
FOUNDATION™
Version 1.0

LUNAR PRODUCTIONS

LUNAR PRODUCITONS

Copyright © 1992 by Lunar Productions.
All rights reselVed.

This product (the software and this manual) is copyrighted
by Lunar Productions with all rights reselVed. Under the
copyright laws, consumers of copyrighted material may
make copies for their personal use only. Duplication for
any purpose whatsoever would constitute infringement
of copyright laws and would be liable to civil in addition
to actual damages, plus criminal penalties of up to one
year imprisonment and/or a $10,000 fine.

Subject to the below stated limitations, Lunar Productions
hereby warrants that the program contained in this unit
will run on an Apple IIGS equipped as stated in the
Requirements section of this document. Lunar
productions bears no responsibility for incompatibilities
with non-Apple brand products, both hardware and
software. Lunar Productions makes no warranties
regarding merchantability or fitness for a particular
purpose. Lunar Productions further warrants the media
the software is provided on is free from error. To obtain
this warranty, the enclosed purchaser registration form
must be completed and returned to Lunar Productions
within ten (10) days of purchase. All warranties are
limited in duration to ninety (90) days from the date of
the original retail purchase of this product. In the event
of a faulty program or disk, the purchaser must send the
original disk to Lunar Productions for replacement.

The warranty and remedies set forth above are exclusive,
and in lieu of all others, oral or written, express or
implied. No Lunar Productions dealer, agent or employee
is authorized to make any modification, extension or
addition to this warranty.

Apple Computer, Inc. MAKES NO WARRANTIES, EITIffiR
EXPRESSED OR IMPUED, REGARDING TIffi ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or
consequential damages, so the above limitation may not
apply to you. This warranty gives you specific legal
rights, and you may have other rights which may vary
from state to state.

Foundation, ScriptEdit, ScriptBuilder and HexEdit are
trademarks of Lunar Productions.

Apple, the Apple Logo, AppleTalk, AppleShare, Apple
IIGs, Hypercard IIGs, LaserWriter and Macintosh are
registered trademarks of Apple Computer, Inc. ResEdit,
Imagewriter, Finder, APW and Apple IIGS System 6.0 are
trademarks of Apple Computer, Inc.

This program contains material from the ORCA!C Run­
Time Libraries, Copyright © 1987-1989 and libraries from
ORCA/M, Copyright © 1991 by ByteWorks, Inc. ORCA/
M, ORCA/Pascal and ORCA/C are trademarks of
ByteWorks, Inc. ByteWorks is a registered trademark of
ByteWorks, Inc.

GNO and GNO/ME is a trademark of Procyon.
Pointless is a trademark of Westcode.

FOUNDATION

This document was written, edited and composed on a
desktop publishingsystemusingApple IIGS and Macintosh
computers. The original text was composed using Claris
Appleworks® 3.0. Screen shot illustrations were taken
with NiftyList 3.4 by Dave Lyons and SavePic by Mark
Collins. They were imported to Macintosh graphics
using Imagery byJeffLewis and retouched for publication
using Studio/8, published by Electronic Arts. Final
editing and page layoutwere done usingAldus PageMaker
4.2. Proof and fmal pages were printed on an Apple
Personal Laserwriter NT.

The Foundation Manual was written by
Mark Collins, Marc Wolfgram and Tammara Wolfgram
First Printing - Version 1.0 July 1992.

Foundation was conceived and written by
Marc Wolfgram, Jim Murphy and Mark Collins.

Special thanks to:

Apple Developer Technical Support
The Apple IIGS System 6.0 Development Team

Tim Swihart
Dave Lyons

Matt Deatherage

and of course, our critical beta testers!

I Table of Contents

PREFACE

Preface
Requirements
Conventions used in this Book
Where To Get More Information

Chapter 1 FOUNDATION OVERVIEW

Resources
Resource Dependencies
Uses
Editing Modes
Extensibility
Launching Foundation
Working with Files

Resource Checking
Resource Fork Fonnats

Chapter 2 NAVIGATING FOUNDATION - THE MENUS

The '* (Apple) Menu
About Foundation
Help...

The File Menu
New .
Open .
Close
Close File
Save
Save as...
Make Reference File
Optimize File
Page Setup...
Print
Quit

Edit Menu
Undo, Cut and Clear
Copy and Paste
Select All
Name Resource
File 1: ... File 4:
Show Clipboard
Switch Display Modes
Preferences...

1

4

9

it

Chapter 2
(conttnued)

Add Resource Menu
Import Data...
Other. ..

Chapter 3 WORKING wrm FOUNDATION - THE WINDOWS 15
The File Window

Open Type...
Type Information...

The Type and Dependency Window's Action Menu
Edit Item...
Edit Using ScriptEdit...
Edit Using HexEdit. ..
Item Dependancies...
Item Attributes...
Delete Item .
Export Item .

Chapter 4 WORKING wrm RESOURCES - THE EDITORS

Three Editing Modes

Appendix A SCRIPTBUILDER FIELD DESCRIPTIONS

Appendix B APPLE IIGS SYSTEM RESQURCE FORMATS

Appendix C RESOURCE DEPENDENCY CHART

Appendix D RESOURCE MANAGER ERRORS

Appendix E INSTALlATION NOTES

20

PREFACE

Foundation1M is a resource editor for the Apple IIGS® computer.
It is designed to provide maximum power and speed, yet it
provides safeguards to protect existing resource files and
prevent resource corruption. The main program, consisting
of the Foundation shell, ScriptEdWM and HexEdWM modules,
is in itself sufficient to allow you to create or modify any
standard or custom resource type. With the addition of
"Native" editors, Foundation provides a complete WYSIWYG
environment for resource manipulation. The level of technical
knowledge required for its use is largely dependent on which
type of editor you are using. Native editors will allow you to
work on a resource with minimal background. ScriptEdit
primarily requires that you understand the different types of
data stored in a resource (number types, strings, resource
reference ID's), Manipulating raw resource data with He;rndit
requires extensive knowledge of resources,

Foundation is NOT a source code generation tool, nor is it a
'point and click' program builder. It is 'just a resource editor, I

But, as the old saying goes, it does one thing, and it does it
very well. No other environment on any platform that we
have seen provides features like our "Intelligent Copy/Paste",
dynamic resource naming and resource dependency ma­
nipulation. Many other functions can only be duplicated
using APW Rez.

And that's not all... Over a year went into the creation of
Foundation. We're going to continue working on native
editors as well as additional features and enhancements to the
system itself. And the adventure continues",

Lunar Productions
Marc Wolfgram
Mark Collins
Jim Murphy
Tammara Wolfgram

1

2

Requirements

To run Foundation you must have an Apple IIGS, ROM 1 or
3, Apple IIGS System Software 6.0 or later, and sufficient
memory. We recommend at least two megabytes of RAM, as
do the System 6 release notes, though we have successfully
tested Foundation with as little as 1.5 megabytes. Foundation
requires at least two 3.5" 800k drives, though for better
performance, we recommend either a Hard Drive or
AppleShare network. The volume containing Foundation
must have sufficient space available for the creation ofinterim
workfiles at least as large as the resource files you intend to
edit.

