AFILO ValDd USER MANUAIL

MANUAL: L, FISH
SOFTWARE! P.J.R: BOYLE

ALL RIGHTS TO THIS SOFTWARE AND ITS DOCUMENTATION ARE RESERVED
BY THE AUTHORS. COPYRIGHT 1980, L. FISH & P, BOYLE,

TABI.LE OF CONTENTS

INTRD[)UC‘TI[]NO0000000000000000000000000000000000000
NHY E':L(JC"(STRUC.TURED'?OOQO00000'0000000000000000000
AN E:XQMF'LE FIF\.()GF\.AMQOOOOO00000000000000000000000000
ASF’EC.TS UF XF.L.OOOOQOQOOOQOO00000000000000000000000
THE ELEMENTS OF XF.LOO0000000000000000000000'000000
EXF‘RESSIONSOQQOQOOOOQO00000000000000000'0000000000

Numbers

Variables

Operators

Comparisons

True and False

Eooleans

IF expressions
STATEMEN"‘SO000000000000000000000000000000000000000

Beqgirn-end
If-thern-else
Case
While~do
Repeat-until
Loop-quit
For~do
Comments
Semi-colons
Null statements
DECLAF\‘ATIONSQ000000000’000000000000000000000000000
Integers
Addresses

Intrinsics

Frocedures

Own variables

Declared constants

Externasls
ARRAYSOQC0000‘000000000000000000000000090000000000

Byte arradys

Strings

Inteqger arrays

Ouwmn arrays

Multi-dimensional arrays

Complex data structures

Data constants
RULES OF SCUF'E00000000000000oooooooooov&§000000000
RECUF\.SIUNOOO00!000000000000000’0000000000000000000
INF‘Ur AN[) UUTF'UToo00oo000o0000000000009000;0000000
NRIT.:I:NG A F’ROGRAMQQOO'QOOO000000000000000000000000
DEE‘UGGINGOOQO'O'OO'OQQ'000000000000000000000000000
ERF\.OF\‘ MESSAGESOOO'OQQQOQ00000000000000000000000000
COMMON ERRO"?SQOQO000000006000000000000000000000000
THE IZL L.QNGUAGE:O000060000000000000'00600000000000
INTRINSICSOOOQ..QOOQOOOO000000000000000000000000'0
XF.LO REMINDEF\. SL‘MMARYQOOO00000000’0000000000000000
ﬁEMOF\.Y USEOOOOQO{OOOOOO0000000000'00000000000000.0

THE DISTRIBUTION DISK

The XPLO standard distribution disk is a normal APEX disk, which,
when booted, will run a series of simple XPLO demonstration

programs. In order to do anything else with this disk you must
have a standard APEX system disk,

The disk contains the XPLO compiler as the file "XPL.SAV" and
the IZL interpreter/loader as the file "IZL.SAV". These two
files should be copied onta your master APEX system disk,

The disk also contains a number of example XPLO programs which
illustrate several features of the language discussed in the
manual, These programs should be copied onto an APEX task disk.

If you have a dual drive system then you can simply use the
APEX "COPY" program to transfer the files.

If you only have one drive you will have to take some care to
avoid starting the XPLO distribution disk during the file
transfer processs To transfer a file proceed as follows!

1) Boot an APEX system disk.

2) Insert the XPLO distribution disk,

3) Give the APEX command "NEW",

4) Type! EXCH file.ext

9) Follow the prompts, inserting the disk you

are transferring the file to,

6) Re-insert the system disk when it is prompted
for at the completion of the transfer,

Repeat the process for each file to be moved.
Warning: Do not run the APEX "INIT" or "MAKER" operations on the XPL0O

distribution disk. If you want to make it a system disk replace
the existing ".SYS" files completely.

INTRODUZTIOWN

Welcome to XFLO., XPLO was designed to bridge the gap between
machine language and high level languages. It has the speed and
ability to manipulate your computer on the machine level and yet

has the power and structure of a sophisticated block structured
language.

With XPLO you will be able to write programs that are beyond the
ability of other high level languages. Programs that have been
written in XPLO include! new languages, compilers, operating
systems, text processors, medical instrument controllers, qraph-
ics programs etc, Normally, these programs would have been
written in assembly language, but, because they were written in
XPLO they were written quickly and can be readily modified,

This manual is designed to acquaint you with the mysteries of
block structured languages. XPLO is as easy as BASIC to learn,
If XPLO is your first high level language, or if you are
familiar with other block structured languages, then you will
find XPLO logical and easy to learn, If your programming
experience is with non-structured lanquages, a structured
language may seem clumsy at Ffirst, This is because a block
structured language requires a bit more setup at the start, but,
as the programs grow in length and your skill increases, you

will begin to feel the support and power of a block structured
language, '

The XPLO package actually consists of two programs: the XPLO
compiler and the IZL interpreter. In addition, an editor is
required to generate the program text. :

anmnstdnanamn e nn manmnEn N o

] 1
POSOURCE !t EDITOR
] i
! !

file ! !

SQURCE
file

e e e

Writing a program involves three steps!

1. The editor is used to create the program text.

PAGE - 1

2, The compiler reads the program text and converts it
to an executable intermediate language called IZL.

3+ The intermediate language (IZL) is executed by the
interpreter

The text created by the editor is called XFLO source code. This
text is fed to the compiler, which generates the IZL code in a
relocatable hex tormat. The IZL interpreter contains a special
loader that loads the IZL code into memory. Once the code is
loaded, the interpreter begins execution of program.

Since the XPLO package actually consists of several different
programs, the program creation process consists of calling an
editor, the compiler and interpreter in sequence,

USING THE COMPILER

Once you have set the APEX default file name to the appropriate
file and coreated a source file using an editor, you run the
compiler to translate the source into the IZL code. If your

source file is the default file you run the compiler by the APEX
command}

APX>XPL(spaceXreturn)

APEX should respond with something like this:

INPUT: FROG.XPL
OUTPUT: FROG.IZL

When the compiler starts it will prompt with!

XPLO V4D - MAY 1980
BHINARYY

LISTING!

0K

The compiler is saying that, by default, it will create both a
listing to the console and a binary I2L file to the disk.
Normally this is what you want to do so you simply respond with

a carriage return. If you don‘t want both options answer with "N"
and follow the prompts,

Once the I21L. file has been created it must be loaded with the
IZL interpreter. The APEX command is!

APX>1Z2L(space)return)

When the interpreter is called, it will begin loading the binary
into memory. Some error checking is done during the load., After
the load 1is complete, the interpreter will prompt with!

£CR> TO EXECUTE

PAGE - 2

At this point, the loaded program can be executed or saved as a
SAV file. To execute the program simply type a return] to save

the program, type a CTRL-P at this point, then, when APEX comes
back, give the command:

APX>SAVE(space)return)

We will now take an over view of XPLO and of block structured
languages in general,

WHRY BILOCK STRUCTURED?

Black structured languages were developed to solve problems that
develop in conventional languages. If you have ever written a

long basic program, you have probably encountered these
problems,

COMPLEXITY

As a praogram grows in length, its complexity can grow geomet-
rically, In languages where any routine can call any other
routine, programs tend to become complex webs of subroutine
calls, Block structure solves this problem by organizing the
program into clean, logical blocks, As a block structured
program grows, it becomes longer but not more complex.

Black structure helps the programmer deal with complexity in
another way, The human mind can only grasp a certain amount of
information at one time. The easiest way to deal with any
program is to break it down into simple, easy to understand
steps. Even a very complex program can be written easily by
breaking it down into small modules. The procedure structure of

XPLO naturally organizes programs into small, easily understoed
blacks.

S 5 S s sttt 058, ot e e A

As a program grows in size, more and more variables are used to
store data or carry information. With more variables, it becomes
very easy for the programmer to lose track of what each variable
is doing in each routine, Eventually, variables collide and you
find that your Startrek program is going out to lunch because
the variable that holds the enterprise’s shield power is getting
eaten by the klingon navigation routine.

In block structured languages, the programmer has complete
control of each variable. Each variable is defined to be active
only within a particular part of your program. This means that
variables that are part of some other section of code cannot
affect you and you can ignore their existence.

PAGE -3

AN ENAMPILE PROGRAM

To make things clearer, let’'s write a small program in XPLO.
Because of the structure of the language, we can begin by
describing the task in plain English,

The program we will write is a simple guessing game in which the
computer thinks of a number between 1 and 100 and we try to
guess the number., After each guess, the program will tell us
whether we are high or low. Here are the steps the program goes
throughi

1) THINK OQF A NUMBER

2) GET A GUESS FROM THE KEYBOARD :

3) TEST THE GUESS AGAINST THE COMPUTER’S NUMBER
4) DO Z AND 2 UNTIL OUR GUESS IS CORRECT,

Here are the steps translated into XPLO!

‘BEGINS

MAKEANUMEER §

‘WHILE Y GUESS=INCORRECT ‘DO’
‘BEGIN
INFUTGUESS S
TESTGUESS ¢
TEND S

TEND S

Notice that the program is almost word for word the same as the
step by step description of the task, First we "make a number",
and "while" the "guess" is "incorrect" we ‘“input" a "guess" and
“test" the "guess". "Begin"s and "end"s are used to divide the
program up into logical blocks. This part of the program has two
logical blocks, one inside the other,

Obviously, there must be more to this program, since XPLO
doesn’t yet know how to make a number, input a guess or test the
guess., Each of these operations is a subroutine to the main
program. In XFLO, subroutines are called procedures. We are now
going to write each of these procedures.

FROCEDURE ' MAKEANUMEER }
TEEGINS :

NUMEER 3 =RANDOMC100) §
TEND

This procedure generates a random number and puts that number in
the variable "number"”,

FROCEDURE INFUTGUESS §
‘BEEGINY

GUESS t=TINFUTC0) }

TEND 3

FAGE ~ 4

‘This procedure gets a number from input device number zera and

stores it in the variable guess. In XPLO, as many as 8 different
input and output devices can be called directly from the
programs This allows XPFLO to read and write data directly to

disks, printers, CRTs etc,

"FROCEDURE ‘TESTGUESS §
‘BEGIN
CIFY NUMBER=GUESS ‘THEN'’
‘BEGIN
TEXTCO,"CORRECT! ' ")}
TRY =13}
“TEND
‘ELSE’
“IF’ NUMBER<GUESS ‘THEN’/TEXTC0,"TOD HIGH'")
TELSE’ TEXTC(0,"TO0 LOW")}
CRLFCD)
‘END ‘3

This procedure is a bit more complicated, but it is still easy
to wunderstand. If the computer’s ‘“number" is equal to the
"guess” then we execute one block of code, if they are not equal
then we execute another block. If the numbers are equal we tell
the user that the guess is correct, if they are not equal we
test if the guess is high or low and tell the user.

Now, let’s look at the whole program!

‘CODE’ CRLF=9,RANDOM=1, INFUT=10,TEXT=12}
"INTEGER’ GUESS, NUMEBER, INCORRECT, TRY}

"FROCEDURE ' MAKEANUMEER §
‘BEGIN

NUMEBER :=RANDOM(100) }
TEND 3

"FROCEDURE “ INFUTGUESS ;
‘BEGIN'
GUESSI=INFUT(0)

TEND 3

‘FROCEDURE ' TESTGUESS §

"BEGIN

‘IFY NUMBER=GUESS “THEN’
"BEGIN
TEXT(0,"CORRECT! ")}
TRY $=13
TEND 7

‘ELSE
“IFY NUMBER<GUESS ‘THEN/TEXT(0,"T0O0 HIGH")
‘ELSE’ TEXTC0,"TOO LOW™);
CRLLFC0) 3

TEND 73

FAGE - 5

BEGIN

INCORRECT $ =203

TRY $=INCORRECT $

MAKEANUMEER $

TWHILEY TRY=INCORRECT ‘DO’
TREGINY
TEXTC0,"GUESSS ")}
INFUTGUESS §
TESTGUESS S
TEND 3

TEND S

There are two new constructs in the final version of the
program.

