
PROGRAMMER’S AID #1

INSTALLATION AND OPERATING MANUAL

TM

Apple Utility Programs

Wayne Stewart

Published by
APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino. California 95014
(408) 996—1010

All rights reserved.

@1978 by APPLE COMPUTER INC. Reorder APPLE Product #A2L0011
(030—0026)

TABLE OF CONTENTS

INTRODUCTION
XI Features of Programmer s Aid #1

XII How to install the Programmer’s Aid ROM

CHAPTER 1
RENUMBER
2 Renumbering an entire BASIC program

2 Renumbering a portion of a BASIC program

4 Comments

CHAPTER 2
APPEND
6 Appending one BASIC program to another

6 Comments

II

CHAPTER 3
TAPE VERIFY (BASIC)
8 VerifyIng a Basic program saved on tape
8 Comments

III

CHAPTER 4
TAPE VERIFY
(Machine Code or Data)
10 Verifying a portion of memory saved on tape

10 Comments

IV

CHAPTER 5
RELOCATE
12 Part A: Theory of operation

12 Relocating machine—language code
13 Program model
14 Blocks and Segments
15 Code and Data Segments
16 How to use the Code—Relocation feature

18 Part B: Examples of Code relocation

18 Example 1. Straightforward relocation
19 Example 2. Index into Block
20 Example 3. Immediate address reference
20 Example 4. Unusable Block ranges
21 Example 5. Changing the page zero variable allocation
22 Example 6. Split Blocks with cross—referencing
23 Example 7. Code deletion
24 Example 8. Relocating the APPLE II Monitor ($F800-$FFFF)

 to run in RAM ($800—$FFF)

25 Part C: Further details

25 Technical Information
26 Algorithm used by the Code—Relocation feature
27 Comments

V

CHAPTER 6
RAM TEST
30 Testing APPLE’s memory

31 Address ranges for standard memory configurations

32. - Error messages

Type I — Simple error
Type II — Dynamic error

33 Testing for intermittent failure

34 Comments

VI

CHAPTER 7
MUSIC
36 Generating musical tones

37 Comments

VII

CHAPTER 8
HIGH-RESOLUTION GRAPHICS
40 Part A: Setting up parameters, subroutines, and colors

40 Positioning, the High—Resolution parameters
41 Defining subroutine manes
41 Defining color names
42 Speeding up your program

43 Part B: Preparing the screen for graphics

43 The INITialization subroutine
43 Changing the graphics screen
44 ClEARing the screen to. BLACK
44 Coloring the BacKGrouND

45 Part C: PLOTting points and LINEs

46 Part D: Creating, saving and loading shapes

46 Introduction
47 Creating a Shape Table
53 Saving a Shape Table
54 Loading a Shape Table
55 First use of Shape Table.

56 Part E: Drawing shapes from a prepared Shape Table

56 Assigning parameter values: SHAPE, SCALE and ROTation
57 DRAWing shapes
58 Linking shapes: DRAWl
59 Collisions

60 Part F: Technical information

60 Locations of the High—Resolution parameters
61 Variables used within the High—Resolution subroutines
62 Shape Table information
63 Integer BASIC memory map

64 Part G: Comments

VIII

APPENDIX II
SOURCE ASSEMBLY LISTINGS

65 High—Resolution $D000-$D3FF
76 Renumber $D400-$D4BB
79 Append $D4BC-$D4D4
80 Relocate $D4DC-$D52D
82 Tape Verify (Basic) $D535-$D553
83 Tape Verify (6502 Code & Data) $D554-$5AA
84 RAM Test $D5BC-$D691
87 Music $D717-$D7F8

IX

APPENDIX I
SUMMARY OF PROGRAMMER’S
AID COMMANDS
92 Renumber
92 Append
92 Tape Verify (Basic)
93 Tap[e Verify (Machine Code and Data)
93 Relocate (Machine Code and Data)
94 RAM Test
94 Music
95 High-Resolution Graphics
96 Quick Reference to High-Resolution Graphics Information

x

INTRODUCTION

FEATURES OF PROGRAMMER’S AID #1

Programmer’s Aid #l combines several APPLE II programs that Integer BASIC
programmers need quite frequently. To avoid having to load them from a
cassette tape or diskette each time they are used, these programs have been
combined in a special read—only memory (ROM) integrated circuit (IC). When
this circuit is plugged into one of the empty sockets left on the APPLE’s
printed—circuit board for this purpose, these programs become a built—in
part of the computer the same way Integer BASIC and the Monitor routines
are built in. Programmer’s Aid #1 allows you to do the following, on your
APPLE II:

Chapter 1. Renumber an entire Integer BASIC program.
or a portion of the program.

Chapter 2. Load am Integer BASIC program from tape without
erasing the Integer BASIC program that was already
in memory, in order to combine the two programs.

Chapter 3. verify that an Integer BASIC program has been
saved correctly on tape, before the program
is deleted from APPLE’s memory.

Chapter 4. Verify that a machine.-language program or data area
has been saved correctly on tape from the Monitor.

Chapter 5, Relocate 6502 machine—language programs.

Chapter 6. Test the memory of the APPLE.

Chapter 7. Generate musical notes of variable duration over
four chromatic octaves, in five (slightly)
different timbres, from Integer BASIC.

Chapter 8. Do convenient High—Resolution graphics from Integer BASIC.

Note: if your APPLE has the firmware APPLESOFT card installed, its switch
must be down (in the Integer BASIC position) for Programmer’s Aid #1
to operate.

XI

HOW TO INSTALL THE PROGRAMMER’S AID ROM
The Programmer’s Aid ROM is an IC that has to be plugged into a socket on
the inside of the APPLE II computer.

1. Turn off the power switch on the back of the APPLE II This is
important to prevent damage to the computer.
.
2. Remove the cover from the APPLE II. This is done by pulling up on the
cover at the rear edge until the two corner fasteners pop apart. Do not
continue to lift the rear edge, but slide cover backward until it comes
free.

3. Inside the APPLE. toward the right center of the main printed—circuit
board, locate the large empty socket in Row F, marked “ROM—D0”.

4. Make sure that the Programmer’s Aid ROM IC is oriented correctly. The
small semicircular notch should be toward the keyboard. The Programmer’s
Aid. ROM IC must match the orientation of the other ROM ICs that are already
installed in that row.

5. Align all the pins on the Programmer’s Aid ROM IC with the holes in
socket D0, and gently press the IC into place. If a pin bends, remove the
IC from its socket using an “IC puller’ (or. less optimally, by prying up
gently with a screwdriver). Do not attempt to pull the socket off the
board. Straighten any bent pins with a needlenose pliers, and press the IC
into its socket again, even more carefully.

6. Replace the cover of the APPLE, remembering to start by sliding the
front edge of the cover into position. Press down on the two rear corners
until they pop into place.

7. Programmer’s Aid #1 is installed; the APPLE II may now he turned on.

 XII

CHAPTER 1
RENUMBER

2 Renumbering an entire BASIC program

2 Renumbering a portion of a BASIC program

4 Comments

1

RENUMBERING AN ENTIRE BASIC PROGRAM

After loading your program into the APPLE, type the

CLR

command. This clears the BASIC variable table, so that the Renumber
feature’s parameters will be the first variables in the table. The
Renumber feature looks for its parameters by location in the variable
table. For the parameters to appear in the table in their correct
locations, they must be specified in the correct order and they must have
names of the correct, length.

Now, choose the number you wish assigned to the first line in your
renumbered program. Suppose you want your renumbered program to start at
line number 1000. Type

START = 1000

Any valid variable name will do, but it must have the correct number of
characters. Next choose the amount by which you want succeeding line
numbers to increase. For example, to remumber in increments of 10, type

STEP = 10

Finally, type the this commands

CALL —10531

As each line of the program is renumbered, its old line number is displayed
with an “arrow” pointing to the new line number. A possible example might
appear like this on the APPLE’s screen:

7—>1000
213—>1010
527—>1020
698—>1030
13000—>1040
13233—>1050

RENUMBERING PORTIONS OF A PROGRAM

You do not have to renumber your entire program. You can renumber just the
lines numbered from, say, 300 to 500 by assigning values to four variables.
Again, you must first type the command

CLR

to clear the BASIC variable table.

2

The first two variables for partial renumbering are the same as those for
renumbering the-whole program. They specify that the program portion,
after renumbering, will begin with line number 200. say, and that each
line’s number thereafter will be 20 greater than the previous line’s:

START = 200
STEP = 20

The next two variables specify the program portion’s range of line numbers
before renumbering.

FROM = 300
TO = 500

The final command is also different. For renumbering a portion of a
program, use the command:

CALL —10521

If the program was previously numbered

100
120
300
310
402
500

2000
2022

then after the renumbering specified above, the APPLE will show this list of
changes:

300—>200
310—>220
402—>240
500—>260

and the new program line numbers will be

100
120
200
220
240
260

2000
2022

3

You cannot renumber in such a way that the renumbered lines would replace,
be inserted between or be intermixed with un—renumbered lines. Thus, you
cannot change the order of the program lines. If you try, the message

*** RANGE ERR

is displayed after the list of~proposed line changes, and the line numbers
themselves are left unchanged. If you type the commands in the wrong order,
nothing happens, usually.

COMMENTS:
1. If you do not CLR before renumbering, unexpected line numbers may
result. It may or may not be possible to renumber the program again and
save your work.

.2. If you omit the START or STEP values, the computer will choose them
unpredictably. This nay result in loss of the program.

3. If am arithmetic expression or variable is used in a GOTO or GOSUB, that
GOTO or GOSUB will generally not be renumbered correctly. For example, GOTO
TEST or GOSUB 10+20 will not be renumbered correctly.

4.Nonsense values for STEP, such as 0 or a negative number, can render
your program unusable. A negative START value cam renumber your program
with line numbers above 32767, for what it’s worth. Such line numbers are
difficult to deal with. For example, an attempt to LIST one of them will
result in a >32767 error. Line numbers greater than 32767 cam be corrected
by renumbering the entire program to lower line numbers.

5. The display of line number changes can appear correct even though the
line numbers themselves have not been changed correctly. After the ***
RANGE ERR message, for instance, the line numbers are left with their
original numbering. LIST your program and check it before using it.

6. The Renumber feature applies only to Integer BASIC programs.

7 Occasionally, what seems to be a “reasonable” renumbering does not work.
Try the renumbering again, with a different START and STEP value.

4

CHAPTER 2
APPEND

6 Appending one BASIC program to annother

6 Comments

5

APPENDING ONE BASIC PROGRAM TO ANOTHER

If you have one program or program portion stored in your APPLE’S memory,
and another saved on tape, it is possible to combine them into one program.
This feature is especially useful when a subroutine has teen developed for
one program, and you wish to use it in another program without retyping the
subroutine.

For the Append feature to function correctly, all the line numbers of the
program in memory must be greater than all the line numbers of the
program to he appended from tape. In this discussion, we will call the
program saved on tape “Program1,” and the program in APPLE’s memory
“Program2.”

If Program2 is not in APPLE’s memory already, use the usual command

LOAD

to put Program2 (with high line numbers) into the APPLE. Using the Renumber
feature, if necessary, make sure that all the line numbers in Program2 are
greater than the highest line number in Program1.

Now place the tape for Program1 in the tape recorder. Use the usual loading
procedure,. except that instead of the LOAD command use this command:

CALL —11076

This will give the normal beeps, and when the second beep has sounded, the
 two programs will both be in memory. If this step causes the message

***MEM FULL ERR

to appear, neither Program2 nor Program1 will be accessible In this case,.
use the command

CALL —11059

to-recover Program2, the program which was already in APPLE’s memory.

COMMENTS:

1. The Append feature operates only with APPLE II Integer BASIC programs.

2. If the line numbers of the, two programs are not as described, expect
unpredictable results.

6

CHAPTER 3
TAPE VERIFY (BASIC)

8 Verifying a BASIC program SAVEd on tape

8 Comments

7

VERIFYING A BASIC PROGRAM SAVED ON TAPE

Normally, it is impossible (unless you have two APPLES) to know whether or
not you have successfully saved your current program on tape, in tine to do
something about a defective recording. The reason is this: when you SAVE a
program on tape the only way to discover whether it has been recorded
correctly is to LOAD it back in to the APPLE. But, when you LOAD a
program, the first thing the APPLE does is erase whatever current program is
stored. So, if the tape is bad, you only find out after your current
program-has been lost.

The Tape Verify feature solves this problem. Save your current program in
the usual way:

SAVE

Rewind the tape, and (without modifying your current program in any way)
type the. command

CALL -10955

Do not press the RETURN key until after you start the tape playing. If the
tape reads in normally (with the usual two beeps), then it is correct. If
there is any error on the tape, you will get a beep and the ERR message. If
this happens, you will probably want to try re-recording the tape, although
you don’t know for sure whether the Tape Verify error means that the tape
wasn’t recorded right or if it just didn’t play back properly. In any case,
if it does verify, you know that it is good.

COMMENTS:

1. This works only with Integer BASIC programs.

2. Amy change in the program, however slight, between the time the program
is SAVEd on tape and the time the tape is verified, will cause the
verification to fail.

8

CHAPTER 4
TAPE VERIFY

(Machine Code or Data)
10 Verifying a portion of memory SAVEd on tape

10 Comments

9

VERIFYING A PORTION OF MEMORY SAVED ON TAPE

Users of machine—language routine will find that this version of the Tape
Verify feature meets their, needs. Save the desired portion of memory, from
address1 to address2, in the usual way:

address1 . address2 W return

Note: the example instructions in this chapter often include spaces for
easier reading; do not type these spaces.

Rewind the tape, and type (after the asterisk prompt)

D52EG return

This initializes the Tape Verify-feature by preparing locations $3F8 through
$3FA for the ctrl Y vector. Now type (do not type the spaces)

address1 . address2 ctrl Y return

and re—play the tape. The first error encountered stops the program and is
reported with a>beep and the word ERR. If it is not a checksum error, then
the Tape Verify feature will print out the location where the tape and
memory disagreed and the data that it expected on the tape.

Note: type “ctrl-Y” by typing Y while holding down the CTRL key; ctrl Y is
not displayed on the TV screen. Type “return” by pressing the RETURN key.

COMMENTS:

Any change in the specified memory area, however slight, between the time
the program is saved on tape and the tine the tape is verified, will cause
the verification to fail.

10

CHAPTER 5
RELOCATE

12 Part A: Theory of operation

12 Relocating machine-language code
13 Program model
14 Blocks and Segments
15 Code and Data Segments
16 How to use the Code-Relocation feature

18 Part B:: Examples

18 Example 1. Straitforward relocation
19 Example 2. Index into Block
20 Example 3. Immediate address reference
20 Example 4. Unusable Block ranges
21 Example 5. Changing the page zero variable allocation
22 Example 6. Split Blocks with cross-referencing
23 Example 7. Code deletion
24 Example 8. Relocating the APPLE II Monitor ($F800-$FFFF)

 to run in RAM ($800-$FFF)

25 Part C: Further details

25 Technical information
26 Algorithm used by the Code-Relocatiom feature
27 Comments

11

PART A: THEORY OF OPERATION

 LOCATING MACHINE-LANGUAGE CODE

Quite frequently. programmers encounter situations that call -for relocating
machine-language (not BASIC) programs on the 6502-based APPLE II computer.
Relocation implies creating a new version of the program, a version that
runs properly in an area of memory different from that in which the original
program ran.

If they rely on the relative branch instruction,- certain snail 6502 programs
can simply be moved without alteration, using the existing Monitor Move
commands. Other programs will require only minor hand-modification after
Monitor Moving. These modifications are simplified on the APPLE II by the
built-in dissembler, which pinpoints absolute memory-reference
instructions such as JMP's and JSR’s.

However, sometimes it is-necessary to relocate lengthy programs containing
multiple data segments interspersed with code. Using this Machine-Code
Relocation feature can save you hours of work on such a move, with improved
reliability and accuracy.

The following situations call for program relocation:

1. No different programs. which were originally written to run in
identical memory locations, must now reside and run in memory concurrently.

2. A program currently runs from ROM. In order to modify its operation
experimentally, a version must be generated which runs from a different set
of addresses in RAM.

3. A program currently running in RAM must be converted to run from EPROM
or ROM addresses.

4. A program currently running on a 16K machine must be relocated in order
to run on a 4K machine. Furthermore, the relocation nay have to be
performed on the smaller machine.

5. Because of memory- mapping differences, a program that ran on an APPLE I
(or other 6502-based computer) falls- into unusable address space on an APPLE
II.

6. Because different operating systems assign variables differently, either
page-zero or non-page-zero variable allocation for a specific program may

 have to modified when moving the program from one make of computer to
 another.

12

7. A program, which exists as several chunks strewn about memory, must be
combined in a single, contiguous block.

8. A program has outgrown the available memory space and must be relocated
to a larger, “free” memory space.

9. A program insertion or deletion requires-a portion of the program to
move a few bytes up or down.

10. On a whim, the user wishes to move a program.

PROGRAM MODEL
Here is one simple way to visualize program relocation: starting with a
program which resides and runs in a “Source Block” of memory, relocation
creates a modified version of that program which resides and runs properly
in a “Destination Block” of memory.

However, this model does not sufficiently describe situations where the
“Source Block” and the “Destination Block” are the same locations in memory.
For example, a program written to begin at location $400 on an APPLE I (the
$ indicates a hexadecimal number) falls in the APPLE II screen-memory range.
It must be loaded to some other area of memory in the APPLE II. But the
program will not run properly in its new memory locations, because various
absolute memory references, etc., are now wrong. This program can then be
“relocated” right back into the sane new memory locations, a process which
modifies it to run properly in its new location,

A more versatile program model is as follows. A program or section of a
program written to run in a memory range termed the “Source Block”
actually resides currently in a range termed the “Source Segments’. Thus
a program written to run from location $400 may currently reside beginning
at -location $800. After relocation, the new version of the program must be
written to run correctly in a range termed the “Destination- Block”
although it will actually reside currently in a range termed the
“Destination Segments”. Thus a program may be relocated such that it will
run correctly from location $D800 (a ROM address) yet reside beginning at
location $C00 prior to being saved on tape or used to burn EPROMs
(obviously, the relocated program cannot immediately reside at locations
reserved for RON). In some cases, the Source and Destination Segments may
overlap.

13

BLOCKS AND SEGMENTS EXAMPLE

 Segments: Blocks:
Locations in APPLE II Locations where
where Programs Reside Programs Run
 During Relocation

$800 –––––––––––––––>
Original program
runs from location (Source)
$400 on APPLE I

$B87 –––––––––––––––>

Relocation

$C00 –––––––––––––––>
Relocated version
runs from location (Destination)
$D800 On APPLE II

$F87 –––––––––––––––>

SOURCE BLOCK $400-$787: DESTINATION BLOCK: $D800—$DB87

SOURCE SEGMENTS.: $800—$B87 DESTINATION SEGMENTS: $C00—$F87

14

DATA SEGMENTS

The problem with relocating a large program all at once is that blocks of
data (tables, text, etc.) nay be interspersed throughout the code. During
relocation, this date may be treated as if it were code, causing the data to
be changed or causing code to be altered incorrectly because of boundary
uncertainties introduced when the data takes on the multi—byte attribute of
code. This problem is circumvented by dividing the program into code
segments and data segments, and then treating the two types of segment
differently.

CODE AND DATA SEGMENTS EXAMPLE

$B87 ––––––––––––––>
Code Segment
$800—$892

Data Segment
$893—$992

Code Segment
$993—$ABF

Data Segment
$AC0—$ACE

Code Segment
$800 ––––––––––––––> $ACF—$B87

The Source Code Segments are relocated (using the 6502 Code—Relocation
feature), while the Source Data Segments are moved (using the Monitor
Move command).

1 5

HOW TO USE THE CODE-RELOCATION FEATURE

1. To initialize the 6502 Code-ReIocatIon feature, press the RESET key to
invoke the Monitor, and then type

D4D5G return

The Monitor user function ctrl Y will now call the Code—Relocation feature
as a subroutine at location $3F8.

Note: To type “ctrl Y”, type Y while holding down the CTRL key. To type
“return”, press the RETURN key. In the remainder of this discussion, all
instructions are typed to the right of the Monitor prompt character (*).
The example instructions in this chapter often -include spaces for easier
reading; do not type these spaces.

2. Load the source program into the “Source Segments” area of memory (if it
is not already there). Note that this need not be where the program
normally runs.

3. Specify the Destination and Source Block parameters. Remember that a
Block refers to locations from which the program will run, not the
locations at which the Source and Destination Segments actually reside
during the relocation. If only a portion of a program is to be relocated,
then that portion alone is specified as the Block.

DEST BLOCK BEG < SOURCE BLOCK BEG . SOURCE BLOCK END ctrl Y * return

Notes: the syntax of this command closely resembles that of the Monitor Move
command. Type “ctrl Y” by pressing the Y key while holding down the CTRL
key. Then type an asterisk (*); and finally, type “return” by pressing
the RETURN key. Do not type, any spaces within the command.

16

4. Move all Data Segments and relocate all Code Segments in sequential
(increasing address) order. It is wise to prepare a list of segments,
specifying beginning and ending addresses, and>whether each segment is code
or data.

If First Segment is Code:

DEST SEGMENT BEG < SOURCE SEGMENT BEG . SOURCE SEGMENT END ctrl Y return

If First Segment is Data:

DEST SEGMENT BEG < SOURCE SEGMENT BEG SOURCE SEGMENT END N return

After the first segment has been either relocated (if Code) or Moved (if
data), subsequent segments can be relocated or Moved using a shortened. form
of the command.

