S ynertek
S ystems
C orporation

BASIC
REFERENCE MANUAL

i

BASIC
REFERENCE
MANUAL

Copyright @ by Synertek Systems Corporation

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior written
consent of Synertek Systems Corporation.

Vit

SCC PUB MAN-A-260026-B

Second Printing January 1981

The contents of this manual were placed in the public domain when SCC ceased SYM-1 operations.

Synertek Systems Corporation

150 South Wolfe Road * Sunnyvale, CA 94068 * (408) 988 - 5600 TWX: 910-338-0135

Synertek 6500 BASIC Reference

INTRODUCTION .

GETTING STARTED WITH BASIC

REFERENCE MATERIAL .

Commands
CLEAR
LIST
NULL
RUN
NEW
CONT

LOAD “A"” .
SAVE “A”

ggerators .

Statements

DATA
DEF

DIM

END

FOR .
GOTO
GOSUB
IF...GO
IF...TH
INPUT
LET
NEXT
ON...GO
ON...GO
POKE
PRINT
READ
REM .
RESTORE

TO .
EN

TO .
SUB

RETURN .

STOP
WAIT

-

Intrinsic Functions.

ABS (X)
INT (X)
RND (X)
SGN (X}
SIN(X)
SQR (X)
TAB(I)
USR(I)

optional

TABLE OF

CONTENTS

Manual

27
27
27
27
27

28
28

29

33
33
34
34
34
35
35
35
35

36
36
36
37
37
37
38

38
38
38

39
39
39
39
39
39
339
40

TABLE OF CONTENTS (Continued)

k3

Intrinsic Functions (Continued)

USR(I,J,...2Z).

ATN(X) optional

COS (X) optional
EXP(X) . . « « e e e e
FRE (X)

LOG(X) « . « « .« < . . .

PEEK(X). . . .« .+ .+ « <
POS(I) . . <« « « « e e e e e e
SPC(I)

TAN(X) optional

Strings. e e e e
N DIMAS T . . .

LET AS« .+ < < . .
INPUT X$. . « .« « « « <« .« .
READ X$ e e e e e e e e e
PRINT X$

String Functions

ASC(X$). < . .

CHRS$(I). . . .+ .+ . .« .

FRE(X$).+ . .

LEFTS(X$,I) . . .« . .+ .« .« . . .
LEN(XS). . . .+« .« .« .« <
MID$ (X$,I). . . .« . .

MID$ (XS$,I,J) . .« . .« .« .

RIGHTS(XS$,I) . . .« « « « « « <« .« .
STRS(X). . < « « < o« e e ..
VAL(X$). . « « « o«

Special Characters @, <-, CR, BREARK, :, TC, ?

Miscellaneous Comments.

APPENDICES.

ROGgHTDOQOMmMEOOQWP

INITIALIZATION DIALOG . .

ERROR MESSAGES . e e

SPACE HINTS . e e e

SPEED HINTS . e e e

DERIVED FUNCTIONS e e e e e e e e e
CONVERTING BASIC PROGRAMS NOT WRITTEN FOR SYNERTEK
BASIC/MACHINE LANGUAGE INTERFACE

ASCII CHARACTER CODES . .

BASIC TEXTS.

TRIGONOMETRIC FUNCTIONS .

NOTES.

BASIC

40
40
40
40
40
40
40
40
40
41

41
41
41
41
41
41

42
42
42
42
42
42
42
42
42
43

43

43

45

45
46
49
51
52
53
55
57
58
59
64

2

INTRODUCTION

Before a computer can perform any useful function, it must be "“told” what to
do. Unfortunately, at:"this time, computers are not capable of understanding
English or any other “human” language. This is primarily because our languages
are rich with ambiguities and implied meanings. The computer must be told
precise instructions and the exact sequence of operations to be performed in
order to accomplish any specific task. Therefore, in order to facilitate human
communication with a computer, programming languages have been developed.

Synertek BASIC is a programming language both easily understood and simple to
use. It serves as an excellent “tool” for applications in areas such as
business, science and education. With only a few hours of using BASIC, you will
find that you can already write programs with an ease that few other computer
languages can duplicate.

Originally developed at Dartmouth University, BASIC language has found wide
acceptance in the computer field. Although it is one of the simplest computer
languages to use, it is very powerful. BASIC uses a small set of common English
words as its “commands.” Designed specifically as an “interactive” language,
you can give a command such as “PRINT 2 + 27, and BASIC will immediately reply
with “4”. It isn't necessary to submit a card deck with your program on it and
then wait hours for the results. Instead the full power of the computer is “at
your fingertips.”

We hope that you enjoy BASIC, and are successful in using it to solve all of
your programming needs.

GETTING STARTED WITH BASIC

You have received one ROM as your BASIC language. This ROM is designed to run
in your Synertek SYM-1 using the SUPERMON monitor.

Insert the ROM marked 02-0058A into socket U2l1. Before applying power, the
following on-board jumpers must be changed.

Remove the following Jumpers Add the following Jumpers
B-2 B-1
c-2 c-1
F-5 F-2
G-5 G-2
L-12 K-12
M-13 L-13 and 14

These jumper changes configure sockets U2l and U22 for 4Kx8 ROM's each and
locate U2l at address $COOO-$CFFF and U22 at address $DOOO-S$DFFF.

To run BASIC, first log on to SUPERMON.
Apply power to the SYM-1. Do not depress any keys on the hex keypad. Enter a

“Q” from your Synertek KTM-2 or other RS-232 terminal device. (Do not use BAUD
rates above 4800.)

If you are using a TTY, enter these keys on‘the hex keypad:

(SHIFT) (JUuMP) (1) (CR)r

A prompting period should now be displayed on your terminal. Enter (J) (0)
(C/R) to start BASIC.

BASIC will respond with:

MEMORY SIZE? (type a carriage return)
BASIC will then ask:

TERMINAL WIDTH? (type a carriage return)
Now'BASIQ will type out:

XXXX BYTES FREE

BASIC V1.1
COPYRIGHT 1978 SYNERTEK CORP.
OK

Once your I/O device has typed ”“OK”, you are ready to use BASIC. For more
detail on memory size and terminal widths refer to Appendix A.

This section is not intended to be a detailed course in BASIC programming. It
will, however, serve as an excellent introduction for those of you unfamiliar
with the language.

The text here will introduce the primary concepts and uses of BASIC enough to
get you started writing programs. For further reading suggestions, see Appendix
L.

If you are already familiar with BASIC programming, the following section may
be skipped. Turn directly to the Reference Material on page 27.

We recommend that you try each example in this section as it is presented. This
will enhance your “feel” for BASIC and how it is used.

NOTE

All commands to BASIC should end with a carriage
return. The carriage return tells BASIC that you have
finished typing the command. If you make a typing
error, type a backarrow (<- , shift/delete on KTM-2,
usually Shift/O on a TTY), or an underline to eliminate
the last character. Repeated use of “<-” will eliminate
previous characters. An at-sign (@) will eliminate the
entire line that you are typing.

v~

Ly

Now, try typing in the following:

<

PRINT 10-4 (end with carriage return)

BASIC will immediately print:
6

OK

The print statement you typed in was executed as soon as you hit the carriage
return key. BASIC evaluated the formula after the “PRINT” and then typed out
its value; in this case 6.

Now try typing this:
"7 PRINT 1/2,3*%10 (“*” means multiply, “/” means divide)
BASIC will print:

.5 30

As you can see, BASIC can do division and multiplication as well as
subtraction. Note how a “,“ (comma) was used in the print command to print two
values instead of just one. The comma divides the 72 character line into 5
columns, each 14 characters wide. The last two of the positions on the line are
not used. The result is a “,“ causes BASIC to skip to the next 14 column field
on the terminal, where the value was printed.

Commands such as the “PRINT” statements you have just typed in are called
Direct Commands. There is another type of command called an Indirect Command.
Every Indirect command begins with a Line Number. A Line Number is any integer
from 0 to 63999.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a “Program”. Instead of executing
indirect statements immediately, BASIC saves Indirect Commands in the memory.
When you type in RUN, BASIC will execute the lowest numbered indirect statement
that has been typed in first, then the next highest, etc. for as many as were
typed in.

Suppose we type in RUN now:
RUN
BASIC will type out:

5
-1

OK

In the example above, we typed in line 10 first and line 20 second. However, it
makes no difference in.what order you type in indirect statements. BASIC always
puts them into correct numerical order according to the Line Number.

If we want a listing of the complete program currently in memory, we type in
LIST. Type this in:

LIST

BASIC will reply with:

10 PRINT 2+3
20 PRINT 2-3
OK

Sometimes it is desirable to delete a line of program altogether. This 1is
accomplished by typing the Line Number of the line we wish to delete, followed
only by a carriage return.

Type in the following:
10
LIST

BASIC will reply with:

20 PRINT 2-3
OK

We have now deleted line 10 from the program. There is no way to get it back.
To insert a new line 10, just type in 10 followed by the statement we want
BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

BASIC will reply with:

10 PRINT 2*3
20 PRINT 2-3
OK

There is an easier way to replace line 10 than deleting it and then inserting a
new line. You can do this by just typing the new line 10 and hitting the
carriage return. BASIC throws away the old line 10 and replaces it with the new
one.

Type in the following:

10 PRINT 3-3
LIST

Aty

BASIC will reply with:
10 PRINT 3-3

20 PRINT 2-3
OK

It is not recommended that lines be numbered consecutively. It may become
necessary to insert a new line between two existing lines. An increment of 10
between line numbers is generally sufficient.

If you want to erase the complete program currently stored in memory, type in
“NEW“. If you are finished running one program and are about to read in a new
one, be sure to type in “NEW"“ first. This should be done in order to prevent a
mixture of the old and new programs.
Type in the following:

NEW
BASIC will reply with:

OK
Now type in:

LIST
BASIC will reply with:

oK

Often it is desirable to include text along with answers that are printed out
in order to explain the meaning of the numbers. Type in the following:

PRINT “ONE THIRD IS EQUAL TO”,1/3
BASIC will reply with:
ONE THIRD IS EQUAL TO .333333333

OK

Bs explained earlier, including a “,” in a print statement causes it to space
over to the next fourteen column field before the value following the “,” is
printed.

If we use a “;” instead of a comma, the value next will be printed immediately
following the previous value.

NOTE
Numbers are always printed with at least one trailing
space. Any:-text to be printed is always to be enclosed
in double quotes. A question mark is permitted as an
abbreviation for PRINT.

Try the following examples:

A) PRINT “ONE THIRD IS EQUAL TO“;1/3
ONE THIRD IS EQUAL TO .33333333

OK

B) ?1,2,3

OK

C) PRINT -1;2;-3
-1 2 -3

OK

We will digress for a moment to explain the format of numbers in BASIC. Numbers
are stored internally to over nine digits of accuracy. When a number is
printed, up to nine digits are shown. Every number may also have an exponent (a
power of ten scaling factor

The largest number that may be represented in BASIC is 1.70141*10°%%, while the
smallest positive number is 2.93874*107.

When a number is printed, the following rules are used to determine the exact
format:

1. If the number is negative, a minus sign (-) is printed. If the number is
positive, a space is printed.

2. If the absolute value of the number is an integer in the range 0 to
99999999, it is printed as an integer.

3. If the absolute value of the number is greater than or equal to .01 and

less than or equal to 999999999, it is printed in fixed point notation,
with no exponent.

4. If the number does not fall under categories 2 or 3, scientific notation
is used.

PRt

Scientific notation is formatted as follows: SX.XXXXXXXESTT. (each X being some
integer 0 to 9) ‘

The leading “S” is the sign of the number; a space for a positive
number and a “-” for a negative one. One non-zero digit is printed
before the decimal point. This is followed by the decimal point and
then the other seven digits of the mantissa. An “E” is then printed
(for exponent), followed by the sign (S) of the exponent; then the
two digits (TT) of the exponent itself. Leading zeroes are never
printed; i.e. the digit before the decimal is never zero. Also,
trailing zeros are never printed. If there is only one digit to
print after all trailing zeroes are suppressed, no decimal point is
printed. The exponent sign will be “+” for positive and “-"” for
negative. Two digits of the exponent are always printed; that is
zeroes are not suppressed in the exponent field. The value of any
number expressed thus is the number to the left of the “E” times 10
raised to the power of the number to the right of the “E”.

