WASHINGTON APPLE PI

Vol. 1 No. 3
April, 1979

Dear APPLE Enthusiast,

Our thanks again to John Moon for a job well done on the Constitution-and By-
Laws. The review session at the last meeting was long, but necessary, and we
now have a constitution (and are all the better for it). To save postage costs,
the revised version will not be sent with this newsletter but will be available as
a handcut at our next meeting. Those of you who won't be able to make the next
meeting can get a copy by sending me a self-addressed stamped envelope.

It was gratifying to me to see the turnout of 38 people at our last meeting. We
must be doing something right. Word that we exist is indeed spreading, and that
we are evolving into a professional, useful and fun group with something of interest
for all APPLE users, incligs: ibur green apples.

I have both good news and *'‘bad"” news for you. First the good:

1. Tom Bottegal of GWU says that he and his crew are willing to operate an
APPLE II HOTLINE (676-6 853) and to attempt to answer questions on what you
do after you hit reset--or whatever. If they or others in the group can't field
the questions, we can hen pass them on to APFLI.. A free newsletter to the
first person who stumps the HOTLINERS!

2. Tom also agrees to allow group members access to the GWU library and
its collection of many of the personal computer magazines. Xeroxing is also
available at 5¢ per page. ' : B

3. The eight APP’LES at GWU are available for show and tell, program ex-
change, etc. after we !inish our formal meeting If you feel the need to bring
your own computer because you don't like to pul. out your Superchip or whatever,
you can do that :oo.

Now the '"bad'':

1. Not all of you are doing what you oughti.--we need your inputs to this
newsletter, Come on, send them in whether or nct they are written in pearly
prose. We'll fix the language, if necessary. This is your newsletter--and this
includes all you young people too! Rick Hodder needs items for his Green Apples
column,

2. This next item may prove to be unpopular, but I think it requires airing
and some thought by all members., I believe that z(if not the) major benefit that

(03

2.

accrues to the membership is the sharing of programs written by them or obtained
from others who are also willing to share. However, I believe that the group
should not sanction the free and extensive exchange of programs that have been pre-
pared and marketed or copyrighted by others. I believe that this exchange will
continue to occur but I recommend that the group curtail this practice during our
meetings at GWU. I will bring this up at our next session to hear your views.

Bernard Urban
Look out PLATO - Here comes the APPLE!

PLATO, the multi-million dollar program funded by NSF and used by the Uni-
versity of Illinois, University of Delaware and elsewhere for computer assisted
instruction in the classroom, now has a competitor--our own APPLE. Ron
Thorkildsen at the Exceptional Child Center of the University of Utah has
interfaced a video disc and touch panel to the APPLE. He will be giving a paper
on May 17 at the Pentagon Motel in Arlington about its use to tutor learning dis-
abled children. - -

Minutes of the 3/31/79 Meeting

The major portion of the meeting was devoted to review, modification and
adoption of the Constitution and By-Laws, with John Moon presiding.

Hal Weinstock described what is available and what can be arranged in the way
of courses for a fee, for the APPLE Il. While not turning off these possibilities,
the members once again stated that there is probably sufficient expertise within
our group to provide irnstruction on IBASIC, Monitor, Sweet Sixteen, HIRES, DOS,
APPLESOFT II, etc. Classes may be held at GWU after the regular meetings or
perhaps weekly. '

Bernie Urban was voted in as President until the May elections. He designated
John Moon as Vice-President, Mark Crosby as Program Chairman, John Ditman
as Treasurer, and Genz:vie Urban as Secretary.

No definitive action was taken on establishing a dues structure. Attendees
were requested to contribute $1. 00 to offset the existing deficit and to provide
postage for this issaie. The group agreed that Bernie should pursue the possi-
bilities for incorporation of all local APPLE users' groups into one in-order to
gain not-for-profit status and 3rd class mail privileges. Local chapte:'s or divi-
sions would still exist ‘vith their own officers and cperations, but there would be
one newsletter witl coutributions from all. Thii could result in a high quality,
useful publication.

--From the "Green Apples'' --

Congratulations to .Andy Rose on his game "SHOOTOUT" (a fine LORES game
written by two l11-year olds), which has been accepted by APPLE's Software Bank.
As a result of this he rsceived copies of Software Bank's Volumes III, IV and V,
which he is willing to share with our group. The programs will be on diskettes for
copying at Computers, Etc. and at our next meeting.

