* 7 VOLUMEI

»,

SoftCard™

A Peripheral for the Apple ITI®
With CP/M® and Microsoft BASIC on diskette.

Produced by Microsoft

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

Copyright and Trademark Notices

The Microsoft SoftCard and all software and documentation in the
SoftCard package exclusive of the CP/M operating system are copy-
righted under United States Copyright laws by Microsoft. The CP/M
operating system and CP/M documentation are copyrighted under
United States Copyright laws by Digital Research.

It is against the law to copy any of the software in the SoftCard package
on cassette tape, disk or any other medium for any purpose other than
personal convenience.

It is against the law to give away or resell copies of any part of the Micro-
soft SoftCard package. Any unauthorized distribution of this product or
any part thereof deprives the authors of their deserved royalties. Micro-
soft will take full legal recourse against violators.

If you have any questions on these copyrights, please contact:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

Copyright® Microsoft, 1980
All Rights Reserved
Printed in U.S.A.

®SoftCard is a trademark of Microsoft.
®Apple is a registered trademark of Apple Computer Inc.
®CP/M is a registered trademark of Digital Research, Inc.

®7-80is a registered trademark of Zilog, Inc. 7

P

TABLE OF CONTENTS
INTRODUCTION

SoftCard System Explained

Designers and Manufacturer

System Requirements

SoftCard Terminology

Digital Research License Information

Microsoft Consumer Products
Registration Information

Warranty

Service Information

PART I: Installation and Operation

Chapter 1: How to Install the SoftCard
Apple Peripheral Cards: What Goes Where
Interface Cards Compatible with CP/M
Placement of Apple Disk Drives
Printer Interface Installation
General Purpose 170 Installation
Using an External Terminal Interface
Installation of the SoftCard

Chapter 2: Getting Started with Apple CP/M
Bringing up Apple CP/M
How to copy your SoftCard Disk
Creating CP/M System Disks
Using Apple CP/M with the
Apple Language Card
1/0 Configuration

Chapter 3: An Introduction to Using Apple CP/M

Typing at the Keyboard

Output Control

CP/M Warm Boot: Ctrl-C
Changing CP/M Disks

CP/M Command Structure
CP/M File Naming Conventions

)i

o o-adukdm

0—10—10[—10—10—1

Pt
L]

[y—
—

Some CP/M commands: 1-22
DIR, ERA, REN, TYPE

CP/M Error Messages 1-23
Description of Programs Included on the 1-26
SoftCard Disk

Chapter 4: Getting Started with
Microsoft BASIC 1-31

PART II: Software and Hardware Details

Chapter 1: Apple II CP/M Software Details

Introduction 2-4
1/0 Hardware Conventions 2-4
6502/Z-80 Address Translation 2-5
Apple II CP/M Memory Usage 2-6
Assembly Language Programming with the

Soft Card 2-7
ASCII Character Codes 2-7
Chapter 2: Apple II CP/M
I/0 Configuration Block
Introduction 2-12
Console Cursor Addressing/Screen Control 2-12
The Hardware/Software Screen Function Table
Terminal Independent Screen
Functions/Cursor Addressing
Redefinition of Keyboard Characters 2-17
Support of Non-Standard Peripheral Devices 2-17
Calling of 6502 Subroutines 2-24
Indication of Presence and Location of 2-26
Peripheral Cards
Chapter 3: Hardware Description
Introduction 2-30
Timing Scheme 2-30
SoftCard Control 2-31
Address Bus Interface 2-31

Data Base Interface 2-33

iii

6502 Refresh 2-33

DMA Daisy Chain 2-34
—~ Interrupts 2-34
SoftCard Parts List 2-34
SoftCard Schematic 2-36

PART III: CP/M Reference Manual

Chapter 1: Introduction to CP/M Features and Facilities
Introduction 3-3
An Overview of CP/M 2.0 Facilities 3-5
Functional Description of CP/M 3-6
General Command Structure 3-6
File References 3-7
Switching Disks 3-9
Form of Built-In Commands 3-9

ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command
Line Editing and Output Control 3-13
Transient Commands 3-14
STAT
ASM
LOAD
DDT
PIP
ED -
SUBMIT
DUMP
BDOS Error Messages 3-36

Chapter 2: CP/M 2.0 Interface Guide
e Introduction 3-41
Operating System Call Conventions 3-43
Sample File-to-File Copy Program 3-63
Sample File Dump Utility 3-66

iv

Sample Random Access Program
System Function Summary

Lo w
1
[«2383=]

Chapter 3: CP/M Editor

Introduction to ED 3-79
ED Operation 3-79
Text Transfer Functions 3-79
Memory Buffer Organization 3-83
Memory Buffer Operation 3-83
Command Strings 3-84
Text Search and Alteration 3-86
Source Libraries 3-88
ED Error Conditions 3-89
Summary of Control Characters 3-90
Summary of ED Commands 3-91
ED Text Editing Commands 3-92
Chapter 4: CP/M Assembler

Introduction 3-97
Program Format 3-99
Forming the Operand 3-100

Labels

Numeric Constants

Reserved Words

String Constants

Arithmetic and Logical Operators

Precedence of Operators
Assembler Directives 3-105

The ORG Directive

The END Directive

The EQU Directive

The SET Directive

The IF and ENDIF Directives

The DB Directive

The DW Directive
Operation Codes 3-110

Jumps, Calls and Returns
Immediate Operand Instructions
Data Movement Instructions

Arithmetic Logic Unit Operations
Control Instructions

Error Messages 3-114
A Sample Session 3-115
Chapter 5: CP/M Dynamic Debugging Tool
Introduction 3-123
DDT Commands 3-125
The A (Assembler) Command 3-126
The D (Display) Command 3-126
The F (Fill) Command 3-127
The G (Go) Command 3-127
The I (Input) Command 3-128
The L (List) Command 3-129
The M (Move) Command 3-129
The R (Read) Command 3-129
The S (Set) Command 3-130
The T (Trace) Command 3-131
The U (Untrace) Command 3-132
The X (Examine) Command 3-132

Implementation Notes

PART IV: Microsoft BASIC
Reference Manual

Introduction

Chapter 1: Microsoft BASIC-80 and Applesoft: 4-3
A Comparison
Features of Microsoft BASIC not found
in Applesoft 4-4
Applesoft Enhancements 4-6
Features Used Differently in Microsoft
BASIC than in Applesoft 4-7
Changes in BASIC-80 Features 4-7
Applesoft Features Not Supported 4-8
9

Chapter 2: General Information About BASIC-80 4-

Chapter 3: BASIC-80 Commands and Statements 4-24

Vi

Chapter 4: BASIC-80 Functions

Chapter 5: High Resolution Graphics, GBASIC

Appendices

New Features in BASIC-80, Release 5.0

BASIC-80 Disk I/0

Assembly Language Subroutines

Converting Programs to BASIC-80 from
BASICs Other Than Applesoft

Summary of Error Codes and Error Messages

Mathematical Functions

ASCII Character Codes

PART V: Software Utilities Manual

Introduction
Format Notation
To Prepare Diskettes for Reading and
Writing: FORMAT
To Make Copies of Diskettes: COPY
To Create CP/M System Disks
To Convert 13-Sector CP/M Files from
16-Sector CP/M: RW13
To Configure CP/M for a 56K System: CPM56
To Transfer Files from Apple DOS to
CP/M: APDOS
To Configure the Apple CP/M
Operating Environment: CONFIGIO
1. Configure CP/M for External Terminal
2. Redefine Keyboard Characters
3. Load User 1/0 Configuration
To Transfer CP/M Files from
Another Computer: DOWNLOAD and UPLOAD

vii

4-81

4-98 —

4-103
4-105
4-115

4-121
4-123
4-128
4-130

5-14

5-16

5-28

Introduction

»,

The SoftCard Explained

The Circuit Card

The Microsoft SoftCard is a plug-in card for the Apple II microcom-
modification, but be sure to read the Installation and Operation Manual to
ensure that you do it correctly.

Once you have installed the SoftCard, you will be able to operate your
Apple in either 6502 or Z-80 mode, using software commands to switch
between the two. Whenever you are in 6502 mode, the SoftCard in no way
affects operation of your Apple.

When in Z-80 mode, you can run both the CP/M operating system from
Digital Research and Microsoft’s BASIC interpreter, Version 5.0, which are
included in the SoftCard package.

The SoftCard is easy to install and requires no hardware or software
puter that greatly enhances the software capability of the Apple. The
SoftCard actually contains a Z-80A microprocessor, allowing the Apple to
run software that was written for Z-80 based microcomputers.

CP/M Operating System

Next to the circuit card itself, CP/M is the most important key to allowing
a wide variety of Z-80 software to run on the Apple. Version 2.2 of CP/M is
included in the SoftCard package.

CP/M (which stands for Control Program/Microprocessors) is an operating
system designed for use with 8080 and Z-80 microprocessors. It is composed
of many small programs whose collective function is to write information to,
and retrieve information from, microcomputer floppy disks. CP/M has been
adapted to run on almost all computers using the 8080 or Z-80 families of
microprocessors and because of its widespread use, a very large group of
high-level languages and application software has been written to operatein
the CP/M environment.

With the advent of the SoftCard, Apple owners are now able to take
advantage of the CP/M Operating System. Microsoft has implemented
CP/M on the Apple I1, making all modifications needed to make CP/M run
on the Apple.

Standard CP/M programs will be compatible with Apple CP/M. There is
just one difficulty in loading them on the Apple: Apple disks have a
physically different format than CP/M disks. Before a CP/M program
written for another type of computer can be run on the Apple, it must be
downloaded from a standard CP/M system to the Apple. This process is
described in detail in the Software Utilities Manual.

I-1

In addition to supporting a wider variety of software, CP/M offers several
convenient features not foundin Apple DOS. These include easy interface to
machine language programs; faster disk I/0; simple file transfer; and wild
card file-naming conventions that allow you to refer to multiple files with -
one name.

Microsoft BASIC

Microsoft’s ANSI-standard BASIC interpreter, in its fifth major release, is
also included as part of the SoftCard package. Microsoft BASIC has many
features not found in Applesoft. Among these are PRINT USING, CALL,
WHILE/WEND, CHAIN and COMMON and built-in Disk I/0 sta-
tements. In addition, most of the graphics features of Applesoft have been
incorporated into Microsoft BASIC to take advantage of the Apple’s special
capabilities. A complete list of the differences between Microsoft BASIC and
Applesoft can be found in Part 4, the Microsoft BASIC Reference Manual.

The Diskettes

Two diskettes, each containing CP/M and Microsoft BASIC plus several
utility programs, are provided. One of the disks is in 13-Sector format and
should be used if you don’t have a Language Card or DOS 3.3. The other disk
isin 16-Sector format and should be used with systems that have the Apple
Language Card and/or DOS 3.3. The 16-Sector disk also contains an
enhanced version of Microsoft BASIC with high-resolution graphics
capabilities.

I-2

Designers and Manufacturer

The Softcard Circuit Board

Designer: The SoftCard circuit board was designed by Don Burtis of
Burtronix, Villa Park, California. Microsoft Consumer Products is grateful
to Burtronix for its contribution to making the SoftCard a reality.

Manufacturer: The SoftCard circuit board is manufactured for Microsoft
Consumer Products by Vista Computer Co. of Santa Ana, California.

SoftCard Software

The CP/M operating system, Version 2.0, is licensed by Microsoft from
Digital Research, Inc., of Pacific Grove, California. The BASIC interpreter
included in this package is Microsoft’s ANSI-standard BASIC-80, Version
5.0, with additional enhancements to take advantage of the Apple’s special
capabilities. Neil Konzen, of Microsoft Consumer Products, was in-
strumental in implementing all of the SoftCard software on the Apple II.

I-3

System Requirements

The SoftCard will operate on an Apple II or Apple II Plus microcom- —
puter with a minimum of 48K RAM and one disk drive.

The SoftCard supports the Apple Language Card system and can utilize 12K
of the 16K RAM on the Language Card when in Z-80 mode.

CP/M occupies 7K of RAM, only 5K of whichis needed during the execution
of user programs. CP/M and MBASIC together occupy just over 29K RAM.
CP/M and GBASIC (BASIC with high-resolution graphics, found only on
the 16-Sector disk) occupy just over 37K RAM.

When you are in 6502 mode, the SoftCard in no way affects operation
of the Apple II.

When in Z-80 mode, all standard Apple 1/0 peripheral cards and some
independent peripherals are supported.

1-4

SoftCard Terminology

-~ Thereare several terms we use throughout this documentation that youmay
notunderstand at first glance. These terms, their definitions, and the reasons
we have adopted them are listed below.

44K System

56K System

13-Sector Disk

16-Sector Disk

Referstoan Apple IT or Apple IT Plus that has
48K RAM installed. We call it a 44K System,
because when you are using the SoftCard
(in Z-80 mode), you can address 44K of the
48K total. The 4K you lose is used to handle
the Apple screen and CP/M sector read and
write routines.

Refers to an Apple 1I or Apple 11 Plus with
Language Card (an Apple with 64K RAM
installed). As with a 48K system, 4K of the
64K is dedicated to the Apple screen and
CP/M sector read and write routines. And
since only 12K of the 16K RAM on the
Language Card is addressable, you have, in
effect, a 56K system.

Refers to one of the disks in the SoftCard
package. This disk should be used if you have
Apple DOS 3.2 or earlier and no Language
Card.

Refers to the other disk in the SoftCard
package. This disk should be used if you have
an Apple Language Card or DOS 3.3. In
addition to all of the software on the 13-Sector
disk, the 16-Sector disk includes a second
version of BASIC, called GBASIC, that
includes high-resolution graphics features.

The names A:, B:, C:, D:, E: and F: refer to
disk drives. This is the standard CP/M drive
naming convention and since we are using
CP/M, it is used throughout this manual. For
the relationship of drive names to drives, see
the Installation and Operations Manual.

I-5

External Terminal Refers to two types of devices. An external
terminal can be a 24 X 80 character video card
(such as the Videx Videoterm), or it can
actually be a second terminal (such as a
Hazeltine or SOROC) that you are using with
your system.

RETURN vs. {cr) vs. carriage return
All of these mean to press the RETURN key

on the Apple keyboard.

I-6

Digital Research License Information

IMPORTANT: Our license with Digital Research for the CP/M Operating
System requires that each purchaser of the SoftCard with CP/M register
with Microsoft Consumer Products so that records can be maintained of all
CP/M owners. This requirement is made by Digital Research, not by
Microsoft, and a post card is enclosed for reply. The serial number requested
on the card is the number stamped on the disk labels. The registration card
also specifies agreement to Digital Research’s software license agreement.
Before signing the card and returning it to Microsoft, read the software
license agreement below carefully.

DIGITAL RESEARCH
Box 579 Pacific Grove, California, 93950

SOFTWARE LICENSE AGREEMENT

IMPORTANT: All Digital Research programs are sold only on the
condition that the purchaser agrees to the following license. READ THIS
LICENSE CAREFULLY. If you do not agree to the terms contained in this
license, return the packaged diskette UNOPENED to your distributor and
your purchase price will be refunded. If you agree to the terms contained in
this license, fill out the REGISTRATION information and RETURN by
mail to Microsoft Consumer Products.

DIGITAL RESEARCH agrees to grant and the Customer agrees to accept
on the following terms and conditions nontransferable and nonexclusive
licenses to use the software program(s) (Licensed Programs) herein delivered
with this agreement.

Term:

This agreement is effective from the date of receipt of the above-referenced
program(s) and shall remain in force until terminated by the Customer upon
one month’s prior written notice, or by Digital Research as provided below.

Any license under this Agreement may be discontinued by the Customer at
any time upon one month’s prior written notice. Digital Research may
discontinue any license or terminate this Agreement if the Customer fails to
comply with any of the terms and conditions of this Agreement.

License:

Each program license granted under this Agreement authorizes the
Customer to use the Licensed Program in any machine readable form onany
single computer system (referred to as System). A separate license isrequired
for each System on which the Licensed Program will be used.

-7

This Agreement and any of the licenses, programs or materials to which it
applies may not be assigned, sublicensed or otherwise transferred by the
Customer without prior written consent from Digital Research. Noright to
print or copy, in whole or in part, the Licensed Programs is granted except as
hereinafter expressly provided.

Permission To Copy or Modify Licensed Programs:

The customer shall not copy, in whole or in part, any Licensed Programs
which are provided by Digital Research in printed form under this
Agreement. Additional copies of printed materials may be acquired from
Digital Research.

Any Licensed Programs which are provided by Digital Researchin machine
readable form may be copied, in whole or in part, in printed or machine
readable form in sufficient number for use by the Customer with the
designated System, to understand the contents of such machine readable
material, to modify the Licensed Program as provided below, for back-up
purposes, or for archive purposes, provided, however, that no more than five
(5) printed copies will be in existence under any license at any one time
without prior written consent from Digital Research. The Customer agrees
tomaintain appropriate records of the number and location of all such copies
of Licensed Programs. The original, and any copies of the Licensed
Programs, in whole or in part, which are made by the Customer shall be the
property of Digital Research. This does not imply, of course, that Digital
Research owns the media on which the Licensed Programs are recorded. The
Customer may modify any machine readable form of the Licensed Programs
for his own use and merge it into other program material to form an updated
work, ptovided that, upon discontinuance of the license for such Licensed
Program, the Licensed Program supplied by Digital Research will be
completely removed from the updated work. Any portion of the Licensed
Program included in an updated work shall be used only if on the designated
System and shall remain subject to all other terms of this Agreement.

The Customer agrees to reproduce and include the copyright notice of
Digital Research on all copies, in whole or in part, in any form, including
partial copies of modifications, of Licensed Programs made hereunder.

Protection and Security:

The customer agrees not to provide or otherwise make available any
Licensed Program including but not limited to program listings, object code
and source code, in any form, to any person other than Customer or Digital
Research employees, without prior written consent from Digital Research,
except with the Customer’s permission for purposes specifically related to
the Customer’s use of the Licensed Program.

I-8

Discontinuance:

Within one month after the date of discontinuance of any license under this
Agreement, the Customer will furnish Digital Research a certificate
certifying that through his best effort, and to the best of his knowledge, the
original and all copies, in whole or in part, in any form, including partial
copies in modifications, of the Licensed Program received from Digital
Research or made in connection with such license have been destroyed,
except that, upon prior written authorization from Digital Research, the
Customer may retain a copy for archive purposes.

Disclaimer of Warranty:

Digital Research makes no warranties with respect to the Licensed
Programs. Thesole obligation of Digital Research shall be to make available
all published modifications or updates made by Digital Research to Licensed
Programs which are published within one (1) year from date of purchase,
provided Customer has returned the Registration Card delivered with the
Licensed Program.

Limitation of Liability:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WAR-
RANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHAN-
TABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL DIGITAL RESEARCH BE LIABLE FOR CON-
SEQUENTIAL DAMAGES EVEN IF DIGITAL RESEARCH HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

General

If any of the provisions, or portions thereof, of this Agreement are invalid
under any applicable statute or rule of law, they are to that extent to be
deemed omitted.

Microsoft Consumer Products
Registration Information

Please fill out the SoftCard registration card that is enclosed and return it
to us so that we may provide you with information about updates and
about new products. The serial number requested on the card is the num-
ber printed on the disk labels.

SoftCard Warranty

Microsoft Consumer Products (“MCP”) warrants to the original user of this
product that it shall be free of defects resulting from faulty manufacture of
the product or its components for a period of ninety (90) days from the date
of sale. MCP MAKES NO WARRANTIES REGARDING EITHER THE
SATISFACTORY PERFORMANCE (i.e. MERCHANTABILITY) OF
THESOFTWARE ENCODED ON THISPRODUCT OR THE FITNESS
OF THE SOFTWARE FOR ANY PARTICULAR PURPOSE. Defects
covered by this Warranty shall be corrected either by repair or, at MCP’s
election, by replacement. In the event of replacement, the replacement unit
will be warranted for the remainder of the original ninety (90) day period or
30 days, whichever is longer.

If this product should require service, return it to Microsoft Consumer
Products, 400 108th Ave. NE, Suite 200, Bellevue, Washington 98004, postage
prepaid, along with an explanation of the suspected defect. MCP will
promptly handle all warranty claims.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, IN-
CLUDINGBUTNOT LIMITED TOTHOSE OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE, WHICH EXTEND
BEYOND THE DESCRIPTION AND DURATION SET FORTH
HEREIN.

MCP’s SOLE OBLIGATION UNDER THIS WARRANTY ISLIMITED
TOTHE REPAIR OR REPLACEMENT OF ADEFECTIVE PRODUCT
AND MCP SHALL NOT, IN ANY EVENT, BE LIABLE FOR ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND
RESULTING FROM USE OR POSSESSION OF THIS PRODUCT.

Some states do not allow 1) limitations on how long an implied warranty
lasts, or 2) the exclusion or limitation of incidental or consequential
damages, so the above limitations or exclusions may not apply to you.

This Warranty gives you specific legal rights, and you may also have other
rights which vary from state to state.

I-10

Service Information

If your SoftCard requires repair, please return it to the dealer from
whom it was purchased. If it is not possible to return the SoftCard to your
dealer, you may send it directly to Microsoft Consumer Products.

If the repair is required during the warranty period, please enclose proof of
purchase. During warranty, we will replace or repair your SoftCard without
charge. See page I-10 for more details regarding warranty coverage.

If the SoftCard requires service after the warranty period expires, it will be
repaired for a flat fee 0of $39.50. This service charge does not cover damage due
to negligence, misuse or inadequate packaging on return to MCP.

To return your SoftCard for service, please mail it post-paid to Microsoft
Consumer Products. Package the card securely as we cannot be responsible
for damage due to shipping. BE SURE to enclose proof of purchase for
warranty work or a check or money order in the amount of $39.50 for
non-warranty repairs.

Mail post-paid to:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

I-11

SoftCard
Installation and
Operations

PART I: INSTALLATION
AND OPERATION

Chapter 1
How To Install the SoftCard

Apple Peripheral Cards:

What Goes Where
Interface Cards Compatible with CP/M
Placement of Apple Disk Drives
Printer Interface Installation
General Purposes 1/0 Installation
Using an External Terminal Interface
Installation of the SoftCard

Chapter 2
Getting Started with Apple CP/M

Bringing Up Apple CP/M

How To Copy Your SoftCard Disk

Creating CP/M System Disks

Using Apple CP/M with the
Apple Language Card

170 Configuration

Chapter 3
An Introduction to Apple CP/M

Typing at the Keyboard

Output Control

CP/M Warm Boot: Ctrl-C
Changing CP/M Disks

CP/M Command Structure
CP/M File Naming Conventions

Some CP/M Commands:
DIR, ERA, REN, TYPE
CP/M Error Messages
Description of Programs Included
on the SoftCard Disk

Chapter 4
Getting Started with
Microsoft BASIC

1-b

1-22
1-23

1-26

1-31

Chapter 1
How To Install the SoftCard

» Apple Peripheral Cards: What Goes Where
* Interface Cards Compatible with CP/M

* Placement of Apple Disk Drives

* Printer Interface Installation

* General Purpose 1/0 Installation

» Using an External Terminal Interface

* Installation of the SoftCard

1-1

Installation of the SoftCard is easy, but there are some things you
shouldknow before you installit. Improperinstallation can damageboth the
SoftCard and the rest of your Apple system. So . ..

READ THESE INSTRUCTIONS CAREFULLY BEFORE
INSTALLING THE SOFTCARD!!

Apple Peripheral Cards: What Goes Where

Before you install the SoftCard, you must make sure that your
other peripheral cards are installed in the correct peripheral slots in your
Apple to insure proper operation with Apple CP/M.

This is necessary because unlike Applesoft and Integer BASIC (but similar
to Apple PASCAL), Apple CP/M requires that peripheral I/0 cards be
plugged into specific slots depending on their intended use. For instance, if
you have a printer interface, it should be installedin slot one. This allows you
to refer to the printer without specifying a slot number, as is necessary with
Applesoft and Integer BASIC. Use the information below as a guide for
installing any other peripheral interface cards you might own.

NOTE to Apple Language Card users:

The peripheral card slot assignments for Apple CP/M are exactly the same
as for Apple Pascal. Therefore, if you have your system set up for use with
Apple Pascal, no rearrangement is necessary.

Interface Cards Directly Compatible
With CP/M:

Below is a list of the I/0 peripheral card types that are known to be directly
compatible with Apple CP/M. The cards listed below, when installed in the
appropriate Apple peripheral slot, will work without any software
modifications.

TYPE CARD NAME
1 Apple Disk IT Controller
*2 Apple Communications Interface
California Computer Systems 7710A Serial Interface
3 Apple High Speed Serial Interface

Apple Silentype Printer Interface

Videx Videoterm 24 x 80 Video Terminal Card

M&R Enterprises Sup-R-Term 24 x 80 Video Terminal Card
4 Apple Parallel Printer Card

1-2

*The CCS 7710A serial interface card is the preferred card of type 2 as it
supports hardware handshaking and variable baud rates from 110-19200
baud. The Apple Communications Interface card requires hardware
modification for use with data rates other than 110 or 300 baud.

There are some interface cards not listed above that may work with Apple
CP/M. As a general rule, any card that is directly compatible with Apple
Pascal without requiring any software modifications will probably be
directly compatible with Apple CP/M as well. Other peripheral cardsmay be
used if software supplied by the card manufacturer is bound to your Apple
CP/M system using the CONFIGIO program. See the Software Details
section and the CONFIGIO utility for more information on the im-
plementation of non-standard peripheral cards.

Below is a table of the assigned functions for each of the Apple slots, along
with the card types (see above) that are recognized when installed in each.
Unless otherwise noted below, unrecognized cards orempty slotsareignored.

IMPORTANT: MAKE SURE your Apple is TURNED OFF before you
attempt to rearrange your peripheral cards or serious damage may result to
your Apple.

VALID CARD

SLOT TYPES PURPOSE

0 Not used for I/0 This slot may contain a Language Card or an
Applesoft or Integer BASIC ROM card. (The
latter are not used by CP/M.)

1 types 2,3,4 Line printer interface (CP/M LST: device)

2 input: 2, 3,4 GeneralpurposeI/0 (CP/M PUN:andRDR:

output: 1,2,3,4 devices)

3 types 2,3,4 Console output device (CRT: or TTY:) The
normal Apple 24 X40 screen is used as the
TTY: device if no card is present.

4 type 1 Disk controller for drives E: and F:. The
SoftCard may be installed here if not oc-
cupied by a Disk controller card.

5 type 1 Disk controller for drives C: and D:.

1-3

VALID CARD

SLOT TYPES PURPOSE

6 type 1 Disk controller for drives A: and B:. (must be
present)

7 any type No assigned purpose. The SoftCard may
be installed in slot 7.

Placement of Apple Disk Drives

As indicated in the table above, Apple Disk II controller cards may be
installed in slots 6, 5 or 4. You must have at least one disk drive installed in
slot six. Disk controller cards are installed in order downward fromsslot 6, i.e.,
your second controller should be installed in slot 5, and the third in slot 4.

In CP/M, each of the drivesis assigned a letter name, followed by a colon. For
instance, the disk in slot 6, drive 1,is CP/M drive A:. (See table below.) This
is the way we will refer to your disk drives throughout this documentation.
Youmay want to label each disk drive according to its assigned CP/M name
and it is for just that purpose that we enclosed the package of self-adhesive
disk drive labels.

CP/M name Slot # Drive #
Ist drive: A 6 1
2nd drive: B 6 2
3rd drive: C 5 1
4th drive: D 5 2
5th drive: E 4 1
6th drive: F 4 2

NOTE for DOS 3.3 or Apple Pascal users:
Apple CP/M supports the large-capacity 16-Sector disk format used by DOS
3.3 and Apple Pascal, in addition to standard Apple II 13-Sector format.

Printer Interface Installation

If you own a printer, its interface card must be installed into slot 1. Most
interface cards designed to work with Apple Pascal will work with Apple
CP/M as well.

1-4

General Purpose I/0 Installation

General purpose I/0 (such as modems, paper tape readers and punches, etc.)
must be installed in slot 2. Only those cards noted in Table 1 will be
recognized, although other types of cards may be used with interface
software supplied by the manufacturer of the card. For more details on
interfacing foreign hardware, see the Software Details section, and the
CONFIGIO program in the Software Utilities Manual.

Using an External Terminal Interface

Any of the type 2, 3, or 4 cards of Table 1 can be used to interface an external
terminal to Apple CP/M. The terminal interface card must be installed in
slot 3.

The SoftCard supports both the Videx Videoterm and M&R Sup-R-
Term 24 X 80 character video cards. Other plug-in video boards may be used
with interface software supplied by the board manufacturer.

If an interface card is pluggedinto slot 3, the I/O interface card isused as the
terminal device, rather than the Apple 24 X 40screen and keyboard. If you do
have an external terminal interface, we suggest that you remove it from slot

3 and use the normal Apple screen and keyboard until you have configured
Apple CP/M for use with your terminal. See CONFIGIO in the Software
Utilities Manual.

If you are using an external terminal, we suggest that you use either a
California Computer Systems 7710A Serial interface or a modified Apple
Communications Interface to interface the terminal to your Apple CP/M
system. The Apple High Speed Serial Interface will be tolerated, but is not
recommended because thereis no way for CP/M to check the “status” of this
device (i.e., you won't be able to “Ctrl-C” out of a BASIC program).

Installation of the SoftCard
Now you are ready to install the SoftCard. First,
MAKE SURE THAT YOUR APPLE IS TURNED OFF!!

Serious damage to your Apple and to the SoftCard will result if your Apple
is left on during installation.

1. With the card laying component-side up in front of you, notice the four
small switches on the Apple SoftCard. Make sure that all of these

1-5

switches are OFF. The side of the switch nearest the gold-plated edge
connector is DOWN when in the off position. This is the standard
operating position for Apple CP/M.

2. With your Apple computer positioned with the keyboard directly in front
of you, clear the top of the Apple of miscellaneous monitors, disks, old
coffee cups and any other junk. Now remove the top by grasping the cover
under its rear lip at each corner with one hand at each corner, pulling up
gently till the cover pops loose from its fasteners. Then pull the cover
directly out toward the rear of the machine and remove it from your
Apple. (The power is off isn’t it?) :

3. Now you must decide into which slot to install the SoftCard. You
may plug the card into any unused slot (except slot zero), but we suggest
you installitin slot 4. If slot 4 is occupied by a disk controller card, simply
choose any other unused slot.

4. Position the SoftCard’s connectors directly over the chosen expansion
slot on the Apple’s circuit board. Holding the board firmly and vertically,
push the connector down into the expansion slot. Insure that the
SoftCard is inserted all the way by rocking it gently fore and aft while
applying downward pressure. Insure that the SoftCard is not tilted down
toward the front of the Apple as this could cause the rear connector
fingers to not be fully seated in the expansion slot (which would lead to
results that are best not thought about).

5. Make sure that all of your peripheral cards are installed correctly as per
the instructions on page 1-2.

6. Carefully replace the Apple’s cover. Be sure that the corners pop into
place and secure the lid. Now you can rearrange all of your junk just as

before.

Now your SoftCard system is ready for use. Checkout of the system consists
of bringing up CP/M and usingit. BUT, before you turn on your Apple, please
read the sections on “Bringing Up Apple. CP/M” and “How To Copy Your
SoftCard Disk?’ It is possible to destroy your disks if you do not follow the
information in the two sections. So, KEEP READING AND DON’'T
TURN ON ANYTHING YET.

1-6

Chapter 2
Getting Started with Apple CP/M

» Bringing Up Apple CP/M

» How to copy your SoftCard Disk

» Creating CP/M System Disks

» Using Apple CP/M with the Language Card.
* 170 Configuration

1-7

In the pages to follow, we will show you how to bring up Apple CP/M.
PLEASE read this section CAREFULLY and COMPLETELY before you
power up your Apple!! You should read completely and understand all the
information on pages 1-2 to 1-7 before proceeding.

TN

Bringing up Apple CP/M

Starting Apple CP/M is simple, but first you must be sure you are using the
correct disk.

Two disks are included in the SoftCard package — one in 16-Sector format
and the other in 13-Sector format. If you are currently using Apple DOS
version 3.3 or Apple Pascal with the Language Card, you must use the
16-Sector disk. If you are currently using DOS 3.2 or earlier, you must use the
13-Sector disk. A 16-Sector disk will NOT boot on a drive set up for 13-Sector
disks, and vice-versa.

Select the disk appropriate for your system and insertitinto drive A:. (You’ll
have to start getting used to these drive names — A: is slot 6, drive 1.)

Ifyou have an Apple II Plus or an Apple I with an Autostart ROM installed,
simply turn the Apple’s power on, which will automatically boot the disk.

Ifyou have a standard Apple ITwithout an Autostart ROM,boot the disk by
first turning the Apple’s power on, hitting the RESET key, and then typing
6 Ctrl-K RETURN. Ctrl-K is typed by first pressing the key marked CTRL
and holding it down while you press the K key.

After a few seconds, the computer will display

APPLEII CP/M
44K vers. 2.2X
(C) 1980 MICROSOFT

A>

NOTE: If the sign-on message above is not displayed, check to be sure you
are using the correct SoftCard disk. Also check to make sure that you have
inserted all of your peripheral cards properly.

The “A>"" prompt means that CP/Misready for your command. Tosee that —
CP/M is really working, type

DIR

1-8

and press RETURN to display the names of all of the programs on your
SoftCard Master disk. The DIR command and the rest of the CP/M
commands will be explained in detail later.

But first, you should . . .

MAKE A BACKUP COPY OF YOUR SOFTCARD
CP/M MASTER DISK!

and save the original in a nice, safe, dry, non-magnetic place. In fact, it is a
good idea to make more than one copy!

How To Copy Your SoftCard Disk

NOTE: The process below works with both single- and multiple-drive
systems. For more information on the use of the FORMAT and COPY
programs, see the “Software Utilities Manual’’

Copying a CP/M disk is a two-step process. The first step is to use the
FORMAT program to “format” a blank disk to use as the backup disk. This
processinitializes the disk so thatit canaccept data. Next, you use the COPY
program to COPY the master disk onto the newly formatted backup disk.

NOTE: CP/M, unlike Apple DOS, does not place the system software on
eachdisk. Thismeans that there arenot “slave” or “master” disksin the same
sense as with Apple DOS. We refer to the disks shipped with your SoftCard
system as “Master Disks” only in the sense that you should save and protect
these disks, and not in an operational sense. Also, CP/M disks will not boot
up unless the system software is on that particular disk. You must first load
CP/M from the system disk before you use any standard CP/M disk.

Formatting the backup disk
Assuming CP/Misup and running (you should see the A> prompt),and you
still have the SoftCard disk in drive A:, type:

FORMAT A:
and press RETURN. Soon, the Apple will respond by printing:

APPLE II CP/M
xx SECTOR DISK FORMATTER (xx 13 or 16 Sector depending
(C) COPYRIGHT MICROSOFT 1980 on which disk you are using)

INSERT DISK TO BE FORMATTED INTO DRIVE A:

19

Now remove the SoftCard system disk and insert your blank disk. When you
are ready to begin, just hit RETURN. Make sure that you have the blank
backup disk in the drive when you press RETURN. Py

The formatting process takes about 30 seconds. The disk drive will remain on
during the entire process (you should be able to hear it operating).

When the FORMAT processis complete, the disk will stop and the Apple will
type:

FORMAT COMPLETED
INSERT SYSTEM DISK AND PRESS RETURN

When the red light on the disk drive goes out, remove the newly formatted
disk and re-insert the SoftCard system disk. Then press RETURN toreturn
to CP/M. After a second or two, the A> prompt will reappear, letting you
know that you have returned to CP/M.

Copying the backup disk

Now you are ready to copy your SoftCard system disk with the COPY
program.

Type:

COPY A:=A:

After a few seconds, the Apple will display:

APPLEIICP/M (xx is 13 or 16 Sector
xx SECTOR DISK COPY PROGRAM depending on which disk you
(C) MICROSOFT 1980 are using)

INSERT MASTER DISK PRESS RETURN

Since you want to copy the disk that is already in drive A:, just press
RETURN to begin the COPY process. The disk will whirr for a few seconds,
then the computer will print:

INSERT SLAVE DISK PRESS RETURN

ST

Remove the SoftCard Master disk and insert your freshly formatted backup
diskinto drive A: and hit RETURN. Again after a few seconds, the computer
will prompt:

1-10

INSERT MASTER DISK
PRESS RETURN

Now remove the backup disk and re-insert the master disk, and hit
RETURN.

Finally, the computer will ask you tore-insert the slave disk. This process will
be repeated three times.

After you have inserted the slave disk into drive A: for the last time, the
computer will display:

COPY COMPLETE
DO YOU WISH TO MAKE ANOTHER COPY? (Y/N)
PRESS RETURN

Since the disk in the drive is an exact copy of the SoftCard disk, you do not
need to re-insert the SoftCard Master Disk. You should now store the
SoftCard Master Disk away in a nice, safe, dry, non-magnetic place for
safekeeping.

Itis a good idea to make at least two backup copies of your SoftCard Master
Disk. If you ever have problems that are not immediately identifiable as
hardware or software, having a second backup will allow you to test your
system without risking your SoftCard Master Disk.

If you have a Language Card, you should definitely make at least three
copies as you will need to modify CP/M to take advantage of the additional
Language Card memory. We strongly recommend that you do this
modification on backup disks and not on your SoftCard Master Disk.

Creating CP/M System Disks

A CP/M System disk is a disk that will load and initialize CP/M when
booted. Creation of CP/M System disks is a two step process: first you must
FORMAT the disk, then you must use the COPY program to write the CP/M
system onto the disk that will load and run when the system isbooted. Below
is outlined the process for creating system disks:

1. Use the FORMAT program to format a blank disk. This process is
exactly thesame asthe FORMAT process that you used to copy your
SoftCard Master disks earlier.

2. Next, you must use the COPY program to write the CP/M system
onto the disk. This is done using the “/S” option as shown below:

1-11

Use of the COPY program

1. Insert a CP/M system disk that contains the COPY program into
drive A: and boot your system. When you see the A> prompt, type

COPY A:=A:/S

The “/8” means that you only want to copy the CP/M system, not
the entire disk. After a second, the computer will display

INSERT MASTER DISK PRESS RETURN

Since your disk containing COPY also contains CP/M, just leave the
current disk in drive A and press RETURN.

The disk will whirr for a few seconds then the computer will display
the message:

INSERT SLAVE DISK PRESS RETURN

Then, insert the disk you want to write the CP/M system onto, and
hit RETURN. After a few seconds, the disk will stop and the
computer will display

INSERT CP/M SYSTEM DISK INTO DRIVE A:
PRESS RETURN

Since the disk in the drive is now a CP/M system disk, you can just
hit RETURN to return to CP/M.

Your new CP/M system disk will now boot and can be used to store
programs and data.

If you have more than one disk drive, or if you wish to create more
than one system disk at a time, you should read the “Software
Utilities Manual” for more complete information on the use of
FORMAT and COPY.

1-12

Using Apple CP/M with the
Apple Language Card

If you are using the Apple Language Card, it is possible to take advantage of
the extra 12K of addressable memory contained on the card. This extra 12K
of memory makes 56K of contiguous memory space available for use with
CP/M. First, however, you must update your CP/M system disk so that 56K
CP/M, rather than 44K CP/M, will be invoked when the disk is booted. This
is done with the CPM56 utility.

NOTE: Updating your CP/M disks in this way does not affect the operation
of CP/M. However, a 56K CP/M disk will NOT BOOT on a system thatisnot
equipped with a Language Card. We suggest that you do NOT update your
SoftCard CP/M Master disk to 56K CP/M. Instead, use one of the backup
copies you have just finished making.

To use the CPM56 utility, first make sure CP/M is up and running, (you
should see the “A>" prompt) and insert your backup copy of the SoftCard
system disk. Then, type:

CPM56 A:

and hit RETURN. Once you press RETURN, the computer will automa-
tically update your disk. When the conversion is complete, the computer will
display the message

DISK IN DRIVE A: HAS BEEN UPDATED TO 56K

You now have a diskette containing CP/M configured for a 56K system. To
load this new version, RE-BOOT your system by either hitting RESET, 6,
Ctrl-K (if you don’t have an Autostart ROM), or by turning your Apple off
and back on again. Soon, the prompt message will re-appear, this time
displaying “56K CP/M” instead of ““‘44K CP/M”

I/0 Configuration

1/0 Configuration is the last step in setting CP/M up for your system. This
step is not necessary on all systems but you will need to perform it IF:

1. You are using an external terminal

2. You wish to patch non-standard 1/0 software to the CP/M system

1-13

The CONFIGIO program is used to perform all of the system configuration
process described below. Read the section on CONFIGIO in the “Software
Utilities Manual” carefully for more information on the use of CONFIGIO.

Here are the final configurations that may be performed:

Redefining Keyboard Characters — If you wish to make it possible to type
acharacter thatisnot normally available on the Apple keyboard (or on your
external terminal if you use one), you can use the CONFIGIO utility of
Apple CP/M to redefine the ASCII value that is assigned to any particular
key on the keyboard. Since many CP/M programs use characters not found
on the Apple keyboard, you will probably find it valuable to use this option.
See both Chapter 2 of the “Software and Hardware Details Manual] and
CONFIGIOin the “Software Utilities Manual” for complete information on
redefining keyboard characters.

Loading User I/0 Driver Software — The I/0 Configuration Block also
provides for the support of non-standard Apple peripherals and 170
software. To interface a non-standard peripheral (i.e., a peripheral that the
SoftCard does not normally support, see list on page 1-2), you must load the
interface software provided by the peripheral manufacturer into the I7/0
Block. There are specific restrictions regarding the software that can be
loaded. For a complete description of these restrictions and for the actual
loading process, see both Chapter 2 of the “Software and Hardware Details
Manual” and “CONFIGIO” in the “Software Utilities Manual?’

Configuring Apple CP/M for use with an External Terminal — If you
are using an external terminal, you must configure Apple CP/M for use with
your terminal. This configuration processis necessary because Apple CP/M
supports a number of special screen and cursor control functions (e.g. Clear
Screen and Address Cursor) that are used by a number of CP/M programs,
such as Microsoft BASIC and the many CP/M word processors. These
screen functions are invoked on most terminals by sending a sequence of
characters to the terminal, which then performs the appropriate function.
So, Apple CP/M must be made to recognize the particular screen function
command sequences for your terminal.

Apple CP/M supports most popular video terminals, including the SOROC
IQ 120/140, the Hazeltine 1500/1510, and the popular 24 X 80 plug-in video
boards, such as the Videx Videoterm and the M&R Sup-R-Term.

As mentioned earlier in the section on installation of the SoftCard, the
terminal interface card must be installed in slot 3 of your Apple. “See Apple
Peripheral Cards: What Goes Where]” page 1-2 for more information on the
types of terminal interface cards supported by Apple CP/M.

1-14

N

Terminal configuration is done using a program written in Microsoft
BASIC: CONFIGIO. The use of this program, and the procedure for

configuring Apple CP/M to your system can be found in the “Software
Utilities Manual”

1-15

1-16

Chapter 3
An Introduction to Apple CP/M

» Typing at the Keyboard

» Output Control

« CP/M Warm Boot: Ctrl-C

» Changing CP/M Disks

» CP/M Command Structure

« CP/M File Naming Conventions

» File Name Specification

« Some CP/M Commands: DIR, ERA, REN, TYPE

» CP/M Error Messages

» Definitions of Programs Included on the SoftCard
Disk

1-17

The information presented in this section is intended to be used as a short
introduction to CP/M on the Apple II. It will help you get started using
CP/M but is in no way intended to replace the standard CP/M documen-
tation as a guide to the complete usage of CP/M. Read the CP/M Reference
Manual carefully.

The heart of the CP/M operating system does not lie in the power of its
built-in keyboard commands. Instead, CP/M was designed as a link between
a computer’s hardware and its software. This is the reason for its wide
popularity — a program written for CP/M on one machine can be easily
transported to another.

Most CP/M “commands” (with the exception of a few such as DIR) are
actually programs on a disk and so are extensible. To invoke commands of
this type, the appropriate disk must bein your drive. Commandsexecuted by
loading their program code from the disk in this way are called “transient
commands.’ The COPY and FORMAT commands you used to back up your
system disk are transient commands.

Typing at the Keyboard

Typing at the keyboard with CP/M is quite a bit different than with Integer
BASIC or Applesoft. The backspace key deletes the character under the
cursor as it moves, and the forward arrow key doesn’t work. None of the
ESCape key cursor movement/editing features are supported.

However, CP/M supports a few line editing features that are useful when
typing at the keyboard. There are also some other important control
characters that can be used to perform other useful functions. (Remember:
Control characters (denoted by “Ctrl-") are typed by first hitting the CTRL
key and holding it down while you type the indicated character).

{-- Backspaces one character position. The backspace
key deletes the character under the cursor. (Also
invoked with Ctrl-H)

Ctrl-X Backspaces up to the beginning of the line, deleting
the line.

Ctrl-R Retypes current line.

Ctrl-d Terminates input same as RETURN key. (Also
invoked with LINE FEED)

Ctrl-E Physical end of line. Cursor is moved to beginning of
next line, but lineis not terminated until RETURN
is typed.

RUBOUT Deletes and “echos” (reprints) the last character

typed. Also referred to as DEL or DELETE. (Type
Ctrl-@ to get RUBOUT on the Apple keyboard —
see below)

1-18

memory at all times which is used to allocate space on the disk. When you
change disks, this information must be replaced with the directory
information of the newly inserted disk.

To let CP/M know that you have changed disks, type Ctrl-C to execute a
CP/M “Warm Boot” Make sure you do this AFTER you have changed disks.
This will cause the disk directory information in the drive to be updated. You
should get used to typing Ctrl-C often.

If you do not type Ctrl-C before changing disks and a WRITE is attempted
to the changed disk, the computer will display

BDOS ERR ON x:Disk R/0 {(Where x: is a disk drive A:-F:)

(R/O stands for Read Only) When you receive this error message, hit
RETURN. This will perform a CP/M warm boot and return you to CP/M.
The above error condition applies only to changed disks that are to be
WRITTEN. No error will result if you attempt to READ from the changed
disk.

Many CP/M programs perform a warm boot upon termination. So, you need
not type Ctrl-C to change disks after execution of programs of this type.
After a while you will probably recognize the sound of your Apple disk drive
during a CP/M warm boot. This is one way to know whether a program
performs a warm boot upon completion.

For more information, read the “CP/M Reference Manual — An In-
troduction to CP/M Features and Facilities” Also see “CP/M Error
Messages” later in this section.

The RESET Key

Pressing the RESET will have different effects, depending on whether
your system has an Autostart ROM or not.

On a system that has an Autostart ROM. Pressing the RESET key
while in CP/M will cause a CP/M warm boot, and you will return to
CP/M. Pressing the RESET key while in either MBASIC or GBASIC
will result in a “Reset Error,” which can be trapped using ON ERROR
GOTO, etc.

On a system that does not have an Autostart ROM. You can recover
from hitting RESET by typing Ctrl-Y then pressing RETURN. You will
then either re-boot CP/M (if you hit RESET while in CP/M) or return
to BASIC with a “Reset Error” (if you hit RESET while in MBASIC or
GBASIC).

1-20

TN

There are a few characters that are normally unavailable on the Apple’s
keyboard. These have been assigned to certain control characters so that
they are available to you:

Type: To get:

Ctrl-K [(Left Bracket)
Ctrl-@ RUBOUT
Ctrl-B \\ (Backslash)

These characters are often required by CP/M commands and programs. To
change (or do away with) these assignments, or add additional ones, see the
CONFIGIO program in the “Software Utilities Manual?”

Output Control

There are two control characters that are used to control character output
to the screen and printer:

Ctrl-S Temporarily stops character output to the ter-
minal. Program execution and character output
resume when any character is typed.

Ctrl-P Sends all character output to the line printer device
as well as to the terminal. This “printer echo” mode
remains in effect until the next Ctrl-P is typed.

CP/M Warm Boot: Ctrl-C

There is also another important control character: Ctrl-C. When typed as
the first character of a line, Ctrl-C is used to perform a CP/M “Warm Boot;’
causing CP/M to be reloaded from the disk to insure that the CP/M in
memory is in working order. (This is NOT the same as a Cold Boot. A Cold
Boot is the act of booting the CP/M disk for the first time.) You should
ALWAYS type Ctrl-C whenever you change disks. (See “Changing CP/M
Disks,” below.)

Ctrl-C Perform a CP/M warm boot.

Changing CP/M Disks

Unlike Apple DOS, you cannot indiscriminately change disks in drives with
CP/M. When you change disks, you must let CP/M know that you have done
so. This is because there is certain disk directory information stored in

1-19

CP/M Command Structure

~~ When you see the “A>" prompt, you know that CP/M is ready for your
command. The “A” in the prompt means that drive A: is the “currently
logged drive?” The “currently logged drive” is the default drive that is used in
a file specification if another drive is not specified. It is also the drive that
CP/M searches for transient commands if a drive is not specified in the
command.

CP/M commands themselves are generally very simple. There are only a
handful of non-transient commands, the most useful of which are DIR,
ERA, and REN. The DIR command is used to display a disk directory, the
ERA command is used to erase disk files, and the REN command is used to
rename disk files.

CP/M File Naming Conventions

Before you are introduced to these CP/M commands, you should become
familiar with CP/M disk file naming conventions. CP/M file names are very
different than those used with Apple DOS. A file name may be up to 8
characters long, with an optional 3 character “extension’ This is a handy
construct that lets you identify related files on the disk.

File Name Specification

The CP/M file specification structure allows you to refer to one or more files
with a single specification. Files are usually specified in a command by typing
the name (up to 8 characters), followed by a period (“.”) and the 3 character
extension. It is also possible to specify the drive in which the file is located.
This is done by preceding the file name with the drive name. If no drive is
specified, the currently logged drive is assumed. Below are some examples of
valid CP/M file name specifications:

A:FNAME.EXT Refers to file FNAME.EXT on drive A:

TEMP.OLD Refers to file TEMP.OLD on the currently
logged drive

B:TEMP.NEW Refers to file TEMP.NEW on drive B:

The 3-character extension usually provides information about the internal
format of a file. The most important of these common extensions is COM,
which stands for COMMAND. Any file with an extension of COM is a
transient command type file and can be invoked by simply typing its name

a (without the .COM). Other common extensions are BAS, used for BASIC
programs; and HE X, ASM, and PRN, which are used (and produced) by the
ASM program, which is the CP/M 8080 assembler.

