Warshington
Apple Pi

PO Box 34511 Washington, DC 20034

$100

volume._ | September 1979 Number &
Officers
President John Moon (202) 332-9102
Vice President Bernard Urban (301) 229-3458
Treasurer Robert Peck (301) 770-1954
Secretary Genevie Urban (301) 229-3458
Newsletter Staff:
Editor Bernard Urban (301) 229-3458
Associate Editor Mark Crosby (202) 488-1979
Program Librarian David Morganstein (301) 474-5768
o Members-at-Large Sue Eickmeyer (301) 490-7627
Sandy Greenfarb (301) 674-5982
Mark Crosby (202) 488-1979
Contents
President's Message 1
Minutes li
Editorial - Bernie Urban 2
NIBBLES - tidbits of interesting information 2
Event Queue 3
MODEMania (update) 3
Internal Structure of Integer BASIC by Sandy Greenfarb 4
Calendars by John L. Moon 9
Applesoft Surprise by Jim Kelly 9
Membership Application 10
Hard & Soft Facts on the Serial I/0 by Susan Eickmeyer 11
Classified Ads for Members 14
Commerciai Advertising Rates 14
oy Auto-List and Count Filemaker by Howie Mitchell 15
Software Review - SubLOGIC's 3-D wonder 15

PRESIDENT'S MESSAGE

Dear APPLE Enthusiast:

As is obvious, GWU has some interest in APPLEs - they
own a dozen or so of them with more on order! They
use them in a number of courses, including introduc-
tory programming (such as CSCI052) as well as some of
the more advanced courses. This semester I'm taking
a couple of courses (and maybe someday 1'11 get my
M.S.) that I especially arranged with the professors
beforehand in order to use my APPLE for the homework
and project assignments. One course is Interactive
Graphics, the other is on Digital Programming Systems.

1'm hoping that as a side benefit I can use the
homework problems and projects as subjects for articles
in this newsletter (after all, I have to write them

up for class anyway). For example, in the Interactive
Graphics course, one of the key topics that will be
covered is a Standard Graphics system known as the
Core Graphics System. This system includes routines
for windowing, scaling, transformations, viewports

and all manner of other such graphics-oriented things.
I hope to end up with an implementation of the system
on the APPLE as well as some articles describing what
all those funny words mean.

In the Programming Systems course, the two homework
assignments will be to write an Assembler and a Re-
locatable Loader. Not a trivial assignment! But

the present assemblers that I have access to on the
APPLE assemble a single source file in memory and
have no capability to link more than one program
together - something very useful if you would like to
mix and match your subroutines.

On the negative side, maybe all this is going to keep
me so busy that I won't have time to figure out which
end is up; well, at least it's on the APPLE so I can
do it at home! (Saves energy, is tax deductable, etc.
ete.)

Bernie suggested a rather wild - largescale, but fas-
cinating idea/project for the club - to set up and

run a Personal Computing Conference here in Washington.
I'm staggered by the thought of it; but like I said,
fascinated... Anybody interested give it some thought
and see me or Bernie at the next meeting - which, by
the way, has been changed to Saturday, September 29
due to a holiday conflict.

Hopefully T will have contacted Pete Kendrichs at
the Source so that they will arrange a demonstration
at the next meeting. If not, then I will try for
Dctober. So - at this stage, you'll just have to
come to the meeting in order to find our if we've
set it up or not.

See you there...

John L. Moon

MINUTES

APPLE Pi - The meeting was held in Tompkins Hall,

GWU on August 25, 1979. John Moon asked if the club
would like to accept an offer from The Source for a
demo for the club, A resolution was passed by the

club to have the demo arranged at the earliest con-
venient club meeting. Sandy Greenfarb moved that the
next meeting date be set as September 29, 1379. This
passed - the next meeting is on the 29th. Sandy then
gave in impromptu discussion on the Integer BASIC
Workshop that he has modified and is putting into the
c¢lub library. Hersch Pilloff said that the Paper
Tiger demo was still awaiting a machine. Several
general discussions were held on various software

items and a request was made for someone te review same
of the available word processors for the APPLE. A
motion was put forth to make the club policy to keep
the membership-mailing list confidential. After some
discussion, the motion was amended to require individual
permission to release the individual's name. The
motion passed as amemended.

John L. Moon

NOVAPPLE - The meeting was opened at 7:30 p.m. on
August 23 by the Secretary. Several announcements
were made. First, the next meeting of NOVAPPLE will
be September 12, 1979 at Computerland of Tysons Corner
when a demonstration will be given on the "Source".
This is a time-sharing commercial service open to
APPLE owners for a fee. The meeting will start at
7:30 p.m. There is a new piece of software out from
Dan McCreary, PO Box 16435-X, San Diego, California
92116. It is known as Apple 80. The ads say it con-
verts an Apple into an 8080 simulator, and also cau-
tions that it is slower than either system since it is
an interpreter program. HNo cne had tried it yet. The
cost is $20 plus $1.50 for shipping and handling.

One member brought in a copy of'the disk program "Dr.
Memory" for anyone to review before they purchase one.

A "goof" on my part occured in last months minutes. We
will meet at Computerland of Tysons Corner on the 4th
Thursday and Computers Plus of Franconia on the 2nd
Wednesday. Please mark your calendars. The meeting
nights are subject to change if the stores request it
but for now the meeting dates appear firm.

The program was presented by Mr. Ken Woodward. He be-

" gan an eight week course in assembly language. The

course outline is shown below:

CONTENTS OF ASSEMBLY LANGUAGE LECTURE:

1. Introduction to Number Systems

2. Introduction to Data Codes

3. Introduction to 6502 Machine Language
4. Monitor Usage

5. Arithmetic on the 6502 Processor
6. Moving Data

7. Basic Input and Qutput

8. Looping Techniques

9. Bit Operations

10. Use of Psuedo-Opcodes

11. Converting BASIC programs to ASM
12. Introduction to Sweet 16

13. Stack Processing

14. Specialized Output Routines

15. High Res Graphics/Lo Res Graphics
16. Coding for Speed

17. Coding for Efficiency

18. Floating Point Routines

19. Peripheral Programming/Hardware Programming
. Using the Disk II Assembly Programs

continued

n
(=]

Mr. Woodward's first session went into binary, decimal
and hex numbering systems. He passed out and explained
conversion tables which allow rapid conversion from one
to another. He also described the microprocessor's

== structure. (A review of similar information is in

RAINBOW, Vol 1 Issue 7, dated August, 1979.) A demon-
stration was performed using an Apple to display how
one could work with the monitor Tanguage. You can
make changes, display, give instructions, and enter
data into the Apple. Mr. Woodward will pick up his
lessons on September 27, 1979. He would like everyone
to bring their copy of the Red Reference Manual. He
will use it to provide a basis for his discussion. If
you never have understood assembly language before,
this is the series for you. It is well prepared and
simple enough for even a beginner.

The meeting was adjourned at 9:15 p.m.
Respectfully submitted,
Gerald R. Eskelund

€ DITORIAL

We've come a long way from Volume 1 Number 1 and I hope
you are as pleased as I am with the changes. Do I hear
three cheers for Mark Crosby's efforts? The newsletter
has grown from a timid trial balloon to the present high-
quality product of which I think all the contributors

can be justifiably proud. However, I am concerned that
some of our plans have gone astray and I would Tike to
remind you of one of them.

I don't believe that the greater Washington area can
support more than one high-quality newsletter devoted

to APPLE owners and users. Human nature being what it
is, only a few individuals seem inspired to come forward
with articles and items for inclusion in the newsletter.
To set up several newsletters within this area would di-
lute their efforts to the point where each newsletter
would not reach what I call the "critical mass" needed
to become self-supporting for the benefit of the APPLE
user community. There are considerable dollar and time
costs associated with getting out an issue. Economics
of scale can only be realized when the contributors are
drawn from an organization representing approximately
200 individuals. Incorporation (like Call-A.P.P.L.E.)
as a not-for-profit organization makes us eligible for
cgnsiderabTy lower postal rates, mass purchase discounts,
etc.

I urge all recipients whether members of Washington
Apple Pi or NOVAPPLE, whether paid or not, to think
again about the merits or drawbacks of forming one
cohesive organization covering the greater Washington
area for the primary purpose of publishing a regular,
monthly newsletter that is of high calibre and of genu-
ine use to all APPLE users - neophytes to masters,
young and old. Remember, each chapter, branch or what-
ever they may be called can maintain its own identity,
geographic location and schedule.

Other items which are in danger of falling through the
cracks:

o Club position on the ethics of exchanging pro-
prietary software.

0o Establishing a library of written materials for
the benefit of all members.

0 Scheduling in-depth courses on the workings of the
APPLE at all levels, e.g., fundamentals of pro-
gramming, PASCAL emulation of Z-80's.

peace,

Bernie Urban

NIBBLES

Beginning September 15, 1979, Apple Computer, Inc.,
will offer a low-cost extended warranty for its personal
and small business computer customers.

For $195, the one-year extended warranty features "Same-
day Turnaround” for carry-in repairs at Apple's authorized
Level I service centers. The extension covers all Apple
systems and products, as well as additions to the base
system made during the warranty period.

Will Houde, Apple's director of service operations, said
that the new warranty program will emphasize local dealer
support to Apple customers.

The extended warranty may be purchased at Apple Level I
service centers during the normal 90-day parts and labor
warranty period. It may be renewed in annual increments.w

C)Copyright 1979 by CW Communications/Inc.

