ATARI
APPLE

TRS-80 COLOR
TRS-60 MOD il

COMMODORE VIC-20
IBM

CONPUTER

MANUAL

THE PERSONAL COMPUTER
BASIC(S) REFERENCE MANUAL

DONALD A. SORDILLO

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Sordillo, Donaid A , (date)
The personal computer BASIC(S) reference manual

1. Microcomputers—Programming. 2 Basic (Computer
program language) 1 Title II. Title: Personal
computer B.A.S L.C{S) reference manual
QA76.6.5648 1983 001.64'2 83-9463
ISBN 0-13-658047-5

Editorial/production supervision

and interior design: LYNN FRANKEL
Cover design: PHOTO PLUS ART (Celine A. Brandes)
Manufacturing buyer: GORDON OSBOURNE

© 1983 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced, in any form or by any means,
without permission in writing from the publisher.

NOTE: As of April 1983, IBM released Version 2.0 of BASIC. Since BASIC 1.0
and 1.1 are subsets of Version 2.0, a program written following this book
will work under the new system. However, a program written using
BASIC 2.0 may contain features not described in this book.

The Apple Ile and Franklin 1000 use the same BASICs as Apple Integer
and Applesoft. The TRS 64K Color and TRS Color 2 use the same
BASICs as TRS Color, Standard and Extended.

Printed in the United States of America

109 87 65 4 3 2

ISBN 0-13-L58047-5

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

To Ben Gurley

s A 5oL, - . s ,
ExeIVoC Ny 0 AyvoG o yaiduevoC yoi daivay

PREFACE

This book is a reference manual of Personal Computer BASIC that covers in depth the IBM,
Apple, Atari, TRS Color, TRS Mod III, and Commodore VIC-20 computers. It is intended
for the person who:

e Is considering purchasing a personal computer and wants a fast and inexpensive
way of comparing functionality among the various systems; or who wants to
make sure that a system on the short list is indeed suitable for the intended
application.

e Is writing software for commercial purposes and wants to have the product
appeal to the widest possible market segment, and not risk cutting out a major
part of the market because of an unfortunate choice of instructions when other
ones, more widely applicable, are available.

e Wants to convert a program from one system to another and needs a sup-
plement to the computer manufacturer’s documentation, especially for the un-
familiar system.

e Like the author, has a mind like a sieve and needs to refer constantly to a
reference manual for the rules for the machine on which he or she is currently
working.

However, this book does not try to be all things to all people. In particular, it does not
attempt to document obscure, obsolete, “big” or foreign machines just so it can boast of
being the only volume to document an Urdu dialect of BASIC that is used only by a small
band of holy men in the Himalayas. To follow this route would either produce so much
useless clutter as to obscure the useful information, or would result in only similarities being
described, not differences.

This book has taken the opposite of the “universal” approach. By concentrating only on
personal computers and by limiting the number of systems it covers, it is able to document
each system fully. The computers covered account for over 90% of personal computers, and
include machines with a wide range of functionality (and price), varying from the IBM
Personal Computer to “game” machines. In addition, it ties specific functionalities to specific
manufacturers—one never has to wonder: “Does my machine do this or not?”

One of the aims of the book is to have all the information about a topic in one place. This
means all the information for all the systems covered. There is no “For machine A’s pecu-
liarities, see Appendix 1; for machine B’s, see Appendix 2; for machine (s, see the manufac-
turer’s documentation; for machine D’s, pray.” This causes some duplication of material, to
be sure; but it relieves the reader from having to flip all over the book to get the necessary
information.

By “all the information” is meant just that. All instructions, even input/output instructions
and those of the various Disk Operating Systems, are included. (After all, how many pro-
grams only compute?) The documentation has been as thorough and comprehensive as
possible. Nothing has been intentionally left out because “the field has not yet stabilized.”
This book identifies which BASIC does what. It treats not Just the similarities (which are fairly
self-evident) but also the differences, especially the subtle ones that make some BASIC sys-
tems more equal than others.

vi

PREFACE

Another useful feature is extensive cross-referencing—there are more than 600 cross-
references that direct the reader from one topic to others whose existence (or relevance) may
not be obvious. Furthermore, there are over 200 charts following the BASIC keywords. These
charts not only indicate the format of the command that each system uses and list which
application notes apply, but when different systems use alternate commands to perform the
same function, this too is documented.

Only the BASIC language and the statements, commands, and so on, that can be issued from
a BASIC program are documented. Command-level aspects of the various operating systems,
such as editing and the like, are, in general, not treated. Where meaningful, examples of the
instructions have been included. All the examples have been tested; but this does not neces-
sarily mean that the reader’s results will be exactly the same.

This book is based on the most up-to-date information, but omnia mutantur, especially in the
personal computer field. There is no way of predicting what changes a manufacturer will
introduce. The final authority has to be the manufacturer’s documentation.

As mentioned, this book will be useful to a person who is deliberating over the choice of a
system. But a BASIC should not be judged simply by the number of instructions it supports.
A better criterion is how easily it can perform the application for which you are buying it. If
one’s primary purpose is to play games or draw pictures, the most expensive system is not
necessarily the best. That is why a perusal of the various charts will prove very useful before
one makes a final decision as to which computer to purchase. ANSI minimal BASIC has been
included because it is the only industry-wide standard in existence. As one will observe, it is
just that: “minimal.” There is virtually no system that does not exceed it.

I wish to thank the staff of Computerland in Nashua, New Hampshire, for allowing me
“hands on” browsing on many different machines. Special thanks go to the manager, Johna-
than Wood, and to Susan Maras. Without their kindness it would have taken much more
time (and expense) to produce this book.

The BASIC systems covered by this book, the manufacturers, and the registered trademarks
that are referred to are:

ATARI 400/800 Commodore VIC-20

Atari Corp. Commodore Business Machines, Inc.
Sunnyvale, CA 94086 King of Prussia, PA 19406

Registered trademarks: ATARI, 400/800. Registered trademarks: VIC-20.

Apple, Applesoft, Apple DOS IBM

Apple Computer, Inc. International Business Machines Corp.
Cupertino, CA 95014 Boca Raton, FL 33432

Registered trademarks: Apple, Apple I, Registered trademarks: IBM, MS-DOS.

Applesoft, Applesoft II.

TRS Color, TRS Mod III Microsoft Consumer Products
Radio Shack 400 108th Ave. NE, Suite 200
Fort Worth, TX 76102 Bellevue, WA 98004

Registered trademarks: TRS—80

TO THE READER vii

TO THE READER

In writing this book certain conventions have been followed; some standard, some invented.
These conventions, and tacit assumptions are listed below. They should be read before one
tries to use this book, in order to realize its utility fully.

1.

=

10.

Now that you've read this far, before doing anything with the book, read the
entry “Format.” It will explain how to interpret the formats for the various
statements. Since there is no standard system of designating formats, I have
tried to use the best from several systems.

. Entries are in ASCII order. In particular this means that INPUT comes before

INPUT #, and TRAP before trap.

. The book was not written as an iron-clad legal document. I have chosen to be

colloquial and clear, rather than pedantically precise and obscure. So if a pa-
rameter is described as “must be between 0 and 15,” a value over 15 or under 0
may cause an error; may not cause an error but may give erroneous results; or
may, if positive, be taken modulo 16. The point is that there is nothing to be
gained by bloating the book to cover every possible misuse of a statement. For
those whose only delight is in showing how, under a highly improbable set of
conditions, a certain statement is incorrect, I say, “Enjoy!”

. The various disk operating systems (DOS) were assumed to include the most

powerful BASIC available with the system, even if, strictly speaking, this is not
true. That is why, for example, Apple DOS is documented as if all of Applesoft
BASIC were part of it, even though it could be used with Integer BASIC.

- The examples in this book are intended to be just that—illustrations of the

various features of BASIC, not a manifestation of programming virtuosity. As
such, they are often banal and many would not be used, as is, in a program. On
the other hand, by eliminating as much irrelevant matter as possible, they fulfill
their purpose—that of demonstrating how a particular feature works. Due to
variances among the different systems, the results of numeric examples will
probably not be exactly as shown in the book;; they should be close, however.

. Unless otherwise noted, numeric values can be expressions.
. The term “Carriage Return” has been used to describe the key used to enter

values, terminate lines, and the like, even though most terminals do not have a
moving carriage. It is the key that generates an ASCII 13; some systems may
call it by a different name.

. The word “CONTROL-” followed by a key means to press the control key and

the designated key together. (On some systems the control key may have a
different name.) If two or more keys must be pressed together, a plus sign (+) is
used between them: CTL + ALT + Z.

. When characters are associated with an ASCII code, this association applies to

screens only. Most modern printers support multiple character sets, so a given
code can produce different characters, even on the same printer. Because of this,
and the fact that there are a plethora of printers available for personal com-
puters, no attempt has been made to document these codes.

Although every effort has been made to make this book accurate, the author
and publisher cannot be responsible for changes made by the manufacturers in
their quest to improve their products.

viii

STRUCTURE OF AN ENTRY

Structure of an Entry

An entry begins with a keyword in the margin, which identifies the entry. If the entry does not
concern a BASIC statement, it is usually either a definition or a table or chart. This type of
entry is largely self-explanatory. The following discussion deals with those entries that do
explain BASIC statements.

Following the keyword is a brief description of what the statement does.

Next is a format which shows how the statement is used in a program. If the statement can
appear in more than one discrete way, multiple formats are used. (This is important for
statements that are used in two totally different ways, such as GET or PUT.)

Then, a detailed description of how each format operates is given, with programming exam-
ples when meaningful.

Following the entry proper is a chart that also contains the keyword. This chart indicates
which systems support the statement and, if there are multiple formats for the statement,
which format each system supports. If a system does not support the feature, but has the same
functionality under a different name, this is also indicated. (If all systems support a feature, or
if only one does, then a statement to this effect is put at the end of the description instead of a
chart.)

If a system deviates from the general explanation, numerals in the chart indicate which of the
notes following the chart are applicable. It is these notes that document the individual
differences of each system.

Thus the reader can first get a general idea of the way a statement works, and then find out
exactly how the statement works for the particular system or systems of interest.

Following is an example of the charts that follow the entries and an explanation of the
various fields.

When there is more than
one format, those supported

by the system are indicated
by number. \ NAME OF ENTRY
System In | Format| Notes | Alternate Commands
Integer
Applesoft
APPLE PP
DOS
Microsoft
Cassette
IBM Disk
Advanced .
Level I f T
TRS Mod III | Exter
— When there are
differences from When the same
An ‘X’ means the topic as function is called
the system supports described, they by a different name
the feature. are listed after in another system,
the chart as a it is noted here.

series of notes.

ABS Format
ABS (arithmetic-expression)

The absolute value function, ABS, has as its value the absolute value of the
expression.

The absolute value of a number, X (written | X), is defined as X if X is
greater than or equal to zero, and as — X if X is less than zero. Simply
stated, it is the number without its sign. So ABS(X) = ABS(—X) = X.

Example

100 X = —10

120 Y = ABS(X)

140 PRINT Y, ABS(—15), ABS(X + 15)
Output

10 15 5
All BASICs support the ABS function.

See: function.

address An address is a fixed location in memory. It can be expressed as absolute, in
which case it is a numerical value that designates a particular location, or
relative, in which case it is specified as a positive or negative offset from
some fixed reference point.

Example

Address Contents

0100 D
0101 A
0102 S
0103 19

Location 0100 is the absolute address of the byte that contains the letter
“D.” If we use this as our base address or reference point, the relative

ADR

algorithm

ADR

address of the cell containing the value 19 is + 3; that of the one containing
the letter “S” is + 2. If the location of the letter “S,” 0102, is chosen as the
reference point, the relative address of the letter “D” is —2, that of 19 is
+1.

Format
ADR (string-variable)

The address function, ADR, has as its value the address, in decimal, of the
specified string.

The ADR function is supported only by ATARIL

See: VARPTR, VARPTRS.

An algorithm is a set of instructions which, if followed, will guarantee an
answer to any problem of a given type. For example, given a number, X, it
is desired to find the value of e*, where e is the base of the natural loga-
rithms. The following algorithm solves the problem for any value of X. This
algorithm makes use of the fact that

X2 X3 X"
X - — [,
€ —I+X+2!+3!+n!

Step 1. Set I = 0and SUM = 0.
Step 2. Calculate X'/I! (Recall that 0! = 1))
Step 3. Add the result of step 2 to SUM.

Step 4. If the value of SUM is at the desired precision, stop. If not,
continue with step 5.

Step 5. Add 1to I.
Step 6. Go back to step 2.

An algorithm for playing a single game of dice is:

Step 1. Roll the dice and read the sum.

Step 2. If the sum is 2, 3, or 12, you lose.

Step 3. If the sum is 7 or 11, you win.

Step 4. If the sum is anything else, it is your “point”; continue below.
Step 5. Roll the dice and read the sum.

Step 6. If the sum is 7, you lose.

Step 7. If the sum equals the point, you win.

Step 8. If you have neither won nor lost, go to step 5.

aiphabetic
character

alpha-
numeric
character

AND

AND 3

An alphabetic character is any of the characters

{A, B’ -‘7 D? E’ F) G7 H’ I, J’ K’ L’ M’ N‘) OD P’ Q’
R,S,T,U,V,W, XY, Z}

In some implementations the lowercase letters are also considered alphabe-
tic characters.

See: numeric character.

An alphanumeric character is any of the characters

3 ,F,G,H,I,J,K,L,M,N,O,P,Q,

(A,B,C,D,E
RS, T,U,V,W,X, Y,Z,0,1,2,3,45,6,7,8, 9}

C

s Wy Ta

In some implementations the lowercase letters are also considered alphanu-
meric characters. In IBM documentation this class is sometimes called

“alphameric.”

See: numeric character.

Format
argument-1 AND argument-2

AND is a logical function of two arguments. It has a value of true if both of
the arguments are true and a value of false, otherwise.

The arguments can be relations, logical variables, or anything that can be
evaluated as true or false. For example:

(X > 5) AND (Y < YMAX)

P AND Q
Truth Table for AND
P q PpANDg
F F F
F T F
T F F
T T T
Example

IF X >5AND Y < = YMAX THEN GOTO 100

APPEND

argument

APPEND

In this example, the GOTO is executed only if, when the relation is evalu-
ated, both X is greater than 5, and Y is less than or equal to YMAX.

All BASIC systems support AND.

See: logical functions, NOT, OR.

Format
APPEND file-name [,Ddrive] [,Sslot] [,Vvolume]

The APPEND command opens the specified file and positions the record
pointer to the end of the file. Data subsequently written to the file will be
put just after the last data currently in the file. If a READ is executed after
an APPEND, it will cause an error. APPEND should not be followed by
an OPEN statement since OPEN sets the record pointer to the beginning
of the file.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement

PRINT CHRS(4); “APPEND MYFILE,D1,S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive 1or2 Drive 1
slot lto7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

APPEND is supported only by Apple DOS.

See: OPEN.

An argument is the independent variable of a function: that is, the value
that is supplied to the function. The function, in turn, manipulates the
argument to obtain a result which is the function’s value for that argument.

For example, consider the square root function in the statement
Y = SQR(X). The function is SQR, its argument is X; its value, which will
be assigned to Y, depends on the value chosen for X.

A function can have zero, one, or multiple arguments.

See: dummy variable.

arithmetic
expression

arithmetic
operations

ARITHMETIC OPERATIONS 5

An arithmetic expression is:

1. A numeric constant, or

2. A numeric variable, or

3. A numeric function, or

4. Two numeric constants, variables, and/or functions combined by
an arithmetic operator, or

5. An arithmetic expression in parentheses combined with any other
arithmetic expression.

Parentheses may be placed around an arithmetic expression without
changing its value. They may, however, change the way the expression is
evaluated. For example, A * B + C is evaluated as (A = B) + C. But if
parentheses are placed thus: A x (B + C), the sum B + C is evaluated first
and the result is multiplied by A.

Examples of Arithmetic Expressions

5
X

ABS(X +5)
X+5

(X+5) + (Y/Z)

See: arithmetic operations, arithmetic operator.

The arithmetic operations of addition, subtraction, multiplication, division,
and exponentiation are supported by all BASICs. In addition, the oper-
ations of modulus and integer division are supported by some implemen-
tations.

Relations between arithmetic expressions and the symbols used to represent
them are:

Equality =
Greater than >
Less than <
Greater than or equal to >=0or =>
Less than or equal to <=o0r =<
Not equal >< or <>

The evaluation of an arithmetic expression depends on the precedence of
the individual operations. The following list summarizes the precedence
rules and other features of the various systems.

ARITHMETIC OPERATIONS

Precedence Rules

Set 1

Innermost parentheses
Exponentiation

Unary plus and minus
Multiplication and division
Addition and subtraction
Relational operators

Logical operators: NOT, AND, OR

Set 2

Innermost parentheses
Arithmetic functions
Relational functions
Logical functions
Exponentiation

Unary plus and minus
Multiplication and division
Integer division

MOD

Addition and subtraction
Relational operators
Logical operators: NOT, AND, OR, XOR, IMP, EQV

Set 3

Innermost parentheses

Unary plus and minus, and NOT
Exponentiation

Multiplication, division, and MOD
Addition and subtraction
Relational operators

Logical operators: AND, OR

Set 4

Relation operators in string expressions
Unary plus and minus

Exponentiation

Multiplication and division

ARITHMETIC OPERATIONS 7

Addition and subtraction

Relation operators in numeric expressions
NOT

AND

OR

The accompanying table shows which set of precedence rules an implemen-
tation follows, how values are converted to integers, the precision in which

mixed-mode operations are carried out, and the symbol used for ex-
ponentiation.

See: logical functions.

arithmetic operations

Precedence Converts to | Precision of Exponential
System Notes Rules Integer by: | Mixed mode Symbol
Integer 1 3 Truncation Not applicable A
APPLE Applesoft 2 3 I%g::gl?;gnor Single A
pos 3| atiey | Sinete "
Microsoft 2 Rounding I\ggztmgaecise 4
Cassette 2 Rounding I\:l)cl))setmgx(‘]ecise ~
1BM Disk 2 Rounding hg%setrﬂlr:]n;]ecise ~
Advanced 2 Rounding I\ggztmggecise A
Level | 1 Truncation I\ggitmg(riccise [or *
TRS Mod 111 Extended 3 1 Truncation I\/éc;setra%ccise [or 4
Disk 3 ! Truncation “f,l"fetm’,’,;ed“ [ort
Level | 1 Truncation Single +
TRS Color E xtended 1 Truncation Single +
Disk 1 Truncation Single +
Commodore VIC 20 { Truncation Single +
ATARI 400/800 4 Rounding Not applicable A
ANSI Minimum 1
Notes

1. Uses the number sign (#) for “not equal.”
2. MOD is not supported.

3. Division is single or double precision; exponentiation is single preci-
sion.

arithmetic
operator

array

ARITHMETIC OPERATOR

An arithmetic operator is an operator that takes an arithmetic expression
as an operand. The arithmetic operators and the operations they represent
are:

Addition +
Subtraction -~
Multiplication *
Division /
Exponentiation ~or
Modulo MOD

Integer division \

See: arithmetic expression, arvithmetic operations.

An array is a set of logically consecutive data items with a common name.
Individual elements of an array are referenced by a value termed a “sub-
script.”

The size of an array is specified in the DIM statement. The statement DIM
A(20) defines an array named A, which has 21 elements designated 0 to 20.
To access a specific element of an array, its position in the array is indicated
by a subscript, which is an arithmetic expression written after the name of
the array, in parentheses. The OPTION BASE statement specifies whether
the lowest accessible element is the zeroth or first. If an array is not dimen-
sioned, the default is 11 elements, numbered 0 to 10.

Examples

The statement A(5) = 32 sets the fifth element of array A to the value
32.

If X = 3, the statement A(X * 2) = Y sets the sixth element of array A
to the value of Y.

If an implementation allows it, an array can have more than one dimension.
An n-dimensional array is specified by

DIM array-name (value-1,value-2,value-3, ... ,value-n)

where value-1 specifies the size of the first dimension, value-2, the size of the
second dimension, and so on.

The accompanying table summarizes some properties of arrays. The
“Range of Elements” is for an array specified as DIM A(N). Where values
for dimensions and elements per dimension are not given, the limits depend
to a large degree on the available memory and a hard and fast rule cannot
be given.

See: DIM, ERASE, OPTION BASE, subscript.

ASC

ASC 9
array
Range of Maximum Elements Maximum
System Notes Elements per Dimension Dimensions
Integer 1,2 I toN 1
APPLE Applesoft 0toN 88
DOs 0toN 88
Microsoft Oorl toN 32767 255
Cassette OorltoN 32767 255
1BM Disk OorltoN 32767 255
Advanced Oorl toN 32767 255
Level | 0 to N
TRS Mod 11} Extended 0toN
Disk 0 to N
Level | 0toN-1
TRS Color Extended 0toN-1
Disk 0toN-1
Commodore VIC 20 0 to N
ATARI 400/800 1 0 toN 32767 2
ANSI Minimum Oorl tol0
Notes

1. Does not support string arrays; DIM A$(10) defines the variable A$

as having a size of 10 characters.

2. A(0) is considered identical to A; arrays must be cleared by the

program.

Format

ASC (string-variable)

The ASC function returns as its value the ASCII code of the first character
of the specified string. The value returned is in decimal. If the string-
variable is null, it causes an error. ASC is the inverse function of CHRS.

Example

100 X§ = “ABC”
120 Y = ASC(X$)

140 PRINT Y, ASC(“Z")

10

ASCIl
codes

Output

ASCIll CODES

65 90 (65 is the code for “A”; 90 for “Z”)

See: ASCII codes, CHRS.

ASC

System

5

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

TRS Mod I

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

ViC 20

ATARI

400/800

Pad Eo T £l P o P B o POl B A L b S P

ANSI

Minimum

Notes

1. If the value is over 127, subtract 128 from it to get the true character.

2. A CONTROL-@ cannot be used as the argument.

ASCII is an acronym for American Standard Code for Information Inter-
change. The code defines 256 symbols and functions. Different manufac-
turers may choose to assign to a particular code a symbol or function

unique to its implementation.

In particular, printers generally have their own built-in tables for generating
a character from an ASCII code. These characters may be different from the

ones that would be displayed on the screen for the same code.

Following is a table of the codes that are common to all BASICs and the
associated characters. These codes apply to the screen and keyboard, but

not necessarily to printers.

ASCIl CODES

Code Code Code Code Code Code

{Dec) (Hex) Character (Dec) (Hex) Character (Dec) {Hex) Character
32 20 space 65 41 A 98 62 b
33 21 ! 66 42 B 99 63 c
34 22 " 67 43 C 100 64 d
35 23 # 68 44 D 101 65 e
36 24 $ 69 45 E 102 66 f
37 25 % 70 46 F 103 67 g
38 26 & 71 47 G 104 68 h
39 27 apostrophe 72 48 H 105 69 i
40 28 (73 49 | 106 6A i
41 29) 74 4A J 107 6B k
42 2A * 75 4B K 108 6C |
43 28 + 76 4C L 109 6D m
44 2C comma 77 4D M 110 6E n
45 2D hyphen 78 4 N 111 6F o
46 2E period 79 4F (0] 112 70 P
47 2F / 80 50 p 113 71 q
48 30 0 81 51 Q 114 72 r
49 31 1 82 52 R 115 73 s
50 32 2 83 53 S 116 74 t
51 33 3 84 54 T 117 75 u
52 34 4 85 55 u 118 76 v
53 35 5 86 56 v 119 77 w
54 36 6 87 57 w 120 78 X
55 37 7 88 58 X 121 79 y
56 38 8 89 59 Y 122 7A z
57 39 9 90 5A 4
58 3A colon 9 58 [
59 38 semicolon 92 5C \
60 3c < 93 5D]
61 3D = 94 5E
62 3E > 95 5F underline
63 3F ?
64 40 @ 97 61 a

12

assembly
language

ASSEMBLY LANGUAGE
Notes
TRS Mod I

Codes 0 to 31 are graphics symbols.

Codes 97 to 122 (lowercase letters) can be generated by using SHIFT
+ the uppercase letter.

Codes 128 to 255 are graphics symbols.
Apple II

Codes 96 to 127 generate the same characters as codes 32 to 63.
Codes 128 to 223 generate the same characters as codes 0 to 95.
Codes 224 to 255 generate the same characters as codes 0 to 31.

TRS Color

Codes 97 to 122 generate the same characters as codes 65 to 90, but the
color is reversed. They are generated by pressing SHIFT +0+ one of the
letters A to Z. Codes 128 to 255 are graphics characters.

VIC 20: Text Mode

Codes 192 to 223 generate the same characters as codes 96 to 127.
Codes 224 to 254 generate the same characters as codes 160 to 190,
Code 255 generates the same character as code 126.

For the VIC-20,92 is “£," 94 is “1,” and 95 is “ « .

ATARI
Codes 0 to 31 and 96 are graphics symbols.

An assembly language is a symbolic language that, in general, has the
property that one instruction in assembly language is translated into one
machine instruction. (In a language such as BASIC, one statement is usu-
ally equivalent to several machine instructions.)

Some assemblers have a macro capability; that is, one instruction can repre-
sent several machine instructions. When the program is assembled, the
macro is expanded into its equivalent instructions, but the resultant pro-
gram still results in a one-to-one relationship between assembly and ma-
chine instructions. Thus the effect of a macro is to reduce the number of
lines the programmer has to write, not to reduce the size of the object code.
Assembly language routines can be accessed from a BASIC program by
CALL and USR.

See: CALL, USR.

ATN 13

assignment See: LET.

statement

ATN

Format

ATN (arithmetic-expression)
The arctangent function, ATN, has as its value an angle expressed in radi-
ans, whose tangent is equal to the value of the expression. The angle re-

turned is in the range —m/2 to /2 radians (—90 to +90 degrees). This is

the inverse of the tangent function. To get degrees, multiply the result by
57.29578.

Example

100 XR = .5773503

120 Y = ATN(XR)

140 PRINT Y, ATN(XR) * 57.29578
Output

.5235988 (radian) 30 (degrees)

See: COS, DEG, RAD, SIN, TAN, trigonometric functions.

| ATN

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
1BM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

R R Rl Eal Ko

>

>

IR AR R R

14

AUDIO

AUTO

AUDIO

Note
1. The argument can be in degrees or radians, depending on whether

DEG or RAD was executed.

Format
AUDIO OFF|ON

The AUDIO statement connects or disconnects the output of the cassette
to the TV speaker.

AUDIO is supported only by TRS Color (all levels).

See: BEEP, PLAY, SOUND.

Format
AUTO [line-number] [,increment]

The AUTO command allows automatic line numbering when the program
is being typed in. The first program line is assigned the specified line-
number, and each subsequent line is assigned the preceding line-number
plus the increment. The default is 10,10.

Example
The statement
AUTO 100,20

will result in the program lines being numbered 100, 120, 140, and so on.

See: RENUM.

AUTO

AUTO

System

Format

Alternate Commands

APPLE

Integer

Applesoft

DOsS

Microsoft

IBM

Cassette

Disk

Advanced

bl I B B

TRS Mod IIT

Level I

Extended

>

Disk

>

TRS Color

Level I

Extended

Disk

Commodore

Vic 20

ATARI

400/800

ANSI

Minimum

Notes

&

it. To leave it alone, press the BREAK key.
Use CONTROL-C to leave AUTO mode.
Use CONTROL-BREAK to leave AUTO mode.

Press CONTROL-X and then type MAN to leave AUTO mode.

15

. If a line already has something on it, an asterisk (x) is printed next to
it. To leave it alone, type a Carriage Return.

. If a line already has something on it, an asterisk () is printed next to

BACKUP

BASIC

baud

BEEP

Format
BACKUP source TO destination

The BACKUP command copies the disk on the source drive onto the disk
on the destination drive. If the system has only one drive, it should be
specified as the source, and the system will issue the necessary prompts.
Executing this command erases memory.

“Source” and “destination” can have values of 0 to 3.

BACKUP is supported only by TRS Color DOS.

BASIC is an acronym for Beginner’s All-purpose Symbolic Instruction
Code.

Baud is a unit used to measure the rate of transfer of information, In most
modern applications, baud is equivalent to “bits per second.”

Format
BEEP [pitch, duration]

The BEEP statement generates a tone for a certain amount of time. Pitch
can have values from 0 to 255, with 255 representing the lowest tone;
duration can have values from 0 to 255, with 255 representing the longest
duration, equal to about 1 second.

See: AUDIO, PLAY, SOUND.

binary
digit

binary
number

BINARY NUMBER

BEEP

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

Eel I B

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

SOUND

Extended

SOUND

Disk

SOUND

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Note

17

1. BEEP generates an 800-hertz tone for 4 second. It is equivalent to

PRINT CHR$(7). The pitch and duration cannot be specified.

See: bit.

A binary number is represented by a string of ones and zeros. Each position
in the number indicates the presence or absence of a power of 2.

Example

The binary number 10110 is evaluated as follows:

1 0

1

1

0

(I1x2%+0x2%)+(1 x2)+ (1 x2YH+(0 x 29

16 +

+

4

= 22 (base 10)

+

2

+

0

18

bit

BLOAD

BIT

See: conversion tables, hexadecimal number, octal number.

The word “bit” is a contraction of “binary digit.” In programming appli-
cations, it has come to mean the smallest entity that has meaning. A bit can
be in only one of its two possible states at any given time. Depending on
the interpretation, these states can be 0 or 1, ON or OFF, or TRUE or
FALSE.

See: byte, nibble.

Format 1

BLOAD file-specification [,offset]

Format 2
BLOAD file-name [,Aaddress] [,Ddrive] [,Sslot] [,Vvolume]

The BLOAD command loads a machine language program that was pre-
viously stored with a BSAVE into memory.

Format 1

In Cassette BASIC, if no device is specified, CAS1: (the only valid device) is
used. The motor is turned on and a search is made for the specified file. For
Disk and Advanced BASIC, if no device is specified, the current disk is
used.

The offset is an arithmetic expression with a value between 0 and 65535. It
specifies the address at which the program is loaded as an offset into the
current segment. If no offset is specified, the program is loaded into the
same area it was saved from.

Use of BLOAD is not restricted to programs; any part of memory can be
specified by using the DEF SEG statement. In particular, the screen buffer
area can be accessed.

Example

BLOAD “MYFILE.EXE”, 0

Format 2

The program specified by file-name is loaded into memory starting at the
specified address. The program is not run.

Boolean
functions

BRUN

BRUN 19

This command must be executed, preceded by a CONTROL-D, as part of a

PRINT statement:

PRINT CHRS$(4); “BLOAD MYFILE, A1000, D1, S6, V10”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter

Range

Default

address 0 to 65535

drive {or2
slot 1to7
volume 1 to 254

Area program BSAVEd from

Drive 1

Slot from which DOS was bocted
Volume from which DOS was booted

See: BRUN, BSAVE, CLOAD, CLOADM, DEF SEG, file specification.

[BLOAD l
Systemn In } Format| Notes | Alternate Commands
Integer
Applesoft
APPLE 50S X 5
Microsoft
Cassette X 1
1BM Disk X 1
Advanced | X 1
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

See: logical functions.

Format

BRUN file-name [,Aaddress] [,Ddrive] [,Sslot] [,Vvolume]

The BRUN command loads the designated file into memory starting at the

20

BSAVE

BSAVE

specified address. Once loaded, control is transferred to the starting address
of the routine.
This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “BRUN MYFILE, A1000, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default

address 0 to 65535 Address program BSAVEd from

drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

BRUN is supported only by Apple DOS.

See: BLOAD, BSAVE, CALL, DEF SEG, file specification, RUN,

Format 1

BSAVE file-specification, offset, length

Format 2

BSAVE file-name, Aaddress, Llength
[,Ddrive] [,Sslot] [,Vvolume]

The BSAVE command stores a machine language program on external
media.

Format 1

In Cassette BASIC, if no device is specified, CAS1: (the only valid device) is
used. In Disk and Advanced BASIC, if no drive is specified, the current disk
is used.

BSAVE 21

The contents of memory, beginning at the location indicated by the offset
and continuing for the specified number of bytes, are saved and given the
name designated in the file-specification.

Use of BSAVE is not restricted to programs. Any part of memory can be
saved, in particular the screen buffer area.

The offset must have a value of 0 to 65535; it specifies the offset into the
segment last declared by the DEF SEG statement. The length must have a
value of 1 to 65535. It specifies the number of bytes to store.

Example

BSAVE “MYFILE.EXE™, 0, &H1000

Format 2

The contents of memory beginning at the specified address and for the
specified length are stored and given the file-name.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “BSAVE MYFILE, A1000, L512, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default

address 0 to 65535 None

length 1 to 32767 None

drive lor2 Drive 1

slot 1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

See: BLOAD, BRUN, CSAVE, CSAVEM, DEF SEG, file specification,
SAVE.

22

BUTTON

BUTTON

BSAVE

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS X 2
Microsoft
Cassette X 1
IBM Disk
Advanced | X 1
Level I
TRS Mod IIT | Extended CSAVEM
Disk CSAVEM
Level I
TRS Color Extended CSAVEM
Disk CSAVEM
Commodore | VIC 20

ATARI 400/800
ANSI Minimum

APPLE

>

Format
BUTTON (arithmetic-expression)

The BUTTON function returns the current value of the push button on the
specified game controller. If the button is not pressed, a zero (FALSE) is
returned. If it is pressed, a — 1 (TRUE) is returned.

The arithmetic-expression must be an integer between 0 and 3; it specifies
which controller to test.

Example

100 IF BUTTON (0) THEN GOTO 200
120 IF BUTTON (1) THEN GOTO 300
140 GOTO 100

This loop waits for a button to be pressed and then branches to a servicing
routine.

See: JOYSTK, PADDLE, PDL, PTRIG, STICK, STRIG.

BYE

byte

BYTE 23

BUTTON
System In | Format| Notes | Alternate Commands
Integer
Applesoft 1 PEEK
APPLE
DOS 1 PEEK
Microsoft | X
Cassette STRIG
IBM Disk STRIG
Advanced STRIG
Level I
TRS Mod IIT | Extended
Disk
Level I 2 PEEK
TRS Color Extended 2 PEEK
Disk 2 PEEK
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. PEEK (—16287) is button 0; PEEK (—16286) is button 1; PEEK
(—16285) is button 2. If the value returned is over 127, the button is
being pressed.

2. PEEK (65280). If a button is not being pressed, a value of 255 or
127 is returned. If the right-hand button is being pressed, a value of
126 or 254 is returned. If the left-hand button is being pressed, a
value of 125 or 253 is returned.

Format
BYE

The BYE statement exits BASIC and enters the Screen Pad Mode. To
return to BASIC, use SYSTEM RESET.

BYE is supported only by ATARL

See: END, STOP.

A byte is a group of bits treated as an entity. In most personal computers a
byte consists of 8 bits and is the smallest addressable unit of memory.

24

BYTE

However, in some specialized communications applications, a byte may
contain fewer or more bits.

The size of a storage device (memory, tape, or disk) is generally described in
terms of the number of kilobytes (K-bytes, or simply K) it contains. In this
context, the term “K” refers to 1024 bytes, as opposed to its usual meaning
of 1000.

See: bit, nibble.

CALL

Format |

CALL numeric-variable [({argument,} ...)]

Format 2

CALL arithmetic-expression

Format 3

CALL %pvariable-name [({argument,} ...)]

The CALL statement is used to invoke a machine language routine and to
pass parameters to it.

Format 1

The value of the numeric-variable specifies the starting address of the rou-
tine being called. If arguments are specified, they are passed to the routine.

Format 2

The expression indicates the starting address of the routine; it must be
between 0 and 65535. No parameters can be passed.

Format 3

This form of CALL is used to invoke 6502 subroutines. A percent sign (%)
must precede the numeric variable. Up to three 1-byte parameters can be
passed. The first one goes to the A-register; the second to the X-register;
and the last to the Y-register.

See: BRUN, CLOADM, DEF SEG, EXEC, SYS, USR.

26

CATALOG

CATALOG

CALL
System In | Format| Notes | Alternate Commands

Integer X 2 1
APPLE Applesoft | X 2 2

DOS X 2 2

Microsoft | X 1,3 3

Cassette X 1 4
IBM Disk X 1 4

Advanced | X 1 4

Level I
TRS Mod III | Extended

Disk

Level I EXEC
TRS Color Extended EXEC

Disk EXEC
Commodore | VIC 20 SYS
ATARI 400/800
ANSI Minimum

Notes

1. Addresses over 32767 must be represented by the address minus

65536.

2. Addresses can be between —65535 and 65535; a negative address

is considered equivalent to the corresponding positive one.
3. The variable cannot be an array.

4. The numeric-variable specifies the starting address as an offset into
the current memory segment as defined by the last DEF SEG state-

ment.

Format

CATALOG [Ddrive] [,Sslot]

The CATALOG command displays the volume number and a list of all the
files on the disk in the specified drive. The file type and the number of
sectors it occupies are also displayed. (If the file occupies more than 255

sectors, the value is given modulo 256.)

CDBL

CDBL 27

The codes used for the file types are:

Code Meaning
I Integer BASIC file, created by SAVE
A Applesoft BASIC file, created by SAVE
T Text file created by OPEN, filled by WRITE
B Binary file, created by BSAVE

(If the file is locked, an asterisk is displayed beside the file type.)
This command must be executed, preceded by a CONTROL-D, as part of a

PRINT statement:
PRINT CHRS$(4); “CATALOG D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted

CATALOG is supported only by Apple DOS.

See: DIR, FILES.

Format

CDBL (arithmetic-expression)

The convert-to-double-precision function, CDBL, has as its value the
double-precision representation of the argument. Although the value is
double precision, only the number of digits that existed in the argument are
significant.

28

CHAIN

Example

100 DEFDBL D

120 DEFINT I

140 S = 12345.67

160 I = 12345

180 D = CDBL(S)

200 PRINT CDBL(I), D

Output

12345 12345.66992185

CHAIN

(The actual value of D will differ among implementations.)

See: CINT, CSNG.

CDBL

System

Format

Notes

Alternate Commands

Integer

Applesoft
APPLE s

DOS

Microsoft

Cassette

IBM Disk

R o R

Advanced

Level I

TRS Mod IIT | Extended

=

Disk

>

Level I

TRS Color Extended

Disk

Commodore | VIC 20

ATARI 400/800

ANSI Minimum

Format 1

CHAIN [MERGE] file-specification [line-number]
[LALL] [,DELETE first-line [- last-line]]

Format 2

CHAIN file-name [,Ddrive] [,Sslot] [,Vvolume]

CHAIN 29

The CHAIN command loads and runs the specified BASIC program and,
optionally, passes it variables.

Format 1

The program named in the file specification is loaded. If MERGE is speci-
fied (in which case the chained program must have been saved with the “A”
option), a merge operation is performed and the program overlays the
program currently in memory. All files currently open are left open, the
current OPTION BASE setting is maintained, and all variable type and
function definitions are preserved (DEFINT, DEFSNG, DEFDBL,
DEFSTG, DEF FN). If MERGE is not specified, these variable type and
function definitions are not preserved.

The line-number is an arithmetic-expression that designates the line at
which execution begins when the chained program is loaded. If no line-
number is specified, execution begins at the first line of the program. (A
RENUM command does not change this number.)

ALL

If ALL is specified, every variable in the current program is passed to the
chained program. If ALL is not specified, any variable to be passed to the
chained program must be specified in a COMMON statement.

DELETE
If DELETE is specified, the indicated line or lines in the program currently

in memory are deleted before the new program is loaded. (These line num-
bers are affected by RENUM,)

If only first-line is specified, that line is deleted. If the hyphen and last-line
are specified, all lines from the start of the program to last-line, inclusive,
are deleted. If both first-line and last-line are specified, all lines from the
first to the last, inclusive, are deleted.

Example (no parameters)

100 REM THIS IS THE “FIRST” PROGRAM
120 PRINT “PROGRAM 1~

140 CHAIN “SECOND”

160 END

100 REM THIS IS THE “SECOND” PROGRAM
120 PRINT “PROGRAM 2~

140 CHAIN “FIRST”

160 END

30 CHAIN

Output after Program 1 Is Run

PROGRAM 1
PROGRAM 2
PROGRAM 1
etc. (must be manually interrupted)

Example (COMMON and parameters)

100 REM THIS IS PROGRAM 1

120 COMMON A, X8, B()

140 DIM B(5)

160 A = 10: X$ = “ABC”: D = —3.5

180 B(1) = 17.32: B(5) = 50.5

200 PRINT “PROGRAM 1'S VARIABLES (BEFORE): ”
220 PRINT A, X8, B(1), B(5), D

240 PRINT

260 CHAIN “A:PROG2”

280 PRINT “PROGRAM 1'S VARIABLES (AFTER): ”
300 PRINT A, X8, B(1), B(5), D

320 END

100 REM THIS IS PROGRAM 2

120 COMMON A, X$, B()

140 PRINT “PROGRAM 2’S VARIABLES ARE: ”
160 PRINT A, X$, B(1), B(5), D

180 PRINT

200 CHAIN “B:PROG1”, 280

220 END

Output after Loading PROG1 in Memory and Running It
PROGRAM 1I'S VARIABLES (BEFORE):
10 ABC 17.32 50.5 -3.5

PROGRAM 2'S VARIABLES ARE:
10 ABC 17.32 50.5 0

PROGRAM 1I'S VARIABLES (AFTER):
10 ABC 17.32 50.5 0

Example (COMMON statements that are different)

100 REM THIS IS PROGRAM 1
120 COMMON A, X8, B()

CHAIN 31

140 DIM B(5)
160 A=10: X$ =“ABC”: D = —3.5

180 B(1) = 17.32: B(5) = 50.5

200 PRINT “PROGRAM 1'S VARIABLES (BEFORE): ”
220 PRINT A, X8, B(1), B(5), D

240 PRINT

260 CHAIN “A:PROG2”

280 PRINT “PROGRAM 1'S VARIABLES (AFTER): "
300 PRINT A, XS, B(1), B(5), D

320 END

100 REM THIS IS PROGRAM 2

120 COMMON D

140 D = 12345

160 PRINT “PROGRAM 2'S VARIABLES ARE: ”
180 PRINT A, X$, B(1), B(5), D

200 PRINT

220 CHAIN “B:PROG1”, 280

240 END

Output after Running Program 1
PROGRAM 1'S VARIABLES (BEFORE):
10 ABC 17.32 50.5 —3.5

PROGRAM 2°S VARIABLES ARE:

10 ABC 17.32 50.5 123.45

PROGRAM 1'S VARIABLES (AFTER):

0 0 0 123.45 (X$ is nul)
Format 2

In this form of CHAIN, parameters are not explicitly passed. However,
current variables are not cleared, so the chained program can access any of
them.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “CHAIN MYFILE, DI, S6, V2”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

32 CHRS$
Parameter Range Defauit
drive 1or2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1to 254 Volume from which DOS was booted

See: COMMON, MERGE, RENUM, SAVE.

| cHAIN

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

1BM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANS!