No matter what format is used, a space is always printed following a number.
BASIC checks to see if the entire number will fit on the current line. If not,
a carriage return/line feed is executed before printing the number.

The following are examples of various numbers and the output format BASIC will
place them into:

NUMBER OUTPUT FORMAT

+1 1

-1 -1

6523 6523

-23.460 -23.46

1E20 1E+20
~12.3456E-7 -1.23456E-06
1.234567E-10 1.23457E-10
1000000 1E+06
999999 999939

.1 .1

.01 .01

.000123 1.23E-04

A number input from the terminal or a numeric constant used in a BASIC program

may have as many digits as desired,

up to the maximum length of a line (72

characters). However, only the first 9 digits are significant, and the ninth

digit is rounded up.

PRINT 1.2345678901234567890

1.23456789

OK

Additionally, a number input from the terminal or a numeric constant used in a

BASIC program may be specified in HEX format.

A HEX number consists of the

ampersand character (&) followed by a four character string constant specifying

the HEX number like so:

&IIFFE'E" .

HEXADECIMAL CONSTANTS

.o
<

Hexadecimal constants in the range of $0000-$7FFF and $8001-$FFFF may be used
as the first argument:of the USR statement. In the PEEK and POKE statements,

the permissible range of $0000-$7FFF only. Use decimal constants for other
values.

The following is an example of a program that reads a value from the terminal
and uses that value to calculate and print a result:

10 INPUT R

20 PRINT 3.14159*R*R
RUN

? 10

314.159

OK"

Here's what's happening. When BASIC encounters the input statement, it types a
question mark (?) on the terminal and then waits for you to type in a number.
When you do (in the above example 10 was typed), execution continues with the
next statement in the program after the variable (R) has been set (in this case
to 10). In the above example, line 20 would now be executed. When the formula
after the PRINT statement is evaluated, the value 10 is substituted for the

variable R each time R appears in the formula. Therefore, the formula becomes
3.14159*%10*10, or 314.159.

If you haven't already guessed, what the program above actually does is to
calculate the area of a circle with the radius “R”.

If we wanted to calculate the area of various circles, we could keep re-running
the program over each time for each successive circle. But, there's an easier
way to do it simply by adding another line to the program as follows:

30 GOTO 10
RUN

? 10
314.159

? 3
28.2743

? 4.7

69.3977
?

OK

By putting a “GOTO” statement on the end of our program, we have caused it to
go back to line 10 after it prints each answer for the successive circles. This
could have gone on indefinitely, but we decided to stop after calculating the
area for three circles. This was accomplished by typing a carriage return to
the input statement (thus a blank line).

The letter “R” in the program we just used was termed a “variable”. A variable
name can be any alphabetic character and may be followed by any alphanumeric
character.

f“@

Any alphanumeric characters after the first two are ignored. An alphanumeric
character is any letter (A-Z) or any number (0-9). If the variable name ends
with a "“$“, it 1is a string variable; that 1is, it contains character
information. If the name ends in “%“, then the variable is an integer variable,
and may contain only integer values. Numeric information is otherwise kept in
floating point format internally.

Below are some examples of legal and illegal variable names:

LEGAL ILLEGAL

A % (lst character must be alphabetic)

zZ1

TO TO (variable names cannot be reserved words)

PSTGS

COUNT RGOTO (variable names cannot contain reserved words)

The words used as BASIC statements are “reserved” for this specific purpose.
You cannot use these words as variable names or inside of any variable name.
For instance, “FEND” would be illegal because “END” is a reserved word.
The following is a list of the reserved words in BASIC:

ABS AND ASC ATN CHR$ CLEAR CONT COS DATA DEF DIM END

EXP FN FOR FRE GOSUB GOTO IF INPUT INT LEFT$ LEN LET

LIST LOAD LOG MID$ NEW NEXT NOT NULL ON OR PEEK POKE

POS PRINT READ REM RESTORE RETURN RIGHT$ RND RUN SAVE

SGN SIN SPC(SQR STEP STOP STR$ TAB(TAN THEN TO USR

VAL WAIT GET GO

Besides having values assigned to variables with an input statement, you can
also set the value of a variable with a LET or assignment statement.

Try the following examples:

A=5

OK

PRINT A,A*2

5 10

OK

LET 2=7 OK

PRINT Z,Z-A

7 2
OK

As can be seen from the examples, the “LET” is optional in an assignment
statement. . ’

BASIC “remembers” the:wvalues that have been assigned to variables using this
type of statement. This “remembering” process uses space in the computer's
memory to store the data.

The values of variables are thrown away and the space in memory used to store
them is released when one of four things occur:

1) A new line is typed into the program or an old line is deleted.
2) A CLEAR command is typed in.

3) A RUN command is typed in.

4) = NEW is typed in.

Another important fact is that if a variable is encountered in a formula before
it is assigned a value, it is automatically assigned the value zero. Zero is

then substituted as the value of the variable in the particular formula. Try
the example below:

PRINT Q,Q+2,Q*2
0 2 0

OK

Another statement is the REM statement. REM is short for remark. This statement
is used to insert comments or notes into a program. When BASIC encounters a REM
statement the rest of the line is ignored.

This serves mainly as an aid for the programmer himself, and serves no useful
function as far as the operation of the program in solving a particular
problem.

Suppose we wanted to write a program to check if a number is zero or not. With
the statements we've gone over so far this could not be done. What is needed is
a statement which can be used to conditionally branch to another statement. The
“IF-THEN” statement does just that.

Try typing in the following program (remember, type NEW first).

10 INPUT B

20 IF B=0 THEN 50
30 PRINT “NON-ZERO”
40 GOTO 10

50 PRINT “ZERO”

60 GOTO 10

When this program is typed into the computer and run, it will ask for a value
for B. Type any value you wish in. The computer will then come to the “IF”
statement. Between the “IF” and the “THEN” portion of the statement there are
two expressions separated by a relation.

Pephs

A relation is one of the following six symbols:

.

RELATION MEANING
= *" EQUAL TO
< LESS THAN
> GREATER THAN
<> NOT EQUAL TO
<= LESS THAN OR EQUAL TO
=> GREATER THAN OR EQUAL TO

The IF statement is either true or false, depending upon whether the two
expressions satisfy the relation or not. For example, in the program we just
entered, if 0 was typed in for B, the IF statement would be true because 0=0.
In this case, since the number after the THEN is 50, execution of the program
would continue at line 50. Therefore, “ZERO” would be printed and then the
program would jump back to line 10 (because of the GOTO statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF statement would be
false and the program would continue execution with the next line. Therefore,
“NON-ZERO” would be printed and the GOTO in line 40 would send the program back
to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B

20 IF A<=B THEN 50

30 PRINT “A IS BIGGER”

40 GOTO 10

50 IF A<B THEN 80

60 PRINT “THEY ARE THE SAME”
70 GOTO 10

80 PRINT “B IS BIGGER”

90 GOTO 10

When this program is run, line 10 will input two numbers from the terminal. At
line 20, if A is greater than B, A<=B will be false. This will cause the next
statement to be executed, printing “A IS BIGGER” and then line 40 sends the
computer back to line 10 to begin again.

At line 20, if A has the same value as B, A<=B is true so we go to line 50. At
line 50, since A has the same value as B, A<B is false; therefore, we go to the
following statement and print “THEY ARE THE SAME”. Then line 70 sends us back
to the beginning again.

At line 20, if A is smaller than B, A<=B is true so we go to line 50. At line
50, A<B will be true so we then go to line 80. “B IS BIGGER” is then printed
and again we go back to the beginning.

Try running the last two programs several times. It may make it easier to
understand if you try writing your own program at this time using the IF-THEN
statement. Actually trying programs of your own 1is the quickest and easiest way
to understand how BASIC works. Remember, to stop these programs just give a
carriage return to the input statement.

One advantage of computers is their ability to perform repetitive tasks. Let's
take a closer look and see how this works.

Suppose we want a table of square roots from 1 to 10. The BASIC function for
square root is “SQR”; the form being SQR(X), X being the number you wish the
square root calculated from. We could write the program as follows:

10 PRINT 1,SQR(1)
20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)
' 40 'PRINT 4,SQR(4)
50 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 10, SQR(10)

This program will do the job; however, it is terribly inefficient. We can
improve the program tremendously by using the IF statement just introduced as
follows:

10 N=1

20 PRINT N,SQR(N)
30 N=N+1

40 IF N<=10 THEN 20

When this program is zrun, its output will look exactly like that of the 10
statement program above it. Let's look at how it works.

At line 10 we have a LET statement which sets the value of the wvariable N at 1.
At line 20 we print N and the square root of N using its current value. It thus
becomes 20 PRINT 1,SQR(l), and this calculation is printed out.

At line 30 we use what will appear at first to be a rather unusual LET
statement. Mathematically, the statement N=N+1 1is nonsense. However, the
important thing to remember is that in a LET statement, the symbol “=" does not
signify equality. In this case “=“ means “to be replaced with”. BAll the
statement does is to take the current value of N and add 1 to it. Thus, after
the first time through line 30, N becomes 2.

At line 40, since N now equals 2, N<=10 is true so the THEN portion branches us
back to line 20, with N now at a value of 2.

The overall result is that lines 20 through 40 are repeated, each time adding 1
to the value of N. When N finally equals 10 at line 20, the next line will
increment it to 11. This results in a false statement at line 40, and since
there are no further statements to the program it stops.

R
]

This technique is referred to as Mlooping” or “iteration”. Since it is used
quite extensively in programming, there are special BASIC statements for using
it. We can show these with the following program.

10 FOR N=1 TO 10
20 PRINT N, SQR (N)
30 NEXT N

The output of the program listed above will be exactly the same as the previous
two programs.

At line 10, N is set to equal 1. Line 20 causes the value of N and the square
root of N to be printed. At line 30 we see a new type of statement. The "“NEXT
N” statement causes one to be added to N, and then if N<=10 we go back to the
statement following the “FOR” statement. The overall operation then is the same
as with the previous program.

Notice that the variable following the “FOR” 1is exactly the same as the
variable after the “NEXT”. There is nothing special about the N in this case.
Any variable could be used, as long as they are the same in both the “FOR” and
the “NEXT” statements. For instance, “Z1” could be substituted everywhere there
is an “N” in the above program and it would function exactly the same.

Suppose we wanted to print a table of square roots from 10 to 20, only counting
by two's. The following program would perform this task:

10 N=10

20 PRINT N,SQR(N)
30 N=N+2

40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed on page 12
for printing square roots for the numbers 1 to 10. This program can also be
written using the “FOR” loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the previous one
using “FOR” loops is the addition of the “STEP 2” clause.

This tells BASIC to add 2 to N each time, instead of 1 as in the previous
program. If no “STEP” is given in a “FOR” statement, BASIC assumes that one is
to be added each time. The “STEP” can be followed by any expression.

Suppose we wanted to count backwards from 10 to 1. A program for doing this
would be as follows:

10 I1=10

20 PRINT I

30 I=I-1

40 IF I>=1 THEN 20

Notice that we are now checking to see that 1 is greater than or equal to the
final value. The reason is that we are now counting by a negative number. In
the previous examples it was the opposite, so we were checking for a variable
less than or equal to the final value.

The “STEP” statement previously shown can also be used with negative numbers to
accomplish this same purpose. This can be done using the same format as in the
other program, as follows:

10 FOR I=10 TO 1 STEP -1
20 PRINT I
30 NEXT I

“FOR” loops can also be “nested”. An example of this procedure follows:

10 FOR I=1 TO 5
" 20 FOR J=1 TO 3

30 PRINT I,J

40 NEXT J

50 NEXT I

Notice that the “NEXT J” comes before the “NEXT I”. This is because the J-loop
is inside of the I-loop. The following program is incorrect; run it and see
what happens.