"CODE" allows the programmer to assign names to XPLO intrinsics.
Intrinsics are built in procedures which perform commonly
required functions. In our example, the word "RANDOM" is
assigned to the random number intrinsic and is used to call the
random number routines The programmer need only use those
intrinsics necessary to the task and can assign names that add
clarity and readablility to the program.

"INTEGER" assigns a name and memory space for each of the
variables. Because of the way in which the variables have been
set up in this program, each of the variables can be used by any
procedure. If we had defined the variables inside a procedure,
the variables would have been active only within that procedure,

PAGE - 6

OVERALL STRUCTURE

Block structured programs can be thought of as a series of
boxes, Each box has only one entrance and only one exits The
program enters at "begin" and exits through "end”. Each box can

contain sub-boxes, executable statements or calls to proce-
dures,

X I
I MAKENUMBER I <——-
X I I
omn o a0 200 e e en s s 250 360 20 300 220 20 40 T
X
e sem 4200 42 e e nen st 00 S0 s 2o 200 2o 440 o I
X X X
I INFUTGUESS I e
I I I I
v 10 w0 100 sne seee et e ts st S0 s o 20 b smn T I
I I
et s s 0 100 410 310 2 e e e s st s 300 200 I I
I X I I
I TESTGUESS Tt o e
I X I I I
cve 4me 2me sne seve ene ems a0 s 200 24 510 e snt v evrn I T T
I I I
I I I
es0s 4500 200 oz enen snus Shen S44s weae s ece 2080 4188 Sa0m se0 2o I I T
X Rl N §
I MATN X I I
I Rl L
I I I
I J E SRR

Our program consists of four boxes! Three subroutines and a main
program box. Each block is a simple, complete operatian.
Programs are built a piece at a time from these elementary
blocks. Even the most complicated programs, such as assemblers
and compilers can be constructed from simple pieces.

Notice that the main procedure is the last block in the program.
Reading an XPLO program starts at the bottom to get the main

sweep of the program and works up to the details in the subrou-
tines,

PAGE -7

ASPFECTS OF XPILO

SCOPE

One of the most important qualities of a computer language is
the way in which it deals with data, XPLO uses three techniques
for efficiently dealing with data, These techniques are scope,
dynamic memory allocation, and parameter passing.

Scope defines the area in which a variable is active, In many
languages, the wuser has no control over the scope of a
variable’s activity, For example, in BASIC, once a variab.> is
created it remains active for the antire program. In XPLO the
scope of a variable is controlled by where the variable is
defined, Variables are active only within their own block or
within procedures called by that block,

In this way, some variables can be active in only one or two
procedures, while others are active for all procedures, It is
even possible to have several different variables with the same
name and different areas of activity.

DYNAMIC MEMORY ALLOCATION

Dynamic memory allocation is a logical extension of the idea of
scope. Whenever XPLO completes the execution of a procedure,
memory space assigned for that procedure is no longer needed by
the program. When a variable is no longer active, XPLO returns

the unused space to the user’s memory pool for use by other
routines,

In contrast, variables created in BASIC take up memory space
throughout a program’s execution. The variable space in a BASIC
program is always the sum total of all of the variables used in

the program. XPLO programs use an absolute minimum of variable
space.

PASSING PARAMETERS

Passing parameters is the way in which one routine communicates
data to another, In some simple languages, the data is sent from
one routine to another by placing it in a variable and then
calling the routine., The programmer must know in advance which
variable names are used by the receiving routine.

In XPLO, information being sent to another routine is simply
tacked on to the end of the call, For example!

TEST(X,Y,2);

This statement calls a procedure named "TEST" and sends the
variables X, Y and I to it, When the call reaches the procedure,

the the values of X, Y and I are placed into the first three
variables defined in that procedure.

PAGE - 8

Thus if the first three variables defined in "TEST" are A, B and
Cy then the value of X will be passed to A, Y will go into B and

% into C. This technique allows each procedure to be a clean and
completely independent operation.

XPLO IN XPLO

One of the most interesting thing about XPLO is that the
compiler is written in XPLO., This means that the compiler can
compile itself and that new features can be added to the
language by editing XPLO and compiling the new compiler. Thus

each new version of the language is brought to life by the old
version. ‘

PORTABILITY

The XPLO compiler translates the source program into an
intermediate language called I2L. The IZL code is interpreted
and executed by an I2L interpreter written in machine language.
IZL is very close to machine language. It contains 42 opcodes
that are easily implemented in any machine language. Thus, XPLO
can be run on any machine by writing the relatively simple
interpreter for the particular CPU, Exclusive of special
intrinsics, IZL interpreters run about 2k in length.

Since all device specific I-0 is contained within the inter-
preter, the exact same compiler can run on all machines. Once an
interpreter is written for a particular CPU, the user need only
load the compiler to have the complete XPFLO language running on
his system. This also means that if you should change process-

ors, programs written on your old system can be easily moved to
the new machine, ‘

XPLO V.5, PASCAL

Superficially XPLO is very similar to a subset of Pascal, In
fact an introductory Pascal text will be most helpful to a

begining XPLO programmer. However there are differences, both in
syntax and in philosophy.

If Pascal is the Caddilac of computer languages then XLPO is the
Volkswagen, XPLO is more energy efficient, less costly and
easier to deal with, For many experienced programmers simplicity

is the critical element, It is easier to work on a vehicle you
understand completely,

XPLO will get you there, everytime, But it wont pull a horse
trailer and has no power steering. So, ulitmately, it's a
question of taste, efficiency, and your needs.

DATA TYPES

XPLO is a loosely typed language. The standard XPLO sixteen bit
quantity can be dealt with as an integer, a boolean true or

PAGE -9

false, a character, a pointer, etc. In this aspect it is similar
to assembly language., Pascal, on the other hand, is an example
of a strongly typed language., It keeps these data types
logically separate, FORTRAN is an example of a language that
cannot decide wether it is strongly typed or not.

The object of strongly typing a language is to allow more
extensive error checking as a program is compiled, In Pascal,
the compiler will complain if you code syntactically correct

nonsense, such as if you store a character into a variable and
then try to use the value as an array.

Unfortunately it is impossible to anticipate all possible
programming requirements, In a rigid language, as soon as
programs become non-trivial you find yourself looking for ways
to "trick" the language into doing what you want. The result is
that programs become involuted and hard to understand.

Therefore one of the objectives of XPLO is to provide a much
needed language which will not do things for you which you then
have to find ways to undo. It tries to be direct and obvious.

Freedom and responsibility go hand in hand, In XPLO, making
sense is your responsibility,

THE ELENMENTS OF XPLO

Now lets examine the XPLO vocabulary in more detail. Informally
XPLO can be looked at as being organized into four levels. From
the lowest to highest level, they are!

1) ATOMS

2) STATEMENTS
3) BLOCKS

4) PROCEDURES

Atoms are the smallest complete, understandable piece of
program, Here are some examples of atoms! ‘FOR’, =, +, 9056,
etc. Atoms are organized into groups which instruct the compiler
to perform a specific task., These groups are called staternents.
Here is an example of a statement!

TFOR” Xi=1,10"D0NUMOUT(0,X)}

Several statements can be grouped together into a single
statement called a block,. If several statements are grouped
together, the block must start with a ‘BEGIN’ command and
terminate with ‘END/, Each statement within a block must be

separated by a by a semicolon (})» Here is an example of a
block?

‘EEGIN
Xi=03
CIFY=20THEN Z1=25 EILSE " Zt=30}

NUMOUTC(0,Z) 3
‘END 3

Brackets can be used in place of begin-end pairs!
EXe=03Y3$=211

XPLO is very flexible in the way in which it allows statements
and blocks to be put together. For example, several blocks can

be put together into a single block. Also blocks can placed in
middle of statements. For example!

‘FOR‘X$=0,10°D0"
‘BEGIN’
P=XX203
Zi=Y+X}
*END”

Here we have a statement containing a block. The block itself is
made up of two statements separated by semicolons. Notice that
there is no semicolon between the ‘DO’ and the start of the
internal block. This is because the block is a part of the
statement and not a separate statement.

In XPLO the line by line structure of your program is not
important, Statements can be split across several lines or
several statements can be put on one line. Extra spaces and tabs
are also allowed. By making use of this freedom you can make the
- structure of your program more clear.

Procedures are the highest level organization in an XPLO
program. Procedures are composed of statements and blocks
grouped together to perform a specific tasks A program may
contain any number of procedures. All procedures are named and
called as subroutines from other parts of the program.

PAGE - 11

EXPRESSIONS

XPLO, like most computer languages is a mathematical language.
It is capable of performing arithmetic and other operations on
numbers. Numbers in XPLO are 146 bit signed integers. This means
that XPLO will accommodate any number between -32748 and +32747.
Fractional numbers are not normally used because they they take
about 100 times longer to process.

Numbers in XPLO are not checked for overflow. Overflowing values

simply wrap around, For example, if you add one to 32747, the
result will be -32768,

HEX NUMBERS

XPLO also has the ability to deal with numbers in hexadecimal

form« Any number preceeded by a "dollar sign" ($) is taken as
hex, For example:!

$FFCO
A9

The same range limits and wrap around apply to decimal and
hexadecimal integers.

VARIABLES

Variables are a temporary storage place for numbers. Variable '
names can be single characters or whole words., Usually, variable ‘
names are chosen so they describe what they contain. For

example, if you were calculating interest rates, the principle

could be stored in a variable called "PRINCIFLE" and the rate

stored in "RATE". Since XPLO is a compiled language, large names

do not slow program speed or take up extra memory space.

Variable names can contain numbers as well as alphabetic

characters, however, the first character must be an alpha (A-Z).
For example:

X1

X X
'42\.

RATELZ

Only the first 6 characters of a variable name have significance

to the compiler, Larger names can always be used; the compiler
just ignores the extra characters,

Before the compiler will recognize a variable, the name must be
assigned memory space. This operation is covered in detail in
the "declarations" section below. ‘

Numbers and variables are examples of things which have a

"value", Values in XPLO can be formed in many ways, as we shall -
see in the following pages. .

PAGE - 12

ASSIGNMENTS

Values are wusuvally stored into variables using a statement
called an assignment statement. An assignment is distinguished
by a combined colon and equals character (i=), Colon-equals is
used instead of equals to make a distinction between comparing
two numbers for equality and moving a number into a variable,
Here are some simple assingnments!

FROG:=234
TIME =350
TESTI=TIME+1

In the first example, 234 is stored in the variable named
"FROG". The second stores S0 in "TIME", and the last adds one to

whatever is contained in "TIME" and stores the result into
"TEST",

A= — LI A

XPLO can perform all sorts of operations on numbers, Items which
have values can be combined into an "expression" by the use of

"operators”, An expression calculates out to give a single
value, Here is an example expression:

TEST+SXFROG

Operators can be performed on anything which returns a value,
such as numbers, variables, sub-expressions etc, The resulting
expression is itself a value., Values are quite general things in
XPLO. Any expression can be used wherever a value is required.

The naormal arithmetic operations of addition, subtraction,
multiplication and division are performed by common symbols!

ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION

~N % L+

Foar example!

2745
TESTX2!
F/750+2

When an arithmetic expression is evalvated, multiplication and
division are performed first, then addition and subtraction.
Otherwise, expressions are evaluated from left to right, The

order of evaluation is important because it can change the
result of a calculation,

In some instances it is necessary to force XPLO to evaluate an
expression in a different order. This is done using parenthesis
"0"s The part of an expression within parenthesis will he

PAGE - 13

evalvated first, Parenthesized expressions can be nested if
necessary., Here are some examples!

TEST+(FROG/23)
TESTX(TEST+H(HIGH/2)/3)

COMPARISONS

XPLO allows us to compare values in several ways. They can be

tested to see if they are equal(=), not equal (#), etce For
example:

The following characters are used to compare values in XPLO:

= TESTS FOR EQUAL VALUE.

¥ TESTS FOR NOT EQUAL VALUE.
A TESTS IF THE FIRST VALUE IS LESS THAN THE
SECOND .

