SHEPARDSON
MICRO_SYSTEMS INCORPORATED

OPTIMIZED SYSTEWMS SOFTWARE

CP/A 0s DFM

Contrel Program/Apple,. o
Operating System, Disk File Manager’




OPTIMIZED SYSTEMS SOFTWARE

Control Program/Apple

for the Apple Il (R)

Feb 1980

Version 1.0

0SS Control Program/Apple is Copyright (c) 1980
Shepardson Microsystems, Inc.

Optimized Systems Softuware
Shepardson Microsystems, Inc.

20823 Stevens Creek Blvd, Bldg C4-H
Cupertino, CA 95014

Telephone: 408-257-9900

‘ Apple 11 and Disk 1] are registered trademarks of Apple Computer, Inc.



GENERAL

DEFAULT

COMMAND

USER WRITTEN EXTRINSIC COMMANDS .

TABLE OF CONTENTS

INFORMATION .
Intrinsic Commands
Extrinsic Commands

DEVICE

DETAILS .
Save

Load

Run . .
Directory .
Erase .
Protect .
Unprotect .
Rename
Init
Dupdsk
Copy

e

0 NOUDLDdDPLLDDUWWWW N



GENERAL INFORMATION

CP/A is a general purpose command control program for the 0SS disk
operating system. The CP/A user has two types of commands available:
intrinsic commands and extrinsic commands. The intrinsic commands
are those commands which are executed directly via CP/A code.
Extrinsic commands are executed by loading and running a program.

The following commands are CP/A intrinsic.

DIRECTORY List directory

SAVE Save a program

LOAD Load a program

RUN Run a program already in RAM

ERASE Erase a file from it’s medium

PROTECT Protect a file from erasure
or change

UNPROTECT Unprotect a protected file

RENAME Rename a file

The CP/A examines the first three characters of the user input for

a match with the intrinsic commands. If# the first three characters
match, the remaining contiguous characters through @ blank (%$20),

carriage return ($0D) or @ comma are ignored. Thus DIR, DIRECTORY.
DIRGLOP, etc all access the DIRECTORY intrinsic command.

The CP/A, upon determining @ command is not intrinsic, will attempt
to execute an extrinsic command. The user command is converted into
a8 filespec of the form:

Device: command. COM

The device is a single character device specifier (usually A or B).
If the user does not specify a device, then the default device is
used. The .COM is always appended to the command. The command
BASIC will generate a filespec of:

A: BASIC. COM

CP/A will next attempt to open and load a file with the generated
filespec. If the file load is properly terminated, CP/A will transfer
to the loaded program’s start location. The user loaded program now
has control of the system.



DEFAULT DEVICE

CP/A starts execution with a default device of "A:" which is disk
drive 1. The user may change the default drive by entering the
new drive spec (ie "B: ") followed by a carriage return. CP/A uses
the default drive as the input line prompt character in the form:
" A- 1]

The default device is used by CP/A in all cases where it constructs
@ filename from uvser input and the user has not specified a device
The command

LOAD BASIC. COM

will load A:BASIC. COM assuming the default drive is "A:". The
command

LOAD B: BASIC. COM

will load B:BASIC.COM no matter what the default drive is.



COMMAND DETAILS

For each command, the command syntax is followed by an example of
actual usage and a decription of the command’s operation.

SAVE

SAVLE] filespec start-hex—-adr end-hex—adr
SAVE TEST 800 BOO

A file will be created with the name “"filespec” and will contain
all data from "start—hex—-adr" up to, but not including

"end-hex—-adr". CP/A will write a four byte save file header
before the data. The first two bytes are "start—hex—adr"
and the second two bytes are "end—-hex—adr". This four byte

header is compatible with the 0SS Assembler object output.

LOAD

LOALD) +filespec
LOAD TEST

The specified file will be loaded. The files first four bytes
are used to determine the load start address and end address.
The start address must be less than the end address. The ¢ile
load start address is placed into the 0SS go-location (3F9).

RUN

RUN optional~hex—adr
RUN $800

CP/A will branch to the run address. The address is either the
specified hex address or, if unspecified, the address at the
go-location. The address at the go-location is set by

system initialization (to CP/A), the act of LOADing a program,
or by an application program that has called CP/A. BASIC and
the ASSEMBLER both set the go—-location at their respective
warmstart entry points.



DIRECTORY

DIRLECTORY] optional-filespec
DIR *. COM

The CP/A will open the specified "device: filespec" for directory
listing.) If the user does not specify a filespec, the defavlt

default—device: * *

filespec will be used.

ERASE
ERALSE] tfilespec
ERASE TEST. %
The specified file or files will be erased from the device,
provided that they are not protected.
PROTECT
PROLTECT] filespec
PRO BASIC. COM
The specified file or files, are protected from modification,
erasure or renaming.
UNPROTECT
UNPLROTECT] filespec
UNP DATA. TST
The specified file or files, are unprotected. They may
now be erased, modified. or renamed.
RENAME
RENLAME] old-filespec new—filespec
REN eLOoP ACTS. NEW

The files matching the old-filespec are Trenamed according to
the new-filespec.



INIT

(Extrinsic command)

INIT (no parameters)

The INIT command is used to physically and logically initilize
an 0SS format diskette. A diskette can be used by the 0SS
system (version 1) if and only if it has been initialized by
INIT. Initializing a diskette destroys all previous information
on the diskette.