Recognizing the need for expanded educational opportunities,
Apple Computer, Inc. announced the formation of the Apple
Education Foundation. Initially funded by Apple Computer,
the nonprofit foundation will offer support and resources
to organizations and individuals who are pioneering learn-
ing methods through the use of microcomputers. The
foundation will distribute hardware equipment for both
developmental and demonstration projects involved in
producing instructional computing materials. In addi-
tion, a few funding grants will be available for educa-
tional enrichment projects.

Final grant proposals and authorizations for funding dis-
bursements will be reviewed by a board of directors,
backed by an advisory council composed of leaders in

the field of computer-based education. The advisors will
provide guidance, and will review grant applications

and submit them for final approval by the board of
directors.

The foundation's primary goal is to place hardware into
the hands of people who will further those educational
methods which take best advantage of the personal mi-
crocomputer's capabilities.

The foundation will also sponsor the Education Program
Information Center (EPIC). EPIC will support micro-
computer users in developing new instructional programs
and in obtaining available information on educational
materials. The center will publish information packages
containing design and development guides, editorial and
marketing guidelines, software techniques and authorizing
tools. Authors are encouraged to submit their work to
the center for review and feedback on the most effective
uses and placements of their materials.

Further assisting microcomputer users, EPIC's Users

Guide will give overviews of state-of-the-art compu-
ting, plus critical reviews of educational programs

available for popular small computers.

Both the Apple Education Foundation and EPIC may be
contacted at: Apple Education Foundation, 20605
Lazaneo Drive, Cupertino, CA 95014. =

Copyright © 1979 by Creative Computing
51 Dumont Place, Morristown, NJ 07960
Sample issue $2.00;

One-year subscription $15.00

continued

NIBBLES - Continued

The effort to initiate a group purchase of the IDS 440
printer is well underway and a demonstration of this
unit interfaced with an Apple is planned for the Sep 29
meeting. The 440 retails for $995 and the optional
graphics 2K buffer is $199. We presently have 5 print-
ers on order (all with high-resolution graphics option)
and these will be shipped on a first ordered basis. An
additional order for 5 or more printers prior to October
15 will qualify all purchasers for a 12% discount,
otherwise 10%. An additional 2% discount is available
for those who wish to pay at the time they place their
order. Members can place their orders at the September
meeting or can call me at 292-3100 after October 2.

Hersch Pilloff T

MicroNeT M is a computer time sharing and software
distribution service for home and small business appli-
cations. The service costs only $5 per connect hour
plus a one-time application fee of $9, part of which

is refunded to you in the form of one free hour of
connect time. All billing is through Visa or Master
Charge accounts. On-line file storage (up to 64K bytes)
is also included in the basic connect time rate. Files
nust be accessed at least once every seven days.
Contact Personal Computing Division, CompuServe Inc. .,
5000 Arlington Centre Blvd., Columbus, OH 43220

(614) 457-8600. =

If you have been wondering where to get that tempera-
ture transducer so you can control your house heating

or for experimentation, there is available an inex-
pensive two-terminal IC temperature transducer from
Tri-Tek, Inc. This little device, which comes in a T0-52
metal can (about 1/8 inch diameter) produces an output
current proportional to absolute temperature. It can

be used with +4 to +30V supplies and is excellent for
remote applications due to its high impedance. Be-

cause this produces variable current output, voltage
variations are nulled. Although Tri-Tek requires a
minimum of $20 on charges, this transducer is only

a pleasant $3.49 each and requires only a trimmer
resistor for operation.

AD590J $3.49. Include $.80 for Specs and Applica-
tion sheets.

TRI-TEK, Incl, 7808 N. 27th Avenue, Phoenix, AZ 85021
(602) 995-9352. 10

Remember Jade Computer Products? Well, they now have
released their 1979 Software Catalog which is jammed
with the most popular and interesting Apple and

other software for microcomputers. The catalog is
organized by the type of software, e.g., High Level
Languages, Games and Simulations, Educational Software,
etc. They are also soliciting authors' programs for
distribution. Contact Jade Computer Products, 4901

W. Rosecrans, Hawthorne, CA 90250 (213) 679-3313. =

Located in Baltimore, the Muse Company has begun opera-
tion of its personal computer phone service. It will
provide a bulletin board, software demonstrations and
on-line ordering. Dial (301) 661-8962/3. They are

using D.C.Hayes MICROMODEMS which are compatible with

the Bell System model 103 low-speed modem and are normal-
1y operating at 300 baud, full duplex. They are compiling
a directory of modem equipped microcomputer owners. If
you would 1ike to be listed, contact MUSE MICRO-PHONE,
7112 Darlington Dr., Baltimore, MD 21234 (301) 661-8547.

m

eVENT QUEUE

m There will be a Personal Computing Convention
in Philadelphia on October 5,6,7 at the Civic
Center. See this months Byte magazine for details.
$10 at the door will get you in for all three days.
There are supposed to be exhibits as well as tu-
torial and lecture sessions. @

7 Washington Apple Pi will meet Saturday, September 29
at George Washington University corner of 23rd and H
Streets NW in Tompkins Hall School of Engineering Room
206 at 9:30 a.m.

m NOVAPPLE will meet September 27 at Computeriand Tysons

Corner and October 10 at Computers Plus Franconia.
Both meetings are at 7:30 p.m.

MOD&EMania

MORE BULLETIN BOARDS, ETC. REPRINTED COLURTESY OF
AMRAD NEWSLETTER SEPTEMBER 1979.

STATE CITY SPONSOR TYPE PHONE NUMBER
CA ERESNO v uiava5iatess minia aip nince 239-63“—&1?
CA LAWNDALE COMPUTER:yusasa
+++«COMPONENTS INC ABBS 1?—17“-3151
CACLOSIANGELRS S o 4 Sirein o s o b ininie L biaTl Bt e
+«SAN FERNANDO CBES,....... 213-343-5399
CA WESTMINSTER COMPUTERV.ssnses
++ -COMPONENTS INC ABBS, STl ﬂ“q 19d"
A SAN DIEGUTCOMPUTER s sissaisiers stenl siates
o MERCHANTS ABBS. . oqainaine T1U=-5R2-9557
QAL HAWTHORNE: RBBSvu e ees 213-675-8803
CA HUNTINGTON BEACH KORS=.:euis san sans
«MEYER ELECTRONICS ABBS. f1u Q6U-U3UE

CA MARINA UDEL REY ABES....¢.213 §21-73469
CA SANTEE PEOQPLESY MSG.:eveesns

D ISTERSKRRS . ot vasswes T1U-HUG-5680
CHISTGHAL HECL PERTPHERS st s ahblinaen

<ALS UNLTD INC ABBS...i..s 213-4258-3506
CA SAN. FRANCISCO ABHS. ..xsas B15-558-124k
CA SAN DIEGO BILL'S ABBS....T14-449-5589
CA PASEDENA CBBS..assswesmns 213-795-378R

CA SAN DIEGO COMPUTER 80C...T7T14-697-2176
CA SANTA CLARA CBBS.........H08-2046-2805
CR SAN. DIEGO STAN SKOG=.,ususes ssa sass
3o BUND TNEOBIT CBBS..v.vews T14=565-04961
CA CANOGA PARK SAN FER .

««NANDO VALLEY ABBS........ 213 3“0-“1(7
DC WASHINGTON JWACS.vsuues - .
110 BAUD. ..o anan aes 2"’ 637-“730
vee300 BAUDsesssnnns deaanaes 202-535-5730
08 EALSO SEE VAY<uis i anlals’al SEa" sleteie
FLEDESTIN FT WALTON s nsisas se 8" bate ot o
+BEACH ‘ABBS.sosesanvsnsncs 900u-243-1257
FL MIAMI AEBS...-. 305821 7401
GA ATLARTA NORTHSTAR:+essvas 408=Y43U= 1520
GA ATLANTA COMP S0C CHBS....404-354-4220
CAINTUANT R, oosordsim uciin a minine o 404-U58-U4BARA
GA ATLARTA...oaus JHOU-325-0526
IL CHICAGO PERS COMP

+UF CHICAGO ABBS.

i 312- 337-6631
]L CEHICAGD CBBS.. .«

«:312-528-T111

IL CHICAGO FORUM BO04vays sy ++312-925-0259
IL JOLIET WAYNE JUPITER.vsessve ane reos
SRA BRUD. LY <o e s 4 aaaes B15-727-7069
§5 WICHITA FORGM B0 15 damien 316-T46-2078
M BOSTON o e vite bs ae s siaa e s 617-963-8310
MA MAYNARD NECS CBBS...eewes 617-963-8310
MDD PARKVILLE MUSE COLas oo 301=561=8962
4D PARKVILLE MUSE CO. ++301=661=8963
MO EKANSAS GITY i insnvne +.816-737-1031
MO KANSAS CITY FOHUM 80.....816-861-70U0
NJ BOUND BROOK S JERSEY..ievsns ous o
+ s ELECTRONIC MAIL SYS.:..u4 201-457 - 0893
NY 'LONG ISLAND ABBS.::ieusees 212-448-6576
0K AKRON DIGITAL GROUP....u. 216=TH5=-TB55
OR BEAVERTON CBBS NWewoweass 503-606-5510
SC COLUMBIA UNIV OF GOLa.ass B03-771-0922
TH DALLAS CBBS...covionnsvas 211-601-8759

TX DALLAS FORUM 80...
TX DALLAS UNIV OF TX....
TA DALLAS UNIV OF TX.uws
TX FT WORTH FORUMI BO.. .«
TX HOUSTON ABBS...sieasna

-ev+210-288-4859
Le214-534-0842
+.218-534-DB78
..817-923-0009
<+« 713-877-7019

TX SAN ANTONIO ABBSiss.sssns 512-657-0779
VA ALEXANDRIA POTOMAC....s.
o MICROSMAGIC TNCI s s els 703 750 0930
VA FALLS CHURCH VIRGINIA..dvens aes sw
+BUSINESS SYSTEMS ABS8S....703-533~ 8591
VA MCLEAN PAUL RINALDO +«703-893-WHIR1

e dWHEL ABBS S oiihet s e e 703-893-9474
703-281-2125

)

Internal Structure of Integer BASIC
by Sandy Greenfarb

The purpose of this article is the consolidation of information on the internal
structure of integer BASIC. Any similarity between this and the reference mat-
erial is intentional, and reflects the outstanding job of the originating authors.
The material presented is advanced and is not intended for beginners. Despite this
fact, pains have been taken to carefully define any terms that readers might be ex-
periencing for the first time. Also, some introductory material has been added to
make this article a complete entity, requiring no additional reference.

