SHEPARDSON
MICROSYSTEMS INCORPORATED

OPTIMIZED SYSTEMS SOFTWARE

0S5 BASIC

for the Apple 1I (R)




OPTIMIZED SYSTEMS SOFTWARE

055 BASIC

for the Apple II (R)

Feb 1980

Version 1.0

0S8 BASIC is Copyright (C) 1980, Shepardson Microsystems, Inc.

Optimized Systems Scoftware
Shepardson Microsystems, Inc.

20823 Stevens Creek Blvd, Bldg C4-H
Cupertino, CA 95014

Telephone: 408-257-9900

Apple 11 and Disk II are registered trademarks of Apple Computer, Inc.



. START-UP

TABLE OF CONTENTS

To Start-up
Warm Start
Back-up Copy

STATEMENTS AND FUNCTIONSs

GENERAL

STRINGS

Syntax Conventions

Types of ltems

Execution Control Statements
Miscellaneous Statements

Assignment Statements

Input/Output Statements

Program Control Statements
Arithmetic Functions

String and String Related Funct:ons
Machine Access Functions

INFORMATION

Key Word .
Syntaxing and Internal Format .
Deferred and Direct Mode
Statement Save Aresa

ArTays

Substrings
Concatenation

OPERATORS

NUMBERS

Precedence
And, Or, Not

USR FUNCTION

INTERFACING TO GRAPHICS

ERROR PROCESSING

NOTES

Syntax Errors
Execution Errors .
Error Number Descriptlon
Error Trapping

MEMORY MAP

SYNTAX SUMMARY

Statements
Functions

ERROR SUMMARY

Basic Errors
FMS/0S Errors

25

26

28

30
30
31
31
36

37
38
39
39
40
a1

a1
42



START - UP

T0 START UP:

Put the 0SS diskette in disk drive 1. Enter
6 control-P (return)

This will load the Operating System and execute CP/A. Now enter
BASIC {return)

This will load the Basic and start executing it. When the
READY

appears on the screen, the user may begin.

WARM START:

If the user goes to the Apple II (R) monitor after start-up, he
can return to Basic by entering

control-Y (return)

This will perserve the user’s statements already in memory. It
will also leave the current low and high memory addresses unchanged.

The user can return to CP/A using the Bacis command CP. He can

then re—enter Basic by using the CP/A command RUN (if he has not
loaded another program). This does & warm start.

BACK-UP COPY

To make @ back-up copy of Basic on another diskette, use the CP/A
SAVE command.

Start address 8000

End address AB00
File name BASIC. COM
NOTE: For @ full explanation of CP/A commands, see the Control

Program/Apple documentation.




STATEMENTS AND FUNCTIONS

SYNTAX CONVENTIONS

The following conventions are used in this manual.

1.

Capital letters denote keywords, etc., which must be typed
by the user exactly as shown (e.g. PRINT, RUN).

Lower case letters denote the types of items which may be
vsed. The various types are shown on the next page.
(e.g.. avar, sexp)

Items enclosed in square brackets (e.g., [,varl) are optional.

Items enclosed in square brackets together with ellipses imply
that the item shown may repeated any number of times. (thus
L.exp...] is equivant to [,exp, exp, exp...l, etc.).

Multiple items in braces indicate that any one may be used.

(e.g. {END } implies END and STOP are equivalent statements).
{STOP}



‘

TYPES OF ITEMS

The following types of items are used in decribing the syntax of state-
ments and functions:

GENERAL ITEMS:

avar

svar

mvar

asvar

var

aop

lop

lexp

sexp

Arithmetic VARiable, a storage location for @ numeric valvue.
Variable names are i to 16 alphanumeric characters and must
start with an alphabetic character.

Example: TOTAL s COUNTER3

String VARiable, @ storage location for a string of characters
(bytes). Same name rules as "avar" except last character must
be a dollar sign ("$") which is included in the count of char-
acters in the name.

Example: NAMES$ ' ADDRESS$%

Matrix VARiable, an element of an array (matrix) of numeric
values. The name of the matrix is similar to @ string vari-
able name except that the last character must be a left parent-
hesis.

Example: COUNT (NUM) indicates the NUMth
element of the array
COUNT.

"avar" or "svar"
VARiable, any of "avar", "svar"” or "mvar"
The arithmetic operators
+ - * / *%
(+ and - can be unary or binary operators)
The logical operators
< <= > D= <> =
AND NOT OR
(NOT is an unary operator)
Logical Expression, generally composed of "aexp lop aexp" or
"sexp lop sexp"”; a logical expression evaluates to “"true"
(represented numerically by @ constant 1) or “"false"
{(numerically., O).
Example: 1<2 is true, "CAT" = “DOG" is false.
String EXPression, can consist of a string variable, string

literal, or a function which returns a string value, No

-3



operators are allowed in a sexp.

Example: ADDRESS%
"SMITH, JOHN"
CHR%(41)
aexp an Arithmetic EXPression, generally composed of “"aexp aop

aexp"” recursively where each aexp element may be an "lexp"
"avar", "mvar", numeric literal, or arithmetic function.
The arithmetic expression may start with an unary operator.

Example: -A+3
2%SIN(30)
7+INT(B)
A$>BS

exp Either "aexp" or "sexp"

linenum An expression which is rounded to an integer value. Must
be between 1 and 32767.

FILE ITEMS:
£n file number, an aexp that is rounded to the nearest integer
and must be in the range 1 to 7.

filspc decribed under I/0 statements.

mode an aexp which indicates type of 1/0 to be performed on a file.



EXECUTION CONTROL STATEMENTS

e0TO

G0OSUB

RETURN

ON aexp

IF aexp

- linenum

GOTO transfers execution to the line at “"linenum® It can also
be written GO0 TO.

linenum

GOSUB calls a subroutine which begins at “"linenum".

RETURN transfers execution to the next statement after the last
execvted GOSUB.