The INIT program (INIT.COM) begins by requesting the INIT
function to be performed. These functions are

1) INIT a disk with boot record.

2) INIT @ disk without boot record.
3) Re-write the boot record.

4) Return to CP/A.

The first two functions physically and logically initialize the
working surface of the disk. If a disk is initialized without
a boot record, the disk will contain 719 sectors of 128 bytes
each; however, the diskette is not bootable. I# the disk is
initialized with @ boot record. the disk will contain 680
sectors of 128 bytes each and a & 5K boot record. The boot
record contains the operating system located from page $AB
thru page $BF plus two additional pages of boot loader code.
The third function is used to re-write the operating system

to the boot record. The 0SS disk must have been previously
formatted using function 1 to execute function 3.

The 0SS File Manager (Version 1) uses 9 sectors for filé
management information. The INIT program also logically
formats these 9 sectors. (See 055 DFM document. )



DUPDSK (Extrinsic Command)

‘ DUPDSK <(no parameters)

The DUPDSK command is used to make a duplicate copy of one 0SS
disk on to another O8SS disk. Both disks must be initialized
in the same way; they both must either have or not have a boot
record. The boot record is not copied by DUPDSK.



COPY

(Extrinsic Command)

CoPY from—filespec to-filespec
COPY A: BASIC. COM B: BASIC. COM

The from—file is copied to the to-file. The to—file does not

have to be a disk file, but may be any device. , The from-file

is unmodified. The from—-filespec need not be @ disk file, but
it must provide an EOF to terminate the copy.



USER WRITTEN EXTRINSIC COMMANDS

Any user file of the name “"name. COM"” may be uvsed as a CP/A extrinsic
command. The program may be placed at any memory location that does
not interface with other concurrent programs. The program entry
point will be at the address of the first byte SAVEd.

The ASCII command line that was entered to invoke the extrinsic
command is placed by CP/A at location $280. The executing extrinsic
program can examine this (unmodified) command line for parameters it
may require. The current default device value is located at $BCFE
in version 1 of the DOSS system. CP/A will jump to the extrinsic
command with IDOCB numbers 1 through 7 closed. IOCB number O is open
for the current console device for both input and output. 10CB
number O should not be opened or closed by the command code (unless
that is the purpose of the command). The normal command exit is to
CP/A at location $BFFD.



OPTIMIZED SYSTEMS SOFTWARE

0SS OPERATING SYSTEM

for the Apple II (R)

Feb 1980

Version 1.0

0S8 Operating System is Copyright (c) 1980
Shepardson Microsystems:. Inc.

Optimized Systems Software
Shepardson Microsystems, Inc.

20823 Stevens Creek Blvd, Bldg C4-H
Cupertino, CA 95014

Telephone: 408-257-9900

‘ Apple 11 and Disk II are registered trademarks of Apple Computer, Inc.



TABLE OF CONTENTS

GENERAL INFORMATION . . . .
Introduction to IOCBs .
Filespec Description

IOCBs . . . . . . . .
IOCBs Fields . .
IOCB Field Names
I0CB Description

0S COMMANDS . . . .
The Three Tgpes oF Commands .
Open . . e
Getrecord .
Getline .
Putrecord
Putline .
Close .
Status
Device Dependent

0S8 STATUS . . .
Returned Status And Error Codes .

USING THE 0S5 FROM ASSEMBLY LANGUAGE .
. Calling Conventions .

DEVICE HANDLERS . .
Device Handler Table ..
Device Handler Vector Table . .
Device Handler Coding Conventions .

DEVICE E: . .
Console I/D .
IOCB #0 .

DEVICE Pm: . .
Using Apple Ports thh DSS

SYSTEM MEMORY MAP .

LWL MNRORUN

g 0w NNN o000 ug o gw



GENERAL INFORMATION

The 0SS Operating System provides the user with a unifarm 1/0
interface to the various system I/0 devices. The user places 1/0
command information in one of eight system I/0 control blocks
(IOCBs) and calls the 0S entry point (0S in system memory map).
The 08 interperts the command and calls upon a Device Handler to
perform the requested 1/0 operation. OS device handlers are coded
in @ specific format that provides a uniform interface to the O0S.

The OS uses a file specifier to determine the device handler that
is to be used for the 1/0 operation. The file specifier is an
ASCII string of the format:

DN: f#ilename

D - Device character code that indentifies that
device handler in the device table. The D
may be any ASCII valvue.

N -~ Optional sub device specifier. The N, if
gpecified, must be an ASCII 0-9. The 0OS
will supply a default value of 1.

filename - Optional filename. I# the device handler
requires a filename, it must directly follow
the required colon. The filename format is
set by the requirements of the device
handler.



10CBs

There are Eight IOCBs in the system. The first 10CB (IOCB #0) is
located at address IOCB (see memory map). Each I0CB is 16 bytes
in length and all I0OCBs are contiguous. The following details
the specific use of each IOCB byte.

FIELD DISPL LENGTH

DHID 0 b Device Handler Index. Set by
0S. DHID is $FF if I0CB
not open.

DVCNOD b 1 Device Handler sub-device

number. The binary value
($00-%09) of the N in the
file specifer. (Defavult
= 1).