Within the Integer BASIC internal structure is contained a myriad of strange ani-
mals, special-purpose bytes, characters, tokens, relative addresses, and absolute
addresses:

BYTE - the smallest addressable unit on the APPLE II. Each byte can represent
256 different values. On a 32K machine, there are 32,768 addressable locations.
A byte is composed of eight bits, each capable of a "zero" or "one" state. To
paraphrase, "a byte is a byte is a byte". These 256 values may be considered in
several ways, all a reflection of the same value. Sometimes the values may be
considered as representing @ thru 255 (absolute value), other times -128 thru +127
(signed value). Later on will be expressed terms such as positive token and nega-
tive ASCII. These will be referring to the state of the left-most or high-order
bit. In algebraic considerations, when this bit is a zero, the byte is considered
positive, and when the bit is one, the byte is negative.

SPECIAL PURPOSE BYTE - is just what it says. For whatever systematic reason,
a byte in a certain position or place has a special defined set of special meanings
for its possible values.

CHARACTERS - Integer BASIC uses the standard ASCII character set. Suffice it
to say that this is a standard way of representing the various alphabetic, numeric,
special (punctuation), and control characters that are available for use. These are
listed in the ASCII Character table. At this stage, some readers have opened their
Applesoft manuals and compared the ASCII table in this article with that in the man-
ual and are noting the differences in the values. Applesoft uses positive ASCII
(high bit=p) and Integer BASIC uses negative ASCII (high bit=1). Add decimal 128
or hexadecimal $80 to the Applesoft values to realize they are the same. (Note
that as a shorthand, the dollar sign "$" is used as a prefix to indicate a hexa-
decimal number).

TOKEN - As a way of reducing the size of programs, Integer BASIC internally re-
duces all command language to single characters. For example, GOSUB becomes $5C.
These characters are referred to as tokens, in effect a “tokenized" representation
for particular meanings. The Token table contains all tokens used with Integer BASIC.

ADDRESSING - "Where do the Browns live? Eight houses up the street at 6502
Apple Lane." Relative addressing is relative to the current location...eight houses
up the street (from here). Absolute is a self-contained entity...6502 Apple Lane.
Integer BASIC uses both. Note that since one byte can only describe 256 unique values,
it takes two bytes to fully describe an APPLE II address.

WORD - A pair of bytes with a specific meaning; most often used are address words
and pointers, a form of address. Because of hardware reasons, these words are formed
with Tow byte first and then high byte. The actual value of these "words" is calcu-
lated by multiplying the second byte by 256 and adding the first byte to that result.
This is not really so strange as it sounds. Think of your APPLE II as a city. This
city has 256 blocks named Zero street thru 255th street. Each street has 256 houses
numbered zero thru 255. Now,is there anything wrong with saying 32 28th Street?
That's the same format as in the APPLE II - low then high portion.

POINTER - is a word that contains the address of another location.

A pointer
“points to" or designates the location which address it contains.

H*****t***********t*******END OF INTRODUCTGRV TNFORMAT T QN bk s s sk s shroe sk e ke s ke she e e ke e e ke

Figure 1 illustrates the four significant pointers for an Integer BASIC program in
memory. HIMEM is normally the top of memory available for programming. The pointer
word for HIMEM ($4C and $4D) contains the location of the first byte immediately
following the last byte of the last line of the program. If DOS is resident, it con-
tains the address of the first byte reserved by DOS. HIMEM may be changed by the user
with the HIMEM: command. The general purpose of the HIMEM pointer is to indicate the
end of the area occupied by a program. PP or Program Pointer ($CA and $CB) denotes

the first byte of a program. After a Control-B or NEW or DOS INT command, PP will be
equal to HIMEM. This is not to _say that there is no program in memory, but to say that
Integer BASIC has commanded its pointers to ianore what is there as not significant.
Such ?rograms are sometimes recoverable, but are not discussed within the scope of this
article.

As program lines are entered (by keying in or EXECing a text file or by LOADing),
PP decreases to allow for the growth of the program. The lower limit is PV (next para-
graph) at which time any attempt to add more program will cause MEM FULL ERROR.

LOMEM pointer ($4A and $4B) is the address assigned for the start of variables. This
address is normally $800 (2048) unless changed by a LOMEM: command. PV, the Variable
Pointer for the end of variables ($CC and $CD) is initially equal to LOMEM, if no
variables are actively assigned as in the case of a NEW, LOMEM, CLR, or RUN command.
Similar to HIMEM, PV contains the address of the location immediately following the
last location allocated to variables. While PP changes while a program is being en-
tered, PV does not change until a program is running. Each time Integer BASIC en-
counters a symbolic variable (during the running of a program), it searches the symbal
table. [If the referenced symbol is not found, it is created and added to the variables
and PV increases to account for its required space. MWhile the variables are being built
during the running of a program, an attempt to increase PV greater than PP will also
cause MEM FULL ERROR. Note thatPV and the variables remain intact on a soft entry to

a program (CON, GOTO line number, or machine language trickery).

$<—— 10MEM (start of variables)
$4A and $4B (74 and 75)
BASIC
VARIABLES
v <————PV (Variable Pointer, end of variables)
MEMORY $CC and $CD (204 and 205)
MAP
f¢——— PP (Program Pointer, start of program)
\\\ $CA and $CB (202 and 203)
BASIC first line
PROGRAM last line
/
y ¢————————HIMEM (end of program)

$4C and $4D (76 and 77)

figure 1

Lines of a BASIC program are not stored as they were originally entered (in ASCII)

on the APPLE II due to a pretranslation stage. Internally each line begins with a
length byte which may serve as a link to the next Tine (relative addressing). The
length byte is immediately followed by a byte pair line number stored in binary, low
order byte first. The pretranslator only accepts line numbers from @ to 32767, however
there are ways to enter and sometimes legitimate uses for line numbers up to 65535.

The line number is followed by items of various types, the final of which is an end-
of-line token (#@1). Refer to figure 2.

figure 2 - LINE REPRESENTATION

l | [Tow] [high] | [e (381]
Length Line Number items End-of-Line
Byte Token

Single bytes of value less than $80 (positive ASCII) are tokens generated by the
translator. Each token stands for a fixed unit of text as required by the syntax
of BASIC. Some stand for keywords such as PRINT or THEN while others stand for
punctuation or operators such as "," or "+".

Integer constants are stored as three consecutive bytes. The first contains an ar-
bitrary ASCII digit ($BP-3B9) signifying that the next two contain a binary constant
stored low order byte first. (This provides a means of distinguishing from a symbol-
ic variable name which by definition begins with an alphabetic letter.) The tine num-
ber is not itself preceded by $B@-3B9 as its position in the Tine has already defined
its meaning. Al1 constants are in this form including line number references such as
in the statement GOTO 500. Although one or both bytes of a constant may be positive
(1ess than $80) they are not tokens. A constant is always followed by a token.

Variable names are stored as consecutive ASCII characters with the high order bit set
(negative ASCI1). The first character is between $C1 and $DA (ASCII A-Z), dis-
tinguishing names from constants. All names are terminated (followed) by a positive
token. It should be noted that the $ in string names is represented by the token $40
rather than the ASCII $A4.

String constants are opened with $28, the token for left quote, and closed with $29,
the token for right quote. Between is normally negative ASCII. REM statements begin
with the REM token $5D followed by ASCII text followed by the end-of-line token $@1.

figure 3 - ITEMS some
positive
CONSTANT $B1 $DC $05 token
(1500) (BD-B9) Tow high
some
positive
NAME (ABC) $C1 $C2 $C3 token
some
positive
STRING NAME $C2 $BP $B9 549 token
(Bp9S)
-continued-

figure 3 continued

STRING $28 $C1 $AD $B1 $29
CONSTANT Teft right
(A-1) quote quote
REM $50 ASCII ASCII ASCII $p1
REM end-of-line
token token

Whether in immediate or RUN mode, when BASIC recognizes a variable name, it searches
the variable area to determine if the variable has already been defined. The search
starts at LOMEM and ends when the variable is identified (in the area) or PV is reached.
If PV is reached without a match, the variable is added and PV is increased appro-
priately. This search logic should make it apparent why "frequently used" variables
shog]d be the first encountered (initialized) in a program. There are four types of
variables in Integer BASIC: simple and DIMensioned integer variables and simple and
DIMensioned strings. Each has its own unique format, however, all four formats are

very similar.