{60TO ¥ linenum [, linenum. .. ]
{GOSUBZ}

ON first evaluates aexp and rounds the result to the nearest
integer. Then executes a GOTO (or GOSUB) to the 1st linenum in
the list if the value is 1, the 2nd if the value is 2, etc.

If the value = O or is > the number of linenum’s in the list,
then control falls through to the next line.

THEN {statement}
{linenum

If aexp is "true" (evaluates to non—zero), the statement follow-
ing the THEN (and any subsequent statements on the line) is/are
executed.

If aexp is "false" (evaluates to zero), then control passes to
the next sequential line.

The form “"THEN linenum" is equivalent to "THEN GOTO linenum".

Example: 1000 A=3:B=4:(C=3
2000 1F A=B THEN PRINT “X":PRINT"Y"
3000 PRINT ®2*

Since A=B is false, executing line 2000 will cause
control to pass to the next line and will print:

4

(Y will not be printed.)

Example: 1000 A=3:B=4:(C=3
2000 IF A=C THEN PRINT "X": PRINT "Y"
3000 PRINT "z2*



Executing this program will cause the print out:
X

Y
z

FOR avar = aexpl TO aexp2 [STEP aexp3)
NEXT avar

When FOR is executed, avar is given the value aexpl.

When NEXT is executed, aexp3 (which takes the value +1 if not
given) is added to avar. If avar is then less than or equal
to aexp2, control passes to the statement following the FOR,
else control falls through to the statement after NEXT.

NOTE: All loops execute at least once.
"aexp3" may be positive or negative.
"avar" is required for NEXT.



MISCELLANEQUS STATEMENTS

POP
POP causes the information about the last GOSUB or FOR to be
discarded.
Example: 1000 6GOSUB 2000
1100 PRINT "HELLO"
1200 END
2000 GOSUB 3000
2100 PRINT "NO WAY"
2200 STOP
3000 PRINT "THIS 1S A TEST"
3100 POP
3200 RETURN '
In this example, the POP at line 3100 will discard
information about the last GOSUB (the one at 2000).
Then executing the RETURN at 3200 will cause control
to pass to line 1100. Executing the program causes
this print out:
THIS IS A TEST
HELLO
DIM svar(aexp)
DIM mvar{(aexp)
DIM mvar{(aexp, aexp)

DIM lets the user declare the "size" of a string or array.
First, aexp is evaluated and rounded to the nearest integer
value.

When the parameter is svar the value is the number of char-
acters in the string.

When the parameter is mvar, the value is the largest subscript.
Since the smallest value is O, there will be value+! elements
in the array.

Arrays may be two dimensional.

NOTE: Multiple strings or arrays may be dimensioned in the
same DIM statement.

Example: DIM A(3.2), B$(7), C(3)

This defines a 4 by 3 array whose last element is
A(3,2), & string with 7 characters, and an array with
4 elements: C(O), C(1), C(2), C(3).

NOTE: All string and arrays must be DIMensioned before being
used. Attempting to access an element or character
cutside of the size will cause an error. So will
attempting to access a string or array that has not

-7



NEW

CLR

LOMEM

REM

DEG
RAD

cP

BYE

POKE

been DIMed.
NOTE:

DIM does not zero array or string elements. The
user may do this with a FOR/NEXT loop.

NEW erases the current program and all references to variables
from memory.

CLR zeros all variables and undimensions all arrays and strings

NOTE: CLR does not zero the memory used by strings and
arrays.

aexp

The aexp is evaluated and rounded to nearest integer. This

value is set as the new LOMEM address (the address at which

the user tables start). Then a NEW is done.

NOTE: LLOMEM destroys any program currently in memory.

ASCII characters

REM denotes a remark or comment. It has no effect on execution
of the program. The rest of the line is ignored.

These statements only affect the trig functions (SIN, COS, ATN).
When DEG is specified, the arguments of SIN and COS and the
result of ATN are assumed to be given in degrees. When RAD

is specified, these values are assumed to be in radians.

The default for Basic is radians.

CP returns control of the system back to the 0SS Control
Program.

BYE returns control of the system to the APPLE II(R) monitor.

aexpl, aexp2



"aexpl” and “"aexp2" are evaluated and rounded to the nearest
integer.

Then the contents of the byte at memory location aexpl is
changed to aexp2.

0 <= aexpl <= 45535

O <= aexpl2 <= 255

Example: POKE 5000, 10

This will cause location 5000 (decimal) to contain
10 (decimal).

NOTE: The function PEEK will allow the user to get a byte
‘ from a memory location.

ASSIGNMENT STATEMENTS

CLET]
CLET)]

READ
DATA
RESTORE

INPUT

svar = sexp
{avar}) = aexp
{mvar}

LET assigns the value of the expression on the right side of
the equal sign to the variable element on the left side.

Example: A$=CHR$(48)
LET B(1,2) = C+3

asvar [, asvaer. .. ]
ASCII characters [, ASCII characters... ]
{linenum]

These statements allow data to be stored and retrieved within
the program body.

READ takes the next parameter from a DATA statement (ASCII
characters up to a comma) and assigns it to "asvar”,

If "asvar" is an "avar" then the ASCII characters must represent
a8 numeric valvue.

If "asvar" is a "svar” then the ASCII characters up to a comma
are assigned to the string.

RESTORE indicates the first DATA statement or the DATA state-
ment at linenum. The subsequent READ will access that DATA
statement for its parameters.

Will be decribed in the next section.



INPUT/DUTPUT STATEMENTS

FILE SPEC:

Many 1/0 statements include a file specification (filspc). This file
spec must be a string and have the following format.

filspc - "dev : filename [. file extl"”

dev — {A)
{B}>
A indicates & disk in slot 7 drive 1.
B indicates the disk in slot 7 drive 2.
For information on specifications for other devices see
Operating System (0S) documentation.

filename
1-8 alphanumeric characters, the first being alpha.

file ext
0-3 alphanumeric characters.