1-21

File specifications can also be used to refer to more than one file at a time.
This is done by the use of “wild card” file name specifications. A question
mark used in a file name is a “wild card” character, that is, it will match any
character in that position when searching the directory for the file name
match. An asterisk (“*”) is used to match any string of characters. For
instance,

B:TEMP.2??
or
B:TEMP.*

refer to both TEMP.OLD and TEMP.NEW on drive B:, if they exist. Below
are some more examples of “wild card” file specifications:

A:*.COM Referstoall fileson drive A: with an extension
of COM

B:** Refers to all files on drive B:

B:77771.97? Exactly the same as B:*.* above.

DUMP.* Refers to all files on the currently logged disk
beginning with “DUMP”

C** Refers to any file on the currently logged disk

beginning with the letter “C”

Note that an “*” is actually an abbreviation of a string of “?”’s.

Some CP/M Commands:
DIR, ERA, REN, TYPE

These are the four most commonly used built-in CP/M commands. DIR is
used to display the directory of all files on a disk; ERA is used to erase disk
files; REN is used to rename disk files; and TYPE is used to display a text file
on the terminal. Below is a short introduction to each.

NOTE: The information below is meant only as an introduction to a few of
the CP/M commands. For more complete information about these and other
CP/M commands, see the “CP/M Reference Manual — An Introduction to
CP/M Features and Facilities’

The DIR Command
The DIR command is used to display the names of the files on a disk. To

display the directory of all the files on the currently logged disk, type

DIR

1-22

N

Pam

and press RETURN. To display a directory of the disk in another drive, just
include the drive name. For instance,

DIR B:
will display the directory of the disk in drive B:.
If a file specification is included with the DIR command, only those files
whose names match the file specification will be displayed. Here are some

examples of the DIR command used with file specifications:

DIR MBASIC.COM Displays MBASIC.COM if the file exists on
the currently logged disk.

DIR A:*.COM Displays all files with an extension of COM on
drive A:

DIR B: Displays all files on drive B:

DIR A:A** Displays all files on drive A: whose name

begins with the letter “A”

If there are no files on the disk, orif no filesmatch the file specification, CP/M
will respond

NO FILE

The ERA Command
The ERA commandisused to erase fileson the disk. You must alwaysinclude
a file specification with this command.

NOTE: Don’tdeleteany of the files on your CP/M disk! If you do, you’llhave
to make another backup copy of the SoftCard Master disk.

Here are a few examples of the use of the ERA command:

ERA B.TEMP.OLD Erase the file TEMP.OLD on drive B:

ERA C:* BAK Erase all files on drive C: with extension BAK

ERA *.* Erase all of the files on the currently logged
disk. If you attempt to erase all of the files on
a disk, CP/M will ask ALL (Y/N)?. If you
don’t want to delete all the files on the disk,
respond by typing “N”

Notice that you can erase more than one file at a time with ERA by using the
wild card naming convention.

1-23

The REN Command

The REN command is used to rename files. Here is the general format of this
command:

REN newname = oldname

where “newname” and oldname” are file specifications. You cannot use wild
card file specifications with the REN command. You can precede the first file
specification with a drive name. Below are some examples of the use of the REN
command:

REN TEMP.NEW=TEMP.OLD Rename TEMP.OLD as
TEMP.NEW

REN B:PEAR.COM =APPLE.COM Rename APPLE.COM on
drive B: as PEAR.COM

NOTE: Unlike Apple DOS, the new file name precedes the existing filename
(asinalgebra, what’s on the left side of the “ =" becomes what’s on theright).

The TYPE Command

The TYPE command is used to display the contents of a text file on the
terminal. You must include a file specification. (Wild card file specifications
are not allowed.)

For example, to display the contents of the file DUMP.ASM on the screen,
type

TYPE DUMP.ASM

andpress RETURN. If you attempt to TY PE a file thatisnot a text file, only
junk will appear.

NOTE: DUMP.ASM is the only text file on the SoftCard Master disk.

CP/M Error Messages

There are four possible CP/M error messages. Below is listed each message,
followed by a list of the possible causes, in the order of their likelihood:

1-24

BDOS ERR ON x:BAD SECTOR
(Where x: is a disk drive A:-F:)

Thiserror message can mean any number of things — it does NOT necessarily
mean that there is a bad sector on your disk (but it could!). This error
message is roughly equivalent to the Apple DOS “DISK I/0 ERROR”

message. Possible ca'sses:

No disk in drive

Drive door not closed

Disk inserted improperly

An attempt was made to access a drive not installed in a controller
card (See SELECT error below)

5. A bad disk

oo

When you receive a BAD SECTOR error, CP/M waits for you to type a
character from the keyboard. If you type Ctrl-C, a Warm Boot will be
performed and you will return to CP/M command mode. Type R toretry the
read or write and continue execution. Any other character will cause the
error to be ignored and resume execution of the program or operation.

BDOS ERR ON x:R/0O
(where x: is a disk drive A:-F:)

This error message usually means one of two things:

1. You have changed the disk in a drive without typing Ctrl-C
2. Thereisawrite-protect tab covering thenotchin theside of your disk

When you receive this error message, CP/M will wait for you to type a
character at the keyboard. After you do so, a warm boot will be performed
and you will be returned to CP/M.

BDOS ERR ON x:FILE R/0

(where x: is a disk drive A:-F:)
This error message can mean only one thing:

1. A write was attempted to a file that was marked Read Only with the
STAT program

When you receive this error message, CP/M will wait for you to type a
character at the keyboard. Type any key to perform a warm boot and return
to CP/M.

1-25

For more information on write protection of files with STAT, consult the
“CP/M Reference Manual — An Introduction to CP/M Features and
Facilities”

BDOS ERR ON x:SELECT
(where x: is a disk drive A:-F:)

This error message can mean only one thing:
1. An attempt was made to access a non-existent disk drive

When you receive this error message, CP/M will wait for you to enter a
character from the keyboard. Type any character to perform a CP/M warm
boot and return to CP/M.

NOTE: If you only have one drive attached to a disk controller card in your
Apple (as is the case with a single-drive system), attempting to access the
drive that is not installed will result in a BAD SECTOR error instead of a
SELECT error.

Description of Programs Included
on the SoftCard Disk

MBASIC, GBASIC and a number of utility programs are found on the
SoftCard disk. All of these programs are described in detail in other sections
of the SoftCard Documentation package. Below is a synopsis of the purpose
of each program, followed by areferencestating where the complete program
documentation can be found.

APDOS This utility program allows you to transfer data
from your Apple DOS disks to CP/M disks. APDOS
may be used to transfer text and binary files only.
(Requires 2 or more disk drives.)

See the “Software Utilities Manual”

ASM ASM is the CP/M 8080 assembler. ASM can be used
along with DDT to write and debug 8080 assembly
language programs.

See the “CP/M Reference Manual;” Chapter 4.

1-26

CONFIGIO

COPY

DDT

DOWNLOAD

DUMP

The CONFIGIO utility is used to configure the
Apple CP/M operating environment to your par-
ticular system configuration. It has four major
functions — to configure I/0 for an external
terminal, to redefine keyboard characters, to load
user I1/0 software, and to read and write to the I/0
Configuration Block. For more information about
the function of I/0 Configuration, see Chapter 2 of
the “Software and Hardware Details Manual” in
addition to the “Software Utilities Manual’”

See “Software Utilities Manual’’

The COPY program is used to copy CP/M disks, or
to create blank CP/M system disks from a newly
formatted disk.

See the “Software Utilities Manual?’

DDT is the CP/M Dynamic Debugging Tool. It
allowsdynamicinteractive testingand debugging of
8080 assembly language programs.

See the “CP/M Reference Manual,’ Chapter 5.

The DOWNLOAD and UPLOAD utilities enable
the user to transfer CP/M files from another CP/M
machine to the Apple by means of an RS-232 serial
data link. UPLOAD is not included on either of the
Apple CP/M disks. Use of these programs requires a
working knowledge of 8080 assembly language
programming and thus are intended for experienced
programmers only.

See the “Software Utilities Manual’’

DUMP displays the contents of a disk file in
hexadecimal form. DUMP.ASM is the source listing
of the DUMP program, given in Chapter 2 of the
CP/M Interface Guide, as an example of an 8080
assembly language program written for the CP/M
environment.

See the “CP/M Reference Manual;’ Chapter 1 and
Chapter 2.

1-27

ED

FORMAT

LOAD

MBASIC

PIP

ED is the CP/M text editor. It is used to create and
edit CP/M text files.

See the “CP/M Reference Manual;” Chapter 3.

FORMAT formats a blank disk so thatit can accept
data. A freshly formatted disk will not boot, but it
can be used to store programs and data. Use COPY
tomake a newly formatted diskinto a CP/M system
disk.

See the “Software Utilities Manual”’

LOAD is used to convert a disk file of extension
.HEX into a machine-executable .COM file. LOAD
can be used to convert output from the assembler
into machine executable code.

See “CP/M Reference Manual,” Chapter 1,
“Introduction to CP/M Features and Facilities’

This is Microsoft BASIC. This version of BASIC is
disk BASIC that supports low-resolution graphics,
sound, and game controls in addition to many
features not found in Applesoft. This version does
not support high-resolution graphics.

See the “Microsoft BASIC Reference Manual” for
more information.

PIP is one of the most frequently used CP/M
programs. It is used to transfer files from one disk to
another. Itis also used to copy and append disk files.
PIP may also be used to transfer files to the terminal
devices and to the printer.

See the “CP/M Reference Manual;’ Chapter 1. For
copying an entire disk, or for copying the CP/M
system itself to another disk, see COPY in the
“Software Utilities Manual”’

1-28

STAT

SUBMIT

XSUB

STAT provides general status information about
disk capacity, file sizes, file indicators and device
assignments. Fileindicatorsand device assignments
can also be altered using this program.

See the “CP/M Reference Manual]” Chapter 1.

SUBMIT allows CP/M commands and program
inputlinestobe executed from a disk filerather than
from the keyboard for automatic processing.

See the “CP/M Reference Manual;’ Chapter 1.

XSUB, when used with SUBMIT, allows character
input from a disk file at all times during execution of
programs.

See the “CP/M Reference Manual,” Chapter 1.

The following three programs are found only on the 16-Sector SoftCard disk:

CPM56

GBASIC

RW13

CPM56isused toupdate a 44K CP/M system disk to
a 56K system disk for use with the Apple Language
Card. CPM56 cannot be used with 48K Apple
systems.

See the “Software Utilities Manual’’

GBASIC is the same as MBASIC except that it also
supports high-resolution graphics.

See the “BASIC Reference Manual” for more
information.

RW13isused toallow 16-Sector CP/M to access files
on a 13-Sector CP/M disk. Used with PIP, RW13 is
especially useful for transferring files from a 13-
Sector to a 16-Sector diskette. (Requires 2 or more
disk drives.)

See the “Software Utilities Manual?”

1-29

1-30

Chapter 4
Getting Started with
Microsoft BASIC

1-31

Once you have made backup copies of your SoftCard disk, you’ll be ready to
begin exploring Microsoft BASIC. As mentioned previously, two versions of
BASIC are included in the SoftCard package.

MBASIC Includes all of Microsoft BASIC, Version 5.0, plus
low-resolution graphics and some other Applesoft
extensions. (A comparision of MBASIC with
Applesoft is included in the “BASIC Reference
Manual’) MBASIC is found on both the 13-Sector
and 16-Sector disks. The name of the file is
MBASIC.COM.

GBASIC Includes all of the features of MBASIC plus
high-resolution graphics. GBASIC is found only on
the 16-Sector disk and its filename is
GBASIC.COM.

To bring up either MBASIC or GBASIC, you must first be at CP/M
command level asindicated on the screen by the A > prompt. If you don’t see
the prompt, return to page 1-8 Loading CP/M.

Theinitialization instructions below refer to MBASIC, but may also be used
for loading GBASIC simply by substituting GBASIC where MBASIC is
typed. Use of the two BASICs is identical except that in GBASIC you also
have high-resolution graphics commands available to you.

Once you see the A> prompt, simply type:
MBASIC
then press RETURN. The computer will reply:

BASIC-80 Version 5.xx

Apple CP/M Version
Copyright () 1980 by Microsoft
Created: dd-mm-yy

xxxx Bytes Free

Ok

and BASIC is ready to accept commands.

Initialized in this way, BASIC sets certain default parameters: 3filesmaybe —~
open at any one time during execution of a BASIC program; all the memory

up to the start of FDOS in CP/M may be used and the maximum record size

is set at 128.

1-32

If you wish to set these parameters (which are explained further in the
“Microsoft BASIC Reference Manual”) yourself, you can set certain
“switches” when you type in the initialization command. You can also
specify a program in the command line to be automatically run when the
command is entered. This extended command line format is:

MBASIC [(filename)] [/F:(number of files)] [/M:(highest memory
location)] [/S:(maximum record)}

(The square brackets ([]) indicate items that are optional and the angle
brackets ({)) indicate items to be specified by you.}

The (filename) option allows you to RUN a program automatically
after initialization is complete. A default extension of .BAS is used if
none is supplied and the filename is less than nine characters long.

The /F:(number of files) option sets the number of disk data files that
may be open at any one time during the execution of a BASIC program.
Each file data block allocated in this fashion requires 166 by tes plus 128
(ornumber specified by /S:) bytes of memory. The (number of files) may
be either decimal, octal (preceded by &0O) or hexadecimal (preceded by
&H).

The /M; (highest memory location) option sets the highest memory
location that will be used by MBASIC. In some cases, it is desirable to
set the amount of memory well below the CP/M’sFDOS to reservespace
for assembly language subroutines. In all cases, the highest memory
location should be below the start of FDOS (whose address is contained
in locations 6 and 7). The (highest memory location) may be decimal,
octal (preceded by &0) or hexadecimal (preceded by &H).

The /S:(maximum record size) option sets the maximum size to be
allowed by random files. Any integer may be specified,includingintegers
larger than 128.

Here are a few examples of the different initialization options:

A>MBASIC PAYROLL.BAS Use all memory and 3 files;
load and execute
PAYROLL.BAS

— A>MBASIC INVENT/F:6 Use all memory and 6 files;
load and execute
INVENT.BAS

1-33

A>MBASIC/M;32768 Use first 32K of memory and 3
files

A>MBASIC DATACK/F:2/M:&H9000 Use first 36K of memory, 2 files
and execute DATACK.BAS

When BASIC isinitialized, it types the prompt “Ok’” “Ok” means BASIC is
at command level, that is, it is ready to accept commands. At this point, it
may be used in either direct or indirect mode.

You can now write programs in either MBASIC or GBASIC, depending on
which you initialized. Programming in Microsoft BASIC is like program-
ming in Applesoft, but with significantly more power. See the “Microsoft
BASIC Reference Manual” for complete documentation on programmingin
Microsoft BASIC.

This completes the Installation and Operations portion of this manual. At
this point, you should have the SoftCard installed and have both CP/M and
"~ BASIC up and running. Throughout this section, we have referred you to
other sections of the manual for more detailed information. These other
~‘sections are very detailed and should contain all the information that you
" need. If after searching carefully, you still cannot find some information,
=+ contact your dealer or write a letter to Microsoft Consumer Products. Enjoy
yourself! We sincerely hope you will find the SoftCard an exciting and
useful addition to your Apple.

1-34

N

i

)

Software and

Hardware
Details

PART 2
SOFTWARE AND HARDWARE
DETAILS

Chapter 1
Apple II CP/M Software Details

Introduction 2-4

I/0 Hardware Conventions 2-4

6502/Z-80 Address Translation 2-5

Apple II CP/M Memory Usage 2-6

Assembly Language Programming with 2-7
the SoftCard

ASCII Character Codes 2-7
Interrupt Handling 2-10
Chapter 2
Apple II1 CP/M
I1/0 Configuration Block
Introduction 2-12

Console Cursor Addressing/Screen Control 2-12
The Hardware/Software Screen Function Table
Terminal Independent Screen Functions/Cursor

Addressing
Redefinition of Keyboard Characters 2-17
Support of Non-Standard Peripherals 2-17
Devices and I/0 Software

Assigning Logical to Physical 1/0 Devices:
the IOBYTE
Patching User Software Via the I/0 Vector
Table
Calling of 6502 Subroutines 2-24
Indication of Presence and Location 2-26
of Peripheral Cards

2-1

Chapter 3
Hardware Description

Introduction

Timing Scheme
SoftCard Control
Address Bus Interface
Data Bus Interface
6502 Refresh

DMA Daisy Chain
Interrupts

SoftCard Parts List
SoftCard Schematic

2-2 .

2-30
2-30
2-31
2-31
2-33
2-33
2-34
2-34
2-34
2-36

CHAPTER 1
APPLE II CP/M SOFTWARE
DETAILS

 Introduction

* I/0 Hardware Conventions

* 6502/Z-80 Address Translation

» Apple 11 CP/M Memory Usage

» Assembly Language Programming with the
SoftCard

« ASCII Character Codes

* Interrupt Handling

2-3

Introduction

This chapter deals with the software features that are peculiar to Apple II —.
CP/M, and how these features relate to the I/0 hardware installed in the
different slots of the Apple. First we will discuss the hardware 1/0 protocol
supported by Apple CP/M. Then we will examine the software support of
this hardware protocol: the I/O Configuration Block. For more information
ontheuse of the CP/M operating system, see the “CP/M Reference Manual?’

I/0 Hardware Conventions

The 1/0 hardware protocol is identical to that supported by the initial
release of Apple PASCAL, with a few exceptions. All standard Apple I/0
peripherals are supported, as well as a few others, such as California
Computer Systems’ 7710A Asynchronous Serial Interface, the Videx
Videoterm, and M&R Enterprises Sup-R-Term. Apple CP/M does not
support horizontal scrolling on the Apple 24 X 40 video screen.

Apple Peripheral Cards: What Goes Where

Unlike Applesoft and Integer BASIC (but similar to Apple PASCAL), Apple
CP/M requires that peripheral 1/0 cards be plugged into specific slots
depending on their functions. For instance, a printer interface card must be
plugged into slot one in order to use a printer. When the system is booted,
CP/M s able to recognize the presence or absence of certain standard Apple
peripheral interface cards. Once the system is booted, I/0 is performed by
usingeither the hardware directly or by calling the 6502 soft ware on the card.

Below is a table of the assigned functions for each of the Apple slots, along
with the card types that are recognized when plugged into each. (See the list
of recognized card types following the table.) Note that unless otherwise
noted below, unrecognized cards or empty slots are ignored.

SLOT VALID CARD TYPES PURPOSE

0 Not used for I70 This slot may contain a Language Card
or an Applesoft or Integer BASIC ROM
card. (the latter are not used by CP/M)

1 types 2,3,4 Line printer interface (CP/M LST:
device)
2 input: 2,3,4 General purpose I/0 (CP/M PUN: and o
output: 1,2,34 RDR: devices) —_

2-4

3 types 2,3,4 Console output device (CRT: or TTY:)
The normal Apple 24 X 40screen is used

— as the TTY: deviceif no card is present.
4 type 1 Disk controller for drives E: and F:
5 type 1 Disk controller for drives C: and D:
6 type 1 Disk controller for drives A: and B:

(must be present)

7 any type No assigned purpose. The SoftCard
may be installed in slot 7.

NOTE: The SoftCard may be installed in any empty slot except slot
zero.

Below is a list of the I/0 peripheral card types that are currently recognized
by Apple CP/M.

TYPE CARD NAME

1 Apple Disk II Controller
2 Apple Communications Interface

*California Computer Systems 7710A Serial Interface
3 Apple High Speed Serial Interface

Videx Videoterm 24 X 80 Video Terminal Card
M&R Enterprises Sup-R-Term 24 x 80 Video Terminal Card
4 Apple Parallel Printer Card

*The CCS 7710A serial interface card is the preferred type 2 card as it
supports hardware handshaking and variable baud rates from 110-19200 baud.

6502/Z-80 Address Translation

Because of the memory address translation performed by the hardware on

the SoftCard, a particular data byte is not accessed at the same address

for both processors. The correspondence of memory addresses between the

7-80 and 6502 is shown below (All addresses are hexadecimal). Use of this

table is necessary when translating 6502 BASIC or assembly language
7~ goftware for use with the SoftCard.

2-5

Z-80 65602

ADDRESS ADDRESS
—

0000H-OFFFH $1000-$1FFF Z-80 location zero

1000H-1FFFH $2000-$2FFF

2000H-2FFFH $3000-$3FFF

3000H-3FFFH $4000-$4FFF

4000H-4FFFH $5000-$5FFF

5000H-5FFFH $6000-$6FFF

6000H-6FFFH $7000-$7FFF

7000H-7FFFH $8000-$8FFF

8000H-8FFFH $9000-$9FFF

9000H-9FFFH $A000-SAFFF

0AO000OH-0AFFFH $B000-$BFFF

0B00OH-0BFFFH $D000-$DFFF

0C000H-OCFFFH $E000-$SEFFF

OD000OH-ODFFFH $F000-$FFFF 6502 RESET, NMI, BREAK

vectors
O0E000H-OEFFFH $CO000-$CFFF 6502 memory mapped 1/0
OF000H-OFFFFH $0000-0FFF 6502 zero page, stack, Apple
screen
Apple II CP/M Memory Usage
Here is how the Apple memory is used by Apple CP/M:
6502 Z-80

ADDRESS ADDRESS PURPOSE

$800-$FFF 0F800-OFFFF Apple disk drivers and disk buffers

$400-$7FF 0F400-OF7FF Apple screen memory

$200-$3FF OF200H-OF3FFH 1/0 Configuration Block.

$000-$1FF OF000H-OF1IFFH Reserved 6502 memory area — 6502
stack and zero page.

$C000-$CFFF OEOOOH-OEFFFH Apple memory mapped I/0

$FFFA-SFFFF ODFFAH-ODFFFH 6502 RESET, NMI, and BREAK
vectors.

$D400-$FFF9 0C400H-ODFF9H 56K Language Card CP/M (if
Language Card installed)

$D000-$D3FF 0CO000H-OC3FFH Top 1K of free RAM space with
56K Language Card CP/M

$A400-$BFFF 9400H-0OAFFFH 44K CP/M. (Free memory with
56K CP/M)

$1000-$A3FF 0000H-093FFH Free RAM (CP/M uses lowest 256 ™
bytes)

2-6

Assembly Language Programming
with the SoftCard

The Z-80 processor executes all of the 8080 instruction set plusits own set of
instructions. You can run software written for either the 8080 or Z-80
processor on the SoftCard. There is, however, a different set of instruc-
tion mnemonics for each of the processors.

Included with the standard CP/M utilities are ED, a line oriented text
editor; ASM, an 8080 assembler; and DDT, an 8080 machine language
debugger. These programs can be used to write and debug 8080 programs.

It is also possible to write 6502 subroutines for use with the SoftCard.
The Microsoft Assembly Language Development System is available
separately for the development of both Z-80 and 6502 software.

ASCII Character Codes

DEC = ASCII decimal code
HEX = ASCII hexadecimal code
CHAR = ASCII character name

DEC HEX CHAR WHAT TO TYPE
0 .00 NULL ctrl @
1 01 SOH ctrl A
2 02 STX ctrl B
3 03 ETX ctrl C
4 04 ET ctrl D
5 05 ENQ ctrlE
6 06 ACK ctrl F
7 07 BEL ctrl G
8 08 BS ctrl H or «
9 09 HT ctrl I
10 0A LF ctrlJ
11 0B vT ctrl K
12 0oC FF ctrl L
13 oD CR ctrl M or RETURN
14 0E SO ctrl N
15 OF SI ctrl O
16 10 DLE ctrl P
17 11 DC1 ctrl Q
18 12 DC2 ctrl R

2-7

L X~THU W =D~

QEPEPE~>V I AT

ctrl S

ctrl T
ctrlU or —
ctrl V

ctrl W

ctrl X

ctrl Y

ctrl Z

ESC

ctrl [

ctrl shift-M
ctrl *

ctrl _

space

F \@§%# 3 -

OO W W =D

QEWFE~ VI AT

o
&

= NN SO N IO O ZZE RS~ I QEE D

-

o+ n "‘.0'5055‘—‘77"—""':‘0!: o0 o

/SN E<cinovoZgEr R Io=Eg

(shift-M)

> —

B R TR SO0 O

o St R OTY o

)
©

117
118
119
120
121
122
123
124
125
126
127

75 u u
76 v v
77 w w
78 X X
79 y y
7A z z
B (
7C | I
D))
TE ~ ~
7F RUB

Interrupt Handling

Because of the way the 6502 is “put to sleep” by the SoftCard using the
DMA line on the Apple bus, ALL interrupt processing must be handled by
the 6502. An interrupt can occur at two times: while in Z-80 mode and while
in 6502 mode.

Handling an interrupt in 65602 mode:
Handle the interrupt in the usual way — simply end the interrupt processing
routine with an RTI instruction.

Handling an interrupt in Z-80 mode:
Both processors areinterrupted when aninterrupt occursin Z-80 mode. Here
is the step-by-step process for handling an interrupt while in Z-80 mode:

1.

2.

Save any registers that are destroyed on the stack.

Save the contents of the 6502 subroutine call address (See Calling of
6502 Subroutines above) in case an interrupt has occurred during a
6502 subroutine call.

. Set up the 6502 subroutine call address to $FF58, which is the address

of a 6502 RTS instruction in the Apple Monitor ROM.

. Return control to the 6502 by performing a write to the address of the

SoftCard (again see Calling of 6502 Subroutines).

. When control is returned to the Z-80, restore the previous 6502

subroutine call address.

. Restore all used Z-80 registers from the stack.

Enable interrupts with an EI instruction.

. Return with a RET instruction.

2-10

CHAPTER 2
APPLE 11 CP/M
I/0 CONFIGURATION BLOCK

* Introduction
* Console Cursor Addressing/Screen Control
The Hardware/Software Screen Function Table
Terminal Independent Screen Functions/Cursor
Addressing
* Redefinition of Keyboard Characters
* Support of Non-Standard Peripherals and
170 Software
Assigning Logical to Physical
1/0 Devices: the IOBYTE
Patching User Software
Via the 170 Vector Table
+ Calling of 6502 Subroutines
* Indication of Presence and Location of Peripheral
Cards

2-11

Introduction

The I/0 Configuration Block contains the information necessary to
interface Apple CP/M to the various hardware and software configurations
available to the Apple CP/M user. Every Apple CP/M system disk has its
own I/0 Configuration Block, which is loaded and initialized when the
system is booted.

There are five primary functions of the I70 Configuration Block:
1. Console cursor addressing/screen function interface
2. Redefinition of keyboard characters
3. Support of non-standard peripheral devices and 1/0 software
4. Calling of 6502 subroutines
5. Indication of the presence and location of peripheral cards
Each is detailed in its own section in the following pages.

Note: The CONFIGIO program is used to examine and modify the 1I/0
Configuration Block — See Part 5, “Software Utilities Manual” for more
information.

Console Cursor Addressing/Screen Control

Most popular video terminals, including the normal 24 x40 Apple screen,
can support special features such as direct cursor addressing, screen clear,
highlighted text, etc. Apple CP/M applications software such as word
processors and business softwarecan easily takeadvantage of these features.

These advanced screen functions are usually initiated by sending a certain
sequence of characters to the terminal. The sequences required to perform
a specific screen function are often different for different terminals. Most
applications software designed to take advantage of these screen functions
can be configured for a number of popular terminals. However, if your
terminal is NOT compatible with your software, you must usually write
some specialized machine language subroutines to take care of the problem.
Since the Datamedia terminal screen function sequences supported by
Apple PASCAL and the popular 24 X80 plug-in video boards are not
considered “popular” by many CP/M applications programmers, they are
rarely supported.

2-12

Under Apple CP/M, these problems are solved in most cases by translating
the functions as they are received, into the corresponding function expected
by the terminal hardware. This is achieved by two translation tables: the
Software Screen Function Table and the Hardware Screen Function Table,
both part of the 1/0 Configuration Block. Apple CP/M uses the Software
Screen Function Table to recognize an incoming screen function sequence,
which is then translated to the corresponding sequence found in the
Hardware Screen Function Table. Thissequence is then sent to the terminal
device.

For example: Suppose that you want to use a CP/M screen-oriented word
processor (designed to work with a SOROC IQ 120 terminal) with a Videx
Videoterm 24 X 80 video board. The problem: Since the Videoterm board
recognizes only the Datamedia type terminal character sequences, it does
not recognize the screen function character sequences (meant for the
SOROC) that the word processor sends.

To solve this problem, you would use the CONFIGIO utility (see the
Software Utilities Manual) to encode the SOROC screen function sequences
into the Software Screen Function Table and encode the Datamedia
sequences into the Hardware Table. Now when your word processor sends
characters to the terminal, they are compared to the SOROC function
sequences that have been placed in the Software Screen Function Table. A
match means that your word processor is attempting to perform a screen
function. Next, the corresponding Datamedia character sequence is taken
from the Hardware Screen Function Table and sent to the terminal, where
the function is actually performed.

The Hardware/Software Screen Function Table
There are nine screen functions supported by Apple CP/M:

Clear Screen

Clear to End of Page

Clear to End of Line

Set Normal (lowlight) Text Mode

Set Inverse (highlight) Text Mode

Home Cursor

Address Cursor

Move Cursor Up

. Non-destructively Move Cursor Forward

LONST R W

The Backspace character (ASCII 8) is assumed to move the cursor
backwards, and the Line Feed character (ASCII 10) is assumed to move the
cursor down one line.

2-13

Screen function character sequences supported by Apple CP/M may be of
two forms:

1. A single control character, or
2. Any ASCII character preceded by a single character lead-in.

Screen function sequences longer than two characters are not supported.

The internal format of each of the two 11-byte tables is identical. Below are
listed the function number, the hexadecimal address and a description of
each table entry.

FUNC. # SOFTWARE HARDWARE DESCRIPTION

0F396H 0F3A1H Cursor address coordinate
offset. Range: 0-127. If the
high order is @, the X and Y
coordinates are expected to
be transmitted Y first, X last,
If the high order bit is 1, the
coordinates are sent X first,
Y last.

0F397H 0F3A2H Lead-in character. Thisbyteis
zero if there is no lead-in.

NOTE: The following rules apply to the screen function
table entries below: If the table entry is zero, the function is
not implemented. If the entry has the high order bit set, the
function requires a lead-in. An entry with the high order bit
clear means the function does not require a lead-in.

1 0F398H 0F3A3H Clear screen

2 0F399H 0F3A4H Clear to End of Page

3 0F39AH 0F3A5H Clear to End of Line

4 0F39BH 0F3A6H Set Normal (low-light) Text
Mode

5 0F39CH 0F3A7H Set Inverse (high-light) Text
Mode

6 0F39DH 0F3A8H Home Cursor

2-14

Vi

7 0F39EH 0F3A9H Address Cursor (See above)
8 0F39FH OF3AAH Move Cursor Up One Line

9 O0F39FH OF3AAH Non-destructively Move
Cursor Forward

The standard 24 X 40 Apple screen supports all nine functions independent
of the Hardware Screen Function Table. However, if a Software Screen
Function Table entry is zero, that function will be disabled.

The Hardware and Software Screen Function Tables can be examined and
modified with the CONFIGIO program. Use of this program and more
information concerning terminal configuration can be found in the Apple
CP/M Utilities Reference Manual.

Terminal Independent Screen Functions/Cursor
Addressing

Because of the general-purpose nature of the Hardware and Software Screen
Function Tables, it is possible to write programs that use the information
containedin these tables to perform screen functions. These programs would
work with any terminal, aslong as the Hardware Screen Function Table was
set up correctly for the particular terminal. Below is a short segment of 8080
assembly language code that illustrates the use of the Screen Function
Tables for terminal-independent screen programming:

Terminal Independent Screen 1/0

This routine will execute the screen function

specified by E, where E contains the screen function
number from one to nine. If the function is not implemented,
the subroutine simply returns. All registers are destroyed.

’
’
’
’
’
’
>
’
’
’

(NK 5/80)

Equates:
BDOS EQU 0005H :CP/M function call address
SXYOFF EQU 0F396H ;Software cursor address XY coord.

offset

SFLDIN EQU O0F397H ;Software function lead-in character
SSFTAB EQU 0F398H ;Software screen functions
SCRFUN: MVI D, ; Prepare for index

LXI H,SSFTAB-1 ;Point to Software Screen
Function table minus one
DAD D ;Index to desired function char.

2-15

MOV AM ;Get the char.

ORA A ;See if a Lead-in is required
RZ ;If the function isn’t there, quit
JP CONOUA ;If pos., no
PUSH PSW ;Save char.
LDA SFLDIN :Get software lead-in char.
CALL CONOUA ;Output char. in A
POP PSW ;Re-get char.
CONOUA: MOV EA ;Put char. in its place
CONOUE: MVI C,2 ;Console output function
JMP BDOS ;:Call CP/M BDOS at 0005H
; This routine will position the cursor at the X,Y coords
; in [HL].
GOTOXY: PUSH H ;Save coords while we do seq.
MVI E;7 ;Do a Cursor Address function
CALL SCRFUN
POP H ;Get coordinates back
LDA SXYOFF ;Get software XY coordinate offset
ORA A ;Set CC’s on [A]
JP NORVS ;Reverse coords if neg.
MOV E,L :Reverse H&L
MOV LH
MOV HE
NORVS: MOV EA ;Save offset
ADD H ;Add offset
MOV HA ;Save for later
MOV AE ;Re-get offset
ADD L
PUSH H ;Save all this
CALL CONOUA ;Output first coord.
POP H ;Restore coords.
MOV EH ;Output second coordinate

JMP CONOUE ;And return.

Notice that the screen function character sequences are determined by the
Software Screen Function Table in the subroutines above. Thisis necessary
for these subroutines to work with the normal Apple screen. Also note that
a NUL entry in either Screen Function Table will disable that function on
the Apple’s 24 X 40 screen.

2-16

RS

Redefinition of Keyboard Characters

Some CP/M software requires specific keys for proper operation that are
normally unavailable on some keyboards. The Apple keyboard is par-
ticularly deficient in this respect. Common characterssuch asthe left square
bracket ([),and RUBOUT simply cannot be typed. This problem issolved by
the Keyboard Character Redefinition Table found in the I/ O Configuration
Block.

The function of the Keyboard Character Redefinition table is simple: it
redefines any key on the keyboard as any of the ASCII character codes. For
example, Ctrl-K could be redefined as the left square bracket. Then when
Ctrl-K is typed, the [character appears.

Another somewhat tricky use of Keyboard Character Redefinition is to
disable BASIC program termination with Ctrl-C by redefining Ctrl-C as
some other character such as NUL. Thus it would be impossible to break out
of a BASIC program because it is impossible to type Ctrl-C. (It is also clear
from this example that messing around with this table can cause some
annoying problems.)

Keyboard redefinition takes place only during input from the TTY: and
CRT: devices. (See Assigning Logical to Physical I70 devices below.)

The Keyboard Character Redefinition Table

The Keyboard Character Redefinition Table will support up to six character
redefinitions. The table is located at OF3ACH from the Z-80. Entries in the
table are two bytes: the first is the ASCII value of the keyboard character to
beredefined, and the second is the desired ASCII value of the character. Both
bytes must have their high order bits cleared.

If there are less than six entries in the Keyboard Character Redefinition
Table, the end of the table is denoted by a byte with the high order bit set.

Modifications to the Keyboard Character Redefinition Table may be made
using the CONFIGIO program. See the “Software Utilities Manual?

Support of Non-Standard Peripherals and
I/0 Software

The 170 Information Block also provides for the support of non-standard
Apple peripherals and 1/0 software. All of the primitive character 1/0
functions are vectored through the 170 Vector Table which is contained in
the I/0 Configuration Block. These vectors normally point to the standard
1/0 routine located in the CP/M BIOS, but they can be altered by the user
to point to hisown drivers. Three blocks of 128 byteseach are provided within

2-17

the 1/0 Configuration Block for user I/0 driver software. Each of the three
128-byte blocks is allocated to a specific device, and thus to a specific slot, in
order to prevent memory conflicts.

ASSIGNED ASSIGNED
ADDR SLOT LOGICAL DEVICE

0F200H-0F27FH Slot 1 LST: — line printer device
0F280H-0F300H Slot 2 PUN: and RDR: — general purpose 1/0
0F300H-0F37FH Slot 3 TTY: — the console device

Most Apple I/0 interface cards have 6502 ROM drivers on the card. The
easiest way to interface these types of cards to Apple CP/M is to write Z-80
code to call the 6502 subroutines on the ROM. This should be sufficient to
interface most common 1/0 devices to Apple CP/M. (See Calling of 6502
Subroutines below.)

If no card isinstalled in a particular slot, its allocated 128-byte space can be
used for other purposes relating to its assigned logical device. These include
lower-case-input drivers for the Apple keyboard, cassette tapeinterface, etc.

1/0 driver subroutines are patched to CP/M by patching the appropriate
1/0 vector to point to the subroutine. A table of vector locations and their
purposes is shown below:

VEC
ADDR VECTOR NAME DESCRIPTION

1 0F380H Console Status Returns OFFH in register
A if a character is ready to
read, O0H in register A
otherwise.

2 OF382H Console Input vector #1 Reads a character from

3 0F384H Console Input vector #2 the console into the A

register with the high
order bit clear.

4 OF386H Console Output vector #1 Sends the ASCII
5 OF388H Console Output vector #2 character in register C to
the console device.

6 OF38AH Reader Input vector #1 Reads a character from
7 OF38CH Reader Input vector #2 the “paper tape reader”
— device into register A.

8 OF38EH Punch Output vector #1 Sends the character in
9 0F390H Punch Output vector #2 register C to the “paper
tape punch” device.

10 0F392H List Output vector #1 Sends the character in
11 O0F394H List Output vector #2 register C to the line
printer device.

NOTE: During Console Output, the B register contains a number
corresponding to one of the nine supported screen functions during output
of a screen function. B contains zero during normal character output. B is
also non-zero during the output of the Cursor Address X Y coords after
executing screen function #7.

Assigning Logical to Physical 1/0 Devices: the

IOBYTE

As explained in the CP/M reference documentation, the IOBYTE can be
used to assign logical 1/0 devices to physical devices. The IOBYTE is
changed with the STAT program. See the “CP/M Reference Manual” for
more information on changing and using the IOBYTE.

The IOBYTE function creates a mapping of logical and physical devices
which can be altered by CP/M programs or with the STAT utility. The
mapping is performed by splitting the IOBYTE into four bit fields, asshown
below:

IOBYTE at 0003H: [LIST__] PUNCH | READER | CONSOLE]
bits: 7 6 5 4 3 2 1 0

Thevaluein each field can bein the range 0-3. The meaning of the values that
can be assigned to each field is outlined below:

CONSOLE field (bits 0,1)
0 - CONSOLE is the TTY: device
1- CONSOLE is the CRT: device
2. Batch mode — Uses the RDR: device as the CONSOLE input, and the
LST: device as the CONSOLE output (BAT:)
3. User defined CONSOLE device (UC1:)

7 READER field (bits 2,3)
0- READER is the TTY: device
1 - READER is the CRT: device
2. READER is the “paper tape reader” device (PTR:)
3 - User defined READER device #2 (UR2:)

2-19

PUNCH field (bits 4,5)
0 - PUNCH is the TTY: device
1- PUNCH is the “paper tape punch” device (PTP:)
2 - User defined PUNCH #1 (UP1:)
3 - User defined PUNCH #1 (UP2:)

LIST field (bits 6,7)
0 - LIST is the TTY: device
1-LIST is the CRT: device
2 - LIST is the line printer device (LPT:)
3 - User defined LIST device (UL1:)

Below is a description of the Apple CP/M implementation of the physical
devices mentioned above:

TTY:

CRT:

UCt:

PTR:

URI1:

UR2:

PTP:

UP1:

UP2:

Either the standard Apple screen and keyboard or an external
terminal installed in slot 3. This routine vectors through Console
Input Vector #1 and Console Output #1. The Console status is
always vectored through the Console Status vector.

Same as TTY:

User defined console device. This deviceis vectored through Console
Input #2 and Console Output #2.

A standard Apple interface capable of doing inputinstalledinto slot
2.If no card is plugged into slot 2, the PTR: device always returns a
1AH end-of-file character. Input from the PTR: device is vectored
through Reader Input vector #1. Characters are returned in the A
register.

User defined reader #1. A characterread from this deviceis returned
in the A register. Thisinput device is vectored through Reader Input
vector #2.

User defined reader #2. This device is physically the same as UR2:.

Any standard Apple interface capable of doing outputinstalled into
slot 2. If no card is plugged into slot 2, the PTP: device does nothing.
Output to the PTP: deviceis vectored through Punch Output vector
#1.

User defined punch #1. The character in register C is output
through Reader Input vector #2.

User defined punch #2. This device is physically the same as UP1:
2-20

LPT: The LPT: deviceis any standard Apple interface card installed into
slot 1 capable of doing output. The character in register C is output
through List Output vector #1.

UL1: Userdefined list device. The character in register Cis output via List
Output vector #2.

The IOBYTE can be changed with the STAT program, or it may be modified
from an assembly language program using the CP/M Get IOBYTE and Set
IOBYTE (#7 & # 8) functions. See “An Introduction to CP/M Featuresand
Facilities” and the “CP/M Interface Guide” in the “CP/M Reference
Manual” for more information.

Patching User Software Via the I/0 Vector Table

User subroutines can be patched into the I/0 Configuration Block with the
CONFIGIO program. Any patches made can also be permanently saved
onto a CP/M system disk as well as with CONFIGIO.

To create a code file, use ASM to write the driver software, and then use
LOAD to create a COM file from the HEX file produced by ASM.

The code file loaded by CONFIGIO must be of a certain internal format.
Only one code segment may be patchedintothel/O Configuration Block per
code file. However, as many vectors in the I/0 Vector Table may be patched
as desired.

Below is outlined the format of a disk code file to be loaded with CONFIGIO
and patched to the I70 Configuration Block:

First byte: No. of patches to I/0 Vector Table to be made.
Next 2 bytes: Destination address of program code.
Next 2 bytes: Length of program code.

Repeat for each 170 vector patch to be made:

Next byte: Vector Patch type — either 1 or 2.

If Vector Patch type = 1:

Next byte: Vector number to be patched. May be from 1-11. (See
vector location definitions above)

Next 2 bytes: Address tobe patched into the vector referred by the

previous byte. Points into the user’s code.

If Vector Patch type = 2:
Next byte: Vector number to be patched. May range from 0-11.
(See vector location definitions above)

2-21

Next 2 bytes: Address in which to place the current contents of

the specified vector. (May be the address field of a

JMP, etc.)
Next 2 bytes: New address to be placed in the specified vector.
Next: The actual program code is located after the patch

information above. Convention restricts the size of
the program code to 128 bytes per slot-dependent
block. Use the block appropriate for your applica-
tion and slot use. (See above)

Below is an example of a program that could be patched into the 1/0
Configuration Block using CONFIGIO. While it is listed here primarily
as a model for writing your own programs, it is useful in its own right
with a 24x80 video card or standard Apple video and keyboard, so you
may want to enter it for your own use.

Notice how OFFSET is used to allow the program to be ORGed at 0100H.

To patch this program to the I/0 Configuration Block, you would:

1.

Use the DDT “S” command to enter the program into memory at
100 hex.

Use the CP/M SAVE command to save it to disk.

Use CONFIGIO option #3 to load the lower case driver into the I/0
Configuration Block.

Use CONFIGIO option #4 to save the patched I/0 Configuration
Block to the disk.

If you patch this lower case input routine for your own use, note the
following:

This driver defaults in upper case shift lock. The forward-arrow key is
used as the shift key. Hit the arrow key once to enter lower-case input
mode. Now, all characters typed will be entered in lower case. To shift
a letter, hit the arrow key once—don’t hold it down. The next charac-
ter typed will be shifted. To enter shift-lock mode, hit the arrow key
twice in a row.

; AFFLE CF/M LOMER CASE INPUT ROUTIHE

;

i This routine can be sssembled usins ASH and
i LOAD to rroduce s file that can be losded snd
ralched into the 1/0 Confisuration Hiock with
CONFIGIO, It is also intended to be used as

3 model for Sour own FrOSFams.
i

2-22

0015
F3BY
£000

0100
F300

0100
0101
0103

0105

0106
0107
0109

0108
010E
0110
0111

0113
0116
0117
011A
011D
011f

0120
0122
0125
0126
0128
0129
012€

012F
0130
0133
0135
0136
0138

0139
0134
013B
013C
013D
013E

01
00F3
3E00

02
06F3
00F3

3ABEF3
FEO3
CA0000

3JA00EQ
B7
F208F3
3210E0
E6TF
4F

0613
213DF3
7E
FEOL
79
LIAJEF 3
CAZEF3

k8
CAJ2F3
FE40
]
EE20
(084

34
B8
co
35
35
C300F3

SHFCHR EOU
SLTTYP EQU
KEYRD EQU
i

OKG
ORIGIN EQU
OFFSET SET
V

DE

oW

il

DB

-

U]
0]
]
y
i Check Lo make

’

LWRCASE (LDA
CFI
JZ

OLDINP EQU

21
OF3H9H
QEQOUH

0100H
OF 300H
ORIGIN-LWRCASE

1
ORIGIN
PRGENDI-LWRCASE

-
<

2

OLDINPHOFFSET
LWRCASE+OFFSET

iSnift kew is the forward-arrow
3Slot tuyres table
jhddress of Arrle kesboard

$This 15 so LOADR will load st 10uh
ikeal orisin of rrosram
jhiust be saced Lo 1é-pit sddresses

thishe one ratch
jlestination addresz of Frosram
sLensth of rrosram

iFatch tsre 2
;Patch Console Inrut vector #1

iFlace Lo rul curreni contents o
silew contents of vector

=

vector

sure he isn’t using an external tersinsl’

SLTTYF42
3
0000

32

ils there & card in 37
iIs he usins & Com C
illumms address

sPlace Lo rut normal inrut routine ador

ot 3
ra as & Lerminsi?

5
28

i
; Gel a character from the Aprle kesboard:

?

KELOOP: LDA
ORA
JP
STA
ANI
HOV

HVI
LXI
Hov
CPI
KOV
JC

JZ

STATE2: CHP
JZ
CPI
RC
XK
RET

inFut mode.

) = e ae e e me

TATEL: INR
ChF
RNZ
ICR
SETONE: [CR
JHP

KEYED

A
KELOOP+OFFSET
KEYEI+10H

7FH

CrA

Ky SHFCHR
HySTATE+OFFSET
ArN

1

ArC
STATEO+OFFSET
STATE1+OFFSET

B
SETONE+OFFSEY
54

00100000k

H
|3

M

M
LWKRCASE+OFFSET

2-23

sSee if char availashle al keshoard
iSet condition codes on keshd loc
sLoor if char not available

iClear Keuboard sirobe

#Hask high bit of char

iSave character in {C]

#Shift character into CEI
iFoint to shift state

iGet state.

iltetermine state

jCel twred character into [A]
iCarrys set - state 0

iState |

Here if in lower case inrut mode.

all siehahetic characters are converlied

Lo lower cases unless the shifi character is
tureds which enters ‘shift next character’ made

yfor shifl char.

#IL uwasy set state = 1

$IL wasn’ts so convert all
izlrhabetic chars Lo lower case
iThis does the conversica

iAll done

Here if in ‘shift next chasracter’ modes entered
by turing the shift chsr once in lower case
If shift characler is tyred agains
urrer case shift lock mode uwill be entered.

iResel stater= 2 = lower case made
jHit shift character?

iLet urrer case characler 2o,

isel state to zero! urrer shifi lock

;Get another chsracter

Here if in urrer case shift lock mode.
Shifl character must be tsred once Lo enter lower
case inFul mode.

0141 B8 STATEO: CMP B iltid he tsre shift char?

0142 CO RNZ sNot shifis return urrer case char.,
0143 3502 HYI He2 iSet stale = 2 = lower case inrul node
0145 C300F3 JHP LMRCASE+OFFSEY #and et anolher characler

H
0148 00 STATE: DB 0 s5hift state. Default = urrer loch

H

FRGENDS
0149 END

0100 01 00 F3 3E 00 02 02 05 £3 00 F3 3A BB F3 FE 03
0110 CA 00 $0 3A 00 EO B7 F2 08 F3 32 10 EO E6 JF 4F
0120 04 15 21 30 F3 7E FE 01 79 A 36 F3 CA 2E F3 B8
0130 CA 32 F3 FE 46 D8 EE 20 C9 34 R8 CO 35 35 C3 00
0140 F3 B8 CO 34 02 C3 00 F3 00

Calling of 6502 Subroutines

As discussed in the Hardware Details section of this manual, the 6502
processor is enabled from Z-80 mode by a write to the slot-dependent location
OENOOH, where N is the slot location of the SoftCard, Z-80 mode is
selected from 6502 mode with a write to the same slot dependent loca-
tion, which is addressed at $CNOO in 6502 mode. (See the 6502 / Z-80
address translation table on page 2-5). Since the SoftCard may be
plugged into any unused slot except zero, the location of the SoftCard
will vary from system to system.

However, when the system is booted, the location of the SoftCard is
determined by CP/M and its address is stored in the I/0 Configuration
Block. This address is thus available to CP/M software for calling 6502
subroutines. See the “Hardware Details” section of this manual.

Calling 6502 subroutines is a simple matter. The programmer simply sets up
the address of the subroutine tobe called,and then does a write to the address
of the SoftCard explained above. It is also possible to pass parameters
to and from 6502 subroutines through the 6502 A, X, Y, and P (status)
registers. The 6502 stack pointer is also available after a 6502 subroutine call.
Remember that 6502 and Z-80 addresses are not equivalent — See the
6502/7-80 Address Translation Table on page 2-30.

Z-80 ADDR 6502 ADDR PURPOSE

0F045H $45 6502 A register pass area

0F046H $46 6502 Y register pass area

0F047H $47 6502 X register pass area

0F048H $48 6502 P (status) register pass area

0F049H $49 Contains 6502 stack pointer on exit from
subroutine

0F3DEH Address of SoftCard held here—low byte

= 0 followed by high byte of form OENH
where N is the slot occupied by the SoftCard.

2-24

0F3DOH Address of 6502 subroutine to be called is
stored here in low-high order.

$3C0 Start address of 6502 to Z-80 mode switching
routine. 6502 RESET, NMI, and BREAK
vectors point here. A JMP to this address puts
the 6502 on “hold” and returns to Z-80 mode.

NOTE: Locations $800-$FFF are NOT available for use by a 6502
subroutine. The Apple disk driver software and disk buffers reside here.