A1l four formats begin with the variable name represented in negative ASCII. As was
true in the program area, in the variable area as well, the § of a string name is re-
presented by a $40 token. Next comes the display byte. This byte has two functions.
First, by nature of its only possible values, zero or one, it delimits or denotes an
end to the symbolic name. Second, it indicates whether or not the variable should be
displayed ($00=no display, $01=display). (See pages 23 and 25 of the "Red Book”, DSP
and NO DSP commands.) The next two bytes in a variable definition are the pointer to
the start (byte) of the next variable name. This is an absolute address. At this
point, the four types of variables differ. A simple integer value has only two more
bytes representing the value of the integer (LOW/HIGH). A DIMensioned integer has

two bytes plus two more bytes for the size of the DIM statement. DIM A(5) would have
two bytes reserved for the value of A(0) and two more bytes each for the respective
values of A(1) thru A(5). Note that there are no special tokens to indicate the end
of the DIM. As the next variable will begin in the first byte after the current one,
and.as this address of the next variable is defined (in the preceding two bytes to the
variable values), Integer BASIC has sufficient facility for determining the size of
integer values.

On the other hand, string variables might not necessarily occupy their full alloted
space, and their format is a little different. Following the next variable pointer,
a simple (non-DIMed) string uses two more bytes. The first is for the negative ASCIT
character. (remember that a non-DIMed string can only be one or no characters in
1ength.) The second byte is a positive value (less than $80) denoting the end of the
str1ng._ As a special case, if the string is null, both bytes will be equal to $@@.
The variable value portion of a DIMed string is "N" bytes (where N is the length de-
scribed in the DIM statement) plus one for the end-of-string token. As above, if the
string is null, the first two value bytes = 5pB. Strings may be shorter than their
defined length. BASIC reminds itself of the actual string length by making the first
non-used byte a positive token. For example with the following short program:

10 DIM A$(5) : AS = “ABC" : END would produce in the variable area in hex "C1 C2 C3
1E fF FF". Note the use of $1E to indicate the premature end of the string. The
variable area formats are described in figure 4. For what it's worth, the following is

the length of the area required for each type of variable:

Five bytes + number of characters in name.

Five bytes + number of characters in name + 2*N.
Five bytes + number of characters in name$.

Four bytes + number of characters in name$ + N.

INTEGER NAME = number

DIM INTEGER DIM NAME(N)
SIMPLE STRING NAMES="X"
DIM STRING DIM NAMES(N)

figure 4 - VARIABLE FORMATS

SIMPLE 1 Byte | Next variable :
INTEGER | for each Display pointer address Value
NAME char. of Byte
(} name LOW { HIGH LOW y HIGH
INTEGER 1 Byte Next variable
ARRAY for each Display pointer address Value
(DIM char. of Byte (N+1 occurrences)
NAME(N)) |name LOW . HIGH _LOW . HIGH
| Sum—————
SIMPLE 1 Byte $40 token Next variable ASCIT End of
STRING for each for § Display pointer address char: string |
NAMES char. of By te hi bit tgken,h‘l
name LOW y HIGH = 1 bit=@
DIMed T Byte R [3$40 token Next variable [Up to N h [End of
STRING for each for § Display pointer address neg ASCII |string
DIM NAMES| char. of Byte chars. | token,hi
(N) name LOW | HIGH bit=p

Note: For variable strings, remember the null string is represented by two bytes of $00
immediately following the Next variable pointer address. Also remember that the
"in use" length of a DIMed string may be less than its defined length and that

the length can be identified by being followed by a positive token.

FINAL NOTES: The remaining material is in no logical order, but expresses some addi-
tional materials and experiences that are related to the article without having a log-
ical place to fit without detracting from the presented materials. With a knowledge

of the internal structure, one can now figure how to add illegal statements such as
HIMEM:, DEL, LIST line, etc. APPLE wisely made these statements illegal. Any "Trickery"
that is added to a program should be carefully tested to ensure it accomplishes its
desired purpose for all possible situations. In general, it should not be used, but

this is not meant to deny those few situations where it is exactly what is needed. All
that is recommended is that when deviating from the "standard" Integer BASIC, be ULTRA-

careful.

LOMEM may be changed within a program by entering an illegal LOMEM command in a pro-
gram or by POKEing the pointers. Remember that LOMEM causes PV to equal LOMEM, effec-
tively deleting all variables.

STRINGS: By knowing where strings are stored in memory, it is possible to simulate
the APPLESOFT CHR$ function or even simulate string arrays. To quote most every college
professor, "The exercise is left to the reader."

HIMEM: When possible, set or reset HIMEM between programs, that is if it must be
changed. Lowering the value of HIMEM will automatically move the program downward

in memory to correspond to the new values of HIMEM and PP. Raising the value of HIMEM
will not! The program works normally until it reaches a branch instruction (GOTO or
GOSUB), then it tries to find a line number which isn't where it should be. At this
point the program generally "hangs up".

Why do illegal HIMEM statements only work part of the time? This has a complicated

but beneficial answer. As stated above, when HIMEM is Towered, the program is lowered
in memory to correspond. That is the first fact. The second half of the answer is

the knowledge of how BASIC executes its lines. Once a program is running, Integer
BASIC has no need to refer to the PP (Program Pointer) unless it reaches a branch in-
struction. Instructions continue to be executed in sequence WITHOUT REGARD TO POINTERS
until a branch is reached. When a HIMEM lowers a program in memory, it may cause the
program to overlay a portion of itself. Should it cause the area of memory which is
currently executing to change, it may (and generally will) cause the area previously
occupied by the next instructions to become "garbage" which will confuse BASIC and
normally "hang up" the machine. For these reasons, illegal HIMEM statements should be
in the latter portion of the program which will be left intact (even though no longer
pointed to) if the lowering of HIMEM is significant enough. This same "sequential”
execution is what also allows unhitching machine language prefix programs and creating
APPENDing routines.
SAMPLE APPEND ROUTINE: 10000
10010

POKE @,PEEK(76):POKE 1,PEEK(77)3;REM SAVE ORTGINAL HIMEM
POKE 76,PEEK(202):POKE77,PEEK(203):REM LOWER HIMEM TO
CURRENT PP, LEAVING OLD PROGRAM INTACT

PRINT “DLOAD NEW-PROGRAM": REM FIRST CHARACTER OF PRINT
STATEMENT IS CONTROL-D

10020

10030
NEW-PROGRAM IS NOW APPENDED TO BEGINNING OF OLD PROGRAM.

The warning with this type of routine is to ensure that the line numbers of the appended
program are less than the original program line numbers. When BASIC executes a branch,
it starts at PP (Program Pointer) and searches upward until it finds the desired line
number. If there is more than one with the same number, the second could never be the
object of a branch. If BASIC finds a line number greater than the object before it
finds the object, the program will halt with a BAD BRANCH ERR. II

POKE 76,PEEK(@):POKE 77,PEEK(1): REM RESTORE HIMEM POINTER.

INTEGER BASIC TOKEN TABLE (with comments by original author-Bruce Tognazzini)

[ABLERORSASCLE CHARSCTER (VAEUES NUMBER TOKEN COMMENTS (Minor additional comments by S.G.)
ASCIT APPLE NUMBER — ASCIT APPLE NUMBER ASCIT APPLE NUMBER DEG.(HEX