TESTS IF THE FIRST VALUE IS GREATER THAN
THE SECOND.

ks TESTS IF THE FIRST VALUE GREATER OR
EQUAL TO THE SECOND.

i TESTS IF THE FIRST VALUE IS LESS THAN OR
EQUAL TO THE SECOND. :

When XPLO evaluates conditional expressions, it decides whether '
the assertions are true or false, If the specified conditions

are met, then the expression is true, if they are not met, the
expression is false,

TRUE and FALSE

Truth and falsity in XPLO are values just like other values. In
fact, internally, true and false are represented by numerical
values, This may seem a bit strange, but the values can be used

by the programmer, and they are essential to boolean
operations.

The true-false concept is so wuseful that XPLO has special
constants which represent true and false!

* TRUE
‘FALSE"

These constants have fixed values which represent true or false
within XPLO. The constants can be used to set a variable to true
or false!

FROG = ‘TRUE"}

Or in comparisons, for example! .

PAGE - 14

FIG(L) = ‘FALSE’

Note that in the latter case the equals sign is not coupled with
a colon as in the former, Thus the colon is what distinguishes
an assignment statement from an expression involving a compar-
ison operation, An assignment is a complete statement, while an

expression is just the value part of some larger statement. As
int :

FIGS=FROG=0}
BOOLEAN OFERATORS

Booleans are a special form of value in which the 14 bit number
is considered in its binary or true-false form. Boolean
operators operate on numbers as boolean values.

XPLO uses three different boolean operators! "and", "or" and

“not"s In XPLO, the following characters are used to to perform
these operations!

‘NOT” "NOT" FUNCTION
& "AND" FUNCTION
! "OR" FUNCTION

In XPLO, these operators can be used in several different ways.

For example they operate on true and false values as you might
expect, so that ‘NOT/TRUE’ evaluates to ‘FALSE’

"NOT" operates with a single argument. It simply changes the
value to its opposite. For example!

‘NOT“DONE -

"AND" requires two arguments, If either argument is false then

result is false, If both are true then the result is true. For
example?

SHIFS & SNAILS

"OR" also requires two arguments., If bath arguments are false

then the result is false, If either argument is true the result
is true, For example!

CABEAGES ! KINGS

In another use of boolean operations they operate on binary bits,

Here is a table showing the way in which these operators work on
single bits!

PAGE - 15

BXT OFERATOR RESULT

0 NOT” 1 .
1 “NOT/ 0

ELT OFER BYT RESUL.T
0 & 0 0

0 & 1 0

1 & 0 0

1 & 1 1

0 ! 0 0

0 ! 1 1

1 ! 0 1

1 ! 1 1

"NOT" operates with a single argument. It simply changes the bit
to its opposite.

"AND" requires two arguments, If either argument is zero then
result is zero. If both are one then the result is one.

"OR" also requires two arguments, If both arguments are zero

then the result is zero, If either argument is one the result is
one,

In actual XPLO operation, boolean operators work on all 14 bits
of a value at once, but the principle is the same. Here are some
examples, using & bit values for clarity!

NUMEER OFER RESULT

00110011 ‘NOTY 11001100

11110000 NOT 60001111

NUMEER OFER NUMEER RESUL.T
10000001 & 00000001 00000001
11111111 & 00011000 00011000
10000000 ! 00000001 ioco00o0001
1111110 ! oooo0001 11111111

Here are some assignments with expressions
operators!

involving boolean
FROGI="NOT/ 27

TEST:=FROG & $FIE;

TIME:=FROG ! TEST:

Boolean operations can be used to link XPLO with machine level

of the of the processor. They enables XPLO to set and clear
memory bits,

PAGE ~ 16

Expressions can contain boolean operations, comparisons, and
mathematical operations. In mixed expressions arithmetic operations
are performed first, then comparisons and finally, booleans,
Therefore the following expressions are the same!

A=1 & B=2 ve&, (A=1) & (BE=2)
But these are different:

A& %80 = 0 vs, (A & $80) =

| an)

F EXPFRESSIONS

et e et

A common construct in programming looks something like!

CIF7 XEY CTHEN’ FPXGI=20 ‘ELSE’ PIG$=253
Here the variable "PIG" is set to 20 or 25 depending upon the
outcome of the compare. XPLO has a simple mechanism for dealing
with this type of assignment!

FIG:=‘IF‘ XxY ‘THEN‘ 20 ‘ELSE’ 253

The entire IF is evaluated and reduced to the valuve of the THEN
or ELSE (here 20 or 25), then the value is passed to PIG.

Like all expressions, IF expressions can be used anywhere in
XPLO, not just in assignment statements.

PAGE - 17 -

STATEMENTS

XPLO has command words., Each command is set off in single quotes
{) to make it more visible in the middle of a program. If you
prefer, you can write command words in lower case rather than
set them off in quotes, Commands must be written in lower case

or enclosed in quotes, or the compiler will not recognize the
command. '

Command words, expressions and other statements combine to form
the XPLO statements., We have already met. the first of these

statements, the assignment, Now we will cover the rest of the
statements.

b2 -

Perhaps the simplest XPLO statement is EXIT, It simply termi-
nates the program normally at that point.

Another simple XPLO statement is a call to some other routine,
All it consists of is a mention of the name of the routine, for
example!

SORT

The routine called in this way can be either a procedure, an

intrinsic or an external, They all operate the same way at the
call,

A call can send some values to the routine to control the
specifics of its function, in which case the call has the formi

name({value,valuewvalue);
For example!
CURSORC10,13);

The details of how the routines being called are defined is
covered later in this manual,

BEGIN END

Begin and end are used by the programmer to designate logical

programming blocks, Blocks are composed of one or more state-
ments.

This statement has the form?!

‘BEGIN‘statementjstatementj..statement’END’}

PAGE - 18

Each begin must have a matching end, One of the more common XPLO
programming errors is mismatched begin-end pairs.

- Where convenient, square brackets ([1) may be used in place of
‘begin’ ‘end’.

iIF THEN ELSE

This statement has the formé:
‘IF‘value’THEN'statement’ELSE‘statement;

It is used to conditionally executve”blrocks'of' code! ‘
CIF _(CONDIT'I(JN)N”T_HVEIN’Y (BLOCK-A) ‘ELSE’ (BLOCK-E);

If the condition is sati'sfied,’f‘BI'.OCKfA is executed, if the
‘condition is not satisfied BLOCK-B is executed,

Generally, the condition is based 'upon comparing two or more
values, The values can be compared -in several ways. They can be

tested to see if they are equal(=); not egual (#), etc. For
example! ' -

‘IFY A=B YTHEN’ (BLOCK-A) "ELSEZ’ (BLOCK-E) 3
This statement tests to see if A is ‘equal to B. If they are

equal, BLOCK-A -is executed, if they are not equal BLOCK-B is
executed, ‘ ‘ :

Conditional statements do not have to be simple compares. The
condition can be any XPLO values Thus XPLO is capable of
evaluating complex relationships. For example!

‘IFY A/BEHC-D=(TIME+1)/45 ‘THEN’ ...}
Boolean operators can be used inside a compare. For ex}amplet

TIF A=E & C=D ‘THEN’ (BLOCK)}

Here A must equal B and C must ‘equal D before the block is

executeds When necessary, the ELSE section of the command can be
omitted, :

CASE

Frequently a program must decide between more than two alter-
natives, Since an IF statement is defined as containing other
statements, which, in turn; can be IF statements, one way to
handle this is to nest the IFs, like this!

CIFA&E=1THEN’DOONE

FAGE - 19

TELSE Y XF/FROGS S THENDOTRO
CELSE DOOTHER

But this can get confusirf), so XPLO has the case statement.
This statement has two forps, the first is! :

‘CASE'QF’
valueistatement}
valueistatement;
valueistatement

'ELSE’statement;

In this form the case is|just like the nested IFs above. The
first value that evaluate: to true rcauses the corresponding
block to be executed, If m{ value comes out true then the ELSE
block will be executed'\\ Translating the above example!

‘CASE " OF

AkE=13% DOONE ‘,\

FROGS: DOTWO ¢

‘ELSE [)OOTHE\'\';
|

The ELSE clause cannot be left out, but it can be blank!

) ,

‘CASE - OF f

A=l DOONE

=} DOTWO

TELSE” S

The second form of the case statement is used for efficency
when the values all have a common component and an equality
test, as in the example we just wused, This form is!

‘CASE’value’QF’
valueistatement;
valueistatement;

valueistatement
‘ELSE’statement;

The last example, in this form, looks like thist

‘CASE AOF

1 DOONE';
23 DOTHO
"ELSE”}

Unlike Pascal, XPLO case values do not have to be simple
constants, They can be any expression or value.

PAGE - 20

WHILE DO

This is a conditional looping structure. As long as the
condition is met, the block is repeatedly executed.

This statement has the form!

'WHILE‘value’'DO’statement;

For example!

"WHILE’ TEST=FALSE ‘D0’
"BEGIN
CLEAR}
FROG:=2%5;
SETUF}
TEND 3

As long as the variables TEST and FALSE are equal, the code
within the begin-end block will be executed. The program tests
the condition as soon as the while loop is entered, If the
condition is false, the loop will be ignored. Once the loop has
been entered, the program tests the condition at the end of each
execution of the block. The condition must eventually go false
or the loop will continue forever.

REFEAT UNTI

ot 4 Vo oo e kaesien s

This statement has the form:
‘REFEAT'statement}...statement’UNTIL value;
The REPEAT loop is similiar to the WHILE loop except that the

decision to continue the loop is made at the end of the block.
Here is how it looks flow charted!

WHILE REFEAT
I I
I I
/7 N\ 3 o 5 e a e
e sove oor some ™ r 'I:
! \ 7/ [BELOCK T--
! X L I
! ommummmmmmeommamas mmmmmmmamanes)
LI § I I !
==X BLOCK I /7 N\ !
I X e e
smummRnnEmananin s \N 7/

Here is a sample repeat loop!

FAGE ~ 21

'REFEAT
PBEGINY
INFUT}
$=XX20 3
OUTFUT (SUND
TEND
CUNTILY X=Y3

This statement has the form?
‘LOOP’statement;

A LOQOP command repeatedly executes the statements in the block.
Execution will contine indefinitly wunless or wuntil a QUIT
command is encountered inside the blocke A QUIT command can be
vsed to exit from any point within a loop. Frequently, a QUIT
will be placed in an IF command so that the loop will exit under
certain conditions, For example!

1L.00OF 7
"BEGINY
DOSOMETHING$
CIF A= THEN “QUIT §
END S

FOR DO

A FOR loop is special kind of loop. A for loop counts upward one
at a time, and for each count it executes a block. The starting
and ending value of the count can be set, and the count is

stored in a variable so that the value can be used by the
program.

This statement has the form!
‘FOR‘variablei=value,value’D0’statement}
Here is an example!
FORY Xi=1,1007D07 NUMOUT(0,X) 3

Here X starts with the a value of one and steps one at a time
to 100, For each step, the block is executed., In XPLO, the steps
must always be ascending and the increment is always one.
Negative loop limits can be used. Descending loops and other

increments can be synthesized,

A for loop might never be executed if the limits are never in
ascending order, as in}

Xi=-103

FAGE ~ 22

FORI3=0,XDO’FRINTIT

s e e

Comments are used by the programmer to make notes to himself or
other programmers. They are quite useful as an aid to keeping
complex programs straight,

In XPLO, comments can go anywhere in the program, including in
the middle of a statement. If a comment is placed in the middle .
of a statement, it must be enclosed in backslash (\) characters,
If the comment is the last item on a line, only the leading
backslash is needed, Here are some examples!

‘BEGIN \GET A CHARACTER
‘FOR” X3i=1,10\TEN TIMES\‘'D0O’

e et et st i o

A semicolon, by itself, iz a legal statement, It is the null
statement and does nothing, This is not important to the novice
XPLO programmer except that it might explain an extra semicolon
here or there in an example, such as before an END in a block.