Conventions Used In This book

The following visual cues are used throughout this book to
identify different types of information:

• Note Notes like this contain information that is interesting but not
essential for understanding of the main text.

6lmportant Notes like this contain information that is essential.

..... Warning Warnings like this indicate potential problems and things to
avoid. Ignoring these warnings could have serious
repercussions on your system.

New terms are described or defined in
little blocks o/text on the side like this. This manual uses Cour i er type to represent code fragments

and the names of procedures, functions, file names and error
codes.

..

Where To Get More Information

We strongly recommend a thorough review of the Resource
Manager and resource-related sections in Volume 3 of the
Toolbox Reference and the System 6,0 Reference. Apple
technical books, published by Addison-Wesley, such as the
Apple IIGS Toolbox Reference, are available at many
commercial book stores, as well as through Resource Central.
Other manuals, technical notes and other materials of interest
to Apple II and Apple IIGS users and programmers are also
available from Resource Central.

Resource Central
P.O. Box 11250
Overland Park, Kansas 66207
(913) 469-6502
Fax- (913) 469-6507

Ifyou plan to develop hardware or software products for sale
through retail channels, you can get valuable support from
Apple Developer Programs. Write to them at the following
address. (Be sure to mention your need for Apple II Product
support.)

Apple Developer Programs
Apple Computer Inc.
20424 Mariani Avenue
.Cupettino, California 95014-6299

If you would like more information on Foundation or any of
our products, or are interested in developing Foundation
Resource Editor Modules, feel free to contact us at:

LunarProductions
1808 Michael Drive
Waukesha, Wisconsin 53186
Attn: Program Development
(414) 549-9261

We also provide support on several online services. You can
reach us at any of the following addresses:

America Online: M Wolfgram, jiMwphy3
Appleltnk: D3672 (Lunar Productions)
GEnie: Mark.Colltns, A2ProJim
Internet: mwolfgram@aol.com

3

String refers to a specific data type used to store
sequences ofcharacters, such as words, phrases,
sentences, etc. In Pascal, strings are a dedicated
type. In C, strings are actually arrays ofthe data
type Charorcharacter. Otherdata types are used
to storeprimarily numeric values, such as words
and Iongwords, There are different types of
strings used in resources. Among them are
"Pascal Strings" or pstn'ngs which begin with a
byte value k!/Iing how manyofthefollowing bytes
make up the string; "C Strings" which have no
count parameter up front but instead end in a
null character(Hex 0),' "Word Strings"which are
similartopstrings buthave a wordlength number
(two byU!s) to store the strings size;

4

ICHAPI'ER 1 - FOUNDATION OvERVIEW

Resources
What are resources? Very simply, a resource is a program
object that is accessed through the resource manager. For a

. somewhat oversimplified model, think of a resource as you
would a file in a directory. When you want to load or run a
file, you use GS/OS through whatever file system you're
using to load the data from disk for manipulation. Resources
are very similar. Just as different files have different file types
based on their use or content, resources are subdivided into
specific types. When an application uses a resource, it calls
the resource manager to load it for use by that application.

Most resources for the Apple IIGS are data resources - that is,
they contain things like strings, menus, windows or other
data sets, much like the different data files we have: word
processing documents, graphic files, etc. There are executabl.e
or code resources as well, such as XCmd resources, that
function as program routines. It is the job of the resource
manager to provide the resources as needed. Without
resources, windows, strings, menus and other data are stored
within the program code itself. Changing windows, colors,
menus, strings, etc. requires a lot of time-consuming
recompliation/reassembly. Using resources, these changes
can be made easily without rebuilding the application, since
the program deals with the data most likely to change within
independently referenced resources. Also, things become
more portable. An XCmd written for one Hypercard IIGS

stack can easily be transferred to another intact without
having to rewrite Hypercard IIGS itself every time you want
to gain the XCmd's functionality. Similarly, if you have a
favorite method of creating or styling a Window, the Window
and its dependent resources can easily be copied into another
program for its use.

Resource Dependencies
Just as applications can utilize resources, some resources
utilize other resources. Figures 1-1 and 1-2 illustrate an
extreme example. The resource structure for it starts at the
uppermost or "parent" level with a window template. The
window template refers to a window color table (notice the
white lined on black title bar), a string containing the title
contained in the title bar, and a control list, as well as its own
internal data for size, placement, etc. The Control List refers
to two controls - the edit line control and the pop-up menu

•
Beverage II> Soft Drink ~ I~

Figure 1-1 A Sample Window

Resource Dependency Tree
(for Sample Window Figure 1-1)

rWindParaml (Window Template)

rPString (the window's title string" Executive Choice ")

rWindColor (the window's Color Table)

rCont ro1Lis t (the window's Control List)

rControlTemplate (theLineEditcontrol)

LrpString (the LineEdit's default string ''Pepsi-Cola'')

rControlTemplate (thepop-up control)

LrMenu (defining the pop-up itse{j)

rPString (the menu's title string" Beverage '')

rMenuItem (theSoftDrinkimm)

LrItemStruct (/inks the icon and the item string)tr I con (the ''Bottle Cap" tcon)

rPString (the item string "Soft Drink'')

rMenuItem (other items, each with more dePendents)

Figure 1-2 Diagram illustrating the Sample Window resource dependency structure

5

6

control. The edit line control references another string, while
the pop-up menu control uses a Menu resource, which
contains menu items, and... well, you get the picture. One
big advantage to this system is that by changing one item, for
instance the title string, the window itself can be changed
without having to recompile the whole program. There is a
potential disadvantage, however. By having other resources
that a resource is dependent on, if one isn't as it should be,
the rest of the structure is corrupted as well. If the title string
resource is missing, the program would die an ignominious
death due to a resource not found error. This
somewhat hampers the portability of the resource. But, with
Foundation's dependency handling system, there are safe­
guards that can prevent this problem. If you want to delete
a resource, the system first checks to make sure you aren't
doing damage to something else. Similarly, you will be able
to copy the window knowing that the rest of its baggage goes
along with it.

Uses
What do you need a resource editor for? If you are a
programmer, you could use it to create the resources your
program needs to function well. With Foundation you no
longer have to hard code your windows, leave your controls
colorless, or keep your menus short so they fit into a Pascal
string. Foundation lets you create your resources, and can
also generate a listing for ready reference when you need to
use the resources in your code.

If, on the other hand, you have no interest in programming,
or simply haven't learned enough about it to feel comfortable
with it, Foundation is still a very useful tool. You no longer
have to be a programmer to have a program look the way you
want. For example, if one of your favorite applications has
a menu structure that you canlt stand, using Foundation and
the Window/Menu editor, you can shift the menus around to
an order you can live with. Similarly, if someone gets a bit
too creative in setting up all kinds of colored controls and
windows, you can cure that problem too.

Native Editor - A resource editor module
that provide a WYSIWYG Interface. These
must be Installed In the Foundat ion. Edit
folder that Is In the same directory as the
main Founda t ion application.

