:..x.,.-'.-% Appla i

A -.-::-.-.M.am-". PSR

e Apple II Monltors Peeled

t 3
¥

T

i3

TR R R

DISCLAIMER OF ALL WARRANTIES ANDN LIABILITY

APPLE COMPUTER INC. MAKES NO WARRAMTIES, EITHER EXPRISS 0RO [100,
WITH RESPECT TO THIS MAMNUAL OR WITH RESPECT TO THE SOFFWARE TSI ET
IN THIS MANUAL, ITS GUALITY, PERFORMANCE, MERCHANTARILITY, O FLITHENR
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER TNC. SOFTWARE 145 S0l o
LICENSED "AS 18". THE ENTIRE RISK AS TO ITS QUALITY AMD DERFOMHANCE [N
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING PN
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTREBIOH, Ol
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL MNECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1M
NO EVENT WILL APPLE COMPUTER INC. BE LTABLE FOR DIRECT, TNDIRECT,

INCIDENTAL, OR CONSEQUEMNTIAL DAMACES RESULTING FROM ANY DEFECT 1IN 1M
SOFTWARE, EVEN IF APPLE COMPUTEER INC. HAS BEEN ADVISEDR OF THE

POSSIBILITY OF S[UCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLISTON O

LIMITATION OF IMPLIED WARRANTIES OR LIABTLITY FOR [MNCIDEMTAL O
CONSEQUENTIAL DAMAGESR, 50 THE AROVE LIMITATION OR EXCLESTON MAY NOT

ARPEY T YOS

This manual is copyrighted and contains proprietary Informat lon. A1)
rights are reserved. This document may not, in whole or part
copled, photocopied, reproduced, translated or reduced to any
electronic medium or machine readahbhle form without prior conment, In
writing, from Apple Computer Inc.

Fren

©1981 by APPLE COMPUTER INC.
1926@ Bandley Drive

Cupertino, Califeornia 95@14
(448) 996—-101¢

The word APPLE and the Apple logo are repistered trademaris ol
APPLE COMPUTER INC,

APPLE Product # D2L0O0OI13
950-00183

Printed i USA

r@m/rYyrrmrToTTTMTMTTNETTYTTET AN

!

A

Apple

TABLE OF CONTENTS
PREFACE

INTRODUCTION

OVERVIEW

CHAPTER 1

MEMORY ALLOCATION

1
2
3
3
13
13
13
13
14
14
15
16

Menitor Usage Memory Map
RAM Memory Allocation by Address
Page Zero
Page Zero Fields
Pages One through Three
Page One (SY1¢9 — @LIFF)
Pape Two (SP209 - U2FF)
Page Three (S@30¢Q - (3FF)
Pape Three Address Table
Papes Four through Seven & Eleven
Scereen Memory Address Table
Peripheral Controller Work Areas

MONITORS PEELED

Vi

vl

Vil

TMTMTMTN

fFeSrT*TSTTTSTTTTTTTNETETTTAETOTAET

—

— — . i o o w

'S EREEREREEEEE E T E T R E R R R R R R

CHAPTER 2

INPUT AND OUTPUT

17

17 Keyboard Input Jdivision of Labor

18 Table of Routines

21 Calls to Keyboard Input Routines

4 Table of Keyboard Input Calls

24 KEYIN Routine Replacement

25 Kevboard Input Monitnr Routine

2h Address Table 1 — Character Input
27 Address Table 2 = Line Input

28 Overview — Text Output to the Screen
24 Dutput witnin the Scroll Window
3 Page Zero Fields

11 Serall Window Output Routines

34 Screen Format Control by Routine

15 ‘Screen Format Control by Poke/Store
i Scroll Window Data Manipulations

b 6 Address Tahbhle

W Cursor Pogition Control

19 Address Table

il Ceneral Text to the Screen

1 Address Tabhle

44 Control Characters

431 Dutput without the Seroll Window
45 Addregs Table

ity Applesoft Sample Program

4/ Secondary Display Areas

L Copy Primary to Secondary

44 Set BASL,H for Secondary Display Pagse
&8 Address Table

49 Birect Control Addresses

) Integer BASIC Sample Program

Hil Applesoft Sample Program

TABLE OF CONTEN'S

CHAPTER 3
INTERRUPT PROCESSING

53
54
54
55
55
56
56
57
57
58
58
58
59
61
61
61
61
62
62
62
63

Interrupt Processing
NMI Interrupt
RESET Interrupt Support
TRQ/BRK Interrupt Handling

RESET Interrupt — 01d Monitor
Address Table

RESET Interrupt — Autostart Monitor
Initialize System Confipuration
Cold/Warm Determination
Power—0On Initialization
Syvstem Restart
RESET Vector Mpdification by User
Address Table

IRG/BRK Interrupts
IRQ/BRK Interrupt Recognition
IR} Interrupt Handling
BRK Instruction Interrupt
RRK Instruction = Saving of Status
BREK Instruction — O0l1d Monitor
BRE Instruction = Autostart Monitor
Address Table

v MONITORS PEELED

TrTroTrTreYTT*TTTEETTTETEAETTAAAEDN

CHAPTER 4

MISCELLANY

65

65
65
67
HH
68
69
69
64
7§
7P
9
(!
7
71
12
73
13
3
74
75
16
P
17
711
8
B
il
H 1
B2
H2
02
Hi
83
H3
5 8

Hi)
B

B

H5
a5
B
Bb
a7
A
28
e

(k!

Machine Language Development Aids
Address Table
LORES Plotting
Page Zera Filelds
Address Table
Data Manipulation Functions
Routines
Memory to lMemory Move
Jump to Address with Registers Loaded
Increment Address Fields
Save b3#2 Registers
Restore 6502 Repisters
Multiply Two Byte Fields
Multiply Routine

Divide Four Byte Dividend by Two Byte Divisor

Fstabhlish a RESET Vector
Convert Hex Characters to Value for Use
Disassemble an Instruction
Address Table
Applesoft Sample Data Manipulation Program
Monitor Command Processor
Entering the Monitor Command Processor
Calling the Monitor Command Processor
Address Table
Applesoft Sample Program
Speaker use through the Monitor
Address Table
Cassette Tape Input and Cutput
WRITE
READ
Cassette Input/Output Internal Routines
HEADR
RDZBIT
RDBIT
RDBYTE

WRBIT
WREBYTE

Paddles, Buttons and Annunciator I1/0
Came 1/0 Hardware Address Table
WAIT Eoutine
WAIT Routine Delay Times
Use of Control-Y with Parameters
Paddle Interference — Sample Program
Registers for BASIC Monitor Calls
Decimal to Hex Conversion
Applesoft Sample Program

Step and Trace Peculiarities

TABLE OF CONIENTS v

Vi

MONITORS PEELED

rrr*rT™TwTmMhMrTrNErTTETETRETTEEANT

TR EEREREE R EE R R I T I R R R "

PREFACE

The Apple IT Reference Manual contains a complete assembly listing of
Lhe Moniter program in the Apple I1. The Apple 11 Monitors Peeled
Manual (this book) contains descriptions of the warfisus routines in

the Monitor and address tables arranpged by topic instead of in the
gequence of location within the machine. The material vou find here

has been chosen and organized teo allow proprammers of the Apple II to
make converient use of routines in the Monitor from their programs.

Many of the CALLable points in the Monitor fall under more than one

topics The layout of this book is intended to minimize the
necessity of paze flipping and cross referencing, so those points
which seem to be appropriately described under more than one topic
will be found in each applicable table.

This document covers the Apple T1 Monitor (both the 01d Monitor and
the Autostart Monitor versions), ROM address range S$F8@@-SFFFF. This
puhlication does not cover BASIC, APPLESOFT, DOS, HIRES, SWEETI16, or

Floating Point Arithmetic utility routines.

INTRODUCTION

There are two Monitor ROM's available for the Apple II. The two
Monitors are identical for mpst functions. They differ only in certain

features. This book deseribes both Monitors, with indications provided
whenever the information applies to only ecne of the two.

Some thousands of Apple 11 computers have been shipped with the
ciarlier version of the Monitor. In this book, that will be referred
tiv as the 01d Menitors. In 1979, a new version of the Apple IT Monitor

was developed. This Monitor contains new features to facilitate system
start=up and program editing, at the expense of removing the

instruction trace and single step facilities and sixteen bit multirply-

divide routine of the 0ld Monitor. This new Moniter is called the
fintostart Monitor in this book. The Autostart Monitor is availahbie
lronm Apple Computer Inc. and from many computer dealers under the

name Autostart ROM, Apple Part No. AZMEBR27.

[is easy to determine which Monitor is in a machine. If the machine
comes up with the APPLE 11 lepend at the top of the screen when the
power ia turned on, the machine contains the Autostart Moniter. If the
machine comes up with the Monitor prempt (*) then it contains the 0ld
Monitor.

A program can alsc determine whether the Monitor is the 0id or the

Autastart ROM. The byte act SFAFF (64255 or =128l) contains S$@@ in the
Autostart and S$@1 in the 01d Monitor,

PREFACE wvil

OVERVIEW

CHAPTER 1

MONITOR USAGE MEMORY MAP
Use of memory by the Monitor and by the Apple II1 for machine
control and display to the screen.

PAGE ZERO

Description in detail of all memory locations in page zero usoed

by the iHonitor, indicating legal range of values and all routlnen
which use the location.

PAGES ONE THROUGH THREE

General descriptions of pages one and two and specific
description of fields in page three.

PAGES FOUR THROUGPR SEVEN AND ELEVEN
Description of how text is maintained in "screen refresh memory"

for display on the screen, both primary and seceondary display
areas for text and low Resolutlion (Color) graphics.

PERIPHERAL CORTROLLER WORK AREAS
A chart showing the scratchpad areas available in RAM memory for
use by peripheral econtroller programs.

CHAPTER 2

KEYROARD INPUT DIVISTON OF LABOR

Descriptions of the lower level routines used by the Monitor to

read data from the keyhboard, including subrontines for cursor
movement without reading characters.

USER CALLS TO KEYBOARD INPUT ROUTTIWES
Sperifications for user calling of the routines at all levels for
input of characters from the keyboard and for user program
simulating (replacirg) the keyboard as the input device.

KEYBOARD INPUT MONITOR ROUTINE
Table 1 contains addresses for character by character input from

the keyboard via the routines described in the previous section.
Table 2 contains addresses for line input from the keyboard.

OVERVIEW = TEXT OUTPUT TO THE SCREEN
Because there are so many ways to write text to the screen, this

section contains an overview of the following pages on screen output.

TEXT OUTPUT WITHIN THE SCROLL WIEDOW

Detailed description of the normal method of printing data to the
screen, as used by PRINT of BASIC, irncluding page zero reference
table for Secroll Window services.

viii MONITORS PEELED

BEEEEEEEEEENEENENEEN NN N,
" EEE R E R R E R R R R R R R T R R R R

SCREEN FORMAT CONTROL BY ROUTINE

Table of addresses of routines in the Monitor which control the
format of the Scroll Window and the format of data display.

SCREEN FORMAT CONTROL BY POKE/STCRE

Description of methoas of controlling the screen display format
without calling routines in the Monitor.

SCROLT, WINDOW DATA MANTPULATIONS
Table of Toutines which affect the data displaved in the Scroll

Window, such as eclearing part of it or scrolling it.

CURSOR POSITION CONTROL

Description of facilities for moving the cursor relative to
current position or to an absolute location.

GENERAL TEXT TO THE SCREEN

Printing data to the screen whether some other device has bhean
established (via CSWL) or not, and printing some things by a call
to a Monitor routine which loads the A-reg and ecalls COUT ditself.

TEXT OUTPUT WITHOUT THE SCROLL WINDOW

Ways and means of handling the screen as a formatted display

device, with or without part of the screen being detined as a
Scroil Window.

SECONDARY DISPLAY AREAS

Different methoeds of getting data into the secondary text display
Arenas

CHAPTER 3

OVERVIEW OF INTERRUPT PROCESSING

General and specific definition of interrupts and interrupt

processing with regard to computers in general and the Apple II
in particular,

RESET INTERRUPT - OLD MONITCR

Description of tandling a RESET interrupt with address table
allowing user call tou suhsets.

RESET INTERRUPT — AUTOSTART MONITOR
Deseription of handling a RESET interrupt with address table

allowing user call to subsets. Description of Soft Entry Vector
setup and use.

[RQ/BRE INTERRUPT HANDLING

Descriptions of handling these types of interrupts by both
flonitors, with Address Tables.

OVERVIEW ix

CHAPTER 4

MACHINE LANGUAGE DEVELOPHENT AIDS
Address table for routines in the Monitor which can be called 1o

provide debugging information either by moving the informatfon to
some other place in memory or printing Information throuph OO,

LORES PLOTTING
Descripticns of the routines in the Monitor which support this
function, with a table of addresses for directly calling them.

DATA MANIPULATION FUNCTIONS
Description of the routines in the Monitor which move data from

one place to another, or change the format, or operate on one
item with regard to another,

MONITOR COMMAND PROCESSOR

How to call the Monitor Command Processor, to have it execute
Monitor commands and return fo caller or stay in Monitor mode.

SPEAKER (BELL) USE THROUCH THE MONITOR
No music here. Thiz is a description of how to use the spealer an
a signaling device in the same manner as the error alarm or RESET
key alarm.

CASSETTE TAPE INPUT AND OUTPUT

Description of all the routines involved with reading or writing
of tape, with user call information specified for the high level

routines. Includes list of calling proprams for each point.

PADDLES, BUTTONS, AND ANNUNGIATOR I1/0
Description of paddle reading for the machine lanpuage programmer
and addresses to usge for sll these devices.

WAIT ROUTINE

This routine will take control of the machine for a lensth of
time depending upon the input A-repg value. Table and formula are
provided for use where Interval between events is eritical.

USE OF CONTROL-Y WITH PARAMETERS

bample machine Ianguage praogram for rapid reading of the
paddles.

REGISTERS FOR EBASIC MONITOR CALLS

The Monitor GO command routine makes it passible to call from
BASIC most Monitor routines which receive input in registers.

DECIMAL TO AEX CONVERSION

A sample program that shows how to convert from decimal to
hexadecimal .

STEP AND TRACE PECULIARITIES
Nifferences hetween operation of the machine with and without
Single Step in the 01d Monitor.

x MON[TORS PEELED

rTYyrT*rTrTrrTeTen

mrTrT N

T TT"TTMT

TrTT
T EEEREEEREEEEEE R R EE R E "

T T

CHAPTER 1

MEMORY ALLOCATION

MONITOR USAGE MEMORY MAP

Memory is divided into 256 byte sections, generally referred to as
"papes". As with most countable items in computers, memory pages are
numhered from zero. Page zero is very special in that the full
address of a byte in page zero may be expressed in a single byte.
Many hOR2 processor instructions are only two bytes in length because
the operand is in page zerc. Thus, Monitor usage of page zero
receives heavy treatment in the following section.

Page one {address range S5§10@-SP1FF) is also special in the Apple II.
This entire 250 byte area is called the "stack™. The stack is a
temporary storage area for which special instructions are provided in
the 6562, The contents of the A-register or P-register may be pushed
onto the stack, which means the contents of the indicated register
are stored in the stack at the location currently specified by the
S-repister: then the S-register i{s decremented. Data may be pulled or
popped from the stack, which means that the S-register is
incremented, and then the byte pointed at by the S-regpister is picked
ip into the appropriate repister. A JSR instruction causes the
current contents of the Program Counter to be pushed onto the stack

hefore the jumps. An RTS instruction pulls two bytes from the stack
into the Propram Counter.

The Monitor contains instructions which use the stack. However, the
Monitor does not initialize the stack pointer repister to a presat

value or load the S-rep at any time.

Pape two (address range 3@20@-5@2FF) is defined in the Apple IT as the
weybonard input area. The Monitcr routines which support reading of
the kevhoard store the information into page two for use hy the
calling program after the next carriage return is detected.

I'ape three is address range S@3PP-SP3FF. Most of this area is unused
by the Monitor. Quite often the first 208 or so bytes are used for
machine l[anguage programs called by APPLESOFT or BASIC proprams. The
Monitor uses only the last 16 bytes, as described in the Page Three

Address Table. (Note, however, that DOS uses the 32 nytes before the
Mlonitor’s 16.)

Pagres four throuph seven comprise the primary text or color graphics
display area. Pages eipht thru eleven comprise the secondary text or
color praphics display area when that Ffeature of the Apple II is
nsed. However, page eight is gsenerally the first page of the user

In the address table, pages four thru seven and eight through

¢leven are described together when specifying memory address per
serecn line.

AT -

MEMORY ALLOCATION 1

From address S@80% to the end of memory in the machine is the user

area for programs and data.

However, 1if Illigh Resclution Graphics is

in use, then memory area from $200@ through $3FFF is the primary

display area for that function and $4080 through S$5FFF may be used as

the secondary display area for that function.

RAM MEMORY ALLOCATION BY ADDRESS

@RR@ \Page zero
@IFF |

A1AG |Stack
AB1FF |

@208 1Kevboard Inpnt
#2=F |

B33} |Available

=gt — e S e =

B3CF |

@3ng |DOS

@3EF |

A3FP |Vectors

A3FF |

R4y [Primary Text

B7FF |and LORES Area

P8P |User Program
Jand Data space
@BFF |to RAM size.

|

|ROM APPLESOFT

|USER PROGRAM

2008 |
| INTEGER
2FFF |BASIC DATA
r
IFFF |
I
Anleln
1
5FFF |
I

|

3FFF —end 16K machine
|

JFFF —end 32K machine

|
BFFF —and 48K machine

qRﬂM APPLESOFT
COMPILER/
INTERPRETER

Secondary Text
and LORES

Primary HIRES

RAM APPLESOFT

[ISER PROCRAM
secondary HIRES

2 MONITORS PEELED

T TrrrrTrrroTTrTT"YTrRPWYTRERYYFANFRENEN

B N E NN E AR R R EEE E R R R R R R

PAGE ZERO

The Monitor makes use of the pape zero locations from 32 (52¢) through
/3 (849) for general functions and normal operations. Locations 74-77

($4A=4D) are not touched hy the Monitor. Tocations 78-79 {84F~4TF) are

modified as descriked below to provide a random nunber starting point
For an application progran.

Iv addition, the 0Old Monitor uses locations 8@-85 (35@-55) for the 16
bit Multiply and Divide routines (which are available for problem

program use but are not used by anvy other part of the Monitor). These
lncations are not used by the Autostart Monitor,

The Autostart Monitor uses locations (f and 1 during system
initialization. This initialization is described in the section on

"RESET Interrupt — Autostart Monitor" and below in describing the use
of locations @ and 1.

PAGE ZERO FIELDS

Dec Hex
Addr Addr

Monitor

Label Descripticn

@ sp
a1 5@l

LOCH
LOC1

These locations are used by the Autostart Monitor
during the automatie Disk Bootstrap function which
takes place when the computer 1is powered up. Using
these locations for indirect addressing, the slot
addresses are checked — from slot 7 down thru

slot 1 - to determine presence of a disk controller.
If one is found, a Jump Indirect via $@PF-0I1 is

executerd to Initiate the bootstrap operation.

¥ 520 WHNDLET Left columm of the Scroll Window:

Range is d ro 39 (527).

This field is used only in VTABZ which sets BASL,H
to the memory location corresponding to CV and
WHMDLFT. The contents, when changed hy user
program, become effective on the next scroll
operztion, clear to end of page operation, or
carriage return output. CH contains cursor
horizontal position relative to (WNLLFT).

After changing the contents of WNDLET, either CALL
VTAB or print a carrlage return to the sereen to
make it take effect.

EE! G2

WHIWDTH Width of the Scroll Window:

Range is 1 to A4@-(WNDLFT).

Wken a character is written throurh COUT to the
screen it is placad at (BASL),(CH), after whiech CH
is Incremented. Then (CH) is compared with
(WNDWDTH) to determine whether the cursor has
exceeded the right margin of the Secroll Window.

MEMORY ALLOCATION 3

Dec flex Monitor . tec Hex Monitor

Addr Addr -.r_;f:'{bE:]_ DEEETiPtiﬂﬂ E l_j Addr f‘iddl’; Label DESCI‘iPtiGn

l"'ltf " - - - E I -

314 522 WNDTOP Top line of the Scroll Window: : 38 526 GBASL Memory address within the screen area of the left

Range is @ to 22 (816) for full text screen.

RPange is 2@ to 22 (514 apnd 515) for mixed graphics E l
and text.

Valid walues for VTAR in Basics are 21, 22, 23.
This field is used during a scroll aperaticen to

19 827 GRASH end point of the desired line for LORES plot. This
field is set by the GBASCALC routine to the memory

location appropriate for the line number specified
Iin the A-reg. See MASK at $2F.

indicate the line on which the operation should L 528 BASL This two byte field is the memory address for the
start. It iz alse the line an which the cursor is i1 529 BASH left e

; nd character pesitio f ri
placed on completion of a HOME gperation (eclear : ndi The shdi see

line, within the Scroll Window. The contents are a

the window, place cursor at top left). funetion of CV and WNDLFT.

5 5 523 WNDETHM Nominally, bottom linve of Seroll Wimndow:
Range is (WNDTOPY41 to 24 (518),
WHNDETM contains the number of the first line below
the Scroll Window. Contents of WNDBETM are tested
only on output of a carriace return (S8D) or line
reed ($584A). It is used hy Clear te Fnrnd of Pape and

by Screll routlines.

This field is set by rhe BASCALC routine to point
to the memory address for the left end of the
screen line specified in the A-reg. This gall to
BASCALC is usually accomplished by the VTAB
routine, which then adds (WNDLFT) to BASL,H to

point to thke left end of the line within the
sernll Window.

TTTT

36 524 GH H spl acement from WHDLFT where next character to 40 $7A BAS21, This twoe byte field is used as a work !
. . = SR re area on
the screen will be placed: Range is @ to _ 43 $2B BASZH during a scroll operation. It is the destin *J:EI'F
(WNIWDTH) — 1. After the screen output routine Ghat il

line pointer used as each line is moved to the

STOADV places a character into the screen area as ey
positiion above current.

part of normal character output, CH is then

ineremented and coopared teo WHNIWDTH. If CH is not
less than WNIWDTH, a carriapge return will he

gim:lated.

Ah 820 H2 Right end point of horizental line being drawn by
the HLINE routine: Ranee is ¢ to 19 ($27).

This byte is set by the calling program hefore

M at C : G : i ng : T ; .
ote that CH is used for echoing keyvbhoard input to HLINE is called.

the screen by the Monitor GETLY etc. routines.

H " LITNEM Low byte of two byte pointer (LMNEM, RMNEM) used

42 v L iti f
37 525 g4 Vertical screen position (line number) for next by Disassembler as index to mmemonics table,

character to be written to the screen: Range is i
to 23 (517). The content of CV is relative to the
top of the screen, not to the top of the Scroll
Window. It may be set by loadipg the desired line
minher into A-reg and calling TABV. It may be set
hy POEFEing the line mimber into CV and then
calling VTAB. Actual storape of a character into
the screcen area includes use of BASL,H for line
mimber, not CV. The calls above to VTAR or TABY
are to set BASL,H frem ¥V (and WIDLFT) for
inmediate future reference.

" " RTNL Save area used by the Instruction Trace routine
of the 01d Monitor.

Bottom point of a vertical line being drawn by
VLINE routine: Range is @ to 39 ($27) for mixed
sereen, @ to 47 ($2F) for full screen praphics,
This byte must be set before VLINF is called. UHote
Chat this byte is used when the Clear Screen
(CLRSCR) routine uses VLINE to clear the screen.

£ s BHNIEM Used with LHNEM as table index for rmemonic table

1 ¥ 1- i 'nT. r.. 2
If €V is at or helow WMDBTM it will remain on the by the Disassembler.

current screen line as carriage returns go by
while the contentg oof the Scroll Yindow will he

iy L]
RTNH Used with RTNL as a save area hv the I
serolled for each. area o e Instruction

Trace routine of the 0ld Monitor.

G B G @@ @MW WYY

T r@rTrTMT"TTTrYr° "TYTETTN

iii

4 MONITORS PEELED

T
&

MEMORY ALLOCATION 5

Dec Hex Monitor
Addr Addr Lahel
46 S2E MASE
o " FORMAT
s 4 CHES1M
47 S2F LASTIN
B W LEMNCTH
- b SIGH

& MONITORS PEELED

Description

With this label, this location 1is used as a S{F

or $F@ by PLOT depending on whether the point is
on the high side or the low side of the two
horizontal plot lines represented by the GBASL,II
pointer. FEach location of the form (GBASL),Y
contains two points on the screen, one above the
other. MASK is used to set the appropriate one
while leaving the other unchanged.

Using this label, the Disassembler uses this byte

as temporary storapge for the code which indicates
the format of the Instruction for display

PUITPOSES.

This bhyte is used during cassette tape read to
continually accumulate the checksum which will

be compared to that generated during the write
operation which created the record. This byte is

initialized to zero at the beginning of a tape
read. As ezch byte is stored inteo memory it is
Exclusively ORed against CHESIM. After the last
byte has been stored, one more byte is read from
the tape and compared teo CHESUM. If equal, a good
read may be assumed. As this result is not finally
stored back into CHKSUM, that field cannot be used

by the calling program to determine success or
failure of the read. A method for this

determination will be found in the section
“"Cassette Tape Input and Output™.

With this label, the RDBIT routine uses this byte
as a work area to determine whether the sense of

input from the cassette tape input register has
changed.

This field is set by the Disassembler to indicate
the length of the instruction. After ocutput of the
disassembled instruction, ?CADJ uses this value to
compute ney values for PCL,H, which are returned

to caller in the A and Y reg for user storage to
PCL,H. Instruction trace in the 0ld Monitor also
uses this Sield to indicate the number of byvtes to
move to the instruction trace execution work area

(XQT).

After a call to MULPM or DIVPHM (signed 16 bit

multiply or divide in the 01d Monitor), the S$@1
bit of this byte is set if the alwavs—-positive
result is to be complemented by the calling

Progran.

roT rrTTTYTYyTYYry¥yTT"TTTTYTTAEATTOTAAANT

T A AR LR R R R E R R R R R R R R

Dec Hex tlonitor
Addr Addr Label
48 83¢ COLOR
49 S| MODE

S 532 INVIFLG
21 £33 PRIRIPT

Description

This byte contains the code for the color of
points to be placed on the screen in graphics
mode. The SETCOL routine is entered with a value
in the low order four bits of the A-reg. This
value is then placed in both the high and low
nibbles of COLOR. COLOR is then uzed with MASK in
setting the wvalue of the byte in the sereen area

to accomplish setting a particular point to the
selected color.