In general the key to understanding the semicolon in XPLO is to
realize that they are used to separate statements and declar-

ations where neccessary, Examining the form of each XPLO state-
ment will clarify this,

Don’t be misled by the formatting of statements in the examples,
As we have said, the end of a line has no relation to the end of
a statement, they just happen ta correspond in many cases,

In fact the semicolon is not a marker to the end of a statement
at all, it separates statements, For example in an IF (or CASE)
statement there is no semicolon before the ELSE even though a
sub-statement ends there, because a new statement does not start
at that point and so there is no need to separate things,

By this reasoning there should not be a semicolon before the END
of a block, aor before the UNTIL of a repeat loop. In fact, if
you look back at the statement forms, you will see that this is
indeed the case., However, as we said, extra semicolons do
nothing if they do not change the meaning of what is being said,
so in this case they are allowed but have no importance,

NULL STATEMENTS

The null, or do nothing statement was just introduced abave,
It has some relevance to all statements which include other
statements because it allows certain parts of statements to
be blank. We saw an example of this with reference to the CASE

PAGE - 23

statement above, Here are some other examples!
‘FORX3=0,10007D073 \DELAY A BIT
SWHILE “NOT/STROBE/DO’ 3 \WALT FOR SOMETHING
‘REFEAT’ “UNTIL/KEYSTRUCK 3 \ANOTHER FORM OF A WAIT

Note that the value parts of statements cannot be blank or the
statement will be meaningless,

PAGE - 24

DECILLARATIONS

The process of informing the compiler of the existance of a new
name is called a declaration, An XPLO program must declare all

of the names it will use, and specify what they are names of,
There are 7 things one can name!

INTEGER variables
ADDRESS variables
OWN variables
CONSTANTS
INTRINSICS
EXTERNALS
PROCEDURES

LOCAL AND GLOBAL

All pames of things are active only within certain clearly
defined areas. These areas are governed by the rules of scope
which will be described in detail later, A name is said to be
"local” to the procedure in which it was declared,

A name which is defined for several procedures is said to ‘e
"global" to those procedures.

INTEGEPR®
The integer variable declaration has the general form!

‘INTEGER/name;name,...«name;}

More than one variable can be activated in the same declaration!
CINTEGER JACH, JILL. 3

This declaration tells XPLO that the procedure we are in will

require the variables JACK and JILL. Memory space is allocated
for these variables at this time,

The address declaration defines a variable similar to an integer
except that it can be used as the address of an area of memary
that we want to get at on a byte-by-byte basis, We shall see

more about this in the next sections The form of the address
declaration is!

‘ADDRESS/namename;ssname}

PAGE - 25

INTRINSICS

Intrinsics are the way in which XPLO links with necessary
machine level operatons. Intrinsics are built in routines which

perform a variety of operations, including input and output,
math, and special operations.

The current version of the interpreter contains more than forty
intrinsics. New intrinsics can be added easily, by placing the
machine code for the intrinsic in the interpreter.

Each intrinsic in the interpreter is numbered, When an intrinsic

is declared, a name is given to its number. The general form of
an intrinsic declaration is!

'CODE’'name=number,....name=number}

Here is an example!
FCODE " RANDOM=1 , WRITE=11}

Intrinsics can be given any name that suits the programmer,
Generally, names that describe the intrinsic are used. Only

those intrinsics needed by a particular program need be declared
for that program.

Information is sent to an intrinsic in the same manner as proce-

dures. The information is placed in parenthesis immediately
following the intrinsic name.

Some intrinsics return a value while others do not. In XPLO it .
is your responsibility to take this into account. Intrinsics
that return a value must be used as a value, not as a call
statement, or a fatal error will results Equally, an intrinsic
that does not return a value must not be used as a value.

Here are some example uses of intrinsics!

CURSDR(25,3%9);

NUMBER : =RANDOMC100) 3
The first example sends the values 25 and 35 to a cursor
position intrinsic, In the second, a random number between 0-99
is placed in the variable "NUMBER".

As an example of the incorrect use of intrinsics, the following
statement is illegal and will cause an error when it runsi

TFORZLE=10,100"DORANDOMCI) } \A BAD STATEMENT

The error arises because the random number intrinsic returns a
value which is not used,

PAGE - 26

One of the most important concepts in computer programming is
the idea of subroutines, In any program, there are certain
operations that must be performed over and over, To aveoid having
to write the same code over and over, the programmer will put
the code into a single module which is executed by the main
program whenever the common operation must be performed, After
the common code is executed, the program returns to the main
line of the program and continues.

In XPLO, subroutines are called procedures. Any block of code can
become a procedure simply by giving it a name., The process of
naming a procedure is also a ‘"declaration". Procedure declar-
ations take the general form!

‘PROCEDURE'name;
declarations;
statement;

Far example!

‘PROCEDURE Y COUNT

TBEGIN
‘FORX$=1,100°D0"
TREGIN
Li=22/7X3
ORDER
TEND S
TEND 3

Once a procedure has been named it can be executed simply by
calling it’s name. Here is a block that calls four procedures!

TEEGIN
GETNAME }
SORTS
FRINTSORT §
STORENAME $
TEND S

Since a procedure is a completely independent piece of code, it
can itself contain declarations. Declarations for a procedure
must be placed between the procedure declaration and the start
of active code (usually the first ‘begin’), Here is an example
of variable declarations within a procedure!

‘FROCEDURE Y RESTORE ;
TINTEGER” X,Y,FROGS

‘BEGIN

‘FOR’ Xi=1,20/D0
BEGIN
UNDO;
YimYal;

FAGE - 27

‘END 3
FROG =X+Y}
TEND

Since a procedure can contain declarations, and procedures are a
kind of declaration, it follows that procedures may contain
other procedures, Therefore, in XPLO we can "nest" procedures
inside each other, We say that each such nesting takes us one
"level" deeper. For example!

i
i
i
i
i
H
i
i

*PROCEDURE * ONE } L
‘FROCEDURE TWO3 £

FROCEDURE Y THREE] e
‘BEGINY I
N =1} I
TEND 3] e

BEGIN/\THO
Eri=2}

TEND

Bt b b b

:
H
i
i
1
1
t
i
H
i
i

TEEGINY NONE
ONE$

TWO S

Ci=33

TEND 3 1 s s e e e e e s

Look at the way these procedures are nested. Procedure THREE is
nested inside procedure TWO which is nested inside procedure
ONE. TWO and THREE are sub-procedures to ONE; they are local to
it, and do not exist elsewhere in the program.

Procedures may be nested 8 levels deep. Here ONE is at the
highest level and THREE is at the lowest level. Notice that the
source code for the highest level routine always comes last, and
is executed first, In fact, ONE and TWO are not executed unless
they are called from a higher level procedure.

The same thing applies to the whole program, the code for the
main routine is always the last block in the program. Execution
always starts with the highest level blocks.

PARAMETERS

It is frequently necessary to send information from the main
program to a procedure, XPLO provides a simple mechanism to send
information to a procedure. Information to be sent to the
procedure is placed in parenthesis immediately following the
procedure call, These values are the "parameters" or "arguments”

PAGE -~ 28

of the procedure.

If more than one argument is to be sent, they are all placed
inside the parenthesis and separated by commas.

When the program arrives at the procedure call, the values sent
are placed in the first variables declared. Here is an example!

‘FROCEDURE’ ADDTENS
TINTEGER’ X,Y,23
‘BEGIN
1=X+103
YimY+103
Z4=Z+104
RES $=X+Y+Z$
TEND

m
_—

rJI

D s
EI

Mo G
wes 0w i

o ** os

=
‘
Y
(e8]

. ~

ADDTENCA,E,C)
TEND S

>

The second block calls the first, In the process, it sends the
value of the variables A, B and C, which are one, two and three
respectively, When the program executes ADDTEN the values in A,
B, and C are passed into X, Y, and I, The procedure adds ten to
these values, sums them into RES and returns. The original A, B,
and C are in no way effected by the procedure call,

In the receiving procedure one variable must be declared for
each value sent, Otherwise, a fatal error will result,

In order to help the programmer keep track of which variables
are parameters, and which are locals, XFLO allows a comment to
be placed after the name of a procedure in the declaration. This
comment should be used to list the parameters of the procedure
in the order they will be used when the procedure is called.

Here is an example of a procedure with the argument list as
a comment:

‘FROCEDURE Y CHECK(X,Y)

*INTEGER'X, Y}

“INTEGER’Z, K}

‘BEGIN’

Z3mXKY 3

K3=Z/403

TIFX<Z/ THEN’ SAYOK

‘IF ‘Y<K’ THEN’ SAYETG
‘ELSE’SAYSMALL }

TEND 3

The appearance of X and Y in parentheses in the first line tells

PAGE - 29

us that this procedure is intended to have these two values

passed to it as parameters while Z and K are simply normal
locals.,

Occasionally, it is necessary to return from a procedure before
the procedure is completes This can be accomplished using a
RETURN command. The RETURN forces a procedure to immediately

return to its caller, Unlike BASIC, a RETURN is implied and need
not used at the end of a procedure,

RETURN is also used rveturn values from a procedure to the
calling routine, The value to be returned is placed following
the RETURN command:

‘RETURN'value;}
The argument may be any expression. For example!
‘FROCEDURE Y INCREMENT(X)}

“INTEGER’ X3}
‘RETURN X+1}

$=INCREMENT (X) H

*» o Lo »

Here we have a simple procedure to increment a variable. When
the procedure is called, the value of X is sent to the routine,
This is then incremented and passed back to the caller via the

RETURN command. The result is then assigned into the variable
Y,

This ability to pass values to and from procedures, with the
ability to declare, in each procedure, just those variables it
needs, allows each procedure to be a complete and independent

module which can be debugged as a separate entity and moved from
program to program freely,

One of the important uses of procedures is in making programs
"cleaner" and more understandables, By moving a side branch of
the main flow of a rvoutine into a separate procedure we can
name it according to its function, test it separately and keep
the main body of code uncluttered,

In this application it is essential that procedure calls be
efficient, Thus XPLO will optimize the procedure calls. In fact,
if a routine calls a procedure which is defined within it and

has no locals of its own, then such a call is about the fastest
complete XLPO statement that there is,

OWN VARIABLES

As described above, variables can be declared so that they are

PAGE -~ 30

local to a procedure. Any time the program exits from a proce-
dure the memory space occupied by the variables declared in that

procedure is returned to the memory pool and the value of the
variable is lost,

Most of the time this is exactly what we want, but sometimes it
is useful to preserve the value of a variable across procedure
calls, One way to do this is to use more global variables, but
this makes the variable accessable to other routines and we loose
the advantages of the scope rules.

OWN variables can be declared local to a particular procedure,
vet the value is not lost when the procedure is exited, It will
still have the same value when the procedure is called again. At
load time OWN variables are preset ta 0 or false.

In general, OWN variables are similiar to normal integer
variables, There are two limitations on the use of OWN
variables, First, OWN variables cannot be used to receive
parameters when they are passed to a procedure. Second, OWN
variables cannot be used as the counter in a FOR loop.

OWN variables are declared as follows!
‘OWN’'name;namej«.name;

For example!
‘OWN’ X,Y,FROG;

One application of OWN variables is as program parameters. Many
programs require certain setup information, such as the binary
and listing switches in the XPLO compilers We can store this
information in OWN variables, run the program long enough to
execute the code that sets the OWN variables, and then interrupt
it with Control P. Then, when we save the program with the APEX
save command, this information will be preserved with the
program and be opreset when we vrun the program again,

DECLARED CONSTANTS

One of the things that adds clarity to program is the ability to
give names to numbers, The name "LIMIT" is a lot clearer than
the number 12419, XPLO allows the user to set up predefined
constants. Constants are different from variables in that once
they are defined they cannot be changed. Further, the compiler

can deal with them as fixed values which makes the code faster
and more compact,

The general Fbrm of the constant declaration is!
‘DEFINE‘name=number,,..name=number}

For example!

PAGE - 31

‘DEFINE’ MEDIAN=100,LIMIT=27,SUMMIT=14210}

Notice that the declaration is made with a simple equal as
opposed to colon-equals, because this is a statement of
equivalence rather than an assignment to a variable.