ScrlptEdlt - A'special' Foundation resource
editor that lets you create and modify
resources based on templates. Foundation
comes with a supply of templates for many
of the standard resource types, and you can
create more with ScrlptBullder.

HexEdit - Another 'special' resource editor
that allows you to directly manipulate the
data contained In a resource on a byte level.

Editing Modes
There are three ways you can work on resources with
Foundation, Native Editors, ScriptEdit or HexEdit. Native
editors, when available, provide the greatest ease of use,
because they are specifically crafted to edit the type of
resource they work with. For instance, the Window editor
will let you draw a window on the screen and place controls
within it, just as if you were using a page layout program to
size your page and place graphics and text.

ScriptEdit is almost as easy to work with as Native Editors.
Though it does not let you maneuver items as objects, it
allows you to work with resources broken down into their
component parts - whether they are strings, point positions,
rectangles, resource references, or whatever.

HexEdit lets you get 'down to the metal' with your resource.
It is a Hex-ASCII type editor, allowing you to ditectly
manipulate data on a byte by byte level. Just as a Hex-ASCII
editor for disk drives isn't for everybody, we suggest caution
when using HexEdit. It doesn't take much to corrupt a
resource using HexEdit unless you know the format of the
resource and you know precisely what you are doing.

Extensibility
As powerful as Foundation is already, you can easily expand
it beyond the original package you have in your hands.
Adding native editors is easy. Simply place the editor file
(REM) in the Founda t i on . Edi t folder and you're ready.
The shell gets all the information it needs from the editor,
even for resource types that haven't been defined when

,Foundation itself was released. There are currently several
native editors available, and quite a few others being written.
If you are a programmer, you might even want to try your
hand at writing one. The Foundation Developer's Kit makes
the job easier. If there is no native editor available for the
resource type you want to work on, and you don't feel up to
writing it yourself, you might try creating a script for the
ScriptEdit module. The powerful editing tools in ScriptBuilder
makes creating a script easy.

7

Launching Foundation

I ¥O. File Edit Add Resource-

1.0

Copyright 1991-1992 by Lunor Productions

Harc Wo1fgr(lll
Jill Murphy

Hark Collinsation

Figure 1-3 The Foundation Desktop with the Title Screen

Foundation is an AppleShare aware application that runs
under any GS/OS compatible system launcher, including the
Apple IIGS Finder, and the ORCA or GNO/ME shells. The
F 0 u n d at ion application file and the folder
Foundation. Edi t must be located in the same directory.
Foundation creates the directory Foundat ion .User where
its private workfiles are stored. Founda t ion. Edi t must
contain the file HexScriptREM, which contains the HexEdit
and ScriptEdit modules, as well as any other native editors
you might have. You should make sure that the disk you
launch Foundation from (or the User folder if launching from
an AppleShare network) has sufficient room for a working
copy of the resource fork(s) you plan to work on. When you
successfully launch the program, the title screen will appear.

Working with Files
Once you've launched Foundation, you can either create a
new file for your resources or open an existing file.
Foundation will only allow you to open extended files - that
is, those with a resource fork. Foundation 1.0 will not open
or edit Macintosh format resource files (including the
TrueType™ files used by Westcode's Pointless). Though
these files also utilize a resource fork, and Macintosh style
resources are used similarly, their resource structure is
significantly different than the GS format.

8

About Foundation...
Help... 6?

1111111111111111"11111"'''111"'11111111""

Figure 2-1 The. Menu

The Shea - The main Foundation application.
We call it the shell because it acts as an environ­
ment within which other tools work, such as
HexEdit, ScriptEdit and Native Editors.

I CHAPl'ER 2 - NAVIGATING FOUNDATION

The • (Apple) Menu
AboutFoundation... displays the Foundation Credits Screen,
showing the credits and version of the shell. If the current
front window is an editor window, it displays this information
on the editor instead. This dialog also provides a display
of available memory.

HexEdiVScriptEdit 1.0
Cop~right 1991-1992, Jill Murphy

Copyright 1991-1992 by Lunar Productions

atio11 3~O~k available

Figure 2-2 The Foundation About Window as seen when a ScriptEdit
or HexEdit Window is Active •

Help... brings up the Foundation help window. There are
essentially two ways of getting help information. Current
Context, the default, keeps track of what you are doing and

;0 Help

I Current Context .~
If you leave the popup menu set to Q
Current Context, the text ~ou see
here will be updated as you use
different features of Foundation.

Some key items, like Menus, will not
il:update this window. Other items,

such as Tips &Suggestions, don't ~

rea 11 y have an ossociated context. ~

Figure 2-3 The Foundation Help Window

updates the help window content accordingly. For example,
if you are using HexEdit, information on HexEdit will be
displayed. The pop-up menu also allows you to get help
with things not associated with a particular context, such as
the menus, a handy reference ofresource types, dependencies,
and other generally helpful hints.

9

Hew
Open...

oN
00

The File Menu
New creates an empty working resource file for editing. You
may have up to 4 files open at one time. These files will have
the working title Untitled.a ... Untitled.d .

1IIIIII' '"I'In'I'."OII1".".II'I""' ••III .. " " ..II ""'11111' .. '

Close oW
Close HyperCard IIGS
Save oS
Save As ...

Make Reference Fil e...
Optimize File

Open... loads an existing Apple IIGS resource file for editing.
This file may be an application, CDev, HyperCard IIGS stack
or any other type of file with an Apple IIGS formatted resource
fork.

Close closes the currently active (front) window. If that
window is a file window, you are asked to save any changes
to the file, if any. Then, as it closes the file, it closes all
windows associated with that file.

Figure 2-4 The File Menu

Page Setup...
Print

Quit

oP

oQ

Close (FileName) closes the currently active file. (Its name
is listed in the menu.)

.
Save writes the active file directly to disk, making all changes
permanent. If you are working with a file created with New
that has not been saved previously, selecting Save will
operate identically with Save As...

File Wtrulow - Onceafile is loaded or created
for editing, the shell displays a File Window
containing a list of resource types it contains.
There may be up to four File Windows open at
any given time, each one identified by a num­
bedn its title barandby the colorofthe title bar
itself. Items belonging to that file are also
identified by the same number and color.

AcUve File -Foundation allowsyou to have up
to four files open at any given time. You may
only work on onefile at a time. TheActive File
is the one being worked on orreferrmcedat any
given time. Upon opening or creating afile,
that file is automatically the active file. To
switch active files, all you need to do is bring
one ofthe windows related to thefile you want
to make active (its File Window, one ofits Type
Windows or Selector Windows, or an editor
working with an itemfrom thatfile)to thejront.

10

Save as... first provides you with a Standard File dialog for
naming/renaming your resource file, and then saves it just as
in Save.

Make Reference File... creates a list of constants for
referencing your resources by name in your program code.
Only named resources are included in this list. The format
of this file is selected through Preferences... in the Edit
menu.

Optimize File recreates the current workfile, resource by
resource. This has the effect of eliminating the holes created

Optimize Adv.Disk.Uti I (1) ?
This file's editor windows will be closed...