Subsequent Code Segments:

SOURCE SEGMENT END ctrl Y return (Relocation)

Subsequent Data Segments :

SOURCE SEGMENT END M return (Move)

Note: the shortened form of the command cam only be used if each
 “subsequent” segment is contiguous to the segment previously relocated or
Moved. If a “subsequent” segment is in a part of memory that does not begin
exactly where the previous segment ended, it must be Moved or relocated
using the full “First Segment” format.

If the relocation is performed “in place” (SOURCE and DEST SEGMENTs reside
in identical locations) then the SOURCE SEGMENT BEG parameter may be omitted
from the First Segment relocate or Move command.

17

PART B: CODE-RELOCATION EXAMPLES

EXAMPLE 1. Straightforward Relocation
Program A resides and runs in locations $800—$97F. The relocated version
will reside and run in locations $A00—$B7F.

 SOURCE SEGMENTS DEST SEGMENTS
$800–––> $A00–––>

CODE CODE
$800—$88F $A00-$A8F

DATA DATA
$890—$8AF $A90-$AAF

CODE CODE
$SB0—$90F $AB0-$B0F

DATA DATA
$910—$93F $B10-$B3F

CODE CODE
$940—$97F $940—$B7F

$97F–––> $B7F–––>

 SOURCE BLOCK: $800—$97F DEST BLOCK: $A00-$B7F
SOURCE SEGMENTS: $800—$97F DEST SEGMENTS: $A00-$B7F

(a) Initialize Code—Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Block parameters (locations from which
the program will run)

A00 < 800 - 97F ctrl Y * return

(C.) Relocate first segment (code):

A00 < 800 .88F ctrl Y return

1 8

(d) Move subsequent Data Segments and relocate subsequent Code Segments, in
ascending address sequence:
• 8AF M return (data)
• 90F ctrl Y return (code)
• 93F M return (data)
• 97F ctrl Y return (code)

Note that step (d) illustrates abbreviated versions of the following
commands:
A90 < 890 • 8AF M return (data)
AB0 < 8B0 • 90F ctrl Y return (code)
B10 < 910 • 93F M return (data)
B40 <940 • 97F ctrl Y return (code)

EXAMPLE 2. Index into Block

Suppose that the program of Example I uses an indexed reference into the
Data Segment at $890 as follows:

LDA 7B0,X

where the X-REG is presumed to contain a number in the range $E0 to $FF.
Because address $730 is outside the Source Block, it will not he relocated.
This nay be handled in one of two ways.

(a) You. nay fix the exception by hand; or

(b) You nay begin the Block specifications one page lower than the
addresses at which the original and relocated programs begin to use all such
“early references.” One lower page is enough, since FF (the number of bytes
in one page) is the largest offset number that the X-REG can contain. In
EXAMPLE 1, change step (b) to:

900 < 700 . 97F ctrl Y * return

Note: with this Block specification, all program references to the “prior
page” (in this case the $700 page) will be relocated.

1 9

EXAMPLE 3. ImmedIate Address References

Suppose that the program of EXAMPLE 1 has an immediate reference which is an
address. For example,

LDA #$3F
STA LOC0
LDA #$08
STA LOC1
JMP (LOC0)

In this example, the LDA #$08 will not be changed during relocation and the
user will have to hand-modify it to $0A.

EXAMPLE 4. Unusable Block Ranges

Suppose a program was written to run from locations $400-$78F on an APPLE 1.
A version which will run in ROM locations SD800-SDB8F must be generated.
The Source (and Destination) Segments will reside in locations $800—$B8F on
the APPLE II during relocation.

 Source Source
Addresses And And
 during Destination Destination
relocation Segments Blocks

$800––––––>
 CODE
$800—$97F

Rums from locations $400-$78F on
 DATA an APPLE 1, but must be relocated
S980—$9FF to run from locations $D800-$DB8F

on the APPLE II.

 CODE
$B8F –––––> $A00—SB8F

 SOURCE BLOCK: $400-$78F: DEST BLOCK: $D800—$DB8F:
SOURCE SEGMENTS: $800-$B8F DEST SEGMENTS: $800—SB8F

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Load original program into locations $800—$B8F (despite the fact that
it doesn’t run there):

800 . B8F R return

2 0

(c) Specify Destination and Source Block parameters (locations from which
the original and relocated versions will run):

0800 < 400 . 78F ctrl Y return

(d) Move Data Segments and relocate Code Segments. in ascending address
sequence:

800 < 800 . 97F ctrl Y return (first segment, code)
. 9FF M return (data)
. B8F ctrl Y return (code)

Note that because the relocation is done “in place”, the SOURCE SEGMENT BEG
parameter is the same as the DEST SEGMENT BEG parameter ($800) and need not
be specified. The initial segment relocation command may be abbreviated as follows:

800 < . 97F ctrl Y return

EXAMPLE 5. Changing the Page Zero Variable Allocation

Suppose the program of EXAMPLE 1 need not be relocated, but the page zero
variable allocation is from $20 to $3F. Because these locations are
reserved for the APPLE II system monitor, the allocation must be changed to
locations $80—$9F. The Source and Destination Blocks are thus not the
program but rather the variable area.

 SOURCE BLOCK: $20-$3F DEST BLOCK: $80-$9F
SOURCE SEGMENTS: $S00-$97F DEST SEGMENTS: $800-$97F

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Blocks:

80 < 20 . 3F ctrl Y * return

(c) Relocate Code Segments and Move Data Segments, in place:

800 < . 88F ctrl Y return (first segment, code)
. 8AF M return (data)
. 90F ctrl Y return (code)
. 93F M return (data)
. 97F ctrl Y return (code)

21

EXAMPLE 6. Split Blocks with Cross-Referencing

Program A resides and runs in locations $800—$8A6. Program B resides and
runs in locations $900—$9F1. A single, contiguous program is to be
generated by moving Program B so that it immediately follows Program A.
Each of the programs - contains references to memory locations within the
other. It is assumed that the programs contain no Data Segments.

 SOURCE SEGMENTS DEST SEGMENTS

$800––> $800––>
 Program A Program A
S800—$8A6 $800—$8A6

$8A6––> $8A6––>
 $8A7––>

 Unused Program B
$8A7—$998

$900––> $998––>
 Program B
$900—$9F1

$9F1––>

 SOURCE BLOCK: $900-$9F 1 DEST BLOCKS: $8A7-$998
SOURCE SEGMENTS: $800-$8A6 (A) DEST SEGMENTS: $800-$8A6 (A)

$900-$9F1 (B) $8A7-$998 (B)

(a) Initialize the Code-Relocation feature:

04B5G return

(b) Specify Destination and Source Blocks (Program B only):

 8A7 < 900 . 9F1 ctrl Y * return

(c) Relocate each of the two programs individually. Program A must be
relocated even though it does not move.

800 < . 8A6 ctrl Y return (program A, “in place”)
8A7 < 900 . 9F1 ctrl Y return (program B, not “in place”)

Note that any Data Segments within the two programs would necessitate
additional relocation and Move commands,

2 2

EXAMPLE 7. Code Deletion
Four bytes of code are to be removed from within a program, and the program
is to contract accordingly.

 SOURCE SEGMENTS DEST SEGMENTS

 $800––> $800––>
 CODE CODE
$800 -$88F $800 -$88F

 DATA DATA
$890 -$8AF $890 -$8AF

Remove 4 CODE CODE
bytes here ––> $8B0 -$90F $830 -$90B
($8C0 -$8C3)

 DATA DATA
$910 -$93F $90C -$933

 CODE CODE
$940 -$97F $93C -$97B

 $97F––> $97B––>

 SOURCE BLOCK: $8C4 -$97F DEST BLOCK: $8C0 -$97B
SOURCE SEGMENTS: $800 -$88F (code) DEST SEGMENTS:$800 -$88F (code)

$890 -$8AF (data) $890 -$8AF (data)
$8B0 -$8BF (code) $8B0 -$8BF (code)
$8C4 -$90F (code) $8C0 -$90B (code)
$910 -$93F (data) $90C -$93B (data)
$940 -$97F(code) $93C -$97B(code)

(a) Initialize Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Blocks:

8C0 < 8C4 . 97F ctrl Y* return

(e) Relocate Code Segments and Move Data Segments, in ascending address Sequence

800 <. 88F ctrl Y return (first segment, code, “in place”)
. 8AF M return (data)
. 8BF ctrl Y return (code)
8C0 < 8C4 . 90F ctrl Y return (first segment, code, not “in place”)
. 93F M return (data)
. 97F ctrl Y return (code)

(d) Relative branches crossing the deletion boundary will be incorrect,
since the relocation process does not modify them (only zero -page and
absolute memory references). The user must patch these by hand.

2 3

EXAMPLE 8. Relocating the APPLE II Monitor
($F800— $FFFF) to Run in RAM ($800—$FFF)

 SOURCE BLOCK: $F700 -$FFFF DEST BLOCK: $700 -$FFF
 (see EXAMPLE 2)

SOURCE SEGMENTS:$F800 -$F961 (code) DEST SEGMENTS: $800—$961 (code)
$F962 -$FA42 (data) $962 -$A42 (data)
$FA43 -$FB18 (code) $A43 -$B 18 (code)
$FBl9 -$FBlD (data) $319 -$B1D (data)
$FB1E -$FFCB (code) $B1E -$FCB (code)
$FFCC -$FFFF (data) $FCC -$FFF (data)

IMMEDIATE ADDRESS REFERENCES (see EXAMPLE 3) $F FBF
$FEA8

(more if not relocating
 to page boundary)

(a) Initialize the Code—Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Block parameters:
700 < F700 . FFFF ctrl * return

(c) Relocate Code Segments and move Data Segments, in ascending address
Sequence:

800 < F800 . F961 ctrl Y return (first segment. code)
. FA42 M return (data)
. FB18 ctrl Y return (code)
. FB1D M return (data)
. FFCB ctrl Y return (code)
. FFFF M return (data)

(d) Change immediate address references:

FBF : E return (was $FE)
EA8 : E return (was $FE)

2 4

PART C: PLOTTING POINTS AND LINES

TECHNICAL INFORMATION

The following details illustrate special technical features of the APPLE II
which are used by the Code -Relocation feature.

1. The APPLE II Monitor command

Addr4 < Addrl . Addr2 ctrl Y return (Addr1, Addr2, and Addr4
are addresses)

vectors to location $3F8 with the value Addrl in locations $3C (low) and $3D
(high), Addr2 in locations $3E (low) and $3F (high), and Addr4 in locations
$42 (low) and $43 (high). Location $34 (YSAV) holds an Index to the next
character of the command buffer (after the ctrl Y). The command buffer (IN)
begins at $200.

2. If ctrl Y is followed by * , then the Block parameters are simply
preserved as follows:

Parameter Preserved at SWEET16 Reg Name

DEST BLOCK BEG $8, $9 TOBEG
SOURCE BLOCK BEG $2, $3 FRMBEG
SOURCE BLOCK END $4, $5 ERMEND

3. If ctrl Y is not followed by * , then a segment relocation is initiated
at RELOC2 ($3BB). Throughout, Addrl ($3C, $3D) is the Source Segment
pointer and Addr4 ($42, $43) is the Destination Segment pointer.

4. INSDS2 is an APPLE II Monitor subroutine which determines the length of
a 6502 instruction, given the opcode in the A-REG, and stores that opcode's
instruction length in the variable LENGTH (location $2r)

Instruction Type LENGTH
 in A-REG (in $2F)

 Invalid 0
 1 byte 0
 2 byte 1
 3 byte 2

2 5

5. The code from XLATE to SW16RT ($3D9-$3E6) uses the APPLE II 16-bit
interpretive machine, SWEET16. The target address of the 6502 instruction
being relocated (locations $C low and $D high) occupies the SWEET16 register
named ADR. If ADR is between FRMBEG and FRMEND (inclusive) then it is
replaced by

ADR — FRMBEG + TOBEG

6. NXTA4 is an APPLE II Monitor subroutine which increments Addr1 (Source
Segment index) and Addr4 (Destination Segment index). If Addr1 exceeds

- Addr2 (Source Segment end), then the carry is set; otherwise, it is cleared

ALGORITHM USED BY THE CODE-RELOCATION FEATURE

1. Set SOURCE PTR to beginning of Source Segment
and DEST PTR to beginning of Destination Segment.

2. Copy 3 bytes from Source Segment (using SOURCE PTR) to temp INST area.

3. Determine instruction length from opcode (1, 2 or 3 bytes).

4. If two-byte instruction with non-zero-page addressing mode
(immediate or relative) them go to step 7.

5. If two-byte: instruction then clear 3rd byte
so address field is 0-255 (zero page)

6. If address field (2nd and 3rd bytes of INST area)
falls within Source Block, then substitute

ADR - SOURCE BLOCK BEG + DEST BLOCK BEG

:7. Move “length” bytes from INST area to Destination Segment
(using DEST PTR). Update SOURCE and DEST PTR’s by length.

8. If SOURCE PTR is less than or equal to SOURCE SEGMENT END
then goto -step 2., else done.

2 6

COMMENTS:

Each Move or relocation carried Out sequentially, one byte at a time,
beginning with the byte at the smallest source address. As. each source byte
is Moved or relocated, it overwrites any information that was in the
destination location. This is usually acceptable in these kinds of Moves
and relocations:

1. Source Segments and Destination Segments do not share any common
locations (no source location is overwritten).

2. Source Segments are in locations identical to the locations of
the Destination Segments (each source byte overwrites itself).

3. Source Segments are in locations whose addresses are larger
than the addresses of the Destination Segments’ locations (any
overwritten source bytes have already been Moved or relocated).
This is a move toward smaller addresses.

If, however, the Source Segments and the Destination Segments share some
common locations, and the Source Segments occupy locations whose addresses
are smaller than the addresses of the Destination Segments’ locations.
then the source bytes occupying the common locations will be overwritten
before they are Moved or relocated. If you attempt such a relocation, you
will lose your program and data in the memory area common to both Source
Segments and Destination Segments. To accomplish a small Move or relocation
toward larger addresses, you must Move or relocate, to an area of memory
well away from the Source Segments (no Address in common); then Move the
entire relocated program back to its final resting place.

Note: the example instructions in this chapter often include spaces for
easier reading; do not type these spaces.

2 7

2 8

CHAPTER 6
RAM TEST

30 Testing APPLEs memory

31 Address ranges for standard memory configurations

32 Error messages

 Type I - Simple error

 Type II - Dynamic error

33 Testing for intermittent failure

34 Comments

29

TESTING THE APPLE’S MEMORY
With this program, you can easily discover any problems in the RAM (for
Random Access Memory) chips in your APPLE. This is especially useful when
adding new memory. While a failure is a rare occurrence, memory chips are
both quite complex and relatively expensive. This program will point out
the exact memory chip or chips, if any, that have malfunctioned.

Memory chips are made in two types~ one type can store 4K (4096) bits of
information, the other can store 16K (16384) bits of information. Odd as it
seems, the two types look alike, except for a code number printed on them.

The APPLE has provisions for inserting as many as 24 memory chips of either
type into its main printed-circuit board, in three rows of eight sockets
each. An eight-bit byte of information consists of one bit taken from each
of the eight memory chips in a given, row. For this reason, memory can be
added only in units of eight identical memory chips at a tine, filling an
entire row. Eight 4K memory chips together in one row can store 4K bytes
of information. Eight 16K memory chips in one row can store 16K bytes of
information.

Inside the APPLE II, the three rows of sockets for memory chIps are row “C”,
row “D” and row “E”. The rows are lettered along the left edge of the
printed-circuit board, as viewed from the front of the-APPLE. The memory
chips are installed in the third through the tenth sockets (counting from
the left) of rows C, D and E. These sockets are labeled “RAM’. Row C must
be filled; and row. E may be filled only if row D is filled. depending on
the configuration of your APPLE’s memory, the eight RAM sockets in a given
row of memory must be filled entirely with 4K memory chips, entirely with
16K memory chips, or all eight RAM sockets may be empty.

To test the memory chips in your computer, you must first initialize the RAM
Test program. Press the RESET key to invoke the Monitor, and then type

D5BCG return

Next, specify the hexadecimal, starting address for the portion of memory
that you wish to test. You dust also specify the hexadecimal number of
“pages” of memory that you wish tested, beginning at the given starting
address. A page of memory is 256 bytes ($100 Hex). Representing the
address by “a” and the number of pages by “p” (both in hexadecimal), start
the RAM test by typing -

a .p ctrl Y return

Note 1: to type “ctrl Y”, type Y while holding down the CTRL key; ctrl Y is
not -displayed on the TV screen. Type “return” by pressing the RETURN key.
The example instructions in this chapter often include spaces for easier
reading; do not type these spaces.

Note 2: test length p*100 must not be greater than starting address a.

3 0

For example,

2000.10 ctrl Y return

tests hexadecimal 1000 bytes of memory (4096, or "4K" bytes, in decimal),
starting at hexadecimal address 2000 (8192, or "8K". in decimal).

If the asterisk returns (after a delay that may be a half minute or so)
without an error message (see ERROR MESSAGES discussion), then the specified
portion of memory has tested successfully.

TABLE OF ADDRESS RANGES FOR STANDARD RAM
CONFIGURATIONS

If the 3 Memory Contains this And the total
 Configuration Then Range of System Memory.
 Blocks Row of Hexadecimal If this is last
 Look like this: Memory RAM Addresses Row filled, is

 4K C 0000—0FFF 4K
 4K D 1000—IFFF 8K
 4K E 2000—2FFF 12K

16K C 0000—3FFF 16K
 4K D 4000—4FFF 20K
 4K E 5000—5FFF 24K

16K C 0000—3FFF 16K
16K D 4000—7FFF 32K
16K E 8000—BFFF 48K

A 4K RAM Row contains 10 Hex pages (hex 1000 bytes, or decimal 4096 bytes).
A 16K RAM Row contains 40 Hex pages (hex 4000 bytes, or decimal 16384
bytes).

A complete test for a 48K system would be as follows:

400.4 ctrl Y return <––––This tests the screen area of memory
800.8 ctrl Y return These first four tests examine

1000.10 ctrl Y return <–––– the first 16K row of memory (Row C)
 2000.20 ctrl Y return
4000.40 ctrl Y return <–––– This tests the second 16K row of memory (Row D)
8000.40 ctrl Y return <–––– This tests the third 16K row of memory (Row E)

Systems containing more than 16K of memory should also receive the following
special test that looks for problems at the boundary between rows of memory:

3000.20 ctrl Y return

Systems containing more than 32K of memory should receive the previous
special test, plus the following:

7000.20 ctrl Y return 31

:Tests may be run separately or they may be combined into one instruction.
For instance, for a 48K system you can type:

400.4 ctrl Y 800.8 ctrl Y 1000.10 ctrl Y 2000.20 ctrl Y 3000.20 ctrl Y
4000.40 ctrl Y 7000.20 ctrl Y 8000.40 ctrl Y return

Remember, ctrl Y will not print on the screen, but it must be typed. With
the single exception noted in the section TESTING FOR INTERMITTENT FAILURE,
spaces are shown for easier reading but should not be typed.

During a full test such as the one shown above, the computer will beep at
the completion of each sub-test (each sub-test ends with a ctrl Y). At the
end of the full test, if no errors have been found the APPLE will beep and
the blinking cursor will return with the Monitor prompt character (*). It
takes approximately 50 seconds for the computer to test the RAM memory in a
16K system; larger systems will take proportionately longer.

ERROR MESSAGES

TYPE I - Simple Error

During testing, each memory address in the test, range is checked by writing
a particular number to it, then reading the. number actually stored at that
address and comparing the two.

A simple error occurs when the number written to a particular memory address
differs from the number which is then read back from that same address.
Simple errors are reported in the following format:

xxxx yy zz ERR r-c
where xxxx is the hexadecimal address at which the error was detected;

yy is the hexadecimal data written to that address;
z z is the hexadecimal data read back from that address; and
r-c is the row and column where the defective memory chip was

found. Count from the left, as viewed from the front of
the APPLE: the leftmost memory chip is in column 3, the
rightmost is in column 10.

Example:

201F 00 10 ERR D-I

3 2

TYPE II - Dynamic Error

This type of error occurs when the act of writing a number to one memory
address causes the number read from a different address to change. If no
simple error is detected at a tested address, all the addresses that differ
from the tested address by one bit are read for changes indicating dynamic
errors. Dynamic errors are reported in the following format:

xxxx yy zz vvvv qq ERR r-c

where xxxx is the hexadecimal address at which the error was detected;
 yy is the hexadecimal data written earlier to address xxxx;
 zz is the hexadecimal data now read back from address xxxx;

 vvvv is the current hexadecimal address to which data qq was
successfully written;

 qq is the hexadecimal data successfully written to, and
read back from, address vvvv; and

 r-c is the row and column where the defective memory chip was
found. Count from the left, as viewed from the front of
the APPLE: the leftmost memory chip is in column 3, the
rightmost is in column 10. In this type of error, the
indicated row (but not the column) may he incorrect.

This is similar to Type I, except that the appearance of vvvv and qq
indicates an error was detected at address xxxx after data was successfully
written at address vvvv.

Example:

5051 00 08 5451 00 ERR E-6

After a dynamic error, the indicated row (but not the column) may he
incorrect. Determine exactly which tests check each row of chips (according
to the range of memory addresses corresponding to each row), and run those
tests by themselves. Confirm your diagnosis by replacing the suspected
memory chip with a known good memory chip (you can use either a 4K or a 16K
memory chip, for this replacement). Remember to turn off the APPLE's power
switch and to discharge yourself before handling the memory chips.