Minimum

CHRS Format

CHRS (arithmetic-expression)

The string function CHRS$ has as its value the single ASCII character
corresponding to the value of the expression. It is the inverse function of

ASC.

The value of the expression must be between O and 255. The actual
character returned is dependent on the hardware. (See the entry “ASCII

codes.”)

Values of 0 to 31 are control characters; if one of these is printed, the
function it represents is performed. For example, PRINT CHR$(7) pro-

duces a tone.

CINT

CINT 33
Example

100 X$ = CHR$(65)
120 PRINT X$, CHR$(66)

Output
A B
See: ASC.
CHR$
System In | Format | Notes | Alternate Commands
[nteger
Applesoft X 1
APPLE L
DOS X 1
Microsoft X
Cassette X
IBM Disk X
Advanced X
Level
TRS Mod III | Extended X
Disk X
Level I X
TRS Color Extended X
Disk X
Commodore ViC 20 X
ATARI 400/800 X 2
ANSI Minimum
Notes

1. Codes 96 to 255 generate characters that repeat codes 0 to 95; but
even though CHR$(65) and CHR$(193) both return an “A,” they
are considered as different when used in relations.

2. A relation can contain at most one CHRS$; that is, CHR$(X) > =
CHRs(Y) is invalid.

Format
CINT (arithmetic-expression)
The convert to integer function, CINT, returns as its value the integer

obtained by rounding the arithmetic-expression. This expression must
evaluate within the range —32768 to +32767.

34

CIRCLE

CIRCLE
Example
100 DEFINT I
120 DEFDBL D
140 D = 12345.178901234
160 S = —1234.568
180 I = CINT (S)
200 PRINT CINT(D), I
Qutput
12345 —1235
See: CDBL, CSNG, FIX, INT.
CINT
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft X
Cassette X
IBM Disk X
Advanced X
Level I
TRS Mod I | Extended X
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Format |

CIRCLE (x-value, y-value) ,radius [,color]
[,start ,end] [,aspect]

Format 2

CIRCLE (x-value, y-value) ,radius [,color]
[,ratio] [,start ,end]

CIRCLE 35

The CIRCLE statement draws a circle of the specified radius and color with
the center at the point specified by the x and y values. The circle can be
changed into an ellipse by means of the aspect parameter. If the start and
end parameters are specified, an arc rather than a circle is drawn.

Parameters must appear in the order shown; if a parameter is not specified
and others follow it, its absence must be indicated by two consecutive
commas. Points that are off the screen are not plotted. For purposes of
subsequent commands, the “last point referenced ” is the center of the circle.

Format 1

This command can be issued only in graphics mode. The x and y values
define the center of the circle in absolute or relative form. The radius
parameter defines the x or y radius, depending on the value of aspect. If no
color is specified, the foreground color is used; this is color 3 in medium
resolution and color 1 in high resolution.

The start and end parameters specify the angle at which the circle begins
and ends. They are expressed in radians. Their values must be from
—6.283186 to +6.283186 (27 to +2m). If either is negative (—0 is not
allowed), it is treated as positive but the arc is connected to the center of the
circle by a line. The starting angle can be less than the ending angle.

The aspect parameter defines the ratio of the x-axis to the y-axis and is used
to generate ellipses. If it is less than 1, “radius” is taken as the x-radius: if
greater than 1, “radius” is taken as the y-radius. The default is £ for
medium-resolution mode and F5for high-resolution mode.

Format 2

This form of CIRCLE operates in much the same way as the format 1
statement. The values of the parameters and their defaults are as follows:

Parameter Range Default

X 0 to 255 None

Y 0to 191 None

color Oto8 Foreground color
start, end Oto 1 Start =0, end = 1
radius Valid x-values None

ratio 0 to 255 |

The ratio is the ratio of height to width. When it is 0, the figure is a
horizontal line; as the value approaches 1, the figure is an ellipse with the
major axis in the x-direction. At 1, the figure is a circle. For values above 1

36 CLEAR

the major axis is in the y-direction and, as the value increases, the figure
approaches a vertical line.

The start and end parameters determine whether a complete circle or only
an arc are drawn. The circle starts at 3 o’clock, which is considered 0; 0.25
is 6 o’clock; 0.5 is 9 o’clock, and 0.75 is 12 o’clock. To use this parameter,
the ratio must be specified.

Example
To draw three concentric circles:

100 REM THE PROPER MODE, ETC. MUST FIRST BE
SELECTED

120 CIRCLE (100,100), 60, 1

140 CIRCLE (100,100), 40, 1

160 CIRCLE (100,100), 25, 1

See: DRAW, last point referenced, PAINT.

| CIRCLE

System in | Format | Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
i1BM Disk
Advanced | X 1
Level I
TRS Mod IIT | Extended
Disk
Level I X 2
TRS Color Extended
Disk X 2
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

=
(¥

CLEAR Format 1

CLEAR [,arithmetic-expression-1] [,arithmetic-expression-2]

CLEAR 37

Format 2

CLEAR [arithmetic-expression] [,address]

Format 3

CLEAR

Format 4
CLR

The CLEAR statement resets variables to zero or null and, optionally,
reserves memory. The current program is not erased.

Formar 1

This form of CLEAR can also set the amount of stack space and the upper
limit of memory. When executed, all previous DEFs are nullified. See the
application notes for details of the parameters.

Format 2

This form of CLEAR can also reserve string storage and high memory. If
an expression is specified, that number of bytes is reserved for string stor-
age. If an address is specified, all memory above this address is reserved for
programmer-defined use and is not taken by BASIC.

Format 3

This form of CLEAR resets pointers and stacks.

Format 4

This form of CLEAR resets pointers and stacks, cancels the dimensions of
arrays, and resets the DATA pointer.

See: HIMEM :, LOMEM ...

38

CLOAD

CLOAD

CLEAR

System In | Format| Notes | Alternate Commands
4 4

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
BM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

b Rl R R I R B
B IS IS IS TR

N N

W

R R R I R A R
P bV

Notes

1. The first expression is the highest location available to BASIC:; the
second expression defines the stack space. The default is 256 bytes
or one-eighth of the available memory, whichever is smaller. (In
older versions, the first expression defined string space; the second
defined the upper limit of memory.)

2. The first expression specifies the maximum number of bytes for
BASIC to use for programs and data; the second expression defines
the stack space. The default for stack space is 512 bytes or one-
eighth of the available memory, whichever is smaller.

3. An address cannot be specified, only a value. The default is 50 bytes.

4. Does not reset arrays; cannot be issued from a program.
Format

CLOAD [“file-name™]
The CLOAD command loads a BASIC program from cassette. The pre-
vious contents of memory are erased. If a file-name is not specified, the first
file encountered is loaded. Unless the tape is rewound, this is not necessarily

the first file on tape.

See: BLOAD, CLOADM, CSAVE, ENTER, LOAD, SHLOAD.

CLOAD?

CLOAD?

| cLoAD

System In | Format| Notes | Alternate Commands
Integer LOAD
Applesoft LOAD
APPLE
DOS LOAD
Microsoft LOAD
Cassette LOAD
1BM Disk LOAD
Advanced LOAD
Level I
TRSMod I | Extended | X 1
Disk X 1
Level I X 2
TRS Color Extended | X 2
Disk X 2
Commodore | VIC 20 LOAD
ATARI 400/800 X 3
ANSI Minimum

Notes

39

1. The file-name must be a one-character string in quotes. As the com-
puter searches, the names of the files encountered will be displayed
in the upper right corner of the screen. When searching, only the first
character of the file-name on tape is used in the comparison.

2. The file-name must be eight characters or fewer. Embedded spaces
can be included. During the search a S is displayed at the top left
of the screen; when the file has been found, the program name and
an " F" are printed.

3. A file-name is not permitted. A bell rings to indicate that the PLAY
button on the recorder should be pressed.

Format

CLOAD? [“file-name™]

The CLOAD? command compares a program on tape with the program
currently in memory. If no file-name is specified, the first file encountered is
used. This command does not destroy the contents of memory.

The file-name must be one character in quotes. When searching for the file,

only the first character of the file-name on tape is used in the comparison.

CLOAD? is supported only by TRS Mod III, Extended and Disk.

See: VERIFY.

40

CLOADM

CLOG

CLOSE

CLOADM

Format
CLOADM file-name [,offset]

The CLOADM command loads a machine language program that has been
stored on cassette using CSAVEM. The file-name must be eight characters
or fewer; spaces can be embedded in the name. If a file-name is not speci-
fied, the first file encountered is loaded. Unless the tape is rewound, this is
not necessarily the first file on tape.

If an offset is specified, it is added to the addresses of the program when it is
loaded, thus relocating it.

CLOADM is supported only by TRS Color, Extended and Disk.

See: BLOAD, CALL, CLOAD, CSAVEM, DLOAD, SHLOAD, SYS,
USR.

Format
CLOG (arithmetic-expression)

The common logarithm function, CLOG, has as its value the logarithm
base 10 of the expression. The expression must be greater than zero.

CLOG is supported only by ATARI BASIC.

See: LOG.

Format 1

CLOSE ({file-name} ...

Format 2
CLOSE [[#] file-number] ...

The CLOSE command closes the specified files or buffers. All characters in
the file buffer are written to the file and the buffer is deallocated. If no
file-name or number is specified, all open files are closed. If an open file that
has been written to is not closed before exiting the program, data may be
lost.

See: GET, OPEN, PUT.

CLR

CLS

CLS 41

CLOSE
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS X 1 1
Microsoft | X 2 2
Cassette X 2 2
18M Disk X 2 2
Advanced | X 2 2
Level I
TRSMod IIT | Extended
Disk X 2 3
Level I X 2 4,56
TRS Color Extended X 2 4,5,6
Disk X 2 4,5,6
Commodore | VIC 20 X 2 6
ATARI 400/800 X 2
ANSI Minimum
Notes
1. If an EXEC file is open, it is not closed unless explicitly written in the

statement. This applies to both sequential and random files.

This command must be executed, preceded by a CONTROL-D, as
part of a PRINT statement:

PRINT CHR$(4); “CLOSE MYFILE”

. If the file is sequential, any data in the output buffer are written to
the file.
The file-number must be between 1 and 15; it can be an arithmetic-

expression.

In nondisk BASIC, file-number —2 is the printer, —1 is the cassette,
and O is the screen or keyboard.

The number sign (#) cannot be used in nondisk BASIC; in Disk
BASIC it must be used.

The number sign (#) cannot be used in the statement.

See: CLEAR.

Format

CLS (color)

42

CMD

CMD

The CLS statement clears the screen and, optionally, sets it to the indicated
color.

See: color codes, HOME.

CLS

System In | Format| Notes | Alternate Commands
Integer CALL -936
Appiesoft HOME

DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Levei I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSH Minimum

R B B B B B S S

Wl Wl Wi

Notes

1. A color cannot be specified. The cursor is moved to the “home”
position. In text mode this is the upper left corner; in graphics mode
this is the center of the screen, which then becomes the “last point
referenced.” (For medium resolution, this is point 160,100; for high
resolution, it is point 320,100.) In graphics mode the screen is set to
the background color.

2. Turns off all graphics blocks and moves the cursor to the upper
leftmost position; a color cannot be specified.

3. The color can be designated by an expression between O and 8,
inclusive. When necessary, the expression is truncated to an integer.
If omitted, the screen is set to green.

Format 1

CMD file-number

CMD 43

Format 2

CMD “letter” [,options]

Format 1

This form of the CMD statement sends output that would normally go to
the screen to another device, or to a file on tape or disk.

The file-number must be between 1 and 15; it specifies the file (not the
device), to which the output goes. To return output to the screen, close the
file.

Format 2

This form of CMD is unique to TRS Mod IIT DOS. The valid letters and
their effects are as follows:

CMD “A”
Returns to DOS with an error message.

CMD G‘B”’ 6‘0N9’ I “OFF”

Enables or disables the break key. When disabled, the break key is ignored
except during cassette, printer, or serial input/output. The key remains
disabled even after the program has ended. Returning to DOS with CMD
“S” or CMD “I” reenables the break key.

CMD “C” [,R] [,S]

Compresses a program. If R is specified, all remarks are deleted. If S is
specified, all unnecessary spaces are deleted. Both may be specified at the
same time.

CMD “Ddrive”
Displays the directory of the specified drive. Only unprotected files are
listed. A drive must be specified; there is no default.

CMD “E”
Displays the last DOS error message or “NO ERROR FOUND.”

CMD “I”, command

Executes the specified DOS command or a Z-80 program. Control then
returns to the BASIC program, if it has not been destroyed. This command
also enables the break key. The command can be in a string variable; if it is
a literal, it must be in quotes.

44

CMD

CMD “J”, source-string, destination-string

Converts a date from one format to another. The date in the source-string
is converted and left in the destination-string. The two forms that the date
can have are mm/dd/yy and —yy/ddd, where the first format is the stan-
dard month, day, and year, and the second format is the so-called Julian
representation, consisting of the year and the day of the year, from 1 to 365
(or 366).

CMD “L”, program-name

Loads a Z-80 routine into memory. If the BASIC program is not destroyed,
control returns to it after the operation. The program-name can be in a
string variable; if it is a literal, it must be in quotes.

CMD “0O”, count, array-name(starting-element)

Sorts a one-dimensional string array. The count specifies the number of
iterms to be sorted; it must be an integer variable. The array is sorted from
the designated starting element to the end.

CMD “P”, string-variable

Checks the status of the printer. The value returned to the string-variable is
a status byte. If the left 4 bits are 0011, the printer is ready. (The values of
the other 4 bits depend on the particular printer used; refer to the printer
manual.)

CMD “R”

Turns on the real-time clock display. The time of day is displayed in the
upper right corner of the screen. It is updated each second. The clock is
turned off during cassette and disk input/output operations.

CMD [13 T”
Turns off the real-time clock display.

CMD “S”»
Returns control to DOS, enabling the break key. (See CMD “B”.)

CMD “X”, word

Finds all occurrences of the specified word. To search for a BASIC reserved
word, it must not be in quotes in the command. All instances of the word,
except those in literals and remarks, will be listed. To search for anything
else, the word must be in quotes. All instances of it, except where it is used
as a BASIC reserved word, will be listed.

CMD ‘GZ!", 19 ON I | 13 OFF”

Enables or disables screen output to printer. When enabled, any output to
the screen will also go to the printer, and any printer output will also go to
the screen. The printer must be on-line when the command is given.

COLOR

COLOR

CMD

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

1BM

Cassette

Disk

Advanced

TRS Mod I

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

ViC 20

ATARI

400/800

ANSI

Minimum

Formar 1

COLOR = arithmetic-expression

Format 2

COLOR [background-color] [,palette]

Format 3

COLOR [foreground-color] [,background-color] [,border-color]

Format 4

COLOR foreground-color, background-color

Format 5

COLOR arithmetic-expression

45

The COLOR statement sets the foreground and background screen colors
and, optionally, the border color.

46

COLOR

Format 1

This form of COLOR sets the screen color for low-resolution graphics. The
value of the expression can be between 0 and 255; it is taken as an integer,
modulo 16. In high-resolution graphics mode, this command is ignored.

Format 2

This form of COLOR is used for medium-resolution graphics. Any parame-
ter can be an arithmetic-expression. If any parameter is omitted, it assumes
its old value.

The palette can be between 0 and 255; if it is even, palette O is selected; if
odd, palette 1. (Palette 0 is green/red/brown; palette 1 is cyan/
magenta/white.) The background color can be between 0 and 15.

Format 3

This form of COLOR is used in text mode. For the color/graphics display,
the foreground color can be between 0 and 31. (Values of 16 to 31 cause
colors 0 to 15 to blink.) The background color can be between 0 and 7; the
border color, between 0 and 15.

For the monochrome display, the only background colors are 0 (black) and
7 (white). For the foreground colors, in addition to 0 and 7, 15 (high-
intensity white) and 1 (underlined character with white foreground) can also
be used. If 16 is added to any of these values, the result is a blinking color.
A border color cannot be specified. If any parameter is omitted, its old
value is used.

Format 4

Either color parameter can be an expression between 0 and 8, inclusive.

Format 5

This form of COLOR determines the color of subsequent PLOT and
DRAWTO statements.

The actual color depends on the value in the color register that corresponds
to the value of the expression for the mode being used. The expression must
have a value between 0 and 255; nonintegers are rounded to the nearest
integer. The following chart shows how this value is interpreted.

COLOR

Selects
Value of Color Default
Mode Expression Register Color
0,1, and 2, 0 to 255 Value
and all TEXT determines
windows character
and color
3,5 and 7 0 4 Black
1 0 Orange
2 1 Light green
3 2 Dark blue
4 and 6 0 4 Black
1 0 Orange
8 0 2 Dark blue
1 1 Light green

For modes 3 to 8, if the value is over 1 or 3, the lower 1 or 2 bits is taken.

47

See: color codes, GR, GRAPHICS, HCOLOR, HGR, PLOT, SCRN,

SETCOLOR.
COLOR
System In | Format| Notes | Alternate Commands
Integer X 1
APPLE Applesoft | X 1 1
DOS X 1 1
Microsoft | X 1 2
Cassette X 2,3
IBM Disk X 2,3
Advanced | X 2,3
Level I
TRS Mod Il | Extended
Disk
Level I
TRS Color Extended | X 4
Disk X 4
Commodore | VIC 20
ATARI 400/800 X 5 SETCOLOR
ANS! Minimum

48

COLOR CODES

Notes

1. COLOR is parsed as a reserved word only if the next nonspace
character is an equal sign (=).
2. If acolor is not specified in GR, it is set to O.

color The following chart defines the color associated with the numeric codes for
codes the various systems.
Micro- Commo-
Code ATARI IBM (1) Apple soft (2) TRS (3) dore
0 Gray Black Black Black Black
1 Light orange Blue Magenta Green Green Black
2 Orange Green Dark blue Violet Yellow White
3 Red-orange Cyan Purple White Blue Red
4 Pink Red Dark green Black Red Cyan
5 Purple Magenta Gray Orange Buff Purple
6 Purple-blue Brown Med. Blue Blue Cyan Green
7 Blue White Light blue White Magenta Blue
8 Blue Gray Brown Black-1 Orange Yellow
9 Light blue Light blue Orange White-1
10 Aqua Light green Gray Black-2
11 Green-blue Light cyan Pink White-2
12 Green Light red Green Reverse
13 Yellow-green Light magenta Yellow
14 Orange-green Yellow Aqua
15 Light orange = High-white White
Notes
1. Colors 8 to 14 are lighter versions of O to 6.
2. Black-1 and -2 and white-1 and -2 are thicker lines.
3. If in four-color mode, 4 is subtracted from values of 5 to 8.
COoOM Format

COM (channel) ON|OFF|STOP

command

command
level

COMIMON

COMMON 49

The COM command enables or disables the trapping of communications
activity to the indicated communications adapter.

COM ON allows trapping by an ON COM ... GOSUB statement; COM
OFF disables this trapping. COM STOP disables trapping, but if any
activity occurs it is remembered and a trap occurs as soon as an ON COM
statement is executed. The channel must be an integer with a value of 1 or
2.

COM is supported only by IBM Advanced BASIC.

See: ON COM, trap.

A command is a directive to the system to do something with a program or
part of a program.

See: function, statement.

Command level refers to that mode of BASIC in which direct statements
(that is, those without a line number) can be executed. It is also called
“immediate mode” and “monitor level.”

For example, if one types 100 X = 123, the statement is not immediately
executed; rather, it is stored and executed only when the program is run.
On the other hand, typing X = 123 causes the variable X to be immediately
assigned the value 123.

Format
COMMON ({variable,} ...

The COMMON statement defines which variables are available to a
chained program. A given variable cannot appear in more than one
COMMON statement in any one program. To indicate an array, use the
array’s name followed by an empty pair of parentheses.

For an example of the use of the COMMON statement in a program, see
“CHAIN.”

Example
100 COMMON A,BS$,C(),D.E$

See: CHAIN.

50

com-
plement

concate-
nation

CONT

COMPLEMENT

COMMON

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft | X
Cassette
1BM Disk X
Advanced | X
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATAR! 400/800
ANSI Minimum

APPLE

See: one’s complement, two’s complement.
b

Concatenation is the operation of joining two strings together. The concate-
nation operator is (+). If X$ = “ABC” and Y$ = “DEF”, the result of
concatenating the two, (X$ + Y$), is the string “ABCDEF”.

In Apple and ATARI BASIC, concatenation of strings is performed by
setting the (N + 1)st element of an N-element string equal to the value to be
concatenated. For example, assume that string AS$ is defined as being 10
characters long, and that its present contents are “ABC”. The statement
A$(4) = “DEF” results in the new value of A$ being “ABCDEF”. In gener-
al, X3(LEN(X$)+ 1) = Y$ concatenates Y$ to X$.

Format
CONT

CONT is used to continue program operation after a stop, end, or program
break. This is an immediate mode instruction only, and cannot appear in a
program.

conversion
tables

CONVERSION TABLES 51

When a program has been interrupted, the values of variables can be
changed, but if any part of the program has been changed, CONT cannot be
used to continue; the program must be restarted, or entered by a GO TO.

See: END, STOP.
CONT
System In | Format | Notes | Aiternate Commands
integer X 1
APPLE Applesoft | X 2
DOS X 2
Microsoft | X 3
Cassette X 3
IBM Disk X 3
Advanced | X 3
Level I X
TRS Mod III | Extended | X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | ViC 20 X 4
ATAR! 400/800 X
ANSI Minimum
Notes

1. Must be spelled “CON".

2. If a CONTROL-C is used to interrupt an INPUT statement, use of
CONT will cause an error message.

3. If a break occurs during an INPUT statement, the prompt is reissued
and the statement begins all over again.

4. If the program has halted due to an error, or if an error was caused
while in immediate mode, use of CONT will give an error.

The following table shows the equivalent values for decimal, binary, hexa-
decimal, and octal numbers that can be contained in one byte.

52

CONVERSION TABLES

DEC BINARY | HEX. | OCT DEC. | BINARY | HEX. | ocT.
0 00000000 00 000 65 01000001 41 101
1 00000001 01 001 66 01000010 | 42 102
2 00000010 02 002 67 01000011 43 103
3 00000011 03 003 68 01000100 | 44 104
4 00000100 04 004 69 01000101 | 45 105
5 00000101 05 005 70 01000110 | 46 106
6 00000110 08 006 71 01000111 | 47 107
7 00000111 07 007 72 01001000 | 48 110
8 00001000 08 010 73 01001001 | 49 111
9 00001001 09 011 74 01001010 | 4A 112
10 00001010 0A 012 75 01001011 | 4B 113
1 00001011 08 013 76 01001100 | 4C 114
12 00001100 | OC 014 77 01001101 | 4D 115
13 00001101 oD 015 78 01001110 | 4E 116
14 00001110 | OE 016 79 01001111 | 4F 17
15 00001111 OF 017 80 01010000 | 50 120
16 00010000 10 020 81 01010001 | 51 121
17 00010001 11 021 82 01010010 | 52 122
18 00010010 12 022 83 01010011 | 53 123
19 00010011 13 023 84 01010100 | 54 124
20 00010100 14 024 85 01010101 55 125
21 00010101 15 025 86 01010110 | 56 126
22 00010110 16 026 87 01010111 57 127
23 00010111 17 027 88 01011000 | 58 130
24 00011000 18 030 89 01011001 59 131
25 00011001 19 031 90 01011010 | 5A 132
26 00011010 1A 032 91 01011011 58 133
27 00011011 1B 033 92 01011100 | 5C 134
28 00011100 1c 034 93 01011101 5D 135
29 00011101 D 036 04 01011110 | 5€ 136
30 00011110 1E 036 95 01011111 5F 137
31 00011111 1F 037 96 01100000 | &0 140
32 00100000 20 040 97 01100001 61 141
33 00100001 21 041 98 01100010 | 62 142
34 00100010 22 042 99 01100011 63 143
35 00100011 23 043 100 | 01100100 | &4 144
36 00100100 24 044 101 01100101 65 145
37 00100101 25 045 102 | 01100110 | 66 146
38 00100110 26 046 103 | 01100111 67 147
39 00100111 27 047 104 | 01101000 | 68 150
40 00101000 28 050 1056 | 01101001 69 151
41 00101001 29 051 106 | 01101010 | 6A 152
42 00101010 2A 052 107 | 01101011 6B 153
43 00101011 28 053 108 | 01101100 | 6C 154
44 00101100 2c 054 109 | 01101101 6D 155
45 00101101 2D 055 110 | 01101110 | 6E 156
46 00101110 2E 056 1 01101111 6F 157
47 00101111 2F 057 112 | 01110000 | 70 160
48 00110000 30 060 113 | 01110001 71 161
49 00110001 31 061 114 | 01110010 | 72 162
50 00110010 32 062 115 | 01110011 73 163
51 00110011 33 063 116 | 01110100 | 74 164
52 00110100 34 064 117 | 01110101 75 165
53 00110101 35 065 118 | 01110110 | 76 166
54 00110110 36 066 119 | 01110111 77 167
55 00110111 37 067 120 | 01111000 | 78 170
56 00111000 38 070 121 01111001 79 171
57 00111001 39 071 122 | 01111010 7A 172
58 00111010 3A 072 123 | 01111011 7B 173
59 00111011 3B 073 124 | 01111100 | 7C 174
60 00111100 3C 074 125 | 01111101 7D 175
61 00111101 3D 075 126 | 01111110 7E 176
62 00111110 3 076 127 | o111 7F 177
63 00111111 3F 077 128 10000000 | 80 200
64 01000000 40 100 129 10000001 81 201

CONVERSION TABLES

DEC. BINARY HEX. | OCT DEC. BINARY HEX. | OCT.
130 10000010 82 202 195 11000011 C3 303
131 10000011 83 203 196 11000100 c4 304
132 10000100 84 204 197 11000101 c5 305
133 10000101 85 205 198 11000110 c6 306
134 10000110 86 206 199 11000111 c7 307
135 10000111 87 207 200 11001000 c8 310
136 10001000 88 210 201 11001001 c9 311
137 10001001 89 211 202 11001010 CA 312
138 10001010 8A 212 203 11001011 cB 313
139 10001011 8B 213 204 11001100 cc 314
140 10001100 8C 214 205 11001101 cb 315
141 10001101 8D 215 206 11001110 CE 316
142 10001110 8E 216 207 11001111 CF 317
143 10001111 8F 217 208 11010000 Do 320
144 10010000 0 220 209 11010001 D1 321
145 10010001 91 221 210 11010010 D2 322
146 10010010 92 222 211 11010011 D3 323
147 10010011 93 223 212 11010100 D4 324
148 10010100 94 224 213 11010101 Ds 325
149 10010101 95 225 214 11010110 D6 326
150 10010110 96 226 215 11010111 D7 327
151 10010111 97 227 216 11011000 D8 330
152 10011000 98 230 217 11011001 D9 331
153 10011001 99 231 218 11011010 DA 332
154 10011010 9A 232 219 1101101 DB 333
155 10011011 98 233 220 11011100 DC 334
156 10011100 ac 234 221 11011101 DD 335
157 10011101 D 235 222 11011110 DE 336
158 10011110 9E 236 223 11011111 DF 337
159 10011111 9F 237 224 11100000 EO 340
160 10100000 AQ 240 225 11100001 E1 341
161 10100001 Al 241 226 11100010 E2 342
162 10100010 A2 242 227 11100011 E3 343
163 10100011 A3 243 228 11100100 E4 344
164 10100100 Ad 244 299 11100101 E5 345
165 10100101 AS 245 230 11100110 E6 346
166 10100110 A8 246 231 11100111 E7 347
167 10100111 A7 247 232 11101000 E8 350
168 10101000 AB 250 233 11101001 E9 351
169 10101001 A8 251 234 11101010 EA 352
170 10101010 AA 252 235 11101011 EB 353
171 10101011 AB 253 236 11101100 EC 354
172 10101100 AC 254 237 11101101 ED 365
173 10101101 AD 255 238 11101110 EE 356
174 10101110 AE 256 239 11101111 EF 357
175 10101111 AF 257 240 11110000 FO 360
176 10110000 BO 260 241 11110001 F1 361
177 10110001 B1 261 242 11110010 F2 362
178 10110010 B2 262 243 11110011 F3 363
179 10110011 B3 263 244 11110100 F4 364
180 10110100 B4 264 245 11110101 F5 365
181 10110101 BS 265 246 11010110 F6 366
182 10110110 B6 266 247 11110111 F7 367
183 10110111 B7 267 248 11111000 F8 370
184 10111000 B8 270 249 11111001 F9 371
185 10111001 B9 271 250 11111010 FA 372
186 10111010 BA 272 251 11111011 FB 373
187 10111011 BB 273 252 11111100 FC 374
188 10111100 BC 274 253 11111101 FD 375
189 10111101 BD 275 254 11111110 FE 376
190 10111110 BE 276 255 11111111 FF 377
191 10111111 BF 277

192 11000000 co 300

193 11000001 c1 301

194 11000010 C2 302

53

54

COPY

COS

COPY

Format
COPY file-specification-1 TO file-specification-2

The file designated by file-specification-1 is copied to the disk specified in
file-specification-2 and is given the name in that specification. If file-
specification-2 specifies only a drive, the file is copied to that drive with the
same name as in file-specification-1.

| copy]

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
1BM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk X 1
Level I
TRS Color Extended
Disk X 2
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. “TO” cannot be used; the names are separated by a space. The
statement COPY /extension: drive-number copies all files with the
specified extension to the indicated drive. The file-specification
cannot be in quotes.

2. The file-specification must have an extension and must be in quotes.
When executed, memory is erased.

Format
COS (arithmetic-expression)
The cosine function, COS, has as its value the cosine of the angle specified

by the expression, which is interpreted to be in radians. To find the cosine
of an angle expressed in degrees, use COS (X * .01745329).

Cos 55

If the COS function is not implemented, the cosine of an angle, expressed in
radians, can be calculated by the series

- X2 X4 X6 (__l)nx2n
COSX=1--4- 24172
S TR T R Ty

Example

100 XR = 45 % .0174533

120 Y = COS(XR)

140 PRINT COS(.5235988), Y, COS(—XR)
Output

8660254 7071068 7071068
(0.5235988 radian = 30 degrees.)

See: ATN, DEG, RAD, SIN, TAN, trigonometric functions.

| cos

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
18M Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

I Rl Rl R T i

b

<

I Rl el e

Note

1. The argument can be in degrees or radians, depending on whether
DEG or RAD was executed.

56

CSAVE

CSAVEM

CSAVE

Format
CSAVE “program-name” [,A]

The CSAVE command stores the program currently in memory on cassette.
If an “A” is specified, the program is stored in ASCII format. The program-
name must be eight or fewer characters and must be in quotes.

See: BSAVE, CSAVEM, ENTER, LIST, LOAD, SAVE.

|cSAVE
System In } Format| Notes | Alternate Commands
Integer SAVE
Applesoft SAVE
APPLE
DOS SAVE
Microsoft SAVE
Cassette SAVE
BM Disk SAVE
Advanced SAVE
Level I
TRSMod ITI | Extended | X 1
Disk X 1
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 SAVE
ATARI 400/800 X 2
ANSI Minimum

Notes

1. The program-name can be only one character long.

2. A program name cannot be specified. The resident program is stored
on tape in tokenized form. Two bells ring to tell when to press
Play/Record. This executes faster than SAVE as it uses short inter-
record gaps.

Format

CSAVEM “program-name”, starting-address, ending-address,
execution-address

The CSAVEM command saves a machine language program on cassette.
The program saved is between the starting and ending address. When
loaded, control is passed to the transfer address. All addresses are inter-
preted to be hexadecimal.

CSNG

CSNG 57

CSAVEM is supported only by TRS Color, Extended and Disk.

See: BSAVE, CSAVE, SAVE.

Format
CSNG (arithmetic-expression)

The convert-to-single-precision function, CSNG, has as its value the single-
precision representation of the expression. If the expression is double-
precision, 4/5 rounding is used. That is, if a single-precision number has N
digits, a value of 5 is added to the (N + 1)st digit of the argument. The first
N digits of the result are then taken as the single-precision value.

Example

100 DEFDBL D

120 D = 12345.67890123

140 X = CSNG(D)

160 PRINT X, CSNG(— 1.234567890123)

Output
12345.68 —1.234568

See: CDBL, CINT.

CSNG

System in | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRSMod Il | Extended
Disk X 1
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

b BT I

b
-

58

CSRLIN

cursor

CVD

CSRLIN

Note

1. Returned as a six-digit number.

Format
CSRLIN

The CSRLIN function returns as its value the vertical coordinate of the
cursor on the active page. The value returned can range from 1 to 25, and
corresponds to the current line or row. The active page is not necessarily
the one that is being displayed on the screen.

Example
100Y =0
120 LOCATE (15,10)
140 Y = CSRLIN
160 PRINT Y
Output
15
CSRLIN is supported only by IBM BASIC (all levels).

See: LOCATE, POS, POSITION, VPOS.

The cursor is the symbol that shows where on the screen the next character
to be typed in or printed out is displayed. The form that the cursor takes
varies among implementations. Some systems provide the ability for the
user to change the form of the cursor.

See: LOCATE, POSITION.

Format
CVD (string-expression)
The CVD function has as its value the numeric value of the argument

expressed as a double-precision number. This is the inverse function of
MKDS.

Ccvi

The expression in the argument must be 8 bytes. It is generally the result of
putting a double-precision number through the MKDS$ function, prior to
fielding it. If the expression is greater than 8 bytes, only the first 8 bytes are

used.

Example

100 DEFDBL Y
120 X$ = MKD$(12345.67890123)
140 Y = CVD(X$)

160 PRINT Y

Output

12345.67890123

Cvi

See: FIELD, GET, LSET, MKDS$, PUT, RSET.

| cvp

System

In

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOos

Microsoft

Cassette

Disk

Advanced

TRS Mod ITI

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Format

CVI (string-expression)

The CVI function has as its value the numeric value of the argument

expressed as an integer. This is the inverse function of MKIS.

60

The expression in the argument must be 2 bytes. It is generally the result of
putting an integer through the MKI$ function, prior to fielding it. If the

CVi

expression is greater than 2 bytes, only the first 2 bytes are used.

Example

100 DEFINT Y
120 X$ = MKI§(12345)

140 Y = CVI(X§)

160 PRINT Y

Output

12345

See: FIELD, GET, LSET, MKI3, PUT, RSET.

CVI

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level 1

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANS!

Minimum

CVN

cvs

Cvs 61

Format
CVN (string-expression)

The CVN function has as its value the numeric value of the argument. This
is the inverse function of MKNS. The expression in the argument must be a
5-byte string that was created by MK NS.

Example

100 X§ = MKN$(12345)
120 Y = CVN(X$)
140 PRINT Y

Output

12345
CVN is supported only by TRS Color DOS.

See: FIELD, GET, LSET, MKNS$, PUT, RSET.

Format
CVS (string-expression)

The CVS function has as its value the numeric value of the argument
expressed as a single precision number. This is the inverse function of
MKSS.

The expression in the argument must be 4 bytes. It is generally the result of
putting a single-precision number through the MKSS$ function prior to
fielding it. If the expression is greater than 4 bytes, only the first 4 bytes are
used.

Example

100 X$ = MKS$(12345.678)
120 Y = CVS(X$)
160 PRINT Y

62

Output

12345.68

Cvs

See: FIELD, GET, LSET, MKS$, PUT, RSET.

| cvs

System

Format

Notes

Alternate Commands

APPLE

integer

Applesoft

DOS

Microsoft

iBM

Cassette

Disk

Advanced

TRS Mod I

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

ViC 20

ATARI

400/800

ANSI

Minimum

DATA

Format
DATA {value,} ...

The DATA statement specifies one or more values to be input to the
program via a READ statement.

DATA statements can occur anywhere in the program. Conceptually, they
are considered to be all together, in order from lowest to highest line
number. The first READ in the program accesses the first value of the first
DATA statement; the next READ accesses the second value of the
first DATA statement or, if there is no second value, the first value of the
next DATA statement; and so on.

The values must be numeric or string constants; variables or expressions
are not allowed. Commas must be used to separate the elements; if two
commas follow one another with no intervening characters, a value of zero
or null, whichever is appropriate to the variable being given a value, is used.

String literals do not have to have quotes around them. If a string element
does not begin with a quote, then leading and trailing spaces are not taken
as part of the string, and a comma or colon in the string will function as a
delimiter. However, a quote can appear inside the string.

If a string element begins with a quote, then a comma, colon, or significant
leading or trailing spaces can be part of the string. But, a quote cannot be in
the string. For an example of the use of the DATA statement, see “READ.”

See: READ, RESTORE.

{ pATA |

Format | Notes | Alternate Commands

E}

System

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRSMod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

bl R R Rl R B R R B R S e e B

64

DATES

DATE$

Note

1. CONTROL-X or CONTROL-M cannot be part of any element in the
statement; a CONTROL-C can be part of an element, however.

Format
DATES

The DATES function has as its value the current date in the form
mm-dd-yyyy

where “mm” is the month, “dd” the date, and “yyyy” the year.

DATES also functions as a variable, in that it can be assigned a value. (In
fact, this has the same value as the system date which is assigned at startup.)
It can be assigned a value in any of the forms

mm-dd-yy

mm-dd-yyyy
mm/dd/yy

mm/dd/yyyy

When two digits are used for the year, 19xx is assumed.

Example
100 PRINT DATES
Output

08-26-1983

Example
100 Y$ = “8-27-83”
120 DATES = Y$ {or DATES$ = “8-27-83")
140 PRINT DATES
Output
08-27-1983

DATES is supported only by Disk and Advanced IBM BASIC.

decrement

DEF FN

DEF FN 65

A decrement is either a negative value that is added to, or a positive value
that is subtracted from, a counter or variable. The net result is to reduce the
value of the counter or variable.

See: increment.

Format

DEF FN function-name [(dummy-variable)...)] = numeric-expression
DEF FN is used to define a numeric function. When this function is used in
a program, the function is equivalent to the numeric expression but with

real values substituted for the dummy variables. A function can be redefined
anywhere in the program. The function name can be one or two letters.

Example

The following function has as its value the fourth root of the argument.
100 DEF FNR4(X) = SQR(SQR(X))
120 A = 4096

140 Y = FNR4(A)
160 PRINT Y, FNR4(1.23456E-08)

Output

8 1.054091E-02

Example

The following defines the modulus function, which is a function of two
variables.

100 DEF FNMD (A,B) = (INT(A) — INT(INT(A)/INT(B)) * INT(B))
120 X = 12345: Y = 123

140 Z = FNMD(57,7)
160 PRINT Z, FNMD(X,Y)

Output

1 45

66

DEF SEG

DEF SEG
DEF FN
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft | X 1,2,3,6
DOS X 1,2,3,6
Microsoft | X 2,5,7
Cassette X 2,4,5,7
1BM Disk X 2,4,5,7
Advanced | X 2,4,5,7
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended | X 6
Disk X 6
Commodore | VIC 20 X
ATARI 400/800
ANSI Minimum | X

Notes

Nogpsrwh -

Format

DEF SEG [=address]

The DEF SEG command is used to define the current segment of storage.
Subsequent BLOAD, BSAVE, CALL, PEEK, POKE, VARPTR, or USR
statements define actual physical addresses as offsets into this segment.

Address is a numeric-expression between 0 and 65535. It should be a multi-
ple of 16. If no address is specified, the current segment is defined as

Only the first two characters of the function-name are significant.
The definition can be only one line long.
Variables to the left of the equal sign (=) cannot be integers.
Recursive definitions are permitted.
The function-name can be any valid name up to 40 characters.
Only one variable can be specified in the definition.
The function can also be a string function. In this case the function-
name must be a string-variable name.

BASIC’s data segment (which is also the initial default.)

DEF and SEG must be separated by at least one space.
DEF SEG is supported only by IBM BASIC (all levels).

DEF USR

default

DEFAULT 67

Format
DEF USR[digit] = address

The DEF USR statement defines the starting address of a machine
language subroutine. This statement must appear before the routine is in-
voked by the USR statement.

The address can be in decimal or hexadecimal. The digit must be between 0
and 9. If no digit is specified, 0 is assumed. The digit and USR cannot have
a space between them. The starting address can be redefined.

See: CALL, USR.

DEF USR
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X 1,3
IBM Disk X 1,3
Advanced | X 1,3
Level I
TRS Mod III | Extended
Disk X 2
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. The address is an offset that is added to the value of the current
segment.

2. For addresses over 32767, use the address minus 65536.

3. The address can be between 0 and 65535, inclusive.

A default is that value, device, or specification that the computer assumes if
nothing is explicitly stated. For example, in a disk operation, if the default
drive is 0, all disk operations are done to that disk unless some other disk is
explicitly designated in the statement.

68. DEFDBL

Some implementations allow the user to set up default specifications, others
have only predefined ones. Often, once a parameter has been assigned, it
becomes the default.

