THREE DIMENSIONAL MICROCOMPUTER
BASIC VERSION
by

Bruce A. Artwick

August 1977

SubLogic Company
P.O. Box 3442
Culver City, California 90230

First Edition
First Printing
© Sublogic Co. 1977
"All Rights Reserved"

Printed in U.S.A,

Serial Number

GRAPHICS

TASLE OF CONTENTS

Introduction , , . . v « & & & &

The 3D to 2D Converter Concept .

Space and Screen Coordinates . .

3D Space Coordinates . . .

2D Screen Coordinates . .

3D Space and 2D Screen Coordinate Relationships

Object Construction in Space Coordinates

Observing 3D Space on a Lisplay Device

Order of Transformations . . «

[y

Detailed Control Parameter Definitions

Using the 3DGBU.VO3 Graphics Program

The BASIC Program .+ « o o o+ o o

The 3D to 2D Converter Subroutine.

The Transformation Matrix Generator

The Interface Program . .

Using the Test 1 Program

Array Handling in the Interface Program

A Simple Display Driving Program

Customized Interface Programs . .

Conclusion

Appendix 1-
Appendix 2-
Appendix 3-

Appendix 4-

Nemory Map . . . + .
Graphics Principles .,
Application Notes . .

iMiscellaneous Topics

.

iii

Page

N O F

10
13
14
15
15
20
20
23
27
29
32
33

35
36
42
49

Figure

F W n

O N N Wn

10

12
13
14
15
16
17
18
19
20
21
22
23

LIST OF FIGURES

SubLogie 3D Graphics Package characteristics .
The 3D to 2D Converter Program and its arrays
Three dimensional space coordinates

Two dimensional screen coordinates

3D and 2D coordinate alignment .

Object construction in 3D space

Viewer's location in space .

.

Viewer's direction and field of view

Variation in screen coordinates

.

A popular display device's addressing scheme

The difference transformation order makes

Direction of movement conventions

Field of view definition . .
The Matrix Multiplier section
The Clipping section « + .« &
The Projection section . .« .
The Matrix Generator section
The Sine/Cosine subroutine .
The Test 1 program « « « + &
An input array for a pyramid
The Test 2 program « « « « o

The Display Interface program

A line between points drawing program

.

iv

Page

S N0 o o N O v WU & W

w W 3] N N [N - - = — [(= -
= O 0 NN NN R OON N WO

INTRCDUCTIONR

The use of computer graphics in science, engineering,
art and many other fields has leen increasing cver the past
fifteen years. Display device costs continue to drop &s
many mznufacturers enter the display systems market witin new
display hardware and scftware prroducts. Software packases
which allow the user to project three dimensicnal scenes
however are not very commor, and programs which allow &
viewer to observe a three dinmensional scene from any
location and angle are nearly nonexistent. This can be
attributed to the fact that 3D graphics prograins are very
complex, rely heavily on complicated mathematical theories
and computations and are very hard to write, debug and test.
In addition, intricate software/hardware interactions are
involved. Very few people simultaneously know enough about
the mathenatics of computer graphics, hardware, software
design, and now microprocessors, to effectively write 3D
graphics software. Sutlogic has therefore put great effort
into developing a simple-to-use 3D grarhics package for
microprocessor based systems. Sublogic software and
hardware products take 3D graphics out of the university and
industrial environments and makes 3D graphics available to
everyone.

One of the biggest problens in developing any graphics

-software is thoroughly testing it. A 3D graphics program is

actually an implementation of & large, conditional
mathemetical expression. A 3 dimensional space with a ranse
of + or — 3200C units in tine X,¥, and Z directions has 2.0 x
10" (64000 cuted) possible coordinate points. There «re
therefore 6.9 x 1028 possible straight lires. With such an
enormous number of program input combiraticns, comuinatorial .
progran testing is out of the question. Tc¢ insure tnat the
progran is reliable (the ecuation is stable), program
segments are combinatorially tested. Continuous development
and testing of 3D graphics programs at Sublogic promises to
increase program performance and reliability.

Two SubLogic graphics packages currently exist: a
general purpose, low speed LBASIC language version and an
optimized 6800 assembly language version. DBoth prograus
perforn the task of converting an array of straight "three
dimensional space lines" into an array of "two dimensional
screen lines". Figure 1 gives the performance
characteristics of the Sublogic 3D Microcomputer Graphics
Packages. Other 3L graphics packages are teing developed.
80L0, 6502 and Z80 versions are set for introduction in the

first guarter of 1¢78.

S0TISTI810BIRYD 83-0oBd sotydean q¢ otSoqang °|

00°8Z $

uoT3dTIosed WY3lTIObIY

saanpovoad 3saL

uoTjeWIOIUT burdezaalUI

s9jou uoraedtiddy

uoTjewrojut abespn

8339ssed sesue)/bngyTH

but3sty 309(q0

sut3inoaqns

I93I8AU0D UIBIOS 03 @deds gz o3 df

satatTIqedeo otweudp s3jex ybTH
butrddtio pezturido

MOpUTM BUTMOTA STqeTIEA

S3TuUn 3003 BUO HUISN SITTW 2TIAND ZI6T

so91b9p EGE 03 (twWOpSSdIJ STIXE ¢
s3Tun L9Lzf * :9buex z‘x‘X

burddT1o df Y3atm uoTIRWIOF
-sue1l saT3ioodsasd swexay 9ITM dz 03 A€

sbenbueT ATquesssy paztwildo 0089

£0A"89DdAE

uoisian abenbBue|] Ajquasse 0089

00°2zZ $

uoridTIosep wy3TIObTY

saanpaooad 3saL

uoT3jPWIOFUT HBuTdRIIDIUL

saj0u uorjeorTddy

uotjeuwrojur obesn

JISVE uT buT3sSTI

auTInoaqns

I19319AUO0D U99IDS 03 @oeds gz 03 df

JISvd jo asn ay3z o3

anp A3TTTqi3edwod suryoew [eSIVATUN
(a1bue apta

03 030yda1a23) MOpuTM BuTMaTA DTqeTIERA
OIS¥g 3o sbuex jutod burjzeorld

so21b9p 6G€ 03 (:uwoOp9aIF STIXE ¢ ‘DISVE
3o abuex -3d HurjeoTy :abuex ZX’‘X

Butdd11o d€ yatm uoTjeEWIOF
-suexl aar3zoadsiad swexy a1TM gz o3 df

(*aTnba 10 Mp 4IMS) DISVE 39S TRWTUTW

€0A°NEDAE

UOISIBA DISBQ |eSIdAIUN

a3ty

s3jusjuo) abexoed

sainjead fetoadsg

3Z1S ,PTIOM,
soT3TTTqRede) ButmaTp

poyisy uoryoaloag
obenbuet weiboxg

IoqumN urexboxg

soi3s1i91084BYD

sebeyoed solydelb i193ndwoo0idiW mn Jibojqns

abBeyoed

THE 3D TO 2D CONVEKTER CONCEPT

Most 3D graphics users are primarily interested in putting
%D graphics to use in their own special application. To these
users, the process used to perform the transformations and
projections is considered to be of secondary importance. The
Sublogic 3D to 2D converter subroutine (the heart of the 3D
Microcomputer Graphics Package) was therefore designed to be
very easy to use without any graphics programming knowledge or
experience. The user simply sets up an input array (an array
of 3D lines in a pre-set format) in processor memory and
executes the 3D to 2D conversion subroutine. The converter
transforms the 3D scene into a 2D screen image. A device
dependent interface program then sends the scene to the display
device.

Eight BASIC variables are used to store 3D to 2D converter
subroutine contrecl information such as viewer’s position,
direction of view and screen width. Figure 2 interrelates the
input array, 3D to 2L converter and interface program.

Appendix 2 describes how the 3D to 2D converter subroutine
verforms its task. The rest of this section is devoted to the

details of how to use the 3D to 2D converter.

lIniut array!
3D to 2D » Interface

gon‘crol converter program
information

®Display

Figure 2. The 3D to 2D converter program
and its arrays

SPACE AND SCREEN CCORDINATLS

The first concept which must be well understood is that of
space and screen coordinates. It should be noted that the word
"screen" used throughout this discussion also implies plotters

and other display devices.

5D SPACE COORDINATES. Every point in 3 dimensicnal space has

an X,Y,Z space coordinate associated with it as figure 3a
shows. A straight line is represented by its sStart and end

points as shown in figure 3b.
* +Y (3.1.5)

24
l—‘- T -
; 1 2 3 Y +X
(10,0
a) A point in 3D space b) A line in 3D space

Figure 3. Three dimensional space coordinates

2D SCREEl COORDINATES. Every point appearing on the screen has

a 2D screen coordinate associated with it. Iigure4a shows a
point on a screen, and a screen line is represented by a screen

start and end point as shown in figure 4b.

a) A screen point b) A screen line

Figure 4. Two dimensional screen coordinates

3D SPACE AND 2D SCREEN COORPINATE RELATIONSHIPS

The X,Y,Z2 space coordinate axes directions were chosen to
correspond in a graph axis fashion with the screen coordinates.
As figure 5 shows, the X and Y space coordinate axes viewed
through a screen match the X and Y screen axes with the Z axis
representing "depth into the screen'. This X,Y axis match-up
applies when the viewer’s viewing direction is O degrees pitch,

C degrees heading and O degrees Lank.

+space YA 47
3D

»>
+space Xx

(

o
screen Y
2D
+screen X

Figure 5. 3D and 2D coordinate alignment

OBJECT CONSTRUCIION IN SPACE COCRDIKATES

The SubLogic 3D to 2D converter converts 5D space
cooré¢inates to corresponding 2D screen coordinates. Straight
lines in space are represented by two points in space; a start
point and an end point. Wire frame objects and outlines can be
constructed using many straight lines as shown in figure 6.

Curves can be represented by a long string of short, straight

7

lines. Very realistic curves can be generated using large
nunbers of line segments but projection speed suffers as each

line must be projected seperately.

(" h

s= start point
e= end point

a) Line drawing b) Curve construction

Figure 6. Object construction in 3D space

OBSERVING 3D SPACE ON A DISPLAY DEVICE

A few 3D to 2D converter control parameters are needed
vefore a 3D to 20 conversion can be performed. The location
and direction from which one wants to view the 3L scene are
needed. First the viewer’s location in space must be
specified. Figure 7 illustrates what is meant by viewer’s
location. An X,Y,Z viewer location must be submitted as the
EASIC variables X(3), Y(?), and Z(3). Movement cf the viewer’s

location is called translation.

