REQUIRES 64K
AND ONE DISK DRIVE

FOR THE FAMILY OF
APPLE || COMPUTERS

Universal File
Conversion

By Gary Charpentier

A Program To Convert Files
From One Operating System To Another

A utility program that allows the user to . . .
e Move data between DOS 3.3, CP/M, Apple
Pascal, SOS, and ProDOS
e Move programs between DOS 3.3, CP/M,
Apple Pascal, SOS, and ProDOS
e Format disks as DOS 3.3, CP/M, Apple Pascal,
SCS, or ProDOS '
Create CP/M files without a Softcard
Create SOS files without an Apple I
Copy files from one disk to another
Leamn how each operating system stores files
Leamn the specific format of each file type

® @ @ o @

Universal File Conversion
Computer Book Division

ISBN 0-912985-0k-2 > %34.95

PRINTED IN USA

A Program To Convert Files

From One Operating SystemTo Another
By Gary Charpentier

FOR THE FAMILY OF APPLE || COMPUTERS

QUALITY SOFTWARE
Computer Book Division

Universal File
Conversion

A Program To Convert Files
From One Operating System To Another

By Gary Charpentier

QUALITY SOFTWARE
21601 Manlla Street
Chatsworth, California 91311

Apple Books from Quality Software

Beneath Apple DOS $19.95
by Don Worth and Pieter Lechner)

Beneath Apple ProDOS $19.855
by Don Worth and Pieter Lechner

Understanding the Apple II
by Jim Sather 522.95

Understanding the Apple Ile (Avail. 11-84
by Jim Sather : .

Apple Utility Software from Quality Software

Bag Of Tricks (includes diskette) 539.95
by Don Worth and Pieter Lechner

(c) 1984 Quality Software All rights reserved No

; - . art
of this yook may be reproduced, in any way or by anyp
means, without permission in writing from the Publisher.

"Apple" is a registered trademark of Apple Computer, Inc.
This manual was not prepared nor reviewed by Apple
Computer, Inc., and use of the term "Apple" should not be
construed to represent any endorsement, official or
otherwise, by Apple Computer, Inec.

International Standard Book Number: B-912985-@6-2
86 B5 B4 54321

Printed in the United States

ii

TABLE OF CONTENTS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

BIBLIOGRAPHY

INTRODUCTION
Hardware Regquirements 1-2
Converting Files 1-3

USING THE PROGRAM
Booting the Disk 2-1
Setting Slot, Drive, and System
Type 2-1
Viewing the Directory 2-2
Copying Files 2-2
Formatting a Disk 2-3
Error Messages 2-3

DISKETTE ORGANIZATION
Apple Pascal 3-2
DOS 3.3 3-5
ProDOS and 505 3-8
CP/M 3-14

FILE TYPES
New Files 4-1
Converting BASIC Program Files
Converting Binary Files 4-3
Common File Types 4-3
Unigue File Types 4-7

GENERAL PROGRAM FLOW
The Initialize Segment 5-2
The Main Menu 5-3

The Format Procedure 5-3
The View Procedure 5-3
The Help Procedure 5-4
The Newopt Procedure 5-4

Copying Files 5-4

Operating System Modules 5-4
The Convert Procedure 5-5
verifying Diskette Type 5-5

ORDERING THE SOURCE CODE

1ii

4-2

CHAPTER 1

INTRODUCTION

Have you ever wanted to take a word processing file that
was written using WordStar and read it using a DOS-based
word processor like Apple Writer? Or maybe you have a
data file generated by a Pascal program that you would
like to access with an Applesoft program? In both of
these cases you are faced with the difficult and tricky
task of transferring a file from one operating system to
another.

Universal File Conversion will copy standard Apple II
disk files from any one of the four different operating
systems available for the Apple I1 to another diskette
that uses a different operating system. Universal File
Conversion can also simply copy files between two
diskettes in the same operating system. There are four
different operating systems currently in use on the Apple
I1 computer: Pascal, DOS 3.3, ProDOS, and CP/M. Figure
1.1 shows all the possible directions for moving a file.
Apple 111 files, which use 505, may also be transferred
with Universal File Conversion, because there is complete
interchange between SOS diskettes and ProDOS diskettes,
even though the file and volume structures have minor
differences. All types of files may be moved, with the
exception of "bad block" and "directory" files. In
addition, Universal File Conversion can format a disk for
any of the four operating systems.

12 Universal File Conversion

PASCAL

]

UNIVERSAL
CP/M FILE
CONVERSION

]

ProDOS/505

DOS 3.3

Figure 1.1 Files Can Be Moved To and From Any of Four Oper-
ating Systems

HARDWARE REQUIREMENTS

Universal File Conversion requires an Apple 11, Apple 11
Plus, Apple I1Ic, or Apple Ile computer with 64K of memory
and at least one Disk I1 drive. However, two or more
disk drives are recommended to speed copying and avoid an
excess of disk swapping.

Standard Apple Disk II formatting is the only type of
formatting supported. 1In other words, other types of
disk drives are not supported. These include 8"
floppies, hard disks, RAM disks, and even other 5 1/4"
floppies. This is not a serious limitation if you have
at least one Disk II drive, because most modified
operating systems include software that read and write to
a standard Disk II drive. Simply transfer the file to a

standard 5 1/4" floppy before using Universal File
Conversion.

Copy protected diskettes cannot be used with Universal
File Conversion.

Introduction 4-3

CONVERTING FILES

When a text file is being converted, Universal File
Conversion makes all changes necessary for the target
operating system. These changes include setting or
clearing the high bit, adding or removing line feeds,
adding or removing the two block header for the Pascal
editor, expanding or generating space compression codes,
etc.

If the file is not a text file, Universal File Conversion
makes no changes, with the following exceptions: it
reserves space for or removes the address and length of
binary files or the length of Applesoft and Integer BASIC
files.

Universal File Conversion is a powerful and helpfgl
utility, but merely moving a file from one opeFatlng
system to another may not be sufficient to begin using
that file in a different operating environment. For
example, Universal File Conversion can move BASIC
programs that are text files from one system to another,
but it will not change an Applesoft tokenized program
into an MBASIC tokenized program, nor perform other
similar changes. It will not properly convert random
access files. It will not translate machine language
programs from one language to another.

Universal File Conversion is not designed to delete files
or write over existing files., These functions can be
performed using the normal RENAME and DELETE comman@s
provided by the operating system in guestion once files
have been transferred using Universal File Conversion.

CHAPTER 2

USING THE PROGRAM

BOOTING THE DISK

Universal File Conversion is self-booting. Simply place
the diskette in drive 1 (slot 6) and turn on your
computer. Or type PR#6 if your computer is already up
and running. The Main Menu should appear on the screen
in a few seconds.

The Universal File Conversion program comes on a diskette
that is in Pascal format. It is not copy protected, and
may be copied using COPYA on your DOS Master Disk or the
ProDOS Filer utility. Beyond a reasonable number of
copies for the buyer's personal use for backing up the
original, copying this program is a violation of the
copyright laws of the United States and other countries.

SETTING SLOT, DRIVE, AND SYSTEM TYPE

Press "N" from the Main Menu to change slot/drive
assignments. The current assignments are printed at the
bottom of the screen when the Main Menu is displayed, and
during the assignment process.

The "source" slot/drive is where you will put the
diskette with the existing program. You want to read
from this diskette.

The "destination™ slot/drive is where you will put the
diskette you want the file transferred to. You want to
write to this diskette.

Typing "E" allows you to "exit" or "escape" from what you
have been asked to enter.

2-2 Universal File Conversion

I1f you select "SOS5/PRODOS" as a system type, you will be
asked to enter a PATH. Pressing RETURN will automat-
ically select the pathname of the current volume. The
name designated here will be used as the default pathname
when copying files to or from a 505 or ProDOS diskette.
1f copying from one ProD0OS diskette to another, different
pathnames can be specified for source and destination.

VIEWING THE CATALOG OR DIRECTORY

Type "V" from the Main Menu to look at the cataleog or
directory of a diskette.

You will be asked to select either the source or
destination slot/drive. The program will expect the
diskette in the selected drive toc match the system type
specified at the bottom of the screen. If the system
type doesn't match, an error message will be displayed.
Otherwise, the catalog or directory will be displayed.