SOFTWARE REVIEW by Mark Crosby

Many of you bought the APPLE II because of its graphic capabilities. After
running the hi-resolution demonstration several hundred times and after trying
to write your own, you might have given up and purchased Starwars or Lunar
Lander or perhaps you have gone on to arcade-quality games like Bomber.

Well, I have just purchased a simulation "shoot-em-up" based on Starwars
but it bears no resemblance to the version you probably have seen and tried.

SUPER STARWARS by Programma.Internation&l, Inc., is a real-time simulation of
the battle scenes in the movie Starwars. Let me describe how it works:

After giving you instructions and offering three modes of play 1) Auto-Fire
with joystick, 2) Manual Fire with joystick, 3) Remote controlled torpedoes
with joystick (yes, remote controlled!), and setting the level (0-9), the
game commences with a beautiful simulation of the moment the good guys come
out of hyperspace travel (light speed). A1l the stars just sort of stretch
in a Z-0-0-0-0-0-M pattern complete with terrific sound effects.

Then the stars solidify and, from the central area of the screen, appear
small craft (the "enemy") which get #igger and bigger and head slight off-
center toward your ship. You are in your ship and see the view-screen and

a cross-hair for aiming your laser weapon. You control both the velocity
and the direction of movement of the cross-hair using a joystick. When you
hit the "enemy", there is a sound and an explosion at the exact point at
which you hit the "enemy" ship. The explosion gets larger as it dissipates
and the ship vanishes. In the remote-controlled mode, you release a torpedo,
send it away from you and it curves off in the direction the joystick is
pointing.

The "enemy" will fire lasers at you as they approach and this becomes more
frequent as they get closer to you. The screen flashes white with each blast
and you lose some power. During moments of rest (micro-seconds, really), your
power builds back up. When you have lost enough power, it's "curtains" for
you and your screen flashes and rolls with a nasty sound. Conect your APPLE
to an external speaker fo~ this one!

There is also overlap - s.ometimes there are several "enemy" ships appearing
depending on the skill Teel you have chosen and th2 mode. When you hit

one of them, the others kaep right on coming during the explosion of the

first (there is no "lock-up" of the joystick movements). If "enemy" s$hips

are near to each other ani the same apparent distance from you, an explosion on
one can trigger an expiosion on the other.

Make no mistake - <his is not a run-of-the mill prcgrim. The simulation is
most complete, three-dimensional, full of good sourds, real-time and a real
challenge to even the most seasoned gamester. By ihe way, there is no grading
of your score - you either make it to fight another diy or you get wiped out!

T S R
R G

SUPER STARWARS - loads from $800-$6000 (24K) $15.55 f'w'
v
from: Programma International, Inc. b
3400 Wilshire Blvd.
Los Angeles, CA 90010
(213) 384-0579/1116/1117

10
20
30
4o

50

60

70
80
90
100
110
120

125
130
135
140
150
160
170
200
205
210
220
230
235
240
500
505
510
515
520
525
530
535
- 540
2000

#%% A REAL BALL-BOUNCER|*** by Howie Mitchell

"(Inspired by Mark Crosby's Lissajous programl)
Basic Program outline: (Applesoft II "*up*)

TEXT : HOME : VTAB 3 ¢ HTAB 5 : PRINT "#%* A REAL
BALL-BOUNCER! **#*": PRINT

HTAB 9: PRINT "BY: HOWIE MITCHELL": PRINT : HTAB 9 :

PRINT "APRIL 1, 1979": PRINT

FOR BOUNCE = 1 TO 10: FOR BEEP = 0 TO 1000 - 80* BOUNCE:
NEXT BEEP: PRINT " ctrl.G": NEXT BOUNCE

VITAB 10: PRINT * THIS PROGRAM WILL PLOT THE TRAJECTORY

OF A BALL, DROPPED (OR THROWN!) INTO A LARGE ROOM.": PRINT
PRINT " THE BALL ENTERS THROUGH THE CEILING, TRAVELS
STRAIGHT DOWN, AND BOUNCES OFF A BOARD (WHOSE ANGLE OF TILT

‘MAY BE"

PRINT “SPECIFIED). THE BALL'S INITIAL SPEED, AND ITS
'BOUNCINESS' MAY ALSO BE ENTERED. THE RESULT IS AN ENDLESS
VARIETY OF BOUNCE PATHWAYS 1"