This file spec may be @ literal string ("A:ABCD. X") or a string
variable which has previously been assigned the proper format
(A% where A$ = "B: ABC. XXX").

FILE NUMBER:

In all I/0 statements, #fn is @ file number in the range 1 to 7.
“fn" is given as an aexp which is rounded to the nearest integer.
In statements where #fn is optional and is omitted, the I1/0 uses
the keyboard for input or the screen for output.

STATEMENTS:

OPEN #fn, aexpl, aexp2, filspc

OPEN prepares a file for access and assigns it the file number
n Pn ll.

fn - ¢file number [1-71]
aexpl - 1/0 mode

4 - input

6 - directory access
8 - output

9 — append

12 - update
aexp2 - device dependent information or O.
NOTE: After OPENing @ file, the file number is used to de-

signate the file in other 1/0 statements. Two OPEN
files cannot have the same file number.

-10~



CLOSE

PRINT

INPUT

Example: OPEN #2., 4,0, "A:DUT. BRC"

This will cause the file DUT.SRC on disk 1 to be
opened for input and will asscciate file number 2
with the file.

#fn
CLOSE closes the file associated with the file number "fn".

[#fn (2] exp [{,dexp...] 4,2
% <) ;%

PRINT puts the ASCII equivalents of the given expressions to
the file specified (or the screen). sexp’s are simply output
(without any conversion -—-i.e., the full B8-bit byte is output)
from their beginning to their length. aexp’s are converted to
printable form. A comma causes “"tabbing" to the next tabular
column. A following semicolon causes no spacing.

If the PRINT statement ends in @ , or ; then a subsequent PRINT
starts outputing at the last location, otherwise the next PRINT
will start on & new line.

Example: 100 DIM AS(10)
200 A$ = "VALUE ="
300 A = 100
400 PRINT A%, A
500 PRINT AS;: A
600 PRINT AS,
700 PRINT A
800 PRINT AS:;
200 PRINT A
1000 PRINT AS
1100 PRINT A
2000 END

This program causes the following printout:

VALUE= 100
VALUE=100

VALUE= 100
VALUE=100

VALUE=

100

NOTE: A "," after #fn causes tabbing before first character
is printed. A “";" does not cause the tabbing.

L#fn, ] var L[,var... ]

INPUT requests ASCII input from the specified file number (or
the keyboard). It uses a 7 prompt. I¢ a "svar" is specified,
it accepts a string of characters without transformation until
an end-of-line (carriage return) is dectected.

For an "avar" or "mvar", numeric data is converted to internal

-11-



form.

NOTE: While numeric data can be terminated by either a comma
or & carriage return, string data can only be ter-
minated by & carriage return. So when input is coming
from the keyboard and the "svar" is followed by another
variable, the user must enter carriage return to end
the "svar". Basic will then prompt the user with
another 7 for the next variable.

Example: 1000 DIM A$(50)
2000 INPUT AS, B

When running this program Basic prompts the user with 2.
IF the user enters:

JONES, SALLY
this becomes the value of A$ and then Basic prompts
again for the value of B.

GET #fn, avar

GET inputs a single byte from the file specified by "#n" and
stores it in avar.

PUT #fn, aexp

PUT outputs a single byte (aexp) to the file specified by "#n".

NOTE #fn, {avari), {avar2y
{mvaeril}, {mvar2)

NOTE returns the current sector # and byte within the sector
for the file specified by "fn".

Current sector # is assigned to the first variable.

Byte within the sector is assigned to the second variable.

POINT #fn, {avari), {avar2}
{mvarll}, {mvaral}

POINT sets the current sector # and byte within the sector for
the file specified by "#n".

Current sector is set to 1st variable.

Byte within sector is set to 2nd variable.

STATUS #fn, {avar)
{mvar}
STATUS gets the status of the last 1/0 performed on device #fn
and assigns it to the given variable.

LIST Lfilspcl
LIST [filspc, ] linenum! [, linenum2)



ENTER

SAVE

L.OAD

X10

LIST lists the program currently in memory to the screen (or to
the file specified if "filspc" is given).

If two linenum’s are given, only the lines from linenuml to
linenum2 (inclusive) are listed. If a single linenum is given,
only that line is listed.

filspc

ENTER brings a program that was LISTed (ASCII source) back into
memory from the specified file. Each statement is syntaxed as
it comes in.

filspc

SAVE puts the program currently in memory to the file specified
in an internal format (not in ASCII).

filspc

LOAD gets a program that has been SAVEd from the file specified.
No syntaxing is done since the program is already in internal
format.

cmd, #fn, aexpl, aexp2, filspcl

XI0 is used to specify various functions to @ specific device
handler.

Currently this command allows the user to perform various
functions on a disk or disk file.
The value of "cmd" tells which function.

cmd function

32 rename (filspcl = dev: oldname,newname)
33 delete file

35 lock

36 unlock

37 point

38 note

"fn" tells what file number to associate with the file for
this operation.

"aexpl" and "aexp2" are O for the functions currently defined.
"filspc"” specifies the device and file.
Example: XI0 33, #6, 0. 0, "A: NOGOOD"

This will cause the file NOGOOD on disk 1 to be

deleted. File number 6 will be associated with this
file during the process.



NOTE: I# the user has added his own device handler (see
Operating System (0S) documentation), the XIO cmd
can have special meaning to that handler.



PROGRAM CONTROL STATEMENTS

RUN
RUN

STOP
END

CONT

TRAP

filspc

RUN without parameters causes the program currently in memory
to start execution at the first line number. All variables are
set to zero and all strings and arrays are undiminsioned (as if
a CLR had been done).

Entering:
RUN filspc

causes two commands to be executed:
LOAD filspc
RUN

NOTE: In order to LOAD the file it must have be SAVEd
{not L1ISTed).

