

_J

ASSEMBLY LINES:
THE BOOK

A EMBLY LI
THE BOOK

A Beginner's Guide

to 6502 Programming

on the Apple II

BY ROGER WAGNER

Softalk Publishing

1982

© 1982 by Softalk Publishing Inc. All rig_hts
reserved. No part of this publication may be

copied, transmitted, or reproduced in any way
including, but not limited to, photocopy,

photography, magnetic, or other recording,
without prior written permission of the

publisher, with the exception of program
listings, which may be entered, stored

and executed in a computer system, but
not reproduced for publication.

Library of Congress Catalog Card Number: 81-85708

Current Printing (last digit)
109876543

Softalk Publishing
11160 McCormick

Box 60
North Hollywood, CA 91603

Design by Kurt A. Wahlner Printed in the United States of America

To My Father

Table of Contents
INTRODUCTION ... ix

1 APPLE'S ARCHITECTURE ,. 1
6502 Operation. Memory Locations. Hexadecimal Notation.

2 ASSEMBLERS .. 13
General Discussion. Source Code. Object Code. Source Code Fields.
Pseudo Opcodes. Load/Store Opcodes.

3 LOOPS and COUNTERS .. 23
Binary Numbers. The Status Register. Incrementing and Decrementing.
Looping with BNE.

4 LOOPS, BRANCHES, COUT, and PADDLES 31
Looping with BEQ. Branch Offsets and Reverse Branches. Screen Output
using couT. Reading a Game Paddle. Transfer Commands.

5 I/O ROUTINES using MONITOR and
KEYBOARDS .. ., 41
Review of Concepts. Compare Commands and Carry Flag. Using
Monitor Programs for I/O Routines. Reading Data from Keyboard.

6 ADDRESSING MODES ... 51
Immediate, Absolute, Zero Page, Implicit/Implied, and Relative
Addressing Modes. Indexed Addressing. Storing Pure Data.

7 SOUND GENERATION ROUTINES 61
Delays. Altering Program Length. Delay Value in Memory. Delay from
Keyboard and Paddles.

8 THE STACK ... 71
LIFO. Stack Pointer. PHA. PLA. Stack Storage Capacity.

9 ADDITION and SUBTRACTION 75
Binary Numbers. ADC. Clearing the Carry. Two-Byte Addition. SBC.

Setting Carry for Subtraction. Positive and Negative Numbers.
Ones' Complement. Twos' Complement. Sign Flag.

vi

10 DOS and DISK ACCESS .. 89
Disk Access. Overview of DOS. Diskette Organization. Modifying Access
Utilities.

11 SHIFT OPERATORS and LOGICAL
OPERATORS ... 103
Shift Operators. Logical Operators. AND. Operational vs. Processing
Modes. Flow of Control. Inverse Flag. Masking. Inclusive OR.

Exclusive OR.

12 1/0 ROUTINES .. 120
Print Routines: Data Type; Special Type. Manipulating the Stack Return
Address. Input Routines: Binary Input; Combination Applesoft/Assembly
Language.

13 READING/WRITING FILES on DISK ,, 129
BLOAD/BSAVE. Name File Program using String and Single Key Input,
Print, and DOS Command Routines. Text Files. OPEN/READ,

OPEN/WRITE. Simulating Program Execution: LANG, CURLIN,

Memory Location $33.

14 SPECIAL PROGRAMMING
TECHNIQUES ,. ... 145
Relocatable vs. Nonrelocatable Code. JMP Commands. Determining
Program Location. JSR Simulations. Self-Modifying Code. Indirect
Jumps.

Appendix A ,. .. '°. 163
Contest.

Appendix B ... 171
Assembly Language Commands: Description and Uses.

Appendix C ... 243
6502 Instruction Set.

Appendix D ... 259
Monitor Subroutines.

Appendix E ... 263
ASCII Code and Text Screen Charts.

Index .. 270

vii

INTRODUCTION
One often gets the impression that programming in assembly

language is some very difficult and obscure technique used only
by those advanced programmers. As it happens, assembly language
is merely different, and if you have successfully used Integer or
Applesoft Basic to do some programming, there's no reason why
you can't use assembly language to your advantage in your own
programs.

This book will take a rather unorthodox approach to explain
ing assembly programming. Because you are presumably some
what familiar with Basic, we will draw many parallels between
various assembly language techniques and their Basic counter
parts. An important factor in learning anything new is a familiar
framework in which to fit the new information. Your knowledge
of Basic will provide that framework.

I will also try to describe initially only those technical details
of the microprocessor operations that are needed to accomplish
our immediate goals. The rest will be filled in as we move to
more involved techniques.

This book does not attempt to cover every aspect of machine
language programming. It does, however, provide the necessary
information and guidance to allow even a somewhat inexperi
enced person to learn machine language in a minimum of time.
You should find the text and examples quite readable, without
being overwhelmed by technical jargon or too much material
being presented at once.

I'd like to take this opportunity to briefly mention a few of

INTRODUCTION ix

my own programming philosophies. Writing programs to do a
given task is essentially an exercise in problem solving. Problem
solving is in fact a subject in itself. No matter what your pro
gramming goal is, it will always involve solving some particular
aspect that, at that moment, you don't really know how to solve.
The most important part is that, if you keep at it, you eventually
will get the solution.

One of the key elements in this process, I believe, and the
particular point to stress now, is that it is important to be a tool
user. Programming in any language consists of using the various
commands and functions available to you in that language and
of putting them all together in a more complex and functioning
unit. If you are not familiar with the options you have at any
given moment-that is, your tools-the problem-solving process
is immensely more difficult.

My intent in this book is to present in an organized way the
various operations available in assembly language and how they
can be combined to accomplish simple objectives. The more
familiar you are with these elements, the easier it will be to solve
a particular programming problem.

You may wish to keep your own list of the machine language
commands and thefr functions as we go along. A list of these
commands is included in appendix C, but I think you'll agree
that by taking the time to write each one down as you learn it,
along with your own personal explanation of what it does, you
will create a much stronger image in your mind of that particular
operation.

You may wish to supplement this book with other books on
6502 programming. Recommended books include:

Randy Hyde, Using 6502 Assembly Language (Northridge, CA:
DataMost, 1981); $19.95.

Don Inman and Kurt Inman, Apple Machine Language (Reston,
VA: Reston Publishing, 1981); $12.95.

Lance A. Leventhal, 6502 Assembly Language (Berkeley: Osborne/
McGraw-Hill, 1979); $16.99.

Rodnay Zaks, Programming the 6502 (Berkeley: Sybex, 1981);
$13.95.

There are undoubtedly others that are also available, and you
should consider your own tastes when selecting which ones
seem most appropriate to your own learning style.

x ASSEMBLY LINES

An additional concern for a book like this is which assembler
to use. (An assembler is an editor-like utility for creating machine
language programs. If you're vague on this check chapter two
for more information.) Although I'm somewhat biased, my
favorite assembler is the one available from Southwestern Data
Systems called Merlin. It not only contains a good assembler,
but also a number of additional utilities and files of interest.
Merlin is not required, however, as the examples given are writ
ten to be compatible with most of the assemblers currently avail
able. These include the Apple DOS Tool Kit, TED II, the S.C.
Assembler, and many others.

Also available from Southwestern Data Systems is a utility
called Munch-A-Bug (M.A.B.) which allows a person to easily trace
and de-bug programs, a process which can be of tremendous
help. M.A.B. also includes its own mini-assembler which can be
used for the beginning listings provided in this book.

In terms of hardware, any Apple II or Apple II Plus should
be more than adequate for your needs and no additional hard
ware is required. Disk access is discussed in several chapters,
but is otherwise not a concern throughout the remainder of the
book.

One warning before you start into the subject of machine
language programming. As with any nontrivial endeavor, many
people sell themselves short because of what I call the instant
expert myth. How many people hear someone play a piano well,
and say, "My, what a beautiful thing. I think I'll get one and
learn how to play myself!" They then spend a substantial amount
of money, sit down, and press a few keys. Surprise! To their
great disappointment, the Moonlight Sonata does not magically
flow from their fingers! They usually then become immediately
discouraged and never pursue the area further, turning some
thing that could give them tremendous pleasure into an expen
sive means of support for a flower vase.

I've seen this same effect in almost every area of human
activity. If what you wanted was the Moonlight Sonata, a record
will produce the sound you desire. People know that it takes
talent (talent = 99% practice = 99% time) to play well, but are
then disappointed when they can't sit down and perform like
an expert immediately.

One of the great secrets to learning anything is to be satisfied
with minor learning steps. Playing the Apple is in many ways

INTRODUCTION xi

much easier than learning to play a piano, but you should still
not expect to sit down and write the world's greatest database
in your first evening.

Set yourself some simple and achievable goals. Can you move
one byte from one memory location to another? If you can you're
well on your way to mastering programming. My feeling is that
virtually anyone can become better than eighty to ninety percent
of his fellow citizens in any area simply because eighty to ninety
percent of the other people aren't willing or inclined to spend
the necessary time to learn the skill. Reaching the top ninety
nine percent is certainly difficult, but ninety-five percent is sur
prisingly easy.

This book is written with the intention of providing those
simple achievable steps. And surprisingly enough, by the time
you finish this book you will have written a simple database of
sorts, along with some sound routines, some programs that use
paddles and the disk, and a few other nifties as well!

So hang in there and don't expect to be an expert on page
five. I will guarantee that by page one hundred you may even
surprise yourself as to how easy machine language programming
really is.

One final note. I'd like to thank Al Tommervik for his tre
mendous help and support in this project as both editor and
friend, and Greg Voss who provided many insightful sugges
tions in transforming the monthly series into the book. Also Eric
Goez for his encouragement to never accept less than the best,
and his attentive (if not enthusiastic) listening to my various
plans over the years.

Last but not least my thanks and sincere thoughts of appre
ciation to the many people that have shared in my own expe
riences in computing over the last few years. Whether they were
readers of the column, users of my programs, or the wealth of
new friends that have entered my life via the Apple, they have
made all my efforts more than worthwhile and brought rewards
beyond any simple economic gains of an ordinary job.

Alas for anyone who thinks that computers lead to a loss of
the humanistic aspects of life. They need only look to the amaz
ing community that has been drawn together from all parts of
the world by the Apple to see that friendship and human crea
tivity will always outshine the simple tools we use to express
ourselves.

xii ASSEMBLY LINES

My wish for you, dear reader, is that you receive as much
enjoyment from the Apple and programming as I have.

Roger Wagner
Santee, California
December 1, 1981

INTRODUCTION xiii

CHAPTER 1
Apple's Architecture

The first area to consider is the general structure of the Apple
itself. To help visualize what's going on in there, why not take
a look inside. That's right-rip the cover off and see what's in
there! Don't be timid-get your nose right down in there and
see what you shelled out all those hard-earned bucks for.

