

Assembly Cookbook for the Apple II/lie

Don Lancaster heads Synergetics, a new-age prototyping and consulting firm
involved in micro applications and electronic design. He is the well-known author of
the classic CMOS and TTL Cookbooks.

He is one of the microcomputer pioneers, having introduced the first hobbyist
integrated-circuit projects, the first sanely priced digital electronics modules, the first
low-cost TVT-1 video display terminal, the first personal computing keyboards, and
lots more. Don's numerous books and articles on personal computing and electronic
applications have set new standards as understandable, useful, and exciting technical
writing.

Don's other interests include ecological studies, firefighting, cave exploration, bicy
cling, and tinaja questing.

The Don Lancaster Library

Active Filter Cookbook ... No.21168
Assembly Cookbook for the Apple II/lie No. 22331
CMOS Cookbook ... No. 21398
Don Lancaster's Micro Cookbook, Vol. I. No. 21828
Don Lancaster's Micro Cookbook, Vol. II No. 21829
Enhancing Your Apple II, Vol. I, 2nd Edition No. 21822
The Cheap Video Cookbook .. No. 21524
Son of Cheap Video ... No. 21723
The Hexadecimal Chronicles No. 21802
TIL Cookbook .. No. 21035
TV Typewriter Cookbook ... No. 21313
The Incredible Secret Money Machine (Available only from Synergetics)

Assembly Cookbook
for the Apple II/lie

by

Don Lancaster

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS. INDIANA 46268 USA

Copyright ©1984 by Don Lancaster

FIRST EDITION
FIRST PRINTING-1984

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect
to the use of the information contained herein. While
every precaution has been taken in the preparation of this
book, neither publisher nor author assumes any
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22331-7
Library of Congress Catalog Card Number: B4-50247

Edited by: Pryor Associates
Illustrated by: Wm. D. Basham and T. R. Emrick

Printed in the United States of America.

Contents

zero

WHY You GODA LEARN ASSEMBLY LANGUAGE.. ••••• . • ••••••••••••••• 9

part I
Some Theory

one

WHAT Is AN ASSEMBLER? ••••••••••••••••••••••••••••••••.••••••• 25

Types of Assemblers-How Assemblers Work-Which Assembler?-Tools
and Resources-Disassemblers-What an Assembler Won't Do

two

SOURCE CODE DETAILS •.•••••••••••••••••••••••••••.•••.••••.••• 57

Source Code File Formats-More on Operands-More on Pseudo-Ops
Your Own Assembler

three

SOURCE CODE STRUCTURE ••••••••••••••••••••••••••••••••••••••. 93

four

WRITING AND EDITING SOURCE CODE (THE OLD WAY) •..•.•••••••••..• 123

Program Style-Unstyle-Writing "Old Way" Source Code-An Editing
Hint-A Label List

five

WRITING AND EDITING SOURCE CODE (THE NEW WAY) •..••••.•.•.•.•.• 163

Source Code File Structure-Line Numbers-To Tab or Not to Tab?-
Trying It

six

ASSEMBLING SOURCE CODE I NTO OBJECT CODE. • . • • . • . . . • . • . • • • • • • • • • 177

Assembler Commands-Assembly Listings-Error Messages-Debugging
Something Old, Something New

part II
The Ripoff Modules

How TO USE THE RIPOFF MODULES •••••..•••••••.•.•••••.•.••••••• 205

o
THE EMPTY SHELL ••••••..•.•••••••••••••••••••••••••.••••••.• 211

A framework you can use to create most any machine language program
of your choosing.

1

FILE BASED PRINTER •.•••••••••.•••.•••••••••.•.•••••.••••••••• 229

The standard way to output short and fixed text messages using a
common message file.

2

IMBEDDED STRING PRINTER ••••••••••••••••••••••••••••••.••••••• 251

A much better way to "mix and match" fixed test messages that are
imbedded directly into your source code.

3

MONITOR TIME DELAY •••••••••••••••••••••••••••••••••.••••••• 267

How to use the Apple's WAIT subroutine for animation and other system
timing needs.

4

OBNOXIOUS SOUNDS ••..•...••..•••••......•.••••....••••••..• 287

A multiple sound-effects generator that "calculates" lots of different
sounds with minimum code.

5

MUSICAL SONGS •....•..•••..••••.•..•••••.•.•.•....•••..•••. 301

The standard "red book tones" method of making music, along with a
few improvements and upgrades.

6

OPTION PICKER •••.•.•••.•.•...••.•••.•.•.•••.•..•.•.••••••.. 321

How to do menu options or pick modules using the forced subroutine
return method.

7

RANDOM NUMBER •...••..•••...••••..•.•••.•.••••.••••••••.•. 345

A fast and usable way to generate "random" numbers, without the fatal
flaws of the Applesloth "RND" code.

8

SHUFFLE .••...•.•.••..••...•••••••.••••••••••..•••.•••....• 363

An extremely fast "random exchange" method of rearranging an array of
numbers or file values.

Appendixes

A

DIFFERENCES BETWEEN "OLD" AND "NEW" EDASM •.•.••••••••..•••• 381

B

SOME NAMES AND NUMBERS 387

c
LABEL LISTS TO COPY •••.•...•••••••.•.•••..•••••.••••••••••••• 393

INDEX •••.••.•..••••••.••••••••••.••••••••.••••••••••.•••.• 399

COMPANION DISKETIE AND VOICE HOTLINE •.•••..••...•••..••..•••.. 407

©

WHY YOU GOTT A LEARN
ASSEMBLY LANGUAGE

Check into Softalk magazine's listing of the "top thirty" programs for
your Apple" II or lie, and you'll find that thirty out of thirty of this
month's winners usually involve machine language programs or sup
port modules, written by authors who use assemblers and who make
use of assembly language programming skill?

And, last month's top thirty were also swept by machine language,
thirty to zip. And next month's listings probably will be the same.
Somehow, thirty to zero seems statistically significant. There's got to
be a message there.

Yep.
So, on the basis of what is now happening in the real world, you

can easily conclude that ...

The only little thing wrong with BASIC or
Pascal is that it is categorically impossible
to write a decent Apple II or lie program
with either of them!

Naturally, things get even worse if you try to work in some specialty
language, such as FORTH, PILOT, LOGO, or whatever, since you
now have an even smaller user and interest base and thus an even
more miniscule market.

What would happen if, through fancy packaging, heavy promotion,

9

10 Why You Gotta Learn Assembly Language

or outright lies, a BASIC or a Pascal program somehow happened to
blunder into the top thirty some month?

One of three things ...

-maybe-

1. Word will quickly get out over the bulletin board systems and
club grapevines over how gross a ripoff the program is, and the
program will ignominiously bomb out of sight.

-or-

2. A competitor will recognize a germ or two of an undeveloped
idea in the program and come up with a winning machine lan
guage replacement that does much more much faster and much
better, thus running away with all the marbles.

-or, hopefully-

3. The program author will see the blatant stupidity of his ways and
will rework the program into a decent, useful, and popular
machine language version.

The marketplace has spoken, and its message is overwhelming. . .

If you want to write a best-selling or
money-making program for the Apple II
or lie, the program must run in machine
language.

OK, so it's obvious that all the winning Apple" programs run in
machine language. But, why is this so? What makes machine language
so great? How does machine language differ from the so-called
"higher level" languages? What is machine language all about?

Here are a few of the more obvious advantages of machine lan
guage ...

MACHINE LANGUAGE IS-

Fast
Compact
Innovative
Economical

Flexible
Secure
User Friendly
Challenging

Profitable

That's a pretty long list and a lot of heavy claims. Let's look at a few
of the big advantages of machine language one by one ...

Assembly Cookbook for the Apple II/lie 11

Speed

It takes from two to six millionths of a second, or microseconds, to
store some value using Apple's 6502 machine language. Switch to
interpreted Integer BASIC or Applesoft, and similar tasks take as much
as two to six thousandths of a second, or milliseconds. This is slower
by a factor of one thousand.

The reason for the 1000:1 speed difference between interpreted
"high level" languages and machine language is that there are
bunches of housekeeping and overhead involved in deciding which
tasks have to be done in what order, and in keeping things as pro
grammer friendly as possible.

Now, at first glance, speed doesn't seem like too big a deal. But
speed is crucial in many programs. Let's look at three examples.

For instance, a word processor program that inserts characters
slower than you can type is a total disaster, for one or more characters
can get dropped. Even if it doesn't drop characters, a word processor
that gets behind displaying stuff on the screen gets to be very infuriat
ing and annoying. So, word processing is one area where machine
language programs are an absolute must, because of the needed
speed.

Business sorts and searches are another area where the speed of
machine language makes a dramatic difference. Several thousand
items sorted in interpreted BASIC using a bubble sort might take a few
hours. Go to a quicksort under machine language, and the same job
takes a few seconds at most. Thus, any business program that involves
sorts and searches of any type is a prime candidate for machine lan
guage.

Finally, there is any program that uses animation. Interpreted BASIC
is way too slow and far too clumsy to do anything useful in the way of
screen motion, game responses, video art, and stuff like this. Thus, all
challenging or interesting games need machine language to keep
them that way.

But, you may ask, what about compilers? Aren't there a bunch of
very expensive programs available that will compile BASIC listings into
fast-running machine language programs?

Sure there are.
Most compiled code usually runs faster than interpreted code. But,

when you find the real-world speedup you get and compare it to the
same program done in machine language by a skilled author, it is still
no contest ...

Most programs compiled from a "higher
level" language will run far slower, and
will perform far more poorly, than the
same task done in a machine language
program written by a knowing author.

Some specifics. If you run exactly the worst-case benchmark pro
gram on one of today's highly promoted compiler programs, you get a
blinding speedup of 8 percent, compared to just using plain old inter
preted BASIC. Which means that a task that took two hours and fifty
five minutes can now be whipped through in a mere two hours and
forty-two minutes instead.

12 Why You Gotta Learn Assembly Language

Golly gee, Mr. Science.
Actually, most compilers available today will in fact speed up inter

preted programs by a factor of two to five. This is certainly a notice
able difference and is certainly a very useful speedup. But it is nothing
compared to what experienced machine language authors can do
when they attack the same task.

A compiler program has to make certain assumptions so that it can
work with all possible types of program input. Machine language
authors, on the other hand, are free to optimize their one program to
do whatever has to be done, as fast, as conveniently, and as com
pactly as possible. This is the reason why you can always beat com
piled code if you are at all into machine language.

Another severe limitation of Applesoft compilers is that they still end
up using Applesoft subroutines. These subroutines may be just plain
wrong (such as RND), or else may be excruciatingly slow (such as
HPLOT). Hassles like these are easily gotten around by programming
directly in machine language.

Some machine language programs are faster than others. Most
often, you end up trading off speed against code length, programming
time, and performance features.

One way to maximize speed of a machine language program is to
use brute-force coding, in which every instruction does its thing in the
minimum possible time, using the fastest possible addressing modes.
Another speed trick is called table lookup, where you look up an
answer in a table, rather than calculating it. One place where table
lookup dramatically speeds things up is in the Apple II HIRES graphics
routines where you are trying to find the address of a display line. Sim
ilar table lookups very much quicken trig calculations, multiplications,
and stuff like this.

So, our first big advantage of machine language is that it is ridicu
lously faster than an interpreted high level language, and much faster
than a compiled high level language.

Size

A controller program for a dumb traffic light can be written in
machine language using only a few dozen bytes of code. The same
thing done with BASIC statements takes a few hundred bytes of code,
not counting the few thousand bytes of code needed for the BASIC
interpreter. So, machine language programs often can take up far less
memory space than BASIC programs do.

Now, saving a few bytes of code out of a 64K or 128K address space
may seem like no big deal. And, it is often very poor practice to spend
lots of time to save a few bytes of code, particularly if the code gets
sneaky or hard to understand in the process.

But, save a few dozen bytes, and you can add fancy sound to your
program. Save a few thousand bytes more, and you can add HIRES
graphics or even speech. Any time you can shorten code, you can
make room for more performance and more features, by using up the
new space you created. Save bunches of code, and you can now do
stuff on a micro that the dino people would swear was impossible.

Three of the ways machine language programs can shorten code
include using loops that use the same code over and over again, using
subroutines that let the same code be reached from different places in

Assembly Cookbook for the Apple II/lIe 13

a program, and using reentrant code that calls itself as often as
needed. While these code shortening ideas are also usable in BASIC,
the space saving results are often much more impressive when done
in machine language.

Machine language programs also let you put your files and any
other data that go with the program into its most compact form. For
instance, eight different flags can be stuffed into a single code word in
machine language, while BASIC normally would need several bytes
for each individual flag.

Which brings us to another nasty habit compilers have.
Compilers almost always make an interpreted BASIC program

longer so that the supposedly "faster" compiled code takes up even
more room in memory than the interpreted version did. The reason
for this is that the compiler must take each BASIC statement at face
value, when and as it comes up. The compiler then must exactly fol
low the form and structure of the original interpreted BASIC code.
Thus, what starts out as unnecessarily long interpreted code gets even
longer when you compile it.

Not to mention the additional interpretive code and run time pack
age that is also usually needed.

A machine language programmer, on the other hand, does not have
to take each and every BASIC statement as it comes up. Instead, he
will write a totally new machine language program that, given the
same inputs, provides the same or better outputs than the BASIC pro
gram did. This is done by making the new machine language program
have the same function that the BASIC one did, but completely ignor
ing the dumb structure that seems to come with the BASIC territory.

The net result of all this is that a creative machine language pro
grammer can often take most BASIC programs and rewrite them so
they are actually shorter. As a typical example, compare your so-so
adventure written in BASIC against the mind blowers written in
machine. When it comes to long files, elaborate responses, and big
data bases, there is no way that BASIC can compete with a machine
language program, either for size or speed.

Let's check into another file-shortening example, to see other ways
that machine language can shorten code. The usual way a higher level
language handles words and messages is in ASCII code. But studies
have shown that ASCII code is only 25 percent efficient in storing
most English text. Which means that you can, in theory, stuff four
times as many words or statements into your Apple as you thought
you cou Id with ASCII.

You do this by using some text compaction scheme that uses non
standard code manipulated by machine language instructions. For
instance, in lork, three ASCII characters are stuffed into two bytes of
code. This gives you an extra 50 percent of room on your diskettes or
in your Apple. In the Collossial Cave adventure version by Adventure
International, unique codings are set aside for pairs of letters, giving
you up to 100 percent more text in the same space. This means that
this entire classic adventure text now fits inside the Apple, without
needing any repeated disk access.

Dictionary programs use similar compaction stunts to minimize
code length. If the words are in alphabetical order, you can play
another compaction game by starting with a number that tells you
how many of the beginning letters stay the same, and by using

14 Why You Cotta Learn Assembly Language

another coding scheme to add standard endings (-s, -ing, -ed, -Iy,
etc. ...) to the previous word.

The bottom line is that machine language programs can shorten
code enough that you can add many new features to an existing pro
gram, can put more information in the machine at once, or can cram
more data onto a single diskette.

Innovation-Finding the Limits

One really big advantage to machine language on the Apple II or lie
is that it pushes the limits of the machine to the wall. We now can do
things that seemed impossible only a short while ago. This is done by
discovering new, obscure, and mind-blowing ways to handle features
using machine language code.

Some ferinstances.
With BASIC, you can get only one obnoxious beep out of the

Apple's on-board speaker. Play around with PEEKs and POKEs, and
you can get a few more pleasant buzzes and low-frequency notes.
This is almost enough to change a fifth rate program into a fourth rate
one.

Now, add a short machine language program, and you can play any
tone of any duration. But, that's old hat. The big thing today is called
duty cycling. With duty cycling done from a fairly fancy machine lan
guage driver, you can easily sound the on-board speaker at variable
volume, with several notes at once, or even do speech with surpris
ingly good quality.

All this through the magic of machine language, written by an
author who uses assemblers and who posesses assembly language
programming skills.

The Apple II colors are another example. The HIRES subs in BASIC
only give you 16 LORES colors and a paltry 6 HIRES colors. But, go to
machine language, and you end up with at least 121 LORES colors
and at least 191 HIRES ones on older Apples. The Apple lie offers
countless more.

And that's today. Even more colors are likely when the machine lan
guage freaks really get into action.

Another place where limits are pushed by machine language is in
animation and HIRES plotting. You can clear the HIRES screen seven
times faster than was thought possible, by going to innovative code.
You can plot screen locations much faster today through the magic of
table lookup and brute-force coding. Classic cell animation is even
possible.

Disk drive innovations are yet another example. Change the code
and you can load and dump diskettes several times faster than you
could before. You can also store HIRES and LORES pictures in many
fewer sectors than was previously thought possible. Again, it is all
done by creative use of machine language programs that are pushing
the limits of the Apple.

A largely unexplored area of the Apple II involves exact field sync,
where an exact and jitter-free lock is done to the screen. This lets you
mix and match text, LORES, and HIRES on the screen, do gray scale,
precision light pens, gentle scrolls, touch screens, flawless animation,
and much more.

All this before the magic of the new cucumber cool 65C02 chips,

Assembly Cookbook for the Apple lillie 15

which can allow a mind-boggling animation speedup of fifty times,
compared to what the best of today's machine language programmers
are using. But that's another story for another time.

And, exciting as the pushed limits are, we are nowhere near the ulti
mate ...

And, of course.

Today's machine language programs are
nowhere near pushing the known limits
of the Apple II's hardware.

The known limits of the Apple II
hardware are nowhere near the real
limits of the Apple II hardware.

What haven't we fully explored with the Apple II yet? How about
gray scale? Anti-aliasing? Three-O graphics displays? "Picture process
ing" for plotters that is just as fast and convenient as "word process
ing"? Using the Apple as an oscilloscope? A voltmeter? Multi-Apple
games, where each combatant works his own machine in real time?
Scan length coded video? That SOX animation speedup? Networking?

And the list goes on for thousands more. If it can be done at all,
chances are an Apple can help you do it, one way or another.

Getting Rid of Fancy Hardware

Machine language is often fast enough and versatile enough to let
you get rid of fancy add-on hardware, or else let you dramatically sim
plify and cut down on needed hardware. This is why we say that
machine language is economical.

For instance, without machine language drivers on older Apples,
you are stuck either with a 40-character screen line, or else have to go
to a very expensive aO-column card board. But with the right drivers,
you can display 40, 70, ao or even 120 characters on the screen of an
unmodified Apple II with no plug-in hardware. This is done by going
to the HIRES screen and by using more compact fonts. You can also
have many different fonts this way, upper or lower case, in any size
and any language you like.

As a second example of saving big bucks with machine language,
one usual way to control the world with an Apple II involves a BSR
controller plug-in card, again full of expensive hardware. But you can
replace all this fancy hardware with nothing but some machine lan
guage code and a cheap, old, ultrasonic burglar alarm transducer.

As yet a final example, by going to the Vaporlock exact field sync,
machine language software can replace all the custom counters
needed for a precision light pen or for a touch screen. With zero hard
ware modifications.

In each of these examples, the machine language code is fast
enough that it can directly synthesize what used to be done with fancy
add-on hardware.

So, our fourth big plus of machine language is that it can eliminate,
minimize, or otherwise improve add-on hardware at very low cost.

16 Why You Cotta Learn Assembly Language

Other Advantages

Those are the big four advantages of machine language. Speed, pro
gram size, innovation, and economy. Let's look at some more advan
tages.

Machine language code is very flexible. Have you ever seen
Kliban's cartoon "Anything goes in Heaven," where a bunch of peo
ple are floating around on clouds doing things that range from just
plain weird to downright obscene?

Well, anything goes in machine language as well. Put the program
any place you want to. Make it as long or as short as you want. "What
do you mean I can't input commas?" Input what you like, when you
like, how you like. Change the program anyway you want to, anytime
you want to. That's what flexibility is all about.

Machine language offers solace for the security freak.
I'm not very much into program protection myself, since all my pro

grams are unlocked, include full source code, and are fully docu
mented. I, like practically every other advanced Apple freak, fiend
ishly enjoy tearing apart all "protected" programs the instant they
become available, because of the great sport, humor, learning, and
entertainment value that the copy protection mafia freely gives us.

And surprise, surprise. Check the Softalk score sheets, and you'll
find that unlocked programs are consistently outselling locked ones,
and are steadily moving up in the ratings and in total sales. Which
means that an un-displeased and un-inconvenienced buyer in the
hand is worth two bootleg copies in the bush, any day.

Time spent "protecting" software is time blown. Why not put the
effort into improving documentation, adding new features, becoming
more user friendly, or doing more thorough testing instead?

But, anyway, if you are naive enough or arrogant enough to want to
protect your program, there are lots of opportunities for you to do so
in machine language. For openers, probably 98 percent of today's
Apple II owners do not know how to open and view a machine lan
guage program. Not only are you free to bury your initials somewhere
in the code, but you could hide a seven-generation genealogical pedi
gree inside as well. How's that for proof of ownership? And, the very
nature of creative machine language programming that aims to maxi
mize speed and minimize memory space, tends to "encrypt" your
program. Nuff said on this.

Machine language programs can be made very user friendly. Most
higher level languages have been designed from the ground up to be
designer friendly instead. BASIC goes out of its way to be easy to learn
and easy to program. So, BASIC puts the programmer first and the
user last. Instead of making things as easy to program as possible, you
are free in machine language to think much more about the ultimate
user, and make things as convenient and comfortable as possible for
the final user.

Machine language programming is challenging.
Is it ever.
When you become an Apple II machine language programmer, you

join an elite group of the doers and shakers of Appledom. The doing
doggers. This is where the challenge is, and where you'll find all the
action.

And all the nickels.

Assembly Cookbook for the Apple lillie 17

Finally, there is the bottom line advantage, the sum total of all the
others. Because machine language programming is fast, compact,
innovative, economical, flexible, secure, and challenging, it is also
profitable. Machine language is, as we've seen, the only way to grab
the brass ring and go with a winning Apple II or lie program.

Should you want to see more examples of innovative use of Apple II
and lie machine language programs, check into the Enhancing Your
Apple II series (Sams 21822). And for down-to-earth details on forming
your own computer venture, get a copy of The Incredible Secret
Money Machine.

But, surely there must be disadvantages to machine language pro
gramming. If machine is so great, why don't all the rest of the lan
guages just dry up and blow away?

Well, there is also ...

THE DARK SIDE OF MACHINE LANGUAGE

Here's the bad stuff about machine language.

MACHINE LANGUAGE IS ALSO-

Unportable
Tedious
Designer Unfriendly
Multi-Level

Hard to Change
Hard to Teach
Unforgiving
Ego Dependent

What a long list. A machine language program is not purtable in that
it will only run on one brand of machine, and then only if the one
machine happens to be in exactly the right operating mode with
exactly the right add-ons for that program. This means you don't just
take an Apple II machine language program and stuff it into another
computer and have it work.

Should you want to run on a different machine, you have to go to a
lot of trouble to rewrite the program. Things get even messier when
you cross microprocessor family boundaries. For instance, translating
an Apple II program to run on an Atari at least still uses 6502 machine
language coding. All you have to do is modify the program to meet all
the new locations and all the different use rules. But go from the 6502
to a different microprocessor, and all the addressing modes and op
codes will change as well.

A lot of people think this is bad. I don't. If you completely and
totally optimize a program to run on a certain machine, then that pro
gram absolutely has to perform better than any old orphan something
wandering around from machine to machine looking for a home.

Machine language involves a lot of tedious dogwork. No doubt
about it. Where so-called "higher level" languages go out of their way
to be easy to program and easy to use, machine language does not.

18 Why You Gotta Learn Assembly Language

There are, fortunately, many design aids available that make machine
language programming faster, easier, and more convenient. Foremost
of these is a good assembler, and that is what the rest of this book is all
about.

Machine language is very designer unfriendly. It does not hold your
hand. A minimum of three years of effort is needed to get to the point
where you can see what commitment you really have to make to
become a really great machine language programmer.

Machine language needs multilevel skills. The average machine
language program consists of three kinds of code. These are the ele
mental subroutines that do all the gut work, the working code that
manages the elemental subs, and finally, the high level supervisory
code that holds everything together. In a "higher level" language, the
interpreter or compiler handles all the elemental subs and much of the
working code for you, "free" of charge. Different skills and different
thought processes are involved in working at these three levels.

This disadvantage is certainly worth shouting over ...

THERE IS NO SUCH THING AS A
"SMAll" CHANGE IN A MACHINE
LANGUAGE PROGRAM!

Thus, any change at all in a machine language program is likely to
cause all sorts of new problems. You don't simply tack on new fea
tures as you need them, or stuff in any old code any old place. This
just isn't done.

Actually, shoving any old code any old place is done all the time, by
just about everybody. It just doesn't work, that's all.

Machine language programming is something that must be learned.
There is no way for someone else to "teach" you machine language
programming. Further, the skills involved in becoming a good
machine language programmer tend to make you a lousy teacher, and
vice versa.

Machine language is unforgiving, in that any change in any byte in
the program, or any change in starting point, or any change of user
configuration, will bomb the program and plow the works.

Some people claim that machine language code is hard to maintain.
But it is equally easy to write a Pascal program that is totally unfixable
and undecipherable as it is to write a cleanly self-documenting
machine language program. The crucial difference is that machine
language gently urges you to think about maintainability, while Pascal
shoves this down your throat. Sideways.

Finally, machine language is highly ego-dependent. Your personal
ity determines the type and quality of machine language programs
you write. Many people do not have, and never will get, the discipline
and sense of order needed to write decent machine language pro
grams. So, machine language programming is not for everyone.

It is only for those few of you who genuinely want to profit from and
enjoy your Apple II or lie.

That's a pretty long list of disadvantages, and it should be enough to
scare any sane individual away from machine language. Except for
this little fact. . .

Assembly Cookbook for the Apple lillie 19

NONE of the disadvantages of machine
language matter in the least, because
there is NO OTHER ALTERNATIVE to
machine language when it comes to
writing winning programs for your Apple
II or lie.

Or to rework the tired joke about the guy who slaved away all his
life in Florida and then retired to New Jersey ...

Have you ever seen a machine language
program that was improved by rewriting
it in BASIC or Pascal?

Not that it won't happen. It just isn't very likely, that's all.

GETTING STARTED

Here is how I would have you become a decent machine language
programmer. First, you should write, hand-code, test, and debug sev
eral hundred lines directly in machine language, without the use of
any assembler at all. The reason for this is that ...

Before you can learn to program in
assembly language, you must learn how
to program in machine language!

50 many assembler books and courses omit this essential first step!
An assembler is simply too powerful a tool to start off with. You must
first know what op codes are and how they are used. You must thor
oughly understand addressing modes and the different ways you show
which addressing mode is in use.

There is a series of nine discovery modules in Volume II of Don
Lancaster's Micro Cookbook (5ams 21829) that will take you step by
step through most of the op codes of the Apple's 6502 microproces
sor, without using any assembly aids.

After you have done your homework and can tell the difference
between a page zero and an immediate addressing command, and
after you know whether "page zero, indexed by Y," is a legal com
mand on the Apple, then, and only then, should you move up to a
miniassembler, such as the excellent one in Apple's new BUGBYTER.

Then you run another few hundred lines of code through a
miniassembler to understand what an assembler can do for you.

Finally, you go on to a full blown assembler and learn assembly lan
guage programming. But, you should do this only after you have the
fundamentals under your belt.

The few tedious "front-end" hours spent doing everything "the
hard way" will be more than made up in the speed and convenience
with which you pick up assembler skills later.

This starting by hand, going to a miniassembler, and only then step-

20 Why You Gotta Learn Assembly Language

ping up to a full assembler is the way I would have you become a win
ning assembly language programmer.

Most people, though, will probably try ...

SNEAKING UP ON REALITY

For a SIXTH rate program
Write it in Pascal.

For a FIFTH rate program
Write it in BASIC.

For a FOURTH rate program
Write it in BASIC, but use a few
PEEKs and POKEs.

For a THIRD rate program-
Write it in BASIC, but use the CALL
command to link a few short
machine language code segments.

For a SECOND rate program
Write it in BASIC, but use the "&"
command to link several longer
blocks of machine language code.

For a FIRST rate program-
Do the whole thing in machine
language like you should have done
in the first place.

The trouble with the "sneaking-up" method is that it takes you for
ever to see how bad "higher level" languages really are, and you
spend all your time goofing around with second-rate code. But, the
"sneaking-up" method does eliminate some of the cultural shock of
starting straight into machine language programming from scratch.

Instead, start with and stay in machine language.

A PLAN

This book is intended to show you what an assembler is and how to
use one to write profitable and truly great Apple II or lie machine lan
guage programs. You will find the book in two halves. The first half is
the "theory" part that tells us all about what assemblers are and how
to use them. The second half is the "practice" part that will lead you
step by step through some practical ripoff modules of working assem
bly language code. Code that is unlocked, ready to go, wide open,
and easily adapted to your own uses.

We start in chapter one by finding out what an assembler is and
what it does. We then check into the popular assemblers available
today, along with a list of the essential tools for assembler program
ming, some magazines, and other resources.

Our examples will use Apple's own newly overhauled and
upgraded EDASM macroassembler, first because it is the one I use,

Assembly Cookbook for the Apple II/lIe 21

and secondly because it is the de-facto standard for assembling Apple
II machine language programs. Many of the weakest features of
EDASM get eliminated in one swell foop simply by using Apple Writer
lie instead of the original EDASM editor, and using the magic of WPL
to help along your macros.

At any rate, most of what happens here will apply to any assembler
of your choosing. We will provide source code on the companion
diskette for either EDASM or the S-C Assembler formats. Just be sure
to tell us which one you want. Either of these versions should be trans
latable to the assembler of your choice.

Most Apple-aased assemblers come in two parts. One part puts
together the story of what is to be done, while the second part takes
the story and converts it into working machine language code. Putting
together the story is called editing, while creating the machine lan
guage code is called assembling. The story or script is more properly
called the source code, while the final program or module is usually
called the object code.

Source code details are covered in chapter two, where we look into
source code lines, fields, labels, op codes, operands, and comments,
finding out just what all these are and how they are used. The struc
ture of your source code is outlined in chapter three, where we find
the 16 essential parts to an assembly language program, and how to
use them. We also find out here exactly why structure of any kind is
inherently evil and why structure must be avoided at all costs.

Today there are two good ways to write source code. The "old
way" uses the editor provided in the assembler package. We'll cover
the old way in depth in chapter four.

The "new way" uses the power of a modern word processor to do
your source code entry and editing, and has bunches of potent advan
tages. Not the least of which is that creating and editing source code is
lots more fun with a word processor, and that you can instantly
upgrade a lousy editor/assembler into a super-powerful one. Drag a
supervisory language such as WPL along for the ride, and you can do
incredible macro-style things that otherwise would be unavailable.
Chapter five tells all.

At long last, in chapter six, we get around to actually assembling
source code into working object code. Here we also check into error
messages, debugging techniques, and things like this. And that just
about rounds out the theory half of the book.

The practice half includes nine ready-to-go ripoff modules that show
you examples of some of the really essential stuff involved in Apple
programming. I've tried to concentrate on the things that are really
needed and really get used, such as a decent random number genera
tor, a state-of-the-art string imbedder, an option picker, a time delay
animator, two approaches to sound effects, a classic text handler, a
rearranging shuffler, and an empty shell source code builder. I have
tried to keep the programs and modules general enough and simple
enough that they will run on most any brand or version of Apple or
Apple knockoff.

A stuffed-full and double-sided companion diskette is available with
all the source and object code used in the book. Source code is pro
vided in your choice of EDASM or S-C Assembler formats. Either way
can be used as is, or else easily adapted to most any assembler of your

22 Why You Gotta Learn Assembly Language

choice. Naturally, this companion diskette is fully unlocked, easily
copied, and bargain priced.

No royalty or license is needed to use any of the ripoff modules in
your own commercial programs, so long as you give credit and other
wise play fair. You can order this diskette directly from me by using
the order card in the back of this book. A feedback and update card is
also included. An aggressive and well-supported voice hotline service
is provided free with your diskette order.

By the way, I'd like to do a really advanced sequel to this book that
would cover such things as the new 65C02's with their literally mil
lions of new op codes and addressing modes just waiting for your use,
review some really old stuff like the Sweet Sixteen and the old floating
point routines, check into Apple organization and memory maps
more, look into the lie's fantastic new opportunities, do many more
ripoff modules, and lots of extra stuff like this. Be sure to use the
response card to tell me exactly what you want to see, and which new
ripoff modules should be included.

But, getting back to here and now, don't expect this book to teach
you assembly programming, because assembly programming cannot
be taught. Assembly of machine language code has to be learned
through great heaping bunches of hands-on experience and lots of
practice. Careful study of other programs is also an absolute must.
Hopefully, you can use this book as a guide to show you the way
through your own learning process.

Oh yeah. It is disclaimer time again. Apple II is a registered trade
mark of some obscure outfit out in California. All of the usual names
like Atari, Zork, Scott Adam's, VisiCalc, etc., are registered trademarks
of whoever. Special thanks to Bob Sander-Cedarlof of S-C Software for
his thoughtful proofing comments.

As usual, everything here is pretty much my own doing, done with
out Apple's knowledge or consent. Which, of course, makes it even
better.

Don Lancaster
Fall 1983

This book is dedicated to the secret of the red wall.

May there always be one more.

part I
SOME THEORY

WHAT IS AN ASSEMBLER?

Virtually all the winning and truly great Apple II or lie programs
written today run in machine language . ..

MACHINE lANGUAGE-

The detailed, "ones-and-zeros," gut
level commands a microcomputer must
have to do anythinl!.

For instance, if the Apple's data bus is presented with the binary pat
tern 1010 1001 and then with 1011 0111, the 6502 microprocessor
will fill its accumulator with the value hexadecimal $87, equal to deci
mal 183. This is done in the immediate addressing mode, as a two
byte instruction.

If the previous paragraph looks like so much gibberish, you are not
nearly ready to even think about reading this book.

To continue, you must know about and must have used 6502 op
codes, and must completely and thoroughly understand addressing
modes and hexadecimal notation. Memory maps, working registers,
and address space must be second nature to you. You must also have
already handwritten and hand debugged several of your own machine
language programs.

Once again, this book is about assemblers, and there is NO WAY
you should be using assemblers and assembly language until long

25

26 What Is an Assembler

after you have handwritten and hand debugged not less than several
hundred lines of machine language code.

One place to pick up this machine language background is with the
discovery modules in Don Lancaster's Micro Cookbooks, Volumes I
and II (Sams 21828 and 21829).

At any rate ...

If you have not done your hex
homework, can't tell immediate from
page zero addressing, or otherwise
haven't paid your machine language
dues, then.

GO AWA'(!

Now that the air is cleared, and the techno-turkeys have left, let's
sweep up the worst of the feathers and continue.

The trouble with machine language programs, as you undoubtedly
know by now, is that there is lots of tedious dogwork involved in writ
ing them.

It is very hard to insert something new into a hand-coded machine
language program, since you have to move everything down on your
programming form to make room for new stuff. Removing code cre
ates the opposite problem. Even a common beginner's mistake such
as the wrong addressing mode can completely mess up your program.
This can easily happen if you have to substitute a 2-byte for a 3-byte
instruction, or vice versa.

Calculating relative branches is a royal pain, particularly the forward
ones where you don't quite know where you are headed. You must,
of course, eat, sleep, and breathe with your 6502 pocket card before
you can do any decent machine language programming. You have to
know the exact address you are going to jump to, and the exact length
of your code, and the exact starting point before the program will
work. And you must, of course, do everything in hexadecimal, even if
you really want decimal numbers or ASCII characters.

And those are just a few of the hassles. You probably have a lot
more pet peeves of your own.

You can automate much of the dogwork involved in machine lan
guage programming by going to an assembler.

ASSEMBLER-

Any tool that simplifies or automates
machine language programming.

Most often, an assembler is a program or a program system that you
run on your Apple II or lie that helps you write machine language
code. Assemblers make the writing and debugging of machine lan
guage code much easier, much faster, and much more fun. Assem
blers also make it very easy to change, or edit, already existing
machine language programs.

Because assembly programs are very powerful tools, there are many
new skills involved in learning how to use one. In exchange for this

Assembly Cookbook for the Apple lillie 27

new learning effort, an assembler will make machine language pro
gramming much faster and much more fun for you.

The tradeoff is some new effort now in exchange for lots of time
saved and use convenience later.

Assemblers speak a special language that is called, of all things,
assembly language.

ASSEMBLY LANGUAGE-

A "higher level" language that both an
assembler and a person wanting to write
machine language programs can use and
understand.

The assembler itself is really one or more machine language pro
grams set up to interact with you as programmer and the Apple" or
lie as computer. The assembler goes between you and the machine
and tries to speak to the machine in machine language and to you in
assembly language.

This is roughly similar to an interpreter program that can take BASIC
statements understood by a programmer and convert them into
machine language commands understood by the Apple II. An inter
preter itself is, of course, a machine language program. So is an
assembler.

Thus, you can think of an assembler as a translator that changes
"people language" into "machine language."

Assemblers use mnemonics . ..

MNEMONIC- I
A group of three or four letters forming a ..
"word" that both the programmer and
the assembler can understand. .'

Typical mnemonics would include the command LOX, meaning
"Please load the X register," or ROL A, meaning "Please rotate the
contents of the accumulator to the left through the carry flag." You
should, of course, be already familiar with these mnemonics for 6502
op codes.

Assemblers will often add their own new mnemonics on top of the
ones already used by the 6502. An example would be the mnemonic
ORG, telling the assembler that "Here is the origin address where I
would like you to start assembling code." More on these pseudo-ops
later.

Mnemonics give us a shorthand way of communicating with an
assembler. We could say "1010 1001 1011 0111" and our 6502
would know what we were talking about. But these ones and zeros
sure get rough on the programmer. We could instead say, "6502,
would you please immediately put the decimal value 183 into your
accumulator?" This is obvious to the programmer, but the 6502's
microprocessor would be very puzzled over this strange gibberish.

Instead, an assembler compromises in its use of mnemonics. The
person uses "LOA #$B7" or "LOA #183" to talk to the assembler,

28 What Is an Assembler

and the assembler then recognizes and understands this to mean that
the machine language coding 1010 1001 1011 0111, or its hex equiva
lent $A9 $B7, is to go into the final program.

Another very important assembler concept is called a label.

LABEL-

A name put on some value or some
address or some point in a program to be
assembled.

Labels are simply names you can put on things. For instance, you
could start your program with a label that says START. Other places in
your program could refer to that label. For instance, to repeat your
program over and over again, you could use an assembler command
of JMP START as your last line. When the assembler assembles the
program, it finds out where START really is and then figures out the
right code to get you there. Or maybe you want a forward branch that
goes to code you labeled MORE. If you don't use a label, you must
know the exact address you are branching to, even if you have not
gotten there yet. With proper use of labels, a good assembler will
automatically figure these things out for you.

Labels also serve as memory joggers and simplify moving programs
between machines. For instance, the Apple II's on-board speaker is
located at $C030. With a label, you can define, or equate, $C030 as
SPKR. Every place you see SPKR in a program, you can now remem
ber what it is and what it does.

Another use of labels lets you move your program around in mem
ory by reassembling to a different starting address. If you insert or
remove code inside relative branches, those labeled branches will
automatically lengthen or shorten during the assembly process. If your
branch goes to an absolute address instead, the lengthened or short
ened code will bomb, since the branch now goes to the wrong place.

Labels are normally five to seven characters long, and can include
numbers or decimal points. Usually you have to start with a letter, and
no spaces are allowed. You should try to make all labels as meaning
ful as possible.

There are lots of sneaky and elegant uses for labels. For instance,
you can use the label "C" for a carriage return, or labels of "Gl#"
and "DQ" to produce a musical note. Labels such as "MSP1" can
automate linking of messages and message pointers. You can also do
automatic address calculations by combining labels with the upcom
ing operand arithmetic.

TYPES OF ASSEMBLERS

There are several different types of assemblers, depending on how
fancy they are, what they are intended to do, and where they put their
final machine language program results.

The simplest is the miniassembler . ..

Assembly Cookbook for the Apple lillie 29

MINIASSEMBlER-

An "automated pocket card" that
assembles one command at a time
directly into machine language.

A miniassembler is the smallest and simplest assembler you can get.
There is a miniassembler built into the Integer BASIC code of your
Apple, starting at $F666. The miniassembler is available either as part
of the Integer ROM set, or as code booted onto a language card or
into high RAM. The old miniassembler has recently been upgraded
and dramatically improved as the BUGBYTER program, available as
part of Apple's Workbench series.

The system master diskette for Apple lie will autoboot the
miniassembler code for you to power up. To activate it, type INT, fol
lowed by a CALL -151, followed by F666G. The same procedure
works on the Franklin as well. Or, better yet, BRUN BUGBYTER.

At any rate, all a miniassembler does is let you enter a mnemonic. It
then converts that mnemonic to a machine language op code for you.
For instance, you tell the miniassembler 0800: LOA #$B7 and the
miniassembler whips out its own pocket card, and enters the code
into the Apple as 0800: A9 B7. Miniassemblers will automatically cal
culate relative branches for you, although you often have to make a
"guess" on your forward branches, replacing the guess with the real
value when you get there.

The use rules for the Apple miniassembler appear in the BUGBYTER
manual, and in the usual Apple guides and support books,· so we
won't repeat them here. But, be absolutely sure you use and thor
oughly understand the miniassembler and all of BUGBYTER before
you try to tackle anything heavier.

A miniassembler does not allow labels and does not let you write a
coded script ahead of time. You simply punch in one mnemonic at a
time, and it then changes the mnemonic to an equivalent machine
language op code for you. Miniassemblers do not give you a quick
and easy way to "open up" code to stuff another command in, or
"close up" listings to remove something no longer needed. You usu
ally also must always work in hexadecimal with a miniassembler.

There is no really useful way to put annotation, remarks, or com
ments into a miniassembled program. While you are free to run your
printer as you use a miniassembler, there is no really good way to get
a well documented hard-copy record of what you are doing.

By comments, we mean. . .

COMMENTS-

Remarks or notes added to the
instructions given an assembler.

Comments are ignored by the assembler,
but are most useful to people reading
and using them.

Miniassemblers also assemble code directly into the machine. This
means that the code must go into a place in your Apple where it is

30 What Is an Assembler

expected to run. Trying to assemble code into certain areas such as
ROM is futile, and trying to assemble into the stack, the text screen, or
much of page zero, will bomb your Apple. So, a miniassembler is nor
mally used to assemble code exactly where it is to run.

The BUGBYTER module is relocatable, so you can move it out of
the road of your intended assembly space.

You'll find miniassemblers to be compact and very fast. They are a
giant step up from writing your own machine language code by hand,
and you always should learn and use a miniassembler before you go
on to anything fancier ...

Before you try to use any fancier
assembler, be sure to write and debug
not less than several hundred lines of
machine language code using a
miniassembler or on BUGBYTER.

J

The greatest use of miniassemblers is to drive home what the assem
bly process is and how it works. They are also useful for quick-and
dirty or very short assembly jobs. But, since there is no way to make a
script of what you want to do, any later changes mean you have to
miniassemble the whole job over again. Worse yet, there's no record
of what you did.

Our next step up leads to a full assembler.

FUll ASSEMBLER-

An assembler that includes all of the
usual features, such as labels, comments,
and the ability to work from a script that
you can edit and save.

Iloro: ___ -..,_._, ... ","' ___ .Ii

Full assemblers usually consist of a few related programs. One of
these lets you write a script, or a series of instructions. You can save
this script to disk, edit it, or rework it. A second part of the assembler
then converts this script into actual machine language code, and gives
you a printed record of the assembly process. Full assemblers use
labels and make it easy to insert and remove code at any place and
any time. A full assembler is normally all you need to write most
machine language programs.

Full assemblers do let you put comments anywhere you like, pro
vide for "pretty printing" for easy readability, and give you a formal
printed record.

There is also the macroassembler .
~'~ ______ B&ft _______ ~~~ ____ Bd&_~

l MACROASSEMBLER-

A full assembler that also is
programmable, letting you work with
pre-defined modules, and doing other
powerful tricks.
~ :H\Lll& &&&... ~:_

A macroassembler will not only accept mnemonics. It will also

Assembly Cookbook for the Apple II/lie 31

accept a pre-defined series of instructions, and then convert those
instructions into individual mnemonics.

A macro is ...

MACRO-

A series of instructions or mnemonics
that will carry out some fancy "high
level" task.

For instance, with a full assembler, you would need a dozen mne
monics to read a text file and print one character at a time. With a
macroassembler, you can design a macro that automatically will gen
erate all the needed mnemonics for you. You would name your
macro something like PRNTX, and just put the macro into the assem
bler where you wanted all the details. At the same time, you can
"pass variables" through to your macro, such as the name or address
where the text message file will start.

A really great macroassembler will even let you use the message
inside the macro, such as "PRNTX/Hit any key to continue.!".

Macros can be instructions inset directly into your source code, can
be disk-based modules, or can be WPL routines used with "new way"
editing. Which you use depends both on your choice of assembler
and your programming style.

Macros are a fun tool for the advanced programmer, and they really
make machine language programming fast and more understandable.
But macro features are really not essential. If your regular assembler
has the ability to insert routines from a disk and can do a limited
amount of conditional assembly, you can "fake" many of the macro
features without too many hassles.

It is possible to do many macro-like tasks with a supervisory word
processor program, such as WPL. WPL is the word processor language
that works with Apple Writer II or lie. We'll see WPL use examples
when we get to the chapter on "new way" editing.

Some assemblers also may give you a method to separate labels that
can be used anywhere in the program from labels that can only be
used in one small portion of the code. We call these separable names
global or local labels. . .

GLOBAL lABEl-

A label that can be used any place in the
entire program.

Global labels can only be defined ONCE
in a program.

LOCAL LABEl-

A label that can be used in several
different places in a program, each with
a different, but usually similar, meaning.

local labels can be defined as often as
they are needed, and will only affect the
small area of the program they work
with.

32 What Is an Assembler

Not all Apple assemblers let you separate global and local variables,
although "new" EDASM gives you a way to do this. Thus, each time
you use some code module, you may have to pick a unique and dif
ferent label name. Obvious ways to beat not having a local label capa
bility are to number labels sequentially, such as START1, START2,
START3, or to use creative misspelling, such as PRINT, PRIMT,
PRE NT.

Yet another way to classify assemblers is whether they generate
re/ocatable code or not. . .

RELOCATABLE CODE ASSEMBLER

An assembler that generates special
machine language code that will
reposition itself anywhere in memory
before use, reliably and automatically.

Normally, your "typical" machine language program is only
allowed to sit at one exact place in memory and has only one legal
starting address. This is fine, if you always know where you want your
program to go.

Dino machines often speak of virtual memory. One of the key fea
tures of virtual memory is that any program or any program module
can go at any place in memory and still work. This gets real handy
when you are tacking a bunch of mix-and-match machine language
modules onto the top of an Applesloth program. Virtual memory is so
powerful that you can easily think of a dozen more ferinstances where
it sure would be nice to put anything anywhere and still have it work.

For micros and personal computers, relocatable code is a powerful
idea whose time has come.

You can write machine language programs that can go anywhere in
memory, so long as the code never calls itself or refers to itself with
any absolute addresses. This means no absolute self-references such
as loads or stores, no jumps, and no subroutines. This would be a sim
ple example of a program that is self-relocating and can run any
where. The disadvantage, of course, is that you aren't allowed to use
most of the useful or interesting 6502 op codes when you try this.

Or, you can write a long and fancy machine language program that
first finds out where it is sitting in memory, and then changes itself so
it will run in its present location. The standard Apple II way of finding
out where a program sits is to jump to a subroutine in the monitor
with a known immediate RTS return, and then dig into the stack to
find the calling address. From this point, you can play games that self
modify the rest of the code so it works where it is sitting.

The Apple people have gone one step better, and now have "R"
files. These "R" files are re/ocatable code modules, that work with
special loader software to put a machine language module anywhere
in memory. They do this by dragging along a data table that lists
everyth i ng that references absol ute locations. These locations are
changed as needed.

If you want to use "R" files to make your machine language code
relocatable, then you have to use an assembler that can handle
relocatable code.

Assembly Cookbook for the Apple lillie 33

Relocatable, or "R" files are nice for advanced programming con
cepts, but let's get back to some more simple mainstream stuff.

Another way to classify assemblers is by where they put the
machine language program they generate. You have a choice of in
place or disk-based assembly ...

IN-PLACE ASSEMBLER-

An assembler that assembles its machine
language code directly into RAM
memory.

DISK-BASED ASSEMBLER-

An assembler that assembles its machine
language code onto a disk-based file.

An in-place assembler will directly assemble its machine language
code into the RAM of your Apple II or lie. This is fast and convenient.
Often, you can test your machine language program immediately,
without needing any reloading or rework. You could even get by with
out any disk drives, although no serious assembly language program
mer would ever consider this.

There are several disadvantages to in-place assembly. You are lim
ited to shorter programs, since both the assembler program and the
final machine language code must fit into memory at the same time.
The machine language program may have to be moved so it can run,
if the intended place for the final machine language program conflicts
with the code space needed for the co-resident assembler program.

A disk-based assembler reads a disk file as an input and generates a
different disk file as an output. The files can be much longer than the
space available in memory, since all the assembler has to do is keep a
short stash of labels and cross-references handy. Thus, you can easily
write and assemble very long programs with a disk-based assembler.

There are also no limits to where the final program code sits, since
this is code stashed on a disk, and not code stuffed into the machine.
You can easily assemble a program that must sit in the same space the
assembler does; can overwrite text screens; can work on page zero,
the stack, the keyboard buffer, or wherever. The final code is ready to
use without any relocation.

The bad news here is that disk drives tend to be very slow, and that
you have a long song and dance to go through when you want to test
your machine language program, since you may have to get out of the
assembler program, and then load and run your machine language
program. The "test-modify-reassemble" round trip time can be much
longer with a disk-based assembler.

Newer DOS speedup tricks ease the turnaround time involved in
disk access. Fast loading and storing of text files by modified DOS
code helps bunches.

Another factor that makes this long round trip time not too bad is
that many programmers, including myself, are running a printer most
of the time that they are assembling. This slows down an in-place
assembler to where it is almost as infuriatingly slow as a disk-based
assembler can be. If you happen to be using a daisywheel printer for
quality output, there really isn't that much round trip time difference

34 What Is an Assembler

between an in-place and a disk-based assembler. A print buffer or a
spooler can speed things up a whole lot for either type of assembler.

Some in-place assemblers give you the option of assembling to disk,
and vice versa. This can give you the best of both worlds.

Here's two more terms for you ...

MODULAR ASSEMBlER-

An assembler where editing and
assembly routines are separate modules,
only one of which is loaded into the
machine and used at any particular time.

CO-RESIDENT ASSEMBlER-

An assembler where editing and
assembly routines can both be present in
the machine at one time.

Both have advantages. Modular assembly gives you more room for
your source code and possibly for in-place object code as well. The
modular routines can also be longer and fancier, since they have
more "elbow room" in which to work. Co-resident assembly is faster
and shortens the edit-assemble-test round trip time considerably.

That covers most of the more important ways to classify assemblers.
Sometimes you might get involved with a cross assembler . ..

CROSS ASSEMBlER-

An assembler that is displeased or
otherwise unhappy with the inane
garbage it is being fed.

Uh, whoops. Computer error. Let's run that one by again.

CROSS ASSEMBlER-

An assembler that runs on one computer
system, but generates machine language
programs for a different computer
system, possibly even using a different
microprocessor.

If you are only using an Apple II to assemble 6502 machine lan
guage programs that are only to run on an Apple II, then you will most
likely never need a cross assembler.

Cross assemblers work on one machine but generate code for a dif
ferent one. For instance, you could use an Apple II to generate
machine language programs that are ready to run on simpler 6502
machines, such as the KIM, AIM, and SYM gang or for a 6502 control
ler card. This gives you all the full resources of your Apple, including
disk drives, modem, printer, et al., to let you develop programs for
these other machines. If you teach your Apple II to generate cassette
tapes to the standards of these other machines, you can directly

Assembly Cookbook for the Apple lillie 35

download programs from the Apple to the target machine. Or else use
serial ports to exchange programs and data.

Other cross assemblers may work with different microprocessor
families. Thus, by going to the right kind of emulator software, you
can use an Apple to generate TRS-80 code, 68000 code, Macintosh
routines, CRAY 1 code, or anything else you like.

Many Apple-based assemblers will provide modules to let you do
cross assembly. The S-C Assembler modules in particular let you cross
assemble into dozens of different microprocessor CPUs or even into
dino minicomputers.

That pretty much rounds out our survey of the types of assemblers
that you might find interesting or handy to use. Our main interest in
the rest of this book, though, will be in using a disk-based full assem
bler to generate Apple II programs for Apple II or lie use.

HOW ASSEMBLERS WORK

A miniassembler works as if it were an "automated pocket card."
You pick a starting address, and start punching assembly language
mnemonics into the machine. The miniassembler then converts these
mnemonics into the correct op codes for you.

All the op codes are figured out automatically. Different address
modes are entered by special symbols following the mnemonics. Rela
tive branches are also automatically calculated, although you do have
to take a guess at forward branches and then "repair" the guess when
you get to the place in the program the branch is supposedly going to.

A miniassembler only works on one mnemonic at a time, and has
no way of remembering what it did before or anticipating what it will
do in the future. There are no labels, limited comments, and limited
printed records. There is no record of what goes into the
miniassembler, unless you create one yourself using some program
ming form, a disassembly listing, or possibly a word processor.

The miniassembler is an essential "go-between" step that should
separate your first hand-coded machine language programs from your
use of a full assembler. A miniassembler gives you insight into what
the assembly process is all about, drives home the need to understand
address modes, and forces you to become a better and more thought
ful machine language programmer.

Most serious programmers soon demand much more than a
miniassembler can deliver. So they step up to either a full assembler or
a macroassembler.

Both these work pretty much the same way. All a macroassembler
does is give you some more features and some extra bells and whistles
to make your programming efforts more legible and more convenient.

Think about how you hand code a machine language program. First
you decide what you want to do. Then you actually do the encoding
process to come up with the correct op codes and addresses ..

Full assemblers work the same way. First you write a script that will
tell the assembler exactly what it is that you want done. Then you feed
the script to the assembler, and it takes the commands in that script,
and then goes ahead and tries to build a machine language program,
following your instructions.

There are two stages involved in using an assembler ...

36 What Is an Assembler

TO USE A FULL ASSEMBLER

FIRST, you write a script or a series of
instructions telling the assembler
exactly what it is that you want done.

SECOND, you send this script or
series of instructions to the assembler
so the assembler can use these
instructions to write your machine
language program.

You go to the assembler and say "Here is what I want done." The
assembler then takes this listing of what is to be done and then actu
ally tries to do it, generating you a machine language program.

The script, or series of instructions is called the source code.

SOURCE COOE-

The series of instructions you send to an
assembler so it can assemble a program
for you.

Source codes are written more or less as
an English text, but there are stringent
use rules that must be EXACTLY
followed.

The assembler then reads your source code and tries to make some
sense out of it. If you obey all the rules, the assembler will take the
instructions in the source code, and follow its built-in rules so it can
generate a machine language program for you. This generated pro
gram is called the object code. .

OBJECT CODE-

The machine language program or other
code that the assembler produces for
you, following the instructions in the
source code.

You write a script called the source code. The assembler then takes
the source code and converts it into a machine language program
called the object code.

Assembly Cookbook for the Apple lillie 37

Like so ...

HOW TO TEL.L. SOURCE CODE
FROM OBJECT CODE:

rHE SOUI«:E CODE IS r..
SE~IES OF INSr~UCTIONS 'IOU
W~lrE rHr..r rELLS rHE
r..sSEMBLE~ WHr..rrO DO ...

SOURCE COOE

LOr.. #$06
srr.. $C093

SOU~E CODES r..~E W~lrrEN
MO~E O~ LESS IN PLr..IN
ENGLISH. FOLLOWING SOME
VER'I Exr..Cr ~ULES.

(USur..LL'I r.. rExr FILE)

rHE OBJECT COOE IS r..
Mr..CHINE lJ\NGur..GE P~~r..M
O~ CODE MODULE rHr.. r rHE
r..sSEMBLE~ BUILDS FO~ 'IOU
FOLLOWING THE SOU~E CODE
INSr~T10NS ...

OBJECrCOOE

r..9 06
80 93 CO

WO~KING OBJECr CODE
IS NO DIFFE~ENr rHr..N
r..N'I OrHE~ Mr..CHINE
lJ\NGUr..GEP~OG~r..M.

(r..LWr..'1S r.. BINr..~ FILE)

Source code is sometimes called the source file, and object code is
sometimes called the object file, particularly on disk-based assem
blers. Either way, the source is your script, and the object is the
machine language result.

Should files or tables of data also be needed, a good assembler will
also produce these for you, starting with ASCII values or a string of
hex or decimal numbers.

Note that the source code and the object code are totally different
types of beasties. The source code is a series of English-like instruc
tions that you wrote. The object code is the machine language pro
gram the assembler has generated for YOU •••

Source code files and object code files
are totally different.

DON'T MIX THEM UP!
Source code = your instructions
Object code = assembly result

In the assembler we will be using in this book, the source code is
usually stored on the diskette as a text file. The object code, of course,
must be stored as a binary file since it is a runnable machine language
program or some part of one.

Other assemblers may store their source code as a binary file, as a

38 What Is an Assembler

text file, or may use some special format. But, no way will any source
code run as a machine language program, ever!

So, obviously. . .

Source and object code files MUST
ALWAYS have different names!

The reason for this, of course, is that a source file is one thing
(instructions from you), and an object file is something entirely differ
ent (machine language code the assembler generates). If you give
these totally different code files the same name, then you'll get into
the same troubles you would if you put two identical names on any
pair of files on the same diskette.

There are at least three ways you can name source and object files
so you can tell they belong together, yet still separately recognize
them. One way is to add something to the source name to say it is
indeed a source file. A second method is to add something to the
object name to say it is obviously an object file. The third route
involves prefixes.

For instance, if you are working with a program called SNARF, you
might call your source code SNARF 1.0.S0URCE, and your object
program SNARF 1.0. I like this route, since your final machine lan
guage program is properly named for final use.

One other alternative is to call the source program SNARF 1.0 and
the object program SNARF 1.0.0BJO. This is the "default" way the
assembler we will use in this book does things, so apparently some
one somewhere must like this strange notation. Other assemblers
might drop the version count following ".OBJ".

Others prefer to use prefixes, such as S.SNARF for a source code file
and BSNARF for the binary object file.

You should always keep track of the version of a program by adding
numbers to the name ...

Add version numbers to all your
programs, always making the latest
program have the highest number.

The usual way you do this is to call your updated programs SNARF
0.1, SNARF 0.2, SNARF 0.3, and so on. Use tenths for small changes
and routine updates. Use tens or hundreds for major overhauls. For
instance, you keep adding SNARF 0.4, SNARF 0.5, and so on for small
changes or improvements. Should you "refocus" your program into
something wildly different, start over again with SNARF 10.1, SNARF
10.2, and so on.

Assembly Cookbook for the Apple lillie 39

NEVER overwrite the last working copy of anything you have.

NEVER overwrite the last good copy of
your source code!

ALWAYS add a new version number
higher than the previous ones.

Delete old code ONLY when it is many
versions behind and cannot possibly
have any more use.

In short, back everything up six ways from Sunday. Don't throw
anything old away till you desperately need disk room. Even then, be
very careful and save a printed record.

Sometimes when you think you are "improving" source code, you
may actually be destroying it, or else throwing the baby out and keep
ing the bath water. There's also the random glitch that destroys a file.
Either way, with no backup, you end up in deep trouble.

Most full assemblers will have a program that will make writing the
source code script easy and fun to do. This part of an assembly system
is usually called the editor. The editor is pretty much a word processor
program that is set up to exactly follow the rules needed by the part of
the assembly system that is to generate the machine language result
for you.

The actual part of the assembly system that takes the edited source
code script and converts it into a machine language program is called
the assembler. . .

EDITOR-

That part of an assembly system which
helps you create or modify a source code
file.

ASSEMBLER-

That part of an assembly system which
takes the source code instructions and
converts them into machine language
object code.

This gets sticky fast, for "editor" can mean two different things and
"assembler" can mean two different things.

When you are talking about the big program, most people say
"assembler" when they really mean "assembly language develop
ment system." Two important parts of most typical Apple assembly
language development systems are a way to create and modify source
programs, called the editor; and another separate way, called an
assembler, to take the source code file and generate an object code
file.

To further foul up the works, the editor part of the assembly lan
guage development system is used both to create and modify source
code files. The process of using an editor to create a source code file is
sometimes called entry, while the process of using an editor to change
an existing source code file is sometimes called editing.

40 What Is an Assembler

You can also do your editing and entry with a word processor, in
which case you can call what you are doing anything you care to.

The context usually will help you out. An assembler is either the
whole development system, or else just that part of the development
system that does the actual assembly. An editor is either the whole
module that lets you create or modify a source code file, or else just
that part of the program that is actively involved in changing or cor
recting an existing file.

Arrgh! Anyway. . .
The way a full Apple assembler works is that you first use the editor

part of the development system to create a source code file. As a
reminder, this source code file is a series of English-like instructions.
You might also use the editor to change or correct existing source
code.

Then it is the assembler's turn.
The assembler reads the source code file several times. Each time is

called a pass, and most assemblers take at least two passes to com
plete the assembly process. The assembler goes all the way through
the source file to find all the labels, all the definitions, and any forward
branch references. It saves this data in suitable tables or lists. Then,
the assembler makes a second pass to convert all these references into
useful machine language object code.

You first write source code, and then have the assembler assemble it
for you. Then you test the code. Should you not like the results, you
go back and change the source code to correct any mistakes you
made or make other improvements.

The edit-assemble-test process goes round and round many times. It
is not unusual to need dozens or even hundreds of cycles through the
works to get what you finally want.

Most assembler programs will generate error messages for you. An
error message simply means that what you sent the assembler was so
stupid that it couldn't figure it out. Naturally, you can feed the assem
bler perfectly correct instructions that will still generate worthless or
nonworking code ...

The only thing a message of

"SUCCESSFUL ASSEMBLY: NO ERRORS"

tells you is that you haven't done
something so incredibly stupid that the
assembler couldn't figure out what it was
you were trying to tell it to do.

It is very easy to successfully assemble
totally worthless code.

You will definitely be seeing much more on error messages. Will
you ever. The useful thing about error messages is that they will point
directly to the place in the source code where any problems were
found that are so bad the assembler cannot, or should not, continue.

To recap, full assemblers and macroassemblers consist of at least
two related programs. One program, called an editor, lets you create
a script or source code file that explains what it is that you want done.
A second program, called the assembler, then makes the several

Assembly Cookbook for the Apple II/lle 41

passes through the source code file, and converts these instructions
into a machine language code object file.

If the assembler finds any really bad problems, it will give you error
messages. Some of these errors will stop the assembler dead in its
tracks; others are just brought to your attention for a later repair. But,
a lack of error messages in no way means that your final machine lan
guage program will work or that it will do what you want it to.

As we'll find out later, you can also use a word processor as a "new
way" to create and edit source code, compared to the "old way" of
using the editor in the assembler package.

By the way, on non-Apple or non-6502 machines, an "assembler"
may be just that-a way to assemble programs with no provision
whatsoever for entry or editing of source code. Beware of this dino
trap.

WHICH ASSEMBLER?

Very simply, there is no single "best" assembler for the Apple II or
lie, nor is there likely to ever be one. You find a package that suits
your needs and your personal programming style, and then go with it.

Here are several of the more popular Apple II and lie assembly
development systems. . .

SOME APPLE II AND lie ASSEMBLERS

ALDS
author unknown
(Microsoft)

APPLE EDASM ASSEMBLER
by john Arkley
(Apple Computer)

BIG MAC
by Glen Bredon
(A.P.P.L.E.)

EDIT 6502
by Ken Leonhardi
(LjK Enterprises)

LISA
by Randy Hyde
(Lazer Systems)

S-C MACRO ASSEMBLER
by Bob Sander-Cedarlof
(S-C Software)

THE CHEAP ASSEMBLER
by john Cox
(Thunder Software)

APPLE ASSEMBLY SYSTEM
by Paul Lutus
(Hayden)

ASSEMBLY SYSTEM
author unknown
(Stellation Two)

BOOTHWARE 8073
author unknown
(Microbasics)

MERLIN
by Glen Bredon
(Southwestern Data Systems)

ORCAM
by Mike Westerfield
(Hayden)

THE ASSEMBLER
by Alan Floeter
(Micro-Spare)

WELL TEMPERED ASSEMBLER
author unknown
(Avocet Systems)

42 What 15 an Assembler

We will put all the addresses and phone numbers in Appendix B to
keep things orderly.

The Apple EDASM assember is really three different assembly pack
ages. "Old" EDASM was written by Randy Wiggington and has been
around for quite a while. There are two "new" EDASMs, both written
by John Arkley. One "new" EDASM is DOS 3.3e based. The second
one is ProDOS based. All three EDASMs are "alike but different some
how." See Appendix A for a summary of the key differences. Both
"new" EDASM versions are available as toolkits in Apple's Workbench
series.

Of the others listed, Boothware 8073, Avocet's Well Tempered
Assembler, and Stellation's Assembly System are specialized cross
assemblers, while most of the others are general-use full or
macroassemblers. Merlin is an enhanced commercial version of Big
Mac.

The price of these assembly systems presently ranges from $22 to
$400. Very interestingly, the value of each of these assembly systems is
almost a perfect inverse of their pricing! Thus, the more you pay, the
less you get. I guess it was bound to happen sooner or later.

For someone else's opinion of these programs, check into Peelings
Volume 3, Number 2, February, 1982. More current reviews are also
likely to appear in Peelings and Infoworld as well as in all the usual
Apple magazines and review anthologies.

We are purposely not going to give you a blow-by-blow comparison
of all these different assemblers. Instead, we are going to use Apple
Computer's own recently upgraded and overhauled assembler for the
rest of the book. This one is called The Apple 6502 Editor/Assembler,
or EDASM for short, and is found on one of two popular utility disk
ettes in the Workbench series. Both DOS 3.3e and ProDOS versions
are available. These diskettes cost around $75, but since there are lots
of other goodies on the disks, particularly BUGBYTER and HIRES
character generator systems and new character fonts, your actual cost
for the assembler will be much less. Unbundled, EDASM is the cheap
est assembler available.

Why this assembler? Well, first, I like it. Secondly, I use it for all my
work, and it is the one I know best and have used the most. We also
use it for commercial program development here at Synergetics, and
for several microprocessor courses over at EAC, our local community
college.

EDASM is probably the most popular assembler, if for no other rea
son than there are great heaping bunches of copies of the DOS Toolkit
in circulation. EDASM is normally a disk-based assembler, so it can
handle programs of any length, particularly very long ones that cannot
easily be handled in one piece by the others. EDASM also does
relocatable code assembly very well.

EDASM's recent overhaul now includes macros, in-place assembly,
optional ProDOS compatibility, co-resident assembly, along with
many other new and most useful features. Important differences
between "new" and "old" EDASM are summarized in Appendix A.

And, programs written under EDASM, seem to me to be much
"cleaner," much easier to read, and much more well thought out and
better documented than some of the others I have seen that use com
petitive assemblers. This, admittedly, is very subjective. It may just be

Assembly Cookbook for the Apple lillie 43

that more people are using EDASM, or that I am looking in the wrong
places.

Naturally, the "best" software is almost always available from
sources other than Apple Computer. This goes without saying. But I
have yet to find anything unacceptably bad about new EDASM. Inci
dentally, others consider the s-c Assembler the "best" available, no
holds barred, while Big Mac is often rated as the "best bargain."

Critics are quick to point out that EDASM has some limits to its mac
ros and cannot easily separate global and local variables. They delight
in EDASM's much slower speed and painful reloading when it is not in
its in-place assembly mode.

There are also some minor peeves, such as needing an extra "A" at
the end of accumulator mode addressing, inconsistency between how
you exit the entry and editing modes, some overly strict page zero
addressing rules, and a printer bug that sometimes messes up the top
line of continued listings.

You can minimize the impact of these disadvantages. For instance,
you can fake almost all of the things an in-code macro is supposed to
do by building up a source code macro library on your diskette, and
pulling off these modules as needed. Most of the time, many assembly
language programmers will keep their printer running during an
assembly. This way, you always have a printed record of exactly what
you have at any time. If you do keep your printer on, the disk-based
assemblers really aren't that much slower than any other, since the
printer is usually holding up the works. A spooler or a print buffer
could, of course, be added to speed things up.

And, yes, EDASM's editor is dismal, dreary, and dumpy. Putrid
even. But, as we'll find out later, you simply do most of your entering
and editing with Apple Writer lie instead, and handle some of your
macros with a glossary or else with WPL. Which instantly converts
one of the worst editors into one of the most powerful available. More
on this in chapter five.

Anyway, I like EDASM, and I use it a lot, and we are going to use it
here.

But ...

Do not EVER buy ANY assembler
program until you have had a long talk
with someone who believes in and
consistently uses that program!

The main impact of new EDASM on this book will take place in the
chapters that follow. Since any assembler has to do the very same
things that EDASM does, you should be able to edit these chapters
with margin notes any time you find differences between the details of
how EDASM works and how your assembler works. We'll even give
you extra room for this every now and then. All the detailed ripoff
modules should work with any full or macroassembler of your
choosing.

44 What Is an Assembler

TOOLS AND RESOURCES

One assembler program and one assembler book will in no way
make you a decent assembly language programmer.

I have yet to see a decent Apple II assembly language programmer
who was proud of the work he did last week, let alone last year.
Assembly language programming is a continuous learning and skill
building process.

So, those who think they are going to instantly become fantastic
assembly language programmers are both deluding themselves, and
ripping off their customers as well. If you are unfortunate enough to
ever meet one of these dudes, please go out of your way to talk him
into writing programs for non-Apple machines. Send him to Honey
well. Teach him COBOL. You will kill two birds with one stone.

Instead ...

The only way you can become a halfway
decent machine language programmer is
through lots and lots of practice and
much hands-on experience.

The time frame involves years, and not
just days, weeks, or months.

But, as someone once said, "The longest journey starts with a single
step." If you want a shot at the brass ring and want to join the club,
you gotta start somewhere, sometime. Like now. That's a mighty big
bag of nickels up for grabs.

Maybe some time can be saved by showing you what assembler sys
tem I use and what tools and resources I work with. One way to find
out.

Here's two possible assembly language programming setups.

ASSEMBLY LANGUAGE WORK
STATIONS

Apple II Computer with 48K RAM
Integer ROM set in mainframe
Absolute reset ROM in mainframe
Applesoft ROM card with Autostart

-or, preferably-

Apple lie computer with 128K RAM
and custom "absolute reset" EPROM
monitor ROM

-plus-

Two disk drives
Quality daisywheel printer
Metal printwheels

Some comments on these arrangements. First, it is absolutely essen-

Assembly Cookbook for the Apple lillie 45

tial on older Apples that you have an "old" monitor ROM in your
mainframe, if you are at all serious about assembly work. Besides the
very handy single-step, trace and debug features, this old ROM lets
you stop any program at any time for any reason, under absolute con
trol. The Integer ROM set gives you the old miniassembler, the pro
grammer's aid, and access to the "Sweet 16" pseudo 16-bit machine
routines, along with the old floating point package.

The Apple lie is, of course, a much better choice for developing
newer software. But you will definitely want to provide your own cus
tom monitor EPROMs to pick up absolute reset and eliminate the
obscene "hole-blasting" restart of the stock monitor chips. While you
are at it, throw in a 65C02 as a new CPU, since these do so much
more so much better.

To repeat ...

If you are at all serious about assembly
language programming, you MUST have
a way to do an absolute and
unconditional reset.

On older Apples, this takes the "old" F8
monitor of the Integer ROM set in the
mainframe.

On the Apple lie, this takes a pair of
custom 64K EPROMs that replace the
existing monitor.

On older Apples, you can either use a ROM card to pick up the
Applesoft ROMs and the autostart ROM, or else go to a RAM card and
Applesoft software. The RAM card is probably the better choice today,
but should be modified for absolute hardware control. By the way, old
monitor ROMs are often advertised in Computer Shopper, usually for
$10 or less each.

A second disk drive is handy and almost essential. These days, you
can get good drives much cheaper from sources other than Apple. I
use a u-SCI as my second drive. Sometimes you can hold off on tasks
that really need two drives and borrow a second drive just long
enough to get the job done.

One useful advantage in mixing your brands of disk drives is that
they will sound different while running. If you ever activate the wrong
drive, this "aural feedback" makes it known pronto.

A dot-matrix printer is probably the best choice for writing and
debugging programs, because these printers are very fast. But, it is
absolutely inexcusable to ever publish any dot-matrix listing, even if
your uncle is an optician ...

Don't EVER publish ANYTHING that you
have printed on a dot-matrix printer!

Now, there are a few people around who claim they can actually
read a dot-matrix printout, particularly from newer model printers.
This peculiar genetic deficiency usually shows up in inbred genera
tions of dot-matrix printer salesmen, but is thankfully rare otherwise.

46 What Is an Assembler

Unfortunately, the printing processes in use today cannot read or
accept dot-matrix printout. By the time your dot-matrix listing goes
through a bad ribbon, gets reduced, is photocopied, gets burned onto
a plate, and finally gets printed, you will end up with a royal mess.

So, I use an older Diablo 630 daisywheel printer myself, since I can't
justify having one printer for listing and debugging, and a second to
generate camera-ready copy.

Of course, you use a film ribbon, and for your final copies, you use
single-strike film. Naturally, it is totally inexcusable to ever retype or
typeset an assembly listing, because errors are certain to be added.
Errors that are hard to find and harder to correct.

By the way, every now and then some turkey will try to tell you that
you cannot tell the difference in print quality between a metal and
plastic printwheel. This is true only if (A) you are at least a thousand
feet or more away from the page, and (B) you are blind.

There is as much difference between a heavier metal printwheel
and a plastic printwheel as there is between the plastic one and dot
matrix print quality. This is especially true if you use one of the "heav
ier" metal fonts not available in plastic, and do so on a freshly
adjusted machine. I am kind of partial to the Titan 10 metal wheel
myself for listings, and to the Bold PS wheel for everything else.

While we are on the lookout for turkeys, watch out for misleading
speed claims on newer daisywheels. The newly discovered "words
per minute" rating is ten times the industry standard "characters per
second" speed rating. Thus, a daisy rated at "120" is much slower
than one rated at "40."

Even worse, the term "letter quality" has been bastardized into
"near letter quality" or "correspondence quality." Well, "letter qual
ity" means "looks like an old mangy Selectric." "Correspondence
quality" means "not quite totally illegible." And, the "near" in "near
letter quality" means the same thing as "nearly" getting a job,
"nearly" winning a contest, or for that matter "nearly" getting run
over by a garbage truck. A suitable synonym for "near" is "ain't."

Summing up, if you can, use a fast printer for assembly development
and checkout, but be sure to use a good printer for your final pub
lished listings.

So much for the system. One of the really great things about the
Apple II is that it forms its own superb development system. Would
you believe that other computer systems make you buy program
development hardware that can cost tens of thousands of dollars?

Fortunately, all you need to write good Apple II programs is a good
Apple II or lie computer.

Working Tools

What about other tools? What else do you need? I'd call a tool any
thing you use or refer to while you are using an assembler to write
machine language programs. Most of the tools that are useful are
books of one kind or another. But the crucial difference between any
old book and a tool book is that the tool book gets used over and over
again, while any old book just sits on the shelf.

Assembly Cookbook for the Apple lillie 47

Anyway, here is a list of the tools I find handy ...

TOOLS FOR ASSEMBLY
PROGRAMMING

6502 Pocket Card (Rockwell)
6502 Plastic Card (Micro Logic)
6502 Programming Manual (Rockwell)
6502 Hardware Manual (Rockwell)

Apple 11 Reference Manual (Apple)
Apple DOS 3.3. Manual (Apple)
Apple Assembler Manual (Apple)
Applesoft and Integer Manuals

Old Apple Red Book (Out of print)
Apple Tech Notes (lAC)
Apple Monitor Peeled (Dougherty)
What's Where in the Apple (Micro Ink)

Beneath Apple DOS (Quality Software)
Hexadecimal Chronicles (Sams)
Lancaster's Micro Cookbooks (Sams)
Enhancing Your Apple 11 (Sams)

Printer manuals and repair tools
Paper, ribbons, diskettes, etc.
Page high lighters, all colors
HIRES and LORES screen forms

A quiet workspace

Many of these tools are obvious. Once again, addresses and phone
numbers appear in Appendix B. We won't show prices or version
numbers, because both are bound to change. As a disclaimer, this list
is my choice and what I use. There's lots more and lots newer stuff
available.

Going down the list, a pocket card is far and away the single most
important tool. Pocket cards give you quick answers to questions like
"Can I load X, absolute indexed by Y?/I (yes); or /lCan I do an indirect
subroutine call?/I (no-but you can JSR to a JMP indirect); /lCan I set
the V flag?/I (not with software).

The pocket card also tells you how long the instructions take to exe
cute. This is essential knowledge for any program that involves critical
timing, and can be handy in any program.

The 6502 plastic card is equally useful. I use both. You can write on
the plastic card with a grease pencil, but you can't fold it and carry it
with you.

The 6502 Software Manual is also indispensable. You simply cannot
do any assembler work without this book. The book was first written
by MOS Technology, Inc., and for its time was one of the finest tech
nical manuals ever produced by any semiconductor house. It is a clas
sic in every sense of the word. The old MOS Technology, Inc. copies
were big and easy to read with rugged blue covers. Today's knockoffs

48 What Is an Assembler

by Rockwell International and Synertek are smaller, have lower print
quality, and are harder to read.

The 6502 Hardware Manual in the same series isn't nearly as well
written or understandable, but it is also an important tool for the
assembler programmer.

You will want all the usual Apple manuals, particularly the lie tech
nical reference manual and the DOS manuals. The Applesoft and
Integer manuals and tutorials will be handy if you are tying machine
language modules into BASIC, rather than writing decent all-machine
programs.

You will also want to get access to a copy of the Apple Tech Notes.
This thick series answers many Apple-use questions and spells out all
known Apple bugs to date. All International Apple Core (lAC) member
clubs have a copy. Or, if you can find a reasonable Apple dealer, they
might let you look at their working copy. You can also buy these tech
notes, but they are expensive.

What you won't be able to buy is a copy of the Apple Red Book.
This was the original Apple II system manual. Among its priceless
goodies is a schematic that is orderly and function-oriented rather
than the intentionally confusing mess shown in the pre-lie manuals.
You'll also find complete details on the Sweet 16 sixteen-bit software
commands, detailed miniassembler listings, the original tone subs,
low-cost serial interfaces, and listings on the original floating point
package. Very handy and very essential if you are still working with an
Apple II or 11+. You'll have to copy this one on your own, as the Red
Book is definitely out of print.

Note that the Apple lie technical reference manual does not come
with a lie and has to be ordered separately at extra cost. This manual
is absolutely essential for lie assembly language programming.

The Apple Monitor Peeled is a very dated book. But, I still find it
useful to understand and use the monitor features, while the "must
have" Beneath Apple DOS gives a thorough treatment to the disk
operating system. What's Where in the Apple /I is a detailed address
by-address listing of all known major uses of all memory locations in
the entire machine. There are two parts to the listing. One part is
arranged numerically and the other alphabetically. These listings are
an update and extension of the original that appeared in the August
1979 issue of Micro. I use both the original article and the new book,
because the original is easier to use and only takes a few notebook
pages.

The Hexadecimal Chronicles (Sams 21802) is a reference that
instantly gets you from decimal to hex to Integer BASIC's inverted dec
imal, and back again, along with ASCII conversions, and includes a
hex arithmetic and circular branch calculator, and bunches of other
goodies. This one is most useful when you are tying machine language
subs to BASIC programs, or are moving BASIC pointers around to pro
tect or capture a machine listing.

Volumes I and II of my micro cookbooks (Sams 21828 and 21829)
should be a good way to pick up the fundamentals of hand-coded
machine language programming. This is done through a series of dis
covery modules that lead you through most op codes of the 6502. You
must use these discovery modules or something similar before you
can even think about working with assemblers.

The Enhancing Your Apple /I series (Sams 21822, etc ...) gives

Assembly Cookbook for the Apple lillie 49

you many examples of machine language program modules and use
ideas. In particular, the "tearing" method in Enhancement 3 of Vol
ume I is essential for any assembly language programmer, since it
shows you an astonishingly fast and easy way to tear apart and under
stand unknown machine language code.

You will also want a complete set of maintenance manuals and
repair tools for your printer. These are usually not provided with your
printer purchase. Note that most printer people charge bunches extra
for their real service manuals. Often these will be broken up into a
spec manual, a repair manual, a spare parts list, a price list, and spe
cial tools.

There are many other programming aids, support books, utility disk
ettes, and so on that are heavily advertised. I find myself buying but
never getting around to using these. Around 90 percent of what's
available is less than useless, so always check with someone that
believes in a product before you consider buying it.

Naturally, you'll need some diskettes, tractor paper, film ribbons,
and all the usual stuff like this. A complete set of page highlighters are
also essential to have on hand. These are very useful for identifying
changes and corrections on printouts and are absolutely essential for
the "tearing" disassembly method to work.

What About Machine Programming Books?

You'll find dozens and dozens of books around that claim to teach
you all you will ever want to know about 6502 machine language or
6502 assembly language programming, and then some.

Usually, you buy these books by the running yard, with a price of
$28 per inch or so being typical. Mill ends are slightly cheaper. Either
way, put them on your bookshelf to amaze and astound your friends.
Or, if you happen to have a table with a missing leg, put a stack of
them to their only known practical use.

Very few people ever read these books. In fact, most of these books
have been designed from the ground up so you could not possibly
read and understand them even if you wanted to.

A very select few of these books are genuinely outstanding. Unfortu
nately, most of the others are utterly atrocious ripoffs. The trash-to
good ratio here is well over 30:1 and is steadily and appallingly climb
ing.

And even if everybody else thinks some title is a great book, it may
not suit you, since its level may be too advanced, or too simple, or
locked into some obscure trainer, or too pro-dino, or too far off in left
field, or too whatever.

So, let us repeat what we said earlier about assembler programs,
only this time we'll apply it to programming and assembly books.

The overwhelming majority of all
programming and assembly books will
NOT meet your personal needs.

Do not EVER buy ANY assembler book
or any machine language book until you
have had a long talk with someone who
believes in and consistently uses that
book!

50 What Is an Assembler

The safest thing to do is to wade into the lair of your nearest Apple
machine language freak and find out which books are out front, have
torn or missing covers, and are thoroughly thumbed over. Don't even
consider a book that has nothing spilled on its pages.

Come to think of it, though, it is never safe to wade into the lair of
your nearest Apple machine language freak. Forewarned is forsooth,
though, or whatever.

Far off.
At any rate, avoid buying these books unless you happen to want a

complete set of "one of each." But that gets expensive in a hurry.

Software

The software you use will, of course, depend on which assembler
you chose, and what else you decide to have on hand.

Here's what I usually work with ...

SOFTWARE FOR ASSEMBLY
PROGRAMMING

EDASM and BUGBYTER
System Master
DOS Toolkit
Inspector

Bag of Tricks
Apple Writer lie
Copy II Plus
Enhancing Diskettes

EDASM is the Apple assembly development system. Be sure to use
one of the greatly improved "new" versions, either for DOS 3.3e or
ProDOS. You should be familiar with the System Master diskette by
now, particularly the program FID. The DOS Toolkit holds EDASM
and BUGBYTER, along with several other interesting utilities and
HIRES character fonts. Inspector is one of many available file utilities,
while Copy /I Plus is a versatile and informative copy and disk speed
program. Locksmith is comparable.

Bag of Tricks is most useful for fixing bad diskettes. Apple Writer lie,
of course, is a great word processor and gets used for all your docu
mentation, besides being a better source code editor than the one in
EDASM. The Enhancing diskettes are from the Enhancing Your Apple
II series.

There are a lot of new utility programs available today that do things
like single-step whole programs, manipulate and search files, dump
ASCII strings, disassemble listings, generate cross references, provide
HIRES utilities, offer ampersand links, edit diskettes, and so on.

I haven't gotten around to trying very many of these. The obvious
advantages of these new utilities are that they make writing and testing
programs much quicker and easier. Two obvious disadvantages are
that costs pi Ie up at $30 and $100 per diskette, and that some of these
programs may conflict with where you want to be in memory. A few
of these are excellent; many others are less than useless.

Anyway, so much for the software. Use what you need and like.

Assembly Cookbook for the Apple II/lie 51

Assembly Magazines

Magazines are some of the best places to learn about machine lan
guage and assembly language programming. Here's my choice of the
best, arranged in order of assembly language usefulness or importance
to me ...

ASSEMBLY LANGUAGE MAGAZINES

Call A. P. P. L. E.
Apple Assembly Lines
Apple Orchard
Peelings

Hardcore
In Cider
Cider Press
Nibble

The finest Apple assembly language magazine, no holds barred, is
Call A.P.P.L.E. A complete set of these, their user library diskettes, and
their publications is absolutely essential to serious machine language
or assembly language programming. Their thick All about ~OS, All
about Applesoft, and All about Applewriter manuals are particularly
valuable.

Apple Assembly Line is a funky little newsletter with fantastic vibes.
It centers on the S-C family of fine assemblers, but is otherwise most
readable. Apple Orchard is the lAC publication, and often has interest
ing reprints from the various newsletters. Peelings is the only source of
well thoughtout and largely unbiased Apple software reviews.
Hardcore has some very interesting stuff in it, but it could be so much
more than it is. You'll also find very old issues of Micro to be most
handy and informative, but this one clearly has peaked, so it is not on
the list. Cider Press is a newsletter of the San Francisco Apple Core.

Note that this listing of magazines specifically involves assembly lan
guage programming. There are other great micro magazines, such as
Byte, Infoworld, Computer Shopper, Microcomputing, Creative Com
puting, Or. Dobbs Journal, softalk, and dozens more. These have all
sorts of useful things in them, but they do not consistently center on
Apple II or lie machine language programs and assembly language
programming techniques. There are also hundreds of club newsletters
out there, many of which will have new and useful assembly tidbits.

Unfortunately, the price of the club newsletters is high, and their
quality is steadily dropping. The reason for this drop in quality is that
most Apple clubs are now of, by, and for users, rather than hackers.
This trend is intrinsically evil and despicable.

Also sad.
There's also a musical chairs game going on where everybody

reprints everybody else without anything new ever being generated.
Which waters down the stock something awful.

Since the trend is away from hackers, the older issues of most club
newsletters will most often have the better goodies in them, so it pays
to dig back. Way back. The Denver Apple Pi group maintains an

52 What Is an Assembler

extensive on-line data base of virtually everything ever written in any
Apple publication.

Reprints and Anthologies

Two other essential resources are reprints and anthologies.

IMPORTANT ASSEMBLER REPRINTS

Abacus Plus (ABACUS)
Best of Cider Press (SFAC)
Inside Washington Apple Pi (WAP)
Peeking at Call Apple (A.P.P.L.E.)
Wozpack (A.P.P.L.E.)