10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J
40 NEXT I

50 NEXT J

It does not work because when the “NEXT I” is encountered, all knowledge of the
J-loop is lost. This happens because the J-loop is “inside” of the I-loop.

It is often convenient to be able to select any element in a table of numbers.
BASIC allows this to be done through the use of matrices.

A matrix is a table of numbers. The name of this table, called the matrix name,
is any legal variable name, “A” for example. The matrix name “A” is distinct
and separate from the simple variable “A”, and you could use both in the same
program. .

To select an element of the table, we subscript “A”: that is to select the I’'th
element, we enclose I 1in parenthesis “(I)” and then follow “A” by this
subscript. Therefore, “A(I)” is the I'th element in the matrix “A”.

NOTE

In this section of the manual we will be concerned with
one-dimensional matrices only. (See Reference Material)

“A(I)” is only one element of matrix A, and BASIC must be told how much space
to allocate for the entire matrix.

AV

This is done with a “DIM” statement, using the format “DIM A(15)”. In this
case, we have reserved space for the matrix index “I” to go from 0 to 15.
Matrix subscripts always start at 0; therefore, in the above example, we have
allowed for 16 numbers®in matrix A.

If “A(I)” is used in a program before it has been dimensioned, BASIC reserves
space for 11 elements (0 through 10).

As an example of how matrices are used, try the following program to sort a
list of 8 numbers with you picking the numbers to be sorted.

10 DIM A(8)

20 FOR I=1 TO 8
30 INPUT A(I)

50 NEXT I

.70 F=0

80 FOR I=1 TO 7

90 IF A(I)<=A(I+1) THEN 140
100 T=A(I)

110 A(I)= A(I+1)
120 A(I+1)=T

130 F=1

140 NEXT I

150 IF F=1 THEN 70
160 FOR I=1 TO 8
170 PRINT A(I),
180 NEXT I

When line 10 is executed, BASIC sets aside space for 9 numeric values, A(0)
through A(8). Lines 20 through 50 get the unsorted list from the user. The
sorting itself is done by going through the list of numbers and upon finding
any two that are not in order, we switch them. “F” is used to indicate if any
switches were done. If any were done, line 150 tells BASIC to go back and check
some more.

If we did not switch any numbers, or after they are all in order, lines 160
through 180 will print out the sorted list. Note that a subscript can be any
expression.

Another useful pair of statements are “GOSUB” and "“RETURN”. If you have a
program that performs the same action in several different places, you could
duplicate the same statements for the action in each place within the program.

The “GOSUB”-”RETURN” statements can be used to avoid this duplication. When a
“GOSUB” is encountered, BASIC branches to the line whose number follows the
“GOSUB”. However, BASIC remembers where it was in the program before it
branched. When the “RETURN” statement is encountered, BASIC goes back to the
first statement following the last "“GOSUB” that was executed. Observe the
following program.

e ——

10 PRINT “WHAT IS THE NUMBER”;
30 GOSUB 100 . .
40 T=N

50 PRINT “WHAT IS THE SECOND NUMBER” ;

70 GOSUB 100

80 PRINT “THE SUM OF THE TWO NUMBERS IS”,T+N

90 STOP

100 INPUT N

110 IF N = INT(N) THEN 140

120 PRINT “SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN.”
130 GoTO 100

140 RETURN

What this program does is to ask for two numbers which must be integers, and
then prints the sum of the two. The subroutine in this program are lines 100 to
130. The subroutine asks for a number, and if it is not an integer, asks for a
number again. It will continue to ask until an integer value is typed in.

The main program prints “WHAT IS THE NUMBER", and then calls the subroutine to
get the value of the number into N. When the subroutine returns (to line 40),
the value input is saved in the variable T. This is done so that when the
subroutine is called a second time, the value of the first number will not be
lost.

“WHAT IS THE SECOND NUMBER“ is then printed, and the second value is entered
when the subroutine is again called.

When the subroutine returns the second time, “THE SUM OF THE TWO NUMBERS IS"“ is
printed, followed by the value of their sum. T contains the value of the first
number that was entered and N contains the value of the second number.

The next statement in the program is a “STOP” statement. This causes the
program to stop execution at line 90. If the “STOP” statement was not included
in the program, we would “fall into” the subroutine at 1line 100. This is
undesirable because we would be asked to input another number. If we did, the
subroutine would produce an RG error. Each “GOSUB” executed in a program should
have a matching "“RETURN” executed later, and the opposite applies, i.e. a
“RETURN” should be encountered only if it is part of a subroutine which has
been called by a “GOSUB”.

Either “STOP” or “END” can be used to separate a program from its subroutines.
“STOP” will print a message saying at what line the “STOP” was encountered.

Suppose you had to enter numbers to your program that didn't change each time
the program was run, but you would like it to be easy to change them if
necessary. BASIC contains special statements for this purpose, called the
“READ” and “DATA” statements.

Consider the following program: -
10 PRINT “GUESS A NUMBER”;
20 INPUT G o
30 READ D
40 IF D=999999 THEN 90
50 IF D<>G THEN 30
60 PRINT “YOU ARE CORRECT”
70 END
90 PRINT “BAD GUESS, TRY AGAIN.”
95 RESTORE
100 GOTO 10
110 DATA 1,393,-39,28,391,-8,0,3.14,90
120 DATA 89,5,10,15,-34,999999

This is what happens when this program is run. When the “READ” statement is
encountered, the effect is the same as an INPUT statement. But, instead of
getting a number from the terminal, a number is read from the “DATA”
statements.

The first time a number is needed for a READ, the first number in the first
DATA statement is returned. The second time one is needed, the second number in
the first DATA statement is returned. When the entire contents of the first
DATA statement have been read in this manner, the second DATA statement will
then be used. DATA is always read sequentially in this manner, and there may be
any number of DATA statements in your program.

The purpose of this program is to play a little game in which you try to guess
one of the numbers contained in the DATA statements. For each guess that is
typed in, we read through all of the numbers in the DATA statements until we
find one that matches the guess.

If more values are read than there are numbers in the DATA statements, an out
of data (OD) error occurs. That is why in line 40 we check to see if 999999 was
read. This is not one of the numbers to be matched, but is used as a flag to
indicate that all of the data (possible correct guesses) have been read.
Therefore, if 9939999 was read, we know that the guess given was incorrect.

Before going back to line 10 for another guess, we need to make the READ's
begin with the first piece of data again. This 1is the function of the
“RESTORE”. After the RESTORE is encountered, the next piece of data read will
be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only READ statements
make use of the DATA statements in a program, and any other time they are
encountered during program execution they will be ignored.

A list of characters is referred to as a “String”. DOG, KUMQUAT, and THIS IS A
TEST are all strings. Like numeric variables, string variables can be assigned
specific values. String variables are distinguished from numeric variables by a
“$” after the variable name.

For example, try the following:
A$="SYNERTEK SYM-1”

OK
PRINT A$
SYNERTEK SIYM-1

OK

In this example, we set the string variable A$ to the string value "“SYNERTEK
SYM-1” Note that we also enclosed the character string to be assigned to A$ in
quotes.

Now that we have set A$ to a string value, we can find out what the length of
this value is (the number of characters it contains). We do this as follows:

PRINT LEN(A$) ,LEN(“BITS")
14 4

OK

The “LEN” function returns an integer equal to the number of characters in a
string.

The number of characters in a string expression may range from 0 to 255. A
string which contains 0 characters is called the “NULL” string. Before a string
variable is set to a value in the program, it is initialized to the null
string. Printing a null string on the terminal will cause no characters to be
printed, and the print head or cursor will not be advanced to the next column.
Try the following:

PRINT LEN(Q$);Q$;3
0 3

OK

Another way to create the null string is: Q$=""

Setting a string variable to the null string can be used to free up the string
space used by a non-null string variable.

Often it is desirable to access parts of a string and manipulate them. Now that
we have set AS$ to “SYNERTEK SYM-1”, we might want to print out only the first
eight characters of A$. We would do so like this:

PRINT LEFTS$ (AS,8)
SYNERTEK

OK

“LEFT$” is a string function which returns a string composed of the leftmost N
characters of its string argument. Here's another example:

oy

FOR N=1 TO LEN(A$) : PRINT LEFT$ (A3, N) :NEXT N
s r
SY

SIN

SINE

SINER

SINERT

SINERTE

SINERTEK

SYNERTEK

SINERTEK S
SYNERTEK SY
SINERTEK SIM
SINERTEK SIM
SYNERTEK SYM-1

0K’

Since AS$ has 14 characters, this loop will be executed with N=1,2,3,...,13,14.
The first time through only the first character will be printed, the second
time the first two characters will printed, etc.

There is another string function called “RIGHT$” which returns the right N
characters from a string expression. Try substituting “RIGHT$” for “LEFT$” in
the previous example and see what happens.

There is also a string function which allows us to take characters from the
middle of a string. Try the following:

FOR N=1 TO LEN(A$) : PRINT MIDS$ (A$,N) :NEXT N
SYNERTEK SYM-1
YNERTEK SYM-1
NERTEK SYM-1
ERTEK SYM-1
RTEK SYM-1
TEK SIM-1
EX SYM-1
K SYM-1

SIM-1
SYM-1
¥M-1
M-1
-1
1

OK

“MID$” returns a string starting at the N’th position of A$ to the end (last
character) of AS. The first position of the string is position 1 and the last
possible position of a string is position 255.

Very often it is desirable to extract only the N’th character from a string.
This can be done by calling MID$ with three arguments. The third argument
specifies the number of characters to return.

For example:

FOR N=1 TO LEN(Aé):PRINT MIDS$ (A$,N,1) ,MID$ (A$,N,2) :NEXT N

sY .
IN
NE
ER
RT
TE
EK

K
S

AHMAYHZLK®

BRI R0
X
1

OK

See the Reference Material for more details on the workings of “LEFT$”,
“R1GHTS$” and “MIDS”.

Strings may also be concatenated (put or joined together) through the use of
the “+” operator. Try the following:

Bs - A$ 4+ "W W 4L WBASIC”
OK

PRINT B$

SYNERTEK SYM-1 BASIC
OK

Concatenation is especially useful if you wish to take a string apart and then
put it back together with slight modifications. For instance:

C$=LEFTS (B$,8) +"*"+MID$ (B$,10,5) +7*”+RIGHTS (B$,5)
OK
PRINT C$
SYNERTEK*SYM-1*BASIC
OK

Sometimes it is desirable to convert a number to its string representation and
vice-versa. “VAL” and “STRS$” perform these functions.

e

R

&

Try the following:

.

STRING $="567.8"

OK
PRINT VAL (STRINGS)
567.8

OK
STRING$=STRS (3.1415)

OK
PRINT STRINGS$,LEFTS$ (STRINGS,5)
3.1415 3.14

0K

“STR$” can be used to perform formatted I/O on numbers. You can convert a
number to a string and then use LEFT$, RIGHT$, MID$ and concatenation to
reformat the number desired.

“STRS$” can also be used to conveniently find out how many print columns a
number will take. For example:

PRINT LEN(STR$(3.157))
6

OK

If you have an application where a user is typing a question such as “WHAT IS
THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1 FEET?” you can use
“WAL” to extract the numeric values 5.36 and 5.1 from the question. For further
functions “CHR$” and “ASC” see Appendix H.

The following program sorts a list of string data and prints out the sorted
list. This program is very similar to the one given earlier for sorting a
numeric list.