These statements cause the program to terminate. They are
equivalent except that STOP prints out a message giving the
current line number.

NOTE: END is not required at the end of a program

CONT allows program execution to continue after a STOP or END
at the next line number (not next statement).

linenum
I# an error is encountered after a TRAP statement has been
executed, control is transfered to the routine at "linenum"

This allows the user to have a routine to process errors.

NOTE: TRAP can be disabled by giving @ line number
greater than 32767.

(More information about error processing can be found
in the Error section).

-15-



ARITHMETIC FUNCTIONS: -

ABS(aexp)

EXP(aexp)

FRE(aexp)

INT(aexp)

SGN(aexp)

SGR(aexp)
LOG(aexp)
CLOG(aexp)

RND(aexp)

SIN(aexp)
COS(aexp)

ATN(aexp)

Returns absolute value of aexp.

Returns exponential of aexp.

Example: A = EXP(X)

A will be assigned the value E~X where E=2. 7182818. ..

Returns number of bytes of memory still avaiable.
Aexp is a dummy argument. Its value has no effect
Returns the next smaller integer.

INT(3.8) returns 3
INT(-3.8) returns -4

Example:

Returns an indication of the sign of the argument:
+1 if aexp 20

O if aexp =0

-1 if asexp <O

Returns square root of aexp.

Returns natural log of aexp.

Returns common log (base 10) of aexp.

Returns a pseudo-random number in the range O to 1
If aexp is less than O, the random number generator
is reseeded before a value is returned.

Returns sine of aexp.

Returns cosine of aexp.

Returns arc tangent of aexp.

The statements DEC and RAD determine whether
the argument/result is assumed to be in degrees
or radians for the trig functions. The default
is radians.

-16~-



STRING FUNCTIONS / STRING RELATED FUNCTIONS

LEN(sexp) Returns the current length (not DIM size) in bytes
of the string argument sexp.

VAL(sexp) Looks at the leading numerics in the string (up to 255)
and returns their value as a number.
Example: A = VAL("57A&6B")
"A" will be assigned the value 57.
Example: PRINT VAL ("ABC")

This will cause an error.

ASC(sexp) Returns a number which is the ASCII equivalent of the
first character in the string.
Example: PRINT ASC("A"™) prints:
65 (hex 41)
PRINT ASC{("AB") prints:
&5
PRINT ASC("57A") prints:
93 thex 395)
STR$(aexp) Returns a string that looks like the PRINTed form of
the aexp.
Example: B$ = STR$(352)
has the same effect as
B¢ = "352"
CHR$ (aexp) Returns a one byte string that contains the value
of aexp.
Example: PRINT CHR#%(&5) prints:
A
PRINT CHR$(353) prints:
5

PRINT CHR$(07)
rings the bell.

NOTE: CHR$ function can be used to insert a byte of
binary data into a string. In other words,
"aexp" does not have to represent a printable
ASCII character.



Example: DIM A%$(10)
A$ (1)=CHR$(25%)
A${(10)=CHR%(13)

This will insert hex FF as first character
of string A$ and hex OD (carriage return)
as the last.

NOTE: There can be only one STR$ and only one
CHR$ in a string compare.

Example: A = STR$(1) > STR$(2)

produces unpredictable results.

MACHINE ACCESS FUNCTIONS:

PEEK(aexp)

Converts aexp to an integer value by rounding. It returns

the contents of the byte in memory at that value.
(Memory can be altered by the POKE statement).

Example: wmemory location value
(decimal) {decimal)
5000 1
5001 128
°002 25

A = PEEK(5001) assigns value 128 to A
ADR{(gvar) Returns the address of @ string in memory

USR (aexpl [,aexp2...1)

Evaluates the expressions and rounds to the nearest
integer. It pushes the integer values "aexp2" on the
CPU stack and puts the number of arguments in the
accumvlator. It then calls the machine language
subroutine at address “aexpil". When Basic regains

control, it uses the value in floating point register O

(FRO) (see memory map address) as the function value.

NOTE: Use with care; this can be a dangerous function

if used improperly.

(For a more detailed explaination see section on
USR function).

-18-~



GENERAL INFORMATION

Any given line may contain multiple statements separated
by colons.

A program that is executing can be stopped by hitting the escape

key (ESC). LIST can also be stopped in this manner.

Since CONTinue causes the program to start executing

at the next line (not statement), STOP and END should generally

be the last statements on a line.

EXAMPLE: 1000 REM TEST PROGRAM
2000 A=1: STOP: PRINT A
3000 END

The “PRINT A" in the program can never be executed since
CONT entered after the STOP will cause the program to start

at line 3000.

Entering @ line number and then a carriage return
deletes the line.

KEY WORDS

All statement and function names plus TO, STEP, THEN,
AND. NOT, and OR are Basic’s key words.

For clarity, key words should not be used as a prefix
in variable names.

Blanks are significant characters to Basic and key
words must be preceeded and followed by blanks any time an
ambiguity would result.

During syntaxing the scan is left to right. If Basic
is looking for a keyword next, it will stop as soon as it
has found one regardless of the next character. Thus

FORI = 1 TO 3
is valid syntax.

Example: FOR K = ATOB
A = BAND X
Cause syntax errors.

FOR K = 1702

A =B +3

¢0TO 1000

1000IFI=3THEN100
Are all valid syntax.

-19-



SYNTAXING AND INTERNAL FORMAT

Statements are syntaxed on entry. Space for variables
is allocated at entry time (not run time). Lines are saved
in an internal (tokenized) format.

In this format:

Each variable and/or reserved word in a program will
occupy 1 byte.

String constants will occupy string length+l.

Numeric constants will occupy 7 bytes.

NOTE: When memory space is a consideration, space can be
saved by changing frequently used constants to
variables.

DEFERRED AND DIRECT MODES

There are fwo modes of execution for statements.

