VESgyNDA TION™

Lunar Propucrtions

LuNAR PRODUCTIONS

Copyright © 1992 by Lunar Productions.
All rights reserved.

This product (the software and this manual) is copyrighted
by Lunar Productions with all rights reserved. Under the
copyright laws, consumers of copyrighted material may
make copies for their personal use only. Duplication for
any purpose whatsoever would constitute infringement
of copyright laws and would be liable to civil in addition
to actual damages, plus criminal penalties of up to one
year imprisonment and/or a $10,000 fine.

Subject to the below stated limitations, Lunar Productions
hereby warrants that the program contained in this unit
will run on an Apple IIGs equipped as stated in the
Requirements section of this document. Lunar
Productions bears no responsibility for incompatibilities
with non-Apple brand products, both hardware and
software. Lunar Productions makes no warranties
regarding merchantability or fitness for a particular
purpose. Lunar Productions further warrants the media
the software is provided on is free from error. To obtain
this warranty, the enclosed purchaser registration form
must be completed and returned to Lunar Productions
within ten (10) days of purchase. All warranties are
limited in duration to ninety (90) days from the date of
the original retail purchase of this product. In the event
of a faulty program or disk, the purchaser must send the
original disk to Lunar Productions for replacement.

The warranty and remedies set forth above are exclusive,
and in lieu of all others, oral or written, express or
implied. No Lunar Productions dealer, agent oremployee
is authorized to make any modification, extension or
addition to this warranty.

Apple Computer, Inc. MAKES NO WARRANTIES, EITHER
EXPRESSED OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE."

Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or
consequential damages, so the above limitation may not
apply to you. This warranty gives you specific legal
rights, and you may have other rights which may vary
from state to state.

Foundation, ScriptEdit, ScriptBuilder and HexEdit are
trademarks of Lunar Productions.

Apple, the Apple Logo, AppleTalk, AppleShare, Apple
IIGs, Hypercard IIGs, LaserWriter and Macintosh are
registered trademarks of Apple Computer, Inc. ResEdit,
Imagewriter, Finder, APW and Apple IIGs System 6.0 are
trademarks of Apple Computer, Inc.

This program contains material from the ORCA/C Run-
Time Libraries, Copyright © 1987-1989 and libraries from
ORCA/M, Copyright © 1991 by ByteWorks, Inc. ORCA/
M, ORCA/Pascal and ORCA/C are trademarks of
ByteWorks, Inc. ByteWorks is a registered trademark of
ByteWorks, Inc.

GNO and GNO/ME is a trademark of Procyon.
Pointless is a trademark of Westcode.

FounDpATION .
This document was written, edited and composed on a
desktop publishing systemusing Apple IIGs and Macintosh
computers. The original text was composed using Claris
Appleworks® 3.0. Screen shot illustrations were taken
with NiftyList 3.4 by Dave Lyons and SavePic by Mark
Collins, They were imported to Macintosh graphics
using Imagery by Jeff Lewis and retouched for publication
using Studio/8, published by Electronic Arts. Final
editing and page layout were done using Aldus PageMaker
4.2. Proof and final pages were printed on an Apple
Personal Laserwriter NT,

The Foundation Manual was written by
Mark Collins, Marc Wolfgram and Tammara Wolfgram
First Printing - Version 1.0 July 1992.

Foundation was conceived and written by
Marc Wolfgram, Jim Murphy and Mark Collins.

Special thanks to:

Apple Developer Technical Support
The Apple 1IGs System 6.0 Development Team

Tim Swihart
Dave Lyons
Matt Deatherage

and of course, our critical beta testers!

(Table of Contents

PREFACE
Preface
Requirements
Conventions used in this Book
Where To Get More Information

Chapter 1 FOUNDATION OVERVIEW

Resources

Resource Dependencies

Uses

Editing Modes

Extensibility

Launching Foundation

Working with Files
Resource Checking
Resource Fork Formats

Cbapter 2 NAVIGATING FOUNDATION - THE MENUS

The & (Apple) Menu
About Foundation
Help...

The File Menu
New...
Open...
Close
Close File
Save
Save as...
Make Reference File
Optimize File
Page Setup...
Print
Quit

Edit Menu
Undo, Cut and Clear
Copy and Paste
Select All
Name Resource
File 1: ... File 4:
Show Clipboard
Switch Display Modes
Preferences...

1

(171

Chbapter 2 Add Resource Menu

(continued) Import Data...
Other...
Chapter 3 WoRKING WITH FOUNDATION - THE WINDOWS 15
The File Window
Open Type...

Type Information...

The Type and Dependency Window's Action Menu
Edit Item...
Edit Using ScriptEdit...
Edit Using HexEdit...
Item Dependancies...
Item Attributes...
Delete Item..,
Export Item...

Chapter 4 WORKING WITH RESOURCES - THE EDITORS 20
Three Editing Modes

Appendix A ScripTBUILDER FIELD DESCRIPTIONS
Appendix B AppiE IIGS SySTEM RESOURCE FORMATS
Appendix C ReSOURCE DEPENDENCY CHART
Appendix D RESOURCE MANAGER ERRORS
Appendix E INSTALLATION NOTES

PREFACE

Foundation™ is a resource editor for the Apple [IGS® computer.
It is designed to provide maximum power and speed, yet it
provides safeguards to protect existing resource files and
prevent resource corruption. The main program, consisting
of the Foundation shell, ScriptEdit™ and HexEdit™ modules,
is in itself sufficient to allow you to create or modify any
standard or custom resource type. With the addition of
"Native" editors, Foundation provides a complete WYSIWYG
environment for resource manipulation. The level of technical
knowledge required for its use is largely dependent on which
type of editor you are using, Native editors will allow you to
work on a resource with minimal background. ScriptEdit
primarily requires that you understand the different types of
data stored in a resource (number types, strings, resource
reference ID's). Manipulating raw resource data with HexEdit
requires extensive knowledge of resources.

Foundation is NOT a source code generation tool, nor is it a
'point and click' program builder. It is 'just a resource editor.'
But, as the old saying goes, it does one thing, and it does it
very well. No other environment on any platform that we
have seen provides features like our "Intelligent Copy/Paste’,
dynamic resource naming and resource dependency ma-
nipulation. Many other functions can only be duplicated
using APW Rez.

And that's not all... Over a year went into the creation of
Foundation. We're going to continue working on native
editors as well as additional features and enhancements to the
system itself. And the adventure continues...

Lunar Productions
Marc Wolfgram
Mark Collins
Jim Murphy
Tammara Wolfgram

€ Note

A Important

A Warning

New terms are described or defined in
little blocks of text on the side like this.