Press any key after you have finished reviewing the
directory to return to the previous menu.

COPYING FILES

Press "C" from the Main Menu to copy files.

The Universal File Conversion diskette must be in drive 1
(slot 6) so that the copy routines can be read in. If
the program does not find it there when you press "C",
you will be asked to put it in. Similarly, when you have
finished copying files, you will be asked to put the
Universal File Conversion diskette in drive 1 (slot 6)
before returning to the Main Menu.

CAUTIOMN: You cannot RENAME or DELETE files using
Universal File Conversion. If you want a new filename to
be the same as an old filename on the disk, first rename
or delete files using standard operating system software,
then run Universal File Conwersion.

You may press the ESC key to exit the copy procedure and
return to the Main Menu.

Enter the filename just as you would under the source
operating system. The name may be changed slightly,
depending on the destination operating system. See
Chapter 4.

When the source and/or destination is ProDOS or S0S, the
pathname used is the pathname assigned when the drive
parameters were specified (using the N command from the
Main Menu).

Using the Program 2-3

FORMAITING A DISK

Type "F" from the Main Menu to format a disk. You must
have previously assigned the operating system you want
formatted to either the source or destination drive
(usually destination). This assignment is done using the
"N" command from the Main Menu.

You will be asked to select the source or destination
drive for formatting. A blank diskette should be placed
in the appropriate drive before making this selection.

If the program finds that the diskette in the selected
drive is already formatted (standard Apple II format), it
will ask if you want to erase the existing data.
Otherwise, it will immediately proceed to format the
diskette.

If you view a catalog or directory of a diskette
formatted by Universal File Conversion, it will be empty.
If you try to boot the diskette, you will get a brief
message saying that the diskette has noc DOS on it. 1In
the case of DOS 3.3, space is reserved for the DOS image
even though no DOS is written to the diskette. DOS can
be later written to the diskette using the MASTER CREATE
program that comes with the disk system.

ERROR MESSAGES

Message Meaning

The disk accessed has the wrong
operating system type.

Disk is wrong DOS

Drive too fast
Drive too slow

Error in Filename The file name is not acceptable,

It may have an illegal char-
acter.

ERROR = §# System error (should not occur).
I/0 Error
The program can't find BOOT.DATA

which is on the Universal File
Conversion diskette.

NO BOOT.DATA

No directory space
on destination

i PR e -

2-4 Universal File Conversion

Message

NO DOS.DATA

NO PASCAL.DATA

NO S50S.DATA

Mo such disk

Not enough room on
destination disk

Only one wild-card

character

0D0OPS -- MEMORY
Path not found
RUNTIME ERROR
ERROR NUMBER =

UNABLE TO LOAD
FORMATTER.CODE

Write protected

Meaning

The program can't find DOS.DATA,
which is on the Universal File
Conversion diskette.

The program can't find
PASCAL.DATA, which is on the
Universal File Conversion
diskette.

The program can't find S0S.DATA,
which is on the Universal File
Conversion diskette,

You don't have a disk drive
connected to the disk controller
card for the specifed slot and
drive.

More than one equal sign was
typed in the filename.

System error (should not occur).

The directory you indicated
(ProDOS or S0S5) does not exist.

System error (should not occur).

An error occurred loading
FORMATTER.CODE -- either an 1/0
error or the program can't find
FORMATTER.CODE.

CHAPTER 3

DISKETTE ORGANIZATION

Each operating system divides the diskette into 568 i
sectors of 256 bytes each. The diskette has 35 tracks

with 16 sectors per track. This chapter explains how

each operating system organizes these physical sectors to
create a directory and a file structure.

All operating systems order tracks the same--namely,
track @ is the outermost track on the diskette and track
34 is the innermost track. The ordering of sectors
within tracks is a different story.

In an attempt to maximize the speed at which information
can be transferred to and from the diskette, different
operating systems order the 16 sectors on each track
differently. Sector ordering can be a confusing subject,
so we will spend a little time explaining it.

The easiest order to understand is what we call the
physical sector order. This is simply the order in which
the sectors are placed around the disk. The physical
position of each sector may be thought of as the physical
order number, although this number is not written down
anywhere. The physical order number may differ from the
number in the address field of the sector. We will call
the sector number in the address field the sector ID
number. Some older operating systems and some "fast DOS"
utilities actually change the order of the sector ID
numbers so that they are different than the physical
order number. Fortunately, the standard versions of the
operating systems that Universal File Conversion is
involved with (DOS 3.3, Pascal, ProD0S, 50§, and CP/M)
all format diskettes with the physical order and the
sector ID order the same. However, each operating system
translates the sector ID number to a legical sector
number, and it is this logical sector number which is the
sector used by the software for disk accesses.

3-2 Universal File Conversion

Figure 3.1 shows the relationship between physical (or
sector ID) number and the logical sector number for each
of the four operating systems. Note that the sectors
called out later in Figures 3.2, 3.6, 3.12, and 3.20 are
the logical sector numbers for the referenced operating
system, and not necessarily the sector ID numbers.

PHYSICAL LOGICAL SECTOR

SECTOR DOS 3.3 PASCAL 505/ProbDOS CP/M
a) @ @ a
1 7 8 8 B
2 E 1 1 &
3 6 9 9 1
4 D 2 2 c
5 5 A A 7
6 c 3 3 2
7 4 B B D
3 B 4 L 8
9 3 c c 3
A A 5 5 E
B 2 D D 9
c 3 [[4
D 1 E E F
E 8 7 7 A
F F F F 5

Figure 3.4 Sector Order Table for All Operating Sysiems

APPLE PASCAL

The Apple Pascal disk is laid out in blocks of two
sectors each. Each block is 512 bytes long. The first
six blocks on the disk are reserved. See Figure 3.2 for
the layout of the Apple Pascal disk. Blocks @ and 1 are
reserved for the bootstrap loader. Blocks 2 through 5
are the reserved for the directory of the disk. The rest
?glthe disk, blocks 6 to 279, is usable for storing

iles.

The Apple Pascal directory is structured as shown in
Figure 3.3. Because Apple Pascal uses a l6-bit pseudo-
co@e, the directory is laid out mostly on word bound-
daries.

The Pascal directory has two parts. The first part is
the directory header, which consists of 26 bytes. The
sgcnnd part is a list of up to 77 file entries. Each
file entry alsoc consists of 26 bytes.

Diskette Organization 3-3

SECTOR_NUMBER

] 1[2[3]a]s[e[7[8]9]alBr]c D|E|F

2| BOOT PROG DIRECTORY BLE 6 7

1 g 9 A B C D E F

2 1@ 11 12 13 14 15 16 17

3 18 19 1A 1B 1C 1D 1§ 1F

4 20 21 22 23 24 25 26| 27

5 28 29 2A 28 2c 2D 2E| 2F

6 3@ 31 3z 33 34 a5 36 37

7 38 39 3A 3B 3ic 3D 3E 3F

8 4@ 41 42 43 44 45 46| 47

9 48 49 4A 4B 4c 4D 4E| 4F

| 50 51 52 53 54 55 56 57
B 58 59 SA SB 5¢C 5D S5E| SPF

"l e 60 61 62 63 64 65 66| 67
@ p 68 69 6A 6B 6C 6D 6E 6F
=| E 7@ 71 72 73 74 75 76| 77
s P 78 79 7a 78 7C 7D 7E| 7F
~|19 8@ 81 82 83 84 85 86| 87
11 88 89 8A 8B 8C 8D 8E| 8F
12 9@ 91 92 93 94 95 96| 97
|13 98 99 9A 9B 9C 9p 9E| 9F
w14 A@ Al A2 A3 A4 AS A6l A7
<|15 a8 A9 AA AB aC AD AE| AF
16 BO Bl B2 B3 B4 BS B6| B7
%117 B8 B9 BA BB BC BD BE| BF
B 18 ce cl c2 c3 c4 c5 ce| c©7
19 cs c9 CA CB cc co CE| CF
1A D@ Dl D2 D3 D4 D5 p6| D7
1B pa D9 DA DB DC DD DE| DF
1Cc E@ El E2 E3 E4 ES E6| E7
1D E8 E9 EA EB EC ED EE| EF
1E Fa@ F1 F2 F3 F4 F5 F6| F7
1F F8 F9 FA FB FC FD FE| FF
20| 1ee| 1e1| 1e2| 1e3| 1e4| 185| 1@6| 1@7
21| 1e8| 1@9| 1ea| 1es| 1ec| 1@p| 1@E| 1l@F
22| 11e| 111| 112| 113| 114| 115 116(117

Figure 3.2 Pascal Disk Layout by Block Number

The directory header is in the first block of the
directory, block 2. 1In the directory header, bytes $@@
and $@1 are an integer representing the number of the
first block on the disk (always zerc). Bytes $02 and $@3
are the integer number of the last block in the directory
plus one. Bytes $@4 and $85 represent the type of entry
for this record; in this case it is zero, meaning a
directory. Bytes $87 through $0D are a string repre-
senting the volume name. Bytes S@E and $@F represent the
number of blocks on this disk, 288. Bytes $18 and §11
represent the number of files currently on this disk.
Bytes 514 and $15 are the date the disk was created.
Figure 3.4 shows how the date is encoded.