0SCOM 2 1 Operating System command.
The command 0S is to execute.

I0OSTAT 3 1 1/0 operation status. In
general. values greater
than or equal to 128 ($80)
are errors.

BUFADR 4 2 User buffer adr in the
normal 6502 low/high order.
Points to File Specifer (when
required), or to user data
buffer.

PUTADR 6 2 The address (minus one) of the
DH put routine. The user may
call the DH put routine directly
using this vector.

BUFLEN 8 2 User buffer length in the normal
6502 low/high order. I+ BUFADR
points to File Specifier, then
BUFLEN is not required.

AUX1 10 1 Auxillary Byte 1. This byte is
used to contain the open type
tode while the I0OCB is open.

AUX2 11 1 Auxillary bytes 2-6 used as
AUX3 12 1 required by individual Device
AUX4 13 1 Handlers.

AUXS 14 1

AUXé 15 1



0S COMMANDS

. The 0S8 commands

fall into three general classes.

1) OPEN and CLOSE

2) DATA

The user specifed IOCB is opened for use with the
device specified by the File Specifier.

The specified I0CB must not be currently opened. The
0S will determine the requested device handler from

the file specifier and will place the device handler
index in the IOCB The device handler open routine will
be called to provide whatever device open functions are
required. Once the IOCB has been properly opened, it
may be used for data 1/0 and Device Dependent commands.

When the user has finished with the Device, the I0CB
should be closed via the 0S CLOSE command.

170

The OS performs I1/0 operations to and from a user record
buffer. The user supplies the 05 with the address of a
buffer and a data buffer length. There are five types
of DATA 1/0 commands. These commands will be detailed
later in this document.

3) DEVICE DEPENDENT COMMANDS

Device Dependent Commands are those commands that are
not universal to all devices, but are specific to a
particular device. The 0S interperts all commands
above a certain value to be Device Dependent Commands.
If the 10CB used:. has not been opened, 0SS assumes that
a filespec is present and acts upon it in the same
manner as open; (except the DH open routine is not
called and the IOCB is "open” for the one command only).

The following liet details the 0OS commands and the data required for

each command.
COMMAND

OPEN

GETRECORD

VALUE (HEX) DESCRIPTION

$01 Open & device for 1/0. The address

of the filespec is pointed to by
BUFADR. AUX! must have 04 bit on
if input, OB bit on for output, or
both 04 and 08 bits on if device

is to used for input and output.
AUX1 may have other bits set on for
special device handler OPEN
functions.

$04 A record of length BUFLEN will be

moved into the buffer pointed to
by BUFADR. The IOCB must have been
OPENed for input.



CETLINE

PUTRECORD

PUTLINE

CLOSE

STATUS

DEVICE
DEPENDENT

$05

$08

$09

$0C

$0D

$OE-$7F

A line of ASCII input terminated by

a carriage return ($0D) will be
placed in a buffer pointed to by
BUFADR. The BUFLEN field determines
the maximum line size. The IOCB must
have been OPENed for input.

A record of length BUFLEN will be
sent to the device from the buffer
pointed to by BUFADR. The 10CB
must have been OPENed for output.

A line of ASCII input terminated by
a carriage return ($0D) will be
sent to the device from the buffer
pointed to by BUFADR. The I0CB.
must have been OPENed for output.

The I0OCB and file are closed.

The device will return a status byte
in the I0OSTAT field. The status
returned is Device Dependent. The
I0CB need not have been OPENed. 1¢
not OPEN, BUFADR must point to a file
specification.

The DEVICE DEPENDENT commands are sent
directly to the device handler. The
IOCB need not have been OPENed. 1f
not OPEN. BUFADR must point to a file
specification. (The 085 Disk File
Manager supports commands $20-%$26;

see the 0SS DFM documentation for
details. )



05 STATUS

' All OS operations return a status value in the IOSTAT field. 0S conventio:
is that status values of $80 or greater indicate some sort of error.
VALUE (HEX) MEANING
$01 No error or warning.
$02 Truncated ASCII line. The DOS did not find

a $0D within BUFLEN for ASCII line 1/0.

$03 End of file look ahead. The last byte
transfered from the DH was its end~of-file
byte. The DH must set this status.

$80 Operation aborted. Set by Device Handler.
$81 Device not ready. 8et by Device Handler.
$82 Device does not exist. The device was not

found is the OS device table.
$83 Data Error. Set by Device Handler.

84 Invalid Command. The Device Handler has
rejected the command.
®

Device/File not open. The 10CB has not
been OPENed for the operation.

$86 The IOCB specified is invalid.
+87 The device is write protected.

Various Device Handlers may set other values as required.

USING THE OS from ASSEMBLY LANGUAGE

Once the user has set up an IDCB with the required information, the X-
register is loaded with the IOCB number (0O-7) times 16 and the 0OS is
called at the OS entry point (see memory map). The 0S will return to
the user with X register unmodified, the Y register will contain the
status value, and the accumulator value is unpredictable. The following
is an example:

LDX #$50 i USING IOCB #35
JSR os i CALL 0OS
TYA i SET PROCESSOR STATUS FLAG
BMI ERROR i BRANCH IF ERROR
. BPL ¢00DIC i ELSE I/0 WAS GOOD



DEVICE HANDLERS

A user may create a Device Handler for any required purpose. The user
need only code the DH according to the OS conventions and make a unique
entry for the device in the 0OS device table.