8

+Y Viewer's eye
..-_.v~ Viewer's location
7~ /‘ (1,2,’4')
13 - I
-~]
7~
- |
- l +Z
-42
I
-
3 -
L 1 -~
2 -~ Scene
~
1 -
-
3/ N
- 1 2 3 4 5 A +X

Figure 7. Viewer's location in space

Viewer’s direction must also be specified as figure 8
illustrates. A pitch, bank and heading must be specified.

Change in the viewer’s direction is called rotation.

Bank
+3 Heading
2 Pitch
4 5 6
. ield of view
1 2
, 5
Scene
i i i N i i 1 L
1 2 3 \ i '5 6 7

Figure 8, Viewer's direction and field of view

9
The field of view must also be specified. This parameter is
similar to a camera’s field of view as figure 8 shows. Only
a limited field of view can fit onto the viewing screen and
the viewer must decide whether a wide angle or telephoto
view is desired.

The 3D to 2D converter subroutine generates 2D

screen start and end points which represent lines to be
plotted on a display device. Screen coordinate numbering
systems vary widely between different display dévices. An

example of this is shown in figure O.

A +Y -
(0,99) Origin +X
(_100'0) (99.0) (0,0) (12710)
-X +X
(0,0)
Origin
y-Y (0,-100) +Y (0,127)
a) A 200 x 200, origin b) A 128 x 128, origin
at center format at upper left format

Figure 9. Variations in screen coordinates

The 3D to 2D converter subroutine needs a screen width
parameter to enable the generation of user device compatible
coordinates. Regardless of screen width, the screen origin
(screen coordinate x=0,y=0) is assumed to be at the screen
center. Many display deviced, however, do not have the
origin in the center of the screen. Origins in the upper
left hand screen corner (see figure 10) are very popular.
For this type of display, an array of output points in the

10

origin-at—-center format can easily be transformed by adding
a constant value to each X and Y point. A seperate, user

written subroutine is required to do this.

(0,0) sl R CED) >
(127,31), |\ (127,63) o |

(0,6%) > | [(0,98) =
(127,95) . | Y (127,127) »

Pigure 10. A popular display device's unusual
screen addressing scheme

ORDER OF TRANSFORMATIONS

The order in which transformations are considered is of
prime importance. The image projected on the screen will be
different if different orders of translation and rotation
are applied. For example, if the viewer’s location in space
(translation) is considered before his viewing direction
(rotation), a different projection than if location had been
considered after direction would result. Figure 11 shows

these two orders of yrojection.

11

A

M
L-

1, Original scene

2, X translation

3. Bank rotation

VAN

1. Original scene

2, Bank rotation

3. X translation

Figure 11, The difference transformation order makes

The Sublogic graphics package performs transformations
in the following order:

1. X,Y,Z2 translation

2. Heading (rotation about the Y axis)

3. Pitch (the angle of view to the X,Z plane)

4. Bank

Figure 12 shows the sense of direction of each of the

transforus. It should be noted that the transform senses

are dependent on one another. A positive change in X will

causé an object to move to the right if the viewer isat a0

degree bank angle.

If the viewer is in a 90 degree bank

however, the cube will appear to move up instead.

12

SUOTJUSAUOD JUSESAOW JO UOT3O8JTQ °Zl oIndrd

HH

=

V

+

-+

HH

4.
1

I

V

\/

-

JUSWIAOW
sauTe JI99 IV

TBUTSTIO

JUBWOAOT
+ snTd 1913V

H

A

d

Z

A

X

910 ‘ ©o0l0
Buipoay

60108010
juog

£0109010
Pi1d

§010 ‘¥010

uolpd0] 7

€010°2010

uolpo0Y A

10100010
uolpooT X

13
DETAILED CONTROL PARAMETER DEFINITICGNS

A few of the eight control parameters have already teen
mentioned. This detailed definition section will describe
them all. The program”s feedback parameter will alsc be
defined.

x(3), ¥(3), Z2(3)~ — — These three floating point EBASIC
variables are the viewer’s X, Y and Z location in space. X
and Z movement usually represent north and west uovement
while Y is the viewer’s altitude.

I - - - This is a floating point variable specifying
viewer”’s pitch; the angle of inclination from which he looks
at the scene.

Lk -~ - - A floating point variable representing viewer’s
tank; the angle at which a viewer’s head is tilted sideways
vhen viewing the scene.

H - - - Floating point variatle representing heading.
Heading is the direction the viewer is facing (North for
example) while standing cn the XZ plane.

VY - - - Floating point value representing the tangent of the
half field of view. V=1 represents a 45 degree half field
or 9C degree full field of view (an umnatural-looking wide
angle) while .3 represents a narrow telephoto view.

Y -~ - - This floating point value represents half the screen
width minus one. If a screen is 128 dots wide, this value
should be (126/2) -1 = 63. This variable affects the scaling
of the final output screen points. If W=63, the four
corners of the screen will be (63,63), (-63,6%),
(63,=63),(~6%,-63). This format is designed for screens
with the origin at the center of the screen as described
earlier.

E2 - - - Feedback Parameter — - — This parameter is not
submitted by the user. It is generated by the program. F2
is set to 1 if the 3L space line just processed by the 3L to
2D converter is visitle and on the screen. P2 is cleared to
zero if the line is off the screen. P2 should be used in
the display driving program to decide which lines to send to
the display device.

viewer \@1 field of view

Figure 13, Field of view definition

14

USING THE 3DGBU.VO3 3D GHAPHICS FROGRAM

The BASIC 3L graphics program will now e presented.
Descriptions of all the subroutines will be given followed
by three test and interface programs which take the user
from simple "terminal type-in" formats to array handling and
putting a scene on a display device.

The best way to approach the following sections is to
first, carefully read over "Ihe Lasic Prograum! section and
read the subroutine description sheets. Next, read the fest
1 section, fire up your computer system, and run the test
program following the step-by-step procedure. Test 1 is
very helpful in familiarizing the user with the progran
variables. Experiment with it. Array handling can then be
tried and finally a display driving program can te
implemented. This will require some programming on the
user’s part but examples and interface requirements are
given.

Advanced methods of display system control and array

handling are covered in the appendix sections.

15
THE EASIC PROGRAK

The BASIC 3D to 2D conversion program 3DGBU.VO3 is
capatle of performing slow but extremely accurate 2D
rerspective projections of 3D space. In addition, the range
of movement and size of "the world” can be very large due to
EASIC’s $.9 x 10 97 (depending on the BASIC versicn) range.
ko integer overflow problems, which exist on the assembly
language versions, exist in the BLASIC program.

The BASIC program consists of 3 parts:

1. The 3D to 2D converter subroutine

2. The transformation matrix generator

3. The interface program

The 3D to 2D Converter Subroutine

The 3D to 2D converter takes a single 3D line
consisting of two 3D space coordinate points,
X(1),¥(1),2(1), X(5),Y(5),2(5), and converts it into a 2L
screen line consisting of two 2D screen coordinate points.
The projection flag, P2, is set to one if the line is to be
displayed, and is set to zero if the line is off the screen
and not to be displayed.

The 3D to 2D converter consists of the Matrix
hultiplier, Clipping and Projection sections shown in
figures 14-17. The 2D to 2D converter subroutine’s call is,

“GOSUB 8500".

16

Titles Matrix Multiplier 8500

Purpose: This inline program section adds the viewer's
location to the 3D start and end points and
multiplies them by the matrix (T matrix) re-
sulting in rotation.

Input: x(1),y(1),2(1),x(3)yy(3),2(3),x(5),¥(5),2(5),
T1,72,73,T4,T5,T6,T7,T8,T9

Outputs x(1),y(1),z(1),x(5),y(5),2(5) transformed .

Operation:
The viewer's location values are added to the
start and end points by executing the for-next
loop twice. The points are also multiplied by
the transformation matrix which is expanded
into a three equation form. Execution goes on
to the 8600 (Clipping) section when matrix
multiplication is finished.

Start point » Transformed
End point———————— Matrix Start point
Viewer's location —e{Multiplier

Transformation ————w —»Transformed
matrix End point

Subroutines Called:
None

Temporary Storage:
G,XK,S

8500 FOR A=1 I0 5 STEP 4

8510 G=X(A)+X(3 Translation Translate and

gg%g iz%gﬁii%gg ;:] offsets added rgtaze ;gethe
start a

8540 X(A)=G*T1+S*T4+K*T : ; ;

, c Rotation matrix end point
S SR mne | A
8570 NEXT A -

Figure 14, The Matrix Multiplier section

17
Titles Clipping Section 8600

Purposet This section of inline code determines if a line
is on or off the screen and accordingly displays,
clips and displays, or eliminates it.

Inouts X(l).y(l)-2(1).X(5)-y(5).2(5)
OQutput: X(l).y(l)12(1)01(5)1}'(5)12(5)'P2

Operation:
This section first generates a code for the start
and end point based on where they are in relation
to the viewing pyramid. From these codes, the de-
cision to ¢lip, project or eliminate is made. A
seperate section (the 8700 block) decides which
way to clip a line if clipping is called for and
performs the appropriate "push" mathematics. A
projection code is set to 1 if a line is on the
screen and cleared to 0 if it is not.

Start point Clipping Start point
End point ™ Section End point
P2

Subroutines Called:
None

Temporary Storage:
A,C(1-8),s

8600 FCR A=1 TC 5 STEP 4

8610 C(A)=0

=i e

8 Clate)= Code the
8616 C(A+3)=0 start and
8618 IF X(A) < —2(A) THEN C(A)=1 | gna points
8620 IF X(A) > Z(A) THEN C(A+1)=1

8622 IF Y(A) < =Z(A) THEN C(A+2)=1

8624 IF Y(A) > Z(A) THEN C(A+3)=1

8626 NEXT A _—

(continued)

Figure 15. The Clipping section

Clipping Section continued

Ir C
IF C
NEXT A

FOR A=1 TO 4 STFP 1
§Ag=0 THEN GOTO 8638
=C(A+4) THEN GCTO £668

FCR A=1 TO 4 STEP 1
IF C(A)=1 THEN GOIO 8676
NEXT A

FOR A=5 TC 8 STEP 1
IF C(A)=1 THEN GOTO 8686
NEXT A

A

P2=1

GCTO 6800

B2=0

RETURN

A=1

5=5
GCTO &694

A=5
S=1

IF C(A)=1 THEK GOTO &7283

)—XI(\A)-Z(S)*-Z(A))

I¥ C(A+1)=1 THEN GOTO 8714

IF C(A+2)=1 THEN GOTO 8742

IF C(A+3)=1 THEN GOTO 8756

GCTO &662
K=(Z(A)=X(A))/(X(s
X(A :K*EZ S)=2 Ag +Z
Y(A)=K*(Y(S)-Y(A))+Y(A
2(A)=X(4)

GOTO ©600
K=(Z2(A)+X(A))/(X(A)=X(S
X(A)=K*(Z(A)~2(S ;—Z A
Y(A)=K*(Y(S)-Y(A))+Y(A
Z(A)=X(4)

GOTO ©600
K=(Z(A)+Y(A)) /(Y(A)=Y(S
X(A)=K*(X(S)=X A3 +X(A
Y(A)=K*(Z(A)=2(S))-4(A
Z(A)=Y(A)

GOTO &600

K=(2(A)=Y(A))/(Y(
X(A =K*2X S)=X A;
Y(A)=K*(Z(S)-Z(A))+Z(A
Z(A)=Y(A

GOTO &600

Il

l

18

Off screen
line check

Off screen start
point check

Off screen end
point check

Set project code
Clr praject code

Start point clip

on/off
screen
checking

(N [

I

)-Z(S)+Z(A)

~

)-2(S)+2(A))

End point clip

"Push" direction
decision

Push point left

Push point right

Push point up

Push point down

19
Titles Projection Subroutine 8800

Purpose: This subroutine takes the transformed and clipped 3D
coordinates and performs a perspective 2D projection.