Requirements

To run Foundation you must have an Apple IIGS, ROM 1 or
3, Apple 1IGs System Software 6.0 or later, and sufficient
memory. We recommend at least two megabytes of RAM, as
do the System 6 release notes, though we have successfully
tested Foundation with as little as 1.5 megabytes. Foundation
requires at least two 3.5" 800k drives, though for better
performance, we recommend either a Hard Drive or
AppleShare network. The volume containing Foundation
must have sufficient space available for the creation of interim
workfiles at least as large as the resource files you intend to
edit.

Conventions Used In This book

[y

The following visual cues are used throughout this book to
identify different types of information:

Notes like this contain information that is interesting but not
essential for understanding of the main text.

Notes like this contain information that is essential.

Warnings like this indicate potential problems and things to
avoid. Ignoring these warnings could have serious
repercussions on your system.

This manual uses Courier type to represent code fragments
and the names of procedures, functions, file names and error
codes,

Where To Get More Information

We strongly recommend a thorough review of the Resource
Manager and resource-related sections in Volume 3 of the
Toolbox Reference and the System 6.0 Reference. Apple
technical books, published by Addison-Wesley, such as the
Apple IIGS Toolbox Reference, are available at many
commercial book stores, as well as through Resource Central.
Other manuals, technical notes and other materials of interest
to Apple II and Apple IIGS users and programmers are also
available from Resource Central.

Resource Central

P.O. Box 11250

Overland Park, Kansas 66207

(913) 469-6502

Fax- (913) 469-6507
If you plan to develop hardware or software products for sale
through retail channels, you can get valuable support from
Apple Developer Programs. Write to them at the following
address. (Be sure to mention your need for Apple II Product
support.)

Apple Developer Programs

Apple Computer Inc.

20424 Mariani Avenue

.Cupentino, California 95014-6299

If you would like more information on Foundation or any of
our products, or are interested in developing Foundation
Resource Editor Modules, feel free to contact us at:

Lunar Productions

1808 Michael Drive
Waukesha, Wisconsin 53186
Aun: Program Development
(414) 549-9261

We also provide support on several online services. You can
reach us at any of the following addresses:

America Online: M Wolfgram, JiMurphy3
Applelink: D3672 (Lunar Productions)
GEnle: Mark.Collins, A2ProJim
Internet: mwolfgram@aol.com

String refers to a specific data type tised to store
sequences of characters, such as words, pbrases,
sentences, etc. In Pascal, strings are a dedicated
type. In C, strings are actually arrays of the data
type Charor character. Otherdata types are used
to store primarily numeric values, such as words
and longwords, There are different types of

“strings used in resources. Among them are
"Pascal Strings" or pStrings which begin with a
bytevalue telling bow many of the following bytes
make up the string; "C Strings” which bave no
count parameter up front but instead end in a
null character (Hex 0); "Word Strings"which are
similarto pStrings but bave a word length number
(two bytes) to store the strings size;

CHAPTER 1 - FOUNDATION OVERVIEW

Resources
What are resources? Very simply, a resource is a program
object that is accessed through the resource manager. For a

- somewhat oversimplified model, think of a resource as you

would a file in a directory. When you want to load or run a
file, you use GS/OS through whatever file system you're
using to load the data from disk for manipulation. Resources
are very similar. Just as different files have different file types
based on their use or content, resources are subdivided into
specific types. When an application uses a resource, it calls
the resource manager to load it for use by that application.

Most resources for the Apple IIGS are data resources - that is,
they contain things like strings, menus, windows or other
data sets, much like the different data files we have: word
processing documents, graphic files, etc. There are executable
or code resources as well, such as XCmd resources, that
function as program routines. It is the job of the resource
manager to provide the resources as needed. Without
resources, windows, strings , menus and other data are stored
within the program code itself. Changing windows, colors,
menus, strings, etc. requires a lot of time-consuming
recompliation/reassembly. Using resources, these changes
can be made easily without rebuilding the application, since
the program deals with the data most likely to change within
independently referenced resources. Also, things become
more portable. An XCmd written for one Hypercard IIGS
stack can easily be transferred to another intact without
having to rewrite Hypercard IIGS itself every time you want
to gain the XCmd's functionality. Similarly, if you have a
favorite method of creating or styling a Window, the Window
and its dependent resources can easily be copied into another
program for its use.

Resource Dependencies

Just as applications can utilize resources, some resources
utilize other resources. Figures 1-1 and 1-2 illustrate an
extreme example. The resource structure for it starts at the
uppermost or "parent" level with a window template. The
window template refers to a window color table (notice the
white lined on black title bar), a string containing the title
contained in the title bar, and a control list, as well as its own
internal data for size, placement, etc. The Control List refers
to two controls - the edit line control and the pop-up menu

[(D==———=Executive Choice

Beverage [@ Soft Drink b |FTYSEAIE

Figure 1-1 A Sample Window

Resource Dependency Tree
(for Sample Window Figure 1-1)

rWindParaml (Window Template)
- rPString (the window's title string " Executive Choice ")

—-riWindColor (the window’s Color Table)

L rControlList (the window's Control List)
- rControlTemplate (the LineEdit control)

—-rPString (the LineEdit's default string "Pepsi-Cola")

: rControlTemplate (the pop-up control)

—rMenu (defining the pop-up itself)

- rPString (the menu's title string " Beverage ")

~ rMenultem (the SoftDrink item)

rIitemStruct (links the icon and the item string)
rIcon (the "Bottle Cap” icon)

rPString (the item string "Soft Drink")

— rMenultem (other items, each with more dependents)

Figure 1-2 Diagram illustrating the Sample Window resource dependency structure

control. The edit line control references another string, while
the pop-up menu control uses a Menu resource, which
contains menu items, and... well, you get the picture. One
big advantage to this system is that by changing one item, for
instance the title string, the window itself can be changed
without having to recompile the whole program. There is a
potential disadvantage, however. By having other resources
that a resource is dependent on, if one isn't as it should be,
the rest of the structure is corrupted as well. If the title string
resource is missing, the program would die an ignominious
death due to a resource not found error. This
somewhat hampers the portability of the resource. But, with
Foundation's dependency handling system, there are safe-
guards that can prevent this problem. If you want to delete
a resource, the system first checks to make sure you aren't
doing damage to something else. Similarly, you will be able
to copy the window knowing that the rest of its baggage goes
along with it.

(Y

Uses

What do you need a resource editor for? If you are a
programmer, you could use it to create the resources your
program needs to function well. With Foundation you no
longer have to hard code your windows, leave your controls
colorless, or keep your menus short so they fit into a Pascal
string. Foundation lets you create your resources, and can
also generate a listing for ready reference when you need to
use the resources in your code.

If, on the other hand, you have no interest in programming,
or simply haven't learned enough about it to feel comfortable
with it, Foundation is still a very useful tool. You no longer
have to be a programmer to have a program look the way you
want. For example, if one of your favorite applications has
a menu structure that you can't stand, using Foundation and
the Window/Menu editor, you can shift the menus around to
an order you can live with. Similarly, if someone gets a bit
too creative in setting up all kinds of colored controls and
windows, you can cure that problem too.