GOSUB 2000

INPUT "BALL'S SPBED OF ENTRY ? ";VV: PRINT

INPUT "BOARD'S ANGLE OF TILT ? ";BA: PRINT

INPUT "BALL'S BOUNCINESS ? (USE DECIMAL FROM 0 TO 1) "; BR
HGR (or:HGR2) : HCOLOR= 3: S= -16336

FOR X = 10 TO 270: HPLOT X,0: NEXT X: FORY = 0 To 180:
HPLOT 270,Y: NEXT Y: FOR X = 270 TO O STEP -1: HPLOT X,180:
NEXT X: FOR Y = 180 TO 0 STEP -1: HPLOT O,Y: NEXT Y

PRINT Yctrl.G"

HPLOT 0,170 70 10,180

Y =0

DT = .075: VV = VV + 32*DT

Y =Y +« VV * DT

IF Y> 180 THEN GOTO 200

HPLOT 5,Y: GOTO 140 :
ANGLE = BA*2/57: VH = VV* SIN(ANGLE): VV = ~VV* COS(ANGLE)
FOR Z 0 TO 10: SOUND = PEEK(S)+PEEK(S)+PEEK(S): NEXT Z
X =5:Y =175 '

X =X +« VH * DT:7V = VV 4+ 32 * DT: Y = Y ¢ VV = DT

IF X> 270 OR X <) THEN GOSUB 500 :

IF Y> 180 OR Y) THEN GOSUB 520

HPLOT X,Y: GOTO 220

IF X) 270 THEN X = 270

IF X0 THSN X = O

VH = - VH » SR {BR)

FOR SOUND = 1 TO 5: B= PEEK(S) + PEBK!S): NBEXT SOUND: RETURN
IF Y> 180 HEN Y = 180

IF YCO THEN Y = O

VV = - VV * SQR (BR)

IF Y = 180 AND 43S (vv)< 1.5 THEN HPLOT X,160 TO X,175 : STOP
SOUND = PEEK (S) + PEEK (S) + PEEK (S): RETURN

VTAB 23: INPUT * (PRESS 'RETURN' TO CONTINUE.) "; HOLDS$:
PRINT : PRINT : RETURN

.;é:.hmﬁ_nd_
Some notes on the Ball-bounce Program:

LINE #30: I discovered by accident that the bell sound may be
included in a program by simply making the ctrl.G
function part of a print statement. It is NOT vis-
ible in the program printout (one sees PRINT ""),
nor does it copy by running the cursor over it via
the right-moving arrow key.

LINE #100: Here, a bounciness of greater than 1 may be used,
with a most surprising result |

LINE #150: This is a variation on the freefall equation
’ Y=VT+ % gT2, showing a slight influence of
the Calculus. Y = Y + VV*DT runs much faster.

LINE #200: Converts bounce angle (BA) into radians, and pro-
duces horizontal and vertical speed components for
a bounce from the tilted board.

LINE #510: Here, using the square root of BR is for some reason
necessary for causing the "ball" to bounce back to
BR * its previous bounce height (e.g. If BR = .9, then
each new bounce height is .about 9/10 of the previous
height.). The handsome "envelope" of the bounces can
be seen nicely by using BNTRY SPEED = 0, TILT ANGLE = .75,
and BOUNCINESS = .91..

CHRS for Integer Basic by Jim Rose

For some mystifying reason the WOZ built the string-to-
integer function ASC into Integer Basic but omitted the come
panion function CHR$ which translates an integer back into
the string representation of the byte. There are some expen-
sive solutions to this problem: use Applesoft which indeed
does have this function (and either gobltles a substantial
part of my ore, or my budget for the card); or do without,
program aroind, and otherwise get frustrated.

A less expensive solution to thi; problem is also quite
simple, and substantially expands the string processing cap~
abilities of Integer Basic. Try this:

0 DIM V$(1)

10 FOR 1« 160 TO 223
20 POKE 2053,I

30 PRINT I; '"='"; V§,
40 NEXT I: END

In effect, by dimensioning the character string V$ first
(in line 0), I know the memory byte location of the character
(2053). I have thus set up the recursive relationship:
V$=s POKE 2053, ASC(V$)

which is exactly parallel to the functional recursion:

V$= CHRS$(ASC(V$))

4 —6- .
that l'ﬁ trying to emulate,

There are three restrictions on the use of this little
trick. The string variable (V§$) must be a single letter
variable (A$ through Z$). Otherwise the byte location (2053)
must be changed.* This resident string variable must be
dimensioned first, or again the byte location is changed,
And the third constraint is that the value which you POKE
must be less than 256, and in normal use should range from
160 to 223.

