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Chapter 1. Introduction.

1. Motivation and Purpose of the Study.

| still remember the first emulator | ever tested, it was Marat Fayzullin’s VGB-DOS, an early GameBoy
emulator for MS-DOS, ... or it was FMSX-DOS, the MSX emulator by the same author? In any case that
was my first introduction to emulation. Since that date, in the last six years, | have been using, playing
and enjoying with console, home computer and arcade machine emulators.  And perhaps also learning a
bit, about how those machines worked, about how (good, very good) the games were and how an
emulator works.

| planned many times how | could introduce myself in the world of emulation. Programming an
emulator was the first choice in any case, | have been more or less a programmer for almost ten years now
so it made sense. | ways have enjoyed with the hardware internals and assembler programming. And
although now I’m a (modest one) emulator programmer | want also to contribute in another way (because
who will actually play with my boring emus?) to the emulation scene.

Inthetime | started to learn about how an emulator is programmed | found that there was a limited
amount of documentation. Documentation about how an emulator should be programmed or about the
characteristics of the machines to be emulated. Thinking about how to contribute to the emulation |
found that the second part would mean the construction of a database with al the information available of
alarge amount of computers and systems. Thiswasn’t very suited neither with a university project for
with my own preferences, and there are afew sitesin Internet which more or less serve to that purpose.
The first part meant to study and learn the various techniques and knowledges related to emulator
programming. Sincel likealot learning and also writing | thought that could be my way to contribute.
So | thought it would be nice to have alarge, ordered and precise documentation about how to program
an emulator. That isthe purpose of this document and my work in the last months.

After about ayear of study, programming and thinking (well, only sometimes) | think now that a
‘complete’ document about emulation programming is almost impossible. There are too many specific
techniques, too many ways to implement things and many kinds of hardware to emulate. And for each
kind of hardware there are ways best suited than others. Nor to say that every programmer has it owns
ideas and preferences, and they can be all correct. So | think that finally this document will be just
generic, rather complete, but specific in some important points, about programming emulators. Perhaps it
will not arrive to be areal reference about emulation programming but | hope it will be useful for
someone, like many other documents from other people were useful for me.

Talking about motivations | would want also talk about what is the motivation behind emulation. In fact
there is not a single motivation and perhaps every person has it owns particular motivations. The
motivations are diverse. To remember old games or old systems from our childhood (or even our first
work). To know about old games and systems which we were unable to know about or usein the old
times. To use and test systems which we did not know about anything before. To preserve our memory.
To use programs from other systemsin our own system. To provide a protective layer over the real
hardware. To learn about the internals of other computers.

All those motivations can combine to start an emulator. Many of the emulators which can be found
around the web were implemented by programmers for fun. Because they wanted to use again games
from those systems in their new computers and they wanted to give access to everyone (in most of cases
for free) to old programs and games. The ‘emuscene’ has grown in the last five years and now emulators
for almost al the systems which existed can be found.



2. What do we call an emulator?

The standard definition for emulation is “try to be equal or better than someone or something”. An
emulator is thus someone or something who or which emulates someone or something else.

Emulation in computers is the same, to emulate the behaviour of a hardware device in software or with a
different hardware, or to emulate the behaviour of a piece of software either with another hardware or
software. That is still atoo general definition, because you can emulate from an OSto a sound card. And
the techniques used are absolutely different. Emulating a hardware device with another hardware device
just hasto care about to output the same values than the original hardware for the same input values. That
isatask for electronic or VLS| design. But if you are emulating an OS over another OS that is a software
problem.

The kind of emulators which this document talks about are software emulators of computers. A
software computer emulator has to emulate al the componentsin areal computer using software
programs over another computer. The typical, Von Neumman, computer architecture is formed by one or
more CPUs which are the core of the computer and perform cal culations, a bus, to which are attached
devices and memory, and the memory and devices. All those components must be emulated by software.
We will talk in this document about how each of those components could be emulated.

This definition is related with the concept of virtual machines (VM) like Java and others. A virtual
machineis any kind of computer which does not exists as area hardware but it isimplemented by
software over areal computer. A virtual machine has many uses like providing code portability or hiding
specific hardware characteristics to the software (for example the OS provides a virtual machine to the
user programs). And of course avirtual machine can be implemented to emulate another computer over
our computer. So an emulator can be viewed as avirtual machine.

With the purpose of being a bit more specific about what kind of emulators we are going to talk in this
document it is necessary to talk about our target and source computers. The target computer usesto be a
standard x86 based home PC running Windows 9X or DOS. This has changed lately and emulators are
being ported now to ancther PC systems like Macs and al so to videogames consoles like DreamCast or
PlayStation. But the standard system is still aPC. The target machine determines the maximum
capabilities of the system in terms of calculation power, and thus the maximum hardware that will be
emulated correctly. A good approach for knowing the minimum hardware that is needed for emulating a
machine is multiplying the emulated machine capabilities by 10.

Our source computers can be divided in three groups:. old or even new home computers, for example
Sinclair Spectrum, MSX, Commodore 64, Amiga or even Macintosh or PC; videogame consoles like
Sega Master System, Nintendo NES (8-bit), Super Nes, Mega Drive or even PSX, N64 and DC; and
video arcade machines like the old Space Invaders, Pacman, more modern SNK Neo Geo or Capcom
CPS1, to the newer SegaModel 1 and other 3D arcade machines.

All those computers share some characteristics, some more than others do of course. All of them use
cheap chips from the 8-bit era (6502, Zilog Z80, Intel 8080 and 8085, Motorola 6809), or from the 16-bit
era (Motorola 68000 and other versions, i8086) and the more modern ones use even middle level RISC
CPU (Mips, SH, Nec, ARM). Videogames consoles, arcade machines and some of the home computers
more related with videogames have powerful (in comparison with the CPU) hardware for producing
graphics and sound. And they only use afew more hardware for user input. Home computers use more
different hardware devices such keyboards, disk drives and communication ports.

Arcade machines use to be more powerful versions of the videogame consoles, with more memory and
extended capabilities. While a videoconsole can have hundred or thousands of games an arcade machine
has perhaps just ten to twenty games. The arcade machine hardware can also change a bit from one game
to the another while the console remains equal. So for an arcade machineis easier to test all the gamesto
see if they work correctly and correct problemsin the emulator. In aconsole that is almost impossible
because it would be very time expensive to test thousands of games. Therefore console emulators usually
don’t support al the games.

Another characteristic of the machines to be emulated is the lack of ‘officia’ information about its real
architecture and the characteristics of its hardware components. In amost al cases those machines are
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proprietary. The information for building an emulator for those machines will come then from other
sources like schematics or reverse engineering.

The performance of our emulatorsis very important because both videogame consoles and arcade
machines are ‘real time machines' (the games are time dependant) and game programmers use many
times the 100% of the capacity of the system. The game must run exactly at the same speed in the
emulator than in the original system. That meansthat if the emulator is too fast it must synchronize with
the origina timing, and if the emulator is dow try to reduce the calculations (for example reduce the
number of frames displayed) to keep the original speed of the emulated machine. For computer emulators
this problem depends of the kind of programs that the computer is running, for example a word processor
isnot areal time application, while a game uses to be.

Lately as PCs grown in power and GHz more modern machines are beginning to be emulated. Such
computers, like Nintendo 64, DreamCast or 3D arcade machines use powerful CPUs up to 200 MHz and
powerful 3D graphic chips. Those machines require more advanced techniques to be used to achieve
enough performance. They require afast and accurate trandation of the 3D directives of the machine 3D
hardware to the 3D PC directives (Direct3D or OpenGL). They aso need from the more efficient
possible CPU emulation techniques like dynamic binary trandation (or dynarec in short).

3. Small History of Emulation.

It could be said that the first emulator was created when the first computer was to be replaced by a new
computer which was compatible with the first one. The programs on the old computer should be ported
to the new one. There are diverse waysto port those applications: if the source code was available
recompile them in the new machine, but thisit is not always an easy task because of the difference
between the machines; to rewrite the applications in the new machine; to translate directly the application
binary to the object code of the new machine, trandating system calls at the same time; and the last to
build an emulator of the old machine and run it in the new one.

Thefirst emulator as we have defined them was an IBM emulator created by the 60th decade.

In next years, last 80 and early 90th with the rise of the RISC architectures it was needed to port many
applications from old CISC architectures to the new RISC machines. That time binary translators (most
of them in static time) were investigated and produced to perform this change.

The first emulators were designed in the early 90 for systems like the Amiga and they were more or less
used. But the systems those days were not enough powerful to handle real emulation at full speed. There
were C64 emulators or PC emulators for example.

Later in the middle 90 it started what now it is called the ‘emuscene’. The first emulators were from old
8-bit machines but with the time and the increasing power of the PCs now there are emulators for 32 bit
and 64-bit machines.

Lately emulation and dynamic binary trandation has moved to the professional field with researchs for
dynamic trandlators for the new | A64 architecture or the Cruso€' s Transmeta processors.

Transmeta processors uses a layer of ‘emulation’” or dynamic binary trandation to provide a x86
compatible service to the applications and OSes running over them. Thereal CPU isaVLIW with
explicit ILP. A software layer trandates on the fly (dynamic trandation), at run-time, the x86 code into
VLIW instructions. This softwareis called Code Morpher and it has a profile system, an interpreter, a
binary trandator and an optimizer.

Other commercia products which use emulation or binary trandation are Ardi’ s Executor, aMAC
emulator for x86 and FX!32, an impressive static translator of x86 NT applications for AlphaNT. Lately
two commercia console emulators, both for PSX, Bleem from Bleem Co. and Virtual Game Station from
Connectix. Bleem emulates the Sony PlayStation for PCs and VGS for MACs and PCs. Both companies
arein lega issues with Sony. Emulating a proprietary system is atask related with reverse engineering
and has more or less the same legal problems.
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4. Related topics.

Emulating a computer, and in this case computers which could be named ‘ multimedia computers’ isa
hard task which means to have alot of knowledge about al the aspects of the emulated computer, the
target computer and the way the emulation must be performed.

The number of aspects of computing that are implied in such a program are very large. Knowledge
about graphic generation in computers, both 2D and 3D. Sound generation. Computer architecture to
know how a computer isinternally built and all their parts work together. Knowledge about 1Cs and
electronics to reverse engineering schematics of the system. Reverse engineering of the programsto see
how the real hardware works.

An emulator is based in the theory behind Turing Machines. A Turing Machine is an automata
which can read from a ‘tape’, which isits memory, and perform some operations or manipulations.
Turing Machines are useful for modelling, using mathematic theory, computers and the problems which
can be solved with computers. One of these problems or characteristics of a Turing Machine is the ability
of every Turing Machine of ‘emulating’ the behaviour of a different Turing Machine with his own
resources. Emulators are thus based on this mathematics capability of Turing Machines.

Emulation is directly related with the design of Virtua Machines, like Java. Asit wassaid in the
previous section an emulator can be viewed as aform of virtual machines which allows programs (in our
case usually videogames) from an old computer run in our home PCstoday. A lot of the techniques used
in the design and implementation of fast and efficient virtual machines can be also applied to the
implementation of an emulator, and so in the other way. The implementation of virtual machines has
risen in interest since Java became popular and it began to be used commonly for applications which
would run multisystem, like programsin web pages.

Java as afull virtual machine, with avirtual processor which uses bytecode and has other ‘devices' is
really near to our idea of emulators. Infact aJavaVM can be easily viewed as an emulator for a
‘standard’ machine that does not have real hardware implementation (there are some designs with ICs
which directly execute Java code, but those are just exceptions) but it is fully specified.

A topic which isrelated with virtual machinesis simulation. Simulators of non-existent and existent
hardware are designed and used for profiling information about how the system works internaly (for
example in terms of cache usage). This profiling isimpossible or very hard to implement using the real
hardware therefore software simulators, which could be understood as even more accurate emulators
(increased accuracy emulators, for example in terms of electronic accuracy), are very used for testing
purposes.

Binary trandation is one of the techniques which can be used for emulating the CPU. Binary trandation
trandlates directly binary code (a program) from one CPU to binary code which can run in another CPU.
This process has many resemblances with the way a compiler works, just that the source code in this case
isdirectly machine code. Therefore, athough there are important difference between translation and
compilation, alot of techniques from compiler theory can be used or modified to be used in emulation.

Since many of the computers which can be emulated are proprietary designs, and thereis not free
information about their characteristics, reverse engineering is mandatory. Reverse engineering in this
case can come from different points of view. Reverse engineering the hardware, for example use the
schematics from a computer board to discover the memory map of a computer or what kind of CPU uses.
Or reverse engineering the software, to know how the programs that run in the computer access the
hardware. If the system which we are going to emulate has never been emulated and the amount of
information about it is small reverse engineering techniques must be used.

The kind of machines we are emulating have a strong point in graphic and sound generation, so it is
needed a good knowledge of the basis of these topics. It must be known how the graphic system worksin
the emulated machine, for example old 2D graphic system from arcade and videoconsole used tile
engines which are alot of different from PCs graphic system. That means that those graphic systems
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must be emulated by software. Or if thereis a hardware in the target processor which can be used for the
emulation this hardware must be know, for example when translating 3D graphic directives. Same it
happens with sound. The different ways sound can be produced: FM synthesis or PCM sound for
example must be implemented in the hardware of the target system.

Emulation is also a computer architecture problem and even an operating system problem because the
knowledge of these topicsis needed to understand the emulation and implement it, and also because
emulation can be applied in these field. For example it could be implemented an OS whichh would run
programs from different source machines. The OS would detect what kind of program was to be run and
use the properly virtual machine or emulator to runiit. It aso possible to think in an OS which could
provide facilities for emulation, for example a direct access for the MMU could be useful for emulating
the memory.

Thereisaso alegal perspective involved with emulation. There are two aspects, if the implementation
of an emulator of a copyrighted system isillegal, and if the programs for that system can be used and
copied in a different system than the one they were designed for. The last legal problem is related with
the fact that the media where almost all old games or programs were stored can not be used with modern
computers. For example al old videogame consoles and arcade machines used ROMs for storing the data
and code of the games. These ROMs must be read with an electronic device and stored in files. These
files are the ones which emulators use as input programs. The copy and use of these filesisin agrey
legal area

The other legal aspect is related about how the information for building an emulator is obtained, when
thisinformation is protected. Some of the older system had protected info but the time passed and the
information, although still protected, could be obtained and was used for building the emulator. In this
case the system is no longer in use so athough there would be alegal restriction the damage to the
proprietary company islow. But sometimes the information is stolen and become public when the system
istill alive. An emulator using thisinformation could not be legally sold. The other way to obtain the
information is reverse engineering the system. The legal aspects about reverse engineering can be applied
here. Reverse engineering has alot of legal backup and it is being used and abused for centuries.
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Chapter 2. Introduction to the process of emulation.

1. Basic Structure/Algorithm of an Emulator.

An emulator tries to duplicate the behaviour of afull computer using software programsin a different
computer. An emulator thus has to be designed taking into account the internal architecture of a
computer.

All modern computers are based in the Von Neumann architectures. The Von Neumann architectureis
based in a bus to which the CPU, the memory and the |O devices are attached.

CPU MEMORY

BUS

DEVICE DEVICE
1 2

Figure 1. Von Neuman Architecture.

The CPU isthe part which controls the computer, performs most of the calculations and uses to make
the hard work of the system. Asits name says (Control Processor Unit) it is the central part of the
computer.

The buses are groups of electric lines which connect the CPU and all the other devices in the computer.
In some cases more than a bus can exist. The typica bus can be divided into three parts. address bus,
which carries the information about what device (or part of the device) must be accessed; the data bus
which carries data from the devices to the CPU and from the CPU to the devices; and finally the control
bus which carries additional signals and control information to help to arbitrate the access to the bus. The
busis shared by all the devices and because of that only one device can be accessed by the CPU at atime
or two devices can share information while the CPU does not have access to the bus.

The memory is the device which serves as primary data storage. There are alot of types of memory:
RAM (memory which can be read and written), ROM (memory which can be only read) are the basic
types, but there are diverse variants of those basic memory types. Hereis where reside the program code
and data which the CPU executes and with which performs cal culations.

The 1O devices (input/output) serve to various purposes and include a large number of devices. From
secondary storage devices (hard disks, CD-ROMS), to graphic display devices or sound generation
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devices, to input devices (keyboards, mouse or gamepads) or communication hardware (network cards),
and any other kind of hardware which can be controlled by the CPU.

The CPU reads instructions (opcodes) from the memory, those instructionstell the CPU to get data from
the memory or from the CPU internal memory (registers) and perform calculations. Then the obtained
result is written to the registers or to the memory. The CPU accesses the devices to get information from
the outside world (for example the gamepad inputs from a player in a videoconsole) and uses the output
devicesto send information to the user (for example a melody or the image in a videogame).

Therefore the CPU isthe ‘core’ of the computer. In an emulator the emulation of the CPU will be the
core of the emulator too.

The emulation can be divided into parts. The emulation of the CPU is very different from the emulation
of the sound or graphic system. The CPU fetches bytes from the memory and executes the functions
which those bytes (opcodes) mean. A graphic device uses the video memory and commands sent by the
CPU to generate animagein a TV or in amonitor screen. A sound device uses data and commands to
generate an electrical signa which isfed into speakers to produce sound. The agorithmsinvolved in
graphic generation or in sound generation have nothing to do with the algorithmsinvolved in CPU
emulation.

The main part of the emulator is aloop because the way a computer works can be viewed as a repetitive
task. The CPU isdoing any time afetch, decode and execute loop with the instructions. Asthe CPU is
used as the central part of the emulation the emulation of al the other devicesisinstructed following the
emulation of the CPU. In fact al the devices work in parallel, the CPU is executing instructions and at
the same time the graphic hardware is generating the screen image and the sound hardware playing sound.
But aimost all emulators use to be implemented for monoprocessor machines so the devices can not be
emulated in paralld.

In any case paralel models of emulators are hard to implement because of the amount of
synchronization that it is needed between the different emulated devices. A threaded approach can be still
worst, in amonoprocessor environment, for most of the devices because of the same reason. In any case
as this document is intended for emulators which runin PC x86 systems or similar, we won't go into the
problem of the implementation of parallel or threaded emulators.

The main loop of an emulator could be something like this:

while (jstop_emulation)

{
executeCPU(cycles to_execute);
generatel nterrupts();
emulateGraphics();
emulateSound();
emulateOther Software();
timeSincronization();

}

Figura2. Basic Emulator Algorithm.

The CPU isthe core of the emulation and it is used to mark the time of the emulation. Many computers
have hardware which introduce time into their system (for example timers and interrupts driven by
timers), but the main method to know about the time in a computer is the same executed instruction time
in the CPU (counting the CPU cycles). That isthe way the emulator main loop takes into account the
time.

We know the CPU we are emulating, we know the speed in MHz of the CPU we are emulating and we

know how many cycles takes each instruction of the CPU to execute. Using the MHz we know how
many cycles can execute the CPU in atime interval (for example on a second which iswould
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CPU_FREQ). So we can tell the CPU emulation to execute a number of CPU cycles and then stop and
return to the main loop and we know how much time would have passed in the real system (or agood
approximation of thistime). 1t modern CPUs though there are a few things which has to be taken into
account before, as the cache misses, the pipeline stalls and similar concepts, which can modify and make
complex the calculation of the number of cycles of a given instruction.

There are periodic tasks which has to be emulated. These tasks include interrupts like keyboard
interrupts, vertical retrace interrupts (related with the video display) and timer interrupts. Using the
knowledge about the CPU execution time we stop the CPU emulation periodically and those conditions
and interrupts are checked. They must be generated outside of the CPU emulator core. In the main loop
the conditions for generating an interrupt are tested and if the conditions are satisfied an interrupt is
signalled to the CPU core. When the CPU emulation is restarted, and taking into account interrupt
priorities and if the interrupts are disabled, the CPU core starts the emulation of those interrupts.

There are other devices in the computer which must be emulated aswell. Since this algorithm is
sequentia and single threaded the emulation of those devices must be multiplexed with the emulation of
the CPU. When the CPU emulation stops start the emulation of the other devices: graphic hardware,
sound hardware, gamepads or anything else.

The number of CPU cycles which must be executed in each turn of the block depends upon de computer
which isbeing emulated. It is related with the frequency of the more frequent event which must be tested
or triggered by the emulator. Or by the hardware which must be more accurately executed in relation
with the CPU (for example if the sound hardware must rely in registers which are frequently modified by
the CPU).

Other hardware is also emulated, keyboard, networks connections and so.

Aswe said on early sections an emulator isarea time task in the sense that it needs (most of the times)
to emulate as exactly as possible the real time of the emulated computer. For example if acomputer runs
2 millions of instructions and 60 frames (images) in a second the emulator should emulate the same
number of instructions and framesin asecond. That means either to slowdown the emulator, if the
emulator runsto fast in the target machine, or to speedup it skipping some calculations (for example do
not to process al the frames or reduce the audio quality), to synchronize the emulator with the expected
time behaviour in the real system.

Many of our target computersfor being emulated have very interesting characteristics. They are
intended for entertainment, their main components are thus related with graphic and sound generation. In
atypical computer or workstation the more calculation power reliesin the CPU or CPUs of the machine,
but in many of our target computers the most of the cal culation power isin the graphic and sound
hardware. That means that not only the CPU emulation must be taken into account and implemented in a
fast way, but also the graphic and sound hardware. In some cases the percentage of CPU needed for
emulating them isalot of larger than for emulating the CPU.

One of the reasons for that was the fact that the old videogame systems used very low CPUs (for
example the 8-bit CPUs) which could not carry many of the work. Those computers were very limited in
memory and calculation power. Graphic and sound hardware was created to try to help the CPU and
reduce the needed amount of memory. Tile based graphic hardware or PSG and FM sound synthesis
hardware were designed with thisintention. Those hardware systems made a trade off between increased
calculation and additional hardware and less CPU and memory usage (and therefore less data movement
between CPU and the graphic and sound hardware). Of course this fact now implies that the emulation
will be more difficult because this complex hardware must be implement in software.

Another aspect to take into account with emulation is the level of accuracy that the emulator needs. The
kind of emulator we are thinking about will not need to be accurate in avery low level (for example at the
internal CPU workings, cache function or bus traffic) because the intention is not to profile and simulate
the computer. We want to emulate the nearer possible to the real computer the external behaviour of the
videogames (or programs) executed in the emulator. The intention is that the emulator will sound and
look like it was the real system. That means that some the accuracy sometimes must be sacrificed in
terms of the performance, because one of the most important things to emulate in an emulator isthe ‘feel
of time', the emulator must run exactly at the same speed as the real system.
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But the accuracy must not be so harmed that the image or sound are corrupted or becomes very different
from the real system.

In the next sections of these chapter it will be introduced the topics that will be discussed in the
document. First we will start with the emulation of the CPU because is the core of the emulation. There
are two basic different ways of emulating the CPU, interpreting (emulating) the CPU instructions by
reading opcodes and trand ating instructions from the emulated CPU to instructions in the target CPU.
The different algorithms and techniques involved, and the different variants that these two ways of
emulating the CPU have will be discussed in two different sections.

It will be discussed how much accuracy the CPU emulation needs, how it is emulated the
communication between the CPU and the hardware devices, the emulation of the memory subsystem and
the interrupts driven by the hardware.

Then it will begin the study of the graphic and sound hardware which are so important in the system we
want to emulate. The different kinds of hardware that exists and are used will be described. Basic
algorithms and explanations of the basic concepts about sound and graphic emulation will be introduced.

At last it will be introduced the concepts behind the testing of the different parts of the emulator and the
full emulator. Emulators are complex programs which are really hard to test. The processis many times
made at hand without any help of automatic tools. It will be discussed the introduction of such toolsin
the process and advices to help in the mechanisation of this task.

Another really important aspect about the emulators is how the information about the emul ated system
can be obtained. Either from known sources in Internet which contains information about the system (for
example most of the CPU information can be found in the web pages of the corporations which make it),
or using reverse engineering techniques when the information is not available.

2. The CPU emulation core.

The CPU is the core of the computer we are emulating, and the emulation of the CPU is the core of the
emulator. Therefore the emulation of the CPU is one of the most important tasks. In some systemsit will
be the part of the emulation which will need more of the target CPU power so optimize its emulation is
mandatory.

In the basic algorithm there is only one CPU emulated but some of the systems we will want to emulate
have more than a CPU. In many cases there is a master CPU and one or more slave CPUs in other cases
the different CPUs work more like a multiprocessor system. In terms of the basic algorithm this just
implies to add more ‘executeCPU(N)’ functions which will interlace the emulation of the different CPUs.
But in some cases there is needed additional work to add the implementation of the hardware which
implements the synchronization and communication between the CPUs.

The aspects of the CPU we want to emulate are just the related with the cal culations which performs and
the way it operates. We only want to emulate (most of times) the execution of program instructions by
the CPU. Modern CPUs are very complex internally, they can be superscalar, pipelined and out-of-order
but in most of cases those aspects of the CPU should not be emulated. Only the aspects of the CPU that
have an impact in the way the computer work are important.

There are two basic ways to emulate a CPU. We can get the source code (raw bytes), and in afetch-
decode-execute loop read each byte, decode what CPU instructions mean those bytes and execute the
function of the decoded instruction. This kind of CPU emulation is called just emulation or interpreted
emulation (in short just interpreters or emulators). This is the more basic form of CPU emulation, the
faster and easier way to write an emulator, but it is also the dower in CPU time.

The other way is to get the native code and trandate it into new code for the target CPU. This processis
called trandation or binary trandation (BT). In some casesiswrongly called dynamic recompilation or
dynarec in short (a discussion about the terminology would be fun but that is not the purpose of this
document). Thetrandation can be made in static or in dynamic (related with execution time), and thus
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there are dynamic binary trandation (DBT) and static binary trandation (SBT). Since the kind of work
that emulators will carry isin most of time dynamic and they can run alot of different programs the
dynamic approach is the more (or just only one) used.

Now it will be introduced some concepts about the two ways of emulating the CPU.

2.1. CPU emulator: Interpreter.

An interpreter isthe easier way to emulate a CPU. It just reproduces how abasic CPU works. A basic
CPU reads bytes from an address of the memory pointed by a specia register (PC or Program Counter).
These bytes contain the information about the instruction that the CPU must execute (that is what the
CPU hasto do). The CPU must decode these bytes and decide what it hasto do. Then it performsthe
action commanded, updates de PC counter and reads another byte or bytes.

That is how it works an emulator interpreter. At first it reads a byte (or the number of bytes which form
an instruction in the emulated CPU). Then it decides which operation must be performed, and at last it
executes the functions which correspond to that instruction. One of the easier implementationsis a
switch/case statement for each of the different opcodes (bytes which define an instruction).

switch(memory[PC++])

case OPCODEZ1:
opcodel();
break;

case OPCODE2:
opcode2();
break;

case OPCODER:
opcodeN();
break;
}

Figura 3. Interpreter emulator.

An interpreter emulator is slow compared with other forms of CPU emulation. The overhead is due to
the decode and the scheduling of the instructions. One of the ways to improve the performance of an
interpreter is use to assembly coded emulators. An emulator implemented in C or in another high level
language has a lot of overhead because of the difficulty of implementing some basic CPU instructions.
For example calculations with flag are very expensive and it is hard to use the capabilities of the target
CPU at full. An assembly emulator solves this problem.

But then the emulator is not portable without rewriting the CPU core. Thereisatrade off between the
portability of an emulator and its performance, and therefore the minimum requeriments of the target
CPU. Itisalso important to take into account if the computer to be emulated can be easily emulated in
the standard target processor and if it is really needed to implement it in assembly.

From the basic interpreter there are other implementations which try to increase its performance. Since
one of the more important overheads in interpreters is the decoding of the instruction the first
optimization is pointed to that. Using the property of code locality, that is, that the same code is executed
more than once (loops) it would make sense to store the information about the decoded instructions. And
then use this information to avoid decoding the same instruction more than once. These kinds of
interpreters are called threaded emulators.
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Threaded emulators are based in aform of code called threaded code. The flow of execution is pointed
by an array of pointersto function. A threaded emulator just decodes the first time the instruction and
storesin an array a pointer to the function or code which implement the instruction. The next time the
same instruction is found the array is accessed and a direct jump to the code is performed.

Not al C compilers are capable of do such athing and need specia features or the use of inline
assembly to implement it. Other compilers have been modified to permit that or implement special
features which can be used: for example GCC implements labels and the goto statement.

2.2. CPU emulator: Binary Translation.

Faster than just to get each opcode from the emulated CPU and execute a function or code, which
implements the function of this instruction, would be to trandate that opcode to an opcode in the target
CPU. That iswhat binary trandation intends to do.

Binary trandation means to get the native code for the emulated CPU and trandate this code, using
techniques related with compilation for example, into code for the target CPU. The trandated codeis
stored and executed every time that is called the emulation of the CPU.

The trandation is performed in blocks of code, sometimes related with the concept of basic block in
compiler theory sometimes not. The reasons for trandating in blocks rather than trandating the full
program at once are diverse. From the fact that not al the code can be known at first, to the fact that there
must be points for stopping the emulation and to ease the process of trandation, which is faster working
in ablock base.

There are two ways of trandating the code: statically o dynamically. Perform the trandation statically
means that before start using the program in the emulator the program is fully trandated to the target
CPU. It works likeif the program was source code from a high level language that was being compiled
by the compiler of thislanguage. The trandation is performed dynamically when the code for the
emulated CPU istrandated asit is being executed, on-the-fly.

Static trandation is not very used in emulators, the idea behind an emulator isto be dynamic rather than
gtatic. And in most of cases astatic trandation is not possible or hard to implement. For example to
statically trandate the thousands of possible programs that a computer can execute would be a problem.
In other machines, like arcade systems this technique could be useful. We will just introduce the concept
of dtatic tranglation to see the aspects which are similar and different from dynamic trandation. We will
also discuss how this technique could be used with other techniquesto help in the emulation.

Dynamic binary trandlation, sometimes wrongly called dynamic recompilation or dynarec (dynamic
compilation has nothing to do with binary trandation), is a very useful technique for emulating the CPU.
The code is being trandated in blocks asiit is being executed. It isalso called just-in-time compilation
(theway it is called in Java nomenclature) or on demand trandation. The code is only translated when it
isredly needed. When the code has been trandlated the first timeis stored in atranslation cache and
reused any time later the same code has to be executed.

The process of trandlation can be slow compared with the time of just executing the code or interpreting
it, but if it isonly done once (or it is done before the execution, like in static translation) and the code is
executed many times the final performanceisincreased. Trandated code is much faster than just an
interpreter is because the possibilities of the target CPU are better used than in an interpreter. The
overhead due the decode of each instruction is only done once and the code to link the execution of each
instruction with the next one (the execution loop) has nnot to be emulated.

There are alot of topics related with the process of trandation in both static and dynamic tranglation.
The process of trandation is not easy and includes the use of diverse techniques related with compilation.
We will discuss topics like the use of intermediate representations in the trandation process, the
difference between the source and target ISA (Instruction Set Architecture), how the blocks are used for
trandlating, register allocation, optimizations which can be performed and other things related.
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But binary trandation has also problems that an interpreter emulator does not have. Binary trandation
can not easily work with self-modifying code for example, while a standard interpreter is not affected. A
static tranglator is not able to detect or trand ate self-modifying code or dynamic generation of code
(dynamic compilation, for example) because this code is only created in execution time, and in a static
trandator the trandation is performed before the execution. A dynamic trandator could detect memory
regions with trandated code that are modified. But the overhead of the process of retrandating many
times the same piece of code, and the process of detection of those modifications, could decrease alot the
performance of the emulator.

3. The Memory Emulation Subsystem.

The emulation of the memory and communication with the devices (10 or input/output) is also very
important for the performance of the emulator. The memory for example is accessed very frequently, in
some old architectures with a small register bank it can be accessed in each instruction. The IO ports are
less accessed but as they are used for communicating with the other devices in the machine their
implementation use to be sower.

The emulation of the memory and the 10 with the devicesis aso the emulation of the bus of the
computer, because it emulates the communication between the CPU and the other devicesin the
computer. Therea behaviour of the bus usually is not needed to be emulated (arbitration, limited access
and so), but sometimes it must be taken into account to for accuracy of the emulation. For example in the
emulation of the Sega Mega Drive the time while the bus and the memory is doing DMA (Direct Memory
Access) with the VDP (the graphic hardware) must be taken into account for counting the number of CPU
cycleswhileit is stopped.

There are alot of memory types, RAM and ROM are the basic types. RAM isthe memory which is
used for storing temporal calculations because can be read and written. ROM only contains just static
data which must be used asit is. ROM contains for example program code and static graphic and sound
data

In acomputer not al the memory address space is accessed in the sameway. For example aregion of
the address space can be attached to ROM memory, another to RAM and some addresses to device
registers. This mapping of the address space with the real hardware behind the address hasto be
emulated. It is caled the memory map which is usually represented as alist of regions of memory and
the kind of memory they access.

The access to memory can aso have attached additiona hardware to increase their capabilities.
Memory Management Units of the modern CPUs, which trandate virtual addresses to physical address
for example. Or bankswithching hardware which provides away to access more memory than the
maximum amount of addressable memory for the architecture (used most in 8-bit processors with just 64
KB of addressable memory space).

These additional capabilities has to be emulated and be emulated very fast because the memory is very
frequently accessed. We will talk about the different ways it can be emulated.

The emulation of the communication with the devices, 10 emulation, isimplemented with the memory
emulation for two reasons, they work in asimilar manner and in many computers 10 is aready mapped
into the memory address space. A list with the |O addressis provided to the CPU emulation which for
each memory or 10 accesstestsif it isamapped device. Then it calls afunction for communicating with
the device.

Another aspect to take into account that is related to both memory and CPU is endiannes. The endiannes
is the way the multi byte data (words) are stored in memory. There are two ways. little endian and big
endian. In little endian the less significant bytes are stored in lower memory addresses and the higher
bytesin higher addresses. In big endian are the inverse, lower bytesin higher addresses and higher bytes
in lower addresses.
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Big Endian. High order bytes are stored first.
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Little Endian. Low order bytes are stored first.

Figure 4. Endiannes.

This has to be emulated either in the CPU emulator core, implementing multibyte access, or in the way
the emulated memory is organized, byteswapping the memory, or with both methods. If both the
emulated CPU and the target CPU use the same endianness this problem does not exist and the memory
access can be performed directly. But if they use different endianess it can mean a big impact in the
performance of the emulation. Therefore trying to implement the best way to perform the data conversion
is very important for the performance of the full emulator. We will talk both in the CPU and memory
chapters about thistopic.

4. CPU and emulated devices communication. Interrupts and Timing.

We said that time in emulation is very important. Both the time that the user of the emulator can note
(how fast the program or the game runs) and the internal time which controls the emulation of the
different devices of the computer.

The external time isimportant because we want to emulate the computer exactly asit wasthe rea
computer. The games or programs must run at the same speed, it would not be good to play with agame
which runs too fast or too slow.

If the emulator runs too fast then the amount of emulation performed must be controlled. We must
count how many cycles executes the emulated CPU and know the number of cycles that executes the real
CPU inthe sametimeinterval. Then when the emulated CPU reaches the number of cycles executed by
the real CPU the emulation is stopped until the time interval is also reached.

If the emulator istoo slow there is a problem because the time can not be as easily controlled in this
case. A way to deal with the problem would be to reduce the amount of emulation when the time interval
isreached. But this does not work for al the emulated devices, for example the CPU must execute al the
instructions and in the correct time. But other devices can be emulated with less accuracy and reduce the
amount of time needed. That is usually done with the graphic emulation.

The graphic emulation uses to emulate a fixed number of frames (images) each second (fps) but this
number uses to be greater that the amount of fps the human eye can note. A way to reduce the
calculations is reduce the number of fps. If the reduction istoo big the animation becomes very bad and
jerky, but, if it isjust asmall reduction, time could be saved for the emulation of other devices while
preserving most of the feeling of the real machine. That is how emulators use to work.

Something similar could be done with sound but this is more difficult to be done and it is easy to be
discovered. Inany case these kind of time control islimited. If the emulator istoo slow (the target
machine is not able to emulate properly the emulated machine) there is no way to provide area timing.

Theinternal timeisimportant because in the real computer the CPU and the other devices are working
in parallel while our emulators work sequentially emulating each devicein turns. There could be
problems of synchronization between the CPU and the graphic and sound hardware if the CPU emulation
executes too many instructions before emulating another step the graphics and sound.
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For example the CPU could modify two times the same register of the graphic hardware because the
programmer knew that the graphic hardware was aready displaying aframe. The modification would
modify alimited number of lines of theimage. But if the CPU emulation executes the two modifications
at the same time slot and then it starts to emulate the graphic hardware, it will not notice that there were
two changes. The output image will not be the same than in the real system. There are various solutions
for this problem: store buffers with the modifications of hardware registers and perhaps a time-stamp or
to reduce the time dlice for the CPU. Reducing the time dlice for example increases the overhead dueto
the restart of the CPU emulation. We will talk about all those things.

The interna timing can be controlled with the time slice for the CPU emulation, that is, the number of
cyclesit must emulate before stoping for emulating the other hardware. Also how often the emulation of
the other devices is updated, for example the graphic hardware could be emulated after each frame or
after each line.

Hardware interrupts are many times related with timing. Most of the computers we are going to
emulate use interrupts for timing, for exampleis very usual avertical retrace or vsync (video
synchronization signal) interrupt. Thisinterrupt is generated by the video hardware at the end of each
frame. Those interrupts are thus very important for the correct emulation of the computer because must
be generated in the correct moment for good emulation accuracy.

There are other hardware interrupts in our emulated machines which have to be emulated. The hardware
interrupts are a different mechanism from 1O for the communication between the CPU and the devices.
Rather than the CPU reading and writing | O registers the hardware devices send asignal to the CPU
telling that something has happen (it has finished atask or an error has occurred). Then the CPU stops
what it was doing and executes an interrupt routine which check the state of the device and sends new
ordersto the device. Thefirst form of communication is called polling (the CPU keeps asking for the
state until it changes) and the last interrupt driven.

The correct emulation of the interrupts is needed for accuracy and a good emulation. Many times the
emulated program is stopped in aloop waiting an event which is triggered by a hardware interrupt so it is
important that the interrupt would happen in the correct time.

Time emulation and interrupts are very related with CPU emulation and the mechanisms for its
emulation are implemented both inside and outside the CPU core. For example the core must have an
interface for signalling interrupts and an internal interrupt priority policy. But the interrupts are triggered
from outside. The CPU must aso count the number executed cycles but the number of cycles to execute
and the time synchronization is decided outside.

The emulation of the timing and interrupts with an interpreter emulator and with binary trandation is
someway different and we will talk about that.

Exceptions are a so another way of interrupting the CPU but those are internal to CPU rather than
external (sometimes they are from hardware inside the CPU chip like the MMU) and their emulation is
more related with CPU emulation but we will talk about them too.

5. Graphic Hardware Emulation.

Graphicsisthe main form that the computer can communicate with the user. And in computers which
are used for playing videogames that is even more important. In these computers the graphic hardware is
very important and uses to be many times more powerful than the CPU. It provides facilities to help the
CPU to perform the animation and reduce the communication and the CPU calculations.

Therefore the graphic hardware is hard to emulate. It hasto be also emulated very fast becauseit isaso
used very frequently and it must perform alot of work.

There are several kinds of graphic hardware, from the easiest hardware implementation of avideo

device: abitmap with a bit, a byte or bytes for each pixel in the screen to 3D hardware devices which
perform complex floating point cal culations, texture management and so.
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We will just introduce about the principles of the 3D hardware, how it works and how it could be
emulated in a PC or similar systems. The 2D hardware will be explained largely, mainly thetile and
sprite based engines which are the most used in old videoconsoles, arcade machines and some home
computers. The PC graphic hardware will be also explained because it is the hardware we will use for
emulating the other hardware and it isimportant to know about it.

We will introduce basic algorithms for emulating tile graphics and some of the effects that the hardware
caninclude. Alsowe will talk about some effects which can be added to enhance the original graphicsin
the video modes with more resolutions than the original. Basic concepts about graphics will be also
introduced.

Basically the old computers used three different kind of 2D hardware, plain bitmaps in the old arcades,
tile/sprite based engines (and combination of both) and vector graphics (something similar to modern 3D
hardware but just with lines). The more important are tile/sprite engines and will be explainer further and
with some particular examples. Tile/sprite engines provided an easy way to reduce the amount of
communication between the main memory and the video memory because it is based in reusing the same
graphics for many images. Theimageis also formed with a character table which can be easily modified.

6. Sound Hardware Emulation.

In many aspects sound and graphic hardware emulation are very related. Of course the algorithms
implied in the emulation are different (is very different the way a sound is represented or produced from
the way an image is), but both graphic and sound hardware are very important in the computers we want
to emulate. Both have different types of hardware which try to reduce the calculations in the CPU
computer and reduce the communication between the CPU and the hardware.

There are even more different types or ways of producing sound that in the case of the graphic hardware.
The more important types of hardware related with the machines we want to emulate are: PSG and FM,
MIDI and Wavetable sound generation, sample based systems (PCM, ADPCM) and DSPs.

PSG (Programmable Sound Generator) and FM (Frequency Modulation) produce tones with more or
less complexity but the amount of information they need (the bandwidth with the memory or the CPU) is
very low. A PSG just generates clean tones, they implement volume changes and some implement simple
envelope forms. FM tries to emulate someway-musical instruments and it has more options than a PSG.
They work combining multiple sinus waves to produce harmonics. They can modify the more important
aspect of the tone and the envelope. The sound does not sound as areal instrument (even more with
percussion instruments) but it isalot of better than a PSG. The PSGs are used in the early 8-bit era
systems, FM was used in the 16-bit era systems.

MIDI and Wavetable based hardware works a bit similar but produces sound which are more nearer to
real music instruments, but they use to be more powerful hardware and are not used so frequently in the
systems we want to emulate.