(Cance I) «Optimize»
Figure 2-5 Dialog Asking You To Conftnn optimizing A File.

by deleting and replacing resources, often providing a
substantial savings in disk storage. You must select Save or
Save As••• to save the optimized file, as this command does
not do it automatically. If the file contains resources that

Keep this item
Keep a11 of this type
Keep all

Icon - 07FF0003 has aruerved
system 10 and may have been
added earlier from the
SYS.RESOURCES file.

Remove this item
Remove a11 of this type
Remove all

Figure 2-7 Popup Menu Listing
The options Available In The
optimize option Window.

OPt ion I Keep this item ~

• The Keep/Remove option app 1ies on 1y
to resources with reserved system IDs.
(07FFOOOO...07FFFFFF) (.)

ContInue

Figure 2-6 option Window Presented W'hen a Resource Numbered in
the System Range Is Encountered by optimize File

duplicate those contained in the systemfile Sys . Resources,
Optimize lets you keep or remove them from the workfile.

Page Setup... and Print are provided only for editor·use.

Quit is selected to end a Foundation session. If any files are
open with changes that have not been saved to disk, you will
be prompted to save them before the program quits.

Hame Resource oR

Show Clipboard
Stlitch Display Modes
Preferences...

"File 1: HyperCardlIGS 01
File 2: Archiver 02
File 3: Adv.Disk.Utii 03
~.. l ~ I ~fhf. I: (,II

Copy andPaste are used universally throughout Foundation
for copying and pasting items. From NDAs and editors, they
are used to copy and paste items of the same basic type (text,
pictures, sounds, etc.). A special feature of Foundation is the
intelligent copy/paste function which lets you copy an item
complete with all its dependent items. Copying a resource
with its dependents is done by selecting Copy when a type
window or native selector window is the front window and
one of its items is selected. This copy does not look for
'Parent' resources of the selected item. If you want to copy
the structure with the 'Parent' and its dependent items, you
will need to perform the copy on the 'Parent' item instead. In
order to paste, a file or type window must be the front
window. When this paste is done, any resource number
conflicts are resolved.

The Edit Menu
Undo, Cut and Clear are provided primarily for support of
New Desk Accessories, though some native editors use them
as well.

6Z

oR

oX
oC
oV

Undo

Cut
Copy
Paste
Clear
Select All

Figure 2-8 The Edit Menu Select AU is provided for editor use.
11

Name Resource brings up the 'Namer' window. This
window is used to create, change or delete resource names.

ED Resource Hamer
rhpe: $8001 Icon (3)
10: $07FF0004

Harne: I[mJm I
(31 characters maximum) (App ly)

Figure 2-9 The Warner' Window

You can leave it on the desktop and the resource it refers to
is updated based on the currently active item. Since
Foundation maintains resource names internally, this window
is the only way you can edit them.

File 1: ... File 4: brings the File window of the selected file
to front, making it the active file. As you work with up to four
files, their file names will appear in the menu. Unused file
entries in the menu will otherwise be dimmed and inactive.

Show Clipboard displays the current contents of the
clipboard. Text and picture scraps are displayed as text or

~D Clipboard E!l~

Window Resource scrap (Ref ID 07FFOE01) -0

¢

12

Figure 2-10 The Foundation Clipboard Window

pictures. Any other standard scraps are described. For
example, Figure 2-10 shows what the clipboard looks like
when the current scrap is a resource reference scrap.

Switch Display Modes toggles Foundation between 640
and 320 Super HiRes graphics modes. Note that some
functions and editors (for example HexEdit and ScriptEdit)
are not available in 320 mode. While the switch is taking
place, the intervening text screen displays any actions it takes
to adjust window position and availability as needed for the
switch. Items available only under 640 mode are hidden and
the rema.ining windows are adjusted proportionally as
appropriate for the new screen mode.

Preferences... lets you set a number of program parameters.
The first popup menu lets you choose whether the list of
resource types displayed in a file window will be sorted
alphabetically by the name ofthe resource type, or numerically.
The next popup similarly determines the order of items
displayed in a type window either numerically by the item ID
numbers or alphabetically by their resource name.

Foundation Preferences

Sort the Type List in File Windows by I Hame ~

Sort the Item List in Type Windows by I Item ID ~

~ Always use the Standard Type Window
~ Limit Standard Window Popup Action

Open File 1when Foundation starts I~In-ac-t"""iv-e-~

Default File 1: Foundation.r
Reference File Format I-U~d~ef~i-ne-n-am-e-O~x"""'(h-e-x -va""'I~)i

(CanceI) [~=OK=:p)

Figure 2-11 The Foundation Preferences Window

The first checkbox forces use of the standard type window,
even if a native editor provides a native selector. To use
native selectors, be sure this box is not checked.

The second checkbox determines the action of the popup
menus in the file and type and item dependency windows.
For example, if you have an item selected in a type list, not
having this box checked will let you initiate an action simply
by selecting a pop-up choice. If the box is checked, only
double-clicking on the list item executes the current action.

Foundation can automatically open a file when starting up.
Bysetting the "Open File 1..."popup to Default, the file listed
as Default File 1 will be opened. If this is set to Inactive, no
file is automatically opened. Selecting Choose... lets you
pick the file to load automatically using a standard file dialog.
If Foundation can not find the default file at startup, no file
is loaded and normal operation continues.

13

Foundation substitutes underscore I _ I for spaces in names.

The last popup menu lets you select the format of the
reference file you can create using Make Reference File...
These selections let you pick the format most appropriate for
the language you are programming with. For example, ifyou
are programming in ORCA/M assembler, you might select
name GEQU $Chexval), and then create a reference file that

. contained entries like this:

Udefine nome Ox(hex vol)
Udefine nome (dec va I)
nome:: $(hex vol):
nome:: (dec val):
nome EQU $(hex val)
nome EQU (dec val)
nome GEQU $(hex va 1)
nome GEQU (dec val)

Figure 2-12 Pop-up Menu Showing
Different Formats fat' Reference File

OUtput

MyAppleMenu
About_MItern
Help_MItern

GEQU $ 0 00 0 0 0 01
GEQU $ 0 0 0 0 0 0 01
GEQU $00000002

The Add Resource Menu
Just as there are different types of editors, there are several
ways to add new resources as well.

Import Data...
ScrlptEdit,

Other... ----HHexEdlt, or I f th d C k f f I
ScrlptBuilder Import Data-.. ets you import 0 e ata lor 0 a i e into

Bundle the active file as a resource. After selecting the file to import
C1 I t S · ScrlptEditnpu tnng you will be asked for a resource type and ID to use. If the
I con Native Editor ID is already in use, a unique ID is automatically assigned.
Pasco I String ScrlptEdit Foundation performs no validation on the data loaded, so be

sure to import data that is appropriate for the resource type.

Figure 2-13 The Add
Resource Menu Import file Res8015.1 as:

Resource Type $_

Resource 10 $1 000000011

«Continue)

Figure 2-14 Import Item Type and ID Assignment Window

Other... lets you add a resource using HexEdit or ScriptEdit,
or define a new ScriptEdit template. The different editor
types are explained in Chapter 4.