TESTING FOR INTERMITTENT FAILURE
(Automatically Repeating Test)

This provides a way to test memory over and over again, indefinitely. You
will type a complete series of tests, just as you did before, except that
you will:

a. precede the complete test with the letter N
b. follow the complete test with 34:0
c. type at least one space before pressing the RETURN key.

33

Here is the format:

.N (memory test to be repeated) 34:0 (type one space) return

NOTE~ You must type at least one space at the end of the line, prior to
pressing the RETURN-key. This is the only space that should be typed (all
other spaces shown within instructions in this chapter are for easier
reading only; they should not be typed).

Example (for a 48K system):

N 400.4 ctrl Y 800.8 ctrl Y 1000.10 ctrl Y 2000.20 ctrl Y 3000.20 ctrl Y
4000.40 ctrl Y 7000.20 ctrl Y 8000.40 ctrl Y 34:0 return

Run this test for at least one ho,~r (preferably overnight) with the APPLE’s
lid in place. This allows the system and the memory chips to reach maximum
operating temperature.

Only if a failure occurs will, the APPLE display an error message and rapidly
 beep three tines; otherwise, the APPLE will beep once at the successful end
of each sub-test To stop this repeating test, you must press the RESET. key.

COMMENTS:

1. You cannot test the APPLE’s memory below the address of 400 (Hex), since
various pointers and other system necessities are there. In any case, if
that region of memory has problems, the APPLE won’t function.

2. For any subtest, the number of pages tested cannot be greater than the
starting address divided by 100 Hex. 2000.30 ctrl Y will not work, but
5000.30 ctrl Y will.

3. Before changing anything inside the APPLE, make sure the APPLE is
plugged into a grounded, 3-wire power outlet, and that the power switch on
the back of the computer is turned off. Always touch the outside metal
bottom plate of the APPLE II, prior to handling any memory chips. This is
done to -remove any static charge that you may have acquired.

EVEN A SMALL STATIC CHARGE CAN DESTROY MEMORY CHIPS

4. Besides the eight memory chips, some additions of memory require
changing three other chip-like devices called Memory Configuration Blocks.
The Memory Configuration Blocks tell the APPLE which type of memory chip (4K
or 16K) is- to be plugged into each row of memory. A complete package for
adding memory to your computer, containing all necessary parts and detailed
instructions, can be purchased from APPLE Computer Inc. To add 4K of
memory, order the Memory Expansion-Module (P/N A2M0014). To add 16K of
memory, order the 16K Memory Expansion Module (P/N A2M0016).

34

CHAPTER 7
Music

36 Generating musical tones

37 Comments

35

GENERATING MUSICAL TONES

The Music feature is most easily used from within an Integer BASIC program.
It greatly simplifies the task of making the APPLE II into a music-playing device.

There are three things the computer needs to know before playing a note:
pItch (how high or low a note), duration (how long a time it is to sound),
and timbre. Timbre is the quality of a sound that allows you to distinguish
one instrument from another even if they are playing at the sane pitch and
loudness. This Music feature does not permit control of loudness.

It is convenient to set up a few constants early in the program:

MUSIC =-10473
PITCH = 767
TIME = 766
TIMBRE = 765

There are 50 notes available, numbered from 1 to 50. The statement

POKE PITCH, 32

will set up the Music feature to produce (approximately) the note middle C.
Increasing the pitch value by one increases the pitch by a semitone. Thus

POKE PITCH, 33

would set up the Music feature to produce the note C sharp. Just over four
chromatic octaves are available. The note number 0 indicates a rest (a
silence) rather than a pitch.

The duration of the note is set by

POKE TIME. t

Where t is a number from 1 to 255. The higher the number, the longer the
note. A choice of t = 170 gives notes that are approximately one second
long. To get notes at. a metronome marking of MM, use a duration of
10200/MM. For example, to get 204 notes per minute (approximately) use the
command

POKE TIME, 10200/204

3 6

There are five timbres, coded by the numbers 2. 8, 16, 32 and 64. They are
not very different from one another. With certain timbres, a few of the
extremely low or high notes do not give the correct pitch. Timbre 32 does
not have this problem.

POKE TIMBRE. 32

When the pitch, time, and timbre have been Set, the statement

CALL MUSIC

will cause the specified note to sound.

The following program plays a chromatic scale of four octaves~

10 MUSIC = -10473: PITCH = 767: TIME = 766: TIMBRE = 765
20 POKE TINE, 40: POKE TIMBRE, 32
30 FOR I = 1 TO 49
40 POKE PITCH, I
50 CALL MUSIC
60 NEXT I: END

Where K is a number from 51 through 255.

POKE PITCH, X

will specify various notes, in odd sequences. In the program above, change
line 40 to

40 POKE PITCH,. 86

for a demonstration.

COMMENTS:
Some extremely high or low notes will come out at the wrong pitch with
certain timbres.

3 7

38

CHAPTER 8
HIGH-RESOLUTION

GRAPHICS
40 Part A: Setting up parameters, subroutines, and colors

40 Positioning the High-Resolution parameters
41 Defining subroutine names
42 Speeding up your program

43 Part B: Preparing the screen for graphics

43 The INITialization subroutine
43 Changing the graphics screen
44 Clearing the screen to black
44 Coloring the BacKGrouND

45 Part C: PLOTting points and LINEs

46 Part D: Creating, saving and loading shapes

46 Introduction
47 Creating a Shape Table
53 Saving a Shape Table
54 Loading a Shape Table
55 First use of Shape Table

56 Part E: Drawing shapes from a prepared Shape Table

56 Assigning parameter values: SCALE AND ROTation
57 DRAWing shapes
58 Linking shapes: DRAW1
59 Collisions

60 Part F: Technical information

60 Locations of the High-Resolution subroutines
61 Variables used within the High-Resolution subroutines
62 Shape Table information
63 Integer BASIC memory map for graphics

64 Part G: Comments

39

PART A: SETTING UP PARAMETERS, SUBROUTINES,
AND COLORS

Programmer’s Aid If 1 provides your APPLE with the ability to do
high-resolution color graphics from Integer BASIC. You may plot dots, lines
and shapes in a wide variety of detailed forms, in 6 different colors (4
colors on systems below S/N 6000), displayed from two different “pages” of
memory. The standard low-resolution graphics allowed you to plot 40 squares
across the screen by 47 squares from top to bottom of the screen. This
high-resolution graphics display node lets you plot in much smaller dots,
280 horizontally by 192 vertically. Because 8K bytes of memory (in
locations from 8K to 16K, for Page 1) are dedicated solely to maintaining
the high-resolution display, your APPLE must contain at least 16K bytes of
memory. To use the Page 2 display (in locations from 16K to 24K). a system
with at least 24K bytes of memory is needed. If your system is using the
Disk Operating System (DOS), that occupies the top 10.5K of- memory: you will
need a mInimum 32K system for Page 1, or 36K for Page 1 and Page 2. See the
MEMORY MAP on page 63 for more details.

POSITIONING THE HIGH-RESOLUTION PARAMETERS

The first statement of an Integer BASIC program intending to use the
Programmer’s Aid High-Resolution subroutines should be:

0 X0 = Y0 = COLR = SHAPE = ROT = SCALE

The purpose of this statement is simply to place the six BASIC variable
names used by the high-resolution feature (with space for their values) into
APPLE’s “variable table” in specific, known locations. When line 0 is
executed, the six High-Resolution graphics parameters will be assigned
storage space at the very beginning of the variable table, in the exact
order specified in line 0. Your. BASIC program then uses those parameter
names to change the six parameter values in the variable-table. However.
the high-resolution subroutines ignore the parameter names, and look for
the parameter values in specific variable-table locations. That is why
the program’s first line must place the six high-resolution graphics
parameters in known variable—table locations. Different parameter names may
be used, provided that they contain the same number of characters. Fixed
parameter-name lengths are also necessary to insure that the
parameter-value storage locations in the variable table do not change. For
example, the name HI could be used in place of XO, but X or XCOORD could]
not

40

The parameters SHAPE. ROT, and SCALE are used only by the subroutines that
draw shapes (DRAW and DRAWl, see PART E). These parameters may be omitted
from programs using only the PLOT and LINE features:

0 X0 = Y0 = COLR

Omitting unnecessary parameter definitions speeds up the program during
execution. However, you can omit only those unused parameters to the right
of the last parameter which is used. Each parameter that is used must
be in its proper place. relative to the first parameter in. the definition
list.

DEFINING SUBROUTINE NAMES
After the six parameters have been defined, the twelve High-Resolution
subroutines should be given names, and these names should be assigned
corresponding subroutine entry addresses as values. Once defined in this
way, the various subroutines can be called by name each tine they are used,
rather than by numeric address. When subroutines are called by name, the
program is easier to type, more likely to be error-free, and easier to
follow and to debug.

5 INIT = - 12288 : CLEAR =- 12274 : BKGND = - 11471
6 POSN = - 11527 : PLOT =- 11506 : LINE = - 11500
7 DRAW = -11465 : DRAWl = - 11462
8 FIND = - 11780 : SULOAD =- 11335

Any variable names of any length may be used to call these subroutines. If
you want maximum speed, do not define names for subroutines that you will
not use in your program.

DEFINING COLOR NAMES
Colors may also be specified by name, if a defining statement is added to
the program. Note that GREEN is preceded by LET to avoid a SYNTAX ERROR,
due to conflict with the GR command.
10 BLACK = 0 : LET GREEN = 42 : VIOLET = 85
11 WHITE = 127 : ORANGE = 170 : BLUE = 213
12 BLACK2 = 128 : WHITE2 = 255

Any integer from 0 through 255 may be used to specify a color, but most of
the numbers not named above give rather unsatisfactory “colors”. On systems
below S/N 6000, 170 will appear as green and 213 will appear as violet.

41

Once again, unnecessary variable definitions should be omitted, as they will
slow some programs. Therefore, a program should not define VIOLET = 85
unless it uses the color VIOLET.

The following example illustrates condensed initialization for a program
using only the INIT. PLOT, and DRAW subroutines, and the colors GREEN and
WHITE.

0 X0 = YO = COLR = SHAPE = ROT = SCALE
5 INIT =- 12288k : PLOT = -11506 : DRAW = -11465
10 LET GREEN = 42 : WHITE = 127

 (Body of program would go here)

SPEEDING UP YOUR PROGRAM
Where maximum speed of execution is necessary, any of the following
techniques will help:

1. Omit the name definitions of colors and subroutines, and refer to colors
and subroutines- by numeric value, not by name.

2. Define the most frequently used program variable names before defining
the subroutine and color names (lines 5 through 12 in the previous
examples). The example below illustrates how to speed up a program that
makes very frequent use of program variables I, J, and K:

0 X0 = Y0 = COLR = SHAPE = ROT = SCALE
2 l = J = K
5 INIT =- 12288 : CLEAR = - 12274
6 BKGND =- 11471 : POSN = - 11527
10 BLACK = 0 : VIOLET = 85

3. Use the High-Resolution graphics parameter names as program variables
when possible. Because they are defined first, these parameters are the
BASIC variables which your program can find fastest.

4 2

PART B: PREPARING THE SCREEN FOR GRAPHICS

THE INITIALIZATION SUBROUTINE

In order to use CLEAR, BKCND, POS, PLOT, or any of the other
high-resolution subroutine CALLs, the INITialization subroutine itself must
first be CALLed:

CALL INIT

The INITialization subroutine turns on the high-resolution display and
clears the high-resolution screen to black. INIT also Sets up certain
variables necessary for using the other High-Resolution subroutines. The
display consists of a graphics area that is 280 x-positions wide (X0=0
through X0=279) by 160 y-positions high (Y0=0 through Y0=l59), with an area
for four lines of text at the bottom of the screen. Y0 values from 0
through 191 may be used, but values greater than 159 will not be displayed
on the screen. The graphics origin (X0=0, Y0=0) is at the top left corner
of the screen.

CHANGING THE GRAPHICS SCREEN

If you wish to devote the entire display to graphics (280 x-positions wide
by 192 y-positions high), use

POKE -16302, 0

The split graphics-plus-text mode may be restored at any tine with

POKE -16301, 0

or another

CALL INIT

When the High-Resolution subroutines are first initialized, all graphics are
done in Page 1 of memory ($2000-3FFF), and only that page of memory is
displayed. If you wish to use memory Page 2 (S4000-5FFF), two POKEs allow
you to do so:

POKE 806, 64

causes subsequent graphics instructions to be executed in Page 2, unless
those instructions attempt to continue an instruction from Page 1 (for
instance, a LINE is always drawn on the same memory page where the last
previous point was plotted). After this POKE, the display will still show
memory Page 1.

43

To see what you are plotting on Page 2,

POKE -16299, 0

will cause Page 2 to be displayed on the screen. You can switch the screen
display back to memory Page 1 at amy time, with

POKE -16300, 0

while

POKE 806, 32

will return you to Page 1 plotting. This last POKE is executed automatically by INIT.

CLEARING THE SCREEN

If at any time during your program you wish to clear the current plotting
page to black, use

CALL CLEAR

This immediately erases anything plotted on the current plotting page.
INIT first resets the current plotting page to memory Page 1, and then
clears Page 1 to black.

The entire current plotting page can be set to any solid background color
with the BKGND subroutine. After you have INITialized the High-Resolution
subroutines, set corn to the background color you desire, and then

CALL BKGND

The following program turns the entire display violet:

0 X0 = Y0 = COLR : REM SET PARAMETERS
5 INIT =- 12288 : BKGND = -11471 : REM DEFINE SUBROUTINES
10 VIOLET = 85 : REM DEFINE COLOR
20 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
30 COLR = VIOLET : REM ASSIGN COLOR VALUE
40 CALL BRGND : REM MAKE ALL OF DISPLAY VIOLET
50 END

44

PART C: PLOTTING POINTS AND LINES

Points can be plotted anywhere on the high-resolution display, in any valid
color, with the use of the PLOT subroutine. The PLOT subroutine can only be
used after a CALL INIT has been executed, and after you have assigned
appropriate values to the parameters X~, Y0 and COLR. KO must in the range
from 0 through 279, YO must be in the range from 0 through 191, and COLR
must be in the range from 0 through 255, or a

*** RANGE ERR

message will be displayed and the program will halt.

The program below plots a white dot at K-coordinate 35, Y-coordinate 55, and
a violet dot at K-coordinate 85, Y-coordinate 90:

0 X0 = COLR : REM SET PARAMETERS
5 INIT = —12288 : PLOT =- 11506 : REM DEFINE SUBROUTINES
10 WHITE = 127 : VIOLET = 85 : REM DEFINE COLORS
20 CALL INIT : REM INITIALIZE SUBROUTINES
30 COLR = WHITE :REM ASSIGN PARAMETER VALUES
40 X0 = 35 : Y0 = 55
50 CALL PLOT : REM PLOT WITH ASSIGNED PARAMETER VALUES
60 COLR = VIOLET : REM ASSIGN NEW PARAMETER VALUES
70 X0 = 85 : Y0 = 90
80 CALL PLOT REM PLOT WITH NEW PARAMETER VALUES
90 END

The subroutine POSN is exactly like PLOT, except that nothing is placed on
the screen. COLE must be specified, however, and a subsequent DRAWl (see
PART E) will take its color from the color used by POSN. This subroutine is
often used when establishing the origin-point for a LINE.

Connecting any two points with a straight line is done with the LINE
subroutine. As with the PLOT subroutine, a CALL INIT must be executed, and
X0, Y0, and COLR must be specified. In addition, before the LINE subroutine
can be CALLed, the line’s point of origin must have been plotted with a CALL
PLOT or as the end point of a previous line or shape. Do not attempt to use
CALL LINE without first plotting a point for the line’s origin, or the line
may be drawn in random memory locations, not necessarily restricted to the
current memory page. Once again, X0 and Y0 (the coordinates of the
termination point for the line), and COLE must be assigned legitimate
values, or an error nay occur,

4 5

The following program draws a grid of green lines vertically and violet
lines horizontally, on a white background:

0 X0 = Y0 = COLR : REM SET PARAMETERS. THEN DEFINE SUBROUTINES
5 INIT =- 12288 : BKGND = - 11471 : PLOT =- 11506 : LINE = - 11500
10 LET GREEN = 42 : VIOLET = 85 : WHITE = 127 : REM DEFINE COLORS
20 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
30 POKE - 16302, 0 : REM SET FULL-SCREEN GRAPHICS
40 COLR = WHITE : CALL BKGND : REM MAKE THE DISPLAY ALL WHITE
50 COLR = GREEN : REM ASSIGN PARAMETER VALUES
60 FOR X0 = 0 TO 270 STEP 10
70 Y0 = 0 : CALL PLOT : REM PLOT A STARTING-POINT AT TOP OF SCREEN
80 Y0 = 190 : CALL LINE : REM DRAW A VERTICAL LINE TO BOTTOM OF SCREEN
90 NEXT X0 : REM MOVE RIGHT AND DO IT AGAIN
100 COLR = VIOLET : REM ASSIGN NEW PARAMETER VALUES
110 FOR Y0 = 0 10 190 STEP 10
120 X0 = 0 : CALL PLOT : REM PLOT A STARTING-POINT AT LEFT EDGE OF SCREEN
130 X0 = 270 : CALL LINE : REM PLOT A HORIZONTAL LINE TO RIGHT EDGE
140 NEXT Y0 : REM MOVE DOWN AND DO IT AGAIN
150 END

PART D: CREATING, SAVING AND LOADING SHAPES

INTRODUCTION

The High-Resolution feature’s subroutines provide the ability to do a wide
range of high-resolution graphics “shape” drawing. A “shape” is considered
to be any figure or drawing (such as an outline of a rocket ship) that the
user wishes to draw on the display many times, perhaps in different sizes,
locations and orientations. Up to 255 different shapes nay be created,
used, and saved in a “Shape Table”, through the use of the High-Resolution
subroutines DRAW, DRAWl and SHLOAD, in conjunction with parameters SHAPE,
ROT and SCALE.

In this section, PART D, you will be shown how to create, save and load a
Shape Table. The following section, PART E, demonstrates the use of the
shape-drawing subroutines with a predefined Shape Table.

4 6

HOW TO CREATE A SHAPE TABLE

Before the High-Resolution shape-drawing subroutines can be used, a shape
must be defined by a “shape definition.” This shape definition consists of a
sequence of plotting vectors that are stored in a series of bytes in
APPLE’s memory. One or more such shape definitions, with their index, make
up a “Shape Table” that can be created from the keyboard and saved on disk
or cassette tape for future use.

Each byte in a shape definition is divided into three sections, and each
section can specify a “plotting vector”, whether or not to plot a point, and
also a direction to move (up, down, left, or right). The shape-drawing
subroutines DRAW and DRAWl (see PART E) step through each byte in the shape
definition section by section. from the definition’s first byte through its
last byte. When a byte that contains all zeros is reached, the shape
definition is complete.

This is how the three sections A, B and C are arranged within one of the
bytes that make up a shape definition:

Section: C B A

Bit Number: 7 6 5 4 3 2 1 0
 Specifies: D D P D D P D D

Each bit pair DD specifies a direction to move, and each bit P specifies
whether or not to plot a point before moving, as follows:

 If DD = 00 move up
= 01 move right If P = 0 don’t plot
= 10 move down =1 do plot
= 11 move left

Notice that the last section, C (the two most significant bits), does not
have a P field (by default, P=0), so section C can only specify a move
without plotting.

Each byte can represent up to three plotting vectors, one in section A, one
in section B. and a third (a move only) in section C.

DRAW and DRAWl process the sections from right to left (least significant
bit to most significant bit: section A, then B then C). At any section in
the byte, IF ALL THE REMAINING SECTIONS OF THE BYTE CONTAIN ONLY ZEROS, THEN
THOSE SECTIONS ARE IGNORED. Thus, the byte cannot end with a move in
section C of 00 (a move up, without plotting) because that section,
 containing only zeros, will be ignored. Similarly, if section C is 00
(ignored), then section B cannot be a move of 000 as that will also be
ignored. And a move of 000 in section A will end your shape definition
unless there is a 1-bit somewhere in section II or C.

47

. .

 Suppose you want to draw a shape like this: . .
. .
 ...

First, draw it on graph paper, one
dot per square. Then decide where
to start drawing the shape. Let’s
start this one at the center. Next,
draw a path through each point in
the shape, using only 90 degree
angles on the turns:

Next, re-draw the shape as a series
of plotting vectors, each one moving
one place up, down, right, or left,
and distinguish the vectors that
plot a point before moving (a dot
marks vectors that plot points).

Now “unwrap” those vectors and write them in a straight line:

Next draw a table like the one in Figure 1, below:

Section C B A C B A Vector Code
Byte0 010 010 000

1 111 111 001 or 01 Move
2 100 000 010 or 10 Only
3 01 100 100 011 or 11
4 101 101
5 010 101 100
6 110 110 101 Plot
7 011 110 110 & Move
8 111 111
9 00 000 000 Denotes End

of Shape
 _ This Vector _ Definition
 Cannot Plot
 or Move up Figure 1

For each vector in the line, determine the bit code and place it in the next
available section in the table. If the code will not fit (for example, the
vector in section C can’t plot a point), or is a 00 (or 000) at the end of a
byte, then skip that section and go on to the next. When you have finished
coding all your vectors, check your work to make sure it is accurate.