DEFDBL Format
DEFDBL {letter [— letter]}...

The DEFDBL statement causes any program variable that begins with one
of the specified letters to be treated as a double-precision number. This
obviates the need to define a double-precision variable explicitly by the type
declaration “# ”. However, when used, a type declaration always takes
precedence over the DEFDBL statement.

Example
The Statement: Defines as Double Precision:
DEFDBL A All variables beginning with an A
DEFDBL A —D All variables beginning with A, B, C, or D

DEFDBL ABI — K All variables beginning with A, B, I, J, or K

See: DEFINT, DEFSNG, DEFSTR, type declaration.

| DEFDBL

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

I I

>

DEFSNG 69

DEFINT Format
DEFINT {letter [— letter]}...

The DEFINT statement causes any program variable that begins with one
of the specified letters to be treated as an integer. This obviates the need to
define an integer explicitly by the type declaration “%”. However, when
used, a type declaration always takes precedence over the DEFINT state-

ment.
Example
The Statement: Defines as an Integer:
DEFINT A All variables beginning with an A
DEFINT A —-D All variables beginning with A, B, C, or D

DEFINT A,B]I - K All variables beginning with A, B, I, J, or K

See: DEFDBL, DEFSNG, DEFSTR, type declaration.

| DEFINT

System In | Format{ Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod I | Extended
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATAR! 400/800
ANSI Minimum

I R B

b

DEFSNG Format
DEFSNG {letter [— letter]}...

The DEFSNG statement specifies that any program variable that begins
with one of the specified letters will be treated as a single~-precision number.

70 DEFSTR

A single-precision number can also be designated by the type declaration
“1”. (In general, the default for a variable is single precision.) When used, a
- type declaration always takes precedence over the DEFSNG statement.

Example
The Statement: Defines as Single Precision:
DEFSNG A All variables beginning with an A
DEFSNG A - D All variables beginning with an A, B, C, or D

DEFSNG A,B,l — K All variables beginning with A, B, I, J, or K

See: DEFDBL, DEFINT, DEFSTR, type declaration.

| DEFSNG

System In | Format| Notes | Alternate Commands

Integer

Applesoft
bos
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRSMod Il | Extended
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Il] ol

b

DEFSTR Format
DEFSTR {letter [— letter]}...

The DEFSTR statement causes any program variable that begins with one
of the specified letters to be treated as a string variable. This obviates the
need to define a string variable explicitly by the type declaration “$”.
However, when used, a type declaration always takes precedence over the
DEFSTR statement.

DEG

DELETE

DELETE 7

Example
The Statement: Defines as String Variables:
DEFSTR A All variables beginning with an A
DEFSTR A - D All variables beginning with A, B, C, or D

DEFSTR AB,I — K All variables beginning with A, B, I, J, or K

See: DEFDBL, DEFINT, DEFSNG, type declaration.

lDEFSTR
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level
TRS Mod ITT | Extended | X
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
Format
DEG

The DEG command causes the trigonometric functions to interpret their
arguments in degrees rather than radians. This stays in effect until a RAD is
executed. The default at startup is to interpret arguments in radians.

DEG is supported only by ATARI BASIC.

See: ATN, COS, RAD, SIN, TAN, trigonometric functions.

Format 1

DEL [line-number-1] [— line-number-2]

72

DELETE
Format 2

DELETE [line-number-1] [— line-number-2]

Format 3

DELETE file-name [,Ddrive] [,Sslot] [,Vvolume]

Formats 1 and 2

These forms of the DELETE command erase one or more program lines
from memory and then return to the command level. The two forms oper-
ate identically, the only difference being in the spelling of the keyword.

If only line-number-1 is specified, it is deleted. If two line numbers are
specified, all lines from line-number-1 to line-number-2, inclusive, are de-
leted. If only the hyphen and line-number-2 are specified, all lines from the
first line in the program to line-number-2, inclusive, are deleted. Line-
number-2, when specified, must be the number of a line that actually exists
in the program.

After the command has executed, control returns to the command level.

Format 3

This form of DELETE erases the specified file. If the file was open, it is
closed before being deleted.
This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “DELETE MYFILE, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive tor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

See: CHAIN, MERGE.

delimiter

DELIMITER 73

DELETE

System In | Format| Notes | Alternate Commands
1 1,2
1,2,3,4

Integer

Applesoft
DOS

Microsoft

APPLE

[
-

Cassette
IBM Disk

Advanced
Level I
TRS Mod Il | Extended
Disk X |2
Level I
TRS Color Extended | X |1 6
Disk X i 6
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

E R IR I A e
(SRS BN T T B
R R AR R N

>
)
-3

Notes

1. A comma must be used between the line numbers, not a hyphen.

2. If line-number-2 is not an existing line in the program, the next
higher line in the program is used.

3. If line-number-1 is 0, only line 0 is deleted, regardless of the value of
line-number-2.

4. The statement must have two line numbers: to delete a single line
use DEL 100,100.

5. If DEL is used, it will list as DELETE.

6. If only line-number-1 and the hyphen are specified, all lines from the
specified one to the end of the program are deleted. The command
DEL - deletes the entire program.

7. A period can be used to indicate the current line.

A delimiter is a character, or group of characters, that is used to set off, or
delimit, a certain group of data.

A delimiter cannot itself appear in the material it delimits unless some
special convention is used. For example, in BASIC the delimiter for string
constants is the double-quotation character, so a double-quotation
character cannot appear in a string constant.

DIM
Format
DIM {variable-name (value [,value]...),}...

The DIM statement specifies the dimensions of an array. It overrides the
default value of 10 for each dimension of an array. Arrays can be either
numeric or string, as determined by the variable-name. The default for an
array is eleven elements. An array cannot be redimensioned in a program
without first being erased.

In general, the size of arrays is limited by the amount of storage available.

Example

The statement DIM X(2,3,4), Y$(15) defines X as a three-dimensional array
with three elements in the first dimension, four in the second, and five in the
third; it also defines Y$ as a string array of 16 elements.

See: array, CLEAR, ERASE, OPTION BASE, subscript.

| DM

Format | Notes | Alternate Commands

5

System

[nteger

Applesoft
DOs
Microsoft
Cassette
IBM Disk
Advanced
Level I
TRS Mod Il | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

R e e L T

wiw

I Rl R R R R B

Notes

1. Only one-dimensional numeric arrays are allowed.
2. Array values are cleared by RUN.
3. DIM must be used for an array of more than three dimensions.

DIR

DISKINI

DISKINI 75

4. A 4K system can support only one-dimensional arrays.
5. The elements of the array are set to zero or null by DIM.

6. When used with a string variable, DIM specifies the number of
characters in the variable. String variables must be dimensioned
before they are used; there is no default. Array values are not set to
zero by RUN, CLR, or RESET.

7. Only one- and two-dimensional numeric arrays are allowed.
Format

DIR drive-number

DIR displays the directory of the specified drive. If no drive is specified,
drive 0, or the one specified as the default by the DRIVE statement, is used.

The drive-number must be an integer between 0 and 3.

See: CATALOG, FILES.

| DIR

System In | Format| Notes | Alternate Commands

Integer
Applesoft CATALOG
DOS CATALOG
Microsoft FILES
Cassette
IBM Disk FILES
Advanced FILES
Level I
TRSMod IT | Extended
Disk X
Level I
TRS Color Extended
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

Format
DISKINI drive-number

The DISKINI command formats the disk in the specified drive. The pre-
vious contents of the disk and the contents of memory are erased.

The drive-number must be an integer between 0 and 3, inclusive.

76

Note

DISKS

DISKINI

System In

Format

Notes

Alternate Commands

Integer

Applesoft

APPLE

DOS

Microsoft

Cassette

IBM

Disk

Advanced

Level I

TRS Mod III

Extended

Disk X

Level I

TRS Color

Extended

Disk X

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

1. Must be spelled DSKINI.

disks

All systems use a 5.25-inch (13.33-centimeter) single-sided, double-density

mini-floppy diskette. The following table lists some of the properties of the
disks that are implementor-defined.

Specification IBM TRS Color TRS Mod 111 Apple
Number of tracks 40 35 40 35
Sectors per track 8 18 18 16 (2)
Bytes per sector 512 256 256 256
Bytes per track 4096 4608 4608 4096
Formatted 163.8 (4) 179 175 143 (3)

capacity
(kilobytes)
Directory is 0 17 17 17
on track number:
Space is One sector Units of Units of One sector
allocated: at a time 2304 bytes 768 bytes at a time

DLOAD

DOSs

double-
precision
number

DRAW

DRAW 77
Notes

1. 31 tracks for the user.

2. Older versions of Apple had only 13 sectors per track. There is a
utility program called Muffin, to convert from 13- to 16-track format.
127K bytes for the user.

4. Double-density disks with a formatted capacity of 320K bytes are
supported by DOS 1.1.

w

Format
DLOAD program-name, baud-rate

The DLOAD command loads the specified machine language program at
the rate specified. It is used for down-line loading from another computer.

The baud-rate must be either 0 or 1; 0 is 300 baud, 1 is 1200 baud.
DLOAD is supported only by TRS Color Basic (Extended and Disk).

See: CALL, CLOADM, EXEC, SPEED, SYS, USR.

Format
DOS
The DOS command transfers control to the disk operating system and

displays the DOS menu. If DOS has not been booted, the computer goes to
the Memo Pad mode.

DOS is supported only by ATARI BASIC.

See: SYSTEM.

See: real number.

Format 1

DRAW arithmetic-expression [AT x-value, y-value] ...

78

DRAW
Format 2

DRAW command-string

Format 1

This form of the DRAW statement draws a “shape.” A shape is defined by
a series of commands called a shape description, which is located in a shape
table. The shape selected is the one whose ordinal position in the shape
table matches the value of the expression.

If the AT clause is specified, the drawing of the shape begins at the specified
point. If this clause is not specified, the shape starts at the last point plotted
by a HPLOT, DRAW, or XDRAW statement.

The value of the expression must be between 0 and 255 and must not
exceed the number of shape definitions in the table. The x-value must be
between 0 and 279; the y-value must be between 0 and 191. (All ranges,
inclusive.)

Format 2
This form of the DRAW statement draws an object that is defined by the
command-string, which can be a literal or in a variable,

The various commands that can be included in this string are shown below.
They can be separated by semicolons, but this is not mandatory.

Command Meaning

Uvalue Draw up (0 degrees)

Rualue Draw right (90 degrees)
Doalue Draw down (180 degrees)
Lovalue Draw left (270 degrees)
Evalue Draw at 45 degrees
Foalue Draw at 135 degrees
Gualue Draw at 225 degrees
Hvalue Draw at 315 degrees

(Degrees are measured clockwise.)

For IBM, the distance moved is the value times the scaling factor. The
value can also be specified by a variable; if so, it must be written as

E = variable;

In this case, the use of the semicolon is mandatory.

DRAW 79

For TRS Color, the distance is the number of points specified by the value.
If no value is specified, 1 is used. Values must be integer constants; noninte-
gers are truncated.

Following is a list of the commands and their meanings.

B
Move, but do not draw the line.

N
Move, but return to the starting point when done.

Avalue
Sets the angular rotation. The value must be an integer from 0 to 3, with
meanings as follows:

0 No rotation

1 90 degrees clockwise
2 180 degrees clockwise
3 270 degrees clockwise

For IBM, figures rotated 90 or 270 degrees are scaled so that they keep the
same perspective as if plotted at 0 or 270 degrees.

Svalue

Scale factor. For IBM the value must be between 1 and 255; this value
divided by 4 is the scale factor. For TRS Color, the value must be between
1 and 62; it represents the scale in % increments. The default is S4, which is
al: 1 scale.

Cralue

Specifies the color. For IBM, in medium resolution this must be between 0
and 3; for high resolution it must be 0 or 1. For TRS Color, it must be
between 0 and 8; if omitted, the foreground color is used.

Xstring-variable;
Executes the specified string as if it were in the command. The trailing
semicolon is required.

M[+ | —] x-value, y-value

Moves the draw position to the specified coordinate. If a plus or minus
precedes the x-value, the move is relative to the current position. If no plus
or minus precedes the x-value, the move is to the absolute location specified
by the coordinates. Unless the M is preceded by a B, an unwanted line is
usually plotted.

80

DRAWTO

DRAWTO

For IBM the x-value must be between 0 and 319 (medium resolution) and 0
and 639 (high resolution); the y-value must be between 0 and 199. For TRS
Color, the x-value must be between 0 and 255, the y-value between 0 and
191.

Note: In TRS if PMODE is 0 or 1 and E, F, G, or H is used, then if the
length is odd and at least one of the coordinates is odd, lines drawn by F
and H have a glitch at the midpoint; if both coordinates are even, lines
drawn by E and G have the glitch.

See: CIRCLE, HLIN, HPLOT, PAINT, PMODE, ROT, SCALE, shape,
VARPTRS, VLIN, XDRAW.

DRAW
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft | X 1
DOS X 1
Microsoft
Cassette
IBM Disk
Advanced | X 2
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Format
DRAWTO x-coordinate, y-coordinate

The DRAWTO statement draws a line from the last point displayed by a
PLOT to the specified location. Fither coordinate can be an arithmetic-
expression. The color of the line is the same as the one used for PLOT.

DRAWTO is supported only by ATARI BASIC.

See: COLOR, HPLOT, PLOT.

DRIVE

DSKIi$

DSKINI

DSKOs$

DSKO$ 81

Format
DRIVE drive-number

The DRIVE command changes the default drive to the one specified. The
drive-number must be between 0 and 3.

DRIVE is supported only by TRS Color Disk BASIC.

Format

DSKIS drive, track, sector, string-variable-1, string-variable-2
The DSKIS$ statement performs a direct disk read. It ignores the directory
and other indexing information and reads 256 bytes from a specified lo-
cation on the disk. The first 128 bytes go into string-variable-1; the second
128 bytes go into string-variable-2.

Drive must be an integer between 0 and 3.
Track must be an integer between 0 and 34.
Sector must be an integer between 1 and 18.

DSKIS$ is supported only by TRS Color Disk.

See: DSKOS$, NOTE, POINT.

See: DISKINT

Format

DSKOS$ drive, track, sector, string-variable-1, string-variable-2
The DSK OS$ statement performs a direct disk write. It ignores the directory
and other indexing information and writes 256 bytes of data from two

variables to a specified area on the disk. The first 128 bytes are taken from
string-variable-1; the second 128 bytes are taken from string-variable-2.

Drive must be an integer between 0 and 3.
Track must be an integer between 0 and 34.
Sector must be an integer between 1 and 18.

DSKOS is supported only by TRS Color Disk BASIC.

See: DSKI$, NOTE, POINT.

82

DSP

dummy
variable

DUMMY VARIABLE

Format
DSP variable-name

The DSP command enables tracing of a particular variable. Every time the
variable is changed, the screen shows the line number, name, and value.

Example

100 DSP X1

120 DSP X2
140X1=2:X2=2:X3=2
160 X1 =3:X2=3:X3=2
180 X1 = X2 + X3

200 X3 = X3 + X2

220 END
Output

140 X1 =2

140 X2 =2

160 X1 =3

160 X2 =3

180 X1 =5

DSP is supported only by Apple Integer BASIC.

See: TRACE, TRON.

1. A dummy variable is a variable that is specified in the definition of a
function but which has no effect on the function’s action. It simply holds a
place for the argument that will be specified when the function is used in the
program. In the statement

DEF FNC (K) = (K * K * K)

the variable K is a dummy variable. When the function is invoked, as, for
example, by Z = FNC(X), the value of X determines the value of the func-
tion; the value of K is irrelevant.

2. A dummy variable is an argument given to a function that does not
affect the value that the function returns, but is necessary to meet syntactic
requirements. When one executes Y = POS(X), the value of X does not
affect the value returned; therefore, X is a dummy variable. It would per-
haps be more appropriate to call X a “dummy argument,” but current
usage dictates the former term.

See: argument, DEF FN.

EDIT

ELSE

Format

EDIT line-number

The EDIT statement displays the specified line and awaits editing com-
mands. (For details of the individual commands, see the appropriate refer-

ence manual.)

|EDIT

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

I R

TRS Mod TII

Level

Extended

=

Disk

<

TRS Color

LevelI

Extended

Disk

Commodore

ViC 20

ATARI

400/800

ANSI

Minimum

Notes

1. A period (.) can be used to represent the current line.

2. After typing the line number, the system waits for an editing sub-

command.

See: IF,

Format

END

84

ENTER

The END statement marks the end of the program. It can also be used to
separate the main program from a subroutine. When the END statement is
encountered, control returns to the command level. A “BREAK AT” mes-

sage is not displayed.

See: CONT, STOP.

ENTER

END
System in | Format} Notes | Alternate Commands
Integer X 1
APPLE Applesoft | X 2
DOS X 2
Microsoft X 2,3
Cassette X 2
IBM Disk X 2,3
Advanced | X 2,3
Level I X 1
TRSMod Il | Extended | X 2
Disk X 2
Level I X 2
TRS Color Extended X 2
Disk X 2
Commodore | VIC 20 X 2
ATARI 400/800 X 2,4
ANSI Minimum X
Notes
1. Required.
2. Optional.

3. Closes all disk files.
4. Turns off sounds.

Format

ENTER “file-specification”

The ENTER command loads the specified program from tape without
clearing the old program. The program must have been stored using LIST.
This command can also be used with disk files. ENTER is usually used in

direct mode.

entry
point

EOF

EOF

ENTER is supported only by ATARI BASIC.

See: CLOAD, LIST, LOAD.

The term “entry point” is usually applied to a machine language routine or
subroutine. It is the address where execution of the routine begins. It is also
called the “transfer address.”

Format

EOF (file-number)

The EOF function returns a false (0) if data exist in the file and a true (—1)
if the end of file has been reached. The file being tested must be sequential.

This is a good way to tell if a file exists. Immediately after opening the file,

check EOF; if it is true, the file did not exist.

Example

100 OPEN “MYFILE.DAT” AS #1
120 IF EOF(1) NOT = 0 THEN

(file did not exist)

| EOF

System

Format

Notes

Atternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

I R e

TRS Mod T

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

X ==

Commodore

ViC 20

ATARI

400/800

ANSI

Minimum

86 EQV

Notes

1. For a communications buffer, —1 means that the buffer is empty.
The file-number must be between 1 and the maximum number of
files allowed.

2. For cassette files, the file-number is —1; the keyboard is O.

EQV Format
argument-1 EQV argument-2

The equivalence function, EQV, is a logical function of two arguments. It
has a value of true if both its operands have the same truth value, and a
value of false otherwise.

The arguments can be relations, logical variables, or anything that can be
evaluated as true or false. This is the inverse of the exclusive or (XOR)
function. In formal logic the equivalence function is “P if and only if Q.”

Truth Table for EQV

p q p EQV q
F F T
F T F
T F F
T T T

If EQV is not implemented, it can be calculated by

DEF FNEQYV (P,Q) = (P AND Q) OR (NOT (P OR Q)

Example

100 IF A EQV B THEN GOTO 200

If A and B are either both true or both false, control is transferred to line
200.

See: logical functions, XOR.

ERASE

ERASE

EQV

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOsS

Microsoft

IBM

Cassette

Disk

Advanced

» o > =

TRS Mod I

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Format

ERASE {array-name}...

87

The ERASE statement eliminates the specified arrays. Once an array has

been erased, it can be redimensioned.

See: array, DIM, OPTION BASE, subscript.

| ERASE

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

I R

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

88

ERL Format

ERL

The ERL function has as its value the line number in which the most recent

ERL

error occurred. If no error has occurred, ERL has a value of 0.

Example

100 ON ERROR GO TO 1000

120 GET #1
140 GET #2
*
*
*
1000 IF ERL = 120 ...
1020 IF ERL = 140 ...

See: ERR, ERROR, ON ERROR.

(error occurred in file 1)
(error occurred in file 2)

ERL
System in | Format Alternate Commands
Integer
APPLE Applesoft PEEK(218)+PEEK(219)*256
DOS PEEK(218)+PEEK(219)*256
Microsoft X
Cassette X
IBM Disk X
Advanced | x
Level I
TRS Mod IIT | Extended X
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 PEEK(186)+PEEK(187)*256
ANSI Minimum
ERR Format
ERR

The ERR function has as its value a code that indicates the most recent

ERROR 89

error that has occurred. For the meaning of the codes for each system, see
“error codes.” If no error has occurred, ERR has a value of zero.

Example

100 ON ERROR GO TO 1000

120 GET # 1

%

E3

E3
1000 IF ERR = 57 THEN ... (process for error 57)
1020 IF ERR = 62 THEN ... (process for error 62)

See: ERL, ERROR, ON ERROR.

l ERR I
System In | Format| Notes | Alternate Commands
{nteger
Applesoft PEEK(222)
APPLE
DOS
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level I
TRS Mod IIT | Extended
Disk X 1
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 PEEK(195)
ANSI Minimum

Note

1. The true value is given by ERR/2 + 1.

ERROR Format
ERROR arithmetic-expression

The ERROR statement has two distinct uses: to simulate the occurrence of
an error, and to specify a user-defined error code.

90

ERROR

If the statement ERROR 200, is executed, and an error 200 is already
defined, control proceeds as if error 200 had actually occurred. This facili-
tates testing error-handling routines. If error 200 is not defined, the state-
ment defines it; ERR is set to the value 200 and any ON ERROR statement
is then executed.

Example

100 ON ERROR GO TO 1000
120 ERROR 200

%

*

*

1000 IF ERR = 200 THEN ... (process for error)

Example

100 ERROR 22
RUN

QOutput
MISSING OPERAND IN 100

See: ERL, ERR, ON ERROR.

ERROR

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod I | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

I R
boot bt] bmd [e

=<
[N

=<
(S}

errors

ERRORS 91

Notes

1. The value of the expression can be between 0 and 255.

2. The value of the expression can be between 1 and 23; disk errors
cannot be simulated. This cannot be used for user-defined error
codes.

Following are lists of the errors that are associated with the various Sys-
tems. If appropriate, the error code (which is the value that ERR is set to) is
also included. For details as to the etiology of the various errors, refer to
the appropriate reference manual.

Apple

.> 255 ERR

.> 32767 ERR

16 FORS ERR

16 GOSUBS ERR
BAD BRANCH ERR
BAD NEXT ERR
BAD RETURN ERR
DIM ERR

MEM FULL ERR
NO END ERR
RANGE ERR
RETYPE ERR
STOPPED AT line-number
STR OVFL ERR
STRING ERR
SYNTAX ERR
TOO LONG ERR

Applesoft
Messages are printed in the form

?7xx” ERROR IN line-number
where “xx” is one of the following messages.

CAN'T CONTINUE
0 NEXT WITHOUT FOR
16 SYNTAX ERROR
22 RETURN WITHOUT GOSUB
42 OUT OF DATA
53 ILLEGAL QUANTITY

ERRORS

69 OVERFLOW

77 OUT OF MEMORY

90 UNDEF'D STATEMENT

107 BAD SUBSCRIPT

120 REDIM’'D ARRAY

133 DIVISION BY ZERO

163 TYPE MISMATCH

176 STRING TOO LONG

191 FORMULA TOO COMPLEX
224 UNDEF'D FUNCTION

254 ILLEGAL DIRECT

255 CTL-C INTERRUPT ATTEMPTED

Applesoft Disk Operating System

| LANGUAGE NOT AVAILABLE
2 RANGE ERROR

3 RANGE ERROR

4 WRITE PROTECTED

5 END OF DATA

6 FILE NOT FOUND

7 VOLUME MISMATCH

8 /0 ERROR

9 DISK FULL

10 FILE LOCKED

11 SYNTAX ERROR

12 NO BUFFERS AVAILABLE
13 FILE TYPE MISMATCH

14 PROGRAM TOO LARGE
15 NOT DIRECT COMMAND

IBM and Microsoft
(Unless otherwise specified, these errors apply to both systems.)

I NEXT without FOR

2 Syntax error

3 RETURN without GOSUB
4 Out of data

5 Illegal function call

6 Overflow

7 Out of memory

8 Undefined line number

9 Subscript out of range

10. Duplicate definition of array
11 Attempted division by zero
12 Illegal direct mode command

ERRORS 93

13 Type mismatch

14 Out of string space

15 String too long

16 String formula too complex

17 Hlegal use of CONT

18 Undefined USR function

19 No RESUME

20 RESUME without error

21 Unprintable error (Microsoft only)
22 Missing operand

23 Line buffer overflow

24 Device timeout (IBM only)

25 Device fault (IBM only)

26 FOR without NEXT

27 Out of paper (IBM only)

29 WHILE without WEND

30 WEND without WHILE

31 Reset error (Microsoft only)

32 Illegal graphics statement (Microsoft only)

50 FIELD overflow
51 Internal error

52 Bad file number
53 File not found

54 Bad file mode

55 File already open
57 Device 1/O error
58 File already exists

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

66 Direct statement is in file

67 Too many files

68 Device unavailable (IBM only)
Disk read only (Microsoft only)

69 Communication buffer overflow (IBM only)
Drive select error (Microsoft only)

70 Disk write protect (IBM only)
File read only (Microsoft only)

71 Disk not ready (IBM only)

72 Disk media error (IBM only)

73 Use of advanced BASIC in disk mode (IBM only)
Unprintable error (Microsoft only)

ERRORS

TRS Mod III

1 NF NEXT without FOR

2 SN Syntax error

3 RG RETURN without GOSUB
4 OD Out of data

5 FC Illegal function call

6 OV Overflow

7 OM Out of memory

8 UL Undefined line number

9 BS Subscript out of range

10 DD Duplicate definition of array
11 /0 Attempted division by zero
12 ID Illegal direct mode command
13 TM Type mismatch

14 OS Out of string space

15 LS String too long

16 ST String formula too complex
17 CN Illegal use of CONT

18 NR No RESUME

19 RW RESUME without error
20 UE Unprintable error
21 MO Missing operand
22 FD Bad file data
23 L3 Disk BASIC only

TRS Mod III Disk Operating System

51 Field overflow

52 Internal error

53 Bad file number

54 File not found

55 Bad file mode

58 Disk I/O error

62 Disk full

63 Input past EOF

64 Bad record name
65 Bad file name

67 Direct statement in file
68 Too many files

69 Disk write protect
70 File access violation

TRS Color

/0 Division by zero attempted
A0 File already open
BS Bad subscript

CN
DD
DN
DS
FC
FD
FM
ID
1IE
IO
LS
NF
NO
oD

ERRORS

Can’t continue
Redimensioned array
Device number error
Direct statement is in file
Illegal function call
Bad file data

Bad file mode

Illegal direct statement
Input past end of file
Input/Output error
String too long

NEXT without FOR
File not open

Out of data

OM Out of memory

(ON
ov
RG
SN
ST
™
UL

Out of string space
Overflow

RETURN without GOSUB
Syntax error

String formula too complex
Type mismatch

Undefined line

TRS Color Disk Operating System

AE
BR
DF
ER
FN
FO
FS
NE
OB
SE
VF
WP

File already exists

Bad record number

Disk full

Past end of record (direct access)
Bad file name

Field overflow

Bad file structure

Can’t find file

Out of buffer space

SET to a non-FIELDed string
Verification

Write protected

Commodore VIC-20

BAD DATA

BAD SUBSCRIPT
CAN'T CONTINUE
DEVICE NOT PRESENT
DIVISION BY ZERO
EXTRA IGNORED

FILE NOT FOUND

95

96

ERRORS

FILE NOT OPEN

FILE OPEN

FORMULA TOO COMPLEX
ILLEGAL DIRECT
ILLEGAL QUANTITY
LOAD

NEXT WITHOUT FOR
NOT INPUT FILE

NOT OUTPUT FILE
OUT OF DATA

OUT OF MEMORY
OVERFLOW

REDIM’D ARRAY
REDO FROM START
RETURN WITHOUT GOSUB
STRING TOO LONG
SYNTAX

TYPE MISMATCH
UNDEF'D FUNCTION
UNDEF'D STATEMENT
VERIFY

ATARI

2 Memory insufficient
3 Value error
4 Too many variables
5 String length error
6 Out of data error
7 Number greater than 32767
8 Input statement error
9 Array of string DIM error
10 Argument stack overflow
11 Floating-point overflow/underflow error
12 Line not found
13 No matching FOR statement
14 Line too long error
15 GOSUB or FOR line deleted
16 RETURN error
17 Garbage error
18 Invalid string character
19 LOAD program too long
20 Device number larger
21 LOAD file error

128 BREAK abort
129 IOCB (Input/Qutput Control Block)

EXEC 97

130 Nonexistent device

131 IOCB write only

132 Invalid command

133 Device or file not open

134 BAD IOCB number

135 TOCB read-only error

136 EOF (end of file)

137 Truncated record

138 Device timeout

139 Device NAK (Negative AcKnowledgment)
140 Serial bus

141 Cursor out of range

142 Serial bus data frame overrun

143 Serial bus data frame checksum error
144 Device done error

145 Read after write compare error

146 Function not implemented

147 Insufficient RAM

160 Drive number error

161 Too many OPEN files

162 Disk full

163 Unrecoverable system data I/O error
164 File number mismatch

165 File name error

166 POINT data length error

167 File locked

168 Command invalid

169 Directory full

170 File not found

171 POINT invalid

EXEC Format 1

EXEC [address]

Format 2

EXEC file-name [,Rpointer] [,Ddevice] [,Sslot] [,Vvolume]

Formatr 1

This form of the EXEC command transfers control to a machine language
program at the specified address. If no address is specified, control is trans-
ferred to the address specified in the last CLOADM that was executed.

98

EXEC

Format 2

This form of EXEC operates similarly to RUN; the file specified must be a
text file that contains BASIC and DOS commands in the same form as they
would be issued from the keyboard. The file is then executed as if these
commands were typed in. This is a way of performing command file execu-
tion.

Only one EXEC command can be in effect at any given time; if the file
being executed itself contains an EXEC command, the first file is closed and
the file specified in the new EXEC command is opened and executed.

If a file has been opened by an EXEC, a CLOSE will have no effect on it.
Only when the file has been completely executed will it stop and be closed.

If the file being executed contains a RUN command, the designated pro-
gram runs and, when completed, execution of the original file continues.

If a pointer value is specified, the pointer is set to the position specified and
execution begins at this point in the file. The position is calculated from the
start of the file, not the current position.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRS$(4); “EXEC MYFILE, R1000”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
pointer 0 to 65535 None
drive 1or2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1to 254 Volume from which DOS was booted

See: CALL, CLOADM, DLOAD, SYS, USR.

EXP 99

EXEC
System In | Format| Notes | Alternate Commands
Integer CALL
Applesoft CALL
APPLE
DOS X 2
Microsoft CALL
Cassette CALL
IBM Disk CALL
Advanced CALL
Level I
TRSMod IIT | Extended
Disk
Level I
TRS Color Extended | X 1 1
Disk X 1 1
Commodore | VIC 20 SYS
ATARI 400/800
ANSI Minimum

Note

1. An address is required.

EXP Format
EXP (arithmetic-expression)
The exponential function, EXP, has as its value the constant e (2.71828183),
raised to the power indicated by the expression. This is the inverse function
of LOG.
If Y = EXP(X), then Y = e*.

Example

100 Y = EXP(13)
120 PRINT EXP(1), Y, EXP(85.5312)

100

exponen-
tiation

EXPONENTIATION
Output

2.718282 4424134E06 1.398705E37

(As the value of X increases beyond 87, the possibility of overflow in-
creases.)

See: CLOG, LOG.
EXP
System In | Format| Notes | Alternate Commands

{nteger

APPLE Applesoft | X
DOS X
Microsoft | X 2
Cassette X 1

IBM Disk X 1
Advanced | X 1
Level I

TRSMod II | Extended | X
Disk X 2
Level I

TRS Color Extended | X
Disk X

Commodore | VIC 20 X 1

ATARI 400/800 X

ANSI Minimum | X

Notes

1. The expression must not exceed 88.02969.
2. The expression must not exceed 87.3365.

Exponentiation is the raising of a number to a power.

The symbol used to denote exponentiation varies among implementations,
as shown in the following chart:

Symbol Implementation
(uparrow) 1 Commodore, Microsoft, TRS Color
(carat) » Apple, Applesoft, ATARI, IBM

(uparrow) T or TRS Mod III
(left bracket) [

EXPRESSION 101

Note: The value of a negative number raised to an even power, written
— X*, will be positive or negative according to the hierarchy of operations.

See: arithmetic operations.

expression See: arithmetic expression, concatenation, string expression.

FIELD

Format
FIELD #file-number, {arithmetic-expression AS field-name,} ...

The FIELD command organizes the space in a buffer into named entities
called fields. The file to be organized must be open, and all data must be in
string form. A buffer must be fielded before data can be accessed with a
GET or PUT statement. The size and name of each field must be specified;
the arithmetic-expression defines the length of the field; the field-name, its
name. A buffer can have multiple field definitions for the same data. The
sum of all the fields’ lengths must not be greater than the record length; in
practice, it should equal the record length.

The field-name must conform to the rules for a string variable name. How-
ever, these fields are not string variables and they do not occupy string
space. If a field-name is used in an assignment statement to the left of the
equal sign, it will no longer access the field in the buffer.

See: CVD, CVI, CVN, CVS, GET, MKD$, MKI$, MKNS$, MKS$, OPEN,

PUT.
IﬂELD
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X 1
Cassette
IBM Disk X 1,2
Advanced | X 1,2
Level I
TRS Mod IIT | Extended
Disk X 3
Level I
TRS Color Extended
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

file speci-
fication

FILE SPECIFICATION 103

Notes

1. The number sign (#) is optional.

2. The file-number can range from 1 to the maximum number of files
currently allowed.

3. A buffer-number must be used instead of a file-number, it must be
between 1 and 15 inclusive. The number sign (#) cannot be used.

Each system has a different convention for naming files, as shown in the
following summary.

TRS Color
name [. extension] [: drive]

The name can have from one to eight characters; it cannot contain a colon
or a zero, but embedded spaces are allowed. The extension can have from
zero to three characters. Either a period () or a stroke (/) must separate the
name from the extension. The drive must be from 0 to 3; if not specified,
drive 0, or the default drive, is used.

TRS Mod 111
name [/extension] [. password] [: drive]

The name can have from one to eight characters; the first character must be
a letter, remaining characters can be letters or numbers. Embedded spaces
are not allowed. The extension can have from zero to three characters, the
first character must be a letter. The password can have from one to eight
characters. The drive must be from 0 to 3. If no drive is specified, the system
begins with drive 0 and searches for the file; if it is not found, the search
continues on drive 1; and so on.

Apple
file-name

The file-name can have from 1 to 30 characters. The first character must be
a letter. The comma, CONTROL-M, and Carriage Return are not permit-
ted in the name. Leading spaces are ignored, but the name can contain
embedded spaces.

The equal sign (=) can be used as a wild card.

104 FILE SPECIFICATION
IBM
[device:] filename [. extension]

The device can be any of the following:

A: B: First and second disk drives
(Disk and Advanced only)
CASI: Cassette tape player
COMx: Asynchronous communications adapter;

X can be 1 or 2 (Disk and Advanced only)
SCRN: Screen
LPTx: Line printer; X can be 1, 2, or 3;

Cassette BASIC supports only one

line printer
KYBD: Keyboard

Filename
In Cassette BASIC, the filename can have up to eight characters. The colon,
hex “00”, and hex “FF” cannot appear in the name.

In Disk and Advanced BASIC, the filename can have from one to eight
characters; the extension, zero to three characters. Embedded spaces are
not allowed. The following characters can be used for the filename and
extension.

A through Z (lowercase is Parentheses:) (
converted to uppercase) Ampersand (&)

0 through 9 Left apostrophe ()
Dollar sign ($) Hyphen (-)

Right apostrophe () Number sign (#)
Underscore (__) Percent sign (%)

At sign (@) Less-than sign (<)
Braces ({and}) Tilde (~)
Greater-than sign (>) Exclamation Point (!)
Backslash (\) Vertical dashed line (i)
Carat (")

Any other character is invalid and functions as a delimiter, truncating the
name.

The question mark (?) and asterisk (*) can be used as wild cards.

Microsoft

[device:] filename [. extension]

FILES

FILES 105

The filename can have from one to eight characters; they must be upper-
case, no conversion is done from lowercase. Embedded spaces are not
allowed. The extension can be from zero to three characters.

ATARI
device-code [device-number] : [filename] . [extension]

Device Codes

C: Cassette

D: Disk (up to four drives are supported)
E: Screen Editor

K: Keyboard

P: Printer

R: RS-232 Interface

S: Screen

The device number is optional. If not specified, number 1 is the default.

The filename can have from zero to eight characters; the extension, zero to
three. (Filenames are not used with cassette files.)

The question mark (?) and asterisk () can be used as wild cards.

See: wild card,

Format 1

FILES [file-specification]

Format 2

FILES buffer-number, buffer-size

Formatr 1

This form of the FILES command displays the names of files currently on
the specified disk. If no file is specified, all files are listed. If no drive is
specified, the current drive is used.

An asterisk (x) as the first character of the file-name or extension indicates a
wild card. That is, any file or extension is considered to match the asterisk.
A question mark (?) in the file name or extension will cause any character
in that position to match.

106

firmware

FIX

Format 2

This form of FILES defines the number of disk buffers and the total
number of bytes for the buffers.

The buffer-number specifies the number of buffers allocated. It must have a
value between 1 and 15, the default is 2. The buffer-size specifies the total

FIRMWARE

number of bytes allocated for all the buffers; the default is 256 bytes.

See: CATALOG, DIR.
FILES
System In | Format| Notes | Alternate Commands
Integer
Applesoft CATALOG
APPLE
DOS
Microsoft | X 1
Cassette
IBM Disk X 1
Advanced | X 1
Level I
TRS Mod Il | Extended
Disk DIR
Level I
TRS Color Extended
Disk X 2
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Firmware is another term for read-only memory (q.v.).

Format

FIX (arithmetic-expression)

The FIX function has as its value the integer part of the argument. The
fractional part, if any, is truncated. FIX differs from INT in that for a

negative number it does not return a value less than the number.

Example

100 Y = FIX(X)

FLASH

FLASH 107
Output for Different Values of X Compared with INT

X FIX(X) INT(X)

—-29 -2 -3
—2.1 -2 -3
—2.0 —2 -2
+2.1 2 2
+2.9 2 2

See: CINT, INT.

FIX
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X
1BM Disk X
Advanced | X
Level I
TRSMod IIT | Extended | X
Disk X
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
Format
FLASH

The FLASH command sets the video mode such that subsequent output
alternates between foreground color on background and background color
on foreground. It does not affect the characters currently on the screen
when the command is executed, nor characters typed into the computer.

FLASH is supported only in Applesoft and Apple DOS.

See: INVERSE, NORMAL.

108
floating-

point
number

floppy
disks

FOR

FLOATING-POINT NUMBER

See: real number.

See: disks.

Format
FOR counter = starting-value TO ending-value [STEP increment]

The FOR statement works in conjunction with a NEXT statement that
specifies the same counter. All statements between the FOR and this NEXT
are the range of the FOR statement.

The FOR statement operates as follows:

1. The counter is set to the starting-value.
2. All statements in the range are executed.

3. When control reaches the NEXT statement, the specified increment
is added to the counter.

4. The new value of the counter is then compared with the ending-
value. If it does not exceed the ending-value, control returns to the
first statement of the range and the entire range is executed again.

5. Action continues as above until the value of the counter exceeds

that of the ending-value; at this point control passes to the state-
ment following the NEXT.

All parameters must be numeric. Once the FOR statement has begun exe-
cuting, changing the starting or ending value has no effect on its operation.
However, changing the value of the counter will affect the operation.

The increment can be positive or negative. If negative, the ending-value
should be less than the starting-value, and execution stops when the
starting-value is less than the ending-value. If no value is specified, +1 is
used.

Example

100 FOR I =1TO 10 STEP 2
120 PRINT I,
140 NEXT I

format

FORMAT
Output
1 3 5 7 9
See: loop, NEXT, WHILE.
FOR
System In | Format| Notes | Alternate Commands

Integer X 1
Applesoft | X 2

APPLE Fp
DOS X 2
Microsoft X 3
Cassette X 3

IBM Disk X 3
Advanced | X 3
Level I X

TRS Mod III | Extended X
Disk X
Level I X

TRS Color Extended | X
Disk X

Commodore | VIC 20 X

ATARI 400/800 X

ANSI Minimum | X

Notes

1. Statements can be nested 16 deep
2. Statements can be nested 10 deep; the counter cannot be an integer.
3. If the increment is positive and the starting-value is initially greater
than the ending-value, or if the increment is negative and the
starting-value is initially less than the ending-value, the range is not
performed. The counter cannot be double-precision.

109

In this book a format is a general description of a statement, function, or
command. It indicates the specific ordering of the entry in a program. When
an entry can appear in more than one way, numbered formats indicate the
alternatives. In the formats the following conventions are used.

A word entirely in uppercase is a BASIC reserved word ; as such it has
a special meaning to BASIC and must be used where indicated and
spelled exactly as shown. (Some BASICs do not even allow a reserved
word to be embedded in a programmer-defined name.)

110

FORMAT

A word in lowercase indicates an item that is to be supplied by the
programmer. It is usually a parameter or a variable.

Braces { } indicate mandatory entries; they are generally used to de-
limit the scope of an ellipsis.

Brackets [] indicate optional entries. This means that the material in
the brackets can be included or not as the situation demands.

Ellipses (...) indicate that the preceding group can be repeated as
often as necessary.

The vertical bar (|) separates alternatives. Only one of the alternatives
can be chosen.

Any punctuation (comma, semicolon, parentheses) must be included
as shown in the format unless the rules indicate otherwise.

Typical programmer-supplied items are:
arithmetic-expression
string-expression

line-number
file-specification

Example

Consider the format for the DIM statement
DIM {variable-name (value [,value]...), }...

This is interpreted as follows. DIM is a reserved word and must be written
where shown.