Sample based hardware just outputs digital sound to a DAC (Digita to Analog Converter) to produce
sound. They need alot of more bandwidth and memory because with the sample rates needed for a good
sound quality the amount of data for each second of sound is very large (for example, 44,1KHz 16-bit
samples and stereo —two channels-, the standard CD quality, a second means 172KB of data). The basic
hardware just outputs raw digital datato a DAC without any change, the more advanced hardware uses
diverse forms of compressed samples (to reduce the amount of memory needed), mixes multiple samples
by hardware and adds envelope and other sound effects. The more advanced sound hardware uses DSP
(Digital Signal/Sound Processor) to generate the output sound. This kind of hardware is based in
interrupts and timers. The sampleis placed in a buffer and when it is signalled to start the chip startsto
send the data to the DAC, when it reaches the end of the buffer either generates an interrupt or loopsto
the start of the buffer.

Asimportant as the hardware we have to emulate is the hardware we can use to emulateit. In PCsthe

basic hardware is sample-based hardware, but most of the sound cards have FM and PSG capabilities (the
Sound Blaster 16 standard uses a' YM2612 FM Sound Processor). Some aso have MIDI and Wavetable
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capabilities. In MS Windowsis difficult to use the FM and in most of cases does not produce the correct
sound so the standard way is to emulate the sound producing samples, mixing them and sending to the
sound hardware.

Sound uses to be the last option to be emulated in many emulators because is the less important for
using the games or programs. A game can not be played if there is no image, but can be played (of course
with aloss in the game quality) without sound. In many caseis the last thing emulated, decreases alot
the emulator performance (if the emulation is accurate and the hardware complex) or it does not sound
correctly. Perhapsit is one of the hardest things to emulate.

We will introduce the basic concepts about sound programming and PSG and FM sound generation will
be explained and how they can be implemented using sample based hardware. Some aspect about sample
based hardware will be also explained and finally some comments about other kinds of sound hardware.

7. Other devices.

The graphic and sound hardware with the CPU is not al the hardware we have to emulate. We have
also talked about the memory emulation and the interrupts. But there are other hardware devices which
have to be emulated. Videoconsoles and arcade machines have gamepads, joysticks, buttons, dips (for
setting the arcade options), and other input devices (or even output). Home computers have alarger list
of additional hardware: disk drivers, tapes, communication ports, mouse, and others.

And it isnot just the hardware a common user could know about (input devices, output, communication,
and secondary storage) but also small chips which perform minor or magjor tasks in the computer systems.
For example chips for timers, chips which control interrupt priorities, chips which encrypt and decrypt
data, chipsfor DMA (Direct Memory Access) and similar stuff.

All those devices or chips must be emulated in most of case so the emulator could work properly. So we
will introduce some of the most common ones and we will show how they can be emulated. Themain
ones will be input devices, mainly keyboards and gamepads, a bit about secondary storage units, and a bit
about other devices which are hidden but are important like DMA control chips.

8. Testing the emulator.

At last what we want is aworking emulator that works as similar to the original machine and fast as
possible (so it would need the less powerful machine possible). But to accomplish that alot of code must
be written and the most important tested.

Testing is very important in emulation and very hard too. For example to properly test a CPU emulator
it would mean to generate all the possible instructions which can receive the CPU and compare the result
in the emulator with the real result. It will be aso needed to test combinations of ingructions because of
side effects (flags for example) of the instructions. The interrupt system, the exceptions, the access to
memory or to the other devices, if the cycle count is being done correctly, everything should be tested and
work well. Something similar happens with the sound and graphic hardware and al the other devices.

Asit can be seen is a hard task, or in some cases an impossible task. There are additional difficulties,
for example many CPUs have undocumented (more likely non-official) features that sometimes were
used by the programmers so they must be also emulated (and discovered). Sound is very hard to properly
test because you would need a spectre analyzer (and perhaps also a sound expert for the better accuracy).
Graphics are easier because you can easily see that there is something wrong. The hard part is to discover
what isthe error.

The different types of implementation of an emulator needs different approaches with testing and have
different problems. For example binary trandation is harder to test and debug than just an interpreter.

The usua techniques for testing computer programs include the black box approach, the white box, the

joint approach and alot of others. In this chapters we will just introduce some advises and easy
techniques to help deal with the testing of some of the parts of the emulation. For example the CPU.
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More commonly the task of testing and debugging an emulator means to test many programs or games
for the emulator and seeif or how they work. Then debug them using debuggers included in the emulator
and disassemblers. It isatask of reverse engineering the program and the emulated system. Infact as
many times there is alack of information about the emulated system the task of testing and debugging the
emulator becomes the task of reverse engineering the system.

We will just introduce those topics but they would need further talk because is the hardest task involved
with emulation and mean alot of hours of patient work.

9. Searching for information and other aspects of emulation.

Write the code of the emulator is not the only task which isimportant to build an emulator. Aswe said
in the previous section the debugging and testing are important. Know about how to reverse engineering
the system or a program can be necessary to know how it works a computer when there is not enough
information about it.

So there are other topics that would be interesting to discuss or just introduce for completeness. In this
section we will see some of those topics.

For example, it is also important to obtain information about the system that we want to emulate. The
CPU, the sound and graphic hardware, the other chips which need to be emulated. The information about
the CPU uses to be easy to be found. For most of the proprietary systemsinformation about the other
hardware (sound, graphics) is hard to obtain. If the system isold is easier because alot of people would
have worked with the system and would have written documents about it. Or even someone would have
programmed an emulator. For newer computers the only way isto try to get development kits (but they
use to be expensive) or find someinfo in programming sites for the systems. For example demo coders
are agood source of information about new systems.

Another useful thing to know about is to read schematics. Schematics are the diagrams that represent
components of the computer system and are useful to find what chipsit uses the system and how are them
connected.

There are also legal aspects related with emulation, but thisis not alegal text so we will just introduce
the basics.

And finally it will be discussed how, why and if an emulator could be a commercia product and do not
just aproduct of the freeware scene. Or in marketing terms: how could | sell an emulator?.
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Chapter 3. CPU emulation: Interpreters.

1. Basic interpreter CPU emulator.

We will introduce first how a basic interpreter emulator isimplemented. The basic CPU emulator is
based in afetch-decode loop and, in this case, we will consider that it isimplemented using a high level
language. In other sectionsit will be told about CPU emulators implemented in assembly or which use
other techniques more advanced for increase the performance of the emulation (threaded emulators).

An interpreter CPU emulator works in asimilar manner than areal CPU (abasic one), and also similar
to how an interpreted language is executed. It gets the code of the program and it decodesiit into
instructions to be executed, then it calls a function which implements those instructions.

Most of the CPU cores are implemented in C athough lately there are implementationsin Java, C++ or
even Visual Basic (athough some of those languages are not well suited for CPU emulation). The
performance of a CPU emulator is limited by the difficulty of trandating the internal behaviour of a CPU
(even more if the CPU is old) with high level instructions. For example side effects of the instructions
like flags are hard to calculate in ahigh level language.

We will begin explaining the basic fetch-decode loop which is the main loop of the CPU emulator, and
the different ways it can be implemented. Later we will introduce the emulation of the CPU instructions
and some of the harder aspectsto implement in a high level language (flags for example). The next
aspects to talk about will be the interaction with the memory emulation and the interrupt emulation. At
last we will see a standard interface CPU emulators.

In Appendix A we can found an extended explanation about how a basic CPU emulator for abasic CPU
can be implemented. Appendix A isatutorial about a Space Invaders emulator. The Space Invader
machine uses an Intel 8080 CPU. Thetutoria explains theimplementation of the different parts of the
i8080 emulator core using C.

The CPU status.

A CPU must keep information between the execution of an instruction and the next. The minimum that
isneeded is aregister pointing to the next instruction to be executed. Thisregister isthe PC or Program
Counter (some CPUs could change the name, for example in x86 is called IP).

The more basic CPUs (and also Virtual Machines like Java), have at least two registers, the PC and the
SP. The SP, or Stack Pointer, is a pointer to the memory. It is used to keep a stack data structure, that is,
aFIFO (First In First Out) structure which is useful for retrieving the last data added to the structure. The
SP is decremented and incremented as new values are pushed or popped to the stack. Those CPUs, called
stack machines, perform the operations with the top values in the stack and put the result in the top of the
stack.

The common CPU has more registers. CISC kind CPUs use to have only a few registers which many
times are specialized for sometask. There could be general purpose registers, the accumulator register
(where the result of all operationsis stored), address registers and other types of registers. Examples of
such CPUs are the i8080, the 6502, and the other 8bit and 16bit CPUs.

RISC CPUs use to have large register banks. If the RISC CPU implements floating point operations
there will be two different registers banks, one for the integer calculations (GPR or General Purpose
Registers) and one for the float point calculations (FPR of Floating Point Registers). CISC CPUs with
float point capabilities also use different registers for storing integers and floats.

There are also other register which hold information about the state of the CPU, for example flags

(modified by the result of the operations), the state of the interrupts, exceptions, CPU configurations and
others.
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The full state of a CPU must also be maintained in a CPU emulator. We need a structure, the CPU
context, which will store the full state of the emulated CPU. This structure will be modified by the
emulated instructions. The usual implementation isa C struct (or record in Pascal) which will have fields
for al the aspects of the CPU state. It will have, for example, an array of integers for the GPR bank, an
array of floats for the FPR bank and booleans for the flags and the CPU status bits. It can aso have other
fields not directly related with the CPU, for example a cycle counter to store the number of executed
cycles since the last execute() call. Thiskind of dataiis using for profiling and control purpose inside the
emulator.

27



typedef union

{
UINT32 w; /* Accessit asadouble 16-bit register */
UINT16 w;
Struct
{
UINT8,h; /* Low (I) and High (h) bytes of the register */
UINT16 pad,; /* Little-Endian padding */
} b; /* Accessed as two single byte registers */
} 18080Reg;
struct i8080Context
{
i8080Reg AF; /* Register AF (Accumulator + Flags) */
i8080Reg BC; /* Register BC (B +C) */
i8080Reg DE; /* Register DE (D + E) */
i8080Reg HL; /* Register HL (H+L) */
UINT16 PC; /* Program Counter */
UINT16 SP; [* Stack Pointer */
UINT32 flagC; [* Carry flag */
UINT32 flagZPS; [* Zero, Parity and Negative flags */
UINT32 flagAc; /* Auxiliary Carry flag (4-bit carry) */
UINT32 halted; /* CPU isin Halt state. */
UINT32 intEnabled; /* Interrupts are enabled or disabled */
UINT32 intPending; [* Storesif thereis apending interrupt */
UINT16 intAddress; [* Storesthe start address for the interrupt handling rutine */
UINT16 NMIAddress, /* Storesthe start address for the NMI rutine */
UINT32 NMIPending; /* Storesif thereisapending nmi */
UINT8 *mainMemory; /* Pointer to the main memory */
struct readM emoryHandler *readMemoryHandler; /* List of memory handlers for reading */
struct writeMemoryHandler *writeMemoryHandler; /* List of memory handlers for writing */
struct readlOHandler * readl OHandler; /* List of 10 handlersfor reading */
struct writel OHandler *writel OHandler; /* List of 10 handlers for writing */
UINT32 humMemoryBanks; /* Number of banks of memory (0 - 64) */
void *pBankLigt; /* List of pointers to the bank memory regions */
UINT32 cycleCount; /* Number of executed cycles*/
UINT32 opcodeStatistics[256];  /* Number of times an opcode has been executed */
UINT32 tracePC[256]; /* Storesthelast 256 PCs */
UINT32 tracelndex; /* Last entry inthe PC trace buffer */
}

Figure 5. CPU context structure (18080 emulator).
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There are some difficulties which must be taken into account. For example in some architectures the
same register can used for performing calculations in different data sizes. 1n x86 it has 32 bit registers
that can be used as 32-bit registers, as 16-hit register or as two 8-bit subregisters (EAX, AX and AH/AL).
Therefore we will have to take into account that the data type for aregister should admit fast accessesto
diverse data sizes.

A good solution using C isto implement registers as unions, each field in the union will be associated
with one of the register uses. In C it can be also used its capability with pointer to do the same work (it is
easy to access any data as raw bytes). Other high level languages could not admit those facilities. In any
case theideais to implement afast access to the more common register use. The other register uses would
have slower access but the performance lost would be less. What has to be avoided is to have to convert
the register from one format (use) to another very frequently because the performance lost would be too
big.

typedef union
{

UINT32 w; /* Accessit asadouble 16-bit register */
UINT16 w;
Struct
UINT8 ,h; /* Low (I) and High (h) bytes of the register */
UINT16 pad,; /* Little-Endian padding */
} b; /* Accessed as two single byte registers */
} 18080Reg;

Figure 6. Multi size registers emulation using C union data type.

long reg;

.(.(-char *) &reg)[0] = Ox01;
((int *) &reg)[i] = 0x0212;

reg = Ox1234afed;

Figure 7. Multi size registers emulation using pointers and type cast.

The flags and the other data stored in the CPU state registers usually can be better implemented as
standalone fields in the CPU context. They use to be accessed separately rather than all of them at atime
(for example a conditional branch checks one or two flags and not the full status word). The CPU state
fields, for example one bit that would enable or disable interrupts, are rarely accessed reading the full
status word. When the CPU status word is accessed as afull (for example when it is saved or restored
from the stack) a conversion (expansion or compression must be performed). It thiskind of accessistoo
frequent it would be better to change the implementation the inverse one (al flags and status fieldsin a
single CPU context field).
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i8080 PSW (F)
a) Flags stored as a single state word
i8080Reg AF; /* Register AF (Accumulator + Flags) */

b) Flags stored as different fields

UINT32 flagC; [* Carry flag */
UINT32 flagZPS; [* Zero, Parity and Negative flags */
UINT32 flagAc; /* Auxiliary Carry flag (4-bit carry) */

Figure 8. Examplesof CPU flags.

The CPU context needs additional datathat is needed by the CPU emulator to work. Some of the CPU
state isimplicit but the emulator must store it, for example the status of the IRQs (hardware interrupts), if
the CPU is halted, if the CPU has lost the access to the bus. The emulator also needs information about
how to emulate the memory (the memory map). We will talk about the memory map in the memory
emulation section.

Finally the CPU context can store diverse statistic data. One data which is amost mandatory isacycle
counter. We need to count how many cycles have been executed since the last call to execute() or since
the emulator was started (or reseted). The other datais related with the profiling of the code. The CPU
emulator could be used for gathering information about the executed code for simulation purpose or for a
second pass binary trandator. A good place to store all the profiled datais the CPU context.

Finally, many of the CPU cores can be used to execute of multiple instances of areal CPUs with the
same code, for example if the emulated machines uses 2 CPUs of the same type (multiprocessor). Ina
sequential single-threaded environment this just implies that the CPU context must be saved and restored
when the emulation of one CPU ends and the emulation of the other starts. In aparallel or multi-threaded
environment it is also needed that the CPU emulator code is reentrants. The emulator should access to
different CPU context structures for each emulated CPU (through pointers for example), and all the
sensible data would be stored in the context.

The fetch-decode loop.

The fetch-decode loop is the main loop of the CPU emulator. A real CPU worksin thisway: it getsa
byte or some bytes from the memory which are located in a position pointed by a special register
(commonly called PC or Program Counter). Then these bytes are used to decide which instruction must
execute the CPU. And when it has decided what it has to do it executes the function and reads another
byte or group of bytes.

The byte or group of bytes which define a single instruction in a CPU are usually opcode or operation
code. Some times the term opcode is used for al the bytes which form the instruction, including offsets,
extended fields and other literal datawhich is passed inlined to the instruction. In other cases the opcode
only means the part which really defines the instruction to be executed.
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a) i8080 instruction (1 byte).

1000 TXXX ADD REG
27 DAA
CCPP QQ CZ LABEL

b) Z80 instruction (extended opcode).

ED 43 PP QQ LD (addr), A
DD 0111 Osss YY LD (IX + disp), reg
FD 0111 Osss YY LD (1Y + disp), reg

¢) m68000 instruction.

5 bbbl 00ddd SUBQ.B data3, Dn
5 bbbl OOff ffff SUBQ.B data3, dadr

d) MIPSinstruction.

SPECIAL ADD
00000 rs rt rd 00000 100000
6 5 5 5 5 6
ADDrd, rs, rt
ADDI
00100 rs rt Immediate
6 5 5 16

ADDI rt, rs, immediate

Figure 9. Opcode examples.

Aswe have said when a CPU executes an instruction it passes a number of phases. Those phases are
usually called fetch phase, decode phase and execution phase (basicaly, in a more complicated CPU there
are more phases and other different phases). In the fetch phase the CPU gets the code data from the
memory pointed by the special register PC and stores that data, the opcode, in an internal register.
Fetching could be considered as reading code, rather than read, which would be reading data. In the
decode phase the CPU uses fetched data to decide which actions (which instruction) must be executed
and sends the proper signals to the functional units. In the execution phase the CPU executes the actions
that must be done for the opcode read. Our CPU emulator will work in asimilar manner.

The fetch-decode loop is the part of the CPU emulator which implements the CPU fetch and decode
phases. The fetch isimplemented just reading from the emulated memory at the position pointed by the
emulated PC a given number of bytes. Then those bytes, which we will call the opcode, will be decoded.
Our goal isto perform the decoding as fast as possible because that is atask which is very frequent (any
instruction must be decoded!). Decoding means to decide which function must be executed for the given
opcode.
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whil e (executed cycles < cycles_to_execute)

{
opcode = nenory[ PC++] ;
i nstruction = decode(opcode);
execut e(i nstruction);

}

Figure 10. CPU core main loop.

The number of bytes to read on each fetch depends upon the processor. Some CPUs have fixed length
opcodes and then the size in bytes of an opcode is aways the same, that eases the task of fetching because
you aready know how many must be read for each instruction. This uses to happen with RISC CPUs.
Other CPUs, mostly old CISC ones, have variable length opcodes. In this case the size in bytes of each
opcode depends upon the type of each instruction, some will need more and other less bytes.

That means that the fetching must be done in two or more steps. At first it is read the number of bytes
needed to decode a simple instruction or too differentiate between the different kind of instructions.
Those instructions which need more bytesto be fully decoded or executed will perform more memory
reads from the address in the PC. The additional fetching isimplemented in the same functions which
emulate those extended size instructions.

Each time a byte is fetched from the memory (code is read) the PC (which points to the next byte of
code) must be updated. At the first step of the fetching, in the main loop, the PC isincremented in a fixed
amount (the basic opcode size). The instruction implementation (in CPUs with variable length
instructions) must update itself the PC if it performs more code reads. The PC is also affected by control
flow instructions (jump, branch, call and return instructions) and by hardware interrupts and CPU
exceptions.

The decoding can be performed in different ways. It depends upon how the instruction is encoded in the
opcode for the emulated CPU and also in the capabilities which of the language we are using. RISC kind
CPUs for example can be more easily decoded because they have fixed opcode formats which different
fields which define the different kind of instructions, the registersto use, literalsand so. They aso, asit
has been said, use afixed in length opcode format.

CISC ingtructions in the other way do not use to have standarized fields in the opcodes for each
information. And they have instructions in various sizes, extensions of the normal opcodes, prefixes and
other weird stuff.

On RISC CPUs or in any CPU where the different bits in the opcode can be grouped to form different
information (opcode, registers, literals, special opcodes) the first thing to do could be to differentiate
(using macros, or copying them to different variables) the different fieldsin the opcode. The use the field
which determines the instruction type to determine which instruction to execute. The other fields could
be used for further decoding (if that type of instruction has different final instructions) or to be used for
the instruction implementation (where to get the data, where to store the data, data sizes, etc).

32



OPCODE RD RS RS

OP RD, RS, RT
RI SC ki nd i nstructi on.

/* fetch */
opcode = fetch(PC);

/[* first decode */
opcfield = OPCODE(opcode) ;
destreg = DESTREGE opcode) ;
sreg SREE opcode) ;

treg TREGQ opcode) ;

/* last decode, execute */
execut e(opcfield, destreg, sreg, treg);

Figure 11. RISC instruction decoding (fixed lenght).

On CISC machines where it is hard to find the different fields or there is not a standardized encoding
format for al the instructions the decoding uses to be done with all the read opcode.

/* fetch */
opcode = fetch(PC);

/* decode and execute */
execut e(opcode) ;

Figure 12. CISC instruction decoding (variable lenght).
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The process of determining which function or code must be executed to emulate each instruction can be
implemented in different manners. The first we could propose is an array of if statements, but those are
very inefficient because the last opcode will take N (N number of opcodes) times the time of decoding of
thefirst one. The better implementation isto use indexed or indirect jumps.

if (opcode == OPC1)
{
/* emulate the opcode 1 */
}
elseif (opcode == OPC2)
{
/* emulate the opcode 2 */
}
else if (opcode == OPC)
{
/* emulate the opcodei */
if (subopc == OPCiSUBOPL)
{
/* emulate subopcode 1 of opcodei */
}
dlseiif (subopc == OPCiSUBOPN)
{
/* emulate subopcode N of opcodei */
}
}
é.l-se if (opcode == OPCN)
{
/* emulate the opcode N */
}
ese
{
/¥ Wrong opcode. Illegal instruction. */
}
Mean number of condition tests for decoding an instruction: N/2.
Figure 13. Decoding using conditional (if) statements.

In ahigh level language an indirect jumpsis not direct to implement. The first approach isto usea
switch statement, with a case for each of the possible opcode values and hope that the compiler is
intelligent enough to trandate it into an indirect jump using ajump table, rather than an array of ifs.



switch (opcode)

case OPCL:
/* emulate opcode 1 */
break;

case OPC2:
/* emulate opcode 2 */

if (subopc == OPC2SUBOPC1)
{
}

break;

case OPC3:
/* emulate opcode 3 */
break;

case OPCN:
/* emulate opcode N */
break;

default:
/* Wrong opcode. lllega instruction. */
break;

}

The decoding is performed (good compilers) through an access to a jump table. Just one
memory access (tests) needed.

Figure 14. Decoding using swith-case statement.

If we know the compiler is not making its work correctly the next step would be to implement the jump
table at hand as an array or table of functions. The table isindexed by the opcode value and each entry
has a pointer to afunction. The pointer isretrieved and it is performed afunction call.

Y et another option could be to use labels and the goto directive in those language which permit them
(for example some C implementations like GNU C).

The easier implementation is to use a switch-case statement, but perhapsit is the slower due to problems
with the code generated by the compiler. The function table could be faster but it could suffer from
procedure call overhead. The label implementation could hurt the optimizations performed by the
compiler (the program is jumping to any place). Those problems and advantages should be taken into
account when implementing the process of decoding.

Many times, athough the decoding could be implemented in different steps, for exampleif thereisan
opcode field and a function opcode, it is better to perform the decoding in asingle step. The CPU
emulation must be as fast as possible so we could trade memory space for time and use large function
tables or switch statements and a lot of functions for each possible opcode. For example in a CPU with
16 bit opcodes, for example de Motorola 68K, the best option could be to use the full 16 bit opcode as the
function table index. That would mean 64K table entries and some hundred or thousand of functions.

But the trade-off usesto be good. It must be taken into account that there could be problems with cache
usage with those large tables and so many functions.

About decoding and dispatching the instructions we will talk more because it is one of the pointsit is

spent alot of the effort to optimize CPU emulators. Threaded code/interpreters are used to reduce the
overhead of the decoding.
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Instruction emulation.

That uses to be more or less a mechanical phase in the implementation of the emulator, most of the
instructions are quite simple and common among all the CPUs. For example you aways will find an
addition instruction, an and instruction or jump instruction for example. Most of times those instructions
are easy to implement. This happens morein RISC CPUs because of the RISC design philosophy (ssmple
instructions). In the case of CISC CPUs there can be more complicated instructions which could be a bit
hard to implement, for example.

Basically thetask hereit isto take the ISA (Instruction Set Architecture) of the CPU, which can be
found most of timesin the official web page of the CPU manufacturer, and reproduce in the language you
are using the algorithm (most ISA manuals include the full algorithmic description of the instruction) or
the function of the instruction to be emulated.

ADD M

[A] O [A] +[[HL]]
Addto A

Figure 15. i8080 ADD M instruction description (i8080 datashest).

In the Appendix A, the Space Invaders tutoria, it can be found the explanation of the implementation of
some basic types of instructions. Go there for see some examples on thistopic. The basic structure of the
functionality of aninstruction is get input data, operate with that data, store the result somewhere, update
the PC and the timing. Some instructions implement al of those parts some just some. For example the
more basic instruction, anop (no operation), just increases the PC and updates the timing. Some
instructions, as we said in the previous section, will have to perform some additional decoding, most of
time related with where to get the operands from or put the result to, so it is also implemented here.

instruction(operands)

{

get operands

perform cal culations

storeresult

update time

return to the main loop/fetch next opcode
}

Figure 16. Instruction basic algorithm.

The instructions that perform memory access must contain the code to handle the memory access, for
example they will have to scan the memory map for specia address. It must aso had the code for
performing data conversions, for example big endian data to little endian. In anext section we will talk
about the emulation of the memory in the CPU core.

Although the implementation of the instructions is an easy task it has to be taken into account that we
want the maximum performance from the CPU emulator. So we will be aware to implement them the in
the more efficient possible way that the language we are using is capable. Something that would be
interesting to taken into care is what instructions are the more commonly executed in our CPU and try to
spend the most time optimizing them. For example it would not make the effort to optimize avery
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complex instructions which is almost never used in the programs we are going to execute. It happens
many times that the real set of instructions which are used by the programs for a CPU is quite smaller
than the full 1SA.

It is also important to pay attention to all the side effects of an instruction, which registers modifies but
the given operands (implied operands), if it changes the flags or if it raises some exception (if we are
emulating exceptions). That also impliesto know if the specifications we are using are accurate enough
or they have errors. Many CPUs have undocumented features (instructions) which can and are being used
by the programmer. So we must know about them and if the programs we want to run use them we have
to implement them correctly. It isalso important to know the real amount of cyclesit takes the
instruction to execute if we want to implement accurate timing. In some case (for example multiplication
or division instructions) this can be hard to determine though, and we will have to think if the accuracy
level needs the exact timing.

About the complex instructions that can be found in some CPUs as noted before if it is an unused
instruction the best is just to implement it so it just works and do not care any more. But some of those
instructions can be very used, in this case perhaps it will pay the effort to find an efficient
implementation, for example on Intel CPUs (8080,8085, x86) we can found string instructions which are
commonly used. It can make a big difference an implementation which just copies the standalone
instruction (the version for only one iteration) and we just put ajump to the start of the instruction than an
implementation that tries to optimize to the maximum the loop.

There are some functionality or instructions which are hard to implement in a high level language, or
even on some CPUSs, because they work in an higher level. Flags are a good example and performance
lost one. We will talk about them in the next section. The solution could be to use assembly rather than
the high level language for thisinstruction. Other hard to solve problems would be if the target has a
bigger word size (emulate a 64-bit CPU in a 32-bit CPU) or if the floating point specifications differ.

Not al the CPUs are fully |EEE 754 compliant, some implement the calculations in different data sizes
(Intel 80bits, most RISC in either 32 and 64 bits), some use a different sizeinternally for some operations
(Power and PowerPC mul/div and sub/add instructions). An accurate emulation of the FP instruction can
be redlly hard, and not a good ideg, if the two CPUs (or the source CPU and the language used) are too
different. We will not go into FP emulation in this document.

Another example, which is becoming more interesting lately, is the vector instructions, the same
operations applied to multiple dataor SIMD (Intel). Not only new Pl and P4 x86 based CPUs support
thiskind of instructions but also the PS2 MIPS has two additional vectorial coprocessors so it is
something to begin to take into account (of course you could also want to emulate some of the old
vectorial supercomputers just for fun). Thisisagood example of a harder to implement type of
instruction if the language or the CPU does not have vectorial capabilities and also a good example of the
great increase of performanceif it is efficiently implemented.

If we want to emulate a CPU which supports protected mode, and thus the execution of afull OS, we
will have to deal some times with complex operations which can be related with MMU management and
other complex stuff. Those can be perhaps the hardest to implement. In fact is something rare unless you
want to emulate something like a 486 or a Pentium based computer. The consoles that have modern
CPUs use to do not OSes and those complex instructions but there could be exceptions. | will not talk
about this topic.
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case 0x8D. [/* ADC L */
AddC(tC. HL. b. 1)
Updat eTi nme(4)
br eak;

case OxFC. /* OCMppqq */
if ((tC flagZPS & FlagS) != 0)

Cal |
Updat eTi me(17)

el se

tC. PC += 2;
Updat eTi ne(11)
}

br eak;

case Ox2F. [/* CMA */
tC.AF.b.h = ~tC AF. b. h;
Updat eTi nme(4)
br eak;

case 0OxB6: /* ORA (HL) */
tenp8 = readByte(tC HL.w);
O a(tenp8)

Updat eTi me(7)
br eak;

Figure 17. Examplesof the implementation of somei8080 instructions.

Flags.

Aswe said in the previous section flagsis one of the harder tasks to emulate using a high level language
(or aCPU that does not have those flags). Flags or condition codes are single bit variables or registers
which are set after some arithmetic or logic instructions. They were very common in old 8-bit and 16-bit
CPUs and they are till in use in many modern CPUs (x86, Power). The most commons are Carry flag
which meansif the last addition has produced a carry, Zero flag if the result is zero, Sign flag with the
sign of the result and some other (x86 has Overflow and Parity). Some CPUs use other approaches like
setting complex condition codes (combinations of the already mentioned) like Little Than, Greater Than,
and so (Power/PowerPC). Some even raise exceptions rather than set flags (MIPS).

Implementing the calculation of aflag uses to mean to perform additional calculations to the real
calculation performed by the instruction. And most of time a single instruction changes more than one
flag, so the number of calculationsincreases. For example an 8080 addition set all the 8080 flags (Carry,
Sign, Zero, Parity and Auxiliary Carry). For example, in adirect sSlow implementation, it could mean up
to 5ifs (and the jumps, which are really apain to al the modern CPUs). The parity is hard to calculate
using al algorithm (it is better to use tables) the Carry and Auxiliary Carry means to reproduce two times
the addition. All those task are easily performed by the ALU (Arithmetic-Logic Unit) hardware of the
CPU in parallel with the addition but are hard to implement by software.
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One solution to the problem would be to use assembly if the way our target CPU implements flagsis
similar to the source CPU. For example x86 is based in the 8080 family and the flags are almost
identical. In most of cases a 8080 addition can be directly trandlated to a x86 addition (of the same data
size) and a‘lahf’ instruction which retrieves the flags.

Flag calculation in arithmetic and logic instructions, which are with memory instructions (those also
have their own problems) the more common ones, can suppose up to a 30% of the time emulating the
CPU. That impliesthat it isamain target for optimization.

Rather than using assembler a good approach with many flagsis to change instructions or CPU cycles
for memory space. Most of the flags can be calculated in parallel, or most exactly precalculated, using
tables. Usually the tables are just for 8-hit results because of the amount of memory needed for just a 16-
bit result, but the more problematic CPUs are also 8-bit so it is not a problem. Zero, Sign and Parity flag
can be calculated easily thisway. Inany caseisagood ideato search for implementations which does
not use conditional or ifs because in most languages that it is trandated to jJumps and jumps are very
expensive on modern CPUSs.

Y ou can found more examplesin the Sl tutorial in Appendix A.

/* Build the table calculate Z, P and S flags. */
for (i =0; i < 256; i++)

ZPSTabl e[i] = ((i == 0)?FlagZ: 0) | ((i & 0x80)?Fl agS: 0) |

(hasEvenParity((U NT8) i) ?Fl agP: 0);
}

Creation of the precalculated flags table.
/* Calculate 8-bit add carry */
#define Cal cFl agC(val uel, value2) tC flagC =
((((U NT16) valuel + (U NT16) value2) & 0x100)°?1:0);
Calculation of the 8-bit add carry.

/* Calculate Z, P and S flags */
#define Cal cFl agZPS(val ue) tC. flagZPS = ZPSTabl e[ val ue];

Calculation of the zero, parity and sign flags.

Figure 18. Flag caculation in the i8080 emulator.

Memory.

The emulation of the access to memory can in some cases, like the calculation of the flags, suppose a
significant amount of the time wasted in emulating the CPU. It is because of the combination of the same
two conditions: the memory instructions are very common (memory accessis basic for any CPU but even
more for old CPUs with few registers) and the complex way some memory access must be trandated.

The main problem with the emulation of the memory is how to decide what kind of memory or deviceis
mapped behind a given address. It could be a ROM or norma memory (RAM) or a memory mapped 1O
register. Every time amemory accessis performed, either aread or awrite, the CPU emulator must
checks what kind of accessis.

If our emulated machine would be using just plain read-write memory, with no 10O mapped registersin
its address space, and without special regions of memory we could just emulate the memory access with
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an byte array of the size of the memory. Every accessto memory will be then implemented like an access
to a position in this memory buffer.

No special memory features: Direct access to a buffer.

Mmemory access
MEMORY
> BUFFER

Figure 19. Direct access to the memory buffer.

However that does not use to happen. We will have alist of regions of memory which are specia, each
region will have something associated, either afunction, a pointer to a buffer or something else. The
CPU emulator will have to scan thislist for the given address and perform the action associated with the
proper region.

Special memory features (10, banks ...). Accessthroug alist of region handlers.

memory access

!

REGION 10
LIST p  REGISTERS

MEMORY BUFFER

Figure 20. Accessthrough alist of memory regions.

Usually there are just two separate lists for read access and write access. |n some cases is needed another
list for fetch (read code or write code) access, a fetch accessis any access which is performed relative to
the PC. Each emulated instruction which accesses the memory will have to scan one or more of those
lists (if it performs both aread and awrite for exampl€e). That isthe reason because it is a so wasteful
task, because if thelist of regionsislarge it can consume many cycles. By the other way we are adding
code which many times is unnecessary because almost all access use to go the main memory buffer.

In CPUs which have separate a separate address space for 1O we will have two more lists, read 10 and
write 1O, but in this case, asthe 10 accessis aready slow in computers, the performance lost isless. And
the 1O operations are not so common like normal read/writes to memory.

Old computers use to have a plain memory system but as the machine become more complex the
memory system become more complex too. In computers with small address spaces (16-bit address space
in old 8-hit CPUs) sometimes they need to access more memory than they can map directly in their
address space (they use ROMs like the main source of data and programs). The simpler mechanism to
solve this problem is to have regions of the address space which can map different pages of the physical
memory, those regions are called banks, and the system banking or bankswitching. A direct
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implementation of thiswould be to have an array of pointers for each bank which will contain the address
for the mapped page.

MEMORY memory acccess
MEMORY PAGES
TO MAP
ADDRESS
SPACE TABLE OF
PAGES
MAPPED IN
THE BANKS
BANK i
PAGES BUFFER
Figure 21. Memory banks and emulation.

In modern CPUs the memory management system become even more complex with additional
capabilities to support virtual address, protection and other features needed for OSes. Those CPUs
implement MMUs (Memory Management Units) to manage the access to memory and mapped 1O
registers. The emulation of such hardware implies agreat loss in performance. One good solution could
be try to use the own MMU of the target CPU or OS memory subsystem to handle the access to memory.

Some CPUs limit multibyte access to aligned address and they raise exceptions if aunaligned access is
performed. This must be also checked in the emulation. Just another problem with memory isthe
endianness. If the emulated system and the target system work in different endian modesiit is needed
some kind of conversion of the multibyte data. Usually the conversion can be performed each time aread
or awriteis performed or, if possible, the best at start-up when the data is loaded into the emulator.

We will talk further about memory emulation in another chapter.

Interrupts.

Interrupts are basically mechanism for interrupting the task that is actually performing the CPU (the
code is executing) because something has happened and another part of the code must be executed to
handle this event. There are two kind of interrupts, hardware interrupts (usually also called just interrupts
or IRQs) or CPU exceptions. Hardware interrupts are generated by hardware outside the CPU and arrive
to CPU through specia PINs of the control bus. CPU exceptions happen when the CPU detects a
problem in the execution of the instruction.

The CPU exceptions are full responsibility of the CPU emulator which have to implement them. Such
exceptions can be for example divide by zero exception, when a division instruction is executed with a
zero asdivisor, or illegal opcode exception when it is fetched data which can be correctly decoded.
Another important exception in modern CPUs is the memory fault exception which is produced by the
MMU.

The exceptions are implemented adding additional testing to the implementation of some, or al, of the
emulated instructions. The emulation of some exceptions can reduce alot the performance of the
emulation. A good example of such exceptions is the memory exception which must check any memory
access (we aready told that MMU emulation is a hard task). Another good one could be the check for
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misaligned access. Most of time the exception check will have a negative result but if the programs we
will execute need of them we need to implement them. In some cases it could make sense to do not
implement such testing if they are rarely or never used. Exceptions use to be used for detect problems but
if we know that the program already works correctly perhaps the checks are unnecessary.

The emulation of the hardware interruptsis not amain task of the CPU. The different hardware devices
are the responsible of signalling the interrupts, and it will be the emulation of those devices which will
take care of when and how to signal the interrupts correctly. The CPU just must receive and answer
correctly to the interrupts. It isthe CPU core thus which has to implement this response and provide a
mechanism that permits the externa devices (which their emulation is also implemented externally to the
CPU core) to send signals to the CPU core.

For these task there will be special functions will be tell the CPU core that an interrupt has been
signalled. In some cases those functions will return if the signal has been received or denied
(acknowledge). The functions can either be signalled when the CPU emulation is stopped (remember the
main loop, we emulate the different parts sequentially) or when the CPU isin execution (signalled by the
memory handlers). The second option israre though. The signal must be stored in the CPU context (or
status) for the next time the CPU is emulated. When the CPU emulation starts again the pending
interrupts information is processed and the opportune actions are taken.

The CPU could implement different mechanism for deciding if asignalled interrupt must be served or
not and to decide between different interrupts (for example if anew interrupt is received while another is
being served). Thisisimplemented by interrupt levels and interrupts enabling/disabling flags. Those
must be emulated in the code at the start of the execution of the CPU emulation.

An interrupt is served stopping the execution of the code at the actual PC, saving the PC and sometimes
some of the CPU status in memory (in the stack or in special registers), and jumping to a new address
which must have special code for handling the interrupt (interrupt or exception handler). After the
interrupt handler finishes its execution the CPU returns to the previous address and restores the CPU
state. Exceptions work in the same way but it is the CPU which produces the interrupt, and the returning
instruction can be the same it has produced the exception while ainterrupts just happens after the full
instruction has been executed.

The way of obtaining the address to jump to differs from one CPU to another. Modern CPUs use vector
driven interrupts and exceptions, an array of jump address somewhere the CPUs know and indexed.
Others use fixed address and some receive the address from the signalling device (one the Z80 interrupts
modes).

We will talk further about interrupts (mainly in the device side) in other chapters.

Core interface.

In most emulation projects the CPU emulator core isimplemented to be a separated part of the emulator
which just gives a standard interface to the main emulator to useit. We will see how the CPU core
interface looks like. The main reasons for such separation between the emulation of the CPU and the rest
of the hardware is not only by the means of program modularity but because many CPU cores are used by
more than one emulator. In fact it happens that many (or amost al) machine emulators are implemented
using aready implemented, working public CPU emulators.

Theinterface for the different CPUs it is aso something that can be more standard that the interfaces for
other parts of the computer. For example an interface for sound and graphic hardware is harder to
standardise (but it is possible, M.A.M.E. — Multi Arcade Machine Emulator - just standardised
everything).

Basically there are two partsin the interface of a CPU emulator (or by the way in the interface of
anything), the data part and the functions part (something like Object Oriented but without any need of
being O0). The data part isthe CPU context which contains the information, as we said, about the CPU
status and state of execution. This data must be read and written (or some parts of the datain any case).
Thereis aso good ideato implement an easy way for switching between different context to emulate
multiCPU (of the same type) machines.
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The functions are the way we can put to work the CPU emulator. The main functions we need are:
Init(), Reset(), Execute(), GetContext(), ResetContext(), InterruptSignal () and perhaps Stop().

The Init() functions would initiaize the internal data structures of the CPU core. For exampleif the
jump table for the instructions was compressed it should be decompressed or if the code to be executed
must be prearranged in someway. It isagood time to create tables for handling flag calculations and the
implementation of some instructions (if they are not statically calculated). Thisfunction isonly called
once at the start of the emulation.

The Reset() function must reproduce the effect of areset signal sent to the CPU. Basicaly it initidizates
the CPU so it could begin to execute code. The usual task are to put the registers and CPU flagsto
default values and to put in the PC and the SP (the Stack Pointer) the start-up values from where to start
to execute code. This function must be called before the emulation is started or any time a hardware reset
must be emulated.

The GetContext() and SetContext() are used to set and retrieve the CPU status. The context includes al
the CPU status and other information which the CPU core needs to perform the emulation. At the start-up
process the emulator needs to create an empty context and add the data for the emulation of the memory.
That is basically implemented with a main memory buffer pointer which is the default for memory access,
and amemory map or ligts of regions for those address which a need special implementation. The CPU
interface must provide prototypes for the memory handler functionsif the memory maps permit this
option.

The GetContext() is used either for debugging purpose or for performing context switching in multi
CPU machines. The SetContext() function can be called any time something (normally related with the
memory) must change in the CPU. For example in a banked system if there is a change in the page
mapped in abank. Sometimes but just two functions could be interesting different functions for
retrieving or setting parts of the information (the registers, the status, the memory map, the bank setting)
and not the whole context.

The Execute() function is the one which actually starts the emulation of the CPU. Before being able of
calling to Execute() the CPU core must have been initializated, the CPU context created and the CPU
reseted. The Execute() receives at least one parameter, the number of cycles to execute before stopping
the emulation. When the CPU emulators has executed (more or less) that number of cycles the function
returns if the emulation was successfully. For exampleif anillegal opcode was found the emulation
should stop and the Execute() function return an illegal opcode error.

The InterruptSignal () is used to signal hardware interrupts (IRQs) to the emulator core. If the interrupt
system that the emulated CPU uses needs extra parameters (for example the interrupt number) for
performing a signal, those parameters are passed through this function. It the CPU must return something
to the device (for exampleif the interrupt was accepted) then this function must return that information.

The Stop() function could be an option so that the CPU emulator could be stopped whileit is running.
Since we are mainly working with sequential (monothreaded) emulators this only can happen when it is
being executed a memory or 1O function handler. May be is not a very useful function but in some cases
could be needed.