Special Note for Language Card Users:

When in Z-80 mode, the Language Card RAM is both read- and write-en-
abled. When a 6502 subroutine is called, the Apple’s on-board ROM is
automatically enabled, making the Apple Monitor available to the 6502
subroutine. However, the Language Card RAM is write-enabled during a
6502 call, which means that a write to any location above 6502 $D000 will
write in the Language Card RAM.

A side effect of read-enabling the on-board Apple ROMs is that the Z-80
memory from 0CO00H to OEFFFH ($D000-$FFFF on 6502) cannot be read
by the 6502 unless the appropriate Language Card addresses are accessed.

The first of the two available 4K banks for the 6502 $D000-$ DFFF area isnot
used by Apple CP/M.

Below is a short segment of 8080 assembly language code toillustrate the use
of the above addresses to call a 6502 subroutine:

; Subroutine to read the value of
; Paddle zero into register A.
; Demonstrates 6502 subroutine
; calling conventions and parameter
; passing. (NK 5/80)
3 Equates
Z$CPU EQU OF3DEH ;Location of SoftCard stored here
ASVEC EQU OF3DOH ;Addr of 6502 sub. to call goes here
ASACC EQU (F045H ;6502 A register goes here
ASXREG EQU 0F046H ;6502 Y register pass area
PREAD EQU OFBIEH ;Apple Monitor paddle read routine
PDL: XRA A ;Clear A register

STA A$XREG ;Read paddle zero

LXI H,PREAD ;Get addr of subroutine

SHLD A$VEC ;And store it for 6502 caller

2-256

LHLD Z$CPU ;Get SoftCard addr...
MOV MA ;Go do it! (Must be a write)

; Execution resumes here after 6502 does a RTS
LDA ASACC ;A = paddle value.
RET ;All done — return

Indication of Presence and Location of
Peripheral Cards.

The Card Type Table

When Apple CP/M is booted, each of the slots of the Apple is checked to see
if a standard Apple 170 card is installed. This is done by checking to see if
there is ROM present in the slot-dependent memory space allocated to
peripheral card driver ROMs, and then comparing two signature bytes to
those of the standard Apple 1/0 peripheral cards.

This information is then stored in the Card Type Table, which is located in
the I/0 Configuration Block. There are seven bytes in the Card Type Table,
each corresponding to the seven slots from 1 to 7.

The value of a table entry may range from 0 to 5. The meaning of each value
is as follows:

VALUE EXPLANATION

0 Noperipheralcard ROM was detected (Usually means that no card
is installed in the slot)

1 A peripheral card ROM was detected, but it was of an unknown
type.

2 An Apple Disk II Controller card is installed in the slot.

3 An Apple Communications Interface or CCS 7710A Serial Inter-
face is installed in the slot.

4 An Apple High-Speed Serial Interface, Videx Videoterm, M&R
Sup-R-Term or Apple Silentype printer interface is installed in the
slot.

5 An Apple Parallel Printer Interface is installed in the slot.

2-26

This information can be useful to the programmer. For instance, if the third
entry (slot 3 — console device) of the Card Type Table is either 3 or 4, a
program can assume that the useris usingan 80 column external terminal of
some kind. In this way, it is possible to write software that configures itself
for 40 or 80 column terminals automatically.

The Card Type Table is located at 0OF3B9H. The entry for a given slot is
located at 3B8H + S, where S is an integer from 1 to 7.

Disk Count Byte

The Disk Count Byte is a single byte equal to the number of disk controller
cards in the system times two. This value does not reflect an odd number of
disk drives (i.e., only one drive plugged into a controller card).

The Disk Count Byte is located at OF3B8H.

To Boot a Diskette Without Powering Down

The following program will allow you to boot diskettes from CP/M with-
out having to turn the Apple’s power off. This program is not necessary;
it simply bypasses the power-off step.

1. Use the DDT “S” command to enter the following data at 100 hex.

0100 OF 01 CD 05 60 21 77 C7 22 00 30 2t 00 Cé 22 0
0110 F3 2A DE F3 C3 00 30

2. Type Control-C to exit DDT.

3. Type SAVE 1 BOOT.COM

The program is now saved on disk. To use it, just type BOOT and press
RETURN. Wait a few seconds, then insert the disk you wish to boot.

Press any key to reboot the disk. Your system will reboot exactly as if
you had typed PR #6 in Applesoft or Integer BASIC.

2-27

2-28

CHAPTER 3
HARDWARE DESCRIPTION

* Introduction

* Timing Scheme

» SoftCard Control

* Address Bus Interface
* Data Bus Interface

* 6502 Refresh

* DMA Daisy Chain

* Interrupts

* SoftCard Parts List

* SoftCard Schematic

2-29

This chapter describes the SoftCard itself, both physically and
operationally. You won’t need this information for normal use of the
SoftCard; it isincluded here to satisfy your curiosity andin case youhave an
unusual application in which this information would be needed.

Introduction

The Microsoft SoftCard is a peripheral card for the Apple family of
computers. The SoftCard contains the necessary hardware to interface a
Z-80 microprocessor (contained on the card) to the Apple bus. This permits
the direct execution of 8080 and Z-80 programs, including Digital Research’s
CP/M operating system and all of the programs written to execute in the
CP/M software environment.

The SoftCard plugsinto any Apple slot except slot zero, and will work in the
Apple I1, Apple IT Plus, or either machine with the Apple Language System.
When the Language System is used, the additional memory of the Language
Card is made available for use by CP/M or any program operating under
CP/M.

Timing Scheme

The Z-80 microprocessor on the SoftCard is synchronized and phase locked
to the Apple clocks. This is accomplished by generating a syncopated clock
for the Z-80 from the Apple clocks.

During each video refresh period (01), the seven MHz Apple clock is divided
down to provide three half clock periods of 135 nsec. The first half-clock is
always high, the second always low, and the third always high again. After
theend of the third half clock, the signal goeslow and stays low until thestart
of the next 01. This means that the Z-80 clock is low during all of 02 plus a
small part of 01. This fourth half-cycle is typically 563 nsec long. (This time
isstretched by 69 nsec at the end of each video line.) The effective Z-80 clock
rate is 2.041 MHz.

Each kind of machine cycle always contains one memory access period (02).
The read/write line is constructed by synchronizing the leading edge of the
write transition to the SoftCard clock, thus ensuring that write will only go
low during the time that the SoftCard clock is high.

Because all address transitions from the Z-80 occur when its clock is high,
they all must occur during 01, when the video update accesses are occurring.
Therefore, each 02 cycle has stable addresses for the entire duration of the
cycle.

2-30

The clock generation is performed by U4 and parts of Ul and U9. The circuit
is arranged so that it will still work if the seven MHz clock occurs just prior

___ to the start of 01, or vice-versa. Q1 and the associated components form an
analog buffer to provide the high speed switching to within a few tenths of a
volt of the supply voltage.

SoftCard Control

The SoftCard is controlled by write commands to the area of memory that
normally contains peripheral read-only-memory. It is important to use a
write instruction to ensure that the 6502 will not perform two accesses in
succession (which would prevent switching back to the 6502).

When the Apple is powered up, the Apple reset signal forces the SoftCard to
the off state. The reset signal is synchronized to the Apple clocks to ensure
that a write operation cannot beinterrupted. The Z-80 isimmediately placed
in a wait mode, and remains there until the SoftCard is activated.

Upon receipt of a write to the proper area of memory, the SoftCard is
activated, and the red LED is turned on. The Z-80 remains in a wait mode
until one memory cycle occurs with SoftCard address information. At this
point, the Z-80 is released from the wait mode and allowed to run with no
further wait cycles required.

Receipt of another write to the same area of memory (this time from the
SoftCard itself) will de-activate the SoftCard.

The table below shows the memory addresses used to control the SoftCard
as a function of slot location:

SLOT CONTROL ADDRESSES

$C100-$C1FF
$C200-$C2FF
$C300-$C3FF
$C400-$C4FF
$C500-$C5FF
$C600-$C6FF
$C700-$C7FF

~I O Ut 0N

— Address Bus Interface

The SoftCard address bus is interfaced to the Apple I/0 bus through a bank
translation circuit. This circuit, consisting of U7, U8, U1l, and half of U12,
resolves the memory address conflicts that exist between the 6502

2-31

architecture and the conventions used by both CP/M and the Z-80
microprocessor. When enabled by S1-1 turned off, the translator adds $1000
to all addresses. This effectively shifts the Z-80 interrupt addresses and
CP/M starting addresses out of the 6502 zero page of memory. In addition,
addresses in the range of $C000-$EFFF are shifted to allow apparent
contiguous memory for CP/M. The table below shows exactly how the
translator functions:

Z2-80 ADDRESS APPLE ADDRESS
$0000-$0FFF $1000-31FFF
$1000-$1FFF $2000-$2FFF
$2000-$2FFF $3000-$3FFF
$3000-33FFF $4000-$4FFF
$4000-$4FFF $5000-85FFF
$5000-$5FFF $6000-$6FFF
$6000-$6FFF $7000-$7FFF
$7000-$7FFF $8000-$8FFF
$8000-$8FFF $9000-$9FFF
$9000-$9FFF $A000-$AFFF
$A000-$AFFF $B000-$BFFF
$B000-$BFFF $D000-$DFFF
$C000-$CFFF $E000-$EFFF

$D000-$DFFF $F000-$FFFF
$E000-$EFFF $C000-$CFFF
$F000-$FFFF $0000-$0FFF

Notice that when theLanguage Card is installed, the Z-80 can address
contiguous memory from $0000-$DFFF, without accessing the 6502 zero
page of memory or the Apple peripheral area.

When the translator is disabled (S1-1 turned on) addresses presented by the
Z-80 are buffered and appear at the Apple /0 bus unchanged.

All of the address buffers are tri-state buffers capable of sinking or sourcing
24 mA of current. All of the buffers are turned off whenever the SoftCard
relinquishes control of the bus. The timing at turn-on and turn-off is
arranged to prevent the SoftCard buffers from driving the address bus when
the Apple is driving the bus.

The timing of the SoftCard forces all address transitions to occur during the
time that the video display (and dynamic memory) is being refreshed by the
Apple. Because for each memory access the address lines are stable at the
start of the cycle, no wait states are used for memory accesses.

2-32

PN

Data Bus Interface

The data from the SoftCard to the Apple (memory writes) is buffered by the
same high current driver type as used by the address businterface. It isonly
enabled when the following two conditions occur:

1. The SoftCard has control of the bus
2. The SoftCard is attempting to write

When the SoftCard is reading memory, the data is buffered and latched by
U15. The outputs of Ul5 are tri-state, and only enabled when the SoftCard
is performing a read. The latch is needed to save data not latched by the
Apple (such as the keyboard characters) until the Z-80 can look at it.

Because the SoftCard timing is synchronous and phase locked with the
Apple, the timing signals generated by the Z-80 can be used to drive the
buffers and the latch.

When an interrupt is recognized by the Z-80 (assuming they are enabled in
both hardware and software) the pull-up resistors guarantee that a
predictable response is generated for any of the interrupt modes of the Z-80.
The byte of data read during an interrupt sequence will be $FF.

6502 Refresh

The 6502 is a dynamic microprocessor, meaning that it requires clock cycles
to maintain the contents of its internal registers. The Apple DMA circuitry
interrupts operation of the 6502 by turning its clock off. Occasionally, this
clock must be turned back on if the 6502 is to remain ready to operate.

Thisis accomplished by holding the 6502 in a non-ready state (by holding the
“RDY” line low) and allowing one memory fetch to be controlled by the 6502.
The data fetched is not used by the 6502, and control of the bus reverts back
to the SoftCard immediately after the “refresh” memory cycle.

The Z-80 dynamic refresh control lines are used to implement this function.
Therefore, the 6502 “refresh” occurs immediately after an op code fetch, and
is thus transparent to the SoftCard and the user. No wait cycles have to be
added to any Z-80 machine cycles, because the 6502 refresh time is used by
the Z-80 to decode the op code. While the 6502 has control of the bus again,
the SoftCard address and data buffers are placed in the tri-state mode.

If higher priority DMA devices are allowed to interrupt operation of the
SoftCard, the 6502 refresh does not continue. Therefore if it is important to
retain theregister contents of the 6502 during a DMA cycle, the length of the
cycle must be limited to a few microseconds (less than 5).

2-33

During a normal mixture of instructions, the 6502 refresh occurs every 4-5
microseconds, well under the data sheet maximum of 40 microseconds. The
longest instruction will allow 11.25 microseconds to elapse between refreshes.

DMA Daisy Chain

The Apple DMA daisy chain is fully supported, to the extent that a higher
priority DMA device may cause the SoftCard to relinquish control of the
bus. Switch S1-2 (when on) enables DMA requests tointerrupt the SoftCard.
If this switch is on, and the DMA daisy chain input (pin 27) is driven low, the
Z-80 will finish the current machine cycle, then the SoftCard will give up
control of the bus by raising the DMA control line on pin 22 of the I/0 bus.
At this time another device may assume control by lowering pin 22. Control
must not commence sooner, because the SoftCard buffers will still be driving
the bus.

If S1-2 is off, the daisy chain is preserved if the SoftCard is off. When the
SoftCard is turned on, the daisy chain output (pin 24) indicates to lower
priority devices that DMA activity is in progress. The lower priority devices
are therefore locked out of doing any DMA. Likewise, the higher priority
devices are also locked out because the SoftCard will not relinquish control
of the bus.

Interrupts

Hardware has been included to allow interrupts to berecognized by the Z-80
on the SoftCard as well as by the 6502 microprocessor. When S1-4 is on, the
Z-80willrespond to interrupts occurringin the Apple. Theinterrupt handler
programshould not attempt to service theinterrupt. Instead, control should
be passed back to the 6502 for the actual processing. This permits the 6502,
which also sees the interrupt, to clear itself of the interrupt status.

Regardless of the interrupt mode selected for the Z-80, the data byte read
during the interrupt sequence will always be $FF. This may be used to vector
to a particular memory location for the interrupt handling routine.

Switch S1-3 performs the same function for the non-maskable interrupt.

Parts List
SoftCard

Component

Identifier Part No. Description
U1 74L.S00 Quad Nand
U2 74L.S05 Hex Inverter
U3 741.S32 Quad Or

2-34

U4
Ub
Ué
u7
U8
U9
U10
U11
U12

U13
U14
U156
U16
U17

C12
* “Card On”
S1

74LS107
74LS74A
74LS74A
74L.S86
7415283
74LS367A
Z-80A
74LS138
74520 (must
be “S” part)
74LS367A
74LS367A
7418373
74LS367A
74LS367A

2N3906

Dual Flip-Flop
Dual Flip-Flop
Dual Flip-Flop
Quad Ex-Or

4 Bit Adder
Hex Buffer
Z-80A (4 MHz)
Octal Decoder

Dual Nand
Hex Buffer
Hex Buffer
Octal Latch
Hex Buffer
Hex Buffer

PNP Transistor

2.2KQ, 5%, % watt
22Q, 5%, Y4 watt
220Q, 5%, 4 watt
12K, 5%, 4 watt
100Q, 5%, Y% watt
10082, 5%, Y4 watt
47K, 5%, Y4 watt
6802 , 5%, Y watt
Resistor Pack, 10K{2,
47KQ, 5%, Y4 watt
1009, 5%, Y4 watt
1009, 5%, Y4 watt
Resistor Pack, 10K

Capacitor, 0.05 uF

Capacitor, 0.05 uF

Capacitor, 0.05 uF

Capacitor, 47 pF, 10%, 1000V
Capacitor, 0.05 pF

Capacitor, 200 pF, 10%, 1000V
Capacitor, 0.05 uF

Capacitor, 200 pF, 10%, 1000V
Capacitor, 0.05 uF

Capacitor, 0.05uF

Capacitor, 0.05uF

Capacitor, Solid Tant., 2.2 uF, 20%, 35V

Light Emitting Diode
Dip Switch — Quad
Printed Circuit Card

2-35

1Y

{
I
{

g6 | CHANGE NOTES
/00 \mohn sSwiter FUNCTION
‘l@ -1 ADDRESS OFFSET (WHEN OFF)
2 3 _ St-2 ,_ 280 DMA ENABLE (WHEN ON) L
n b
2 oopF H <(-3 NON-MASK INT. (WHEN ON)
-4 Z80 INTERRUPTS (WHEN ON)
(s36TA
L8> r/W
+Sv
H +Sv olHll@ +Sv
ciz * 0.cSuf e, ¢z, C3
N.N\mH T,:ww s, Gm cs
=3 8 PLALES Qo\e SND
9 =
s 7
4 S g INT N
| = '@ INT ouT
A Vee
2
A% uio
280-A
(4 uHz)
L
4o Alo
29
AS T
381 a8
2 a1 D7
2% ! at D6
351as bs
E2 VY D4
33 >W UW
32102 D2
31 | an b1
20 1a0 Do
d s378] [
.12 24 Jonw BUATF 3 BN 24) DMA our
ELSP, -7 X — il W S Dy QYN
11 ——
164 TRT ﬂnﬁ“:ﬂ S Lses 52 BMA
17 4 AR 505
B MAY 0 7 1380
|
- _MICROSOS T
. R9 “, CONSUMER \ PRODUCTS
—_ o 4 |iox s
1RQ vafs— 2l ;b REV
\M_ ! G2 sna | SOFT CARD E
o

IsHEET / OF /

TT /RNt (JUNE 73] PRINTED On DIETERICH-P03Y CLLARFRINT 102018

2-36

CP/M
Reference
Manual

Written by Digital Research

Digital Research, Post Office Box 579
Pacific Grove, CA 93950

PART 3: CP/M REFERENCE MANUAL

Chapter 1

Introduction to CP/M Features and

Facilities

Introduction

An Overview of CP/M 2.0 Facilities
Functional Description of CP/M

General Command Structure
File References
Switching Disks
Form of Built-In Commands
ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command

Line Editing and Output Control

Transient Commands
STAT
ASM
LOAD
DDT
PIP
ED
SUBMIT
DUMP
BDOS Error Messages

Chapter 2

CP/M 2.0 Interface Guide

> Introduction

Operating System Call Conventions
Sample File-to-File Copy Program

Sample File Dump Utility
3-a

uuucpuuu
Lo W

3-36

3-41
3-43
3-63
3-66

Sample Random Access Program 3-69

System Function Summary 3-76
Chapter 3
CP/M Editor
Introduction to ED 3-79
ED Operation 3-79
Text Transfer Functions 3-79
Memory Buffer Organization 3-83
Memory Buffer Operation 3-83
Command Strings 3-84
Text Search and Alteration 3-86
Source Libraries 3-88
Repetitive Command Execution 3-89
ED Error Conditions 3-89
Summary of Control Characters 3-90
Summary of ED Commands 3-91
ED Text Editing Commands 3-92
Chapter 4
CP/M Assembler

Introduction 3-97
Program Format 3-99
Forming the Operand 3-100

Labels

Numeric Constants

Reserved Words

String Constants

Arithmetic and Logical Operators

Precedence of Operators
Assembler Directives 3-105

The ORG Directive

The END Directive

The EQU Directive

The SET Directive

The IF and ENDIF Directives

The DB Directive

3-b

The DW Directive
The DS Directive
~ Operation Codes
Jumps, Calls and Returns
Immediate Operand Instructions
Increment and
Decrement Instructions
Data Movement Instructions
Arithmetic Logic Unit Operations
Control Instructions
Error Messages
A Sample Session

Chapter 5

CP/M Dynamic Debugging Tool
Introduction
DDT Commands
The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command
Implementation Notes
Sample Session

3-110

3-114
3-116

3-123
3-125
3-126
3-126
3-127
3-127
3-128
3-129
3-129
3-129
3-130
3-131
3-132
3-132
3-133
3-133

Copyright Notice

The CP/M Reference Manual is supplied by Digital Research and edited in
part by Microsoft. .

All portions of this manual are copyrighted by Digital Research. Copyright®
1976, 1977, 1978 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove, CA 93950.

Disclaimer

Digital Research and Microsoft make no representations or warranties with
respect to the contents hereof and specifically disclaim any implied
warranties of merchantability or fitness for any particular purpose. Further,
Digital Research and Microsoft reserve the right to revise this publication
and to make changes from time to time in the content hereof without
obligation to notify any person of such revision or changes.

3d

P

CHAPTER 1
INTRODUCTION TO CP/M FEATURES
AND FACILITIES

 Introduction

* Overview of CP/M 2.0 Facilities
» Functional Description of CP/M
» General Command Structure

» Switching Disks

e Form of Built-in Commands

ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command

» Line Editing and Output Control
* Transient Commands

STAT
ASM
LOAD
DDT
PIP

ED
SUBMIT
DUMP

*» BDOS Error Messages

3-1

3-2

Introduction

. CP/Misa monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage. Using a
computer mainframe based upon Intel’s 8080 microcomputer, CP/M
provides a general environment for program construction, storage, and
editing, along with assembly and program check-out facilities. An important
feature of CP/M is that it can be easily altered to execute with any computer
configuration which uses an Intel 8080 (or Zilog Z-80) Central Processing
Unit, and has at least 16K bytes of main memory with up to four IBM-com-
patible diskette drives. Although the standard Digital Research version
operates on a single-density Intel MDS 800, several different hardware
manufacturers support their own input-output drivers for CP/ M.

The CP/M monitor provides rapid access to programs through a com-
prehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this file system, a large number of distinct
programs can be stored in both source and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystem. Optional software includes a powerful Intel-
compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M’s Console Command
Processor, the resulting facilities equal or excel similar large computer
facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic 170 System (hardware dependent)
BDOS Basic Disk Operating System

CcCPp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette
drives and to interface standard peripherals (teletype, CRT, Paper Tape
Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by “patching” this portion of
. CP/M.

The BDOS provides disk managementby controlling one or more disk drives
containing independent file directories. The BDOS implements disk
allocation strategies which provide fully dynamic file construction while

3-3

minimizing head movement across the disk during access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
Inastandard CP/M system, each disk can contain up to 64 distinct files. The
BDOS has entry points which include the following primitive operations
which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further operations.

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system. The CCP reads the console device and
processes commands which include listing the file directory, printing the
contents of files, and controlling the operation of transient programs, such
as assemblers, editors, and debuggers. The standard commands which are
available in the CCP are listed in a following section.

The last segment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under
command of the CCP. During program editing, for example, the TPA holds
the CP/M text editor machine code and data areas. Similarly, programs
created under CP/M can be checked out by loading and executing these
programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be “overlayed” by an executing program. That is, once a user’s program
is loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area. A “bootstrap” loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need
only branch to the bootstrap loader at theend of execution, and the complete
CP/M monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned into
distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be

3-4

easily modified to any non-standard environment by changing the
peripheral drivers to handle the custom system.

An Overview of CP/M 2.0 Facilities

CP/M 2.0is a high-performance single-console operating system which uses
table driven techniques to allow field configuration to match a wide variety
of disk capacities. All of the fundamental file restrictions are removed, while
maintaining upward compatibility from previous versions of release 1.
Features of CP/M 2.0 include field specification of one to sixteen logical
drives, each containing up to eight megabytes. Any particular file can reach
the full drive size with the capability to expand to thirty-two megabytes in
future releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically separated
by user numbers, with facilities for file copy operations from one user area to
another. Powerful relative-record random access functions are present in
CP/M 2.0 which provide direct access to any of the 65536 records of an eight
megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a BIOS-resident
“disk parameter block” which is either hand coded or produced automat-
ically using the disk definition macro library provided with CP/M 2.0. The
end user need only specify the maximum number of active disks, thestarting
and ending sector numbers, the data allocation size, the maximum extent of
the logical disk, directory size information, and reserved track values. The
macros use this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking informationisalso
provided which aids in assembly or disassembly of sector sizes which are
multiples of the fundamental 128 byte data unit, and the system alteration
manual includes general-purpose subroutines which use this deblocking
information to take advantage of larger sector sizes. Use of these
subroutines, together with the table driven data access algorithms, make
CP/M 2.0 truly a universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where
each logical extent contains 16K bytes of data. CP/M 2.0 is structured,
however, so that as much as 128K bytes of data is addressed by a single
physical extent (corresponding to a single directory entry), thus maintaining
compatibility with previous versions while taking fulladvantage of directory
space.

Random access facilities are present in CP/M 2.0 which allow immediate
reference to any record of an eight megabyte file. Using CP/M’s unique data
organization, data blocks are only allocated when actually required and
movement to a record position requires little search time. Sequential file
access is upwardly compatible from earlier versions to the full eight

3-5

megabytes, while random access compatibility stops at 512K byte files. Due
to CP/M 2.0’s simpler and faster random access, application programmers
are encouraged to alter their programs to take full advantage of the 2.0
facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for file
attributes and user areas, while the CCP provides a “login” function to
change from one user area to another. The CCP also formats directory
displays in a more convenient manner and accounts for both CRT and
hard-copy devices in its enhanced line editing functions.

Functional Description of CP/M

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks which are online (the standard system
addresses up to four different disk drives). These disk drives are labelled A,
B, C, and D. A disk is “logged in” if the CCP is currently addressing the disk.
In order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by thesymbol “>"
indicating that the CCPisready for another command. Uponinitialstart up,
the CP/M system is brought in from disk A, and the CCP displays the
message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages,
and m.m is the CP/M version number. All CP/M systems are initially set to
operate in a 16K memory space, but can be easily reconfigured to fit any
memory size on the host system. Following system signon, CP/M automat-
ically logsin disk A, prompts the user with thesymbol “A>" (indicating that
CP/M is currently addressing disk “A”), and waits for a command. The
commands are implemented at two levels: built-in commands and transient
commands.

General Command Structure

Built-in commands are a part of the CCP program itself, while transient
commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files.

DIR Displays file names in the directory.
3-6

N

REN Rename the specified file.

SAVE Save memory contents in a file.
TYPE Type the contents of a file on the logged disk.
USER Move to another area within the same directory.

Nearly all of the commands reference a particular file or group of files. The
form of a file reference is specified below.

File References

A file reference identifies a particular file or group of files on a particular disk
attached to CP/M. These file references can be either “unambiguous” (ufn)
or “ambiguous” (afn). An unambiguous file reference uniquely identifies a
single file, while an ambiguous file reference may be satisfied by a number of
different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that is,
the secondary name “ASM’ for example, is used to denote that the fileisan
assembly language source file, while the primary name distinguishes each

“»

particular source file. The two names are separated by a “.” asshown below:

PPPPPPPP-858

where pppppppp represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters. As mentioned
above, the name

PPPPPPPP

is also allowed and is equivalent to a secondary name consisting of three
blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<>.,;:=7?7*[]

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol “?” may be interspersed
throughout the primary and secondary names. In various commands
throughout CP/M, the “?” symbol matches any character of a file name in
the “?” position. Thus, the ambiguous reference

3-7

X?Z.C’'M

is satisfied by the unambiguous file names

XYZ.COM
and

X3Z.CAM
Note that the ambiguous reference

* . *

is equivalent to the ambiguous file reference

72772772.277
while

ppppPPPDP.*
and

*.sss
are abbreviations for
pppppppp.???

and

72277722 588
respectively. As an example,

DIR **
is interpreted by the CCP as a command to list the names of all disk files in
the directory, while
DIR X.Y
searches only for a file by the name X.Y. Similarly, the command
DIR X?Y.C?M N

causes a search for all (unambiguous) file names on the disk which satisfy this
ambiguous reference.

The following file names are valid unambiguous file references:

X XYZ GAMMA
XY XYZ.COM GAMMA.

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
aletter A through Z followed by a colon (:). Thespecified driveis then “logged
in” before the file operation occurs. Thus, the following are valid file names
with disk name prefixes:

A:XY B:XYZ C:GAMMA
Z:XYZ.COM B:X.A’M C:*.ASM

It should also be noted that all alphabetic lower case lettersin file and drive
names are always translated to upper case when they are processed by the
CCP.

Switching Disks

The operator can switch the currently logged disk by typing the disk drive
name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and commands shown below
might occur after the CP/M system is loaded from disk A:

16K CP/M VER 14

A>DIR List all files on disk A.
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B.

B>Dir *.ASM List all “ASM” files on B.
DUMP ASM

FILES ASM

B>A: Switch back to A.

Form of Built-In Commands

The file and device reference forms described above can now be used to fully
specify the structure of the built-in commands. In the description below,
assume the following abbreviations:

ufn unambiguous file reference
afn ambiguous file reference
cr carriage return

Further, recall that the CCP always translates lower case characters to

3-9

upper case charactersinternally. Thus, lower case alphabetics are treated as
if they are upper case in command names and file references.

ERAse Command
ERA afn

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the “>"). The
files which are erased are those which satisfy the ambiguous file reference
afn. The following examples illustrate the use of ERA:

ERA XY The file named X.Y on the currently logged disk
isremoved from the disk directory, and the space
is returned.

ERA X.* All files with primary name X are removed from
the current disk.

ERA *.ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C?’M All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

ERA *.* Erase all filesin the current user’s directory. (See
USER n, page 13.) The CCP prompts with the
message

ALL (Y/N)?
which requires a Y response before files are
actually removed.

ERA B:*.PRN All files on drive B which satisfy the ambiguous

dently of the currently logged disk.

DIRectory Command
DIR afn

The DIR (directory) command causes the names of all files which satisfy the
ambiguous file name afn to be listed at the console device. As a special case,
the command

DIR

lists the files on the currently logged disk (the command “DIR” isequivalent
to the command “DIR *.*”). Valid DIR commands are shown below.

3-10

DIR X.Y
DIR X?Z.C?’M
DIR 72.Y

Similar to other CCP commands, the afn can be preceded by a drive name.
The following DIR commands cause the selected drive to be addressed before
the directory search takes place.

DIR B:
DIR B:X.Y
DIR B:* A’M

If no files can be found on the selected diskette which satisfy the directory
request, then the message “NOT FOUND” is typed at the console.

REName Command
REN ufn2 = ufnl

The REN (rename) command allows the user to change the names of fileson
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk is
assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZXXX The file XYZ.XXX is changed to
XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional drive
address. Given that ufnl is preceded by a drive name, then ufn2 is assumed
to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by a drive
name, then ufnl is assumed to reside on that drive as well. If both ufn1 and
ufn2 are preceded by drive names, then the same drive must be specified in
both cases. The following REN commands illustrate this format.

REN A:X.ASM = Y.ASM The file Y.ASM is changed to X.ASM
on drive A.

REN B:ZAPBAS=Z0OT.BAS The file ZOT.BAS is changed to
ZAPBAS on drive B.

3-11

REN B:A.ASM = B:A.BAK The file A.BAK is renamed to A.ASM
on drive B.

If the file ufnl is already present, the REN command will respond with the
error “FILE EXISTS” and not perform the change. If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND” is printed at the
console.

SAVE Command
SAVE n ufn

The SAVE command places n pages (256-byte blocks) onto disk from the
TPA and names this file ufn. In the CP/M distribution system, the TPA
starts at 100H (hexadecimal), which is the second page of memory. Thus, if
the user’s program occupies the area from 100H through 2FFH, the SAVE
command must specify two pages of memory. The machine code file can be
subsequently loaded and executed. Examples are:

SAVE 3 X.COM Copies 100H through 3FFH to
X.COM.
SAVE 40 Q Copies 100H through 28FFH to Q

(note that 28 is the page count in
28FFH, and that 28H = 2*16+8 =
40 decimal).

SAVE 4 XY Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through
0AFFH) to the file ZOT.COM on

drive B.

The SAVE operation can be used any number of times without altering the
memory image.

TYPE Command
TYPE ufn

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE XY
3-12

TN

TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab
positions are set at every eighth column. The ufn can also reference a drive
name as shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.
USER Command
USERn

Where n is an integer value in the range 0 to 15.

Upon cold start, the operator is automatically “logged” into user area
number 0. The operator may issue the USER command at any time to move
to another logical area within the same directory.

Drives which are logged in while addressing one user number are automat-
ically active when the operator moves to another user number since a user
number is simply a prefix which accesses particular directory entries on the
active disks.

The active user number is maintained until changed by a subsequent USER
command, or until a cold start operation when user 0 is again assumed.

Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines.
“Control” indicates that the Control key and the indicated key are to be
pressed simultaneously. CCP commands can generally be up to 255
characters in length; they are not acted upon until the carriage return key
is pressed.

rubout/delete Remove and echo last character typed

Control C Reboot CP/M when at beginning of line

Control E Physical end of line: carriageis returned, but line
is not sent until the carriage return key is
depressed.

3-13

Control H

Control J

Control M

Control R

Control X

Backspace one character position. Produces the
backspace overwrite function. Can be changed
internally to another character, such as delete,
through a simple single byte change.

Line feed. Terminates current input.
Carriage return. Terminates input.
Retype current command line after new line.

Backspace to beginning of current line.

The line editor keeps track of the current prompt column position so that the
operator can properly align data input following a Control R or Control X

command.

The control functions Control P and Control S affect console output as

shown below.

Control P

Control S

Copy all subsequent console output to the
currently assigned list device (see the STAT
command). Output is sent to both the list device
and the console device until the next Control Pis
typed.

Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
Control S). This feature is used to stop output on
high speed consoles, such as CRT’s, in order to
view a segment of output before continuing.

Transient Commands

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP
are shown below. Additional functions can easily be defined by the user (see
the LOAD command definition).

STAT

ASM

List the number of bytes of storage remaining on
the currently logged disk, provide statistical
information about particular files, and display or
alter device assignment.

Load the CP/M assembler and assemble the
specified program from disk.

3-14

T

LOAD Load the file in Intel “hex” machine code format
and produce a file in machine executable form
which can be loaded into the TPA (this loaded
program becomes a new command under the

CCP).

DDT Load the CP/M debugger into TPA and start
execution.

PIP Load the Peripheral Interchange Program for
subsequent disk file and peripheral transfer
operations.

ED Load and execute the CP/M texteditor program.

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

Transient commands arespecifiedin thesame manner asbuilt-in commands,
and additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by adrivename, which
causes the transient to be loaded from the specified drive into the TPA for
execution. Thus, the command

B:STAT

causes CP/M to temporarily “log in” drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

The basic transient commands are listed in detail below.

STAT
The STAT command provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT
STAT “command line”

Special forms of the “command line” allow the current device assignment to
be examined and altered as well. The various command lines which can be
specified are shown below, with an explanation of each form shown to the
right.

3-15

STAT {cr}

STAT x: {cr)

STAT afn {cr)

STAT x:afn {cr)

If the user types an empty command line, the
STAT transient calculates the storage remaining
on all active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/0O by
explicitly setting it to read only, as shown below,
or by inadvertently changing diskettes without
performing a warm start). The space remaining
on the diskette in drive x is given in kilobytes by
nnn.

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand “STAT B:” could be issued while logged
into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify aset of filesto
be scanned by STAT. The files which satisfy afn
are listed in alphabetical order, with storage
requirements for each file under the heading

RECS BYTS EX D:FILENAME.TYP
IrIr bbbK ee d:ppppPPPPp-Sss

where rrrr is the number of 128-byte records
allocated to the file, bbb is the number of
kilobytes allocated to the file
(bbb =r111*128/1024), e¢ is the number of 16K
extensions (ee=bbb/16), d is the drive name
containing thefile (A...Z), ppppppppisthe (up to)
eight-character primary file name, and sss is the
(up to) three-character secondary name. After
listing the individual files, the storage usage is
summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified drive
is first selected, and the form “STAT afn” is
executed.

3-16

STAT d:filename.typ $S {cr) :

(“d:” is optional drive
name and “filename.typ”
is an unambiguous or
ambiguous file name)

Produces the output display format:

Size Recs Bytes Ext Acc

48 48 6K 1 R/0A:ED.COM

55 55 12K 1 R/O(A:PIP.COM)
65536 128 2K 2 R/W A:X.DAT
The $S parameter causes the “Size” field to be
displayed. (The command may be used without
the $S if desired.) The Size field lists the virtual
file sizein records, while the “Recs” field sums the
number of virtual recordsin each extent. For files
constructed sequentially, the Size and Recs
fields are identical. The “Bytes” field lists the
actual number of bytes allocated to the corre-
sponding file. The minimum allocation unit is
determined at configuration time, and thus the
number of bytes corresponds to the record count
plus the remaining unused space in the last
allocated block for sequential files. Random
access files are given data areas only when
written, so the Bytes field contains the only
accurate allocation figure. In the case of random
access, the Size field gives the logical end-of-file
record position and the Recs field counts the
logical records of each extent (each of these
extents, however, may contain unallocated
“holes” even though they are added into the
record count). The “Ext” field counts the
number of local 16K extents allocated to the file.
The “Acc” field gives the R/O or R/W access
mode, which is changed using the commands
shown below. The parenthesesshown around the
PIP.COM file name indicate that it has the
“system” indicator set, so that it will not be listed
in DIR commands.

STAT d:filename.typ $R/O (cr)

Places the file or set of files in a read-only status
until changed by a subsequent STAT command.
The R/0 status is recorded in the directory with
the file so that it remains R/O through inter-
vening cold start operations. When a file is
marked R/0, attempts to erase or write into the
file result in a terminal BDOS message: Bdos Err
on D: File R/0.

STAT d:filename.typ $R/W (cr)

Places the file in a permanent read/write status.

317

STAT d:filename.typ $SYS {cr)

Attaches the system mdlcator to the file.

STAT d:filename.typ $DIR (cr)

STAT d:DSK: {cr)

STAT DSK: {cr)

STAT USR: {cr)

Removes the system indicator from the file.

Lists the drive characteristics of the disk named
by “d:” which is in the range A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics

65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/Extent
128: Records/Block
58: Sectors/Track

2: Reserved Tracks
The total record capacity is listed, followed by
the total drive capacity listed in Kbytes. The
number of checked entries is usually identical to
the directory size for removable media, since this
mechanism is used to detect changed media
during CP/M operation without an intervening
warm start. The number of records per extent
determines the addressing capacity of each
directory entry (1024 times 128 bytes, or 128K in
the example above). The number of records per
block shows the basic allocation size (in the
example, 128 records/block times 128 bytes per
record, or 16K bytes per block). The listingis then
followed by the number of physical sectors per
track and the number of reserved tracks.

Lists drive characteristics as above for all
currently active drives.

Produces a list of the user numbers which have
files on the currently addressed disk. The display
format is:

Active User : 0

Active Files: 01 3
where the first line lists the currently addressed
user number, as set by the last CCP USER |,
command, followed by a list of user numbers
scanned from the current directory. In the above
case, the active user number is 0 (default at cold
start), with three user numbers which have

3-18

active files on the current disk. The operator can
subsequently examine the directories of the
other user numbers by logging in with USER 1,
USER 2, or USER 3 commands, followed by a
DIR command at the CCP level.

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the “CP/M Interface
Guide” In general, there are four logical peripheral devices which are, at any
particular instant, each assigned to one of several physical peripheral
devices. The four logical devices are named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP for
communication with the operator)

The paper tape reader device
The paper tape punch device

The output list device

The actual devices attached to any particular computersystem are driven by
subroutines in the BIOS portion of CP/M. Thus, thelogical RDR: device, for
example, could actually be a high speed reader, Teletype reader, or cassette
tape. In order to allow some flexibility in device naming and assignment,
several physical devices are defined, as shown below:

TTY:

CRT:

BAT:

UC1:

PTR:

URL:

UR2:

PTP:

UPIL:

Teletype device (slow speed console)
Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)
User-defined reader #1

User-defined reader # 2

Paper tape punch (high speed punch)

User-defined punch #1
3-19

UP2: User-defined punch #2
LPT: Line printer

UL1: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS
portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command:

STAT VAL: {cr)

produces a summary of the available status commands, resulting in the
output:

Temp R/0 Disk: d:=R/0

Set Indicator: d:filename.typ $R/O $R/W $SYS $DIR

Disk Status: DSK: d:DSK:
User Status: USR:
Iobyte Assign:

CON. =TTY: CRT: BAT: UCL
RDR: = TTY: PTR: URLl: UR2:
PUN: = TTY: PTP: UPL: UP2:
LST: = TTY: CRT: LPT: ULL

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: {cr)

which produces a listing of each logical device to the left, and the current -
corresponding physical device to the right. For example, the list might
appear as follows:

3-20

CON: = CRT:

RDR: = URL:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing
a STAT command of the form

STAT Id1 = pd1,1d2 = pd2, ..., ldn = pdn {cr)

where 1d1 through ldn are logical device names, and pdl through pdn are
compatible physical device names (i.e., 1di and pdi appear on the same linein
the “VAL:” command shown above). The following are valid STAT
commands which change the current logical to physical device assignments:

STAT CON: = CRT: {cr)
STAT PUN: = TTY:,LST: = LPT:,RDR: = TTY: (cr)

ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The
following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file
x.PRN

where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for
each statement and diagnostic error messages, if any. The PRN file can be
listed at the console using the TYPE command, or sent to a peripheral device
using PIP (see the PIP command structure below). Note also that the PRN
file contains the original source program, augmented by miscellaneous
assembly information in the leftmost 16 columns (program addresses and
hexadecimal machine code, for example). Thus, the PRN file can serve as a

3-21

backup for the original source file: if the source file is accidentally removed
or destroyed, the PRN file can be edited (see the ED operator’s guide) by
removing the leftmost 16 characters of each line (this can be done by issuing
a single editor “macro” command). The resulting file is identical to the
original source file and can be renamed (REN) from PRN to ASM for
subsequent editing and assembly. The file

x.HEX

isalso produced which contains 8080 machine languagein Intel “hex” format
suitable for subsequent loading and execution (see the LOAD command).
For complete details of CP/M’s assembly language program, see the “CP/M
Assembler Language (ASM) User’s Guide””

Similar to other transient commands, the source file for assembly can be
taken from an alternate disk by prefixing the assembly language file name by
a disk drive name. Thus, the command

ASM B:ALPHA (cr)

loads the assembler from the currently logged drive and operates upon the
source program ALPHA.ASM on drive B. The HEX and PRN files are also
placed on drive B in this case.

LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain “hex”
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD
command creates a file named

x.COM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>” printed by the CCP.

In general, the CCP reads the name x following the prompting character and
looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

3-22

ST

x.COM

~~ Iffound, the machine codeis loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this
way, the user can “invent” new commands in the CCF. (Initialized disks
contain the transient commands as COM files, which can be deleted at the
user’s option.) The operation can take place on an alternate drive if the file
name is prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for
example) which begin at 100H, the beginning of the TPA. Further, the
addresses in the hex records must be in ascending order; gaps in unfilled
memory regions are filled with zeroes by the LOAD command as the hex
recordsareread. Thus, LOAD must be used only for creating CP/M standard
“COM” files which operate in the TPA. Programs which occupy regions of
memory other than the TPA can be loaded under DDT.

PIP

PIP is the CP/M Peripheral Interchange Program which implements the
basic media conversion operations necessary to load, print, punch, copy, and
combine disk files. The PIP program is initiated by typing one of the
following forms

PIP (cr)
PIP “command line” {cr)

In both cases, PIP is loaded into the TPA and executed. In case 1, PIP reads
command lines directly from the console, prompted with the “*” character,
until an empty command line is typed (i.e., a single carriage return is issued
by the operator). Each successive command line causes some media
conversion to take place according to the rules shown below. Form 2 of the
PIP command is equivalent to the first, except that the single command line

~—~ given with the PIP commandis automatically executed, and PIP terminates
immediately with no further prompting of the console for input command
lines. The form of each command line is

destination = source #1, source #2, ..., source #n {cr)

3-23

where “destination” is the file or peripheral device to receive the data, and
“source#1, ..., source #n” represents a series of one or more files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e., n > 1), the individual
files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to
improvereadability. Lower case ASCII alphabetics areinternally translated
to upper case to be consistent with CP/M file and device name conventions.
Finally, the total command line length cannot exceed 255 characters (ctl-E
can be used to force a physical carriage return for lines which exceed the
console width).

The destination and source elements can be unambiguous references to
CP/M source files, with or without a preceding disk drive name. That is, any
file can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
thedrive nameis not included, the currently logged disk is assumed. Further,
the destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete.
If the destination file already exists, it is removed if the command line is
properly formed (it is not removed if an error condition arises). The following
command lines (with explanations to the right) are valid as input to PIP:

X =Y (er) Copy to file X from file Y, where X and
Y are unambiguous file names; Y
remains unchanged.

X =Y,Z{cr) Concatenate files Y and Z and copy to
file X, with Y and Z unchanged.

X.ASM = Y.ASM,Z.ASM,FIN.ASM (cr)
Create the file X.ASM from the con-
catenation of the Y, Z, and FIN files
with type ASM.

NEW.ZOT = B:OLD.ZAP (cr) Move a copy of OLD.ZAP from drive B
to the currently logged disk; name the
file NEW.ZOT.

B:A.U. = B:BV,A:C.W,D.X (cr) Concatenate file B.V from drive B with
C.W from drive A and D.X. from the
logged disk; create the file A.U on drive
B.

3-24

Formore convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

PIP x: = afn {cr)
PIP x: = y:afn {(cr)
PIP ufn = y: {cr)
PIP x:ufn = y: {cr)

The first form copies all files from the currently logged disk which satisfy the
afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the source for the copyisdrivey (y = A...Z). The
third form is equivalent to the command “PIP ufn = y:ufn {cr)” which
copies the file given by ufn from drive y to the file ufn on drive x. The fourth
form is equivalent to the third, where the source disk is explicitly given by y.

Note that the source and destination disks must be different in all of these
cases. If an afn is specified, PIP lists each ufn which satisfies the afn as it is
being copied. If a file exists by the same name as the destination file, it is
removed upon successful completion of the copy, and replaced by the copied
file.

The following PIP commands give examples of valid disk-to-disk copy
operations:

B: = *.COM (cr) Copy all files which have the secondary name
“COM?” to drive B from the current drive.

A: = B:ZAP* (cr) Copy all files which have the primary name
“ZAP” to drive A from drive B.

ZAPASM = B: (cr) Equivalent to ZAP.ASM = B:ZAPASM

B:ZOT.COM = A: {cr) Equivalent to B:ZOT.COM =A:ZOT.COM
B: = GAMMA BAS (cr) Same as B.GAMMA.BAS=GAMMA.BAS

B: = A:GAMMA.BAS (cr) Same as
B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and logical devices which are attached
to the CP/M system. The device names are thesame as given under the STAT
command, along with a number of specially named devices. The logical

3-26

devices given in the STAT command are
CON:: (console), RDR: (reader), PUN: (punch), and LST: (list)
while the physical devices are

TTY: (console, reader, punch, or list)

CRT: (console, or list), UC1: (console
PTR: (reader), URI: (reader), URZ2: (reader)
PTP: (punch), UPIL (punch), UP2: (punch)
LPT: (list), UL1: (list)

(Note that the “BAT:” physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console input/output.)

The RDR, LST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/0 system.
(The current physical device mapping is defined by IOBYTE; see the
“CP/M Interface Guide” for a discussion of this function). The destination
device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the
LST: device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 “nulls” (ASCII 0’s) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source which can be “patched” into the PIP
program itself: PIP gets the input data character-by-character by
CALLing location 103H, with data returned in location 109H
(parity bit must be zero).

OUT: Special PIP output destination which can be patched into the PIP
program: PIP CALLslocation 106H with data in register C for each
character to transmit. Note that locations 109H through 1FFH of
the PIP memory image are not used and can be replaced by special
purpose drivers using DDT (see the DDT operator’s manual).

PRN: Same as LST:, except that tabs are expanded at every eighth
3-26

character position, lines are numbered, and page ejects areinserted
every 60 lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files, and a
real end of file for non-ASCII disk files). Data from each device or file is
concatenated from left to right until the last data source has been read. The
destination device or file is written using the data from the source files, and
an end-of-file character (ctl-Z)is appended to the result for ASCII files. Note
that if the destination is a disk file, a temporary fileis created ($$$ secondary
name) which is changed to the actual file name only upon successful
completion of the copy. Files with the extension “COM” are always assumed
to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the
keyboard (a rubout suffices). PIP will respond with the message
“ABORTED” to indicate that the operation was not completed. Note that
if any operation is aborted, or if an error occurs during processing, PIP
removes any pending commands which were set up while using the SUBMIT
command.

Itshould also be noted that PIP performsa special functionif the destination
is a disk file with type “HEX” (an Intel hex formatted machine code file),
and the source is an external peripheral device, such as a paper tape reader.
In this case, the PIP program checks to ensure that the source file contains
a properly formed hex file, with legal hexadecimal values and checksum
records. When an invalid input record is found, PIP reports an error message
at the console and waits for corrective action. It is usually sufficient to open
the reader and rerun a section of the tape (pull the tape about 20 inches).
When the tape is ready for the re-read, type a single carriage return at the
console, and PIP will attempt another read. If the tape position cannot be
properly read, simply continue the read (by typing a return following the
error message), and enter the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be
entered from the console if the source file is a RDR: device. In this case, the
PIP program reads the device and monitors the keyboard. If ctl-Z is typed
at the keyboard, then the read operation is terminated normally.

Valid PIP commands are shown below.

PIP LST: = X.PRN {(cr) Copy X.PRN to the LST device and termin-
ate the PIP program. '

PIP {cr) Start PIP for a sequence of commands (PIP
prompts with “*”),

3-27

*CON: = X.ASM,Y.ASM,Z.ASM {(cr)
Concatenate three ASM files and copy to the
CON device.

*X.HEX = CON:,Y.HEX,PTR: {cr)
Create a HEX file by reading the CON (until
a ctl-Z is typed), followed by data from
Y.HEX, followed by data from PTR until a
ctl-Z is encountered.

*(cr)y Single carriage return stops PIP.

PIP PUN: = NUL:,X.ASM,EOF: NUL: (cr)
: Send 40 nulls to the punch device; then copy
the X.ASM file to the punch, followed by an
end-of-file (ctl-Z) and 40 more null
characters.

The user can also specify one or more PIP parameters, enclosed in left and
right square brackets, separated by zero or more blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an optional decimalinteger value (the S and Q parametersare
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuousreading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data which
can be buffered is dependent upon the memory size of the host
system (PIP will issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer of
data to the destination from the character source. This parameter
isused most often to truncate longlines which aresent to a (narrow)
printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Filter form feedsfrom the file. Allimbedded form feeds are removed.
The P parameter can be used simultaneously to insert new form
feeds.

Gn Get file from user number n. (n is the range 0-15.) Allows one user

areatoreceive data files from another. If the operator hasissued the

3-28

Pn

Qslz

Sstz

USER 4 command at the CCP level, the PIP statement

PIP X.Y = X.Y[G2]
reads file X.Y from user number 2 into user area number 4. You
cannot copy files into a different area than the one which is
currently addressed by the USER command.

Hex data transfer: all data is checked for proper Intel hex file
format. Non-essential characters between hex records are removed
during the copy operation. The console will be prompted for
corrective action in case errors occur.