4 8

Now make another table, as shown in Figure 2, below, and re-copy the vector
codes from the first table. Recode the vector, information into a series of
hexadecimal bytes, using the hexadecimal codes from Figure 3.

 Bytes Codes
Section: C B A Recoded

 in Hex Binary Hex
Byte 0 0 0 0 1 0 0 1 0 = 1 2 0000 = 0

1 0 0 1 1 1 1 1 1 = 3 F 0001 = 1
2 0 0 1 0 0 0 0 0 = 2 0 0010 = 2
3 0 1 1 0 0 1 0 0 = 6 4 0011 = 3
4 0 0 1 0 1 1 0 1 = 2 D 0100 = 4
5 0 0 0 1 0 1 0 1 = 1 5 0101 = 5
6 0 0 1 1 0 1 1 0 = 3 6 0110 = 6
7 0 0 0 1 1 1 1 0 = l E 0111 = 7
8 0 0 0 0 0 1 1 1 = 0 7 1000 = 8
9 0 0 0 0 0 0 0 0 = 0 0 Denotes End 1001 = 9

 of Shape 1010 = A
Hex: Digit 1 Digit 2 Definition 1011 = B

1100 = C
1101 = D
1110 = E
1111 = F

Figure 2
Figure 3

The series of hexadecimal bytes that you arrived at in Figure 2 is the shape
definition. There is still a little more information you need to provide
before you have a complete Shape Table. The form of the Shape Table,
complete with its index, is shown in Figure 4 on the next page.

For this example, your index is easy: there is only one shape definition.
The Shape Table’s starting location, whose address we have called S. must
contain the number of shape definitions (between 0 and 255) in hexadecimal.
In this case, that number is just one. We will place our shape definition
immediately below the index, for simplicity. That means, in this case, the
shape definition will start in byte S+4: the address of shape definition #1,
relative to S, is 4 (00 04, in hexadecimal). Therefore, index byte S+2 must
contain the value 04 and index byte S+3 must contain the value 00. The
completed Shape Table for this example is shown in Figure 5 on the next
page.

4 9

Start=S Byte S+0 n (0 to FF) Total Number of
+1 Unused Shape Definitions
+2 Lower 2 Digits Dl: Index to First Byte of Shape
+3 Upper 2 Digits Definition #1, Relative to S
+4 Lower 2 Digits D2: Index to First Byte of Shape

 Index +5 Upper 2 Digits Definition #2, Relative to S

+2n Lower 2 Digits Dn: Index to First Byte of Shape
+2n+1 Upper 2 Digits Definition #n, Relative to S

S+D1 First Byte
. . . Shape Definition #1
. Last Byte

S+D2 First Byte
. . . Shape Definition #2
. Last Byte

 Shape
Definitions . . .

. . .

. . .

S+Dn First Byte
. . . Shape Definition #n
. Last Byte+00

Figure 4

Start Byte 0 01 Number of Shapes
(Store this address 1 00
in $328 and $329) 2 04 Index to Shape Definition #1,

3 00 Relative to Start
4 12 First Byte
5 3F
6 20
7 64
8 2D Shape Definition #1
9 15
A 36
B 1E
C 07
D 00 Last Byte

Figure 5

5 0

You are now ready to type the Shape Table into APPLE’s memory. First,
choose a starting address. For this example, we’ll use hexadecimal address
0800.

Note: this address must he less than the highest memory address available
in your system (HIMEM), and not in an area that will be cleared when you use
memory Page 1 (hexadecimal locations $2000 to $4000) or Page 2 (hexadecimal
locations $4000 to $6000) for high-resolution graphics. Furthermore, it
must not be in an area of memory used by your BASIC program. Hexadecimal
0800 (2048, in decimal) is the lowest memory address normally available to a
BASIC program. This lowest address is called LOMEM. Later on, we will move
the LOMEM. pointer higher, to the end of our Shape Table, in order to protect
our table from BASIC program variables.

Press the RESET key to enter the Monitor program, and type the Starting
address for your Shape Table:

If you press the RETURN key now, APPLE will show you the address and the
contents of that address. That is how you examine an address to see if
you have a put the correct number there. If instead you type a colon (:)
followed by a two-digit hexadecimal number, that number will be stored at
the specified address when you press the RETURN key. Try this:

0800 return

(type “return’~ by pressing the RETURN key). What does APPLE say the
contents of location 0800 are? Now try this:

 0800:01 return
 0800 return
0800— 01

The APPLE now says that the value 01 (hexadecimal) is stored in the location
whose address is 0800. To store more two-digit hexadecimal numbers in
successive bytes in memory, just open the first address:

and then type the numbers, separated by spaces:

0800:01 00 04 00 12 3F 20 64 2D 15 36 IE 07 00 return

51

You. have just typed your first complete Shape Table...not so bad. was it?
To check the information in your Shape Table, you can examine each byte
separately or simply press the RETURN key repeatedly until all the bytes of
interest (and a few extra, probably) have been displayed:

0800 return
0800- 01
return
00 04 00 12 3F 20 64
return
0808— 2D 15 36 1E 07 00 FF FF

If your Shape Table looks correct, all that remains is to store the starting
address of the Shape Table where the shape-drawing subroutines cam find it
(this is done automatically when you use the SHLOAD subroutine to get a
table from cassette tape). Your APPLE looks for the four hexadecimal digits
of the table’s starting address in hexadecimal locations 328 (lower two
digits) and 329 (upper two digits). For-our table’s starting address of
08 00, this would do the trick:

328:00 08

To protect this Shape Table from being erased by the variables in your BASIC
program, you must also set LOMEM (the lowest memory address available to
your program) to the address that is one byte beyond the Shape Table’s last,
or largest, address.

It is best to set LOMEM from BASIC, as an immediate-execution command issued
before the BASIC program is RUN. LOMEM is automatically set when you invoke
BASIC (reset ctrl 3 return) to decimal 2048 (0800. im hexadecimal). You
must then change LOMEM to 2048 plus the number of bytes in your Shape Table
plus one. Our Shape Table was decimal 14 bytes long, so our
immediate-execution BASIC command would be:

LOMEM: 2048 + 15

Fortunately, all of this (entering the Shape Table at LOMEM. resetting LOMEM
to protect the table, and putting the table’s starting address in $328—$329)
is taken care of automatically when you use the High-Resolution feature’s
SHLOAD subroutine to get the table from cassette tape.

5 2

SAVING A SHAPE TABLE

Saving on Cassette Tape

To save your Shape Table on tape, you must be in the Monitor and you must
know three hexadecimal numbers:

1) Starting Address of the table (0800. in our example)
2) Last Address of the table (080D, in our example)
3) Difference between 2) and 1) (000D, in our example)

Item 3, the difference between the last address and the first address of the
table. must be stored in hexadecimal locations 0 (lower two digits) and 1
(upper two digits):

0:0D 00 return

Now you can “Write” (store on cassette) first the table length that is
stored in locations 0 and 1, and then the Shape Table itself that is stored
in locations Starting Address through Last Address:

0.1W 0800.080DW

Don’t press the RETURN key until you have put a cassette in your tape
recorder, rewound it. and started it recording (press PLAY and RECORD
simultaneously). Now press the computer’s RETURN key.

Saving on Disk

To save your Shape Table on disk, use a command of this format

BSAVE filename. A$ startingaddress, L$ tablelength

For our example, you might type

BSAVE MYSHAPE1, AS 0800. LS 000D

Note: the Disk Operating System (DOS) occupies the top 10.5K of memory
(10752 bytes decimal, or $2A00 hex); make sure your Shape Table is not in
that portion of memory when you “boot” the disk system.

53

LOADING A SHAPE TAIL!
Loading from-Cassette Tape

To- load a Shape Table from cassette tape, rewind the tape. start it playing
(press PLAY), and (in BASIC. now) type

CALL —11335 return

or (if you have previously assigned the value —11335 to the variable SHLOAD)

CALL SHLOAD return

You should hear one “beep” when the table’s length has been read
successfully, and another “beep” ‘when the table itself has been read. When
loaded this way. your Shape Table will load into memory, beginning at
hexadecimal address 0800. LOMEM is automatically changed to the address of
the location immediately following the last Shape-Table byte. Hexadecimal
locations 328 and 329 are automatically set to contain the starting address
of the Shape Table.

Loading from Disk

To load a Shape Table from disk, use a command of the form

BLOAD filename

From our previously-saved example, you would type

BLOAD MYSHAPE1

This will load your Shape Table into memory, beginning at the address you
specified after “A$” when-you BSAVEd the Shape Table earlier. In our
example, MYSHAPEL would BLOAD beginning at address 0800. You must store the
Shape Table’s starting address in hexadecimal locations 328 mmd 329,
yourself, from the Monitor:

328:00 08 return

If your Shape Table is in an area of memory that may be used by your BASIC
program (as our example is), you must protect the Shape Table from your
program. Our example lies at the low end of memory, so we can protect it by
raising LOMEM to just above the last byte of the Shape Table. This must be
done after invoking BASIC (reset ctrl B return) and before RUNning our
BASIC program. We could do this with the immediate-execution BASIC command

LOMEM: 2048 + 15

5 4

FIRST USE OF A SHAPE TABLE
You are now ready to write a BASIC program using Shape-Table subroutines
such as DRAW and DRAW1. For a full discussion of these High-Resolution
subroutines, see the following section, PART E.

Remember that Page 1 graphics uses memory locations 8192 through 16383 (8K
to 16K). and Page 2 graphics uses memory locations 16384 through 24575 (16K
to 24K). Integer BASIC puts your program right at the top of available
memory; so if your APPLE contains less than 32K of memory, you should
protect your program by setting HIMEM to 8192. This must be done after you
invoke BASIC (reset ctrl B return) and before RUNning your program, with the
immediate—execution command

HIMEM:8192

Here’s a sample program that assumes our Shape Table has already been loaded
from tape, using CALL SHLOAD. This program will print our defined shape.
rotate it 5.6 degrees if that rotation is recognized (see ROT discussion,
next section) and then repeat, each repetition larger than the one before.

10 X0 = Y0 = COLE = SHAPE = ROT = SCALE REM SET PARAMETERS
20 INIT = -12288 : DRAW —11465 REM DEFINE SUBROUTINES
30 WRITE = 127 : BLACK = 0 : REM DEFINE COLORS
40 CALL INIT : REM INITIALIZE HIGH-RESOLIJTION SUBROUTINES
50 SHAPE = 1
60 X0 = 139 : Y0 = 79 : REM ASSIGN PARAMETER VALUES
70 FOR R = 1 TO 48
80 ROT =R
90 SCALE = R
100 COLR = WHITE
110 CALL DRAW : REM DRAW SHAPE 1 WITH ABOVE PARAMETERS
120 NEXT R : REM NEW PARAMETERS
130 END

To pause, and then erase each square after it is draw, add these lines:

114 FOR PAUSE - 1 TO 200 : NEXT PAUSE
116 COLR = BLACK : REM CHANGE COLOR
118 CALL DRAW : REM RE-DRAW SAME SHAPE, IN NEW COLOR

5 5

PART I: DRAWING SHAPES FROM A PREPARED
SHAPE TABLE

before either of the two shape-drawing subroutines DRAW or DRAWl can be
used, a “Shape Table” must be defined and stored in memory (see PART E:
CREATING A SHAPE TABLE), the Shape Table’s starting address must be
specified in hexadecimal locations 328 and 329 (808 and 809, im decimal),
and the High-Resolution subroutines themselves must have been initialized by
a CALL INIT.

ASSIGNING PARAMETER VALUES

The DRAW subroutine is used to display any of the shapes defined in the
current Shape Table. The origin or beginning point’ for DRAWing the shape
is specified by the values assigned to X0 and Y0. and the rest of the shape
continues from that point. The color of the shape to be DRAWn is specified
by the value of COLR.

The shape number (the Shape Table’s particular shape definition that you
wish to have DRAWn) is specified by the value of SHAPE. For example,

SHAPE = 3

specifies that the next shape-drawing command will use the third shape
definition in the Shape Table. SHAPE may be assigned any value (from 1
through 255) that corresponds to one of the shape definitions in the current
Shape Table. An attempt to DRAW a shape that does not exist (by executing a
shape-drawing command after setting SHAPE = 4, when there are only two shape.
definitions in your Shape Table, for instance) will result in a *** RANGE
ERR message being displayed, and the program will halt.

The relative size of the shape to be DRAWn is specified by the value
assigned to SCALE. For example,

SCALE = 4

specifies that the next shape DRAWn will be four times the size that is
described by the appropriate shape definition. That is, each “plotting
vector” (either a plot and a move, or just a move) will be repeated four
times. SCALE may be assigned any value from 0 through 255, but SCALE = 0 is
interpreted as SCALE = 256, the largest size for a given shape definition.

5 6

You can also specify the orientation or angle of the shape to be DRAWn, by
assigning the proper value to ROT. For example,

ROT = 0

will cause the next shape to be DRAWn oriented just as it was defined, while

ROT = 16

will cause the next shape to be DRAWn rotated 90 degrees clockwise. The
value assigned to ROT must be within the range 0 to 255 (although ROT=64,
specifying a rotation of 360 degrees clockwise, is the equivalent of ROT=0).
For SCALE=1, only four of the 63 different rotations are recognized
(0.16,32,48); for SCALE=2. eight different rotations are recognized; etc.
ROT values specifying unrecognized rotations will usually cause the shape to
be DRAWn with the next smaller recognized rotation.

ORIENTATIONS OF SHAPE DEFINITION
ROT = 0 (no rotation
from shape definition)

ROT = 48 (270 degrees ROT = 16 (90 degrees
clockwise rotation) clockwise rotation)

ROT = 32 (180 degrees
clockwise rotation)

DRAWING SHAPES
The following example program DRAWs shape definition number three. im white.
at a 135 degree clockwise rotation. Its starting point, or origin, is at
(140,80).

0 X0 = Y0 = COLR = SHAPE = ROT - SCALE : REM SET PARAMETERS
5 INIT=-12288 : DRAW = -11465 : REM DEFINE SUBROUTINES
10 WHITE = 127 : REM DEFINE COLOR
20 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
30 X0 = 140 : Y0 = 80 : COLR = WHITE REM ASSIGN PARAMETER VALUES
40 SHAPE = 3 : ROT = 24 : SCALE = 2
50 CALL DRAW : REM DRAM SHAPE 3, DOUBLE SIZE, TURNED 135 DEGREES
60 END

5 7

LINKING SHAPES
DRAWl is identical to DRAW, except that the last point previously DRAWn,
PLOTted or POSNed determines the color and the starting point for the new
shape. X0, TO. and COLE, need not be specified, as they will have no effect
on DRAWl. However, some point must have been plotted before CALLing
DRAW1, or this CALL will have no effect.

The following example program draws “squiggles” by DRAWing a small shape
whose orientation is given by game control #0. then linking a new shape to
the old one, each tine the game control gives a new orientation. To clear
the screen of “squiggles,” press the game-control button.

10 X0 = Y0 = COLR = SHAPE = ROT = SCALE REM SET PARAMETERS
20 INIT = -12288 DRAW = -11465 DRAWl = -11462
22 CLEAR = -12274 UNITE = 127 REM NAME SUBROUTINES AND COLOR
30 FULLSCREEN = -16302 BUTN =-16287 REM NAME LOCATIONS
40 CALL INIT REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
50 POKE FULLSCREEN, 0 REM SET FULL-SCREEN GRAPHICS
60 COLR = WHITE : SHAPE = 1 : SCALE = 5
70 X0 = 140 Y0 = 80 : REM ASSIGN PARAMETER VALUES
80 CALL CLEAR : ROT = PDL(0) : CALL DRAW : REM DRAW FIRST SHAPE
90 IF PEEK(BUTN) > 127 THEN GOTO 80 : REM PRESS BUTTON TO CLEAR SCREEN
100 R = PDL(0) : IF (R < ROT+2) AND (R >ROT+2) THEN GOTO 90 :

REM WAIT FOR CHANGE IN GAME CONTROL
110 ROT = R : CALL DRAWl : REM ADD TO 'SQUIGGLE”
120 GOTO 90 : REM LOOK FOR ANOTHER CHANCE

After DRAWing a shape, you may wish to draw a LINE from the last plotted
point of the shape to another fixed point on the screen. To do this, once
the shape is DRAWS, you must first use

CALL FIND

prior to CALLing LINE. The FIND subroutine determines the X and Y
coordinates of the final point in the shape that was DRAWn, and uses it as
the beginning point for the subsequent CALL LINE.

5 8

The following example DRAWs a white shape, and then draws a violet LINE from
the final plot position of the shape to the point (10, 25).

0 X0 = Y0 = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS
5 INIT = -12288 : LINE = -11500 : DRAW = -11402 : FIND = -11780
10 VIOLET = 85 : WHITE = 127 : REM DEFINE SUBROUTINES AND COLORS
20 X0 = 140 : Y0 = 80 : COLR = WHITE : REM ASSIGN PARAMETER VALUES
30 SHAPE = 3 : ROT = 0 : SCALE = 2
40 CALL DRAW : REM DRAW SHAPE WITH ABOVE PARAMETERS
50 CALL : FIND REM FIND COORDINATES OF LAST SHAPE POINT
60 X0 = 10 : Y0 = 25 :COLR = VIOLET REM NEW PARAMETER VALUES, FOR LINE
70 CALL LINE : REM DRAW LINE WITH ABOVE PARAMETERS
80 END

COLLISIONS
Any time two or more shapes intersect or overlap, the new shape has points
in common with the previous shapes. These common points are called points
of “collision.”

The DRAW and DRAWL subroutines return a “collision count” in the hexadecimal
memory location $32A (810. in decimal). The collision count will be
constant for a fixed shape, rotation, scale, and background, provided that
no collisions with other shapes are detected. The difference between the
“standard” collision value and the value encountered while DRAWing a shape
is a true collision counter. For example, the collision counter is useful
for determining whether or not two constantly moving shapes ever touch each
other.

110 CALL DRAW : REM DRAW THE SHAPE
120 COUNT = PEEK(810) : REM FIND THE COLLISION COUNT

5 9

PART F: TECHNICAL INFORMATION

LOCATIONS OF THE HIGH-RESOLUTION PARAMETERS

When the high-resolution parameters are entered (line 0, say), they are
stored —— with space for their values —— in the BASIC variable table, just
above LOMEM (the LOwest MEMory location used for BASIC variable storage).
These parameters appear in the variable table in the exact order of their
first mention in the BASIC program. That order must be as shown below.
because the 111gb—Resolution subroutines look for the parameter values by
location only. Each parameter value is two bytes in length. The low-order
byte is stored in the lesser of the two locations assigned.

VARIABLE-TABLE PARAMETER LOCATIONS

Parameter Locations beyond LOMEM

X0 $05, $06

Y0 $0C, S0D

COLR $15, $16

SHAPE $IF, $20

ROT $27, $28

SCALE $31, $32

6 0

VARIABLES USED WITHIN THE HIGH-RESOLUTION
SUBROUTINES

Variable Hexadecimal
Name Location Description

SHAPEL, SHAPER 1A, 1B On-the-fly shape pointer

HCOLOR1 1C On-the-fly color byte

COUNTH 1D High—order byte of step count for LINE.

HBASL, HBASH 26. 27 On-the-fly BASE ADDRESS

HMASK 30 On-the-fly BIT MASK

QDRNT 53 2 LSB’s are rotation quadrant for DRAW.

X0L. X0R 320, 321 Most recent X-coordinate. Used for
initial endpoint of LINE. Updated
by PLOT. POSN, LINE and FIND, not DRAW.

Y0 322 Most recent y-coordinate (see X0L,

BXSAV 323 Saves 6502 K-register during high-
 resolution CALLs from BASIC.

BCOLOR 324 Color specification for PLOT. POSN.

HNDX 325 On-the-fly byte index from BASES
ADDRESS

HPAG 326 Memory page for plotting graphics.
Normally ~20 for plotting in Page 1
of high—resolution display memory
($2000—$3FFF)

SCALE 327 On-the-fly scale factor for DRAW

SHAPXL, SHAPXH 328, 329 Start of Shape Table pointer.

COLLSN 32A Collision Count from DRAW, DRAWl.

6 1

SHAPE TABLE INFORMATION

Shape Tape Description

Record #1 A two—byte—long record that contains the length
 of record #2, Low—order first

Record Gap Minumum of .7 seconds in length.
Record #2 The Shape Table (see below).

SHAPE TABLE EXAMPLE

Start of Table 0-255 <––––– Number of Shapes ––––> 02
(Address Stored Unused 00
in $328—$329) Low <––– Beginning of Shape #l, –––> 06

 High Relative to Start. 00
 Low <–– Beginning of Shape #2, –––> 05
 High Relative to Start. 00
First Byte 37

8A
 <–––––––– Shape #1 ––––––––> A6

EE
Last B yte 00
First Byte 32

FF
<–––––––– Shape #2 –––––––––> BB

1D
Last Byte=0 00

LOMEM–––> BASIC Variables <––– (if Table SHLOADed) ––> BASIC Variables
($4A-$4B)

The address of the Shape Table’s Start should be stored in locations $328
and $329. If the SHLOAD subroutineis used to load the table. start will be
set to LOMEM(normally this is at $0800) and then LOMEM will be moved to one
byte after the end of the Shape Table, automatically.