3-4 Universal File Conversion

Diskette Organization 3-5

Figure 3.3 Pascal Directory

e]1]2 3[4 s[e]7][8][o][alelclp|lE F
@@@|FIRST | LAST | TYPE|VLN| VOLUME NAME LT BK
@1@|#FILE | TIME | DATE| RESERVED |START | END | TYPE
@20 | LEN] FILE NAME FILE 1
@30 [¥BYTE [DATE | FILE 2
@44 | 1
650 FILE 3
060 F
4 [FILE 4
280 I
d5y FILE 5 e
BAY FILE 6
¢B@ [

4 FILE 7
@D@
otk FILE sl
gFeQ FILE 9
7608 |F68
s FILE 69 EE—
720 FILE 78
730 |
L FILE 71
758
Sed FILE 72,
778 FILE 73
788
538 FILE 74
7a0 FILE 75
788
o IFILE 76
700 [
s FILE 77 ———
7F@ NOT USED
FIRST = FIRST BLOCK OF DISK
LAST = LAST BLOCK OF DIRECTORY PLUS 1
TYPE = TYPE OF FILE
VLEN = LENGTH OF VOLUME NAME
LT BE = LAST BLOCK OF DISK PLUS 1
#FILE = NUMBER OF FILES
START = FIRST BLOCK OF FILE
END = LAST BLOCK OF FILE PLUS 1
4BYTE = NUMBER OF BYTES IN LAST BLOCK
LEN = LENGTH OF FILE NAME

FIRST BYTE SECOND BYTE
7 6 543 21 0@|7[6543 214
MONTH DAY YEAR

Figure 34 Pascal Date Encoding

The last four bytes of the directory header, $16 through
$19, are not used (they extend the directory header to
the same length as a file entry).

Now for a file entry. Relative bytes $@@ and $5@1 of a
file entry give the starting block number for the file.
Bytes 582 and $03 give the ending block plus one for the
file. Bytes 504 and 585 give the type of file. The file
types are shown in Figure 3.5. Bytes $@6 through $15 are
a string giving the name of the file. Bytes $16 and §17
tell how many bytes in the last block of the file are
used. Bytes 518 and 519 are the date the file was last
modified. The modification date has the same format as
in the header (shown in Figure 3.4).

- UNTYPED
- BAD

- CODE

- TEXT
INFO

- DATA

- GRAF

- FOTO

- SECURDIR

Figure 3.5 Pascal File Types

00 =] O LR e Lo b~ ®E
1

DOS 33

A DOS 3.3 disk is laid out as shown by Figure 3.6. DOS
3.3 is the only operating system which uses the sector as
the smallest unit for allocation of a file. Tracks $5@@,
501, and $02 are reserved for the DOS image if present.
Track $11 is reserved for the volume table of contents
and the directory.* The rest of the disk is available

for storing files.

The volume table of contents or VTOC is shown in Figure
3.7. 1t is located at track $l1 sector $0@. Bytes §0@l
and $@2 are a link to the first sector of the directory.
The only other information of interest in the VTOC are

the track bit maps.

*p0S refers to its directory as the "catalog," but we
will use the term "directory" even for DOS, because all
other operating systems use "directory."

3-6 Universal File Conversion

SECTOR NUMBER
g[1J2]3]4a]5[6[7][8[9[A[B[C[DJ[E]F

DOS IMAGE

MmO mP W= s Wb s

NUMEBER

11| vTOC DIRECTORY

TRACK
—
w

Figure 3.6 DOS 3.3 Disk Layout

For each track on the disk, there is a map showing which
sectors are available for use or are already being used.
Each track bit map consists of four bytes, but only the
first two bytes are used in l6-sector drives. Figure 3.B
shows the correspondence of the bits in each byte to the
sectors on a track.

The rest of track $11 is reserved for the DOS directory
(catalog), which starts at sector $@F and continues onto
descending sectors if necessary. It is shown in Figure

3.9. Each sector of the directory has this format.
Bytes S#@1 and $02 point to the next sector if there is
one. If there are no more sectors in the directory, then

both bytes of the pointer are zero.

Diskette Organization 3-7

olil2l3lalslel7lelolalelclolelr
a0 LINK | VER VOL
18
29 NE
30AT | +- m [sT]| Ss TRACK @ TRACK 1
48] TRACK 2 TRACK 3 TRACK 4 TRACK 5
500 TRACK 6 TRACK 7 TRACK 8 TRACK 9
6@ TRACK A TRACK B TRACK C TRACK D
78| TRACK E TRACK F TRACK 1@ TRACK 11
88| TRACK 12 TRACK 13 TRACK 14 TRACK 15
94| TRACK 16 TRACK 17 TRACK 18 TRACK 19
A@| TRACK 1A TRACK 1B TRACK 1C TRACK 1D
BO| TRACK 1E TRACK 1F TRACK 20 TRACK 21
Co| TRACK 22
D@
E@
F@
LINK = LINK TO FIRST SECTOR OF DIRECTORY
VER = DOS VERSION
VOL = VOLUME
NE = § OF ENTRIES IN TS LIST
AT = LAST TRACK ALLOCATED
- = DIRECTION OF TRACK ALLOCATION
™ = TRACKS / DISK
ST = SECTORS / TRACK
SS = SECTOR SIZE
TRACK N = BIT MAP FOR TRACK N

Figure 3.7 DOS 3.3 Volume Table of Confents (VIOC)

BYTE a 1 2 3
BIT 76543210 | 76543210 | 76543210 | 765432140
SECTOR FEDCBA98 | 765432140 UNUSED UNUSED

Figure 3.8 DOS 3.3 Bit Map for One 1é-Sector Track

For each file entry, bytes $@@ and $@1 point to the
beginning of the track sector list for that file. Byte
$¢2 is the file type. The file types are shown in Figure
3.1¢. The file name occupies bytes §@3 through $28.
Bytes $21 and $22 are the length of the file in sectors.

The format of each sector of the track sector list is
shown in Figure 3.11. Bytes 581 and 502 are a link to
the next sector, if any, of the track sector list. If
there is no next sector, the pointer bytes are zero.
Bytes §85 and $@6 are the starting sector number of this
track sector list. A list of the actual sectors in the
file starts at $@C. There can be at most 122 sectors of
a file in each track sector list.

3-8 Universal File Conversion

gl1]2(3[als]|el7]8]o]lalB]c[o]E]F
ag LINEK TSP |FT
1@ FILE 1
20 [FL]
3@ FILE 2
40
5@ | FILE 3
6@
78 FILE 4
80
98
Al FILE 5
BO E—
ce FILE 6
D@ — =]
E@ FILE 7
F@
LINK = LINK TO NEXT SECTOR OF DIRECTORY
TSP = TRACK SECTOR POINTER
ET = FILE TYPE
FL = FILE LENGTH
Figure 3.9 DOS 3.3 Directory

@@ - TEXT

@1 - INTEGER BASIC

@2 - APPLESOFT

@4 - BINARY

@8 - 5§

1@ - RELOCATABLE BINARY

20 - A

48 - B

Figure 310 DOS 3.3 File Types
ProDOS AND SOS

ProDOS and SOS are somewhat similar to DOS 3.3 in that
they both use a bit map to tell which areas of the disk
are in use. The index blocks of ProDOS and S08 could be
likened to the track sector lists of DOS 3.3 also, but
here the similarity ends. ProDOS and 505 allow direc-
tories as files and DOS 3.3 has nothing like that.