Direct mode - The statement has no line number and
is executed as soon as it is syntaxed.

Deferred mode —~ The statement has @ line number. 1t
is syntaxed on entry, stored, and then
executed only when the user types RUN.

All of Basic’s statements can be executed either in direct

or deferred modes. Some have little or no meaning in one mode
or the other. Others may have unexpected meanings. For
example: .

In deferred mode:

6000 RUN is equivalent to encountering END and
then the user typing RUN.

6000 CONT has no effect.

6000 NEW is equivalent to encountering END and

then the user typing NEW.
In direct mode:
DATA have no meaning and cause no action
REM

END
STOP

-20-



GOTO starts or restarts program execution
at the line number noted in the GOTO
statement.

G0SuUB calls the subroutine at the given line
number; Upon RETURN control returns to
direct mode statements.

STATEMENT SAVE AREA

The statements a user has entered and other needed infor-
mation is stored starting at a low memory address and
growing towards high memory.

This lomem address can be changed with the LOMEM command.
This can be used in order to reserve space for a USR function.

The high memory address can be changed using the POKE statement.

(See the memory map for the location).

ARRAYS

Arrays are one or two dimemsional. Either dimension may
have the value O to 32767. (Total space is limited by memory
space). Elements are numbered from zero.

Example: DIM A(3) Allocates 4 elements.
A(D), A(1), A(2), A(3)

DIM B{(1,2) Allocates & elements.
B(0,0), B(O,1), B(O,2)
B(1,0), B(1,1), B(1,2)

An array must be DIMed before it can be used.

-21-



STRINGS

A string may have a length of up to 32,767 characters.
When & string is DIMensioned, space is allocated for the
string and its maximum length is fixed. The characters in
a string are numbered from 1 to the DIMensioned maximum.

A string must be DIMensioned before it can be used

SUBSTRINGS:
A destination string is one that is being assigned to.
Any other string is a source string. In

X$=Y$

X$ is the destination string, Y$ is the source string.

Substrings are defined as follows:

STRING definition when definition when
destination string source string

S$ the entire string from 1st thru LEN
1 thru DIM valvue character

S¢(n) from nth thru from nth thru
DIMth character LENgth character

S¢(n,m) from the nth thru from the nth thru
the mth character the mth character

It is an error if either the first or last specified
character (n and m: above) is outside the DIMensioned size.
It is an errvor if the last character position given
(explicitly or implicitly) is less than the first character
position.

Example: Assume: DIM A$(10)
A$ = "VWXyz"
1) PRINT As$(2) prints:
WXYZ
2) PRINT A$(3,4) prints:
XY

3) PRINT A$(5,5) prints:

-2



./

CONCATENTATION

Example:

4

4) PRINT A$(7)

is an error because A% has 3 length of 5.

Assume: DIM A$(5), B$(3), C&(13)
A$="12345"
Bs="XYZ"

Then concatenation may be performed
as follows:

LET Cs$=A$
LET C$(LEN(C$)+1)=B$%

Now: PRINT Cs$ will produce
12345XYZ

(This is equivalant to the C%=A%+B%
found in some basics).

-23~



OPERATORS

PRECEDENCE

The following order of precedence will be used when evaluating
expressions. Operators on the same line have equal precedence.

€ <= > = = & When used with strings
+ = NOT unary operators

means a number raised to a power

* /

+ = When used as binary operators.

< <= > = = <> When used for arithmetic comparsions.
AND

OR

Precedence may be overridden by parentheses.

No binary operator may have both a numeric and string operand.

Example X=A$=C$>B is valid because it is evaluated
as X=(A$=C$)D>B
X=A%=(C$>B) is invalid
AND, NOT, OR
AND A logical operator which requires both the left and
right arguments to be true for the statement to be true.
NOT A logical operator which reverses the truth of the
argument following it.
OR A logical operator which requires either the left
or right argument to be true for the statement to
be trvue.



NUMBERS

All numbers in Basic are in BCD floating point.

RANGE:
Floating point numbers must be less than 10E+98 and
greater than or equal to -10E~-98.

INTERNAL FORMAT:

Numbers are represented internally in & bytes. There is a %
byte mantissa containing 10 BCD digits and a one byte exponent.

The most significant bit of the exponent byte gives the sign

of the mantissa (O for postive, 1 for negative). The least
significant 7 bits of the exponent byte gives the exponent in
excess 64 notation. Internally, the exponent represents powers
of 100 (not powers of 10).

Example: 0.02 =2 % 1072 = 2 # 100~-1
exponent= -1 + 40 = 3F
0.02 = 3F 02 00 00 00 00

The implied decimal point is always to the right of the first
byte. An exponent less than hex 40 indicates a number less
than . An exponent greater than or equal to hex 40 represents
@ number greater than or equal to 1.

Zero is represented by a zero mantissa and a zero exponent.

-25—



USR FUNCTION

The USR function allows the user to execute machine language
subroutines. The arguments of the USR function are the
address of the subroutine and any parameters the user wishes
to pass it (up to 2955). The user may return a value in FRO
& FRO+1 (see system memory map). In fact, Basic assumes that
whatever is in FRO is the return value of the function.

Basic uses the CPU stack to pass the parameters to the
subroutine. The count of the number of parameters is
passed in the accumulator. The parameters are each 2 byte
integers. When the subroutine gets control it must pull
the information off the stack.

The first byte on the CPU stack is the MSB of the 1st
parameter. The second byte is the LSB of the ist parameter.
The third byte is the MSB of the 2nd parameter, etc..

Example: A=USR ( 5000, 200, 300)

The user routine is at the address
5000 (hex 1388).

When the subroutine gets control the
stack looks as follows.

Top Of Stack

(last on) 00 } parm 1
c8 >
01 > parm 2
2C }

The A register will contain the number of parms
(02).

