ASM65 USERS MANUAL

Larry Fish 1980

PAGE 1

ASM65 is a two pass resident assembler for 650X machine code. It
is a professional quality assembler designed specifically to
develop large machine language programs on small machines. Some
of the features include:

High Speed (over 1900 lines per minute)
Forward References

Ten Psuedo-Ops

Alphabetized Symbol Table

Cross Reference Listing

Offset Assembly

Separate Source Modules

Opcode Expansion

INTRODUCTION

An assembler is a program that is used to simplify the
development of machine language programs. Generally, the
development consists of four basic steps:

1) Editing

2) Assembling

3) Loading

4) Saving and Executing

In the first step, the program text is generated using an
editor. During the second step, the assembler converts the
program into the actual operation codes for the computer. In the
third step, a loader is used to move the opcodes and data into
the computer”s memory. At this point, the program can be tested,
executed, or saved on disk for later use. These four steps are
repeated until you are satisfied that the program is operating
correctly.

GETTING STARTED

Assuming that you have already written a source file, assembling
a program is quite simple. From the operating system type the
following:

ASM filename.ext

This will cause the operating system to set up the specified

PAGE 2

file for assembly. If the file has the extension "P65" it is not
necessary to type the extension, since the assembler automati-
cally expects the "P65" extension. The output file will auto-
matically have the extension "BIN".

When the assembler starts running it will print the following
message:

1) DEFAULT MODE
2) CHANGE DEFAULTS

Most of the time you will run the assembler in default mode.
This will assemble your file and put the binary in a file on the
disk. The file can then be loaded and executed or saved on disk.
To load the program type the following:

LOAD filename.Ext

Again the extension is usually omitted, since Loader expects the
"BIN" extension. The Loader loads the file into memory and
returns to the operating system. From here you may either
execute or save the file. This is accomplished using the SAVE,
SET and START commands. Refer to the Loader section of this
manual and the APEX manual for complete information.

WRITING PROGRAMS

The assembler takes specially formatted text called "Source” and
and converts it into machine loadable binary text. It also
creates a combined text containing hex addresses, opcodes,
source and symbol table. This text is called a "Listing”.

The purpose of an assembler is to simplify the task of
generating machine language programs. If you“ve ever hand
assembled a program you can apprecate how tedious it is to look
up opcodes, keep track of jumps, and calculate branches. The
assembler does all of this for you. Better yet, it allows you to
make changes in a program without recalculating all of the jumps
and branches.

The assembly process takes place in two stages, called passes.
Two passes are necessary to allow forward references. A forward
reference occurs when code near the beginning of a program calls
code near the end of the program. During assembly both passes
take place automatically and the whole process is transparent to
the user.

PAGE 3

During pass one, the assembler counts through all of the code in
the source and retains the address of each symbol. This process
is called building- a symbol table. The complete symbol table
must be built before pass: two is started. During the second
pass, the assembler generates machine loadable binary and a
listing.

During the assembly, the assembler keeps a count of the current
address. This counter is called the program counter or the
location counter. As each byte of code is assembled the program
counter is advanced by one. As you will see, many operations
reference the counter. The user may use its value or reset it
to begin a new program segment.

CREATING A SOURCE FILE

A source file consists of series of formatted commands to the
assembler. Generally, you will generate the source text by
typing it into one of the editors available under APEX. Here is
a sample source file for a short program:

s SHORT PROGRAM

.DEF WRT=$FBFD sROM TV OUTPUT ROUTINE
.LOC $800

START: LDA# “A+$80
JSR WRT sOUTPUT A CHARACTER
JMP START s START OVER
.END

The source text is divided into four fields. Each field is
separated by a TAB character (Control-I). Starting from left to
right the fields are: Label Field, Opcode Field, Operand Field,
and Comment Field. Each line of the source text may have items
in one or more fields. For example, the fourth line of the
sample program has a label, an opcode and an operand, but
nothing in the comment field.