If you wish to load a Shape Table named MYSIIAPES2 from disk, beginning at
decimal location 2048 (0800 hex) and ending at decimal location 2048 plus
decimal 15 bytes (as in the example above), you may wish to begin your BASIC
program as follows:

0 D$ = ““ : REM QUOTES CONTAIN CTRL D (D$ WILL BE ERASED BY SHAPE TABLE)
1 PRINT D$; “BLOAD MYSHAPES2, A 2048” : REM LOADS SHAPE TABLE
2 POKE 808, 2048 MOD 256 POKE 809, 2048 / 256 :REM SETS TABLE START
3 POKE 74, (2048 + 15 + 1) MOD 256 POKE 75. (2048 + 15 + 1) / 256
4 POKE 204, PEEK(74) POKE 205, PEEK(75) : REM SETS LOMEM To TABLE END+l
5 X0 = Y0 = COLR = SHAPE = ROT = SCALE : REM SETS PAEM4ETERS

6 2

APPLE II MEMORY MAP FOR USING HIGH-RESOLUTION
GRAPHICS WITH INTEGER BASIC

 Highest RAM
 Memory address:.–––––> <––––– Invoking BASIC
This is 49151 ($BFFF) Sets HIMEM here
 on a 48K system 10752 Disk

($2A00) Operating HIMEM’s value in
Bytes System Locations 76-77

(if booted) ($4C-$4D)
 Booting DOS –––––––––>
Sets HIMEM here

 User’s BASIC program
 Starts at HIMEM
 and builds down

 24576 ––––––––>
 ($6000)

 High-Resolution Graphics
 Page 2

 16384 ––––––––>
 ($4000)

 High-Resolution Graphics
 Page 1

 8192 ––––––––>
 ($2000)

 BASIC Variables
 Start at LOMEM
 and build up

 CALL SHLOAD –––>
 Sets LOMEM here End + 1

 Shape Table
 (if SHLOADed)

 2048 ––––––––> Start Invoking BASIC
 ($0800) <––––– Sets LOMEM here

 Integer BASIC System use
Lowest RAM Low-resolution graphics LOMEM’s value in
Memory address:–––––> and Text screen, etc. . Locations 74—75
0000 ($0000) ($4A—$4B)

Unfortunately, there is no convention for napping memory. This map shows
the highest (largest) address at the top, lowest (smallest) address at the
bottom. The naps of Shape Tables that appear on other pages show the
Starting address (lowest and smallest) at the top, the Ending address
(highest end largest) at the bottom.

6 3

Wayne Stewart

Wayne Stewart

PART G: COMMENTS
1. Using memory Page 1 for high-resolution graphics erases everything in
memory from location 8192 ($2000 hex) to location 16383 ($3FFF). If the top
of your system's memory is in this range (as it will be, if you have a 16K
system), integer BASIC will normally put your BASIC program exactly where it
will be erased by INIT. You must protect your program by setting HIMEM
below memory Page 1, after invoking BASIC (reset ctrl B return) and before
RUNning your program: use this immediate-execution command:
HIMEM: 8192 return

2. Using memory Page 2 for high-resolution graphics erases memory from
location 16384 ($4000) to location 24575 ($5FFF). If yours is a 24K system,
this will erase your BASIC program unless you do one of the following:

a) never use Page 2 -for graphics; or
b) change HIMEM to 8192, as described above.

3. The picture is further confused if you are also using an APPLE disk with
your system. The Disk Operating System (DOS). when booted, occupies the
highest 10.5K ($2A00) bytes ~f memory. HIMEM is moved to just below the
DOS. Therefore, if your system contains less than 32K of memory, the DOS
will occupy memory Page 1 and Page 2. In that case, you cannot use the
High-Resolution graphics with the DOS intact. An attempt to do so will
erase all or part of the DOS. A 32K system can use only Page 1 for graphics
without destroying the DOS, but HIMEM must be moved to location 8192 as
described above. 48K systems cam usually use the DOS and both
high-resolution memory pages without problems.

4. If you loaded your Shape ~able starting at LOMEM in location 2048
($0800), from disk or from tape without using SHLOAD. Integer BASIC will
erase the Shape Table when it stores the program variables. To protect your
Shape Table, you must move LOMEM to one byte beyond the last byte of the
Shape Table, after invoking BASIC and before using any variables. SHLOAD
does this automatically, but you can use this immediate-execution command:

LOMEM: 2048 + tablelength + 1

where tablelength must be a number, not a variable name. Some programmers
load their Shape Tables beginning in location 3048 ($0BE8). That leaves a
safe margin of 1000 bytes for variables below the Shape Table, and at least
5000 bytes (if HIMEM: 8192) above the table for their BASIC program.

5, CALLing an undefined or accidentally misspelled variable name is usually
a CALL to location zero (the default value of any undefined variable). This
CALL may cause unpredictable and unwelcome results, depending on the
contents of location zero. However, after you execute this BASIC command:

POKE 0, 96

an accidental CALL to location zero will cause a simple jump back to your
BASIC program, with no damage.

64

APPENDIX I
SOURCE ASSEMBLY

LISTINGS
66 High-Resolution Graphics $D000-$D3FF

76 Renumber $D400-$D4BB

79 Append $D4BC-$D4D4

80 Relocate $D4DC-$D52D

82 Tape Verify (BASIC) $D535-$D553

83 Tape Verify (6502 Code & Data) $D554-$D5AA

84 RAM Test $D5BC-$D691

87 Music $D717-$D7F8

6 5

1 ******************************
2 * *
3 * APPLE–II HI-RESOLUTION *
4 * GRAPHICS SUBROUTINES *
5 * *
6 * by WOZ 9/13/77 *
7 * *
8 * AlL RIGHTS RESERVED *
9 * *
10 *************t****************.

12 * HI-RES EQUATES
13 SHAPEL EQU $1A POINTER TO
14 SHAPEH EQU $1B SHAPE LIST
15 HCOLOR1 EQU $1C RUNNING COLOR MASK
16 COUNTH EQU $1D
17 HBASL EQU $26 BASE ADR FOR CURRENT
18 HBASH EQU $27 HI-RES PLOT LINE. A
19 HMASK EQU $30
20 A1L EQU $SC MONITOR Al.
21 A1H EQU $3D
22 A2L EQU $3E MONITOR A2.
23 A2H EQU $3F
24 LOMEML EQU $4A. BASIC ‘START CE VARS'.
25 LOMEMH EQU $4B
26 DXL, EQO $50 DELTA-X FOR HI IN, SHAPE.
27 DXH. EQU $51
28 SHAPEX LQU $51 SHAPE TEMP.
29 DY EQU $52 DELTA-Y FOR HLIN. SHAPE.
30 QDRNT EQU $53 ROT QUADRANT (SHAPE),
31 EL EQU $54 ERROR FOR HLIN.
32 EN EQU $55
33 PPL EQU $CA BASIC START OF PROG PTR.
34 PPH EQU $CB
35 PVL EQU $CC BASIC END OF VARS PTR.
36 PYH EQU $CD
37 ACL EQU $CE BASIC ACC.
38 ACH EQU $CF
39 X0L EQU $320 PRIOR X-COORD SAVE
40 X0H EQU $321 AFTER HLIN OR HPLOT.
41 Y0 EQU $322 HLIN, HPLOT Y-COORD SAVE.
42 BXSAV EQU $323 X-REG SAVE FOR SASIC.
43 HCOLOR EQU $324 COLOR FOR HPLOT, HPOSN
44 HNDX EQU $325 HORIZ OFFSET SAVE.
45 HPAG EQU $326 HI—RES PAGE ($20 NORMAL)
46 SCALE EQU $327 SCALE FOR SHAPE, MOVE.
47 SWAP XL EQU $328 START OF
48 SHAPXH EQU $329 - SHAPE TABLE.
49 COLLSN EQU $32A COLLISION COUNT
50 HIRES EQU $C057 SWITCH TO HI-RES VIDEO
51 MIXSET EQU SC053 SELECT TEXT/GRAPHICS MIX
52 TXTCLR EQU $C050 SELECT GRAPHICS MODE.
53 MEMFUL EQU $E36B BASIC MEM FULL ERROR.
54 RNGERR EQU $EE68 BASIC RANGE ERROR.
55 ACADR EQU $E11E 2-BYTE TAPE READ SETUP.
56 RD2BIT EQU $FCFA TWO-EDGE TAPE SENSE
57 READ EQU $FEFD TAPE READ (A1, A2).
58 READX1 EQU $FF02 READ WITHOUT HEADER.

60 * HIGH RESOLUTION GRAPHICS INITS
61 *.
62 * RUM VERSION $D000 TO $D3FF
63 *
64 ORG $D000
65 ODJ $A000

D000 A9 20 66 SETHRL LDA #$20 INIT FOR $2000-3FFF
D002 8D 26 03 67 STA HPAG HI-RES SCREEN MEMORY.

6 6

D005 AD 57 C0 68 LDA HIRES SET HIRES DISPLAY MODE
D008 AD 53 C0 69 LDA MIXSET WITH TEXT AT BOTTOM.
D00B AD 50 C0 70 LDA TXTCLR SET GRAPHICS DISPLAY MODE
D00E A9 00 71 HCLR LDA #$0
D010 85 IC 72 BKGNDOSTA HCOLOR1 SET FOR BLACK BKGND.
D012 AD 26 03 73 BKGND LDA HPAG
D015 85 18 74 STA SHAPEH INIT HI-RES SCREEN MEM
D017 A0 00 75 LDY #$0 FOR CURRENT PACE, NORMALLY
D019 84 IA 76 STY SHAPEI. $2000-3FFF OR $4000-5FFF
D01B A5 1C 77 BKGND1 LDA HCOLOR1
D01D 91 1A 78 STA (SHAPEL) Y
D01F 20 A2 D0 79 JER CSHFT2 (SHAPEL,H) WILL. SPECIFY
D022 C8 80 INY 32 SEPARATE PAGES.
D023 D0 F6 81 BNF BKGND1 THROUGHOUT THE INIT.
D025 E6 18 82 INC SHAPEH
D027 A5 lB 83 LDA SHAPEH
D029 29 1F 84 AND #$1F TEST FOR DONE.
D02B D0 EE 85 BNE BKGND1
D02D 60 86 RTS

 88 * HI—RES GRAPHICS POSITION AND PLOT SUBRS
D02E 8D 22 03 89 HPOSN STA Y0 ENTER WITH Y IN A-REQ
D031 8E 20 03 90 STX X0L XL IN X-REG,
D034 8C 21 03 91 STY X0H AND XH IN Y-REG.
D037 48 92 PHA
D038 29 C0 93 AND #$C0
D03A 85 26 94 STA HBASL FOR Y-COORD = 00ABCDEF
D03C 4A 95 LSR ;CALCULATES BASE ADDRESS
D030 4A 96 LSR ;IN HBASL, HBASH FOR
D03E 05 26 97 ORA HBASL ACCESSING SCREEN MEN
D040 85 24 98 STA HBASL VIA (HBASL),Y ADDRESSING MODE
D042 68 99 PLA
D043 85 27 100 STA HBASH
D045 0A 101 ASL ;CALCULATES
D046 0A 102 ASL ; HBASH = PPPFGHCD
D047 0A 103 ASL ; HBASL =EABAB000
D048 26 27 104 ROL HBASH
D04A 0A 105 ASL WHERE PPP=001 FOR $2000-3FFF
D04B 26 27 106 ROL HBASH SCREEN MEM RANGE AND
D04D PA 107 ASL ; PPP=010 FOR $4000—7FFF
D04E 66 26 108 ROR HBASL (GIVEN Y-COORD=ABCDEFGH)
D050 A5 27 109 LDA HBASH
D052 29 1F 110 AND #$1F
D054 0D 26 03 111 ORA HPAG
D057 85 27 112 STA HBASH
D059 8A 113 TXA DIVIDE X0 BY 7 FOR
D05A C0 00 114 CPY #$0 INDEX FROM BASE ADR
D05C F0 05 115 BEG HPOSN2 (QUOTIENT) AND BIT
D05E A0 23 116 LDY #$23 WITHIN SCREEN MEM BYTE
D060 69 04 117 AOC ##4 (MASK SPEC'D BY REMAINDER)
D062 C8 118 HPOSN1 INY
D063 E9 07 119 HPOSN2 SBC #$7 SUBTRACT OUT SEVENS.
D065 80 F8 120 BCS HPOSN1
D067 8C 25 03 121 STY MNDX WORKS FOR XO FROM
D06A AA 122 TAX 0 TO 279, LOW-ORDER
D06B BD EA D0 123 LDA MSKTBL-249, X BYTE IN X-REQ
D06E 85 30 124 STA HMASK HIGH IN Y-REG ON ENTRY
D070 98 125 TYA
D071 4A 126 LSR ; IF ON ODD BYTE (CARRY SET)
D072 AD 24 03 127 LDA HCOLOR THEN ROTATE HCOLOR ONE
D075 85 1C 128 HPOSN3. STA HCOLOR1 BIT FDR 180 DEGREE SHIFT
D077 80 29 129 BCS CSHFT2 PRIOR TO COPYING TO HCOLOR1.
D079.60 130 RTS
D07A 20 2E D0 131 HPLOT JSR HPOSN
D07D A5 IC 132 HPLOT1 LOA HCOLOR1 CALC BIT POSN IN HBASL,H
D07F 51 24 133 EOR (H8ASL),Y HNDX AND HMASK FROM
D031 25 30 134 AND HMASK Y-COORD IN A-REQ.
D033 51 26 135 EOR (HBASL), Y X-COORD IN X,Y-REGS.
D035 91 26 136 STA (HBASL),Y FOR ANY ‘L’ BITS OF HMAS
D037 60 137 RTS SUBSTITUTE CORRESPONDING

138 BIT OF HCOLOR1.

67

140 HI-RES GRAPHICS L, R, U, D SUBRS
D038 10 24 141 LFTRT BPL RIGHT USE SIGN FOR LFT/RT SELECT
D03A A5 30 142 LEFT LDA HMASK
D03C 4A 143 LSR SHIFT LOW-ORDER
D03D B0 05 144 BCS LEFT1 7 BITS OF HMASK
D03F 49 C0 145 EOR #$C0 ONE BIT TO LSB
DO91 85 30 146 LRI STA HMASK
D093 60 147 RTS
D094 88 148 LEFT1 DEY DECR HORIZ INDEX.
D095 10 02 149 SPL LEFT2
D097 A0 27 150 LDY #$27 WRAP AROUND SCREEN
D099 A9 C0 151 LOA #$C0 NEW HMASK, RIGHTMOST
D09B 85 30 152 STA HMASK DOT OF BYTE
D0BD SC 25 03 153 STY HNDX UPDATE HORIZ INDEX
D0A0 A5 IC 154 CSHIFT LDA HCOLOR1
D0A2 0A 155 CSHFT2 ASL ; ROTATE LOW-ORDER
D0A3 C9 C0 156 CMP #$C0 7 BITS OF HCOLDR1
D0A5 10 06 157 SPL RTSI ONE BIT POSN.
D0A7 A5 1C 158 LDA HCOLOR1
D0A9 49 7F 159 EOR #$7F ZXYXYXYX —> ZYXYXYXY
D048 85 IC 160 STA HCOLOR1
D0AD 60 161 RTS
D0AE A5 30 162 LDA HMASK
D090 0A 163 ASL ; SHIFT LOW—ORDER
D0B1 49 80 164 EOR #$80 7 BITS OF HMASK
D0B3 30 DC 165 BMI LR1 ONE SIT TO MSB.
D0B5 A9 81 166 LDA #$81
D0B7 C8 167 INY NEXT BYTE.
D0B8 C0 28 168 OPY #$28
D0B4 90 DF 169 BCC NEWNDX
D0BC A0 00 170 LDY #$0 WRAP AROUND SCREEN IF > 279
D0BE B0 DB 171 BCS NEWNDX ALWAYS TAKEN.

173 *L,R,U,D, SUBROUTINES.
D0C0 18 174 LRUDXI CLC NO 90 DEG ROT (X-0R).
D0C1 A5 51 175 LRUDX2 LOA SHAPEX
D0C3 29 04 176 AND #$4 IF B2=0 THEN NO PLOT.
D0C5 F0 27 177 BEG LRUD4
D0C7 A9 7F 178 LDA #$7F FOR EX-OR INTO SCREEN MEM
D009 25 30 179 AND HMASK
D0CB 31 26 180 AND (HSASL),Y SCREEN BIT SET?
D0CD D0 1B 181 BNE LRUD3
D0CF SE 24 03 182 INC COLLSN
D0D2 A9 7F 183 LDA #$7F
D0D4 25 30 184 AND HMASK
D0D6 10 12 185 BPL LRUD3 ALWAYS TAKEN.
D0D8 18 186 LRUD1 CLC NO 90 DEG ROT.
D0D9 AS 51 187 LRUD2 LDA SHAPEX
D0DB 29 04 188 AND #$4 IF B2=0 TNSN NO PLOT.
D0DD F0 0F 189 BEQ LRUD4
D0DF B1 26 190 LDA (HBASL), V
D0EI 45 1C 191 EOR HCOLOR1 SET HI-RES SCREEN BIT
D0E3 25 `30 192 AND HMASK TO CORRESPONDING HCOLOR1

D0E5 D0 03 193 BNE LRUD3 IF BIT OF SCREEN CHANGES
D0E7 EE 2A 03 194 INC COLLSN THEN INCR COLLSN DETECT
D0ZA 51 26 195 LRUD3 EOR (HBASL), Y
D0EC 91 26 196 STA (HBASL). Y
D0ZE A5 51 197 LRUD4 LDA SHAPEX ADD QDRNT TO
D0F0 65 53 198 ADC QDRNT SPECIFIED VECTOR
D0F2 29 03 199 AND #$3 AND MOVE LFT, RT,

200 EQS EQU *-I UP, OR DWN BASED
D0F4 09 02 201 CMP #$2 ON SIGN AND CARRY.
D0F6 6A 202 ROR
D0F7 B0 8F 203 LRUD BCS LFTRT
D0F9 30 30 204 UPOWN BM1 DOWN4 SIGN FOR UP/DWN SELECT
D0F8 18 205 UP CLC
D0FC A5 27 204 LDA HBASH CALC BASE ADDRESS
D0FE 2C EA 01 207 BI1 EQ1C (ADR OF LEFTMOST BYTE)
D101 00 22 208 ENS UP4 FOR NEXT LINE UP
D103 06 24 209 ASL HBASL 1N (HEASL, HBASH)

6 8

D105 B0 1A 210 DCS UP2-WITH 192-LINE WRAPAROUND
D107 2C F3 D0 211 BIT EG3
D10A F0 05 212 BEQ UP1
D10C 69 1F 213 ADC #$1F **** BIT MAP ****
D10E 38 214 SEC
D10F B0 12 215 BCS UP3 FOR ROW = ABCDEFGH,
D111 69 23 216 UP1 ADC #$23
D113 48 217 PHA
D114 A5 24 218 LDA. HBASL HDASL = EABAB000
D116 69 B0 219 ADC #$B0 HBASM = PPPFGHCD
D118 B0 02 220 BCS UP5
D11A 69 F0 221 ADC #$F0 WHERE PPP=001 FOR PRIMARY
D11C 85 26 222 UP5 STA HBASL HI-RES PAGE {$2000—$3FFF)
D11E 68 223 PLA
D11F B0 02 224 BCS UP3
D121 69 1F 225 UP2 ADC #$1F
D123 66 26 226 UP3 ROR HBASL
D125 69 FC 227 UP4 AOC #$FC
D127 85 27 228 UPDWN1 STA HBASH
D129 60 229 RT8
D12A 18 230 DOWN CLC
D12B A5 27 231 DOWN4 LDA HBASH
D12D 69 04 232 ADC #$4 CALC BASE ADR FOR NEXT LINE

233 E04 EOU *-1 DOWN TO (HBASL,HBASH)
D12F 2C EA D1 234 BIT EGIC
D132 D0 F3 235 BNE UPDWN1

D134 06 26 236 ASL HBASL WITH 192-LINE WRAPAROUND
D136 90 19 237 BCC DOWN1
D138 69 E0 238 ADC #$E0
D13A 18 239 CLC
D13B 2C 2E D1 240 BIT EG4
D13E F0 13 241 BEG DOWN2
D140 A5 26 242 LDA HBASL
D142 69 50 243 ADC #$50
D144 49 F0 244 EOR #$F0
D146 F0 02 245 BEG DOWN3
D148 49 F0 246 EOR #$F0
D14A 85 26 247 DOWN3 STA HBASL
D14C AD 26 03 248 LDA HPAG
D14F 90 02 249 BCC 00WN2
D151 69 E0 250 DOWN1 ADC #$E0
D153 66 26 251 DOWN2 ROR HBASL
D155 90 D0 252 BCC UPDWN1

254 *HI-RES GRAPHICS LINE DRAW SUBRS
D157 48 255 HLINRL PHA
D158 A9 00 256 LDA #$0 SET (X0L X0H) AND
D15A 8D 20 03 257 STA X0L Y0 TO ZERO FOR
D15D 8D 21 03 258 STA X0H REL LINE DRAW
D160 8D 22 03 259 STA Y0 (DX, DY).
D163 68 260 PLA
D164 48 261 HLIN PHA ON ENTRY
D165 38 262 SEC XL: A-REG
D166 ED 20 03 263 SBC X0L XH; X-REG
D169 48 264 PHA Y: Y-REQ
D16A 8A 265 TXA
D16B ED 21 03 266 SBC X0H
D16E 85 53 267 STA QDRNT CALC ABS(X-X0)
D170 B0 0A 268 BCS HLIN2 IN (DXL.DXH)

