN CALLED A
ND TOLD YOU ARE ENTERING THE HOUSE
I AM NOW TRYING TO CALL SOMEONE ELSE
FOR YOUR OWN SAFE TE IT WOULD BE BES
T FOR YOU TO LEAVE IMEEDEITELY": RETURN

348 PRINT “GIVE ME A YES FOR EACH VAL ID D

E VIE HHSS": RETURN

349 PRINT "OFFIS": RETURN

350 PRINT "“STEREO": RETURN

351 PRINT “BEDROOM'": RETURN

352 PRINT "“DEN": RETURN

353 PRINT “KITCHEN": RETURN

354 PRINT "OUT SIDE": RETURN

355 PRINT “HEAT": RETURN

356 PRINT “THERE HAVE BEEN NO SECURITY PRO
BLEMS": RETURN

357 PRINT “THERE HAS BEEN "S8" OUTSIDE WAR
NINGS": RETURN

358 PRINT “THERE HAS BEEN "S8" INSIDE WARN
INGS": RETURN

359 PRINT "THERE HAS BEEN "NC" PHONE CALLS
*: RETURN

360 PRINT “PLEASE REPEAT THAT": RETURN

361 PRINT "IT IS "“DAYS$(T(6))" THE TIME

IS “"HRs$" "MINs*" "“M$: RETURN

362 PRINT "WAKE UP WAKE UP IT IS TI
ME TO GET UP YOU CAN NOT STAY IN B
ED ALL DAY WAKE UP ": RETURN

363 PRINT "DO YOU WANT ME TO GET THE PHONE

" RETURN

364 PRINT “I'M SORRY BUT I MUST GO NOW G

OOD BYE": RETURN

365 RETURN

366 RETURN

367 RETURN

368 RETURN

369 RETURN

370 RETURN

371 RETURN

372 RETURN

373 RETURN

374 RETURN

375 REM L e J
376 REM ! INIT. SPEECHLINK !
377 REM | e e e = = !
382 LET HI = INT (WAA / 256)
384 LET LO = WAA - HI * 256
386 POKE (1144 + SSLOT),LO
388 POKE (1272 + SSLOT) ,HI
391 LET HI = INT (TAA / 256)
392 LET LO = TAA - HI * 256
393 POKE (WAA + 2),LO

394 POKE (WAA + 3) ,HI

128

395 PRINT D$"PR#"SSLOT

396 PRINT I$

397 PRINT D$"PR#0"

398 RETURN

400 REM | oo oo e e e '

402 REM ! DELAY BASED ON DE !

404 REM |- ——— oo __ '

410 FOR D = 1 TO DE

420 NEXT D

430 RETURN

450 REM |- ______ 1

452 REM | WIRELESS MIKE ON ? !

Q154 IR E 11 N Ry ey Yy VS 1

455 LET YES = 0

460 IF PEEK (VOICE) < 128 THEN YES = 1

470 RETURN

475 REM oo oo 1

476 REM ! LOAD TIME TABLE !

477 REM M-S ST E o S S S ST e DS S oS 1

480 GOSUB 600

482 PRINT D$"“OPEN TT."T(6)

484 PRINT D$"READ TT."T(6)

486 FOR J = 1 TO 20

488 FOR I = 1 TO 3

490 INPUT TT(I,J)

492 NEXT I,J

494 PRINT D$"CLOSE"

496 LET TP = 1

498 RETURN

500 REM !o-eo e '

502 REM ! TURN ON BY PHONE !

504 REM oo 1

505 GOSUB 540

$10 LET BU = 20: GOSUB 750

515 RETURN

$25 REM l-cem-emm oo mmmmoo— o 1

527 REM ¢ TURN OFF BY PHONE !

$29 REM |-—ce—mem oo 1

530 GOSUB 540

534 LET BU = 28: GOSUB 750

538 RETURN

$S40 REM —----SUBR. FOR ON/OFF----—

541 LET MESSAGE = 38: GOSUB 300

$S42 FOR M = 1 TO 7

543 LET MESSAGE = M + 38: GOSUB 300

s44 GOSUB 250

545 IF YES THEN BU = BU(M): GOSUB 750

546 NEXT M

547 RETURN

600 REM l-oc——o——m— oo '

602 REM ! READ TIME T(X) !

603 REM ! & T™ 1

604 REM |- !

605 FOR Y = 0 TO 6

610 GOSUB 620

612 LET T(Y) = X

614 NEXT Y

616 LET TM = T(2) 4+ T(3) % 10 + T(4) * 100
+ T(5) % 1000

618 RETURN

620 REM ----SUBR. TO READ T(X)-—---

621 POKE CB,0: POKE B,128: REM SET DDR

622 POKE CB,4: POKE B,0: REM HOLD CLOCK F
OR READING

824 POKE CA,0: POKE A,240: POKE CA,4: REM
PORT A READY FOR READ

129

626 POKE B,128: REM CHIP ON
628 POKE A,(128 + Y * 16): REM Y IS ADDRE

SS
630 POKE 2048, PEEK (A): CALL 2049:X = PEEK
(2048)

632 POKE A.,0: REM RESET READ LINE

634 POKE B,0: REM TURN CHIP OFF

636 RETURN

650 REM 0o oo __ |

651 REM | DIAL THE PHONE !

652 REM 0 ——— - ____ 1

655 PRINT D$"PR#"MSLOT: REM MODEM ON

660 PRINT Q¢ ;PN$;LF$: REM DIAL #

665 POKE TN,O0: REM PHONE ON

670 PRINT Z$: REM MODEM OFF

675 PRINT D$"PR&0"

678 LET SS = 1: REM FLAG FOR PHONE ON

880 RETURN

700 REM 0 oo 1

702 REM ! STATUS REPORT !

704 REM 0o m e e __ 1

705 IF (S8 + S9) = 0 THEN MESSAGE = 46: GOSUB
300

710 IF S8 > 0 THEN MESSAGE = 47: GOSUB 300

715 IF S9 > 0 THEN MESSAGE = 48: GOSUB 300

720 LET MESSAGE = 49: GOSUB 300

725 RETURN

750 REM oo mm e 1

752 REM | PUSH BU ON BSR !

754 REM ! —————————_______ 1

755 POKE 2093,BU

760 CALL 2300

765 RETURN

800 REM ! —— o ____ 1

802 REM ! RECOG. YES / NO !

804 REM ! ——— - _____ '

805 LET Z = PEEK (SANITY)

808 PRINT D$"PR#"SSLOT

810 PRINT Vs

815 PRINT D$"PR#0"

818 PRINT CHRS (7): REM BELL

820 PRINT D$"IN#"SSLOT

825 INPUT Wt

830 PRINT DS$"IN#O"

835 IF W$ = "" THEN MESSAGE = 50: GOSUB 30
0: GOTO 818

840 PRINT D$"PR#"SSLOT

842 PRINT Vs

844 PRINT DS$"PR#0"

845 LET YES = 0: IF W$ = "YES" THEN YES =
1

846 LET Z = PEEK (SANITY)

847 RETURN

850 REM ! oo !

852 REM | RECOG. A WORD !

854 REM l————eooo——___ !

855 LET Z = PEEK (SANITY)

858 PRINT D$"IN#"SSLOT

860 INPUT WS

865 PRINT D$" IN#0"

870 IF W$ = "“ THEN MESSAGE = 50: GOSUB 30
0: GOTO 855

130

875

880
885
890
894
885
900
902
904
906
908
909
910
911
912
913
914
916
917
918

920

922

924

926
930
932
934

936
940
944
946
850
951
952
955
956
957
958
959
960
961
963
965
966
967
968
969

970
971
972
973
974
975

977

LET WN = INT ¢
+ 1)
FOR X = MASK TO M
POKE X, 0
NEXT X
LET Z = PEEK (SA
RETURN
REM ! —— - ——
REM ! MAIN INITIA
REM ! ————c—————
GOSUB 950: REM I
GOSUB 375: REM I
LET Z = PEEK (SA
PRINT DS$"BLOAD HO
LET Z = PEEK (SA
PRINT D$"BLOAD JO
LET Z = PEEK (SA
GOSUB 475: REM L
LET Z = PEEK (SA
GOSUB 600: REM
IF TM ¢ 1300 AND

T™ - 1200
IF TM ¢ 5300 AND
T™ - 1200

LET S1 = 3:52 = 0
:S8 = 0:8S9 = 0:NC

PEEK (WAA + 6)) [/ 3)

ASK + 63
NITY)

LIZATION !