The Device Handler table contains eight possible entries. The 0SS
system as shipped uses four of the entries, the remaining four are
avaiable to the user. The format of a Device Handler table entry is as
follouws.

FI1ELD LENGTH DESCRIPTION

DNAME 1 Device Name. Usually an ASCII
value. 0S uses A, B, E. and P.
A zero DNAME indicates an
unused entry.

DHVTA e Device Handler Vector Table
Address. The address of the DH
vector table in normal 6502
low/high fashion.

The Device Handler Vector Table contains six consecutive address
(normal 6502 type) that point to the routines in the DH that
perform the indicated functions.

1) Open Device

2) Get Device Status

3) Get Data Byte

4) Put Data Byte

5) Close Device

é) Device Dependent Command

The OS will call one of the six Device Handler functions directly via
DHVT. Upon entry to the DH function the X register will contain the
I0OCB number (0O-7) times 16. The user may use the register to directly
access the specified IDCB via the abs., X instructions. When the Put
Data Byte function is called, the accumulator will contain the data
byte. The Device Handler must return a status value to 08 in the

Y register. If the Get Byte function is called, the data will be
returned in the accumulator.

The 2ero page locations DHZPG through DHZPGE (see memory map) are
available for use by device handlers as temporary storage. These
locations are subject to change upon exiting from the DH code.



DEVICE E:

The device E: (EDITOR) is & device handler which interfaces to the
Apple Monitor "getline”" and "putline” routines. The E: device
handler provides the user with all the line editing features

provided by whatever Apple Monitor prom the user has installed.

All E: 1/0 is accomplished through the output vector routine at

$36 and the input vector routine at $38. The vectors are initialized
by 0SS to use the Apple Keyboard and CRT screen.

IOCB #0 is vused by 0SS as the system console and is opened using
device E: upon system initialzation. All 0SS system programs
(CP/A; BASIC, DMGR, etc) use IOCB #0 for console I/0. No 085S
system routine closes IOCB #0.

The user may change the console device from the Apple keyboard
and screen, There are two ways of accomplishing this. The
vectors at $36 and/or $38 may be modified, or IOCB #0 may be
closed and reopened to another device. The first method will
Tetain the Apple monitor line edit features such as backspace
and line delete. The second method will provide line editing
i# and only if the device handler used provides for line
editing.

See Appendix A for listing of Device E: routine.



DEVICE Pn:

The device Pn: (PORT n) is a device handler for the eight Apple
slots. The "n" specifies which port is to be used (0-7).

When & port is OPENed the device address (C100,C200 etc) of the
port is stored in the IOCB. When a Pn: data byte 1/0 is called
for, the following sequence occurs:

1) The device address saved in the IOCB are
swapped with the vectors at $36 and $38.

2) If the function is PUTBYTE, the most
significant bit ($80) of the data byte
is inverted and the byte is output through
location $36. I# the function is GETBYTE
the data byte is obtained through location
$38. The received data byte’s most significant
bit (#80) will be inverted by th Pn: device
handler.

3) The device address at %346 and %38 will be
swapped with the device address in the I10CB.

The sequence of operations of Pn: allow the user to open several
ports simultaneously and perform I/0 through them as required.
The inversion of the data byte’s most significant bit is required
because all 085 software is ASCII based.

See Appendix A for listing of Device P: routine.



SYSTEM MEMORY MAP (Version 1.0)

LOCATION LABEL USAGE

BFFD CPRTN JMP CP/A

BFFA SINIT JMP system initilizer

BFF8 HIMEM HIMEM

BFFé6 LOMEM LOMEM

BFF% OSVER 0SS version number

BDAO OSENT 0S entry address

BD87 DHTAB Device table (B devices)

BD8O DIOB Disk I1/0 Block

BDOO 10CB 10CBs (B 1I0CBs)

BCFE DEFDRV Default Drive (ASCII character)
B90O CPAENT CP/A entry address

B850 E: and P: device handlers

ADAO DFMNUMF Number of file buffers (4 default)
ADA1 DFMDIR File buffer allocation direction ($80)
ADAZ DFMBUF File buffers start address ($ABOQO)
ABOO DIOENT Disk I/0 Routine

AB00 File buffers

0800 User Ram

0400 Apple screen buffer

03F9 JMP go-location

O3FO Auto start Rom vectors

0280 CMDLINE CP/A command line

0200 Line buffer and work space
0100 6502 stack

0080 Application 2ero page Ram

007F DHZPGE Top of Device Handlers temps
0079 DHZIPG Start of Device Handlers temps
0048 0SS system 2ero page