Native Editor - A resource editor module
that provide a WYSIWYG interface. These
must be installed inthe Foundation . Edit
folder that is in the same directory as the
main Foundat ion application.

ScriptEdit - A'special' Foundationresource
editor that lets you create and modify
resources based on templates. Foundation
comes with a supply of templates for many
of the standard resource types, and you can
create more with ScriptBuilder.

HexEdit - Another 'special' resource editor
that allows you to directly manipulate the
data contained in a resource on a byte level.

Editing Modes

There are three ways you can work on resources with
Foundation, Native Editors, ScriptEdit or HexEdit. Native
editors, when available, provide the greatest ease of use,
because they are specifically crafted to edit the type of
resource they work with, For instance, the Window editor
will let you draw a window on the screen and place controls
within it, just as if you were using a page layout program to
size your page and place graphics and text.

ScriptEdit is almost as easy to work with as Native Editors.
Though it does not let you maneuver items as objects, it
allows you to work with resources broken down into their
component parts - whether they are strings, point positions,
rectangles, resource references, or whatever.

HexEdit lets you get 'down to the metal' with your resource.
It is a Hex-ASCII type editor, allowing you to ditectly
manipulate data on a byte by byte level. Just as a Hex-ASCII
editor for disk drives isn't for everybody, we suggest caution
when using HexEdit. It doesn't take much to corrupt a
resource using HexEdit unless you know the format of the
resource and you know precisely what you are doing.

Extensibility

As powerful as Foundation is already, you can easily expand
it beyond the original package you have in your hands.
Adding native editors is easy. Simply place the editor file
(REM) in the Foundation.Edit folder and you're ready.
The shell gets all the information it needs from the editor,
even for resource types that haven't been defined when

'Foundation itself was released. There are currently several

native editors available, and quite a few others being written.
If you are a programmer, you might even want to try your
hand at writing one. The Foundation Developer's Kit makes
the job easier. If there is no native editor available for the
resource type you want to work on, and you don't feel up to
writing it yourself, you might try creating a script for the
ScriptEdit module. The powerful editing tools in ScriptBuilder
makes creating a script easy.

Launcbing Foundation

[= Tile Edit AddRescurce]

Copyright 1991-1902 by Lunar Productiens

Harc Wolfgrom

Jim Hurphy

: Hark Collins
ation 10

Figure 1-3 The Foundation Desktop with the Title Screen

.

Foundation is an AppleShare aware application that runs
under any GS/OS compatible system launcher, including the
Apple IIGs Finder, and the ORCA or GNO/ME shells. The
Foundation application file and the folder
Foundation.Edit mustbe located in the same directory.
Foundation creates the directory Foundation .User where
its private workfiles are stored. Foundation.Edit must
contain the file HexScriptREM, which contains the HexEdit
and ScriptEdit modules, as well as any other native editors
you might have. You should make sure that the disk you
launch Foundation from (or the User folder if launching from
an AppleShare network) has sufficient room for a working
copy of the resource fork(s) you plan to work on. When you
successfully launch the program, the title screen will appear.

Working with Files

Once you've launched Foundation, you can either create a
new file for your resources or open an existing file.
Foundation will only allow you to open extended files - that
is, those with a resource fork. Foundation 1.0 will not open
or edit Macintosh format resource files (including the
TrueType™ files used by Westcode's Pointless). Though
these files also utilize a resource fork, and Macintosh style
resources are used similarly, their resource structure is
significantly different than the GS format.

g
About Foundation...
Help... §?

Figure 2-1 The & Menu

The Sbell - The main Foundation application,
We call it the shell because it acts as an environ-
ment within which other tools work, such as
HexEdit, ScriptEdit and Native Editors.

CHAPTER 2 - NAVIGATING FOUNDATION

The @ (Apple) Menu

About Foundation... displays the Foundation Credits Screen,
showing the credits and version of the shell. If the current
front window is an editor window, it displays this information
on the editor instead. This dialog also provides a display
of available memory.

HexEdit/ScriptEdit 1.0
Copyright 1991-1992, Jim Murphy

Copyright 1991-1992 by Lunar Productions
on 3404k available

Figure 2-2 The Foundation About Window as seen when a ScrzptEdzt
or HexEdit Window is Active

Help... brings up the Foundation help window. There are
essentially two ways of getting help information. Current
Context, the default, keeps track of what you are doing and

e =

Current Context .

IIF you leave the popup menu set to |<r
Current Context, the text you see
here will be updated as you use

ldifferent features of Foundation.

Some key items, like Menus, will not
update this window. Other items,
such as Tips & Suggestions, don't
really have an associated context. [{¥

Figure 2-3 The Foundation Help Window

updates the help window content accordingly. For example,
if you are using HexEdit, information on HexEdit will be
displayed. The pop-up menu also allows you to get help
with things not associated with a particular context, such as
the menus, a handy reference of resource types, dependencies,
and other generally helpful hints.

file I

New GN
Open... &0
Close GW
Close HyperCardIIGS
Save G5
Save fs...

Make Reference file...
Optimize File

Page Setup...
Print ép
Quit al

Figure 2-4 The File Menu

File Window - Once a file is loaded or created
Jor editing, the shell displays a File Window
conlaining a list of resource types it contains.
There may be tup to four File Windows open at
any given time, each one identified by a num-
ber in its title bar and by the color of the title bar
itself. Items belonging to that file are also
identified by the same number and color.

Active File - Foundation allows you to bave up
to four files open at any given time. You may
- only work on one file at a time. The Active File
is the one being worked on or referenced at any
given time. Upon opening or creating a file,
that file is automatically the active file. To
switch active files, all you need to do is bring
one of the windows related to the file you want
to make active (its File Window, one of its Type
Windows or Selector Windows, or an editor
working with an item from that file) to the front.

10

The File Menu
New creates an empty working resource file for editing. You

may have up to 4 files open at one time. These files will have
the working title Untitled.a ... Untitled.d .

Open... loads an existing Apple IIGS resource file for editing.
This file may be an application, CDev, HyperCard IIGS stack

or any other type of file with an Apple IIGS formatted resource
fork.

Close closes the currently active (front) window. If that
window is a file window , you are asked to save any changes
to the file, if any. Then, as it closes the file, it closes all
windows associated with that file.

Close (FileName) closes the currently active file. (Its name
is listed in the menu.)

Save writes the active file directly to disk, making all changes
permanent. If you are working with a file created with New
that has not been saved previously, selecting Save will
operate identically with Save As...

Save as... first provides you with a Standard File dialog for
naming/renaming your resource file, and then saves it just as
in Save.