Color can be set directly by stuffing the value
multiplied by $11 in color. For example,

color = orange (9): From assembly — LDA #99,
S5TA color. From BASIC — POKE 48, 0%*17,

This byte is used by the Monitor command
processing routines to control parsing and to
control operations when a blank is encountered
after the hex digits. For example, a hex address

followed by a colon causes setting of MODE so that
during further processing of the input line each

blank encountered signifies end of a hex value to
be placed in memory. During parsing, the contents
of MODE indicate where the hex walues should be
stcred for use when the command itself is

encountered. MODE is set to appropriate wvalues by
plus, minus, colon, and period.

This byte is a mask used by COUTIl to cause
characters written to the screen area to display
white on black (INVFLG=SFF) or black on white
(IXVFLG=83F) or blinking (INVFLG=$7F). This field
1s set to $FF when a RESET occurs by the routine
at SETNORM. The routine called SETINV can be

called to set reverse video. The Monitor does not
set blinking,.

This byte contains the prompt character which is
written to the screen by the Monitor GFTLHN routine
in preparation for reading a line nf characters
from the keyboard. When the RFESET key is pressed,
the Old Monitor quickly enters the MON routine, at
which point the PROMPT field is se:f to SAA, "*",
The Autostart lMonitor also sets the '"*" prompt
cheracter at the MON routine, but this Is not

necessarily a part of processing the RESET
interrupte.

MEMORY ALLOCATION 7

Dec Hex Monitor
Addr Addr Label
52 534 YSAV

53 535 YSAVI]
54 336 CSWL

e 537 CSWH

56 538 KSHT,

57 539 KSWH
58 S34 PCL

59 S3B PCH

8§ MONITORS PEELED

Deseription

This tyte is a save area used

Command Processor. The Y-reg
Command Processor in indexing
line. When a command has been
saved at YSAV before going to the selected service
routine. On return to the Command Processor, the
Y-reg is reloaded from here before transfer of
control to NXTITM to continue scanning the input
line.

by the Monitor

is used by the
through the input

This byte is a save area for the Y-reg across a
call to the screen output routines.
and restored in the COUT1 routine.

This two byte field contains the address of the
routine which is to receive and dispose of output
characters. When the RESET key 15 pressed this
field is initialized to point to COUT] to send
output characters to the screen. Entering a
Monitor Command nPec (n=port number, Pc=control-P)
will cause the Monitor to set CSWL to @@, CSWH to
Cn. The routine at that location will

(in the A-reg) each byte "written" through COUT,
which is a JMP (CSWL).

If the Monitor Command "@Pe" is executed, CSWL,H
is set tc point to COUT1 instead of to CO@(.

This two byte field contains the address of the
user input routine. It is set by RESET key
processing to point to KEYIN which gets its
from the keyboard. The Monitor Command nKe
number, Kc=control-K) causes the setting of
to @@, KSWH te Cn.
time the Monitor or executing program asks for

another byte of input by calling RDKEY or one of

the routines which in turn calls RDKEY.

input

ESWL

The Monitor Command "@Kc" results in setting
KSWL,H to point to KEYIN instead of to C{@¥d.

This field is a save and control area for the
Program Counter. In addition to the Mini Assembler

to keep track of where the next instruction is to
be placed.

When a BRK instruction is executed, this field is
set to indicate the address stacked by the 652,

pointing to two bytes beyond the BRK instruction

executed.

decoded, the Y-reg i=s

Y-reg is saved

then receive

(n=port

This routine is then called any

Y *reTrFoYTT¥FFYFAIYIYTT"TTYTYFYRERTTTTTOTPNENTN

"TRER

—— o e —

" EREEEREREEREREER

e Hex Monitor

Addr Addr Label

(i S3C XOT
KOTNZ

bl=6/ 53D-5413

6 53C AlL

61 53D AlH

Description

This field is used during Monitor commands L and G

(Disassembler and Monitor "GOT0"). During
disassembly of instructions this field is

incremented as required. This field is used for a

Jump Indirect in execution of the Monitor G
command .

Updating of this field is accomplished with the
assistance of the PCADJ routine whenever use

requires incrementing in accordance with the

length of the instructions. ({See LENGTH at 47 or
$2F.) On return from PCADJ, store A to PCL and Y

to PCH to accomplish update.

This field is used by the 0ld Monitor in support
of Monitor commands 5 and T (single instruction
step znd instruction trace). For those functions,
it is maintained as a pointer to the next
instruction to be handled.

This field is used as a work area for instruction
step and trace in the 0ld Monitor. The field is
eight bytes long and overlays AlL,H; A2L,H; A3L,H;
and A4L,H. The next instruction to be executed
(indicated by the contents of PCL,H) is moved to

this field, possibly modified depending on
instruction type, and then executed here. This

field is not defined in the Antostart Monitor.

Multipurpose Monitor work area:
May be clobbered by Instruction Trace in
the 0ld Monitor; see XOT above.

When the Monitor begins processing a command, MODE

ig initialized to zero. As the input line is
scanned, hex digits are first placed into A2L,H.

From there they are moved also to AIL,H and A3L,H
as long as MODE remains zero. When a plus, minus,
coelon, or periced is encountered, MODE is modified
to Indicate which, and AIL,H will continue to

contain the value, terminated by the operator
encountered.

AIL,H is the primary index for the BLANK Monitor
command, memory examine or display.

AlL,H contains the addend for the Monitor ADD
command .

MEMORY ALLOCATION 9

Dec

Hex

Monitor

Addr Addr Label

62
63

S3E
S3F

A2L
AZH

Description

AlL,H contains the minuend for the Monitor
SUBTRACT command.

AlL,H Is the source field pointer during the
Monitor MOVE command.

AIL,H is one of the two indices used in the
Monitor VERIFY command.

AlL,H iIs the source field from which PCL,H is set
on L and G Monitor commands, and the 0ld Monitor
commands 5 and T, 1f an address is specified. 1If
no address is used in the input 1line, then PCL,H
is the residue of the last command which
maintained or used it.

AlL,H is the memory pointer used for cassette tape
READ and WRITE Moniter operations.

Monitor routine NXTAl increments AlL,H by one and
then compares the result to AZL H. If AZL,H is
less than AlL,H, then Carry is set when control is

returned te the calling program.

Multipurpose Monitor work area:

May be clobbered by Instruction
the 01d Monitor; see XQT above.

Trace in

This field is thke receiving field into which hex
data is stored from the input area during Monitor
Command parsing. When the command itself is
encountered, A?L,H contains the last parameter
entered. While MODE contains zero {until & plus,
minus, colon, or period is encountered) AIL,H is
continually copied into AlL,H and A3L,H. If a
"less than" sign 1is encountered, A2L,H is
immediately copied to AAL,H and AS5L,H.

A2L,H is used toc terminate examine {(memory
display), tape write, tape read, memory move, and
memory verify operations.

AZ2L,H contains the subtrahend in a Monitor
SUBTRACT command operation.

A2L,H contains the augend in a Monitor ADD command
aoperation.

A2L,H is the source field and A3L,H is maintained
as the pointer for the Monitor STORE command.

10 MONITORS PEELED

TTTTMN

T ro"a yTrm»Q~"™m¥r¥vYy7rPrmTTMNMTT~T
B EEREEEREEEEEEE R EEEEEEEEE "

reMeormmm

e Tlex Monitor
Addr Addr Label
IEl"'ll S"—ri-{.lﬂ Jﬂll-.'-s-[-l

f1 % S41 A3H

fy iy 42 A4TL

] 543 ASH

Description

AZL,H contains the port mmber in an input port
select or output port select {control K or P)
command «

Monitor routine NXTAl increments AIL,H by one and

then compares the result to A2L,H. TIf A2L,H is
less than AIL,H then Carry is set when contrel is
returned to the calling program,

Multipurpose Monitor work area:

May be clobbered by Instruction Trace in the D14
Monitor: see X0OT above.

AIL,H and A3L,H are hoth filled from A2L,H during

Monitor Command processing scan of the input 1ine
as described ahove regarding AlL,H.

A3L,H 1s used as the destination pointer during
Monitor STORE command processing.

A3L,H is used as a work area bv the Register
Display routine, which is called by the control-E

Monitor command, or as part of the single eyele or
trace operations of the 0ld Monitor.

Multipurpose Monltor work area:
May be clobbered by lnstruction Trace in the 0Old
Monitor; see XOT above.

This field (and AS5L,H) are loaded from A2L,H
during Manpitor Command Processor scan of the input
area when a "' character is encountered.

A4L,H is the receiving field pointer during a
Monitor MOVE command execution.

A4L,H 1is the secomnd field pointer during a Monitor
VERIFY aoperation.

Monitor routine NXTAY {increments A4L,H by one, and
then dreps inte NXTAl, which increments AIL,H by
one and then compares the result te AZL,H, If

A2L,H is less than AIL,H then Carry is set when
control is returned to the calling program.

MEMORY ALLOCATION 11

Monitor
Label

Dec Hex
Addr Addr

68 S44 ASL
60 845 ASH

NOTE :
ASH = 845 = ACC

69 845 ACC

79 $4 6 TREC
Pt} 547 TYEREG
72 G4 8 STATUS
73 549 SPNT
74 S4A nnused
79 S4B unused
716 S4C unused
I S4h unused

Description

Multipurpose Monitor work area:

This field is not within the hounds of the area of
XOT, which, in the 01d Meoniter, overlays AlL

through Aé4H.

This field ie filled from AZL,H as described above
for A4L,H. However, the field is not otherwise
referenced within the Monitor, except that ACC
{below) is also ASH.

This five byte fileld is a register save area.

With the fellowing exceptions, the 632 registers
are stored by the SAVE routine and reloaded by the
EESTORE routine.

S—Teg is stored at SPNT by 3AVE but is never
reloaded.

The A-reg is stored at ACC by the IR0 routine on
either an IR() interrupt or execution of a BRK
instruction., On a BRE, entry into the S5AVE

routine at label SAVI] is5 used te store the rest
of the repisters. The other registers are not

stored by the Monitor for an IR0 interrupt,

As described above, the registers are stored in
this area on executiun of a BRK instruction.

After execution of a BRE instruction or on

execution of Monitor command control-E, the

contents of this area are used to display the
"registers" on the screen.

The registers (except S-reg) are loaded from this

area before jumping to the requested location on
execution of the Menitor G command.

In the 01ld Monitor Step and Trace command
routines, the registers are stored here after each
instruction execution and reloaded hefore the next
traced instruction is executed.

12 MONITORS PEELED

reYyrrmohnererTrNETTPTTTTTAETN

AR EREEREEEEEEE E R R R E R R R E R R "

noTrmmrim

Dee Hex Monitor

Addr Addr Label Description

I8 S4E RNDL Random number field, 16 bits:

14 S4¥ RMNDH This Field is centinually counted up by the KEYIN

routine while testing for key pressed. Thus, the
results are effectively random as it doesn’t take

long to overflow and start over. There is no other
reference to this field within the Monitor.

a4 850 ACL
B1 851 ACH

These three two-hyte fields are used only by the
multiply and divide routines in the 0ld Monitor.

H2 £52 XTNDL These Toutines are not called from any place in
H3 557 XTNDH the Monitor. Therefore, these fields are used

H 4 554 AITXL nnly if a user program makes use of the multiply
H5 555 AUXH or divide routines.

The section on Data Manipulation Functions
contains a full deseription of the multiply and
divide routines.

PAGES ONE THROUGH THREE

PAGE ONE (S0100-01FF)

Pape one 1s the hardware stack area. Monitor use of this area is
only by means of the 6582 instructions which use the stack, such as
"MA, JSRKR, RTS, etc. The Monitor does not initialize or set the stack

pointer (S-register) on a RESET or Power On interrupt or at any other
tlme.

PAGE TWO ($0200-02FF)

is the Keyboard Input buffer area. At label "CETLN" the
XK=replater is initialized as an index, At label ADDINP the character
read from the keyboard is stored into page two indexed by the
¥=register. The result is that on return to the calling program the

characters read from the keyboard have heen stored in memory locations
SR and up, the last character stored being a carriage return,
code $8D.

MPhnpe two

PAGE THREE (S0300-03FF)

Pape three contains '"veetors" for special handling of certain
interrupts at the high end of the pape. The low end of the page,
throvgly SB3CF, is often used for machine language subroutines.

From S@3D@ through S$3IEF is used by DOS.

MEMORY ALLOCATION 13

PAGE THREE ADDRESS TABLE

Hex Dec Funection

S@30Q3-SP3EF 7681007

Not used by the Monitor.

SEITP-S@3F1 100R-1009 The Autostart Monitor uses this location as the

BEF instruction interrupt wvector (addrecs).
SPIF2-503F3 1@018-1@111 This is the RESET (Soft Entry) Vector (address)
used by the Autostart Monitor, as described in

the section "RESET Interrupt - Autostart
Monitor™.

SPAF4 112 Powered Up indicator: if the Exclusive 0R of
"SASY" with the contents of S@E3IF) is equal to
the contents of $@#3F4 then the RESET (Soft
Entry) Vector is considered wvalid. Otherwise, a
RESET interrupt will cause the Autostart
Monitor to go through power—-up initialization,
including boot of DOS if availahle.

S@E3F5-S@3F7 1013-1015 Reserved for APPLESOFT ("&" wvector instruction).

SP3IF8-503FA 1015-1018 Control-Y Vector {instruction).

S@3FB-SG3FD 1819-1021 Non-Maskable Interrupt Vector {(instruction).

SPIFE-SP3FF 1022-1(123 IRQ Interrupt Vector (address).

PAGES FOUR THROUGH SEVEN & ELEVEN

Address range $H4@D through S@#7FF is the primary text and low

resolution graphics display area. That is, screen display hardware
displays on the screen the information stored in this part of nemory.

Address SP80# is generally the beginning of memory available to the

user for general program or data storape. However, S#800 through S{BFF
is the sccondary text and low resolution graphies diaplay area. By

POKEing -16299 with any value, the screen display hardware can be
directed to display to the screen from this secondary display area

instead of the primary display area. POKE -163@%,8 to switch »ack to
the primary display area.

Although the hardware will distlay to the screen from the secondary

display area, the Monitor does not support the feature. That is, the
BASCALC and GBASCALC routines in the Monitor convert the line maimher

input to the routine to the appropriate memory address for the primary

display area only. Use of the secondary display area is described 1in
the section "Secondary Display Areas'.

Contiguous screen lines are not in contipuous nemory locations. The
characters on a screen line are in the same sequence in memory as on

14 MONITORS PEELED

T T™ N

T T
TEEEREEEEE R EE EE R R REREERR

T

T "nNMFATR

TrrTTmMmMT

T T

the screen, bubt the lines are mixed in a manner which simplifies the
hardware display to the screen. The following table indicates for each

line rthe address in memory for the leftmost character of the line in
bath the primary and secondary display areas.

The BASCALC routine in the Monitor computes the memory address for the
line number input toe that routine in the A-reg. Using the letters to

desipgnate bit positions In the input line mumber, the following
[ndicates the result of the computataion:

Input line number (A-reg) (FPPABCDE
Memory address (BASH BASL) (U@@@1CD EABAB@@Q

This ecan be arithmetically computed, using 'module" arithmetic in

place of the ANDs and ORs of machine language. For line number
IILH {@_ 23}:

ANDE=1@24+256%((L/2) MOD 4)+{128*%(L MOD 2))+4@*{(L/8)MOD 4)

SCREEN MEMORY ADDRESS TABLE

Line Primary Display Area Secondary Display Area

Decimal Hex Decimal Hex
@ 124 AL 2048 @agn
l 1152 @480 2176 @Faag
2 1280 @5@p 2304 BogH
3 1408 @580 24372 B9
4 1536 A6RE 256 AARE
9 1664 @680 2688 FALH
i 1792 P70 2816 AREP
7 192¢ @780 2944 P &4
A 1@ 64 @428 20088 @828
9 1192 B4A8 2216 @BaR
L i 1320 @528 2344 3928
11 1448 #5A8 2472 PaAS
12 1576 B628 260 PAZB
173 1704 B6AS 2728 PALS
14 1832 @728 2856 @B28
15 19660 B7A0 2984 @ApA8
16 114 @450 2128 BasH
17 1232 #anp 2256 @A
| A 1360 @550 2384 Fosa
19 1488 @5 2512 @ong
2 1616 A65E 2640 PASH
21 1744 @6 2768 BADR
22 1872 @750 2896 @B 5@
2 2B A7D@ 324 ARDH

It is also iInteresting to note that althoueh 24 lines of 4@ characters
computes to 960 hvres, the memory area described above contains 1(24
hytes »er display area. The significance Is that some of the byvtes in

MEMORY ALLOCATION 15

pages four through seven are not dispiaved on the screen. These bytes
are eight groups of eight bytes each. This space has been set aside or

allocated for use by peripheral controller cards in slots one throuph
seven. The fpllowing table shows the allocation.

Misuse of these locatlons can be easily zccomplished, with potentially
serious results. Note that if an imape of the screen is generated
elsewhere and moved to this area in a block, the locations identified
below will be modified. If a program is }oaded from tape with the
Monitor command mmmm.nnunnR, and if mmmm is less than $@4@0, then the
bytes in the following table will he loaded from the tape. If an

attempt is made to save the screen area to disk and later BLOAD it to
the screen area, results can be confusing., The Disk Controller card,

and possibly some periphersl device interface cards keep control

information in these areas. Tor example, doing the above mentioned
BLOAD from drive 2 when the BSAVE had been done from drive 1 will
result in the disk switching back to drive l.

The Reference Manual indicates that one must be sure that Scroll
Window definition fields WNDLFT and WHNDWDTH must not add up to more
than 44. Violation of the bytes in the following table will be the
unfortunate result if this caution is not observed.

PERIPHERAL CONTROLLER WORK AREAS

Common Slot Slot Slot Slat Slat Slot Slot

(any/all) 1 2 3 &4 5 6 7

Decimal Hex
1144 @478 @479 @47a Q47 Q47Cc @A7D BATE BATF
1272 @4FE& @F4Fr9 @4FA (4FB @AFC (B4FD (A4FE @4FF
lagy @578 @579 @578 @57B @57C @457D @STE @SYF
1528 #5F8 @5F9 @5FA (5FB @5FC @5FD @5FE @5FF
1656 @678 A679 Ah7A B67R B67C @67D BET7E Ae7YF
1784 #6F8 (6F9 {6FA (6FB W6PC P6FD (@6FE GHFF
1912 @778 F779 d77IA @77 @7IC @7in @QIIE QIIF
204(% @7F8% (7F9 @IFA @#IFR @7FC @TFD @IFE @IFF

* Location 20400 (SQ7F8) has special significance. This location should
he loaded with S5CN, where N is the slot number of the active
peripheral, whenever an interrupt may occur and the ROM/PROM expansion
scheme 1s in use. This is necessary so that the return from interrupt
software used allows the nroper peripheral card to resume operation.

16 MONITORS PEELED

T ™ N
G

TrTfhw

TTrTT"TT

nrTrTTrTMrTrTAErYTYTTTTMMW

TR EEEERERERR

B E & & &

W e E W E e

“ﬁ

CHAPTER 2

INPUT AND OUTPUT

The default operation of the screen is as a scrolling device: mnew data
is entered or output at the bottom of the screen and all above is
shifted up line by line until the oldest information disappears off

the top of the screen. With a little extrz work in the user program,

it 1s also possible to use the screen as a formatted display.
Following is a description of the effects of that type of use, and

some sugegested solutions to the situations encountered.

Characters generated by the user program for display on the screen are

handed to the Monitor one character at a time., The s:creen output
handlers check for control character vs. display character, and operate
in accordance with what they find. For example, output of a carriage
return character or line feed character while the cursor is on the
bottom line of the screem will cause a scroll operation to take place.
If the screen is being used with 2 format instead of as 2 scroll
device, then the program can easily avoid output of a carriage return
or line feed when the cursor is on the bottom line of the screen.

The easiest way for the user program to read information from the
kevboard is to call the Monitor at the point where it will read in =
line (up to a carriage return) before returning control to the calling
program. When this is done, the input information is always available

at the same place in memory, There is, however, a conflict between
uging this tvpe of a call and using the screen as a format type

display. While the Monitor is receiving the keytoard input, it

"erhoes" the characters to the screen at the current cursor location.
When end of input is signaled by a carriage return, the Monitor clears
the cursor current line from cursor to the right end of the line
(within the Secroll Window). Thus, the user program muet make sure that
before asking for input from the keyboard the cursor 1s placad where
there is no significant data to the right.

It 15 possible Lo divide the screen into scroll area and non—-scroll
area., Many complicatlons arise from thls method of operation, so the

recommendad solution to the format display problem is to leave the
screen full seroll and aveid screll services when they are not

desirable.

The entry points and qualifiers for using scroell and non—-scroll areas
will be found in the section on Text Output Without the Scroll Window.

KEYBOARD INPUT DIVISION OF LABOR

The Monitor routines supporting keybovard input are designed to echo
the kevboard input to the secreen {through COUT) at the current cursor

position, and store the entered characters in the keyboard input area
(SA200-5P2FF) for the convenience of the ealling program. The
executing program may position the cursor anywhere (in the Scroll

Window) before calling the Monitor keyboard i{nput routines. On entry
of a carriage return from the keyboard, the Mocnitor kevboard input

KEYBOARD INPUT AND SCREEN QUTPUT 17

routines will cause return of control back to the calling program with
the character count plus one in the X-register and a carriaze return

in the input area as a terminator.
screen refresh memory to deftermine what was entered,

The program need not lock inta the
(Note: The X-

Register begins witn a zero, so that if five characters are entered,
the ¥X-Register will reflect 4, although the actual wvalue returned

will be 5.

X 1s incremented for the carriage return as well.

The routines described below are included in the address tahle. The
following section, "User Program Calls ...", describes program setups

for calling some of these entry points.

Hex address, + Decimal

address, and - Tecimal address are given in brackets bheneath each

routine.

TABLE OF ROUTINES

Routine

Description

GETLNZ
[SFDB7T]

[64871]
[- 665]

GETLN

| 5FDEA]
[64874]
[- 662]

NXTCHAR
[SFD75]
[64885]
[- 651]

Entry at this point causes output of a carriape retarn
(through COUT) before golng to GETLN to write the prompt
character and read the data.

Entry at this point is with the cursor properly positicned
(CV, BASL,H, and CH) as described in thke section regarding
Text Output Within the Scroll Window.

GETLN prints the prompt character and initializes X-reg for

indexed storage of the input characters into the input area.
Control then poes to NXTUHAR.

This is the top point in the character input loop. RDCHAR

is called to get a character inte the A-reg. On return the
A-reg is tested for presence of the control-U (right arrow on
the keyboard) and if it is fourd, the i-reg is then loaded
from the screen refresh memory ((BASL),Y), assuming that the
Y-reg contains the same value as CH,

If the A-reg value is SEP or greater, the lower case letter
i1s converted to upper case by AND with S$DF. The character is
then stored from the A-reg to the input area.

If the character is a carriage return, CLREOL {s called to
clear to blanks the rest of the window line, and then a

conditional branch transfers control to COUT so that the RTS
exit of COUT will return control to the calling program with
the ¥-reg indicating the input character count 4+1. That is,

the input is in memory locations $@20@ throagh SE2¢@,X where
SP2800,X contains the carriage return.

Lf the character is not a carriage return, then rcontrol is
transferred to the NOTCR routine for display on the output

device, and for interpretation with regards to control
character affecting the input 1line.

18 MONITORS PEELED

Tro™rrTMTMrErETYTTrTPATrTrTETTTIFTION

AR R R E I I I EF I I T

nmrmrTrmMmrTimw

Routine

NOTCR
[SEN3D]
| 64829

[= 797]

NOTCR]
| SFD5F |
[h4863]
[+~ &3]

CANCEL
[$FD62]
[66866]
[- 67@]

RCKSPC
[3FD71]
[64881]
[~ 655]

RDCHAR
| SFD35]
[64821]
[~ F1%]

Descrintion

This routine receives control with the character of interest
in (IN,X). The current setting of INVFLG is saved on the
stack, while INVFLG is set to $FF so that the character
"echoed" to the screen will be white on black. COUT is then
called with the character in the A-reg.

On return from COUT, INVFLG is restored from the stack. The
character at IN,X 1s then tested for either of two special
keyvs: Backspace (left arrow) or (line) Cancel (control=X).
If Backspace, po to BCKSPC. If Cancel, go to CANCEL.

If (IN,X) is neither Rackspace nor Cancel the wvalue of X-rep
i3 tested to determine whether the input area is full or
almost full. TIf there are more than 247 charactere in the
input area, a call to BELL is used to signal to the operator
that the area 1s almost full,

After or without the margin warning bell, this routine gets
control. Here, the X-reg is incremented to point at the
next location in the input area to be filled. 1If, however,
the result is overflow to zero, then entry of the Cancel key
is simulated by falling into CANCEL. In the normal case,
after incrementing the X-reg, control poes back to NXTCHAR
to continue with character input and line building.

This routine prints a back—-slash through COUT to indicate
the action taken to the operator. Control is then passed to

GETLNZ to initialize for entry of a new input line — the old
one is gone.

On entry to this routine, the backspace character has
already been printed through COUT with resulting backward

movement of the cursor. If the current value in X-rep is
zero, control is transferred back te GETLNZ for printing
prompt and re-initializing for line input. Otherwise, the X-
reg is decremented with control geing to NXTCHAR to resume
input of characters.

This routine calls RDKEY to get the next character placed
Into the A-reg. If, on return, it is found that the Escape
key has been pressed, this routine calls the appropriate
routine for reading the next character and performing the
requested Escape key function. In the 0ld Monitor, control
is passed to the E5C] routine for this purpose, after a J5R
to RDKEY to read the next character. In the Autostart
Monitor, detection at RDCHAR of an Escape character transfers
contral (via ESC including RDKEY) to ESCHNEW, which has the
capabhility of handling multiple escape funetions aftar a
single depression of the Escape key.

After any requested escape functions have been performed,

control returns to RDCHAR as if tkere had been no
interruption.

KEYBOARD INPUT AND SCREEN OUTPUT 19

| —

Routine Description Routine Description

RDKEY This routine picks up and saves in the A-reg the character

| SFD@C] from the secreen refresh memory area at BASL,H,CH (leaving

[64780] the Y-reg filled with the contents of CH). It then chanpes

[- 756] that character in memory to blinking to indicate current
cursor position.