The remaining entries in this menu are defined resource
types. Selecting one of these types will create a new resource
of that type and open an editor to work on the new item. A
native editor is used for bold resource types, while a
ScriptEdit template is used for the others.

14

I CHAPl'ER 3 - WORKING wrm FOUNDATION I
There are several windows that are key to using Foundation,
some of which have already been discussed somewhat
briefly. This chapter explains them in detail.

Open Type...
Type Information...

Figure 3-2
The File Window Action Menu

Open Type...

800~ Control
8006 Pascal String
8008 Menu Bar
8009 Menu
800A Menu Item
800B LETextBox2 String
800E Window
8013 Tool Startup

Figure 3-1 A File Window

The File Window
Any file open for editing (using New or Open...) will be
represented on screen by a file window. Each file is identified
by the number shown in parentheses next to the file name,
and by the color of the window title bar. Any window
associated with this file will similarly be identified by file
number and color. Selecting any window associated with a
file will make that file the active file. You may have up to four
files open at a time.

The file window has two main elements: a pop-up action
menu and a list of all the resource types currently contained
in the file. Resource names are maintained internally by
Foundation. For this reason, they can only be edited through
the Namer window, and 8014 Resource Names will never
appear in the type list. To select a type to perform an
operation on, simply double-click on it. Figure 3-2 illustrates
the two choices in the action menu.

• Note You can optionally execute the action on the selected
type if the preference to limit pop-up action is NOT
checked. See the section on Preferences ... in Chapter
2 for more details.
Open Type... opens a type window listing all the items in the
file of the selected resource type. Similar in appearance to the
file window, the type window is the gateway to resource
editing. Like the type window, it has an action pop-up and

15

a list. Items are listed by resource ID and resource name.
Items without names will only appear by ID. Type window
pop-up and list operation is the same as the file window.

Figure 3-4 The Type Window

Type Information provides a summary of the selected type,
includes a resource count, the total number of bytes these
items consume, and their average size.

Edit Item...
07FF0002 Stop
01FF0003 Hote

01FF0005 Disk
07FF0006 Disk Swap
01FF0058
07FF0102
07FF0103
07FF0104

Item Dependencies...
Item Attributes...
Delete Item .
Export Data .

Edit Item...
Edit Using ScriptEdit ...
Edit Using HexEdit...

Figure 3-3
The Type Window Action Menu

Type 8001 Icon...
Fi Ie: HyperCard II GS (1)
33 items exist
9032 total bytes used
(average size: 273 bytes)

(Continue)

Figure 3-5 The Type Infonnation Window

The Type and Dependency Window Action Menu
The action menu in the type window (Figure 3-3) controls the
operation to be performed on the selected item.

Edit Item... calls a native editor. If a native editor is
unavailable for the type, Edit Item... is dimmed.

Edit Using ScrlptEdit... will initiate an editing session with
a ScriptEdit template. You will be informed if no script exists
for the selected item's type and can continue editing the item
in HexEdit.

Edit with HexEdit... Since HexEdit can be used to edit any
resource, selecting it will always begin a HexEdit session.

16

6 Important HexEdit and ScrlptEdit are not available in 320 SHR
Mode. These selections will be dimmed in that mode.

8004 Control

I 8003 Contro I List

Item Dependencies... allows you to walk through an item's
resource dependency tree. The dependencies window has
four main items. At the top is the same action pop-up used
in the type window, except that Delete Item... is disabled.
Below the pop-up are three separate controls that work
together to provide a single parent/item!dependent snapshot.

8004 Contro I
8004 Contro I
8004 Control
8004 Control

I~=~~~~­I 800E Window

DependeNcy Tree - A resource hierarchy
starting with a parent resource, which uses
other resources (the parent's dependents),
some ofwhich may use other resources (the
dependent's dependents), etc.

0000120A PrefOKCtl
Figure 3-6 - The Dependency Window

First, the parent box displays the resource types of the item's
immediate parent. Next, the item itself is shown it the item
box. Last, a list of the item's immediate dependent resources
is displayed. At the very bottom of the window the resource
ID and name of the selected item is displayed. By selecting
Item Dependencies... for the parent or one of the
dependents lets you step all the way up and down a
'dependency tree. For example, if you originally selected
Item Dependencies... on a Control List, the parent box
would show the 800E Window and the list would contain
the 8004 Cont ro1 resources contained in the Control List.
Double-clicking on the parent box would make the 800 E
Window the current item, updating the Item Dependents
window to display the Control List in the dependents list
along with perhaps a 8006 Pascal String title, and a
8010 Window Color Table. Since no resource uses
windows, the parent box will display (No Parent). The
same is true as you move down the tree. Selecting Item
Dependencies... for a 8006 Pascal String would
display (No Dependents) in the list. See Appendix B for
the various standard resource dependencies.

17

18

Item Attributes lets you change an item's resource ID and
set the various attributes that determine how the Resource
and Memory managers handle the item. Refer to the Apple
IIGS Toolbox Reference, Volume 1, "Memory Manager", and
Volume 3, "Resource Manager", for information on the
function of these attributes.

Home: Sm Stack Into
rType: $8001 Icon (1)

10: $1 rmmmmn I I Purge Leve I0 ... ~
o Locked 0 Preload
o Fixed 0 Ho Cross Bank
o Use Converter 0 Ho Special
o Write Protected 0 Page aligned

(CanceI) (OK)

Figure 3-7 - Tbe Attributes Window

.A. Warning Changingthe ID ofan itemcanbe extremelyhazardous.
In an existing application, such a change may cause a
resNotFound error when the item is used, since its
reference within the me is most often based on its ID.
This problem also occurs within a dependent resource
tree, since reference is always by ID. Foundation does
no validity checking to ensure the dependency
compatibility of an ID number change.

Delete Item.. lets you remove a resource from a file. Since
deleting resources is something that should be done with
extreme care, a confirmation dialog appears just to make sure
that you really want to delete the selected item. If the item
you are about to delete can possibly be part of a dependency

Ii\.l Deleting Control - 0000006C (1) may cause errors if
£.!..) it is used within another resource and Bay orphan

resources it uses.

(Cancel J (DeletelteB] (CheckUse]

Figure 3-8 - Tbe Delete Window

tree that dialog includes a Check Use button. If you choose
Check Use, another window appears reporting the item's
dependency status. If Foundation finds that the item is part
of a dependency tree, the top-most parent is resolved and
displayed. The delete options are limited to removing the

entire tree from the parent or removing the selected item
with or without its dependents.

[B Deleting onh Control - 0000006C (1) lIlay cause errors if
.~~~. it is used within another resource and lay orphan

resources it uses.

Parent: Control list - 0000006~ (1)
Itell has dependents

(Delete Parent with Dependents

(Delete Itell with Dependents

(Canceol J (Delete lUll Only

)

)
)

Figure 3-9 - The Check Uses Window

.A Warning Deleting an itemfrom an existing application may lead
to a system crash resulting from a resNotFound error
when application attempts to use that item. Similar
resultswffioccurwhendeleting anitemusedbyanother
resource, which is why we strongly encourage you to
check the item's use before deleting. Resources may be
used by more than one resource.