These reprints usually show off lithe best of" some year's newsletter
or magazine output. They are a good way to get everything at once
fairly cheaply. The argument that you are buying old information is
offset by the fact that older Apple information is often better and more
recent information these days. The more blatant errors are likely to be
corrected before reprinting as well.

We must also mention the Apple Avocation Alliance as well. These
people stock just about every available public domain Apple program,
and will copy them for you at a cost around twelve cents each. AAA
also has terrific diskette prices. Unfortunately, except for several abso
lute gems, very few public domain programs are worth twelve cents
apiece. Nonetheless, studying these may prevent you from reinvent
ing the wheel and should clearly and concisely show you how not to
do things.

Other public domain program libraries include the extensive ones
offered by the lAC, Call A. P. P. L. E., and the San Francisco Apple Core.

That's sure a long list of resources for assembly language program
ming. But, if you think that's bad, you should see all the garbage I
bought and did not tell you about. Hopefully, these resource listings
will cut down the totally ridiculous costs of getting into assembler
work into costs that are just stupendous.

Naturally, don't buy anything you haven't looked at first. Work with
club groups. Check into schools. Ask friends. Visit company and tech
nicallibraries. Pick up whatever works for you.

But don't try to write Apple machined language programs in a
vacuum. That may have worked in 1977, but no more. Those days are
long gone.

Get and stay informed.

DISASSEMBLERS

You mean that after you go to all the trouble to assemble a program,
that you may want to take it all apart again?

You better believe it.
The opposite of assembly is called disassembly. You disassemble a

program or listing when you want to find out what the code is trying
to do or how it is supposed to work ...

Assembly Cookbook for the Apple II/lle 53

DISASSEMBLER-

Any tool that lets you take apart a
machine language program to see what is
in it or how it is supposed to work.

Naturally, it is totally inexcusable to ever buy or use any piece of
Apple software without completely tearing apart the program to see
what is inside and how it works. Also, naturally, the first thing you do
to any locked program is make yourself several unlocked copies
under standard DOS. Then generate your own modifiable assembler
source code, and a complete set of working source files.

You should do this automatically the first time you boot any new
disk. Every time.

Without fail.
Far and away the best way to learn assembler programming tech

niques is to diligently study how others do it ...

Far and away the best way to pick up
assembly language skills and new use
ideas is to ...

TEAR APART EXISTING PROGRAMS

There are several good ways to disassemble existing code. Here are
the three I normally use, in order of increasing complexity.

WAYS TO DISASSEMBLE CODE

1. Use the disassembler in the Apple
system monitor or BUGBYTER.

2. Use the "tearing" method from the
Enhance series.

3. Use a capturing disassembler, such
as Rak-Ware's DISASM.

There is a "L" or List command in the Apple system monitor that
will disassemble any program for you twenty lines at a time. For more
lines, you use more L's. This disassembling lister converts object code
into assembly mnemonics and shows such things as the address
modes and the absolute addresses that relative branches go to. There
are no labels or comments. For a printed record, you simply turn the
printer on before you list the lines you want disassembled.

The "tearing" method appears in Enhancement 3 of Volume I of the
Enhancing Your Apple II Series (Sams 21822). This gives you an aston
ishingly fast and easy way to tear apart any unknown machine lan
guage listing and provides for full comments and accurate labels.

A capturing disassembler tears apart object code and then converts
it into a source code file that EDASM or another assembler can use. It
puts labels on everything needed, but these labels are simply coded

54 What Is an Assembler

sequentially. You then have to go through the listing and add your
own comments and make all the labels more meaningful. Sometimes,
you can predefine useful label names. A capturing disassembler usu
ally includes a complete cross reference of who refers to whom when.

The DISASM program by Rak-Ware is the only one of these I have
worked with so far. Similar products are available from Decision Sys
tems and Anthro Digital.

DISASM does what they say it will and is reasonably priced. Their
cross reference generator is particularly useful. An alternative to a
disassembler is to rekey the entire results of the "tearing" method.
Which is the better route depends on your programming style and the
length of the program under attack. Using "new way" editing does
simplify and speed up the repairs to a captured listing.

DISASM's triple cross references are most useful, though. You get
internal, external, and page zero reference tables that are absolutely
essential to tearing apart any major listing. Very nice.

Regardless of which disassembly method you use, there is one big
gotcha you must watch for. . .

A disassembler will only give you useful
results if it is working on VALID code,
and then only when begun at a LEGAL
starting point.

Otherwise you get garbage.

What this says is that you can only disassemble code that has been
previously assembled. Try to disassemble a file or some data values,
and you get bunches of question marks and totally absurd op codes.

Even with legal and working code, you also have to start at the right
place. If you have a three-byte instruction, you must start on the first
byte. Start on the second or third byte and you get wildly wrong
results. Having the wrong starting point in legal code isn't nearly as
bad as trying to disassemble a data file or a text file, since the
disassembler will probably straighten itself up and fly right after a few
wrong listings. But watch this detail very carefully.

If you try to disassemble, say, an ASCII file instead of legal op codes,
your cross references will end up giving you bunches of illegal and
nonexistent "artifacts," caused by reading pairs of ASCII characters as
addresses.

For instance, an "AB" ASCII pair may generate a false address of
$4241, and so on. You will also get cross reference artifacts generated
if there are short stashes or other files buried inside your legal op
codes. These artifacts can be eliminated one at a time by hand, or by
telling the disassembler to "skip over" one or more tables.

You need both assemblers and disassemblers to do a decent pro
gramming job. One puts together, the other takes apart.

WHAT AN ASSEMBLER WON'T DO

A car is one possible way to go to the bakery, get a loaf of bread,
and then return. But there is no way a car can do this by itself.

You have to drive the car.

Assembly Cookbook for the Apple lillIe 55

In the same way, an assembler is a great tool to help you write
machine language programs, making the process easy, fun, powerful,
fast, and convenient. But there is no way that an assembler will write
programs for you.

You have to tell an assembler exactly what it is you want done,
exactly when you want it done, and exactly how to do it .

An assembler will NOT write machine
language programs for you!

You must tell the assembler ahead of
time exactly what it is you want done,
when you want it done, and how it is to
be done.

Thus, an assembler is nothing more than a very powerful tool that
will do exactly what you tell it to. To use an assembler, you must
already be a competent and knowledgeable machined language pro
grammer.

To get into this game and go for the brass ring, you must start by
hand coding and hand debugging a few hundred lines of machine lan
guage code on your own. Then you should get with a miniassembler
and practice with it, again for several hundred more lines.

Next, you should use the "tearing" method to take apart and study
at least a dozen major winning Apple programs. This shows you how
the "big boys" do it. Finally, if and only if you thoroughly understand
what machine language is all about, you should move up to a full
assembler or a macroassembler.

Any other way isn't even wrong.

SOURCE CODE DETAilS

If you are going to have an assembler or an assembly language
development system create a machine language program for you,
somehow you have to give the assembler some instructions.

Once again, there is no wayan assembler will write a program for
you. All an assembler can do is take the exact instructions you give it
and then begin from there to try and come up with some useful code.

We have seen that these exact instructions are called the source
code . ..

SOURCE CODE-

The series of instructions you send to an
assembler so it can assemble a program
for you.

You can think of the source code, or source code file, as a script or
a series of instructions. In this script, you will usually find op codes
and "how?" or "with what?" qualifiers that go with the op codes as
needed for certain address modes.

Instructions to create subroutines and data files may also be
included. You most likely will also find special instructions that
vaguely resemble op codes that are intended for use by the assembler,
rather than becoming part of the final machine language program.
We'll find out later that these are called pseudo-ops.

57

58 Source Code Details

In the script, you will also find definitions of labels and values. There
will also be lots of comments, or user documentation. Comments can
include such things as a title block, the copyright notice and author
credit, a description of what the program does, instructions on how to
run the program, and listings of any gotchas or any modifications that
might be needed. Parts of the script will also be involved in the pretty
printing that makes the entire script easy to read and easy to use.

Examples of pretty printing are blank lines, page breaks, and spaces
used for clarity or centeri ng.

To sum up, a script or source code file contains all the information
needed for the assembler to put together a useful machine language
program for you, along with all the documentation needed to tell peo
ple what is happening in the process.

In this chapter, we will find out just what source code is and how to
use the "work unit" of the source code file, which is called a line.
After we pick up these internal details, we'll go on in chapter three to
find one possible way to organize and structure your source code.

Then, with this background, we'll go on to chapters four and five.
Here, we'll see how you actually go about writing and then editing, or
changing, a source code file for the assembly language program of
your choice. Chapter four will show us the "old way" of using an edi
tor in its intended way, while chapter five will give us full details of the
"new way" of using a word processor instead.

The foremost use rule involving source code is .

The source code file is more or less a
series of instructions in plain, old
English, except. . .

ALL USE RULES MUST
BE EXACTL'I FOLLOWED!

There are some very exacting and very nit-picking rules as to what
goes into the script. Disobey these rules, and the assembler will gener
ate garbage for you or simply will not work at all.

In particular.

Simple things like a missing or an extra
space or a forgotten "$" for hex symbol
can make the entire source code totally
worthless!

Source codes are most useful, handy, and informative. But, you
absolutely MUST follow the exact use rules involved with source code
files if you are ever going to get anything usable out the other end of
the pipe.

SOURCE CODE FILE FORMATS

The source code file will hold enough information to do the job you
want done. The length of your source code can be just a few charac
ters for a simple patch, through part of a page for a minor subroutine,

Assembly Cookbook for the Apple lillie 59

or many dozens of pages for an elaborate or very long, full-blown
machine language program. The source code will do what you want it
to. You make it as long as you need to handle the task at hand.

Some assemblers put a limit on how long the source code can be. If
this happens, you break the source code into logical chunks and pro
cess one chunk at a time. Then you take the machine language mod
ules you get from this process, and recombine them into a single, long
program.

The EDASM assembler we will use as our "baseline" assembler is
usually disk based, and lets you write very long programs in one piece
if you want to. Often, though, it is best to work in small and separate
modules of your source code, combining them later.

We call the "work unit" of the source code a line . ..

LlNE-

The "work unit" of a source code file.

Eighty or fewer ASCII characters ending
with a carriage return.

Enough information to assemble one op
code; or to pass a single command to the
assembler; or to supply a short comment
or a portion of a longer one.

At one time, everyone in the dino computer world knew what a line
was, since all messages and all communications were line oriented.
Should you want to, say, process words, you had to keep each line of
characters separate and work with each line individually. Now, this
seems incredibly dumb, but that's the way things were. It took the
micro people with their memory-mapped video to first see the com
pletely obvious.

But there are a very few jobs remaining where it is a good idea to
keep every entry on a separate and unique line that has to stand on its
own and has no particular long term relation to the line above or the
line below. Assembler source code files are one place where working
line by line still is a pretty fair way of doing things.

Quaint but fair.
If you decide to use a "new way" word processor, you will pick up

"free form" or full-screen entry where you can see lots of lines at once
and easily edit across line boundaries. Great stuff. But, you will still
have to keep your own head "line oriented" while you do this.

The lines in the source code are often numbered from one to N, in
sequential order. . .

Each source code line is usually
numbered in decimal.

The numbers normally start with one and
count "by ones," in sequential order, up
to liN."

"N" is the number of lines you need to
complete the job that the source code is
trying to do.

60 Source Code Details

The reason for this numbering is that we need a way to talk about or
work with a single line. Instead of saying "the line with the LDA #$56
command," or "the line just above the mustard stain," we say "line
number 145." Since the lines are all numbered, we can find line num
ber 145 and work with it. More importantly, so can the assembler.

Actually, your line numbers do not normally go inside your source
code. It is kinda dumb to waste disk space on things that are easily cal
culated and not particularly permanent. Instead, line numbers are an
artifact of the editor or assembler you use. This convenient artifact is
normally generated for you by counting the source code lines as they
come off the disk or out of RAM and then numbering them on the way
to the screen or a printer.

This type of line numbering is very obvious, but it may be different
from other computer numbering schemes that you might be familiar
with. As some counter examples, machine language programs are
located by addresses, and do not use line numbers. BASIC programs
use line numbers, but you usually skip around, counting by tens or
whatever, and those lines do not have to be entered in sequential
order. Pascal does not use line numbers. Instead, the relative position
of the line in the program conveys what the line is and what it does.

But, none of these are assemblers. Assemblers normally have line
numbers ranging from one to N, in order, with nothing missing and no
duplicates. EDASM uses this "one-to-N" scheme. Other assemblers
might start their numbering with 1000 or 10000 to keep the number of
printed digits constant. These other assemblers sometimes count by
tens instead of ones.

One confusing thing about source code file line numbers is that they
don't stay unique ...

What was line 145 in one version of a
source code might become line 137, or
line 193, or might be just plain missing,
in a later version of the same program.

As the program length changes, or as
corrections are made, each line number
may point to a different source code file
line.

So, all versions of all source codes are usually numbered sequen
tially from one to N, counting up "by ones." No missing line numbers
are allowed, nor are you allowed to put any line numbers in the
wrong order. If you make the source code shorter by deleting some
thing, all the line numbers higher than the deletion decrease in value.
If you make the source code longer by adding something in the mid
dle, then all the line numbers above the addition increase by the
amount needed.

Once again, there really are no line numbers in most source code.
The line numbers are an artifact generated by the editor or the assem
bler for your convenience. Line numbers are calculated by counting
carriage returns on the end of source code lines as they come off the
disk or out of memory.

Thus ...

Assembly Cookbook for the Apple lIllIe 61

Regardless of the version, and independent of
the meaning of any particular line. . .

MOST VERS IONS OF MOST SOURCE CODES
ARE USUALL'I NUMBERED FROM I TO N
WITH NOTHING SKIPPED AND NOTHING
OUT OF ORDER!

The line numbering is usually fully automatic and is done free for
you by the editor or assembler. All you have to do is make sure you
really mean "line 143" when you say "line 143," because any change
in the source code may change the line number.

Two nasty examples.
Say you write a source code and then tell the editor to delete line

six, then line eight, and then line ten. What you really did was delete
lines number six, nine, and twelve, because the first deletion bumped
everything above line six down a line, and the second one bumped
everything above line nine down yet another line.

Or, say you get lazy or in a hurry and don't do a printer dump of
each and every version of your source code as you go along. Say fur
ther that you add some innocuous line such as some extra white
space some place inside your next-to-Iatest source code version. Now
you decide the carry needs cleared. You shove the CLC line in, but
what happens? Instead of being where you thought you were, you are
one line off, inserting the carry one place beyond where you expected
it to go.

More details on this later. One sneaky way to minimize line num
bering problems is to always edit from the high numbers down, rather
than from the low numbers up. That way you are finished with the line
numbers that are going to change before they do in fact change.

For now ...

You must keep EXACT track of the line
numbers by yourself!

Line numbers may become wrong if you
add or remove any lines from your
source code, or if you are using the out
of-date printout from an older version.

Later in chapter five, we'll see an automatic line number changer
using WPL that adds, removes, or updates line numbers from word
processed source code.

Other assemblers may have different numbering rules or use
options. Always check.

OK. So what goes on a line? We already know that a line is the work
unit of a source code file, and that a line is some number of characters
that will fit neatly across a page or screen that ends with a carriage
return.

62 Source Code Details

There are different tasks that each part of a line is intended to do.
Because of this, we split the line up into separate areas, each of which
has an intended use. These special areas are called fields . ..

FIELD-

A part of a source code line that has an
intended use.

We already know about one field that is called the line number
field. The line number goes in the line number field. The purpose of
this field is to give us or the assembler a way to refer to a particular
line. We know the use rules for this field. The line numbers usually
will all be in sequential order from one to N, with nobody missing,
nobody out of order, and nobody duplicated. Only numbers are
allowed in this field. Letters or punctuation are no-no's.

We also know that the line number field is handled more or less
automatically for us, so we don't have to worry about it too much. Just
be sure that the line number you say is the line number you really
mean.

We obviously need more fields than the line number field. In
EDASM, there are at least four other fields called, in order from left to
right, the label field, the op code field, the operand field, and finally,
the comment field. . .

EDASM usually uses four fields in
addition to the "free" line number field.

These are called the label field, the op
code field, the operand field, and the
comment field.

Here's a picture that says the same thing ...

FIELDS INSIDE A SOURCE CODE LINE
TABOR
SPACE~

TABOR
SPACE~

TAB OR
SPACE~ RETURN __

LINENUMBEIl

THE NUMBEIl FIELD,
IF USED, SEQUENTIALL'I
NUMBERS EACH LINE
FROM I TO N. THIS
ONE IS AUTOMATIC, SO
'IOU DON'T wORR'I TOO
MUCH ABOUT IT.

THE LABEL FIELD
PUTS A NAME ON THE
LINE SO IT CAN BE
FOUND OR REFERRED TO.
LABELS ARE HAND'I TO
SHOW JUMP AND BRANCH
DESTINATIONS AND TO
IDENTlF'I FILES & ENTR'I
POINTS.

THE OPCODE FIELD
HOLDS EITHER A 6502
MNEMONIC OR ELSE A
PSEUDO-OP INSTRUCTION
TO BE USED B'I THE
ASSEMBLER

THE OPEIlAND FIELD
QUALIFIES THE OPCODE,
ANSWERING 'HOW', 'WHERE',
OR 'WITH WHAT'. OPERANDS
MA'I BE NUMBERS, ADDRESSES,
LABELS, OR DATA VALUES.

THE COMMENT FIELD
HOLDS REMARKS USEFUL
TO PEOPLE BUT IGNORED
B'I THE ASSEMBLER. 'IOU
CAN ALSO HAVE SOURCE
CODE LI NES THAT ARE
ENTlIlEL'I COMMENTS.

THE SPACE CAN BE USED
BETWEEN LABEL, OPCODE, AND
OPERAND FIELDS. SPACES ARE
FORBIDDEN INSIDE THESE FIELDS.

A CAIlIlIAGE IlETUIlN ENDS
THE SOURCE CODE LINE.

Assembly Cookbook for the Apple II/lle 63

More details on what each field does will follow shortly. But, if each
field is to do some unique job, we obviously need a way to get
between the fields and we will need a way to tell which field is where.

EDASM uses the "space" character to tab between fields.

EDASM traditionaly uses the spacebar to
"tab" between fields.

Everything up to the first space goes into
the label field.

Everything between the first and second
spaces goes into the op code field.

Everything between the second and third
spaces goes into the operand field.

Everything beyond the third space goes
into the comment field.

Since the spacebar is used to get between fields, spaces are not
allowed in any of the first three fields. You must use spaces to get
between fields. You must not allow spaces inside any of the first three
fields ...

You MUST NOT use any spaces inside
the label, op code, or operand fields!

You MUST use a space any time you
want to go on to the next field!

After you get to the final, or comment field, you can use any num
ber of spaces any way you want to. But, spaces are strictly a no-no in
the label, op code, or operand fields.

You might logically ask, "Why not use a tab command to tab,
instead of space?" Well, tabbing was tricky on older Apples, and fak
ing a tab by padding spaces gobbles up space on disk or in RAM. Fur
ther, allowing spaces in labels or op codes would create all sorts of
other problems. Besides, even on a lie, the spacebar is much larger
and easier to find and use than the tab key.

On "new" EDASM, you can use the lie tab key to tab if you want
to. In fact, this eases "new way" editing by quite a bit. Note that using
a tab command to tab is awkward on pre-lie Apples.

So, the older EDASM rule is that, following the carriage return, the
first three spacebar hits force tabs. After that, spaces get used as
spaces.

Not all fields are needed on every line. But ..

Each source code line MUST have
something in the op code field.

"Something" is either a command for
the assembler or else a real op code for
the computer.

So, the EDASM rules so far say that you must have something in the

64 Source Code Details

op code field. Thus, you are not allowed to have a "blank" or
"empty" source code line. You can fake blank or nearly blank lines
by special commands or by special use of the comment line, as we
will see shortly.

Each and every assembler source code line must have something
valid and useful in the op code field. For any given line, the use of the
label field, the operand field, and the comment field is optional. You
use these only if you want to or need to.

Let's look at these four fields in more detail.

The Label Field

The label field is used to hold, of all things, a label that points to this
particular line. A label is always defined or equated in the label field.

A label is a collection of letters, decimal points, and numbers that
means something. You can use a label to serve as a memory jogger as
to what a particular line is for. But the more important uses of labels
give the assembler ways to find this particular line, even if the whole
program changes size or gets moved around in memory.

For instance, you could use a label called "REPEAT." At the end of
your program, you could use an op code of JMP and an operand of
REPEAT. When the assembler gets to the JMP command, it finds out
where REPEAT really is in memory, and then automatically adjusts the
machine language code to get back to the code held in the line called
REPEAT.

As a second use of a label, you can name the first line of a subrou
tine something meaningful. A noise making subroutine could have a
label field that is labeled "BEEP." Elsewhere in the program, a JSR
BEEP will pick up this sub. The assembler will automatically figure out
where BEEP is, and patch in the right code in the right way so the final
machine language program runs correctly. Similarly, you might use
STALL or WAIT as the name for a time delay subroutine.

Labels are also useful for relative branches. With labels, there is no
need to count blocks or do twos-complement arithmetic to calculate
branches. Just say BEQ lORCH, and the assembler will find the label
laRCH and figure out the magic branch value to hit it.

Another important use of the label field is to pre- or post-define an
address or a value into something more meaningful. For instance,
reading or bit testing location $C030 in the Apple whaps the speaker
cone. Early in your program, you can equate a label called SPKR to
$C030. From then on, anytime anything refers to SPKR, the assembler
knows you really mean $C030 and makes the substitution for you.
Labels such as HIRES, LaRES, PAGEl, PAGE2, TEXT, and so on are
much more meaningful and easier to understand than their actual
locations.

Labels are also most handy for pointing to files or file entries as well.

Assembly Cookbook for the Apple lillie 65

Summing up ...

USE LABELS TO

Jog the programmer's memory
Show a jump where to go
Show a branch where to go
Indicate a subroutine's start
Equate an address or a value
Name a file or file entry

There are many other uses of labels, but these are the more obvious
ones. Study the ripoff modules for other examples of label use.

You do not normally put a label on each and every line in a source
code listing. You only provide labels when you want you or the
assembler to be able to refer to a line, or to define or equate a label.
On the average, only one line out of six or so will have a label in the
label field. This, of course, varies allover the lot with your program
style and what you are trying to do.

Label fields can be used before your main program code to equate
values or addresses; or inside your main program code to point to a
code line; or after your main program code to define a file or file
value.

If you do not want to use a label, you simply start the line with a
space or tab. This will automatically tab you over to the op code field
and no label will be used on that line.

It is very important to always use a beginning space or tab on those
lines without labels. If you miss this detail, labels and op codes will get
all mixed up, plowing the works.

The rules say that a label must start with a letter and must not have
any spaces. It's good practice to limit the length of most labels to five,
six, or seven characters, and to use only capital letters, decimal points,
and numerals, although most assemblers allow some other symbols as
well.

Your choice of letters and numbers should be meaningful and easy
to read. Naturally, you'll want to avoid mixing "ones," "eyes," "els,"
"ohs," and "zeros." It is a long tradition among programmers to use
very creative label names that are funky and far out. But, you should
do this only to the point where it still aids, rather than confuses, some
one else who is trying to understand what is happening.

With most assemblers, a label can only be defined at one place in
the source code, and thus is only allowed to appear on one label field
in the entire source code. That same label name can be used many
other places in the same source code to refer to that label field, but
there can be no doubt as to where the label is pointing.

Should you need two or more labels that do pretty much the same
thing, change each label slightly by adding numbers to the end or else
use creative misspelling. Assemblers with a local label capability will
let you reuse labels, by following their use rules.

66 Source Code Details

Let's sum up the label field rules ...

LABEL FIELD RULES

A label can only be defined in ONE
label field in the source code, but any
label can be referred to as often as is
needed elsewhere in the listings.

There usually must be a label field
somewhere in the source code for
each label reference. The thing you
are referring to must exist.

Labels must start with a letter but can
be a mix of letters or numbers. No
spaces are allowed.

All labels must be unique.

So, you use the label field of a source code line only when you want
to refer to that line, either for use by the assembler in jumps,
branches, subroutine calls, or equates; or by a programmer or user as
a memory jogger. Each label must be unique and can only be used
once, unless your assembler allows separate global and local labels.
Each label should have a meaningful name and should start with a let
ter and be a five-to-seven-character mix of only letters, numbers, and
limited punctuation. Should you not want to use a label, you tab over
the label field with a space or tab command.

Upper case labels are pretty much standard.
Three points of possible confusion. First, if you want to define a

label externally to a source code module, most assemblers will let you
do this. Just follow the rules.

Secondly, it is legal to name a label and then never refer to it. This is
handy as a memory jogger or to save room for later expansion. You
might get a question mark on these in a label listing. That is just the
assembler's way of making sure you really want this done. But unused
labels are both handy and legal.

Finally, remember that labels can be defined before, during, or after
those source code lines that will actually get assembled into the "real"
machine language instructions. Before equates an address or a value.
During points to a program line. After defines a file or a file entry.

By the way, most assemblers have enough smarts to scan the entire
source code at least once before they begin assembly to pick up all
the labels ahead of time. So, you can define a label anyplace you
want, either before or after the label gets used. It is best practice to
"EQU" or equate a label before it is used.

By the way, labels are sometimes called symbols. Label tables are
sometimes called symbol tables, and any assembler that uses labels
can also be called a symbolic assembler.

Nuff for now on the label field. The next field over is called ...

Assembly Cookbook for the Apple II/lie 67

The Op Code Field

This field is where all the action is. Remember that each and every
source code line must have something useful and legal in the op code
field.

There are two things that might go in this field. These are real op
codes, and pseudo-ops. . .

REAL OP CODE-

A three- or four-letter mnemonic that will
be assembled into actual machine
language code.

Typical examples are LDA and IMP.

PSEUDO-OP-

A three- or four-letter mnemonic that will
tell the assembler it is to do something
different or special.

Typical examples are ORC and EQU.

The only legal things you can put in the op code field are mnemon
ics to be assembled or special instruction mnemonics that deliver a
message to the assembler. Anything else is a no-no. We will see much
more on pseudo-ops shortly.

Note that the field position is the only way the assembler has of tell
ing where the op code is to be. If you do a CLC mnemonic and forget
the leading space that tabs you into the op code field, the assembler
thinks you have a label called CLC ...

Op codes are ONLY allowed to appear in
the op code field and labels are only
allowed to be equated or defined in the
label field.

A.N\{ MIXUP SPELLS TROUBLE!

Anything else spells trouble.
Right here in River City.
Note that only a mnemonic is allowed in the op code field. Now, a

few op codes and some pseudo-ops are complete in themselves and
need no further information to finish their intended tasks. We call
these op codes implied instructions, and typical examples are NOP,
CLC, TAX, or INY. PAGE is an example of an upcoming pseudo-op
that needs no further help or information.

But, for most other op codes and pseudo-ops, we need to answer
the questions "With what?" "Where?" or "How much?" That sort of
information goes in the next field over and is called.

The Operand Field

An operand is something that qualifies an op code, giving us further
needed information ...

68 Source Code Details

OPERAND-

A "qualifier" for an op code that gives
further information, such as answering
"Where?" "What?" or "How much?"

Operands are essential for most op codes
or pseudo-ops and are the usual way the
assembler can decide which addressing
mode is wanted.

The operand field must be used any time there is any doubt as to
which addressing mode is intended. The operand can be a value or an
address, or even some arithmetic instructions that will lead you to a
value or an address. Operands for pseudo-ops can also be things like
ASCII text, data values, or other file entries.

Most usefully, operands can also be labels that have been elsewhere
defined or equated to values, addresses, or other lines in the program.
Thus, while labels are defined in the label field, they are normally used
in the operand field. Labels can be used many times, but are only
allowed to be defined once.

It is the operand that sets the address mode, and decides whether
we are talking hexadecimal, decimal, binary, ASCII, or even -urp
octal. You must pay extreme attention to detail on your operand, for
the slightest mix-up in symbols or usage will foul the works up royally.
We will go into more details on operands later in this chapter.

Our final field on the source code line is called.

The Comment Field

The comment field contains remarks that are only useful to the pro
grammer or final user ...

COMMENT FIELD-

Contains remarks or formatting useful to
the programmer or user but ignored by
the assembler.

The comment field is ignored completely by the assembler. A com
ment field can also be used to draw fancy boxes, to add white spaces,
and to do other pretty printing that makes the source code more read
able. You can put lots of spaces or most anything else you want in the
comment field. The only exception is that you are only allowed a sin
gle carriage return that must go at the end.

You should use your comment field to explain what is happening as
it is happening. Where a comment is too long for one line, you can
break it up, and pick up the next part of the comment in the comment
field of the next line. You might want to indent continuing comments
to make them more readable.

The ultimate rule on comments is ...

The ultimate comment rule-

THE MORE, THE BETTER!

Assembly Cookbook for the Apple lillie 69

We will see detailed examples of how to use all these fields later.
For now, we simply want to find out what each field is used for.

To avoid mix-ups between operands and comments, it pays to start
each comment with a space and a semicolon. I like to follow this with
another space that makes things more legible. Thus, after your oper
and, you type a tab or tabbing space, a semicolon, then a genuine
space, and then your comments.

There is one special and set-aside use rule of comments that
involves the symbols 1/*" and 1/;" ...

Any EDASM line that starts with a 1/*" or
a 1/;" is treated entirely as a comment.

That entire line is ignored by the
assembler, but is otherwise most useful
for documentation.

Thus, if you want to put down a title block or some use rules, you
start each line with a semicolon or asterisk. I like the semicolon since
it is cleaner and less obnoxious, but the asterisk is more traditional.
Either one works. Again, we'll see more details when we get to the
ripoff modules.

Let's see where we are.
An assembler source code file holds all the information we need to

tell an assembler to put together a machine language program for us.
The work unit of a source code file is called a line. Lines are often
numbered in sequential order from one to N, but the line number
itself is not normally part of the source code.

Each line is broken up into fields. You get from one field to the next
by tabbing or else using the spacebar as a tab. You must space to get
between fields. Spaces inside the label, op code, and operand fields
are prohibited.

Besides the "free" number field, there are usually four fields, called
the label field, the op code field, the operand field, and the comment
field.

Unless you have used the special 1/*" or 1/;" comment markers as
the first character of your line, each line must have an entry in the op
code field. This entry can only be a legal 6502 op code or a legal
pseudo-op needed to get the assembler's attention. Thus, you nor
mally must have an op code, but everything else is optional.

The label field gives you or the assembler a way to refer to this line.
The op code field holds a real op code instruction to be assembled

into the machine language object code, or else a pseudo-op com
mand to be passed only as far as the assembler program.

The operand field gives any additional information needed by the
op code; such as qualifiers that answer I/How much?" I/With what?"
or I/Where?" Labels may be used as operands to conveniently point to
other lines in the program or to sit in for previously defined or equated
values.

Finally, the comment field gets ignored by the assembler, but gives
you a good way to insert remarks and notes into the source code file.
You can extend the comment field to be the only field on a line by
using the 1/*" or 1/;" symbols as the first character on a line.

70 Source Code Details

Let's now pick up some more detail on that all-important operand
field ...

MORE ON OPERANDS

It is the operand field that passes on most of the needed information
to the assembler program. So, this field is the one that will cause the
most problems for you if you are not extremely careful.

There are three very important things the operand field does. First, it
picks the number base you are using. Secondly, it sets the addressing
mode for the mnemonic you used in the op code field. Thirdly, the
operand field chooses between labels and fixed values as a "qualifier"
for the op code.

Thus ...

THE OPERAND FiElD

1. Picks the number base in use.
2. Selects the address mode.
3. Chooses labels or fixed values.

Because the operand field does so much with so few symbols, you
must be extremely careful what you put here ...

You must be EXTREMElY careful when
writing to the operand field!

Wrong symbols or illegal values will use
the wrong number base, the wrong
address mode, or will fail to assemble at
all, giving you an error message.

The first thing the operand field needs is a way to tell which number
system is in use. Most assembly language programmers use hexadeci
mal as their main and standard number base, since this is the number
base that most easi Iy interacts with the Apple II or lie on the gut level.
In fact, to become a decent assembly programmer, you must eat, live,
breathe, and think in hexadecimal all the time.

You can usually tell long-term assembly programmers by the extra
six fingers they eventually grow. If you get into hex, you might as well
go whole hog.

Decimal numbering is sometimes needed if you are writing an
assembly language module that is to interact with BASIC or another
high level language. These higher level languages often use a decimal
number from 0 to 255 to represent an 8-bit data value, and use 0 to
65535 to show a 16-bit address location or other value.

Anyway, most people use hex for most assembly language program
ming. To tell a hexadecimal, or base 16 number, EDASM demands a
"$" dollar sign in front. Decimal numbers are shown without anything
in front ...

Assembly Cookbook for the Apple lillie 71

Hex numbers normally must be shown
with a "$" in front, such as $F2, $12A6,
$CAFE, or $23.

Decimal numbers are always shown with
nothing in front, such as 25, 255, 6789,
or 12345.

Use no internal decimal commas.

Some non-6502 assemblers may instead put an "H" after a hex
number, rather than a "$" before. Thus, $CAFE = CAFEH. Virtually
all 6502 assemblers use the $ notation.

A very important rule ...

If you forget to use the "$" sign in front
of a hex value, you will get a "free"
conversion of decimal to hex, and the
wrong values will get entered into the
program ...

DON'T FORGET THE $ SIGN!

You can also enter octal values into EDASM by using the "@" pre
fix, but if you do, people will laugh at you, snicker behind your back,
and no longer associate with you. They may even kick sand in your
face.

Many assemblers, including "new" EDASM, will let you use a 1/%"
prefix for binary values. Binary values are useful when you want to see
what each and every line on a port is up to, but use of binary is other
wise very cumbersome. Naturally, you must use eight binary ones or
zeros for an 8-bit value, and 16 ones and zeros for a 16-bit value. If
you do not have binary on your assembler, just convert to hex before
entry.

There are also ways to enter long strings of ASCII characters, pairs of
addresses, and single or multiple file values into the operand field.
This is done by using the pseudo-ops we will look at shortly.

For now, though, there are usually two kinds of numbers you will
put in an operand. You most often will use hexadecimal, being very
careful to put a 1/$" sign in front. Should you want to use a decimal
value instead, you enter this as a plain, old, whole number without
commas and without anything in front. This decimal value will auto
matically get converted to hexadecimal as it is assembled into the
machine language object code.

Be sure to use decimal values between 0 and 65535. The "inverted
decimal" values of -32767 to +32767 common to Integer BASIC
must be converted to their positive decimal or else to their hex values
if EDASM is to use them. The Hexadecimal Chronicles (Sams 21802)
makes this a snap.

Some assemblers, other than EDASM, will allow negative decimal
values.

The operand, of course, is fulfilling the needs of the op code in front
of it. So, the size of the number has to match the needs of the op
code ...

72 Source Code Details

The size of an operand value must match
the needs of the op code it is qualifying.

Use two-digit values from $00 to $FF, or
o to 255, for 8-bit values such as an
immediate load, a page zero address, or
a file entry.

Use four-digit values from $0000 through
$FFFF, or 0 to 65535, for 16-bit values,
such as absolute addresses.

If you want an 8-bit operand, use a value from $00 to $FF. If you
instead want a 16-bit operand, use a value from $0000 to $FFFF. Be
sure to get the right length operand to go with what the op code wants
and needs, or you will get an error message or the wrong entry.

If you use a label as an operand, as you often should, the rule stays
the same. Use a label elsewhere defined to 16 bits for 16-bit values, or
a label elsewhere defined to eight bits for 8-bit values.

By the way, there is a quirk in the page zero addressing of EDASM
that pretty much demands you throw in a zero in front of single-digit
numbers. Thus, it is a good idea to use $05 instead of $5, and $050A
instead of $50A. Always use 8-bit or 16-bit values, rather than 4-bit or
12-bit ones.

OK. To show a hex number, we put a dollar sign in front. To show a
decimal number, we put nothing in front. You must make the size of
the operand qualifier match the needs of the op code, using an 8-bit
or a 16-bit value or address when and where needed.

Our next hassle is deciding.

Which Address Mode?

The operand also sets the address mode for us. This is done by
showing the operand how many bits the value is, and by including
special symbols that include 1/#" for immediate, 1/()" for indirect,
and 1/," for indexed addressing modes.

Let's quickly review the 6502 address modes and see what notation
you have to use with which mode ...

IMPLIED ADDRESSING

Implied addressing needs no more
information to carry out a task.

Implied operands are usually blank,
such as ...

NOP
TXA
CLC
PHP

Assembly Cookbook for the Apple lIllIe 73

ACCUMU LA TOR ADDRESSI NG

Accumulator addressing is really
implied addressing that applies only to
the accumulator.

While no more operand information
is needed, EOASM demands that you
use an extra "A," like so .

ROL A
ASL A
ROR A
LSR A

Three quick notes here. First, there are only four accumulator-mode
6502 mnemonics. Secondly, while no further information is needed to
handle an accumulator-mode instruction in the Apple, EDASM appar
ently needs some way to tell an accumulator rotate from a rotate or
shift in some other mode. Thus, you must provide an extra "A." On
"new" EDASM, this "A" must go in the operand field, and must be
preceded by a space.

Thirdly, the label "A" is reserved by EDASM and you must not use it
for anything else. You are allowed any other single-letter labels,
except for "X" or "Y." These single-letter labels turn out most useful.

Onward and upward. . .

IMMEDIATE ADDRESSING

Immediate addressing puts a value
into a register. The immediate mode
needs an 8-bit value as an operand.

Immediate operands MUST begin
with a "#" symbol ...

LOA #$60
LOA #60
LOA #ZORCH

You absolutely must have the "#" symbol in front of any immediate
operand. The "#" is the only way EDASM has to tell an immediate
address from the upcoming page zero addressing.

In the first example, we fill the accumulator with the value hex $60.
In the second example, we fill the accumulator with the value hex
$3C, since the decimal value of 60 equals hex $3C.

Watch for that missing "$"!
Note that the "#" sign always goes first, saying lithe immediate

value." This is followed by the "$" sign that says "in hexadecimal."
Together, the two symbols say "the immediate value in hexadeci
mal." The sharp always goes first!

74 Source Code Details

Watch this key detail. Sharps first, dollars later. A musician gets paid
after he plays.

In the LOA #ZORCH example, EOASM will try to use the label
ZORCH as an immediate value. It can do this only if ZORCH has been
previously equated or defined in the program, and then only if
ZORCH is an 8-bit number ranging from hex $00 to $FF.

Two key points ...

The first symbol in an immediate
operand MUST be a 1/#."

If you are using a label, that label MUST
have been defined or equated elsewhere
in the program, and MUST be an 8-bit
value ranging from hex $00 to $FF or
going from decimal 0 to 255.

The absolute short addressing mode of the 6502 goes by the name
of ...

PAGE ZERO ADDRESSING

Page zero addressing refers to an 8-bit
address on page zero. Values are
loaded from or stored into that page
zero address.

Page zero operands consist only of an
8-bit address value ...

LOA $06
BIT 93
STY SNARF

Once again, be sure to use that "$" dollar sign in front of all hex
numbers. Note that there is no "#" sharp symbol used for page zero
addresses.

The missing "#" is how EOASM tells a page zero address from an
immediate value. For instance, LOA #$06 puts the number "six" into
the accumulator. A LOA $06 goes down into page zero, and takes
whatever is in location $0006 and puts that value into the accumula
tor. The value in $0006, of course, can be any old 8-bitter ranging
from $00 to $FF.

In our BIT 93 example, we BIT test address space location $50.
Why $50?

The real power of a full assembler like EOASM lies in its use of
labels, But, once again, if you use a label like SNARF, you have to
equate or define SNARF elsewhere in the program. In this case,
SNARF must be an 8-bit address between hex $00 and $FF, or decimal
o to 255, that is intended to point somewhere in the address space
locations of $0000 through $OOFF.

A gotcha ...

Assembly Cookbook for the Apple II/lie 75

EDASM insists that you EQU all page
zero address labels ahead of time.

It is always best practice to equate a label before you use it, rather
than after. But, EDASM or any other good assembler will find the label
anywhere in the source code.

Another mode. . .

ABSOLUTE ADDRESSING

Absolute addressing reters to some I b

bit address somewhere in the entire
address space.

The operand has to be a 16-bit
value ..

JSR $C67E
STY 65521
INC WIMP

Absolute addressing is one of the most popular among beginning
programmers. It can hit any location in the entire address space. Once
again, the hex values start with a dollar sign, and a label like WIMP
must have been equated or defined elsewhere in the source code.
This time, the label has to be a 16-bit address value from $0000
through $FFFF, or decimal 0 through 65535.

Moving right along, branches and tests always involve themselves
with ...

RELATIVE ADDRESSING

The relative addressing mode is used
with tests and branches to go so many
steps forward or backward in memory
from the present address.

The 6502 lets you go forward or
backward 127 locations, using an 8-bit
twos complement signed binary
number.

The operand for a relative address is
almost always a label, pointing to
where the branch is to go to if the
branch is taken. . .

BEQ RETURN
BCS NXTVAl

76 Source Code Details

In the BEQ RETURN example, if the zero flag is not set, the program
continues on to the next instruction. If the zero flag is set, the program
branches to the line that has the label RETURN on it. The assembler
will automatically figure out the branch value for you, so long as it is
legally within plus or minus 127 addresses from where you are. Simi
larly, the second example will go to NXTVAL if the carry flag is set,
and will continue on in sequence if the carry flag is cleared.

One of the great things about using labels is that the assembler can
automatically figure out how many squares forward or backward to go
on a relative branch, even if the program gets longer or shorter. Thus,
while you could do a BEQ $3F14 or something similar, this ties you
down badly, and it is far better to use a label ...

ALWAYS use labels for relative address
operands.

Fixed relative address operands will
return to haunt you on any program
changes or relocations.

The label must, of course, be defined elsewhere in a line field and
must point to a source code line that is within plus or minus decimal
127 addresses of where you presently are.

By the way, "new" EDASM now includes an automatic printout of
each "branch taken" destination address. This is very useful for analy
sis or troubleshooting.

Here's a fairly fancy address mode ...

INDEXED ADDRESSING

Indexed addressing goes to the sum of
a base address plus a register value,
and then works with that address.

The 6502 offers page zero indexed by
X or Y and absolute indexed by X or Y
as "pure" indexed modes. Use of
page zero indexed by Y is limited.

The operand must be an address of
the correct length, followed by a
comma, followed by the name of the
index register ..

LDX $03,Y
ORA 126,X
SBC $8034,X
CMP 34126,Y
LDA GREEBLE,X

In the indexed modes, you need an address, followed by a comma,
followed by the name of the index register being used. Note that
GREEBLE,X can refer to a page zero indexed mode if GREEBLE has

Assembly Cookbook for the Apple lillie 77

been previously defined to be an 8-bit number. GREEBLE will refer to
a 16-bit absolute address if GREEBLE has been previously defined as a
16-bit address from $0000 to $FFFF. The assembler will figure out the
address mode for you, but don't confuse it, or it is likely to return the
wrong op code.

Note also that there are only two op codes available that use "page
zero,Y" addressing. These are LDX SNORK,Y and STX SNORK,Y.
These are two of the four "cross-indexed" commands in the 6502.
Cross-indexed commands are my favorites, since there is so much you
can do with them in so many sneaky ways.

When you want to go to one address to get a second address, you
can use ...

INDIRECT ADDRESSING

The indirect addressing mode goes to
one address pair to find the final
address it is to go to.

On older 6502's, only the JMP
command is available as a "pure"
indirect command.

The operand uses parentheses for an
indirect command ...

JMP ($6CA7)
JMP (2786)
JMP (PART2)

Any time you need an indirect command that goes to one address
to get a second one, you use parentheses in the operand. The paren
theses mean "go to this address and the one immediately following to
get the 16-bit address you really want. Then use that address."

When you use a label here, that label must be elsewhere equated or
defined as an absolute address. As with relative branches, it is nearly
always a good idea to use labels for indirect addresses.

The "pure" indirect addressing mode is limited on the 6502 to the
JMP command. But note that you can fake a JSR indirect by doing a
JSR to JMP indirect. This takes a few extra bytes and a few extra
machine cycles, but it works. Other indirect actions are handled with
the next addressing mode.

A bug exists in older 6502's that prevents indirect addressing from
crossing page boundaries. Do not use indirect addressing on the top
byte of any page. In fact, it's a good idea to avoid pure indirect
entirely. This bug is fixed on the 65C02's, which have bunches of use
ful and properly working indirect commands.

The real heavy of the 6502 world combines indirect addressing with
indexed addressing ...

78 Source Code Details

INDIRECT INDEXED ADDRESSING

This very popular and often-used 6502
addressing mode finds an address pair
on page zero and then adds a Y index
value to it to calculate the final
working address.

The indirect indexed addressing mode
is most useful for 16-bit addressing
and working through long files.

The operand is a page zero address in
parentheses, followed by a comma,
followed by a Y. . .

LDA ($14),Y
STA (65),Y
CMP (BIGFILE),Y

This is sort of a "two-for-one" deal, where you combine indirect
addressing and post indexing that takes you "Y" locations beyond the
indirect address.

Here are two important rules on how to use this super powerful
address mode. First, you must use a page zero address inside the
parentheses. If you use a label here, it must be only an 8-bit value,
and must, of course, be equated some other place in the source code.
Secondly, note that you must use the Y register as an index value.
There is no mode of LDA ($88),X available on the 6502.

As a handy hint, the indirect indexed address mode defaults to
"pure" indirect addressing if you force a Y index value of zero. This
gives you an easy way to fake a "pure" indirect ADC, AND, CMP,
EaR, LDA, ORA, SBC, or STA.

The indirect indexed addressing mode solves the hassle of going
beyond 256 locations in a file or a data bank. By changing the page
zero base address inside the parentheses, you can reach anywhere in
the 6502's entire 65536 location address space. Another handy use of
this mode is to use one block of code to access several different files
or data blocks, just by changing the indirect base address values or
their label names.

It's off to oddball city for a check into our final 6502 address
mode ...

Assembly Cookbook for the Apple lillie 79

INDEXED INDIRECT ADDRESSING

A seldom-used addressing mode that
goes to the sum of a page zero base
address plus an X index, gets a full 16-
bit address from that location and the
next one, and then uses that final
calculated address.

Occasionally is used to pick one of a
group of possible addresses that are
stashed on page zero.

The operand is in parentheses. Inside
the parentheses is the page zero base
address, a comma, and an X .

LDA (OS,X)
LDA (IRQLOC,X)

This one is an oddball and doesn't get used much since it gobbles
up too much valuable real estate on page zero. If you force X = 0,
then this addressing mode will also act as a "pure" indirect mode.
Such use is rare.

Try not to confuse this pre-indexed addressing mode with the very
useful and most handy post-indexed mode called indirect indexed.
Note that the "pre" or the "post" points to where the index is in the
name.

"Pre" is obscure and seldom used. "Post" is the heavy.
Indexed indirect is rare; indirect indexed is well done.
But if you do use pre-indexed mode, be sure you have a table of

address pairs on page zero, and that your X pointer gets doubled so it
increments by twos, since you have to point to one address pair at a
time.

Let's sum up the operand notation you use for each address
mode.

80 Source Code Details

OPERAND SUMMARY

Mode Symbol Examples

IMPLIED CLC
NOP

ACCUMULATOR A LSRA
ASLA

IMMEDIATE Inn LDA#$35
LDA#VALUE

PAGE ZERO nn LDA $06
LDA PLACE

ABSOLUTE nnnn LDA $2A14
LDA PLACE

RELATIVE a label BEQ PLACE
BVS NEWSTUF

INDEXED nn,X LDA $02,X
nn,Y LOX PLACE,Y

nnnn,X LDA $23C4,X
nnnn,Y LDA PLACE,Y

INDIRECT () JMP ($0216)
JMP (PLACE)

INDIRECT,Y (nn),Y LDA ($17),Y
LDA (PLACE),Y

PRE-INDEXED (nn,X) LOA ($19,X)
LOA (PLACE,X)

Use $ in front of all hex values.
Use nothing in front of decimal.
nn = 8 bits, nnnn = 16 bits

Once again, that final pre-indexed addressing mode is rarely used.
When picking an address mode, use nothing for implied, an "A" for
accumulator, a 1/#/1 for immediate, two hex digits for page zero, four
hex digits for absolute, a label for relative that is within 127 slots for
ward or backward from where you are, a set of parentheses for indi
rect, a comma and a register name for indexed, and a set of parenthe
ses holding a page zero address followed by a comma and a Y for
indirect indexed.

One obvious rule ...

Not every 6502 address mode is available for
any particular 6502 instruction mnemonic,
so ...

THE OPERAND MUST MATCH THE OP-CODE!

This says that if you try to use any 6502 instruction in an illegal
mode, the assembler will stop and generate an error message. Always

Assembly Cookbook for the Apple II/lie 81

check your pocket card or 6502 plastic card to make sure an address
mode is legal before you try to use it.

Some of the pseudo-ops will also need operands. The operand
might be an address, a definition, an ASCII string, a group of data val
ues, or a special location. We will see the individual uses of these spe
cial pseudo-op operands as their needs come up.

As an aside, the newer 65C02 has several more "legal" addresses
modes and a near-infinite supply of "illegal" ones, just waiting for
your use. If you use the 65C02, make sure your assembler can handle
these new mind-blowing 65C02 op codes. "New" EOASM does allow
these new 65C02 op codes. An add-on 65C02 module is also available
for the S-C Assembler. Naturally, your final object code will only run
on a machine with a 65C02 in it. Certain legal 65C02 commands will
hang an older 6502.

Operand Arithmetic

One very interesting and very heavy feature of EOASM is that you
can do simple arithmetic on operands.

For instance, you can do a ST A PLACE + 1; or a LOA AOORESS/256;
or a STA OLOFLE+FLNGTH; or an ORG START+$0200 or a STY
BASE+POINTER*2 ...

You can do arithmetic as part of an
operand with EDASM.

This lets you calculate an address or
value. The calculation may be either
absolute or relative.

You can add, subtract, multiply, or
divide, using the usual +, -, *, and /
symbols. Use no spaces.

This gets very convenient for skipping part of memory when you
assemble a new part of a program, for picking two parts of an address
pair, for doubling a pointer value, and for other sneaky things.

There are some use rules and restrictions to operand arithmetic. You
must use only the digits from 0 to 65535 or hex $0000 to $FFFF, or
labels equated to values in this range. If you are working with 8-bit
values, you have to be sure you get an 8-bit result. On 16-bit values,
the answer will wraparound, giving you a 16-bit result.

And, you are not allowed to have any spaces in the math expres
sion. Anything beyond a space is usually treated as a comment.

So ...

If you use operand arithmetic, be sure to
have no spaces in the expression.

Also, be sure that you get an 8-bit result
when you need one.

The best way to work with operand arithmetic is on a "try-it-and
see" basis. If it works, fine. If not, you'll get an error message that may
suggest a better approach.

82 Source Code Details

Operand arithmetic is a sophisticated tool for the advanced pro
grammer. You don't have to use it at all if you don't want to. But oper
and math sure does neat things when you really get into it. We will
see some examples later.

Logic functions are also allowed in "new" EDASM, using" -" for
AND, "I" for OR, and "!" for EXCLUSIVE OR.

MORE ON PSEUDO-OPS

We have seen that two different beasties can go in the op code col
umn. We can use "real" op codes that are to be assembled into 6502
machine language code. And we can use "fake" op codes that deliver
a message to the assembler, making it change what it is doing.

A pseudo-op delivers a message to the
assembler during the assembly.

Thus, pseudo-ops are used to control the assembler, while real op
codes are used by the assembler to generate final 6502 machine lan
guage object code.

When you write a source code line, you have a choice of making
that line a pure comment, of giving a real op code that you want to
assemble into a machine language program, or of sending a special
message to the assembler for use during the assembly process.

What you put where is up to you. This will become more obvious as
we go on.

In this book, we will classify the EDASM pseudo-ops into four
groups. Further, if the pseudo-op is very "important" or is very often
used, you will see it described in a separate section. There are lots of
pseudo-ops that you won't have to worry about too much until well
after you have some assembler experience. We will call these "also
rans," and we will just summarize them for now. Feel free to tear into
the EDASM assembler manual for more details on these.

Additional pseudo-ops unique to either version of "new" EDASM
are summarized in Appendix A.

Let's call our pseudo-op groups the pretty printing group, the struc
ture group, the file group, and finally, the conditional group ...

Assembly Cookbook for the Apple lillie 83

TYPES OF PSEUDO-OPS

The PRETIY PRI NTI NG pseudo-ops
make the final assembler easier to
read and understand.

The STRUCTURE pseudo-ops decide
where our program is to start, isolate
file blocks, and chain listings together.

The FILE pseudo-ops help you enter
data values into a file.

The CONDITIONAL pseudo-ops give
you a way to assemble logically
selected parts of a complete listing.

Let's start with the pretty printers.

Pretty Printers

Our pretty printing pseudo-ops make the assembler listing easier to
read and easier to use.

So many assembly language listings look so awful because the peo
ple doing them are either lazy or else afraid to "waste" some source
code space on commands that make the assembly listing much more
attractive and far easier to read. As we'll find out later, well over one
half of your source code should be devoted to user comments and to
pseudo-op commands that make the listing pleasant and readable.

SKP

We will start with a very simple pseudo-op. 5KP stands for skip and
lets you skip as many vertical spaces as you want to on your assembler
printout. For instance, 5KP 1 will give you one blank line. 5KP 6 will
give you a white space six blank lines high on the printout.

You use 5KP to put white space into the printout. This lets you sepa
rate sections, makes titles more attractive, and generally cleans up the
presentation. Remember that a blank source code line is a no-no. So,
if you want a blank line, use 5KP 1 instead. This is sort of like some
military documents with their" This page intentionally left blank"
message on them, but that's the way it is.

One use rule. Be sure to leave a space between 5KP and the num
ber. It's 5KP 5, not 5KP5.

PAGE
The PAGE pseudo-op does a form feed for you. A form feed auto

matically moves you to the top of the next page. Use this one to put
the listing breaks where you want them and to isolate separate parts of
a program, such as the title block, the hooks, the main program, the
subs, and the files from each other.

The "old" version of EDA5M has a bug that sometimes messes up
headers if it is allowed to do its own page breaks. So, it is always a
good idea to force PAGE commands when and where you want them.

84 Source Code Details

SBTL
The SBTL pseudo-op will print out a subtitle for you at the top of

each page and will automatically number the pages for you with a
page number, a version number, and the name of the programmer.
The SBTL command reads a disk file called the ASMIDSTAMP, short
for "assembler identity stamp." You are prompted when you first boot
EDASM to update this header.

It is a very good idea to always use this SBTL pseudo-op as the first
line in your source code file. If you do not use SBTL, you will get no
headings and no page numbers.

LST OFF
This pseudo-op says to turn the listing off. You do this if you don't

want to have the entire assembly process appear on your printed
record. If you are reassembling only a small part of your entire pro
gram, you put a LST OFF at the beginning, and then the LST ON com
mand at the start of where you want a printed record.

I do not recommend using LST OFF this way, since you don't always
have a complete update of the last version of your assembly source
code. Leave the listing on during assembly.

One handy use of LST OFF, though, is to put this at the end of your
program, after you have gone through it a time or two. This stops the
printing of the long label lists at the end of your program and speeds
things up considerably.

LSTON
This is the opposite of LST OFF and turns the printer back on when

you get to a point in the program when you want to start listing again.
EDASM automatically comes up with the listing on, should you give it
the proper print command.

On "new" EDASM, many different listing features can be individu
ally switched on or off. See Appendix A for more info on this.

ALSO RANS-
There are two older, lesser pretty printing pseudo-ops. These are

REP for repeat and CHR for character. Together these two let you print
a continuous line of stars or whatever.

It is simpler and easier just to use comments for the same thing
although using REP and CHR does save a negligible amount of source
code disk space. These commands are not needed at all if you are cre
ating your source code the "new way" with a word processor. The
auto-repeat on the Apple lie completely eliminates the need for either
ohhese.

See Appendix A for additional "new" EDASM pretty printers.

Structure Pseudo-Ops

There are three very important pseudo-ops used to structure your
source code, along with seven lesser ones.

ORG
The ORG pseudo-op tells us where we are to start addressing our

object code program. Every normal machine language program needs

Assembly Cookbook for the Apple II/lle 85

a starting point, and your source code file must tell the assembler
where to start. This must be done before the assembly into machine
language can begin.

For instance, an ORG $0800 early in your source code will tell the
assembler to start assembling at $0800.

We'll see later why you usually put the origin on the third line of
your source file. You must put it before any real op codes.

You can also use ORG later in your program to reposition a new
part of your code. Say you want your subroutines to begin on the
page above your main program. You can use an "ORG
START +$0100" command to do this. The "ORG START +$0100" tells
the assembler, "Forget about where we are assembling. Instead, start
assembling what follows at the address START + $0100." Note that this
operand does a 16-bit address calculation. For this to work, you must
have a label of START on your first "real" program line.

Now, if your main program was longer than a single page, you
would use START + $0200 or START + $OBOO, or whatever you
wanted.

ORG GUl also be used to generate several different object codes
from a single source code file. More on this later.

EQU
The pseudo-op EQU stands for equate, and is used to first establish

the meaning of a label or a page zero address, an absolute address, or
a 16-bit value. You must be very careful to use 8-bit values for 8-bit
equates and 16-bit values for 16-bit equates.

Use 8-bit values for 8-bit EQUs.
Use 16-bit values for 16-bit EQUs.

DON'T MIX THEM UP!

All the EQUs should go ahead of the real op codes so that all labels
are defined before they are used.

For instance, a line of ...

°1
01 43 SPKR EQU $C030 WRAP SPEAKER

o
o

o

... will define the label SPKR
as having an address of $C030. Any time later in the program that you
want to whap the speaker, you just use SPKR as an operand.

Note the separate fields above in our source code line. The number
field tells us we are on line 43. The SPKR in the label field defines this
label for us. Since we have defined this label here, we are now free to
use SPKR as an operand as often as we want to later in the program.
The EQU in the op code field tells us we are using a pseudo-op that

86 Source Code Details

instructs the assembler to do something, rather than a "real" op code
that would get assembled into object code. EQU means "equate," so
SPKR will get equated to whatever is in the operand field.

The operand field has a $C030 in it, meaning that we will equate
SPKR to this hexadecimal value. Finally, our comment field tells the
programmer or anyone else what this line is up to and why it is being
used.

You also use EQU to set up a page zero address. For instance, this
line ...

- i:
27 BASL EQU $28 SCREEN BASE ADDRESS LOW

1 0 - -

. . . tells us that BASL
really means page zero address $28, any time we use this label as an
operand.

These EQUs are very important, and you usually equate everything
near the beginning of the program, long before you use any of these
labels. "

Every label must be defined once and only once in some label field.
There are at least three ways to do this: (1) you can use the EQU
pseudo-op to define a label as an address or a value ahead of time; or
(2) you can use a label in a label field of a source code line to define a
label as a working address pointing to a "real" program line in your
object code; or (3) you can use the upcoming DFB pseudo-op to
define a label as a file start or a file entry.

We'll have more to say on EQUs later.

CHN
This one stands for chain, and gives us a way to tie two or more

source code files together. For instance, a command of CHN PART2
will go into the disk and continue with part two ofthe assembly. CHN
should always be on the last line of any source code file, since that file
gets replaced with a new one on the chain command.

When you chain two programs together, all the labels and the cur
rent assembly address are passed on to the second source code mod
ule. CHN is somewhat similar to the "continue printing" command in
a word processor program.

ALSO RANS-
There are six lesser used structure pseudo-ops.
OB} doesn't do anything in "old" EDASM. In "new" EDASM, OBJ

lets you do in-place assembly. The OBJ pseudo-op also lets you
assemble the code in the Apple's memory in a place different from
where it is to actually run. "OBJ" stands for "object code location";
compared to "ORG" which shows the final starting place where the
code is to actually run.

Assembly Cookbook for the Apple lillie 87

OSECT and OENO set aside an area of memory without forcing you
to put actual values into each location. These pseudo-ops are not
often used by beginning programmers. The "0" stands for dummy, as
in dummy section.

REL is the pseudo-op used to generate relocatable code using
Apple's special relocating loader. Most of today's code for the Apple II
will only run in one place and does not need the extra complications
of relocatability. More details in the EOASM manual.

EXTRN and ENTRY give you ways to either use an outside label or
pass a label to the outside. These see little use in shorter programs.
They do get most handy if you are splitting things up into modules that
have to work with each other or with a supervisory program.

Once again, see Appendix A for structure pseudo-ops unique to
"new" EOASM.

File Pseudo-Ops

The file pseudo-ops are used to help you build files, and other parts
of a program that do not use op codes. There are two important ones,
and four that see lesser use.

Files are the main way you have of providing lots of data inside a
machine language program. You might have ASCII text files, tables of
addresses, shape or sprite information, musical notes, table lookup
values, or most anything else in your working files. The best and most
general programs will use fairly short machine language program code
to control large and easily changed files.

DFB
The pseudo-op OFB stands for define byte. This gives you a way to

enter one or more file values.
For instance, the source code line ...

- - ro 0'

o 01 312 NOTEFLE DFB $6E HIGH OCTAVE NOTE At I

10 -
. puts the value hexadecimal

$6E into the file whose starting address equals NOTEFLE. The operand
here can be in hex, in decimal, or can even be a label. Whatever you
use, the operand must be convertible to an 8-bit data value ranging
from hex $00 to $FF, or from decimal 0 to 255. Sometimes you will
put a label on each file entry, while other times you just name the
base address at the start of the file.

Should you want to put bunches of note values into your note file,
use commas and keep going ...

88 Source Code Details

- - -.. - '0

: i I ,0
312 NOTEFLE DFB $6E,$5C,$8A,$6E,$3D,$3D,$A4,$82

JO ~

0 I - A -- ~

. In this case, we end up with eight
file values stuffed into the file called NOTEFLE. Value $03 goes into
the first location, $05 into the second, and so on. In this case, the
label only applies to the first data entry. You can hit the $05 with a
"calculated" NOTEFILE+l label and the $07 with NOTEFILE+2 label,
and so on.

For best appearances, limit your DFB file entries to eight per line.
Use no spaces between entries, and don't forget that "$" sign for hex
values. Normally, you do not use comments when you have long file
entries, since the printout will get messy. It is permissible to "pad"
your first data value with three spaces after the DFB. This moves all
the data values over into the comment field for a cleaner listing. Any
extra spaces between DFB and the data values will get ignored by
EDASM.

Be sure to not end your data values with a trailing comma. This con
fuses EDASM and might throw in an extra $00 value on the end. And
don't forget those "$" signs. It's real easy to leave one off, plowing up
a single data value. Also, be sure to not have spaces between your file
entries.

If you are involved with very large or very long files, it might be bet
ter to skip over the file area during the assembly process, and then
load the file as a block off your disk. A file of a hundred or more char
acters takes a lot of typing and burns up a lot of disk space.

Sometimes other programs, such as a word processor, a data base
manager, or a custom file generator, might be a better way to build
very long or very involved files.

For instance, say you needed a cosine table for a piotter's "circle
, fill" routines. You could use Applesloth to calculate the values and

then insert them as needed, along with commas and dollar signs, into
a text file that is readable by your assembler, or else in a ready-to-use
binary file format. The final code is then inserted into your machine
language object program as needed. Long files most often go at the
end of a machine language object program and are thus easily
appended. .

Note that DFB simply puts data values into program locations. Most
machine language programs have two areas of code. One area con
tains op codes pieced together into legal 6502 commands. The other
area holds numbers, characters, or other data values that are accessed
and used by the working code portion of the program.

o

Assembly Cookbook for the Apple II/lle 89

It is very easy to get EQU and DFB mixed up. Here's the rule ...

Use EQU to equate values and address
labels BEFORE your "real" op codes.

Use DFB to define files and file entries
DURING or AFTER your "real" machine
language op codes.

Normally, you pre-establish values and op codes ahead of time with
the EQU pseudo-op. You post-define files and file entries with the DFB
pseudo-op.

Should you have a short stash inside your running machine lan
guage object code, you put your DFBs inside the code as the need
arises. Just be certain that you use these stashes as stashes and don't
try to execute them as op codes.

ASC
This pseudo-op is short for ASCII, and lets you create a file of ASCII

characters. The first and last characters of the operand are delimiters
that separate the message from any comments later in the line. The
delimiter symbol must not be included in the ASCII string.

For instance, the source code line ...

o 645 MSGFLE Ase RHit any key to continueR

o
o

... will put the code for an ASCII
capital "H" in the first location of the message file, the code for a low
ercase "i" in the second location, and so on. In this example, the
quotes are the delimiters. Everything after the first delimiter and before
the second delimiter is put into memory as ASCII characters. Should
you want to print a quote, you use a different delimiter symbol pair,
such as a "/" (slash) at the start and end of your text string.

The delimiter is not allowed to appear in the text message. It is usu
ally a bad idea to tack a comment on the end of an ASC pseudo-op
since the printout will get messy. An interesting quirk of EDASM is that
you do not need the second delimiter if you have no comments. But
watch out for tail-end spaces if you try this.

Once again, if you have very long text messages that aren't going to
change much, you are better off generating those messages with a
word processor and then separately combining the message files into
the assembled program. Otherwise you are into lots of typing and
need mucho disk space for your source code programs. Another
advantage of "new-way" word processing is that you can easily
include uppercase and lowercase in your messages, even with older
Apples.

90 Source Code Details

Provided, of course, that everyone who is going to use your pro
gram has some way to display lowercase.

ALSO RANS-

This time, our less-often used pseudo-ops give us special ways of
entering special things into files.

MSB lets you clear or set the most significant bit of any ASCII char
acters that are generated by the assembler. MSB ON sets that bit, and
MSB OFF clears that bit. For most Apple uses, ASCII has its MSB set.
ASCII with its MSB off is sometimes called low ASCII, while a set MSB
is called high ASCII.

The DCI pseudo-op lets you build ASCII files that use low ASCII for
all but the last character and high ASCII for the final character. Which
gives you a very special-use way of telling when you get to the end of
a message. This slightly shortens text messages since you may no
longer need a special "end-of-text" marker, such as an ETX or a NUL.

The OW pseudo-op defines a double-byte, or a 16-bit word put in
memory backward, the way a 6502 expects a low, then a high,
address. This is most used for lists of addresses.

The DDB pseudo-op lets you define a double-byte, or 16-bit word
put in memory exactly the way you show it in the operand.

Use DDB for "frontward" entry. Use DW for "backward" entry for
6502 addresses.

The OS pseudo-op stands for Define Storage. This one gets used to
set aside an area for file values without actually defining those values
at the present time.

Conditional Pseudo-Ops

There are three special pseudo-ops in "old" EDASM that let you do
conditional assembly. Conditional assembly means that you can
assemble only certain parts of your programs under certain condi
tions.

Conditional assembly is very specialized, but is most useful when
you want to use one master program to handle several different
options of final object code. Since this is an advanced technique, we
aren't going into too much detail here.

The three pseudo-ops involved are called DO, ELSE, and FIN, and
are always used in their alphabetical order. See the EDASM manual
for more details.

On "new" EDASM, there are many new and more powerful condi
tional execution commands. See Appendix A.

YOUR OWN ASSEMBLER

That just about sums up the pseudo-ops. We have been careful to
show you the more important ones, and those that you are more likely
to want to use early in the game. We have seen that a pseudo-op is a
special instruction that we send to the assembler for use during assem
bly time.

We can arrange pseudo-ops into pretty printing, structure, file, and
conditional assembly groupings.

Assembly Cookbook for the Apple lillie 91

The pretty printing pseudo-ops are used to make the final printout
attractive, and include PAGE, SKP, LST, and SBTL.

The structure pseudo-ops are used to organize the source file assem
bly process, and include ORG, EQU, and CHN.

The data pseudo-ops are used to create data files of numbers or text
characters. Of these OFB and ASC are the most important.

Finally, we have conditional pseudo-ops that let you assemble only
parts of a program. These are not needed for most simple assembly
jobs.

I've tried to present things in a totally different way than the EOASM
manual does. If you have any problems, be sure to check into their
way of presenting things as well.

If the right one don't get you then the left one will.
But what if you are going to use a different assembler? You'll find

things pretty much "alike but different somehow."
Go back through this chapter, and any place you find an identical

pseudo-op or way of doing things, paint it green with a transparent
page high lighter. If there are obvious differences, paint the problem
areas pink with another high lighter. If the difference is minor, note it
in the margin. Then list the important differences in the box on the
next page.

Things may look a little fuzzy at this stage of the game.
Blurry even.
Our ripoff module examples should clear things up. Before we find

out how to write a source code file, though, we need ways to organ
ize the source code lines into something that is readable and works.
We can call this our ...

92 Source Code Details

DIFFERENCES BETWEEN M'I ASSEMBLER AND EDASM:

SOURCE CODE STRUCTURE

We now know that the source code is a script, or a series of instruc
tions that we send to an assembler program. The assembler, in turn,
takes these instructions and uses them to generate object code, or a
runnable machine language program. We also know that the source
code is made up of code lines, and that each line has a number field,
a label field, an op code field, an operand field, and a comment field.
Very special rules have to be followed for the use of each field.

What next?
Obviously, we have to decide which lines go where in your source

code. But, where do you begin? Exactly how do you arrange your
source code so that it will both generate useful object code for you
and still keep it understandable and self-documenting?

Think about the structure of your source code ...

STRUCTURE-

The sequence and arrangement of lines
in a program or source code.

Also, any methodology for writing
programs or source code.

Structure is nothing more nor less than how you arrange a particular
program. In the case of assembler source code, structure involves
which lines go where in what order.

93

94 Source Code Structure

Now, structure may sound great, but it is really one of the most dan
gerous and most insidious things you would ever want to let appear in
any computer program. One of the obvious reasons is that.

ANY ATTEMPT WHATSOEVER IN
USING STRUCTURE IN A PROGRAM
WILL SURELY LIMIT YOU ONE WAY OR
ANOTHER AND IS CERTAIN TO
RETURN TO HAUNT YOU!

Structure may limit how fast you can do things. Or, it may force
your program to take up too much room. Or, it may restrict you from
doing what you want to do in the way you want to do it. Structure
may simply ignore most of the resources available to you.

Remember, the whole truth and beauty of machine language code
is that anything goes! And, if structure ever gets between you and any
thing, that's ungood. In fact, if you are to become a decent machine
language programmer, the foremost tenet of your beliefs absolutely
must be that . .

ALL STRUCTURE IS INHERENTL '(
AND INTRINSICALL'(EVIL!

Structure, of course, is what makes BASIC so bad, Pascal utterly
ludicrous, and what renders Ada totally unspeakable in polite com
pany.

Why, using structure is almost as bad as using a road.
If you are traveling on land, you will almost always have a more

challenging trip, a more informative trip, and a vastly more creative
trip if you do not travel by road.

First, the road will take you where it wants you to go, rather than
where you really should be headed. Secondly, the road will very
severely limit your choice of a mode of transport. Using a road also
drastically restricts your possible travel speed to a very narrow range.
Contemplate a sunset in the fast lane sometime and see what happens
to you.

While in a canoe.
A road will also have all sorts of silly regulations as to which side to

travel on, access rules, license demands, speed limits, vehicle restric
tions, and lots of other dumb things that go with the totally nonsensi
cal concept of structure. Needless to say, you always end up paying to
use a road, one way or another.

But the most insidious and most despicable thing about a road is
that others will have traveled it before you, still others will travel with
you, and yet others will travel it after you. Which very severely
demeans the experience for all.

So, structure is inherently and intrinsically evil. Particularly if it gets
between where you are and where you want to go.

Or become.
As a machine language programmer or an assembly language pro

grammer, you are totally free to pick and choose as much or as little

Assembly Cookbook for the Apple II/lIe 95

structure to your programs as you feel comfortable with. But, don't
ever go along for the ride just because there's some stupid and mis
guided attempt at structure that "they" want you to use.

What we are really saying is ...

Go ahead and use any structure you may
feel comfortable with,

BUl-

Be ready to fire bomb the mutha at any
time for any reason.

So, now that I've shown you how bad structure is, I'll show you
some structure.

It is the structure I use for my assembly language programs. Just as
with any structure, mine is severely limiting and restrictive. The only
thing nice you can say about it is that my structure is orders of magni
tude less limiting than BASIC, and infinitely less restrictive than Pascal.

So, use my structure if you like. If not, go ahead and do anything
you like.

Remember ...

Anything goes in machine language!

Anyway, the goals of the structure I use are, first, to make the
assembler put together the object code in a reasonable way, and sec
ondly, to be attractive and understandable to people for later use.

There are 16 parts to a source code listing that follow my struc
ture ...

SOU~CE CODE ST~UCTU~E:

~ :::1

\ HOOKS \
\ CONSTANTS

BIG LUMPS

LITTLE LUMPS

WHAT IT DOES
CRUMBS

FILES
HOW roUSE IT

BOTTOM LINE

GOTCHAS LABEL REFERENCES
EN~ANCEMENTS

ERROR MESSAGES
RANDOM COMMENTS

\.J BOD'I)

To make this structure easy to understand and use, it has been put
into a ripoff module called the EMPTY SHELL.SOURCE, and will be
our first ripoff module in Part II.

Many of today's assembler listings seem all cramped together and
hard to read. The main reason for this is that the programmers are
attempting to save on source code length or are otherwise suffering
from some form of dino dementia. With most any modern Apple

96 Source Code Structure

assembler, there is no reasonable limit to the length of source code.
So, any time some blank space or some formatting commands make
the source code read better or seem better thought out or better
organized, use them ...

NEVER try to save source code file space
at the expense of legibility or clarity.

ALWAYS spend the time and space you
need to create a source code file that is
easy to understand and pleasant to read.

Another essential ru Ie is that. . .

More than one half of your source code
should be documentation aimed at
informing the reader or user.

Remember that source code must serve two ways. First it has to be
usable by an assembler to generate object code. But secondly, and
equally important, source code must be legible and understandable
by a user or customer. The source code should always explain exactly
what a program does, exactly how a program does it, and exactly how
a program can be modified, either for an upgrade or for a move to a
different machine.

By the way, you will just about never make a hard copy of your
source code. Instead, you use a combined source and object code
printout that gets generated "free" when you do an assembly. This
combined source and object code is called an assembler listing . ..

ASSEMBLER LlSTING-

A hard-copy printout that combines
source and object code onto one single
document.

Assembler listings are the most common
way of showing source code.

The assembler listing is by far the most common way of keeping
hard-copy records of the assembly process. Any time you read a mag
azine article that includes machine language code, you'll find an
assembler listing of one kind or another present. We'll see more
details on reading an assembler listing later.

One big advantage of assembly listings over "pure" source code is
that assembler listings show you the generated machine language
object code that goes directly with the source code. You can often
spot nonsense op codes this way, and the versions won't get mixed up
as well. You also cannot normally get an error-free assembler listing of
something that will not assemble. This forces you to save only records
of code that will at least assemble properly.

The EDASM assembler automatically generates assembler listings

Assembly Cookbook for the Apple II/lie 97

during assembly if you turn the printer on with a "PR#l" command.
Other assemblers will do the same thing one way or another.

You rarely would want to make a printed copy of your source code
for a record or for publication. You create source code on screen and
save source code to disk or to RAM for assembly, but you use assem
bler listings for your records and final hard copy ..

Hard-copy printouts of "pure" source
code are rarely used or needed.

Instead, use assembler listings for your
records and publication.

There is one little hangup about assembler listings, though. Remem
ber those pseudo-ops? An assembler listing will show you the result of
a formatting pseudo-op, rather than listing it. . .

Certain pseudo-ops, such as PAGE, SKP,
and SBn will not appear on an
assembler listing. Neither will their line
numbers.

Instead, you will see the results of these
pseudo-ops instead, such as a new page,
numbered headers, or skipped lines.

So, if you have a line number missing on an assembler listing,
chances are that line number was a pseudo-op intended to format
things one way or another. If line 25 is missing and replaced with six
white spaces, obviously a 5KP 6 is inferred here where the "missing"
line belongs.

An important point ...

Your assembly listings should be works
of art that must stand on their own
merits, separate from any code they may
generate.

You should be as concerned about
layout, appearance, and how images fit
the page as would a calligrapher or poet.

There are two halves to my source code structure. The prolog
mostly holds documentation intended for the user, while the body
mostly holds commands for the assembler.

PROlOG-

The first part of a source code listing,
used mostly to inform the programmer or
user.

BODY-

The second part of a source code listing,
used mostly to hold assembler
commands.

98 Source Code Structure

You will find a few pseudo-ops in the prolog, and there's bound to
be lots of documentation in the body, but the prolog is basically for
the user, and the body is basically intended for the assembler pro
gram.

Let's look at the 16 parts to my source code structure. We'll use var
ious examples from different application programs to show what each
part is supposed to do.

STARTSTUFF
The startstuff is a few lines of code always used at the beginning of

your program to get everything off on the right foot.
Let's look at some typical startstuff source code. Here is what you

might punch into EDASM .

- 1
I

-

o! 1 SBTL ,0
I 2 SKP2

3 ORG $0800 PUT MODULE AT $0800

°1
4 SKP2 10

You punch in your commands, using "space" to mean "tab" on
"old" EDASM, or real lie tabs on "new" EDASM. The line numbers
are provided free for you. So, when you see that "1," you hit a space
or tab to get past the label field, because you do not want a label on
line 1. The SBTL is the pseudo-op here, and tells the assembler to
name and number each assembler listing page. The first 5KP 2 tells us
to put some white space between the header and the first printed line.
SBTL, of course, will not print, and we will see its result instead.

On line 3, you tell the assembler that you want this code to be
assembled onto disk such that the object code will eventually load
into and run starting at location $0800. The space and the semicolon
are needed to ensure you are really in the comment field. The space
after the semicolon is actually a space, but it is an unneeded one I
throw in to make things prettier. The comment field here is intended
to inform the reader or user where the code is going to run.

I prefer to put the ORG for origin command on line 3. This way, you
always know where it is and are always forced to think about where
you want your code to go before you write it.

The 5KP 2 of line 4 is used to get some white space after the
startstuff and the upcoming title block.

So, that is all there is to punching code into your assembler. You
must be very careful to use spaces or tabs for tabs and must never
have any spaces inside a label, op code, or operand column.

But, if you list or examine your EDASM code, you'll get everything
tabbed over to where it belongs, more or less. . .

o

o

0

0'

0 1
I

ZORCH.SOURCE

Assembly Cookbook for the Apple lillie 99

0

1 SBTL
2 SKP2 0
3 ORG $0800 PUT MODULE AT $0800
4 SKP2

0

There are no labels in our startstuff so the label field stays blank.
When you get around to actually assembling the program, though,

none of this will appear in your object code. Why? Because there are
no "real" op codes so far. Just pseudo-ops. All our startstuff has done
is tell the assembler to give us headers and page numbers on the list
ing, to start assembling into a certain location, and to leave some
white space in two places.

Your assembler listing will look something like this. . .

20-MAY-83 DEL t07 PAGE 1 o
NEXT OBJECT FILE NAME IS ZORCH '0

0800: 3 ORG $0800 J PUT MODULE AT $0800

0800: o
o 0800:

5
6

* *

I

01
o

- --.
And this one looks more differenter still. What happened to lines 1,

2, and 4? Why all those OBOO's?
Well, we've taken a peek ahead here to show you how source code

looks when first entered, when listed on-screen as source code, and
when printed as an assembler listing.

Instead of line 1, we get the header and the page number. Instead of
lines 2 and 4, we get the results of those lines with two skipped lines
worth of white space. And, since we have yet to feed a "real" op
code to our assembler, it stays "stuck" at $OBOO and has nothing to
put in all that white space reserved for object code bytes. Lines 5 and
6 we borrowed from the upcoming title block, just to show you what
it would look like. Should you end your assembly at this point, you
will get an object code that is zero bytes long.

As we'll find out later, up to three object code bytes can follow the
current assembly address, and a label can fit between the line number
and the operand.

Anyway, back to our structure and the startstuff.
With EDASM, I like to start with the SBTLE command, because this

gives you a nice header, date, and page numbering on each page.

100 Source Code Structure

There is one bug with SBTL, though. . .

The EDASM pseudo-op "SBTL" has a
bug that causes certain printers to tab
off-page if "old" EDASM itself produces
a formfeed.

One way to beat this is to always force
your own next page with a PAGE pseudo
op.

Which simply says to call your own page breaks on a "new" or
"old" EDASM assembly listing. Calling your own page breaks is a
good idea anyhow for best legibility. Use the PAGE pseudo-op to do
this.

Anyway, so much for SBTL. You own assembler may need different
setup commands. If so, change the startstuff to suit your needs.

The next part of the startstuff is the origin line.

ORIGIN-

That place in memory where the object
code is to actually begin.

Things get sticky fast here. On a disk-based assembler, you can give
an origin command that goes anywhere in memory, even overwriting
the assembler code. You can do this since the code gets put onto disk,
rather than assembled directly into your machine. To get the object
code into your machine, you load or boot the disk in the usual way.

Some in-place assemblers give you the option of assembling your
code in one part of the machine with the intention that it eventually is
to run elsewhere. This keeps you from overwriting the assembler dur
ing the assembly process. A block move of some sort is needed to
relocate the object code in its final running position. These in-place
assemblers will ask you for a destination address along with a final
object code address instead. "New" EDASM offers this as an option.

Unless you go to a lot of trouble to make your object code relocat
able, it will run only at one location in the machine. In fact

EDASM demands an origin for the object
code, or it will not give you any assembly
at all.

Many dino assemblers will bury the ORG command in the middle of
the source code somewhere. I like to always put it on line 3. That
way, you always know where it is, which makes for easy finding and
easier changes. You also get the "- - - - - NEXT OBJECT FILE NAME IS
ZORCH" line which keys the name of your source code to the name
of your object code.

As a reminder, object and source codes must have different names,
since one is a series of script-like instructions and the other is ready
to-run code. If you do nothing to EDASM, a source code called
ZORCH will assemble into an object code called ZORCH.OBJO. I

Assembly Cookbook for the Apple lillie 10 1

much prefer to tell the assembler to assemble lORCH.50URCE into
lORCH. More on this when we get to actually assembling programs.

You can also assemble your source code in several pieces. While
you normally should try to put the whole object code together into
one single piece, split object codes can have special uses on larger
and longer programs.

If you are using more than one piece for your object code, a new
ORG statement is needed for each piece.

EDASM does this one of two ways. If you absolutely define a new
origin, you get a new object code file, usually named lORCH.OBJ1,
then lORCH.OBJ2, and so on. An example of an absolutely defined
origin is ORG $8AOO.

On the other hand, if you relatively define a new origin, EDASM
generates only a single object file, filling in with garbage between the
old and new object code. One way to define a new relative origin is to
put some label, say START on your first line that holds a "real" op
code. Then a source code command of ORG START +$0300 will auto
matically add garbage at the end of the original object code, and start
the new stuff off exactly at the origin plus $0300.

You could also back up, but this would overwrite generated object
code and would normally be kind of dumb.

At any rate ...

EDASM lets you generate more than one
object code from a single source code, or
else lets you move around and leave
"holes" in one long object code file.

A relative new origin, such as ORG
START +$0300 generates one long object
code file with holes in it.

An absolute new origin, such as ORG
$7600 generates a second and separate
object code file.

Normally, you use a single object code without any holes in it. Mul
tiple or continuous object code should be reserved for special uses
only.

At any rate, your first origin pseudo-op in your program must be an
absolute one, and must be done before any source code lines involv
ing real op codes appear in your source code. This first ORG must
exist, or EDASM won't generate any object code at all.

Once again, the purpose of the startstuff is to decide where the
object code is to be assembled, to set up headers and page numbers,
to give us some pretty white space, and to do anything else you need
to get your assembler started off in the right direction.

TITLE BLOCK
The next "piece" to the structure of an assembly program is the title

block. The title block should name the program, give a hint of what it
does, show the date and version number, and should include a copy
right notice.

102 Source Code Structure

Here's an example of a title block.

- .. - - -1 0 0
5 ***
6 * *

0, 7 * -< IMPRINT MODULE >- *
8 * (IMBEDDED STRING PRINTER) *
9 * *

0 10 * VERSION 1.0 ($6500-$66Al) *
11 * *
12 * 6-15-83 *
13 * *

0 14 * *
15 * COPYRIGHT C 1982 BY *
16 * *

0 17 * DON LANCASTER AND SYNERGETICS *
18 * BOX 1300, THATCHER AZ., 85552 *
19 * *

0 20 * ALL COMMERCIAL RIGHTS RESERVED *
21 * *
22 . *** ,

...1
23 SKP4 - -- - - -'-

The fancy box makes a good and attention-getting way of setting the
title essentials away from the rest of the source code. Since most pro
grams have funky or catchy names, you might qualify the name with a
second descriptive line as shown here.

You also should provide a version number, a version date, and the
place in memory where the object code is going to run. Don't forget
that object code can go a few bytes beyond the last assembled line
number if that happens to be a 2- or a 3-byte instruction or if there is a
stash or a file at the end. If you don't know the length of your program
ahead oftime, take a guess, and correct it later.

The bottom half of your title block should have a copyright notice,
your name and address, and a use disclaimer.

By the way, all software printed listings are protected automatically
and free by an upgrade of what once was "common law" copyright
until such time as they are sold. Theoretically, there are legal remedies
to people ripping off your work. But ...

In the real world, you as software
author, have ZERO recourse to any
ripoff, use or misuse of any code you
may create.

Any large company, the Feds, or for that matter, anyone else with a
lawyer and more money than brains, can immediately and totally
deprive you of any rights you may have naively thought you might
have had regarding software authorship. At the very least, the time
value of any possible recourse can be made so painfully drawn out
and so ridiculously expensive as to be less than worthless.

This is reality. All else is bull- - - -.
What you do as a software author is hope for the best. Should you

get ripped off, pick yourself up, and start over again, putting your
energy and personal value added into new work rather than into an

•

I:
0

0

0

--..

-
0

0,

0

01

25
26
27
28
29
30
31
32
33

. ,

Assembly Cookbook for the Apple lillie 103

interminable psychic energy sink. Recognize that anything "legal" can
be weaseled out of one way or another, or else can be delayed long
enough to become moot.

But the copyright notice does one very important thing. It makes it
quite clear to anyone who is stealing your work that they are in fact
stealing, rather than reusing public domain material or adapting mate
rial freely given to them.

So, be sure to put that copyright notice on your listing. At the very
least, it might keep you from being attacked by a leopard or hit by a
meteor.

Maybe even both.
Usually, it is far easier to edit an existing source code than it is to

create a new one. So, typically you will steal a title block off some
thing you already have done and edit it into something new.

The title box, of course, is all comment. Remember that you start an
all comment line with either a ";" or an "*". I prefer the ";" since it
isn't as obnoxious and is somehow less dino looking.

WHAT DOES IT DO?
Next, add as many comment lines as you need to tell us exactly

what the program does. Keep this description simple, explicit, and
mainstream.