If the key pressed is not 1, J, K, or M4, then ESCIl is
entered by JMP instead of JS5K so that the RTS will return to
the caller of ESCNEW instead of to ESCNEW.

—

T T N

Kl In the 0ld Monitor this routine is called by the RDCHAR

| $FC2EC] routine if the Escape key code is found in the A-reg hy that

| 64556 | routine. In the Autostart Monitor, contrel is passed in this
[— 98¢] case to the ESCNEW routine which then ecalls ESCI or jumps to

it depending on which key Is pressed next.

This routine asks for the next input character to be placed
in the A-reg by doing an indirect jump wvia KSWL,H, which di=s
normally pointing at KEYIN. Return is therefore to the

caller of RDKEY, not to the RDKEY routine itself,

T T™TmT

ESCNEW translates I, J, K, or M to ¢, B, A, or D

KEYIN This is the routine which gets the next input key from the respectively before calling ESC1, which returns to ESCNEW.

[SFD1B] keyboard hardware. There are two required actions and two
[64795] extra actions taken by this routine. The required actions

[— 741] are reading the kevboard input buffer over and over again
until it is determined (by presence of the 4B@ bit) that a
character has indeed been read. In this case, keyboard input
buffer refers to the 310% byte buffer at $203, and not to
the location at SCP@A. The sign flap is set or not by
checking the status of the value at S$CO@Y. 1If that value is
positive, the routine loops bhack to KEYIN. If that value is

negative, the value of SC¥@A is picked up and the keyboard
strobe is referenced to prepare for the next keyvboard input.

If the key is other than I, J, K, or M, then ESCNEW JMP's to
ESCl with Carry set, to have the appropriate function

performed. In this case, the next RTS will return control
to the RDCHAR routine.

When ESC1 is called, the contents of the A-reg (and the
condition that Carry is "set") indicate the action to be
taken. Control is transferred {(condictional branch) to the
apprepriate Scroll Window Service routine to move the cursor
without transferring data, or to clear all or some of the
screen, or some combination of these.

The auxiliary actions taken by this routine are first, to
count up tne random number field, ignoring overflow, and
second, to restore to the screen area the character modified
by the BDEEY routine to remove the blink. This restore is
accomplished by storing the A-reg at (BASL),Y, assuming that
RDKEY loaded it. This is accomplished before the keyboard
register is read into the A-reg.

CALLS TO KEYBOARD INPUT ROUTINES

The following paragraphs describe how te set up for calis to the

yvarious entry points in the Monitor for kevboard input, and what the
results will be.

"EEEEEREEEEEEERRER"

Return to the caller (of RDKEY) Is zecomplished by an RTS.

TABLE OF KEYBOARD INPUT CALLS

ESC This routine is entered from RDCHAR if the A-reg is found to
[SFD2F] contain the Escape key code. It reloads the A-reg with a new

rre* Ty MT"TM"TrTYTYFTAH"ETTN

[64815] key by calling RDKEY. 1In the 014 Monitor, it then calls ES(] Hout ine Description of Set-Up
= F2X] to perform the requested single function. In the Autostart
Monltor, ESCNEW is called to perform the reguested functions.
In either case, ESC is positioned such that the RTS which 3 DR I B Write carriage return and prompt character, then read a line.
terminates Escape kev processing returns control to RDCHAR.
bet—lp:

X-reg, Y-reg, and A-reg are insignificant.
CH is ingignifficant.

CV should point to the line in the Scroll Window where

input is tc begin.
BASL,H is insignificant.

ESCHEY This routine exists only iIn the Autostart lenitor. It is
[SFBAS] the routine which supports cursor movement without data

[64421] transfer; the Escape key functlons I, J, K, and M. If the

[-1115] key next pressed is one of these four, the appropriate '"nld"
funetion (Escape functions C, B, A, and D, respectively) is

called. On return to ESCNEW, RDEKEY is apain called to get
(and operate upon) the next character from the kevboard.

Results:
CR is written, scroll takes place if appropriate.
Prompt character is written through COUT.

Keyvboard is read character by character. Each character
ig placed at S$@Z20§,% and X is then incremented.

20 MONITORS PEELED KEYBOARD INPUT AND SCREEN CQUTPUT 21

neTTTT
EEEREEREER"

Routine Description

Each character is "echoed" to the screen at cursor
position and the cursor 1s then advanced.

On reading a carriage return, control is returned to
calling program.

n Return:
A-reg contailns a carriapge return code (58D).
X-reg contains the number of characters read before
carriage return.
T=reg contains contents of WNDWDTH.
Location $@2¢¢,X contains a carriage return.
CH contains zero.

CV contains line number, current value.
BASL,H contains memory address for CV, WNDLFT.

Window line is bhlank to the right of the end of the
echoed input.

GETLM Write prompt character, then read a line.

Set=lp:

¥-reg, Y-rep, and A-reg are insignificant.

CV and BASL,H should be compatitle, pointing in the Scroll

Window.

CH indicates where on that line the prompt character is to
be placed, to be followed by the echoed key input.

Line address at which input 1z to begin must be in
BASL,H. The Line mumber in CV will be calculated and
set in BASL,H after a carriage return has been entered.

Results:
Same as above for GETLNZ, with roted excepticn.

On Return:
Same as above for GETLNZ.

NXTCHAR Enter here to bypass print of prompt character to the screen.

Set=Up:
X-reg should be zero to begin storing input at $@2¢¢.
T=reg and A-rep are ingsignificant.
CV and BASL,H should be compatihble, pointing in the Window.
CH Indicates where echoing of keyvboard input is to start.

Results:
Same as above for GETILN.

On Return:
bame as above for GETLNZ.

Note: For all the above, Escape key funections are supported as

described in the reference material for the Monitor wvou have installed.
Also, control-U (right arrow) is supported. When that character is
recognized in the keyboard buffer, it is replaced in the A-register by

the contents of the screen memory at the current cursor position.

22 MONITORS PEELED

TT™®W

T
=Y =T =T VI = = =TI T = = =T = ="

rYT T Trmm*"TrrrTeETNET

e 2

mTrmmm
e A B &

T

E & B

i3

o

REoutine

Description

RODCHAR Read single character thru KSWL: return to caller in A-reg.
set—=Up:
X-=reg is Insignificant, and will not be clobbered.
Y-rep Is insignificant.
A-trep is insignificant.
CV and BASL,H should be compatlible, peinting in the
Scroll Window to the line where input is to hegin.
CH indicates rhe horizontal position In the Scroll Window
where cursor position will be indicated by blinkine.

Regults:

The screen character at the cursor position (BASL),(CH)
will be set to blinking until a key is pressed.

I the Escape key 1s detected, the approupriale routines
will be called to handle the requested function.

Cursor risht arrow {control-U) will be returned to the
calling program, not the contents of the sereen at the
CUTSOT .

Cursor left arrow key (control-H) will

calling program.
Characters read from the keyboard will not he stored in
the SP22Q area.

After the character is read,

he returned to the

the hlink will bhe turned off

at the cursor position, but the key just read will not
be echoed to the screen, nor will the cursor (CH) be
advanced.

Cancel input line {control-X) service is not defined
as the data is not being stored in the $¢20¢ area.

No special note is taken of carriage return, because the
rest of the Monitor KEYIN Routine is not ealled. It is
up to the calling program to take appropriate action on

entry of a carriage return.

On Return:
A-reg contalns the value of the key pressed.
Y-reg contains the contents of CH.
X=reg is not affected by the routines called.
CAV, CH, BASL.,H will hawve changed only if an Fscape key
function has heen utilized.

RDKEY Read single character thru KSWL: return to caller in A-reg.
Het—=lUp:
f-repg, Y-rep, and A-reg are Insignificant.
CYV and BASL,H sheuld be compatible, pointing in the
Scroll Window.
CH indicates the horizontal position where the eursor will
he shown by hlinking.

KEYBOARD INPUT AND SCREEN OUTPUT 23

Routine Description
Results:

The character on the screen at the cursor position 1s sel
to blinking.

KEYIN routine is given contral wia (KSWL) for physical
reading of the kevhoard.

Return (RTS) in KEYIN returns to the caller of RDEEY, not
to the RPEKEY routine.

On Return:

A-ter contains the character from the kevhoard. It may
be any character, including Escape, carriage return,
right or left arrow, or any other control character.

¥X=rep is unchanged from the call.

Y=reg contains the contents of CH.

The character in the secreen area at the cursor position
has heen restored te whatever it was before 1t was set
to hlink hy RDEKEY.

CV ie used to. calculate the new 11ine.

BASL,H reflects the recalculated address.

CV remains unchanged.

KEYIN REead single character from keyvboard: return to caller in A-reg.

ot o gt 002

¥-reg is unused and unaffected across this moutine.

A-reg input to this routine is what will bhe stored Iinto
the screen area at the cursor position (BASL),Y to
remove the hlink condition after a key 1s pressed.

Y-reg is set to he used to store the A-repg into -the screen

arca to remove the hlink at (BASL),Y.
CH and CV are not referenced, but should be appropriately

set. BASL,1T are used as described for A-reg and Y-rep
ahave.

Results:

0n return to the caller, onlvy the A-reg has been changed.
It contains the input from the keybhoard register.

KEYIN ROUTINE REPLACEMENT

There are cases in which it is desirable to replace the physical
kevboard input routine with a routine which either reads from the
keyboard and preprocesses the input, or gets the information to feed
o the reading program from some source other than the keyhoard. The

requirements of such a program in replacing the KEYIN routine are
described below. Placing the program/routine into effect is

dccomplished by storing the entry point in KSWL,H.

24 MONITORS PEELED

r* T YyYrerrYyrNrrTrTYTYTTITrYTTN

TTrTrmmTm

T
E

——————

"TEEEEREEEE T T R E R R I "

The replacement routine should manage the following rescurces as
[neddicated.

A—-reg Store the A-reg at (BASL),Y, then load the A-reg from
whatever sSource is to be used.

X-=reg Must be wnaltered. Save on entry and restore on exit 1if

it must be used by the replacement routine.

Y-reg Use as indicated above for A-reg.

It must not be changed on return from contents on entry,
so save and restore if it must be used otherwise. (This

caution is not required, however, if the source of the
input prevents rfscape key and right arrow from being
entered. In such case, the Y-reg is expendable.)

CH These are all used for echoing the "“keyboard” input,
GV so the replacement routine should either leave them

BASTH Aalone or manipulate them in an appropriate manner.

HOTK: On replacing the pointer to KEYIM at KSWL,H, it is generally
safer to pick up and store the ecurrent contents of KSWL,H in a

save area before placing the address of wour routine, and then
restore KSWL,H from that save area when taking the replacement

routine out of service.
NOTE: If you replace the contents of KSWL,H with the address of your
routine while using DOS, expect the unexpected. DOS uses both

C5WL,H and KSWL,H, and periodically restores them to appear the
way DOS likes to see them regardless of current contents.

Depending upon vour application, it may bhe a good idea to

replace both pointers on a temporary basis so that echo to the
screen will not pass through DOS. But remember to repair beth as

soon as possible.

KEYBOARD INPUT MONITOR ROUTINE

iere are many points in Keyboard Service which a user program could
nsefully ealls. Howewver, because they are generally different locations
fn o continoaous string of instructions, and all instructiuns after the

polnt of entry will be used, sections of this table of addresses are in
Honltor sequence rather than in sequence by potential usabllity.

Mote that once the Monitor is jumped to at the specified point, all of
Lhe inditialization described after that entry point is also performed.
Thin Is Implied by the & at the end of each function description.

KEYBOARD INPUT AND SCREEN OUTPUT 25

T

ADDRESS TABLE 1—CHARACTER INPUT

Functicn

Hex
Addr

+Deac
Addr

=Dec
Addr

Monitor
Label

Repisters
Dest royed

BOTH MONITORS

Call RDKEY to get next character
Into A-reg.

Compare to $9B {(Escape).
If = BR to ES50 to call for next
character and do Escape function.
Else, RTS.

Set screen to blink at cursor
saving original character in the
A-reg from (BASL),Y &

Jump Indirect (KSWL) te KEYIN

Increment random number at RNDL,H
while polling keyhoard register.
Store A-reg to (BASL),Y {(clear
blink set by RDKEY routine). &
Load A-reg from kevboard repister
and clear kevbhoard strobe and RTS.

Using character in A-reg, with
Carry set, BR to routine for
Escape key service.

HOME, clear scroll window

ADVANCE cursor right

BS cursor left

LF cursor down one line

UP cursor up one line

CLREOL clear to end of line

CLREOP clr to end of window

other ignore: RTH

e /B 7,2 S e B W0 = -SRI

Set port ¢ (keyboard) for input.
OLD MONITOR ONLY
Call RDEKEY for Escape key service &
Call ESCI with character in A-reg
and Carry set to do indicated
function. Return is to RDCHAR.

FD35.

FD@C

FD18&
FD1B
FDh26

FD28

FC2C

AUTOSTART MONITOR ONLY
Call RDKEY for Escape key service &
Call ESCNEW with character in A-reg

and Carry set to do indicated
function. Return from Escape

processineg 13 to RDCHAR (abeove).

26 MONITORS PEELED

FD2F
FD32

64821

6478

b4 792
64795
64 BY6

b4 RAB

64556

=715

-756

=744
=741
-73¢

-728

-9 8

64815
64818

]
=118

RDCHAR

RDEEY

KEYTN

ESC1

SETEBD

E&C

ALY

ALY

A

ALY

e ——— e ——— s i Bs e S s S S S B S G S S S S S S N N SN S

TrT™T ™"

rTHN

r¥Y ryYySwymy*ymry vy v*yry* vy mrnNr*rvYy?*8w"NRHW

TR EEEEEREE R E EE R EE T I I "

Munction Hex +hee -De¢ Monitor Registers
Addr Addrx Addr Label Destroved
Set Carry flag and JMP to ESCI FB97 64437 -1129 ESCOLD AY
to handle Escape key functions
Be By By B By P
Handle Escape key functions FB9E 64411 1125 ESCHOW ALY
1, J, K, M. Translate to
n, B, A, © and call ESCOLD.
Thenn RDEEY to get next character
and drop into ESCNEW to continue
Eacape key processing.
Fscape key processinege entry point. FBAS 64421 -1115 ESCHNEW ALY

If A-reg contains I, J, K, or M
then go to ESCNOW te translate
and handle it with return to
ESCHNEW. Otherwise go to ESCOLD
to handle this entry and exit
from Escape mode.

— = =

e i G W EEE — - — e T

441
56-57

RASL,H
KSWL, H

$28-629
$38-539

ADDRESS TABLE 2—LINE INPUT

Logically speaking, the place to start bhelow is GETLNZ, but the
sequence of presentation here is the sequence of instructions in the
Monitor because of heavy use of "fall inte" next code segment.

Note that once the Monitor is Jjumped to at the specified point, all of

the initialization described after that entry point is als¢o performed.
This is implied by the & at the end of each function description.

Funation Hex +Dec —-Dec Monitor Registers
Addr Addr Addr Label Destroved

'cho keyhoard input thru COUT to FD3D 64829 <7(17 NOTCR A

the screen, from IN,¥, with

INVFLG temporarily set to S5FF. &
Pieck up character from IN,X; FD4D 64845 —-691 A

it $88 poro BCESPC.

{f $98 goto CANCEL.

if X-reg (input index) greater

than 5F7 fall into FI5C.

Klse poto NOTCRL, bypass Bell.
Sound bell if X indicates 248+ D5C 64860 —~676

input characters. &

Lnc rement X-reg; FDSF 64863 -673 NOTCRI X

[f X not zero goto NXTCHAR.
If ¥X=¢ fall into CANCEL.

KEYBOARD INPUT AND SCREEN QUTPUT 27

Hlec
Addr

~Nec
Addr

Functiaon Hex
Addr

Monitor Registers
Label Destroved

= o —,

FO6Z B4BLHE

Load $DC (\) into A-reg. ~67(CANCEL

Backward slash indicates line
input cancelled.

Call COUT to print A-reg.

Then fall into CETLNZ.

Print carriage return thru COUT,

Load FROMPT into A-reg.

Call COUT to print A-reg.

Load X-reg with ${l for passage
thru backspace operation.

If X= goto GETLNZ to start over.
Else, decrement X-reg and
fall into NXTCHAR.

Call RDCHAR to get next character.
It character received is ctrl-i]
($95, right arrow) pick up the
screen character from (BASL),Y
te replace it in the A-reg. &

If A-reg greater than SDF, then
AND against SDF to make it
upper case. b

Store A-reg to input area at IN,X.
Compare to carriage return.

Goto NOTCR (abowve) if not.

Else, call CLREOL to c¢lear the
rest of the line, then print
carriage return thru COUT,
using RTS from that function to

accomplish return te caller of
keyboard Iinput.

sy ‘T TP ST E—-— —— L

IN =5(233, keyboard input area.
INVFLG is at $32 (50).

o

g

FDod 64BEH -668
b4871
64874
64876

64879

FD67
FD6A
FDHC
FD&F

-665 GETLNZ A,
-662 GETLN A

-66{
-657 &K

<o~ o B = = g

FD71 64881 -655 BCKSPC A,X,Y

FO7/5 B488B5

-651 NXTCHAR A

FD7E 64894 =642 CAPTST TA

FD84 64900 -636 ADDINP

m——— F

—— — re L S Full. [Pt

OVERVIEW—TEXT OUTPUT TO THE SCREEN

The highest level of support in the Monitor for text output to the
screen Is scroll device support. 1In addition, the Monitor contains
many components which support use of the screen in a formatted manner.
Because there are so many ways to write text to the screen, the topic
of screen outpur has been divided into the following sections:

TEXT OUTPUT WITHIN THE SCROLI, WINDOW
describes the normal manner of text output, defining the fields 1in

page zero which are used to control this function, and whieh are
used in the descriptions in the following sections.

28 MONITORS PEELED

TEFEFTFTTETYTETEAEPFAATFAATAAFYTDNYTN
A AR EEE R SR EE R R E M EE R R ER

SCREEN FORMAT CONTROL
identifies the entry points by means of whick display operation

(full text, full graphics, mixed LORES graphics and text), Scroll
Window setup, and character display mode (hlack on white or white

on hlack or blinking) are established or modified.

SCROLL WINDOW DATA MANIPULATIONS
deseribes Moniter calls which clear all or part of the Scroll

Window, set parts of the window to some user specified wvalue, or
cause conditional or unconditional scrolling of the window.

CURSOR POSITION CONTROI
describes the wavs and means of moving the cursor relative to its

current position, or moving it to some location Independent of its
current position.

GENERAL TEXT TO THE SCREEN
describes the Monitor entry points to output user program
generated data to the sereen or to the current ocutput device if
CSWL has been modified. Also, entry points are described to
transmit standard types of output (blanks, bell code, carriage

return) to the output device (generally screen)}.

TEXT OUTPUT WITHOUT THE SCROLL WINDOW
desecribes the entry points used for placing characters on the
screen outside of the Scroll Window, and for reading the keyboard
when echo to the Scrovll Window is to be performed.

SLCOMDARY DISPLAY AREAS

describes various ways of using the Secondary Text area, even for
limited Seroll Window functions such as allowing keyboard input
echo to go to the Secondary area.

Any entry point which fits into more than eone category will be found
in each appropriate addresz table.

OUTPUT WITHIN THE SCROLL WINDOW

Scroll Window operation is compatible with printer or typewriter

ontput in that new characters are displaved to the right of previous
putput, and new lines are displayed below previeus lines. Tt is this
mode of operation which 1s described in this section. That is, this
section deseribes "printing’ information by means of the CSWL vector

to the screen or to a printer type device. The section on General Text
to the Screen describes use of the screen, bypassing the CSWL vector
and making direct use of the Scroll Window putput routines.

The normal method provided in the Apple 11 for displaving output

information is by "ealling" COUT with the character in the A-reg for
each displayable character or format control character (such as a

carriage return). At COUT, a JuMP Indirect is done wvia the (SWL wvector
to the rontine which will place the character on the selected medium

KEYBOARD INPUT AND SCREEN OUTPUT 29

or accomplish the indicated ceontrol function. When the system is
initialized, this wvector 1s set to point to COUT] which supports

Seroll Window output to the screen. 1If the user sets a different
output device (by PR#n in BASIC or ctrl-P in Monitor mode), then the

CSWL vector will be set to pass the output hytes to the selected

peripheral controller card instead of to the screen. Depending on
which peripheral controller card, and which controls are active, the
program on that card may place the character on the output device, and

then JuMP to COUT] to write it also to the Scroll Window.

The normal mode of text output to the sereen is in "seroll"” mode. In
this mode, new information is written to the bottom line of the

screen, and the contents of the screen are moved up, up, and away as
requlred te allow entry of new Iinformation below the old. This mode of

output is used in APPLESOFT or BASIC "PRINT" statements. This is the
mode of output used by any Monitor command which displays data to the
screen.

As new characters arc written to the screen, ther are placed at the
position of the cursor. The cursor position is a location on the
screen {and in screzen refresh memory) specified by the contents of
certain fields in page zero. Also, the Scroll Window is a portion (or
all) of the screen as defined by the contents of certain fields in
page zero. There is no special display hardware inveolwved with the
scrolling function. Routines in the Monitor move data in the screen
refresh memory as required to support the scrolling function.

The fields in page zero describing the Scroll Window irndicate the left
column and width, and the top and bottom lines, as described here.

The cursor position is defined in various fields, and unless a user
program interferes they will be compatible.

The screen line number of cursor position is contained in the field
CV. OV indicates the line mumber of the cursor relative to the top
line of the screen, not the Scroll Window. (Note that this 1s
different from CH, described below.} The screen refresh memory
location which corresponds to this line number is maintained in the

two byte field (BASL,H). HNote, however, that if the left edge of the
Scroll Window is not the leftmost character of the screen, BASL,H will

Fave been adjusted to point to the leftmost character position on that
line within the Scroll Windew. ‘'Thus, a program may interrogate CV to
determine the line nmmber of the cursor, but the program cannot just
POKE a different line number into CV to move the cursor as BASL,H must
be updated as well.

The horizontal position of the cursor is maintained in CH.
CH is relative to the left edge of the 5croll Window, not necessarily
to the screens. When a character is being "written" or "printed" to the
screen, the routine which places the character in sereen refresh memory
uses the Y-reg for horlzontal positicon, in the assumption that it has
been loaded from CH. 1In the address table, each description indicates
whether the routine being called uses CH or the Y-reg.

30 MONITORS PEELED

The value in

ryr YT TYrYYYTYTYyYTTrTAT"YFYrAYAYTYTRAYYN

&

AT EE A EEE A EEEE R E R R

R i A & &

For machine language programs, Scroll Window output is most easily
accomplished by a JSR to COUT at SFDED (-531) with the byte in the A-
reg. From BASIC the same thing is accomplished by PRINTing a wvariable
in which the byte has been stored. In BASIC, of course, a whole string
can be written with a single command.

As the characters are passed through COUT1, they are modified, if
necessary, to be written in white on black, black on white, or
flashing, in accordance with the contents of the field ecalled INVFLG.
This field can be set (POKEd) at any time, and is immediately
effective on all future characters printed by the program until it is
again modified. This function only applies to program print output.
Puring keyboard entry, INVFLG is temporarily chanped to 5FF as each
input character is echoed through COUT,

The two byte field BAS?L,H is described below although it is rather
useless for user program reference. It is a work area used only
during a scroll operation.

PAGE ZERO FIELDS

Dec Hex Routine Description

32 5204 WNDLFT Left column of the Scroll Window:

Range is ¢ to 39 (8%27).

This field is used only in VTABZ. The contents,
when changed by user program, become effective on
the next scroll operation, clear to end of page
operation, or carriage return output. CH contalins

cursor horizontal position relative to (WNDLFT).

After chanpging the contents of WNDLFT, either CALL
VTAB or output a carriage return to make it take
effect.

37y 521 WNDWDTH Width of the Scroll Window:

Range is 1 to 4@—(WNDLFT).

When a character is written through COUT to the
screen it is placed at (BASL),(CH), after which CH
is incremented. At that time (CH) is compared with
(WNDWDTH) to determine whether the cursor has

exceeded the right margin of the Seroll Window.
34 522 WHDTOP Top line of the Scroll Window:
Range is @ to 22 ($16) for full text screen.
Range is 2(to 22 (414 to $16) for mixed graphics
and text. This field is used during a scroll
operation to indicate where the operation should

start.

KEYBOARD INPUT AND SCREEN CUTPUT 31

Description

Bottom line of Scroll Window +1:

Range is (WHDTOP)+1 to 24 (S18).

WNDBTM indicates the first line number below the
window. Contents of WHNDBTM are tested only on
output of a carriage return ($S8D) or line feed
($8A). It is used by Clear to End of Page and hy
Seroll routines.

Displacement from WHDLFT where next character to
the gcreen will he placed:

Range is ¢ to (WNDWDTH)-1.

After the sereen output routine STOADV places a
character into the screen area as part of normal
character output, CH is then incremented and
compared to WNDWDTH. If CH is not low then a
carriage return will be simulated.

Note that CH is used for echoing keyboard input to

the screen by the Monitor routines GETLN etc.,
because COUT is used.

Vertical screen position (line number) for next
character to be written to the screen:

Range is @ to 23 (5i7).

The content of CV I{s relative to the top of the
screen, not to the top of the Scroll Window. It
may be set by loading the desired line numbher into
A-rep and calling TABV. It may be set by POKEing
the line number into CV and then ecalling VTAB.
Actual storage of a character into the screen area
includes use of BASL,H for line number, not CV.
The calls above to VTAB or TABV are to set BASL,H
from CV for immediate future reference.

If CV is at or below WNDBTM, it will remain on
current line as carriage returns go by while the

contents of the Secroll Window will be scrolled for
each.

This two byte field is the memory address for the
left end character position of the current text
line, within the Scroll Window. The contents are a
function of CV and WNDLFT,

This field is set by the BASCALC routine to point
to the memory address for the left end of the lire
specified in the A-repg., This call to BASCALC is
usually accomplished by the VTAR routine, which

then adds (WNDLFT) to BASL,Il to point to the left
erid of the line within the window.