0050 Available z2ero page

0020 Apple Monitor Ram

0000 Available z2ero page



APPENDIX A

_10_



& 65N EaABVE VT st e RN ALl R

PAGE 23 SHEP
——PORT DEVICE -HWANDLER

- Sl e B e

0SS OP SYS AND FMS

PAGE ‘PORT DEVICE HANDLER'
580 + e
581 i APPLE PORT DEVICE
582 H
383 007 - PDHCHR - EQU -——AEDCHAR — —DATA—-CHAR
584 007A PDHICD EQU DHZPG+1 ; 10CB DISPL
585 0078 PDHFLG EQU DHZPG+2 ;i 1/0 FLAG
e . g4 __  BFFD - — i - DRG — . S$B8B850 .. - .
587 ;
588 B850 PORTDH EQU *
589 B850 SCBS DB R2PDHOPN. +—OPEN
590 B852 CSB8 DB @RAEDSTA ; STATUS
591 B854 79BS DB @@PDHGBT ; GET BYTE
.. 592 B85 7?73B8 ... DB @RPDHPBT —— — + PUT BYTE
593 B858 CSB8 DB @RAEDSTA ; CLOSE
594 B85A CSBSB DB @RAEDSTA ;i DEVICE DEPENDENT
- 595 3
596 B8SC PDHOPN EQU » ; OPEN PORT N
597 B85C A900 LDA #0 ; BET ZERD TO
— 598 _B8SE SDOFBD STA——  ICAUX&E, X  + LOW-ADDR -BYTE-OUY ———
599 B&8&1 9DODBD STA ICAUX4, X ; LOW ADDR BYTE 1IN
600 ;
- &01 BB&A4A BDOIBD LDA 1CDNG, X —GET-DEMICE NG
&02 BB&7 2907 AND #$07 ; 1SOLATE 3 LSB
603 B869 09CO ORA #$CO i DR IN ADR HI
—SDOEBD STA— ICAUXS, X——— - HICH-ADDR BYTEOUT———
605 BB6E 9DOCBD STA ICAUX3, X i HIGH ADDR BYTE IN
&06 B871 DOS2 BNE AEDSTA ; DONE
— 607 . +
608 BB73 PDHPBT EQU * ; PUT DATA BYTE
609 B873 BS7C STA PDHCHR ; SAVE DATA BYTE
——510 BB875-A900 —L-DA . 2 +—INBIEATE BUTRUT————
611 B877 FOO2 BEQG PDHGP
b1 ;
— - 613 - —— B8 ————PDHGBT—EQU—#
614 BB79 A9FF L.DA #6FF ; INDICATE INPUT
615 i
o616 - _BS7B RDHCR ——EQU——%
617 B87B 857B STA PDHFLG i SAVE FLAG
618 B8B7D 8A TXA
r-—--———64.Q-ﬁB-'lE—«‘xS TAY —1OGB—DISRL—TO—¥
620 BB87F A203 LDX #3 ; SAVE X FOR 4 BYTE MOVE
621
——————622—.584—8536—~————PDHH1 —t=DA 4365 % —QET-ARPRLE-BWIFEH-BYTE—
&23 BEBB3 48 PHA ; SAVE ON STACK
624 3884 BSOCBD LDA ICAUX3,Y ; MOVE VECTOR FROM IOCB
625 -BBB7 9536 8TA e +—FO-APPLE-BWITOH-BYTE —
i 626 BBBY C8 INY s
&27 BBBA CA DEX e
8 - BE8E8B 10F4 -BRL————PPHME +—BIR—IE-MORE—TOMOVE———
629 J
&30 BE8D 847A 8TY PDHICD ;i BAVE I0CB DISPL
- —a3i BEBF20A6B8 —2JB8R——PRDHGO —0—-PB 146 :
632 B892 8357C 8TA PDHCHR i BSAVE POSSIBLE INPUT CHAR

633 | ;




PAGE 24 SHEP 0SS5 OP 8YS AND FMS

DI ER

Ml -4 3121

‘ 634 BBT4 A47A

LDY PDHICD ; GET 10OCB DISPL
—— 635 BB -ARFC DX #$FC +—AND—X—VALUE—FBR -4-BYTES
636 BBY8 BS53A PDHM2 ~ LDA $3A, X ; GET APPLE SWITCH VALUE
637 BB9A 990BBD STA 1CAUX2, Y ; PUT INTO 10CB
638 -B89D 68 RLA —RESTORE—BWITFEH - — —— -
639 BBYE 953A STA $3A, X ;i FRDM BTACK
640 BBAQ B8 DEY
—INX
642 BBA2 DOF4 BNE PDHM2 ; BR IF MORE TO MOVE
643 ;
— 684 BBAA FOIF—  —  BEG ——AEDSTA ONE
i &45 i
b4b6 BBAGL PDHGO  EQU *
647 BBAL-AS7B e PA ——PDHFLE +—IHF—BUTRPUT
648 BBA8 F003 BEQ PDHBO i BR
649 BBAA 63800 JMP ($38)
650 3
651 BBAD AS7C PDHBO LDA PDHCHR ; LOAD DATA
, &52 BBAF 4980 PDHOSW EOR #$80 ; INVERT MSB
653 B8B1 6063600 <MR 34 —OUFPUT—CHAR———————————
654