My search for a CHR$ function is actually part of my
need for dimensioned string arrayse. Again I could use Apple-
soft, but with only 16K my capabilities then to do anything
are severly restricted., With this Integer Basic patch I am
off and running with all my memory available for use,

The following program will give you a simple idea of
how this works, Line O dimensions iny CHR$, and sets up my
string array with 100 records of 40 characters each. Lines
100-130 allow me to input records (N positive), or display
records already stored (N negative). Lines 1000-1040 fi11
my storage array, and lines 2000-2060 retrieve the data.

0 DIM V$(1), A$(40), D(4000)
100 INPUT N
110 IF N = 999 THEN 9000
120 GOSUB 1010 + 1000 * (N# ABS(N))
130 GO TO 100

1000 REM SUBROUTINE PUT
1001 REM THIS STOKES THE N'TH RECORD IN D
1010 N = 40 * N : INPUT AS

1020 FOR I = 1 TO LEN(A$)

1030 D(I + N) « ASc(A$(1,1))

1040 NEXT 1 : RETURN

2000 REM SUBROUTINE GET

- 2001 REM THIS RETRIEVES THE N'TH RECORD FROM D
2010 1= <40 * N 3 A§ = "

2020 TOR 1 = 1 TO 40

2025 IF D(I+N)> 223 OR D(;+N)< 160 THEN 2060
2030 POKE 2053, D(I+N)

2040 A$(1) = V$

2050 IBXT I

2060 “RINT A$: RETURN

9000 END
*Actually the byte location = 2052 + (the number of characters
in the string name)

One more note. in this simple program I am actually using
twice as much storage as I need. The array D(4000) is 4001 words
long, or 8002 bytesl Since each string character takes only one
byte, I can pack two characters for every word of D, and thus
double the storage capacity. 1'l1l leave this patch as an exercise

for the reader,

-7=
A CALL/PEEK/POKE LISTING (PARTIAL)

DESCRIPTION IN BASIC, USE IN MACHINE LANG. " COMMENTS
Enter Basic (-8192) JMP SEPPP *EPPPG

Ring Bell CALL-198 JSR $FF3A CNTRL-G IN " ©
RING BELL & PRINT ERR CALL-211 JSR $FF2D ACC,Y

CASSETTE OUT TOGGLE TIME POKE-16352,0 STA $C020
CLEAR KEYBOARD STROBE POKE-16368,0 STA $CP1P

CLEAR SCREEN,HOME CURSOR CALL-936 JSR $FC58 ACC,Y
CLEAR SCREEN,CURSOR TOEQOP CALL-958 JSR $FC42 ACC,Y
CLEAR SCREEN,CURSOR TOEOL CALL-868 JSR $FCIC ACC,Y
- CLR(CLEAR VARIABLES) CALL-6729 JSR $E5B7
SET COLOR COLOR=XX JSR $F864,LDA #COLOR (-1948)
INCREMENT COLOR BY (3) CALL-1953 JSR $F85F
INCREMENT COLOR BY (1) SEE COMMENTS INC $3p POKE 48,PEEK(48)+1
CON(CONTINUE) CALL-3318 JMP $F3PA F3pAG
READ CURSOR (HORIZ) X=PEEK(36) LDA $24
SET CURSOR (HORIZ) POKE36, X STA $24
READ CURSOR(VERTICAL) X=PEEK(37) LDA $25
. SET CURSOR (VERTICAL) POKE37,X STA $25
SET FLAG(NORMAL) . POKE5@, 255 LDA #FF STA $32
SET FLAG(INVERSE) POKE5D,63 LDA #3F STA $32 CALL~384 IN BASIC
SET FLAG(FLASHING) POKESP, 127 LDA #CF STA $32
GAME 1/0 SET (AN) POKE-16295,8 STA $C@59
GAME 170 SET (AN1) POKE-16293,0 STA $CP5B
GAME 170 SET {ANZ) POKE-16291,0 STA $CP5D
GAME 1/0 SET (AN3) POKE-16289,0 STA $COSF
GAME 1/0 CLEAR (AND) POKE-16296,8 STA $CP58
GAME 1/0 CLEAR (AN1) POKE-16294,7 STA $CP5A -
GAME 1/0 CLEAR (AN2) POKE-16292,¢ STA $CPSC
GAME 1/0 CLEAR (AN3) POKE-16299,0 STA $COSE
GR,SET GRAPHICS MODE CALL-1216 JSR $FB4D
GR,SET GRAPHICS MODE POKE-163p4,9 STA $CP5P
IN GR MODE (CLEAR SCREEN) CALL-1998 JSR $F832 ACC,Y
CLEAR TO TEXT POKE-16393,§ STA $Cp51
CLEAR TO TEXT CALL-1223 JSR $FB39 ACC
SET MIXED GR/TEXT POKE-163p1,0 STA $C@53
CLEAR MIXED MODE(ALL GR) POKE-163p2,0 STA $CP52
SET HI-RES MODE POKE-16297,0 STA $CP57
CLEAR HI-RES MODE POKE-16298,0 STA $CP5S6
SET PAGE 2 POKE-16299,0 STh $CP55 EITHER LOW OR HI-RES
SET PAGE 1 POKE-163p8,0 STA $CO54 OR TEXT
HEX,PRINT (1 DIGIT #) CALL-541 LDA #XX, JSR $FDE3
HEX,PRINT (2 DIGIT #) CALL55p LDA #XX, JSR $FDDA
HEX,PRINT (4 DIGIT #) C-1728) LDY #1ST 2-DIGITS
LDX #2ND 2-DIGITS
HLIN HLIN A,B.AT C LDA #B B
STA $2C
LDA #C c
STA #AC $PC OR ACC
LDY #A A
(-2023) ISR $F819
INPUT(DILECT)) CALL-528 ISR $FDFQ 1 CHAR
INPUT (FLLL LINE) TO RET CALL-662 JSR $FD6A
INPUT (GET CHAR FROM KBD) CALL-715 JSR $FD35 ACC,Y