Here's an example ...

- - --
*** WHAT IT DOES ***

SKPI
THIS MODULE OUTPUTS TEXT STRINGS OR DOS COMMANDS
TO THE APPLE II'S OUTPUT HOOKS, USING STRINGS
THAT ARE DIRECTLY IMBEDDED IN THE SOURCE CODE.

SKP4

- -

o

·0

o

l 0
......

This description should apply to the main aim of the entire source
code. Later on you will have lots of chances to show what the sepa
rate parts of the code do individually. I like to provide for six lines
here. That's what the final three "empty" comment lines are for. The
first 5KP gives you some white space between title and description.
The second separates this part from the next part of our structure,
which tells us ...

HOW TO USE IT
Next, tell us exactly how to use the object code. Tell us everything

you need to know to use the main part of the code in the usual way
you want it used. Again, hold off on specific details on special use
modes. Tell us only the mainstream stuff as compactly as possible.

104 Source Code Structure

Something like this ...

~O~I~--~--~--~~--~-~-IO
34 *** HOW TO USE IT ***

o

o

35
36
37
38
39
40
41

SKP1
YOUR CALLING CODE SHOULD HAVE A JSR TO IMPRINT.
THIS JSR SHOULD BE IMMEDIATELY FOLLOWED BY AN
ASCII STRING ENDING WITH AN $00 MARKER.

42 PAGE

o

o

I 43 SKP4

L-0~L-__ ~----__ ~r---____ -J-------__ J-------___ ~--------~---'~ ___ ~

As with the title block and the "what-it-does" module of our struc
ture, this block is pure comment, intended for people and ignored by
the assembler program. Tell us here only the essentials of how to use
the code that follows.

The PAGE command is used on line 42 because you most likely
have put all you want to on the first page of your assembler listing. By
the way, the notation we have shown you previously is the actual
source code as you place it on screen. The assembler listing will have
white spaces for the SKPs, page breaks for PAGE, and generated
object code for "real" op codes.

There are three more "pure comment" modules.

GOTCHAS
A gotcha is anything that will make the program hang up or not

work. Tell us here how much RAM you need in the Apple. Can a lan
guage card be used? Must a language card be used? Do you need
Applesoft ROMs? Will it only run on a lie? Does Eurapple timing make
a difference? Is lower case necessary? Is a Flugelhoph card in slot 5
allowable? Are other code modules needed to let this program work?
Will the program bomb if the paddles aren't plugged in? Are hardware
mods required?

Here's an example of some gotchas .

--
o 44 *** GOTCHAS ***

45 SKP1
46 1 THIS METHOD IS BEST USED FOR SHORT AND UNRELATED

o 47 MESSAGES INTERNAL TO YOUR PROGRAM.
48
49 MESSAGES CAN BE ANY LENGTH, BUT MORE THAN FORTY
50 CHARACTERS WILL NOT PRINT CLEANLY ON YOUR
51 ~ ASSEMBLY LISTING.
52 SKP4 O'

1 -\ ---
It pays to keep the fancy title and stars on each and everyone of the

r
'0

o

-

0
53
54

0 55
56
57
58

0 59
60
61

oj

Assembly Cookbook for the Apple II/lie 705

comment modules. This adds an overall consistency and style to all
your programs, and forces you to put what is essential into the proper
place.

Note also how a comment that is too long for one line can be bro
ken up and done in several sequential lines. But remember that this is
a line-oriented assembler. There is no way that anything "left over" at
the end of one line will automatically get picked up and used on the
next line down.

ENHANCEMENTS
An enhancement is the opposite of a gotcha. What new can you do

with the program that is above and beyond what you intended? How
are these features activated? Why would you want to use them?

Again, here's an example ... - -
••• ENHANCEMENTS •••

SKP1
DOS COMMANDS ARE OUTPUT BY STARTING THE STRING
WITH A CARRIAGE RETURN AND <CTRL>D.

TO GO DIRECTLY TO THE SCREEN, USE COUT1 RATHER
THAN COUTo THIS IS FASTER BUT YOU CANNOT USE
DOS OR HARD COpy WHEN YOU DO THIS.

SKP4

. -

o

o - -
Try to keep things that just about any user needs in the "what-it

does" and "how-to-use-it" modules. Save this module for details for
the dedicated user who wants to go beyond what is obviously offered.
Again, there will be room below for comments specific to smaller por
tions of the whole program.

Always keep your comments simple, straightforward, and to the
point. Provide only what is needed, but everything that is needed. Do
so as concisely as possible.

And, if you need to say more, add some.

~ANDOMCO~ENTS

If there is some other stuff you want to say about your whole pro
gram, here is where you cram it in. Again, we have a module that is
pure comment ...

106 Source Code Structure

0 62
63
64

0 65
66
67
68

0 69
I 70

J
71

- - -
; * * * RANDOM COMMENTS * * *
SKPl

TO RUN THE DEMO, USE $7400G OR CALL 29696.

PAGE
SKP5

- -
We'll note in passing that this particular demo is just a demo, and

something that will not be used after you have studied it. Thus, this
goes as a random comment, rather than in the "how-to-use-it" block.

50 far, just about every line has been spent telling the user about
something. Only our origin in the startstuff is something needed by the
assembler program. Everything else is comments by one person for
other people.

And that pretty much wraps up the prolog half of our source code
structure. The prolog gets things started, tells us what the program is,
and then tells us how to use it. The body is more concerned with get
ting input that the assembler can use, although it will also have lots of
comments present.

Let's now pick up our first body module that both the assembler
program and people can use.

HOOKS
The hooks are "connections" that you want to make to known loca

tions in the Apple II ...

HOOKS-

Labeled connections made to known and
fixed Apple memory locations.

As review, one of the big advantages of a symbolic assembler is that
you can put labels on things. These labels can refer to values, to loca
tions in a program, or to specific fixed locations in the Apple II or lie.
A hook is how you pre-define a specific location for use by the pro
gram.

A hook source code line will start with the defining label, followed
by the pseudo-op EQU, followed by the absolute address. Later on,
operands in the program can refer to these hooks. It is best to define
the hooks before you use them although a good assembler will find a
label anywhere in the source code.

One exception in "new" EDA5M: If you specifically want to force
an absolute address that references page zero, your EQU must follow
the first operand label reference. Otherwise, you will get page zero
addressing, rather than absolute addressing. The need for an absolute
address from $0000 to $OOFF is very rare, but can solve some timing
problems.

o

o

,0

I.n..

01
I

0

0
I

0

Assembly Cookbook for the Apple lillie 107

Here are some hooks. . .

-
72~ *** HOOKS ***. 0
73 SKPl
74 COUT EOU $FDED · OUTPUT CHARACTER VIA HOOKS ,

I 75 HOME EOU $FC58 ~ CLEAR SCREEN
76 KBDSTR EOU $C010 ~ KEYBOAlID RESET 0
77 INIT EOU $FB2F ~ INITIALIZE TEXT SCREEN
78 KEYIN EOU $FD1B ; READ KEYBOARD
79 PRBL2 EOU $F94A ~ PRINT X BLANKS
80 SETINV EOU $PE80 · SET INVERSE SCREEN a ,
81 SETNORM EOU $FE84 ~ SET NORMAL SCREEN
82 STRP2
83 WAIT
84

EOU $EB ; POINTER TO ASCII STRING I

EOU $FCA8 · TIME DELAY SET BY ACCUMULATOR ,
j 0_ SKP3 - - -

For instance, we see that the label WAIT is defined as absolute
address $FCA8, which is the Apple II location for a monitor delay sub
routine.

Hooks may be defined as an 8-bit value or a 16-bit value. An 8-bit
value is interpreted by EDASM as a page zero address. A value of four
hex bytes, or 16 bits is interpreted by EDASM as an absolute address.
The operand can modify the addressing mode by adding a comma for
indexed addressing, or including parentheses for indirect addressing
modes, and so on.

Hooks may also be used to set aside locations on page zero for spe
cial use by your program, and can also be the interconnections
between your program and other modules, possibly even in other lan
guages. In line 82, STRP2 is a string pointer we have defined and set
aside on page zero for use by this program module. Note that the
same label can point to the next location as well, by using STRP2 + 1
and doing operand arithmetic.

Three gotchas. Be sure to use the 1/$" sign for hex addresses. Do not
use a 1/#" symbol when defining a hook. The I/EQU" says that you
are defining a value. Finally, all EDASM page zero locations must be
pre-defined with hooks before they are used.

Summing up ...

USING "EQU" HOOKS

DON'T forget the "$" sign in front of
hex addresses.

DON'T use the "#" symbol, as EQU
says nearly the same thing.

DO pre-define all EDASM page zero
addresses using 8-bit hook values.

As review, do you remember the difference between an EQU and a
DFB? Well ...

108 Source Code Structure

Thus ...

EQU means equate and pre-defines an
address before it is used.

DFB means define and enters an in-place
value into the object code.

EQUs come BEFORE any real op codes.

DFBs appear DURING or AFTER any real
op codes.

One exception: On "new" EDASM, absolute 16-bit references to
page zero locations must have their EQU following their first use. The
need to force an absolute address from $0000 to $OOFF is very rare,
but this rule lets you do it.

What we say for DFSs goes double for DOSs and DFWs. Why?
Any time you use an EQU, you have to match the word size and the

instruction mode to what you need. For instance, on an 8-bit value,
such as WNDTOP EQU $20, a LOA WNDTOP will load the accumu
lator from page zero memory location $0020. On the other hand, a
LOA #WNDTOP will put the immediate value hex $20 into the accu
mulator.

As 16-bit examples, say you use a DISK EQU $C08C A command of
LOA DISK will load the accumulator from absolute location $C08C A
command of LOA DISK,X will load the accumulator from the sum of
what is in the X index register and absolute location $C08C Typically,
there will be a $60 in the X register for slot number six, and the LOA
DISK,X will access absolute location $COEC, which reads the diskette
if things have been set up properly. This use of indexed instructions is
the usual way to set up slot independent code.

The rule is this ...

ALWA YS match the size of the EQU to
the size of the needed 8-bit or 16-bit
value or address.

There is one sneaky way you can split up a 16-bit EQU into two 8-
bit pieces. This is done with a ">" or a "<" in the operand.

For instance, say you want to take a 16-bit previously EQU'd
address and put it into a pair of 8-bit locations on page zero. Here is
how to do it ...

LDA >ADDRESS

STA POINTER

LDA <ADDRESS

STA POINTER+l

What this tells you to do is take the bottom half of a 16-bit address

0

0

O·
1

Assembly Cookbook for the Apple lillie 109

and store it in a page zero location called POINTER. Then take the top
half of the 16-bit address and store it in the next available location,
found by adding one to POINTER.

Alternately, you could store the bottom half in POINTlO and the
top half in POINTHI. Remember that most addresses in most 6502
uses are backward, with the low 8-bit or position address first, and the
high 8-bit or page address following.

Here's the rule on the "pick half" commands ..

A ">" in an E DASM operand says to
pick and use the lower eight bits of a 16-
bit value.

A" <" in an EDASM operand says to
pick and use the upper eight bits of a 16-
bit value.

Note that the arrow or caret poi nts to the half of the 16-bit word you
want to use. Other assemblers will most likely have some similar way
to split up 16-bit words into 8-bit pieces.

Your EQU hooks should normally be put in alphabetical order,
unless some other logical grouping makes more sense for what you
are doing.

CONSTANTS
Some programmers like to put all their EQUs into one long list. Oth

ers like to put all the 8-bit stuff in one pile, and the 16-bit values into
another. I prefer to put all the EQU addresses into one combined hook
list.

Then, on the same page, if you have any EQUs that are fixed con
stants or other pre-defined but non-address values, you add a second
list for these.

For instance, you might like to add textfile commands, such as a
label "B" for backspace, "F" for formfeed, "P" for a flashing screen
prompt ($60), "G" for a bell or "gong," and so on.

Here's a ferinstance ...

I'

10
85 *** TEXTFILE COMMANDS *** I
86 SKP1
87 B EQU $88 BACKSPACE
88 C EQU $80 CARRIAGE RETURN 0 89 0 EQU $84 DOS ATTENTION
90 L EQU $8A LINEFEED
91 P EQU $60 FLASHING PROMPT
92 X EQU $00 END OF MESSAGE

l 0
93 PAGE

- -
We will see how to use these constants later in the ripoff modules

that involve themselves with printing text. We'll see then that you can
use a DFB e,l instead of a DFB $8D,$8A to put a carriage return and a
skipped vertical space into a message. The label method is obviously

110 Source Code Structure

easier to type and saves looking up the same ASCII command value a
dozen times.

As another use of constants, consider a musical note program. Here
you can define labels of "Al," "Al#," "Bl," and so on, or something
similar. The assembler can then substitute pitch values directly for the
labels. But, don't forget that a single letter label of "A" is a reserved
no-no. So are "X" and "Y" on "new" EDASM.

At any rate, all of the EQUs should go on one page if they will fit.
The address EQUs should go first and be called hooks, while the value
EQUs should go second and be called constants.

The EMPTY SHELL.SOURCE ripoff module includes hundreds of the
most popular EQUs already built into the source code and ready for
your use without any looking up or scrounging around. What you do
is decide which EQUs you do not want and then eliminate all but the
good guys.

BIG LUMPS

At long last, in tenth place of our assembler's source code structure,
we are ready to start with the "real" program. This involves the op
codes that the assembler is to use to put together some object code
for us.

What you enter here, of course, depends on what you want your
program to do. Regardless of how big or how small the program is, it
is convenient to break the code up into three groups, which we will
call the big lumps, the little lumps, and the crumbs.

The size of each depends on the overall size of your program. If you
are writing a simple support module, the big lumps will be the actual
program code, the little lumps will be the support subroutines, and
the crumbs will be any sub-subs or short file entries. You can have any
number of lumps of any size.

On a very large program, the big lumps will be the supervisory or
high-level control code, the little lumps will be the code modules that
do each individual needed task, and the crumbs will be the subrou
tines that do all the grunge work.

Any short or compact files that are not often changed might also be
included as little lumps or crumbs. We'll have room for big files later
in our structure.

Normally, it is a good idea to have your program do something on
its very first address. The reason for this is that if you BRUN something
off a disk, the disk will try to execute the first byte in the code as an
instruction. So, you usually start with the high level big-lumps code,
follow this with the lower level little-lumps code, and then work your
way down to the detail or crumbs code.

Any support files are best split up so that short and rarely changed
files immediately follow the module that uses them, and such that
major files go on the end.

Assembly Cookbook for the Apple II/lie 111

Saying it again ...

The first byte in a program should
normally be executable code.

The usual way to arrange a program is
heavy instructions first, then medium
instructions second, and details third.

Short and rarely changed stashes
normally follow the module that uses
them.

Long files normally go at the end.

Now, of course, anything goes in machine language. So, you are
free to change and rearrange things any way you like. But, recognize
that this "{big lumps}-{Iittle lumps}-{crumbs}-{files}" structure
works well for most uses. Use it unless you have a good excuse not to.

Should you absolutely have to start with a file rather than code, put
a 3-byte jump at the beginning so that a BRUN command can bypass
the data and get to the running commands.

Here's some good practice. . .

A code module ideally should have only
one entry point and only one exit means.

Ideally, the entry point should be the
first byte of the code module.

There are times and places where you may want to violate this rule,
but it is generally a good idea to keep things in a modular order, with
entry and exit to various modules at expected and reasonable points.

Subroutines are ideal modules, because they meet this need of "sin
gle entry at the top," and "obvious exit on return." In fact, it is a good
idea to use subroutines even if the code is only needed or used in one
place of a program.

The organizing power of a subroutine is even greater than its code
shortening abilities ...

Subroutines are nearly ideal code
modules and should be used even if what
they do is needed only at one point in
the program.

What single subroutines do for you is keep the crumbs out of the
flow of the big-lumps code. Each detail sub can be changed without
having to reassemble and retest and re-debug the high level code, pro
vided you separate everything off into bite sized chunks ahead of
time.

Two exceptions. First, if speed is everything, don't use subroutine
calls and returns inside that part of the code that has to run the fastest.
And secondly, it may be necessary to sometimes have two or more
entry points into a single subroutine, such as for a "cold" or "warm"
entry, or whatever.

112 Source Code Structure

There is really no difference between how you put the big lumps,
the little lumps, and the crumbs into your source code. What could be
a big lump for one program could be nothing but a crumb in another.
In general, you put down a title, some user documentation, and then
the "real" op codes.

The best examples of this appear in the ripoff modules later in the
book. You might want to scan these at this time, looking for examples
of how to handle these three structural parts to your source code.

Here is an example of what to look for ... - -- -
*** IMPRINT MODULE ***

SKP2
THIS MODULE UNPOPS THE STACK TO FIND THE
IMBEDDED STRING. IT OUTPUTS ONE' CHARACTER
AT A TIME TILL AN $00 MARKER IS FOUND. THEN
IT JUMPS BACK TO THE CALLING PROGRAM JUST
BEYOND THE STRING.

SKP2
IMPRINT STX XSAV2

STY YSAV2
STA ASAV2
SKPl
PLA
STA STRP2
PLA
STA STRP2+l
SKPl
LDY 1$00

NXTCHR2 INC STRP2
BNE NOC2
INC STRP2+1

NOC2 LDA (STRP2),Y
BEQ END2
JSR HooK2
JSR COUT
JMP NEXCHR2
SKPl

END2 LDA STRP2+1
PHA
LDA STRP2
PHA
LDX XSAV2
LDY YSAV2
LDA ASAV2

HooK2 RTS
SKP4

SAVE REGISTERS

GET POINTER LOW AND SAVE

GET POINTER HIGH AND SAVE

NO INDEXING
INCREMENT TO NEXT ADDRESS
SKIP IF NO CARRY
INCREMENT HIGH ADDRESS
GET CHARACTER
IF ZERO MARKER
FOR SPECIAL EFFECTS ONLY
PRINT CHARACTER
BRANCH ALWAYS

RESTORE PC LOW

RESTORE PC HIGH

RESTORE REGISTERS

AND EXIT

-
Don't worry too much just yet on what this code is doing. More

details will follow later. What you want to look for is how you take
something you want done, call it a big lump, a little lump, or a crumb,
and then write source code for it. The source code for this portion of
what you are doing should start with a title and an explanation, fol
lowed by the actual code. Lots of white space should be put wherever
it will do the most good. Page breaks can be used to split things up
into reasonable or logical chunks.

If we look more closely at this source code, the sequential lines
become obvious. Each line has a number, label, op code, operand,
and comment field, except for those lines that are pure comment and

-

o

o

1 0

o

10

o

'0

o

o

I

Assembly Cookbook for the Apple II/lIe 113

start with a semicolon. Labels are not used in every field. But we
clearly see how the NXTCHR2 label identifying line 200 is used as an
operand in line 207 to find this particular line. This is how the assem
bler will calculate relative branches for us.

We see how operands can either be values, such as $00, or labels,
such as COUTo We also see how operand labels identify locations
defined or equated elsewhere in the program, such as XSAV2, which
is a temporary stash for the X-register.

You can find the addressing mode used for each line by carefully
studying the punctuation in the operand. The "#" gives us a value.
STRP2 is a page zero address. COUT is an absolute address, because
we happen to have previously EQU'd these to separate 8- and 16-bit
address values. The parentheses in (STRP2),Y call f6r Apple's powerful
indirect indexed addressing, which is used to hit any slot in the entire
address space. We see how a label always follows a branch com
mand, and how that label points to another nearby line in the code.
The assembler can automatically find these labels, even if the source
code gets shorter or longer, or if the origin of assembly changes.

As a final detail, we see three different places where operand arith
metic is used to calculate something. Where does this happen? What
is going on? •

Once again, the big lumps should be the highest level code you are
using, handling the biggest tasks only, and delegating all details to sub
ordinate code that follows.

After the title, you will want to add a few comment lines that explain
exactly what the high level code does.

The final field of each big-lump source code should be a comment
explaining what is happening. These comments should be as clear
and as concise as possible.

In fact ...

ALWAYS put some comment at the end
of just about every op code line in your
source code listing.

There is no such things as overcommenting or overdocumenting a
source code listing. Tell us at the end of each line exactly what is hap
pening. Should you need more words than will fit a single comment
line, pick up the comment on the next op code and indent an extra
space or two so it looks like a continuous message.

To quote Bob Sander-Cedarlof: liThe ease and neatness of com
ments in assembly language nearly always can make a machine lan
guage program easier to read and understand than so-called higher
level languages."

LITTLE LUMPS

The little lumps are intermediate level code. These might be heavy
subroutines or supporting modules. If several of these modules are
needed, put them in some semblance of order, such as the order they
are normally used in the program, or from complex to simple, or
whatever seems reasonable at the time.

We'll skip an example of little-lumps code, since it will look just

114 Source Code Structure

about the same as the big-lumps code. The only difference is where it
goes in the source code and how much "importance" you attach to
this particular portion of your object code.

Once you get into coding your own programs, you'll find this
"three-level" sort of thing becoming more and more natural and end
ing up as the only way to fly.

As with the big lumps, give us some comment lines at the start that
tell us what is happening, and then put a comment on nearly every
line of the op code source listings as well.

C~UMBS

The crumbs are what is left over after you have handled most of the
code. This might be a short stash of file values or a detail subroutine or
two.

Crumbs are just as important as the rest of the code. In fact, they
most often end up doing practically all of the work, and most code
spends most of its time down with the crumbs.

Again, we will forego an example, since a crumb to one source
code might be a big lump to another. Just go through the ripoff mod
ules and see how things are arranged.

But remember how despicable and evil structure is. Don't ever
bend your program to fit the structure. Always arrange the structure to
fit the program. . .

NEVER "bend" the program to fit the
structure!

ALWAYS "stretch" the structure to fit
the program!

In other words, stay flexible. Adjust the structure to fit the code, and
not vice versa. If the structure cracks or breaks when you try this, then
flush it and use something else instead. Or use super glue.

Or bailing wire.
Regardless of whether it is a big lump, a little lump, or a crumb,

always provide a clear title and some explanation as to what is hap
pening. Then show the actual code, using lots of white space and
other pretty printing to make the results as pleasant to view as
possible.

As a reminder, the tradition has been to use all uppercase in source
codes, since some older Apples may not be able to display lowercase.
But, if you are writing source code only for yourself, or only for the
lie, you can use mixed cases for your comments if you are using
"new" EDASM or a "new way" word processor to enter and edit
your source codes. Be sure to retain uppercase for all labels, op
codes, and operands if you try this.

You can really get fancy with your borders and artwork if you use all
the "new" characters on the lie.

WO~KING FILES

Practically all decent programs will use extensive data files.
A data file might be a map of rooms in an adventure, a list of notes

o r
I

0

Assembly Cookbook for the Apple lillie 115

for a song, the text in a word processor, the template for a custom
spreadsheet, a table of HIRES colors, or just about anything else you
can dream up.

Stashes and working files are different. . .

STASH-

A very short file whose use is not often
changed that usually immediately follows
its controlling code.

WORKING FILE-

A usually long file that normally goes at
the end of a program and whose use may
change with program needs.

As specific examples, in an adventure program, the message "IT IS
TOO DARK TO SEE" would be a stash that immediately follows the
code that checks to see if a lamp or torch is still lit in a dark room.

On the other hand, if you know what you are doing, you can use
one main program to handle many different adventures, just by
changing the working files that get tacked onto the end.

For instance, all of Scott Adam's Adventures 1-12 use exactly the
same controlling code. Only the data files get changed to alter the sit
uation and the responses. Infocom Inc. uses nearly the same program
for lork I, lork II, lork III, Starcross, Infidel, Planetfall, and Deadline.

Working files should follow the rest of the code for several reasons.
They are simplest to change this way. In addition, an assembler's edi
tor may not be the best way to generate long files. Instead, a word
processor or a custom code generator might often be better choices.
For instance, you might use Applesloth to generate a sine or cosine
table for trig uses. With the main files at the end, you can combine
assembler source code with word processor files, or use any other
combination that works for you.

Here's an example of a stash . ..

~

218 *** STASH *** :0
219 SKP3

!o 220 ASAV2 DFB $00 ACCUMULATOR SAVE
221 XSAV2 DFB $00 X-REGISTER SAVE
222 YSAV2 DFB $00 Y-REGISTER SAVE

- - I -
This stash is 3 bytes long, and is used to set aside a "safe" area to

save and then restore register values. In this particular case, we only
set aside the storage by using the "dummy" $00 values. These will
later get replaced with real saves as the program is run. In other
stashes, you will carefully and exactly define what goes into a location
ahead of time.

In this case, the stash is the only one used, and its use is obvious
when it comes up in the assembly listing. Normally, though, you will

116 Source Code Structure

want to have a few comment lines that explain exactly what the stash
is up to.

As usual, tell us what you have, tell us what it does, and then add
comments to each and every line.

Yes, stashes are really crumbs, and normally are tacked onto the
end of crumb code. But remember that a stash is a file that holds
something, rather than working code. You run code, but you use
stashes.

Working files are definitely not stashes. They are blocks of data val
ues you place near the end of your object code. The length and
nature of your bulk files change, of course, with your intended pro
gram goals.

Relatively short work files can be created with the assembler with
the DFB command to define one or a few bytes at a time. For best
appearances on the assembler listing, you should define only 8 or
fewer bytes per line. You are allowed to "pad" three spaces between
your DFB and the data values. This will move all the data values over
into the comment field for improved appearance.

As a long file example, here's part of a HIRES pattern file used to get
the 191 HIRES fast background colors in Enhancing Your Apple /I
(Sams 21822). . .

0 165 *** COLOR PATTERN FILE ***
166 SKP2
167 ORG COLOR+$100
168 SKP2

0 169 CFILE DFB $00,$00,$00,$00,$00,$00,$00,$00
170 PAT1 DFB $2A,$55,$2A,$55,$2A,$55,$2A,$55
171 PAT2 DFB $D5,$AA,$D5,$AA,$D5,$AA,$D5,$AA
172 PAT3 DFB $7F,$7F,$7F,$7F,$7F,$7F,$7F,$7F

0 173 PAT4 DFB $80,$80,$80,$80,$80,$80,$80,$80

In this case, 8 bytes are used at once to set the background color of
the HIRES display cell that is 4 bytes wide and two scan lines high.
The file continues for a total of 256 bytes. The file holds a total of 32 of
the possible 191 solid HIRES colors or your choice of any of a mind
boggling 18,446,744,073,709,551,616 HIRES patterns.

Files can be any length you need, but their access gets trickier if you
go beyond 256 bytes. Files of a page or less can be reached with
indexed addressing, while you have to go to indirect indexed address
ing for longer entries.

If your file meaning and intended use is not totally obvious, be sure
to add a few comment lines at the beginning to explain what is hap
pening. Do this the same way you did the documentation on the big
lumps, little lumps, and crumbs.

You don't have to use DFBs to create your file if you don't want to.
Sometimes, you can use DWs to define 16-bit addresses in a file, or
DDBs to define other 16-bit values that are to appear in "frontward"
order. But, note that you only are allowed one OW or DDB per
source code line. We've seen how you can have up to eight DFBs per
line instead.

And, once again, there may be better ways to build long working

0

0

'0

o

o

115
116
117
118

Assembly Cookbook for the Apple II/lie 117

files, such as using a word processor, a custom program, a graphics
tablet, input from a scanning plotter, digitized video, or whatever.

You can also use the ASC command to generate ASCII message
files ...

ASC
ASC
ASC
DFB

"WITH THIS METHOD, EACH MESSAGE STRING·
nFOLLOWS ITS OWN JSR CALL, IMBEDDED IN·
nITS OWN SOURCE CODE."

.C,X

,0

In this case, we have used the ASC pseudo-op to generate our text,
and the OFB pseudo-op to handle a carriage return and a "double
zero" end-of-message marker. This happens only because the source
code previously EQU'd the label C to $80 and an X to $00. You'll find
several examples of this in the ripoff modules.

Remember that the ASC command always starts with a delimiter.
This can usually be a quote symbol. If you actually want a quote sym
bol to appear on the screen, you should use some other symbol
instead.

Like so ...

ASC nITS TOO DARK TO SEE"

ASC /PRESS "RETURN" TO CONTlNUE/

Again as a reminder, the first delimiter is essential, but the end one
can be left off if there are no comments added to this line. But this gets
dangerous if there are trailing spaces. What you see might not be what
you get.

Summing Up ...

limit each individual ASC command
pseudo-op to 40 or fewer characters.

Put three spaces between ASC and the
first delimiter of your ASCII message.

Do control commands with separate
DFRs using simplified labels.

These hints will give you a very clean printout on your assembler
listing, and make for easy insertion of control codes.

"New" EOASM also has a STR command that precedes your text
string with a character count byte.

Creative use of labels can let your assembler do most of the dog
work of converting from "people" to "machine" values. Note how
much easier it is to enter a OFB C than it is to look up the ASCII car
riage return value and then do a OFB $80. It gets even better when
several different control commands are handled by one OFB.

The "old" EOASM editor does not directly support lower case ASCII
messages, but "new" EOASM and both its assemblers do. If you are

118 Source Code Structure

editing with a "new way" word processor, it is a trivial matter to enter
lower case ASCII into files. Just be sure you use the CAPS LOCK on all
your labels, op codes, and for all operands other than ASC or STR.

Remember that lower case characters will show up as gibberish on
an unmodified Apple" or ,,+ screen, unless you convert them back
to upper case before displaying them. To be compatible both ways,
you insert a "DO YOU HAVE LOWERCASE?" prompt inside your pro
gram, and then make some corrections if lower case is not available.
"New" EDASM gives you several ways to handle this.

Most newer assemblers can directly generate lower case text. If
yours cannot, just use a word processor for the editor, or else take the
final object code and "force feed" case changes where you want
them.

A word processor is usually the best way to generate text messages,
particularly if they are very long or involve lower case. Instead of
using ASC pseudo-ops, you build an entire message file with your
word processor, binary save it to disk, and then link that message file
directly with your object code. This method entirely bypasses all
assembly hassles, although a text file to binary file conversion routine
might be needed.

BOTTOM LINE COMMENTS
At this point, your source code should already have all the informa

tion the assembler needs to put together object code. If anything
seems to be missing, go back and stuff it into its proper big lumps, lit
tle lumps, crumbs, or working file slot.

The bottom line is a good place to put credits and any other notes
or comments you feel you really should mention.

Here are some typical bottom line entries.

-I""'"" -
0 654

655
EXACT FIELD SYNC ADAPTED FROM ENHANCEMENT t4 OF 0
ENHANCING YOUR APPLE II (SAMS 28424).

656
657 MOOSE CHOREOGRAPHY BY ELAINOR FAIRLEY.

0 658
659
660

01 661

FOR SIXTEEN DELICIOUS COCONUT-ANCHOVY PIZZA
RECIPES, CONTACT SYNERGETICS, BOX 1300
THATCHER AZ, 85552. (602) 428-4073

662 --
The bottom line is where you give credit for what was done and a

sales pitch for anything newer or better that you may offer. Put any
thing you want to here. Just don't preach to the choir.

LABEL REFERENCES
Strictly speaking, our final two parts to our structure aren't really

part of the source code. Instead, they are things that get tacked onto
the end of the assembly listing during the assembly process.

Anyway ...
One very handy thing to have when you are analyzing any machine

language program is a list of who does what to whom. Most assem-

-

o

.0
J -

Assembly Cookbook for the Apple lillie 119

biers will provide some sort of a reference list at the end of their listing
if you ask them to.

EDASM provides a simple version called a symbol list or a label list.
Other assemblers or disassemblers may provide a more complex list
ing called a cross reference ..

LABEL lIST-

A listing of each and every label used in a
source code, along with the label address
or label value.

CROSS REFERENCE-

A listing of each accessed memory
address, along with the addresses of who
called it for a load, jump, store, branch,
subroutine call, or whatever.

The label listing shows you which labels get used. They also point
out glaring errors, such as reusing the same label, or getting an op
code such as CLC, over in the label column by mistake. Improperly
spelled labels or labels "alike but different somehow" become obvi
ous. Really strange labels that result from typing errors also will leap
out at you from the label list.

EDASM flags any unused labels with question marks. This brings
these to your attention, just in case the label really is a mistake, rather
than something that you put in as a memory jogger or for outside
access.

The EDASM label listing is normally provided in alphabetical order
by label spelling, and then in numeric order by label value. These list
ings are extremely handy when you need them, but otherwise are a
painful waste of printer time and paper. You can turn the EDASM
label listing on or off by a LST OFF or LST ON command as the last
line in your source code.

"New" EDASM gives you all sorts of "mix and match" listing
options, including execution time display and several formatting
options. See Appendix A.

A full cross reference is much more powerful than a simple label list
ing, since these show you every use of every address used or referred
to anywhere in the program. This is most useful for tearing into other
people's programs, and for answering, "Now why on earth did I do
that?" on your own source codes. Full cross references are often bro
ken down into separate internal, external, and page zero listings.

Some other assemblers will provide a full cross reference on com
mand. The simplest way to get a complete cross reference out of
EDASM is to assemble your object code and then disassemble it with
Rak-Ware's DISASM or something similar.

ERROR MESSAGES
One of the first joys you will undoubtedly encounter on an early

assembly attempt, is that you will write a ten line program and get 34
error messages as a result.

You get error messages when you tell the assembler to do some
thing so stupid that it simply doesn't understand you ...

120 Source Code Structure

ERROR MESSAGE-

A listing of a problem you created by
telling the assembler to do something
illegal or something it just plain did not
understand.

EDASM generates two different kinds of error messages, those that
apply to the assembly process, and those that involve disk access.

We'll look at specific error messages later. Our goal here is to recog
nize that you'll most likely get bunches of error messages tacked onto
the end of your assembler listing.

Some errors are very subtle. Mixing up "eyes," "els," and "ones"
or "ohs" and "zeros" are good ways to confuse EDASM. Having too
many or too few tabs or tabbing spaces so you get in the wrong field is
another. This one gives you a label called LDA or an op code named
RESTART.

Of course, leaving that "$" sign off an operand will automatically
mix up decimal and hex values. An entry of LDA #60 will put a value
of #3C in the accumulator. And, of course, an entry of LDA 60 can
put darn near anything in the accumulator. Why?

An extra comma at the end of a string of DFBs does all sorts of nasty
things, as does forgetting or imbedding the delimiter in an ASCII
string.

Blank lines in EDASM are a no-no. Yet, they are absolutely essential
for a decent and readable assembly listing. Use the SKP pseudo-op
instead, or else a comment line that starts with ";" or 1/*." It is very
easy to get fumble fingered or hit the wrong keys to exit an "old way"
editing or entry mode. This puts strange values onto strange program
lines for you. It is also easy to accidentally imbed control characters
inside your program lines during "old way" editing.

Labels and other values default to zero if not defined. Which creates
bunches of new problems all by itself. But, you'll find out all of this
soon enough on your own.

Will you ever.
There is one totally meaningless error message that EDASM may

give you sometime. This message is I/***SUCCESSFUL ASSEMBLY:
NO ERRORS."

All this message tells you is that ...

A hard-copy printout that says

SUCCESSFUL ASSEMBLY: NO ERRORS

tells you that:

1. The printer was turned on,
2. There was enough paper,
3. The ribbon is not iIIe~ible.

You see, it is perfectly possible to enter totally legal commands in
totally legal sequences to EDASM, and still end up with object code
that simply won't work. All the success message tells you is that you
haven't done something so blatantly stupid that EDASM couldn't take
a stab at guessing what it was you were trying to tell it to do.

Assembly Cookbook for the Apple lillie 121

Naturally, if you have error messages, the program is guaranteed not
to run. If you have a success message, the program probably will still
not run, or at least not on your first dozen tries.

For a successful program, you must first enter and use legal com
mands in a legal way in EDASM. After that, the object code that

. EDASM generates also must do legal things in an expected way for
your program to work.

That just about completes our sixteen steps of a structured assembly
language listing. The first of the ripoff modules is called EMPTY
SHELL.SOURCE, and appears later. This one is sort of like a Christmas
tree you can hang all your ornaments on, and greatly simplifies organ
izing and structuring your source code. Since it is usually easier to edit
a source code than create one, you might like to start with the empty
shell and adapt it to your particular needs. Much more on this later.

For now, though, it looks like we are almost ready to actually enter
and edit some source code.

122 Source Code Structure

DIFFEQENCES BETWEEN M'I STQUCTUQE AND 'IOUQS:

WRITING AND EDITING
SOURCE CODE
(the OLD way)

There are at least two possible ways to write and edit your source
code. The "old way" involves using the editor part of the assembly
language development system. The "new way" uses a word processor
along with a supervisory control language instead. We'll cover the old
way in this chapter and the new way in the next. Be sure you read this
chapter, and practice and understand the old way before you try the
new.

OK. We now know all about source code lines and know at least
one evil and despicable way to structure source code. But, where
does that get us?

You turn on the assembler, and there's an insidious colon staring at
you. What now? One thing you can do is load up the EMPTY
SHELL.SOURCE ripoff module, and that gets you several hundred
lines of source code right off the bat. Of course, the empty shell won't
do what you want it to. Instead, you somehow have to edit the empty
shell into something useful that works for you.

Where do you really start?

You write assembler source code in
exactly the same way you already hand
wrote and hand debugged your own
machine language programs.

Remember that an assembler will not write programs for you. All an

123

124 Writing and Editing Source Code (the Old way)

assembler can do is greatly ease and simplify the process of creating
machine language code. So, if you have not hand written and hand
debugged a few hundred lines of machine language code, an assem
bler is totally useless.

Dangerous, even.
Use whatever methods that already worked for you when you did

your machine language programming. There is a sequence called the
fourteen steps that appears in Don Lancaster's Micro Cookbooks (Sams
21828,21829). The fourteen steps show you how to go about attack
ing and solving real world microcomputer problems, and lend them
selves beautifully to Apple II or lie use of EDASM.

Use the fourteen steps if you like, or else use whatever methods you
already have on hand and have used for your already written and
debugged machine language programs. But, please don't go beyond
this point unless you have the fundamentals down solid ...

DO NOT GO PAST THIS POINT IN THIS
BOOK UNLESS YOU ARE ALREADY A
COMPETENT MACHINE LANGUAGE
PROGRAMMER!

Uh, there's all those turkey feathers again. Oh well, That should be
the last of them. Before we turn to the exact mechanics of writing your
own source code, let's take a brief look at ...

PROGRAM STYLE

There are many different 6502 op codes available, and lots of differ
ent ways you can arrange these into a working program. Which ones
should you use? In what order should you put them?

Questions like these involve program style . ..

PROGRAM STYLE-

The choice of op codes used and the
order they appear in a machine language
or other program.

Program style also includes your approach to a problem and how
you arrange the things you think are important. Style obviously influ
ences the overall program vibes and decides how elegantly or how
simply the job gets done.

Or how well.
Let's look at some factors that affect program style, and see how

these factors force a certain flavor to the style of any program you
happen to be writi ng.

Speed

Most any old machine language program assembled by a more or
less competent programmer can run the wheels off most any program
compiled from a higher level language, and will pass a program that is

Assembly Cookbook for the Apple II/lie 125

interpreted from a higher level language like it was sitting up on
blocks.

As we've seen, the reasons are that machine compilers have to han
dle all possible things all possible ways, and are thus inherently
slower, dumber, and less efficient than what can be done creatively
by a decent machine language programmer working toward a specific
solution. Interpreters, of course, are much slower than compilers,
since each high level instruction has to be individually converted into
its own machine language code before it can be executed.

But, beyond this, there is fast, faster, and there it went.
Extreme program speed gets important in animation, text process

ing, graphics manipulation, multiplication, 3-D perspective, direct
external control, spreadsheets, business sorts, and other applications
like these.

So, if you need extreme speed, you go to extreme measures, over
and above the normal speedup that a normal machine language pro
gram can give you.

For extreme speeds, your style should include mostly straight line
coding, in which each instruction is done individually with the fastest
possible op codes. Loops should be avoided in those parts of the code
that have to run super fast. If you must use a loop, share the loop
overhead as many different ways as you can by having whatever is
inside the loop do as many different things as possible.

Subroutines are also a no-no in those parts of the code that must run
very fast. The reason for this is that each subroutine call and return
needs a time overhead of 12 CPU cycles, or roughly 12 micro
seconds.

One trick that leads to code speedup is called table lookup ...

TABLE LOOKU P-

A programming method where you get
needed values out of a pre-defined table,
rather than by calculation.

One of the most dramatic places to use table lookup involves calcu
lating text, LORES, or HIRES base addresses. There is a tremendous
speedup involved in getting the base addresses directly out of a table,
rather than calculating them.

Table lookup, though, almost always will take up much more mem
ory space than will calculation methods. Should the space get totally
out of hand, sometimes you can split the table into smaller parts. For
instance, an 8*8 multiply table would be horrendous, but simple fac
toring of (A+B)*(C+D) and four trips through a 4*4 multiply table
will still be reasonably fast and need only a page of memory.

As a plum for you math freaks, the fastest software multiply scheme
I know of at this writing uses factoring of 2XY = X + y2 -
IX-YI2. Only 512 bytes of "(X*Y)/2" table lookup are needed for a
very fast 8 X 8 multiply.

Another speedup trick is called offloading. When offloading, you try
to handle anything slow with anything but the CPU.

For instance, you can use an external UART or serial interface chip
to generate its own serial code. This way, the CPU only has to pass the

126 Writing and Editing Source Code (the Old way)

command to the serial device, and then the serial device can take its
own good time outputting the code. The CPU then is free to do other
things while the code is being output.

Other examples of offloading include a printer buffer. Here, the
CPU passes a long message to external RAM. The external RAM then
holds the message long enough that a slow printer can output the
message.

Timers and real-time clocks can also handle long timing tasks inde
pendently of the CPU. Interrupts can also be handy, since the CPU
can be doing useful things instead of just polling a keyboard or other
wise waiting around for something to happen. External music chips or
sound effects generators are also useful offloaders, in that a very few
CPU commands can quickly activate them.

Should you have some very fancy calculations to make, consider
adding a trig chip or a fast multiplier or floating point chip to your sys
tem. Here the CPU passes the problem to the external chip, and the
chip passes the answer back to the CPU. Even if a slow old trig calcu
lator chip is used, the CPU can go ahead and do other things and then
come back later for an answer.

Watching how things get where they are supposed to go will also
speed things up bunches. Obviously, you can output stuff much faster
at 9600 baud than at 150. Faster still with a parallel port. And you can
get to the screen much quicker if you do not waltz your way through
DOS, a printer card, an echo, and long monitor routines on the way.
As another example, any time the screen scrolls, things shut down for
many milliseconds. So, avoid scrolling during time-critical events.

A mix of hardware and software working together will almost always
do some task quicker, cheaper, and much faster than hardware or
software can standing alone. So, it always pays to think both in terms
of hardware and software, and not just one or the other.

Another key rule to speeding up programs is to never attack some
thing head on. The "obvious" solution, done the way that "they"
want you to, is never the fastest or best approach. Always try some
thing off the wall and see where it will lead you.

Ferinstance, the HIRES graphics routines in Applesoft were opti
mized for length rather than speed. Since Applesoft is so slow any
how, it didn't matter. At the time, a 16K Apple was a biggy, so space
was all important. Your own assembly language code can speed
HIRES animation by great heaping bunches. Yet, there still are com
mercial programs that even today persist in using these intentionally
slow subroutines.

The usual penalties paid for speed in a program are that the program
will often get much longer and take up much more room in memory.
Extreme speeds also add to the programmer's time and creative effort.

Summing up ...

Assembly Cookbook for the Apple II/lie 127

FOR MAXIMUM SPEED-

Use straight line code.
Eliminate or share loops.
Avoid using subroutines.
Look up, rather than calculate.

Offload time-consuming tasks.
Mix hardware and software.
Never attack head on.
Try an off-the-wall approach.

Normally, speed for the sake of speed itself is not a good idea, since
your code may get excessively long, besides being harder to write and
understand. You have to balance speed against.

Length

It has been proven time and time again that programs that seemed
to demand all of the available memory space of a dino or minicom
puter can easily be shoved into an Apple II or lie with room to spare.

But, to do this, you must use one or more code shortening tricks
that influence your program style.

Loops and subroutines are your foremost two tools for shortening
code. Although not normally a good programming idea, multiple
entry points to loops and subs can dramatically shorten your code.

A loop shortens things by using the same code over and over again
for some number of times, or until some result happens. A subroutine
shortens code by being accessed from many different places in a pro
gram.

Another way to shorten code is to use the most powerful and most
elegant instructions available. The indirect indexed command in the
6502 can be used to access most anything most anywhere in the most
general and most flexible manner. Learning these super-powerful
commands is a must if you are to minimize code space.

Going to a custom DOS that only boots, or else does only what
needs to be done, is another code shortening trick. But, please keep
what the DOS does standard and do it in a standard way.

Overwriting memory is yet another space saving trick. For instance,
on a HIRES game program that only has to boot, put the DOS and any
setup code on the HIRES pages. After booting and setup, these pages
then become the game playing field.

Finding nooks and crannies can also help bunches, if you have a
program that almost, but not quite, fits. There are parts of page zero,
the bottom of page one, the top of page two, most of the lower page
three available for special uses, as are a few random locations "hid
den" on the text and HIRES pages. It's also possible to stuff things into
DOS buffers for special uses. RAM cards can help bunches on older
Apples.

The lie gives you a whole new ball game with its 128K of RAM and
lots of ways to expand for even more RAM.

128 Writing and Editing Source Code (the Old way)

Virtual memory that involves repeated disk access is one way to
extend the Apple's memory to include everything you can put on two
diskettes in two drives. Even more if you want. You can also swap
things back and forth to add-on memory cards, or simply off-load
DOS onto a 16K memory card.

Newer versions of DOS offer dramatic speedup of disk access, so
the grinding and whirring of the disk during use is now greatly mini
mized. In fact, the grinding and whirring can be eliminated almost
entirely by going to a RAM disk emulator.

One very powerful way to shorten code is to create your own inter
preter. Part of your program now becomes a machine language way
to interpret brief instructions from a master file.

Using an interpreter, of course, is how Applesoft and Integer BASIC
work. But special interpreters appear in many other programs. Zork
uses an interpreter for MOL, which is a subset of LISP with Icelandic
subtitles. Adam's Adventures have their own special interpreter. Such
programs as the graphics language GRAFORTH, or the artist's lan
guage CEEMAC, also use special interpreters.

Special compaction codes are another possibility. ASCII text is only
25 percent efficient at storing normal English text, and can be even
poorer than this if you know ahead of time exactly what the text is.
There are all sorts of text compaction schemes available. These
include the "three characters in two bytes" used by Zork, the "char
acter pair" method used by Adventure International, the "matched
text filter" method by Synergetics, and the "changes only" method
used by most spelling programs and classic cell animation.

But, don't get sucked into using Huffman codes as text compactors.
These are nearly worthless for real-world micro text compaction, due
to their limited benefits and variable bit lengths. There are many better
alternatives available that are more micro-oriented. Huffman codes do
have one outstanding use. They make great university level student
paper topics.

Data compaction is another possibility. For instance, a normal
HIRES picture takes up 34 diskette sectors. If you remember to throw
away the last unused 8 bytes, you can slash this clear down to 33
sectors.

But it takes up much less space if you encode the picture some
other way. You can do this by using shape tables, by using HIRES
8 X 8 specially defined character blocks, by saving changes only, by
having a special interpreter that creates images from brief instructions,
or by using sprites that can be mapped and removed from existing
HIRES scenes. There are many other possibilities.

In general, it should be possible to store a LaRES image in 100 bytes
and a HIRES image in 1000 bytes with decent compaction tricks. This
translates to 130 HIRES pictures or 1300-odd LaRES pictures per
diskette.

Music files can be shortened by precoding so that the pitch and
duration need only a single byte. This results in a 2:1 compaction.

Files of names and addresses can be shortened by having a brief,
sortable file in RAM that points to a main file on disk. In the brief file,
you only put the stuff you want to sort against. One version of this is
called ISAM, which stands for the indexed sequential access method.

There are more subtle ways of squashing file information. For
instance, if all of your customers reside in one of ten zip code areas,

Assembly Cookbook for the Apple lillIe 129

you need only store a single 0-9 byte, instead of the five needed for
the full zip code. Use table lookup to find the right code. Even if only
most of your customers are within nine zips, you can create a small
"exception file" for those who aren't.

Similarly, if most of your customers live in one of nine towns, use a
single digit 1-9 as a town pointer in a data file, and a 0 as an excep
tion pointer. This also eliminates the need to put the state into each
individual file.

The general idea is to put the most compact pointers you can inside
each record of a long file, and then use those compact pointers to
table lookup the actual values needed.

A largely unexplored trick called run length encoding can also be
applied to speech synthesis and HIRES displays, where the code tells
you to make the next so many bytes a certain pattern. This exciting
new concept has so far seen little micro use.

Taken to its extreme, run length encoding lets you add a very fast
RAM to the video output of your Apple. You can feed commands to
this fast RAM at a seven-million bit-per-second rate (!) with your stock
Apple. This means there is no reasonable limit to the Apple display
colors, resolution, or gray scale at the output of this fast RAM.

Or why video at all? What could you do with a magic pipe that spits
out ones and zeros at a seven-megabaud peak data rate?

Heavy.
Rethinking the program is one good way to shorten it. What are the

features that use up the most space? Are they really needed? Can they
be combined into some other form? Can you trade off a little perform
ance loss for a lot of space saving?

Ironically, two key rules that speed up programs also will shorten
them. These, of course, are not to attack anything head on and to try
an off-the-wall approach.

To sum up the style tricks involved in code shortening ...

FOR MINIMUM SIZE

Use loops and subroutines.
Choose powerful addressing modes.
Try a custom, shorter DOS.
Overwrite memory.

Don't overlook nooks and crannies.
Create a custom interpreter.
Employ virtual disk memory.
Compact text files.

Pack pictures and graphics.
Run length encode.
Rethink the program goals.
Try an off-the-wall approach.

The obvious disadvantages of shortening programs are that they
may run slower, will take longer to write and debug, and can become
incomprehensibly complicated to understand.

130 Writing and Editing Source Code (the Old way)

Other Style Factors

Speed and program size are the two biggest factors that influence
your program style. But there are also lesser things that influence your
programming style or add flavor to your assembler techniques. Let's
take a quick look at some of these.

The time it takes you to write a program can be important. In fact, if
you are after a quick and simple "use once" result, you may even be
better off using BASIC. If you want to minimize your program writing
time, it pays to stick to mainstream constructs and to freely adapt what
others already have done. Naturally, you'll not only miss the brass
ring this way, but you won't even be along for the ride.

Actually, what looks like an awful lot of work usually only has to be
done once. Your early assembler work is very much a learning pro
cess that you should be able to build on. Avoid the work at the begin
ning, and you never will become a decent assembly language pro
grammer.

Guaranteed.
Once you start actually developing useful programs, you'll have

techniques and ready-to-go modules you can work with and build on.
In theory, you can get from a cold start to being a decent and useful
assembly language programmer in less than three years of solid effort.
But this has not happened yet, not even once.

Taint likely, either. So ...

Don't be alarmed at the time and effort
you have to put into writing an assembly
language program.

Much of this time is part of a learning
experience that you will not have to
duplicate later.

Other effort will create modules that you
can build and use in the future.

There is a very quaint concept that seems to surround personal
computer programming. This silly concept believes that your custom
ers are to pay you for your learning experiences and all the mistakes
you made along the way. If this was done with book authorship, a
similar idea would say that you should pay much more for poorly writ
ten work by an inexperienced author, simply since it took him such a
long time to do.

Putting a stiff price on a program just because you spent a year on it
is patently absurd, if 51 of the weeks in that year were part of a learn
ing process, involved stupid mistakes, or otherwise resulted in the
usual bumbling incompetence that is painfully obvious in well over 95
percent of all available Apple software.

The key question should not be how long it took you to write a pro
gram, but how long it would take a competent and knowing program
mer to rewrite and redo the code from scratch, knowing what you
should know by now, and using the tools you should now have on
hand.

Another question of style involves relocatability. Most typical
machine language programs will operate properly from only one posi-

Assembly Cookbook for the Apple II/lIe 131

tion in memory and then only from a valid starting point. If you want
the program to run anywhere or on any machine, you have to go to a
lot of trouble to make things re/ocatable.

The simplest thing you can do to build a relocatable program is to
use no jumps, no subroutine calls, and no internal references, han
dling everything instead with relative branch commands. This type of
program will run anywhere in memory without any hassles. The pen
alty, of course, is that this program style is extremely limiting.

Dullsville even. Like the "three B's" of all educational software to
date-bad, banal, and boring.

The next step up in relocation is to use your assembler to relocate
the program for you, simply by changing the ORG command, and
being sure you used a label every place an absolute address might
crop up. The result of this still will be a program that can only run in
one place, but you can relocate everything to suit the place that is
needed.

Yet another route is to tack a custom relocator onto the front of your
program. This custom relocator finds out where the program is sitting
and then generates a base address table of some sort. This base
address table is then used to modify locations in the code so that
things will run in their present position.

EDASM also provides for fully relocatable code assembly by using
the DOS "R" file format and a loader such as LOADHRCG. This route
is complicated and specialized, and there are use problems. Bugs
even. One particular hassle with LOADHRCG is that the pointers
move down in memory each booting, eventually plowing all of RAM.
Another is that the Applesoft string pointers do not get properly reset.

The heaviest way of all to relocate a program is with a cross assem
bler and an emulator. This lets you transfer programs to totally differ
ent computer systems.

Summing up ...

WAYS TO RELOCATE CODE

Use relative code only.
Use EDASM with a new ORG.
Use a location finder and adjuster.

Use "R" files and "R" assembly.
Use a linking loader.
Use a cross assembler or emulator.

Another style problem involves whether your program will stand
alone or be part of a larger program. If the module you are working on
is to stand alone, then there are no limits to the labels you use.

On the other hand, if the module has to work with other modules,
you either have to use an assembler that has both global and local
variable capabilities, or else you have to make sure that each label is
unique.

We've used a numeral after many of labels in the ripoff modules so
that all of the modules have similar, yet separable, labels. To reuse the
label, just change the end numeral.

132 Writing and Editing Source Code (the Old way)

The rule here is simple enough ...

With an assembler that does not allow
global and local variables, all labels on
all modules must be unique.

A local label capability is included in "new" EDASM's macros.
"Old" EDASM did not provide this.

Our next style question involves self-modifying code ...

SELF-MODIFYING CODE-

A computer program that modifies itself
as it goes along.

Such code is extremely powerful, highly
dangerous, and the parts to be modified
must reside in RAM.

A self-modifying program changes some memory locations as it goes
along. Actually, just about any program changes some memory loca-

. tions as it is used. The degree of self-modification is what is critical. If
the program changes its own working code, rather than just modifying
constants, or file values, you have just opened a very large can of
worms.

Self-modifying code can be extremely fast and extremely compact,
and literally can leap tall buildings in a single bound. It can also
destroy itself and everything else in the machine, in the disk drive, or
even nearby. Self-modifying code can also box itself into a corner
from which there is no escape.

The best rule on self-modifying code is ...

NEVER use self-modifying code, unless
you know exactly what you are doing!

Something that goes along with this involves what kind of memory
the program will sit in. Most programs run in RAM and are thus
allowed to change any of their locations. If the program must run in
ROM, though, no ROM code location is ever allowed to change.

You might run into "must sit in ROM" code in designing your own
plug-in cards, in substituting for the Apple II or lie ROMs, in code that
must boot on a cold Apple, or in using the Apple II or lie as an emula
tor for a controller or.some other dedicated micro use where the code
must be permanently burned into EPROM.

Compatibility is another style influencer. Does your program have
to interact with DOS, the system monitor, Applesoft, Integer, or some
other language? If so, there are very specific restrictions on where you
put your program module, how you pass information to and from it,
which page zero locations you are allowed to use, and how you inter
act with the host language.

A final important style modifier involves the smarts of your user. If
your user is inexperienced, your program should be self-prompting,

Assembly Cookbook for the Apple II/lie 133

self-explaining, and should have a built-in tutorial of what the program
is and how it is supposed to work.

Any decent program should be self-documenting and self-explain
ing. At the very least, your error trapping should successfully handle a
pussycat chasing a lizard across the keyboard. Or, for that matter, a
lizard chasing a pussycat.

The key ru Ie here is. . .

ALWAYS assume your user is an epsilon
minus, but NEVER insult his intelligence.

To paraphrase Murphy, anything that can go wrong with a program
will go wrong, one time or another. And, even if the program is per
fect, things will still go wrong should a plug-in card get dirty, or should
DOS foul up one way or another, or an air conditioner surge the
power line.

The degree of error trapping and hand holding you provide should
depend on the value of the program to a user. A program that holds a
year's worth of general ledger receipts, or one that is interacting with
some life support equipment obviously needs more error trapping
than a low cost game does.

But, I seriously doubt if you can ever provide too much documenta
tion, tutorial help, or error trapping in any program you may ever
write.

UNSTYlE

Just as there are elements of style to any assembly language program
you may write, you can blow it all by doing something stupid that
totally turns your customers off.

We'll call unstyle anything that damages what you are trying to
accomplish.

The dumbest, stupidest, unstyle move you can possibly make is to
lock your program. This only hacks off your legitimate customers and
throws an open challenge out to the uncopy buffs.

In fact ...

There is no such thing as a "locked" or
"protected" diskette program.

All locking does is delay very slightly the
opening of your program and enhance
greatly the incentive to do so.

The second most stupidest thing you can do is use special DOS files
that are not readable by the rest of the world. Any program that
involves itself with creating any files at all that are business related
should be readable by standard means. This usually means using
standard DOS text files, or else using standard and thoroughly docu
mented data formats, such as DIF, or something similar.

The third most stupidest thing you can do is not make your source
code available at nominal cost for the asking. The really great things

134 Writing and Editing Source Code (the Old way)

that will get done with your program are things that you haven't even
thought about and don't even suspect. The true value of a program
comes about only after others can interact with it and then modify that
program to suit their own needs and new uses.

The fourth most stupidest thing you can do is fail to support your
users. At the very least, users reasonably shou Id be able to expect
instant and free unlimited backup copies, a totally free defective disk
ette exchange for six months after the sale, and at least one year's
totally free consulting via a telephone hotline.

Another very important part of user support is proper beta testing of
your programs. In beta testing, a group of controlled but disinterested
outsiders thoroughly tests and evaluates your software to find the most
blatant bugs and use problems. Users will invariably have different
thought processes and needs than those of the author. Only through
thorough, pre-release beta testing can these differences come to light.

The fifth most stupidest thing you can do is make promises, excuses,
apologies, or explanations aimed at weaseling your way out of some
second-, third-, or ninety-ninth-rate feature of your work. Like promis
ing a part that does not exist. Or using a nonstandard keyboard. Or
claiming it is possible to read dot-matrix print. Or using "preliminary"
documentation. Or requiring hours for a sort. Or loosing data files. Or
leading with your ego. Or getting defensive over a just plain stupid
mistake.

Or an obvious oversight.
The absolute key feature of the Apple lie is that it eliminated in one

swell foop all the promises, excuses, apologies, and explanations that
the Apple II needed.

Such as short screens, no lowercase, difficult memory expansion,
tricky keypad add-ons, unreliable switches, kamikaze card changes,
nonstandard keyboards, and tricky paddle access. Similarly, the key
difference between old versions of Apple Writer, and the new lie ver
sion is that there are no promises, excuses, apologies, or explanations
needed. The thing just works beautifully, and is far and away the only
programmable word processor that is genuinely lots of fun to use.

The sixth most stupidest thing you can do is to skimp on the docu
mentation. Well over half your effort should go into the manual and
the package that goes with your diskette. In fact, this is the ultimate
copy protector. What you simply do is make the contents of your disk
ette a small portion of the total package you are offering. Put the value
added into the documentation, support services, and any companion
hardware and you are home free.

Paperwork that goes with your program should include a tutorial, an
index, a pocket card, and hotline help. People who write documenta
tion on a dot-matrix printer should be staked to the nearest anthill,
and left there until the next meeting of the steering committee.

The seventh most stupidest thing you can do is to make your pro
gram fragile. A fragile program is one that self-destructs at an early
date. Any speed-sensitive disk access scheme guarantees fragility. For
that matter, you should never rewrite to your object code disk. This is
what makes Castle Wolfenstein ludicrously fragile, despite its other
wise excellent features.

Never write to a game diskette!
Other sure routes toward fragility are to forget to initialize things

properly, or not fully test your code under all possible use conditions,

Assembly Cookbook for the Apple 1/llle 135

or to attempt to interact with a higher level language without thor
oughly understanding what is going on. Or to ignore all possible use
configurations.

The eighth most stupidest thing you can possibly do with your pro
gram is overprice it. There never has been, and probably never will
be, an Apple II computer program worth over $24.99. Any difference
between this value and the charged price of a program is immediately
offset by the number of bootleg copies in existence. This is a perfect
example of supply and demand economics.

The ninth most stupidest thing you can possibly do with your pro
gram is to use deceptive cover art and promotion. If your HIRES
graphics are second rate, me-too imitations, don't put a pulp novel
cover on the package showing things differently. If you are ashamed
to put the actual graphics the program uses on the cover, then leave
the cover off entirely. If your program is a ninth-generation misquote
of Hammurabi or Eamon, then say so.

Let's sum up unstyle ...

THERE IS NO POINT IN WRITING
AN ASSEMBLER PROGRAM IF

You lock it.
You use special DOS.
You don't provide source code.

You fail to support your users.
You make excuses and promises.
You skimp on documentation.

You create a fragile program.
You overprice it.
You use deceptive art and ads.

Above all, if you can't accept any of the previous unstyle concepts,
please go away. I definitely do not want you using any of the informa
tion in this book to perpetuate any of these absurd practices.

Now, we finally should be ready to begin writing our source code.
Let's get into the mechanics of ...

WRITING "OLD WAY" SOURCE CODE

Once again, there's an "old way" and a "new way" to handle
source code. The old way involves using the editor portion of your
editor/assembly package in the intended manner. Be sure to under
stand what is supposed to happen and how it is supposed to work
before you try anything else.

We'll continue using EDASM here for our examples. As before, if
you have a different assembler, use page highlighters, margin notes,
and the end-of-chapter boxes to show any differences between your
assembler and EDASM.

Once again, differences between "old" and "new" EDASM are
summarized in Appendix A.

136 Writing and Editing Source Code (the Old way)

"Old" EDASM consists of six different program modules. These
modules are ...

PARTS OF "OLD" EDASM

EDASM An Applesoft loader
INTEDASM An Integer Loader
ASMIDSTAMP Header Identifier
EDASM.OBJO Supervisory Module
EDITOR Editing Module
ASSM Assembly Module

EDASM has two operating modes. You use the editing mode to
enter, correct, or change a source code. You use the assembly mode
to assemble a previously completed source code into working object
code.

To save on memory space, "old" EDASM either edits or assembles,
but it cannot do both at once. There is a short "main" program to
EDASM that is called EDASM.OBjO. This program is the supervisor
that calls up the editor module, called EDITOR, or the assembly mod
ule, called ASSM.

An option in "new" EDASM does let you do lie co-resident editing
and assembly.

Once you get EDASM.OBjO into memory, it will automatically load
the editor and put you into the edit mode. Should you decide to
assemble, EDASM.OBjO will automatically overwrite the editor and
load the assembler and go ahead with assembly. When assembly is
complete, EDASM.OBjO will automatically reload the editor module.

There are three ways to get EDASM running ...

THREE WAYS TO BOOT "OLD"
EDASM

RUN EDASM from Applesoft.
RUN INTEDASM from Integer BASIC.
BRUN EDASM.OBJO from the monitor.

The only use of the modules called EDASM and INTEDASM is to get
you started from either BASIC and to handle the upcoming ID stamp.
The program called EDASM is not EDASM!

Normally, you will be in Applesloth when you begin, so you proba
bly will boot EDASM with the RUN EDASM command. If you use
RUN INTEDASM instead, you must be in Integer, or at least have a
copy of the Integer code in the machine. You can also rerun the
assembler from the monitor or machine language by doing a BRUN
EDASM.OBj, but this will not let you load or edit the upcoming ID
stamp.

I like to dedicate disks exclusively for assembly use. To do this, you
write a special MENU or HELLO program that prompts "HIT
SPACEBAR FOR EDASM." A space then autoboots RUN EDASM,

Assembly Cookbook for the Apple lillie 137

which in turn loads the actual EDASM modules. Each of these custo
mized diskettes should have all the needed parts of EDASM on it.

Anyway, the "real" EDASM is called EDASM.OBJ. This is a short
machine language supervisor that automatically switches you
between edit and assembly modes by getting the EDITOR and ASSM
modules off the diskette as needed.

One of the first things the EDASM or INTEDASM loader does is
show you the current ID Stamp.

IDSTAMP-

A page header that automatically tells the
name of the programmer, the date, and
the version number of an assembler
listing.

The 10 stamp on EDASM is called, of all things, ASMIDSTAMP.
When it comes up on the screen, you edit it to hold the correct date,
your initials, and the version number you want your next assembly to
be.

You can have up to 17 characters in the 10 stamp. The final two
characters will automatically increment on each new assembly. Any
thing at all handy can go here, but the date and your initials is more or
less standard.

Here's the 10 stamp I use ...

30-MAR-83 DEL 101

If you decide to activate this 10 stamp by using the SBTL pseudo-op
at the beginning of your program, it will automatically appear on the
top right of each page of your assembly listing. At the same time, the
name of your source code file will appear at the top left.

It is a good idea to always use the 10 stamp.
The ProDOS version of "new" EDASM has a more restrictive 10

stamp, but is compatible with a time and date clock card.
An error message gets generated if you do not have the

ASMIDSTAMP file on your diskette or have locked it. This was a fatal
error on "old" EDASM that stopped the assembly process. "New"
EDASM has fixed this bug. We'll see more on error messages in chap
ter six.

You also must have at least two digits in your 10 number, because
otherwise a "#9" increments itself into a "$0," rather than a "10."
This happens because the ASCII code for "$" is one more than the
code for "#."

Actually, you can auto-increment version numbers up to 999999, or
six places in the ID stamp. But you can safely use the "hundreds" slot
for a space, a "#," or any other character if you are sure you will
never increment past version #99.

138 Writing and Editing Source Code (the Old way)

Here's a summary ofthe ASMIOSTAMP rules.

ASMIDSTAMP RULES

ASMIOSTAMP must be on the diskette
and must be unlocked.

ASMIOSTAMP is entered and edited
only by the loaders called EOASM or
INTEOASM.

The actual 10 stamp is activated with
a SBTL pseudo-op as the first line in a
source code listing.

You are only allowed 1710
characters.

Characters 12 through 17 are used for
the version number and will auto
increment on each successive
assembly, even if these characters are
not ASCII numerals.

Normally, you edit the 10 stamp only once at the beginning of a ses
sion. The 10 stamp physically sits in Apple memory locations $02B8 to
$02C8, equal to decimal 952 to 968. The 10 stamp also gets rewritten
to diskette every time it is incremented. Thus, you can rerun the
assembler from the monitor with a BRUN EOASM.OBJ command if
these locations still hold the running 10 stamp.

Before we get into just how to use EOASM, here are a few general
use hints ...

It is usually easier to edit an existing
source code than create a new one.

Editing of most source code should be
done BACKWARD, working from finish
to start.

NEVER overwrite disk files.

ALWAYS use a new version number for
any revision or update.

While we aren't quite ready for details like these, we've put these
rules up front since they are so important.

We'll show you later how to use the module called EMPTY
SHELL.SOURCE as a "tree" to hang your source code on. Normally,
you'll start either with the empty shell or some of your older source
code, and then remove what you don't need and overwrite what you
do. Your initial entry or editing of your source code should be done in
the normal way, going from beginning to end.

But, any time you add, edit, remove, or change anything from a
source code file, always work backward starting with the highest num
bers. The reason for this is ...

Assembly Cookbook for the Apple lillie 139

The reason you edit BACKWARD is so
that the line numbers do not change as a
result of the editing you have already
done.

Say you add a line in the middle of your program during editing. All
successive line numbers will increase. On the other hand, if you
delete a line, all successive line numbers will decrease. Either way
means that all line numbers are wrong beyond where you now sit.
Any reference to altered line numbers on an already existing printout
or assembler listing will be wrong.

So, always edit from high numbers to low numbers.
We've already seen that you must have separate names for your

source code and your object code, and that you should never over
write existing files. Always add a new and higher version number as
you go along. This way, should you bomb the program or do some
thing else really dumb, you can always fall back on your last working
version.

If you run out of disk space, you can always go back and delete very
old versions of your code. But, never delete the next-to-oldest version,
or any "landmark" versions where something difficult just got com
pleted.

OK, so how do we talk to EDASM and tell it what we want it to do?
You communicate with EDASM with simple keystrokes that go by the
fancy name of editing commands. . .

EDITING COMMANDS-

Any instructions you send EDASM via the
keyboard that are used to create or edit a
source file, access a disk, control a
printer, get tutorial help, or begin the
assembly process.

Editing commands are the way you tell the assembler to edit or
assemble source code for you. There are dozens of these that we will
shortly look at. We'll note in passing that the difference between an
editing command and a pseudo-op is that an editing command does
something right now, while the pseudo-op does something only when
it crops up on a line during an assembly.

As a reminder, the word "editor" has at least two meanings when
you are using an assembler. An editor here is a program module that
lets you enter, modify, and save source code. The edit mode of an
editor module specifically lets you make line-by-line changes to an
existing source code. Thus, only some of the editing commands actu
ally do line-by-line editing. Usually the context will help you out here.

If not, take a guess.
We can group editing commands several different ways. Here is

how I would do it ...

140 Writing and Editing Source Code (the Old way)

TYPES OF EDITING COMMANDS

Disk Accesses disk files
Print Controls the printer
Entry Creates source code
Edit. Changes source code
Assembly Creates object code

Disk editing commands let you access the diskette. Remember that
while editing, you are only working with source code and that these
source codes in EDASM are usually disk-based text files.

Print editing commands let you turn the printer on and off. But,
remember that for most uses, you do not make a hard copy printout of
your source code. Instead, you generate a combined assembler listing
at the time of assembly. The assembler listing includes both source
code and object code.

Entry editing commands are the housekeeping stuff needed to let
you start a file, add to it, delete lines, do a listing, search or change,
get tutorial help, and so on.

Edit editing commands do the actual changing on a single line of
source code. On EDASM, editing is a dependent mode you switch in
to and out of. Unfortunately, the "old way" edit editing mode is a sep
arate world all its own.

Finally, the assembly commands take an existing source file and
begin the assembly process. We will save the assembly commands for
chapter six.

Let's look at these editing commands, more or less in order of
importance, like we did earlier with the pseudo-ops. As before, we'll
call anything that's not too often used or too important an "also ran"
and not go into too much detail on them. Later on, if you need one of
these for special effects, you can look them up on your own in the
EDASM manual. See Appendix A for differences involving "new"
EDASM.

DOS Editing Commands

We'll look at these first, since most everything EDASM does is
involved one way or another with disk access.

LOAD
The LOAD command is used to get a source file off of the disk and

into the RAM used by EDASM. LOAD automatically destroys every
thing in RAM and starts you over fresh. Note that this is a text file
loader, unlike the usual DOS load commands.

The usual command is LOAD lORCH.SOURCE 1.0, where
lORCH.SOURCE 1.0 is the textfile name and version of your pre
viously existing source code. On "old" EDASM, you must specify the
slot and drive before loading, and not with commas added to the load
command.

Should you try to LOAD a nonexistent or misspelled file name, or
one off the wrong drive, LOAD will create a "new" file with this name

Assembly Cookbook for the Apple lillie 141

that will return to haunt you. A surprisingly fast load is one hint that
this is happening. When this happens, it pays to get rid of the
"empty" textfile immediately, for it surely will cause you grief later.

A normal and correct load of a normal textfile will leave you with an
OUT OF DATA error message. This is apparently considered kosher
by "old" EDASM.

Here are some LOAD cautions. . .

LOAD HINTS

You normally load only TEXT files for
source code use.

A wrong source code file name or slot
or drive may create a new disk file
having that wrong name.

An OUT OF DATA error message may
happen normally with a good load
and should be ignored.

All previous RAM contents usually get
overwritten during a LOAD.

Slot and drive must be correctly set
before a LOAD.

A load will return with a FILE TYPE MISMATCH error if you try to
use a binary object code file. An I/O ERROR means you have a sick
drive, a missing or uninitialized diskette, an open door, the wrong slot
number, or something else equally bad. The ProDOS version of
"new" EDASM does give you ways to use non-text files.

SAVE
The SAVE command takes the source code you have in memory

and saves it under a file name. Usually, you will do a SAVE
ZORCH.SOURCE 1.1, where ZORCH.SOURCE 1.1 is your text file
save name and version number. As with the LOAD command, SAVE
handles text files only.

You can just use the SAVE command and EDASM will save to the
previous name, but this is bad for several reasons. The first is that you
are overwriting code that at least did something, and the second is
that you may have forgotten the previous name or changed it to some
thing else.

It is also possible to save only certain lines to a file, using a com
mand such as SAVE 36-78 SNORK.SOURCE 1.3. Naturally, you
should pick names that are significantly different for modules that are
only parts of programs or those that are utility or service subroutines
from a library.

One extremely important rule is to SAVE before you assemble!
Remember that EDASM is usually disk based. EDASM normally goes
to the disk to get its source file during assembly. Your nice and neatly

142 Writing and Editing Source Code (the Old way)

edited file in RAM gets overwritten if you forget to SAVE it before
doing any assembly ...

SAVE HINTS

ALWAYS save source code to disk
before starting any assembly.

NEVER overwrite a previous source
code text file. ALWAYS use a higher
version number.

Using SAVE without a filename is very
bad practice.

ALWAYS use source code file names
that are different from object code file
names.

You can get all sorts of error messages on a SAVE. DISK FULL,
WRITE PROTECTED and FILE LOCKED are obvious. I/O ERROR
means the usual bad news. FILE TYPE MISMATCH means you have
tried to save a text source code under the same name as a previously
generated binary object code, or done something really dumb.

APPEND

The APPEND command lets you splice one source file onto the end
of the existing source code file in RAM. Use LOAD to start over, and
APPEND to add a new source code text file to the end of an existing
one already in memory.

Unfortunately, "old" EDASM has no direct way to let you splice a
utility or library module into the middle of existing source code.
Instead, you go the long way around to APPEND the needed module
onto the end of the existing source file. Then you use the upcoming
COPY and DELETE commands to move the needed module to the
middle of the code and then drop the extra code at the end.

Thus ...

APPEND HINTS

The APPEND command tacks a
source code file onto the end of
another source code already in
memory.

To insert something in the middle of
existing source code, APPEND to the
end, COpy to the middle, and DELete
the duplication at the end.

You can also use line numbers with APPEND, but if you do,
APPEND overwrites, rather than inserts, the existing source code. This

Assembly Cookbook for the Apple II/lie 143

is dangerous unless you really want this sort of thing. See the EDASM
manual for more details.

There seems to be some confusion between APPEND and CHAIN.
APPEND is a way to immediately add one source code file to the end
of a second source code file already in memory. CHAIN is a pseudo
op used to switch over to and continue the assembly process by
switching to a second source code file still on disk. Use APPEND from
the keyboard while editing. Use CHAIN from the source code while
assembling.

You'll get the same types of DOS error messages with APPEND as
you will with LOAD. If you try to overfill the available RAM space,
you will get an OUT OF MEMORY error message.

"New" EDASM gives you several powerful "INCLUDE" and macro
ways of combining "library" source code modules into a source code.

SLOT
DRIVE

These are used to change the slot and drive as needed. Typical com
mands are SLOT6 or DRIVE2. Default values are slot 6 and drive 1.

A gotcha ...

On "old" EDASM, SLOT and DRIVE had
to be properly set before doing a LOAD,
APPEND, or SAVE. "New" EDASM eases
this restriction.

SLOT may be abbreviated to SL and DRIVE may be shortened to
DR. Note that you can not change slot or drive in "old" EDASM with
commas and trailing commands. Thus, LOAD SNARF.SOURCE,D2
was a no-no. Use DR2 <cr> LOAD SNARF.SOURCE instead.

Typically, you will use a single drive as slot 6, drive 1, and a pair of
drives as slot 6, drive 1 and drive 2. All the EDASM modules should
normally be in drive 1.

The EDASM modules are short enough that I like to keep a copy of
them on all the source code and object code diskettes. Thus, slot and
drive should rarely need changing.

CATALOG
This is like your usual disk CATALOG command, except it can be

abbreviated to CAT. Obviously, you use it to find out what is on your
disk, or to make sure you have the right diskette in the correct drive.

· DELETE
· LOCK
· RENAME
· UNLOCK

Note the periods that start these commands. For direct DOS access,
you start the command with a period and then follow that period with
a legal DOS command ...

144 Writing and Editing Source Code (the Old way)

For direct access to DOS, use a period
before the DOS command.

We already have ways to do a catalog, load, save, append, and to
change the slot and drive inside EDASM as EDASM editing com
mands. Anything else that involves DOS needs the period in front.

The most common direct DOS commands you would use are
.DELETE, .LOCK, .RENAME, and .UNLOCK. These are used in the
usual way with the usual rules. LOAD, SAVE, CATALOG, and
APPEND are already available as unique EDASM commands, so you
do not have to use periods on these.

In fact, nasty things can happen if you try a ".LOAD" or a ".SAVE."
Don't use the period in front when it is not needed.

Note that the .DELETE command is used to delete a file on a disk
ette. There are different ways to remove a line from the source code
or a character from a line. We will look at DEL and [D) shortly.

By the way ...

It pays to keep All files on any EDASM
disk locked at all times.

The only exception is ASMIDSTAMP.

You should immediately lock a new
source file as soon as it hits the diskette.

The reason for this is that one moment's careless mistyping or lack
of coherence can eliminate a year's work. Keep everything locked at
all times, except for the ASMIDSTAMP.

ALSO RANS-

There are three other disk edit commands provided in "old"
EDASM. These are FILE, TLOAD, and TSAVE.

The FILE edit command gives you the name of the last file you
loaded or saved. While this can be handy as a reminder or a memory
jogger, remember that it is bad practice to ever save new source code
to a previous file name.

The TLOAD and TSAVE file commands are intended to allow cas
sette tape loading and saving of source code. Such use of EDASM is
both obsolete and insane.

The ProDOS version of "new" EDASM has a number of other disk
commands. See Appendix A.

Print Editing Commands

The print editing commands let you decide whether your assembly
listing is going to go to a printer or to the video screen.

Assembly Cookbook for the Apple lillie 145

Once again, this reminder ...

You do not normally make hard-copy
records of your EDASM source code.

Instead, use an assembler listing that
combines both source code and object
code into one printout.

The advantages of the assembler listing are that it shows you both
source and object code together. Errors and mixups are also mini
mized, since you cannot create a legal assembly listing of code that
will not assemble.

PRtlO
PRtlI

The PR#O command tells the assembler that, later on, it is to assem
ble only to the video screen while it is routing the object code to the
diskette.

The PR#l command tells the assembler that it is later to make a
printed record of the assembly listing while it is generating the object
code for the diskette.

Nothing immediate happens on this PR#l command, and the
printer does not turn on until a later assembly. This is the normal and
usual way of deciding whether you want a printed assembly listing or
not. It is always a good idea to always do a printed assembly listing,
even if it does take longer and is noisy.

If for some reason you really wanted to print your "pure" source
code listings, or else wanted to "log" your assembly work session,
you can use the .PR#l command to immediately turn the printer on,
and could use the .PR#O command to return to the video screen.
Note the periods on these commands, and note further that there is
normally no good reason or excuse to be doing this.

At any rate, for normal use, you can follow the PR#l command with
a string you want to send your printer, such as PR#l, [I] BON, or what
ever. This can be used to set the printer font, line width, screen echo,
or anything else you feel is needed.

It's easy to forget, so. . .

Always use the PR#l command before an
ASM command, or you may not get a
hard copy of your assembler listing.

An old PR#1 command gets remembered only so long as EDASM is
in the machine and alive. If you turn the power off or exit EDASM, a
new PR#l will be needed every time you want a printed assembly list
ing.

Once again, remember that the PR#l command does not instantly
turn the printer on. It waits until the assembly process is to begin, and
then activates the printer long enough to make one hard copy of the
assembly listing.

The ProDOS version of "new" EDASM also gives you a "print to

146 Writing and Editing Source Code (the Old way)

disk" listing option. This can be most handy for "camera ready" print
upgrades, typesetting, or telecommunications. The DOS 3.3 versions
of EDASM lack this feature.

Entry Editing Commands

The editing commands used to enter source code into RAM are the
ones you will use the most. We purposely have lead with the DOS
commands since EDASM is a DOS-based assembler.

Let's now look at these workhorse entry commands in detail.

?(HEI.P)
A question mark gives you two screens worth of help in the form of

an alphabetical listing of all the EDASM commands, their syntax, and
their allowable abbreviations. Many of the EDASM commands can be
shortened to one or two keystrokes to save time and hassle. If you
ever are in doubt as to who does what, use this help screen to double
check.

NEW
This command "erases" memory and lets you start over on a new

source code listing. Note that the LOAD command also implies a
NEW command, since loading destroys the old memory contents.
Should disaster strike, "new" EDASM gives you a way to "undo" this
command.

ADD
This command picks up at the end of the existing source code file

and lets you add new lines to the end. If your source code has zero
length, you start "adding" with line number one. To begin creating a
new source code, you must first use NEW, followed by ADD.

INSERT

This command lets you shove stuff into the middle of an existing
source code file. You must give the number of the first line that is to
be bumped below the new stuff. Thus, an INSERT6 will let you start
adding things after the existing line 5 but before the existing line 6.
Line 5 stays line 5, but line 6 becomes lines 7, 8, 9, or whatever as you
add entries.

[Q] (QUIT)

The [Q] command gets you out of either the ADD or the INSERT
mode and returns you to the main editor program. (We will use the
"WPL" method of showing control characters here. "[Q]" means
" <CTRL>Q.")

This gets confusing fast, since there are four different ways you
might like to exit something ...

Assembly Cookbook for the Apple lillie 147

"TERMINATE" COMMANDS

[Q] quits you from ADD or INSERT.

[X] exits you out of EDIT.

[C] cancels a long LIST.

END ends your EDASM session.

This is kind of poor, but that's the way it is. It would be far better to
have a consistent exit process for each part of each module, but "old"
EDASM does not do this.

If you use the wrong exit command, you can force strange charac
ters and control commands into your source code files that will cause
all sorts of nasty hassles later. Empty line numbers, or else line num
bers with funny characters or embedded control codes can result.
Watch this detail closely.

[Q]uit entry. [X]it editing. [C]ease listing. END session.

END
As we've just seen, the END command is used when you are fin

ished with EDASM. END totally exits the program. END usually
returns you to Applesloth.

You might like to do this when you are finished for the day or else
might like to try some object code out to see if it works.

Unlike some assemblers, EDASM does not let you test object code
from within. To do a test, you give EDASM an END command, and
then BRUN your object code ...

You must exit EDASM with an END
command any time you want to test your
object code.

The good news about not being co-resident is that there is no way
the object code can plow EDASM if EDASM is not in the machine or
no longer in use. This means your object code can be tested and run
exactly where it belongs in the Apple.

The bad news, of course, is that the round trip of edit-assemble-test
gets to be a hassle.

This round trip time can be dramatically minimized, but not elimi
nated, by linking EDASM to newer and faster versions of DOS or disk
emulators. Using LST OFF to drop the label reference dump helps
bunches as well. "New" EDASM does give you limited co-resident
and in-place assembly options.

Once your test is complete, you can use RUN EDASM or RUN
INTEDASM as needed to get the assembler back into the machine.
You alternately do a BRUN EDASM.OBJ if you are sure the ID stamp is
still at $02D8. Remember to turn PR#l back on each time you reenter
EDASM, or you will not get any hard copy.

148 Writing and Editing Source Code (the Old way)

L.IST
This is the command to list all or part of your program to the screen.

There are several ways to use LIST. . .

L
LlO

LlO,20
L20,10

Ll 0-20
L 10-

Spacebar
[C]

USING LIST

-Lists everything
-Lists line 10

-Lists line 10, then 20
-Lists line 20, then 10

-Lists lines 10 thru 20
-Lists lines from 10 on

-Single steps listing
-Cancels listing

As we've shown, LIST can be shortened to L. You probably will use
this edit command more than any other, for it shows you what you
have in your source code and where it is located. "New" EDASM
gives you additional LIST options. See Appendix A.

As as the chart shows us, you can stop a long listing by hitting the
spacebar. Each new hit of the spacebar gives you one more line sent
to the video screen. You can cancel a listing with a [C].

Should you get nothing on a LIST command, either you have an
empty source code or else you told it to list backward or did some
thing else weird.

DEL.ETE
This is a dangerous one. DELETE,. or simply D will eliminate one or

more lines from your source code, and will automatically and immedi
ately change the numbering of all lines above the ones you deleted.

Here are some legal ways of. . .

USING DELETE

(smart and safe)

D6 -Deletes old line 6
D6-1O -Deletes old lines 6 to 10
D6-999-Deletes all lines above 5
D8,7,6 -Deletes old lines 8, 7, 6

(dumb and deadly)

D6,7,8 -Deletes old lines 6, 8, 10
D6,6,6 -Deletes old lines 6, 7, 8

What you have to remember is that each deletion immediately
bumps all line numbers above the deletion down by one. So, it is safe

Assembly Cookbook for the Apple lillie 149

to delete a single line. It is safe to delete a range of lines. It is safe to
delete everything above a certain line.

It is also safe to delete any number of widely spaced individual lines
in reverse order. But it is deadly to delete individual lines in "front
ward" order, since the line numbers will change between the time
you call for the deletion and the time the deletion is actually done.

In the examples above, a D8, 7, 6 command works OK, since the
deletion of eight bumps nine down to eight but doesn't hurt seven or
six. But a D6, 7, 8, deletes six, converting line eight to line seven. It
then deletes the old line eight, which is now the new line seven.
Finally, line ten gets deleted since the previous two deletions has
bumped ten down to eight.

Similarly, a D6, 6, 6, is one very bizarre way to delete lines six,
seven, and eight of an existing source code.

The rules are ...

ALWAYS delete individual lines in reverse
order, using the HIGHEST line number
first!

ALWAYS relist after any deletion since
the line numbers will have changed.

A Dl-999 command is the same as NEW as it eliminates the source
code file entirely. You can use any number higher than your highest
line number. I usually use 999.

Note that this particular DELETE command dumps whole source
code lines only. Use the .DELETE command instead when you want to
erase disk files. There is yet another way used to delete single charac
ters inside a source code line, and involving [D]. More on this shortly.

cop"
The COpy entry editing command is one good way to duplicate a

group of lines. This can be most handy when you have many lines that
differ slightly. It is usually far easier to copy and then edit than it is to
enter everything twice by hand. Working files are one very useful
place to be COPYing. So is any code that gets repeated "alike but dif
ferent somehow."