NIT VARIABLES
NIT SPEECH LAB
NITY)
ME .ML"
NITY)
HN": REM VOCABULARY
NITY)
OAD TIME TABLE
NITY)
READ TIME
™ » = 1200 THEN TM

™ >

5200 THEN TM

:8S3 = 0:84 = 0:8S5 = 0
= 0

IF TM) 5100 OR TM < 900 THEN S1 = 1:

940

LET MESSAGE = 36:
FOR I = 1 TO 400

GOSUB 450

IF YES THEN S1 =

1:MESSAGE = 4: GO
NEXT I

GOSUB 300

2:82 = 1:893 = 1:84 =
SUB 300: GOTO 940

POKE 2082,S4: REM ALARM FLAG

CALL 2058: REM E
RETURN

REM e = =
REM !VARIABLE I
REM I
LET PF = 49240
LET PN = 49241
LET RF = 49242
LET RN = 49243
LET TF = 49244
LET TN = 48245
LET VOICE = 48249

LET SOUND =

LET SSLOT =

LET VSLOT = 7
=

NABLE INTERUPTS

LET MSLOT 2

LET RING = 16 * MSLOT - 16251

LET SP$(1) = "399-8030":SP$(2) = "“452-
1562"

LET A = 49400:CA = A + 1

LET B = A + 2:CB = A + 3

LET SANITY = 49393

DIM MT(64)

FOR I = 1 TO 64: READ MT(I): NEXT I
DATA 3,3,1,2,4,4,4,4,1,3,4,2,6,1,1,3,1
+/7,1.4,8,8,9,3,2,1,1,1,2,4,5,2,2,2,1,1
1,28,2,1,1,1,1,1,1,1,3,2,3,2,1,5.,9,2.,2
.,0,0,0,0,0,0,0,0,0,0

LET N1s = "JOHN"

131

132

978
979
980

981
882
983
984

885
986
987

888
989
990
991
992
993
995
996
997

998

999

1000
1001
1002
1012
1014
1015

1016

1018
1019

1020
1022

1023
1024
1026
1028

1030
1032
1100
1101
1102
1112
1114
1116

1118
1120
1122
1124
1126
1128
1130
1132
1134
1136

LET N2$ = "WANDA"
FOR I = 0 TO 6: READ DAYS$(I): NEXT I
DATA SUNDAY, MONDAY,TUESDAY,WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

FOR I = 1 TO 4: READ PN$(I): NEXT I
DATA "452-1954","389-8030","7","8"
FOR I = 0 TO 9: READ TEENS(I): NEXT I
DATA TEN,ELEVEN,TWELVE,THIRTEEN, FOURT
EEN,.FIFTEEN,SIXTEEN,SEVENTEEN,EIGHTEEN
,NINETEEN

FOR I = 2 TO S: READ TN$(I): NEXT I
DATA TWENTY, THIRTY,FORTY,FIFTY

LET WAA = 3000

LET TAA = WAA + 557

LET MASK = TAA + 2177

LET DS$ = : REM CTL D

LET I : REM CTL 1

LET V$ = "“: REM CTL

DIM TT(3,20)

FOR I = 1 TO 7: READ BUCI): NEXT I
DATA 6,7.,4.5,8,9,10

LET Q% = CHR$ (17):LF$ = CHRS$ (10):Z
$ = “": REM CTL Z

POKE TF,0: POKE PF,0: POKE RF,0

RETURN

REM !=s==zc=z==smss-smzx=scxcz==a=xx!
REM ! PROCESS VOICE COMMANDS !
REM !=z====zcz===z=zcxaszazzs=zasz=m=z!

GOSUB 450: REM IS MIKE ON

IF NOT YES THEN RETURN

LET S1 = 2:S2 = 1:83 = 1:84 = 1: POKE
2082,S4

IF S5 = 1 THEN POKE TF,0:S5 = 0:MESS
AGE = 12: GOSUB 300: RETURN

LET MESSAGE = 1: GOSUB 300

FOR I = MASK TO MASK + 38: POKE I,1:
I

GOSUB 850: REM RECOG. A WORD

ON (WN) GOSUB 1100,1100,1100,1100,110
0,1100,1100,1200,1300,1400,1600,1700,1
800

IF S5 = 1 OR S4 = 0 THEN 1030

LET MESSAGE = 2: GOSUB 300

GOSUB 800

IF YES THEN MESSAGE = 3: GOSUB 300: G
1019

LET MESSAGE = 4: GOSUB 300

RETURN

REM I e e e e '

REM | CONTROL WITH VOICE !

2 1 L e e 5 e e e e s e '

LET BU = BU(WN) :WTS$ = W$

LET MESSAGE = S5S: GOSUB 300

FOR I = MASK + 398 TO MASK + 50: POKE
I,1: NEXT I

GOSUB 850

IF WN = 17 THEN RETURN

GOSUB 750: REM PRESS BUTTON BU

ON (WN - 13) GOTO 1126,1132,1138
LET BU = 20: GOSUB 750: REM 'ON"’
LET MESSAGE = 6: GOSUB 300

RETURN

LET BU = 28: GOSUB 750: REM ‘OFF"'
LET MESSAGE = 7: GOSUB 300

RETURN

NEXT

oToO

1138
1140
1142
1144
1146
1148
1200
1201
1202
1210
1212
1214

1216
1218
1220
1222
1224

1226
1228

1230

1232
1234
1300
1301
1302
1310
1312

1314
1316
1318
1318
1320
1322
1324
1400
1401
1402
1410
1415
1420

1425
1430
1435
1440

1445
1450
1455
1460
1465
1470

1475
1480
1490
1600
1601
1602
1610

LET BU = 18

FOR I = 1 TO 50

GOSUB 750: REM PRESSES 'DIM' ONCE
NEXT I

LET MESSAGE = 8: GOSUB 300

RETURN

REM - = oo oo Cmo— == !

REM ! ANNOUNCE THE TIME !

REM| - ———mm— e ————————— 1

GOSUB 600: REM READ TIME

LET M$ = " A M *

IF T(S) > 1 THEN M$ = " P M ":T(5) =
T(5) - 4

LET HRSs = ""

IF T(4) > 0 THEN HR$ = STR$ (T(4))
IF T(5) = 1 THEN HR$ = TEENS$(T(4))
LET MINS$ = "

IF T(3) + T(2) = 0 THEN MINS = " O C
OCK ": GOTO 1232

IF T(2) > 0 THEN MIN$ = STR$ (T(2))
IF T¢(3) = 1 THEN MINS = TEENS$(T(2)):
1232

IF T(3) > 1 THEN MINS$ = TNS$(T(3)) =+
INS

LET MESSAGE = 51: GOSUB 300

RETURN

13 0] S e e e e e e e e e e e 1

REM ! VOICE CTL OF PHONE !

REMi { —— == o= = o= So S —mm— = — '

LET MESSAGE = 9: GOSUB 300

FOR I = MASK + 48 TO MASK + 62: POKE

I,1: NEXT I
GOSUB 850: REM RECOG. A WORD
IF WN = 17 THEN RETURN

LET MESSAGE = 10: GOSUB 300

LET PNS = PNS$(WN - 17)

GOSUB 650: REM DIAL PHONE

LET S5 = 1: REM PHONE OFF HOOK
RETURN

REM |~ mr e e e = = !

REM ! "“CONVERSATION" MODE !

REM ! - e cm e e e = = !

LET MESSAGE = 13: GOSUB 300

GOSUB 800

IF YES THEN MESSAGE = 14: GOSUB 300:
1430

LET MESSAGE = 15: GOSUB 300

LET MESSAGE = 16: GOSUB 300

GOSUB 800

IF NOT YES THEN MESSAGE = 18: GOSUB
300: GOTO 1460

LET MESSAGE = 17: GOSUB 300

GOSUB 800
LET MESSAGE
LET MESSAGE
GOSUB 800
IF YES THEN MESSAGE = 22: GOSUB 300:
1480

LET MESSAGE = 21: GOSUB 300

LET MESSAGE = 23: GOSUB 300

RETURN

RIE DI T T S WSS RSPV '

REM ! CHANGE VOCABULARIES !

R L T = !