Those are the basic functions we could found or implement for a standard CPU core but more could be
added. For example functions for retrieving the only specia parts of the CPU context. One which could
be useful could be retrieve the number of executed cycles. The number passed to the Execute() function
is hard to be the real number of executed cycles because the instruction cycle granularity can make hard
to execute that exact number of cycles. And some instructions take different number of cyclesto execute
(old CISC CPUs). To perform an accurate timing emulation after the Execute() function the emulator
should get the real number of executed cycles and add to the global count and so adjust the next cycle
dlice for the CPU core.
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The CPU emulator could also add facilities for debugging, for example a step by step execution, or
breakpoints, register reads and writes. There could be functions to handle al those functionalities.

void i8080Init();

voi d i 8080Reset () ;

voi d i 8080Sendl nt Si gnal ();

voi d i 8080Set I nt Addr ess( Ul NT16 address);
voi d i 8080SendNM Si gnal () ;

voi d i 8080Set NM Addr ess( Ul NT16 address);
voi d i 8080Set Cont ext ( pl 8080CONTEXT cont ext);
voi d i 8080Cet Cont ext ( pl 8080CONTEXT cont ext);
U NT32 i 8080Exec( Ul NT32 cycl esExec);

Figure 22. 18080 emulator interface.

Appendix A: Space Invaders/i8080 tutorial.

In the Appendix A thereis atutorial which explains step by step the implementation of an emulator for
the old * 76 Space Invaders arcade machine. This computer uses a Intel 8080A CPU (or aclone) and a
basic graphic and sound hardware. Thetutoria is centred in the implementation of ai8080in C. Inthe
tutoria it can be found alarger explanation of the process of implementation of abasic CPU interpreter
emulator.

2. Assembly emulators.

Emulate another CPU using a high level language is a very expensive task. Some times happen that the
emulated machineis too powerful to be emulated at the same speed in our target machine using a high
level language. Then an assembly CPU core could be a good solution.

Assembly CPU emulators can improve greatly the performance of the emulator. There are two reason
for thisimprovement: the first reason is because awell trained assembly programmer can exploit the
capabilities of our target CPU I1SA (the instruction set) better than a compiler (now there are good
compilers, but not so good). The second reason is because any high level language hides many of the
special features of the ISA (for example flags). Some of these features can be very useful in the
emulation of another CPU. As everyone could see the thing that better emulates how a CPU work is
another CPU.

A couple of examples which show the problem that the high level languages have while emulating CPUs
are the registers and the flags. In an assembler core the programmer can assign al or some of the
emulated registersto real registersin the target CPU. This can improve alot the emulator becauseit is
reduced the access to memory for loading the emulated registers. Some languages (C) can assign
registers to variables but this also uses to be against the compiler optimizer and the generated code could
be worst.

The problem with calculation of the flags is even more impressive. The high level language are
independent of theused CPU, but flags (or condition codes) is one of the more depending features that
canbeinaCPU. Therefore flags are aways hidden by the language. The problem isthat in a CPU
emulator we need them. If we want to emulate flags and our target CPU has flags which are similar to the
emulated flags we could use them. We said in a previous section how expensive the flag cal culation was.
Using the own target CPU flags to emulate the flags of the emulated CPU reduces a lot the number of
instructions needed, sometimes even to one or zero instructions (zero if we use the status word to emulate
the emulated status word, one if we have to store them).



Portability vs performance.

Although an assembly core seems to be very good there are some limitations we have to know. An
assembly core is not portable, it can be only used in the computer and the OS for which it was
programmed or perhaps, ignoring the differences between similar computers and OSes, it can only be
used in those computer/OSes which use or have the same CPU.

An emulator implemented in a high level language can be more easily ported to any
computer/OS/system which has a compiler for the language. The emulator has, of course, to be
implemented with portability in mind. It can not use features which are not standard in the different
versions of the compiler (for example with C it should be used the ANSI C standard). It must be also take
into account the possible differences between the different systems where it can be used. For examplein
C aninteger (int) hasthe size in bits of the CPU word size. It could be than one of our target machines
would be a 32-bit machine and the other a 64-bit machine, if we use directly ‘int’ we could have problems
because the real size of the data would be different in the two machines. If the CPU emulated was a 64
bit CPU and we are implementing its registers asint variables, in the 64-bit target machine we will not
have any problems. But when we would try to run the CPU emulator in the 32-bit machine it will not
work.

This means that an emulator programmed in a high level language CAN be portable to any system but it
must me implemented correctly. This special implementation can reduce even more the final
performance of the emulator too. On the other hand an assembler core is not directly portable for any
system, but it could be portable to any system with the same CPU. For example ax86 core could runin a
Windows system, a Linux system or a BEOS system.

The decision to implement or not an emulator in assembly is related with our objectives and our
resources. If the target machine is not enough powerful for emulating the CPU at 100% the speed with
an emulator programmed in C (for example) but we know that with an assembler core it could work, that
will be our choice. If we want that our emulator could be executed in different systems which use
different CPUs and the performance was not a big issue, an emulator implemented using a high level
language would be our choice.

An emulator programmed in a high level language is easier to implement, it needs less time for writing
and testing it, and less knowledge from the programmer. On the other hand an assembly core needs a
good knowledge about the target machine (and of course about the emulated CPU, but this also happens
with the high level language emulator), the testing is more difficult and requires more time. An assembly
emulator is more expensive in terms of the work, a high level language code emulator is more expensive
in terms of the final performance (and thus the requirements of the target machine).

In fact, with the home PCs becoming more and more powerful every day performance is not an issue
any more. Most of the old systems we want to emulate (8 bit and 16 bit consoles and arcade machines)
can be easily emulated in any modem PC (Pentium 111 500 MHz for example) with any need of put
specia effort in obtaining a good performance. Assembler emulators, and other techniques used to
enhance the performance of the CPU emulator, are useful, however, for implementing emulators for the
modern 32 bit computers and for porting to emulators to more limited platforms like handhelds.

Another question is if you want to implement a‘good’ emulator or not then perhaps you will prefer to
implement it using assembler. It isnot the same an emulator which can run the old Pacman in an i486
than an emulator that needs a P-111 500 for running it. It isalso important to note that most of the
emulators are not going to be ported to other systems and therefore the portability is not an important
issue. Try to obtain agood performance is always an issue for a good programmer.

A way to avoid the problem of the portability of the assembly CPU emulatorsis to try to implement and
use automatic tools for generate the emulator. Tools for automatic generation of dissassemblers and
assemblers aready exist [1]. There are aso generic binary trandators which use description files for the
CPUs[2]. A tool that could generate the full, or most of it, code for a CPU emulator from a description
would not be harder to implement than the other two tools. Perhaps the emulator will not be as optimized
as a hand coded emulator but it would permit an easy way of implementing assembler CPU emulators. In
another iteration a programmer could patch and improve the generated code.
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Such atool should have two parts. a front-end and a backend. The front-end would deal with the
emulated CPU and the backend with the target CPU. Description files for both the emulated (source) and
the target CPU would be needed. These descriptions could be reused later for other emulated or target
CPUs. Of course we only want to implement a CPU emulator for a specific target machine building such
atool would be useless.

Similarities between CPUs.

One of the reasons because awell written assembler CPU emulator can largely out perform an emulator
implemented in any high level language (C could be the reference for the fastest and most low level high
level language) are the milarities between the two CPUs involved.

If the two CPUs share alot their characteristics the assembler core will be even faster. If there arealot
of different perhaps the improvement will be minimum. We can see this with two examples.

All the Intel family of processor isvery similar (the fact is that the x86 family has kept binary
compatibility for generations). For example all the i8080, i8085 and Z80 instructions are directly
trandated to the x86 instruction set. The flags are ailmost the same and can be directly emulated with the
x86 flags. Even the Z80 registers can be mapped to x86 registers so many instructions can be
implemented without accessing the memory. This makes that a Z80 emulator written in x86 assembler
could be more than 10 times faster than the best Z80 emulator written in C [3] could.

The Motorola 68K family is also very similar to the x86 family (although it has more registers) and it is
also agood target for ax86 assembler emulator. Both the Z80 and the M68000 are the more used CPUs
in the old consoles and arcade machines so they are chances to reuse the cores.

The opposite example could be to implement an emulator for a RISC CPU, for example Alpha
(Compag/Digital) or MIPS (SGI). Theinstruction sets of these CPUs are enough simple so a high level
language could emulate them without any problem. It happens both with these CPUs as the emulated
CPU or thetarget CPU. If it isbeing emulated, the CPU has not features which are hard to implement in
ahard level language (like flags). If it isthe target CPU then the compiler will be aready using al the
features of the CPU for the emulation. A good assembler programmer could implement a better CPU
core but the gain is less than in the previous example.

The difference between the two CPUs affects to the performance of the emulator in both cases. If the
emulated machine has a feature that is hard to implement in the target CPU it will be hard to implement
both in assembler and in ahigh level language. An assembler emulator just adds the possibility to use
CPU features which are hidden by the compiler but which are useful for implementing an emulator. If
such features does not exist it can not be used. MIPS for example does not implement flags or condition
codes so the emulation of the flags will be as hard in assembler asin C.

Register usage.

Another of the advantages of implementing an emulator using assembly language is that you can control
how the target CPU registers are used. A good compiler uses to anayze the code and generate a good
register alocation (the assignment between variables and physical registers) for the most common
applications. The problem isthat a CPU emulator is not acommon application. Most of the time the
CPU emulator is jumping all around the code (while emulating each instruction) and the compiler would
be very good to perform a good register allocation.

The compiler does not know either what is doing the code. However we aready have this knowledge
and we can use it to improve the emulation. We know that the variables which are more likely to be used
arethe emulated. That means that a good approach would be to assign physical registers to emulated
registers. Or if the number of registersin the target CPU is limited, the most frequently used registers.
Only with this optimization the performance of the emulation is largely increased because the access to
memory is reduced and the emulation of the instructions simplified.
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There are some high level languages that have directives to assign variables to registers (for example C).
These directives can be used but they use to go against the compiler optimizer and the generated code
could be worst.

Another specific benefit that can be obtained from using directly the registersis that some CPUs permit
that aregister could be used either in different sizes. For example x86 permit to access the register either
as 8-bit, 16-bit and 32-bit registers. This can be useful for emulating other CPUs which have the same
capability (280, M68000) or CPUs which have registers of a smaller data size (for example 8-bit
registers).

Optimizations.

Most of the optimizations are related, as we have aready said, with instructions which are similar in
both the emulated and the target CPU but can not be directly used with ahigh level language. That
includes flag and condition code calculations, data conversions (big endian to little endian, sign
extensions and zero extensions, etc) and complex or special instructions.

We will see now some examples.

We already said that one of the most expensive tasks that a CPU emulator can perform isthe flag (or
condition code) calculation. There are two different reasons for this cost: the abstraction level of ahigh
level language which hides the CPU flags, and some CPUs which does not implement flags or its
implementation is very different from the emulated flags. If the reason was the first one an assembly core
will be useful because we will be able to use the CPU flags. For the second reason an assembly
implementation perhaps could be faster but the profit will be minimal.

Two examples of how the flag calculation can be improved are Z80 and 68K emulation in x86 CPUs.
All three CPUs share more or less the same flags: zero flag, carry flag, parity flag, sign flag, overflow flag
and similar. Most of these flags (for example carry flag) are hard to calculate using a high level language
but as they work in avery similar way in all the CPUs with afew assembly instructions can be emulated.
Even more, the same x86 status word (which carries the flags) can be used for storing, retrieve and restore
the emulated flags. We will see even more about how helpful this feature isin the binary trandation
chapter.

Thefirst exampleis the trandation of a 280 add instruction to x86. We could see the C and the

assembly implementation. It can be easily seen why the assembly versionisalot of faster. The operation
isonly performed once and it heeds only a few instructions to get the correct flags.
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780 ADD flag calculation in C.

/* Calculate 8-bit add carry */
#define CalcFlagC(valuel, vaue2) tC.flagC =
((((UINT16) valuel + (UINT16) value2) & 0x100)?1:0);

/* Calculate 4-bit add carry */
#define CalcFlagAc(valuel, value2) tC.flagAc =
((((valuel & Ox0Of) + (value2 & 0x0f)) & 0x10)?1:0);

/* Cdculate Z, Pand Sflags */
#define Cal cFlagzPS(value) tC.flagZPS = ZPSTable]valug];

/* Macro for Add instructions */

#define Add(value) { \
CalcHagC(tC.AF.b.h, value) \
CalcFlagAc(tC.AF.b.h, value) \
tC.AF.b.h=tC AF.bh+vaue \
CalcFlagZPS(tC.AF.b.h) \

}

780 ADD flag calculation in x86 asm (Neil Bradley’s MZ80)

sahf

add a,ch

lahf

seto

and ah, Ofbh ; Knock out parity/overflow
sl d,2

or ah, dl

and ah, Ofdh; No N!

Figure 23. Z80 to x86 flag calculation. C and ASM versions.

The second example is the same but with a 68K subx instruction.

shb ebx, edx

mov dl, ah /* keep temporary copy of old flagsin DL */
lahf\n

setc byte [X]

seto d

jnz short .z [* if non-zero, cleared */

and dl, 0x40  /* otherwise, unchanged */

and ah, Oxbf /* (get rid of new unwanted Z) */

or ah,d /* OR in the old, unchanged Z flag */

Z

Figure 24. m68000 SUBX instruction in x86 (Bart’s Gen68K).

Another example in the x86 architecture of an assembly instruction which can be used for improving the
emulator performanceis ‘bswap’ (for 32 bits) and ‘xcgh’ (for 16 bits). We already introduced the
problem of the byte ordering in memory (little endian and big endian) and the cost it has the data format
conversion. Those two instructions could help to perform this conversion. The instruction BSWAP
exchanges the high order 16 bits with the low order 16 bits of the register. At the same time the two bytes

48



in each 16-bhit subword are swapped. The XCHG instruction can be used to swap the low and high order
bytes of a 16-bit register. So they can be used to perform afast data format conversion for 32-bit and 16-
bit data.

A dataformat conversion using common operations (and, or, shifts) isalot of more expensive that use
those instructions. In other architectures other specific instructions can be used to speed up the
conversion. Thisinstructions show how useful can be to have access to some of the specific instructions
of the CPU which are hidden by the high level language abstractions.

Asan example of a‘complex’ and non-standard instruction we will see the instructions used in the Z80
and x86 for BCD adjust. BCD is bhinary coded decimal, a decimal is coded in hexadecimal format and
adjustment instructions are used to avoid forbidden digits (*a to ‘f’). Thiskind of data was used some
decades ago for performing decimal calculations. Implementing such instruction is expensive using a
high level language or requieres alarge precalculated table. But a single x86 instruction can do the entire
job.

Thisisjust asimple example of the implementation of complex instructions using either a high level
language or assembly can be improved if the source and target CPU have instructions similar.

Another good point in an assembly emulator isthat it is easier to control the flow of execution than in
high level language where most of the control is performed by the compiler. In most architectures
(mainly x86) function calls are expensive and must be avoided. In assembly the developer has more
freedom to code the internal flow of execution of the emulator.

One of the best enhancements which can be done to an interpreter emulator is to speed up the fetch-
decode process. We will see other ways to increase the performance of fetch-decode loops but in this
case we will talk about inlining the fetch-decode at the end of each instruction. This could me
implemented in a high level language but it needs special features (like labels and goto instructions)
which can not be found in all the compilers.

An assembly program and therefore an assembly emulator gives more freedom to the programmer to
write its code in the way it could improve the performance. We have already seen alot of example. The
fetch-decode loop we told about in the first sections of this chapter is agood target for thisflexibility. An
assembly coded fetch-decode loop eases the task of implementation and helps to improve the
performance. You don’t have to trust in the compiler implementation of switch statements. Anditisa
clearer implementation than function tables or label based jump. In assembler isjust aload from memory
(the table with the address for the emulated instructions) and an indirect jump.

But thisisjust the basic way it can be emulated. A trained assembly programmer can find many others
which can be more suited to the specific emulator. In [25] “emu-mech” we can find amost a dozen
different forms of implementing it. We will talk about some of those forms (for example threaded
interpreters in the next section).

mov  edi, [cyclesRemaining]

xor edx, edx

sub  edi, byte 15

is near noMoreExec

mov  dl, byte[esi] ; Get our next instruction
inc ed ; Increment PC

jmp  dword [z80regul ar+edx* 4]
(from Neil Bradley's MZ80 280 emulator.)

Figure 25. Timing update and instruction decode inlined at the end instruction
implemention.
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One the most useful implementationsis to inline the fetch-decode at the end of the emulated instruction.
This avoids the jJump back to the main loop. So now an emulated instruction will have its own
implementation, and after it has been executed it will read the next opcode, look at the decode table and
jump to the code emulating the next instruction. The fetch and decode process can be reduced in number
of instructions if some assumptions are made. For example size of each instruction emulation could be
fixed to avoid reads from atable.

Code emitters vs assembly macros.

Write an emulator in assembler is a hard task, it is easy to have errors and they use to be hard to debug.
Another problem is that most of the code is replicated alot of times and thereforeis hard to track an error
and change al the places where this codeis replicated. It happens because most of the instructions share
alot of the code.

For improving the performance of the emulator, the code for atype of instruction is replicated to avoid
any decoding in the instruction code. For example we could use just asingle routine for all the move
register to register instructions, but such function will need to decode each time the source and target
register. If wewant to avoid this decoding we could write aversion for each combination of registers.
The full decoding is then performed in the fetch-decode loop as we saw in a previous section (using a
jump table for example). All those functions share alot of code but just the destination and source
register.

MovRegtoReg(rd, rs)

context.rd = context.rs;

}

MovRAtORB:
mov ra, rb

Figure 26. A single function for each instruction type or multiple functions for each
instruction type (example mov rd, rs).

The way this replication of code and functions can be managed is using macros or code emitters. Most
assemblers implement macros (in C macros are implemented with the directive #define). A macroisjust
an identifier that, when it isfound in the code, it is replaced by the associated value (macro definition),
piece of code or whatever in afirst pass of the assembly process. A macro aso can be used with
parameters. We can write amacro for each type of instruction we will have, and then use the macro, with
some parameters to code the different versions of the instruction. Thisway the code is only written once
and can be modified easily.

macro movRegToReg(rd, rs)
mov rd, rs
end macro

OPC1:
movRegToReg(RA, RB)

OPC2:
movRegToReg(RC, RD)

Figure 27. Using macros for expanding generic instruction
implementation.
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Code emitters are a bit different. A code emitter, rather than use the capabilities of the assembler, uses a
high level language program to output the full listing of the assembler emulator. Each generic instruction
(for example amov) has a high level function which receives parameters about the specific instruction
(for example source, target and operand size) and writes in afile the assembler function which implement
the specific instruction. The full emitter isa collection of functions for each generic instruction, more
functions for writing the glue code of the CPU emulator and the main functions which control how the
output assembly file is generated.

Then the process of building the CPU core has two phases: first the code emitter is written (or modified
if we are dready in the write-test-debug development cycle), then it is compiled with the high level
compiler and an executable is produced. In the second phase the emitter executable is run with proper
parameters and the output assembly file with the asm core is assembled and linked to the emulator (or the
test program). Then if the CPU core is aready finished the emulator can be used or continue the
development of the other parts of the machine, or if the CPU coreis aready on development can be
debugged.

A core emitter has some benefits over a core programmed in assembly just using macros. For example
can be easily retargeted for different assemblers for the same architecture (for example in x86 there are
different conventions: AT&T in Linux and GNU assemblers, Intel convention; different assemblers use
different directives: NASM, TASM, MASM) just adding options and a bit more of code to the emitter
functions. It has aso alot more flexibility to change the generated core. It can be added easily options
which modify the output core, for example different calling conventions (stack, register) or how it will
work the emulator (implement bankswitching or not). It could be changed the accuracy of the emulator
for improving speed for example just passing a parameter to the emitter.

Basically a core emitter helps to admit different modifications or versions of the final assembly core.
The high level language & so hel ps to have a better control, more structured and easier to understand
implementation of the assembly emulator. Most of the assemblers do not have as many funcionalities as
ahigh level language (just basic macro and conditional directives).

EmitMovRegToReg(rd, rs)

{
emit(“mov %s, %s’, TargetReg[rd],
TargetReg[rg));

}

Figure 28. Using an code emiter for generating multiple
versions.

Forcing even more the idea of a core emitter we could have core emitters which could produce assembly
emulators for different CPUs or architectures. The control structure, which would control how the
assembly file is generated, could be fully reused, but most of the generic instruction emitters should be
reimplemented. Therefore the work saving is reduced but it could be useful.

Another approach could be to have a code emitter which would use an |SA definition file describing the
output architecture. The generic instruction emitters would use akind of intermediate representation
which would be trand ated to the final assembly output using the information in the ISA definition file.
And afinal step would be to have an automatic tool which from two ISA definitions could generate
interpreters from one CPU to the other without further help by the programmer. [1] But thisisan
advanced topic which goes out of the purpose of this document.
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3. Threaded code.

The concept of threaded code for implementing interpreters was introduced in 1972 by James R. Bell [4]
although some previous works were made around Forth language in early years. Forth isan interpreted
language which is very related with threaded code interpreters.

Theidea of threaded interpretersis related with the fetch and decode phase of the emulation. We have
already said in the previous sections that this task is expensive to the emulation of the CPU, furthermore
because it is not doing useful work (the real work is to execute the instructions). We have already seen
various ways of implementing the decode: switch tables that need a good compiler for producing a good
implementation, and functions tables which introduce more overhead and need from global variables.
Some compilers aso provide other features like labels and goto statements. If the compiler has the ability
of optimize tail calls (basically non-returning calls which keep calling other functions) then this feature
can also be used.

We also talked about moving the fetch-decode to the epilogue of the instruction emulation to avoid a
jump back to the main loop (or areturn in the case afunction table). All those features can be still used
with threaded interpreters but the main idea around threaded code is that, because of the temporal locality
of the code (the same piece of code is run more than once), the decoding of an instruction has only to be
done once, not every time the instruction is executed. Threaded code means code which is run through a
list or array of code address (pointers to functions for example) rather than sequentialy. Those addresses
in athreaded interpreter are the decoded address for the emulated instructions. The purpose of threaded
code is to cache the decode for next executions of the same piece of code.

We will see how it works and how can be implemented either in some high level language (most of them
are rather limited to provide a fast implementation) and with assembler interpreters. At last we will some
commercial and academic products which use this technique.

Basic concept behind threaded code.

Theidea behind threaded code interpretersis to separate the fetch and the decode of the instructions.
The fetch till has to be done each time an instruction is executed but the decode will be performed only
once, the first time the instruction is fetched. This could happen either in static time (when the codeis
loaded it is decoded before begin the emulation) or in dynamic time (the code is decoded only when it is
executed, the first time it is fetched).

What means decoding the native code in this case? In anormal interpreter emulator the opcodes are
read and either using a jump table or a switch statement a piece of code (the piece of code which emulates
the opcode instruction) is selected and ajump is performed to it. So there are three steps: first read the
opcode in the memory address pointed by the PC (that is the fetch phase), then obtain the address of the
function which emulates the instruction and finally ajump to this function. A threaded code interpreter
deals with the second step: how to obtain the address of the emulated instruction code.

Inatypical interpreter this step means to use the opcode as an index in a table which contain code
addresses. That means that in the best case (when the decode can be done in a single step) we are
performing two memory access (one for the fetch and one for the address of the emulated instruction) for
beginning the emulation of an instruction. The threaded code interpreter what does is to store the jump
address for each instruction in a separate table. This table will be addressed by the same emulated PC.
Now the fetch and the decode phases are performed at the same time and the process reduced to two
steps: first ajump address is read from the table and then a jump to this address is performed.

52



JUMP TABLE

function emulating
the opcode

executed).
l address
INSTRUCTION
DECODED —
TABLE

decoding

(just the first
time)

function emulating the
instruction

Decoding in threaded code.

opcode

Normal decoding using a function table (each time a instruction is

JUMP
TABLE

Figure 29. Normal emulation vs Threaded code emulation.

Of course thisisjust in the genera case. In afirst stage this entry in the table has been filled with the
address of the function which emulates the instruction in the equivaent address of the emulated memory.
This process of ‘trandation’ from the emulated code to the threaded code works in the same manner a
typical interpreter but without the phase of emulation of the instruction. The trandation can be performed

either in static time or in dynamic time.

A static trandation means that we aready know what code will be executed before the start of the
emulation. We know the start address and the end address of the code so we begin fetching opcodes from
the start address. For each read opcode we will obtain the address of the function which emulates the
instruction. Then instead of jumping to this address we store it in a translation table or threaded code
table. Thistable has an entry for each addressin the emulated memory which contains an instruction so it

could be used the emulated PC directly as the pointer.
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for(PC = ENTRYPOINT; PC < MAXPC; PC++)

decodedTable[ PC] = JumpTable readMemory[PC]];
}

Decode phase.
while('end)
{

(void *) (decodedTable] PC++]) ();
}

Execution phase.

Figure 30. Static threaded code emulator.

A dynamic trandation is akind of mixture between a normal interpreter and a threaded code interpreter.
The trandlation table is being built as the instructions are being emulated. When a given instruction was
not aready trandglated into threaded code the emulator will work as anormal interpreter. The opcode will
be read from the emulated memory, the jump table with the emulated instruction functions will be
accessed and ajump will be performed. The differenceis that now the jump address is not thrown away
after the jump but it is stored in the trandation table for the next time the instruction is executed.

If the instruction was already executed it will just read the trandation table at the entry pointed by the
emulated PC and do the jump. There are different manners of implementing this kind of dynamic
tranglation. A good oneisto write afunction which perform the execution as anormal interpreter (aswe
have said in the previous paragraph). Then initiaize the trandation table writing in each entry the address
of thisfunction. The fetch-decode code will be the same as in the static approach and each time anon
initialized entry is accessed (an instruction which has not been executed before) the trandation to thread
code is performed.

while(end)
if (decodeTableg[PC] == NULL)
{
decodeTable[PC] = JumpTable]readM emory[PC]];
}

(*decodedTable[PC++]) ();
}

Figure 31. Dynamic threaded code emulator.

The dynamic approach is easy to implement as we aready have seen. It can reduce abit the
performance of the emulation because the first time a full decoding must be performed. However itis
very useful to avoid some problems that the static approach has. These problems also happen with static
binary trandation so we will talk further in the next chapter about binary trandation. Just to point them,
those problems include the problem of separate what is code and what is data, self modifying code and
dynamic generation of code.

Aswe dready said in the assembly emulators section, a good optimization to the CPU emulator is to put
at the epilogue of each emulated instruction function the code for fetching and decoding the next
instruction. This saves the jump back to the main fetch-decode loop and reduces the problems with
misprediction of indirect jumps in modern CPUs.



jmp decodeTable[edi*4] /* emulated PCinedi */

At the end of the instruction emulation the PC is used for accessing the
table with the decoded instructions and it is performed directly the jump
without returning to the main loop.

Figure 32. Example of NEXT inasm.

Threaded code emulators are always a good alternative to normal interpreters coded in a high level
language. The performance gain can be great. Threaded code can be implemented with a high level
language (although with some problems) as we will see so itsis aso agood aternative to assembly code
emulatorsif portability isanissue. In case of assembly emulators in front to assembly threaded code
emulators the performance gain will be bigger if the decoding is harder. |SAswhich are easy to decode
would not have alot of gainin front of an assembly emulator.

Types of threaded interpreters.

The basic approach we have aready talk about in the previous section is called ‘ direct threaded code’. It
isthe simpler and faster type of threaded code but has some limitations. Most of the opcodes have fields
with additional information for executing the instruction, for example literals (constants). In most of the
cases this information will be easily obtained from the emulated memory by the instruction emulation
function. In other cases, though, it will be necessary to fully decode the opcode and store the separate
fieldsinthe trandation table. That iswhat is called indirect threaded code.

In this case each opcode is trandated into a structure which contains the address of the function to jump
to and additional data which is used by the function to fulfil the emulation of the instruction. It could be
also implemented with direct threaded code coding a trandlation table of such structures rather than a
table of jJump address. In the case of indirect threaded code the trandation table is an array of pointersto
those structures with decoded information. Thisimplies that an additional level of indirection is added
and therefore an additional memory load.

The emulated PC is still the pointer to the trandation table. The address in the given entry of thetable is

read. Thisaddressis stored to be used later by the emulated instruction function. From this addressis
read the address of the function and then the jump is performed.

l address

ARRAY
OF
DECODED
CODE DECODE
TABLE STRUCTURES

function
implementing the
instruction

Figure 33. Indirect threaded code.
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Token threaded code is another aternative which isintended for threaded code portability. In this case
the code to be emulated is trandated into an intermediate representation. The trandation table contains
tokens which are identificators for instructions in the intermediate representation. The process now
begins reading the token from the trandation table, then the token is used for retrieving the address of the
function which implements the intermediate instruction and the jump is performed. Thistechniqueis
only useful for portability issues. For example if we want to build different frontends for emulating
different CPUs keeping the main core of the emulation (or backend). The front-end just trandate the
emulated code to an intermediate representation and then this intermediate representation isused in a
threaded code interpreter. The backend could be reused for al the different emulated CPUSs. [5]

Threaded code can be used to implement simple optimizations of the emulated code. The way of
implementing these optimizations is expanding or grouping the emulated opcodes. A complex instruction
could be expanded in the decode phase into many simpler functions. We must take into account now that
the number of ‘instructions’ in the trandlation table has been expanded when dealing with offsets and
relative jumps. This could increase because of the fetching of instructions but could ease the
implementation of the emulator in some cases.

The opposite optimization would be to group simpler emulated opcodes into a single macro opcode
which would emulate the functionality of the single opcodes. It could be functions emulating very
frequent combinations of instructions, when those instructions are found together in the code the are
fetched at the same time. Then the trand ation table entry will be filled with the address for the combined
implementation of those instructions. The benefit of grouping instructions can be because of two reasons.
The original instructions were too ssimpler and a grouped form in the target CPU or high-level language
exits (it could help the compiler to produce better code). The other reason (perhaps the more important)
is because we are eliminating the overhead of the fetch-decode after each instruction.

Further expansions of the idea of grouping opcodes, for example create dynamically macro opcodes for
basic blocks, isafirst step into the world of the binary trandator. In fact way athreaded code interpreter
fetches and executes emulated code can be directly applied to binary trandation (as we will se€). In the
case of binary trandation, like in the case of opcode grouping, only some of the instructions (the ones
which are basic block entry points) have entries in the trandation table.

Threaded code is also very used in emulators which translate from one or various source CPUs to one or
multiple target CPUs using intermediate representations. An intermediate representation using threaded
code is used to permit help in the portability of such emulator. And it isafast implementation.

Implementation of threaded code.

The problem with threaded code is that it is difficult to implement high level language if they do not
offer some specid features. C isthe language which has been more used for implementing threaded code
and some implementations (GNU C) offer useful features for implementing it (Iabels and goto directives).
We will se some ways it can be implemented in C athreaded code interpreter. The problem does not
exist using assembly and it is really easy to implement an assembly threaded code emulator.

First the high level implementations. These implementations have been obtained from [6]. The

implementations we will see will be: GNU C’s labels as values, continuation-passing style, switch
threading and call threading,
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typedef void *Inst;

Inst *ip; /* you should use alocal variable for this */
#define NEXT goto **ip++;

GNU C’s Labels as Values.
typedef void (* Inst) ();

void inst1(Inst *ip, /* other regs */)
{

.(.*-ip) (ip+1, /* othersregisters */);

Continuation-passing style.
typedef enum { add /* ... */} Ingt;
void engine()
{
static Inst progam[] = {inst 1/* ... */};
Inst *ip;
for(;;)
switch (*ip++) {
caseinstl:

}

Switch Threading.

typedef void (* Inst) ();
Inst *ip;

void inst1()
{

void enging()
{
for(;:)

(*ip++)();
}

Call Threading.

Figure 34. High level implementations of threaded code.

The best implementation using C is to use labels and goto directives. But not all C compilers support
them. GNU C supportsit and is amost sureit will exist a port of the compiler for every architecture out
there. We storein atable the labels or the function address of the instruction emulation. Then fetch is
just agoto instruction through atrandation table entry.
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Another implementation is to use a continuation-passing style, where each emulated instruction function
keeps calling the function of the next instruction to be executed. Thisimplementation needs a compiler
which can optimize tail callsinto jumps. But most of the compilers do not support this optimization. Tail
call isafunction call at the end of the function call which could be optimized as a direct jump to avoid the
overhead of afunction return.

The next implementation is switch-threaded code which is near to the idea of token threaded code. A
special set of token or valuesis used as ‘address' for the functions. These tokens are stored in the
trandation table and used as cases in the switch statement.

The last implementation is call threading. Thetrandation tableisjust atable of function addresses.
Each fetch isacall to the function in the entry of the table pointed by the emulated PC. It has some
overhead due to the function call overhead and the fact that the code for emulating the instructionsisin
separated functions. The emulated registers should be used efficiently by al the functions so the compiler
should admit optimizations of global variables.

In assembly the best implementation is just a modification of the fetch-decode code that it is added at the
end the implementation of each emulated instruction. In this case the emulated PC is used as an index in
the trand ation table and then an indexed jump is performed to the address in the pointed entry.

Related works.

Threaded code and threaded code interpreters have been very used by many years. It iseasy to find
documents, source code and commercial productsthat useit. Thefirst referenceis J.R. Bell document
introducing the technique but exists alarger library of references which can be useful. Searching for
Forth, threaded code or virtual machinesin the web is a good way of obtaining alot of information. More
actua research around the topic can be found in studies about the implementation of Java virtual
machines. One remarkableis[7].

About commercia productsit could be found alarge number. One we will talk about later is Ardi’s
Executor a PC emulator for the MAC. This emulator is both a dynamic binary trandator and a threaded
code interpreter. It uses an intermediate representation which is executed as thread code for those
architectures where the dynamic trandator backend is not implemented, aiming so to a greater portability
of the product. Ardi’s Executor is one of the main references about commercial emulators.

4. Advanced questions about interpreters.

In this section we introduce some other topics related with CPU interpreters. We will talk about some
genera questions about all the types of interpreters emulators and about more advance topics which are
out of the scope of this document. Additional references and resources for further searching about
interpreter emulators will be also pointed.

Interpreters for simulators.

Most of the academic resources which can be obtained about CPU interpreter emulatorsis related with
simulators. Although the nomenclature is a bit confusing some times, and the term emulator and
simulator are used and abused for the same products sometimes, we will consider them as different uses
of similar techniques.

The CPU and full architecture simulators are in fact emulators, and thus they use many of the techniques
we are talking in this document, but their purpose is different. The purpose of a simulator isto model the
internal behaviour of a computer (or a CPU, or just any other hardware device) to retrieve information
about how it worksin race situations. The emulators, our definition of emulators, are used to implement
in atarget computer another computer or architecture as a virtual machine, so all the original programs
from the emulated computer could be used transparently in the target computer.

58



The main differences between a simulator and the kind of emulator we are studying are derived from
this difference in the purpose. In a simulator the performance is not the primary issue, it is accuracy. A
simulator should be as accurate as possible (always inside the specific use the ssimulator will have) and
performance losses in front of accuracy are permitted. In an emulator performance is many times the
main issue and, although it is not always desired, performance has preference over accuracy. Soin an
emulator the accuracy could be limited in some situations.

It should also be taken into account that although the desire in an emulator is the most precise
reproduction of the emulated machine it just needsto ‘seem’ similar to the final user. That isthe user will
not need to know, or care about, if the emulator is running avery precise emulation of the internal
hardware. The user just needs to feel that the system is emulated in the most similar way. Thefeeling
comes from the emulator output: the sound, the graphics, and the speed of the emulation. Those are the
main aspects to carein an emulator. Internal precision could, and will, be sacrificed to provide external
precision.

Simulators use to emulate the hardware in a more low level than emulators do. An emulator just need a
more or less (depending of the emulated system) cycle accurate emulation of the CPU and, usually, less
precise of the other devices. Thelevel of accuracy in asimulator depends in the kind of information is
wanted to be obtained about the simulated system. For examplein some casesit could be just cycle
accurate, in accurate in the level of electric signal and some times just accurate in the number of executed
instructions.

Another important difference in simulatorsis that they gather information while performing the
emulation. Aswe will seein the next point, in some situation we will also want that our interpreter
emulators would gather some information. But the main difference is the larger range and number of
information a simulator is gathering. In an interpreter with profiling the emulation is the main purpose, in
asimulator the main purpose is the information.

Most of the resources which can be found around simulators are useful for emulation, but we have to
take into account that their scope isabit different. The documents which talk about how to speed up the
simulation and introduce techniques for achieve this purpose are the most useful (Shade [8], Bedichek,
etc.).

First pass interpreter and profiler.

In some cases the interpreter emulator will be just the first step in the process of emulation. Many of the
more modern and successfully emulators implemented using binary translation use interpreters emulators
asafirst pass emulation. Theinterpreter is used in the first executions of the emulated code and only the
pieces of codes which are frequently executed are trand ated to the target machine code. For enhancing
the trand ation the interpreter has to gather diverse information about how it is executed the code. The
minimum profiling includes the frequency of execution of piece of code, the frequency of each branch
and the creation of basic blocks.

This approach of using an interpreter for the emulation of the CPU in the first passis used in many
commercial products. Transmeta Code Morpher software which provides x86 compatibility using a
software layer over the CPU usesit. Theinterpreter isused for profiling and the execution of the first
pass, if apiece of codeis spotted to be very frequently executed it is trandated to native code and
optimized. IBM’s DAISY dynamic binary trandator for VLIW CPUs (now it trand ates PowerPC and
AS/390) uses asimilar approach. Digita’s (now Compaq) FX!32 is a static trandator for x86 NT
applicationsto Alpha NT. It performs code trandations in background using the information gathered by
afast interpreter for al those portions of the code which are not already trandated. Java Hot Spot only
performs tranglation from Java bytecode to the native machine code for those blocks of the code more
frequently executed, therefore it also uses a Java interpreter for the other parts of the code.

CPU emulators are also used in static trandators for avoiding some problems. We will talk about those
problems in the next chapter but we can point them here: self-modifying code or the difficulty of
separating code and data. The problem is that many timesis hard, or impossible, for astatic trandator to
discover, and trandlate, al the possible code which could be executed in a given program. One solution is
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to add afalback interpreter to the runtime of the trandlated binary. Whenever a piece of code, and
address, isfound that it has not been tranglated the interpreter is called to perform the emulation of these
piece of code.

Advanced: Inlining and Pipelined interpreters for VLIW CPUs.

Just for introducing a couple of advanced topics related with CPU interpreters we will see two papers[9]
[10].

“Optimizing direct threaded code by selectiveinlining” isapaper from the INRIA by lan Piamartaand
Fabio Ricardi which talks about atechnique for speeding up virtual machine interpreters. Theideais
based in threaded interpreters and in the idea of opcode grouping we talked in the thread code section.
The paper discusses that a static approach for building macro opcodes (groups of opcodes which are
emulated all together using the function) is not really correct because there are two many possible
combinations. It isimpossible with static grouping of opcodes to achieve good performance for al the
possible programs to be executed.

They propose a dynamic approach, the macro opcodes are discovered at runtime and the functions for
implementing them are generated on the fly (akind of dynamic generation of code). The technique
maintains the portability because it creates the implementation of the macro opcodes copying the code of
the simple opcodes and patching them. It isakind of a mixture between a threaded code interpreter (the
execution basisis still athreaded code interpreter but which dynamically creates the opcodes to emulate)
and ‘portable’ binary translator.

POOL OF
DECODE CODE | 9roup MACRO
TABLE source OPCODES
instructions
used to
build the
macro
opcodes
implementation
of the original BASIC OPCODES

instructions

Figure 35. Threaded code and macroopcodes.

Another advanced aspect related with interpretersis the related with the new VLIW (Very Long
Instruction Word) and ILP (Instruction Level Parallelism) architectures and CPUs. Part of the industry
and the research are now going from implicit ILP (superscalar, reordering, and speculation) to explicit
ILP. Thetask of scheduling the instructions will be now in the side of the compiler and not in the side of
the control logic of the processor. In the field of interpreter (we will also talk about the aspects related
with binary trandation) this implies some difficulties. The paper “Pipelined Java Virtual Machine
Interpreters’ by Jan Hoogerbrugge and Lex Augusteijn from the Philips Research Laboratories introduces
the concept of pipelined interpreters.

The paper discusses about an efficient way of implementing a Java Virtual Machine interpreter in a
VLIW CPU. For obtaining a good performance in a VLIW you have to fed the CPU with as many full
dotsaspossible (inaVLIW each ‘instruction’ tells the CPU to execute —initiate- a number of instruction
a atime, each of thisinstructionsisadot, see |A-64 documents for areference). Itisahard task to
choose which instructions to schedule at a time, reordering and speculation must be implemented to
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achieve this objective. The compiler should have the responsibility of doing thistask. But with an
interpreter the functions are small and the code is jumping from one part to the other all thetime. There
are not good loops for optimization either.

In the paper they propose to pipeline the different phases of the execution of an emulated instruction.
They divide the execution of an instruction into fetch and increment (the PC), decode and execution and
jump for the next instruction. It isathree stage pipeline. Each instruction is performing the increment,
fetch and decode for the next opcodes to be executed, and so filling slowsin the VLIW instruction. The
paper continues with the explanation of the technique and shows some results of the test they have
performed.

fetch decode instruction
implementation

fetch decode instruction
implementation

Instruction emulation pipelining.

f1=12; f2=13; f3 =fetch();
d1 = d2; d2 = d3; d3 = decode(f3);
/* Instruction emulation */

Figure 36. Interpreter pipelining;

Integrated CPU cores.

We have talked about CPU cores which are implemented and work separated from the emulation of the
other devices. The only communication between the CPU and the other devices is through the memory
and 10 maps, which at the time have a standard interface and are provide from the outside of the core.
Although thisisthe norma manner that emulators are implemented in some cases it could be interesting
to use another approach.

Aswe will talk in the next point many times we will reuse an already coded (and testes, that isvery
important) emulator core. This makes that we will have to adapt our emulation to the way the core works.
In the previous sections we have talked about cores which would be for genera purpose. But if we are
implementing our own core as well as therest of the emulation we could design the core to speed up the
emulation, getting advantage of the specific features of our emulated machine. For example we could
inline the most accessed memory handlers to avoid the function call overhead. We could aso put
additional code to synchronize and speed up the emulation with other device. For example wait loops for
atrigger in another device could be implemented to skip them and directly call that device.