Ignore “:00” records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case.

Add line numbers to each line transferred to the destination,
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2is specified,
then leading zeroes are included, and a tab is inserted following the
number. The tab is expanded if T is set.

Object file (non-ASCII) transfer: the normal CP/M end of file is
ignored.

Include page ejects at every n lines (with an initial page eject). If n
= 1 oris excluded altogether, page ejects occur every 60 lines. If the
F parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

Read system files. Allows files with the system attribute to be
included in PIP transfers. Otherwise, system files are not
recognized.

Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The S and Q parameters can be
used to “abstract” a particular section of a file (such as a
subroutine). The start and quit strings are always included in the
copy operation.

NOTE — thestrings following thesand q parameters are translated
to upper case by the CCP if form (2) of the PIP command is used.
Form (1) of the PIP invocation, however, does not perform the

3-29

automatic upper case translation.
(1) PIP (cr)
(2) PIP “command line” {cr)

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the copy
operation.

A% Verify that data has been copied correctly by rereading after the
write operation (the destination must be a disk file).

w Write over R/O files without console interrogation. Under normal
operation, PIP will not automatically overwrite a file which is set
to a permanent R/O status. It advises the user of the R/0 status
and waits for overwrite approval. W allows the user to bypass this
interrogation process.

V/ Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM = B:[v]{cr) Copy X.ASM from drive B to the current
drive and verify that the data was properly
copied.

PIP LPT: = X.ASM[nt8u] {cr)
Copy X.ASM to the LPT: device; number
each line, expand tabs to every eighth column,
and translate lower case alphabetics to upper
case.

PIP PUN: = X.HEX([i],Y.ZOT[h] {cr)
First copy X.HEX to the PUN: device and
ignore the trailing “:00” record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any “:00” records which it contains.

PIP X.LIB = Y.ASM [sSUBRI1:tz qJMP L3tz] {cr) ™
Copy from the file Y. ASM into the file X.LIB.
Start the copy when the string “SUBR1:” has
been found, and quit copying after the string
“JMP L3” is encountered.

3-30

PIP PRN: =X ASM[p50] Send X.ASM to the LST: device, with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
Note that nt8p60 is the assumed parameter
list for a PRN file; p50 overrides the default
value.

Note that the PIP program itself is initially copied to a user area (so that
subsequent files can be copied) using the SAVE command. The sequence of
operations shown below effectively moves PIP from one user area to the
next.

USER 0 login user 0

DDT PIP.COM load PIP in memory
(note PIP size s)

GO return to CCP
USER 3 login user 3

SAVE s PIP.com

where s is the integral number of memory “pages” (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is located
under DDT, by referring to the value under the “NEXT” display. If for
-example, the next available address is 1D00, then PIP.COM requires 1C
hexadecimal pages (or 1 times 16 + 12 =28 pages), and thus the value of sis 28
in the subsequent save. Once PIP is copied in this manner, it can then be
copied to another disk belonging to the same user number through normal
PIP transfers,

ED

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given in Chapter 3 CP/M ED. In general, ED allows the
operator to create and operate upon source files which are organized as a
sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line
length (no single line can exceed the size of the working memory), which is
instead defined by the number of characters typed between {cr)’s. The ED
program has a number of commands for character string searching,
replacement, and insertion, which are useful in the creation and correction
of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is easily
“paged” through this work area.

Upon initiation, ED creates the specified source file, if it does not exist, and
opens the file for access. The programmer then “appends” data from the

3-31

source file into the work area, if the source file already exists (see the A
command), for editing. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of
a large file.

Given that the operator has typed
ED X.ASM {cr)
the ED program creates an intermediate work file with the name

X.5%8

to hold the edited data during the ED run. Upon completion of ED, the
X.ASM file (original file) is renamed to X.BAK, and the edited work file is
renamed to X.ASM. Thus, the X.BAK file contains the original (unedited)
file, and the X.ASM file contains the newly edited file. The operator can
always return to the previous version of a file by removing the most recent
version, and renaming the previous version. Suppose, for example, that the
current X.ASM file was improperly edited; the sequence of CCP commands
shown below would reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.

REN X.ASM=X.BAK Rename the BAK file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
¢ctl-C, or Q command) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to “ping-pong” the source and create
backup files between two disks. The form of the ED command in this case is

EDufnd:

where ufn is the name of a file to edit on the currently logged disk and d is the —
name of an alternate drive. The ED program reads and processes the
source file, and writes the new file to drive d, using the name ufn. Upon
completion of processing, the original file becomes the backup file. Thus, if
the operator is addressing disk A, the following command is valid:

3-32

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon completion of a successful edit, A:X.ASM isrenamed to A:X.BAK,
and B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently
logged disk becomes drive B at the end of the edit. Note that if a file by the
name B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a
source file. In this case, the operator must first ERAse the existing file and
then restart the edit operation.

Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name. Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with new fileand
backup on drive A.
ED B:X.ASM A: Edit the file X.ASM on drive B to the temporary

file X.$$$ on drive A. On termination of editing,
change X.ASMondrive B to X.BAK, and change
X.$$$ on drive A to X.ASM.

ED takes file attributes into account. If the operator attempts to edit a
read/only file, the message

FILE IS READ/ONLY

appears at the console. The file can be loaded and examined, but cannot be
altered in any way. Normally the operator simply ends the edit session, and
uses STAT to change the file attribute to R/W. If the edited file has the
system attribute set, the message

“SYSTEM” FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again, the STAT
program can be used to change the system attribute if desired.

SUBMIT
The SUBMIT command allows CP/M commands to be batched together for

3-33

automatic processing. The format of SUBMIT is: SUBMIT ufn
parm #1...parm #n{cr).

The ufn given in the SUBMIT command must be the filename of a file which
exists on the currently logged disk, with an assumed file type of “SUB?’ The
SUB file contains CP/M prototype commands, with possible parameter
substitution. The actual parameters parm #1 ... parm #n are substituted
into the prototype commands, and, if no errors occur, the file of substituted
commands is processed sequentially by CP/M.

The prototype command file is created using the ED program, with
interspersed “$” parameters of the form

$1 $2 $3 .. $n

corresponding to the number of actual parameters which will be included
when the file is submitted for execution. When the SUBMIT transient is
executed, the actual parameters parm #1 ... parm #n are paired with the
formal parameters $1 ...$n in the prototype commands. If the number of
formal and actual parametersdoes not correspond, then the submit function
is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$$.5UB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other
than drive A, the commands are not processed until the disk is inserted into
drive A and the system reboots. Further, the user can abort command
processing at any time by typing a rubout when the command is read and
echoed. In this case, the $$$.SUB file is removed, and the subsequent
commands come from the console. Command processing is also aborted if the
CCP detects an error in any of the commands. Programs which execute
under CP/M can abort processing of command files when error conditions
occur by simply erasing any existing $$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type a
“$$” which reduces to a single “$” within the command file. Further, an
up-arrow symbol “1” may precede an alphabetic character x, which produces
a single ctl-x character within the file.

Thelast command in a SUB file can initiate another SUB file, thus allowing
chained batch commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype
3-34

commands

ASM $1

DIR $1.*

ERA *BAK

PIP $2: = $1.PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN (cr)

isissued by the operator. The SUBMIT programreads the ASMBL.SUB file,
substituting “X” for all occurrences of $1 and “PRN” for all occurrences of
$2, resulting in a $33.SUB file containing the commands

ASM X

DIR X.*

ERA * BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name. Submitted files are only acted
upon, however, when they appear on drive A. Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is inserted
in drive A.

XSUB
XSUB extends the power of the SUBMIT facility toinclude characterinput
during program execution as well as entering command lines. The XSUB

command is included as the first line of your submit file and, when executed,
self-relocates directly below the CCP.

All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file. For example, the file SAVER.SUB
could contain the submit lines:

3-35

XSUB

DDT

I$1.HEX

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER XY

which substitutes X for $1 and Y for $2 in the command stream. The XSUB
program loads, followed by DDT which is sent the command lines
“IX.HEX” “R” and “G0”, thus returning to the CCP. The final command
“SAVE 1 Y.COM” is processed by the CCP.

The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence. Subsequent submit
command streams do not require the XSUB, unless an intervening cold
start has occurred. Note that XSUB must be loaded after DESPOOL, if both

are to run simultaneously.

DUMP

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time, with
the absolute byte address listed to the left of each line in hexadecimal. Long
typeouts can be aborted by pushing the rubout key during printout. (The
source listing of the DUMP program is given in the “CP/M Interface Guide”
as an example of a program written for the CP/M environment.)

BDOS Error Messages

There are three error situations which the Basic Disk Operating System
intercepts during file processing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and “error” is one of the three error messages:
BAD SECTOR

SELECT
R/O

3-36

The “BAD SECTOR” message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer.
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats. The MDS-800 controller, for
example, requires two bytes of one’s following the data CRC byte, which is
not required in the IBM format. As a result, diskettes generated by the Intel
MDS can be read by almost all other IBM-compatible systems, while disk
files generated on other manufacturers’ equipment will produce the “BAD
SECTOR” message when read by the MDS. In any case, recovery from this
condition is accomplished by typing a ctl-C to reboot (this is the safest!), or
a return, which simply ignores the bad sector in the file operation. Note,
however, that typing a return may destroy your diskette integrity if the
operation is a directory write, so make sure you have adequate backups in
this case.

The “SELECT” error occurs when there is an attempt to address a drive
beyond the A through Drange. In this case, the value of xin the error message
gives the selected drive. The system reboots following any input from the
console.

The R/O (read only) message occurs when there is an attempt to write to
a diskette which has been designated as read-only in a - STAT command,
or has been set to read-only by the BDOS. In general, the operator
should reboot CP/M either by using the warm start procedure ctl-C or
by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette
to be changed without the warm or cold start, but internally marks the
drive as read-only. The status of the drive is subsequently changed to
read/write if a warm or cold start occurs. Upon issuing this message,
CP/M waits for input from the console. An automatic warm start takes
place following any input.

3-37

3-38

CHAPTER 2
CP/M 2.0 INTERFACE GUIDE

 Introduction

* Operating System Call Conventions
» Sample File-to-File Copy Program

» Sample File Dump Utility

« Sample Random Access Program

» System Function Summary

Q.90

3-40

The transient program may use the CP/M 1/0 facilities to communicate
with the operator’s console and peripheral devices, including the disk
subsystem. The I/0 system is accessed by passing a “function number” and
an “information address” to CP/M through the FDOS entry point at
BOOT + 0005H. In the case of a disk read, for example, the transient program
sends the number corresponding to a disk read, along with the address of an
FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error number
indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing
direct operating system calls from user programs.

CP/Mfacilities which are available for access by transient programs fallinto
two general categories: simple device I/0, and disk file I70. The simple
device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

3-43

As mentioned above, access to the FDOS functions is accomplished by
passing a function number and information address through the primary
entry point at location BOOT + 0005H. In general, the function number is
passed in register C with theinformation addressin the double byte pair DE.
Single byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number is out of
range). For reasons of compatibility, register A =L and register B=H upon
returnin all cases. Note that the register passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. The list of
CP/M function numbers is given below.

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console OQutput 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console 170 25 Return Current Disk
7 Get 170 Byte 26 Set DMA Address
8 Set I/0 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/0 Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to maintain
upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to
an eight level stack area with the CCP return address pushed onto the stack,
leaving seven levels before overflow occurs. Although this stack is usually
not used by a transient program (i.e., most transients return to the CCP
through a jump to location 0000H), it is sufficiently large to make CP/M
system calls since the FDOS switches to a local stack at system entry. The
following assembly language program segment, for example, reads char-
acters continuously until an asterisk is encountered, at which time control
returns to the CCP (assuming a standard CP/M system with
BOOT + 0000H):

3-44

BDOS EQU 0005H ;STANDARD CP/M ENTRY

CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA

NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN (A)
CPI * ;END OF PROCESSING?
JNZ NEXTC ;LOOPIFNOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical
organization which allows any particular file to contain any number of
records from completely empty, to the full capacity of the drive. Each drive
is logically distinct with a disk directory and file data area. The disk file
names are in three parts: the drive select code, the file name consisting of one
to eight non-blank characters, and the file type consisting of zero to three
non-blank characters. The file type names the generic category of a
particular file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories which
have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/1 Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup

INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line”
of the source file is followed by a carriage-return line-feed sequence (0DH
followed by 0AH). Thus one 128 byte CP/M record could contain several
lines of source text. The end of an ASCII file is denoted by a control-Z
character (1AH) or a real end of file, returned by the CP/M read operation.
Control-Z characters embedded within machine code files (e.g., COM files)
areignored, however, and the end of file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128
bytes each, numbered from 0 through 65535, thus allowing a maximum of 8
megabytes per file. Note, however, that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disk data area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs
which follow, they are of no particular consequence to the programmersince
each extent is automatically accessed in both sequential and random access
modes.

3-45

In the file operations starting with function number 15, DE usually
addresses a file control block (FCB). Transient programs often use the
default file control block area reserved by CP/M at location BOOT + 005CH
(normally 005CH) for simple file operations. The basic unit of file —
information is a 128 byte record used for all file operations, thus a default
location for disk 1/0 is provided by CP/M at location BOOT + 0080H
(normally 0080H) which is theinitial default DM A address (see function 26).

All directory operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of Search First

and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for
Sequential access and a series of 36 bytes in the case that the file is accessed
randomly. The default file control block normally located at 005CH can be
used forrandom access files, since the three bytesstarting at BOOT +007DH
are available for this purpose. The FCB format is shown with the following
fields:

[ar{n] el e]ufelelalsa]e]re]aol Ja]a[wo]a]e]

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)

0= >use default drive for file
1=>auto disk select drive A,
2=>auto disk select drive B,

16= > auto disk select drive P.
fl.. .f8 contain the file name in ASCII upper case, with high bit=0

t1,t2,t3 contain the file type in ASCII upper case, with high bit =0
t1’, t2°, and t3’ denote the bit of these positions,
tl’=1=>Read/Only file,
t2’=1=>SYS file, no DIR list

ex contains the current extent number, normally set to 00 by the
user, but in range 0 - 31 during file I/0

~

\r—»,

sl reserved for internal system use

s2 reserved for internal system use, set to zero on call to OPEN, -
MAKE, SEARCH

rc record count for extent “ex,’ takes on values from 0 - 128

3-46

CHAPTER 2
CP/M 2.0 INTERFACE GUIDE

* Introduction

* Operating System Call Conventions
« Sample File-to-File Copy Program

» Sample File Dump Utility

* Sample Random Access Program

* System Function Summary

2 920

3-40

Introduction

~— This manual describes CP/M, release 2, system organization including the
structure of memory and system entry points. Theintention is to provide the
necessary information required to write programs which operate under
CP/M, and which use the peripheral and disk 1/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic 1/0 System
(BIOS), the Basic Disk Operating System (BDOS), the Console command
processor (CCP), and the Transient Program Area (TPA). The BIOS is a
hardware-dependent module which defines the exact low level interface to a
particular computer system which is necessary for peripheral device 1/0.
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a distinct
program which uses the FDOS to provide a human-oriented interface to the
information which is cataloged on the backup storage device. The TPA is an
area of memory (i.e., the portion which is not used by the FDOS and CCP)
where various non-resistant operating system commands and user programs
are executed. The lower portion of memory is reserved for system
information and is detailed in later sections. Memory organization of the
CP/M system is shown below:

high
memory FDOS (BDOS + BIOS)
FBASE:
CCP
CBASE:
TPA
TBASE:
BOOT: System parameters

Base addresses for the two Apple memory configurations that can be used
,—~ with CP/M are shown in the table below:

Module 44K 56K (Language Card)
CcCp 9400H C400H
BDOS 9C00H CCo0H

3-41

BIOS AA00H DAOOH
Top of RAM AFFFH DFFFH

All standard CP/M versions assume BOOT = 0000H, which is the base of
random access memory. The machine code found at location BOOT
performs a system “warm start” which loads andinitializes the programs and
variables necessary to return control to the CCP. Thus, transient programs
need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume
TBASE =BOOT +0100H which is normally location 0100H. The principal
entry point to the FDOS is at location BOOT + 0005H (normally 0005H)
where a jump to FBASE is found. The address field at BOOT + 0006H
(normally 0006 H) contains the value of FBASE and canbe used to determine
the size of available memory, assuming the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The
operator communicates with the CCP by typing command lines following
each prompt. Each command line takes one of the forms:

command
command filel
command filel file2

where “command” is either a built-in function such as DIR or TYPE, or the
name of a transient command or program. If the command is a built-in
function of CP/M, it is executed immediately. Otherwise, the CCP searches
the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which
executes in the TPA, and thus implicitly originates at TBASE in memory.
The CCP loads the COM file from the disk into memory starting at TBASE
and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP
prepares one or two file control block (FCB) names in the system parameter
area. These optional FCB’s are in the form necessary to access files through
the FDOS, and are described in the next section.

The transient program receives control from the CCP and begins execution,
perhaps using the 1/0 facilities of the FDOS. The transient program is
“called” from the CCP, and thus can simply return to the CCP upon
completion of its processing, or can jump to BOOT to pass control back to
CP/M. In the first case, the transient program must not use memory above
CBASE, while in the latter case, memory up through FBASE-1 is free.

QA_49

The transient program may use the CP/M 1/0 facilities to communicate
with the operator’s console and peripheral devices, including the disk
subsystem. The I/0 system is accessed by passing a “function number” and
an “information address” to CP/M through the FDOS entry point at
BOOT + 0005H. In the case of a disk read, for example, the transient program
sends the number corresponding to a disk read, along with the address of an
FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error number
indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing
direct operating system calls from user programs.

CP/Mfacilities which are available for access by transient programsfallinto
two general categories: simple device I/0, and disk file I/0. The simple
device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Qutput are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Reniame

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

3-43

As mentioned above, access to the FDOS functions is accomplished by
passing a function number and information address through the primary
entry point at location BOOT + 0005H. In general, the function number is
passed in register C with the information addressin the double byte pair DE.
Single byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number is out of
range). For reasons of compatibility, register A =L and register B=H upon
returnin all cases. Note that the register passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. The list of
CP/M function numbers is given below.

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console 170 25 Return Current Disk
7 Get 170 Byte 26 Set DMA Address
8 Set 1/0 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/0O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to maintain
upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to
an eight level stack area with the CCP return address pushed onto thestack,
leaving seven levels before overflow occurs. Although this stack is usually
not used by a transient program (i.e., most transients return to the CCP
through a jump to location 0000H), it is sufficiently large to make CP/M
system calls since the FDOS switches to a local stack at system entry. The
following assembly language program segment, for example, reads char-
acters continuously until an asterisk is encountered, at which time control
returns to the CCP (assuming a standard CP/M system with
BOOT + 0000H):

3-44

BDOS EQU 0005H ;STANDARD CP/M ENTRY

CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA

NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN (A)
CPI o ;END OF PROCESSING?
IJNZ NEXTC ;LOOPIF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical
organization which allows any particular file to contain any number of
records from completely empty, to the full capacity of the drive. Each drive
is logically distinct with a disk directory and file data area. The disk file
names are in three parts: the drive select code, the file name consisting of one
to eight non-blank characters, and the file type consisting of zero to three
non-blank characters. The file type names the generic category of a
particular file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories which
have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup

INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line”
of the source file is followed by a carriage-return line-feed sequence (0DH
followed by 0AH). Thus one 128 byte CP/M record could contain several
lines of source text. The end of an ASCII file is denoted by a control-Z
character (1AH) or a real end of file, returned by the CP/M read operation.
Control-Z characters embedded within machine code files (e.g., COM files)
are ignored, however, and the end of file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128
bytes each, numbered from 0 through 65535, thus allowing a maximum of 8
megabytes per file. Note, however, that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disk data area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs
which follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random access
modes.

3-45

In the file operations starting with function number 15, DE usually
addresses a file control block (FCB). Transient programs often use the
default file control block area reserved by CP/M at location BOOT + 005CH
(normally 005CH) for simple file operations. The basic unit of file
information is a 128 byte record used for all file operations, thus a default
location for disk 1/0 is provided by CP/M at location BOOT +0080H
(normally 0080H) which is the initial default DMA address (see function 26).
All directory operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of Search First
and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for
Sequential access and a series of 36 bytes in the case that the file is accessed
randomly. The default file control block normally located at 005CH can be
used for random access files, since the three bytesstartingat BOOT +007DH
are available for this purpose. The FCB format is shown with the following
fields:

lar ol el /ds]alelelels]se]wc]wol/ Jalaloale]

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)

0 =>use default drive for file
1=>auto disk select drive A,
2=>auto disk select drive B,

16= >auto disk select drive P.
fl.. .f8 contain the file name in ASCII upper case, with high bit=0

t1,t2,t3 contain the file type in ASCII upper case, with high bit=0
t1’, t2°, and t3’ denote the bit of these positions,
t1’=1=>Read/Only file,
t2’=1=>SYS file, no DIR list

ex contains the current extent number, normally set to 00 by the
user, but in range 0 - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set to zero on call to OPEN, TN

MAKE, SEARCH

rc record count for extent “ex,” takes on values from 0 - 128

3-46

do.. dn filled-in by CP/M, reserved for system use

cr current record to read or write in a sequential file operation,
normally set to zero by user

r0,r1,r2 optional random record number in the range 0-65535, with
overflow tor2,10,r1 constitute a 16-bit value with low byte r0,
and high byte r1

Each file being accessed through CP/M must have a corresponding FCB
which provides the name and allocation information for all subsequent file
operations. When accessing files, it is the programmer’s responsibility to fill
the lower sixteen bytes of the FCB and initialize the “cr” field. Normally,
bytes 1 through 11 are set to the ASCII character values for the file name and
file type, while all other fields are zero.

FCB’s are stored in a directory area of the disk, and are brought into central
memory before proceeding with file operations (see the OPEN and MAKE
functions). The memory copy of the FCB is updated as file operations take
place and later recorded permanently on disk at the termination of the file
operation (see the CLOSE command).

The CCP constructs the first sixteen bytes of two optional FCB’s for a
transient by scanning the remainder of the line following the transient name,
denoted by “file1” and “file2” in the prototype command line described
above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT + 005CH, and can be used as-is for subsequent
file operations. The second FCB occupies the d0 . . . dn portion of the first
FCB, and must be moved to another area of memory before use. If, for
example, the operator types

PROGNAME B:X.Z0T Y.ZAP

the file PROGNAME. COM is loaded into the TPA, and the default FCB at
BOOT +005CH is initialized to drive code 2, file name “X” and file type
“ZOT? The second drive code takes the default value 0, which is placed at
BOOT +006CH, with the file name “Y” placed into location BOOT + 006 DH
and file type “ZAP” located 8 bytes later at BOOT + 0075H. All remaining
fields through “cr” are set to zero. Note again that it is the programmer’s
responsibility to move thissecond filename and type to another area, usually
a separate file control block, before opening the file which begins at
BOOT +005CH, due to the fact that the open operation will overwrite the
second name and type.

If no file names are specifiad in the original command, then the fields
beginning at BOOT +005DH and BOOT + 006DH contain blanks. In all

3-47

cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT + 0080H -
is initialized to the command line tail typed by the operator following the
program name. The first position contains the number of characters, with
the characters themselves following the character count. Given the above
command line, the area beginning at BOOT + 0080H is initialized as follows:

BOOT + 0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 47 BT wn wxn wn o wgn o agn W wn ayn e wge wan wpe

where the characters are translated to upper case ASCII with unintialized
memory following the last valid character. Again, it is the responsibility of
the programmer to extract the information from this buffer before any file
operations are performed, unless the default DMA address is explicitly
changed.

The individual functions are described in detail in the pages which follow.
FUNCTION 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returns control to the CP/M operating system at
the CCP level. The CCP re-initializes the disk subsystem by selecting and
logging-in disk drive A. This function has exactly the same effect as a jump
to location BOOT.

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value :
Register A: ASCII Character

The console input function reads the next console character to register A.
Graphic characters, along with carriage return, line feed, and backspace
(ctl-H) are echoed to the console. Tab characters (ctl-I) are expanded in ~™,
columns of eight characters. A check is made for start/stop scroll (ctl-S) and
start/stop printer echo (ctl-P). The FDOS does not return to the calling
program until a character has been typed, thus suspending execution of a
character if not ready.

3-48

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character
The ASCII character from register E is sent to the console device. Similar to
function 1, tabs are expanded and checks are made for start/stop scrolland
printer echo.

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: 03H

Returned Value :
Register ~ A: ASCII Character

The Reader Input function reads the next character from the logical reader
into register A. Control does not return until the character has been read.

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:

Register C:04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the
logical punch device.

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the
logical listing device.

3-49

FUNCTION 6: DIRECT CONSOLE1/0

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or

char (output)
Returned Value :
Register A: char or status
(no value)

Direct console 1/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required. Use of
this function should, in general, be avoided since it bypasses all of CP/M’s
normal control character functions (e.g., control-S and control-P).
Programs which perform direct I/0 through the BIOS under previous
releases of CP/M, however, should be changed to use direct /O under BDOS
so that they can be fully supported under future releases of MP/M and
CP/M.

Upon entry to function 6, register E either contains hexadecimal FF,
denoting a console input request, or register E contains an ASCII character.
Iftheinput valueis FF, then function 6 returns A = 00if no character isready,
otherwise A contains the next console input character.

If the input value in E is not FF, then function 6 assumes that E contains a
valid ASCII character which is sent to the console.

FUNCTION 7: GETI1/0 BYTE

Entry Parameters:
Register C:07H

Returned Value:
Register A: 170 Byte Value

The Get I/0 Byte function returns the current value of IOBYTE in register
A

FUNCTION 8: SET1/0 BYTE

Entry Parameters:
Register C: 08H
Register E: I/0 Byte Value

3-50

The Set 170 Byte function changes the system IOBYTE value to that given
in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the
location given by DE to the console device, until a “$” is encountered in the
string. Tabs are expanded asin function 2,and checks are made for start/stop
scroll and printer echo.

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: 0AH
Registers DE: Buffer Address

Returned Value
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer
addressed by registers DE. Console input is terminated when either theinput
buffer overflows. The Read Buffer takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n
menc|c1lc2Ic3[c4]c5[cGlc7|‘..|??l

where “mx” is the maximum number of characters which the buffer will hold
(1 to 255), “nc” is the number of characters read (set by FDOS upon return),
followed by the characters read from the console. If nc < mx, then
uninitialized positions follow the last character, denoted by “??” in the above
figure. A number of control functions are recognized during line editing:

rub/del removes the echoes the last character
ctl-C reboots when at the beginning of line

ctl-E causes physical end of line
ctl-H backspaces one character position
ctl-J (line feed) terminates input line

ctl-M (return) terminates input line
ctl-R retypes the current line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the leftmost

3-51

position (e.g., ctl-X) do so only to the column position where the prompt
ended (in earlier releases, the carriage returned to the extreme left margin).
This convention makes operator data input and line correction more legible.

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: 0BH

Return Value :
Register A: Console Status

The Console Status function checks to see if a character has been typed at
the console. If a character isready, the value OFFH is returned in register A.
Otherwise a 00H value is returned.

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C:0CH

Returned Value :
Registers HL: Version Number

Function 12 provides information which allows version independent
programming. A two-byte value is returned, with H=00 designating the
CP/M release (H =01 for MP/M), and L =00 for all releases previous to 2.0.
CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent version 2
releases in the hexadecimal range 21, 22, through 2F. Using function 12, for
example, you can write application programs which provide both sequential
and random access functions, with random access disabled when operating
under early releases of CP/M.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C:0DH

The Reset Disk Function is used to programmatically restore the file system
to a reset state where all disks are set to read/write (see functions 28 and 29),
only disk drive A is selected, and the default DMA address is reset to

BOOT + 0080H. This function can be used, for example, by an application °

program which requires a disk change without a system reboot.

3-52

o~

FUNCTION 14: SELECT DISK

Entry Parameters:
Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the
default disk for subsequent file operations, with E =0 for drive A, 1 for drive
B, and so-forth through 15 corresponding to drive P in a full sixteen drive
system. The drive is placed in an “on-line” status which, in particular,
activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk media is changed while it is on-line, the drive
automatically goes to a read/only status in a standard CP/M environment
(see function 28). FCB’s which specify drive code zero (dr =00H) automat-
ically reference the currently selected default drive. Drive code values
between 1 and 16, however, ignore the selected default drive and directly
reference drives A through P.

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Open File operation is used to activate a file which currently existsin the
disk directory for the currently active user number. The FDOS scans the
referenced disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl isautomatically zeroed), wherean ASCII question
mark (3FH) matches any directory character in any of these positions.
Normally, no question marks are included and, further, bytes “ex” and “s2”
of the FCB are zero.

If a directory element is matched, the relevant directory information is
copied into bytes d0 through dn of the FCB, thus allowing access to the files
through subsequent read and write operations. Note that an existing file
must not be accessed until a successful open operation is completed. Upon
return, the open function returns a “directory code” with the value O through
3if the open was successful, or OFFH (255 decimal) if the file cannot be found.
If question marks occur in the FCB then the first matching FCBis activated.
Note that the current record (“cr”’) must be zeroed by the program if the file
is to be accessed sequentially from the first record.

3-53

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given
that the FCB addressed by DE has been previously activated through an
open or make function (see functions 15 and 22), the close function
permanently records the new FCBin the referenced disk directory. The FCB
matching process for the closeisidentical to the open function. Thedirectory
code returned for a successful close operationis 0, 1, 2, or 3, while a 0FFH (255
decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C:11H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB
addressed by DE. The value 255 (hexadecimal FF)isreturned if the fileis not
found, otherwise 0, 1, 2, or 3 is returned indicating the file is present. In the
case that the file is found, the current DMA address is filled with the record
containing the directory entry, and the relative starting positionis A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not normally
required for application programs, the directory information can be
extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from
“f1” through “ex” matches the corresponding field of any directory entry on
the default or auto-selected disk drive. If the “dr” field contains an ASCII
question mark, then the auto disk selected function is disabled, the default
disk is searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but does allow complete flexibility
to scan all current directory values. If the “dr” field is not a question mark,
the “s2” byte is automatically zeroed.

3.54

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters :
Register C:12H

Returned Value
Register A: Directory Code

Che Search Next function is similar to the Search First function, except that
the directory scan continues from the last matched entry. Similar to
function 17, function 18 returns the decimal value 255 in A when no more
directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Delete File function removes files which match the FCB addresses by
DE. The filename and type may contain ambiguous references (i.e., question
marks in various positions), but the drive select code cannot be ambiguous,
as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be
found, otherwise a value in the range 0 to 3 is returned.

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
make function (numbers 15 and 22), the Read Sequential function reads the
next 128 byte record from the file into memory at the current DMA address.
The record is read from position “cr” of the extent, and the “cr” field is
automatically incremented to the next record position. If the “cr” field
overflows then the next logical extent is automatically opened and the “cr”
field isreset to zeroin preparation for the next read operation. The value 00H

3.55

is returned in the A register if the read operation was successful, while a
non-zero value is returned if no data exists at the next record position (e.g.,
end of file occurs).

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
makefunction (numbers 15 and 22), the Write Sequential function writes the
128 byte data record at the current DMA address to the file named by the
FCB. The record is placed at position “cr” of the file, and the “cr” field is
automatically incremented to the next record position. If the “cr” field
overflows then the next logical extent is automatically opened and the “cr”
field is reset to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register A =00H upon
return from a successful write operation, while a non-zero value indicatesan
unsuccessful write due to a full disk.

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Make File operation is similar to the open file operation except that the
FCB must name a file which does not exist in the currently referenced disk
directory (i.e., the one named explicitly by a non-zero “dr” code, or the
default disk if “dr”is zero). The FDOS creates the file and initializes both the
directory and main memory value to an empty file. The programmer must
ensure that no duplicate file names occur, and a preceding delete operation
is sufficient if there is any possibility of duplication. Upon return, register
A=0,1,2, or 3if the operation was successful and OFFH (255 decimal) if no
more directory space is available. The make function has the side-effect of
activating the FCB and thus a subsequent open is not necessary.

3-56

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C:17H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named in the
second 16 bytes. The drive code “dr” at position 0 is used to select the drive,
while the drive code for the new file name at position 16 of the FCBis assumed
to be zero. Upon return, register A is set to a value between 0 and 3 if the
rename was successful, and OFFH (255 decimal) if the first file name could
not be found in the directory scan.

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value :
Registers HL: Login Vector

The login vector value returned by CP/M is a 16-bit value in HL, where the
least significant bit of L corresponds to the first drive A, and the high order
bit of H corresponds to thesixteenth drive, labelled P. A “0” bitindicates that
the drive is not on-line, while a “1” bit marks a drive that is actively on-line
due to an explicit disk drive selection, or an implicit drive select caused by a
file operation which specified a non-zero “dr” field. Note that compatibility
is maintained with earlier releases, since registers A and L contain the same
values upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value :
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A.
The disk numbersrange from 0 through 15 corresponding to drives A through
P.

3-57

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Regular C: 1AH
Registers DE: DMA Address

“DMA” is an acronym for Direct Memory Address, which is often used in
connection with disk controllers which directly access the memory of the
mainframe computer to transfer data to and from the disk subsystem.
Although many computer systems use non-DMA access (i.e., the data is
transferred through programmed 1/0 operations), the DMA address has, in
CP/M, come to mean the address at which the 128 byte data record resides
before a disk write and after a disk read. Upon cold start, warm start, or disk
system reset, the DMA address is automatically set to BOOT + 0080H. The
Set DMA function, however, can be used to change this default value to
address another area of memory where the data records reside. Thus, the
DMA address becomes the value specified by DE until it is changed by a
subsequent Set DMA function, cold start, warm start, or disk system reset.

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C:1BH

Returned Value :
Registers HL: ALLOC Address

An “allocation vector” is maintained in main memory for each on-line disk
drive. Various system programs use the information provided by the
allocation vector to determine the amount of remaining storage (see the
STAT program). Function 27 returns the base address of the allocation
vector for the currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read /only. Although
this function is not normally used by application programs, additional
details of the allocation vector are found in the “CP/M Alteration Guide”

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C:1CH

The disk write protect function provides temporary write protection for the
currently selected disk. Any attempt to write to the disk, before the next cold
or warm start operation produces the message

Bdos Erron d: R/O
2_.58

S~

FUNCTION 29: GET READ/ONLY VECTOR

Entry Parameters:
Register C:1DH

Returned Value :
Registers HL: R/0 Vector Value

Function 29 returns a bit vector in register pair HL which indicates drives
which have the temporary read/only bit set. Similar to function 24, the least
significant bit corresponds to drive A, while the most significant bit
corresponds to drive P. The R/O bit is set either by the explicit call to
function 28, or by the automatic software mechanisms within CP/M which
detect changed disks.

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters :
Register C:1EH
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of
permanent indicators attached to files. In particular, the R/0O and System
attributes (t1’ and t2’) can be set or reset. The DE pair addresses an
unambiguous file name with the appropriate attributesset orreset. Function
30searches for amatch, and changes the matched directory entry to contain
the selected indicators. Indicators f1’ through f4’ are not presently used, but
may be useful for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators 5’
through f8 and t3’ are reserved for future system expansion.

FUNCTION 31: GET ADDR (DISK PARMS)

Entry Parameters:
Register C:1FH

Returned Value :
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as
a result of this function call. This address can be used for either of two
purposes. First, the disk parameter values can be extracted for display and

3-59

space computation purposes, or transient programs can dynamically change
the values of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get or

User Code (set)
Returned Value :
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user
number by calling function 32. If register E =0FFH, then the value of the
current user number is returned in register A, where the valueisin therange
0 to 31. If register E is not OFFH, then the current user number is changed to
the value of E (modulo 32).

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C:21H
Registers DE: FCB Address

Returned Value :
Register A: Return Code

The Read Random function is similar to the sequential file read operation of
previous releases, except that the read operation takes place at a particular
record number, selected by the 24-bit value constructed from the three byte
field following the FCB (byte positions 10 at 33, r1 at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant byte first (r0),
middle byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2 must be zero,
however, since a non-zero value indicates overflow past the end of file.

Thus, the r0,r1 byte pair is treated as a double-byte, or “word” value, which
contains the record to read. This value ranges from 0 to 65535, providing
access to any particular record of the 8 megabyte file. In order to process a
file using random access, the base extent (extent 0) must first be opened.
Although the base extent may or may not contain any allocated data, this
ensures that the fileis properly recorded in the directory, and s visiblein DIR
requests. The selected record number is then stored into the random record
field (r0,r1), and the BDOS is called to read the record. Upon return from the

3-60

TN

call, register A either contains an error code, as listed below, or the value 00
indicating the operation was successful. In the latter case, the current DMA
_ address contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced. Thus,
subsequent random read operations continue to read the same record.

Upon each random read operation, the logical extent and current record
values are automatically set. Thus, the file can be sequentially read or
written, starting from the current randomly accessed position. Note,
however, that in this case, the last randomly read record will bere-read as you
switch from random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You can, of course,
simply advance the random record position following each random read or
write to obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 (not returning in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a data
block which has not been previously written, or an extent which hasnot been
created, which are equivalent conditions. Error 3 does not normally occur
under proper system operation, but can be cleared by simply re-reading, or
re-opening extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is non-zero under the current 2.0
release. Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value :
Register A: Return Code

The Write Random operation is initiated similar to the Read Random call,
except that data is written to the disk from the current DMA address.
Further, if the disk extent or data block which is the target of the write has
not yet been allocated, the allocation is performed before the write operation

3-61

continues. As in the Read Random operation, the random record number is
not changed as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to the random
record which is being written. Again, sequential read or write operations can
commence following a random write, with the notation that the currently
addressed record is either read or rewritten again as the sequential operation
begins. You can also simply advance the random record position following
each write to get the effect of a sequential write operation. Note that in
particular, reading or writing the last record of an extent in random mode
does not cause an automatic extent switch as it does in sequential mode.

The error codesreturned by arandom write areidentical to the random read
operation with the addition of error code 05, which indicates that a new
extent cannot be created due to directory overflow.

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C:23H
Registers DE: FCB Address

Returned Value :
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in
random mode format (bytes r0, rl, and r2 are present). The FCB contains an
unambiguous file name which is used in the directory scan. Upon return, the
random record bytes contain the “virtual” file size which is, in effect, the
record address of the record following the end of the file. If, following a call
to function 35, the high record byte r2 is 01, then the file contains the
magximum record count 65536. Otherwise, bytes r0 and rl1 constitute a 16-bit
value (r0 is the least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by simply calling function
35 to set the random record position to the end of file, then performing a
sequence of random writes starting at the preset record address

The virtual size of a file corresponds to the physical size when the file is
written sequentially. If, instead, the file was created in random mode and
“holes” exist in the allocation, then the file may in fact contain fewer records
than the size indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number 65535), then the
virtual size is 65536 records, although only one block of data is actually
allocated.

3-62

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C:24H
Registers DE: FCB Address

Returned Value :
Random Record Field Set

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be usefulin two
ways.

First,itis often necessary toinitially read and scan a sequential file to extract
the position of various “key” fields. As each key is encountered, function 36
is called to compute the random record position for the data corresponding
to this key. If the data unit size is 128 bytes, the resulting record position is
placed into a table with the key for later retrieval. After scaning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing arandom read using the
corresponding random record number which was saved earlier. The scheme
is easily generated when variable record lengths are involved since the
program need only store the buffer-relative byte position along with the key
and record number in order to find the exact starting position of the keyed
data at a later time.

A second use of function 36 occurs when switching from a sequential read or
write over to random read or write. A file is sequentially accessed to a
particular pointin the file, function 36 is called which setsthe record number,
and subsequent random read and write operations continue from the
selected point in the file,

Sample File-to-File Copy Program

The program shown below provides a relatively simple example of file
operations. The program source file is created as COPY.ASM using the
CP/M ED program and then assembled using ASM or MAC, resulting in a
“HEX?” file. The LOAD program is then used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting the
stack pointer to a local area, and then proceeds to move the second name
from the default area at 006CH to a 33-byte file control block called DFCB.
The DFCB is then prepared for file operations by clearing the current record
field. At this point, the source and destination FCB’s are ready for processing
since the SFCB at 005CH is properly set-up by the CCP upon entry to the
COPY program. That is, the first name is placed into the default FCB, with

3-63

the proper fields zeroed, including the current record field at 007CH. The
program continues by opening the source file, deleting any existing
destination file, and then creating the destination file. If all thisis successful,
the program loops at the label COPY until each record has been read from
the source file and placed into the destination file. Upon completion of the
data transfer, the destination file is closed and the program returns to the

CCP command level by jumping to BOOT.

7
boot

sample file~-to~file copy program

at the ccp level,

the command

copy a:x.y b:u.,v

copies the file named x.y from drive

a to a file named

u.v on drive b,

0000 = equ 2000h ; system reboot
0005 = bdos equ 0005h ; bdos entry point
#@85c = fcbl egqu 9085ch ; first file name
085c = sfcb equ fcbl ; source fcb
@déc = fcb2 equ @dé6ch ; second file name
0880 = dbuf £ equ 2p88éh ; default buffer
plee = tpa equ 0100h ; beginning of tpa
0089 = printf equ 9 ; print buffer func#
paof = openf equ 15 ; open file func#
0018 = closef equ 16 ; close file func#
9013 = deletef equ 19 ; delete file funck
0814 = readf equ 20 ; sequential read
@815 = writef equ 21 ; sequential write
0plé = makef equ 22 ; make file func#
8lo0 org tpa ; beginning of tpa
0160 311b@2 Ixi sp,stack; local stack
i move second file name to dfcb
0163 delod mvi c,l6 ;s half an fcb
0105 116co9 Ixi d,fcb2 ; saurce of move
0108 21dadl 1xi h,dfcb ; destination fcb
01¢b la mfcb: ldax d ; source fcb
910c 13 inx d ; ready next
pléd 77 mov m,a ; dest fcb
0l0e 23 inx h ; ready next
019f 8d dcr c ; count 16...8
911@ c20bdl jnz mfcb ; loop 16 times
; name has been moved, zero cr
9113 af . xra a ; a = géh
0114 32fadl sta dfcbcr ; current rec = @
; source and destination fcb's ready
8117 115c@0 1xi d,sfcb ; source file
flla cd6901 call open ; error if 255
@11d 1187481 1xi d,nofile; ready message
0120 3c inr a ; 255 becomes 8
0121 ccolel cz finis ; done if no file
; source file open, prep destination
@124 11d4a0l 1xi d,dfcb ; destination
0127 cd7301 call delete ; remove if present
012a 11dadl 1xi d,dfcb ; destination
@124 cdsz201 call make ; create the file
0130 119601 1xi d,nodir ; reaoy message

3-64

8133
9134

8137
213a

013d
913e

pl4l
0144
0147
0l4a
214b
21l4e

9151
0154
8157

215a 3

915b

815e

0161
0163
0166

0169
916b

21l6e
0178

0173
8175

2178
817a

9174
817t

g182
0ld4

dls?
4196
dlad
dlob
dlcc

9 lda
9l1lfa
U1fb

821b

3¢
cc6ldl

115c80
cd7801
b7

c2510@1

11lda@l
cd7401
11a981
b7

cd46181
c33781

eofile:
11dadl
cd6efl
21bbpl

c
ccblal

llccal
Einis:
0ed9

cde599
clegeo

Qedf o
c3osee

pen:

deld élosm

c30580

el éelete:

c395080
deld Eead:
c36520
vels erte:
c€39509
gelb &ake:
c3v509

;

6e6t2dfnofile:
6e6f2d9nodir:
6£7574tspace:
7772695wrprot:
636f7d@normal:

dfcb:
ofcbcr

stack:

inrc a H
cz finis B

source file open,

255 becomes 9
done if no dir space

cest file open

copy until end of file on source
1xi d,sfcb ; source

call read ; read next record
ora a ; end of file?

jnz eofile ; skip write if so
not end of file, write the record
1xi d,dfcb ; destination

call write ; write record

1xi d,space ; ready message
ora a ; 60 if write ok
cno finis ; end if so

jmp copy ; loop until eof

; end of file, close destination

1xi d,dfcb ; destination

call close ; 255 if error

1x1i h,wrprot; ready message
inr a : 255 becomes 089
cz tinis ; shouldn't happen

copy operation complete, end

1xi d,normal; ready message

; write message given by de, reboot
mvi c,printf

call bdos ; write message

jmp boot ;3 reboot system
system interface subroutines

(all return directly from bdos)

mvi c,openf
jmp bdos

mvi c,closef
jmp bdos

mvi c,deletef
jmp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c,makef
jmp bdos

console messages

db 'no source file$'

db 'no directory space$’
db ‘out of data space$’
db ‘write protected?$’
db ‘copy completeS$’

data areas

ds 33 ; destination fcb
equ dfcb+32 ; current record

ds 32 ; 16 level stack

end

3-65

Note that there are several simplifications in this particular program. First,
there are no checks for invalid file names which could, for example, contain
ambiguous references. This situation could be detected by scanning the 32
byte default area starting at location 005CH for ASCII question marks. A
check should also be made to ensure that the file names have, in fact, heen
included (check locations 005DH and 006DH for non-blank ASCII
characters), Finally, a check should be made to ensure that the source and
destination file names are different. A speed improvement could be made by
buffering more data on each read operation. One could, for example,
determine the size of memory by fetching FBASE from location 0006H and
use the entire remaining portion of memory for a data buffer. In this case, the
programmer simply resets the DMA address to the next successive 128 byte
area before each read. Upon writing to the destination file, the DMA address
isreset to the beginning of the buffer and incremented by 128 bytes to theend
as each record is transferred to the destination file.

Sample File Dump Utility.

The file dump program shown below is slightly more complex than the single
copy program given in the previous section. The dump program reads an
input file, specified in the CCP command line, and displays the content of
each record in hexadecimal format at the console. Note that the dump
program saves the CCP’s stack upon entry, resets the stack to a local area,
and restores the CCP’s stack before returning directly to the CCP. Thus, the
dump program does not perform warm start at the end of processing.

i RUMP program reads input file and displays hex data

8109 org 10@h .
9885 = bdos equ Q@aesh :doa entry point
agel = cons aqu 1 1read console
0882 = typef equ 2 stype function
048 = printf equ 9 :buffer print entry
64gb = bek§ equ 11 :break key functiom (true if char
200f = openf equ 19 1file open
88l4 = readf equ 208 1read function
885¢c = écb equ Sch ;file contral bhlock address
00289 = buff equ g§oh ;input disk huffer address
H
H non graphic characters
2884 = ce equ 8dh 1carriage return
gdda = 1f equ 8ah sline feed
H
? file control black definitians
805¢c = fchdn equ feh+d ;disk name
00534 = fcbin equ fchtl :file name
0B6S = fchbit equ fcb*® pdisk file type (3 characters)
2068 = fcbrl equ fcb+l2 ;file's current reel number
806b = fcbre equ fcb+l5 :file‘a record count (@ to 128)
402c = fcher equ fcb+32 j;current (next) record number (8
0079 = fcbin equ feb+33 ;fcb length
; %et up stack
8l0d 210009 1xi h,8
8183 39 Qad

sp
§ entry stack pointer in hl from the ccp

3-66

0104
8107
@l0a

eled
glof

e
—
i
@unn

811b
211d

0120

0123
0124
0127
6128
012b

#l2c
gl2d
glaf

0132

8135

2138
9139

#813c
913d
0144
9141

0144
9145
9147
01l4a
014b
a1lde

8151
8154
0157

9158

8159
815c
815e
816l

0164

221582
315782

cdclal
feff
c2lbel

11£301
cd9cdl
c35181

Je8@
321382

210000

e5
cdaz2dl
el
das51@1l
47

74
e60f
c24401

cd7201

cds9el

of
daslal

7c
cdgfal
74
cdsfel

23
3e28
cd6591
78
cdgfal
c32301

cd7201
2a}15082
f9

c9

e5d5c5
delb
cdesee
cldlel
c9

openok:

éloop:

nonum:

Cme v s

reak:

i
pchar:

shld oldsp .
set sp to local stack area (restored at finis
1xi sp,stktop

read and print successive buffers

call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and return

1xi d,opnmsg
call err
jmp finis ;to return

;open operation ok, set buffer index to end
mvi a,80h

sta ibp ;set buffer pointer to 88h

hl contains next address to print

1xi h,@ ;start with 0000

push h ;save line position

call gnb

pop h ;recall line position

je finis ;carry set by gnb if end file
mov b,a

print hex values
check for line fold

mov a,l

ani 0fh ;check low 4 bits
jnz nonum

print line number

call crlf

check for break key

call break

accum 1sb = 1 if character ready
rrc ;into carry

jc finis ;don’t print any more
mov a,h

call phex

mov a,l

call phex

inx h ;to next line number
mvi a,' '

call pchar

mov a,b

call phex

jmp gloop

end of dump, return to ccp
(note that a jmp to 80@0h reboots)

call crlf

lhld oldsp

sphl

stack pointer contains ccp's stack location
ret ;to the ccp

subroutines

;1check break key (actually any key will do}
push h! push df push b; enviromment saved
nvi c,brkf

call bdos

pop b! pop &t pop h; enviromment restored
ret

;print a character

3-67

0165 e5d5cS push h! push d! push b; saved

0168 dep2 mvi c,typef
6l6a Sf mov e,a
816b cdesee call bdos
8l6e cldlel pop b! pop d! pop h; restored
2171 c9 ret
crlf:
8172 3edd mvi a,cr
0174 cdes5el call pchar
8177 3ePa mvi a,lf
8179 cdéesel call pchar
81l7c c9 ret
pnib: ;print nibble in regqg a
917d e60f ani ofh ;low 4 bits
817f feda cpi 10
8181 d28901 jnc ple
: less than or equal to 9
0184 c630 adi ‘e’
8186 c38bdl jmp prn
H greater or equal to 18
8189 c637 ple: adi ‘a' - 10
#18b cd650@1 prn: call pchar
8l8e c9 ret
phex: ;print hex char in reg a
018f f£5 push psw
0198 of rrc
9191 of rec
8192 ef rrc
0193 @f rrc
2194 cd74de1l call pnib ;print nibble
8197 f1 pop psw
8198 cd7de1l call pnib
919b c9 ret
err: ;print error message
; d,e addresses message ending with "§*"
819c Be@9 mvi c,printf ;print buffer function
919e cdesew call bdos
8lal c9 ret
gnb: ;get next byte
8la2 3al1382 lda ibp
81a5 fe80 cpi 8oh
0la7 c2b3@1 jnz 1]

read another buffer

#laa cdcedl call diskr
@lad b7 ora a ;zero value if read oh
flae cab3gl jz g@ ;for another byte

; end of data, return with carry set for eof
91bl 37 stc
01b2 c9 ret

go: iread the byte at buff+reg a
01b3 sf mov e,a ;ls byte of buffer index
01b4 1600 mvi 4,0 ;double precision index to de
21b6 3¢ inr a ;index=index+l
91b7 321382 sta ibp ;back to memory

pointer is incremented
save the current file address

@lba 218000 1xi h,buff
81bd 19 dad d o

H absolute character address is in hl
@lbe 7e mov a,m

3-68

H byte is in the accumulator

01bf b7 ora a ;reset carry bit
81lch c9 ret
setup: ;set up file
H open the file for input
B8lcl af xra a ;zero to accum
Blc2 327cP0 sta fcber ;clear current record
8lcs5 115c08 1xi a,fchb
flc8 @edf mvi c,openf
Blca cdasee call bdos
; 255 in accum if open error
flcd c9 ret
diskr: ;read disk file record
B lce e5d5cS push h! push 4! push b
91dl 115c0@ 1xi d,fcb
01d4 @deld mvi c,readf
91d6 cdas5ee call bdos
2149 cldlel pop b! pop “! pop h
#ldc c9 ret
H fixed message area
91dd 46494clsignon: db ‘file du p version 2,08
81f3 8dPadedopnmsg: db cr,1f,'no input file present on disk$'
: variable area
8213 ibp: ds 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp value from ccp
; stack area
0217 ds 64 ;reserve 32 level stack
stktop:
8257 ' end

Sample Random Access Program.

