SHEPARDSON
MICROSYSTEMS INCORPORATED

OPTIMIZED SYSTEMS SOFTWARE
0SS EASMD
EDITOR/ASSEMBLER/DEBUG

for the Apple Il (R)

OPTIMIZED SYSTEMS SOFTWARE
0SS EASMD
EDITOR/ASSEMBLER/DEBUG

for the Apple I1 (R)

Feb 1980

Version 1.0

0SS EASMD is Copyright (C) 1980, Shepardson Microsystems, Inc.

Optimized Systems Softuware
Shepardson Microsystems, Inc.

20823 Stevens Creek Blvd, Bldg C4-H
Cupertino, CA - 95014

Telephone: 408-257-9900

Apple II1 and Disk Il are registered trademarks of Apple Computer, Inc.

START UP

TABLE OF CONTENTS

For Start Up .
Warm Start .
Back-up Copy .

SYNTAX CONVENTIONS

EDITOR

DEBUG

Text Format
Tables . .
Command Format .
Line Prompting

Editor Command Syntax and Descriptxon

Command Format .
Line Prompting

Debug Command Sgntax and Descrzptlon .

Break Points .
Autostart Rom

ASSEMBLER

Assembler Input
Instruction Format .
Directives .
Expressions

Strings

Labels .

Comments .

ERROR DESCRIPTION

NOTES

MEMORY MAP .

SYNTAX SUMMARY

Editor .
Debug .
Assembler Dxrectzves‘

ERROR SUMMARY

EASMD Errors .
DFM/08 Errors

UdWDWWW N Lol ol ol o

Ll
L R AR B I N

13
13
13
14
16
16
16
17

18
20
21
22
22
23
23
24

24
25

START UP

Editor/Assembler/Debug (EASMD)

FOR START UP:

Put the 0SS diskette in disk drive 1. Enter:
6 Control-P (return)

This will load the Operating System and execute CP/A. Now enter:
EASMD (return)

This will load the Editor/Assembler/Debug and start executing it

WARMSTART:

If the user goes to the Apple II(R) monitor after start-up, he
can return to EASMD by entering:

Control-Y (return)

This will preserve the user’s text lines already in memory and
enter Edit mode.

The user can return to CP/A using the EASMD command CP. He can
then re—enter EASMD by using the CP/A command RUN (if he has not
loaded another program). This does a warm start.

BACK-UP COPY:

To make a back-up copy of EASMD on another diskette, use the CP/A
SAVE command.
Start address 7F00

End address AB00
File Name EASMD. COM
NOTE: For a full explaination of CP/A commands see the

Control Program/Apple Documentation.

/'

®

SYNTAX CONVENTIONS

The following conventions are used in the discussion of
syntax in this manval.

1)

2)

3)

4)

Capital letters denote commands, etc. which must
be typed by the user exactly as shouwn.
(eg. LIST, DEL)

Lower case letters denote types of items which
may be used. The various types are shown in the
next section. (eg. 1no)

Items in square brackets are optional (eq. [,1lnol)
Multiple items in braces indicate that any one may

be used. (eg. {AY)
{Q)

TYPES OF I1TEMS:

The following types of items are used in describing syntax
commands.

lneo line number (in rTange O to 65535).

string A string of ASCII characters.

adr A memory address {(given in hex).

data A list of hexadecimal values separated by
commas.
Example: AB, 12, FE

incr Increment a decimal valve.

filespec See 0S/DFM manual for format.

EDITOR

The Editor allows the user to enter and edit lines of ASCII
text.

TEXT FORMAT

Lines of ASCII text received by the Editor are stored in
memory. A line consists of a line number (0 to 65535),

text information and a carriage return. The text information
that is between the line number and the carriage return is
stored exactly as it is received. Thus any combination of
ASCII data is valid text.

Example: 1000LITTLE GREEN APPLES

This is valid text as far as the Editor is
concerned.

NOTE: The Assembler, however, expects a blank after
the line number and will not look at the first
character after the line number. Thus

1000ABC LDA #0

is seen as

1000 BC L.DA #0

TABLES

The text area and other user tables are built starting at an
address in low memory and growing towards high memory. The user
can change this address using the LOMEM command.