INPUT (RFAD KBD STRORE) X=PEEK(-16384) LDA $COPQ
INPUT (CLEAR KBD STROBE) POKE-16368,9 STA $CP19

LINE FEED CALL-922 JSR $FC66
LIST COM'LETE PROGRAM CALL-8117 JSR $E@4B
LIS LIN.# TO LINE# LIST 18,59 LDA gLOL,LOL=L0 BYTE LAST. MEM LOZ
STA $E2
LDA #HIL,HIL=HI BYTE OF LOC
STA $E3
LDA #LOF,LOF=L0 BYTE OF LAST LOC
ST $E6
LDA #HIF,HIF=HI BYTE OF LOF
STA $E7
USE LOC NF LINE# NOT LINE#(-8133) JSR $EP3B
LOAD (BASIC PRGG) CALL 3873 JSR $FPOF
MAN CALL-4524 JSR $EE54 OR EES54G 9
MOVE (MEM TO MEM) *(NEW START) (OLD START).(OLD END)M
*102p<8pP. BADM FROM MONITOR
NEW CALL-6739 JSR$ESAD

NO TRACE CALL-3722 JSR $F176

-8-

IN MACHINE LANG. '

COMMENTS

DESCRIPTION IN BASIC, USE
OUTPUT (ROUTINE) CALL-739
PDL(READ) X=PDL(#)

PDL (SWITCH (0) READ)
PDL (SWITCH (1) READ)
PDL (SWITCH (2) READ)
PLOT

PRINT (DUMMY)

REGISTERS USE .PAGE-§ LOCN

X=PEEK(-16287)
X=PEEK(-16286)
X=PEEK(-16285)
PLOT X,Y

CALL-2p48
PRINT,CALL6115
CALL-132]1

REGISTERS (OPEN) CALL-1312
REGISTERS (OPEN)
REGISTERS (OPEN)
REGISTERS (RESTORE) CALL-193
REGISTERS (SAVE) CALL-182
RESET TO MONITOR CALL-167
ENTER WITHOUT BELL CALL-155
ENTER (SOFT) CALL-151
RND (FUNCTION) X=RND(#)
CALL-4271
RUN (CLR VARIABLES) CALL-4116
RUN (SAVE VARIABLES) CALL-6g9p
RUN USING CTRL-Y
CALL-6086
AT IOCN. SE3F8 INSTALL A JSR $LOON
SAVE CALL-3774
SCRN

ACC RETURNS WITH SCRN AT

SCROLL(1 SPACE)
SPEAKER (TOGGLE)
SWEET 16

X,Y CALL-1935
CALL-912
POKE-16336,9
CALL-3959

TEYT (SET WINDOW TO WIDESTPOKE-163f3,0
TEXT,(OF=N WINDOW TO WIDSTTEXT

TEXT, (SET TEXT MODE)
TRACE

TEXT
CALL-3727

VLIN VLIN AB AT C
VTAB ¥TAB #

WAIT CALL-856 .
WINDOW (SET LEFT) POKE32,LEFT
WINDOW (SET WIDTH) POKE33,WIDTH
WINDOAW ($ET TOP) POKE34,T0P
WINDOW (SET BOTTOM) POKE35,B0TTOM