This topic could become very specific to every target so we will not talk further. But it isinteresting, if
we are implementing our own core to take this point into account. If we have the freedom of doing
whatever we want with the CPU core the best is to take advantage of it. There are potentialy many
points for optimizing from the limitation of an already coded (a normally general purpose) CPU core. Of
course this does not take from the fact that the core we are using or implementing must fit the minimum
requirements of the emulated machine. For example it would not be a good idea to use a core which does
not support bankswitching (the address space is organized in banks which can page different regions of
the real memory, larger than the address space) because the performance loss due to the implementation
outside of the core would be too big.
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Using library CPU cores.

We have adready said in the previous point that often CPU cores and emulators are implemented
separately. CPU emulation is a hard task which needs from alarge amount of time for coding and testing.
Obtaining a fully working CPU core which works (most of the times) correctly can mean months of work
(depending of the complexity of the emulated CPU). That is the reason because of in the freeware
emuscene (where most of the emulators are being developed by old computer and video game computers
fans) it isvery usua to use open source CPU cores.

If in fact, if the main interest is just to emulate a system and open source CPU cores can be found for the
CPUs used in the system it could be interesting to use those CPU cores. There are various advantages.
Those cores have been aready tested with many emulators and therefore they use to be very accurate and
implement all the features (hidden or not) of the CPU. They use aso to be very optimized and many of
them are implemented in assembly, so it will be a good performance boost. Most of those open source
emulators have years of testing and developing, that means that implementing an equivalent core will
require quite atime. The main advantage is of course the great time reduction for the devel opment of the
emulator.

In the other hand using an open source emulator core implies to use the conventions defined by the core.
The emulator will have to be implemented in the way the core works. The free cores usesto be
implemented to be general CPUSs, therefore, unless, arisky modification isimplemented in the open
source core some of the particularities of the system could not be used to improve the performance.

Another interesting use of the free CPU cores isto use them as reference for our own CPU core. The
best manner for testing a CPU emulator is to run it hand by hand with the real CPU and look for the
differences. Thiswould need some kind of development board with the emulated CPU and many timesis
impossible to do. A good aternative is to compare the execution of our CPU emulator with another,
trusted, CPU emulator.

The interface from one free core to another differs but it uses to be similar to the one explained in the
first section of the chapter. Because, aswe said, the CPU core is the center of the emulator the emulation
will be driven by the way the free core works.

Related work.

There are many sources in the emuscene which introduce the concept around interpreted CPU
emulation, as well with many open source CPU cores which can be used to learn how they are coded.
Some of the information is this chapter comes from those sources.

About CPU interpreters and general emulation can be found various resources in the web:

- Dan Boris Emulation How To.

- Marat Fayzullin How To.

- Zilmar's Emubook.

- Arcade Emulation How To by various emulator authors.

- Emu-Mechanismis an old discussion about emulation around the Amiga.
- other similar documents and sources.

Opensource CPU cores can be found at:
- M.AM.E/M.ES.S. emulation projects.
- Neil Bradley offers various CPU cores written in assembly.
- Nell Corlet’s StarScream, an assembly 68K emulator.
- Bart Tryz...., and assembly 68K emulator.

It can aso be found some academic papers about CPU emulation searching for Java and virtual machine
in web searchers and academically specialized searchers.
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The information about threaded code interpreters was found in web page [6] about thistopic. It can be
found more information searching for Bell’s“ Threaded Code” article, ‘ Threaded code’ or Java and virtual
machine. Another threaded code interpreter is Bedichek’s g88k simulator.
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Chapter 4. CPU emulation: Binary Translation.

1. Introduction to Binary Translation.

We have just seen how an interpreter CPU emulator can be implemented. An interpreter CPU emulator
worksin asimilar manner to how areal CPU works: dataif fetched from the memories, this datais
decoded and the instruction is executed. We have seen how to speed up the emulation of the CPU, either
using assembly coded emulators or caching the decode data (threaded code emulators). But the process
of emulating a CPU is dtill very expensive.

Thereistill alot of overhead due to the fact that we are emulating instructions one by one (we also
talked about using macro opcodes in threaded code interpreters).  Also because we are emulating most of
the characteristics of the CPU, some of them which are not required for our purpose, or not al thetime
(for example flags). In fact the purpose of the CPU emulator is to run some piece of code from the
emulated CPU in our target CPU. Both CPUs are able to execute code, but the problem is that the
languages in which this code is represented are different. Could it be possible of executing the code of
the emulated CPU in the target CPU without having to build a‘virtual CPU’? The answer is binary
trandation.

Binary translation.

Binary trandation means to trandate from a binary of a source target machine or CPU into abinary for a
target machine or CPU. A binary uses to mean afull program or executable (but it could be any piece of
code that could be executed) stored in machine language code.

The instructions from the source CPU are transformed into instructions for the target CPU. Thiskind of
CPU emulation differs from the interpreter approach. In an interpreter we are building software which
tries to mimic the behaviour of a CPU. A binary trandator does not mimic (al) the behaviour of the CPU
but performs a transformation in the code which is going to be emulated. We will already have all or
most of the CPU status information we could find in an interpreter emulator.

One of the differences with an interpreter emulator isthat the state of the CPU is not kept al thetimein
the CPU context. Most of the time this state will be implicit (in the target CPU registers, in the flow of
execution) and only in some checkpoints the CPU state will be equivalent to the emulated CPU. Ina
binary trandator we will try to just do the minimum possible which maintains a‘workable' state for the
emulated CPU.

In abinary trandator the emulation can be divided into two phases:. the trandation phase and the
execution phase. In the trandlation phase the code from the source CPU is trandated into code for the
target CPU. In the execution phase the trandlated code is executed in the target CPU. Both phases are
very different and can be studied separately.

The trandation phase resembles to the work of acompiler. Inacompiler (or in an assembler) we have a
program or algorithm written in a given language (a high level language or assembly language). This
program must be converted into another language: machine language. In abinary trandator we have a
piece of code in a given machine language which must be converted into a different machine language.
Of course there are alot of differences between a compiler and a binary trandation because the inputs are
very different. Inacompiler theinput is represented with text (ASCII) and resembles a human language
(moreor less). Thisinput must be lexically, syntactically and semantically parsed and analysed. Ina
binary trandator the input is represented binary (bits) and just have to be decoded.



Lexical Anaysis
Sintactic Analysis
Decode Semantic Analysis
Optimization Optimization
Code Generation Code Generation
Binary Translator Compiler

Figure 37. Binary trandlator and compiler phases.

Therefore the first main difference between compilers and trandators is the first phase: the decoding for
atrangdator and the parse and analysisin acompiler. In fact we should be happy, decoding is far easier
than parsing and analysing atext. In abinary trandator the first phase is decoding and just means to get
the binary code and represent it in a more workable form, mainly some kind of decoded structure, which

will be more useful for the next phases.

Source 1 - Target 1
Source 2 - Target 2
Source N - Target M

Direct binary translation = NxM binary translators

Target 1
Source 1

Target 2
Source 2 ‘ IR
Source N Target M

Translation using an intermediate representation (IR) = N frontends + M
backends

Figure 38. Binary trandation with or without IR.

In acompiler the program is converted first to an intermediate representation (IR). The IR isthe output
of the first phases (parsing and analysis) of the compiler and the input for the next. There are different
forms of intermediate representations (register transfer language or RTL, tree based IRs, etc) which are
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more or less useful for different purposes. The purpose of an IR in acompiler isto ease the
transformations that the original code will suffer (transformationswhich use to be called optimizations) in
next phases and to help with the portability of the compiler. An IR breaks the NxN graph of languagesto
machine code into a 2xN graph of languages to IR, IR to machine code.

In atrandator some kind of intermediate representation will also exist. This representation could be just
a structure with the decoded information and some additiona fields (the one we could be output of the
decode phase) or afull IR like the one used in acompiler. The choice of what kind of representation will
be used must be done depending of the type of binary trandator we are implementing. A full IR is useful
for optimization but it is more expensive in time, in a static trandlator the time is not the main problem so
afull IR would be the choice. In adynamic trandator the time for the trandation is limited, then amore
limited IR would be used, it will be depend upon the kind of optimizations we will perform how limited
(or extended) the IR will be.

The choice of an IR is aso related with the portability of the binary trandator. In some casesif the
trandator is going to be implemented for more than one source/target machine it will be interesting to
divide the process of trandation in three phases: a fronted which deals with the source code, a common
part which works with the IR (transformati ons/optimizations), and a backend or code generator which
deals with the target code. The common part work with the same IR and for each source/target machine a
new frontend or backend is implemented (the same it happened in a compiler). An IR can aso bea
virtual machine language which could be used as an interpreted code for those machines in which the
frontend is not implemented (Ardi’s Executor [5]).

The IR (or whatever we have) is used in the next phase. This phase and the next are very similar in both
acompiler and atrandator. In this phase the code suffers from some transformations. These
transformations use to be called optimizations. The main difference between a tranglator and a compiler
is the number and type of such optimizations. It also differs between the different types of binary
trandators. In astatic trandator and a compiler it can be applied time consuming optimizations which use
graphs and extended analysis of the code. In a dynamic trandator de number and type of optimization is
limited to the time we want to spend optimizing the code. A dynamic trandator could apply different
levels of optimizations to different blocks of code depending upon how often these blocks of code are
executed. There are also optimizations (like function inlining and reordering) which are more likely
intended for be applied in dynamic time than static.

Although the optimizations from a compiler can be used directly in atrandator (they work in the same
kind of information), limited by the time factor in the case of a dynamic binary trandlator, it could also be
taken into account the difference between the code which comes from the first step of the compilation of
ahigh level language and the code which comes from areal program. This code could have been
programmed in assembly or have been aready optimized because is the output of ahigh level compiler
which performs optimizations. Sometimes this information can be applied to the trandator to avoid some
optimizations.

The optimizations performed in this phase are general optimizations, around the functionality of the
code. In the code generation phase it could be performed architecture specific optimizations. Before
passing to the code generation phase (or at the sametime) it is performed the register allocation. The IR
uses to work with virtual registers or temporal variables. These virtual registers must be assigned to real
registersin thetarget CPU. Thistask iscritical for getting a good code but aso implies alot of overhead
(the basic algorithm is a graph colouring algorithm). In the cases that the time is alimited factor an
algorithm which trades between time and quality will be needed (linear scan register allocation [11]).

The last phase in both a compiler and a trandator is the code generation phase. In fact this phase should
be ailmost identical in both. 1t must tranglate from the internal representation to the target CPU code.
There are different manners of implementing this phase and depends because of the kind of IR used:
matching trees, one to one trandation, etc. At the same time there are performed architecture specific
optimizations, taking into account the features of the target CPU: alignment, specia instructions, the best
ordering for the execution. After this phase the trandated is stored for later use by the runtime of the
binary trandator.

66



The execution phase is performed by the runtime of the emulator. The equivalent in the compiler world
would be to execute the compiled binary in the fina system (usually through some kind of command
shell). This phase differsfor static and dynamic binary trandators. In astatic trandator isjust aloop
which keeps running blocks of trandlated code, keeping the state, checking events, stopping the execution
when it is heeded and providing a background for the execution of the translated code. In a dynamic
trandator thereis aloop which looksif the next block of code to execute has been trandated or not and
calsthetrandator. When the next block is already trandated it is called and executed. It worksin a
similar way than athreaded code interpreter but in this case it is executing groups of instructions rather
than just oneinstruction at atime.

Binary trandation has the main advantage of a good performance when correctly implemented. We are
avoiding many calculations which are not useful for the purpose of the emulation. The decoding isjust
performed once and the overhead due to the execution instruction by instruction is avoided. Now large
blocks of source code are executed as target code in asingle shot. Optimizations can aso be performed
which reduce the amount of executed code, for example flags are only calculated when they are really
needed, many of the memory access can be directly translated avoiding to use al the memory map.

It has disadvantages too. One of the main problemsis self-modifying code and dynamic generation of
code (DGC). Self-modifying code and DCG have a great impact in binary transdation because of the
necessity of detecting them and providing away to handle them. In a static binary trandator this problem
is hard to solve, most of times it needs a fallback interpreter or some kind of hack to the emulated
program. In adynamic binary trandator self-modifying code and DCG can be handled but at the
expensive cost of implementing detection and retranslating mechanisms. In a static trandator it isaso
hard to deal with the distinction between data and code in the program, mainly because of the indirect
jumps, mechanism for trying to solve this problem must be aso provided.

The other main disadvantage of binary trandation is the development time. Build a binary translator
requires more efforts, more time and it is harder than implementing a basic interpreter emulator or a
threaded code interpreter. The payback isthat the binary trandator will emulate the same source at
around an order of magnitude faster (x10). However it depends in the source CPU and the target CPU
differences and the way it has been implemented both the binary trandator and the interpreter emulator.

Another limitation in binary trandlation is the portability. The binary translator works for a source CPU
and atarget CPU. The main problem isthat it is generating code for a given CPU, it is the same we
talked about assembly interpreters. In aninterpreter emulator implemented in ahigh level language the
emulator will run just one source CPU but it could be used in many different target CPUs. In fact the
binary trandator could be designed to be easily retargeted to many target (and source machines), for
example UQBT [2]. This can be done at the cost of some performance lost in some of the phases of the
emulation.

Types of binary translation.

There are basically two approach to binary trandation as we already have seen: static and dynamic. A
static binary trandator is more or less something similar to a‘compiler’ in which the input is amachine
language. A dynamic binary translation could be a mixture between a dynamic recompiler and dynamic
generator of code or optimizer. They share alot of the main characteristics but they also have important
differences.

Types of BT

STATIC BINARY
TRANSLATION

DYNAMIC BINARY
TRANSLATION

Figure 39. Types of binary trandation.
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The main difference between static and dynamic binary trandation isthe time. The time when the
trandation is performed and the time it can be spent in the trandation. In a static trandator the translation
processis performed before the start of the execution of the program or even the emulator. Static
trand ation has been used mainly to port applications from an old system to a new one without having to
recompile the sources. This makes that the framework of a static trandator is a program which receives
and input program or binary from the source machine and generates an equivalent binary for the target
machine. Then this trandated binary could be executed aone in the target machine or could be executed
using aloader which provides this a background for it. All the code of the source binary is trandated and
only once. After the trandation phase of the process no more tranglation are performed and the output
binary can be executed as many times as we want.

In adynamic trandator the trandation is performed “on the fly” (or just in time, how it is called in the
Javaworld), when the source code is being emulated. The trandation of ablock of code from the source
machine is only performed when this codeisfirst executed or when it has been already emulated (through
an interpreter with profiling) a number of times. Next executions of the same block of code are
implemented as ajump to the trandation of this block. The translated blocks are stored for further use,
although in some case those blocks could be erased from the trand ation cache to save memory. The
trandation is performed every time the binary isloaded in the emulator and executed.

If we compare this behaviour with a static binary trandator we can sethat it isa partial trandation. A
static tranglator must perform afull trandation. A dynamic translator does not keeps any information nor
trandation after the end of the emulation therefore the trandation must be performed every time the same
program is emulated. A static translator most of times produces final results. The output binary is the
aready the full emulated program. In some cases though (FX!32 [12]) an incremental trandation (asin a
dynamic trangdlator) can be performed. Then, however, the trandation is kept for the next execution in
some kind of database.

Static trandators which do not keep the trand ation can also be implemented. They would work first
trandlating the program to be emulated and executing it after it. It must be taken into account then the
time spent in the trandlation. In afull static trandlator the time is not an issue and hours code analysis are
allowed. In such alimited static tranglator the trandlation time should be limited to that reasonable for a
binary load (for example from disk, with some initiaizations) process, that is, from afew secondsto one
or two minutes.

Static trandlators are also more suited for performing any kind of expensive optimization through the
code, including global optimizations, than a dynamic trandlator which works more in the scheme of a by
block based trandation. In the other hand dynamic trandator are able to perform run-time optimizations,
optimizations which can only be performed knowing how the code it is being executed (reordering of the
blocks to avoid jumps, inlining). In the case of a static trandator the optimizations are just limited by the
amount of information about the code to emulate the trandator can obtain. Using some kind of profiler to
provide information to the static trandator in afirst phase would help to produce a better final code. Ina
dynamic trangd ator the optimizations are limited by the time.

The reason because the idea of a dynamic trandator works, and it is faster than an interpreter emulator is
because most of the execution time in a program is spent in afew blocks of code (loops). It isthe same
idea with memory caches, most of the data and the code are reused, it exists locality intime and in
address. In adynamic trandlator that means that the time spent in the trandation of a block must be
compensated by the speed up produced because of the trandation. That is, in aglobal view, the trandated
blocks must be faster enough and be executed enough time to overcome the overhead due to the
trandation.

From this basic classification there are other minor classification which depend in the manner the
trandation is performed or how the trandator work. For example, as we aready said, there are different
ways of performing the trandlation either using or not an intermediate representation. The number of
optimizationsis diverse. The trandation, in adynamic trandator, can be performed in the first pass or
only after a number of passes (just trandate — optimize — those blocks of code which are more frequently
executed). This means also that there could be standalone translator or combinations of trandators and
interpreters/profilers. This happensin both static and dynamic trandator for different reasons.
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A combination between a static and a dynamic translator can also exist. It could be a dynamic trandator
which tries to trandate as much code as possible at the start up, and only when new code isfound it is
used the its dynamic capability. It could be also used for performing alazy trandation of most of the
code at load time, and retrandate the more executed blocks later trying to optimize the trandlation.

Another classification could be if the trandlator is able to deal with self-modifying code or any other
form or new code which must be transated on the fly. Even adynamic trandator would not be at first
able to support self-modifying code. The self-modifying code must be detected first and that it isan
expensive task which it should be avoided if possible. Even more, self-modifying code mean
retrandating and if it is very frequent the overhead of the translation could kill any chance of getting a
good performance.

Basic concepts.

The basic concepts of binary trand ation come either from the compiler world or from the emulation
(interpreters world). Since the trandation, optimization and code generation phase in a binary trandator
are equivaent to the same phases is a compiler the same terminology and techniques can be applied. Ina
dynamic binary translator, though, the range of those techniquesis limited to the amount of time it can be
spent in the trandation of a block.

We have aready talked about intermediate representations. An IR isakind of representation of a code
or agorithm. There are many kinds of IRs, some are based in the compiler theory, like tree based IRS,
other are more nearer to machine language. The IR is as an intermediate step between the source code
and the target code, either for portability or for aiding in the process of optimization.

In the compiler theory the basic unit for code optimization is the basic block. A basic block isa
seguence of instructions which only have one entry point (the first instruction) and one exit point (the last
instruction). Theideais that such a piece of code can be modified, while maintaining its algorithmic
meaning, without affecting the rest of the code. Therefore many of the optimizations (local) are basic
block based. Further optimizations (global optimizations) are performed between basic blocks, working
with their interrelations.

The basic algorithm for building the list of basic blocks of a function (or any other piece of code with an
entry point) is based in searching the basic block leaders. A basic block leader isthe entry point/first
instruction of the basic block. The algorithm for finding the leadersis:

1) Thefirst instruction of the function (entry point) is aleader.
2) Thetarget instruction of ajump instruction isaleader.
3) Theinstruction after ajump instruction is aleader.

After the leaders have been found the basic blocks are built between aleader and the next instruction
before the next leader in the list of leaders.

In static binary trandation basic blocks will be the basic trandation units. In dynamic binary trandation
they could be or could not be the trandation unit. At run-timeis hard to determine if a given block of
codeisredly abasic block (in the future ajump instruction could jump to middle of the block). With
profiling and multiple passesit could be built an arrangement of blocks which could be trusted to be basic
blocks. We will keep, though, the idea of basic block while trandating dynamically. Another question is
that in dynamic trandlation sometimes is better to perform instruction by instruction trandation or
trandlation of blocks bigger than a basic block, for example for loop optimization. In a static compiler
thislast kind optimizations are performed in a second phase of optimization between the basic blocks.

Examples.

Although in the last years the interest in binary trandation is growing this technique is not new. The
main interest in our daysis to dynamic binary trandation to provide a software layer over the hardware
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layer to provide ISA compatibility for old CPUs in new ones. However in the past it was static binary
trandlation the main interest.

Static trandlation was successfully used in the transition from CISC CPUsto RISC CPUs as an
alternative to source code recompilation while porting applications from the old system to the new one.
Digital (DEC) was one of the companies which made more efforts in this direction providing with
successful binary trandators from the old VAX to the new Alphaarchitecture. Digital (later bought by
Compaq) aso developed aMIPS to Alphatrandator and ax86 NT to Alpha NT static trandator with
profiling: FX!32. We will talk later about FX!32 because it introduces interesting concepts.

In the academic world there have been also alot of research on the topic. From the old MIMIC
trandator, Shadow and the more successful Shade for system ssimulation[8]. Also the Embra[13]
dynamic binary trandator which was used in the SimOS framework. The main interest in binary
trandation research in 80's and 90’ s seem to be related to improve the performance of simulators. There
are aso some efforts about code portability around static translators. Nowadays projectsinclude Dixie
and UQBT [2].

In last years the interest has moved to a dynamic approach. The release of the Transmeta Crusoe [14]
VLIW CPU which uses alayer of software called Code Morpher to execute x86 code shows the new
trend. Transmeta uses a software approach for x86 compatibility which differs from the hardware
approach used before (Intel Pentium, Pentium PRO, 11, 111 and 1V; AMD and others). Transmeta mixes
interpreting, dynamic translation, along range of optimizations (hot spot optimization) and hardware
solutions to speed up the trandation.

In the same line of Transmeta s Code Morpher IBM has been developing DAISY [15] a dynamic binary
trandator from PowerPC and AS700 to ageneric VLIW architecture. DAISY shares most of the
techniques with Code Morpher but it is open source and can be freely downloaded and modified. 1BM
triesto exploit the explicit ILP feature of the VLIW CPUsto provide faster trandations. IBM has been
researching in similar topics for Javato VLIW trandation.

Other modern projects which can be found are the dynamic optimizer Dynamo [16] which triesto
perform dynamic optimizations for aHP CPU. HPis also researching in aHP to 1A-64 trandator [17].
Another project about dynamic binary trandation is UQDBT the dynamic version of the UQBT project.
Other researches and products can be found around the execution of Java bytecode, for example Java Hot
Spots and similar dynamic compilers for Java bytecode.

Other commercia products which are related are Virtual PC (a PC emulator for MAC) and VGS (a
PlaySation emulator for PC and MAC) from Connectix. Ardi’s Executor isaMAC emulator for the PC.
Apple provided different emulators, for supporting old applications, (DR Emulator) for the MAC when
they changed from the Motorola 68K architecture to the PowerPC architecture (Motorola/IBM) [18].

In the emulation scene (emuscene) binary trand ation has been used to permit the emulation of the more
modern systems: PSX, Nintendo64. The more used technique is dynamic binary trandation which is
called ‘dynamic recompilation’ or ‘dynarec’. Another technique used in the emulation of the more
modern consoles is High Level Emulation (HLE) which triesto perform the emulation at the
library/system call level rather than at the hardware level. All the static binary translators provide an OS
APl emulation (UNIX in most of cases).

2. Static Binary Translation.

In this section we will introduce the basic concepts around static binary trandation. Static binary is not
very useful for the machines we are our main targets for emulation (videoconsoles, video arcade
machines) because of itslack of flexibility and other reasons we will see later. It ishard to find static
binary trandlator for those systems so most of the information will come from the corporation and
academical world. Static tranglation can still useful for learning the basics of binary trandation and in
some situations, with some modifications, could be a good alternative to dynamic trandation. This
section will just talk about the basic points and it will not go in adeep study of this topic.
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Basic Algorithm.

A real dtatic binary trandator is more nearer to a framework or atool set than asingle program. Thisis
even truer in multitargetable binary trandators like Dixie and UQBT where the process of implementing
support for a new architecture is automated. The process of trandating a source binary from a given
system to another system requires most of time some kind of feedback. The multipass approach, using
profiling for gathering useful information will lead to a better trandlation and to find hidden pieces of
code. We will see a basic agorithm which shows how a static binary trandator should work. Many of
the phases of this algorithms are optiona and can be modified or implemented in a different manner in
each specific static trandator.

trandate all

search basic block (+ profiling)

for al basic blocks
trandateto IR
optimize block
store block

global optimizations

for al basic blocks
generate target code
store code

executeall/executeN

Figure 40. Static trandation algorithm.

A static binary trandator has two separate phases. the trandation and the execution. They can be studied
separately. Thefirst phase, trandation, is the more interesting to study and the harder to implement. The
execution phase just has to deal with the connection between the CPU emulation (more exactly code
emulation) and the other parts of the emulator (graphic hardware, sound hardware, OS, etc.).

Thefirst step in the process of trandation is to obtain as much information as possible. The basic
information we will need (but of course the code) is the list of basic blocks in the code we are going to
trandate. Thislist can be obtained at the same time the source code is being decoded and trandated to the
IR, or it can be done separately, either using a profiler to build it in afirst execution or just performing a
partial decoding (jumps, branch and call instructions). If the static trandator has mechanism for profiling
the source binary before the trandation this information will be also very useful (for example frequency
of the taken branch, register usage, etc.) in the optimization phase.

After this basic information has been obtained (or at the same time) the source code is decoded and
trandlated to the IR we will use for the next steps. The decoding can be performed in any of the ways we
saw in the chapter about interpreters. Now the timeis not alimitation so multiple switch level and
conditional statements can be used fregly to perform an easier decode. The decoded data will be
organized in basic blocks for the optimization phase.

The optimization are modifications in the code (in this phase it will be in the form of an intermediate
representation) that, while maintaining the same behaviour, minimise the number of instructions or the
time spent in their execution. Asit happensin acompiler the optimization has two levels: local
optimizations and global optimizations. Local optimizations are performed in each basic block. Global
optimizations are performed between basic blocks. The local optimizations can be performed at the same
time decoding it is being performed, as soon as each basic block isfound. It can be also performed after
all the code has been decoded to the IR and grouped in basic blocks. Global optimizations are performed
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after the local optimizations changing basic block orderings and modifying their structures (mainly
optimizations with blocks).

After the code has been optimized it must be tranglated to the machine code of the target CPU. This
phaseis called code generation. Before the code is going to be generated the virtual registers (or temporal
variables) used in the IR have to be trandated to physical registers and addresses in the target CPU. This
phase is called register allocation. Register allocation algorithms are based in graph colouring algorithms.
The code generation phase can be implemented in diverse forms, as we will see. For example with atree-
matching algorithm: branches and subtrees of the IR (which is represented as a tree/wood) are trandated
to target instructions. At the same time can be implemented optimizations which are architecture
independent. The trandated blocks are stored somewhere and output to afile at the end of the trandation.

Later when the user would want to execute the trandlated binary it will execute it directly (if the run-time
support program is included in the output binary) or it will execute it through a specia loader. This
loader or the run-time support code will perform all the additional tasks needed to run the binary in the
target machine. It will trandate the source system callsinto the target system calls, it will emulate the
hardware devices, the interrupts and exceptions and the timing. In some casesit will also include a
falback interpreter for non-trandated code (non-detected indirect jumps, self-modifying code, dynamic
code generation).

Since most of the machines we want to emulate (videogames computers) can be considered as real time
machines we will have to reflect this characteristic in the trandation. In an interpreter CPU emulator this
is not a problem because as we saw just adding a cycle counter and update at each instruction is enough to
control the emulated CPU time. In the case of atrangation we will have to add checkpoints where the
timing will be updated. The run-time will be the part of the static trandator which will have to control
that the emulated time is the same that the real time. It will gointo an idle state if the emulation istoo
fast in the target machine. For information about real time translators check TIBBIT papers[19].

Intermediate Representations.

The intermediate representation (IR) has the purpose of heping in the optimization process and code
generation. Some kind of IR is always needed because the source code in binary format is not the best
representation with which perform modifications and trandlate to the target machine code. The difference
is the extension and type of the IR used.

A simple IR could be a decoded structure which would contain all the information of the source code
binary representation in an easier to access format. It could aso contain fields which would help in the
optimization and code generation phase.

From this simple IR it can be devel oped other |Rs which are more nearer to the idea of intermediate
representation used in compiler theory. In compiler theory different kind of IRs are used, some more
similar to mathematical representations of the algorithm (tree based IRs), other more nearer to the final
machine code, for example like RTL (Register Transfer Language). For amore intensive study of the IRs
used in compilers use the reference books about compilers, for example “ The Dragon Book” by Aho and
Ullman [20].

Another approach which could be used in trandlation is to use avirtual I|SA as intermediate
representation. This have the benefit that it could be designed a fast virtual machine which could perform
afast emulation of thisvirtua 1SA. The static trandator could be retargetable. For those target machines
which would not have a backend (code generator) implemented or just partially implemented (not all the
source code blocks or instructions could be trandlated) the trandator will output code translated to this
virtual ISA. Then thisvirtua machine code will be interpreted with a fast portable threaded code
interpreter. This approach is used in Dixie retargetable static trandator [21] and in Ardi’s Executor
dynamic tranglator [5].

The decision about using one or another IR depends upon what kind of trandation we will perform. As
we have said if we want a portable static trandator the virtual 1SA approach could be the more interesting.
A virtua ISA has aso the benefit that, if it iswell designed, it can store more information about the
original code than the usual IRs.
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Thisis one of the pointsin the decision between akind of IR and another. There are two points where
the IR has to be strong: the optimization phase and the code generation phase. For the optimization phase
it needs to help in the process of code modification, to find potential points for optimization and to help
exploit these optimizations. For the code generation it hasto help in the process of choosing the target
CPU ingtructions. It has also to keep enough information from the source code to perform the better
possible trandation between the two CPUs (for example if they both have common complex or non-
standard, or non-RISCy, instructions).

Local and global optimizations.

Code optimizations is the second point which makes trandation alot of faster than interpretation. The
first one was the overhead due to the multiple decoding (which could be reduced with athreaded code
approach) and the instruction by instruction based emulation. With optimization, most of time very
simple ones, the emulated code can be even faster.

The main point in optimizing the source code is to avoid some cal culations which are not needed for the
final result of the code. One question arises here. In anormal compiler the optimizations are performed
to the conversion of a high-level language code into an intermediate representation. This conversion or
compiling is performed without any intention of generating good code (at the first step). Therefore the
optimization opportunities come from two points in a compiler: the first step of compilation which
produce suboptimal code and the level of optimization in the high language level code.

In agtatic trandator the first oneis limited to the overhead due to the trandation from the source code to
the IR. In some cases this overhead will be greater and in other cases smaller. Something similar will
happen in the IR to target code trandation as it happensin areal compiler too. These ultimate
optimizations are called architecture specific optimizations.

The next optimization option for atranslator comes from the optimization level of the source code. This
level can be diverse, sometimes we will found very optimized binaries and other times non-optimized
ones, so the gain hereis very variable.

The main optimization point is some calculations which are performed by the emulated CPU which are
not used. Thiskind of calculation used to be side effects or specific to the behaviour of the source CPU
which either the programmer or the compiler were not intended to use in the program. Those calculation
can not be avoided in the real CPU because that it is the way it work but it would be useless to trand ate
them in the target CPU. The main example of those calculations is flag and condition code calculations.
Aswe have already said flags are very hard to calculate in some architectures. The interesting is that
although many instructions modify those flags it is less common that those flags are read and used. The
trandation will be performed so only the used flags will be cal culated.

The typical basic block based optimizations from the compiler theory can be also applied in this case,
static tranglation, because the time is not a problem. These optimizations include: common subexpression
elimination, dead code elimination, temporal variable renaming, instruction swap, algebraic
optimizations, etc. More information about these optimizations can be found in any book about compiler
theory [20].

All those optimizations we have talked about are local optimizations which are performed in basic
blocks. After thisfirst phase of optimization it can be performed another which will perform global
optimizations. Global optimizations are based in the relations between basic blocks. The main interest of
those optimizations is to speed up loops and therefore optimizations like loop unrolling or to keep the
invariant out of the loop are applied.

The only limitation of such optimizationsin a static compiler, because the time is not a problem, isthe
fact that it must be maintained some kind of time control upon the trandation. And there must be points
where the trandlation must stop and return to the run-time. In those places the state of the emulated CPU
must be restored and must reside in the CPU context structure.
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Global optimizations could use profiling information to reorder the translated code to avoid jumps and
get a better use of the code cache. These kinds of optimizations use to be more useful in dynamic time
because the behaviour of a program can change but they can also be useful in static trand ation.

Code Generation.

After al the modifications to the code are performed and al the possible optimizations implemented it is
time to begin the trandation to the target machine. This phase is also very important to create a good
trandation. In this phase the fina output code will be created. The trandations should be enough fast and
perform agood use of the registers and the instruction set of the target CPU.

Thefirst step in the process of code generation isto alocate real registers and or memory variables for
the temporal variables or virtud registers used in the IR representation. Inan IR it is common to work as
an infinite number of registers were available. Although as our sourceis aready a machine code
language with physical register allocated we could keep this information in the conversion to the IR code.
This could reduce a number of optimizations which could be done in machines with more registers than
the emulated machine.

There are different approach and the number of registersin the emulated and target CPUs have an
impact on them. It will be different in the emulated CPU has less registers than the target CPU (for
example in many of the CISC to RISC trandations). In this case a static allocation where each emulated
register has an equivalent target register is the best. The other target machine register would be used as
scratch registers. In the opposite case, when the number of registersin the target machineis more
reduced than in the emulated machine is a bit hard. Some mechanism for doing a good use of the few
target registers should be used.

In this case, and when the number of register is similar in both the emulated and target CPUSs, the choice
could be aregister allocation algorithm with perhaps some static allocation. In astatic trandator the time
isnot a problem so a slow register allocation algorithm can be used in any case. Some of the emulated
register use to be allocated statically because they are frequently used (for example the PC or the SP) but
the other could be allocated or not in register as they were being used in each basic block. A good
approach used by DEC trandators [22] isto allocate statically half of the registers (the more special
registers and the more frequently used, for call passing arguments for example) and allocate dynamically
the others.

There are different algorithms for register allocation. They can be found in books and papers related
with compiler theory. The basis of the register alocation agorithm is a graph colouring algorithm. There
is aso aphase of spilling, when the number of registers needed in the basic block islarger than the
number of available registers some of the already allocated registers must be deallocated. Good register
allocators are expensive in time.

After the register are allocated, and some times at the same time. The tranglation to the target CPU code
isstarted. The processis performed with pattern matching techniques. One or more IR instructions are
trandated to one or more target CPU instructions. The matching can be performed in different ways and
the type of IR used determines the algorithm. A tree based IR would use a tree based matching algorithm.
In acompiler theory book can be found example of code generation algorithms.

The basic algorithm for translate from a source representation to atarget representationisalto N
trandation. One source instruction is trandated to one or more target instructions. This can be used with
the IR but it has some problems. The main problem isthat the IR has to be very similar to the target CPU
to produce good code and therefore most of the instructions could be trandated one to one instruction. In
an IR which hides most of the work of areal CPU multiple IR instructions should be trandated to asingle
target CPU instruction (for example the typical tree matching algorithmsin compilers).

After thefirst trandation is performed to the target code, usualy just to an expanded or decoded
representation, it can be performed another optimizations. These optimizations are architecture related
and try to take advantage of special characteristics of the target CPU which are not present in the IR code.
One of the types of optimization which can be performed is peephole optimization. Thisjust stores the
last generated instructionsin a buffer and tries to find sequences of instructions which could be coded in

74



faster way in the target CPU. Other optimizations are related to the way the jumps work (absolute or
relative jJumps, delay dots, penalties), memory alignment question, reordering and scheduling of the
instruction in superscalar CPUs and others. If it was being used a decoded representation alast step
trangd ates this representation to binary code for the target machine.

Run-time.

The run-time is the code which provides an environment where the trand ated code can run in the target
machine as it was the source machine. The trandation just performs the part of the emulation related with
the CPU, more exactly with the emulation of the program code to be emulated. This does not include all
the other hardware which is present in a computer. In most static trandators it does not implies either the
emulation of the base and support code: libraries and operating system. The run-time must provide
mechanism for emulating the hardware devices, if they are accessed by the emulated program, and the OS
and libraries if they have not been trandlated too.

There are difference between the kind of programs and machines which are being emulated using static
trandation. Most of the examples which can be found perform just atrandation of user level code. Then
the system calls, some library calls (shared libraries) and the possible access to hardware devices are
tracked and converted by the run-time to the equivalent service in the target machine. For examplein
Digital’s FX!32 (x86/NT to Alpha/NT) the system calls, accessed through DLLs (shared libraries), are
captured. Then it is executed a function which trandate the arguments and results to the target argument
format. These functions are called ‘jackets in the trandator. In most Unix to Unix translators a similar
mechanism is implemented for emulating the system calls. In thiskind of trandators the emulation of the
hardware is unnecessary because all the access to the hardware is performed through the OS.

In the case that the emulated machine does not have an OS, we want to trandlate the OS or the user level
programs access the hardware a more complex run-time must be implemented. In those cases this part of
the run-time will be similar to the code of a normal emulator: aloop which executes N emulated
instructions and then emulates the other hardware devices. The access to the hardware (10 ports or
memory mapped 10) are emulated through memory handlers which could be inlined in the translation
(that is another optimization which can be performed with trandlation) or performing memory access
through afunction. This also implies that the trandlation will have to control the number of emulated
instructions or cycles.

In the case that the emulation must maintain the same time behaviour that in the real machine we will
talk about real time systems. Most of the static trandators are not implemented for real time systems and
their primary goal isto execute the emulated code and programs as fast as possible. TIBBIT [19]
introduces the concept of real-time systems static trandation. For maintaining the time the trandation
must be divided by checkpoints where it is counted the emulated CPU spent time (number of cycles). If
the number of cycles reaches a given counter the trandation jumps back to the run-time main loop which
decides either to emulate other hardware, other CPUs or other code trandations. After the run-time main
loops perform those entire periodic task istime to check if it must return to the trandated code. It checks
if the real time spent in the target machine is the same that the emulated time. If not it waits until the time
has been reached.

The frequency of the time checkpoints and the dot of time (number of cycles) to spent in trandated code
will be different in each emulated machine. A more exact emulation of the time means a more expensive
emulation. Thereisalot of overhead due to the additional code for time checking and the transition from
trandated code to the run-time loop. At a checkpoint exit the state of the trandation will be saved in the
CPU context structure. This also limits the scope of the optimizations in the translated code which can
only be performed between two checkpoints. It must be found the exact point where the accuracy of the
time is enough to perform a correct emulation and the performance losesis the less.

The run-time will have also to deal with the accuracy of emulation of interrupts and exceptions. The
problem with trandlation and interrupts and exceptionsiis that the interrupt could happen in the middle of
atrangdated block where the equivalent stated in the real machine could not be recovered. There are
different mechanisms for avoiding these situations but are expensive. Commit and rollback mechanism
and afallback interpreter are the mechanism used for deal with this problem. If such alevel of accuracy
is not needed it is better to avoid the implementation of this mechanism.
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The trandlation of the binary is organized in blocks of code. We will try that all the translated blocks
will connect each other, when atranslated blocks ends it jumps directly to the next trandated block. The
another option would be to return back to the run-time main loop, perform a search in atable for the next
emulated address and jump to the tranglated block. In some situationsit is needed, though, to return to
the main loop for performing that search for the next trandated block or for executing non translated
code. Indirect jumps, although the mechanism could be inlined in the block trandation, will return to the
main loop. Inthe case of anindirect jump if atrandated block is not found the run-time will either exit
and output an error and profiling information or will start an interpreter which will emulate this part of
code which is not trandated (the original code must be keep somewhere for being used in those cases).
The same mechanism works to deal with self-modifying code.

Implementations.

The problem with static trandation is that it does not have enough flexibility for emulating most of the
machines which are interesting in the emulation scene (videogame computers). One of the problem isthe
fact those machines need an accurate emulation of the time, they does not use to have an OS to support
the user programs, and the other hardware must be emulated as well.

Some of our target machines, the personal microcomputers, could be implemented using some kind of
static binary trandation if the emulated programs were working over an OS (sometimes they do not use
the provided OS). But most of the videogame consoles does not provide a good framework for
implementing a static translator. Other problems with using static trandation with those machines are the
legality of keeping modified (trandated) copies of the games binaries. The fact that it could exist
hundred or thousand of different games, and to keep atrandated copy will be wasteful (when the original
copy could work with another emulators). The static trandation uses to need some kind of feedback by
the person performing the trandlation and most of users would not have enough knowledge level.

In any cases most of those problems could be solved, but as there is a more flexible approach (dynamic
binary tranglation) stetic trandation has not been very used. Some Nintendo 64 emulators use some kind
of dtatic tranglation combined with interpreters and library and OS emulation (High Level Emulation or
HLE). It can be found some implementations which use static trandation or a modified form, translation
to ahigh level language and recompilation (decompilation), for emulating specific arcade machine games.

A good aternative for static trandation in videogame emulation would be aload time trandator which
does not keep the trandlation after the emulation ends. The emulation is performed when the game binary
isloaded and then it is emulated through the execution of thistrandation. When the emulation is
finished the trandation is erased. This also works maintaining a small database with hints and profiling
information which would help to perform a correct and faster emulation. This approach isabit similar to
the used in some Nintendo 64 emulators.

In the emulation of arcade machine gamesit could be aso interesting to use static trandation. The
number of binariesis very reduced, less than a hundred in any case, and it is easier to discover the settings
(profiling information) for each of the games to be emulated. There is also a good separation between
code data and the graphic and sound data (separate ROMs and even boards). And in each timethereisa
single program being emul ated.

Most of the information about real static trandators can be found from academic researches and
commercial products. Static tranglator has been used as good aternative to source code recompilation for
porting old applications to new architectures. The first example of using static trandation was in the 1987
when source HP3000 programs were trand ated to the new HP architecture.

Later it has been used by Tandem (1991)[23], Digital (DEC) and other companies. Good sources for
information are the open papers about Digital static trandators. DEC implemented two static trandlators
for trandating from their old VAX architecture, from MIPS (R3000) and from SPARC architecture to the
new Alpha architecture (1992, VEST and mx) [22]. Those trandators work at a user level and provide a
run-time which emulates the VAX and ULTRIX origina OSes. The run-time also provides a fallback
interpreter for those situations where there is a problem with running atranglation or the trand ation does
not exist.
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Another interesting static tranglator implemented by DEC is FX!32. FX!32 isaframework which
executes transparently x86 code for the Windows NT OS over an Alpha machine running NT. This
emulator combines afast interpreter which performs profiling at run-time with a background static
trangdlator which translate the profiled code and storesit in adatabase. The system attachesto the NT
system and detects when a

TIBBIT [19] is a dtatic tranglator which tries to emulate areal-time system. It is useful about how the
time must be implemented in a static translator and the accuracy level and overhead it has.