LET MESSAGE = 11: GOSUB 300

19: GOSUB 300
20: GOSUB 300

L

M

GOTO

GOTO

GOTO

133

1620
1630
1640
1650
1660
1700
1701
1702
1710
1715
1716
1720
1725
1730
1735
1740
1745
1750
1755
1760
1800
1801
1802
1810
1815
1820

1821
1822
1825
1830
1835

1840
1845
1850
1851
1855
2000
2010
2020
2025
2030
2040
2045
2050
2060
2070

2080
2090

2100
2110
2115
2120
2125
2130

2135
2140
2150
2160
2170
2180

134

PRINT Ds “BLOAD "N2Z$
LET T$¢ = N1¢
LET N1s = N2Zs$

LET N2$ = T

RETURN

REM LSS s S S DI s S s 1
REM ! HANDLE GOODNIGHT !
173 , (R e '
LET MESSAGE = 24: GOSUB 300

LET S2 = 0:5S4 = 0: POKE 2082,S4
CALL 2058: REM ENABLE INTERUPTS
LET MESSAGE = 235: GOSUB 300
GOSUB 800

IF YES THEN 1750

LET S3 = 1

LET MESSAGE = 26: GOSUB 300
RETURN

LET S3 = 0

LET MESSAGE = 27: GOSUB 300
RETURN

REM !'—— oo !

REM ! HANDLE BYE BYE !

RIED T — S USSR WS !

LET MESSAGE = 28: GOSUB 300

GOSUB 800

IF NOT YES THEN S4 = 1: POKE 2082,S4

RETURN
NC = 0: REM RESET NUMBER OF CALLS
LET 81 = 3: REM SOMEONE HOME

LET MESSAGE = 29: GOSUB 300

GOSUB 800

IF NOT YES THEN MESSAGE = 30: GOSUB
300:S4 = 1: POKE 2082,S4: RETURN

LET MESSAGE = 31: GOSUB 300

LET SC = 45: GOSUB 200

LET S4 = 0: POKE 2082,84

CALL 2058: REM ENABLE INTERUPTS
RETURN

REM l=======a=zc=sce=mza=z=z===|
REM ! PROCESS PHONE CALLS !
REM la=cr====c=c=aczaszzx=xm==|
LET Z = PEEK (SANITY)

GOSUB 100: REM CHECK FOR RING
I1F NOT YES THEN RETURN

LET NC = NC + 1

ON S1 GOTO 2060,2340,2110

REM - ———-— STATUS UNKNOWN--—-————

LET SC = 3: GOSUB 200: REM 3 SEC DE
LAY

GOSUB 100: REM RING CHECK

IF NOT YES THEN RETURN : REM STILL
UNSURE

LET S1 = 3: REM ASSUME NO ONE HOME
REM —-————— NO ONE HOME-—-—————-

POKE TN, O

POKE PN,0: REM PLAY MESSAGE

LET Z = PEEK (SANITY)

LET DE = 11900: GOSUB 400: REM PLAYER

DELAY

LET Z = PEEK (SANITY)

POKE PF, 0

POKE RN, 0

GOSUB 250: REM CHECK FOR OWNER

IF YES THEN 2260

FOR I = 1 TO 15: REM MAX OF 60 SEC.
MESSAGE

2185
2190
2200
2210

zzzo0
2230
2240
2250
2260
2263
2270
2275
2280
2290
2300
2303
2310
2320
2330
2340
2350
2360

2370
2375
2380
2385
2390
2400
2410
3000
3003
3010
30153
3020

3030

3040

3050
3100
3105
3110
31135
3118
3120
3125
3130
3135
31490
3145
3150
3155
3160
3163
3166

3170

3173
3180
3z00
3205
3210

LET Z = PEE
GOSUB 150: R
IF NOT YES
IF PEEK (20
54: GOSUB 300
NEXT 1

POKE RF ., 0

POKE TF, 0
RETURN

K (SANITY)

EM 3 SEC SOUND CHECK

THEN 2230

77) < > 0 THEN MESSAGE

: GOTO 2230

REM - ---- OWNER CALLING-

POKE RF, 0
LET MESSAGE
GOSUB 250: 1
LET MESSAGE
GOSUB 250: 1
LET MESSAGE
GOSUB 250: I
LET MESSAGE
POKE TF., 0
RETURN

REM --—-=--- SO
LET MESSAGE

= 32: GOSUB
F YES THEN
= 33: GOSUB
F YES THEN
= 34: GOSUB
F YES THEN
= 4: GOSUB

MEONE HOME-
= 53: GOSUB

FOR I = 1 TO 500: REM

GOSUB 4350
IF YES THEN
NEXT I
RETURN

POKE TN, 0
LET S5 = 1:

2390

REM FLAG F

300
GOSUB 700
300
GOSUB 500
300
GOSUB 525
300

300

SEVERAL SECOND

OR PHONE ON

RETURN
REM m=m=z=z=zmaczzz=zc=caszzs=zza=x!
REM ! PROCESS SECURITY FLAGS !

REM lzzszszxs==aczaz==sss==a==|

LET Z = PEE
IF PEEK (20
NO SECUR. PR
IF PEEK (20
OOR

IF PEEK (<20
UTSIDE

GOTO 3300
REM - -—-—-—-—-—--
LET MESSAGE
GOSUB 5000 :
FOR I = 1 TO
LET Z = PEE
GOSUB 450

IF YES THEN
NEXT I

GOTO 3300
LET MESSAGE
GOSUB 800

IF YES THEN
LET MESSAGE
GOSUB 3400
POKE 2085,1:
POKE 2086, 0:

LET S1 = 2:8S
0:59 = 0:NC =
POKE 2082,S4
RETURN

REM ----SOME
GOSUB 5850 :
LET SC = 15:

K (SANITY)

77) = 0 THEN RETURN

OB .

79> > 0 THEN 3100: REM

78> > 0 THEN 3200: REM

DOOR OPEN
= 35: GOSUB

REM DEN ON

700
K (SANITY)

3140

= 32: GOSUB

GOSUB 700:
= 4: GOSUB

REM 1 PER
POKE 2087,

2 = 1:83 =
0

ONE OUTSIDE
GOSUB 5500
GOSUB 200

300

300

GOTO 3160
300

SON IN DEN

REM

D

o

0: POKE 2z2088,0
REM NONE ANYWHERE ELSE

1:54 = 1:S8

135

136

3215
3220
3225
3230
3235
3236
3237
3240

‘3245

3250
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3400
3410
3420
3430
3440
3450
3460
4000
4001
4002
4003
4015
4016

4017

4018
4020
4022
4025
4028
4029
4030
4032
4033

4035

4040
4050
4997
4998
4999
5000
5010
5020
5030
5050
5060
5070

GOSUB 200
LET SC = 15: GOSUB 200
GOSUB 5400
GOSUB 3400
LET SC = 20: GOSUB 200
LET SC = 20: GOSUB 200
LET SC = 20: GOSUB 200

GOSUB 5450
LET S8 = S8 + 1

RETURN

REM ----WINDOW OR INSIDE-----
GOSUB 5050: GOSUB 5850
GOSUB 5150: GOSUB 5300

FOR I = 1 TO 2

LET PN$ = SP$(I)

GOSUB €650

LET MESSAGE = 37: GOSUB 300
POKE TF,0:S5 = 0

LET SC = 35: GOSUB 200

NEXT I

GOSUB 3400

LET S99 = S9 + 1

RETURN
REM ----CLEAR ML FLAGS-—---—-——
POKE 2077,0: REM SECURITY FLAG

POKE

2078 ,0: REM OUTSIDE FLAG

POKE 2079,0: REM DOOR FLAG
POKE 2080,0: REM WINDOW FLAG
POKE 2081,0: REM MISC. FLAG

RETURN

REM !=z=z=a=z=—zscszsszaszssczc==z|
REM ! PROCESS NEXT ITEM !
REM ! IN TIME TABLE !
REM !=zz===s=z=zczsszaszzc=mzmz==s=!