100 DIM A$(15) :REM ALLOCATE SPACE FOR STRING MATRIX

110 FOR I=1 TO 15:READ AS$(I):NEXT I:REM READ IN STRINGS

120 F=0:I=1:REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO 1
130 IF AS$(I)<=A$(I+1l) THEN 180:REM DON'T EXCHANGE IF ELEMENTS IN ORDER
140 T$=AS$(I+l):REM USE T$ TO SAVE AS$ (I+l)

150 AS$ (I+1)=AS$(I) :REM EXCHANGE TWO CONSECUTIVE ELEMENTS

160 AS(I)=T$

170 F=1:REM FLAG THAT WE EXCHANGED TWO ELEMENTS

180 I=1+1l: IF I<15 GOTO 130

185 REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS, CHECK
187 REM TO SEE IF WE EXCHANGED ANY. IF NOT, DONE SORTING.
190 IF F THEN 120:REM EQUIVALENT TO IF F=-1 THEN 120

200 FOR I=1 TO 15:PRINT A$(I):NEXT I:REM PRINT SORTED LIST

210 REM STRING DATA FOLLOWS

220 DATA APPLE,DQG,CAT,BITS, SYNERTEK, RANDOM

230 DATA MONDAY 6 "***ANSWER***” 7 FOO “

240 DATA COMPUTER, FOO,ELP,MILWAUKEE, SEATTLE , ALBUQUERQUE

s ™

COMMANDS

REFERENCE MATERIAL

A command is wusually given after BASIC has typed OK. This is called the
“Command Level.” Commands may be used as program statements. Certain commands,
such as LIST, NEW and LOAD will terminate program execution when they finish.

NAME EXAMPLE

CLEAR CLEAR

LIST LIST
LIST 100
LIST 100-
LIST 100 300
LIST -100

LIST X
LIST X-Y

RUN RUN

RUN 200

PURPOSE/USE

CLEAR's all variables, resets “FOR” and “GOSUB”
state, RESTORES data.

Lists the current program in its entirety.

List just line 100.

List current program starting at line 100.

List just lines 100 through line 300.

List current program from beginning up to line 100.
The listing can be interrupted by pressing the
BREAK key (BASIC will finish listing the current
line).

Lists just line X

Lists lines X-Y

Sets the number of null (ASCII 0) characters
printed after a carriage return/line feed. The
number of nulls printed may be set from 0 to 71
This is a must for hardcopy terminals that require
a delay after a CRLF*. It is necessary to set the
number of nulls typed on CRLF to 0 before a paper
tape of a program is read in from a Teletype
(TELETYPE is a registered trademark of the TELETYPE
CORPORATION). Use the null command to set the
number of nulls to zero. When you punch a paper
tape of a program using the list command, null
should be set >=3 for 10 CPAs terminals, >=6 for 30
CPAs terminals. When not making a tape, we
recommend that you use a null setting of 0 or 1 for
Teletypes, and 2 or 3 for hard copy 30 CPAs
terminals. A setting of 0 will work with Teletype
compatible CRT's.

Starts execution of the program currently in memory
at the lowest numbered statement. Run deletes all
variables (does a CLEAR) and restores DATA. If you
have stopped your program and wish to continue
execution at some point in the program, use a
direct GOTO statement to start execution of your
program at the desired line.

Optionally starting at the specified line number.

*CRLF=carriage return/line feed

CONT CONT
LOAD A LOAD A
SAVE A SAVE A

Deletes current: program and all variables.

~

Continues program execution after a BREAK is typed
or a STOP statement 1is executed. You cannot
continue after any error, after modifying your
program, or before your program has been run. One
of the main purposes of CONT is debugging. Suppose
at some point after running your program, nothing
is printed. This may be because your program is
performing some time consuming calculation, but it
may be because you have fallen into an “infinite
loop”. An infinite 1loop 1is a series of BASIC
statements from which there is no escape. The SYM-1
will keep executing the series of statements over
and over, until you intervene or until power to the
SYM-1 is cut off. If you suspect your program is in
an infinite loop, type in a BREAK. The line number
of the statement BASIC was executing will be typed
out. After BASIC has typed out OK, you can use
PRINT to type out some of the wvalues of your
variables. After examining these values you may
become satisfied that your program is functioning
correctly. You should then type in CONT to continue
executing your program where it left off, or type a
direct GOTO statement to resume execution of the
program at a different line. You could also use
assignment (LET) statements to set some of your
variables to different values. Remember, if you
BREAK a program and expect to continue it 1later,
you must not get any errors or type in any new
program lines. If you do, you won't be able to
continue and will get a “CN” (Continue Not) error.
It is impossible to continue a direct command. CONT
always resumes execution at the next statement to
be executed in your program when BREAK was typed.

Loads the program named A from the cassette tape. A
NEW command is automatically done before the LOAD
command is executed. When done, the LOAD will type
out OK as usual. See Appendix G for more
information.

Saves on cassette tape the current program in the
memory. The program in memory is left unchanged.
The tape file is named A. Note that since the file
is named by the user, more than one tape file can
be stored on one tape. See Appendix G for more
information.

e o

OPERATORS

SYMBOL SAMPLE STATEMENT PURPOSE /USE
= A=100 Assigns a value to a variable.
LET 2=2.5 The LET is optional.

- B=-A Negation. Note that 0-A is subtraction,
while -A is negation.

A 130 PRINT X"3 Exponentiation. Equal to X*X*X in the
sample statement). 070=1l. 0 to any other
power=0.

A”B, with A negative and B not an
integer gives an FC error. (” usually a
shift/N on a TTY)

140 X=R* (B*D) Multiplication
150 PRINT X/1.3 Division

160 Z=R+T+Q Addition

170 J=100-I Subtraction

RULES FOR EVALUATING EXPRESSIONS:

1)

Operations of higher precedence are performed before operations of lower
precedence. This means the multiplication and divisions are performed
before additions and subtractions. As an example, 2+10/5 equals 4, not
2.4. When operations of equal precedence are found in a formula, the left
hand one is executed first: 6-3+5=8, not -2.

The order in which operations are performed can always be specified
explicitly through the use of parentheses. For instance, to add 5 to 3
and then divide that by 4, we would use (5+3)/4, which equals 2. If
instead we had used 5+3/4, we would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as follows, in
order begriming with the highest precedence:

NOTE

Operators listed on the same line have the same precedence.

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED
FIRST

2) * EXPONENTION

3) NEGATION -X WHERE X MAY BE A FORMULA

4) * MULTIPLICATION AND DIVISION

5) + - ADDITION AND SUBTRACTION

6) RELATIONAL OPERATORS: (equa} prepedence for all six)

-~ "

= . EQUAL #
<> NOT EQUAL

< -~ LESS THAN

> GREATER THAN

= LESS THAN OR EQUAL
= GREATER THAN OR EQUAL

(These 3 below are Logical Operators)
7) NOT LOGICAL AND BITWISE “NOT”

LIKE NEGATION “NOT” TAKES ONLY THE

FORMULA TO ITS RIGHT AS AN ARGUMENT
8) AND LOGICAL AND BITWISE “AND”
9) OR LOGICAL AND BITWISE “OR”

A relational expression can be used as part of any expression,

Relational Operator expressions will always have a value of True (-1) or a
value of False (0). Therefore, (5=4)=0 (5=5)=-1, (4>5)=0, (4<5)=-1, etc.

The THEN clause of an IF statement is executed whenever the formula after the

IF is not equal to 0. That is to say, IF X THEN. . . is equivalent to IF X<>0
THEN.
SYMBOL SAMPLE STATEMENT PURPOSE /USE
= 10 IF A=15 THEN 40 Expression Equals Expression i
<>, >< 70 IF A<>0 THEN 5 Expression Does Not Equal Expression ¢
> 30 IF B>100 THEN 8 Expression Greater Than Expression -
< 160 IF B<2 THEN 10 Expression Less Than Expression
=,=< 180 IF 100<=B+C THEN 10 Expression Less Than Or Equal To Expression
>=,= 190 IF Q=> THEN 50 Expression Greater Than Or Equal To
Expression
AND 2 IF A<5 AND B<2 THEN 7 1If expression 1 (A<5) AND expression 2 (B<2)
are both true, then branch to line
OR IF A<l OR B<2 THEN 2 If either expression 1 (A<1l) OR expression 2
(B<2) is true, then branch to line 2
NOT IF NOT Q3 THEN 4 If expression “NOT Q3” is true (because Q3 is

false), then branch to line 4 Note: NOT -1=0
(NOT true=false)

AND, OR, and NOT can be used for bit manipulation, and for performing Boolean
operations.

These three operators convert their arguments to sixteen bit, signed two's
complement integers im the range -32768 to +32767. They then perform the
specified logical operation on them and return a result within the same range.
If the arguments are not in this range, an “FC” error results.

The operations are performed in bitwise fashion, this means that each bit of
the result is obtained by examining the bit in the same position for each

argument.

The following truth table shows the logical relationship between bits:

OPERATOR ARG. 1 ARG. 2 RESULT
AND 1 1 1
0 0 0
1 0 0
0 0 0
OR 1 1 1
1 0 1
0 1 1
0 0 0
NOT 1 - 0
0 - 1
EXAMPLES: (In all of the examples below, leading zeros or binary numbers are
not shown.)
63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary 100000,

the result of the AND is binary 10000 or 16.

15 AND 14=14 15 equals binary 111 and 14 equals binary 1110, so 13 AND 14
equals binary 1110 or 14.

-1 AND 8=8 -1 equals binary 1111111111111111 and 8 equals binary 1000,
so the result is binary 1000 or 8 decimal.

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the result is
binary 0 because none of the bits in either argument match to
give a 1 bit in the result.

4 OR 2=6 Binary 100 OR'd with binary 10 equals binary 110, or 6
decimal.

10 OR 10=10 Binary 1010 OR'd with binary 1010 equals binary 1010, or 10
decimal.

-1 OR -2=-1 Binary 1111111111111111 (-1) OR'd with binary

1111111111111110 (-2) equals binary 1111111111111111, or -1

NOT 0=-1 The bit complement of binary 0 to 16 places is sixteen ones
(1111111111111111) or -1 Also NOT -1=0.

NOT X NOT X is equal to —-(X+1l). This is because to form the sixteen
bit two's complement of the number, you take the bit (one's)
complement and add one.

NOT 1=-2 The sixteen bit complement of 1 is 1111111111111110 which is
equal, to -(1+1) of -2.

A typical use of the bitwise operators is to test bits set in SYM's I/0 ports
which reflect the state of some external device. Bit position 7 is the most
significant bit of a byte, while position 0 is the least significant.

For instance, suppose bit 1 of location $A800 is 0 when the door to Room X is
closed. and 1 if the door is open. The following program will print “Intruder
Alert” if the door is opened:

10 IF NOT PEEK (43008) AND 2 THEN 10 This line will execute over and
over until bit 1 (masked or
selected by the 2) becomes a 1.

‘ When that happens, we go to
line 20.

20 PRINT “INTRUDER ALERT” Line 20 will output “INTRUDER
ALERT”.

However, we can replace statement 10 with a “WAIT” statement, which has exactly
the same effect.

10 WAIT 43008,2 This line delays the execution
of the next statement in the
program until bit 1 of $A800
becomes 1. The WAIT 1is much
faster than the equivalent IF
statement and also takes less
bytes of program storage.

Sense switches may also be used as an input device by the PEEK function. The
program prints out any changes in the sense switches.

10 A=300:REM SET A TO A VALUE THAT WILL FORCE PRINTING
20 J=PEEK(sense switch location) :IF J=A THEN 20
30 PRINT J;:A=J:GO0TO 20

The following is another useful way of using relational operators:

125 A=~ (B>C) *B- (B<=C) *C This statement will set the
variable A to MAX(B,C) = the
larger of the two variables B
and C.

A

STATEMENTS

DATA

DEF

NOTE

In the following description of statements, an argument
of V or W denotes a numeric variable, X denotes a
numeric expression, X$ denotes a string expression and
an I or J denotes an expression that is truncated to an
integer before the statement is executed. Truncation
means that any fractional part of the number, is lost,
e.g., 3.9 becomes 3, 4.01 becomes 4

An expression is a series of variables, operators,
function calls and constants which after the operations
and function calls are performed using the precedence
rules, evaluates to a numeric or string value.

A constant is either a number (3.14) or a string literal

(“FOO”).