Dee Hex Routine
35 523 WNDBTM

36 524 CH

37 525 CV

4B §28 BASL

41 529 BASH

32 MONITORS PEELED

Function

TTYTTTAFTIAAAMTATAANANTYYTT RN
@ A A A 6 @ B AR EEE R EEEEE R R AR

Write hyte

(CV),(CH) with cursor move but
I“:-:'t. IH.III.'rI: IJI:.-:-

This two byte field is nsed as a work area only
during a scroll operation. It is the destination
line pointer used as each line ie moved to the

position above current.

This byte is a mask used by COUTI1 to cause

characters written to the screen area to display
white on black (INVFLG=5FF) or black on white

(INVFLG=S83F) or flashiny (INVFLG=§7F). This field
is set to SFF when a RESET accurs by the routine
The routine called SETINY can be
called to set reverse video. The Monitor does not

INVFLG=§7F does not cause all characters to

flash: the upper Z bits of the character must be
@l for flashing to occur.

This byte is a save area for the Y-reg across a

call to the screen output routines.
and restored in the COUT]1 routine.

Y-reg is saved

This two byte field containg the address of the
routine which is to receive and dispose of output

characters. When the RESET key is pressed, this
field is initialized to posint te COUT1 to send

out put characters to the screen., Entering a
Monitor Command nPc {(n=port mumber, Pc=control-P)
will cause the Monitor te set CSWL,H to Cndf. The
routine at that location will then receive (in the
A-reg) each byte "wrictten'" through COUT, which is
a JMP (CSWL).

Dec Hex Routine Description

fy 2 S2A BASZ2L,

b3 G215 BASZH

S 532 INVFLG
at SETNORM.
set flashing.
Note:

il 535 TSAVL

54 536 CoWL

50 534 CoHW

If the Monitor Command "#Pc" is executed, CSWL,H
is set to point te COUT1 instcad of to C@@R.

SCROLL WINDOW OUTPUT ROUTINES

Hex +hec —-Dec Monitor Registers

Jump via COWL, character print.
Write byte in A-reg to screen at

cursor (CV),{CH) usineg INVFLG and
aupporting cursor move.

Addr Addr Addr Label Destroved
FOED 6A5P05 =531 COUT none
FOF@R 65338 =528 COUT1 none

in A-reg to screen at FDF6 63014 =522 COUTZ none

KEYBOARD INPUT AND SCREEN OUTPUT 33

Funetion Hex +Dec -De: Monitor Reglsters
Addr Addr Addr Label Destroyed

Print carriage return thru COUT. FDRE 644910 -~-A26 CROUT A

Print thru COUT "ERR" and bell code.FF2D 653325 =211 PRERR A

Print bell code (587) thru COUT. FF3A 65338 =198 EELL A

Set BASL,U from CV (and WNDLFT). FC22 64546 =990 VTAB A

Set BASL,H from (A) and WNDLFT FC24 64548 -988 VTABZ A

without regard to CV.

Set BASL,H to left end of screen FBC1 64449 1087 BASCALC A

line (not window line) in A-rep.

CH 36 524 WNDLFT 34 520

CV 37 525 WHNDWDTH 33 521

GBASL,H A8=-39 §26-27 WNDTOP 34 522

BASL,H A-41 32R-29 WNDATH 35 523

INVFLG 5 532

SCREEN FORMAT CONTROL BY ROUTINE

This table identifies the places in the Monitor
display mode of operation and the Secroll Window

which control the
configuration.

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Clear HIRES graphics mode. & FB33 64307 -1229 A
Set display area primary. & FR36 64319 -=-1226 A
Set TEXT mode. & TFB39 64313 =1223 SETTXT A
Load @ into A-rep Eor WNDTOP, & FB3C 64316 -1224 A
branch to SETWND below.
Set Graphics mode. & FBAW 64320 -1216 SETGR ALY
Set mixed graphics/text mode. & TFhd4ld 64323 1213 A Y
£all CLRETOP to clear graphies. &% FRAA HLAAZHR ~=121(Y
Load 2¢8 (514) inteo A-reg for set & FB49 64329 —12¢7 A
of WKRDTOP. Fall into SETWND.
Set top line of window (WHDTOP) FB4B 64331 -1205 SETWHND A
from A-reg, @ or 2 or user set,
Fall thru following.
Load A-reg with §§ for WNDLFT. & FB4D 64333 1203 A
Store A-reg to WNDLFT. & FR4F 64335 -1201 A
load A-reg with 4@ for WNDWDTH. & FB51 64327 -1199 A
Store A-reg to WNDWDTH. & FB53 64339 -11%7 A
Load A-reg with 24 for WNDBTM. & FB5HS 64341 -1195 A
Store A-reg to WNDRTH. & FBS7 64343 -1193 A
Load A-reg with 23 for VTAB. & FB5Y 64345 -1191 A
Store A-reg Lo CV. & FBSB 64347 ~=1189 TABV A

Jump to VIAB — set BASL,H RTS.

34 MONITORS PEELED

T ™

TFrTTYTTTrYYTYrYTM"TT"TYrYNYYIFYTYN

A EE R R R E R R R E E R E I I I T E Y,

Finction Hex +Dec ~Nec Moniltor Begisters
Addr Addr Addr Label Destroved
Toad Y-reg with SFF for INVFLG. FE84 651556 —380 TETNORM Y
Yall dAnte SETIFLG:
Load Y-rep with S$3F for INVFLG. FE8@ 65152 =384 SETINV Y
BR to SETIFLG.
Store Y-reg in INVFLG and RTGS. FEB6 553158 =378 SETIFLC none

S5FF white on black (from SETNORM)
white (from SETINV)
(characters freom user call

S3F black om
57F flashing

Set CSWL,H to point to COUTIL.

TR S T I Y e S, B s — —

Cl 36 324
OV 37 525
INVFLG 54 532
BASL,H Af=61 528=29
CRUL,H 54-55 $36-37

WNDLFT
WHNDWDTI

WNDTOF
WNDBTM

with upper 2 bits of @#1)

FE93 65171 =365 SETVID A, X,Y
32 520
13 521
34 522
35 23

SCREEN FORMAT CONTROL

BY POKE/STORE

In many cases,

the routine in the lonitor described on the prewvious

page exists hecause the Monitor itself uses the function describead.
ften, calling the Monitor for a gpecific control function is doing it

the hard way.
same results.

This table indicates other wavs of accomplishing the

Function Method
Scer GRAPHICS digsplay mode. POKE -163@4 .80 or STA C@59Q
Set TEXT display mode. POKE 16303, or STA C@51
set GRAPHICE mode to full screen. POKE -16332,§ or STA C@52
Set MIXED GRAPHICS and TEXT mode. POKE -163@1,80 or STA C@ES3
set display te Primary Area. POKE 16308, or STA C@A54
set display to Secondary Area. POKE -16299, 8 or STA C@55
Clear HIRES/Ser LORES for graphics. POKE -16298.8 or STA CA56
S5et MIRES Graphics mode. POKE -16297,0 or STA C@57
Set top line of Scroll Window, POKE 34, line-numher (@-23)
Eottom must be greater cthan top.
Set left edge of Screll Window. POKE 32, column-number {{#-39)
Left edge + width not to exceed 4.
Set width of Seroll Windaw. POKE 33, number—of-columns (1-40},
Left edge + width not to exceed 40,
Set hottom line of Screll Window. POKE 35,11ine-number (1-24)
Bottom must be greater than top.
Set MNormal (white on black) text. POKE 58,255 or store SFF in 532
Sot Flashing text. POKE 5@,12V or store $7F in 532
Set Inverse {(black on white) text. POKE 5§,63 or store $3F in 532

KEYBOARD INPUT AND SCREEN OUTPUT 35

If the above means are used to change the Scroll Window configuration,
the user program should also take steps to insure that the cursor has

a valid position within the window (CV, CH, BASL,H). CALL -936 will]
place the cursor In the Window.

5CA5@ and 3CH51 control Text mode ve. all or some graphics. The other
items regarding HIRES or LORES or full or part screen graphics mavy he
established first, but will not be apparent until SC@5SH is tickled.

Likewise, 3C@51 will bring back Text Mode regardless of the other
settings.

SCROLL WINDOW DATA MANIPULATIONS

This table describes three types of Scroll Window data manipulatiaon
entry points. The first is Honitor label ESC1l, the Escape Key
Processor, because it transfers contrel to a number of the other entry
points depending upon the A-reg contents and Carry being set. One

entry point of the Autostart Monitor is included because it handles
one requirement of E5S5C1 — that Carry be set.

The second part of the table is a list of entry points supporting
clearing or setting parts of the screen to a particular wvalue.

The third part of the table describes points
unconditional screlling of the window.

causing conditional or

Function Hex +hec -Nec tlonitor Rezisters
Addr Addr Addr Label Destroyved
Call screen data manipulation. FC2C 64556 =98¢ ESC1 A X

If Carry 1s set and A-reg =

' sote HOME

A poto ANVANCE

B goto RS

C goto LF

D zoto %

E poto CLREOL

F opoto CLREOP

other RT5 to caller.

The RTS at the end of esch of
these functions returns control

to the caller of ESCl.

36 MONITORS PEELED

FTTTMrTFTYTYTTFTyYTTFr"T"TrY*reETNYNFYNNYTYTTTTTN

T

"R EEE EEE E EE R T E T R R R

=

KEYBOARD INPUT AND SCREEN OUTPUT 37

Funetion Hex +Dec -Dec Monitor Reglisters
Addr Addr Addr Label Destroyed

filear from line (CV) eol (CH) to FC42 64578 =958 CLREOP A,Y
enid of Scroll Window.

(lear from line (CY) col (Y) to FC44 645BB -356 ALY
end of Seroll Window.

lear from line (4) ecol {Y) to FC46 64582 =954 (CLEOPL ALY
ennd of Seroll Window.

Clear Seroll Window to blanks, FC58 64603 =936 HOME TR
set cursor to top left corner

of the windows.

Set CH=@, ©V=(A), clear to EOP FCSA 64602 —-934 ALY
(end of page = end of window).

Clear window from line (A) to FCHC &4RE4 =932 A, Y
hlank, set cursor to left end of

| ine (CV).

Clear line from cursor FCOC 64668 =868 (LREOL P ¢
CEBASL Y, CCH).

lear line from cursor (BASL),Y. FCO9E 64678 -866 CLEOLZ e

Set character in A-reg from FCAR 64672 =864 CLEOLZ ALY
cursor (BASL),Y to FEQLine.

‘lear line (BASL), then set FCY5 64661 -8B75 SCRL3 ALY
BASL,H from CV and WRDLFT.

'lear line from cursor (BASL),Y, FC97 64663 =873 ALY
then set BASL,H from CV & WNDLFT.

Il remains unchanged.

Aoera to A-reg for CH. f FC6Z HRAKIG =92K CR ATY

Store A-rep to CH. & FCBA 64612 =924 A, 7Y
Inerement CV. . FC6O 64614 =822 LF L 4
Compare GV to WNDRETH. FCAE Ga46lE -92{ ALY
Set PASL,I; if (CV) < (WNDETM),

do scroll if required.

Sernll the windew, lines (CV) fC7TE 64624 =912 SCROLL B X
thru (WHDBTH) .

Serall the window, lines FC72 64626 =91¢ F
(A) through (WHNDBTH).

ﬂngﬂﬁtafi Monitor extended service

et Carry flag and JHMP to ESCI FB97 64407 -=1129 ESCOLD A,Y
tiv handle Escape key functions

A, B, Gy D E; E.

G 16 S24 WNDLFT 32 $20

ey X 525 WHNDWDTH 33 521

[NVEF LG 5 532 WHDTOP 34 522

BAST. H 4i-41 S2E-29 WNDRTH 35 523

CURSOR POSITION CONTROL

In general, the Cursor is at the position indicated by the contents of
CV (line nmumber relative to top of screen) and CH (column number
relative to to the left margin of the Scroll Window). The memory
location of the cursor is the sum of the contents of BASL,H {(which
contains the address of the leftmost character of the line within the
Sceroll Window) and the contents of CH. Normally, then, BASL,H contains
an address computed from the contents of CV and WNDLFT. However, if
either CV or WNDLFT is changed without recomputing BASL,H then the
different routines of the Monitor may come up with unpredictable (or

at least undesired) results.

In the following table, the deseription Includes Indication of which

of the cursor address fields is heing used for what, MNote, for
axample, that at $FC95 the line indicated by BASL,H is cleared, and

then BASL,H is recomputed from CV, WNDLFT for future references.

The ESCl and VIDOUT routines are included in the tahle because they
can be made to use (goto) the other entry points by passing them the

appropriate A-reg contents on entry. VIDOUT is the routine which
handles CR, backspace, and line feed when sueh characters are sent
through COUT1 (generally thru COUT). ESCI is the routine called to
accomplish the desired function when the keyboard routines are
aperating in ESCAPE key mode. Thus, it has four way cursor movement
capabilicy, as well as the capability of clearing the Scrnll Window
from cursor present position to end of current line or end of the
scroll Window, or of clearing the entire Scroll Window and placing the
cursor at the top left corner of it. The function performed depends
upon the contents of the A-reg at entry, and the "set" condition of
the Carry processor sStatus hit.

Euxtry point ESCOLD of the Autostart Monitor is included in the table
due to its relationship to ESCIL.

The next group of points contains those which clear data on the screen
as well as move rthe cursor.

The third group is entry points supporting movement of the cursor
relative to its current position.

The fourth group supperts positioning the cursor at a desired location
without reference to its current position. To do this, the program

should set CV and CH and then call VTAR to set BASL,H.

38 MONITORS PEELED

TP YT YTYYAEMN

A A R B EE R E E R R R E R R R R R R R

Ty yrYyryrrrYrrrTYyTTrTMTETwT

ADDRESS TABLE

Fancetion Hex +Dec —Dee Monitor Registers
Addr Addr Addr Label Destroved
Call sereen/cursor manipulation. FC20 64556 -98) E201 A, Y
LI Carry is set and A-teg =
[roto HOME
A goto ADVANCE
h goto BS
. gpoto LF
N goto up
. poto CLRECL
' gots CLREOP
other RTS to caller.
The RTS at the end of each of
Lhese functions returns control
to the caller of ESCI.
het Carry flag and JHP to ESC1 FBOY 644007 —1129 ESCOLD A ¥
Lo handle Escape key functions Autostart only
&, By 0D B
Place character in screen memory FEFD 645009 =127 VIDOUT ALY
Or process control character.
[t (A) > 89F or < %8B goto STOADV.
[t (A) = S8D pote CR.
[f (A} = 58A goto LF.
It {A) = 588 poto BS.
It (A) = 887 sound "bell'.
[f (A) = other {ignore it; RTS
Clear Seroll Window, set carsor to FO58 64603 =936 HOME A Y
top left corner of the window.
Sert Cl=¢, CV=(A), clear to EOP FC54 BANLEZ =934 ALY
(end of pape = end of window).
Clear window from line {A) to FC5C A46Q4 -932 A, Y
hlank, set cursor to left end of
Flne (GV).
Clear Tine (BASL), then set FC%5 64661 -8B75 SCRL3 Ay
BALGL U trom CV and WKDLFT.
Glear ldne from curser (BASL),Y, FC97 64663 =573 ALY
Lhen set BASLL,H from CV & WNDLFT.
Load ¥ From CH. & FBF@ 64496 —1(4¢0 STOADV A,Y
Blore A=rep to sereen at (BASL),Y & FBF2 64498 -1(38 A
Inerement GH, & FBF4 B4SHE —1036 ADVANCE A
[:um[lrlrl' “:“:} with EWHDHDTH) B FHFE E!QSGE “1@34 A
poto GR 11 CH not less.
Elae return (RTS).
Hove: cursor left one column, to FCI@ 64528 10008 BS A

o of
reaud rod

right previous line if

(CY) < (WHDTOP).

anld

KEYBOARD INPUT AND SCREEN QUTPUT 39

Function

Hex
Addr

+hec
Addr

-Dec
Addr

Monitor Registers

Label

Destroved

Move cursor up one line
if (CV) < (WHNDTOP).
Zero to A-reg for CH.
store A-reg to CH.
Increment CV.
Compare CV to WNDBTM.
If CV not less decrement
do scroll.
If CV less goto VTABZ to set
BASL,H and return.

=T o =

CV and

Place cursor at line (A) col (CH)
(store A to CV and set BASL,H
by JMP to VTAB).
BASL,H from CV and WNDLFT
call BASCALC and add WNDLFT.
BASL,H from A-reg and WNDLFT
call BASCALC and add WNDLFT.
BASL,H to memory address for
left character of line in A-reg

(not left character of window).

Jump via CSWL, character print.

Character print to screen cutput
routine entry -— normal for CSWL.

Print character to screen with

appropriate actions on controls

and control characters.

If (A)<5AP goto COUTZ, bypass
inverse video mask.

FClA

FCH2Z
FC64
FC66
FC638

FC22

FC24

FBC1

FDED
FDF@

64538

64610

babl2
babla

64616

64347

64546

b4 548

064449

65035
650(8

-998
=926
—-924

e Vit
-920

-1189

~99{
—288

-1 Q87

-531
-5

up

CR

LF

TABV

VTAB

VTARZ

A

A, 7Y
A, 7Y
A, 7Y
A, 7Y

A

BASCALC A

COUT
COUT 1

— — — — —— — — — L f—

AUTOSTART MONITOR ONLY
Print character to screen via

VIDWAIT (pause if operator request)
and VIDOUT with save and restore

of A reg and Y reg.

FDF 6

Go@ 14

Ea e AP

COUTZ

TA
TA

none

OLD MONITOR ONLY

Print character to screen via
YIDOUT with save and restore
of A reg and Y reg.

FDF 6

cH 36

CY 5
INVFLG 5@

BASL,H 4f@-41

$24 WNDLFT
5§25
532

328-29

WNDTOP
WNDRTHM

40 MONITORS PEELED

32

WNDWDTH 33

34
35

65@14

k2

320
521
522
8273

COUTZ

none

TEEEEEEEEEEEREEREREEERERE E BN

GENERAL TEXT TO THE SCREEN

The preferred method of sending text
character desired into the A-reg and

there. The reason this is preferred is that if you want to send the

putput to some device other thar the screen, vou can change CSWL,H
ta point at the program supporting such other device. There are

times, however, when you’ll want to write to the screen regardless of
the setting of CSWL,H. COUT1 is the entry point for screen—only
nutput, where reverse video display or flashing characters are set

us ing INVFLG. Entry at this point for the Actostart Monitor also
nllows you to stop output, using the control-§ key.

to the screen is by loading the
calling COUT to handle it from

COUTZ may be used for output to the screen without modifying the

character by using INVFLG. That is, calling COUTZ with a character in
the A-reg will place that character on the screen as Is, without using
[NVFLG to display the character in inverse video or flashing mode. In

the Autostart Monditor, entry at COUTZ is still early enoungh to handle
control-=S entry, stopping the system if the character being written is

a Carrlage Return while the keyboard buffer contains a control-S.

VIDOUT is the routine which interprets the character and places it on
the screen if it is net a control character. If the VIDOUT routine is

to be called directly (to bypass control-5 handling in the Autostart
Monitor, for example), then the calling program must save the A-reg

and ¥Y-reg before and restore the A-reg and Y-reg after, because they
are both destroyed in the VIDOUT routine.

(ncput to the sScreen may be written via these alternate entry points.

However, note that the Monitor will still use COUT for the kevboard
fnput echo function, temporarily setting INVFLG to SFF for white on

hlack for each character echoed.

Following are addresses of the above mentioned locations, and a few
other entry points which will output the specified character(s) (via

CONT) without the calling program having to load them into the A-reg
bhefore the call.

ADDRESS TABLE

Funetion Hex +Dec —Dec Monitor Reglsters
Addr Addr Addr Llabel Destroyed
Print a byte to specified output FDED 65@@5 -531 COUT none
device by JMP (CSWL), mormally
COUIT] for sereen.
Character print to screen output FDF@ 65(@8 =528 COUTI none
rout ine entry — normal for CSWL.
Print character to screen with
appropriate actions on controls
anidl contrel characters.
Lf (A)<S5AP poto COUTZ, bypass
i nverse video mask.
AMD (A) with INVFLG. & FDF4 65@12 =524 TA

KEYBOARD INPUT AND SCREEN OQUTPUT 44

Function Hex +Dec -Dec Monitor Registers CONTROL CHARACTERS
sddr Addr Addr TLabel Destroyed -
Print a byte to the screen. FOF6 (o1& =522 COUTZ none | Note:
Sea AUTOSTART and OLD differences J:n The following control characters have special meanings for screen
toward end of this table. dlaplay.
Process char. in A-reg to screen. FEFD 64509 —1@27 VIDOUT ALY ,1 i ' ;
If control characte d trol. G4l Carriage Return
If ﬂi;p1ﬂy Ehi:2itz§’ q?ﬂiznino In the Autostart Monitor, the COUTZ routine calls (JSR) VIDWAIT,
Screen Téfreﬂh mem{:};‘v I_j which handles the control-S5 function before jumping to VIDOUT.

Store A—reg to screen ac FEFﬁ ﬁ.ﬂ&gﬁ —]_-E}.lfl.lﬁ STOADY A,""' The COUTZ routine 1in thE Dld HD“itﬂr Calls VIDOUT.

(BASL,H),{CH), then increment |1
CH and goto CR if window exceeded. When the VIDWAIT routine determines that the character being
Store A-rep to screen at (BASL,I),Y FBRF2 64498 —1@38 A "written" is a Carriage Return, it then tests the keyboard input

huffer for a contrel-S. 1If se, it clears the keyhoard hardware for
another entry and loops until another key is pressed. If this

then ine CH and poto CR if window 1
:. entry is other than a control-C, the kevboard scrohbe is cleared.

exceedead.

Increment CH and poto CR if window FBF4 6450¢ -=1036 ADVANCE A

exceeded. Otherwise the kevyboard is left filled with the control-C for the

Test CH. Goto CR if CH =» WMDMDTH. FBF6 A45(G2 =1(34 A calling program to detect and handle. Then VIDWAIT JMP’s to

[f A=SBD, SBA, S$88, or $87 do it: TFCP4 B4516 —1¢2@ A ' VIDOUT,

S8D carriage return goto CR :

£8A line feed eoto LF 'j Hh Line Teed

388 hack space poto BS _

387 hell aowind Mhel 1M The cursor is moved down one line unless this would put it on a

Set INVFLG to $3F = inverse video. FR&F@ 65152 =384 GRETINV Y
Set INVFIC to SFF = normal wvideo. FEB4 A5156 =38 SETMOBRM Y
Set INVFLG from Y-reg. FE&6 65158 =378 SETIFLG none

e e e e i, i, N i . . L I N . WS . S RN T S IR SR SN N N USSR ——— i ——

,j line below the Scroll Window. In that case, the contents of the
Scroll Window are moved up one line, and the cursor stays on the
current screen line.

i i BN ol . S EED N N S N . S

AUTOSTART MONITOR ONLY
Print character to secreen via FDFAR ASG14 =522 COUTZ no ne
VIDWAIT {(stop if operator reauest)
and VITOUT with save and restore
of A and ¥ regs,
Test for operator paunze request. FR78 64376 =116¢8 VIDWAIT Y
If (A)=880 (carriage return), and
1f kevboard register is full, and
if kevhopard reg contains entl=5,
then fall into EKRDWAIT.
Flse, pota VIDOUT.
Pause system per operator request. FRAA H4392 =1144 EBDWAIT ¥
Loop until new key pressed.
If next key pressed is entl-=C
then poto VIDOUT, leaving cntl-C
in kevboard repister.

Flse, clear kevhoard strohe and
poto VIDOIT,

e — —— — ————— — — — — —— — —— o o T o i i i i i e o e A S R i s R NN G e S SN NI EUER TEN RN W EEN T e

LDy MOMITOR OMLY

SHH Backspace
:- The VIDOUT routine moves the cursor to the left one space by
decrementing CH. If CH goes negative it is set to (WNDWDTH)-1 and
oV is decremented. If decrementing CV would take it above (WNDTOP)
j GV is not decremented. MNegative scroll is not supported.
Sound the Bell

:. ey
The speaker is pulsed 10@@ times per second for one tenth of a
I Hecond .

i:- Any other character in the range %8 thru $9F is dropped. It does
not cause cursor motion or memory modification.

™ OUTPUT WITHOUT THE SCROLL WINDOW

It nll or part of the acreen is to be used in a direct addressing
manner, 1t Is necessary to avoid certain Monitor services. In general,

EEREER

| the Seroll Window services provided by the Monitor are:

Print character to screen via FOFAR A5@A14 =h22 COUTZ none

VIBOUT with save and restore of l. Seroll all text in the window up one line 1if a carriage return
A=reg and Y-reg. or line feed takes the cursor down through the bottom line of

tolige -
(' H I 594 UNDTFT 32 424 wiralow
Cy 37 525 NI TTH 33 21 ; ; .
! ! do Aitomatleally assume carriage return if window width is

INVFLG 11, 5372 WHITOP 34 522 :-:.-.i.-:l{-d . - ;
RASTL T A=4]1 G82B-29 WEHIOETM 35 523

42 MONITORS PEELED KEYBOARD INPUT AND SCREEN CUTPUT 43

yYrFrTTrorrryrrrTrmmTmTrFy YRR TYRPYTTETTY RPN

3. Place the cursor at the left edege of the Scrnll Window instead
of at the left edge of the screen on a carrlage return.

alm here is to leave support of cursor position (zero page fields CV,
I':n Cil, and BASL,H) up to the Monitor, and use other methods/fields for

placing characters outside the Secroll Window.
4+ Support screen clear functions:

A. Clear the window, place cursor at top left corner.
B. Clear the window from current cursor posltian.
Ce Clear line to the right of cursor position.

To place characters outside the Sercll Window,

l. With the line nmumber in the A-reg, call GBASCALC to set GBASL,H
Lo paint to the memory address of the left character position of

the indicated screen line.

When using all or part of the screen as a random access display, these
sutomatic services need be avoided.