Figure 3.12 shows the layout of a ProDOS or 505 disk.
ProDOS and S50S use 512-byte blocks of two sectors each,
as Apple Pascal does. Blocks @ and 1 are reserved for
the bootstrap loader. Blocks 2 through 5 are the volume
directory of the disk. Block 6 is the bit map for the
disk., The rest of the disk, blocks 7 through 279, is
available to store files.

Diskette Organization 3-9

o] 1] 2| 3] a]s|6]7]8[9lalB|lc|p|ElF

(L] LINK OFF 58 51
1@ 52 53 54 55 56 87 S8 59
28| SA SB 5C sD SE SF s5l@ 511

38| 512 513 514 515 516 517 518 519
48| S1A S1B s1C 51D S1E S1F 520 521
58522 523 524 525 526 527 528 529
6@ | S2A 52B s2C 52D S2E 52F 530 531
78| 532 533 534 535 536 537 538 539
B@ | 53A 53B 53C §3D S3E 53F 549 541
9@ | 542 543 544 545 546 547 548 549
A@| S4A S4B s4cC 54D S4E S54F 559 §51
B@| 552 553 5§54 555 556 §57 558 559
Cé| s5a S5B §5C 55D S5E S5F 564@ 561
D@ | 562 563 564 565 566 567 568 569
E@ | 56A 56B 56C 56D S56E S6F 574 5§71
F@|572 573 574 575 576 577 578 579

LINK = T/5 OF NEXT T/S LIST SECTOR IF DATA SECTORS
EXIST BEYONE 79

OFF = SECTOR OFFSET INTO FILE OF FIRST DATA SECTOR
LISTED

58 = T/5 OF DATA SECTOR @ OR 00@8 IF THIS SECTOR
WAS NOT WRITTEN

51 = etc.

Figure 3.11 DOS 3.3 Track Sector List

The first block of the volume directory is shown in
Figure 3.13. The other blocks of the directory are
similar except that the volume header information is
replaced by a file entry. Relative bytes $0@ and $@1 of
the directory block point to the previocus block, if any,
in the directory. Bytes $082 and $@3 point to the next
block, if any.

The first byte of the volume header has two uses. The
first four bits (high nibble) indicate the storage type,
in this case $F for a volume directory header. The
storage types are shown in Figure 3.14.

The last four bits (low nibble) of the the first byte of
the volume header are the number of characters in the
volume name. Bytes $85 through $13 contain the volume
name., Eight reserved bytes, $14 through $1B, are next.
Bytes $1C and $1D are the creation date. Bytes $1E and
$1F are the creation time. The encoding for the date and
time is shown in Figure 3.15.

Bytes $20 and §$21 are for checking version compatih?lity.
Byte §22 is the access byte. The meaning of each bit of
the access byte is shown in Figure 3.16.

340 Universal File Conversion

SECTOR NUMBER

gl 1] 2]3]a|s]se]7]8]s[a]lB]c|D|E]F

[BOOT DIRECTORY BITMAP| 7

1]] A B [~ D E F

2| 1@ 11 12 13 14 15 16 17

3| 18 19 1A 1B 1c 1D 1E 1F

4| 20 21 22 23 24 25 26 27

5| 28 29 2A 28 2c 2D 2E 2F

6| 30 31 iz 33 34 35 36 37

7| 38 39 A 3B ic iD 3E iF

8| 40 41 42 43 44 45 46 47

9| 48 49 4A 4R 4c 4D 4E 4F

w| A| 58 51 52 53 54 55 56 57
B| 58 59 sa | 5B 5C 5D 5E 5F

Bl c| 60 61 62 63 64 65 66 67
@ p| 68 69 6A 6B 6C 6D 6E 6F
= E| 70 71 72 73 74 75 76 77
=| F| 78 79 7A 7B 7C 7D 7E 7F
(18| 88 81 82 83 84 85 B6 87
11| 88 89 8a 8B 8C 8D BE 8F
12| 94 91 92 93 94 95 96 97
*i13| 98 99 9A 98 ac 9D 9E 9F
wlld| ad al A2 Al Ad AS A A7
<|15| A8 A9 AA AR AC AD AE AF
x|16| BO Bl B2 B3 B4 B5S B6 B7
17| B8 B9 BA BB BC BD BE BF
Hl18| ce 21 c2 c3 c4 c5 Cé c7
19| cs8 c9 CA CB cc cD CE CF
14| D@ Dl D2 D3 D4 D5 D6 D7
1B| D8 D9 DA DB DC DD DE DF
1C E@ El E2 E3 E4 ES Eé6 E7
1D| E8 E9 E2 EB EC ED EE EF
1E| F@ Fl F2 F3 F4 F5 Fé F7
1F| F8 F9 Fha FB FC FD FE FF
20(1@¢ | 101 | 162 | 1e3 | 1e4 | 185 | 1e6 |[1@7
21|1e8 | 1@9 | 1@a | 1¢B | 1@C | 1D | 1@E |1l@F
22(11¢ | 111 | 112 | 113 | 114 | 115 | 116 (117

Figure 312 ProDOS/SOS Disk Layout by Block Number

Byte $23 is the entry length of each entry in this

directory.
block of the directory.
of files in the directory.
pointer to the volume bit map.
total number of blocks in the volume.

Byte £24 is the number of entries in each
Bytes 525 and $26 are the number
Bytes $27 and $28 are a
Bytes $29 and $2A are the

Diskette Organization 3414

ﬂ| 1

2| 3l a]ls| el 7]slo]laln lcloleleE
@@ | P.ENT | N.BENT BT HL[VOLUME NAME
1@ VOLUME NAME RESERVED IC.DATE | C.TIME
20 [VER|MVER] ACC| EL| EFB] FILECNT| BITMPNT [TOTBLK |ST N FILE NAME
3@ FILE HAME TYPE |[KEY PNT| #BLES
40 "EOF |C.DATE |C.TIME | VER|MVER] ACC| AUXTYPH M.D M.TIME
5@ | HPNT
5@
78 I
8@
9@
A@
Ba
ca
D@
E@ I
F@
1@
11
12
13 [
14
15
16
17
18
19
1A
18
1c
10
1E |
LF NUSD
P.PNT = PREVIOUS BLOCK OF DIRECTORY
H.PNT = NEXT BLOCK OF DIRECTORY
ST = STORAGE TYPE
ML = NWAME LENGTH
C.DATE = CREATION DATE
C.TIME = CREATION TIME
VER = VERSION
MVER = MINIMUM VERSION
ACC = ACCESS
EL = ENTRY LENGTH
EPB = ENTRIES PER BLOCK
FILECNT = NUMBER OF FILES
BITMPNT = POINTER TO THE BIT MAP
TOTBLK = WUMBER OF BLOCKS ON DISK
TYPE = TYPE OF FILE
KEY PNT = POINTER TO FILE
#BLKS = NUMBER OF BLOCKS IN FILE
AUXTYPE = AUXILIARY TYPE
M.DATE = MODIFICATION DATE
M.TIME = MODIFICATION TIME
HPNT = POINTER TO START OF DIRECTORY
NUSD = NOT USED

Figure 343 ProDOS/SOS Directory Header Block

= ———

342 Universal File Conversion

- DELETED ENTRY

- SEEDLING

- SAPLING

TREE

- SUBDIRECTORY FILE

- SUBDIRECTORY HEADER

- VOLUME DIRECTORY HEADER

Figure 3.4 ProDOS/SOS Storage Types

MmO WS
1

BYTE S1C BYTE 51D
76543 21|87 65|4 3210
YEAR MONTH DAY
BYTE S1E BYTE §1F
7 65|4 3210|76|/543210
2 2 @ HOUR @ a MINUTE
Figure 3.5 ProDOS/SOS Date and Time Encoding
7 6 5 g | # | 3 1 g
DELETE RENAME | BACKUP RESERVED WRITE READ
ENABLE | ENABLE ENABLE | ENABLE

Figure 316 ProDOS/SOS Access Byte Flags

A file entry is almost identical to the volume entry.
The first byte of the file entry, $0@8, is again divided
into the storage type and the length of the file name.
The file name is again L5 bytes in length. The bytes
that were reserved in the volume header take on meaning
in a file entry. Byte 518 is the file type. The file
types are shown in Figure 3.17.