Providing you haven't gotten carried away in dismembering
your Apple, the inner workings should appear somewhat like
those in the photo below.

A B

The main items of interest are 6502 microprocessor (A)
and the banks of memory chips (B). If you're not an electronics
whiz, it really doesn't matter. You can take it as a device of magic
for all it matters. The memory chips have the capability of storing
thousands of individual number values and the 6502 supervises
the activities therein. All the rest of the electronic debris within
is supplied only to support the :memory and the 6502. The cir
cuits allow you to see displays of this data on the screen, and
~permit the computer to watch the keyboard for your actions.

CHAPTER 1 1

The screen and keyboard are rather secondary to the nature
of the computer and are provided only to make you buy the
thing. As far as the Apple is concerned, it could talk to itself
perfectly well without either the screen or the keyboard.

6502 Operation

So how does it work? The heart of the system is the 6502
microprocessor. This device operates by scanning through a
given :range of memory addresses. At each location, it finds some
particular value. Depending on what it finds, it executes a given
operation. This operation could be adding some numbers, stor
ing a number somewhere, or any of a variety of other tasks.
These interpreted values are often called opcodes.

In the old days, programmers would ply their trade by load
ing each opcode, one at a time, into successive memory locations.
After a while, someone invented an easier way, using a software
device to interpret short abbreviated words called mnemonics. A
mnemonic is any abbreviated command or code word that
sounds somewhat like the word it stands for, such as STX for
STore X. The computer would then figure out which values to
use and supervise the storing of these values in consecutive
memory locations. This wonder is what is generally called an
assembler. It allows us to interact with the computer in a more
natural way. In fact, Basic itself can be thought of as an extreme
case of the assembler. We just use words like PRINT and INPUT

to describe a whole set of th~ operations needed to accomplish
our desired action.

In some ways, assembly language is even easier than Basic.
There are only fifty~five commands to learn, as opposed to more
than one hundred in Basic. Machine code runs very fast and
generally is more compact in the amount of memory needed to
carry out a given operation. These attributes open up many
possibilities for programs that would either run too slowly or
take up too much room in Basic.

Memory Locations

Probably the most unfamiliar part of dealing with the Apple
in regard to machine level operations is the way addresses and
numbers in general are treated. Unless you lead an unusually
charmed life, at some point in your dealings with your Apple

2 ASSEMBLY LINES

you have had it abruptly stop what it was doing and show you
something like this:

8BF2- A=03 X=9D Y=OO P=36 S=F2

This occurs when some machine level process suddenly encoun
ters a break in its operation, usually from an unwanted modi
fication of memory.

Believe it or not, the Apple is actually trying to tell us some
thing here. Unfortunately, it's rather like being a tourist and
having someone shout, "Alaete quet beideggen!" at you. 1 It doesn't
mean much unless you know the lingo, so to speak. . . .

What has happened is that the Apple has encountered the
break we mentioned and, in the process of recovering, has pro
vided us with some information as to where the break occurred
and what the status of the computer was at that crucial moment.
The message is rather like the last cryptic words from the recently
departed.

The leftmost part of the message is of great importance. This
is where the break in the operation occurred. Just what do we
mean by the word where? Remember all that concern about
whether you have a 16K, 32K, or 48K Apple? The concern was
about the number of usable memory locations in your machine.
This idea becomes dearer through the use of a memory map, such
as the one shown below.

65535 $FFFF

hardware

49151 $BFFF

48K

32767 $7FFF

32K

16383 $3FFF

16K

00000 $0000

1. "Watch where you're stepping you nerd!" (in case you're not familiar
with this particular dialect.)

CHAPTER 1 3

Inside the Apple are many electronic units that store the
numerical value§ we enter. By numbering these units, we assign
each one a unique address. This way we can specify any particular
unit or memory location, either to inquire about its contents or
to alter those contents by storing a new number there.

In the Apple there are a total of 65,536 of these memory
locations, called bytes. The chart gives us a way of graphically
representing each possible spot in the computer.

When the computer shows us an address, it does not do it
in a way similar to the numbers on the left of the memory map,
but rather in the fashion of the ones on the right. You may well
remark here: "I didn't know BFFF was a number; it sounds more
like a wet sneaker. . . ."

Hexadecimal Notation

To understand this notation, let's see how the 6502 counts.
If we place our byte at the first available location, it's address is
$0. The dollar sign is used in this case to show that we are not
counting in our familiar decimal notation, but rather in hexa
decimal (base sixteen) notation, usually called hex, which is how
the computer displays and accepts data at the Monitor level.

After byte $0, successive locations are labeled in the usual
pattern up to $9. At this point the computer uses the characters
A through F for the next six locations. The location right after
$F is $10. This is not to be confused with ten. It represents the
decimal number sixteen. The pattern repeats itself as in usual
counting with:

$10, 11, 12, 13 ... 19, 1A, lB ... lE, 1F, 20

Try not to let this way of counting upset you. The pattern in
which a person (or machine) counts is rather arbitrary, and
should be judged only on whether it makes accomplishing a task
easier or not. The biggest problem for most people is more a
matter of having been trained to use names like one hundred when
they see the numerals 100. How many items this corresponds
to really depends more on the conventions we agree to use than
on any cosmic decree. To aid in your escape from your possibly
narrow view of counting, you may wish to read the diversionary
story following this chapter. In any event, it will be sufficient
for our purposes to understand that $1F is as legitimate a number
as 31.

4 ASSEMBLY LINES

! I

The hex number $FF (255) is the largest value a single byte
can hold. A block of 256 bytes (for instance $0 to $FF) is often
called a page of memory. In the figure below, all the addresses
from $0 to $FF are shown in block b. Four of these blocks
together, as in c, make up lK of memory. As you can see, there
are actually 11024 bytes in lK. Thus a 48K machine actually has
49,152 bytes of RAM.

10 It $100

1\256 1024
OF FO-FF

$400
"' 65535

It $FFFF

OE EO-EF

OD DO-DF
300-3FF

COOO-
FFFF

oc CO-CF
768 $300

OB BO-BF

OA AO-AF
200-2FF

09 90-9F

08 80-8F
512 $200 4915 1 $BFFF

07 70-7F

06 60-6F

05 50-5F

~ 04 40-4F

100-lFF

$100 1638

4000-
7FFF

3 $3FFF
03 30-3F

02 20-2F
0-FF 0-3FFF

01 \ 10-lF

00 0-F
--7 ---70 (a b

$0

(c)

1 0 $0000

(d)

one memory location

Block d shows the Apple's entire range again. If you do not
have a full 48K of memory, then the missing range will just
appear to hold a constant value (usually $FF), and you will not
be able to store any particular value there.

The range from $COOO to $FFFF, an additional 16K, is all
reserved for hru;dware. This means that any data stored in this
range is of a permanent nature and cannot be altered by the
user. Some areas are actually a physical connection to things like
the speaker or game switches. Others, like $EOOO to $FFFF are
filled in by the chips in the machine called ROMS.

CHAPTER 1 5

ROM stands for Read Only Memory. These chips hold the
machine language routines that make up either Applesoft or
Integer, depending on whether you have an Apple Plus or the
standard model. One of the chips is the Monitor, which is what
initializes the Apple when it is first turned on so you can talk
to it.

The Monitor can be thought of as a simple supervisor pro
gram that keeps the Apple functioning at a rather primitive level
of intelligence. It handles basic input and output for the com
puter, and allows a few simple commands relating to such things
as entering, listing, or moving blocks of memory within the
Apple. Don't be fooled though. The amount of code required
to do just these things is not trivial, and in addition provides us
with a ready-made mini-library of routines that we can call from
our own programs, as will be shown later is this book.

Apple provides an excellent discussion of the Monitor and
its commands and operation within the Apple II Reference Manual,
currently supplied with all new Apples. You may wish to consult
this if you are unsure of the general way in which the Monitor
is accessed and used.

Now that break message should have at least a little meaning.

8BF2- A=03 X=9D Y=OO P=36 S=F2

The 8BF2 is an address in memory. The display indicates that
the break actually occurred at the address given minus two (8BF2
- 2 = 8BFO). For reasons that aren't worth going into here, the
Monitor always prints out a break address in this plus-two fash
ion. What about the rest of the message? Consider the next three
items:

A=03 X=9D Y=OO

The 6502, in addition to being able to address the various mem
ory locations in the Apple, has a number of internal registers.
These are units inside the 6502 itself that can store a given num
ber value, and they are individually addressable in much the
same way memory is. The difference is that instead of being
given a hexadecimal address, they are called the X-Register, the
Y-Register, and the Accumulator. In our error message, we are
being told the status of these three registers at the break.

6 ASSEMBLY LINES

6502

X-Register

Y-Register

Accumulator

$7FFF
machine
language program

The above figure illustrates what we know so far. The 6502
is a microprocessor chip that has the ability to scan through a
given range of memory, which we will generally specify by using
hex notation for the addresses. Depending on the values it finds
in each location as it scans through, it will perform various
operations. As an additional feature to its operation, it has a
number of internal registers, specifically the X-Register, the Y
Register, and the Accumulator. Memory-related operations are
best done by entering the Monitor level of the Apple (usually
with a CALL -151) and using the various routines available to
us.

Exploring the Monitor

It is possible to program the computer manually by entering
numbers one at a time into successive memory locations. A pro
gram of this sort is called a machine language program because
the 6502 can directly run the coded program steps. Humans,
however, find this type of data difficult to read and are more
likely to make mistakes while working with it.

A more convenient method of programming is to assign some
kind of code word to each value. The computer will translate
this word into the correct number to store in memory. This trans
lation is done by an assembler, and programs entered or displayed
in this manner are called assembly language programs.

As an example, let's look at some data within your Apple,

CHAPTER 1 7

first in the machine language format and then in the assembly
language format. First we must enter the Monitor. Type in:

CALL -151

This should give you an asterisk(*) as prompt. Now type in:

F800.F825

This tells the Monitor we want to examine the range of memory
from $F800 to $F825. The general syntax of the command is:

<start address>. <end address>

the period being used to separate the two values.
Upon hitting RETURN you should get the following data:

F800- 4A 08 20 47 F8 28 A9 OF

F808- 90 02 69 EO 85 2E Bl 26

F810- 45 30 25 2E 51 26 91 26

F818- 6() 20 00 F8 C4 2C BO 11

F820- cs 20 OE F8 90 F6

*
The range I have picked is the very beginning of the Monitor

ROM. The data here can be directly read by the 6502, but is very
difficult for most humans to make much sense of. This is
machine language.

Now type in:

FBOOL

This tells the Monitor to give us a disassembly of the next twenty
instructions, starting at $F800. The syntax here is:

<start add:ress>L

To disassemble means to reverse the process we talked about
earlier, taking each number value and translating it into the
appropriate code word.