The user can also change the high memory address (highest address
the Editor will use for user text) by using the change memory
command in the Debug monitor. (See memory map for himem address).

COMMAND FORMAT

The stored lines of text are manipulated by Editor commands. A
command is distinguished from text by the absence of a line number.
Any line of data received by the program that does not begin
with an ASCII numeric is considered to be a command. The
Editor will examine the characters to determine what function
to perform. I# these characters do not form a valid command.
or if the command syntax is invalid, the Editor will respond
with:
WHAT?

LINE PROMPTING

The Editor will prompt the user each time a command has finished
executing by printing:

EDIT
The cursor will appear on the following line. Since some

commands take a while to execute, the prompt serves to tell
the user when more input is allowed.

EDITOR COMMAND SYNTAX AND DECRIPTION

NEW

DEL
DEL

FIND
FIND
FIND
FIND

LIST
LIST
LIST
LIST

PRINT
PRINT
PRINT
PRINT

ENTER

New will delete all user text from the text area in
memory.

lno
Inol, Ino2

DEL deletes the specified line number (lno) or all the
lines in the range 1lnoil through 1lno2.

/string/

/string/, A
/string/1lnoil, Ino2]
/string/1lnoil, Ino2l. A

The FIND command will search the specified lines (all
or 1lnol through 1no2) for the "string" between the
specified delimiters. The delimiters may be any
character other than blank. The second delimiter must
be the same as the first.

If "A" is specified, any line that contains a matching
string will be printed at the user terminal. I# "A" is
not specified, then only the first line that contains a
matching string will be printed.

#filespec
Inoil, Ino21
#filespec, Inoil, 1no2]

The LIST command will cause all lines in the specified
range to be listed to the screen (or to a device/file
when "#filespec” is specified).

If "1lnol" is less than the line number of the first
text line, then listing will start with the first line.
If "lno2" is greater than the line number of the last
text line, then listing will end with the last line.

Hitting the escape key (ESC) will stop the LIST.

#filespec
lnoll, 1no2]
#filespec, lnoll, 1no2)

Print is exactly the same as LIST except that the line
numbers are not PRINTed, and that the EDIT ready prompt
will not be printed after the last line until the user
hits the RETURN key.

#filespecl, M]

The ENTER command causes previously LISTed text from the
device or file specified by #filespec to be re—entered.
The optional "M" parameter specifies that the new text
is to be merged with the text currently in memory. I¢
"M" is not present, then the text area will be cleared
before starting the ENTER. ‘

NUM

NUM slno,incr

NUM incr
The number command is used to automatically attach line
numbers to user lines. The user is prompted with the
next line number. A blank automatically follows the
line number. The "slno" parameter specifies the starting
line number. The "incr" parameter is the line number
increment.
The default "incr" is 10. The default "slno" is the last
text line number plus "incr".
Hitting RETURN after the line number prompt terminates
NUMber mode.

REN

REN slno, incr

REN incr
The REN command renumbers the text. The first line
number will be “snlo™. The line numbers will increment by
incr. The default "slno” and "incr" is 10,

REP /o0ld string/new string/

REP /old string/new string/, {A)

{Q)
REP /o0ld string/new string/1lnoll, Ino21]
REP /0ld string/new string/lnoll. lon2l, {A}

{@}

The REP command will search the specified lines (all
or 1lnol through 1lno2) for the "old string" (between
specified delimiters). The delimiters follow the same
Tules as the delimiters for FIND.

The "A" option causes all occurrence of "old string” to
be replaced with "new string" (between the same specified
delimiters).

If the "Q" option is specified then when each match is
found, the line is listed and the user is allowed to
specify change (Y) or don’t change (N) this occurrence.
Hitting ESC will terminate the REPlace and return to
the Editor.

If neither "A" or "Q" is specified, only the first occurrence
of "old string” will be replaced with "new string".

NOTE: Each time a replace is done the changed line is
listed.

SI1ZE
The SIZE command prints the users low memory address, the
highest used memory address, and the high memory address

LOMEM adr

LOMEM command changes the address at which user tables

start.

NOTE: The LOMEM command will destroy any user statements
in memory.