LDA #ASCII,ASCII=
LDX #PDL,PDL=PDL#@-3
LDA $CP61

LDA $C62

LDA $CP63

LDX #X

LDY #Y

JSR $F8pp

JSR $E81D

JSR $FAD7,SCROLLS-1
JSR $FAEQ,NO SCROLL
JSR $FADE

JSR $FF3F

JSR $FF4A

JSR $FF59

JSR $FF65

JSR $FF69 *

LDA #L0,L0=LO BYTE OF
STA $CE

LDA #HI,HI=H1 BYTE OF
STA $CF

LDX #2¢

JSR $EF51

JMP $EFEC

. JNp $EB36

LDA #L0,LO=LO BYTE OF
LDY #HI,HI=HI BYTE OF
JMP $EB3A

TO RUN M/L PROG

JSR $F142

LDY #X,X=X COORDINATE
LDA: #Y,Y=Y COORDINATE

JSR $FC79
STA $C03p
$F689

ST, 3CP51
JSK $FB2F
JSR $3B39
JSR $F171

DESIRED CHAR
ACC,Y

LOC $46 FOR X REG -
LOC $47 FOR Y REG
LOC $48 FOR STATUS RI
LOC $49 FOR STACK PO

PRESERVES DOS,ETC
HIGHEST # DESIRED

HIGHEST # DESIRED

LOCN,NOT LINE #
LOCN,NOT LINE #

Acc,Y

INFO NOT AVAIL AT THIS TIME

LDA #ROW
JSR $FC22
JSR $FCAB
LDA #LEFT
STA $2¢
LDA §WIDTH
STA $21
DA #TOP
STA $22
LDA #BOTTOM
STA $23

Acc
(-99¢)

WRITE (TC TAPE)

$FE8D:
$FELS:
$FEE9:
$FEC3:
$FEEB:
$FE9S:

SETS INVERSE VIDEO

SITS NORMAL VIDEO

SITS KEYBOARD AS AN INPUT DEVICE
SETS CRT AS GUTPUT DEVICE

NOT AVAIL AT THIS TIME

SETS AN INPUT DEVICE TO SLOT SPECIF{ED BY ACC

SETS OUTPUT DEVICE TO SLOT SPECIFIED B“ ACC

$0G,CD PGINTS TO START OF PROGRAM, $CA,CB °OINTS TO END OF VARIABLES TABLE
$4C,4D IS HIMEM

GATHERED AND RESEARCHED BY ED AVALAR TAKEN FROM ABACUS
FEBRUARY 1979 VOLUME #1 ISSJUE #2 AND EDITED BY MARK
CROSBY OF WASHINGTON APPLE Pi WITH PERMISSION.

-9-

BASIC TO MACHINE LANGUAGE ROUTINE INTERFACING by John L., Moon

The other day I needed to print out a formatted dump of a data area. I was
working on a P-code interpreter and wanted a hexadecimal dump as part of my
debug package. Also, I wanted a way to use machine language routines in the
Monitor that required values to be passed in registers. The following BASIC to
machine language routines are what resulted from these efforts.

In the APPLE Monitor at lacation F940 is a 6502 routine that takes the con-
tents of the Y and X registers and prints them out as a four-digit hexadecimal
number. Unfortunately, the CALL interface to machine language from BASIC
has no capability to load any of the processor registers. However, there are
several machine language instructions that can load or store the 6502 registers.
Therefore, a machine language routine can be written that when called from
BASIC can load the registers with the desired values. In this case, the routine
could look like this:

LDY # byte 1 Load Y register with byte 1
LDX # byte 2 Load X register with byte 2
JSR $F940 Call the hex print routine
RTS Return to BASIC

For convenience, the routine can be loaded into locations starting at machine
address 0 by the following lines of BASIC code (I've hand assembled the program
and converted it to decimal for the POKES):

10 POKE 0, 160: POKE 2, 162: POKE 4, 32: POKE 5, 64: POKE 6, 249:

POKE 7, 96

In order to use the routine from BASIC the following BASIC subroutine should be
used to put the data into the instructions so that it will be loaded into the proper
registers:

1000 REM HB IS HIGH BYTE, LB IS LOWBYTE

1001 POKE 1,HB: POKE 3,LB: CALL 0:RETURN
An example of a calling sequence could be:

100 INPUT "WHICH ADDRESS", ADDR

110 HB = PEEK(ADDR): LB = PEEK(ADDR+1): GOSUB 1000: GOTO 100
This program works by POKEing into the 6502 LDY and LDX instructions the data
byte that is to be loaded into the appropriate register.