EXAMPLE

10 DATA 1,3,-1E3,.04

20 DATA “ FOO”,bZ0OO

100 DEF FNA (V)=V/B+C

110 Zz=FNA(3)

PURPOSE/USE

Specifies data, read from left to right.
Information appears in data statements in
the same order as it will be read in the
program.

Strings may be read from DATA Statements.
If you want the string to contain leading
spaces (blanks), colons (:) or commas (,)},
you must enclose the string in double
quotes. It is impossible to have a double
quote within string data or a string
literal. (““SYM”” is illegal.)

The user can define functions 1like the
built-in functions (SQR, SGN, ABS, etc.)
through the use of the DEF statement. The
name of the function is “FN” followed by
any legal variable name, for example: FNX,
FNJ7, FNKO, FNR2. User defined functions
are restricted to one line. A function may
be defined to be any expression, but may
only have one argument. In the example B &
C are variables that are used in the
program. Executing the DEF statement
defines the function. User defined
functions can be redefined by executing
another DEF statement for the same
function. User defined string functions are
not allowed. “W” is called the dummy
variable.

Execution of this statement following the
above would cause Z to be set to 3/B+C, but
the value of V would be unchanged.

DIM

END

113 DIM A(3) ,B(10)

P

114 DIM R3(5,5),D$(2,

115 DIM QL (N),Z(2*I)

117 A(8)=4

999 END

300 FOR V=1 TO 9.3 STEP

310 FOR V=1 TO 9.3

Allocates space for matrices. All matrix
elements are set to zero by the DIM
statement. ’

2,2) Matrices <can have more than one
dimension. Up to 255 dimensions are
allowed, but due to the restriction of 72
characters per line the practical maximum
is about 34 dimensions.

Matrices can be dimensioned dynamically
once during program execution. If a matrix
is not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single
subscript may range from 0 to 10 (eleven
elements) .

If this statement was encountered before a
DIM statement for A was found in the
program, it would be as if a DIM A(10) had
been executed previous to the execution of
line 117. All subscripts start at zero (0},
which means that DIM X(100) really
allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (See STOP) CONT
after an END statement causes execution to
resume at the statement after the END
statement. END can be used anywhere in the
program, and is optional.

6 (see NEXT statement) V is set equal
to the value of the expression following
the equal sign, in this case 1. This value
is called the initial wvalue. Then the
statements between FOR and NEXT are
executed. The final value is the value of
the expression following the TO. The step
is the value of the expression following
STEP. When the NEXT statement is
encountered, the step is added to the
variable.

If no STEP is specified, it is assumed to
be one. If the step is positive and the new
value of the variable is = the final value
(9.3 in this example), or the step value is
negative and the new value of the variable

is = the final value, then the first
statement following the FOR statement is
executed. Otherwise, the statement

following the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at least once,
even in cases like FOR V=1 TO O.

:ﬁl"iﬁ‘.}
T

GOTO

GOSUB

IF...GOTO

IF...THEN

315 FOR V=10*N TO 3.4/Q STEP SQR(R)

‘ Note that expressions (formulas) may be
used for the initial, final and step values
in a FOR loop. The values of the
expressions are computed only once, before
the body of the FOR...NEXT loop is
executed.

320 FOR V=9 TO 1 STEP -1

When the statement after the NEXT is
executed, the loop variable is never equal
to the final wvalue, but is equal to
whatever value caused the FOR. ..NEXT loop
to terminate. The statements between the
FOR and 1its corresponding NEXT in both
_examples above (310 & 320) would be
executed 9 times.

330 FOR W=1 TO 10: FOR W=1 TO NEXT W:NEXT W:
Error: do not use nested FOR...NEXT loops
with the same index variable. FOR loop
nesting is limited only by the available
memory (see Appendix D).

50 GOTO 100 Branches to the statement specified.

10 GOSUB 910 Branches to the specified statement (910)
until a RETURN 1is encountered; when a
branch is then made to the statement after
the GOSUB. GOSUB nesting is limited only by
the available memory (see Appendix D).

32 IF X<=Y+23.4 GOTO 92
Equivalent to IF...THEN, except that
IF...GOTO must be followed by a line
number, while IF...THEN can be followed by
either a line number or another statement.

10 IF X<10 THEN 5 Branches to specified statement if the
relation is True.

20 IF X<0 THEN PRINT “X LESS THAN 0”7
Executes all of the statements on the
remainder of the line after the THEN if the
relation is True.

25 IF X=5 THEN 50:2=A

WARNING: The “Z=A"” will never be executed
because if the relation is true, BASIC will
branch to line 50. If the relation is false
BASIC will proceed to the line after line
25.

INPUT

ON. . .GOTO

26 IF X<0 THEN PRINT “ERROR, X NEGATIVE”: GOTO 350

«

3 INPUT V,W,W2

5 INPUT “VALUE”;V

300
310

340
345

350

100

LET W=X
=5.1

NEXT V
NEXT

"In this example, if X is less than 0, the

PRINT statement will be executed and then
the statement will branch to line 350. If
the X was 0 or positive, BASIC will proceed
to execute the lines after 26.

Requests data from the terminal (to be
typed in). Each value must be separated
from the preceding value by a comma (,).
The last value typed should be followed by
a carriage return. A “?” 1is typed as a
prompt character. Only constants may be
typed in as a response to an INPUT
statement, such as 4.5E-3 or “CAT”. If more
data was requested in an INPUT statement
than was typed in, a “??” is printed and
the rest of the data should be typed in. If
more data was typed in than was requested,
the extra data will be ignored. BASIC will
print the warning “EXTRA IGNORED” when this
happens. Strings must be input in the same
format as they are specified in DATA
statements.

Optionally types a prompt string (“VALUE”)
before accepting data from the terminal. No
“2” is typed as a prompt character. If
carriage return 1is typed to an input
statement, BASIC returns to command mode.
Typing CONT after an INPUT command has been
interrupted will cause execution to resume
at the INPUT statement.

Assigns a value to a variable.
“LET” is optional.

Marks the end of a FOR loop.

If no variable is given, matches the most
recent FOR loop.

A single NEXT may be used to match multiple
FOR statements. Equivalent to NEXT V:NEXT
W.

ON I GOTO 10,20,30,40

Branches to the line indicated by the I'th
number after the GOTO That is:

IF I=1, THEN GOTO LINE 10

IF I=2, THEN GOTO LINE 20

IF I=3, THEN GOTO LINE 30

IF 1=4, THEN GOTO LINE 40.

Aﬁ%i

If I=0' or I attempts to select a non-

"existent line (>5 in this case), the

statement after the ON statement is
executed. However, if 1 is >255 or <0, an
FC error message will result. As many line
numbers as will fit on a line can follow an
ON...GOTO.

105 ON sSGN(X)+2 GOTO 40,50,60

ON...GOSUB 110 ON I GOSUB 50,60

POKE

PRINT

357 POKE I,J

360
370
380
390
400

PRINT X,Y;Z
PRINT

PRINT X,Y;

PRINT “WVALUE ”;A
PRINT A2,B,

This statement will branch to line 40 if
the expression X is less than zero, to line
50 if it equals zero, and to line 60 if it
is greater than zero.

Identical to “ON...GOTO” except that a
subroutine call (GOSUB) is executed instead

“"of a GOTO. RETURN from the GOSUB branches

to the statement after the ON...GOSUB.

The POKE statement stores the byte
specified by its second argument (J) into
the location given by its first argument
(I). The byte to be stored must be =>0 and
<=255, or an FC error will occur. The
address (I) must be =>0 and <=65535, or an
FC error will result. Careless use of the
POKE statement will probably cause you to
“poke” BASIC to death; that is, the machine
will hang, and you will have to reset the
SYM-1 and restart BASIC and will 1lose any
program you had typed in. A POKE to a non-
existent memory location is harmless. One
of the main uses of POKE 1is to pass
arguments to machine language subroutines.
You could also use PEEK and POKE to write a
memory diagnostic or an assembler in BASIC.

Prints the value of expressions on the
terminal. If the 1list of values to be
printed out does not end with a comma (,)
or a semicolon (), then a carriage
return/line feed is executed after all the
values have been printed. Strings enclosed
in quotes (%) may also be printed. If a
semicolon separates two expressions in the
list, their values are printed next to each
other. If a comma appears after an
expression in the 1list, and the print head
is at print position 56 or more, then a
carriage return/line feed is executed. If
the print head is before print position 56,
then spaces are printed until the carriage
is at the beginning of the next 14 column
field (until the carriages is at column 14,
28, 42, or 56...). If there is

410 DPRINT MIDS$ (AS,2);

READ 490 READ V,W

REM 500 REM NOW SET V=0

505 REM SET V=0:V=0

506 V=0 REM SET V=0

RESTORE 510 RESTORE
RETURN 50 RETURN
STOP 9000 STOP

no list.of expressions to be printed, as in
Iine 370 of the examples, then a carriage
return/line feed is executed.

String expressions may be printed.

Reads data into specified variables from a
DATA statement. The first piece of data
read will be the first piece of data listed
in the first DATA statement of the program.
The second piece of data read will be the
second piece listed in the first DATA
statement, and so on. When all of the data
have been read from the first DATA
statement, the next piece of data to be
read will be the first piece listed in the

~second DATA statement of the program.

Attempting to read more data than there is
in all the DATA statements in a program
will cause an OD (out of data) error. The
line number given in the SN error will
refer to the 1line number where the error
actually is located.

Allows the programmer to put comments in
his program. REM statements are not
executed, but can be branched to. A REM
statement is terminated by end of line, but
not by a “:”.

In this case the V=0 will never be executed
by BASIC.

In this case V=0 will be executed.

Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in the
first DATA statement of the program. The
second piece of data read will be the
second piece 1listed in the first DATA
statement, and so on as in a normal READ
operation.

Causes a subroutine to return to the
statement after the most recently executed
GOSUB

Causes a program to stop execution and to
enter command mode. Prints BREAK IN LINE
9000 (as per this example). CONT after a
STOP branches to the statement following
the STOP.

S

WAIT

805 WAIT I, J,K
806 WAIT I,J

INTRINSIC FUNCTIONS

ABS (X)

INT (X)

RND (X)

SGN (X)

SIN(X)

SQR (X)

TAB(I)

120 PRINT ABS (X)

140 PRINT INT (X)

170 PRINT RND (X)

230 PRINT SGN(X)

190 PRINT SIN(X)

180 PRINT SQR (X)

240 PRINT TAB(I)

'This statement reads the status of location

I, exclusive OR's K with the status, and
then AND's the result with J until a non-
zero result is obtained. Execution of the
program continues at the statement
following the WAIT statement. If the WAIT
statement only has two arguments, K 1is
assumed to be zero. If you are waiting for
a bit to become zero, there should be a one
in the corresponding position of K. I, J,
and K must be =>0 and <=65535.

Gives the absolute value of the expression
X ABS returns X if X>-0 -X otherwise.

Returns the largest integer 1less than or
equal to its argument X For example:
INT(.23)=0, INT(7)=7, INT(-.l)=-1, INT(-2)=
-2, INT(1.1)=1. The following would round X
to D decimal places: INT(X*107D+.5)/10"D

Generates a random number between 0 and 1.
The argument X controls the generation of
random numbers as follows:

X<0 starts a new sequence of random numbers
using X. Calling RND with the same X starts
the same random number sequence. X=0 gives
the last random number generated. Repeated
calls to RND(0) will always return the same
random number. X>0 generates a new random
number between 0 and 1. Note that (B-
A)*RND(1)+A will generate a random number
between A & B

Gives 1 if X>0, 0 if X=0, and -1 if X<O0.

Gives the sine of the expression X. X is
interpreted as being in radians. Note: COS
(X)=SIN(X+3.141592/2) and that 1
Radian=180/Pi degrees=57.2958 degrees; so
that the sine of X degrees=SIN(X/57.2958).
(This function must be loaded separately.
See Appendix J.)

Gives the square root of the argument X. An
FC error will occur if X is less than zero.