Make Reference File.. creates a list of constants for
referencing your resources by name in your program code.
Only named resources are included in this list. The format
of this file is selected through Preferences... in the Edit
menu,

Optimize File recreates the current workfile, resource by
resource. This has the effect of eliminating the holes created

Optimize Adv.Disk.Util (1)?
This file's editor windows will be closed...

l Cancel Hi Optimize i'

Figure 2-5 Dialog Asking You To Confirm Optimizing A File,

by deleting and replacing resources, often providing a
substantial savings in disk storage. You must select Save or
Save As... to save the optimized file, as this command does
not do it automatically. If the file contains resources that

Keep this item
Keep all of this tupe
Keep all

Remove this item
Remove all of this type
Remove all

Figure 2-7 Popup Menu Listing
The Options Avatlable In The
Optimize Option Window.

Undo 62
Cut h
Copy éC
Paste gy
Clear

Select All ¢h
Name Resource éR

vFile 1: HyperCard11GS &1
File 2: Archiver 62
File 3: Adv.Disk.Util &3
File b 148

Show Clipboard
Switch Display Modes
Preferences...

Figure 2-8 The Edit Menu

Icon - 07FF0003 has a reserved
system ID and may have been
added earlier from the
SYS.RESOURCES file.

Option | Keep this item J

+ The Keep/Remove option applies only
toresources with reserved system IDs.
(O7FFO000...07FFFFFF)

[Continue]

Figure 2-6 Option Window Presented When a Resource Numbered in
the System Range Is Encountered by Optimize File

duplicate those contained in the system file Sys .Resources,
Optimize lets you keep or remove them from the workfile,

Page Setup... and Print are provided only for editor use,
Quit is selected to end a Foundation session. If any files are

open with changes that have not been saved to disk, you will
be prompted to save them before the program quits.

The Edit Menu

Undo, Cut and Clear are provided primarily for support of
New Desk Accessories, though some native editors use them
as well.

Copy and Paste are used universally throughout Foundation
for copying and pasting items. From NDAs and editors, they
are used to copy and paste items of the same basic type (text,
pictures, sounds, etc.). A special feature of Foundation is the
intelligent copy/paste function which lets you copy an item
complete with all its dependent items. Copying a resource
with its dependents is done by selecting Copy when a type
window or native selector window is the front window and
one of its items is selected. This copy does not look for
'"Parent' resources of the selected item. If you want to copy
the structure with the 'Parent' and its dependent items, you
will need to perform the copy on the 'Parent' item instead. In
order to paste, a file or type window must be the front
window. When this paste is done, any resource number
conflicts are resolved.

Select All is provided for editor use.
11

12

Name Resource brings up the 'Namer' window. This
window is used to create, change or delete resource names.

[O=———= Resource Namer

rType: $8001 Icon (3)
10: $07FFO00Y

Name:

(31 characters maximum)

Figure 2-9 The 'Namer' Window

You can leave it on the desktop and the resource it refers to
is updated based on the currently active item. Since
Foundation maintains resource names internally, this window
is the only way you can edit them.,

File 1: ... File 4: brings the File window of the selected file
to front, making it the active file. Asyou work with up to four
files, their file names will appear in the menu. Unused file
entries in the menu will otherwise be dimmed and inactive.

Show Clipboard displays the current contents of the
clipboard. Text and picture scraps are displayed as text or

SI=——=(liphoord ==—F—==F1=
Window Resource scrap (Ref 1D 07FFOE0L) ir

E. j: I

Figure 2-10 The Foundation Clipboard Window

pictures. Any other standard scraps are described. For
example, Figure 2-10 shows what the clipboard looks like
when the current scrap is a resource reference scrap.

Switcb Display Modes toggles Foundation between 640
and 320 Super HiRes graphics modes. Note that some
functions and editors (for example HexEdit and ScriptEdit)
are not available in 320 mode. While the switch is taking
place, the intervening text screen displays any actions it takes
to adjust window position and availability as needed for the
switch. Items available only under 640 mode are hidden and
the remaining windows are adjusted proportionally as
appropriate for the new screen mode.

Preferences... lets you set a number of program parameters.
The first popup menu lets you choose whether the list of
resource types displayed in a file window will be sorted
alphabetically by the name of the resource type, or numerically.
The next popup similarly determines the order of items
displayed in a type window either numerically by the item ID
numbers or alphabetically by their resource name,

Foundation Preferences

Sort the Type List in File Windows by
Sort the Item List in Tupe Windows by

Always use the Standard Type Window
<] Limit Standard Window Popup Action

Open File 1 when Foundation starts

Default File 1; Foundation.r
Reference File Format | ¥define name Ox(hex Uulﬂ

(Cancel)

Figure 2-11 The Foundation Preferences Window

The first checkbox forces use of the standard type window,
even if a native editor provides a native selector. To use
native selectors, be sure this box is not checked.

The second checkbox determines the action of the popup
menus in the file and type and item dependency windows.
For example, if you have an item selected in a type list, not
having this box checked will let you initiate an action simply
by selecting a pop-up choice. If the box is checked, only
double-clicking on the list item executes the current action.

Foundation can automatically open a file when starting up.
By setting the "Open File 1..." popup to Default, the file listed
as Default File 1 will be opened. If this is set to Inactive, no
file is automatically opened. Selecting Choose... lets you
pick the file to load automatically using a standard file dialog.
If Foundation can not find the default file at startup, no file
is loaded and normal operation continues.

13

#define name OxChex val)
#define name (dec val)
name = $Chex val):

name = (dec val):

name EQU $Chex val)

name EQU (dec val)

name GEQU $Chex val)
name GEQU (dec val)
Figure 2-12 Pop-Up Menu Showing

Different Formats for Reference File
Output

Add Resource
Import Data...

ScriptEdit,

Other... HexEdit, or
Bundle SeriptBuilder
C1 Input String— S P*E*
Icon Native Editor

Pascal String ScriptEdit

Figure 2-13 The Add
Resource Menu

14

The last popup menu lets you select the format of the
reference file you can create using Make Reference File...
These selections let you pick the format most appropriate for
the language you are programming with. For example, ifyou
are programming in ORCA/M assembler, you might select
name GEQU $(hex val), and then create a reference file that

. contained entries like this:

MyAppleMenu GEQU $00000001

About_MItem GEQU $00000001

Help_MItem GEQU $00000002
Foundation substitutes underscore ' _ ' for spaces in names.
The Add Resource Menu

Just as there are different types of editors, there are several
ways to add new resources as well.

Import Data... lets you import of the data fork of a file into
the active file as a resource. After selecting the file to import
you will be asked for a resource type and ID to use. If the
ID is already in use, a unique ID is automatically assigned.
Foundation performs no validation on the data loaded, so be
sure to import data that is appropriate for the resource type.

Import file Res8015.1 as:

Resource Type $|7
Resource 1D $| 00000001

Figure 2-14 Impont Item Type and ID Assignment Window

Otber... lets you add a resource using HexEdit or ScriptEdit,
or define a new ScriptEdit template. The different editor
types are explained in Chapter 4.