69

D172 68 269 PLA
D173 49 FE 270 EOR #$FF X DIR TO SIGN BIT
D175 69 01 271 ADC #$1 OF QDRNT.
D177 48 272 PHA 0=RIGHT (DX P0S)
D178 A9 00 273 LDA #$0 1=LEFT (DX NEC)
D17A E5 53 274 SBC QDRNT
D17C 85 51 275 HL1N2 STA DXH
D17E 85 55 276 STA EH INIT (EL,EH) T0
D180 68 277 PLA ARS(X-X0)
D181. 85 50 278 STA DXL
D183 85 54 279 STA EL
D185 68 280 PLA
D186 8D 20 03 281 STA X0L
D189 8E 21 03 282 STX X0H
D18C 98 283 TYA
D18D 18 284 CLC
D18E ED 22 03 285 SBC Y0 CALC -ABS(Y-0)-I
D191 90 04 286 BCC HL1N3 IN DY.
D193 49 FF 287 EOR #$FF
D195 69 FE 288 ADO #$FE
D197 85 52 289 HLIN3 STA DY ROTATE Y DIR INTO
D199 BC 22 03 290 STY V0 GDRNT SIGN BIT
D19C 66 53 291 ROR QDRNT (0=UP. l=DOWN)
D19E 38 292 SEC
D19F E5 50 293 SBC DXL INIT (COUNTL, COUNTH).
D1A1 AA 294 TAX TO -(DELTX+DELTY+1)
D1A2 A9 FE 295 LDA #$FF
D1A4 ES 51 296 SBC DXH
D1A6 65 1D 297 STA COUNTH
D1A8 AC 25 03 298 LDY HNDX HORIZ INDEX
D1AB 80 05 299 BCS MOVEX2 ALWAYS TAKEN.
D1AD 0A 300 MOVEX ASL ; MOVE IN X-DIR. USE
D1AE 20 301 JSR LFTRT QDRNT 86 FOR LFT/RT SELECT
D1B1 38 302 SEC
D1B2 A5 54 303 MOVEX2 LDA EL ASSUME CARRY SET.
D1B4 65 52 304 ADC DY (EL, EH)-DELTY TO (EL,EH)
D1B6 65 54 305 STA EL NOTE: DY IS (-DELTY)-1
D1B8 AS 55 306 LDA EH CARRY CLR IF (EL,EX)
D1BA E9 00 307 SBC #$0 GOES NEG
D1BC 85 S5 308 HCOUNT STA EH
D1BE 81 26 309 LDA (HRASL).Y SCREEN BYTE.
D1C0 45 1C 310 EOR HCOLOR1 PLOT DOT OF HCOLOR1.
D1C2 25 30 311 AND HMASK CURRENT BIT MASK.
D1C4 51 26 312 EOR (HRASL), Y
D1CS 91 26 313 STA (HSASL), Y
D1C8 E8 314 INX DONE (DELTX+DELTY)
D1C9 00 04 315 BNE XLIN4 DOTS?
D1CB E6 10 316 INC COUNTH
D1CD F0 68 317 BEQ RTS2 YES, RETURN.
D1CF AS 53 318 HLIN4 LDA GDRNT FOR DIRECTION TEST
D1D1 B0 DA 319 BCS MOVEX IF CLR SET. (EL, EH) POS
D1D3 20 F9 D0 320 JSR UPDWN IF CLR, NEG, MOVE YDIR
D1D6 18 321 CLC
D1D7 AS 54 322 LDA EL (EL., EH)+DELTX
D1D9 65 50 323 ADC DXL TO (EL,EH).
D1DB 65 54 324 STA EL
D1D0 A5 55 325 LDA EH CAR SET IF (EL,EH) GOES P0S
D1D6 65 51 326 ADC DXH
D1E1 50 09 327 BVC HCOUNT ALWAYS TAKEN.
D1E3 81 328 MSKTBL HEX 81 LEFTMOST BIT OF BYTE
D1E4 82 84 89 329 HEX 82, 84, 86
D1E7 90 A0 330 HEX 90, A0
D1E9 C0 331 HEX C0 RIGNTMOST BIT OF BYTE.
D1EA 1C 332 EG1C HEX IC
D1EB FE FE FA 333 COS HEX FF, FE, FA, F4. EC, El, D4, DS, B4
D1F4 Al 8D 78 334 HEX A1,8D, 78,61,49,31, 18.FF

7 0

D1FC A5 26
D1FE 0A
D1FF A5 27
D201 29 03
D203 2A
D204 05 26
D206 0A
D207 0A
D208 0A
D209 8D 22 03
D20C A5 27
D20E 4A
D20F 4A
D210 29 07
D212 0D 22 03
D215 8D 22 03
D218 AD 25 03
D21B 0A
D21C 6D 25 03
D21F 0A
D220 AA
D221 CA
D222 A5 30
D224 29 7F
D226 E8
D227 4A
D228 D0 FC
D22A 8D 21 03
D22D 8A
D22E 18
D22F 6D 25 03
D232 90 03
D234 EE 21 03
D237 8D 20 03
D23A 60

D23B 86 1A
D23D 84 1B
D23F AA
D240 4A
D241 4A
D942 4A
D243 4A
D244 85 53
D246 8A
D247 29 0F
D249 AA
D24A BC EB Dl
D24D 84 50
D24F 49 0F
D251 AA
D252 BC EB Dl
D255 C8
D256 84 52
D258 AC 25 03
D25B A2 00
D25D 8E 2A 03
D260 A1 1A

336 * HI-RES GRAPHICS COORDINATE RESTORE SUSR
337 HFIND LDA HBASL
338 ASL CONVERTS BASE ADR
339 LDA HBASH TO Y-COORD.
340 AND #$3
341 ROL ; FOR HBASL = EABASOOO
342 ORA HBASL HBASH = PPPFGHCD
343 ASL
344 ASL ; GENERATE
345 ASL ; Y-COORD = ABCDEFGH
346 STA Y0
347 LDA HBASH (PPP.SCREEN PAGE,
348 LSR ; NORMALLY 001 FOR
349 LSR ; $2000-$3FFF
350 AND #$7 HI-RES SCREEN)
351 ORA Y0
352 STA Y0 CONVENTS HNDX (INDEX
353 LDA HNDX FROM BASE ADR)
354 ASL ; AND HMASK (BIT
355 ADC HNDX MASK TO X-COORD
356 ASL ; IN (XOL,XOH)
357 TAX (RANGE $0—$133)
358 DEX
359 LDA HMASK
360 AND #$7F
361 HFIND1 INX
362 LSR
363 BNE HFIND1
364 STA XOH
365 TXA
366 CLC CALC HNDX*7 +
367 ADC HNDX LOG (BASE 2) HMASK
368 BCC HFIND2
369 INC X0H
370 HFIND2 STA X0L
371 RTS2 RTS
373 * HI-RES GRAPHICS SHAPE DRAW SUBR
374 *
375 * SHAPE DRAW
376 * R = 0 TO 63
377 * SCALE FACTOR USED (1=NORMAL)
378 *
379 DRAW STX SHAPEL DRAW DEFINITION
380 STY SHAPEH POINTER.
381 DRAWl TAX
392 LSR ; ROT ($0-$3F)
383 LSR
384 LSR ; QDRNT 0=UP, 1=RT.
385 LSR ; 2=DWN, 3=LFT.
386 STA QDRNT
387 TXA
389 AND #$F
389 TAX
390 LDY COS, X SAVE COS AND SIN
391 STY DXL VALS IN DXL AND DY
392 E0R
393 TAX
394 LDY CDS+1.X
395 I NY
396 STY DY
397 DRAW2 LDY HNDX BYTE INDEX FROM
398 LDX #$0 HI-RES BASE ADR.
399 STX COLLSN CLEAR COLLISION COUNT,
400 LDA (SHAPEL,X) 1ST SHAPE DEF BYTE.

 71

D262 85 51
D264 A2 80
D266 86 54
D268 86 55
D26A AE 27 03
D26D A5 54
D26F 38
D270 65 50
D272 85 54
D274 90 04
D276 20 D8 D0
D279 18
D27A A5 55
D27C 65 52
D27E 85 55
D280 90 03
D282 20 09 D0
D285 CA
D286 D0 E5
D288 A5 51
D28A 4A
D28B 4A
D28C 4A
D28D 00 03
D28F E6 lA
D291 00 02
D293 56 12
D295 Al 1A
D297 D0 C9
D299 60

D29A 86 1A
D29C 84 15
D29E AA
D29F 4A
D2A0 4A
D2A1 4A
D2A2 4A
D2A3 85 53
D2A5 8A
D2A6 29 0F
D2A8 AA
D2A9 BCE8 D1
D2AC 84 50
D24E 49 0F
D280 AA
D2B1 SC EC D1
D2B4 C8
D2B5 84 52
D2B7 AC25 03
D2BA A2 00
D2BC 8E 2A 03
D2BF A1 1A

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

DRAWS STA SHAPEX
LDX #$80
STX El, EL, EH FOR FRACTIONAL
STX EH L,R,IJ,D VECTORS.
LDX SCALE SCALE FACTOR.

DRAW4 LDA EL
SEC IF FRAC COS 0VFL
ADC DXL THEN MOVE IN
STA EL SPECIFIED VECTOR
BCC DRAW5 DIRECTION.
JSR LRUD1
CLC

DRAW5 LDA EH IF FRAC SIN OVFL
ADC DY THEN MOVE IN
STA EH SPECIFIED VECTOR
SCC DRAW6 DIRECTION +90 DEG.
JSR LRUD2

DRAW6 DEX LOOP ON SCALE
BNE DRAW4 FACTOR.
LDA SHAPEX
LSR ; NEXT 3-BIT VECTOR
LSR ; OF SHAPE DEF
LSR
BNE DRAW3 NOT DONE THIS BYTE.
INC SNAPEL
BNE DRAW3 NEXT BYTE OF
INC SHAPEH SHAPE DEFINITION.

DRAW7 LDA (SHAPEL, X)
BNE DRAW3 DONE IF ZERO.
RTS

* HI-RES GRAPHICS SHAPE EX-OR SUBR
*
* EX-0R SHAPE INTO SCREEN.
*
* ROT = 0 TO 3 (QUADRANT ONLY)
* SCALE IS USED
*
XDRAW STX SHAPEL SHAPE DEFINITION

STY SHAPEH POINTER.
XDRAW1 TAX

LSR ; ROT ($0-$3F)
LSR
LSR ; QDRNT 0=UP, 1=RT,
LSR ; 2=DWN, 3=LFT.
STA QDRNT
TXA
AND #$F
TAX
LDY COS. X SAVE COS AND SIN
STY DXL VALS IN DXL AND DY,
EOR #$F
TAX
LDY COS+1, X
I NY
STY DY

XDRAW2 LDY HNDX INDEX FROM HI-RES
LDX #$0 BADE ADR.
STX COLLSN CLEAR COLLISION DETECT
LDA (SHAPEL,X) 1ST SHAPE DEF BYTE.

 72

D2C1 05 51
D2C3 A2 80
D2C5 96 54
D2C7 86 55
D2C9 AE 27 03
D2CC A5 54
D2CE 38
D2CF 65 50
D2D1 85 54
D2D3 90 04
D2D5 20 C0 D0
D2D8 18
D2D9 A5 55
D2DB 65 52
D2DD 85 55
D2DF 90 03
D2E1 20 D9 DO
D2E4 CA
D2E5 D0 E5
D2E7 A5 51
D2E9 4A
D2EA 4A
D2EB 4A
D2EC DO 03
D2EE E6 IA
D2F0 D0 02
D2F2 E6 1B
D2F4 Al 1A
D2F6 DO C9
D2F8 60

D2F9 20 90 D3
D2FC 8D 24 03
D2FF 20 AF D3
D302 48
D303 20 9A D3
D306 68
D307 20 2E D0
D30A AE 23 03
D30D 60
D30E 20 F9 02
D311 4C 7D D0
D314 AD 25 03
D317 4A
D318 20 90 D3
D31B 20 75 D0
D31E 20 9A 03
D321 8A
D322 48
D323 98
D324 AA
D325 20 AF D3
D328 A8
D329 68
D32A 20 64 D1
D32D AE 23 03
D330 60
D331 20 90 D3
D334 4C 10 D0

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

XDRAW3 STA SHAPEX
LDX #$80
STX EC EL,EH FOR FRACTIONAL
STX EH L, R,U,D, VECTORS
LDX SCALE SCALE FACTOR
LDA El
SEC IF FRAC COS OVFL
A0C DXL THEN MOVE IN
STA EL SPECIFIED VECTOR
BCC XDRAWS DIRECTION
JSR LRUDX 1
CLC

XDRAW5 LDA EH IF FRAC SIN OVFL
ADC DY THEN MOVE IN
STA EH SPECIFIED VECTOR
BCC XDRAW6 DIRECTION +90 DEC.
JSR LRIJD2

X0RAW6 DEX LOOP ON SCALE
BNE XDRAW4 FACTOR.
LDA SHAPEX
LSR ; NEXT 3-BIT VECTOR.
LSR ; OF SHAPE DEF
LSR
BNE XDRAW3
INC SHAPEL
BNE XDRAW7 NEXT BYTE OF
INC SHAPEH SHAPE DEF.

XDARW7 LDA (SHAPEL, X)
BNE XDRAW3 DONE IF ZERO.
RTS

.* ENTRY POINTS FROM APPLE—Il BASIC
BPOSN JSR PCOLR POSN CALL COLR FROM BASIC

STA HCOLOR
JSR GETY0 Y0 FROM 8ASIC.
PHA
JSR GETX0 X0 FROM BASIC.
PLA
JSR HPOSN
LDX BXSAV
RTS

BPLOT JMP BPOSN PLOT CALL (BASIC).
JMP HPL0T1

BLIN1 LDA HNDX
LSR ; SET HCOLORI FROM
JSR PCOLR BASIC VAR COLR.
JSR HPOSN3

BLINE JSR GETX0 LINE CALL, GET X0 FROM BASIC
TXA
PHA
TYA
TAX
JSR GETY0 Y0 FROM BASIC
TAY
PLA
JSR HL IN
LDX BXSAV
RTS

BGND JSR PCOLR BACKGROUND CALL
JMP BKGNDO

 73

D337 20 F9 D2
D33A 20 51 D3
D33D 20 3B D2
D340 AE 23 D3
D343 60
D344 20 F9 D2
D347 20 51 D3
D34A 20 9A D2
D34D AE 23 03
D350 60
D351 8E 23 03
D354 AO 32
D356 20 92 D3
D359 8D 27 03
D35C A0 28
D35E 20 92 D3
D361 48
D362 AD 28 03
D365 85 lA
D367 AD 29 03
D36A 85 18
D36C AG 20
D36E 20 92 03
D371 F0 39
D373 A2 00
D375 C1 1A
D377 F0 02
D379 B0 31
D37B 0A
D37C 90 03
D37E E6 1B
D380 18
D381 AB
D382 B1 1A
D384 65 1A
D386 AA
D387 C8
D388 B1 1A
D38A 60 29 03
D38B A8
D38E 68
D38F 60

D390 A0 16
D392 B1 4A
D394 D0 16
D396 88
D397 Bl 4A
D399 60
D39A 8E 23 03
D39D A0 05
D39F B1 4A
D3A1 AA
D3A2 C8
D3A3 B1 4A
D3A5 A8
D3A6 E0 18
D3A8 E9 01
D3AA 90 ED
D34C 4C 68 EE
D3AF A0 0D
D3BI 20 92 D3
D3B4 C9 C0
D3B6 80 F4
D3B8 60

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

 * DRAW ROUTINES
DORAWI . JSR BPOSN
BDRAW TSR BDRAWX DRAW CALL FROM BASIC.

JSR DRAW
LDX DXSAV
RTS

BXDRW1 JSR BPOSN
BXDRAW JSR BDRAWX EX-OR DRAW

JSR XDRAW FROM BASIC.
LDX BXSAV
RTS

BDRAWX STX BXSAV SAVE FROM BASIC
LDY #$32
JSR PBYTE SCALE FROM BASIC
STA SCALE
LDY #$28
JSR PBYTE ROT PROM BASIC.
PHA SAVE ON STACK.
LDA SHAPEXL
STA SHAPEL START OF
LDA SHAPXH SHAPE TABLE.
STA SHAPEH
LDY #$20
JSR PBYTE SHAPE FROM BASIC.
BEQ RERR1
LDX #$0
CMP (SHAPEL. X) > NUM OF SHAPES?
BEQ BDRWX1
BCS RERR1 YES, RANGE ERR.
ASL
BCC BDRWX2
INC SNAPEH
CLC

BDRWX2 TAY SHAPE NO. * 2.
LDA. (SHAPEL), Y
ADC SHAPEL
TAX ADD 2-BYTE INDEX
INY TO SHAPE TABLE
LDA (SHAPEL)Y START ADR
ADC SHAPXH (X LOW. Y HI)
TAY
PLA ROT FROM STACK.
RTS

* BASIC PARAM FETCH SUBR’S
PCOLR LDY #$16
PBYTE LDA (LOMEML), Y

BNE RERRI GET BASIC PARAM.
DEY (ERR IF >255)
LDA (LOMEML). V

RTSB. RTS
GETYO STX BXSAV SAVE FOR BASIC.

LDY #$5
LDA (LOMEML),Y X0 LOW-ORDER BYTE.
TAX
INY .
LDA (LOMEML),Y HI—ORDER BYTE
TAY
CPX #$18
SBC #$1 RANGE ERR IF >279
BCC RTSB

RERR1 JMP RNGERR
GETYO LDY #$D OFFSET TO Y0 FROM LOMEM

JSR PBYTE GET BASIC PARAM YO
CMP #$C0 (ERR IF >191)
BCS RERR1
RTS

 74

D3B9 8E 23 03
D3BC 20 1E F1
D3BF 20 FD FE
D3C2 A9 00
D3C4 85 3C
D3C6 8D 28 03
D3C9 18
D3CA 65 CE
D3CC A8
D3CD A9 08
D3CF 85 3D
D3D1 8D 29 03
D3D4 65 CF
D3D6 B0 25
D3D8 C4 CA
D3DA 48
D3DB E5 CE
D3DD 68
D3DE B0 1D
D3E0 54 3E
D3E2 55 SF
D3E4 CS
D3E5 00 02
D3E7 69 01
D3E9 54 4A
D3EB 55 4B
D3ED 54 CC
D3EF 55 CD
D3F1 20 FA FC
D3F4 A9 03
D3F6 20 02 FF
D3F9 AE 23 03
D3FC 60
D3FD 4C 6B E3

- - - END ASSEMBLY

TOTAL ERRORS: 00

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
612
614
615
616
617
618
619
620
621
622
623
624

- - -

 *SHAPE TAPE LOAD SUSROUTINE
SHLOAD STX SXSAV SAVE FOR SASIC.

JSR ACAOR READ 2-BYTE LENGTH INTO
JSR READ BASIC ACC
LDA #$00 START OF SHAPE TABLE IS $0800
STA A1L
STA SHAPXL
CLC
ADC ACL
TAY
LDA #$08 HIGH BYTE OF SHAPE TABLE POINTER
STA A1H
STA SHAPXL
ADC ACH
BCS MFULL1 NOT ENOUGH MEMORY.
CPY PPL
PHA
SEC PPH
PLA
BCS MFULL1
STY A2L
STA A2H
INY
BNE SHLOD1
ADC #$1

SHLOD1 STY LOMEML
STA LOMENH
STY PVL
STA PVH
JSR RD2BIT
LDA #$3 . 5 SECOND HEADER
JSR READX1
LDX BXSAY
RTS

MFULL1 JMP MEM FUL
.

7 5

 1 **
 2 * *
 3 * APPLE-][BASIC RENUMBER/ APPEND SUBROUTINES *
 4 * *
 5 * VERSION TWO *
 6 * RENUMBER *
 7 * >CLR *
 8 * >START= *
 9 * >STEP= *
10 * >CALL-10531 *
11 * *
12 * OPTIONAL *
12 * >FROM= *
14 * >T0= *
15 * >CALL -10521 *
16 * *
17 * USE RENX ENTRY *
18 * FOR RENUMEER ALL *
19 * *
20 * WOZ APRIL 12, 1978 *
21 * APPLE COMPUTER INC. *
22 **

24 *
26 * 6502 EQUATES
27 *
28 ROL EQU $0 LOW-OROER SW16 RO BYTE..
29 ROH EQU $1 HI-ORDER
30 ONE EQU $01
31 R11L EQU $16 LOW-ORDER SW16 R11 BYTE.
32 R11H EQU $17 HI-ORDER.
33 HIMEM EQU $4C BASIC HIMEM POINTER.
34 PPL EQU $CA BASIC PROG POINTER
35 PVL EQU $CC BASIC VAR POINTER
36 MEMEULL EQU $E36B BASIC MEM FULL ERROR
37 PRDEC EQU $E51B BASIC DECIMAL PRINT SUBR.
38 RANGERR EQU $EE68 BASIC RANGE ERROR
39 LOAD EQU $F0DF BASIC LOAD SUBR
40 SW16 EQU $F689 SWEET 16 ENTRY
41 CROUT EQU $FD8E CAR RET SUBR.
42 COUT EQU $FDED CHAR OUT SUBR.