You have to tell EDASM how much you want copied where. For
instance, COPY 20-30 TO 53 will put an image of the eleven lines
from 20 through 30 so that a new image starts with line 53. The old
line 53 will now be line 64.

There is no MOVE command as such in "old" EDASM. Instead, you
COpy and then DELETE. In the previous example, you might delete
lines 20 through 30 if you were only interested in a move. "New"
EDASM does give you a REPLACE option.

We've already seen that you cannot load a disk module into the
middle of your source code. Instead, you first APPEND the new stuff
to the end of your source code, then COpy it to where you really
want it, and then, after checking line numbers very carefully, delete
the extra stuff at the end.

Sort of roundabout, but it works. "New way" editing eliminates
these hassles completely.

750 Writing and Editing Source Code (the Old way)

LENGTH
The LENGTH entry command, which can be shortened to LEN, tells

you how long your existing source code is, and how much RAM you
have remaining in the Apple for additional lines.

Typically ...

EDASM holds a source code file of
roughly 29K characters in its RAM.

This is enough for 700 to 1400 lines of
typical source code.

Thus, there is more than enough room to put fairly long source
codes into EDASM all at once. If you need more room than this, there
is always the CHAIN pseudo-op used during assembly that can tie any
number of source code files together for virtually any length assembly.

Should you try to overfill RAM, you will get an ERR: MEMORY FULL
message. Usually this is not destructive. All it means is that it is time to
"garbage collect" and eliminate any source code lines you aren't
using anymore. Otherwise, you can split the source code into two or
more pieces.

Source code listings tend to use far fewer characters than do word
processing files, and EDASM has more source code space than some
word processors have file space. So, you aren't likely to run out of
source code room for all but the most humongous projects.

Don't skimp on documentation to try to save source code space. It
is never worth it. . .

There is more than enough room in
EDASM to hold and edit a long and very
well documented source code.

NEVER skimp on documentation to try to
save on memory space!

The one big advantage of a disk-based assembler over an in-place
assembler is that it lets you work on longer files with better documen
tation, since no room has to be set aside for object code inside RAM.

ALSO ~ANS-
There are eight other "old" EDASM entry edit commands that are

specialized and do not see much use. These are PRINT, WHERE,
TRUNCON, TRUNCOFF, LOMEM:, HIMEM:, MON, and TABS.

The PRINT command gives you a list without adding line numbers.
This can be handy when you are editing something other than source
code with EDASM, such as a BASIC program or some other text file.

Note that PRINT in this case has nothing whatsoever to do with hard
copy. PRINT, like LIST, normally goes only to the screen. If you do
really want to get a hard copy without line numbers, you can use a
.PR#l before the PRINT command, and a .PR#O following. Note those
periods. Such use is very rare, but you might find it handy for special
ized editing.

Assembly Cookbook for the Apple lillie 151

The WHERE command returns the hexadecimal address of a source
code line number. For instance, WHERE14 will give you the starting
address of source code line number 14.

Finding the actual location of a line in memory is sometimes useful if
you want to directly modify source code from the monitor. This is one
very inelegant way to handle lowercase alphabets under "old"
EDASM on an "old" Apple. WHERE can also be used to find hidden
control characters and to resolve other problems.

A source code line can be anything, but most programmers end up
with something more than 40 and less than 80 characters on most of
their work. This means that a listed line will not fit on a single line of
an older Apple II 40-column text display.

So, when you are listing, the comments are usually dropped and do
not appear on the 40-column Apple screen. To be able to see every
thing on screen, at the cost of having the comments interspersed with
the op codes and operands, you can use the TRUNCON or simply
TRON command. To get back to the usual display, use TRUNCOFF or
TROF.

Truncating only affects the display during a list. It does not change
anything in the machine and is not present during editing.

"New" EDASM on a lie does, of course, give you a choice of 40- or
80-column display.

The HIMEM: and LOMEM: commands may be used to change the
available space for EDASM source code lines. You might do this if you
want to try to assemble and debug at the same time, or if you want to
protect some memory space for some other reason.

The default values are LOMEM:8192 and HIMEM:38400 on "old"
EDASM. Which means your source code file space goes from hex
$2000 to $9600. You can normally raise LOMEM or else lower HIMEM
to shorten your source code workspace. If you try going the other way
on a stock Apple, you will end up plowing EDASM on the low end
and overwriting DOS buffers on the high end.

One interesting possibility is to move DOS to a RAM card. You
could then set HIMEM to 49151 and pick up another 10751 bytes of
RAM for your source code. Which would gain you several hundred
more source code lines.

The MON command is particularly dangerous in inexperienced
hands. This entry edit command moves you directly into the monitor
from EDASM for special uses. Any of the damage you can normally do
from the monitor is now available for you with which to ruin your
source code. A 3DOG gets you back to EDASM if anything is left.

The editing portion of EDASM was initially set up to edit just about
anything, and not just 6502 op codes for the Apple II or lie. Remem
ber that "old" EDASM uses the spacebar as a tab to move between
source code fields. For special uses, you might like to tab on a differ
ent character, tab to different positions, or else not tab at all.

To handle this, there is a TAB command. The usual format is
TAB6, 13,25,37,Z. This particular command says we are to tab anytime
the character Z shows up, going to the next available horizontal posi
tion in the list. Using TAB without a list totally defeats any tabbing.
Tabs are limited to 40 or fewer horizontal positions in "old" EDASM.

Normally, you wouldn't mess with the TAB commands. One place
different tab settings might be handy is if you are cross assembling

152 Writing and Editing Source Code (the Old way)

code for some machine using a non-6502 microprocessor, and
wanted different width columns in different places.

Sometimes you will want to turn all tabbing off to simplify editing
comments. More on this shortly.

Edit Editing Commands

So far, all our entry commands did things to entire source code
lines. It is also nice to be able to modify individual characters and indi
vidual parts of a single line. EDASM has a special editing mode that
lets you do this.

Unfortunately, the editing is mode dependent, which means that
you can't edit anything directly on screen or from a list. Instead, you
turn the editor on, edit the line, and then go back to the entry mode.

Dumb. Dino even.
As a reminder, "new way" editing can eliminate this weirdness in

one swell foop.

EDIT

The EDASM command to edit one or more lines is called, strangely
enough, EDIT and may be shortened to E. What EDIT does is bring
one line at a time up on screen where you can mess with the line to
your heart's content. After editing, you accept the line, and the EDIT
command then goes on to any further commands you have given it.

Here are a few examples. . .

USING EDIT

E6 -Edits line 6 only
E6-10 -Edits lines 6 thru 10
E6- -Edits lines 6 thru all

E- -Edits everything
E9,7,3 -Edits 9, then 7, then 3
E3,7,9 -Edits 3, then 7, then 9

You can edit any number of lines in any order, but if you are reedit
ing a source code and are making changes that involve deletions and
insertions as well as editing, you should always start from the high
numbers and work your way down.

Any of the edit commands puts a line on screen so you can edit it.
Once you have the line on screen, you can then use additional special
edit editing commands to make any changes.

Assembly Cookbook for the Apple II/lIe 153

Here's a summary ...

EDIT EDITING COMMANDS

--
[return]

[T]
[R]
[0]
[I]

[F]
[V]
[X]

-Move one to right
-Move one to left
-Accept line as is

-Truncate and accept
-Restore line as it was
-Delete character
-Insert character

-Find character
-Verbatim entry
-End edit editing mode

Let's look at these edit editing commands one at a time.
Once again, this is a line-based editor, so you work with the edit

editing commands to change one source code line at a time. When
you are happy with one line, you then go on to another line.

As a reminder, we will use "WPL" notation in the text that follows.
Thus, "[T]" means to press and hold the <CTRL> key. Then press
and release the "T" key. Then release the < CTRL > key.

Starting with the obvious, to get the line on screen, you give an
EDIT or E command that brings up the line number you want. You'll
see your line and a winking cursor. The right arrow moves you one
character to the right and the left arrow backs you up one, just as you
wou Id expect.

If you want to change the character the cursor is sitting on, just
overtype it. After a change, the cursor moves one to the right to let
you continue changing characters in the order you would expect. This
is just like using a word processor in its "replace" mode, except you
are working only on a single line at a time.

Putting last things first, once you get the line edited the way you
really want it, a carriage return accepts the line and enters it back into
the EDASM source code. So, use a carriage return to accept the line as
you now see it.

Sometimes your editing process will leave a bunch of characters or
unwanted garbage hanging on the end of the line you really want. In
this case, you use a [T] to truncate and accept the line. This is some
what similar to a word processor command of "Erase to End of Line."

Thus, a carriage return accepts the entire line. A [T] accepts only the
part of the line that is to the left of the cursor. The cursed character is
dropped, as is everything else to the right.

It is real easy to make a royal mess of the line you are working on,
plowing it up beyond hope. If this happens, just type [R] to replace the
original line you first were editing on screen. All the damage miracu
lously vanishes, and you can try again.

To delete a character, just put the cursor to the left of it and hit [D].
Each successive hitting of [D] swallows one more character and short
ens the line by one character. Typing anything else, such as a right or
a left arrow, exits you from this deletion sub-mode.

154 Writing and Editing Source Code (the Old way)

To insert one or more characters, again put the cursor just to the left
of where you want the insertion to take place. Then type [I]. This turns
on the insertion sub-mode. All characters you now type will be added,
one at a time, to the line you are editing. The line, of course, will get
longer as you do this.

To exit the insertion mode, use a right arrow, a left arrow, a carriage
return, a m, or an [R]. The arrows leave you editing the same line. The
carriage return accepts that line as is. Using [T] truncates and accepts
only the stuff to the left of the cursor. Hitting [R] aborts what you have
on screen and gives you the original line back.

There are two "also ran" editing commands. These are [V] and [F].
The [V] command is dangerous and tricky. The V here stands for

verbatim, and this is how you can force control commands into your
source code line. Verbatim entry might be needed to imbed special
printer commands or to do other very special things with your source
code lines.

A second [V] exits the verbatim mode. Use of [V] is very dangerous
and should be avoided unless you really know what you are up to.

The [F] command finds the next occurrence of a chosen character in
the line. For instance, "[F]H" moves the cursor to the first capital H it
finds on the source code line. In this example, the control key is only
held down for the "F," and not the "H." If it doesn't find a capital H
on the line, the cursor stays where it is. Thus [F] is sort of an "express"
right arrow.

Note that [F] is a "cursor positioner" only. There is also a second
and much more powerful way to find and replace things. More on this
shortly.

If you decide you do not want to edit anymore, just use [X] to "X-it"
the edit mode. This might happen if you decide to leave the original
line the way it was after all. You might also want to do an [X] if you
told the editor to give you bunches of lines to edit, and you got past
the lines you really were interested in.

Once again, note that the "stop" commands are inconsistent in
EDASM. A [Q] quits entry or insertion. A [C] cancels a listing. Use of
[X] exits the edit editing mode, and finally, END gets you completely
out of EDASM.

EDASM's editing commands are fairly powerful as far as line-ori
ented editor commands go. A little practice and you will be able to
edit with a vengence. But, watch what you are doing. If you try to exit
the editing mode with a [Ql, or try stopping the entry mode with an
[X], you will end up in deep trouble.

To summarize, use E or EDIT to bring one line at a time on-screen
for editing. Position with the right and left arrows, or use [F] as an
express right arrow. Make corrections at the cursor by overtyping. Use
[D] to delete and [I] to insert. To accept the whole line, use a carriage
return. To accept everything up to the cursor, use m. If you want to
reject the line and start editing it over, use [R]. To exit the edit editing
mode, use [X].

FIND

Besides there being commands to edit single EDASM source code
lines, you can also do "global" search and replace on the whole

Assembly Cookbook for the Apple lillie 755

source code. Three commands involved here are FIND, CHANGE,
and REPLACE.

A command of FIND"$8D" will find and list all lines on which the
string $80 appears. The quotes here are delimiters and are not part of
the string. This is handy to locate a line if you messed up the line num
bers. You can also search only part of the source code by putting line
numbers between FIND and the search string. For instance, FIND6-
30"SNORK" will search lines 6 through 30 for the label SNaRK.

An [A] may be used as a wildcard in your find. Thus FIND "[A]HIS"
will search for all four-letter sequences that start with any character
but end with HIS. This is sort of specialized. One use is to find two dif
ferent ranges of addresses, such as might happen on HIRESl and
HIRES2 graphics. Another use is to find a word whose first letter may
or may not be capitalized.

CHANGE
The real heavy search and replace is called CHANGE. To use

CHANGE for a global search and replace, use three delimiters separat
ing the "old" and "new" string.

For instance, a command of CHANGE/ZILCH/ZORCH/ will first ask
you "ALL OR SOME?" If you recklessly answer ALL, the command
will go through your entire source code and change every ZORCH it
finds to ZILCH.

If you more sanely answer SOME, the command will go to the first
ZORCH it finds and show you the change on the first line. If you want
the change made, use [C] to accept the change. Use [ESC] to abort the
search and use any other key to continue searching.

As with FIND, you can use a range of line numbers and you can use
the [A] wildcard in the original string.

A caution ...

Do not use CHANGE ALL.

Use CHANGE SOME instead.

It is too easy to have a character string
buried somewhere else, such as in a label
or comment. ALL can replace more than
you expect, in all of the wrong places.

It is too easy to make some change and have that same change crop
up inside labels and within comments.

For instance, suppose you decide to change the state of a carry flag
with a CHANGE/SEC/CLC, and then respond with an A for ALL. Sure
enough, all the SEC op codes magically change to CLC. But a com
ment that had the upper case word SECONDS in it mysteriously
changes to CLCONDS as well. No matter how "safe" an automatic
change seems, it will always find some label or some comment some
where to foul up the works.

There is one final class of editing commands that do the actual
assembly for us. We will hold on these until chapter six.

156 Writing and Editing Source Code (the Old way)

AN EDITING HINT

One of the nastiest "features" of EDASM is that it tabs everything.
Which is fine for real source code lines. But, any comment lines you
use will have great heaping holes in them when you try to "old way"
edit them or list them to the screen.

This means it is normally just about impossible to edit a nice title
block and insert or change comments and still have them end up
where you want.

There is a sneaky way around this ..

TO EDIT COMMENTS-

Turn all EDASM tab settings off by using
a single "T" command.

The comments will now all be in one
piece and appear as they will in your
assembly listing.

When finished editing the comments,
reset the "old" EDASM tabs back to
normal with a "114,19,29" command.

Rebooting EDASM will also reset the tabs
back to normal.

I hate to admit this, but it took me years to find this hidden trick. Try
editing your comments both ways; you'll immediately see how power
ful this stunt is.

Similar default tab values for "new" EDASM are "T16,22,36."

A LABEL LIST

One problem that crops up when you start writing your source code
is that you may define a label and, a few lines later, that label will
scroll off screen. You then forget what the label was or else misspell it,
creating all sorts of problems.

Now, once you have your source code put together far enough that
it can be assembled, the references at the end of your assembly listing
can be turned on to give you a list of all labels. This is handy once or
twice, but gets tedious if done each and every assembly.

Now, the dino people would have you pre-define or pre-equate
each label before you actually start programming. This is a bad scene,
though, since often the process of entering source code suggests
newer and better ways of attacking your problem. So, it is best to stay
flexible.

But how do you keep track of labels?

Assembly Cookbook for the Apple lillie 157

Here's a form that shows you one way.

LABEL LIST FOR,I ______ ---'

DONE BY 1 ___ --' ASSEMBLER~I ______ ~

DATE 1 ___ --' SYSTEM ~I ______ ~

VERSION 1 ___ -'

LABEL EaU LINE DFB VALUE USE

NOTES __________ _
PAGEDOFD

What you do is go along and fill in the list as you define your labels.
You also note whether the label is an EQU that is defined before the
source code, a line pointer that is defined inside the working source
code, or a DFB that is defined in files that usually follow the source
code.

158 Writing and Editing Source Code (the Old way)

Here's an example ...

LABEL LIST FOR, L-I __ O_BN_O_XIO_U_SS_O_UN_DS __ ~

DO NEB Y L---.-:D:.:::EL'-----I

DATE 6-16-83

VERSION 1.0

LABEL EQU LINE DFB
HOME I

INIT I

SPKR I

WA.IT I

DEM04 "
NXTNOT4 ./

STA.LL4 ./

OONE4 ./

BASENT4 I

OBNOX4 " LOK4 I

SWEEP4 I

NXTSWP4 I

NXTC~C4 "
EXIT4 I

TRPCNT4
FLNGTH4
SEFO
SEFI
SEF2
SEF3
SEF4
SEF5
SEF6
SEF7
SEF8
SEF9
SEFIO
SEFll
SEFI2
SEFI3
SEFI4
SEFI5

NOTES Bf>.SIC POKES SOUND TO
Bf>.SENT4 + I

I

I

I

I

I

"
I

I

I

" ,
,
I

./

"
./

I

./

ASSEMBLER 1-1 .:::::ED:.:;::f>.SM:.:.:....-_____ ...J

SYSTEM 1L..:.:A.P.:...:PL=E..:,:I1:...;./II:.=.E _____ --'

FOR SA.MS f>.SS~ COOKBOOK

VALUE USE
$FCA.8 MONITOR SUB TO CLEA.R SCREEN

$FB2F SUB TO SET UP TEXT SCREEN
$C030 SPEA.KER CLICK LOCA.TlON
$FCA.8 MONITOR TIME DELA.~ SUB
$7800 ST A.RT OF DEMO
$7809 LOOP TO PLA. ~ NEXT SOUND
$780F BETWEEN SOUND DELA. ~
$7821 DEMO EXIT
$7822 BASIC ENTR~ POINT
$7824 ML ENT~ POINT

$7830 LENGTH OK TO CONTI NUE
$783F SWEEP INITIAL SETUP
$7841 SWEEP LOOP
$7843 C~CLE LOOP
$7859 OBNOX EXIT
$785E TRIP COUNTER
$785F # OF A.VA.ILA.BLE SOLNDS
$7860 SOLND FILE STA.RT (TICK)
$7862 (WHOPIDOQP)
$7864 (PIP)
$7866 (PHf>.SOR)
$7868 (MUSICA.L SCA.LE)
$786A (SHORT BRA.SS)
$786C (MEDIUM BRf>.SS)
$786E (LONG BRf>.SS)
$7870 (GEIGER)

$7872 (GLEEP)
$7874 (GLISSADE)
$7876 (QWIP)
$7878 (OBOE)

$787A. (FRENCH HORN)
$787C (ENGLISH HORN)
$787E (TIME BOMB)

PAGE [Q OFQ]
RIPOFF MOD. #4

We've put two copies of the blank label list into Appendix C. You
can cut one of these out and blow it up to a better size on an enlarg
ing copy machine.

The label list is most useful as a beginner's tool when you are first
starting source code programming. After you have done an early
assembly or two, the symbol lister will pretty much replace the need
for the label list. So, this form is more to get you started than anything
else.

Label lists and cross references are most handy, particularly if you
are new to assembly language programming or are creating a totally
new and different source code.

With "new way" editing, the split screen feature pretty much elimi
nates any need for a hand written label list.

Assem bly Cookbook for the Apple II/II e 159

NOW WHAT?

OK. You've gone through this chapter and the colon is still glower
ing at you, and everything here seems like a garbled mess. How do
you make heads or tails out of anything?

How, in short, do you start writing source code?
Well, the first thing to do is to reread this chapter, and then reread

the EDASM manual. We have purposely arranged things differently
here, so you have two different ways that all of the EDASM commands
get explained.

The second through ninety-ninth things to do are get some hands-on
practice using and working with EDASM. And, after you gain practice,
go back and reread this chapter and the parts of the EDASM manual
that can be of help.

You'll have the best luck if you use the EDASM manual like you
would an encyclopedia, going to it for a specific explanation of how a
specific command works, rather than reading it from cover to cover.
You can dramatically improve the EDASM manual by using page high
lighters to emphasize what is important.

Chances are you will want to go on to the "new way" of entering
and editing source code of the next chapter, since it is far simpler and
much more fun. But, be sure to do some stuff the "old way" first. It is
absolutely essential.

So, you boot EDASM. You customize the I DSTAMP. And, there's
that colon. Now what?

OK. Do this.
Boot EDASM and make up a suitable 10 Stamp. After the colon

shows up, enter. . .

NEW <cr>
ADD <cr>
<sp> SBTL <cr>
<sp> SKP2 <cr>
<sp> ORG $0300 1 CODE AT $0300 <cr>
<sp> SKP2 <'!:r>

************************* <cr>
* * <cr>
* THIS IS MY VERY FIRST * <cr>
* TRY AT EDASM * <cr>
* * <cr>

1 ************************* <cr>
<sp> SKP3 <cr>
1 *** HOOKS *** <cr>
<sp> SKPl <cr>
SPEAK EQU $C030 1 WRAP SPEAKER <cr>
WAIT EQU $FCA8 1 MONITOR TIME DELAY <cr>
<sp> SKP3 <cr>
1 *** MAIN PROGRAM *** <cr>
<sp> SKPl <cr>
BLATT LDA 1$22 1 SET TONE VALUE <cr>
<sp> JSR WAIT 7 AND DELAY <cr>
<sp> BIT SPEAK 1 WRAP SPEAKER <cr>
<sp> JMP BLATT 1 AND REPEAT <cr>
<sp> PAGE <cr>
<ctrl>Q <cr>
SAVE MYFIRST.SQURCE <cr>

Just in case you are the one that never can find the key marked
"ANY" on your Apple, the <sp> means "hit the spacebar once,"
and <cr> means "press the RETURN key once."

160 Writing and Editing Source Code (the Old way)

Here is what your on-screen source code should look like, following
a LIST command. . .

o

o

01

o

o

SBTL
SKP2

1
2
3 ORG $0300

SKP2
7 CODE AT 40300

4
5
6
7
8
9

10
11
12
13:

* * * THIS IS MY VERY FIRST *
* TRY AT EDASM *
* *

SKP3
*** HOOKS ***

SKP1
14 SPEAK
15 WAIT
16

EQU $C030
EQU $FCA8
SKP3

17
18
19
20
21
22
23

BLATT

.

*** MAIN PROGRAM ***
SKP1
LOA
JSR
BIT
JMP
PAGE

#$22
WAIT
SPEAK
BLATT

WRAP SPEAKER
MONITOR TIME DELAY

SET TONE VALUE
AND DELAY
WRAP SPEAKER
AND REPEAT

- ,

What should happen is that you should have generated a simple
source code and then saved it to your diskette. You can then assemble
and test the source code per the details in chapter six. Note that
< sp > means "hit the spacebar" and that < cr> means "press car
riage return."

The comment box will most likely be offset or broken up on your
listing. This is caused by EDASM's tabbing all lines, regardless of
whether they are comment lines or real source code lines. To get a
box like the previous one, type "T," followed by "L." This will fix the
comments but will mess up the real op code lines.

To put things back the way they belong on "old" EDASM, type
"T14, 19,29," followed by "L." This trick keeps you from going up the
wall whenever you try to edit comment lines. On "new" EDASM, use
"T16,22,36."

We'll look at the assembler listing you will get from this example
later on in chapter six.

This program does do something. Try to analyze what it does and
then, after assembling and testing your object code, try to change
what it does.

Then, change your source code so it does what it is doing "for a
while," rather than "forever." After that, make it do several different
"for a whiles" in time sequence before stopping. Then rearrange that
sequence into something a three year old can recognize.

The next step after you have written and assembled your own
source code is to go back and reread the parts in the EDASM book,
encyclopedia style, that apply to the commands you have used.

To keep the source code simple for your first try, we have simplified
the usual stars, title blocks, spaces, pretty printing, and have omitted

o

o

o

o

o

J

Assembly Cookbook for the Apple lIllIe 161

the documentation and explanations that all decent source code must
have. Besides, we are intentionally making a minor mystery out of
what the code does. But the instant you get this program working, go
back and put in all the documentation and extra pretty printing that
you can think of.

What next?
From here, you can go into a "study" mode, or a "create" mode.

To go the study route, load a ripoff module of your choice and modify
it to make it do different things different ways. As you use new com
mands, go back and reread this chapter and the EDASM sections.

To go into the "create" mode, load the EMPTY SHELL.SOURCE
ripoff module and then edit and modify this shell to properly docu
ment and contain your first program.

After that, you should be off and running. Once again, hands on is
everything. What reads like so much gibberish becomes trivial once
you actually go ahead and use the commands. Continually go back
and reread.

The first few attempts at assembly programming are always frustrat
ing, particularly if you don't pay attention to detail, or if you get upset
or emotionally involved with seventeen error messages on a six-line
program.

But it all will fall into place. What seems like superhuman effort and
mind-boggling detail now will become trivial and of obvious second
nature to you later.

Now this, this here's a football. See that big "H" over there?

162 Writing and Editing Source Code (the Old way)

MORE DIFFERENCES BETWEEN M,/ ~\.sSEMBLER AND EDASM:

WRITING AND EDITING
SOURCE CODE
(the NEW way)

Word processors have come much further much faster than have
the editors in assembly packages. The reasons for this are obvious,
since anybody at all may want to process words, while only those very
few of you that genuinely wish to become filthy rich will be using edi
tors and assemblers.

Today, it turns out that ...

A word processor usually makes a better
editor than an editor does.

There are compelling and powerful reasons to do your source code
editing with a modern word processor, rather than using the editor
that came with the assembler in the first place. The bottom line is that
entry and editing get done a lot faster, have far fewer errors, and, best
of all, are far more fun. So, that's what our "new way" of editing and
entering source code is all about. You simply use the word processor
of your choice instead of the editor that comes with your assembler.

163

164 Writing and Editing Source Code (the New way)

Here's a long list of potential advantages of "new way" editing ...

"NEW WAY" EDITING
ADVANTAGES

Free form entry
Modeless
Unbroken comments
Fewer round trips

Little new to learn
Lowercase and fancy art
Insert anywhere
Easy line and block copy

Glossary or custom keys
Renumbering on demand
Better disk access
Split screens

Status line
Fewer bad Ii nes in code
Powerful search and replace
Supervisory macros

By "free form" editing, you have as much of your source code on
screen at once as you want. You thus are able to continuously enter
and edit. Being modeless means that there is no difference between
entry, editing, and sub-editing activities, since you can do any of these
at any time.

Many editors, including the older version of EDASM, tend to mess
up comment lines with unwanted and unneeded tabs when you try to
edit. With a "new way" word processor, you see the comments
exactly as they will appear on the final assembly listing. It is now a triv
ial matter to insert another line inside a title block box, for "what you
see is what you get," at least on comment lines.

There are fewer round trips through the edit-assemble-test process,
since your comments and formatting are clearer, and there's much
less of the fumble-fingeredness that gave you funny lines the old way.
Besides, you tend to do more at once when it is easier. The "little new
to learn" advantage assumes you already have and are using a word
processor for everything else. You can ignore many of the tedious and
specialized "old way" editing rules.

Lowercase comments and fancy border art are now trivial. It is also
far easier to insert anything anywhere, and copy anything to any
where, either whole blocks or individual lines. By using any glossary
or custom keys on your word processor, you can gain bunches on
speed, and you can now include source code macros, as well as the
more common object code macros.

That hassle of the line numbers not matching an old assembly listing
and causing problems can be eliminated entirely. Done the new way,
you can turn your line numbers on and off at will. Better yet, you can
delay renumbering until you are done editing and correcting. Thus,

Assembly Cookbook for the Apple lillie 765

line number 153 can stay line 153 even after you have added or
removed lines lower than this.

Your disk access is now much simpler, since you can use trailing
commas rather than the awkward SLOT and DRIVE commands that
"old" EDASM demanded. The split-screen feature of a word proces
sor is one of those things that may not seem important, but once you
use it, you will never go back. Screen splits are particularly useful for
finding label names elsewhere in the listing before it scrolls offscreen.
With a split display, you can have, say, all the EQUs on one half, and
your present entry point on the other half.

Other word processing goodies include a status line to tell you what
you are up to, and much more powerful search and replace features.
You also may be able to have longer source code files as well. This
depends on your choice of word processor and assembler, but a large
increase in source code file length is not all that unusual.

Our last advantage is a real biggy, but is available on very few
(would you believe one?) word processors. If your word processor has
a supervisory controlling language, you can program and automate
many operations involved with writing and editing source code. This
becomes the ultimate macro. We are, of course, talking about WPL,
the supervisory language that goes with Apple Writer lie. With WPL,
things like numbering, delayed renumbering, and unnumbering
become trivially easy, as does creating conditional source codes. And,
once you get into a programmable word processor language, you'll be
surprised at how much can be done how well.

Well, that's a pretty long list. But, what about the dark side? .

"NEW WAY" EDITING
LIMITATIONS

The files may not be compatible.
Round-trip times will be longer.
Tabbing might be awkward.
Supervisory macros may not exist.

There are four main disadvantages to "new way" editing with a
word processor. The first is that the word processor's files must be
compatible with your assembler's source code files. Thus, not every
word processor will work with every assembler package. If there are
hassles involved in file format changes, then the "new way" may not
be worth the effort.

Secondly, the edit-assemble-test round trip time will get pretty bad,
since you have to separately load your word processor and your
assembler and your final programs to be tested.

There are several ways to ease this particular hassle. Foremost is that
new way editing usually saves you on the total number of round trips
needed, since you are less likely to mess up comments or create
fumble-finger errors, and since it is easier to do more at once. If you
have an Apple lie, with extended memory you can, in theory, patch
things up so that your word processor, your assembler, and your
object code can all sit co-resident in the machine. Just flip back and
forth between main and auxiliary memory as needed. There's also the

166 Writing and Editing Source Code (the New way)

obvious route of using a second Apple, which, these days isn't that far
fetched.

Finally, you will need some way to number and renumber your
source code lines. You may also want some way to do fancy tabbing.
The easiest way to handle this is with a supervisory language that con
trols your word processor. A fully "open" word processor package
that lets your own custom machine language codes directly interact
with the RAM text file can also be used. This is fastest and best, but
takes lots of effort. What all this means is that not every word proces
sor is suitable for "new way" editing.

All in all, if you pick the right word processor, you will find the
"new way" method far easier, far faster, far less error prone, and,
above all, far more fun than the old way ever was.

The combination I use links EDASM with Apple Writer lie with the
WPL supervisory language. The results boggle the mind.

In fact ...

The EDASM-Apple Writer lIe-WPl mix
instantly converts one of the dreariest
and dumpiest editor modules into one of
the finest you can get, no holds barred.

By the way, older versions of Apple Writer aren't nearly as good.
Apple Writer I used noncompatible files. Apple Writer II will work OK,
if your Apple has lowercase and 80 columns. If it lacks either of these,
you won't gain nearly as much nearly as fast.

Linking these three packages is totally trivial. Just switch between
them as needed. That's all there is to it! Before we look at some spe
cific details, though, let's check into.

SOURCE CODE FILE STRUCTURE

If you are going to share a source code file between two programs,
that file obviously has to be compatible and readable by both. Since
EDASM uses standard text files, and since Apple Writer lie uses stand
ard text files, we shouldn't expect too many hassles. But you do have

. to know what goes where in the file.
So, your first task in starting "new way" editing is to find out all you

can about what the files look like.
Here's what an EDASM source code file looks like when it goes to

disk ...

...

Assembly Cookbook for the Apple lillie 167

HOW EDASM SOURCE CODE IS STORED ON DISK:

THIS 15 A STANDARD
005 3.3 TEXT FIL.E

EACH LINE HAS ASCII

NEXT-TO-LAST
LINE ItN-I

IN ORDER

LINE 1t2

L.AST LINE
ItN

CARRIAGE RETURN
EACH LINE

THERE ARE NO LINE ~
NUMBERS OR PADDING
SPACES IN THE FIL.E

ONE OR MORE)
NULS ENOS F I L.E

Just as with any standard DOS text file, there are no header bytes
that tell us an address or length. Each source code line consists of a
string of ASCII characters that ends with a carriage return. The lines go
onto the disk in sequential order, with line 1 first and the final line last.
One or more double-zero NUL commands follow the final carriage
return to mark the end ofthe file.

Two key points ...

EDASM source code files do NOT have
any line numbers in them.

EDASM source code files do NOT have
any "padded" tabbing spaces in them.

There's not much point in filling up files with things that are
unneeded or easily calculated. So, to save on source code length,
there are no line numbers in the EDASM text files that hold your
source code. The editor and assembler modules generate the line
numbers for you when and as needed. They do this by counting the
carriage returns as the lines come off the disk.

Similarly, on "old" EDASM there are no tab commands nor are
there any "padded" extra spaces that fake a tab. The first three spaces
are interpreted as tabs by the editor or assembler on any active lines.

By the way, we'll define ...

Active Line-

Source code line with an op code or
pseudo-op in it.

Comment Line-

Source code line that is "pure"
comment.

168 Writing and Editing Source Code (the New way)

Remember that a pure comment line starts with a semicolon or an
asterisk. These are used to inform people. An active line usually must
have either a valid op code for the 6502 or a pseudo-op for the assem
bler in it. "New" EDASM may interpret anything else as the name of a
macro and will generate an error message if that macro does not exist.

You can immediately load and view an existing EDASM source code
with Apple Writer lie. And the source code will be readable. The only
things missing are the line numbers and tabbing. We'll find out how to
handle these shortly.

Since a word processor can put anything anywhere, the results of
your entry or editing with Apple Writer may not be compatible with
EDASM when you save your work. Since this is ungood, we have
these use rules ...

FOR EOASM COMPATIBILITY

A carriage return MUST be provided
at the end of each source code line.

The text file saved to disk MUST NOT
have any line numbers in it.

The file saved to disk MUST NOT
have any "padding" spaces in it.

You might have used a word processor where you put carriage
returns only at the end of each paragraph instead of at the end of each
line. This is clearly a no-no if you are going to ask a free-form word
processor to create files that must be accepted by a line-oriented edi
tor or assembler.

So, be sure to have a carriage return at the end of each EDASM
source code line. Lines usually must be eighty or fewer characters
long.

We will shortly see how to add and remove line numbers from your
word processor files. Note that on the final save to disk of your source
code, you must have no line numbers and no padding spaces. (Note
that "new" EDASM will allow imbedded tab commands.) On com
ment lines, your first character must be a semicolon or an asterisk,
and anything goes after that. On active lines, you must start with a
label, a lie tab, or a space. The first space signifies a tab that moves
you to the op code column. The second space signifies a tab that
moves you over to the operand column. A final space, preferably fol
lowed by a semicolon, signifies that a tab is to take you to the com
ment column.

With "new" EDASM, you can imbed [I] tab commands into your
source code, but note that you must not directly use the tab key to
pad spaces into you r text.

Note that the file on disk sees only single spaces, not tabs or groups
of spaces used to fake a tab. The tabbing only gets done after EDASM
reads the source code file from the diskette.

If you are using a different assembler or a different word processor,
be sure you know exactly what the code on disk looks like. Also, be

Assembly Cookbook for the Apple lillie 169

certain that both your assembler and word processor can talk to each
other.

LINE NUMBERS

Most editors of most word processors are line oriented. This means
there has to be some way to point to a certain line. Line numbers are
the obvious way this is done. As we've seen, you normally number
your source code lines from 1 to N in order, with nothing skipped and
nothing out of order.

But, with a "free-form" or screen-oriented word processor, you can
see the order the lines are in, and it is usually obvious which line is
which. So, line numbers are not particularly needed for most entry
and editing of most source code done the new way.

In fact, with one or two exceptions, line numbers are totally
unneeded and are a royal pain for "new way" editing. One exception
takes place on an editing where you are correcting errors such as ILLE
GAL OP CODE LINE 187. In this case, we sure would like to be cer
tain we are really "fixing" the problem the assembler thought was on
line 187, rather than fixing something that ain't broke.

What would really be nice is to be able to turn the line numbers on
and off at will. Nicer still, let's keep any old line numbers the way they
are until we are done with them, rather than renumbering continu
ously and automatically. This way, any additions or corrections to
your source code won't mess up the numbering that was on the previ
ous assembly listing.

So ...

Line numbers are not needed most of the
time with "new way" editing.

It is best to be able to turn any line
numbers on and off at will.

A supervisory language with NUMBER,
RENUMBER, and UNNUMBER
commands is an ideal way to handle this.

You won't need line numbers much in your new way source code
editing. When you do use them, you can keep them the way they
were for as long as you like, even if there are temporarily 15 new and
nonnumbered lines between old line 258 and old line 259.

What you need is three magic push buttons. Press NUMBER to num
ber all your source code lines. Press RENUMBER to cover any new
entries. And press UNNUMBER before you save your source code to
disk, or just to unci utter the screen.

Well, there's white magic, and there's black magic, and then there's
WPL.

If you haven't met this dude, WPL is short for word processing lan
guage and is utterly astonishing. What WPL does is automate word
processor use, much the same wayan EXEC file automates program
execution. WPL is built into both Apple Writer II and Apple Writer lie.
Just about anything you can command from the keyboard, WPL can
do automatically and by itself.

170 Writing and Editing Source Code (the New way)

The intended uses of WPL are for such things as automatic form let
ters, doing word counts, mailing list management, multicopy printing,
menu or prompt generators, and lots of other text-handling nasties
that took special effort before.

It is very easy to get a love/hate relationship going with WPL. This
language (it's really just an interpreter) is very lopsided. For instance,
WPL is probably one of the most powerful editing languages available
anywhere ever. A command to take a very long string full of carriage
returns and commas and manipulate it six ways from Sunday is fast
and trivial. But a simple multiplication by say 7/3 will take you some
58 seconds.

And those are 100 percent genuine American seconds, too, besides.
None of your pansy milliseconds or microseconds here. No siree.

What really blows everything else out of the water is when you use
WPL to process pictures rather than words. The odd couple of WPL
and HPGL does some truly astounding things. But, the whipple glipple
machine is another story for another time.

Is it ever.
Anyway, it is very easy to build three programs called WPL.NUM

BER, WPL.RENUMBER, and WPL.UNNUMBER that will fairly quickly
put numbers into your source code under Apple Writer II or lie,
update them, or change them. The speed is not outstanding, but it is
liveable. For instance, it takes around six seconds to number 100 lines
of source code, and around four seconds for removal. The longer the
code, naturally, the longer the time.

The way you use a WPL program is to have a copy of the program
on disk. Then, from Apple Writer, you simply type "[P] DO
WPL.NUMBER," and away it goes. You start from Apple Writer and
end up in Apple Writer a few seconds later. In interests of sanity, you
probably will want to rename WPL.NUMBER simply as N, so that a
"[P] DO N" does the job.

That simple and that quick.
The rules for WPL seem fairly complicated at first. But all you have

to know is that a WPL program is a string of letters, symbols, and char
acters. It's just like anything else you would write on a word proces
sor. If you don't want to key in the several dozen keystrokes involved,
you can get these programs ready to go on the companion diskette.

Let's look at the th ree programs.

Number

To keep things simple, we will start our line numbers at 1001. This
keeps the number of digits in use at a constant four. Obviously, you
can mentally subtract 1000 from the Apple Writer number to get the
EDASM number.

Brace yourself. WPl code looks awful at first glance. Anyway, here
is the numbering program ...

Assembly Cookbook for the Apple lillie 171

*
* WPL.NUMBER

*
* * ••••••.•.••.••.•••..•••••••••••••••••••.•••••.•.....•..••.• *

* *
* *
* pgost *
* z psx+l *
* f<><>(x)- . < *
* y7 *
* pgoz *
* dn d *
* f<>=. <>< *
* y7 *
* P *
* b *
* f<>« *
* y7 *
* P *
* pqt *
* st pnd *
* ppr [L] *
* P { number a source code file } *
* psxlOOO *
* b *
* f«>< *
* y7 *
* P *
* b *
* ppr *
* ppr *
* ppr ***** busy - please wait ***** *
* pgoz *
* *

Uh. Huh?
Let's try it in English instead. It goes something like this.

Please go to the label "st" so the part of the code that has to run fast can
come first on the listing.

Next, please clear the screen and turn off the display so things run much
faster. Then set the line number to 1000.

Go to the beginning of the source code and temporarily add a new car
riage return at the start.

Put a busy message on the screen since this will take a while. Now go to
label"z" to actually enter the numbers.

We are ready to start from the beginning of the source code. Add one to
the present line number.

Next, find the next carriage return and replace it with a new carriage
return, the number, a dash, a space, and a period. Repeat this till you run
out of source code. Then go to the label "dn."

To finish up, remove the last line number since it is beyond the last source
code line. Then, go to the beginning, and remove the temporary first car
riage return.

Then, quit.

As you can see, WPL commands sure are shorter than English text
is!

The game plan here is to turn off the display and replace it with a

172 Writing and Editing Source Code (the New way)

busy message. Then you add a new carriage return at the beginning
and set your first line number to 1001. Each carriage return gets a line
number placed after it. The final line number is deleted, as is the extra
carriage return at the beginning ...

You can rearrange things to suit yourself if you like. I've set this up
so the number is followed by a dash and then a space, then a period
and a final space. This looks fairly good, but you might like to handle
it differently.

To give you a hint of what is going on in WPL, the first string of let
ters is a label, if used. This label identifies the line. A single space is
used to get from the label field to the "op code" field. The character
in the op code field is interpreted as a control character. Thus, a com
mand of "b" really means "[B]," which means "Go to the start of the
file." Characters following the "op code" control character are ordi
nary ASCII characters as you would enter from the keyboard. The
"<" is a searching delimiter, while ">" substitutes for "carriage
return" during a search or replacement.

Note that the [L] in "ppr [L]" means to use" < CTRL > L" instead.
More details, of course, in the WPL manual. If you have not yet got

ten involved with WPL, you are missing a biggy. Get with it.
At any rate, all you have to do is activate WPL.NUMBER, and line

numbers magically appear in your source code a few seconds later.
Here's how you go the other way. . .

* *
* WPL.UNUMBER *
* * ~, .. .
* *
* *
* pnd { unnumber a source code file } *
* b *
* ppr [L] *
* ppr ***** busy - please wait ***** *
* f«>< *
* y? *
* b *
* f<>????- . <><a *
* p *
* b *
* f<>« *
* y? *
* pqt *
* *

As you can see, unnumbering is faster and easier than numbering.
Here's the same thing in English ...

Please turn off the display. Go to the beginning and clear the screen. Then
put a busy prompt down since this will take a while.

Put a temporary carriage return here. Then return to the beginning.

Next, go through the source code file and find a carriage return followed
by any four numerals, followed by a dash, a space, a period, and another
space, a period, and another space. Replace all this with a single carriage
return.

Assembly Cookbook for the Apple lillie 173

Continue this replacement til you run out of source code. Then go back to
the beginning and remove the extra carriage return.

Then quit.

All this program does is find every carriage return followed by a
four-digit line number and replace it with only the carriage return.

Oh yes, one very important gotcha. There are no labels in this par
ticular WPL program, so you must type a space before each and
every entry.

Renumber

We won't show you the code for WPL.RENUMBER here. It is on the
companion diskette, all ready for your use. All WPL.RENUMBER does
is first use the WPL.UNNUMBER code to erase all the old line num
bers, and then uses the WPL.NUMBER code to give you the new
ones. Just bolt the two programs together to do your own
WPL.RENUMBER.

Normally, you will leave all the line numbers off your source code
during entry and editing. The only time you would want them is when
you are making specific corrections per the error messages on an
assembly listing.

Here are the suggested use rules ..

SOURCE CODE NUMBERING

Do NOT use line numbers during
normal source code entry and editing.

Add line numbers only when fixing
code pointed to by error messages.

Renumber only after you have fixed
all the old errors.

REMOVE ALL LINE NUMBERS
BEFORE SAVING YOUR SOURCE
CODE TO DISK!

Some practice will make it all obvious. The longer you work with
source code, the less often you will need or use line numbers. You
might also find line numbers handy, but not essential, for COPY and
MOVE actions.

TO TAB OR NOT TO TABl

That is the geniffletravitz.
Or is it? Time out for a side trip before we get into tabbing.
One of the other projects around here is a super-cheap data acquisi

tion system that uses EEPROMS. The idea is to use an EEPROM just
like you use a cassette in a tape recorder. You want to have something
tiny and ultra cheap that can be buried for a month to pick up stream
levels, weather conditions, or just about anything ecological, biologi-

174 Writing and Editing Source Code (the New way)

cal, speleological, or heaven knows what elseological, and do so at 1 I
1000th the usual price. After logging, you haul the EEPROMs off to
your nearest Apple for disk storage, printing, plotting, telephone trans
mission, or whatever.

Fine. The thing is so simple it doesn't even have a microprocessor or
a keyboard or a display. Only a counter, an AID, the EEPROM, a
clock, a "wake-up" circuit and a transistor radio battery. At a cost of
$20, instead of $20,000.

Comes time to use it, all the users want to know how to identify the
data on the EEPROM. Lots of expensive solutions were suggested,
involving keyboards, fancy switches, displays, data blocks inside the
EEPROM, and all sorts of other unworkable schemes.

Then one user came up with "How about using adhesive tape and a
ball point pen?" Which not only is totally obvious and ridiculously
cheap, but it is also far better and far more flexible than any of the
other methods.

The point, of course, is ...

I DON'T SWEAT THE SMALL STUFF! I
Tabbing is small stuff.
Now, ideally, you would like to enter your source code in exactly

the same way that it is going to appear on the final assembly listing.
While editing or changing, you would like the formatting to stay the
same. This means that comments stay untabbed as comments, and
that active lines get properly tabbed into their various fields.

One really nasty "feature" of EDASM is that it tabs the comment
lines during editing. Which makes your comments totally illegible and
causes all sorts of hassles. One very hard thing to do is add a new line
inside a comment box. So, done the "old way" with EDASM, com
ment lines were a royal pain, because you never were sure how they
were going to turn out.

So, if you tab comments, you get royal problems. On the other
hand, if you do not tab the active fields, all you get is a slightly ratty
display during entry and editing. Label, op code, and operand fields
get separated by a single space. This looks awful, but you easily get
used to it, and it doesn't particularly contribute to errors or lead to
other problems. Naturally, your final assembler listings will be prop
erly tabbed.

Which brings us to this ...

If you have to pick between tabbing
everything and tabbing nothing, then tab
nothing.

Now, tabbing on a lie is trivial. Just set up your tab file and away
you go. The problem comes up when you read existing source code
that lacks tabs or space padding, or else when you have to "untab" to
save your source code back to disk. Ideally, you should tab and untab
only the active lines and not change the comment lines.

All of this weaseling around because I haven't yet found a really

Assembly Cookbook for the Apple II/lie 175

good way for you to selectively tab and untab while "new way" writ
ing source code.

Yes, you can write a WPL program to selectively tab, but this route
is painfully slow. And the timing is nonlinear, which means that long
source codes take even longer than you would expect.

Forever even.
The next most logical thing, of course, is to modify WPL. I've done

this for me, but it's not quite ready for you. Adding a new WPL com
mand of "put the cursed character into the $d string" brings timing
down into the "just barely unacceptable" range. The best way is to
link your own machine language selective tabber to WPL.

Which, of course, we will save as an excercise for the student.
"New" EDASM does ease the tab and untab problems somewhat,

since you can imbed unique [I] tab symbols rather than spaces. We
will put the best solution on the companion diskette for you to play
with.

Seriously, selective tabbing is small stuff. Don't sweat it. Think
ballpoint and adhesive tape. Untabbed entries into "new way" source
code look a little odd, but you get used to them, and they don't
encourage errors or sloppiness.

TRYING IT

The simplest way to play with "new way" source code writing is to
take some "old way" source code, load it into your word processor,
and play with it. Once you start doing things the new way, you will
never go back.

Except possibly for trivial fixes and quick changes.
One suggestion. Take the mystery program from the last chapter

and enter it as a word processor text file. Use the spaces as spaces,
and don't tab. Then save to disk and assemble per the details of the
next chapter. Check this against your original "old way" code.

Note that some of the procedures involved in "new way" editing
will be slightly different. For instance, instead of NEW and ADD,
you'd use [N] Y. There'd be no [Q] for quit, and your 5AVE would get
replaced with [5] MYFIR5T.50URCE. All you are doing here is substi
tuting word processor commands for editor commands, one on one.

Both the source code and the assembly results should be identical.

176 Writing and Editing Source Code (the New way)

DIFFERENCE BETWEEN M'1/1NEW WA'1/1 EDITING AND '10URS!

ASSEMBLING SOURCE CODE
INTO OBJECT CODE

Writing your own source code is only half of the game. What you
are really after is usable and runnable object code. The assembler half
of an editor/assembler package gets you from source to object.

The assembly process takes an already
existing source code and uses it to
generate working object code.

On a disk-based assembler, such as EDASM, the source code is usu
ally read from disk and the object code is usually generated to disk.

Remember that source code is a series of scriptlike instructions
more or less in English, while object code is your final ready-to-run
machine language program. Remember also that source code is often
a text file, while object code is nearly always a binary file. Both, of
course, must have different names.

Assembly takes place in two or more passes. The source code is first
read and all of the labels and label references are put into a suitable
symbol table. Then, once all labels are known and understood, a sec
ond pass does the actual assembly, creating the object code to disk for
you.

The entire source code is usually not read into RAM all at once.
Instead, the source code is read one line at a time as needed. All that
has to go into memory is a list of labels and other references. Thus,
you can assemble a source code that is much longer than the room

777

178 Assembling Source Code into Object Code

you have in RAM. With the CHAIN command, you can tink as many
source codes together as you want. You can also use " new way"
source codes that are so long you cannot "old way" edit them, and
yet still be able to do an assembly.

There are several key rules you must obey before you do an EDASM
assembly ...

EDASM ASSEMBLY RULES

The source code MUST be previously
saved to disk!

The PR#l command MUST precede
an ASM command for a hard copy
assembly listing. ALWAYS use this
listing.

The diskette in the selected SLot and
DRive MUST have the ASSM module
and an unlocked ASMIDSTAMP
module on it.

Once again, EDASM is usually a disk-based assembler. Anything in
RAM gets overwritten when you begin any assembly process. Thus,
you must have previously saved your source code to disk, or you will
lose it forever. This is needed even when doing "in-place" assembly
with "new" EDASM.

As we've already seen, it is always a good idea to generate a hard
copy assembly listing. If you fail to do this, your object code may end
up different from your printed documentation, which leads to lots of
trouble.

You only get a hard copy of your assembler listing if you have pre
viously given the PR#l command. Fail to do this and you assemble
without any hard copy listing. The PR#l command will stay in EDASM
so long as you do not exit the program or remove power. Stopping to
test your object code will end EDASM, and a new PR#l will be
needed on the next go-round.

The EDASM assembly process is set up to go to the previously set
SLot and DRive to find the assembler code and the 10 stamp. Default
values here are the usual slot 6, drive 1. The ASMIDSTAMP must be
kept unlocked at all times.

The source code does not have to be in this drive when you begin
assembly, as you will have a later chance to swap disks with a "HIT
ANY KEY TO CONTINUE" prompt.

Let's look at some. . .

ASSEMBLER COMMANDS

Assembler commands are the keystrokes needed to start or continue
the assembly process. The most important of these is the ASM com
mand, which is used to carry out the assembly process. Before using
this command, though, be sure your source code is saved to disk, and

Assembly Cookbook for the Apple II/lie 179

that you have given the PR#l command to turn on the assembler list
ing, and that you have a disk in the selected drive that has both the
ASSM module and an unlocked ASMIDSTAMP on it.

Let's check into these commands.

ASM
The ASM command is an abbreviation for assemble, and is used

when we want to begin the process of converting the source code
script into an object code machine language binary file.

ASM must be followed by parameters. First, you tell ASM the name
of the source code. Then you add a comma, and tell ASM the name of
the object code file to be generated. Then, if needed, you tell EDASM
which slot and which drive to use.

For instance, we might use ...

ASM ZILCH.SQURCE,ZILCH,S6,D2

... as our assembly
command. This says to "Assemble the source code named
ZILCH.SOURCE in (or soon to be in) the default slot and drive. Create
an object code named ZILCH using slot 6 and drive 2."

There are several options here. You do not have to specify a slot
and drive if they do not change. You have two ways to name your
source and object files ...

TWO WAYS TO NAME FILES

A command of ASM ZILCH will create
an object file named ZILCH.OBJO.

The ASM ZILCH.50URCE,ZILCH
command will create an object file
named ZILCH.

Thus, if you fail to give EDASM the name for an object file, it will
automatically tack a ".0BJO" onto your source code name for the
object code. Should you have several absolute ORG pseudo-ops in
your source code, each separate object code will be successively
numbered with .OBJO, .0B]1, .OBJ2 ... trailers.

On the other hand, if you properly tell EDASM, it will name your
object file anything you like. But only one absolute ORG should be
used per source file if you do things this way.

I prefer to end all my source codes with a ".sOURCE" trailer. This
identifies all source codes as source code, and your object code ends
up with a reasonable "ready to run" name.

Once again, your source and object codes must all have different
yet related names. Version numbers should be used, and you should
never overwrite an old source code.

EDASM is very fussy over what goes where in the ASM command,
so you have to pad with extra commas if you skip something in this
command. For instance, "ASM ZILCH,D2" will create an object code

180 Assembling Source Code into Object Code

named "D2." Just what you always wanted. Instead, use the "ASM
ZILCH",D2" command to change drives.

When the ASM process begins, it goes to the previously set SLot and
DRive and gets only the ASSM module and the ID stamp. It then
rewrites the next version number back to the ID stamp. After that, it
stops and gives you a "HIT ANY KEY TO CONTINUE" prompt.

This prompt gives you a chance to swap diskettes. You would do
this to be certain your source code is now sitting in the selected drive.
This is handy if you only have a single drive, or if your source code
diskettes do not have the EDASM modules on them.

I like to use two drives and always keep copies of all EDASM mod
ules on all the source code disks. This is better and simpler, and the
key prompt defaults to a nuisance.

The "standard" way of using EDASM is to have two disk drives. A
diskette with a copy of EDASM goes into drive 1. Your source and
object code goes into drive 2. Before assembly, you do a PR#l and a
DR2 command. The assembly command will then go to drive number
one to get the assembler. It then asks for the key prompt. After that,
the source code is read from drive number two, and the object code is
sent to drive number two.

The "substandard" way of using EDASM is to have one disk drive
and to keep a copy of all the EDASM modules on the same diskette as
holds your source and object code.

If you don't like the "standard" or "substandard" way, then just
swap the diskettes around on the HIT ANY KEY TO CONTINUE
prompt, and use DR1 and DR2, along with trailing commas, as
needed.

By the way, if you are always using the "standard" or "substan
dard" setup and if you know how to modify a machine language pro
gram, here is how to get rid of the HIT ANY KEY TO CONTINUE
prompt on "old" EDASM ...

TO PERMANENTLY ELIMINATE "OLD"
EDASM'S "HIT ANY KEY" PROMPT-

] BLOAD ASSM
1 POKE 9202,96
1 UNLOCK ASSM
1 BSAVE ASSM, A$1200, L$22FB
1 LOCK ASSM

Naturally, don't do this on your DOS TOOLKIT diskette. Do it on a
backup copy or one of your working assembler diskettes. Someday
you might need the prompt for something fancy, or if one of your
drives goes sour on you. This patch is for "old" EDASM only!

[el (STOP!)

Sometimes you would like to stop an assembly in the middle,
because of some very obvious errors, a sick printer, or whatever. The
"[C]" command aborts the assembly and restores everything back the
way it was. It does so in an orderly and safe process.

An important rule ...

Assembly Cookbook for the Apple lIllIe 787

00 NOT use "RESET" to stop an
assembly in process!

Always use U[C]" instead.

The reason to not reset your way out of an assembly is that disk text
files may be open and you might be in the process of a disk read or
write that could plow the diskette as well as the program. Always use
this "[C]" for an orderly exit. The controlled exit takes care of shutting
things down in a safe and reasonable order.

If you do abort an assembly, there may be an illegal and nonwork
ing object code file remaining on your diskette. Be sure to delete this
or it will return to haunt you later.

SPACE
The spacebar may be used to temporarily halt an assembly. Each

successive spacebar hit will then assemble one line of object code at a
time. This is intended to let you assemble to screen and see what is
going on. On "new" EDA5M, assembly resumes at full speed when
any other key is pressed.

But, as we have seen, you should always have your printer on and
should always be making an assembly listing when you are assem
bling. So, this spacebar use is not recommended.

Almost certainly, your first assembly attempt will do nothing but
generate a bunch of error messages. Guaranteed. Before we look at
these messages and see what they mean, let's look at.

ASSEMBLY LlSTI NGS

If you remembered to turn your printer on and didn't forget to give
a PR#l command before trying an assembly, you will generate an
assembly listing. The assembly listing is your hard copy documenta
tion. It gives you both source code and object code in one place at
one time.

182 Assembling Source Code into Object Code

'-

Here's how to read an assembly listing ...

HOW TO ~EAD AN ASSEMBL'f LI STI NG:

ADDIlESS I HEX B'ITES

8CDO: I A227 I
8CD2: I BD 80 40
8CD5: I 9D003C I

I ---
THE ADDRESS IS THE
HEX LOCATION WHERE THE
FIRST OBJECT CODE B'ITE
FOR THIS LINE IS TO GO.
ONL'I ONE 8-BIT B'ITE
ALLOWED PER MEMOR'I
LOCATION.

THE HEX B'ITES ARE THE

I LINE

I
I 254
I

255 I
I 256 I

ACTUAL OBJECT CODE ASSEMBLED
DURING THIS LINE. ONE. TWO.
OR THREE B'ITES WILL BE
GENERATED. DEPENDING ON
THE ADDRESS MODE.

THE LINE NUMBEIl TELLS
US WHICH LINE OF SOURCE
CODE IS PRESENTL'I BEING
ASSEMBLED.

I LABEL I OPCODE I OPEIlAND

: ROWDUN: LOX I It $27
I

I EVNTHD I $ 4080.X
I
I
I

LOA I
I STA I $ 3COO.X I I

r---
THE LABEL. IF USED
NAMES THE LINE SO

I

~

THE ASSEMBLER CAN FIND
I T FOR JUMPS. BRANCHES.
OR OTHER REFERENCES.

THE OPCODE IS THE 6502
INSTRUCTION THAT THE
ASSEMBLER IS CURRENTL'I
CONVERTING INTO HEX B'ITES
OF OBJECT CODE.

THE OPEIlAND QUALIFIES
THE OPCODE AND PICKS THE
ADDRESSING MODE IN USE.
THIS OPERAND CAN BE A
VALUE. AN ADDRESS. OR A
LABEL.

r-

I

I
I
I
I
I
I

COMMENTS

;HANDLE SPECIAL MAPPINGS
;8 TO 7
;

----...

THE COMMENTS. IF USED.
HOLD REMARKS USEFUL TO
THE USER OR PROGRAMMER.
BUT OTHERWISE IGNORED
B'I THE ASSEMBLER. SOME
LINES MA'I BE ENTIREL'I COMMENTS.

THE OBJECT CODE GENERATED
DURING THE ASSEMBL'I ARE
THE VALUES IN THE HEX B'ITES
COLUMN. ONL'I THE HEX B'ITES
GO INTO THE OBJECT CODE!

HERE'S THE HEX DUMP OF
THE OBJECT CODE CREATED B'I
THIS EXAMPLE:

8CDO: A2 27 BD 80 40 90 00 3C

As you can see, an assembly listing looks more or less like source
code, only there are more fields. An EOASM assembly listing has
seven or more fields. These are the address field, the hex bytes field,
the line field, the label field, the op code field, the operand field, and
finally the comment field.

The last five of these are the same as the fields in your source code.
The address field holds the beginning address of the line being

assembled. Remember that the assembly process consists of starting at
some ORG origin in memory and then using a "pocket card" to con
vert all the mnemonic op codes into working machine language.

For instance, say we have an ORG $0800, and want to do a STA
$8770 as our first "real" op code. We immediately see that the
addressing mode is absolute, since we have four hex digits and no
commas or parentheses. Checking our pocket card, we see that we
need an $80 byte for STA absolute, so we put an $80 into memory
location $0800.

More correctly, we put an $80 into a binary file on diskette, whose
eventual running position is to be $0800 in memory.

An absolute store needs three bytes to be completed, since we need
the specific op code, the position on the memory page we are to store
to, and finally, the page we are to store to. The 6502 always puts the
position before the page, so the next two bytes go in reverse order of
$70 $87.

A hex dump of what we have done so far would look like this.

$0800- 80 70 87

That's assuming you took the object code and loaded it into the
Apple. But, remember, we are only creating a disk file at the present

Assembly Cookbook for the Apple II/lie 183

time. Nothing is being put in specific "ready-to-run" Apple locations
just yet. It all normally goes onto the disk.

That single line of source code generated three bytes of object code
for us, since STA absolute is a three-byte instruction. The next instruc
tion has to start at location $0803, since locations $0800, $0801, and
$0802 already got used up. Remember that each memory location can
hold one, and only one, 8-bit byte.

So, the address field will show you the beginning address of what is
being assembled at this point in time by this line of source code. If you
are on a comment line, the address will not change. It stays the same
until some new bytes of object code actually get generated.

The hex bytes field will show you the machine language bytes being
generated by the present line of source code. You will get one, two,
or three bytes, depending on the instruction and the address mode
you have selected.

Should you be generating some nonrunning bytes such as a stash or
a file, EDASM still puts a maximum of three bytes in the hex bytes
field. For instance, an 8-byte file defined using a DFB source code will
show up as three successive lines on your assembly listing. You'll find
three bytes generated in the first two lines and two bytes in the last.

The remaining five fields of your assembly listing are the same as
those of your source code. The line number tells us which line of
source code we are working on. The label field points to that line and
is used as a reference any time the assembler has to find this line or
the meaning of this label. The op code field holds a 6502 op code or
else an EDASM pseudo-op intended to go only as far as the assembler.
The operand field qualifies the op code as needed, selecting an
address mode, the number system in use, and choosing between
addresses, fixed values, and labels.

The comment field, of course, is reserved for comments.
You can also have comments that use up an entire line of source

code. These are intended for people. The assembly process does not
generate any new bytes of object code on a comment line. The
address stays the same and gets carried down to the next source code
line.

Normally, you won't have those neatly labeled column headers we
have just shown you. The function of each column of assembly listing
becomes obvious when you study it for a while. Other assemblers
may have these columns in a different order.

On "new" EDASM, you will also find a column on the assembly list
ing for "branch taken" addresses. You can also optionally turn on or
off a column of execution times. This latter feature is most useful for
time critical code.

Let's look at a specific example. Remember the "mystery" program
from back in chapter four? You should have it saved on disk under the
name MYFIRST.SOURCE by now. In fact, you should have done this
both the "old way" and the "new way." You may have two source
code files if you remembered to give the second one a different name.

We'll use the "substandard" assembly method.
Boot EDASM from drive 1 and fix the ID stamp any way you want

to. Then, when the colon comes up, type.

PRJl <cr>

ASM MYFIRST.SQURCE,MYFIRST <cr>

184 Assembling Source Code into Object Code

The drive should start whirring away, picking up the ASSM module
and incrementing the 10 stamp. Then, you should get the HIT ANY
KEY TO CONTINUE prompt. If it isn't already there, put the diskette
with MYFIRST.SOURCE into drive 1 of slot 6. Be sure there is enough
room on this diskette for the MYFIRST object code. If a MYFIRST file is
already there, make sure it is a binary file and that it is unlocked. Also
make sure your printer is on and ready to go. Then, hit the spacebar.

The assembly process should begin, and three things should start to
happen. The printer should give you an assembly listing; the video
screen should "echo" what is going onto the printer; and some object
code called MYFIRST should be getting generated onto disk.

When the assembly is complete, you will get another "HIT ANY
KEY TO CONTINUE" prompt. This tells you to put a diskette that
holds the ASSM modules back into drive 1 of slot 6. The EDASM pack
age then "cleans up" its text file act and gently returns you "live"
back into the editor half of EDASM. The disk drive will get very
unhappy if you have the wrong diskette in it at this time.

When all is finished, type END to get out of EDASM, and then do a
BRUN MYFIRST. If you haven't figured out yet what MYFIRST is sup
posed to do, it will become immediately obvious, assuming every
thing went OK. A total of eleven bytes of code should have been cre
ated.

Your mystery program sits between $0300 and $030A. You may
want to inspect it after BLOADing or BRUNning. Remember that
CALL -151 gets you into the monitor from Applesloth.

Here is what the assembly listing for MYFIRST should look like ...

MYFIRST.SOURCE 20 JUN 83 DEL 101 PAGE 1

0
----- NEXT OBJECT FILE NAME IS MYFIRST
0300: 3 OgG $0300 7 BRUN CODE AT $0300

0
0300: 5 *************************
0300: 6 * *
0300: 7 * THIS IS MY VERY FIRST *

0 0300: 8 * TRY AT EDASM *
0300: 9 * *
0300: 10 *************************

0
0300: 12 *** HOOKS ***

0 C030: 14 SPEAK EQU $C030 WRAP SPEAKER
FCA8: 15 WAIT EQU $FCA8 MONITOR TIME DELAY

[
0300: 17 *** MAIN PROGRAM ***

0300:A9 22 19 BLATT LOA 1$22 SET TONE VALUE
0302:20 A8 FC 20 JSR WAIT AND DELAY
0305:2C 30 CO 21 BIT SPEAK WRAP SPEAKER
0308:4C 00 03 22 JMP BLATT AND REPEAT

0'

o *** SUCCESSFUL ASSEMBLY: NO ERRORS - --

0

10

0

10

0

10

0

,0

Assembly Cookbook for the Apple lillie 185

You should also get two pages of label lists, with BLATI, SPKR, and
WAIT first in alphabetical order, and then in numeric order by value.
To turn this listing off, you should have used a LST OFF pseudo-op as
your last program line.

Let's see what you know about assembly listings-

1. Why are lines 1, 2, 4,11,13,16,18,23 and 57 missing?
2. Why doesn't the address change in lines 5 through 10?
3. Why does WAIT appear in the label field of line 15, but appears

instead in the operand field of line 20?
4. Why does the address field change weirdly in lines 12 through 171
5. Why does the address change by two counts between lines 19 and 20,

rather than the three counts it changes between lines 20 and 2H
6. What address mode is used on line 19? On line 201 On line 22? On

line 23? On line 571
7. Why are there no labels in the label fields of lines 20, 21, and 22? Are

there any labels in use on these lines?
8. Why are there semicolons at the beginning of some lines and at the

middle of other lines?
9. Why are some lines right against each other, while others are sepa-

rated by white space?
10. How does line 22 know where to jump to?
11. Why did you get both page numbers and a label listing?
12. Why is the highest byte of the object code at $030A, yet the address

field never gets past $0308?

If you can answer all of these, you are off to a very good start in
understanding and using assembly listings. Both your own and those
of others.

Before you run off all ecstatic over how easy assembly language is,
though, we have to get into the rather ugly topic of ...

ERROR MESSAGES

Your first attempt at any assembly is practically guaranteed to pro
duce errors. Some of these will be very minor. Others will be major.
Yet others will stop the assembly process dead in its tracks. A good
assembler will try to tell you what you did wrong.

There are three kinds of assembly errors.

Fatal Error-

Something so bad that the assembly
process stops completely.

Nonfatal Error-

Something bad but not bad enough to
stop the assembly process.

Thinking Error-

Anything that stops perfectly assembled
code from doing what is expected of it.

A fatal error is one so bad that the assembly process stops dead in its
tracks. Most of these involve disk problems.

186 Assembling Source Code into Object Code

A nonfatal error lets the assembly process continue, but points out
to you things the assembler did not understand, or that it took a guess
on. A few bytes of worthless source code may have been generated in
the process.

Now, why on earth would you want to continue assembling worth
less code?

Because it is very easy to get dozens of nonfatal error messages.
Many of these will be more or less trivial and easy to fix. Thus, you
can often correct great heaping handfulls of nonfatal errors at one sit
ting. Otherwise, it would take a separate edit-assemble-debug round
trip for each individual error. This would have to get done regardless
of how trivial or minor the error is. Most painful.

As we've pointed out before, the message "* * *SUCCESSFUL
ASSEMBLY: NO ERRORS" is just about meaningless. It does suggest
strongly that your Apple did not sustain a direct meteor hit in the last
few minutes, but that is about it.

Which brings us to those thinking errors. Thinking errors are faults
in your logic that prevent the properly assembled object code from
doing what you expect of it. This can be anything from not under
standing address modes to trying to do the impossible. Naturally, nei
ther EDASM nor any other assembler can second guess what it was
that you thought that you might have really wanted.

Most assemblers have ways to tell you about fatal and nonfatal
errors. But, obviously, they cannot second guess what you had in
mind in the first place. Because of this, the *** SUCCESSFUL ASSEM
BLY: NO ERRORS acts like a threshold. When you get to here, the
really dumb, simple, and stupid mistakes are mostly behind.

Only the subtle, frustrating, and challenging errors remain.
Lots of round trips will be needed through the edit-assemble-test

process. But, since you are going to make lots of mistakes anyway,
you might as well get good at it ...

Aim for not less than three error
messages per line of source code.

If you are going to foul up the works,
then do it with class.

Remember though, that mistakes are absolutely essential to creating
decent assembly or machine language programs. It is only through
mistakes that you progress, and only through mistakes that the real
problems and the real opportunities become obvious.

We won't spend too much time here on thinking errors. That's best
done elsewhere. Let's instead take a closer look at EDASM's fatal and
nonfatal errors and see what they tell you and how to interpret them.

Fatal Errors

Most of EDASM's fatal errors involve disk access. If EDASM cannot
get something off of a disk or cannot put something back on, a fatal
error results, and the program must come to a grinding halt.

These errors are not spelled out by EDASM. Instead, the usual DOS
error codes are used. Some of these are spelled out by DOS, while
others are numbered only, and preceded by an OOPS! DOS ERROR!

Assembly Cookbook for the Apple lIllIe 187

CODE=XX. It depends whether DOS finds the mistake or whether
EDASM does.

Here are the fatal error messages and their DOS codes ...

EDASM FATAL ERROR MESSAGES

Write Protected
End of Data
File Not Found
I/O Error
Disk Full

File Locked
Syntax Error
No Buffers Available
File Type Mismatch
Program Too Large

-(04)
-(05)
-(06)
-(08)
-(09)

-(OA)
-(DB)
-(DC)
-(00)

-(DE)

These DOS 3.3e error messages are discussed in depth in the
EDASM manual, but let's review them here. Once again, you will get
the message spelled out if DOS 3.3e finds the error by itself, while you
will only get the numbered OOPS! codes if EDASM finds the error.

The "missing" error numbers in this list are other DOS errors that
are extremely unlikely to occur when you are doing assembly work.

Let's run down the list. WRITE PROTECTED usually means you have
the wrong disk in the wrong drive. Since you must be able to write to
the ASMIDSTAMP, you cannot use a write-protected disk to hold
EDASM. You also cannot save source code or generate object code
onto a write-protected diskette as well.

That END OF DATA message is an inconvenient bug. It is the nor
mal way that "old" EDASM ends up a normal load of its source code.
But always be suspicious if you get the END OF DATA message real
fast, since this may mean that you have just opened a new, empty,
and wrong source code text file.

FILE NOT FOUND means you have the wrong disk in the drive, or
else have misspelled your filename. FILE TYPE MISMATCH means you
tried to load a binary object code instead of your source code text file,
or else are trying to save some source code to a name already used for
a binary object file.

That dreaded I/O ERROR means that the drive didn't work and is
usually bad news, particularly if there is a punk rock score that goes
along with it. Try opening and closing the drive door. Make sure you
have an initialized diskette in the drive. If you have to, check the drive
speed. If you have really plowed the diskette, try fixing it with Bag of
Tricks or something similar.

DISK FULL is obvious, while PROGRAM TOO LARGE means you
did something really stupid. Dumb even.

FILE LOCKED should also be obvious. But remember that you
should always keep everything locked, except for ASMIDSTAMP. Bet
ter to get an error message than to plow a year's work. SYNTAX
ERROR means you did something dumb on a direct DOS command.
Misspelling UNLOCK is one way to do this. NO BUFFERS AVAILABLE

188 Assembling Source Code into Ob;ect Code

is very unlikely but is bad news. See the EDASM manual for an expla
nation.

If you get any of these messages, you will have to stop immediately
and repair the damage. It is always a good idea to do a fresh power
down restart after any fatal error.

There are additional error messages in both versions of "new"
EDASM. See their respective manuals for full details.

Nonfatal Errors

As the assembly process continues, nonfatal errors may be gener
ated. These errors are not bad enough to halt the assembly process
completely, but they are bad enough that wrong object code will be
created.

These nonfatal errors are spelled out on your assembly listing as
they happen. They are also summarized at the end of your listing.
Some errors may be caught twice since there are two passes to the
assembly process. If this happens, the same error may be double
listed. As a reminder, the assembly process does not stop on a nonfa
tal error. This lets you correct bunches of these errors at once, rather
than needing a separate assembly for each and every problem that
crops up.

The nonfatal error messages are not covered in the "old" EDASM
manual. Let's look at them, more or less in order of likelihood.

BAD OP CODE
There are only two "good" kinds of op codes in "old" EDASM.

These are legal 6502 mnemonics, and legal EDASM pseudo-ops. Any
thing else gives you this error message. Misspelling, using Sweet 16 or
65C02 or 68000 op codes in "old" EDASM, or putting anything else at
all in your op code field will cause this error message. Unless, of
course, your assembler is set up to handle these.

"New" EDASM does support Sweet 16 and 65C02 mnemonics. If
you use the MACLIB command, "illegal" op codes will be treated as
macro file names.

One very easy way a beginner can get this message is to put a tab
bing space before a label. This magically "converts" a label into an op
code. Another way is to leave the source code line entirely blank.
Don't forget that you always must have an op code or pseudo-op in
EDASM's op code field, unless your line is pure comment and pre
ceded by the usual semicolon or asterisk.

BAD EXPRESSION
This one usually involves the operand field. A bad expression is an

operand that does not compute.
For instance, try immediate loading a 16-bit value. Since 16 bits

won't fit into an 8-bit memory location, you have a bad expression.
Now, of course, you can load a 16-bit value as a pair of 8-bit bytes,
using the" <" and" >" operators. You can also DW or DDB 16-bit
values. But you can't stuff 16 bits into an 8-bit slot.

Another way to get a bad expression is to forget the dollar sign on
your hex values. If a decimal number has a letter in it, the poor assem
bler gets all confused.

Assembly Cookbook for the Apple lillie 189

Having the wrong address mode will also create a bad expression
error message. Remember that not all modes are available for all com
mands. One that beginners often try is page zero, indirect indexed by
X. Which is a great addressing mode.

Except it does not exist on a 6502.
Forgetting the operand entirely when it is needed is another way to

generate this error message. A JMP or a JSR must be told its 16-bit des
tination address.

If you try some operand arithmetic that is not kosher, you might also
get this error message. The best rule here is "try it and see." If it flys,
fine.

NO SUCH LABEL
This nonfatal error also centers on the operand column. If you forget

to define a label, you will generate this message.
Misspelling also causes problems. And, there's that all important

dollar sign again. Remember that a label can be any group of letters
and numbers that starts with a letter and has no spaces in it.

For instance, an LOA F347 command will try to find a label named
F347. If, instead, you want hex address $F347, then you have to
include the dollar sign in your LOA $F347. Remember also that labels
must be used for page zero addressing, and these labels must be
EQU'd ahead of time.

Forgetting the dollar sign can truncate numbers. For instance, a LOA
#6E will put an 06 in the accumulator. To get the full value, use LOA
$6E.

DUPLICATE S'IMBOL
You are only allowed to define an EOASM label once in one label

field in your entire source code. You can do this label definition ahead
of time as an EQU, during the "real" op codes to point to a certain
code line, or afterwards with a OFB as part of a stash or a file.

If you reuse a symbol, the assembler gets confused. Only assemblers
that let you separate global and local labels will let you reuse the same
label twice. Even then, there will be special use rules. Local labels are
permitted under "new" EOASM's macro capabilities.

ILLEGAL LABEL
You get an illegal label if you try spelling one with leading numbers,

rather than letters, or have unallowable punctuation in your label.
Some assemblers refuse to accept op codes or single letters as

labels. The only "old" EOASM label that is forbidden is a single "A."
Anything else goes, subject to the usual label rules. "New" EDASM
also restricts "X" and "Y."

BAD EQUATE
A bad equate takes place when you try to define a label into some

thing it cannot be. For instance, a single byte EQU cannot be set to a
16-bit value.

You should not use the "#" symbol during an equate. EQU means
nearly the same thing. If your label is to be used as an immediate

190 Assembling Source Code into Object Code

value later as an operand, then the "#" symbol goes into the operand
and not the label.

An EQU will only work properly if its operand can be converted into
a fixed and known 8-bit or 16-bit value. You can use operand arithme
tic with an EQU, provided it refers only to other EQUs.

Remember that EQUs are set up before the assembly process, while
DFBs are generated during assembly. Thus, DFBs don't exist at the
time the EQUs are set up.

OVE~FLOW

You can get an overflow error on relative branch calculations.
Remember that a relative branch can only go + 127 or -128 blocks
from where it is sitting in the address space. If the line label that
branch is seeking is too far away, the branch cannot be completed,
and you get this error message.

There are at least five solutions to the overflow problem. One is to
shorten or rearrange the code enough that the branch is in range. The
second is to branch to a second branch to pick up somewhat more
range, without sacrificing relocatability. The third is to branch to a
jump and then go anywhere you want.

The fourth solution is to try complementary branches, changing
BEQ for BNE, and reworking the code so it has a different structure.

The fifth solution is to use Sweet 16' s new "long branch" command
under "new" EDASM.

By the way, don't forget that a branch across a page boundary adds
one clock cycle to your timing. And don't forget that the older 6502's
jump indirect command has a bug in it that never crosses page bound
aries. Thus, the 6C op code will not work in the expected manner if it
is in either of the top two slots of any page. This bug is fixed in the
65C02.

ALSO ~ANS-

There are three nonfatal error messages that are so rare that you
may never see them. The BAD CALLING PARAMETERS error happens
when you try to use an illegal slot or drive number, or otherwise get
fumble fingered during an editing or assembly command.

The ILLEGAL DESECT/DEND message is a specialized one involving
dummy sections set aside for later code insertion. This sees little use
by beginning programmers.

Finally, SYMBOL TABLE FULL means that you overfilled the
machine during assembly. Note that the entire source code is not
stored in your Apple when assembly takes place. The source code is
read off disk a line at a time, and all the labels and other symbols are
picked off and placed into a symbol table.

EDASM can, in theory, assemble a source code that is much longer
than it can enter and edit in one piece. You can CHAIN many source
code files together. Two passes per source code chunk are involved.
The first generates the symbol table, and the second combines the val
ues in the symbol table with a line-by-line reread of the source code to
generate both object code and an assembler listing.

If you somehow manage to completely fill the entire symbol tables
in all of RAM, you will generate this error message. But this error is

Assembly Cookbook for the Apple lillie 191

very unlikely, even for a humongous assembly project involving sev
eral diskettes full of source code.

Handling Errors

What do you do when you get bunches of errors during an as
sembly?

Getting mad at the assembler doesn't seem to help much. Painful as
it seems, you'll have to admit that ...

Assembly errors are all YOUR own fault,
caused by YOUR stupidity or YOUR
carelessness.

So, if you did it, you can also undo it. The first thing, of course, is to
adjust your emotions to the point where you are not mad, or frus
trated, or embarrassed, or whatever.

Take a break if you are upset. Go kick your neighbor's dot matrix
printer. Write a nasty letter to someone who used "data are" or
"datum is" in a speech or a paper. Ridicule someone who still uses
octal. Snicker behind a dino machine's back. If you are in a student
lab, just smile proudly and pretend all those beeps are part of your
new music synthesizer, rather than assembly error flags.

Or, if you are me, go quest a tinaja. Marijilda alone has some world
class candidates in its innermost sanctum. So does Frey.

Errors beget errors if you let them. So, recognize that an error is a
correctable problem. Not only correctable, but something expected
and anticipated as well. View errors as process.

And progress.
Should you get a fatal error, you should try again right away. Do it

now. Aim toward getting an assembly and its assembly listing at least
completed, even if it is wrong.

When you get down to nonfatal errors, go over the list and re-edit
your source code. As usual, it is best to edit backward from end to
beginning. During this process, you may also want to clean up and
improve your comments, page breaks, and pretty printing.

As you gain assembly experience, you'll find yourself making far
fewer errors far less often. Learn from your mistakes, and profit by
them.

Naturally, there is no point at all in trying your source code to see if
it works when there are still error messages being created during
assembly ...

There is no point in trying your object
code if you are still getting assembly
error messages.

Resist the temptation to "hand repair" a couple of obvious object
code bytes to get something working. The patch will surely return to
haunt you, as will the impatient attitude and sloppy thinking that goes
with it.

So, there really is some value to that *** SUCCESSFUL ASSEMBLY:

192 Assembling Source Code into Object Code

NO ERRORS message after all. It means that all the obvious, dumb,
and incredibly stupid mistakes are now out of the way. All that
remains is the challenging problem of getting your object code to do
what you expect of it.

DEBUGGING

After you have gotten your source code assembled into object code
and have done so without any error messages, you will want to test
your final code to see if it works.

Needless to say, it will not.
The process of getting object code to do what you expect of it is

called debugging. . .

DEBUGGING-

Anything needed to get your object code
to do what you want it to.

Make no mistake of it. Debugging is art, not science. How good you
get at it and how effective your debugging approach gets decides how
decent an assembly programmer you will become.

Debugging is normally done in steps ...

Debugging is done by repeated round
trips through the edit/assembly/test
process.

We could spend volumes on debugging. But, then all you would
know is how I go about debugging my programs at the present time.
Naturally, next week or next month I will have better ways to handle
my programs. But, we are worried about you. You become a decent
debugger through lots of hands-on experience, learning from your
mistakes as you go on.

Let's look at some "first principles" of debugging ...

Assembly Cookbook for the Apple II/lle 193

FOR EFFECTIVE DEBUGGING

ALWAYS expect trouble.

ALWAYS assume you are nowhere
near where you think you are.

NEVER get in a hurry or try to do too
much at once.

ALWAYS be willing to make simple
models or test simplified code.

NEVER fight your object code. It is
trying to help you.

ALWAYS be willing to put much more
time and effort into your work than
you thought you originally needed.

AL WA YS beta test.

The list could go on for several more volumes. Remember that your
first assembly attempt will be wrong. There is absolutely no doubt
about it. If you think it's right, then you simply do not understand the
problem.

Now, you can improve your odds greatly and can generate better
code by remembering two key points. The first is that the sooner you
start punching code into a machine, the longer the task will take.

The second is that the initial 90 percent of a computer task takes up
the initial 90 percent of the available time. The final 10 percent of a
computer task takes up the final 90 percent of the available time.

So always expect trouble. The code will be wrong and will need
reworking. If you allow for this absolute inevitability ahead of time,
your mind set and your work attitude will get you where you want to
be much faster and much easier.

You always will make dumb and stupid mistakes. Things so dumb
and stupid that you will be utterly amazed that the code did anything
at all, let alone what you wanted it to. So, always assume that you
aren't nearly where you think you are at any time.

Getting in a hurry or cutting corners never works. All it means is that
your customers will find the bugs for you. Their response and attitude
when they do this might not be completely to your advantage, to say
the least.

You should always try simple models and independent tests to show
you whether some coding idea is effective and will work. Be ready to
try a different tack, or drop back to something simpler that will show
you where the real problems lie.

Once your object code gets past a certain point, it will genuinely try
to work and will be screaming new ideas at you. If only you will listen.
Let the code show you the way. Remember that computers are
dumber than people, but smarter than programmers.

You will never finish any decent assembly project in the time you
allowed for it. Almost always, you will have forgotten something really

194 Assembling Source Code into Object Code

fundamental, or else the code will show you a newer and much better
way to solve a bigger, more needed, and more general problem.

It is very important to have others test and evaluate your code. This
goes by the fancy name of beta testing, and is another must. Beta test
ing lets someone else's mind work over your creation. Since your
thought processes, needs, and attitudes are different from others, beta
testing is certain to improve your product. It's not creative unless it
sells.

This one needs its own box for sure ...

A.N\{ DECENT COMPUTER PROGRAM
IS NEVER FULL\{ DEBUGGED.

NOR CA.N I T EVER BE.

All an apparently working program tells you is that only the more
blatant bugs have been removed from only the most obvious ways of
using the program. But, rest assured, there are always bugs lying in
deep cover.

Just waiting.
In fact, the number of bugs in a program can actually go up with

time if you are not careful. This happens if you make repairs and
patches in oddball ways to fix obvious things. These repairs make sub
tle changes in unexpected times and places. Someday ... blooey.

As an example, countless versions of custom DOS 3.3 are available
today. Many of these overwrite the INIT portion of the DOS code.
But, parts of this overwritten INIT code are used in subtle ways by
unexpected portions of DOS. Thus, practically all of the new "super
DOS" programs have an armed bombshell sitting inside of them, wait
ing patiently.

Tick. Tick. Tick. Just don't press that red but ... !
The usual way to start testing object code is first to load it into the

machine. With some assemblers, you can have the assembler and
your final code side by side in the machine at the same time. But this
very much restricts how long your code can be, where it is located,
and how you can interact with it.

Instead, more often than not, you will separately load and test your
object code. This lets you test any code anywhere in the machine
without any big restrictions. "Old" EDASM demands separate testing
of this type, while "new" EDASM optionally lets you do in-place
assembly.

If you are cross assembling or down loading, you will have to go
through a song and dance to get the code compatible with the
machine it is to run on. You might do this by generating a cassette
tape to the other machine's standards, by using the Apple cassette
hardware. Or, you might simply punch in the new object code to the
target machine by hand loading it.

One heavy that will work to change diskette formats and leap other
incompatibilities with a single bound involves using a serial port
between the Apple and the target machine. Set up the Apple to send
out serial ASCII. Set up the other machine to receive serial ASCII.

Assembly Cookbook for the Apple lillie 195

Transfer the code and put it in its new formats. It is an involved pro
cess, but it works and is simple to use.

Anyway, after you have gotten your code into the machine, list it to
make sure it is what you think it is and is sitting where you think it
does. A hard copy dump at this time is a very good idea. Be particu
larly on the lookout for oddball address modes used strange ways, and
the usual question marks denoting illegal op codes.

Needless to say, if you can't get the code to list the way you want it
to, it won't run either. Back to square one.

Do not pass GO. Do not collect $200.
I like to think of two stages in the debugging process. The dividing

point between them might be called the viability threshold.

VIABILITY THRESHOLD-

That point at which defective code starts
doing something at least more or less
recognizable.

This is kinda like the difference between a pile of auto parts and a
broken car.

The pile of parts is just so much junk. The broken car is both capa
ble of being repaired, and even now, does certain carlike things. For
instance, you can listen to the radio in a car with a broken radiator.
But a radio lying on a pile of junk won't work by itself, since it has no
battery or antenna.

Before you cross the viability threshold, you have to use sledge
hammer techniques to find out what is wrong and how to fix it. After
you cross the viability threshold, the code itself will help you along
and will show you the correct way to go. Totally different, and often
more subtle, debugging schemes will be needed above the threshold.

This "two-stage" debugging process is most obvious once you look
for it. Just as soon as you can, let the code help you as much as possi
ble. You will always know when you have crossed the threshold.