°




PAGE 25 SHEP 0SS OP SYS5 AND FMS
___APPLE EDITOR -DEVICE -HANDLER S

. PAGE ‘APPLE EDITOR DEVICE HANDLER’
655 3 . . —-
656 ; " AEDDH - APPLE EDITOR DEVICE HANDLER
&57 i
658 AEDDH - S
659 BBB4 COBS DB ®@AEDOPN ; OPEN
650 BBB& CSBB DB @R@AEDSTA ; STATUS
4461 PBBB CCBB-— DB -—  @@AEDGBT————+ QEF-BYTE ————
6462 BBBA F4BS DB @@AEDPBT ; PUT BYTE
663 BBBC CS5EBS DB @@AEDSTA ; CLOSE
464 _BBBE CSBS DB _@@AEDSTA . DEVICE -DEPENDENT-VECTOR
665 i
666 AEDOFN
647 BBCO A900 ——— o ADA RO e BET -OUFLAG=O e
668 BBC2 BDFABS STA AEDFLG
669 5
870 — AEDINT -
671 AEDSTA
672 BBCS A0O1 LDY #1CSOK ; SET OK STATUS
623 LAERTN ——
674 BBC7 AS7C LDA AEDCHAR ; GET DATA CHAR
475 BBCY 4980 EOR #$80 i INVERT MSB
676 AEDDDS -
677 BBCB 60 RTS ; AND RETURN
678 ;
@ oo —AEDGBT
680 B8SCC ACFABB LDY AEDFLG ; GET FLAG/COUNT
681 BBCF D010 BNE 't AEDG1 i BR NOT ZERO
— 682 - 5
683 BEBD1 A98D LDA #$8D
684 B8D3 8533 STA $33
&85 BED5 -A200 DX - ——#0 -
. &B& BBD7 2075FD JSR $FD75 ; GET A LINE
&87 BBDA ES8 INX ; INC BY 1
—-—. 638 BBDB-BEFBBS8 B8TX AEDCNT , BAVE LINE BI1ZE -~ ———— -
689 BBDE ACFABS8 LDY AEDFLG s GET ZERD COUNT
690 i
491 LAEDG
692 BBE1 B90002 LDA $200, Y ; GET DATA CHAR
693 BBE4 857C STA AEDCHAR ; SAVE CHAR
694 BBE6 L8 INY - - INC -TFO-NEXT
695 BEE7 CCFBBE CPY AEDCNT ; XFR ALL CHARS YET
696 BBEA 9002 BCC 'AEDG2 s BR IF NOT
e DY~ — WO — e BET FLAC=D
698 i
699 BOEE BCFABB 1AEDG2 SBTY AEDFLG s BET NEW COUNT/FLAG
JMP _AEDSTA ~OD—BET—BTATUS & RETURN ——
701 ;
702 BBF4 AEDPBT EGU *
— 703 JER — PRDHOSW —OUTRUTCHAR
‘ 704 BEF7 4CCSBB JMP AEDSTA ; 60 END STATUS
705
706 ——-——-BSFA—-———AEDFL—.G—R#B 1 L+ EDITORFLAG— —— —
707 BBFB AEDCNT RMB 1 ; EDITOR COUNT

708 ;




OPTIMIZED SYSTEMS SOFTWARE

DISK FILE MANAGER

for the Apple II (R)

Feb 1980

Version 1.0

088 Disk File Manager is Copyright (c) 1980
Shepardson Microsystems, Inc.

Optimized Systems Softuware
Shepardson Microsystems, Inc.

20823 Stevens Creek Blvd, Bldg C4-H
Cupertino, CA 95014

Telephone: 408-257-9900

‘ Apple II and Disk Il are registered trademarks of Apple Computer, Inc.



TABLE OF CONTENTS

INTRODUCTION . ..
Drive A: and B:
Disk Organization

FILE NAMES
Primary and Extension Names
Wild Card Search Charactrers .

FILE MANAGER FUNCTION

FUNCTION DETAILS .
Open Output
Open Input .
Open Update
Open Directory .
Close
Getbyte
Putbyte
Note .

Point
Erase .
Protect
Unprotect
Rename .
Status .

RETURN CODES .

DISK I/0 .
DIOB DETAILS .

DFM BUFFERS

[

VCIODDDNNNNOCOH»GDIPDGD W NN

[
o]

11
11

12



INTRODUCTION

The 0SS DISK FILE MANAGER runs under the 0SS operating system as a
Device Handler. The DFM has two entries in the Device Table. The
"A:" device is for files located on disk 1 in slot 6. The "B:"
device is for files on disk 2 in slot 6. All file manager functions
are accessed through the operating system via the IOCBs.

An 0SS disk is organized to contain 719 (or 680 if a boot is included)
128 bytes sectors numbered O through 719. The file manager reserves
9 sectors for the file management functions. Eight of the reserved
sectors are the file directory. Each file directory sector can
contain eight file entries; thus, an 085 disk may contain a maximum
of 64 files.



FILE NAMES

The DFM accesses files in the file directory via an eleven character
file name which the user specifies in the filename portion of the
Operating System filespec. A DFM filename as received in the filespec
has the general form:

primary-name. extension—name

The primary file name must start with an aplha character (A-Z) and
may contain up to seven following aplhanumeric (A-Z,0-9) characters.
The extension filename may contain from zero to three aplhanumeric
characters. The DFM will pad the primary name to eight characters
with blanks. The extension name will be padded to three charecters
with blanks.

The DFM filename received in the filespec may also contain the
"wild card" search characters “#" and "?". The "7?" is interpeted
as "any character" in the directory search—for-match operation.