44 *
45 * SWEET 16 EQUATES
46 *
47 ACC. EQU $0 SWEET 16 ACCUMULATOR.
48 NEULOW EQU $1 NEW INITIAL LNO.
49.NEWINCR EQU $2 NEW LNO INOR.
50 LNLOW EQU $3 LOW LNO OF RENUM RANGE.
51 LNHI EQU $4 HI LNO OF RENUM RANGE
52 TBLSTRT EQU $5 LNO TABLE START.
53 TBLNDX1 EQU $6 PASS 1 LNO TBL INDEX.
54 TBLIM EQU $7 LNO TABLE LIMIT.
55 SCRB EQU $8 SCRATCH REG.
56 HMEM EQU $8 HIMEM (END OF PRGM).
57 SCR9 EQU $9 SCRATCH REQ.
58 PRGNDX EQU $9 PASS 1 PROC INDEX.
59 PRONDXI EQU $A ALSO PROC INDEX,
60 NEWLN EQU $B NEXT “NEW UND”.
61 NEWLN1 EQU $C PRIOR “NEW LNO” ASSIGN.
62 TBLND EQU $6 PASS 2 LNO TABLE END,
63 PRGNDX2 EQU $7 PASS 2 PROG INDEX.
64 CHRO EQU $9 ASCII “0”
65 CHRA EQU $A ASCII “A”.

 76

D400 20 89 F6
D403 B0
D404 33
D405 34
D406 F4
D407 00
D408 20 39 F6
D40B 18 4C 00
D40E 68
D40W 38
D410 19 CE 00
D413 C9.
D414 35
D415 36
D416 21
D417 3B
D418 3C
D419 C9
D41A 37
D41B 39
D41C 29
D41D D8
D41E 03 46
D420 3A
D421 26
D422 E0
D423 D7
D424 03 38
D426 4A
D427 A9
D428 39
D429 6A
D42A D3
D42B 02 2A
D42D D4
D42E 02 02
D430 07 30
D432 76
D433 00
D434 A5 01
D436 46 00
D438 20 1B E5
D43B A9 AD
D43D 20 ED FD
D440 A9 BE
D442 20 ED FD
D445 A5 17
D447 A6 16
D449 20 1B E5
D44C 20 8E FD

D44F 20 BC F6

66MODE
67TBLNDX2
66OLDLN
69STRCON
70REM
71R13
72THEN
73LIST
74DEL
75SCRC

77 *
78 *
79
80
81 RENX
62
83
84
85
86
87 RENUM
88
89
90
91 RNUM3
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118 P1A
119
120
121
122
123
124
125
126
127
128
129
130
131 *
132

EQU $C CONST/LNO MODE.
EQU $B LNO. TBL IDX FOR UPDATE
EQU $D OLD LNO F03 UPDATE.
EQU $B BASIC STR CON TOKEN.
EQU $C BASIC REM TOKEN.
EQU $D SWEET 16 REG 13 (CPR NEC).
EQU $D BASIC THEN TOKEN
EQU $D BASIC LIST TOKEN
EQU $D
EQU $C SCRATCH REQ FOR APPEND.

 APPLE - 11 BASIC RENUMBER SUBROUTINE - PASS 1
ORG $D400
OBJ $A400
,JSR SW16 OPTIONAL RANGE ENTRY.
SUB ACC
ST LNLOW SET LNLOW=0, LNHI=0.
ST LNH I
DCR LNH I
RTN
JSR SW16
SET HMEM, HIMEM
LDD @HMEM
ST HMEM
SET SCR9, PVL+2
POP D @SCR9 BASIC VAR PNT TO
ST TBLSTRT TBLSTRT AND TBLNDX1
ST TBLNDX1
LD NEWLOW COPY NEWLOW (INITIAL)
ST NEWLN TO NEWLN,
ST NEWLN1
POPD @SCR9 BASIC PROG PNTR
ST TBLIM TO TOLIM AND PRGNDX.
ST PRGNDX
LD PRGNDX
CPR HMEM IF PRGNDX > =HMEM
BC PASS2 THEN DONE PASS 1.
ST PRGNDX1
LD TBLNDX1
INR ACC IF < TWO BYTES AVAIL IN
CPR TBLIM LNO TABLE THEN RETURN
BC MERR WITH "MEM FULL" MESSAGE
LD @PRGNDX1
ADD PRGNDX ADD LENTH BYTE TO PROG INDEX.
ST PRGNDX
LDD @PRGNDX1 LINE ‘lUMBER.
CPR LNLOW IF < LNLOW THEN OOTO P1B
BNC P1B
CPR LNHI IF > LNHI THEN GOTO P1C
BNC P1A
BNZ P1C
STD @TBLNDX1 ADD TO LNO TABLE.
RTN
LDA R0H **** 6502 CODE ****
LDX R0L
JSR PRDEC PRINT OLD LNO "—>" NEW LNO
LDA #$AD (R0 R11) IN DECIMAL.
JSR COUT
LDA #$BE
JSR C OUT
LDA R11H
LDX R11L
JSR PRDEC
JSR CROUT

JSR SW16+3 **** END 6502 CODE ****

 77

D452 2B
D453 3C
D454 A2
D455 3B
D456 0D
D457 D1
D45B 02 C2
D45A 00
D450 4C 68 EE
D45E 00
D45F 4C 6B E3
D462 EC
D463 DC
D464 02 F4

D466 19 B0 00
D469 1A CO 00
D46C 27
D46D D8
D46E 03 63
D470 E7
D471 67
D472 3D
D473 25
D474 3B
D475 21
D476 1C
D477 2C
D478 A2
D479 3C
D47A 28
D47B B6
D47C 03 07
D47E 6B
D47F 8D
D480 07 F5
D482 C7
D483 2C
D484 77
D485 1B 2 8 0 0
D488 1C
D489 67
D48A FC
D48B 08 E5
D48C 47
D48E D9
D4SF 02 09
D491 DA
D492 02 F5
D494 F7
D495 67
D496 05 FC
D496 F7
D499 47

133 *
134
135
136
137
138
139 P1B
140
141RERR
142
143KERR
144
145PlC
146
147

149 *
150 *
151 *
152 PASS2
I 53
154 P2A
155
156
157
158
159UPDATE
160
161
162
163
164UD2
165
166
167
168
169
170
171
172
173
174
175
176UD3
177
178GOTCON
179
180
181 ITEM
182
183
184
185
186SKPASC
187
188
189
190

LD NEWLN
ST NEWLNI COPY NEWLN ro NEWLMI AND INCR
ADD NEWINCR UEWLN flY NEWINOR
ST NEWLN
HEX .00 ‘NUL’ (WELL SKIP NEXT INSTRUCTION)
CPR NEWLOW .IF LOW LNO< NEW LOW THEN RANGE ERR
BNC PASS1
RTN PRINT "RANGE ERR” MESSAGE AND RETURN.
JMP RANGERR
RTN PRINT "MEM FULL” MESSAGE AND RETURN
JMP MEMFULL
INR NEWLN1 IF HI LNO <= MOST RECENT HEWLN THEN
CRR NEWLN1 RANGE ERROR.
BNC RERR

 APPLE][BASIC RENUMBER / APPEND SUBROUTINE -- PASS 2

SET CHRO, $00B0 ASCII “0”
SET CHRA, $00C0 ASCII “A"
LD PRGNDX2
CPR HMEM IP PROG INDEX = HIMEN THEN DONE PASS 2.
BC DONE
INR PRONDX2 SKIP LENIN BYTE
LDD @PRGNDX2 LINE NUMBER
ST OLDLN SAVE OLD LUD.
LD TBLSTRT
ST TBLNDX2 INIT LNO TABLE INDEX
LD NEWLOW INIT NEWLN TO NEWLOW
HEX 1C (WILL SKIP NEXT INSTR)
LD NEWLN1
AD0 NEWINCR ADD INCR TO NEWLN1.
ST NFWLN1
LD TBLNDX2 IF LNO TBL lDX = TBLND THEN DONE
SUB TELND SCANNING LNO TABLE
BC UD3
LDD @TBLNDX2NEXT LNO FROM TABLE.
SUB OLDLN LOOP TO UD2 IF NOT SAME AS OLDLN.
BNZ UD2
POPD @PRGNDX2 REPLACE OLD LNO WITH CORRESPONDING
LD NEWLN1 NEW LINE.
STD @PRGNDX2
SET STRCON, #$028 STR CON TOKEN.
HEX IC (SKIP-S NEXT TWO INSTRUCTIONS)
LDD @PRGNDX2
DCR MODE IF MODE = 0 THEN UPDATE LNO REF.
BM1 UPDATE
LD @PRGNDXBASIC TOKEN.2
CPR CHRO
BNC CHKTOK CHECK.TOKEN FOR SPECIAL.
CPR CHRA IF >= “0” AND < “A" THEN SKIP CONST
BNC GOTCON OR UPDATE.
DCR PRGNDX2
LDD @PRGNDX2` SKIP ALL. NEG. BYTES OF STR CON, REM,
BM SKPASC OR NAME.
DCR PRGNDX2
LD @PRGNDX2

 78

D49A DB
D49B 06 F7
D49D 1C 5D 00
D4A0 DC
D4A1 06F1
D4A3 08 13
D4A5 FD
D4A6 FD
D4A7 06 0F
D4A9 10 24 00
04AC DD
D4AD06 09
D4AF F0
D4B0 06 116
D4B2 10 74 00
D4B5 20
D4B6 09 01
D4B8 20
D4B9 3C
D4BA01 01

D4BC20 89 F6
D4BF 1C 4E 00
D4C2 CC
D4C0 88
D4C4 19 CA00
D4C7 69
D4C8 7C
D4C9 00
D4CA20 DF F0
D4CD20 89 F6
D4.00CC
D4Ot 28
D402 7C
D403 00
D404 60

 - - - END ASSEM

 TOTAL ERRORS:

191 CHKTOK
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208 CONTST
209 CONTS2
210

212 *
213 *
214 *
215 *
216 APPEND
217
218
219
220
221
222
220
224
225
226
227
228
229 DONE
230

BLY - - -

 00

CPR STRCON SW CON TOKEN?
BZ SKPASC YES, SKIP SUBSEOUENT BYTES.
SET REM, $0050
CPR REM REM TOKEN?
BZ SKPASC YES, SKIP SUBSEQUENT LINE
BM1 CONTST GOSUB, LOOK FOR LINE NUMBER.
DCR R13
DCR R13 (TOKEN $5F IS GOTO)
BZ CONTST
SET THEN, $0024
CR9 THEN
BZ CONTST ‘THEN’ LNO, LOOK FOR LNO.
DCR ACC
BZ P2A E0L (TOKEN 01)?
SET LIST, $0074
SUB LIST SET MODEIF LIST OR LIST COMMA.
BNM1 CONTS2 (TOKENS $74, $75)
SUB ACC CLEAR MODE FOR LNO
ST MODE UPDATE CHECK
BR ITEM

.
APPLE][BASIC APPEND SUBROUTINE

JSR SW1 6
SET SCRC, HIMEM+2
POPD @SCRC SAVE HIMEM.
ST HMEM
SET SCR9, PPL
L0D @SCR9
ST D @SCRC SET HIMEM TO PRESERVE PROGRAM.
RTN
JSR LOAD LOAD FROM TAPE
JSR SW16
P0PD @SCRC RESTORE HIMEM TO SHOW BOTH PROGRAMS
LD HMEM (OLD AND NEW)
STD RETURN
RTN
RTS

.

 79

ASM

 1 ********************************
 2 * *
 3 * 6502 RELOCATION *
 4 * SUBROUTINE *
 5 * *
 6 * 1. DEFINE BLOCKS *
 7 * *A4<A1.A2 ^Y *
 8 * (^Y IS CTRL-Y) *
 9 * *
10 * 2. FIRST SEGMENT *
11 * *A4<A1.A2 ^Y *
12 * (IF CODE) *
13 * *
14 * *A4<A1.A2M *
15 * (IF MOVE) *
16 * *
17 * 3. SUBSEQUENT SEGMENTS *
18 * *.A2 ^Y OR *.A2M *
19 * *
20 * WOZ 11-10-77 *
21 * APPLE COMPUTER INC. *
22 * *
23 ********************************

25 *
26 * RELOCATION SUBROUTINE EQUATES
27 *
28 ROL. EQU $02 SWEET 16 REG 1.
29 INST EQU $0B 3-BYTE INST FIELD.
30 LENGTH EQU $2F LENGTH CODE
31 YSAV EQU $34 CMND BUF POINTER
32 A1L EQU $3C APPLE-II MON PARAM AREA.
33 A4L EQU $42 APPLE-II MON PARAM REG 4
34 IN EQU $0200
35 SW16 EQU $F689 ;SWEET 16 ENTRY
36 INSDS2 EQU $F88E DISASSEMILER ENTRY
37 NXTA4 EQU $FCB4 POINTER INCR SUBR
38 FRMBEG EQU $01 SOURCE BLOCK BEGIN
39 FRMEND EQU $02 SOURCE BLOCK END
40 TOBEG EQU $04 DEST BLOCK BEGIN
41 ADR EQU $06 ADR PART OF INST.

8 0

D4DC A4 34
D4DE B9 00 02
D4E1 C9 AA
D4E3 D0 0C
D4E5 E6 34
D4E7 A2 07
D4E9 B5 3C
D4EB 95 02
D4ED CA
D4EE 10 F9
D4FO 60
D4F1 A0 02
D4F3 B1 3C
D4F5 99 0B 00
D4F8 88
D4F9 10 F8
D4FB 20 8E F8
D4FE A6 2F
D500 CA
D501 D0 0C
D503 A5 0B
D505 29 0D
D507 F0 14
D509 29 08
D50B D0 10
D50D 85 0D
D50F 20 99 F6
D512 22
D513 06
D514 02 06
D516 26
D517 B1
D518 02 02
D5lA A4
D51B 36
D51C 00
D51D A2 00
D51F B5 0B
D521 91 42
D523 E8
D524 20 B4 FC
D527 06 2F
D529 10 F4
D52B 90 C4
D52D 60

- - -END ASSEMBLY

TOlAL ERRORS: 00

43 *
44 * 6502 RELOCATION SUBROUTINE
45 *
46 ORG $D4DC
47 OBJ $A4DC
48 RELOC LDY YSAV CMND BUF POINTER
49 LDA IN, Y NEXT CMD CHAR
50 CMP #$AA ‘4’?
51 BNE RELOC2 NO, RELOC CODE SEQ.
52 INC YSAV ADVANCE POINTER
53 LDX .#$07
54 INIT LDA A1L, X MOVE BLOCK PARAMS
55 STA R1L,X FROM APPLE-II MON
56 DEX AREA TO SW16 AREA
57 BPL INIT R1=SOURCE BEG, R2=
58 RTS SOURCE END, R4=DEST BEG.
59 RELOC2 LDY #$02
60 GETINS LDA (A1L),Y COPY 3 BYTES TO
61 STA INST, Y SW16 AREA
62 DEY
63 BPL GETINS
64 JSR INSDS2 CALCULATE LENGTH OF
65 LDX LENGTH INST FROM OPCODE.
66 DEX 0=1 BYTE, 1=2 BYTES,
67 BNE XLATE 2=3 BYTES
68 LDA INST
69 AND #$0D WEED OUT NON-ZERO-PAGE
70 BEG STINST 2 BYTE INSTS (IMM).
71 AND #$08 IF ZERO PAGE ADR
72 BNE STINST THEN CLEAR HIGH BYTE
73 STA INST+.2
74 XLATE JSR SW16 IF ADR OF ZERO PAGE
75 LD FRMEND OR ABS IS IN SOURCE
76 CPR ADR (FRM) BLOCK THEN
77 BNC SW16RT SUBSTITUTE
78 LD ADR ADR-SOURCE SEG+DEST BEG
79 SUB FRMBEG
80 BNC SW16RT
81 ADD TOBEG
82 ST ADR
83 SW16RT RTN
84 STINST LDX #$00
85 STINS2 LDA INST. X
86 STA (A4L) -Y COPY LENGTH BYTES
87 INX OF INST FROM SW16 AREA TO
88 JSR NXTA4
89 DEC LENGTH DEST SEGMENT. UPDATE
90 BPL STINS2 SOURCE, DEST SEGMENT
91 DCC RELOC2 POINTERS. LOOP IF NOT
92 RTS BEYOND SOURCE SEQ END.

END ASSEMBLY

- - -

8 1

0535 86 D8
0537 38
0538 A2 FF
053A A5 4D
053C FS CB
D53E 95 CF
0540 E8
0541 F0 F7
0543 20 1E F1
0546 20 54 D5
0549 A2 01
054B 20 2C F1
DS4E 20 54 D5
0551 A6 D8
0553 60

1 ********************************
2 * *
3 * TAPE VERIFY *
4 * *
5 * JAN 78 *
6 * BY WOZ *
7 * *
8 * *
9 ********************************
11 *
12 * TAPE VERIFY EGUATES
13 *
14 CHKSOM EQU $2E
15 A1 EQU $3C
16 HIMEM EQU $4C ;BASIC HIMEM POINTER
17 PP EQU $CA ;BASIC BEGIN OF PROGRAM
18 PRLEN EQU $CE ;BASIC PROGRAM LENGTH
19 XSAVE EQU $D8 ;PRESERVE X-REG FOR BASIC
20 HDRSET EQU $F11E ;SETS TAPE POINTERS TO $CE.CF
21 PRGSET EQU $F12C ;SETS TAPE POINTERS FOR PROGRAM
22 NXTA1 EQU $FCBA ;INCREMENTS (A1) AND COMPARES TO (A2)
23 HEADR EQU $FCC9
24 RDBYTE EQU $FCEC
25 RD2BIT EQU $FCFA
26 RDBIT EQU $FCFD
27 PRA1 EQU $F092 ;PRINT (A1)-
28 PRBYTE EQU $FDDA
29 COUT EQU $FDED
30 FINISH EQU $FF26 ;CHECK CHECKSUM, RING SELL
31 PRERR EQU $FF2D
33 *
34 * TAPE VERIFY ROUTINE
35 *
36 0RG $D535
37 0BJ $A535
38 VFYBSC STX XSAVE ;PRESERVE X-REG FOR BASIC
39 SEC
40 LDX #$FF
41 GET LEN LDA HIMEM+1 CALCULATE PROGRAM LENGTH
42 SBC PP+1,X INTO PRLEN
43 STA PRLEN+1, X
44 INX
45 BEQ GETLEN
46 JSR HDRSET ;SET UP POINTERS
47 JSR TAPEVFY ;DO A VERIFY ON HEADER
48 LDX #$01 ;PREPARE FOR PRGSET
49 JSR PRGSET SET POINTERS FOR PROGRAM VERIFY
50 JSR TAPEVFY
51 LDX XSAVE ;RESTORE X-REG
52 RTS

 82

D554 20 FA FC
D557 A9 16
D559 20 C9 FC
D55C 85 2E
DS5E 20 FA FC
D561 A0 24
D563 20 PD PC
D566 20 P9
D568 20 FD FC
D56B A0 3B
D56D 20 EC FC
D570 F0 0E
D572 45 2E
D574 85 2E
D576 20 BA FC
D579 A0 34
D57B 90 F0
D57D 4C 26 FF
D580 EA
D581 EA
D582 EA
D583 C1 3C
D585 F0 EB
D587 48
D598 20 2D FF
D58B 20 92 FD
D58E B1 3C
D590 20 DA FD
D593 A9 A0
D595 20 ED FD
D598 A9 A8
D59A 20 ED FD
D59D 68
D59E 20 DA FD
D5A1 A9 A9
D5A3 20 ED FD
D5A6 A9 FD
D5A8 4C ED FD

- - - END ASSEMBLY

TOTAL ERRORS: 00

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

- - -

*
* TAPE VERIPY RAM IMAGE (A1.A2)
*
TAPEVPY JBR RD2BIT

LDA #$16
JSR HEADR ;SYNCHRONIZE ON HEADER
STA CHKSUM INITIALIZE CHKSUM
JSR RD2B1T

VRPY2 LDY #$24
JSR RDBIT
BCS VRFY2 CARRY SET IF READ A ‘1’ BIT
JSR RDBIT
LDY #$3B

VRFY3 JSR RDBYTE READ A BYTE
SEQ EXTDEL ALWAYS TAKEN

VFYLOOP EOR CHKSUM UPDATE CHECKSUM
STA CHKSUM
JSR NXTA1 INCREMENT A1, SET CARRY IF A1>A2
LDY #$34 ONE LESS THAN USED IN READ FOR EXTRA 12
BCC VRPY3 ;LOOP UNTIL A1>A2
JMP FINISH ;VERIPY CHECKSUMSCRING BELL

EXTDEL NOP ;EXTRA DELAY TO EQUALIZE TIMING
NOP ; (+12 USEC)
NOP
CMP (AI,X) BYTE THE SAME?
BEQ VFYLOOP IT MATCHES, LOOP BACK
PHA ;SAVE WRONG BYTE FROM TAPE
JSR PRERR ;PRINT “ERR”
JSR PRA1 ;OUTPUT (A1)"-"
LDA (A1),Y
JSR PRBYTE OUTPUT CONTENTS OP A1
LDA #$A0 PRINT A BLANK
JSR COUT
LDA #$AB ; ‘(’
JSR COUT
PLA ;OUTPUT BAD BYTE FROM TAPE
JSR PRBYTE
LDA #$A9 ; ‘(’
JSR COUT
LDA #$8D;CARRIAGE RETURN, AND RETURN TO CALLER
JMP COUT

 83

:ASM
 1 ***************************
 2 * *
 3 * RAMTEST *
 4 * *
 5 * BY WOZ *
 6 * 6/77 *
 7 * *
 8 * COPYRIGHT 1978 BY: *
 9 * APPLE COMPUTER INC *
10 * *
11 ***************************