2. With Y-reg indicating horizontal position on the line, store the

)
o
o
'_‘.. desired character at (GBASL),Y.
n
N
-

If the full screen is to be usad as a random access display, without a
portion being used as a working Scroll Window, the problem is not too
difficult. Consider leaving the whole screen defined as the Scroll

S Hote that this technique does not dnterfere with LORES plotting if the
Window.

qereen is being used in mixed mode, because PLOT calls always set
GBASL,I as required without regard to possible previous contents.
1. The scroll operation only occurs if a carriape retunrn or line

feed or exceeding window width occurs on the bottom line of the
Scroll Window. Avoid this by not having the program ocutput CR or
LF or excessive data on the bottom line of the screen, and by

keeping the cursor away from the bottom line of the screen
during keyboard input operations,

Another approach is available for the BASIC or APPLESOFT programmer.
Apain, the Scroll Window support can be used for some things, while
the following approach can be used to place characters on the screen
outside of the window. That approach is to compute che screen memory
location for each byte to the screen, and poke the byte there. A
varfation on that approach 1s shown by the sample program. In the

2., The full screen is defined as the Seroll Window by the Monitor j nample, the Moniter VTAB routine is used to assist in building a table

when the RESET key is pressed. A user program can restore the
window parameters to this configuration if they have been

altered by calling "Set Normal Scroll Window" at 5FB3C or 64316
or —122%.

of memory locations indicating the starting points of the screen

lines. This is an easier alternative than using the madulo arithmetic

formula described in the section "Pages Four thru Eleven". HNote that

ndding 1324 to each value in the table gives the memory address for
that line in the secondary display area.

':.l ¥ pLay

3. Position the cursor where desired befpre printing a string of
characters: POKE the line number into CV and call VTAR for the

line and then POKE the character mmmber into Cl.

il ADDRESS TABLE

I 'unetion Hex +Dec -Dec Monitor Reglsters
j Addr Addr Addr Label Destroved

4., Output the string of characters by the same means as if operating
with scroll services, being careful not to unintentionally
exceed window width or output carriage returns. Depending on

your screen design, however, you may intentiocnally do each of .:- (MTSTHE OF SCRNLL WINDOW
these. | Compute memory address for line in FB47 63559 -1977 GRASCALC A
A-reg; set GBASL,H,
Note that program output of a carriage return does not clear the line l:.

to the right of the carriage return, but keyboard input of a carriage

return does (if reading the keyboard is being done by the Monitor pet-
line routines).

I NS TIF ROROLL, WINDOW

1‘:- Write hyte in A-rep to screen at FDFR 65008 =528 cCouTl TA

cursor (CV),(CH) using INVFLG and

Hupparting cursor move.

:Jll Write hyte in A-rep to screen at FDF6 65314 =522 COUTZ none
(V)L (CHY with cursor move but

|j not [NVEFLG.

If part of the screen is to be allocated as an opperating Scroll Window
while the remainder of the screen i1s to be directlvy addressed, then a

different (lower) level of Monitor services must be called upon.

(lear Seroll Window to blanks, FC58 646G =936 HOME ALY
One way to support a divided sereen is by using the Screll Window for cursor to top left corner.
data input with the Monitor get—input—line services, and by using the ' Set OV from A-rep, clear window to FC5A4 64602 -934 A, ¥
Scroll Window support for whatever output the program intends to put end of window.

there. Then use parts of LORES graphics support for placinpg characters
on the screen outside of the Scroll Window, as described below. The

44 MONITORS PEELED KEYBOARD INPUT AND SCREEN QUTPUT 45

T FFFrPT™"T*TTEFTFTNNMmMET YR TYTWEYNENENYT TP T "YW

i . S
3 .

BREE

Function Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroyved

Place cursor at line (A) col (CH) FBSB 64347 -—-ITRB9 TARV A
setting CV and BASL,H from A-repg.

Set BASL,H from CV (and WNDLFT). FC2? 64546 =99¢ VTADR A
Set BASL,H from (A) and WNDLFT FC24 64548 =988 VTABZ A
wilthout regard to CV.

Set BASL,H to left end of screen FBC1 64449 -=1@87 BASCALC A
line (not window line) in A-reg.

CH 3h 8524 WNDLET 5, 3 520

cV 37 S25 WNDWDTH 33 521

GBASL,H 3B-39 3$26-27 WNDTOP 34 §22

BASL,H 4g—-41 528-29 WNDBTM 35 523

INVFLG 5 $32

APPLESOFT SAMPLE PROGRAM

1@ BREM TEXT OUTPUT WITHOUT THE S5CROLIL WINDOW

11 REM SAMPLE PROGRAM

12 REM READS FROM KEYROARD LINE, CHAR, STRING

14 REM AND PLACES THE STRING THERE

1(ACHCH REM PROGEAM ENTRY

161¢ DIY LE(23): REM LINE ADDE TABLE

1103 COSUB H3F@E RFM MAKFE UP TAERLE

1199 Ril{ PRINT PART OF TABLE JUST FOR SHOW
12064 FOR I ={ TO 21: PRINT I,Li(L): HNEXT

12¢9 REM DELAY TO ALLOW LOOK AT IT.

121 FOR I = 1 TO 5Q¢g@: NEXT

1228 PRINT: REM PRINT CR TO ALLOW CTL-S5 STOP IF DESIRED.
1225 CALY.. = 936! REM CLEAR SCREEN BEFORE CHANGING WINDOW .
1229 REM SET UP NeW WINDOW.

123¢ POKE 32,24: POKE 33,14: POKE 34,12: POEKE 35,17

1235 CALL =936 EEM PUT CURSOR INTO WINDOW AREA,

13¢¢p INPUT LI,CL,SSS5:REM READ A COMMAND LINE.

1399 REM ALLOW A WAY OUT

14 IF SS% = "END" THEN 639(0

150¢¢ SL = LEN (55%)

1509 REM CHECK LEGALITY OF LINE, ETC.

1514 IF LI > 23 THEN 181¢

1511 IF CL » 39 THEN 1819

1519 REM NOT PAST 4 THOUGH,

152¢ IF CL + SL > 39 THEN SL = 4@ - CL

160G REM PUT CHARACTERS ONE AT A TIME.

161 FOR I = 1 TO SL

1708 C$ = MIDS (88%,1,1):0% = ASC (C3)

172¢ POKE LZ(LI) + CL + 1 - 1,6% + 128

17408 NEXT 1

1 RifH COTO 130 : RFM) BACK FOE ANOTHER COMMAND.

46 MONITORS PEELED

o s R s S . O . - . NN, . TN B e oS DB A S

i

B EEEEEEBEEEEBEEEBEEEEREEREEEEEEES

LH 1 RFM LINE OR CH Too BIGC — EREOR.

[H11 CALL = 936: PRINT "NOT 30 BIGY

[#12 PRINT "LN ";LI: PRINT "CH ";CL

LE26 GOTO 1806

{i .Il 1’.; I._} I.J RHE'I

RRIIrL RFM MAKE UP LINE ADDRESS TABLE
hidl X% = PEEK (37): REM RFMEMBER CV

HA2¢ FOR I =@ TO 23

(W3 POKE 37,1: REM SET CV

LYATl CALL —99¢: REM CALL VTABR TO FILL BASL & BASH
BAAYS L¥(I1) = 256 * (PEEK (41)) + PEEK (4f)

A NEXT T

b iga 5 RFM TABRLE SETUP DONE

1A 6 RFM RESTORE CV AND RETURMNM

5@ POKE 37,X%: CALL - 99¢: REM WITH PROPER BASL & BASH
VAL RETURN

GO CALL - 1233: END: REM RESTORE FULL WINDOW PRIMARY

SECONDARY DISPLAY AREAS

The Apple IT hardware allows use of either of two nemory areas for
dlsplay to the screen. The first, or primary, is memory locations
SHANG-SBTFF. The secondary text {(and low resolution graphics) display
area is SPBUP-SUBFF. This area is normally overvrlaid by a user program
or data, but in special circumstasces a user may desire Lo make use of
thls secondary area as a screen display area.

e Monitor does not support the secondary display area as such,
b, the routines in the Monitor which determine screen area memory
adilress from line number (CV) and character column (CH) do so only for

{ s primary display area. These routines perform correctly only for
| Lnis =273,

That

Following are descriptions of two ways of using the secondary display
I 18 o o (2

COPY PRIMARY TO SECONDARY

There are times when it is desirable to chanpe the display wvery
qulekly, although the program produces the output slowly. For example,
n program might display data found by scanning a disk file. The
programmer might gpenerate the oripginal screen data in the primary
(disgplay area, then move it to the secondary display area and set the
hardware to display from secondary. The program may then proceed to
pencrate the next screen data din the primary area while the operator
[# looking at the initial or previwus displav of results. A sample
program is provided later in this section showing how the Monitor llove
tout Ine can bhe used to move the centents of the primary display area
Lo the secondary display area.

KEYBOARD INPUT AND SCREEN OUTPUT 47

SET BASL,H FOR SECONDARY DISPLAY PAGE

When the Monitor places a character in the screen memory area, it does
so0 using BASL,H as the address of the memory location for the left end
of the line, and (CH) as the displacement from the left end of the
line. BASL,H can be initialized to the memory lacation of a selected
screen line by setting the desired line number in CV and then CALLing
TARV. On return from that CALL, adding 4 to BASH changes BASL,H to

point to memory for the desired line in the secondary display area.
This will last until the progrzm writes a carriage return or writes

characters beyond the right end of the Scroll Window.

If the Monitor is called upon to read from the kevboard, it "echoesg"
the input characters to the screen. Input of a carriage return, one
backspace too many, a cursor movement, or a screen clearing Escape

Key function will cause BASL,H to be restored by the Monitor to point
within the primary display area.

In the case where one display area is to be used for text and the
other for graphics, it is preferable to keep the graphiecs in the
primary area and the text in the secondary area because the Monitor
recomputes GBASL,H continually for plotting functions, whereas for
text output BASL,H is recomputed only when 1t is necessary to move the
cursor to a new line.

It must be noted that APPLESOFT also does not (easily) support the

secondary display area. APPLESOFT in RAM occuples that part of memory,
and then some. Firmware APPLESOFT places the program code in that

memory space, unless special actions are taken. Those actions may be

noted in the sample program, which uses APPLESOFT and the secondary
display area. POKE 184,12 and 3¢27,0 before leoading the program.

ADDRESS TABLE

Function Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroyed

Place cursor ar line (A), col (CH) FBSB 64347 -118%9 TABV A

(store A to CV and compute BASL,H

by JMP to VTAB.

set BASL,H from CV and WNDLFT FC22 bH4546 =991 VTABR A

by call BASCALC and add WNDLFT.

Set BASL,H from A-reg and WNDLFT FC24 64548 -988 VTARZ A

by call BASCALC and add WNDLFT.

Set BASL,H to memory address for FBC1 64449 —1087 BASCALC A

left character of screen (not
window) of line in A-reg.

48 MONITORS PEELED

YT rTyryrYyrrryrrTmmmeErwT TR MNEREYT WY W WWT W R W

Function Hex +hec —Dec Monitor Registers
Addr Addr Addr Label Destroyed
Write byte in A-reg to screen at FOF@ 6508 =528 COUTL 7?A
cursor (CV),{CH) using INVFLG and
supporting cursor move.
Write byte in A-reg to screen at FOF6 65@14 =522 COUTZ none
(V) ,(CH) with cursor move but
not LNV LG.
Monitor Command Processor MOVE FE2C 65068 —468 MOVE A (Y=0)
routine. (AIL,H) thru (A2L,H) dis
moved to (A4L,H) thru whatever.
Monftor Command Processor GO entry. FEB6 652¢6 -33¢0 GO - . O
Set PCL,H from AIL,H if entered. &
Call RESTORE, set all regs but S & FER9 65209 =327
JMP via PCL,H. FERC 65212 =324

DIRECT CONTROL ADDRESSES

The following table deseribes the methods of setting the hardware for
display to various screen configurations by direct control rather than

by calling the Monitor. TFor some of these items there is no routine
In the Monitor which could be called to perform the function.

Function Method

Set GEAPHICS display node.

Set TEXT display mode.

sot Graphics mode to Full Screen.
set MIXED GRAPHICS and TEXT mode.
Sek display to Primary Page.

set display to Secondary Page.
(!lear HIRES = Set LORES mode.

Set HIRES Graphics mode.

Set top line of Scroll Window.

POKE -163¢4,8 or STA C@5@
POKE -163¢3,¢ or STA C@51
POKE -163@2,8 or STA C@52
POKE -16301,# or STA C@53

POKE -16300,0 or STA C@54
POKE -16299,0 or STA C@55

POKE -16298,8 or STA CP56

POKE -16297,% or STA C@57

POKE 34,line-number (#-23)

Baottom must be greater than top.
POKE 32,column—number (@-39)

Left edge + width not to exceed 4.
POKE 33,number—of-columns (1-4{),
Left edge + width not to exceed 40,
POKE 35, line—number (1-24)

Bottom must be greater than top.

Set left edpge of Scroll Window.

Set width of Seroll Window.

et bottom line of Scroll Window.

(:H 16 524 WNDLFT 32 520
Gy 37 525 WNDWDTH 33 521
GBASL,H 18-39 52627 WNDTOP 34 $22
BASL, I Gil—-41 §2B-29 WNDBTM 35 $23
THVILG S5 532

KEYBOARD INPUT AND SCREEN OUTPUT 49

INTEGER BASIC SAMPLE PROGRAM

I# REM SAMPLE SECONDARY DISPLAY WAY
11 REM USING MONITOR MOVE TECHNIQUE

19 GOTO 1¢9@¢: REM BYPASS SUBROUTINES

20 REM MOVE AREA 1 TO AREA 2

21 POKE 6f,@: POKE 61,4: REM SET AlIL,H
22 POKE $2,255: POKE 63,7: REM SET A2L,H

23 POKE 66,@: POKE 67,8: REM SET A4L . H

25 POKE 71,0: RFM SET Y-REG={
26 POKE 58,44 REM $2C
27 POKE 59,254: REM SFE
28 CALL —-327: REM DO THE MOVE
29 RETURN

1 3@ REM PROGCRAM START

1901 IF PEEK (75)<12 THEN 320@¢
119§ CALL -936: REM CLEAR THE ECREEN

12@¢ PRINT "THIS IS THE SECONDARY DISPLAY AREA"
1213 PRINT "NOTE THE LACK CF CURSOR™

133@ GOSUB 2¢: REM MOVE TD SECONDARY

14@¢ CALL —936: REM CLEAR PRIMARY AGAIN
141¢ PRINT "THIS IS TEE PRIMARY AREA ACATN"

1503 POKE -16299,0: REM SET SECONDARY
160@ FOR I=1 TO 4@@¢: NEXT I

1760 POKE —163(0¢8,(3; REM BACK TO PRIMARY
183¢ END
32000 REM NO LOMEM ERROR

32011 PRINT "“PLEASE LOAD AGAIN"
32(002 PRINT "AFTER LOMEM:3@172 "

32@¢3 END

APPLESOFT SAMPLE PROGRAM

14 RE}M SECONDARY DISFLAY AREA WAYS AND MEANS
11 REM SAMPLE PROGRAM

12 REM READS FROM EEYBOARD

13 REM COMMAND, LINE, CHARACTER, STRING

14 REM AND PLACES THE STREING

1 3R REM PROGRAM ENTRY

1339 RFM 1S SECONDARY AREA CLEAR?

131 IF PEEK (1#4) < 12 THEN 62000

108204 GOSUB 5300 - REM CLFEAR THE SECONDARY

50 MONITORS PEELED

M e T T O™ O O™ O™ O ™o T WM ' '"TTTYTTYTT™T TTT

i""l"'l

B EEEEREERBEEEREERREERRER"

.=

CEN

| 304
1 349
1313
1311
1317

| 4944
LA
1414
|4 2l
LT
14731
I 44
|45
I 5SE A
1514
1511
b SN
IRFRS 1T
| (AL
1614
162
| TALh
17148
| By
| 81
1H11

K12
| B4

A
A1

21
211

220

SR 17

BEM M 4 I M
IF Q = (# THEN 1393

PR OEGEAM

REM INPUT T0O PRIMARY

REM SET INPUT TOQ SECONDARY
FOKE 37,213 REM SET LINE 21
CALL = 999: REM SET BASL,H

POKE 41, PEEK (41) 4 4: REM SET BASH TO SECOMNDARY

INPUT CC4, LI,CL,SSS
IF CCS = "END" TYEN 6390

IF CCS5 = "S5"™ THEN 2¢@d: REM SET SHOW TO SECONDARY AREA
IF ccs = "p" THEN 21¢0¢J: REM SET SHOW TO PRIMARY ARFEA
IF CC$ = "Q" THEN 22¢¢: REM SET INPUT SECONKDARY

IF CCS = "R" THEN 23)¢: REM SET INPUT PRIMARY

[F CCs = "X" THEN 150¢): REM PUT STRING TO SECONDARY
POKE 163¢¢,¢: PRINT "WHAT? ": GOTO 13¢(

S, = LEN (SS8%)

TF LI > 23 THEN 181¢

[F CL. > 39 THEN 1819

[F CL 4+ SL > 29 THEN 8L = 400 - CL: BREM NO AUTO CR

CX = PEEK (37): REM REMEMBER CV

POKE 37,LI: CALL - 99¢: POKE 41, PEEK (41) + 4

POKFE 37 ,CX: REM RESTORE CV

POXE 36,CL: REM SET CH FOR THIS PRINT

SP5 = LEFTS (88§,8L): REM SHORTEN PRINT TN THIS SMPL
PRINT SP$

GOTO 1330
CALL. — D363 REM VALUE TOO TARGE.
PRINT "NOT 50 BIG": EEM PRINT IN PRIMARY OMNLY

PRINT: VEN "eLls PRINT YEH M=CL
GOTO 130/

POKE — 16299, @:
GOTO 130

REM SET SECONDARY

POKE - 163@¢,@:
GOTO 138§

REM SET PRIMARY

REM SET INPUT TG SECONDARY

() = 13 GOTO 13(0@:
- REM SET INPUT TO PRIMARY

() = GOTO 13449

KEYBOARD INPUT AND SCREEN OUTPUT

o1

62003
62010
62318
h2(#19
62320

63030
63@d1
A3AP5
6390 1¢
AIE2H
633
63P40
63350
6 3@ 6
630 7¢
63080
63903

PRINT “SETUP NOT MADE, NOW BEING DONE"
PRINT “RUN THE PROGRAM ACAIN"
REM 1@4 IS APPLESOFT ROM START

REM BYTE BEFORE SCA1 MUST BE ZERO
POKE 3¢72,8: POKE 1¢4,12: END

BLE = " tha REM CLEAR SECONDARY AREA
FOR T =1 TO 3:BLS$ = BLS + BL%: NEXT
CX = PEEK (37)

FOR I =@ To 23

POKE 37,I: CALL - §9¢

POKE 41, PEEK (41) + 4

POKE 36,0

PRINT ELS

NEXT

POKE 37,CX: POEE 36,0

RETURN

POKE 1673¢¢),%: CALL - 1233: END

92 MONITORS PEELED

FE R R EERE R EE R R E R EEEEEEER:

m FryFM™m™T™TmMmF T T WM MM™mMrFPF ™ 7" PP "™ " T T T TN

Ll

CHAPTER 3

INTERRUPT PROCESSING

Yome computers are capable of reacting to the raising {or dropping) of
a sipnal line by instantly saving the current status of the processor,

and quickly transferring control to some other program within the
computer, Changing the state of that line is called "causing an

Interrupt™s The functions of the processor in saving its current state

and transferring control to some other location In memory is called
"takineg an interrupt', The program which then recelves contrel is

cupected to "handle the interrupt".

The 6532 microprocessor in the Apple 1T is sensitive to three

Interrupt categories. These are RESET, MMI (Non-Maskahle Interrupt),
and [RO. Execution of a BRK instruction causes a form of IRQ interrupt
tao he simulated.

The purpose of an Interrupt, in general, is to allow some kind of
vxternal device to make a condition known to a running program without
(hee program kaying to pericdically or continually test for the

hardware condition. An example of the latfer type of operation is the
Apple T1 keyboard operation. When keyboard input is to be accepted

memory location $COUR is tested repeatedly until presence of the sign

hit indicates that a key has been pressed. An example of interrupt
driven processing could be a special peripheral centrcgller card,
nttached to a telephone line, which caused the computer to he taken
over hy a data acquisition program acy time data was available, but
wittld allow the machine to be used for other things in between
roanpmissions.

When a computer recognizes (takes) an interrupt, the hardware should
neeomplish three things.

l. Bave processor status in such a way that execution of the
Interrunted program can he continued after the interrupt has

heen '"serviced” or handled.

2. Prevent further recognition of that elass of interrupts until
the Interrupt handling program restores that interruptability.

b. Transfer control to the program meant to handle this tvpe or
catepory of interruprt.

With the 65802 in the Apple II variations on the above three steps are
taken for the three different interrupt classes or categories.

. When an TRG (or BRK) or NMI interrupt is taken, the contents of
the program counter and the P-reg (processor status register)
are respectively pushed onto the stack. When a RESET dinterrupt
ls taken, the preocessor holds the memory in READ mode until
control is transferred to the handler, so nothing of processor
status is pushed onteo the stack.

INTERRUPT PROCESSING 53

‘ |

2. When the €5@2 takes an IRQ interrupt, the P-reg is modified. i
a BRK instruction is executed, the $1§¢ bit of the processor
status register is set to one before the P-reg is pushed onto
the stack. If the IR} line was the cause of the interrupt, this
bit is set to zero before the P-reg is pushed onto the stack.

After the P-reg is pushed onto the stack, the $@4 bit is set to
inhibit recognitfon of any more IRGQ category interrupts until
the interrupt handling program clears this condition.

With RESET and MMI there is mo available facility for
preventing another interrupt while the current interrupt is
being handled.

3. The 6502 transfers control to the appropriate program for
handling an interrupt by means of "vectors'". Memory addresses
S¥FFA-SFFFF are reserved for this purpose. The final step of
taking an interrupt is loading of the program counter from the

vector for this class or category of interrupt. The following
table indicates the locations of the interrupt handlers for the

two Monitors.

Interrupt Vector Monitor 0Old Monitor Autostart
Taken Address Lahel Address Address
NMI STFFA-B NMI™ SPIAFR S@3FB
RESET SFFFC-D RESET 5FF59 SFAGHZ
IRQFERK SFFFE-F IRG) SFAB6 $FA&@

NMI INTERRUPT

The Apple II Monitor does not interfere with user handling of
the NMI interrupt. That is, the vector for NMI causes the 65§42
to transfer control of the computer to location $@3FB, where
the user is to place a JMP to the user—-provided handler for
this type of interrupt.

RESET INTERRUPT SUPPORT

Pressing the RESET key on the keyboard causes a RESET interrupt

to oeccur. On all Apple II's but the very early ones, power—on
alss results In peneration of a RESET interrupt.

The actions performed by the Autostart Monitor and the 0ld

Monitor RESET interrupt handlers are consliderably different.
Therefore, they will be described separately.

54 MONITORS PEELED

mrrwrrrrrrTrrrrrTmmrl‘fl"l'lH'Fl'H"l"l'H"“

T

s

..

EEEEREEREEEEREEREER

IRQ/BRK INTERRUPT HANDLING

When either an IR(G interrupt is taken or a BREK instruction is
executed, the 6502 performs an interrupt sequence. The contents

of the program counter are pushed onto the stack. The $1¢ hit
of the P-rep 1s set or cleared to indicate the IR line wvs.

BRK fnstruction, and then it is pushed onto the stack. The 6502
then sets the $@4 bit of the P-reg, preventing another

interrupt of this type from being recognized until this one is
handled. The 6502 then loads the Program Counter from the IRQ
hardware prescribed vector at SFFFE-SFFFF, and allows operation

of the computer to continue from that peint. The Interrupt
Handler for TIRQ interrupts is now in control.

RESET INTERRUPT—OLD MONITOR

When a RESET interrupt is taken the 0ld Monitor establishes a
predefined configuration of hardware and page zero fields. Primarily,
I he keyboard is set as the current input device, the screen is set as

I he current output device, and the screen configuration is set to full
nereen Scroll Window with normal video.

Page zero fields KSWL,H, CSWL,H are set to make the keylboard and

o reen active. WNDLFT, WNDWDTH, WNDTOP, WNDBTM are set to define the
whole screen as the Seroll Window. CV and CH are set to place the
curdor at the bottom left corner of the screen. INVFLG is set to
normal (white on black).

Hardware addresses are referenced to establish a known confipuration
an ol lows.

SCRSH = elear hiph resolution graphics
W54 — display primary area
sCh 1 — sek text mode

Gomtrol is then transferred to the "top" of the Monitor at label MON,
location 5FF65, at which point the "bell" is sounded and the Monitor

enters the command line read romtine.

INTERRUPT PROCESSING §5

ADDRESS TABLE

Funetion Hex +Dec -Deec Monitor Registers
Addr Addr Addr Label Destroved
Set STATUS in SAVE area to Q. & FBZF B4303 -1233 1INIT A
Clear HIRES. & FB33 6437 -1229 A
Set primary display area. & FR36 64310 =1226 A
Set TEXT mode. & FB39 64313 -=1223 SETTXT A
Set full screen scroll windew hy FB3C 64316 -1220 A
branch to SETWND with (A)=@.
Set WNDTOP from A-reg. & FR4B 64331 -12¢5 SETWND A
Load A with §# for WNDLFT. & FR4D R4L333 —-12¢3 A
Set WNDLFT from A-reg. & FBAF 64335 -=1241 A
Load A with 4@ for WNDWDTH. & FB51 64337 -1199 A
Set WNDWLTH from A-reg. & FB53 64339 -1197 A
Load A with 24 for WNDBTM. & FR53> H4341 -1195 A
Set WNDBTM from A-reg. & FB37 64343 -1193 A
Load & with 23 for CV. & FB59 64345 —-1191 A
Set OV from A-reg. & FBS5B 64347 —=1189 TABV A
JMP to VTAB to set BASL,H & RTS5. FRSD 64349 =1187 A
Set INVFLG to SFF = normal wvideo. FEB4 65156 =380 SETHORM ¥
Set INVFLG from Y-reg. FEBGH 65158 -378 SETIFLG mnone
Set port ¢ (keyboard) for input. FE89 65161 =375 SETKBD A,X,Y
Set port @ (screen) for output. FE93. 653171 -—365 SETVID A XY
Monitor entry on RESET key pressed FF539 65369 =167 RESET
or Power on.
Call SETNORM - white on black. &
Call INIT <=Text & full scroll. & FFHXC 65372 =1ha
Call SETVID - screen as output. & FF5F 65375 -16l
Call SETKBD = keyboard = input. & FF6Z 63378 —]58
Clear 6582 decimal mode (set hex) & FF65 65381 -155 MON
Sound bell. & FF66H 65382 =154
Monitor Command Processor Entry. FF69 65385 =151 MONZ

bet "' ag prompt character.