Inputs x(1),y(1),2(1),x(5),y(5),2(5), W
Output: x(2),y(2),x(4),y(%)

Operation:
This subroutine takes the start and end points of a
line and uses the x/z and y/z principle to perform
a perspective projection. Protection statements
prevent divide by zero conditions,

i — —+ 2D start
%g zggr;oggint Projection Subroutine| point
W > ~>2D end
point

Subroutines Called:
None

Temporary Storage:

None
8800 IF Zé1§=0 THEN 221 =,001| Pyramid base crash divide
88&5 IF 2(5)=0 THEN Z(5)=.001] by zero protection
(= *
ggéo é g ;§ } 5% } *gg :] Start point projection
gggg § 2 z% g ;% g :3& :] End point projection
8875 RETURN

Figure 16, The Projection section

20

The Transformation Matrix Generator

This subroutine (shown in figure 17) generates the 3x3
transfornation matrix required for rotation. This matrix
need only be created once for each viewing direction. All
lines in the scene will use the same matrix. The call for
the generator is, "GOSUB 820C".

The Sine/Cosine subroutine is used in conjunction with

the Matrix Generator and is shown in figure 18.

The Interface Frogran

The interface program handles the input and output fron
the 3D to 2D converter and sends the results to the display
¢evice. This subroutine is machine dependent and will be
different for different display devices. The basic idea of

the program is to sequentially perform the following:

1. Get the screen width and field of view

2. Get the viewer’s position and direction of view

3. Call the transformation matrix generator subroutine
4. Feed an array of 3D input points to the 2D to 2L
converter, one at a time

5. 'Send the resulting screen start and end points to

the display device to be displayed.

The following Test 1 and Test 2 programs are examples

of interface programs and will describe them in more detail.

21
Titles Matrix Generator Subroutine 8200

Purpose: This subroutine generates‘the 3 x 3 transformation
matrix.

Inputs P,B,H,V
Outputs T1,%2,T73,T4,TS5,T6,T7,T78,T9

Operations .
This subroutine takes the pitch, bank, heading and
field of view information and creates the predefined
transformation matrix.

P,B,H,V ——{ Matrix Generator}T1,T2,* * *,T9
Subroutines Called:

Sine 8300
Cosine 8310

Temporary Storage!
F,N,R1,R2,R3,R4,R5

8200 F=P
8203 GOSUB 8300
8204 RK1=N
8206 F=P
8209 GOSUB 8310
8212 R2=N
8215 F=B
8218 GOSUB 8300
8221 R3=N
8222 F=B
8224 GOSUB 8310
8227 k4=N
8230 F=H
82%3 GCSUB 8300
g§5$ E5=N

37 I=H ;
8559 GCSUB 8310 Cos (Heading)
8245 [1=N*R4+E5*R1*R3™]
8248 12=N*R3+R5*KR1*R4
8251 T}:R?*R2*V
gggg ggfgg:gz Transformation_
8259 T6;—R1*V matrix generation
8262 T7=K5*R4+N*K1*R3
8265 TB=RS*R3+N*R1*R4
8269 T9=R2*N*V
8272 RETURN] Return

Sine (Pitch) Calculation
Cosine (Pitch)

Sin (Bank)

Cos (Bank)

Sin (Heading)

I | | N S

Figure 17. The Matrix Generator Subroutine

22
Titles Sine/Cosine Subroytine 8300

Purposes This subroutine creates a sine or a cosine of a
value in degrees so 3DGBU.VO3 will run with
simple BASIC interpreters without trig functions.

Input: F (angle in degrees)
Outputs N (sine or cosine of F)

Operations
This subroutine takes the F arguement and generates
a cosine by expanding a cosine series. Sine is gene-
rated by initially shifting the angle 90 degrees.
Sines result from subroutine entry at 8300.
Cosines result from subroutine entry at 8310.

sine entry 8309/,

Sine/Cosine |— N

cos. entry 8310

Subroutines Called:
None

Temporary Storage:
A,S,M

8200 F=F-S0 —] Sine entry phase shift
8305 IF F<=—180 THEl F=F+ 360
8310 IF F<KC THEN F=F

8315 S=F Swing angle into

8320 IF S>=90 THEN F=1&0-F quadrant 1

8330 K=F*.0174532¢

8340 A=N*K . .

8350 li=A*A Cos1ne~serles

8360 k=1 -A/2+L/24—A*M/720+n*x1/40340 expansion

8370 IF S>=90 THEN N=I. Quadrant sign correction
8380 RETURK Return

Figure 18. The Sine/Cosine Subroutine

23

USING THE TEST 1 PROGRAM

Test 1 is a simple interface program designed to
familiarize the user with the 3D program. The following
procedure should be followed to run this test.

1. TFirst, load BASIC into your microcomputer. Any sinple
4K basic will do since no trig functions are used in the
programe.

2. Enter the following subroutines into the computer:
Matrix Multiplier
Matrix Generator
Sine/Cosine Subroutine
Clipping Section
Projection Subroutine
Test 1 Progranm

3« Check all statements to make sure no errors were made in
entry. Double check the 8700 block as this is an
error-prone section.

4.00Run the program. The first statement executed should be
&000.

The computer should prompt you to enter your first
variable. First you will be asked for the "screen width W".
Suppose you are working with a graphics terminal which is
layed out as a 200x200 dot matrix. The screen is 200 dots
wide so enter 20C (followed by a carriage return).

Next, the "field of view V" will be requested. Large
values of about 1 represent wide angle views while small
values of about .2 represent telephoto views. Enter 1.0 to
put the program in a wide angle display mode.

The "viewer’s location X,Y,Z" will be asked for.
éssume that you are at a point X=Y=Z=0 in 3L space. Enter

t A i

Viewer’s direction will now be asked for. Fitch, bank
and heading must be submitted so enter 0,0,0 representing a
"head-on" view.

As you press carriage return after entering the
viewer’s direction you will notice a definite delay before
the program asks for the next values. The reason is that
the program jumped to the matrix generator subroutine at
£200 and calculated the transformation matrix.

The program will now ask for a line in 3D srace.
First, the start point will be ‘requested. Assume the line
begins at 0,0,100 (100 feet straight in front of you).
Inter 0,C,100. Now assume the line ends at 25,50,100 (25
feet to the right, 50 feet above and 100 feet in front of
you). Enter 25,50,100.

24

A delay will occur as the program transforms the 3D
line to a 2D line and prints the values of the 2L screen
Soints on the terminal. The results should be, C,0 and

4.75,49.5. Answers will vary by a few thousandths of a
percent depending on the BASIC version used btut rounding to
the nearest integer will always give the proper screen
coordinate. If the results are totally wrong,go back and
check the BASIC program. An error in entering it may have
occured.

The following has been done:

3D Lo 2D (25,5

line (0,0)
Screen

Z
. yt; 2D Display Device
Viewer

This was a very simple projection. No clipping was
performed. The program will now ask for another line to
project. Give it the following line:

Start point = O,
End point = 100,0,50

This represents a line which is off the screen tc the right.
The clipping subroutine will clip it and project the
following screen points:

Start point = 0.0
End point = 99,0

The following has been done:

3D to 2D
conversion Push
B ? us
<= ———c

2D Display Deviec

Viewer

25

Low, exit the program (using control C on a SWTP BASIC) and
run it again following the procedures already described, but
this time, when viewer’s direction is asked for, enter
0545,0. This has introduced a-45 degree bank angle. Now
enter the line which had to be clipped earlier:

End point = 100,0,50

This is what should happen:

W degrees

Line
[R S —
Screen —=
a) Original view b) 45 degree bank ¢) clipped line

Cbserve the results on the terminal:

Start point = 0,0
End point = 99,59

The proper line has leen generated.
Now, test the line elimination capatility. When a new
start point is asked for, enter:

Start point = 0,0,-50 (50 feet behind the viewer)
End point = 20,-25,-30 (20 feet right, 2% down,
30 behind the viewer)

The program will print "line off screen" because the line is
entirely behind the viewer and is off the screen.

Titles

Purposes

Inputs

Output:s

Operations

26

Test 1 8000

This test is designed to test the operation of the
3D to 2D converter and familiarize the user with
its use.

Typed by user. x(1),y(1),2(1),x(3),y(3),2(3),x(5),
y(5),2(5),P,B H,V,W

Printed on terminal. x(2),y(2),x(4),y(%)

The Test 1 program asks the user for viewer infor-
mation and the start and end points of one line.
The screen points corresponding to the line are
calculated and printed on the terminal.

Start point—— o __»Screen start
End point ——— o Test 1 point

Viewer's direction

Viewer's location “~aScreen end
Field of view point
Screen width

Subroutines Called:

3D to 2D Converter 8500
Matrix Generator 8200
Temporary Storage
None
8000 DIM X(5),Y(5),2(5),C(€)] Initialize arrays

8005 PRINT "SCRKEEN WIDIH W"
8010 IKPUT W
8015 W=W/2 -1

8020 PKINT "FIELD OF VIEW V¢ Input Vigwer's
8025 INPUT V information

8030 PKINT "VIEWER’S LOCATION X,Y,Z%
8035 INPUT X(3),Y(3),Z(3)

8040 PRINT "DIRECTION COF VIEW P,B,H"
8045 INPUT P,B,H

8050 GCSUB 8200

8055 PRINT “START FOINT X,Y,Z"

Compute transfor-
mation matrix

L

8060 INPUT X(1),¥(1),2(1) Input 1i
8065 PRINT wEND’ POINT X, Y, 2% iﬁ?grmaiggn

8070 INPUT X(5),Y¥(5),Z(5)
8075 GOSUB 8500

8080 IF P2=0 THEN GOTO 8095

8062 PRINT "SCREEN START PT = ";X(2)
8083 PRINT "SCREEN END PT = ";X(4),%(4)

8090 GOTO

8095 PRINT “LINE IS OFF SCREEN"

8099 GOTO

3D to 2D convert

L

¥(2)
£055 Print the results

0055 -
Figure 19, The Test 1 Program

27
ARKAY EANDLING IN THE INTERFACE PROGRAK

The Test 1 progran was fine for generating & single
line projection, but images are formed from many lines or an
array of lines. This is where the input array concept comes
in. A list of lines can be placed in a EASIC array and a
loop can be set up to feed the lines to the 3D to 2D
converter, one at a time. The Q, R, and S values correspond
to X, Y, and Z start and end points. The following list,
which should be entered at locations 1000 to 103% represents
a pyramid.