In certain instances it is useful to have distinct names for
things, but the actual value is irrelevants, In fact in many

instances we don‘t want know the value so that we cannot come to
depend on it,

For example, let’s say that we are working with a set of colors
and we just want to refer to the colors by name. If we come to
depend on the numerical value of the color, later changes in the

program could be difficults XPLO has a simple scheme for
defining sets of things!

‘DEFINE’ RED,ELUE,GREENS

Here, all the programmer knows is that these constants have
distinct values and that they are in accending order. That is
that GREEN > BLUE >RED.

Basic has its peeks, pokes and calls, These are weakness in

Basic because they vresult in completely incomprehensible
programs.

XPLO has the ability to do the equivalent of peeks and pokes
by wusing address variables, In XPLO the resulting code is
readily understandable.

The ability to call machine language routines easily and
comprehensibly is provided by the intrinsic structure of XPLO.
The external is an alternative form of intrinsic.

(If you are not interested in programming at this level just
now, feel free to skip the rest of this section)

To clarify the operation of externals we need to make a few
observations about intrinsics. The address of an intrinsic must
be known to the IZL interpreter, since it appears in an I2L
table. Normally this is as it should be because machine language
routines have a way of moving about in memory as we develop
things, The table approach makes sure that there is one and only
one place where the address of a routine appears. Thus that
place is all we have to change if a routine moves, All our XPLO
programs which use them do not also have to be changed.

In some cases, however, we want to link to machine code for a

purpose which is program specific, This can occur when we want
part of the program to be super fast, or when we have a special

PAGE - 32

-device to deal with,

When the machine code we want is program specific it is more
appropriate for the XPLO program, rather that the IZL itself, to

know about the special routines., In that case we use the
EXTERNAL declaration, It has the form! o

‘EXTERNAL'name=address,...n ame=address;

For example!

"EXTERNAL IRQON=%$A000, IRQOFF=$A100}
When an external routine is called, XPLO will perform a standard
6502 JSR to the address specified, The external does its job and
returns via a standard RTS. Values can be passed to the external
routine as normal parameters:

TRAONCTIME, BUFFER) §

These values are left on the 6502 hardware stack behind the
return address and must be removed from the stack by the

external, A two byte value may be passed back in the same way,
in which case the call becomes a value, as in}

FENDING $ =TRQOFF |

See the section on memory use for some hints on where you can
safely put your own externals,

PAGE - 33

It is frequently useful in programming to collect several pieces
of data together, Usually, the data values will have something
in common. For example, they might be points on a graph or
dollars in accounts. In XPLO values can be grouped under a
single name, Even though they all have the same name, each item
has a separate number. For example:

FROGC(L11)

This refers to the 1Zth data item in the array named frog. If
there are twenty items in an array, they will be numbered 0 to
19, In XPLO there two main types of array! byte arrays and
integer arrays. Strings are a special case of byte arrays.

s o s e i 4 vt 40

Byte arrays are groups of data where each item is a single 8 bit
byte. Each item in the array can store either a number from 0
to 255 , a number between -128 and 127, or an ASCII character.,

Like procedure and variable names, the name of a byte array must

be declared before it can be used. Byte array declarations take
the general form!

‘ADDRESS name,wname;

To understand arrays more clearly lets take a close look at the
way XPLO handles ADDRESS type variables. Array names are really
only 1& bit variables that contain the starting address of the
data, So the value of the address variable which names the array
"points" to a place in memoary that is the start of the data.

Each numbered item is one byte of memory in sequence from that
starting address.

STQRTING S22% Tors BRI D IR MDD ANET 1IN DD D D SN I
ADDRESS ! !
' ITEM 0 '
! !
T
L OITEM 1 !
! {
‘ eaes avm 2070 v om0 I
v OLITEM 2 '

Once a byte array name has been declared, memory space must be

PAGE - 34

set aside for the actual data it points to, This can be done in
several ways. The simplest way is to simply set the address to
some absolute memary location. Of course, you must be sure that
the memory you address is free for this purpose.

As an example, lets say that we have some free memory at hex

2000, To set up an array in this area, simply store $2000
into the address variable!

FROG:=$2000;

After the starting address has be assigned, data can be moved in
and out of the elements of the byte array!

FROGCZ0) $=20%5}
X1=FROG(9) }
FROG(X) $=Y}

As you see in these examples, the variable without a parenthe-
sized item number refers to the starting address of the array.
To refer to individual items in the array, the item number must
be included, even if it is simply zero!

“IFFROGC0)=%80 THEN’ ERASE $

The fact that address variables can be set up to point directly
at absolute bytes in machine memory gives XPLO a very simple
method of accessing memory and memory mapped I-O devices. As an
example, lets say that you have an I-O port that you wish to
access directly from XPLO. The address variable could be given
the name "PORT" and be set up to point to the memory address of

the port, Then a reference to PORT(0) will access the port byte
itself,

As useful as direct access to memory can be, most of the time
arrays are used simply to store data, When an array is used to
store data, the programmer really doesn‘t want to keep track of
what memory is free and available. To solve this, XPLO allows
it's own memory to be used and provides a simple method of
assigning and keeping track of the memory used.

The operation of reserving some memory for array use is
performed using intrinsic number 3, the "RESERVE" intrinsic.
RESERVE sets aside a specified number of bytes of memory and
returns the starting address, For example!

FROG$=RESERVE (25)
This sets asidé' 75 bytes of memory exclusively faor the use of
the array, and returns the starting address of this array which

we pass to the address variable named FROG. The programmer need
never know the actual address of the array.

Here is an important note regarding the RESERVE operation. It
allocates memory space dynamically, just like other local

PAGE - 35

variable space, so when you return from the procedure in which a
reserve was made the reserved space, and its content, is lost,
If the procedure is called again the space will be re-reserved

once again. -

If you have used other langavages you may find you tend to
confuse the RESERVE with what some lanuages call "DIMENSION",
The vital difference is that RESERVE is an action taken as
opposed to a declarations, A RESERVE inside a loop will reserve
more space every time the loop is executed!

STRINGS

The third way to set up a byte array is to assign a text string
to an address variable. For example!

FROG:="THIS IS8 A STRING"}

Here what happens is this! The compiler allocates some space for
the string, fills it with the ASCII for each character, and
returns the address of the place it put the string as a pointer.
We store this address into an address variable,

At this point the variable FROG behaves essentially like any
other byte array. There are differences however. In this form
the array, and its content, is fixed and preset, Assignments to

such arrays are not allowed. We can read the bytes however, as
ind ,

CIF/FROG(3)=%D THEN. . o
Or we can print the string as in:
TEXT(0,FROG) }

Since a normal byte array is a convenient form for a string of
characters that we will want to change, the two forms together
allow powerful string operations to be performed. For example,
strings could be compared for matching words by comparing the
numerical value of each character.

XPLO employs the convention of marking the end of a string by
setting the high bit of the last byte, This adds 128 to the
ASCII value of this byte so that, in the example above FROG{13)

has the value 199, which is 128 more than the ASCII for the
letter G.

To facilitate the handling of characters, XPLO has a special
operatar that converts an ASCII character into its numerical
values The wuparrow character (*) converts the character it
preceeds into its numeric value. For example!

tamAN

This operator can be used anywhere a value is called for. For

PAGE - 36

example, it can be used in a compare operation!
TIF X=A CTHEN o600 e

The uparrow character can also be used to indicate characters
that would normally be interpreted as controls to XPLO., For
example, double quotes cannot normally be included a string
because they terminate the strings, An uparrow in a string
cavses the next character to be taken literally, For example!

FROG:="THIS I8 NOT A A"NEWA" IDEA!!'"

As we said before, each item in a byte array is an eight bit
valve. XPLO normally handles sixteen bit values so we need some
way to convert from one to another,

When a 1& bit value is moved into an 8 bit byte, the least
significant bits of the 14 bit value is moved into the byte,
When an 8 bit value is stored in a 16 bit variable the single

byte value is stored in the low byte of the 14 bit variable and
the high byte is set to zero.

In addition, there are several intrinsics available that faci-
litate the handling of 8 and 16 bit values. Intrinsic number 4

("SWAP") takes a 16 bit variable and exchanges the high and the
low byte. For example!

FIGCL) $=5WAF (HOUSE) §

It is common practice in computer programming to treat the
highest bit of a number as a sign bit. For example, if the
highest bit of a number is a zero, the number is regarded as
positive; and if the bit is a one, the number is negative. Any 8
bit number greater than 127 will have its sign bit set and could
be thought of as a byte-sized negative number.

Normally, when a number is moved from a byte into a variable the
sign bit is lost. As an example, when an 8 bit value is moved

~into a 16 bit value the sign is no longer in the highest

position, so it doesn't act as the sign. Intrinsic number 4
(EXTEND) is used to move the sign bit of an 8 bit value into the
sign bit of a 16 bit values Actually, to be correct, the high
byte of the 14 bit value is converted to ones or zeros depending
upon the sign of the low order byte, as in!

FROG(0) $ =255

FIG:=EXTEND(FROG(0))}

Here FROG is an address variable and PIG is a normal integer

variable. In the example, if PIG were to be printed or compared,
etc, its value would be -1, '

PAGE - 37

INTEGER ARRAYS

Integer arrays are similar to byte arrays except that each item
is a 16 bit signed number, which allows us to extend the
concept. Each item in an integer array can be a number in the ‘

range of -32768 to 32767 or a memory address in the range 0 to
$FFFF, '

Integer arrays are declared in the same manner as normal
integers. The distinction comes in their use. When they are used
as arrays the item number, or "index" is included. The presence
of the index causes XPLO to use the value of the integer as a
pointer to an integer array, rather than as a simple integer.

After the integer is declared memory space must be reserved for
the array. Since these arrays are two byte values, the
reservation requires twice as many bytes as a byte array. For

example, if you wish to make a 20 element array, you must
reserve 40 hvtes, Here is an example! '

SINTEGERY FROGS

+

FROG: =RESERVE (40) §
X3=FROGCO)
1=FROGC1I9)§

Once the declaration and reservation is made, individual items
in the array can be referenced by using the item number as an
index after the variable name! .

Yi=FROGCZ0)
FROG(14) ¢=3200
‘FORY X$3=1,100 ‘DO’ COW(X) i=-2343

QWN ARRAYS

Normal RESERVED integer arrays are used for most array appli-
cations in XPLO. However the fact that they are dynamically
allocated can present difficulties. For example if we want to
create a sine table array for a sine procedure then we would
prefer to not have to refill the array every time we call the
sine procedure, We could make the table outside the procedure
but this is wunclean. The solution is to uwse an OWN array.

OWN arrays are a declared form of array. The space they use is
permanent and is saved with the program. Because they are
declared they must be of a fixed size. Here is an example
declaration of a 10 element OWN array:

ORNDATACLO) 3

The elements of this array are DATA() through DATA®)

PAGE - 38

Note that, although the contents of OWN arrays are 2 byte
integers, the dimension we specify is the number of values in the
array, not the number of bytes., Also, be aware that since OWN

arrays are saved with programs big arrays will make the program
blgo

MULTI-DIMENSIONED ARRAYS

XPLO has the ability to manipulate INTEGER and OWN arrays with an
unlimited number of "dimensions". A multi~dimensional array uses
several indices to select the individual items,

In the simplest form, multi-dimensional arrays can be visualized
as a grid of row and column squares that contain data. For

example a 5 by 10 element array named DATA would have the
elements!

DATACO,0) +eveves DATAC4,0)

LR 2 2 N I B Y A] LN B I I R A)

LK N K 2 B I B N) L I I N I Y

DATACO,9) +vevsses DATA4,9)

This type of data structure has many uses, such as board games,
tables, etc,

The easiest way to setup a regular multi-dimensional array like
this is to declare it in an OWN declaration!

TOWUNDATACS,10) 3

When the array should be dynamically allocated so as to limit
the program size and memory use we can do the same thing with

standard INTEGER arrays by perfoming a multi-dimensional
RESERVE,

In particular, to generate a two dimensional array!