This manual is concluded with a rather extensive, but complete example of
random access operation. The program listed below performs the simple
function of reading or writing random records upon command from the
terminal. Given that the program has been created, assembled, and placed
into a file labelled RANDOM.COM, the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in
this particular case) and, if found, proceeds to prompt the console for input.
If not found, the file is created before the prompt is given. Each prompt takes
the form

next command?

andis followed by operator input, terminated by a carriage return. Theinput
commands take the form

nW nR Q
3-69

where nis aninteger valuein the range 0 t0 65535, and W, R, and Q are simple
command characters corresponding to random write, random read, and quit
processing, respectively. If the W command is issued, the RANDOM
program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a
carriage return. RANDOM then writes the character stringinto the X. DAT
file at record n. If the R command is issued, RANDOM reads record number
nanddisplays the string value at the console. Ifthe Q command isissued, the
X.DAT file is closed, and the program returns to the console command
processor. In the interest of brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is
opened or created, followed by a continuous loop at the label “ready” where
the individual commands are interpreted. The default file control block at
005CH and the default buffer at 0080H are used in all disk operations. The
utility subroutines then follow, which contain the principal input line
processor, called “readc’” This particular program shows the elements of
random access processing, and can be used as the basis for further program
development.

PR R e T R 222202222

. L]
;* sample random access program for cp/m 2.0 *
el L]
;tﬁtitﬁtilttttitttlttltl!llt!ttttt!tlltttﬂ!!!itttt!t

0108 org, 108h ;base of tpa

0000 = reboot equ 8@8sh ;system reboot

8085 = bdos egu 8885h ;bdos entry point
H

0881 = coninp equ 1 ;console input function

gen2 = conout egu 2 ;console output function

8809 = pstring equ 9 ;print string until '$*

goda = rstring equ 19 ;read console buffer

8ooc = version egu 12 ;jreturn version number

goef = openf equ 15 ;file open function

#ele = closef equ 16 ;close function

9816 = make f equ 22 ;make file function

8021 = readr egqu 33 ;read random

8022 = writer equ 34 swrite random

085c = fcb equ #85ch ;default file control block

807d = ranrec eqgu fcb+33 ;random record position

807t = ranovf equ fcb+35 ;high order (overflow) byte

2080 = buff equ 8888h ;buffer address

20e6d = cr egqu edh ;jcarriage return

geda = 1f equ Bah ;line feed
;ﬂ.l!ttﬂﬂl!tt.t!lttt'...lltﬁl.l!ltlﬂ'!.!lt!.itltl'!!
- W x
i* load SP, set-up file for random access *
.k L]
:lt!.ﬂﬁ!nﬂﬂﬂ...tttt.!.!!!ltﬂ!"'tllk.lﬂ!!..tﬂ!tl!.lt

H

3-70

olpe

0103
8185
0198
@10a

@led
elle
8113

8116
2118
0llb
Blle
011f

9122
0124
plev
012a
912b

812e
0131
‘9134

@137
913a
913d
0149
2142
0144

3147
0149
Dli4c
0 14f
2158
2153

31lbch

dedc
cdgse
fe2o
d21é6@

111b#
cddad
clpe0

fedf
115¢0
cdase
3c
c237@

feleé
115ch
cdese
3c
c2370

113a9
cddap
c3ipoe

cde50
22748
217f@
3600
fe51
c2560

veld
115cH
cdese
3c
cab9d
c3ao0e

fe57
c2890

114de
cdda#
felf

21809

1xi sp,stack
H version 2.9?

mvi ¢,version

call bdos

cpi 20h ;version 2.8 or better?

jnc versok
: bad version, message and go back

1xi d,badver

call print

jmp reboot
H
versok:
: correct vetsion for random access

mvi c,openf :open default fcb

1xi d,fcb

call bdos

inc a ;err 255 becomes zero

jnz ready
H
H cannot open file, so create it

mvi c,makef

1xi d,fcb

call bdos

inr a ;err 255 becumes zero

jnz ready
.
*
: cannot create file, directory full

1xi d,nospace

call print

jmp reboot iback to ccp
;iIll.tii..Il!!iiﬁ.i*.!lﬁ.i!!!li.tt.llltitillil.!ll.
% *
r -
;* 1loop back to “ready” after each command *
Iy *®
;!lﬂt!i..illiiitltttltI!lttllhIlil.l.ililll.ll!!*tli
i
ready:
; file is ready for processing
H

call teadcom ;read next command

shld ranrec ;store input record$

1xi h,ranovf

mvi m, 9 ;elear high byte if set

cpi 'Q’ ;quit?

jnz notg
H quit processing, close file

mvi c,closef

1xi d,fcb

call bdos

int a ;jerr 255 becomes

jz error ;jerror message, retry

jmp reboot ;back to ccp
:-llll'l.!ikttlllllillllllll.ilillllilll*l'lﬁﬁii!!ll.
o *
;
;* end of quit command, process write *
[] £]
:.iRl..'lll.l!.il!lllIliilllﬂlll!lllﬂll..ll!‘llllltl!
notq:
: not the guit command, random write?

cpi ‘W'

jnz notw
H this is a random write, fil) buffer until cr

1xi d,datmsg

call print ;data prompt

mvi c,127 ;up to 127 characters

1xi h,buff ;destination

3N

166
0167
0168
0lé6b
81l6c
816d
B1l6f

9172
8173
2174
9175

g178

8l7a
8l7c
817f
8182
2183
8186

8189
918b

018e
0198
0193
196
2197

#19%a
2194
019f

8la2
dla3l
@la4
8la6
f1la9d
flaa
0lab
flad
21b@
f1bl
01b2
21b3
?21b6

21b9

9 1bc
81bf

c5

es
cdc2@
el

cl
fedd
ca78e

77
23
84
c2668

3600

Pe22
115c@
cdose
b7
c2b9e
c3378

fe52
c2b9p

fe2l
115c@
cd@se
b7
c2b9p

cdcfp
fego
218090

11592

cdda®
c3370

rloop:

erloop:

;read next character to buff

push b ;save counter

push h ;next destination
call getchr ;character to a
pop h ;jrestore counter
pop b ;restore next to fill
cpi cr ;end of line?

jz erloop

not end, store character

mov m,a

inx h ;next to fill

dcr c jcounter goes down
jnz. rloop ;end of buffer?

end of read loop, store 00
mvi m,8

write the record to selected record number

mvi c,writer

1xi d,fch

call bdos

ora a jerror code zero?
jnz error ;message if not

jmp ready ;for another record

H
b A R R R I I

*

H

;* end of write command, process read
;i

H

*
*
*

AR R E s R R R R 22T

notw:

;

wloop:

H

error:

not a write command, read record?
cpi '‘R*
jnz error ;skip if not

read random record

mvi c,readr

1xi d,fcb

call bdos

ora a ;return code 99?
jnz error

read was successful, write to console
call crlf ;new line

mvi c,128 ;max 128 characters
1xi h,buff ;next to get

mov a,m ;jnext character

inx h jhext to get

ani 7fh ;jmask parity

jz ready ;for another command if @@
push b ;save counter

push h ;save next to get
cpi ' ;graphic?

cnc putchr ;skip output if not
pop h

pop b

decr [+ jcount=count-1

jnz wloop

jmp ready

L]

*
;* end of read command, all errors end-up here
L]

L]

1xi d,errmsg
call print
jmp ready

3-72

LR R R e e e R R e R R R RS E2dR2 R2 R sl

*

*
»

AN AR A NN R AN AN AN A AR AN R AR AR R AR AN N NN R R SR A AN N

i
PR N N A R A N AN AR RN RN I RN R AR Rk R AR AR R AR R RN R AR R RN RN

oW *
i* utility subroutines for console i/o *
. ® £l
;i!tliti!tiii'tﬁ!ti!!!!!!t!tnttlil!lillilllili!!!!ii
getchr:
;read next console character to a
81lc2 Pedl mvi c,coninp
81lcd cdese call bdos
@lc7 c9 ret
putchr:
;write character from a to console
21c8 @ed2 mvi c,conout
@lca S mov e,a ;character to send
0lcb cdese call bdos ;send character
8lce c9 ret
crlf:
;send carriage return line feed
0lcf 3e@d mvi a,cr ;carriage return
01dl cdcse call putchr
01d4 3eba mvi a,lf ;line feed
P1d6 cdcBe call putchr
0149 c9 ret
print:
;print the buffer addressed by de until §
#lda 45 push d
#1db cdcfe call crlf
flde dl pop d ;new line
01df 0ded9 mvi c,pstring
@lel cdese call bdos ;print the string
0led c9 ret
readcom:
;read the next command line to the conbuf
0le5 lié6bo Ixi d,prompt
8le8 cddad call print ;command?
fleb deda mvi c,rstring
fled 117a8 1xi d,conbuf
01£0 cdesé call bdos ;read command line
H command line is present, scan it
01£3 21000 1xi h,0 ;jstart with @000
01f6 117c@ 1xi d,conlin;command line
01f9 la readc: ldax d snext command character
01fa 13 inx a ;to next command position
81fb b7 ora a ;cannot be end of command
0lfc c8 rz
H not. zero, numeric?
A1fd de3e sui '
81ff fepa cpi 10 ;carry if numeric
9201 d2139 jne endrd
: add-in next digit
0204 29 dad h ;%2
0205 44 mov c,l
0206 44 mov b,h ;bc = value * 2
02087 29 dad h ;%4
0208 29 dad h ;*8
0209 99 dad b ;%2 + *8 = *10
829a 85 add 1 s+digit
028b 6f mov 1,a
020c d2£9¢ jnc readc ;for another char
820f 24 inr h ;overflow
9219 c3f99 jmp readc ;for another char
endrd:
H end of read, restore value in a
0213 c639 adi ‘e’ ;command
9215 febl cpi 'a' ;translate case?

3-73

6217 d8 re
H lower case, mask lower case bits

0218 e65¢f ani 101s1111b

p2la c9 ret
;iiiititiiilt!!l!!tﬂliﬁitiﬁl!ﬂiiﬂﬂﬁﬂﬁiiﬂﬂiliﬂl!tiii.
N ®
;¥ string data area for console messages *
-k "
;itliittt.tltilliliﬂll..llt!iﬂtﬂ!!ﬂﬁ!lltiﬂi.!ll.llil
adver:

021b 536£79 ab ‘sorry, you need cp/m version 2§°
nospace:

023a 4e6f29 db ‘no directory space$’
datmsg:

8243 547970 db ‘type data: §$'
errmsg:

0259 457272 db ‘error, try again,$'
prompt:

926b 4e6578 db ‘next command? §'
;’!lI*ii!kttll!iﬂlltt.l!t!il!itﬂttItlﬁ..ﬂ!!!tll!ittlt
.k -
;* fixed and variable data area *
- ® *
;I!iﬁlttl.ItﬁtlitlIilliﬂtl!lltlll.llttlﬁitttﬁlltitl!

B827a 21 conbuf: db conlen ;length of console buffer

027b consiz: ds 1 ;resulting size after read

827c conlin: ds 32 slength 32 buffer

9021 = conlen equ $-consiz

829c ’ ds 32 116 level stack
stack:

@ 2be end

Again, major improvements could be made to this particular program to
enhance its operation. In fact, with some work, this program could evolve
into a simple data base management system. One could, for example, assume
a standard record size of 128 bytes, consisting of arbitrary fields within the
record. A program, called GETKEY, could be developed which first reads a
sequential file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the “LASTNAME?" field from each record, starting at position 10 and ending
at character 20. GETKEY builds a table in memory consisting of each
particular LASTNAME field, along with its 16-bit record number location
within the file. The GETKEY program then sorts this list, and writes a new
file, called LASTNAME.KEY, which is an alphabetical list of LASTNAME
fields with their corresponding record numbers. (This list is called an
“inverted index” in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a bit so that
it reads a sorted key file into memory. The command line might appear as:

QUERY NAMES.DAT LASTNAME.KEY
3-74

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base. Since
the LASTNAME.KEY list is sorted, you can find a particular entry quite
rapidly by performing a “binary search] similar to looking up a name in the
telephone book. That is, starting at both ends of the list, you examine the
entry halfway in between and, if not matched, split either the upper half or
the lower half for the next search. You’ll quickly reach the item you’re
looking for (in log2(n) steps) where you'll find the corresponding record
number. Fetch and display thisrecord at the console, just as we have done in
the program shown above.

At this point you’re just getting started. With a little more work, you can
allow a fixed grouping size which differs from the 128 byte record shown
above, This is accomplished by keeping track of the record number as well as
the byte offset within the record. Knowing the group size, you randomly
access the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been
exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and
an AGE less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory, randomly access
your key files from the disk as well. One note of consolation after all this
work: if you make it through the project, you’ll have no more need for this
manual!

3-75

System Function Summary

INPUT OUTPUT

FUNC FUNCTION NAME PARAMETERS RESULTS

0 System Reset none none

1 Console Input none A =char

2 Console OQutput E=char none

3 Reader Input none A =char

4 Punch Output E=char none

5 List Output E =char none

6 Direct Console I/0 see def see def

7 Get 170 Byte none A=IOBYTE

8 Set 170 Byte E=IOBYTE none

9 Print String DE = .Buffer none
10 Read Console Buffer DE =.Buffer see def
11 Get Console Status none A=00/FF
12 Return Version Number none HL = Version*
13 Reset Disk System none see def
14 Select Disk E =Disk Number see def
15 Open File DE=.FCB A =Dir Code
16 Close File DE=.FCB A =Dir Code
17 Search for First DE=.FCB A =Dir Code
18 Search for Next none A =Dir Code
19 Delete File DE=.FCB A =Dir Code
20 Read Sequential DE=.FCB A =Err Code
21 Write Sequential DE=.FCB A=Err Code
22 Make File DE=.FCB A =Dir Code
23 Rename File DE=.FCB A =Dir Code
24 Return Login Vector none HL = Login Vect*
25 Return Current Disk none A=Cur Disk#
26 Set DMA Address DE=.DMA none
27 Get Addr(Alloc) none HL =.Alloc
28 Write Protect Disk none see def
29 Get R/0O Vector none HL=R/O Vect*
30 Set File Attributes DE=.FCB see def
31 Get Addr (disk parms) none HL=.DPB
32 Set/Get User Code see def see def
33 Read Random DE=.FCB A=Err Code
34 Write Random DE=.FCB A=Err Code
35 Compute File Size DE=.FCB 10, rl, r2
36 Set Random Record DE=.FCB r0, rl, r2

*Note that A=L, and B=H upon return

3-76

CHAPTER 3
CP/M EDITOR

* Introduction to ED

* ED Operation

* Text Transfer Functions

* Memory Buffer Organization

* Memory Buffer Operation

* Command Strings

 Text Search and Alteration

* Source Libraries

* Repetitive Command Execution
* ED Error Conditions

* Summary of Control Characters
* Summary of ED Commands

* ED Text Editing Commands

3-77

3-78

Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M
source files. ED is initiated in CP/M by typing

(filename)
ED
(filename)+(filetype)

In general, ED reads segments of the source file given by (filename) or
(filename) * {filetype) into central memory, where the file is manipulated by
the operator, and subsequently written back to disk after alterations. If the
source file does not exist before editing, it is created by ED and initialized to
empty. The overall operation of ED is shown in Figure 1.

ED Operation

ED operates upon the source file, denoted in Figure 1 by x.y, and passes all
text through a memory buffer where the text can be viewed or altered (the
number of lines which can be maintained in the memory buffer varies with
the line length, but has a taotal capacity of about 6000 characters in a 16K
CP/M system). Text material which has been edited is written onto a
temporary work file under command of the operator. Upon termination of
the edit, the memory buffer is written to the temporary file, followed by any
remaining (unread) text in the source file. The name of the original file is
changed from x.y to x. BAK so that the most recent previously edited source
file can be reclaimed if necessary (see the CP/M commands ERASE and
RENAME). The temporary file is changed from x.$$$ to x.y which becomes
the resulting edited file.

The memory huffer is logically between the source file and working file as
shown in Figure 2.

Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, the following
ED commands transfer lines of text from the source file through the memory
buffer to the temporary (and eventually final) file:

3-79

Figure 1. Overall ED Operation

Source
Libraries

Source Append (R) Write Temporary
File (A)\ Y /9 File
X.Yy
| Memory Buffer '
| J—— |
[= |
After —_ After
gait | (B) — Edit : (E)
|
Insert Type *
(1) (T)
Backup New
File Source
File

- \x_u
| ey I

Note: the ED program accepts both lower and upper case ASCII characters
asinput from theconsole. Single letter commands can be typed in either case.
The U command can be issued to cause ED to translate lower case
alphabetics to upper case as characters are filled to the memory buffer from
the console. Characters are echoed as typed without translation, however.
The -U command causes ED to revert to “no translation” mode. ED starts
with an assumed -U in effect.

3-80

SP

w N

—

Figure 2. Memory Buffer Organization

Source File

First Line.

\"Appended . |
TaTaY L N
- que§\ N

. N\ N

2| > Buffered)|

Memory Buffer

' First Line

SN N
P Text p
R \\

A

NN N

Free

=
3
o]
B!
%

Next
Write

TP

ol RS

Temporary File

N\ First Line\

—

\Processed'o
_\\'I‘ext\\\
NN N N

N\ 5

Free File

Space

Figure 3. Logical Organization of Memory Buffer

Memory Buffer

first
line

current
line CL

last
line

cp

-—=—-—=-==<cr><1lf>

memme——=<cr><1£>

——=———-=<cr><1f£f>

————— A ———e—me<or><1f>

3-81

nA{cr)* Append the next n unprocessed source lines from the source
file at SP to the end of the memory buffer at MP. Increment
SP and MP by n.

nW{cr) Write the first n lines of the memory buffer to the temporary
file free space. Shift the remaining lines n + 1 through MP to
the top of the memory buffer. Increment TP by n.

E{cr) End the edit. Copy all buffered text to temporary file, and
copy all unprocessed source lines to the temporary file.
Rename files as described previously.

H{er) Move to head of new file by performing automatic E
command. Temporary file becomes the new source file, the
memory bufferisemptied, and a new temporary fileiscreated
(equivalent to issuing an E command, followed by a
reinvocation of ED using x.y as the file to edit}.

O(er) Return to original file. The memory buffer is emptied, the
temporary file is deleted, and the SP is returned te position 1
of the source file. The effects of the previous editing
commands are thus nullified.

Q{er) Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer i is omitted in
any ED command where an integer is allowed, then 1 is assumed. Thus, the
commands A and W append one line and write 1 line, respectively. In
addition, if a pound sign (# } is given in the place of n, then the integer 65535
is assumed (the largest value for n which is allowed). Since most reasonably
sized source files can be contained entirely in the memory buffer, the
command # A is often issued at the beginning of the edit to read the entire
source file to memory. Similarly, the command # W writes the entire buffer
to the temporary file. Two special forms of the A and W commands are
provided as a convenience. The command 0A fills the current memory buffer
to at least half-full, while OW writes lines until the buffer is at least half
empty. Itshould also be noted that an error isissued if the memory buffer size
is exceded. The operator may then enter any command (such as W) which
does not increase memory requirements. The remainder of any partial line
read during the overflow will be brought into memory on the next successful

append.

*(er)represents the carriage-return key

3-82

Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in
with the A command from a source file. The memory buffer hasan associated
(imaginary) character pointer (CP) which moves throughout the memory
buffer under command of the operator. The memory buffer appearslogically
asshown in Figure 3 where the dashes represent characters of the source line
of indefinite length, terminated by carriage return ({cr)) and line feed ({1f))
characters, and A represents the imaginary character pointer. Note that the
CPis always located ahead of the first character of the first line, behind the
last character of the last line, or between two characters. The current line CL
is the source line which contains the CP.

Memory Buffer Operation

Upon initiation of ED, the memory bufferisempty (i.e., CPisboth ahead and
behind the first and last character). The operator may either append lines (A
command) from the source file, or enter the lines directly from the console
with the insert command

I{cr)

ED then accepts any number of input lines, where each line terminates with
a {cr) (the (If) is supplied automatically), until a control-z (denoted by 1z)
is typed by the operator. The CP is positioned after the last character
entered. The sequence

Icr)

NOW IS THE(cr)
TIME FOR(er)

ALL GOOD MEN(cr)
Tz

leaves the memory buffer as shown below

NOW IS THE{cr){lf)
TIME FOR{cr){If)
ALL GOOD MEN(Cr)(lf)c‘p

Various commands can then be issued which manipulate the CP or display
source text in the vicinity of the CP. The commands shown below with a
preceding nindicate that an optional unsigned value can be specified. When
preceded by * , the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced by 65535. Ifan
integer n is optional, but not supplied, then n =1is assumed. Finally, ifa plus
sign is optional, but none is specified, then + is assumed.

383

+ B{(er)

+nC{cr)

+nD{cr)

+nK{cr)

+nL{cr)

+nT{(cr)

+n{cr)

move CP to beginning of memory bufferif +,and to bottom
if -.

move CP by *n characters (toward front of buffer if +),
counting the {cr)(If) as two distinct characters.

delete n characters ahead of CP if plus and behind CP if
minus.

kill (i.e. remove) xn lines of source text using CP as the
current reference. If CP is not at the beginning of the current
line when K is issued, then the characters before CP remain
if + is specified, while the characters after CP remain if - is
given in the command.

if n = 0, move CP to the beginning of the current line (if it is
notalready there). If n #0, first move the CP to the beginning
of the current line, and then move it to the beginning of the
line which is n lines down (if +) or up (if -). The CP will stop
at the top or bottom of the memory bufferif too large a value
is specified.

If n=0 then type the contents of the current line up to CP. If
n=1then type the contents of the current line from CP to the
end of the line. If n>>1 then type the current line along with
n-1 lines which follow, if + is specified. Similarly, if n>1 and
- is given, type the previous n lines, up to the CP. The break
key can be depressed to abort long type-outs.

equivalent to = nLT, which moves up or down and types a
single line.

Command Strings

Any number of commands can be typed contiguously (up to the capacity of
the CP/M console buffer), and are executed only after the {cr) is typed.
Thus, the operator may use the CP/M console command functions to
manipulate the input command.

Rubout

remove the last character

Control-X delete the entire line

Control-C

re-initialize the CP/M System

3-84

Control-E return carriage for long lines without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown in the previous
section, with the CP following the last character of the buffer. The command
strings shown below produce the results shown to the right.

Command String Effect Resulting Memory Buffer

B2T{cr) move to beginning of ANOW IS THE(cr)(If)
buffer and type 2 lines: TIME FOR{cr){If)
“NOW IS THE ALL GOOD MEN(cr)(If)
TIME FOR”

5C0T{cr) move CP 5 characters and NOW I AS THE (cr)(If)
type the beginning of the
line “NOW I”

2L-T{cr) move two lines down and NOW IS THE (cr)(If)
type previous line TIME FOR{cr){If)
“TIME FOR” A ALL GOOD MEN(cr)(If)

-L#K{cr) move up one line, delete ~ NOW IS THE(cr)(If) 4
65535 lines which follow

I{cr) insert two lines NOW IS THEcr)(If)

TIME TO{cr) of text TIME TO{cr){If)

INSERT(cr) INSERT{(cr){1H) 4

Tz

-2L#T{cr) move up two lines, and type NOW IS THE(cr)<1f)4
65535 lines ahead of CP TIME TO{cr){If)

“NOW IS THE” INSERT{cr)If)

{cr) move down one line NOW IS THEcr)(If)
and type one line TIME TO(cr){If)&
“INSERT” INSERT (cr)(If)

3-85

Text Search and Alteration

ED also hasa command which locates strings within the memory buffer. The
command takes the form
nF ciey. .. ¢y {<g>}

where ¢; through ¢, represent the characters to match followed by either a
(cr) or control -z* ED starts at the current position of CP and attempts to
match allk characters. The matchis attempted n times, and if successful, the
CP is moved directly after the character c,. If the n matches are not
successful, the CP is not moved from its initial position. Search strings can
include 11 (control-1), which is replaced by the pair of symbols (er) (If).

The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer
B#T{(cr) move to beginning A NOW IS THE (cr)(If)

and type entire TIME FOR (cr){If)

buffer ALL GOOD MEN {cr){If)
FS T{cr) find the end of NOW IS TAHE(cr)(if)

the string “S T”
FI1z0TT find the next “I” and type NOW IS THE(cr)(If)

to the CP then type the TIAME FOR({cr){If)
remainder of the current ALf‘ GOOD MEN (cr){If)
line: “TIME FOR”

An abbreviated form of the insert command is also allowed, which is often
used in conjunction with the F command to make simple textual changes.
The form is:

Icieg...cutz or
Tcges.. . ep{er)

where c; through c, are characters to insert. If the insertion string is
terminated by a 1z, the characters ¢, through c, are inserted directly
following the CP,and the CP is moved directly after character cy- The action
is the same if the command is followed by a {cr) except that a {cr){if) is
automatically inserted into the text following character c,,. Consider the
following command sequences as examples of the F and I commands:

*The control-z is used if additional commands will be typed following the 1z.

3-86

Command String Effect Resulting Memory Buffer
BITHISIS ! z(cr%

nsert “THIS 1S” THIS IS A NOW THE(cr){If)
at the beginning TIME FOR {er)(if)
of the text ALL GOOD MEN({cr)(If)
FTIME 'z-4DIPLACEz{cr) THIS IS NOW THE(cr){if)

find “TIME” and delete ~ PLACE AFOR(cr){If)
it; then insert “PLACE” ALL GOOD MEN{er)(If)

3F01z-3D5SDICHANGES{cr) THIS IS NOW THE(cr){If)
find third occurrence of PLACE FOR{cr){}If)
“0” (i.e. the second “0” in ALL CHANGES 4 {(cr)(lf)

GOOD), delete previous 3

characters; then insert

“CHANGES”

-8CISOURCE {cr)
move back 8 characters THIS 1S NOW THE (cr){If)
and insert the line PLACE FOR{cr){If)
“SOURCE{cr){if)” ALL SOURCE({er){If)
& CHANGES{er)(1f)

ED also provides a single command which combines the F and] commands
to perform simple string substitutions. The command takes the form

n SCICZ e CkTZdldz. . dm {<(T:;>}
and has exactly the same effect as applying the command string

Fecs. .. cxlz-kDIdyds . . dig {<$;>}

a total of n times. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the
first string until the end of buffer, or until the substitution has been
performed n times.

As a convenience, a command similar to F is provided by ED which
automatically appends and writes lines as the search proceeds. The form is

nNclcz...ck{<g>}

3-87

which searches the entire source file for the nth occurrence of the string c1Co
. .. ¢k (recall that F fails if the string cannot be found in the current buffer).
The operation of the N command is precisely the same as F except in the case
that the string cannot be found within the current memory buffer. In this
case, theentire memory contentsis written (i.e.,an automatic # W isissued).
Input lines are then read until the buffer is at least half full, or the entire
source file is exhausted. The search continues in this manner until the string
has been found n times, or until the source file has been completely
transferred to the temporary file.

A final line editing function, called the juxtaposition command takes the
form

ndeicy...cxlz didy...dptz ejey...eq 3<g>$

with the following action applied n times to the memory buffer: search from
the current CP for the next occurrence of thestring ¢; co. . . ¢i. If found, insert
thestringd;,dy. . .,dp,, and move CP to follow d,,,. Then delete all characters
. following CP up to (but not including) the string ey, e, . . . g leaving CP
directly after dp,. If e, e, . . . 4 cannot be found, then no deletion is made. If
the current line is

A NOW IS THE TIME(cr)(If)
Then the command

JW 1zZWHAT" 211 (er)

Results in
NOW WHAT 4 (cr)(If)

(Recall that 1l represents the pair (cr)(If) in search and substitution
strings).

It should be noted that the number of characters allowed by EDin the F, S,
N, and J commands is limited to 100 symbols.

Source Libraries

ED also allows the inclusion of source libraries during the editing process
with the R command. The form of this command is

3-88

o

Rfify. . £,z or
R fify. . fyer)
wherefifs . . f,,is the name of a source file on the disk with an assumed filetype
of ‘LIB. ED reads the specified file, and places the characters into the

memory buffer after CP, in a manner similar to the I command. Thus, if the
command

RMACRO(cr)

is issued by the operator, ED reads from the file MACRO.LIB until the
end-of-file,and automatically inserts the charactersinto the memory buffer.

Repetitive Command Execution

The macro command M allows the ED user to group ED commands together
for repeated evaluation. The M command takes the form:

nMc1c2...ck{<g>}

where cjcy . . . ¢} represent a string of ED commands, not including another
M command. ED executes the command string n timesifn)1. If n=0or 1, the
command string is executed repetitively until an error condition is
encountered (e.g., the end of the memory buffer is reached with an F
command).

As an example, the following macro changes all occurrences of GAMMA to
DELTA within the current buffer, and types each line which is changed:

MFGAMMA1z-5DIDELTA?z0TT (cr)
or equivalently

MSGAMMA1zDELTAz0TT(cr)

ED Error Conditions

On error conditions, ED prints the last character read before the error, along
with an error indicator:

? unrecognized command

3-89

> memory buffer full (use one of the commands D, K, N, S, or
W to remove characters), F, N, or S strings too long.

cannot apply command the number of times specified (e.g.,in
F command)

0 cannot open LIB file in R command

Cyclic redundancy check (CRC) information is written with each output
record under CP/M in order to detect errors on subsequent read operations.
If a CRC error is detected, CP/M will type

PERM ERR DISK d

where d is the currently selected drive (A, B, . . .). The operator can choose
to ignore the error by typing any character at the console (in this case, the
memory buffer data should be examined to see if it was incorrectly read), or
the user can reset the system and reclaim the backup file, if it exists. The file
can be reclaimed by first typing the contents of the BAK file to ensure that
it contains the proper information:

TYPE x.BAK{cr)
where x is the file being edited. Then remove the primary file:
ERA x.y{cr)
and rename the BAK file:
REN x.y=x.BAK(cr)

The file can then be re-edited, starting with the previous version.

Summary of Control Characters

The following table summarizes the Control characters and commands
available in ED:

Control Character Function

N
Te system reboot
Te physical (er){{f) (not actually entered in
command)

3-90

M logical tab {(cols 1, 8,15,...)

1 logical {cr){If) in search and substitute strings
1x line delete
Tz string terminator
rubout character delete
break discontinue command {e.g., stop typing)

Summary of ED Commands

Command Funection
nA append lines
+B begin bottom of buffer
+nC move character positions
+nD delete characters
E end edit and close files (normal end)
nF find string
H end edit, close and reopen files
| insert characters
nd place strings in juxtaposition
+nK kill lines
+nL move down/up lines
nM macro definition
nN find next occurrence with autoscan

391

0 return to original file

+nP move and print pages
Q quit with no file changes
R read library file
nS substitute strings
+=nT type lines
U tliajmslate lower to upper case if U, no translation if
nW write lines
nZ sleep
+n{cr) move and type (+nLT)

ED Text Editing Commands

The ED context editor contains a number of commands which enhance its
usefulnessin text editing. Theimprovements are found in the addition of line
numbers, free space interrogation, and improved error reporting.

The context editor issued with CP/M producesabsolute line number prefixes
when the “V” (Verify Line Numbers) command is issued. Following the V
command, the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the
memory buffer is empty, or if the current line is at the end of the memory
buffer, then nnnnn appears as 5 blanks.

The user may reference an absolute line number by preceding any command
by a number followed by a colon, in the same format as the line number
display. In this case, the ED program moves the current line reference to the
absolute line number, if the line exists in the current memory buffer. Thus
the command

3-92

345:T
is interpreted as “move to absolute line 345, and type the line” Note that
absolute line numbers are produced only during the editing process, and are

not recorded with the file. In particular, the line numbers will change
following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or
forward distance from the current lineby preceding the absolute linenumber
by a colon. Thus, the command

:400T
isinterpreted as “type from the current line number through the line whose

absolute number is 400 Combining the two line reference forms, the
command

345::400T

for example, is interpreted as “move to absolute line 345, then type through
absolute line 400" Note that absolute line references of this sort can precede
any of the standard ED commands.

A special case of the V command, “0V’’ prints the memory buffer statistics
in the form:

free/total

where “free” is the number of free bytes in the memory buffer (in decimal),
and “total” is the size of the memory buffer.

ED also includes a “block move” facility implemented through the “X”
(Xfer) command. The form

nX
transfers the next n lines from the current line to a temporary file called

X$$35835.L1B

which is active only during the editing process. In general, the user can
reposition the current line reference to any portion of the source file and
transfer lines to the temporary file. The transferred lines accumulate one
after another in this file, and can be retrieved by simply typing:

3-93

R

which is the trivial case of the library read command. In this case, the entire —.
transferred set of hines is read into the memory buffer. Note that the X
command does not remove the transferred lines from the memory buffer,
although a K command can be used directly after the X, and the R command

does not empty the transferred line file. That is, given that a set of lines has

been transferred with the X command, they can be re-read any number of
times back into the source file. The command

0X
is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through Control-C, the LIB
file will exist if lines have been transferred, but will generally be empty (a
subsequent ED invocation will erase the temporary file).

Due to common typographical errors, ED requires several potentially
disastrous commands to be typed as single letters, rather than in composite
commands. The commands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.
ED also prints error messages in the form
BREAK “x” AT ¢

where xisthe error character, and cisthe command where the error occurred.

3-94

CHAPTER 4
CP/M Assembler

 Introduction

* Program Format

* Forming the Operand
Labels
Numeric Constants
Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Operators

» Assembler Directives
The ORG Directive
The END Directive
The EQU Direective
The Set Directive
The IF and ENDIF Directives
The DB Directive
The DW Directive

* Operation Codes
Jumps, Calls and Returns
Immediate Operand Instructions
Increment and Decrement Instructions
Data Movement Instructions
Arithmetic Logie Unit Operations
Control Instructions

* Error Messages

—~ * A Sample Session

3-95

3-96

Introduction

The CP/M assembler reads assembly language source files from the diskette,
and produces 8080 machine language in Intel hex format. The CP/M
assembler is initiated by typing

ASM filename
or
ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

filename.ASM

which contains an 8080 assembly language source file. The first and second
forms shown above differ only in that the second form allows parameters to
be passed to the assembler to control source file access and hex and print file
destinations.

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the
assembler reads the source file with assumed file type “ASM” and createstwo
output files.

filename. HEX
and
filename.PRN

The “HEX” file contains the machine code corresponding to the original
program in Intel hex format, and the “PRN” file contains an annotated
listing showing generated machine code, error flags, andsource lines. Iferrors
occur during translation, they will be listed in the PRN file as well as at the
console.

The second command form can be used to redirect input and output files
from their defaults. In this case, the “parms” portion of the command is a
three letter group which specifies the origin of the source file, the destination
of the hex file, and the destination of the print file. The form is

filename.plp2p3

3-97

where pl, p2, and p3 are single letters

pl: AB,.., Y designates the disk name which contains
the source file

p2: AB, .., Y designates the disk name which will receive
the hex file
Z skips the generation of the hex file

p3: A,B, .., Y designates the disk name which will receive
the print file
X places the listing at the console
Y/ skips generation of the print file

Thus, the command

ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and the print (X.PRN) files are to be created also on disk
A. This form of the command is implied if the assembler is run from disk A.
That is, given that the operator is currently addressing disk A, the above
command is equivalent to

ASM X
The command
ASM X .ABX

indicates that the source file is to be taken from disk A, the hex file is placed
on disk B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takesthe source file from disk B, and skips the generation of the hex and print
files. (This command is useful for fast execution of the assembler to check
program syntax.)

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as
well as the Processor Technology Software Package #1 assembler. That is,
the CP/M assembler accepts source programs written in either format.
There are certain extensions in the CP/M assembler which make it
somewhat easier to use. These extensions are described below.

3-98

Program Format

An assembly language program acceptableasinput to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each
assembly language statement is terminated with a carriage return and line
feed (the line feed is inserted automatically by the ED program), or with the
character “!” which is treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical
line if separated by exclamation symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a sequence of alphanumeric characters (alphabetics and
numbers), where the first character is alphabetic. Identifiers can be freely
used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All
characters are significant in an identifier, except for the embedded dollar
symbol ($) which can be used to improve readability of the name. Further, all
lower case alphabetics are treated as if they were upper case. Note that the
“.” following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X Xy long$name
X: yx1: longer$named$data:
X1Y2 X1x2 x23485678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

3-99

The operand field of the statement, in general, contains an expression formed
out of constants and labels, along with arithmetic and logical operations on
these elements. Again, the complete details of properly formed expressions
are given below.

The comment field contains arbitrary characters following the «;” symbol
until the next real or logical end-of-line. These characters are read, listed,
and otherwise ignored by the assembler. In order to maintain compatibility
with the Processor Technology assembler, the CP/M assemblér also treats
statements which begin with a “*” in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an
ambiguous situation when attempting to be compatible with Intel’s
language, since arbitrary expressions are allowed in this case. Hence,
programs which use this side effect to introduce comments, must be edited
to place a “;” before these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements
of the above form, terminated optionally by an END statement. All
statements following the END are ignored by the assembler.

Forming the Operand

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is used in
nearly all statements. Expressions in the operand field consist of simple
operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance are given with the individual
instructions.

Labels

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction,
or a DS pseudo operation), then the label is given the value of the program
address which it labels. If the label precedes an EQU or SET, then the label

3-100

is given the value which results from evaluating the operand field. Except for
the SET statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and
operators to form the operand field for a particular instruction.

Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called
the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)
decimal constant (base 10)
hexadecimal constant (base 16)

TOo0w

Q is an alternate radix indicator for octal numbers since theletter Oiseasily
confused with the digit 0. Any numeric constant which does not terminate
with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional
radix indicator, where the digits are in the appropriate range for the radix.
That is binary constants must be composed of 0 and 1 digits, octal constants
can contain digits in the range 0 - 7, while decimal constants contain decimal
digits. Hexadecimal constants contain decimal digits as well as hexadecimal
digits A (10D), B (11D), C (12D), D (13D), E (14D), and F (15D). Note that the
leading digit of a hexadecimal constant must be a decimal digit in order to
avoid confusing a hexadecimal constant with an identifier (a leading 0 will
always suffice). A constant composed in this manner must evaluate to a
binary number which can be contained within a 16-bit counter, otherwise it
is truncated on the right by the assembler. Similar to identifiers, imbedded
“g” are allowed within constants to improve their readability. Finally, the
radix indicator is translated to upper case if a lower case letter is
encountered. The following are all valid instances of numeric constants

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 33%77$22Q
33770 Ofedh 1234d Offffh

3-101

Reserved Words

There are several reserved character sequences which have predefined —
meaningsin the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right.

wn
TLRCImOOm >
=
AT WD - O]

(Again, lower case names have the same values as their upper case
equivalents.) Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern
of the instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

When the symbol “$” occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained within the
current logical line.

String Constants

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (’). All
strings must be fully contained within the current physical line (thus
allowing “!”” symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representingit as a double apostrophe (the two keystrokes), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the
second character as the low order byte, and the first character as the high
order byte.

3-102

The value of a character is its corresponding ASCII code. There is no case
translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

’A’ ’AB’ ’ab’ ’c’

2% M 939939 19341
a

'Walla Walla Wash.’

’She said ”Hello” to me.’
’] said "Hello” to her.’

Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+b unsigned arithmetic sum of a and b

a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)
-b unary minus (identical to 0 - b)

a*b unsigned magnitude multiplication of a and b

a/b unsigned magnitude division of a by b

aMODb remainder aftera /b

NOTb logicalinverse of b (all0’sbecome 1's, I'sbecome 0’s),

where b is considered a 16-bit value
aANDbD bit-by-bit logical and of a and b

aORD bit-by-bit logical or of a and b

aXORb bit-by-bit logical exclusive or of a and b

aSHLb the value which results from shifting a to the left by
an amount b, with zero fill

aSHRb the value which results from shifting a to the right

by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric constants,
reserved words, and one or two character strings), or fully enclosed
parenthesized subexpressions such as

10+ 20 10h +37Q L1/3 (L2+4)SHR3
(’a’ and 5fh) + 0’ (B’+B) OR (PSW + M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as 16-bit
unsigned operations. Thus, -1 is computed as 0-1 which results in the value
Offffh (i.e., all 1’s). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add

3-103

immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation “ADI -1” produces an error message (-1
becomes O0ffffh which cannot be represented as an 8 bit value), while “ADI
(-1) AND OFFH” is accepted by the assembler since the “AND” operation
zeroes the high order bits of the expression.

.

Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesized expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the
assembler as the fully parenthesized expressions shown to the right below

a*b+c (a*b) + ¢
a+b*c a+ (b*c)
aMODDb*c¢SHLd ((aMODDb) *¢c) SHLd

aORbAND NOTc + dSHL e a OR (b AND (NOT (c + (d SHL e)}))

Balanced parenthesized subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten
to force application of operators in a different order as

(aORDb) AND (NOTc¢) + d SHLe
resulting in the assumed parentheses

(aOR b) AND ((NOT c) + (d SHLe))

3-104

Note that an unparenthesized expression is well-formed only if the
expression which results from inserting the assumed parentheses is
well-formed.

Assembler Directives

Assembler directives are used to set labels to specific values during the
assembly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
“pseudo operation” which appears in the operation field of the line. The
acceptable pseudo operations are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”

SET numeric “set”

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DwW define data words

DS define data storage area

The ORG Directive

The ORG statement takes the form
label ORG expression

where “label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the
programmer is not defining overlapping memory areas. Note that most
programs written for the CP/M system begin with an ORG statement of the
form

ORG 100H

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then the
label is given the value of the expression (this label can then be used in the
operand field of other statements to represent this expression).

3-105

The END Directive

The END statement is optional in an assembly language program, but ifit —
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code “hex” file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area).

The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular
numeric values. The form is

label EQU expression

where the label must be present, and must not label any other statement.
The assembler evaluates the expression, and assigns this value to the
identifier given in the label field. The identifier is usually a name which
describes the value in a more human-oriented manner. Further, this name is
used throughout the program to “parameterize” certain functions. Suppose
forexample, that data received from a Teletype appears on a particularinput
port, and data is sent to the Teletype through the next output port in
sequence. The series of equate statements could be used to define these ports
for a particular hardware environment

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATAIN ~~
TTYOUT EQU TTYBASE+1;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

3-106

IN TTYIN ;READ TTY DATA TO REG - A
6UT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/0 ports had been
used. Further, if the hardware environment isredefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only
be changed to

TTYBASEEQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.

The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occuron other SET statements within the program.
The expression is evaluated and becomes the current value associated with
the label. Thus, the EQU statement defines a label with a single value, while
the SET statement defines a value which is valid from the current SET
statement to the point where the label occurs on the next SET statement.
The use of the SET is similar to the EQU statement, but is used most often
in controlling conditional assembly.

The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language
statements which are to be included or excluded during the assembly
process. The form is

IF expression
statement #1
statement # 2

sta.t;ment #n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must be defined
ahead of the IF statement). If the expression evaluates to a non-zero value,
then statement#1 through statement #n are assembled; if the expression

3-107

evaluates to zero, then the statements are listed but not assembled.
Conditional assembly is often used to write a single “generic” program which
includes a number of possible run-time environments, with only a few
specific portions of the program selected for any particular assembly. The
following program segments for example, might be part of a program which
communicates with either a Teletype or a CRT console (but not both) by
selecting a particular value for TTY before the assembly begins

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOTTRUE ;DEFINE VALUE OF FALSE
TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
TTYBASE EQU 10H ;BASE OF TTY I/0 PORTS
CRTBASEEQU 20H ;BASE OF CRT I/0 PORTS
IF TTY ;ASSEMBLE RELATIVE TO
TTYBASE

CONIN EQU TTYBASE ;CONSOLEINPUT
CONOUT EQU TTYBASE+1;CONSOLE OUTPUT
ENDIF

IF NOTTTY ;ASSEMBLE RELATIVE TO
CRTBASE
CONIN EQU CRTBASE ;CONSOLEINPUT
CONOUT EQU CRTBASE+1;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA

6UT CONOUT ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a
Teletypeis connected, based at port 10H. The statement defining TTY could
be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

The DB Directive

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

label DB el e#2, ..,eH#n
3-108

where e#1 through e #n are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no greater
than 64 characters. There is no practical restriction on the number of expres-
sions included on a single source line. The expressions are evaluated and placed
sequentially into the machine code file following the last program address
generated by the assembler. String characters are similarly placed into memory
starting with the first character and ending with the last character. Strings of
length greater than two characters cannot be used as operands in more
complicated expressions (i.e., they must stand alone between the commas).
Note that ASCII characters are always placed in memory with the parity bit
reset (0). Further, recall that there is no translation from lower to upper case
within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 01,2345
DB data and 0fth,5,377Q,1 +2+3+4
signon: DB ’please type your name’,cr,lf,0
DB °’AB’SHRS,’C’,’DE’ AND 7FH

The DW Directive

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DwW e#l e#2, ...,e#tn

where e#1 through e #n are expressions which evaluate to 16-bit results.
Note that ASCII strings of length one or two characters are allowed, but
strings longer than two characters disallowed. In all cases, the data storage
is consistent with the 8080 processor: the least significant byte of the
expression is stored first in memory, followed by the most significant byte.
Examples are

doub: DW Offefh,doub + 4,signon-$,255 + 255
DW ’a’, 5, ’ab’,’CD’, 6 shl 8 or 11b

The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code
generation after the area reserved by the DS. Thus, the DS statement given
above has exactly the same effect as the statement

3-109

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $ + expression ;MOVE PAST RESERVED AREA

Operation Codes

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction. In
general, ASM accepts all the standard mnemonics for the Intel 8080
microcomputer, which are given in detail in the Intel manual 8080 Assembly
Language Programming Manual. Labels are optional on each input line
and, ifincluded, take the value of the instruction addressimmediately before
the instruction is issued. The individual operators are listed briefly in the
following sections for completeness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range of 0-7 which can be
one of the predefined registers A, B,C,D,E, H, L, M, SP,
or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands
and operators. In some cases, the operands arerestricted to particular values
within the allowable range, such as the PUSH instruction. These cases will
be noted as they are encountered.

In the sections which follow, each operation code is listed in its most general
form, along with a specific example, with a short explanation and special
restrictions.

Jumps, Calls and Returns

The Jump, Call and Return instructions allow several different forms which
test the condition flags set in the 8080 microcomputer CPU. The forms are

JMB el6 JMP L1 Jump unconditionally to label

JNZ el6 JMP L2 Jump on non zero condition to label
JZ el6 JMP 100H Jump on zero condition to label
JNC el6 JNC Li+4 Jump no carry to label

JC el6 Jc L3 Jump on carry to label

JPO el6 JPO §$+8 Jump on parity odd to label

JPE el6 JPE 14 Jump on even parity to label

JP el6 JP GAMMA Jump on positive result to label
3-110

JM el6 JM al
CALL el6 CALL S1
CNZ el6 CNZ 82
CZ el6 CZ 100H
CNC el6 CNC S1+4
CC elé CC 83
CPO el6 CPO $+8
CPE el6 CPE S4
CP el6 CP GAMMA
CM el6 CM Dbl1$c2
RST e3 RST 0
RET

RNZ

RZ

RNC

RC

RPO

RPE

RP

RM

Immediate Operand Instructions

Jump on minus to label

Call subroutine unconditionally
Call subroutine if non zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag

Programmed “restart,” equivalent to
CALL 8*e3, except one byte call

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on

the accumulator (register A).