A file name of eleven "?" would match with any and all file names
during & directory search. The "%#" wild card is used to cause a
file name to be padded with "?" characters rather than blank
characters. The file name "% #" is a substitute for @ file name of
eleven "?" characters.



FILE MANAGER FUNCTIONS

‘ The file manager performs the following file management functions:

Open Output Open a file (new or o0ld) for output
at the start of the file.

Open Append Open & file (old) for output at the
end of the file.

Open Update Open a file (old) for modification
of existing records.

Open Directory Open the directory for output of
ASCII formatted file information.

Close Close and open file.

Cet Byte Get next sequential byte from file

ocpen for input, vupdate, or directory.

Put Byte Put next sequential byte to & file
opened for output, append or update.

- Note For purpose of random access, obtain
the disk address of the next byte to
be used for GET or PUT

. Point Set the disk address of the next byte
to GET or PUT. The file must be open
for update to do Point.

Erase Erase a file or files.

Protect Protect a file or files from modification
or erasure.

!

Unprotect Unprotect a protected file.
Rename Rename a file or files.

Status Obtain the status of a file.

All file manager functions are performed through OS5 using the system
IOCBs (see OS manual). Various applications such as CP/A, BASIC

and EASMD provide various levels of automatic access to file management
functions.



FUNCTION DETAILS
OPEN DUTPUT

10CB COMMAND 1
I10CB AUX1 8
I10CB BUFADR Address of filespec

The indicated file is open for output from the relative byte zero
of the file. If the file slready exists and is not protected, the
existing file will be ERASEd before opening the named file as a
new file. If the file does not exist, it will be created. Wild
card characters are used to find the first and only the first match
when searching for an existing file. If wild card characters are
used and an existing file was not found, the wild card character
will be changed to blanks. I#f an existing file is found, the new
file name will be the old file name. A file OPENed for output
will not appear in the directory until it has been CLOSEd. If an
output file is not properly CLOSEd, some or all of the sectors
that were acquired for it may be lost to the system.

OPEN INPUT
I0OCB COMMAND 1
IOCB AUX1 4
I0CB BUFADR Address of filespec

The indicated file is OPENed for input. Any wild card characters are
used to search for the first, and only the first match. If the file

is not found, a "FILE NOT FOUND" error will be returned, and no file

will be OPENed.

OPEN APPEND

10CB COMMAND 1
I0CB AUX1 S
I10CB BUFADR Address of filespec

The indicated file is OPENed for APPENDing data to the end of the file if
the file is not protected. The rules for the file name search are the
same as for INPUT. The file must exist. I# a file OPENed for APPEND

is not properly CLOSEd, the APPENDed data will be lost and the existing
file will be unmodified. Non—-closure of files OPENed for APPEND may
cause some or all of the sectors containing the APPENDed data to be

lost to the system.

OPEN UPDATE
10CB COMMAND 1
I0CB AUX1 12 ($0C)
IOCB BUFADR Address of filespec

The indicated file will be OPENed for UPDATE modifications provided it

—4—



is not protected. The rules for directory searching are the same as for
INPUT. The file must exist. The file I/0 pointer is set for the first
file data byte. GET and PUT functions are both valid for UPDATE and

may be intermixed as desired. If a file OPENed for UPDATE is not
properly CLOSEd, & sectors worth of updates may be lost. A file

opened for update cannot be extended beyonf its end-of—-file.



OPEN DIRECTORY

I0CB COMMAND 1
IOCB AUX1 ) ~
I10CB BUFADR Address of filespec

The directory is OPENed for input to the caller via GETBYTE. The DFM
will format each matched file name into an ASCII line suitable for-
printing or other processing. The line format is as follows:

CHARACTERS

0 Protect code, "#" if protected else blank
1 Blank

2 -9 Primary file name

10 - 12 Extension filename

13 . Blank

14 - 16 Count of sectors used by the file

17 Carriage return ($0D)

The last line will contain the number of free sectors available in
characters O through 2, followed by "FREE SECTDRS" and a carriage
return. An attempt to get data bytes beyond the last line’s carriage
return will result in the end-of-file error.

The wild card characters are used in searching the directory. All
file name matches that are found will be formatted and returned. I¢

no matches are found, only the free sectors line will be returned.
The filespec " #" will return all file entries.

CLOSE

10CB COMMAND 12 ($0C)

The indicated OPEN file is CLOSEd.



GETBYTE

I0CB DATA —- see DS documentation

The next sequential data byte is returned (usually to 0S) in the A
register. The OS provides for data buffering. If an attempt is made
to read beyond the end—of-file, the "END-OF-FILE” error will be
returned. If the byte read is the last byte before the end-of-file,
the end-of-file look ahead condition code will be returned.

PUTBYTE

IOCB information — See 0S manual

The data in the (usvally 0S5 supplied) A-register will be put in the next
sequential file location. I# an attempt is made to write beyond the
end-of-file in an UPDATE operation, the "END-OF-FILE" error will be
returned.

NOTE
10CB COMMAND 38 ($26)
I0CB AUX3 Sector number (low)
I0CB AUX4 Sector number (high)
IOCB AUXS Sector byte displacement (zero relative)

Obtain the disk address of the NEXT sequential byte to be accessed.
The NOTE and POINT commands are used to build user directories for
random or direct access operations.