GOSUB 600: REM READ TIME

IF TM > = 1200 AND TM < 1300
= TM - 1200

IF TM > = 5200 AND TM < 5300
= TM - 1200

IF TM <« > 0 THEN 4029

GOSUB 475

LET Z = PEEK (SANITY)

GOSUB 600

IF TM = 0 THEN 4022

IF TP > 20 THEN RETURN

IF TM ¢ TTC1,TP) THEN RETURN
IF TT(2,TP) = 1 THEN 4035

IF TT(2,TP) <« > S1 THEN TP =
RETURN

ON (TT(3,TP)>) GOSUB 5000,5050,

THEN TM

THEN TM

TP + 1:

5100,51

50,5200,5250,5300,5350,5400,5450,5500,
5550,.,5600,5650,5700,5750,5800,5850,590

0,59850

LET TP = TP + 1

RETURN

RIE M= s) <P VIS S Sy !
REM ! TIME TABLE SUBROUTINES
1l] o e e e e S S S S S et e
REM —————__ DEN ON

LET BU = 5: GOSUB 750

LET BU = 20: GOSUB 750

RETURN

REM —-————_ DEN OFF ————————-
LET BU = S: GOSUB 750

LET BU = 28: GOSUB 750

5080
5100
5110
5120
5130
5150
5160
5170
5180
5200
5210
5220
5230
5250
5260
5270
5280
5300
5310
5320
5330
5350
5360
5370
5380
5400
5410
5420
5450
5460
5470
5500
5510
5520
5530
5550
5560
5570
5580
5600
5610
5620
5630
5650
5660
5670
5680
5700
5705
5710
5715
5720
5730
5735

5740
5750
5755
5760
5800
5810
5830
5850
5860
5870

RETURN
REM —————-— K
LET BU = 8:
LET BU = 20:
RETURN

REM —————_ K
LET BU = 8:
LET BU = 28:

RETURN
REM ----- FL

LET BU = 9:
LET BU = 20:
RETURN

REM - -——-- - FL
LET BU = 9:
LET BU = 28:
RETURN

REM ———-—-—---
LET BU = 6:
LET BU = 20:
RETURN

REM - ———-—-——--
LET BU = 6:
LET BU = 28:
RETURN

REM ————————
LET BU = 24:
RETURN

REM - —-—-—-—---
LET BU = 16:
RETURN

REM —--——-—=--
LET BU = 7:
LET BU = 20:
RETURN

REM —--—-—-—-—-
LET BU = 7:
LET BU = 28:
RETURN

REM —--—-—-we--
LET BU = 10:
LET BU = 28:
RETURN

REM - -—=——-e--
LET BU = 10:
LET BU = 20:
RETURN

ITCHEN ON - —-—-—----
GOSUB 750

GOSUB 750

ITCHEN OFF —-——-——--
GOSUB 750
GOSUB 750

OODLIGHTS ON ---—-
GOSUB 750
GOSUB 750

OODLIGHTS OFF —---
GOSUB 750
GOSUB 750

OFFICE ON -------
GOSUB 750
GOSUB 750

OFFICE OFF —-=—-—--
GOSUB 750
GOSUB 750

- ALL ON ——c-c----
GOSUB 750

- ALL OFF —-—-—-—----
GOSUB 750

STEREO ON - —---—---
GOSUB 750
GOSUB 750

STEREO OFF —-—-—-—---
GOSUB 750
GOSUB 750

HEAT ON -—-—-—-—-—-—-—--
GOSUB 750
GOSUB 750

HEAT OFF - —-—-—-—---
GOSUB 750
GOSUB 750

REM - —-—-—--- WAKE UP CALL —--=--

IF S3 = 1 OR
LET MESSAGE
GOSUB 5850
GOSUB 600
LET MESSAGE
LET S2 = 1:8S

S2 = 1 THEN RETURN
= 52: GOSUB 300

= 51: GOSUB 300
3 = 1:54 = 1:

RETURN

REM ----ENABLE INTERUPTS-----
CALL 2058

RETURN

REM - ---- ANNOUNCE TIME -----
GOSUB 1200

RETURN

REM - -——--- BEDROOM ON - - —-——----
LET BU = 4: GOSUB 750

LET BU = 20: GOSUB 750

POKE 2082,S

137

138

5880
5900
5910
5920
5930
5950
5855
5860

RETURN

REA — -——- BEDROOM OFF -—-—-----
LET BU = 4: GOSUB 750

LET BU = 28: GOSUB 750

RETURN

REM —-—-=-DISABLE INTERUPTS----
CALL 2075

RETURN

Appendix

Home Conirol
Program

Maschine Laaguage

:ASM

0800 -
0801 -
0804 -
0806 -
0809 -

080A -
080C-
080F -
0811-
0814-
0816 -
0819-
081A-
081B-
081C-

FCAS8-

00
AD
29
8D
60

A9
8D
A9
8D
A9
8D
58
€0
78
60

00
OF
00

30
FE
08
FF
04
F7

o8

[X:}

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1155
1156
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

* UPPER NIBBLE MASK ROUTINE FOR
* USE WITH THE 5832 CLOCK CHIP

TEMCLK .DA #0 CLOCK DATA

CLOCK LDA TEMCLK GET DATA
AND #SO0F MASK HIGH NIBBLE
STA TEMCLK REPLACE DATA
RTS

* ROUTINES TO CONTROL INTERRUPTS

ENABLE LDA #INTER SET UP INTERRUPS
STA S$3FE VECTOR
LDA /INTER
STA $3FF

LDA #4 INITIALIZE THE
STA SWPORT+1 PIA PORT
CLI ENABLE INTERRUPTS
RTS

DISABL SEI DISABLE INTERRUPTS
RTS

* INTERUPT ROUTINE FOR HANDLING

* SWITCHPLATE INPUTS AND CONTROL-
* ING LIGHTS THROUGH THE BSR

* ULTRA SONIC COMMAND CONSOL

* BY

* JOHN BLANKENSHIP

WAIT .EQ SFCAS8 MONITOR DELAY

139

COF6 - 1290 SWPORT .EQ $COF6 INPUT PORT

081D- 00 1300 SECF .DA #0 SECURITY FLAG
081lE- 00 1310 OUTF .DA #0 OUTSIDE FLAG

081F- 00 1320 DOORF .DA #0 DOOR FLAG

0820- 00 1330 WINDF .DA #0 WINDOW FLAG

0821- 00 1340 INSDF .DA #0 MISC. FLAG

0822- 01 1350 ALARM .DA #1 STATUS OF ALARM
0823- 00 1360 TO .DA #0 ROOM MOVEMENT TO
0824- 00 ' 1370 FROM .DA #0 ROOM MOVEMENT FROM
0825- 00 00 00O

0s8z8- 00 1380 NUM .HS 00000000 NUMBER IN EACH ROOM
0829- 05 04 06

08zC- 07 1390 TABLE .HS 05040607 BSR CODE TABLE
08zD- 00 1400 DATA .DA #0 PERM CODE HOLDER
082E- 00 1410 DATAl .DA #0 TEMP CODE HOLDER
082F- 00 1420 DATAZ .DA #0 TIMES TO SEND EACH CODE
0830- AS 45 1430 INTER LDA $45 RESTORE ACC

0832- 48 1440 PHA SAVE REGISTERS
0833- 8A 1450 TXA

0834- 48 1460 PHA

0835~ 98 1470 TYA

0836- 48 1480 PHA

0837- A9 04 1490 LDA #4 WAIT .1 MSEC

0839- 20 A8 FC 1500 JSR WAIT DEBOUNCE

083C- AD F6 CO 1510 LDA SWPORT

083F- C9 FF 1520 CMP #SFF CK FOR NONE PRESSED
0841~ FO 3D 1530 BEQ DONE

0843- AC 22 08 1540 LDY ALARM SEE IF ALARM SET
0846~ FO 4A 1550 BEQ SECUR DO SECURITY STUFF
0848- 09 FO 1560 ORA #SFO MASK TOP NIBBLE
084A- AZ FF 1570 LDX #SFF SET COUNTER

084C- ES8 1580 AGAIN INX

084D- 4A 1590 LSR CK NEXT ROOM

084E- 90 06 1600 BCC FOUND ROOM IS IN X

0850- C9 00 1610 CMP #$0 DONE LOOKING

0852- FO 2C 1620 BEQ DONE YES AND NONE FOUND
0854- DO F6 1630 BNE AGAIN NO-KEEP LOOKING
0856- 8E 24 08 1640 FOUND STX FROM SAVE ROOM FROM
0859- AD F6 CO 1650 PAUSE LDA SWPORT WAIT TILL SWITCHES RELEASED
085C- C9 FF 1660 CMP #SFF

085E- DO F9 1670 BNE PAUSE

0860- A9 04 1680 LDA #4 WAIT .1 MSEC

0862- 20 A8 FC 1690 JSR WAIT FOR DEBOUNCE
0865- 20 DD FB 1700 JSR S$FBDD BELL

0868~ A2 FF 1710 SECOND LDX #S$FF FOR 5 SECONDS LOOK
086A- AO FF 1720 OVER LDY #SFF FOR 2ZND SWITCH
086C- AD F6 CO 1730 MORE LDA SWPORT READ SWITCHES
086F- 29 OF 1740 AND #SF MASK HIGH BYTE
0871- C9 OF 1750 CMP #SF CK FOR PRESSED
0873- DO 3B 1760 BNE ONEWAS