MVIe3e8 MVI B,255
ADIe8 ADI 1

ACI e8 ACI OFFH

SUT e8 SUI L+3
SBIe8 SBI LANDIB
ANI e8 ANI $ AND 7FH

\ XRIe8 XRI 1111$0000B

ORI e8 ORI LAND1+1

Move immediate data to register A,
B,C,D,E,H, L, or M (memory)
Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
(carry)

Subtract from A with borrow (carry)
Logical “and” A with immediate
data

“Exclusive or” A with immediate
data

Logical “or” A with immediate data

3-111

CPIe8 CPI ’a’

LXIe3,el6 LXI B,100H

Compare A with immediate data
(same as SUT except register A not
changed)

Load extended immediate to register
pair (e3 must be equivalent to
B,D,H, or SP)

Increment and Decrement Instructions

Instructions are provided in the 8080 repertoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3 INR E

DCR e3 DCR A
INX e3 INX SP
DCX e3 DCX B

Data Movement Instructions

Single precision increment register
(e3 produces one of A,B,C, D, E, H,
L, M)

Single precision decrement register
(e3 produces one of A, B,C, D, E, H,
L,M)

Double precision increment register
pair (e3 must be equivalent to
B,D.H, or SP)

Double precision decrement register
pair (e3 must be equivalent to
B,D,H, or SP)

Instructions which move data from memory to the CPU and from CPU to

memory are given below

MOV e3,e3 MOV AB
LDAX e3 LDAX B
STAX e3 STAX D
LHLD el6 LHLD L1
SHLD el6 SHLD L5+x

Move data to leftmost element
from rightmost element (e3
produces one of A, B, C, D, E, H,
L,or M). MOV M,M is disallowed
Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produce either B
or D)

Load HL direct from location el6
(double precision load to H and
L)

Store HL direct to location el6
(double precision store from H
and L to memory)

3-112

LDA el6
STA el6

POP e3

PUSH e3

IN e8
OUT 8
XTHL
PCHL
SPHL

XCHG

LDA Gamma
STA X3-5

POP PSW

PUSHB

IN 0
OoUT 255

Arithmetic Logic Unit Operations

Load register A from address el6
Store register A into memory at
el6

Load register pair from stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port e8

Send data from register A to port
e8

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3

ADC e3
SUB e3
SBB e3
ANA e3

XRA e3
ORA e3

CMP e3
DAA

CMA

ADD B

ADC L
SUB H
SBB 2
ANA 1+1

XRA A
ORA B

CMP H

3-113

Add register given by e3 to ac-
cumulator without carry (e3
must produce oneof A,B,C,D,E,
H,or L)

Add register to A with carry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above
Subtract register e3 from A with
carry, e3 defined as above
Logical “and” reg with A, e3 as
above

“Exclusive or’with A,e3 asabove
Logical “or” with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bitsin register A

STC
CMC
RLC

RRC

RAL
RAR

DAD e3

DAD B

Control Instructions

Set the carry flag to 1
Complement the carry flag
Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
gide effect (low order A bit
becomes carry)

Rotate carry/A register to left
(carry is involved in the rotate)
Rotate carry/A register to right
(carry is involved in the rotate)

Double precision add register
pair e3 to HL (e3 must produce B,
D, H, or SP)

The four remaining instructions are categorized as control instructions, and
are listed below

Error Messages

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The line
in error is also echoed at the console so that the source listing need not be
examined to determine if errors are present. The error codes are

D

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version

0 Overflow: expression is too complicated (i.e., too
many pending operators) to compute; simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

R Register error: the value specified as a registeris not
compatible with the operation code

\Y Value error: operand encountered in expression is
improperly formed

Several error messages are printed which are due to terminal error conditions

NO SOURCE FILE
PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME
ERROR

SOURCE FILE READ
ERROR

OUTPUT FILE WRITE
ERROR

CANNOT CLOSE FILE

P

The file specified in the ASM command does
not exist on disk

The disk directory is full; erase files which are
not needed, and retry

Improperly formed ASM file name (e.g., it is
specified with “?” fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

Output files cannot be written properly, most
likely cause is a full disk; erase and retry

Output file cannot be closed, check to see if
disk is write protected

3-115

A Sample Session

The following session shows interaction with the assembler and debuggerinthe
development of a simple assembly language program.

ASM SORT Assemble SORT. ASM
CP/M ASSEMBLER - YER 1.8
815C next free address

803H USE FALUTOR % of table used 00 to FF (hexadecimal)
END OF ASSEMBLY

DIR SORT. »
SORT ASH source file
SORT BAK backup from iast edit
SORT PKN print file (contains tab characters)
SORT HEX machine code file
A>TYPE SORT.PRN
Source line
Vi, SNy
machine code location * SORT PROGRAN IN CF/N ASSEMBLY LANGUAGE
i START AT THE BEGINNING OF THE TRANSIENT PROGRAM Ak
6160 *—’// ORG 188H
generated machine code
8108 214661« SORT L¥l M. S¥ sADDRESS SWITCH TOGGLE
8103 3601 LA Mt JSET TO 1| FOR FIRST ITERATION
8165 214781 LRI H, 1 sADDRESS INDEX
0188 3¢6ae LU M. 0 il =8
H COMPARE | WI1Tn ARRAY SIZE
81ea 7E conpP. noy AN iA REGISTER = |
0168 FEBY CP1 N-1 ;LY SET IF I ¢ (N-1)
e16Db D21931 JHC CONT JCONTINUE 1F 1 (= (N-2)
. END OF ONE PASS THROUGH DATA
0118 214681 Lx1 H. S¥ ;CHECK FOR ZEKO SWITCHES
0113 7EB7C20001) MOY A,M! ORA A! JNZ SORT LEMD OF SORT IF Sy=8
i
9118 FF RST ? iGO TD THE DEBUGGER IMSTEAD DF RE:

! t
Jtuncated o NTINUE THIS Pass

. ADDRESSING 1. SO LOAD AVY(I) INTO REGISTERS
@119 SF1680214BCONT: MOY E.A! MVYI D, 8¢t LX1 H,AY! DAD D! DAD D

8121 4E752346 . MOY C,M! MOY A, C! INX M! MOV B.M
i LOV ORDER BYTE IN A AHD C, HIGH ORDER BYTE IN B8
’ MOY H AND L TQ ABDRESS AY(I+1)
8125 23 IHX H
i
i COMPARE YALUE WITH REGS CONTAINING AV(LD)
9126 965778239¢E SUB M! MOV D,A! MOY A, B! INX H!' SBB iSUBTRACT
i BORROYW SAT IF AY(I+t) > AY(I)
8128 DA3FE1 JC INCI »SKIP IF 1N PROFER ORDER
i CHECK FOr EQUAL VALUES
812E B2CAlIFO! ORA D! JZ THC] SKIP IF AY(1) = AV(I+1) ~~
@132 56762B5SE MOY D.M! MOY M,B! DCX H!' MOY E.M
0136 712B722873 MO0y M. C! DCX Ht MOY M, D} DLCX H! MOY M. E
i
i INCREMENT SUWITCH COUNT
0138 21460134 LKI H,SU! [NR M

3-116

i INCREMENT I
B13F 21478134C3INCI:

JRESERYE SPACE FOR SWITCH COUNT

;COMPUTE N INSTEAD OF PRE

LX1 H, 1! IHR M! JNP COMP
i DATA DEFINITION SECTION
8146 00 Su: 1]]
0147 I DS 1 ;SPACE FOR INDEX
61468 BSBR64001EAY: i1] 5,160,306, 50, 26,7, 1860, 190,100, -32767
eQeA = N EGU ($-AV)~s2
@81SC ™ — equate value EHD

AYTYPE SORT.HEX

.1001P90B214601360121470136087EFEBID21901486
:106110062146017EB7C20081FF5F16002148011983
18812000 194E79234623965778239EDA3FBIBZCAAY
:190130003F0156702BSE712B722B732146013421C7
:07014000470134C30R01006E
:10014800050664001E00320014000700E0032C018BB
:94015800640001008E

- 09pB6000000
A>DUDT SORT. HEX

machine code
in HEX format

start debug run

16K DDT VER 1.8

NEXT PC

815C #0808 default address (no address on END statement)
-XP
P=0008

188 changePCto 100

-UFFFF untrace for 65535 steps

CoZoMBEDIO
-Tie

A=Pp0@ B-0000 D=0000
trace 10, steps

H=@Rp0@ 5-0100 P=01060

CezZomBERI®
cozemecole
CezomMoEBI®
Cezenetole
CezemeEelo
CoeZoMeEQI D
CizpMiEQI@
Cizenteodle
Ci1zamiEele
Ci1zeMiEQI®@
CozeMneEBI®
CozoneEole
CozZomoEDlI @
CoZoMBE®]®
CoZondEB]1®
CozoneEsl®
~A106D

CELRY
A=D1
CEL D)
A=B 1
A=0
A=00
A=90
CELT]
A=P9
A=PB
A=01
A=Q1
A=D1
A=B L
A=01
A=z@1

LELL-LY]
g=0000
B=0006
B=p0860
B=00886
B=¢000
8=0000
g=00080
Bz0080
B=@00080
B200O0
B=@000
Bz0 000
B-=p0BO
B=0000
B=8008

De=d0 @0
V=000
b2p0 00
D=0008
D=0000
D=0000
D=0000
D=bo0e
D=000e
D=8000
b=00 00
D=p00d
D=0000
D=06000
D=0000
D=00086

H=@146
H=0146
H=08146
H=8147
H=9147
H=0147
H=0147
H=0147
H=0146
H=20146
H=@146
H=0146
H=0146
H=0146
H=0147
H=8147

S=019080
§=01080
$x0108
$=9100
$=0100
§=0100
$=01080
$=0100
S=010p0
S=@100
S=9100
S=0100
S=9100
5=0100
S=01080
$=0100

P=g108@
P=gt@3
P=@165S
P2@tés
P=@10n
P=@168
P=016D
P=01160
Pz8113
Pu@l14
P=@115
P=d1080
P=0103
P=2105
PxRtes
P=@10R

g}eg JC 119 changeto a jump on carry
1
-XF

P=018B 100 reset program counter back to beginning of program

~T18 trace execution for 10H steps
Co20MBERI®
CO20MBERI®
Cezonocole
Co20MBEDLI O
cazempeeole
cezenecele
C12eniEQ10
ClZonilE6lID
ci1zeniE0dle
Ci20M1EQIL
ci1z8nM1EQ10
£0ZomM1EQID

CEL]]
A=p0@
A=60
A=09
A=H0
A=60
A= 9
A=00
A=89
A=00
AxB0
A=00

B=09BO
B=0080
B=0000
B=6080
8=0000
B=p008®
B=60B0
B=0000
B=60080
B=60080
B=0000
B=0008

D=0000
D=0000
D=po oo
D=8000
D=p0 086
D=p0B0b
D=b@@0
b=0e00
D=0000
D=@000
D=p0B0BO
D=0000

H=20147
H=0146
H=9146
H=0147
H=0147
H=0147
H=0147
H=0147
H=@147
H=0147
Hzd148
H=01 48

$=01080
$=01880
$=01600
$=01080
S=0100
$=0100
$=01080
$=0160
$=0100
€=0100
S=010680
$=91080

Prdt160
P=8163
P=01695
P=8108
Pz@18A
P=0108
Pz=@10D
P=0119
P=@11A
P=811C
P=011F
P=0129

3-117

LX1

LX1
Myl
LXI
LE2
MOV
cPl
JNC
LX1
noy
ORA
JNZ
LX1
nvi
LX1
nvl1
nov

abort with
rubout

H,@146+0180

H,0146
M, 01
H.B147
H,00
A.n

09
8119
H, 08146
AN

]

o180
H, 0146
", 01
H,8147
", 060
A, M+*B18B

stopped at j

10BH

LXI
LA D]
LXI
LA D!
noy
CPrl
JC

novy
MY1
LXI
DAD
DAD

H,0146
n.01
H,0147
M. 8@ itered instruction
AN

3

8119

E,R

.00

H,0148

D

D

tozeni1Ee1e A=ed B=6008
CBZOMIEOID A=80 B=809%
COZONIERIG A=03 B=@08S
COZBNIEDID® A=BT 828903
-L1080

8100 (X! H.Bl46
0183 MNYI M.81
81985 L%l H,0147
8198 Mvl m. 00

D=0808 H=0148 S=01@@ P=al2i MOV
D=800d H=0148 $=-91Q0¢ F=2122 WOV &
D2p000 H=0148 620160 P=0123 INX H
DnBB0® N=»0149 S=2108 Pud124 MOV 8

Automatic /

breakpoint

2194 MOV A.N list some code
81908 CP1 @9 from 100H

818p J¢€ 9119
81186 LXI H,0146
8113 Mov aA.M
8114 ORA A

8115 JUNZ 91088
-L

8ile RST @87
8119 MOV E.A
e1tA MYl D,ee
011C LX] H,9148
- abort list with rubout

list more

-G, 118 start program from current PC (0125H) and run in real time to 11BH

*0127 stopped with an external interrupt 7 from front panel {program was looping indefinitely)
-T4 look at looping program in trade mode L

CO20MPEQ]I® A=30 B=9064
COZOMAESI D A=30 B=0064
COZONBESI® A=00 B=9064
CoZoMOEOI® A=00 B=0064
~D1i4@

8146 85 09 07 00 14 B0
9130 32 80 64 00 64 00
8160 00 02 09 00 00 00

- GO retum to CP/M

D=8806 H=3136 S=91900 P=9127 MOV D.
D=3506 H=d136 S=0108 P=28128 MOV A,
D=30086 H=0@156 S»0100 P=0123 INX H
D=3006 H=081357 S=010@ P=012A SBB Meb129

data is sorted, but program doesn't stop
1€ 80 .
2C 81 EO @3 01 09 00 92 96 80 2 D.D .
69 00 89 v 0O 06 60 09 ab w¥0

DDT SORT. HEX reload the memory image

16K DOT VER 1.9

HEXT PC
813C 8200
-%pP

P=0008 108€ Set PCto beginning of program

-L10)

list bad opcode

8100 JNC 0119¢
8110 LX! H,0146

= abort list with rubout
-A18) assemble new opcode
210D JC 119

e11le

-L189 list starting section of program

61900 LX%1 H.0146
8103 MYI nm. 9t
8185 LX1 H.0147
2188 MVl M, @8
- abort list with rubout

-#i183 change “switch" initialization to 00

3-118

/-"\

81083 Mvi M, @

B16S

-~¢ retum to CP/M with ctl-c (GO works as weil)

SAVE 1 SORT.COM save | page (256 bytes, from 100H to 1FFMH) on disk in case

we have to reload later

A>DDBT SORT.COM restart DDT with
saved memory image

16K DDT VEK 1.0
NEXT PC

6200 9100 "COM' file always starts with address 100H
=G run the program from PC=100H

*8118 programimed stop (RST 7) encountered

~Di4s

data sorted
o~ property

8146 03 06 @7 00 14 09 1E B0
8156 32 00 64 90 ¢4 9@ 2C 01 EB 83 01 80 00 90 90 80 2 D.D ...
8160 PO 90 00 09 20 20 PO 09 02 00 PO 0 00 09 90 PE
8170 00 00 00 oo 00 00 00 00 08 00 08 o9 09 VD 08 09

= GO retum to CP/M
ED SORT.ASM make changes to original program
ctiZ
N, TV findnext 0"

nvi nea i1 = @
*~ uponelinein text

LX1 H.1 iADDRESS INDEX
*~ up another line

LLJ] f.1 “SET TO 1 FOR FIRST 1TERATION
KT kili line and type next line

Lx1 N, T +ADDRESS INDEX
*1 insert new iine

syl n.e +ZERD 54
T

Lxt H.1 ADDRESS INDEX
shanc ot

JHC T

CONT JCOMTINUE IF 1 <= (N-2)
o-201cCpr T

Ji CONT JCONTIMUE 1F 1 <= (H-2)
‘€ source from disk A

x hexto disk A

ASM SORT. AAZ+— skip pm file

CP/M ASSENMBLER - VER 1.0

15C next address to assembie
BBOIN USE FACTOR
END OF RSSEMBLY

8DT SORT.HEX test program changes

16K DOT VEK 1.8
NEXT FC

8150 v@ep

-Gl

*@118
-D148

data sorted

8148 B3 80 07 08 14 €8 1E 60 .. P
8130 32 00 64 986 €4 B8O 2C 01 €5 03 81 B0 PO 80 @6 6O 2 D D .
P16t 00 60 0O Q@ 06 60 D@ 6O @D 66 bLe 60 09V EY 4D WO

- abort with rubout

-G@ return to CP/M — program checks OK.

3-119

3-120

TN

CHAPTER 5
CP/M Dynamic Debugging Tool

* Introduction

* DDT Commands

* The A (Assemble) Command
* The D (Display) Command

* The F (Fill) Command

* The G (Go) Command

* The I (Input) Command

* The L (List) Command

* The M (Move) Command

* The R (Read) Command

* The S (Set) Command

* The T (Trace) Command

* The U (Untrace) Command -
* The X (Examine) Command

* Implementation Notes

» Sample Session

3-121

3-122

P

Introduction

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger isinitiated by
typing one of the following commands at the CP/M Console Command level

DDT
DDT filename. HEX
DDT filename.COM

where “filename” is the name of the program to be loaded and tested. In both
cases, the DDT program is brought into main memory in the place of the
Console Command Processor (refer to the CP/M Interface Guide for
standard memory organization), and thus resides directly below the Basic
Disk Operating System portion of CP/M. The BDOS starting address, which
islocatedin the address field of the JMP instruction at location 5H, is altered
to reflect the reduced Transient Program Area size.

The second and third forms of the DDT command shown above perform the
same actions as the first, except there is a subsequent automatic load of the
specified HEX or COM file. The action is identical to the sequence of
commands

DDT
Ifilename. HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to test.
(See the explanation of the I and R commands below for exact details.)

Upon initiation, DDT prints a sign-on message in the format
nnK DDT-s VER mm

where nn is the memory size (which must match the CP/M system being
used), sis the hardware system which is assumed, corresponding to the codes

Digital Research standard version
MDS version

IMSALI standard version

Omron systems

Digital Systems standard version

no~zg

and m.m is the revision number.

3-123

Following the sign on message, DDT prompts the operator with the
character “~” and waits for input commands from the console. The operator
can type any of several single character commands, terminated by a carriage
return to execute the command. Each line of input can be line-edited using
the standard CP/M controls

rubout remove the last character typed
Control-X remove the entire line, ready for re-typing
Control-C system reboot

Any command can be up to 32 characters in length (an automatic carriage
returnisinserted as the 33rd character), where the first character determines
the command type

A enter assembly language mnemonics with operands
D display memory in hexadecimal and ASCII

F fill memory with constant data

G begin execution with optional breakpoints

—

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

M o 3w o= 2o

examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by commas or single blank
characters. All DDT numeric outputisin hexadecimal form. In all cases, the
commands are not executed until the carriage return is typed at the end of
the command.

Atany point in the debug run, the operator can stop execution of DDT using
either a Control-C or GO (jmp to location 0000H), and save the current
memory image using a SAVE command of the form

3-124

N

SAVE n filename.COM

~— where n is the number of pages (256 byte blocks) to be saved on disk. The
number of blocks can be determined by taking the high order byte of the top
load address and converting this number to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal. Thus the operator could type a Control-C
during the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, and can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

DDT X.COM

which reloads the previously saved program from location 100H through
page 18 (12FFH). The machine state is not a part of the COM file, and thus
the program must be restarted from the beginning in order to properly test
it.

DDT Commands

The individual commands are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the
command. If control is passed to a program under test, and the program has
not reached a breakpoint, control can be returned to DDT by executing a
RST 7 from the front panel (note that the rubout key should be used instead
if the program is executing a T or U command). In the explanation of each
command, the command letter is shown in some cases with numbers
separated by commas, where the numbers are represented by lower case
letters. These numbers are always assumed to bein a hexadecimal radix, and
from one to four digits in length (longer numbers will be automatically
truncated on the right).

Many of the commands operate upon a “CPU state” which corresponds to
the program under test. The CPU state holds the registers of the program
being debugged, and initially contains zeroes for all registers and flags except
for the program counter (P) and stack pointer (S), which default to 100H.
The program counter is subsequently set to the starting address given in the

~ . last record of a HEX file if a file of this form is loaded (see the I and R
commands).

3-125

The A (Assemble) Command

DDT allows inline assembly language to be inserted into the current
memory image using the A command which takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prompts the console with the address of the nextinstruction to fill, and reads
the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Language Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each
successive load address is printed before reading the console. The A
command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the
memory segment using the DDT disassembler. (See the L command.)

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program
responds with an error condition when the A and L. commands are used.

The D (Display) Command

The D command allows the operator to view the contents of memory in
hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 100H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccceceececeeccee

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa
are given to the right (represented by the sequence of ¢’s), where non-graphic
characters are printed as a period {.) symbol. Note that both upper and lower -
case alphabetics are displayed, and thus will appear as upper case symbolson
a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated so
that the next line begins at an address which is the multiple of 16.

3-126

Thesecond form of the D command shown above is similar to the first, except
that the display address is first set to address s. The third form causes the
display to continue from address s through address f. In all cases, the display
address is set to the first address not displayed in this command, so that a
continuing display can be accomplished by issuing successive D commands
with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

The F (Fill) Command

The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and ¢ is a hexadecimal
byte constant. The effect is as follows: DDT stores the constant ¢ at address
s, increments the value of s and tests against f. If s exceeds f then the
operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

The G (Go) Command

Program execution is started using the G command, with up to two optional
breakpoint addresses. The G command takes one of the forms

G

Gs
Gs,b
Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counter in the current machine state, with no breakpoints set
(the only way to regain control in DDT is through a RST 7 execution). The
current program counter can be viewed by typingan X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
- address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c¢. Encountering either
breakpoint causes execution to stop, and both breakpoints are subsequently

3-127

cleared. The last two forms take the program counter from the current
machine state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not
reach a breakpoint, control cannot return to DDT without executing a RST
7 instruction. Upon encountering a breakpoint, DDT stops execution and

types
*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints
which differ from the program counter address at the beginning of the G
command. Thus, if the current program counter is 1234H, then the
commands

G,1234
and
G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

The I (Input) Command

The I command allows the operator to insert a file name into the default file
control block at 5CH (the file control block created by CP/M for transient
programs is placed at this location; see the CP/M Interface Guide). The
default FCB can be used by the program under test as if it had been passed
by the CP/M Console Processor. Note that this file nameis also used by DDT
for reading additional HEX and COM files. The form of the I command is

Ifilename
or
Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

3-128

The L (List) Command

The L command is used to list assembly language mnemonicsin a particular
program region. The forms are

L
Ls
Ls,f

The first command lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then lists
twelve lines of code. The last form lists disassembled code from s through
addressf. In all three cases, the list addressisset to the next unlisted location
in preparation for a subsequent L. command. Upon encountering an
execution breakpoint, the list address is set to the current value of the
program counter (see the G and T commands). Again, long typeouts can be
aborted using the rubout key during the list process.

The M (Move) Command

The M command allows block movement of program or data areas from one
location to another in memory. The form is

Ms,fd

where s is the start address of the move, fis the final address of the move, and
d is the destination address. Data is first moved from s to d, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

The R (Read) Command

The R command is used in conjunction with the I command to read COM
and HEX files from the diskette into the transient program area in
preparation for the debut run. The forms are

R
Rb

. where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from 000H through OFFH (i.e., the first page of memory).
Ifbis omitted, then b =0000is assumed. The R command requires a previous
I command, specifying the name of a HEX or COM file. The load address for

3-129

each record is obtained from each individual HEX record, while an assumed
load address of 100H is taken for COM files. Note that any number of R
commands can be issued following the I command to re-read the program
under test, assuming the tested program does not destroy the default area at
5CH. Further, any file specified with the filetype “COM” is assumed to
contain machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in Intel hex
format (produced, for example, with the ASM command).

Recall that the command
DDT filename.filetype
which initiates the DDT program is equivalent to the commands

DDT
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error
indicator “?” (file cannot be opened, or a checksum error occurredin a HEX
file), or with a load message taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken from the last record
if a HEX file is specified).

The S (Set) Command

The S command allows memory locations to be examined and optionally
altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration
of memory. DDT responds with a numeric prompt, giving the memory
location, along with the data currently held in the memory location. If the
operator types a carriage return, then the data is not altered. If a byte value
is typed, then the value is stored at the prompted address. In either case,
DDT continues to prompt with successive addresses and values until either
a period (.) is typed by the operator, or an invalid input value is detected.

3-130

AN

The T (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535
program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next program step is
executed. The program terminates immediately, with the termination
address displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the
D command) is set to the value of H and L, and the list address (used in the
L command) is set to hhhh. The CPU state at program termination can then
be examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint occurs. A breakpoint can be forced in the trace mode by typing
arubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in the
X command.

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access 170 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace mode
execute approximately 500 times slower than real time since DDT gets
control after each user instruction is executed. Interrupt processing routines
can be traced, but it must be noted that commands which use the breakpoint
facility (G, T, and U) accomplish the break using a RST 7 instruction, which
means that the tested program cannot use this interrupt location. Further,
the trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received during
tracing.

Note also that the operator should use the rubout key to get control back to
DDT during trace, rather than executinga RST 7,in order to ensure that the
trace for the current instruction is completed before interruption.

3-131

The U (Untrace) Command

The U command is identical to the T command except that intermediate
program steps are not displayed. The untrace mode allows from 1 to 65535
(OFFFFH) steps to be executed in monitored mode, and is used principally to
retain control of an executing program while it reaches steady state
conditions. All conditions of the T command apply to the U command.

The X (Examine) Command

The X command allows selective display and alteration of the current CPU
state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag 0/1)

Z Zero Flag (0/1)

M Minus Flag 0/1)

E Even Parity Flag (0/1)

I Interdigit Carry (0/1)

A Accumulator (0-FF)

B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFFF)

In the first case, the CPU register state is displayed in the format
CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P =dddd inst

where fis a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register pair. The “inst” field contains the
disassembled instruction which occurs at the location addressed by the CPU
state’s program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C,Z,M,E,I, A,B,D, H, S, or P).
In each case, the flag or register value is first displayed at the console. The
DDT program then accepts input from the console. If a carriage return is
typed, then the flag or register value is not altered. If a value in the proper
range is typed, then the flag or register value is altered. Note that BC, DE,

3-132

P

and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

Implementation Notes

The organization of DDT allows certain non-essential portions to be
overlayedin order to gain a larger transient program area for debugging large
programs. The DDT program consists of two parts: the DDT nucleus and
the assembler/disassembler module. The DDT nucleus is loaded over the
Console Command Processor, and, although loaded with the DDT nucleus,
the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location 5H) is modified by DDT to address the base location
of the DDT nucleus which, in turn, contains a JMPinstruction to the BDOS.
Thus, programs which use this address field to size memory see the logical
end of memory at the base of the DDT nucleus rather than the base of the
BDOS.

The assembler/disassembler module resides directly below the DDT
nucleusin the transient program area. Ifthe A, L, T, or X commands are used
during the debugging process then the DDT program again alters the address
field at 6H to include this module, thus further reducing the logical end of
memory. If a program loads beyond the beginning of the
assembler/disassembler module, the A and L commands are lost (their use
produces a “?” in response), and the trace and display (T and X) commands
list the “inst” field of the display in hexadecimal, rather than as a decoded
instruction.

Sample Session

The following example shows an edit, assemble, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken from the vector, and stored into “LARGE”
at the termination of the program

ED _SCAN. AgH
R tab character Mnmnecho
Ly 11 ﬂ/u.m 1SSTaRT oF TRausIENT aREa
17 B.LEH G LENGTH OF VECTOR 1O SCAM
(171] LABGER AT YALUE 50 FAR
L00P_P.0.0.L LXI . VECT :8ASE OF YECTOR
CO0B.% #OY A 1GET VALUE
nbout | CUE L WABGER VALUE [N G2
deletes NG HFOUND 1y F UE_MOT FOu
_charactersNEU LARGEST VRLUE. STORE 1 16 ¢
noY A,

HFOUND. IHX H ;10 NEKT ELEMENT
R G 3 mmeveemaet geeSw
i PLH L00P ~FOR ANOTHER characters typed
i END OF SCAM, STORE C by programmer.
(TN a.C iGET LARGEST VALUE
§Ta LAR
JHP 2 LREBOOT
n LEST DATA
YECT] ,0,4,3,5.6,1,5
LEN EQU F-VECT LENGTH
LARGE: 1S A fLARGEST VALUE QN EXIT
END
1Z 258P
ORG 190H iSTART OF TRANSIENT AREA
nvl B, LEN iLENGTH OF YECTOR TO SCAN
nvl c,0 iLARGEST YALUE SO FAR
Lxl H,VECT ;BASE OF VECTOR
LOOP. nov AN JGET VALUE
sue o iLARGER VALUE IN C?
JNC NFOUND JUMP IF LARGER VALUE NOT FOUND
i NEW LARGEST VALUE, STORE IT TO0 €
noy C. R
NFOUND: 1INX H ;TO MEXT ELEMENT
DCR [} iMORE TO SCAN?
JN2 LOOP iFOR ANOTHER
; END OF SCAN, STORE C
nov A C ;GET LARGEST VALUE
§Ta LARGE
JHP e iREBOOT
i TEST DATA
VECT be 2,6,4,3,5,6,1.5
LEN EQU $-VECT LENGTH
LARGE: DS 1 iLARGEST VALUE ON EXIT
END
*E <+——End of Edit
A3h 38N Start Assembler
CP/M ASSEMBLER - VER 1.0

p122
BB2H USE FACTOR
END OF ASSEMBLY Assembly Complete — Look at Program Listing

TYPE SCAN.FPRN

Code Address Source Program
eiee Machine Code ORG 188H :S3TART OF TRANSIENT ARER
e18e 0608 myl B, LEN :LENGTH DF YECTOR TO SCAN
0102 BEMO myl c., o JLARGEST YALUE SO FAR
o184 211901 LK1 H, YECT ;BASE OF YECTOR
8187 7E LOOP: LI A M s GET VALUE
8198 91t sue c JLWRGER VALUE IN C7
91869 D2ebde! JNC NFOUND ; JUMP 1F LARGER YALUE NOT FOUND
i NEW LARGEST YALUE. STORE IT 7O C
8108C 4F Mov C.A
e18d 23 NFOUKD: IHX H ;TO NEXT ELEMENT
G10E 085 DCR B ;MORE TO SCAN?
Q18F C207081 JN2Z LOOP iFOR ANOTHER
i EHD OF SCAN, STORE C
@112 79 Moy A. C JGET LARGEST Y¥ALUE
8113 322181 STA LARGE
@116 C30@00 JHP] ;REBOOT
Code/data listing
truncated— TEST DATA
0119 P200840305VECT: b 2,90,4,.3,5,6,1,5

3-134

P

8000 = LEN EQU $-YECT . LENGYH

8121 Valuem LARGE : s 1 JLARGEST YALUE ON EXIT

8122 Equate' EHD

A>

DDT SCAN. HEX

—_— = Start Debugger using hex format machine code

16K DDT VYER 1.6@

NEXT PC

8121 _obeee

-X e ———— last load address + 1 next instruction
to execute at

C626MBEQI® A=P@ D=00@RP D=8P0® H-0@OP S=016@ P=@ewd OUT ?F PC=0

-XP

Examine registers before debug run

Change PCto 100
g3 Look at registers again PC changed

P=2608 100

(820MPEA!D A=0@ B=280P0 D=ROOF H=0608 S=0100 F20188 MY] 8,88
~-Li0@ Next instruction

to execute at PC=100
6186 MYl 8,88
8162 MYl C.8@
0184 LXI H.0119

81087 MOV A.M Disassembied Machine
8108 SUB C Code at 100H

8109 JNC 018D (See Source Listing
#16C MOV C.A for comparison)

816D INX H
WieE DCR B
G10F JUNZ @187
8112 MOY A.C
L

2113 STAa @Bl12!
B116 JWMP @ede

8119 STax B A little more

g11a HOP machine code
8118 1HR B (note that Program
211C INWX B ends at location 116
811D DCR B with a JMP to 0000)
B11E MV] B.01

#1280 DCR B

2121 LX1 U,22080

8124 LX! H,8280

-A11€ enterinline assembly mode to change the JMP to 0000 into a RST 7, which
will cause the program under test to retum to DDT if 116H

B116 RST 7 is ever executed.

8t1? (single carriage retumn stops assembly mode)
-L113 List Code at 113H to check that RST 7 was properly inserted

8113 STA @12} in place of JMP
a116 RST 87 &

8117 NOP
@118 NOP
8119 STAX B
811A NOP

@118 INR B
811C INX B

-X Look at registers

CO20MOEQIQ® A=90 B=800P D=0@06 H-000® S$S=010@ P=2180 MVI B,96
-1
- Execute Program for one step. initial CPU state, before J is executed

COZBMBEBI® A=80 B=0080 D=000P H=0HO® S=€100 P=0100 MYl B.,08#0102

Trace one step again (note 08H in B) automatic breakpoint
CO20MBEQI® A=P0 B=P8RP D=000R H=QGE® S=-0i18@ FP=0182 MYl C.eG0ed104

3-135

Trace again (Register C is cleared)

CeZoMBEGI® A=00 B=8BRO D=BE80P H=0P0P 5=010¢ P=0104 LXI]
“I3 Trace three steps

COZOMBEOI® A=00 B=0800 D=8000 H=6119 S$Sx0100 P=0107 MOV
COZOMPEDID® AR=92 B=88P0 D=900¢ H=0119 5-0100¢ P323108 SUB
COZOMPEB]) A=02 B=88P0 D=POA? H=B119 $=01808 P=01R9 JNC

gpati] Display memory starting at 119H. Automatic breakpoint

H,B8119%0187

ALH
c
etepseieDd

at 10DH /

811982 00 84 83 05 86 o) 'ogamdata «— Lower case x —_,
#120\93/T1 80 22 21 B0 62 7E EB 77 i3 23 EB as’ TR
® v e

B1
8136 C2 27 @1 C3 83 29 00 90 6P 00 00 00 00 08 9P 8O
0140 00 00 00 00 00 00 0O 00 00 00 00 0O 00 00 00 0O

]

0150 60 00 80 80 00 00 00 82 88 08 PO B0 80 80 38 08 Dataisdisplayed
0150 00 P 00 p® 00 0D PP 0P PP 8P PO 8O 00 080 80 3P Hh ASCliwitha 0~
6170 00 00 00 6P 90 PP 00 00 0P 0p PO B0 8@ B0 38 BO | the position of
6150 @0 00 90 0P 00 PP PO 80 PP PP PO 8O B8 88 80 8@ non.graphic
8150 @0 00 90 6P 0P 90 PP PP ©P 0P 00 00O 20 BB 00 8O characters

81RO 00 00 PO 00 00 00 09 00 08 00 00 80 20 0P 00 8O

0100 00 90 90 P® ©P D PO PO 0P 8P 6P 6O 00 00 00 PO

91CO PO 90 90 00 0B OO 8O PO 00 PP 0P 90 PO 80 PO 0P
-X Current CPU state

COZBMBERGI1 A=92 B=P00O D=P0PO H=0119% S=0100 P=210D INX

Trace 5 steps from current CPU state

CO9ZOMOED]I] A=02 B20000 D=BP00 H~O0119 S=0180 P=010D INX
COZOMOEGI] RA=P2 B=0000 D=0080 H=011R S=0100 P=@I0E DCR
CBZOMOEGI1 R=02 B=87P0 D=806O N=011AR S%0100 P=010F JNZ
CeZOMPES]IL A=B2 B=0700 D=p000 H=@1in S$=0100 P=0107 MOV
(B0ZOMRES]L R=00 B=0780 D=POPO H=@11R S=0100 P=9108 SUB

Trace without listing intermediate states
COZIMOELIl A=00 B=0780 D=3000 Hew@)1tA S=0100 P=8169 JUNC
-X CPUState at end of U5

COZOMBEII1 A=@4 B28600 D=P200 H=d110 S5=0123 P=0108 SUB

-G Run program from current PC until completion (in real-time})

p breakpoint at 116H, caused by executing RST 7 in machine code
01t

X

- CPU state at end of program

COZIMPEIl) A=0O B=0000 D=PBBE® H=@12} 58180 Px01i6 RST
-%E examine and change program counter

P=@116 1880

-

COZIMBELT)! A=6p B=p0OOO D=P0BG H=-9121 S=2106 P=0108 MYI
“I18 frace 10 (hexadecimal) steps

COZIMOELIL 16y P=B100 MV]
COZIMAELITY S=0168 P=0162 WYI]
COZiMeELITY €20100 F=0104 LXI
COZIMeELI "E=8106 P=86107 MOV
COZIMBELTL $=0108 P=8193 SUSB

3-136

H

H

8 Automatic
8187 Breakpoint
AM

ced109

ai1eDed108

c

B.88
subtext for comparison
A(C
B,088
C,90
H,0113
A M
C

CO2OMBERI L A=B2 B=08A0 [=00080 H<B119 S=6196 P=9@183 JUNC 610D
CO0ZoMBERI1 A=82 P=pEP8 D=08RK H=0119 $=0100 P=810D INX
Ce2AMAEQ]! A=02 B=@PB@ D=PR08B H=@11A Sx0100 F=B18E DCR
CBZOMPERI! A292 B=B789 D=ROO6 H=011f S=0190@ P301AF JNZ 08187
CPZOMOERIL A=P2 B=07P6 D=BAOH H=@11A $:-0190 P=0187 MOY AN
COZBMBEDI] A=0Q B=0700 DU=6800 H=Q!11A S=Q1A@ P=0168 SUB C
CO2ZIMPEII! A=BR B=6788 D=REOH H=B11p S=6100 F=BlE3 JNC 0109
COZIMPEIl1 A=@0 B=07B0 D=00090 HW=011A S5=0100 P=B18D INX H
CB21MBELI] A=99 B=G79P D=8POG H=d11B S=8100 P=910E DCR B
CeZOMPEII1 A=6® B=F6OH D=&0@EP H=811B 50108 PsBIBF JNZ 0107
COZBMAELl}! A=0@ B=060@ D=PPOO H=611B S=81ed P=9167 MOV A, MeB188

aies Insert a “'hot patch " into Program should have moved the
189 JC 1ep the machine code value from A into C since A)C.
~——==" to change the Since this code was not executed.
818C INC to JC it appears that the JNC should

have been a JC instruction

-6e Stop DDT so that a version of
the patched program can be saved

SAVE 1 SCAN. COM Program resides on first page. so save | page.

A>BDT SCAN. COM Restart DDT with the saved memory image to continue testing
16k DDT VEKk 1. @

HEXT PC

9200 91080

~L168 List some code

8188 MVl 6,08
8182 Nyl C,e0

104 LXI H,@119 Previous patch is present in X-COM

167 mMOY a.nM
9188 SUB C
8109 JC 816D
618 MOV L,k
8100 INX H
819E DCR B
B810F JUNZ 8187
811z Mmov¥Y 4. C
-2F

P=6168
-T18@ Trace to see how patched version operates Data is moved from A to C

2g109 MYl 8,88
F=y142 MYl .09
Fz@164 X1 H.8113

CoZ6MPEBlG 4=-68 B=p60@ [=0E05 M=9o8y 3:616€
C6ZOMPEQIB A=08 B=6000 D=0p90 H=BDOS
(G26MPEPI® 4=00® B=06BE D=0008 H=AUBD
C6ZOMBEBI® =09 B=000F D=-0808 P=2187 MOY A.N
rOZBNBESIB A B=830¢ D=pe8s =91806 Fz3i1988 SuUB L
(BZ6MBERIL A=B2 $86 D=8@ 5=9108 P=0189 JC 816D
(pzZomeesil Az02 W\ H=@0119 $=8180 P=2016(MOY C.A&
CozZeMBESI1 A=02 B D=8900 H=81:9 5=8109 P=818D INX *H
CeZeMpES]I1 A=02 D=8996 H=061!4 Sc=9189 PaR10E DCR O
(620MPEBI1 A=B2 B=97BZ D=008® H=&11A $=0108 P<B18F JNZ @
(9ZBMPEB]I! A=BZ B=0702 D=8400 H=9!1n S=01¢0 F=R187 MOV A.
¢
]
H

(BZeMOER@]I1 A=0@ E3p702z D=B88A H=#ila 5:=8199 Fz8108 SUB
C1ZeMiEBI® A=FE B=6782 D=0000 H=011# -=6188 P=4189 JC
C1Z8MIEQ]I® AsFE B=6702 D=0608 H=@B1!iA S=A1236 P=910D INK
(126MiE@BI@ A=FE B=070Z2 D=P@80 H=@1.E 3-8100 P=910E BCR B
C126MBEL1]1 A=FE B=060z D=P00%¥ H=61!B $=0109 P=818F JNZ 910791087
tr breakpoint after 16 steps/

C128MBE111 A=FE $:=A6Hz D=89080 H4=A118 <=8188 F=061067 "0V A,M
cG. 188 Run from current PC and breakpoint at 108H

“@188
-¥ next data item

C126MBEL]] 2=04 B=0602 D=p6OE H=6115 $<=0136 P=3188 SUB

5]

3-137

-1

Single step for a few cycles
CiZemMpElll w=84 B=0cBz D=B008 H=011H S=0189 P=8163 5UB C»8189
-1

(BZOMBER]L a=Gz B=R6BZ D=8000 H=011B
-X

o«
"
[3
o
-

P=e189 JC @18Ds018C

(COZOMBED®I1 A=B2 B=06BZ D=BB9M H=@11B S=-01800 P=Bi@C MOV [P]
& Run to completion

*8116

gt

C@ZI1MBELII1 A=B3 B=PEO3 D=0000 H=@12]
-stad look at the value of "LARGE."

8121 83 Wrong Value!

o
"

8160 P=0116 RST 87

8122 086

123 22

B1z24 21

0125 06

G126 B2 End of the S command
@127 7E ,

-Ltiaa

aige MYI B.83

giez Myl C.89

6194 LXI H,811%

a1y MOY AN ‘

6198 SUR C

B1as JC @lel

e1ec Mov C.n

B180 INX H

@19E DCk B

B1B8F JUNZ etle7

atlz MOV A.C Review the code

-L

#1113 §TA @i21
Bilé RST @7

B117 NOP

6118 NOP

119 STAxX &
211A NOP

a1lg INR B
a1tc INY B
611l DCK B
a1lE MYl B0
#1ze DCk B
ptid

F=6116 1868 Resetthe PC
-1 Single step, and watch data values

(BZIMBEL]] A=83 B=p@@3 D=60080 H=A121 S=G1@é P=91@é MVI B.B3eBl02
-T

C@ZIMBEL]] A=63 B-6803 D=PB@W H=@121 S=0180 F=98lE2 MYI C.60*0104
-7 count set

- “largest set

ZIMAEL]Y A=02 B=p3BD L=p0Oma H=@12! <=61@86 P=wled LXI H.B113+0187

3-138

.~ base address of data set
(821MBEL1]I1 w=03 B=v300 l=p0nBd H=@119 %=81@89 F=Bl@a7Y MOV A M+B13E
-1

- o first data item brought to A
C@21MAEL]L A=62 B=03060 D=000d H=06119 $=9100 P=016E& SUB C»@189

bZGMREG]1 A=@2 B=&&Pe D=p60E& H=a119

Blebsotiol

Z@aMBEBl1 A=02 B=06gHe D=pGRD H=9119 @19@ P=916C MOV C.A»Btald

first data item moved to C correctly

CezeaMeEe@ll A=p2 B=08BHBZ D=00%8 H=e11% S$=01@8@ P=A18D0 INX H»e1BE

ZuMBE@]ll A=BZ B=@k3bz D=booy P=@lpE DLCR BeaidFf

ZBMBEGIL =02 B=878C2 D=PPOE H=811R S=01@%H P=A@F JUNZ 01@7»0ti087

JeMBE@l! H=@82 2=86702 D=80ed H=gli§ 3=8126 Ps@le? M0¥ o, Meeiéd
o second data item brought to A

(@Z6MBERI! n=@08 B=A7AZ D=@00E H=011Rp S=01P@ Px0108 SUB C(we189

- Ve subtract destroys data value which was loaded!!!

ZoMIE@l@® Qq=FE B=e78C2 D=R@@8 H=911A S=010e P=@les JC p1eDpe01@D

C1Z6M1E@l@ A=FE B=B78z D=6oed H=811A S=91068 P=8160 INX H*@1QE
-Li@w

@126 MVlI B.@3

p12z MYl C.Q@

e184 LXI H, 8119

01n7 MOV a.M

P19& SUB ¢ «—— This should have been a CMP so that register A
@189 JC @18D would not be destroyed.
613l MOY C.A

8190 INx H

B1WE DCR B

B1eF JNZ ele?

#11z MOY A.C

-hlgs

r1g& (MP C hot patch at 108H changes SUB to CMP

-i3 stop DDT for SAVE

SAYE 1 SCAN. COM

save memory image
n>DPDT SCAN. COHM Restart DDT

16K DET VEK 1.@
NEXT PC

b2o@ 8100

- XF

F=01a6

3-139

-Lité

9116 K&T @7

#1117 NOP

GlLE NOP Look at code to see if it was property loaded
at1% sTax 8 (long typeout aborted with rubout)

BitA NOP

= (rubout)

-G 31€ Run from 1G0H to compietion

*@l1E
- X0 Look at‘;arry (accidental typo)

01

-4 Look at CPU state

0
o
iy

C1ZIMBEL]] wz@E D-a@Bf D=8008 H=a12] L=aliod Pr9li1é
mElzd Look at “‘Large”’ — it appears to be correct.

-69 stop DDT
ED SLANgnSH Re-edit the source program, and make both changes
*NSUE
. __"ﬁ"‘ /ctl-l
Su < JLARGER YALUE IM £7
» ol L] LY
cH c JLARGER VALUE IN L7

.

N NFOGURD . JUMP 1F LARGER VAGLUE NOT FOUND
» SNU LT

e HFOURD LHUMP 1F LAaRGER WRLUE MCT FOUND
£
W3M 3CAN_GAZ Re-assemble, selecting source from disk A
hex to disk A
{F M WSSEMBLER - YER 1 @ print to Z (selects no print file)
a1z2

JB:H USE FACTOR
END OF ASSEMBLY

IDT 3CHN HEX Rerun debugger to check changes

1EF BDT YER . @
wELT FC

a1zl beed
“Lti%

4116 JnMP @@ee check to ensure end is still at 116H
ERSE] 5TRY B
wilA NOF
HlLE INF B
{rubout}

ShiAa 1 1E Go from beginning with breakpoint at end

3-140

-0

121 (g a8

it Lz oev

breakpoint reached
took at "LARGE cormrect value computed
TE Eg 7?7 12 3
a1 @@ 0B 2% 06 ©vo
1306 P@ @9 29 BE v Be @@ 4@ B9 B9 00

- {rubout} aborts long typeout

G

stop DDT. debug session complete

ER 2E
6a aa
gy 89

3-141

78 B
sa 9@
g a9

a0
a8

« 7 VOLUME II

SoftCard™

A Peripheral for the Apple I1°
With CP/M® and Microsoft BASIC on diskette.

Produced by Microsoft

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

N

Copyright and Trademark Notices

The Microsoft SoftCard and all software and documentation in the
SoftCard package exclusive of the CP/M operating system are copyrighted
under United States Copyright laws by Microsoft. The CP/M operating
system and CP/M documentation are copyrighted under United States
Copyright laws by Digital Research.

It is against the law to copy any of the software in the SoftCard package
on cassette tape, disk or any other medium for any purpose other than
personal convenience.

Itis against the law to give away or resell copies of any part of the Microsoft

SoftCard package. Any unauthorized distribution of this product or
any part thereof deprives the authors of their deserved royalties. Microsoft
will take full legal recourse against violators.

If you have any questions on these copyrights, please contact:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

Copyright® Microsoft, 1980
All Rights Reserved
Printed in U.S.A.

*SoftCard is a trademark of Microsoft.
®Apple is a registered trademark of Apple Computer Inc.

®CP/M is a registered trademark of Digital Research, Inc.

®Z-80 is a registered trademark of Zilog, Inc.

TABLE OF CONTENTS
INTRODUCTION

SoftCard System Explained

Designers and Manufacturer

System Requirements

SoftCard Terminology

Digital Research License Information

Microsoft Consumer Products
Registration Information

Warranty

Service Information

PART I: Installation and Operation

Chapter 1: How to Install the SoftCard
Apple Peripheral Cards: What Goes Where
Interface Cards Compatible with CP/M
Placement of Apple Disk Drives
Printer Interface Installation
General Purpose 170 Installation
Using an External Terminal Interface
Installation of the SoftCard

Chapter 2: Getting Started with Apple CP/M
Bringing up Apple CP/M
How to copy your SoftCard Disk
Creating CP/M System Disks
Using Apple CP/M with the
Apple Language Card
I/0 Configuration

Chapter 3: An Introduction to Using Apple CP/M

Typing at the Keyboard

Output Control

CP/M Warm Boot: Ctrl-C
Changing CP/M Disks

CP/M Command Structure
CP/M File Naming Conventions

il

Some CP/M commands: 1-22
DIR, ERA, REN, TYPE

CP/M Error Messages 1-23
Description of Programs Included on the 1-26
SoftCard Disk

Chapter 4: Getting Started with
Microsoft BASIC 1-31

PART II: Software and Hardware Details

Chapter 1: Apple II CP/M Software Details

Introduction 2
I/Hardware Conventions 2-
6502/7Z-80 Address Translation 2
Apple I1 CP/M Memory Usage 2
Assembly Language Programming with the
SoftCard 2-7
ASCII Character Codes 2-7

Chapter 2: Apple II CP/M
170 Configuration Block
Introduction 2-12
Console Cursor Addressing/Screen Control 2-12
The Hardware/Software Screen Function Table
Terminal Independent Screen
Functions/Cursor Addressing
Redefinition of Keyboard Characters 2-17
Support of Non-Standard Peripheral Devices 2-17
Calling of 6502 Subroutines

Indication of Presence and Location of 2-24
Peripheral Cards
Chapter 3: Hardware Description
Introduction 2-28
Timing Scheme 2-28
SoftCard Control 2-29
Address Bus Interface 2-29

Data Base Interface 2-31

1i

6502 Refresh

DMA Daisy Chain
Interrupts

SoftCard Parts List
SoftCard Schematic

PART III: CP/M Reference Manual

2-31
2-32
2-32
2-32
2-34

Chapter 1: Introduction to CP/M Features and Facilities

Introduction
An Overview of CP/M 2.0 Facilities
Functional Description of CP/M
General Command Structure
File References
Switching Disks
Form of Built-In Commands
ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command
Line Editing and Output Control
Transient Commands
STAT
ASM
LOAD
DDT
PIP
ED
SUBMIT
DUMP
BDOS Error Messages

Chapter 2: CP/M 2.0 Interface Guide
Introduction
Operating System Call Conventions
Sample File-to-File Copy Program
Sample File Dump Utility

iv

3-3

Sample Random Access Program 3-69
System Function Summary 3-7

[«

Chapter 3: CP/M Editor
Introduction to ED
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operation
Command Strings
Text Search and Alteration
Source Libraries
ED Error Conditions
Summary of Control Characters
Summary of ED Commands
ED Text Editing Commands

PP PR
@ ddd iy
© B

ool ddo

CQCQCQCQC.QCQCQCQC&J
N~ OO WWw

Chapter 4: CP/M Assembler
Introduction
Program Format 3-99
Forming the Operand 3-100
Labels
Numeric Constants
Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Operators
Assembler Directives 3-105
The ORG Directive
The END Directive
The EQU Directive
The SET Directive
The IF and ENDIF Directives
The DB Directive
The DW Directive
Operation Codes 3-110
Jumps, Calls and Returns
Immediate Operand Instructions
Data Movement Instructions

J
O
<

Arithmetic Logic Unit Operations
Control Instructions

Error Messages 3-114
A Sample Session 3-115
Chapter 5: CP/M Dynamic Debugging Tool

Introduction 3-123
DDT Commands 3-125
The A (Assembler) Command 3-126
The D (Display) Command 3-126
The F (Fill) Command 3-127
The G (Go) Command 3-127
The I (Input) Command 3-128
The L (List) Command 3-129
The M (Move) Command 3-129
The R (Read) Command 3-129
The S (Set) Command 3-130
The T (Trace) Command 3-131
The U (Untrace) Command 3-132
The X (Examine) Command 3-132

Implementation Notes

PART IV: Microsoft BASIC
Reference Manual

Introduction

Chapter 1: Microsoft BASIC-80 and Applesoft: 4-3
A Comparison
Features of Microsoft BASIC not found
in Applesoft 4
Applesoft Enhancements 4-
Features Used Differently in Microsoft
BASIC than in Applesoft 4
Changes in BASIC-80 Features 4
Applesoft Features Not Supported 4-
4

Chapter 2: General Information About BASIC-80

Chapter 3: BASIC-80 Commands and Statements 4-24

V1

Chapter 4: BASIC-80 Functions

—~ Chapter 5: High Resolution Graphics, GBASIC 4-98

Appendices
High Resolution Graphics: GBASIC 4-99
New Features in BASIC-80, Release 5.0 4-103
BASIC-80 Disk I/0 4-106
Assembly Language Subroutines 4-116
Converting Programs to BASIC-80 from
BASICs Other Than Applesoft 4-121
Summary of Error Codes and Error Messages 4-123
Mathematical Functions 4-128
ASCII Character Codes 4-130
PART V: Software Utilities Manual
Introduction 5-2

Format Notation

To Prepare Diskettes for Reading and
Writing: FORMAT 5-3

To Make Copies of Diskettes: COPY 5-7
To Create CP/M System Disks

To Convert 13-Sector CP/M Files from

16-Sector CP/M: RW13 5-10
To Configure CP/M for a 56K System: CPM56 5-12
To Transfer Files from Apple DOS to

CP/M: APDOS 5-14
To Configure the Apple CP/M

Operating Environment: CONFIGIO 5-16

1. Configure CP/M for External Terminal
2. Redefine Keyboard Characters
3. Load User I/0 Configuration
To Transfer CP/M Files from
Another Computer: DOWNLOAD and UPLOAP 5-28

vii

Microsoft
BASIC
Reference
Manual

PART IV: Microsoft BASIC
Reference Manual

INTRODUCTION 4-3
CHAPTER 1 BASIC-80 and Applesoft: A

Comparison 4-4
CHAPTER 2 General Information

About BASIC-80 4-9
CHAPTER 3 BASIC-80 Commands and

Statements 4-24
CHAPTER 4 BASIC-80 Functions 4-81
CHAPTER 5 High Resolution Graphics:

GBASIC 4-98
APPENDIX A New Features in

BASIC-80, Release 5.0 4-103
APPENDIX B BASIC-80 Disk I/0 4-105
APPENDIX C Assembly Language

Subroutines 4-115
APPENDIX D Converting Programs to

BASIC-80 4-121
APPENDIX E Summary of Error Codes

and Error Messages 4-123
APPENDIX F Mathematical Functions 4-128
APPENDIX G ASCII Character Codes 4-130

4-1

INTRODUCTION

Microsoft BASIC, written for Z-80 and 8080 microprocessors, is the
most extensive implementation of BASIC available for microcomputers
today. Now in its fifth major release, Microsoft BASIC (or BASIC-80)
meets the ANSI qualifications for BASIC as set forth in document
BSRX3.60-1978. It is upwardly compatible with Applesoft BASIC.