The remaining entries in this menu are defined resource
types. Selecting one of these types will create a new resource
of that type and open an editor to work on the new item. A
native editor is used for bold resource types, while a
ScriptEdit template is used for the others.

Open Type...
Type Information...

Figure 3-2
The File Window Action Menu

& Note

CHAPTER 3 - WORKING WITH FOUNDATION

There are several windows that are key to using Foundation,
some of which have already been discussed somewhat
briefly. This chapter explains them in detail.

Open Type... v]
8004 Control

8006 Pascal String

8008 Menu Bar

8009 Menu

8008 Menu Item

8008 LETextBox2 String

800E Window
8013 Tool Startup o -

Figure 3-1 A File Window

Tbe File Window ;

Any file open for editing (using New or Open...) will be
represented on screen by a file window. Each file is identified
by the number shown in parentheses next to the file name,
and by the color of the window title bar. Any window
associated with this file will similarly be identified by file
number and color. Selecting any window associated with a
file will make that file the active file. You may have up to four
files open at a time.

The file window has two main elements: a pop-up action
menu and a list of all the resource types currently contained
in the file. Resource names are maintained internally by
Foundation. For this reason, they can only be edited through
the Namer window, and 8014 Resource Names will never
appear in the type list. To select a type to perform an
operation on, simply double-click on it. Figure 3-2 illustrates
the two choices in the action menu.

You can optionally execute the action on the selected
type if the preference to limit pop-up action is NOT
checked. See the section on Preferences ... in Chapter
2 for more details.

Open Type... opens a type window listing all the items in the
file of the selected resource type. Similar in appearance to the
file window, the type window is the gateway to resource
editing. Like the type window, it has an action pop-up and

" 15

Edit Item...

Edit Using ScriptEdit...

Edit Using HexEdit...

Item Dependencies...
[tem Attributes...
Delete Item...
Export Data...

16

Figure 3-3

The Type Window Action Menu

a list. Items are listed by resource ID and resource name.
Items without names will only appear by ID. Type window
pop-up and list operation is the same as the file window.

Edit Item... |

07FF0002 Stop {F
07FF0003 Note

07FFO003 Disk
07FF0006 Disk Swap
D7FFO058
07FFO102
07FFO103
07FFOL0Y {

——

Figure 3-4 The Type Window

TIype Information provides a summary of the selected type,
includes a resource count, the total number of bytes these
items consume, and their average size.

Type 8001 Icon...
File: HyperCardI1G6S (1)
33 items exist
9032 total bytes used
(average size: 273 bytes)

Figure 3-5 The Type Information Window

The Type and Dependency Window Action Menu
The action menu in the type window (Figure 3-3) controls the
operation to be performed on the selected item.

Edit Item... calls a native editor. If a native editor is
unavailable for the type, Edit Item... is dimmed.

Edit Using ScriptEdit... will initiate an editing session with
a ScriptEdit template. You will be informed if no script exists
for the selected item's type and can continue editing the item
in HexEdit.

Edit witb HexEdit... Since HexEdit can be used to edit any
resource, selecting it will always begin a HexEdit session,

A Important

Dependency Tree - A resource hierarchy
starting with a parent resource, which uses
other resources (the parent's dependents),
some of which may use other resources (the
dependent's dependents), etc.

HexEdit and ScriptEdit are not available in 320 SHR
Mode. These selections will be dimmed in that mode.

Item Dependencies... allows you to walk through an item's
resource dependency tree. The dependencies window has
four main items. At the top is the same action pop-up used
in the type window, except that Delete Item... is disabled.
Below the pop-up are three separate controls that work
together to provide a single parent/item/dependent snapshot.

[tem Dependencies...
800E Window

8003 Control List

8004 Control
8004 Control
8004 Control
8004 Control
8004 Control
8004 Control

00001208 PrefOKCt1

Figure 3-6 - The Dependency Window

v'

First, the parent box displays the resource types of the item's
immediate parent. Next, the item itself is shown it the item
box. Last, a list of the item's immediate dependent resources
is displayed. At the very bottom of the window the resource
ID and name of the selected item is displayed. By selecting
Item Dependencies... for the parent or one of the
dependents lets you step all the way up and down a

‘dependency tree. For example, if you originally selected

Item Dependencies... on a Control List, the parent box
would show the 800E Window and the list would contain
the 8004 Control resources contained in the Control List.
Double-clicking on the parent box would make the 800E
Window the current item, updating the Item Dependents
window to display the Control List in the dependents list
along with perhaps a 8006 Pascal String title, and a
8010 Window Color Table. Since no resource uses
windows, the parent box will display (No Parent). The
same is true as you move down the tree. Selecting Item
Dependencies... for a 8006 Pascal String would
display (No Dependents) inthe list. See Appendix B for
the various standard resource dependencies.

17

18

A Warning

Item Attributes lets you change an item's resource [D and
set the various attributes that determine how the Resource
and Memory managers handle the item. Refer to the Apple
IIGS Toolbox Reference, Volume 1, "Memory Manager", and

~ Volume 3, "Resource Manager", for information on the

function of these attributes.

Name: Sm Stack Info
rType: $8001 Icon (1)

ID:$| Purge Level 0 v]

] Locked [1Preload
[C]Fixed 1Mo Cross Bank
[JUse Converter [Mo Special
[Jurite Protected []Page aligned

((Cancel) (0K)

Figure 3-7 - The Attributes Window

Changing the ID of an item can be extremely hazardous.
In an existing application, such a change may cause a
resNotFound error when the item is used, since its
reference within the file is most often based on its ID.
This problem also occurs within a dependent resource
tree, since reference is always by ID. Foundation does
no validity checking to ensure the dependency
compatibility of an ID number change.

Delete Item... lets you remove a resource from a file. Since
deleting resources is something that should be done with
extreme care, a confirmation dialog appears just to make sure
that you really want to delete the selected item. If the item
you are about to delete can possibly be part of a dependency

A Deleting Control - 000000GC (1) may cause errors if
it is used within another resource and may orphan
resources it uses.

(Delete Item) (Check Use)

Figure 3-8 - The Delete Window

tree that dialog includes a Check Use button. If you choose
Check Use, another window appears reporting the item's
dependency status. If Foundation finds that the item is part
of a dependency tree, the top-most parent is resolved and
displayed. The delete options are limited to removing the

entire tree from the parent or removing the selected item
with or without its dependents.

Deleting only Control - 0000006 (1) may cause errors if
it is used within another resource and may orphan
resources it uses.

Parent: Control List - 00000064 (1)

Item has dependents
(Delete Porent with Dependents)
(Delete Itemwith Dependents)
O Delete Item Only)]

Figure 3-9 - The Check Uses Window

A Warning Deleting an item from an existing application may lead
to a system crash resulting from a resNotFound error
when application attempts to use that item. Similar
results will occur when deleting an item used by another
resource, which is why we strongly encourage you to
check the item's use before deleting. Resources may be
used by more than one resource.