0875- A9 04 1770 LDA #4 WAIT .1 MSEC

0877- 20 A8 FC 1780 JSR WAIT FOR DEBOUNCE
087A- 88 1790 DEY LOOP

087B- DO EF 1800 BNE MORE UNTIL

087D- CA 1810 DEX 2 SECONDS
087E- DO EA 1820 BNE OVER ARE UP

0880- AD F6 CO 1830 DONE LDA SWPORT WAIT TILL RELEASED
0883- C9 FF 1840 CMP #SFF

0885- DO F9 1850 BNE DONE

0887- A9 04 1860 LDA #4 ANOTHER .1 MSEC
0889- 20 A8 FC 1870 JSR WAIT DEBOUNCE

088C- 68 1880 PLA RESTORE REGISTERS
088D- A8 1890 TAY

0B8B8BE- 68 1900 PLA

140

088F- AA 1910 TAX

0890- 68 1920 PLA

0891~ 40 1930 RTI RETURN

0892- O0OA 1940 SECUR ASL DO ALARM STUFF
0893- BO 03 1950 BCS DOOR

0885- EE 1E 08 1960 INC OUTF

0898~ OA 1970 DOOR ASL

08886- BO 03 1980 BCS WINDOW

089B- EE 1F 08 1990 INC DOORF

089E- OA 2000 WINDOW ASL

089F- BO 03 2010 BCS INSIDE

08Al1- EE 20 08 2020 INC WINDF

08A4- OA 2030 INSIDE ASL

08A5- BO 03 2040 BCS CONT

08A7- EE 21 08 2050 INC INSDF

08AA- EE 1D 08 2060 CONT INC SECF

08AD- 4C & 98 2070 JMP DONE

08B0- AZ FF 2080 ONEWAS LDX #SFF FIND WHICH ROOM
08B2- E8 2090 NEXT INX

08B3- 4A 2100 LSR

08B4- 60 02 2110 BCC GOTIT

08B6- BO FA 2120 BCS NEXT

08B8- 8E 23 08 2130 GOTIT STX TO “TO" ROOM

08BB- FE 25 08 2140 INC NUM, X INC # IN ROOM TO
08BE- AE 24 08 2150 LDX FROM'

08Cl1- DE 25 08 2160 DEC NUM, X DEC # IN ROOM FROM
08C4- 10 OF 2170 BPL OK

08ce6é- A9 00 2180 LDA #s0 NEVER LET # BE NEGATIVE
08C8- 9D 25 08 2190 STA NUM, X

08CB- AE 23 08 2200 LDX TO SEE IF 1ST
08CE- BD 25 08 2210 LDA NUM, X PERSON TO
08D1- C8 01 2220 CMP #1 ENTER
08D3- DO OE 2230 BNE OFF

08D5- AE 23 08 2240 OK LDX TO

08D8- BD 29 08 2250 LDA TABLE , kX CONVERT TO CODE
08DB- 20 F9 08 2260 JSR SSONIC TURN ON LIGHT
08DE- A9 14 2270 LDA #20 CODE FOR "“ON"
O0B8EO- 20 F9 08 2280 JSR SSONIC

08E3- AE 24 08 2290 OFF LDX FROM

08E6- BD 25 08 2300 LDA NUM, X SEE IF FROM ROOM
08E9- DO 95 2310 BNE DONE IS EMPTY
0OB8EB- BD 29 08 2320 LDA TABLE ., X CONVERT TO CODE
08EE- 20 F9 08 2330 JSR SSONIC TURN OFF LIGHT
08Fl1l- A9 1C 2340 LDA #28 CODE FOR "“OFF"
08F3- 20 F9 08 2350 JSR SSONIC

08F6- 4C 80 08 2360 JMP DONE

08F9- 8D 2D 08 2370 SSONIC STA DATA KEY CODE

08FC- A0 03 2380 BEGIN LDY #s53 SEND EACH TWICE
08FE- 8C 2F 08 2390 STY DATAZ

0901- CE 2F 08 2400 TWO DEC DATAZ

0904- DO OB 2410 BNE MAIN

0906- AZ 01 2420 LDX #1 LONG WAIT

0908- A9 FF 2430 WT LDA #SFF

090A- 20 A8 FC 2440 JSR WAIT

090D~ CA 2450 DEX

090E- DO F8 2460 BNE WT

0910- 60 2470 RTS

0911- AZ 01 2480 MAIN LDX #s1 START BIT

0913- 20 55 09 2490 JSR ONE

0916- AD 2D 08 2500 LDA DATA PREPARE TO SEND DATA BITS
0919- 8D 2E 08 2510 STA DATA1l

091C- 20 41 09 2520 JSR OUT

091F- AD 2D 08 2530 LDA DATA PREPARE FOR COMPLEMENT DATA
0922- 49 1F 2540 EOR #S51F

0924- 8D 2E 08 2550 STA DATAl

141

COF6 - 1290 SWPORT .EQ $COF6 INPUT PORT

081D- 00 1300 SECF _DA %0 SECURITY FLAG
081E- 00 1310 OUTF _DA #0 OUTSIDE FLAG

081F- 00 1320 DOORF .DA #0 DOOR FLAG

0820- 00 1330 WINDF .DA #0 WINDOW FLAG

0821- 00 1340 INSDF .DA #0 MISC. FLAG

0822- 01 1350 ALARM .DA #1 STATUS OF ALARM
0823- 00 1360 TO _DA #0 ROOM MOVEMENT TO
0824- 00 ' 1370 FROM _DA #0 ROOM MOVEMENT FROM
0825- 00 00 00

0828- 00 1380 NUM _HS 00000000 NUMBER IN EACH ROOM
0829- 05 04 06

082C- 07 1390 TABLE .HS 05040607 BSR CODE TABLE
082D- 00 1400 DATA .DA #0 PERM CODE HOLDER
082E- 00 1410 DATAl .DA #0 TEMP CODE HOLDER
082F- 00 1420 DATAZ .DA #0 TIMES TO SEND EACH CODE
0830- AS5 45 1430 INTER LDA $45 RESTORE ACC

0832- 48 1440 PHA SAVE REGISTERS
0833- 8A 1450 TXA

0834- 48 1460 PHA

0835- 98 1470 TYA

0836- 48 1480 PHA

0837- A9 04 1490 LDA #4 WAIT .1 MSEC

0839- 20 A8 FC 1500 JSR WAIT DEBOUNCE

083C- AD F6 CO 1510 LDA SWPORT

083F- C9 FF 1520 CMP #S$FF CK FOR NONE PRESSED
0841- FO 3D 1530 BEQ DONE

0843- AC 22 08 1540 LDY ALARM SEE IF ALARM SET
0846- FO 4A 1550 BEQ SECUR DO SECURITY STUFF
084a8- 09 FO 1560 ORA #SFO MASK TOP NIBBLE
084A- A2 FF 1570 LDX #S$FF SET COUNTER

084C- EB8 1580 AGAIN INX

084D- 4A 1590 LSR CK NEXT ROOM

084E- 90 06 1600 BCC FOUND ROOM IS IN X

0850- C9 00 1610 CMP #$0 DONE LOOKING

0852- FO 2C 1620 BEQ DONE YES AND NONE FOUND
0854- DO F6 1630 BNE AGAIN NO-KEEP LOOKING
0856- B8E 24 08 1640 FOUND STX FROM SAVE ROOM FROM
0859- AD F6 CO 1650 PAUSE LDA SWPORT WAIT TILL SWITCHES RELEASED
085C- C9 FF 1660 CMP #S$FF

085E- DO F9 1670 BNE PAUSE

0860- A9 04 1680 LDA #4 WAIT .1 MSEC

0862- 20 A8 FC 1690 JSR WAIT FOR DEBOUNCE
0865- 20 DD FB 1700 JSR $FBDD BELL

0868- A2 FF 1710 SECOND LDX #S$FF FOR 5 SECONDS LOOK
086A- AO FF 1720 OVER LDY #SFF FOR 2ZND SWITCH
086C- AD F6 CO 1730 MORE LDA SWPORT READ SWITCHES
086F- 29 OF 1740 AND #S$F MASK HIGH BYTE
0871- C9 OF 1750 CMP #S$F CK FOR PRESSED
0873- DO 3B 1760 BNE ONEWAS