Let's look at some examples of "stage-one" debugging. Here the
Apple just bombs or goes hooping off into nowhere, or else does
things totally weird and totally unrelated to what you expect of the
code.

The "stage-one" debugging techniques include.

"STAGE-ONE" DEBUGGING

Listing
Hex dumping
Single stepping
Tracing
Forced returns

Traps
Breakpoints
Interaction
Simplified models
Falling back

196 Assembling Source Code into Object Code

Let's quickly review these.
Listing is doing an op code by op code dump of the program. Hex

dumping gives you a printout of which bytes are sitting where in
which order. Listing only works on legal code when done from a legal
starting point. Dumping works any place and any time, on working
code, files, or even abject garbage.

Single stepping is a monitor routine that fakes running your object
code one line at a time. There is a fine single stepper in the old moni
tor ROM of the older Apples. RAM based copies of single-steppers are
available from most user groups as public domain software, besides
being commercially available in various programmer utilities.

But, better yet, there is a super new BUGBYTER debugging aid that
comes free with either version of "new" EDASM.

Tracing is repeated single stepping at a fairly slow rate. This is best
done to a printer, and you will get a printed record of what codes got
done in which order, sort of an "audit" of what happened. But tracing
can get old fast inside delay loops. Tracing also will not work on such
things as screen clears, since the tracing process interacts with the
clearing code and hangs the machine. BUGBYTER can get around this
problem several ways.

One useful debugging technique involves forced subroutine returns.
What you do is take your subroutines, and, one at a time, replace the
first byte of each sub with an immediate return. This is otherwise
known as hex $60. What forced returns do is separate whether the
problem is in the subroutine or in the main code. Another use of
forced returns is to bypass parts of the code that will take forever to
trace or will hang the trace process.

A trap is a code line that jumps to itself, such as $3C56- 4C 56 3C.
This translates to "when you get to me, go to me." Your Apple will get
to this line and then "stick" there until you hit reset or turn the power
off. You use traps to stop the machine at a certain point in your code.

Sometimes, you will not even get to the trap. Which says, that the
problem is above the trap. Move the trap further up, dividing and con
quering as you go along. When you hit the trap rather than the prob
lem, you have isolated the bug.

Breakpoints are a formalized way to do traps. What you do is put an
$00 or BRK into your code. When and if your Apple gets to this point
in the program, an immediate interrupt is forced by the CPU. Depend
ing on the age of your Apple and how you set the vectors, this BRK
interrupt can return you to the monitor or else to diagnostic code of
your choice. Once again, BUGBYTER handles this level of debugging
beautifully.

With interaction, you use known good code to test new stuff. Test
each piece of the target code separately and as simply as possible.
This should isolate individual problems one at a time.

By the way, there is usually more than one problem remaining. And
the second one can mask the first one, and vice versa. So, never
assume that something "has" to be happening a certain way. Chances
are that several bugs are involved at once.

By simplified models, we mean to set aside temporarily the program
that is causing the problems, and make a simplified test of a simplified
model of that part of the code that seems to be creating the worst of
the problems.

Falling back involves throwing in the towel, and trying something

Assembly Cookbook for the Apple II/lle 197

simpler, or else going back and rerunning and reusing the last good
working code you had on hand.

If the program seems to be really weird and refuses to do anything
rational at all, there are five important things to check ...

WEIRDNESS CHECKS

-Is the stack behaving?

-Did you get into decimal mode?

-Are registers and variables being used
for two different things at once?

-Are the interrupts being handled
correctly?

-Is an illegal op code hanging the
machine?

The first weirdness check involves the stack. What you put on the
stack must come off, and in the expected order. More pushes than
pulls, more pulls than pushes, or using the stack contents in the wrong
order, are all excellent ways of really plowing up the works.

The second weirdness check concerns the decimal mode. Remem
ber that the 6502 has a hex mode, picked by a CLD command, and a
decimal mode, chosen by a SED command. It is always a good idea to
reaffirm hex with a CLD as an early program line. If you do use the
decimal mode, be sure you get out of it properly, and don't allow any
disk access during its use. There's a strange bug called the $48 prob
lem that causes disk malfunctions if decimal mode is accidentally got
ten into. Another symptom of decimal mode is that scrolling and
screen motions behave very erratically.

The third weirdness check is to be sure that variables and registers
are not being used for two different things at once by two different
points in the program. Apple's own IOSAVE and IOREST are notorious
for this sort of thing. Make sure that each subroutine and each inter
rupt either saves all the registers, or else makes known and safe use of
them.

The fourth weirdness check relates to interrupts and interrupting
code. If interrupts are allowed, they must be properly initialized and
the vectors for their use must be correctly set up. An "early hit" by an
interrupt before its vectors are properly set up is bound to mess up
everything.

Finally, remember that certain illegal op codes can permanently
hang an older 6502 CPU.

So, if you ever have some truly baffling Apple blow-up on your
hands, always check these five things early in the game. Chances are
one or more of them may be the cause of your grief.

There's only one rule for "stage-two" debugging ...

"STAGE-TWO" DEBUGGING

Let the code show you the way to go.

198 Assembling Source Code into Object Code

You have crossed the viability threshold once your code starts
attempting to do something akin to what vaguely resembles more or
less approximately what you sort of set out to roughly accomplish in
the first place.

At this point, let the code show you the way to go.
Use the code as many different ways as you can, and let it show you

what is really needed, and any better ways of going about things.
High-level debugging skills are a totally different ball game than the
low-level ones. It takes bunches of practice.

Debugging skills take a long time to build. But they are a key pro
cess in your becoming a top assembly programmer and going for the
brass ring.

SOMETHING OLD, SOMETHING NEW

We are around halfway where I would like to be at this point. I'd
really like to get into Apple organization, memory use, peripheral
interface, fancy graphics, utility subroutines, superspeed animation,
picture processing, and the lots of other exciting new directions we
should be going. We'll have to save this stuff for a second volume
someday maybe. Use the response card to tell me what you really
need or want to see. Or use the support voice hotline that comes free
with the companion diskette.

It's almost time to close out the "theory" half of this book, so we
can get into the detailed "practice" ripoff modules that remain.

Before we do this, two topics must be mentioned at least in passing.
One is very old, and one is very new. These are Sweet 16 and the
65C02 ...

SWEET 16-

A very old set of ready-to-use 16-bit
"double-wide" software pseudo
interpret routines.

65C02-

A brand new, low-power upgrade of the
6502 that includes many more QP codes
and addressing modes, besides being
user extendable.

It never ceases to amaze me who calls what a 16-bit computer. One
highly touted personal computer does all its data transfers 8 bits at a
time. Yet, they loudly proclaim this to be a 16-bit machine.

On the other hand, Apple has had resident 16-bit utility software
available since year one, that immediately and conveniently handles
full 16-bit-wide data. Yet, Apple only claims to be an 8-bit machine.
So, I guess the difference between an 8-bit and a 16-bit computer
depends on who is doing the lying.

Oh well, artistic license and all that.
Anyway, Sweet 16 is a pseudo interpreter code that resides in the

old monitor ROM starting at $F689 and gives you sixteen different
working registers of sixteen bits each. Use is detailed in the WOZPAK,

Assembly Cookbook for the Apple II/lIe 199

in the priceless red book, and in many older club newsletters. You can
also steal a copy out of "new" EDASM.

When you activate Sweet 16, it substitutes its own fake op codes
that do "full-width" operations for you. When finished, you return
back to the plain old 6502 op codes done the regular way. Generally,
if you use Sweet 16, your code will be only one third the length, but
will also run at one-sixth to one-tenth the speed of your own custom
code. Many Apple programs, including EDASM, make use of Sweet 16
internally. A slight reworking or relocation is needed for Applesloth
compatibility. Three new "long branch" commands have recently
been added.

Some assemblers are available that will directly assemble Sweet 16
code for you. The S-C Assembler is one fine example. Ironically, while
"old" EDASM uses Sweet 16 internally, it does not recognize or
assemble these pseudo-op codes for you. "New" EDASM does both
accept and use Sweet 16.

We'll save details on this for another time. But recognize that Sweet
16 gives your Apple some powerful and easy-to-use 16-bit capabilities
that save your needing custom code for many uses.

Our "something new" is the 65C02. This, or rather these, are
CMOS upgrades of the 6502 microprocessor used in the Apple. Just
about every Apple will eventually have a 65C02 as its CPU.

Why?
For one thing, the chip draws far less power. An absolutely cool

CPU. It's spooky. In addition, you get bunches of new and powerful
addressing modes, as well as lots of extra op codes in existing modes.

For instance, you can now do lots of "pure" indirect commands,
without any worry about committing the Y register by forcing it to
zero. X and Y can now directly access the stack. You can now test and
reset any bit in any position, both page zero and absolute. You now
have an unconditional relative branch. You can increment, decre
ment, or clear the accumulator. Several boo-boos got fixed as well,
correcting such things as jump indirect, extra write cycles, and illegal
op codes that hang the machine.

The absolutely mind-blowing thing about certain 65C02's is that
they are extendable! This means you can add any number of your
own op codes and any number of addressing modes that you care to.
This is allowable since many of the "illegal" and unused op codes are
now guaranteed to default to one-cycle Naps. All you do is grab the
illegal code and run with it, using some simple external hardware. A
50X speedup in the fastest possible HIRES animation is one of the
more mundane possibilities.

In fact, I have a very carefully concocted benchmark here that lets
the 65C02 do some very specialized animation-type things much
faster than a 68000! We've always known that the 6502 was better
than the 68000, but now it can be faster as well. Which should drive
certain people up the wall.

Unfortunately, at this writing, we are not quite there yet. GTE
65C02's are available and work fine in any Apple, II, 11+, or lie, but
lack 32 powerful page zero "bit and branch" commands. The NEC
chips won't work in old Apples. Rockwell has those "bit-and-branch"
commands, but so far has not guaranteed those all important default
Naps, and, worse yet, has pulled everything back for a redesign. The
first Rockwell chips did not run in older Apples.

200 Assembling Source Code into Object Code

Mitel doesn't seem to have samples yet. Motorola's delivery of their
65C02 is keyed to "extremely frigid conditions in a rather unpleasant
locale," or words to that effect. The Synertek chips appear to be a fig
ment of the catalog writer's imagination. NCR has just begun second
sourcing.

All of which should be ancient history by the time you read this.
65C02's should be readily available and extremely useful. Check the
ads for availability. The 65C02 is so significant and so powerful that it
cannot be ignored by any future-oriented assembly language program
mer.

Or by you.
65C02 assembly op codes are now available for the S-C Assembler,

and should shortly be available for just about all the others. These
new op codes are also supported on "new" EDASM.

But, remember that you cannot assemble 65C02 op codes without
using an assembler that recognizes them. Also note that most 65C02
code will not run on a stock 6502, and may even hang the machine.
Once the bugs are out of the chip, though, all 6502 software should
run perfectly on a 65C02. So forward compatibility should be no
hassle.

The benefits of the 65C02 are so great, that it is even worth includ
ing a free one with your new software. But just about everyone will
have one soon enough anyway. The Apple Ilc uses a 65C02 as its
CPU.

In the wings is a new 16-bit CMOS microprocessor that is, believe it
or not, pin and circuit compatible with the 6502 and can be dropped
into a lie. Watch for more details on this beauty. Western Design Cen
ter is the prime source for this chip.

That should just about wrap up the theory half of whatever it is we
are trying to accomplish here. Let me know if you find out.

On to some code that works. . .

Assembly Cookbook for the Apple I J/lle 201

MORE DIFFERENCES BETWEEN M'I ASSEMBLER AND EDASM:

HOW TO USE TH E RI POFF
MODULES

The Ripoff Modules are a series of nine interactive demos designed
to show you how to handle many common Apple machine language
programming problems. Each module is listable, completely docu
mented, and out in the open where you can easily access it.

I've tried to emphasize what really gets used, since just about all
programming books and most program libraries center on largely out
dated, cumbersome, and irrelevant dino stuff, rather than answering
the real gut questions, such as "What's the best way to handle lots of
text messages that might be mixed and matched together?" "Can I do
a fast and well-behaved random number generator?" "Show me how
to handle sound effects and musical songs;" or "How can I quickly
shuffle cards or rearrange array values?"

Originally, I wanted to have lots of short demo modules. But, there
are so many different important things to learn in Apple assembly lan
guage that there is simply no way to cram everything into a single
book. So, instead, I decided to take the nine things that beginning
assembly students seem to have the most trouble with, and expand on
these in some depth.

All nine modules and bunches of other goodies are also available on
a sanely priced and crammed-full companion diskette, which you can
order using the card in the back of this book.

Naturally, full source code is included for each and every module.
Of course, the diskette is totally unlocked, unprotected, and fully
copyable. You have your choice of EDASM or S-C Assembler formats.

205

206 How to Use the Ripoff Modules

Most other assemblers will accept either of these formats, or else will
provide a way to convert them.

A companion voice hotline service goes with this support diskette,
similar to the hotline that is provided to Enhancing users. This support
service is free, except for the usual phone charges.

You are, of course, totally free to adapt and use these ripoff modules
in any way you want for any purpose. Just play fair. Give credit for any
commercial use and don't try to compete head on.

Most ordinary Apple modules and subroutines are result oriented.
This means that they are trying to get some job done as quickly and as
compactly as possible. Our ripoff modules are method oriented
instead. I have picked the modules to show you certain ways of han
dling different programming tasks. I've tried to make each method as
mainstream and innovative as possible.

Which means that most of these modules will not have you gripping
the edge of your chair in suspense, or rolling in the aisles with laugh
ter over what they are actually doing. The modules are not intended
to be arcade-quality entertainment, nor are they supposed to give you
spectacular results, when used one at a time by themselves. The mod
ules are intended instead to be a learning tool that shows you how to
tackle the real gut issues involved in creating your own Apple
machine language programs.

There are lots of ways you can use the ripoff modules ...

USING THE RIPOFF MODULES

Read about them
Run them
List them
Tear them apart

Study them
Change them
Adapt them
Close the loop

Here's how to claim these modules as your own, and to add them
to your own programs: First read the background text that goes with
each module, so you can see what the module is intended to do. It
turns out that any particular programming technique works well for
some range of complexity, and may be overkill for simpler things and
cumbersome or inefficient for very elaborate jobs. So, be sure you
understand the intended use of each module, along with any simpler
or more complex alternatives.

Next, run the program and watch or listen to it doing its thing. Since
many of the modules will stand on their own, what they do will be
pretty much limited to pointing out how they work and how they han
dle a certain task. In some cases, I've "trumped up" a simple example
of something complex that the module is supposed to handle. Now,
there may be a better way to get the result shown by the simple exam
ple, but, once again, that's not our point or purpose. We're after
method here.

Assembly Cookbook for the Apple lillie 207

Then, reset to the monitor and list the program. Use the "tearing
method" from Enhancement 3 of Enhancing Your Apple II, Volume I
(Sams 21822). Color code each and every disassembled line with a
page high lighter, following the tearing guidelines. Do this before you
study the actual source code in depth. The reason is to gain practice
reading and understanding machine language listings, particularly for
those modules or programs for which you do not have source code.

The next step is to compare your "torn" listing against the actual
source code shown here in these modules, to be sure you understand
exactly what is happening when.

So much for the analysis. When you understand the point and pur
pose of each module, try some synthesis.

Capture a copy of the source code for the module, using an assem
bler of your choice. Then, make some fairly simple changes in the
source code, so it will do something "alike but different somehow."
Save this to a new diskette, and then assemble and run your new
object code. After that, add some bells and whistles to the module's
demo so it becomes longer, more interesting, or more exciting.

Now the fun begins. Rewrite the module source code one more
time. Only now, make it do something you want it to do in the way
you want it done, rather than the way that is shown here. Test your
object code, and then actually use it in a larger program of your
choosing.

Needless to say, the more time and effort you spend in understand
ing and capturing these modules, the more value they will be to you.

Finally, close the loop. Use the response card in back or call the
hotline to let me know how you have used the existing modules and
which new ones you need or would like to see.

Some of the later modules will "borrow" portions of earlier ones to
keep the code simple and not reinvent the wheel. We have tried to
note what is needed where. The companion diskette also includes an
object code program called THE WHOLE BALL OF WAX, which com
bines all of the ripoff modules together all at once, along with a unify
ing demo.

Here's a summary of the ripoff modules and what they are intended
to do ...

208 How to Use the Ripoff Modules

RIPOFF MODULE SUMMARY

o. THE EMPTY SHElL-

A framework you can use to create most any machine lan
guage program of your choosing.

1. FILE BASED PRINTER-

The standard way to output short and fixed text messages
using a common message file.

2. IMBEDDED STRING PRINTER-

A much better way to "mix and match" fixed text messages
that are imbedded directly into your source code.

3. MONITOR TIME DElAY-

How to use the Apple's WAIT subroutine for animation and
other system timing needs.

4. OBNOXIOUS SOUNDS-

A multiple sound effects generator that "calculates" lots of
different sounds with minimum code.

Assembly Cookbook for the Apple II/lie 209

5. MUSICAL SONGS-

The standard "red book tones" method of making music,
along with a few improvements and upgrades.

6. OPTION PICKER-

How to do menu options or pick modules using the forced
subroutine return method.

7. RANDOM NUMBERS-

A fast and usable way to generate "random" numbers with
out the fatal flaws of the Applesloth "RND" code.

8. SHUFFlE-

An extremely fast "random exchange" method of rearrang
ing an array of numbers or file values.

The ripoff modules each take up one to three pages of memory.
Together they sit from hex $6000 through $7300. The location of each
module is shown in its source code.

If you want to interact between Applesloth and these modules, just
do a HIMEM: 24575 as your first program line. This will protect the
module space from being plowed. You can access the code on a PEEK
and POKE basis, using your copy of The Hexadecimal Chronicles
(Sams 21802) to show you the linking points.

One thing we have not, and will not do, is show you BASIC equiva
lents for the ripoff modules. The whole point of learning assembly lan
guage programming is to do so in ways that optimize the use of
machine language. Thus, you never do something the way BASIC
does. That's not even wrong. Only dumb.

On to the modules ...

I
THE EMPTY SHELL

a framework you can use to
create most any machine lan
guage program

I

Here are 500 lines of source code that do-absolutely nothing! It's
called the empty shell and you use it as a framework for building your
own source codes.

Actually, you'll find the empty shell doing lots of good things for
you. Since it is usually much easier to edit existing code than to enter
new code on most assemblers, the empty shell makes writing your
custom source codes much faster. Secondly, the empty sheil forces
you to put decent documentation into the program ahead of time,
rather than waiting until the last minute and then not doing it. This
also keeps your style consistent from program to program.

The empty shell should also give you code that is far cleaner and
more understandable. Finally, and most conveniently, the empty shell
contains a long machine readable list of practically all of the useful
Apple II and lie subroutines and entry points. Rather than looking
these up in a dozen different places, you simply eliminate the ones
you do not want.

The empty shell is, of course, structure, and as we've seen, structure
of any sort in a computer program is inherently despicable and evil.
Nonetheless, we will use the sixteen part structure we looked at back
in chapter four.

211

212 Ripoff Module 0

All the rest of the ripoff modules will show us examples of how the
empty shell works and how to use it.

But, where do you start? . .

To use the EMPTY SHElL.SOURCE, first
eliminate what you do not want or need.
This is best done backward from end to
beginning.

Then, edit or change what is left to create
your new source code. This is usually
done frontward from start to finish.

First, of course, you will want to customize and personalize your
own EMPTY SHELL.SOURCE by putting your own name, company,
and copyright notice where mine now are. Do not rewrite to the com
panion diskette. Instead, save everything new on your own new disk
ettes. That way, you can always return to the originals if disaster
strikes.

The Empty Shell 213

Here's some more detail on how to go about.

USING THE EMPTY SHELL

1. Assemble EMPTY SHELL.SOURCE and make an assembly listing
hard copy. Then reload EMPTY SHELL.SOURCE into your
assembler or "new way" word processor.

2. Start at the end of the source code and eliminate what you do not
want. First, check the last line and decide whether you want to use
LST OFF or LST ON. LST ON is a good choice for early program
versions.

3. Decide how long your program files are to be. If you are using no
DFB style files, or if you need less than 256 bytes of single-byte file
values, then shorten the DFB section by deleting lines. If you need
more file bytes, extend by copying.

4. Go to your hard copy and check off the hooks and constants you
are going to use. If you are "old way" editing, put these in
alphabetical order and then copy them to the end of their source
code listings. Then delete all the unused hooks and constants.

5. Begin editing from the first line. Change the origin, then the title
box. Continue editing by rewriting the "What it does," "How to
use it," "Gotchas," "Enhancements," and "Random Comments."
Don't worry too much about getting these perfect, since you will
almost certainly change them as you edit and debug your source
code.

6. Add any new hooks and constants that you want to predefine.

7. Enter your high level code and the documentation for the big
lumps. Overwrite the NOPs with actual code and comments.
Should you need more room, go to the assembler's insert mode
and continue.

8. Do the same thing for the little lumps and the crumbs. Then enter
your file values.

9. Assemble your new source code and do an assembler listing. Then
repair all errors and repeat the process until you get an "error
free" resu It.

10. Eliminate any spurious lines and comments that may be left over
from the original and reassemble.

11. Test your code, and proceed debugging from here just as you
would with any other source code.

I've tried to include a fairly complete list of hooks. But note that not
every hook will work on every version Apple. For instance, STEP and
TRACE will only run with an old autostart ROM, while VBL and
ALTCSON will only perform on an Apple lie.

By the way, I've shortened some of the lie labels so they are only
seven or fewer characters long. You may prefer to use the "official"
labels instead.

214 Ripoff Module 0

If you use any "version-specific" Apple features, be sure to include
tests in your program to make sure you have the right machine in use.
In general, most "mainstream" autostart programs will run on a lie,
but programs that make use of new lie features will not work on older
versions, and may even hang. If you must use some of the "oldies but
goodies," it may be best to drag along the needed code inside your
own program. Stock 10 routines are included with "new" EOASM.

Should you be "new way" editing your empty shell, just delete any
thing unwanted or unneeded as it comes up. Once again, it is best to
work from bottom to top in reverse order.

The easiest "old way" means of getting rid of extra and unwanted
hooks is to copy those you need to the end of the hook listing and
then delete all of the original hooks in one swell foop. With "new
way" editing, just chop out what you don't need on the way by.

Since EMPTY SHELL.SOURCE is so complete, it ends up a tad long
and rather slow in loading. After you have worked with it for a while,
you might like to do a "short form" version of EMPTY SHELL.SOURCE
that more meets your specific programming needs. If you do this,
keep a printed copy of the original on hand for reference.

A tip ...

ALWAYS do some minor fixup and pretty
printing at the same time you make any
important source code corrections.

Whenever you are fixing up fatal errors and making heavy changes
in your source code, spend some time to clean up your documenta
tion, improve page breaks, insert spacing, do pretty printing, eliminate
unwanted lines, and cosmetic stuff like this. Each reassembly should
include both heavy and light repairs.

A good goal is one line of cosmetic fix for each line of heavy fix.
This way, by the time you finally get your program debugged and

working, it also will be pretty much properly documented and attrac
tive to look at. Whatever you do, don't save the documentation for
last. Start with your documentation. Sharpen, improve, clarify as you
go along.

All the rest of the ripoff modules were written using the EMPTY
SHELL.SOURCE. Use these as study examples, and then work up your
own custom shell that meets your personal programming needs.

The Empty Shell 215

MIND BENDERS

Write a WPL program that
automates your empty shell setup,
through use of prompts and
directed questions.

If your "new way" word processor
has glossary or user-defined keys,
show how to use these for single
key macros and other speedup
tricks.

Solve the new way tabbing
problem so that active source code
lines position themselves correctly,
yet comment lines remain intact.

What tests should your source
code include to make sure of .

-uppercase vs lowercase?
-II vs lie?
-40 vs 80 column?
-paddles vs joystick?
-joystick orientation?

216 Ripoff Module 0

PROGRAM RM-O
THE EMPTY SHELL

NEXT OBJECT FILE NAME IS EMPTY SHELL
6000: 3 ORG $6000 ORIGIN GOES HERE

6000: 5
6000: 6
6000: 7
6000: 8
6000: 9
6000: 10
6000: 11
6000: 12
6000: 13
6000: 14
6000: 15
6000: 16
6000: 17
6000: 18
6000: 19
6000: 20
6000: 21
6000: 22
6000: 23

6000: 25

6000: 27
6000: 28
6000: 29
6000: 30
6000: 31
6000: 32

6000: 34

6000: 36
6000: 37
6000: 38
6000: 39
6000: 40
6000: 41

* * * -< THE EMPTY SHELL >- *
* *
* (DUMMY PROGRAM) *
* *
* VERSION 1.0 ($6000-$6160) *
* * * 5-24-83 *
* *
* * * COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS * * BOX 1300, THATCHER AZ., 85552 * * *
* ALL COMMERCIAL RIGHTS RESERVED * * * ***

*** WHAT IT DOES ***

THIS PROGRAM IS A DUMMY SHELL USED AS A STARTING
POINT FOR YOUR OWN ASSEMBLY LANGUAGE PROGRAMS.

*** HOW TO USE IT ***

TO USE, EDIT THE PROGRAM BY MOVING THE ORIGIN,
CHANGING THE TITLE, REMOVING EXTRA EQU'S, ADDING
YOUR OWN WORKING CODE, ALTERING THE DATA FILES
AND DOING WHATEVER ELSE MAY BE NEEDED TO BUILD
YOUR OWN CUSTOM ASSEMBLED PROGRAM OR MODULE.

PROGRAM RM-O, CONT'O .

6UOO:

6000:
6000:
6000:
6000:
6000:
6000:

6000:

6000:
6000:
6000:
6000:
6000:
6000:

6000:

6000:
6000:
6000:
6000:
6000:
6000:

44

46
47
48
49
50
51

53

55
56
57
58
59
60

62

64
65
66
67
68
69

J
J

The Empty Shell 217

*** GOTCHAS ***

ANYTHING ESSENTIAL FOR USE OR UNDERSTANDING OF THE
PROGRAM GETS PUT HERE. THIS INCLUDES SPECIAL NEEDS
SUCH AS EXTRA MEMORY, ANY COMPANION CODE MODULES, OR
ANY SPECIAL HARDWARE.

*** ENHANCEMENTS ***

PUT ANY ADD-ONS, "EXTRA TRICKS", OR SPECIAL
USES HERE. INCLUDE USE TIPS AND APPLICATIONS.

*** RANDOM COMMENTS ***

IF THERE IS SOMETHING ELSE YOU WANT TO SAY THAT'S
NOT ALL THAT IMPORTANT, YOU CAN ADD IT IN THIS SPACE.

218 Ripoff Module 0

PROGRAM RM-O, CONT' 0 .

6000:

0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
0028:
0029:
002C:
002D:
0030:
0031:
0033:
0036:
0037:
0038:
0039:
004E:
004F:

0100:

0200:

03DO:
03D3:
03D6:
03D9:
03DC:
03E3:
03EA:
03FO:
03F2:
03F4:
03F5:
03F8:
03FB:
03FE:

0400:
0800:
2000:
4000:

72 *** BOOKS ***

74 WNDLFT EQU $ 20
75 WNDWDTH EQU $21
76 WNDTOP EQU $22
77 WNDBOT EQU $23
78 CH EQU $24
79 CV EQU $25
80 GBASL EQU $26
81 GBASH EQU $27
82 BASL EQU $28
83 BASH EQU $29
84 HEND EQU $2C
85 VBOT EQU $2D
86 COLOR EQU $30
87 INVFLG EQU $31
88 PROMPT EQU $33
89 CSWL EQU $36
90 CSWH EQU $37
91 KSWL EQU $38
92 KSWH EQU $39
93 RNDL EQU $4E
94 RNDH EQU $4F

96 STACK EQU $0100

98 KEYBUF EQU $0200

100 DOSWRM EQU $03DO
101 DOSCLD EQU $03D3
102 DOSFLM EQU $03D6
103 OOSRWTS EQU $03D9
104 DOSIPRM EQU $03DC
105 DOSRWLS EQU $03E3
106 DOSHooK EQU $03EA
107 BRK EQU $03FO
108 SOFTEV EQU $03F2
109 PWRDUP EQU $03F4
110 AMPERV EQU $03F5
111 USRADR EQU $03F8
112 NMI EQU $03FB
113 IRQLOC EQU $03FE

115 TEXTPl EQU $0400
116 TEXTP2 EQU $0800
117 HIRESPI EQU $2000
118 HIRESP2 EQU $4000

SCROLL WINDOW LEFT
SCROLL WINDOW WIDTH
SCROLL WINDOW TOP
SCROLL WINDOW BOTTOM
CURSOR HORIZONTAL
CURSOR VERTICAL
LORES BASE LOW
LORES BASE HIGH
TEXT BASE LOW
TEXT BASE HIGH
LORES RIGHT END H LINE
LORES BOTTOM OF V LINE
LORES COLOR
NORMAL/INVERSE/FLASH (FF,7F,3F)
HOLDS PROMPT SYMBOL
OUTPUT CHARACTER HOOK LOW
OUTPUT CHARACTER HOOK HIGH
INPUT CHARACTER HOooK LOW
INPUT CHARACTER HOOK HIGH
RANDOM NUMBER LOW
RANDOM NUMBER HIGH

STACK PAGE ACCESS

KEYBUFFER START

OOS WARM START JMP
DOS COLD START JMP
DOS FILE MANAGER JUMP
DOS RWTS JUMP
OOS FILE PARAMETER FIND JUMP
DOS RWTS PARAMETER FIND JUMP
DOS HOOK RECONNECT JUMP
BREAK ADDRESS (AUTOSTART& 2E ONLY!)
SOFT RESET (AUTOSTART & 2E ONLY!)
WARM START EOR CHECKSUM
APPLES OFT "&" JUMP
CTRL-Y JUMP
NON-MAS KABLE INTERRUPT JUMP
INTERRUPT ADDRESS LOW

START OF TEXT PAGE ONE
START OF TEXT PAGE TWO
START OF HIRES PAGE ONE
START OF BIRES PAGE TWO

TheEmptyShell 219

PROGRAM RM-O, CONT'O •••

COOO: 121 IOADR EOU $COOO KEYBOARD INPUT
COlO: 122 KBDSTR EOU $C010 KEYSTROBE RESET
C020: 123 TAPEOUT EOU $C020 CASSETTE OR AUDIO OUT
C030: 124 SPKR EOU $C030 SPEAKER CLICK OUTPUT
C040: 125 STROBE EOU $C040 GAME CONNECTOR STROBE
COSO: 126 TXTCLR EOU $COSO GRAPHICS ON SOFT SWITCH
COS1: 127 TXTSET EOU $COS1 TEXT ON SOFT SWITCH
COS2: 128 MIXCLR EOU $COS2 FULL SCREEN SOFT SWITCH
COS3: 129 MIXSET EOU $COS3 MIXED SCREEN SOFT SWITCH
COS4: 130 LOWSCR EOU $COS4 PAGE ONE SOFT SWITCH
COSS: 131 HISCR EOU $COSS PAGE TWO SOFT SWITCH
COS6: 132 LORES EOU $COS6 LORES SOFT SWITCH
COS7: 133 HIRES EOU $COS7 HIRES SOFT SWITCH
C060: 134 PB4 EOU $C060 CASS IN + "FOURTH" PB INPUT "SW3"
C061: 135 PB1 EOU $C061 OPEN APPI.E + "FIRST" PB INPUT "SWO"
C062: 136 PB2 EOU $C062 CLOSED APPLE + "SECOND" PB INPUT "S
C063: 137 PB3 EOU $C063 "THIRD" PUSHBUTTON INPUT "SW2"
C064: 138 PDLO . EOU $C064 GAME PADDLE 0 ANALOG IN
C06S: 139 PDLl EOU $C06S GAME PADDLE 1 ANALOG IN
C066: 140 PDL2 EOU $C066 GAME PADDLE 2 ANALOG IN
C067: 141 PDL3 EOU $C067 GAME PADDLE 3 ANALOG IN
C070: 142 PTRIG EOU $C070 ANALOG PADDLE RESET

C080: 144 STEPOO EQU $C080 DISK STEPPER PHASE o OFF
C081: 145 STEP01 EQU $C081 DISK STEPPER PHASE o ON
C082: 146 STEP10 EOU $COB2 DISK STEPPER PHASE 1 OFF
COB3: 147 STEPll EOU $COB3 DISK STEPPER PHASE 1 ON
COB4: 14B STEP20 EOU $COB4 DISK STEPPER PHASE 2 OFF
OOOC: 149 STEP21 EOU $COBS DISK STEPPER PHASE 2 ON
COB6: 150 STEP30 EOU $COB6 DISK STEPPER PHASE 3 OFF
COB7: 151 STEP31 EQU $COB7 DISK STEPPER PHASE 3 ON
COBB: 152 MOTON EOU $COBB DISK MAIN MOTOR OFF
COB9: 153 MOTOFF EOU $COB9 DISK MAIN MOTOR ON
C08A: 154 DRVOEN EOU $COBA DISK ENABLE DRIVE 1
COBB: 155 DRV1EN EOU $COBB DISK ENABLE DRIVE 2
COBC: 156 06CLR EOU $COBC DISK 06 CLEAR
COBD: 157 06SET EOU $COBD DISK 06 SET
COBE: lSB 07CLR EQU $C08E DISK 07 CLEAR
COBF: 159 07SET EOU $COBF DISK 07 SET

EOOO: 161 BASICLD EOU $EOOO ENTER BASIC COLD
E003: 162 BASICWM EOU $E003 RE-ENTER BASIC WARM

F3D8: 164 HGR2 EQU $F3D8 APPLES OFT CLEAR TO HIRES 2
F3E2: 165 HGR EOU $F3E2 APPLES OFT CLEAR TO HIRES 1
F3F4: 166 BKGND EOU $F3F4 APPLES OFT HIRES BACKGROUND CLEAR
F6FO: 167 HCOLOR EQU $F6FO APPLES OFT HIRES COLOR SELECT
F411: 168 HPOSN EQU $F411 APPLES OFT HIRES POSITION
F4S7: 169 HPLOT EOU $F4S7 APPLES OFT HIRES PLOT

220 Ripoff Module 0

PROGRAM RM-O, CONT'O ..

FSOO: 172 PLOT EOU $FSOO PLOT LORES BLOCK
FS19: 173 HLINE EOU $FS19 HORIZ LORES LINE
FS2S: 174 VLINE EOU $FS2S VERTICAL LORES LINE
FS32: 175 CLRSCR EOU $FS32 CLEAR FULL LORES SCREEN
FS36: 176 CLRTOP EOU $FS36 CLEAR TOP LORES SCREEN
FS47: 177 GBSCALC EOU $FS47 LORES BASE CALCULATION
FS5F: 17S NEXTCOL EOU $FS5F INCREASE LORES COLOR BY 3
FS64: 179 SETCOL EOU $FS64 SET LORES COLOR
FS71: ISO SCRN EOU $FS71 READ LORES SCREEN COLOR
F941: lSI PRNTAX EOU $F941 OUTPUT A THEN X AS HEX
F94S: lS2 PRBLNK EOU $F94S OUTPUT 3 SPACES VIA HOOKS
F94A: lS3 PRBL2 EOU $F94A OUTPUT X BLANKS VIA HOOKS

FAD7: 185 REGDSP EOU $FAD7 DISPLAY WORKING REGISTERS
FBIE: 186 PREAD EOU $FBIE READ GAME PADDLE X
FB2F: 187 INIT EOU $FB2F INITIALIZE TEXT SCREEN
FB93: 188 SETTXT EOU $FB93 SET UP TEXT SCREEN (NOT 2E!)
FB40: 189 SETGR EOU $FB40 SET UP GRAPHICS SCREEN
FB4B: 190 SETWND EOU $FB4B SET NORMAL TEXT WINDOW
FBCI: 191 BASCALC EOU $FBCl CALCULATE TEXT BASE ADDRESS (NOT 2EI)
FBD9: 192 BELLI EOU $FBD9 BEEP SPEAKER IF CTRL-G
FBE4: 193 BELL2 EOU $FBE4 BEEP SPEAKER ONCE
FBF4: 194 ADVANCE EOU $FBF4 TEXT CURSOR ONE TO RIGHT
FBFD: 195 VIDOUT EOU $FBFD OUTPUT ASCII TO SCREEN ONLY

FC10: 197 BS EOU $FCI0 BACKSPACE SCREEN
FCIA: 198 UP EOU $FCIA MOVE SCREEN CURSOR UP ONE LINE
FC22: 199 VTAB EOU $FC22 VERTICAL SCREEN TAB USING CV
FC24: 200 VTABA EOU $FC24 VERTICAL SCREEN TAB USING A
FC66: 201 ESCI EOU $FC66 PROCESS ESCAPE CURSOR MOVES
FC42: 202 CLREOP EOU $FC42 CLEAR TO END OF PAGE
FC58: 203 HOME EOU $FCS8 CLEAR TEXT SCREEN AND HOME CURSOR
FC62: 204 CR EOU $FC62 CARRIAGE RETURN TO SCREEN
FC66: 205 LF EOU $FC66 LINEFEED TO SCREEN ONLY
FC70: 206 SCROLL EOU $FC70 SCROLL TEXT SCREEN UP ONE
FC9C: 207 CLEOL EOU $FC9C CLEAR TEXT TO END OF LINE
FCA8: 208 WAIT EOU $FCA8 TIME DELAY SET BY ACCUMULATOR
FDOC: 209 RDKEY EOU $FDOC GET INPUT CHARACTER VIA HOOKS
FDIB: 210 KEYIN EOU $FDIB READ THE APPLE KEYBOARD
FD35: 211 RDCHAR EOU $FD35 GET KEY AND PROCESS ESC A-F
FD62: 212 CANCEL EOU $FD62 CANCEL KEYBOARD LINE ENTRY
FD67: 213 GETLNZ EOU $FD67 CR THEN GET KEYBOARD INPUT LINE
FD6A: 214 GETLN EOU $FD6A GET KEYBOARD INPUT LINE
FD6F: 215 GETLNI EOU $FD6F GET KBD INPUT, NO PROMPT
FD8B: 216 CROUT1 EOU $FDSB CLEAR EOL THEN CR VIA BOOKS
FDSE: 217 CROUT EOU $FD8E OUTPUT CR VIA HOOKS
FDDA: 218 PRBYTE EOU $FDDA OUTPUT FULL A IN HEX TO HOOKS
FDE3: 219 PRBEX EOU $FDE3 OUTPUT LOW A IN HEX TO HOOKS
FDED: 220 COUT EOU $FDED OUTPUT CHARACTER VIA HOOKS
FDFO: 221 COUTl EOU $FDFO , OUTPUT CHARACTER TO SCREEN

PROGRAM RM-O, CONT'D .•

FE2C:
FE36:
FE5E:
FE63:
FE80:
FE84:
FE93:
FEBO:
FEB3:
FEC2:
FEC4:
FECD:
FEFD:
FF2D:
FF3A:
FF3F:
FF4A:
FF58:
FF59:
FF65:
FF69:
FFA7:

224 MOVE EQU $FE2C
225 VERIFY EQU $FE36
226 LIST EQU $FE5E
227 LIST2 EQU $FE63
228 SETINV EQU $FE80
229 SETNORM EQU $FE84
230 SETVID EQU $FE93
231 XBASIC EQU $FEBO
232 BAS CON EQU $FEB3
233 TRACE EQU $FEC2
234 STEP EQU $FEC4
235 WRITE EQU $FECD
236 READ EQU $FEFD
237 PRERR EQU $FF2D
238 BELL EQU $FF3A
239 IORESR EQU $FF3F
240 IOSAVE EQU $FF4A
241 RETURN EQU $FF58
242 OLDRST EQU $FF59
243 MON EQU $FF65
244 MONZ EQU $FF69
245 GETNUM EQU $FFA7

The Empty Shell 221

MOVE BLOCK OF MEMORY
J VERIFY BLOCK OF MEMORY
J DISASSEMBLE 20 INSTRUCTIONS

DISASSEMBLE "A" INSTRUCTIONS
PRINT INVERSE TEXT TO SCREEN
PRINT NORMAL TEXT TO SCREEN
GRAB OUTPUT HOOKS FOR SCREEN
GO BASIC, DESTROYING OLD
GO BASIC, CONTINUING OLD
START TRACING (OLD ROM ONLYI)
SINGLE STEP (OLD ROM ONLYI)

J WRITE TO CASSETTE TAPE
READ FROM CASSETTE TAPE
PRINT "ERR" TO OUTPUT HOOK
OUTPUT BELL TO HOOKS
RESTORE ALL WORKING REGISTERS
SAVE ALL WORKING REGISTERS
DGUARANTEED" RETURN
OLD RESET, NO AUTOSTART
ENTER MONITOR AND BEEP SPEAKER
ENTER MONITOR QUIETLY
ASCII TO HEX IN 3E & 3F

6000: 247 *** HOOKS FOR 2E ONLYI ***

COOO:
COOl:
C002:
C003:
C004:
coos:
C006:
C007:

C008:
C009:
COOA:
COOB:
COOC:
COOD:
COOE:
COOF:

249 CLR80CO EQU $COOO
250 SET80CO EQU $C001
251 .RAMRDMN EQU $C002
252 RAMRDAX EQU $C003
253 RAMWRMN EQU $C004
254 RAMWRAX EQU $C005
255 SLOTXRM EQU $C006
256 SLOTXEX EQU $C007

258 MAINZP EQU $C008
259 ALTZP EQU $C009
260 SLOT3RM EQU $COOA
261 SLOT3EX EQU $COOB
262 OFF80CL EQU $COOC
263 ON80COL EQU $COOD
264 ALTCSOF EQU $COOE
265 AL~CSON EQU $COOF

80 STORE OFF (WRITE ONLY)
80 STORE ON (WRITE ONLY)
READ MAIN MEMORY (WRITE ONLY)
READ AUXILIARY MEMORY (WRITE ONLY)
WRITE MAIN MEMORY (WRITE ONLY)
WRITE AUXILIARY MEMORY (WRITE ONLY)
INTERNAL ROM AT CXOO (WRITE ONLY)
SLOT ROM AT CXOO (WRITE ONLY)

USE MAIN ZERO PAGE (WRITE ONLY)
USE ALTERNATE ZERO PAGE (WRITE ONLY)
SLOT 13 INTERNAL ROM (WRITE ONLY)
SLOT 13 EXTERNAL ROM (WRITE ONLY)
TURN 80 COLUMN OFF (WRITE ONLY)
TURN 80 COLUMN ON (WRITE ONLY)
USE MAIN CHARACTER SET (WRITE ONLY)

J USE ALT CHARACTER SET (WRITE ONLY)

222 Ripoff Module 0

PROGRAM RM-O, CONT'D. . .

COl3: 268 RAMRDS EOU $COl3 READ RAMREAD SWITCH (READ ONLY)
C014: 269 RAMWTS EOU $C014 READ RAMWRITE SWITCH (READ ONLY)
C015: 270 SLTCXS EOU $C015 READ SLOT CX SWITCH (READ ONLY)
C016: 271 ALTZPS EOU $C016 READ ZERO PAGE SWITCH (READ ONLY)
COl7: 272 SLTC3S EOU $COl7 READ SLOT C3 SWITCH (READ ONLY)

COl8: 274 S80STR EOU $COl8 READ 80STORE SWITCH (READ ONLY)
COl9: 275 VBL EOU $COl9 VERT. BLANKING >80=BLANK (READ ONLY)
COlA: 276 TEXTS EOU SCOlA READ TEXT SWITCH (READ ONLY)
COlB: 277 MIXEDS EOU $COlB READ MIXED GR SWITCH (READ ONLY)
COIC: 278 PAGE2S EOU $COlC READ PAGE 2 SWITCH (READ ONLY)
COlD: 279 HIRESS EOU SCOlD READ HIRES SWITCH (READ ONLY)
COlE: 280 ALTCSS EOU $COlE READ ALTCHAR SET SWITCH (READ ONLY)
COlF: 281 S80COL EOU $COlF READ 80 COLUMN SWITCH (READ ONLY)

C080: 283 RB2RAM EOU $C080 READ BANK 2 RAM
C08l: 284 WB2RA.~ EOU $COBl WRITE BANK 2 RAM, READ ROM
C082: 285 RROM EOU $C082 READ ROM ONLY, NO WRITE
C083: 286 RWRAM2 EOU $C083 READ & WRITE RAM2 (HIT TWICE!)
C088: 287 RRAMl EOU $C088 READ BANKl RAM
C089: 28B WRAMl EOU $COB9 WRITE BANKl RAM, READ ROM
C08A: 2B9 RBlROM EOU $COBA READ BANKl ROM
COBB: 290 RWRAMl EOU $C08B READ & WRITE RAMl (HIT TWICE!)

6000: 292 *** CONSTANTS ***
6000: 293 *** TEXTFILE COMMANDS ***

OOBB: 295 B EOU $B8 BACKSPACE
OOBD: 296 C EOU $BD CARRIAGE RETURN
00B4: 297 D EOU $84 DOS ATTENTION
OOBC: 29B F EQU $BC FORMFEED
00B7: 299 G EQU $B7 RING GONG
OOBA: 300 L EQU $BA LINEFEED
0060: 301 P EOU $60 FLASHING PROMPT
0000: 302 X EOU $00 END OF MESSAGE

PROGRAM RM-O, CONT'D.

6000:
6000:
6000:

6000:
6000:
6000:
6000:
6000:
6000:

6000:EA
6001:EA
6002:EA
6003:EA
6004:EA
6005:EA
6006:EA
6007:EA

6008:EA
6009:EA
600A:EA
600B:EA
600C:EA
600D:EA
600E:EA
600F:EA

6010:EA
6011:EA
6012:EA
6013:EA
6014:EA
6015:EA
6016:EA
6017:EA

6018:EA
6019:EA
601A:EA
601B:EA
601C:EA
601D:EA
601E:EA
601F:EA

305 ,
306
307

309
310
311 ,
312
313
314

316 STARTI
317
318
319
320
321
322
323

325
326
327
328
329
330
331
332

334
335
336
337
338
339
340
341

343
344
345
346
347
348
349
350

*** BIG LUMPS ***
*** MAIN PROGRAM ***

*** HIGH LEVEL CODE ***

ADD ANY COMMENTS HERE THAT ARE
SPECIFIC TO THE BIG LUMPS.

NOP YOUR HIGH LEVEL
NOP AND GOES ON AS
NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

The Empty Shell 223

CODE STARTS HERE
FAR AS NEEDED.

224 Ripoff Module 0

PROGRAM RM-O, CONT'D.

6020: 353 u* LITTLE LUMPS ***
6020: 354 1 *** HEAVY SUBROUTINE ***
6020: 355 *** SUPf'ORTING MODULE ***

6020: . 357 ADD ANY COMMENTS HERE THAT ARE
6020: 358 SPECIFIC TO THE LITTLE LUMPS.
6020: 359
6020: 360
6020: 361
6020: 362

6020:EA 364 START 2 NOP YOUR MEDIUM LEVEL CODE STARTS
6021:EA 365 NOP HERE AND GOES ON AS FAR AS
6022:EA 366 NOP NEEDED.
6023:EA 367 NOP
6024:EA 368 NOP
6025:EA 369 NOP
6026:EA 370 NOP
6027:EA 371 NOP

6028:EA 373 NOP
6029:EA 374 NOP
602A:EA 375 NOP
602B:EA 376 NOP
602C:EA 377 NOP
602D:EA 378 NOP
602E:EA 379 NOP
602F:EA 380 NOP

6030:EA 382 NOP
6031:EA 383 NOP
6032:EA 384 NOP
6033:EA 385 NOP
6034:EA 386 NOP
6035:EA 387 NOP
6036:EA 388 NOP
6037:EA 389 NOP

6038:EA 391 NOP
6039:EA 392 NOP
603A:EA 393 NOP
603B:EA 394 NOP
603C:EA 395 NOP
603D:EA 396 NOP
603E:EA 397 NOP
603F:EA 398 NOP

The Empty Shell 225

PROGRAM RM-O, CONT'O •

6040: 401 *** STASH ***
6040: 402 **~ THE CRUMBS ***
6040: 403 *** DETAIL SUBS ***

6040: 405 ADD ANY COMMENTS HERE THAT
6040: 406 ARE SPECIFIC TO THE CRUMBS.
6040: 407
6040: 408
6040: 409
6040: 410

6040:EA 412 START 3 NOP YOUR LOW LEVEL CODE STARTS HERE AND
6041:EA 413 NOP INCLUDES ANY SHORT FILES THAT ARE
6042:EA 414 NOP RARELY CHANGED.
6043:EA 415 NOP
6044:EA 416 NOP
6045:EA 417 NOP
6046:EA 418 NOP
6047:EA 419 NOP

6048:EA 421 NOP
6049:EA 422 NOP
604A:EA 423 NOP
604B:EA 424 NOP
604C:EA 425 NOP
604D:EA 426 NOP
604E:EA 427 NOP
604F:EA 428 NOP

6050:EA 430 NOP
6051:EA 431 NOP
6052:EA 432 NOP
6053:EA 433 NOP
6054:EA 434 NOP
6055:EA 435 NOP
6056:EA 436 NOP
6057:EA 437 NOP

6058:EA 439 NOP
6059:EA 440 NOP
605A:EA 441 NOP
605B:EA 442 NOP
605C:EA 443 NOP
605D:EA 444 NOP
605E:EA 445 NOP
605F:EA 446 NOP

226 Ripoff Module 0

PROGRAM RM-O, CONT'O.

6060: h9 *** MAIN FILES ***

6060: 451 ADD ANY COMMENTS HERE THAT ARE
6060: 452 SPECIFIC TO THE MAIN FILES.
6060: 453 1
6060: 454
6060: 455
6060: 456

6060:00 00 00 458 FILE1 OFB $00,$00,$00,$00,$00,$00,$00,$00
6063:00 00 00
6066:00 00
6068:00 00 00 459 FILE2 OFB $00,$00,$00,$00,$00,$00,$00,$00
606B:00 00 00
606E:00 00
6070:00 00 00 460 FILE3 OFB $00,$00,$00,$00,$00,$00,$00,$00
6073:00 00 00
6076:00 00
6078:00 00 00 461 FILE4 OFB $00,$00,$00,$00,$00,$00,$00,$00
607B:00 00 00
607E:00 00
6080:00 00 00 462 FILES OFB $00,$00,$00,$00,$00,$00,$00,$00
6083:00 00 00
6086:00 00
6088:00 00 00 463 FILE6 OFB $00,$00,$00,$00,$00,$00,$00,$00
608B:00 00 00
608E:00 00
6090:00 00 00 464 FILE7 OFB $00,$00,$00,$00,$00,$00,$00,$00
6093:00 00 00
6096:00 00
6098:00 00 00 465 FILE8 OFB $00,$00,$00,$00,$00,$00,$00,$00
609B:00 00 00
609E:00 00
60AO:00 00 00 466 FILE9 OFB $00,$00,$00,$00,$00,$00,$00,$00
60A3:00 00 00
60A6:00 00
60A8:00 00 00 467 FILE10 OFB $00,$00,$00,$00,$00,$00,$00,$00
60AB:00 00 00
60AE:00 00
60BO:00 00 00 468 FILEll OFB $00,$00,$00,$00,$00,$00,$00,$00
60B3:00 00 00
60B6:00 00
60B8:00 00 00 469 FILE12 OFB $00,$00,$00,$00,$00,$00,$00,$00
60BB:00 00 00
6DBE:00 00
60CO:00 00 00 470 FILEl3 OFB $00,$00,$00,$00,$00,$00,$00,$00
60C3:00 00 00
60C6:00 00
60C8:00 00 00 471 FILE14 OFB $00,$00,$00,$00,$00,$00,$00,$00
60CB:OO 00 00
60CE:OO 00

The Empty Shell 227

PROGRAM RM-O, CONT'O •••

6000:00 00 00 474 FILE15 DFB $00,$00,$00,$00,$00,$00,$00,$00
6003:00 00 00
6006:00 00
6008:00 00 00 4.75 FILE16 DFB $00,$00,$00,$00,$00,$00,$00,$00
60DB:00 00 00
60DE:00 00
60EO:00 00 00 476 FILE17 DFB $00,$00,$00,$00,$00,$00,$00,$00
60E3:00 00 00
60E6:00 00
60E8:00 00 00 477 FILE18 DFB $00,$00,$00,$00,$00,$00,$00,$00
60EB:00 00 00
60EE:00 00
60FO:00 00 00 478 FILE19 DFB $00,$00,$00,$00,$00,$00,$00,$00
60F3:00 00 00
60F6:00 00
60F8:00 00 00 479 FILE20 DFB $00,$00,$00,$00,$00,$00,$00,$00
60FB:00 00 00
60FE:00 00
6100:00 00 00 480 FILE21 DFB $00,$00,$00,$00,$00,$00,$00,$00
6103:00 00 00
6106:00 00
6108:00 00 00 481 FILE22 DFB $00,$00,$00,$00,$00,$00,$00,$00
610B:00 00 00
610E:00 00
6110: 00 00 00 482 FILE23 DFB $00,$00,$00,$00,$00,$00,$00,$00
6113:00 00 00
6116:00 00
6118:00 00 00 483 FILE24 DFB $00,$00,$00,$00,$00,$00,$00,$00
611B:00 00 00
611E:00 00
6120:00 00 00 484 FILE25 DFB $00,$00,$00,$00,$00,$00,$00,$00
6123:00 00 00
6126:00 00
6128:00 00 00 485 FILE26 DFB $00,$00,$00,$00,$00,$00,$00,$00
612B:00 00 00
612E:00 00
6130: 00 00 00 486 FILE27 DFB $00,$00,$00,$00,$00,$00,$00,$00
6133: 00 00 00
6136: 00 00
6138:00 00 00 487 FILE28 DFB $00,$00,$00,$00,$00,$00,$00,$00
613B:00 00 00
613E:00 00
6140: 00 00 00 488 FILE29 DFB $00,$00,$00,$00,$00,$00,$00,$00
6143: 00 00 00
6146: 00 00
6148:00 00 00 489 FILE30 DFB $00,$00,$00,$00,$00,$00,$00,$00
614B:00 00 00
614E:00 00
6150:00 00 00 490 FILE31 DFB $00,$00,$00,$00,$00,$00,$00,$00
6153:00 00 00
6156:00 00
6158:00 00 00 491 FILE.32 DFB $00,$00,$00,$00,$00,$00,$00,$00
615B:00 00 00
615E:00 00

228 Ripoff Module 0

PROGRAM RM-O, CONT'O.

6160:

6160:
6160:

494 J

496
497

*** BOTTOM LINE COMMENTS ***

ADD ANY FINAL COMMENTS YOU FEEL
ARE NEEDED IN THIS SPACE.

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I FILE BASED PRINTER

the "standard" way to output
short and fixed text messages
by using a common message
file.

I

Outputting text is probably the most fundamental and most impor
tant task we would ever ask of a machine language Apple program.
You might want to use the text to create a printed record, to inform
the user via the video screen, or to pass a command to the disk
system.

It turns out that there is no "best" way to go about outputting text
from machine language. Instead, there are many different methods
you can pick. These methods are based on how many messages you
must output, on how long each message is, and on how changeable
the messages have to be.

Further, you have to decide just where your message is going to go
as well. Usually, to output a character, you get it from somewhere and
put it in the accumulator. Then you go to a text outputting subroutine
that puts the character where you want it to appear. You continue this
until some change occurs, such as a marker or length count. Then you
go on to the next task at hand.

229

230 Ripoff Module 1

Here are some possible. . .

PLACES TO OUTPUT TEXT

Oi rect store to the text screen
To COUT hook subroutine $FOFO
To COUT1 screen subroutine $FOEO
To a HIRES character generator
To your own custom code

If you direct store to a screen location, you end up putting charac
ters on the screen in the shortest possible time, and you are always
sure exactly where on the screen the character is to go. As an exam
ple, a $Cl stored in $0400 puts an uppercase "A" in the upper left
hand screen position. But, the screen locations aren't mapped in an
obvious order, and you get into real hassles over carriage returns and
scrolls. There is also no simple way to get a hard copy of a direct
screen store. So, direct storing to the screen is usually limited to game
scores, status lines, and special effects, rather than being a mainstream
way of doing things.

Since outputting text is so important, there are two subroutines built
into the Apple's monitor, designed to do most text outputting tasks in
the way that most people want them done. One subroutine is called
COUT and is located at $FDED. This subroutine will output characters
to anything that is connected to the Apple by way of two character
hooks called CSWL and CSWH and located at $0036 and $0037.

Normally, DOS grabs these character hooks so that it can intercept
all output commands, just in case there is something intended for the
disk. In turn, DOS will take whatever was plugged into the output
hooks, and then plug these into itself.

For instance, a normal hard copy character will get routed from
your code to COUT, where it gets passed on to DOS, which checks it
for disk commands. The character is then passed on to a printer card,
whose code often begins at location $C100. The code will then send
the proper commands to the printer itself to print the character.
Finally, if you want it to, the printer card code will echo the character
on to the screen subroutine.

Which is very slow and roundabout. But this is the standard way of
outputting characters that can be routed to DOS, a printer, the screen,
or anywhere else you like. This process is extremely slow on the lie
when 80-column firmware is in use. So slow in fact, that you cannot
keep up with a l200-baud modem and scroll the screen at the same
time.

The actual screen subroutine that puts the characters on the screen
is called COUTl and sits at $FDFO. Good old "Fideyfoo." Fideyfoo
automatically keeps track of the horizontal and vertical character posi
tions, does scrolls, handles carriage returns, inverses, your choice of
flashing or lowercase, and takes care of most screen actions in the
way that most people want most of the time.

Fideyfoo has some locations on page zero reserved that let you pick
up special effects quickly and simply. For instance, the size of the
scrolling window is set by locations $20 through $24. The cursor hori-

File Based Printer 231

zontal and vertical position bytes CH and CV are located at $24 and
$25. Your choice of normallinverselflash is decided by INVFLG at
$31. And the screen prompt is stashed in $33. See the EMPTY
SHELL.SOURCE hooks for other locations of interest.

Here's how to remember when to use COUT or COUTl ...

Use COUT at $FDED to slowly output a
character to DOS, a printer, the screen,
or anywhere else you want to send that
character. Hooks CSWL and CSWH at
$36 and $37 decide where the character
is to go.

Use COUll at $FDFO to rapidly output a
character only to the screen.

By the way, all these fancy subroutines do take time. It can take half
a millisecond just to get through COUT and the DOS code, and any
screen scrolls can hold up the works for four or more milliseconds.
These times are on older Apples; the lie is much worse in its 80-col
umn mode. So, it pays to go directly to the screen or output device if
speed is important.

It also pays to defeat any "screen echo" should you need top out
put speed. For instance, a HIRES graphics hard copy dump will be
dramatically slowed down if it has to wait for screen scrolling on echo.
For fastest possible speed, DOS could also be disconnected during
character output times. And fast modems are best used on a lie in its
40-column or "no-display" modes.

A third place to put your characters involves using a HIRES charac
ter generator to put your characters onto the HIRES screen. This type
of subroutine lets you mix and match graphics and lets you use lots of
different text fonts of varying sizes. You can also use special characters
to do animation with a HIRES character generator, since your letter
"G" is free to look like a frog's face, rather than a stock character. But
HIRES character generators are usually rather slow and take bunches
of extra code inside your machine.

Normally, a HIRES character generator will grab the COUT hooks
"behind" DOS. Its use, once installed, will be pretty much the same
as using COUTo Naturally, a HIRES character generator only will dis
play on a HIRES screen and COUTl will only display on a text screen.

A final place to put characters is to route them to your own custom
code subroutine. This lets you rearrange things to suit yourself. A
word processor is one example, where the messages all change from
use to use. A second example could be a special effects screen filter.
This one could "print" in oddball directions, and include delay,
sound effects, replacements, screen locking, whole-word breaks, col
umn justify, and most anything else you'd care to dream up.

Normally, you should avoid writing your own code if it more or less
duplicates what is already available as ready-to-go subroutines in the
Apple monitor. But special code can do special things special ways,
and sometimes can give you a tremendous programming advantage
over competitive programs.

An edge, even.
So, your first problem is to decide where your text is going to go.

232 Ripoff Module 1

Then, you have to pick some method of getting text to that destina
tion.

Here are the names of several more popular text outputting meth
ods, going from simple to complex ...

TEXT OUTPUTTING SCHEMES

Brute Force
Short File
Long File
I m bedded Text
Compacted

The brute force method is simple and obvious. "Give me a DI"
"Give me an 01" "Give me a GI" And whaddaya got? A doggedly
cumbersome and very painful way to output text. Load the accumula
tor with the ASCII character for a D and then JSR your output code.
Then load the accumulator with an ASCII "0," and so on.

This method is so painful, that you would only want to use it for a
four-letter or shorter message, and then if that message was the only
one in the program. Among other problems, note that five bytes of
code are needed per character output.

The short file method is almost as obvious as the brute force
method. Put your characters in a file. End each message with some
marker, sayan ASCII $00 or NUL. If you have to, create a second
pointer file to tell you where each message starts. The short file is usu
ally limited to 256 or fewer total characters.

The short file method uses indexed addressing to pick sequential
characters out of a file. For a detailed example, see the text
outenblatter in Volume II of Don Lancaster's Micro Cookbook (Sams
21829). Just for kicks, we will also use the short file method in the card
shuffler of Ripoff Module 8.

The short file method is limited to a few very short and fixed text
messages. But it is quick and simple to program, and may be all you
need.

The long file method removes the 256 character restriction, by
replacing 8-bit indexed loads with 16-bit indirect indexed loads. Your
messages can now be any length and you can have any number of
them, although there is a slight complication for more than 128 differ
ent messages at any time.

The long file method is more or less the "standard" way of handling
medium length text messages, and is what this ripoff module is all
about. We'll find out how your assembler can automate keeping track
of messages and message pointers, as well as automatically entering
ASCII characters for you.

But, there are limits to the long file method. All your messages must
be known and all must be placed at one point in your code. The
imbedded text method of the next ripoff module very elegantly gets
around these restrictions, by letting you put any message you want,
any place you want, directly in your source code. You can mix and
match messages from any modules in your program, so long as one
"un-imbedding" subroutine is provided somewhere in your code.

File Based Printer 233

Both the long file and the imbedded text methods take around a
byte per character for longer messages. You can remove the end
marker on each string message if you switch from high ASCII to low
ASCII on the last character. EDASM can do this for you as a special
feature. But this complication doesn't save you very much, particu
larly on longer messages. You can also use a character count byte if
you like. Again, this doesn't help much.

Should you have to really cram long messages into your Apple, you
can either use repeated disk access or else use some text compaction
scheme. Repeated disk access is very poor form these days and should
be avoided, even with the newer DOS speedup tricks. Text compac
tion works by using some non-ASCII code that is more efficient than
ASCII for character storage.

For instance, in the lork adventures, three characters are crammed
into two bytes, giving you code that needs only 67 percent of the
space needed by ASCII. In the Adam's version of Collossial Cave, let
ters are arranged into pairs and then each pair is given an unique
code. This results in nearly a 50 percent compaction. In spelling
checkers, special codes are used to tell how many characters have not
changed from the previous character. Special codes are also used for
stock endings.

In general, you should not use text compaction until after you are
sure you absolutely must have it. It's usually best to have your code
completely debugged and your messages completely fixed before
using compaction. Note that text compaction will actually lengthen
and complicate the code needed for short messages, so there is some
minimum "breakeven" code length before compaction gains you
anything at all.

To recap, there are many places you can put characters and many
different ways to generate text messages. One standard way is the text
file method, which we will look at here. After that, in Ripoff Module 2,
we will check into a more elegant imbedded text method that often is
a better choice. Either of these methods is a good choice for your typi
cal "medium" text message jobs, those not so trivial and short that
you can handle with obvious code, nor those messages so long that
you have to compact them.

So, without further ado, here is ...

THE LONG FILE METHOD

There are two files involved in the long file method. One of these is
called the pointer file and the other is called the message file . ..

234 Ripoff Module 1

USING A PAIR OF FILES TO OUTPUT TEXT STRINGS:

THE POINTEIl FILE HOLDS THE
16-BIT STARTING ADDRESS OF EACH
TEXT MESSAGE IN THE MESSAGE FILE ...

POINTER 112
SHOWS STARTING
ADDRESS OF
MESSAGE 112. ETC.

THE MESSAGE FILE HOLDS ALL OF
THE ASCII TEXT MESSAGES IN SOME
KNOWN ORDER ...

MESSAGE ZERO. MESSAGE ONE.
MESSAGE NUMBER TWO • ..

. .. MESSAGE ONE-TWENT'l-SIX
• MESSAGE ONE-TWENT'l-SEVEN.

END OF MESSAGE ~
TOKEN OR MARKER

... MESSAGES CAN BE ACCESSED IN AN'! ORDER. MORE THAN ONE
POINTER CAN POINT TO THE SAME MESSAGE. EACH MESSAGE
CAN BE AN'! LENGTH.

The long file method seems complicated at first, but this text output
ting scheme lets you have messages of any length, and the messages
can easily cross 256-byte page boundaries. You can also use different
sets of pointer files and text files with the same FLPRINT subroutine.

The message file holds all the messages. The messages do not have
to be in any particular order, but the order must be known. Each mes
sage ends with a marker of some sort. We will use an ASCII double
zero NUL command, since it is easier to test for zero than for any
other value. Normally, each message will follow the previous one,
although this is not essential. Should you want to put a DOS message
into your message file, you start the DOS message with a carriage
return and a [0], or "<CTRL> 0," otherwise known as an ASCII CR
and EOT.

The pointer file holds a list of addresses that show the start of each
message. Note that each pointer has to be a 16-bit, or two-byte,
address, since the message file can be many pages long. Each pointer
file is thus limited to 128 different message pointers, but you can have
as many pointer files in your program as you like.

As you might guess, it can be a real drag building and connecting
your files by hand. We will show you a fully automatic way to let your
assembler build and link files for you. It's all done with creative use of
labels.

To use the long file method, you first pick a pointer file. Then you
decide which message you want. Say it is message 2. Then you read
the pointer file to find the start of the message, say $441 F. Then you
reach into the message file, starting at $441 F, get a character, and then
output that character. You continue the process one character at a
time till the marker comes up. Then you quit.

The messages do not have to be in any special order, and you can
let several different pointers lead you to the same message. This gets
handy for prompts like "Please make another selection;" or "That's
not a letter, turkey!" defaults or error traps. You also can start at the
middle of another message, and read to the end. This trick can some
times save you space by using words over again.

File Based Printer 235

The tricky part is being able to read long messages that cross page
boundaries. To do this, you use the powerful 6502 indirect indexed
command. In this ripoff module, we will set aside a pair of page zero
address locations at $EB and $EC. When we decide to output a mes
sage, you reach into the pointer file and put the low half of the mes
sage starting address into $EB, and the high half of the message start
into $EC.

Then, you set your Y register to #00, and use the LDA($EB),Y
indexed indirect addressing instruction. What this command does is
go to the sum of the 16-bit address in $EB and $EC (the start of your
message) plus the Y register value (zero) to get the character to be
output.

After the first character, you have a choice. You could increment Y
to get to the next character, or else you could add one to the $EB,EC
pair. While adding one to Y seems faster and more attractive at first,
this will only let you have 256 characters in anyone message. So, we
will keep Y at zero, and increment the base address. To increment a
base address, you first increment the low byte at $EB. If you get a zero
result, you then also increment the high byte at $EC. This way, you
can continually work your way through most of the 64K address
space, without any worries about page boundaries or running out of
8-bit range.

Holding the Y register at zero during an indexed indirect load sim
ply "downgrades" the load command into a straight indirect load.
Incidentally, the new 65C02s have "pure" or "unindexed" indirect
commands that free up the Y register for other uses.

Confused? Here's a flowchart ...

236 Ripoff Module 1

FLPRINT FLOWCHART:

SAVE
REGISTERS

FIND MSG.
START

POINTER

GET
CHARACTER

OUTPUT
CHARACTER

INCREMENT
MSG. POINTER

(624E)

NO

(6254)

(6259)

(6266)

YES

(6268)

(626A)

(6260)

RESTORE
REGISTERS

(6276)

(627C)

Let's check into the actual code of the FLPRINT module, sitting at
$624B. This is the module that outputs the text messages for you, and
is what you will want to adapt to your own needs.

One good starting place to analyze any code is to find out where
variables are stashed. On FLPRINT, we set aside two page zero loca
tions at $EB and $EC to point to the start of our pointer file. These we
call PFP1 and PFP1 + 1. We set aside two more locations at $ED and
$EE to use as a running character pointer that works through the mes
sage file. These two are labeled MSP1 and MSP1 + 1.

We also provide a short stash at the end of the subroutine. Three
locations here are used for a temporary Y register save YSAV1, an X

File Based Printer 237

register save XSAVl and a total number-of-messages value at
MNUM1.

You enter this FLPRINT module with the message number in the
accumulator. You also must have pre-placed the pointer file starting
address in PFP1.

We first save the X and Y registers into temporary stashes at XSAVl
and YSAV1. Next, you run a range check of the message number
against the stash at MNUM1. A range check makes sure the message
is a legal one. This keeps you from outputting garbage or plowing up a
disk. We have used a MNUMl value of $10, good for 16 separate
messages.

If the message number is illegal, you restore the X and Y registers
and exit without doing anything else. In a "real" program, you would
error trap this and do something about it instead.

If the message number is valid, you double it with an ASL, since you
are after pairs of addresses in the pointer file, each of which takes up 2
bytes.

Then, you reach into the pointer file and get the low half of the
address and stash it at MSPl and then grab the high half and dump it
into MSPl + 1. We knew which pointer file to go to, since whatever
code that JSRed here put the pointer file starting address into PFPl
ahead of time.

At this point in the subroutine, we have placed an address into
MSPl and MSPl + 1 that points to the first character in the desired
message. Now, it's up to the service loop called NXTCHRl to handle
characters for us. NXTCH R 1 first grabs a character. If that character
was a double zero, the loop quits and exits via ENOl. This is how you
end a message.

Usually, though, the character that NXTCHRl grabs is not a double
zero, so NXTCHRl passes the character out to the Apple monitor sub
routine at COUT that sends the character to whatever is connected to
the output hooks.

Typically, the "hooked /I character may go through DOS, which
checks it for a [return] [0] header. If it doesn't look like something
DOS is interested in, DOS then passes the character somewhere else,
possibly to a printer card whose code may start at $ClDO. The printer
card will send the character to a printer, and, optionally, will pass it
on to the screen subroutine $FDFO at COUT1.

None of which matters to NXTCHR1, for once this loop outputs a
character to COUT, it couldn't care less what happens to the charac
ter. After the character is sent to wherever it is supposed to go, CaUl
returns control back to NXTCHRl via a RTS subroutine return.

NXTCHR1's next job is to move the message file character pointer
MSPl over to the next character. Since this pointer is 16 bits wide, the
low byte at MSPl is first incremented. Should we get a zero result,
indicating that a carry is needed to the high byte, we then increment
the high byte. This is a pretty much standard way of incrementing a
16-bit address pointer pair.

Following that, we jump back to the start of the NXTCHRl loop and
keep outputting characters till we hit the double zero.

Note the forced branch at NOC1. It pays to keep absolute jumps out
of any of your code modules, for absolute references make code
harder to relocate. The CLC and BCC commands together do an
unconditional relative branch for you that is easily relocatable.

238 Ripoff Module 1

After the double zero, we get out of the FLPRINT subroutine by
restoring the X and Y registers and doing the usual RTS back to who
ever it was that JSRed this module.

The DEM01 that starts at $6200 is a rather unexciting "exerciser"
that shows us how FLPRINT works. DEM01 first sets the total number
of messages to $03 and then finds out where the message pointer file
sits. It then stores the pointer file start in MSP1, for use by FLPRINT.

Then we clear the screen, do some tabbing, and go to the inverse
mode. Message #00 is called for, and gotten through FLPRINT. We
return to normal text for message #01. Note that message #02 is quite
long. It could, in fact, be any length you want, within the limits of
available memory.

After message #01, we ask for user input. Should we get an "E," we
exit the program. A "c" gives you a DOS catalog. This is done by
printing first a CR and then an EOT, or [0], followed by the CATALOG
string. If the CATALOG is long enough, extra prompts are needed for
each catalog page.

Should you enter anything but an "E" or a "C," the entire FLPRINT
module is rerun. This error trapping causes a brief flash on the screen,
which should be enough of an operator "hey turkey!" prompt for
most users.

In this example, we require a capital C or capital E. It is better prac
tice to allow for either uppercase or lowercase entries. You can do this
with a double test, or else by forcing lowercase characters into their
uppercase equivalents. This important detail should not be omitted on
the lie or for older uses where you expect mixed cases. You'll find a
case changer example in Ripoff Module 7.

Note that both the pointer file and the message file can be repeat
edly reloaded off the disk. Thus, there is no limit to using external or
calculated text strings as might be needed in a longer adventure.

Creating the Files

A good assembler will very much simplify setting up and creating
your own pointer and text files. The process of putting the file into
memory and properly linking it with everything else can be made fully
automatic, without any worries about absolute addresses.

It's labels to the rescue.
Let's look at the message file first. First and foremost, you put a label

at the beginning of each separate message. We have used M1.0
through M1.1S in the source code. If you have a label on your mes
sage, your assembler can find the message, regardless of where it ends
up in memory.

We stopped at sixteen messages only to save on source code length.
You can make things as long as you like, with up to 128 messages for
each message pointer file and as many message pointer files as you
want.

The ASC and DFB commands greatly simplify entering your mes
sages. We've done almost everything here in uppercase for compati
bility with older Apples, but most newer assemblers will let you use
full case for your messages. "New way" editing also lets you do low
ercase on most any assembler.

The ASC command tells the assembler to "convert what follows to
ASCII." High ASCII is normally used in the Apple, although you can

File Based Printer 239

change this if you want to. While each ASCII string can be any length,
it pays to keep each string under 32 characters or so. This makes for
neater assembly listings. You can tie as many strings together as you
need to get the total message.

A delimiter should start the ASCII text string. Use a quote for the
delimiter unless you really want to print a quote. Then use a slash
instead. An ending delimiter is not needed if there are no comments
on the string line. Usually there won't be room for comments anyway,
so this is no big deal. This is roughly similar to not needing the final
quote in an Applesloth PRINT statement. Trailing spaces are hard to
see without a final delimiter.

So much for alphanumerics. How do you handle control characters?
Obviously, you need a way to, say, imbed carriage returns. Yet if

you type a carriage return, the string command completes itself. How
do you get out of this bind?

Once again, it's labels to the rescue. Just as you can use a CHR$(13)
to fool a higher level language into outputting a carriage return, you
can trick an assembler into entering a carriage return into a file by
using a label.

I've chosen to use single letter labels for control commands. B for
backspace, C for carriage return, 0 for DOS, and X for the NULL or
double zero. Each letter must be pre-defined as a constant, such as a B
EQU $88 for a backspace. To enter control commands into your ASCII
text, simply use DFBs with as many control commands as you like.

For instance, a DFB C,X puts a carriage return and an end-of-text
marker into your message file. That wild DFB B,B,B,P,B,X sequence
uses backspaces to center a flashing user prompt inside a fancy screen
symbol. Incidentally, this may look different on a II and lie. You might
like to change it per the Apple in use.

Unfortunately, this was written before "new" EDASM became avail
able. Since "A," "X," and "Y" are disallowed labels in "new"
EDASM, you'll have to substitute something else for "X." Note that
the STR pseudo-op in "new" EDASM can eliminate any need for a
trailing NULL.

Summing up our message file, be sure to put a label on the start of
each message. Then enter your ASCII characters using the assembler's
ASC command. Don't forget the delimiter at the front and don't let the
individual ASC strings get too long. Enter any control characters you
want to imbed with DFB commands. On a typical message, you will
alternate ASC and DFB commands. Use ASC for the letters and DFB
for the carriage returns and end markers.

The pointer file will usually be much shorter than the message file.
The pointer file holds the starting address of each message, so that
FLPRINT knows where to go to start outputting characters.

To automate the construction of a pointer file, just use labels for
each pointer entry. For instance, we call the pointer to the sixth mes
sage PFS (don't forget that zero!). Our pointer source code under label
PFS tells us to OW M1.S, or to "go to wherever the message labeled
M1.S happens to be, find its present absolute address, and put that
address pair back here."

Which is an awful lot of work for the assembly program. But that's
its job and is one of the many reasons why we use an assembler in the
first place-to automate most of the dogwork involved in writing
machine language programs.

240 Ripoff Module 1

MIND BENDERS

-Show how FLPRINT can be
simplified if you only have one
pointer file in your program.

-FLPRINT works fine when called
from within another program, but
there's a slight bug when used
directly from the monitor or
Applesoft. What is the bug? What
causes it? How can you prevent it?

-How can you design a program that
outputs lowercase only to those
machines that can use it?

-Can FLPRINT be used with
changing messages? How?

-Show ways to use FLPRINT with
several different pointer files.

-Rewrite this module to use "new"
EDASM's string command STR,
which includes a message count
byte. What are the advantages of
this new method?

File Based Printer 241

PROGRAM RM-1
FILE BASED PRINTER

NEXT OBJECT FILE NAME IS FLPRINT
6200: 3 ORG $6200 PUT MODULE '1 AT $6200

6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:
6200:

6200:

6200:
6200:
6200:
6200:
6200:
6200:

6200:

6200:
6200:
6200:
6200:
6200:
6200:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31
32

34

36
37
38
39
40
41

* * * -< FLPRINT MODULE >- *
*
*
*
*
*
*

(FILE BASED STRING PRINTER)

VERSION 1.0 ($6200-$642A)

6-15-83

*
*
*
*
*
*

* *
*
*
*
*
*
*
*
*

COPYRIGHT C 1983 BY

DON LANCASTER AND SYNERGETICS
BOX 1300, THATCHER AZ., 85552

ALL COMMERCIAL RIGHTS RESERVED

*
*
*
*
*
*
*
* ***

*** WHAT IT DOES ***

THIS MODULE OUTPUTS TEXT STRINGS OR DOS COMMANDS
TO THE APPLE II'S OUTPUT HOOKS, USING STRINGS
THAT ARE COLLECTED TOGETHER IN A COMMON FILE.

*** HOW TO USE IT ***

YOUR CALLING CODE SHOULD HAVE PREVIOUSLY STORED
A MESSAGE POINTER FILE ADDRESS IN PFPl (LOW) AND
PFP1+l (HIGH). ONE OF 128 POSSIBL~ RESPONSES
ARE SELECTED BY LOADING THE ACCUMULATOR WITH A
MESSAGE NUMBER AND THEN DOING A JSR TO FLPRINT.

242 Ripoff Module 1

PROGRAM RM-1, CONT'O •

6200: 44

6200: 46
6200: 47
6200: 48
6200: 49
6200: 50
6200: 51

6200: 53

6200: 55
6200: 56
6200: 57
6200: 58
6200: 59
6200: 60

6200: 62

6200: 64
6200: 65
6200: 66
6200: 67
6200: 68
6200: 69

*** GOTCHAS ***

THIS METHOD IS BEST USED FOR LONG MESSAGES THAT MIGHT
NEED CALCULATED VALUES OR DISK-BASED CHANGES.

MESSAGES CAN BE ANY LENGTH, BUT MORE THAN 128 DIFFERENT
MESSAGES WILL NEED SEPARATE MSP1 ADDRESS BASES. EACH
MESSAGE MUST END IN A $00 MARKER.

*** ENHANCEMENTS ***

DOS COMMANDS ARE OUTPUT BY STARTING THE STRING
WITH A CARRIAGE RETURN AND <CTRL> D.

TO GO DIRECTLY TO THE SCREEN, USE COUT1 RATHER THAN COUTo
THIS IS FASTER, BUT CANNOT CONTROL DOS OR BE PRINTED.

*** RANDOM COMMENTS ***

TO RUN THE DEMO, USE $6200G OR CALL 25088.

THE X AND Y REGISTERS ARE PRESERVED1 A IS DESTROYED.

File Based Printer 243

PROGRAM RM-1, CONT'D.

6200~ 72 *** HOOKS ***

FDED: 74 COUT EQU $FDED OUTPUT CHARACTER VIA HOOKS
FC58: 75 HOME EQU $FC58 CLEAR SCREEN
FB2F: 76 INIT EOU $FB2F INITIALIZE TEXT SCREEN
COlO: 77 KBDSTR EOU $C010 KEYBOARD RESET
F94A: 78 PRBL2 EOtl $F94A PRINT X BLANKS
FDOC: 79 RDKEY EOU $FDOC GET INPUT CHARACTER
FE80: 80 SETINV EOU $FE80 SET INVERSE SCREEN
FE84: 81 SETNORM EOU $FE84 SET NORMAL SCREEN

OOED: 83 MSPl EOU $ED MESSAGE FILE CHARACTER POINTER
OOEB: 84 PFPl EOU $EB POINTER FILE STARTING ADDRESS

6200: 86 *** TEXTFILE COMMANDS ***

0088: 88 B EOU $88 BACKSPACE
0080: 89 C EOU $80 CARRIAGE RETURN
0084: 90 0 EOU $84 DOS ATTENTION
0060: 91 P EOU $60 FLASHING PROMPT
0000: 92 X EOU $00 END OF MESSAGE

244 Ripoff Module 1

PROGRAM RM-1, CONT'D •

6200: 95 *** DEMO ***
6200: 96

6200: 98 THE DEMO USES THE FLPRINT MODULE TO OUTPUT
6200: 99 SCREEN MESSAGES AND A DOS CATALOG COMMAND.
6200: 100

6200:A9 03 102 DEMO 1 LDA '$03 THREE MESSAGES TOTAL
6202:8D 7D 62 103 STA MNUM1 SAVE FOR CHECK
6205:A9 80 104 LDA '>PFO SAVE MESSAGE POINTER LOW
6207:85 EB 105 STA PFP1
6209:A9 62 106 LOA '<PFO SAVE MESSAGE POINTER HIGH
620B:85 EC 107 STA PFP1+l

620D:20 2F FB 109 JSR INIT GO TO TEXT MODE
6210:20 58 FC 110 JSR HOME CLEAR SCREEN
6213:A2 08 III LOX '$08 PRINT BLANKS VIA MONITOR
6215:20 4A F9 112 JSR PRBL2

6218: 20 80 FE 114 JSR SETINV INVERSE TEXT FOR TITLE
621B:A9 00 115 LOA '00 MESSAGE to
6210:20 4E 62 116 JSR FLPRINT PRINT MESSAGE

6220:20 84 FE 118 JSR SETNORM NORMAL TEXT
6223:A9 01 119 LDA '$01 MESSAGE II
6225:20 4E 62 120 JSR FLPRINT PRINT MESSAGE

6228:2C 10 CO 122 BIT KBDSTR RESET KEYBOARD
622B:20 OC FO- 123 JSR RDKEY GET KEY
622E:C9 C5 124 CMP '$C5 AN "E" FOR EXIT?
6230:FO 15 125 BEQ EXIT1 YES, EXIT
6232:C9 C3 126 CMP '$C3 A "C" FOR CATALOG?
6234:00 CA 127 BNE DEM01 TRY AGAIN FOR VALID KEY

6236:20 58 FC 129 JSR HOME CLEAR SCREE~, THEN
6239:A9 02 130 LOA 1$02 DO CATALOG
623B:20 4E 62 131 JSR FLPRINT
623E:2C 10 CO 132 BIT KBDSTR HOLD CATALOG
6241:20 OC FD 133 JSR RDKEY TILL KEYPRESS

6244:18 135 CLC BRANCH ALWAYS
6245:90 B9 136 BCC DEMO 1 AND TRY AGAIN

6247:20 58 FC 138 EXIT1 JSR HOME EXIT DEMO
624A:2C 10 CO 139 BIT KBDSTR RESET KEYBOARD
624D:60 140 RTS

PROGRAM RM-1, CONT'D.

624E:
624E:
624E:

624E:
624E:
624E:
624E:
624F:
624E:

624E:8C
625l:8E

6254:CD
6257:BO
6259:0A
625A:A8
625B:Bl
625D:85
625F:C8
6260:Bl
6262~85
6264:AO
6266:Bl
6268:FO
626A:20

626D:E6
626F:DO
6271:E6
6273:18
6274:90

6276:AE
6279:AC
627C:60

627D:

627D:I0
627E:00
627F:00

7F
7E

7D
ID

EB
ED

EB
EE
00
ED
OC
ED

ED
02
EE

FO

7E
7F

62
62

62

FD

62
62

143
144
145 J

147
148
149
150
151
152

154 FLPRINT
155

157
158
159
160
16l
162
163
164
165
166
167 NXTCURl
168
169

171
172
173
174 NOCl
175

171 END1
178
179

181

184 MNUMl
185 XSAVl
186 YSAVl

File Based Printer 245

*** FLPRINT MODULE ***

THIS MODULE USES THE ACCUMULATOR VALUE TO
FIND A POINTER TO THE 'rEXT STRING. IT THEN
OUTPUTS ONE CHARACTER AT A TIME TILL THE $00
END-OF-MESSAGE MARKER IS FOUND.

STY YSAVl SAVE REGISTERS
STX XSAVl

CMP MNUMl A LEGAL MESSAGE NUMBER?
BCS ENDl DON'T PRINT IF ILLEGAL
ASL A DOUBLE POINTER FOR ADDRESS PAIR
TAY
LDA (PFP1) , Y GET LOW POINTER
STA MSPl AND SAVE
INY
LDA (PFP1) , Y GET HIGH POINTER
STA MSPl+l AND SAVE
LDY 1$00 NO INDEXING
LDA (MSP1) , Y GET CHARACTER
BEQ ENDl EXIT ON $00 MARKER
JSR COUT PRINT CHARACTER

INC MSPl CALCULATE NEXT CHARACTER LOCATION
BNE NOCl IF A CARRY, THEN
INC MSP1+l INCREMENT HIGH ADDRESS LOCATION
CLC BRANCH ALWAYS TO
BCC NXTCHRl GET NEXT CHARACTER

LDX XSAVl RESTORE REGISTERS
LDY YSAVl
RTS AND EXI~

*** STASH ***

DFB $10
DFD $00
DFB $00

NUMBER OF MESSAGES IN FILE
X-REGISTER SAVE
Y-REGISTER SAVE

246 Ripoff Module 1

PROGRAM RM-1, CONT'D .