1000 Q(1)=100 7]) }833 g:{zﬂoo] .
1001 R(1)= pt s =

1002 s(ij=1100] 1 | 1™ 1020 s{7)=1100 17
1003 Q(2)=500 7 1021 Q(6)=300

1004 R(2)=0 pt 1022 R(€)=400 |8
1005 s(2§=1100] 2 | 1023 S(&)=1200 J i
1006 Q(%)=500 7 3 1024 Q(9)=300]
1007 R(3)= pt 1025 R(9)=0 9
1008 §(3)=1100] 3 2 1026 5(5)=1400

1009 Q(49=300] 1027 Q(10)=300

1010 R(4)=0 | Bt 1028 R(10)=400 [10
1011 S(4)=1400] * J 1029 5(10)=1200] .
1012 Q(5)=3C0 3 1030 Q(11)=300

1013 R(YH)= pt 1031 R(11)=400 (11
1014 S(5)=1400] 5 3 1032 5(11)=1200_

1015 Q(63=1C0] 1033 Q(12)=500

1016 R(6)=0 | Bt 1034 R(12)= 12
1017 s(6)=1100] 6 1035 5(12)=1100] |

Figure 20. An input array for a pyramid

Test 2, an array handling modification of Test 1, can
now be entered and run. Remember to enter the pyramid
values also. The program will ask for viewer’s information
as it did before but line start and end points will be read
sequentially out of the input array. All six screen lines
will be printed on the terminal.

Many-lined images can be drawn using larger Q,R,S array
sizes but BASIC uses up memory fast. Large amounts of
memory will be needed to generate large, complex scenes.
This is one of BASIC’s disadvantzges.

line
n

Purposes

Title: Test 2 201

28

This test is designed to illustrate the use of

an input array of start and end points of lines.

Inputs Typed by users x(3),y(3),z(3)

Input arrays Q,R,S

Outputs Printed on terminal., x(2),y(2

Operations

Same as Test 1 except an inpu
the 3D to 2D converter.

Subroutines Called:

3D to 2D Converter
Matrix Generator

Temporary Storages
Al

0201 DIM Q €12) ,R(12),8(12)

6000 DIM X(5),¥(5), z(s) C(B)

€005 PRINT "SCREEN WI

€010 INBUT W

6015 W=W/2=1

€020 PRINT "FIELD OF VIEW V"

€025 INPUT V

€030 PRINT “VIEWER’S LOGATTON X,3,2"
8035 INPUT X(3),Y(3),Z

£020 ThINT myIRELTIOR e viEN P,E,H"
€045 INPUT P,B,H

£050 GOSUB 8200

£055 FOR Al=1 TO 11 STEP 2

£060 X(1)=Q(A1

€063 Y(1)=R(A1

£066 Z(1)=S(A1
€069 X(5)=Q(A1+1
€072 Y(5)=R(A1+1
6075 Z{5)=S(A1+1
€078 GOSUB 8500

£080 IF P2=0 THEN GOTO 8095

£082 PRINT "SCREEN START PT = ":X(2)
£083 PRINT "SCREEN END PT = ";X(4),Y
£084 GOTO 8058

6095 PRINT "LINE IS OFF THE SCREEN"
£098 NEXT A1

£099 GOTC 8030

Figure 21, The Test 2 Program

»PyByH,V,W

Vox(4),y(4)

t array is fed to

Initialize arrays

I

Get viewer's
information and
calculate the
transformation
matrix

1l

"Feed lines to the
3D to 2D converter"
loop

Y(2)
ta)

ij Next view

29
A SIMPLE DISPLAY DRIVING PROGRAY

Instead of printing screen start and end points on the
terminal, the start and end points can be sent to a display
device to create the final result; a real display. Two
system prerequisites must be met before this can be done.

1. You must have some sort of display device to drive.

2. EASIC must be capable of controlling the display
divice directly, or BASIC callable assembly language
subroutines which are capable of display device control
must exist.

Note that any BASIC having a PEEK and POKE instruction can
manipulate memory and a display device just as assembly
language can. A number of 4K BASICs, unfortunately, have no
provision for communication to assembly language programs
and don”t possess PEEK and POKE instructions either.
Running a display device other than the console terminal
(which could indeed be a graphics terminal) is very
difficult and involves programming tricks.

The Display Interface Progran is a modification of the
Test 2 program and has screen driving capabilities. It was
written for a Graphics One terminal using Southwest
Technical Products’ &K BASIC and a SWIP 6800 CPU. Array
handling is performed as it was in Test 2 but instead of
rrinting results it jumps to the 9000 Display Control
subroutine. The subroutine sheet describes its operation
tut lasically the display control subroutine "POKEs start
and end points at the display terminal".

The Graphics One terminal (the one we use at Sublogic)
has a built~in vector generator. If your display device
doesn”’t have vector drawing abilities, the Vector Drawing
Subroutine (£900) can be used to calculate all the picture
e€lements between a start and end point. This subroutine
involves no trig, multiplies or divides and is thus easy to
translate into fast assembly language.

R(12),5(12
<§>,%Z 12

EEN WIDTH W

0201 DIM Qé1
€000 DIM X
€005 PRINT ®
€010 INPUT W
6015 w:w/2-1

£020 PRINT "FIELD OF VIEW V*
€025 INPUT V

2),
5),Y
SCR

6030 PRINT "VIEWER’S LOCATION

8035 INPUT X(3),Y(3),2(3)

30

Initialize arrays

Get viewer's
information and

XyY,2" | create the

transformation

6040 PRINT "DIRECTION OF VIEW P,E,H" | matrix

&£045 INPUT P,B,H

£050 GOSUB 8200

€055 FOR Al=1 TO 11 SIEP 2
£060 X(1)=Q(A1

8063 Y(1)=R(A1
€066 Z(1)=S(A1
6069 X(5)=Q(A1+1
&072 Y(5)=R(A1+1
8075 2(5)=S(A1+1

&078 GOSUB 8500
£081 GOSUB 9000

8084 NEX1 A1

£085 GOTC 8030

9000 IF F2=0 THEN RETURN
9010 X(2)=X(2)+100
3011 Y(2)=100-Y(2)
2012 X(4)=X(4)+100
S014 Y(4)=100-Y(4)
$500 POKE(32792,19
505 POKE(32792,17
510 POKE 3279ﬁ 89

$515 GOSUB 9550

€520 POKE(32793,X(2))
6522 GOSUB 9550

€525 POKE(32793,Y(2))
€527 GOSUB 9550

6529 POKE(32793 x(4))
9531 GOSUB 9550

9535 POKL(32793 Y(4))
S540 RETU.

$550 B9=PhEK (32792)
G555 IF B9=0 THEK GOTO 9550
9560 RETURN

Array handling
loop sends lines
to the terminal
communication
section (block
9000)

Get new viewer data

Check if display flag
P2 is set. Calculate
corrected screen points.

Clear the PIA 19,17
Send vector code 89

Il

Wait for echo

LI

Send screen start and
end point to graphiecs
terminal,

Return

iU

"Wait for graphics term-
inal echo"subroutine

Figure 22, The Display Interface program

8900 REM LINE GENERATOR — = = = = = = =

890% REM A SUM TRACKING ALGORITHM IS USED IO
8906 REM GEWERATE ALL PIXELS BEIWEEN TWC POINTS.
890G REV THIS PROGRAM WILL ASK FOR A START AND EWD
8912 REM POINT “X1,Y¥1 AND X2,Y2" AND WILL PKINT
8915 RENM THE PIXELS. ONLY INTEGERS ARE ALLOWED.
891& REM LINE GENERATOR = = = = = = = =

8921 PRINT “ENTER THE SCREEN POINT X1,Y1"

8924 INFUT X1,Y1

8927 PRINT “ENTER THE SCREEN POINT X2,Ye"

893G INFUT X2,Y2

893% S=0

8936 M=1

893¢ N=1

8942 D=X2-X1

8945 IF DKO THEN M=—1

8948 IF DKO THEN D=-D

$951 IF D=0 THEN S=-1

8954 E=Y2-Y1

8957 IF E<O THEN N=1

8960 IF E<XO THEN E=E

896% PRINT “PIXEL = ";X1,Y1

8966 IF X1=X2 THEN GOTO 899C

8969 IF S<0O THEN GOIO 8981

8972 X1=X1+M

8975 S=S-E

8978 GOTI0 8%63

8981 Yi1=Y1+N

8984 S=5+D

8987 GOT0 8963

8990 IF Y1=Y2 THEN GOTO 8921

8993 G010 8969

8996 REN PROGRANM END

Figure 23. A line between points drawing program

32
CUSTOMIZED INTERFACE PROGRANS

The display interface program of figure 22 will need
modification to project images on a display device other
than a Graphics One terminal. The 9C00 tlock of the progran
is where the screen lines are sent to the terminal and where
the modification must be made. If your display device has a
protocol which allows vectors to be drawn, simply scale and
tias the screen start and end point values with addition and
multiplication to meet the device’s format. This is what
was done in statements 9010-14 of the diéplay interface
progran (figure 22).

When writing interface software make sure you don’t
interfere with the 3D to 2D conversion software Ly using
already used variables. The following variables should ‘be
avoided: X array, Y array, Z array, C array, I1-19, R1-EK%,
Ay By, ¥, Gy K, K, M, N, P, P2 ,S, V, and W. You can, of
course, modify X(3), ¥(3), Z(3), P, E, H, V and ¥ for the
purpose of changing viewer’s position, direction of view and
field of vision. Just be careful not to use them as
temporary storage. If strange things start happening with
the display program after writing a new interface progranm,

violation of this rule is the first thing to check.