Other interesting projects are UQBT and Dixie [2] [21] which are tool sets for implementing retargetable
static trandators. UQBT uses a more nearer to acompiler approach and the IRisaRTL. Dixie usesa
virtual machine approach. The IR isavirtual machine code (a bit similar to the AlphalSA), 128-hit
opcode length which supports big and little endian operations, any data size (8, 16, 32 and 64 hits) and
vector instructions. In afirst step the source code is trandated to the virtual machine language. This
trandlation can be executed through a virtual machine (Dixie VM). At a second stage the Dixie codeis
translated to the target machine code and executed through the same DVM. If some blocks of code are
not trandated to target machine code the DVM will execute the Dixie code. Both static trandator
frameworks provide specia compilers, languages and tools for describing the source and target machines:
instruction sets, characteristics of the CPU (endiannes, data size, registers), the OSes, the binary formats.

3. Dynamic Binary Translation

The alternative to static binary trandlation is dynamic binary trandation. Although in fact dynamic
binary trangdlation can be considered slower than the static translation approach it has many advantages
and it is very interesting for the kind of machines we want to emulate. Dynamic binary trandation is
slower (theoretically) than the static approach for two reasons. Thefirst reason is that the trandation is
performed at run-time so to the time spent emulating the code we have to add the time trandating it. This
implies that the translation must be performed as fast as possible. It also means that the benefit from
executing trandated code must overcome, by far if possible, the time spent trandating code. The second
reason derives from the first, as the time spent in the trand ation must be the less possible most of the
optimizations from a static trandator can not be performed. This reduces the quality and performance of
the trandated code and thus of the emulation. In the other hand there are some optimizations, as code
reordering and inlining, which can be performed easily and with better information and result at run-time.

But dynamic trandation has important advantages over static approach. Static trandation works better
for standal one binaries or programs which are executed in a machine using afull featured OS. Those
binaries use (although it is not mandatory) to have a structured format which differentiates between data
and code. Those binaries do not access the hardware but use system call instead. Basicaly static
trandation works well for user level programs. The system level is emulated through the trandation of
the OS system calls to the target OS or hardware. And most of time they usually do not use nasty
programming techniques as self-modifying code or dynamic generation of code. Those are the main
problems with normal static trandation: it just runs user level code, it needs a good separation between
data and code and does not support easily self-modifying code or dynamic generation of code. Dynamic
binary tranglation solves all those problems.

Dynamic binary trandation can easily emulate all the code in a given machine, from BIOS code and OS
codeto user level code. It workslike an interpreter emulating the code asiit is being found and, in fact, in
many cases it works with an interpreter for the first emulation pass. Only the code which actually
executed is tranglated (in some cases just the code which is frequently executed), in a static trandator all
the code must be already trandated at run-time (or it should use afallback interpreter for the new code).
This helps to handle easily indirect jumps which can be a problem in static tranglation. It also means that
any kind of dynamic generation of code, code load and self-modifying code can be handle. But it will
have the cost to detect this new code, throw away the previous trandation and start a new trandation.

Dynamic binary trandation can be implemented so it provides a software layer which hides the target
machine and shows the interface of the emulated machine. Thisway the emulated code can be executed
transparently. Thisisthekind of emulators we are interested. The videogames machines and home
microcomputers which are our main target does not have an OS or it isvery limited. The program or
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game accesses directly the hardware and many times they use self-modifying code. Dynamic binary
trandation (or dynamic recompilation, dynarec in short, asit is known in the emuscene) is also a best
option over static tranglation because it is not easy to trand ate the thousand of different programs which
exist.

Basic algorithm of dynamic binary translation.

The basic agorithm for dynamic binary trandation resembles the standard interpreter (or maybe more
nearly the threaded code interpreter) algorithm. It just adds a phase which perform the trandlation of new
code and a phase where the trandlated code is executed. There are two basic ways a dynamic trandator
can work: as a standalone dynamic trandator or as an interpreter with adynamic translation and

optimization phase. We will see the two algorithms.

The agorithm for the interpreter with a dynamic trandator is as follows:
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Dynamic binary translator with interpreter + profiler.
while(end)
{

tranglatedCode = ReadTrand ationCache(PC);
if (trandatedCode != NULL)

{
blockinfo = ReadBlocklnfoTable(PC);

if (blockinfo==NULL)

blockinfo = CreateNewBlockInfo();
}

blocklnfo.executions++;
if (blocklnfo.executions > MAXEXECUTIONS)

trand atedCode = translate(blocklnfo)
(*trand atedCode)();

}

ese

{
runi nterpreter(PC, blockinfo);

}

ese

(*trandatedCode)();

}
}

Figure 41. Dynamic binary trandation algorithm (interpreter-profiler based).

Just the code which is frequently executed istrandated. The rest of the code is executed through an
interpreter. The agorithms start searching atransdation of the code in the address pointed by the
emulated PC in the trandation cache (a structure which keeps the trand ated blocks of code). With the
trandation cache exists a structure which will associate the origina address of the trandated blocks with
its address in the target machine. Another characteristic of this structure is that it must be accessed as fast
as possible because the transition between blocks must be the fastest possible. It is usually implemented
using different kinds of hash tables. Some times, if the address range where it can be found codeis small
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enough, the structure performs a direct map one to one for each code address for its equivalent (if it
exists) tranglated code address.

If atrandation for the actual PC addressisfound it is executed. If thereis not atrandation for the actual
address this code will be executed through the interpreter. The first step before emulating this code isto
determine if thisit isthe first execution of the code. If it isthefirst anew structureis alocated to store
information about the block of code which startsin this address. If there was a previous execution this
structure isretrieved. This structure will store profiling information about the block of code. This
information includes the entry point address, all the possible exit address, the number of previous
executions of the block and any other profiling information that the interpreter would be gathering.
Before the interpreter is called the counter of the number of executionsisincremented.

If the counter reaches alimit value the trandator is called and the block is trandated to target code and
then this trandation is executed. If the counter is below the limit of executions for performing the
trandation the code is just executed through the interpreter. The interpreter can be implemented with any
of the techniques which were discussed in chapter 3. The ideaisthat the interpreter will just run glue
code, code which changes frequently (self-modifying code or dynamic code generation), any code which
israrely executed. The code which is frequently executed (loops) is trandated and the execution through
theinterpreter avoided. The interpreter must also get profiling information. The main information is
about the execution flow changes (jumps, function calls and returns) which are needed to build the blocks
(and create basic blocks) and keep the frequency of execution of each piece of code. Another information
could be used to improve the translation optimizing the trandlated block to the observed behaviour of the
emulated code.

The trandator will perform the trandation to aform of intermediate representations, any optimizations
that the dynamic trandator implements and it will generate target machine code. This code will be stored
in the tranglation cache. The tranglation cache could be implemented to keep for ever (the time of the
emulation) the trandation or it could have implemented a garbage mechanism which would throw away
non used trandations. Such amechanism iswasteful and keeps some optimizations from being used so
most of the times should be avoided. If the system could be loading new code frequently (an emulated
computer which runs for along time) this mechanism should be provided, for single program emulation is
not necessary.

The trand ated code and the interpreter will be the responsible of keeping a correct emulated CPU state
before returning the main loop. They will aso have to update correctly the cycle (time) countersif the
dynamic tranglator must be time limited.

The algorithm for a pure dynamic binary trandator is simpler:
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while(lend)

{
trand atedCode = ReadTrand ationCache(PC);

if (trandatedCode != NULL)
{

}
(*trandatedCode) ();

translatedCode = trand ate(PC);

}

Figure 42. Dynamic binary trandation algorithm (pure).

The different functions are equivaents to the onesin a dynamic trandator with afirst pass interpreter,
but now the interpreter is gone and al the emulation is performed through trandation. This approach has
advantages and has disadvantages. The interpreter saves the dynamic transator from translating code
which is not going to be used again. This can be very useful if the code is abusing of self-modifying code
because each time the code is modified it must be retranslated. The interpreter also provides useful
information for the trandation like the path followed by the code. The advantage that a pure dynamic
tranglator hasisthat it reduces the time of development because it does not need and attached interpreter.
In a pure dynamic trand ator the number of optimizations performed to the trandated code will be smaller
because the trangdlation must be faster.

This makes pure dynamic trandators more suited for emulators with alow level of complexity and less
ambitious. Thefinal performance of apure dynamic trandator and a dynamic tranglator with interpreter
could change in each case, but it is expected that awell implemented dynamic translator with interpreter
and afull set of optimizations will be faster. Pure dynamic trangdlators are very suited for the kind of
projects we study in this documents (microcomputers and videogames computers). We want to emulate
those systems as fast as possible but the emulator project must be kept in areasonable level of difficulty
because most of timesit will be implemented by just one or two programmers. The fact that most of the
work of the emulated machine is performed by external hardware to the CPU (sound and video hardware)
makes al so that emulation of the CPU does not have to get al the effort in the emulation. Most of times,
if the CPU iswell implemented, the more expensive part in the emulation will be the video and sound
part. A full featured dynamic transator with interpreter, profiling and large background optimizations
would have little impact in the final performance and would increase largely the development process.

In the pure dynamic trandator the first step is to search atrandation for the block of source code which
begins at the address pointed by the emulated PC. If atrandation isfound it is executed directly and the
trandated code will continue in execution, usually branching directly from one block of trandated code to
the next, until it reaches the time limit (if the translation must be time driven) or an address which can be
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resolved by the trandlation (indirect jumps) isfound or there is not trandation for the code in this address.
If atrandation for the code does not exists it is performed the trandation at thistime and it is executed.
The tranglation uses to be performed as fast as possible with minor optimizations or no optimizations, for
example just redundant flag calculation elimination and similar pegphole optimizations.

In any case a pure dynamic trandator could be implemented with all the functionality of a combined
dynamic trandator-optimizer with an interpreter. For example the first trandation could be performed as
fast as possible (just code template generation for example) with some instructions added for performing
profiling. Further executions of this fast trandated block would gather information about the execution
and if this block is executed a number of timesit could be retranslated through an optimizer. There
would be different levels of optimizationsin the trandations. All the executed code would be trandated
but only the more frequently executed blocks would be trandated with optimizations. The benefit is that
it could faster than an interpreter though of the trandation cost of al the code and thereisjust away to
execute the code which reduces the complexity. Debug a dynamic trandator and an interpreter is harder
than just debugging the dynamic trand ator.

From this two basic algorithms there are different possible implementations of a dynamic trandlator.
From the more basic dynamic trandator which could be implemented extending an interpreter or a
threaded code interpreter into atrandator through the generation of trandation using templatesin an
instruction by instruction basis. To the full dynamic trandators which are afirst layer of software for
running al the other software over this architecture (Transmeta Code Morpher and IBM’ s Daisy) using
all kinds of optimizations, different levels of trandation, interpreters and profilers. The main differences
arein the use of an interpreter, the range of optimizations performed and way the target code is generated.
Between those two approaches, template code generation and a full dynamic trandator, exists an
aternative of direct trandation between source and target code using two layers (source code layer and
target code layer) and decoded structures, rather than an IR, implementing some basic optimizations (flag
suppression and peephole) which is very suited for the kind of project we are studying. This approach
produce better trand ated code than a template code generator but it does not have the extreme complexity
of afull dynamic trandator. It isalso avery suited approach for produce time accurate trandations. [24].

Translation cache.

The trandation cache is the structure where the trandated blocks are stored. Basically isjust amemory
region reserved at the startup of the dynamic tranglator. This structure can grown up or not, it dependsin
the characteristics of the machine emulated and the dynamic trandator. 1t can aso provide mechanism
for freeing trandated blocks or to flush the entire cache. It dependsif the way the dynamic trandator
handles self-modifying code or what it does when the trandation cacheisfull. Flushing single trandlated
blocksis hard to implement if the trandated blocks use a technique to optimize the execution which links
directly one translated block with its next trandlation blocks to be executed. This avoids the overhead of
returning to the main translator block after each trandlated block is executed. Garbage collection in the
trand ation cache thus, should be maintained to the minimum. In special cases which has to be detected,
for example when an emulated program finish and a new one is loaded, it will performed a controlled
flush of al or a part of the trandation cache. In some architectures self-modifying code and dynamic
code generation can be detected through memory cache flush instruction.

About the storage the trandation cache just has to keep the trandated block correctly aligned for a good

cache performance and in some cases try to reorder the trandated blocks to enhance the locality of the
code.
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Figure 43. Trandation cache.

The other function related with the trandation cache is the mechanism to link the source code addresses
with the trandated block addresses. Thisisusualy implemented using some kind of hash table. This
hash table is used by the translator main loop to know if exists atrandated block starting in the actual
source address (the addressin the PC). If it exists the hash table returns the start address for the trandlated
block and the main loop can jump to this code. This address trandation table can be implemented in
different ways but it has to be as fast as possible for reducing the time spent in the tranglator main loop.
One implementation could be a one to one table, each source address with his translated code address.
Thisimplementation is useful for machines with a limited address space, or when the region of the
memory where the code can be located is known and limited. It is also implemented for instruction based
trandators, where each source instruction has its separated trand ation.

Interpreter and Profiler.

The interpreter, in those dynamic translators which make use of afirst pass interpreter, can be
implemented with any of the techniques studied in the chapter 3. Usually, as a dynamic trandator that
combines trandlation with interpretation is already a complex projects, it isavery fast interpreter and it
could have been implemented before the trandator to provide a basis from where to execute emulated
code. Later asthe trandator was being tested and expanded the time spent in the interpreter would be
decaying. An interpreter emulator is faster to implement and to test so it can be agood basis for the in-
development trandator.

l main loop us;eolbytheT

trandator
Interpreter
(executes
/V (info about
Profiler the blocks)
gathers
information

Figure 44. Interpreter + Profiler.
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The interpreter has various purposes. It executes code which is not aready trandated until it reaches a
number of executions and the trandator istriggered to trandate that block. This helps to reduce the
impact of the trandation overhead in the full emulation time because just the frequently executed blocks
of source code are trandated and optimized. 1t also reduces the impact of self-modifying code and
dynamic generation of code because if this blocks of code change frequently or they are not very used the
trandator work is not affected. An interpreter can be fully responsible of the entire problem around
self-modifying code and dynamic generation of code easing the work of the translation cache manager. It
also executes those parts of the code or instructions which are never translated by dynamic trandator. It
is possible that some complex instructions or instructions which can not be found frequently from the
source CPU are not implemented in the trandlator and the interpreter is used to execute them.

Finally the interpreter works as an execution profiler gathering information about the execution of the
source code. The main information which is responsible of obtaining is the execution flow changes. It
traces the entire jump, branches, procedure calls and returns building the information about the basic
blocks of the source code. Thisinformation will be used later by the trandator and optimizer for building
the trandated code. This and other informations which can be obtained can be used for implementing
run-time or dynamic optimization, optimizations which depend in the real working of the source code.
Such optimization include reordering of the code for reduce the overhead of the jump instructions.
Additional information like register usage, flag usage and frequency of access to memory can be used to
exploit other optimizations.

Translation Unit.

One important to take into account in a dynamic binary trandator isthe trandation unit. In astatic
trandator the translation unit uses to be the basic block which could be extended to a full function or all
the binary when the global optimizations are performed. But working with basic blocksin a static
trandator is possible because it can spent as many time as needed optimizing each block and later
optimizing between blocks (usualy inside functions). In adynamic binary trandator the time for the
trandation and optimizationsis limited. Some static trandators could work with source instructions as
trandlate unit but it would have just afew optimizations. It could be useful perhaps as aform of
predecoding ,as in threaded code interpreter, performed at the startup.

In adynamic transators using the source instruction as the trandation unit the optimizations which can
be performed are very limited. It can avoid redundant flag cal culation, perform some peephole
optimizations, some memory and IO access inlining and other simpler features. Such adynamic
trandator could have been implemented using template code generation at would be just a bit faster than a
threaded code interpreter would. Another reason for an instruction by instruction trandation could be the
necessity of avery accurate timing. In some old machines with slow CPUs (8-bit CPUs) the programs
need a cycle exact timing. In most of them which use this timing to access the video and sound hardware
any important change in the timing means a mess in the image and sound output. In those casesitis
needed a time check after each source instruction (or small groups of instructions) and the trandlation
must be performed instruction by instruction. In any other cases the instruction hasto be avoided as the
trandation unit. It isonly useful for timing and fast developments of interpreter derived trandators.

The basic block as the trand ation unit has some problems in dynamic binary trandation. In astatic
trandator all the code is available at the trandation time and the list of basic blocks can be built with more
or less confidence and ease (there is the problem of indirect jumps though). In adynamic trandator the
codeistrandated asit is being found or executed and it is hard to ensure if it isareal basic block or a
future jJump instruction will jump in the middle of the block. Although trandators which use the
interpreter profiler could ensure a bit more the 'basicity’ (how much chances of being area basic block)
of ablock the problem is still there. This problem could be solved with multiple trand ations of the source
code blocks or with retrandations. The second should be avoided if it hastoo much overhead. The first
solution means that the blocks will be trandlated asthey are found. If in the future thereisajump in the
middle of the trandated block and, therefore, atrandation for this address does not exists a new translated
block isbuilt. The last haf of the origina source block will have two trandations.

Another problem related with basic blocks is that although it is the basic unit for optimizationsin a
compiler and in a static trandator it is not very suited for dynamic trandation. A dynamic trandator must
perform the tranglation as fast as possible and most of the optimizations are not performed. The main
point is to optimize the execution of loops so the trandated code could be looping inside itself and it



would not need to return to the main loop or jump to another block. That means that a basic block istoo
small for dynamic trandation. In acomplex dynamic transator with different levels of optimizationsin
the trandation basic block could be used for local optimizations like in a static trandator.

Another dimension of the trandlation unit is how much code is translated each time the trandlator is
called with agiven address. Trandate just one instruction would be silly because the entire overhead
would bein the call and return from the tranglation functions. Translate abasic block is not a good option
either because most of the basic blocks are very small. The tranglation could end at the first jump but it
would be till too small. Theideaisto trandate as much code as possible each time. In adynamic
trandlator using profiling that means all the code which is reachable from the start address which has
triggered the trandator because it has been executed enough times. In a dynamic translator without
interpreter profiling that means all the code which is reachable from the start address through any jump
which can be solved. In some casesit will be alimit (for example a maximum number of instructions,
1M, or code size 4MB, this depends in the amout of memory available) to avoid to trandate too much
code.

In adynamic binary trandator with an interpreter profiler the code which must be trandlated and
optimized and some times retrandlated and reoptimized is aready know so there is no need of alimit. In
this case the optimizations and the manner it is performed the trandlation depends upon the time which is
given for the trandator, and this time can be relatively large if a good optimization of this section of code
isneeded. In adynamic trandator which translates as soon as it reaches de code time is always more
limited. Most of time the differentiation in basic blocks for the optimization phaseis not performed and
the source code is just parsed into decoded structures for the source code which suffer some modifications
(optimizations) and are trandated to decoded structures for the target code. Finally the target codeis
generated from this structures with some target dependant optimizations.

Optimizations.

There are various levels of optimization. In atemplate code generator for example there are almost no
optimizations. Perhaps it could be detected if the flags generated for the current instruction are going to
be erased by the next instructions without being used, then a template without flag calculation could be
emitted for thisinstruction. The number of possible optimizations increases as the complexity of the
tranglator increases.

The IR chosen for the dynamic trandator affects to the optimizations which are going to be performed.
In the case of atemplate based code generation it does not usesto exist any kind of IR so the
optimizations could be just performed over the flow of instructions being translated. Another approach
would be to use decoded structures for both the source and target CPUs. First the source code is decoded
into alist of structures which the decoded information of the source code. At thislevel can be applied
source dependant transformations and optimizations. Then this decoded list of instructionsis trandated to
adecoded list of target instructions, basically in aone by one approach, a source instruction becomes one
or more target instructions. Some optimizations, most marked in the previous phase can be performed in
this process. Then the decoded list of target instructions can be modified with some target dependant
optimizations and the final trandation is emitted.

Other dynamic trandators could use a virtual machine or code which could be suitable for implementing
afast threaded code interpreter which could be used for add portability to the system. Ardi’s Executor
uses this approach. Finally afull IR of some form, atree based IR or athree address code (or register
transfer language) IR. This IRs can be used for implementing any kind of optimizations but they are
expensive in the decoding, the optimizations and the code generation.

The common optimizations which can be found in a compiler or in a static trandator can only be
implemented in those complex dynamic binary translator which perform profiling and retranslating for
obtaining a better code asit is being more frequently executed. The same happens with the common
global optimizations with loops and inside the scope of afunction. The optimizations have to be
performed as fast as possible because it is atime which is added to the emulation. Thislevel of
optimizations is only affordable for blocks code which are alot of used and use to be only implemented in
large and complex dynamic trandator environments like Transmeta Code Morpher or IBM Daisy.
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In any case the optimizations which are basically implemented in dynamic translation, in any kind of
implementation, and which are the most useful and fast to perform are: redundant condition code
calculation suppression, memory access inlining and various kind of peephole optimizations to do a better
use of the target ISA. Aswe said in previous chapter the calculation of flags could be very expensive, for
adynamic trandator it is easy to parse the code to be translated and check the usage of the flags. Only the
flags which are really used are really generated and target code generated for calculating them. With the
memory access could happen the same, those address which can be determined in trand ation time does
not need to go through the memory handler list but just access the proper handler or memory buffer. The
peephol e optimizations depend on the source and target 1SA and try to take advantage of features that the
source CPU does not have and the target has. For example it could be detected a 16-bit addition in an 8-
bit CPU without 16-bit addition using two instructions and be translated in the target CPU into asingle
instruction.

In adynamic trandator thereis alevel of optimization which is not present in acompiler or in astatic
trandator: the dynamic optimizations. There are a many references about dynamic recompilation and
compilation at run-time which are used to improve the code with run-time information about the resl
behaviour of the code. Such techniques can be applied in adynamic translator that implements a
powerful trandator and a profiler. Such optimizations use to be associated with the changesin the
execution flow and tries to reorder the code to reduce jumps, reduce jumps overhead (for example
mispredictionsiif it is applicable to the target CPU) and improve the locality of the trandated code. HP's
Dynamo implements some of this techniques over the same HP architecture (it is not dynamic trandation
but just dynamic optimization).

Register Allocation.

Register alocation is a critical part of the trandation, keeping as many of the source registersinto target
registers as much time as possible is the main objective. This reduces the memory access and the number
of instructionsin the trandation. We have again the two approaches: dynamic alocation and static
allocation. A good option if a static allocation is not possible is a mixture between static and dynamic
alocation. Dynamic allocation in a dynamic trandator has two problems: it is expensive and increases
the trandation time and it has the problem of having to spill all the allocated registers after each trand ated
block end. If for each trandated block the register are alocated separately a mechanism for maintaining
an equivalent status (registers) between trandated block is needed. The easier solution would be to store
all the used source registersin the CPU context structure at the end of the trandated block. Then the next
trandated block would start allocation registers from scratch and reading them from the CPU context
structure. Thisis very wasteful in the number of memory access and it could only be useful if the
tranglated blocks are large. Another solution would be a structure for passing info between blocks about
the actual register allocation but it would be harder to implement.

The static solution is the best possible between the alocation is kept between blocks and the number of
memory access for accessing the registersis minimized. Only when the dynamic translator must exit the
source registers are stored again in the emulated CPU context. The static approach needs that the number
of registersin the target CPU would be larger than the number of registersin the source CPU. If that is
true we are in the best case, for example emulation 8-bit CPUs or x86 over a RISC CPU with 32 registers.
Sometimes the number of registersis very similar between the target and the source CPU, this happens
when trandating similar architectures like two RISC CPUs. Some of the target register must be used as
scratch register and for other purposes. Then agood approach is to statically assign the more frequent
source registers to target registers and perform intrablock register allocation for the rest of source
registers.

When the target register are less than the target registers we have a problem and we will have to use
memory for storing the source registers. If some source registers are very used it would be agood ideato

keep them in some of the target registers and all the others be accessed through memory or temporal
assignments to target registers.

Code Generation.

The code generation can be implemented in different ways. The pattern matching approach we talked
about the static trandators would be wasteful and only useful if the dynamic translator is using afull
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featured IR (many timesin the form of atree to use tree matching algorithms). Complex dynamic
trandlators with background optimizations and with different levels of trandation could use this approach.

Aswe have talked in other sections a simple implementation for dynamic binary trandation isto use
template base code generation. This just reads the source code, parsing perhaps a block instructions for
finding some hints (flag usage), and emits for each source instruction a preassembled block of target code
which emulates thisinstruction. This preassembled blocks are emitted one next to the other and at the
end of the trandated block it is performed a patching phase which writes the information about relative
jumps and literal values. Thisisalimited form of dynamic trandation which produces really bad code.
The preassembled instructions are more or less the same code which can be found in an assembly
interpreter, therefore the main benefit is that avoids the decoding overhead and the jump from one the
functions which emulates one instruction to the next.

The last implementation is that the target instructions are really assembled by the trandator but the
trandation is till performed more or lessin aoneto N basis. One source instruction istrandated to one
to N target instructions. The best it to have use two lists of decoded instructions. One of the list will be a
list with the source instructions in a decode format. 1n this form the source instructions can be anayzed
and some changes and hints can be added for the next phase. Then the decoded source instructions are
trandated in the one to N basis to decoded target instructions. Thislist of decoded target instructionsis
not target code still so more modifications can be performed in this phase. At last the decoded target
instructions are sent through a code emitter which uses the decode information to assemble real target
instructions.

The format of atrandated block can be very different but usualy it starts with a prologue, continues
with the trandlated block body and can end with an epilogue. In the prologue it can be performed
initializations for the trandated block, for example the emulated registers can be loaded into the target
registers. It can also be used to check if the emulated code has changed with a checksum for detecting
self-modifying code. It is not the best way to detect self-modifying code but sometimesis an expensive
but useful solution. It can also check the time. If the remaining number of cyclesto spent in the
emulation of the CPU is smaller than the number of cyclesit would take the trandated block the
trandated block will return to the trandator main loop. The time checking can be also implemented in the
epilogue, the difference isthat in this case the CPU emulation will stop when the number of cyclesto
emulate has been exceeded. The epilogue serves also to restore the state between the different trand ated
blocks and the trandator main loop. It can also implement a direct jump to the next translated block to be
executed. Thisavoids ajump back to the trandator main block after the execution of each block. The
body of the tranglated block contains the trandlation of the source block code to the target code. Each
trandated block can also have additional information attached to it and not just the code of the trandation.
It could be added counters for profiling with what frequency is being executed. In atrandated block
which ends with an indirect jumps the last jump address could be stored to try afast jump to the next
trandated block without returning to the trand ator main loop.

Implementations.

Many implementations of dynamic tranglators can be found. The first academic researches start in the
90. Shade and Embra[8] [13] are dynamic binary trandator which are used for profiling or in
frameworks which are designed for profiling and simulation (Embrais part of the SSmOS framework).
Shade introduces the basic techniques around a fast dynamic trandation at alow cost. Embra continues
the work of Shade and adds the emulation of the source CPU MMU and cache. Although the last oneis
not very useful for emulation in some systems it will be interesting to emulate the MMU of the CPU.

At the same time different dynamic binary translator were developed for commercial use. Apple
extended the Motorola 68000 emulator, which used an interpreter, and implemented a full dynamic
trandator for execution old Mac applications [18]. This emulator used avoided the problem of the self-
modifying code tracking the use of the cache flush instruction which was needed in the 68K systems with
cache implemented. Other interesting products is Ardi’ s Executor [5] dynamic trandator which emulates
a 68K based Mac over ax86 architecture. This emulator uses a virtual internal representation which can
be emulated through a threaded for systems which does not have the trandator layer. Executor trandlates
the 68K code to x86 code. Other products are SoftPC and Virtua PC.
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Lately two commercial emulators of the Sony Play Station have stepped into the market. Bleem from
Bleem co. fails to achieve an accurate emulation of the PSX and the number of games which are playable
islimited, but it isavery fast emulator and uses Direct3D to enhance the PSX graphics. Connectix has
developed Virtual Game Station for the Mac, later ported to the PC. VGS emulates very accurately the
PSX and most of the games work perfectly but it is a bit slow and does not uses Direct 3D emulating al
the PSX 3D hardware through software rutines. Both use dynamic trand ation for the emulation of the
PSX MIPS.

In the time when most of the CISC architectures were abandoned and replaced by RISC CPUs the trend
of the binary translation was to use static translators as an alternative to port applications from the old
CISC architectures to the new RISC architectures. The different Digital static translators are a proof of
thistrend. Today there is anew changein the architecture of the CPU. The RISC superscalar, with
implicit instruction parallelism and instruction reordering seems to be replaced, by part of the industry,
with VLIW (Very Long Instruction Words) with explicit parallelism. Now the effort of obtaining a good
ILP (instruction level parallelism) is going to move from the CPU to the compiler. Theintention now is
that this new implementation of the CPUs does nat affect to the existent code. Theideaisto add a
software layer which will hide the real architecture of the CPU in the system and show a virtual
architecture which will maintain the compatibility with the old code. Now the dynamic trandator is a part
of the system which in alevel between the hardware and the OS. Implementations of this new trend are
Transmeta Crusoe processor and Code Morpher software and IBM Daisy dynamic binary trandator.

Transmetais a company which has designed a VLIW CPU which uses a software layer, Code Morpher,
to hide the internal VLIW architecture and execute transparently x86 code. The Code Morpher software
is adynamic trandator which uses an interpreter, profiling and different levels of optimizations for
executing the x86 code in the VLIW processor. The Crusoe processor implements features which helps
to enhance the performance of the dynamic trandator like register shadowing, commit and rollback
instructions for precise exception emulation. The Crusoe software resided in ROM and it isloaded in a
separated and protected region of the system memory at the startup before starting the execution of the
os.

Daisy isan IBM research project which is open source and can be downloaded by everyone. Itis
basically the same idea than Transmeta Crusoe and Code Morpher. The Daisy project just implements a
simulator of aVLIW processor and the dynamic trandator which executes any code from the source
machine over this processor. The VLIW implements also features to help the trandation. Daisy
implements PowerPC and S390 trandators. The main effort in this project isto achieve a good usage of
the ILP facilities of the VLIW processor. Thus complicate algorithms for reordering an implementing a
good instruction scheduling are being developed in the project.

Other project of interest is UQDBT which is the dynamic version of the multitarget and multisource
UQBT dtatic trandator. Itisin development. HP has developed Aries a dynamic trandator from HP PA-
RISC architecture to the IA-64 VLIW architecture. HP also developed Dynamo dynamic optimizer
which tries to dynamically optimize the HP PA-RISC code. Dynamo uses afast interpreter emulator of
the same native | SA to profile the paths followed in the execution of the code. After a number of
executions and atrace of the execution flow has been built it performs a‘trandation’ or regeneration of
the native code which tries to reduce the jump overhead and improve the code locality. The results of
such dynamic optimizer are limited but it could be useful as a backend for areal dynamic trandator.

In the emulation scene it can be found diverse implementations of dynamic binary translator (called
dynarec in this ambit). Most of the emulators for the more modern machines use this approach (PSX,
N64) or similar ones. There are various open source emulators which use dynarec (or DBT). Usualy is
just atemplate code generator but in some cases it could feature afull dynamic trandator, for examplein
Basilisk and UAE J T Motorola 68K emulators.

It can aso be found some last year university projects related with dynamic binary trandation, for

example Julian Brown's ARM dynamic binary trandator Armphetamine [26]. David Sharp isworking in
asimilar project about ARM trandation. [27]
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Chapter 5. Memory, Interrupts and Timing.

In this chapter we will see some concepts that we have aready seen in the chapters about CPU
emulation. We will study them morein depth and in a separated chapter because they are very important
for performing agood emulation. Thefirst topic we will talk about will be memory emulation. Aswe
will see afast emulation of the memory accessis very important for a good performance. We will see
why aplain access to a memory buffer is not enough for the emulation of our target machines. We will
see advanced topics about the emulation of the memory as how to emulate aMMU or how to use the
target CPU MMU for memory emulation. In the second point we will talk a bit more about the emulation
of interrupts and exceptions. Interrupts are related with the communication between devices and the
CPU, exceptions are just related with the CPU. At the third point we will talk about the importance of an
exact emulation of the time in out target machines and how it can be implemented in the CPU emulation.

1. Memory emulation.

The memory address space of areal machineis not like the virtual address space in a process running
over an OS. Itisnot aplain area of memory which can be accessed with freedom. There are specia
regions which map real physical memory, others are mappings for memory from other devices (video
memory for example) or mappings of device registers. Some areas of the memory space contain a type of
memory than the others, for example aregion for ROM and aregion for RAM. Some machines
implement complex mechanism for mapping the real physical memory to a given memory address, for
exampl e bankswitching and MMUs (Memory Management Units). This behaviour of the memory must
be emulated if we want to run any kind of applicationsin our emulators.

Something important to know is how the machine we are goint to emulate use memory. We could
differentiate two kinds of machines here. Most of the old cartridge based (ROM based) videogame
consoles and arcade machines used ROM based memory for the all the application code and data. There
were then two separated regions of the memory space: the ROM space which is only read and the RAM
space can be written. The ROM space must be write protected because some games tried to write in
(because of errorsin the code or for performing antipiracy checking) so the memory emulation must
implement this protection. The RAM could be accessed freely. Some of the memory regions could be
mirrors of other memory regions so they were mapping the same physical memory. This happened
because not al the bus address lines were used to decode which device or memory chip wasto be
accessed. There could be large regions of the memory space which are not used. This regions should
return a default value (0x00 or Oxff) when read and be unaffected by writes. Some regions could map
video or sound memory devices and other registers from the hardware devices.

The other kind of machines is microcomputers and the more modern CD based consoles. Their memory
address space is more similar to a standard machine. They have alot of more RAM and only BIOS and
internal OS are stored in ROM format. The RAM is how needed to load the data and code from the CD-
ROM, disk or tape support. The other parts of the memory address space are very similar with mapped
device registers or memory and non used regions.

In the ROM based systems the cartridge or ROM cards can be used directly as memory by the machine.
ROM uses to be very dow compared with standard dynamic RAM (DRAM) or even more with static
RAM (SRAM) but at the time the ROM cartridge system was used CPUs were not so fast to have many
problems with it. The code was executed from the ROMs as well as the data for sound and video. The
small RAM memory was used for generation or modifications of the sound and graphic data and for the
game variables. 1n some cases some cases RAM used to execute small pieces of code faster than in the
ROM memory.

The memory map of a computer is how the memory address space is organized between the different
memory types and mapped devices. A memory map for a computer can be obtained from the official or
non official documentation of the computer or using the computer schematics. The schematics show
which chips are connected to which lines in the CPU. Knowing the usua types of decoders and memory
chipsit can be discovered the memory mapping in a system. Another method of discovering the memory
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mapping is to analyze the code which runs in the machine. In the code it can be seen which parts of the
memory contain RAM or ROM, some times if they are device registers. It can also be differentiated the
code and data ROMs. In video arcade machines the ROM for code and the ROM for data use to be
separated and have different address spaces. They aso can have ROM chips which can be only accessed
by some of the CPUs in the system or a part of the hardware devices (sound ROMs, graphics ROMs). In
ahome videogame machine (console) both data and code share the same address and ROM chips.

0x0000
1KB ROM Bank 0
0x0400
15 KB ROM BANK 0
0x4000
16 KB ROM BANK 1
0x8000
16 KB ROM BANK 2
0xCO000
8 KB RAM
OxEO00
Mirrored RAM
OxFFFC
Paging registers
0x10000
Figure 45. Master System memory map (banks and page registers, no
memory mapped 10).

The memory address space can be used for both memory access (either system memory or memory from
adevice as video memory) and 10 (input/output) access. Thiskind of 10 accessis called memory
mapped 10. The devices registers are directly mapped in the memory address space through some kind of
decoders which decide with some or all the bus address lines which device or memory chip must be
accessed. Some computers (i8080, z80 and x86) have a separated address space which can be used for 10
access. Each addressin this address space can access aregister in a device, the address space uses to be
smaller (for example just 8-bit). Specia instructions are used for accessing this address space (IN for
reading from the port and OUT for writing to the port).
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0x000000
ROM
CARTRIDGE
0xA00000
0x200000 Z80
SEGA 0xA 10000
RESERVED 170
CONTROL 0xA11000
0xA00000 SEGA
SYSTEM 1I/O RESERVED
0xB00000 SEGA
RESERVED
0xC00000
VDP
0xEO00000
0xEO00000 ACCESS
WORK RAM PROHIBITED
OxFF0000
WORK RAM
OxFFFFF
Figure 46. Genesis memory map (memory mapped |0).

Memory Map. Region List.

The basic memory map is alist of regions which must be accessed in a different manner. For each
region exists a pointer to a memory buffer where the read or writes will be directed or a pointer to a
function which will be called with an access to this address is found. There uses to be more than one list
of those memory regions. Since it can be very different the behaviour in read and write access many
timesit will be implemented a separate list for read and writes. The data size of the access can be also
important in some cases so sometimes we will found different list for the different data sizes. If a
separated address space for 10 exists it will have its own region lists for reading and writing and the
different data sizes. Some CPU emulators include a separated region list for fetching (read code).
However most of the CPU emulators try to do not read opcodes through the memory regions because it is
very expensive, adirect read to the main memory buffer uses to be enough for fetching code. In some
cases this could be different and special mechanism will be implemented.
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struct zZ80PortRead ReadPortd[] =
{
{ Oxbe, Oxbf, readVDP},
{Ox7e, Ox7f, readVHCount},
{0xc0, Oxcl, readJoy},
{ Oxdc, Oxdd, readJoy},
{0x00, 0x00, readStartNationGG},
{0x01, 0x05, readl OGG},
{-1,-1, NULL}
}
struct z80PortWrite WritePortd[] =
{
{ Oxbe, Oxbf, writeVDF},
{Ox7e, OX7f, writePSG},
{ Ox3e, Ox3f, writeNationBIOS},
{ Oxde, Oxdf, unknownWrite},
{0x01, 0x05, writel OGG},
{-1,-1, NULL}
}
struct MemoryReadByte ReadMemory[] =
{
{-1,-1, NULL}
}
struct MemoryWriteByte WriteMemory[] =
{
{ 0x0000, Oxbfff, romWriteProtect},
{Oxc000, Oxfffb, ramWrite},
{ Oxfffc, Oxffff, writePageRegistersBS},
{-1,-1, NULL}
}
Figure 47. Master System memory and 10 region list handlers.

Thisisthe structure of amemory region entry in C:
{ 0xa000, 0xc000, NULL, videoMemoryHand}

Thefirst two fields are the limits of the region. When a CPU emulator is going to perform a memory
access of any kind it will test the address in the memory region list for thiskind of address. If arangein
the list matches the address then the action associated with thisregion is performed. If amatch does not
existsit can be interpreted as it was an access to the normal main buffer (faster access) or that it isan
access to an undefined address and a default value must be returned. The next fieldsin the entry have the
information about which action must be performed for this memory region. In this casethefieldsarea
pointer to amemory buffer and a pointer to afunction. In the example the memory buffer addressfield is
NULL or undefined so thisfield isignored. The next field contains a pointer to a function which will be
called for implementing the access.

The basic implementation of the memory emulation using region lists starts with amain buffer for al the
emulated memory. This buffer will be accessed whenever and address and access type does hot match an
entry in the region list. Thiskind of accessisthe fastest (amemory accessis directly emulated as a
memory access in the target CPU). Then the basic algorithm isto put aloop in each memory access
instruction which checks the access address for the region list sequentially. There are other
implementations (hash tables) which are faster but if the number of regionsis small enough they are not
useful. After the loop thereis a code which decides what kind of access must be performed, either an
access to the main buffer, or to the associated buffer or to call the function handler.
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The actions which have to be performed because of an accessin some cases can be complex. Thisisthe
reason that, rather than implementing different types of general access in the main access emulation code,
afunction which acts as amemory handler isimplemented for each region. The memory handlers have a
standard interface. They receive the address, the data (if it is awrite access), and the entry of region list.
If itisahandler for aread access they return the read data. Those functions can perform any task. The
most common is just access a specia memory buffer for this region, or perform mirroring (the same
physical memory is accessed through two regions, so any write to any of the regions must be performed
in thetwo regions). If it isamapped region of device memory or a device register the function handler
will be implemented in the device side using the standard interface (function definition). Device register
handlers use to trigger actions in the device emulation or to set internal variables for later use. Some
access will be directly emulated as access to the hardware in the real machine.

UINTS readByte(UINT32 address)

{
struct readMemoryHandler *last;

UINT32 handlerindex;

handlerindex = 0;
last = &tC.readM emoryHandler[handlerl ndex++];

while ((last->startAddress = -1) & & (last->endAddress = -1)
& & (last ->memoryHandler = (void *)-1) && (last->pUserData != (void *)-1))

if ((address >= last->startAddress) & & (address <= last->endAddress))
if (last->memoryHandler != Q)
return (*last->memoryHandler)(address, last);

ese
return ((UINT8 *) last->pUserData)[ address];
}
ese

last = &tC.readM emoryHandler[handlerl ndex++];
}

return tC.mainMemory[address|;
}

Figure 48. Read byte through a memory region list.

Memory Banking.