Export Item... lets you save the data contained within a

resource as a data fork file, This can be useful for translating
text to a format editable in a word processor.

19

New Card
Delete Card

New Field...
Delete Field
Reorder Fields

Figure 4-1
The ScriptEdit Menu

20

¢ Note

CHAPTER 4 - WORKING WITH RESOURCES

Tbree Editing Modes

As you have already discovered, there are three modes, or
levels, of resource editing in Foundation. Native editors
provide natural editing of resources. ScriptEdit represents
resources as abstract data. HexEdit allows byte-level editing.
Foundation version 1.0 is provided with ScriptEdit and
HexEdit only. ScriptEdit, however, can provide 'native'
editing capabilties for many standard resource types.

Native Editors provide a WYSIWYG resource editing
environment. For example, an Icon native editor would let
you draw the icon in a FatBits mode. As they become
available, each native editor will have its own documentation.

Although Foundation version 1.0 does not come with
any native editors, several are either available or under
development at this time. For more information on
native Foundation editors, contact Lunar Productions.
If you have returned your registration form, you will be
notified when updates and new editors are available.

ScriptEdit is a general editor which can be used to work with
any structured resource type (i.e. nota code resource). It uses
special scripts, or templates, to define not only the item's
structure but also the way it is presented forediting. Foundation
comes with a selection of scripts already provided for most
of the defined system resource types. ScriptBuilder lets you
create your own variants of these scripts, and also lets you
build templates for other types as well.

The ScriptEdit menu (Figure 4-1) is used to create or edit
scripts.

New Script... creates a new, empty script window. To adjust
the size of this window, move the cursor to the bottom or right
borders of the window and the cursor becomes a grow box.
While this grow box cursor is active, you can change the size
of the window just as if it had a grow box in it. When the script
is saved, its size and position are stored as part of the script.

New Card adds another card to a script. The card number
(“xx of nn”) indicates which card of a script you are on, and
if there is more than one card in the script, two arrow buttons

Loop is a bidden control field in a script that
lets you define a repeating structure,

Resource ID Fleld is a special field that lets
you either enter a resource ID by typing or
selecting it from a list of resources that are
currently avatlable.

Point

Rectangle
Pascal String

C String

Word String
Unsigned

Signed

Constant
Hexadecimal
Character
Boolean
Bitfield Array
Enumerated Array
Resource ID
Long Version
Parameter Count
Label

Switch

Goto

Loop

If Equal

If Not Equal

If Less Than

If Greater Than
If Less Than or Equal
- If Greater Than or Equal

Figure 4-2 - The ScriptBuilder
New Field Pop-Up Menu
(See Appendix A for descriptions)

will let you page through the cards. A single window can
expand automatically to multiple ScriptEdit windows,
depending on the data. For example, a script for an
rControlList would be defined by a loop field and a
resource ID field. By adding control references (the resource
ID field), you can reach a point where the card becomes
filled. ScriptEdit creates additional cards as needed to
accomodate the data. There is no limit to the number of cards
a script can contain.

Delete Card removes the card currently displayed, along
with any fields contained on it. If there is only one card
remaining in the script, this will remove the fields on that
card, leaving a empty card.

New Field... brings up the ScriptBuilder control window
(Figure 4-3). Select the type of field you wish to add from the
popup menu (Figure 4-2 shows this menu) and hit the Add

[OO===—=—=ScriptBuilder

New Field [Point ;

-

Figure 4-3 - The ScriptBuilder Control Window

button. Your new item will appear in the window. You can
place this item anywhere in the window just as you can place
file icons within the Finder. Double-click on the item to set
the characteristics of the field . For example, if the field is a
pascal string, you can choose whether it is type limited (a
pascal string by definition has a maximum of 255 characters)
or a fixed length string.

Ligbtning Copy is a method of adding a new field without
accessing the Script Builder control window. To use it, hold
down the control key while clicking and dragging any field
on the current card. This creates a clone of that field.

Link Tool selects the destination field for a looping or
branching field. It is used to link one field with another. To
use it, hold down the command key while clicking on a loop,
goto or switch command field. The cursor will change to the
link tool allowing you to select the destination field. To
cancel a link, click somewhere in the window that is not a
field. The link cursor will change back to the regular cursor,
indicating that the link did not occur.

21

22

Delete Field lets you remove the currently selected field
(indicated by a surrounding marquee rectangle) froma script.

Reovrder Fields... lets you alter a script's parsing order (the
order used by ScriptEdit when it is using this script). This
order can be seen by holding down the command and option
keys simultaneously when a script window is frontmost. A
small filled and framed rectangle is drawn, centered, on top
of each field. Within the rectangle is an integer indicating field
order. This order is important since it is also the order
ScriptEdit uses to match a resource's data to the script. If this
order is incorrect, the data will be presented and written
incorrectly, invalidating the resource structure.

Figure 4-4 illustrates one simple example of a ScriptEdit
window showing what an rTwoRect s template might look
like. Appendix B illustrates that this resource structure is
made up two rects, each of which is made up of four words

Figure 4-4 A Sample ScriptEdit Window

or integers. These integers represent the coordinates of the
opposite corners of the rectangle. To build the rTwoRects
script, you would need to add two Rect fields, and then add
the six labels to show what data belongs in each entry
rectangle. To use this template to create an rTwoRects
resource, enter the horizontal and vertical coordinates in the
entry rectangles provided. That's all there is to it. ScriptEdit
makes it easy to create any other data resource type.

HexEdit offers the most basic and direct method of creating
and manipulating resources. There are no guides or structures
to help you ensure data integrity here. Just enter raw data.

The HexEdit window in Figure 4-5 displays two different
views of the same resource data - hexidecimal bytes and
ASCII characters. You can edit the resource using either side
of the display one byte at a time. You can use the mouse to
select a byte on either the hex or ASCII views. Alternatively,

Ll

Offset 00 01 02 03 04 05 06 07 08 09 OR 0B OC 80 OE OF AsCII
$000000: 00 00 10 0L 10 00 22 00 FF FF FF FF FF FF FF FF 00000C“0CCOOCOOO
$000010: FF FF FF FF FF FF F FF FF FF FF FF FF FF FF 0000000000CCCO0O
$000020: 00 00 10 01 10 00 0 FF FF FF FF FF FF 00DOOC“OC0O0COQO
$000030: FF FF FF FF FF FF F FF FF FF FF FF FF FF FF 00000000000000CD
§ ¢ g FF FF FFFF

4

f
g
5000040: 06 00 10 01 10 0 0 FF FF FF FF 000000"DO0CCOO0O
$000050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00ODDO00DDOOOCCO
$000060: 00 00 10 01 10 00 22 00 FF FF FF FF FF FF FF FF 000000"CO0000C08
$000070; FF FF FE FF FF FF FF FF FF FF FF FF 000000000808

Figure 4-5 The HexEdit Window

you can use the tab key to switch between the two views and
the arrow keys to move the selection cursor.