1, DECLARE THE INTEGER NAME
2, RESERVE THE FIRST DIMENSION

3. USING A FOR LOOP, RESERVE THE SECOND
DIMENSION ‘

For example!

CINTEGER FROGS
FROGS: =RESERVE(50) §
‘FOR” Xi=0,24 ‘DO’ FROG(X) !=RESERVE(S50)}
In this example, a two dimensional array is created, with 25

rows and 25 columns, First a 25 element integer array is
created, then the address of the start of another 25 element

PAGE - 39

array is stored into each element of the integer array. Once the

array has has been reserved, the individual elements are
referenced!

FROGC(Z23,1) 3
Z3=C0R(X,Y)}
FIGOA,E) =COW(X,Y)}

For more dimensions, another set of reservations can be made!

‘FORY X$=0,24 ‘DO’ ‘FOR‘ Y$=0,24 ‘DO’
FROG(X, Y) $=RESERVE(50)

+

Z1=FROG(A,E,C) ¢

COMPLEX DATA STRUCTURES

XPLO handles these arrays in an unusual and very powerful way
that allows the user to produce very flexible data structures,
With these features, it is very easy to produce linked lists,
trees, non-rectanqular arrays, arrays of strings, etc,

An XPLO structure can have any number of indices, and hence
dimensions, Further, it need not be reqular in the sense that
the rows need not all be of the same size. In fact the elements

of a row need not contain the same thing or be used in the same
ways

Since each element in an integer array is a 16 bit number, the
value stored in an array element could be an integer, the
address of a string or of another array!

F IR Q{3 5 s i s s i o 200 22 T s e e e

FROG D) oo mmom oo 2o m s e o o e o oo e ovm e

e IFROGC0,0) !

FROG(L) =mmmmme=] b i o e e e !

G I TFROG(0,1) !
I ______________
I

' T mnrmmiam o o T e e o e e e

TFROG(L,0) !
T eee caee some emom 0ae s0ms eas suse ooms |
IFROG(L,1) !

This simple technique is used to create all sorts of structures.
This manual cannot hope to expand fully on the subject so we
will just have to observe that an XPLO structure is, in the end,
a "linked list" and refer you to a general programming text on
data structures for a comprehensive discussion of the subject.

PAGE - 40

DATA CONSTANTS

OWN arrays are all very well, but they still have to be Filied.
If what we want is a fixed table of information a long series of

individual stores could be tedious, so XPLO provides the
constant data structure.

Here is a simple example!

TINTEGERDATAS

+
+
DATA=[2,22,222,2222,222221;

This statement is 'analogous to the text string constant we
encountered before, The difference is that the elements are

16 bit integers vather than 8 bit ASCII characters. Thus, in
this example, DATA(Z) has the value 222,

XPLO stores the information in the saved program space, and when
the assignment (=) is executed, it stores the address of the
array into the variable, DATA., The elements of a data constant
can be used just like other array elements except that they may
not be used to store new data since they are constants,

Data constants can include other data constants. and text strings
as elements, For example!

INFOI=01,2,03,4,05,611,"HELLO"]}

Which is a structure like this!

INFQmo——— L
2
x....-...«-‘....:::- 3
Komommene WHELL QM 4

Here INFO(0) is 1 while INFO(2,1) is 4 and INFO(2,2,1) is é.
Also, after we store INFO{4) into an ADDRESS variable so that we

can use it as a byte array, we have access to the bytes in the
string "HELLQ". Thus

TEXTCO,INFOC4)) s
will print the string "HELLO" and

“ADDRESS “ X3

*

Xi=INFO(4)}
CHOUT(O0,X(1)) 3

FAGE - 41

will print the character "E".

This concept 1is very flexible and hence its applications
potential might be a litle hard to grasp at first sight, It

might be wise to experiment with it a bit to become familiar
with the whole idea.

ADDR COMMAND

The ADDR command is used to find the actual machine address
where a variable is stored,

This operation can be used to pass the address of a variable to
a procedure, which provides a mechanism by which we can allow a
procedure to store information into a variable which would not
normally be in scope, such as in recursive forward references.
The purpose of this will be a bit obscure to the newcomer to
recursive langauges so don’t worry if you don‘t see it yet, the
feature will be there when you need it,

ADDR also gives you an easy way to access individual bytes of a
16 bit integer. To access individual bytes, the address of the
integer is passed into the name of a byte array. The high and
low bytes of the integer will be in elements 0 and 1 of the byte
array.

SINTEGERY Xj
“ADDRESS Y FROGS
FROG:="ADDR X}
LOW=FROG(0) }
HIGH=FROG(1) 3

Here the low byte is in “"low" and the high in “high",

PAGE - 42

RIJLES OF SCOPE

Scope is the concept that variables, procedures and all ather
named things are only active in certain area of a program,
Because this obeys a clearly defined rule, the programmer has
complete control of the modularity of a program.

When a name is active it is =aid to be be "in scope”, At any
particular point in the program, certain items will be in scope
and others will be out of scope, If an item is in scope it is
available to be used by the program, but if it is out of scope
it is completely unavailable, In fact, when a normal variable is
out of scope, it is rompletely non-existent,

The easy way to define the scope of a name is to say that, when
reading the source code, the scope of a name is from its
declaration down to the end of the procedure in which the

declaration appeared, including any other procedures that may
occur in this part of the code.

To understand this completely we must add one clarification! The
name of a procedure is a part of the declarations of the
procedure that encloses it, so a procedure name is in scope
until the end of the surrounding procedure.

Here are some nested procedures with a variable declared at each
level:

TEROCT ONE;

3
H
i
i
i
H

TINT X3 I
I

“INT Y3y I I
~ I I

TEROCY THREE] e b I
TINT 2 X I I
TEEGINY I X I
TEND e X I
b I

TEEGINSNTRO I I
I

"EEGINYNONE I
ONE 3 X
THO I
TEND t AL e e e bt s e e e e e e

The code inside procedure ONE can call procedure TWO because
both the call and procedure TWQ are within the procedure which
surrounds procedure ONE (the main program)

However, code inside ONE cannot call procedure THREE because the

scope of THREE ends at the end of the body of TWQO, since THREE
is inside TWQ.,

FAGE - 43

For similar reasons; only variable X is in scope an the code
inside ONE,; while procedure TWO can access variables X and
Y, and can call procedures ONE and THREE.

By the rule of scope, it is clear that a procedure is in scope

during its own body code, so a procedure can call itself, Mare
about this shortly,

Two procedures at the same level, but nested inside different
procedures, cannot call each other,

FROCEDURE "AY

i i
1 et s s s 200 smi s bt s s v s 1000 i
i i FROOE i i
i ot save ams mabe AHot 8RS bebd Se00 sain vone AENS SO wa0d i
i FROCEDURE MONE" i
i s i i e i
i i FRO O YTWRO" 4 i
i e are s 415 ens w0 1 s s20e n sem 200 et i

In this illustration, procedure B and TWO cannot call each
other, even though they are nested at the same level, because
they are nested within different procedures (A and QONE)

FORWARD PROCEDURES

Ideally speaking, the scope of a name should be the entire
section of code enclosed by the surrounding procedure. But the

XPLO compiler is a one pass compiler sp it does not know about
names of things it has not seen yet,

Under ideal scope rules, there aré items which could come later
in the code and yet be within the surrounding procedure, namely

other procedures at the same level but occuring later in the
code.

XPLO makes a special allowance for this with the forward
procedure declaration which has the form!

‘FPRQOC 'name;«winame;
For example!
FRROC DO, UNDO, BREAK,FIX;
This geclaration tells the compiler that the four names listed
will be procedures, and that they will occur within the present

scope and at the current levels Now they all know about each

other and can call each other without worrying about which is
coded before which.

PAGE - 44

RECURSION

Recursion is a very powerful programming technique. It is the
ability of a routine to call and execute itself, In XPLO, any
procedure can call itself. Also, a procedure can call itself
indirectly through a second or third routine, For example, a

procedure can call a second procedure which in turn calls the
first,

The structure of XPLO facilitates recursive programming, Each
time a procedure calls itself, the old set of variables for that
procedure are saved and a new set is created, Each recursion is
a complete, independent operation.

Generally, recursion is used to perform those tasks which are

complex, but which can be broken down into several lesser tasks
of the same general sort,

Certain operations which are normally very complex can be
greatly simplfied by using recursion. The classical examples

occur in the area of graphics programs, sorting and searching
algorithms, and in language processors.

Recusive programming techniques result in whole new ways of
thinking about solving programming problems. These techniques

. are a whole subject in themselves which this manual cannot do
justice to.

If you are interested, you can learn more about recursion from
any one of several good texts, Ken Bowles’ book, "Problem
Solving in Pascal", is a pretty good starting point., If you want
to research the subject more fully you will find whole books

devoted to recursive programming at any qood academic book
store,

The linked-list data structure mechanism that XPLO uses was
designed with recursion in mind and the two fit well together.,
S0 if you get involved with any complex data structure problems,

that would probably be a good time to dig into recursion mare
extensively,

The Hilbert curve demonstration program on the XPLO distribution
disk is an example of a simple recursive program.

PAGE - 45

INFPUT ANID OUTPUT

All device dependent operations like I-O are handled by
intrinsics within the I2L interpreter. These intrinsics take a
device number argument which corresponds to the APEX devices
that you bhave implemented with bhandlers on vyour system,

The basic intrinsics for I-0 are!

OFENI (device) = mphke device ready for input.
OFENO(device) ' = make device ready for owutput.
CHOUT (device,bygte) = output a8 byte to the device.
variablel=CHIN(device); = input 8 hyte from the device.
CLOSE (device) = close the device.

These intrinsics call the APEX device handlers at the corres-
ponding standard APEX entry point. Your APEX manual gives more
detail on the devices and the handler entry points,

Procedures to do input and output are task specific and so easy
to write using the above intrinsics that XPLO has little I-O

beyond them, However, to get you started there are a few handy
I-0 intrinsics!

NUMOUT (device,value)}
variable !l =NUMIN(device) !
TEXT(device,text poirnter)}
CRLF (device)

print the number,
read in a number.,
print. the strinag.
new line,

o B

File input and output in XPLO can be handled either on a byte
stream basis (sequential access) through device number 3, ar on
a block-by~-block basis were the details of the data structure
are left up to the programs The READ and WRITE intrinsics are
used in the latter case. There is more detail on the subject in
the APEX manual and in the section on intrinsics, Some simple
examples occur in the programs on the XPLO distribution disk.

XPLO also has intrinsics to handle all the special features of
vyour AFPLE, ‘

“AGE - 46

W]QITINIG A PROGRAM

Writing a program in XPLO is a simple and straight foward
operation. Because this is a structured language, it is best to
proceed in a logical, step by step manner,

Here is a step-by-step description of the process to illustrate
what has been called the "top down" process of writing a
program. There are aother approved techniques such as the "bottom
up" process, The whole point is to keep your thinking and your
coding incremental, logical, and in step with each other,

1, Write the main procedure.

Think about what the whole program is supposed to dos Break the
task down into simple steps. Think of a name for each of the

steps and put the names into the main procedure as procedure
calls,

2. Set up the procedures,

At this point it is best to declare the procedures., Most of the
time at this stage you will not put any code into the proce-
dures, Just add an empty begin-end to each procedure, This way
the program will compile without all of the procedures being

finished, and you can test each procedure as it is written with
a trial compilation,

3. Declare intrinsics and variables,

Think about which intrinsics will be needed by the program, and
declare them, If you later find that you need other intrinsics
you can always go back and add them. In some cases, you may wish
to declare the whole set of intrinsics, to save the inconven-
ience of adding them one at a time later, If you are aware of

any global variables or address your program will need you can
declare them now.

4, Fill in the procedures.

Now go back and write the code for each procedure., You may want
to do a test compilation after you write each procedure. If the

procedure is complex, yau should test the procedures individ-
vally.