NOTE: This command can be used to reserve a space

between the default low memory and the new low
memory address. This space can then be used
for the object output from the assembler.

CP
CP returns to the 0SS Control Program (CP/A)
BYE
BYE returns to APPLE II(R) monitor.
ASM
ASM [#filespecl], [#filespec2], [#filespec3]

The ASM command assembles source code and produces object code
and a listing.

By default:
1) The source "device" is the user text area.
2) The listing "device" is the screen.
3) The object "device” is memory.

These defaults can be overridden as follows:
filespecl — source code file or device
filespec2 - 1listing file or device
filespec3 - object file or device

A "filespec" can be omitted by substituting a comma.
in which case the default holds for that parameter.

Example: ASM #A: SOURCE, #B: L1IST, #A: OBJ
In this example, the source will come
+rom A: SOURCE, the listing will be
written to B:LIST, and the object will
be written to A:OBJ.

Example: ASM + 2 #A:; OBJ

In this example the source will come from

user text area in memory, the listing will
go to the screen, and the object code will
be written to the file OBJ on disk drive A.

NOTE: See the .OPTion directive for full information about
when object is actually written to the specified file
(or memory).

BUG

The BUG command causes the debug monitor to be entered.

DEBUG

The Debug Monitor allows the user to perform controlled execution
of machine code, examine memory, alter memory, move memory blocks
and verify the equality of memory blocks.

COMMAND FORMAT

The Debug Monitor assumes that any line of data that it receives
is & command. I the data does not form a valid command, the
Debug Monitor responds with:

WHAT?

LINE PROMPTING

The Debug Monitor will signal completion of @ command by printing:
DEBUG
The cursor will appear on the following line.

NOTE: If the user is getting a syntax error indication (WHAT?) on
what he thinks is & valid command, he should check the
prompt message (DEBUG/EDIT) to verify that he is in the
ctorrect mode.

DEBUG COMMAND SYNTAX AND DESCRIPTION

G Cadr]

The ¢ Command (Go) transfers control to the specified
address via a JMP command. I¢ "adr" is not specified,
then the current monitor program counter is used.

T Cadrl]

The T Command (Trace) causes instructions to be
executed starting at "adr". If "adr" is not
specified then the current monitor program
counter is used. As each instruction is

executed, its address, mnemonic and operand

will be displayed along with the current valves
in the 6502 A, X,Y,P(status), & S(stack) registers.

Hitting the escape key (ESC) will terminate trace.
=] Ladr]

The S Command (step) is exactly like the T command
except that only one instruction is executed.

adril, adr2]

The D command (Display Memory) will cause memory from
adrl"” to "adr2" to be displayed in hexadecimal. 1¢
"adr2” is omitted, then B bytes are displayed

(ie, adr2 = adrl + 8).

If "adr1" is omitted, then this display starts where
the last display left off (ie, at the last "adr2 + 1).

Hitting the escape key (ESC) will terminate Display.
[adril<data

The C command (Change Memory) is used to alter

memory starting at "adr". If "adr"” is not

specified, then Change uses the most recent "adri"

if D was the last command, or the next unchanged address
if C was the last command.

The "data" is a list of 1 byte hex values

seperated by commas.

Example: C 5000<3,CD, IF

Will change locations 5000 thru 5004
to 3.CD, 1F. 2,3 respectively.

Multiple commas may be used to skip over memory addresses
without changing the contents to reach the desired address.

Example: C 5000<3, ., 1F

will change hex location 5000 to 3,
location 35002 to iF, and location
900! will be unchanged.

adril, adr2)]

The L command (list) will cause the instructions
located at "adri" to be disassembled and displayed
with the address, instruction mnemonic and operand.
If "adr2" is not specified, then twenty instructions
will be listed. I# the address field ("adr1"”) is not
specified, then this list will start where the last
one left off.

Hitting the escape key (ESC) will stop the listing.
tadr<{fsadr, feadr
The M command (Move) moves data from the address “fsadr"

through the address "feadr" to the address specified
with "tadr".

tadr - "move to" address
fsadr - "move from” start address
feadr - "move from" end address

v adri<adr2, adr3

The V Command (Verify) compares the memory starting at
"adr1" with the memory located at "adr2" through "adr3".
If any of the compared bytes mismatch, then address and
data bytes will be displayed.