With a little extension to the machine language interface routine, a general
purpose BASIC to machine language interface can be created that is capable of
loading or returning values in any of the 6502 registers and is capable of calling
any machine language routine. The machine language portion of this routine is:

Location Mnemonic Operand Comments

0 LDA #aregbyte Loads the A register

2 LDX #xregbyte Loads the X register

4 LDY ffyregbyte Loads the Y register

6 JSR $machineaddr Calls the 6502 routine

9 STA $01 Stores A register at loc 1
11 STX $03 Stores X register at loc 3
13 STY $05 Stores Y register at loc 5

15 RTS Returns to BASIC

-10-

This routine can be loaded into memory from BASIC with the following POKEs
(note: This works for INTEGER BASIC, the addresses throughout this article
will have to be changed for APPLESOFT BASIC so as to locate the routine at
some unused area such as 300 hex = 768 decimal):

10 POKE 0, 169: POKE 2, 162: POKE 4, 160: POKE 6, 32: POKE 9, 133:
POKE 10, 1: POKE 11, 134: POKE 12, 3: POKE 13, 132: POKE 14, 5:
POKE 15, 96

To make the BASIC interface routine general purpose, four reserved vari-
ables will be used: A,X, Y and PC$. Internally, the routine also uses Z and Z$.
On entry to the BASIC subroutine that is defined below, the four variables will
define the values to be used for the A,X and Y registers; PC$ will contain the
ASCII characters representing a 4-digit hexadecimal address of the 6502 routine
that is to be called. In the program initialization along with the POKEs that
store the machine language program above, PC$ has to be initialized....

20 DIM PC$(4). The BASIC subroutine that sets up the values for the machine
language program looks like:

1000 REM BASIC- 6502 INTERFACE CALLED WITH A,X,Y & PC$

1001 2$ = PC$(4,4): GOSUB 1010: POKE 7,Z: Z$ = PC$(3, 3): GOSUB

1010: POKE 7, PEEK(7) + Z*16
1002 2$ = PC$(2,2): GOSUB 1010: POKE 8, Z: Z$ = PC$(1,1): GOSUB
1010: POKE 8, PEEK(8)+ Z*16

1003 POKE 1, A: POKE 3,X: POKE 5,Y

1004 CALL O

1005 A = PEEK(1): X = PEEK(3): Y = PEEK(5):RETURN

1010 Z = ASC(Z$) - 176: IF Z » 9 THEN Z = A - 7:RETURN
A typical call would be:

100 A = value to put in A register: X = x value: Y = y value: PC$ = "four

hex digits'': GOSUB 1001

1f the same machine language routine is to be called over and over, the JSR
address can be left alone unchanged (at a savings in execution time) by calling
the routine at GOSUB 1003 after having called it once at 1001 to set up the initial
JSR address. Upon return from the subroutine, A,X and Y will contain the
values that came back from the machine language that was called. A short’
BASIC routine can be written to explore and experiment with Monitor routines
as simply as the following:

150 INPUT "ROUTINE ENTRY POINT (4 HEX DIGITS) ?'", PC$

160 INPUT "INITIAL REGISTER CONTENTS (A,X,Y)",A,X,Y

170 GOSUB 1001

180 PRINT "ENTRY '"; PC$:" RETURNED A=';A;" X=";X;" Y=",;Y:

GOTO 150

This routine can bé used to try out many of the routines to see which registers
are destroyed during a call and also to verify what the routine does. In some
routines more than just the registers needs to be set up, and for those this
would have to be expanded. As examples, the following BASIC statements show
the usage of some Monitor routines using the calling sequence. As you can see,
it is not necessary to set up variables for input registers that are not used for

-11-

a particular routine., If you have any questions, catch me at the next Club
meeting.

200 PC$ = "FF3A": GOSUB 1001: REM BEEP!

210 PC$ = "FC58": GOSUB 1001: REM HOME AND CLEAR = CALL -936

220 A = 10:PC$ = "FB5B'": GOSUB 1001: REM VTAB TO LINE 11

230 DIM MSG$(80): MSG$ = "THIS SHOWS CHARACTER OUTPUT"

240 FOR I =1 TO LEN(MSGS$): A = ASC(MSG$(1,1)): PC$ = "FDED':

GOSUB 1001: NEXT I
etc.