The two braces indicate that a variable-name, followed by a left parenthesis,
a value, and a right parenthesis are the minimum that must be specified.
Thus the simplest entry is

DIM A$(10)

The square brackets and ellipsis indicate that more than one value can
appear in the parentheses, separated by commas. So another legal state-
ment is

DIM A$(10,10,5)

The ellipsis after the braces indicates that more than one variable name can
appear in the statement, thus:

DIM A(5,5), B8(3,2,7), C(11)

FP

FREE

FREE

111

The format MOTOR ON|OFF indicates that the two valid forms of the
statement are MOTOR ON and MOTOR OFF.

Format

FP

The FP command invokes Applesoft BASIC.

| Fp

System

in

Format

Notes

Alternate Commands

APPLE

[nteger

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

TRS Mod I

Level

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Note

1. Flushes the program currently in memory.

Format 1

FRE (expression)

Format 2

FREE (drive-number)

Format 1

This form of the FREE function has as its value the amount of storage
currently available (in bytes). The expression is a dummy-variable, and can

112

FREE

be either arithmetic or string. However, since it is parsed, the expression
must be valid.

Execution of FREE causes “housecleaning,” that is, the elimination of
fragmented memory by the reordering of data. This operation can take
from several seconds to minutes.

Format 2

This form of FREE returns the number of free “granules™ on the specified
disk. (One granule = 2304 bytes.) The drive number can be 0 to 3.

See: HIMEM:, LOMEM:, MEM.

FREE

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk X 2
Commodore | VIC 20
ATARI 400/800 X 1 4
ANSI Minimum

I I B B

<
=
(%]

>
w

Notes

1. If the value returned is negative, add 65536 to it to find the true
number of free bytes.

2. Housekeeping is performed only when the argument is the null
string.

3. If the expression is a string, the amount of string space available is
returned. In this case it functions the same as MEM.

4. The dummy variable must be arithmetic.

function

FUNCTION 113

A function is a predefined operation with zero, one, or several operands
which, when invoked, returns a single value. A function can be either nu-
meric or string; and can be user-defined or defined in BASIC.

See: command, DEF FN, statement.

GET

Format 1

GET variable

Format 2

GET (x-value-1, y-value-1) — (x-value-2, y-value-2), array-name [,G]

Format 3

GET # buffer-number [,record-number]

Format 4

GET #file-number, variable

Formar 1

This form of the GET statement inputs the last character typed at the
keyboard. This character is not displayed on the screen, and a Carriage
Return is not necessary to terminate the input.

Format 2

This form of GET stores in an array the values of the points within a
rectangular area of the screen. The first set of x and y values defines the
upper left corner of the rectangle; the second set, the lower right corner. If
G is specified, the points are stored with full graphics detail.

Format 3

This form of GET reads a random access record and puts it into the
designated buffer. The record that is read is specified by the number, which
can be an expression. If no record-number is specified, the “next” record is
read. The buffer-number must have a value between 1 and 15, inclusive.

GET 115

Format 4

This form of GET moves one character (byte) from the file and puts it in
the specified variable. It will pass Carriage Returns and special characters.

See: COLOR, IN#, INKEYS, LOCATE, POSITION, PUT.

| GET |
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft | X 1 2,
DOS X {1 2,3
Microsoft | X [1,3 1,
Cassette
IBM Disk X |3 4
Advanced | X [2,3 4,5
Level I
TRS Mod IIT | Extended
Disk X |3 8
Level I
TRS Color Extended | X [2 9
Disk X I3
Commodore VIC 20 X 1,4 6,7
ATAR! 400/800 | X |4 10
ANSI Minimum

Notes

1

2.

A CONTROL-C returns a null; a left arrow or CONTROL-H may
print as a null (Format 1).

A CONTROL-C will be accepted; it will not interrupt the program.
If the variable is arithmetic, a nondigit returns zero.

If an ONERR ... GOTO and RESUME are used, two consecutive
GET errors hang the system. lf, instead of a RESUME, a GOTO is
used, the forty-third GET error (not necessarily consecutive) causes
a return to the monitor.

The record-number must be less than 32768; the number sign (#)
is optional; and a file-number is used instead of a buffer-number.

. Format 2 is valid only in graphics mode. It reads just the colors of

the points. The G cannot be specified.

. If a key is not pressed, the program does not wait but continues

running.

116

GOsSuUB

10.

GOosuB

. One character is input from the device specified by buffer-number;

if no number is specified, the keyboard is used but the character is
not printed.

If an attempt is made to GET a fixed-length record beyond the end
of file (EOF), a null record is returned, but no indication is given
that this has occurred.

Uses a two-dimensional array to store the properties of the x-
dimension in the first dimension of the array and the y-dimension in
the second dimension of the array. For 16K systems, the length
times the width must be less than 1400. The PMODE must be the
same as that used for PUT,

The file-number can be 1 to 7. If it is 6, it specifies the screen, and
the data are taken from the position where the cursor is. In this
case, the values are those used in the COLOR statement.

Format

GOSUB line-number

The GOSUB statement transfers control to a subroutine beginning at the
specified line-number. This need not be executable, nor the first statement
of the subroutine. To return control to the statement following the
GOSUB, a RETURN statement must be used.

Example

100 GOSUB 1000

200 (control returns here)
*
*
*

1000 (subroutine)
%
k3
k3

2000 RETURN

See: ON GOSUB, POP, RETURN.

GOTO

GOTO

GOSUB
System In 1 Format | Notes | Alternate Commands
Integer X 1,3
Applesoft | X 2
APPLE 50s X 5
Microsoft | X
Cassette X
1BM Disk X
Advanced | X
Level I X
TRSMod IIT | Extended | X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 | X 4
ANSI Minimum | X

Notes

1. Maximum nesting is 16 deep.
2. Maximum nesting is 25 deep.

3. The line-number can be an arithmetic-expression.
4. Control returns to the/ine following the GOSUB, not the statement.

Format

GOTO line-number

17

The GOTO statement transfers control to the specified line-number. This
line need not be executable. If it is not, control passes to the first executable
line after it. If the line contains more than one statement, control is passed
to the first statement on the line. A space can optionally be put between

GO and TO.

Example

100 INPUT AS
120 IF A§ =*“” GOTO 100

118 GR

The program fragment above waits for a nonnull string to be typed in.

See: ON GOTO.
GOTO
System In | Format| Notes | Alternate Commands
Integer X 1
APPLE Applesoft | X
DOS X
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level I X
TRS Mod III | Extended | X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 | X 1
ANSI Minimum | X
Note

1. The line-number can be an arithmetic-expression.

GR Format

GR screen-number [,color-number]

The GR statement clears the screen and sets it to the low-resolution graph-
ics mode. The screen number must be an integer with a value of 0 or 1. The
default value is zero, which specifies a 40 x 40 screen with four lines of text;
a value of 1 specifies a 40 x 48 screen with no text. The color number must
be an integer between 0 and 15; the default is O (black).

See: color codes, GRAPHICS, HGR, HGR2, SCREEN.

GRAPHICS

GRAPHICS

GR

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

I Rl B

IBM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Note

119

1. GR cannot have any parameters. It sets the screen to the low-
resolution graphics mode (40 x 40 with four lines of text). The
screen is cleared, and COLOR is set to O.

Format

GRAPHICS arithmetic-expression

The GRAPHICS statement clears the screen and sets it to one of nine
graphics modes. Modes 0, 1, and 2 are text modes; modes 3 to 8 are
graphics modes. This statement also opens the screen as device number 6.
The expression must be positive with a value between 0 and 8. A fractional

value is rounded.

Modes 1 to 8 are split-screen modes. To override, add “+16” to the ex-
pression: GRAPHICS X + 16. If “+32” is added, it suppresses the clearing

of the screen.

The expression must be positive with a value between 0 and 8. A fractional

value is rounded.

120 GRAPHICS

The following table gives the characteristics of the modes:

Number Number
of y of y
Number Positions Positions Number
of x Split Full of RAM
Mode Positions Screen Screen Colors Needed

0 40 24 2 993
1 20 20 24 5 513
2 20 10 12 5 261
3 40 20 24 4 273
4 80 40 48 2 537
5 80 40 48 4 1017
6 160 80 96 2 2025
7 160 30 96 4 3945
8 320 160 192 2 7900

GRAPHICS is supported only by ATARI BASIC.

See: color codes, GR, HGR, HGR2, SCREEN.

HCOLOR

Format

HCOLOR = arithmetic-expression

HCOLOR sets the high-resolution graphics color to the value specified.
Once set, this color is not changed by HGR, HGR2, or RUN. HCOLOR

does not affect the low-resolution graphics color.

The expression must have a value between 0 and 7. The values and their

colors are:
0 Black-1
1 Green
2 Blue
3 White-1

Black-2

Depends on the TV

4
5 Depends on the TV
6
7

White-2

White-1 and -2 and black-1 and -2 are thicker lines.

See: COLOR, HGR, HGR2, POSITION, SCRN, SETCOLOR.

| HCOLOR

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

BM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

122 HEXS

Note

1. The expression can be between 0 and 12. For the colors that these
values represent, see “‘color codes.”

HEXS Format
HEXS (arithmetic-expression)

The hexadecimal function, HEXS, returns as its value a string that repre-
sents the hexadecimal value of the expression. The expression must have a
decimal value of between 0 and 65535, inclusive.

Example

100 Y$ = HEX$(X)
120 PRINT X, Y$

Output for Various Values of X

X Y
1 1
100 64
132 84
32767 7FFF
65535 FFFF
See: conversion tables, OCTS.
HEX$
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X 1
Cassette X 1
1BM Disk X 1
Advanced | X 1
Level I
TRS Mod I | Extended
Disk
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

hexa-
decimal
conversion
tables

hexa-
decimal
digit

hexa-
decimal
number

HEXADECIMAL NUMBER 123

Note

1. The expression is rounded to an integer first.

See: conversion tables,

A hexadecimal digit is one used to represent numbers in the hexadecimal
(base 16) system. The digits, together with their decimal equivalents, are as
follows:

Hex Decimal
Oto9 0to9
A 10
B 11
C 12
D 13
E 14
F 15

A number preceded by a “&H™ is interpreted as a hexadecimal number. A
hexadecimal number is one that uses the base 16 system. Consequently,
each position in the number represents a multiple of a power of 16.

Example
The hex number 1234 represents

1 x16%+2x16%2+3x 16+ 4 x 16°
=1x4096+2x 256 +3 x 16 +4 x 1
= 4660 in decimal

Values of hex numbers can range from 0000 to FFFF.

See: binary number, conversion tables, octal number.

124 HGR

hexadecimal numbers

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Ead Il I Il -l

Note

1. The dollar sign ($) is used before a number to indicate hexadecimal
values.

HGR Format 1

HGR

Format 2
HGR [screen-number] [,color]

The HGR statement is used to put the screen into high-resolution graphics
mode.

Format 1

The HGR statement clears the screen to black and sets it to the high-
resolution graphics mode (280 x 160), leaving four lines for text at the
bottom of the screen. Then page 1 (8 to 16K) of high-resolution graphics
memory is displayed.

This command does not affect HCOLOR or text screen memory. The text
window is left at full screen but only the four bottom lines are displayed.
The cursor remains in the text window, but it may not be visible.

HGR 125

After HGR has been executed, the screen can be set to full graphics mode
by executing POKE —16302,0 or POKE 49234,0. If HGR is subsequently
executed, the screen resets to the high resolution and text mode.

Format 2

This form of HGR sets the screen to one of four modes and, optionally,
clears it. The following chart gives the actions as a function of the screen
number, which must be between 0 and 3.

Screen Clear

Number Screen? Mode
0 Yes 280 x 160 + 4 lines text
1 Yes 280 x 192
2 No 280 x 160 + 4 lines text
3 No 280 x 192

If no screen number is specified, 0 is assumed.

The color must be a number between 0 and 12. These colors are different
from the usual ones associated with the values. See the entry on color codes
for their meaning. If no color is specified, 0 (black) is used. If a color is
specified with modes 0 or 1, the screen is filled with that color.

See: GR, HCOLOR, HGR2, HIMEM:, LOMEM..

| HGR]

System In | Format| Notes | Alternate Commands

Integer
Applesoft | X 1
DOS X 1
Microsoft | X 2
Cassette
I8M Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Levell
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

126

HGR2

hierarchy
of
operations

HIMEM:

HLIN

HGR2
Format
HGR2

The HGR2 statement clears the screen to black and puts it in full-screen
high-resolution graphics mode (280 x 192). It then displays page 2 (16 to
24K) of graphics memory. HCOLOR and text screen memory are not
affected.

After HGR?2 has been executed, the screen can be set to mixed graphics and
text mode by executing POKE —16301,0 or POKE 49233,0. If this is done,
the four lines of text will be from page 2, not page 1, however.

HGR2 is supported only in Applesoft and Apple DOS.

See: HCOLOR, HGR, HIMEM:, LOMEM:.

See: arithmetic operations, logical functions.

Format
HIMEM: arithmetic-expression

HIMEM: is a variable that sets the address of the highest memory location
available to the program, protecting the area above it. It is automatically
set to the highest address available when BASIC is invoked.

The expression must be between —65535 and + 65535; positive and nega-
tive values are considered equivalent. HIMEM: must be set higher than
LOMEM.. If it is set above actual memory (e.g., to 65535 in a 16K ma-
chine) programs may not execute reliably. HIMEM: is not reset by
CLEAR, RUN, NEW, and DEL. It is reset by (RESET + CONTROL-B),
which also erases any stored program.

HIMEM: is supported only by Applesoft and Apple DOS.

See: FREE, LOMEM:

Format

HLIN starting-x-coordinate, ending-x-coordinate
AT y-coordinate

HOME 127

The HLIN statement plots a horizontal line from the starting to ending x
points at the specified y-coordinate.

Both x-values must be between 0 and 39; the y-value must be between 0
and 47. The starting value must not exceed the ending value. If the screen is
in text mode or in mixed graphics and text mode, then if the y-value is
between 40 and 47, a line of characters is plotted where the dots would have
been. This statement has no visible effect in high-resolution graphics mode.

See: HPLOT, LINE, PLOT, VLIN.

HLIN

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft
Cassette LINE
18M Disk LINE
Advanced LINE
Level I
TRSMod IIT | Extended
Disk
Level I LINE
TRS Color Extended LINE
Disk LINE
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

R R]
f

Note

1. In low-resolution graphics mode the color is determined by the most
recently executed COLOR statement.

HOME Format
HOME

The home statement moves the cursor to the upper left position within the
scrolling window and clears all text in the window.

128 HPLOT

HOME
System In | Format| Notes | Alternate Commands
Integer CALL -936
APPLE Applesoft | X
DOs X
Microsoft | X 1
Cassette CLS
BM Disk CLS
Advanced CLS
Level I
TRS Mod IIT | Extended CLS
Disk CLS
Level I CLS
TRS Color Extended CLS
Disk CLS
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Note

1. If a nonstandard terminal is connected, a “clear screen” sequence of
characters is sent.

HPLOT Format 1

HPLOT [x-coordinate-1, y-coordinate-1]
[TO x-coordinate-2, y-coordinate-2]...

Format 2

HPLOT TO x-coordinate, y-coordinate

Format 1

This form of the HPLOT statement draws a high-resolution line or point. If
only the first set of x and y values is specified, a point is plotted at those
coordinates. The color of the point is that specified by the last HCOLOR
command.

If only the second set of x and y values is specified, a line is drawn from the
last point plotted to the specified point. The color is determined by the last
point plotted even if a HCOLOR statement has been executed since the last
point. If no previous point has been plotted, no line is drawn.

HPLOT 129

If both sets of values are specified, a line is drawn from the first point to the
second. If subsequent TO clauses are specified, lines are drawn from the last
point plotted to the new location. The color is that specified by the most
recent HCOLOR command.

HPLOT must be preceded by HGR or HGR2 to avoid wiping out the
program and/or its variables.

All x-values must be between 0 and 279, inclusive; y-values, between 0 and
191, inclusive. If the mixed graphics and text mode is in effect, y-values from
160 to 191 will have no visible effect.

Format 2

This form of HPLOT draws a line from the last point plotted to the point
specified by the x and y coordinates. The color is determined by HCOLOR;
if no HCOLOR statement has been executed, color 0 is used. This state-
ment has no effect unless there has been a point plotted.

See: DRAWTO, HCOLOR, HGR, HGR2, HLIN, PLOT, VLIN.

[HPLOT |

System In | Format | Notes | Alternate Commands

integer
Applesoft | X
DOS X
Microsoft | X
Cassette
1BM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Levei I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 DRAWTO
ANSI Minimum

APPLE

S QN RPN

Note

1. If no color has been established, color O (black) is used.

130

HSCRN

HTAB

HSCRN

Format
HSCRN (x-value, y-value)

The HSCRN function tests a point on a high-resolution screen.

If a dot exists at the specified point, HSCRN returns a —1; otherwise, it
returns a value of zero. Unlike SCRN, HSCRN does not recognize the
color of the point. The x-value must be between 0 and 279, inclusive; the
y-value, between 0 and 191, inclusive.

HSCRN is supported only by Microsoft.

See: SCRN.

Format
HTAB arithmetic-expression

The HTAB statement moves the cursor relative to the left edge of the
window, but independently of the line width. That is, the cursor can be
moved past the right-hand window edge. The cursor can be moved left or
right.

The expression must be between 0 and 255. Values from 1 to 40 denote the
current line; values from 41 to 80, the next line; and so on.

See: LOCATE, PRINT, SPC, TAB, VTAB.

IHTAB

System In | Format| Notes | Alternate Commands

Integer
Applesoft | X
DOS X
Microsoft | X LOCATE
Cassette LOCATE
IBM Disk LOCATE
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

W W
N

HTAB 131

Notes

1. The cursor is moved to an absolute location, not a relative one.

2. The cursor stays on the same line; the expression, which must be
between 1 and 255, is taken modulo 40.

3. HTAB 0 moves the cursor to position 256,

IF

Format

IF expression|relation THEN line-number | statement-1
[ELSE statement-2]

The IF statement evaluates a condition and, depending on the result of this
evaluation, performs one or the other of two actions.

The operation is as follows. The relation or expression is evaluated. If it is
true (that is, not equal to zero), then if a line-number is specified, control
passes to that line number; if a statement-1 is specified, it is executed and
then control passes to the next line in the program. If the relation is false
(that is, equal to zero), then if the ELSE clause is not specified, control
passes to the next line in the program; if the ELSE clause is specified,
statement-2 is executed and then control passes to the next line in the
program. If only a variable is specified, as in IF X THEN ..., it is the
same as writing IF X ><OTHEN....

The action of the IF statement can be summarized as follows:

Condition True Condition False
No THEN clause executed Next line executed
ELSE and control passes
clause to next line
ELSE THEN clause executed ELSE clause executed
clause and control passes and control passes to
specified to next line next line

In some implementations, either statement can be a group of statements.
When they are to be executed, they are all executed as a group. (Obviously,
if one of the statements causes a transfer of control, the remainder may not
be executed.)

IF 133
Note: When used with floating-point values, instead of a strict equality it is
better to use inequalities. For example, the test IF A = 0 will evaluate as
false unless A is exactly zero. Often the result of a computation gives a
small positive or negative value that is, for all practical purposes, zero. To

accommodate this situation use IF ABS(A) < = DELTA, where DELTA is
defined as appropriately small.

Example

Assume that all variables start out with a value of zero. Executing
IFX>10THENY=1ELSEZ =1

results in the following values of Y and Z for the given values of X:

X Y Z
5 0 1
10 0 1
15 1 0

Upon executing

I00IFX>10THENY=1:A=1ELSEZ=1:B=1
120C =1

the following values of Y, A, Z, B, and C result for the given values of X:

X Y A z B C
5 0 0 1 1 1
10 0 0 1 1 1
15 1 1 0 1

See: loop.

134

IF
System In | Format| Notes | Alternate Commands
Integer X 1,2,3.9
APPLE Applesoft X N2346
DOS X 12348
Microsoft X 2.7
Cassette X 2,7
BM Disk X 2,7
Advanced X 2,7
Level I X 2,6
TRS Mod IIT | Extended X 2,5
Disk X 2,5
Level I X 6,7
TRS Color Extended X 6.7
Disk X 6,7
Commodore VIC 20 X 6,8
ATARI 400/800 X 2,6,7
ANSI Minimum X 6

Notes

1. If the relation is false, control passes to the next statement, not
necessarily the next line.

2. If a GO TO statement follows THEN, the THEN can be omitted.

3. If the variable before THEN ends in an A", parsing problems occur.
For example, IF ATHEN ... parses to IF AT HEN

4. If a string is specified, it evaluates as nonzero (true) even if it is null

S

or blank. Only the literal null string ("'"’) evaluates as zero (false).
But if the expression is a string variable and the previous statement
assigned the null string to any string variable, the string evaluates to
zero. If more than two statements of the form

IF string-variable THEN ...

are in the program, an error occurs,
A colon can appear before ELSE.
No ELSE clause is permitted.

The THEN clause can have several statements separated by colons.
These statements will all be executed if the relation is true. However,
a colon cannot immediately precede ELSE.

The line-number or statement after THEN must be on the same line.
The expression must be arithmetic; strings cannot be compared.

iMmP

Format

argument-1 IMP argument-2

The implication function IMP is a logical function of two arguments. It has
a value of false if its first argument is false and its second argument is true,
and a value of true otherwise. In this function, the order of the arguments is

important.

The arguments can be relations, logical variables, or anything that can be

evaluated as true or false.

IMP

In formal logic, the implication function is “If P, then Q.”

Truth Table for IMP
P 9q pIMPgq
F F T
F T T
T F F
T T T

If IMP is not implemented, it can be calculated by

DEF FNIMP (P, Q) = (NOT P OR Q)

See: logical functions.

[mp

System

Format

Notes

Alternate Commands

Integer

APPLE

Applesoft

DOS

Microsoft

| Cassette

Disk

Advanced

I]

Level I

TRS Mod IIT

Extended

Disk

Level I

TRS Color

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

136 IN#

IN # Format
IN# slot-number

The IN# statement selects input from the peripheral attached to the speci-
fied slot. This determines which source is used to provide input for subse-
quent INPUT statements.

The slot-number must be between 1 and 7. If there is no peripheral in the
designated slot, the system hangs. (Use RESET + CONTROL.-C to recov-
er.) Executing IN# 0 returns to normal keyboard input; slot 0 is not
addressable by the program.

See: INPUT#, PR #.
N #
System In | Format| Notes | Alternate Commands
Integer X
APPLE Applesoft { X
DOS X 1
Microsoft INPUT #
Cassette INPUT #
IBM Disk INPUT #
Advanced INPUT #
Level I
TRSMod IIT | Extended INPUT #
Disk INPUT #
Level I INPUT #
TRS Color Extended INPUT #
Disk INPUT #
Commodore | VIC 20 INPUT #
ATARI 400/800 INPUT #
ANSI Minimum
Note

1. This statement must be executed, preceded by a CONTROL-D, as
part of a PRINT statement:

PRINT CHR$(4);"IN# 6"
increment An increment is a positive value that is added to a counter or variable. If

the value is negative, or if a positive value is subtracted from the counter, it
is called a decrement.

See: decrement, FOR, loop.

INKEY$ 137
INKEYS$ Format
string-variable = INKEY$
The INKEYS$ function has as its value the one-character string that corre-
sponds to the last key struck on the keyboard. Characters input by this
function are not normally displayed on the screen. If no key has been

struck, a null string is returned. Once the key has been read in, the key-
board is reset, so the next INKEYS$ will wait for another key.

Example

To wait for any key to be struck:
100 A$ = INKEYS$
120 IF AS = “” THEN GOTO 100
140 (a key has been struck)

See: GET.

INKEY$

System In { Format!| Notes | Alternate Commands

integer
Applesoft GET
DOS GET
GET

APPLE

Microsoft

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20 GET
ATARI 400/800
ANS! Minimum

E R R
Rl =

bl B Bl B B

Notes

1. CONTROL-C will not be passed through.
2. A 1- or 2-byte string can be returned. If the first byte is null (ASCII

138 INP

0), the second byte contains a code which defines the key as fol-

lows:
3 NUL
15 SHIFT + TAB
16-25 ALT+Q W, E R T,Y,U, 1,0, orP
30-38 ALT + A, S, D,F, G, H, J K orL
44-50 ALT+Z X, C,V,B,N,or M

59-68 Function keys F1 to F10
(if disabled as soft keys)

71 HOME

72 Cursor up
73 Pg Up

75 Cursor left
77 Cursor right
79 END

80 Cursor down
81 Pg Dn

82 INS

83 DEL

84-93 Uppercase + F1 through F10
94-103 CTL + F1 through F10
104-113 ALT + F1 through F10

114 CTL + Prisc
115 CTL + Cursor left
116 CTL + Cursor right
117 CTL + END
118 CTL + Pg Dn
119 CTL + HOME
120-131 ALT +1,2,3,4,5,6,7,8 9,0, —, =
132 CLT + Pg Up
Example

To test and act on two-character codes:

100 X$ = INKEYS$: IF X$ = “” GOTO 100
120 IF LEN(XS$) = 2 THEN {two-code processing)
140 (one-code processing)
INP Format
INP (port)

The INP statement returns a byte value from the specified port.

See: OUT.

INPUT

INPUT 139

INP

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette X 1
IBM Disk X 1
Advanced | X 1
Level I
TRSModIIT | Extended | X 2
Disk X 2
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. The port can be between 0 and 65535, this is equivalent to the
“IN =" assembly language instruction.

2. The port must be an integer between 0 and 255.

Format
INPUT [;] [“message”;] {variable,} ...

The INPUT statement accepts values from the keyboard and assigns them
to the variables in the list. Both numeric and string variables can be input,
and they can appear in any order in the variable list.

If a message is specified, it must be in quotes and followed by a semicolon.
The message is printed, followed by a “?”, and then the input is accepted. If
no message is specified, only the “?” is printed.

The values being input must match the corresponding variables with re-
spect to type (string versus numeric). If more values than there are variables
are input, the excess values are ignored.

String data being input can optionally be enclosed in quotes. If string data
begin with a quote, any character, even a comma or colon, can appear in
the string. Leading and trailing spaces within the quotes are considered part
of the string.

140

If string data do not begin with a quote, the comma and colon are not
accepted as part of the string, since they will function as delimiters. Also,
leading and trailing spaces are ignored. However, the string can contain a

INPUT

quote in any position except the first nonspace character.

See: IN# , LINE INPUT, ON ERROR, RESUME.

[INPUT
System In | Format| Notes | Alternate Commands
Integer X 1,5
APPLE Applesoft | X 2,5,6
DOS X 2,5,6
Microsoft X 3,4
Cassette X 3,5
18M Disk X 3,4
Advanced X 3,4
Level I X 5
TRS Mod IIT | Extended X 5,7
Disk X 5,7
Level I X 5
TRS Color Extended X 5
Disk X 5
Commodore | VIC 20 X 5
ATARI 400/800 X 8
ANSI Minimum X 5

Notes

1. A comma must be written after the message, not a semicolon.

2. If a message is present, no "“?" is printed. A CONTROL-X and
CONTROL-M cannot be in the string typed in. IF an ON ERR GOTO
is used and the error-handling routine uses a GOTO to return to the
INPUT statement, the eighty-sixth input error will cause a return to
the monitor. This does not happen if RESUME is used in the error-
handling routine.

Elements can be separated by a Carriage Return or a space. If the
routine is awaiting a numeric input and a Return is pressed, it
prompts again. If it is waiting for a string input, a Return causes a

null string to be input. Excess values input are ignored.

INPUT #

INPUT # 141

3. The input is not accepted until all the values are good. If too many
elements are input, it causes an error. If a comma follows the mes-
sage instead of a semicolon, the " ?" is not printed. Carriage Returns
cannot be used to separate elements; only commas can be used. If a
single item is being INPUT, a Carriage Return by itself causes a zero
or null to be entered. A colon can be in a string that does not have
quotes.

4. If INPUT is followed by a semicolon, a Return/Line Feed is not
echoed in response to a Return typed by the user. The cursor remains
on the same line as the response.

5. A semicolon cannot follow INPUT.

6. In numeric input, spaces are ignored in any position; so the string
1 2 3 4istaken as 1234.

7. If no value is assigned to a variable, it keeps its old value.

8. A message cannot be specified; a PRINT statement must be used.
String variables cannot be subscripted; array variables cannot be
specified.

Format

INPUT # file-number, {variable} ...

The INPUT # statement takes input from the specified file and assigns it to
the variables in the list.

The data elements should have the same representation as if they were
being typed in. For numeric values, leading spaces, Line Feeds, and Car-
riage Returns are ignored; the first character that is not one of the three is
taken as the start of the number. A space, comma, Carriage Return, or Line
Feed terminates the number.

For string data, if the first character is a quote, leading and trailing spaces,
commas, and colons within the quotes are accepted as part of the string. If
the first character is not a quote, leading and trailing spaces are ignored
and the string ends when a comma, colon, Carriage Return, or Line Feed is
encountered, or after 255 characters or an end of file (EOF) is read.

The file-number can be from 1 to 15.

See: IN# , INPUT, PR# , PRINT #.

142

INPUTS

INPUTS$

| INpUT #

System In | Format| Notes | Alternate Commands
Integer IN #
Applesoft IN #
DOS IN #

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

bl I I
(SN EENYEENY I

IR A A

Notes

1. Works only with sequential disk files.
2. Works on a sequential disk or cassette file.

3. A buffer-number is used instead of a file-number. It must be -1,
which is the cassette. The variable list must be configured identically
to that in the PRINT # statement that wrote the tape (with respect to
the number and types of variables and their order in the list). The
actual names need not be the same.

4. Inputis read up to a Carriage Return.

5. The file number can be 1 to 7.
Format
INPUTS (arithmetic-expression [, [#] file-number])
The INPUTS statement obtains a string of characters from the specified
file. The expression specifies the number of characters returned. If the file is

associated with the keyboard, no characters are displayed on the screen and
all control characters, except CONTROL-BREAK, are passed through.

INSTR

INSTR 143

The file-number must be between 0 and 15, inclusive; O specifies the key-
board.

See: IN#, INPUT, INPUT #.

INPUTS

System In | Format] Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
1BM Disk
Advanced
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANS! Minimum

R Rl i

Note

1. A CONTROL-C will not pass through if input from the keyboard.

Format
INSTR ([position,] string-1, string-2)

The INSTR statement searches string-1 for occurrences of string-2. The
search begins at the character in string-1 specified by the position.

The first occurrence of string-2 that is fully contained in string-1 is located
and its starting position in string-1 is returned. If the string is not found, 0
is returned.

The position must be an integer between 1 and 255; if it is not specified, 1 is
used. If the starting position is greater than the number of characters in
string-1, or if string-1 is null, a O is returned.

144 INT

Example
Value
of
X:
100 A§ = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
120 B$ = “CDE”
140 C$ = “CDG”
160 N§ ="~
180 X = INSTR(AS,B$) 3
200 X = INSTR(3,A$,B%) 3
220 X = INSTR(4,A$,BS) 0
240 X = INSTR(AS$,N9) 1
260 X = INSTR(5,A$,N$) 5
280 X = INSTR(A$,CS) 0
300 X = INSTR(30,A3,N$) 0
See: LEFTS, MIDS, RIGHTS.
| INSTR
System In | Format| Notes | Alternate Commands
integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X
18M Disk X
Advanced | X
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARH 400/800
ANSI Minimum

INT Format
INT (arithmetic-expression)

The integer function, INT, returns the largest integer that is not greater
than the expression. INT differs from FIX in that for a negative number the

value returned can be less than the argument. The expression is not limited

to the usual range for integers.

Example

100 Y = INT(X)

INT

QOutput for Different Values of X, Compared with FIX

X INT(X) FIX(X)
—2.0 -2 ~2
—-2.1 -3 -2
—-29 -3 -2
+2.0 +2 +2
+2.1 +2 +2
+2.9 +2 +2
See: CINT, FIX.
INT
System in | Format| Notes | Alternate Commands
Integer 1
APPLE Applesoft | X 2
DOS X 2
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level I X
TRSMod IIT | Extended | X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 | X
ANSI Minimum | X

Notes

1. This is a command that erases the current program.
2. This is also a command that switches to integer BASIC.

146

integer

INVERSE

INTEGER

In BASIC, an integer is a whole number that is not stored as a floating-
point value. Integers occupy 2 bytes and have values between — 32768 and
+32767. An integer is defined by a “%” following the name or by having
the first letter of its name appear in a DEFINT statement. Note that a
single- or double-precision variable can have an integer value, but they are
not considered integers. An integer constant is one written without a deci-
mal point.

If floating-point variables are not needed, using integers can speed up pro-
gram execution.

See: CINT, DEFINT, FIX, INT, real number.

l integer

Format | Notes | Alternate Commands
1,2

El

System

{nteger

Applesoft
DOS

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I 3
TRS Color Extended 3
Disk 3
Commodore | VIC 20 X
ATARI 400/800 X 3
ANSI Minimum

AR Il I B Bl e B

Notes

1. As this BASIC supports only integers, the percent sign cannot be
used.

2. The smallest negative number is —32767.

3. There are no integers per se, only floating-point variables with in-
teger values.

Format
INVERSE

The INVERSE statement sets the video mode such that subsequent output
shows as black on white. It does not affect characters currently on the

inverse
function

INVERSE FUNCTION 147

screen when the command is executed, nor characters typed into the com-
puter.

See: FLASH, NORMAL.

INVERSE

System In | Format| Notes | Alternate Commands
Integer POKE 50,127
Applesoft | X
DOS X
Microsoft | X
Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I SHIFT + p
TRS Color Extended
Disk
Commodore | VIC 20 1
ATARI 400/800
ANSI Minimum

APPLE

Note

1. From the keyboard, use CONTROL-RVS + ON; from the program
use POKE 36879, PEEK (36879) AND 247.

If we consider a function as a transformation or mapping of one set of
values onto another set, the inverse of a function is a function that performs
the reverse transformation.

For example, when one writes Y = LOG(X), the LOG function transforms
the value of X into a new value, which becomes the value of Y. The inverse
of the LOG function, EXP, will transform this value of Y back into the
original X. In other words, EXP(LOG(X)) = X for any valid value of X.

Note, however, that due to round-off error the final value of X may differ
slightly from the original value. For example, if X = 9, EXP(LOG(X)) may
evaluate to 8.999999.

The ASC and CHRS functions are also inverses. For any value, X,
ASC(CHRS(X)) equals X itself.

See: function.

JOYSTK

Format

JOYSTK (arithmetic-expression)

The joystick function, JOYSTK, returns a value from 0 to 63 that indicates
one of the coordinates of a joystick.

The expression must have a value between 0 and 3; these values signify:

W= O

The upper leftmost position is 0,0; the upper rightmost is 0,63; the lower

Left joystick, horizontal position
Left joystick, vertical position
Right joystick, horizontal position
Right joystick, vertical position

leftmost is 63,0; and the lower rightmost is 63,63.

JOYSTK (0) must be executed before any of the other coordinates are read

or erroneous results may be obtained.

See: BUTTON, PADDLE, PDL, PTRIG, STICK, STRIG.

| J0YSTK
System In | Format | Notes | Alternate Commands
Integer PDL
APPLE Applesoft PDL
DOS PDL
Microsoft PDL
Cassette STICK
IBM Disk
Advanced
Level
TRS Mod IIT | Extended
Disk
level I X
TRS Color Extended X
Disk X
Commodore | VIC 20
ATARI 400/800 STICK, PADDLE
ANSI Minimum

KEY

K

K is an abbreviation for “kilo,” a prefix indicating 1000. However, when
used to refer to the capacity of a storage device (memory, cassette, or disk)
it means a multiple of 1024 bytes; thus “32K ” means 32,768 bytes.

See: byte.

Format 1

KEY integer, string-variable

Format 2

KEY ON|OFF|LIST

Formar 3

KEY (integer) ON|OFF|STOP

Format 1

This form of the KEY statement assigns a text string to a function key. The
integer, which must be between 1 and 10, inclusive, specifies the function
key. The string-variable contains the text to be assigned to the key. Once
the KEY command has been executed, pressing the key causes the text to
be input to the system as if it had been typed in. Assigning text to a key
erases any previous assignment.

Format 2

This form of KEY controls the display of the text currently assigned to the
function keys. If ON is specified, the first six characters assigned to each of
the keys is displayed on the twenty-fifth line of the screen. If OFF is
specified, this display is erased, but the keys are not disabled. If LIST is
specified, all the text associated with each key is displayed.

Format 3

This form of KEY enables or disables trapping of the function and cursor
movement keys. The integer must be between 1 and 14, where values from 1

150

keyword

KILL

KEYWORD

to 10 refer to the function keys and values of 11 to 14 to the cursor
movement keys:

11
12
13
14

Cursor up
Cursor left
Cursor right
Cursor down

ON activates trapping of the specified key. When trapping is activated, if an
ON KEY GOSUB statement is executed, whenever the designated key is
pressed a transfer is made to the subroutine. OFF disables trapping; if a
key is pressed, the system does not remember the event. STOP disables
trapping, but if a key is pressed the event is remembered and, when an ON
KEY GOSUB is subsequently executed, the trap occurs immediately.

All formats of KEY are supported only by IBM BASIC (all levels).

See: ON KEY

See: reserved word.,

Format

KILL file-specification

The KILL command deletes the specified file from the disk. The extension
must be included in the file specification and the file must be closed.

Example

100 AS = “MYFILE.BAS”
120 KILL AS

or

120 KILL “MYFILE.BAS”

See: DELETE.

KILL 151

KILL

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS DELETE
Microsoft | X
Cassette
IBM Disk X
Advanced | X
Level I

TRS Mod IIT | Extended
Disk X 1
Level I

TRS Color Extended
Disk X 1
Commodore | VIC 20

ATARI 400/800
ANSI Minimum

APPLE

Note

1. The file-specification must be in quotes.

last
point
referenced

least
significant
digit

LEFTS

Graphics instructions usually operate with respect to a point that is defined
in the statement. In some instructions, if no point is specified, the starting
point is the last point plotted on the screen. This is called the “last point
referenced.” Another term is “last point plotted.”

In IBM applications, all graphics locations specified in relative form are
taken with respect to the last point referenced.

See: CIRCLE, DRAW, LINE, PAINT, PSET, PRESET, relative form.

The least significant digit is the one that contributes the smallest value to
the magnitude of a number. (This is not necessarily indicative of the preci-
sion of the number.)

When dealing with binary numbers, the least significant bit (LSB) is the
rightmost bit in the number.

See: most significant digit.

Format

LEFTS$ (string-variable, arithmetic-expression)

The LEFTS$ function has as its value the leftmost characters of the string, as
determined by the expression. The value of the expression must be between
0 and 255. If the expression is greater than the number of characters in the
string, the function’s value is the entire string. If the value is zero, the null
string is returned.

Example

100 AS = “ABCDEFGH”
120 B§ = “ABC”

140 X% = LEFT$(AS,2)
160 Y$ = LEFT$(BS,5)
180 Z§ = LEFT$(BS,0)
200 PRINT X§, Y§, Z$

LEN 153
Output
AB ABC (Z3$ is null)

See: INSTR, MIDS, null string, RIGHTS.

| LEFTS

Format | Notes | Alternate Commands

5

System

Integer

Applesoft
DOSs

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRSMod I | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

A R R R A

bl R e R R I

Note

1. The value of the expression can be between 1 and 255.

LEN Format
LEN (string-expression)

The LEN function has as its value the number of characters in the ex-
pression, including nonprinting characters. The length of the null string is 0.

Example

100 A% = “ABC”

120 B$ = “DEF”

140 C§ ="~

160 X = LEN(AS$)

180 Y = LEN(AS + BS)

154 LET
200 Z = LEN (C¥%)
220 PRINT X, Y, Z
Output
3 6 0
LEN
System In | Format | Notes | Alternate Commands
Integer X 1
Applesoft | X 2
APPLE pree
DOS X 2
Microsoft X
Cassette X
IBM Disk X
Advanced | X
tevel I
TRS Mod IIT | Extended X
Disk X
Level I X
TRS Color Extended X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X
ANSI Minimum
Notes
1. The argument cannot be an expression, only a string variable.
2. The function returns 0 to 255. If the number of characters is over 255
(as in a concatenated expression), it causes an error.
LET Format

[LET] variable = expression

The LET statement assigns the value of the expression to the variable. The
keyword LET is not required in personal computer BASIC, but should be
included if compatibility with older versions is required. This is also called

the assignment statement.

See: SWAP

LINE

LINE

LET

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

18M

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

IR R I I I I T

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

IR I I B

Note

1. LET is required in the statement.

Format

LINE [(x-coordinate-1, y-coordinate-1)] —

(x-coordinate-2, y-coordinate-2),
PSET|PRESET |[color] [,B|BF]

155

The LINE statement draws a line or a rectangle. The line is drawn from the
first set of x and y coordinates to the second. If the first set of values is not
specified, the last point plotted is used as the starting point. If no previous
point has been plotted, point (128,96) is used. After the statement has exe-
cuted, the last point referenced is the one specified by the second set of

coordinates.

PSET specifies that the foreground color is used for the line; PRESET, the

background color.

B draws a box instead of a line. The first set of values specify the upper
left-hand corner, the second set of points, the lower right-hand corner. BF
not only draws a box, but it also fills it with the foreground color.

See: DRAW, HLIN, HPLOT, PLOT, VLIN.

156

line

LINE
INPUT

LINE

LINE

System In | Format| Notes | Alternate Commands

Integer HLIN, VLIN
Applesoft HLIN, VLIN
DOS
Microsoft
Cassette X 1
1BM Disk
Advanced | X 1
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended | x 2
Disk X 2
Commodore VIC 20
ATARI 400/800
ANSI Minimum

APPLE

>
—

Notes

1. This can be used in graphics mode only. The coordinates can be in
relative or absolute form. If the second set of values is relative, it is
considered relative to the first set, not to the last point plotted. A
coordinate that is negative is taken as zero; a coordinate greater than
the maximum is taken as the maximum value: 199 for y, 639 for x
(high resolution). In medium resolution, an x-value over 319 wraps
to the next line. PSET and PRESET cannot be specified.