0875- A9 04 1770 LDA #4 WAIT .1 MSEC

0877- 20 A8 FC 1780 JSR WAIT FOR DEBOUNCE
087A- 88 1790 DEY LOOP

087B- DO EF 1800 BNE MORE UNTIL

087D- CA 1810 DEX 2 SECONDS
087E- DO EA 1820 BNE OVER ARE UP

0880- AD F6 CO 1830 DONE LDA SWPORT WAIT TILL RELEASED
0883- C9 FF 1840 CMP #S$FF

0885- DO F9 1850 BNE DONE

0887- A9 04 1860 LDA #4 ANOTHER .1 MSEC
0889- 20 A8 FC 1870 JSR WAIT DEBOUNCE

08sCc- &8 1880 PLA RESTORE REGISTERS
088D- A8 1890 TAY

088E- 68 1900 PLA

140

088F—- AA 1910 TAX

0890- 68 1920 PLA

0891- 40 1930 RTI RETURN

0892- O0OA 1940 SECUR ASL DO ALARM STUFF
0893- BO 03 1950 BCS DOOR

0885- EE 1E 08 1960 INC OUTF

0898~ O0A 1970 DOOR ASL

0886- BO 03 1980 BCS WINDOW

089B- EE 1F 08 1990 INC DOORF

089E- OA 2000 WINDOW ASL

089F- BO 03 2010 BCS INSIDE

08A1- EE 20 08 2020 INC WINDF

08A4- OA 2030 INSIDE ASL

08AS5- BO 03 2040 BCS CONT

08A7- EE 21 08 2050 INC INSDF

08AA- EE 1D 08 2060 CONT INC SECF

08AD- 4C @ 908 2070 JMP DONE

08B0~ AZ FF 2080 ONEWAS LDX #SFF FIND WHICH ROOM
08B2- ES8 2090 NEXT INX

08B3- 4A 2100 LSR

08B4- 980 02 2110 BCC GOTIT

08B6- BO FA 2120 BCS NEXT

08B8- 8E 23 08 2130 GOTIT STX TO “TO" ROOM

08BB- FE 25 08 2140 INC NUM, X INC # IN ROOM TO
08BE- AE 24 08 2150 LDX FROM'

08Cl1- DE 25 08 2160 DEC NUM. X DEC # IN ROOM FROM
08C4- 10 OF 2170 BPL OK

0oece- A8 00 2180 LDA #s$0 NEVER LET # BE NEGATIVE
08C8- 9D 25 08 2190 STA NUM, X

08CB- AE 23 08 2200 LDX TO SEE IF 1ST
08CE- BD 25 08 2210 LDA NUM,. X PERSON TO
08D1- C9 01 2220 CMP #1 ENTER
08D3- DO OE 2230 BNE OFF

08DS5S- AE 23 08 2240 OK LDX TO

osD8- BD 29 08 2250 LDA TABLE ., X CONVERT TO CODE
08DB- 20 F9 08 2260 JSR SSONIC TURN ON LIGHT
08DE- A9 14 2270 LDA #20 CODE FOR "ON"
O0B8EO- 20 F9 08 2280 JSR SSONIC

0BE3- AE 24 08 2290 OFF LDX FROM

08E6- BD 25 08 2300 LDA NUM, X SEE IF FROM ROOM
0B8E9- DO 95 2310 BNE DONE IS EMPTY
08EB- BD 29 08 2320 LDA TABLE,K X CONVERT TO CODE
0OBEE- 20 F9® 08 2330 JSR SSONIC TURN OFF LIGHT
08F1- A8 1C 2340 LDA #28 CODE FOR "OFF"
08F3- 20 F9 08 2350 JSR SSONIC

08F6- 4C 80 08 2360 JMP DONE

08F9- 8D 2D 08 2370 SSONIC STA DATA KEY CODE

08FC- A0 03 2380 BEGIN LDY #53 SEND EACH TWICE
O8FE- 8C 2F 08 2390 STY DATAZ

0901- CE 2F 08 2400 TWO DEC DATAZ2

0904- DO OB 2410 BNE MAIN

0906- AZ 01 2420 LDX #1 LONG WAIT

0908~ A9 FF 2430 WT LDA #SFF

090A- 20 A8 FC 2440 JSR WAIT

090D- CA 2450 DEX

090E- DO F8 2460 BNE WT

0910- 60 2470 RTS

0911- Az 01 2480 MAIN LDX #$1 START BIT

0913- 20 S5 09 2490 JSR ONE

0916- AD 2D 08 2500 LDA DATA PREPARE TO SEND DATA BITS
0919- 8D Z2E 08 2510 STA DATA1l

091C- 20 41 09 2520 JSR 0OUT

091F- AD 2D 08 2530 LDA DATA PREPARE FOR COMPLEMENT DATA
0922- 49 1F 2540 EOR #51F

0924- 8D 2E 08 2550 STA DATA1l

141

0927-
092A-
09z2C-
092F -
0931-
0934-
0936~
0939-
083B-
093E-

0941-
0943 -
0946 -
0948-
094A-
094D-
094F-
0952~
0855 -
09357~

095A-
095C-

095F -
0961-
0964-
0965 -
0967-

0968~
096 B-
096C-
096D-—
096E-
096F-
0972-
0975-
0976 -
0978 -

z0
AO
z0
A0
z0
AO
20
A9
zo0
49C

A2
4E
BO
AO
20
A9
20
qcC
AO

41
FF
68
FF
68
82
68
60
A8
01

05
2E
oD
30
68
31
AS8

AO

20
A9
20
A9
20
CA
Do
60

68
24
A8
05
A8

DC

cD
EA
EA
EA
EA
CD
cD
88
DO
60

SE

SF
E'E

FO

SYMBOL TABLE

084C -
0822~
08FC-
0801-
08AA-
082D~
082E -
082F -
081B-
0880 -
0898-
081F-—
080A-
0856 -
0824-
08B8-—

AGAIN
ALARM
BEGIN
CLOCK
CONT
DATA
DATA1l
DATAZ
DISABL
DONE
DOOR
DOORF
ENABLE
FOUND
FROM
GOTIT

142

09

09

09

09

FC

09

[PX:]

09

FC
09

09

FC

FC

co

co
FF

2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
z800
2810
z820
2830
z2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000

ouT
#SFF
PULSES
#SFF
PULSES
#$82
PULSES
#$60
WAIT
TWO

‘ouT’

STOP BITS

PAUSE BETWEEN

L] SUBROUTINE

OUTPUTS

* FIVE BITS IN DATAl
gy e e g
ouT LDX #$5 GET READY
ouUT1 LSR DATAl GET NEXT BIT
BCS ONE SEND A ONE
ZERO LDY #$30 OR A ZERO
JSR PULSES (48 PULSES)
LDA #$31
JSR WAIT 6.83 MSEC
JMP MOR CONTINUE
ONE LDY #$A0 (160 PULSES)
JSR PULSES
LDA #5$24 3.82 MSEC
JSR WAIT
LDA #$05 .146 MSEC
JSR WAIT
MOR DEX
BNE OUT1 KEEP GOING
RTS DONE HERE
R o e e e e o —— — o — —— ————— —————
*x OUTPUT Y PULSES AT 40 KHZ

PULSES CMP

0821 -
08A4-
0830-
0911-
0964 -
086C-
08B2-
0825-
08E3 -
08DS5 -
0955 -
08BO-
0941-
0943-
081E -
086A-

$COSE TRANSDUCER ON

NOP

NOP

NOP

NOP

CMP S$COSF TRANSDUCER OFF

CMP SFFFF JUST A DELAY

DEY

BNE PULSES KEEP GOING

RTS DONE HERE

.EN
INSDF 0859~ PAUSE
INSIDE 0968~ PULSES
INTER 081D~ SECTF
MAIN 0868~ SECOND
MOR 0892~ SECUR
MORE 08F9- SSONIC
NEXT COF6~ SWPORT
NUM 0829- TABLE
OFF 0800~ TEMCLK
OK 0823- TO
ONE 0901- TWO
ONEWAS FCA8- WAIT
ouT 0820- WINDF
ouTl1 089E- WINDOW
OUTF 0908- WT
OVER 0948- ZERO

Appendix

Block Set sad
Yiew Program

1L

o

10
20
21
22
Zz3
4
25
30
35
40
45
50
55
60
80
90
91
92
93
84
95
100

110
111
112

sT

REM FIRST USE POKES TO

REM LOAD SMALL MACHINE LANGUAGE PROGRAM

FOR I = 1 TO 9: READ X: POKE 768 + I,X: NEXT
I

REM SET UP PORTS AND DDR ADDRESSES

A = 12 * 16 A 3 4+ 15 * 16 + 8:C = A + 1

AB = A 4+ 2:CB = C + 2

REM ! —-—-c e — = !

REM ! MAIN PROGRAM STARTS!

REM ! HERE !

REM ! — - e e e e - !