PAGE 4

LABELS

Labels are used to designate .a certain line of code symboli-
cally. For example, the jump instruction in our sample must jump
somewhere. Instead of jumping to an exact address that may
change if we alter the program, the jump instruction jumps to a
symbolic location called "START". The exact address of "START"
may be unknown until final assembly.

Labels can also be used to hold some numeric constant. For
example, the value of a Carriage Return could be placed in a
label called "CR" for reference by other part of the program.

Label names can contain as many as 10 characters including
numbers; except that the first character cannot be a number. The
label must be followed by a colon and a tab (Control I). Label
names are usually choosen so that they describe the function of
the line designated. For example, the label "START" indicates
that this line is the start of the program.

PAGE 5

OPCODES

The second field contains either an opcode or a pseudo-opcode.
An opcode is mnemonic representation of a machine language
operation. For example, LDA represents the machine language
operation of loading the accumulator. Each opcode and its
mnemonic is described in detail in the MOS Technology
Programming Manual. Since there are thirteen addressing modes
available in the 6502 processor, the mnemonic must also indicate
addressing modes. Addressing modes are represented as follows:

LDA# IMMEDIATE MODE

LDA ABSOLUTE MODE

LDA ZERO PAGE MODE

ROLA ACCUMULATOR MODE

LDAX@ INDEXED INDIRECT X MODE
LDA@Y INDIRECT INDEXED Y MODE
LDAX ZERO PAGE INDEXED X MODE
LDAX ABSOLUTE INDEXED X MODE
LDAY ABSOLUTE INDEXED Y MODE
BCC RELATIVE MODE

JMP@ INDIRECT MODE

LDXY ZERO PAGE INDEXED Y MODE

Notice that the format is slightly different from the MOS
Technology assembler. In this format the opcode carries the
addressing mode instead of the operand. This makes source text
cleaner and simpler. The assembler automatically chooses zero
page addressing when the operand is on zero page. No special
symbol is required for zero page addressing.

PAGE 6

EXPANDED OPCODES

" ASM65 has a set of special opcodes which execute special
operations. These opcodes perform common operations that require
more than one regular instruction to perform. When the assembler
encounters one of these special opcodes it substitutes all of
the regular instructions that are needed to accomplish the
operation. For example, it is frequently necessary to move two
bytes (e.g. a 16 bit address) from one memory location to
another. Of course, you would usually do this by writing two
loads and two stores. With the special opcodes the same
operation can be accomplished by writing a single line.

When the listing is printed, only the first three bytes of the
expansion is printed.

Each special code is designed to generate optimal code for its
defined function, but since they can never be entirely optimal
and improvements are always possible they should never be
assumed to generate a specific expansion. Assumptions that are
not a part of the definition are discouraged. In general,

i) No expansion will affect the X or Y register.

ii) No expansion may be assumed to leave the AC with a
particular value unless so defined. In general the
double precision operations leave the AC undefined
while single precision operations leave it defined.

iii) No double precision expansion can be assumed to
leave the status flags with a particular value.

PAGE 7

In the following A and B are addresses and n is a constant.

DOUBLE PRECISION OPERATIONS:

DINC A A+l => A

DDEC A A-1 => A

DMOV A,B A =>B

DMOV # n,A n => A

DADD A,B A+B => B

DADD# n,A ntA => A

DSUB A,B B-A => B

DSUB# n,A A-n => A

DADM A (AC)+A => A

DPSH A A => STK low byte first.
DPOP A STK => A high byte first.