6280: 189 *** POINTER FILE ***

62S0:AD 62 191 PFO ow MI.O POINTER FILE
62S2:B6 62 192 PF1 ow MI.1
6284~FA 63 193 PF2 OW MI.2
62S6:05 64 194 PF3 OW MI.3
62S8:0S 64 195 PF4 OW MI.4
62SA:OB 64 196 PF5 OW MI.5
62SC:OE 64 197 PF6 OW MI.6
62SE:1l 64 19S PF7 OW MI.7
6290~14 6·1 199 PFS OW MI.S
6292:17 64 200 PF9 OW MI.9
6294:1A 64 201 PF10 OW MI.10
6296:10 64 202 PFll OW MI.11
629S~20 64 203 PF12 OW MI.12
629A:23 b4 204 PF13 OW MI.13
629C:26 64 205 PF14 OW MI.14
629E:29 64 206 PF15 OW MI.15

62AO: 20S *** MESSAGE FILE ***

62AD:CO C5 03 210 MI.O ASC "MESSAGE FILE METHOO"
62A3:03 Cl C7
62A6:C5 AD C6
62A9:C9 CC C5
62AC:AO CO C5
62AF:04 CS CF
62B2:C4
62B3:S0 SO 00 211 OFB C,C,X

62B6:07 C9 04 213 MI.1 ASC "WITH THIS METHOO, ALL OF THE MESSAGES
62B9:CS AD 04
62BC:CS C9 03
62BF:AD CO C5
62C2:04 CS CF
62C5:C4 AC AO
62CS:AO C1 CC
62CB:CC AO CF
62CE:C6 AO 04
6201:CS C5 AO
6204:CO C5 03
6207:03 C1 C7
620A:C5 03 AO
6200:S0 214 OFB C

File Based Printer 247

PROGRAM RM-1, CONT'D.

620E:C1 02 C5 217 ASC RARE COMBINEO INTO A COMMON TEXT FILE
62E1:AO C3 CF
62E4:CO C2 C9
62E7:CE C5 C4
62EA:AO C9 CE
62EO:04 CF AO
62FO:C1 AO C3
62F3:CF CO CO
62F6:CF CE AO
62F9:04 C5 08
62FC:04 AO C6
62FF:C9 CC C5
6302:AE
6303:80 80 218 OFB C,C

6305:C1 AO 00 220 ASC RA POINTER FILE IS USED TO DECIOE WHICH
6308:CF C9 CE
630B:04 C5 02
630E:AO C6 C9
6311:CC C5 AO
6314:C9 03 AO
6317:05 03 C5
631A:C4 AO 04
6310:CF AO C4
6320:C5 C3 C9
6323:C4 C5 AO
6326:07 CB C9
6329:C3 C8 AO
632C:80 221 OFB C

6320:CO C5 03 223 ASC nMESSAGE IS TO BE OUTPUT.
6330:03 C1 C7
6333:C5 AD C9
6336:03 AO 04
6339:CF AO C2
633C:C5 AO CF
633F:05 04 00
6342:05 04 AE
6345:80 80 224 OFB C,C

6347:05 03 C5 226 ASC RUSES INCLUDE TEXT OATA BASES ANO OTHER
634A:03 AO C9
6340:CE C3 CC
6350:05 C4 C5
6353:AO 04 C5
6356:08 04 AO
6359:C4 C1 04
635C:C1 AO C2
635F:C1 03 C5
6362:03 AO C1
6365:CE C4 AO
6368:CF 04 C8
636B:C5 02
6360:80 227 OFB C

248 Ripoff Module 1

PROGRAM RM-1, CONT'O.

636E:00 CC Cl 230 ASC ·PLACES WHERE LOTS OF CHANGING MESSAGE
6371:C3 CS 03
6374:AD 07 C8
6377:CS 02 CS
637A:AO CC CF
6370:04 03 AD
6380:CF C6 AO
6383:C3 C8 Cl
6386:CE C7 C9
6389:CE C7 AD
638C:CO CS 03
638F:03 Cl C7
6392:CS 03
6394:80 231 OFB C

639S:Cl 02 CS 233 ASC "ARE TO BE PRINTEO OR OISPLAYEO.
6398:AD 04 CF
639B:AD C2 CS
639E:AD 00 02
63A1:C9 CE 04
63A4:CS C4 AD
63A7=CF 02 AD
63AA:C4 C9 03
63AO:00 CC C1
63BO:09 CS C4
63B3:AE
63B4:80 80 80 234 OFB C,C,C,C
63B7:80
63B8:04 09 00 235 ASC /TYPE "C" FOR CATALOG, OR "E" FOR EXIT
63BB:CS AD A2
63BE:C3 A2 AD
63C1:C6 CF 02
63C4:AD C3 Cl
63C7:04 C1 CC
63CA:CF C7 AC
63CO:AD CF 02
630D:AD A2 C5
6303:A2 AO C6
6306:CF 02 AD
6309:CS 08 C9
630C:04 AE
630E:80 80 80 236 OFB C,C,C,C
63E1:80
63E2:AO AD AO 237 ASC " -< >-"
63E5:AD AO AO
63E8:AO AO AO
63EB:AO AO AO
63EE:AO AO BC
63F1 AD BE AD
63F4 88 88 88 238
63F7 60 88 00

OFB B,B,B,P,B,X

File Based Printer 249

PROGRAM RM-1, CONT'O ..

63FA:80 84 241 MI.~ OFB C,O
63FC:C3 Cl 04 242 ASC "CATALOG"
63FF:C1 CC CF
6402:C7
6403:80 00 243 OFB C,X

6405:AO 245 MI.3 ASC II "

6406:80 00 246 OFB C,X

6408:AO 248 MI.4 ASC n II

6409:80 00 249 OFB C,X

640B:AO 251 MI. 5 ASC " II

640C:80 00 252 OFB C,X

640F.:AO 254 MI.6 ASC " "
640F:80 00 255 OFB C,X

6411:AO 257 MI.7 ASC n "

6412:80 00 258 OFB C,X

6414:1.0 260 MI.8 ASC " "
6415: 80 00 261 OFB C,X

6417:AO 263 MI. 9 ASC n II

6418: 80 00 264 OFB C,X

641A:AO 266 MI.IO ASC " II

641B:80 00 267 OFB C,X

6410:AO 269 MI.ll ASC n "

641E:80 00 270 OFB C,X

6420:AO 272 MI.12 ASC n "

6421:80 00 273 OFB C,X

6423:AO 275 MI.13 ASC n "

6424:80 00 276 OFB C,X

6426:AO 278 MI.14 ASC n "

6427:80 00 279 OFB C,X

6429:AO 281 MI.15 ASC " n

642A:80 00 282 OFB C,X

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I
IMBEDDED STRING PRINTER

a powerful and very sneaky
way of mixing and matching
text messages

I

I guess I've always been attracted to elegant simplicity, particularly
when it is combined with sneakiness. The file based text printer of
Ripoff Module 1 is a classic and standard old warhorse that's cumber
some, restrictive, and hard to use. It obviously doesn't qualify. What
can we do that is better?

Why do we need a text message file at all? Why not, instead, simply
imbed the text messages directly into the source code when and
where they are needed? This way, you can have any number of short
and fixed messages anywhere in your program, and you can mix and
match modules from all over the lot without any worries at all about
creating a big master text file and bunches of pointers to work with it.

The usual excuse for not imbedding text into source code is that the
6502 tends to get violently ill when you feed it ASCII text instead of
machine language commands. The trick is to find some elegantly sim
ple way to keep the imbedded messages out of the cpu. The way is
called the imbedded text method.

With the imbedded text method, you simply insert ASCII text or
DOS strings into your source code when and as you need them.
Immediately before the strings, you do a jump to a very special sub
routine that will grab all the ASCII stuff for its own use, and then let

251

252 Ripoff Module 2

the 6502 pick up the machine language commands that follow the
message.

Like so ..

HOW TO IMBED TEXT INTO SOURCE CODE:

l.DAIt$Ol STA$I701 JSR$6B66 M E S SAG E NUl. l.OAlt7C JMP
'--___ -----''''' 'I...' __ .-__

"REGULAR" OPCODES GO A JSR TO A
BEFOIlE MESSAGE SPECIAl. "IMPRINT"

SUBROUTINE

.. THE IMPRINT SUBROUTINE AUTOMATICAl.l.'I
OUTPUTS THE TEXT MESSAGE AND THEN
"SKIPS OVER" TO THE NEXT l.EGAl.
INSTRUCTION WHEN FINISHED ...

THE IMBEDDED
TEXT

"REGUl.AR"OPCODES
FOLLOW MESSAGE

... ONl.'I ONE IMPRINT SUBROUTINE
IS NEEDED TO HANDl.E AN'I AND
Al.l. FIXED MESSAGES AN'IWHERE
IN THE ENTIRE SOURCE CODE.

You will need only one imbedded printing subroutine. This can go
anywhere in your program. That sub is called IMPRINT. Any and all
program modules can use this lone IMPRINT subroutine any time they
want to output a fixed text message. While most of these messages
will usually be short, there is essentially no limit, except for memory
space, as to how long your messages are, how many messages you
use, or how you mix and match them

And all this without any pointers or master text files.
IMPRINT works by first finding out who called it. It does this by

looking into the stack to find the intended subroutine return address.
Not only does IMPRINT find the return address, but it steals it off the
stack and uses that address as a string pointer. It then increments the
return address ASCII character by ASCII character, until the message is
finished. Finally, IMPRINT forces a subroutine return that goes beyond
the imbedded text and picks up on the next mainstream machine lan
guage command.

What is elegant and sneaky about the whole thing is that IMPRINT is
not really a subroutine at all! IMPRINT is a "mainline" code module
that "plugs itself" into high level code when and where it is called. It
does this by messing with the stack. First, it pulls the return address off
the stack, converting itself into mainline code. When finished output
ting text, IMPRINT pushes the return-to-the-next-machine-Ianguage
address onto the stack and then does a quick RTS, which is nothing
but a forced jump.

Sounds hairy.
And it is. But the code is very short and simple. It's also very easy to

use once you understand it. And, as further elegance, IMPRINT does
not hurt any working registers at all.

Here's a flowchart of IMPRINT.

IMPrlolNT FLOWCHArloT:

SAVE
REGISTERS

GET & SAVE
TEXT

POINTER

INCREMENT
POINTER

GET
CHARACTER

OUTPUT
CHARACTER

(6668)

(6674)

(667C)

(6682)

YES

(6684)

(6689)

Imbedded String Printer 253

RESTORE
POINTER

RESTORE
REGISTERS

(668F)

(6695)

IMPRINT sits at $666B right now, but it is easily put any place you
want.

As before, to understand a machine language module, find out what
variables are stashed where. Two slots on page zero are set aside as a
pointer to the character being output. These are called STRP2 and
STRP2 + 1 and are located at $EB and $EC. Three absolute slots are
used to save the registers, and are called ASAV2, XSAV2, and YSAV2,
and appear as a short stash that follows IMPRINT.

An aside or two. A pair of mnemonics involved in a 16-bit word can
be spelled out either as STRP2L and STRP2H, or as STRP2 and
STRP2+1. The Hand L stand for high and low. The standard way is to

254 Ripoff Module 2

use high and low, but you save on code and EQUs by using the arith
metic addition feature of your assembler. Do an EQU on STRP2, and
your STRP2+1 rides along free.

By the way, the 2 tag just stands for module 2. This way, you can
combine the ripoff modules anyway you like without worrying about
duplicate label errors for common names.

Secondly, there are many different ways to temporarily save your
accumulator and X- and V-registers. It is usually a good idea to save all
working registers during a subroutine or service module, so you keep
any surprises out of the calling code. We have used absolute stores,
since they are the safest and surest way of stashing things without
memory conflicts. Absolute stores can take more bytes, can be slower,
and are a somewhat harder to relocate than other storage methods.
Page zero stores are faster, but you tie up precious and possibly con
flicting real estate when you try this. The stack is another obvious
stash, but its use gets messy fast, particularly on code like IMPRINT
that purposely messes with the stack.

The absolute worst place to save working registers is in the monitor
register saving subroutines IOSAVE and IOREST ..

Don't EVER use the monitor routines
IOSAVE and IOREST!

Sooner or later, they are bound to create
problems.

What happens is that some module will use IOSAVE for its register
saves and then may JSR to some other module that also tries to use
IOSAVE for its own use. The first save gets overwritten by the second,
and the final IOREST does a self-destruct, rather than a restore.

Let's see. Where were we? Back to IMPRINT. We first save our regis
ters to the three absolute locations ASAV2, XSAV2, and VSAV2, and
stash these at the end of the module.

The subroutine return address in the 6502's stack pointer takes two
bytes. The low address is the first one you get back. The high address is
the second byte you get back. That address points to one less than
where you end up ...

6502 SUBROUTINE STACK RULES

Two bytes on a stack are used to save
a subroutine return address.

The FIRST byte you get back holds the
return address POSITION byte.

The SECOND byte you get back holds
the return address PAGE byte.

The RTS command returns you to the
return address PLUS ONE.

So, we grab the top of the stack and store it as the low address half

Imbedded String Printer 255

at sTRP2. Then we grab the top of the stack again, and this time store
it as the high address half at sTRP2+ 1.

But, note at this time that this "return" address is pointing to one
less than our first ASCII character, rather than to a "safe" 6502 return
point. Note also that we are no longer in a subroutine. Why? Because
the calling code pushed two things onto the stack, and the using code
pulled two things back off of the stack. We are thus once again back
in high level code!

To get our string pointer sTRP2 pointing to our first ASCII character,
we simply increment the pair in the usual way. Do this by increment
ing sTRP2, and then, if you get a zero result, take care of the overflow
by incrementing sTRP2+ 1. Since we know we will have to increment
to get between characters, we'll arrange things so we only need one
increment command, at the head of the loop called NXTCHH2.

Your ASCII or DOS text string gets entered into your calling source
code, and should end with some marker. We will use the ASCII dou
ble zero NULL command here, since it is simplest.

At this time, we grab the character from the string using the indirect
indexed loading that lets us reach any point in the 16-bit address
space without any page boundary worries. As before, we have forced
the Y-register to $00, to downgrade the indirect indexed command
into a "pure" indirect load.

Having gotten the character, we can test it for a double zero. If we
get the double zero, we go on to the exit routine at EN02. If not, we
output the character to COUT or to Fideyfoo, or wherever.

Next, we have included a JsR to an immediate return that we call
HOOK2. This has no present use, but it lets you grab IMPRINT for
special effects such as character delay, sound, printing in a weird
screen direction, or whatever. To use it, just let the subroutine lead
you to your special effects module.

After this unused hook, a relative forced branch that fakes an
unconditional jump gets us back to NXTCHR2 and completes the
loop.

Processing continues one character at a time until we get to the
double zero. Then we branch down to the EN02 routine.

At this time, the sTRP2 pointer is pointing to the double zero of the
last character, which is one less than the address of the continuing
machine language code in the mainstream. On a subroutine return,
the RTs command always goes to one more than the return address.
So, STRP2 equals the correct subroutine return address when it is
pointing to the end-of-text marker.

All the remains is to get back to the mainstream code. We might be
tempted to try using the jump indirect instruction, but this one has a
deadly bug that will nail you one time out of 128 ...

The JMP indirect command has a deadly
bug in it that misses page boundary
crossings.

DON'T USE IT!

The newer 65C02's have fixed this bug, but they are not yet in wide
use at this writing.

256 Ripoff Module 2

We will return to the main code by the exact opposite way we got
into IMPRINT. First we shove the high half of the return address minus
one, or STRP2+ 1 onto the stack, and then we shove the low half of
the return address minus one, or STRP2, onto the stack. Miraculously,
we are now back into a subroutine. To exit, you simply do aRTS.

On the subroutine return, you return to your mainstream code,
exactly on the first valid instruction following your text message. Very
nicely, all the text went out by way of IMPRINT, and the 6502 is ready
to continue on the first valid instruction that follows the message.

Note carefully what happened. We go merrily along doing the usual
op codes in the usual way. Then we jSR to some very special code
that reads and then outputs everything that follows as text. This con
tinues until an end marker. Then, the special code automatically
"skips over" the text part, letting you pick back up on the conven
tional op codes that follow.

At no time does the 6502 see anything but legal op codes. While
there is a big "hole" in your source code that holds text, this part of
your source code never gets to the CPU. Nifty.

A Demo

To use IMPRINT, just load it into a known location in your Apple. In
any module where you want to output a text message, insert a jSR
IMPRINT, followed by the message, followed by a double zero
marker. Then pick up your continuing code, just like you normally
would.

DEM02 shows us how it's done. We first initialize to the text mode,
clear the screen, do a tab to center a title, and then switch to inverse.
Next, our first message is put down by jSRing to IMPRINT, followed
by the "Imbedded String Method" title. We then go back to normal
text for a few lines, followed by an inverse "jSR," and more normal
text. The messages can be combined end on end as shown. This lets
you have long messages that will still print neatly on your source code
listing. Once again, the assembler enters the character strings with an
ASC command, and enters control commands and end markers using
DFBs.

Lines 155 and 156 show how to put a prompt into a fancy cue box.
You might want to modify this slightly for best lie results.

As with the file printer, a DOS command is done by starting with a
CR and EOT, or [D] followed by a legal DOS instruction. The user can
pick an "E" for exit or a "C" for catalog to demonstrate DOS access.
Any other key reprints the message, giving a subtle, obvious, and
non-obnoxious cue to the user that he is not paying attention.

The imbedded string method is far better than the file based text
printer and the previous ripoff module, particularly when lots of fixed
and fairly short messages are spread out in a mix-and-match fashion
from program module to module.

Elegant simplicity.

Imbedded String Printer 257

MIND BENDERS

-Show how the IMPRINT method
can be used with changing,
calculated, or disk-based text.

-What else can you do with the
concept of a JSR, followed by
parameters or values needed by that
sub, imbedded in mainstream code?

-Are there any advantages to using
BRK to call IMPRINT? How would
you do this? What are the
Ii m itations?

-Show how "new" EDASM's byte
counting LST pseudo-op can
improve this module.

-How can you link an assembler
with a word processor so that long
text messages can be easily edited
and entered into source code?

-Under what circumstances would
you NOT want to use IMPRINT?

258 Ripoff Module 2

PROGRAM RM-2
IMBEDDED STRING PRINTER

NEXT OBJECT FILE NAME IS IMPRINT
6500: 3 ORG $6500 PUT MODULE '2 AT $6500

6500: 5
6500: 6
6500: 7
6500: 8
6500: 9
6500: 10
6500: 11
6500: 12
6500: 13
6500: 14
6500: 15
6500: 16
6500: 17
6500: 18
6500: 19
6500: 20
6500: 21
6500: 22
6500: 23

6500: 25

6500: 27
6500: 28
6500: 29
6500: 30
6500: 31
6500: 32

6500: 34

6500: 36
6500: 37
6500: 38
6500: 39
6500: 40
6500: 41

* *
* -< IMPRINT MODULE >- *
* *
* (IMBEDDED STRING PRINTER) *
* *
* VERSION 1.0 ($6500-$66A1) *
* *
* 6-15-83 *
* .•...••...•.•.•.•..••..•.•...•••.••.•.• *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE OUTPUTS TEXT STRINGS OR DOS COMMANDS
TO THE APPLE II'S OUTPUT HOOKS, USING STRINGS
THAT ARE DIRECTLY IMBEDDED IN THE SOURCE CODE.

*** HOW TO USE IT ***

YOUR CALLING CODE SHOULD HAVE A JSR TO IMPRINT.
THIS JSR SHOULD BE IMMEDIATELY FOLLOWED BY AN ASCII
STRING ENDING WITH AN $00 MARKER.

PROGRAM RM-2, CONT'O.

6500:

6500:
6500:
6500:
6500:
6500:
6500:

6500:

6500:
6500:
6500:
6500:
6500:
6500:

6500:

6500:
6500:
6500:
6500;'
6500:
6500:

44

46
47
48
49
50
51

53

55
56
57
58
59
60

62

64
65
66
67
68
69

J

Imbedded String Printer 259

*** GOTCHAS ***

THIS METHOD IS BEST USED FOR SHORT, UNRELATED MESSAGES
INTERNAL TO YOUR PROGRAM.

MESSAGES CAN BE ANY LENGTH, BUT MORE THAN 40 CHARACTERS
WILL NOT PRINT CLEANLY ON THE ASSEMBLY LISTING.

*** ENHANCEMENTS ***

DOS COMMANDS ARE OUTPUT BY STARTING THE STRING
WITH A CARRIAGE RETURN AND <CTRL> D.

TO GO DIRECTLY TO THE SCREEN, USE COUT1 RATHER THAN COUTo
THIS IS FASTER, BUT CANNOT CONTROL DOS OR BE PRINTED.

*** RANDOM COMMENTS ***

TO RUN THE DEMO, USE $6500G OR CALL 25856.

260 Ripoff Module 2

PROGRAM RM-2, CONT'O.

6500: 72 ..1t' HOOKS •••

FDED: 74 COUT EOU $FDED OUTPUT CHARACTER VIA HOOKS
FC58: 75 HOME EOU $FC5B CLEAR SCREEN
COlO: 76 KBDSTR EOU $C010 KEYBOARD RESET
FB2F: 77 INIT EOU $FB2F INITIALIZE TEXT SCREEN
FDIB: 78 KEYIN EOU $FD1B READ KEYBOARD
F94A: 79 PRBL2 EOU $F94A PRINT X BLANKS
FE80: 80 SETINV EOU $FE80 SET INVERSE SCREEN
FE84: 81 SETNORM EOU $FEB4 SET NORMAL SCREEN
FCA8: 82 WAIT EOU $ FCA8 TIME DELAY SET BY ACCUMULATOR

OOEB: 84 STRP2 EOU $EB POINTER TO ASCII STRING

6500: 86 •• * TEXTFILE COMMANDS •••

0088: 88 B EOU $88 BACKSPACE
008D: 89 C EOU $8D CARRIAGE RETURN
0084: 90 D EOU $84 DOS ATTENTION
008A: 91 L EOU $8A LINEFEED
0060: 92 P EOU $60 FLASHING PROMPT
0000: 93 X EOU $00 END OF MESSAGE

Imbedded String Printer 261

PROGRAM RM-2, CONT'D.

6500: 96 *** DEMO ***
6500: 97
6500: 98

6500: 100 THE DEMO USES THE IMPRINT MODULE TO OUTPUT
6500: 101 SCREEN MESSAGES AND A DOS CATALOG COMMAND.
6500: 102
6500: 103
6500: 104
6500: 105

6500:20 2F FB 107 DEMO 2 JSR INIT GO TO TEXT MODE
6503:20 58 FC 108 JSR HOME CLEAR SCREEN
6506:A2 07 109 LDX t07 ADD BLANKS TO START
6508:20 4A F9 110 JSR PRBL2
650B:20 80 FE 111 JSR SETINV INVERSE HEADER
650E:20 6B 66 112 JSR IMPRINT PUT DOWN HEADER

6511:8A SA 8A 114 DFB L,L,L
6514:C9 CD C2 115 ASC "IMBEDDED STRING METHOD"
6517:C5 C4 C4
651A:C5 C4 AO
651D:D3 D4 D2
6520:C9 CE C7
6523:AO CD C5
6526:D4 C8 CF
6529:C4
652A:8D 8D 00 116 DFB C,C,X

652D:20 84 FE 118 JSR SETNORM ; NORMAL TEXT
6530:20 6B 66 119 JSR IMPRINT 7 TOP TEXT LINE

6533:D7 C9 D4 121 ASC "WITH THIS METHOD, EACH MESSAGE STRING
6536:C8 AO D4
6539:C8 C9 D3
653C:AO CD C5
653F:D4 C8 CF
6542:C4 AC AO
6545:C5 C1 C3
6548:C8 AO CD
654B:C5 D3 D3
654E:C1 C7 C5
6551:AO D3 D4
6554:D2 C9 CE
6557:C7 AO
6559:8D 122 DFB C

262 Ripoff Module 2

PROGRAM RM-2, CONT'O.

655A:C6 CF CC 125 ASC - FOLLOWS ITS OWN
655D:CC CF 07
6560:D3 AO C9
6563:D4 03 AO
6566:CF 07 CE
6569:AO
656A:00 126 DFB X

656B:20 80 FE 128 JSR SETINV J INVERSE TEXT
656E:20 6B 66 129 JSR IMPRINT

6571:CA 03 D2 131 ASC -JSR"
6574:00 132 DFB X

6575:20 84 FE 134 JSR SETNORM RETURN TO NORMAL TEXT
6578:20 6B 66 135 JSR IMPRINT AFTER JSR

657E:AO C3 C1 137 ASC - CALL, IMBEDDED IN
657E:CC CC AC
6581:AO C9 CD
6584:C2 C5 C4
6587:C4 C5 C4
658A:AO C9 CE
658D:8D 138 DFB C

658E:C9 04 D3 140 ASC "ITS OWN SOURCE CODE. "
6591:AO CF D7
6594:CE AO D3
6597:CF D5 D2
659A:C3 C5 AO
659D:C3 CF C4
65AO:C5 AE AO
65A3:AO

65A4:CE CF AO 142 ASC "NO POINTERS AND
65A7:DO CF C9
65AA:CE D4 C5
65AD:D2 D3 AO
65BO:C1 CE C4
6583:8D 143 DFB C

6584:CE CF AO 145 ASC "NO MASTER FILE ARE NEEDED.
6587:CD C1 D3
658A:D4 C5 D2
65BD:AO C6 C9
65CO:CC C5 AO
65C3:C1 02 C5
65C6:AO CE C5
6SC9:CS C4 CS
65CC:C4 AE
65CE:8D 8D 146 DFB C,C

Imbedded String Printer 263

PROGRAM RM-2, CONT'D.

65DO:C2 C5 D3 149 ASC "BEST USE IS FOR FIXED, SHORT MESSAGES.
65D3:D4 AO D5
65D6:D3 C5 AO
65D9:C9 D3 AO
65DC:C6 CF D2
65DF:AO C6 C9
65E2:D8 C5 C4
65E5:AC AO D3
65E8:CR C!' D2
65EB:D4 AO CD
65EE:C5 D3 D3
65F1:C1 C7 C5
65F4:D3 AE
65F6:8D 80 150 DFB C,C

65F8:D4 D9 DO 152 ASC /TYPE "C" FOR CATALOG, OR "E" FOR EXIT.
65FB:C5 AO A2
65FE:C3 A2 AO
6601:C6 CF D2
6604:AO C3 C1
6607:D4 C1 CC
660A:CF C7 AC
660D:AO CF D2
6610:AO A2 C5
6613:A2 AO C6
6616:CF D2 AO
6619:C5 D8 C9
661C:D4 AE
661E:8D 8D 153 DFB C,C

6620:AO AO AO 155 ASC " -< >-"
6623:AO AO AO
6626:AO AO AO
6629:AO AO AO
662C:AO AO AD
662F:BC AO BE
6632:AD
6633:88 88 88 156 DFB B,B,B,P,B,X
6636:60 88 00

264 Ripoff Module 2

PROGRAM RM-2, CONT'O •.•

6639:2C 10 CO 159 AGAIN2 BIT KBDSTR , RESET KEY STROBE
663C:20 1B FD 160 KBD2 JSR KEYIN READ KEYBOARD
663F:C9 C5 161 CMP '$C5 AN "E" FOR EXIT?
6641:FO 21 162 BEQ EXIT2 , YES, EXIT
6643:C9 C3 163 CMP '$C3 A "C" FOR CATALOG?
6645:DO 1A 164 BNE RETRY2 , NO, REPRINT SCREEN

6647:20 58 FC 166 JSR HOME , CLEAR SCREEN FOR CATALOG
664A:20 6B 66 167 JSR IMPRINT

664D:8D 84 169 DFB C,D , DOS HEADER
664F:C3 C1 D4 170 ASC "CATALOG"
6652:C1 CC CF
6655:C7
6656:8D 00 171 DFB C,X DOS TRAILER

6658:20 6B 66 173 JSR IMPRINT PROMPT AFTER CATALOG
665B:8D 60 00 174 DFB C,P,X

665E:18 176 CLC Bl(ANCH ALWAYS
665F:90 D8 177 BCC AGAIN2
6661:4C 00 65 178 RETRY2 JMP DEM02 TOO FAR FOR BRANCH
6664:20 58 FC 179 EXIT2 JSR HOME CLEAR SCREEN
6667:2C 10 CO 180 BIT KBDSTR RESET KEYSTROBE
666A:60 181 RTS AND RETURN

PROGRAM RM-2, CONT' 0 .

666B:
666B:
666B:

666B:
666B:
666B:
666B:
666B:
666B:

666B:8E AO
666E:8C A1
6671:8D 9F

6674:68
6675:85 EB
6677:68
6678:85 EC

667A:AO 00
667C:E6 EB
667E:DO 02
6680:E6 EC
6682:B1 EB
6684:FO 09
66B6:20 9E
6689:20 ED
66BC:1B
6680:90 ED

668F:A5 EC
6691:48
6692:A5 EB
6694:48
6695:AE AO
6698:AC A1
669B:AD
669E:60

669F:

669F:00
66AO:00
66A1:00

9F

66
66
66

66
FD

66
66
66

184
185
186

188
189
190
191
192
193

195 IMPRINT
196
197

199
200
201
202

204
205 NXTCHR2
206
207
208 NOC2
209
210
211
212
213

215 END2
216
217
21B
219
220
221
222 HOOK2

224

226 ASAV2
227 XSAV2
228 YSAV2

Imbedded String Printer 265

*** IMPRINT MODULE ***

THIS MODULE UNPOPS THE STACK TO FIND THE
IMBEDDED STRING. IT OUTPUTS ONE CHARACTER
AT A TIME TILL A $00 MARKER IS FOUND. THEN
IT JUMPS BACK TO THE CALLING PROGRAM JUST
BEYOND THE STRING.

STX XSAV2 SAVE REGISTERS
STY YSAV2
STA ASAV2

pr~A GET POINTER LOW AND SAVE
STA STRP2
PLA GET POINTER HIGH AND SAVE
STA STRP2+1

LDY 1$00 NO INDEXING
INC STRP2 GET NEXT HIGH ADDRESS
BNE NOC2 SKIP IF NO CARRY
INC STRP2+1 INCREMENT HIGH ADDRESS
LDA (STRP2) , Y GET CHARACTER
BEQ END2 IF ZERO MARKER
JSR HOOK2 FOR SPECIAL EFFECTS
JSR COUT PRINT CHARACTER
CLC BRANCH ALWAYS
BCC NXTCHR2

LDA STRP2+1 RESTORE PC LOW
PHA
LOA STRP2 RESTORE PC HIGH
PHA
LDX XSAV2
LOY YSAV2 RESTORE REGISTERS
LOA ASAV2
RTS AND EXIT

*** STASH ***

OFB $00
DFB $00
DFB $00

ACCUMULATOR SAVE
X-REGISTER SAVE
Y-REGISTER SAVE

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I MONITOR TIME DELAY

how to use a monitor subrou
tine for sounds, animation, and
other timing

I

If everyone is always worried about getting their programs to run
fast enough, why on earth would you ever purposely want to stall for
time?

Because, of course, some of the most useful and most interesting
Apple uses center on carefully controlled sequences of time delays.
The most obvious applications are in sound and music, where you
wait for a while, and then change the position of a speaker cone. How
long you wait sets the pitch of the tone, while the number of times
you change the cone sets the duration of the note. Much more on this
in the next two ripoff modules.

Another place where you purposely want to delay precise amounts
of time involves baud-rate generation. Most often, though, these
repeated time delays are done outside your CPU with a special serial
transmitter chip. But other times, your CPU can be asked to generate
a special frequency or a timing waveform that involves carefully con
trolled delays.

Producing the 40-kHz ultrasonic control signal for a BSR remote
power controller is one use. Here a few bytes of software can replace
bunches of specialized and unneeded hardware. Many industrial uses
of Apples involve function and signal generators of one sort Of

another.

267

268 Ripoff Module 3

The real biggie of the time delay world centers on animation. To
animate something, you put a pattern on the screen, wait a while, and
then replace or modify that pattern into something different. Done just
right, the changing patterns will give you the illusion of continuous
motion. One very new use of Apple timing lets you carefully lock your
animation to your video displays. This offers you everything from flaw
less and glitchless animation to mixing and matching of text, HIRES,
and LaRES together all at once.

Finally, there are the long term uses of time delay. Things that con
trol appliances, turn on sprinklers, or that keep hourly, daily, weekly,
or even monthly tabs on whatever it is that needs its tabs kept.

As with any programming technique, there are several different pop
ular ways you can go about stalling for time. Which one you use
depends on what you are trying to accomplish and how much else
has to happen while the time delay is taking place.

The fundamental unit of Apple time delay is called a clock cycle.
One clock cycle is roughly one microsecond, so you will need around
one million of these for a one second delay. The Apple clock cycles
are crystal controlled, so they are themselves accurate to at least one
part in a million.

But there is one possible source of inaccuracy that will get to you if
you aren't careful. Apple clock cycles are not precisely one microsec
ond long ...

An Apple clock cycle is ROUGHLY 1
microsecond long.

An Apple clock cycle takes EXACTlY
0.978 microseconds or 978 nanoseconds.

A microsecond takes up EXACTlY 1.023
Apple clock cycles.

Just to confuse you further, these times are average values. Each
65th clock cycle is one-seventh longer than all the rest. This is done to
uniquely solve a sticky timing glitch. The result is a tiny, and usually
negligible, jitter in outside-world timing applications.

For most everyday needs, you simply say a cycle is a microsecond,
and live with the two percent error you get. But, if you need an exact
number of Apple clock cycles, or an exactly specified time delay, you
have to "fine tune" your thinking to get precisely what you need.

As examples, locking to an Apple field takes a precise delay of
17030 Apple clock cycles, no more and no less. The time does not
matter here; the cycles are everything. If you must have precisely one
second of delay, you should use 1,022,727 clock cycles and not an
even million. But never make things bunches more precise than you
really need, since extra accuracy is often a pointless waste oftime and
effort.

I guess I really get into time delay techniques whole hog, since some
of the most mind-blowing and most challenging Apple uses involve
carefully controlled time delays where an exact result has to be gotten
in an exact number of cycles. This, of course, is what most of the
cheap video stuff was all about, (Sams 21524 and 21723) and is an
ongoing challenge in the Enhance series (Sams 21822, etc.).

Monitor Time Delay 269

Sometimes you will only want to delay for a few clock cycles. Other
times you might need great heaping bunches of cycles. So, you have a
choice of time delay methods. Here, going from short to long, are
some possible. . .

WAYS TO STALL FOR TIME

cycle burner uppers
simple loop
monitor delay

triple monitor delay
combined use
offloading

Burning up clock cycles is one good way for short time delays of a
few microseconds. What you do is throw in some Apple CPU com
mands that don't really do anything but burn up clock cycles. These
might be used to equalize two paths through time critical code, to
provide video positioning, or be used anywhere else you need only a
few cycles of correction.

Here are some standard. . .

CYCLE BURNER UPPERS

2 cycles . .. NOP
3 cycles ... Bce taken or JMP
4 cycles ... NOP and NOP

5 cycles . .. NOP and Bee taken
6 cycles . .. NOP and NOP and NOP
7 cycles . .. PHA and PLA

The object of the game is to use as few code bytes as possible for
your delay and to not hurt anything else in the way of flags or working
registers. You can find the "efficiency" of a 6502 instruction by divid
ing the number of cycles delayed by the number of bytes needed.
Naps are often your safest bet since they do the least damage.

Doing one single cycle of delay gets tricky. While many of the "ille
gal" commands in the 65C02 default to single cycle Naps, there is no
obvious way to do a single cycle delay with the older and stock 6502's.
The way I usually handle a single delay cycle is to set up the difference
between two paths that have even and odd total clock cycles. For
instance, if your qrry flag is set, a Bee takes up two cycles and a Bes
takes up three.

If you do use branches for exact time delays, watch your page
boundary crossings! A mysterious "extra" clock cycle or two will
sometimes result if your code crosses a page when you didn't expect
it to.

Once you get good at it, you should try to build your time delays
into code commands, so that your code does other good stuff at the
same time it is providing your time delay.

270 Ripoff Module 3

Needless to say, cycle burner uppers get old for more than a few
clock cycles worth of delay. There are obviously better ways to stall
for a second than by using 511,350 NOPs in a row.

What usually happens for longer delays is that you try to take up
most of the delay with some efficient code, and then, if you have to,
"equalize" with cycle burner uppers to hit any magic values you
need.

The next larger arrow in our delay quiver is the simple loop. Like
so ...

LDX 1$06
LOOP DEX

BNE LOOP

What you have done is filled a loop with a value and then counted
it down. Go through the math, and you will find you get a total of
5N + 1 clock cycles. N here is the hex value you initially load the loop
with. So this dude is good for 6, 11, 16, 21, 26,. . . clock cycles.

Note that a loop value of zero will go all the way around, rather
than falling through, for a total of 1281 clock cycles. In terms of audio
frequencies, this equals a square wave's half-period of just under 400
Hz. The reason the zero is missed is that it immediately is
decremented to $FF and thus gets "caught" by the taken BNE branch.
Zero is thus the maximum possible loop time.

For longer delays, you can put extra cycle burner uppers inside the
loop, or else go to a loop within a loop. As examples, a NOP inside
your loop changes the formula to 7N+1 cycles, while two simple
loops inside each other will get you over a tenth of a second of delay.

But there is a much better way for medium-length delays. There is a
super elegant and super versatile time delay built into the Apple moni
tor that is most useful for longer time delays. To use this routine, all
you do is put a magic value into the accumulator and call the routine.
Like this ...

USING THE MONITOR TIME DELAY

1. Put a magic value in A.
2. Do a J5R to $FCA8.

And that's all there is to it. Go through the code on this, and you'll
find it to be disgustingly elegant. All that gets used is the accumulator
and two "borrowed" stack locations. Nothing else is tied up or used
at all.

Part of the elegance involves the timing range you get. You can go
anywhere from 13 clock cycles, on up to a sixth of a second, starting
with only a single 8-bit magic value. Very conveniently, the available
256 time-delay values are spread out in a somewhat "log" fashion, so
you get "tight" spacing on small delays and "wide" spacing on long
delays.

The only reason this routine is not used as much as it should be is
that the formula for the "magic" delay value is scary. Spooky even.
And so misunderstood that even Apple has misprinted its formula in
several different places.

Monitor Time Delay 271

The magic formula, expressed in clock cycles is .

MONITOR DELAY CYCLES = 13 + 13.S*A + 2.5*A*A

If you want the time delay in microseconds, just multiply the above
result by 0.978.

Apple failed to do this on page 63 of the Apple II Reference Manual
and on page 223 of the Apple lie Reference Manual. To correct your
manual, cross out "microseconds" and write in "clock cycles!"

For milliseconds, divide the scaled result by 1000, and for seconds
of delay, divide by a million. As usual, don't forget to convert your
decimal values into hex before assembling them, or your delay will
end up wrong just about every time.

Since that formula is so ugly and nasty that it might even scare an
eighth grader, we'll just spell it all out for you in longhand ...

TIME DELAY VALUES FOR THE MONITOR WAIT SUBROUTINE

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$00 0 13 12 .012
$01 1 29 28 .028
$02 2 50 48 .048
$03 3 76 74 .074
$04 4 107 104 .104
$05 5 143 139 .139
$06 6 184 179 .179
$07 7 230 224 .224

$08 8 281 274 .274
$09 9 337 329 .329
$OA 10 398 389 .389
SOB 11 464 453 .453
SOC 12 535 522 .522
$00 13 611 597 .597
$OE 14 692 676 .676
$OF 15 778 760 .76

$10 16 869 849 .849
$11 17 965 943 .943
$12 18 1066 1042 1.042
$13 19 1172 1145 1.145
$14 20 1283 1254 1.254
$15 21 1399 1367 1. 367
$16 22 1520 1485 1.485
$17 23 1646 1608 1.608

$18 24 1777 1737 1. 737
$19 25 1913 1869 1.869
$1A 26 2054 2007 2.007
$1B 27 2200 2150 2.15
$1C 28 2351 2298 2.298
$10 29 2507 2450 2.45
$1E 30 2668 2608 2.608
$1F 31 2834 2770 2.77

~

272 Ripoff Module 3

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$20 32 3005 2937 2.937
$21 33 3181 3109 3.109
$22 34 3362 3286 3.286
$23 35 3548 3468 3.468
$24 36 3739 3654 3.654
$25 37 3935 3846 3.846
$26 38 4136 4043 4.043
$27 39 4342 4244 4.244

$28 40 4553 4450 4.45
$29 41 4769 4661 4.661
$2A 42 4990 4877 4.877
$28 43 5216 5098 5.098
$2C 44 5447 5324 5.324 $2D 45 5683 5555 5.555 $2E 46 5924 5790 5.79 $2F 47 6170 6031 6.031

$30 48 6421 6276 6.276
$31 49 6677 6526 6.526
$32 50 6938 6782 6.782 $33 51 7204 7042 7.042
$34 52 7475 7306 7.306
$35 53 7751 7576 7.576
$36 54 8032 7851 7.851
$37 55 8318 8130 8.13

$38 56 8609 8415 8.415
$39 57 8905 8704 8.704
$3A 58 9206 8999 8.999
$38 59 9512 9298 9.298
$3C 60 9823 9602 9.602
$3D 61 10139 9911 9.911
$3E 62 10460 10224 10.224
$3F 63 10786 10543 10.543

$40 64 11117 10867 10.867
$41 65 11453 11195 11.195
$42 66 11794 11528 11.528
$43 67 12140 11867 11.867
$44 68 12491 12210 12.21
$45 69 12847 12558 12.558
$46 70 13208 12911 12.911
$47 71 13574 13268 13.268

$48 72 13945 13631 13.631
$49 73 14321 13999 13.999
$4A 74 14702 14371 14.371
$48 75 15088 14748 14.748
$4C 76 15479 15130 15.13
$40 77 15875 15518 15.518
$4E 78 16276 15910 15.91
$4F 79 16682 16306 16.306

Monitor Time Delay 273

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$50 80 17093 16708 16.708
$51 81 17509 17115 17.115
$52 82 17930 17526 17.526
$53 83 18356 17943 17.943
$54 84 18787 18364 18.364
$55 85 19223 18790 18.79
$56 86 19664 19221 19.221
$57 87 20110 19657 19.657

$58 88 20561 20098 20.098
$59 89 21017 20544 20.544
$5A 90 21478 20995 20.995
$58 91 21944 21450 21.45
$5C 92 22415 21911 21.911
$5D 93 22891 22376 22.376
$5E 94 23372 22846 22.846
$5F 95 23858 23321 23.321

$60 96 24349 23801 23.801
$61 97 24845 24286 24.286
$62 98 25346 24776 24.776
$63 99 25852 25270 25.27
$64 100 26363 25770 25.77
$65 101 26879 26274 26.274
$66 102 27400 26783 26.783
$67 103 27926 27298 27.298

$68 104 28457 27817 27.817
$69 105 28993 28341 28.341
$6A 106 29534 28869 28.869
$68 107 30080 29403 29.403
$6C 108 30631 29942 29.942
$6D 109 31187 30485 30.485
$6E 110 31748 31034 31.034
$6F 111 32314 31587 31. 587

$70 112 32885 32145 32.145
$71 113 33461 32708 32.708
$72 114 34042 33276 33.276
$73 115 34628 33849 33.849
$74 116 35219 34427 34.427
$75 117 35815 35009 35.009
$76 118 36416 35597 35.597
$77 119 37022 36189 36.189

$78 120 37633 36786 36.786
$79 121 38249 37389 37.389
$7A 122 38870 37996 37.996
$78 123 39496 38608 38.608
$7C 124 40127 39224 39.224
$7D 125 40763 39846 39.846
$7E 126 41404 40473 40.473
$7F 127 42050 41104 41.104

274 Ripoff Module 3

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$80 128 42701 41740 41. 74
$81 129 43357 42382 42.382
$82 130 44018 43028 43.028
$83 131 44684 43679 43.679
$84 132 45355 44335 44.335
$85 133 46031 44996 44.996
$86 134 46712 45661 45.661
$87 135 47398 46332 46.332

$88 136 48089 47007 47.007
$89 137 48785 47688 47.688
$8A 138 49486 48373 48.373
$8B 139 50192 49063 49.063
$8C 140 50903 49758 49.758
$80 141 51619 50458 50.458
$8E 142 52340 51163 51.163
$8F 143 53066 51872 51.872

$90 144 53797 52587 52.587
$91 145 54533 53306 53.306
$92 146 55274 54031 54.031
$93 147 56020 54760 54.76
$94 148 56771 55494 55.494
$95 149 57527 56233 56.233
$96 150 58288 56977 56.977
$97 151 59054 57726 57.726

$98 152 59825 58479 58.479
$99 153 60601 59238 59.238
$9A 154 61382 60001 60.001
$9B 155 62168 60770 60.77
$9C 156 62959 61543 61. 543
$9D 157 63755 62321 62.321
$9E 158 64556 63104 63.104
$9F 159 65362 63892 63.892

$AO 160 66173 64685 64.685
$A1 161 66989 65482 65.482
$A2 162 67810 .66285 66.285
$A3 163 68636 67092 67.092
$A4 164 69467 67905 67.905
$A5 165 70303 68722 68.722
$A6 166 71144 69544 69.544
$A7 167 71990 70371 70.371

$A8 168 72841 71203 71. 203
$A9 169 73697 72040 72.04
$AA 170 74558 72881 72.881
$AB 171 75424 73728 73.728
$AC 172 76295 74579 74.579
$AD 173 77171 75435 75.435
$AE 174 78052 76297 76.297
$AF 175 78938 77163 77.163

Monitor Time Delay 275

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$BO 176 79829 78034 78.034
$Bl 177 80725 78910 78.91
$B2 178 81626 79790 79.79
$B3 179 82532 80676 80.676
$B4 180 83443 81566 81. 566
$B5 181 84359 82462 82.462
$B6 182 85280 83362 83.362
$B7 183 86206 84267 84.267

$B8 184 87137 85177 85.177
$B9 185 88073 86092 86.092
$BA 186 89014 87012 87.012
$BB 187 89960 87937 87.937
$BC 188 90911 88867 88.867
$BO 189 91867 89801 89.801
$BE 190 92828 90740 90.74
$BF 191 93794 91685 91.685

$CO 192 94765 92634 92.634
$Cl 193 95741 93588 93.588
$C2 194 96722 94547 94.547
$C3 195 97708 95511 95.511
$C4 196 98699 96479 96.479
$C5 197 99695 97453 97.453
$C6 198 100696 98432 98.432
$C7 199 101702 99415 99.415

$C8 200 102713 100403 100.403
$C9 201 103729 101396 101. 396
$CA 202 104750 102394 102.394
$CB 203 105776 103397 103.397
$CC 204 106807 104405 104.405
$CD 205 107843 105418 105.418
$CE 206 108884 106435 106.435
$CF 207 109930 107458 107.458

$00 208 110981 108485 108.485
$01 209 112037 109518 109.518
$02 210 113098 110555 110.555
$03 211 114164 111597 111. 597
$04 212 115235 112644 112.644
$05 213 116311 113695 113.695
$06 214 117392 114752 114.752
$07 215 118478 115814 115.814

$08 216 119569 116880 116.88
$09 217 120665 117952 117.952
$OA 218 121766 119028 119.028
$OB 219 122872 120109 120.109
$OC 220 123983 121195 121.195
$00 221 125099 122286 122.286
$DE 222 126220 123382 123.382
$OF 223 127346 124482 124.482

276 Ripoff Module 3

TIME DELAY TABLE, CONTINUED

HEX A DECIMAL A CYCLES MICROSECONDS MILLISECONDS

$EO 224 128477 125588 125.588
$E1 225 129613 126698 126.698
$E2 226 130754 127814 127.814
$E3 227 131900 128934 128.934
$E4 228 133051 130059 130.059
$E5 229 134207 131189 131.189
$E6 230 135368 132324 132.324
$E7 231 136534 133464 133.464

$E8 232 137705 134608 134.608
$E9 233 138881 135758 135.758
$EA 234 140062 136913 136.913
$EB 235 141248 138072 138.072
$EC 236 142439 139236 139.236
$ED 237 143635 140405 140.405
$EE 238 144836 141579 141. 579
$EF 239 146042 142758 142.758

$FO 240 147253 143942 143.942
$F1 241 148469 145130 145.13
$F2 242 149690 146324 146.324
$F3 243 150916 147522 147.522
$F4 244 152147 148726 148.726
$F5 245 153383 149934 149.934
$F6 246 154624 151147 151.147
$F7 247 155870 152365 152.365

$F8 248 157121 153588 153.588
$F9 249 158377 154816 154.816
$FA 250 159638 156048 156.048
$FB 251 160904 157286 157.286
$FC 252 162175 158528 158.528
$FD 253 163451 159776 159.776
$FE 254 164732 161028 161.028
$FF 255 166018 162285 162.285

Monitor Time Delay 277

A copy of this listing appears on the companion diskette as a bonus
program. Make as many copies as you like in any format you care to.

We'll find out just how to use the monitor delay subroutine shortly.
Note that you do not get every value in the range you need. What you
do is take the nearest value and then either live with it or else "pad" it
with cycle burner uppers.

Let's quickly round out our survey of ways to stall for time. If you
use the monitor delay three times in a row with just the right different
"magic" values, you can hit practically any exact value over a one to
three hundred millisecond range. This was needed and used exten
sively in Enhancing Your Apple /I (Sams 21822).

As another bonus program on the support diskette for this book,
we'll throw in an automatic magic number finder that quickly solves
the triple delay problem for you. The task is not trivial. More details on
this support diskette are found inside the back cover.

On longer delays, it is always best to try and do other things while
you are stalling for time. For instance, you can increment a random
number pair while you are waiting for someone to press a key. Or you
can use your animated graphics plotting time as part of the time delay
for a sound. Always suspect long times spent "wheel spinning," and
see if you can't replace stalling code with some useful yet time con
su m i ng task instead. . .

Avoid "wheel spinning" for wheel
spinning's sake.

ALWAYS try and make your time delay
code handle other useful tasks.

The "best" way to stall for time is to have something other than the
CPU do the delaying for you. This frees up your Apple to go on to do
other useful things. For instance, you can send a single and fast "trans
mit" command to a serial card whose separate UART takes its good
old time outputting a serial code. Or, send your music commands to a
music chip. Or your timer commands to a timer chip. Or use a real
time clock chip to interrupt your Apple for those things that take really
long time delays, such as control of a sprinkler system.

Unfortunately, all of these "offloaders" take special hardware and
add to your system cost. They also limit who you can sell your prod
uct to. Sometimes it is best to do your initial timing with the CPU and
then later offload cumbersome timing once your product is better
defined.

Using the Monitor Delay

Let's find out how to use the monitor delay for some exciting and
noisy animation. So stunning, in fact, that it might earn a fifth grader a
B- if his teacher was feeling generous. While we are at it, we will
pick up some fundamentals of LaRES plotting using the existing moni
tor LaRES subs.

Many people look down on LaRES, but a thorough understanding
of LaRES graphics is almost essential if you are ever going to handle
HIRES. The lie now offers double LaRES graphics of 24 X 80 color
blocks, which considerably eases the "chunkiness" of the display.

278 Ripoff Module 3

LORES animation and repeated mapping can be done much faster and
with far fewer bytes than can be done in HIRES. And, thanks to the
exact field sync of the Enhancing series, you can easily mix and match
text, LORES, and HIRES together anyplace you want on the screen all
at the same time.

Our main program is called DEM03. DEM03 consists of three sub
routines, just as any "high level" code should be made up entirely of
subroutine calls. The first subroutine clears the screen and draws an
empty bucket on the screen. The second subroutine fills the bucket at
a one layer per second rate. The third subroutine causes an explosion
when the bucket is completely filled. Calling the fire department or
pressing any key ends the explosion.

We will let you do your own flowchart on this, since nothing sneaky
is involved.

The first subroutine is called DRAWCUP. This one initializes the
LORES screen and clears it using the existing SETGR and CLRSCR
monitor subs. You then set the bucket color to green using the
SETCOL subroutine, and then draw your bucket.

Bucket drawing is done using the HLiNE and VLlNE monitor sub
routines. You enter HLiNE with the vertical position in the accumula
tor, the left end line position in the Y register, and the right end line
position in page zero location $2C.

Alike but different somehow, you enter VLlNE with the horizontal
position in the Y register, the top-most line position in the accumula
tor, and the bottom-most line position in page zero location $2D.

Note how the use of labels HEND for $2C and VBOT for $2D eases
remembering these values.

The FILLCUP subroutine fills the cup one level at a time, spending
one second per level. Several sub-subs are involved. The TENTHS
subroutine uses the monitor delay to produce one-tenth of a second
delay. In this demo, we won't worry about exact timing values, since
they are not at all critical.

Since we cannot do a one-second delay directly with the monitor
sub, we instead use our own SECONDS subroutine, which calls the
TENTHS subroutine ten times in a row to get a one-second delay.

To round out our time delays, there is also a TENMSEC subroutine
that generates a lO-millisecond delay, useful to produce a sound effect
as part of the BRACK subroutine. More details on sound effects appear
in the next two ripoff modules.

The "explosion" is done by rapidly changing the screen modes
while whapping the speaker. It sounds and looks awful.

Monitor Time Delay 279

MIND BENDERS

-Why does the liquid stay inside the
cup, rather than overwriting the
existing cup sides?

-What are the exact time delays in
use, including all sub timing and all
overhead code?

-Improve the animation and the
display so it would earn a seventh
grader an A -.

-Only certain cup and liquid colors
are compatible on an average color
set. Why? Which combinations look
best in both color and black and
white?

-Redo this demo in HIRES. Do an
on-screen splash. Then include a
real squirt gun in your demo.

280 Ripoff Module 3

PROGRAM RM-3

MONITOR TIME DELAY

NEXT OBJECT FILE NAME IS TIME DELAY
6700: 3 ORG $6700 J PUT MODULE 13 AT $6700

6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6100:
6700:
6700:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31
32

34

36
37
38
39
40
41

* * * -< TIME DELAY >- *
* *
* (USING MONITOR WAIT) *
* *
* VERSION 1.0 ($6700-$67AC) *
* *
* 11-24-82 *
* *
* *
* COPYRIGHT C 1982 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS PROGRAM SHOWS HOW TO USE THE MONITOR WAIT
SUBROUTINE FOR TIME DELAYS OF 0.01, 0.1, 1.0,
AND 10.0 SECONDS.

*** HOW TO USE IT ***

TO USE, RUN THE DEMO BY $6700G FROM MACHINE LANGUAGE
OR CALL 26368 FROM APPLESOFT.

THEN ADAPT THE METHOD AND RESULTS TO YOUR OWN
NEEDS.

PROGRAM RM-3, CONT'D .

6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:

6700:
6700:
6700:
6700:
6700:
6700:

44

46
47
48
49
SO
51

53

55
56
57
58
59
60

62

64
65
66
67
68
69

7

Monitor Time Delay 281

*** GOTCHAS ***

THE ACCUMULATOR IS DESTROYED BY THE WAIT SUBROUTINE.

MACHINE TIME AND PEOPLE TIME DIFFER! ONE CLOCK CYCLE
EQUALS 0.976 MICROSECONDS, AND NOT 1.000 MICROSECONDS!

THIS SLIGHT DIFFERENCE CAN SOMETIMES BE SIGNIFICANT.

*** ENHANCEMENTS ***

DEM03 ALSO SHOWS YOU SEVERAL TRICKS INVOLVED WHEN
YOU USE THE LORES SCREEN.

*** RANDOM COMMENTS ***

IF YOU NEED AN EXACT NUMBER OF MACHINE CYCLES THAT
CANNOT BE HIT DIRECTLY WITH WAIT, TRY USING WAIT TWO
OR THREE TIMES USING DIFFERENT A VALUES.

282 Ripoff Module 3

PROGRAM RM-3, CONT'D •

6700 : 72 • HOOKS ,., ..
F832: 74 CLRSCR EQU $F832 CLEAR FULL LORES SCREEN
002C: 7S HEND EQU $2C RIGHT END OF LORES H LINE
COS7: 76 HIRES EQU $COS., J HIRES SOFT SWITCH
F8l9: 77 HLINE EQU $F8l9 HORIZ LORES LINE
FB2F: 78 INIT EQU $FB2F INITIALIZE TEXT SCREEN
COOO: 79 IOADR EQU $COOO KEYBOARD INPUT
COlO: 80 KBDSTR EQU $C010 KEYSTROBE RESET
COS6: 81 LORES EQU $COS6 LORES SOFT SWITCH
COS3: 82 LOWSCR EQU $COS3 PAGE ONE SOFT SWITCH
COS2: 83 MIXCLR EQU $COS2 FULL GRAPHICS SCRE,EN
F864: 84 SETCOL EQU $F864 SET LORES COLOR
FB40: 85 SETGR EQU $FB40 SET UP GRAPHICS SCREEN
C030: 86 SPKR EQU $C030 SPEAKER CLICK OUTPUT
COSO: 87 TXTCLR EQU $COSO GRAPHICS ON SOFT SWITCH
COS1: 88 TXTSET EQU $COSl TEXT ON SOFT SWITCH
0020: 89 VBOT EQU $20 BOTTOM OF LORES V LINE
F828: 90 VLINE EQU $F828 VERTICAL LORES LINE
FCA8: 91 WAIT EQU $FCA8 TIME DELAY SET BY ACCUMULATOR

PROGRAM RM-3, CONT'O.

6700:
6700:
6700:

6700:
6700:
6700:
6700:
6700:
6700:

6700:20 OA 67
6703:20 3F 67
6706:20 5C 67
6709:60

670A:
670A:

94
95
96

98
99

100
101
102
103

105 DEM03
106
107
108

110
111

*** DEMO ***

THE DEMO FILLS A LORES BUCKET
EACH SECOND TILL OVERFLOW,
TICKING OFF EACH TENTH OF A SECOND.

JSR DRAWCUP
JSR FILLCUP
JSR EXPLODE
RTS

DRAW LORES CUP
FILL CUP
THEN EXPLODE
AND EXIT

*** DRAWCUP SUBROUTINE ***

Monitor Time Delay 283

670A: 112 THE DRAWCUP SUBROUTINE DRAWS A LORES CUP ON THE SCREEN.
670A: 113
670A: 114
670A: 115

670A:20 40 FB 117 DRAWCUP JSR SETGR INIT LORES SCREEN
670D:2C 52 CO 118 BIT MIXCLR FULL SCREEN GRAPHICS
6710: 20 32 F8 119 JSR CLRSCR CLEAR FULL LORES SCREEN
6713:A9 04 120 LOA 1$04 USE GREEN BUCKET
6715:20 64 F8 121 JSR SETCOL AND SET COLOR
6718:A9 19 122 LOA 1$19 DRAW BASE
671A:85 2C 123 STA HEND
671C:AO OC 124 LOY t$OC
671E:A9 1E 125 LOA t$1E
6720:20 19 F8 126 JSR HLINE AND PLOT IT
6723:A9 1E 127 LDA i$lE DRAW SIDES
6725:85 20 128 STA VBOT
6727:AO 00 129 LOY i$OD
6729:A9 14 130 LOA 1$14
672B:20 28 F8 131 JSR VLINE AND DRAW LEFT SIDE
672E:A9 14 132 LDA 1$14
6730:AO 18 133 LOY 1$18
6732:20 28 F8 134 JSR VLINE AND DRAW RIGHT SIDE
6735:A9 06 135 LOA 1$06 SET COLOR FOR FILL
6737:20 64 F8 136 JSR SETCOL
673A:C6 2C 137 DEC HEND FILL INSIDE RIGHT
673C:C6 2C 138 DEC HEND
673E:60 139 RTS AND RETURN

284 Ripoff Module 3

PROGRAM RM-3, CONT'O.

673F:
673F:
673F:
673F:
673F:
673F:

673F:A9 OA
6741:8D AC
6744:20 53
6747:20 AO
674A:20 86
674D:CE AC
6750:DO F2
6752:60

6753:

6753:
6753:
6753:
6753:

6753:AO OA
6755:20 94
6758:88
6759:DO FA
675B:60

67
67
67
67
67

67

142 ,
143 ,
144
145
146
147

.~* FILLCUP SUBROUTINE •••

149
150
151
152
153
154
155
156

158

160
161
162
163

165
166
167
168
169

THIS SUBROUTINE FILLS THE CUP AT
A ONE SECOND PER LEVEL RATE.

FILLCUP LDA t$OA FOR TEN TRIPS
STA CUPHI SAVE INDEX

AGAIN3 JSR SECONDS DELAY VIA SECONDS
JSR POUR ADD TO LEVEL
JSR BRACK3 MAKE NOISE
DEC CUPHI NEXT CUP LEVEL
BNE AGAIN3
RTS AND EXIT

*** SECONDS SUBROUTINE ***

SECONDS LDY i$OA FOR TEN TENTHS
NEXT3 JSR TENTHS DELAY FOR A TENTH

DEY
BNE NEXT3 REPEAT TILL DONE
RTS THEN EXIT

SUB

Monitor Time Delay 285

PROGRAM RM-3, CONT'D.

675C: 172 *** EXPLODE SUBROUTINE ***

675C:2C 57 CO 174 EXPLODE BIT HIRES
675F:20 9A 67 175 JSR TENMSEC , DELAY FOR TEN MILLISECONDS
6762:2C 56 CO 176 BIT LORES
6765:20 9A 67 177 JSR TENMSEC , AND DELAY AGAIN
6768:2C 51 CO 178 BIT TXTSET
676B:20 9A 67 179 JSR TENMSEC
676E:2C 30 CO 180 BIT SPKR
6771:2C 50 CO 181 BIT TXTCLR
6774:20 9A 67 182 JSR TENMSEC
6777: 2C 30 CO 183 BIT SPKR WRAP SPEAKER
677A:2C 00 CO 184 BIT IOADR , CHECK FOR KEYPRESS
677D: 10 DD 185 BPL EXPLODE
677F:2C 10 CO 186 BIT KBDSTR , RESET KEYBOARD
6782:20 2F FB 187 JSR IN IT BACK TO TEXT SCREEN
6785:60 188 RTS POP STACK AND RETURN

6786: 190 *** BRACK SUBROUTINE ***

6786:AO 06 192 BRACK3 LDY #$06 SECONDS TONE
6788:A9 OC 193 NOTE3 LDA t$OC
678A:2C A8 FC 194 JSR WAIT
6780:2C 30 CO 195 BIT SPKR
6790:88 196 DEY
6791:00 F5 197 BNE NOTE3

286 Ripoff Module 3

PROGRAM RM-3; CONT'O •

6793:60 199 RTS

6794: 201 J *** TENTHS SUBROUTINE ***
6794: 202
6794: 203 THIS SUB USES WAIT TO DELAY ONE TENTH
6794: 204 OF A SECOND.

6794:A9 C7 206 TENTHS LDA t$C7 FOR 99.415 MILLISECONDS
6796:20 AS FC 207 JSR WAIT DELAY VIA WAIT SUB
6799:60 208 RTS AND THEN RETURN

679A: 210 *** TEN MILLISECONDS SUB ***
679A: 211
679A: 212 THIS SUB USES WAIT TO DELAY TEN MILLISECONDS.
679A: 213

679A:A9 3D 215 TENMSEC LOA '$30 FOR 99.415 MILLISECONDS
679C:20 AS FC 216 JSR WAIT DELAY VIA WAIT SUB
679F:60 217 RTS AND THEN RETURN

67AO: 219 *** POUR SUBROUTINE ***
67AO: 220

67AO:18 222 POUR CLC FILL CUP WITH LIQUID
67A1:A9 13 223 LOA '$13 TOP OF CUP LEVEL
67A3:6D AC 67 224 ADC CUPHI MINUS HEIGHT ALREADY
67A6:AO OE 225 LOY I$OE LEFT SIDE SET
67AS:20 19 F8 226 JSR HLINE DRAW LEVEL
67AB:60 227 RTS AND EXIT

67AC: 229 *** STASH ***

67AC:OA 231 CUPHI DFB $OA LEVEL IN CUP

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I OBNOXIOUS SOUNDS

an extremely versatile and com
pact wide-range sound-effects
generator

First the bad news.

I

For a given amount of programming effort and add-on hardware,
the Apple will always give you sound that is "thin" and animation that
is "weak," when compared against an arcade video game. This hap
pens inevitably because the Apple CPU has to take time out to gener
ate its own sound and graphics, and because the color system is stuck
with being more or less compatible with the NTSC ("Never The Same
Color") broadcast television standard.

The good news, of course, is that for an extraordinary amount of
creative programming effort, and for super creative use of extra hard
ware, you can use your Apple to knock the bytes out of any arcade
video game or any other brand of personal computer. All it takes is
lots of special effort that optimizes what you can do within the bounds
of the actual limits of your Apple.

The next two ripoff modules show us two of the many different ways
you can get sound into your programs. We will assume, for now, that
you are going to use the built-in speaker of an unmodified Apple.

The "noisemaking" hardware of your Apple seems rather limiting at
first glance. You have one small and tinny-sounding speaker. All the
support hardware lets you do is shove the speaker cone all the way in,

287

288 Ripoff Module 4

or else pull it all the way out. You do this by "whapping" address
location $C030 once each time you want to change the cone's posi
tion.

Technically, address $C030 is decoded and used to change the state
of a binary divider, or flip-flop. The flip-flop is coupled to a special
Darlington driver transistor. One whap pushes the cone in. The next
pu lis it out. . .

A BIT $C030 is the standard way of
moving the Apple speaker's cone from
the extreme position it is in to the other
extreme position.

To get some useful sounds out of the Apple speaker, you decide
how often you want to shove the cone back and forth, and carefully
pick the time delay needed between shovings. For instance, if you
keep a constant time between shovings, you will set the pitch of an
audio square wave. The duration of the tone is decided by how long
you continue the shoving process.

Believe it or not, you can easily get more than one note at once,
have variable volume, do bell-like tones, handle speech, and do
much, much more if you are a sneaky enough programmer. And your
sound can be further "thickened" considerably just by adding a larger
speaker to your Apple.

Before getting fancy, though, let's get two gotchas out of the
road ...

$C030 GOTCHAS

two whaps immediately following
each other give you no sound ...

USE BIT $C030, NOT STA $C030.
one isolated whap may not
sound ...

USE AT LEAST 3 WHAPS PER CLICK.

Due to a quirk in the Apple's timing, any time you write to a mem
ory location, you address that location twice. The two addressings are
separated by one microsecond. If you try to do a 5TA $C030, you end
up shoving the speaker in and then pulling it back out again an impos
sibly brief time later. The cone barely moves in so short a time, and,
surprise, surprise, you get no sound.

So, always BIT test your speaker location. Do not write to it, unless
you want no sound.

The second quirk comes about because of an attempt to save Apple
system power. There is a coupling capacitor in the path between the
flip-flop and the speaker. This capacitor discharges on inactivity.
Which means that the speaker cone is never held "in" for long peri
ods of time. The dropout time is long compared to most tones, so you
normally won't notice it.

Obnoxious Sounds 289

There are two places where you might pick up the side effects of
this power-down capacitor, and where it may cause you trouble. If
you try to "click" the speaker just once, there's only a 50-50 chance
you will get any sound at all. So, it takes two repeated commands,
delayed by some audio value, to guarantee an isolated click. In real
life, three or four repeated speaker motions are the minimum you will
want to use, since some of the clicks will sound "leaner" than others.

The other place this gotcha appears happens when you send very
low-pitched notes, or a very low-pitch "sweep" to your speaker. At
some point, the frequency will jump up by an octave. This frequency
doubling happens when the capacitor picks up enough charge to
allow cone clicking in both directions.

Watch these two details if you ever get no sound or uneven sound
out of your code.

As in all other Apple programming techniques, there are lots of dif
ferent ways to get sound, and each of these ways will have a certain
range of effects over which they are useful. Let's survey some ...

WAYS TO GENERATE APPLE
SOUND

clickety clack
calculated routine
red book tones

table method
duty cycling
offloading

With the clickety clack method, you simply move the speaker cone
back and forth a few times, using a loop or some other obvious code.
See the BRACK subroutine of the previous ripoff module for an exam
ple. The time between whappings sets the pitch while the total num
ber of whappings sets the duration of your sound. If the pitch is
constant, you get a "pure" tone. If the pitch changes, you get a
"sweep." If both halves of each cycle are the same time duration, you
get a "woodwind" style tone. If one half of each cycle is much longer
than the other, you get a "string" style voicing.

One important exception to the clickety clackers. Do not ever use
the standfrd "[G]" or "JSR $FF3A" beep. This tone is too grating to
ever use in any reasonable program. . .

NEVER use the "standard" Apple beep
anywhere in any of your programs!

ALWAYS kick sand in the face of anyone
who does.

I n the calculated routine method, you generate some code that
decides when and where all the zero crossings are needed for a cer
tain sound effect. This method is often used for sirens and sweeps,

290 Ripoff Module 4

tonal scales, frog croaks, phasors, and other short or weird "one-shot"
sounds.

The good thing about the calculated routine method is that you can
get some real serendipity going, and end up with some totally wild
sounds that you wouldn't ever have thought possible otherwise. The
bad scene about many calculated routines is that this is "old" code
done the "old" way that may end up long and cumbersome, rather
than short and general.

The OBNOXIOUS SOUNDS subroutine of this ripoff module will
shortly explore this technique.

The red book tones method is a way to make monophonic music
that is useful for playing songs in tempered musical scales. This
involves a pitch and duration generator, and some file access tricks.
More on this in the next module.

The table method looks up each speaker motion as needed, out of a
long table. You can produce any possible sound this way. Most
Apple-based speech uses the table method, and virtually any sound of
most any complexity can be handled with a general and versatile
enough program.

There are some tricks to using the table method. Getting the table to
sound like you really want it to can be very involved and may take a
long time. Finding some suitable coding that lets you put lots of sound
in a short table is also a real hassle. Long or multiple effects really burn
up the bytes. The obvious brute force method of storing a one each
time you want the speaker to move can be substantially improved by
going to some sort of "run length" encoding.

The best way to study table method sound is to steal the German
vocabulary file out of Castle Wolfenstein. To grab this table, just follow
the "tearing" method of Enhancement 3 in the Enhancing Your Apple
II, Volume I (Sams 21822).

Ah yes. Duty Cycling.
Pushing the limits. Doing the impossible. How on earth can you get

more than one tone at a time out of a speaker driver that you can only
push or pull? How can you do variable volume? Sinewaves and flute
like or bell-like tones?

Its really very simple. Suppose you extremely rapidly move the
speaker cone in and out, at an ultrasonic rate. The average cone posi
tion depends on the average duty cycle. For a sinewave, just let the
average cone position describe a sinewave at the frequency you want.
For bell tones, let the average position slowly "decay" to its "middle"
value. For more than one note at once, just let the average position
equal the sum of all the notes taken together at once.

If you get into some hairy math involving Fourier coefficients, you
can easily handle chords and other multitone effects, with or without
duty cycling. The whole trick is to, on the average, put the speaker
cone where it ought to be when it ought to be there.

Duty cycling techniques are described in various issues of Apple
Assembly Line.

Offloading consists of using something other than the Apple's
speaker to make the noise. Simply going to a larger speaker or into a
hi-fi will help "thicken" the sound bunches, and you can get stereo
effects by using the speaker hardware for one channel and the cas
sette output port for the other. You can separately get four more chan
nels out of the annunciator outputs of your game paddle connector.

Obnoxious Sounds 291

But the real benefits of offloading take place when you send simple
commands to a custom noise generator or music generator chip.
Besides producing much richer and more flexible sounds, you now
offload the Apple's CPU so it is free to go on to other things. All the
Apple has to do is quickly pass a few parameters on to the music chip,
rather than stalling around for the entire time it takes to produce the
entire tone or tone sequence.

Both General Instruments and Texas Instruments are heavily into
music and sound-effect generation chips. These are often the key cir
cuits used in the fancier plug-in synthesizer cards and systems as well.

Time now for more details on .

The Calculated Routine Method

The calculated routine method is best done for single and isolated
sound effects.

A phasor blast, of course, is the architypical example of this sort of
thing. We'll show you a few dozen bytes of code that do the standard
and classical phasor blast for you. But, by changing only two values,
those same bytes can do a surprising variety of effects that sound
wildly different.

These include some very pleasant and highly "brassy" prompt
tones, musical glissades, some "cartoon" style sound, a geiger
counter simulation, and a few assorted and highly useful pips, ticks,
and whopidoops. There's even a special effect called the time bomb,
that lasts for minutes, and has all sorts of impractical joke possibilities.

The object of any sound program is to produce some speaker whap
pings separated by some time delays. The time delays set the time
between zero crossings of the sound that the speaker is to produce.
Usually these delays will range from 10 microseconds to 10 millisec
onds or so. Faster than this and you are into ultrasonics that you can
not hear and that the speaker cone cannot follow. Slower than this
breaks the sound down into individual and possibly annoying clicks.

If all the time delays are the same value, you get a constant square
wave tone. The total number of time delays sets the duration of the
tone, while each individual delay sets the pitch of each half-cycle of
sound.

Things get interesting when you vary the time delays in a strange
manner. For instance, if you make each successive time delay shorter,
you get a siren or sweep effect that goes up in time.

The whole intent of the calculated routine method is to produce
some interesting changes in the time delays that give you fat, thick,
and interesting sound effects. The calculations of your routine should
create a group of delay values that result in a useful sound.

Here's the flowchart for this module's calculated routine sound
effects generator. . .

292 Ripoff Module 4

OBNOXIOUS SOUNDS FL.OWCHART:

(6824)

(6822)

(6829)

(6854)

(6857)

(6859)

(6850)

SAVE
REGISTERS

GET SWEEP
AND RANGE

VALUES

DECREMENT
SWEEP

RESTORE
REGISTERS

NO

YES

SETUP
SWEEP

SETUP
STEP

SETUP
PITCH

DELAY FOR
HALF CYCLE

WHAP
SPEAKER

DECREMENT
DURATION

DECREMENT
STEP

(683 F)

(6841)

(6843)

(6844)

(6847)

(684A)

(684E)

NO

(684F)

(6851)

NO

(6852)

Actually, this is nothing but a very simple sweep generator with one
or two added tricks. The only two parameters under your control are
how far you sweep and the total number of sweeps you use. Now,

Obnoxious Sounds 293

don't go away, for you will be utterly amazed at how many totally dif
ferent effects you can get this way. In theory, there are 65536 different
effects possible. In practice, there's only two dozen or so that you will
find genuinely useful and uniquely different.

Our first trick is to use the monitor delay subroutine. Remember that
these delay values are "cramped together" at the short end, giving
you a more or less log response. And this is just what you want for an
audio sweep. A linear sweep sounds awful, since your ear is a log
device that expects a few cycles change for low notes and lots of
cycles change for high notes. So, the monitor delay sub automatically
puts the low notes close together and the high notes far apart, just like
you need.

Our second trick is to use the same value to set both the pitch and
the length of each step in the sweep. This keeps things simple, yet still
gives you many different sounds.

Our third trick is very sneaky. Five testing bytes are added to give
you geiger counter or multiple click effects. If the sweep duration is
less than $80, you get the complete sweep, all the way up in pitch. If
the sweep duration is greater than $80, the sweep only goes to the $80
value and then quits.

The $80 value is extremely low in pitch. So low that you hear each
cone movement as a distinct click. With the five byte code patch, val
ues greater than $80 give you a burst of clicks. Values less than $80
give you the full sweep. So, you get two wildly and totally different
classes of sound effects out of the same simple calculated routine.

We have used a sixteen-entry file to support the sound effects gener
ator. If you only want one or two sounds, you can eliminate this file
and direct poke the effects you are after. Each sound effect is specified
with two values. The first decides the number of the sweeps pro
duced, while the second decides how long each sweep is to be.

At any rate, you enter the subroutine with a number in the X register
that equals the sound effect you are after. You then save all the other
registers. Next you check to make sure the number is legal. If it is not,
you replace it with sound effect zero. You might prefer some fancier
error trapping here, but this is probably all you will really need.

Next, the sound effect number is converted into two sweep values
by looking them up in the 5EF effects file. The number of sweeps is
grabbed first and put in an absolute location called TRPCNT4. This
location will get counted down, once per each complete sweep. After
this, the sweep duration is grabbed and "force fed" into the code at
5WEEP4+1.

Uh, whoops. Play that one by again.
Tricks like this go by the name of self-modifying code. Which is legal

and powerful if you know what you are doing. What you have done
here is changed a LDY #00 command into a LDY #5WEEP5 com
mand. Note that the data value gets poked into the second byte of the
op code! Put it anywhere else and you plow the program. Note also
that any self-modifying code must be in RAM. EPROM need not apply.

Why?
Generally, it is safe to pre-modify your code like we have done here.

In fact, this is a standard and powerful programming technique. Just
be sure that you are changing ONLY the EXACT location you think
you are. On the other hand, code that continuously changes itself on

294 Ripoff Module 4

the fly is very dangerous. Deadly even. Yet still a specialized and most
useful programming technique.

Some comment. . .

If you self-modify code, be sure to place
what you are putting EXACTlY where
you intend to put it!

One or two data values preplaced once
before use is safe and standard.

Code that continuously changes itself is
often dumb and deadlv.

So much for a side trip on self-modifying code. At this point, we
have a "number-of-sweeps" value in TRPCNT4, and the "Iength-of
the-sweep" value has been force fed into a command that loads the Y
register.

Now to get sneaky. We need a third parameter. Namely, the dura
tion value that sets the frequency for this part of our sweep. For sim
plicity, we just transfer Y to X, and let X set our duration and Your
pitch. For any given step of our sweep, we want all constant frequen
cies. Thus, we will keep Y constant while we count X down. This
results in a sound that sweeps up in distinct note-like steps.

So far, so good. You transfer your pitch value to the accumulator
and then use the monitor delay to stall for a half-cycle. Then, you
whap the speaker. Next, you check X for the $80 value that separates
the geiger effects from the long sweeps. If you have a geiger burst, you
exit. For a sweep, you continue.

You continue this for X half-cycles to generate one "step" of your
sweep. Then you decrement Y to go on to the next sweep step. Do
this till you have completed the last step. Note that the last step is the
shortest and the highest in pitch.

That should complete one sweep for you. Decrement TRPCNT4. If
more sweeps are needed, then repeat the process for as many sweeps
as you want. Finally, restore all the registers and exit.

There is an "oldfangled" classic cell animation demo on the com
panion diskette named ENGINE that you simply will not believe the
first time you see and hear it. ENGINE uses the obnoxious sounds sub
routine. It also has two secret ingredients called David W. Meyer, Sr.,
and David W. Meyer, Jr. Who, together, form one of the most fantas
tic father and son Apple animation teams I've ever run across any
where, ever. And, yes, they do custom work. See the Appendix for an
address.

We'll show you a simpler demo of the obnoxious sounds here and
now. DEM04 just goes through all sixteen of the sounds in order and
gives you a time delay between effects.

DEM04 produces an earth-shattering explosion a second or so after
the time bomb countdown is complete. Be sure to remove all china,
Ming vases, etc. from a thousand-foot radius of your Apple before run
ning this demo.

Obnoxious Sounds 295

MIND BENDERS

-Change the code so you sweep
down rather than up. Do you like
this?

-Extend the code so you can control
pitch separately from step duration.

-What can you do with a pair of
sweeps that interact with each
other?

-Add suitable graphics to the time
bomb.

-Which obnoxious sounds are used
how in ENGINE? How is flawless
animation and thick ~ound achieved
at the same time?

-How is the frog's voice produced in
RIBBIT?

296 Ripoff Module 4

PROGRAM RM-4

OBNOXIOUS SOUNDS

NEXT OBJECT FILE NAME IS OBNOXIOUS SOUNDS
6800: 3 ORG $6800 J PUT MODULE t4 AT $6800

6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:
6800:

6800:

6800:
6800:
6800:
6800:
6800:
6800:

6800:

6800:
6800:
6800:
6800:
6800:
6800:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31
32

34

36
37
38
39
40
41,

* * * -< OBNOXIOUS SOUNDS >- *
* * * (CUSTOM CODING METHOD) *
* * * VERSION 1.0 ($6800-$687F) *
* * * 11-24-82 *
* *
*
*
*
*
*
*
*
*

COPYRIGHT C 1982 BY

DON LANCASTER AND SYNERGETICS
BOX 1300, THATCHER AZ., 85552

ALL COMMERCIAL RIGHTS RESERVED

*
*
*
*
*
*
*
* *******w*********************************

*** WHAT IT DOES ***

THIS MODULE GENERATES SIXTEEN DIFFERENT SOUND EFFECTS
FOR USE INSIDE ANOTHER PROGRAM.

*** HOW TO USE IT ***

TO USE FROM MACHINE LANGUAGE, LOAD THE X REGISTER WITH
A SOUND SELECTION FROM $00 TO $lF AND THEN JSR TO $6824.

TO USE FROM APPLESOFT, POKE 26659 WITH THE SOUND
EFFECT FROM 0-15 AND CALL 26658.

PROGRAM RM-4, CONT'O •

6800: 44

6800: 46
6800: 47
6800: 48
6800: 49
6800: 50 J
6800: 51

6800: 53

6800: 55
6800: 56
6800: 57
6800: r;q
6800: 59 J
6800: 60

6800: 61-

6800: 64
6800: 65
6800: 6S
6800: 67
6800: 68
6800: 69

Obnoxious Sounds 297

*** GOTCHAS ***

THE X REGISTER IS DESTROYED BY THIS SUBROUTINE.
REGISTERS P, Y, AND A ARE SAVED FOR YOU.

THE PROGRAM MUST BE PLACED IN A PROTECTED AREA
IF IT IS TO BE USED BY EITHER BASIC.

. ENHANCEMENTS *

YOU CAN CHANGE THE EFFECTS BY CHANGING THE TRIP AND
SWEEP VALUES FOR EACH FILE SELECTION. SEE THE
EFFECT FILE LISTING FOR PRESENTLY AVAILABLE EFFECTS.

EXTRA TONES ARE EASILY ADDED BY LENGTHENING THE SOUND
EFFECT FILES SEFO-SEF15 AND CHANGING FLNGTH4

*** RANDOM COMMENTS ***

TO ACTIVATE THE DEMO PROGRAM THAT PLAYS ALL SIXTEEN
NOTES IN ORDER, USE JSR $6800 OR CALL 26624.

298 Ripoff Module 4

PROGRAM RM-4, CONT'D.

6800: 72, ••• HOOKS • ••

FC58: 74 HOME EQU $FC58 CLEAR SCREEN
FB2F: 75 INIT EQU $FB2F HOME CURSOR
C030: 76 SPKR EQU $C030 SPEAKER CLICK OUTPUT
FCA8: 77 WAIT EQU $FCA8 TIME DELAY SET BY ACCUMULATOR

6800: 79 ••• DEMO •••
6800: 80
6800: 81

6800: 83 THE DEMO PROGRAM PLAYS EACH OF THE SIXTEEN
6800: 84 SOUND EFFECTS IN ORDER, SEPARATED BY A
6800: 85 TIME DELAY.
6800: 86
6800: 87
6800: 88

6800:20 2F FB 90 DEMO 4 JSR INIT MAKE SCREEN BLANK
6803:20 58 FC 91 JSR HOME
6806:A9 00 92 LDA .$00 START WITH FIRST NOTE
6808:48 93 PHA AND SAVE ON STACK

6809:AA 95 NXTNOT4 TAX
680A:20 24 68 96 JSR OBNOX4 AND PLAY IT
680D:AO OA 97 LDY no STALL FOR TIME

680F:20 A8 FC 99 STALL4 JSR WAIT
6812:88 100 DEY
6813:DO FA 101 BNE STALL4 TILL DELAY DONE

6815:68 103 PLA GET NOTE NUMBER
6816:CD 5F 68 104 CMP FLNGTH4 DONE WITH LAST NOTE?
6819:FO 06 105 BEQ DONE 4 YES, EXIT

681B:18 107 CLC
681C:69 01 108 ADC .$01 NO, PICK NEXT NOTE
681E:48 109 PHA
681F:DO E8 110 BNE NXTNOT4 ALWAYS

6821:60 112 DONE 4 RTS , AND EXIT

Obnoxious Sounds 299

PROGRAM RM-4, CONT'O.

6822: l1S J *** OBNOX MODULE ***
6822: 116
6822: 117

6822: 119 J THIS MODULE GENERATES THE SOUND EFFECTS IN
6822: 120 EXCHANGE FOR AN X VALUE FROM $00 TO $OF.
6822: 121
6822: 122 J
6822: 123
6822: 124

6822:A2 00 126 BASENT4 LDX 1$00 BASIC POKE HERE+1
6824:08 127 OBNOX4 PHP ML ENTRY POINT
6825:48 128 PHA
6826:98 129 TYA SAVE P,A, AND Y REGS
6827:48 130 PHA

6828:8A 132 TXA RANGE CHECK ON SELECTION
6829:CD 5F 68 133 CMP FLNGTH4 TO MAKE SURE ITS IN FILE
682C:90 02 134 Bec LOK4
682E:A9 00 135 LDA .$00 DEFAULT TO ZERO SELECTION
6830:0A 136 LOK4 ASLA AND DOUBLE FILE POINTER
6831:AA 137 TAX
6832:BD 60 68 138 LDA SEFO,X GET NUMBER OF TRIPS
6835:8D 5E 68 139 STA TRPCNT4 AND SAVE
6838:E8 140 INX
6839:BD 60 68 141 LDA SEFO,X GET SWEEP RANGE
683C:8D 40 68 142 STA SWEEP 4+1 AND SAVE

683F:AO 00 144 SWEEP4 LDY 1$00 SWEEP VALUE POKED HERE
6841:98 145 NXTSWP4 TYA
6842:AA 146 TAX DURATION
6843:98 147 NXTCYC4 TYA PITCH
6844:20 A8 FC 148 JSR WAIT
6847:2C 30 CO 149 BIT SPKR WRAP SPEAKER
684A:EO 80 150 CPX 1$80 J BYPASS IF GEIGER
684C:FO OB 151 BEQ EXIT4 SPECIAL EFFECT
684E:CA 152 DEX
684F:DO F2 153 BNE NXTCYC4 J ANOTHER CYCLE
6851:88 154 DEY
6852:DO ED 155 BNE NXTSWP4 GO UP IN PITCH
6854:CE SE 68 156 DEC TRPCNT4 MADE ALL TRIPS?

6857:DO E6 158 BNE SWEEP 4 NO, REPEAT

6859:68 160 EXIT4 PLA RESTORE REGISTERS
685A:A8 161 TAY
685B:68 162 PLA
685C:28 163 PLP
685D:60 164 RTS AND EXIT

300 Ripoff Module 4

PROGRAM RM-4, CONT'O.