DR
The DR command (Display Registers) will cause the A, X, Y,
status (P) and stack (5) registers to be displayed in
hexidecimal.

CR <{data
The CR Command (Change Registers) is used to change the
registers. Registers are assumed to be in the order:
A, XY, status (P) stack (8), so that the first byte of
data goes into A register the second into X, etc.

As in the C command, "data" is @ list of hexadecimal values
separated by commas and field may be skipped by use of
multiple commas.

Example: CR<FF, ., 3

will set A=FF and Y=3. It will leave
X,P and S unchanged.

The X command (exit) will cause control to return to
the Editor.

A

The A command (Assemble) will cause the system to enter into the
Debug Assembler mode. No prompt other than the cursor is used
in this mode. .

The Debug Assembler is a line-at-a-time assembler that uses
6502 mnemonics and operand format. Relative branch operands

are specified as the actual "branch to" address; the Assembler
creates the relative address.

The format of each line is:

Ladrl<{ assembler code

The Debug Assembler keeps track of the location counter so that
if "adr" is omitted, the next consecutive address is used.

Entering only a carriage return will return the user to the
Debug monitor.

Example: While in Debug mode the user enters:

A
S000< LDA#3
< BNE %5010

The "A" puts the user into the Debug
Assembler. The next two statements
will cause memory to contain the

following:
5000 A9 03
9002 DO OC

NOTE: The blank after the "<" is required.

NOTE: The Debug Assembler accepts both decimal and hex
numbers as operands; therefore, hex operands must
be preceeded by "$".

BREAK POINTS

BRK instructions must be individually set and removed by the user.

Step and Trace intercept the BRK instruction and simulate its
execuvtion.

Encountering a BRK after entering 6 (G0) causes the Apple II(R)
monitor to gain control. To return to 0SS Debug mode, type
control Y then carriage return. The Debug monitor will then
print out the correct address and registers.

Hitting the reset key after entering 6 (GD) will also give
control to APPLE II (R) monitor. But the current program
counter and registers are not saved so that on returning
to 0SS with a control Y, the address and registers printed
will not be correct.

AUTOSTART ROM

EASMD can be Tun on a system with an auvtostart rom.

When the user enters ¢ (GO) on this system and then encounters
@ BRK instruction or hits the reset key., he is automatically
returned to the Debug Monitor and does not have to enter
control-Y.

Registers and an address are printed. As explained above, in

the case of BRK they are correct. In the case of reset they
are not correct.

-12-

ASSEMBLER

The Assembler processes &502 source code and produces ob ject
code and a listing.

The Assembler gets control when ASM is typed into the Editor.
For the ASM command syntax, see the Editor section.

Hitting the escape key (ESC) will stop the assembly.

ASSEMBLER INPUT

Input to the Assembler is lines of ASCII data as entered into
the Editor. Source lines are of the form:

{line number) (blank) (source statement)
where source statement is of the form:

[labell {6502 instruction’}
{ directive b

A source statement may consist of a label only, or it may be
blank.

In general the format is as specified in the MOS Technology
6502 Programming Manual.

INSTRUCTION FORMAT:

A) Instruction mnemonics as described in the MOS
Technology 6502 Programming Manual.

B) Immediate operands begin with #

c) "(Operand, X)" and “(Operand),Y" for indirect
addressing.

D) “Operand, X" and "Operand,Y" for indexed
addressing.

E) Zero page and forward equates recognized and

evaluvated within the limits of a two pass
assembler.

F) "#" refers to the location counter.

e) Comment lines begin with *; *

H) Hex constants begin with "s$*

I) The "A" operand is reserved for accumulator
addressing.