POINT
10CB COMMAND 37 ($25)
I0OCB AUX3 S8ector number (low)
I0CB AUX4 Sector number (high)
IOCB AUXS Sector byte displacement

Set the disk address of the NEXT byte to be accessed. The file must
be OPENed for UPDATE. I# the indicated sector does not belong to the
file that is OPENed, then an error will be returned. I¢# the sector
byte displacement is greater than that sectors current data length,
then an error will be returned.



ERASE

10CB COMMAND 33 ($21)
I10CB BUFADR Address of filespec

The indicated file or files will be ERASEd unless they are protected.

The wild card characters are used to find all matching entries in the
directory. Warning: the filespec # # will ERASE ALL unprotected files.

PROTECT

I0CB COMMAND 35 ($23)
I0CB BUFADR Address of filespec

The indicated file or files will be protected against change and/or
ERASure. The file name search is the same as for ERASE.

UNPROTECT
I0CB COMMAND 36 ($24)
I0CB BUFADR Address of filespec

The indicated file or files will be UNPROTECTed. The file name search
is the same as for ERASE.



RENAME

I10CB COMMAND 32 ($20)
I0OCB BUFPTR Address of filespec

The indicated file or files will be RENAMEM. The filespec contains

the name of the files to be searched for under the same rules as ERASE.
Following the search argument filespec is the new filename. The tuwo
filespecs must be separated by at least one non alphanumeric (A-Z, 0-9)
(and non "#" or "?") characters. The new filename must not contain the
device name "X:" part of a filespec. The new filename may contain wild
card characters. Any wild card character in the new filename will be
replaced by the corresponding character in the old filename. A file that
is PROTECTed will not be RENAMEJ.

STATUS

I0CB COMMAD 13 ($0D)
IOCB BUFPTR Address of filespec

The STATUS of the indicated file is returned. The wild card characters
are used in the directory search. The first file found, and only the
first file found will be STATUSed. The STATUS will indicate if

the file exists and, if it does, whether it is PROTECTed or not. The
$01 (normal) status indicates the file exists, for other status

values see Return Code section.



RETURN CODES

The following codes are returned by the File Managerin the IOCB status

byte and in the Y register.

CODE
$01

$03

$81

$83

€87

AL

$A2

$A3

A4

$AS

$AL

$A7

$AB

$A9

$AA

$AB

(12%9)

(131)

(135)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

MEANING
Normal operation ending.

End-of-file look ahead. The byte jJjust
returned is the last byte in file.

No disk in drive, or device error.
Data 1/0 error.

Disk write protected.

All sectors buffers in use

Disk full. No free sectors

1/0 error reading system sector
{(directory or bit map)

Attempted to read a sector that was
not part of currently OPENed file.

Invalid file name

Point information in error

File protected.

Invalid DFM command.

Directory full. Contains 64 files.
File not found in directory.

Point command issued when file was
not OPEN for UPDATE.

-10-



DISK 1/0

The 0SS disk that has been formatted without a boot record contains
720 sectors of 128 bytes each. The sectors are numbered O through
719 (decimal). The routine, DIODENT ($ABO0O), performs the actual
reading and writing of the sectors using the Disk I1/0 Block (DIOB)
at $BD80. The DIOENT routine is normally used only by the DFM;
however, it is easily accessed by user programs. The reading or
writing of disk sectors requires only that the correct information
be placed in the DIOB and a subroutine call made to DIOENT.

DIOB DETAILS
LOCATION FIELD USAGE
$BD8O DRIVE Disk drive to use
i1 = Slot 6, Drive 1 (A:)
2 = Slot &6, Drive 2 (B:)
$BD81 COMMAND Command function.

i = Read sector
2 = Write sector

$BD82 STATUS 1/0 Status.
$01 = Normal
$81 = Device Error
$83 = Data Error
$84 = Invalid Command
€87 = UWrite Protect
$BD83 BUFFER Address of 128 byte buffer
ADDRESS for data I1/0. {Low, High order)
$BD8S SECTOR Absolute Sector Number.
NUMBER (0-$2CF). (Low, High order).

-11-



DFM BUFFERS

The Disk File Manager requires 256 bytes of system buffer space plus

one 128 byte buffer for each concurrently opened file. The system as
delivered provides for a 768 byte buffer space at $ABOO (to SABOO).

The 768 bytes will provide for four (4) concurrently opened files.

The user may change both the address space used for the buffers and

the number of sector buffers used. Location $ADA2 (DFMBUF in 0S system
memory map) contains the start address of the buffer space. Location
$ADA1 (DFMDIR) contains an allocation direction switch. I1¢# the direction
switch is 880, the buffer space will be allocated from the start address
toward location $0000. I1f the direction switch is $00, the buffer space
will be a@allocated from the start address toward location SFFFF. Location
$ADAO (DFMNUMF) contains the number of sector buffers to allocate. The
space required for an allocation is (256 + number buffers % 128).

Most OSS system programs are designed to end at location $ABOO. if

the number of buffers is increased beyond the four provided for., the
buffer space should be moved ($8B00 up is suggested). If less than 4
buffers are required, the space from $AB00 to $A980 may be reclaimed
for user application ram (in 128 byte chunks).

The buffer space parameters may be permanently changed if INIT is
vsed to re-write the boot.

-1~