After hitting RETURN you should get:

8 ASSEMBLY LINES

F800- 4A LSR
F801- 08 PHP
F802- 20 47 F8 JSR $F847

F805- 28 PLP
F806- A9 OF LDA #$OF
F808- 90 02 BCC $FSOC

F80A- 69 EO ADC #$EO

F80C- 85 2E STA $2E

F80E- Bl 26 LDA ($26),Y

F810- 45 30 EOR $30

F812- 25 2E AND $2E

F814- 51 26 EOR ($26),Y

F816- 91 26 STA ($26),Y

F818- 60 RTS
F819- 20 00 F8 JSR $F800

F81C- C4 2C CPY $2C

F81E- BO 11 BCS $F831

F820- C8 INY

F821- 20 OE F8 JSR $F80E

F824- 90 F6 BCC $F81C

This is a disassembled listing. Although it probably doesn't
do a lot for you right now, I think it's obvious that it is at least
more distinctive.

Let's look at it a little more closely. In Basic, line numbers are
used to begin each set of statements. They're particularly handy
when you want to do a GOTO or GOSUB to some other part of the
program. In machine language, the addresses themselves take
the place of the line numbers. In our example, the column of
numbers on the far left are the addresses at which each operation
is found. To the right of each address are one to three hex values,
which are number values stored in successive addresses. These
are the opcodes with their accompanying operands.

At $F802, for instance, is the opcode $20. Remember, the
dollar sign is used to show we are using base sixteen. $20 is the
opcode for the command JSR. All mnemonics are made up of
three letters. In this case, JSR stands for Jump to SubRoutine and
is rather like a GOSUB in Basic. The next two numbers, $47 and
$F8, comprise the operand, that is, the number that the opcode
is to use in its operation. To the right we see that these numbers

CHAPTER 1 9

give $F847 as the object of the JSR. 2 Continuing with our analogy,
what would be a GOSUB 1000 in Basic appears as a JSR $F847 in
assembly language. The command JSR $F847 will jump to the
subroutine at $F847 and return when done.

You've just learned your first word of assembly language: JSR!
Looking through the listing, you can see several of these. The
first one goes to some routine outside the listing. What about
the other two JSR commands? You should be able to see that they
reference routines within the listing. The second enters at $F800,
the third at $F80E.

In Basic, a GOSUB eventually ends with a RETURN. The JSR has
an analogous counterpart. Looking at the entry point at $F80E
and what follows, can you find anything that looks like it might
be the equivalent of a RETURN? Take the time to find it if you can
before reading on.

If you picked the RTS, you're right. RTS stands for return from
subroutine. As with a RETURN, when the program reaches the
RTS, it returns to where it originally came from. Encountering
the RTS at $F818, program execution would resume at $F824, if
entry was from the JSR $F80E at $F821.

You might notice that almost all machine code blocks that
you may have used along with Basic programs, such as tone
routines, usually end with a $60 as the last byte. This is the
opcode for RTS. In almost any assembly language program you
write, you must end with an RTS. This is because, to the computer
as a whole, your program is a temporary subroutine of its overall
operation.

When your program ends, the RTS lets the Apple return to
its original operations of scanning the keyboard and such. When
you do a CALL 768 from Basic, for example, you are essentially
doing a JSR to that machine routine. The 768 is the decimal value
for the address of the start of the routine, equivalent to $300 in

2. Notice that it takes two bytes to store the value for an address. For example,
for the address $F847, the value "F8" is stored in one byte, and "47" in another.
Reading an address is generally a matter of mentally combining the two bytes.

The byte representing the left-hand portion of the number is often called the
high-order byte; the byte representing the right-hand portion is called the low
order byte.

It is important to realize that the two bytes that make up an address are
almost always reversed in regards to what you might normally expect. That is to
say that in an address byte-pair, the low-order byte always comes first, imme
diately followed by the high-order byte. This means that when examining raw
memory, you must mentally reverse the byte to determine the address stored.
Fortunately when using the L command, the dissassembler does this for you.

10 ASSEMBLY LINES

hexadecimal. At the end of that routine, the RTS returns you to
your Basic program to let it continue with the next statement.

It's Culture That Counts

Many people have remarked that our choice of ten as a number
base is related to the fact that we have ten fingers on our hands.
One can only guess how a different set of circumstances would
have profoundly changed our lives. Speculating, for instance,
on which two commandments would have been omitted had we
only eight fingers is enough to keep one awake at night.

A living example of this arbitrary nature of number bases was
recently brought to light by the discovery of a long lost tribe
living in the remote jungles of South America. It would seem
the tribe had been isolated from the rest of the world for at least
10,000 years. An interesting aspect of their life was a huge pop
ulation of dogs living among the people. In fact, dogs so out
numbered the people (so to speak) that the people had evolved
a counting system based on the number of legs on a dog, as
opposed to our more rational base ten. They counted in the
equivalent of base four.

In counting, they would be heard to say, "one, two, three "
Since they had never developed more than four symbols to count
with (0,1,2,3) when they got to the number after three, they
wrote it as 10 and called it doggy, thus confirming the quantity
in terms of a natural unit in their environment. Continuing to
count they would say, "doggy-one (11), doggy-two (12), doggy
three (13) "

At this point they would write the next number as 20 and call
it twoggy. A similar procedure was used for 30.

20-twoggy
21-twoggy-one
22-twoggy-two
23-twoggy-three

30-troggy
31-troggy-one
32-troggy-two
33-troggy-three

Now, upon reaching 33, the next number must again force
another position in the number display.

You're probably wondering what they called it. The digits are
of course 100. Oh, the name? Why, of course, it's one houndred.

CHAPTER 1 11

Assemblers

I mentioned earlier that the basic principle of the Apple is its
ability to scan through a range of memory and execute different
operations depending on what numeric values it finds at each
location, or address. Instead of tediously loading each location by
hand with mundane numbers to create a program, an assembler
is used to translate abbreviated codewords, called mnemonics, into
the proper number values to be stored in memory.

The types of assemblers available are quite diverse, and range
from the Mini-Assembler present in an Apple with Integer Basic
(or the Munch-A-Bug package) to sophisticated editor/assemblers
like Merlin.

For now, we'll use the Mini-Assembler to try a short program.
If you have an Apple II, an Apple II Plus with language card,
or an Apple Ile, the Mini-Assembler is available provided that
you enter the Monitor from Integer Basic. In any case, you'll
want to get a more complete assembler to do any real program
writing.

Starting with chapter three, I'll assume you have an assem
bler, and have learned at least enough about operating it to enter
a program. Since the only two commands we have at this point
are JSR and RTS, our routine will be very simple. In the Monitor
at $FBDD is a routine that beeps the speaker. Our routine will
do a JSR to that subroutine, then return to Basic via an RTS at the
end.

To enter the program using the Mini-Assembler, follow these

CHAPTER 2 13

steps:1 From Integer, enter the Monitor with a CALL -151. Then
type in:

F666G

F666 is the address where the Mini-Assembler program starts.
G tells the Monitor to execute the program there. You can think
of Gas go; its Basic equivalent is RUN. The general syntax is:

<start address>G

The prompt should change to an exclamation mark(!). To use
the Mini-Assembler, you must follow a basic pattern of input.
See page 49 in the newest Apple II Reference Manual for a thorough
description of this. For now, though, enter:

!300: JSR FBDD <RETURN>

The Apple will immediately rewrite this as:

0300- 20 DD FB JSR $FBDD

The input syntax is to enter the address at which to start the
program followed by a colon and a space, then enter the mne
monic, another space, and then the operand, in this case the
address for the JSR to jump to.

Next type in:

! RTS<RETURN>

which will be rewritten as:

0303- 60 RTS

Be sure to enter one space before the RTS. What the assembler
has done is to take our mnemonic input and translate it into the

1. If you do not have the Mini-Assembler available, you can enter the same
data into memory by entering the Monitor and typing in:

300: 20 DD FB 60 <RETURN>

Rejoin us at the 300L mark on pg. 15

14 ASSEMBLY LINES

numeric opcodes and operands of actual machine language.
Now type in:

!$FF59G

This will exit the Mini-Assembler, giving you back the asterisk
prompt(*) of the Monitor. You can now LIST your program by
typing in:

300L

The first two lines of your listing should be:

0300- 20 DD FB JSR $FBDD
0303- 60 RTS

What follows after $303 is more or less random and does not
affect the code we have typed in. When run, this program will
jump to the beep routine at $FBDD. At the end of that routine
is an RTS that will return us to our program at $303. The RTS there
will then do a final return from the program back to either the
Monitor or Basic depending on where we call it from.

From the Monitor type in:

300G

The speaker should beep and you will get the asterisk prompt
back. Now go back into Basic with a control-B. Type in:

CAU768

The speaker should again beep and then give you the Basic
prompt back. CALL 768 should work from Integer or Applesoft.

As long as the programs are not very involved, the Mini
Assembler is handy for writing quick routines. A complete table
of routines in the Monitor appears in appendix D at the end of
the book. Try to write your own JSR's to one or more of these
routines. You might even try doing several in a row for fun.

Now let's look at the operation of a more typical assembler.
This example assumes you're using an assembler similar to the
ones mentioned in the introduction. If you have a different
assembler that gives you different results, you may have to con-

CHAPTER 2 15

sult your operating manual for the proper procedures for enter
ing source listings.

Before presenting the listing, I'd like to clarify two commonly
used terms in assembly language programming, source code and
object code. Source code is the English-like text you enter into the
assembler. This text has the advantage of being easily readable,
and may include whole sentences or paragraphs of comments
very similar to REM-type statements found in Basic. Source code
is, however, not directly executable by the 6502. It simply does
not understand English-like text. As mentioned earlier, the 6502's
preferred (and in fact only acceptable) diet is one to three byte
chunks of memory in which simple and unambiguous numbers
are found.

The assembler takes this text and produces the pure numeric
data, called the object code, which is directly executable by the
6502.

Now the listing:

Object Code

300--- 20 DD FB
303- 60

Source Code

1 **************** 2 * SAMPLE PROGRAM *
3 ****************
4 *
5 *
6 OBJ $300
7 ORG $300
8 BELL EQU $FBDD

9 *
10 START JSR BELL ; RING BELL
11 END RTS ; RETURN

To the right side of the listing is what is generally called the
source code. This is the program, coded using mnemonics and
various names or labels for different parts of your routine. Very
few actual addresses or values are used in the source code.

To the left is the object code. This is what is actually put in
memory as the machine language program. The object code is
what the computer actually executes; it is obviously rather dif
ficult to understand, at least compared to trying to understand
it when you have the advantage of the source code. Being more
readily able to understand the coding places greater importance

16 ASSEMBLY LINES

on having the source listing for a given program and explains
why your Apple II Reference Manual contains a source listing for
the Apple Monitor. Such listings were considered necessary in
documenting a system when the Apple came out.