2. A color cannot be specified, only PSET and PRESET.

See: program line.

Format |

LINE INPUT #file-number, string-variable

Format 2
LINE INPUT [;] [“character-string™;] string-variable

The LINE INPUT statement inputs an entire line into a string variable.

LINE INPUT 157
Formar 1

This form of the LINE INPUT statement reads a line from the specified file
into the variable. A line is defined as all characters until a Carriage Return,
an end of file (EOF), or the 255th character is encountered. If a Line
Feed/Carriage Return is met, it is passed; however, a Carriage Return/Line
Feed terminates the input. The file-number must be between 1 and 15,
inclusive.

Format 2

This form of LINE INPUT reads a line from the keyboard into the speci-
fied variable. All characters, including leading spaces, are read in until a CR
(ASCII 13) is encountered. If a character-string is specified, it is printed
before the line is accepted; if no string is specified, nothing, not even the
system prompt, is output prior to accepting input.

See: INPUT, IN#, READ.

LINE INPUT

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk X |1,2 2,4
Level I
TRS Color Extended | X |2 2,4
Disk X i1 2,4
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

IR R
Lol B B B

Notes

1. A CONTROL-C returns to the command level. If CONT is subse-
quently issued, the instruction starts all over again.

2. Uses a buffer-number instead of a file-number.

158

line
number

LIST

3. In Format 2, if the semicolon is included after INPUT, the user’s
Carriage Return will not generate a Carriage Return/Line Feed and

LINE NUMBER

the cursor will remain on the same line as the input.
4. A semicolon cannot be used after INPUT.

5. A CONTROL-BREAK returns to the command level. If CONT is sub-

sequently issued, the instruction starts all over again.

The following chart gives the valid values of line numbers for the various

systems.

See: program line.

line number

System In | Format | Notes Range (Zero to)
Integer 32767
Applesoft 63999
APPLE
DOS 63999
Microsoft I 65529
Cassette 1 65529
1BM Disk I 65529
Advanced ! 65529
Level | 65529
TRS Mod {11 | Extended 1 65529
Disk 1 65529
Level | 63999
TRS Color Extended 63999
Disk 63999
Commodore ViC 20 63999
ATARI 400/800 32767
ANSI Minimum 9999

Note

1. The period (.) can be used as a symbol for the current line in LIST,

DELETE, and so on.

Format

LIST [line-number-1] [—] [line-number-2]

The LIST command displays one or more lines of the program currently in

memory.

LIST 159

If no line-numbers are specified, the entire program is listed. If only one
line-number is specified, that line is listed. If two line-numbers are specified,
all lines from the first to the second, inclusive, are listed.

If only line-number-1 and the hyphen are specified, all lines from that
number to the end of the program are listed. If only the hyphen and
line-number-2 are specified, all lines from the first line of the program to
that number are listed.

See: ENTER, LLIST.

LIST |
System In | Format | Notes { Alternate Commands
Integer X 1,2
APPLE Applesoft | X 1,3
DOS X 1,3
Microsoft | X 3,4
Cassette X 4,5
I8M Disk X 4,5
Advanced | X 4,5
Level I X 1,4
TRS ModIIT | Extended | X 4
Disk X 4
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X 1
ATARI 400/800 X 2,6
ANSI Minimum

Notes

Cannot appear in a program.

Must use a comma instead of a hyphen between line numbers.
. Can use a comma or a hyphen between line numbers.

. The period (.) can be used to represent the current line.

If the line numbers are followed with a file-specification, the output
is to the specified file, not the screen.

If a file specification in quotes precedes the line numbers, the lines
are written to the cassette. If the specification is just “ P, output
goes to the printer.

o e N o

o

160

literal

LLIST

LITERAL

A literal is a string of characters whose value is determined by the
characters themselves. For example, consider the two statements

100 X§ = “AB%”
200 X% = AB$

In line 100, the value assigned to X$ consists of the three characters A, B,
and §; whereas in line 200 the value assigned to X§ is the contents of the
string variable ABS.

Similarly for numeric variables:

100 X =12.34
200 X = Al

In line 100, the value assigned to X is 12.34; but in line 200, X gets whatever
value the variable A1l has.

In the first example, the string “AB$” is a literal—its value is that of the
characters that make up the string—whereas the value of the variable ABS
depends on its current contents.

In the second example, the value assigned to X is that represented by the
characters themselves—the numeric value 12.34. Note that this is not the
same as writing X$ = “12.34”; in this case the value of X$ is the five
characters in the literal “12.34”, and it has no numeric value.

There are both numeric and nonnumeric literals in BASIC. A numeric
literal is also called a constant; a nonnumeric literal is sometimes called
simply a string.

In input/output statements, depending on the rules, string literals can be
written with or without quotation characters around them. For an example,
see INPUT.

See: string variable.

Format
LLIST [line-number-1] [—] [line-number-2]

The LLIST command operates identically to the LIST command except
that the output goes to the printer instead of the screen.

See: LIST.

LOAD

LOAD 161

LLIST
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X 2
Cassette X
IBM Disk X 1
Advanced | X 1
Level I
TRSModIIT | Extended | X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. The command can be terminated by CONTROL-BREAK.

2. A printer must be in slot 1; it is assumed to be 132 characters wide.
After the command has been executed, control returns to the com-
mand level.

Format 1

LOAD file-specification [,R]

Format 2

LOAD ([file-name] [,device]

Formar 3

LOAD file-name [,Ddrive] [,Sslot] [,Vvolume]

The LOAD command loads a program from cassette or disk into memory.

162

LOAD

Format 1

This form of LOAD loads the specified file. The file must be a BASIC
program; if no extension is specified, “BAS” is assumed. If R is specified,
the program is run after it is loaded.

Format 2

In this form of LOAD the device can be 1 for the cassette, or 8 for the disk.
If no device is specified, the cassette is assumed. If no program-name is
specified, the first program encountered is loaded.

Normally, the program will load at location 4096; but if the machine has
the extra 3K of memory, it loads at location 1024. If the command parame-
ter is 1, the program is loaded from the same location at which it was saved.
The new program will overwrite the one currently in memory. If it is
shorter, some variables will be preserved.

The asterisk (x) can be used as a “wild card.” The command
LOAD “x”8

loads the first program on disk. The command
LOAD “ABx%",8

loads the first program whose name begins with AB.

Format 3

This form of LOAD is used only for disk. It erases memory, loads the
specified file from disk, and then changes to the correct BASIC (integer or
floating) for the program.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); "LOAD MYFILE, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

See: CLOAD, CLOADM, ENTER, LOADM, SAVE.

LOADM

LOADM 163

| LoaD
System In | Format| Notes | Alternate Commands
Integer X 1 1
APPLE Applesoft | X 1 1
DOS X 3
Microsoft | X 1 4
Cassette X 1 2,3,4
1BM Disk X 1 3,4
Advanced | X 1 3,4
Level I
TRSMod IIT | Extended
Disk X 1 4,5
Level I
TRS Color Extended
Disk X 1 S
Commodore | VIC 20 X 2
ATARI 400/800 X 1 5,6
ANSI Minimum

Notes

1. A program-name cannot be specified, only LOAD. No checks are
made to see if the cassette is connected or ready, so it must be
running before the command is executed. A tone is sounded before
and after loading.

2. If no device is specified, CAS1:, the only valid device, is used.

3. If CAS1: is the device, then if a program name is not specified, the
next program on tape is loaded.

4. If R is specified, all open files are left open; if it is not specified, they
are closed.

5. The file-specification must be in quotes.

6. The R cannot be specified, and no assumption is made about the
extension.

Format
LOADM “file-name” [,offset]

The LOADM command loads a machine language program from the disk
and then executes it. The program is loaded at the address that was speci-
fied when it was saved. If an offset is specified, it is considered a hexadeci-
mal number and is added to the program addresses, thereby relocating the
program. (However, any absolute address in the program will not be
changed.)

164

LoC

The file-name must be in quotes; if no extension is specified, BIN is as-

sumed.

LOADM is supported only by TRS Color DOS.

LOC

See: CLOAD, CLOADM, LOAD, SAVEM.

Format

LOC (file-number)

The LOC function has as its value the number of the last record accessed in
the specified buffer. LOC is valid only if the file is open and a GET has
been executed for it.

The file-number must be between 1 and 15, inclusive.

See: GET, LOF, OPEN.
LOC
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X 2
Cassette
IBM Disk X 1
Advanced | X 1
Level I
TRS Mod T | Extended
Disk X 3
Level I
TRS Color Extended
Disk X 3
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
Notes

1. If the file is sequential, LOC returns the number of records read from
or written to the file since it was opened. For communications files,
LOC returns the number of bytes in the input buffer waiting to be
read. If there are over 255 bytes, LOC returns 255. If the file is open
for sequential input and no input has been performed, LOC returns

al.

LOCATE

LOCATE 165

2. With sequential files, the value returned is the number of sectors read
or written since the file was opened. (One sector is 128 bytes.)

3. A buffer-number must be used instead of a file-number.

Format 1

LOCATE [row] [,column] [,cursor] [,start] [,stop]

Formar 2
LOCATE x-coordinate, y-coordinate, arithmetic-variable

The LOCATE statement positions the cursor on the screen.

Format 1

In addition to positioning the cursor, this form of LOCATE also defines its
size. The cursor is positioned to the specified row and column; if the cursor
parameter is 0, the cursor is invisible, if 1, the cursor is visible.

The start and stop parameters define the size of the cursor. This size is
specified in terms of scan lines, where the top scan line is 0, and the bottom
scan line is 7 for the color/graphics monitor, and 13 for the monochrome
display.

If start is specified and stop is not, stop is set equal to start. If start is greater
than stop, wraparound occurs.

Valid values for the parameters are:

row 1 to 25
column 1 to 40 or 80
cursor Oor1l

start 0to 13

stop Oto 13

If any parameter is not specified, the current value is used.

Format 2

This form of LOCATE positions the cursor to the specified location and
reads the characteristics of that location, storing it in the specified variable.

166

LOCK

LOCK

The range of values that this can return depends on the mode of the screen.

Mode Range

0,1,2 0 to 255
3,57 Oto3
4,6, 8 Oorl
See: CSRLIN, POSITION, SCRN.
LOCATE
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft
Cassette X 1
IBM Disk X 1
Advanced X 1
Level I
TRS Mod OI | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 X 2
ANSI Minimum

Format
LOCK file-name [,Ddrive] [,Sslot] [,Vvolume]

The LOCK command protects a file from being deleted, renamed, or al-
tered.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRY(4); “LOCK MYFILE, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

LOF

LOF

Parameter Range Default
drive 1or2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1to 254 Volume from which DOS was booted

LOCK is supported only by Apple DOS.

See: file specification, UNLOCK.

Format

LOF (file-number)

The LOF function has as its value the highest numbered record of the
specified file. The file can be sequential or random access; it must be open
and, if it is in extend mode, a GET must be executed before LOF is valid.

The file-number must be between 1 and 15, inclusive.

See: GET, LOC, OPEN.

LOF

System

Format

Notes

Alternate Commands

Integer

Applesoft
APPLE PP

DOS

Microsoft

Cassette

IBM Disk

Advanced

Level I

TRS Mod IIT | Extended

Disk

Level I

TRS Color Extended

Disk

Commodore | VIC 20

ATARI 400/800

ANSI Minimum

168

LOG

LOG

Notes

1. The value returned is the number of bytes allocated to the file. For
disk files, the value returned is a multiple of 128.

2. For communications files, the number of bytes in the input buffer is
returned.

3. A buffer-number must be used instead of a file-number.

Format
LOG (arithmetic-expression)

The natural logarithm function, LOG, returns as its value the natural loga-
rithm of the expression. It is the inverse of the EXP function. The ex-
pression must be greater than zero.

If X = LOG(Y), then ¢* = Y.

Rules of Logarithms

LOG (X * Y) = LOG(X) + LOG(Y)
LOG (X/Y) = LOG(X) — LOG(Y)
LOG (X*Y) = Y * LOG(X)

To convert a natural logarithm to a base 10 logarithm, divide it by
LOG(10). One can define the following function:

Example

100 DEF FNLN(X) = LOG(X)/LOG(10)
120 K = 100

140 Y = LOG(K)

160 Z = FNLN(K)

180 PRINT LOG(2.718283), Y, Z

Output
1 4.60517 2

See: CLOG, EXP.

logical
functions

LOGICAL FUNCTIONS 169

| Loc

System In | Format| Notes | Alternate Commands

Integer

APPLE Applesoft X
DOS X
Microsoft | X
Cassette X

BMm Disk X
Advanced X
Level I

TRS Mod IIT | Extended X
Disk X
Level I

TRS Color Extended X
Disk X

Commodore | VIC 20

ATARI 400/800 X

ANSI Minimum X

Logical functions deal with relations and with variables that can have one
of two values: true or false. (These are called logical variables.) False is
represented by zero, true by any nonzero value. In general, when the system
software returns a true value it is — 1.

The two logical functions implemented most often are AND and OR; each
is a function of two arguments. The logical function NOT, a function of one
argument, is also usually implemented.

De Morgan’s theorem defines a special relationship between the AND and
OR functions:

NOT (p AND q) = NOT(p) OR NOT(q)
NOT (p OR q) = NOT(p) AND NOT(q)

Three additional functions are implemented in some systems: the equival-
ence function, EQV; the implication function, IMP: and the exclusive or
function, XOR.

v

Logical functions are evaluated in this order:
NOT, AND, OR, XOR, IMP, EQV

If an expression contains two instances of the same function, evaluation is
from left to right. Parentheses can be used to override the order listed
above, the innermost set of parentheses being evaluated first, then the next
innermost, and so on.

See: AND, EQV, IMP, NOT, OR, XOR.

170

logical
variable

LOMEM:

LOGICAL VARIABLE

logical functions

System Notes NOT AND OR EQV IMP XOR
Integer X X X
Applesoft | | X X X
APPLE
DOS X X X
Microsoft X X X X X X
Cassette X X X X X X
1BM Disk X X X X X X
Advanced X X X X X X
Level | X X X
TRS Mod 111 Extended X X X
Disk X X X
Level | X X X
TRS Color Extended X X X
Disk X X X
Commodore | VIC 20 X X X
ATARI 400/800 1 X X X
ANSI Minimum
Note

1. The system returns a 1 for true, not —1.

A logical variable is a variable that can have a value of true or false. False is
represented by zero, true by any nonzero value. In general, when the system
software returns a true value, it is — 1.

See: logical functions.

Format
LOMEM: arithmetic-expression

LOMEM: is a variable that is used to set the address of the lowest memory
location available to the program. It is used to protect variables from
high-resolution graphics pages. Before a program is executed, LOMEM: is
automatically set to the end of the current program.

loop

LPOS

LPOS 171

The expression must be between —65535 and 65535 (positive and negative
values are considered equivalent). LOMEM: must be set lower than
HIMEM.. Once set, LOMEM: cannot be set to a new value lower than its
current value unless it is first reset. It can be set higher, however.

LOMEM_: is reset by NEW, DEL, RESET + CONTROL-B, and by adding
or changing a program line. It is not reset by RUN, RESET + CONTROL-
C, or RESET 0G. If changed by the program it may cause parts of the
program to be unavailable to itself, causing chaos.

If LOMEM: is set so as to point into the operating system or a stored
program, an error occurs. The current location of LOMEM : is in locations
106 (high byte) and 105 (low byte). If set too low, an out-of-memory error
occurs.

LOMEM: is supported only by Applesoft and Apple DOS.

See: FREE, HIMEM:.

A loop is one or more instructions that are executed for a specified number
of times, or until a condition becomes true.

Example
To clear two 10-element arrays, one could use the following loop:

100 FORI=1TO 10

120 A$(I) = “”
140 SX(I) = 0
160 NEXT I

See: FOR, WHILE.

Format
LPOS (arithmetic-expression)
The LPOS function has as its value the current logical position of the print
head within the printer buffer.
In cassette BASIC, the argument is a dummy variable; for noncassette

BASIC, the expression indicates:

Oorl Line printer 1
2 Line printer 2
3 Line printer 3

172

LPRINT

The position returned is not necessarily the physical position of the print
head. If the width has been specified as infinite, the head position goes from
0 to 255 and then back to 0 again.

Example

100 Y = LPOS(1)
140 LPRINT “ABCDEFGHI”
140 Z = LPOS(1)
160 PRINT Y,Z

QOutput

1 10

See: POS, WIDTH.

LPRINT

LPOS

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

I Rl Eaile

TRS Mod IIT

Level

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANS!

Minimum

Notes

1. The expression is always a dummy argument.

Format

LPRINT [expression [;|,]]...

LSET

LSET 173

LPRINT has the same format and operates the same as PRINT, but sends
the output to the line printer. It can be used with any form of PRINT
except PRINT@. If a TAB command is used with LPRINT, it can move
the carriage only to the right.

See: PRINT.,

LPRINT N

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 X
ANSI Minimum

S Rl Rl R
SIS RS BN

>

Notes

1. Assumes a 132-character-wide printer, which must be in slot 1.
2. Assumes an 80-character-wide printer.

Format
LSET field-name = character-string

The LSET command moves the character-string into the specified field,
left-justified. If the character-string is smaller than the field, space fill occurs
on the right; if it is larger, the excess is truncated.

The character-string can be a string-variable or a literal. Numeric values
must be converted to strings before they can be LSET. (Note that a field-
name is not the same as a normal string-variable.)

See: assignment statement, FIELD, MKD$, MKI$, MKN$, MKS$, RSET.

174

LSET
LSET
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft X 1
Cassette
IBM Disk X 1
Advanced X 1
Level I
TRS Mod Il | Extended X
Disk X
Level I
TRS Color Extended
Disk X
Commodore | VIC 20
ATARI 400/800
ANS! Minimum

Note

1. LSET can be used with a

example:

100 A$ = SPACES$(5)

120 N$ = "ABC"
140 LSET A$ = N$
160 PRINT “ > ";A$;" <~

Output: >ABC <

nonfielded variable to left-justify it. For

machine
language

mask

mathe-
matical
operations

matrix
functions

M

Machine language is a combination of 1’s and O’s that are interpreted by
the computer as instructions, data, and/or addresses.

A mask is a pattern of bits that is used to test selected bits in a byte. The
mask contains a one bit for each bit that is to be considered in the test and
a zero bit for those that are not of interest. When the mask is ANDed with
the byte being tested, all bits in the result that do not correspond to one
bits in the mask are zero. Bits corresponding to one bits in the mask are left
in their original state.

Often, one wishes to test for a certain pattern of bits. The byte to be tested
is first XORed with the desired pattern and the result is then ANDed with
the mask. If the result is zero the desired pattern is present; if the result is
nonzero, the pattern is not present.

For example, assume that we are testing for a pattern of 1010 in the
rightmost 4 bits of a byte, and we do not care what the leftmost 4 bits are.

Byte 11001010
XOR XXXX1010 (X = anything)

Result XXXX0000
AND 00001111

Result 00000000

If any bit does not match the pattern:

Byte 11001011
XOR XXXX1010

Result XXXX0001
AND 00001111

Result 00000001

See: arithmetic operations.

BASIC was originally designed to aid college students in solving compli-
cated mathematical problems. As such it contained a set of statements

176

MAXFILES

MEM

MAXFILES

designed to facilitate matrix manipulation. Most personal computers do not
support matrix operations directly; to implement these function FOR ...
NEXT or WHILE ... WEND loops must be used.

Format
MAXFILES integer

MAXFILES specifies the number of files that can be active at one time.
When executed, 595 bytes are reserved for each file.

The integer must be between 1 and 16, inclusive; the default is 3. Each DOS
command, except PR #, IN#, and MAXFILES itself, requires a file buffer.

Executing MAXFILES in the immediate mode will erase an integer BASIC
program that is in memory. This command cannot be executed from within
an integer BASIC program unless you use an EXEC file.

For Applesoft programs, it should be the first statement in the program
since it affects string variable space and changes the value of HIMEM ..

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “MAXFILES 5~
MAXFILES is supported only by Apple DOS.

See: EXEC.

Format
MEM

The MEM function has as its value the number of unused and unprotected
bytes in memory.

See: FRE, HIMEM:, LOMEM..

memory
pad mode

MERGE

MERGE 177

MEM
System In | Format| Notes | Alternate Commands
Integer
Applesoft FRE
APPLE
DOS FRE
Microsoft FRE
Cassette FRE
IBM Disk FRE
Advanced FRE
Level I X
TRS ModIII | Extended X
Disk X
Level I X
TRS Color Extended X
Disk X
Commodore | VIC 20 FRE
ATARI 400/800
ANSI Minimum

Memory pad mode is a mode in ATARI BASIC in which one can use the
screen without disturbing the resident program.

Format
MERGE file-specification [,R]

The MERGE command loads a program file from disk and merges it with
the program currently in memory. If R is specified, the resultant program is
then run. In order to be merged, a program must have been saved with the
ASCII option.

If a line number of the resident program is the same as a line number of the
program being merged, the resident line is overwritten.

The file-specification can be a literal or in a string variable.

See: CHAIN, SAVE.

178

MIiDs

MID$

| MERGE

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended
Disk X 2
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Pl R At
b | b |

Notes

1. The “R" is not permitted; if no extension is specified, BAS is as-
sumed.

2. The file-specification must be in quotes.

Format
MID$ (string-variable, starting-position, length)

MIDS is both a function and a statement. As a function its value is the
characters of the specified string as defined by the starting-position and
length. If the length is omitted, all of the string to the right of the starting-
position is returned. If the length is zero or the starting-positon is greater
than the length of the string, a null string is returned. If the starting-
position plus the length is greater than 255 or the length of the string, all of
the string to the right of the starting position is returned.

Example

100 A$ = “ABCDEFGHIJKLMN”
120 B$ = “DEF”

140 W§ = MID$(A$,7,4)

160 X§ = MIDS$(BS,2,4)

180 Z$ = MID$(A$,20,2)

200 PRINT W$, X$, Z$

MID$ 179
Output
GHIJ EF (Z$ is null)

As a statement, MIDS$ allows a string variable to have part of its contents
changed.

Example
100 C$ = “ABCDEFG”
120 MID$(C$,3,3) = “123”
140 PRINT C$

Output
ABI123FG

See: concatenation, INSTR, LEFT$, RIGHTS.

[miDs
System In | Format| Notes | Alternate Commands
Integer 1
APPLE Applesoft | X 2
DOS X 2
Microsoft | X
Cassette X
IBM Disk X
Advanced X
Level I
TRS Mod I | Extended X 2
Disk X 2
Level I X 2
TRS Color Extended X 2
Disk X 2
Commodore | VIC 20 X 2
ATARI 400/800
ANSI Minimum

Notes

1. The notation X$(5,7) indicates the fifth through seventh characters
of Xs. One can write Y$ = X$(5,7) to assign these characters to Y$.
One cannot write X$(5,7) = “ABC", however.

2. Function only.

180

mini-floppy
disks

MKDs

MKIis

MINI-FLOPPY DISKS

See: disks.

Format

MKDS$ (arithmetic-expression)
The MKDS$ function treats the expression as a double-precision number
and converts it to an 8-byte character string for subsequent FIELDing. This

is the inverse function of CVD.

See: CVD, FIELD, GET, LSET, PUT, RSET.

I MKD#§

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOSs
Microsoft | X
Cassette
IBM Disk X
Advanced | X
Level I
TRS Mod IIT | Extended
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATAR! 400/800
ANSI Minimum

APPLE

Format
MKI$ (arithmetic-expression)

The MKIS function treats the expression as an integer and converts it to a
2-byte character string for subsequent FIELDing. This is the inverse func-
tion of CVL

The expression must have a value between — 32768 and + 32767.

See: CVI, FIELD, GET, LSET, PUT, RSET.

MKNs

MKSs

MKS$ 181

[MK1s

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft | X 1
Cassette
IBM Disk X 1
Advanced | X 1
Level I
TRS Mod T | Extended
Disk X 2
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

Notes

1. The expression is rounded to an integer.
2. The expression is truncated to an integer.

* Format”~

MKNS (arithmetic-expression)

The MKNS function converts the expression to a 5-byte coded string for
subsequent storage in a formatted disk file. This is the inverse function of
CVN.

MKNS is supported only by TRS Color DOS.

See: CVN, FIELD, GET, LSET, PUT, RSET.

Format
MKSS (arithmetic-expression)

THE MKSS function treats the expression as a single-precision number and
converts it to a 4-byte character string for subsequent FIELDing. This is
the inverse function of CVS,

See: CVS, FIELD, GET, LSET, PUT, RSET.

182 MOD

MKS$

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft | X
Cassette
IBM Disk X
Advanced | X
Level I
TRSMod I | Extended
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

MOD Format
arithmetic-expression-1 MOD arithmetic-expression-2

The modulus operator, MOD, divides the first expression by the second
and has as its value the remainder.

Example
100 X =10 MOD 6
120 Y = 6 MOD 10

140 Z = 12345 MOD 123
160 PRINT X, Y, Z

Output
4 6 45
This can be implemented by

FNMD(A,B) = (INT(A) — INT(INT(A)/INT(B)) * INT(B))

See: arithmetic operations.

MON

most
significant
digit

MOST SIGNIFICANT DIGIT 183

MOD

System In | Format| Notes | Alternate Commands

Integer X

Applesoft
DOS

Microsoft

APPLE

Cassette
BM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

R R

Format
MON [C] [I] O]

The MON command enables monitoring of certain operations. The param-
eters signify:

C Display all disk commands
I Display all disk input to the computer
O Display all computer output to the disk

The three parameters can be written in any order; at least one must be
specified. The monitoring remains in effect until a NOMON, boot, restart,
or change of language (Integer to Floating, or vice Versa) occurs.

MON is supported only by Apple DOS.

See: NOMON.,

The most significant digit is the one which contributes the largest value to
the number in which it appears. This is not necessarily related to the
precision of the number.

When dealing with binary numbers, the most significant bit (MSB) is the
leftmost bit, regardless of its value.

See: least significant digit.

184

MOTOR

multiple
statements

Format 1

MOTOR ON|OFF

Format 2

MOTOR

MOTOR [arithmetic-expression]

The MOTOR statement turns the cassette motor on and off.

Format 2

If the expression is zero, the motor is turned off; if it is nonzero, the motor
is turned on. If no state is specified, the motor is set to the state opposite its

present state.

| MOTOR
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft
Cassette X 2
IBM Disk X
Advanced | X
Level I
TRS Mod IIT | Extended
Disk
Level I X 1
TRS Color Extended | X 1
Disk X 1
Commoadore | VIC 20
ATARI 400/800
ANSI Minimum

Most BASIC Systems allow more than one statement on a line, subject to
the maximum line length. Often, this reduces the storage requirements of

the program.

Multiple statements on a line are separated by colons. Depending on the
implementation, statements such as IF may operate differently when multi-

ple statements are used after the THEN or ELSE clauses.

NAME

Format 1

NAME file-specification AS file-name

Format 2

NAME [line-number] [,starting-line] [,increment]

Format 1

This form of the NAME command changes the name of a disk file. The file
whose name is in the file-specification has its name changed to the file-name
in the AS clause. (A file with this name cannot currently exist on the disk.) If
no device is specified in the file-specification, the current drive is used.

Format 2

This form of NAME renumbers the lines in a program by first changing the
value of starting-line to the specified line-number; subsequent lines in the
program are then assigned the value of the preceding line plus the in-

crement.

If the starting-line is not specified, the entire program is renumbered. If

either the line-number or increment is not specified, 10 is used.

See: RENUM.
INAME
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X 1
Cassette
1BM Disk X 1
Advanced | X 1
Level I
TRS Mod IIT | Extended | X 2
Disk X 2
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

186

name

NEW

NAME

A variable name must begin with a letter. The number of subsequent
characters allowed varies with the implementation, as shown below.

IBM and MicroSoft
Names can be any length; however, only the first 40 characters are signifi-
cant. Reserved words can be embedded in names.

Apple
Names must have fewer than 100 characters. Reserved words cannot be
embedded in names.

Applesoft
A name can have up to 238 characters, but only the first two characters are
significant. Reserved words cannot be embedded in names.

TRS Mod III
Names can be any length; however, only the first two characters are signifi-
cant. Reserved words cannot be embedded in names.

TRS Color
Names can have only two characters, both of which must be alphabetic.

Commodore

Names can have up to 255 characters; only the first two are significant. The
first character must be alphabetic, the others can be alphanumeric. Re-
served words cannot be embedded in the name.

ATARI
Names can have up to 120 characters. Only capital letters and digits can be

used. Only 128 names can be used per program.

ANSI
Names can have only two characters; two letters or a letter and a digit.

See: reserved word.

Format
NEW

The NEW command clears memory of both variables and program, and
closes all open disk files. Control then returns to the command level.

NEXT

NEXT

See: CLEAR.
NEW
System fn | Format| Notes | Alternate Commands
Integer
APPLE Applesoft | X
DOS X
Microsoft X
Cassette X
IBM Disk X
Advanced | X
Level I X
TRS Mod III | Extended X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X 1
ANSI Minimum | °
Note

1. Can be used only in direct mode.

Format

NEXT [counter]...

187

The NEXT statement delimits a FOR loop. The counter is optional; if it is
not specified, the default is the counter associated with the nearest active
FOR. If there is a list of counters, the innermost loop’s counter must be

written first.

See: FOR, loop.

188 NIBBLE

NEXT
System In | Format | Notes | Alternate Commands
Integer X 1
Applesoft
APPLE il X
DOS X
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level I X
TRS Mod I | Extended | X
Disk X
level I X 1
TRS Color Extended X 1
Disk X 1
Commodore | VIC 20 X 1
ATARI 400/800 X 1
ANSI Minimum | X 1
Note
1. A counter must be specified.
nibble A nibble is half a byte (4 bits), when this entity is directly addressable.

See: bit, byte.

NOMON Format
NOMON [C] 1] [,O]
The NOMON command disables the specified monitoring functions.
C Disable monitoring of disk commands
I Disable monitoring of disk input to the computer

(0} Disable monitoring of computer output to the disk

The three parameters can be written in any order; at least one must be
specified.

NOMON is supported only by Apple DOS.

See: MON.

NORMAL

NOT

NOT 189

Format
NORMAL

The NORMAL statement sets the screen mode such that subsequent input
and output shows as white on black. It does not affect characters currently
on the screen when the command is executed.

See: FLASH, INVERSE.

| NORMAL

Systern In | Format| Notes | Alternate Commands
Integer POKE 50,255

Applesoft | X
DOS
Microsoft | X
Cassette
18M Disk
Advanced
Level I
TRS Mod III | Extended
Disk
Level I SHIFT + 9
TRS Color Extended
Disk
Commodore | VIC 20 1
ATARI 400/800
ANSI Minimum

APPLE

>

Note

1. From the keyboard use CONTROL-RVS + OFF. From a program use
POKE 36879, PEEK (36879) OR 8

Format
NOT argument

NOT is a logical function of one argument. It has as its value the negation
of its argument, as shown in the following table.

Truth Table for NOT

p NOT p

F T
T F

190

NOTE

NOTRACE

NOTE

The argument can be a logical variable, a relation, or anything that can be
evaluated as true or false.

Example

IF NOT A =B THEN ...
IF NOT (A = B) THEN ...

The first example compares the value of NOT A with B. The second exam-
ple is equivalent to IF A > < B THEN.

NOT is supported by all BASIC systems.

See: AND, logical functions, OR.

Format
NOTE #disk, arithmetic-variable-1, arithmetic-variable-2

The NOTE statement stores the current sector and byte locations of the
specified disk in the first and second variables, respectively. The next disk
operation will be done starting at this location. The disk parameter can be
an arithmetic expression.

NOTE is supported only by ATARI BASIC.

See: DSKI3, DSKOS$, POINT.

Format
NOTRACE

The NOTRACE command disables the trace function.

See: TRACE, TROFF, TRON.

null
string

numeric
character

NUMERIC CHARACTER

NOTRACE
System In | Format| Notes { Alternate Commands
Integer X
APPLE Applesoft | X
DOS X
Microsoft | X
Cassette TROFF
18M Disk TROFF
Advanced TROFF
Level I
TRS Mod ITI | Extended TROFF
Disk TROFF
Level I TROFF
TRS Color Extended TROFF
Disk TROFF
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

191

A null string is a string that contains no characters. Since a null string is
completely empty, it is not the same as a string of one or more blanks or

spaces.

As a literal, a null string consists of two adjacent quotation characters. The
length of a null string, as returned by LEN, is zero. Because in set theory
the null set is unique, sometimes one speaks of “the null string.”

A numeric character is any one of the digits O through 9.

See: alphabetic character, alphanumeric character.

OCTS

Format
OCTS (arithmetic-expression)

The OCTS has as its value a string that represents the octal value of the
expression. The expression is rounded to an integer before the operation.

Example

100 Y$ = OCT3(78)
120 PRINT Y§, OCT3(83)

Output
116 123

(Note that Y$ is a string, not a numeric value.)

See: HEXS
OCT$
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

octal
conversion
tables

octal
number

ON COM

ON COM 193

See: conversion tables.

A number preceded by a “&0O” or “&” is interpreted as an octal value. An
octal number can range in value from @ to 177777 (base 8).

Example
&0123 or &123 is interpreted as decimal 83.

See: binary number, hexadecimal number.

lictal numbers

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod I | Extended
Disk X
Level I
TRS Color Extended X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

N

Format
ON COM (buffer-number) GOSUB line-number

The ON COM statement enables trapping of activity associated with a
communications buffer. When data enter the specified buffer, control is
transferred to the subroutine at the specified line-number. If the line-
number is zero, this trapping is disabled; to reactivate, a COM ON state-
ment must be executed.

When a trap occurs, an implicit COM STOP is executed, so recursive traps
are not possible. Upon return from the trap routine an implicit COM ON
is executed unless an explicit COM OFF was executed in the trap routine.

194

ON
ERROR

The buffer-number must be 1 or 2.

ON ERROR

ON COM is supported only by IBM Advanced BASIC.

See: COM, trap.

Format

ON ERROR GO TO line-number

The ON ERROR command enables trapping of errors. When an error
occurs, an unconditional transfer is made to the specified line-number; no
error message is printed, and the machine does not halt. To be effective, this
statement must be executed before the error occurs. To disable a previously

set ON ERROR, an ON ERROR GO TO 0 must be executed.

See: ERL, ERR, ERROR, RESUME, TRAP.

I ON ERROR
System In | Format | Notes | Alternate Commands
integer
APPLE Appiesoft | X 1,2
DOS X 1,2
Microsoft | X 3
Cassette X 3
IBM Disk X 3
Advanced | X 3
Level I
TRS ModIII | Extended | X
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 TRAP
ANSI Minimum

Notes

1. ON ERR must be used instead of ON ERROR. The error code is in
location 222. To disable the error-detection flag, use POKE 216,0.

2. In case of a FOR...NEXT or GOSUB...RETURN, the error-handling
routine must restart the loop at the FOR or GOSUB, not at the NEXT
or RETURN. If used to handle errors associated with a GET; two
consecutive GET errors cause the program to hang (use RE-

ON GOTO 195

SET + CONTROL = C to recover). If a GOTO ends the error-
handling routine, there is no problem.

If used in trace mode or in a program that has a PRINT statement,
after 43 errors occur (not necessarily consecutive) control returns to
the monitor. If these errors are caused by an INPUT statement, and
RESUME is used to leave the error-handling routine, all works well.
If a GOTO ends the routine, the eighty-seventh INPUT error causes
control to return to the monitor.

3. If the error-processing routine contains an ON ERROR GOTO 0
statement, the message for the error that caused the branch to the
routine is printed. If an error occurs during an error-processing rou-
tine itself, the appropriate message is printed and control returns to
the command level.

ON GOSUB Format

ON GOTO

ON arithmetic-expression GOSUB {line-number} ...

The expression is evaluated and converted to an integer. Control is then
transferred to that subroutine whose line-number is in the ordinal position
in the statement corresponding to the value of the expression.

The expression must be between 0 and 255. If it has a value of 0 or if its
value exceeds the number of elements in the list, control passes to the next
statement. If the expression is less than zero, an error occurs. The statement
that exits the subroutine must be a RETURN.

ON GOSUB is supported by all BASICs except Apple Integer, which uses
GOSUB with an arithmetic expression.

See: GOSUB, RETURN.

Format
ON arithmetic-expression GOTO {line-number} ...

The expression is evaluated and converted to an integer. Control is then
transferred to the line whose line-number is in the ordinal position in the
statement corresponding to the value of the expression.

The expression must be between 0 and 255. If it has a value of zero or its
value exceeds the number of elements in the list, control passes to the next
statement and no transfer of control is performed. If the expression is less
than zero, an error occurs,

ON GOTO is supported by all BASICs except Apple Integer, which uses
GOTO with an arithmetic expression.

See: GOTO.

196

ON KEY

ON PEN

ON STRIG

ON KEY
Format
ON KEY (key-number) GOSUB line-number

The ON KEY statement is used to specify a line to which BASIC traps
when a key is pressed. If the line-number is zero, this trapping is disabled.

The key-number must be an integer between 1 and 14, with the following
meaning:

Value Associated Key
1to 10 Function keys 1 to 10
11 Cursor up
12 Cursor left
13 Cursor right
14 Cursor down

ON KEY is supported only by IBM Advanced BASIC.

See: KEY.

Format
ON PEN GOSUB line-number

The ON PEN statement enables trapping of light-pen activity. When the
light pen senses a point, control is transferred to the subroutine at the
specified line-number. If the line-number is zero, this trapping is disabled.

ON PEN is supported only by IBM Advanced BASIC.

See: PEN.

Format
ON STRIG (stick-number) GOSUB line-number

The ON STRIG statement enables trapping of trigger activity. When a
trigger on a joystick is pressed, control is transferred to the subroutine at
the specified line-number. If the line-number is zero, this trapping is dis-
abled.

one’s
complement

OPEN

OPEN 197

The stick-number must be an integer with a value of 0, 2, 4, or 6, where 0 is
button Al, 2 is button B1, 4 is button A2, and 6 is button B2.

ON STRIG is supported only by IBM Advanced BASIC.

See: BUTTON, STRIG.

The one’s complement of a binary number is that number obtained by
converting all the 0’s in the number to 1’s and all the 1’s to 0’s. Thus it is
the same as the negation (NOT) of the binary string that represents the
value.

Example

The one’s complement of 00101110 is 11010001.

See: NOT, two’s complement.

Format 1

OPEN “mode”, #file-number, file-specification [record-length]

Format 2

OPEN file-number [,device][,subcommand][,file-name]

Format 3

OPEN file-name [,record-length][,Ddrive][,Sslot][,Vvolume]

Format 4

OPEN file-specification [FOR model] AS [#] file-name
[LEN = record-length]

Format 5

OPEN # device-number, operation-code, auxiliary-code,
file-specification

The OPEN statement prepares a file for input/output processing and as-
sociates a buffer with it.

198 OPEN

Format 1

In this form of OPEN, the mode parameter must be in quotes; it can be
any of the following:

Parameter Meaning
I Input mode, sequential file
O Output mode, sequential file
E Extend mode, sequential file
D Direct file, input, or output mode
R Random file, input, or output mode

The file-number must be between 1 and 15, inclusive.
Format 2

In this form of OPEN, the file-number must be an integer from 1 to 255;
this is the number by which other BASIC statements reference the file.

The device must be one of the following:

0 Keyboard 1 Cassette
2 RS-232 Device 3 Screen
4,5 Printer 8 Disk

The subcommand must be one of the following.
Cassette

0 Read

1 Write

2 Write with an end-of-tape (EOT) marker
Disk

1to 14 Open data channel
15 Open command channel

Keyboard/screen
1 to 255 No effect
Printer

0 Uppercase/graphics
7 Uppercase/lowercase

OPEN 199

The statement

OPEN 1,0 Reads the keyboard

OPEN 1, 1, 0, “name” Reads from cassette

OPEN 1, 8, 15 “command” Sends the command to
the disk controller

Format 3

This form of OPEN allocates a 595-byte buffer to the file and prepares the
system for performing input/output operations on the file at its beginning.
The file must be a text file. If the specified file does not exist, one is created.
If any file with the same name is already open, that file is closed before the
new one is opened.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “OPEN MYFILE, D1, S6~

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default

record-length 1 to 32767 1

drive 1or2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1to 254 Volume from which DOS was booted

For sequential files, the record length cannot be specified; for random
access files, it must be specified. Each time a file is opened, the length must
be the same as when the file was created.

Format 4

The form of OPEN functions similarly to format 1, except that the mode
must be one of the following:

OuUTPUT Output mode, sequential file.

INPUT Input mode, sequential file.

APPEND Same as EXTEND; the sequential file is positioned
at its end; subsequent WRITE add data to the file.
This can be used only with disk files.

If the mode is omitted, random access is assumed.

200 OPEN

Format 5

The device number can be between 1 and 7. The operation code can have
the following values:

4 Input
6 Disk directory input (in this case the file
specification is the search specification)
8 Output
9 Append
12 Input/output

The file specification must be in quotes; any of the other parameters can be
arithmetic expressions.

See: APPEND, CLOSE, CMD, GET, INPUT #, PRINT#, PUT.

| OPEN l
System In | Format| Notes | Alternate Commands
Integer
Applesoft
APPLE 50s XT3
Microsoft | X |1 1,5, 6
Cassette X 1,4 1,6
IBM Disk X 1,4 1,6
Advanced | X 1,4 1,6
Level I
TRS Mod IIT | Extended
Disk X |1 2,7
Level I X 1 3,4,7
TRS Color Extended | X 1 3,4,7
Disk X |1 3,4,7
Commodore | VIC 20 X |2
ATARI 400/800 X |5
ANSI Minimum

Notes

1. Modes can be |, O, and R only. The record-length can be between 1
and 32767, inclusive; the default is 128.

2. The number sign (#) cannot be used. Mode D is not allowed. A
record-length can be used only if the records are variable length; it
can be between 1 and 256 inclusive. The default is 256.