CHERT KEYBD CHEC HEX EHOR & KEMBHCNEGHES CHORS SAREN RIS RRG HEX 0 $0 HIMEM: Token irrelevent - used internally as begin-of-line
1 %1 End-of-line token - each line ends with 501
c
ggh ig {gg ggg i S 1;; ggg x et gig gg? 25 52 Used internally in delete line processing
c 3 IR i Colon for statement separation
STk B 130 $82 - 173 SAD X 216 $D8 4 $4 LOAD Tape command
ETX €= o d3ldes] 174 SAE || Y 217 $09 6" %5, GAVE, "Tape comnand
EOT Dg 132 $84 / 175 SAF iz 218 $DA 6 %6 CON
EEE Ec Igg ggz ? %;g ggo EE S gég %Bg 7 $7 RUN RUN n, where n is a line number
c 1 1 51, 8 $8 RUN RUN from first line of program
BEL G 135 587 2 178 582 | M 221 $DD 9 $9 DEL
i e T R S a1 A Comma used with DEL (Del 0,10)
LF 3 138 $aA 5 181 885 - o, 224 SEO 11 S$B NEW Program self-destruct unless you know what you're doing
VT KE 139 $88 | 6 182 $86 5 roa. 225 SE1 %g gg gh?o Clears variables, resets PV to LOMEM value
FF L 140 $8C 7 183 $B7 b 226 SE2 :
CR ME 141 %80 | 8 184 388 || ¢ 227 $E3 %g gg e Comma used with AUTO (AUTO 10,20)
S0 Nc 142 S8E ? 185 $B9 d 228 $EA 16 $10 HIMEM: The real thing, note colon is already in command
SI 0C 143 gar : 186 gBA e 229 zES 17 $11 LOMEM:
DLE P 144 590 3 187 $BB f 230 SE6 . s
el Q:‘: 145 $91 < 188 $BC g 231 $E7 i THE FOLLOWING ARE NUMERIC OPERATORS:
oca Rc 146 $92 y3 189 £BD h 237 3E8 19 $13 - The associated parenthese are 56(1eft) and 114 (right)
DC3 Sc 147 $93 > 190 $BE i 233 $E9 20 $14 * example: A = 14 * (27+15)
bDca Tc 148 $94 ? 191 $BF h | 234 $SEA 21 $15 .
A U, 489 $95) @ 192 $C0 f K 235 3EB THE FOLLOWING ARE NUMERIC VARIABLE LOGIC OPERATORS:
SYN v 150 $96 A 193 $C1 1 236 SEC 22 816 = example: IF X = 13 THEN END
ETB WE 151 $97 B 194 $C2 m 237 $ED 23 817 ¢ :
CAN xg 152 598 § C 195 $€3 || n 238 SEE 24 $18 N
EM Yc 153 $99 D 196 $C4 o 239 $EF 25 $19 >
SUB z 154 $9A E 197 $C5 p 240 $F0 26 S1IA <=
ESG sa. 155 $9B i 198 $C6 q 241 $F1 27 $18 <>
FS &5 156 $9C G 199 $C7 r 242 $F2 28 §1C ¢
GS EM 157 $9D H 200. $C8 H 243 $F3 29 $1D AND
RS N 158 S9E | I 201 SC9 || t 244 $F4 30 SIE OR
us -- 159 §9F J 202 gCA u 245 EFS
SP Sa. 160 $AQ K 203 $CB v 246 $F6
! 161 $A1 | L 204 $C | w 247 $F7 L
"‘ 162 $A2 M 205 $CD X 248 $F8 33 821 + fni=ed
i 1633403 1 N 200 35 | ¥ i fEieE 3§22 (used in string DIMs: DIM A$(n)
$ 164 $A4 0 207 $CF z L 250 $FA 35 23 | Eomm Usad/ini AS(3,)
g igg gﬁg g ggg gg? ? s gg% g;g 36 524 THEN Followed by a line number: IF X=3 THEN 10
; 167 $A7 R 210 §02 i = 253 $FD 37 $25 THEN Followed by a statement: IF X=3 THEN A$="CAT"
(168 $A3 S 211 $D3 W £ 954 $FE B S26 s used with string inputs: INPUT "WHO",W$
39:527 ., used with numeric inputs: [NPUT "QUANTITY",Q
,}\. %gg gig E g%% ggg gsléém i 255 $FF 40 $28 " Beginning or left quote
v v IS D QR Ending or right quote :
LF=Line Feed; CR=Carriage Return; SP=Space; ESC=Escape; sa.=keyboard same as ASCII. 42 928 igbﬁ€r1:Eegiggsggr?gzge:}:; gggﬂT A3(12,14) used with 114 as
s-prefix=shift; c-suffix=control. (*Upper case only) 43 $28B 1 ungsedp
44 s2¢c ! unused
45 $20 variable array left parenthesis: X(12) used with 114 as right paren.
7

NUMBER
DEC HEX

46 $2E
47 $2F
48 $30
49 331
50 §32
51 $33
52 $34
53 $35
54 $36
55 $37
56 538

57 $39
58 $3A
59 $3B
60 $3C
61 $30
62 $3E
63 $3F
64 $40
65 $41
66 $42

67 $43
68 344
69 $45
70 546
71 §47
72 $48
73 $49
74 34A
75 $4B
76 $4C
77 $4D
78 SAE

79 $4F
80 $50
81 $51
82 552
83 $53

84 354

85 $55
86 $56
87 8§67
88 558
B9 $59

90 $5A

TOKEN

PEEK
RND
SGN
ABS
PDL
RNDX

“ w ue e el e e

TEXT

CALL
DIM

DIM
TAB
END
INPUT
INPUT

INPUT

FOR

T0
STEP
NEXT

COMMENTS

uses 63 and 114 for parentheses
" "

unused

used in variable DIMS: DIM A(10)

unary signum: A=+5

upary signum: B=-5

numeric: IF NOT A THEN B=3

used with 114 in Togic statements and numeric operations:
IF C AND (A=14 OR B=12) THEN X=(27+3)/13

string logical operator: IF AS="CAT" THEN ...

string logical operator

uses 114 as right parenthesis

comma used with SCRN: PRINT SCRN(X.Y)

used with 114 after PEEK, RND, SGN, ABS, and PDL

string

unused

special case string array right parenthesis, used when string array
is the destination of the data. In the example, A$(1)=B$(1), the
A$ left parenthesis will be 66 and B&'s will be 42. Used with 114 as
right parenthesis.

Next variable in DIM statement is string: DIM ANYTYPE,STRING NAME
Next variable in DIM statement is integer: DIM ANYTYPE,INT NAME
String prints: PRINT ANYTYPE;STRING VAR NAME

numeric prints: PRINT ANYTYPE;NUMERIC VAR NAME

end of print statement PRINT A;

string prints: PRINT ANYTYPE, STRING VAR NAME

numeric print: PRINT ANYTYPE, NUMERIC VAR NAME

end of print statement: PRINT A%,

string var. Parentheses 34 and 114. If comma is used, it is 67 on 68,
depending on type of next variable.

numeric var. Parentheses 52 and 114. Comma same as with 78.

String with no prompt: INPUT AS
String or numeric with prompt:
INPUT "WHO",A$ uses comma 38
INPUT "NUM",A uses comma 39
numeric with no prompt: INPUT A

THE FOLLOWING ARE FOR FOR/NEXT LOOPS:

NEXT 1,J

NUMBER TOKEN COMMENTS
DEC HEX
91 $5B RETURN
92 $5C GOSUB
93 $50 REM
94 S5 LET
95 §5F GOTO
96 $60 IF
97 $61 PRINT string variable or literal: PRINT A$:PRINT"HELLO"
98 $62 PRINT numeric value: PRINT 123: PRINT A: PRINT ASC(AS$)
99 $63 PRINT dummy PRINT: PRINT:PRINT
100 $64 POKE
101 $65 comma used with POKE
102 $66 COLOR=
103 $67 PLOT
104 568 comma used with PLOT: PLOT X,Y
105 $69 HLIN
106 $6A comma used with HLIN
107 $6B AT AT used with HLIN
108 $6C VLIN
109 $6D comma used with VLIN
110 $6E AT AT used with VLIN
111 $6F VTAB
112 $70 = string -- non-conditional: AS="HELLO"
II30671 = = numeric -- non-conditional: A=14
118 &72. 00) the only right parenthesis token - won most popular token award
at Atlantic City
115 $73 unused
116: 574 . LIST List a range of numbers or specific number: LIST 10:LIST 5,30
117 %75 5 comma used with list
118 $76 LIST LIST entire program
119 $77 POP
120 $78 NODSP string variable
121 $79 NODSP numeric variable
122 $7A NOTRACE
123 $7B DSP string variable
124 $7C DSP numeric variable
125 $7D TRACE
126. S7TE PR#
T2787R oIN#
ADDITIONAL READING
1. INTEGER BASIC SUBROUTINE PACKAGE, by Bruce Tognazzini, APPLE Software Bank, Con-

tributed Programs Volumes 3-5. pages 69-87. Free, see your dealer.

INTEGER BASIC INTERNALS, by APPLE Computer Engineering Staff, AppleSauce, June 1979,
Vol 1, No. 4, pages 4.20-4.22. $1.50, for subscriptions 510/yr or single issue,
write APPLESAUCE, 12804 Magnolia, Chino, CA 91710.

CALL=A.P.P.L.E., various issues. Mrite CALL-A.P.P.L.E., 8710 Salty Drive N.W.,
Olympia, WA 98502 for details. Though not specifically used in this article;

the author gives full credit for the knowledge and experience gained from reading
the issues of CALL-A.P.P.L.E. This is a non-profit organization dedicated to the
sharing of knowledge of the APPLE II and APPLE 1[I programming.

APPLE T1 BASIC STRUCTURE, by Steve Wozniak, Dr. Dobbs Journal
of Computer Calisthenics and Orthodontia, Issue 23.

APPLE II Reference Manual, January 1978.

APPLE Software Bank, Contributed Programs Volumes 3-5.

Ratferences:

Calendarsr by John L. Moon

This article describes a Perpetual Calendar program.
With this program you can print calendars for any
month of any year (since the start of modern date
keeping), or by using one of the subroutines within
the program you can identify the day of the week of
any arbitrary day.

See the attached listing of the program to follow this
discussion. The heart of my Perpetual Calendar pro-
gram is the subroutine from line 100 to 190. Its in-
puts are the variables Y, M, D for Year, Month, and
Day. It returns the variable N with a value from 0 to
6 for Saturday, Sunday,....Friday.

The routine from 1010 to 1095 prints out a formatted
calendar for a single month. Its inputs are the vari-
ables Y1 and M1 for Year and Month., It prints out
the month name and the selected year, and then
repeatedly calls the day of week routine for as many
days as are in a month to fill in the body of the
calendar.

The main loop of the program is from 2000 to 3000.
Here is where the instructions are printed out and

the user is asked for the Year and Month desired.

If the Month is entered as a zero, then a loop is used
to call the routine at 1010 from Month 1 to 12 to make
the calendar for a year.