-13—-

DIRECTIVES

. TITLE

. PAGE

. BYTE

. WORD

. DBYTE

"string"

The . TITLE directive allows the user to specify
a title to be used in conjunction with . PAGE

["string"]
The .PACE directive allows the user to specify
a page heading. It issves an ASCII form feed
(hex OC) and prints the most recent title
and page headings.
NOTE: The most recent title and page headings
are also printed every time 52 lines of source
code have been assembled. '
expression and/or "string® list
The .BYTE directive sets a one byte value for
each expression and the ASCII equivalent of
each character of each string into the object
code.
Example: .BYTE 3. "ABC",7,"X"

produces:

03 41 42 43 07 58
expresion list
The .WORD directive sets a two byte value into
the object code for each expression in the list.
The value is in 4502 address order (least
significant byte, most significant byte).
Example: .WORD $1000, $2000

produces:
00 10 00 20

expression list
The .DBYTE directive sets a two bute value into
the object code for each expression in the list.
The value is in most significant, least significant
byte order.
Example: . DBYTE %1000, $2000

produces:

10 00 20 00

-14-

. TAB expression, expression, expression

The .TAB directive sets displacements for the
printing of the op code, operand, and comment
fields of the source line. Each expression is
a one byte value.

Defaults are 12, 17, 27 .

.0PT assembler option list

The .0OPT directive allows the user to specify
certain options affecting the assembly.

Possible options are

LIST/NOLIST
NOOBJ/0BJ
ERR/NOERR
EJECT/NOEJECT
LIST/NOLIST determines if a listing is
produced.
NOOBJ/0BJ determines if object code is
produced.
ERR/NOERR determines if error messages

are printed.

EJECT/NOEJECT determines if a form feed, title,
and page are printed after 52
source lines.

Defaults are:

OBY - when the object is going to a device/file.
NOOBJ ~ when the object "device” is memory.
LIST. ERR, EJECT - in all cases.

*= expression

The #= directive serves the function of ORG.

It sets the current location counter for

subsequent source statements.

NOTE: %= must be written with no intervening
blanks.

expression

The = directive is an equate (EQU) statement.
It must always be written:

LABEL = expression

The value of the "expression” is assigned to
"LABEL".

. IF expression > label

The . IF statement allows limited conditional

assembly.
If the "expression” is true (non-zero), the
Assembler skips all following lines up to

the one that begins with the "label". If# the
"expression” is false (zero), assembly continues
normally.

. INCLUDE #filespec
The . INCLUDE directive allows source code from the device
or file specified in "filespec"” to be inserted into the
assembly.

NOTE: .INCLUDE'’s can not be nested. That is, a file that
was included cannot contain a . INCLUDE directive.

NOTE: . INCLUDE cannot be the last statement. It must
be followed by a .END or some other statement.

. END

The .END directive terminates the assembly.

EXPRESSIONS

Expressions are evaluated strictly left to right. Parentheses
are not valid. Valid operators are:

+ - * / &

These are all binary operands. ("=5 + 3" is not valid, but
"O -5 + 3" is valid.)

STRINGS:

Strings must be enclosed in double quotes:
.BYTE "THIS 1S A MESSAGE"
The single character representation for the immediate operand

%‘C

LABEL:

Labels must start in the 1st colunm after (line number)(blank).
A label may consist of up to 255 characters. It must start
with an alpha character and may be followed by alpha-numeric
characters or the character ". "

-16—

NOTE: The character "A" by itself can not be a label.

COMMENTS:

Comment lines start with the character "; "

No special character is needed to delineate a comment
after the assember code on @ line. When the assember
recognizes the end of the operand field (or op code
field for instructions without operands), the rest

of the line is assumed to be comment.

NOTE: This can give unexpected results in some cases
Example: LDA 7A GET NUM
will genetate
AS 07
The decimal number "7" is terminated
by the character "A". The comment in
this case is:

A GET NUM

If the user wishes to specify the
hex location 7A, he must use $7A.

-17-

ERROR DESCRIPTION

When an error occurs the system will print out:
ERROR- XX

Where XX represents an error number. When the Assembler finds
more than 1 error in @ line, up to 3 error numbers will be listed.

ERROR NUMBERS

1 - MEMORY FULL
All available memory has been used. If issued from Editor,
no more statements can be entered. I¢# issued by the
Assembler, no more labels can be defined.

2 - INVALID DELETE RANGE

The first number specified in a delete range does not
exist.