RESET INTERRUPT—AUTOSTART MONITOR

The Autostart Monitor performs functions of three categories 1in
handling a RESET interrupt.

56

l. Eatablish a known hardware/scoftware environment with repards to

the basic machine.

2. If the contents of memory (page three) do not indicate that a
power—on Initialization has been performed, the Autostart

Monitor will perform power-on initialization.
in onc of the slets,

controller card is present
initialization includes bootstrapping from that slot.

If a disk

PO r=0n
POV

disk econtroller card is in the machine a control=B entry is

simulated.

MONITORS PEELED

In either case, the appropriate language nrocessor

Ty TyYyYry¥ryryYyrryy rYyrTrmmrrY¥yYyrErrFFY®TYTTTTYMN

—

—

"EEEEREEEEEEEREEEE R

s &S SeeSSSa——" S S — .

'BERRE

-
.

receives contrpl at the end of power~on initialization, with

page three fields set to indicate that a wartm start is to be
performed on ensuing interrupts from the RESET kevy.

4. If the contents of memory (page three) indicate that power-on
inftialization has already been performed, the Autostart

Monftor will transfer control via the RESET (Soft Entrv) wvector

in page three at the conclusion of "handling'" the RESET
interrupt. T1f D05 has been booted, this «dll result in transfer

of control back to the current lanpuage processnr through DOS.
If DOS is not present, the normal setting of the RESET vector
will cause simulation of a control—-C (warm start) reentry into

the current language.

INITIALIZE SYSTEM CONFGURATION

Whon a RESET interrupt is taken, the Autostart Monitor establishes a
prodefined configpuration of hardware and page zero fields. Primarily,

L hee keyboard is set as the current input device, the screen is set as
I e current output device, and the screen configuration is set te full
nereen S5croll Window with normal video.

Pappe zoro Flelds KSWL,H, CSWL,H are set to make the kevboard and

e reen active. WNDLFT, WNDWDTH, WNDTOP, WNDBTM are set to define the
whiti 1 screen as the Seroll Windew. CV and CH are set to place the
enrsor at the bottom left corner of the screen. INVFLG is set to
neraal (white on black).

Hardwiare addresses are referenced to establish a known configuration
e Tl Low.

G = clear high rescolution graphics

SRS = display primary area

S = set text mode

GUPSR = clear ANGE = TTL LO

BEWUBA = clear AN] = TTL LO

MCUAD ~ mat ANZ2 = TTL HI

SURLHT - ser AMT = TTL 1l

SUFIF = turn of £ FExpansfon ROM

Y - elear keyhoard strohe

(i vomplotfon of all the above, the Autostart Monitor sounds the BELL.

COLD/WARM DETERMINATION

Ater edtablishing a known basic hardware and sceftware (screen

coad ol) eovironnent , the Autostart Monitor executes a test Lo
determine whorher power—-gn initialization is to be performed. Page
throe loratfong SP3F2-5@373 contain the RESET (Soft Entry) vector, the

tor which the Autostart Monitor will transfer control on
hand1ling the RESET interrupt. Location $@3F4 is a

.l||1l = g

connpr Leed o ol

INTERRUPT PROCESSING 57

validation bvte, used with S¢3F3 to indicate whether or not power—on
Initialization is to be performed.
of these two memory locatlions is SA5, then power—on initilalization fs
considered to have been previonsly accomplished, and S$@3F2-S@3F2 is
considered a valid address to whilech to transfer control.

POWER-ON INITIALIZATION

The first functions of power—on initialization are to establish in

page three (S@3FP-S#¥3F4) the BRK interrupt wvector (see "BRK
Instruction Handling - Autostart Monitor') and che RESET Soft Entry
interrupt vector with validation byte. The RESET wector at this peint

iz set to SEPP) to simulate a control-B (initialize) entry for the
current language processor.

The Antostart Monitor next performs a routine which tests each slot,
from slot J through slot 1, for presence of a disk controller card.

If one is found, a jump is performed to S$CXP) where X is the slot

number in which the digk controllier has been found. This will result
In loading of DCS and presumably execution of the HELLO program.

Note: DOS 3.2 Replaces the RESET wvector at SA3F2-5@3F3 and validacion

byte at 3f13F4, so that an a RESET interrupt, control will be passed
through DOS back to the current langusge processor.

If no disk controller card is found the Autostart Moniter changes che
RESET vectar to $ER¥3 (language restart or control-C entry point) and

then jumps to SE@AUY (languape initialize entry point).

SYSTEM RESTART

If the S$@3F3-5(3F4 test described above is passed, the RESET vector at
S@AIF2-SHA3F3 is considered mostly wvalid. 1If it contains SE@AM, it is

changed to S$EOP3 and then BASIC is entered at SEMIE. TIf it is not
$Eﬂﬁg, it executes an Indirect Jump via SU3IFZ2-3@3F3 to the address

specified therein.

RESET VECTOR MODIFICATION BY USER

The RESET wvector may be modified by user or program to send contrel to
some other address in the machine at the completion of Monitor
handling of the interrupt. VYor example, to cause the RESET kevy to
result in placing the machine in Yonitor mode, execute the following
Program,

1@ POKE 1@i@, 1¢5

2 POKE 1@11,255

3¢ POEKE 112,90

44 CALL =151: REM ENTER MONITOR
5@ END

58 MONITORS PEELED

If the Excluaive DR of the contents

f(r O WM A M O T T O™ MO MO W N " O™ Y O OT "TYTIT™TT O

AR R EEEREEEBEEEBEEREEEEEEEEE

The following program is more general purpose. In order to set the
RESET vector to some address, poke the address into locations L¥1@-
1311 (SB3F2-S¢3F3) and then CALL Auteostart Monitor label SETPWRC
{51'HEF or 64367 or —1169) to set location 1412 (SU3F4).

L REM AD IS ADDRESS OF
Ii HREM ROUTINE TO RECEIVE

|7 KEM CONTROL AFTER RESET

20 POKE 131@,AD: REM SET LO RYTE
id POKE 1311,AD/256% REM SET HI
At CALL =1169: REM SET 1012

Mol e

miay destroy the program, or even the entire diskette.
probloem, execute the steps In the above program manually, on a system

with an Autostar:c ROM.

MK fnco- TRI2, alleviating the need to CALL-1169 at all,

ADDRESS TABLE

If you try te run this on a system with an 6Gld Menitor ROM, vou
To avold this

Then, PEEK location 1§12 and get the value to

Funer Ton Hex +Dec =Dec Monitor Registers
Addr Addr Addr Label Destroyed
Nonltor entry on RESET key pressed FAG? 640198 —1438 RESET
i Fower on.
CLD = rlear 6502 dec,(set hex). &
Hull SETNORM — white on black. & FAd3 640399 —1437
Canll INIT = Text, full seroll. & FABE 684182 -=1434
Call SETVID = sereen as output. & FARY 64105 —=143]
Call SETEBD = keyboard as input & FABC H4IER —=1428
Initlalize hardware to known state. FARF 64111 =1425 INITAN
Clear ANG to TTL LO (ref. CP58)Y, &
Clear ANT to TTL 1O (ref. CP5A). & FATZ 64114 =1422
Set ANZ2 fto TTL HI (ref. C@5D), & FA7S 64117 -1419
et AMY e TTL NI (ref. CBSF). & FA78 64120 -1416
Clear Bxpapsion ROM (ref. CFFF), & FATB 64123 -1413
Clear keyboard strobe, & FAVE 64126 -1417
Clear B2 decimal mode (set hex).& FABL 64129 =14(7 NEWMON
Cal | BELL, & FAB2Z 64130 -1406
Toeut S5W)Y vs. S$3F4: Cold or Warm FARS 64133 -1403
11 teld poto PWRIP,
[£831F7) XOR (53F4) = 545, Warm.
Tont SORTEY CS3F2) low byoe: FARBF 64143 =17393
Han=zero means Cold Start done =
ferlvs MOFITX Lo ngse SUFTEV vector.
Lero meang resgtart warm nayvbo.
Tewt SOFTEVY Wi for SE@ - language FA94 64148 -—]1388
cobd wtart entrey. Tf not Equal;
SUFTEY 1w ok to use, poto NOFIX.
SOFTIEY « SEERR . chanpe to SEPW3 for FA9BR 64155 —=1381 FIXSEY

Patbore ase il poto SEARDY to cold

sbart Lhe Language.

INTERRUPT FROCESSING

39

Function Hex +Nec —Dec Monitor Registers
Addr Addr Addr Label Destroyed

JMP (SOFTEV): Use the Soft Fntry FAA3 64163 =-1373 NOFIX

vector to exit RERET handler.

Cold Start on RESET entry point. FAAG 64166 =137¢ PWRUP

Call APPLEII to elear screen and

put title on top line. &

Set page 3 interrupt vectors for FAAD 64162 -—-1367 SETPG3

BRE (OLDBRK) and SOFTEV (SE@FG).
Look for disk controller card in FAR4 H418BH -1356

slots 7 thru 1. If none, poto

FIXSEY above to set SOFTEY for

BASIC restart & enter BASIC cold.

If disk found, JMP (LOC#) to boot

from the disk.
Clear screen (call HOME). & FBR6E 64352 -1184 APPLEII ALY
Plare APPLE 11l legend on top line. FBB3 643535 -=1181 ALY
Set PWREDUP (S$3F4) = (83F3) XOR SAS FBOF 64367 -1169 SETPWRC A
Set STATUS in SAVE area to {. & FB2F 643@3 -=1233 INIT A
Clear HIRES. & FB33 643007 -1229 A
Set primary display area. & FB36 H/431Q0 -1226 A
Set TEXT mode. & FR3I9 64313 =1223 SETTXT A
Set full screen seroll window by FE3C 64316 =122¢ A
branch to SETWND with (A)=(.
Set WNDTOP from A-reg. & FB4B 64331 -12¢5 SETWND A
Load A with §# for WNDLFT, & FR4D 64333 -=-12¢2 A
Set WNDLFT from A-reg. & FB4F #4335 -1201 A
T.oad A with 40 for WNDWDTH. & FB51 64337 -=1199 A
Set WNDWDTH from A-reg. & FB53 64339 -=1197 A
L.oad A with 24 for WNDRTM. & FBSS 64341 1195 A
Set WNDBTM from A-reg. & FB57 64343 -=1193 A
Load A with 23 for CV. & FB59 64345 =1191 A
Set CV from A-reg. E FESE 64347 -=1189 TARY A
Jump to VTAB to set BASL,H & RTS. FBR5D 64349 -=1187 A
Set INVFLG to SFF = normal video. TFE84 65156 =380 SETNORM Y
Set INVFLG from Y-reg. FES6 65158 =378 SETIFLG none
Set port @ (keyhoard) for input. FEB9 65161 =375 SETKBD A,X,Y
Set port @ (screen) for output. FE93 65171 =365 SETVID B KR
FOR COMPATIBILITY WITH OLD MONITOR FF5Y9 65369 -—-167 OLDRST

the RESET routine is still here.

Call SETNOEM — white on black. &

Call INIT -Text & full serell. & FF5C 65372 -164

Call SETVID - screen as output. & FFiF 65375 =161

Call SETKBD - keyboard = input. & FF62 65378 -158

Clear 6542 decimal mode,set hex. & FF63 65381 =155 MOH

Sound bell. & FFbo 65382 =154
Monitor Command Processor Entry. FF69 65385 =151 }OHZ

Set "*" as prompt character.

60 MONITORS PEELED

w M T T T T M T T T o Y e e e e N N T W™

BEEEEREBEEREEEERE R R R R R E R R EEEEE

stock and stack pointer are not changed by this operation.

IRQ/BRK INTERRUPTS

IRQ/BRK INTERRUPT RECOGNITION

When elither an IRQ interrupt is taken or a BRK instruction is executed
i he 6502 performs an interrupt sequence. The contents of the program

counter are pushed onto the stack. The $19@ bit of the P-reg is set or
¢ leared in indication eof IRQ line ve. BRK instruction, and then it is

pushed onto the stack. The 65@2 then sets the S$@4 hit of P-reg,

preventing another interrupt of this type from being recognized until
thig one is handled. The 6582 then loads the Program Counter from the

[K) hardware prescribed vector at SFFFE-S5FFFF, and allows operation of

he computer to continue from that point. The Interrupt Handler for
[RE) interrupts is now in control,

IRQ INTERRUPT HANDLING

™e 6502 directing vector at SFFFE-S5FFFF points ta Monitor program
label TREO in both the 0ld Monlitor and the Autostart Monitor. It will
hee noted Iin the address table that the address is different, however.

The handling of an IRQ interrupt is identical in both Monitors. The
contents of the A-rees are stored at ACC {$45) for future reference.

The processor status (P-reg) pushed onto the stack by the taking of
the Interrupt is popped into the A-reg, and then pushed back onto the

ntack so that the stack and pointer are not changed. By shifting the
A=rog lett three bits, the IRO routine moves into the sign bit the bit
whilch indicates (in this case by heing a zero) that the interrupt is
an TRO interrupt rather than execution of a BRK instruction. The

Honftor then executes a Jump Indirect instruction via location S@3FE-
GWY to the user provided IRQ Interrupt Handler. HNote that on an IR0

fnterrupt the X, Y, and S registers are not saved by the Monitor.

Also, the interrupt handler has the responsibility of clearing the $@4
hit on exit to allow further interrupts.

BRK INSTRUCTION INTERRUPT

Fxecut fon of a BRK instructicn causes the 6502 to simulate an IRQ
[aterrupt with minor changes. Due to the method the instruction is

pandled, the address pushed onta the stack as part of the Interrupt
nlmulat lon is two bytes hevond the BRK instruction executed.

hetvre pushing the P-rep onto the stack, the $1@ bit is set to
Indleate to the interrupt handling routine that the cause nf the
Interrapt was executfon of a BRK instruction rather than the IRQ line.
Alter pushing the P-reg onto the stack, the $§4 bit is set to inhibit
Lty Ioterrupts from being recognized until the interrupt handler
clears the condition. Control is then transferred according to the
WS IR Interrupt vector to Monitor label IRQ. As described above

vepardiog handling of an IR0 interrupt, the IRQ routine first stores
Fhe A=rep ot ACG (545) for future reference, and then nses the A-reg

Lo test the stacked P-reg contents for a one in the $1¢ position. The
The result

INTERRUPT PROCESSING 61

of the test is a transfer of control to Monitor label BREAK. HNote In

Lhe address table that the address of BREAK is not the same 11 tihe two
Monitors.

BRK INSTRUCTION—SAVING OF STATUS

In each Monitor the first thing done in the BREAK routine is to =ave

full machine status in page zero. The contents of the A-reg have
already been stored by entry into the IRQ interrupt handler. The BREAK

routine pops the stacked contents of the P-reg from the stack, and

does a JS5R to SAV]1 at which peint the remaining registers are saved.
Note that this clears the $f4 bit, allowing further IRQ or BRK

interrupts to he taken. The S~reg saved at that time, however, has

been inecremented once by popping the P-reg back from the stack and
decremented twice by the JSR to 5AV1. On return from SAV1, the BREAK

routine pops the Program Counter from the stack and stores it in page
zero locations PCL-PCH. The address table at the end of this section
indicates the page zero locations at which the above items are storad.

BRK INSTRUCTION—QLD MONITOR

The function of the BRK instruction interrupt handler of the 01d
Monitor is to display through COUT the machine status at the time the
BRK iastruection was encountered, and then return control to the top of
the Monitor at label MON. The details above describe the handling of
the interrupt through storage of machine status in page zero,
including PCL,H. The 0ld Monitor BREAK routine next does a JSR to
TNS5DS1 to display the instruction at the address indicated by PCL-PCH
(which is two bytes beyond the BRK executed), and a JSR to RGDSP1 to

display the contents of the five registers, P, A, X, Y, S. MNote that
the S-reg as displayed is two less than it was at the time of the BRK

executlion due to the J5R to SAVI. On completion of the register
display, a JMP tec MON completes the handling of the interrupt.

BRK INSTRUCTION—AUTOSTART MONITOR

The Autostart Monitor handles IR() interrupt which is really a BRK
instruction interrupt by saving registers and Program Counter in page
zero locations. The Autostart tonitor BREAK routine then exits via the
Apple-II BREAK vector at $@3F@-S$@3F1. Thus, it is possible for a user
program te gain contrel at that point and do something other than to
display the registers and return to the Monitor command Processor.

Such a program must be sure to clear the $§4 bit in the P-reg on
return. During RESET interrupt handling for power—on, this vector is
initialized to point at Autostar:t Moniter label OLDBRK, which routine
does the same thing as was done in 0ld MHonitor. That is, it does a JSR
to INSD51 te display the disassembled instrucition at the location
indicated by PCL- PCH, a JSR to RGDSP1 to display the register
contents, and a JMP to MON to complete the handling of the interrupt.

Note: after DOS 3.2 has destroyed page 3 during the bootstrap
operation, it restores this wvector to point to SFA59, OLDBRK.

62 MONITORS PEELED

Y YT YT NYYYEARAYTRFYYYYT
A & & @ @ @ W@ @ & @ @ E R R AR =

TrwTmwTYTY"nw»°~wW

T

"

ADDRESS TABLE

Function Hex +Dec —Dec
Addr Addr Addr
Disassembie the instruction at F8DU 63696 —-184(
(PCL, 1), print thru COUT.
Display registers thru COUT from FAD7 64215 -1321
save area, after carriage return.
Display repisters thru COUT from FADA 64218 -1318
4ave area.
Save 6502 reps at $45-49. FF4A 65354 -182
Save A-reg at ACC 845, &
Save X-reg at XREGC $46. & FF4C 65356 -18¢
bave Y-rep at YREG 547, & FF4E 65358 -178
Save P-repg at STATUS S48, & FF5(€536@ -176
Save S-reg at SPNT $49, & FF54 65364 ~-172
Clear 65012 decimal mode (setr hex).
GClear 6502 decimal mode {set hex) & FF65 65381 =155
Sound bell. & FFG6 H5382 =154
Monltor Command Processor Entry. FF69 k5385 =151
Set "*" ag prompt character.
AUTOSTART TRQ/BRREK HANDLING
Petermine whether interrupt was FAGQ 64064 —1472
IR or BRE, transfer control
accordingly.
Handle RBRK interrupt: FASC 640876 —146(
Restore P-reg from stack.
Save registers (SAV1) X,Y,P,S.
Move interrupt location frum stack
to PCL,H,
JMP (BRKV) to possibly user
specified routine (normally to
OLDBRE, below).
Default BRE interrupt handler FAS59 64@RG -—1447
completion routine
Display instruction (2 bytes past),
Display registers, JMP to MON,
OLD MONITOR IRO/BRK HANDLING
Determine whether interrupt was FABG 64134 =142
[RO}) or BRK, transfer control
accordingly.
HHandle BRK interrupt: FA92 64146 -139¢
have replisters,
Display instruction (2 bytes past),
Displavy registers, JMP ta MON.
PCL,H 58,59 $3A,3B YREG 71
ACC ba S45 YSAV 52
NREG 79 54 6 STATUS 72

Monitor Registers

Label Destroyed
INSTDSP A,X,Y
REGDSP A,X
RCDSP1 A, X
SAVE, A, X
SAV]

MON

MONZ

IRO) A
BREAK T
OLDBRK A, X,Y
IR0 A
BREAK ALK, Y
SH7

534

S48

INTERRUPT PROCESSING 63

64 MONITORS PEELED

mM MMM T TTMT M T T T" " MM T " O TM" " " T 9T " T ™™ M

" EEEEEEE R EE R R EE R EE N N N

CHAPIER 4

MISCELLANY
MACHINE LANGUAGE DEVELOPMENT AIDS

There are many routines in the Monitor which can be helpful when

developing machine language programs. Some of these are routines to be
ngedl in the finished program, like the Monitor MOVE routine. Others

[n this list are general, special, or very special screen output
roat ines, and some data manipulation routines.

ADDRESS TABLE

Funct ion Hex +Dec =Dec Monitor Registers
Addr Addr Addr Lahel Destroved

L e e e e ——— —] i i B G BN S SN NN BT TEY TT TET TET == s Bt o — G i - = e -

Write byte Iin A to screen at CV,CH. FDED 65@@5 =531 COUT TA

Print ecarriage return thru COUT. FNBE 6491¢ -626 CROUT A

I'rint three blanks thru COUT. FO948 63816 =172 PRELNKE A,X
Print (X) blanks thru COUT. F94A 63818 -=1718 PREIL?2 A, X
I'rint character in & followed by Fo94C 638288 -1716 PREL3 gt

{X)~1 blanks.

'rint BELL ceade thru COUT. FF3A 65338 =198 BELL A
Print "ERR" and BELL thru COUT. FF2D 65323 =211 PEERR A
'rint low nikble of A as hex char. FDE3 64995 =541 PRHEX A
I'rint A-reg as 2 hex nihbles. FDDA 64986 -55¢8 PRBYTE A
Print hex of Y,X rees. F94(i B38BEE —-1728 PRNTYX A
Print hex of A,X regs. FO41 53809 —1727 PRHNTAX A
Print hex of X-reg. F944 63812 -1724 PRNTX A
I'rint CR, then hex of Y,X regs, FRY6 64918 =618 PRYX2 A, T
then minus sign (or dash).
Print hex of Y,X regs, then dash. FD93 64921 -615 ALY
Print CR, hex of AlH,AlL, and dash. FD92 64914 =622 PRAIL ALK, Y
Print memory as hex with preceeding FDA3 64931 -6#5 XAMS A (Y=0)

Address from mmom te mom/ where

mmem 15 initial content of AlL,T.
Print memory as hex from (A1L,H) FDR3 6H494AT7 =589 XA A (Y=0)
thry EAZL G H)

Tave ALXL,Y,PLS regs at 345-49. FF4a 65354 =182 SAVE A, X
Dlsplay registers with names from FADY 64215 =1321 REGDSP A,X
S05=09 ag SAVEQ, with preceeding

carriage return.

Hisplay reps as above without CR. FADA 64218 -1318 RGDSP1 A, X

Westore regs A,XN,Y,P not 5 from $45 FFIF 65343 =193 BRESTORE ALX,Y,P
Munitonr Command Processor GO entry. FERS 653206 =333 GO X N
Set PCLLH From ALLGH if entered. &

Call RESTORE, set all regs but 5.& FEBY 652¢9 =327

Jump o via PCL, . FERC 65212 =324
[MTowe memory contents to (AGL,H) FE2C 65868 =468 MOVE A (Y=0)

From: CALL HY thra (A2L,H).

MISCELLANY 65

Function Hex +lec —Nec Monitor Registers i LORES PLOTTING
Addr Addr Addr Label Destroyed | i:[]
Compare memory contents (AaL,H) FE36 65978 -~458 VFY A (Y= In standard (or lew resolution) plotting mode, the graphic area of the
) (AlL,H) thru (A2L,H), print E sereen is 40 points wide and either 4@ points high with 4 lines of
differences thru COUT. text below or 48 lines high. The X coordinate is horizontal and the Y
Increment A4L,H (342-43). & FCB4 64692 -844 NXTA4 A b enordinate is vertical. The same memory area is used for low
Increment AIL,H ($3C-3D), set Carry FCBA 64698 =-838 NXTAI A fn resolution plotting as is used for text output to the screen. However,
if AZL,H less Ehf_iﬂ AlL, H, | in the graphics mode, each character position eontains information for
Set GBASL,H for line (A). F847 63559 -1977 GBASCALC A k two plot points, one immediately above the other. Thus, 2f text lines
Clear A-reg to a nibble, 1'?5“"11'151 F879 636@9 -1927 SCRN2 A nre used to display 4@ graphics lines in the mixed mode, and 24 text
in low nibble entry low nibble if t | {nes are used to displavy 48 graphics lines in the full screen mode.
entry carry clear, hiph nibble if
entTy carry setla. There are four bits allacated for each point, by means of which the
D%giigﬁ?hle the Instruction at FBDE} H3696 _J_B‘{L@ INSTDSP ﬂ.,:'{,"tr E |.“[|'|[_ may be diSPlEI}"E{j in any af 16 colors.,
CL,H), print thra COUT.
Cﬂmputﬂ (PUL,H) + kLEH{IT”j, IEHVE F953 5582? -I ?ﬁg PGADJ .!!'L.,:":,Y ! The Monitor contalins rﬂutinas Sllppﬂrtjﬂg the fDllﬂWiTlg [11Tlﬂ|:'l.{)ﬂﬂ:
results in A,Y. Decimal Mode Flag ij
must be ﬂlE-’;‘r thGr*—‘(Cﬂllif}lg PCAD.J. Set display mode to mixed graphics and text.
Read paddle (X) Into (Y-reg). FRIE 64286 -125(0 PREAD A Y t
Wait .@1 seconds, then sound bell. FBDD 64477 -1(159 Ay X Clear the graphics part of the screen (in whole or in limited
Load ¥=192 for .l sec of bell, & FBE2 64482 =1§54 o part).
Toggle speaker at 1 KHZ for number FBE4 64484 —-1(52 BELL2 ALY F
of cycles in Y-reg. S5et a coler control byte to be used for each pl i
:) He plot point
memory if not controel character,
If known control character, do it. t Plot a single point at an indicated wvertical/horizopntal position.
If unknown contrel character, RTS.
Clear windew to blank, set cursor FCH8 hA46HA -936 HOME A Y i Plot a horizental line from one vertical/horizontal peoint to a
to top left corner. E vertical wvalue.
Load @ into Y, then print dash. FDI9C 64924 -612
Print dash thru CouUT, FDI9E 64926 -61§ Plot a vertical line from one vertical/horizontal point to a
Character print to screen oulput FDF@ 65038 =528 COUTI TA E F vevetoa] vl
routine entrvy — normal for CSWL.
Print character to screen with t Return to requesting program the color wvalne of the point at a
appropriate actions on controls specified coordinate.
and contrgl characters.