The algorithm is derived from Zeller's congruence.
An explanation can be found in the September 1979
issue of Byte on page 126. b

10 DIM M$(40): M$="JANFEBMARAPRMAYJUNJUL
AUGSEPOCTNOVDEC"
20 DIM MD(14):MD(1)=31: MD(2)=28: MD(3)=31:
MD{4)=30: MD(5)=31: MD(6)=30: MD(7)=31:
MD(8)=31
30 MD(9)=30: MD(10)=31: MD(11)=30: MD(12)=31:
MD(13)=31: MD(14)=28
40 GOTO 1000
100 IF M»2 THEN 130
110 M=M+12
120, ¥=Y-1
130 N=D+2*M+((M+1)/2)
140 N=N+Y+(Y/4)-Y/100+Y/400+2
150 IF MD(M)€31 THEN N=N+1
170 IF M=8 OR M=10 OR M=12 THEN N =N+1
180 N=N MOD 7
190 RETURN
1000 GOTO 2000
1010 M=M1: Y=Y1
1012 DAYS=MD (M)
1013 IF(Y MOD 4 =0 OR Y MOD 400=0) AND M=2
THEN DAYS=29

1020 PRINT: PRINT " i

1021 PRINT " MS((M-1)%3+1, (M-1)%3+3);
18] ";Y

1022 PRINT

1030 PRINT " SUN MON TUE WED THU FRI SAT"

1035 PRINT

1040 FOR D=1 TO DAYS

1050 M=M1: Y=Y1: GOSUB 100

1060 IF N=0 THEN N=7

1070 IF D»9 THEN 1072: TAB 4%N: PRINT D;:

GOTO 1080
1072 TAB 4%N-1: PRINT.D ;
1080 IF N=7 THEN PRINT

1090 NEXT D
1095 RETURN
2000 CALL -936: VTAB 4

2010 PRINT "PERPETUAL CALENDAR PROGRAM'":
PRINT: PRINT "ENTER YEAR, MONTH. IF
MONTH IS ZERO"

2020 PRINT "THEN THE WHOLE YEAR WILL BE
PRINTED"

2025 PRINT "YEAR AND MONTH = 0 ENDS PRO
GRAM"

2030 INPUT "YEAR, MONTH'", Y3, M1

2035 IF Y3=0 THEN 3000

2040 IF M1 =0 THEN 2050:Y1=¥3: GOSUB 1010:
GOTO 2010

2050 Y1=Y3: FOR Ml=1 TO 12: GOSUB 1010:
INPUT "HIT RETURN FOR NEXT MONTH",
A%: NEXT Ml: GOTO 2010

3000 END

Applesoft Surprise by Jim Kelly

Last month I decided to take the plunge and get an
APPLESOFT firmware card. When I inspected my
purchase at the store, the salesman pointed out that

I had a "full board.'" I didn't appreciate the significance
of that comment at the time. When I got home and

tried out my new addition, I discovered to my delight
that my {irmware card contained the Auto Start ROM!
Evidently this is being included free of charge in the
newest version of the firmware card.

The design seems to be similar to that suggested by
Darrell Aldrich in the July-August 1979 Call - APPLE,
except that the old monitor remains with: the Integer
BASIC mode. The new version also contains a new
manual, The APPLESOFT Tutorial, very similar in
style to The BASIC Programming Manual written for
Integer BASIC. You should be able to tell if you are
getting the new version of the firmware by looking at
the back of the package - the new card comes with two
manuals, the APPLESOFT Reference Manual and the
new tutorial, clearly visible from the rear.

There is virtually no documentation on the Auto Start
ROM in this new offering. The new tutorial manual
assumes that you have Auto Start (it was probably writ-
ten for the APPLE II Plus system) and has an appendix
on the old monitor. But this manual is written at an
elementary level and does not recognize the existence
of Integer BASIC. The APPLESOFT Reference Manual
makes no mention of Auto Start.

There seems also the be one minor operating problem,
Switching from Integer BASIC to APPLESOFT some-
times bombs. What happens is that the APPLESOFT
prompt symbol appears but every attempt to hit
"Return' puts you in the monitor. The only sure solu-
tion I've found is to turn the APPLE off and then on
again. Switching from APPLESOFT to Integer BASIC
appears to be no problem. I don't have a disk, sol
don't know if this problem will affect the selection of
APPLESOFT irom the DOS.

Well, enough of looking a gift horse in the mouth. It
is certainly a pleasant surprise to find this little
freebie in the box. After all, the Auto Start ROM
alone lists for $65.00. With that savings I suppose

I can buy the documentation. m

ATTENTION MEMBERS! ATTENTION MEMBERS! ATTENTION MEMBERS! ATTENTION MEMBERS!

Please check your mailing label now. If it has a "P" in the upper right-hand
corner, you are a paid member. "C" means complimentary (to our computer stores
locally) and (whoops!) "U" means you have not paid your membership dues.

The deadline to send in your dues is October 1, 1979. If you don't, we will
remove your name from the mailing list and you will not receive the newsletter.

[f you want to be sure to get every issue, fill out the form on the right and
send it in with your dues as quickly as possible.

We want to serve our membership as efficiently as possible which means we
have to weed out the "dead wood" people who don't care to pay for the excellent
work of our club. In that way, we can better serve our members' needs.

Thank you.

10

Warshington Apple Pi
Memberrhip Application

NOTE: Club policy prohibits revealing members' names and addresses. Additionally,
the information requested below is for planning purposes only and will not
be released to anyone, including other members.

NAME

ADDRESS

CITY, STATE, ZIP

TELEPHONE NUMBERS: HOME () WORK ()

PLEASE LIST HARDWARE YOU OWN:

OCCUPATION

I WOULD LIKE TO WRITE ARTICLES FOR THE NEWSLETTER (Y/N)
I WOULD LIKE TO ASSIST ON A COMMITTEE (SPECIFY AREAS OF INTEREST IF YES) Y/N

PLEASE ENCLOSE PAYMENT WITH THIS APPLICATION IN THE AMOUNT OF $6 FOR 6 MONTHS

MONTH JOINED PATD (Y/N)

MAKE CHECK OR MONEY ORDER PAYABLE TO: WASHINGTON APPLE PI

SEND TO: WASHINGTON APPLE PI
PO BOX 34511
WASHINGTON, DC 20034

Hard & Soft Facts on the Serial 1/0O°
by Susan Eickmeyer

‘ The APPLE J[has a lot tob offer im its jown right, but

with a printer attached, or on a time sharing system, the
potentizl of its use increases significantly. Most timesharing
systems, and a number of printers (among a lot of other picces
of hardware, use a serial interface, or serial [/0. This is
usually just a printed circuit card which sits in one of the
slots in the*?PLE][motherboard, and often some associated
software. One: sucnh serial board, which is available through
ELECTRONIC SYSTHEMS fairly inexpensive, uncomplicated and
works satisfactorily for many applications. This serial board,
like all others. the '"job' of sending out information

one bit at a rime. On this board, the bits of information are
Sent out as voltages, specifically voltages which conform to

a standard called RS-232-¢. The intent of this article is not
to examine that standard, though, so we will leave any further
discussion of it to a later article. What T want to delve into
here is a discussion of how the APPLE][and the sc¢rial board
interact, and look at an assembly language program which handles
that information. The article assumes you know a litcle, but
not very much about assembly language. The convention of using
a'" §$ " to signify hexadecimal notation.will be used in this
article. Before going any further, I will present the program
I use with the serial 1/0 board. It is presented below just

as it will list out on the APPLE]|.

a5

has

0300- AD B1 CO LDA $COB1 lGeT

0303- 29 80 AND #3580 STAT: |woeo

0305- FO OE BEQ $0315 oOuT

0307- AD BO €O LDA $COBO

030A- 09 80 ORA #1380 MASK GET
030C- C9 EO CMP #SEO STATUS] STRTUS
030E- 30 02 BMI $0312

0310- 29 DF AND #$DF —
0312- 20 FO FD JSR SEDFO MASK
0315- 2C 00 €O BIT $CO00

0318~ 10 E6 BPL $0300

031A- AD 00 €O LDA $CO000

031p- 2C 10 €0 BIT $CO010

0320- 8D 33 03 STA $0333

0323- AD B1 CO LDA SGO0B1

0326- 29 01 AND #501

0328- FO F9 BEQ 50323

032A- AD 33 03 LDA $0333

032D- 8D B2 CO STA $COB2

0330- 4C 00 03 JMP $0300

Ix

S

“.{

We'll use the program listing and the accompanying flowchart
in our discussion of the serial I/0 interface, so keep them

handy. First let's discuss how the APPLE]|[communicates with
hardware in general. Simply put, the APPLE][sees all hardware
devices as memory addresses. These addresses will vary

depending on which port or slot the board is in, how the board
feironnecred (py Ilsually there will be a data sheet with
the hardware or board that will supply this information.
Qur board is in slot #3, and according to the information on
documentation that came with it, there are only three addresses
with which we need to be concerned. These are:

SCOBO--INPUT

SCOB1--STATUS (bit 7

SCOB2--TRANSMIT BUFFER
The input address will always contain the ASCII value of the
character in the input buffer, and the transmit buffer address
is where we will '"store' any characters we want to send out.
TATUS has two functions; l-to flag whether or not a character
has come into the INPUT buffer, and 2-to flag whether or not
the ¥ransmit Buffer is ready to accept another character
for output. Since the STATUS address is only handling two
'yes' or 'no' questions, it can perform its "job' by just
setting or not setting (setting a bit means making 1t a one)
two of the eight bits in the byte. The program must then
specifically test for those bits, and make its decision based
on them. We will see how this is done.