33

CCNCLUSION

Three dinensional graphics c(isplays, ganes and
simulations are nard to develop and implement. Unlike wany
simpler software packages (versions cof BASIC, simple jauies,
¢tar Trek, etc.) this %D graphics package was not intended
to be & load-and-7o progran packzge. It was intendec to e
a versatile packsge of subroutines which, after &« loi oi
systen dependent interface work, results in & very useiul
and advanced piece of customized display softwarec. Getting
“D graphics up and running nay not be easy, but when you
finally achieve your end result, it will undoubtedly Dde the
uwost impressive piece of sol'tware you own.

We at Subloric are interested in heuring alout your
work in %D grapnics. We are constantly tryirs te inprove,
debug and speed-up our 3L to <D converters and tne aore
feedback from the field we get, the Letter our products will
get.

Once again, thank you for ordering the tublogic BASIC

lMicroconputer Graphics Package.

APPENDIX

SECTION

BASIC Block
8000

8100
8200
8300
8400
.8500
8600
8700
8800
8900
9000

9100

35

APPENDIX 1- Memory Map

User's Interface Program

Transformation Matrix Generator

Sine/Cosine Subroutine

Matrix Multiplier

Clipping Section

Projection Section

Line Drawing Program

Display Device Driver Subroutine

Viewer's Information

Variable

Definition

X(3)
Y(3)
2(3)

E<TmwY~—

Viewer's
Viewer's
Viewer's
Viewer's
Viewer's
Viewer's
Field of

X location in space

Y location in space

Z location in space

Piteh (inclination)

Bank (roll)

Heading (North,South...)
View (wide angle, telephoto)

Screen Width (from center to edge)

APPENDIX 2- GRAPHIC PRINCIPLES

A translation, rotation, clipping and projection
algorithn must be applied to each line submitted to tae L
to 2D converter program. The details of the four step

process will now be discussed.

Foint Translation

The viewer’s location in space is always considered 1o
be at 0,0,0 in 3 coordinate space. khen the program user
specifies a location other than 0,0,C the points in the data

'base are translated and the viewer remains at 0,0,0. In
other words, the whole world moves and the viewer remains
stationary. Each individual point in the data base has an
X, Y, and Z translational value added to it. Iigure a2-1

illustrates translation.

Foint Rotation

As with translation, it“s the world which rotates
around the viewer when point rotation is performed. vThrough
geometric principles, a 7 x 3 matrix, which when multiplied
by a 3 element vector (a 3D space coordinate) rotates it
about the origin, was derived and is shown in figure a2-2.
This matrix need only be created once per each viewing
direction since it applies to all points for that view.

Sines and cosines of the pitch, bank and heading (the

[—
Z translation?

37

Viewer's
pyramid

W/

Viewer

Figure A2-1, Point translation of a data base

29

Wh X' v
ereD(¥]

Wowounn

Lt o N

cos B Cos B| |-Cos H Sin B ISin H Cos Pl
+ +
Sin H Sin P Sin H Sin P
Sin B Cos B
Cos P_Sin B| [Cos P- Cos B| |-Sin P 1
Sin H Cos B| [Sin H Sin B| [Cos B Cos P
+ +
Cos H Sin P Cos H Sin P
ASin B | Cos B _

Transformed (rotated) point,

Original point,

Pitch
Bank
Heading

Figure A2-2, The rotational matrix being multiplied
by the original 3D space coordinate point
(row vector) yielding the rotated point

38
direction of view) must be computed to generate this matrix.
In the interest of sypeed, léokup tables are used in the Ju
l'icrocomputer Graphics Package (assembly versions only).,

Line Clipping and Coding

The operation which takes the longest in the Jb
graphics program is that of clipring and elirinating lines
that fall off or partially off the screen. Figure aiw-.
illustrates a line in need of clipping. The mathepatics of
clipping a line znd pushing end points to screen boundaries
sre quite simple but deciding which way to push then is what

takes up the tine.

_—\

Continue

a’?ﬁ;h Point

Pyramid intersection
on the Z=X plane
Pyramid intersection

on the Z=-X
plane iewer's pyramid

Staft +2

Point
+Y

+X

Viewer

Figure A2-3., A line in need of clipping

39

 Every line’s start and end points are assigned code

values which indicate which side of the viewing pyranid the
points fall. The viewing pyramic consists of four
intersecting planes whose apex is at the viever’s eye. A
pyramid cross section represents the screen onto which
objects are projected. The equations of the four planes
are: X=Z, -X=Z, Y=Z and -Y=Z.

After transiation and rotation, a 4 vit code is set up

for each point in space. The four bits indicate:

CO= 1 = point to left of -X=Z plane
Cl= 1 = point to right of X=Z plane
C2= 1 = point is above the Y=Z plane
C3= 1 = point is below the —Y¥=Z plane

If a point’s code is all zeros, the point is within
the viewing pyramid. If it has some ones in it, it is off
the screen but may represent a line which intersects the
screen. The line’s start and end point’s codes are compared
to check if the line is off the screen. One sure ofi-screen
test is to see if the start and end points are oif the
screen in the same direction (both to the right of the
screen for example). By simply “anding" the two codes, any
common off-sides condition can be found.

It is not always this easy however. Suppose the start

40
point is to the left of the screen and the end point is to

the right. In this case, the codes are 1000 and 010C. ihe
ngnd" of the codes is OUO0 which means the line night be on
the screen-partially. The 1000 code indicates that thne
start point is to the left of the screen and must be pushed
right while the 0100 code means the end point is too far to
the right and must be pushed left. The push mathepatics are
performed for the right push:

k=(z(a)+x(a)) /(x(a)=x(b)-z(b)+z(a))

x§a =k* z%a%—zéb -z(a

y(a)}=k*(y(b)-y(a})+yla
z(a)=-Xx

2)

and for the left push:

k=(z(a)=x(a))/(x(b)-x(a)-z(b)+z(a))
x(a)=k*(z(b)-z(a))+z(a

a)=k*(y(b)-y(a))+yla ’
z(a)=x(a

and the line is ready to be projected onto the screen.

Essentially the following has been done:

Push
=
Push
- -

Sometimes after one push, it becomes apparent that the
line will not intersect the viewing pyramid after all and

the line must be eliminated.

41

Pro jection

After fhe line has teen clipped, the 3D to 2D
perspective projection must be performed. By plotting spacs
coordinates X/Z and Y/Z for every point within the viewing
pyramid, a true perspective image can be generated on the
display device. Division by the point’s depth (Z) causes
objects in the the distance to appear smaller. Care must be
taken to avoid projecting points lying at the base of the
viewing pyramid (X=Y=Z=0) as division by zero will result.

A point at the base of the wiewing pramid is not definable
because it implies a view of an infinitesimally small point

from a distance of zero (at the viewer’s eye).

Integer Graphics

Integer arithmetic is, speedwise, far superior to
floating point and was thus chosen for the assembly language
3D graphics package. Double precision 8 bit words are used
for all sﬁace coordinates providing & range of 32767 units
in each direction. The boundaries of the 3D scene, however,
should be less since the viewer’s translational offsects will
be added to each point. In order to increase processing
speed, no overflow checking is performed in additions and
multiplications and points which overflow will end up on the

wrong side of the scene resulting in display distortion.

42
APPENDIX 3
APPLICATION NOTES - - - FLIGHT SIMULATICN

Much of the existing information and many of the
accomplishments in the 3D graphics field are a direct
result of flight simulation research. Flight simula~
tion is an area where 3D graphics has many advantages
over the real thing. Flight training costs are lowered,
ther is no interference from bad weather,and there is
no risk of crashing.

Pilots using a 3D graphics equipped simulator can
learn more about the flight characteristics of an air-
craft. Spins, steep dives, near crashes and generally
pushing the plane to and beyond its limits are all safe
maneuvers and a pilot can learn what to expect in any
of these situations.

Hidden line elimination adds very little to flight
simulation once a viewer is more than a few feet above
the ground. This makes very realistic, fast simulations
possible at a low cost.

. 43
APPLICATION NOTE - - - COMPUTER ART

The SubLogic 3D Microcomputer Graphics package makes
a very good computer art tool, It can dothings which
would be nearly impossible using standard 2D techniques.
An example of this is the spiraling triangle. By placing
a triangle at a great distance and slowly approaching
it while increasing the bank angle, a very interesting
picture results. Frame erasing between frames has been
turned off as figure a illustrates.

By rotating, superimposing and moving in space,
dramatie curved and radially spiraling figures are
generated. Very complex figures as well as simple
triangles can be used.

Motion effects are also possible by superimposing
3 or 4 frames with different reference frames.

Film makers can also utilize 3D graphics as an
animation aid. Additional realism is possible since
accurate perspectives are always generated.

APPLICATION NOTE - - - ARCHITECTURAL-DESIGN

Architectural models have been used in the development
of buildings and other structures for centuries, Computer
generation of views of buildings, however, is a relatively
recent innovation. Computer generated projections offer
a few important advantages over more conventional models:

1. They are less expensive when implemented with
a microcomputer based system

2. They are easily constructed and modified

3, The user has the ability to observe the
scene from between and inside the buildings.

Hidden line elimination is very beneficial to archi-
tectural projections.

" The BASIC version of the microcomputer graphics
package is well suited to architectural design graphics.
Taking a few minutes to generate a complex scene is ac-
ceptable and high precision is a must.

45
APPLICATION NOTE - - - DRIVING SIMULATION

Driver ‘training is one area where very few computer
simulations are currently used. The main reason is that
it is not cost effective. A whole fleet of driver educa-
tion cars can be bought for the price of a single
dedicated 3D graphics generator. The microcomputer, in
conjuction with the SubLogic 3D Microcomputer Graphics
Package can change this.

By projecting a training course on an inexpensive
projection television in front of the driver, he can
practice driving all day without an instructor. With
todays rising gas and auto prices and dropping computer
costs, this sort of simulation gets even more attractive,

As with flight simulation, you can do things with
a driving simulator which you would never do on a road.

A student's emergency procedures can be tested by having
another car pull out in front of him unexpectedly.
Driver control at high speeds can also be tested.

AN N N NN\

APPLICATION NOTE - - - ROOM LAYOUT VISUALIZATION

Using sketches and cardboard cut-outs to visualize
a room layout before moving or buying furniture is help-
ful,but the fimal result never guite looks like what you
expected it to. The 3D microcomputer graphics package
can project views of rooms with true perspective. Once
the data base is in the computer you will be able to
look at a room from any angle and location. Walls and
ceilings can also be included in the simulation

.