If (A)<SAP goto COUTZ, bypass E Miere are limitations on some of these functions which mavy not always
inverse wvideo mask. | e desirables For example, using the entry point which sets mixed
Monitor entry on RESET key pressed FF539 65369 —157 RESET t praphics and text includes clearing the praphics part of the screen,
or Power on. petting the Scroll Window to be the entire remainder of the screen,

Call SETNORM — white on black. & and moving the curseor (straight down from current position) to the
Clear 65@2 decimal mode (set hex).& F‘F:E’E_" E’EEB} -155 MON b ot tom line of the screen. In addition, there is no Monitor entry
sound bE{l & FFbb 65382 -154) polnt For getting full screen graphics mgde. However, the display mode
HEIIrlltle::r“L{:mmand Brareaser fntnys D IRl HRRE i t controls are easily set in any desired fashlon merely by poking or
setr %Y ag prompt character G wtoring Inte the appropriate memory locations, so this is certainly no

Set (a) as prompt character & FF6B 65387 =~-149 E Wil Jor pProhlom.,

Monitor Command Processor command FFAT7 65447 -89 GETNUM

parsing routine; save hex dipits Vinrious page zero locations are used for low resolution graphics mode.
in AZL,H, return with command E
(first non—hex) in A-reg, Y-reg in

set for next EharEEEEE: ______ _ e _

AIL.H 68,61 83C,3D AAL,H 66,67 $42,43 YREG 71 547 E
A2L,H 62,63 &3E,3F PCL,I 58,59 $3A,3B XREG 7§ S46
A3L,H 64,65 840,41 ACO 69 545 b i’

66 MONITORS PEELED

)

MISCELLANY 67

PAGE ZERO FIELDS

REoutine

GBASL,H

COLOR

MASK

L2

vz

Dec Hex
Addr. Addr.
38-39 3526-=27
48 530

46 52E
44 520

45 §2D

ADDRESS TABLE

Function

T LT T N s——————— R e B R

Plot a point at line (A) col. (Y)
leaving GBASL,H and MHASK set.

Plot a point, line per GBASL,H
and MASK, col.

Nraw horizontal line at (A) from
(XY thru (H2),

Draw horizontal
indicated by GBASL,H.
(Y) thru (HZ).

Plot wertical line at (YY) from
{(A) thru (V2).

Plot vertical lime at (Y) from
(A)+1ld4carry thru (VZ2).
Plot wertical line at (Y) frowm

in Y.

(A)+]1 thru (V2).

Clear
Glear
Clear

thru
Clear

68 MONITORS PEELED

Full

(48 lines) screen,

praphics area (49 lines).

praphies partial

(Y), 49 col. wide.

praphics partial from line @
to (V2) 43 col. wide.

Clear graphics partial,
lines @ thru (V2),col. @ thra (Y).

Hex +eo =Dec Honitor REﬂiEtEI‘F—‘:t
Addr Addr Addr Label Destroved
FERMI @348 -2(48 PLOT A E
FREE 63502 -2@34 PLOT] A E
FRI9 63513 =223 HLINE A,Y E
left to right.
line at line FEIC 63516 -2012¢0 WLINEL A,Y o
MASKE fronm
F828 63528 -2008 VLINE A t
¥826 BH3526 =2010 VLIREZ A
F82D 63533 =203 A t
FA32 63538 -1998 CLRSCR A,Y o
F836 63542 =-1994 CLRTOP A,Y
from line ¢ F&IE 63544 1992 CLRSC2 . t
FA3IA 63546 -=199¢ 2 00 t‘
top left F83C AI548 -1998 CLR3C3 A,Y

Description

fs set by the GBASCALC routine to the memory
address of the plotting line specified.

contains the selected color value in both high
and low nibbles of the byte.

is used internally by the plot routines as SF{
or S@F to set either the high or low nibble of

the receiving bvte depending on whether the
graphics line is the top or bottom of the two

displayed from that "text" line.

is the right end point for horizontal line
drawing.,

iz the bottom end point for vertical line
drawing.

- FF T " T FTTT T W

‘R RN

'unction Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroved

Sc¢t TORES sereen to COLOR from top TF8A4G 63552 -1984 AT
left corner to (Y),(V2).

ntry A-reg must he #,

intry Y-reg = right column to set.

Set V2 to last line to set.
Set COLOR for following points FBG64 63588 ~1948 SETCOL A
to TAY.
Change COLOR to (COLOR)+3. FB5F 63583 -1953 NXTCOL A
load to A eolor of point (A),(Y). F871 63601 -1935 SCRN A
et GBASL,H from A. (A)=Iline/2. FB47 63559 -=1977 GBASCALC A
set Color Graphics display mode FB4G 643200 -1216 SETGR ALY
amd tollowing are also done:
Set praphics mode to Mixed. & FB43 HA323 -=1213 A,Y
(lear graphies part of screen. & FB46 H4326 -=1219 Ay'Y
Load $14 to A for WNDTOP. & FBA49 R4329 -] 207 A
atare A fto WNDTOP. & FB4R 64331 -12@35 SETWND A
Lavid @ to A for WNDLFT. & FB4D 64333 -12¢3 A
Store A to WNDLFET. & FB4F 64335 -1281 A
Losand 528 to A for WNDUDTH. & FBE51 64337 -1199 A
Gtare A to WNDWDTH. & FB53 64339 -1197 A
Load 518 to A for WNDBETM. & FBSS5 64341 -1195 A
Store A to WNDBTM. & FBS57 H4343 =1193 A
Land $17 ta A for CV. & FB59 64345 =1191 A

o to TABY to set BASL,H.

DATA MANUPILATION FUNCTIONS

Thore are

a nunber of routines in the Monitor which may be called by

nper proprams to perform often needed tasks. The routines described in

thils sewtion are miscellaneous routines which move data from place to
place or convert the form of information provided to the routines.

Moo that some of these routinegs are in both the 0ld Monitor and the
Autantart Monitor while other routines are in only one or the other.
hroe adidress tables are provided; one for both Monitors, one for the
(el Honltor, and one for the Autastart ionitor.

Memory to Memory Move

Thilv roat e s used by the Monitor ™" command. As the Command
fnrerprel er seans the keyhﬂard iﬂpu[, tields ﬂl, AE, and A4 are

boniled o When the Command Interpreter encounters the "™" it calls label

AUVE, an Indleated In the table. The contents of memory from locations
ALY thirn €AZ) are moved to memory bepinning at loecation (Ad4). See the
sinp b propram in the section "Secondary Display Area Ways and Means"

MO

Paat apbis awt

raar o bae

From BASIC, with the assistance of the Monitor GO
for setting registers on the way in.

MISCELLANY 69

Jump to Address with Registers Loaded

The routire in the Monitor which responds to the "G" command uses same
Monitor routines from BASIC or APPLESOFT in that the registers are
loaded from the save area and then control is transferred to the
location speciried in PCL,H. Thus, a BASIC program can set up the
destination address and register contents, and thenrn CALL =468 to have
the requested routine entered. This is used in sample programs in this
section and in the sectior on "Secondary Display Areas'.

Increment Address Fields

The Monitor Move routine described abnve 1s a sample caller of the
NXTA4 and NXTAl routines. When NXTA4 is called, it inerements the two
byte field A4L,H and then falls into label N¥XTAl. The routine at NXTAI
increments the two byte field at AlL,H, and then compares that field

to the two byte field AZL,H before returning to the calling program.

On return to the calling program, the Carry status bhit dis eclear if
(AlL,H) is less than or equal to (A2L,11). Carry is set if (AlL,H) is
greater than (AZL,H).

Save 6502 Registers

The SAVE routine is used by wvarious other Monitor routines tc store
the 65¢2 registers in page =zero locations 545-549. Thisg routine may
be called by user program under certain conditions — namely, that
neither the Monitor nor any other program will be calling SAVE at the
same time. 1In the 0ld Monitor SAVE and RESTORE zre used in support of
Monitor commands S and T, single step and instruction trace. In both

Monitors, the B5AYE roputine iIs called on a BRK interrupt at entry point
SAVl as the A-reg is stored at $45 on entry into IR0 interrust

processing.

Restore 6502 Registers

The routine at label RESTORE is the inverse of the SAVE routine,
except that the S5-reg is not loaded. In the 01d Monitor, RESTORE is
utilized by instruction step and trace routines hefore controlled
execution of each traced instruction. 1In both Monitors, the registers
are loaded by RESTORE in execution of the Monitor G command before
transferring control to the operator—-indicated location.

Multiply Two Byte Fields

The MUL and MULPM routines multiply two byte fields to give a four

byte product. They exist ¢nly in the 01d Monitor. If a program (such
as an assembler) ealls MULPM at FB6@, and it is executed with the

Autostart Monitor in the machine, the result is that on each csll the
screen will be cleared and "APPLE II" will be written on the top line,

70 MONITORS PEELED

T M T T T T T T T MW" T ¥ ™" " ' 'FPTS *'" *°F"OoTT 'O ONM

B EEEEEEEEEEEREREEEE RN NS

Multiply Routine

Note in rhe following that the data fields for multiply and divide are
[n the same format as other multiple byte numbers in the Apple: lowest

memory address is least significant byvte.

Set Multiplier in
Set Multiplicand in
Should be zero — see note

$55,54 (MSB,LSB)
$51,5@ (MSB,LSE)
$53,52

Call/JSR FRAY or FBA3 (-1184 or -1181) (MULPM or MUL) depending on
slpn conventions or requirements.

The result, in order of most significant to least, is in $53, 552,
301, 550, this result 1s positive. 1If one of the two input facters
{but not both) was negative, then SIGN (at $2F) contains an $@1 bit,

Indicating that the result should be complemented by the user program
before further use.

NOTE: The table of wvalues above indicates that $53,52 should be set

Lo zero before calling multiply. 1If this is not done, then the initial
contents of this field will be added to the result. For example, if a
table has an origin of $84¢%¥ with 7 byte long entries, the address of

entry B can be determined by entering the multiply with $849¢ in
93,52 and the 8 and 7 in position for the multiply.

Fxamples:

Called Inputs Dutputs
Rout ine $51 35(0 $55 §54 $53 452 451 850 &2F
HITT,PM 717 5 N 17 B B 0 00 o7 @I 0%
¢ o1 g1 @g a0 gg @1 od @g
pa gg g8 @g ie 20 0@ @9 g
FC @d @8 ¢g gg 20 @9 @8 @1
FC @9 F8 ¢@ g 2¢ ug g @2
JF FF 7F FF 3F FF @9 @1 gy
8¢ o9 g2 gy 21 @3 G @d 41
8¢ (9 8¢ Op 49 06 ¢ @9 @2
ML, g @1 dg d1 89 0¢ dg @1
g3 @1 g1 gy ¢¢ @a g1 g
P4 G@¢ @8 @@ gg 2¢ gg @y
FC #¢ @8 @@ @7 E¢p 09 gy
FC ¢ r8 0g F4 20 @@ @y
4@ FC @@ F8 g 0¢ F4 29
B9 0¢ @2 gg g1 G¢ gd gy
¢ d¢ 8@ ¢@p 44 Q@ @0 dg
12 14 56 78 @6 26 @g¢ 6

MISCELLANY 74

Divide Four Byfe Dividend by Two Byte Divisor

This routine divides a four byte dividend by a two bit diviser, giving
a two byte quotient and 2 two byte remainder. It is avsgilable only in

the 01d Monitor. This routine accomplishes the division of the rumber
in bytes $53,52,51,50 by the number in bytes §55,54, leaving the
quotient in $51,5% and the remainder in %53,52 (most significant to
ieast sgignifieant).

If the contents of 553,52 is larger than the contents of §55,54, then

the result will net fit in the quotient bytes — overflow is the
result. The calling program must not let this happen.

With regards to scaling, looking at the four byte dividend as an
integer value and the divisor in §55,54 as zn integer, the gquotient

and remainder fields are also integers.

Sign can be a problem if the DIVPM entry polnt is used. The sign hit
of the dividend is the 5801 bit of byte 5§51. 1If the intended divide is

two bytes (with $53,52 cleared before divide) then signed fields
division is supported, with the sign bit being the LSB of $2F. 1If the
call is to DIVPM, and if $2F contains 8@1, then complement the results
before using them.

When using unsigned divide, entry point DIV, then the divide is 32 bit
field by 16 bit field with 16 hit results.

Examples:

Called Inputs Cutputs
Routine Dividend Mvisor Quotient Remainder Sign
353 52 51 50 — 855 5% 551 P 553 5Z §2F

DIVPH e 49 @a o @8 o @8 (e ¢ @ (A

[SFBB1] 0@ Q¢ d¢ @8 3@ @a g9 92 ¢@ @a A

[64385] o@ (1 @@ @4 ae @2 8¢ @y B Gy @

[-1I51] G0 @@ (¢ @3 7y @2 g @1 g @1 @
0@ @@ 3¢ g¢ B2 3g A4 18 By @)
@¢ 3@ 3¢9 3¢ 20 By @4 91 19 63 hlr)
g@ @@ 33 33 g 22 #1 81 dd 11 r1h)
f@ 10 40 o B4 3@ @4 16 gg g Aa
f@ 20 8@ Q0 @8 @ A4 L ga ve @1
@@ 2@ BZ @@ 35 (¢ @4 @F Go @ (L8N
6@ 14 41 3¢ G4 g0 4 2 #1 g og

DIV

[sFB84] 0@ 8¢ g9 @@ 84 g @1 o

[ﬁhHHE% g@ o9 80 (o @8 i g@ 10 gd Gy

[-1148

72 MONITORS PEELED

MM T T T M T T T T TTTTTTTm

EEEEEEEBEEREEEREEEEEEEEEEREE

Establish a RESET Vector

The Autostart Monitor supports sn address vector far completion of
handling a RESET interrupt. It is called the Soft Entry vector as it
is designed to allow resumption of processing after a RESET. This
vector 1s in page three. Tt contains the address to which contrsl is
to be transferred after the screen, keyboard, and other basic Apple
hardware items have been set to their "infrial" states. TFor egample,
the display hardware is set to display primary area Ltext, and the
Scrall Window full screen values are sat,

After such initialization is performed, locations $U3F3 and S@3F4 are
tested agalnst cne another to determine whether the vector in S$@3IF2-

SUIF3 45 to be considered valid. 1If so, control is transferred to
(SUIF2-@2F3). Normally, this results in transfer of control to SEA(3

ta accomplish the result of entry to the Monitor of a control-C, re-

entry into BASIC or APPLESOFT. During the bootstrap operation, DOS
Installs its own restart point in this wvector. And, of course, you may
wlsll ro set some other wvalue in this vector, such as that which will

cause the HMonitor (with asterisk prompt) to be called, as was the
normal case with the 0ld Monitor. To set a different value in that

veetor, POKRE or store the desired value in S@3F2-$@3F3 and then CALL

nr JSK to SETPWHC (SFB6F or —1169) to have the Monitor set SEAF4
appropriately.

Convert Hex Characters to Value for Use

Fragrammer wtility programs often need input of address or data in hex
riuther than in decimal. The Monitor also uses input in hex, and

therefore has a way of converting input hex characters to a value in 2
Fleld, The GETNUM routine in the Monitor converts characters from the
keyhoard {nput area (5@200-532FF) to hex stored in AZ2L,H and
tonditionally fn AIL,H and A3L,H.

The GETHNUEM routine converts characsters in the SHZPP area beginnine at
MY -ren) and continuing until a character is found which is not a

s % ﬂlﬁ[l inot ¥-9 or A-F}. The result in AZL,H (and AlL,H and A3L.H
1 (HMONDE) @) is the last four hex digits Iin the string converted if

the wtriag 1s more than four hex digits. TIf the string is fewer than

Ponr hex dipits the result field contains the wvalue right ad justed
whth leading zeroes. A sample progrem is provided at the end of this
pwect lon showing use of GETNUM from APPLESOFT.

Disassemble an Instruction

The Apple T Monitor contains a disassembier by means of whick one can
dinplay o portion of a machine language program in mnemoniecs instead
b juut hex. At label LIST (SFE5SE) is the routine to which control is
panised whoen the Monitor command "LY is used. This routine sets a

MISCELLANY 73

cournter to 2f}, and then calls the single instruction disassembler 2{

times, with appropriate adjustment of the instructlan pointer PIL,H.
This routine can be used as an example of how to use the locations in

the address table with labels TNSTDSP and PCADRJ.

The routine at INSTDSP uses the INSDS1 routine to set the zero page
locations FOBRMAT and LEKGTH appropriately for the instruction at
(PCL,H). INSDS1 algso prints to the screen the contents of PCL,H, the
address of the instruction to be disassembled. On return from INSDSI,
the INSTISP routine contreols the printing of the rest of the
digsassembly line,

Mote that PCL,H is not altered by disassembly of the instruction.
Thus, it must be "maintained" by the program which calls INSTDSP.
This is accomplished by calling the PCADJ routine, which returns the
new values to the calling program, to store intg PCL and PCH in the

A-reg and Y-reg, respectively, having computed the new walue frum PCL
and PCH and LENGTH (set by INSPS1).

Function Hex +hec =Dec Monitor Registers
Addr Addr Addr Label Destroyed

OLD MONITOR ONLY B

Multiply signed fields leaving FB6Y 64352 -1184 MurpM A,X,Y
sign in LSB of SIGN.

Multiply fields unsigned, FB6Z A4355 -1181 ML AKX, Y
(51,50) * (55,54) = (53,52,51,58).

Divide signed fields leaving sign FBB1 64385 -=1151 TDIVEM A, XX
in SIGN LSB (from 51,55).

Divide unsigned fields FB84 64388 ~1148 DIV ALY
(53,52,51,58)/(55,54)=(51,50).

Set absolute values for ACL,H and FBAL4 H442¢0 =1116 MDI A XL ¥
AUXL,H leaving resulting sign in
LSB of SIGN {(called by MULPFM and
DIVPM).

AUTOSTART MONITOR ONLY

Set wvalidity of RESET vector. FBO6F 6432647 =1169 SETPWRC A

BOTH OLD AND AUTOSTART MONITORS

Monitor Command Processor GO entry. FER6 65206 =330 GO Bl Yo P
Set FCL,H from AIL,H if entered. &
Call RESTORE, set all ress but S.& FEB9 65209 =327
Jump via PCL,d. FEBC 65212 =324

74 MONITORS PEELED

T T O™ T MM T N OO Y M O ™TTOOTTTT ™M

e =

- T T T ™

EEEEEREEE R EE Y .

Fanercion

Move bytes in memory to (A4L,H)

freom (AL, H) “chrw (AL H).
Note: Y-reg must be zero on entry.

Increment pointer A4L,H.

[nerement pointer AIL,KH with sat

of ecarry if resultine (AIL,H) is
preater than (AZL,H).

Save 6532 reegs A ¥, Y,P,S at

SH5=549,

Restore 6502 regs A X,Y,P from

.I:';"Jl r"—:_q"!i El’ u

Convert
SAM,Y to wvalue in AZ2L,H (and
AL and A3L,H if (MODE)=@).

Binnasemble one instruction with

hex characters from

(dluplay thra COOT.

Gomipot e new PCL,H afrer disassembly F953
hr trace or step — return results
In A,Y regs for (PCL,H).

APPLESOFT SAMPLE DATA MANIPULATION PROGRAM

14

2A

il

S

(i

A
21
d2d
2
pEAT
Tl
A lp
e
S HU
ERLIT
Vi
VA
A
(R

Vivig

Hex +hec —Dec Monitor Registers
Addr Addr Addr Label Destroved
FE2C 6568 —468 MOVE A

& FCBS H4A69Z2 =B4A NXTA4 A
FCBA 64698 —=B3E NXTAIl A
FF44 65354 ~182 SAVE ALX
FF3F 65343 =193 RESTCRE A X,Y,P
FFAT7 653447 -89 GETHUM ALY
FED@ 63696 ~—184@3 INSTESP A,X,Y

63827 =179 PCADJ AGX,Y

REM DATA MANTPULATION FUNCTIONS
REM SAMPLE PROGRAM

REM MEMORY DUOMP

KEM OF HEX ARTA TNDICATED,

BYPASS SUBROUTINES

REM CALL GETNUM ROUTINE VIA GO ROUTINE

GOTO 1HAE s REM
POEE: 58,167 REM
POEE 59,255 REM
S18 = ADG + ' M. REM
FOR | = 1 T LEN {(S18%)

{itis =

MIDS (SI3,1,1)
GOE o= ASC (CCs) + 128

POKE 512 + 1,60%

NEXT

POKE 71,1 RE

POKE 49,0 REM

CALL. = 327 REM

ST PEEEK (62) + 256 * PEEE (63):
IF 8T > 32767 THEN 8T = ST - 65536
RETTIRN

PCL=SA7
POH=3FF

BOILD STRING TO STARE

EEM: STORFE STRING N INPUT BUFFER
REM: SR
REM: ot

SET YREG TO START AT LOCATION 513

CLEAR MODE BYTE

GO PROCESS0R

REM ST=START ADDRESS($AZ)

REM TWQ'S COMPLEMENT
ADDRESS TIF >= S80¢@3

MISCELLANY 75

a1hl REM DISPLAY HEX CONTENTS

61 SH% = ST [/ 256 REM CET HI ADDRESS BYTF
(20 SLLY = §T — SHYZ * 256: EREM GET LO ADDRESS BYTE

63¢ IF SHZ < § THEN SHZ + 256: RFM CRT 2°S COMP IF NECESSARY
64@ POKE 6@,SL7%:POKE 61,SH%

650 RMZ = SLY — (INT (SL% / 8)) * 8 REM
66@ IF RMZ THEN CALL —622

67¢¢ POKE 71,8: REM SET "Y" REG TO ZERO

A8@ POKE 58,163: REM PCL = SA3

699 POKE 59,253: REM PCH = SFD

708 CALL - 327: REM CLEAR "Y' REG & SFDA3C

710 POKE 36,29: PRINT ™! ";: REM SEPARATES HEX FROM ASCII
720 RFM DISPLAY ASCII CHARACTER CONTENTS

730 GE = ST + 7 — EM%Z REM SEPARATES HEX FROM ASCII
7440 FOR I = ST TO SE REM PRINT ASCII CONTENTS

RM% = MOD & OF O BYTE

750 CX = PEEK (I): IF CX < 128 THEN CX = CX + 128
760 CX$ = CHRS (CX): IF CX < 16¢f THEN CX$ = "?"
77¢ PRINT CX$;

784 NEXT

793 RETURN

1 3eAch REM PROGRAM START

131¢ PRINT "HEX DISPLAY"

132¢¢ INPUT "ENTER ADDRESS ";ADS

137 IF ADS = "END'" THEN END

104¢ TIF LEN (ADS) = @ THEN 11@@:REM CONTINUE WITH NEXT AVAILABLE
ADDRESS

1 @564 GOSUB 26

138 FOR J =1 TO l6: RFM PRINT 16 LINES

139¢ GOSUB 6#{

118 ST = 8T 4+ 8 = RMZ

111 NEXT

112 PRINT

1133 GOTO 1@24

MONITOR COMMAND PROCESSOR

The Monitor Command Processor is that part of the Monitor which
responds to commands entered with the "*" prompt character. These
commands include data movement from one location to another, cassette
tape reading and writing, instruction disassembly, and others
described in the Reference Manual. The Reference Manual contains a
complete description of use of these commands. This section of this
manual describes calling some of the routines from a user program
instead of from the keyboard, and jumping into the Monitor with no
return to the user program.

ENTERING THE MONITOR COMMAND PROCESSOR

The Monitor Command Processo- is that part of the Monitor which reads
keyboard input with the asterisk prompt character and performs the

i : : -
requested service. '"Entering'" the Command Processor implies turning
ﬂvgr control of the machine to the Monitor lode. When the EESET key is

pressed with the 01d Monitor in the Apple the computer I1s placed in

76 MONITORS PEELED

W W W W R E R W R R R R R e e e R s EEE

Monitor Mode. When the RESET key is pressed with the Autostart Monitor

in the machine, the computer generally poes Iinto BASIC or APPLESOFT.
With the Autostart Monitor the only way to get into Monitor Mode is to

CALL one of these entry points (generally CALL - 151).

In this made,
command .

data may be moved in memory using the Monitor Move
Blocks can be read from tape via the cassette tape data

tLransfer commands. Or any of the other Monitor commands may be used.
”HWE‘UEI‘, having entered Monitor I“ll:}dE, the Monitor Comnand Processcor is

reading the commands from the keyboard and then acting upon them.

There are a numher of entry points indicated in the address table for
"entering" the Monitor Command Processor. Please note that once the

Monitor is jumped to at the specified point, all of the initializatioa
deseribed after that entry point is also performed. This is Implied by

the "&" at the end of each function description.

CALLING THE MONITOR COMMAND PROCESSOR

"Calling" the Monitor Command Processcr implies that return will take
place to the calling program. However, the driver part of the Monitor
Comman:d Processor is not designed to operate in that Zashion, so a
Hhort machine language program is required to allow exit back to the

calling program. A sample program is provided at the end of this
nection indicating the required setup. In the sample, the three byte

machine language routine is placed in page two (at SP2FC) but it may

b placed anywhere desired. With this program, lonitor calls from
HASLE or APPLESOFT are both supported.

A propram which CALLs the Command Processor must first store the thre=

byt exdit routine somewhere. Then the program can POFE a string of
Monltor commands into the input area, beginning at address S@200, the

last command of each sueh string being a Monitor GO command to

trunsfer control to the exit routine. In the sample, the last Monitor
comnand in the string is "P2FCGY". The function of the exit routine is

to pull one return address level (two bytes) off of the stack, and

rhen do an RTS te return to the BASIC, APPLESOFT, or machine language
callline program.

ADDRESS TABLE

Funet lon Hex +Dec =Dec Monitor Registers
Acdr Addr Addr Label Destroved

Monltor Command Processor, "blank" FEPJ 65@24 =512 BLI KA

entry point used for CR.

Monltor Command Processor, "hlank" FE@4 65028 -5(8 BLANK v e

commpmd - entry point.

Monltor Command Processor, Store FEAB 65035 -5¢1 STOR A

ol T,
Monltor Command Processor, set FE18 65048 -488 SETMODE A,Y
MODE Tor colon, pericd, plus, or

m e .