However, source listings for Applesoft, Integer, and the Disk
Operating System (DOS) are much harder to come by and are
not directly distributed by Apple Computer Co., Inc. Indepen
dently created source listings for DOS and Applesoft have been
prepared by individuals not directly associated with Apple Com
puter Co., Inc. and are commercially available. The DOS 3.3
Source compiled by Randy Hyde is available from Lazer Systems,
Inc. An Applesoft source listing is included in the Merlin assem
bler from Southwestern Data Systems, P.O. Box 582, Santee, CA
92071.

Most assemblers display both the object code and the source
code when the ASM (for assemble) command is used. Object and
source code are, however, usually saved to disk as two separate
and distinct files. Initially, let's consider just the source listing.

The first thing to notice is that, just like in Basic, we again
have line numbers. In assembly language, though, the line num
bers are solely for use with the program editor, and are not used
at all to reference routines. Inserting a line is done with a special
editor command, and all following lines are automatically
renumbered to accommodate the new line.

Next notice the syntax, or proper ordering of the information.
Generally the syntax consists of three basic elements, or fields,
to each line. These fields are either defined by their position on
the line or, more often, by delimiters. A delimiter is a character
used to separate one field from another. In most assemblers, a
space is used. Using this convention, you don't have to tab over
to some specific position for each field on the line. Instead you
just make sure each field is separated from the adjacent one by
a space.

The first field is for a label and is optional. Lines 10 and 11,
for example, each have a label that applies to that point in the
routine. In this case, the label START indicates where we first
begin the program. END is the clever label used for the finish.
You may even recognize this program as the one we used to beep
the speaker earlier. Some assemblers limit the number of char
acters used in the label.

As the program becomes more complex, we can do the equiv
alents of GOTO and GOSUB by using these labels instead of a line

CHAPTER2 17

number. You'll notice that to do this, BELL has to be defined
somewhere in the listing. Since BELL does not occur as a label
within our own program (lines 10 and 11), it is defined at the
beginning using the EQU (EQUals) statement. The statement
reads: "BELL EQUals $FBDD :' This way, whenever we use the label
BELL, the assembler will automatically set up the JSR or whatever
to the address $FBDD.

The second field is the command field which includes the
opcode and its operand. In line 10, the JSR is the opcode and the
operand is BELL. Not all opcodes will have an operand.

The third field, to the right, is the comment field. Use of the
comment field is optional and is reserved for any comments
about the listing you might wish to make (for example, RING
BELL). The semicolon in the source code is used as the delimiter
for the comments field. Comments can also be done at the very
beginning of the line by using an asterisk as the REMark character.
As in Basic, everything after the asterisk is ignored by the assem
bler.

Assemblers also have what are sometimes called pseudo
opcodes or directives, like EQU. Although directives do not trans
late into 6502 code, they are interpreted by the assembler accord
ing to assigned definitions as the object code is assembled.

They are called directives because they direct the assembler
to perform a specific function at that point such as store a byte,
save a file to disk, etc.

The sample program uses two directives, OBJ and ORG, on
lines 6 and 7 of the source listing. OBJ stands for OBJect and
defines where the object code will be assembled in memory. In
this case the code will be assembled starting at the address $300.
ORG stands for ORiGin and defines the base address to be used
when creating the JSR's, JMP's, and other functions that reference
specific addresses within the program. Generally OBJ and ORG
are the same, and for the time being we'll leave it at that. Consult
your assembler manual for more specific information on the use
of these commands.

Remember, only the actual program is converted into the
object code. The remarks and the EQU, OBJ, and ORG statements
are only used in the source code and are never transferred to the
object code.

Load/Store Opcodes

One of the most fundamental operations in machine code is

18 ASSEMBLY LINES

transferring the number values between different locations
within the computer. You'll recall that in addition to the 64K of
actual memory locations, there were registers inside the 6502
itself. These were the Accumulator, the X-Register, and the Y
Register. There are a number of opcodes that will load each of
these registers with a particular value, and, of course, another
set to store these values somewhere in the computer. The table
below summarizes these:

to load:
to store:

Accumulator
LDA
STA

X-Register
LDX
STX

Y-Register
LDY
STY

The first mnemonic, LDA, stands for LoaD Accumulator. LDA is
used whenever you wish to put a value into the Accumulator.
Conversely, to store that value somewhere, you would execute
the STA command, which stands for STore Accumulator. The
opcodes for the X-Register and Y-Register are similar and per
form the identical function with the associated registers.

Now the question is, how do we control what numbers get
put into the register we're concerned with? There are basically
two options. The first is to put a specific number there. This is
usually indicated in the source listing by preceding the number
we want to be loaded with a "#" character.

99
100

LDA#$05 ;LOAD ACC. WITH THE
;VALUE '$05'

For instance, in this example, we have loaded the Accumulator
with the value 5. How do you think we would load the X-Register
or the Y-Register with the value O?

The other alternative is to load the register with the contents
of another memory location. To do this, we just leave off the
"#" character.

99
100

LDA$05 ;LOAD ACC. WITH THE
;CONTENTS OF LOC. $05

In this case, we are loading the Accumulator with whatever
location $05 happens to be holding at the moment.

These two options are called addressing modes. The first exam
ple (#$05) we call the immediate mode, because it is not necessary
to go to a memory location to get the desired value. The second

CHAPTER2 19

case we call the absolute mode. In this mode, we put a given value
in the register by first going to a specified memory location that
holds the value we want.

Putting It AH Together

We now have the ability to transfer numbers about in the
computer, to jump to other subroutines within the Apple via a
JSR, and to return safely to the normal world via an RTS when
we're done. In addition, we have an assembler that will allow us
easily to generate a source listing for our program, which can
also be easily modified. Let's put all this together to write a short
program to print some characters on the screen. Appendix E
contains two charts (the ASCH Screen Character Set, and the
Text Screen Map) that will supply the necessary information to
achieve this.

When a character is printed on the screen, what is really
happening is that a number value is being stored in the area of
memory reserved for the screen display. Change a value there
and a character on the screen will change. The Text Screen Map
gives the various addresses of each position on the screen. The
upper left comer corresponds to location $400, the lower right
to $7F7.

The ASCII Screen Character Set shows which number values
create which screen characters. Suppose we want to print the
word APPLE in normal text. The chart indicates that we should
use the following values:

A-$C1
P-$DO
P-$DO
L-$CC
E-$C5

If we want the word to appear on the seventh line of the screen,
we should load these values into locations $700 to $704. To test
this, enter the following program using your assembler. If you
still don't have one, the Apple Mini-Assembler can be used,
although we will soon reach the point where it will not be suf
ficient for our needs. If you are using the Apple Mini-Assembler,
enter only the program itself, ignoring the OBJ, ORG comments.
In place of JSR HOME enter JSR $FC58.

At the beginning of the program, we define where it is to be

20 ASSEMBLY LINES

assembled. Then we define a routine in the Apple called HOME,

which is part of the Apple Monitor and is at $FC58. Whenever
this routine is called, the screen is cleared and the cursor put in
the upper left corner. This ensures us that only the word APPLE
will be printed on the screen.

1 **************
2 * TEST PROGR. #1 *
3 **************
4 ORG $300
5 OBJ $300
6 HOME EQU $FC58
7 *

300- 20 58 FC 8 START JSR HOME ; CLEAR SCREEN
303- A9 Cl 9 LDA #$Cl ;'A:
305- 8D 00 07 10 STA $700
308- A9 DO 11 LDA #$DO ;'P'
30A- 8D 01 07 12 STA $701
300- SD 02 07 13 STA $702
310- A9 CC 14 LIJA #$CC ;'L'
312- 8D 03 07 15 STA $703
315- A9 CS 16 LDA #$C5 ;'E'
317- SD 04 07 17 STA $704
31A- 60 18 END RTS

The routine will begin by doing a JSR to the HOME routine to
dear the screen. Then the Accumulator will be loaded with an
immediate $Cl, the value for the letter A. This will then be stored
at location $700 on the screen, which will cause the letter A to be
visible on the screen. The next value loaded is for the letter P,
and this is stored at $701 and $702. It is not necessary to reload
the Accumulator, since storing the number does not actually
remove it from the Accumulator. The number is just duplicated
at the indicated spot. The process continues in this pattern until
all five letters have been printed, and then an RTS returns us to
normal operation.

Once you have assembled the routine at $300, try calling it
both from the Monitor level with:

300G

and from Basic (either one) with:

CALL 768

You should also change the LDA/STA to the X-Register and Y-

CHAPTER2 21

Register equivalents to verify that they work in a similar manner.

Summary

You now have at your disposal a total of eight opcodes and
a familiarity with assemblers. These few opcodes are probably
the most often used, and, with just these alone, you can do quite
a number of things. The JSR allows you to make use of all the
routines already available in the Monitor. I highly recommend
getting The Apple Monitor Peeled by W.M. Dougherty, now avail
able exclusively from Apple, for more information on using these
routines. His book gives a lot of detail on what is available.

In chapter three, we'll look at some more advanced address
ing techniques, and how to do counters and loops.

22 ASSEMBLY LINES

CHAPTER 3
Loops and Counters

Now we get into not only more mnemonics, but the tech
niques of using them to accomplish various overall operations.
In particular, we'll look at counters and loops in assembly lan
guage. In Basic, the FOR-NEXT loop is one of the more essential
parts of many programs, and this is no less true in machine
programming. The only difference is how the loop/counter com
bination is actually carried out.

In Basic, the testing of counters is done either by IF-THEN

statements or, automatically, in the NEXT statement of the FOR

NEXT loop. In assembly language, the testing is done by exam
ining flags in the Status Register. These flags indicate the status
of the various registers and memory locations. The Status Reg
ister is a fourth register of the 6502, one we have not previously
mentioned. Before going on with loops and counters, it will be
necessary to briefly discuss the Status Register, and in addition,
binary numbers.

Like the other three registers-the Accumulator, the X-Reg
ister, and the Y-Register-the Status Register holds a single byte.
You'll recall that each byte in the Apple can have a value from
0 to 255 ($00 to $FF).

As it happens, there are many ways of looking at and inter
preting numbers. The one of common experience is that in which
we consider only the magnitude of the number. Noticing that
255 is larger than 128 gives us only a very simple form of infor-

CHAPTER 3 23

mation-whether a number is either less than, equal to, or
greater than another number.