APPLICATION NOTE - - - 3D GAMES

Computer games have always been popular but is seems
that half the microcomputer applications now-a-days involve
a game of some sort. Most of the games involve 2D displays.
Three dimensional graphies can add a whole new dimension to
these games but imagine games like"3D tank" or 3D dog-fight.
Two WW 1 aces can be flying in each others data bases. An
actual two playeraerial battle is possible.

47
APFLICATION NOTE - - - ENGINEERING DRAWING

Traditional engineering drawings help an engineer
design and get a good idea of what his finished product
will look like. Typically, three oblique views are pro-
jected (a top, front and side view) and a perspective
3D view is often included. The engineer or draftsman
must do all the calculations to determine what the views
will be. This amounts to four drawings and a lot of
work, Three dimensional microcomputer graphics can be a
great benefit in the construction of these drawings.

Every engineering graphics student learns about
the two ways to calculate cross sectional views of objects.
There are the standard graphics methods which amount to
drawing lines from the original to a projection line and
back to another view, and there is the much more accurate
but very difficult analytic method which uses equations
to project lines, The 3D graphics package uses the ana-
lytic method resulting in more accurate as well as faster
drawings.

An engineering drawing can be set up using the 3D
Microcomputer Graphics Package as followss

1, The object (machine, architectural structure, road,
bridge, etc.) should be put into a 3D data base form
and loaded into computer memory.

2. A telephoto view of the object from a great distance
should be projected. An oblique view will result.

3., A top, side and front view, as well as any desired
cross-sectional views should be projected.

4, Finally, a close-up view with a wide angle field
of view can be projected resulting in a dramatic
perspective view,

With a little work and imagination even more impres-
sive things can be done. An interface program can be set
up to take 4 passes through the data base before an object
is projected. Four views at once can then be put on the
screen as figure a shows, The computer can do in seconds
what would have taken a draftsman hours. Needless to say,
a high resolution graphics device is very desirable in
this application.

48

[in M inMsal

g

(b do o] [
_unnn]-D_L [N7

Figure a. An engineering drawing generated
using 3D microcomputer graphics

49
APPENDIX 4

MISCELLANEOUS TOPIC - - - ADVANCED GRAPHICS CONCEPTS

Three dimensional wire-frame projections are a very
simple form of computer graphics. More realistic projections
can be generated using more advanced and much more difficult
projection algorithms.

Hidden line elimination is a very desirable feature.
Lines which are blocked by other surfaces in space are
clipped against them or eliminated., The problem with hidden
line elimination is computation time., A number of hidden
line elimination algorithms exist. These algorithms either
compare every line against every surface or use nondetermin-
istic methods to look for conflicts and try to resolve them.
Both methods are very time consuming.

A simple line projection program can not easily be con-
verted into a hidden line algorithm program. In hidden line
elimination algorithms, surfaces and planes are dealt with.
A whole different method of representing objects is the re-
sult, Figure a 1illustrates hidden line elimination.

1) a wire frame object 2) hidden lines removed
Figure a. Hidden line elimination
A number of interesting problems can exist when working

with hidden line and hidden surface situations. Figure b,
for example, shows a condition where two surfaces block

one-another. i;7

L

Figure b, Hidden surface conflict

50

Problems like these can be handled by breaking surfaces
into smaller surfaces, but this takes even more computztion
time. A very good article concerning ten hidden line and
surface algorithms can be found in Computing Surveys mag-
azine, March 1974,

Another advanced graphics technique is shading.
Surfaces at different angles have different color shades
when projected due to light angle and viewing angle. Shading
adds a very realistic effect to 3D pictures when used with
hidden surface elimination.

Shadowing is a difficult task and adds little to
the realism of a picture other than the feeling that light
is striking objects from a certain direction. It is very
interesting to experiment with, however. Figure c¢ shows
shadowing.

Figure c. Shadowing

Atmospheric degradation makes objects fade away as
they get farther away. The effect can be used to simulate
fog or haze.

Specialized hardware which produces 3D graphics with
shading, hidden surface elimination, and atmospheric
degradation at the rate of 30 frames per second currently
exists but is very expensive, Instead of having a subroutine
perform a function, this equipment has a logic card perform
the function.

51
MISCELLAKECUS TCPIC - - — GROUNL TEXTURL

Dynanic 3D graphics is very useful in flight anc
driving simulations. The technique of grounc texture
reneration can be used to dreématically increase the realisn
and enhance the user”’s atility to tell where and how he is
moving in space. By laying out & grid on the grceund in the
oD scene, an illusion of a solid ground surfsce is created
(see figure a).

Figure a. A runway and a ground grid

kotice the difference in the finel result on the screens of
figure b. The orientation of the runwzy is much clearer
when the ground grid is present, not to kention the more
dranatic look. Ferspective is also 1ore obvious.

1) the runway 2) the runway with
ground texture

Figure b, The difference ground texture makes

A grouna grid provides & good vertical and iorizontsl
rovement queue also. At large distances fronr tue airport,
aircraft movement can be sensed &s you {ly over the srid
lines. Additionzlrealism is crested by the creation of &
Yhorizon" at the end of the grid. This is sonetning
everyone is used to seeing and can judge bank by.

52

MISCELLANEQUS TCPIC - - - THE EXACT FIELD OF VIEW

Throughout the 3D Graphics Package the concept of
field of view was described from a wide angle/ narrow
angle telephoto point of view, There is, however, a
geometrically correct viewing angle for any given sit-
uation. This angle is determined by the screen's
physical size and the distance the viewer is from it.
Figure a illustrates this concept.

Screen cross section

half field 4 screen width = 6"

of view
viewing distance
2Ln

viewer

half field = arc tan 6/24

field of view parameter = 6/24

Figure a. The correct field of view

A simple way to calculate the precise viewing para-
meter is by dividing half the screen width by the distance
the viewer is from the screen.

Using any other viewing angle is geometrically incor-
rect but the views are still very acceptable. This
principle also applies to television and photographs which
look acceptable from many different viewing distances.

53

MISCELLANEOUS TOPIC - - - PARALLEL PROCESSING AND GRAPHICS

General purpose computer tasks are usually quite
serial in nature making parallel processing of data un-
desirable, Three dimensional grarhics, however, is one
of those rare cases where there are almost unlimited par-
allel processing prospects, Offset addition, matrix mul-
tiplication, clipping, projecting and vector drawing can
all be handled independently. Since a large array of lines
are usually transformed, one processor can operate on one
line while another works on the next line.

SubLogic has used parallel processing to a small
extent, The Graphics One terminal has a built-in micro-
computer which was programmed to draw white vectors, erase
the screen, and erase individual lines. Line's start and
end points were sent to the Gl terminal where vectors were
computed hile the next 3D to 2D conversion w=s being
performed by the SWTP 6800 CPU, Very little time was saved
however since 3D to 2D conversion took many times as long
as vector generation,

The subroutine which takes the longest to perform on
a microcomputer without hardware multiply capabilities
is the matrix multiply section. Clipping time runs a
close second, If a hardware multiply is available, however,
the matrix multipication time is reduced to only about
10% of the calculation time with clipping jumping to
nearly 75% of the processing time. Percent figures like
these are very machine dependent.

Before trying parallel processing, it is wise to
time the program components to see where the time is going.
An even task distribution among processors is the mark
of a good parallel processing system., If program timings
are not performed, you are likely to have the same problem
general purpose program parallel processing systems
haves idle processor elements, Figure a shows a simple
parallel processing system.

SWTP 6800 > SWTP 6800 » 8080 SYSTEM WITH
CPU CPU MATROX DISPLAY

Matrix Mult. Clipping Vector Generation
and Display

Figure a., A parallel processing system

MISCELLANEOUS TOPIC - - - DYNAMIC DATA BASES

There is no reason why the data base or scene which
will be projected must remain static. In many applications
a moving object in a scene is desirable.

A driving simulation is a good example of the use of
a dynamic data base. Other cars on the road should be
able to move, dart out in front of you and cut you off
just like they do in real life,

There are two ways to create a dynamic data base.

One is by actually manipulating the data base values with

a user written subroutine. Values can be added and sub-
tracted from every coordinate point. Using different ref-
erence frames is another way to make objects move., Actually,
both methods are the same. Using another reference frame
lets the 3D to 2D converter add and subtract the offsets

for you.

MISCELLANECUS TOPIC - - - GENERATING DATA BASES

Laying out a 3D scene on a large sheet of graph paper
is a hard way to generate a 3D data base. If many data
bases are going to be used, it may be worth while to have
your computer help you with the task of generating them.
There are a few methods ranging from very expensive to
no cost at all which can be used.

A data tablet can be used to specify lines in 3D space.
Just drawing the lines on the tablet will automatically
calculate 3D space coordinates and enter them in.the data
base, Data tablets are very expensive,

A joystick arrangement is just as versatile as the
data tablet. By directing a scene-drawing cursor with the
joystick a 3D data base can be entered.

The least expensive method,which anyone can use,
consists of a keyboard controlled relative movement
program. Instead of entering every point in the 3D data
base, the user specifies wherein space the next point should
be, relative to the last. Commands such as +30X would
generate array entries corresponding to the absolute location.
To initially start the cursor or to start a new start point,
an absolute command such as A 25,1050,35 could be used
to specify the X,Y and Z values.

55

MISCELLANEOUS TOPIC - - - INDEPENDENT REFERENCE FRAMES
AND THE HORIZON LINE

The 3D to 2D converter subroutine can be used to
handle many different input arrays in a single program.

A ground grid array can be transformed followed. by an
airport array and so on. This brings up the possibility
of not only transforming arrays seperately, but differently
as well., By changing viewer's information and creating
new transformation arrays between 3D to 2D conversions,
objects in different reference frames can be generated.
Take a driving simulation as an example, You may wish te
project the view out the windshield. The view of the
world will depend on X, Y and Z viewer location but the
hood of the car will always be right out in front of the
viewer. By setting up two data bases, one for the car and
one for the world, and using two reference frames, two
arrays can be transformed into the desired image.

By having a seperate reference frame with a 180
degree heading, and a very small screen width parameter,
and with a little biasing, a rear view mirror could even
be set up!

A very good use for the variable reference frame is
in horizon line generation. The edge of a ground grid can
be used as a horizon but it is not an accurate horizon.
First of all, it does not represent the true location at
infinity where the horizon should be. The closer you get
to the horizon (ground grid edge) the worse the the dis-
tortion becomes (see figure a)

viewer small angular horizon error

ground grid edge true horizon at e
viewer large angular horizon error
o B ——

ground grid edge true horizon at e

Figure a. Horizon error

A better horizon can be generated by putting a square
boundary around the edge of the horizon data base and
transforming it seperately. When transforming, however,
the viewer's location should be set to 0,0,0 and only
rotation (P,B and H) should be performed. The result will
be a true horizon which you can never fly up to or over.