3 - DEBUG ASSEMBLER ADDRESS ERROR

The origin address on an input line to the Debug Assembler
is incorrectly specified.

4 - BLANK REQUIRED AFTER LINE NUMBER

The Assembler expects the first character after a line number
to be @ blank. The first character was ignored.

o - UNDEF INED REFERENCE
Assembler has encountered an undefined label.
6 - ASSEMBLER SYNTAX ERROR
7 - DUPLICATE LABEL
The Assembler has encountered a label that is already defined.
8 - BUFFER OVERFLOW

An internal buffer is full. Try making the source code
shorter.

9 - EQUATE HAS NO LABEL
An equate (=) must have a label.
10 - VALUE OF EXPRESSION > 255

The value of an expression was greater than 255 but a one
byte value was required.

-18-

11

12

13

14

15

16

17

20

21

NULL STRING

A null string is invalid in .BYTE

INVALID ADDRESS OR ADDRESS TYPE

An invalid address type was specified for the mnemonic.
PHASE ERROR

The address generated for a label in pass 2 of the
Assembler is different from the address generated by

pass 1. Not a user error.

UNDEF INED/FORWARD REFERENCE FOR #= (ORG)

The operand for the #= directive must already be defined
when the directive is encountered. A forward reference on

an *#= directive is invalid.

Example: 1000 *=ABC
2000 ABC = %1000

Will produce this error.
LINE TOO LONG
The input line is too long. (This error results
when there are too many distinct items on a line for the
syntax processor to handle.) Break the input line into
multiple lines.

INVALID INPUT LINE

The Assembler received a line that does not start with a
valid line number.

LINE NUMBER TOO BIG

The line number on an Editor input line is too big.
(greater than 65535).

OVERFLOW ON NUM OR REN

On NUM or REN command the line number generated went over
63535, If REN caused this error, the line numbers are now
invalid. Issuing @ valid REN command will correct the problem.

NESTED INCLUDE INVALID

An INCLUDEd file can not contain a . INCLUDE directive.

NOTES

LOMEM/HIMEM:

A default low memory address is set when the system is booted up.
EASMD does NOT automatically reset this value.

If a program (for example, & device handler) sets lomem and then
EASMD is entered, this address remains unchanged.

EASMD does set a default himem which can be changed by using the
Change memory command in the Debug monitor.

10CBs USED:

No command in the Debug monitor does I/0 to a device other than
the screen or keyboard; therefore, IOCBs 1 through 7 are not used
by the system itself while in Debug mode.

Several commands in the Editor however, can do I/D to other devices
(ENTER, ASM, etc). In these cases, the Editor must use one or
more IOCBs. (The Editor uses IOCBs 1 through 4). Unpredictable
things can happen to a file that was allocated to one of these
IOCBs and never closed. The user who is debugging code that does
I1/0 needs to be aware of this fact.

ALWAYS CLOSE FILES.
LOAD/SAVE:

To load and save code for debugging, use the CP/A LOAD and SAVE
command. To return to EASMD after LOADing a file, the user must
enter RUN followed by the warmstart address (see memory map).
This will work if the user’s code did not overlay any memory
used by EASMD.

NUMBERS:
The Editor/Assembler/Debug (EASMD) uses positive integers and hex

numbers, but it uses a Floating Point package for ASCII to integer
conversion. This can give some unexpected results.

Example: LDA #b. 7
produces
A9 07
Example: 100. 100. 1 99.9

entered as line numbers each produces
the line number 100.

-20-

MEMORY MAP

Following are memory locations used by OSS. For locations used
by Apple II(R) monitor see Apple II(R) Reference Manual.

HEX ADDRESS USED FOR

0000-001F Reserved for user.

0020-004F Apple II{(R) monitor.

0050-005F Reserved for user.

0060-007F 0SS Operating System.

0080-00AF EASMD

O0BO-00CF Unused.

00DO-00D3 EASMD

00D4-00FF Floating Point work area.

0100-01FF 6502 stack.

0200~02FF Apple II(R) input buffer and EASMD
syntax stack.

0300~037F EASMD line buffer.

0380-039F EASMD

O3F0-03F4 Autostart ROM

O3FB-03FA Control Y JUMP vector.