Bytes §11 and 5§12 point to the key block of the file.
Bytes 513 and $14 give the length of the file in blocks.
Bytes §15 through $17 are the logical length of the file
in bytes. The creation date and time, version bytes, and
access type are next as they were in the volume header.
Bytes S1F and 520 are the file's auxiliary type. Bytes
521 and 522 are the modification date. Bytes 523 and 524
are the modification time. Bytes $25 and 526 are the
"head pointer,”™ indentifying the starting block of the
directory.

Diskette Organization 343

- Untyped

- Bad

- Pascal Code

- Pascal Text

- Text

- Pascal Data

- Binary

- Font

Foto

- Business BASIC

- Business BASIC Data
- Word Processor File
- 505 System

-
B S0 00~ O 0
]

15 - Directory
16 - RPS Data
17 - RPS Index

25 - AppleWorks Data Base File
26 - AppleWorks Word Processing File
27 - AppleWorks Spreadsheet File

239 - ProDOS Pascal File
248 - Command

258 - Integer BASIC

251 - Integer Variable
252 - Applesoft BASIC
253 - Applesoft Variable
254 - Relocatable Binary
255 - ProDOS System

Figure 3.17 ProDOS/SOS File Types

An example of the ProDOS/S0S bit map is shown in Figure
3.18. As discussed earlier, the bit map is usually block
6 of the volume in guestion. One bit of the bit map is
on {equal to 1) for every block that is "free" for use.
For a standard diskette, only 280 blocks are available.
Thus, only the first 35 bytes of the bit map are used.
The remaining (irrelevant) bytes are set to zero. For
hard disks or other volumes that have more than 4096
blocks, the bit map carries over into the immediately
following blocks.

ProD0S and 505 have four different methods of storing
files. These four methods are subdirectory files,
seedling files, sapling files, and tree files. The
storage method is dictated by the storage type (see
Figure 3.14). Figure 3.19 describes the four storage
methods.

Subdirectory files can be any number of blocks in length.
Each block in the file has pointers which point forward
and backward to the next and previous blocks in the file.

S —

344 Universal File Conversion

Blocks $0—%9 In Use Blocks SA—S$117 Free
r"“* A4 ™

0000 0000 0011 1111 1111 1111 .. 1111

29 0o FFFFFFFFFFFFFFFFFE,

@C FFFFFFFFFFFFFFFEFEFFFFF

18 FFFFFFFFFFFFFFFFFFFFFFR0Q .
24 0O000OOQQQ0Q0PQD0PRERRRE0 ...cciarnnnn
30 GPQP0PQ00P0Q0PP0PRRPAR08 ... i
3C CEO0PEE0ERP00QADR0ROROEE “ens

(Remainder of Block Zeroes)

Figure 3.8 ProDOS/SOS Volume Bit Map*

*Reprinted with permission from Beneath Apple ProDOS, by DonWorth and Pieter
Lechner (Quality Software, 1984).

Seedling files are the easiest to understand. The
pointer from the directory points directly to the only
block of data in the file.

Ssapling files have a single index block. The pointer
from the directory points to the index block. The index
block has 256 pointers to the actual data blocks of the
file. The pointers are stored in an odd fashion. The
high byte of the pointer is 256 bytes after the low byte.
All pointers in the index block that are not needed are
set to zero.

Tree files have two levels of index blocks. The index
block the directory points to is called the master index
block. It points to 128 more index blocks. The other
index blocks are just like the sapling file's index
block. Again, pointers that are not needed are set to
Zero.

CP/M

CP/M uses a very different file structure than the other
operating systems. It helps to remember that it was
designed for eight inch floppy disks that had twenty six
128-byte sectors per track. This is very different than
the Disk 1I's sixteen 256-byte sectors per track.

The layout of a CP/M disk is shown in Figure 3.28. CP/M
uses blocks of 1024 bytes or four sectors. However,
block zero does not start at track zero, sector zero, but
at track three, sector zero. Tracks @, 1, and 2 are
reserved for the CP/M operating system. Blocks @ and 1
are reserved for the directory. The rest of the disk,
blocks 2 through 127, is available to store files.

Diskette Organization 345

SUBDIRECTORY FILE: storage_type = 5D

Key Block Any Block Last Block
] pointer IR pointer
pointer | polnter e = e d
header entry entry
& entries P4 & entries & ke entries g
SEEDLING FILE: storage_type = §1
key_pointer data Data Block
512 bytes long
$0 < poF <s200 219K
SAPLING FILE: storage_type = 51
key_ pointer 508 S@1 SFE sFp| index block

index block up to 256 2-byte

5200 =< EOF S§$2Iii/’//, \ th&iziziﬂ to data blocks

data data data data

block 5@@ block $81|* " ** " *|block SFE block $FF
TREE FILE: storage_type = §3
key_pointer s00 5@l SFE sFr| Master Index Block

master index block| up to 128 2-byte

5200080 = EOF =< 51¢0008 pointers to index
blocks

see sol SFE $FF| s00 $01 SFE $FF
index block 500 SRS i index block §7F

P P P

data — data data data
block $@@ block $FF block $08| """ |block SFF

Figure 319 ProDOS/SOS File Storage Formats

346 Universal File Conversion

SECTOR NUMBER
@] 1] 2]3Jal5]6l7[8]o[a[e[c[pDlE[PF
]
1 RESERVED
2
3 DIRECTORY BLOCK 2 BLOCK 3
4 BLOCK 4 BLOCK 5 BLOCK 6 BLOCK 7
5 BLOCK 8 BLOCK 9 BLOCK A BLOCK B
6 BLOCK C BLOCK D BLOCK E BLOCK F
7| BLOCK 18 BLOCK 11 BLOCK 12 BLOCK 13
B| BLOCK 14 BLOCK 15 BLOCK 16 BLOCK 17
9| BLOCK 18 BLOCK 19 BLOCK 1A BLOCK 1B
a| BLOCK 1C BLOCK 1D BLOCK 1E BLOCK 1F
®| B| BLOCK 20 BLOCK 21 BLOCK 22 BLOCK 23
M| C BLOCK 24 BLOCK 25 BLOCK 26 BLOCK 27
m| D| BLOCK 28 BLOCK 29 BLOCK 2A BLOCK 2B
=| E| BLOCK 2C BLOCK 2D BLOCK 2E BLOCK 2F
o| F| BLOCK 30 BLOCK 31 BLOCK 32 BLOCK 33
18| BLOCK 34 BLOCK 35 BLOCK 36 BLOCK 37
Zl11| BLOCK 38 BLOCK 39 BLOCK 3A BLOCK 3B
12| BLOCK 3C BLOCK 13D BLOCK 3E BLOCK 3F
x|13| BLOCK 4@ BLOCK 41 BLOCK 42 BLOCK 43
|14 | BLOCK 44 BLOCK 45 BLOCK 46 BLOCK 47
<|15| BLOCK 48 BLOCK 49 BLOCK 4A BLOCK 4B
16 | BLOCK 4C BLOCK 4D BLOCK 4E BLOCK 4F
=117| BLOCK 5@ BLOCK 51 BLOCK 52 BLOCK 53
=118 BLOCK 54 BLOCK 55 BLOCK 56 BLOCK 57
19| BLOCK 58 BLOCK 59 BLOCK 5A BLOCK 5B
1A| BLOCK 5C BLOCK 5D BLOCK 5E BLOCK S5F
18| BLOCK 6@ BLOCK 61 BLOCK 62 BLOCK 63
1C| BLOCK 64 BLOCK 65 BLOCK 66 BLOCK 67
1D | BLOCK &8 BLOCK 69 BLOCK 6A BLOCK 6B
1E| BLOCK 6C BLOCK 6D BLOCK &E BLOCK &F
1F| BLOCK 7@ BLOCK 71 BLOCK 72 BLOCK 73
28 | BLOCK 74 BLOCK 75 BLOCK 76 BLOCK 77
21| BLOCK 78 BLOCK 79 BLOCK 7A BLOCK 7B
22| BLOCK 7C BLOCK 7D BLOCK 7E BLOCK 7F
Figure 3.20 CP/M Disk Layout

The CP/M directory is shown in Figure 3.21. There are 48
directory entries in the Microsoft implementation of CP/M
for the Apple. At least one other implementation of CP/M
for the Apple uses 64 directory entries. Byte $@ of each
entry is a delete flag. The entry is empty if it equals
SES. Bytes $@1 through $@8 are the primary part of the
file name. Bytes 509 through $8B are the file name's
extension. Byte S0C determines which extent of the file
is represented by this entry. A file may use as many
extents (new file entries in the directory) as necessary
for its length. Byte SF is the number of 128-byte
records in this entry for the file. Bytes §1¢ through
$51F represent up to 16 blocks that the file uses. If any
are unused, they are zero.