With the Microsoft SoftCard, the most recent version of BASIC-80,
Version 5.0, is available to Apple owners for the first time. It brings new
power to the Apple, adding major features such as PRINT USING,
16-digit precision, CALL, CHAIN and COMMON, WHILE/WEND and
improved disk 1I/0.

The SoftCard package includes two versions of Microsoft BASIC.
MBASIC, which is found on both disks, includes all standard Applesoft
extensions from low-resolution graphics to sound and cursor control.
These features plus high-resolution graphics are included in GBASIC,
which is found on the 16-sector disk only.

The reference guide is divided into five chapters plus a number of ap-
pendices. Chapter 1 is a short section covering differences between Mi-
crosoft BASIC and Applesoft, especially important for persons used to
programming in Applesoft. Chapter 2 includes instructions for initializa-
tion of either version of Microsoft BASIC, (referred to throughout this
manual as BASIC-80), and explains details of information representa-
tion when using Microsoft BASIC. Chapter 3 contains the syntax and
semantics of every command and statement in BASIC-80 for the Apple,
ordered alphabetically. Chapter 5 pertains to GBASIC only, describing
all features found exclusively in GBASIC. The appendices contain lists
of error messages, ASCII codes and math functions plus helpful informa-
tion on the use of assembly language subroutines and disk I/0.

This manual is not intended as a tutorial on the BASIC language. It is
a reference manual for the specific features of Microsoft BASIC. If you
need instructional material regarding the BASIC language, we suggest
you read one of the following:
BASIC by Robert L. Albrecht, LeRoy Finkel, Jerry Brown (John
Wiley & Sons, 1973)
BASIC and the Personal Computer by Thomas A. Dwyer and
Margot Critchfield (Addison-Wesley Publishing Co., 1978)
BASIC From the Ground Up by David E. Simon (Hayden, 1978)

4-3

CHAPTER 1

Microsoft BASIC-80 and Applesoft:
A Comparison

Microsoft BASIC-80, Version 5.0, includes many features not found in
Applesoft and also uses some features differently than Applesoft. Realiz-
ing that most SoftCard buyers have previously written BASIC programs
in Applesoft, we include here a listing of the differences between the two
versions of BASIC.

By making note of these differences and using the new features pro-
vided by BASIC-80, you can take advantage of increased BASIC pro-

gramming power.

Features of Microsoft BASIC not found in Applesoft

The following features are found in Microsoft BASIC only. A brief de-
scription of these features is given here; for more information on the
syntax, purpose and peculiarities of each, see Chapters 2 and 3 of this
manual.

CHAIN and Used to call in another BASIC program from
disk and pass variables to it. This feature allows
COMMON -
the disk to be used as program memory.

CALL Used to call 6502 or Z-80 assembly language
subroutine or FORTRAN subroutine.

PRINT USING Greatly enhances programming convenience
by making it easy to format output. It includes
asterisk fill, floating dollar sign, scientific nota-
tion, trailing sign, and comma insertion.

Builtsin Disk I/0 Since standard Applesoft BASIC and integer
BASIC were not designed for a disk environ-
Statements ment, Disk I/0 commands have to be included
in PRINT statements. With Microsoft BASIC
5.0’s built-in disk I70 statements, this process is
eliminated (no more PRINT "ctrl D”).

WHILE/WEND Gives BASIC a more structured flavor. By put-
ting a WHILE statement in front of a loop and

44

TN

EDIT Commands

AUTO and
RENUM

IF ... THEN ...
ELSE

ANSI Compati-
bility

Compilability

Powerful Data
Types

Added String
Functions

the WEND statement at the end, BASIC 5.0 will
continuously execute the loop as long as a given
condition is true.

Let you edit individual program lines easily
and efficiently without re-entering the whole
line.

RENUM makes it easier to edit and debug pro-
grams by letting you automatically renumber
lines in user-specified increments. AUTO is a
convenience feature that generates line num-
bers automatically after every carriage return.

Extends the IF statement in Applesoft to pro-
vide for handling the negative case of IF.

Microsoft 5.0 BASIC meets the ANSI qualifica-
tions for BASIC, as set forth in document
BSRX3.60-1978. That means any program you
write on your Apple in Microsoft BASIC can be
run on any other machine that has an ANSI
standard BASIC.

Microsoft has developed a BASIC compiler
that compiles MBASIC and GBASIC programs
into directly executable Z-80 machine code. The
compiler is available separately to SoftCard
owners.

BASIC 5.0 has three variable types — fast two-
byte true integer variables, single precision
variables and double precision variables — to
give it 16-digit precision, as opposed to 9-digit
precision on the Apple. Also, hexadecimal and
octal constants may be used.

INSTR, HEXS$, OCT$, STRINGS, and direct as-
signment of substrings with MID$ are imple-
mented.

Added Operators New boolean operators AND, OR, XOR, IMP,

User-Defined
Functions

Protected Files

and EQV are provided. True Integer arithmetic

is supported with an Integer divide and MOD)

operators.

BASIC-80 flser-deﬁned functions allow multi-
ple arguments.

BASIC programs may be saved in a protected
binary format. See SAVE, Chapter 3.

We have also included four new features to Microsoft BASIC, especially
to take advantage of the Apple’s unique characteristics. They are:

BUTTON(0)
BEEP

HSCRN(X,Y)

VPOS(0)

A function used to determine whether a paddle
button has been pressed.

A statement that generates a tone of specified
pitch and duration.

A function used to determine if a point has
been plotted on the high-resolution screen at a
specified point.

A function that returns the vertical cursor posi-
tion.

Applesoft Enhancements

Both versions of BASIC support low-resolution graphics, sound, cursor
control and other Applesoft BASIC features. The version of Microsoft
BASIC included on the 16-sector disk also supports all of the Applesoft
high-resolution graphics features except DRAW, XDRAW, SCALE and

ROT.

Applesoft-compatible statements and functions found in MBASIC and
GBASIC are shown below. Those features available only in GBASIC are
indicated with an asterisk.

GR .
COLOR
PLOT
VLIN
HLIN
SCRN
POP
HGR*
HCOLOR*
HPLOT*

TEXT
HTAB
VTAB
INVERSE
NORMAL
PDL(0)

Features Used Differently in Microsoft BASIC Than in
Applesoft

Certain statements and commands found in Microsoft BASIC and Ap-
plesoft have slightly different uses. You should be aware of these differ-
ences when writing BASIC-80 programs. Those statements that differ
are listed below; for more information see Chapters 2 and 3 of this
manual.

FOR ... NEXT

INPUT

ON ERROR GOTO

RESUME

TEXT

GR

HGR

IF ... THEN ... ELSE

CALL

Changes in BASIC-80 Features

For the SoftCard version of BASIC-80, we have made a few very minor

changes to normal CP/M Microsoft BASIC features. If you are accus-

tomed to programming in Microsoft BASIC under CP/M, you will want

to note the following changes:

TRON/TROFF Statement name has been changed to TRACE/

NOTRACE. Operation of this statement re-
mains the same.

DELETE Statement name has been changed to DEL. Op-
eration of this statement remains the same.
WIDTH You now have the option to specify screen

height in addition to line width. Also, default
width is 40 columns for Apple video and 80 col-
umns for external terminals.

WAIT WAIT now monitors the status of an address
rather than of a machine input port. The effect,
however, remains the same.

CLOAD Not implemented.

4-7

CSAVE Not implemented.

NULL Not implemented.
INP Not implemented.
ouT Not implemented.

NOTE: BASIC-80 Version 5.0 programs transferred to the Apple
must be in ASCII format (i.e., saved with the A option).
They may not be in binary format.

Applesoft Features Not Supported

The following features found in Applesoft BASIC are not found in Mi-
crosoft BASIC.

FLASH SHLOAD

ESC A, B, C, D screen editing XDRAW
STORE DRAW
RECALL SCALE

IN# cassette LOAD
PR# cassette SAVE
HIMEM ... LOMEM ROT

P

CHAPTER 2
GENERAL INFORMATION ABOUT
BASIC-80

INITIALIZATION

MBASIC is the CP/M version of Microsoft BASIC that includes all
standard Applesoft extensions except high-resolution graphics. It is sup-
plied on both the 13-sector and the 16-sector disks in the SoftCard
package. The name of the file on both disks is MBASIC.COM. These
initialization instructions refer to MBASIC but may be used for GBASIC
simply by substituting GBASIC where MBASIC is typed. (For specific
instructions for initializing GBASIC, see Chapter 5.)

To load and run Microsoft BASIC-80, simply bring up the CP/M operat-
ing system in the usual manner (See Operations Manual). After the A>
prompt appears type:

MBASIC

and press the RETURN key. In a few seconds, a copyright notice will
appear, indicating BASIC-80 is ready for your command.

This sets at 3 the number of files that may be open at any one time
during the execution of a BASIC program (see /F option below), allows
all memory up to the start of FDOS in CP/M to be used (see /M option
below) and sets the maximum record size at 128.

The command line format below can be used in place of the simple
MBASIC command if you wish to set these options and/or automatically
RUN any program after initialization:

MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>] Press RETURN

The <filename> option allows you to RUN a program automatically
after initialization is complete. A default extension of .BAS is used if
none is supplied and the filename is less than nine characters long. This
allows BASIC programs to be executed in batch mode using the SUB-
MIT facility of CP/M. Such programs should include the SYSTEM state-
ment (See Chapter 3) to return to CP/M when they have finished, allow-
ing the next program in the batch stream to execute.

The /F:<number of files> option sets the number of disk files that may

4-9

be open at any one time during the execution of a BASIC program. Each
file data block allocated in this fashion requires 166 bytes plus 128 (or
number specified by /S:) bytes of memory. If the /F option is omitted,
the number of files defaults to 3. Number of files may be either decimal,
octal (preceded by &O) or hexadecimal (preceded by &H).

The /M:<highest memory location> option sets the highest memory
location that will be used by MBASIC. In some cases, it is desirable to
set the amount of memory well below the CP/M’s FDOS to reserve space
for assembly language subroutines. In all cases, <highest memory loca-
tion> should be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory up to the start
of FDOS is used. The <highest memory location> number may be deci-
mal, octal (preceded by &O) or hexadecimal (preceded by &H).

The /S:<maximum record size> option sets the maximum size to be
allowed for random files. Any integer may be specified, including inte-
gers larger than 128.

When BASIC-80 is initialized, the system will reply:
BASIC-80Version 5.xx
(Apple CP /M Version)
Copyright 1980 (c) by Microsoft
Created: dd-Mmm-yy

xxxx Bytes free
Ok
Here are a few examples of the different initialization options:
A>MBASIC PAYROLL.BAS Use all memory and 3 files;
load and execute PAYROLL.BAS
A>MBASIC INVENT/F:6 Use all memory and 6 files;
load and execute INVENT.BAS
A>MBASIC /M:32768 Use first 32K of memory and 3 files

A>MBASIC DATACK/F:2/M:&H9000 Use first 36K of memory,
2 files and execute DATACK.BAS

MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "Ok.” "Ok” means
BASIC-80 is at command level, that is, it is ready to accept commands.
At this point, BASIC-80 may be used in either of two modes: the direct
mode or the indirect mode.

In the direct mode, BASIC commands and statements are not preceded
by line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and

4-10

stored for later use, but the instructions themselves are lost after execu-
tion. This mode is useful for debugging and for using BASIC as a "cal-
_ culator” for quick computations that do not require a complete program.

The indirect mode is the mode used for entering programs. Program
lines are preceded by line numbers and are stored in memory. The
program stored in memory is executed by entering RUN command.

DISK FILES

Disk filenames follow the normal CP/M naming conventions. All file-
names may include A:, B:, C:, D:, E: or F: as the first two characters to
specify a disk drive, otherwise the currently selected drive is assumed.
The drive name, if specified, must be upper case (i.e., A: not a:). A default
extension of .BAS is used on LOAD, SAVE, MERGE and RUN filename
commands if no ”.” appears on the filename and the filename is less than
9 characters long.

LINE FORMAT

Program lines in a BASIC program have the following format (square
brackets indicate optional):

nnnnn BASIC statement [:BASIC statement...] <carriage return>

At the programmer’s option, more than one BASIC statement may be
placed on a line, but each statement on a line must be separated from
the last by a colon.

A BASIC program line always begins with a line number, ends with a
carriage return, and may contain a maximum of 255 characters.

It is possible to extend a logical line over more than one physical line
by use of the <line feed> or Control J. <Control J> lets you continue
typing a logical line on the next physical line without entering a <car-
riage return>.

Line Numbers

Every BASIC program line begins with a line number. Line numbers
indicate the order in which the program lines are stored in memory and
are also used as references when branching and editing. Line numbers
must be in the range 0 to 65529. A period (.) may be used in EDIT, LIST,
AUTO and DELETE commands to refer to the current line.

CHARACTER SET

The BASIC-80 character set is comprised of alphabetic characters, nu-
meric characters and special characters. The alphabetic characters in
BASIC-80 are the upper case and lower case letters of the alphabet.

4-11

The numeric characters in BASIC-80 are the digits 0 through 9.

The following special characters and terminal keys are recognized by
BASIC-80:

Character Name

Blank

Equal sign or assignment symbol

Plus sign

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)

Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol

At-sign

_ Underscore

<rubout> Deletes last character typed.

<escape> Escapes Edit Mode subcommands.
See Section 2.16.

<tab> Moves print position to next tab stop.
Tab stops are every eight columns.

TTETITeRgRT T S Y 4y

® - VAV

<carriage
return> Terminates input of a line.

Control Characters
The following control characters are in BASIC-80:

4-12

Control @ Rubout

~ Control-A Enters Edit Mode on the line being typed.

Control-B Backslash

Control-C Interrupts program execution and returns to BASIC-80
command level.

Control-G Rings the bell at the terminal.

Control-H Backspace. Deletes the last character typed. Same as «

Control-i Tab, Tab stops are every eight columns. Same as —

Control-J Line feed. Moves to next physical line.

Control-K Right square bracket

Control-0 Halts program output while execution continues. A sec-
ond Control-O restarts output.

Control-R Retypes the line that is currently being typed.

Control-S Suspends program execution.

Control-Q Resumes program execution after a Control-S.

Control-X Deletes the line that is currently being typed.

Control-Y Permits recovery from pressing RESET on a system with
an Autostart ROM.

- Tab. Same as Control-1.

- Backspace. Same as Control-H.

NOTE: Control-@ Control-B, Control-K and Control-U may be

redefined using the CONFIGIO utility.
CONSTANTS

Constants are the actual values BASIC uses during execution. There
are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. Examples of string constants:

"HELLO*
*$25,000.00"
"Number of Employees”

Numeric constants are positive or negative numbers. Numeric con-
stants in BASIC cannot contain commas. There are five types of numeric
constants:

1. Integer “Whole numbers between —32768 and +32767.
constants Integer constants do not have decimal points.

4-13

2. Fixed Point
constants

3. Floating Point
constants

4. Hex constants

5. Octal
constants

Positive or negative real numbers, i.e., hum-
bers that contain decimal points.

Positive or negative numbers represented in
exponential form (similar to scientific notation).
A floating point constant consists of an optional-
ly signed integer or fixed point number (the
mantissa) followed by the letter E and an op-
tionally signed integer (the exponent). The ex-
ponent must be in the range —38 to +38.
Examples:

235.988E-7 = .0000235988

2359E6 = 2359000000
(Double precision floating point constants use
the letter D instead of E. See “Single and Dou-
ble Precision Form for Numeric Constants.”)

Hexadecimal numbers with the prefix &H. Ex-
amples:

&H76

&H32F

Octal numbers with the prefix &0 or &. Exam-
ples:

&0347

&1234

Single And Double Precision Form For Numeric Con-

stants

Numeric constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with 16 digits
of precision, and printed with up to 16 digits.

A single precision constant is any numeric constant that has:
1. seven or fewer digits, or

2. exponential form using E, or
3. a trailing exclamation point (!)
A double precision constant is any numeric constant that has:
1. eight or more digits, or
2. exponential form using D, or
3. a trailing number sign (#)

4-14

Examples:
Single Precision Constants Double Precision Constants

46.8 345692811
—7.09E-06 —1.09432D-06
3489.0 3489.0#
22.5! 7654321.1234
VARIABLES

Variables are names used to represent values that are used in a BASIC
program. The value of a variable may be assigned explicitly by the
programmer, or it may be assigned as the result of calculations in the
program. Before a variable is assigned a value, its value is assumed to
be zero.

Variable Names And Declaration Characters

BASIC-80 variable names may be any length; up to 40 characters are
significant. The characters allowed in a variable name are letters and
numbers, and the decimal point. The first character must be a letter.
Special type declaration characters are also allowed — see below.

A variable name may not be a reserved word unless the reserved word
is embedded. If a variable begins with FN, it is assumed to be a call to
a user-defined function. Reserved words include all BASIC-80 com-
mands, statements, function nhames and operator names.

Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign (§) as the last character.
For example: A$ = "SALES REPORT". The dollar sign is a variable type
declaration character, that is, it "declares” that the variable will repre-
sent a string. Numeric variable names may declare integer, single or
double precision values. The type declaration characters for these varia-
ble names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is single precision.
Examples of BASIC-80 variable names follow.

Pi# declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

N$ declares a string value

ABC represents a single precision value

4-15

There is a second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may
be included in a program to declare the types for certain variable names.
These statements are described in detail in Chapter 3.

Array Variables

An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that
is subscripted with an integer or an integer expression. An array varia-
ble name has as many subscripts as there are dimensions in the array.
For example V(10) would reference a value in a one-dimension array,
T(1,4) would reference a value in a two-dimension array, and so on. The
maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32767.

TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from one type
to another. The following rules and examples should be kept in mind.

1. If a numeric constant of one type is set equal to a numeric varia-
ble of a different type, the number will be stored as the type
declared in the variable name. (If a string variable is set equal
to a numeric value or vice versa, a "Type mismatch” error oc-
curs.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands in an arithme-
tic or relational operation are converted to the same degree of
precision, i.e., that of the most precise operand. Also, the result
of an arithmetic operation is returned to this degree of precision.

Examples:

10 D# = 6#/7 The arithmetic was performed

20 PRINT D# in double precision and the

RUN result was returned in D#
.8571428571428571 as a double precision value.

10D =6#/7 The arithmetic was performed

20 PRINT D in double precision and the

RUN result was returned to D (single

4-16

.857143 precision variable), rounded and
printed as a single precision
value.

3. Logical operators convert their operands to integers and return
an integer result. Operands must be in the range —32768 to
32767 or an "Overflow” error occurs.

4. When a floating point value is converted to an integer, the frac-
tional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

5. If a double precision variable is assigned a single precision val-
ue, only the first seven digits, rounded, of the converted number
will be valid. This is because only seven digits of accuracy were
supplied with the single precision value. The absolute value of
the difference between the printed double precision number and
the original single precision value will be less than 6.3E —8 times
the original single precision value.

Example:

10 A =204
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a varia-
ble, or it may combine constants and variables with operators to produce
a single value. Operators perform mathematical or logical operations on
values. The operators provided by BASIC-80 may be divided into four
categories:

1. Arithmetic
2. Relational
3. Logical

4. Functional

4-17

Arithmetic Operators
The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
t Exponentiation XY
- Negation -X
*/ Multiplication, Floating X*Y
Point Division X/Y
+,- Addition, Subtraction X+Y

To change the order in which the operations are performed, use paren-
theses. Operations within parentheses are performed first. Inside paren-
theses, the usual order of operations is maintained. Here are some sam-
ple algebraic expressions and their BASIC counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2

_Y _

X—3 X—Y/Z
XY X*Y/Z

Z
X+Y X+Y)/Z

Z

X2y (X12)1Y
xY? X1(Y12)
X(—Y) X*(—Y)

Two consecutive operators
must be separated
by parentheses.

Integer Division And Modulus Arithmetic

Two additional operators are available in BASIC-80: Integer division
and modulus arithmetic.

Integer division is denoted by the backslash or Control-B on the Apple

4-18

keyboard. (\). The operands are rounded to integers (must be in the
range —32768 to 32767) before the division is performed, and the quo-
tient is truncated to an integer. For example:

104 =2
25.6816.99 = 3

The precedence of integer division is just after multiplication and float-
ing point division.

Modulus arithmetic is denoted by the operator MOD. It gives the
integer value that is the remainder of an integer division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

Overflow And Division By Zero

If, during the evaluation of an expression, a division by zero is encoun-
tered, the “Division by zero” error message is displayed, machine infini-
ty with the sign of the numerator is supplied as the result of the division,
and execution continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by zero” error
message is displayed, positive machine infinity is supplied as the result
of the exponentiation, and execution continues.

If overflow occurs, the "Overflow” error message is displayed, machine
infinity with the algebraically correct sign is supplied as the result, and
execution continues.

Relational Operators

Relational operators are used to compare two values. The result of the
comparison is either "true” (—1) or "false” (0). This result may then be
used to make a decision regarding program flow. (See IF, Chapter 3.)

Operator Relation Tested Expression
= Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than x>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See LET,
Chapter 3.)

When arithmetic and relational operators are combined in one ex-
pression, the arithmetic is always performed first. For example, the

expression
X+Y < (T-1)/2

is true if the value of X plus Y is less than the value of T-1 divided by
Z. More examples:

IF SIN(X)<0 GOTO 1000
IF 1MOD J <> O THEN K=K+1

Logical Operators

Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns a bitwise result
which is either “true” (not zero) or "false” (zero). In an expression,
logical operations are performed after arithmetic and relational oper-
ations. The outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of precedence.

NOT

NOT X
0
1

(=N

AND
XANDY

OO =
OO M
OOO M

OR
XORY

OO =g
OO
O =t kb b

XOR
XXORY

OO =g
OO M
O = O

4-20

IMP

X Y X IMPY
1 1 1
1 0 0
0 1 1
0 0 1
EQV
X Y XEQVY
1 1 1
1 0 0
0 1 0
0 0 1

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a true or false value to be used in a decision (see IF, Chapter 3).
For example:

IF D<200 AND F<4 THEN 80
IF 1>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to sixteen bit,
signed, two’s complement integers in the range —32768 to +32767. (If
the operands are not in this range, an error results.) If both operands are
supplied as 0 or —1, logical operators return 0 or —1. The given oper-
ation is performed on these integers in bitwise fashion, i.e., each bit of
the result is determined by the corresponding bits in the two operands.
Thus, it is possible to use logical operators to test bytes for a particular
bit pattern. For instance, the AND operator may be used to “mask” all
but one of the bits of a status byte at a machine I/0 port. The OR
operator may be used to “merge” two bytes to create a particular binary
value. The following examples will help demonstrate how the logical
operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

—1 AND 8=8 —1 = binary 1111111111111111 and
8 = binary 1000,s0 —1 AND 8 = 8
4 OR2=6 4 = binary 100 and 2 = binary 10,

80 4 OR 2 = 6 (binary 110)

4-21

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

—10R —2=-1 —1 = binary 1111111111111111 and
—2 = binary 1111111111111110,
so —1 OR —2 = —1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two’s complement representation of —1.

NOT X=—(X+1) The two’s complement of any integer
is the bit complement plus one.

Functional Operators

A function is used in an expression to call a predetermined operation
that is to be performed on an operand. BASIC-80 has “intrinsic” func-
tions that reside in the system, such as SQR (square root) or SIN (sine).
All of BASIC-80’s intrinsic functions are described in Chapter 4. BASIC-
80 also allows "user defined” functions that are written by the program-
mer. See DEF FN, Chapter 3.

String Operations
Strings may be concatenated using +. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$

30 PRINT "NEW ~ + A$ + B$
RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that are
used with numbers:

= <> < > <K= >=
String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the ASCII codes differ, the lower code
number precedes the higher. If, during string comparison, the end of one
string is reached, the shorter string is said to be smaller. Leading and
trailing blanks are significant. Examples:

"AA" < "AB"

"FILENAME" = "FILENAME"

Y& > K#

“CL * > "CL”

"kg” > "KG”

4-22

"SMYTH” < "SMYTHE"
B$ < *9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values or to alphabe-
tize strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

INPUT EDITING

If an incorrect character is entered as a line is being typed, it can be
deleted with the RUBOUT (Control-A) key or with Control-H. Rubout or
Control-A surrounds the deleted character(s) with backslashes, and Con-
trol-H has the effect of backspacing over a character and erasing it. Once
a character(s) has been deleted, simply continue typing the line as de-
sired.

To delete a line that is in the process of being typed, type Control-X. A
carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. BASIC-80 will auto-
matically replace the old line with the new line.

More sophisticated editing capabilities are provided. See EDIT, Chap-
ter 3.

To delete the entire program that is currently residing in memory,
enter the NEW command. (See Chapter 3) NEW is usually used to clear
memory prior to entering a new program.

ERROR MESSAGES

If BASIC-80 detects an error that causes program execution to termi-
nate, an error message is printed. For a complete list of BASIC-80 error
codes and error messages, see Appendix E.

4-23

CHAPTER 3

BASIC-80 COMMANDS AND
STATEMENTS

All of the BASIC-80 commands and statements are described in this
chapter. Each description is formatted as follows:

Syntax: Shows the correct syntax for the instruction. See below for

syntax notation.

Purpose: Tells what the instruction is used for.
Remarks: Describes in detail how the instruction is used.
Example: Shows sample programs or program segments that demon-

strate the use of the instruction.

Syntax Notation

Wherever the syntax for a statement or command is given, the follow-
ing rules apply:

1.
2.

Items in capital letters must be input as shown.

Items in lower case letters enclosed in angle brackets (< >) are
to be supplied by the user.

Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square brackets (i.e.,

6.

7.

commas, parentheses, semicolons, hyphens, equal signs) must be
included where shown.

Items followed by an ellipsis (...) may be repeated any number of
times (up to the length of the line).

Items separated by a vertical bar (|) are mutually exclusive;
choose one.

All reserved words must be preceded by and followed by a space.

AUTO
Syntax: AUTO [<line number>[,<increment>]]
Purpose: To generate a line number automatically after every car-

riage return.

4-24

TN

Remarks:

Example:

BEEP
Syntax:
Purpose:

Remarks:

Example:

CALL
Syntax:
Purpose:

Syntax 2:

Purpose:

Remarks:

AUTO begins numbering at <line number> and incre-
ments each subsequent line number by <increment>. The
default for both values is 10. If <line number> is followed
by a comma but <increment> is not specified, the last incre-
ment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being
used, an asterisk is printed after the number to warn the
user that any input will replace the existing line. However,
typing a carriage return immediately after the asterisk will
save the line and generate the next line number.

AUTO isterminated by typing Control-C. The line in which
Control-C is typed is not saved. After Control-C is typed,
BASIC returns to command level.

AUTO 100,50 Generates line numbers 100, 150, 200 ...
AUTO Generates line numbers 10, 20, 30, 40 ...

BEEP <pitch>, <duration>
To create a tone of specified pitch and duration.
0 is the highest <pitch>; 255 is the lowest.

0 is the shortest <duration>; 255 is the longest. A <dura-
tion> of 255 lasts approximately 1 second.

BEEP is intended for sound effects purposes. No attempt
has been made to match specific <pitches> or <durations>
with specific musical notes or note lengths.

10 BEEP PDL(0), PDL(1): GOTO 10

CALL <variable name>[(<argument list>)]

To call a Z-80 assembly language subroutine.

CALL 9% <variable name>[(<argument>)]

To call a 6502 assembly language subroutine.

The CALL statement is one way to transfer program flow
to an assembly language subroutine. (See also the USR
function, Chapter 4)

<variable name> contains an address that is the starting
point in memory of the subroutine. <variable name> may
not be an array variable name. <argument list> contains

4-25

Example:

CHAIN
Syntax:

Purpose:

Remarks:

the arguments that are passed to the assembly language
subroutine.

In Syntax 2, the per cent symbol (%) preceding the <varia-
ble name> allows the CALL statement to call a 6502 assem-
bly language subroutine.

A 6502 subroutine call may have up to three parameters of
one byte each. The first (if any) value is placed in the 6502
A register, the next in the X register and the last in the Y
register.

The CALL statement generates the same calling sequence
used by Microsoft’s FORTRAN, COBOL and BASIC com-
pilers.

110 MYROUT=&HDOOO
120 CALL MYROUT

130 BELL=&HFF3A
140 CALL % BELL

CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL][,DELETE<range>]

To call a program and pass variables to it from the current
program.

<filename> is the name of the program that is called. Ex-
ample:
CHAIN"PROG1~

<line number exp> is a line number or an expression that

evaluates to a line number in the called program. It is the

starting point for execution of the called program. If it is

omitted, execution begins at the first line. Example:
CHAIN"PROG1*,1000

<line number exp> is not affected by a RENUM command.

With the ALL option, every variable in the current pro-
gram is passed to the called program. If the ALL option is
omitted, the current program must contain a COMMON
statement to list the variables that are passed. See COM-
MON statement. Example:

CHAIN-PROG1*,1000,ALL

If the MERGE option is included, it allows a subroutine to
be brought into the BASIC program as an overlay. That is,

4-26

NOTE:

CLEAR
Syntax:
Purpose:

Remarks:

NOTE:

Examples:

CLOSE
Syntax:

a MERGE operation is performed with the current pro-
gram and the called program. The called program must be
an ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY*,1000

After an overlay is brought in, it is usually desirable to
delete it so that a new overlay may be brought in. To do
this, use the DELETE option. Example:

CHAIN MERGE"OVRLAY2*,1000,DELETE 1000-5000

The line numbers in <range> are affected by the RENUM
command.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the
chained program. That is, any DEFINT, DEFSNG,
DEFDBL, DEFSTR, or DEFFN statements containing
shared variables must be restated in the chained program.

CLEAR [,[<expressionl>][,<expression2>]]

To set all numeric variables to zero and all string variables
to null; and, optionally, to set the end of memory and the
amount of stack space.

<expressionl> is a memory location which, if specified,
sets the highest location available for use by BASIC-80.

<expression2> sets aside stack space for BASIC. The de-
fault is 256 bytes or one-eighth of the available memory,
whichever is smaller.

In previous versions of BASIC-80, <expressionl> set the
amount of string space, and <expression2> set the end of
memory. BASIC-80, release 5.0 and later, allocates string
space dynamically. An "Out of string space” error occurs
only if there is no free memory left for BASIC to use.

CLEAR

CLEAR ,32768
CLEAR ,,2000
CLEAR,32768,2000

CLOSE[# I<file number>[,[#]<file number...>]

4-27

Purpose:
Remarks:

Example:

COLOR
Syntax:

Purpose:

Remarks:

Example:

To conclude I/0 to a disk file.

<file number> is the number under which the file was
OPENed. A CLOSE with no arguments closes all open files.

The association between a particular file and file number
terminates upon execution of a CLOSE. The file may then
be reOPENed using the same or a different file number;
likewise, that file number may now be reused to OPEN any
file.

A CLOSE for a sequential output file writes the final buffer
of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does not close
disk files.)

See Appendix B.

COLOR = <color number>
where <color number> is an integer in the range 0-15.

To set the color for plotting in low resolution graphics
mode.

The colors available and their numbers are:

0 black 8 brown
1 magenta 9 orange
2 dark blue 10 gray
3 purple 11 pink
4 dark green 12 green
5 gray 13 yellow
6 medium blue 14 aqua
7 light blue 15 white

<color number> may be specified in the GR statement.
(See GR). If it is not specified in GR it is set to zero when
GR is set until another color is specified with the COLOR
statement.

To find out the COLOR of a given point on the screen, use
the SCRN function.

COLOR may be used in low resolution graphics mode only.

10 GR
20 COLOR=13

4-28

COMMON
Syntax:
Purpose:
Remarks:

Example:

CONT
Syntax:
Purpose:

Remarks:

Example:

DATA

Syntax:
.

COMMON <list of variables>
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with the
CHAIN statement. COMMON statements may appear any-
where in a program, though it is recommended that they
appear at the beginning. The same variable cannot appear
in more than one COMMON statement. Array variables
are specified by appending "()* to the variable name. If all
variables are to be passed, use CHAIN with the ALL option
and omit the COMMON statement.

100 COMMON AB,C,D(),G$
110 CHAIN "PROG3",10

CONT

To continue program execution after a Control-C has been
typed, or a STOP or END statement has been executed.

Execution resumes at the point where the break occurred.
If the break occurred after a prompt from an INPUT state-
ment, execution continues with the reprinting of the
prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debug-
ging. When execution is stopped, intermediate values may
be examined and changed using direct mode statements.
Execution may be resumed with CONT or a direct mode
GOTO, which resumes execution at a specified line number.
CONT may also be used to continue execution after an
error.

CONT is invalid if the program has been edited during the
break.

See example for STOP statement.

DATA <list of constants>

4-29

Purpose:

Remarks:

Example:

DEF FN
Syntax:
Purpose:
Remarks:

To store the numeric and string constants that are ac-
cessed by the program’s READ statement(s). (See READ.)

DATA statements are nonexecutable and may be placed
anywhere in the program. A DATA statement may contain
as many constants as will fit on a line (separated by com-
mas), and any number of DATA statements may be used in
a program. The READ statements access the DATA state-
ments in order (by line number) and the data contained
therein may be thought of as one continuous list of items,
regardless of how many items are on a line or where the
lines are placed in the program.

<list of constants> may contain numeric constants in any
format, i.e., fixed point, floating point or integer. (No nu-
meric expressions are allowed in the list.) String constants
in DATA statements must be surrounded by double quota-
tion marks only if they contain commas, colons or signifi-
cant leading or trailing spaces. Otherwise, quotation marks
are not needed.

The variable type (numeric or string) given in the READ
statement must agree with the corresponding constant in
the DATA statement.

DATA statements may be reread from the beginning by
use of the RESTORE statement.

See examples for READ statement.

DEF FN<name>[(<parameter list>)] = <function definition>
To define and name a function that is written by the user.

<name> must be a legal variable name. This name, preced-
ed by FN, becomes the name of the function. <parameter
list> is comprised of those variable names in the function
definition that are to be replaced when the function is
called. The items in the list are separated by commas.
<function definition> is an expression that performs the
operation of the function. It is limited to one line. Variable
names that appear in this expression serve only to define
the function; they do not affect program variables that
have the same name. A variable name used in a function
definition may or may not appear in the parameter list. If
it does, the value of the parameter is supplied when the
function is called. Otherwise, the current value of the varia-

ble is used. '

4-30

The variables in the parameter list represent, on a one-to-
one basis, the argument variables or values that will be
given in the function call.

User-defined functions may be numeric or string. If a type
is specified in the function name, the value of the ex-
pression is forced to that type before it is returned to the
calling statement. If a type is specified in the function name
and the argument type does not match, a "Type mismatch”
€rror occurs.

A DEF FN statement must be executed before the function
it defines may be called. If a function is called before it has
been defined, an “Undefined user function” error occurs.
DEF FN is illegal in the direct mode.

Example:
410 DEF FNAB(X,Y)=X13/Y12
420 T=FNAB(l,J)
Line ;110 defines the function FNAB. The function is called
in line 420.

DEFINT/SNG/DBL/STR

Syntax: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Purpose: To declare variable types as integer, single precision, dou-
ble precision, or string.

Remarks: A DEFtype statement declares that the variable names
beginning with the letter(s) specified will be that type varia-
ble. However, a type declaration character always takes
precedence over a DEFtype statement in the typing of a
variable.

If no type declaration statements are encountered, BASIC-
80 assumes all variables without declaration characters are
single precision variables.

Examples: 10 DEFDBL L-P All variables beginning with the letters

L, M, N, O, and P will be double precision
variables.

10 DEFSTR A All variables beginning with the letter A
will be string variables.

4-31

10 DEFINT I-N,W-Z
All variable beginning with the letters I,
J,K,L, M, N, W, X, Y, Z will be integer
variables.

DEF USR
Syntax: DEF USR[<digit>]=<integer expression>

Purpose: To specify the starting address of an assembly language
subroutine.

Remarks: <digit> may be any digit from 0 to 9. The digit corresponds
to the number of the USR routine whose address is being
specified. If <digit> is omitted, DEF USRO is assumed. The
value of <integer expression> is the starting address of the
USR routine. See Appendix C, Assembly Language Subrou-
tines.

Any number of DEF USR statements may appear in a pro-

gram to redefine subroutine starting addresses, thus allow-
ing access to as many subroutines as necessary.

Example:
200 DEF USRO=24000
210 X=USRO(Yt2/2.89)
DEL
Syntax: DEL[<line number>][-<line number>]

Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a DEL is
executed. If <line number> does not exist, an "Illegal func-
tion call” error occurs.

DELETE may be used in place of DEL. DEL entered in a
program will list as DELETE.

Examples: DEL 40 Deletes line 40
DEL 40-100 Deletes lines 40 through
100, inclusive
DEL-40 Deletes all lines up to

and including line 40

4-32

DIM
Syntax:
Purpose:

Remarks:

Example:

EDIT
Syntax:
Purpose:

Remarks:

DIM <list of subscripted variables>

To specify the maximum values for array variable sub-
scripts and allocate storage accordingly.

If an array variable name is used without a DIM state-
ment, the maximum value of its subscript(s) is assumed to
be 10. If a subscript is used that is greadter than the max-
imum specified, a "Subscript out of range” error occurs.
The minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE statement (see
OPTION BASE).

The DIM statement sets all the elements of the specified
arrays to an initial value of zero.

10 DIM A(20)

20 FORI=0TO 20
30 READ A()

40 NEXT 1

EDIT <line number>
To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of a line without
retyping the entire line. Upon entering Edit Mode, BASIC-
80 types the line number of the line to be edited, then it
types a space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the cursor or to
insert, delete, replace, or search for text within a line. The
subcommands are not echoed. Most of the Edit Mode sub-
commands may be preceded by an integer which causes the
command to be executed that number of times. When a
preceding integer is not specified, it is assumed to be 1.

Edit Mode subcommands may be categorized according to
the following functions:

4-33

Moving the cursor
Inserting text
Deleting text
Finding text
Replacing text
Ending and restarting Edit Mode
NOTE
In the descriptions that follow, <ch> represents any
character, <text> represents a string of characters
of arbitrary length, [i] represents an optional integer

(the default is 1), and $ represents the Escape (or
Altmode) key.

1. Moving the Cursor

Space Use the space bar to move the cursor to the right.
[i]Space moves the cursor i spaces to the right. Charac-
ters are printed as you space over them.

IS S o

— In Edit Mode, [i]moves the cursor i spaces to the left
(backspaces). Characters are printed as you backspace
over them.

2. Inserting Text

| I<text>$ inserts <text> at the current cursor position.
The inserted characters are printed on the terminal. To
terminate insertion, type Escape. If Carriage Return is
typed during an Insert command, the effect is the same
as typing Escape and then Carriage Return. During an
Insert command, the Rubout (Control-A) or left arrow
(<) key on the terminal may be used to delete characters
to the left of the cursor. If an attempt is made to insert
a character that will make the line longer than 255 char-
acters, a bell (Control-G) is typed and the character is not
printed.

X The X subcommand is used to extend the line. X moves
the cursor to the end of the line, goes into insert mode,
and allows insertion of text as if an Insert command had
been given. When you are finished extending the line,
type Escape or Carriage Return.

3. Deleting Text
D [iID deletes i characters to the right of the cursor. The ’

4-34

deleted characters are echoed between backslashes, and
the cursor is positioned to the right of the last character
deleted. If there are fewer than i characters to the right
of the cursor, iD deletes the remainder of the line.

H deletes all characters to the right of the cursor and
then automatically enters insert mode. H is useful for
replacing statements at the end of a line.

Finding Text

S

The subcommand [i]S<ch> searches for the ith occur-
rence of <ch> and positions the cursor before it. The
character at the current cursor position is not included
in the search. If <ch> is not found, the cursor will stop
at the end of the line. All characters passed over during
the search are printed.

The subcommand [iJK<ch> is similar to [i]S<ch>, except
all the characters passed over in the search are deleted.
The cursor is positioned before <ch>, and the deleted
characters are enclosed in backslashes.

Replacing Text

c

The subcommand C<ch> changes the next character to
<ch>. If you wish to change the next i characters, use
the subcommand iC, followed by i characters. After the
ith new character is typed, change mode is exited and
you will return to Edit Mode.

Ending and Restarting Edit Mode

<er>

Typing Carriage Return prints the remainder of the
line, saves the changes you made and exits Edit Mode.

The E subcommand has the same effect as Carriage Re-
turn, except the remainder of the line is not printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that were made
to the line during Edit Mode.

The L subcommand lists the remainder of the line (sav-
ing any changes made so far) and repositions the cursor
at the beginning of the line, still in Edit Mode. L is
usually used to list the line when you first enter Edit
Mode.

The A subcommand lets you begin editing a line over
again. It restores the original line and repositions the
cursor at the beginning.

4-35

NOTE

If BASIC-80 receives an unrecognizable command
or illegal character while in Edit Mode, it prints a

bell (Control-G) and the command or character is
ignored.

Syntax Errors

When a Syntax Error is encountered during execution of
a program, BASIC-80 automatically enters Edit Mode at
the line that caused the error. For example:

10 K = 2(4)

RUN

?Syntax error in 10
10

When you finish editing the line and type Carriage Return
(or the E subcommand), BASIC-80 reinserts the line, which
causes all variable values to be lost. To preserve the varia-
ble values for examination , first exit Edit Mode with the
Q subcommand. BASIC-80 will return to command level,
and all variable values will be preserved.

Control-A

To enter Edit Mode on the line you are currently typing,
type Control-A. BASIC-80 responds with a carriage return,
an exclamation point (!) and a space. The cursor will be
positioned at the first character in the line. Proceed by
typing an Edit Mode subcommand.

NOTE

Remember, if you have just entered a line and wish
to go back and edit it, the command "EDIT ." will
enter Edit Mode at the current line. (The line num-
ber symbol ".” always refers to the current line.)

END
Syntax: END

Purpose: To terminate program execution, close all files and return
to command level.

Remarks: END statements may be placed anywhere in the program
to terminate execution. Unlike the STOP statement, END
does not cause a BREAK message to be printed. An END
statement at the end of a program is optional. BASIC-80 —~

4-36

Example:

ERASE
Syntax:
Purpose:

Remarks:

Example:

always returns to command level after an END is executed.
520 IF K>1000 THEN END ELSE GOTO 20

ERASE <list of array variables>
To eliminate arrays from a program.

Arrays may be redimensioned after they are ERASEd, or
the previously allocated array space in memory may be
used for other purposes. If an attempt is made to redimen-
sion an array without first ERASEing it, a “Redimensioned
array"” error occurs.

450 ERASE A,B
460 DIM B(99)

ERR AND ERL VARIABLES

When an error handling subroutine is entered, the varia-
ble ERR contains the error code for the error, and the
variable ERL contains the line number of the line in which
the error was detected. The ERR and ERL variables are
usually used in IF..THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a direct mode
statement, ERL will contain 65535. To test if an error oc-
curred in a direct statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR = error code THEN ...

IF ERL = line number THEN ...

If the line number is not on the right side of the relational
operator, it cannot be renumbered by RENUM. Because
ERL and ERR are reserved variables, neither may appear
to the left of the equal sign in a LET (assignment) state-
ment. BASIC-80’s error codes are listed in Appendix E.

4-37

ERROR
Syntax:
Purpose:

Remarks:

Example 1:

Example 2:

ERROR <integer expression>

1) To simulate the occurrence of a BASIC-80 error; or 2)
to allow error codes to be defined by the user.

The value of <integer expression> must be greater than 0
and less than 255. If the value of <integer expression>
equals an error code already in use by BASIC-80 (see Ap-
pendix E), the ERROR statement will simulate the occur-
rence of that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that is greater
than any used by BASIC-80's error codes. (It is preferable
to use the highest available values, so compatibility may be
maintained when more error codes are added to BASIC-80.)
This user-defined error code may then be conveniently han-
dled in an error trap routine. (See Example 2.)

If an ERROR statement specifies a code for which no error
message has been defined, BASIC-80 responds with the
message UNPRINTABLE ERROR. Execution of an ER-
ROR statement for which there is no error trap routine
causes an error message to be printed and execution to halt.

LIST

10S =10

20T =5

30 ERRORS + T

40 END

Ok

RUN

String too long in iine 30

Or, in direct mode:

Ok

ERROR 15 (you type this line)

String too long (BASIC-80 types this line)
Ok

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";8
130 IF B > 5000 THEN ERROR 210

4-38

FIELD

Syntax:
Purpose:

Remarks:

Example:

NOTE:

FILES
Syntax:

4.00 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

FIELD[#]<file number>, <field width> AS <string variable>...
To allocate space for variables in a random file buffer.

To get data out of a random buffer after a GET or to enter
data before a PUT, a FIELD statement must have been
executed. <file number> is the number under which the file
was OPENed. <field width> is the number of characters to
be allocated to <string variable>. For example,

FIELD 1, 20 AS N§, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file
buffer to the string variable N$, the next 10 positions to
ID$, and the next 40 positions to ADD$. FIELD does NOT
place any data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD statement
must not exceed the record length that was specified when
the file was OPENed. Otherwise, a "Field overflow” error
occurs. (The default record length is 128.) Any number of
FIELD statements may be executed for the same file, and
all FIELD statements that have been executed are in effect
at the same time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT or
LET statement. Once a variable name is FIELDed, it
points to the correct place in the random file buffer. If a
subsequent INPUT or LET statement with that variable
name is executed, the variable’s pointer is moved to string
space.

FILES[<filename>]

4-39

Purpose: To print the names of files residing on the current disk.

Remarks: If <filename> is omitted, all the files on the currently se-
lected drive will be listed. <filename> is a string formula
which may contain question marks (?) to match any char-
acter in the filename or extension. An asterisk (*) as the
first character of the filename or extension will match any
file or any extension.

Examples: FILES
FILES ~*.BAS”
FILES "B:*.*"
FILES “TEST?.BAS”

FOR..NEXT

Syntax: FOR <variable>=x TO y [STEP z]
NEXT [<variable>][,<variable>...]
where x, y and z are numeric expressions.

Purpose: To allow a series of instructions to be performed in a loop
a given number of times.

Remarks: <variable> is used as a counter. The first numeric ex-

pression (x) is the initial value of the counter. The second
numeric expression (y) is the final value of the counter. The
program lines following the FOR statement are executed
until the NEXT statement is encountered. Then the counter
is incremented by the amount specified by STEP. A check
is performed to see if the value of the counter is now
greater than the final value (y). If it is not greater, BASIC-
80 branches back to the statement after the FOR statement
and the process is repeated. If it is greater, execution con-
tinues with the statement following the NEXT statement.
This is a FOR...NEXT loop. If STEP is not specified, the
increment is assumed to be one. If STEP is negative, the
final value of the counter is set to be less than the initial
value. The counter is decremented each time through the
loop, and the loop is executed until the counter is less than
the final value.

The body of the loop is skipped if the initial value of the
loop times the sign of the step exceeds the final value times
the sign of the step.

4-40

Example 1:

Example 2:

Example 3:

There must be one and only one NEXT for every FOR.

Nested Loops

FOR..NEXT loops may be nested, that is, a FOR..NEXT
loop may be placed within the context of another FOR..-
.NEXT loop. When loops are nested, each loop must have
a unique variable name as its counter. The NEXT state-
ment for the inside loop must appear before that for the
outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them if the
variable for each FOR is specified in the NEXT.

The variable(s) in the NEXT statement may be omitted, in
which case the NEXT statement will match the most recent
FOR statement. If a NEXT statement is encountered before
its corresponding FOR statement, a "NEXT without FOR"
error message is issued and execution is terminated.