Export Item.. lets you save the data contained within a
resource as a data fork file. This can be useful for translating
text to a format editable in a word processor.

19

ScriptEdit
New Card
Delete Card

New Field...
Delete Field
Reorder Fields

Figure 4-1
The ScrlptEdit Menu

20

I CHAPfER 4 - WORKING WITH RESOURCES

Three Editing Modes
As you have already discovered, there are three modes, or
levels, of resource editing in Foundation. Native editors
provide natural editing of resources. ScriptEdit represents
resources as abstract data. HexEdit allows byte-level editing.
Foundation version 1.0 is provided with ScriptEdit and
HexEdit only. ScriptEdit, however, can provide 'native'
editing capabilties for many standard resource types.

Native Editors provide a WYSIWYG resource editing
environment. For example, an Icon native editor would let
you draw the icon, in a FatBits mode. As they become
available, each native editor will have its own documentation.

• Note Although Foundation version 1.0 does not come with
any native editors, several are either available or under
development at this time. For more information on
native Foundation editors, contact Lunar Productions.
Ifyou have returnedyour registration form, youwillbe
notified when updates and new editors are available.

ScrlptEdit is a general editor which can be used to work with
any structured res~:>urce type (Le. not a code resource). It uses
special scripts, or templates, to define not only the item's
structure but also the way it is presented for editing. Foundation
comes with a selection of scripts already provided for most
of the defined system resource types. ScriptBuilder lets you
create your own variants of these scripts, and also lets you
build templates for other types as well.

The ScriptEdit menu (Figure 4-1) is used to create or edit
scripts.

New Script... creates a new, empty script window. To adjust
the size of this window, move the cursor to the bottom or right
borders of the window and the cursor becomes a grow box.
While this grow box cursor is active, you can change the size
of the window just as ifit had a grow box in it. When the script
is saved, its size and position are stored as part of the script.

New Card adds another card to a script. The card number
("xx of nn") indicates which card of a script you are on, and
if there is more than one card in the script, two arrow buttons

Loop is a hidden control field in a script that
lets you define a repeating structure.

Resource ID Field is a special field that lets
you either enter a resource JD by typing or
selecting it from a list of resources that are
currently available.

will let you page through the cards. A single window can
expand automatically to multiple ScriptEdit windows,
depending on the data. For example, a script for an
rControlList would be defined by a loop field and a
resource ID field. Byadding control references (the resource
ID field), you can reach a point where the card becomes
filled. ScriptEdit creates additional cards as needed to
accomodate the data. There is no limit to the number of cards
a script can contain.

Y~

Add)

Hew Field I Point
--~~;;:

~[J ScriptBuilder

Figurr! 4-3 - The ScriptBuilder Control Window

button. Your new item will appear in the window. You can
place this item anywhere in the window just as you can place
file icons within the Finder. Double-click on the item to set
the characteristics of the field. For example, if the field is a
pascal string, you can choose whether it is type limited (a
pascal string by definition has a maximum of 255 characters)
or a fixed length string.

Link Tool selects the destination field for a looping or
branching field. It is used to link one field with another. To
use it, hold down the command key while clicking on a loop,
goto or switch command field. The cursor will change to the
link tool allowing you to select the destination field. To
cancel· a link, click somewhere in the window that is not a
field. The link cursor will change back to the regular cursor,
indicating that the link did not occur.

Delete Card removes the card currently displayed, along
with any fields contained on it. If there is only one card
remaining in the script, this will remove the fields on that
card, leaving a empty card.

New Field... brings up the ScriptBuilder control window
(Figure 4-3). Select the type of field you wish to add from the
popup menu (Figure 4-2 shows this menu) and hit the Add.

Lightning Copy is a method of adding a new field without
accessing the Script Builder control window. To use it, hold
down the control key while clicking and dragging any field
on the current card. This creates a clone of that field.

Figure 4-2 - The ScriptBuilder
New Field Pop-Up Menu

(See Appendix A for descriptions)

Point
Rectangle
Pasca I String
CString
Word String
Unsigned
Signed
Constant
Hexadecimal
Character
Boolean
Bitfield Array

,,,,.I~,~~,!,r.,~,~,!.~,,,9..r,r..~,~,,,,,, ..,,,,,,,,,,,,,,..,..,
Resource 10
Long Version
Parameter Count
Label

1ItIIlIIlIIIlUtUlu..." ••nnllltfIUIlII...UU".IIII.. IHIU.....'I....11I'H'lIll'lllIl

Switch
Goto
Loop

1IIIIUIUUllllltttltllllllluutUIIII"IIH'HNNI,Ultll"'"lIt.M..t,IIIUI""11111'"

If Equal
If Hot Equal
If Less Than
If Greater Than
If Less Than or EQua I
If Greater Than or Equa I

21

22

Delete Field lets you remove the currently selected field
(indicated by a surrounding marquee rectangle) from a script.

Reorder Fields... lets you alter a script's parsing order (the
order used by ScriptEdit when it is using this script), This
order can be seen by holding down the command and option
keys simultaneously when a script window is frontmost. A
small filled and framed rectangle is drawn, centered, on top
ofeach field. Within the rectangle is an integer indicating field
order, This order is important since it is also the order
ScriptEdit uses to match a resource's data to the script. If this
order is incorrect, the data will be presented and written
incorrectly, invalidating the resource structure,

Figure 4-4 illustrates one simple example of a ScriptEdit
window showing what an rTwoRects template might look
like. Appendix B illustrates that this resource structure is
made up two rects, each of which is made up of four words

vi hi v2 h2
recti 1 11~1I 11""""'--
~=

rect2 I II II 11 _
<1ff:f1-J '1 I> t '1 L~~1>

Ftgure 4-4 A Sample ScriptEdtt Wtndow

or integers. These integers represent the coordinates of the
opposite corners of the rectangle, To build the rTwoRects
script, you would need to add two Rect fields, and then add
the six labels to show what data belongs in each entry
rectangle. To use this template to create an rTwoRects
resource, enter the horizontal and vertical coordinates in the
entry rectangles provided. That's all there is to it. ScriptEdit
makes it easy to create any other data resource type.

HexEdit offers the most basic and direct method of creating
and manipulating resources, There are no guides or structures
to help you ensure data integrity here, Just enter raw data,

The HexEdit window in Figure 4-5 displays two different
views of the same resource data - hexidecimal bytes and
ASCII cha'racters. You can edit the resource using either side
of the display one byte at a time. You can use the mouse to
select a byte on either the hex or ASCII views. Alternatively,

Offset 00 01 02 03 04 05 06 07 08 09 OR OB OC OD OE OF
$000000: 00 00 10 01 10 ~O 22 00 FF FF FF FF FF FF FF FF
$000010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
$00002t 00 00 10 01 10 ~O 22 00 FF FF FF FF FF FF FF FF
$000030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
$OOOO~O: 00 00 10 01 10 ~O m00 FF FF FF FF FF FF FF FF
$000050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
$00006t 00 00 10 01 10 ~O 22 00 FF FF FF FF FF FF FF FF

000070: FF FF FF FF FF FF FF FF FF FF FF FF

ASCII
000000"000000000
0000000000000000
000000"000000000
0000000000000000
000000"000000000
0000000000000000
000000"000000008
000000000000

Figure 4-5 The HexEdit Window

you can use the tab key to switch between the two views and
the arrow keys to move the selection cursor.