MISCELLANEOUS TOPICS - - - COLOR GRAPHICS 56

On displays having color capabilities it is desirable
to project multi-color images. Since the 3D graphics pro-
gram is array oriented, this task can be performed by
simply setting aside an individual array of 3D lines for
each seperate color, Each array can be processed and sent
to the display device with the proper color code. Figures
a and b illustrate the color arrays and the projection
order.

Red line array

End code

Blue line array

End code

Green line array

End code

Figure a. Three seperate color arrays

Y

[Get viewer's location and directionl
I
[Set Input Buffer Pointer to red line arrayl

I
[Call the 3D to 2D converter|
I

[Send the red lines to the display device|
I

{Set Input Buffer Pointer to blue line array |

I
[call the 3D to 2D converterJ
I

[Send the blue lines to the display device
I

[Set Input Buffer Pointer to green line array1

I
lcall the 3D to 2D converter|
I

[Send the green lines to the display device
|

Figure b, The projection of 3 seperate arrays

57

MISCELLANEOUS TOPIC - - - TRANSFORMATION MATRIX DERIVATION

The 3D graphics program "rotates the world" by multiplying each point in
the data base by a transformation matrix, as described in the graphics principles
section, This transformation matrix is actually a concatenation of three matricies.
These matricies would rotate the world about the X, Y, and Z axes if applied
seperately. The concatenated matrix performs all three rotations simultaneously.,
The order of matrix concatenation is very important, In the 3D graphics package
the heading matrix, pitch matrix, and finally the bank matrix are applied.

The matrix concatenation mathematics will now be shown,

The following symbols will be used:
SP=Sine (Pitch)
SB= Sine (Bank)
SH= Sine (Heading)

The pitch matrix "P" is:

CP= Cosine (Pitch)
CB= Cosine (Bank)
CH=Cosine (Heading)

| 0
P = 0 cp
0 Sp
The bank matrix “B" is:
CB -SB
B = |[SB CB
0 0
The heading matrix "H" is:
CH o
H = 0 l
-SH 0

Concatenating the P and B matricies:

CB ~SB 0
PB =} SBCP CBCP -SP =

SPSB SPCB Cp

|
0
0

CH |

0
cp
SP

0 CB
-SPf X |SB
Cp 0

-8 0
CB 0
0

Concatenating the H and PB matricies results in the final transformation matrix "T" s

CHCB + -CHSB +
HSPSB SHSPCB

T=HPB = SBCP CBCP

[=5P]

SHCB+ SBSH +
ICHSPSB CHSPCB

{CHCP|

Cd 0 SH

CB -SB O

0 1 0fX|SBCP CBCP -SP

-SH 0 CH

SPSB SPCB CP

This is the same transformation shown in the graphics principles section.

58
MISCELLANEOUS TOPIC - - ~ ACCURATE TRIG

The BASIC Microcomputer Graphics Package does not require any BASIC
trigonometric functions because it has an internal sine/cosine generator sub-
routine, If a BASIC interpreter with trig functions is used, the transformation
matrix can be generated with much higher precision, The slight bit of accuracy
gained won't make very much difference in the final projection, but it will
simplify the program and help satisfy perfectionists who want everything to be as
precise as possible.

The image projected using the more accurate transformation matrix will be
identical, geometrically, to the old image. The improvement gained will be in
the direction of view precision. For example, instead of looking at an object
with a viewing direction of 29,995 degrees pitch, .003 degrees bank and
45,008 degrees heading, you will now be able to see the world from the desired
30 degrees pitch, 0 degrees bank and 45 degrees heading. Figure a illustrates
the new transformation matrix generator, The Sine/Cosine generator subroutine
in the BASIC 8300-8380 block can be eliminated if this matrix generator is used.

82C0 h1=SIN (F*1.74532921=2
8206 K2=C0S (F*1.77453292FE~2 Sin/Cos
8215 Ek3=SIN (E*1.7453292F~2 Calculation
8222 Hk4=C0S (B*1.7453292E~2
8230 HK5=SIN (H*1.7453292F-2
8237 K6=CCS (E*1.7453292E-2
8245 T1=R4*RO+R5*L1*R3

8248 T2=-R6*R3+R5*R1*E4
8251 13=R5*R2*V

8253 14=R2*R3

il

8256 T5=RZ*R4 Transformation
8259 16=—R1*V Matrix
8262 T7=R5*R4+R6*R1*K3 Goneration

8265 TS=RS*R3+R6*1i1%k4
8269 T9=R2*ROE*V _
8272 RETURN 7] Return

Figure a. High accuracy matrix generafof

59

MISCELLANECUS TCPIC - - - BASIC SPEEL-UPS

Speeding up a BASIC graphice program to perform like
an assembly language versicn is not possible. Assembly
language has a 100 to one speed advantage over the BASIC
package, but BASIC has one very desirable feature; it is
extremely accurate. It is therefore well suited to large,
complex, static displays used in architectural design, art,
engineering, etc. It may take minutes to generate one
frame so even a 50% speed improvement will save the user
a minute or two for each display frame. A few speedup
methods which can be employed in many BASICs will now
be presented. Make sure to check your particular BASIC
manual before trying them., They may not help or even
work with your particular BASIC.

1. Remove the REM statements or make sure program
execution jumps around them. You don't want
BASIC wasting time deciding not to execute a
comment.

2, Don't use LET if your BASIC accepts statements
without it. It just takes up memory and wastes
interpretation time.

3. Type all statements without spaces. Some
interpreters waste time skipping over spaces.
For example, type:
IFA=BTHENGOTO080
instead of:
IF A=B THEN GOTO 80
The listing may look strange but as long as you

have a nicely formatted listing to back it up,
that's alright.

60
MISCELLANECUS TOPIC - - - ADVANCED ARRAY STORAGE

The BASIC Microcomputer Graphic Package is very
precise and is well suited to intricate scenes with
many edges. Storing large data bases in BASIC arrays
however is very memory-wasteful., BASIC usually assigns
large BCD values for each array entry. A method that
may be used to cut array storage size by up to 90%
will now be described.

If your BASIC interpreter has PEEK and POKE in-
structions, you can store a data base in memory in a
double precision integer format. Only two 8 bit bytes
must be used for values with a range of + 32767 units,

A 3D line's start and end points can therefore be stored
in 12 bytes. In other words, 341 lines can be stored in
every free 4K block of memory.

A floating point value can be put into 2 8 bit bytes
in the following way:

M=X/256
M=INT (M)
L=X-(256*M)

where
X= floating point value to be split
(where X is positive)
M= most significant byte
L= least significant byte

These values can now be POKEd into memory. Converting
data back to floating point is even easier. The following
sequence will calculate floating point X.

X= (PEEK (A)*256) + (PEEK (A+1))

where
A= address of first byte stored

Two processor-system dependent things must be worked
out before this scheme can successfully be used. PFirst,
an address handling program must be written. You must
know where in memory to place the array. Overwriting
data into program area or the BASIC interpreter can be
disastrous, Sequencing through memory must also be
controlled.

The other thins which must be worked out is a way
to express negative values. Probably the best way to
handle this is to store all values as positive integers
and add offset values when the value is back in floating
point.

S
015510 gy
soiydeir) ;oindwio)
Borened GL6L

v.1819 11 ‘Aoaeg ‘A xog

Program Media

Display Devices

A Note to TRS-80, PET, and Apple Il Owners:

of start and enpoints of lines to be displayed on the
screen. The user's software takes it from there and
sends the output array data to the screen. Display
hardware and software should be capable of drawing
lines, erasing the display screen, and sending data

to the display device. To assist the user in interfacing,
the graphics package contains information on line
drawing methods and presents interface examples
for common devices.

The BASIC 3D package contains a BASIC listing of
the program only. It has been optimized for size. The
6800 assembly language comes with a Mikbug/
Kansas Cassette. The 8080/Z80 versions come with
paper tape or TDL relocatable object code ona
Tarbell cassette. A loader for the TDL format is also
provided. Both assembly language versions come
with hex listings for those users not having the
supplied media. No source listings are provided with
the assembly language packages.

The only display requirement for the 3D packages is
that you must have a device which your computer
can somehow draw lines on. It can be a terminal,
plotter, graphics display, or anything else. A power-
ful high-resolution device is convenient, but a device
as simple as a 64x64 dot matrix will work also. -

The output of programs is x,y coordinates of line end-
points.

TRS-80: Your 128x48 display allows pleasant, simpie
street, architecture, and space scenes. You must
create a subroutine to draw lines between endpoints.
An algorithm is given in the manuals for this task.

If you are uneasy about Z80 programming, then we
recommend the BASIC version (Level |l required).

PET: Most PET owners use the BASIC version to
obtain line endpoints for manual graphing. A variable
screen width feature allows you to scale the output
according to the units desired.

APPLE II: You must be able to use Floating Point
BASIC and the high-resolution graphics routine
simultaneously. Our marketing department uses an
Apple Il with Applesoft ROM card for BASIC program
demonstration. The high resolution of the Apple
permits a beautiful presentation of complex scenes.

Load and Go
Packages

The Dazzler and Matrox ALT-256**2 programs are
written for instant use. Transformed scenes are
displayed on the Dazzler or Matrox display with no
user programming necessary. Our engineering
department calls them “bullet proof.”

It will be easy for you to use the programs with the
step-by-step manual. A sample data base and test
program are provided for quick familiarization.
The programs are not ROMable or relocatable, nor
can they be used with other display devices, but
they include many valuable features:

® The program may be controlled from assembly
language or BASIC.

o On the Matrox, adaptive screen erase speeds
up display and minimizes flicker.

e The Dazzler has double buffering to minimize
flicker.

Relocatable loader and object code for Tarbell

cassette or keyboard loading are available as

options.

New Load and Go Graphics for

Apple Il with Applesoft ROM

Includes BASIC manual plus programs with interface
and sample data base on Applesoft || cassette.

Load and Go program and documentation by Jim
Harter. Introductory price (until March 1, 1979)

$26. (328 thereafter.)

2D Drivers

SubLOGIC has received many requests for Inter-
preters (interface programs, drivers) to aid 3D
experimenters’ packages. Our engineering
department has now gone one step beyond: we have
interface programs for the Dazzler, Matrox

ALT-256, and Vector Graphics high resolution
displays that provide many convenient features for
all 2D display users:

* Screen erase

© Draw-a-line

o Plot-a-point

e Continue-a-line

® Ray (draw a ray from a point, then continue)

e Relative line capability (relocate whole series of
lines, i.e., relocate or move a whole object)

® Chain lines

® Skip-and-jump lines

® Shaded polygons

® Circles and shaded circles

Perhaps the most powerful aspect of the 2D programs

is that they allow you to build universal data bases

(your Dazzler images can be projected on any display

device or plotter you eventually upgrade to).