Spaces to the specified print position
(column) on the terminal. May be used only
in PRINT statements. Zero is the leftmost
column on the terminal, 71 the rightmost.
If the carriage is beyond position I, then
no printing is done. I must be =>0 and
<=255.

USR(I)

USR(I,J, ..

ATN (X)

COSs (X)

EXP (X)

FRE (X)

LOG (X)

PEEK (I)

POS(I)

SPC(I)

200 PRINT USR(I)

-, 2)

e

340 PRINT USR (I,J,K)

210

200

150

270

160

356

260

250

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

ATN (X)

Cos (X)

EXP (X)

FRE (X)

LOG (X)

PEEK(I)

POS (I)

SPC(I)

Calls the wuser's machine language sub-
routine with the argument I. The sub-
routine's address must have been previously
POKE'ed into locations in page zero. See
POKE, PEEK, and Appendix G.

Calls the wuser's machine language sub-
routine whose address is specified by the
first parameter I, with the arguments J
through 2Z. No POKING of page zero 1is
necessary. Note that at least one argument
must be given, or BASIC will assume that
the call is of the format given above. See
Appendix G.

Gives the arctangent of the argument X The
result is returned in radians and ranges
from -PI/2 to PI/2 (PI/2=1.5708) (This
function must be 1loaded separately.) See
Appendix J.

Gives the cosine of the expression X. X is

interpreted as being in radians. (This
function must be loaded separately.) See
Appendix J.

Gives the constant “E” (2.71828) raised to
the power X. (E*X) The maximum argument
that can be passed to EXP without overflow
occurring is 87.3365.

Gives the number of memory bytes currently
unused by BASIC.

Gives the natural (Base E) logarithm of its
argument X. To obtain the Base Y logarithm
of X use the formula LOG(X)/LOG(Y) .
Example: The base 10 (common) log of 7 =
LOG(7) /LOG(10).

The PEEK function returns the contents of
memory address I. The value returned will
be =>0 and <=255. If I is >65535 or <0, an
FC error will occur. An attempt to read a
non-existent memory address will return an
unknown value. (see POKE statement)

Gives the <current position in output
buffer. The leftmost character position on
the terminal 1is position zero and the
rightmost is 71.

Prints I space (or blank) characters on the
terminal. May be used only in a PRINT
statement. I must be =>0 and <=255 or an FC
error will result.

i

Py

TAN (X)

STRINGS

1)

2)

DIM

INPUT

PRINT

200 PRINT TAN (x) Gives the tangent of the expression X. X is
< ”interpreted' as being in radians. (This
function must be loaded separately.) See

Appendix J.

A string may be from O to 255 characters in length. All string
variables end in a dollar sign ($); for example, A$, B9$, KS$,
HELLOS.

String matrices may be dimensioned exactly like numeric matrices.
For instance, DIM A$(10,10) creates a string matrix of 121
elements, eleven rows by eleven columns (rows 0 to 10 and columns O
to 10). Each string matrix element is a complete string, which can
be up to 255 characters in length.

EXAMPLE PURPOSE/USE
25 DIM A$(10,10) Allocates space for a pointer and length

for each element of a string matrix. No
string space is allocated. See Appendix F.

27 LET A$=“"FOO"+V§ Assigns the value of a string expression to
a string variable. LET is optional.

String comparison operators. Comparison is
made on the Dbasis of ASCII codes, a
character at a time until a difference is
found. If during the comparison of two
strings, the end of one is reached, the
shorter string is considered smaller. Note
that “A “ is greater than “A” since
trailing spaces are significant.

30 LET Z$=R$+Q$ String concatenation. The resulting string
must be less than 256 characters in length
or an LS error will occur.

40 INPUT X$ Reads a string from the user's terminal.
String does not have to be quoted; but if
not, leading blanks will be ignored and the

string will be terminated on a “,” or "“:”
character.
50 READ X$ Reads a string from DATA statements within

the program. Strings do not have to be
quoted; but 1f they are not, they are
terminated on a “,” or “:” character or end
of line and leading spaces are ignored. See
DATA for the format of string data.

60 PRINT X$ Prints the string expression on the user's
70 PRINT “FOO”+A$ terminal.

STRING FUNCTIONS

ASC (X$) 300 PRINT ASC (X$)
CHRS (I) 275 PRINT CHRS (I)
FRE (X$) 272 PRINT FRE(““)

LEFTS (X$,I) 310 PRINT LEFTS$ (X$,I)

LEN (X$) 220 PRINT LEN (X$)

MIDS (X$,I) 330 PRINT MIDS$ (X$,I)

MIDS$ (X$,I,J) 340 PRINT MIDS$ (X$,I,J)

RIGHT (X$,I) 320 PRINT RIGHTS (X$,I)

STRS (X) 290 PRINT STRS$ (X)

Returns the ASCII numeric value of the
first character of the string expression
X$. See DAppendix H for an ASCII/number
conversion table. An FC error will occur if
X$ is the null string.

Returns a one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be >0
and <=255. See Appendix H.

When called with a string argument, FRE
gives the number of free bytes unused by
BASIC. Identical to FRE with numeric

“argument.

Gives the leftmost I characters of the
string expression X$. If I <=0 or >255 an
FC error occurs.

Gives the length of the string expression
X$ in characters (bytes). Non-printing
characters and blanks are counted as part
of the length.

MIDS called with two arguments returns
characters from the string expression X$
starting at character position I. If
I>LEN(I$), then MID$ returns a null (zero
length) string. If I<=0 or >255, an FC
error occurs.

MIDS called with three arguments returns a
string expression composed of the
characters of the string expression X$
starting at the I'th character for 3
characters. If I>LEN(X$), MID$ returns a
null string. If I or J <=0 or >255, an FC
error occurs. If J specifies more
characters than are left in the string, all
characters from the I'th on are returned.

Gives the rightmost I characters of the
string expression X$. When I<=0 or >255 an
FC error will occur. If I>=LEN(X$) then
RIGHTS returns all of X$.

Gives a string which 1is the character
representation of the numeric expression X.
For instance, STR$(3.1)=“ 3.1”.

BN

VAL (X$) 280 PRINT VAL (XS$) Returns ' the string expression X$ converted

I3

SPECIAL CHARACTERS

CHARACTER

@

CARRIAGE RETURN

BREAK

: (colon)

CONTROL/T

MISCELLANEOUS COMMENTS

“to a number. For instance, VAL(“3.1”)=3.1.
If the first non-space character of the
string is not a plus (+) or minus (-) sign,
a digit or a decimal point (.) then zero
will be returned.

USE

Erases current line being typed, and types a carriage
return/line feed.

(backarrow or underline) Erases last character typed.
If no more characters are left on the 1line, types a
carriage return/line feed. “<-” is usually a shift/0 on
TTY, shift delete on KTM-2.

A carriage return must end every line typed in. Returns
print head or CRT cursor to the first position
(lLeftmost) on line. A 1line feed 1is always executed
after a carriage return.

Interrupts execution of a program or a list command.
BREAK has effect when a statement finishes execution,
or in the case of interrupting a LIST command, when a
complete line has finished printing. In both cases a
return is made to BASIC's command level and OK is
typed. Prints “BREAK IN LINE XXXX”, where XXXX is the
line number of the next statement to be executed

A colon is used to separate statements on a line.
Colons may be used in direct and indirect statements.
The only limit on the number of statements per line is
the line length. It is not possible to GOTO or GOSUB to
the middle of a line.

Typing a Control/T once causes BASIC to suppress all
output until a return is made to command level, an
input statement 1is encountered, another control/T 1is
typed, or an error OCCurs.

Question marks are equivalent to PRINT. For instance, ?
2+2 is equivalent to PRINT 2+2. Question marks can also
be used in indirect statements. 10 ? X, when listed
will be typed as 10 PRINT X.

1) To read in a paper tape with a program on it, type a control/T and feed
in tape. Type control/T again when the tape is through.

Alternatively, set nulls=0 and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.

3)

Each line must be followed by three rubouts. If there are lines without
line numbers (djrect commands) the SYM-1 will fall behind the input
coming from paper tape, so this is not recommended.

Using null in this fashion will produce a listing of your tape (use
control/T method if you don't want a listing).

To punch a paper tape of a program, set the number of nulls to 3 for 110
BAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then, type LIST;
but, do not type a carriage return.

Now, turn on the terminal's paper tape punch. Put the terminal on local
and hold down the Repeat, Control, Shift and P keys at the same time.
Stop after you have punched about a 6 to 8 inch leader of nulls. These
nulls will be ignored by BASIC when the paper tape 1is read in. Put the

terminal back on line.

Now hit carriage return. After the program has finished punching, put
some trailer on the paper tape by holding down the same four keys as
before, with the terminal on local. After you have punched about a six
inch trailer, tear off the paper tape and save for later use as desired.

Restarting BASIC at location zero (by entering the SYM-1 command .G 0
(CR)) will cause BASIC to return to command level and type “OK”.

When a warm-start entry to BASIC is made, system RAM (A600-A67F) remains
write protected. This will cause any calls to monitor routines to fail.
It will also cause BASIC SAVE and LOAD to fail.

To get around this problem with MON-1.0, after a warm-start perform a
call to ACCESS to remove write protect.

.G O Warm-Start BASIC

OK

A=USER (&"8B86",0) Un-Write Protect System RAM
OK

To get around this problem with MON-1.1l, after a warm-start do a “save A"
with the recorder off. After this “dummy” save operation, all SAVE and
LOAD operations will function properly.

The maximum line length is 72 characters.** If you attempt to type too
many characters into a line, a bell (ASCII 7) is executed. At this point
you can either type backarrow to delete part of the line, or an at-sign
to delete the whole line. The character you typed which caused BASIC to
type the bell is not inserted in the line as it occupies the character
position one beyond the end of the line.

**For inputting only.

e

‘ APPENDIX A

INITIALIZATION DIALOG

STARTING BASIC

After you execute BASIC, it will respond:

MEMORY SIZE?

If you type a carriage return to MEMORY SIZE?, BASIC will use all the
contiguous memory upwards from location 0200 hex that it can find. BASIC will
stop searching when it finds one byte of ROM or non-existent memory. Memory
must be greater than 512 bytes.

If you wish to allocate only part of the computer's memory to BASIC, type the
number of bytes of memory you wish to allocate in decimal. This might be done,
for instance, if you were using part of the memory for a machine language
subroutine.

There are 4096 bytes of memory in a 4K system, and 16,536 bytes in a 16K
system. BASIC will then ask:

TERMINAL WIDTH? This is to set the output 1line width for PRINT
statements only. Type in the number of characters for
the line width for the particular terminal or other
output device you are using. This may be any number
from 16 to 255, depending on the terminal. If no
answer is given (i.e., a carriage return is typed) the
line width is set to 72 characters.

Now BASIC will type out:
XXXX BYTES FREE

BASIC V1.1
COPYRIGHT 1978 SYNERTEK CORP.

WXXXX” is the number of bytes available for program,
variables, matrix storage and string space.

OK

You will now be ready to begin using BASIC.

APPENDIX ‘B

ERROR MESSAGES

After an error occurs, BASIC returns to command level and types OK. Variable
values and the program text remain intact, but the program can not be continued
and all GOSUB and FOR context is lost.

When an error occurs in a direct statement, no line number is printed. Format
of error messages:

Direct Statement ?XX ERROR
Indirect Statement ?XX ERROR IN YYYYY

In both of the above examples, “XX” will be the error code. The “YYYYY” will be
the line number where the error occurred for the indirect statement.

The following are the possible error codes and their meanings:

ERROR CODE MEANING
BS
Bad Subscript Bad Subscript. An attempt was made to reference a matrix

element which is outside the dimensions of the matrix.
This error can occur if the wrong number of dimensions
are used in a matrix reference; for instance, LET
A(l,1,1)=2 when A has been dimensioned DIM A(Z2,2).