MISCELLANY 77

Funcrion Hex +Dec -Dec Monitor Reszisters
Addr Addr Addr Label Destroyed
Store appropriate value tgo MODE, FE1D 65@53 -=483 SETMDZ none
entered from BLANK also.
Monitor Command Processor rouatine Fr2@d 65056 ~48p LT MK
for less than (<)} command.
Monitor Command Processor MOVE FE2C 65068 =468 MOVE A (Y=¢)
rovtine. (AIL H) thru (A2L,H) is
moved to (A4L,H) thru whatever.
Menitor Command Processor VERIFY FE36 65078 =458 VFY A (y=0Q)
routine. (AlL,H) thru (A2L,H) is
comparad to (A4L,H) thru whatever
wWwith differences printed thru COUT.
Monitor Command Processor LIST FESE 65118 -418 LIST ALK, Y
(disassembler) routine: list 2§
instructions thru COUT.
Set TNVFLG to S3F = inverse video. FEB{ 65152 =384 SETINV Y
Set INVFIG to $FF = normal video. FE84 65156 -38¢ SETNORM Y
Set INVFLG from Y-rep. FE86 65158 =378 SETIFLG none
Set port ¥ (keyboard) for input. FEB9 65161 =375 SETKBD A,X,Y
Set port (A) for input, FEBB 65163 ~373 INPORT A,¥,Y
Set port (AZL) for input. FEBD 65165 =371 TINPRT ALK, Y
Set port @ (screen) for output. FES3 65141 =365 BETVID 4,X,¥
Set port (4) for output. FE95 65173 =363 OUTPORT A,X,Y
Set port [A2L) for outpur. FE97 65175 -361 OUTPRT A,X,Y
Monitor Command Processor GO entry. FEE6 652(6 -33¢ Go -
set PCL,H from ﬂlL,H if enterad. &
Call RESTORE, set all regs but S.& FEB9 65209 =327
Jump wia PCL,H. | FEBRC 65212 =324
Monitor Command Processor Display FEBF $5215 =321 REGZ
Eesister contents.
Monitor Command Processor Carriage FEF6 652700 =266 CRMON
Return entry.
First, simulate entry of hlank.
Then POP 2 from stack and goto
Monitor Command Processor at MONZ,
Restore registers from $45-49: FF3F 65343 =193 RESTORE
Load STATUS and push to stack. &
Load A from ACC. & FF42 65346 -19¢
Load X from XREG. & FF44 65348 188 RESTRI
Load Y from YREG. & FF46 65350 =186
Load P from stack (PLF) and RTS. FF48 65352 =184
Save 6582 regs at $45-49, FF4A 65354 =182 SAVE
3ave A-reg at ACC 545, ke
Save X-reg at XREG $46. & FF4C 55356 -180 SQAV1
Save Y-reg at YREG $47. & FF4E b5358 =178
Save P-reg at STATUS $48. & FF5@ 65368 =176
vave B-reg at SPNT 549. & FF54 65364 -172
Clear 6502 decimal mode {set hex).

78 MONITORS PEELED

& n Lo B B B g B LB la g ia ol e a p o s gl Lo &l - a al - - la ol o o -~ B 2 i - . -

SRR EE R R R R RSN

Function Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroyed
Monitor entry on RESET key pressed FF59 65369 =167 RESET -
or Power one.
Call SETNORM -= white on biack. &
Call INIT - Text + full scroll. & FF5C 65372 -164
Gall SETVID - screen as output. & FF5F 65375 =161
Call SETKBD = keyboard = input. & FFA2 65378 =158
Glear 652 decimal mode (set hex).& FFHS 65381 =155 MON
Sound bell, & FFBE 65382 =154
Monitor Command Processor Entry, FF69 65385 =151 MONZ
Set "*" ag prompt character. %
set (A) as prompt character. & FF6B 65387 =149
lall GETLNZ to read command line. & FF&6D 65389 =147
Clear MODE before scanning line. & FF7§ 65392 =144
Plek up one command: FF73 63395 -14] NXTITHM
Call GETNUM to scan Input line,
saving hex digits in AZL,H, and
returning with non—hex In A-reg.
aave Y oat YS5AV - current place in
command line.
Call routine indicated by non-hex FF81 65419 =126
returned by GETNIM.
On return from Monitor Command FF85 65413 -123
bervice routine, reload Y from
YHAV and goto WXTITM to process
next command in the line, if any.
Monltor Command Processor command FFA7 65447 -89 GETNUM
parsing routine; save hex digits
in A2L,H, return with command
(f1rst non—hex) in A-reg, Y-reg
el fer next character.
Gall routine indicated by command FFBE 65470 —65 TOSUB
character:
Punh address SFExx onto stack.
Pass (MODE) to called routine in
A=Tep.
Clear MODE before call.
(a1l melected routine by RTS.
Clear MODE byte between commands. FFC7 65479 =57 ZMODE
OLD MONTITOR ONLY
Execute instruction at (PCL,H), FA43 640067 -1469 STEP
with display of instruction and
roewult repgliarers.
Monltor Command Processor TRACE FEC2 65218 =318 TRACE
Inut ruct lons routine.
Monltor STEP one Instruction. FEC4 65220 =316 STEPZ
AL 1 B, 61 53¢, 3D PCL,H 58,59 $3A,3B
A2L. N h2, 67 53K, 3F ACC 69 545
AL, b, 65 S48, 41 XREG 76 S46
AdLLH ah, 67 542 43 YREG 71 547
YSAV Ve 534
MISCELLANY 79

APPLESOFT SAMPLE PROGRAM

1 REM HMONITOR COMMAND PROCESSOR SAMPLE PROGRAM
13 AAS = "2FC:68 68 6@ N 2FCG ": REM SET UP RETURN ROUTINE (2F(
11 GOSUB 1@ REM MOVE COMMAND TO FEEYBOARD INPUT AREA

146 REM RETURN IS SET. MOW CALL
1@1 REM SOME MONITOR COMMANDS,
110 Aag = “"FB@QL 1¢¢.1FF 2FCG "

120 CALL - 936: REM CLEAR THE SCREEN

13¢ GOSUB 1944d: REM DO DISASSEMBLY, MEMORY DISPLAY, RETURN
14 PRINT : PRINT :

141 PRINT "THATS ALL. "

15¢¢ END

1868 B = 511: REM FOR LOOP IS8 1 TO LIM, SO B=RYTE BEFCRE 200
145 LIM LEN (AAS)

i@l FOR I = 1 TO LIM

1@2¢ PSS = MIDS (AAS,I,1)
1358 P = ASC (PS) + 128
137¢ POKE B + I,P

138§ NEXT

1885 CALL - 144

139¢ RETURN

SPEAKER USE THROUGH THE MONITOR

There are many ways to use the speaker in the Apple TI, One of these
ways 1s to signal program events. The Monitor contains a routine which
supports this use by toggling the speaker at 1 khz for .l second. This

is the "beep" heard when the KESET key is pressed or at completion of a
tape record read or write.

The Apple II does net contain the only spszaker in town. That is, some
printers which attach te the Apple Il make a sound of some type when
presented with the BELL code. On the Apple II keyboard this is the

control-G. The character code is $87 or decimal 135. "Printing" this
character throaugh COUT will cause the Apple to heep, and will cause a

printer "bell™ to sound if there is one.

There are two ways for a user program to call the routine in the
Monitor which responds to cutput of 587 by sounding the beep.

If you intend to sound the bell in the Apple regardless of

ontput device in use, then directly call the routine in the

Monitor which produces the sound; CALL -1$59 (or CALL 64477),
cr JSR FBDD expecting destruction of the A—- reg and Y-reg.

If you want to sound the bell of the Apple II if the screen is the
print device, or to sound the speaker in the printer, call the
entry peint in the Monitor which places a 587 in the A- reg and

"prints'" it through COUT; CALL-198 (or CALIL 65338) or JSR FF3A
expecting destruction of the A-rep.

80 MONITORS PEELED

MO M T T T e e T T T T T T TN

BALELEEEE L - N

ADDRESS TABLE

Funetion Hex +lec =-Pec lMonitor Registers
Addr Addr Addr Label Destroyed
TFr TAY=587 wait .pl seconds, then FBDY 64473 -1@63 BELLT A,Y
gound the "bell", Elsge, RTS.
Wait ¥l seconds, then sound bell. FBDD 64477 =159 ALY
boad ¥ = 192 for .1 sec of bell. & FBE2Z 64482 -1054 ALY
Torple speaker at 1 KHZ for number FBE4 64484 =1{52 BELLZ ALY
of cycles in Y-reg.
Print cthru CoUT "ERR" and bell code.FF2D 65325 =211 PRERFE A
'rint bell code (587) thru COUT, P33k 63338 =198 RELL A

CASSETTE TAPE INPUT AND OUTPUT

There are two primary entry pointe in the Monitor with regard to

reading and writing tape. They are READ and WRITE. The requirements for

'] 1ing these are described below. There are a number of other routine
enftry points which are used by the Monitor on bit and byte basis. These

nree deseribhed below to the extent of location in the Monitor and

Indfeation of which Apple IT programs call them, but the precise
timings of Instructions between consecutive calls is bevond the scope

ol thlis manual .

A yom will have found by now, some tape files are corposed of one

record, and some of two records. For example, LOADIng an APPLESOFT or
BASIC program rtesults in two heeps, signaling the completiocas of the
ready ol two separate records from the tape.

hetinitions are in order:

A tope record is a single contiguons string of hits which is read

Into or written from memory as a unit, A tape record is a
physical entity.

A Lile on tape is a series or sequence of one or more records

containing data in a logical organization. A file is a logical

cnt ity .
An ANPLESOPFT or BASIC propram file consists of two records. For BASIC,
the Tirnt of these records is two bytes long, and contains the length
ol the pecond record. When the Moniter has satisfied BASIC s read of

e Tlrnt reecord, BASIC uses the record length indicated in that record
fo determine the start and end polnts in memorv into which the Monitor

wil]l read the second record. Fach call to READ or WRITE in the Monitor
aceaonplishes only one record input or output.

APPLESGET programs are also SAVEd as two record sets or files. However,
the Plrpt record iz three byvtes long: the first two bytes indicate the
Lengt by, and the thierd hyte is set to $55 to indicate a normal APPLESOFT

1L Can difterentiated from APPLESOFT I) propran.

MISCELLANY 81

Some other programs write a longer (but fixed length) first record

containing length of the second record of the file, and other infor-
mation about the file such as date of ereation or name of the file.

WRITE

SFECD 65229 —=3@7

Before entry at this peint, set the first byte address in AlL,H (8$3C-

3D) and the last byte address at A2L,H ($3E-3F). The Monitor will write
ten seconds of continuous tone {(header) followed by the contents of

memory as specified, followed by one byte of checksum (the result of
Exclusive OR of all the data bytes wriltten to the tape).

READ

SFEFD 65277 ~259

Before entry at this point, place the first byte address into AlL,H
(53C-3D) and the last byte address Iinto A2L,H ($3E-3F). The Monitor
reade the data from the tape, storing it into nemory in the specified
locations, and maintaining a running Exclusive OR result in the zero
page field ecalled CHKSUM (S$2E). When the last specified memory location
has been filled from the tape, the Monitor reads one more byte and
compares it with the contents of CHKSUM. If equal, the Monitor sounds a
beep and returns to the calling program. If not equal, the Honitor

prints "ERR" through COUT before sounding the beep and returning.

If vou want to have the calling program determine whether the tape was
read successfully or not, then some special actions must be taken. One
method is to compare the contents of CH (524) before the tape read with
the contents aftrer. If they are egual, FRR was not printed to the
screen. If the cursor horizontal pasition (CH) has changed across the
call to READ, then ERR must have heen written to the screen. If this
condition 1s encountered, the program can then ask the operator to

position the tape and signal the program for another attempt at reading
the record. Caution: If CSWL,H points to a printer card or other
routine whick does not output to the screen, CH will not be incremented

by the output of "ERR".

CASSEITE INPUT/OUTPUT INTERNAL ROUTINES

The following entry points/routines functions are described , but not
documented in sufficient detail for call by user program. For some of

them, timing is critical and the documentation for using them would
depend on how they were to bhe used.

82 MONITORS PEELED

% 8 e re e 'a ol Y re e (a o 2 = r ™ e -~ ™ -~ - s - - g —_ -

HEADR

SFCCY 647]

-B23

This routine writes the synchronization mouotone which is the first

part of every tape record. When the WRITE routine calls HEADR, it loads
A 54 into the A-reg causing a 1@ second header to be written. The READ
routine also calls HEADR to delay from first detection of daca coming

in from the tape to the first point at which reading for /1l detection
hegins. READ loads the A-reg with a $16 before calling HEADR so the
delay for hardware settling is set to about 3.5 seconds. This routine
ls not called by BASIC or APPLESOFT, but it is used by the Programmer’s
Ald #1 Tape Verify routines which read the tape and compare the data to
memory instead of storing the data into memory.

RD2BIT

SFCEFA

64762 =774

This routine causes logping with decrementing of the Y-reg wntil the
hardware hag indicated two transitions of the tape input register. The

rontine RDBIT is called twice for this pnrpose. Contents of the Y- reg
(1 return compared with contéents on entry indicate the length of tine
It took for the transitions.

™ils routine is called from within the Monitor by the READ routine, to
deelay entering data transfer mode until tape input is available. READ
cnlls NEADR for the 3.5 second delav on return from its call te RDZRBIT.

Thia routine is also called from AFPLESOFT and from the Tape Verify and
Shape Table Load programs In the Programmer’s Aid #1.

RDBIT

SFCFD 64765 =771

This routine loops with decrementing of the Y-reg while testing the
input register for transition from Zero to one or aone to zero. Bit
value of zero or one is then determined from the residual count in the
Y=reg. This routine is called from within the Monitor routinee RD2BIT
and READ. It is alse called hy Programmer’s Aid #1 Tape Verify.

L

RDBYTE

QI LA T4 H —-788

THin routine ecalls RMZBIT ae required in order to assemble a byte of
[btormat lon from the tape. It then returns to caller with the bvte in
e A=rep. In addition to being called from the Monitor READ routine,
It 1w alsun ecalled by Shape Table Lead in Programmer’s Aid #l.

MISCELLANY 83

WRBIT

SFCD6 64726 -81¢

This routine accomplishes writing a bit to the tape when called by
either the HEADR routine or the WRBYTE routine,

WRBYTE

SFEED 65261 =275

When called to write a byte to the tape, this routine usas WREBIT te
write ten bits te the tape. The only caller is WRITE in the Monitor.

PADDLES, BUTTONS & ANNUNCIATOR 1/0O

The Apple II has a Game I/0 connector with hardware support for four
digital ocutputs, three digital imputs, and four amalog inputs {(called

paddles). The Monitor reads the paddles by writing a strobe to start
the paddle timer and then reading the selected paddie timer and

incrementing the Y-reg until that timer comes true., The result of the
read is in rhe Y-reg. Monitor support feor digital outpurs or digit
inputs is not required. Access to the digital I/0 ports is gained by
PEEKing or POKEing the appropriate address, or by LDx or STx if
machine language is used. The Autostart Monitor does initialize the
digital output ports (annunciators) on any RESET key interrupt. AN{
and AN] are initialized to the clear (TTL 10) condition by reference
to addresses S$CP58 and SCA5A. AN2 and AN3 are Initialized to the set
(TTL HI) condition by reference to addreszes SCPASD and SCUSF.

To use the Monitor support to read the setting of a paddle, JSR to

PREAD FRIE b4 286 ~125¢}

with paddle number (@#-3) in X-reg, and on retarn the "value" of the
paddle will be found in the Y-reg. The A-reg is destroved in the
process. L(APPLESOFT and BASIC support paddle reading, so setting of X

and looking at ¥ is not required there.)

Direct reading of the paddles may be accomplished by accessing the
paddle trigger to start all paddle timers and then reading the

appropriate paddle iaput address repeatedly while counting until the
value read from the paddle address no longer has the $8@ bit set.

CAUUTION: After reading a paddle, let some time po by before reading

another paddle or incorrect results may be a problem. When the paddle
trigger is strobed, all the timers start. If the first paddle you

read has a low wvalue, on gecing back quickly to read another paddle

the transition vou see may be from the first paddle trigger instead
of the second. See the sample program in the section "lUse of

Control-Y with Parameters'. Another solution is to do a read of a
fake paddle hetween real readings.

84 MONITORS PEELED

M OFe e P W MR M M R A M T """ T " T W

GAME /O HARDWARE ADDRESS TABLE

Game 1/0 Hardware Address llex +Dec —Dec Action/Comments
Addr Addr Addr

Start Paddle Tiners. CP7¢ 39264 -16272

Paddle @ timer. C@ba 49252 -16284 Negative until

Paddle 1 timer, Cé65 49253 ~16283 timer

Paddle 2 timer. Cf66 49254 -=16282 expires.

Paddle 3 timer. C@67 49255 -16281

Paddle ¢ switch. C@bl 49249 -16287 Negative

Paddie 1 switch. CP62 49258 ~-16286 indicates

Paddle 2 gwitch. Cde3 49251 -16285 button pushed.

Clear Arnunciater § output, C@A58 §924¢ -16296 POKE/STore

Set Annunciator { output. C359 49241 =16295 Zaro

Clear Annunciator | output. C@R5A 49242 -16294 to

Set Annunciator 1 output. C@5B 49243 -162983 appropriate

Clear Annunciator 2 output. CR5C 49244 -16292 address.

Set Annunciator 2 output. C@5D 49245 -16291

Clear Annunciator 3 output. CESE 49246 -1629(¢

Set Anmunciator 3 output. COSF 49247 -16289

WAIT ROUTINE

The WAIT routine consists of a loop within a loop, constructed in

such a manner that the length of time spent in the loop varies
geometrically with the entry A-rez. A call to this routine will cause
a loop for a predictable length of time, such as is used by the
Monitor with regards to using the speaker as a hell. It may be

usable, for example, In writing data to a lower speed device llke a
printer or a typewriter.

WAIT SFCAB B4 HBH -856
Anaylsis of the code indicates that the time between the call WAIT
(JSR) and the end of the RTS of WAIT is approximately

2.54%%2 + 13.54 + 13 machine cycles of 1.023 microseconds.

where A equals the contents of the accumulator.

An alternative formula is

TIME IN MICROSECONDS = (2.5 #* (A"2) 4+ 13.5 & A + MC) * MS
where A = contents of accumulator

MC = 13 machine cycles

MS = 1.8823 microseconds

The following table indicates delay times In the WAIT routine for a
nunber of values of the A-reg on entry.

MISCELLANY 85

¥ |'l
|
WAIT ROUTINE DELAY TIMES $ 1§ PADDLE INTERFERENCE—SAMPLE PROGRAM
A-reg Time in A-reg Time in A-rep Time in ' 1" AAFE IMP 520000
{(Dec.) seconds {Dec.} seconds (Dec.) seconds =
209d LDA s#cH Set counter for 64 samples to run
R N S B R e ! Iﬂ 202 STA 84 before clearing sereen and starting over.
1 LBURE29667 49 -PP683¢571 137 P4 9997155 2004 1DA $3C Pick up low part of entered count from Al
2 QUEGFE5115 5¢ LAE7E97574 138 LB50624178 ' l"“ 20006 STA 314 and store it for repeated use.
3 BAGETTTLE 2048 LDA $3D Pick vup high part of entered count from AlH
4 LU 19461 53 JART9029273 15¢ A59628624 200Aa STA 811 and store it for repeated use.
5 PPP146289 54 48216736 151 JHORA12242 F g
f LIAG18R232 55 -BA85%93 14 200C LDA 514 Pick up low part of count:
7 -AB323529 56 -QaB8GTAA7 162 PE936963 l l_.q Zﬁﬁﬁ STA §12 store it in counter for this pass,
3 LG 287463 57 LPEY1A9815 163 ATR214R28 ‘ ;g;g]E:E'i gié and also high part.
9 BAA344751 55 LPP9417738 :
59 PR973HT76 174 LA7O847196 l ['ﬂ 2014 LoX s Set X for paddle ¢ read.
17 -PUP937195 6 P1B@E48929 175 BBETS3574 20016 JSR SFEBIE Call paddle read.
18 LABIFoN51 8 2819 sTY s¢ Store paddle @ result in location .
19 LBAL198Y56 73 LA1465(@383 184 89141151 ! t“
T4 LA15@40146 185 -A93398679 201B DEC $12 Count down deiay loop low byte:
25 BP#1956999 7 LALS430324 F I'G ggl]] ENE S2¢1%# when zero, count down high byte.
26 LBP2101242 195 A999552 R4 1F DEC S$13
a5 19665129 196 1 PE969377 2@¢21 BMI 52¢1B Stay in the loop until high goes minus.
31 02899182 86 LP24116272 P g
32 JARIGPTALLS 204 « 109263561 2023 LDX §#1 Set X for paddle 1 read.
35 LB248909027 205 . 113323389 t |‘“ 2925 JSR SFBIE Gall paddle read.
36 LAE3824997 a7 25416435 20828 STY 351 Store paddle | result in location 1.
3 PELAG25535 218 v 124566618
195 B29659839 219 - 125698156 E "ﬂ 2028 LDA s Pick up paddle @ value.
41 JPLBTEEET 146 B30213282 202C ISR SFDDA Print it as a hex value.
42 SBAS1@LTT 239 149400966 E f“ ZE2F LDA S#AY Pick ap a blank to print,
122 3976040 1 240 158639819 g 231 JSR STDED Print the blank.
45 .0P58137¢09 123 LB4GLALADS 2034 1DA Sl Pick up paddle 1 value.
46 LPA6d60252 255 L 169836414 t ‘m 2836 JSR SFDDA Print it as a hex wvalue,
2039 JSR §F948 Print three blanks.
1
USE OF CONTROL'Y WITH PARAMETERS E f“ 2B3C INC 85 Delay for awhile to keep paddle 1 read
2Z(3E BNE 82¢03C from upsetting paddle § results.
In the AFPLESOFT manual there is a caution that if one paddle is read t I‘ﬂ _
another should not be read toec quickly. Following is a machine 244 INC 34 Is it time to clear screen and resta:‘t?
langusge program with which the interference between the paddles can t Iu 2942 BNE $20¢c NE means no, go back and sample again.
i 2044 LDA S#¢Q Wair a while bef leari r
air a efore clearing screen.
Initiate this propram by eutering the Monitor command xxxxY, where E I“ 246 STA E‘!*
XXX¥X is a mumber representing the amount of delav to use hetween 2048 8TA 85
reading paddle ¥ and reading paddle 1, and Y represents control-Y, E I'ﬂ)
The Monitor command "control-Y" cavses a JHP to location $@3F8 at 2 2048 INC 5
which location we place a JMP to the beginning of the program. t :m Egiﬂ BNE géﬂi&a
2@Q4F INC
As the Monitor scans the input command line, the wvalue of the hex ' ?QEQ BNE 32044
digits is placed in page zero locaticns AlL,H ($3C-=-3D) for our use. E 'm 2@5Z2 JSR $FC58 Clear the screen.
1 2¢55 LDA $#CY Restore the per screen counter,
(. @57 STA S4
o P 2059 BNE $20#C and go one more big round.

E

86 MONITORS PEELED WISCELLANY

REGISTERS FOR BASIC MONITOR CALLS

Many of the entry points specified in this book require presetting of
registers for proper operaticn. Following is a sample program,
written for APPLEGOFT, which uses Monitor calls for conversion from
decimal to hex.

The theory behind the operation is that on a Monitor G command, the
registers are loaded from the BAVE area before going to the location
specified in PCL,H. Thus, by poking destination address intoe PCL,H

and the required register contents into XREG, YREG, an entry point in
the Moniter Co command processor can be used to pass the registers to
a selected routine.

DECIMAL TO HEX CONVERSION

APPLESOFT SAMPLE PROGRAM

1 REM CONVERT DECIMAL INPUT TO HEX OUTPUT
13¢ INPUT "ENTER NUMBER ";A Read the input.

1144 TIF A=99999 THEN END Provide a way to end the program.

1s@ cCc% =4 / 256 Isolate the high byte.

2080 POKE 71,C% Set YREG for PRNTYX call.

30 BEZ = A / 256 Get remainder from A/256.

31§ B = B% * 256 For low byte (XREG) POKE.

320 BXL = A — B

35¢ POKE 7¢,BZ

4B POKE 59,249 Set PCH to SF9.

5@ POKE 58,64 Set PCL to %4,

35¢ PRINT Print a blank line.

6@¢ CALL 652(19 Entry point in GO processor is FER9.
b5@ PRINT Print a blank line.

9% GOTO 1¢¢) Go around for another number.

STEP AND TRACE PECULIARITIES

The Step and Trace functions in the 0ld Monitor incorrectly display

register contents under some circumstances.

and gives special attention to JSR, RTS, JMP, JMP indirect, RTI, and

BRE instructions.
from the SAVE area at 545-49,

In each case, the register contents are displayed
Howewer, there is no SAVE call after

"execution'" of these instructions, as there is for normally traced

instructions, so the registers displaved are those present in the
SAVE area bhefore execution of this instructien.

Therefore, on JSR and RTS, the displayed contents of the S-reg are

incorrect.

0n the first Instruction after a JSR or RTS, the S-reg

displays correctly, unless that also is an RTS or JSR.

88 MONITORS PEELED

The STEFP routine detects

w T e e T N e T T T T T T " T T T

A AAAAxaAdadardaraanaa

The Step and Trace routines are not incorrect in handling of a BRK

Instruction. That is, the address displaved for the BRK is carrect,
instead of heing off by two bytes, because the BRK is detected hy the

STEP routine instead of being executed by the 6542,

Although step and trace can be very helpful for some program

debuggineg tasks, they cannot be used In tracing calls to the Monitor

(generally ineluding "print" output) or for programs which use AlL,H
thru A4L,H.

Becanse of the lack of "CLD" at PCADJ (5F953), incorrect addresses
will be displaved if wvou set decimal mode (SED) within the program

being traced or stepped.

MISCELLANY 89

éupchonwpulmlnc.

10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

950-0018~A

B B B B R R A B

	a2mp01.gif
	a2mp02.gif
	a2mp03.gif
	a2mp04.gif
	a2mp05.gif
	a2mp06.gif
	a2mp07.gif
	a2mp08.gif
	a2mp09.gif
	a2mp10.gif
	a2mp11.gif
	a2mp12.gif
	a2mp13.gif
	a2mp14.gif
	a2mp15.gif
	a2mp16.gif
	a2mp17.gif
	a2mp18.gif
	a2mp19.gif
	a2mp20.gif
	a2mp21.gif
	a2mp22.gif
	a2mp23.gif
	a2mp24.gif
	a2mp25.gif
	a2mp26.gif
	a2mp27.gif
	a2mp28.gif
	a2mp29.gif
	a2mp30.gif
	a2mp31.gif
	a2mp32.gif
	a2mp33.gif
	a2mp34.gif
	a2mp35.gif
	a2mp36.gif
	a2mp37.gif
	a2mp38.gif
	a2mp39.gif
	a2mp40.gif
	a2mp41.gif
	a2mp42.gif
	a2mp43.gif
	a2mp44.gif
	a2mp45.gif
	a2mp46.gif
	a2mp47.gif
	a2mp48.gif
	a2mp49.gif
	a2mp50.gif
	a2mp51.gif
	a2mp52.gif