When the user is ready to return, he puts a return value in
FRO and FRO+1. FRO is the LSB -and FRO+1 is the MSB. Then
he executes a RTS.

CAUTION: ALL PARAMETERS THAT BASIC PUT ON THE
STACK MUST BE PULLED OFF PRIOR TO THE
RTS. The results are totaly unpredict-
able if this is not done correctly.

When Basic regains control it takes the 2 byte value in FRO as
the function’s return valvue.

The user can reserve space for his USR function by using the
LOMEM command to increase lomem (the address where Basic

starts the tables its needs). The user can also reserve space
by using POKE to change the high memory address (see memory map).

The user could also put his 6302 code into a DATA statement.

READ the data, put it into a string with CHRS or POKE and
then call the USR function with the address of the string.

-24—



Example: The following program will call the
Apple II(R) to clear the screen in
text mode. This is not the best way
of clearing the screen, but it
illustrates the use of a string in
calling a USR function.

1000 DIM A$(20)

2000 FOR I = 1 TO 4
3000 READ X

4000 A$(I) = CHR$(X)
5000 NEXT 1

6000 A=USR(ADR(A$(1)))
7000 DATA 32, 88, 252, 96

Where the program represented in the DATA statement is:

20 58 FC JSR $FCS58 i JUMP TO SUBROUTINE
60 RTS i RETURN
Example: A better way to clear the screen

would be to call the routine directly.
100 A=USR(4644600)

Where 644600 = 655369346 (FCSB hex).

NOTE: The "A" in these examples is a dummy variable
used to take care of the fact that a function
expects a return valvue.

-27-



INTERFACING TO GRAPHICS

The Apple II(R) graphics routines are not directly accessible to

the Basic user,
function.
graphics.

To set graphics mode:

POKE 49232, 0
POKE 49235, 0

To set text mode:

POKE 49233, 0

but they can be used by means of POKE and the USR
The following are same examples for low resolution
They are not meant to constitute a complete interface.

(49232 = hex CO050)
(49235 = hex CO053)

(49233 = hex CO51)

POKE address for other graphics modes can be found in the
APPLE II(R) reference manual.

To plot a point:

Pass the X & Y values to @ USR function which will do
set-up and call the APPLE 1II(R) graphics routines.

Example:

Basic program required to plot a point
at X=5, Y=10.

100 LOMEM B192 : REM SAVE SPACE FOR PGM
200 POKE 34.20 : REM SET WINDOW

300 POKE 49232,0 : REM SET @R MODE

400 POKE 49235, 0

500 A=USR (4096, 3, 10) REM CALL FUNCTION

The USR function calls a routine at 40946 (hex 1000).
The "A" is a dummy variable used to take care of the
fact that a function expects a return value.

Example:

PLOT

PLOT1

the 6302 code required to interface
to plot.

#=$1000 i ORIGIN AT 1000 HEX
PHA i BAVE COUNT
JSR $F832 i CLEAR GRAPHICS AREA
LDA #SFF i SET COLOR 15
STA $30 i SET IN COLOR REG
JSR $FCS8 i CLEAR TEXT AREA
PLA i PULL # OF PARMS

i FROM STACK
cMP #2 ; SHOULD = 2
BNE oorPS i IF NOT ERROR
PLA
PLA ; GET PARM 1 (X)
TAY i PUT IN Y FOR PLOT
PLA
PLA i GET PARM 2 (Y)



JSR $F800 i 60 TO PLOT
RTS

OOPS
<HANDLE ERRORS HERE>

This routine will plot in color 15, Calling at PLOT
initialzes for plotting and plots. Calling at PLOTI
will do subsequent plots. To plot in various colors
the routine could be changed to expect the USR function
to also pass a color.

NOTE: This routine is meant to serve as an example
of what might be done, and is not complete.
For example, the user needs to handle errors
such as X and Y being out of range.

NOTE: The color must be set after graphics has been
initialized.



ERROR PROCESSING

There are two different type of errors in Basic. A syntax
eTTOT Ccan occur when a statement is entered. An execution
error can occur when the statement is actually executed.

SYNTAX ERRORS

A syntax error indicates that the statement just entered is
not in proper format. Its occurrence causes the line to be
reprinted on the screen with the word ERROR-. The point at
which the error was detected (not necessarily the actual error)
is marked with an inverse video character.

A syntax error may occur in either direct or deferred mode.

Example 1) 1000 A=As$+B
cauvses:
1000 ERROR- A=AS$+B
2) A=A%$+B
cauvses:

ERROR- A=A$+B

3) 1000 FOR I = ATOB STEP C
causes:

1000 ERROR- FOR I = ATOB STEP C
Where underscore(-) indicates the character in inverse
video.

NOTE: In example 3 the error may be that the user
meant to type

1000 FOR 1 = A TO B STEP C

but since ATOB is a valid variable name, no
error is detected until STEP.

-30~



EXECUTION ERRORS

If# an error is detected while a statement is being executed.
Basic prints out:
ERROR- XX

If the statement had a line number (ie. it was part of a
program), Bacis also prints:
AT LINE nnnn

XX represents an error number in the range 1 to 255.
nnnn represents the line number on which the error occured.

So the two forms are:
ERROR~ XX
ERROR- XX AT LINE nnnn

The following section is a decription of errors represented
by the error number.

ERROR NUMBER DECRIPTION

2 - MEMORY FULL

All avaiable memory has been used. No more statements
can be entered and no more variables (arithmetic, string

or array) can be defined.

3 - VALUE ERROR

An expression or variable evaluates to an incorrect valve.

Example:

Example:

Example:

An expression that can be converted to a
two byte integer in the range O to 45235
(thex FFFF) is called for and the given
expression is either too large or negative.

A = PEEK(-1)
DIM B(70000)

Both these statments will produce a valvue
error

An expression that can be converted to a one
byte integer in the range O to 255 hex(FF) is
called for and the given expression is too
large. -

PDOKE 5000, 750

This statement produces a value error.