HOME

PRINT "CLOCK SET AND VIEW PROGRAM"

VTAB 5

PRINT “1. VIEW CLOCK"

PRINT "2. SET CLOCK"

PRINT : INPUT "WHICH " ;NUM

ON NUM GOTO 1000,200¢0

GOTO 25

L8 B e e e e e e e

REM GENERAL PURPOSE SUBROUTINE TO

REM READ AND WRITE

REM BASIC IS SLOW ENOUGH TO

REM PROVIDE THE CORRECT TIMING

REM FOR THE 5832 CHIP

REM - - e e e
POKE CB,0: POKE AB,128: POKE CB,4: POKE
AB,0: REM SET UP HOLD PORT
POKE C,0: REM DDR
IF Z = 0 THEN POKE A ,255: REM WRITE
IF Z = 1 THEN POKE A,240: REM READ

143

144

113
120
130

140

145
150

‘170

800

910

920

1000
1001
1002
1005
1010
1020
1030
1040
1050
1060

1070
1900
1810
1920
1930
1940
1950
2000
2001

2002

2003
2004

2003

2010
2020
2030
2035
2040
2050
2060
2070
2080
3000

POKE C,4: REM BACK TO OUTPUT
POKE AB,128: REM TURN CHIP ON
POKE A,(128 + Y * 16 + D)>: REM Y=ADDR

D=WRITE DATA (0 IF READ)

POKE 768, PEEK (A): CALL 769:X = PEEK
(768): REM MASK UPPER NIBBLE TO ZERO
POKE A,0: REM RESET READ

POKE AB,0: REM TURN CHIP OFF

RETURN

REM e = - !

REM ! READ AND DISPLAY '

REM e - = !

REM READ ALL ADDRESSES
VTAB 19
PRINT "D HR MI scC*"
= 1:D = 0
FOR Y = 0 TO 6
GOSsSUB 100

TCY) = X

NEXT Y
VTAB 20
PRINT T(6)" "T(S5);TC(4)"™ "T(3);TcC2)" "

TC1) ;TCOD> " "

GOTO 1005
REM e e e - !
REM ! SET THE TIME
REM ! NOTE: SECONDS CANNOT
]
]

REM BE SET WITH

REM THIS CHIP

o e S T !

REM SET TIME

PRINT : PRINT "MOVE READ/WRITE SWITCH
TO WRITE POS. "

PRINT : PRINT "USE 0 FOR SUNDAY,1l FOR
MONDAY ETC. "

PRINT : PRINT "ADD 4 TO H10 FOR PM"
PRINT : PRINT "ENTER 0-8 FOR OTHER DI
GITS"

PRINT : PRINT "SEE CHAPTER 6 FOR MORE

DETAILS ON CLOCK
= 0: REM SET UP WRITE
PRINT "INPUT DAY, H10,H1 ,M10,M1"
FOR Y = 6 TO 0 STEP -1
IF Y (2 THEN D = 0: GOTO 2050
INPUT D
GOSUB 100
NEXT Y
= 1:D = 0
END
DATA 173,0.,3,41,15,141,0,3,96,200

Appendix

Time Isble
Editor

]

ILIST

1 Ds = CHRS$S (4)

S DIM TT(3,20)

10 REM ! mm oo oo __ '
12 REM ! TIME TABLE MAINTENANCE !
14 REM ! PROGRAM BY !
16 REM ! JOHN BLANKENSHIP]

S - NN)) (e 1
20 REM

25 REM

BIONIERIE DI [T NC St N S PSR e. S 1
80 REM ! MAIN PROGRAM MENUE]
) g e e e e e 1
100 TEXT

110 HOME

120 PRINT * TIME TABLE MAINTENANCE
130 VTAB 5

140 PRINT "1. LOAD A TABLE"

145 PRINT "2. EDIT TABLE IN MEMORY"
150 PRINT "“3. SAVE PRESENT TABLE"
155 PRINT "4. CREATE A NEW TABLE"
157 PRINT “S. END"

160 VTAB 20: PRINT *

165 VTAB 20: PRINT "WHICH "“;: GET AS$
170 A = VAL (AS$)

171 IF A = S THEN HOME : END

175 IF A ¢ 1 OR A > 4 THEN 160

180 ON A GOSUB 1000,2000,3000,4000
190 GOTO 100

145

146

1000
1005
1010
1020
1030
1040
1050

‘1055

1060
1070
1080
1090
1100
1110
1120
1130
2000
2005
2010
z0z0
2040
2050
2060

2070
2080
2085
2090
2100
2105
2110
2120
3000
3005
3010
3020
3030
3040
3050

3055
3060
3070
3080
3080
3100
3110
3120
3130
4000
4005
4010
4020
4030

4040
4050

4060

4070

4080
4082

REM ! LOAD A TABLE FROM DISK !

REM ! m e e e = = !

HOME

PRINT * LOAD TABLE"

VTAB 3

INPUT "WHAT TABLE NAME (JUST RETURN
TO VOID) " ;TNS$

IF TNS = "“" THEN RETURN

PRINT D$"OPEN "TNSs

PRINT D$"“READ “TNS$

FOR J = 1 TO 20

FOR I = 1 TO 3

INPUT TT(I,J)

NEXT I1,J

PRINT D$"CLOSE"

RETURN

RIEM Q[T SN i Py Sy 1

REM ! EDIT PRESENT TABLE !

REM| M- S— === ==— == '

HOME

GOSUB 5000: REM PRINT ARRAY

HOME

INP ¥T° "ENTER ELEMENT CO-ORDINATES AND
NEW DATA (X,Y,DATA) ";I,J,K
TT(I,J) = K

HTAB (1): VTAB (J + 1): GOSUB 7000
HOME

PRINT “MORE CHANGES (Y/N) ";

GET A

HOME

IF As = “N" THEN RETURN

GOTO 2060

R B | S S S S [

REM ! SAVE TABLE TO DISK !

REM | e oo —m—————— 1

HOME

PRINT * SAVE TABLE"

VTAB 3

INPUT "WHAT NAME TO USE (JUST RETURN
TO VOID) " ;TNS$

IF TNS = "" THEN RETURN

PRINT DS$"OPEN "“TNS$
PRINT DS$"WRITE "“TNS$S
FOR J = 1 TO 20

FOR I = 1 TO 3
PRINT TT(I,J)

NEXT I.,J

PRINT D$"“CLOSE"

RETURN

3 S s s i s 1

REM ! CREATE A NEW TABLE !

REM;, === ==—=——=———=—=Z=_=_ !

HOME

PRINT "WE MUST ENTER THREE NUMBERS FO
R EACH LINE IN THE TABLE": PRINT

PRINT "“THE ENTRIES ARE"

PRINT *“ 1. EVENT TIME (24 HR FOR
MAT) "

PRINT * 2. USE (1-BOTH 2-HOME 3-
AWAY) "

PRINT * 3. TASK NUMBER (1-20)
PRINT : PRINT

PRINT "“ENTER EVENTS IN CHRONOLOGICAL
ORDER"

4084

4086
4090
4100
4105
4110
4120
5000
5005
5010
5020
5030
5035
5040

5045
5050
5060
5070
5080
5080
6000
6005
6010
6020
6030

6040
6050
7000
7004
7008
7009
7010
7011
7020
7030
7040
7050

PRINT " INPUT ZERO'S FOR UNUSED ELEMEN

TS*"
PRINT : PRINT

FOR J = 1 TO 20

PRINT "“LINE "J'" (ET,U,T)> ";
INPUT TTC(1,J),TTC(2,J),TT(3,J)
NEXT J

RETURN

REM ! - e - = !
REM ! PRINT PRESENT ARRAY !
REM ! - e e e -~ !
TEXT : HOME

POKE 34,21

INVERSE

PRINT * 1 2z
3 "

NORMAL

FOR J = 1 TO 20

GOsuB 7000

PRINT

NEXT J

RETURN

REM ! e e e e e e - = !
REM ! PRINT A WITH LENGTH K !
00 o S !
As = STRS (A)

IF LEN (A$) < K THEN A$ = " " + As:

6030

PRINT AS;

RETURN

REM ! — e e e e e e = !
REM ! PRINT LINE J OF TABLE !
) o B !
INVERSE
K = 2:A = J: GOSUB 6000

NORMAL

FOR I = 1 TO 3
K = 10:A = TT(I,J): GOSUB 6000
NEXT I

RETURN

GOTO

147

Appendix

Yocsbulsny
Genersior sad

lesicr

]
JLIST

-

TEXT

1F PEEK (104) < > 25 THEN POKE 103,20
1: POKE 104,25: POKE 6600,0: PRINT CHRS
(4)"RUN VOCAB.CREATE&SAY"