3. For disk files, only modes |, O, and D are allowed. If no extension is
specified, DAT is assumed. If the file is direct access, the record-

OPEN
com

OPEN COM 201

length can be specified; the default is 256. The buffer-number can
be between 1 and 15, inclusive.

4. For nondisk files, only modes | and O are allowed, and the only
buffer-numbers are —1 for the cassette and —2 for the printer. A
record-length cannot be specified.

5. Only disk files are supported.

6. A file can be opened for sequential input or in random mode under
more than one number. A sequential output file can be opened under
only one number.

7. A buffer-number must be used instead of a file-number.

Format

OPEN “COM buffer-number: [speed] [,parity] [,data] [,stop]
[LRS] [,CS[value]] [,DS[value]] [,CD[value]] [,LF]”
AS [#] file-number [LEN = length]

The OPEN COM statement opens a communication file in RS-232-
compatible mode. The communication file is associated with the specified
file-number. A communications device can be open to only one file at a
time; the quotes are required where shown in the format.

The speed, parity, data, and stop parameters must appear in the order
shown; the RS, CS, DS, CD, and LF parameters can appear in any order.
The meaning of the various parameters is as follows:

The buffer-number must be an integer with a value of 1 or 2.

Speed must be an integer that specifies the transfer rate in baud. The valid
values are 75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, and 9600. The
default is 300 baud.

Parity is a one-character literal; its values and their meaning are:

Character Meaning
S Parity bit is treated as a space (zero bit)
6] Odd parity
M Parity bit is treated as a mark (one bit)
E Even parity
N No parity

Data is an integer constant that specifies the number of bits. Valid values
are 4, 5, 6, 7, and 8. The default is 7 bits. If this parameter is 8, the parity
must be “N7; if it is 4, the parity cannot be “N”. For numeric data, this
parameter must be 8.

202

OPEN COM

Stop is an integer constant that specifies the number of stop bits. Its value
must be 1 or 2. For 75 and 110 baud, the default is 2; for other speeds, it is
1. If the data parameter is 4 or 5, specifying a 2 for stop will result in 14 bits
actually being used.

RS
Normally, the Request to Send (RTS) line is activated when an OPEN
COM is executed. Specifying RS suppresses this. If RS is specified, and CS
is not, then CSO becomes the default,

CS

Normally, if the Clear to Send (CTS) line is off, I/O operations to the file
will fail. Specifying CS with no value or with a zero value causes the CTS
line to be ignored. If a value is included, it specifies the number of milli-
seconds to wait for the signal before returning a device timeout error.
(Normally, the wait is about 1 second.)

DS

Normally, if the Data Set Ready (DSR) line is off, I/O operations to the file
will fail. Specifying DS with no value or with a zero value causes the DSR
line to be ignored. If a value is included, it specifies the number of milli-
seconds to wait for the signal before returning a device timeout error.
(Normally, the wait is about 1 second.)

CD

Normally, the Carrier Detect (CD or RLSD) line is ignored. If CD is
specified, the line is tested. If a value is included, it specifies the number of
milliseconds to wait before returning a device timeout error. (If the value is
omitted or equal to zero, it has the same effect as not specifying CD.)

(In all of the parameters noted above, the value can be between 0 and
65535))

LF
If LF is specified, a Line Feed (ASCII 10) is sent after a Carriage Return
(ASCII 13). The INPUT# and LINE INPUT statements stop when they
read a Carriage Return from a communications file opened with the LF
option. The Line Feed is always ignored.

file-number
The file-number must be an integer between 1 and 15.

LEN

The length parameter specifies the maximum number of bytes that can be
accessed in the communication buffer by a GET or PUT statement. The
default is 128 bytes.

operand

operator

OPTION
BASE

OPTION BASE 203
OPEN “COM is supported only by IBM Disk and Advanced BASIC.

See: COM, ON COM.

An operand is a data item associated with an operator. A given operand is
associated with one binary operator, and may, in addition, be associated
with a unary operator.

An operator is a symbol that represents an arithmetic, string, or logical
operation. If an operator is associated with one operand, it is called a unary
operator; if it is associated with two operands, it is called a binary operator.
(Note that this term has nothing to do with binary numbers and the like.)

The arithmetic operators plus and minus, when used to designate the sign
of a number, are unary operators. The arithmetic operators for addition,
subtraction, multiplication, division, and exponentiation are binary oper-
ators.

The string operator, +, is a binary operator.

The logical operator NOT is a unary operator; the logical operators AND,
OR, EQV, IMP, and XOR are binary operators.

See: arithmetic operator, logical functions, and the individual entries.

Format
OPTION BASE arithmetic-expression

The OPTION BASE statement defines the minimum value for an array
subscript. It must be executed before the array is defined or used. The
expression must be either 0 or 1.

Example
100 OPTION BASE 1

This means that any array in the program will have elements numbered
from 1 to the value defined in the DIM statement, or the default. Address-
ing the zeroth element will cause an error.

See: array, DIM, ERASE, subscript.

204 OR

OPTION BASE |

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
1BM Disk
Advanced
Levet I
TRS Mod II | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum | X

bl I I

OR Format
argument-1 OR argument-2

OR is a logical function of two arguments. It has a value of false if both of
its arguments are false, and a value of true, otherwise.

The arguments can be relations, logical variables, or anything that can be
evaluated as true or false.

PORQ
Truth Table for OR
p q pORgq
F F F
F T T
T F T
T T T

Example
IF X>5O0RY < YMAX THEN GOTO 100

In this example, the GOTO is executed if, when the relation is evaluated
either X is greater than 5, or Y is less than YMAX, or both are true.

>

ouT

out

OR is implemented by all BASIC systems.

See: AND, logical functions, NOT.

Format

OUT port, arithmetic-expression

The OUT statement sends a byte to the specified port. The comma is

required.

The expression must be between 0 and 255, inclusive. The value output is

the binary equivalent of the expression.

See: INP.

ouT

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOs

Microsoft

1BM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

Vic 20

ATARI

400/800

ANSI

Minimum

Notes

1. The port can be between 0 and 65535.
2. The port can be between 0 and 255.

PADDLE

PAINT

Format
PADDLE (arithmetic-expression)

The PADDLE function has as its value the status of the designated paddle.
The value returned is from 1 to 228, with 1 indicating that the paddle is
all the way to the right (clockwise) and 228 indicating that it is all the way
to the left (anticlockwise).

The expression must be between 1 and 7.

See: JOYSTK, PDL, PTRIG, STICK, STRIG.

| PADDLE
System In | Format| Notes | Alternate Commands
Integer PDL
Applesoft PDL
APPLE
DOS PDL
Microsoft PDL
Cassette STICK
IBM Disk STICK
Advanced STICK
Level I
TRS Mod IIT | Extended
Disk
Level I JOYSTK
TRS Color Extended JOYSTK
Disk JOYSTK
Commodore | VIC 20
ATARI 400/800 X STICK
ANSI Minimum

Format
PAINT (x-coordinate, y-coordinate) [,color][,border-color]

The PAINT statement fills an area with a color. Painting begins at the
point designated by the x and y coordinates and continues until a line that
matches the border-color is reached; any other color encountered will be
painted over. If the specified point is not inside a closed figure, the entire
screen will ultimately be painted.

PAINT 207

If color is omitted, the foreground color is used; if the border-color is not
specified, it defaults to the color parameter or, if none is specified, to the
foreground color.

Example

100 CLS : SCREEN 1: COLOR 1,0
120 CIRCLE (160,100), 80, 1

140 CIRCLE (160,100), 70, 1

160 CIRCLE (160,100), 60, 1

180 CIRCLE (160,100), 50, 1

200 PAINT (160,100), 2, 1

220 PAINT (160,45), 3, 1

240 PAINT (160,35), 0, 1

260 PAINT (160,25), 2, 1

Output
Four concentric circles that get painted with various colors.

See: CIRCLE, DRAW.

| PAINT

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced | X 1
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. The color and border-color must be between 0 and 3. The y-value
must be between 0 and 199. In medium resolution, the x -value must
be between 0 and 319; and in high resolution, between 0 and 639.
(All parameters are inclusive.)

208

PCLEAR

PCLS

PCOPY

PCLEAR

2. The color and border-color must be specified. Values can be be-
tween O and 8. The x-value must be between 0 and 255; the y-
value, between 0 and 191. (Both parameters are inclusive.)

Format
PCLEAR arithmetic-expression

The PCLEAR statement reserves pages for graphics memory.

The expression must be between 1 and 8, inclusive and is treated as an
integer. Each page reserved is 1.5K bytes; if this statement is not used, the
system default is four pages.

PCLEAR is supported only by TRS Color BASIC, Extended and Disk.

See: PCOPY, PMODE,

Format
PCLS [color]

The PCLS statement clears the screen and sets it to the specified color. If
no color is specified, the background color is used.

PCLS is supported only by TRS Color BASIC, Extended and Disk.

See: color codes, PLOT, PRESET, , PSET.

Format
PCOPY arithmetic-expression-1 TO arithmetic-expression-2

The PCOPY statement copies one graphics page to another. Both ex-
pressions must be integers with a value between 1 and 8, inclusive. The first
expression specifies the page to be copied, the second where it is to be
copied to.

A page cannot be copied to one that has not been reserved by PCLEAR.
PCOPY is supported only by TRS Color BASIC, Extended and Disk.

See: PCLEAR, PMODE.

PDL

PEEK

PEEK 209

Format
PDL (paddle-number)

The PDL function has as its value the position of the specified game
paddle. It returns a value between 0 and 255.

The two paddles should not be read consecutively or erroneous data may
be input; so a delay such as

FOR X =1TO 10: NEXT X
should be inserted between reads.

See: BUTTON, JOYSTK, ON STRIG, PDL, STICK, STRIG.

[PDL]
System In | Format | Notes | Alternate Commands
Integer X 1
APPLE Applesoft | X 2
DOS X 2
Microsoft | X 2
Cassette STICK
IBM Disk STICK
Advanced STICK
Level I
TRSMod IIT | Extended
Disk
Level I JOYSTK
TRS Color Extended JOYSTK
Disk JOYSTK
Commodore | VIC 20
ATARI 400/800 PADDLE, STICK
ANSI Minimum

Notes

1. The paddle-number must be O or 1.
2. The paddle-number must be between 0 and 3.

Format
PEEK (arithmetic-expression)

The PEEK function has as its value the contents of the memory location
specified by the expression. The address and the value returned are in
decimal. The address specified must exist in the computer.

210 PEN

Example

100 X = PEEK(1234)

Output
The value of X is the contents of memory location 1234.
See: DEF SEG, POKE.
PEEK |
System In | Format | Notes | Alternate Commands
Integer X 1
APPLE Applesoft | X 1
DOS X 1
Microsoft | X
Cassette X
1BM Disk X
Advanced | X
Level I
TRSModIII | Extended | X 1
Disk X 1
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X
ANSI Minimum
Note

1. For addresses over 32767, use the address minus 65536.

PEN Format 1

PEN ON|OFF|STOP

Format 2

PEN (parameter)

Format 1

In Cassette and Disk BASIC, this form of the PEN statement enables and
disables the reading of the light pen by the PEN function (Format 2).

pixel

PIXEL 211

Before the PEN function can be used, a PEN ON must be executed. PEN
OFF disables the reading of the light pen. (PEN STOP is not available.)

In Advanced BASIC, the PEN command is used to enable or disable trap-
ping by the ON PEN statement. If PEN ON is executed, whenever any
activity occurs with the light pen, a trap occurs. PEN OFF disables this
trapping; if activity occurs, it is ignored and not remembered. PEN STOP
disables trapping, but any activity is remembered and a trap occurs im-
mediately after a PEN ON is executed. (Cassette I/O should not be done
when trapping is activated.)

Format 2

This form of PEN is a function whose value and meaning depend on the
parameter supplied, as shown in the following table.

Parameter Value of Function

0 If the pen was deactivated since the last poll, a value
of —1; 0 if not

1 The x-coordinate when the pen was last activated

2 The y-coordinate when the pen was last activated

If the pen switch is currently pressed, a value of —1;

0 if not

4 The last valid x-coordinate read

5 The last valid y-coordinate read

6 The row where the pen was activated

7 The column where the pen was activated

8 The last valid row read

9 The last valid column read

Ranges for the foregoing values are:

Column 1 to 40 or 80, depending on WIDTH
Row 1to 24
Y-values 0to 199
X-values 0 to 319 (medium resolution)
0 to 639 (high resolution)

PEN is supported only by IBM (all levels).

See: ON PEN, WIDTH.

A pixel is an addressable point on a screen. In character (text) mode, one
character is made up of many pixels. In graphics mode, usually each pixel is
individually addressable.

212 PLAY

PLAY Format
PLAY string-expression
The PLAY statement generates musical tones. The note, octave, length, and
tempo can be specified. There is also provision for executing substrings. The
string-expression, which can be a literal or variable, is composed of the
following parameters:
Parameter Meaning IBM Values TRS Color Values
AtoG Name of note Ato G AtoG
+ or # Sharp + or # + or #
— Flat — —
1to 12 Note Number can be from Number can be from
or 1 to 84, where 1 is 1 to 12, where
1 to 84 the C two octaves 1=C;2=C#;
or below middle C, and 3 =D, etc.
Nnumber 84 is the B three
octaves above.
Period Dotted note Multiplies value of Increases note’s

() original note by 2;
two dots increase by
2, etc. (see note
2 below)

value by %

Lvalue
or
L = variable;

Toalue
or
T = variable;

Poalue
or
P = variable;

Ovalue
or
O = variable;

Length of
note is
“1/value”:
1 = whole
note; 2 =
half note;
etc.

Tempo

Rest

Current
octave

Value is from 1 to 64;
if only 1 note is to
be changed, value can

follow note: L16A or A16

Number of quarter

notes in a second; value
can be from 32 to 255;

default is 120

Values from 1 to 64;
treated same as notes

Values from 0 to 6; an

octave is from C to B;

octave 3 contains
middle C

Value is from
1 to 255

Value is from
1 to 255;
1 is slowest,
default is 2

Value is from
1 to 255; dots
cannot be used
with P

Values 1 to 5;
an octave is
from A to G;
octave 2 con-
tains middle C;
default is 2

PLAY

213

Parameter Meaning IBM Values TRS Color Values
Xstring- Execute the substring named by the variable. Same
variable; A substring can itself contain an X parameter.
MF Play music in foreground. Processing stops Not supported
while the sounds play. This is the default.
MB Play music in background. The program Not supported
continues executing while the music plays in the
background. Up to 32 notes and rests can be
in the buffer at one time.
MN Normal A note plays for § Not supported
of its designated value
ML Legato A note plays for its Not supported
entire designated value
MS Staccato A note plays for 3 Not supported
of its designated value
Vvolume Volume Not supported Range 0 to 31:

1 is softest,
0 is no sound;
default is 15

See: AUDIO, BEEP, SOUND, VARPTRS.

IPLAY

System In j Format| Notes

Alternate Commands

Integer

Applesoft

APPLE
DOS

Microsoft

Cassette

I1BM Disk

Advanced | X 1,2

Level I

TRS Mod [T | Extended

Disk

Level I

TRS Color Extended X

Disk X

Commodore VIC 20

ATARI 400/800

ANSI Minimum

214

PLOT

PLOT
Notes

1. To play tied notes, concatenate the expressions.

2. In conventional music notation, the first dot increases the value of a
note by 3, the second by £ of the original value, and so on. For notes
with more than one dot, a disparity is introduced. For two dots,
instead of 13 times the original value, it is 21; for three dots, instead
of 14, itis 32.

3. The “ =variable” option cannot be used.

Format
PLOT x-coordinate, y-coordinate

The PLOT statement displays a point on the screen.

See: COLOR, HLIN, HPLOT, LINE, PSET, PRESET,
SET, SETCOLOR, RESET, VLIN.

| pLOT
System In | Format| Notes | Alternate Commands
Integer X 1,2
APPLE Applesoft | X 1
DOS X 1
Microsoft | X
Cassette PSET
1BM Disk PSET
Advanced PSET
Level I SET
TRS Mod IIT | Extended SET
Disk SET
Level I SET
TRS Color Extended SET
Disk SET
Commodore | VIC 20
ATARI 400/800 X 3
ANSI Minimum

Notes

1. In text mode the PLOT statement displays a tiny rectangular area on
the screen. Each value must be between 0 and 39. In text mode or in
text and graphics mode, if the y-value is over 3 and less than 48,
characters are plotted in the text area of the screen.

POINT 215

In low-resolution graphics mode, PLOT displays a dot at the speci-
fied point. The y-value can be between O and 47. The color of the
dot is that specified by the last COLOR statement executed. If no
COLOR statement has been executed, color 0 is used. This com-
mand has no visible effect in high-resolution graphics mode.

2. Does not support high-resolution graphics.

3. In modes 3 to 8, a point is displayed at the specified location. The
color is determined by the value in the color register associated with
the last COLOR statement executed. (For the valid ranges, see
"“GRAPHICS."") To change the color register, see “SETCOLOR.”

PMODE Format
PMODE [mode,] [starting-page]
The PMODE statement selects the resolution and the first memory page to
be displayed. The starting-page must be an integer between 1 and 8; it
specifies which 1.5K byte memory page is to be displayed. If this parameter
is omitted, the page previously selected is used. At power-up, the default is
page 1.
The mode can be between 0 and 4; if omitted, the current value is used. At
power-up the default is mode 2. The different values of mode configure the
screen as shown in the following table.
Point
Reso- Col- Pages Size Color Color
Mode lution Grid ors Required (cells) Set 0 Set 1
0 Low 128 x 96 2 1 4 Black, green Black, buff
1 Low 128 x 96 4 2 4 Green, blue, Buff, orange,
yellow, red magneta, cyan
2 Medium 128 x 192 2 2 2 Black, green Black, buff
3 Medium 128 x 192 4 4 2 Green, blue, Buff, orange,
yellow, red magenta, cyan
4 High 256 x 192 2 4 1 Black, green Black, buff
PMODE is supported only by TRS Color BASIC Extended and Disk.
See: PCLEAR, PCOPY, SCREEN.
POINT Format 1

POINT (x-value, y-value)

216

POINT

Format 2

POINT #disk, sector, byte

Format 1

The POINT function tests a cell. If the cell is off, a 0 is returned; if the point
is on, its color code is returned.

Format 2

The POINT statement positions the pointer for the specified disk to the
designated sector and byte. The next disk operation will be done starting
with this location. The disk parameter can be an arithmetic expression; the
other two parameters can be arithmetic variables.

See: CLS, DSKI$, DSKOS$, NOTE, PPOINT, RESET, SCRN, SET.

| POINT 1

System In | Format | Notes | Alternate Commands
Integer SCRN
Applesoft SCRN

DOS SCRN
Microsoft SCRN
Cassette
IBM Disk
Advanced
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATAR! 400/800
ANSI Minimum

APPLE

L e

-

El Rl BB T Bl o I S
wWlw|w inivlo|miml-

=
(S}

POKE

Notes

1. Only valid in graphics mode. In high-resolution graphics the x -value
can be between 0 and 639; in medium resolution, between O and
319. For either mode, the y-value must be between 0 and 199. If a

POKE

point is out of range, a —1 is returned.

2. The x-value must be between 0 and 127, the y -value between 0 and

47.

3. The x-value must be between 0 and 63, the y -value between 0 and

31.

Format

POKE address, arithmetic-expression

The POKE statement puts the specified value into the byte at the address.
This address must exist in the machine. The address is interpreted as deci-
mal; the value put in is the binary equivalent of the expression, which must

be between 0 and 255.

See: conversion table, DEF SEG, PEEK,

| POKE

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

1BM

Cassette

Disk

Advanced

bl el Rt R R A It I

TRS Mod III

Levei I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

Eal it Bl Bl IS - S

ANS!

Minimum

218 POP

Note

1. For addresses greater than 32767, use the address minus 65536.

POP Format
POP
The POP statement is used to remove one address from the stack. In this

respect it is similar to the RETURN command but no branch is performed.

After a POP has been executed, the next RETURN will go to the second
most recently executed GOSUB. As this command manipulates what is in
the domain of the operating system, it should be used with caution, if at all.

See: GOSUB, RETURN.
POP
System In | Format | Notes | Aliternate Commands
Integer X
APPLE Applesoft | X
DOS X
Microsoft | X
Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 | X
ANSI Minimum
POS Format

POS (dummy-variable)

The POS function returns a value that indicates the current horizontal
position of the cursor on the screen.

See: CSRLIN, VPOS.

POSITION

POSITION

POS

System

5

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOsS

Microsoft

IBM

Cassette

Disk

Advanced

Eal Rl Rl el I

Wl jun | | s |-

TRS Mod II

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

R R R A R e

S lwiw|lwi

ATARI

400/800

ANSI

Minimum

Notes

219

1. The position is relative to the left margin of the text window. The
argument, although not evaluated, must be a valid expression. Posi-

tions are numbered from O (HTAB and TAB number from 1).

2. Returns a value between 0 and 63.
3. If the argument is —1, POS returns the current position of the print

head; if 0, the cursor position.

4. Returns a value between 0 and 21.
5. The leftmost position is number 1.

Format 1

POSITION file-name [,Rposition]

Format 2

POSITION x-coordinate, y-coordinate

Format 1

A format 1 POSITION statement sets the record-pointer to the start of the
field specified by position. Subsequent READ and WRITE statements pro-
ceed from that point in the file. A field is defined as a sequence of characters
that ends with a Carriage Return (ASCII 13).

220

PPOINT

PPOINT

This is a relative, not an absolute number since fields are counted from the
position of the pointer when the statement is executed.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRS$(4); “POSITION MYFILE, R100”

The position parameter can be between 0 and 32767; the default is O.

Format 2

A format 2 POSITION moves the graphics window cursor to the location
specified. The cursor does not actually move until some screen I/O oper-
ation is done. For the range of valid locations by mode, see “GRAPHICS.”

See: GRAPHICS, LOCATE, SCRN.

POSITION

System in | Format| Notes | Aiternate Commands

Integer

Applesoft
DOS X 1

Microsoft

APPLE

Cassette
BM Disk
Advanced
lLevel I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800 | X 2
ANSI Minimum

Format
PPOINT (x-value, y-value)
The PPOINT function tests a graphics cell. If the cell is off, a 0 is returned;

if it is on, its color code is returned. This command is valid only in graphics
mode.

PR #

PR # 221

The x-value must be between 0 and 255; the y-value, between 0 and 191.
(Both ranges inclusive.)

The color codes and their meanings are:

1 Green 5 Buff

2 Yellow 6 Cyan

3 Blue 7 Magenta
4 Red 8 Orange

PPOINT is supported only by TRS Color BASIC, Extended and Disk.

See: PLOT, POINT, PRESET, PSET, SCREEN, SCRN.

Format
PR # slot-number

The PR # statement directs output normally intended for the screen to the
device associated with the specified slot number.

The slot number must be between 1 and 7. If no device is attached to the
slot, the system will hang. (Use CONTROL-C to recover.) To return output
to the screen, execute PR # 0.

See: IN#, INPUT#, PRINT #.

PR#
System In | Format| Notes | Alternate Commands
Integer X
APPLE Applesoft | X
DOS X 1
Microsoft PRINT #
Cassette PRINT #
IBM Disk PRINT #
Advanced PRINT #
Level I
TRS ModIIT | Extended PRINT #
Disk PRINT #
Level I PRINT #
TRS Color Extended PRINT #
Disk PRINT #
Commodore ViC 20 PRINT #
ATARI 400/800
ANSI Minimum

222 PRECEDENCE RULES
Note

1. This command must be executed, preceded by a CONTROL-D, as
part of a PRINT statement:

PRINT CHRS$(4);"PR# 7"

precedence See: arithmetic operations.
rules

PRESET Format
PRESET (x-coordinate, y-coordinate) [,color]

The PRESET statement sets the point specified by the x and y-coordinates
to the color. If no color is specified, the background color is used.

See: PLOT, POINT, PPOINT, PSET, SET, RESET.

| PRESET
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft
Cassette X 1
IBM Disk X 1
Advanced | X 1
Level I RESET
TRS Mod IIT | Extended RESET
Disk RESET
Level I RESET
TRS Color Extended | X 2 RESET
Disk X 2 RESET
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

PRINT

PRINT 223

Notes

1. The y-values must be between 0 and 199. The x-value must be
between 0 and 319 for medium resolution and between 0 and 639
for high resolution. (All parameters are inclusive.) In high resolution,
if color 2 is specified it is taken as color 0, and color 3 is taken as
color 1.

2. The x-values must be between 0 and 255; y-values, between 0 and
191, inclusive. A color cannot be specified.

Format

PRINT [expression] [;|,] ...

The PRINT statement is used to display the specified data on the screen. A
question mark (?) can be used instead of the word PRINT.

The list can consist of intermixed numeric and string expressions. String
literals must be in quotes. When printed, all numeric values are followed by
one space; in addition, a positive value is preceded by a space, a negative
value by a minus sign. If nothing follows PRINT, a Carriage Return/Line
Feed (CR/LF) sequence is output.

The screen is considered as being divided into zones. The punctuation
between expressions determines where each item is printed. A semicolon or
space after an expression causes the next item to be printed immediately
after the preceding one. A comma after an expression causes the next item
to be printed in the next zone.

If the list of expressions is terminated by a comma or semicolon, the next
PRINT statement prints on the same line, in either the next zone or adja-
cent to the last data output, depending on which separator was used.
Otherwise, a CR/LF is output.

If the data to be output exceeds the defined width, printing continues on the
next line.

See: HTAB, LPRINT, SPACES, SPC, TAB, VTAB, WIDTH.

224

PRINT
USING

PRINT USING

PRINT
System In | Format| Notes | Alternate Commands
Integer X 1,2
Applesoft | X 3,4
APPLE DOS X 3.4
Microsoft | X 59
Cassette X 5,6
IBM Disk X 5,6
Advanced | X 5,6
Level I X 8
TRS Mod IIT | Extended | X 8
Disk X 8
Level I X 2
TRS Color Extended | X 2
Disk X 2
Commodore | VIC 20 X 7
ATARI 400/800 X 10
ANSI Minimum | X
Notes
1. A question mark cannot be used instead of the word PRINT.

o

There must be a separator between elements; spaces are not per-
mitted.

The zones are 16, 16, and 8 positions. The second zone is not
available if there is a character in position 16. The last zone is not
available if there is anything in positions 24 to 32.

If a semicolon is used, no spaces will be inserted between numeric
values.

Zones are 14 spaces each.

6. If exactly 80 characters are printed, an extra Line Feed is generated,
irrespective of the width setting, unless the width is “infinite.”’
7. There are two zones of 20 positions each.
8. There are four positions of 16 positions each.
9. If exactly 40 characters are printed, an extra Line Feed is generated.
10. A comma positions to the next tab location; the defaults are posi-
tions 7, 15, 23, 31, and 39.
Format

PRINT USING format-string; {expression}...

The PRINT USING statement specifies the formatting that is to be per-
formed when the items are being output. The format string can be a literal

PRINT USING 225

or in a variable. If it is a literal, it must be in quotes. The semicolon after
the format-string is required.

The contents of the format-string determine the editing that is done on the
output before it is printed. Following is a list of the valid characters and
their meaning.

Number Sign (#)

Specifies a digit position. If the number of digits printed is less than the
number of #’s, places to the right of the decimal point are filled with zeros;
places to the left of the most significant digit are filled with blanks. If the
number to be output is larger than the field, a percent sign (%) is printed in
front of the number.)

Period (.)
Specifies the location of the decimal point in a number.

Comma (,)
When placed in any position to the left of the decimal point, a comma is
printed to the left of every third digit in the number.

Two Asterisks (%)

When put at the beginning of a field, all unused positions to the left of the
decimal point are filled with asterisks. This adds two positions to the size of
the field.

Dollar Sign (%)
Specifies that a dollar sign is to be printed in the position it occupies.

Two Dollar Signs ($%)

Specifies a floating dollar sign. The dollar sign will “float™ to the right until
it is immediately to the left of the most significant digit, or the decimal
point, whichever comes first.

Two asterisks and a dollar sign (x*$)
Specifies that the dollar sign floats as described above, and, in addition, any
vacant positions to the left of the dollar sign are filled with asterisks.

[LLL or T77T or "7

Specifies that the number is to be printed in exponential format.

Plus Sign (+)

Specifies that a positive number prints with a plus sign and a negative
number with a minus sign in the position indicated. This symbol can be to
the extreme right or extreme left of the field.

226

PRINT USING

Minus Sign (—)

Specifies that a positive number prints with a space and a negative number
with a minus sign in the position indicated. This symbol can be to the
extreme right or extreme left of the field.

Characters Affecting Strings

Exclamation Point (!)
Causes only the first character of the associated string to be printed.

Two Percent Signs or Backslashes (% % or \ \)
Specifies a string of spaces whose length is equal to 2 plus the number of
spaces between the two signs.

Any Character before or after the String Proper Is Printed.

For example, specifying “ABC# #.# #XYZ” will cause ABC to be
printed, a four-digit number with decimal point, and then XYZ.

| PRINT USING |

System in | Format| Notes | Alternate Commands

Integer

APPLE Applesoft
DOS
Microsoft X 1,5
Cassette X 2,5

BM Disk X 2,5
Advanced | X 2,5
Level I

TRSMod Il | Extended | X 4
Disk X 4
Level I

TRS Color Extended X 2,3
Disk X 2,3

Commodore | VIC 20

ATAR! 400/800

ANSI Minimum

Notes

1. Either “~~" or 1111 can be used for exponential form.
2.~~~ s used for exponential form.
3. [[[[is used for exponential form.

PRINT@ 227
4. Either [[[[or 1111 can be used for exponential form.
5. A variable-length field can be specified by using the ampersand (&).

An underscore (__) specifies that the next character is a literal. \ \ is
used for spaces.

PRINT@ Format
PRINT@ position, expression

The PRINT@ statement prints the expression at the specified screen lo-
cation. The comma must be included.

| PrRINTE@

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
8M Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

1,2,3
2,3,4
2,3,4

A Bl Eal R R kS
(2]

Notes

1. PRINT AT must be used.

2. Positions are calculated as 0 to 63 for the first line, 64 to 127 for the
second line, and so on, up to 960 to 1023 for the sixteenth line.

3. If anything is printed on the bottom line, an automatic Line Feed is
executed unless a trailing semicolon is used to suppress it.

4. There can be a list of expressions, not just one.

5. Positions are calculated as 0 to 31 for the first line, 32 to 63 for the
second line, and so on, up to 480 to 511 for the sixteenth line.

228

PRINT #

Format

PRINT #

PRINT # file-number, [USING format-string;]
{expression;,} ...

The PRINT # statement writes data to a sequential file in the same way it

would be written to the screen by a PRINT statement.

Numeric expressions should be delimited by semicolons; if commas are
used, extra spaces will be inserted. String expressions must be delimited by

semicolons.

If a string contains a comma, semicolon, Carriage Return, Line Feed, or
leading blanks, it should be written with explicit quotation characters by

using CHR$(34).

The file-number must be between 1 and 15, inclusive.

See: IN#, INPUT#, PR#.

PRINT #

System

Format

Notes

Alternate Commands

Integer

PR #

Applesoft

PR #

APPLE
DOS

PR #

Microsoft

Cassette

IBM Disk

Advanced

bl et Kol Ko

Level I

TRS Mod IIT | Extended

Disk

Wl w

Level I

TRS Color Extended

Disk

Commodore | VIC 20

ATARI 400/800

Eal Il Il P e ol B

i plwiwjiwin|n

[« 0 N7,

ANSI Minimum

Notes

1. The file must be a disk file.

2. If the total number of characters is over 248, the excess is truncated.

3. For nondisk files the file number must be —1 for cassette or —2 for
the printer. The USING clause cannot be used. For a disk file the
file-number is a buffer-number from 1 to 15.

program
line

program
statements

prompt

PROMPT 229

4. If a file-number is 1, it is the cassette, 4 is the printer, and 8 is the
disk.

5. The USING clause cannot be specified.
6. The file number can be between 1 and 7.

The following chart shows the valid line numbers and the number of
characters that can be in a program line.

l program line I

System in Format Notes Number of Characters
Integer I 239
. Applesoft 1 239
DOS 1 239
Microsoft 2 255
Cassette 255
1BM Disk 255
Advanced 255
Level | 240
TRS Mod 111 | Extended 240
Disk 240
Level |
TRS Color Extended
Disk
Commodore | VIC 20 88
ATARI 400/800 120
ANSI Minimum 72

Note

1. Spaces are not counted in determining the length of the line.

See: command, function, line number, statement.

A prompt is a character or short message provided by BASIC or the
operating system to indicate to the user that the system is ready to accept
input from the keyboard. The following chart shows the prompts for the
different systems.

230

PSET

PSET

prompt
System BASIC Operating System
Integer > ®
Applesoft] *
APPLE
DOS *
Microsoft OK >
Cassette oK >
IBM Disk OK >
Advanced OK >
Level | >
TRS Mod 111 | Extended > B
Disk > @ | TRSDOS READY
Level |]
TRS Color Extended B
Disk] OK
Commodore | VIC 20 OK
ATARI 400/800 READY
ANSI Minimum

Format 1

PSET (x-coordinate, y-coordinate) [,color]

Format 2
PSET (x-coordinate, y-coordinate, color)

The PSET statement sets the point at the x and y coordinates to the
specified color. If no color is specified, the foreground color is used.

See: POINT, PPOINT, PRESET, RESET, SET.

PUT 231

PSET
System In | Format| Notes | Alternate Commands
Integer PLOT
Applesoft PLOT
APPLE
DOS PLOT
Microsoft PLOT
Cassette X 1 1
IBM Disk X 1 1
Advanced | X 1 1
Level I SET
TRS Mod IIT | Extended SET
Disk SET
Level I SET
TRS Color Extended | X 2 2 SET
Disk X 2 2 SET
Commodore | VIC 20 SET
ATAR! 400/800
ANSI Minimum

Notes
1. Color can be between 0 and 3. The y-value must be between 0 and

199. In medium resolution, the x -value must be between 0 and 319;
in high resolution, between 0 and 639. (All ranges inclusive.)

2. The x-values must be between 0 and 255; the y-values between O
and 191. (Both ranges inclusive.)

PTRIG Format
PTRIG (arithmetic-expression)
The PTRIG function returns a zero if the trigger button of the specified

controller is pressed; otherwise, it returns a 1. The expression must be
between 0 and 7.

PTRIG is supported only by ATARI BASIC.

See: BUTTON, STRIG.

PUT Format 1

PUT #file-number [,record-number]

232

PUT

Format 2

PUT (x-coordinate-1, y-coordinate-1) —
(x-coordinate-2, y-coordinate-2), array-name [,action]

Format 3

PUT # file-number, arithmetic-expression

Format 1

This form of the PUT statement assigns a record number to the data in the
specified buffer and moves it to the file. The file must be opened and in
random access mode.

The comma is required before the record-number when one is specified. If a
record-number is not specified, the next record is used. The file-number
must be between 1 and 15; the record number, between 1 and 32767.

Format 2

This form of PUT moves the contents of the specified array into a rectangu-
lar area on the screen. The first set of coordinates specifies the upper left
corner of the rectangle; the second set the lower right corner. The various
forms of the action parameter and their effects are shown in the following
table.

Parameter Effect for IBM Effect for TRS Color
PSET Displays data on screen Sets points that are
as they are stored. set in the array
PRESET Displays a negative Resets points that are
image on the screen set in the array
OR Superimposes the data on Same action

the screen; existing
material remains

AND A point on the screen is Same action
set if it was previously
set AND the corresponding
point in the array was set
XOR A point on the screen is in- Not supported
verted if the corresponding
point in the array is set
NOT Not supported Reverses the state of
each point in the
array before it is
plotted

PUT 233

Formar 3

This form of PUT outputs a single byte, whose value is that of the ex-
pression, to the specified file. The expression can be between 0 and 255; the
file number, between 1 and 7.

If the file number is 6, the screen is accessed. For screen modes 0, 1, and 2,

the value is the character code; for modes 3 to 8, it is the color data. The
values are the same as those in the COLOR statement.

See: COLOR, GET, GRAPHICS, SETCOLOR.

[PUT
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X |1
Cassette
IBM Disk X 11
Advanced | X |1,2 1,2
Level I
TRS Mod I | Extended
Disk X |1 3
Level I
TRS Color Extended | X {2 4
Disk X
Commodore | VIC 20
ATARI 400/800 | X |3
ANSI Minimum

Notes

1. The ending coordinates cannot be specified.

2. If OR, AND, or XOR are specified, the resulting color is a function of
the existing color and the color of the corresponding point in the
array. The following tables give the resulting color for all combi-
nations of screen color and array color.

234 PUT

AND OR XOR
Array Color Array Color Array Color
Screen
Color 0 1 2 3 0O 1 2 3 0O 1 2 3
0 0O 0 0 O 0O 1 2 3 0 1 2 3
1 0 1 0 1 11 2 3 10 3 2
2 0O 0 2 2 2 3 2 3 2 3 0 1
3 0O 1 2 3 3 3 3 3 3 2 1 0

3. The number sign (#) is not allowed.

4. If in GET the G option was specified, an action must be specified. If
PMODE is O, 1, or 3, an action cannot be specified.

RAD

RAM

RANDOM

Format

RAD
The RAD command causes the trigonometric functions to interpret their
argument in radians. This stays in effect until a DEG command is executed.

On power-up, RAD is the default.

RAD is supported only by ATARI BASIC.

See: ATN, COS, DEG, SIN, TAN, trigonometric functions.

See: random access memory.

Format 1

RANDOM

Format 2

RANDOMIZE [value]

The RANDOM statement reseeds the random number generator. If exe-
cuted at the start of the program, an unpredictable sequence of pseudo-
random numbers will be obtained. Otherwise, the same sequence will be
obtained each time the program is run from the initial state.

See: RND.

236

random
access
memory

READ

RANDOM ACCESS MEMORY

RANDOM

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOs

Microsoft

IBM

Cassette

Disk

Advanced

R e

[T SIS S]

(e P P

TRS Mod IIT

Level I

Extended

>

—

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Note

1. If no value is included, the program halts and asks for one. The value

must be between —32768 and +32767.

A random access memory (RAM) is a read/write memory with the property
that the access time is the same for every element, and does not depend on

the last element referenced.

The main memory of computers is a random access memory. Note that the
term does not connote any specific technology for implementation of the

memory.

Format 1

READ {variable}...

Format 2

READ file-name [,Rrecord] [,Bbyte]

Format 1

This form of the READ statement obtains a value from a DATA statement

and sets a specified variable equal to this value.

READ 237

READ statements access the DATA elements in order, from the lowest-
numbered DATA statement in the program to the highest-numbered.
Within a DATA statement, elements are accessed from left to right. That is,
the first READ executed in a program accesses the first element of the
DATA statement with the lowest line number; the next READ accesses the
second element of this DATA statement or, if there is no second element,
the first element of the DATA statement with the next higher line number;
and so on. This process continues until all the variables in the statement
have a value. If the end of all the DATA elements is reached, an attempt to
READ another value will cause an error.

The data read in must match the variable with respect to type (string versus
numeric); however, string and numeric data can be intermixed in the
DATA statement.

Example

100 DATA “ ABC,DE:F ”, ABC”DEF , ABC,DEF
120 READ A§, B§, C$

140 PRINT “ # ”;A$;“ #”

160 PRINT “# ”;B$;“ #”

180 PRINT “# 7;C$;“ #”

Output

ABC,DE:F
#ABC”DEF #
ABC

Format 2

This form of READ causes subsequent INPUT and GET statements to
obtain their data from the specified file instead of the keyboard. If a byte
value is specified, reading begins at that byte within the specified record.
Characters are read from the file one field at a time. A field can contain
from 1 to 32767 characters, and is defined as a sequence of characters
ending with a Carriage Return (ASCII 13).

For a sequential text file the record parameter cannot be specified. For a
random access file, if a record is specified, reading begins with that record.
In either type of file reading begins with the first byte in the specified record
unless the byte parameter is specified; in this case, reading begins at that
byte.

Both the record and byte parameter can be between 0 and 32767, the
default for each is 0.

238

read-only
memory

real
number

READ-ONLY MEMORY

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRS$(4); “READ MYFILE, R100”

This form of READ is canceled by printing any DOS command; a PRINT
CHR$(4) is sufficient.

See: DATA, INPUT, INPUT #, RESTORE.

|READ
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft | X 1
DOS X 2
Microsoft | X 1
Cassette X 1
IBM Disk X 1
Advanced | X 1
Level I X 1
TRS Mod OI | Extended X 1
Disk X 1
Level I X 1
TRS Color Extended X 1
Disk X 1
Commodore | VIC 20 X 1
ATARI 400/800 X 1
ANSI Minimum | X 1

A read-only memory (ROM) is a random access memory that can be read
from, but not written to. ROM is commonly used to store the BASIC
interpreter or the like. It is sometimes referred to as “firmware.”

Information in ROMs is generally put in by the manufacturer using a
process known as “blasting”; once blasted, the contents are permanent.

Certain ROMs can be written to by special devices; these are called pro-
grammable read-only memories or PROM:s.

A real number is a single- or double-precision number. It is also called a
floating-point number. The difference between single and double precision
is not in the magnitude of the number that can be represented, but in the
number of digits in the representation of the number in exponential nota-
tion. (In exponential notation there is at most one digit to the left of the

REAL NUMBER 239

decimal point and the number is followed by an exponent that determines
its magnitude.)

A single-precision number’s exponent is represented by “E-+ee”, a double-
precision number by “D+ee”, where “ee” is a two-digit number repre-
senting the exponent.

Example
The number 12345670000089 would be represented thus:

single precision 1.234567E+13
double precision 1.2345670000089D + 13

The accompanying charts show the range of values for single- and double-
precision numbers.