The diagrams below will illustrate this setup.

etec,

input ready [/ bit O:transmit empty)

(]

| T | s] T 1 L
(R'SC.J: VALILE u:}:sv!b n‘m&j (Ascn ‘oaLue FR};MRPPL&)
CO8E INPUT §COB2 oUTPUT
NPT 7 < ot *tf* r B Tgnnsnir BUFFER
G%fFe& ,7/.4=]JL' 24 A
£A i ZZlicons STATUS

Now we are ready to look at the program in detail.
To begin, we GET the STATUS byte. All we have to do to do
this is load the accumulator (LDA) with the contents at
SCOB1l , which is the address which the documentation told us
was the STATUS. Since we first want to find out if the board
has information ready for us, we need to checkthe Input ready
bit, bit seven (the high order or leftmost bit) of the STATUS
byte. To do this we use an operation known as "Masking', which
is donr with the 6502 'AND' instruction. When an AND is per-
formed on two bytes of data, corresponding bits in each arxe
analyzed, with a result of 1 if and only if both the correspon-—
ding bits are also 1l's. For any other combination of bits,
the result will be a 0. A couple of examples follow.

10111011 10001001 01110001

ARD 00010010 AKD 10000000 ANWD 10000000
00010010 1€000000 00000000
fig.1 fig.2

fasking essentially boils down to this: We mask with
the number whose binary equivalent has a 'l' in and only in
the position of the bit in which we are interested. In fig.2
we used the binary 10000000 to mask (AND) . This is the
same as $80, as in the program listing. Notice that $80 has
a 'l' in the 7th bit position, whick is the bit in which we
are interested. Compare the two examples in figure 2 and
notice that when the 7th Bit in the number to which we are
ANDing $80 is set, we get a non-zero result. If the 7th
bit in the other number is not set, we get a zerao result.
Thus, when we MASK a bit, we get zero if the bit is not set,
and non-zero if it 1is. In our program we use the Mask to
determine if the 7th bit is set. This tells us if there is
input from the external device. If the AND returns a 0,
we know that there is no input, and as the flowchart shows,
will go on to check the keyboard. If the result is non-
zero, it indicates that there is something in the input
buffer. For now let's say that the result was non-zero,
so there is data waiting for .us. We get the data by
simply loading the accumulator with the contants of the
INPUT buffer address, or LDASCOBO. We now have a form
of the ASCII value from the external device in our A-reg-
ister (Accumulator). On ASCII code, the 7th bit may or
may not be set, depending on the external device. Since
APPLE][requires that 7th bit to be set to avoid getting
certain 'garbage' characters, we must be sure that if it
was not already set, that it is set by the program. Again,
we must manipulate a certain bit, this time leaving all
the rest unaffected by our operation. It is possible to
do this with the ORA (OR the Accumulator) instruction.
The ORA works this way; If either of the corresponding bits
between the accumulator and the number with which it is
ORA'd are a 1, a 1 is returned as the result. Only if both
the bits are 0's will a 0 be the result. Again, examples:
acec.10111011 acc.10001001 acc.01110001
ORA 00010010 ORA 10000000 ORA 10000000
acc 10111011 acec 10001001 acc 11116001
fig3 fig 4

Figure 4 shows anORA with $80 (binary 10000000).
When we ORA we use a number with a 1 in the binary position
which we want to set, irregardless of previous condition
in the accumulator. We used $80 whose binary has a 1 only
in the 7th bit. With the ORA instruction, the reult of the
operation is left in the accumulator, with the appropriate
bit set. Notice how all the other bits in the accumulator
stayed the same. Our accumulator now has the ASCII character
code with the high bit set, like the APPLE][wants.

b ——

We are still not quite ready to let the APPLE][output
its character, however, since we must first check to see if
the character we received was lower case or not. The standard
APPLE]| cannot handle lowercase without software/hardware
modifications. For our program we will do it the easiest way
and merely convert the lower case letters to upper case.
Lower case ASCII characters have a higher value than upper
case letters, so we will compare our ASCII value ir the
accumulator with the smallest lower case value for an ASCII
character with the high bit set, $E0. Here we use the CMP
instruction. This instruction does a subtraction, but does
not store the result in the accumulator, as a regular
SBC (subtract) instruction would. The CMP instruction does
set flage in our 6502's status register, though, and we
can find out if the result was positive, zero or negative.
Our use of the CMP will returnm a negative result only if
we have an upper case character. A positive or zero result
indicates we have a lower case character, and must modify
it so it is handled as an upper case letter by the APPLE][.
To modify it we are going to use the AND instruction again,
only this time we are going to turn our procedure around
and use a zero to change the bit in which we are interested.
The difference between upper and lower case ASCII values
lies in the 5th bit. It is set in lower case, it is not set
in upper case. We need to 'unset' the fifth bit in the
lower case letter, and we will end up with an upper case.

To do this we AND with a number which has 1's in all bit
positions except for the one we want to 'unset'., Since

we want to make the 5th bit a zero, we need to use the
number $DF, which has a binary value 11011111 (the 5th bit
is a zero). Below, we use the letter 'A' as an example of
the process.

lower 11100001
AND SDF 11011111
11000001

(=upper 11000001)

Upper case A ; $C1 binary 11000001
Lower case a ; $E1 binary 11100001
/

5th bit
Modification ; $DF binary 11011111
This modification works for all lowercase letters.

We are finally ready to let the APPLE][have the character
and output it to the screen. The APPLE monitor will do the
work for us here, all we have to do is jump to subroutine
for outputting a character to screen that exists in the
monitor at $FDFO0. (JSR $SFDFO). After the character has
been output to the screen, the program will return to this
main program for the next step.

So far we have looked at how the APPLE][gets a letter
from the serial I/0 board, modifies it as necessary, and
outputs it to the screen. The other half of the operation
involves the APPLE][giving the serial board a character
to transmit to the external device.

As the flowchart shows, we must Flrst check the keyboard
and determine whether or not a4 key has beén pressed, that is,
whether or not there is input from the kevboard. We will use
the BIT instruction to check for input. ¥he BIT instruction
is similar to the AND instruction, in that it also logically
AND's the bits of the A-register with the bits of another
specified byte. The primary difference between an AND and a
BIT instruction is that the BIT instruction does not store
the result of the operation in the A-Register, while an
AND instructiondes.With a BIT instruction three things occur
which can be tested to determine the result of the BIT op-
eration: 1) The zero flag in the 6502 will be set or not
set depending on whether or not the comparison of bits suc-
ceeds (results in a non-zero number). 2) The 6th bit is
transferred into the 6502 overflow flag. 3) The 7th bit
of the memory data is transferred to the 'Negative' flag in
the 6502. It is the 3rd item, that involving the negative
flag that we will need in this step of the program. In the
APPLEILT -, Yhe keyboard is a kind of peripheral
device which communicates with the APPLE][, itself through
memory locations. Two addresses are invulved in our program,

SC000 and $C010. Hhen a key is pressed, the ASCIL
value of the key can be found at $C000. The important point
here is that the APPLE][always sets the high (or 7th) bit
in its ASCII representation of a character. When the key-
board strobe is cleared, the high bit is set back to 0.

To summarize: if a key has been pressed since the last time
the strobe was cleared, the 7th bit will be set. If no key
has been pressed since the last time the strobe was cleared,
the 7th bit will be 0. Now, when we BIT the keyboard, that
7th bit is transferred into the N-flag (negative flag). If
the 7th bit was a one, the N-flag will be set as a result of
the operation. TIf the 7th bit had not been set, the H-flag
would not be set as a result of the opcration. Hence, if a
key was pressed, the 7th bit was set, and the N-flag will be
set as a result of the BIT operation. If the N-flag is not
set as a result of the BIT operation, then we know that no
key was pressed, and we can go back to the start and see if
the serial I/0 card has any input for the APPLE][. This is
exactly what we do in the BPL instruction. This says Braoch
to the specified address on PLus . APPLE][determines that
a number is plus if the N-flag is not set.

Let's assume that the branch failed, that {s the N-flag
was set (indicating a key had been pressed since the last
instruction) so we 'fell through' to the next instruction.
Here we simply load the accumulator with the contents of the
keyboard address and get the ASCII value for the character.
Next we must clear the keyboard strobe, since, if we do not,
the 7th bit will stay set, and it will look to the APPLE][
like the same key is being pressed repeatedly. We use the

i3

BIT instruction again, then see a piece of hardware '"magic"
occur. All we are doing with the BIT instruction here is
addressing a location. The hardware on the keyboard can de-
tect the fact that it has been addressed, and will as a
result, clear the keyboard strobe. Actually we could have
used any instruction involving that address and had the seme
result,

Our accumulator still contains the ASCII value from the
keyboard, but we need to use our accumulator for somcthing else
at the moment, so our next step is to save its contents in a
temporary location so we can 2et them back later. In our pro-
gram we will store the ASCII value in the accumulator in the
location which immediately follows the last byte of the program
itself, in $0333. We STore the contents of the Accumulator
at $0333 with the instruction STA $0333 .