3 REM LINE 2 MAKES SURE LOMEM IS SET TO 6

~

600
5 SLOT = 1
6 D$ = '"": REM CTL D
7 1 = "": REM CTL 1
8 Vs = "": REM CTL V
10 HOME : PRINT "“SPEECH LINK TEST BY JOHN

BLANKENSHIP"
12 VTAB (5)
13 PRINT "1. INITIALIZE"
14 PRINT "2. TRAIN WORDS"
15 PRINT “3. RECOGNIZE WORDS"
16 PRINT "4. SAVE VOCABULARY"
17 PRINT "“5. YES AND NO"
18 PRINT "6. END"
50 INPUT "WHICH " ;A
55 ON A GOSUB 1000,2000,3000,3500,3800,998

60 GOTO 10

300 REM XAXXAXAXANRARAXNXRRRRR XK
302 REM x TRAIN WS *
304 REM XX AAXAXAAXAXAAXNNANRARAR

310 PRINT W¢

320 PRINT Ds$"PR#"“SLOT
330 PRINT WS

340 PRINT Ds$"PR#0"

148

345 ERR = PEEK (WAA + 9)
350 RETURN

400 REM RRXAXAXAXARRARRARRRARNRRRR KX
402 REM x RECOGNIZE WS$ b
404 REM XXRXXAXAXRAXRXRRRRARKRRARR R KX

410 PRINT DS$" IN#"SLOT
420 INPUT WS

430 PRINT Ds$"IN#O"

450 ERR = PEEK (WAA + 9)
460 RETURN

999 END

1000 REM X RAXAAXAXAXKXRRAKX KRR XA K
1010 REM * INITIALIZATION ®
1020 REM RXXXXAXRAXAXAKR KX KK AKX R KK

1040 WAA = 3000

1050 HI = INT (WAA [/ 2356)
1060 LO = WAA - HI * 256
1070 POKE (1144 + SLOT),LO
1080 POKE (1272 + SLOT),HI
1090 TAA = WAA + 557

1100 HI = INT (TAA / 256)
1110 LO = TAA - HI =x 256
1120 POKE (WAA + 2),LO
1130 POKE (WAA + 3) ,HI
1140 PRINT D$"PR#"SLOT
1150 PRINT 1I$

1160 PRINT DS"PR#0": REM SAME FOR DS
1170 RETURN

2000 REM XRAAXAXAARXRARRARRRARRRRAR AR

2005 REM x TRAIN WORDS *

2010 REM XXXXXAARARRRRARNRRRAKRRR AR

2012 HOME

2014 PRINT "PLEASE SAY THE FOLLOWING WORDS
2016 FOR I = 1 TO 1000: NEXT 1I

z0z0 RESTORE

2030 READ Ws

2040 IF W$ = "END" THEN 2060

2045 GOSUB 300

2050 GOTO 2030

2060 RETURN

3000 REM XXAAXAAXRXRAXRRANRARNRANRR
3005 REM »* RECOGNIZE WORDS ®
3010 REM XAAXAXARAXNANRRAXRRANRR

3015 HOME
3020 PRINT "PLEASE SAY SOME WORDS (10) AND

I WILL PRINT WHAT I THOUGHT YOU SAI
D"
3030 PRINT
3040 FOR I = 1 TO 10

3050 GOSUB 400
3060 PRINT Ws$
3070 NEXT I
3080 RETURN

3500 REM XXXAXAXAAXRXARRXRRARNRR RN
3510 REM * SAVE VOCABULARY *
3520 REM XXXAXRXRRARRANARRRRR AR R KX

3530 HOME
3540 PRINT "WHAT NAME DO YOU WISH TO SAVE

THIS VOCABULARY UNDER (JUST RETUR
N TO VvVOID)>"
3550 PRINT : INPUT NAMES

3560 IF LEN (NAMES) = 0 THEN RETURN
3s70 PRINT DS$"BSAVE "NAMES$" ,A"TAA",L3000"
3580 RETURN

149

150

3800
3805
3810
3812
3814

3820
3830

3835

3840
3845
3850
3855
3860
3865
3870
3900
4000
4004
4005
4010
4020
4030
4040
4050
4060
4070

4080
4090

4100

4110

4120

4130

4140
4150

4160

4170
4180

4190
4200
4210
4220

4230

REM X XAAAAARXAAXRR AR AR K KKK

REM *»

YES AND NO *x

REM XTAAAAAAARARARARRXRARXRRNRRXRXRX

HOME

PRINT "“THIS WILL PERFORM 10 TESTS OF
THE YES AND NO INPUT"

PRINT DS$"PR#"“SLOT

PRINT Vs

PRINT DS'"PR#0"

FOR I

= 1 TO 10

GOSUB 400
PRINT Ws$

NEXT 1

PRINT D$"PR#"SLOT

PRINT Vs

PRINT D$"PR#0"

RETURN

REM AAXARXNKRRAKXARAARRKNR R KN

REM *WORDS FOR TRAINING*

REM * LAST WORD = END ®

REM R FOK KRR KK KR K kK R K Rk

DATA OFFICE,OFFICE. ,OFFICE!

DATA STEREO,STEREO. ,STEREO!

DATA BEDROOM, BEDROOM. , BEDROOM!

DATA DEN,DEN. ,DEN!

DATA KITCHEN,KITCHEN. ,KITCHEN!

DATA FLOODLIGHTS, FLOODLIGHTS ., FLOODL
IGHTS!

DATA HEAT,HEAT. , HEAT!

DATA TIME PLEASE,TIME PLEASE.,TIME P
LEASE!!

DATA TELEPHONE , TELEPHONE . , TELEPHONE!
DATA ARE YOU BUSY,ARE YOU BUSY ., ARE
YOU BUSY!

DATA THIS IS WANDA,THIS IS WANDA.,TH
IS IS WANDA!

DATA GOODNIGHT,GOODNIGHT. ,GOODNIGHT!
DATA BYE BYE,BYE BYE.,BYE BYE!

DATA TURN IT ON,TURN IT ON.,TURN IT
ON'!

DATA SHUT IT OFF,SHUT IT OFF.,SHUT I
T OFF!

DATA pimM 1IT,DIM IT. ,DIM IT!

DATA NEVER MIND,NEVER MIND.,NEVER MI
ND!

DATA BILL,BILL.,BILL!

DATA WANDA , WANDA . , WANDA'!

DATA TOCCO HILLS,TOCCO HILLS.,TOCCO
HILLS!

DATA VILLAGE TWIN,VILLAGE TWIN. , VILL

AGE TWIN!

DATA

END

Appendix

The HELLO
Program

JLIST

10 HOME

20 PRINT "HOME CONTROL PROGRAM DISKETTE"
30 PRINT " COPYRIGHT BY "

40 PRINT " JOHN BLANKENSHIP"

S0 POKE 1012,0: REM RESET POWER UP BYTE
60 POKE 103,201: POKE 104,25: POKE 6600,0
70 REM LOMEM NOW SET TO 6600

80 POKE 49393,0: REM RESET SANITY TIMER
90 PRINT

100 PRINT CHRS (4)"RUN HOME CONTROL"

151

Psrtisl Product

Appendix

3a0 Yeador Listing

152

Micromodem II
Hayes Microcomputer Products
5835 Peachtree Corners East
Norcross Ga 30092

Type 'N Talk Speech Synthesizer
Votrax
500 Stephenson Highway
Troy MI 48084

Microvox Speech Synthesizer
40-Khz Ultrasonic Transducer
Micromint
561 Willow Avenue
Cedarhurst NY 11516

5832 Clock chip and crystal
Miscellaneous semiconductors and electronic parts
Concord Computer Products
1971 So. State College
Anaheim CA 92806
and

JDR Microdevices
1224 S. Bascom Avenue
San Jose CA 95128

Mura WMS-49 Wireless Microphone
Herbach & Rademan
401 East Avenue
Philadelphia PA 19134
and
Mura
177 Cantiague Rock Road
Westbury NY 11590

153

bt

JOHN BUANKENSHIP

Yours can be the first APPLE house on the block!

Here is a book that will show you how to save time and money by using
your computer to control your home: the security, the lights, the heat, the
telephone, and much more.

With John Blankenship’s system, your house can accept verbal commands
and respond with its own voice. It does not need human instruction and
performs many useful tasks on its own. Once you get used to an intelligent
house you will wonder how you ever got along without one.

Even though most items in the APPLE house can be readily purchased, the
author shows how you can save even more money by building some from
scratch. He also points out that you can substitute equipment you already
own because of the system’s modularity.

Although written with an APPLE computer in mind, the principles
discussed can easily be transferred to other computer systems.

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

ISBN 0-13-038729-0

BLANKENSHIP SHE AFFLE HOUSE | PRENTICE-HAL

e