There are two editing modes available in HexEdit - insertion
and overstrike. In insertion mode, a vertical line cursor
indicates where new data will be inserted. In overstrike
mode, the byte being changed is highlighted. The cursor
location is indicated in the inactive view as a red frame or
vertical line. Changing the data in one view automatically
updates the other view. For example, if you change the byte
selected in Figure 4-4, located at offset $000046, from 22 to
48, the " character that is enclosed by a box in the ASCII
display becomes an F. Similarly, replacing the " with an F
changes the 22 in the hex view to 48.

23

APPENDIX A - ScRIPTBUILDER FIELD DESCRIPTIONS

Basic Numeric Sizes Byte One Byte (unsigned 0 - 255; signed -128 - 127,
hex 0 - FF)
Word Two Bytes (unsigned 0 - 65535; signed -32768 - 32767;
' hex 0 - FFFF)
Long Four Bytes (unsigned 0 - 4294901760; signed
-2147450880 - 2147450879; hex O - FFFFFFFF)
String Types Character An array of ASCII characters with no delimiters. The size
of this unit must be defined externally
Pascal String An array of characters (0 to 255) preceeded by a length
byte
Word String Anarray of characters (0 to 65535) preceeded by a length
word.
C String An array of characters terminated by a null (00) byte
Numeric Types Unsigned A byte, word or long real value
Signed A byte, word or long value which may have positive or
negative value
Constant A fixed byte, word or long value
Hexidecimal A byte, word or long value expressed in hexidecimal
notation (for example $OF, or in C 0x0F)
Parameter A byte, word or long value denoting the number of fields
Count to follow. A range may be established.
Location Types [“ | Point Two words containing horizontal and vertical coordinates
I J[" ” 1 Rectangle Two points (four words) containing the top left and
bottom right points of the rectangle's boundry
Choice Types I i Boolean A byte, word or long value denoting true (non-zero) or
false (zero)
l] Bitfield Array An array of boolean values combined to applied bitwise
to a byte, word or long value
l Enumerated A value associated with another item (for example, a
Array number associated with a country name)

Special Types

Resource ID

a1

A reference to another resource of a specified type in the
same resource file or Sys.Resources which may be typed
into the box or selected using a list which appears on a
mouse down while the cursor is in the triangle corner of
the box.

Long Version A special type of defined string used in rVersion
resources to denote major and minor versions
Control Operators Label Label A comment or descriptor to indicate what type of data
should be entered into a field
Switch Branches to another segment of the script based on a
value entered into a script
Goto Branches to another fixed segment of the script
Loop Creates a subgroup which may be repeated a number of
times based on the parameters used in setting it up (for
example, an rControlList consists of a loop of Regource
IDs terminated by a long null ($00000000).
Conditional Statements If Equal These conditional tests can be used to determine values
or in conjunction with control operators to maintain a
If Not Equal variable length context based structure.
If Less Than
If GreaterThan
If Less Than or Equal
If Greater Than or Equal

APPENDIX B - APPIE IIGS SYSTEM RESOURCE FORMATS

rIcon 48001
word iconType
word iconsize
word iconHeight
word iconWidth
array iconImage
array iconMask
rPicture $8002
word picscB
rect picFrame
word picImage
array picturelmage
rControlList 48003
array ctlList
rControlTemplate $8004
CheckBox $82000000
word pCount
long D
rect rect
long procRef
word flag
word moreFlags
long refCon
long titleRef
word initialvalue
long colorTableRef
block keyEquivalent
Icon Button $87FF0001
word pCount
long ID
rect rect
long procRef
word flag
word moreFlags
long refCon
long iconRef
long titleRef
long colorTableRef
word displayMode
block keyEquivalent
LineEdit $83000000
word pCount
long 1D
rect rect
long procRef
word flag
word moreFlags
long refCon
word maxSize
long defaultRef
List $89000000
word pCount
long D
rect rect
long procRef
word flag
word moreFlags
long refCon
word listsize
word listview
word listType
word listStart
long listDraw
word listMemHeight
word ligtMemsize
long listRef
long colorTableRef
Picture $8D000000
word pCount
long D
rect rect
long procRef
word flag
word moreFlags
long refcCon
long pictureRef
Pop-Up Menu $87000000
word pCount
long ID
rect rect
long procRef
word flag
word moreFlags
long refCon
word titlewidth
long menuRef
word initialvalue
long colorTableRef

Radio Button
word
long
rect
long
word
word
long
long
word
long
block

Rectangle
word
long
rect
long
word
word
long
word
word
array
array

Scroll Bar
word
long
rect
long
word
word
long
word
word
word
long

Simple Button
word
long
rect
long
word
word
long
long
long
block

Size Box
word
long
rect
long
word
word
long
long

statText
word
long
rect
long
word
word
long
long
word
word

TextEdit
word
long
rect
long
word
word
long
long
rect
long
word
long
word
long
word
long
long
long
long
word
word
long
word
long

$84000000
pCount

D

rect

procRef

flag
moreFlags
refCon
titleRef
initialvalue
colorTableRef
keyEquivalent
$87FF0003
pCount

ip

rect

procRef

flag
moreFlags
refCon
penHeight
penWidth
penMask
penPattern
$86000000
pCount

ID

rect

procRef

flag
moreFlags
refCon
maxSize
viewSize
initialvalue
colorTableRef
$80000000
pCount

In

rect

procRef

flag
moreFlags
refCon
titleRef
colorTableRef
keyEquivalent
$88000000
pCount

ID

rect

procRef

flag
moreFlags
refCon
colorTableRef
$81000000
pCount

ID

rect

procRef

flag
moreflags
refCon
textRef
textsSize
just
$85000000
pCount

1w

rect

procRef

flag
moreFlags
refCon
textFlags
indentRect
vertBar
vertAmount
horzBar
horzAmount
styleRef
textDescriptor
textRef
textLength
maxChars
maxLines
maxCharsPerLine
maxHeight
colorRef
drawMode
filterProcPtr

Thermometer $8T7FF0002
word pCount
long ID
rect rect
long procRef
word flag
word moreFlags
long refCon
word value
word data
long colorTableRef
rClInputstring 48005
word length
array stringCharacters
rP8tring $8006
byte lengthByte
array stringCharacters
r8tringList 88007
word count
array strings
rMenuBar 48008
word version
word menuBarFlag
array menuRefArray
rManu $8009
word version
word menulbD
word menuFlag
long menuTitleRef
array itemRefArray
rMenultem $800A
word version
word itemID
byte itemChar
byte itemAltChar
word itemCheck
word itemFlag
long itemTitleRef

rTextPForLETextBox2 48008

word length
array stringCharacters
rCtlDefProa 8800C
is a Code Resource
rctlcColorTbl 48000