In early CPUs the size of the memory address space was small and in some cases it was not enough to
access al the physical memory at atime. Systemsto avoid this problem were developed. It usesto bea
small hardware which can be found usually out of the CPU (sometimes a so inside the CPU, it could be
said that it derived into the standard MMU hardware in the modern CPUs). This hardware redirects the
access in agiven memory address to a physical memory block or another depending upon a special
register. The basic mechanism is called banking or bankswitching. Some regions of the address space
can map different physical memory regions. The regionsin the address space are called banks, and they
can map pages of physical memory. This system was very used in the early videogames consoles because
the ROMss cartridges became larger than the available address space. Many times the banking hardware
is present in the cartridge (Master System, NES) and it can al'so map 1O registers from specia devicesin
each cartridge (NES). The memory page mapped in each bank is selected through an 10 register in a
special memory address or 10 address.
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Rather than with region lists, which are dow, this can be implemented inlining the access to memory
through an array of memory pointers. Each bank has an associated pointer. The emulator will control the
memory buffers associated with each of the banks as the bank registers are accessed. A region list could
till be used and the access through the banked memory would replace the access to the main memory
buffer since code fetches also have to be performed through the bank emulation code. First the access
emulation code will search in theregion list, if the address is inside the range of aregion the proper action
will be performed. If not the access will be through the bank mechanism. First it will get the bank
number in which the access will be performed (usually isjust alogica right shift), with the bank number
we will obtain the base address for the mapped page. Then from the original addressit will be obtained
the offset inside the bank and it will added to the base address, the result address will be used for the
emulated access.

#define Pagel DNBits 2
#define PAGEOFFSETMASK Ox3FFF
#define NUMBANKS 4

char *memoryBank[NUMBANKS];
void writeBank(int address, unsigned char data)

{
memoryBank[address >> Pagel DNBits][addres & PAGEOFFSETMASK] = data;

}

Four banks, 16-bit addresses, 16KB per bank.

Figure 49. Bank access emulation.

Other implementations.

We have aready said that a sequential scan through the region list is expensive. In many casesis agood
approach, further more if we are using a genera purpose (and implemented by someone else) CPU core.
The number of regions uses to be small, and in the case of reads, the more frequent memory access,
sometimes the region list is empty. Write access usesto be slower but as they are less frequent the impact
isreduced. In the case of memory mapped IO or in a separated 10 space it must be taken into account
than in areal machine 1O accessis aso slower and less frequent than norma memory access, so the
performance lost isminimal.

If there are many regions or we want to implement a faster memory access there are some alternatives to
aregion list. Hash tables can be used for example to perform afaster access for the list, but hash tables
have the problem they search for exact values, not for valuesinside aregion. Hash tables could be used
with memory mapped |0 registers for example which are single addressed, and in some cases they are
mirrored in different addresses. If we are building the CPU core or we can change it we could, rather
than parse a standard region list, inline directly the checks for the more frequent regions or addressin the
memory access emulation code.

An dternative to alist of regions could be a vector of regions. Likein the case of banking we could
divide the memory address space in a number of regions. These regions would have all the same size and
they would have associated information about how they should be accessed. For example each region
could have a function pointer, the memory handler. Rather than a sequential scan, now the source address
isdivide in two parts: the region number and the offset inside the region. 1t works exactly as banking, but
we are not necessarily emulating banking. The region number is used to retrieve the information about
the region and the offset is used to perform the access inside this region. For example aregion would
have an associated memory handler and the offset (or the full source address) could be passed to it. The
size of each region, the granularity of the regions, will depend upon how many different real regions are
in the emulated address space, how fast we want to perform the access and how much memory is
available for the emulation. In an extreme case we could have implemented and array of memory handler
pointer for each memory address. This would expand the memory usage to more than (N + 1) the
emulated machine memory address space (N the pointer sizein bytesin the target CPU). Thiskind of
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access to memory could be implemented as nested regions, regions with many different handlers (for
exampl e regions with mapped 1O register) would expand into region tables addressed by the offset.

VECTOR OF
MEMORY address >> BITSPERREGION
REGIONS
Region 1 MEMORY
egion T ——— BUFFER
address &
REGIONOFFSET
Region 2
& address

IO HANDLER

Figure 50. Vector based memory access.

Memory Management Unit (MMU).

The MMU isaspecia hardware which is present in all modern CPUs that controls how the memory is
accessed by the operating system and the applications. The MMU implements different tasks and
mechanisms. The MMU creates a virtual address space for al the applications and the OS, mapping
freely physical memory pages into virtual address memory pages. The MMU is used to create its own
virtual address space for all the processes and the OS, so their address space become separated and
protected from each other. The MMU offers different levels of protection for the different address of the
virtual space: read, write and execution protection. The MMU also is used to implement virtual memory
through page fault exceptions. Whenever a protected page or not assigned page is accessed the MMU
signals an exception to the CPU to deal with the problem. The MMU is a complex hardware with a
complex behaviour which is very hard and expensive to emulate in software.

The MMU works with memory pages. A pageisan aigned block of memory of aknown afixed size
(usually 4KB or 8KB). The full memory address space isdivided in pages. The MMU maps physical
memory pages to virtual memory pages, it maps the real memory with an address in the CPU memory
space. It also sets different properties and protections for each virtual page. A page usually can be read,
write and execution protected, though many other flags are possible. Some MMUs (x86) implement
callback mechanism through MMU entries. All thisinformation is keep in atable of pages. Since the full
table for al the possible virtual pagesis very large only afew entries (the last accessed pages) are stored
inthe MMU. The structure which storesthis entriesisthe TLB (Trandation locaside buffer). The MMU
sends exceptions to the CPU when it detects some events, for example if the a page was write protected
and an instruction tried to perform awrite to the page, or if the virtual page was undefined. When an
access to a page which isnot in the TLB the CPU is signalled and the OS (or the software which is
running at privilege level) is the responsible of updating the TLB and performing the opportune actions.
The MMU isused to implement virtual memory and swapping, moving the pages from memory to disk
and vice versa

As we can see the software emulation of this mechanism would be very hard because many checkings
must be performed in each memory access. Some binary tranglators implement this (for simulation
purpose of full OS emulation) mechanism but at a cost. Embra uses a software approach (mainly for
simulation) which uses fast cache tables and hash tables to perform fast checks through the emulated
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TLB. Ancther problem is that the MMU generate exceptions which must be very exact so they could be
handled by the OS (the emulated OS). Most of our source machines for emulation do not implement
MMU mechanism, just the more modern ones (DreamCast, Play Station 2) have this hardware
implemented but often it is disabled.

In any case aMMU in our target machine (where the emulation will be performed) can be very useful
for emulating in hardware some characteristics of the source machine memory. A MMU can be used too
to emulate the MMU of the source CPU, Virtual PC and other similar emulators use the target CPU
MMU to emulate the source CPU MMU. In this case the difficulty will to how to implement the
differences between the two MMU models. The MMU is aso useful emulating non MMU memory
systems. Although the MMU has an expensive cost because of the signalling of exceptions which must
go through the OS sometimes will be faster than a software implementation which checks every memory
access. The use of the MMU for the emulation will be restricted by the interface and mechanisms that the
target machine OS provides to the applications for using the MMU. Unix systems (Linux for example)
provide a good mechanism through the mmap() call. Win9x facilities are very reduced in the general
AP, special mechanisms through virtual devices could be implemented to expand this facilities. Win
2000 provides a similar mechanism to the Unix mmap().

The MMU can be used for protecting regions of memory for read and write. In this case when a
protected read or write is performed the MMU sends an exceptions and the emulator could handle as it
was needed. For example amemory mapped 10 register could be write protected. Rather than using a
search through aregion list before each memory write, it could be implemented as a direct write and the
MMU would be the responsible of detecting the special cases. When the write to the protected emulated
1O register is performed the MMU raises a memory exception, the exceptions goes through the OS and
arrives to the emulator memory exception (or signal) handler. In this handler it is detected which address
has been accessed. If it detectsitisan 10 register it performs the associated task for example calling the
O write handler for thisregister. It must taken into account how expensive is the overhead due to the
exception and how expensive is a software check before each memory access. Thiswill aso change
depending how frequently a special accessis performed. The more frequent is a special memory access
the more expensive it will be the MMU fault approach.

Another useful mechanism of the MMU is the physical page mapping system. This can be used for
emulating banking (bandswitching). The banking mechanism is basically a primitive version of the
MMU paging system. The emulator keeps the regions of the emulated address space which can be
banked as a special region of memory in the target machine which can be paged. Each time the emulator
detects that a bankswitch must be performed (a bank in the emulated machine is loaded with a different
page) the emulator changes the physical page mapping for the associated page in the target machine
memory. Asin the previous case the MMU system will be better than a software approach (through an
indirect access using an array of pointers) if the page switches are not very frequent. The MMU systems
have an overhead due a cal to the OS and the changesin the MMU, and TLB entry faults.

The last interesting implementation we will talk about is the detection of self-modifying code. Although
in most of the modern systems (but for example x86) self-modifying code can be through flush cache
instructions in the early computers which cache was not used thisis not possible. The presence and
detection of self-modifying code is very expensive for threaded code and binary trandation (not for
normal interpreters). Write protecting the emulated memory pages which have been aready trandated
could be a good mechanism for detecting self-modifying code. Other solution is software checksin each
memory access or checksums at the start of each trandated block in binary translation. Asin the previous
exampl es the frequency it happens a self-modifying code accessis critical.

Some special combinations of binary trandation and specialized CPUs for binary translation can use
protections in the memory space associated with the emulated memory space to help the translation
(Daisy, Transmeta Crusoe/Code Morpher 14]). For example the MMU could have an additional bit to
mark if a page in the emulated memory is already translated or not. If an executionistried in anon
trandlated page the trandator is called and it can perform the trandlation. The target MMU can aso be
used for separate the memory spaces for the emulator and trandlator and the emulated memory space.
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Endianness and CPU data size.

Another problem related with the memory is how the datais stored in the memory and how it is accessed
by the CPU and the applications.

Thereis no problem accessing bytes because all the memories are addressed and accessed in a byte
basis. The problem is how multibyte datais stored and retrieved. The different CPUs implement two
different orderings of multi byte words in memory: little endian and big endian. In little endian the less
significant bytes of the word are stored in the low memory addresses, the more significant bytes of the
word are stored in high memory addresses. Big endian CPUs store the bytesin inverse order, in low
addresses the more significant bytes and in high addresses the less significant bytes.

A B C D

Big Endian. Low order bytes are stored first.

D C B A

Little Endian. High order bytes are stored first.
Original word

0x12345678

Big Endian (stored in memory)

0x12 0x34 0x56 Ox78

Little Endian (stored in memory)

0x78 0x56 0x34 0x12

Figure 51. Endiannes.
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If the emulated CPU and the target CPU have the same endiannes there is no problem. Only when the
target CPU and source CPU have different endianness a mechanism for trandating from a data format to
the other must be provided. The conversion of the data can be performed statically, at startup when the
code and dataisloaded. Or it can be performed after each multibyte word access to the emulated
memory. The problem isthat the manner the target CPU reads and writes the data is different to the
emulated CPU and therefore the data that is stored in the registers for operating withisinvalid. The
conversion after (or before for awrite) each accessis very expensive. The conversion of abig endian
word to little endian word means many rotations, shift and logical operations (masks and ors). Some
CPUs will have special instructions or combinations of instructions which makes this conversion faster.
If the conversion is performed enough fast it could be agood implementation. Thisis not usualy the best
option.

Input value: in. Output value: out.

out =0;
for (i = 0; i < BYTESPERWORD; i++)
{

out = out << 8;

out =in & Oxff;

in=in>>8§;

}

Figure52. Endianness conversion algorithm (basic)

Some CPUs have the ability to change the endianness mode. The problem isthat in many casesthe
endianness mode is set at startup of the machine when the OS is loaded and can not be changed.
However if the emulator can change the endian mode of the target machine to match with the emulated
machine mode the problem will disappear.

The alternative to a conversion for each memory accessisto try to perform the conversion when the data
and code are |oaded into the emulated memory. The time spent in this conversion will not be important
because the time of loading the datais always larger by far. The problem isthat a static conversion does
not solve all the problems. The conversion depends in the byte size of the words. The endianness
conversion must be performed for a determinate word size: 16 bits (2 bytes), 32 bits (4 bytes) or 64 bits (8
bytes) for example. This means that any other access in a different data size from the conversion data
sizewill still bewrong. There are solutions to this problem. For example we could have a copy of the
emulated memory converted in al the possible data sizes (thisis limited by the CPU data size access
modes), but then the writes will be very expensive (awrite must be performed in each of the version of
the emulated memory), the memory usage would be dramatically increased and the memory cache
performance could be reduced.

Although the data converted for a given data size can not be accessed directly in a different data size
small changes made this access faster. For example we have an 8-bit CPU which is big endian. Our
target CPU is 32-bit little endian. The emulated CPU can perform 8-bit and 16-bit memory access and
thetarget 8, 16 and 32 bit memory access. If we convert the emulated memory from 16-bit big endian to
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16-bit little endian we will have problemsin 8-bit access. But the byte which must be read in an access to
an emulated address can be found at the target CPU address with the less significant byte complemented.
This can complement can be performed with just one instruction which is far better than alittle endian to
big endian conversion. The same happens with al the other data sizes, for all data sizes which are smaller
than the data size in which the conversion was performed a similar trandation of the address can be
performed. Theonly limitation is that the address must be aligned with the access data size.

Endiannes mode Accesssize Access Mode
word ordering byte (8 bits) address xor 1
word (16 bits) address (direct)
dword (32 bits) xchg words (lo, hi)
gword (64 bits) xchg word + dwords
dword ordering byte address xor 3
word address xor 2
dword address (direct)
gword xchg dwords
gword ordering byte address xor 7
word address xor 6
dword address xor 4
gword address (direct)
This table explains how can be accessed (reads and writes) different word
sizesin buffers swapped (endian mode changed) in different word orderings.
Figure 53. Access modes swapped memory buffers.

The size of the word and the access modes of the target and emulated CPU can be very important too.
When using a high level language it must be taken into account the size in bits of this data type,
furthermore if the emulator is going to be ported. The types for the register and size fixed variables of the
emulator will have to be defined in an independent way of the architecture where it will be compiled the
source code. Problems related with the size of operations and operands in the CPU emulation are the flag
calculations and some operations which are sign dependant. Sometimes it will be needed to sign extend o
zero extend the source data from the emulated machine in alarger data format in the target machine for a
correct result.

99



2. Interrupts and exceptions.

Exceptions and interrupts are mechanisms that the CPUs implement to stop the current flow of execution
and start the execution of special pieces of code (interrupt and exceptions handlers) when a specia event
happens. 1n some cases the exact emulation of the moment (in which instruction or cycle) an interrupt or
exception happensis very important for a correct emulation. The CPU state that the interrupt or
exception handler can see is also important because in some cases (binary trandation) the state in a given
PC or instruction could not be the exact state in the real machine.

Interrupts.

Interrupts are a mechanism for communication between the CPU and the hardware devices attached to
thebus. The CPU provides specia lines which are used to signal events (interrupts) from the devices to
the CPU. Thiskind of interruptsis aso known as IRQ or hardware interrupts (to differentiate from the
software interrupt which are just a special form of procedure call). The CPU can provide with oneto any
number (the number uses to be small) of interrupt lines, each of them can be used by a different device.
There are also control lines which tell the devices when interrupts are disabled (the CPU is not replying to
the signals) and to acknowledge areceived interrupt. It usesto exist an order of priority between
interrupts.

The more priority interrupt, when the interrupt handler for this instruction is being executed, will not be
interrupted by any other interrupt from any other device. Less priority interrupts could be interrupted by
amore priority interrupts from another device. The NMI (Non Maskable Interrupt) isthe more priority
interrupt level, which can not be interrupted by any other, and never can be disabled. The CPUs have
instructions for handling the priorities of interrupts and to disable and enable different levels of interrupts.

The emulation of the interrupt mechanism isfirst implemented in the CPU emulator. All the context
information related with instruction is stored and maintained by the CPU core. The specia instructions
for dealing with interrupts are implemented in the core. The core must provide an interface for the
emulated devices out of the code to signal interrupts. This kind of functions just tell CPU core that an
interrupt has been signalled and with which level of priority or type of interrupt (and any other parameter
which could be needed). The function just checksiif the interrupts are enabled and push to the stack the
current CPU context (it can be the PC and the flags or any other registers, it is CPU dependant), then it
“jumps’ to the interrupt handler address. The jump is performed changing the emulated PC register.
When the CPU core starts again the emulation of the CPU it will start at the interrupt handler address.
The interrupt handler address can be a fixed address or can be vector directed, when to the interrupt is
associated a fixed location of memory (for example the first bytes in the address space) that contains the
address of theinterrupt handler.

Theinterrupts are used by different devices. keyboard, disks, graphic and sound hardware. In the case
of the machines we want to emulate we found two different classes. The videogame consoles and arcade
machines use to implement only afew interrupts related with the video hardware and sometimes with the
sound hardware. The video hardware will signal vertical synchronization interrupts after the full screen
has been drawn and horizontal interrupts after a given number of scanlines (displayed lines) have been
drawn. The sound interrupts are signalled when the playback of a sample buffer has ended. Both types of
interrupts are very important to be emulated accurately because the graphical and sound output of the
emulator could get messed. The explanation isthat the code for the emulated machine is very dependent
in the hardware and sensible to the timings. The gamepad input is performed using polling to the
hardware rather than with interrupts (in keyboards) in most of the cases.

In the home microcomputers exist the typical computer interrupts for the keyboard, the disk and the
communication ports and all the other devices which work better using interrupts than polling.

In most of the videogames system the graphic interrupts are used for the main timing of the game. The
vertical retrace interrupt indicates when a frame start and when aframe ends. Between the end of aframe
and the start of the next the graphic memory can be accessed without corruption in the display so it is
when the game code updates the video information for the next frame. In most of those systems the video
interrupt is the only interrupt and the only reliable form of timing but a precise counting of the executed
CPU cycles. Video interrupts useto be at 60Hz (NTSC TVs/Monitors) or 50Hz (PAL TVs/Monitors).
The time of the game is synchronized with this signal, this has an interesting effect in some games which
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can be directly played in either PAL or NTSC versions of the machine. In the PAL system the same
game runs slower than in aNTSC system.

This behaviour of the videogame system has a deep impact in the structure of the emulator. Since the
video interrupt is the main periodic event in the emulator the emulation is performed around it. The CPU
emulates the number of cycles which corresponds at the time of an interrupt interval (or the time of a
frame) then it emulates the graphic hardware, outputs the frame to the screen and emulates the sound.
Then it generates the video interrupt and returns to the CPU emulation. Thisisthe general algorithm
which is modified in some systems because of the existence of other events: for example a more accurate
sound emulation or an H-Int (horizontal interrupt) which implies aline by line of the frame emulation of
the machine. Thetime dlicein the CPU emulation is critical for the performance of the emulation, a small
CPU dlice means a bigger overhead because of the entry and exit code for the CPU core.

Exceptions.

Exceptions are events which happen inside the CPU. They use to be errorsin the execution of the code.
Typical exceptions are the divide by zero exception, unaligned memory access exception, invalid opcode
or one of the more important page fault exception (we talked about it in the memory section) generated by
the MMU hardware.

The emulation of the exceptions is performed in the CPU core implementing checks in the functions
which emulate the different instructions. For example the divide by zero exception will be generated by a
check in the divide ingtruction. The MMU fault exception is generated in a faulty accessto memory. The
invalid opcode exception will be generated by a non-matching opcode or invalid datain an instruction
byte stream (multibyte variable length instructions). In an interpreter emulator the emulation of
exceptions just adds the additional overhead of the checking, this overhead can be very big in some cases
(MMU exception). In most of cases the exceptions are not needed for the correct emulation, for example
an invalid opcode will not be needed in the emulation of a game because theoretically the program is
already working. We will try to avoid any useless emulation of the exceptions.

In abinary tranglator exceptions have additional problems and it is even greater the necessity of
avoiding its emulation. The problem with an exception isthat it is produced by a precise instruction and
the exception rutine handler will need the exact CPU context at the point when it happened the exception
for solving the problem correctly. Standard binary trandation hides some on the state of the emulated
CPU. Inabinary trandator the state of the emulated CPU only is needed to be equivaent to the real CPU
when the CPU emulation stops. In fact after each trandated block end the CPU should be the correct for
the next trandated block to start. Binary trandators have to implement special mechanism for accurate
exceptions (a memory exception can not happen in a different instruction).

There are different techniques some of them using specia hardware (Crusoe and Daisy). The main idea
isto rollback the state of the CPU to a secure point. From this point the emulation is performed step by
step in amore accurate way, for example using an interpreter rather than binary trandation. The way
such checkpoints are implemented, how is committed the state of the CPU and how the CPU state is
restored has many alternatives. In any case the emulation of an exception is always expensive, but if
possibleit is better to avoid an instruction by instruction check.

In some cases it could be possible to use the same target CPU exceptions for implementing the emul ated
CPU exceptions. Most OS provide a mechanism for redirecting exceptions (signals in Unix) to user
handlers. Such exception handlers should differentiate exceptions produced by the real code for the target
CPU and exceptions from the emulated code form the source CPU.

3. Timing.

When the CPUs were slower (only afew MHZ) the timing used to be very important. Further more
when the program was written in hand assembly. Many programs coded for this early CPUs (the 8-bit
and 16-bit erd) relied in a precise count of the number of cycles consumed by a given piece of code to run
correctly. With those CPUs it was quite easy to calculate the number of cycles a piece of code would
take. Today with hiperpipelined superscalar CPUs with specular reordering an exact timing of the codeis
almost an impossible task.

101



There are two main reasons to maintain an exact timing in the emulation of the code. In those early
machines with low CPUs programmerstried to use al the power they could get from the hardware.
They programmed taking into account how and when each device should be accessed and coded
programs which keep performing calculations until the exact moment of the access was enabled. That
was to avoid expensive wait loops. The hardware device could only be accessed in some moments, for
exampl e the video hardware (video memory and video registers) could only be accessed when it was not
drawing the image to the screen. In some cases the hardware provided mechanism to inform when this
event would happen (vsync interrupt, line interrupts) but in some cases they did not exist. In other cases
the hardware had to be accessed in a precise instant to perform the correct task. For example accessing a
sound generator to produce voices (in a hardware which is not intended for that), in this cases the timer
which is used for produce the sound is the same code and the number of cyclesit is spending.

There are different accuracy levels for emulated timing. In most of cases an instruction accuracy level
(the timing is updated after each emulated instruction) is the most accurate level needed. Sometimes
though a cycle accurate model it is needed (the different phases of the CPU emulation are counted with
all the bus cycles) but thisis just needed in some very old machines (old Atari videoconsoles) or in
simulation (using an emulator for profiling information about an existent or non-existent machine running
some programs). |n most modern machines such a precise timing is not needed and as we will seein
most binary trandator use block based timing (the cycle count is updated after each trandated block
execution).

In an interpreter implement accurate timing is easy if you have the information about how many cycles
spends each instruction. After (or before) the emulation of each instruction a counter of the executed
cycles (or the cycles remaining to stop the emulation) is updated. The CPU core keeps running until it
exceeds (or before it arrives) the number of CPU cyclesit wastold to execute. Thisisthefirst part of the
timing control.

In binary trandation it could be used a similar approach emitting cycle update and check code for each
trandated code. This approach makes the trandation quite slow and should be avoided but in many cases
(old 8-bit and some 16-bit machines) it is needed for a correct emulation of the machine. In some cases
the solution would be to mark some regions of the emulated code as time intensive code and just perform
avery accurate time trandation for that regions. This can be done because the time accurate code uses to
be reduced and it just performs some special hardware accesses (video and sound hardware). The
emulator programmer could study the code of the emulated game and pass hints to the binary trandator.
This can be easily applied with arcade machines because there are a limited number of games, but with
videoconsoles or computersis a harder task.

Binary trandators will try to reduce the overhead of the cycle count in the trandation. In most modern
CPUsjust providing a check and update of the cycle counter after (or before) each trandated block it is
enough for providing the needed accuracy for the emulated machine. If the trandated blocks are very
large another approach could be used emitting time check code after a fixed number of ‘trandated cycles'.
Then each tranglated block would have more than one time check. For a paper about timing in binary
trandation and real time system binary trandlation it can be checked TIBBIT (Time Insensitive Binary to
Binary Trandation) [19].

The CPU emulation code (either an interpreter or a binary tranglator) counts the number of cycles
executed since the last call to the *executeCPU’ function and when the count arrives to alimit (usually
passed as an argument to this function) it stops and returns to the emulation main loop. This number of
cycles (the CPU time dlice) isthe time (in CPU cycles) it takes to happen the next event in the emulated
machine. These events are interrupts, emulated hardware updates and output of the emulated sound or
video to the target machine sound and video. Usually the events are regular (fixed time interrupts, for
exampl e the 60/50Hz vsync interrupt) but they could also be non-regular events (for example disk
interrupts).

The emulation main loop starts with the execution of the starting CPU time dlice, then it emulates the
event (updates hardware, signals interrupts) and cal culates the CPU time dlice for the next event. Then
the main loop jumps back and executes CPU the time dice. If there are more than one CPU in the system
each CPU is emulated sequentially in a proportiona (to the relative speed in MHz of the CPU) number of
cycles. With multi CPU machinesit is even more important to find the correct time dice for the
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emulation because they could be losing too much times in wait loops for CPU synchronization (they use
memory and 10 ports for inter CPU communication). Thistime diceis the second dimension of time
accuracy and it is usually even more important than an exact count of the executed cycles.

The more current events which happen in the emulated machine and should stop the CPU emulation are
interrupts, usually video interrupts (we will see the more common are vertical interrupt after each frame
generation and horizontal interrupt after each line generation) and in some cases sound interrupts. All the
videoconsoles and arcade machine uses to use the video vsync interrupt (60/50 Hz) as the main timing of
the machine. In many cases stopping at this event is enough but if the emulated hardware needs more
frequent update, for example if the sound or video hardware is accessed many times in the middle of the
frame, it is needed a smaller time dice. Usualy, as the video generator works in aline by line basis and
the video settings can be changed in the middle of the frame, the time dlice uses is the time of generating
avideo line. Thisusesto be arather small number of CPU cycles (in a Master System with a 3.58 MHz
Z80is 220 cycles). Thisimplies agreat overhead because of the function call overhead and the restart
and end of the CPU emulation.

The last step or dimension of the time emulation is the synchronization with the real (target machine)
time. All the modern computers provide mechanism for knowing (with more or less accuracy) the time
between two events. Using internal clocks, CPU internal register (RDTSC in Pentium CPUs is a 64-bit
register which counts the passed CPU cycles since the CPU reset) or the video vsync signa it can be
know the real time that a piece of code spends in execution. In an emulator after a given emulated time it
must be performed a check for the real time spent. This check isimplemented in a frame based time
dlice. The check is performed after the time of the emulation of afull frame (the generation of the full
image screen) or in multiples of thistime.

The time emulation in the emulated CPU level isfor emulating correctly the emulated machine hardware
and generates correct emulated output. It is something related with how it works internally the emulated
machine. The check between the real time and the emulated time is related with the emulator user (the
emulator would be still working perfectly and accurately without this check) which it has to feel the same
time behaviour than in the original machine. A videogame running two to ten times the speed (or even
worst at a variable speed) of its speed in the origina system is unplayable and it can be said it is
incorrectly emulated. Thisis an important difference between videogame based computer emulators and
the academical or commercial computer emulators (simulators and others), which are intended to run as
fast apossible the emulated code in the target machine. Video game computer emulation could be then
understood as emulation of real time systemsin this aspect. Because it is the emulation of the time for the
user the accuracy level needed isless, usualy just a2 o 3 frame based check is enough. It just hasto
make the user fedl it is the same timing of the real machine.

This means that sometimes the emulator will go faster than the original machine, it will stop awhile
(until the time excedent is exhausted) and it will start again to run. Thiswill happen enough fast and
frequently so the user will not noticeit. 1n some cases the observed timing is so important that we will
reduce the accuracy of the emulation for implementing a better timing. It isas bad game which run faster
than the original as a game that runs slower. In videogame emulation there some tasks which can be
skipped, reducing the accuracy of the emulation but keeping a near to the original feeling of the game.
For example we are usually emulating the generation of 60 video frames per second, when in true the
human eye can just notice a 25 o 30 frames animation and with even less still has a good feeling of
animation (some cartoon animations work at 6 to 15 frames per second). Asthisemulation isvery
expensive, but it is needed for generating some video effects, it can be a main target to reduce the
emulator execution time. It is acommon task to provide a frame skipper which enables or disables the
emulation of the video as the emulator is running enough fast or too slow than the real machine. Thisis
also an important mechanism which has to be implemented if the emulator could run slower than the
original machine in some of the target machines. Something similar could be applied to sound generation
reducing the sampling rate for example.

4. Others.

There are afew other topics related with CPU emulation which could be interesting to introduce.
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High Level Emulation

The first working emulator of the Nintendo 64 UltraHLE (by that time it was almost the more powerful
video console available) introduced the concept of ‘High Level Emulation’. This concept is not new but
it was not being used in any of the previous emulators or in the same manner. High Level Emulation tries
to stop the emulation of the original hardware and the source code as soon as possible (in this case at the
library level) and convert it to target CPU functions and hardware.

UltraHLE triesto detect the entry pointsin the ROM code for the functions which perform the access to
the video hardware and sound. It puts abreak at these entry points and when the functions are called the
emulator gets the raw arguments passed to these functions and uses them to implement the same or
similar behaviour using target native functions and primitives. In this case it would be atranslation from
the N64 3D API to the 3DFX Glide API (asubset of the Open GL 3D API). Thisincreasesthe
performance of the emulator since the hardware of the emulated machine has not to be directly emulated
and the code of those functions has not to be emulated. It just converts datafor one API to another API
and uses the APl in the target machine to emulate the emulated machine hardware.

In fact thisidea has been working since a lot of early in the world of the commercia binary trandators.
Most of the static binary trandators work with user level applications converting the original OS system
callsinto target machine OS system calls. Sincein most cases those machines work with UNIX OS the
trandation of the OS servicesis quite easy. The conversion processiseasy and in fact it is speeding up
the emulation because executing already compiled target code is faster than emulation source OS level
code. The emulator or binary trandator detects system calls (they are usually called through special
instruction or in afixed range of address) while emulating the source code. Then it callsafunction
wrapper which converts the arguments from the emulated machine OS format to the target machine OS
format. At last it callsthe native target OS service (if exists) or it implementsit with afunction. The
results are converted again, this time from the target machine format to the emulated machine format.

Not only with OS system calls this idea can be also applied with any kind of library for it which could be
found a standard API and the function entry points. FX!32 ax86 to AlphaNT static binary trandator
implements covers or wrappers for a number of standard DLL (shared librariesin Window world). This
permits to use native target libraries in the emulation process rather than emulating the origina libraries
improving the performance.

In the world of the videogame consoles, arcade machines and home microcomputer this approach is
rather limited. In all the early systemsno real OS, library or APl was used and most of times games
devel opersimplemented themselves their own libraries for accessing the hardware. Thereforein this case
the emulation of the hardware is needed. In some cases this approach can be used to implement some
BIOS services (not very used at al though) and primitive OS systems without stopping from
implementing a full hardware emulation. For examplein original IBM PC and compatibles BIOS and
MS-DOS services were usualy by-passed and a direct access to the hardware implemented (video
hardware most of time). Thisimplies that although the emulation could be intended for user level
applications the hardware should still to be implemented.

Now in more modern videoconsoles which have large devel opment kits provided by the console
manufacturers this approach could have moreinterest. New systems are beginning to include more
extended OSes and standard APIs (Dreamcast Windows CE) but they usually are not used, game
developers choosing for nearer to the hardware approaches and libraries. In any case as the case of the
N64 it shows in some cases this approach can be useful. With the N64 it is show that the compatibility of
thisimplementation is limited by the capability to find the same functionsin the game code. The number
of games fully working in N64 emulators using HLE is smaller than the ones could be emulated with a
full hardware emulation approach.

Float Point Emulation

Float point instructions are just another part of the modern CPU instruction sets. The emulation of those
instructions should be easy as they theoretically al the CPUs implement more or less equivalent
functionalitiesin their float point cores. Thisisnot all true though. In any case most of our target
machines will not need float point emulation.

104



Float point hardware can be found in some old machines in external hardware to the CPU and in early
vector or 3D graphic systems. In fact the implementation of those special chips would be quite easy as
their interface and characteristics are known (if not it is another problem, a reverse engineering problem).
They just receive some input values (in memory or in special registers), perform a calculation and output
the result somewhere.

In the case of the emulation of CPU FP instructionsit is just a matter about how they emulated FP
instruction work and how the target FP instruction work. Any binary trandation would be faster than just
interpreted emulation but as the FP instruction are aready expensive the overhead of an interpreter is
lesser.

The two main problems with FP emulation are the encoding format of the FP value and the precision of
the calculations. Most modern CPUs use the IEEE 754 standard FP encoding format and therefore it
should not be any problem with the emulation. But it usesto be small differences and problems. Old
hardware performing FP calculations can or not use |EEE standards therefore some kind of conversion or
software implementation of the calculations will be needed. Precision is amore common problem,
different CPUs have different FP register sizes (x86 for examples has 80-bit FP registers, while the
common RISC CPUs use 64-bit), some operations use internally alarger data size (Power combined
instructions for example). The problems with precision are really important when the target applications
are scientist calculations or similar. In our case an exact precision will be rare to be needed so the
problem can be ignored. Small precision difference in our target system could mean small differences,
for example, in 3D scenarios but without much quality loss.

Vector instruction emulation.

In the last times CPUs are implementing limited vectorial capabilities (x86 different versions of MMX
instructions for example). We will not found this kind of hardware in our target systems for emulation
(but perhaps some specialized hardware in some cases) unless we start to try to emulate old scientist kind
vectorial machines (not really very fun). Taking advantage of vectorial capabilities (integer or float
point) of the target machine for improving the execution of the emulated code (for examplein binary
trandation) usesto be too hard. It ismore afield for advanced research in vectorizing than emulation.
Those instructions, in the target machine, could be really useful though for emulating other parts of the
emulated machine, speeding up video and sound emulation.

Lately the new Sony PS2 video console implements a MIPS core with powerful vectorial coprocessors.

Timeto come it will be interesting to see how the x86 vectorial instructions could be efficiently used for
emulating those coprocessors. PS2 emulation isthough far from aredlity at thistime.
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Chapter 6. Graphic Emulation.

1. Graphics in computers.

In all user oriented computers the graphic system is very important. Aswe all know vision is the fastest
(greatest bandwidth) way humans can obtain information. This makes the visual systems the best for the
computer to output information to the user. The input of information from the user to the computer isjust
adifferent think, computers can hardly see (and understand) anything yet. It can be LEDs or other kind
of light signalsin a panel, or it can be paper printed information, or the most common now, a CRT
(Cathodic Ray Tube) monitor and the more modern LCD (Light Colored Diode) displays. All isgraphic
information. The more useful is of course CRT or LCD graphic changing monitors.

CRT monitors are based in an electron gun which line by line draws in a phosphor screen animage. Ina
monochrome system just one type of phosphor exists for each dot in the screen. In acolor system there
are three (red, green and blue) types of phosphor together. The electron shotgun is signalled to which
types of phosphor shot in each dot and with which intensity building the displayed color in the dot. The
phosphor just maintains the color or for asmall time, this means that the electronic beam must redraw the
full screen after atime. In fact as soon as the electron gun draws the line at the bottom of the screen it
starts again with the first on the top. The full screen image is called frame, and the time to draw aframe
iscalled Vertical Retrace. Thetimefor alineis called Horizontal Retrace. The end of aframeisused as
synchronization information with the video hardware and it is signalled with an interrupt and flagsin a
status register. It is called either Vertical Sync (VSync) or Vertica Interrupt (VInt). Some systems have
also the ability of generating interrupts after each line is drawn, they are called Line Interrupts or
Horizonta Interrupts.

The refresh of the full screen is performed at fixed frequency. The most common for early monitors and
TVsis50Hz or 60 Hz (60 Hz isthe NTSC system used in USA and Japan, 50 Hz isthe PAL system used
in most Europe). Videogame computers come in the two flavours: PAL and NTSC systems. Many
games detect the version of the computer where they are being executed and adjust their internal timings.
The Vint is the main (most times the only) time synchronization. This frame interval which is the most
important in the time handling of the videogames will be also our main time synchronization event with
the user in our emulator (we have already discussed this topic in the Timing section). The emulation of
the hardware will be driven around of the generation of frames.

If graphics are important in any user oriented computer they are even more important in videogame
based computers (which are our main targets for emulation). In those systems, in the games, the graphic
aspect is the main and almost unique important characteristic of the computer (there are aso the sound
but it is secondary, you could play without sound but hardly without image, not the way we understand
videogames). This makes graphic hardware the most important part in a videogame based computer. The
second place in importance uses to be between the sound and the CPU, most of time winning the sound
hardware over the CPU. Some systems have quite low powerful CPUs (SNES uses for examplea 1 MHz
CPU) but with very heavy graphic and sound hardware. In others the difference between CPU and
graphic/sound hardware is smaller (Mega Drive/Genesis). The graphic (and also the sound hardware as
we will see) hardware isimplemented to the take as many of the graphic generation effort from the CPU
(relying it for control tasks and in some cases for calculations or implementation of visual effects). Asit
isavery specialized hardware it is designed to produce the better output with the technology it can be
used at the time of the machine devel opment.

There is adifference between arcade machines and video consoles. The video consoles use cheaper and
less powerful hardware than the equivalent (in kind and age) arcade machines. Arcade machines
implement more powerful hardware than the video consoles, many times enhancing or duplicating them
(for example duplicate the number of CPUs or the graphic and sound chips, more memory, larger ROMs
for the game data). Thisis because a console must be cheap to be sold to normal customers, while the
number of arcade machineislimited and are only used in videogames centers. In the case of the home
microcomputers and different kind of PCs (MACs, IBM PCs or whatever) there are many differences.
Some systems are really intended for videogames playing (C64, MSX, Amiga) while other not. Some
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could be considered as video consoles with extended capabilities, othersasrea general purpose
computers.

The graphic emulation in most of videogames computers will be more than the 50% of the emulation
time, sometimes as much as the 80-90 % (more if the sound is not emulated or disabled for faster
emulation). This meansthat a correct and efficient emulation of this hardware is even more important
than the CPU emulation. Thisis not an easy task because of the amount of real work which this kind of
hardware performs, and reproduce specialized hardware tasks in software is always far more expensive.
The task performed are also quite complex and cal culation expensive.

When one starts the emulation of those machines it starts with the CPU (if we are not using an already
written CPU core, which happens many times) but until we do not arrive to the graphic emulation we are
not in the real hard task of the emulation. This document could have been rather a discussion about
graphic emulation (and sound) but the lack time and the large number of different graphic hardware
makes this task almost impossible. Thiswill serve as amere introduction to the graphic emulation
problem.

2. Types of graphic hardware.

All the graphic hardware which we will study (or mostly introduce) is designed for CRT based displays.
Some system will trandate the same behaviour to a LCD based display (handheld videoconsoles as the
GameBoy and the GameGear) but the system works in the same way. So vsync signals, retrace times,
frames and lines will be in our vocabulary.

Most CRT based graphic hardware is based in pixels. A pixel isapoint in the screen, the smallest
graphic unit which can be assigned reproduced. A pixel has coordinates, its position in the screen, and a
color (in amonochrome display would be black —no color- or the display color: white, blue, green or
whatever). All modern graphic systems and most of the old ones are based in pixels. The games provide
information about the pixels that the graphic will have to show in the screen (TV or monitor). This
graphic information can be managed in different ways: framebuffers, tiles, sprites and tile maps, 3D
directives and textures. But at the end all the information isrelative to pixelsin the screen. The graphic
system we will study in the next sections will be al pixel based. The pixel information istrandated by
the graphic hardware into signals to the CRT monitor or TV (or LCD display). For examplein the case of
aCRT display the pixel information will be trandated to ordersto the electron beam. In any case this last
aspect of the graphic generation will not affect us because both our emulator and target machine will use
pixel based hardware.

In the early days of videogame computers existed CRT displays and graphic hardware which controlled
them that permitted adirect control of the electron beam. This graphic system is called vectorial
graphics. Those vectorial graphic systems were not related with later systems which implement polygon,
line and 3D drawing capabilities. The vector part of the systemsis related with the way it was controlled
the electron beam. Rather than providing information about each pixel in the displayed screen the
vectorial systems provided directs orders to the electron beam. These orders werein form of drawing
vectors: a start point for the beam to draw and an end point where to end the drawing.

The game code had to be drawing lines in the screen. Asthe screen phosphor loses the image in afew
moments the game had to tell time to time to the graphic hardware to redraw the line. In a pixel based
system is the same graphic hardware which automatically starts to redraw the image after the full display
has been drawn. The game code has hot to care about this problem. In avector systems it would haveto
be implemented by the same game code. This system is hard to emulate in a pixel based emulator
because it needs a very accurate timing emulation and the calculation of the fade times for each drawn
line. In any case only afew old arcade machines used this system. Vector based CRT displays
disappeared soon after and were replaced for nowadays CRT pixel based systems which began to be
enough cheap to be used.
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Figure 54. Screenshot of Star Wars vector game (Atari 1983) taken from M.A.M.E.
emulator.

There are different pixel based graphic systems. The easier perhapsis the system that is directly based in
abuffer or matrix with the color information for each pixel. This buffer is called frame buffer and
contains the data of the image which will be shown in the display. Changesin the frame buffer are drawn
in the next screen redraw of the changed pixel. Each system will be able of displaying a different number
of colorsfor pixel. The size of the data unit for each pixel determines the number of colors per pixel. For
example if each pixel is represented with a bit only two colors are possible. With 8 bit 256 colors can be
displayed (counting the no color or 0 value as a different color), with 16-bit up to 32K colors. The color
information can be stored in different formats: paletized or not paletized, RGB or YUV. The more
common are palette based color data and RGB color data. A palette is a table which maps a color number
or identifier with areal color. Thisreal color isidentified usually using a RGB data and the range of
possible real colorsislarger than the displayed colors (the palette range). In paletized systems the
information about the color show is keep thus in a separate hardware table and the frame buffer contains
identifiers of colors rather than real colors. RGB and YUV are formats of identifying real colorsusing
physical components of the colors, for example the RGB format contains the information about the three
basic components of any colors. Red, Blue and Green. These graphic systems can provide mechanism for
moving data from and to the frame buffer in different ways (it is called bliting). Most modern home
computers (PC or MAC) use this system for 2D graphics. We will talk a bit further about these systems
in section 4.
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Figure 55. Framebuffer and palette graphic system overview.