The interpreter includes a printed relocatable object

code and either TDL format Tarbell tape or paper

tape (a relocatable loader is included for TDL format

tape).

Whether you use 3D or 2D graphics, you'll find that

the 2D interpreters are invaluable for your

applications.

® 66 page manual

® Specify Matrox, Dazzler, or Vector Graphic High
Resolution Board

NO SOURCE $20U.S. and Canada. $23 Foreign

Hardware

Specifications

We have been getting many requests for information
about S100 display devices. With the introduction

of our 8080/2Z80 package we thought it important,
therefore, to evaluate current display devices to see
which is best for 3D graphics applications. These
characteristics are of prime importance: screen
access time, erase speed, interface requirements,
microprocessor bus overhead, and cost. The micro-
processor bus overhead requirement eliminated
most of the DMA devices from consideration, at least
in dynamic applications. The board which seemed

to meet all of our requirements was the Matrox
ALT-256**2, by Matrox Electronic Systems, Montreal,
Canada. Thisis a 256 x 256 bit map with its own
internal 65K bit memory. It is S100 compatible and
is preassembled, tested, and configured. We were
also impressed by the board's clean design (no
variable resistors or other adjustment devices) and
its quality construction. A screen erase command
feature allows quick screen erasing, something that
takes a long time under software control.

We are now offering the Matrox ALT-256**2 card to
our customers. Interfacing this card to the 8080/Z280
package is trivial since the interface example iri the
manual is for this card. The price of this card is
higher than for DMA display cards because of the
onboard 65K memory and the preassembly, but'the
increase in performance is well worth it. If you
would like a copy of the 42-page manual for the
Matrox board, send $3.00; the price can be deducted
from your order for the board.

On the following four pages are the specifications
for all of our 3D software packages as well as for
the Matrox ALT-256**2 display board we offer.

Please note that while we assume that most of our

customers will be using microcomputer hardware,

any computer with BASIC can accept the universal
BASIC 3D program.

Program Number
Program Language
Projection Method
Viewing Range
Special Features
Memory Requirements

Package Contents

Price

Program Number
Program Language
Projection Method

Viewing Range
World Size

Special Features

Memory Requirements
Projection Rate
Package Contents

Price

BASIC LANGUAGE

3DGBU.VO3

Minimal Set BASIC (let, for-next, =, +, —, /. *, if-
then, 1 dimensional arrays, goto, gosub, return).
No trig functions are needed.

3D to 2D wire frame perspective with 3D clipping.
No hidden line elimination capabilities.

X.,Y,Z range of BASIC (floating point range) 3 axis
freedom: O to 359.999 degrees.

Variable viewing window (telephoto/wide angle)
Universality due to BASIC.

Depends on BASIC efficiency. A 12K system should
be adequate in most cases.

3D to 2D converter programs in BASIC, Usage
information, Application notes, Interfacing infor-
mation, Test procedures, Algorithm description,
60 page manual.

$22.00 U.S. and Canada

$25.00 Foreign (to cover shipping)

M6800 ASSEMBLY LANGUAGE

3DG68.V3.1

Optimized 6800 assembly language

3D to 2D wire frame perspective with 3D
clipping. No hidden line elimination
capabilities.

X.Y.Zrange: 32767 units.

3 axis freedom: 0 to 359 degrees in 256 even steps
1912 cubic miles using one foot/unit resolution
Variable viewing window

Optimized clipping

High rate dynamic capabilities

4K plus data base

100-300 lines per second (1 MHz 6800)

3D to 2D converter program, Object listing,
Mikbug/Kansas cassette, Usage information,
Application notes, Interfacing information, Test
procedures, Algorithm procedures, Familiarization
section, Sample data base. 74 page manual.
NO SOURCE

$28.00 U.S. and Canada

$31.00 Foreign (to cover shipping)

8080-Z80 ASSEMBLY LANGUAGE

Program Number 3DG80.V03 (8080)
Program Language Optimized 8080 and Z80 assembly language
Projection Method 3D to 2D wire frame perspective with 3D clipping.
No hidden line elimination.
Viewing Range X.Y,Zrange: £32767 units.
3 axis freedom: 0-359 degrees in 256 even steps
World Size 1912 cubic miles using one foot/unit resolution .
Special Features Variable aspect ratio, Variable screen bit ratio, K

Optimized clipping, 10 data base entry modes,
Relocatable object mode, ROM-ability, High rate
dynamic capabilities.

Memory Requirements 5K plus data base

Projection Rate 200-500 lines per second (4MHz 8080)

Package Contents 3D to 2D converter program, Object listing, TDL
relocatable format Tarbell cassette, Usage
information, Relocatable loader, Relocatable
keyboard loading method, Application notes, Test
procedures, Algorithm description, Familiarization
section.

85 page manual. |
NO SOURCE.

Price $30.00 U.S. and Canada

$33.00 Foreign (to cover shipping)

Program Number
Program Language
Projection Method

Viewing Range

World Size

Special Features

Memory Requirements
Location in RAM
Projection Rate
Package Contents

Price

Options

MATROX AND DAZZLER 3D

LOAD AND GO

MATROX

3DGMTXLG

8080 or Z80

3D to 2D wire frame perspective
with 3D clipping. No hidden line
elimination.

X.Y,Z range: * 32767 units.

3 axis freedom:0-359 degrees in
256 even steps.

1912 cubic miles using one foot/
unit resolution.

Variable aspect ratio, Optimized
clipping, 4 projection modes, High
rate dynamic capabilities, Adaptive
erase.

5K plus data base

1000-2200 hex

200-500 lines per second

3D to 2D converter program,
Tarbell format, Tarbell cassette
or paper tape (specify medium),
Test procedures, Familiarization
section

26 page manual

NO SOURCE
*$15.00 U.S. and Canada

**$18.00 Foreign (Airmail)
Relocatable Loader and Object

Relocatable Tarbell cassette $10.00

Keyboard entry $10.00

DAZZLER

3DGDAZ LG

8080 or Z80

3D to 2D wire frame perspective
with 3D clipping. No hidden line
elimination.

X,Y,Z range: = 32767 units.

3 axis freedom: 0-359 degrees in
256 even steps.

1912 cubic miles using one foot/
unit resolution.

Variable aspect ratio, Optimized
clipping, 4 projection modes, High
rate dynamic capabilities, High
speed erase.

5K plus data base

1000-3200 hex

150-400 lines per second

3D to 2D converter program,
Tarbell format, Tarbell cassette
or paper tape (specify medium),
Test procedures, familiarization
section

26 page manual

NO SOURCE

*$15.00 U.S. and Canada

**$18.00 Foreign (Airmail)

Non Relocatable program on North Star Disk $10.00

* Introductory until January 31, 1979

Then $25.00.

** |ntroductory until January 31, 1979

Then $28.00.

10

Display Type

Dot Write Time
Erase Time
Interface
Dimensions
Power
Outputs

» Synchronization

TV Standard

Monitor
Remote Display
Addressing
Documentation

Warranty
Price

More Information

Note:

MATROX ALT-256**2 DISPLAY
(Hardware)

256 x 256 raster scan bit map with onboard refresh
memory

3.4 usec max, faster in common row or col. modes.
33 milliseconds using fast erase command.

S100 Altair/Imsai compatible.

9"x 5". Slightly taller than most S100 cards.

8v, 600mA; -18v, 10mA

Composite video; 75 Ohm, x tal controlled; TTL
video, horizontal and vertical syncs and blank
outputs

Internal or external

American standard (262 vertical lines, 60 Hz; 240
vertical video lines) 4:3 aspect ratio; American
Non-standard (280 lines, 60Hz, 256 video lines),
horizontal freq=16.8 KHz (1:1 aspect ratio);
European (312, 50Hz, 1:1 aspect ratio). Non-
interlaced picture. Standard selectable on the
board.

Any standard TV monitor or modified TV set.

75 Ohm, up to 2500 ft. Multiple monitors (max=25).
Four output ports, one input port. Ports selectable.
42 page manual, complete description, schematics,
test program, and application notes.

90 days parts and labor

$395.00 postage paid U.S. and Canada

$410.00 Foreign

For more information, send $3.00 for a copy of the
manual, application notes, and schematics (42 pp.)

We have successfully used the ALT 256**2 with a
4MHz Z80 system. It worked well with a Jade (Ithica
Audio) Z80 card and TDL 2MHz Z80 card also.

Ordering
Information

Orders in the U.S. and Canada

Special Fourth Class postage is paid by SubLOGIC
for orders in the IJ.S. and Canada. Delivery time
averages 10 days.

For First Class mailing, add $1.50 per graphics
package. Delivery time averages 3 days.

For UPS shipment, add $.75 per graphics package.
up to a maximum of $4.00 per order. Delivery time
averages 4 days.

For COD orders via UPS, add $.75 per graphics
package, plus $2.00 for handling, up to a maximum
of $6.00 per order.

When ordering a Matrox board, send a money order,
cashier’s check, or any other form of prepaid check.
Personal checks may delay your order for up to two
weeks.

Orders paid by charge card or COD may be placed
by phone. Call (217) 367-0299.

To wire payment, send to the Champaign, lllinois,
Western Union Office and include our telephone
number.

Foreign Orders :
Add $3.00 extra per graphics package for airmail
shipment.

Our cable address is "SUBLOGIC.”

We are pleased to accept orders in both English and
French.

WhoWe Are

What We Sell

Reliability

The use of computer graphics in science, engineering,
art, and many other fields has been increasing over
the past 15 years. Display devices continue to drop

in price as many manufacturers enter the market

with new hardware. The advent of the microcomputer
and MOS-LSI memories has brought graphics
systems down to a very affordable level, and a
system costing one or two thousand dollars can have
very advanced graphics capabilities.

SubLOGIC was therefore formed in 1977 to develop
software that would allow experimenters, engineers,
architects, designers, pilots, and anyone else
interested in three-dimensional wireframe drawings
or spatial viewing to generate what they wanted on

a TV screen or paper plotter. The company is headed
by Bruce Artwick and Stuart Moment and supported
by a team of marketing and production people who
specialize in reliable service.

SubLOGIC's first efforts resulted in a number of 3D
microcomputer graphics packages which can be
used with the new inexpensive hardware systems.
We have now branched out into simpler-to-handle
Load and Go packages, 2D graphics software, and’
display boards as well.

SubLOGIC software is combinatorially segment-
tested to insure maximum durability. SubLOGIC
strives for the highest standards of quality, and an
ongoing quality control program helps meet the goal.