Next month I hope to have completely worked out an upgraded version of
Don Williams' Integer BASIC to Monitor Floating Point routines. They are
covered in the PEEKING AT CALL APPLE, butl hope to make the interface -
easier and put the square root routine into machine language. Until next
month, Pax,

TO GET THE "MOD'" FUNCTION WHILE USING APPLESOFT, by Mark Crosby

Use the Function Statement: DEF FN MD(X) = X - INT (X/256) * 256 (MOD 256)
Then you can use the function - for example: POKE A, FN MD(X) (you must, of
course, set X = to a number).

Or to get X = A MOD B: DEF FN MD (A)= A - INT (X/B)*B (MOD B)

then type X=FN MD(A).

An example:

J10 DEF FN (MD(A) = A - INT (A/256) * 256
20 X = 4996: A=286: REM (FOR RAM, USE X=8192 OR HIGHER)
30 POKE X, FN MD(A)
40 POKE X+1, A/256
50 REM NOW READ BACK THE POKED NUMBER
100 PRINT PEEK(X)+PEEK(X+l) * 256
110 REM THIS SHOULD PRINT ''286"
120 END

EXCHANGINGING NEWSLETTERS, by Bernie Urban

The following groups have agreed to exchange newsletters with us. A
thanks to them for their cooperation .

Chesapeake Microcomputer Club - M. Alexander
AMRAD - P. Rinaldi

Association of Personal Computer Users - D. Schor
ABACUS (Assn. of Bay Area Computer Users) - Ed Avilar

Copies of their newsletters will be available in the GWU Library.

.

LY

.. -12-

TRAINING & DEVELOPMENT SESSIONS

At our next meeting, Washington Apple Pi will inaugurate a Training &
Development session dealing with topics you want us to cover. We hope you will
make a special effort to attend. We hope to cover a different topic each meeting.
You are encouraged to participate in a dialogue with the person chairing the ses-
sion so that you can share your own ideas and hear ideas that others have regard-
ing the topic being discussed. An important part of the session will be feedback
from you as to why you like it or not. Please be sure to attend and fill out the
forms provided. The first of these sessions (on Saturday, April 28) will be:

"PROGRAMMING IN 6502 MACHINE LANGUAGE" - chaired by John Moon
For those of you who want to learn another language, here is your oppor-
tunity to learn the "art" of machine language programming for the APPLE.
Machine language programs can run many times faster than BASIC programs.
If you have a limited amount of memory available, this will surely be a help.

CALENDAR OF EVENTS

Date Events/Meetings For Further Info. Call
April 23 Chesapeake Microcomputer Club Mani Alexander

7:30 PM, White Oak Library Off. 452-5232
April 26 NOVAPPLE Jim Nielsen

7:30 PM, St.Stephens United Meth. Church Off. 693-7530
May 9 Assn. of Personal Computer Users Daphne Schor

7:30 PM, Chevy Chase Library Off., 544-8530
May 17 Conf. on Microcomputers in Education & Ray Fox

& 18 Training, Pentagon Quality Inn, Arlington,Va. Off, {(703) 347-0055

May 25 Computerland APPLE Users Group Kim Brennan

7:30 PM, Computerland (New location) Off. 948-7676
¥ o o3 ok ko oskok ok ok ok %k oskodk sk sk ok ook ko ook ook sk ook o ok ook %k ok ok sk sk ook ok ok 3k sk ok %k ok ok
* %
% NEXT MEETING OF WASHINGTON APPLE PI %
% Saturday, April 28, 9:30 AM *
j GEORGE WASHINGTON UNIVERSITY :
; T hompkins Hall - School of Engineering, Room 206 e
= 23rd & H Streets, NW %
* Parking roulette, or in students' parking lot, if chains are down. *
* Convenient to Metro *
S o s sk sk ook ok %k ok ok gk sk ok ook sk sk ook ook sk ok sk sk ok sk ok sk ok sk ok ok %k %k X % %k %k sk ok ok ¥k %k 3k

AGENDA

9:30 - 10:15 Business Meeting - * C onstitution and By-IL.aw s * Progress on
Incorporation * Solicitation of A ds for the New sletter * Exchanging
New sletters * Copyright Issue * Discussion of Nomination of
Officers * New Business

10:15 - 11:15 T raining & D evelopment Session: 6502 Machine Language

11:15 - Show & Tell; Exchanging of Programs