If you find that any of the procedures are too complex to be
coded easily, you can break them down into simpler components
and nest them as sub-procedures to that procedure.

It is general practice to indent one tab for each level of
nesting of blocks (tab is Control-I)» This helps you keep track

of begin-end pairs and makes the structure of the program
readily visible,

PAGE - 47

DERBUGGING

Debugging a compiled program is a bit different from debugging
an interpreted program, mainly because you have to wait until
compile time before errors and error messages appear. Actually,
once you get used to XPLO, debugging is easier than with most
interpreters, Once again, block structure comes to the rescue,
Because the program is modular, it is easy to isolate the
problem to a single block or procedure. In fact, if you have
problems with a particular block, it probably best to break it
down into smaller, less complex procedures.

One of the more useful techniques for debugging an XFLO program,
is to temporarily insert commands that print the values of
certain variables which allow you follow the flow of the program
and get an indication of how the variables are changing. It may
even be useful to add statements that print the name of a
procedure when it is entered, This way you can tell when and if
a procedure is being executed while the program runs,

ERROR MESSAGES

The XPLQ package provides two different types of error messages.
The first type are messages provided by the compiler when it
compiles the program. These are usually syntax errorse The
second type of error message is provided by the interpreter, and

these appear only when the program is being executed. They are
called IZL errors.

If the compiler finds an ervor during - the compilation of a
program, the compiler will immediately abort. When it aborts it
prints an error message, It also prints the line in which it
found the error and to make things even clearer, it prints an

arrow pointing to the exact place in the line where it was when
it realized that there was an error,

One of the disadvantages of block structured languages is that
the errors are often not detectable until some time after the
actual source of the problem, In this case matters are made
worse by the fact that the compiler will by then have lost its
place and quite probably give a nonsense error message. This is

just one of the things the block structured language user has to
get used to.

I2L errors give an error number and question mark For example!
37

Here is a list of the possible IZL ervors!

172

Illegal division by zero.

P'"E-48

27

No more memory space. A RESERVE or the loader tried to exceed
the allotted memory bounds,

37
Some device handler returned with the carry flag set, which
indicates an I-O error, The most common I-O errors are due to a

“not ready" disk drive or to exceeding the allotted output file
size,

42
Invalid opcode encountered. This means that either the stack or
the program has been destroyed. The common causes of this is

that an array index was incorrectly computed or that an intrinsic
was incorrectly used,

32
Invalid intrinsic number used. This is usually due to an incor-

rect CODE declaration, but it could be caused in the same way as
error 4,

Loader failure. The file being loaded is not a legal 2L file.

PAGE - 49

COMMON ERRORS

There are several common errors that seem to catch everyone when

they first start programming in XPLO, Here is a list of errors
in the order of occurence! !

1, There are several atoms in XPLO that must be used in pairs.
For example, begin-end, The first error that most people make is
to omit one of the pairs. The most likely place that you will do
this is with begin-end pairs. It is very easy to get an incor-
rect number of ENDs at the end of a complex procedure. The
easiest way to keep track of begin-ends is to use indentation.

T W el ’
o] o B0
N N IR AT N
AR AN AR AR AT A
Nl NP NN VN 2
PPN
PRI ,
=] =
VRPN NP N N
\\\\\\\\\\\\
(XA ST AR AR]
,,,,,,,,,,,,
PR ’
o] w8 X}
(W AW EWEW EWwE W]
XL PO LOLP
IV Y TWIw TS
\\\\\\\\\\\ LY
TEND 3
TEND 3
e YR ¢
TEND 3
- IR H

Each indentation muc have a BEGIN and an END.

V re are some other pairs to watch for!

M S BINGLE QUOTES AROUND COMMANDS

e = U DOUEBLE QUOTES AROUND TEXT STRINGS

(e) PARENTHESIS
Lo 1 BRACKETS, SAME A5 BEGIN-END
N e\ COMMENTS

Z, Semicolon can catch you in two ways. One is that there must
be one between each statement in the program. The other is that
you must not place a semicolon between the ‘THEN’ and ‘ELSE’
part of an IF (or CASE) statement.

PAGE - 50

TIFY X=A CTHEN
TBEGIN
FROGS
RESTART }
TEND dmmmmmmamaXKKK SEMT TLLEGAL HERE
‘ELSE
CBEEGINY
A=A+
RESTART }

TEND” § e

11
i

mmmmmmzm KK KK REQUIRED HERE

3.+ Intrinsics require various numbers of arguments. One the of
the common errors is to send the wrong number of arguments. This
can be fatal and it can cause an IZL error on execution. In
fact, there is even the possibilty that IZL will fetch the wrong
opcode and destroy part of its own memory image. Under some
circumstances, it may be neccessary to reboot APEX.

4, Some intrinsics also return values. If the value is not used
as a value, the same kind of fatal error described above can
occurs Also, if a variable is stored from an intrinsic that does
not return a wvalue, the same kind aof error can result.

3+ When parameters are passed from one procedure to another, the
values passed go into the first variables or addresses declared}
and they are always stored in the same order that they are
passeds As a program is written, it is quite easy to add new
variables or addresses to the declarations which shift the order
of declarations and change which parameters are passed to which
variables and addresses, Remember that address and variable
declarations can be mixed in any way necessary to properly pass
values into the correct variables and addresses, It is

frequently, useful to have separate declarations for values
passed and local variables, For example!

"FROCEDURE " FROG(A,E, CHAR) §
TINTEGER A,E,CHARS
TADDRESS Y DEN, SANS

TINTEGERY X,Y,23

TREGIN

XXXXXXX

XXXXXKX

Here the parameters are passed to the integers in the first
declaration and the remaining declarations are locals.
6. XPLO does not do run time bounds thecking. Thus a common

error in fairly complex programs is to inadvertently store
something in an incorrect place in memory.

PAGE - 91

Almost always, this is due to some error in the calculation of
an index to an array., Another way in which you can damage memory

content in an Apple is to use graphics and screen intrinsics
with incorrect arguments,

The point is simply that the IZL run time routines will not
protect you from incorrect operations, This protection is up
to the programmer,

If you suspect that this is a problem with some program then an
effective solution is to write range checks into the program
which you can remove later after the debugging stage is
complete,

PAGE - 52

THE JZI. LANMGUAGE

It is not necessary to wunderstand the I2L language and

interpreter to program in XPLO, All I2L operations are totally
transparent ta the user,

The I2L language operates in a manner that is very similiar to

machine language, It uses single byte opcodes and several
different addressing modes,

An I2L program is generally stored immediately following the
interpreter, When the program is run, the interpreter begins
fetching opcodes from the program store and executes them.

The interpreter uses two different stacks, The first is the
regular hardware stack, It is used to store intermediate values
while the interpreter evaluates expressions,

The second stack is a special stack built by the interpreter. It
is sometimes called the heap, The heap uses the memaory
immediately following the program store, The heap is used to
store the value of dynamically allocated information. The
behavior of this stack controls the scope of variables. As the
program runs, variables are pushed and pulled and the stack
expands and contracts, When a variable comes into scope, it is

pushed onto the stack and when it leaves scope, it is pulled
from the stack.

Imbedded in the interpreter is a special loader. The loader
loads the relocatable hexadecimal version of the I2L code
qenerated by the compiler, Generally, when the IZL interpreter
is started, the loader is executed first, When the program is
loaded, the interpreter starts executing the program. The
program can be saved and re-executed at this point,

PAGE - 52

INTRINSICS
INTRINSIC O value! ABS(value)

This intrinsic returns the absolute value of the argument, If
the number is negative, the sign will be removed. Example!

$=ARG(X)
Note that the absolute value of $8000 is $3000

INTRINSIC 1 value! RAN(value)

This intrinsic returns a random number between zero and the
argument minus one. Example!

$=RANCL00) §
INTRINSIC 2 value! REM(value)

This intrinsic is used with division operations. Since division

is an integer operation, a remainder may be left if the numbers
are not evenly divisable,

It veturns the value of the remainder of the division in the
argument expression. If a zero argument is used, the intrinsic
will return the vemainder of the last division performed,

Care should be. taken to keep the intrinsic as close to the
target division as possible since some operations perform
internal divisions which are not obvious to the user, For

example, input and output intrinsics perform division inter-
nally. Examples!

Xi=REM(X) §
X1=REM(SG/72) 3
$=REMO0)
INTRINSIC & addresst! RESERVE(value)

This sets aside a certain amount of memory space for use by the
programs The intrinsic returns the address of the beginning of
the reserved area, The argument specifies the number of bytes to
be reserved, Sequential reserves will assign contigious memory
space, Example!

DATAI=RESERVE(1000) 3
INTRINSIC 4 value! SWAP(value)

This intrinsic returns the value obtained by swapping high and
low bytes of the argument, Example!

$uGHAR (X)) §

PAGE - 54

INTRINSIC & value! EXTEND(value)

This intrinsic takes the sign bit of the low byte of a 16 bit
value and extends this to be the sign of the entire 16 bit

number. Example!

XI=EXTEN(X)

INTRINSIC & RESTART;

This intrinsic immediately terminates execution of the Frogyam
sets the RERUN flag to ‘TRUE’, and restarts the program ocver

from the beginning, All variables except OWN varizbleg are
lost.

INTRINSIC 7 value! CHIN(device)

This intrinsic reads in one byte from the specified input
device, Example!

$=CHINCO)Y 3
INTRINSIC 8 CHOUT(device,value)}

This intrinsic sends one byte to the specified output device,
Example}

CHOUT (0, A=)
INTRINSIC 9 CRLF(device)}

This intrinsic sends a carriage return-line feed to the
specified output device.

INTRINSIC 10 value! NUMIN(device)

This intrinsic inputs a decimal integer from the input device
specified, Example!

X+ =NUMINCO)
INTRINSIC 11 NUMOUT(device,value);

This intrinsic outputs a decimal integer to the specified output
device, Example:

NUMOUT(0,X) 3
INTRINSIC 12z TEXT(device,address);

This intrinsi‘c outputs the text string at the address given to
" the specified output devices The string must be terminated by a
byte with the high bit set. Examples!

TEXTOLFT,8TRING) }

FAGE ~ 5%

TEXT(0,"THIS I8 A STRING")

INTRINSIC 13 OPENI{device);

This intrinsic executes the device handler initialization
routine on the specified input device. Example!

OFENIC0) 3
INTRINSIC 14 OPENOQ(device)}

This intrinsic executes the device handler initialization
routine on the specified output device, Examplel

OFENOCO) §
INTRINSIC 15 CLOSE(device)}

This intrinsic executes the device handler close routine on the
specified device, It can bhe used to close, and thus make
permanent, the output file on disks Example!

CLOBE(3) }
INTRINSIC 16 ABORT)

This intrinsic forces the program to unconditionally exit
through the APEX error exit vector,

INTRINSIC 17 TRAP(boaolean); '

This intrinsic determines whether or not I-O errars encountered
at run time will trapped by I2ZL. If the trap is set to ‘FALSE’
then when an error occurs, the evror flag (see ERRFLG) will be
set to ‘TRUE’ and control returns to the program for suitable
recavery. If, on the other hand, the trap is set to ‘TRUE’y, then
an I-O error will cause an I2L error and control will vector
through the APEX error exit vector, which usually restarts AFEX.
The trap is initially set to ‘TRUE’ at the start of an XPLO
program. I-O errors and exit vectors are discussed further in

the APEX manual. Example!
TRAFCTTRUE) 3

INTRINSIC 12 value! SPACE

This intrinsic returns the number of unused memary bytes
available, Be aware that if the free space is greater than 32k,
the number rveturned by SPACE will appear negative, Generally,

the maximum reserve is this value minus a few hundred bytes of
working space. Example!

BUFFER$ =RESERVE(SPFACE~1000) 3

INTRINSIC 19 baalean: RERUN | '

PAGE - 56

This intrinsic returns a true or false value based on the status
of the rerun flag., See SETRUN and RESTART. Example!