O3FB-03FD NMI JUMP vector.

O3FE-O3FF IRG vector.

7F00 EASMD coldstart address

7F03 EASMD warmstart address

BFF&6-BFF7 Pointer to low memory address

BFFB-BFF9 Pointer to high memory address

-21{-

SYNTAX SUMMARY
EDITOR

ASM
ASM [#source filespec), [#list filespecl, [#object filespec)

BUG
BYE
cpP

DEL ino
DEL Inol, Ino2

ENTER #filespec

FIND /string/

FIND /string/., A

FIND /string/1lnoil, 1no2]
FIND /string/1lnoil, 1no2l, A

LIST

LIST #filespec

LIST Inoil, 1no2]

LIST #filespec, Inoil, 1no21]

LOMEM adr

NEW

NUM

NUM slno, incr
NUM incr
PRINT

PRINT #filespec
PRINT lnoil, 1no2]
PRINT #filespec, Inoi(, 1no2]

REN slno, incr
REN incr
REP /0ld string/new string/
REP /o0ld string/new string/, {A}
{Q>
REP /o0ld string/new string/lnoill, lno2l
REP /0ld string/new string/lnoll, 1no2l, {A}
{Q}
SIZE

-2

DEBUG

CR

oo

L=
P

x < -« O X rrrr o

ASSEMBLE

. BYTE

. DBYTE

. END

. IF

. INCLUDE
. OPT

. PAGE

. TAB

. TITLE

. WORD

=

[adr)< assembler code
fadr1])< data

<data

adril, adr2]

Ladr]

adril, adr2]

tadr < fsadr, feasr
Ladr]

Cadr]

adrl < adr2, adr3

R DIRECTIVES

(blank required after <)

expression and/or “"string" list

expression list

expression > label

#filespec
option list

["string”]

expression, expression, expression

"string”
expression list
expression

expression

-3

ERROR SUMMARY

This i{s a summary of error messages produced by the EASMD program.
For a more detailed decripition see the section on ERROR
DESCRIPTION.

EASMD ERRORS:

1 - MEMORY FULL

2 - INVALID DELETE RANGE

3 - DEBUG ASSEMBLER ADDRESS ERROR

4 - BLANK REQUIRED AFTER LINE NUMBER
S - UNDEF INED REFERENCE

6 - ASSEMBLER SYNTAX ERROR

7 - DUPLICATE LABEL

8 - BUFFER OVERFLOW

9 - EQUATE HAS NO LABEL

10 - VALUE OF EXPRESSION > 255

11 - NULL STRING

12 - INVALID ADDRESS OR ADDRESS TYPE
13 -~ PHASE ERROR

14 -~ UNDEF INED/FORWARD REFERENCE FOR #= (ORG)
15 - LINE TOO LONG

16 - INVALID INPUT LINE

17 - LINE NUMBER TOO BIG

20 - OVERFLOW ON NUM OR REN

21 - NESTED INCLUDE INVALID

—-24~

For the user convenience a summary of the error messages that
can be generated by DFM/0S and passed to EASMD are included.

DFM/0S ERRORS:

DEC HEX MESSAGE

129 (81) DEVICE NOT READY

130 (82) NON EXISTENT DEVICE

131 (83) DATA ERROR

132 (84) INVALID COMMAND

133 (85) DEVICE OR FILE NOT OPEN

134 (86) INVALID I0CB NUMBER

135 (87) WRITE PROTECT

136 (88) END OF FILE

160 (AQ) DRIVE # ERROR

161 (A1) TOO MANY OPEN FILES (ND SECTOR BUFFER AVAILABLE)
162 (A2) MEDIUM FULL (NO FREE SECTORS)
163 (A3) FATAL SYSTEM DATA 1/0 ERRODR
164 (A4) FILE # MISMATCH

165 (AS) FILE NAME ERROR

166 (A6) POINT DATA LENGTH ERROR

167 (A7) FILE PROTECTED

168 (AB) COMMAND INVALID (SPECIAL OPERATION CODE)
169 (A9) DIRECTORY FULL

170 (AA) FILE NOT FOUND

171 (AB) POINT INVALID

—25...