There are two editing modes available in HexEdit - insertion
and overstrike. In insertion mode, a vertical line cursor
indicates where new data will be inserted. In overstrike
mode, the byte being changed is highlighted. The cursor
location is indicated in the inactive view as a red frame or
vertical line. Changing the data in one view automatically
updates the other view. For example, if you change the byte
selected in Figure 4-4, located at offset $000046, from -22 to
48, the " character that is enclosed by a box in the ASCII
display becomes an F. Similarly, replacing the " with an F
changes the 22 in the hex view to 48.

23

APPENDIX A - SCRIPTBUILDER Fmw DESCRIPTIONS

Baste Numeric Sizes

String Types

Byte

Word

Long

Character

One Byte (unsigned 0 - 255; signed -128 - 127;
hex 0 - FF)

Two Bytes (unsigned 0 - 65535; signed -32768 - 32767;
hex 0 - FFFF)

Four Bytes (unsigned 0 - 4294901760; signed
-2147450880 - 2147450879; hex 0 - FFFFFFFF)

An array ofASCII characters with no delimiters. The size
of this unit must be defined externally

!
Pascal String

"---------------Word String

An array of characters (0 to 255) preceeded by a length
byte

An array ofcharacters (0 to 65535) preceeded by a length
word.

Numeric Types

C String An array of characters tenninated by a null (00) byte

0 Unsigned A byte, word or long real value

0 Signed A byte, word or long value which may have positive or
negative value

0 Constant A fIxed byte, word or long value

0 Hexidecimal A byte, word or long value expressed in hexidecimal
notation (for example SOF, or in C OxOF)

0 Parameter Abyte, word or long value denoting the number of fields
Count to follow. A range may be established.

location Types I II IPoint

,---1Ir---II~=I~1=1 Rectangle

Two words containing horizontal and vertical coordinates

Two points (four words) containing the top left and
bottom right points of the rectangle's boundry

l.,.. ~ BooleanCbolce Types A byte, word or long value denoting true (non-zero) or
false (zero)

~ Bitfield Array An array of boolean values combineq to applied bitwise
................................- to a byte, word or long value

A -J

~ Enumerated.....-----1 Array

A value associated with another item (for example, a
number associated with a country name)

Special Types Resource ID Areference to another resource of a specified type in the
same resource file or Sys.Resources which may be typed

...fl --I·I into the box or selected using a list which appears on a
mouse down while the cursor is in the triangle comer of
the box.

Long Version " A special type of defined string used in rVersion
L-..J resources to denote major and minor versions

Control operators

Conditional Statements

Label

Switch

Goto

Loop

IfEqual

IfNot Equal

If Less Than

If GreaterThan

Label A comment or descriptor to indicate what type of data
should be entered into a field

Branches to another segment of the script based on a
value entered into a script

Branches to another ftxed segment of the script

Creates a subgroup which may be repeated a number of
times based on the parameters used in setting it up (for
example, an rControlList consists of a loop of Reliource
IDs terminated by a long null ($00000000).

These conditional tests can be used to determine values
or in conjunction with control operators to maintain a
variable length context based structure.

If Less Than or Equal

If Greater Than or Equal

..
A-2

APPENDIX B - APPLE IIGS SYSTEM RESOURCE FORMATS

List

rControlTemplate
CheckBox

word
long
rect
long
word
word
long
long
word
long
block

Icon Button
word
long
rect
long
word
word
long
long
long
long
word
block

LineEdic
word
long
rect
long
word
word
long
word
long

word
long
rect
long
word
word
long
word
word
word
word
long
word
word
long
long

Picture
word
long
rect
long
word
word
long
long

Pop-Up Menu
word
long
rect
long
word
word
long
word
long
word
long

rloon
word
word
word
word
array
array

rPioture
word
rect
word
array

rControlLiat
array

$8001
iconType
iconsize
iconHeight
iconWidth
icon Image
iconMask

$8002
picscs
picFrame
pic Image
picture Image

$8003
ctlList

$S004
$82000000
pCounC
ID
rect
procRaf
flag
moreFlags
refCon
tiCleRef
initialValue
colorTableRef
keyEquivalent
$87FF0001
pCounc
ID
rect
procRef
flag
rnoreFlags
refCon
iconRaf
titleRef
colorTableRef
displayMode
keyEqui valent
$83000000
pCounC
ID
rect
procRef
flag
moreFlags
refCon
rnaxsize
defaulcRef
$89000000
pCount
10
rect
procRef
flag
rnoreFlags
refCon
listsize
listView
listType
listStart
listOraw
listMemHeight
listMemsize
listRef
colorTableRef
$80000000
pCount
ID
rect
procRef
flag
moreFlags
refCon
pictureRef
$87000000
pCounc
10
ract
procRef
flag
moreFlags
refCon
tiCleWidth
menuRef
initialValue
colorTableRef

R~dio Button $84000000 Thermometer $87FFOO02
word peount word p::ount
long 10 long ID
rect rect rect rect
long procRef long procRef
word flag word flag
word moreFlags word moreFlags
long refCon long refCon
long CitleRef word value
word initialValue word data
long colorTableRef long colorTableRef
block keyEqui valenc

Reccangle $87FFOO03 rC1Inputstring $S005
word pCounC word length
long ID array stringCharacters
rect rect
long procRef rPString $S006
word flag byte lengthByCe
word rnoreFlags array stringCharacters
long refcon
word penHelghC rStringLi8t $S007
word penWidCh word count
array penMask array strings
array penPattern

Scroll Bar $86000000 rKenuBar $SOOS
word peount word version
long 10 word menuBarFlag
rect rect array menuRefArray
long procRef
word flag rX8nu $8009
word moreFlags word version
long refcon word menuID
word maxsize word menuFlag
word viewSize long rnenuTitleRef
word ini tialValue array icemRefArray
long colorTableRef

Simple Button $80000000 rKenuIt.. $SODA
word pCount word version
long ID word itemIO
rect rect byte itemChar
long procRef byte i temAl cChar
word flag word icemcheck
word moreFlags word itemFlag
long refCon long iCemTitleRef
long CitleRef
long colorTableRef
block keyEquivalenC rTeztForLBTeztBoz2 $S008

size Box $88000000 word length
word pCount array stringCharacters
long ID
rect rect
long procRef rCtlDetProo $SOOC
word flag is a Code Resource
word moreFlags
long refCon
long colorTableRef rCtlColOr'l'bl $SOOD

ScaCText $81000000 Check Box, Radio Button
word pCounc word boxReserved
long IO word boxNor
rect rect word boxSel
long procRef word boxTitle
word flag Icon Button, Simple Button
word moreFlags word bttnOutline
long refCon word bttnNorBack
long texCRef word btcnSelBack
word cextsize word bccnNorText
word just word bt tnSe 1Text