In the next segment of the program, we will need to test
our serial I/0 STATUS byte again. Again, we use the LDA $COB1
instruction to do so. This time, however, we want to know,
not whether the board has information for the APPLE][, but
whether the board is ready to receive some information from
the APPLE][. What we need to find out is whether or not
the transmit buffer on the board is empty, and has room to
receive a character . We check this, because if input from the
keyhoard is coming to the board too quickly, the board may
not have time to get one character out before the APPLE][tries
to shove another one into it. We can see if the transmit
buffer on the board is empty by testing bit 0 in the STATUS
byte (this information was supplied with the board). Again
we will use the AND instruction to MASK for the bit in which
we are interested, so here we will MASK with 501, or 00000001
binary. This allows us to look at the bit 0 of the STATUS
byte, which will be set only of the transmit buffer is empty.
I1f we get a zero as a result of our AND operation, we will
branch back and test the status byte again, so we use the
Branch if EQual 4instruction , BEQ $0323. If a non-zero
result is returned, we know that the transmit buffer 1s ready
to receive our ASCII character, which is still sitting in its
temporary location in $0333. We get our character back with
an LDA $0333 instruction, then pass it on to the board.

The documentation supplied with the serial board says that
the address for the TRANSMIT BUFFER is $COB2. To pass the
ASCII character to the serial I/0 board, we need only to
store the contents of the A-register in location $CO0B2, and
the board will take it from there.

At this point we have travelled through our entire pro-
gram. We have checked for and handled then output any ¢ aracter

- - gent through the serial I/0 board to the APPLE][from
an external device; and we have allowed the APPLE][to
send out a character to the eXterpal device via the board.
The only thing left for us to do 18 to go back to the be-

ginning of the program wich a JulP (JHP) instruction, and
start all over for the next character to input or output.
Hopefully the length of this article has not scared

too many of you away. Its intent was Lo explain in detail

just how an interfacing program for a piece of hardware

worked. Many peripheral devices use many of the same routines

as were found in this program. By understanding the principles
involved, you may well be able to make modifications and
improvements in your own device's software which will make

it better adapted for your applications.

*APPLE][is a repistered trademark of the APPLE Computer Co.
-=Cupertino, CA.

**Article based on the APPLE][serial 1/0 interface, available
through Electronic Systems, P.0 Box 21638, San Jose, CA.
95151. Program is based on a software listing included
in board documentatfon. Available as board, kit or assem-
bled ($15.00, $42.00 and $62.00 respectively)

Classified ads accepted from members 50 words or less at no
charge provided the material is obviously non-commercial.
Submit your classified at least 30 days in advance attention
CLASSIFIED ADS, PO Box 34511, Washington, DC 20034.

14

YOUR AD
HERE

full

half
quarter

eighth

RATES— $20
$10
$ 7
$5

(Tine copy only - no half-tones or colors)

RAuto—List and Count
Filemaker by Howie Mitchell

The following is a little program that works well and
pleases me. This program will make a file which
can be used to add an auto-lister to any BASIC pro-
gram. It shows some influence from Bruce Togna-
zinni ("Infinite Number of Monkey'). The last line
in the program (line 30026) is from the June 1979
CONTACT 5. Use of the step (lines 30002 and 30004)
greatly speeds up the listing, and line 30006 gives
something to watch while the program looks for the
next line to list. Line 30005 slows down the listing
near the end, so it doesn't overshoot, |

10 CALL -936: VTAB 2: PRINT ' AUTO -
LIST AND COUNT FILEMAKER ##¥!'s PRINT

20 PRINT " THIS PROGRAM WILL MAKE A
;1 CALL -384: PRINT " FILE ";: CALL
-380: PRINT ' WHICH"

30 PRINT " CAN BE USED TO ";: CALL -384:
PRINT "ADD";: CALL -380:; PRINT "' AN
AUTO-LISTER TO ANY BASIC PROGRAM, "

40 PRINT: PRINT " THERE IS ONE RESTRIC
TION:": PRINT

50 PRINT " THIS PROGRAM WILL WIPE OUT
SOME PARTS OF YOUR PROGRAM, IF THEY
LIE BETWEEN LINES 30000 TO 30027, ":
PRINT

60 PRINT ' IN A MOMENT, A FILE WILL BE
MADE, CALLED: 'AUTO LIST & COUNT

EETT

70 PRINT: PRINT !* TO USE THE PILE:":

PRINT: PRINT ' 1. LOAD ANY INT, BASIC
PROGRAM, "

80 PRINT "2, TYPE 'EXEC AUTO-LIST &
COUNT FILE'."

90 PRINT "' 3. TYPE 'RUN 30000' TO RUN AUTO-
LISTER. "

95 IF REP THEN POKE 34, PEEK(37): IF REP
THEN 30025

100 INPUT " (PRESS 'RETURN' TO CONTINUE.)

", HOLDS%

110 REP = 1: CALL -936: GOTO 60

29999 END

30000 A=PEEK(224): B=256*PEEK(225); FIRST= A+
B: DONE = ASC('#"): IF DONE# ASC("%")
THEN 30011

30001 CALL -936: VTAB 2: INPUT "LIST FROM
WHAT, TO WHAT ", START, FINISH: PRINT

30002 INPUT " APPROX. HOW FAR APART ARE
YOUR PROGRAM LINES ', S

30003 CALL - 936: VTAB 3

30004 FOR X = 5TART TO FINISH STEP 5: GOSUB
30009

30005 IF (FINISH-X)»2%*5 THEN 30006: 5=1: FOR
X=X+1 TO FINISH: GOSUB 30009

30006 Z=PEEK(37): VTAB 1: TAB 20: PRINT "LIST
THRU: '; X+S-1: VTAB Z+1

30007 IF PEEK (37)218 THEN GOSUB 30010

30008 NEXT X: PRINT: PRINT "END OF LISTING.

" END
30009 PRINT X, X+5-1: RETURN: PRINT "@@": REM
"DOUBLE AT'" USED AS MEMORY REFER
ENCE FOR CHANGING PRINT TO LIST,
INPUT "@", HOLDS$: CALL -936: VTAB 3:
RETURN
LAST=PEEK(224) + 256*PEEK(225)
FOR X = FIRST TO LAST
IF PEEK(X) = ASG("@'") AND PEEK(X+1)=
ASC("@") THEN GOSUB 30016

30010

30011
30012
30013

5

L0

30014 IF PEEK(X) = ASC{''#") THEN POKE X,ASC
("%'"): REM INDICATE "DONE IS DONE" IN
LINE #30000;, BY REPLACING ASC("#") WITH
ASC("T")!

NEXT X: GOTO 30000

POKE X-15, 116: POKE X-13,117: RETURN:
REM CHANGE "PRINT X, XtS-1" TO "LIST
X, X+5-1 IN LINE # 30009!

30015
30016

30017 REM

30018 RE Mickasoicdoksolokaaoldorok ol ool et feor i
30019 REM PROGRAM BY:

30020 REM HOWIE MITCHELL

30021 REM 7823'SW, 55th PLACE

30022 REM GAINESVILLE, FLA, , 36201
30023 REM AUGUST, 1979

30024 RIEMZksksioriekde sl kioomioio ol ok

30025 DIM N$(30): N§ = "AUTO-LIST & COUNT
FILE i Ds = WEREMSDS = etyieDU

PRINT D$;"OPEN ';N$: POKE 33, 33: PRINT
D$;"WRITE '';N$: LIST 29999, 30024;: PRINT

D$;"CLOSE": TEXT: END

30026

SOFTWARE REVIEW by Mark Crosby

3-D software for the APPLE has arrived - again! supkogic

-

of Savoy, ITlinois has released an assembly language version

of their 3D to 2D transformation matrix/converter for the
APPLE II.

Aside from requiring minimum memory for efficient and
easy-to-understand operation, the programs supplied along
with the very good documentation and technical manual are
enough to get you up and enthused quickly.

There are 3 main programs and one demo all supplied on one
good-quality cassette and each is repeated to assure at
least one good copy (I had no trouble with any). The
first program is the assembly language portion which fits
from $800 to $2FFF (a total of about 10K). The other

two programs are an Integer BASIC and an Applesoft version
of their "Development" program which is used to develop

a three-dimensional scene.

After loading the assembly language, LOMEM is set to 15384
and then either BASIC program is loaded and RUN. The
development program POKE's code into memory which are used
by the drawing algorhythm to identify points and Tines

in 3D space. It also contains many utility codes, e.g.,

a screen erase feature, a continue line code, an “eye"
from which the viewer "sees" the 3D scene, etc. All of
this code and corresponding memory locations are printed
on the screen so that you can save the "scene” or, more
specifically the coded instructions on disk or cassette
afterwards. Naturally, they can be loaded back in again °
as necessary. More than one scene can be fit too with
"partitions" between them.

Multi-line scenes are drawn very quickly which means you
can get into animation too. A selective partial screen
erase feature helps in this regard - immensely. Addition-
ally, if you have enough memory and the proper hardware
(Applesoft Firmware Card) you can use both Hi-Res pages
for "ping-ponging”" back and forth to smooth animation

{you can erase and re-draw one screen while displaying
another, then vice-versa).

In short, this is no run-of-the-mill 3D program rather
it is a professionally designed and complete development
package that should be valuable to anyone who needs 3D
displays. I recommend it for the moderate to advanced
programmer as it often requires intimate knowledge of
the internal memory map (included in the documentation
though) and machine language saves on tapes or disk and
the possibility of switching from Monitor to BASIC, etc.
Once past those "Tittle" problems, even your kids would
have a ball in short order. There is nothing more fas-
cina?ing than watching a 3D cube rotate before your very
eyes ! T

A2-3D1 345 Sublogic, Box V, Savoy, IL 61874 (217) 359-8482