A=8SQR (-4) Produces a value error.

VARIABLE TABLE FULL

-3y



10

No more variables can be defined.
variables is 128.

STRING LENGTH ERROR

A character beyond the DIMensioned
string has been accessed.

Example: 1000 DIM AS$(3)
2000 A%(5) = "A"

This will produce & string
line 2000 when the program

READ OUT OF DATA

A READ statement is executed but we
end of the last DATA statement.

LINE NUMBER TOOD BIG
A line number larger than 32747 was
INPUT/READ STATEMENT ERROR

The INPUT or READ statement did not
data it expected.

Example: INPUT A

If# the data entered is 12AB
will result.

Example: 1000 READ A
2000 PRINT A
3000 END
4000 DATA 12AB
Running this program will p
ARRAY/STRING DIM ERROR

Example: A string or an arra
was DIMinsioned.

Example: A previously DIMens
is DIMensioned agai

1000 DIM A(10)
2000 DIM A(10)

This program produc
EXPRESSION TOO COMPLEX

An expression is too complex for Ba
The solution is to break the calcul

The maximum number of

or current length of a

length error at
is RUN.

are already at the

entered.

Tecieve the type of

then this error

roduce this error.

y was vsed before it

ioned string or array
n.

es a DIM error.

sic to handle.
ation into two or



11

12

13

14

15

more Basic statements.
FLOATING POINT OVERFLOW/UNDERFLOW

The floating point routines have produced a number
that is either too large or too small.

LINE NOT FOUND

The line number required for a GOTO or GOSUB does
not exist.
The ©OTO may be implied as in:

1000 IF A=B THEN 500
The GOTO/GOSUB may be part of an ON statement.
NO MATCHING FOR

A NEXT was encountered but there is no information
about a FOR with the same variable.

Example: 1000 DIM A(10)
2000 REM FILL THE ARRAY
3000 FOR I = O TO 10
4000 A(I) =1
5000 NEXT I
6000 REM PRINT THE ARRAY
7000 FOR K = 0 TO 10
8000 PRINT A(K)
9000 NEXT 1
10000 END

Running this program will cause the following output:
0

ERROR~ 13 AT LINE 9000

NOTE: Improper use of POP could cause this error.
LINE TOO LONG

The line just entered is longer than Basic can handle.
The solution is to break the line into multiple lines
by putting fewer statements on a line, or by evaluating
the expression in multiple statements. .

GOSUB/FOR LINE DELETED

The line containing the COSUB or FOR was deleted after

it was executed but before the RETURN or NEXT was
executed.

This can happen if, while running a program, a STOP is
executed after the GOSUB or FOR, then the line containing
the GOSUB or FOR is deleted, then the user types CONT

and the program tries to execute the RETURN or NEXT.



16

17

18

19

Example: 1000 €0SUB 2000
1100 PRINT "RETURNED FROM SUB"
1200 END
2000 PRINT "“€OT TO SUB"
2100 STOP
2200 RETURN

If this program is run the print out is:
¢0T 70 SUB
STOPPED AT LINE 2100

Now if the user deletes line 1000 and then types CONT
we get

ERROR- 15 AT LINE 2200
BAD RETURN

A RETURN was encountered but we have no information
about a GOSUB.

Example: 1000 PRINT "THIS 1S A TEST"
2000 RETURN

I# this program is run the print out is:

THIS IS A TEST

ERROR~ 16 AT LINE 2000

NOTE: improper use of POP could also cause this error.
EXECUTION OF GARBAGE

If when entering a program line a syntax error occurs,
the line is saved with an indication that it is in
eTror. I# the program is run without this line

being corrected, execution of the line will cause
this error.

NOTE: The saving of @ line that contains a syntax
error can be useful when LISTing and ENTERing
programs.

STRING DOES NOT START WITH A VALID NUMBER

1f when executing the VAL function, the string argument
does not start with a number, this message number is
generated.

Example: A = VAL ("ABC") produces this error.
LOAD PROGRAM TOO BlG

The program that the user is trying to LOAD is larger

than available memory.



20

21

This could happen if the user had used LOMEM to change
the address at which Basic tables start, or if he is
LOADing on a machine with less memory than the one on
which the program was SAVEd.

INVALID DEVICE/FILE NUMBER

If the device/file number given in an 1/0 statement is
O or greater than 7, then this error is issued.

Example: GET #8, A
PUT #0, B+7

Both of these statements will produce this error.

NOT A LOAD FILE

This error results if the user tries to LOAD a file
that was not created by SAVE.

=35



ERROR TRAPPING

The TRAP statement allows the user to specify the line number
of @ routine that will be executed when an error is encountered.

Basic saves the error number and the line number where the error
cccured for the user. (See memory map for locations). By doing

@ PEEK the user can see what the error was and determine what
action he wishes to take. For example if the error was end-of—-file,
he may wish to close the file and end the program.

The user can return control to the first line (not statement)
after the statement that caused the error by doing a CONT.

The user can also return to the first statement of the line
that caused the error. To do this he must use PEEK to get the

line number then construct @ variable containing that line
number.

Example: Assume the memory map says that the
line number is at location X (in decimal).
The error routine can return control to
the 1st statement of the line causing
the error by saying:

1000 GOTO PEEK(X)+PEEK(X+1) #2564

NOTE: The TRAP statement must be executed
before the error occures.

NOTE: TRAP may be disabled by using @ line number
greater than 32768.

TRAP 40000
NOTE: To prevent infinite looping. TRAP is
disabled after an error. If the user

wants an error routine to be called on
the next error, he must re—execute TRAP.

-36—



NOTES

DEFAULT FILE NUMBER:

Some Basic commands do not specify a file number but request 1/0
to or from a device other than the screen or keyboard (SAVE, ENTER,
etc). Basic must have a file number to do this, and it uses file
number 7. The user should not have this file number assigned to a
device/file when this type of command is issved.