10 K=10

20 FOR I=1 TO K STEP 2
30 PRINT |;

40 K=K+10

50 PRINT K

60 NEXT

RUN

9&0\10’10\)-—-
L5
o

10 J=0

20 FORI=1TOJ

30 PRINT {

40 NEXT |

In this example, the loop does not execute because the
initial value of the loop exceeds the final value.

10 1=5
20 FOR =1 TO I1+5
30 PRINT §;
40 NEXT
RUN
12345678910
Ok
In this example, the loop executes ten times. The final val-
ue for the loop variable is always set before the initial value

4-41

Example 4:

is set. (Note: Previous versions of BASIC-80 set the initial
value of the loop variable before setting the final value; i.e.,
the above loop would have executed six times.)

10 FOR I=1 TO 20

20 IF | 10 GOTO 100

30 NEXT

40 GOTO 110

100 NEXT

110 END
This program would result in a NEXT without FOR error.
There may be one and only one NEXT for every FOR.

GET

Syntax 1: GET [#]<file number>[,<record number>]

Purpose 1: To read a record from a random disk file into a random
buffer.

Syntax 2. GET <keyboard character>

Purpose 2: To read a single character from the keyboard.

Remarks: Syntax 1: <file number> is the number under which the

file was OPENed. If <record number> is omitted, the next
record (after the last GET) is read into the buffer. The
largest possible record number 32767. After a GET state-
ment, INPUT# and LINE INPUT# may be done to read
characters from the random file buffer.
Syntax 2: <keyboard character> is not displayed on the
screen. It is not necessary to press the RETURN key. If
Control @ is the <keyboard character>, it returns the null
character. The result of GETting a left-arrow or Control H
may also PRINT as if the null character were being re-
turned.

Examples: For examples of syntax 1, see Appendix B.

Syntax 2
10 GET A$:PRINT A$;
20 GOTO 10
GOSUB...RETURN
Syntax:

GOSUB <line number>

RETURN
4-42

Purpose:

Remarks:

Example:

GOTO
Syntax:
Purpose:

Remarks:

Example:

To branch to and return from a subroutine.
<line number> is the first line of the subroutine.

A subroutine may be called any number of times in a pro-
gram, and a subroutine may be called from within another
subroutine. Such nesting of subroutines is limited only by
available memory.

The RETURN statement(s) in a subroutine cause BASIC-
80 to branch back to the statement following the most re-
cent GOSUB statement. A subroutine may contain more
than one RETURN statement, should logic dictate a return
at different points in the subroutine. Subroutines may ap-
pear anywhere in the program, but it is recommended that
the subroutine be readily distinguishable from the main
program. To prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO statement
that directs program control around the subroutine. Also,
see POP.

10 GOsuB 40

20 PRINT "BACK FROM SUBROUTINE”
30 END

40 PRINT "SUBROUTINE";
50 PRINT ~ IN*;

60 PRINT * PROGRESS”
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

GOTO <line number>

To branch unconditionally out of the normal program se-
quence to a specified line number.

If <line number> is an executable statement, that state-
ment and those following are executed. If it is a nonexecu-
table statement, execution proceeds at the first executable
statement encountered after <line number>.

LIST
10 READ R
20 PRINT "R =";R,

4-43

GR
Syntax:

Purpose:
Remarks:

Examples:

HLIN
Syntax:

30 A = 3.14*Rs2
40 PRINT "AREA ="A

50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R=5 AREA = 78.5
R=7 AREA = 153.86
R =12 AREA = 452.16
70ut of data in 10

Ok

GR <screen number>, <color number>
where <screen number> is an integer in the range 0-1 and
<color number> is an integer in the range 0-15.

To initialize low-resolution graphics mode.
<screen number> specifies the mode to be used as follows:

number screen mode
0 40x40 graphics + 4 lines text
1 40x48 graphics with no lines text

If <screen number> is not specified, <screen number> =
0 is assumed.

GR clears the screen when it initializes low-resolution
graphics mode.

<color number> specifies the color to be used and is option-
al. If <color number> is not specified, color is set to black.
<color number> will fill the screen with the color specified
by <color number>. See COLOR for a list of color names
and their associated numbers.

GR Same as Applesoft GR statement
GR 1,15 Fill screen with white and set 40x48 mode

NOTE THAT THIS STATEMENT MAY BE USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT.

HLIN <x1 coordinate>, <x2 coordinate> AT <ycoordinate>
where x1 and x2 are integers in the range 0-39
and y is an integer in the range 0-47.

4-44

Purpose:

Remarks:

Example:

HOME
Syntax:
Purpose:

Remarks:

Example:

HTAB
Syntax:
Purpose:

Remarks:

In low resolution graphics mode, to draw a horizontal line
from point (x1,y) to point (x2,y).

<x1 coordinate> must be less than or equal to <x2 coor-
dinate>.

The color of the line is specified by the most recently ex-
ecuted COLOR statement.

If any of the coordinates are not in the required range as
specified above, an ILLEGAL FUNCTION CALL error re-
sults.

The HLIN statement normally draws a line composed of
dots from x1 to x2 at the vertical coordinate y. However, if
used when in TEXT mode, or when in mixed graphics and
text mode with y in the range 40-47, a line of characters is
displayed instead of the line of dots.

10 GR
20 COLOR=3
30 HLIN 14,20 AT 39

HOME

To clear the screen of all text and move the cursor to the
upper left corner of the screen.

When used with an external terminal, HOME sends a
"clear screen” character sequence to terminals that sup-
port this feature.

10 HOME
20 VTAB 12
30 PRINT "A CLEAN SCREEN"

HTAB <screen position number>

To move the cursor to the screen position that is <screen
position number> spaces from the left edge of the current
screen line.

The first (left-most) position on the line is 1, the last (right-
most) position on the line is 40.

HTAB uses absolute moves, not relative moves. For in-
stance, if the cursor was at position 10, and the command

4-45

IF.. THEN
Syntax:

Syntax:
Purpose:

Remarks:

HTAB 13 was executed, the cursor would be moved to posi-
tion 13, not position 23.

If a <screen position number> greater than 40 but less
than 255 is specified, it will be treated modulo 40. The com-
mand HTAB 60 would place the cursor at position 20 on the
current line. A <screen position number> greater than 255
results in an ILLEGAL FUNCTION CALL error.

..ELSE AND IF..GOTO

IF <expression> THEN <statement(s)> | <line number>

[ELSE <statement(s)> | <line number>}

IF <expression> GOTO <line number>
[ELSE <statement(s)> | <line number>]

To make a decision regarding program flow based on the
result returned by an expression.

If the result of <expression> is not zero, the THEN or
GOTO clause is executed. THEN may be followed by either
a line number for branching or one or more statements to
be executed. GOTO is always followed by a line number. If
the result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if present, is execut-
ed. Execution continues with the next executable state-
ment. A comma may be used before THEN.

Nesting of IF Statements
IF..THEN..ELSE statements may be nested. Nesting is
limited only by the length of the line. For example
IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN” ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the
same number of ELSE and THEN clauses, each ELSE is
matched with the closest unmatched THEN. For example

IF A=B THEN iF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C*

will not print "A<>C"” when A<>B.

If an IF..THEN statement is followed by a line number in
the direct mode, an "Undefined line” error results unless a
statement with the specified line number had previously
been entered in the indirect mode.

4-46

NOTE:

Example 1:

Example 2:

Example 3:

INPUT
Syntax:

Purpose:

Remarks:

When using IF to test equality for a value that is the result
of a floating point computation, remember that the internal
representation of the value may not be exact. Therefore,
the test should be against the range over which the accura-
cy of the value may vary. For example, to test a computed
variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...
This test returns true if the value of A is 1.0 with a relative
error of less than 1.0E-6.

200 IF | THEN GET#1,
This statement GETs record number I if I is not zero.

100 IF(1<20)*(1>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE”

In this example, a test determines if I is greater than 10
and less than 20. If I is in this range, DB is calculated and
execution branches to line 300. If I is not in this range,
execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the
terminal or the line printer, depending on the value of a
variable (IOFLAG). If IOFLAG is zero, output goes to the
line printer, otherwise output goes to the terminal.

INPUT[;][<"prompt string”>;]<list of variables>
INPUT[;][<"prompt string”>,]<list of variables>

To allow input from the terminal during program execu-
tion.

When an INPUT statement is encountered, program exe-
cution pauses and the program waits for information to be
typed in at the terminal. If <”prompt string”> is included,
the string is printed. The required data items are then
entered at the terminal.

Note that unlike Applesoft, you have the option of enter-
ing either a semicolon or comma after the <"prompt
string”>. Like Applesoft, a semicolon causes a question
mark to be printed after the <”prompt string”>. A comma
after the <"prompt string” > causes the question mark to be
suppressed.

4-47

Example 1:

Example 2:

If INPUT is immediately followed by a semicolon, then the
carriage return typed by the user to input data does not
echo a carriage return/line feed sequence.

The data items that are entered are assigned to the varia-
ble(s) given in <variable list>. The number of data items
supplied must be the same as the number of variables in the
list. Data items are separated by commas.

The variable names in the list may be numeric or string
variable names (including subscripted variables). The type
of each data item that is input must agree with the type
specified by the variable name. (Strings input to an INPUT
statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items, or
with the wrong type of value (numeric instead of string,
etc.) causes the messsage "?Redo from start” to be printed.
No assignment of input values is made until an acceptable
response is given.

NOTE THAT THIS STATEMENT IS USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT.

10 INPUT X
20 PRINT X “SQUARED IS” X2
30 END
RUN
? 5 (The 5 was typed in by the user
in response to the question mark.)
5 SQUARED IS 25
Ok

LIST

10 Pi=3.14

20 INPUT “WHAT IS THE RADIUS";R

30 A=PP*Rt2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

Ok

RUN

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

4-48

INPUT#
. Syntax: INPUT # <file number>,<variable list>

Purpose: To read data items from a sequential disk file and assign
them to program variables.

Remarks: <file number> is the number used when the file was
OPENed for input. <variable list> contains the variable
names that will be assigned to the items in the file. (The
variable type must match the type specified by the variable
name.) With INPUT #, no question mark is printed, as with
INPUT.

The data items in the file should appear just as they would
if data were being typed in response to an INPUT state-
ment. With numeric values, leading spaces, carriage re-
turns and line feeds are ignored. The first character encoun-
tered that is not a space, carriage return or line feed is
assumed to be the start of a number. The number termi-
nates on a space, carriage return, line feed or comma.

If BASIC-80 is scanning the sequential data file for a string
item, leading spaces, carriage returns and line feeds are
also ignored. The first character encountered that is not a
space, carriage return, or line feed is assumed to be the
start of a string item. If this first character is a quotation
mark ("), the string item will consist of all characters read
between the first quotation mark and the second. Thus, a
quoted string may not contain a quotation mark as a char-
acter. If the first character of the string is not a quotation
mark, the string is an unquoted string, and will terminate
on a comma, carriage or line feed (or after 255 characters
have been read). If end of file is reached when a numeric
or string item is being INPUT, the item is terminated.

After a GET statement INPUT# and LINE INPUT# may
be done to read characters from the random file buffer.

Example: See Appendix B.

INVERSE
Syntax: INVERSE

Purpose: To set the video output mode so that the screen displays
black characters on a white background.

Remarks: When using an external terminal, INVERSE sends a "Hi-

4-49

Example:

KILL
Syntax:
Purpose:

Remarks:

Example:

LET
Syntax:
Purpose:

Remarks:

Example:

lite” character sequence to those terminals that support
this feature. (See "Installation and Operations Manual.”)

INVERSE does not affect characters that are already on /

the screen when INVERSE is executed.

The NORMAL command restores the mode to the usual
white letters on black background. (See NORMALL.)

10 PRINT "THESE ARE WHITE CHARACTERS”
20 INVERSE
30 PRINT "THESE ARE BLACK CHARACTERS”

KILL <filename>
To delete a file from disk.

If a KILL statement is given for a file that is currently
OPEN, a "File already open” error occurs. KILL is used for
all types of disk files: program files, random data files and
sequential data files.

200 KiLL "DATAL.TXT”
See also Appendix B.

[LET] <variable>= <expression>
To assign the value of an expression to a variable.

Notice the word LET is optional, i.e., the equal sign is suffi-
cient when assigning an expression to a variable name.

110 LETD=12

120 LET E=1212

130 LETF=12+4

140 LET SUM=D+E+F

or
110 D=12
120 E=1212
130 F=12+4
140 SUM=D+E+F

4-50

LINE INPUT

Syntax:
Purpose:

Remarks:

Example:

LINE INPUT[;][<"prompt string”>;]<string variable>

To input an entire line (up to 254 characters) to a string
variable, without the use of delimiters.

The prompt string is a string literal that is printed at the
terminal before input is accepted. A question mark is not
printed unless it is part of the prompt string. All input from
the end of the prompt to the carriage return is assigned to
<string variable>.

If LINE INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to end the input
line does not echo a carriage return/line feed sequence at
the terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type Ok. Typ-
ing CONT resumes execution at the LINE INPUT.

See Example, for LINE INPUT #.

LINE INPUT#

Syntax:
Purpose:

Remarks:

Example:

LINE INPUT # <file number>,<string variable>

To read an entire line (up to 254 characters), without deli-
miters, from a sequential disk data file to a string variable.

<file number> is the number under which the file was
OPENed. <string variable> is the variable name to which
the line will be assigned. LINE INPUT# reads all charac-
ters in the sequential file up to a carriage return. It then
skips over the carriage return/line feed sequence, and the
next LINE INPUT# reads all characters up to the next
carriage return. (If a line feed/carriage return sequence is
encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a data file

has been broken into fields, or if a BASIC-80 program saved
in ASCII mode is being read as data by another program.

After a GET statement, INPUT# and LINE INPUT# may
be done to read characters from the random file buffer.

10 OPEN "0O",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ":C$
30 PRINT #1, C$

4-51

LIST
Syntax 1:
Syntax 2:
or
Purpose:

Remarks:

Examples:

40 CLOSE 1

50 OPEN "1*,1,"LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDA JONES 2344 MEMPHIS
LINDA JONES 2344 MEMPHIS

Ok

LIST [<line number>]

LIST [<line number>[-[<line number>]]]

LIST [<line number>[,[<line number>]]]

To list all or part of the program currently in memory at
the terminal.

BASIC-80 always returns to command level after a LISTis
executed.

Syntax 1: If <line number> is omitted, the program is list-
ed beginning at the lowest line number. (Listing is ter-
minated either by the end of the program or by typing
Control-C.) If <line number> is included, only the specified
line is listed.

Syntax 2: This format allows the following options:

1. If only the first number is specified, that line and all
higher-numbered lines are listed.

2. If only the second number is specified, all lines from
the beginning of the program through that line are
listed.

3. If both numbers are specified, the entire range is listed.

Syntax 1:

LIST Lists the program currently in memory.
LIST 500 Lists line 500.

Format 2:

LIST 150- Lists all lines from 150 to the end.

LIST -1000 Lists all lines from the lowest number

through 1000.
LST 150-1000 Lists lines 150 through 1000, inclusive.

4-52

LLIST
Syntax:
Purpose:

Remarks:

NOTE:

Example:

LOAD
Syntax:
Purpose:
Remarks:

Example:

LLIST [<line number>[-[<line number>]]]

To list all or part of the program currently in memory at
the line printer.

LLIST assumes a 132-character-wide printer.

BASIC-80 always returns to command level after an
LLIST is executed. The options for LLIST are the same as
for LIST, Syntax 2.

Use of LLIST requires that a printer card be plugged into
slot 1 of the Apple.

See the examples for LIST, Syntax 2.

LOAD <filename>[,R]
To load a file from disk into memory.

<filename> is the name that was used when the file was
SAVEd. (With CP/M, the default extension .BAS is sup-
plied.)

LOAD closes all open files and deletes all variables and
program lines currently residing in memory before it loads
the designated program. However, if the "R” option is used
with LOAD, the program is RUN after it is LOADed, and
all open data files are kept open. Thus, LOAD with the "R”
option may be used to chain several programs (or segments
of the same program). Information may be passed between
the programs using their disk data files.

LOAD "STRTRK",R

LPRINT AND LPRINT USING

Syntax:

Purpose:
Remarks:

NOTE:

LPRINT {<list of expressions>]
LPRINT USING <string exp>;<list of expressions>

To print data at the line printer.

Same as PRINT and PRINT USING, except output goes to
the line printer. See PRINT and PRINT USING.

LPRINT assumes a 132-character-wide printer.

Use of LPRINT requires that a printer card be plugged
into slot 1 of the Apple

4-53

LSET AND RSET

Syntax:
Purpose:

Remarks:

Examples:

NOTE:

MERGE
Syntax:
Purpose:

Remarks:

Example:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

To move data from memory to a random file buffer (in
preparation for a PUT statement).

If <string expression> requires fewer bytes than were
FIELDed to <string variable>, LSET leftjustifies the
string in the field, and RSET right-justifies the string.
(Spaces are used to pad the extra positions.) If the string is
too long for the field, characters are dropped from the right.
Numeric values must be converted to strings before they
are LSET or RSET. See the MKI$, MKS$, MKD$ functions.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)
See also Appendix B.

LSET or RSET may also be used with a non-fielded string
variable to left-justify or right-justify a string in a given
field. For example, the program lines

110 A$=SPACE$(20)

120 RSET A$=N$

right-justify the string N§ in a 20-character field. This can
be very handy for formatting printed output.

MERGE <filename>

To merge a specified disk file into the program currently in
memory.

<filename> is the name used when the file was SAVEd.
(With CP/M, the default extension .BAS is supplied.) The
file must have been SAVEd in ASCII format. (If not, a "Bad
file mode” error occurs.)

If any lines in the disk file have the same line numbers as
lines in the program in memory, the lines from the file on
disk will replace the corresponding lines in memory.
(MERGEing may be thought of as "inserting” the program
lines on disk into the program in memory.)

BASIC-80 always returns to command level after execut-
ing a MERGE command.

MERGE "NUMBRS”

4-54

MID$
Syntax:

Purpose:

Remarks:

Example:

NAME
Syntax:
Purpose:

Remarks:

Example:

NEW
Syntax:
Purpose:

MID$(<string expl>,n[,m])= <string exp2>
where nandm are integer expressmns and <string exp1>
and <string exp2> are string expressions.

To replace a portion of one string with another string.

The characters in <string expl>, beginning at position n,
are replaced by the characters in <string exp2>. The op-
tional m refers to the number of characters from <string
exp2> that will be used in the replacement. If m is omitted,
all of <string exp2> is used. However, regardless of
whether m is omitted or included, the replacement of char-
acters never goes beyond the original length of <string
expl>.

10 A$="KANSAS CITY, MO~
20 MID$(AS,14)="KS"

30 PRINT A%

RUN

KANSAS CITY, KS

MID$ may also be used as a function that returns a sub-
string of a given string. See MID$ in Chapter 4.

NAME <old filename> AS <new filename>

To change the name of a disk file.

<old filename> must exist and <new filename> must not
exist; otherwise an error will result. After a NAME com-

mand, the file exists on the same disk, in the same area of
disk space, with the new name.

Ok

NAME ~ACCTS" AS "LEDGER”

Ok

In this example, the file that was formerly named ACCTS
will now be named LEDGER.

NEW

To delete the program currently in memory and clear all
variables.

4-55

Remarks:

NORMAL

Syntax:
Purpose:

Remarks:

Example:

NEW is entered at command level to clear memory before
entering a new program. BASIC-80 always returns to com-
mand level after a NEW is executed.

NORMAL

To restore the video output mode to the usual white char-
acters on black background.

NORMAL is used in conjunction with the INVERSE com-
mand. (See INVERSE.)

NORMAL does not affect characters already on the screen
in INVERSE mode when the NORMAL commangd is ex-
ecuted.

For external terminals that support the “Hi-lite” feature
for INVERSE, NORMAL sends a "Lo-lite” character se-
quence. (See “Installation and Operations Manual.”)

10 INVERSE

20 PRINT "THIS IS INVERSE MODE"
30 NORMAL

40 PRINT "THIS IS NOT"

ON ERROR GOTO

Syntax:
Purpose:

Remarks:

ON ERROR GOTO <line number>

To enable error trapping and specify the first line of the
error handling subroutine.

Once error trapping has been enabled all errors detected,
including direct mode errors (e.g., Syntax errors), will
cause a jump to the specified error handling subroutine. If
<line number> does not exist, an "Undefined line” error
results. To disable error trapping, execute an ON ERROR
GOTO 0. Subsequent errors will print an error message and
halt execution. An ON ERROR GOTO 0 statement that
appears in an error trapping subroutine causes BASIC-80
to stop and print the error message for the error that
caused the trap. It is recommended that all error trapping
subroutines execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

4-56

NOTE:

Example:

If an error occurs during execution of an error handling
subroutine, the BASIC error message is printed and execu-
tion terminates. Error trapping does not occur within the
error handling subroutine.

10 ON ERROR GOTO 1000

NOTE THAT THIS STATEMENT IS USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT

ON...GOSUB AND ON..GOTO

Syntax:

Purpose:

Remarks:

Example:

OPEN
Syntax:
Purpose:

Remarks:

ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

To branch to one of several specified line numbers, depend-
ing on the value returned when an expression is evaluated.

The value of <expression> determines which line number
in the list will be used for branching. For example, if the
value is three, the third line number in the list will be the
destination of the branch. (If the value is a non-integer, the
fractional portion is rounded.)

In the ON...GOSUB statement, each line number in the list
must be the first line number of a subroutine.

If the value of <expression> is zero or greater than the
number of items in the list (but less than or equal to 255),
BASIC continues with the next executable statement. If the
value of <expression> is negative or greater than 255, an
"Illegal function call” error occurs.

100 ON L-1 GOTO 150,300,320,390

OPEN <mode>,[#]<file number>,<filename>[,<reclen>]
To allow I/0 to a disk file.

A disk file must be OPENed before any disk I/0 operation
can be performed on that file. OPEN allocates a buffer for
170 to the file and determines the mode of access that will
be used with the buffer.

<mode> isastring expression whose first character is one
of the following:

0 specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

4-57

<file number> is an integer expression whose value is be-
tween one and fifteen. The number is then associated with
the file for as long as it is OPEN and is used to refer other
disk 170 statements to the file.

<filename> is a string expression containing a name that
conforms to your operating system’s rules for disk file-
names.

<reclen> is an integer expression which, if included, sets
the record length for random files. The default record
length is 128 bytes. See also Appendix A

NOTE: A file can be OPENed for sequential input or random ac-
cess on more than one file number at a time. A file may be
OPENed for output, however, on only one file number at a
time.

Example: 10 OPEN *i*,2,"INVEN"
See also Appendix B.

OPTION BASE

Syntax: OPTION BASE n
where nislor 0

Purpose: To declare the minimum value for array subscripts.

Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have
is one.

PLOT

Syntax: PLOT <x coordinate>, <y coordinate>
where <x coordinate> is an integer in the range 0-39 and
<y coordinate> is an integer in the range 0-47.

Purpose: In low resolution graphics mode, to place a dot with <x
coordinate> and <y coordinate>.

Remarks: The point (0,0) is in the upper left corner of the screen.

The color of the dot placed by PLOT is determined by the
most recently executed COLOR or GR statement.

PLOT normally places a dot at (x,y). However, if PLOT is
used while in TEXT mode, or while in mixed graphics and
text mode with y in the range 40-47, a character is dis-
played instead of a dot.

4-58

Example:

POKE
Syntax:

Purpose:

Remarks:

Example:

POP
Syntax:
Purpose:

Remarks:

If either <x coordinate> or <y coordinate> is not in the
required range as specified above, an ILLEGAL FUNC-
TION CALL error results.

GR
COLOR=9
PLOT 24,37

POKE 1,J
where I and J are integer expressions

To write a byte into a memory location.

The integer expression I is the address of the memory loca-
tion to be POKEd. The integer expression J is the data to
be POKEJ. J must be in the range 0 to 255. I must be in the
range 0 to 65536. Refer to the 6502 to Z-80 Memory Map in
the Hardware Details section of this manual.

The complementary function to POKE is PEEK. The argu-
ment to PEEK is an address from which a byte is to be read.
See PEEK, Chapter 4.

POKE and PEEK are useful for efficient data storage, load-
ing assembly language subroutines, and passing arguments
and results to and from assembly language subroutines.

NOTE: PEEKs and POKEs used in Applesoft will not work
unless they are first converted to use Z-80 addresses. Refer
to the 6502 To Z-80 Memory Map in the Hardware Details
section of this manual.

10 POKE &H5A00,&HFF

POP

To return from a subroutine that was branched to by a
GOSUB without branching back to the statement following
the most recent GOSUB.

POP is used instead of RETURN to nullify a GOSUB. Like
RETURN, it nullifies the last GOSUB in effect, but it does
not return to the statement following the GOSUB. After a
POP, the next RETURN encountered will branch to one
statement beyond the second most recently executed

4-59

Example:

PRINT
Syntax:
Purpose:

Remarks:

GOSUB. Thus POP, in effect, takes one address off the top
of the “stack” of RETURN addresses.

See also GOSUB ... RETURN.

5 PRINT "HERE WE GO"
10 GOSUB 100

20 PRINT “XYZ"

30 END

100 GOSUB 200

110 PRINT "HELLO"
120 RETURN

200 POP

210 RETURN

RUN
HERE WE GO
XYZ

PRINT {<list of expressions>]
To output data at the terminal.

If <list of expressions> is omitted, a blank line is printed.
If <list of expressions> is included, the values of the ex-
pressions are printed at the terminal. The expressions in
the list may be numeric and/or string expressions. (Strings
must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined by the
punctuation used to separate the items in the list. BASIC-
80 divides the line into print zones of 14 spaces each. In the
list of expressions, a comma causes the next value to be
printed at the beginning of the next zone. A semicolon
causes the next value to be printed immediately after the
last value. Typing one or more spaces between expressions
has the same effect as typing a semicolon. If a comma or a
semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing
accordingly.

If the list of expressions terminates without a comma or a
semicolon, a carriage return is printed at the end of the
line. If the printed line is longer than the terminal width,
BASIC-80 goes to the next physical line and continues
printing.

4-60

Example 1:

Example 2:

Printed numbers are always followed by a space. Positive
numbers are preceded by a space. Negative numbers are
preceded by a minus sign. Single precision numbers that
can be represented with 6 or fewer digits in the unscaled
format no less accurately than they can be represented in
the scaled format, are output using the unscaled format.
For example, 101(—6) is output as .000001 and 10+(—7) is
output as 1E—7. Double precision numbers that can be
represented with 16 or fewer digits in the unscaled format
no less accurately than they can be represented in the
scaled format, are output using the unscaled format. For
example, 1D—16 is output as .0000000000000001 and
1D—17 is output as 1D --17.

A question mark may be used in place of the word PRINT
in a PRINT statement.

10 X=5
20 PRINT X+5, X—5, X*(—5), X5
30 END
RUN
10 0 —-25 3125
Ok

In this example, the commas in the PRINT statement
cause each value to be printed at the beginning of the next
print zone.

LIST
10 INPUT X
20 PRINT X "SQUARED IS” X+2 "AND";
30 PRINT X "CUBED IS* X13
40 PRINT
50 GOTO 10
Ok
RUN
?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261
?
In this example, the semicolon at the end of line 20 causes
both PRINT statements to be printed on the same line, and

4-61

Example 3:

line 40 causes a blank line to be printed before the next
prompt.

10 FORX=1TO5

20 J=J+5

30 K=K+10

40 JK;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT statement
cause each value to be printed immediately after the
preceding value. (Don’t forget, a number is always followed
by a space and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of the word
PRINT.

PRINT USING

Syntax:
Purpose:
Remarks
and
Examples:

"\n spaces\”

PRINT USING <string exp>;<list of expressions>
To print strings or numbers using a specified format.

<list of expressions> is comprised of the string expressions
or numeric expressions that are to be printed, separated by
semicolons. <string exp> is a string literal (or variable)
comprised of special formatting characters. These format-
ting characters (see below) determine the field and the for-
mat of the printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three
formatting characters may be used to format the string
field:

Specifies that only the first character in the given string is
to be printed.

Specifies that 2+n characters from the string are to be
printed. If the backslashes are typed with no spaces, two
characters will be printed; with one space, three characters
will be printed, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is longer
than the string, the string will be left-justified in the field
and padded with spaces on the right.

4-62

n&n

Example:

10 A$="LOOK":B$="0UT"

30 PRINT USING "{";A$;B$

40 PRINT USING "\ \"A$;B$
50 PRINT USING "\ \";A$;B$;"!"
RUN

Lo

LOOKOUT

LOOK OUT !

Specifies a variable length string field. When the field is
specified with "&”, the string is output exactly as input.
Example:

10 A$="LOOK":B$="0OUT"
20 PRINT USING *I";AS;

30 PRINT USING "&";B$
RUN

LOuUT

Numeric Fields

When PRINT USING is used to print numbers, the follow-
ing special characters may be used to format the numeric
field:

A number sign is used to represent each digit position.
Digit positions are always filled. If the number to be printed
has fewer digits than positions specified, the number will be
right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the
field. If the format string specifies that a digit is to precede
the decimal point, the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.
PRINT USING "# #.##",.78

0.78

PRINT USING "# # #.# #",987.654
987.65

PRINT USING "# #.## ;10.2,5.3,66.789,.234
10.20 530 66.79 0.23

In the last example, three spaces were inserted at the end
of the format string to separate the printed values on the
line.

4-63

¥

$$

*xg

A plussign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format field will cause nega-
tive numbers to be printed with a trailing minus sign.

PRINT USING " ##.## ",—68.952.4,55.6,—.9
—68.95 +2.40 +5560 —0.90

PRINT USING "# #.##— ",—68.95,22.449,—7.01
68.95— 2245 701-

A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled with
asterisks. The ** also specifies positions for two more digits.

PRINT USING "**#.# ";12.39,-0.9,765.1
*124 *09 765.1

A double dollar sign causes a dollar sign to be printed to
the immediate left of the formatted number. The $$ spe-
cifies two more digit positions, one of which is the dollar
sign. The exponential format cannot be used with $$. Nega-
tive numbers cannot be used unless the minus sign trails to
the right.

PRINT USING "$$# # #.# #",456.78
$456.78

The **$ at the beginning of a format string combines the
effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the
number. **$ specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$# #.# #",2.34
*44$2.34

A comma that is to the left of the decimal point in a format-
ting string causes a comma to be printed to the left of every
third digit to the left of the decimal point. A comma that is
at the end of the format string is printed as part of the
string. A comma specifies another digit position. The com-
ma has no effect if used with the exponential (t111) format.

PRINT USING "# # # #,.# #",1234.5
1,234.50

PRINT USING "# # # #.# #,7,1234.5
1234.50,

4-64

Tt

%

PRINT#
Syntax:
Purpose:
Remarks:

Four carats (or up-arrows) may be placed after the digit
position characters to specify exponential format. The four
carats allow space for E+xx to be printed. Any decimal
point position may be specified. The significant digits are
left-justified, and the exponent is adjusted. Unless a leading
+ or trailing + or — is specified, one digit position will be
used to the left of the decimal point to print a space or a
minus sign.

PRINT USING " # #.# #1111",234.56
2.35E+02

PRINT USING ".# # # #1111-",888888
.B889E+06

PRINT USING "+.# #t111";123
+.12E4+03

An underscore in the format string causes the next char-
acter to be output as a literal character.

PRINT USING "_!# #.##_17,12.34

112.34!
The llteral character itself may be an underscore by plac—
ing "__ __" in the format string.

If the number to be printed is larger than the spec1ﬁed
numeric field, a percent sign is printed in front of the num-
ber. If rounding causes the number to exceed the field, a
percent sign will be printed in front of the rounded number.

PRINT USING "# #.##";111.22
%111.22

PRINT USING ".# #";.999
%1.00

If the number of digits specified exceeds 24, an "Illegal
function call” error will result.

AND PRINT# USING

PRINT # <filenumber>,[USING<string exp>;]<list of exps>

To write data to a sequential disk file.

<filenumber> is the number used when the file was
OPENed for output. <string exp> is comprised of format-
ting characters as described for PRINT USING. The ex-
pressions in <list of expressions> are the numeric and/or

4-65

string expressions that will be written to the file.

PRINT# does not compress data on the disk. An image of
the data is written to the disk, just as it would be displayed
on the terminal with a PRINT statement. For this reason,
care should be taken to delimit the data on the disk, so that
it will be input correctly from the disk.

In the list of expressions, numeric expressions should be
delimited by semicolons. For example,

PRINT # 1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks that
are inserted between print fields will also be written to
disk.)

String expressions must be separated by semicolons in the
list. To format the string expressions correctly on the disk,
use explicit delimiters in the list of expressions.

For example, let A$="CAMERA” and B$="93604-1". The
statement

PRINT # 1,A$;B$

would write CAMERA93604-1 to the disk. Because there are
no delimiters, this could not be input as two separate
strings. To correct the problem, insert explicit delimiters
into the PRINT # statement as follows:

PRINT# 1,A%;",”;B$

The image written to disk is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, sig-
nificant leading blanks, carriage returns, or line feeds,
write them to disk surrounded by explicit quotation marks,
CHR$(34). For example, let A$="CAMERA, AUTOMATIC" and
B$=" 93604-1”. The statement

PRINT# 1,A$,B%

would write the following image to disk:
CAMERA, AUTOMATIC 93604-1

and the statement

INPUT# 1,A%$,B%

4-66

would input "CAMERA"” to A$ and "AUTOMATIC
93604-1" to B$. To separate these strings properly on the
disk, write double quotes to the disk image using CHR$(34).
The statement

PRINT # 1,CHR$(34);A%$;,CHR$(34);CHR$(34);B$;,CHR$(34)
writes the following image to disk:

"CAMERA, AUTOMATIC"* 93604-1*

and the statement

INPUT # 1 ,A$,B$

would input "CAMERA, AUTOMATIC” to A$ and "
93604-1" to BS.

The PRINT # statement may also be used with the USING
option to control the format of the disk file. For example:
PRINT# 1, USING"$$ # # #.# #,";J;K,L

PRINT#, PRINT# USING and WRITE# may also be
used to put characters in the random file buffer before a
PUT statement

For more examples using PRINT #, see Appendix B. See
also WRITE #.

PUT

Syntax: PUT [#] <file number>[,<record number>]

Purpose: To write a record from a random buffer to a random disk
file.

Remarks: <file number> is the number under which the file was
OPENed. If <record number> is omitted, the record will
have the next available record number (after the last PUT).
The largest possible record number is 32767.

Example: See Appendix B.

RANDOMIZE

Syntax: RANDOMIZE [<expression>]

Purpose: To reseed the random number generator.

Remarks: If <expression> is omitted, BASIC-80 suspends program

execution and asks for a value by printing
Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE.
4-67

Example:

NOTE:

READ
Syntax:
Purpose:

Remarks:

If the random number generator is not reseeded, the RND

function returns the same sequence of random numbers -

each time the program is RUN. To change the sequence of
random numbers every time the program is RUN, place a
RANDOMIZE statement at the beginning of the program
and change the argument with each RUN.

10 RANDOMIZE

20 FORI=1TO 5

30 PRINT RND;

40 NEXT |

RUN

Random Number Seed (-32768- + 32767)7 3 (user types 3)

88598 .484668 .586328 .119426 .709225

Ok

RUN

Random Number Seed (-32768- +32767)? 4 (user types 4 for
new sequence)

803506 .162462 .929364 .292443 .322921

Ok

RUN

Random Number Seed (-32768- + 32767)? 3 (same sequence as
first RUN)

88598 .484668 .586328 .119426 .709225

Ok

With the BASIC Compiler, the prompt given by RAN-
DOMIZE is:

Random Number Seed (—32768 to 32767)?

READ <list of variables>

To read values from a DATA statement and assign them to
variables. (See DATA.)

A READ statement must always be used in conjunction
with a DATA statement. READ statements assign vari-
ables to DATA statement values on a one-to-one basis.
READ statement variables may be numeric or string, and
the values read must agree with the variable types spe-
cified. If they do not agree, a "Syntax error” will result.

A single READ statement may access one or more DATA

4-68

Example 1:

Example 2:

REM
Syntax:
Purpose:

statements (they will be accessed in order), or several
READ statements may access the same DATA statement.
If the number of variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an OUT OF
DATA message is printed. If the number of variables spe-
cified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements will begin read-
ing data at the first unread element. If there are no subse-
quent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RE-
STORE statement (see RESTORE).

80 FORiI=1TO 10

90 READ A(l)

100 NEXTI

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

’fhis program segment READs the values from the DATA
statements into the array A. After execution, the value of
A(1) will be 3.08, and so on.

LisT

10 PRINT "CITY", “STATE", = ZIP"

20 READ C$,5%.Z

30 DATA "DENVER,”, COLORADO, 80211
40 PRINT C$,5%,Z

Ok

RUN

CITYy STATE ZiP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from the
DATA statement in line 30.

REM <remark>
To allow explanatory remarks to be inserted in a program.

4-69

Remarks:

Example:

RENUM
Syntax:
Purpose:
Remarks:

REM statements are not executed but are output exactly
as entered when the program is listed.

REM statements may be branched into (from a GOTO or
GOSUB statement), and execution will continue with the
first executable statement after the REM statement.

Remarks may be added to the end of a line by preceding
the remark with a single quotation mark instead of :REM.

120‘ REM CALCULATE AVERAGE VELOCITY
130 FORI=1TO 20
140 SUM=SUM + V()

or

120. FOR =1 TO 20 ‘CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V()
140 NEXT !

RENUM [[<new number>][,[<old number>][,<increment>]]]
To renumber program lines.

<new number> is the first line number to be used in the
new sequence. The default is 10. <old number> is the line
in the current program where renumbering is to begin. The
default is the first line of the program. <increment> is the
increment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following
GOTO, GOSUB, THEN, ON...GOTO, ON..GOSUB and ERL
statements to reflect the new line numbers. If a nonexistent
line number appears after one of these statements, the er-
ror message "Undefined line xxxxx in yyyyy” is printed.

4-70

~—~ NOTE:

Examples:

RESET
Syntax:
Purpose:

Use:

The incorrect line number reference (xxxxx) is not changed
by RENUM, but line number yyyyy may be changed.

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,30 when the program has
three lines numbered 10, 20 and 30) or to create line num-
bers greater than 65529. An "Illegal function call” error
will result.

RENUM Renumbers the entire program. The
first new line number will be 10. Lines
will increment by 10.

RENUM 300,,50 Renumbers the entire program The
first new line number will be 300.
Lines will increment by 50.

RENUM 1000,900,20 Renumbers the lines from 900 up so
they start with line number 1000 and
increment by 20.

RESET

To reset the CP/M directory allocation information after
you have switched disks.

The procedure for changing disks is as follows: First, type
CLOSE to close any data files that may be open at the
time. Then, remove the old disk and insert the new disk.
Finally, after you have inserted the new disk, type RESET.
Failure to follow this procedure when changing disks may
cause loss of data, resulting in a “Disk Read Only” error.

RESTORE

Syntax:
Purpose:

Remarks:

Example:

RESTORE [<line number>]

To allow DATA statements to be reread from a specified
line.

After a RESTORE statement is executed, the next READ
statement accesses the first item in the first DATA state-
ment in the program. If <line number> is specified, the
next READ statement accesses the first item in the spe-
cified DATA statement.

10 READ AB,C
20 RESTORE

4-71

30 READ D,EF
40 DATA 57, 68, 79

RESUME

Syntax: RESUME
RESUME O
RESUME NEXT
RESUME <line number>

Purpose: To continue program execution after an error recovery
procedure has been performed.

Remarks: Any one of the four formats shown above may be used,
depending upon where execution is to resume:

RESUME Execution resumes at the

or statement which caused the
RESUME O error.

RESUME NEXT Execution resumes at the state-

ment immediately following the
one which caused the error.

RESUME <line number> Execution resumes at <line
number>.

A RESUME statement that is not in an error trap routine
causes a "RESUME without error” message to be printed.

Example: 10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

NOTE THAT THIS STATEMENT IS USED
DIFFERENTLY IN MBASIC THAN IN APPLESOFT.

RUN
Syntax 1: RUN [<line number>]
Purpose: To execute the program currently in memory.

4-72

Remarks:

Example:
Syntax 2:
Purpose:

Remarks:

Example:

SAVE
Syntax:
Purpose:
Remarks:

Examples:

If <line number> is specified, execution begins on that
line. Otherwise, execution begins at the lowest line number.,
BASIC-80 always returns to command level after a RUN is
executed.

RUN
RUN <filename>{,R]
To load a file from disk into memory and run it.

<filename> is the name used when the file was SAVEd.
{(With CP/M the default extension .BAS is supplied.)

RUN closes all open files and deletes the current contents
of memory before loading the designated program. How-
ever, with the "R” option, all data files remain OPEN.

RUN "NEWFIL*,R
See also Appendix B.

SAVE <filename>{,A | ,P]
To save a program file on disk.

<filename> is a quoted string with the default extension
.BAS. If <filename> already exists, the file will be written
over.

Use the A option to save the file in ASCII format. Other-
wise, BASIC saves the file in a compressed binary format.
ASCII format takes more space on the disk, but some disk
access requires that files be in ASCII format. For instance,
the MERGE command requires an ASCII format file, and
some operating system commands such as LIST may re-
quire an ASCII format file.

In addition, programs written in 5.0 BASIC that you wish
to transfer to your Apple SoftCard system must be saved
in ASCII format.

Use the P option to protect the file by saving it in an encod-
ed binary format. When a protected file is later RUN (or
LOADed), any attempt to list or edit it will fail.

SAVE"COM2" A
SAVE"PROG”,P
See also Appendix B.

4-73

STOP
Syntax:
Purpose:

Remarks:

Example:

SWAP
Syntax:
Purpose:

Remarks:

Example:

STOP

To terminate program execution and return to command
level.

STOP statements may be used anywhere in a program to
terminate execution. When a STOP is encountered, the fol-
lowing message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not
close files.

BASIC-80 always returns to command level after a STOP
is executed. Execution is resumed by issuing a CONT com-
mand (see CONT).

10 INPUT AB,C
20 K=A12*5.3.L.=B3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
71,23
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

SWAP <variable>,<variable>
To exchange the values of two variables.

Any type variable may be SWAPped (integer, single preci-
sion, double precision, string), but the two variables must
be of the same type or a "Type mismatch” error results.

LIST

10 A$=" ONE ~:B$=" ALL " :C$="FOR"
20 PRINT A$ C$ BS

30 SWAP AS, BS

40 PRINT A$ C$ BS

4-74

SYSTEM
Syntax:
Purpose:

RUN

Ok

ONE FOR ALL
ALL FOR ONE
Ok

SYSTEM
To close all files and return to CP/M

Remarks: You cannot use Control-C to return to CP/M; it always
returns to BASIC.

Example; SYSTEM
A>

TEXT

Syntax: TEXT

Purpose: To reset the screen to normal full Apple text mode (24 lines
x 40 characters) from low-resolution graphics (in either
MBASIC or GBASIC) or high-resolution graphics (GBASIC
only).

Remarks: TEXT will clear the screen if it is used to return from
low-resolution graphics. It will not clear the screen from
high-resolution graphics.

If used while in Text mode, TEXT has the same effect as
VTAB 24.

Example: 10 HGR
20 COLOR=5
30 VLIN 24,30 AT 35
40 TEXT
50 PRINT “THIS IS A VERTICAL LINE*

TRACE/NOTRACE

Syntax: TRACE
NOTRACE

Purpose: To trace the execution of program statements.

Remarks: As an aid in debugging, the TRACE statement (executed in

either the direct or indirect mode) enables a trace flag that
prints each line number of the program as it is executed.
The numbers appear enclosed in square brackets. The trace
flag is disabled with the NOTRACE statement (or when a
NEW command is executed).

4-75

Example:

VLIN
Syntax:

Purpose:

Remarks:

Example:

TRACE

Ok

LisT

10 K=10

20 FORJ=1T02

30 L=K + 10

40 PRINT JKL

50 K=K+10

60 NEXT

70 END

Ok

RUN

(10][20){30){40] 1 10 20
[50](60)[30][40] 2 20 30
[50](60](70]

Ok

NOTRACE

Ok

VLIN <y1 coordinate>, <y2 coordinate> AT <x coordinate>
where <yl coordinate> and <y2 coordinate> are integers
in the range 0-47 and <x coordinate> is an integer in the
range 0-39

In low-resolution graphics mode, to draw a vertical line
from the point at (x,y1) to the point at (x,y2).

<yl coordinate> must be less than or equal to <y2 coor-
dinate>.

If any of the coordinates are not in the required range as
specified above, an ILLEGAL FUNCTION CALL error re-
sults.

The color of the line is determined by the most recent
COLOR statement.

The VLIN statement normally draws a line composed of
dots from y1 to y2 at the horizontal coordinate x. However,
if used when in Text mode, or when in mixed graphics and
text mode with y2 in the range 40-47, the part of the line
that falls in the text area will be displayed as a line of
characters.

10 GR
20 COLOR=3
30 VLIN 20,45 AT 12

4-76

/'\

VTAB
Syntax:
Purpose:

Remarks:

Example:

WAIT
Syntax:

Purpose:

Remarks:

CAUTION:

Example:

VTAB <screen line number>

To move the cursor to the line on the screen that corre-
sponds to the specified <screen line number>.

The first line (top line) on the screen is line 1; the last line
or bottom line on the screen is line 24.

VTAB uses absolute moves. For instance, if the cursor was
on line 10 of the screen, then the command VTAB 13 was
executed, the cursor would be moved to line 13, not line 23.

If a <screen line number> greater than 24 is specified, it
will be treated modulo 24. The command VTAB 26 would
place the cursor on screen line 2. If a <screen line number>
greater than 255 is specified, it results in an ILLEGAL
FUNCTION CALL error.

VTAB can move the cursor either up or down.

When used with an external terminal, VTAB sends a *cur-
sor address” character sequence to terminals that address
this feature.

10 VTAB 12: PRINT "MIDDLE OF SCREEN”

WAIT <address>, i[,J]
where I and J are integer expressions

To suspend program execution while monitoring the
status of an address.

The WAIT statement causes execution to be suspended un-
til a specified address develops a specified bit pattern. The
data read at the port is exclusive OR’ed with the integer
expression J, and then AND’ed with I. If the result is zero,
BASIC-80 loops back and reads the data at the address
again. If the result is nonzero, execution continues with the
next statement. If J is omitted, it is assumed to be zero

It is possible to enter an infinite loop with the WAIT state-
ment, in which case it will be necessary to manually restart
the machine.

100 WAIT &HE000,128
200 PRINT "KEYPRESS!":GOTO 100

4-77

WHILE..WEND

Syntax:

Purpose:

Remarks:

Example:

WIDTH
Syntax 1
Purpose 1:

Syntax 2:
Purpose 2:

WHILE <expression>
[<loop statements>]

WEND
To execute a series of statements in a loop as long as a
given condition is true.

If <expression> is not zero (i.e., true), <loop statements>
are executed until the WEND statement is encountered.
BASIC then returns to the WHILE statement and checks
<expression>. If it is still true, the process is repeated. If
it is not true, execution resumes with the statement follow-
ing the WEND statement.

WHILE/WEND loops may be nested to any level. Each
WEND will match the most recent WHILE. An unmatched
WHILE statement causes a "WHILE without WEND" er-
ror, and an unmatched WEND statement causes a *"WEND
without WHILE" error.

90 ‘BUBBLE SORT ARRAY A$
100 FLIPS=1 ‘FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FORI=1TO J-1
130 IF A$()>A$(+ 1) THEN
SWAP A$(l),A$(1+1):FLIPS=1
140 NEXT |
150 WEND

WIDTH [LPRINT] <linewidth>>

To set the printed line width in number of characters for
the terminal or line printer.

WIDTH [<linewidth>},[< screen height>>]

To set the printed line width in number of characters and/
or screen height in number of lines for the terminal.

4-78

Remarks:

WRITE
Syntax:
Purpose:
Remarks:

Example:

WRITE#
Syntax:

<line width> must be an integer in the range 15-255.
<screen height> must be an integer in the range 1-24. If
you are using 40-column Apple video, the default line
length is 40, and the default screen height is 24. If you are
using an external terminal with 80 columns, the default
line width is 80 and the default screen height is 24.

In Syntax 1, if the LPRINT option is omitted, the line
width is set at the terminal. If LPRINT is included, the line
width is set at the line printer.

In Syntax 2, one or both of the parameters may be spe-
cified, but at least one must be specified.

If <line width> is 255, the line width is "infinite,” that is,
BASIC never inserts a carriage return. However, the posi-
tion of the cursor or the print head, as given by the POS or
LPOs function, returns to zero after position 255. Ok

WRITE [<listofexpressions>]
To output data at the terminal.

If <list of expressions> is omitted, a blank line is output.
If <list of expressions> is included, the values of te ex-
pressions are output at the terminal. The expressionsin the
list may be numeric and/or string expressions, and they
must be separated by commas.

When the printed items are output, each item will be sepa-
rated from the last by a comma. Printed strings will be
delimited by quotation marks. After the last item in the list
is printed, BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as
the PRINT statement. (See PRINT.)
10 A=80:B=90:C$=THAT'S ALL
20 WRITE AB,C$
RUN
80, 90,"THAT'S ALL"
Ok

WRITE # <file number>,<list of expressions>

4-79

Purpose:
Remarks:

Example:

To write data to a sequential file.

<file number> is the number under which the file was
OPENed in 0" mode. The expressions in the list are string
or numeric expressions, and they must be separated by
commas.

The difference between WRITE# and PRINT# is that
WRITE # inserts commas between the items as they are
written to disk and delimits strings with quotation marks.
Therefore, it is not necessary for the user to put explicit
delimiters in the list. A carriage return/line feed sequence
is inserted after the last item in the list is written to disk.

WRITE #, PRINT#, and PRINT# USING may also be
used to put characters in the random file buffer before a
PUT statement. In the case of WRITE#, BASIC-80 pads
the buffer with spaces up to the carriage return. Any at-
tempt to read or write past the end of the buffer causes a
"Field overflow"” error.

Let A$="CAMERA" and B$="93604-1". The statement:
WRITE# 1,A$,B$

writes the following image to disk:
"CAMERA","93604-1"

A subsequent INPUT# statement, such as:

INPUT # 1,A%,B%
would input "CAMERA" to A$ and "93604-1" to B$.

4-80

CHAPTER 4
BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented in this
chapter. The functions may be called from any program without further
definition. Arguments to functions are always enclosed in parentheses.
In t