685E:

685E:01
685F:10

6860:

6860:
6860:
6860:
6860:
6860:
6860:

6860:01
6862:01
6864:FF
6866:06
6868:01
686A:20
686C:70
686E:FF

08
18
01
10
30
06
06
06

6870:01 AO
6872:FF 02
6874:04 1C
6876:01 10
6878:30 OB
687A:30 07
687C:50 09
687E:01 64

167 *** S'l'ASH ***

169 TRPCNT4 DFB $01
170 FLNGTH4 DFB $10

TRIP COUNT DECREMENTED HERE
SIXTEEN AVAILABLE SOUNDS

172 *** SOUND EFFECT FILES ***

174 EACH NOTE TAKES A TRIP AND A SWEEP VALUE IN SEQUENCE.
175
176 ADD $80 TO NUMBER OF GEIGER CLICKS WANTED.
177
178
179

181 SEFO DFB $01,$08 TICK
182 SEF1 DFB $01,$18 WHOPIDOOP
183 SEF2 DFB $FF,$Ol PIP
184 SEF3 DFB $06,$10 PHASOR
185 SEF4 DFB $01,$30 MUSIC SCALE
186 SEF5 DFB $20,$06 SHORT BRASS
187 SEF6 DFB $70,$06 MED1.UM BkASS
188 SEF7 DFB $FF,$06 LONG BRASS
189 SEF8 DFB $Ol,$AO GEIGER
190 SEF9 DFB $FF,$02 GLEEP
191 SEF10 DFB $04,$lC GLISSADE
192 SEFll DFB $01,$10 QWIP
193 SEF12 DFB $30,$OB OBOE
194 SEF13 DFB $30,$07 FRENCH HORN
195 SEF14 DFB $50,$09 ENGLISH HORN
196 SEF15 DFB $01,$64 TIME BOMB

*** SUCCESSFUL ASSEMBLY: NO ERRORS

;

MUSICAL SONGS

an upgrade of the original "red
book tones" song and music
maker

I

Come on, kiddies. If you are going to reinvent the wheel, please
make the thing roughly circular and put an axle somewhere near the
middle, preferably pointing in some more or less reasonable direction.

The wheel in this case is a music machine that easily and simply
gives you an audio tone in exchange for pitch and duration values.
There are so many utterly atrocious attempts at this that it is no longer
even funny.

In particular ...

A music making subroutine MUST have
totally separate and totally isolated ways of
entering pitch and duration.

AN,/THING ELSE ISN'T EVEN WRONG!

If the duration of your note changes when you change the pitch,
your music maker is less than worthless. Flush it.

It turns out that a really great music making subroutine has existed
since year one that uniquely solves the pitch and duration interaction

301

302 Ripoff Module 5

problem. The sub is called the red book tones, Woz wrote it, and it
appears, of all places, in the original red book.

The red book tones are a "middleweight" technique that lets you
create reasonable sounding monophonic music, as well as providing
an easy way to pick up lots of different cue and prompt tones for other
program uses. The original code, as it first appeared, was all of
twenty-one bytes long!

Today, of course, you cannot write commercial software and get
away with monophonic, fixed timbre, or constant volume sound
effects. Use of multiple voices, variable volume, and duty-cycling is
absolutely mandatory. But, just as LORES is an essential stepping stone
to commercially useful graphics, the red book tones are a necessary
learning experience along the way to top-notch musical effects.

While we will not be reinventing the wheel, we are going to add a
hubcap, some chrome, and better bearings.

First, we all call the newer version REDTONE. As with the original, it
gives you a constant frequency square-wave tone in exchange for
pitch and duration values. We've put REDTONE into source code so
you can relocate it anywhere you want. The original code sat on page
zero and had some Applesloth compatibility problems. The obvious
choice of page three is so overloaded these days, that it is best to have
something you can put anywhere you want.

REDTONE saves all the working registers to avoid conflicts with
your high level code. The pitch and duration values are also saved for
you, so you needn't reload the same duration value over and over
again for cues or prompts.

There is now a silent pitch value of $FF. This is most handy for rests
and pauses. The silence is timed out to the same duration value any
other note would be. As a convenience, the notes are echoed to the
cassette output port. You can greatly improve the sound by going
through a small hi-fi amplifier and larger speaker. Use standard audio
cables.

The maximum duration on the original code was a little short, par
ticularly when it came to playing whole notes at low tempos, so
REDTONE has a feature called a duration multiplier that lets you
extend the duration in binary mulitples. You now have all the duration
range you could possibly ever use, plus a ridiculous bunch more.

And that just about covers the code improvements. We've also
made two use improvements. The first involves better pitch accuracy,
and the second lets your Assembler enter music in a sane and more or
less musical way. For instance, a half note of middle C is entered as
"Cl,H,". There are no worries about funny numbers.

Tempo is presently set by changing a single value before assembly.
You can easily upgrade to a "real time" tempo control. I've purposely
left this as an "exercise for the student."

Pitch Accuracy

Most people try to set up a tone generator to make some certain
pitch exactly hit some musical note. Then they go up and down the
scale from there, trying to "fit" the notes to the 8-bit pitch values
needed.

The problem is that this technique works well for some notes and
poorly for others. Some notes just won't fit and will sound out of tune.

Musical Songs 303

Some review. An octave is a 2:1 frequency change, and is just about
as far as you can easily reach on a piano, say from middle C to the
next higher C. People have messed with how many notes go where
for a long time, but today, most everyone uses a compromise system
called the equally tempered scale.

The equally tempered scale has twelve notes per octave. The notes
in the "key" of C are called, C, C#, 0, E, F, F#, G, G#, A, A#, 8, and
back again to the next C that's one octave higher. Note that there is
no "E#" or "8#" as such. Other keys may name these notes differ
ently and may start at a different point, but regardless of which key is
in use, there are only twelve notes per octave.

The pitch of a note is related to that note's frequency, which is
called out in hertz, or cycles per second. For instance, the pitch of the
A above middle C is standardized to a frequency of 440 Hz.

Since the ear is a logarithmic type device, it expects low frequency
differences between notes for the low notes, and high frequency dif
ferences between notes for the high notes. If you tried to create a lin
ear "scale" that went, say 300, 350, 400, 450, 500, . . . etc. Hz, it
would sound very weird indeed.

Unmusical, even.
To get a log spacing of 12 notes over one octave, each successive

equally tempered note has to be the twelfth root of two higher in fre
quency. This is roughly a factor of 1.06. Each note ends up roughly 6
percent higher in frequency than its neighbor.

The interval from note to note is called a semitone. A semitone is the
difference from one key to the immediate next one on a piano,
regardless of key color. A semitone is also a 6 percent increase in fre
quency. A pitch change of one semitone is thus only a few hertz for
low notes, but is very much more than this for high notes.

How accurate do the tones have to be? It turns out that very few
people have what is called "absolute pitch," so if the whole song is
uniformly mistuned too high or too low, nobody will be able to tell.

What counts is the relation between the notes, or "relative pitch,"
and here, things get sticky fast ...

Few people can tell ABSOLUTE PITCH,
so it really doesn't matter whether all the
notes are exactly set to their intended
absolute frequencies.

Just about anybody can tell RElATIVE
PITCH, so it is super important that the
notes all sound good together.

Thus, if an "A" is really 480 Hz rather than 440, the odds are high
that nobody will notice on a stand-alone song. So long, of course, that
all the other notes are equally offset from where they belong by the
same proportion. What is critical is the relative frequency difference
between "A" and "A#," or between any other notes.

How critical is critical? Musicians call one one-hundredth of a semi
tone a cent. A one cent frequency error is an error of just under 0.06
percent in the ratio of two notes. It turns out that the best musicians
can just barely spot a one cent frequency error, while an average care
fullistener can spot a three cent error.

304 Ripoff Module 5

The trick is to get accurate relative notes consistent with a pitch
word that is only 8 bits wide. If you just force any old note to be exact
and then try to find magic values for the other notes, one or more of
them will sound sour.

If you play with funny numbers long enough, you'll find that there is
a little known but super important series of 8-bit pitch values that give
far and away the most accurate notes you can possibly get using 8-bit
values. Any other attempt at pitch values will fall short of this optimum
series, and you'll get several sour notes.

Here's the magic series and the notes involved ..

"MAGIC" 8-BIT PITCH VALUES

232 (A)

219 (A#)
207 (8)

195 (C)
184 (C#)
174 (0)

164 (0#)

155 (E)

146 (F)

138 (F#)

130 (G)

123 (G#)

116 (A)

These notes are all accurate to better than three cents in relative
pitch. Once again, this is a "magic" series. Any other choice of pitch
values will give you at least one sour note. Note that the pitch values
will set the time between speaker motions of REDTONE, so the higher
the pitch value, the lower the pitch or frequency of the note you get. It
takes two shoves, one forward and one backward, of the speaker
cone, to generate one full cycle of a REDTONE square wave. The tim
bre you get is a "woody" one roughly akin to a clarinet or a stopped
organ pipe.

The approximate notes you actually get with REDTONE are shown
in parentheses. You can continue up in pitch, but you'll eventually
pick up some sour notes on the way. Just divide each of the "magic"
values by two for the next octave, and so on.

Note that you will only have seven or fewer bits of accuracy for
these higher notes. Which means a few of them may be off in pitch.
By the way, you also have an additional magic 8-bit pitch value of
246. This translates to a REDTONE "G#/I or "Ab," and it seemed to
make more sense to start at "A" instead.

Separating Pitch and Duration

The "obvious" way to generate a tone is to count one register down
to get the pitch. Each completed countdown whaps the speaker once.
To get duration, you then count the total number of whappings.

Which is simple but wrong.

Musical Songs 305

The trouble is that the high notes will sound much shorter than the
low notes. Which gets to be a real mess. Any decent music maker sub
routine must separate pitch and duration.

Here's how to do it. . .
USING A "SERVICE" LOOP TO
SEPARATE PITCH & DURATION:

USUALL'i AN
8-BIT COUNTER

~

YES

WHAP
SPEAKER &
RELOAD PC

11.16-,17-, OR
IS-BIT COUNTER

'-

DECREMENT
PITCH

COUNTER

DECREMENT
DURATION
COUNTER

NO

NO

DON'T
WHAP

SPEAKER

THEI
LOOP

What you do is set up a tight service loop that continuously tests
both the pitch and duration values. Two counters are involved, an 8-
bit pitch counter, and a 16-bit or longer duration counter. The service
loop continuously decrements both of these counters. When the
magic pitch value is hit, the speaker gets whapped. When the magic
duration value is hit, the tone ends. Since the duration values are usu
ally much larger than the pitch values, you will normally get many
pitch cycles in your note.

The way the original red book tones got its 16-bit duration values
was to take an 8-bit duration value and multiply it by 256 using the Y
register. Thus, the Y register had to go all the way around for each
count of the duration counter.

306 Ripoff Module 5

All of which elegantly solved keeping pitch and duration separate.

A Duration Multiplier

The only little problem with this scheme was that 16 bits worth of
duration weren't quite enough for some uses. Things were OK for sim
ple songs, but for dotted half notes or for whole notes played at slow
tempos, there simply wasn't enough duration to fully sound the note.
The maximum duration was just under one second.

REDTONE gets around this by going to as many as 24 bits for the
duration counter. It turns out that REDTONE never needs the accumu
lator, so this register is free to be used as a multiplying counter.

Here's how it works. You always initialize the accumulator to $00.
Now, say you add some magic value to the accumulator and test for
zero. The results you get depend on what you add. Four useful results
include ...

Adding $00 gives you

00 00 00 00 00 00 00 00 00

and multiplies by ONE.

Adding $80 gives you

00 80 00 80 00 80 00 80 00

and multiplies by TWO.

Adding $40 gives you

00 40 80 CO 00 40 80 CO 00

and multiplies by FOUR.

Adding $20 gives you

00 20 40 60 80 AO CO EO 00

and multiplies by EIGHT.

What you do is count down the duration counter every time you get
a zero result. Thus, the $40 adder only decrements the duration
counter on every fourth trip through the service loop. This makes the
note last four times longer.

Usually, a "X2" multiplier is just what you need for most music.
You can go up to "X2S6" multiplication, using an $01 magic value, if
you want to get ridiculous.

With these details out of the way, let's look at the REDTONE sub
routine. Here's the flowchart ...

~EDTONE FLOWCHA~T:

LOCK PITCH
TO FF

f
[FF + 01 - 01 = FFJ

YES

(6813)

FAST
OUQATION

BITS

NO

SAVE
REGISTERS

GET PITCH
VALUE

WHAP
SPEAKER &
TAPEOUT

Y=Y-l

IF Y=O
A=A+DURMULT

DECREMENT
PITCH

(6800)

(680E)

(6811)

(6815)

(6818)

(681 E)

YES

(6822)

(6829)

YES

(682A)

Musical Songs 307

(6824)

NO

(6827)

(6831)

(6836)

DECREMENT
DURATION

RESTORE
REGISTERS

You enter REDTONE with a pitch value of PITCHS and a duration
value of DURATS. These values are not destroyed should you want to
reuse them for simple prompts. You must also have a multiplier value

308 Ripoff Module 5

in DURMULT5, but leaving this value at $80 will give good results for
most uses.

The registers are first saved. Then DURAT5 is copied into DURCNT5
where it can be counted down. The copying saves you having to reen
ter the same duration each time for simple prompts. This is followed
by clearing the Y register and the accumulator. The accumulator will
be used for the duration 1-2-4 multiplier, while the Y register will be
used to scale the duration by 256. You can alternately use the Y regis
ter to adjust tempo in real time.

The pitch value is placed in the X register and tested. If the pitch is
not $FF, the note is accepted and processed as usual. The speaker is
then whapped, and then is echoed to the cassette output.

Next, the service loop takes over. First, the Y register is
decremented. If Y hits zero, then the duration multiplier gets acti
vated, by adding the multiplier value and testing for a zero result. If
the Y register has gone all the way around and if the duration multi
plier gives you a zero result, then, and only then, is DURCNT5
decremented. Note that this has the effect of multiplying the
DURCNT5 value first by 256 and then by the accumulator multiplier
of 1, 2, 4, or whatever.

If we have not gotten a zero duration value, we then knock one off
the pitch counter and repeat the service loop process. The speaker
gets whapped only on zero values of the pitch counter. Thus a single
service loop separately keeps track of pitch and duration with only
negligible interaction.

Note that the duration is the product of three 8-bit values. Duration
is set by multiplying the Y register times DURAT5 times DURMULT5.

Every pitch zero, the speaker gets hit, and the X register gets
reloaded with a new pitch value. The only exit from all this happens
when DURCNT5 finally hits zero. At that point, the registers are
restored and the subroutine exits to your calling code.

One final detail. If your chosen pitch value is $FF, the speaker is not
sounded. This gives you a silent note, a pause, or a rest.

The side loop at LOCKX handles this detail for you. IF the pitch is
$FF, the pitch is incremented to $00 by LOCKX, and then later
decremented back to $FF in the main service loop. Thus a $FF pitch
value stays at $FF all the way through the duration timing. This hap
pens because $FF + $01 - $01 = $FF. A sounding pitch value gets
counted down to zero and whaps the speaker every trip. A silent pitch
value stays at $FF and bypasses the speaker, producing no sound.

A Demo or Two

The SONGPLY demo exercises REDTONE for you, playing that ever
favorite song that Tarzan used to sing during his zebra maintenance
days. SONGPLY works by picking pitch and duration value out of a
songfile called TARZAN.

We have used a 16-bit full wide pointer to access the song file, so
you can have more than 128 notes total in your song. This pointer is
called NOTEP and is page zero stashed at $EF and $FO. To link
SONGPL Y to different songs, you change these pointers as needed.

The pause generator inside SONGPLY gives you a brief pause
between notes that is set by PAUSE. Experiment to get the best results.
The minimum PAUSE value is $01. Do not use $001

Musical Songs 309

Should your particular song demand some notes that slur or tie
together, just use a minimum value of PAUSE, say $01. Then use six
teenths rests or whatever between those notes that do not slur.

Be sure to study the source code on SONGPL Y very carefully, for it
shows you a fairly friendly way to use labels to simplify writing your
own songs. We'll leave details on this for you to puzzle out.

One tip. Use two $00 for END values at the end of your note file.
That way, should you have an error in your list, you will still stop,
catching the second END value.

Where to from here? We have thrown in a quick tester called the
TIMBRE TESTER that will get you started in experimenting with differ
ent "voices" for your Apple. To use the TIMBRE TESTER, just put a
number series into TIMBFLE and the number of numbers into TFLEN.
You can get the magic numbers by trial and error, from a venture into
Fourier Series (gulp!), or from full-fledged duty cycling experiments.

TIMBRE TESTER works by generating a waveform with many possi
ble zero crossings. As you change the number of zero crossings and
the spacing between them, the harmonic content of the note changes,
giving you different "voicing" for your Apple.

As examples, a waveform that has very strong fourth, fifth, and sixth
harmonics, with a very weak fundamental, second, and third, will
sound as a three note major triad chord. Other pleasant two note
effects include a strong second and third, third and fourth, fourth and
fifth, second and fifth, and third and fifth harmonics. A note with no
low harmonics except for the fundamental will voice as a pure and
flute-like sinewave.

You can get these harmonics the way you want them, either by trial
and error, or else by fancy math.

With duty cycling, you use lots of very high frequency cycles, set up
so that the average speaker cone position matches the waveform you
are trying to generate. You can easily get pure sinewaves, variable vol
ume, and even exceptionally good human voice synthesis with fancy
enough duty cycling.

Each value in TIMBFLE specs the delay time in microseconds, multi
plied by five, between cone whappings. For a "fat" sound, you whap
the cone many times per frequency cycle. As a fine point, knock two
off each VOICES value, except for the last one. Knock four off it. Why?

The TIMBRE TESTER can easily give you string and woodwind-style
tones, flutelike sinewaves, bells, two notes at once, three notes at
once, "noisy" sounds, and even voice. All it takes is the right numbers
in the right order.

Finding them is half the fun.

370 Ripoff Module 5

MIND BENDERS

-Extend TARZAN by entering the
"hard parts" that I left out.

-Write your own songs for
SONG PLY.

-Modify SONGPLY so you can
control the tempo from a game
paddle. Hint: Put the tempo into the
Y register.

-Examine the exact timing involved
in REOTONE. What effects do slight
variations from "perfect" loop
timing have?

-Show why LOCKX is not needed
and how to replace it.

-Play "Applesoft" by using $0000 as
NOTEFL. Why are the results no
longer equally tempered?

-Modify REOTONE for a string voice
with an 8:1 duty cycle.

-Show a two byte change to
SONGPLY that lets you edit by
playing one note at a time.

-Use the TIMBRE TESTER to produce
a pure sinewave, and then two
notes at once. Then, ring a bell.

-Some poor attempts at duty cycling
may buzz or whine. Why? How can
you eliminate this?

Musical Songs 311

PROGRAM RM-5
MUSICAL SONGS

NEXT OBJECT FILE NAME IS MUSICAL SONGS
6900: 3 ORG $6900 ~ PUT MODULE .5 AT $6900

6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:
6900:

6900:

6900:
6900:
6900:
6900:
6900:

6900:

6900:
6900:
6900:
6900:

6900:
6900:
6900:
6900:
6900:

6900:
6900:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29
30
31

33

35
36
37
38

40
41
42
43
44

46
47

7

* *
* -< MUSICAL SONGS >- *
* *
* MODIFIED RED BOOK TONES *
* *
* VERSION 1.0 ($6900-$6B3A) *
* *
* 5-24-83 *
* *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE SHOWS YOU HOW TO USE THE MODIFIED
RED BOOK TONE SUBROUTINE TO PLAY MUSICAL SONGS.

THERE IS ALSO A TIMBER TESTER FOR EVALUATION
OF SPECIAL APPLE VOICES AND SOUND EFFECTS.

*** HOW TO USE IT ***

TO PLAY A SINGLE NOTE:
PUT YOUR PITCH IN PITCH5 AT $6B3A (27450).
PUT THE DURATION IN DURAT5 AT $6B37 (27447).
THEN JSR REDTONE AT $6BOO (27392).

TO PLAY YOUR OWN SONG:
PUT THE STARTING ADDRESS OF YOUR SONG INTO
SONGLOC AND SONGLOC+1 AT $6944 AND $6945.
THEN JSR SONGPLY AT $6910. APPLES LOTH
EQUIVALENTS ARE 26948, 26949, AND 26896.

TO PLAY TARZAN:
DO A JSR $6900 OR CALL 26880.

312 Ripoff Module 5

PROGRAM RM-S, CONT'O.

6900:

6900:
6900:

6900:

6900:
6900:
6900:
6900:

6900:

6900:
6900:
6900:
6900:
6900:

6900:

FC58:
FB2F:
COlO:
COOO:
C030:
C020:
FCA8:

OOEF:

50 *** OOTCHAS ***

52 ,
53

A CHANGE OF TEMPO PRESENTLY NEEDS REASSEMBLY.
REDTONE IS LIMITED TO ·WOODWIND" SQUARE WAVES.

55

57
58
59
60

62

64
65
66
67
68

70

72
73
74
75
76

HOME
INIT

*** ENHANCEMENTS ***

THIS SOURCE CODE ALSO SHOWS YOU HOW TO COMPOSE
YOUR OWN SONGS IN THE EQUALLY TEMPERED MUSICAL
SCALE BY USING LABELS THAT SIMPLIFY NOTE ENTRY.

*** RANDOM COMMENTS ***
THIS IS "MIDDLEWEIGHT" CODE INTENDED TO SHOW
PROGRAMMING SKILLS AND TECHNIQUES. FANCIER
METHODS SHOULD BE USED FOR COMMERCIAL PROGRAMS
OR FOR SERIOUS MUSICAL COMPOSITION.

*** HOOKS ***

EQU $FC58 CLEAR TEXT SCREEN AND HOME
EQU $FB2F INITIALIZE TEXT SCREEN

KBDSTR EQU $C010 KEYBOARD STROBE
IOADR EQU $COOO KEYBOARD INPUT LOCATION
SPKR EQU $C030 SPEAKER CLICK OUTPUT

CURSOR

77 TAPEOUT EQU $C020 CASSETTE TAPE OUT (TONE ECHO)
78 WAIT EQU $FCA8 MONITOR TIME DELAY

80 NOTEP EQU $EF NOTE POINTER PAIR FOR SONGLPLY

Musical Songs 313

PROGRAM RM-5, CONT'O.

69CO: 83 *** CONSTANTS ***

6900: 85 PITCH LABELS USED FOR SONG COMPOSITION
6900: 86
6900: 87 J FOR BEST SOUND, ALWAYS USE THE NOTE
6900: 88 VALUES NEAREST THE TOP OF THIS LIST.

00E8: 90 Al EOU 232 J NOTE A BELOW MIDDLE C

OOOB: 92 A1S EOU 219 AI
OOOB: 93 BIF EOU 219 Bb
OOCF: 94 Bl EOU 207 B
00C3: 95 Cl EOU 195 C
00B8: 96 CIS EOU 184 ct
00B8: 97 DIF EOU 184 Db
OOAE: 98 01 EQU 174 0
00A4: 99 DIS EOU 164 Dt
00A4: 100 ElF EOU 164 Eb
009B: 101 E1 EOU 155 E
0092: 102 F1 EOU 146 F
008A: 103 FIS EOU 138 F'
OOBA: 104 G1F EOU 138 Gb
0082: 105 G1 EOU 130 G
007B: 106 GIS EOU 123 Gt
007B: 107 A1F EOU 123 Ab

0074: 109 A2 EOU 116 NOTE A ABOVE MIDDLE C

006E: 111 A2S EOU 110 AI
006E: 112 B2F EOU 110 Bb
0067: 113 B2 EOU 103 B
0062: 114 C2 EOU 98 C
005C: 115 C2S EOU 92 Cf
005C: 116 D2F EOU 92 Db
0057: 117 02 EOU 87 0
0052: 118 D2S EOU 82 Of
0052: 119 E2F EOU 82 Eb
004E: 120 E2 EOU 78 E
0049: 121 F2 EOU 73 F
OQ45: 122 F2S EOU 69 Ft
0045: 123 G2F EOU 69 Gb
0041: 124 G2 EOU 65 (;

0030: 125 G2S EOU 61 Gt
0030: 126 A2F EOU 61 Ab

003A: 128 A3 EOU 58 SECOND A ABOVE MIDDLE C

OOFF: 130 R EOU $FF SILENT OR REST
0000: 131 END EOU $00 J END OF SONG (USE TWICE I)

314 Ripoff Module 5

PROGRAM RM-5, CONT'D .

6900:

6900:
6900:

OOOS~

0080:
0048:

0009:
DODD:
0012:
001B:
0024:
0036:
0048:
006C:
0090:

134

136
137

139 TEMPO
140 MULT
141 PAUSE

143 S
144 DS
145 E
146 DE
147 Q
148 DQ
149 H
150 DH
151 W

DURA'L'ION LABELS USED FOR SONG COMPOSITION

A REPEAT ASSEMBLY PASS IS NEEDED AT
PRESENT FOR EACH CHANGE IN TEMPO.

EQU $09 MASTER TEMPO CONTROL ($OF MAXIMUM!)
EQU $80 TEMPO MULTIPLIER (OO=X1 $80=X2 $40=X4
EQU $48 INTERNOTE PAUSE TIME

EQU TEMPO * 1 SIXTEENTH NOTE
EQU S/2+S DOTTED SIXTEENTH
EQU TEMl'O*2 EIGHTH NOTE
EQU TEMPO*3 DOTTED EIGHTH
EQU TEMPO * 4 QUARTER NOTE
EQU TEMPO*6 DOTTED QUARTER
EQU TEMPO * 8 HALF NOTE
EQU TEMPO*12 DOTTED HALF NOTE
EQU TEMPO*16 WHOLE NOTE

PROGRAM RM-5, CONT'D.

6900:
6900:
6900:
6900:

155
156
157
158

6900:20 2F FB 160 TAR
6903:20 58 FC 161

6906:A9 46 163
6908:8D 44 69 164
690B:A9 69 165
690D:8D 45 69 166

*** MUSICAL SONGS ***
THIS SUBROUTINE USES REDTONE TO PLAY THE
SONG liHOSE STARTING ADDRESS IS IN SONGLOC.

JSR INIT
JSR HOME

INITIALIZE TEXT SCREEN
AND CLEAR IT

LDA t>TARZAN TO PLAY TARZAN ONLY
STA SONGLOC
LDA t <TARZAN
STA SONGLOC+l

Musical Songs 315

6910:AD 44 69
6913:85 EF
6915:AD 45 69
6918:85 FO

168 SONGPLY LDA SONGLOC MOVE SONG ADDRESS TO POINTER
169 STA NOTEP
170 LDA SONGLOC+l 7 POSITION THEN PAGE AS USUAL
171 STA NOTEP+l

691A:AO 00 173
691C:A9 80 174
691E:8D 39 6B 175

6921:Bl EF
6923:FO lE
6925:8D 3A 6B
6928:E6 EF
692A:DO 02
692C:E6 FO
692E:81 EF
6930:8D 37 68
6933:20 00 68
6936:A9 48
6938:20 A8 FC
693B:E6 EF
693D:DO E2
693F:E6 FO
69iol:i.:DO DE

177 MORES
178
179
180
181
182
183 NOCY5
184
185
186
187
188
189
190
191

LDY 1$00
LDA tMULT
STA DURMUL5

LDA (NOTEP), Y
BEQ DONES
STA PITCH5
INC NOTEP
BNE NOCY5
INC NOTEP+l
LDA (NOTEP), Y
STA DURAT5
JSR REDTONE
LDA tPAUSE
JSR WAIT
INC NOTEP
BNE MORES
INC NOTEP+l
BNE MORES

6943:60 193 DONES RTS

FOR PURE INDIRECT
SET DURATION MULTIPLIER
AND POKE TO REDTONE

GET PITCH VALUE
EXIT IF END
POKE PITCH
GO TO NEXT FILE VALUE

PAGE OVERFLOW?
YES

GET DURATION VALUE
STASH DURATION VALUE
PLAY THE NOTE
GET INTERNOTE DELAY
AND DELAY
GO TO NEXT FILE VALUE

PAGE OVERFLOW?
YES

ALWAYS (WELL, ALMOST!)

END OF SONG

316 Ripoff Module 5

PROGRAM RM-S, CONT'D •

6944:

6944:46 69

6946:

6946:
6946:
6946:

6946:74
6949:48
694C:8A
694F:48
6950:92
6953:24
6956:FF

48
82
24

24
8A
48

74
24
8A

8A
90

6958:92 24 8A
695B:24 8A 48
695E:92 24 8A
6961:24
6962:74 48 8A
6965:36 74 12
6968:82 90 9B
696B:6C FF 24
696E:9B 48 A4
6971:24 9B 24
6974:9B 48
6976:A4 24 9B
6979:24 74 90
697C:FF 48
697E:8A 24 9B
6981:24 8A 24
6984:74 6C
6986:67 6C 67
6989:24 9B 90
698C:FF 48
698E:74 48 74
6991:48 82 24
6994:8A 24 8A
6997:48
6998:92 24 8A
699B:24 8A 90
699E:FF 48

196 , *** SONG POINTER STASP- ***

198 SONGLOC DFB >TARZAN,<TARZAN

200 *** SONG FILE ***

202
203 7
204

EACH NOTE IS ENTERED, PITCH FIRST AND
DURATION SECOND USING LABELS AS SHOWN.

206 TARZAN DFB A2,H,A2,H,G1,Q,F1S,Q,F1S,H

207 DFB F1,Q,F1S,Q,F1S,W,R,H

208 DFB F1,Q,F1S,Q,F1S,H,F1,Q,F1S,Q

209 DFB A2,H,F1S,DQ,A2,E,G1,W,E1,DH,R,Q

210 DFB E1,H,D1S,Q,E1,Q,E1,H

211 DFB D1S,Q,E1,Q,A2,W,R,H

212 DFB F1S,Q,E1,Q,F1S,Q,A2,DH

213 DFB B2,DH,B2,Q,E1,W,R,H

214 DFB A2,H,A2,H,G1,Q,F1S,Q,F1S,H

215 DFB F1,Q,F1S,Q,F1S,W,R,H

Musical Songs 377

PROGRAM RM-5, CONT'D.

69AO:92 24 8A 218 DFB F1,Q,F1S,Q,F1S,H,F1,Q,G1,Q
69A3:24 8A 48
69A6:92 24 82
69A9:24
69AA:82 24 8A 219 DFB G1,Q,F1S,Q,E1,DQ,C2S,E,EJ.,DH,D1,H
69AO:24 9B 36
69BO:5C 12 9B
69B3:6C AE 48
69B6:FF ~4 AE 220 OFB R,Q,D1,Q,D1,H,C1S,Q,01,Q
69B9:24 AE 48
69BC:B8 24 AE
69BF:24
69CO:92 48 9B 221 DFB F1,H,E1,Q,D1,Q,D2,W,R,Q
69C3:24 AE 24
69C6:57 90 FF
69C9:24
69CA:92 24 9B 222 OFB Fl,Q,E1,Q,F1S,Q,A2,E,R,E,D1,Q
69CO:24 8A 24
6900:74 12 FF
69D3:12 AE 24
6906:9B 24 8A 223 DFB E1,Q,F1S,Q,A2,E,R,E
6909:24 74 12
69DC:FF 12
690E:E8 24 CF 224 DFB Al,Q,Bl,Q,F1S,Q,E1,W,D1,Q
69El:24 8A 24
69E4:9B 90 AE
69E7:24
69E8:00 00 225 DFB END,ENO

318 Ripoff Module 5

PROGRAM RM~5, CONT'O.

69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:
69EA:

6ACO:

6ACO:2C 10 CO
6AC3:AE DE 6A
6AC6:CA
6AC7:30 FA
6AC9:BC DF 6A
6ACC:88
6ACD:DO FD
6ACF:2C 30 CO
6AD2:2C 20 CO
6AD5:2C 00 CO
6AD8:10 EC
6ADA: 2C 10 CO
6ADD:60

6ADE:

6ADE:08

228
229 :
230
231
232 :
233
234
235
236
237
238
239
240
241
242
243

*** TIMBRE TESTER ft**

THIS ROUTINE LETS YOU EVALUATE SPECIAL VOICES,
DUTY CYCLING, MOLT I-TONES AND OTHER EFFECTS.

TO USE, LOAD TIMBFLE WITH THE DELAY VALUES
BETWEEN ZERO CROSSINGS. LOAD TFLENGTH WITH
THE NUMBER OF ZERO CROSSINGS PER FUNDAMENTAL
NOTE CYCLE.

TO RUN:

JSR $6ACO FROM MACHINE LANGUAGE
CALL 27328 FROM APPLESLOTH.

EXIT ON ANY KEY PRESSED.

245 ORG TAR+$01CO LEAVE ROOM FOR SONG FILES

247 TIMBRE BIT KBDSTR
248 RESCAN5 LDX TFLENGTH
249 NEXT5 DEX
250 BMI RES CAN 5
251 LDY TIMBFLE,X
252 LOOPS DEY
253 BNE LOOPS
254 BIT SPKR
255 BIT TAPEOUT
256 BIT IOADR
257 BPL NEXT5
258 BIT KBDSTR
259 RTS

RESET KEYBOARD
START NEW SCAN
NEXT VALUE
RESET IF COMPLETE
GET DELAY VALUE
DELAY 5N+l CYCLES
STALL FOR TIME
WRAP SPEAKER
WRAP CASSETTE OUTPUT
KEYPRESSED?
REPEAT IF NO KP
RESET KEYSTROBE
AND EXIT

261 *** TIMBRE DELAY VALUES ***

263 TFLENGTH DFB $08 : NUMBER OF CROSSINGS IN TIMBFLE

6ADF:60 6A 6A 265 TIMBFLE DFB
6AE2:27

$60,$6A,$6A,$27

$27,$6A,$6A,$5E 6AE3:27 6A 6A 266 DFB
6AE6:5E

MusicalSongs 319

PROGRAM RM-5, CONT'O.

6AE7: 269 ; *** MODIFIED RED BOOK TONE SUBROUTINE ***

6AE7: 271 ; A JSR TO REDTONE PLAYS A SINGLE NOTE.
6AE7: 272
6AE7: 273 THE PITCH MUST BE PREPLACED IN PITCH5
6AE7: 274 DURATION MUST BE PREPLACED IN DURAT5.
6AE7: 275
6AE7: 276 A PITCH5 VALUE OF $FF IS SILENT.

6BOO: 278 ORG TAR+$0200 LEAVE ROOM FOR TIMBRE FILES

6BOO:48 280 REDTONE PHA SAVE REGISTERS
6BOl:98 281 TYA
6B02:48 282 PHA
6B03:8A 283 TXA
6B04:48 284 PHA
6B05:AD 37 6B 285 LDA DURAT5 MOVE DURATION VALUE TO
6B08:8D 38 6B 286 STA DURCNTS COUNTABLE LOCATION

6BOB:AO 00 288 LDY 1$00 INIT FAST DURATION COUNTER
6BOD:98 289 TYA INIT DURATION MULTIPLIER

6BOE:AE 3A 6B 291 WHAP LDX PITCHS GET PITCH VALUE
6Bll:EO FF 292 CPX t$FF IS IT SILENT?
6B13:FO 19 293 BEQ LOCKX YES, KEEP IT SILENT
6BlS:2C 30 CO 294 BIT SPKR WHAP SPEAKER
6B18:2C 20 CO 295 BIT TAPE OUT AND ECHO TO CASSETTE OUTPUT
6BIB:88 296 NOWHAP DEY DECREMENT FAST DURATION COUNT
6BIC:DO OB 297 BNE NOCS IF NO BORROW
6BIE:18 298 CLC
6BIF:6D 39 6B 299 ADC DURMULS DURATION MULTIPLIER
6B22:DO 05 300 BNE NOCS IGNORE ALL BUT ZERO RESULTS
6B24:CE 38 6B 301 DEC DURCNTS DECREMENT SLOW DURATION
6B27:FO 08 302 BEQ EXITS IF FINISHED
6B29:CA 303 NOCS DEX DECREMENT PITCH VALUE
6B2A:DO EF 304 BNE NOWHAP PITCH NOT DONE
6B2C:FO EO 305 BEQ WHAP PITCH DONE, ALWAYS TAKEN

6B2E:E8 307 LOCKX INX TRAP X TO $FF
6B2F:FO EA 308 BEQ NOWHAP ALWAYS TAKEN

6B31:68 310 EXITS PLA RESTORE REGISTERS
6B32:AA 311 TAX
6B33:68 312 PLA
6B34:A8 313 TAY
6B3S:68 314 PLA
6B36:60 315 RTS AND EXIT

320 Ripoff Module 5

PROGRAM RM-5, CONT'O.

6B37:

6B37:72
6B38:72
6B39:80
6B3A:72

318 J *** REDTONE STASH ***

320 DURATS DFB $72
321 DURCNTS DFB $72
322 DtJRMULS DFB $80
323 PITCHS DFB $72

*** SUCCESSFUL ASSEMBLY: NO ERRORS

DURATION GOES HERE
GETS COUNTED HERE

DURATION MULTIPLIER
PITCH GOES HERE

I OPTION PICKER

a general and flexible way to
handle menu selections and in
program jumps

I

Just about any larger program eventually gets to a point where it has
to jump six ways from Sunday. These may involve internal jumps,
such as when an adventure decides it has to check to be sure the giant
armadillo is awake. Or, they might involve user input, such as a menu
selection, the "T" for trace command of a monitor, or the "[5]" save
command of a word processor.

A code module that lets a program go to one of many possible tasks
is called an option picker . ..

OPTION PICKER-

A code module that lets a program
continue by jumping to a selected
one of many possible tasks.

Now, option picking doesn't sound like a very big deal. The trick is
to come up with one single option picker that you can adapt to any
program you want to, while keeping things as short and as flexible as
possible.

321

322 Ripoff Module 6

Here is the obvious way to pick one of a few different options.

OPTION JSR GETKEY GET USER SELECTION

rrRYA CMP $Cl AN A?
BNE TRYB NO, KEEP TRYING
JMP TASKA YES, GOTOA

TRYB CMP $C2 A B?
BNE TRYC NO, KEEP TRYING
JMP TASKS YES, GOTOB

TRYC CMP $C3 A C?
BNE MISSED NO, WE LOST
JMP TASKC YES, GOTOC

MISSED JMP ERRPROC NO VALIO SELECTION, TRY AGAIN

What you do here is get a user input and then check for a valid key
pressed entry. In this example, we test for a capital A, B, or C. But you
can test for any character in any order, such as for Y, N, or [ESC]. The
testing is done by comparing the hit key against the ASCII codes for
each key.

Now, this is a useful option picker, and, in fact, may be the best one
if you have eight or fewer unordered key selections. But this simple
option picker has several grevious faults.

The most obvious fault is that the code gets ridiculously long for lots
of different selections. One poor "solution" to this is to force sequen
tial responses, such as 0-9 or A-G, and then calculate your response
by subtracting the ASCII value of the selection from the ASCII value of
the lowest possible selection. This then gives you a straight binary
value that you use as an index to grab an address.

But, forcing users to relate to sequential numbers is a bad scene.
Which gets worse when you just have to have a tenth or eleventh
selection and no way to get it with a single keystroke. Insisting that
users relate to sequential letters is even worse. It is just plain poor
design to require a "B" selection for a "SAVE" command, and so on.
Using either "5" or "[5]" for a save is vastly better.

Another problem of requiring only sequential selections is that there
is no way to pick up one or two oddball control characters responses,
such as an [ESC] or a [C].

Thus ...

AVOID forcing users to pick from 0-9 or
between A-H as input selections.

Instead, try to make each selection
meaningful to the user in some way.

So, forced 0-9 or A-H responses have their problems and should be
avoided for use in option pickers.

A more subtle, yet far more important, fault of our previous option
code is that you have to rewrite the code for each and every use.
Sometimes the code is very long. Other times it will be very short. As
we have seen time and time again, it is far better to have fixed code
that uses changing file values, rather than having to custom rebuild

Option Picker 323

the code for each and every application. This way, you know your
code works ahead of time. Any problems are likely to be file problems
that are easily spotted and more easily fixed.

Let's check into the most general and often the "best" way to pick
one of many options. To do this, get a character from a program or a
keyboard. Then, if needed, change lowercase to uppercase. Next, fil
ter your character by looking into a file to find a character match. If
there's no match, process the error and try again. If you do find a
match, go to a second file and grab an address to go to. Then, jump to
that address.

Something like this ...

HOW TO PICK AN OPTION:

8 GET USER KE'I:

f;;:\ PROCESS ERROR
V AND TR'I AGAIN

f.;:;;\ GET ADDRESS
V PAIR FROM

A.OORESS LIST:

0- 47AC
1-2938
2 - IAA4
3 - 7EA6

(MUST 8E ONE LESS THAN
WHERE 'IOU WANT TO GO!)

CD FORCE UPPER CI>.sE:

CASE r
FIXER 8

o FILTER AGAINST A
MATCH LIST:

FOUND f0 PUSH A.OORESS PAIR fi:\ FORCE OPTION JUMP
V ONTO STACK: \.J WITH A FAKE: -

38

29

......
THE
STACK

-
t RTS ..

(IN THIS CASE. SELECTION
"8" JUMPS TO THE OPTION
STARTING AT $293C.)

There are several distinct parts to a good and flexible option picker.
First, you normally will want the same response for a capital letter as
for a small one, say for "A" and "a." If you do, you will need case
changer code. If you are allowing for meaningful, rather than ordered,
inputs, then you will also need an option filter that converts the selec
tions into a binary file access number.

Then there are possible errors. Sometimes a few legal and expected
responses may all want to go to the same option. We can call that
jump an inclusive trap. The simplest way to handle inclusive traps is

324 Ripoff Module 6

just to repeat the same address in the address file as often as needed.
There are ways, of course, to save a byte or two on this, but you end
up with custom code if you try this. We will use an error message of
"PLEASE TRY ANOTHER LEITER" to show this when it happens in the
upcoming GILA demo.

Other times, the input will not match any legal selection. What you
have to do here is go get another input since the one you have is no
good. You can call this an exclusive trap. Exclusive traps should go
and try and get another response.

You must always inform the user that you don't like his invalid
selection. The trick here is to do it as subtly and gently as possible.
More often than not, a brief screen flash or a single speaker click is all
you will need. We will use a message of "THAT'S NO LEITER, YOU
TURKEY!" in the demo. Naturally, such harshness must be used with
discretion in commercial programs.

Should the program, rather than the user, be making the option
selection, you will end up in deep trouble if the computer decides to
do something it is not set up to do. In Zork, machine errors are
trapped with a "ZORK INTERNAL ERROR" message. Chances are
overwhelming that you have not and will not get one of these Zork
messages.

Unless you play Zork the way I do.
Needless to say, machine errors are never supposed to happen.

When and if one does, though, be sure to inform the user that he has
just been done in through no fault of his own. It may be a good idea
to encourage the user to "close the loop" and contact you personally
when this happens.

Not if, but when.
A final part of the option picker has to actually do a jump or a gosub

to the selected option. You have many choices here. Building the
jumps into the code as we did above is obviously bad, since the code
is no longer general. You can also self-modify your code by having a
jMP command whose address you pre-change to the address you
want to jump to. This is risky and does not work in ROM, but is cute
and compact. You can also force a jSR the same way.

The jMP indirect command is another possibility. Here, you put
your address somewhere on page zero, say $06 low and $07 high.
Then a jMP ($06) does an indirect jump to your intended address. For
a forced subroutine, just do a jSR to an indirect jMP.

But, remember that the original 6502 jMP indirect has a bug in it
that prevents you from using it properly on either of the top two bytes
of any page. If you relocate your code, or do not watch very carefully
where your jMP indirects are, this bug may bomb your code. Page
zero real estate is valuable enough that you should go out of your way
to avoid using it whenever there are reasonable alternatives.

By the way, certain copy protection fanatics intentionally put their
jMP indirects in the "wrong" locations, hoping you miss the turn. The
jumped-to locations end up on the bottom of the same page, rather
than the expected bottom of the next page this way. Of course, such
childish and inane stunts just add to the fun and challenge of cracking
the "uncrackable." Besides, they will bomb on an Apple upgraded to
a 65C02. Or on a lie.

Har har.
Anyway, the way I like to do a jump to an option is with a scheme

Option Picker 325

called the forced subroutine return method. This method is used in the
Apple system monitor, so it is not new. But it is super powerful and
elegant.

Remember that a subroutine return or RTS checks into the stack and
gets the top stack location. It uses this location for the position on the
page it is to return to. Then, it goes one deeper into the stack to get
the page location. Given the position and the page, the RTS then
jumps to this location plus one.

Normally, of course, the RTS returns to the code that called it. Now
to get sneaky. Take the page address of your option and shove it on
the stack with a PHA. Then, take the option position address minus
one and shove it on the stack with a second PHA. Now, RTS. What
happens?

You "return" to the address of your selected option!
Note that two pushes (by you) and two pulls (by the RTS) leave the

stack the way it was before you started. So you are still in the same
"level" of your code both before and after you force the fake subrou
tine return. Note also that no page zero locations are committed.

For an earlier and different example of using forced subroutine
returns, check back into IMPRINT of Ripoff Module 2.

Let's sum up the parts of our option picker ...

CASE CHANGER-

Code that forces lowercase letters into
their uppercase equivalents.

OPTION FILTER-

Code that finds a match between user
inputs and a binary value.

INCLUSIVE TRAP-

Several user selections that all divert to
the same option.

EXCLUSIVE TRAP-

Code that finds "illegal" user inputs and
suitably handles this type of error.

FORCED SUBROUTINE RETURN-

A JMP indirect that is faked by pushing
an address pair onto the stack and then
doing an RTS.

Summing up, while there are lots of ways to pick options, we will
use a general and powerful file based method that is easy to use and
easy to change. It is best suited for six or more unordered choices.
The code is very efficient when many different selections are made.

To pick an option, you first change the case of lowercase letters, so
that either a capital "A" or a lowercase "a" gets the same response.
Then you look for a match in a character file. Finding the match gen
erates a binary number useful as an address pointer.

Should a match be found, the binary number is doubled and used
to access an address pair in an address file. This address pair is forced

326 Ripoff Module 6

onto the stack and is then followed by an RTS, doing a jump to the
selected option.

Two crucial reminders ...

When "force feeding" a stack

ALWAYS push the page address on first,
followed by the position address.

ALWAYS use an address ONE LESS than
your intended return point.

The sneaky way to automatically remove one from any address is to
let your assembler's operand arithmetic handle the chore for you.
Thus, instead of a label of TASKA, use TASKA-l when defining
addresses in your address file. The DW command is one good way to
handle 2-byte pairs. DW automatically rearranges these pairs into
their "position-page" format for you.

Don't forget these two crucial details: The page goes on the stack
first, and RTS ends up one beyond the stack address.

Several matches can point to the same address pair by repeating the
address pair when and where needed in the address file. We have
seen how this is called an inclusive trap.

Should no match be found, an exclusive trap tries for a new input or
generates an error message, informing the user as this happens.

Option Picker 327

The option picking subroutine is called OPICK. Its flowchart looks
like this ...

OPICK FLOWCHART:

SET
MATCH =0

GET KEY

FORCE
UPPER
CASE

BEEP
(OPTIONAL)

FILTER
FOR

MATCH

GET PAGE
AND PUSH
ON STACK

GET POSITION
AND PUSH
ON STACK

JUMP VIA
A FAKE RTS

DO
OPTION

NOTE, IF 'lOU JS~ TO OPICK,
'IOU JS~ TO 'lOUR
OPTION.

IF 'IOu JMP TO OPICK,
'IOU JMP TO 'lOuR
OPTION.

SET
MATCH =N

328 Ripoff Module 6

Some parts of OPICK might not be needed for all uses. For instance,
you can delete getting a key if the machine itself is to provide the
option selection.

Delete the case changer if you want something different to happen
for a capital letter than for a lowercase one. Sometimes, your options
will not even be in ASCII. They might be a binary selection. If so, low
ercase is meaningless.

The option filter can be deleted if you are certain your option selec
tions are always ordered binary numbers. This is OK for internal use,
but, as we've seen, is a poor and unfriendly choice where users are
involved.

And, don't use such heavy code for trivial choices. A simple (YIN)
checker can be done much faster with many fewer bytes. For over six
choices, the option filter is the better way to go. The more the choices
and the more wildly they are arranged, the better the method gets.

The FIXCASE case changer works by testing for a lowercase ASCII
letter. If it gets one of these, then $20 is subtracted as needed to get
uppercase. For instance, a lowercase "a" is an ASCII $El. Subtract
$20 to get $Cl, the ASCII uppercase "A." It pays to test for "z" as
well as "a" so that any punctuation above ASCII $FA does not get
changed. We've shown high ASCII here, as you get off the Apple key
board before resetting the keystroke.

Any match character can go in any order, except that the position of
the address in the address table must be exactly twice the position of
the match character in the match file. All this says is that the match
must line up with where you want the match to go to. The doubling is
needed for the 2-byte absolute address pairs and is handled with an
ASL multiplier.

The matches in the match file can go in any order. The obvious and
cleanest arrangement is to put the selections in logical user input
order. Another way is to put the addresses in the order they appear in
the program. Still another way is to put the often used matches first, in
an attempt to gain a slight speedup. Just be sure that the match and
the match address are aligned to each other.

We have put the match values in alphabetical order. Once again,
though, you can put any mix of numbers, letters, and control charac
ters in any order, skipping around anywhere you like.

As we have seen, the cleanest way to handle inclusive traps is to
repeat the address pair as often as needed in your address file.

We used an inverse title for this demo, like we did with IMPRINT
and FLPRINT. These titles are quick and dirty to do, but they are usu
ally far too garish to use in a commercial program. A single inverse
line cuts the tops of uppercase letters and random tops and bottoms of
lowercase. The obvious cure for this of using three inverse lines to
form a box usually is too "loud" for the rest of the screen.

So, do as I say, not as I do ...

AVOID using inverse text headers and
titles on commercial programs.

These are too garish and imperfect to
give you acceptable results.

Option Picker 329

You have a choice of using your options as subroutines or else as
same-level jumps. If, as we did in GILA, you JSR to OPICK and then
force-return to your option, an RTS at the end of the option returns
you to the code that is calling OPICK.

On the other hand, you could JMP to OPICK and then force-return
to your option. Here, a JMP at the end of the option is needed to
return you to a calling code.

In one method, the options are subroutines. In the other, they are at
the same level as the code that calls OPICK.

To adapt OPICK to your own needs, just change the MAXMATCH
number to equal the total number of options, change the MATCHFL
file to hold the characters you are matching against, and change the
JMPFLE to hold the addresses you want to jump to. A reassembly, of
course, will be needed. As usual, labels that name each option you
are to jump to greatly simplify and automate the process of building
this file. Makes it fun even.

Time for.

A Demo

Normally, your option picker will jump to lots of wildly different
types of code in your main program. To keep DEM06 simple, we will
still jump to lots of different points in the main program, but the action
at each option point will be rather simple and sort of redundant. Now,
there probably are better ways to write a program that does what this
demo does, but, remember that we are trying to show the method of
using an option picker to go many places in a larger program.

DEM06 is our demo, and what it does is generate the name of a
town in exchange for a user input that matches the first letter of that
town. Once you have recovered from the initial excitement of such a
stupendous program, look carefully to see how the options each go to
a selected code module, and how the inclusive and exclusive traps
are working. Note how both control commands and letter inputs are
handled. See how the ESC key exits the program for you.

Incidentally, we've used our own key getter, rather than GETKEY.
It's tricky to handle escape commands with GETKEY, and GETKEY
gives slightly different results on a II versus a lie. The prompt gets
entered by using IMPRINT to print a prompt, followed by a back
space, followed by the double zero exit.

DEM06 has borrowed the IMPRINT code from Ripoff Module 2, so
be sure that either this code, a copy of it, or else a copy of THE
WHOLE BALL OF WAX is present in the machine.

330 Ripoff Module 6

MIND BENDERS

-Rework the demo to use your own
towns in your own local area.

-Change the demo to other topics,
such as autos, aircraft, animals,
vegetables, or nurflongs.

-What other uses are there for the
forced subroutine method?

-How long does the option picker
take to process an option?

-Show how to use your options as
same level code, rather than as
su brouti nes.

-What other user prompting can be
used in place of the time delay?

-Explain away those two PLAs in the
exit code. Why are they used?

-Try to BRUN OPTION PICKER
directly from your disk, and [ESC]
will not exit you from your program.
Why?

-Display a different LORES or HIRES
picture for each selection, along
with suitable sound.

PROGRAM RM-6

OPTION PICKER

NEXT OBJECT FILE NAME IS OPTION PICKER
6COO: 3 ORG $6COO J PUT MODULE '6 AT $6COO

6COO: 5 ***
6COO: 6 * *
6COO: 7 * -< OPTION PICKER >- *
6COO: 8 * *
6COO: 9 * JUMPING SIX WAYS FROM SUNDAY *
6COO: 10 J * *
6COO: 11 * VERSION 1..0 ($6COO-$ 6EDD) *
6COO: 12 * *
6COO: 13 * 5-24-83 *
6COO: 14 * *
6COO: 15 * *
6COO: 16 * COPYRIGHT C 1983 BY *
6COO: 17 * *
6COO: 18 * DON LANCASTER AND SYNERGETICS *
6COO: 19 * BOX 1300, THATCHER AZ., 85552 *
6COO: 20 * *
6COO: 21 * ALL COMMERCIAL RIGHTS RESERVED *
6COO: 22 * *
6COO: :B ***

*** WHAT IT DOES ***

Option Picker 331

6COO:

6COO:
6COO:
6COO:

25

27
28
29

THIS MODULE SHOWS YOU HOW TO JUMP TO ONE OF MANY
POSSIBLE POINTS TO CONTINUE RUNNING A PROGRAM.

6COO: 31 *** HOW TO USE IT ***

6COO: 33 TO USE THE OPTION PICKER:
6COO: 34
6COO: 35 REASSEMBLE WITH YOUR NUMBER OF MATCHES IN MATCHN,
6COO: 36 YOUR MATCHES IN MATCHFL AND YOUR JUMP
6COO: 37 VECTORS MINUS ONE IN JMPFL. THEN JSR
6COO: 38 OPICK AT $6E45 (28229) •

6COO: 40 TO RUN THE GILA TOWNS DEMO:
6COO: 41
6COO: 42 JSR GILA AT $6COO OR CALL 27648.

332 Ripoff Module 6

PROGRAM RM-6, CONT'D .

6eoo:

6eoo:
6eoo:
6eoo:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

6COO:

6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

6COO:

6eoo:
6COO:
6COO:
6COO:
6COO:
6COO:
6COO:

45

47
48
49
50
51
52
53
54
55

57

59
60
61
62
63
64

66

68
69
70
71
72
73
74

*** GOTCHAS ***

THE IMPRINT SUBROUTINE MUST BE PRESE~'.r IN THE
MACHINE. PRELOAD "IMPRINT" OR "THE WHOLE BALL
OF WAX" TO DO THIS.

JUMP VECTORS MUST BE IN THE USUAL ·POSY':"'ION
PAGE" ORDER. THE ORDER IN MATCHFL MUST EQUM.
THE ORDER IN TASKFL.
JUMP VECTORS MUST BE ONE LESS THAN
THEIR hCTUAL RETURN POINTSl

*** ENHANCEMENTS ***

MATCHED CHARACTERS CAN BE IN ANY ORDER AND MAY
INCLUDE CONTROL CHARACTERS.

INCLUSIVE TRAPS ARE DONE BY REPEATING THE TASKFL
JUMP VECTORS AS OFTEN AS NEEDED.

*** RANDOM COMMENTS ***

THERE ARE CERTAINLY BETTER WAYS TO HANDLE THE
GILA TOWNS DEMO THAN THIS. IN REAL LIFE, EACH
"TOWN" REPRESENTS A DIFFERENT AND UNIQUE HIGH
LEVEL PROGRAMMING TASK.

THE DEMO ALSO SHOWS HOW TO CHANGE THE SCROLLING
TEXT WINDOW UNDER PROGRAM CONTROL.

Option Picker 333

PROGRAM RM-6, CONT'D.

6COO: 77 *** HOOKS ***

FC~8: 79 HOME EQU $FC58 CLEAR TEXT SCREEN AND HOME CURSOR
FB2F: 80 INIT EQU $FB2F INITIALIZE TEXT SCREEN
COOO: 81 IOADR EQU $COOO KEYBOARD INPUT LOCATION
COlO: 82 KBDSTRB EQU $C010 KEYBOARD STROBE RESET
FE80: 83 SE'l'IN"''' EQU $FEBO SET INVERSE SCREEN
FEB4: 84 SETNOl1M EQU $FEB4 SET NORMAL SCREEN
C030: 85 SPKR EQU $C030 SPEAKER CLICK OUTPUT
FCA8: 86 WAIT EQU $FCA8 MONITOR TIME DELAY

666B: 88 IMPRINT EQU $666B LINK TO IMPRINT SUBROUTINE

0020: 90 WNDLFT EQU $20 LEFT SIDE OF SCROLL WINDOW
0021: 91 WNDWTH EQU $21 WIDTH OF SCROLL WINDOW
0022: 92 WNDTOP EQU $22 TOP OF SCROLL WINDOW
0023: 93 WNDBTM EQU $23 BOTTOM OF SCROLL WINDOW
0024: 94 CH EQU $24 CURSOR HORIZONTAL POSITION
0025: 9!; CV EQU $25 CURSOR VERTICAL POSITION
0033: 96 PROMPT EQU $33 PROMPT SYMBOL

6eoo: 98 *** TEXTFILE COMMANDS ***

0088: 100 B EQU $88 BACKSPACE
008D: 101 C EQU $8D C~RRIAGE RETURN
0084: 102 D EQU $84 DOS ATTENTION
009B: 103 E EQU $9B ESCAPE
008A: 104 L EQU $8A LINEFEED
0060: 105 P EQU $60 FLASHING PROMPT
0000: 106 X EQU $00 END OF MESSAGE

334 Ripoff Module 6

PROGRAM RM-6, CONT'O .

6COO:
6COO:
6COO:
6COO~
6COO:
6COO:
6COO:

109
110
111
112 J
113
114
115

~ GI~A TOWNS DEMO *

THIS PROGRAM EXERCISES THE OPTION
PICKER SUBROUTINE OPICR.

EACH "TOWW' REPRESENTS A DIFFERENT
HIGH LEVEL PROGRAM TASK.

6COO:20 2F FB
6C03:20 58 FC
6C06:A9 07

117 GILA JSR INIT SET UP TEXT SCREEN
118
H9

6C08:85 24 120
6COA:20 80 FE
6COD:20 6B 66
6C10:8A 8A 8A
6C13:CF DO D4
6C16:C9 CF CE
6C19:AO DO C9
6C1C:C3 CB C5
6C1F:D2 AO C4
6C22:C5 CD CF
6C25:8D 8D 8D 125
6C28:8D 00

121
122
123
124

6C2A:20 84 FE 127
6C2D:20 6B 66 128
6C30:D4 D9 DO 129
6C33:C5 AO D4
6C36:C8 C5 AO
6C39:C6 C9 D2
6C3C:D3 D4 AO
6C3F:CC C5 D4
6C42:D4 C5 D2
6C45:AO D4 CF
6C48:AO C7 C5
6C4B:D4 AO D4
6C4E:C8 C5
6C50:8D 130
6C51:C6 D5 CC 131
6C54:CC AO CE
6C57:C1 CD C5
6C5A:AO CF C6
6C5D:AO C1 AO
6C60:C7 C9 CC
6C63:C1 AO 06
6C66:C1 CC CC
6C69:C5 09 AO
6C6C:D4 CF 07
6C6F:CE BA

JSR HOME
LDA t07
STA CH
JSR SETINV
JSR IMPRINT
DFB
ASC

DFB

JSR SETNORM
JSR IMI'RINT
ASC

DFB
ASC

CLEAR SCREEN AND HOME CURSOR
TAB 7 TO RIGHT

INVERSE TITLE
PUT DOWN TITLE

L,L,L
"OPTION PICKER DEMO"

C,C,C,C,X

: BACK TO NORMAL TEXT
: PUT DOWN INSTRUCTIONS

"TYPE THE FIRST LETTER TO GET THE"

C
"FULL NAME OF A GILA VALLEY TOWN:"

Option Picker 335

PROGRAM RM-6, CONT'D.

6Cll=eO 80 80 134 OFB C,C,C,C
6C74:80
6C75:AO AO AO 135 ASC • ---> •
6C78:AO AO AO
6C7B:AO AO AD
6C7E:AO AD BE
6C81:AO
6C82:S0 80 80 136 Ol-'B C,C,C,C,C,C
6CS5:S0 80 SO
6CS8:AO AO J\O 137 ASC / (USE "ESC" TO EXIT)/
6CSB:AO AO AO
6CSE:A8 OS 03
6C91:C5 AO A2
6C94:C5 03 C3
6C97:A2 AO D4
6C9A:CF AO C5
6C90:0S C9 04
6CAO:A9

. 6CA1: 00 13S DFB X

6C}\2:A9 00 140 LOA I$OD SET TIGHT WINDOW
6CA4:S5 20 141 STA WNDLFT
6CA6:A9 15 142 LOA 1$15
6CAS:S5 21 143 STA WNDWTH
6CAA:A9 OC 144 LDA I$OC
6CAC:85 22 145 STA WNDTOP
6CAE:A9 OF 146 LDA I$OF
6CBO:85 23 147 STA WNDBTM
6CB2:20 58 FC 148 JSR HOME GET IN WINDOW
6CB5:A9 60 149 LDA tP CHANGE PROMPT
6CB7:S5 33 150 STA PROMPT

6CB9:20 6B 66 152 DOOPT JSR IMPRINT ADD WINKING CURSOR
6CBC:60 88 00 153 DFB P,B,X
6CBF:20 44 6E 154 JSR OPICK GET AND DO OPTIONS AS SUBS

6CC2:A2 OD 156 CONT6 LOX 113 MOST OPTIONS RETURN TO HERE
6CC4:20 A8 FC 157 STALL6 JSR WAIT STALL FOR DISPLAY TIME
6CC7:CA 158 DEX
6CC8:DO FA 159 BNE STALL6

6CCA:20 58 FC 161 JSR HOME ERASE OLD SCREEN
6CCD:A2 28 162 LDX 1$2S
6CCF:20 7B 6E 163 JSR QUIP BLORK
6CD2:4C B9 6C 164 JMP DOOPT AND REPEAT

336 Ripoff Module 6

PROGRAM RM-6, CONT'O.

6CD5: 167 J *** THE ACTUAL TASKS ***

6CD5:20 6B 66 169 TASKA JSR IMPRINT: TASK A
6CD8:C1 02 D4 170 ASC "ARTESIA"
6COB:C5 03 C9
6CDE~C1
6CDF:OO 171 DFD X
6CEC:60 172 RTS

6CB1:20 68 66 174 'fASKB JSR IMPRINT, TASK B
6CE4:C2 CP' CE 175 ASC "BONITA"
6CE7:C9 D4 C1
6CEA:00 176 DFB X
6CEB:60 177 RTS

6CEC:20 6B 66 179 TASKC JSR IMPRINT, TASK C
6CEF:C3 CC C9 180 ASC "CLIFTON"
6CF2:C6 D4 CF
6Cl-15: CE
6CF6:00 181 DFB X
6CF7:60 182 RTS

6CF8:20 6B 66 184 TASKO JSR IMPRINT, TASK D
6CFB:C4 D5 CE 185 ASC "DUNCAN"
6CFE:C3 C1 CE
6D01:00 186 DFB X
6D02:60 187 RTS

6D03:20 6B 66 189 TASKE JSR IMPRINT, TASK E
6D06:C5 C4 C5 190 ASC "EDEN"
6D09:CE
6DOA:00 191 DFB X
6DOB:60 192 RTS

6DOC:20 6B 66 194 TASKF JSR IMPRINT, TASK F
6DOF:C6 D2 C1 195 ASC "FRANKLIN"
6D12:CE CB CC
6D15:C9 CE
6D17:00 196 DFB X
6D18:60 197 RTS

Option Picker 337

PROGRAM RM-S, CONT'O ...

6D19:20 68 66 200 TASKG JSR IMPRINT: TASK G
SD1C:C7 D5 D4 201 ASC "GUTHRIE"
6D1F:C8 D2 C9
6D22:C5
6D23:00 202 DFB X
6D24:60 203 RTS

6D25:20 6B 66 205 TASKH JSR IMPRINT: TASK H
6D28:C8 C5 CC 206 ASC "HELIOGRAPH"
6D2B~\~£I CF C7
6D2E:D2 C1 DO
6D31:C8
6D32:00 207 DF8 X
6D33:60 208 RTS

6D34:20 68 66 210 TASKI JSR IMPRINT: TASK I
6D37:C9 CE C4 211 ASC "INDIAN SPRINGS"
6D3A:C9 1:1 CE
6D3D:AO D:~ DO
.6D40:D2 C9 CE
6D43:C7 D3
6D45:00 212 DFB X
6D46:60 213 RTS

6D47:20 68 66 215 TASKJ JSR IMPRINT: TASK J
6D4A:CA C1 C3 216 ASC "JACKSON ESTATES"
6D4D:CB D3 CF
6D50:CE AO C5
6D53:D3 D4 C1
6D56:D4 C5 D3
6D59:00 217 DF8 X
6D5A:60 218 RTS

6D58:20 68 66 220 TASKK JSR IMPRINT: TASK K
6D5E:C8 CC CF 221 ASC "KLONOYKE"
6D61:CE C4 D9
6064:CB C5
6066:00 222 DF8 X
6D67:60 223 RTS

6D68:20 68 66 225 TASKL JSR IMPRINT: TASK L
6D68:CC C9 D4 226 ASC "LITTLE TULSA"
6D6E:D4 CC C5
6D71:AO D4 D5
6D74:CC D3 C1
6D77: 00 227 DFB X
6078:60 228 RTS

338 Ripoff Module 6

PROGRAM RM-6, CONT'O •••

6D7!f:20 6B 66 231 TASKM JSR IMPRINT; TASK M
6D7C:CD CF D2 232 ASC "MORENCI"
6D7F~C5 CE C3
6D82:C9
6D83:00 233 DFB X
6D84:60 234 RTS

6DI3!;:20 6B 66 236 TASKH JSR IMPRINT; TASK N
6D88:CE C1 C3 237 ASC "NACHES"
6D88:C8 C5 D3
6D8E:CO 238 DFB X
6D8F:60 239 RTS

6D90: 241 TASK o DEFAULTS TO I NCTRAP

6D9(1~20 68 66 243 TASKP JSR IMPRINT; TASK P
6D93~DO C9 CD 244 ASC "PIMA"
6D96:C1
6D97:00 245 DFB X
6D98:60 246 RTS

6D99: 248 TASK Q DEFAULTS TO INCTRAP

6D99:20 68 66 250 TASKR JSR IMPRINT; TASK R
6D9C:D2 CF DO 251 ASC "ROPER LAKE"
6D9F:C5 D2 AO
6DA2:CC C1 CB
6DA5:C5
6DA6:00 252 DF8 X
6DA7:60 253 RTS

6DA8:20 68 66 255 TASKS JSR IMPRINT; TASK S
6DAB:D3 Cl C6 256 ASC "SAFFORD"
6DAE:C6 CF D2
6D8l:C4
6D82:00 257 DFB X
6D83:60 258 RTS

6DB4 :,20 68 66 26'0 TASKT JSR IMPRINT; TASK T
6DB7:D4 C8 C1 261 ASC "THATCHER"
6DBA:D4 C3 C8
6DBD:C5 D2
6D8F:00 262 DFB X
6DCO:60 263 RTS

6DCl: 265 TASK U DEFAULTS TO I NCTRAP

Option Picker 339

PROGRAM RM-6, CONT'O •.•

6DC1:20 6B 66 268 TASKV JSR IMPRINT~ TASK V
6DC4:D6 C9 D2 269 ASC ·VIRDEN·
6DC7:C4 CS CE
6DCA:00 270 DFB X
6DCB:60 271 RTS

6DCC:20 6B 66 273 TASKW JSR IMPRINT~ TASK W
6DCF:D7 C8 C9 274 ASC "WHITLOCK CIENEGA"
6002:04 CC CF
6DDS:C3 CB AO
6DD8:C3 C9 C5
6DDB:CE C5 C7
6DDE:C1
6DDF:00 275 DFB X
6DEO:60 276 RTS

6DEl: 278 TASK X DEFAULTS TO INCTRAP

6DE1:20 6B 66 280 TASKY JSR IMPRINT~ TASK Y
6DE4:D9 CF 02 281 ASC "YORK VALLEY"
6DE7:CB AO D6
6DEA:C1 CC CC
6DED:CS 09
6DEF:00 282 DFB X
6DFO:60 283 RTS

6DF1: 285 TASK Z DEFAULTS TO INCTRAP

340 Ripoff Module 6

PROGRAM RM-6, CONT'O ••.

6DF1:20 6B 66 288 INCTRAP JSR IMPRINT1 INCLUSIVE DEFAULT TRAP
6DF4:D3 CF D2 289 ASC ·SORRY, PLEASE TRY·
6DF7:D2 D9 AC
6DFA:AO DO CC
6DFD:C5 C1 D3
6EOO:C5 AO D4
6E03:D2 09
6E05:8D 290 DFB C
6E06:D3 CF CD 291 ASC "SOME OTHER LETTER"
6E09:C5 AO CF
6EOC:D4 C8 C5
6EO);o':D2 AO CC
6E12:C5 04 D4
6E15:C5 02
6E17:00 292 DFB X
6E18:60 293 RTS

6E19:20 613 66 295 ERRTRAP JSR IMPRINTJ ILLEGAL KEY DEFAULT
6E1C:D4 C8 C1 296 ASC "THATS NO LETTER
6E1F:D4 03 AD
6E22:CE CF AO
6E25:CC C5 D4
6E28:D4 C5 D2
6E2B:8D 297 DFB C
6E2C:AO AO D9 298 ASC " YOU TURKEY!
6E2F:CF D5 AO
6E32:D4 D5 D2
6E35:CB C5 D9
6E38:A1
6E39:00 299 DFB X
6E3A:60 300 RTS

6E3B:20 2F FB 302 QUIT6 JSR INIT RESTORE NORMAL TEXT WINDOW
6E3E:20 58 FC 303 JSR HOME HOME CURSOR AND CLEA~ SCREEN
6E41:68 304 PLA BYPASS GILAJ GO STRAIGHT
6E42:68 305 PLA TO MONITOR OR CALLING CODE
6E43:60 306 RTS FOR COMPLETE EXIT

Option Picker 341

PROGRAM RM-6, CONT'O.

6E44:
6E44:
6E44:
6E44:
6E44:
6E44:

6E44:2C
6E47:AD
6E4A:10
6E4C: 2C

6E4F:2t:

6E52:A2
6E54:20

6E57:AE
6E5A:DD
6E5D:FO
6E5F:CA
6E60:10

6E62:E8
6E63:8A
6E64:0A
6E65:AA

10
00
FB
10

6F

OA
7B

8A
8B
03

F8

6E66:BD A7
6E69:48
6E6A:BD A6
6E6D:48
6E6E:60

CO
CO

CO

6E

6E

6E
6E

6E

6E

309
310
311
312
313
314

316
317
318
319

321

323
324

326
327
328
329
330

332
333
334
335
336
337
338
339
340

*** OPTION PICKER SUBROUTINE ***

FOR OTHER USES, THIS SUB HAS TO BE LINKED TO
YOUR OWN MATCHN MATCH NUMBER, YOUR MATCHF
CHARACTER MATCHER FILE AND YOUR JMPFLE VECTORS.

OPICK BIT KBDSTRB LOCK OUT EARLY HITS
LOOK6 LDA IOADR GET KEY. CAN I T USE KEYIN

BPL LOOK6 BECAUSE WE NEED ESC COMMAND.
BIT KBDSTRB RESET STROBE

JSR FIXCASE , FORCE UPPERCASE

LOX flO
JSR QUIP BLORK

LDX MATCHN GET LEGAL NUMBER OF MATCHES
SCAN6 CMP MATCHFL,X SEARCH FOR A MATCH

BEQ GOTMTCH FOUND
DEX TRY NEXT
BPL SCAN6 :

GOTMTCH INX 7 MAKES ZERO A MISS
TXA GET JUMP VECTOR
ASL A DOUBLE POINTER
TAX
LDA JMPFL+1,X GET PAGE ADDRESS FIRST!
PHA AND FORCE ON STACK
LOA JMPFL,X GET POSITION ADDRESS
PHA AND FORCE ON STACK
RTS JUMP VIA FORCED SUBROUTINE RETURN

342 Ripoff Module 6

PROGRAM RM-6, CONT'D •

6E6F: 343 J **~ CASE FIX~R SUBROUTINE ***

6E6F: 345 TESTS THE ACCUMULATOR FOR A LOWERCASE
6E6F: 346 CHARACTER. IF PRESENT, FORCES UPPERCASE
6E6F: 347 BY ADDING $20. USES HIGH ASCII.

6E6F:C9 E1 349 FIXCASE CMP I$E1 IF "a" OR MORE
6E71:90 07 350 Bce NOFIX6
6E73:C9 FB 351 CMP t$FB AND IF "z" OR LESS
6E75:BO 03 352 BCS NOFIX6
6E77: 38 353 SEC THEN SUBTRACT $ 20 TO
6E78:E9 20 354 SBC t$20 FORCE UPPER CASE
6E7A:60 355 NOFIX6 RTS AND RETURN

6E7B: 357 *** QUIP SUBROUTINE ***
6E7B: 358
6E7B: 359 MAKES NOISE. X SETS THE PITCH. THE
6E7B: 3eo PITCH IS PROPORTIONAL TO THE DURATION.
6E7B: 361 WHICH IS OK FOR THIS SIMPLE USE BUT
6E7B: 362 SHOULD BE AVOIDED MOST EVERYWHERE ELSE.

6E7B:48 364 QUIP PHA SAVE ACCUMULATOR
6E7C:AO 3C 365 LDY t60 NUMBER OF CYCLES
6E7E:8A 366 NXT6 TXA PITCH
6E7F:2C 30 CO 367 BIT SPKR WHAP SPEAKER
6E82:20 A8 FC 368 JSR WAIT
6E85:88 369 DEY NEXT CYCLE
6E86:DO F6 370 BNE NXT6
6E88:68 371 PLA RESTORE ACCUMULATOR
6E89:60 372 RTS AND EXIT

Option Picker 343

PROGRAM RM-6, CONT'D.

6Ef.'A: 375 *** OPTION PICKER FILES ***

6E8A: 377 MATCHN HOLOS THE NUMBER OF MATCHES.
6E8A: 378 J MATCHFL HOLOS THE LEGAL CHARACTERS.
6E8A: 379 JUMPFL HOLOS THE JU~~ VECTORS.
6E8A: 380
6E8A: 381 NOTE THAT ANY NUMBER OF CHARACTERS
6E8A: 382 ANO CONTROL COMMANOS MAY BE USEO
6E8A: 383 IN ANY ORDER, BUT THAT EACH MUST
6E8A: 384 POSITION MATCH ITS JUMPFL VECTOR.

6E8A=lB 386 MATCHN OFB 27 NUMBER OF LEGAL MATCHES GOES HERE

6E8B:9B 388 MATCHFL OFB E FOR ESCAPE

6E8C:C1 C2 C3 390 ASC "ABCOEFGHIJKLM"
6ESF:C4 C5 C6
6E92~C7 C8 C9
6E95:CA CB CC
6E9a=,=o

6E99:CE CF 00 392 ASC "NOPQRSTUVWXYZ"
6E9C:01 02 03
6E9F:04 05 06
6EA2:07 08 09
6EA5:0A

6EA6:18 6E 394 JMPFL OW ERRTRAP-1 NOT A LEGAL KEY
6EA8:3A 6E 395 OW QUIT6-1 EXIT ON ESCAPE
6EAA:04 6C 396 OW TASKA-1 00 LETTEREO TASK
6EAC:EO 6C 397 OW TASKB-1
6EAE:EB 6C 398 OW TASKC-1
6EBO:F7 6C 399 OW TASKO-1
6EB2:02 60 400 OW TASKE-1
6EB4:0B 60 401 OW TASKF-1
6EB6:18 60 402 ow TASKG-1
6EB8:24 60 403 OW TASKH-1
6EBA:33 60 404 OW TASKI-1
6EBC:46 60 405 OW TASKJ-1
6EBE:5A 60 406 OW TASKK-1
6ECO:67 60 407 OW TASKL-1
6EC2:78 60 408 OW TASKM-1
6EC4:84 60 409 OW TASKN-1

344 Ripoff Module 6

PROGRAM RM-6, CONT'D.

6EC6:FO 60 412 OW INCTRAP-l LEGAL BUT NO TOWN
6EC8:8F 60 413 OW TASKP-l
6ECA:FO 60 414 OW INCTRAP-l LEGAL BUT NO TOWN
6ECC:98 60 415 OW TASKR-l
6ECE:A7 60 416 OW TASKS-l
6EOO:B3 6D 417 OW TASKT-l
6E02:FO 60 418 OW INCTRAP-l LEGAL BUT NO TOWN
6~04:CO 60 419 OW TASKV-l
6E06:CB 60 420 OW TASKW-l
6ED8:FO 60 421 OW INCTRAP-l LEGAL BUT NO TOWN
6EOA:EO 60 422 OW TASKY-l
6EDC:FO 60 423 OW INCTRAP-l LEGAL BUT NO TOWN

*** SUCCESSFUL ASSEMBLY: NO ERRORS

I RANDOM NUMBERS

pseudo-random number gener
ator is fast, flexible, and free of
defects

I

Random numbers are essential for many computer uses, from the
throw of a die, through animated game motions, to industrial simula
tions. How can you introduce randomness into your programs?

It turns out that there are two types of "random" numbers. A real
random number is a number that can be one of many equally likely
values. A pseudo-random number is the next number available in a
contrived series that appears on the surface to be anyone of many
equally likely values ...

RANDOM NUMBER-

A number that can assume anyone of
many equally likely values.

PSEUDO-RANDOM NUMBER-

The next number available in a contrived
series that appears on the surface to be
anyone of many equally likely values.

The advantages of "real" random numbers is that they are truly

345

346 Ripoff Module 7

unpredictable. Disadvantages of real random numbers include that
they are hard or inconvenient to generate and that there is no way to
get the same random sequence back over again at a later time.

There is a very simple and very useful real random number genera
tor built into your Apple. Any time you use the monitor subroutine
KEYIN, there is a 16-bit counter involving locations RNDL and RNDH
that gets incremented a random number of times. The randomness
comes about since there is no control over how long a user waits
between keystrokes. RNDL is located at $4E and RNDH is located at
$4F on page zero. The monitor routines GETLN, GETLNZ, GETLN1,
RDCHAR, and RDKEY all use KEYIN, so any of these can be used to
fetch a new random number ...

To generate a real random number with
your Apple, use the monitor routine
KEYIN and then read the 16-bit true
random result at $4E and $4F.

The result is a truly random 16-bit number every time. For a new
random number, have the user make repeated use of KEYIN, such as
with a "HIT ANY KEY TO CONTINUE," or even start out with the
flea-bitten "HI, WHAT'S YOUR NAME?" prompt.

If you don't need the full 16 bits, just mask off those you do want.
One bit gives you a yes-no decision. A pair of bits generates the ran
dom digits from 0-3 and so on. For a RND(6), do a RND(8) instead,
and, if you get a 6 or 7 result, go fish again. Or, better yet, you could
also write your own version of GETKEY that counts your own base six
counter round and round.

Same goes for any other modulo.
By modulo, we mean ...

MODULO-

The "N" in RND (N).

Note that RND(N) returns with one of N
possible values, ranging from ZERO to
ONE LESS THAN N.

Uh, better repeat that. The modulo is the total number of different
random numbers you can get back. Since zero is always one of them,
the range of numbers will go from zero to N -1.

You never get a value of N for RND(N).
At any rate, using RNDL and RNDH, or else your own software

counter for true randomness is very simple. But, there are at least two
big disadvantages.

First and worst, the user must hit a key for every new random num
ber you need. This gets old fast if more than a dozen selections are
involved. Sometimes you can disguise what's happening in a game
where lots of keystrokes are involved, but not often.

Secondly, this is a slow process that takes many milliseconds. You
can generate pseudo-random numbers hundreds or even thousands of
times faster.

Random Numbers 347

And, finally, there is no way to get the same random numbers back
again in the same sequence, for replays, or for "noise that repeats."

So, while you have a true random number generator in your Apple
and while it is very simple to access, you may not be able to do very
much with it.

What About Applesoft's RND?

The advantages of pseudo-random number sequences are that they
are easy to generate, and you can easily get the same short and appar
ently "random" sequence back as often as you like. This is handy for
replaying a hand of cards, or to provide "noise that repeats" for indus
trial testing. You can also do this much faster than you can waiting for
someone to press a key.

Applesloth has a subroutine in it that is a failed attempt at pseudo
random number generation.

By now, just about everyone knows that there is a fatal flaw in the
Applesloth random number generator, that causes things to repeat in
an annoying and frustratingly short way. And, no, the published fixes
don't help enough to be useful. So, besides it taking forever to gener
ate a random number, this subroutine simply does not work.

A.PPLESOFT RND A.IN'T.
DON'T USE IT!

The fundamental problem is twofold. First, and more or less fixable,
the Applesloth RND function does not "reseed" itself every time. The
published repairs help this bunches, by using RNDL and RNDH as
seeds.

Secondly, and fatally, any pseudo-random sequence generator is
supposed to work by making the sequence so long that the numbers
will apparently "never" repeat. For many argument values, the
Applesloth RND generator does in fact generate an acceptably long
sequence. But there are some exactly wrong magic values that repeat
in as short as 200 or fewer values! And, as anyone who has used RND
knows, these short sequences happen often enough to be a serious
problem.

Actually, it is super difficult to fake generation of "random" num
bers. There is level upon level of subtlety in the math involved in prov
ing that any system for generating pseudo-random numbers is in fact
able to provide truly random results.

What we should be worried about is something useful enough to
appear random, even if it might eventually fail some exotic random
ness test. It turns out that there is a very simple and devastatingly pow
erful way to test for randomness. Just put random dots on the HIRES
screen. If the screen turns white, you are well on your way to having a
good random number generator. If it gets lines, large patterns, or
shading in it during this test, you have preferential numbers. If the
screen "sticks" and never gets to all white, your sequence is too short
to be useful and is repeating itself.

This simple scheme uses your eye as an optical correlator to really
pull any nonrandom ness right out of the woodwork.

348 Ripoff Module 7

Applesloth's RND always fails the screen test. Sometimes it fails it
quickly, "sticking" after as few as 200 dots. Other times, you will get
thousands of dots on the screen before the sequence repeats. The
worst results are gotten by rerunning the same sequence over and
over again.

Want to try it? . .

3 REM
DEMO TO SHOW WHY RND AINT

4 REM
• RUN IT TILL IT STICKS •

5 HGR: HCOLOR = 3: REM

10 X 280· RND (1): Y = 192 • RND
(1): HPLOT X,Y: GOTO 10

There are a few [J]'s in and amongst the code in this listing for pretty
printing. Leave them off if you care to. Unless you immediately hap
pen into the short sequences, the program may have to run a few min
utes before it sticks.

Actually, to be fair, Applesloth is stuck with doing floating point ran
dom number generation, which is a far stickier problem than simply
generating one number from a small integer field.

An Integer Pseudo-Random Generator

Let's instead worry about generating integer pseudo-random num
bers. The method we will show you easily handles any value from
RND (2) to RND (255), and is extremely fast. It passes the screen-fill
test with flying colors.

First, some theory. We will use a method called the shift register
pseudo-random sequence generator method. This one is detailed both
in the TTL Cookbook and the CMOS Cookbook (Sams 21035 and
21398).

There is a hardware beastie called a shift register that can be made
to behave like a counter. By taking certain high taps off the shift regis
ter and EXCLUSIVE-ORing them together and feeding these back to
the input, you can generate a very long sequence.

Very handily, any tests you make on a short burst in the sequence
will lead you to believe you have a true random number generator.
The optimum feedback connections lead to a maximal length
sequence, which turns out to be one less than two raised to the num
ber of stages in use.

To get "random" numbers, you keep picking up new numbers in
the sequence, or else jump to some other wildly different place in the
series. To get replays or noise that repeats, you start over again at the
same point in the series you did before.

We will use a 31-stage pseudo-random register since the feedback
needed is simpler than that needed by a 32-stage one. The hardware
we are going to synthesize with software looks like so ...

Random Numbers 349

A HARDWARE WA'I TO GENERATE "RANDOM" NUMBERS:

FEEDBACK
FROM STAGES
28 & 31. ..

~
GETS EOR'O

EXCLUSIVE ~
OR GATE

. . . AND BECOMES
THE NEXT
INPUT BIT

PSEUOORI\NDOM
ONES AND ZEROS
APPEAR HERE,
ONCE EACH
REGISTER CLOCKING

(SEQUENCE LENGTH = 2,147,483,647)

There are 31 stages to ou r register. We take the output from stage 31
and EXCLUSIVE-OR it with the output from stage 28. The EOR of these
taps then becomes the new value fed back to the input. These stage
taps are "magic" values; anything else won't give you a super long
series. We've shown this as a "shift-left" register, so we can be com
parable to the replacement software we are about to use.

The sequence you get is one less than 2"31, which translates to
2,147,483,647 counts before repeating. The variable sequence length
of the Applesloth code is avoided, since you have one and only one
long sequence, rather than bunches, a few of which can end up short.

This shift register can be thought of as a bit pipe or stream with two
billion marbles in it, half red and half white. Grab any four marbles in
sequence and you have a 4-bit random number. Grab the next four
and you have a new 4-bit "random" number, and so on. In this case,
you can get half a billion different 4-bit random numbers in sequence
before the same marbles start coming back out. And, in fact, you will
get four different half billion number sequences that are predictably
related but not the same, since you are one marble short at the end of
the first run, and so on.

Bunches, at any rate.
There is only one little gotcha to using a generator like this. What

about the missing count? It turns out that.

A GOTCHA-

A pseudo-random sequence generator
will hang if it ever gets into the "all
zeros" state.

DON'T LET THIS HAPPEN!

Now, the odds are only one in two billion of this ever happening,
but you should know about it, and should prevent this hangup from
ever happening. All you do is make sure there is a one somewhere in
your shift register before you begin.

350 Ripoff Module 7

We will use software rather than hardware here. Set aside four bytes
for the needed 31 bits. Use the EOR command for the EXCLUSIVE-OR
logic, and use shift commands to move the bits from stage to stage.

Some Code

It takes more than just a pseudo-random generator to make a good
random number generation system.

First, we should have some way of initializing or reseeding the PSR
4-byte shift register. We do this by grabbing two bytes from RNDL and
RNDH that are truly random, and by grabbing two more bytes off the
last PSR state.

Secondly, we need some way to get an old sequence back for
replays and noise that repeats. To do this, we keep a copy of the old
reseeding in a separate 4-byte seed register. For a new sequence, you
load the PSR from the reseeder. For a "used" or repeat sequence, you
reload the PSR from the seed register.

Thirdly, we need some way to deal with nonbinary numbers. A
RND (32) is fairly trivial, since 32 is a binary number, and we expect a
result anywhere between 0 and 31. To do this, just whump the PSR
register five times, once for each bit, and read the bits with a $1 F mask
(that's 0001 1111 in binary) to get your result. For different binary
lengths, use different mask lengths. The magic mask values are $01,
$03, $07, $OF, $1 F, $3F, $7F, and $FF.

But what about a RND (26)?
Here we expect a result between decimal 0 and 25, or between hex

$00 and $19. What you do is use a mask to grab more than enough
bits off the PSR, and then compare the result. If the result is in range,
use it. If not, go fish. Repeat the process as often as you have to.