See: integer.

L real numbers

SINGLE PRECISION

Digits Digits
System Notes Stored Printed Range
Integer
Applesoft | | 10 9 +1.0E£38
APPLE
DOS 10 9 +1.0E+38
Microsoft 7 7 +1.70141E+38
Cassette 7 7 +1.701412E+38
1BM Disk 7 7 +1.701412E+38
Advanced 7 7 +1.701412E+438
Level | 7 +1.701411E+38
TRS Mod Il | Extended 7 +1.701411E+38
Disk 7 +1.701411E+38
Level ! 9 +10E+38
TRS Color Extended 9 +10E+38
Disk 9 +10E+38
Commodore VIC 20 10 9 g;gé%%ggg?gg
ATARI 400/800 10 |or Jewer | *1-0E38
ANSI Minimum At least | At least | 4+ 0E+38

240 RECALL

real numbers

DOUBLE PRECISION

Digits Digits
System Notes Stored Printed Range
Integer
Applesoft
APPLE
DOS
Microsoft 16 16 +1.70141183460469F+38
Cassette 17 16 *1.70141183460469E+38
1BM Disk 17 16 +170141183460469F+38
Advanced 17 16 11.70141183460469E+38
Level |
TRS Mod Il | Extended 16 +1.7014118345544556F438
Disk 16 +1.7014118345544556E+38
Level |
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
Note

1. Arithmetic operations can generate a result as large as 1.7E+38: a
value less than 3.0E —39 is taken to be zero.

RECALL Format
RECALL array-name

The RECALL statement reads in data from tape and puts them into the
specified array. Since the array’s name is not stored with its values, an array
can be recalled with a different name from that with which it was stored.

The number of dimensions of the array into which data are recalled must be
the same as the array from which they were stored. The total number of
elements in the array into which the data are read must be greater than or
equal to the number of elements in the array that was stored. In the case of
unequal arrays, the last (or if a one-dimensional array, the only) dimension
can be larger than the corresponding dimension of the array that was
stored; if any other dimension is larger, the results will be scrambled.

relative
form

REM

REM 241

The cassette must be connected and running before this statement is execut-
ed; the start and end of the operation are signaled by a sound. This state-
ment can be interrupted only by RESET.

RECALL is supported only by Applesoft.
See: array, STORE.

Format

STEP (x-offset, y-offset)

Relative form is used in IBM graphics as an alternative way of specifying a
point. Normally, one specifies the absolute location of a point; in using
relative form, an offset from the last point plotted is specified.

For example, assume that the last point plotted was (25,25). To specify
point (50,15) using relative form one would write STEP (25,— 10).

See: last point referenced.
Format
REM comments
The REM statement designates a comment-line. Anything on the line is

considered a comment and has no effect on program execution. If a line has
multiple statements, anything after the REM is considered a comment.

|REM |

Format| Notes | Alternate Commands

El

System

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod ITII | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANS| Minimum

AR R IR R A R
-

ol el R el

bl Rl IEl Il Bl B B B

242

RENAME

RENAME

Note

1. Asingle quote (') can be used instead of REM.

Format 1

RENAME old-file-specification TO new-file-specification

Format 2

RENAME old-file-name, new-file-name [,Ddrive] [,Sslot] [,Vvolume]
The RENAME command gives a disk file a new name. The contents of the
file are not altered. If the old file was open, it is closed ; extensions must be
specified for both files.

Format 2

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “RENAME OLDFILE, NEWFILE, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1to 254 Volume from which DOS was booted

See: NAME.

RENUM

RENUM

RENAME

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

1BM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Format

RENUM [new-first-line-number] [,starting-line] [,increment]

243

The RENUM command renumbers program lines. Renumbering begins
with the specified starting-line in the program, which is given the first-line-
number. The increment is then added to this number and the result is the
new line number for the next line, and so on. Line numbers after GOTO,
GOSUB, THEN, ON ... GOTO, ON ... GOSUB are also renumbered to
reflect the new values of the lines they reference. If either the first-line-
number or the increment is omitted, 10 is used; if the starting-line is not
specified, the entire program is renumbered.

Note that if a program is separated into blocks by leaving large gaps
between line numbers, this command will leave a program with the value of
increment between all lines.

244

RENUM

The RENUM command will not assign an invalid line number nor will it
operate so as to change the sequence of lines in the program.

Example

Assume that the existing program lines are as follows:

100

105
110
111
115
130
147

After executing RENUM 100,100,20, the lines are

100
120
140
160
180
200
220

However, if the existing lines are

10
20
30

the command RENUM 15,30 would try to change line 30 to 15, thus
putting it ahead of line 20. Since this would change the sequence of the
program, it will not execute.

See: AUTO, NAME.

reserved
word

RESERVED WORD

RENUM

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

R R

[N JYUVES OV

TRS Mod III

Level

Extended

NAME

Disk

NAME

TRS Color

Level I

Extended

Disk

Commodore

ViC 20

ATARI

400/800

ANSI

Minimum

Note

1. Also changes line numbers in ERL and ELSE.

245

A reserved word is one with a special meaning to BASIC. As such it cannot
be used as a variable name or in any user-defined way. A reserved word is

also called a keyword.

Apple, Applesoft, TRS Color, TRS Mod III, and Commodore do not allow
reserved words to be embedded in user-defined names. Thus one must be
careful, especially with smaller words such as AND, since “LAND” would
not be a valid variable name for these systems.

IBM and Microsoft permit embedding of reserved words, but when used,
reserved words must be separated by spaces.

Following is a list of reserved words and the BASICs that support them.

See: name.

246

RESERVED WORD

1BM

ABS

X | Apple

X | Applesoft

X | Microsoft

X | Commodore

X | TRS Mod i1

X | TRS Color

X { ANSI

ADR

AND

x

X | X | X | ATARI

APPEND

ASC

AT

ATN

AUDIO

AUTO

BASE

BEEP

BLOAD

BSAVE

BUTTON

BYE

CALL

CDBL

CHAIN

CHRS

CINT

XIXIX|Ix X

CIRCLE

CLEAR

XIX X IX| XX X

CLOAD

CLOADM

X I X IX|X

CcLoCK

CLOG

CLOSE

CLR

CLS

CMD

COLOR

COLOR=

COM

RESERVED WORD

Apple

Applesoft

1BM

Commodore

TRS Mod 1

TRS Color

ATARI

ANSI

COMMON

X | Microsoft

CON

CONT

x

>

x

x

x

cos

CSAVE

CSAVEM

XX [XX

CSNG

CSRLIN

CvD

CVI

Cvs

DATA

X[X|IX|X

XX IX|X

DATES

DEF

x

DEFDBL

x

HXIXIXITXIXIXIX XX

DEFFN

DEFINT

DEFSNG

DEFSTR

DEFUSR

X | XXX

XXX | XXX

DEG

DEL

DELETE

DIM

DLOAD

DOS

DRAW

DRAWTO

DSP

EDIT

ELSE

END

ENTER

247

248

RESERVED WORD

Apple

Applesoft

IBM

Commodore

ATARI

ANSI

EOF

X | TRS Mod 111

X | TRS Color

EQV

X | X | Microsoft

ERASE

ERL

x

ERR

ERROR

XX X|X|X]|X

EXEC

EXP

FIELD

FILES

FiX

X X[XX

FLASH

X X|xXIX]|X

FN

X

FOR

FORMAT

FRE

FREE

GET

GOSuUB

GOTO

XIX [XX | X|X|X|X

GR

X | XXX

XX XX

GRAPHICS

HCOLOR

HCOLOR=

x

HEXS$

HGR

HGR2

HIMEM:

HLIN

HOME

HPLOT

XXX IX|X|{x

HSCRN

HTAB

XIX[X|xX|x

RESERVED WORD

1BM

IF

X | Apple

X | Applesoft

X | Commodore

X | TRS Mod 11

> | TRS Color

X | ATARI

X | ANSI

IMP

X | X | Microsoft

XX

IN#

INKEYS

x

INP

INPUT

INPUT#

INPUTS

INSTR

INT

XIXI X I XX |x|Xx

INVERSE

XIX| XX | XX

JOYSTK

KEY

KilL

LEFTS

LEN

LET

LINE

LIST

LLIST

XXX XXX

LOAD

LOC

XIX | XXX X|XIX]|Xx

XIX X | X | X|X|X|X}|X

LOCATE

LOF

x

LOG

XIX | XIX|X[|IX]IX|X|X|X|X|X|X

LOMEM:

LPOS

LPRINT

LSET

MEM

MERGE

MID$

MKD$

XXX

XXX | XXX

249

250

RESERVED WORD

Apple

Applesoft

IBM

Commodore

TRS Color

ATARI

ANSI

MKI$

X | Microsoft

x

X I'TRS Mod 1

MKN$

x

MKS3$

x

MOD

x

MOTOR

NAME

NEW

NEXT

X IX X XXX

NORMAL

NOT

X X | XX

XIX|X | XX

NOTE

NOTRACE

OCTS

OFF

ON

XXX X

ONERR

OPEN

OPTION

OR

ouT

X IX | X|X

PADDLE

PAINT

PCLEAR

PCLS

PCOPY

XX | XX

PDL

PEEK

PEN

PLAY

PLOT

PMODE

POINT

POKE

RESERVED WORD

1BM

Commodore

TRS Mod [lI

TRS Color

ANSI

POP

X | Apple

x | ATARI

POS

X 1 X | Applesoft

X | X | Microsoft

x

X

POSITION

POSN

PPOINT

PR#

PRESET

PRINT

PRINT#

PSET

XIX | XX

PTRIG

PUT

RAD

RANDOM

RANDOMIZE

READ

RECALL

REM

RENAME

x

RENUM

RESET

RESTORE

RESUME

RETURN

RIGHTS

RND

XIXIX|X|X|X]|X

XX | XX |X| XX

XX [XIX | XX

ROT=

XX | X[XIX]|X

RSET

x

RUN

SAVE

SCALE=

SCREEN

SCRN

251

252

RESERVED WORD

e | = | _
515 51232 -

2| £ E1Z219] %3
| &|=s|B|38|e|E|5|3

SCRN({ X X

SET X X

SETCOLOR X

SGN X X X X X X X

SHLOAD

SIN X X X X X X X

SKIPF

SOUND X X X

SPACE$

SPC X

SPC(X X

SPEED=

5QR X X X X X X X X

STATUS X

STEP X X X X X X X X X

STICK X

STOP X X X X X X X X

STORE X

STRS$ X X X X X X

STRIG X X

STRINGS X X X X

SUB X X

SWAP X X

SYS X

SYSTEM X X X

TAB X X

TAB({ X X X

TAN X X X X X

TEXT X X

THEN X X X X X X X

TIMES$

TIMER X

T0 X X X X X X X X

RESERVED WORD

1BM

Commodore

TRS Mod il

TRS Color

ATARI

ANSI

TRACE

X | Apple

X | Applesoft

X | Microsoft

TRAP

x

TROFF

TRON

USING

USR

VAL

VARPTR

XX | x| X

XX | XX XIX

XX | X | X[X]|X

VARPTRS$

XX [|X|X|X]|X]|X

VERIFY

VLIN

VPOS

VTAB

WAIT

WEND

WHILE

WIDTH

WRITE

WRITE#

X | XX | XIX[XIXIXIX

XXX | X|X|X

XI10

XOR

XDRAW

XPLOT

@

&

253

254

RESET

RESET

Format 1

RESET

Format 2

RESET (x-value, y-value)

Format 1

The RESET statement closes all open files and clears the system buffer. If
all open files are disk files, this statement operates the same as a CLOSE
statement with no file names after it.

Format 2

This form of RESET erases the point at the specified screen location.

See: PLOT, POINT, PPOINT, PRESET, PSET,
SET, SYSTEM, UNLOAD.

RESET]

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft X 1 1
Cassette
IBM Disk X 1
Advanced
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

APPLE

B
—

PRESET
PRESET

AR R IR e
(SN AR VE R IV
wlw|win|

RESTORE

RESTORE 255

Notes

1. Resets directory allocation information after disks have been
switched.

2. The x-values must be between 0 and 127; the y-values, between 0
and 47.

3. Text mode only. The x-values must be between 0 and 63; the y-
values, between 0 and 31.

Format
RESTORE

The RESTORE statement resets the pointer used for READ statements
back to the first element in the first DATA statement. The first READ
executed after a RESTORE will access this element. (This is the same
condition that exists when the program is first run.)

See: DATA, READ.

RESTORE

Format | Notes | Alternate Commands

5

System

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
1BM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANS! Minimum

Fad Bt B Bl B B el e B B B B B B B

Note

1. RESTORE can be followed by a line number; in this case the pointer
is set to the first item on that fine.

256

RESUME

Format

RESUME

RESUME [NEXT| line-number]

The RESUME statement is used in conjunction with the ON ERROR
GOTO statement. It causes a return from the error-handling routine. If

executed before an error occurs, the results are unpredictable.

If NEXT is specified, the return is to the statement following the one in
which the error occurred. If a line-number is specified, the jump is to that
line. RESUME 0, or simply RESUME, returns to the statement that caused

the error.
See: ON ERROR.
| RESUME
System in | Format| Notes | Alternate Commands
Integer
Applesoft | X 1
APPLE il
DOS X 1
Microsoft X
Cassette X
BM Disk X
Advanced [X
Level I
TRSMod I | Extended | X
Disk X
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
Note

1. Neither NEXT nor a line number can follow RESUME. If an error

occurs in the error-handling routine, the program will hang.

RETURN

RIGHTS

RIGHT$ 257

Format
RETURN

The RETURN statement is used to exit from a subroutine. Control is
transferred to the first statement following the GOSUB that branched to
the subroutine.

See: GOSUB, POP.
RETURN
System In | Format| Notes | Alternate Commands
Integer X
APPLE Applesoft X
DOS X
Microsoft | X
Cassette X
IBM Disk X
Advanced | X 1
Level I X
TRS Mod IIT | Extended X
Disk X
Level I X
TRS Color Extended X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X 2
ANSI Minimum X
Notes

1. Aline number can be specified.
2. Control returns to the following line, not the following statement.

Format
RIGHTS (string-variable, arithmetic-expression)

The RIGHTS function has as its value the rightmost characters of the
string, as specified by the expression. If the value of the expression is greater

258 RND

than the number of characters in the string, the entire string is returned; if
its value is zero, the null string is returned.

See: concatenation, INSTR, LEFT$, MIDS, null string.

| RIGHTS

System In | Format| Notes | Alternate Commands

Integer

Applesoft
Dos

Microsoft

APPLE

Cassette
BM Disk
Advanced
Level I
TRS Mod Il | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

I A R T
wivivlw]| =] -

bl e B Il B

Notes

1. The expression can be between 1 and 255.
2. The expression can be between 0 and 255; 0 returns a null string.

RND Format

RND (arithmetic-expression)

The RND function has as its value a pseudo-random number.

See: RANDOM.

RND 259

RND
System In | Format| Notes | Alternate Commands
Integer X 1
APPLE Applesoft X 3
DOS X 3
Microsoft X 2,4
Cassette X 2,4
IBM Disk X 2,4
Advanced X 2,4
Level I X 6
TRS Mod IIT | Extended X 6
Disk X 6
Level I X 7
TRS Color Extended | X 7
Disk X 7
Commodore | VIC 20 X 5,8
ATARI 400/800 | X i
ANSI Minimum X

Notes

1. If the expression is positive, the random number is between zero and
one less than the expression, inclusive. The random number gener-
ator is seeded in such a way that the series cannot be reproduced.

2. If the expression is greater than zero, the number returned is a single-
precision number greater than zero and less than 1; a new value is
returned each time the function is called.

If the expression is less than zero, it seeds the random number gener-
ator. For a given seed value the same sequence of random numbers
is generated when positive arguments are subsequently used. Each
seed gives a difference sequence of numbers.

If the expression is equal to zero, the number returned is the same as
the last number generated. This is useful when debugging.

3. Same rules as note 2, except that for an expression greater than zero,
the number returned can be equal to zero.

4. The expression is not required; if omitted, a positive value is as-
sumed.

5. To seed the random number generator randomly, use RND (—TI).

260

ROM

ROT

rounding

ROM

6. If the expression is zero, a value greater than zero and less than 1 is
returned. For an expression greater than zero, RND uses the integer
part of the expression and returns a value between 1 and the ex-
pression, inclusive.

7. The expression must be greater than 1; the value returned is between
1 and the expression, inclusive.

8. Same as note 2, but if the expression is zero the random number
generator is seeded from a free-running clock.

9. The number returned is less than 1 and greater than or equal to zero.
The expression is a dummy variable.

See: read-only memory.

Format
ROT = arithmetic-expression

The ROT statement sets the angular rotation for a shape that will be drawn
by DRAW or XDRAW.

The expression determines the amount of the rotation. It must be between 0
and 255; its value is taken modulo 64. Zero is defined as no rotation; 16 is
90-degree clockwise rotation; 32 is 180-degree rotation; and 48 is 270-
degree clockwise rotation.

If SCALE is 1, only four values are recognized: 0, 16, 32, and 48. If SCALE
is 2, eight values are recognized: 0, 8, 16, 24, 32, 40, 48, and 56; and so on. If
a specified value is not recognized, the shape will be drawn with the next
smaller recognized rotation.

ROT is parsed as a reserved word only if the next nonspace character is an
equal sign (=). This means that

100 ROT = 10
120 PRINT ROT

- will result in 0 being printed.

ROT is supported only by Applesoft and Apple DOS.

See: DRAW, SCALE, shape, SHLOAD, XDRAW.

Rounding is the process of deleting one or more low-order digits from a
number and possibly altering the value of the remainder of the number as a
function of the part deleted.

RSET

RSET 261

The most common form of rounding is the “5/4” system. To illustrate this
system, assume that one has a number with K + N digits and one wishes to
round to K digits. A value of 5 is added to the (K + 1)st digit and the
resulting first K digits are taken as the rounded value. It can be seen that
the value of the Kth digit will be increased by 1 if the (K + 1)st digit is 5 or
more.

See: truncation.

Format
RSET field-name = character-string

The RSET statement moves the character-string into the specified field-
variable, right justified. If the character-string is smaller than the field, space
fill occurs on the left.

The character-string can be a literal or in a string variable. Numeric values
must be converted to strings before they are RSET. Note that a field-
variable is not the same as a string variable, and, that if a field-variable is
used to the left of an assignment statement, it is no longer recognized as a
field-variable.

See: FIELD, LSET.

RSET

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft | X 1

APPLE

Cassette
8M Disk X 1
Advanced | X 1
Level I

TRS Mod IIT | Extended
Disk X
Level I

TRS Color Extended
Disk X
Commodore | VIC 20

ATARI 400/800
ANSI Minimum

262

RUN

RUN

Note

1. RSET can be used with a nonfielded string to right-justify it. For
example:

100 A$ = SPACES(9)
120 N$ = "ABC"”

140 RSET A$ = N$

160 PRINT “ # ";A$;” # "

Output: # ABC#

Format 1

RUN {line-number]

Format 2

RUN program-name | file-specification [,R]

Format 3
RUN [file-name] [,Ddrive] [,Sslot] [,Vvolume]

The RUN command clears variables and stack space and executes a
program.

Format 1

This form of RUN executes the program currently in memory starting at
the specified line-number, which must be an actual line-number in the
program. The line need not be executable, however. If it is not, execution
begins with the first executable line following it. If no line-number is speci-
fied, execution begins at the first line of the program.

Format 2

This form of RUN loads a program from disk and runs it. If R is specified,
all open files remain open for the new program; otherwise, currently open
files are closed before the program is run. If no file-extension is specified,
BAS is assumed.

RUN 263

Format 3

This form of RUN loads the specified file from disk and runs it. If no
file-name is specified, the program in memory is run.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRS$(4); “RUN MYFILE, D2, S5~

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted
[rUN |
System In | Format| Notes | Alternate Commands
Integer X 1 1
APPLE Applesoft | X 1 1
DOS X |3
Microsoft | X 1,2 2
Cassette X 1,2 2
1BM Disk X {1,2 |2
Advanced { X | 1,2 2
Level I X 1
TRS ModIII | Extended [X | 1
Disk X |2 3
Level I X 1 4
TRS Color Extended X 1 4
Disk X |2 2
Commodore | VIC 20 X |1
ATARI 400/800 | X | 1,2 | 4,5
ANSI Minimum
Notes
1. Can be used only in immediate mode.
2. Must use a file-specification, not a program-name.
3. Must use a program-name, not a file-specification.
4. A line-number cannot be specified.
5. No assumption is made about the extension; R cannot be specified.

SAVE

Format 1

SAVE ([file-specification] [,P|A]

Format 2

SAVE file-name [,device] [,command]

Format 3

SAVE file-name [,Ddrive] [,Sslot] [,Vvolume]

The SAVE command stores a program on cassette or disk.

Format 1

In this form of SAVE, if an A is specified, the program is stored in ASCII
format. (To MERGE a program, it must have been saved in ASCII format.)

If P is specified, the program is stored in encoded binary format. This
protects the program from being subsequently listed or edited. However,
there is no way to cancel this protection. If no extension is specified, BAS is
assumed.

Format 2

The device must be 1 or 8, where 1 is the cassette and 8 is the disk. If no
device is specified, cassette is assumed.

If command is a 1, when the program is reloaded it is put into the same
place it was stored from; if a 2, an end-of-tape mark is written; if a 3,
actions for both 1 and 2 are taken. The file-specification can be a literal or
in a string variable.

Format 3

If the file being saved already exists in the same language, the original file is
written over; if the file exists in a different language or type, an error occurs.

SAVE 265

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRS$(4); “SAVE MYFILE, D1, S6”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot l1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

See: CHAIN, CSAVE, CSAVEM, ENTER, LIST, LOAD, MERGE.

| sAVE |

System In | Format| Notes | Alternate Commands
1 1

integer

Applesoft
DOS

Microsoft

APPLE

Cassette
18M Disk
Advanced
Level I
TRSModIII | Extended
Disk X 1 2
Level I
TRS Color Extended
Disk X 1 2
Commodore | VIC 20
ATARI 400/800 X 1 3
ANSI Minimum

b Rl Rl R R A R k]
S I S WA T

>
N

Notes

1. A file-name cannot be specified. The current program is stored on
tape; no verification is made to see if the cassette is hooked up
and running. At the beginning and end of the operation, a tone is
sounded.

2. The “P" cannot be specified.

3. The file specification must be specified and be in quotes; P and A
cannot be specified. If a drive is not specified, drive 1 is used. The
file is saved in tokenized form, using long interrecord gaps.

266

SAVEM

SCALE

SCREEN

SAVEM

Format

SAVEM file-specification, starting-address, ending-address,
[execution-address]

The SAVEM command stores the contents of memory, from the starting to
the ending address, on disk, giving it the specified name. If no extension is
specified, BIN is assumed. If an execution-address is specified, when the
program is loaded, control is transferred to that address.

The file-specification must be in quotes; all addresses are treated as hexa-
decimal.

SAVEM is supported only by TRS Color DOS.

See: BSAVE, CSAVE, CSAVEM, LOADM.

Format
SCALE = arithmetic-expression

The SCALE statement sets the scale size for a shape plotted by DRAW or
XDRAW.

The expression must have a value between 0 and 255, inclusive. A value of 1
specifies point-for-point reproduction; 2 specifies double size, and so on,
with O representing the largest size.

SCALE is parsed as a reserved word only if the next nonspace character is
an equal sign (=). This means that

100 SCALE = 10
120 PRINT SCALE

results in O being printed.
SCALE is supported only by Applesoft and Apple DOS.

See: DRAW, ROT, shape, XDRAW.

Format 1

SCREEN mode, color-set

Format 2

SCREEN (row, column [,arithmetic-expression])

SCREEN 267

Format 3

SCREEN [mode] [,burst] [,active-page] [,visual-page]

Format 1
This form of the SCREEN statement sets the screen mode. If the mode is 0,
the screen is set to text mode; if 1, to graphics mode.

Color-set, in conjunction with mode, determines the available colors as
shown in the following table:

Color Two-Color Four-Color
Set Mode Mode
0 Black, green Green, yellow, blue, red
1 Black, buff Buff, cyan, magenta, orange

Both mode and color-set must be nonnegative.

Format 2

This form of SCREEN is a function that has as its value the ASCII code of
the character on the screen at the specified row and column. The value
returned is from 0 to 255, inclusive. The row must be between 1 and 25; the
column between 1 and 40 or 1 and 80, depending on the current setting of
WIDTH.

If the expression is nonzero, instead of the character itself, its color attri-
butes are returned. This is a value between 0 and 255 which contains the
code for the foreground and background colors and indicates whether the
character is or is not blinking. The number is interpreted as follows:

1. The foreground color is obtained by taking the value modulo 16.

2. The background color is given by subtracting the foreground color
from the value taken modulo 128.

3. If the value returned is greater than 127, the character is blinking.

Format 3

This form of SCREEN sets the screen attributes. The screen is erased and
the new mode is stored. Then the foreground color is set to white and the
background and border colors to black. The mode must have a value of 0,
1, or 2. Zero represents text mode; 1, medium-resolution graphics mode;
and 2, high-resolution graphics mode.

268

screen
charac-
teristics

Burst enables or disables color. Its action depends on the mode; in text
mode, a zero disables color, nonzero enables it. In graphics mode, a zero
enables color, nonzero disables it.

The active and visual-page parameters are valid only in text mode. The
active page is the page that is written to by statements that send output to
the screen. The visual page is the one that is displayed on the screen; it need
not be the same as the active page. Both parameters must be between 0 and
3 if the WIDTH is 80; and between 0 and 7, if the WIDTH is 40. Initially,

SCREEN CHARACTERISTICS

both pages default to page 0.

If any parameter is omitted, it keeps its current value. Note that there is

only one cursor, which is shared among all the pages.

See: CSRLIN, GRAPHICS, HGR, HGR2, LOCATE, PMODE,
POSITION, PPOINT, SCRN, WIDTH.

ISCREEN
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft
Cassette X 12,
IBM Disk X 12,
Advanced | X |2,
Level I
TRSMod I | Extended
Disk
Level I
TRS Color Extended | X |1
Disk X |1
Commodore | VIC 20
ATARI 400/800 GRAPHICS
ANSI Minimum ’

The following charts show the characteristics of the screen for text and

graphics modes.

See: GRAPHICS, HGR, HGR2, SCREEN.

SCREEN CHARACTERISTICS

269

screen characteristics

TEXT MODE
System Lines Characters per Line
Integer 24 40
Applesoft 24 40
APPLE DOS 24 40
Microsoft 24 40
Cassette 25 40 or 80
1BM Disk 25 40 or 80
Advanced 25 40 or 80
Level | 24 32 or 64
TRS Mod Il | Extended 24 32 or 64
Disk 24 32 or 64
Level | 16 32
TRS Color Extended 16 32
Disk 16 32
Commodore | VIC 20 23 a0
B BE e
ANSI Minimum

LOW RESOLUTION GRAPHICS MODE

screen characteristics

System In | Notes Number Colors X-positions Y-positions
integer ! 16 40 40
Applesoft 2 16 40 40 or 48
APPLE
DOS 16 40 40 or 48
Microsoft 16 40 40 or 48
Cassette 4 320 200
IBM Disk 4 320 200
Advanced 4 320 200
Level | 2 128 48
TRS Mod ! | Extended 2 128 48
Disk 2 128 48
Level | 9 64 32
TRS Color Extended 3 4 128 96
Disk 3 4 128 96
Commodore | VIC 20 8 22 23
ATARI 400/800 4 I P p
ANSI Minimum

270

SCRN

HIGH RESOLUTION GRAPHICS MODE

SCRN

screen characteristics

System In Notes | Number Colors X-positions Y-positions
Integer
Applesoft i,2 8 280 160 or 192
APPLE DOS 1,2 8 280 160 or 192
Microsoft 2 8 280 160 or 192
Cassette 2 640 200
1BM Disk 2 640 200
Advanced 2 640 200
Level |
TRS Mod 11l | Extended
Disk
Level |
TRS Color Extended . 128 or 256 192
Disk
Commodore | VIC 20
ATARI 400/800 3 pord 5 15
ANSI Minimum

Notes {Low Resolution)

1. Plus four lines for text.
2. If 40y -positions, then four lines of text are supported.
3. Also supports the 64 x 32 mode with nine colors.

4. Depends on memory; see “GRAPHICS.”

Notes (High Resolution)

1. To support 192 Y-positions, a 24-kilobyte system is required.

2. 1f 160 y-positions, then four lines of text are supported.

3. Depends on memory; see "GRAPHICS.”

Format

SCRN (x-coordinate, y-coordinate)

The SCRN function returns a code that specifies the color of the screen at
the point specified by the coordinates.

See: color codes, HGR, HGR2, LOCATE, POINT, POSITION,

PPOINT, SCREEN.

SET

SET 271

SCRN
System In | Format| Notes | Alternate Commands
Integer X 1,2,3
APPLE Applesoft | X 2,3
DOS X 2,3
Microsoft | X 4
Cassette po[N-f
18M Disk POINT
Advanced POINT
Level I POINT
TRS Mod IIT | Extended POINT
Disk POINT
Level I POINT
TRS Color Extended POINT
Disk POINT
Commodore VIC 20
ATARI 400/800 LOCATE
ANSI Minimum

Notes

1. Both coordinates must be between 0 and 39.

2. In low-resolution graphics mode, either coordinate can be between 0

and 47. However, if the x-value is between 40 and 47, the color
code returned is that of the point whose x-coordinate is between 0
and 7 and whose y -coordinate is the specified y -coordinate plus 16.
If this resultant value is between 39 and 47 and the mode is mixed
text and graphics, the value returned is of the character at that point.
If thisy -value is between 48 and 63, the value returned is garbage.
In text mode, SCRN returns a value between 0 and 15 which is the
upper or lower 4 bits of the character at that position, depending on
whether the y-coordinate is odd or even, respectively. In high-
resolution graphics mode, the number that is returned is not related
to the screen.

3. SCRN is not parsed as a reserved word unless the next nonspace

character is a left parenthesis.

4. The x-coordinate must be between 0 and 39, the y-coordinate be-

tween 0 and 47.

Format

SET (x-coordinate, y-coordinate, color)

The SET command turns on a graphics block at the location specified. All

272 SET-COLOR

parameters must be nonnegative; they need not be integers, since SET will
truncate and use only the integer portion.

See: PLOT, POINT, PPOINT, PRESET, PSET, RESET.

| sET

System In | Format| Notes | Alternate Commands
Integer PLOT
APPLE Applesoft PLOT
DOS PLOT
Microsoft PLOT
Cassette PSET
IBM Disk PSET
Advanced PSET
Level I X 1
TRS Mod IIT | Extended | X 1
Disk X 1
Level I X 2
TRS Color Extended | X 2
Disk X 2
Commodore | VIC 20
ATARI 400/800
ANS] Minimum :

Notes

1. The x-value must be between 0 and 127; the y -value, between 0 and
47, both inclusive. A color cannot be specified.

2. The x-value must be between 0 and 63; the y -value, between 0 and
31, both inclusive. The color must be between 0 and 8. All four dots
in a block must be of the same color.

SET- Format
COLOR

SETCOLOR color-register, color, intensity

The SETCOLOR statement loads a color register with a specified color
(hue) and intensity (luminence).

SGN

SGN 273

The color register must be between 0 and 4, the color between 0 and 15,
and the intensity must be an even number between 0 and 14 (the higher the
number, the brighter the display). Any of these parameters can be an arith-
metic expression.

If SETCOLOR is not executed, the following are the defaults for the color
registers.

Color
Register Code Color Intensity
0 2 Orange 8
1 12 Green 10
2 9 Light blue 4
3 4 Pink 6
4 0 Gray 0

SETCOLOR is supported only by ATARI BASIC

See: COLOR, color codes, GRAPHICS.

Format
SGN (arithmetic-expression)

The SGN function has a value corresponding to the sign of the expression.
If the expression is:

negative, a — 1 is returned
positive, a + 1 is returned

zero, a zero is returned
Example
100 X = —10

120 Y = SGN(X)
140 PRINT Y, SGN(0), SGN(—X)

Output

-1 0 1

274

shape

SHLOAD

SHAPE

SGN

Format | Notes | Alternate Commands

E}

System

integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

B R R B K B

Bl I B B B i B B

In Apple and Microsoft BASIC, a shape is a figure produced on the screen
by DRAW and XDRAW. A shape definition is a sequence of plotting vec-
tors which defines a shape. When a shape definition is plotted, the shape
that it specifies is generated on the screen. One or more shape definitions,
together with an index, is called a shape table.

See: DRAW, ROT, SCALE, SHLOAD, XDRAW.

Format
SHLOAD

The SHLLOAD command loads a shape table from cassette tape. The table
is loaded just below the location specified by HIMEM :, and then HIMEM :
is set to just below the shape table.

The starting address of the table is passed to the shape drawing routines
when they are executed (DRAW, XDRAW). If a second shape table is to
replace the first, HIMEM: should be reset prior to loading the table to
avoid wasting memory. On 16K systems, HGR clears the top 8K of
memory (locations 8192 to 16383). To force SHLOAD to put the shape
table below page 1, set HIMEM: to 8192 before executing SHLOAD. On
24K systems, either do not use HGR2, or set HIMEM: to 16384 and do
not use HGR.

SHLOAD is supported only by Applesoft.
See: DRAW, ROT, SCALE, XDRAW.

SIN

SIN 275

Format
SIN (arithmetic-expression)

The sine function, SIN, has as its value the sine of the angle specified by the
expression, which is interpreted to be in radians.

To obtain the sine of an angle, X, that is expressed in degrees, use SIN
(X % .0174532925).

If the SIN function is not implemented, the sine of an angle, expressed in
radians, can be calculated by the series

X3 XS X7 (—~1)"X2"+1
SINX=x_2 42 2 DX
TR TR TR P ar Y

Example

100 XR = 45 % .01745329
120 Y = SIN(XR)
140 PRINT SIN(.5235988), Y, SIN(— XR)

Output
5 7071067 —.7071067
(0.5235988 radian is 30 degrees.)
See: ATN, COS, DEG, RAD, TAN, trigonometric functions.

| siN

Format | Notes | Alternate Commands

5

System

integer

Applesoft
DOS
Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

IR R R

Eat Bt B B B Bl Bl

276

single-
precision
number

SKIPF

SOUND

SINGLE-PRECISION NUMBER

Note

1. The argument can be in either degrees or radians, depending on
whether DEG or RAD was used.

See: real number.

Format
SKIPF [program-name]

The SKIPF command moves the cassette tape to just beyond the specified
program’s position. If a program-name is not specified, the tape is moved to
the end of the next program on tape.

SKIPF is supported only by TRS Color (all levels).

Format 1

SOUND frequency, duration

Format 2

SOUND voice, pitch, distortion, volume

Format 1

The SOUND statement generates a tone of the specified frequency for the
specified time.

Format 2

This form of SOUND causes the specified note to begin playing. The note
continues to play until another sound statement with the same voice is
executed, or an END is executed.

The voice parameter can be from 0 to 3; each voice can be manipulated
independently of the others, making harmony possible.

The distortion parameter can be from 0 to 14; 1 is no distortion.

The volume parameter can be from 1 to 15, with 15 being the loudest. The
total volume of all four voices should not exceed 32.

SOUND 277

The pitch parameter can be from 0 to 255. The larger the number, the lower
the pitch. Approximate relations between notes and values are as follows:

Octave C C# D D¥# E F F# G G# A A# B

One octave 60 57 53 50 47 45 42 40 37 35 33 31
above
middle C

Middle C 121 114 108 102 96 91 85 81 76 72 68 64

One octave 243 230 217 204 193 182 173 162 153 144 136 128
below
middle C

See: AUDIO, BEEP, PLAY.

SOUND
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOsS
Microsoft
Cassette X 1 1
IBM Disk X 1 1
Advanced X 1 1
Level I
TRS Mod ITI | Extended
Disk
Level I X 1 2
TRS Color Extended X 1 2
Disk X 1 2
Commodore | VIC 20
ATARI 400/800 X 2
ANSI Minimum

Notes

1. Frequency is in hertz; it must be between 37 and 32767. Duration is
in clock ticks; it must be between 0 and 65525, with one tick being
0.055 second.

2. Frequency must be between 1 and 255, with 1 the lowest tone.
Duration must be between 1 to 255, with each count being 0.06
second.

278

SPACES

SPC

SPACES$
Format
SPACES (arithmetic-expression)
The SPACES function has as its value a string of spaces, where the number

of spaces is determined by the value of the expression, which must be
between 0 and 255, inclusive.

See: PRINT, SPC, STRINGS$, TAB.

SPACES
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft X
Cassette X
IBM Disk X
Advanced | X
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Format
SPC (arithmetic-expression)

The SPC function can be used only in a PRINT statement. It prints the
number of spaces specified by the expression after the item previously print-
ed. If spacing goes past the right window edge, it continues on the next line.
In the PRINT statement SPC must be separated from other values by
semicolons or spaces, not commas.

The expression must have a value between 0 and 255, inclusive. If its value
is zero, no spaces are introduced.

See: HTAB, PRINT, SPACES, TAB, VTAB.

SPEED

SPEED

| sec

System

Format

Notes

Alternate Commands

APPLE

{nteger

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

B A e

L BN I O T

wlwlw

TRS Mod III

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Notes

279

1. SPC is parsed as a reserved word only if the next nonspace character
is a left parenthesis.

2. Permitted only in PRINT and LPRINT statements.

w

Permitted only in PRINT, PRINT #, and LPRINT statements.

4. Permitted only in PRINT and PRINT # statements.

Format

SPEED = arithmetic-expression

The SPEED statement sets the speed at which characters are sent to the
screen or to other I/O devices. The expression must be between 0 and 255,
with O being the slowest speed. SPEED is parsed as a reserved word only if
the next nonspace character is an equal sign (=). This means that

100 SPEED = 10
120 PRINT SPEED

results in O being printed.

SPEED is supported only by Applesoft and Apple DOS.

See: DLOAD.

280

SQR

Format

SQR (arithmetic expression)

The square root function, SQR, has as its value the positive square root of
the expression, which must be nonnegative. In general, SQR executes faster

SQR

than raising a number to the 0.5 power.

Example

100 X = 1234.5

120 Y = SQR(543.21)

140 PRINT SQR(X), Y, SQR(X+Y)

Output

35.1355 23.3069 35.4656
SQR
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft | X
DOS X
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level
TRS ModIII | Extended | X
Disk X
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X
ANSI Minimum | X

statement

STATUS

STATUS 281

A statement is an element of the BASIC language that causes an action to
happen within a program.

See: command, function.

Format 1

STATUS

Format 2

STATUS #device, arithmetic-variable

Format 1

The STATUS function has as its value the status of the last I/O operation.
The value is in the form of a byte with the following meanings for the bits:

Bit Cassette Serial Bus Read/Write Tape verify or load
0 Write timeout

1 Read timeout

2 Short block Short block

3 Long block Long block

4 Unrecoverable Mismatch

read error

5 Checksum error Checksum error
6 End of file EOI

7 End of tape Device not present End of tape
Format 2

The STATUS command activates a status routine for the specified device.
The error message number (if any) currently associated with this device is
put into the designated variable. The device parameter can be an arithmetic
expression.

See the entry on error codes for the meanings of the various codes.

282 STICK

STATUS

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod I | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20 X
ATARI 400/800 | X 2
ANSI Minimum

STICK Format
STICK (arithmetic-expression)

The STICK function has as its value a coordinate of a Jjoystick. The ex-
pression must be between 0 and 3.

See: BUTTON, JOYSTK, PADDLE, PDL, STRIG.

| sTick]

System In | Format | Notes | Alternate Commands
Integer PDL
APPLE Applesoft PDL
DOS PDL
Microsoft PDL
Cassette X 1
IBM Disk X 1
Advanced | X 1
Level I
TRS Mod IIT | Extended
Disk
Level I JOYSTK
TRS Color Extended JOYSTK
Disk JOYSTK
Commodore | VIC 20
ATARI 400/800 X 2 PADDLE
ANSI Minimum

STOP 283
Notes

1. Stick (0) reads all four values and returns the value for 0. The other
three values do not cause the function to sample; they just return
values that were previously read. So stick (0) must be executed
before any of the values are valid. The range of values returned
depends on the joysticks used.

Value Meaning

0 x -coordinate of stick A
1 y-coordinate of stick A
2 x -coordinate of stick B
3 y -coordinate of stick B

2. The values returned give the angle of the stick.

Value Degrees

14 0
6 45
7 90
5 135

13 180
9 225

11 270

10 315

Zero degrees is 12 o'clock.

STOP Format

STOP

The STOP statement causes the program to halt in such a way that it can
subsequently be restarted at the same point. The message BREAK IN
LINE XXXX is printed, with XXXX indicating which line the STOP state-
ment was in, and then control returns to the command level. Open files are
not closed.

See: CONT, END.

284

STORE

STR$

STORE

| sTop

5

System

Format

Notes

Alternate Cornmands

Integer

CONTROL-C

Applesoft
APPLE PP

DOS

Microsoft

Cassette

IBM Disk

Advanced

Level I

TRS Mod IIT | Extended

Disk

Level I

TRS Color Extended

Disk

Commodore | VIC 20

ATARI 400/800

bl ol el Bal Bad Bad Bt Bt B I BT IS - I S

ANSH Minimum

Note

1. Prints STOPPED AT LINE xxxx; does not turn off sounds.

Format

STORE array-name

The STORE command stores an array onto tape. The array is not stored
with its name, so it can be recalled with a different name. In the command,
the array-name must be written without any subscript or dimensions, since

only entire arrays can be stored.

No prompt is given, and the cassette must be attached and running before
this command is executed. The beginning and end of the operation are

signaled by a sound.

STORE is supported only by Applesoft.

See: array, ASC, PRINT#, RECALL.