ENTERING FROM A PROGRAM

ENTER can be executed from @ program. This cauvses the statements in
the file to be merged with the statements in memory. The ENTERed
statements are not automatically executed. I# the user wishes to
ENTER and then execute, he may append a GOTO statement (without

@ line number) to his file. (See Disk File Manager documentation).

LOMEM/HIMEM

A default low memory address is set when the system is booted up.
Basic does NOT automatically reset this value. If a program (for
example, & device handler), sets lomem and then BASIC is entered,
this address remains unchanged.

Basic does set a default himem which can be changed by POKE.

—-37 -



The following are memory locations used by 0SS.
used by Apple II(R) monitor,

HEX ADDRESS

0000-001F
0020-004F
0050-005F
0060~007F
0080-00D3
00D4-00FF
0100-01FF
0200-02FF

0300-037F
O3FO0-03F4

Specific locations that

BA-BB
c3
D4-D9

8000
8003
9FFC-9FFD
BFF&6-BFF7
BFFB-BFF9

MEMORY MAP

For locations
see Apple II(R) Reference Manual.

USED FOR

Reserved for user

Apple II(R) monitor
Reserved for user

0SS Operating System
Basic

Floating Point work area
6502 stack

Apple II(R) input buffer
and Basic syntax stack
Basic line buffer
Avtostart Rom

may be of interest:

Stop line number (after STOP,
Error number
Floating Point register zero (FRO)

start address
start address
test for escape key
low memory address
high memory address

Basic cold
Basic warm
Pointer to
Pointer to
Pointer to

END or error)



STATEMENTS
BYE
CLOSE #fn
CLR
CONT
cP
DATA ASCII characters [,ASCII1 characters. ..
DEG
DIM svar (aexp)
DIM mvar (aexp)
DIM mvar (aexp, aexp)
END
ENTER filspc
FOR avar = aexpl TO aexp2 [STEP aexp31]
GET #fn, avar
GOSUB linenum
IF aexp THEN {statement}
{linenum %
INPUT [#fn , ] var [,var...]
[LET] svar = sexp
LLET} {avar) = aexp
{mvar}
LIST Lfilspc]
LIST Cfilspc. ] linenum [, linenuml
LOAD filspc
LOMEM address
NEW
NEXT avar
NOTE #fn, {avar}, {avar}
{mvar} A{mvar)
ON aexp {QOTO ¥ linenum [, linenum... 3]
{GOSUBY}
OPEN #fn. mode, aexp, filspc
POINT #fn, {avar), {avarl
{mvar), 4{mvar}
POKE address, aexp
POP
PRINT [#fn €3] exp [{,)> exp...1 {3
2 <% )
PUT #fn, aexp
RAD
READ asvar [, asvar...])
REM ASCII characters
RESTORE [linenum]
RETURN
RUN [filspc]
SAVE ¢ilspc
STATUS #¢fn, {avar)
{mvar}
STOP
TRAP linenum
XI10 cmd, #fn., aexp, aexp, ¢ilspc, L[,filspc]

SYNTAX SUMMARY



FUNCTIONS

ABS(aexp)
ADR{(svar)
ASC(sexp)
ATN(aexp)
CHR® (aexp)
CLOG(aexp)
COS(aexp)
EXP(aexp)
FRE(aexp)
INT(aexp)
LEN{(sexp)
LOG(aexp)
PEEK(address)
RND(aexp)
SGN(aexp)
SIN(aexp)
STR$(sexp)
SQR(aexp)
USR(address [, parameters... 1)

VAL(sexp)



ERROR SUMMARY

A more detailed explaination of the Basic errors can be found
in the section on ERROR PROCESSING.

BASIC ERRORS

- MEMORY FULL

- VALUE ERROR

- VARIABLE TABLE FULL

- STRING LENGTH ERROR

READ OUT OF DATA

= LINE NUMBER TOO BIG

- INPUT/READ STATEMENT ERROR

- ARRAY/STRING DIM ERROR

10 — EXPRESSION TOO COMPLEX

11 — FLOATING POINT OVERFLOW/UNDERFLOW
12 = LINE NOT FOUND

13 - NO MATCHING FOR

14 - LINE TOO LONG

15 - GOSUB/FOR LINE DELETED

16 - BAD RETURN

17 - EXECUTION OF GARBAGE

18 — STRING DOES NOT START WITH VALID NUMBER
19 - LOAD PROGRAM TOO BlG

20 - INVALID DEVICE/FILE NUMBER

21 = NOT A LOAD FILE

ONOCOUIPWN
t

-41-



For the user convenience a summary of the error messages that
can be generated by DFM/0S and passed to Basic are included.

DFM/0S ERRORS:

DEC HEX MESSAGE

129 (81) = DEVICE NOT READY

130 (82) = NON EXISTENT DEVICE

131 (83) ~ DATA ERROR

132 (84) = INVALID COMMAND

133 (85) - DEVICE OR FILE NOT OPEN

134 (86) - INVALID I0CB NUMBER

135 (87) - WRITE PROTECT

136 (88) - END OF FILE

160 (AO0) - DRIVE # ERROR

161 (A1) - TOO MANY OPEN FILES (NO SECTOR BUFFER AVAIABLE)
162 (A2) - MEDIUM FULL (NO FREE SECTORS)
163 (A3) - FATAL SYSTEM DATA I1/0 ERROR
164 (A4) = FILE # MISMATCH

163 (AD) - FILE NAME ERROR

166 (A6) = POINT DATA LENGTH ERROR

167 (A7) - FILE PROTECTED

148 (AB) - COMMAND INVALID (SPECIAL OPERATION CODE)
169 (A9) — DIRECTORY FULL

170 (AA) —= FILE NOT FOUND

171 (AB) - POINT INVALID

—42-