13 *
14 * EQUATES:
15 *
16 DATA EQU $0 TEST DATA $00 OR $FF
17 NDATA EQU $1 INVERSE TEST DATA.
18 TESTD EQU $2 GALLOP DATA
19 R3L EQU $6 AUX ADR POINTER
20 R3H EQU $7
21 R4L EQU $8 AUX ADR POINTER.
22 R4H EQU $9
23 R5L EQU $A AUX ADR POINTER.
24 R5H EQU $D
25R6L. EQU $C GALLOP BIT MASK.
26 R6H EQU $D ($0001 TO 2^N)
27 YSAV EQU $34 MONITOR SCAN INDEX.
29 A1H EQU $3D BEGIN TEST BLOCK ADR.
29 A2L EQU $3E LEN (PAGES) FROM MON.
30 SETCTLY EQU $D5B0 ;SET UP CNTRL - Y LOCATION
31 PRBYTE EQU $FDDA BYTE PRINT SUSR.
32 COOT EQU $FDED Cl-fAR OUT SUEBR
33 PRERR EQU $FF2D PRINTS ‘ERR - BELL’
34 BELL EQU $FF3A

 84

D5BC A9 C3
D5BE A0 D5
D5CO 4C B0 D5
D5C3 A9 00
DSC5 20 D0 05
D508 A9 FF
D5CA 20 D0 D5
D500 4C 3A FF
D500 85 00
D502 49 FF
D504 85 01
D506 A5 3D
D508 85 07
DSDA 85 09
D500 85 0B
D50E A0 00
D5E0 84 06
D5E2 84 08
D5E4 84 0A
D5E6 A6 3E
D5EB A5 00
D5EA 91 08
D5EC C8
D5ED D0 FB
D5EF E6 09
D5FI CA
D5F2 D0 F6
D5F4 A6 3E
D5F6 B1 06
D5P9 C5 00
D5FA F0 13
D5FC 48
D5FD A5 07
D5FF 20 DA FD
D602 98
D603 20 8A D6
D606 A5 00
D606 20 8A D6
D606 68
D60C 20 7F D6
D60F C8
D610 D0 E4
D612 E6 07
D614 CA
D615 D0 DF
D617 A6 3E
D619 A5 01
D618 91 0A
D610 84 0D
D61F 64 0C
D621 E6 0C
D623 A5 01
D625 20 45 D6
D628 A5 00
D62A 20 45 D6
D620 06 0C
D62F 26 0D
D631 A5 0D

36 •
37 *
38 *
39
40
41 SETUP
42
43
44 RAMTST
45
46
47
48
49 TEST
50
51
52
53
54
55
56
57
58
59
60
61
62 TEST0I
63
64
65
66
67
68
69 TEST02
70
71
72
73
74
75
76
77
78
79
80
81TEST03
82
83
84
85
86
87TEST04
88
89
90
91
92TEST05
93
94
95
96
97
98

RAMTEST

ORG
OBJ
LDA
LDY
JMP
LDA
JSR
LDA
JSR
JMP
STA
E0R
STA
LDA
STA
STA
STA
LDY
STY
STY
STY
LDX
LDA
STA
INY
BNE
INC
DEX
BNE
LDX
LDA
CMP
BEQ
PHA
LDA
JSR
TYA
JSR
LDA
JSR
PLA
JSR
INY
BNE
INC
DEX
BNE
LDX
LDA
STA
STY
STY
INC
LDA
JSR
LDA
JSR
ASL
ROL
LDA

 85

$D5BC
$A5BC
#$C3 ;SET UP CNTRL-V LOCATION
#$D5
SETCTLY
#$0 TEST FOR $00.
TEST
#$FF THEN $FF.
TEST
BELL
DATA
#$FF
NDATA
A1H
R3H INIT (R3L, R3H)
R4H (R4L, R4H), (R5L, R5H)
A4H TO TEST BLOCK BEGIN
#$0 ADDRESS.
R3L
R4L
R5L
A2L LENGTH (PAGES).
DATA
(R4L), Y SET ENTIRE TEST
BLOCK TO DATA.
TEST01
R4H

TEST01
A2L
(R3L).Y VERIFY ENTIRE
DATA TEST BLOCK.
TEST03
PRESERVE BAD DATA.
R3H
PRBYTE PRINT ADDRESS,

PRBYSP
DATA THEN EXPECTED DATA,
PRBYSP
THEN BAD DATA,
PRBYCR THEN ‘ERR-BELL’.

TEST02
R3H

TEST02
A2L LENGTH.
NDATA
(R5L),Y SET TEST CELL TO
R6H NDATA AND R6
R6L (GALLOP BIT MASK)
R6L TO $0001.
NDATA
TEST6 GALLOP WITH NDATA
DATA
TEST6 THEN WITH DATA.
R6L
R6H SHIFT GALLOP BIT
R6H MASK FOR NEXT

D633 C5 3E
D635 90 EC
D637 A5 00
D639 91 0A
D63B E6 0A
D63D D0 DA
D63F E6 0B
D641 CA
D642 D0 D5
D644 60
D645 85 02
D647 A5 0A
D649 45 0C
D64B 85 08
D64D A5 0B
D64F 45 0D
D651 85 09
D653 A5 02
D655 91 08
D657 B1 0A
D659 C5 01
D65B F0 E7
D65D 48
D65E A5 0B
D660 20 0A FD
D663 A5 0A
D665 20 8A D6
D668 A5 01
D66A 91 0A
D66C 20 8A D6
D66F 68
D670 20 8A D6
D673 A5 09
D675 20 DA FD
D678 A5 08
D67A 20 8A D6
D67D A5 02
D67F 20 8A D6
D682 20 2D FF
D685 A9 8D
D687 4C ED FD
D69A 20 DA FD
D63D A9 A0
D6SF 4C ED FD

03F8 4C C3 D5

- - - END ASSEMSLY

TOTAL ERRORS: 00

 99
100
101
102
103
104
105
106
107
108 RTSI
109 TEST 6
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 PRBYCR
137
138
139
140 PRBYSP
141
142
143
144 USRLOC

- - -

CMP
BCC
LDA
STA
IPNC
BNE
INC
DEX
BNE
RTS
STA
LDA
EOR
STA
LDA
EUR
STA
LDA
STA
LDA
CMP
BEG
PHA
LDA
JSR
LDA
JSR
LDA
STA
JSR
PLA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
JSR
LDA
JMP
JSR
LDA
JMP
ORG
JMP

86

A2L NEIGHBOR. DONE
TEST05 IF > LENGTH.
DATA
(R5L),Y RESTORE TEST CELL.
R5L
TEST04
R5H INCR TEST CELL
POINTER AND DECR
TEST04 LENGTH COUNT.

TESTD SAVE GALLOP DATA.
R5L
R6L SETR4 TO R5
R4L EX - OR R6
R5N FOR NEIGHBOR
R6H ADDRESS (1 BIT
R4H DIFFERENCE)
TESTD
(R4L) Y GALLOP TEST. DATA.
(R5L),Y CHECK TEST CELL
NDATA FOR CHANGE.
RTSI (OK).
PRESERVE FAIL DATA.
R5N
PRBYTE PRINT TEST CELL
R5L ADDRESS,
PRBYSP
NDATA
(R5L),Y (REPLACE CORRECT DATA)
PRBYSP THEN TEST DATA BYTE.

PRBYSP THEN FAIL DATA,
R4H
PRBYTE
R4L THEN NEIGHBOR ADR,
PRBYSP
TESTD THEN GALLOP DATA.
PRBYSP OUTPUT BYTE, SPACE.
PRERR THEN ‘ERR-BELL’.
#$8D ASCII CAR. RETURN.
COUT
PRBYTE
#$A0 OUTPUT BYTE. THEN
COUT SPACE.
$3F8
RAMTST ENTRY PROM MON (CTRL—Y)

.

D717 4C 4E D7

D71A A4 01
D71C AD 30 C0
D71F E6 02
D721 D0 05
D723 E6 03
D725 D0 05
D727 60
D728 EA
D729 4C 2C D7
D72C 88
D72D f0 05
D72F 4C 32 D7

D732 D0 EB
D34 A4 00
D736 AD 30 C0
D739 E6 02
D73B D0 05
D73D E6 03
D7SF D0 05
D741 60
D742 EA
D743 4C 46 D7
D746 88
D747 F0 D1
D749 4C 4C D7
D74C D0 EB

4 *
5 * MUSIC SUBROUTINE
6*
7* GARY J. SHANNON
8*

10 ORG $D717
11 *
12 * ZERO PAGE WORK AREAS
13 * PARAMETER PASSING AREAS
14
15 DOWNTIME EQU $0
16 UPTIME EQU $1
17 LENGTH EQU $2
18 VOICE EQU $2FD
19 LONG EQU $2FE
20 NOTE EQU $2FF
21 SPEAKER EQU $C030
22 ENTRY JMP LOOKUP
23 *
24 * PLAY ONE NOTE
25 *
26 * DUTY CYCLE DATA IN ‘UPTIME’ AND
27 * ‘DOWNTIME’, DURATION IN LENGTH’
28 *
29 *
30 * CYCLE IS DIVIDED INTO ‘UP’ HALF
31 * AND ‘DOWN’ HALF
32 *
33 PLAY LDY UPTIME ; GET POSITIVE PULSE WIDTH
34 LDA SPEAKER ; TOGGLE SPEARER
35 PLAY2 INC LENGTH ; DURATION
36 BNE PATH1 ; NOT EXPIPED
37 INC LENGTH=1
38 BNE PATH2
39 RTS ; DURATION EXPIRED
40 PATH1 NOP ; DUMMY
41 JMP PATH2 ; TIME ADJUSTMENTS
42 PATH2 DEY ; DECREMENT WIDTH
43 BEG DOWN ; WIDTH EXPIRED
44 JMP PATH3 ; IF NOT, USE UP
45 *
46 * DOWN HALF OF CYCLE
47
48 PATH3 BNE PLAY2 ; SAME # CYCLES
49 DOWN LDY DOWNTIME ; GET NEGATIVE PULSE WIDTH
50 LDA SPEAKER : TOGGLE SPEAKER
51 PLAY3 INC LENGTH ; DURATION
52 BNE PATH4 ; NOT EXPIRED
53 INC LENGTH+1
54 BNE PATH5
55 RTS ; DURATION EXPIRED
56 PATH4 NOP ; DUMMY
57 JMP PATH5 ; TIME ADJUSTMENTS
58 PATH5 DEY ; DECREMENT WIDTH
59 BEQ PLAY ; BACK TO UP-SIDE
60 JMP PATH6 ; USE UP SOME CYCLES
61 PATH6 BNE PLAY3 ; REPEAT

 87

D74E AD FF 02
D751 0A
D752 A8
D753 B9 96 D7
D756 85 00
D758 AD FD 02
D752 4A
D75C F0 04
D75E 46 00
D760 D0 P9
D762 B9 96 D7
D765 38
D766 E5 00
D768 85 01
D76A C8
D762 B9 96 D7
D76E 65 00
D770 85 00
D772 A9 00
D774 38
D775 ED FE 02
D778 85 03
D77A A9 00
D77C 85 02
D77E A5 01
D780 D0 98

D782 EA
D783 EA
D784 4C 87 07
D787 E6 02
D789 D0 05
D788 E6 03
D780 D0 05
D78F 60
D790 EA
D791 4C 94 D7
D794 D0 EC

 62 *
 63 * NOTE TASLE L00~SUP SUDROUTINE
 64*
 65* GIVEN NOTE NUMBER IN ‘NOTE’
 66* DURATION COUNT IN ‘LONG’
 67* FIND ‘UPTIME’ AND ‘DOWNTIME’
 68* ACCORDING TO DUTY CYCLE CALLED
 69* FOR BY ‘VOICE’
 70*
 71LOOKUP LDA NOTE GET NOTE NUMOER
 72 ASL ; DOUBLE IT
 73 TAY
 74 LDA NOTES, Y ; GET UPTIME
 75 STA DOWNTIME ; SAVE IT
 76 . LDA VOICE ; GET DUTY CYCLE
 77SHIFT LSR
 78 BEQ DONE ; SHIFT WIDTH COUNT
 79 LSR DOWNTIME ; ACCORDING TO VOICE
 90 BNE SHIFT
 81DONE LDA NOTES, Y ; GET ORIGINAL
 82 SEC
 83 SBC DOWNTIME ; COMPUTE DIFFERENCE
 84 STA UPTIME ; SAVE IT
 85 INY ; NEXT ENTRY
 86 LDA NOTES,Y ; GET DOWNTIME
 87 ADC DOWNTIME ; ADD DIFFERENCE
 88 STA DOWNTIME
 89 LDA #0
 90 SEC
 91 SBC LONG ; GET COMPLIMENT OF DURATION
 92. STA LENGTH+1 MOST SIGNIFICANT BYTE
 93 LDA #0
 94 STA LENGTH.
 95 LDA UPTIME
 96 BNE PLAY IF NOT NOTE #0, PLAY IT
 97
 98* ‘REST’ SUBROUTINE’ PLAYS NOTE #0
 99* SILENTLY, FOR SAME DURATION AS
100* A REGULAR NOTE
1 0 1 *
102REST NOP ; DUMMY
103 NOP ; CYCLE USERS
104 JMP REST2 ; TO ADJUST TIME
105REST2 . INC LENGTH
106 BNE REST3
107 INC LENGTH+ 1
108 BNE REST4
109 RTS ; IF DURATION EXPIRED
110RESTS NOP ; USE UP ‘INC’ CYCLES
111 JMP REST4
112REST4 BNE REST ; ALWAYS TAKEN

 88

D796 00 00 F6
D79E CF CF C3
D7A6 A4 A4 9B
D7AE 82 82 7B
D7B6 67 68 61
D7BE 52 52 4D
D7C6 41 41 3D
D7CE 33 34 30
D7D6 29 29 26
D7DE 20 21 1E
D7E6 1A 1A 18
D7EE 14 15 13
D7F6 10 10 0F

 - - - END ASSEMBLY

TOTAL ERR0RS: 00

113 *
114 * NOTE TABLES
115 *
116 HEX 00, 00, F6, F6,E8, E8, DB,DB
117 HEX CF, CF,C3,C3,B8, B8,AE, AE
118 HEX A4, A4,9B,9B,92, 92, 8A, 8A
119 HEX 82, 82, 7B,7B,74, 74, 6D, 6E
120 HEX 67, 68, 61, 62,5C, 5C,57, 57
121 HEX 52, 52, 4D,4E,49, 49, 45, 45
122 HEX 41, 41, 3D,3E,3A, 3A,36, 37
123 HEX 33, 34, 30, 31,2E, 2E, 2B, 2C
124 HEX 29, 29, 26, 27 ,24 , 25, 22, 23
125 HEX 20, 21, 1E, 1F,1D, 1D,1B, 1C
126 HEX 1A, 1A,18, 19,17, 17, 15, 16
127 HEX 14, 15, 13, 14,12, 12, 11, 11
128 HEX 10, 10, 0F, 10,0E, 0F

- - -

8 9

9 0

APPENDIX II
SUMMARY OF

PROGRAMMER'S
AID COMMANDS

92 Renumber

92 Append

92 Tape Verify (BASIC)

93 Tape Verify (Machine Code & Data)

93 Relocate (Machine Code & Data)

94 RAM Test

94 Music

95 High-Resolution Graphics

96 Quick Reference to High-Resolution Graphics Information

9 1

Chapter 1: RENUMBER
(a) To renumber an entire BASIC program:

CLR
START = 1000
STEP = 10
CALL —10531

(b) To renumber a program portion:

CLR
START = 200
STEP = 20

FROM = 300 (program portion
TO = 500 to be renumbered)

CALL —10521

Chapter 2: APPEND
(a) Load the second BASIC program, with high line numbers:

LOAD

(b) Load and append the first BASIC program, with low line numbers:

CALL —11076

Chapter 3: TAPE VERIFY (BASIC)
(a) Save current BASIC program on tape:

SAVE

(b) Replay the tape, after:

CALL —10955

9 2

Chapter 4: TAPE VERIFY (Machine Code and Data)

(a) From the Monitor, save the portion of memory on tape:

address1 . address2 W return

(b) Initialize Tape Verify feature:

D52EG return

(c) Replay the tape, after:
address1 . address2 ctrl Y return

Note: spaces show within the above commands are for easier
reading only; they should not be typed.

Chapter 5: RELOCATE (Machine Code and Data)

(a) From the Monitor, initialize Code-Relocation feature:

D4D5G return

(b) Blocks are memory locations from, which program runs .
Specify Destination and Source Block parameters:

Dest Blk Beg < Source Blk Beg . Source Blk End ctrl Y * return

(c) Segments are memory locations where parts of program
reside. If first program Segment is code, Relocate:

Dest Seg Beg < Source Seg Beg Source Seg End ctrl Y return
If first program Segment is data. Move:

Dest Seg Beg < Source Seg Beg . Source Seg End return

(4) In order of increasing address, Move subsequent
contiguous data Segments:

• Source Segment End ctrl Y return

and Relocate subsequent contiguous code Segments:

• Source Segment End M return

Note: spaces show within the above commands are for easier
reading only; they should not be typed.

9 3

Chapter 6: RAM TEST

(a) From the Monitor, initialize RAM Test program:

D5BCG return

(b) To test a portion of memory:

address • pages ctrl Y return (test begins at address,
continues for length pages.

Note: test length. pages*l00, must not be greater than
starting address. One page = 256 bytes ($100 bytes, in Hex).

(c) To test more memory, do individual tests or concatenate:

addr1.pagesl ctrl Y addr2.pages2 ctrl Y Addr3.pages3 ctrl Y return

Example, for a 48K system:

400.4 ctrl Y 800.8 ctrl Y 1000.10 ctrl Y 2000.20 ctrl Y
3000.20 ctrl Y 4000.40 ctrl Y 7000.20 ctrl Y 8000.40
ctrl Y return

(d) To repeat test indefinitely:

N complete test 34:0 type one space return

Note: except where specified in step (d), spaces shown within the above
commands are for easier reading only; they should not be typed.

Chapter 7: MUSIC

(a) Assign appropriate variable names to CALL and POKE locations (optional):

MUSIC = -10473
PITCH = 767
TIME = 766
TIMBRE = 765

(b) Set parameters for next note:

POKE PITCH, p (p =1 to 50; 32 = middle C)
POKE TIME, m (m = 1 to 255; 170 = 1 second)
POKE TIMBRE, t (t = 2, 8, 16, 32 or 64)

(c) Sound the note:

CALL MUSIC

9 4

Chapter 8: HIGH-RESOLUTION GRAPHICS

(a) Set order of parameters (first lines of progratn):

1 X0 = Y0 = COLR
2 SHAPE = ROT = SCALE (if shapes are used)

(b) Assign appropriate variable names to subroutine
calling addresses (optional; omit any subroutines
not used in program):
10 INIT = —12288 CLEAR = —12274 BKGND = —11471
11 POSN = —11527 PLOT = —11506 LINE = —11500
12 DRAW = —11465 DRAWl = —11462
13 FIND = —11780 SHLOAD =—11335

(c) Assign appropriate variable names to color values
(optional; omit any colors not used in progran):
20 BLACK = 0 : LET GREEN = 42 : VIOLET = 85
21 WHITE = 127 : ORANGE = 170 : BLIJE 213
22 BLACK2 = 128 : WHITE2 = 255

(d) Initialize:

30 CALL INIT

(e) Change screen conditions, if desired. Set appropriates
parameter values, and CALL desired subroutines by name.

Example:

40 COLR = VIOLET : CALL BKCND : REM : TURN BACKGROUND VIOLET
50 FOR I = 0 TO 279 STEP 5
60 X0 = 140 : V0 = 150 : COLR = WHITE : REM SET PARAMETERS
70 CALL POSN : REM MARK THE ‘CENTER’
80 X0 = 1 : Y0 = 0 : REM SET NEW PARAMETERS
90 CALL LINE : REM DRAW LINE TO EDGE
100 NEXT I : END

9 5

QUICK REFERENCE TO HIGH-RESOLUTION INFORMATION

Subroutine CALLing Patameters
Name Address Needed

INIT —12288
CLEAR —12274
BKGND —11471 COLR
POSN —11527 X0, Y0. COLR X0,
PLOT —11506 Y0, COLR
LINE —11300 X0, Y0, COLR
DRAW —11463 X0, Y0, COLR, SHAPE, ROT. SCALE
DRAW1 —11462 SHAPE, ROT, SCALE
FIND —11780
SHLOAD —11335

Color COLR Color COLR
Name Value Name Value

BLACK 0 BLACK2 128
GREEN 42 ORANGE 170
VIOLET 85 BLUE 213
WHITE 127 WHITE2 255

(Note: on systems below S/N 6000. colors in the second
column appear identical to those in the first column)

CHANGING THE High-Resolution GRAPHICS DISPLAY

Full—Screen Graphics POKE —16302, 0
Mixed Graphics—Plus—Text (Default) POKE —16301, 0
Page 2 Display POKE —16299, 0
Page 1 Display (Normal) POKE —16300, 0
Page 2 Plotting POKE 806, 64
Page 1 Plotting (Default) POKE 806, 32

(Note: CALL INIT sets mixed graphics—plus—text, and Page 1 plotting,
but does not reset to Page 1 display.)

Collision Count for Shapes PEEK (810)

(Note: the change in PEEKed value indicates collision.)

96

	Untitled