A second way of looking at numbers is in binary form. Base
two allows us to see more information in a number and, hence,
is that much more useful. We have already seen how a single
byte can be represented either as 0 to 255 or as $00 to $FF. In
binary the range is 00000000 to 11111111. For instance 133 (base
ten) was represented as $85. In binary it has the appearance
10000101. In this case, each 1 or 0 represents the presence or
absence of a given condition. Thus, eight distinct pieces of infor
mation are conveyed, as well as all the various combinations
possible.

Before you run shrieking from the room, remember that this
is all done to make things easier, not harder. Besides, learning
base sixteen (hex) wasn't that bad back at the beginning of this
book, was it? So let's take a moment to see what this bits and
bytes stuff is all about.

Binary Numbers.

The Apple is an electronic device and, actually, in many ways,
a simple one at that. In most parts of its circuitry, the current is
either off or on. That's it. No in-between. Having two possible
positions is perfect for base two. The idea of a number base has
to do with how many symbols, or units, you use for counting.
We normally use ten. We have a total of ten possible symbols
to write in a single position before we have to start doubling up
and using two positions to represent a number. You'll recall in
hex that, by using 0 through 9 and A through F, we had sixteen
possibilities; thus, we were in base sixteen. With the on/off
nature of the Apple, we're limited to two possibilities: 0 or 1.

How high can we count in one position? Not very. We start
at 0, then go to 1, and that's it. Then we have to add another
position. The next number, therefore, is 10. As before, remember
that, in this case, 10 represents what we usually call two. If we
use three positions, the lowest number is 100 (representing the
quantity four in base ten).

For a given number base, there is a formula for the highest
decimal number you can represent with a given number of
positions.

24 ASSEMBLY LINES

. . . where N is the largest decimal number, B is the number
base, and p is the number of positions available.

By using eight positions, we can go up to 11111111, which
just happens to equal 255. How handy! This is the same maxi
mum value as our bytes. And, if the truth be known, it's actually
the other way around. We use the numbers 0 through 255
because we are using eight bits to make up each byte. Whether
each bit is a 0 or a 1 depends on whether the part of the circuit
that is responsible for that bit is off or on.

The Status Register.

Here at last is our representation of a single byte, made up
of eight bits. In particular, the byte we are looking at is the Status
Register of the 6502. The important difference between this reg
ister and the others is that it is not used to store number values.
Instead it indicates various conditions.

7 6 5 4 3 2 1 0

N v - B D I z c

st I I I
Break Interrupt Carry

Not Used

Overflow Decimal Zero

The bits of the Status Register are numbered from right to
left, 0-7. Each bit in this register indicates the status and/or
results of different operations and is called a flag. It is by using
this register that we can create counters and loops in our pro
grams. The flag we will be immediately concerned with is bit
one, the zero flag. In terms of the commands we already know,
the zero flag is affected by an LDA, LDX, or LDY.

If the value loaded into the Accumulator, X-Register, or Y
Register were $00, the flag would be set to one. If it were a
nonzero number, the flag would be zero. Seemingly backward
perhaps, but remember, each flag is set to show the presence
or absence of a given condition, in this case, $00. The setting or
clearing of each Status Register flag is done automatically by the
6502 after each program step, indicating the results of any par
ticular operation.

CHAPTER3 25

Incrementing and Decrementing.

To create a counter and then a loop, we will use the Status
Register to tell when a given register or memory location reaches
zero. We will also need a way of changing the value of the
counter in a regular fashion. In the 6502, this is done by incre
menting or decrementing by one each time, as indicated.

Increment by one:
Decrement by one:

Accumulator

Not Available
Not Available

Y- X-
Register Register

INX INY
DEX DEY

Memory
Location

INC
DEC

This table shows the mnemonics used to increment or dec
rement a particular register or memory location.

Note that directly incrementing or decrementing the Accu
mulator is not possible. The increment/decrement commands
affect the zero flag, depending on whether the result of the
operation is zero or not.

The usual syntax for using these commands in an assembly
listing is:

10 INX
11 INY
12 DEX
13 DEY
14 INC $0600
15 DEC $AA53

For the register operations, the command stands alone, with
no need of an operand. In the case of INC and DEC, the memory
locations to be operated on are given, in hex of course, usually
preceded by the dollar sign.

One thing to mention here is the wrap-around nature of the
operations. To understand this, examine the following chart:

Original
Contents Increment Decrement Z-Flag set? z

$05 $06 $04 no, no 0,0
$OF $10 $OE no, no 0,0
$01 $02 $00 no, yes 0,1
$FF $00 $FE yes, no 1,0
$00 $01 $FF no, no 0,0

26 ASSEMBLY LINES

The effects of incrementing and decrementing different
values are shown, along with the effects on the zero flag after
the operations. The first case is simple, 5 + 1 = 6, 5 - 1 = 4.
In both cases, the result is nonzero, so the zero flag is not set.
For $OF, the same holds true. Remember that, in hex, the next
number after $OF is $10. In the case of $01, incrementing pro
duces $02. When we decrement $01, the result is $00; the zero
flag is set.

Here's where it gets interesting. When the starting value is
$FF, adding one would normally give $100. However, since a
single byte only has a range of $00 to $FF, the 1 is ignored, and
the value becomes $00. This sets the zero flag. In the case of
decrementing, $FF - 1 = $FE, so the zero flag is not set.

If we start with $00, although incrementing produces the
expected $01, decrementing wraps around in the reverse of the
previous case, giving $FF. Both results are nonzero, so Z-short
for the zero flag-is clear, that is, not set, for both operations.

Looping with BNE

The only procedure remaining to enable you to create a loop
is a way of testing the Z-flag and then being able to get back to
the top of the loop for another pass. In Basic, a simple loop
might look like this:

10 HOME
20 x = 255
30 PRINTX
40 X=X-1
50 IF X <> 0 THEN GOTO 30
60 END

In this program, we start with the counter X set at 255. Then
the value is printed, decremented, and the process repeated
until the counter reaches zero. We can make the loop execute
any number of times by properly setting the initial value of X.

In machine code, the test and GOTO is done with a branch
instruction. In this case, the one we'll use first is BNE. BNE stands
for Branch Not Equal and is a branch instruction executed when
a register is loaded with "a non-zero value:' This can happen
either directly with something like a "LDA #$01" or as the result
of an arithmetic operation, such as an INX, DEC, or ADC. Here is
the assembly language equivalent of the Basic listing:

CHAPTER 3 27

1 ************
2 * LOOP PROG. 1 *

3 ************
4 *
5 OBJ $300
6 ORG $300
7 HOME EQU $FC58
8 *
9 START JSR HOME

10 LOX #$FF
11 LOOP STX $700
12 DEX
13 BNE LOOP
14 END RTS

And here is the way Apple's disassembler would show it:

*300L

0300- 20 58 FC JSR $FC58
0303- A2 FF LOX #$FF
0305- SE 00 07 11 STX $0700
0308- CA I DEX
0309- DO ·FkQI{ C ~ BNE $0305
030B- 60 RTS

In this program, we first do a JSR to the clear screen routine
in the Monitor that we used in chapter two. Then we load the
X-Register with a starting value of $FF. Now we start the loop.
Storing the X-Register at $700 will make the loop's action visible
as a character on the screen for each pass through the loop.
Next, DEX subtracts one from the current value of the X-Register.
The BNE will then continue the loop back up to LOOP until the
X-Register reaches $00, at which point the test will fail, and
program execution will fall through to the RTS at the end of the
program. People will also refer to the execution of a branch
instruction saying the branch is ignored or taken depending on
whether program ,flow falls through the branch instruction, or
goes to the new address indicated by the branch instruction.

Try entering this now, and also notice how fast the program
runs. You probably weren't able to see very much, but all 255
values were put to the screen. The inverse A that's left on the
screen is how a $01 at $700 appears. ($00 doesn't get printed
why?) To verify that each pass is being executed, replace the STX

$700 in the source listing with a JSR $FBDD. If you don't want

28 ASSEMBLY LINES

to hear 255 beeps, try changing the initial value of the X-Register
in line 10. As before, you should be able to call this program
from the Monitor with a 300G, or from Basic with a CALL 768.

You may also wish to try the equivalent version of the pro
gram, using the Y-Register or a memory location as the counter.
I would suggest trying to write a program using INC, INX, or INY

to drive the counter as a practice program.

CHAPTER 3 29

CHAPTER 4
Looping with BEQ

In chapter three, we started into the various techniques of
creating and using counters and loops in machine language. To
accomplish the loop, we used the value in one of the registers
as a counter and the branch instruction that tests for the presence
of a nonzero number in the register to actually do the looping.
Recall that this evaluation of zero/nonzero is done via the zero
bit, or flag, of the Status Register of the 6502.

The complement of the BNE instruction is something called
BEQ, which obscurely enough stands for Branch EQual. It oper
ates in just the opposite fashion from BNE; that is, it branches
only when the register or memory location reaches a value of
zero.

For example, consider this Basic listing:

10 HOME
20 x = 255
30 PRINT X
40 X=X-1
50 IFX = OTHEN70
60 GOTO 30
70 END

In this case, the loop continues as long as X is not equal to
zero. If it is, the branch instruction is carried out and the program
ends. In assembly language, this program would be the equiv
alent:

CHAPTER4 31

1 ***********
2 *LOOP PROG. 2*
3 ***********
4 * 5 OBJ $300
6 ORG $300
7 HOME EQU $FC58
8 * 9 START JSR HOME

10 LDX #$FF
11 LOOP STX $700
12 DEX
13 BEQ END
14 JMPLOOP
15 END RTS

Notice that this program requires the addition of a new instruc
tion to our repertoire, the JMP command. This is analogous to
a GOTO in Basic, and in this program will cause program exe
cution to jump to the routine starting at LOOP each time. Only
when the X-Register reaches zero does the BEQ take effect and
cause the program to skip to the RTS at end. Here is the way this
would appear when put into memory, and then listed with the
L command from the Monitor:

*300L

0300- 20 58 FC JSR $FC58
0303- A2 FF LDX #$FF
0305- 8E 00 07 STX $0700
0308- CA DEX
0309- FO 03 BEQ $030E
030B- 4C 05 03 JMP $0305
030!E- 60 RTS

The assembler automatically translates the positions of LOOP
and END into the appropriate addresses to be used by the BEQ

and JMP when it assembles the code.
Remember that to the left are the addresses and the values

for each opcode and its accompanying operand. The more intel
ligible translation to the right is Apple's interpretation of this
data.

Branch Offsets and Reverse Branches

Notice that the JMPs and JSRs are immediately followed by the

32 ASSEMBLY LINES

addresses (reversed) that they are to jump to, such as in the first
JSR as $300.

However, branch instructions are handled a little differently.
The $03 is an offset that tells the 6502 to jump three bytes past
the next instruction.

Since the next instruction is at $30B, the 6502 will branch to
$30E, thus skipping the JMP command and going directly to the
RTS, which terminates the routine.

Branches can also be done in the reverse direction. Here is
a rather inefficient, but illustrative example:

1 *************
2 * LOOP PROG. 2A *
3 *************
4 *
5 OBJ $300
6 ORG $300
7 HOME EQU $FC58

8 *
9 START JSR HOME

10 JMP SETX
11 END RTS
12 * 13 SETX LDX #$FF
14 LOOP STX $700
15 DEX
16 BEQ END
17 JMPLOOP

The Monitor listing for this would be:

0300- 20 58 FC JSR $FC58
0303-- 4C 07 03 JMP $0307
0306- 60 RTS
0307- A2 FF LDX #$FF
0309- SE 00 07 STX $0700
030C- CA DEX
030D- FO F7 BEQ $0306
030F- 4C 09 03 JMP $0309

In this example, the branch, if taken, will cause the prosram
to move back up through the listing. To indicate this branch in
the opposite direction, the high bit is set. This is the same tech
nique that is often used to show negative numbers in machine
language programs. Please note that it is not just a matter of
setting the high bit. If that were the case, the value following
the BEQ command might be expected to be $89. (The address of

CHAPTER4 33

the next instruction ($30C) minus where we want to go to ($303)
equals $09. Then with the high bit on, we have $89.)

This is almost correct. The actual value is arrived at by sub
tracting the branch distance from $100. Thus $100 minus $09
equals $F7. This is so that the destination address can still be
arrived at through addition. Notice that $30C + $F7 = $403. It
is then very easy for the 6502 to correct this back one page to
$303.

If all this seems a bit confusing, try not to let it bother you.
In actual practice, there is not much reason to be concerned
about the way in which the offset byte is determined since your
assembler will determine the proper values for you when assem
bling code, and Apple's disassembler, as well as many others,
including Sourceror, will give the destination address when read
ing other code.

This is also a good time to stress the importance of working
through each of these examples on your own, step by step, to
make sure you understand exactly what happens at each step,
and how it relates to the rest of the program. If you're not sure,
go back over it until that proverbial light comes on!

Screen Output Using COUT

As the X-Register is incremented in this program, we'll stuff
the value into $700 so we can see something on the screen as
the counter advances.

Now you may remark from your experience in chapter three,
that although this program is pleasantly simple in its logic, it is
not much fun to watch on the screen because it runs so quickly.

To solve this, we will start to make more extensive use of the
routines already present in the Monitor to do certain tasks, and
thus make our programming requirements a little simpler.
Referring to the Monitor subroutines in appendix D, it happens
that the first routine listed is something called COUT. This is the
routine that actually sends a character we want output to what
ever device(s) may currently be in use. Most of the time, this
just goes directly to the next routine listed, couTl (clever with
the names, aren't they?), which specifically handles the screen
output. What this means for us is that anytime we want to output
a character, we don't have to write our own routines to worry
about all the in-depth details about the screen (cursor position,
screen size, whether it's time to scroll), we just load the Accu-

34 ASSEMBLY LINES

mulator with the ASCII value for the character we want to print,
and then do a JSR $FDED!

Now comes some programming technique. We would like to
have the counter value in the Accumulator so we can print it via
COUT, but unfortunately our increment/decrement commands
only work for the X-Register, the Y-Register, and given memory
locations. To solve this, we'll have to expand our listing a little.
This time, we'll use a memory location as the counter, and then
load the Accumulator, on each pass through, to print out a visible
sign of the counter's activity. Good locations to use for experi
menting are $06 to $09. These are not used by either Integer,
Applesoft, DOS, or the Monitor. This is important for avoiding
conflicts with the Apple's normal activities while running your
own programs.

And now our revised listing:

1 ************
2 *LOOP PROG. 28*

3 ************

4 *
5 OBJ $300
6 ORG $300
7 CTR EQU $06
8 HOME EQU $FC58
9 COUT EQU $FDED

10 *
11 START JSR HOME
12 LDA #$FF
13 STA CTR
14 LOOPLDA CTR
15 JSR COUT
16 DEC CTR
17 BEQ END
18 JMP LOOP
19 END RTS

Apple's L command will give this after you've assembled it in
memory:

*300L

0300- 20 58 FC JSR $FC58
0303- A9 FF LDA $FF
0305- 85 06 STA $06
0307- AS 06 LOA $06

CHAPTER 4 35

0309- 20
030C- C6
030E- FO
0310- 4C
0313- 60

ED FD
06
03
07 03

JSR
DEC
BEQ
JMP
RTS

$FDED
$06
$0313
$0307

A call to this routine via our usual 300G from the Monitor,
or a CALL 768 from Basic should clear the screen, then print all
the available characters on your Apple, in all three display modes
(normal, flashing, and inverse). The beep you hear is the control
G (bell) being printed to the screen via com. The invisible control
characters account for the blank region between the two main
segments of output characters. You will also see some characters
that are not normally generated by the Apple, such as under
score, reverse slash, and the left square bracket (_, \ ,[).

The alphabet is backward because we started at the highest
value and worked our way down. From chapter three, though,
you'll remember that when a byte is incremented by one from
$FF, the result wraps around back to $00. This will produce an
action testable by a BEQ. Using this wrap-around effect of the
increment command, we can rewrite the program to be a little
more conventional like so:

1. ***********
2 *LOOP PROG. 3*

3 ***********
4 *
5 OBJ $300
6 ORG $300
7 CTR EQU $06
8 HOME EQU $FC58
9 COUT EQU $FDED

10 *
11 START JSR HOME
12 LDA #$00
13 STA C'fR
14 LOOP LDA CTR
15 JSR COUT
16 INC CTR
17 BEQ END
18 JMP LOOP
19 END RTS

With the Apple showing:

36 ASSEMBLY LINES

*300L

0300- 20 58 FC JSR $FC58
0303- A9 00 LOA #$00
0305- 85 06 STA $06
0307- AS 06 LOA $06
0309- 20 ED FD JSR $FDED
030C- E6 06 INC $06
030E- FO 03 BEQ $0313
0310- 4C 07 03 JMP $0307
0313- 60 RTS

A call to this routine should now print out the characters in
a more familiar manner. At last our programs are starting to do
something interesting! It gets better!

Reading a Game Paddle

Let's try reading a game paddle, and use what we get back
to print something to the screen! Granted, I'm not any more
sure than you are what good this might be, but it's guaranteed
to be a new program in your library!

The PREAD subroutine in Appendix D indicates that a pad
dle can be read by loading the X-Register with the value for the
number of the paddle you wish to read, followed by a JSR $FB1E.
When the routine returns, the value of the paddle will be in the
Y-Register. All we have to do then is grab this value, stuff it in
the Accumulator, and then do our JSR COUT.

1 *************
2 *PADDLE PROG. 1*
3 *************
4 *
5 OBJ $300
6 ORG $300
7 TEMPEQU$06
8 PREAD EQU $FB1E
9 HOME EQU $FC58

10 COUT EQU $FDED
11 *
12 START JSR HOME
13 LDX#$00
14 LOOP JSR PREAD
15 STY TEMP
16 LOA TEMP
17 JSRCOUT
18 JMPLOOP
19 *INFINITE LOOP

CHAPTER4 37

You should get this in memory:

*300l

0300- 20 58 FC JSR $FC58
0303- A2 00 LDX #$00
0305- 20 1E FB JSR $FB1E
0308- 84 06 STY $06
030A- AS 06 LDA $06
030C- 20 ED FD JSR $FDED
030F- 4C 05 03 JMP $0305

This routine when called will quickly fill up the screen and
then change the stream of characters output as you turn paddle
zero. Since we have no test for an end, reset is the only way to
stop this infinite loop.

Depending on your propensity toward being hypnotized,
you may lose touch with the world for indefinite periods of time
while running this program. At the inverse and flashing end,
it's also remarkably good at stimulating migraine headaches in
record time. By carefully controlling the paddle, you can also
observe some interesting bits of ASCII trivia. For example, after
the inverse and flashing range, you should be able to stop the
flow by moving into the control character range. With sufficient
dexterity, you should be able to lock onto the persistent beep of
the bell (control-G).

Shortly after this point, the screen will zip into motion when
you hit the line feed character (control-J) and, of course, also at
control-M (carriage return). What fun, eh! When normal char
acter output returns as you pass the halfway point, you can
delight in various patterns of screen filling. Why, you may even
wish to try writing your name by deft control of the paddle
child's play!

Paddle Program Problems

Returning to reality here, it is worth mentioning that some
problems in accuracy can arise from repeatedly reading the pad
dle so quickly. The analog circuits don't have time to return to
zero, and various problems creep in.

Also, we have been a bit negligent in looking out for conflict
ing use of the registers by the various routines we are calling.
There is often no assurance that the register you're using for
your own routine won't be clobbered by the Monitor routine you

38 ASSEMBLY LINES

use. In the case of the paddle and output routines, you'll note
they did mention how the X-Register, the Y-Register, and the
Accumulator were affected by each of the routines.

For the record, here is a reasonable facsimile of our program
in Applesoft:

10 HOME
20 T = PDL(O)
30 PRINT CHR$(T);
40 GOTO 20

It is also worth mentioning that our machine language version
takes eighteen bytes, while the Applesoft one takes thirty-eight,
not counting space used by the variable T.

Execution speed may seem to be similar, but this is because
of the printing of the characters to the screen. In most cases,
machine execution would be orders of magnitude faster.

Transfer Commands

In our program, we have to go through a rather inelegant
way of transferring the value from the Y-Register to the Accu
mulator, using a temporary storage byte. Fortunately, there is
an easier way. There are four commands for transferring contents
of the X-Register or the Y-Register to and from the Accumulator.
They are as follows:

TXA: Transfers contents of X-Register to Accumulator.
TYA: Transfers contents of Y-Register to Accumulator.
TAX: Transfers contents of Accumulator to X-Register.
TAY: Transfers contents of Accumulator to Y-Register.

Each of these actions conditions the zero flag upon execution,
so it is possible to test what has been transferred. There is no
command to transfer directly between the X-Register and the Y
Register.

This gives us an even shorter program:

1 **************
2 * PADDLE PROG. 1A*
3 **************
4 * 5 OBJ $300

CHAPTER 4 39

6 ORG $300
7 PREAD EQU $FB1E
8 HOME EQU $FC58
9 COUT EQU $FDED

10 * 11 START JSR HOME
12 LDX #$00
13 LOOP JSR PREAD
14 TYA
15 JSR COUT
16 JMP LOOP
17 *INF. LOOP

Now it's only fifteen bytes long!

*300L

0300- 20 58 FC JSR
0303- A2 00 LDX
0305- 20 1E FB JSR
0308- 98 TYA
0309- 20 ED FD JSR
030C- 4C 05 03 JMP

$FC58
#$00
$FB1E

$FDED
$0305

With twenty commands at your disposal, you now know just
over a third of the total vocabulary of the language. Soon, you'll
be dangerous!

If you try to BRUN LOOP PROG. 2B, rather than use a CALL 768
or 300G, strange things will happen. This is because DOS inter
feres with any binary program which uses input or output rou
tines when such a program is BRUN, rather than called from
the Monitor or BASIC. This is because DOS is always watching
com for DOS commands, such as PRINT 0$; "CATALOG".
When you BRUN a file, you are essentially in a DOS subroutine,
and further use of com makes DOS more or less forget where
to return to when everything is completed. There are two solu
tions to this problem. The first is trivial-don't BRUN files that
use com. Instead, BLOAD the file and then call the routine in
the usual way.

If however, you insist on BRUNing a file, the other choice
is to exit via the warm reentry vector $3DO. A jump to this
address replaces the final RTS in any program you wish to BRUN.
For example, replacing line 19 in LOOP PROG. 2B with JMP $3DO
will allow you to BRUN the file with no problems. Please keep
this in mind when attempting to BRUN any other listings
throughout this book.

40 ASSEMBLY LINES

CHAPTER 5
Comparisons; Reading the Keyboard

Now we're getting to where we can actually do some inter
esting things with what we know so far. The basic ideas you
should be comfortable with at this point are fairly simple. The
6502 microprocessor is our main operational unit. There are three
main registers: the Accumulator, the X-Register and the Y-Reg
ister. Also present is the Status Register, which holds a number
of one-bit flags to indicate various conditions. So far, the only
one we've considered is the Z-flag, for indicating whether a zero
or nonzero number is present in one of the other three registers.

X-REGISTER

Status Register

.___Y-R-EGISTE----'R I I I I I I I I z I I
ACCUMULATOR I

6502 Model

Programs are executed by the 6502 scanning through mem
ory. Addresses in memory are analogous to line numbers in
Basic. A JSR $FC58 in machine language is just as valid as a GOSUB

CHAPTERS 41

1000 in Basic. In using an assembler, we can give names to
routines at given addresses and make things that much simpler
by saying JSR HOME, when HOME has been defined as $FC58.

In chapter four, we used testing commands like BEQ and BNE
to create simple loops. We used the X-Register and the Y-Register
as counters, and incremented or decremented by one for each
cycle of the loop.

Now let's expand our repertoire of commands by adding
some new ones and, in the process, add some flexibility to what
we can do with loops and tests in general.

In our previous programs, we relied on our counters reaching
zero and testing via the Z-flag to take appropriate action. Sup
pose, however, that we wish to test for a value other than zero.
This is done using two new ideas.

Compare Commands and Carry Flag

The first is the compare command, the mnemonic for which
is CMP. This tells the computer to compare the contents of the
Accumulator against some other value. The other value can be
specified in a variety of ways. A simple test against a specific
value would look like this:

CMP #$AO

This would be read, "Compare Accumulator with an immediate
AO." This would tell the 6502 to compare the Accumulator to the
specific value $AO. On the other hand, we may want to compare
the Accumulator with the contents of given memory location.
This would be indicated by:

CMP$A0

In this case, the 6502 would go to location $AO, see what was
there, and compare that to the Accumulator. It is important to
understand that the contents of $AO may be anything from $00
to $FE and it is against this value that the Accumulator will be
compared. In each case, the 6502 does the comparison by inter
nally subtracting the specified value from the Accumulator. The
Accumulator remains unchanged however, and the result of the
comparison is reflected elsewhere.

The second important idea is that of the carry fiag. The carry
flag enables us to determine the result of the comparison. Right
next to the Z-flag in the Status Register is the bit called the carry.

42 ASSEMBLY LINES

The carry is used during addition and subtraction by the
6502. In our case, since the compare operation involves sub
traction, the carry flag can be used to test the result. You do this
with two new branch commands, BCC and BCS. BCC stands for
Branch Carry Clear. If the Accumulator is less than the value
compared against, BCC will branch appropriately. BCS stands for
Branch Carry Set and is taken whenever the Accumulator is
equal to or greater than the value used.

This means that we can now not only test for specific values
but also test for ranges. Try this example.

1 ***************
2 * PADDLE PROG. 2A *
3 ***************
4 *
5 OBJ $300
6 ORG $300

7 *
8 PREAD EQU $FB1E
9 HOME EQU $FC58

10 COUT EQU $FDED

11 *
12 START JSR HOME
13 lDX #$00
14 LOOP JSR PREAD
15 TYA
16 CMP #$Cl ; CMP TO ASCII VAL FOR u K
17 BCC LOOP ; TRY AGAIN IF LESS THAN
18 CMP #$DB ; CMP TO ASCII VAL FOR "[" ("Z" + 1)
19 BCS LOOP
20 JSR COUT
21 JMP LOOP
22 * INF. LOOP

When assembled and listed from memory, it should look like
this:

*300L

0300- 20 58 FC JSR $FC58
0303- A2 00 LDX #$00
0305- 20 1E FB JSR $FB1E
0308- 98 TYA
0309- C9 Cl CMP #$C1
030B- 90 F8 BCC $0305

CHAPTERS 43

030D- C9 DB
030F- BO F4
0311- 20 ED FD
0314- 4C 05 03

CMP
BCS
JSR
JMP

#$DB
$0305
$FDED
$0305

Let's step through the program. After the JSR to the clear
screen routine, we load X with zero in preparation for reading
a paddle. The #$00 will tell the routine that we wish to read
paddle zero. After the read, the answer is returned in the Y
Register, which we transfer to the Accumulator with a TYA. It is
at this point that we use our test section. If the Accumulator is
less than the ASCII1 value for the letter A, we avoid the printout
by going back to LOOP. I have used the ASCII value for A plus
$80 so that we get normal output on the screen. If we test for
$41 instead, flashing characters will be output to the screen.

The next comparison is for the ASCII value for the character
"[". This comparison assures that the BCS will catch all values
higher than the one for Z. The first chart in appendix E (Keys
and Their Associated ASCII Codes) is useful in seeing where
these numbers come from.

Only numbers from $Cl to $DA will make it through to be
printed out using COUT ($FDED).

Again the loop is infinite, so reset is required to exit.
The X-Register and Y-Register can also be compared in a

1. ASCII (for American Standard Code for Information Interchange) is a cod
ing scheme for transmitting text. It is also used in the Apple for encoding text in
memory, screen display, disk files, printer output, and many other areas.
Appendix E gives a chart of all the characters and their ASCII values. One impor
tant note. It is possible to encode all the alphabetic characters (upper and lower
case), numerics, special symbols, and control codes using only 128 characters.
This means that ASCII is considered a 7 bit code. This means that all the information
required to determine which character has been sent is contained in bits 0-6 of
the byte. Thus $8A is reasonably equivalent to $0A as far as its ASCII interpretation
is concerned. The matter of the high bit being set or clear can create considerable
confusion when it is not made clear what the computer expects.

Generally the Apple operates internally with the high bit set on all characters.
That is to say characters retrieved from the keyboard via $COOO and characters
stored in the screen area of memory and on disk all usually have the high bit
set (i.e. value equal to or greater than $80). This is also the way Applesoft stores
data within program lines. To keep you on your toes though, Apple printer
cards usually do not support the high bit set when sending output to a printer,
and strings within a program (such as A$ = CAT) also have the high bit clear.
Also, when using COUT (the Monitor text output routine), the high bit should
be set (always load the Accumulator with values greater than $80) before calling
COUT.

I wish I could say it was all easier than that, but then again if it were all that
easy, you wouldn't have to have bought this book, and then where would I be?

44 ASSEMBLY LINES

similar manner by codes CPX and CPY. Can you rewrite this
program to use CPY instead of CMP?

BEQ and BNE are also still usable after a compare operation.
Here's a summary:

Command Action

CMP Compares Accumulator to something
CPX Compares X-Register
CPY Compares Y-Register
BCC Branch if register < value
BEQ Branch if register = value
BNE Branch if register<> value
BCS Branch if register> = value

Using Monitor Programs for 1/0 Routines

As you may have noticed, I enjoy using the paddles as input
devices. This is because they're an easy way of sending values
from $00 to $FF into the system in a very smooth and natural
way. We can get similar data from the keyboard, though. There
the advantage is that we can jump from one value to another,
with no transition between the two values.

A good part of many formal machine language courses deals
with system I/0-that is, getting data in and out via different
devices. Writing such things as printer drivers, disk or tape
access routines, hardware interface software, etc., are the areas
that hardcore programmers spend their youths mastering. Using
the Monitor routines on the Apple simplifies this for us greatly
because we don't have to do a lot of I/O details. You've already
shown this by using the paddles ($FB1E) for input and the screen
($FDED) for output without having to know anything about how
the actual operation is carried out. The keyboard is even easier.

I mentioned earlier that the address range from $COOO to
$FFFF is devoted to hardware-these memory ranges cannot be
altered by running programs. (I'm ignoring the RAM cards for
the time being.) The range from $0000 to $FFFF is used by ROM

routines that we've been calling. The range from $COOO to $CFFF
is assigned to I/O devices. Typically the second digit (or maybe
I should call it a hexit) from the left gives us the slot number of
the device. For instance, if you have a printer in slot one, listing
the code at $C100 will reveal the machine language code on ROM
of the card that makes it work. At $C600 you'll probably find
the code that makes the disk drive in slot six boot.

CHAPTERS 45

$COOO to $COFF is reserved not for slot zero, but for doing
special things with the hardware portions of the Apple itself.
An attempt to disassemble from $COOO will not produce a rec
ognizable listing, but it will probably cause your Apple to act a
bit odd. This range is made up of a number of memory locations
actually wired to physical parts of your Apple. If you type in:

* C030

from the Monitor, in addition to getting some random value
displayed, the speaker should dick. If it doesn't dick the first
time, try again. Each time you access $C030, the speaker will
click as it moves in response to your action.

The keyboard is also tied into a specific location. By looking
at the contents of $COOO, you can teU if a key has been pressed.
In Basic, it's done with a PEEK -16384. (See page 6 of the 1981
Apple II Reference Manual.) In machine language, you would
usually load a register with the contents of $COOO, such as:

LDA $COOO

Reading Data from Keyboard

Because it is difficult to read the keyboard at exactly the
instant someone has pressed the key, the keyboard is designed
to hold the last key pressed until either another key is pressed
or until you clear the strobe, as it's called, by accessing an alternate
memory location, $C010. The strobe is wired to dear any char
acters off the keyboard that may be hanging around for any
number of various reasons. When you check for a character, you
don't want to pick one up that someone inadvertently entered
prior to your enquiry (perhaps by nervously drumming their
fingers across the keyboard while waiting for one of Apple's
lightning-like disk accesses!). It is also always a good idea to
clear the keyboard when you're done with it, otherwise you may
similarly have the key pressed for your input still hanging
around for whatever reads the keyboard next, such as an INPUT

statement in Basic. The strobe is cleared by either a read or a
write operation. It is the mere access to $C010 in any manner
that accomplishes the dear. Thus a LDA $C010 would work just
as well as a STA $C010. 2 The last point to be aware of is that the
keyboard is set up to tell you when a key is pressed by the value

46 ASSEMBLY LINES

that is read at $COOO. Now, you might think that the logical way
would be to keep $AO in $COOO. Perhaps, but that's not the way
they do it. Instead, they add $80 to whatever the ASCII value is
of the key you pressed. If a value less than $80 is at $COOO, it
means a key has not been pressed.