DD

Redim'd Array Double Dimension. After a matrix was dimensioned, another
dimension statement for the same matrix was encountered.
This error often occurs if a matrix has been given the
default dimension 10 because a statement like A(I)=3 is
encountered and then later in the program a DIM A(100) is
found.

FC

Illegal Quantity Function Call error. The parameter passed to a math or
string function was out of range. FC errors can occur due
to:

a) a negative matrix subscript
(LET A(-1)=0)

b) an unreasonably large matrix subscript
(>32767)
c) LOG-negative or zero argument

d) SQR-negative argument

e) AB with A negative and B not an
integer.

ERROR CODE

FC (Con't)

ID
Illegal Direct

NF - e
Next without For

oD
Out of Data

Out of Memory

ov
Overflow

SN
Syntax

RG
Return without GOSUB

us
Undef'd Statement

/0
Division by Zero

CN
Can't Continue

MEANING

£) a call to USR before the address of the
machine language subroutine has been

patched in.
g) calls to MID$, LEFT$, RIGHTS LOAD, SAVE,
WAIT, PEEK, POKE, TAB, SPC or ON...GOTO

with an improper argument.

Illegal Direct. You cannot use an INPUT or DEFFN

statement as a direct command.

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Out of Data. A READ statement was executed but all of the
DATA statements in the program have already been read.
The program tried to read too much data or insufficient
data was included in the program.

Out of Memory. Program too large, too many variables, too
many FOR loops, too many GOSUB's, too complicated an
expression or any combination of the above (see Appendix
D).

OVerflow. The result of a calculation was too large to be
represented in BASIC's number format. If an underflow
occurs, zero 1s given as the result and execution
continues without any error message being printed.

SyNtax error. Missing parenthesis in an
illegal character in a line,

expression,
incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An attempt was made to GOTO, GOSUB

or THEN to a statement which does not exist.

Division by zero.

CoNtinue error.
error occurred,
program.

Attempt to continue a program when an
or after a new line was typed into the

ERROR CODE

Ls
String too long

ST
Formula too complex

Type Mismatch

UF
undef'd Function

MEANING S

<

Long String. Attempt was made by use of the con-

catenation operator to create a string more than 255
characters long.

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones.

Type Mismatch. The 1left hand side of an assignment
statement was a numeric variable and the right hand side
was a string, or vice versa; or, a function which
expected a ‘string argument was given a numeric one or
vice versa.

Undefined Function. Reference was made to a user defined
function which had never been defined.

.

PR

APPENDIX C

SPACE HINTS

In order to make your program smaller and save space, the following hints may
be useful.

1)

4)

8)

Use multiple statements per line. There is a small amount of overhead (5
bytes) associated with each line in the program. Two of these five bytes
contain the line number of the line in binary. This means that no matter
how many digits you have in your line number (minimum line number is O,
maximum is 64000), it takes the same number of bytes. Putting as many
statements as possible on a line will cut down on the number of bytes
used by your program.

Delete all unnecessary spaceé'from your program. For instance:

10 PRINT X, Y, 2

uses three more bytes than
10 PRINTX,Y,Z

NOTE

All spaces between the line number and the first non-
blank character are ignored.

Delete all REM statements. Each REM statement uses at least one byte plus
the number of bytes in the comment text. For instance, the statement 130
REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of
memory including the colon before the REM.

Use variables instead of constants. Suppose you use the constant 3.14159
ten times in your program. If you insert a statement: 10 P=3.14159, in
the program, and use P instead of 3.14159 each time it is needed, you
will save 40 bytes. This will also result in a speed improvement.

A program need not end with an END; so, an END statement at the end of a
program may be deleted.

Reuse the same variables. If you have a variable T which is used te hold
a temporary result in one part of the program and you need a temporary
variable later in your program, use it again. Or, if you are asking the
terminal user to give a YES or NO answer to two different questions at
two different times during the execution of the program, use the same
temporary variable AS$ to store the reply.

Use GOSUB's to execute sections of program statements that perform
identical actions

Use the zero elements of matrices; for instance, A(0), B(0,X).

STORAGE ALLOCATION :INFORMATION
Simple (non-matrix) numeric variables like V use 6 bytes; 2 for the variable
name, and 4 for the value. Simple non-matrix string variables also use 6 bytes;
2 for the variable name, 2 for the length, and 2 for a pointer.

Matrix variables use a minimum of 12 bytes. Two bytes are used for the variable
name, two for the size of the matrix, two for the number of dimensions and two
for each dimension along with four bytes for each of the matrix elements.

String variables also use one byte of string space for each character in the
string. This is true whether the string variable is a simple string variable
like A$, or an element of a string matrix such as Q13$(5,2).

When a new function is defined by a DEF statement, 6 bytes are used to store
the definition.

Reserved words such as FOR GOTO or NOT, and the names of the intrinsic
functions such as COS, INT and STR$ take up only one byte of program storage.
All other characters in programs use only one byte of program storage each.

When a program is being executed, space is dynamically allocated on the stack
as follows:

1) Each active FOR...NEXT loop uses 22 bytes.
2) Each active GOSUB (one that has not returned yet) uses 6 bytes.
3) Each parenthesis encountered in an expression uses 4 bytes and each

temporary result calculated in an expression uses 12 bytes.

ey

APPENDIX D

SPEED HINTS

The hints below should improve the execution time of your BASIC program. Note
that some of these hints are the same as those used to decrease the space used
by your programs. This means that in many cases you can increase the efficiency
of both the speed and size of your programs at the same time.

1)

2)

Delete all unnecessary spaces and REM's from the program. This may cause
a small decrease in execution time because BASIC would otherwise have to
ignore or skip over spaces and REM statements.

THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10. Use

_variables instead of constants. It takes more time to convert a constant

to its floating point representation than it does to fetch the value of a
simple or matrix variable. This is especially important within FOR...NEXT
loops or other code that is executed repeatedly.

Variables which are encountered first during the execution of a BASIC
program are allocated at the start of the variable table. This means that
a statement such as 5 A=0:B=A:C=A, will place A first, B second, and C
third in the symbol table (assuming line 5 1is the first statement
executed in the program). Later in the program, when BASIC finds a
reference to the variable A, it will search only one entry in the symbol
table to find A, two entries to find B and three entries to find C, etc.

NEXT statements without the index variable. NEXT is somewhat faster than
NEXT I because no check is made to see if the variable specified in the
NEXT is the same as the variable in the most recent FOR statement.

The following functions,
the existing BASIC functions.

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

APPENDIX E

DERIVED FUNCTIONS

while not intrinsic to BASIC can be calculated using

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SQR(-X*X+1))

ARCCOS (X) = —-ATN(X/SQR(-X*X+1))+1.5708

ARCSEC (X} = ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
BRCCSC(X) = ATN(1/SQR(X*X-1))+(SGN(X)-1)*1.5708
ARCCOT (X) = -ATN(X)+1.5708

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X)+EXP(-X))/2

TANH (X) = —-EXP(-X)/(EXP(X)+EXP(-X))*2+1
SECH(X) = 2/ (EXP(X)+EXP(-X))

CSCH(X) = 2/(EXP(X)-EXP(-X))
COTH (X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1

INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

SINE
COSINE
TANGENT
SECANT
COSECANT
COTANGENT

ARGSINH (X) = LOG(X+SQR(X*X+1))
ARGCOSH (X) = LOG (X+SQR(X*X-1))
ARGTANH (X) = LOG((1+X)/(1-X))/2
BARGSECH (X) = LOG((SQR(-X*X+1)+1) /X)
ARGCSCH (X) = LOG((SGN(X)*SQR(X*X+1)+1) /X
ARGCOTH(X) = LOG((X+1)/(X-1))/2

APPENDIX F

r

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR SYNERTEK BASIC

Though implementations of BASIC on different computers are in many ways
similar, there are some incompatibilities which you should watch for if you are
planning to convert some BASIC programs that were not written in Synertek

BASIC.

1)

2)

5)

.

Matrix subscripts. Some BASIC's use “ “ and “ % to denote matrix
subscripts. Synertek BASIC uses “ (“ and ™) ™

Strings. A number of BASIC's force you to dimension (declare) the length
of strings before you use them. You should remove all dimension

_statements of this type from the program. In some of these BASIC's, a

declaration of the form DIM A$(I,J) declares a string matrix of J
elements each of which has a length I. Convert DIM statements of this
type to equivalent ones in BASIC: DIM AS$(J).

Synertek BASIC uses ™ + “ for string concatenation, not “ , ™ or “ & ™.

Synertek BASIC uses LEFTS$, RIGHTS and MIDS to take substrings of strings.
Other BASIC's uses AS$(I) to access the I'th character of the string A$,
and AS(I,J) to take a substring of A$ from character position I to
character position J. Convert as follows:

orD NEW
AS(I) MIDS$ (A$,I,1)
AS(I,J) MIDS (AS,I,J-I+1)

This assumes that the reference to a substring of A$ is in an expression
or is on the right side of an assignment. If the reference to A$ is on
the left hand side of an assignment, and X$ is the string expression used
to replace characters in AS$, convert as follows:

oD NEW
AS(I)=X$ AS=LEFTS (AS, I-1)+X$+MIDS(AS,I+1)
AS$(I,J)=X$ AS=LEFTS(AS$,I-1)+X$+MIDS(AS,T+1)

Multiple assignments. Some BASIC's allow statements of the form: 500 LET
B=C=0. This statement would set the variables B and C to zero.

In Synertek BASIC this has an entirely different effect. All the ™ ='s "
to the right of the first one would be interpreted as logical comparison
operators. This would set the variable B to -1 if C equaled 0. If C did
not equal 0, B would be set to 0. The easiest way to convert statements
like this one is to rewrite them as follows:

500 C=0:B=C
Some BASIC's use “ \ “ instead of “ : “ to delimit multiple statements
per line. Change the ™ \'s ™ to “:’s ™ in the program.

Paper tapes punched by other BASIC's may have no rubouts at the end of
each line, instead of the three per 1line recommended for use with
Synertek BASIC.

To get around this, try to use the tape feed control on the Teletype to
stop the tape from reading as soon as BASIC types a carriage return at
the end of the :line. Wait a second, and then continue feeding in the
tape.

When you have finished reading in the paper tape of the program, be sure
to punch a new tape in BASIC's format. This will save you from having to
repeat this process a second time.

Programs which use the MAT functions available in some BASIC's will have
to be re-written using FOR...NEXT loops to perform the appropriate
operations.

sy,

APPENDIX G

BASIC/MACHINE LANGUAGE INTERFACE

Synertek BASIC provides two forms of the USR function to provide the BASIC
program with access to assembly language subroutines written by the user.

The first format of the USR function is the one most commonly seen in formal
BASIC definition, though not necessarily, the most convenient. The format is:

USR (I)

This format of USR assumes that the address of the subroutine to be called has
previously been placed in location(s) $000B and $000C of page zero with the
POKE command, $000B containing the low order address, $000C containing the high
order address. The parameter I is passed to the subroutine as a 16-bit signed
integer in the [A,Y] register pair. Any result of the subroutine call is
assumed to be returned as a 16-bit signed integer in the [A,Y] register pair.

The second format of the USR function allows the user to specify the subroutine
address in the call, and also allows the passing of multiple parameters. The
format is:

USR(I,J,...,2)

This format of USR assumes that I is the address of the subroutine to be
called, and that J through Z are the parameters to be passed to the subroutine.
Each parameter starting with J is passed to the subroutine as a 16-bit signed
integer that has been placed on the stack. The last parameter in the list is
placed in the [A,Y] register pair instead of on the stack. No POKE'ing of page
zero is necessary. In order to return a 16-bit value, load the accumulator with
the high order 8-bits, and the Y-register with the low order 8-bits. Then
perform a JMP $D14C. If no value is to be returned, a RTS may be used instead
of JMP $D14C.

To use separately loaded machine language routines, it is necessary to reserve
some RAM space. This is done by replying appropriately to the MEMORY SIZE?
question.

Example: To reserve the last 256 bytes of RAM on a 4K system, answer as
fellows:

MEMORY SIZE? 3840

BASIC will use only the first 3840 bytes of RAM, leaving 256 bytes
available for your routines.