Most of the machines we want to emulate do not use this system for 2D graphics but another which
involves a more complex and powerful graphic hardware. In aplain 2D grgphic system based in
framebuffers and bliting most of the cost of drawing is performed by the computer CPU. Those systems
also need large video memory for storing the full frame buffer, and usually it is needed more than asingle
buffer (primary buffer and secondary buffers) for a more smooth display. In the 8-bit and 16-bit
videogame era (80s and early 90s) both CPU power and memory were expensive. Providing a more
complex but expensive graphic hardware (but not as expensive as the memory or avery powerful CPU)
these problems could be avoided. We are talking about tile/sprite based graphic hardware. The intentions
were to reuse as much of graphic data for reducing the needed video memory, to decrease the bandwidth
between the video memory (in the graphic hardware) and the CPU (it uses to have a slower accesstime
than CPU memory), reducing the amount of data that the CPU should change to change the display of
each frame, and to reduce the amount of time the CPU had to spend with graphic generation
implementing as many of the graphic algorithms using faster specialized hardware.

Wewill explain tile and sprite 2D graphic engines in the next section but in a few words these systems
are based in dividing the image in square sections which could be moved and displayed in different parts
of the screen at any moment. A same ‘square’ of an image can be displayed in many placesin the screen,
reducing therefore the used memory. These squares (they are called tiles) are stored in aregion of the
video memory. Another region of the video memory has atable (for tiles) or alist (for sprites) which tells
the graphic hardware which tile or sprite will have to be draw in each part of the screen. A change of the
displayed image can be implemented many times with just a change in the table of displayed tiles and
sprites. This reduces alot the memory bandwidth needed for a single change image and the CPU power
needed. The difference between sprites and tilesisthat tiles are displayed in fixed positions (the screenis
divided in regular square pieces each one storing atile) and sprites can be displayed anywhere. Some
systems will implement both tiles and sprites, some just one of them. Tile and sprite based engines also
provide other hardware features to ease the generation of animation like vertical and horizonta scrolling,
graphics effects (zooming, tile horizontal and vertical flip, rotations, etc).

Finaly in the last years (since late 90s) a new kind of graphic hardware has been introduced in home
computers and videogame computers. 3D graphic systems. From the early versions which provided just
reduced polygon and line drawing capabilities (some enhanced 16-bit game cartridges like Mega Drive
Virtua Racing, or some SNES games for example) to nowadays impressive 3D graphics chips with afull
featured hardware 3D engine with polygon drawing, textures, textures and graphics effects and geometry
calculations integrated, they have become a common piece of computers.
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A 3D graphic system is based in displaying in a 2D viewport a 3D image. Their are based in a3D
scenery formed with polygons. The polygons are projected in the 2D viewport using coordinate
transformation matrix. Then if the system implements textures they are drawn over the project polygons.
A texture is a pixel image (similar to atile for example, but usually larger) which is assigned as the color
or surface of the polygons. The emulation of 3D systemsis either the implementation of the 3D
mechanism or algorithmsis software (which is quite expensive and hard) or trangating 3D directives
from a 3D graphic API to another. For example Sony PSX has a 3D graphic engine, Connectix VGS
(Virtua Game Station) emulates this hardware in software, EPSXE (a Spanish freeware PSX emulator)
implements it using either OpenGL, DirectX or Glide (3DFX cards API) directives.

Emulating 3D graphic systemsis avery interesting programming task but explaining how 3D graphics
are implemented and the different systems and APIs which can be found is out of the scope (and the time
of this project) of thisproject. Therefore we will not study this systems. For emulating them it is needed
aknowledge of the emulated and target 3D APIs (in the PC world the more common APIs are M S crappy
Direc3D and SGI OpenGL). Basically, but perhaps the older less powerful graphic chips, al the systems
work in avery similar way. Infact chipsisin the new videogame consoles and arcade machines are
equivalent or versions with afew changes of PC 3D graphic chips (Nec VR2 in DreamCast, NVidia chip
in the X-Box).

3. Tiled based graphic engines emulation.

Tile/Sprite based graphic engines are the most common in 80s and 90s videogame computers. They
were very popular because of their ability to produce good graphics and animations without too much
CPU or memory usage. Different videogame computers implemented tiled engines in different manners.
Arcade systems implemented powerful sprite generators with alot of memory and pattern tables,
videogame consoles implemented simpler tile/sprite engines and used less video memory. But al the
different engines share the same basic principles. In this section we will introduce how it works one of
such engines using as an example the Sega Master System VDP and the Sega Genesis (also called Mega
Drive in Europe) VDP. For emulation both graphic and sound hardware the basic is to understand how
the hardware works. After this a simple algorithm reproducing the hardware behaviour can be
implemented. The next step would be to optimize this basic algorithm to perform a faster emulation.
Both graphic and sound emulation has alot of space for performance improving.

Sega Master System (and its equivalent handheld version GameGear) is an 8-bit videogame console
release in the year 1982. It usesa Zilog Z80 at 3.579 MHz as main CPU, has 8 KB of work RAM and the
games are packed in ROM cartridge from 16KB to 512K B in size. The hardware is very similar to the
MSX computer which uses the same CPU. The graphic and sound hardware is a derived version MSX
equivalent hardware. The original Texas Instrument TM S9918 was extended with a new video mode to
provide a 32 colors background and 32 colors sprite layer. The SMSVDP (Video Display Processor) has
a 16 KB video RAM (VRAM) which is accessed through 10 ports by the Z80 CPU. It maintains some
compatibility with the old TM S9918 video modes. Arcade machines using an equivalent hardware were
also released (System-E, usestwo SMSVDPs). The SMS VDP shows the very basics of atile engine and
it isagood example to start with.

The Sega Genesisis a 16-hit videogame console. It was releases at the 89/90. It usesa 7.6 MHz
Motorola 68000 CPU as main processor and a Zilog Z80 at 3.58 as sound CPU and for SMS
compatibility. It has 64KB of main RAM (68K) and 8KB of RAM for the sound CPU. It can handle
ROM cartridgesup to 4 - 5SMB. The Genesis VDP is also derived from the SMS VDP (and the origina
TMS9918) but their capabilities are far better. It can handle two background layers with tile priorities, a
sprite layer and window (which replaces the background layer). Up to 64 colors in screen from a palette
of 512. It has 64 KB of VRAM which is aso accessed through 1O ports (in this case memory mapped 10,
the 68K does not have separated 10 ports). The VDP can aso perform DMA (Direct Memory Access)
operations from and to the VRAM (read, write and fill). The Genesis VDP is already a good example of
the capabilities which can have a good tile engine. Although it does not has any additional sprite effects
(zooms or rotations for example) it isreally impressive. Other videogame consoles, and most of the 16-
bit era arcade machines had more powerful graphic hardware but the basics are the same.
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The SMS VDP.

We can start with the basics, let see how the SMS VDP works. The SMS screen is 256x192, this mean
it is 256 horizontal pixels (columns) by 192 vertical pixels (lines) (some games use a special mode which
increases the vertical resolution up to 224). In fact most of the games only use 248 horizontal columns
because the first column is used for scrolling as we will seelater. The SMS VDP draws a background
layer of 8x8 tiles (the tiles are 8 horizontal pixels by 8 vertical pixels) and up to 64 sprites which can be
either 8x8 or 8x16. Let seefirst the background layer.

The background layer.

The background layer can be described as a virtual screen of 256x224 pixels. Thisscreenisdivided in
8x8 cellswhich are called tiles, that means that it is formed by 32x28 tiles. The content of the
background layer is defined by atable, called pattern table or name table, which contains information
about what tiles are drawn in each position of the background layer and how they will be drawn. This
table is 2KB in size, each entry being 16 bit. The information about each tile in the background layer is
stored line by line. This table can be found by default at address 3800h of the VDP RAM. The pixel
information about of each tilein fact is not stored in thistable but it can be found in al the range of the
VRAM. The entry in the name table defines a position in the VRAM which contains 32 bytes that define
the pixel data of a pattern. This pattern (8x8 pixels) can be used either astiles in the background layer or
for drawing sprites. The same pattern can be used more than once in either the background or the sprite
layer which can be very useful for reducing the amount of memory needed. Games usually store as much
pattern info as possible in the VRAM so a full videogame stage graphics can be displayed with minimum
access to the VRAM. Only when the graphics must really change the VRAM isrefilled with new
patterns. This permits afaster animation and frees the CPU for other tasks as sound generation, collision
detection and sprite movement.

Background
Layer

Figure 56. BG and Sprite layers.
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The pattern data is stored line by line 4 bytes for each line. Thismeansthat it is 32-bit wide for each
line, and 8 pixel sized resulting in a 4-bit color value for each pixel in the pattern. This 4-bit color value
isan index in one of two 16 entry palettes (the palette table is called CRAM or Color RAM). Which of
the two palettes is used when drawing the pattern is defined by the information in the name table or in the
sprite list, this means that the same pattern could be used in the image with two different sets of colors at
the sametime. Each of the four bytes of a pattern line contains the information of the bit n (0 to 3) of the
pixelsin theline. Thisisimportant because thisform of storing the color datais not useful for the
graphic generation algorithm (but it was good for the hardware engine) and needs adecoding. This
decoding can be implemented with a trandation table and must be as fast as possible because the more
frequent task in the graphic engine emulation will be read patterns and drawn them.

8x8 cell (pattern)
each pixel ina
Background layer index to a palette
divided in 8x8 cells

Figure 57. Background Layer.

The entries of the name table contains not only the pattern identifier (a 9-bit number defining 512
patterns, the pattern addressin the VRAM is found multiplying it by 32, the number of bytes of each
pattern) but also a priority bit and a palette selector bit (only the two 16 colors palettes) and vertical and
horizontd flips. The flip bits are useful for using the same pattern in different positions and purposesin
the image (for example a single pattern could be used as four cornersin arectangle). It isalso useful
because moving items based in the background (the moving items are usually implemented using sprites
though) can use the same patterns for moving in one direction or the another.

The background layer has the ability of scrolling vertically and horizontal. Many videogames use scroll
and having a hardware which implements this scrolls helps alot. A scrolling image implies that the full
screen should be redrawn in a framebuffer based engine (if the framebuffer does not support scroll either
of course). Thiswould berealy expensive. A better solution isto implement scrolling in hardware.
Two hardware registersin the VDP store the vertical a horizontal scroll value. The scroll value tells
which line and which column will be the start point for the screen drawing. For example HScroll 8 and
V Scroll 120 means that the first point in the upper left corner of the screen will be the one which can be
found in the position (8,120) of the background virtual screen. The line and the column wrap when they
arrive to their limit. For exampleif you arrive at column 255 of the background line and your screen line
has not been fully drawn you continue drawing the pixels from the column 0 of the background line.

For scroll to work the information about the tiles which will be shown in the next frames must be stored
in the name table. While the screen is being drawn it is not possible to change the name table (it could
produce a graphic mess or just the hardware does not allow this access), only in the small time slot
between the V Sync signal and the start of the next frame VRAM can be freely accessed. For a proper
scrolling it must exists a hidden part of the virtual background which is not drawn on the screen. This
part is where the image is updated for the next frames. The SMS VDP has 32 lines which are not shown
meaning that up to 32 pixel vertical scroll steps can be performed before new information must be loaded
in the name table. But it lacks a horizontal scroll buffer. Thisis solved with abit in the VDP control
registers which hides the first displayed column. More powerful tile engines have larger virtual
background layers with far more scrolling buffer space.
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Figure 58. Background and scrolling

This explains most of the part related with the background layer. In next sections we will explain how it
isemulated. Thiswill work asabasic description. It is still missing the information about the priorities.

The sprite layer.

Sprites can be considered as mobile tiles. They also use to be drawn over the background layer.
Basically the background provides the scenery of the game and the sprites the actors and other moving
elements. This does not happen in all the sprite based engines. In some of the more powerful sprite
based arcade machines the background layer is not built with tiles but with sprites. The property which
differentiates atile and a sprite isthat atile is afixed size square of pixelswhich isdrawn in afixed
position of the screen. A sprite can, in some cases, have different sizes and can be displayed in any
position of the screen or of the virtual screen. Thetile information is stored in matrix table, the sprite
information is stored in list with X and Y coordinates.

The SMS VDP can display up to 64 sprites and a maximum of 8 spritesin the same line (this could be
because of a hardware time limitation, other systems permit as many sprites as can be displayed in a
screen ling). The VDP starts drawing from the first entry of the sprite list and ends either when 8 sprites
are displayed in the same line, asprite with an Y coordinate of 208 is found (marks end of the sprite list)
or al the 64 sprites have been drawn. The sprite list or table can be found at address 3f00h of the VRAM
(default position). Each entry contains the vertical and horizontal coordinates of the sprite in the virtual
screen (it isusually used the same size of the background layer) and the identifier of pattern used by the
sprite (only 256 patterns selectable) which works in the same way than in thetile table. The SMSVDP
provides just basic sprite capabilities and it does not implement any additional effect applied to asingle
sprite. Other systems permit sprite zooming, may be rotations and sprite flips (as the SMStiles have). In
the VDP control registersit can be selected to zoom all spritesto 16x16 (not too useful) and to use 8x16
sprites, that is two patterns put one above the other. In this case the last bit of the pattern identifier is
discarded accessing only even positions of the pattern data.

Handling priorities.

An another characteristic that sprites and tiles have is they have atransparent color. When this color is
found in a pixel from atile or a sprite in the point of the screen where thistile or spriteisdrawniitis
showed the color of atile which is behind thetile or the sprite. Thisis used to produce different levelsin
the animation (for example with different scroll layersit can be simulated afegling of a 3D scenary) and
object animations. The objectsin a game are not al square shaped but they can have any form. The
sprites which form those objects are square shaped though.  Using the transparent color in those pixels of
the sprites which are not part of the object enables the animation of non square shaped objects. All this
processis performed by the graphic hardware freeing the CPU from a task which would be redlly hard to
implement because it needs comparisons and mask operations for each pixel of the screen. The more

113



levels of sprites or tiles which can be drawn above one of the other the hardware it will be to emulate the
video hardware in software. The transparent color uses to be coded using the ‘0’ identifier.

Thisisthe basic behaviour. To thistransparent color it is provided a priority policy for each tile layer
and the sprites. The tiles and sprites are ordered from the bottom to the top. The pixelstiles or spritesin
the bottom will only be showed if al the pixels of the tiles and sprites above it are transparent (use the
transparent color). Usualy there is amain ordering between the different layers and then thereisa
priority bit which indicates when the priorities should change (for example a background tree which has
to be showed in front of a moving object).

The SMS VDP has only two layers: a background formed with tiles and a sprite layer where alist of
spritesis drawn. By default the sprites are drawn over the background tiles but in the entries of name
table which defines the background exists a priority bit. When this bit is enabled thistile is shown over
the sprites. This means that when emulating the background layer we need to keep the priority of each
pixel before starting to draw the sprites. Since a sprite can be displayed in any position of the screen it is
also possible to find overlapping sprites. In this case the order of the sprites in the sprite table determines
which is shown. The sprites are drawn from the first entry of the table to the last. Sprites from the start
of the table are shown in front of spritesin the end of the sprite table.

The SMS VDP s quite simple and the priorities are easy to implement. Other systems which alarger
number of layers and sprites and with different levels of prioritiesin the same layer areredlly hard to
emulate. The emulation of the tile and sprite priorities and transparency is perhaps the harder part in the
emulation of atile based engine. It must be taken into account that each for each pixel in the screen the
priorities of each of the pixelsin the different layers and the sprites must be cal culated, the color
compared with the transparent color to determine which color must be drawn. Thisis one of the better
places to try to improve the performance of the graphic emulation.
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Figure 59. Background and sprite layer with prioritiesin the Sega Master System.
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The palette.

Aswe dready said the information stored in the pattern data (which is used to form the sprites and tiles)
isnot a color itself but a color identifier. Infact isan index into atable which codifies colors. Thistable
iscaled CRAM (or Color RAM) and in the case of the SMS VDP has 32 entries (a maximum of 32
colors at the same time in the screen, theoretically) and each entry is 6 bit. The color isin RGB format, 2
bits for each color component. RGB isaform of describing a color based in the properties of colors. All
the colors can be discomposed in three basic color components: red, blue and green. A color can be
defined by the intensity of each of these components. Colors with al the same intensity in al three
components are grey tones.  The black color is the one with all the components to 0 and the white color is
the color with all the components to the maxim value (in this case 3). With 6-bit RGB values 64 different
colors can be selected.

The GameGear palette uses 3 bits for each component, therefore it can select up to 512 colors, but still
there are only 32 palette entries allowing to just 32 colors on screen. Thisis acommon characteristic of
the palettized graphic systems, it allows with a smaller number of bits per pixel to display alarger number
of colors. It can not be shown more colors at the same time that the number of entries but it is easy and
fast to change the displayed colors between alarger range of colors. In fact they could even be changed
in the middle of the frame doubling the maximum number of displayed colors as we will seein the
interrupt part.

The graphics systems based in palettes are a so very efficient producing effects which need fast changes
of colors of large, or al, blocks of the screen. While in a system based in raw RGB colors (or another
equivaent format) to change the color al the pixels must be changed one by one in a palettized system
the pixels does not change but just the entry or entries of the palette table. Thisis another hardware
feature which enhances the graphic generation and reduces the CPU usage. Emulating it without a
palettized graphic mode increases the overhead of the hardware emulation because the trandation of the
palette code to the rea color must be performed by software in a pixel to pixel basis. The advantage of
graphic modes based in RGB (or any raw color definition) values for the pixelsis that alargest number of
colors can be displayed at the same time, but also with alarger usage of video memory.

The 32 palette entries are treated as two separate tables each with 16 entries. Color is defined in the
patterns as a 4 hit value therefore each tile or sprite can only use one of the 16 color palette tables. For
tiles can select which palette to use with a bit in the entries of the background table. Sprites can only use
one of the palettes which is specifically assigned for the sprites.

—»  different palettes

Pal ette entry

3bits 3bits 3hits

0x2 0x0 Ox7

Figure 60. Palette overview.
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Vertical and horizontal interrupts.

With taking into account diverse control registers which select different displays modes and specific and
not very important features in the SMS VDP remains just one important topic to explain about graphicsin
the SMS. Thistopic isthe graphic interrupts.

Aswe already said in previous chapters and sections the videogame computers used the graphic
interrupt systems to control the timing of the games (sometimes they used to the sound). Thistimingis
produced with the vertical interrupt (VInt also called vertical sync or VSync). The Vint is produced by
the SMS VDP hardware (and in fact it works the samein all other systems, it can be considered a
standard) after the VDP finishes drawing the last line of the screen. The interrupt signal (thereisalso a
bit copy in the VDP status word) is being signalled in each line (the time the beam takes until it startsto
draw again the screen is usually counted as lines) until the CPU reads the status word or the starts again
the frame draw. Thissignal serves as synchronization for the game and as a start point for the time when
VDP VRAM and control registers are accessed and the modifications for the next frame are performed.
Its emulation as we said is produced knowing the number of CPU cycles (for the CPU which isbeing
used as reference in amultiCPU system) that the VDP takes to draw afull frame. Vint emulationis
mandatory for implementing any emulator using this kind (or even any kind) of graphic system and to
emulate the time of the games.

VInt isused asagloba timing synchronization event and for updating the VDP for the next frames.
Thereis gtill another interrupt which can be generated by the graphic hardware and it isimplemented in
many tile based systems. It isthe horizontal interrupt (HInt or lineinterrupt sometimes). Thisinterrupt is
signalled after anumber of lines of the screen are drawn. Thereis a counter register in the VDP that
when Hints are enabled it is decremented after each screen line is drawn. When the counter reaches to
zero the Hint is produced, and in the case of the SMS VDP the previous value restored and the counter
starts again to decrease until the Hints are disabled. The Hints are only generated in the lines which are
really drawn to the screen (without taking into account

Asthe VInt emulation is really needed for a correct or even any emulation of the computer the Hint can
or can not be implemented. It will just change how accurately the graphic system is emulated. Aswe
aready have said as the graphic and sound hardware as so complex and expensive to emulate sometimes
there are features which are not implemented because they would slow down the emulation alot. Hintsis
one of those features. Hints are used to produce the so called raster effects. These effects are changes of
the VDP graphic parameters in the middle of the frame, when the VDP is already drawing the image to
the screen. This meansthat just a part (a number of lines from the start of the change) of the screen will
be modified by this change.

Usually the graphic parameters (pal ette, scroll, tiles and sprites) are only changed in the time between
frames and not in the middle of it, that is the use of the VInt. Animportant difference isthat the time for
performing changes after aHint is very limited and even in many cases the same graphic hardware blocks
most of the parameters. The number of parameters which can be changed in the middle of the frame
depends in the freedom each graphic hardware permits. It also dependsin how fast is the main CPU and
the rest of the computer, for example it will be possible to perform more changesin the Genesis running a
16-bit CPU at 7.67 MHz than in a Master System running a 8-bit Z80 at 3.57 MHz.

The parameters which are the most changed in raster effects are the palette entries and the horizontal
scroll registers (the vertical scroll is not changed because it would produce rather strange effects). The
palette changes permit to use more colors in the screen that the number which can be showed by default.
It isalso used for produce fast changes of color (for example for implementing flashes of part of the
screen). The horizontal scroll changes can be used for screen splits or even (in more powerful systems
than the SMS) a different horizontal speed for different lines of the screen. Thisis useful for a greatest
impression of a 3D scenary. Sprite changes and other modifications related with specifics of each system
can be also implemented.

The emulation of the Hint is therefore only needed (in most of the cases) just for some graphic effects
that some games implement. In fact in many videogame consoles just alimited number of the games (but
they are usualy the technically best games) use these features. Some of the games could, though, depend
in some aspect of the Hint and do not run at al in the emulator without it, but this caseisrare. Thisleaves
the decision of implementing raster effects and Hints to the programmer. The decision also implies aswe
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will see to change the way the screen image will be generated by the emulator. If Hint isemulated it is
more likely that aline by line basis (or some mechanism for tracking the changes in the time) drawing of
the screen will be needed. Without Hints and raster effectsit is better to generate the full frame after the
CPU time of afull frame has been emulated. In any case if we want the most exact emulation of our
emulated machine Hints and raster effects, if they exist in that machine, should be implemented.

Horizonta Hint
retrace

Vertical raster
retrace |

DISPLAY SCREEN

Vint

Figure 61. Vertical and horizontal retrace and signals.

Emulating the SMS VDP.

We know now the general structure of the SM S graphic hardware. A background layer built with tiles
and a sprite layer. Both the sprites and tiles use the same 8x8 4-bit per pixel patterns stored in the VDP
VRAM. The 4-bit pixel valueisused asan index in acolor table, the palette. There are two 16 entries
palettes and each entry can select between up to 64 different colors. Now we have to implement in
software the same or equivalent behaviour than the VDP hardware. Using the same inputs (VRAM
contents: pattern data, background name table and sprite table; and the VDP control registers) we should
be able to produce the same output, the screen image which displayed by the original SMS.

There are different ways of generating the image which will have to be displayed in each frame. We can
replicate as much as possible the way the VDP really works drawing line by line. The VDP worksin
parallel with the CPU but us our emulator will be implemented sequentially we will have to interlace
CPU emulation with graphic emulation. Usually the faster solution isto interlace at afull frame basis,
emulate the CPU all the time of aframe (VInt event) and then generate the image from the data stored in
this moment in the VDP VRAM and registers. Thisisthe faster and more primitive implementation. For
amore accurate emulation as we already said talking about Hints and raster effectsit is needed to
interlace the emulation in aline basis. The CPU emulator runs for the time that the VDP takes to generate
afull line, then the graphic emulation generates the line and draws it to a backbuffer. At the end of the
frame time the backbuffer is drawn in the target machine screen (blitted to the primary buffer). A line by
line engine is quite more accurated because it does not miss any changes (if correctly timed the CPU
emulation with the VDP) in the VDP but it is alot dower than drawing the full frame at once.

An dternative is to track all changes produced in the VDP in all the frame time, identified with atime
stamp to replicate the same behaviour of aline by line engine. This complicates the render rutines.
Another step isto try to avoid unnecessary calculations, in this case try to only draw those parts of the
screen which have actually changed. In most cases only a small portion of the screen changes from frame
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to frame, for example a sprite which has been moved or atile which has been changed. Theideais rather
than draw the entire frame every time the VDP emulation rutines watch for changes and storesthem. At
the time of the frame generation only the changes are applied to theimage. This reduces alot the graphic
emulation time. Thistechniqueis called dirty rectangles, meaning that it tracks the portions of the image
that has changed and only copy them to the screen. These portions are rectangles to ease the managing
and the copy process. This kind of graphic engines are very fast but are alot of harder of implement that
atypical engine.

A dlight modification of the dirty rectangles technique is generating at the same time of the modification
of the datain the VDP the corresponding changesin theimage. Theimage would be storedin a
backbuffer and the changes would be applied as they would be performed. At the end of the frame the
backbuffer (in fact just the part which changed) would be dumped to the screen.

Thiskind of engine is very fast if the number of changesin each frame is kept to small number.
However the same characteristics of the tile based engines produces situations where alot of changesin
the screen are performed in just amoment. Palette changes can mean aredraw of the entire backbuffer
image if the buffer uses RGB values for the pixels. Scroll aso hurts to the engine because each scroll
pass means that the full screen image is moved a position and must be redrawn. If the graphic emulator
was keeping the full virtual screen drawn perhapsit would be just a matter of blitting (copying to the
screen memory) the appropriate parts of the virtual screen to the target screen. If not the full frame
should be recalculated. In any case is expensive and the performance would be the same, or even worst
because of the checkings needed to keep alist of al the VDP changes, that a graphic emulator drawing all
every time.

The process of the generation of aframe can be divided in three phases. First the pattern data is decoded
to auseful form. Aswe said the 4 bytes which for a pattern line store each one of the bits of the pixel
color (4 bits per pixel). Thisformat for storing the color is not useful for us because we need to work
with the color of each pixel. Then we have to retrieve to reencode the data of a pattern line in a useful
format. A better format for using this data in a software renderer is that each pixel color wasstored in a
byte. We need therefore to read the four bytes of aline and extract the bits which form the color for each
pixel. If this process was to be done every time a pattern is read (while generating the background layer
or the sprite layer) the cost would be too expensive. Because of this conversion is better to be
implemented when aVRAM write is performed in the case of the SMS VDP. The amount of memory for
storing all the pattern datain a decoded format is not that large (64KB). It isaso needed to implement
this conversion as fast as possible, usually using tables to decode the information faster.

Leftmost pixel 0: bits 31 (msb of colour), 23, 15, 7 (Isb of colour)
1: bits 30, 22, 14, 6

Rightmost pixel 7: bits 24, 16, 8, 0

32-bit pattern line (8 bytes)

31 24 23 16 15 8 7 0
3 2 1 0
left most pixel

Figure 62. Pixel codification in Master System pattern lines.
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Thisfirst phase can also be performed at the initialization of the emulator. Most arcade systems have
separate ROM I Cs for program code, graphic and sound data. Most of times these graphics ROMs are
directly attached to the graphic hardware to avoid the need of perform so many memory transfers. This
property can be used, knowing how the graphic data is stored in the ROMSs, to decode the graphic data
and prepare it for the emulation when the ROM fileis loaded at initialization time. In videogame
consoles this can not be done because it is not frequent to have a separation between the different types of
datain the cartridge ROM.

The second phase is start with the generation of the graphicsin the different layers. We will think aswe
were working line by line (although it could be aso applied in afull frame generation context). In the
case of the SMS VDP exists two layers: background and sprite layer. Usually it is better to use the
default order of drawing of the VDP, in this case first the background is generated and then the sprite
layer isdrawn over it.

For generating the background layer first it is read the name table or tile table. For agivenliney itis
calculated using the horizontal and vertical scroll value and the line number which tile must be read.
Then this entry of thetile tableisread, this provide us with the base address for the pattern which is being
to be shown in thistile. Using the modulus of the line number and the vertical scroll (and detecting if the
tile must be vertical flipped) the proper bytes for the line are read from the pattern. Thiswill be aready
decoded data so we will storeit in abuffer which contains the generated background line. In the case of
the generation of all the frame at once it would be better to read and draw the full tile at atime (draw in 8
lines by 8 lines basically). We need also to adjust the color according to the palette used (the tile layer
can use both the tile and sprite palette) and store the priority for each pixel in theline.

In aframe generation basis it would be more efficient to generate the entire background layer (limited by
the screen viewport) and later apply the sprites because reduces the number of the access to the sprite
table. Inthe case of aline by line generator now it is searched in the sprite table sprites which should be
draw in the line we are generating. It isused they coordinate of the sprite, the line number and the sprite
size (8x8 and 8x16 sprite sizes). When a sprite which matchesthe y coordinate is found it is read the
appropriate pattern line of the sprite (the same way we did in the case of thetiles). Thenitistimeto
calculate the transparency and priority of the sprite pixels and the pixels aready drawn in theline. If the
priority islow and the sprite pixel is not transparent (color value 0) the sprite color is stored for that pixel.
If the priority was high and the stored color was not 0 the sprite color would not be used. 1t must be taken
into account if a sprite is being drawn over another sprites, this means that the sprite drawing must aso
update the priority information.

The SMS VDP aso has a bit which is set when overlapped non transparent sprites are found (two non
transparent pixels of different sprites are drawn in the same position) which can be used in some cases for
collision detection. This feature should be also emulated.

After the sprite and the background layer are generated we have a buffer storing the pixel colors of aline
(or the full frame). Infact it isnot still the color but a palette index. If our target computer uses a
palettized video mode we just have to convert the SM S palette values to the target pal ette values
(sometimes they can be directly the values, if not it could be added an offset if the first entries of the
target palette have to be used for other tasks). Thereal color is emulated trandating the writes to the SMS
palette into equivalent writes in the target machine palette.

If the target video mode is not palettized the final phase must be performed. Emulating how it works a
palettized graphic hardware each byte (if a palette value is stored in a byte) from the frame or line buffer
isread, the value is used to index atable of colors and the obtained color (which will be aready in RGB
format) will be stored in the final framebuffer or in a secondary buffer. Thistask can be performed when
the full frame has been drawn, in both line by line and full frame renderers. At the same time or after the
frame buffer is converted to RGB (or any other color codification) it can be applied special effectsto
enhance the final result, for example filter for reducing the pixelation when using a video mode with a
higher resolution than the origina console video mode. Popular effects are bilinear and trilinear filters
(some implemented now by the video cards in hardware), Eagle and 3XSAI which have the same purpose
but with better algorithms. Thisfilters are very CPU intensive (if not implement by the video card
hardware) so this must be taken into count when implementing them. Usually they are an option rather
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than the default setting. Another popular effect is scanline which tries to keep a separation between the
displayed lines to simulate the aspect of a TV in a computer monitor.

Finally the result buffer is blitted (copied) to the target machine screen, this can be more or less
expensive depending in the target video hardware. The modern graphic cards implement the more
common blitting operations by hardware and in an asynchronous way so the CPU can resume the
emulation work as soon as the graphic hardware has been setup for the blit. We will talk abit about this
in alater section.

Thisisbasically how it works abasic tile renderer. Aswe will seein the next section talking about the
Genesis hardware thisis just asmall view of the tasks which must be performed. We can see that the
more expensive part is the drawing of the background and cal culation of the transparency and priorities
between the different layers. Another part which has a big impact isthe final conversion to the target
machine graphic format and the final blitting. Asthe PC and other systems which are used to implement
emulators grown in capacity it is more common to emulate the original video modes with larger
resolutions and greater bit depths (the number of bits per pixels, determining the number of color). This
means a large reduction of the performance due to the increased memory needed for storing the full
frame, the time for generating it, apply the filter effects and blit it the video hardware which increases the
memory bandwidth needed. In some cases the oldest systems will suffer from alarge performance
penalty if faster modes are not implemented.

A more advanced VDP: Genesis.

In this section we will see a more advanced example of atile engine and we will see the additional
problems we could found in the process of emulating the graphics. We will also talk about other features
which can be found in the videogame computer graphic hardware.

The Genesis has a display screen of 320x224 pixels (NTSC) 320x240 (PAL). The GenesisVDPisan
advanced version of the SMS VDP and keeps a backward compatibility mode with the SMSVDPto be
able to use the SM S games in the Genesis. It can show up to 64 colorsin screen (4 palettes of 16 colors
each) from 512 selectable colors (9 bit RGB). The VRAM is64KB insize. It hasa CRAM for the
palettes and a small vertical scroll RAM (the scroll can be performed in the full frame, tile by tile or even
line by line).

— scollB ———
—— ScrollA PRIORITY
— Window CONTROLLER
— Sprite
DISPLAY

Figure 63. Genesis VDP overview.

The Genesis has two background layers, named A and B, and a sprite layer. A special layer called
window can substitute the layer A if it isenabled. Both thetilesinthelayer A, B and the sprites have a
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priority bit. The default ordering is spritesin front layer A and layer A in front of layer B. With the
priority bits set the ordering is sprite high priority, layer A high prio, layer B high prio, sprite low prio, A
low prio and B low prio. Both layer A and B are larger than the actual Genesis screen up to a 512x512
virtual screen. This alows a greatest scroll buffer than the SMS VDP. The name tables for both
background layers are 8KB in size allowing for different virtual screen combinations: 32x32, 32x64,
64x64, 128x32, 32x128 and so, only with the limitation 8KB limitation. Each entry is 16 bits and
contains the pattern identifier, afield for choosing which of the 4 palettes to use, the priority bit and
vertical and horizontal flip bits. The pattern can be 8x8 or 8x16.

The Genesis can display 80 32x32 sprites. The sprite table contains the x and y coordinates of the sprite,
the size of the sprite (how many horizontal and vertical 8x8 cells have), a priority bit, a palette field
selector and vertical and horizontal flip bits. It also has a very common feature in sprite based engines, a
link field which is used to create lists of spritesto be displayed. Rather than use a sequential order
following the sprite table, the Genesis VDP draws the sprites starting from the entry 0 and following the
content of the link field until alink entry with a0 valueisfound. Thisis useful for having different lists
of spritesto be displayed and to perform fast changes between them (it just needs to change the entry 0
link field). With two or more listsit can work in asimilar manner than a secondary buffer in frame based
graphic hardware. The Genesis VDP can draw as many sprite pixels by line as pixelsin theline. Thefull
screen could be formed with sprites, thisis typical from the more advanced sprite based computers. The
size of the sprite table is 640 bytes. Both the background layer tables and the sprite layer arein the
VRAM with the pattern data.

Finally, the Genesis VDP can perform vertical scroll for the full screen or scroll independently groups of
two cell columns for both background layers. The vertical scroll for each two cell columnsis stored in
the VSRAM which accessed separately from the VRAM. The horizontal scroll is stored in a 960 byte
table in the VRAM. It can perform independent scroll at the line level and the cell level. It can of course
scroll the full screen at atime. The last features are awindow, which is defined with asmaller tile table
which can be drawn in any position of the screen as a subgtitute of the layer A and a shadow highlight
capability which is used to change the intensity of the displayed colors using the window and alist of
rules.

The Genesis VDP also implements DMA access (Direct Memory Access) between the 68K memory and
the VDP memory. The first reason is because the access to the memory VDP is performed through 10
ports (in this case mapped in the 68K memory address space) the same than in the case of the SMS VDP.
The problem is that although for the Z80 the 10 access was fast enough it does not happen the same with
the faster 68K. DMA is atechnique used to move data from the memory to the hardware devices (and
from the hardware devices to the main memory) with passing through the CPU. The bus between the
hardware devices and the CPU with the memory is the same so while a DMA operation is being
performed the CPU can access the memory (and in fact it is stopped because it can not fetch new
opcodes).

The Genesis VDP can perform data writes and data read from the VDP memory and aso fills (write the
same byte in the range of the memory where it is performed the DMA access). This feature must be
emulated because many games use it for moving data from the ROM cartridge to the VDP memory. The
emulation of the DMA implies to emulate the data movement, which can be implemented directly as
access to the emulated main and video memories, but also the emulation of the time it takes to perform
this operations. Asthe DMA operations take time from the CPU it must be calculated the amount of CPU
cyclesit takes each of this operations and this number used in the calculation of the passed time. If thisis
not emulated there will be problems with games which are very time dependant.

If we take into account the two layers, the sprite layer with alarger number of sprites displayed in each
frame and the scrolling features we can understand why it can be so expensive to emulate the graphic
hardware. The Genesis VDP israther powerful but other machines, like the NeoGeo, the Super Nintento
or the Saturn implement even more powerful 2D features. The process of calculating the priorities and
the mix of the different layers will take a good amount of the processing time. All the layer pixels must
be calculated with a priority and later for each pixel it must be decided the color of which layer must be
drawn in the screen. The line by line scroll increases the cost of deciding which pattern must be read each
time.
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The Genesis VDP does not show all the features which can have a 2D graphic engine. Other graphic
systems can implement scaling (NeoGeo) and rotations in the sprites. The SNES has a specia video
mode (called Mode 7) which provide specia scaling features which are useful to produce near to 3D 2D
graphics. Those special graphics effectsin tiles or sprites have to be implemented in hardware and
increase alot the amount of CPU cycles needed to emulate the graphics.

Until now we have talked about how can be implemented tile/sprite based engines using a framebuffer
based graphic hardware, but it could be possible to use a hardware sprite engine to emulate another
hardware sprite engine. 1n the PC world does not exist any videocard implementing such engines but
there are consoles and home computers which have this feature. Lately many videogame consoles has
started to have emulators. Modern 3D consoles does not implement any more tile engines (or not in the
same way) but older ones still use them. For example the Saturn which has basic 3D capabilities has also
one of the best 2D graphic hardware. A project called Stardust tries to emulate the Nintendo 16-bit
console (SNES) using the 2D tile hardware of the Saturn (a Sega 32-bit console) [28]. The project is till
in development but it is said to become open source when it will be finished.

The way a sprite based engine can be implemented using another sprite based engines depends alot in
the difference of the two systems. The efforts will be made to convert the pattern data from one format to
the other and arrange the tile and sprite layersin an equivalent way. For exampleif the emulated graphic
system use tile based background layers and the target graphic system only uses sprite layersthe
background tile tables will have to be trandated into sprites (building the background with sprites) for the
target system. The handling of the priorities can be harder to implement if the two systems are too
different.

4. Plain 2D graphic generation.

In the videogame computer world we will not find many times this kind of hardware (but perhapsin
very old systems, like the Space Invaders arcade machine which uses a monochrome framebuffer based
graphic hardware) but we have to know about it because it will be graphic hardware we will find in our
target machines. In fact thiswas true for the old 8-bit and 16-bit systems but modern 3D based
videogame consoles and arcade machines use for 2D graphics this kind of graphic hardware. The reasons
are diverse: memory and CPU are no more a problem so the reasons for using 2D tile based engines are
gone, and the graphic chips used in modern videogame computers are the same or based in the same
principles than the PC world graphic chips (3D graphics).

We will see basically how it works a framebuffer based graphic engine. The video ram is used now, as
itsfirst purpose, to store the frame buffer. The framebuffer is amatrix of pixels of the size of the
displayed screen or larger if the graphic hardware implements virtual screens and scrolling. Each position
of the matrix stores the color of the pixel. The color, aswe aready said in the previous section, can be
implemented using palette indexes or directly using RGB values (or other color definition formats). If the
frame buffer is palettized it will use less memory (pal ette based systems usually have from 4 to 256
different entries, or what is the same from 2-bit pixel depth to 8 bit pixel depth). RGB based framebuffers
need a greater color depth (the minimum uses to be 15/16 bit depth) and therefore more video memory.

For implementing graphic animation with this kind of hardware the game code, the CPU, has to replace
all portions of the frame buffer which has to change from new data from the main memory or, sometimes,
from the video memory if there is an excess (there is more video memory that the used by the
framebuffer, thisis quite common now). The process of copying a block of data from the main memory
or the video memory to the video memory is called blit. The blit can be performed by software using the
CPU to move data from main memory to video memory or it can be performed by hardware. In this case
is the own graphic hardware which perform the operation, usually as an asynchronous operation, allowing
the CPU to perform other tasks. In the early systems (CGA to VGA and SVGA in PCs) thistask was
performed using software. In modern PC graphic cards hardware blit already exists. The blit can be even
faster if it is perfumed from video memory to video memory. If the video memory is large enough to
store the full frame buffer and additional graphic data this feature can be use to produce a faster
animation.

There are diverse blit operations. The basic oneisjust copy ablock of datawith any changes directly in
the video memory. However, as we aready said while talking about 2D tile engines for animation it is
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needed to draw objects with transparent partsin front of an already drawnimage. Those transparent blits
must also be performed and can be supported by hardware or not (most modern graphic cards support it).
The transparent color is called key color (DirectDraw API). The blits can be performed in all the
framebuffer or just in part, but always of coursein arectangular area.

It also exists avsync signa which tellsif the hardware has finished the drawing of the screen. Itisused
both for time synchronization (although PCs have other synchronization systems, as hardware timers and
the sound card) and as a start signal for updating the framebuffer for the next frame to be drawn. The
framebuffer can be accessed and changed while it is being drawn by the graphic hardware but this can
produce some graphic flicking. To avoid thisflicking it is also used another technique. Usually exists a
second buffer of the same (or larger) size than the frame buffer that is called secondary or backbuffer.
The updates for the next are performed in this backbuffer and only when all the changes are aready
performed it is blitted the full (or the part which changed) buffer to the primary buffer. The primary
buffer contains the image which will be displayed in the screen. This also has the advantage that the next
frame can be freely built by the CPU as the primary buffer is being read for drawing the screen. It can be
applied also with more than two buffersimplementing a rotating list of buffers which are being displayed.
Although using just a secondary buffer is the usual implementation lately it is starting to be implemented
athree buffers scheme.

FRAME BUFFER
SECONDARY
/ BUFFER
| BLIT
(the secondary
buffer is copied to

video memory)

Figure 64. Frambuffer based system. Blit.

5. How to find information.

Theinformation of the graphic hardware used by the videogame consoles can bereally hard to find. Itis
usually specific hardware designed by or for the company which sells the computer, therefore the
information about it uses to be protected. It ishard to find official specifications (the programming
manual) for most of the videogames consoles. Even harder isfor arcade machines because the
development of arcade games is performed by the same company which assembles the hardware so the
manuals never go out of the original company. For home computersis easy to find more information as
many people usually use them for programming games and programs. For videogame consolesit can be
found searching for demo groups (ademo is a small program which implement some graphic and sound
effects) and the code of this demos and homemade videogames.