Diskette Organization 347

g J]1 2 3 4 5 & 7 8/ 9 A BIC|D|E|F
DEL NAME - EXTENSION| XT iR
..block numbers of blocks used by this extent..

DEL = DELETE FLAG
XT = EXTENSION NUMBER
#R =

NUMBER OF 128 BYTE RECORDS

Figure 3.21 CP/M Directory

CHAPTER 4

FILE TYPES

The purpose of this chapter is to describe the different
types of files that are available in each of the four
operating systems. The topics we will cover are:

1. How Universal File Conversion derives a name for new
files based on the old filename.

2. A general explanation of how BASIC programs are
stored.

3. Some words about converting binary files.

4. A description of those file types that are common to
more than one operating system.

5. A description of those file types that appear in
only one operating system.

The term file types as used in this chapter refers to the
contents of the file, not toc any special format the
operating system uses to store the data (a Seedling file
or a Sapling file, for example). We are concerned with
the data as if it were a continuous stream of bytes,

NEW FILES

When assigning the name for a new file, Universal File
Conversion uses the name of the original file as a
starting point. The different operating systems have
different maximum lengths for a filename, If the old
filename is too long for the new operating system, it is
truncated. Also, because only DOS 3.3 allows spaces as
part of the filename, Universal File Conversion will
remove spaces when converting to other operating systems.

4-2 Universal File Conversion

Periods are not allowed in CP/M filenames, 50 Universal
File conversion will remove them when creating a new CB/M
file. Here are some examples:

Converting from CP/M tc DOS 3.3--
INVEN.DAT becomes INVEN.DAT

Converting from DOS 3.3 to CP/M--
INVEN.DAT becomes INVENDAT
INVEN DATA becomes INVENDAT.A

Universal File Conversion will not allow you to write
over a file with the same name. If you wish to destroy
an existing file and replace it with a new file of the
same name, you must first use the operating system
software to delete the old file, then use Universal File
Conversion to write the new one. If you wish to preserve
the existing file with a different name (e.g. FILE.BAK),
you must first use the operating system to rename the old
file, then use Universal File Conversion to write the new
one.

CONVERTING BASIC PROGRAM FILES

Most BASIC interpreters store a program in a tokenized
form. This means that each keyword, such as "PRINT" or
"INPUT", is replaced by a byte or "token" which repre-
sents the keyword. Life would be simple if each BASIC
replaced each keyword by the same "token" byte. Unfor-
tunately, this is not the case.

This means that if you were to move the program in its
tokenized form from one BASIC to another, it most likely
would not make sense to the second BASIC. For example,
the token for the PRINT statement in the first BASIC
might be the token for the SIN function in the second.

Fortunately, there is a way to move BASIC programs. Most
BASIC interpreters allow you to, optionally, store a
program as a text file. It is in this form that
Universal File Conversion will correctly move BASIC
programs around. Note that DOS 3.3 and ProDOS use the
same BASIC, namely Applesoft, so you do not have to
convert to a text file before using Universal File
Conversion when going back and forth from DOS 3.3 and
ProDOS. This is the only exception.

FileTypes 4-3

After Universal File Conversion has moved the BASIC
program in text form, you will probably still have to
make changes. For example, Microsoft BASIC for CP/M has
a "PRINT USING" statement, but Applesoft does not. You
would have to change all the "PRINT USING" statements in
the program so they make sense to Applesoft. A more
drastic example is5 an Applesoft program that uses
graphics. Such a program would require extensive changes
to run in a BASIC that did not support graphics.

CONVERTING BINARY FILES

The intended use of the binary file is to store a machine
code program. In practice, this is not always the case.
For example, 1t may be used to store the high resolution
graphics screen, or it could be text used by certain word
processors. Universal File Conversion treats binary
files as a machine code program or data--it never treats
a binary file as text.

Note that moving a machine code program from CP/M to DOS
3.3 does not make much sense. The processor used by CP/M
is a Z2-88 and DOS 3.3 uses a 6582. They are not
compatible. Generally, you cannot move a machine code
program from one operating system to another and have it
make any sense. Universal File Conversion permits you to
move the file over, but you are responsible for any
translation from one language to another.

COMMON FILE TYPES

There are 1@ file types that are defined in more than one
operating system on the Apple: text, binary, relocatable
binary, Applesoft BASIC, Integer BASIC, Pascal code,
Pascal text, Pascal data, foto, and bad files. The other
file types are defined in only one operating system.

Note that CP/M does not have file types as such. The
only file type in any way special to CBP/M is the ".COM"
file type. To CP/M, a ".COM" file is an executable 8@88
(or Z-88) machine code program. Any other file to CP/M
is simply some program's data file. Universal File
Conversion treats CP/M files with the extensions ".TXT",
".AsC", ".FOR", ".MAC", "_ASM", and ".BAK" as containing
text. All other files are treated as binary data.

Also note that all file types used by DOS 3.3 are defined
in at least one other operating system. Aand, all Pascal
file types but one are defined in another operating
system.

4-4 Universal File Conversion

Figure 4.1 indicates the type of destination file that
will be created when a given file type is converted from
one operating system to another. The destination file
type depends on what operating system the file is being
moved to. If the source file type is not shown in Figure
4,1, it is treated the same as a data file.

DESTINATION
CP/M | DOS 3.3 PASCAL | ProDOS/SO0S
TEXT TEXT | TEXT PAS TEAT TEXT
PASCAL TEXT TEXT | TEXT PAS TEXT TEXT
S APPLESOFT DATA | APPLSFT | PAS DATA APPLSFT
0 INTEGER BASIC DATA | INT BAS | PAS DATA INT BAS
U BINARY DATA | BINARY PAS DATA BINARY
R REL BINARY DATA | REL BIN | PAS DATA REL BIN
C FOTO DATA | BINARY FOTO FOTO
E PASCAL CODE DATA | BINARY PAS CODE PAS CODE
PASCAL DATA DATA | BINARY PAS DATA PAS DATA
DATA / OTHER DATA | BINARY PAS DATA TYPELESS
BAD N/A N/A N/A N/A

HQUI‘E 4.1 File Type Translation Table
Now we will look at each common file type in detail.

BAD FILES

The bad file is the easiest to understand., It is just a
file created during formatting to prevent the use of
damaged areas on the disk. As such, it is unreadable and
contains no data.

TEXT FILES

The text file, which is used in some form by all of the
operating systems, is also easy to understand. It
consists of one or more records. Each record contains
ASCII-type data and ends with a carriage return. A
generalized example of a text file is shown in Figure
4., 2.

54 48 49 53 20 49 53 24 THIS IS

41 4E @D 45 58 41 4D 5@ BN .EXAMP
4C 45 20 4F 46 ©D 41 20 LE OF.A

S4 45 58 54 20 46 49 4C TEXT FIL
45 90 E.