Example: The SYM-1 SUPERMON program contains a subroutine, OUTBYT, which
will output a two digit hexadecimal representation of the
accumulator when called. Its address is 82FA. It could be called in
either of the following ways.

POKE &”000B”, &“OOFA”
POKE .£7000C”, &”0082"
X=USR (&”FF00”)

FF will be printed.

X=USR(&"82FA", &"FF00”)

FF will be printed.

FEL

DECIMAL CHAR

000
001
002
003
004
005
006
007
008
009

010 ~

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
023
030
031
032
033
034
035
036
037
038
039
040
041
042

LEF=

NUL
SOII
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CaAN
EM
SUB
ESCAPE
FS
GS
RS
Us

SPACE
]

-
>

el A R 2 B

Line Feed

APPENDIX H

ASCII CHARACTER CODES

" DECIMAL CHAR

043 +
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
06l
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

OO LU WN R O

CHLPOPWOZRHRGHIOMBOOQODP® DV I A

FF=Form Feed

DEL=Rubout

DECIMAL CHAR

086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127 DEL

S S, N X EC

|l ~—~ N XS dc R QUTVTODIBHRFUYPITQMO LOT N .~

CR=Carriage Return

APPENDIX ‘I

BASIC TEXTS

Below are a few of the many texts that may be helpful in learning BASIC.

1) BASIC PROGRAMMING, John G. Kemeny, Thomas E Kurtz, 1967
2) BASIC, Albrecht, Finkel and Brown, 1973
3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A. Dwyer and

Michael 3. Kaufman; Boston: Houghton Mifflin Co., 1973
Other books of interest:
101 BASIC GAMES, Ed, David Ahl, 1974

WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF COMPUTER GAMES

COMPUTER LIB & DREAM MACHINES, Theodore H. Nelson, 1974

Fia s

@EPENDIX'J
TRIGONOMETRIC FUNCTIONS
This describes the incorporation of trig functions into Synertek BASIC, BAS-1.

Using the procedures described allows trig functions to be loaded from cassette
tape when needed and called by a simple function call.

FEATURES

* SIN, COS, TAN, ATN

* Accuracy to 1077 (for arguments between minus two Pi and plus two Pi)
* Calculates SIN in less than 28mS

* Takes up only 313 bytes of RAM

*

May be located on any two consecutive pages in memory

GETTING TRIG ON YOUR SYSTEM

For a 4K RAM system, the listing of Figure 1 should be typed in as shown. This
will locate the trig functions at the top of memory. If you have more (or less)
memory, then you will need to relocate it at the top of your memory space. The
first byte of the 1listing is OB at location OEC7 The last byte is 01 at
location OFFF. Type in the bytes as shown using the monitor Memory or Deposit
modes. After you are done, do a Verify listing. The checksum value should be
9476 if you have not made any mistakes. See Figure 2.

Now save the bytes on cassette. You will probably want to save it as the first
file on a tape which contains BASIC programs that require trig functions. The
following monitor command will do this:

.S2 54,EC7,FFF

By using file number 54, this can be read back in BASIC as file T. Be sure this
will not conflict with any BASIC programs named T on the same tape.

USING TRIG FUNCTIONS

After a .J 0 from monitor to get to BASIC, type in the memory size that will
reserve enough room for trig functions (and machine language if necessary) at
the top of memory. On a 4K RAM system this would be 3782 if no machine language
space 1s reserved. When BASIC responds with OK, insert the cassette that
contains the trig functions and type LOAD T. After it is loaded, you must type
either NEW or LOAD x. Next type the following line to attach the trig functions
to BASIC:

POKE 196,104 : POKE 197,15

Instead of typing this line each time you load BASIC, you may use this as the
first line in any BASIC program that uses trig functions. See Figure 3 and 4.

In the case where it is desired to load the trig functions when a BASIC program
already exists in RAM, exit BASIC to SUPERMON, load the trig functions and
return to BASIC. Be sure to un-write-protect system RAM and to attach the trig
functions to BASIC. See Figure 5.

RELOCATING TRIG FUNCTIONS

Trig functions have been written so that they may reside on any two consecutive
pages in RAM. However, the relative location on the page must stay as it is.
In other words, the 0A at location OEC7 must be at location XXC7, where XX is
the page on which it is located, and the 01 at location OFFF must be at
location YYFF, where YY is one greater than XX. When attaching trig functions
using the FOKE statements, the number 15 must be replaced by the decimal
equivalent of page YY.

Figure 1. Object Code Listing For Trig Functions.

.V_EC7,FFF

OEC7 OB 76 B3 83 BD D3 79 1E,DE
OECF F4 A6 F5 7B 83 FC BO 10,27
OED7 7C 0OC 1F 67 CA 7C DE 53,AC
OEDF CB Cl 7D 14 64 70 4C 7D, 66
OEE7 B7 EA 51 7A 7D 63 30 88,6A
OEEF 7E 7E 92 44 99 3A 7E 4C,D9
OEF7 CC 91 C7 7F AA AA AA 13,8D
OEFF 81 00 00 00 00 A5 B6 48,Bl
OF07 10 03 20 36 DD A5 Bl 48,095
OFOF C9 81 90 07 A9 72 AC D7,08
OFl7 20 CS D8 A9 C7 A4 CS 88,26
OF1F 20 C2 DD 68 C9 81 90 07,2E
0F27 A9 35 A4 C5 20 06 D6 68,D9
OF2F 10 03 4C 36 DD 60 81 49,75
0F37 OF DA A2 7F 00 00 00 00,7F
OF3F 05 84 E6 1A 2D 1B 86 28,FE
0Fr47 07 FB F8 87 99 68 89 01,0A
OF4F 87 23 35 DF El1 86 A5 5D,31
OF57 E7 28 83 49 OF DA A2 Al, 38
OF5F 54 46 BF 13 8F 52 43 89,21
OF67 CD CO 72 FO 4A 90 41 CO,EB
0F6F 76 FO 92 20 80 D9 AS 00,05
0F77 85 16 A5 C5 48 A9 85 48,C8
OF7F A5 C5 48 A9 B5 48 60 A2,22
0F87 9E A0 00 20 8A D9 AS A7,33
OF8F A0 00 20 58 D9 A9 00 85,52
0F97 B6 A5 C5 48 A9 A7 48 A5,F7
OF9F 16 48 A5 C5 48 A9 E7 48,DF
OFA7 60 A9 9E AO 00 4C C5 D8,0F
OFAF A9 35 A4 C5 20 1D D6 20,89
OFB7 C2 D9 AS 59 A4 C5 A6 BE,F3
OFBF 20 BD D8 20 C2 D9 20 82,05
OFC7 DA A9 00 85 BF 20 09 D6,CB
OFCF A9 3A A4 C5 20 06 D6 A5,BS8
OFD7 B6 48 10 0D 20 FF D5 A5, 6C
OFDF B6 30 09 A5 16 49 FF 85,E3
OFE7 16 20 36 DD A9 3A A4 C5,78
OFEF 20 1D D6 68 10 03 20 36,5C
OFF7 DD A9 3F A4 C5 4C C2 DD, 75
OFFF 01,76
9476

L

Figure 2. Example Of Loading And Verifying Trig Functions Code.

.F 00-EC7-FFF <CR>
.M EC7 <CR>
OEC7,00, 0B
0EC8, 00,76
0EC9, 00,B3
0OECA, 00,83
OECB, 00,

OFFB, 00,C5
0FFC, 00, 4C
OFFD, 00,C2
OFFE, 00,DD
OFFF, 00,01
1000, 00,<CR>

.V_EC7,FFF

0EC7
OECF
OED7
OEDF
OEE7
OEEF
0EF7
OEFF
0F07
OFOF
0F17
OF1lF
0F27

0FC7
OFCF
OFD7
OFDF
OFE7
OFEF
OFF7
OFFF
9476

Save trig functions on your preferred storage device.

0B
F4
7C
CB
B7
7B
ccC
81
10
C9
20
20
AS

DA
A9
B6
B6
16
20
DD

01,

76
A6
oc
C1l
EA
7E
91
00
03
81
C5
c2
35

A%
3A
48
30
20
1D
A9
76

B3
FS
1F
7D
51
92
c7
00
20
90
D8
DD
A4

00
A4
10
09
36
D6
3F

83
7B
67
14
7A
44
F
00
36
07
A9
68
C5

85
C3
0D
A5
DD
68
A4

BD
83
ca
64
7D
99

00
DD
AS
Cc7
c9
20

BF
20
20
16
A9
10
C5

D3
FC
7cC
70
63
3a

A5
A5
72
A4
81
06

20
06
FF
49
3a
03
4C

;Fill trig memory area with “00”
' ;Begin entering trig function

;End entering by entering a <CR>

;Verify your work!

79
BO
DE
4C
30
7E
AA
B6
Bl
AQ
CS
90
D6

09
D6
DS
FF
A4
20
Cc2

;Checksum must be 9476

1E,DE
10,27
53,AC
7D, 66
88, 6A
4C, DS
13,8D
48,B1
48,95
D7,08
88,26
07,2E
68, D9

Dé6,CB
A5, B8
A5, 6C
85,E3
Cs5,78
36,5C
DD, 75

Figure 3. Loading Trig Function AndﬁA Program Using Trig Functions.

.J_0 <CR>

MEMORY SIZE? 3782 :» ;Save room for trig (4K system)
WIDTH? 80

3269 BYTES FREE

BASIC V1.1
COPYRIGHT 1978 SYNERTEK SYSTEMS CORP.

OK

IOAD T ;Load trig functions
LOADED

OK

LOAD A ;Load rec/polar program
OK N 7

RUN

TO WHAT? P

X,Y? 3,4

MAG= 5 ANGLE= 53.1301024

TO WHAT? R

MAG,ANGLE? 5,53.1301024

X= 3 Y= 4

TO WHAT? <CR>

OK

-

Faied

Figure 4. Coordinate Conversion Program Which Uses Trig Functions.

NOTE: Line 110

100 REM RECTANGULAR/POLAR COORDINATE CONVERSION

110 POKE 196,104 : POKE 197,15 : REM ATTACH TRIG FUNCTIONS
120 INPUT “TO WHAT? “;AS$

130 IF AS$="P” GOTO 210

140 IF AS$="R” GOTO 160

150 PRINT “USE P OR R” : GOTO 120

160 INPUT “MAG,ANGLE? “;M,T : T=T*3.141592654/180 : REM CONVERT TO RADS
170 X=M*COS(T)

180 Y=M*SIN(T)

190 PRINT “X=";X,”Y=";Y

200 GOTO 120

210 INPUT “X,Y? “:;X,Y

220 M=SQR (X*X+Y*Y)

230 T=ATN(Y/X)*180/3.141592654 : CONVERT RADS BACK TO DEGREES
240 PRINT”MAG=";M, “BNGLE=";T

250 GOTO 120

999 END

OK

Figure 5. Loading Trig Functions When Anothér Program Already Exists In Memory.

.J 0
MEMORY SIZE? 3782 : ;Save room for trig (4K system)
WIDTH? 80

3269 BYTES FREE

BASIC V1.1
COPYRIGHT 1978 SYNERTEK SYSTEMS CORP.

OK

100 INPUT Y ;Type in a program
200 X=LOG(Y*5)

300 PRINT X

400 2=SIN(Y/3)

500 PRINT Z

999 END

RUN
? 4

2.99573227

?FC ERROR IN 400 ;Trig is needed
OK
Q=USR (&"8035"”,0) ;Go to monitor

CB6D, 3

L2 54 ;Load trig from storage device; here it is tape
.G 0

OK

Q=USR (&”8B86",0) ;Un-write protect monitor RAM!

OK
50 POKE 196,105 : POKE 197,15
RUN
? 4
2.99573227
.971937901 ;Trig loaded successfully

OK

Notes: -

<

$CO00-SDFFF Checksum = $00A5

END OF DOCUMENT