Format

STR$ (arithmetic-expression)

STR$ 285
The STRS function has as its value a character string that represents the
value of the expression. If the expression is positive, a leading space is

inserted; if negative, a minus sign is inserted. There is no trailing space in
the string. This is the inverse function of VAL.

Example

If X is a numeric variable with a value of 1.702345E-20, after executing
A8 = STRS$(X), the contents of A$ will be the characters

A1.702345E —-20
If BS = STR(— X), the contents of BS will be
—1.702345E — 20

(Note: “A” is used to represent a space.)

See: VAL.
STRS |
System in | Format|{ Notes { Alternate Commands
Integer
APPLE Applesoft | X
DOS X
Microsoft | X
Cassette X
IBM Disk X
Advanced | X
Level I
TRS Mod I | Extended | X
Disk X
Level I X
TRS Color Extended | X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X 1
ANSI Minimum
Note

1. At most one STR$ can be used in a comparison. That is, one cannot
write

286

STRIG

STRIG
If STR$(X) < STR$(Y) THEN ...

2. A positive number gives no leading space.

Format 1

STRIG ON|OFF

Format 2

STRIG (stick-number) ON | OFF | STOP

Format 3

STRIG (arithmetic-expression)

Format 1

This form of the STRIG statement controls sampling of the joystick but-
tons. STRIG ON enables sampling. Once it has been executed, before each
statement in the program is executed, a check is made to see if a button has
been pressed. STRIG OFF disables this checking.

Format 2

This form of the STRIG statement enables and disables the trapping of the
Jjoystick buttons. The stick-number must be 0, 2, 4, or 6: 0 signifies button
Al; 2, button B1; 4, button A2; and 6, button B2.

STRIG ON enables trapping by the ON STRIG statement. If trapping is
enabled, whenever the button is pressed control transfers to the line speci-
fied in the ON STRIG statement. STRIG OFF disables this trapping; if a
button is pressed, the event is not remembered. STRIG STOP disables
trapping, but if a button is pressed, the event is remembered and when an
ON STRIG is executed a trap takes place immediately.

Format 3

This form of STRIG is a function. If sampling has been enabled by a format
1 STRIG statement, it has a value whose meaning depends on the value of
the expression, as shown in the following chart.

STRIG 287
Value Meaning If —1 Returned Meaning If 0 Returned
0 Button A1l has been pressed Button A1 has not been pressed
since last STRIG (0) since last STRIG (0)
1 Button Al is currently Button Al is not currently
pressed pressed
2 Button B1 has been pressed Button B1 has not been pressed
since last STRIG (0) since last STRIG (0)
3 Button B1 is currently Button B1 is not currently
pressed pressed
4 Button A2 has been pressed Button A2 has not been pressed
since last STRIG (0) since last STRIG (0)
5 Button A2 is currently Button A2 is not currently
pressed pressed
6 Button B2 has been pressed Button B2 has not been pressed
since last STRIG (0) since last STRIG (0)
7 Button B2 is currently Button B2 is not currently

pressed

pressed

See: BUTTON, JOYSTK, ON STRIG, PDL, PTRIG, STICK.

| sTRIG |
System In | Format|{ Notes | Alternate Commands
Integer
APPLE Applesoft 1 PEEK
DOS 1 PEEK
Microsoft BUTTON
Cassette X 1,2
IBM Disk X 11,2
Advanced X 11,2,3
Level I
TRS Mod IIT | Extended
Disk
Level I PEEK
TRS Color Extended PEEK
Disk 2 PEEK
Commodore | VIC 20
ATAR! 400/800 X |2 3 PTRIG
ANSI Minimum

288

string
expression

string
variable

STRING EXPRESSION

Notes

1. PEEK (~16287) is button 0, PEEK (—16286) is button 1, and PEEK
(—16285) is button 2. If the value returned is over 127, the button is
being pressed.

2. PEEK (65280). If the button is not being pressed, a value of 255 or
127 is returned. If the right-hand button is being pressed, a value of
126 or 254 is returned; if the left-hand button is being pressed, a
value of 125 or 253 is returned.

3. The expression can be only 0 through 3. If the specified joystick
button is pressed, the value is 0; otherwise, it is 1.

A string expression is:

1. A string literal, or

2. A string variable, or

3. Two string literals or variables combined by the string operator
{(+), or

4. A string expression, optionally in parentheses, combined with any
other string expression.

Examples

5‘ABC‘)‘)

A$

A$ + BS$

AS$ + “” + BS$

See: concatenation.

A string variable is a variable whose name ends with a “$” or which has as
the first letter of its name a letter that has appeared in a DEFSTR state-
ment. A string variable can hold up to 255 characters. String variables are
combined by the concatenation operator (+).

In comparing strings of different lengths, if two strings are equal in all their
characters, the shorter one is considered smaller. That is, “ABC” is con-
sidered shorter than (<) “ABCDE”.

See: concatenation, literal,

STRINGS

subscript

Format

SUBSCRIPT

STRINGS (arithmetic-expression, character)

The STRINGS function has as its value a string composed of multiple
occurrences of a character. The value of the expression, which must be
between 0 and 255, determines how many instances of the character are in

the string.

The character can be a string-variable, a literal in quotes, or a numeric
constant. It specifies the character that is in the string. If a literal in quotes
or a string-variable is specified, only the first character is used. If a numeric
value is specified, it must be between 0 and 255 and is treated as an ASCII

character, control character, or graphics code.

See: SPACES.
STRINGS
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft X
Cassette X
IBM Disk X
Advanced X
Level I
TRSMod ITT | Extended | X 1
Disk X 1
Level I
TRS Color Extended X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
Note

1. A string-variable cannot be specified.

A subscript is a value, placed in parentheses after an array name. It desig-
nates an individual element of the array. For example, in the statement

X = A(5), the number 5 is the subscript of the array, A.

290

SWAP

The smallest subscript value can be 0 or 1, depending on the OPTION

BASE setting.

SWAP

See: array, DIM, ERASE, OPTION BASE.

Format

SWAP variable-1, variable-2

The SWAP statement exchanges the values of the two variables. The vari-

ables must be of the same type; they can be array elements.

Example

100 A% = “ABC”

120 B$ = “123”

140X =5
160Y =10

180 SWAP AS, B$
200 SWAP X, Y

220 PRINT X, Y, AS, B$

Output
10 5 123 ABC
| swap
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X
BM Disk X
Advanced | X
Level I
TRS Mod I | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

symbol

syntax
rule

SYS

SYSTEM

SYSTEM 291

See: arithmetic operator.

A syntax rule defines the way in which reserved words, symbols, and ele-
ments are arranged to form valid BASIC statements, commands, and the
like. It also defines the spelling of reserved words, the number and type of
characters allowed in the statement, the placement of parentheses, and so
on. It may also impose restrictions on the use of the statement.

When a syntax rule is violated, a syntax error occurs.

See: format.

Format
SYS address

The SYS command transfers control to the machine language routine at the
specified address. No parameters are passed. The address must be in the
range 0 to 65535, inclusive; it can be a constant or variable. The machine
language routine must end with a RTS (return from subroutine) instruction.

SYS is supported only by Commodore VIC-20 BASIC.

See: CALL, CLOADM, DLOAD, EXEC, USR.

Format
SYSTEM

The SYSTEM command closes all files and transfers control back to the
operating system.

See: RESET, UNLOAD.

292

SYSTEM

SYSTEM

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

DOS

ANSI

Minimum

TAB

Format

TAB (arithmetic-expression)

The TAB function can appear only in a PRINT statement. It moves the
cursor to the position specified by the expression. The next character will
print in that position.

See: HTAB, PRINT, PRINT@, SPACES, SPC, VTAB.

| TAB
System In | Format| Notes | Alternate Commands
Integer X 1,58
APPLE Applesoft | X 5,6
DOS X 5,6
Microsoft | X 2,5
Cassette X 2,5,6
BMm Disk X 2,5,6
Advanced | X 2,5,6
Level I X 3,4
TRS Mod IIT | Extended | X 3,4
Disk X 3,4
Level I X 4
TRS Color Extended | X 4
Disk X 4
Commodore | VIC 20 X 4
ATARI 400/800
ANSI Minimum

Notes

1. Cannot be used in a PRINT statement, must be separate.

N

next line.

(=20 o2 B~ V)

is a left parenthesis.

. The expression is taken modulo 128.
. The expression can be between 0 and 255, inclusive.
. The expression can be between 1 and 255, inclusive.
. TAB is parsed as a reserved word only if the next nonspace character

. If the cursor is past the position, it is moved to that position on the

294

TAN

Format

TAN (arithmetic-expression)

The tangent function, TAN, has as its value the tangent of the angle speci-

TAN

fied by the expression, which is interpreted to be in radians.

To find the tangent of an angle that is expressed in degrees, use TAN

(X *.0174532925).

If the TAN function is not implemented, the tangent of an angle can be

calculated by TAN (X) = SIN(X)/COS(X).

Example

100 XR = 45 % .0174533

120 Y = TAN(XR)

140 PRINT TAN(.5235988), Y, TAN(— XR)

Output

5773503 .9999999

(0.5235988 radian is 30 degrees.)

—.9999999

See: ATN, COS, SIN, trigonometric functions.

TAN

System

In

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

1BM

Cassette

Disk

Advanced

I et R

TRS Mod IIT

Level I

Extended

>

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

TEXT

THEN

Ti

Ti$

Format

TEXT

T1$

295

The TEXT statement sets the screen to text mode, that is, 40 characters per

line by 24 lines.

See: GR, HGR, HGR2, HTAB, VTAB.

TEXT

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

IR R

Microsoft

IBM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Levet I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Note

1. If TEXT is issued while in high-resolution graphics mode, it does not
clear the screen. If issued in low-resolution graphics mode, the
screen is cleared. If issued in text mode, it is equivalent to a VTAB

24,

See: IF.

TI is a special variable supported only by the VIC-20. It starts with a value

of 0 at power-up and is updated every &5 second.

TI$ is a special variable supported only by the VIC-20. It contains the time
in hours, minutes, and seconds. At power-up it starts at 0, but it can be set
by an assignment statement. Setting TI$ initializes TI.

296 TIME$
TIMES Format
TIMES$

TIMES is a variable whose value is the time of day in the format hh:mm ss,
where “hh” is hours, “mm” is minutes, and “ss” is seconds.

See: T1, T13, TIMER.

TIME$

System In | Format] Notes | Alternate Commands

Integer

Applesoft
DOS
Microsoft

APPLE

Cassette
1BM Disk X 1
Advanced | X 1
Level I
TRS Mod I | Extended X
Disk X 2
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. Can be used as a statement or a variable.
2. Contains the date and time in the format

month-day-year-hour-minute-second
To set, POKE locations 16924 to 16919, with 16924 being the month
and 16919 the second.
TIMER Format
TIMER [= arithmetic-expression]

The TIMER function is used to read the contents of the interval timer or to

TRACE

transfer
address

TRANSFER ADDRESS 297

set it. The expression must be between 0 and 65535; TIMER is incremented
60 times a second; it is off during cassette and disk operations.

TIMER is supported only by TRS Color BASIC, Extended and Disk.

See: TI, T1$, TIMES.

Format
TRACE

The TRACE statement enables the trace function. As each line is executed,
its line number is displayed.

See: DSP, NOTRACE, TRON.

TRACE
System In | Format | Notes | Alternate Commands
| Integer X 1 DSP
Applesoft | X 2
APPLE oS X 3
Microsoft
Cassette TRON
18M Disk TRON
Advanced TRON
Leve!l I
TRS Mod IIT | Extended TRON
Disk TRON
Level I TRON
TRS Color Extended TRON
Disk TRON
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. Aline with multiple statements is listed only once.
2. Aline with multiple statements is listed once for each statement.

The transfer address is the address where execution of a machine language
routine begins after the routine has been loaded. It is also called the “entry
point.”

See: BLOAD, BSAVE, CLOAD, CLOADM, CSAVE, CSAVEM,
SAVEM.

298

TRAP

trap

trigo-
nometric
functions

TRAP

Format
TRAP line-number

The TRAP statement transfers control to the specified line number when an
error is detected. The line number can be an expression. PEEK (195) has
the error number, and PEEK(187) %256 + PEEK(186) the line number,
where the error occurred. To disable trapping, use a line number from
32768 to 65535.

TRAP is supported only by ATARI BASIC.

See: ERL, ERR, errors, ON ERROR.

A trap is a subroutine to which control is transferred when a certain ac-
tivity occurs. This transfer is caused by the system; it does not take place
under program control.

For example, executing the statement ON ERROR GOSUB 1000 enables
trapping of errors. When an error subsequently occurs, the system inter-
rupts the main program and transfers control to the subroutine at line 1000.

See: ON COM, ON ERROR, ON KEY, ON PEN, ON STRIG.

Certain trigonometric functions are directly supported by BASIC. Others
can be derived. Following is a brief description of the more common func-
tions.

Given a right triangle with angles 4, B, and C; sides a and b, and hypoten-
use ¢, certain functions can be defined:

/8\ 7

a

The sine (SIN) of an angle is the ratio of the side opposite the angle to
the hypotenuse: SIN 4 = a/c; SIN B = b/c.

The cosine (COS) of an angle is the ratio of the side adjacent to the
angle to the hypotenuse: COS 4 = b/c; COS B = a/c.

It can be seen that the sine of angle A is equal to the cosine of angle B.

TRIGONOMETRIC FUNCTIONS 299

Since 4 + B must equal 90 degrees, we have

SIN X = COS (90 — X)
COS X = SIN (90 — X)

The tangent (TAN) of an angle is the ratio of the side opposite the
angle to the side adjacent to it: TAN A = a/b; TAN B = b/a.

The secant (SEC) of an angle is the ratio of the hypotenuse to the side
adjacent to the angle: SEC 4 = ¢/b; SEC B = c/a.

The cosecant (CSC) of an angle is the ratio of the hypotenuse to the
side opposite the angle: CSC 4 = ¢/a; CSC B = ¢/b.

The cotangent (COT) of an angle is the ratio of the side adjacent to
the angle to the side opposite it: COT A = b/a; COT B = a/b.

We also have the relations

COT X = TAN (90 — X)
SEC X = CSC (90 — X)

These concepts can be extended to angles over 90 degrees.
Some useful relationships between angles and functions are:
SIN (—X) = —SIN (X)

COS (—X) = +COS (X)
TAN (—X) = —TAN (X)

SIN? X + COS* X = 1
1 + TAN? X = SEC* X
1+ COT?*X =CSC* X

The range of the various functions are:

Function Values from 0 to 90 Degrees

SIN 0 increasing to 1
COS 1 decreasing to 0
TAN 0 increasing to infinity
SEC 0 increasing to infinity
CSC Infinity decreasing to 0
COT Infinity decreasing to 0

(For values over 90 degrees, these ranges repeat themselves, possibly with a
change of sign.)

300

TRIGONOMETRIC FUNCTIONS

Radians
An angle can be measured in degrees or radians. Degree measurement is

fairly well known, but since a computer generates trigonometric values by
series approximation, the angle must be specified in radians.

A radian is an arc of a circle whose length is equal to the circle’s radius.
Since the relationship between a circle’s radius and circumference is
C = 2%Plxr, and there are 360 degrees in a circle, we can derive:

(1) 360 = 2«PI*r
Since a radian, by definition, is equal to a radius we can rewrite (1) as

(2) 360 = 2«PI radians
Dividing both sides by 2, we obtain

(3) 180 = Pl+radians
Or

1 radian = 180/PI or 57.29577951 (or 57°17'44.8")

and

1 degree = 0.0174532925 radian

See: ATN, COS, SIN, TAN.

Following is a list of inverse functions, hyperbolic functions and inverse
hyperbolic functions, and formulae for their derivation.

TRIGONOMETRIC FUNCTIONS 301

Function Expressed in Terms of BASIC Functions

Function (x is in radians)
Secant SEC(X) = 1/COS(X)
Cosecant CSC(X) = 1/SIN(X)
Cotangent COT(X) = 1/TAN(X)
Inverse sine ARCSIN{X} = ATN{X/SQR{-X*X + 1))

Inverse cosine

ARCCOS(X} = — ATN(X/SQR{~X*X + 1)} + 1570796327

Inverse secant

ARCSEC({X) = ATN(SQR{X*X — 1}} + {SGN{X} — 1)*1.5670796327

Inverse cosecant

ARCCSC(X) = ATN(1/SQR{X*X — 1)} + SGN{X) — 1)*1.570796327

Inverse cotangent

ARCCOT(X) = — ATN(X) + 1.5670796327

Hyperbolic sine

SINH(X) = (EXP(X) — EXP{-X)}/2

Hyperbolic cosine

COSH(X) = (EXP(X) + EXP{~X)}/2

Hyperbolic tangent

TANH(X) = — EXP(— X)/{EXP(X) + EXP(=X))*2 + 1

Hyperbolic secant

SECH(X) = 2/{EXP(X) + EXP(—X})

Hyperbolic cosecant

CSCH(X} = 2/{EXP(X) ~ EXP{~X})

Hyperbolic cotangent

COTH({X) = EXP{(=X)/{EXP(X) — EXP(-X))*2 + 1

Inverse hyperbaolic sine

ARCSINH(X) = LOG(X + SQR(X*X +1})

Inverse hyperbolic cosine

ARCCOSH(X) = LOG(X + SQR(X*X —1}}

Inverse hyperbolic tangent

ARCTANH(X) = LOG({1 + X)/{1 —=X))/2

Inverse hyperbolic secant

ARCSECH(X]) = LOG({SQR(-X*X + 1) +1)/X)

Inverse hyperbolic
cosecant

ARCCSCH(X) = LOG((SGN{X)*SQR(X*X + 1) + 1)/X)

Inverse hyperbolic
cotangent

ARCCOTH(X) = LOG({X + 1)/(X - 1))/2

302 TROFF
TROFF Format
TROFF
The TROFF statement disables the trace function.

See: DSP, NOTRACE, TRACE, TRON.

| TROFF
System In | Format| Notes | Alternate Commands
Integer NOTRACE
APPLE Applesoft NOTRACE
DOS NOTRACE
Microsoft
Cassette X
BM Disk X
Advanced | X
Level I
TRSMod III | Extended | X
Disk X
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
TRON Format
TRON

The tron statement enables the trace function. As each program line is
executed its line number is displayed. A line number is listed only once,
even if there are multiple statements on the line.

See: DSP, TRACE, TROFF.

truncation

two’'s
comple-
ment

TWO'S COMPLEMENT

TRON
System In | Format| Notes | Alternate Commands
{nteger TRACE
APPLE Applesoft TRACE
DOS TRACE
Microsoft
Cassette X
IBM Disk X
Advanced | X
Level I
TRSMod ITT | Extended | X
Disk X
Level I
TRS Color Extended | X
Disk X
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

303

Truncation is the process of chopping off one or more digits from a
number, without modifying the remainder of the number.

See: rounding.

The two’s complement of a binary number is that number obtained by
adding 1 to the one’s complement. (The one’s complement is simply the
negation of the original number; that is, all one bits are changed to 0, and

all O bits to 1.)

Two’s-complement notation is the most prevalent method of representing
negative numbers. This scheme works only if the leftmost bit is reserved for
the sign of the number; usually, a zero denotes a positive value, and a 1, a
negative value. For example, consider the value + 52 represented in a byte.

00110100
11001011
+ 1

11001100

(+52)
(reverse all bits)
(add 1 to the result)

(=52)

304

type
declaration

TYPE DECLARATION

Applying the same algorithm to a negative number results in a positive
number of the same absolute value. For example, take the result of our last
example:

11001100 (—52)
00110011
+ 1

00110100 (+52)
For unsigned numbers, the concept of two’s complement is not applicable.

See: NOT.

A variable is type declared if its name is followed by one of the characters
%, !, #,or §. A type declaration overrides a specification by a DEFINT,
DEFSNG, DEFDBL, or DEFSTR statement.

Following is the meaning of each symbol.

Symbol Meaning
% Integer
! Single precision
Double precision
h String

In Apple BASIC, only integers are supported, so “%” is not used. In
Applesoft and ATARI BASIC, single precision is the default, so “!” is not
used.

See: DEFDBL, DEFINT, DEFSNG, DEFSTR.

UNLOAD

UNLOCK

Format

UNLOAD [drive-number]

The UNLOAD statement closes any open files on the specified drive. If no

drive is specified, drive 0, or the one specified in the last DRIVE statement

is used.

See: DRIVE, RESET, SYSTEM.

UNLOAD

System

In

Format

Notes

Aiternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Format

UNLOCK file-name [,Ddrive] [,Sslot] [,Vvolume]

4

The UNLOCK statement cancels the effect of a LOCK. After it is executed

the file can be deleted, renamed, or altered.

This command must be executed, preceded by a CONTROL-D, as part of a

PRINT statement:

PRINT CHR$(4); “UNLOCK MYFILE, D1, S6, V132~

306

USING

USR

USING

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1 to 254 Volume from which DOS was booted

UNLOCK is supported only by Apple DOS.

See: file specification, LOCK.

See: PRINT USING.

Format 1

USR (arithmetic-expression)

Format 2

USRdigit (arithmetic-expression)

Format 3

USR (address, [arithmetic-expression]...)
The USR statement transfers control to a user-defined machine language
routine. The branch occurs when a statement such as X = USR(X * Y) is

executed. The expression is passed to the routine, but it need not be used
by it.

Format 2

The digit must be between 0 and 9, inclusive. If a digit is not specified, O is
assumed.

Format 3

The address, which is interpreted in decimal, must exist in the machine. The
expressions are passed as parameters to the routine and should have values
between 0 and 65535. A noninteger value is rounded to an integer.

USR 307

See: CALL, CLOADM, DEF SEG, DEF USR, DLOAD, EXEC, SYS.

l USR I

System In | Format | Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

Cassette
IBM Disk
Advanced
Level I
TRS Mod III | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

tel Rl Rl B R R
[CR RN ENE N NS

>
-
w

>~
I

A A R
W= ofe

Notes

. A jump to the routine must be put in locations $0A through $0C. The
expression is evaluated, and the result put into the floating-point
accumulator ($9D to $A3). The result, if any, is left in this accumula-
tor.

. The value must be between —32768 and +32767; it is passed as an
integer.

. The address of the routine must be placed in locations 16526 and
16527 (least significant byte in 16526). The expression must have
an integer value.

. The starting address of the routine must be in locations 1 and 2: the
value is stored in the floating-point accumulator; when control re-
turns to BASIC, the value is set to that of the floating-point accumu-
lator.

VAL

Format
VAL (string-variable)

The VAL function has as its value the numeric value of the specified string.
It is the inverse function of STRS. If the first character in the string is not
numeric, a zero is returned. Any nonnumeric character after leading nu-
meric characters is ignored. This function considers the characters +, —, E,
and D as numeric. Tabs, Line Feeds, and leading spaces are ignored.

Example

100 C§ = “87.65”

120 X = VAL(CY)

140 A$ = “12”

160 BY = “34”

180 PRINT X, VAL(AS$ + “.” + B%)

Qutput
87.65 13.34

(These are numeric values, not strings.)

See: STRS.
[vaL
System In | Format| Notes | Alternate Commands
Integer
APPLE Applesoft X 1
DOS X 1
Microsoft X
Cassette X
1BM Disk X
Advanced X
Level I
TRS Mod IIT | Extended X
Disk X
Level I X
TRS Color Extended X
Disk X
Commodore | VIC 20 X
ATARI 400/800 X
ANSI Minimum

variable

VARPTR

VARPTR 309
Note
1. If the absolute value of the number is over 1037, or if the number
contains over 38 digits (including trailing zeros), it causes an error.

See: integer, name, real number, string variable.

Format 1

VARPTR (variable-name)

Format 2

VARPTR (#file-number)

Format 1

This form of the VARPTR function returns the address of the first byte of
the specified variable. If the variable has not been assigned a value, an error
will occur.

When using an array variable-name, use ARRAY(0) to get the lowest
address of the array. Also, all simple variables should be assigned before
obtaining the array address.

Format 2

This form of VARPTR returns a value that is associated with the specified
buffer.

Example
100 A$ = “ABC”
120 Y = VARPTR(AS)
140 PRINT Y
QOutput
3336

(Actual value will vary with implementation.)

See: ADR, DEF SEG, VARPTRS.

310

VARPTRS

VARPTR$
| VARPTR '|
System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X | 1,2 1,2
Cassette X 1,2 3,
BM Disk X 1,2 3,4
Advanced | X | 1,2 3,4
Level I
TRSMod II | Extended | X |1
Disk X |1
Level I X 1
TRS Color Extended | X | 1
Disk X |1
Commodore | VIC 20
ATAR! 400/800 ADR
ANSI Minimum

Notes

1. Format 1 returns an address as an integer between —32768 and
+32767. To find the true address of a negative value, add 65536 to
it.

2. Format 2 returns the starting address of the disk I/O buffer assigned
to. the file-number. If the file is a random access file, the address of
the FIELD buffer is returned.

3. The value is the starting address of the file control block (FCB); this
is not the DOS file control block.

4. The value is the offset into the current segment as defined by DEF
SEG.

Format
VARPTRS$(variable)

The VARPTRS function has as its value a 3-byte string which contains
both the address of the variable and a code that indicates its type. It is
intended for use in DRAW and PLAY statements in programs that will be
compiled. The variable must currently exist in the program.

Of the 3 bytes, the rightmost byte contains the high 8 bits of the address of
the variable; the next byte contains the low 8 bits of the address of the

VERIFY 311

variable; and the leftmost byte contains a code that indicates the type of
variable. These codes are:

2 Integer

3 String

4 Single precision

8 Double precision
Example

100 A$ = “ABC”
120 Z$ = VARPTR$(AS)
140 PRINT ASC(LEFT$(Z8$,1)), ASC(MID$(Z$,2,1)),
ASC(RIGHTS$(Z$,1))
Output
3 8 13

[(13 x 256) -+ 8 = 3336, the address of A$.] The first byte is 3, which indi-
cates a string variable.

In the example above, executing Y = VARPTR(AS) results in the numeric
value of 3336 for Y.

VARPTRS is used to indicate a variable name in the command string in a
DRAW or PLAY statement: PLAY “X” + VARPTRS$(BS) is equivalent to
PLAY “XBS$;”.

VARPTRS is supported only by IBM Disk and Advanced BASIC.

See: DRAW, PLAY, VARPTR.

VERIFY Format 1

VERIFY ON|OFF

Format 2

VERIFY [file-name] [,device]

Format 3

VERIFY file-name [,Ddrive] [,Sslot] [,Vvolume]

312

VERIFY

Format 1

This form of the VERIFY command controls the verification of data writ-
ten to the disk. When VERIFY ON has been executed, all data written to
the disk are reread and compared against the original data. When VERIFY
OFF is executed, no such verification is done.

Format 2

This form of VERIFY compares the specified file against the program in
memory. The file-name can be a literal or in a string variable. If no file-
name is specified, the first program encountered on tape is compared
against the one in memory. Device 1 is the cassette; device 8 is the disk.

Format 3

This form of VERIFY calculates a checksum for each sector of the file and
compares it against the one stored with that sector.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHR$(4); “VERIFY MYFILE,D1,56”

The allowable values for parameters and their defaults are shown below.
Once a value has been changed, the last value specified is the default.

Parameter Range Default
drive lor2 Drive 1
slot 1to7 Slot from which DOS was booted
volume 1to 254 Volume from which DOS was booted

See: CLOAD?.

VLIN

VLIN

VERIFY

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

1BM

Cassette

Disk

Advanced

TRS Mod III

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

ViC 20

R E ke

E I I R

ATARI

400/800

ANSI

Minimum

Format

VLIN starting-y-coordinate, ending-y-coordinate AT x-coordinate

313

The VLIN statement plots a vertical line from the starting to the ending y
positions at the specified x-coordinate. Both y-values must be between 0
and 47; the x-value must be between 0 and 39 (both inclusive). If in text
mode, or mixed text and graphics mode, then for y-values, between 40 and
47 characters are plotted instead of a line.

In low-resolution graphics mode the color is determined by the most re-
cently executed COLOR statement. VLIN has no visible effect in high-
resolution graphics mode.

See: color codes, HLIN, HPLOT, LINE, PUT.

314

VPOS

VTAB

VPOS

VLIN
System In | Format| Notes | Alternate Commands
{nteger X
APPLE Applesoft | X
DOS X
Microsoft | X
Cassette LINE
IBM Disk LINE
Advanced LINE
Level I
TRS Mod III | Extended
Disk
Level I LINE
TRS Color Extended LINE
Disk LINE
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Format
VPOS (dummy-variable)
The VPOS function has the value of the line that currently contains the

cursor. Values returned can range from 1 to 24, with line 1 being the top of
the screen. The argument has no effect on the value the function returns.

VPOS is supported only by MicroSoft BASIC.

See: CSRLIN, POS.

Format

VTAB arithmetic-expression
The VTAB statement moves the cursor to the vertical line designated by the
expression. The horizontal position of the cursor is unchanged. The ex-

pression can be between 1 and 24, inclusive.

See: HTAB, PRINT, PRINT@, TAB.

VTAB 315

VTAB

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

—]

PR

Cassette
8M Disk
Advanced
Level I
TRS Mod Il | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Notes

1. The moves are absolute with respect to the screen, not the text
window.

2. If the expression is over 24, it is taken modulo 24; if it is over 255, it
gives an error.

3. If a nonstandard terminal is connected, a “cursor address”’ sequence
is sent.

WAIT

Format

WAIT address, mask [,pattern]

The WAIT command continually examines the bit pattern in a byte. If
certain conditions are met, the program continues execution with the state-
ment following the WAIT. If the conditions are not met, the program stays
in a loop, continually testing the byte for the conditions.

The pattern must be an integer between 0 and 255; the mask must be an
integer between 1 and 255. (If the mask is 0, the program will hang forever.)
It is the bit pattern of these parameters that is used in the WAIT. For the
bit pattern associated with different decimal values, see the entry on conver-
sion tables.

The WAIT command operates as follows. If only the address and mask are
specified, the 8 bits at the specified address are ANDed with the mask. If the
result is zero, the test is repeated. When the result becomes nonzero, execu-
tion of the program continues with the statement following the WAIT. This
is a way of testing whether any bit in the address that corresponds to a 1 bit
in the mask is set.

Example

The statement: WAIT address, 15 tests the contents of the specified address
until any one of the four rightmost bits is set.

If both the mask and pattern are specified, the 8 bits in the address are
XORed with the pattern. The result of this operation is then ANDed with
the mask. If this result is zero, the test is repeated. When the result becomes
nonzero, execution of the program continues with the instruction following
the WAIT. This is a way of testing whether any bit in the address that
corresponds to a one bit in the mask is in the opposite state of the corre-
sponding bit in the pattern.

Example

The statement WAIT address,3,2 tests the address to see if the rightmost bit
is set or the next-to-the-righmost bit is clear, or both conditions are true.

WAIT 317

The logical operations are as follows:

Case A Case B Case C
Address Contents 01101001 01101010 01101011
XOR with 10 00000010 00000010 00000010
Result 01101011 01101000 01101001
AND with 11 00000011 00000011 00000011
Result 00000011 00000000 00000001

In case A both bits were in the desired state, and the result was nonzero. In
case B, neither bit was in the desired state and the result was zero. In case
C, only the low-order bit was in the desired state and the result was non-
Zero.

See: AND, mask, XOR.
WAIT
System In | Format| Notes | Alternate Commands

Integer
Applesoft | X ,2,3

APPLE DOS X ;2,3
Microsoft | X 1,3
Cassette X 4,5

Bm Disk X 4,
Advanced | X 4,5
Level I

TRS Mod IIT | Extended
Disk
Level I

TRS Color Extended
Disk

Commodore | VIC 20 X 3

ATARI 400/800

ANSI Minimum

Notes

1. Only RESET can interrupt a WAIT.
2. Positive and negative addresses are considered equivalent.
3. The address is a machine address.

318

WEND

WHILE

WEND

4. The address is a port (0 to 65535).
5. CONTROL-BREAK or a system reset will interrupt the WAIT.

Format

WEND

The WEND statement is used to delimit the range of a WHILE statement.

See: WHILE,

| WEND

System In | Format | Notes | Alternate Commands
Integer
APPLE Applesoft
DOS
Microsoft | X
Cassette X
BM Disk X
Advanced | X
Level I
TRS Mod I | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

Format

WHILE arithmetic-expression

The WHILE statement causes a range of instructions to be repeatedly

executed until a condition becomes false.

The range of the WHILE consists of all the statements that follow it, down
to the first WEND statement after it. The expression in the WHILE state-
ment is evaluated. If it is not false (zero), all the statements down to the first
WEND are executed. Then control returns to the WHILE statement and
the expression is evaluated again. This continues until the expression be-
comes zero, at which time control transfers to the first statement following

the WEND.

Example

100 X =3
120 = —1

140 WHILE J < =X

160 PRINT 1J,

WIDTH

WHILE

In

Format

Notes

Alternate Commands

R N

180T =J+1
200 WEND
QOutput
-1 0 1 2
See: FOR, loop.
System
Integer
Applesoft
APPLE ppeso
DOS
Microsoft
Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum
WIDTH Format 1

WIDTH [file-number|“device™,] size

Format 2

WIDTH [LPRINT] line-width

Format 3

WIDTH [screen-width] [,screen-height]

319

320

WIDTH

Format 1

This form of the WIDTH statement sets the output line width in terms of
the number of characters on a line. After the specified number of characters
is output, a Carriage Return/Line Feed (CR/LF) is automatically issued.
The width must be between 0 and 255.

The width for a printer defaults to 80 when BASIC is invoked. The maxi-
mum width is 132. If a width of 255 is specified, it is interpreted as “infi-
nite” width; that is, the CR/LF is not automatically issued, and the position
of the cursor, as read by POS or LPOS, goes from 0 to 255 and then back
to 0. Thus it may have no relation to the physical position of the cursor or
print head.

If no file-number or device is specified, the screen width is set, in which case
the size must be 40 or 80. Setting the screen width clears the screen and sets
the border color to black.

If a device is specified, it must be SCRN:, LPT1:;, LPT2:, LPT3:, COMI1;,
or COM2:. The new width value is stored without changing the current
width setting. The next time the device is opened, the new width is used.
(Note that LIST, “LPTn:” and LLIST perform an implicit OPEN.)

If a file-number is specified it must be between 1 and 15, inclusive. The new
width is put into effect immediately. In Cassette BASIC, only the file-
number associated with LPT1: can be used. In Disk and Advanced BASIC,
any of the foregoing devices can be specified.

The default width for communications files is 255.

Format 2

This form of WIDTH sets the line width for the printer or terminal. If
LPRINT is not specified, the terminal’s width is set; if it is specified, the line
printer’s width is set. The maximum width is 132. If a width of 255 is
specified, it is interpreted as “infinite” width; that is, the CR/LF is not
automatically issued, and the position of the cursor, as read by POS or
LPOS, goes from 0 to 255 and then back to 0. Thus it may have no relation
to the physical position of the cursor or print head.

Format 3

This form of WIDTH sets the screen parameters. The width can be from 15
to 255; the height, from 1 to 24. At least one parameter must be specified.
The default value for height is 24; for width it is 40 or 80, depending on the
system.

See: LPOS, POS, PRINT.

wild
card

WRITE

WRITE 321

WIDTH

System In | Format| Notes | Alternate Commands

Integer

Applesoft
DOS

Microsoft

APPLE

w

Cassette
IBM Disk
Advanced
Level I
TRS Mod IIT | Extended
Disk
Level I
TRS Color Extended
Disk
Commodore | VIC 20
ATARI 400/800
ANSI Minimum

R R R e
[S T Y

A wild card is a special character used in filenames and extensions. It is
used when referencing an existing file, not when creating a new one. There
are two kinds of wild cards: single-character and multiple-character.

The single-character wild card is the question mark (7). Any character in a
position occupied by a question mark is considered to match the wild card.
For example, if files were named MYFILE1, MYFILE2, and so on, the
command DIR MYFILE? would list MYFILE!L through MYFILEY. The
command DIR MYFILE?? would list files MYFILE1 through MYFILE99.

The multiple-character wild card is the asterisk (x). (In Apple DOS it is the
equal sign (=).) Any character in the position occupied by the asterisk and
in all positions to the right are considered to match the wild card. For
example, the command DIR ABCx would list all files beginning with ABC
and having any other characters for the rest of the name and any extension.
The command DIR +.BAS would list all files with an extension of BAS.

(Note: In some systems the filename and extension are treated separately.
To list all files, one would execute DIR *.x .)

Format 1

WRITE [expression] ...

322

WRITE

Format 2

WRITE file-name [,Bbyte-address] [,Rrecord-number]

Format 1

This form of the WRITE statement outputs data to the screen or terminal.
If no expressions are specified, a blank line is output. If one or more
expressions are specified, their values are output. The expressions can be
arithmetic or string, and must be separated by commas or semicolons.

When output, each value is separated from the last by a comma. Strings are
delimited by quotes. After the last term is output, a Carriage Return/Line
Feed (CR/LF) is output.

WRITE operates similarly to PRINT, except that WRITE inserts commas
and quotes as described above, and positive numbers are not preceded by a
space.

Format 2

This form of WRITE sends all output that would normally be displayed on
the screen to the designated file instead. WRITE is canceled by PRINTing
any DOS command, even just a CTL-D, or by an INPUT statement.

For a sequential file the record number cannot be specified. If the byte
parameter is specified, writing begins at that byte in the record. Each record
in the file must contain the number of bytes specified when the file was
created.

This command must be executed, preceded by a CONTROL-D, as part of a
PRINT statement:

PRINT CHRS$(4); “WRITE MYFILE, B100, R100”

Both the byte and record parameters must be between 0 and 32767, inclu-
sive. The default for each is 0.

See: OPEN, PRINT, PRINT #, WRITE #.

WRITE #

WRITE #

WRITE

System

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

BM

Cassette

Disk

Advanced

E R I I I

[N RIS SIS R ICY

TRS Mod IIT

Leve! I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

ViC 20

ATARI

400/800

ANS!I

Minimum

Note

1. Commas, not semicolons, must be used between elements.

Format

WRITE # file-number, {expression} ...

323

The WRITE # statement writes data to a sequential file. The expressions
can be string or arithmetic; they must be separated by commas and semi-
colons. WRITE# operates similarly to PRINT#, but in WRITE # oper-
ations, commas are put between items and strings are output with quotes
around them. Also, WRITE# does not put a space in front of a positive
number. After the last item is output, a Carriage Return/Line Feed (CR/LF)

is output,

See: OPEN, PRINT, PRINT #, WRITE.

324

WRITE #

WRITE#

System

In | Format| Notes | Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

IBM

Cassette

Disk

Advanced

PP R

TRS Mod I

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

Notes

1. Commas, not semicolons,
2. Only variables can be used, not expressions.

must be used between elements.

XDRAW

Xi0

Format

XDRAW arithmetic-expression [AT x-value, y-value]
The XDRAW statement operates the same as DRAW, but the color used is
the complement of the color currently at each point plotted. Two consecu-

tive identical XDRAW statements will erase a shape without erasing the
background.

XDRAW is supported only by Applesoft BASIC.

See: DRAW, ROT, SCALE, shape, SHLOAD.,

Format

XIO command, # device-number, control-byte-1, control-byte-2,
file-specification

The XIO statement is a general-purpose input—output statement.

The command parameter determines the action.

Similar to
ATARI
Command Action Statement
3 Open File OPEN
5 Get Record INPUT
7 Get Character GET
9 Put Record PRINT
11 Put Character PUT
12 Close CLOSE
13 Status Request STATUS
17 Draw Line DRAWTO
18 Fill
32 Rename
33 Delete
35 Lock File
36 Unlock File
37 Point POINT
38 Note NOTE

254 Format

326

XOR

XOR

The device-number selects the device; it must have a value between 1 and 7
and can be an expression. The use of the two control bytes depends on the
device. The file specification is mandatory and must be in quotes.

X10 is supported only by ATARI BASIC.

Format
argument-1 XOR argument-2

The exclusive or function, XOR, is a logical function of two arguments. It
has a value of false if both its arguments have the same value and a value of
true, otherwise.

The arguments can be relations, logical variables, or anything that can be
evaluated as true or false. This is the inverse of the equivalence function
(EQV). In formal logic the exclusive or function is “P or Q but not both.”

Truth Table for XOR
P q pXORg
F F F
F T T
T F T
T T F

If XOR is not implemented, it can be calculated by
DEF FNXOR (P,Q) = (P AND NOT Q) OR (NOT P AND Q)

See: EQV, logical functions.

XOR

XOR

System

In

Format

Notes

Alternate Commands

APPLE

Integer

Applesoft

DOS

Microsoft

I8M

Cassette

Disk

Advanced

R X

TRS Mod IIT

Level I

Extended

Disk

TRS Color

Level I

Extended

Disk

Commodore

VIC 20

ATARI

400/800

ANSI

Minimum

327

THE
PERSONAL

GCOMPUTER
BASIC S
REFERENGE
mn n“nl Donald A. Sordille

If you are:

* considering purchasing a personal computer;

e writing software for commercial purposes;

e converting BASIC programs from one system to another;
* |ooking for a comprehensive BASIC(S) reference manual,

this book, by Donald A. Sordillo, is intended for you. It is a reference manual
of Personal Computer BASIC(S) that covers the IBM, Apple, Atari, TRS Color.
TRS Mod Iil, and Commodore VIC-20 computers in depth.

By concentrating on personal computers and by limiting the number of

systems it covers, this book can fully document each system. The computers
covered account for over 90% of personal computers, and include machines
with a wide range of functionality and price, from the IBM Personal Computer
to “game” machines. All of the information for all of the systems is covered.

Among its special features, the book:

e ncludes all instructions, even input/output instructions and those of the
various Disk Operating Systems;

e dentifies which BASIC does what:

* contains over 600 cross references and 200 charts following the BASIC
Keywords;

* |s based on the most up-to-date information.

PRENTICE-HALL. INC., Englewood Cliffs, N.J. 07632

ISBN 0-13-658047-5

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf

