" BY BILL BUDGE,
" WITH GREGG WILLIAMS
. AND ROB MOORE

. {Editor's note: This article was a col-
laborative effort. Bill Budge shared his im-
plementation of preshift-table graphics with
us and helped Rob Moore and me with the
article itself. Rob wrote the assembly-language
subroutine, and | wrote the article text and
BASIC program. . . .GW)]

PRESHIFT-TABLE
GRAPHICS ON

YOUR APPLE

This fast assembly-language routine allows you
to move rectangular images quickly to any point
on the Apple high-resolution graphics screen

n microcomputer graphics, speed

is always of the essence—we are

always trying to get the same pro-

cessor to do more work than it's
done before. In creating Mousepaint (a
drawing program that uses icons, win-
dows, and Apples new mouse), Bill
Budge devised a technique that
simplifies moving rectangular blocks of
pixels on the Apple Il high-resolution
graphics screen. The cost is a slight loss
in speed and an overhead of about 3K
bytes of memory, but the versatility of
this routine certainly justifies the
expense.

Expressed simply, Budge's method
(called preshift-table lookup) uses a short
assembly-language routine to access a
large table that lists all the possible
shifted results for all possible byte
values. This saves time by exchanging
a certain amount of calculation, loop-
ing, and shifting with a single table
lookup, a logical OR operation, and
some occasional set-up instructions.

APPLE Il HI-RES GRAPHICS

The Apple high-resolution graphics
page is organized as 192 lines of 280
dots each; you will have this resolution
available to you if you view the page on
a monochrome display. If you use a col-
or display, certain two-dot patterns will
appear as a single color dot; this means
that your effective resolution for color

graphics is 140 by 192 dots. The high-
resolution page can display six colors:
black, white, violet, green..orange, and
blue. Each line of graphics occupies 40
bytes in memory; given 280 dots per
line, this means that each byte converts
to 280/40 (or 7) dots per byte.

. The fact that each byte of memory
translates to 7 (not 8) dots—3 ¥ if you're
talking about high-resolution color—is
one of the many subtleties that charac-
terize Apple graphics. Speaking in terms
of the color display of dots within a
byte, you can display black, white, and
one of two sets of two colors each—
greeniviolet or orange/blue. The com-
puter interprets the most significant bit
of a byte (the only one that doesn’t
translate to a dot) as a color bit; when
this bit is off, you can get greeniviolet,
and when it is on, you can get orange/
blue. Two adjacent bits on—anywhere in
the byte—make a white dot appear. Two

adjacent bits off make a black dot. A
{continued)

Bill Budge is well-known for his graphics work
on the Apple 11; his best-known products are
Raster Blaster (the first pinball game of its
caliber), Pinball Construction Kit, and Mouse-

“Paint (supplied with the Apple 11 mouse).

Gregg Williams is a senior technical editor at
BYTE. Rob Moore is a hardware designer and
a frequent contributor to BYTE. They can be
reached at POB 372, Hancock, NH 03449,

Guide to the Apple * DECEMBER 1984 = BYTE A23

PRESHIFTTABLE GRAPHICS

single even bit on (with both adjacent
bits off) makes a violet or blue dot,
depending on the color bit. Similarly, a
single odd bit on makes a green or
orange dot. See figure 1 for details.
(Because the even/odd position of a bit
within a byte determines its color, im-
ages to be viewed on a color display
must move an even number of bits at
a time. If they don't, they will alternate
between the two color sets every move.)

One final detail: if you consider the
byte as a binary number, you must strip

Figure 1: Translating memory bits to
graphics on the Apple high-resolution
graphics page. Only 7 of the 8 bits in a
byte become dots on the high-resolution
screen. Bit 7 determines what colors can
appear in that byte.

Figure 2: The relationship between bits
and pixels. The Apple 11 reverses the seven
low-order bits of a byte before displaying
them on the high-resolution screen—that is,
it displays the bits right to left.

off the most significant bit and reverse
the order of the remaining bits before
you put them on the high-resolution
screen—in other words, the rightmost
bit in the byte becomes the leftmost dot
on screen, and vice versa. Figure 2
shows this relationship. In this article, we
will be shifting rectangular blocks of
dots to the right. Because of the above
relationship, this means we will be shift-

" ing bits to the left. Keep the following

sentence in mind: to shift dots right, shift
bits left.

Finally, we get to the overall makeup
of the high-resolution screen. With
seven dots per byte, 40 consecutive
bytes become 140 color dots (or 280
monochrome dots). But do the next 40
bytes make up the next row of dots? Un-
fortunately, no—they are the 65th row.
As you can see from figure 3, con-
secutive rows of dots are not 40 bytes
apart. The scheme is much more com-
plex than figure 3 shows, but that is of
little interest to most programmers.
Because speed is of the essence in
graphics work. most graphics routines
look up the address of the first byte in
a row from a table of 192 values instead
of having the computer calculate it
while it is doing the graphics. Once we
create that table, as the program in
listing 1 does, the complexity of the

high-resolution screen layout becomes |
irrelevant.]

PRESHIFFTABLE LOOKUP VS.
PRESHIFTED SHAPES

Most people who do high-performance
work with Apple 11 graphics know about §
preshifted shapes, a graphics method that |
stores seven versions of a given image
and quickly looks up the appropriate
one. (For more details, see the text box
“What Are Preshifted Shapes?” on page
A26.) Preshifted shapes have one main §
use: to allow rapid animation of small
shapes that move only several dots at |
a time. Budge's needs were different: he ;
had several windows that he had to be
able to move quickly. Such windows are
too large to have seven versions of (or
modify seven versions of). In addition, §
their expected movements were large
jumps across the screen, not continuous
movement.]
Shifting an image does not change it §
visibly, but it does change how that im-}
age is represented in byte-sized pieces. |
For example, the simple two-byte image |
in figure 4a changes significantly when :
shifted right three dots—what's more, |
we now need another byte to store it §
in! Notice that some dots stay in the |
same seven-dot group (these are called
“shiftstay” dots) and that others move;}

IADDRESS OF |

- FIRST BYTE

. 280 DOTS (40 BYT

(s

| 9216

13,26
Tiazes

| 1532 [

L 16,36

Figure 3: The Apple 11 high-resolution graphics page. Each line of dots is given by a
contiguous 40-byte area in memory. Successive lines are usually separated by 1024
bytes; every eighth line (lines 8, 16, and so on) has an address 7040 bytes less than

the start of the previous line.

A24 BYTE DECEMBER 1984 ¢ Guide to the Apple

PRESHIFTTABLE GRAPHICS

to the next seven-dot group to the right
{these are the “shiftout” dots). If you
understand this figure and remember
that the bits corresponding to these dots
. are stored in reverse within each seven-
I dot group (byte), then you will under-
- .stand the essence of this algorithm: to
move a single-line imageito the right, we
split each byte and combine the shift-
stay bits of one byte with the shiftout
. bits of the previous byte. Figure 4a

- shows how simple it is to shift an image
_ three dots to the right. Unfortunately,
. when we start looking at manipulating
;-the bits themselves (which, within a
 byte, are reversed from the way they are
« displayed on the screen), things get
- more complicated (see figure 4b). Here
- is one recipe for manually making the
. shift (notice that we start with the

nghtmost byte and work our way left):

1. Shift the second source byte left
three bits and put the three over-
flow bits into the lower half of the
third destination byte. Hold the
right four bits (which have been
shifted left three bits) somewhere.

2. Shift the first source byte left
three bits. The three overflow bits
and the four leftover bits from
step 1 join like two adjacent
pieces of a jigsaw puzzle “Fit”
them together (using a logical OR
instruction) and save them in the
second destination byte.

3. Place the remaining bits of the
first source byte in the first
destination byte,

¢ The 6502 microprocessor inside the
. Apple can shift only one bit at a time.
Therefore, we would have to write a
loop of assembly-language code every

time we wanted to shift n bits. Such a

routine would be very slow and would
be slower as n gets larger.

ENTER THE PRESHIFT TABLES

Bit shifts take too long to calculate, so
why don't we precalculate everything
and do a simple table lookup instead?
* We'll need two tables: one for the bits
I that are shifted out of the byte (which
E [l call the shiftout value) and ancther for
 the bits that remain in the byte, but in
b their new, shifted position (the shiftstay
E value). A byte has 256 possible values,
E so each table will take up 256 bytes, for
 atotal of 512 bytes for both tables. We
 will need these tables for shifts of one

through six bits; this takes up a total of
3K bytes of table space, and this over-
head is constant whether you have one
image to move or a hundred.

(For this article, we've added shiftout
and shiftstay tables for a shift of zero
bits. This adds an extra 0.5K bytes of
tables but greatly simplifies the assem-
bly-language routine needed.)

Figure 5 shows how the shiftout and
shiftstay values are created for a given
byte, and listings 1 and 2 create the re-

quired preshift tables. The tables deal
with shifting dots right, so the bits in a
byte are shifted left (remember that bits
reverse their positions when they
become dots on the high-resolution
screen—see figure 2).

The middie line shows the same byte,
binary value 11101010, as it is shifted
two, three, and four dots (bits). The line
above it shows the bits that go into the
shiftout byte and the line below it, the

(contintued)

“HEGINNING: ..
SLTOF iMAGE

ey TYP

s eemﬁen T
| MOVEMENT .

e

BITS AFTER

1{SHIFTOUTY

MOVEMENT . | [0 1

Figure 4: Moving an image. When a two-byte image is moved three dots to the right
(figure 4a), it occupies an extra byte, and the values of the bytes all change in a complex
way. Figure 4b shows the bit patterns underlying the original and shifted images (for
simplicity, we are ignoring the color bits in each byte). To shift the image right 3 bits, we
shift each byte to the left 3 bits and rearrange the pieces in the order shown.

SHIFTOUT .
oBYTE

 Numser oF . 27

SwETSTAY . 1
CBYTE

Figure 5: Creating shiftout bytes (top) and shiftstay bytes (bottom) from an arbitrary byte
(center). This figure shows the same byte being shifted two, three, and four bits. Note that
the color bit (the leftmost one. outside the boxes) remains with the shiftstay byte.

Guide to the Apple * DECEMBER 1984 « BYTE A25

PRESHIFTFTABLE GRAPHICS

shiftstay byte. Notice that the most
significant (color) bit, which is not in-
cluded in the shift, stays with the shift-
stay byte. The program in listing 2

makes tables of the shiftout and shift-
stay value for each byte (values from 0
to 255) and for each possible value for
number of bits shifted (zero to six).

A26

BYTE « DECEMBER 1984 * Guide to the Apple

The problem of moving a rectangular
image is reduced to that of moving a .

single line of the image, which in turn
is reduced to that of moving a single
byte of the image between one and six

dots (a move of, say, three dots and a -

move of ten are essentially the same
because the extra seven dots—one
byte—can be taken care of by adding
one to the destination-byte pointer).

PRESHIFTING AN IMAGE LINE
You may have noticed that the shiftout
values are right-justified and the shift-
stay values are left-justified within the
low 7 bits of the byte. This allows the
computer to combine the two image
fragments correctly. Figure 6 shows how
the core routine (only 23 bytes) ac-
complishes the task. In particular, figure
6 shows how the shiftstay bits from one
byte and the shiftout bits from the byte
before it create a new destination byte.
Bill Budge did not get this code den-
sity without pulling some tricks. In line
1. the address Smmmm is the first byte
of the one video line of image that this
routine manipulates. The address $nn00
is the first byte of the shiftout table be-
ing used, and $pp00 is the first byte of
the shiftstay table. (Remember that the
tables must begin on page boundaries—

this expiains the double zeros in both

addresses.) A driver program (discussed
below) must change the first address for
each new line of image to be processed
and must change the last two addresses

only at the beginning of a new shift-rec- -
tangular-image operation. Yes, this is
self-modifying code. It works, and it is °
necessary to get the speed Budge |

wanted out of this routine.

The calling program must supply this ;f
routine with two other values: the y

register must contain the width of the
image in bytes, and the accumulator (A)
must contain zero since there is no

previous byte that has left shiftstay bits |

behind.

PRESHIFTING A RECTANGULAR
IMAGE

Given the appropriate shiftout and shift-
stay tables (which allow you to splitan

arbitrary byte by doing two table look-

ups instead of n shift operations), the

routine in figure 6 will shift one line of
dots and put the result in a buffer area.
To make this routine useful, you must
surround it with a driver routine that

PRESHIFTFTABLE GRAPHICS

shlfts each line of the rectangular image

:/I;;indoseus cthheig:tcl szzaras;ehof;l;gfglgg_ Listing 1: The HIRESI program creates the binary file HIRES] TABLE. The first
y p 192 bytes of the file contain the low bytes of the starting addresses of line n of high-

! g::gelggmoglu;;aete'g‘lgl?&firﬁteatlgg resolution page 1; the second 192 bytes of the file contain the high bytes of the same
: : ' addresses.

assume that the program has access to
an area of memory with image data as JLIsT
specified in table 1. For each line of the

; : - . ; 100 REM
image, the d.rlv'er routine will modify the 110 REM HIRES1 PROGRAM

addresses within the inner loop to point 120 REM
‘to the right areas, shift a line of the im- 130 REM CREATES TABLE OF ADDRESSES

age to the buffer, then transfer the buf- 140 REM OF FIRST BYTE IN EACH LINE

fer to the correct screen position one 1 28 :Eu OF HI-RES PAGE 1 ‘ '

~ byte at a time (see figure 7). 170 REM BY GREGG WILLIAMS
Listing 3 is the final assembly-lan- 180 REM 22 APR 84

guage subroutine for shifting a block im- 190 REM

age via the preshift tables and moving]g? ggm

it to the screen as described above. The 200 T2BLBGN = 16384

equate statements at the top of the 210 REM --BEGINNING OF TABLE AS

listing show the positions of needed 220 REM --STORED IN MEMORY

tables and variables. Two tables not yet 230 REM

- 235 TBLWDTH = 192
discussed are the XDIV7 and XMOD7 236 REM —-WIDTH OF EACH TABLE

tables. Because the Apple stores 7 dots 237 REM
per byte, the algorithm needs to divide 240 HI1BGN = 8192

- single-byte numbers by 7 and use either 250 REM --ADDRESS OF BEGINNING

the quotient or remainder. At the ex- ggg Egm —-OF HIRES PAGE 1

_ pense of 512 byteS (256 bytes per 266 ADDR = T2BLBGN
table), we can calculate either quantity 269 REM —THIS PGM CALCULATES
- as quickly as an indexed load instruc- 272 REM --ADDRESSES IN ASCENDING

o 275 REM --ORDER; ADDR HOLDS THE
tion: the nth bytes of the XDIV7 and 577 REM - ADDRESS OF THE NEXT

- XMOD?7 tables are the integer quotient 278 REM --TABLE ELEMENT TO BE

and remainder, respectively, of n/7. 279 REM ——FILLED
Listing 4 creates these tables for later 280 REM
use and saves them under the name 290 REM
300 REM MAIN LOOP OF PGM
DIV7 TABLE. 310 REM

The BASIC program of listing 5 loads 313 HOME : PRINT “CREATING HIRES! TABLE™;
the preshift, DIV7, and HIRES! tables, 320 FORI = 0TO 2
along with the table for the image to be 325 - FFOF' J=0T07
moved into a single binary file called gig };;inKH; BOGLO +7 401 + 128+ J + 1024 * K
v TABLPAK. The image that the demon- 353 ::VHI = INT (VL / 256)
stration program is going to move, an 356 ::V2LOW = VL - 256 * VHI
- arrow pointing diagonally up, takes the 359 ::: POKE ADDR,V2LOW
form given in table 1 and can be any | 362 iz POKEADDR + TBLWDTH,VHI
- . . 366 ::ADDR = ADDR + 1
size. You can change it to any image you 370 - NEXT K
- wish, as long as the table starts at ad- 375 :: PRINT *.";
- dress 20864 (5180 hexadecimal). When 380 : NEXT J

. translating a picture of the image to 384 NEXT |

hexadecimal values, remember that the ggg EE:&‘T
. bottom 7 bits of a byte are displayed 388 REM --ABOVE ALGORITHM
. reversed from the way they are stored; 390 REM --DERIVED FROM TABLES
- for example, to illuminate the rightmost | 392 REM —-IN APPLE REFERENCE
:dot of a seven-dot byte, the byte ggﬁ :Em ~—-MANUAL

' needed is a 64 (binary 01000000) or a 400 REM
. 192 (binary 11000000), not 1 (binary 410 REM

- 00000001). 420 REM --SAVE FILE TO DISK
; 430 REM
L 440 PRINT CHR$ (4)."BSAVE HIRES1 TABLE,A"T2BLBGN;"L384"
. THE DEMO PROGRAM 450 REM
. The BASIC program of listing 6 loads in 455 PRINT : PRINT “TABLE SAVED TO DISK"
| the TABLPAK package of tables and the | 460 END (lstings continued on page A28)

(text continued on page Al3l) T — — e

Guide to the Apple = DECEMBER 1984 « BYTE A27

PETIL

PRESHIFTTABLE GRAPHICS

m

Listing 2: The Preshift program creates fourteen 256-byte tables, which are saved as the binary file PRESHIFT TABLE.
The first seven are the shiftout tables for O through 6 dots, while the last seven are the corresponding shiftstay tables.
JLIST
100 REM 900 REM
110 REM CREATE-PRESHIFT- 910 REM END OF PROGRAM
120 REM TABLES PROGRAM ' 915 REM
125 REM 920 END
130 REM CREATES SHIFTOUT AND 960 REM
135 REM SHIFTSTAY TABLES FOR 980 REM
140 REM 0 THROUGH 6 DOTS 985 REM --SUBROUTINE TO SPLIT
145 REM 9687 REM --AN ARBITRARY 8-BIT
150 REM BY GREGG WILLIAMS, 989 REM --VALUE INTO ITS
155 REM 17 APR 84 991 REM --COMPONENTS; SEE
157 REM 993 REM --TEXT FOR DETAILS.
160 REM 995 REM
170 REM 1000 IF SHF = 0 THEN SOUT = 0:SSTAY = BYTE: GOTO 1380
180 REM INITIALIZATION OF
190 REM CONSTANTS 1005 REM
200 REM ' 1010 REM --THE FOLLOWING CODE IS
210 BGNTBL = 30720 1012 REM --DONE IFF SHF >0
220 REM --ADDRESS OF START OF 1015 C3SCALEOUT = 2 " (7 - SHF)
230 REM --TABLE; MUST BE EVENLY 1020 C4SCALNW = 2 " SHF
240 REM --DIVISIBLE BY 256 1030 BSVE = BYTE
250 REM o 1040 REM
260 BININCR = 7 * 256 1060 IF BYTE > = 128 THEN SIGNBIT = 1:BYTE = BYTE — 128: GOTO
270 REM --DISTANCE FROM BEGINNING 1140
280 REM --OF SHIFTOUT (SOUT) , 1080 REM (ELSE IF BYTE< 128)
283 REM --TO SHIFTSTAY(SSTAY) 1100 SIGNBIT = 0
286 REM --TABLES 1110 REM (AND BYTE UNCHANGED
290 REM 1120 REM
300 TBLWDTH = 256 1140 SOUT = INT (BYTE / C3SCALEOUT)
305 REM --DISTANCE BETWEEN 1160 REM —-FIND SHIFT-OUT BITS
310 REM —-ANY TWO TABLES 1180 REM --BY CUTTING OFF RIGHT.
315 REM 1200 REM --MOST (7-SHF) BITS
320 C1ZMAXSHF = 6 1210 REM
340 C2MAXBYTEVL = 255 1220 SSTAY = 128 * SIGNBIT + (BYTE — SOUT * C3SCALEOUT) *
360 REM CASCALNW
380 REM 1240 REM
400 REM 1260 BYTE = BSVE
420 REM MAIN LOOP 1280 REM --RESTORE ORIGINAL
440 REM 1300 REM --VALUE OF BYTE
450 HOME : PRINT "CREATING PRESHIFT TABLE (THIS WILL TAKE 1320 REM
SEVERAL MINUTES) ™. 1340 REM END SUBROUTINE
460 FOR SHF = 0 TO CIMAXSHF 1360 REM
480 :CURRTBL = BGNTBL + SHF * TBLWDTH 1380 RETURN
500 : FOR BYTE = 0 TO C2MAXBYTEVL
520 :: GOSUB 1000
540 REM --CALCULATE SHIFTOUT
560 REM --& SHIFTSTAY VALUES
580 REM --FROM SHF AND BYTE
620 REM
640 :: POKE CURRTBL + BYTESSTAY
660 :: POKE CURRTBL + BYTE + BIGINCR,SOUT
680 REM --STORE VALUES IN
700 REM --TABLES
720 REM
725 i PRINT "
740 : NEXT BYTE
760 NEXT SHF
770 PRINT
775 REM
780 REM
800 REM
- 820 REM SAVE TABLES AS ONE
840 REM LARGE DISK FILE
860 REM &
880 PRINT CHRS$ (4);“BSAVE PRESHIFT TABLE A"BGNTBL."L3584"
890 PRINT : PRINT “TABLE SAVED TO DISK”

A28 BYTE * DECEMBER 1984 + Guide to the Apple

Circle 663 on inquiry card.

PRESHIFFTABLE GRAPHICS /LOVC Apples?\

Join the club.

We're the Apple PugetSound Program
Library Exchange, and we're the largest,
oldest, and most knowledgeable user
group in the world. We support all the
Apples, and all user levels, from the
beginner to the seasoned program
author. A membership in A PPLE. will
provide you with vital support, like our
international hotline service for im-
mediate technical evaluation of your

roblem . . . our international magazine,
Call—A.P.P.L.E., and signficant dis-
counts on our world famous software,
plus great hardware prices.

Write today for a sample copy of our pub-
lication, product catalog, and member-
ship application, or fill out the enroll-
ment coupon below.

I

I A.P.P.L.E.

| . pioneering Apple computing
|

|

|

L ey, g

since 1978,
Mail to:

AP.P.LE.

21246- 68th Ave. S.

Kent, WA 98032

(206) 872-2245

or call our toll-free number
1-800-426-3667

(24 Hrs. Orders Only)

|

|

|

i

|

|

|

|

|

1

|

|

|

I application fee + 825 first year
] dues. 851

I O FREEINFO + Call—A.P.P.L.E.
| Please send free information
|

|

|

|

|

i

|

|

|

1

Name
Address
City
State Zip
Phone #

M/C VISA #

Exp. Date

Additional foreign postage required
for membership outside the U.S.

Figure 6: The basic preshift-table lookup routine. The top area shows how the code creates
a single result byte, the middle area is the actual code, and the bottom area is a commen-
tary. The numbers in the circles and squares relate events to lines of code. Hexadecimal
mmmm points to the first byte of the image. The hexadecimal addresses nnQO and ppOO

point to the proper shiftout and shiftstay tables, respectively. At the beginning of the routine, Join Now and Receive
the accumulator contains zero and the y register contains the number of bytes in the line.
i) f 6 10 FREE Diskettes!

|
|
|
|
|
!
[
|
|
|
|
[
|
|
|
|
|
0O MEMBERSHIP $26 one-time =
|
|
|
|
|
|
|
|
|
|
|
[
1

trademarks of Apple Computer Inc.

{listings continued on page A127) Qme II, 0+, fle, ifc, I, Lisa, and Macintosh are all registerey

Guide to the Apple * DECEMBER 1984 *« BYTE A29

PRESHIFTTABLE GRAPHICS

(continued from page A29)

_
Listing 3: The Shiftline routine. This 6502 assembly-language routine shifts one
line of a video image as described in figure 7. We used the Apple DOS Tool Kit
assembler to create the object-code file, which is named SHIFTLINE
ROUTINE.OBJO.

SOURCE FILE: SHIFTLINE ROUTINE
——————— NEXT OBJECT FILE NAME IS SHIFTLINE ROUTINE.OBJO
5210: 1 ORG $5210
5210: 2
5210 3; PRESHIFT GRAPHICS ROUTINE
5210: 4 : BY ROB MOORE & BILL BUDGE
5210: 5 :
5210: 7
0040: 8 BASE1 EQU $40 ; BASE PAGE ROW ADDR POINTER
5210:; 9
5210; 10 ; LOOKUP TABLES
5210 11 :
4000: 12 SHFTSTAY EQU $4000 ; SHIFTOUT TABLES
4700: 13 SHIFTOUT EQU$4700 : SHIFT TABLES
4E00: 14 XDIV? EQU $4E00 ; INDEX DIV 7
4F00: 15 XMOD7 £QU $4F00 ; INDEX MOD 7
5000: 16 ROWTBL EQU $5000 ; SCREEN ROW ADDR LO-BYTES
50C0: 17 ROWTBHEDU $50C0 : SCREEN ROW ADDR HI-BYTES
5210: 18 ;
5210 19 ; IMAGE DEFINITION PARAMETERS — SET BY.USER
5210; 20 ;
5210: 21 IROWS EQU $5200 . # OF ROWS — 1
5210 22 IDOTS EQU $5201 . 'DOT WIDTH -1
5202; 23 (BWIDTH EQU $5202 ; IMAGE BYTE WIDTH
5203: 24 IBITS EQU $5203 . ADDR OF IMAGE DATA
5205: 25 X1 EQU $5205 . IMAGE LEFT X-COORD
5206: 26 Y1 EQU $5206 . IMAGE TOP Y-COORD
5210: 27 ;
5210: 28
5210: 29 ; FIRST, SET UP THE VARIOUS PARAMETERS TO PREPARE
5210; 30 ; FOR THE IMAGE DRAW.
5210: 31 ;
5210:8E E9 52 32 DRAWIMAGE STX XSAVE . SAVE BASIC X-REG
5213:AD 06 52 33 LDA Y1 . IMAGE TOP ROW #
5216:18 34 cLe
5217:6D 00 52 35 ADC IROWS .+ # OF ROWS -1
521A:8DE152 36 STA Y2 . = BOTTOM ROW #
521D: 37 .
521D:AE 05 52 38 LDX X1 : IMAGE LEFT X-COORD
5220:BD 00 4E 39 LDA XDIV7.X : DIVIDED BY 7
5223.8D E2 52 40 STA LBYTE . = IMAGE LEFT BYTE #
5226: 41
5226:BC 00 4F 42 LDY XMOD7.X : IMAGE LEFT BIT #
5220.B9 DA 52 43 LDA LMASKSY - ; INDEXES LMASK TABLE FOR
522C:8D E3 52 44 STA LMASK ; IMAGE LEFT BIT MASK
522F: 45
522F.98 46 TYA ; IMAGE LEFT BIT #
5230:18 a7 cLe . + SHIFT TABLES ADDRESS
5231:69 40 48 ADC #<SHFTSTAY ; * 256
5233:8D 8A 52 49 STA PATCH3 ; TO SHIFT PATCH
5236: 50 ; ‘
5236:69 07 51 ADC #7 : ; OFFSET TO SHIFTOUT TABLES
5238:8D 84 52 52 STA PATCH2 ; SETS UP SHIFTOUT PATCH
523B: 53 :
523B:98 54 TYA . IMAGE LEFT BIT #
523C:18 55 cLC
5230:60 01 52 56 ADC IDOTS .+ IMAGE DOT WIDTH
5240:AA 57 TAX
5241:BD 00 4E 58 LDA XDIV7.X . DIVIDED BY 7
5244:8D E5 52 59 STA SBWIDTH ;= SHIFTED DATA BYTE WIDTH
5247: 60 ;
5247:8C 00 4F 61 LDY XMOD7.X . RIGHT EDGE BIT #
(continued)

desire a rose
Than wish a snow in May's
new fangled mirth
But like of each thing
that in season grows
—King Lear

A Gift For Christmas
A Gift For All Seasons

If Shakespeare had had a word pro-
cessor he would have consumed about
25 cartridges to run a first draft of his
works. At an average of $10/cartridge
the cost is $250. With MAC INKER he
would use one cartridge, his total would
be 50 cents in ink and his print-out
quality would be much improved.

MAC INKER is very simple tc use and
automatic. Average ink cost/re-inking is
5 cents. We support 535 printers and we
have 20,000 units in the field, in the US
and in 5 continents.

MAC INKER, a gift for Christmas, that
will last for years in many seasons to

come. $54.95+

MacSwitch

Choose also our popular MAC SWITCH,
serial or parallel switch - the ideal com-
panion for the user who has 2 printers or
2 microcomputers or both. $99,00

‘Order toll free 1-800-547-3303
or ask for free brochure

C=mputer Friends

6415 S.W. Canyon Court
Suite #10

Portland, Oregon 97221
(503) 297-2321

Guide to the Apple « DECEMBER 1984 * BYTE Al127

Apple Il + Paper Tape I/O Is This Easy

One minute you're without, the next you're
up and running! Just plug into your APPLE
1 PLUS. A neat and complete package.
Model 600-1 Punch — 50cps, rugged
Mode! 605 Reader — 150cps
e Parailel Interface Board/Cable
Data Hand!ing Program
ode conversion avallable. TRS-80 pack
age soon. ADDMASTER CORP. 416 Juni
pero Serra Dr., San Gabriel, CA 91776 *
13/285-1121.

j— v, ()

[m;]ax Strategy W
Technical Analysis
Portfolio Management

< Optimized Trading Strategy

$118%0c ey s
§ Ve TAX DEDUCTIBLE z
. Call orsend today for brochurel!

Decision Economics, Inc.
14 Old Farm Road. Dept. BT Cedar Knotls, N107927
{201] 539 6889

Send ‘16 for

RGB-APPLEIIC

The Colormaster IIC RGB Video Interface
Enjoy the britliant, crisp, vivid displays of color
graphics and text that are obtainable from the
Apple IIC Computer when used with the Telemax
Colormaster |IC. Features: A stand alone module,
one end plugs into the Apple 1IC Video Port, the
other end plugs into your RGB Monitor. 14 combin-
ations of foreground and background colors in text
mode are user selectable. Text mode enhance-
ment circuits improve resolution and readability of
80 column displays. Operation is software inde-
pendent. A 3.5 ft. monitor cable is supplied. Comes
ready to operate, with complete instructions.
(Specify make and model monitor) $199. RGB
Video Boards are also available for Apple fIE, lI+11 &
Franklin ACE 1000, 1200, all revisions. Apple: The
Colormaster, $139.; The Kaleidoscope, $198.
Franklin: Colormaster,$169;Kaleidoscope,$219,
switchplate option $30. For further information,
contact your computer dealet/distributor or:
TELEMAX,INC.
Computer & Video Products
P.0O. Box 339 @ Warrington, PA 18976

(215) 343-3000
Apple is the registered trademark of Apple
Computer, Inc.

PRESHIFT-TABLE GRAPHICS

524A:B9 D3 52
524D:8D E4 52
5250:

5250:AC 02 52
5253:8C E6 52
5256:88
5257:8C E7 52
525A:
525A:AD 03 52
525D.8D 80 52
5260:AD 04 52
5263:8D 81 52
5266:

5266:

5266:

5266:AE 06 52
5269.8D 00 50
526C:18
526D:6D E2 52
5270:85 40
5272:BD CO0 50
5275:85 41
5277.8E £E8 52
H27A:

B27A:;

527A:

527A:

527A:

527A:

527A:A9 00
527C:AC E7 52
527F:

5280:

527F.BE FF FF
5284:

5282:1D 00 47
5285:99 EB 52
528A:

5288:BD 00 40
528B:88
528C:10 F1
528E:8D EA 52
5291:

5291:

5291:

5291:

5291:

5291:

5291.AC E5 52
5294.AE E8 52
5297.

5297:

5297:

5297:B1 40
5299:59 EA 52
529C.2D E4 52
529F:51 40
52A1:4C A7 52
52A4:

52A4:

52A4:

52A4:B9 EA 52
52A7:91 40
52A9:88
52AA:D0 F8
52AC:

52AC:

52AC:

52AC:B1 40
52AE:59 EA 52
52B1:2D E3 52

111

LDA
STA

LDY
STY
DEY
STY

LDA
STA
LDA
STA

RMASKS)Y
RMASK

IBWIDTH
PITCH

SHFTINDX ;

iBITS
PATCH1
IBITS +1
PATCH1 +1

: INDEX RMASKS TABLE FOR
; IMAGE RIGHT BIT MASK.

IMAGE WIDTH IN BYTES
IS BITMAP PITCH
SUBTRACT 1 TO GET
SHIFT START INDEX

COPY IMAGE DATA ADDRESS
TO SHIFT ROUTINE PATCH1

| MAIN DRAW LOOP STARTS HERE

DRAW

PATCH1
SHIFTIT
PATCH2
ORA
STA

LDX
LDA
cLC
ADC
STA
LDA
STA
STX

Y1 ;
ROWTBL.X

LBYTE ;
BASE1 ;
ROWTBH X ;
BASE1 + 1 ;
TEMP ;

THE SCREEN

LDA
LDY

EQU
LDX
EQU

PATCH3 EQU

'

'

112

113
114
1156
116
117
118
119

120 ; ‘
- FAST LOOP TO DRAW IN-BETWEEN BYTES

121
122
123
124
125
126
127
128
129
130
131
132

r

LDA
DEY
BPL
STA

#0 ;
SHFTINDX

41
SFFFFY ;
42

SHIFTOUT.X ;
BUFFER+1.Y ;

*42
SHFTSTAY.X |

IMAGE TOP SCRN ROW #

: SCREEN ROW ADDR LO-BYTE

+ LEFT IMAGE BYTE #

TO SCRN ADDR POINTER
SCREEN ROW ADDR HI-BYTE
TO POINTER HI-BYTE

SAVE CURRENT ROW #

; BILL BUDGE'S SHIFT CODE STARTS HERE.
. IT SHIFTS A ROW OF STORED BITMAP DATA INTO A
. SINGLE-LINE BUFFER, WHICH CAN THEN BE DRAWN TO

SETUP FOR SHIFTING

GET A BYTE OF IMAGE DATA

LOOK UP SHIFTED OUT PART
AND STORE IN BUFFER

LOAD THE SHIFTED PART

. DONE WITH ROW YET?

SHIFTIT ;
BUFFER ;

LOOP BACK IF NOT
STORE LAST SHIFTED PART

ACTUAL DRAW CODE STARTS HERE. NOTE THAT THE
RIGHTHAND AND LEFTHAND EDGE BYTES ARE TREATED

LOY
LDX

; WRITE OPERATIONS.

SBWIDTH
TEMP ;

. DIFFERENTLY BECAUSE THEY MAY BE PARTIAL-BYTE

; SHIFTED DATA BYTE WIDTH

GET BACK THE ROW #

DO THE RIGHTHAND IMAGE BYTE

LDA
EOR
AND
EOR
JMP

(BASE1).Y
BUFFERY
RMASK ;
(BASE1),Y
DRAW?2

DRAW! LDA BUFFERY
DRAW2 STA

DEY
BNE

(BASE1)Y ;

DRAWA ;

GET A SCREEN BYTE

XOR WITH IMAGE DATA
MASK UNWRITTEN AREA
RESTORE SCRN AND IMAGE

GET AN IMAGE BYTE
WRITE BYTE TO SCREEN
DECREMENT COUNT
LOCP BACK IF NOT DONE

FINISH UP WITH LEFTHAND BYTE

DRAW3 LDA (BASEV)Y

ECR
AND

BUFFER,Y ;
LMASK :

GET A SCREEN BYTE
XOR WITH IMAGE BYTE
MASK UNWANTED PART

{continued)

PRESHIFTTABLE GRAPHICS |

52B4:51 40
52B6:91 40
52B8:

52B8:

52B8:
52B8:EC E1 52
52BB:F0 12
52BD:
52BD:E8
52BE:18
52BF:AD 80 52
52C2:8D E6 52
52C5:8D 80 52
52C8:90 oF -
52CA:EE 81 52
52C0D:B0 9A
52CF.AE E9 52
52D2:60

52D3:

52D3.

5203:

52D3:01 03 07
52D6:0F 1F 3F
52D9:7F
52DA:7F 7E 7C
52DD:78 70 50
52E0:40

52E1:

52E1:

52E1:
52E1:00
52E2:00
52E3.00
52E4:00
52E5:00
52E6:00
52E7:00
52E8:00
52E9:00

52EA:

*** SUCCESSFUL-ASSEMBLY: NO ERRORS

, ’ N ’ - .
Listing 4: The DIV7 program creates two 256-byte tables that contain the integer

quotient and remainder of the value n/7, respectively, for n=0 to 255. The resulting
table is saved as DIV7 TABLE.

JLIST

100 REM
110 REM
120 REM
130 REM
140 REM
150 REM
160 REM

200 QUOTBGN = 16384
210 REM --POINTS TO MEMORY AREA
220 REM --USED TO STORE TABLE

230 REM

240 RMDRBGN = QUOTBGN + 256
250 HOME : PRINT “CREATING DIV7 TABLE...”
300 FOR | = 0 TO 255

133
134

135 ;

136

137

138
139

140 ;

141
142
143
144
145
148
147
148
149
150
181
152
153
154

155

156
157
158
158
160
161
162
163
164
165
166
167
168

DIVIDE-BY-7 QUOTIENT
AND REMAINDER TABLES

BY GREGG WILLIAMS,
24 APR 84

310 :QVL = INT(1/7)

320 :RVL = | —-QVL * 7
330 : POKE QUOTBGN + 1,QVL
340 : POKE RMDRBGN + |,RVL

380 NEXT i

400 PRINT - CHRS$ (4);'BSAVE DIV? TABLE,A”;QUOTBGN;",L512"
420 PRINT : PRINT “TABLE SAVED TO DISK"

500 END

; RESTORE SCRN AND IMAGE
: AND WRITE TO SCREEN

EOR (BASE1).Y
STA (BASE1)Y

; TEST FOR LAST ROW COMPLETE -

CPX Y2 - WAS LAST ROW DONE
BEQ EXIT . QUIT IF SO.

' INX ; MOVE TO NEXT ROW
cLe . ADD THE BITMAP PITCH

LDA PATCH1 ; TO THE SHIFT ROUTINE

ADC PITCH : POINTER TO MOVE TO
STA PATCH1 ; THE NEXT BITMAP ROW.
BCC DRAW . LOOP AGAIN IF NO CARRY
INC PATCH1${ '
: BCS DRAW ; LOOP AGAIN, ALWAYS
EXIT LDX XSAVE A
RTS ; EXIT HERE

; RIGHT AND LEFT BIT-MASKS TABLES

RMASKS DFB $01,$03,507,80F $1F.$3F $7F
LMASKS DFB $7F,$7E.$7C.$78.870,$60,840

. PROGRAM VARIABLES

Y2 OFB BOTTOM Y-COCRD

0 ;
LBYTE DFB 0 ; LEFT BYTE #
LMASK DFB Q ; LEFT BIT MASK
RMASK - DFB 0© ; RIGHT BIT MASK
SBWIDTH DFB 0 ; SHIFTED IMAGE BYTE WIDTH
PITCH DFB 0O ; BITMAP ROW PITCH
SHFTINDXDFB © ; BITMAP WIDTH
TEMP DFB 0 ; TEMP STORAGE
XSAVE DFB 0 ; FOR SAVED X-REG
BUFFER DS 40,0 . ;

SHIFTED DATA ROW BUFFER

(contiﬁued}

No matter what they teil you
or what you read,
) Desktop. software

. I8
being developed!

The
Desktop Junction

Where Lisa Users Can
Meet Lisa Developers

Call (206) 325—9670 for an informational
packet or circle number on inguiry card.

The Desktop Junction is a new service from
David D. Redhed of Clear Skies Consulting.

Lisa is » tradenark of Apple Computer, Inc.

EPSON + APPLE

Print style select progras
JUST #19.99 + $2 handling
DON'T PAY WORE!

Henu of grxnt options

Great Value!

Copiable for your use

Works with MX,RX.FX printers
Send check or money order to:

KELLER®KELLER

Printer Progras

1035 Live Dak Dr
Santa Clara, Ca 95051
(408) 984-5270

Apple is a registered trademark
of Apple Computer,inc, Epson is
a registered tradesark of Epson
Rmerica, Inc,

McMill

The affordable &
expandable 68000
software develop-
ment system for
your Appleil, lle!

PO Box 2342
Santa Barbara, Ca. Y3120
8051 3649-3132 » Telex 658439

- Thisad
is for all those
who ever wonder
why your
company runs
a United Way
-campaign.

When it comes righit down
to it, you’re probably the best rea-
son your company has for getting
involved with the United Way.

You see, they know almost
all of the money given to the
United Way goes back out into
the community to help people.

So if you, or the people you
work with, should ever need any
of our services, like day care,
family counseling or health care,
we’ll be right there to help. In-
fact, there are tens of thousands
of United Way-supported pro-
grams and services in cities and
towns across the country. That
means help is nearby wherever
you are. : o

And your company knows
that could mean the difference
between keeping or losing a val-
uable employee. , .

That’s why they give. And
that’s why they ask you to give.
Because there may come a day
when you need help yourself.

United Way
Thanks to you, it works, for ALL OF US.

% ‘
A Public Service of This Magazine & The Advertising Council

PRESHIFTTABLE GRAPHICS

Listing 5: The Consolidate program loads the tables created by listings 1. 2, and 4,

adds an image table, and stores the composite table in the file TABLPAK for later
use.

100 REM

110 REM CONSOLIDATE-

120 REM TABLES PROGRAM

130 REM

140 REM BY GREGG WILLIAMS

150 REM 23 APR 84

160 REM

170 REM

180 REM ‘

190 HOME : PRINT “CREATING TABLPAK...."

200 TBLSIZ = 32

236 REM

240 D$ = CHR$ (4) i

250 PRINT D$;“BLOAD PRESHIFT TABLE,A$4000"

260 PRINT D$;"BLOAD DIV7 TABLE A$4E00"

270 PRINT D$:'BLOAD HIRES1 TABLE,DA$5000"

280 REM

200 REM —-LOAD NEEDED TABLES

300 REM —-INTO MEMORY

320 REM

330 REM

540 REM .

5506 QQ$ = "'5180:0D 0D 02 00 00 00 00 7C OF 7G 07 7C 03 7C 01 7C

03 7C 07 5C OF 0C 1F 04 OE 00 04 00 00 00 00"

560 GOSUB 63000

570 REM --PUT IMAGE INTO MEMORY

580 REM --USING MONITOR COMMANDS

590 REM

600 REM - ‘

610 PRINT D$:"'BSAVE TABLPAK,A$4000,L':4480 + TBLSIZ

615 PRINT : PRINT ""FILE SAVED TO DISK”

620 REM

630 END

640 REM"

62975 REM

62980 REM)

62985 REM —-FAMOUS S. H. LAM

62000 REM —-MONITOR ROUTINE FOR

62993 REM --EXECUTING MONITOR

62995 REM --COMMANDS FROM BASIC

62997 REM

63000 QQ$ = QQ$ + ** ND9IC6G" : ,

£3010 FOR QQ = 1 TO LEN (QQ$): POKE 511 + QQ,128 + ASC
. (MID$ (QQ$.QQ,1)): NEXT

63020 POKE 72,0: CALL — 144

63030 RETURN

Table 1: Format for the image table. The BASIC demonstration program of listing 6
expects an image table in the format given by this table. Listing 3 expects this table
at location 5180 hexadecimal (20864 decimal), but this can be easily changed by
changing the value stored at 1Bits (location 5203 hexadecimal).

Byte Contents

0 (number of rows in image) — 1 -

1 (number of dots in row) — 1

2 number of bytes in one row of image » .
3, 4,5.. successive bytes of image, starting with upper-left corner

and proceeding by rows

AI130 BYTE » DECEMBER 1984 Guide to the Apple

Listing 6: A program that demonstrates the preshift-table lookup method. This program uses joystick or paddle input to guide an arrow
image across the high-resolution graphics screen. See text for details.

JLIST
100 REM , 1960 REM
110 REM BUDGE PRESHIFT 1970 REM
120 REM GRAPHICS DEMO 1980 REM INITIALIZATION
130 REM 1985 REM SUBROUTINE
140 REM BY BILL BUDGE, . : 1990 REM
150 REM GREGG WILLIAMS, 2000 DOTSMOVE = 2
160 REM AND ROB MOORE 2010 REM --MAXIMUM INCREMENT
170 REM 2020 REM --OF IMAGE
180 REM 2030 REM ‘
190 REM 2040 XPSN = 100:YPSN = 100
200 REM INITIALIZATION 2050 REM --POSITION OF IMAGE
210 REM 2060 REM
220 GOSUB 3000 ‘ 2070 C1THRLO = 100:C2THRH! = 150
230 REM —-LOAD FILES (NEEDS 2080 REM —-THRESHOLD VALUES
240 REM --TO BE DONE ONLY ONCE) 2090 REM —-FOR .JOYSTICK INPUT
250 REM. . 2100 REM
260 GOSUB 2000 2110 C3XMIN = 5:C4XMAX = 235
270 REM —-INITIALIZE TABLES : 2120 CS5YMIN = 5:C6YMAX = 175
280 REM , 2130 REM --BOUNDARIES OF IMAGE
480 REM 2140 REM --MOVEMENT ON SCREEN
490 REM 2150 REM ,
500 REM 2160 CODEADDR = 21008
510 REM MAIN LOOP : 2170 REM --ADDRESS OF MACHINE-
520 REM 2180 REM --LANGUAGE SUBROUTINE
530 REM JFPEEK (— 16287) > 127 THEN 2190 REM
820 2200 IROWS = 20992
535 REM --WHILE LOOP: LOOP 2210 IDOTS = IROWS + 1
540 REM --WHILE BUTTON 0 2220 IWIDTH = IROWS + 2
550 REM --NOT PRESSED 2230 IBITS =. IROWS + 3
560 REM ‘ 2240 X1 = IROWS + 5
570 XVLUE = PDL (0) 2250 Y1 = IROWS + 6
580 YVLUE = PDL (1) 2260 REM --ADDRESSES OF DATA
590 REM --GET JOYSTICK OR 2270 REM --NEEDED BY ASSBY-
600 REM --PADDLE VALUES 2280 REM --LANGUAGE ROUTINE
-610 REM . 2290 REM ,
620 XINCR = - 1 * DOTSMOVE * (XVLUE < C1THRLO) + DOTS 2420 POKE IROWS, PEEK (IMAGTBL)
MOVE * (XVLUE > C2THRHI) 2430 POKE IDOTS, PEEK (IMAGTBL + 1)
630 YINCR = - 1 * DOTSMOVE * (YVLUE < C1THRLO) + DOTS 2440 POKE IWIDTH, PEEK (IMAGTBL + 2)
MOVE * (YVLUE > C2THRHI) 2450 IP = IMAGTBL + 3
640 REM --CONVERT JOYSTICK 2460 CBIPLO = INT (IP / 256)
650 REM --INPUT TO -1,0, OR 1 2470 C7IPHI = IP - 256 * C8IPLO
660 REM 2480 POKE IBITS,.C7IPLO /
670 IF (XPSN + XINCR) > = C3XMIN AND (XPSN + XINCR) < = 2490 POKE IBITS + 1,CBIPHI
C4XMAX THEN XPSN = XPSN + XINCR 2500 REM --SETUP VALUES NEEDED
680 IF (YPSN + YINCR) > = C5YMIN AND (YPSN + YINCR) < = 2510 REM --BY ASSEMBLY-LANGUAGE
_ CBYMAX THEN YPSN = YPSN + YINCR 2520 REM ——ROUTINE
690 REM —-MODIFY X, Y POSITIONS 2530 REM
700 REM --IF WITHIN BOUNDS 2540 HGR : POKE - 16302,0
703 REM - 2550 REM —-SWITCH TO HIRES PG1
706 POKE X1,XPSN 2560 REM
708 POKE Y1,YPSN 2570 RETURN
710 REM --POKE X & Y COORDS 2930 REM
712 REM --OF IMAGE INTO 2935 REM
714 REM --BYTES USED BY THE 2940 REM
716 REM --CODE SUBROUTINE ‘ 2950 REM LOAD FILES
718 REM 2960 REM SUBROUTINE
720 CALL CODEADDR 2970 REM
730 REM --CALL MACHINE-LANG.) 3000 IMAGTBL = 20864
740 REM --BLOCK-MOVE ROUTINE 3010 REM --ADDRESS OF TABLE
750 REM 3020 REM —-CONTAINING IMAGE
760 GOTO 530 3030 REM —-TO BE MOVED
770 REM --END OF WHILE LOOP 3040 REM
780 REM 3050 D$ = CHR$ (4) :
790 REM 3060 PRINT D$;"'BLOAD QD.DEMO.0"
800 REM 3070 PRINT D$;"BLOAD TABLPAK,A$4000"
810 END 3080 PRINT D$;"'BLOAD IMAGE,A";IMAGTBL
820 REM --END OF PGM 3090 REM --LOAD ASSBY-LANGUAGE
830 REM 3100 REM --ROUTINE AND TABLES
1940' REM 3110 REM
1950 REM ‘ 3120 RETURN

. , v : , ,)

Guide to the Apple * DECEMBER 1984 « BYTE AI31

PRESHIFTTABLE GRAPHICS

{continued from page A27) move the image around the high-reso- lighted dots on every edge (it is a 10 by
assembly-language routine of listing 3; lution graphics screen. This program 10 image centered in a 14 by 14 box).
it then uses joystick (or paddle) inputto uses an image that has two rows of un- ~ Because the program moves the image
'] only two dots at a time, the arrow im-
age erases itself as it moves and leaves
no trail.
This program, like the others, was writ-
ten with simplicity and clarity in mind
G e o .t rather than speed or program features.
Al e SREEN.. | The fact that the program moves the ar-
e A e row slowly across the screen is the fault
cl i N N L e | of BASIC, not the assembly-language
HosmerEw N PG L program. To make this demo run faster,
you can “tighten up” the main loop in
lines 530-760 or incorporate some of
_ the joystick decoding and boundary
| checking in another assembly-language
| program that, in turn, calls listing 3.
The preshift-table lookup method is a
compromise between utility and ease of
comprehension. Although this tech-
nique is not as fast as the preshifted-
shapes method often used for anima-
tion, it is a generalpurpose method that
will probably find a number of uses. ®

ONE DNCE

Figure 7: Moving a rectangular image. In the example subroutine of listing 3. the routine
takes the image a line at a time, uses the preshift table to shift it, puts it in a single-line
Buffer, then transfers it to the high-resolution screen. This is only one possible subroutine
that implements the routine in figure 6.

SAVINGS BONDS DON’T COME
IN THE WRONG SIZE OR COLOR.

o Give Bonds |
for Christmas.

f% U.S. SAVINGS BONDS DIVISION

> DEPARTMENT OF THE TREASURY
© Frerg Enterprises, Inc, 1983

Al32 BYTE DECEMBER 1984 * Guide to the Apple