TexCEdiC $85000000 List
word pCount word listFrameClr
long 10 word lisCNorTextClr
rect rect word liscSelTextClr
long procRef word li stNorBackCl r
word flag word listSelBackClr
word rnoreFlags Pop-Up Henus
long refcon word NorText
long texCFlags word HiTexc
rect indentRect word Outline
long vertBar Scroll Bar
word vertAmount word barOucline
long horzSar word barNorArrow
word horzAmount word barSelArrow
long styleRef word barArrowBacK.
word textDescriptor word barNorThwnb
long textRef word barSelThwnb
long textLength word barPageRgn
long maxChars word barInactive
long maxLines
word maxCharsPerLine
word maxHeight
long colorRef
word drawMode
long fil CerProcPCr

B·I

rPeletteW1ndow 'SO~O

is a code resource.

rPatternLi.t
array of

pattern

text
$S02A

thePattern

$eon

Key
String

$SO~B

oneOocsize
offsetToMatchFlags
numResul ts
priority
finderpath
reserved
ieonrD
reserved
smrconrD
reserved
description
matchFlags
matchFields

$C003

,COOl
count

theRect

font

.COO~

printRecord

$S0211
count

$eo~c

version
of f setTopathNarne
pCount
versionID
reserved
pathname

version
offsetToDocList
iconID
ID
reserved
count

'SO~S

i temFlag2
itemTitleRef
itemlconRef

$S029
version
country
name
mora Info

rront
array

rRectLl.t
word
array of

rect

rPr1ntReaord
array

r'l'eggedStr1nqa
word
array of

word
array

rr1nderPath
word
word
word
long
long
WString

rBundl.
word
word
long
long
long
word
array of

word
word
word
word
long
long
long
long
long
long
array
long
array

rComment
array

rVeraion
long
word
array
array

rlt8lllStruat
word
long
long

SizeBox rcOBVCode ,S018
word Outline is a code resource.
word NorBack

TextEdit rcORVlPlags $S019
word contentcolor word flags
word outlineColor byte enabled
word hiliteForeColo byte version
word hilite8ackColor byte machine
word vertColorDescriptor byte reserved
long vertColorRef rect dataRectangle
word horzColorDescriptor array name
long horzcolorRef array author
word groWColorDescriptor array verString
long groWColorRef:

Thermometer rI'woReClta $SOlA
word outline rect recti
word interior rect rect2
word foregnd
word backgnd rP lleType ,S018

word version
rW1ndParaml $800R word Flags

word plLength word NumEntries
word plFrameSits word reserved
long plTitle word rndexRecordSize
long plRefCon word offsetToIdx
rect plZoom array of
long plcolor word Filetype
word plYOrigin long Auxtype
word plXOrigin word flagword
word plOataH
word plDataW rL1etRef ,SOlC
word plMaxH long ID
word plMaxW byte itemFlag
word plScrollVer array item
word plScrollHor
word plPagever rcStr1nq ,SOlO
word plPageHor array stringcharacters
long plInfoText
word plInfoHeight rXCHD $80lK
long plDefProc is a code resource.
long plInfoDraw
long plContentDraw rlU'Clll ,S01P
Rect plposition is a code resource.
long plPlane
long plControlList rSrrorString $80~0

word plInDesc array alertString

rw1ndPerUJll2 $8001' rK'l'r&nu'l'eble 'SO~l

word p2ListID array transTable
long p2DefProc array deadKeyTable
array p2Data array replacementTable

rW1ndColor $8010 rWStr1nq .ao~~

word frameColor word length
word titlecolor array stringCharacters
word tbarcolor
word groWColor rclOUtputstr1nq $80~3

word infoColor word buffersize
word stringLength

r'l'e>:tBlook $8011 array stringCharacters
array stringCharacters

rSoundSUiple .a024
rStyleBlook $8012 word format

word version word waveSize
long rUlerListLength word relPitch
array theRulerList word stereo
long styleListLength word sampleRate
array theStyleList array sound
long numberofStyles
array theStyles r'l'RlIUlar 'SO~5

word leftMargin
r'1'oolStertup '1013 word leftIndent

word flags word rightHargin
word videoHode word just
word resFiteIO word extraLS
long dPageHandle word flags
word numTools long userData
array toolArray word tabType

array theTabs
rh..... $8014 word tabTerminator

word versNum
long namecount rrSeque.nae $80~S

array resNames reserved by Apple

rAlertStrinq ,S015 rour.or $8027
array alertstring word height

word width
r'l'ext $8015 array image

array stringCharacters array mask
word hotSpotY

reod.Reaource $8017 word hotSpotX
is a code resource. word flags

array reserved

B·2

,ApPENDIX C - RESOURCE DEPENDENCIES

Listing Format-

ParentKind
Child that May Have Dependents
Child that has No Dependents

rControlUst $8003 rMenu $8009
rControlTemplate $8004 rMenultem $800A

rMenuItem $800A
rControlTemplate $8004 rPString $8006

rIeon $8001 rltemStruct $8028
rPicture $8002
rC1InputString $8005
rPString $8006 rWindParaml $800E
rMenu $8009 rControlList $8003
rTextForLETextBox2 $800B rControlTemplate $8004
rCtlColorTbl $800D rPString $8006
rStyleBlock $8012 rWindColor $8010
rText $8016
rListRef $801C rItemStruct $8028
rCString $801D rIeon $8001
rCI0utputString $8023 rPString $8006

rMenuBar $8008 rBundle $802B
rMenu $8009 rleon $8001

C-l

APPENDIX D - RESOURCE MANAGER ERRORS

resForkUsed
resBadFormat
resNoConverter
resNoCurFile
resDupID
resNotRound
resFileNotFound
resBadAppID
resNoUniqueID
res IndexRange
resSysIsOpen
resHasChanged
resDiffConverter
resDiskFull
resInvalidShutDown
resNameNotFound
resBadNameVersion
resDupStartUp
resInvalidTypeOrID
resBadData
resBadStructure
resBadFreeList

$lEOi
$lE02
$lE03
$lE04
$lE05
$lE06
$lE07
$lE08
$lE09
$lEOA
$lEOB
$lEOC
$lEOD
$lEOE
$lEOF
$lEiO
$lEii
$lE12
$lE13
$lE40
$lE41
$lE42

D -J

E·1

APPENDIX E - INSTALLATION NOTES

Foundation requires that whatever disk the program is
launched from must have enough disk space to store a copy
of the resource fork you wish to edit. Foundation creates a
directory when first launched named Foundation. User to
store user preferences and user-created scripts.

If you are using a system without a hard drive or network
volume, create a working copy of Foundation byduplcating
the program disk and then deleting all files on the working
disk but Foundat ion and the directory Foundat i on. Edi t.
On all other configurations, place the file Foundation and
the directory Foundation. Edit in the same directory.

The Foundation. User directory is created in the same
directory as the Foundation file except when the program is
launched from an AppleShare (NOT Macintosh System 7
Personal File Sharing) volume. In this case, the directory is
created in the appropriate User directory.

	foundation_1
	foundation_2
	foundation_3
	foundation_4