Another sources of information are open source emulators of the emulated machine. For example
M.A.M.E. (Multi Arcade Machine Emulation) emulates hundreds of arcade machines from the early 80s
tothelate 90s. It is open source and has the source for dozens of CPUSs, graphic and sound hardware. It
isagood source for searching how it works a specific hardware.

If the machine we want to emulate has not been still emulated we can try searching for information

about similar machines, they will share some of the characteristics. In any case most of the information
for those machines without any good information source must be found using reverse engineering of the
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game code while developing the emulator. It isahard task to figure how it works and how must be the
displayed images just debugging the game code.

For information related with graphic programming it can be found alot of information around the web
and in books. For PCsthe same DirectX SDK (software devel opment kit) has a good manual and alot of
example about how it is programmed a graphic application. DOS based Allegro graphic libraries have
also alot of source open projects and tutorials. About tile engines implemented in software can be found
information too searching for videogame programming and in old game and graphic programming
forums, mail lists and newsgroups.
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Chapter 7. Sound Emulation.

1. Sound in computers.

While some kind of graphic hardware can be found in amost any computer it is more rare to found
sound hardware. Old PCs only implemented a basic internal speaker that produced simple sounds.
Modern PCs now have full featured sound cards though. The reason is that modern PCs have become full
multimedia computers (as the marketing department of the computer companies call them) with the
capahility of playing music or videogames. In any case the start of the sound hardware in computer
(without taking into account professional sound oriented computers like sound synthesisers) wasin the
videogame consoles, home microcomputers and arcade machines.

The sound is very important in agame. The sound generated in a videogame can be divided in two
types: sound effects like explosion, shot sounds and voices, and music which is played in the background
while playing or in videogames intros like a movie soundtrack. There are many different sound devices
which produce different kind of sounds. They show the evolution it had the sound hardware from the
early arcade machines to the modern days.

The early sound hardware was designed with the same purpose as the graphic hardware, to reduce the
amount of memory and CPU power needed to play sound and music. Later asthe CPU gained in power
and memory was cheaper the sound hardware changed. In the first days we can find just dedicated
circuits which produce fixed sounds (for example the sounds in the Space Invaders arcade). Later we will
see hardware which generate tones and FM synthetized sounds. Thiskind of sound hardware requires
nearly no data movement, if compared with any graphic system, to produce a decent music and effects.
At last sample based sound hardware with high sample rate was implemented in most of the machines,
coupled in the last machines with CD sound track playing capabilities.

In this chapter we will introduce some of the different types of sound hardware which can be found in
the machines we would want to emulate. We will point how it can be performed its emulation.

2. Types of sound hardware.

Basically there are two kinds of sound hardware: sample based sound hardware and wave based sound
hardware. In the first the sound hardware receives sample data of the sound which must be played. In
fact it isthe smpler to emulate and the system which can be found in al the modern PCs. The second
oneis based in the generation by the own sound hardware of sound waves which can be more or less
parameterised. In some cases, as the Space Invaders arcade and similar machines, the sound hardware
plays fixed hardcoded sounds. More advanced sound hardware has the ability of produce different tones
(play awave with different frequencies) to produce music and different sound effects.

There are afew concepts which has to be explained around sound generation. Sound is produced by the
vibration of the air (or any other material). This vibration can be represented as waves with a frequency
and amplitude. Usually a sound is formed with the addition of many basic waves (sinusoidal wave). The
human ear can detect waves in the frequencies between 40Hz to 24KHz. Below 40Hz it is detected as
separated sounds and above 24Hz it isn't even detected (ultrasounds). The musical tones use to be around
the 200 to 4000 Hz. The frequency is the number of phase changesin a second and it is detected by the
human ear asthe wavetone. The amplitude is thevolume of the wave and it is measured in decibels
(dB), the dB measures alogarithmic scale.

Theway a sound is digitalized is to take samples of the amplitude in fixed intervals of time. This fixed
intervals of timesis called sample frequency. Since abasic wave is aphase changeit is needed a
minimum of two samples to produce any sound, this means that the higher frequency that could be
sampled is the half of the sample frequency. For generating sound using digitalized, samples, data the
same can be applied, the higher frequency will be the half of the sample frequency. For example with
44Hz sample frequency (CD quality sound) the higher frequency which can be recorded or generated is
22KHz.
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Another important parameter with digitalized sound is range of each sample, the number of bits with
which the amplitude of asampleis stored. The more bits, the largest the sample range, the better and
more accurate sound it will be. It is better because it can store smaller phase changes. The usual sample
bit sizes are 8 bitsand 16 bits. Thefirst, 8-bit sample datais used in low quality sound and it can store
up to 256 amplitude steps. The second is CD quality and it can store 64K amplitude steps enough for an
almost perfect sound reproduction. Both the sample frequency and the sample bit size have a big impact
in the amount of memory (or any other form of storage) needed to keep a sample sound. Asasimple
example CD quality is44.1 kHz 16 bits for sample (2 bytes) and 2 channels (stereo): 44100*2*2 =
176400 bytes = 172 KB to store a single second.

The amount of storage needed for good quality sampled sounds implied the necessity of implemented
others ways of generating sound using less memory. The sound systems based in waves, either
hardcoded or stored in buffersin memory, which could be modified in frequency, amplitude and others
parameters to produce different sounds were introduced to help with this problem. The first sound
systems implemented in either videogame computers or any other computers were just fixed beeps
implemented using analogic circuits. There was a small fixed set of sounds which could be produced and
the quality of the sounds was quite low. Thiskind of hardware can be found in the first arcade machines.
The game code just had to set the bit corresponding to each of the sound that could be produced in a
hardware register and the sound was played.

Later systems that synthetized sound were developed. Those systems work writing the frequency and
the volume you want to play the wave to the sound hardware. The amount of memory needed is small,
you just need the notes of the music you want to play or the frequencies of the sound you want to
generate. The changesin the frequency use to be rare (less than 100 in a second) and therefore full songs
can be stored in afew kilobytes. Thisis basicaly the system which is used in most 8-bit and 16-bit
videoconsoles and arcade machines. There are different implementations of this kind of sound
generation.

The basic implementation are the so called PSGs (Program Sound Generators) used in the 8-bit systems.
They had a few sound channels each capable of producing sound at a different frequency and volume.
They generated basic waves either with sinusoidal form or square form (a square wave can be represented
asalist of 1sand 0s). Some also implement noise channels (fixed frequency, usually high, randomly
generated amplitude) to be used as shot, explosion and percussion. Other chips had the ability of
changing the envelope of the wave. That meant to pass the wave through a filter which could change the
amplitude of the generated wave in function of thetime. For example it could start at a high amplitude
and be reducing the amplitude until the end of the period.

Thisisthe more basic hardware that can be found. The problem with those systemsis that the produced
waves were too simple. Music instrument waves are based in harmonics, the frequency changes which
are added to the base tone frequency of the note played by each instrument. To try to simulate the
harmonics Frequency Modulation sound systems was implemented. Thisis based in the combination of
two or more waves to produce a sound. It is not as the addition of waves produced by the mixing of
various sound channels. In this case thereis awave which is called carrier that has the tone frequency
and a modulator wave which modifies the phase of the carrier. The formulafor the YM2413 (used in
some models of the Master System and in MSX computer) that uses two waves is as follows:

FM = E sin(wit + | sin w2t)

Two frequencies and two amplitudes are provided. There are anumber of parameters which are used to
set the amplitude and frequency of the carrier and modulator waves. A combination of those parameters
isusualy caled an instrument because it is used to simulate the sound of a specific instrument (piano,
guitar, ...). Thiskind of hardware also has extended envelope capabilities, meaning that the full envelope
of the wave can be modified (atack and decay time, sustain and retain level) to produce a nearer to the
real instrument sound. The number of sound channelsis aso increased.

FM sound hardware produces music and sound with a medium/high quality. It has some problems

though in the generation of percussion sounds and sound of the explosion and shotskind. FM is one of
the most used sound hardware in 16-bit videogame consoles and arcade machines.
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Another approach to wave sound generation is MIDI sound. MIDI is astandard for producing music
using simulated instruments. A MIDI file or song uses a set of instruments which are implemented by the
MIDI hardware (they can be implemented in different ways. wave tables, hardware or software
simulation). The song contains the notes, times and other parameters for each of the playing instruments.
The hardware reads this parameters and generates the music. MIDI is not designed to be used for sound
effects. PSG can generate enough good sound effects and FM has some ability with them too. MIDI is
more designed for music. The quality of MIDI music, using a good hardware based system or a good
software based one and a good instrument table, isreally good. MIDI isimplemented in PC videogames
and in the PSX.

Those systems are the more frequent wave based sound generation systems we will find. In the next
section we will introduce the emulation of the PSG and FM based systems. We will not talk about MIDI
emulation.

The other general kind of sound hardware is the based in sampled sound. Aswe said previoudly this
system needs alarge storage for containing the full sounds and musics. We can find diverse
implementations which differ in the capabilities and the storage medium used. For example modern
videogame consoles (and some arcade machines) use CD-ROM readers. A CD-ROM can contain large
amounts of data (650MBs) and it can store up to 74 minutes of high quality stereo sound. Either stored in
sound tracks or in data tracks as files which are feed into a sample based sound generator voices, sound
effects and full songs can be stored along with the game data. Most of the games store voices and music
as sound tracks in the CD-ROM and sound effects are stored asfilesin the data track. The sound tracks
are played directly from the CD using hardware between the CD-ROM reader and the sound hardware,
the CPU just hasto program the CD-ROM reader to play them. The sound data stored asfilesin the data
tracks must be read into the main memory and sent using DMA or other mechanism to the sound
hardware to be played.

Not only stored in CD-ROMSs but in other formats sampled sounds and musics have been used in
videogame computers. The Sega Genesis has a DAC channel (Digital to Analog Converter) which can
output 8-bit 4KHz samples. Thislow quality sample based sound generator can be used to produce some
sound and voices hard to produce with the FM hardware used for music and sound effects. The Sega
Mega CD (which as add-on to the Sega Genesis and work as two computers working in parallel) has 8
PCM (Pulse Code Modulation) based channels and alink between the CD-ROM reader and the sound
mixer to play sound tracks. The PCM channels can hold 16-bit 38KHz samples which is quite a good
quality sound. Thereisaspecial memory region in the Mega CD 68K side which stores the samples for
being played. Arcade machine store the sample datain ROMSs cards attached to the sound hardware for
example for the QSOUND ADPCM sound hardware of the CPS1 and CPS2 (Capcom Play System 1 and
2) based arcade games.

The sample based sound systems can also apply different effects and filters to the original sampled data.
Those sound chips, sometimes called DSP (Digital Signal Processors) can perform mixing operations,
fade-in and fade-out and many other filter effects. They can aso be programmed to produce more effects.
Using a sample based generation system any kind of sound hardware can be emulated in software (this
will how we will be emulating our emulated machine sound hardware). The opposite is not true, most of
the other sound systems are unable to emulate properly other sound systems or sample based sound
systems. For example is common to use waves stored as samples to implement systems which work
similar to the MIDI and FM system where a base instrument wave sample is modified in tone and
amplitude to be used as avirtual music instrument. The Nintendo SNES use this kind of system and
some of the games use specia and more powerful sound chipsinside the ROM cartridge.

In the next sections we will introduce a bit how it work a sample based system because we will find in
some of our emulated machines and because it will be our main tool for emulate all the other systems.

3. Wave generator based sound hardware.
We will just introduce how a basic PSG. The Master System SN7649, works and can be emulated and

provide afew comments about FM emulation, introducing the Master System Y M2413 and the Genesis
YM2612.
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Basically there are two ways to emulate this type of sound hardware: use a sample based sound system
and generate waves as hear as possible to the produced by the origina hardware or use a similar
hardware, using the correct settings, to try to produce asimilar effect. Thefirst isthe main option in most
emulators being implemented today. The second was used when MS-DOS emulators were still the main
option. The Sound Blaster 16 (basic PC sound hardware) and the Adlib (an even older PC sound
standard) had similar hardware to those FM and PSG hardware. In fact the Adlib is more or less a PSG
while the SB16 (and previous 8-bit version of this sound cards) usesa FM chip. This hardware is not
supported the Win32 or DirectX APIs and as the modern PCs has enough storage space (memory and
secondary storage) for storing large amount of sample sounds sample based sound generation is now the
standard. Either from CD-ROM sound tracks or any other forms of sampled data, including largely
compressed sampled based formats as the MP3 (Mpeg 1 layer 3).

PSG emulation.

A PSGisjust asound chip which has a number of channels in which each of them can be programmed
to sound in a given frequency and with a given volume. Some PSGs has other features as envelopes too.
The wave which is produced can have any form, there are PSGs which generate sinusoidal waves, square
waves and even triangular waves. The Master System PSG is a SN76489 running at 3.57 MHz. It has
four channels, three are tone channels and the last isanoise channel. Thisis more or less the standard
configuration. Different sound chipswill have more or less channels. Usually machines which need a
better sound use more than one of this chips to provide more sound channels. The SN76489 is the more
basic that can be found in videogame consoles. It produces square waves and only can be configured the
frequency, which can go from 122 Hz to 125 kHz (it uses a 1024 divider with a 125 kHz base frequency),
and the volume which has 16 steps from no sound to loud volume. The fourth channel is a special
channel with afeedback xor array to produce both periodic and white noise.

A sguare wave can be just implemented, and it is, using a decrement (or increment) register which
changes the output of the channel from Oto 1 or 1 to 0 each timeit arrivesto 0. The content of the
decrement register for each channel is the value corresponding with frequency of the wave to be
produced. Infactitisadivider to the base frequency (the chip frequency divided by 32). The output
signal of each channel is attenuated with the given volume value and then the four channels are mixed.
The noise channel can use three fixed frequencies (clock/16 = 7800Hz, clock/32 = 3900Hz and clock/64
= 1940H2) or the frequency of the third channel (channel 2).

The way to emulate it is to generate samples for each of the channels, mix them and write them to the
playback buffer that the sample based sound hardware will play. The calculated samples for each
channels will be just 0/1 values (or —1 and 1 valuesif we use signed samples) that are multiplied by the
volume. The volume valueis an attenuation factor, that is, the high value, 15, means no sound and the
lower, O, the louder sound. Then the output sample for a channel is therefore calculated as
MAX_VOLUME?* (15 — channel Volumg][i])* channel Output[i]. For updating the output of a channel we
will have a counter with the number of cycles since the last output change. This counter is decremented
(or incremented) by the cycle step value passed each time the PSG emulator iscalled. The original value
stored is the frequency divisor value that tells the frequency of the channel. When it arrivesto O or below
to 0 the output of the channel is changed and the value in the counter is restored, but keeping the overflow
cycles (the negative cycles) to provide an accurate sound. If it isjust wrapped to O (increment) or to the
frequency value (decrement) there will be noise in the final output.
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BLOCK DIAGRAM DESCRIPTION

This device consists of three programmable tone generators, a programmable noise generator, a clock scaler,
individual generator attenuators and an audio summer output buffer. The SN76489AN has a parallel 8 bit
interface through which the microprocessor transfers the data which controls the audio output.

Figure 65. SN76489 Schematics.
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Thistask is performed for the four channels. Then the samples of each channel must be mixed. If we
are using signed samples the mix is just the addition of the four sample values. This addition must be
performed with saturation, it can’t produce and overflow, if the final value is greater than the maximum
signed value for the sample size in bits the result must be capped to this maximum value. If not the sign
of the wave in this step would change producing atotally different sound. It is good to prevent saturation
from afirst step just adjusting the different volume values (the range of the samples) for each channd so
the addition will never overflow the sample bit size. If the samples are not signed then the processis a bit
harder because it must be performed taking into account a center value and the saturation aswell. A good
solution could be to use signed sampled always and in alast step if the target hardware uses unsigned
samples convert them to unsigned.

The noise channel is generated using the same algorithm but at the time of the output changeit isused a

xor value to produce random wave changes. The xor values are different for white and periodic noise.
The white noise uses the same output from the channel as input to produce more random sound.
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The three tone channels are used for music and for most sound effects. The noise channel is used for
percussion effects (very bad quality) and for shots and explosions. The music and sound generated are
very plain and of course there is no sense of different music instrument. Thereisalso agreat difference
between a sinusoidal wave and a square wave. A sguare wave sounds sharper and it is easy to detect it, it
isavery frequent sound in old videogame consoles and arcade machines.

Square based waves.

sample =0;
[* Generate sample data for the three standard channels */
for(channel = 0; channel < 3; channel++)

if (!channel Enabled[channel])
continue;

if (PSGchannel Freg[channel] != 0)

PSGchannel Count[channel] += cycleStep;

if (PSGchannel Count[channel] >= PSGchannel Freg[channel])

{
changes = PSGchannel Count[channel] / PSGchannel Freg[ channel];
PSGchannel Count[channel] -= PSGchannel Freg[channel] * changes;
if ((changes & 0x01) == 1)

PSGchannel Stat[ channel] = ~PSGchannel Stat[channel];
}

}
cSample = PSGchannel Stat[channel];

cSample *= (INT16) ((15 - PSGchanneVol[channel]) << 8);
sample += cSample;
}

/* Noisechannel. */
if (PSGchannelVol[3] !=15) && channelEnabled[3])
{
if (PSGchannelFreq[3] !=0)
PSGchannel Count[3] += cycleStep;
while ((PSGchannel Count[3] >= PSGchannel Freq[3])
& & (PSGchannel Freq[3] = 0))

PSGchannel Count[ 3] -= PSGchannel Freq[3];
if (PSGnoiseRand & 0x01)

PSGchannel Stat[3] = ~PSGchannel Stat[ 3];
PSGnoiseRand = PSGnoiseChannel FeedBack;

}
PSGnoiseRand >>=1;

}
cSample = PSGchannel Stat[ 3];

cSample *= (INT16) ((15 - PSGchannelVol[3]) << 8);
sample += cSample;

Figure 66. PSG sound generation algorithm (Normal channels and noise
channel).
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For produce sinusoidal and triangular waves the best is to use a table with precal culated base sample
values which will be later modified with the volume value. The table will be indexed by the content of
the counter register of each channel arranged to the range of the table.

The additional effects which can be introduced as different wave envelops can also be applied. A time
counter for the envelope of each channel is used, when it reaches some values the volume will be
modified with the form of the envelope. Thiskind of PSG isfor example implemented in the original
GameBoy. Other features can be found, for example stereo: the original Master System PSG has been
modified in the GameGear (that it is a portable and a bit upgraded version of the Master System) so each
channel can be directed to the l€eft, right or both channels.

The samples are stored in a buffer and the sound hardware or the sound API will read and play them.
About this part we will talk in the next section.

FM emulation.

FM sound generation is harder to emulate. Aswe already said it is based in the combination of multiple
waves to produce harmonics similar to the produced by real music instruments. It isintended therefore
for music generation. Without the using of harmonic it can be seen as a sinusoidal sound generator as the
one seen above. The have more channels than more primitive PSGs and alot of more parameters to be
configured: base frequency, relative frequency of the modulator wave, amplitudes and complex
envelopes. Some, asthe Master System Y M 2413 have the settings for the instruments hardcoded in an
internal ROM. Others, asthe SB16 FM chip and the Genesis Y M2612 use hardware registers to set the
instrument values and the game is which has to know this values and set them. Therefore we can see
there are two groups of settings: a group of settings which are related to the instrument to be emulated
(relative frequency of the harmonic, number of waves — operators — combined, the envelope of the
instrument) and a group of settings related with how the instrument will play (note, volume and duration).

Mathematically the combination of the two waves using FM, or frequency modulation can be described
thisway:

F=Asin(wct+1sn(wmt))

F isthe output sample for achannel, A isthe amplitude of the carrier wave, wc is the angular frequency
(expressed in radians) of the carrier wave, | is the amplitude of the modulator wave and wm the angular
frequency of the modulator wave. In this caseit is said that the final wave is produced combining two
operators. An operator isaAsin(wt) group and can receive as phase input the output of another operator.
The YM2413 can just combine two operators (carrier and modulator) or just use one but the Y M2612 can
combine up to four operators to form an instrument. The carrier wave produces the base wave with the
frequency, the tone, of the sound or instrument we want to play. The modulator wave produces the
harmonics that produce unique instruments. For building an instrument it is also configured the envelope
of the instrument.

There are two kind of envelopes, or the Y M2413 has two types. In any case they are the most common.
A decaying envelope that when anoteis played the instrument (virtual) does not keeps the amplitude but
decays until it arrives to 0 and then mutes. Or sustained envelope when the note (also called key) is kept
at acertain level until another key is played for thisinstrument or it is silenced. The parameter of the
decaying envelope are attack rate (AR), decay rate (DR), Release Rate and Sustain Level. The decaying
envelope increases at the attack rate until the maximum amplitude or volume, then decreases until the
sustain level using the decay rate. Until this point the decay and sustain envelopes are the same. Then
the decay envel ope continues decreasing, using the release rate parameter, until it arrivesto O or to the
sustain point. In the sustained envelope the volume is maintained in the sustain level until the key off
when it begins to decreases using release rate parameter. It can be seen in the envelope figure.

133



Percussive Tone (Ds = 0)

Envelope

. AS(SUS ON) DP 0™ 1
- AR 0™
— —48dB RS: 1.2

Kay-ON DFF—J_ L—-—

Sustained Tone
|

Envelope

AR
oP

Keay-OMN O FF_II |

Figure 67. Envelopesfor FM sound generation.

The emulation of the YM2413 can be viewed easily in three phases as it is described in the datasheet
[29]. There arethree blocks: the Envelope Generator (EG), the Phase Generator (PG) and the Operator
(OP). The EG using the clock asinput, the amplitude (volume) and envelope settings produce the output
amplitude for the generated wave in a given point of the time. The PG generates the phase of the wave to
generate using the frequency registers and the clock. The OP receives both the EG and PG outputs and
additional settings from the register bank and produces the output wave. Thisisjust adigital sample that
it is converted to an analog signal with aDAC.

The EG must be emulated using counters which are updated with the cycle step and provide the
appropriate amplitude parameter for the part of the envelope that it isbeing played. The PGisjust a
counter updated with the cycle step and adjusted with multipliers and dividers to provide an index into a
table with a precalculated sinusoidal. The OP just must read the sinusoidal table and multiply the result
with the value from the EG. Thisis performed for each operator. Two operators form achannel and in
the YM2413 there are up to 15 channels.
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Figure 68. YM2413 Schematics (Envelope Generator, Operator and Phase Generator).

There are some variations for this basic agorithm, for example percussion instruments are hard to
emulate using this kind of waves. They are emulated using only one operator and special settings as a
feedback input (like the PSG noise channel) from the same operator. Other effects can also be
implemented as a vibrato for the final output wave or different kinds of filters.

After each channel is generated the result are mixed as we said in the PSG section.

Thisisbasicaly asit works the FM sound synthesis. It is harder and slower to emulate because of the
large number of parameters and the larger number of channels. The fact that for each channel the same
operations are performed twice, for the carrier and modulator wave and the additional overhead of the
other sound effects applied at the end of the process. Another problem is to find the appropriate values
and settings for the generation, how many time represents each release rate value and so, because it can
affect in the final sound. In some casesit will also needed to find the appropriate values for the
instruments if, as the YM2413, they are stored in an internal (non-readable) ROM. However thisis not
very common and in many other FM chips the instrument are provided by the program.

4. Sample based sound generation.

Sample based sound emulation is basically the easiest to implement. 1t must just to take into account a
few things as the format of the sample values, the number of channels that must be mixed and the
envelope and filters applied to the channels. The sound hardware and sound API that we will use for
emulating other systems will be a sample based system. Thereforeit just a question of correctly
converting the sample data from the emulated system format to the target system format and then mixing
the different channels correctly.

There are many systems which implement sample based sound hardware. The Genesis has avery low

quality DAC channel aswe already said. The Mega CD (or Sega CD) has 8 PCM channels with a good
sound quality (38KHz). The samples are stored in a specia area of the Mega CD memory which is
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organized in banks. For each channedl it is selected the bank that will be played. The Sega CD aso hasa
CD audio source which is mixed with the other sound fonts. Other systems also have similar systems, the
CPS2 uses QSound ADPCM system with the samples stored in separated sound ROMs and the sound
chip being controlled by a Z80 (the main CPU is a 68K).

The case of the emulation of a CD sound track is rather easy if the emulator works with original CD-
ROMs. Thetarget system CD-ROM and audio card just must be told to play the same sound track than in
the emulated machine. CD sound tracks are a standard and work in the sameway in all the systems. The
emulation isjust the conversion from the emul ated machine command to the target machine command to
play CD tracks. If rather than the original CD-ROM we are using a CD-ROM image (a copy in the hard
disk of the full CD-ROM) we should emulate it through the sample based services of the target sound
hardware. It will be just amatter of reading the raw data from the image and copy it (and convert it may
be) to the playback buffer.

There are different formats for storing the samples as we already said. The samples can bein raw
format, can be compressed or not, can be signet or not, use 8-bit samples or 16-bit samples, be in different
sample frequencies and so. It isimportant to know what are sample characteristics of the emulated sound
hardware and the sample capacities offered by the target sound hardware. For example the PC standard
sound hardware can play from 8KHz to 44KHz samples, either 8-bit or 16-bit and stereo (two channels)
or mono sound. The sample bit size, the sample frequency and if it isamono or a stereo sample
determines the size of the sound buffers needed. Stereo samples are usually stored coupled, two samples
together one from each channel (right or left) which are played together.

There are different ways of compressing sound data (similarly what happens with graphic data), some
areloosaly forms of compression and other are not. For example MP3 compression format can decrease
in an order of magnitude the size of the sound data but it is loosely and needs alot of CPU power to
decompress and compress the data. Other formats as ADPCM (adaptative PCM) are not loosely but
reduce the amount of memory needed. ADPCM is based in store the changes between two samples rather
than the samples themselves. Thisway the sample size can be reduced (or the quality increased). For
example two 16-bit samples with a difference between them less than 127 can be stored as the first
sample as a 16-hit value and the second as an 8-hit signed value which is the difference between the two
original samples.

The way the samples are played isreally easy. The sound sample datais stored in RAM or other form
of memory (ROM could work). The sound chip is attached to the bus and can read the memory. When
we want to play that sound the sound hardware is tell to play it from the given address (or it can be fixed
if the sound hardware is attached to fixed memory addresses). The sound hardware beginsto read data
from this position and playing the sound. When the buffer is exhausted it raises asignal (an interrupt
usually) to the CPU demanding for more data. The sound hardware can then stop playing data or
automatically loop back to the start of the buffer. Thislater feature could either work for repetitive
sounds or for reusing the same buffer. The program code could, with the proper synchronization, be
filling the sound buffer from the start while the sound hardware is already playing ahead of it. When the
sound hardware arrives to the end of the buffer the start will be already filled with proper data by the
program code. The sound sample system is basically implemented in al the systems using a callback.
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Figure 69. Sample based sound generation.

Thisis basically asit works such a system. Different sound APIs and sound hardware can have
additional features as different output channels and hardware (or automatic) mixing, filter and volume
controls, but with the basic features almost any sound system can be emulated. We could talk about
different filters effects and other features that can be found in particular systems, but asit is easy to find
information about sound generation (even easier than information about graphic programming) we will
end this chapter here.

5. How to find information.

The information about how to produce sound and the way the sound hardware of the emulated machine
works can be found more or lessin the same places as the information about the graphics. Datasheets of
the original hardware (if they are freely available), source code from demos and source code emulators of
the machine. Some reverse engineering could work but only if you have a good knowledge about the
kind of hardware you are emulating. It is hard to figure how something must sound without the original
system for example.

Information about sound format, sound filter, sound effects and such topics is easily found searching the

web for sound programming or similar words. The programming APIs use to have alot of examples and
explanations as well (DirectSound). And the basic sample system isreally easy to use.
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Chapter 8. Information, testing and legal.

1. The information. Research. Reverse Engineering.

One of the more important tasks around the process of emulating a computer is to gather as much
information about how this machine works as possible. Thisisnot an easy task. Sometimes it does not
exist an official or complete documentation. Other times this documentation is private and it iskept in
secret by the company that designed the machine. Thislast caseis one of the more common as the
videogame consoles and arcade machines are closed systems with heavy protection rules for the game
developers who get official development kits. Sometimes just the company that designed the machine
builds program for this machine. Although the task is hard there are a few spotsto start with the task.

The more popular and the older amachine is the easier it will be to find information. An old systems
means that alot of people will have work with it already, investigating al the hidden features, maybe the
protection rules will be no more in use or the company will not care about them. The official
documentation can have been ‘stolen’ and become free. The same happens with popular systems but in a
smaller amount of time. A popular system is one that many people are working with it, programming
their games and programs and investigating how it works. It is easy that information or the full official
documentation could go out to the public. One of the better sources of information for new systems with
lack of information has always been the demo groups. A demo isjust asmall program with graphics and
sound that tries to use the features of the used machine to produce an impact in the user or to push to the
limit the capabilities of the machine. Before the people who triesto build their our home made games for
aplatform the demo coders will work with it.

The last resourceis to try to use reverse engineering to discover how the emulated machine hardware
works. This can be a hard task sometimes and requires alot of experience and knowledge with similar
hardware to the emulated one. The program code from the emulated code is scanned to try to discover
the commands sent to the hardware. Then it must try to discover what those commands do. It iseasy if
you have access to the origina machine and to tools to write programs for this machine. Getting the
information from the original code and using it with the original hardware is a good way to find alot of
information. The reverse engineering work uses to be done as well with the own emulator integrating a
debugger and disassembler insideit. The errors of the emulator and difference between the emulator
output and the real machine output are followed until the correct settings are found. It avery expensive
task that needs alot of time and patience. Reverse engineering is the only legal way of emulating a
machine which has protection rights of al its documentation and hardware.

2. Testing and debugging.

Other important task in the process of emulation is the testing and debugging of the emulator. This task
isas or even harder than gather the information. In some cases, when reverse engineering has to be
applied, the two tasks are performed at the sametime. The different part of the emulator hasto be tested
and debugged, but each part needs special effortsin this process. It is not the same the testing of the CPU
with thousands of different inputs (the instructions) than the graphic or sound hardware. There must be
integration test and separate test. Usualy just the CPU istested alone (using small programsin the
emulated assembly language) and the other parts are being devel oped, tested and debugged as part of the
full emulator.

The CPU is perhaps where more errors can be hidden because of all the code needed to emulate all the
CPU ingtructions. It isalso faster to find easy errors (because the game or program just does not work)
and harder for strange errors, because of some instructions or some inputs rarely being used. The
advantage of the CPU isthat it can be built atest system to perform systematic tests for all the CPU
instructions. There are two basics ways to perform such systematic tests. One could generate with a tool
small programs for testing a few instructions with random parameters. Then compare the results of the
CPU core with the results of areal CPU that we will have access (in another computer for example). This
is the best way because you are testing your core with the real CPU. The problem is that some of the
CPUs used are very rare to be found in computers we could use easily and create a dedicated board for
the testing is expensive. A cheaper and faster aternative isto test our new CPU core against an already
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implemented and trusted CPU core. We will know that the other core will have none or very few errors
but it is not till the real CPU and sometimes we will end finding difference due to the different way the
two cores can be implemented.

Other hardware can be more or less difficult to test. Basically al the other testing, and also most of the
CPU coretesting if not such tool is used, is performed debugging programs or games that does not work
in the emulator. Thisisavery time consuming task and should be avoided trying to create better test
techniques. For example it can be created or used small test and demo programs from the original
machine. This can be aready implemented or be created by the own emulator author. They could be
applied in both the original machine and the emulator to compare the results. This approach would be
easier because different from a common program or game we know what the test/demo is doing and we
can test specific parts of the emulator. In any case al the other test, debug and reverse engineering
process is performed through a classical debugger integrated with the emulator.

Graphics and sound are easy to find the big errors because you can sense them easily. If you know or
have at hand the original machine with the same programs or games you can compare colors, the
displayed image, the music and the sound. This makes easy to find that exists a problem but it is still
hard to find the cause of thiserror. An accurate model of both emulated graphic and sound system is
almost impossible unless we know the precise characteristics of the hardware. Thisisbecauseit is hard
without them (perhaps using an oscilloscope or image comparers) to notice small difference in sound and
graphics. Other ‘errors are more subtle like the sense of the program or game speed. Thisis something
it can be feel and that it can be related with anon very accurate emulate of the timing but it is hard to
solveit.

The full reverse engineering, test and debug topic could take hundred of pages to be properly explained.
The experience, alot of knowledge, practice and being systematic are the better tools against the
problems we will find. In fact none or only afew emulators are redly perfects. It is hard to make work
all the game or programs a machine can use because it isimpossible to test them. And as some ROM
cartridges in some system add additional hardware (even less documented) to the original emulated
machine hardware the task becomes almost impossible (Genesis Virtua Racing or afew SNES games
with special chips). It could be said, asit can be said for any software product, that the process of
debugging never ends. Only systems with alimited number of features, alot of information and alimited
number of programs which can be all fully tested can be considered as fully emulated.

3. Legal and Commercial aspects of emulation

Oneimportant aspect that is related with emulatorsisif they are legal or not. Something is sure the
creation of software duplicates of the games and programs which were stored in a different format (ROM
cartridges, tapes, whatever) can only be considered legal if you own the original storage system. If not is
just another part of the warez and software piracy problem this time related with old and many times no
more sold systems. As the companies would not care about what happens with this systems the emulation
and duplication of those systems and programsis agrey area but it is not dangerous.

However as emulation has been more and more devel oped systems which are till being sold
(PlayStation, Nintendo 64, GameBoy Color) or even systems which have not been even commercialized
yet (GameBoy Advance) have started to be emulated. This arises a new problem because the companies
that produce the original hardware will be very beligerant with the use of illegal copies and with the own
emulators which make the original hardware unnecessary. Sometimes the emulator can add features that
enhance the origina hardware (Bleem and BleemCast).

This has been even worst when the first commercia videoconsole emulators have started to push the
market. Connectix Video Game Station (VGS) and Bleem/BleemCast are two PlayStation emulators for
the Mac and the PC the first, and for the PC and the DreamCast the last. They have been sued by Sony
(the owner of the PlayStation) many time but until the time Sony has lost &l their legal attempt to stop
them. Thelast news includes that Connectix has been bought by Sony and a commercia and legal war
between Bleem and Sony about the newly released BleemCast.

Aslaws areinvolved here the same principles than for any reverse engineering case are applied. If the

emulator isimplemented without using any hardware or software part copyrighted or without using
private information but rather public information and reverse engineered information it is fully legal.
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What happens then and how it is used and abused by the users are another question. In any case software
or hardware emulation, out and inside the world of the videogame computers has been used by ages. The
Sega Genesis has hardware compatibility with the Master System. The SNES has a hardware device to
play GameBoy games. The GameBoy Color and Advance keep backward compatibility with the original
Gameboy. The CPUs, PC x86 CPUs, are being emulated as an attempt to break Intel monopoly both in
hardware (Cyrix, AMD) and in software (Crusoe, Virtual PC). There are PC emulators for MAC and
MAC emulators for PCs. The market and number of applications for emulation is still growing.
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Chapter 9. Conclusion.

1. Initial objectives.

The project, as stated in the preliminar report, had two important parts. a document about how can be
implemented a videogame computer emulator and the implementation of some one of such emulators
using some of the techniques described.

At first it was intended a Sega Mega Drive (Genesis) emulator, but the complexity of the emulation of
the M68000 process, the Mega Drive VDP (graphic hardware) and the sound hardware which uses a
YM2612 FM synthetizer and a Z80 coprocessor made afirst change in the objetives of the project. A
more simple machine, the Sega Master System, which was the predecesor of the Mega Drive, was
designed as main target. At the sametime it was developed a Space Invaders as a main example of a
basic tutorial about CPUemulation.

The documentation was intended to be written in english, and would talk about the more important
techniques about CPU, graphic and sound emulation. Also about the genera structure of the emulator
and how the different parts work together.

The process of gathering enough information and learning about emulator programming was started very
soon using free resources that could be found in the Web. Different lists about emulation programming
were also used to contact with the people who was working in this topics. Most of the knowledge about
programming emulators for videogame consoles or microcomputers can not be found in any document
but has to be asked to the people who has been working with them.

2. Objectives acomplished.

The process of learning the basics was acomplished in athree or four months before the inscription of
the project. In later phases a more deeply knowledge about some of the topics about emulator
programming were obtained, mainly around graphic and sound emulation and dynamic binary trandation.
There were three differents sources of information. The first was general documents which could be
found in the ‘emuscene’ (the small subset of the Web which is dedicated to programming and using
videoconsole and old computers eulators). Those documents were written by different emulator authors
(Marat Fayzullin, Dan Boris and others) and provided a vision of how the problem of emulation was
being solved in the ‘emuscene’. This first source includes also different open source emulator projects
like M.A.M.E. (Multi Arcade Machine Emulator), which isafull library which provides components and
descriptions to emulate thousands of old video arcade machines. Other open source emulators were also
used asinformation sources. The second source were the people in the ‘emuscene’. The mail list about
emulation programming like MUL8 and Dynarec were very useful to contact people interested in the
topic and learn alot from them. Also programming forums like S8Dev forum about the Master System
programming and emulator implementation. The first two sources provided a general vision about
interpreter emulators and sound and graphic hardware emulation. The last source of information were
commercia and academical research around emulation. The main aspects about which those sources talk
are binary trandation and interpreter design.

Using this sources the documentation was started. Althought the first draft were started and the initia
steps the document about emulator programming was not finished to the actual form until the end of the
project. Theresult isadocument which provides a good framework to start learning about emulation
programming. The main topics are mostly covered. The more extended part is about CPU emulation
because in general emulatorsis the more important part. Thisis not enterely true for video console
emulatos, which are our primary targets, because in those systems the graphic and sound system are as or
even more important than the CPU. In any case graphic and sound emulation were also so covered in the
main aspects. At last the document is missing additional information about the process of reverse
engineering and debuging of the emulator. There isaso missing a bit more of information about the
implementation of other small devices, as timers, comunication chips and device controllers which can be
also present in many machines. A bigger overview of the interconnection of the different parts, CPU,
graphic, sound and miscelaneous devices, could be also interesting. The document was fully written from
the start in english, asit was said in the first report. This aspect could be considered a mistake because
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the quality of the text has suffered alot because of the lack of knowledge of the writer. In any case it was
too late to change de language of the document and although harder to end it was funner becuase of it,
because it was a good way to try to learn more about the language.

The Space Invaders tutorial was writting in a couple of month in spare time with the help of the
members of the MUL8 mailing list, where it was intended to be distributed the tutorial. The tutorial is
missing the last part about the Space Invaders hardware which is very simple (just a couple of sound
circuits for providing simple sound, emulated using presampled waves, a simple monochrome
framebuffer and two time interrupts used for synchornization). The emulator was implemented in Visual
C for Win32 and using the DirectDraw API (inside the DirectX APl version 7.0). Both the CPU and the
hardware part were fully implemented by the author.

The Master System emulator was intended to test the techniques about graphic and sound programming.
Because this and for providing a better performance an aready implemented CPU corewas used. This
CPU coreisMZ80's Neil Bradleys Z80 emulator programmed in both C and x86 ASM (using a code
emitter). Thiscoreisvery fast and reliable. It was missing, though, an important feature for Master
System emulation, it didn’'t provide support for banked memory. It could be till implemented using
dower techniques (as memory memcopies) but it was thought that to add bankswitching featuresto it
would pay the effort. So it was done improving alot the performance of the emulation. Thiswas
achieved in a couple of weeks of debugging (becuase of the difficulty of testing an assembly CPU core).
To the Master System emulator it were added most of the graphic features and sound features
implemented by the original hardware. The compatibility, the number of original games that work in the
emulator, was being increased al the time, though still there are about a 30% of games with problems and
a 10% which does not work at al. It was aso implemented support the GameGear a handheld version of
the Master System with additional features (smaller screen, more palette colours). The first version was
finished in amonth, later changes, debugging and implementation of other features were developed in a
range of two or three months.

The Master System emulator was devel oped using Visual C and a graphic and sound library (multimedia
library) named SDL. SDL isx86 multiplataform library (Unix, Beos and Windows systems) which
provides an easier interface to the graphic and sound hardware. This was the reason, not the portability,
which made to choose this library rather than using other interfaces. The implementation used was for
Win32 which used the DirectX (v 5.0) for accessing to the graphic and sound hardware.

The first phases of the project, research, were started at the Spring 2000 course but the project was not
really fully started until the Autumn 2000 and continued until its end this Spring 2001 course. The
project was developed in half time day (because the author was working). The Space Invaders and
Master System emulator were almost finished at the start of the Spring 2001 course. The remaining time
period was used for finishing this document.

3. Further work.

Some objetives that could be interesting to achieve could have been to emulate the YM2413 chip used in
some versions of the Master System. This chip isaFM synthesis hardware which is harder to implement
that the basic PSG hardware of the Master System. The lack of time made impossible to end the
implementation of the emulation of this device, which was stopped at the research and design phase
because the document should be finished first.

It would be aso interesting to implement a more complex system, like the Sega Mega Drive or the Sega
Mega CD, but that would be out of the scope of the size of an universitary project.

One aspect of the emulation which has remained out of the project, although it has been one of the more
developed in the research time and has been a source of fun in the free times, has been dynamic binary
trandation. The Dynarec mailing list has been used to continue the works around this topic athough this
part is not show in this project. The work in the reserch project Dixie in the UPC around static
retargetable binary trandation has been also interesting for this part of the emulation range of
knowledges.
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Appendix A. Space Invaders Emulator Tutorial.

For reducing the size of this document and because we thought that the tutorial was more suited to be
with the implemented emulator and source the Space Invaders Emulator Tutoria could be found in the
CD-ROM that will be delivered with this document.

Appendix B. CD-ROM contents.

The CD-ROM will contain the binaries and sources of the Sega Master System emulator and the Space
Invaders emulator. It will also contain software copies of a small number of Master System Cartridge
ROMs (games) to permit the test of the emulator. It will contain copies of the Space Invaders Arcache
Machine ROMs and sample wave files of the sound produced by the machine. There will afile
explaining the contents of the CD-ROM, the requeriments of the emulators and how must be used.

At last it will contain text files with the Space Invader Emulator Tutorial.

Appendix C. User manuals.

They will be found in the CD-ROM delivered with the document.
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