Figure 42 Text File Sample

FileTypes 4-5

Each operating system defines a text file slightly
differently. For CP/M, the carriage return is always
followed by a line feed. This is the only difference in
CP/M. For DOS 3.3, there are two differences. The first
is that the file is stored with the high bit of each byte
"on."™ Second, the file may contain null bytes, also
called zero bytes. A ProDOS or S05 text file may also
contain null bytes. There are several differences for a
Pascal text file, First, the first 1824 bytes of the
file are reserved as data for the Pascal text editor.
Second, the rest of the file is broken into 1@24-byte
pieces. No line of text may cross the 1K boundary. The
unused space at the end of a 1K block is filled with null
bytes. Third, the file must be a multiple of 1K in
length. Fourth, each line may start with a space
compression code. This is a DLE character (518) followed
by a character representing the number of spaces at the
beginning of the line plus 32.

Universal File Conversion knows about the differences in
format between different types of text files, and will do
all the steps necessary to convert a text file from one
format to another.

BINARY FILES

The binary file is a memory image with two other pieces
of information--the address in memory where the image
belongs, and the length of the image. A memory image is
simply a copy of a specified portion of the computer's
memory at the time the file was created. 1In ProDOS and
505, the address and length information is kept in the
directory entry for the file. The address is stored in
the "auxiliary type" and the length is stored in the
“"EOF". In DO5 3.3, this information is stored in the
file itself--the first two bytes of the file being the
address and the second two being the length.

Universal File Conversion will add or remove, as
necessary, the 4-byte header for a DOS 3.3 binary file.
1f it is adding the 4-byte header, the memory address it
supplies is the previous address if there was one,
otherwise it uses $2@0@. The length it supplies is the
number of bytes in the file. If the destination
operating system has a place for the 4-byte header, it is
stored there. If there is no place for the four bytes,
they are simply discarded.

4-6 Universal File Conversion

APPLESOFT AND INTEGER BASIC FILES

The Applesoft and Integer BASIC file types are very
similar to each other and to the binary file. These
files consist of a memory image of the BASIC program,
which is tokenized. The length of the file is also
saved, in the same way as for the binary file. ProDOS
and 505 store the length of the file in the directory.
pOS 3.3 stores it in the first two bytes of the file.

Universal File Conversion will add or remove, as
necessary, the two-byte length of an Applesoft or Integer
BASIC file. When moving between ProDOS or SOS5 and DOS
3,3, the length information is transferred correctly.

RELOCATABLE BINARY FILES

The relocatable binary file is the output of the DOS
Toolkit assembler or the ProDOS Toolkit assembler. 1Its
format is described in the manuals for those programs.

Universal File Conversion makes no changes to this type
of file.

FOTO FILES

The foto file is a memory image of the screen, usually
the high resolution graphics. Because there are several
different screen modes in both the Apple II and Apple III
computers, we will not attempt to describe foto files in
more detail.

Universal File Conversion makes no changes to this type
of file unless it is being moved into DOS 3.3. Then the
rules for a binary file apply.

PASCAL DATA FILES

The Pascal data file is made up of records. Each record
is a memory image of whatever the user defined the file
to represent. The Pascal operating system does not store
any information telling how long a record is or what the
record represents.

Universal File Conversion makes no change to a Pascal
data file when moving between Apple Pascal and ProDOS (or
508). When a Pascal data file is moved into DOS 3.3, the
rules for a binary file apply.

File Types 4-7

PASCAL CODE FILES

The Pascal code file takes several forms. Regardless of
which form the file is in, the first block (#) of the
file is a segment dictionary. It contains information on
up to 16 segments. Each segment begins on a block
boundary. For a complete discussion of the internals of
a Pascal code file, see Apple's "Pascal Technical Note
#l16".

Universal File Conversion makes no change to a Pascal
code file when moving between Apple Pascal and ProDOS (or
505). When a Pascal code file is moved into DOS 3.3, the
rules for a binary file apply.

UNIQUE FILE TYPES

The remaining file types are defined in only one
operating system. These files generally would not make
sense if moved to a different operating system.

Universal File Conversion makes no changes to any of
these file types unless the rules for a binary file apply
{only when the destination is DOS 3.3).

PASCAL-ONLY FILE TYPES

The Pascal Graf file is not used in the Apple. 1In
v.C.5.D. Pascal, it was used for a special graphics
terminal.

SOS-ONLY FILE TYPES

The typeless file ($8@) is just that. It has no type and
its format is undefined.

The font file ($07) is a special file containing a set of
characters for the Apple III.

The BASIC program file (509) is an Apple III BASIC
program. It is a tokenized memory image of the program.

The BASIC data file (S@A) is a data file made by Apple
I11 BASIC., 1Its format is up to the user.

The word processor file ($@B) is not presently used.

The S0S file ($@C) is a special Apple I1I system file,
the formats of which are described in the "S0S5 Reference
Manual®™.

The RPS data file (S$1@) and the RPS index file ($11) are
files from Apple III Record Processing Services. Their
formats are described in the manual for RPS.

4-8 Universal File Conversion

PRODOS-ONLY FILE TYPES

The ProD0OS added command file (5F@#) is not used at
present by ProDOS.

The ProDOS System file ($FF) is a special Apple II system
file. This format is described in the "ProDOS Technical

Reference Manual'.

The ProDOS AppleWorks files (519, 51A, and $1B) are
designed to work with the AppleWorks package and their
structures are specific to that package. Type 519 is an
AppleWorks data base file, type $1A is an AppleWorks word
processing file, and type $1B is an AppleWorks spread-
sheet file.

The ProDOS Pascal file (SEF) is not used at present by
ProDO5.

CHAPTER 5

GENERAL PROGRAM FLOW

This chapter explains in a somewhat general way how the
Universal File Conversion program is laid out. You do
not have to understand this chapter (or the rest of this
manual, for that matter) to run Universal File Conver-
sion. This chapter is included to give some insight to
those who are curious to know how the program works and
to help those who may want to modify the program for
their own special use. The rest of this chapter assumes
the reader has some knowledge about programming and a
familiarity with Apple Pascal.

Universal File Conversion is organized into several
modules. It makes extensive use of Apple Pascal's unit
and segment facilities to accomplish this. Figure 5.1
shows the relationship of the different modules of the
program. There is a unit for each of the four operating
systems. Each of these units contains all the routines
necessary for reading and writing files to disks that use
that operating system. There is also a global unit. The
global unit contains procedures for things that are
needed for all operating systems, such as screen control
and error messages.

There are segments for each Main Menu function except
Copy and Quit. There is also a segment that initializes
all the global variables of the program. This segment is
executed only once. There are also some assembly
language procedures that are linked inte the segments and
units where needed.

5-2 Universal File Conversion

START UFC
INITIALIZE
VARIABLES
HELP MAIN NEW OPT
MENU
r
FORMAT VIEW
COPY CONVERT
FILE(S)
WP ~ . CAL
ProbO5/508 CP/H uas 3.3 PAS
ROUTINES ROUTINES ROUTINES ROUTINES

Figure 54 Overview of UFC Program Structure

The program also makes use of the Heap (Pascal's dynamic
variables), to store data awaiting conversion from one
operating system to another. The Heap is used because
the different operating system units use differing
amounts of memory. This allows as much data as possible
to be loaded into memory at one time. The Heap is also
used for storing directories and pointers into those
directories for each operating system.

THE INITIALIZE SEGMENT

when the Universal File Conversion program begins to
execute, the first thing it does is call the Initialize
segment. This procedure does the following four things:
it sets all of the pointer variables to NIL, loads the
screen control characters from the *SYSTEM.MISCINFO file,
sets the source and destination indexes, and sets the
default system types and drives.

General Program Flow 5-3

THE MAIN MENU

The program next displays the Main Menu. This procedure
directly coordinates all functions of Universal File
Conversion, except for the copying of files. When the
Menu procedure begins, it loads into memory all the
segment procedures for all the commands except copying
files. When the user wants to copy files, the Menu
procedure is exited and all of the segments it loaded
into memory are released.

THE FORMAT PROCEDURE

The Format procedure begins by loading several data files
and the actual disk formatter into memory. The data
files contain empty directories and a bootup program.

The bootup program will be written to the formatted disk.
It will be executed when the formatted disk is booted and
will simply turn the drive off and display a message
saying that there is no DOS on the disk.

The Format procedure asks the user which disk, source or
destination, he wants to format. The program then checks
to see if it can read the disk in the specified drive,

If it can, it asks the user if he wants to erase the
disk. If yes, the program then begins to format the
disk. The formatter does a quick speed check on the
specified drive before it formats the disk.