SINGLE PRECISION OPERATIONS

ADD A (AC)+A => AC
ADD# n (AC)+n => AC
SUB A (AC)-n => AC
SUB# n (AC)-n => AC
MOV A,B A => B & AC
MOV # n,A n => A & AC

EXTENDED ACCUMULATOR OPERATIONS

INCA (AC)+1 => AC
DECA (AC)-1 => AC
ASRA (AC)/2 => AC

SUBSTITUTE MNEMONICS

min: bytes/cycles

6/8
6/9
8/12
6/8
13/20
11/13
13/20
11/13
9/11
6/12
6/14

3/5
3/4
3/5
3/4
4/6
4/5

3/4
3/4
4/11

The opcodes "Branch Carry Set™ and "Branch Carry Clear” can also

be thought of as "Branch If Greater or Equal" and
Than" because of the way they work after a compare.
allows you to substitute these opcodes for

BCS:

BLT == BCC BGE == BCS

"Branch Less
The assembler
the normal BCC and

PAGE 8

PSEUDO-OPS

Psuedo-ops are direct commands to the assembler. They are placed
in the opcode field. All psuedo-ops begin with a dot ".". The
following pseudo—ops are available in ASM65:

-.BYTE

Instructs the assembler to set aside one byte at the current
assembly address. The value of the byte can be set by an
argument in the operand field. If no argument is used the byte
is set to a default value of zero.

.BYTE $45

If the assembly address had been $1000, this pseudo-op would
have set aside one byte at address $1000, with the value of the
byte set to $45. Here are more examples:

.BYTE %012
.BYTE START

-HBYTE

Instructs the assembler to set the value to the most significant
byte of a two byte argument. This may also be accomplished by
placing a ">" character in front of the operand:

+.HBYTE START
.HBYTE $4567
.BYTE >START

-WORD

Instructs the assembler to set aside two bytes at this location.
The value maybe set by an argument in the operand field. The
bytes are set up so that the least significant byte of the
argument is placed into the first byte and the most significant
byte into the second byte in memory. Thus, the bytes are placed
in memory in the reverse order of the argument, in keeping with
the 6502 addressing scheme.

.WORD $7066

PAGE 9

.WORD START
-PAGE

Instructs the assembler to print a form feed and move the
listing to the top of the next page. No argument is required.

.ASCII

Instructs the assembler to convert the characters in the
argument to ASCII. The characters in the argument are enclosed
in single quotes:

.ASCII “NOW IS THE TIME~
.LOC

Instructs the assembler to reset the location counter to a new
value as specified by the argument. If no location is at the
beginning of assembly, the assembler starts the address counter
at zero.

This operation allows the assembler to place the program
anywhere in memory. Also, it can be used to generate a single
program that has separate segments in different parts of
memory.

.LOC $1000
.LOC BEGIN

OFFSET ASSEMBLY

One of the useful features of the assembler allows you to
assemble a program at one set of addresses, and yet load the
program into a different segment of memory. This is usually done
because the program will be relocated after it is loaded. To
accomplish an offset assembly, an extra argument is added to to
the .LOC psuedo-op. The first argument is the normal assembly
address. The second address is load address. Here are some
examples:

.LOC $1000,$2000
.LOC START,LOAD

The program is assembled in the normal way using the first
argument as the starting location for all internal assembly

PAGE 10

operations. The only real difference is that the program is
loaded starting at the second address. The offset assembly
continues until a new .LOC is encountered. If the new .LOC has
only one argument, the offset assembly is discontinued.

-DEF

This operation is used to define or redefine the value of a
symbol. Generally, it is used to define a constant, such as the
ASCIT value of a carriage return character. It is often used to
define the starting address of external subroutines.

.DEF WRT=$72C6
.DEF LAND=WRT

-.END

Instructs the assembler to finish the assembly process. It must
be placed at the end of the source or an error will result.

-LIST .NOLIST

These two pseudo-ops allow you to list parts of the program
instead of the entire listing. This is very useful when you have
a slow printer or you want to save paper during the program
development process. In this way you can make listings of only
those parts of the program that you are currently working on.

To use the feature, place .NOLIST at the beginning of the source
code. Place .LIST before any segment that you want to list.
Place .NOLIST at the end of the segment.