CTFORERUNTHEN o o4 0 8

INTRINSIC Z0 value! GETSP

This intrinsic returns the value of the current heap pointer. Be
aware that if the heap is beyond $800C¢ then the number returned
will appear negative, Examplei

X t=GETSE S
INTRINSIC 21 SETSP(address);

This intrinsic sets the heap pointer to an absolute memary
address, A very risky operation used to force I2L to use
abnormal memory locations.

INTRINSIC 27 boolean! ERRFLG
This intrinsic returns true or false depending upon the state of
the I2L error flag, This flag starts out ‘FALSE’, is set to
"TRUE’ by I-Q errors (if TRAP is false), and is set back to
‘FALSE’ whenever it is read by ERRFLG. Example! :

CTFOERRFLG S THEN/ TEXT 0, "TROUBLE ! 1)}

INTRINSIC 23 CURSOR{x-value,y-value)
This intrinsic sets the x,y position of the cursor so that the
next character printed on the screen will appear in that
location, X is horizontal, 0-39 and Y is vertical, 0-23. X and Y
must be legal screen positions or this intrinsic will overwrite
pther parts of memory. Example!

CURSORC(3,4) 3
INTRINSIC 24 SCAN(unit,result,address);

This intrinsic looks for a file by name on a unit and returns

its starting and ending block number., It operates using the APEX
system function "SCAN". For example!

CINTEGERZELOCKS
BLOCH ! =RESERVE(4) }
SCAN (4, BLOCK, "RORK TXT ")}

FIRST $=BLOCKC0)
LAST =RLOCK (L)}

Here we look for the file WORK.TXT on unit 4, If it is found the
block numbers for it are copied into the second argument, BLOCK,

PAGE - &7

which must be a two integer array. If the file is not found a
trappable I-O error occurs, The file name must be given as a 12
byte string with the name, padded with spaces, in bytes 0-7 and
the extension in bytes 8-10, The period that normally separates
the name from the extension is not used. .

Scan will use the first three pages of the APEX input buffer
when it runs,

Examples of the use of SCAN occur in the sample programs that
are distributed with the standard XPLO disk.

INTRINSIC 75 SETRUN(boolean);

This intrinsic is used to force the RERUN flag to true or
false. ‘

INTRINSIC 26,27 Unused in this version,

This intrinsic causes the current program to be terminated and
another program to be started. The other program can be any APEX
SAV file. The second argument is the starting block of the
file. This can be found using SCAN. Examples of the use of CHAIN

occur in the sample programs that are distributed with the
standard XPLO disk.

INTRINSIC 22 OPENF(unit,address)

This intrinsic opens a new file for byte input via APEX device ‘
number 3. The address argument is the same four byte array
that is returned by SCAN, so at this level the file is specified
by its starting and ending black numbers, For example, to change
device 3 to input from the file "BANANNAXPL" on unit 0!
INFO=RESERVE (4)}
SCANCO, INFO, "EANANNAXFL ")} NFIND IT
OFENF (0, INFO) \JFEN IT
CHAR$=CHIN(3); \READ SOME

¢

Note that this is not the normal way of opening an input file for XFLO.

The normal mechanism is simply to specify the input and output
files to APEX when the program is being run and then use device
3 as you would any other devicel

APX>TEST QUTFIL.DATCINFIL.DAT
Where the program TEST could contain code like this!
‘DEFINE'EQF=26; \END OF FILE MARK

* ‘

FAGE - 58

OFENI(3) 3 \NOFEN INFUT FILE
OFENO(3) 3 \OFEN OUTFUT FILE
‘REFEAT
‘BEGIN
CHAR:=CHIN(3); \READ SOME IN
CTFCHARFEQOF “ THEN MUNCHONIT 3
CHOUT (3, CHARY ;. \WRITE BACK OUT

‘END
‘UNTIL CHAR=EQOF } \DO WHOLE FILE
CLOSE(3) \MAKE. FILE FERM.,

INTRINSIC 30 WRITE(unit,block,buffer,size)}

This intrinsic writes disk blocks to a units In APEX blocks are
236 bytes eachs The write will occur to blocks on "unit",
beginning with block number "block", and continuing for "size"
many blockss The data to be written will come from memory
beginning at the address "buffer". The black number to use could
have been found far an existing file using SCAN, or possibly
read directly from the APEX system page locations which describe
the output file, in which case the file may have to be closed as
specified in the APEX manual. For example!

"ADDRESS BUFFER S
TINTEGERSIZE,FIRST}
SIZEI=10%

BUFFER:=RESERVE (SIZEX256) }
FILLEUF}
WRITE(4,FIRST,BUFFER,SIZE) §

INTRINSIC 31 READ(nit,block,buffer,size);

This intrinsic is the direct companion to WRITE above,

INTRINSIC 32 RESTORE;

This intrinsic calls the APEX system function "RESD", which
resets the disk drives,

INTRINSIC 33 SETTXT)

This intrinsic vresets the Apple screen to text mode,

INTRINSIC: 34 SETHL

This intrinsic sets the display to high resolutio. mode on the
hires screen buffer from $4000 to $5FFF,

INTRINSIC 52 SETMIX;

PAGE - 59

This intrinsic sets the display to rixed graphics and text. If
the last intrinsic was SETHI the mix will be high resolution
graphics and text. If the last intrinsic was SETLO the mix
will be low resolution and text.

INTRINSIC 36 SETLO;

This intrinsic sets the display to low resolution mode.

INTRINSIC 37 boolean! SWITCH(humber)

This intrinsic returns the value of a specified paddle switch.
It vreturns a true if pushed and false if not. Example!

"REFEAT "UNTIL SWITCHCO0) }

INTRINSIC 38 value! PADDLE(humber)

This intrinsic returns the value of one of four paddles, Values
can be in the range O to 255 depending upon the position, Paddle
numbers can be O to 3., The paddles that come with the Apple are
0 and 1, Since the hardware is a bit strange and XPLO is fast

you must allow a little time to elapse between paddle reads.
Example!

Xi=FADDLEC0) }
FORTII=0,9700"
Yi=FADDLEC(L);

INTRINSIC 39 NOISE(volume,period,time);

This intrinsic toggles the speaker at a specified volume,
frequency and duration. Volume is either on or off, zero or one.
The period of one cycle is about 20 usec times the argument. The
duration is about 10 usec times the argument.

Clears the high resolution buffer so that the whole screen
is blank (no points).

INTRINSIC 41 DOT(x~value,y-value,made);

Plots a point in high resolution mode., The point is located at x
and y coordinates. "x" being horizonal and "y" being vertical,
Since there are 280 possible horizonal points x must be in the
range of from 0 to 279, For the same reason, y must be from O to

191+ A mode argument must also be sent. OFf=0, On=$80,
Complement (exclusive or) =$40,

INTRINSIC 42 LINE(x-value,y-value,mode);

Plots a line in high resolution from the last point plotted to
the agument sent,

PAGE - 60

INTRINSIC 42 MOVE(x-value,y-value)}

This begins a line at x and y. It is normally used before LINE.

INTRINSIC 44 value! SCREEN(x-value,y-value);

This intrinsic returns the numerical value (and thus the color)
of a specified x)y location on the low resolution screen.

INTRINSIC 45 BLOCK(x-value,y-value,color);

Creates a block in low resolution at the specified x and y
coordinates, "x" must be in the range of 0 to 39 and "y" must be
in the range of O to 47, A coloar must also be passed. There are
16 possible colors. The values for each color are listed in the
Apple reference manual,

INTRINSIC 44-43 Free for user applications,

PAGE - 61

XPILO REMINDER SUMMARY

STATEMENTS

variablet=value;

procnamel{value; ...value)}
Cstatementistatement)...statementl;
‘BEGIN/statementistatementi,...statement END}
‘WHILE‘boolearn’DO‘statement

‘REFEAT ‘statements .. iatatement UNTIL boolean?
‘FOR‘varisblet=start,end’'D0‘statement}
‘TFboolean’ THEN statement ‘ELSE statement
‘IF‘boolean’ THEN statement

‘CASE “OF ‘valuelstatement). .valuetstatement 'ELSE‘statement
‘CASE‘value/OF ‘valuelstatements . valuelstatement /'ELSE /statement.}
ALOOF statement

TQAULT 3

TEXIT S

SOURCES OF VALUE

VARIAELES?S INTEGERS
OWNS

ADDRESSES
byte array elements
integer arravy elements
‘ADDR’ of 8 variasble
FROCEDURES that returrn a value
INTRINSICS that return a8 value ‘
EXTERNALS that return a8 value
CONSTANTS S decimal numbers? 123
hexadecimal numbers! $FEQD
ascii charaters! A
defined corstants! ‘DEFINE’..
text strings? e
data constants! Lrumber,..numbher]
CTRUE /
‘FALSE”

RECLARATIONS

CCODE " Mmame=rumbDer , eeve e e e} INTRINSICS
EXTERNAL ‘name=adaress, «o e EXTERNALS

CINTEGER 'MBMe ,namMe s s oo vt oad . VARIABLES

CADDRESS ' Mame s EmMe@ s s v o e o o) EBYTE ARRAYS
’FPROC’NBM@,N&MG....o.....; FORWARD FROCEDURES
'ONN’nane,nane...;o.......} OWN VARIAEBLES
OWN‘mame(dim,dimye s) s oo oo} OWN ARRAYS

‘DEFINE MamMe,namMe@.crvsvesvs} DEFINED CONSTANTS
‘DEFINE/ name=number ;oo e} DEFINED CONSTANTS
FROCEDURE ' name comment FROCEDURES

FAGE - &2

X MULTIFLY

/ DIVIDE

+ ADDITION

- SUBTRACTION

ez GREATER THAN OR EQUAL
L LESS THAN OR EQUAL

= COMFARE FOR EQUALITY
* NOT EQUAL

e GREATER THAN

= LESS THAN

! EOOLEAN OR

& EQOLEAN AND

‘NOT/ EOOLEAN NOT

QTHER SFECIAL CHARACTERS

space,tab,form-feed,return are separators.

<) EVALUATION FRIORITY

C3 SAME AS BEGIN-END

H STATEMENT SEFARATOR

\ COMMENT

n TAKE NEXT CHARACTER LITERALLY

SHIFT TO LOWER CASE

FAGE - 63

MEMORY USiE

These are the approximate memory use areas for XPLO V4D, The

actual use may be slightly different depending on the exact
version you have,

$0056-500AF Approximate page zero use,
$0800~%0FFF Body of the IZL interpreter.
$1000-%117F Basic set of intrinsics.
$1180-%123F Intrinsics for disk access.
$1240-%1L46FF Intrinsics for Apple special functions.
$1L700-Br04 User program code., ;

S0 ~USRTOR User program variables sngd arrays,
$4000-$5FFF Hires buffer, if used. '
$6000-b6FFF Default I-0 buffers, if used.,
$7000~6AFFF AFEX executive, if resident.
$EO00-SEFFF AFPEX required resident code.

The normal XPLO program is, by default, limited to the area from
about %1700 to $3FFF, that is, about 10k, If mare space is
required then the hires buffer can be wused. If the program
extends beyond 4000 then the I-O buffers will have to be moved

and APEX made non-resident by running SET on the IZL.SAV ¢file
(see the APEX manuall

The start of the space into which the program will load is
mantained in the file "IZL.SAV" at $4D,$4E., By using the APEX
GET and SAVE commands the contents of these bytes can be changed
to free up extra memory for user functions. If your program does
not vequire the hires and other Apple special functions you can ‘
change these bytes to $1240, thus saving a few pages of memory,

IMPORTANT NOTE!

The standard XPLO program space is arranged to use the first
text buffer and the second hires buffers Therefore the MIX
intrinsic does strange things. If vyou need to use the MIX
operation, or need more than 10k of program space far a program
which uses hires, then you should use I2LBIG intead of the
normal IZL., IZLBIG splits the XPLO program across the hires
buffer and allows programs to be 24k in size and still use
hires, The penalty is that the disk space they use when they are
saved 1s larger since it includes the hives buffer. There is no
reason to use IZ2LBIG if your program does not use hires.

PAGE - 64