Check Box, Radio Button
word boxReserved
word boxNor
word boxsel
word boxTitle

Icon Button, Simple Button
word bttnoutline
word bttnNorBack
word brenselBack
word bttnNorText
word bttnsSelText

List
word listFrameClr
word listNorTextClr
word listSelTexcClr
word listNorBackClr
word listselBackClr

Pop-Up Menus
word NorText
word HiText
word Outline

Scroll Bar
word baroutline
word barNorArrow
word barselArrow
word barArrowBack
word barNorThumb
word barselThumb
word barPageRgn
word barInactive

SizeBox

word outline
word NorBack
TextEdit
word contentColor
word outlineColor
word hiliteForeColo
word hiliteBackColor
word vertColorDescriptor
long vertColorRef
word horzColorDescriptor
long horzColorRef
word growColorDescriptor '
long growColorRef;
Thermometer
word outline
word interior
word foregnd
word backgnd
rHindParaml $800K%
word plLength
word plFrameBits
long plTitle
long plRefCon
rect plzoom
long plColor
word plyorigin
word plXorigin
word plDataH
word plDataw
word plMaxH
word plMaxW
word plscrollver
word plscrollHor
word plPagever
word plPageHor
long plinfoText
word plInfoHeight
long plDefProc
long plInfoDraw
long plContentDraw
Rect plPosition
long plPlane
long plcontrolList
word plinDesc
r¥indParam2 2800F
word p2ListiD
long p2DefProc
array p2Data
r¥indColor 48010
word frameColor
word titleColor
word tharcolor
word growColor
word infoColor
rTextBlock 48011
array stringCharacters
r8tyleBlock 48012
word version
long rulerListLength
array theRulerlList
long styleListLength
array thestyleList
long numberofstyles
array thestyles
rToolstartup $8013
word flags
word videoMode
word resfileID
long drageHandle
word numTools
array toolArray
rResNamg 48014
word versNum
long nameCount
array resNames
rAlert8tring $8015
array alertstring
rfaxt $8016
array stringCharacters
rcodeRescurce 48017

is a code resource.

rCDEVCode s8018
is a code resource.
rCDRVFlags 48019
word flags
byte enabled
byte version
byte machine
byte reserved
rect dataRectangle
array name
array author
array verString
rTwoReats $801A
rect rectl
rect rect2
rFileType 48018
word Version
word Flags
word NumEntries
word reserved
word IndexRecordSize
word offsetToldx
array of
word Filetype
long Auxtype
word flagword
rListRef sao01c
long ID
byte itemFlag
array icem
rostring $801D
array stringCharacters
LXCMD $001E
is a code resource.
rXFCN $801F
is a code resource.
rErroritring 48020
array alertString
rKTransTable $8021
array transTable
array deadKeyTable
array replacementTable
rWstring $8022
word length
array stringCharacters
rcioutputstring 48023
word buffersize
word stringLength
array stringCharacters
rSoundsample $8024
word format
word wavesSize
word relPitch
word stereo
word sampleRate
s array sound
xTERuler $8025
word leftMargin
word leftindent
word rightMargin
word just
word extrals
word flags
long userbata
word tabType
array theTabs
word tabTerminator
rF8equence $8026
reserved by Apple
rCursor $8027
word height
word width
array image
array mask
word hotspoty
word hotspotX
word flags
array reserved

ritemstruct $8028
word itemFlag2
long itemTitleRef
long itemIconRef
rVarsion $8029
long version
word country
array name
array moreInfo
rCommant $802A
array text
rBundle $802B
word version
word offsecToDocList
long iconiD
long 1D
long reserved
word count
array of
word oneDocSize
word offsetToMatchFlags
word numResults
word priority
long finderpath
long reserved
long jconlD
long reserved
long smIconID
long reserved
array description
long matchFlags
array matchFields
rFinderPath j802¢ ¢
word version
word of f setToPathName
word pCount
long versionID
long reserved
Wstring pathname
rPaletteWindow 802D
is a code resource.
rTaggedstrings $8028
word count
array of
word Key
array string
rPatternList 4802F
array of
pattern thePattern
rRectList §cool
word count
array of
rect theRect
rPrintRecord $C002
array printRecord
rFont $c003
array font

APPENDIX C - RESOURCE DEPENDENCIES

Listing Format-

ParentKind

Child that May Have Dependents
Child that has No Dependents

rControlList $8003
rControlTemplate $8004

rControlTemplate $8004
rlcon $8001
rPicture $8002
rClInputString $8005
rPString $8006
rMenu $8009
rTextForLETextBox2 $800B
rCtlColorTbl $800D
rStyleBlock $8012
rText $8016
rListRef $801C
rCString $801D
rC1OutputString $8023

rMenuBar $8008
rMenu $8009

rMenu
ridenultem

rMenultem
rPString
ritemStruct

rWindParam1l
rControlList
rControlTemplate
rPString
rWindColor

rItemStruct
rIcon
rPString

rBundle
rIcon

$8009
$800A

$800A
$8006
$8028

$800E
$8003
$8004
$8006
$8010

$8028
$8001
$8006

$802B
$8001

APPENDIX D - RESOURCE MANAGER ERRORS

resForkUsed S1EQ01
resBadFormat $1E02
resNoConverter $1E03
resNoCurFile $1E04
resDupID $S1EQ05
resNotRound $1E06
resFileNotFound S1E07
resBadAppID S1E08
resNoUniquelD $1E09
resIndexRange S1EQA
resSysIsOpen S1EOB
resHasChanged $1E0C
resDiffConverter $1EOD
resDiskFull S1EQOE
resInvalidShutDown S1EOF
resNameNotFound S1E10
resBadNameVersion $1E11
resDupStartUp $1E12
resInvalidTypeOrID $1E13
resBadData S1E40
resBadStructure S1E41
resBadFreeList $1E42

APPENDIX E - INSTALLATION NOTES

Foundation requires that whatever disk the program is
launched from must have enough disk space to store a copy
of the resource fork you wish to edit. Foundation creates a
directory when first launched named Foundation.User to
store user preferences and user-created scripts.

If you are using a system without a hard drive or network
volume, create a working copy of Foundation by duplcating
the program disk and then deleting all files on the working
disk but Foundat ion and the directory Foundation.Edit.
On all other configurations, place the file Foundation and
the directory Foundation.Edit in the same directory.

[y

The Foundation.User directory is created in the same
directory as the Foundation file except when the program is
launched from an AppleShare (NOT Macintosh System 7
Personal File Sharing) volume. In this case, the directory is
created in the appropriate User directory.

	foundation_1
	foundation_2
	foundation_3
	foundation_4