After the formatter finishes, there is nothing on the
diskette. The bootup program is then written to track @,
sector @#. Then a case statement is used to determine
which directory must be written on the disk. After this
is finished, the program asks the user if he wants to
format another disk by asking him which disk, if any, he
wants to format.

THE VIEW PROCEDURE

The View procedure is used when the user wants to look at
a directory. The user specifies the drive for which he
wants to view the directory. A case statement is used to
call the appropriate procedure for the operating system
associated with the specified disk drive. Each operating
system procedure displays the file names in the directory
(or catalog), and then waits for the user to press a key.
When the user presses the key, he is asked if he wants to
view another directory or return to the Main Menu.

5-4 Universal File Conversion

THE HELP PROCEDURE

The Help procedure displays a help screen menu, from
which the user can select the particular help screen he
wants. The program then displays the selected help
screen. DPressing a key from a help screen returns to the
help screen menu.

THE NEWOPT PROCEDURE

The NEWOPT procedure is used when the user wishes to
change operating system types, or disk drives. It uses
nested case statements to get the new disk drive
assignments and operating system types from the user.

COPYING FILES

When it is time to copy files, a nested case statement is
used to determine which operating system units and
variables need to be loaded into memory. It calls
different procedures which load the correct unit(s) and
variables. All of these procedures in turn call the
procedure that does the actual copying. In this way,
only those units and variables that are actually needed
are assigned memory space.

When the copying procedure begins, it asks the user for
the file name(s) he wants to copy. Here the copy
procedure begins a loop, looking for any file matching
the given name on the source disk. If it doesn't find
one, it exits, ending up back at the Main Menu. 1If a
file is found, it next looks at the destination disk to
see if a file of the same name exists, If so, it asks
the user for a new destination name (existing files
cannot be copied over). When it has a name for thelfile
that is not already on the destination disk, it copies
the file. When it has copied the file, it goes back to
see if another file on the source disk is to be copied,

OPERATING SYSTEM MODULES

The above description of copying files is a greatly
simplified look at the program. It does not include tbe
many places the program checks to see that the right disk
is in the right drive before accessing it, or how each of
the operating system modules work. We will take a look
at some of the support modules for the Main Program
below.

General Program Flow 5-5

Each operating system module has five procedures that
control the reading or writing of disks. They are:
Search Directory, Open for input, Open for ocutput, Read a
sector, and Write a sector. The four operating system
modules are: PASCALSTUFF, SOSSTUFF, CPMSTUFF, and
DOSSTUFF.

Any procedure, such as Read a sector, in any operating
system is called with the same parameters, This means
that the procedure must take care of all differences of
its respective operating system. By doing this, the Main
Program does not have to know anything about what
cperating system it is using. This also makes it easy to
add another operating system to the program.

To read a file using a module, you must first call the
Search Directory routine. This sets up some pointers for
the Open for input routine, which is called next.
Finally, you can call the Read a sector routine to read
the file. The process is similar for writing to a file.

THE CONVERT PROCEDURE

The operating system modules take care of the physical
translation of a file from one operating system to
another operating system. The Convert assembly language
procedure takes care of the logical translation., It
handles shifting the file left or right by twoe or four
bytes if necessary, such as to put an address and length
on a binary file. If the file is a text file, it will
add or remove line feeds, add or remove Pascal space
compression codes, and add or remove the Pascal 1K
blocking of text files. Of course, it will not make
unnecessary changes,

Another of Convert's duties is to handle any leftover
part of a file, if the file does not fit intoc memory all
at once. Convert does this using two l-sector buffers
that are hidden from the Main Program.

VERIFYING DISKETTE TYPE

There are many times that Universal File Conversion must
check to see that the correct disk is in the drive.
Whenever the Universal File Conversion disk itself is
needed, it first checks to see that it is in the drive.
The only times the program needs its own disk, after
initial boot, are at the beginning and end of the copy
process or when a diskette is to be formatted,

5-6 Universal File Conversion

As for data disks, two different sets of rules apply
depending on whether a single drive copy or a double
drive copy is requested. If a 2-drive copy is requested,
the only time the program checks for format compatibility
is the first time it accesses the disk. It assumes the
disks stay put until the copying is complete. WNote that
the program never asks the user to place a disk in a
drive when doing so would remove a data disk that is
needed later. In single drive mode, however, the program
checks to see if the correct disk is installed after
every disk swap.

How does the program determine if the correct diskette is
in the drive? To find the Universal File Conversion
disk, it looks at the directory to see that the disk is
called "UFC:"., For a data disk, the program only checks
to see that the disk has the proper type of directory for
the operating system it expects. This does not neces-
sarily prevent the wrong disk from being used, but it
greatly reduces the chance of it happening.

BIBLIOGRAPHY

"apple 6502 Assembler/Editor." Cupertino: Apple
Computer, Inc., 198d.

"apple Business BASIC Reference Manual," Vol. 1.
Cupertino: Apple Computer, Inc., 1981.

"Apple Pascal Object Module Format." Apple Computer,
Inc., Pascal Technical Note #16. Cupertino: 1981.

"aApple Pascal Operating System Reference Manual."
Cupertine: Apple Computer, Inc., 198@.

“Apple Pascal System Disk Directory Structure." Apple
Computer, Inc., Pascal Technical Note #4. Cupertino:
1981.

De Groat, Ron, ed., "Call A.P.P.L.E. In Depth: All About
pascal." Seattle: Apple Pugetsound Program Library
Exchange, 1982.

Reed, Don. "S05 Reference Manual," Veol. 1. Cupertino:
Apple Computer, Inc., 1982.

"The DOS Manual." Cupertino: Apple Computer, Inc., 198@.

"The ProDOS Technical Reference Manual." Cupertino:
Apple Computer, Inc., 1983.

Worth, Don, and Pieter Lechner. "Beneath Apple DOS."
Chatsworth: Quality Software, 1981.

Worth, Don, and Pieter Lechner. "Beneath Apple ProDOS."
Chatsworth: Quality Software, 1984.

ORDERING THE SOURCE CODE

For those users who desire to examine the source code to
Universal File Conversion, or attempt to modify the
program for special applications, an annotated listing of
the source code is available directly from Quality
Software.

r
2. A diskette containing the source files.

Most of Universal File Conversion was written in pascal,
and therefore the source is primarily in Pascal.
Substantial portions of the program are written in
assembly language, however. To properly use the source
files on diskette reguires the Apple Pascal system
version 1.2 (including the Apple Pascal assembler).

To order the-listi ‘or the source files on
diskette, you must mail the coupon on the follaying page
tone—for—each product—ordered) directly to Quality
Software along with a payment of $10.00 fer—each—preduet
erdered plus shipping and handling charges*. Your
payment can be a check or bank draft in US dollars, or
your VISA or MASTERCARD number and expiration date.
California residents must add the appropriate sales tax
(6 or 6.5%). MNo phone orders or CODs will be accepted.

Send your order to:

Quality Software
216061 Marilla Street
Chatsworth, CA 91311

* Shipping and handling charges are (per order):
United States, Canada, Hexico......f.....s 2.50
All other countries (insured air mail)...510.00

i
COUPON FOR ORDERING SOURCE CODE LISTING
TO UNIVERSAL FILE CO

?1gase cut this coupon out of the
a copy) to Quality Software.
Y,
“~

anual and mail it (not

Please seénd me:

Théapqinted ann@tated source listing S10.00
M (Residents) Sales Tax
Shipping and handling*

TOTAL
Check #

OR VISHKH&STERCE&D #
g

P
i
Py

i

Exp

Name

-
Street Address \\\:h
City,/State, Postal Code \\‘M\

Codntry

COUPON FOR ORDERING SOURCE CODE DISKETTE
TO UNIVERSAL FILE CONVERSION

Please cut this page out of the manual and mail it (not a
copy) to Quality Software.

Please send me:
A diskette containing the source code 510.00

(CA Residents) Sales Tax
Shipping and handling*

TOTAL
Check ¢
OR VISA/MASTERCARD # Exp
Name

Street Address

City, State, Postal Code

Country