If you wish to 1list the symbol table, put .LIST at the end of
the source code. It is possible to print only the symbol table
by this means.

.LINK

The .LINK pseudo-op allows you to split a source code up into
separate modules which are linked together by the assembler at
assembly time. This is a useful feature since many programs are
so large that they cannot be edited conveniently in a limited
amount of disk space. With .LINK you edit each segment of the
program separately, even on a separate disk, and then copy them
to a single disk where they will be 1linked during assembly.

PAGE 11

The .LINK pseudo-op is placed at the end of each module except
for the last one. Each LINK will be followed by the name of the
next module in the program. When the assembler encounters the
LINK it will open the file specified as it”s new input file. All
of the modules must be on the same disk. Since the assembler
automatically assumes that the file will have the extension
.P65, only the file name is necessary. Here is an example:

.LINK STAMP

PAGE 12

OPERANDS

Generally, an operand is the argument to an opcode or a
pseudo-op. Operands can consist of labels, addresses, numbers or
expressions. Numerical values can be represented in hex, octal
or decimal form. Several special characters can be used within
the operand field.

poT ".<

When ever a DOT is used as an argument in the assembler it
represents the value of the program counter at that particular
point in the assembly. Thus if the assembler has assembled five
bytes of program starting at $1000, the value of DOT will be
$1005. It can be used to advance the location counter:

.LOC .+8

It can also be used to set a symbol equal to the location
counter:

.DEF FRON=.
DECIMAL OPERANDS
The assembler assumes that all numbers are decimal unless
otherwise specified. Of course, when the program is loaded, the
number will be the binary equivalent of the value.

PERCENT "Z~"

Percent is used to dindicate that a number must be taken as an
octal wvalue:

.DEF GOL=%021
DOLLAR SIGN "§$§"

The dollar sign indicates that the number following is in
hexadecimal representation:

.LOC $4500

SINGLE QUOTES "~~~

PAGE 13

A Single quote causes the assembler to convert the following
alpha-numeric character into it”s 7 bit ASCII equivalent:

LDA# “B
EXPRESSIONS

The assembler has the ability to evaluate a mathematical
expression as a part of the assembly process. In this way,
certain constants can be calculated as the program 1is
assembled.

At this time, the assembler will do addition and subtraction but
not multiplication or division. Here is a sample expression that
calculates the number of pages in a program:

.DEF LENGTH=>FINISH->START+1
LEFT AND RIGHT ANGLE BRACKETS "<" ™">"

Angle Brackets are used to specify the high or low part of a two
byte value. Left Angle Bracket (<) is used to indicate the least
significant part of a two byte value and Right Angle Bracket (>)
indicates the most significant part.

LDA# <WRT
LDA# >WRT

PAGE 14

COMMENTS

Comments allow the user to leave notes throughout the source
text. All comments must be preceded by a semicolon. Comments may
appear in any field and are ignored by the assembler.

Good programmers will put many comments in the source code of
their programs. Not only does this aid another person when he
has to use your code, but it also saves you the embarrassment of
not being able to understand your own code a year later.

SYMBOL TABLE

The symbol table is a list of all the symbols that the assembler
encounters during assembly. The table is printed at the end of
the assembly listing and is in alphabetical order. Each entry is
followed by the defined value of the symbol. If there is any
error associated with the symbol, a single letter error code
will follow the symbol“s value.

CROSS REFERENCE TABLE

One of the special features of the assembler is the ability to
generate a cross reference table (CREF). This table contains a
list of each symbol that was encountered in the program, and the
location or 1locations where the symbol was referenced in the
program. Here is a sample:

HANDY 0000 FDFO CO13
HERE 1234 ADAD

In this example, the symbol HERE is referenced in some way by
two separate parts of the program. Once at $1234, and once at
SADAD.

The assembler will print the table at the end of the listing. If
wish, you may disable the generation of Cross Reference by
changing the default settings. This will make the assembler run
slightly faster since it has less work to do. If the assembler
runs out of memory while generating the table, a message will be
printed and no CREF will be generated.

PAGE 15

DEFAULT SETTINGS

ASM65 uses a default structure that allows maximum flexibility,
while minimizing typing. The assembler runs under a series of
defaults that control such things as where to send the listing,
whether to generate a cross reference table, etc. When the
assembler is run, you can do one of two things: either run the
assembler under the defaults or change the defaults.

Under the APEX operating system, all input and output to a
program runs through standard device channels. Each channel is
numbered and is associated with a specific input or output
device. Here is a list of the devices most commonly used by the
assembler:

0 Console (Keyboard and TV Screen)
2 Printer

3 Disk files

7

Null device

For a complete list and description of I-0 devices, refer to the
APEX manual. The Console, Printer and Disk should be self-
explanatory. The Null device deserves some explanation. This is
a dummy device that is used when you want to throw away the
output of a specific operation. For example, most of the time
you will not want to generate a listing with every assembly. In
this case the listing output will be sent to the Null device.

If you choose to change the default settings, the assembler will
begin the following dialogue:

ENTER DEFAULT SETTINGS

DEVICE # FOR BINARY OUTPUT:

DEVICE # FOR LISTING OUTPUT:

WIDTH (127 MAX) OF LISTING DEVICE:
DEVICE # FOR SOURCE INPUT:

DO CREF (Y-N)?

Several of the questions ask where you want the the assembler to
get or send some part of the assembly information. Simply answer
these questions with the appropriate device number. For example,
you will usually want to get the source code from a disk file,
so you would answer the question with number "3".

Another feature allows the user to set the width of the listing

PAGE 16

device to any value between 0-127. If a line length exceeds the
preset value, the remainder of the line is discarded. If, for
example, you are using 80 column paper you will probably want
to set the width to about 75 to give the listing neat margins.
Also, as a part of the default settings, you may tell the
assembler whether .or not it should generate a cross reference
table.

Most of the time when you make changes to the defaults, they
only apply to the assembly that you are about to make, since the
default changes aren”t made to the permanent copy of the
assembler on your system disk. If you want to make default
changes that will be there every time you execute this copy of
the assembler, do the following:

Run the assembler:

ASM
Now change the defaults so that they do what you want them to
do. Then strike Control-P. This will enter APEX through the
SAVER entry point and will allow you save this new copy of the
assembler in place of the old. To save it type:

SAVE ASM

For more information on the SAVE operation refer to the APEX
manual.

PAGE 17

LOADING

During the assembly process, the assembler generates a file that
contains all of the opcodes and data generated during the
assembly. These opcodes and data are in hexadecimal form and
must be converted to binary before they can be loaded into
memory. The file also contains addresses which indicate where
the binary should be loaded into memory. This file is called a
"BINARY" file and has the extension ".BIN".

The loader is a program that is used to convert the file to pure
binary and place the binary at the appropriate place in memory.

The loader”s operation is completely automatic. To run it from
APEX, simply type:

LOAD filename.Ext

Usually, the extension will be ".BIN". The Loader will 1load the
file into memory and reenter the operating system through the
"SAVER" entry (see APEX manual).

Unlike the loaders for high level languages, the assembly
language loader doesn”t know certain key pieces of information
about the program it loads. For example, it has no way of
knowing what the starting address of the program will be or how
long, in total, the program is. The operating system must have
this information before it can save or execute the program.
There are two ways to deal with this. The first way is to use
the SAVE and SET utilities to set the correct program
parameters. The SAVE command takes arguments that allow you to
specify the program”™s size. The SET command allows you to set
all of the remaining program parameters (see the APEX manual for
more information). :

The second method of setting up the program parameters is to put
a some code into the assembly source that will load over the
system parameter page and set it to the proper values. Here is a
sample that could be used to set up some of the parameters. It
would be placed at the end of the program.

.DEF
.LOC
JMP
JMP
.LOC
.WORD
.BYTE
.END

MARK=. ;SET MARK TO END OF PROGRAM
$BFO0O sSET PC TO PROGRAM PAGE

RSTART ;;RESTART ADDRESS OF THE PROGRAM
START ;s START ADDRESS OF THE PROGRAM
$BF15

START s START OF SEGMENT TO BE SAVED
D>MARK->START+1 ;CALCULATE PROGRAM SIZE

PAGE 18

For a complete listing of all program parameters and more on the
loader, refer to the APEX manual.

PAGE 19

ERROR CODES

There are a number of possible error conditions that can be
detected by the assembler. When the assembler detects an error,
a message is printed on the console, along with a copy of the
line in which the error occured. The error message is also
printed into the 1listing. Certain types of errors are also
indicated in the symbol table. The following is a list of error
codes:

LABEL ERROR

MULTIPLY DEFINED ERROR
UNDEFINED ERROR

PHASE ERROR

INTERNAL ERROR

OPCODE ERROR
ADDRESSING ERROR
SYNTAX ERROR

nrEProHmwaxr

LABEL ERROR.

This error generally indicates that there is something wrong
with a label. Usually the label is terminated with an improper
character. All 1labels must be terminated with a TAB (Control-
I).

MULTIPLY DEFINED.
Here there is an attempt to place the same symbol as a label
at two different places in a program.

UNDEFINED ERROR.

In this error, there is a symbol that is being referenced, but
that has never been defined, either by setting it as the marker
to a line or through the .DEF pseudo-op.

PHASE ERROR.

Phase errors occur where a symbol is defined in different
locations from pass one to pass two. It usually occurs when a
symbol is referenced first and then later defined as a zero page
location. Since the label is referenced before it is defined,
there is no way of knowing at that time whether it is zero page
or not. Thus there is no way of knowing whether the operand will
be one or two bytes.

INTERNAL ERROR.
This error picks up some of the more unusual conditions.

PAGE 20

OPCODE ERROR.
This indicates that the assembler found an illegal or
nonexistant opcode.

ADDRESSING ERROR.

This error can indicate several illegal addressing conditions.
Most commonly, it is a relative branch that is out of range.
Another error occurs when the address pointed to by the jump
indirect operand falls across a page boundary. Due to a hardware
deficiency in the 6502 chip the processor will not fetch the
second byte of the address if it is on a different page. The
assembler checks for this problem. It can be corrected by moving
the address one byte forward, for example:

0200 6C FF20 JMP@ $20FF {1 1ADDRESS ERROR!!!
0200 6C 0021 JMP@ $2100 '!'IFIXED!!!

SYNTAX ERROR.

This error appears when a line of source has a syntax problem.
These are usually things like .DEF pseudo-ops without the
correct argument.

OTHER ERRORS:

CREF OVERFLOW

This message indicates that the assembler has run out of memory
while building the cross reference. When this error occurs the
assembler simply stops biulding the CREF. Assembly continues.
Its only consequence is that no CREF will be printed.

SYMBOL TABLE OVERFLOW

This message indicates that the assembler has run out of memory
while building the symbol table. Since assembly cannot be
continued without a complete symbol table the program is
aborted.

The usual way to deal with this difficulty is to assign more
memory to the assembler. See the Apex manual for details.

I-0 ERROR

This occurs when the assembler encounters a difficulty while
accessing some I/0 device. The possible causes depend upon the
device at fault. For example device 3, the disks files, will

PAGE 21

give this error if there is not enough space on a unit, or if
the unit is disabled for some external reason.

LINK FILE NOT PRESENT

This indicates that the program appears to be incomplete and
no valid 1link has been provided. Perhaps the file is missing
or perhaps you simply forgot to use the .END psuedo-op. Note
that the last line of your file must contain a carriage return
to be valid.