Which I'm not very proud of, but it works. For nonbinary values,
there will be some chance of having to repeat the process. This
chance is always less than 50 percent worst case, and typically, is
much better. So, you will still get a fast result on any RND choice
although binary values will be the fastest.

Since there are lots of pieces to this randomizer, let's first look at our
working stashes to see what they tell us ...

Random Numbers 351

STASHES USED B'f ~ANDOM:

~ }
TRuE RANDOM NUMBER

RNDH
GENERATED B'I MONITOR
DURING KE'IBOARD INPUT.

SEEDI

} SEED2
SAVE OF INITIAL PSR
REGISTER VALUES FOR

SEED3 REPLA'IS OR REUSE.

SEED4

PSRI

PSR2 } ,"E 31 STAGE esEO»
RANDOM SEQUENCE

PSR3 GENERATOR
PSR4

AN "ALL ONES" MASK
B SIZE } JUST BIG ENOUGH FOR

MODULO.

R SIZE } THE NUMBER OF BITS
NEEDED B'I MODULO.

I MODULO I } HOLDS N FOR RND(N).

I
KEEPS RNO(N) FOR

HOLD I } APPLESLOTH OR LATER
ACCESS.

There are fourteen stash values involved.
The actual PSR generator is labeled PSR1 through PSR4. We input to

the low bit of PSR 1 and feed back from bits 28 and 31 that are stashed
in PSR4.

There are four seed bytes used to hold the previous starting point for
the PSR sequence. These are called SEED1 through SEED4. These
locations are seeded from the monitor's RNDL and RNDH.

The location called MODULO holds your RND argument. For
instance, on a single die, use a MODULO value of six. In return, you
will get one of the six possible equiprobable states from zero to five
back. MODULO must be set on first use, but if you want the same
random range over and over again, you do not have to change it.

The locations called RSIZE and BSIZE take some explanation, since
they are the key to generating non binary random values. BSIZE is a
mask of enough ones to equal one less than the next higher binary
power of the number you are after. That's one of those magic $01,
$03, $07 ... through $FF values. BSIZE is automatically calculated
for you when and as needed. RSIZE is a save of the number of PSR
advances needed to get enough bits to handle your MODULO.

For instance, on a die, BSIZE will be a $07, or binary %0000 0111,
while RSIZE will be three. Why? Because it will take three bits to gen
erate one of the numbers from zero to five. Should we overdo our
selves and get a six or seven result, we go fish and try again. The odds
of hitting a legal value in this case are 3/4 of the time on the first try,
and 15/16 of the time by the second try.

The reason you want to keep BSIZE as small as possible is so your
odds of a hit are high. If, instead, you tried for six values out of a possi
ble 256, your odds on a first-try hit will be a miniscule 6/256. The rea-

352 Ripoff Module 7

son for a separate save of RSIZE is so you do not have to recalculate
BSIZE for each entry.

Which speeds things up bunches.
There are several places where our code falls through to another

routine ...

FALLING THROUGH-

Code that automatically goes on and
does a second task.

You also have the option of doing only
the second task by itself.

There are three parts to the pseudo-random generator code. These
are the reseeder, the N initializer, and the actual PSR generator.

Each part is simple enough that you should be able to work up your
own flowcharts.

The reseeder is used to move your position in the PSR sequence
either to where you last started counting, or else to some wildly new
point.

You should always jSR to this code anytime you want to start ran
domizing something new. If you do a jSR RESEED, you will shuffle the
deck and begin at some unknown point in the PSR sequence. If you
do a jSR RESET, you will reload the last seed value you used. Use
RESEED for something entirely new. Use RESET to repeat the last
sequence of random numbers for a replay or for noise that repeats.

Note how RESEED falls through to RESET. Note also that we make
sure that PSR2 is not a zero value. If it is, we force it to one. This is one
heavy way to be sure that you never hit the all ones gotcha in your
PSR generator.

Every time you start up, or every time you change your modulo, you
will have to activate the N initializer. Do this by a jSR to RANDOM,
after putting the number of possible values you are after into MOD
ULO. MODULO must be at least one. If it is zero, an error trap incre
ments it.

Now, the code in the N initializer is admittedly obtuse, but this is
what it does: Your modulo is scanned to generate a BSIZE mask with
just enough sequential ones in it to equal or exceed your modulo
value. At the same time, the number of bits involved is saved as RSIZE.

For instance, say you want RND (10). Modulo will be ten, and you
expect the ten digits from zero to nine back. BSIZE will be %0000
1111, since this is the smallest mask you can have that can isolate all
the digits from zero to nine. RSIZE will be four, since four random bits
are needed from the PSR generator.

The N initializer falls through to the "real" PSR generator. You have
to use this initializer any time you first begin or any time you change
your modulo.

There are two parts to the "real" PSR generator. The first half,
labeled REUSEN, gets enough bits to be equal to or more than your
modulo.

To do this, REUSEN first "aligns" bit 28 to bit 31 of PSR4 using the
accumulator to shift bit 28 over three places. An EOR then computes
the feedback term. This particular EOR term gets shifted into the carry.

Random Numbers 353

Note that there are seven worth less EOR bit resu Its calcu lated at the
same time. These are simply ignored. The good result ends up in the
carry flag; everything else gets flushed.

Our carry flag now holds our feedback product. To shift our shift
register, you move carry into the least significant bit of PSR1 and shift
the rest of PSR1 's bits one to the left. The high bit now goes into the
carry. Now shift, in turn PSR2, PSR3, and PSR4. The net result is that
you faked a pseudo-random shift register with software.

The PSR is shifted as often as you have to, once for each count of
RSIZE. Three whaps for a die, four for modulo ten, and so on.

At this point, enough bits have been randomized in PSR1 to give
you a totally new number equal to or larger than your modulo.

The second half of the PSR process is called RANGE. Its purpose is
to see if you are within your modulo with the present random value in
PSR1. If you are in range, you are finished. If not, you have to repeat
the process as often as you need to for a useful result. As we've seen,
the odds on a hit are always greater than 50 percent and are usually
much greater.

RANGE grabs the value in PSR1 and masks it with BSIZE. This cuts
the number down to size, such as to four bits for a modulo of ten. The
same four bits could be used for any modulo from nine through six
teen.

The result in the accumulator is then compared to MODULO. If you
are less than MODULO, then your value is acceptable. If you are
equal to or greater than MODULO, then your present value is no
good, and you need another trip back through the PSR.

Two minor points. Note that you do not have to go back through
the N initializer for a repeat trip, since you already know and have
saved BSIZE and RSIZE. This speeds things up considerably. Secondly,
note that you always want less than MODULO as a result, because of
a possible zero answer. To repeat, if your MODULO is six, you get
any of the six different values of zero, one, two, three, four, or five.
You do not want an answer of "six" for a MODULO of six, since this
is the seventh, and not the sixth possible value.

Summing up, to generate a "random" number, put the range of that
number into MODULO. If this is your first time through, do a jSR
RESEED. If you want to repeat a previous series, do a jSR RESET. Then
do a jSR RANDOM. Your result ends up in the accumulator for
machine language use, and in HOLD either for high level language
access or for future reference.

If you want to use the same modulo over again, do a jSR REUSEN.
This is much faster.

The companion demo is called FILL. It fills the HIRES screen the
same way that WHY RND AIN'T didn't. Note particularly the speed
difference, how clean the process is, and how you eventually get to a
totally white screen.

Even this speed test is hardly fair, since we are still using the ludi
crously slow Applesloth HPLOT subroutines in the demo. You can go
much faster if you add your own custom HPLOT code.

You can extend your modulo to 511 by making two trips to RAN
DOM. To do this, divide the even part of your modulo by two. Gener
ate this value and double it. Then do a separate RND (2) to pick even
or odd resu Its.

354 Ripoff Module 7

MIND BENDERS

Show how to eliminate the repeat
trips for nonbinary N.

What is the actual speed involved
in generating a random number?

How can you use a PSR generator
to generate speaker noise?

- Why and how does a 23-bit PSR
fail the screen-fill test?

Can you think of any uses for
shorter or longer PSR generators?

Random Numbers 355

PROGRAM RM·7
RANDOM NUMBERS

----- NEXT OBJECT FILE NAME IS RANDOM
6FOO: 3 ORG $6FOO PUT MODULE '7 AT $6FOO

6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:

6FOO:

6FOO:
6FOO:
6FOO:

6FOO:

6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29

31

33
34
35
36
37
38
39
40
41
42
43
44
45
46

* *
* -< RANDOM >- *
* *
* (PSEUDORANDOM INTEGER GENERATOR) *
* * ~ VERSION 1.0 ($6FOO-$6FB2) *
* *
* 1-12-83 *
* *
* *
* COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS *
* BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE GIVES YOU A PSEUDORANDOM INTEGER FROM A
FIELD OF N. N CAN RANGE FROM 2 TO 255.

*** HOW TO USE IT ***

TO RESEED (INITIALIZE) FROM A TRUE RANDOM NUMBER,
DO A JSR SEED WITH A JSR $6F2E OR A CALL 28462.

TO REPEAT AN OLD PSEUDORANDOM SERIES, DO A JSR RESET
BY DOING A JSR $6F44 OR A CALL 28484.

TO GET A PSEUDORANDOM VALUE:

FROM MACHINE LANGUAGE, PUT N IN THE ACCUMULATOR
AND THEN JSR RANDOM AT $6F5B. RND(N) RETURNS IN A.

FROM APPI..ESOFT, STORE N IN MODULO AT 28593
AND THEN CALL RANDHL AT 28504. RND(N) ENDS
UP IN HOLD AT 28594.

356 Ripoff Module 7

PROGRAM RM-7, CONT'O.

6FOO:

6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:

6FOO:

6FOO:
6FOO:
6FOO:

6FOO:

6FOO:
6FOO:
6FOO:
6FOO:
6FOO:
6FOO:

49

51
52
53
54
55
56

58

60
61
62

64

66
67
68
69
70
11

••• GOTCHAS •••

HALF THE ORIGINAL RANDOM SEED cor~s FROM RNDL AND
RNDH IN THE MONITOR. THE OTHER HALF COMES FROM
THE PREVIOUS PSR SEQUENCE.
N VALUES ONE LESS THAN A BINARY POWER EXECUTE FASTEST.
APPLESOFT IS NEEDED FOR THE SCREENFILL DEMO.
THE A AND Y REGISTERS ARE USED BY THESE SUBS.

. ENHANCEMENTS *

THE DEMO "FILL" LETS YOU FILL THE HIRES SCREEN RANDOMLY.
RUN IT WITH A JSR $7EOOOR A CALL 332256.

.** RANDOM COMMENTS ***

VALUES OF N THAT ARE NOT EQUAL TO ONE LESS THAN A
POWER OF TWO MAY NEED REPEAT TRIPS THROUGH THE PSR
SEQUENCER. THIS IS DONE AUTOMATICALLY. THE PROBABILITY
OF A HIT ALWAYS EXCEEDS 50% WORST CASE PER PASS AND
IS USUALLY MUCH HIGHER.

Random Numbers 357

PROGRAM RM-7, CONT'O.

6FOO: 74 *** HOOKS ***

F3E2: 76 HGR EOU $F3E2 APPLESOFT CLEAR TO HIRES ONE
NS7: 77 HPLOT EOU $F4S7 APPLES OFT HIRES PLOT
COOO: 78 IOADR EOU $COOO KEYBOARD
COlO: 79 KBSTR EOU $C010 KEYBOARD RESET
004E: 80 RNDL EOU $4E RANDOM NUMBER LOW
004F: 81 RNDH EOU $4F RANDOM NUMBER HIGH
F6EC: 82 SETHCOL EOU $F6EC APPLES OFT HIRES COLOR SET
COSO: 83 TEXT EOU $COSO TEXT SCREEN

6FOO: 85 *** CONSTANTS ***

0003: 87 COLOR EQU $03 FOR A WHITE PLOT

358 Ripoff Module 7

PROGRAM RM-7, CONT'O.

6FOO: 90 *** SCREENFLL DEMO ***

6FOO: 92 THIS DEMO FILLS THE HIRES SCREEN ONE RANDOM
6FOO: 93 DOT AT A TIME.
6FOO: 94
6FOO: 95
6F{)0: 96
6FOO.: 97

6FOO:20 E2 F3 99 FILL JSR HGR CLEAR HIRES SCREEN
6F03:A2 03 100 LDX 'COLOR J PICK COLOR (03=WHITE)
6F05:20 EC F6 101 JSR SETHCOL

6F08:20 2E 6F 103 JSR RESEED SEED PSR FROM RNDL,RNDH

6FOB:A9 BF 105 PLOTDOT LDA t$BF J 191 DOTS HIGH
6FOD:8D Bl 6F 106 STA MODULO
6FI0:20 5B 6F 107 JSR RANDOM J GET RANDOM H
6F13:48 108 PHA AND SAVE ON STACK
6F14:A9 FF 109 LOA t$FF 256 DOTS WIDE
6F16:8D Bl 6F 110 STA MODULO
6F19:20 5B 6F 111 JSR RANDOM GET VERT
6FIC:AO 00 112 LOY '$00 NO HISCREEN
6FIE:AA 113 TAX J TRANSFER H
6FIF:68 114 PLA GET V
6F20:20 57 F4 115 JSR HPLOT PLOT DOT ON SCREEN
6F23:2C 00 CO 116 BIT IOADR READ KEYBOARD
6F26:30 02 117 BMI EXIT7
6F28:10 El 118 BPL PLOTDOT CONTINUE IF NO KP
6F2A:2C 10 CO 119 EXIT7 BIT KBSTR RESET KEYBOARD
6F2D:60 120 RTS J AND QUIT

Random Numbers 359

PROGRAM RM-7, CONT'O.

6F2E: 123 J *** PSEUDORANDOM GENERATOR ***

6F2E: 125 THE PSEUDORANDOM GENERATOR IS A REGISTER THAT IS 31
6F2E: 126 BITS I.ONG. BITS 28 AND 31 ARE EXCLUSIVE ORED TO SET
6F2E: 127 THE NEXT MSB. SEQUENCE LENGTH IS 2,147,483,647.
6F2E: 128
6F2E: 129
6F2E: 130 J
6F2E: 131

6F2E: 133 *** THE RESEEDER ***

6F2E:A5 4E 135 RESEED LDA RNDL GET RANDOM NUMBER
6F30:8D A7 6F 136 STA SEED1 FROM MONI'l'OR KEYBOARD RND
6F33:A5 4F 137 LDA RNDH AND STORE FOR PSR SEED.
6F35:8D AA 6F 138 STA SEED4
6F38:AD AD 6F 139 LDA PSR3 RESEED MIDDLE FROM OLD
6F3B:8D A8 6F 140 STA SEED2
6F3E:AD AC 6F 141 LDA PSR2
6F41:8D A9 6F 142 STA SEED3 AND FALL THRU TO RESET

6F44:AO 04 144 RESET LDY 1$04 J MOVE SEED TO PSR REGISTER
6F46:B9 A7 6F 145 NXT7 LDA SEED1,Y
6F49:99 AS 6F 146 STA PSR1,Y
6F4C:88 147 DEY
6F4D:DO F7 148 BNE NXT7

6F4F:AD AC 6F 150 LDA PSR2 FORCE PSR SEED TO NONZERO
6F52:DO 03 151 BNE DONE7 J BY FORCING NONZERO PSR2
6F54:EE AC 6F 152 INC PSR2
6F57:60 153 DONE 7 RTS AND RETURN

360 Ripoff Module 7

PROGRAM RM-7, CONT'O.

6F58: 156 • •• THE N INITIALIZER •••

6F58:AD B1 6F 158 RNDHL LDA MODULO ENTER HERE FROM APPLES OFT
6F5B:'3D B1 6F 159 RANDOM STA MODULO ENTER HERE FROM MACHINE LANGUAGE
6F5E:Ui) 05 160 BNE BSCALC N MUST NOT BE ZERO!
6F60:A9 02 161 !.DA +$02 USE N=2 MINIMUM
6F62:8D B1 6F 162 sorA MODULO

6F65:A9 FF 164 BSCALC LDA '$FF INIT SIZE TO 255
6F67:8D AF 6F 165 STA BSIZE ENOUGH ONES HERE > MODULO
6F6A:AO 08 166 LDY 1$08 FOR 8 BITS
6F6C:AD B1 6F 167 LOA MODULO GET MODULO AND CALCULATE
6F6F:2A 168 SMALLER ROL A NEXT LARGER
6F70:BO OC 169 BCS ADVANCE
6F72:4E AF 6F 170 LSR BSIZE DIVIDE BY TWO
6F75:88 171 DEY NEXT SMALLER
6F76:DO F7 172 BNE SMALLER
6F78:8C BO 6F 173 STY RSIZE SAVE FOR RETRY

6F7B: 176 ••• THE ACTUAL PSR GENERATOR •••

6F7B:AC BO 6F 178 REUS EN LOY RSIZE RESTORE IF RETRY
6F7E:AD AE 6F 179 ADVANCE LDA PSR4 GET HIGH PSR
6F81:0A 180 ASL A ALIGN BIT 28 TO 31
6F82:0A 181 ASL A
6F83:0A 182 ASL A
6F84:4D AE 6F 183 EOR PSR4 AND EXCLUSIVE OR
6F87:0A 184 ASL A MOVE TO CARRY
6F88:0A 185 ASL A
6F89:2E AB 6F 186 ROL PSR1 SHIFT LOW PSR
6F8C:2E AC 6F 187 ROL PSR2 SHIFT NEXT PSR
6F8F:2E AD 6F 188 ROL PSR3 AND ONCE MORE
6F92:2E AE 6F 189 ROL PSR4 FINALLY THE HIGH BYTE
6F95:88 190 DEY REPEAT FOR EVERY BIT IN BSIZE
6F96:DO E6 191 BNE ADVANCE

6F98:AD AD 6F 193 RANGE LDA PSR1 GET VALUE
6F9B:2D AF 6F 194 AND BSIZE MASK NEXT BINARY VALUE
6F9E:CD B1 6F 195 CMP MODULO IS VALUE TOO BIG?
6FA1:BO D8 196 BCS REUSEN YES, TRY AGAIN
6FA3:8D B2 6F 197 STA HOLD SAVE VALID PSR
6FA6:60 198 RTS AND EXIT

Random Numbers 361

PROGRAM RM-7, CONT'D.

6FA7: 201 ***PSR REGISTERS ~**

6FA7: 203 SEEDL AND SEEDH HOLD THE STARTING SEED SHOULD YOU
6FA7: 204 WANT TO RERUN THE SERIES. PSR1, PSR2, PSR3, AND
6FA7: 205 PSR4 FORM THE 23 BIT PSEUDORANDOM SEQUENCER.
6FA7: 206
6FA7: 207 BSIZE IS A SIZING MASK.
6FA7: 208
6FA7: 209 MODULO HOLDS THE VALUE N, WHILE HOLD KEEPS THE RANDOM (N)
6FA7: 210

6FA7:AA 212 SEED1 DFB $AA SEED LOW VALUE
6FA8:AA 213 SEED2 DFB $AA SEED SECOND LOWEST
6FA9:AA 214 SEED3 DFB $AA SEED THIRD LOWEST
6FAA:AA 215 SEED4 DFB $AA HIGH SEED
6FAB:AA 216 PSR1 DFB $AA PSR LOW BYTE
6FAC:AA 217 PSR2 DFB $AA PSR SECOND LOWEST
6FAD:3B 218 PSR3 DFB $3B PSR THIRD LOWEST
6FAE:AA 219 PSR4 DFB $AA 7 PSR HIGHEST
6FAF:FF 220 BSIZF~ DFB $FF SAVE OF BINARY SIZE
6FBO:04 221 RSIZE DFB $04 YSAVE FOR RETRY

6FB1:07 223 MODULO DFB $07 MAXIMUM SIZE OF N
6FB2:00 224 HOLD DFB $00 SAVE OF PSR VALUE

I
SHUFFLE

a fast "random exchange"
method of rearranging cards or
number arrays

I

There are lots of computer situations where you might like to take a
pile of objects and rearrange them into some different order.

Shuffling a deck of cards is the most obvious example of this sort of
thing. You might use playing cards for poker or blackjack simulations.
Other times, the cards may have different symbols or messages on
them. Tarot cards are an example, as are the Chance and Community
Chest decks in a Monopoly simulation.

The things being shuffled need not be paper cards, of course. They
could be tiles in a magic number game, letters in a word, the se
quence in which new things appear, a maze in an adventure, or a
journey into cryptography.

The fancy name for shuffling is randomizing without replacement. In
randomizing without replacement, you simply rearrange a fixed array
of values that you already have on hand. Once drawn from the deck,
the four of clubs will not reappear.

The random number generator of the last ripoff module kept all the
marbles in the pipe. You just cloned off the marbles you wanted. This
was randomizing with replacement. In randomizing with replacement,
the same value can come up over and over again.

363

364 Ripoff Module 8

Hence ...

Randomizing WITH Replacement

Grabbing a random number without
removing that number from being
available for future grabs.

Rolling a die is an example.

Randomizing WITHOUT Replacement

Grabbing a random number while also
eliminating the availability of that
number for future grabs.

Shuffling cards is typical.

Note that these are totally different things. You'll get absurd results if
you try to use the wrong one. Like only six different throws of a die
before the die is "empty." Or the nine of spades dealt to you three
cards in a row.

To throw some other terms at you, grabbing without replacement
involves an infinite pool of numbers. Or at least an irrigation ditch full.

Grabbing with replacement involves a finite pool of numbers. These
numbers are usually arranged into a fixed and rather small array. The
array size on a playing card deck is usually 52.

The typical way that beginners try to shuffle things on their Apple
has two very serious flaws. First, of course, they will be trying to use
the Applesoft RNO subroutine, which, as we have seen, is not.

Besides being rather slow.
We can easily fix this particular hassle by switching to the random

number generator of the last ripoff module.
The second problem is more subtle. If you grab 52 random numbers

in a row, you have to check each new number to make sure it was not
duplicated before. This is no problem on the first card, and is trivial on
the first few cards. But on, say card 50, the odds are 50/52 that you
already have this card and have to go back again and again.

In fact, for your last card, you might need 52 additional tries to pick
up only a 0.63 odds of finding the remaining card.

l/e and all that statistical stuff.
You, in fact, have to deal hundreds or even thousands of cards to be

reasonably sure of getting 52 different ones. So, testing for duplicates
is a bad scene because it takes ridiculously long and involves many
wasted trips to the random number generator.

Let's work smarter and not harder. Do not try to take your numbers
out of an infinite pool. Instead, take them out of a small and fixed
array. Center your activities on rearranging the array.

Shuffle 365

Here is a good and fast way to shuffle a pile of something.

TO REARRANGE N OBJECTS-

Take the object in the first location and
interchange it with an object in another
location in the array, chosen at random.

Then take the object in the second
location and do the same thing.

Repeat this for all the locations.

In other words, lay your 52 cards on the table. Grab the first card
and interchange it with any card, picked at random. Next, grab the
second card and interchange it with any card, again picked at ran
dom. Continue the process till you run out of cards.

Note two things. First, there are only 52 random numbers needed
this way, since each random number gets used only once. Secondly, a
card in some position will sometimes replace itself. This happens if the
card in location number seven is interchanged with the random loca
tion number seven that just came up.

The odds on a card replacing itself are exactly the same as shuffling
a real card deck and having the same card end up in the same posi
tion.

Which is rare but it certainly can happen. You can even get the
deck back exactly the way you started. Odds on this are a tad low,
though. The key point is that this random interchange method exactly
duplicates a fair and thorough shuffle of real cards.

The same thing works for other shuffles. For a 15-tile magic square,
you only interchange 15 values. You only swap six letters to jumble a
six letter word, and so on.

Let's try it.

A Shuffler

The subroutine called SHUFFLR will take an array named CARDECK
of length ARNUM and reorder everything.

SHUFFLR does this by using the random number generator of the
previous ripoff module. CARDECK is presently set up to hold 52 cards,
and ARNUM equals decimal 52 or hex $34.

The shuffling process is done by taking the first array value and
interchanging it with an array value in a slot chosen at random. To
find the exchange slot, you get a random number from 0 to 51 and do
the exchange. The process gets repeated 52 times, thus swapping
each card with some other card or itself at least once.

One of the array values being swapped is temporarily stashed on the
stack. This handles the juggling process of moving two things between
two locations without dropping either one of them.

To use SHUFFLR for other tasks, you just change the array values
and the size of your array.

Note that SHUFFLR does not care what is inside each array slot. This
lets you use meaningful codes for each array value. These codes are
totally independent of the shuffling process.

How do you code a deck of cards?
One way to code the cards is to use one hex digit for the values

366 Ripoff Module 8

from ace through king. An obvious choice is to use $X1 for an ace,
$X2 for a two, $X9 for a nine, $XA for a ten, $XB for a jack, and so on.
Let's use the least significant hex digit for this.

We will use the other hex digit to pick a suit. Say $OX for hearts,
$1 X for diamonds, $2X for clubs, and $3X for spades. Thus, the ace of
spades will be coded $31, while the king of diamonds will be a $1 D.

Clear?
A companion demo called DEALER will exercise your shuffler. The

"5" key will shuffle the deck. The "R" key will repeat the previous
shuffle for a replay. The "0" key, or optionally, the spacebar deals a
card. The "Q" key quits the program for you.

We have used the short file printing method to handle text. It is the
better choice here because we have lots of short and ordered words
that we need in a more or less random access way. We are also under
the nasty 256 character limit here. Use of a short file also saves drag
ging IMPRINT into the demo. It also gives you a chance to play with
absolute indexed addressing.

The four options needed are simple enough that we will handle
them by brute force, rather than using fancier option picker code.

We have also included a card counter. This one can be used for a
position or a score, and does not need any hex-to-decimal or
decimal-to-hex conversion. I'll leave it to you to puzzle out how this
one works.

Naturally, a machine language randomizing-without-replacement
module is far too fast to use as a real time playing card shuffle. So,
we'll have to slow it down bunches. To do this, we will build the shuf
fler into a sound effect that mimics a deck being shuffled, and adjust
the timing to "real" time.

Should you need something rearranged very quickly, be sure to
defeat the sound effects. Or else adjust the effects to mimic what you
are emulating.

Once again, the pseudo-random generator of the previous ripoff
module is needed to get this module to work. So, be sure to have
either RANDOM or THE WHOLE BALL OF WAX in your machine
when using either the shuffler or the card demo.

MIND BENDERS

-What is the total time needed to
shuffle a deck of 52 cards, with and
without the sound effects?

-Add a HIRES or LORES graphics
display of the playing cards.

-Show how to do an "instant solver"
for those word jumble puzzles on a
newspaper's comics page.

-In a word guessing game that has a
file of hundreds of words, show
how to get each word just once yet
in a different order each session.

-Why does the card number display
work in decimal without needing
any hex conversion?

-What changes are needed to make
the demo professionally useful?

Shuffle 367

368 Ripoff Module 8

PROGRAM RM·8
SHUFFLE

NEXT OBJECT FILE NAME IS SHUFFLER
7000: 3 ORG $7000 J PUT MODULE '8 AT $7000

7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:
7000:

7000:

7000:
7000:
7000:

7000:

7000:
7000:
7000:
7000:
7000:
7000:

7000:
7000:
7000:

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27
28
29

31

33
34
35
36
37
38 J

40
41
42

* * * -< SHUFFLER >- *
* *
* RANDOMIZING WITHOUT REPLACEMENT *
* *
* VERSION 1.0 ($7000-$7246) *
* * * 5-24-83 * * *
* * * COPYRIGHT C 1983 BY *
* *
* DON LANCASTER AND SYNERGETICS * * BOX 1300, THATCHER AZ., 85552 *
* *
* ALL COMMERCIAL RIGHTS RESERVED *
* *

*** WHAT IT DOES ***

THIS MODULE SHOWS YOU HOW TO SHUFFLE OR REARRANGE
AN ARRAY OF CARDS, NUMBERS, LETTERS, OR OBJECTS.

*** HOW TO USE IT ***

TO USE THE SHUFFLER:

START YOUR ARRAY FILE WITH CARDECK AT $7213.
PUT THE NUMBER OF ARRAY ELEMENTS IN ARNUM AT $710E.
THEN JSR SHUFFLR AT $70Fl. EQUIVALENT APPLES LOTH
LOCATIONS ARE 29203, 28942, AND 28913.

TO RUN THE CARD DEALER DEMO:

JSR DEALER AT $7000 OR CALL 28672.

PROGRAM RM-8, CONT'D.

7000: 45 1

7000: 47 J
7000: 48
7000: 49 1
7000: 50
7000: 51
7000: 52

7000: 54 J

7000: 56
7000: 57
7000: 58

7000: 60

7000: 62
7000: 63
7000: 64
7000: 65
7000: 66
7000: 67

*** GOTCHAS ***
THE RANDOM SUBROUTINE MUST BE PRESENT IN THE
MACHINE. PRELOAD "RANDOM" OR "THE WHOLE BALL
OF WAX" TO DO THIS.

YOUR ARRAY FILE MUST BE PRELOADED WITH TH~
PROPER VALUES.

*** ENHANCEMENTS ***
WORDS, OBJECTS, OR OTHER TYPES OF CARDS ARE DONE
BY CHANGING THE MEANING AND SIZE OF YOUR ARRAY.

*** RANDOM COMMENTS ***

Shuffle 369

THIS SHUFFLE DEMO IS INTENDED TO SHOW THE PROCESS
INVOLVED. AN ACTUAL CARD PROGRAM HAS TO BE FAR
FRIENDLIER THAN THIS, AND SHOULD DISPLAY REAL CARDS.

THE DEMO ALSO SHOWS HOW TO HANDLE SIMPLE SCORING
WITHOUT NEEDING HEX TO DECIMAL CONVERSION.

370 Ripoff Module 8

PROGRAM RM-8, CONT'O •

7000: 70 *** HOOKS ***

FDFO: 72 COUT1 EQU $FDFO OUTPUT TEXT TO SCREEN
FC58: 73 HOME EQU $FC58 CLEAR TEXT SCREEN AND HOME CURSOR
FB2F: 74 INIT EQU $FB2F INITIALIZE TEXT SCREEN
COOO: 75 IOADR EQU $COOO KEYBOARD INPUT LOCATION
COlO: 76 KBDSTRB EQU $C010 KEYBOARD STROBE RESET
FD1B: 77 KEYIN EQU $FD1B MONITOR READKEY SUBROUTINE
FE80: 78 SETINV EQU $FE80 SET INVERSE SCREEN
FE84: 79 SETNORM EQU $FE84 SET NORMAL SCREEN
C030: 80 SPKR EQU $C030 SPEAKER CLICK OUTPUT
FCA8: 81 WAIT EQU $FCA8 MONITOR TIME DELAY

6F5B: 83 RANDOM EQU $6F5B RANDOM NUMBER INITIALIZER
6F2E: 84 RESEED EQU $6F2E RANDOM NUMBER SEEDER
6F7B: 85 REUSEN EQU $6F7B RANDOM NUMBER GENERATOR

0020: 87 WNDLFT EQU $20 LEFT SIDE OF SCROLL WINDOW
0021: 88 WNDWTH EQU $21 WIDTH OF SCROLL WINDOW
0022: 89 WNDTOP EQU $22 TOP OF SCROLL WINDOW
0023: 90 WNDBTM EQU $23 BOTTOM OF SCROLL WINDOW
0024: 91 CH EQU $24 CURSOR HORIZONTAL POSITION
0033: 92 PROMPT EQU $33 PROMPT SYMBOL

7000: 94 *** TEXTFILE COMMANDS ***

0088: 96 B EQU $88 BACKSPACE
008D: 97 C EQU $8D CARRIAGE RETURN
0084: 98 D EQU $84 DOS ATTENTION
009B: 99 E EQU $9B ESCAPE
008A: 100 L EQU $8A LINEFEED
0060: 101 P EQU $60 FLASHING PROMPT
0000: 102 X EQU $00 END OF MESSAGE

PROGRAM RM-8, CONT'D •

7000: 105 *** DEALIN DEMO ***

7000:
7000:

107 ,
108 ,

THIS DEMO EXCERCISES THE SHUFFLER
ON A STM!DARD DECK OF 52 CARDS.

7000:20 2F FB
7003:20 58 FC
7006:20 2E 6F
7009:AD OE 71
700C:20 5B 6F

110 DEALER
111
112
113
114

700F:A9 07 116
7011:85 24 117
7013:20 80 FE 118
7016:AO 5E 119
7018:20 E3 70 120
701B:20 84 FE 121
701E:AO 74 122
7020:20 E3 70 123

7023:A9 07 125
7025:85 22 126
7027:A9 05 127
7029:85 20 128
702B:A9 22 129
702D:85 21 130
702F:20 58 FC 131

7032:2C 10 CO
7035:AD 00 CO
7038:10 FB
703A:2C 10 CO
703D:C9 E1
703F:90 02
7041:E9 20

133 CMND8
134 LOOK8
135
136
137
138
139

141 CSORT
142
143
144
145
146
147
148
149
150

7043:C9 D3
7045:FO 1D
7047:C9 C4
7049:FO 2E
704B:C9 AO
704D:FO 2A
704F:C9 D2
7051:FO 17
7053:C9 D1
7055:FO 06
7057:20 18
705A:4C 32

71 151
70 152

JSR INIT
JSR HOME
JSR RESEED
LDA ARNUM
JSR RANDOM

SET UP TEXT SCREEN
, AND CLEAR IT

RESEED RANDOM
GET ARRAY NUMBER
INIT RANDOM

LDA '$07 , TAB 7 TO RIGHT
STA CH
JSR SETINV INVERSE TITLE
LDY ,>MSO-CV1 GET HEADER
JSR TEXT8 AND DISPLAY
JSR SETNORM NORMAL TEXT
LDY '>MS1-CV1, GET SCRF.EN PROMPTS
JSR TEXT8 AND DISPLAY

LDA 1$07
STA WNDTOP
LDA 1$05
STA WNDLFT
LDA 1$22
STA WNDWTH
JSR HOME

BIT KBDSTRB
LDA IOADR
BPL LOOK8
BIT KBDSTRB
CMP I$E1
BCC CSORT
SBC 1$20

CMP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
JSR
JMP

'$D3
SHUFF
I$C4
DEAL
'$AO
DEAL
'$D2
REPLAY
'$D1
QUIT8
EFFECT2
CMND8

SET LOWSCREEN WINDOW

TAB OVER TO CENTER

GET INSIDE WINDOW

RESET KEYBOARD
READ KEYBOARD

FORCE CASE

SUBTRACT TO CHANGE CASE

S FOR SHUFFLE?
YES
D FOR DEAL ?

ALSO SPACE FOR DEAL

R FOR REPLAY?

Q FOR QUIT?

BLORK
TRY AGAIN FOR LEGAL KEY

Shuffle 371

372 Ripoff Module 8

PROGRAM RM-a, CONT'D.

705D: 155 *** QUIT EXIT ***
7C5D:20 2F FB 157 QUIT8 JSR INIT OPEN WINDOW
7060:20 58 FC 158 JSR HOME CLEAR SCREEN
7063.:60 159 RTS AND EXIT ON -Q-

7064: 161 *** SHUFF PROCESSING ***

7064: 163 THIS CODE SHUFFLES THE DECK AND
7064: 164 RESETS THE CARD COUNTERS TO ONE.

7064:20 F1 70 166 SHUFF JSR SHUFFLR SHUFFLE THE DECK
7067:4C 6A 70 167 JMP REPLAY RESET COUNTERS

706A: 169 *** REPLAY MODULE ***
706A: 171 RESETS THE CARD COUNTER TO ZERO.

706A:AO 00 173 REPLAY LDY 1$00 RESET COUNTERS
706C:8C EF 70 174 STY HEXCNT
706F:C8 175 INY ONE MORE FOR PEOPLE
7070:8C FO 70 176 STY DECCNT
7073:20 58 FC 177 JSR HOME 7 CLEAR OLD CARDS
7076:4C 32 70 178 JMP CMND8 GO GET NEXT COMMAND

Shuffle 373

PROGRAM RM-8, CONT'O.

7079: 181 , **~ DEAL P~OCESSING ***

7079: 183 , THIS CODE TR~S TO DEAL A CARD IF
7079: 184 J THERE ARE ANY LEFT IN THE DECK.

7079:AD EF 70 186 DEAL LDA REXCNT GET NUMBER IN DECK (52)
707C:CD OE 71 187 CMP ARNON ANY CARDS LEFT?
707F:BO 5A 188 BCS EMPTY8 NO, SAY SO

7081:AO A5 190 LDY I>MS2-CV1 7 SAY "CARD"
7083:20 E3 70 191 JSR TEXT8
7086:AD FO 70 192 LDA DECCNT GET TENS FOR CARD NUMBER
7089:4A 193 LSR A AND SHIFT FOUR TO RIGHT
708A:4A 194 LSR A
708B:4A 195 LSR A
708C:4A 196 LSR A
708D:FO 05 197 BEQ LOltt"DEC IS IT NONZERO?
708F:09 BO 198 ORA I$BO CHANGE TO ASCII
7091:20 FO FD 199 JSR COUT1 AND PRINT IT
7094:AD FO 70 200 LOWDEC LDA DECCNT GET UNITS FOR CARD NUMBER
7097:29 OF 201 AND t$OF , MASK TENS
7099:09 BO 202 ORA t$BO CHANGE TO ASCII
709B:20 FO FD 203 JSR COUT1 AND PRINT IT

"709E:AO AS 205 LDY I>MS3-CV1 SAY "IS THE"
70AO:20 E3 70 206 JSR TEXT8 TO SCREEN

70A3:AE EF 70 208 LDX REXCNT GET CARD
70A6:BD 13 72 209 LDA CARDECK,X FROM DECK
70A9:48 210 PHA AND SAVE FOR SUIT
70AA:29 OF 211 AND t$OF MASK SUIT
70AC:AA 212 TAX USE AS INDEX
70AD:CA 213 DEX MAKE ACE=l, NOT ZERO 1
70AE:BC 2A 71 214 LDY CARVAL,X GET SUIT NAME
70B1:20 E3 70 215 JSR TEXT8 AND PRINT TO SCREEN

70B4:AO B4 217 LDY t>MS4-CV1 SAY "OF"
70B6:20 E3 70 218 JSR TEXT8 AND PRINT IT

70B9:68 220 PLA GET CARD BACK
70BA:4A 221 LSR A AND SHIFT TO RIGHT
70BB:4A 222 LSR A
70BC:4A 223 LSR A
70BD:4A 224 LSR A
70BE:AA 225 TAX , USE AS INDEX
70BF:BC 37 71 226 LDY CARSUIT,X GET SUIT NAME
70C2:20 E3 70 227 JSR TEXT8 AND PRI'NT IT

374 Ripoff Module 8

PROGRAM RM-S, CONT'D.

70C5:AO B9
70C7:20 E3
70CA:EE EF
70CD:F8
70CE:18
70CF:AD FO
70D2:69 01
70D4:8D FO
70D7:D8
70D8:4C

70DB:AO
70DD:20
70EO:4C

70E3:

70E3:
70E3:

70E3:B9
70E6:FO
70ES:20
70EB:CS
70EC:DO

70EE:60

70EF:

70EF:00
70FO:01

32

BD
E3
32

3B
06
FO

F5

70
70

70

70

70

70
70

71

FD

230 LDY f>MS5-CV1 GET PERIOD AND CR
231 JSR TEXTS AND PRINT IT
232 INC HEXCNT J GO TO NEXT CARD
233 SED GO TO DECIMAL FOR SCORE
234 CLC
235 r,DA DECCNT INCREMENT DECIMAL
236 AOC 1$01
237 STA DECCNT
238 CLD GET OUT OF DECIMALI
239 JMP CMND8 GO GET NEXT COMMAND

241 EMPTY8 LDY '>MS6-CV1 GET EMPTY MESSAGE
242 JSR TEXT8 PUT ON SCREEN
243 JMP CMND8 GO GET NEXT COMMAND

245 *** TEXT GENERATOR ***

247 THIS USES THE SHORT FILE METHOD TO PUT
248 MESSAGES ONLY ON THE SCREEN.

250 TEXT8 LOA CV1,Y GET NEXT CHARACTER
251 BEQ DONE8 TEST FOR $00
252 JSR COUTl OUTPUT TO SCREEN
253 INY GO TO NEXT CHARACTER
254 BNE TEXTS AND REPEAT

256 DONES RTS RETURN WHEN FINISHED

25S *** CARD COUNTER STASH ***

260 HEXCNT DFB $00
261 DECeNT DFB $01

HEX COUNT FOR MACHINE
DECIMAL COUNT FOR PEOPLE

Shuffle 375

PROGRAM RM-S, CONT'D.

70F1: 264 *** EHDFFLER SUBROUTINE ***

70F1: 266 THIS MODULE REARRANGES THE ARRAY CALLED CAP~ECK
70F1: 267 AND WHOSE LENGTH IS STORED IN ARNUM.
70F1: 268
70F1: 269 THE RANDOM SUBROUTINE MUST BE PRESENT IN THE
70F1: 270 MACHINE AND MUST BE PREVIOUSLY SEEDED AND
70F1: 271 INITIALIZED.

70F1:AE OE 71 273 SHUFFLR LDX ARNUM GET NUMBER OF SWAPS
70F4:CA 274 DEX FOR ARRAY 0-51, NOT 1-52
70F5:20 7B 6F 275 NEXT8 JSR REUSEN GET RANDOM POSITION
70F8:A8 276 TAY AND HOLD IN Y REGISTER
70F9:BD 13 72 277 LDA CARDECK,X GET FIRST FIXED VALUE
70FC:48 278 PHA STASH TO JUGGLE
70FO:B9 13 72 279 LOA CARDECK,Y GET RANDOM NEXT VAT.UE
7100:90 13 72 280 STA CARDECK,X J REPLACE NEXT WITH FIRST
7103:68 281 PLA JUGGLE BACK
7104:99 13 72 282 STA CARDECK,Y REPLACE FIRST WITH NEXT
7107:20 OF 71 283 JSR EFFECT1 MAKE NOISE (OPTIONAL)
710A:CA 284 DEX ONE LESS POSITION
710B:10 E8 285 BPL NEXT8 REPEAT FOR EACH POSITION
7100:60 286 RTS QUIT WHEN FINISHED

710E: 288 *** SHUFFLER STASH ***

710E:34 290 ARNUM DFB 52 J NUMBER OF ELEMENTS IN ARAY

710F: 292 *** SHUFFLER SOUND EFFECTS ***

710F:8A 294 EFFECT1 TXA DECK SHUFFLING SOUND
7110:DO 02 295 BNE NOZER08 DISALLOW ZERO VALUE
7112:A9 01 296 LDA *$01
7114:0A 297 NOZER08 ASL A SLOW IT DOWN!
7115: 20 A8 FC 298 JSR WAIT DELAY, THEN FALL THROUGH
7118:A9 05 299 EFFECT2 f.DA 1$05 NUMBER OF CLICKS PER WRAP
711A:48 300 NEXTWP PHA SAVE ON STACK
711B: 2C 30 CO 301 BIT SPKR MOVE SPEAKER CONE
711E:A9 07 302 LDA 1$07 SET PITCH OF WRAP
7120:20 A8 FC 303 JSR WAIT
7123:68 304 PLA GET CLICK COUNTER
7124:38 305 SEC
7125:E9 01 306 SBC 1$01 AND COUNT DOWN
7127:00 F1 307 BNE NEXTWP
7129:60 308 RTS AND RETURN

376 Ripoff Module 8

PROGRAM RM-8, CONT'D.

712A:

712A:
712A:
712A:
712A:

712A:

712A:OO
. 712B: 04
712C:08
7l2D:OE
712E: 13
712F:18
7130:1C
7131:22
7132:28
7133:20
7134:31
7135:36
7136:3C

7137: 41
7138:48
7139:51
713A:57

311 1

313 1
314 1
315
316 1

318

t MESSAGE FILE ~**

WE'LL USE THE SHORT FILE METHOD HERE SINCE
RANDOM ACCESS OF A·FEW SHORT AND FIXED
MESSAGES ARE NEEDED.

*** MESSAGE POINTERS ***

320 CARVAL DFB >CVI-CV1 THESE POINT TO CARD VALUES
321 DFB >CV2-CVl
322 DFB >CV3-CVl
323 DFB >CV4-CVl
324 DFB >CV5-CV1
325 DFB >CV6-CVl
326 DFB >CV7-CVl
327 DFB >CV8-CVl
328 DFB >CV9-CVl
329 DFB >CVI0-CVl
330 DFB >CV11-CVl 1
331 DFB >CV12-CVl
332 DFB >CV13-CVl 1

334 CARSUIT DFB >CSO-CVl THESE POINT TO THE CARD SUITS
335 DFB >CSI-CVl
336 DFB >CS2-CVl
337 DFB >CS3-CVl

Shuffle 377

PROGRAM RM-8, CONT'D.

7l3ti: 340 *** THE CARD VALUES * * *

713B:C1 C3 C5 342 CV1 ASC "ACE"
713E:00 343 OFB X

713F:04 07 CF 345 CV2 ASC "TWO"
7142:00 346 OFB X

7143:04 C8 02 348 CV3 ASC "THREE"
7146:C5 C5
7148:00 349 OFB X

7149:C6 CF 05 351 CV4 ASC "FOUR"
714C:02
714D:00 352 OFB X

714E:C6 C9 06 354 CV5 ASC "FIVE"
7151:C5
7152:00 355 OFB X

7153:03 C9 08 357 CV6 ASC "SIX"
7156:09 358 DFB X

7157 :03 C5 06 360 CV7 Ase "SEVEN"
715A:C5 CE
715C:00 361 DFB X

715D:C5 C9 C7 363 CV8 ASC "EIGHT"
7160:C8 04
7162:00 364 DFB It

7163:CE C9 CE 366 CV9 ASC "NINE"
7166:C5
7167:00 367 OFB X

7168:04 C5 CE 369 CV10 ASC "TEN"
716B:00 370 OFB X

716C:CA C1 C3 372 CVll ASC "JACK"
716F:CB
7170:00 373 OFB X

7171:01 05 C5 375 CV12 ASC "OUEEN"
7174 :C5 CE
7176:00 376 OFB X

7177:CB C9 CE 378 CV13 ASC "KING"
717A:C7
717B:00 379 OFB X

378 Ripoff Module 8

PROGRAM RM-8, CONT'O .

717C: 382 *** THE CARD SUITS ***

717C:C8 CS C1 384 CSO ASC "HEARTS"
717F:02 04 D3
7182:00 385 DFB X

7183:C4 C9 C1 387 CS1 ASC "DIAMONDS"
7186 :CD CF CE
7189:C4 D3
718B:00 388 DFB X

718C:C3 CC DS 390 CS2 ASC "CLUBS"
718F:C2 D3
7191:00 391 DFB X

7192:D3 DO C1 393 CS3 ASC "SPADES"
719S:C4 CS D3
7198:00 394 DFB X

7199: 396 *** TEXT SCREEN MESSAGES ***

7199:C3 C1 D2 398 MSO ASC "CARD SHUFFLING DEMO"
719C:C4 AO D3
719F:C8 OS C6
71A2:C6 CC C9
71A5 : CE C7 AD
71A8:C4 CS CD
71AB:CF
71AC:8D 8D 00 399 DFB C,C,X

71AF:A8 D3 A9 401 MS1 ASC "(S)HUFFLE, (D)EAL, (R)EPLAY, (Q)UIT ?
71B2:C8 DS C6
71BS:C6 CC CS
71B8:AC AO A8
71BB:C4 A9 CS
71BE:C1 CC AC
71C1:AO A8 D2
71C4:A9 CS DO
71C7 :CC C1 D9
71CA: AC AO A8
7lCD:01 A9 D5
71DO:C9 D4 AO
71D3:BF
71D4:8D 8D 402 DFB C,C
71D6 : AD AD AD 403 ASC "---> "
71D9:BE AO
71DB: 60 88 8D 404 DFB P,B,C,C,X
71DE:8D 00

Shuffle 379

PROGRAM RM-8, CONT'O.

71EO:C3 Cl D2 407 MS2 ASC ·CARD •
71E3:C4 AO
71ES:OO 408 DFB X

7lE6:AO C9 D3 410 MS3 ABC • IS THE •
7lE9:AO D4 C8
7lEC:CS AO
7lEE:00 411 DFB X

7lEF:AO CF C6 413 MS4 ASC " OF •
71F2:AO
7lF3:00 414 DFB X

7lF4:AE 416 MSS ASC . " .
7lFS:8D 8D 00 417 DFB C,C,X

7lF8:AO AO AO 419 MS6 ASC • SORRY, DECK IS EMPTY!"
7lFB:D3 CF D2
71FE:D2 D9 AC
7201:AO C4 CS
7204:C3 CB AO
7207:C9 D3 AD
720A:CS CD DO
720D:D4 D9 Al
7210:8D 8D 00 420 DFB C,C,X

380 Ripoff Module 8

PROGRAM RM-8, CONT'O.

7213:

7213:
7213:
7213:
7213:
7213:
7213:

7213:01
7216:04
7219:07
721A:08
721D:OB

02
05

09
OC

7220: 11 12
7223:14 15
7226:17
7227:18 19
722A:1B 1C

722[;:21 22
7230=24 25
7233:27
7234:28 29
7237:2B 2C

723A:31 32
723D~34 35
7240:37
7241:38 39
7244: 3B 3C

03
06

OA
OD

13
16

1A
1D

23
26

2A
2D

33
36

3A
3D

423

425
426
427 ,
428 J
429
430

* * ~ Di,;CK 011' CARDS •• *

THE LOW BYTE 011' EACH ENTRY IS THE CARD
VALUE WITH' Xl-ACE 6 X2-'!'WO, XA-TEN, ETC.

THE HIGH BYTE 011' EACR ENTRY IS THE CARD
SUIT.WITH. OX-HEARTS, lX-DIAMONDS, 2X
CLUBS, AND 3XzSPADES~

432 CARDECK DFB $01,$02,$03,$04,$05,$06,$07

433 DFB $08,$09,$OA,$OB,$OC,$OD

435 DFB $11,$12,$13,$14,$15,$16,$17

436 DPB $18,$19,$1A,$1B,$1C,$1D

438 DFB $21,$22,$23,$24,$25,$26,$27

439 DFB $28,$29,$2A,$2B,$2C.$2D

441 DPB $31,$32,$33,$34,$35,$36,$37

442 DFB $38,$39,$3A,$3B.$3C,$3D

*** SUCCESSFUL ASSEMBLY: NO ERRORS

DIFFERENCES BETWEEN "OLD"
AND "NEW" EDASM

Apple Computer's EDASM editor/assembler has recently been over
hauled and upgraded. There are now two new versions, one for DOS
3.3e, and one for ProDOS. Both are available in their respective
toolkits in Apple's Workbench series.

The bottom line is that EDASM is now a first class, first rate
macroassembler with just about all the bells and whistles anyone
could ask for, including dual file editing, "library" module insertion,
in-place assembly, and co-resident assembly. While the editor portion
of EDASM remains as putrid as ever, you can simply use Applewriter
lie and WPL instead, doing "new way" editing as in chapter five.

Included with either EDASM is a new debugging tool called the
BUGBYTER. The BUGBYTER includes a fancy upgrade of the old
miniassembler, along with greatly improved single step, trace, and
debug routines in a package that lets you do much more and do it
much more quickly. For instance, there are single keystrokes to pick
any screen mode, and you can use the game paddle to control debug
ging speed. You can even debug parts of your code at full speed and
parts at slow speed. This is most handy for time critical routines.
BUGBYTER is runnable anywhere in memory.

Very little was lost in going from "old" EDASM to "new" EDASM.
With "new" EDASM, reserved labels normally include "A," "a," "X,"
"x," "Y," and "y," instead of just "A." You also must separate the
op code and operand of SKP, ROL, ROR, ASL, LRS, and LST. Thus, a
"SKP5" or a "ROLA" command will generate error messages under
"new" EDASM. To use "old" EDASM source code with "new"

381

382 Appendix A

EDASM, spaces must be added between op code and operand of all
these commands. Tab settings are also different in the "new" version.

Here's a list of the important changes and improvements to the edi
tor portion of DOS 3.3e version of "new" EDASM. Note that anything
you don't like about these features is easily gotten around by doing
"new way" editing under Applewriter lie instead.

Here goes:

1. The author of "old" EDASM was Randy Wigginton; the new author is
John Arkley, who upgraded and improved Randy's original work.

2. The BUGBYTER is included, a tremendous improvement over the old
miniassembler, single step, and trace routines.

3. System ID routines are now supplied and standardized, letting you
configure your code for a II, 11+, or lie.

4. The work buffer is now 26,000 characters long, which is somewhat
shorter than "old" EDASM. However, with "new way" editing under
Applewriter lie, your edit file can be 48,000 characters long.

5. The ASMIDSTAMP is restricted in its form so that real time clocks can
be supported.

6. The FILE command now displays the slot and drive.
7. The manuals are greatly improved and now include tutorials.
8. The command level now automatically accepts either upper or lower

case.
9. Combined upper and lower case is now standard on the Apple lie. On

older Apples, new commands of SETL and SETU are available for those
Apples with a shift key mod and a lower case display. Commands of [E]
(shift to lower case) and [W] (shift to upper case) are available for very
old Apples without lower case. The screen will not be legible in lower
case on these older machines.

10. Direct DOS commands using the "." prefix are not filtered for possible
damage. In particular, ".SAVE" will plow the works.

11. You still cannot insert into the middle of your source code using "old
way" editing. You have to use APPEND and then COPY. With "new
way" editing, you can, of course, insert anything you want any place
you want any time you want.

12. There is a new VOL command that goes along with SLOT and DRIVE
that will return the current disk volume in use.

13. There is a new ADD command that lets you add text beyond a certain
line number. Thus ADD 16 will add new lines beyond old line 16, com
pared to INS 16 which would insert new lines before old line 16.

14. The INSert or ADD modes can now be stopped with either a [D] or [Q].
15. A new REPLACE mode erases and then overwrites in one step. Before

you had to DELete and then INSert.
16. There now is a recovery procedure to undo the NEW command. It is

hairy to use, but it does exist.
17. A command of L43-6 lists six lines starting at line 43. Any time the sec

ond number is less than the first one, it is interpreted as "how many?".
18. The [R] command will relist whatever you last asked of [L].
19. A new command of SETD lets you change the delimiter from a ":". This

lets you search and replace on a colon. Space or carriage returns are
not allowed as delimiters.

20. You can now edit on both a range of numbers and a search string.
21. You can edit two files at once. The command of SWAP moves the two

files between the "active" and "passive" editing buffers, sort of like a
[Y] split screen in Applewriter lie. The command of KILL2 deletes the
"passive" buffer, similar to a "[Y]-N" in Applewriter lie.

22. You can pick either 40 or 80 column operation with a "COL 40" or
"COL 80" command.

Differences Between "Old!! and "New!! EDASM 383

23. There is now a simple way to undo the END command. just set
MAXFILES 5 and Call 3075.

Here are the major improvements in the assembly portion of "new"
EDASM:

1. The DOS 3.3 version of "new" EDASM will not do an assembler listing
to disk. You have to use the ProDOS version if you want to capture
your normally printed assembler listing as a disk text file.

2. The trailer on an assembler listing now includes the date, line count,
and remaining free space.

3. An "@" following an ASM command will suppress object code genera
tion. This is handy for "quick looks" and finding potential errors.

4. The ASMIDSTAMP is no longer essential. On "old" EDASM, a FILE
NOT FOUND error message was generated.

5. You can single step the assembly process by pressing the spacebar.
Repeated spacebar hits do one line at a time. Pressing [ESC] on a 40-col
umn screen lets you see the right half of the screen, or else switches
back to the left half. Any other letter key resumes assembly at full
speed.

6. Two direct keyboard commands override any imbedded LST ON or LST
OFF commands. Use [N] to stop the listing, [0] to continue it.

7. The assembler will accept the tab key, [I], or the spacebar to enter a tab.
This greatly eases the "tab problem" with "new way" editing.

8. The label in the label field is now called an IDENTIFIER.
9. The "a," "X," "x," "Y," and "y" labels are now reserved, in addition

to "A." You can go to a lot of trouble to defeat this reservation if you
have to. Good practice would also tell you to reserve "P," "p," "5,"
and "s" as well.

10. Macros are now available. These are disk based and are inserted when
and as needed. Parameters can be passed back and forth between

source code and macro.
11. A new operand of "*" is available that uses the present assembler pro

gram counter location. Intended use is to set aside specific positions in
a page of memory. This can also be used to "pad" your way up to the
next even page boundary.

12. You can now generate an absolute reference to a page zero location.
To do this, put the EQU after the place in the source code where it first
is needed. This is handy when you want to force an absolute long load,
store, or whatever from an address on page zero, because of timing or

code length considerations.
13. An upgraded OBj command lets you assemble directly into the

machine, without assembling to disk first. Tests are made to make sure
there is no conflict with the assembly code itself. The combination of an
"OBj" command with an "ASM @" will directly assemble code into
memory without generating any listing.

14. A new SW16 command will accept "Sweet 16" mnemonics. Three new
commands have also been added to the original Sweet 16, which is a
16-bit pseudo interpreter. A compare, long branch, and subroutine long
branch are now available. Use of Sweet 16 is usually shorter and sim
pler, but slower than doing your own custom 16-bit routines. One
source of the new Sweet 16 code is EDASM itself. just tear it apart using
the "tearing method" of Enhancing Your Apple /I and /Ie, Volume I,

(Sams 21822).
15. An undocumented X6502 command will apparently accept 65C02 mne

monics and, presumably, 65XC16 mnemonics as well. This command
appeared in the preliminary documentation with a "we don't support
this" disclaimer, but was dropped completely in the final manual.

16. New commands of ZDEF, ZREF, and ZXTRN are available that are

384 Appendix A

extensions of DEF. These forward-looking features require a linking
loader that is not yet supported.

17. A new STR command works like ASC, only it includes a byte counter as
its first character. Thus ASC gives you a text message, while STR gives
you a text message preceded by the number of actual characters in the
message.

lB. A new DATE command reads the nine ASCII values stored at $03BB
$03CO and enters them into the object code being generated. These
locations usually hold the date portion of the ASMIDSTAMP.

19. A new IDNUM command reads the six ASCII values stored at $03C3
through $03CB and enters them into the object code being generated.
These locations usually hold the identity portion of the ASMIDSTAMP.

20. Conditional assembly has undergone a major overhaul. New com
mands of IFNE (not equal), IFEQ (equal), IFLT (less than), IFLE (less than
or equal), IFGT (greater than), and IFGE (greater than or equal) are now
available. A command of FAIL is also available for printing error
messages.

21. A space must separate the op code and the operand on the SKP and LST
commands.

22. Logical operators are now available, using the "f" symbol for AND, "I"
for OR, and "!" for EXOR. These operators work only on 16-bit
arguments.

23. A new INCLUDE command stops the main assembly, assembles a
source code module off disk, and then picks back up on the main
assembly. This is most handy for inserting "mix and match" stock
library routines.

24. Two commands of SBUFSIZ and IBUFSIZ let you adjust the size of your
work areas for the original source code and the INCLUDE library mod
ule. See the manual for details. Changing buffer sizes is not normally
needed.

25. A new MACLIB command tells the assembler that any "illegal" mne
monics are really the names of macro routines. Each macro routine is
automatically done as if it was an INCLUDE command.

26. The "formfeed bug" has presumably been fixed, but it is still a good
idea to force your own page breaks using the PAGE command.

27. A special column is available on the assembly listing to show branch
destination addresses. Execution cycle times can also be optionally
shown.

2B. There are all sorts of new LST options. You can now separately turn off
or on display of execution cycle times (C), generated object code (G),
warnings (W), unassembled source code from bypassed conditional
assembly (U), macro statements (E), alphabetic symbol tables (A),
numeric symbol tables (V), or "six-across" symbol listings (5).

29. Standard tabbing values are different from "old" EDASM. Default tabs
are now 16, 22, and 36, instead of 14, 19, 29. More than BO columns
may be needed for all the listing features and long comments. The sim
plest way to handle this is with 12 pitch on a daisywheel printer, or else
use your own custom and "tighter" tab values. HINT: Keep your com
ments shorter than you did with "old" EDASM. This will help a lot.

30. New macro commands of "&0" and "&X" are available that control
passing of parameters from the main source code to the macros. "&0"
tells the number of parameters present in the operand field of the call
ing statement. "&X" keeps track of the number of times a macro is
used. This allows the creation of local labels.

31. You can do co-resident assembly in a 64K Apple lie, where the editor
and assembler modules stay in the machine at the same time. An "*"
following the ASM command will get the source file out of your
machine, rather than off disk. This greatly speeds up the edit-assemble-

Differences Between "Old" and "New" EDASM 385

test round trip process. On short programs in certain areas of your
machine, you can do both co-resident and in-place assembly at the
same time. There are restrictions: You cannot use chaining, insertion, or
macros when doing this, and your source code in the machine will get
overwritten.

Finally, here are the differences between the ProDOS and DOS 3.3e
versions of EDASM:

1. The ProDOS buffer is 37,000 characters long.
2. The ASMIDSTAMP is severely restrictive. It must be in DD-MM-YY for

mat for clock compatibility.
3. A blank SBTL line still gets you the date.
4. The PFX command reads the current prefix. As is typical in ProDOS, a

CAT command gets you a 40 column catalog, while the CATALOG
command gives you all 80 columns. The CREATE command will gener
ate a sub-directory.

5. The TYPE command lets you edit certain other file types, rather than
just text files. You can also BLOAD, BSAVE, XLOAD, and XSAVE non
text files. The SYS command changes the type of source code file.

6. The EXIT command returns you to ProDOS BASIC. Commands of PTON
and PTOFF turn the printer off and on, while EXEC will do a supervisory

routine.
7. Time and date are automatically inset if a clock card is present. A TIME

command is supported.
8. You can no longer do co-resident assembly. Preliminary ProDOS docu

mentation did not support macros. Editing of two files at once also may
not be supported.

9. You can route an assembler listing to diskette, instead of to printer, by
using a "PR#6,lORCHFILE" command.

10. There is a PAUSE command available to temporarily hold up assembly.
11. The error message on an aborted assembly is completely useless.

I personally despise ProDOS. Why? Because it is so unconscionably
bloated, so user vicious, so buggy, and so incredibly poorly written.
Nonetheless, if you must make an EDASM disk-based assembler listing
(for "camera ready" print quality, typesetting, insertions, etc.), you
will have to use ProDOS. The procedure is to take your DOS 3.3e text
file, convert it with CONVERT, assemble to disk under ProDOS, and
then CONVERT it back to the sane world.

Sigh.
Both ProDOS itself and the "new" versions of EDASM have numer

ous bugs in them. We will pass them on to you as we find out more
about them.

Several specific bugs for now: The ProDOS routine of CONVERT
can sometimes destroy a DOS 3.3e diskette. Seems a sector counter
doesn't get incremented properly. Long filenames will often cause
assembly problems. If it does not feel too much like assembling some
thing, the ProDOS version of EDASM will simply kick sand in your
face, instead of telling you what went wrong. That "ASSEMBLY
ABORTED: LINE 0" message sure is friendly and helpful.

On either "new" version of EDASM, you will get error messages on
a SKP5 or a LSTOFF, or an ASLA, and other places where "old"
EDASM let you skip the space between op code and operand. Unfor
tunately, I did this just about everywhere in this book. Correcting the
printed listings would most likely cause more grief than it would solve.

386 Appendix A

So, we have instead corrected all of the source code on the compan
ion diskette.

Just remember to be sure and separate all op codes and operands
with a space on "new" EDA5M, and you should not have too much
trouble.

Let us know about any other bugs as soon as you can.

SOME NAMES AND NUMBERS

ANTHRO DIGITAL SYSTEMS
Box 1385
Pittsfield, MA 01202
(413) 448-8278

APPLE ASSEMBLY LINE
Box 280300
Dallas, TX 75288
(214) 324-2050

APPLE AVOCATION ALLIANCE
721 Pike Street
Cheyenne, WY 82001
(307) 632-8581

A.P.P.L.E.
304 Main South
Renton, WA 98055
(206) 271-4515

APPLE COMPUTER
10260 Bandley Drive
Cupertino, CA 95014
(408) 996-1010

387

388 Appendix B

AVOCET SYSTEMS
804 South State Street
Dover, DE 19901
(302) 734-01 51

BYTE
70 Main Street
Peterborough, NH 03458
(603) 924-9281

CENTRAL POI NT SOFTWARE
Box 19730
Portland, OR 97219
(503) 244-5782

COMPUTER SHOPPER
Box F
Titusville, FL 32780
(305) 269-3211

CREATIVE COMPUTING
Box 789-M
Morristown, NJ 07960
(201) 540-0445

DENVER APPLE PI
Box 14767
Denver, CO 80217
(303) 429-4436

DECISION SYSTEMS
Box 13006
Denton, TX 76203
(817) 382-6353

DIABLO SYSTEMS
24500 Industrial Blvd.
Hayward, CA 94545
(800) 227-2776

GENERAL INSTRUMENTS
600 West John Street
Hicksville, NY 11802
(516) 733-3107

GTE ELECTRONICS
2000 West 14th Street
Tempe, AZ 85281
(602) 968-4431

HARDCORE COMPUTI NG
Box 44549
Tacoma, WA 98444
(206) 531-1684

HAYDEN SOFTWARE
50 Essex Street
Rochelle Park, NJ 07662
(800) 343-1218

HOWARD W. SAMS & CO., INC.
4300 West 62nd Street
Indianapolis, IN 46206
(800) 428-3696

INCIDER
80 Pi ne Street
Peterborough, N H 03458
(603) 924-9471

INFOWORLD
530 Lytton Avenue
Palo Alto, CA 94301
(415) 665-1330

INTERNATIONAL APPLE CORE
908 George Street
Santa Clara, CA 95050
(408) 727-7652

DON LANCASTER
Box 809
Thatcher, AZ 85552
(602) 428-4073

LAZER SYSTEMS
925 Loma Street
Corona, CA 91720
(714) 735-1041

LJK ENTERPRISES
Box 10827
St. Louis, MO 63129
(314) 846-6124

DAVID W. MEYER
600 Columbus Street
Salt Lake City, UT 84103
(801) 359-2790

MICROCOMPUTI NG
80 Pi ne Street
Peterborough, NH 03458
(603) 924-9471

MICRO INK
34 Chelmsford Street
Chelmsford, MA 01824
(617) 256-3649

Some Names and Numbers 389

390 Appendix B

MICRO LOGIC CORP.
Box 174
Hackensack, NJ 07602
(201) 342-6518

MICRO SCI
17742 Irvine Blvd.
Tustin, CA 92680
(714) 731-9461

MICROSOFT
10700 Northrup Way
Bellevue, WA 98004
(206) 828-8080

MICRO SPARC
10 Lewis Street
Lincoln, MA 01773
(617) 259-9039

MITEL
360G Leggett Drive
Kanata, Ontario K2K 1 X5
(613) 592-5630

MOS TECHNOLOGY
950 Rittenhouse Road
Norristown, PA 19401
(215) 666-7950

MOTOROLA SEMICONDUCTOR
Box 20912
Phoenix, AZ 85018
(602) 244-6900

N EC ELECTRON ICS
532G Broadhollow Road
Mellville, NY 11747
(213) 973-2071

NCR MICROELECTRONICS
1635 Aeroplaza Drive
Colorado Springs, CO 80916
(303) 596-5795

NIBBLE
Box 325
Lincoln, MA 01773
(617) 259-9710

PEELINGS
Box 188
Las Cruces, NM 88004
(505) 526-8364

QUALITY SOFTWARE
6660 Reseda Blvd.
Reseda, CA 91355
(213) 344-6599

RAK-WARE
41 Ralph Road
West Orange, NJ 07052
(201) 325-1885

ROCKWELL I NTERNA TIONAL
3310 Miraloma Avenue
Anaheim, CA 92803
(800) 854-8099

SAN FRANCISCO APPLE CORE
1515 Sloat Blvd.
San Francisco, CA 94132
(415) 556-2324

S-C SOFTWARE
Box 280300
Dallas, TX 75228
(214) 324-2050

SIERRA ON-LINE
36575 Mudge Road
Coarsegold, CA 93614
(209) 683-6858

SOFTALK
11160 McCormick Street
North Hollywood, CA 91603
(213) 980-5074

SOUTHWESTERN DATA SYSTEMS
10761 Woodside Avenue
Santee, CA 92071
(619) 562-3221

STELLA TION TWO
Box 2342
Santa Barbara, CA 93120
(805) 966-1140

SYNERGETICS
Box 1300
Thatcher, AZ 85552
(602) 428-4073

SYNERTEK
Box 552
Santa Clara, CA 95052
(408) 988-5600

Some Names and Numbers 397

392 Appendix B

TEXAS INSTRUMENTS
Box 401560
Dallas, TX 75240
(214) 995-6611

THUNDER SOFTWARE
Box 31501
Houston, TX 77231
(713) 728-5501

WASHINGTON APPLE PI
Box 34511
Bethesda, MD 20817
(202) 332-9012

WESTERN DESIGN CENTER
2166 East Brown Road
Mesa, AZ 85203
(602) 962-4545

LABEL LISTS TO COpy

393

Label Lists to Copy 395

LABEL LIST FOR,I,--_____ -----'

DONE BY 1-...1 ___ -I ASSEMBLER II-... _________ ~

DA TE 1-1 _-__ -I SYSTEM 1-1 ____________J

VERSION 1-1 ___ --'

LABEL EQU LINE DFB VALUE USE

NOTES _______________ __
PAGEDOFD

Index

Absolute
addressing, 75
pitch,303

A

Accumulator addressing, 73
Accuracy, pitch, 302-304
Active line, 167
ADD editing command, old way, 146
Address mode, 72-81
Addressing

absolute, 75
accumulator, 73
immediate, 73-74
implied, 72-73
indexed, 76-80
indexed indirect, 79-81
indirect, 77-81
indirect indexed, 77-81
page zero, 74-75
relative, 75

Anthologies, assembler, 52
APPEND, DOS editing command,

old way, 142-143
Apple clock cycle, 268-269
Arithmetic, operand, 81-82

ASC pseudo-op, 89-90
ASM assembler commands, 179-180
Assemblers, 25-56

399

anthologies, 52
BUGBYTER, 30
club newsletters, 51-52
commands, 178-181

ASM, 179-180
comments, 29
cross, 34-35
defined,39
disk-based, 33-34
EDASM, 42-44
full, 30, 35-36
how work, 35-41
in-place, 33-34
label,28

global, 31-32
local,31-32

language, 27
listing, 96-97
machine programming books, 49-50
macro-, 30, 31, 35
mini-, 28-30, 35
mnemonic, 27-28
modular, 34

400 Index

Assemblers-cont
object code, 36-38
relocatable code, 32-33
reprints, 52
resources, 44-46
software, 50
source code, 36-41
tools, 44-49
virtual memory, 32

Assembling source code, 177-200
Assembly

books, 49-50
language, 9-22, 27
listings, 181-185
magazines, 51-52
rules, EDASM, 178

B

Bad
equate, 189-190
expression, 188-189
op code, 188

BASIC, 11-15,16
Big lumps, source code, 110-113
Books

assembly, 49-50
machine programming, 49-50

Bottom line comments, 118
BUGBYTER, 30

c

Calculated routine method, 291-295
CATALOG, DOS editing command,

old way, 143-144
[C] assembler command, 180-181
CHANGE editing command, old way,

155
CHN pseudo-ops, 85-86
Clock cycle, Apple, 268-271
Club newsletters, assembler, 51-52
Code

object, 36-38
op, field, 63-64, 67
relocatable, 32-33
source, 36-41

details, 57-92
fields, 62-72
file line numbers, 59-61

Commands
assembler, 178-181
editing, old way, 139-161

Comments, 29
bottom line, 118
line, 167-168
field, 68-70

Conditional pseudo-ops, 90
Constants, 109-110

EQU, 109-110
COPY editing command, old way, 149
Creating files, 238-240
Cross assembler, 34-35
Crumbs, source code, 110-114, 116
Cycle burner uppers, 269-270

o

Debugging, 192-198
stage-one, 195
stage-two, 197-198
weirdness checks, 197

DELETE editing command, old way,
148-149

DFB
hook,107-108
pseudo-ops, 87-89

Disassemblers, 52-54
Disk-based assembler, 33-34
DOS editing commands, old way,

140-144
APPEND,142-143
CATALOG,143-144
LOAD,140-141
SAVE,141-142
SLOT DRIVE, 143

Dot-matrix printers, 45-46
Duplicate symbol, 189
Duration multiplier, 306-308

E

EDASM, 42-44
assembly rules, 178
macroassembler, 20-21
Old, new, 381-386

Edit editing commands, old way,
152-158

EDIT, 152-154
Editing

"new way,"
advantages, 164
limitations, 165
source code, 163-175

old way, commands, 139-161
ADD,146
CHANGE,155
COPY, 149
DELETE, 148-149
DOS, 140-144
edit, 152-158
END, 147
FIND,154-155
(HELP),146

Editing-cont
old way, commands

INSERT, 146
LENGTH,150
LIST, 148
NEW, 146
QUIT,146-147

hint, old way, 156
source code, old way, 123-161

Editor, 39-41
Empty shell, 211-228
END editing command, old way, 147
Enhancements, 105
Entry editing commands, old way,

146-152

EQU
constants, 109-110
hooks, 107-109
pseudo-ops, 85-86

Error
handling, 191-192
messages, 119-121, 185-191

fatal, 185, 186-188
handling, 191-192
nonfatal, 185-186, 188-191

Fields
comment, 68-70
label, 63, 64-67
op code, 67

F

operand, 67-68, 70-72
source code, 62-72

File
based printer, 229-250
creating, 238-240
long method, 233-240
message, 233-234, 238-239
pointer, 233-234, 239-240
pseudo-ops, 87-90
source code, 37-41

formats, 58-64
line numbers, 59-61
structu re, 166-169

working, 114-118
FIND editing command, old way,

154-155
Formats, file, source code, 58-64
Full assembler, 30, 35-36

G

Global label, 31-32
Gotchas, 104-105

H

Handling errors, 191-192
(HELP), editing command, old way, 146
Hint, editing, old way, 156
Hooks, 106-109

DFB,107-108
EQU, 107-109

ID stamp, 137-138
Illegal label, 189
Imbedded string printer, 251-266
Immediate addressing, 73-74
Implied addressing, 72-73
Indexed addressing, 76-80

indirect, 79-81
Indirect addressing, 77-81

indexed, 77-81
In-place assembler, 33-34
INSERT editing command, old way, 146
I nteger pseudo-random generator,

348-350

Label, 28, 64-67
field, 63, 64-67
global, 31-32
lists, 393-398

l

old way, 156-159
local, 31-32
references, 118-119

Language
assembly, 9-22, 27
BASIC, 11-15, 16
machine, 9-22, 25-26

LENGTH
editing command, old way, 150
program style, 127-129

Line
active, 167
comment, 167-168
numbers, 169-173

file, source code, 59-61
LIST editing command, old way, 148
Listing, assembler, 96-97
Little lumps, source code, 110-114
LOAD, DOS editing command, old way,

140-141
Local label, 31-32
Long file method, 233-240
Lookup, table, 125
LST OFF pseudo-op, 84
LST ON pseudo-op, 84

Index 401

402 Index

M

Machine
language, 9-22, 25-26
programming books, 49-50

Macro-, 31
assembler, 30, 35

EDASM, 20-21
Magazines, assembly, 51-52
Memory, virtual, 32
Messages

error, 119-121, 185-191
file, 233-234, 238-239

Miniassemblers, 28-30, 35
Mnemonic, 27-28
Mode, address, 72-81
Modular assembler, 34
Modules, ripoff, 205-380
Modulo, 346
Monitor time delay, 267-286
Musical songs, 301-320

N

New
EDASM,381-386
editing command, old way, 146
-Way editing

advantages, 164
limitations, 165

Newsletters, club, assembler, 51-52
N initializer, 352-353
No such label, 189
Numbers,

file line, source code, 59-61
line, 169-173

o

Object code, 36-38
assembling source code, 177-200
files, 37-41

Obnoxious sounds, 287-300
Off loading, 125-126
Old

EDASM,381-386
-way source code writing, 135-140

Op code field, 63-64, 67
Operand

arith metic, 81-82
field, 67-68, 70-72
summary, 80

Option picker, 321-344
ORG pseudo-op, 84-85
Overflow, 190

PAGE
pseudo-ops, 83

p

zero addressing, 74-75
Pitch

absolute, 303
accuracy, 302-304
duration, separating, 304-306
relative, 303

Pointer file, 233-234, 239-240
Pretty printer pseudo-ops, 83
Print editing commands, old way,

144-146
PR#O, 1 , 145-146

Printers, dot matrix, 45-46
Processors, word, 163-167, 168-173
Program style, 124, 133

length, 127-129
speed, 124-127

PR#O, 1, print editing commands, old
way, 144-146

Pseudo-ops, 82-87
conditional, 90
file, 87-90

ASC, 89-90
DFB,87-89

LST OFF, 84
LSTON,84
PAGE 83
pretty printers, 83
SBTL, 84
SKP,83
structure, 84-87

CHN,85-86
EQU, 85-86
ORG,84-85

Pseudo-random number, 345, 347-350
PSR generator, 352-353

Q

QUIT editing command, old way,
146-147

R

Random
comments, 105-106
numbers, 345-362

Randomizing, 364
replacement, 364

References, label, 118-119
Relative

addressing, 75
pitch,303

Relocatable code, 32-33

Relocatabi lity, code, 130-131
Reprints, assemblers, 52
Reseeder, 352-353
Resources, assembler, 44-46
Ripoff modules, 205-380

summary, 208-209
RND; see random numbers.
Routine method, calculated, 291-295

s

SAVE, DOS editing command, old way,
141-142

SBTL pseudo-ops, 84
Self-modifying code, 132
Separating pitch, duration, 304-306
Shuffle, 363-380
SKP pseudo-ops, 83
SLOTDRIVE, DOS editing command, old

way, 143
Software, assembly programming, 50
Source code, 36-41

address mode, 72-81
addressing

absolute, 75
accumulator, 73
immediate, 73-74
implied, 72-73
indexed, 76-80
indexed indirect, 79-81
indirect, 77-81
indirect indexed, 77-81
page zero, 74-75
relative, 75

assembling, 177-200
details, 57-92
fields, 62-72

comment, 68-70
op code, 67
operand, 67-68, 70-72

files, 37-41
formats, 58-64
line numbers, 59-61
structure, 166-169

labels, field, 63, 64-67
new way, editing, 163-175

line numbers, 169-173
new way, writing, 163-175
old way editing, 123-161

commands, 139-161
DOS commands, 140-144
edit, 152-158
entry commands, 146-152
print commands, 144-146

old way writing, 123-161
10 stamp, 137-138
style, 124-133
unstyle, 133-135

Source code-cont
op code fields, 63-64
operand

arithmetic, 81-82
summary, 80

pseudo-ops, 82-87
relocatability, 130-131
structure, 93-122

big lumps, 110-113
body, 97-98
bottom line comments, 118
constants, 109-110
crumbs, 110-114, 116
enhancements, 105
error messages, 119-121
gotchas, 104-105
hooks, 106-109
little lumps, 110-114
prolog, 97-98
random comments, 105-106
self-modifying, 132
startstuff, 98-101
stashes, 115-116
title block, 101-103
working files, 114-118

Space assembler command, 181
Speed, program style, 124-127
Stack rules, subroutine, 6502, 254-255
Stage-one debugging, 195
Stage-two debugging, 197-198
Startstuff, 98-101
Stashes, 115-116
Structure

file, source code, 166-169
pseudo-ops, 84-87
source code, 93-122

Style, program, 124-133
Subroutine stack rules, 6502, 254-255
Sweet 16, 198-200

T

Tab, 173-175
Table lookup, 125
Threshold, viability, 195
Title block, 101-103
Tools, assembler, 44-49

u

Unstyle, 133-135

V

Viability threshold, 195
Virtual memory, 32

Index 403

404 Index

W

Weirdness checks, debugging, 197

Word processors, 163-167, 168-173

Working files, 114-118

Writing source code, new way, 163-175

old way, 123-161

COMPANION DISKETTE
AND VOICE HOTLINE

Don Lancaster and Synergetics have arranged to make available all
of the source code and all of the object code shown in this book,
along with lots of extra goodies in a crammed-full and fully copyable
support diskette, in your choice of EDASM or S-C Assembler source
code formats. The $19.95 price includes shipping and handling, as
well as free voice hotline and support service.

Be sure to specify whether you want the EDASM or the S-C ASSEM
BLER version of this diskette.

You can order your companion diskette by using the card on the
next page, or else directly from:

SYNERGETICS
746 First Street
Box 809
Thatcher, AZ 85552
(602) 428-4073

407

408 Companion Diskette and Voice Hotline

CONTENTS OF THE COMPANION
DISKETTE

EMPTY SHELL.SOURCE
EMPTY SHELL
FLPRINT.SOURCE
FLPRINT
IMPRINT.SOURCE
IMPRINT
TIME DELAY.SOURCE
TIME DELAY
OBNOXIOUS SOUNDS.SOURCE
OBNOXIOUS SOUNDS
MUSICAL SONGS.SOURCE
MUSICAL SONGS
OPTION PICKER.SOURCE
OPTION PICKER
RANDOM.SOURCE
RANDOM
SHUFFLE.SOURCE
SHUFFLE
AUTO-DEMO
THE WHOLE BALL OF WAX
ENGINE
WHY RNDAINT
WPL.NUMBER
WPL.UNUMBER
WPL.RENUMBER
WPL.TAB
WPL.UNTAB
MONITOR TIME DELAY
MULTIPLE DELAY FINDER
. . . plus a few more

"' c:
(I)

E
E
OM
0

g~
"'N ..
"0 -c:: N

5:~

RESPONSE CARD
o Please keep me informed of any updates

and additions to the Assembly Cookbook.

My Apple is the version.

The Assembler I use is _________ _

Please put any ADDITIONAL COMMENTS here:

Q) .

~ ~ The RIPOFF MODULES that I want to see next are
-on 0.'"
.N
0<
c:: .:
.~ ~

"E ~
.r:

.~ ~

"Eg
<oM
o-

x
W ° fIllII
Z .

a:~
fIl;::
Ww
Cl:C!)

~ffi _z
>

=fIl

NAME

The PROBLEM that I now have is STREET _________________________ ___

CITY _______ STATE _ ZIP ___ _

voice phone
data phone ___________ _

DISKETTE
Please send me __ copies of the 28 program,
DOS 3.3 COMPANION DISKETTE to Don Lan
caster's Assembly Cookbook, at $19.95 each,
postpaid.

I understand this disk is fully copyable for my per
sonal use only.

Send the o EDASM
o SC ASSEMBLER version.

Please also send me __ autographed and
postpaid copies of Don Lancaster's THE INCREDI
BLE SECRET MONEY MACHINE, a complete
guide to creating your own computer, tech, or
craft venture, at $7.95 each.

o I enclose check for $

o Please charge my VISA account number

Expiration Date __________ _

Signature ____________ _

NAME
ADDRESS ________________________ __

CITY ______ STATE ZIP __ _

Please, no purchase orders. We also cannot ship

to a foreign address.

DISKETTE
Please send me __ copies of the 28 program,
DOS 3.3 COMPANION DISKETTE to Don Lan
caster's Assembly Cookbook, at $19.95 each,
postpaid.

I understand this disk is fully copyable for my per
sonal use only.

Send the o EDASM
o SC ASSEMBLER version.

Please also send me __ autographed and
postpaid copies of Don Lancaster's THE INCREDI
BLE SECRET MONEY MACHINE, a complete
guide to creating your own computer, tech, or
craft venture, at $7.95 each.

o I enclose check for $

o Please charge my VISA account number

Expiration Date __________ _

Signature ____________ _

NAME
ADDRESS _________________________ _

CITY _______ STATE ZIP ___ _

Please, no purchase orders. We also cannot ship

to a foreign address.

FROM

FROM

SYNERGETICS
BOX 1300
THATCHER, AZ 85552

SYNERGETICS
BOX 1300
THATCHER, AZ 85552

PLACE
POSTAGE

HERE

PLACE
POSTAGE

HERE

.. - - - - - ';::;.. .=--=------=... - ~- - ~ - -- - .:...- - ~ ;- --:=.

FROM

SYNERGETICS
BOX 1300
THATCHER, AZ 85552

PLACE
POSTAGE

HERE

SJJMS. Sams Books cover a wide range of technical topics. We are always looking for
more information from you, our readers, as to which additional topics need cover
age. Please fill out this questionnaire and return it to us with your suggestions.
They will be appreciated.

Please check the areas of interest

1. CURRENT TECHNOLOGIES
o Electronics
o Circuit Oesign
o Computers

o Business Applications
o Fundamentals
o Languages ____ _

Specify

o Mactfine Specific: __ _

o Microprocessors

P Networking
o Servicing/Repair

o
Other

2. NEW TECHNOLOGIES
o Fiber Optics
o Robotics
o Security Electronics

o Speech Synthesis
o Telecommunications

o Cellular
o Satellite

o Video
o Other ______ _

3. Do you 0 own 0 operate a personal computer? Model ______ _

4. Have you bought other Sams Books? Please list ________ _

5. OCCUPATION
o Business Professional __ _

Specify

o Educator
o Engineer::--.,.,-____ _

Specify o Hobbyist
o Programmer
o Retailer

o Student
o

Other

COMMENTS

(OPTIONAL)

NAME

ADDRESS

CITY

22166 22331

STATE

6. EDUCATION
o High School Graduate
o Tech School Graduate
o College Graduate
o Post-graduate degree

ZIP

!rJ
I us

Book MarloylEW)"(oog t
I

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 1076 INDIANAPOLIS, IND.

POSTAGE WILL BE PAID BY ADDRESSEE

HOWARD W. SAMS & CO., INC.
4300 WEST 62ND STREET
P.O. Box 7092
Indianapolis, IN 46206

ATTENTION: Public Relations Department

111111

.

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

S~Nd~ ______________ ~ __

Assembly Cookbook
for the
Apple~ II/lie
Your complete guide to using assembly language for writing your own top-notch personal
or commercial programs for the Apple II and lie.

• Tells you what an assembler is, discusses the popular assemblers available today,
and gives you a list of the essential tools for assembly language programming.

• Covers source code details such as lines, fields, labels, op codes, operands,
structure, and comments-just what these are and how they are used.

• Lets you find out the "new way" to do your source code entry and editing and
to instantly upgrade your editor/assembler into a super-powerful one .

• Shows you how to actually assemble source code into working object code. Checks
into error messages and debugging techniques~

• Includes nine ready to go, wide open ripoff modules that show you examples of some
of the really essential stuff involved in Apple programming . These modules will run
on most any brand or version of Apple or Apple clone, and they can be easily

. adapted to your own uses.

This cookbook is for those who want to build their machine language programming skills
to a more challenging level and to learn to write profitable and truly great Apple II or lie
machine language programs.

Howard W. Sams & Co., Inc.. .
4300 West 62nd Street, Indianapoli s, Indiana 46268 U.S.A.

ISBN: 0-672-2233 1-7
$21 .95122331