So, to illustrate this (and I admit it got a little involved for
my tastes), let's look at some sample programs to read data from
the keyboard.

1 *****************
2 * KEYBOARD PROG. lA *
3 *****************
4 *
5 OBJ $300
6 ORG $300
7 * 8 KYBD EQU $COOO
9 STROBE EQU $C010

10 COUT EQU $FDED
11 HOME EQU $FC58
12 * 13 START JSR HOME
14 LOOP LDA KYBD
15 CMP #$80
16 BCCLOOP
17 JSR COUT
18 JMPLOOP
19 *INF. LOOP

Once entered, this should disassemble as:

*300L
0300-
0303-

20 58 FC
AD 00 CO

JSR
LDA

$FC58
$COOO

2. Having now just said that read and write operations are essentially equiv
alent for clearing the strobe, let me cover myself enough to say that there is one
slight difference. A write operation actually accesses the location twice, whereas
a read operation only accesses once. Most of the time this doesn't make any
difference. Since most people can't type at 100,000 characters per second, it's
hard to get a character in between the two clear operations. However, there are,
now available for the Apple, keyboard buffers which will store a whole string of
characters entered by the user, instead of the usual one normally used for the
keyboard. As each character is read in, it is taken out of the buffer by clearing
the strobe. You guessed it! A write operation-such as a STA $C010 or a POKE

-16368,0.-will clear two characters out of the buffer: the one you just read and
the next one in line. Therefore, it is generally good practice to clear the strobe
with a read operation, such as a LDA $C010,X =PEEK -16368, or the like. Like I
said, if it were too easy ...

CHAPTER 5 47

0306- C9 80
0308- 90 F9
030A- 20 ED FD
030D- 4C 03 03

CMP
BCC
JSR
JMP

#$80
$0303
$FDED
$0303

Trying this program, you should notice that the program runs
on, printing the same character until you press another key.
That's because we never cleared that strobe you thought I was
rambling on about. Once the key press gets on the board, it's
never cleared until it is replaced by a new key.

A better program is:

1 *****************
2 * KEYBOARD FROG. 1B *
3 *****************

4 *
5 OBJ $300
6 ORG $300

7 *
8 KYBD EQU $COOO
9 STROBE EQU $C010

10 COUT EQU $FDED
11 HOME EQU $FC58

12 *
13 START JSR HOME
14 LOOP LDA KYBD
15 CMP #$80
16 BCC LOOP
17 STA STROBE
18 JSRCOUT
19 JMP LOOP
20 *INF. LOOP

which lists as:

*3001

0300- 20 58 FC
0303- ADOO co
0306- C9 80
0308- 90 F9
030A- SD 10 co
0300- 20 ED FD
0310- 4C 03 03

JSR
LDA
CMP
BCC
STA
JSR
JMP

$FC58
$COOO
#$80
$0303
$C010
$FDED
$0303

This should work better. Here we dear the keyboard whenever
we've gotten a character and printed it. Why not clear it right
after the read on line 15? If we did that, we'd be lucky to catch

48 ASSEMBLY LINES

a glimpse of the character at $COOO as the user pressed the key.
As it is, we can probably get away with it because of the speed
of the loop. But if we had to go away to another routine for a
while, or otherwise delay getting back to the LDA $COOO, we'd
probably miss it.

You should also type in enough to wrap around onto the next
line, and also try the arrow keys and RETURN. You may think this
all performs as expected (with the exception of the missing cur
sor), but this all should not be taken for granted. Without the
screen management of COUT, you'd have to do quite a bit more
programming to keep things straight. Once more, this is the
advantage of using the routines already present in the Monitor,
rather than worrying about the details yourself.

Also, please notice how the STA was chosen because we didn't
want to lose the contents of the Accumulator in doing the access.

This information concerns technique more than actual com
mands, but is worth mentioning if you're going to get along with
your Apple successfully.

On page 130 of the 1981 Apple II Reference Manual you'll find
a listing of the soft switches and other goodies at $COOO-COFF.
These can be very useful in having your Apple relate to the
outside world.

You may wish to experiment with these. Also don't forget
about all the routines listed in appendix D. These are also fun
to experiment with and are provided to encourage you to write
short programs just to test your wings. As I've mentioned before,
they're also useful in saving you the trouble of writing your own
1/0 and other more involved routines.

CHAPTER 5 49

CHAPTER 6
Addressing Modes

Let's look at the various addressing modes used in machine
language programming. This concept is rather fundamental in
programming and you may justifiably wonder why we have not
covered it sooner. Well, as it happens, we have; I just didn't call
it by name at the time. In chapter one we laid out the basic
structure of sixty-four thousand individual memory locations.
Since then, we've worked most of our magic by simply manip
ulating the contents of those locations.

Flexibility in the ways in which you can address these loca
tions is the key to even greater power in your own programs.

Consider this chart of the addressing modes available on the
6502:

ADDRESSING MODE EXAMPLE HEX BYTES

Immediate LDA #$AO A9 AO
Absolute LDA $7FA AD FA 07
Zero Page LDA $80 A4 80
Implicit/Implied TAY AB
Relative BCC $3360 90 OF
Indexed lDA $200,X BD 00 02
Indirect Indexed LDA ($80),Y Bl 80
Indexed Indirect LDA ($80,X) Al 80

CHAPTER 6 51

In looking at the examples, you should find all but the last three
very familiar. We have used each of them in previous programs.

The immediate mode was used to load a register with a specific
value. In most assemblers, this is indicated by the use of the
number sign(#) preceding the value to be loaded. This contrasts
with the absolute mode in which the value is retrieved from a
given memory location. In this mode, the exact address you're
interested in is given. Zero page is just a variation on the absolute
mode. The main difference is the number of bytes used in the
coding. It takes three in the general case; in zero page, only two
are required.

Implicit, or implied, is certainly the most compact instruction
in that only one byte is used. The TAY command, Transfer
Accumulator to the Y-Register, needs no additional address bytes
because the source and destination of the data are implied by
the very instruction itself.

Relative addressing is done in relation to where the first byte
of the instruction itself is found. Although the example interprets
it as a branch to a specific address, you'll notice that the actual
hex code is merely a plus or minus displacement from the branch
point. This too was covered previously.

With these addressing modes, we can create quite a variety
of programs. The problem with these modes is that the programs
are rather inflexible to data from the outside world, such as those
in input routines, and in doing things like accessing tables and
large blocks of data.

Indexed Addressing

To access such data, we introduce the new idea of indexed
addressing. In the pure form, the contents of the X-Register or
Y-Register are added to the address given in the instruction to
determine the final address. In the example given, if the X-Reg
ister holds a 0, the Accumulator will be loaded with the contents
of location $200. If, instead, the X-Register holds a 04, then
location $204 will be accessed. The usefulness in accessing tables
and the like should be obvious.

The problem that arises here occurs when you want to access
a table that grows or shrinks dynamically as the data within it
changes. Another problem occurs when the table grows larger
than 256 bytes. Because the maximum offset possible using the

52 ASSEMBLY LINES

X-Register or Y-Register is 255, we would normally be out of
luck.

The solution to the byte limit is to use the indirect indexed
mode. Indirect index is really an elegant method. First, the 6502
goes to the given zero page location (the base address must be
on zero page). In the example, it would go to $80 and $81 to get
the low-order and high-order bytes of the address stored there.
Then it adds the value of the Y-Register to that address.

INDIRECT INDEXED ADDRESSING

6502: LDA ($80),Y (Y-Register = $04)

t
Location: ($80 $81) ($204)

~ ~
Contents: $00 $02 $??

L (Addr = $200 + $04 = $204)
t

<ACCUMULATOR>

Oftimes, these two-byte zero-page address pairs are called point
ers, and you will hear them referred to in dealing with various
programs on the Apple. In fact, by looking at pages 140 to 141
of the Applesoft II Basic Reference Manual, you will observe quite
a number of these byte pairs used by Applesoft to keep track of
all sorts of continually changing things, like where the program
is, the locations of strings and other variables, and many nifty
items.

If we wanted to simulate the LDA $200, X command with the
indirect mode, we would first store a #$00 in $80 and a #$02 in
$81-00 and 02 being the low-order and high-order bytes of the
address $200. Then we'd use the command LDA ($80), Y.

A much better (but unfortunately rarely used) term is post
indexing, referring to the fact that the index is added after the
base address is determined.

Sometimes X and Y Aren't Interchangeable

You may have noticed that I used the X-Register in one case
and the Y-Register in the other. It turns out that the X-Register
and the Y Register cannot always be used interchangeably. The
difference shows up depending on which addressing mode and
what actual command you are using (LDA, STX, or others). As it

CHAPTER 6 53

happens, indirect indexed addressing can only be done using
the Y-Register.

To know which addressing modes can be used with a given
command, you can refer to either of two appendices provided at
the back of this book. Appendix Bis rather like a dictionary of
all the possible 6502 commands and devotes at least one page
to each command. Appendix C on the other hand is a more con
densed form of the first appendix, and may make it easier to
compare available modes between a variety of commands.

I highly recommend making frequent use of Appendix B
while you are learning machine language programming. It is
essentially your toolbox of available commands for solving a par
ticular programming problem. Whenever you're trying to write
a particular routine and aren't sure just how to approach it, skim
through this section of all possible commands and see if any
particular command inspires you as to a possible approach.
Granted, this is likely to happen more when you're working on
rather simple goals such as moving a byte from here to there,
but even the largest programs are made up of just such simple
steps as that.

The last addressing mode, indexed indirect, is probably the
most unusual. In this case, the contents of the X-Register (the Y
Register cannot be used for this mode) are added to the base
address before going to get the contents. In a case similar to the
other one, if the X-Register held 0, an LDA ($80,X) would go to
$80 and $81 for the two-byte address and then load the Accu
mulator with the contents of the indicated location. If, instead,
the X-Register held a 04, the memory address would be deter
mined by the contents of $84 and $85!

Usually, then, the X-Register is loaded with multiples of two
to access a series of continuous pointers in zero page. This is
also called pre-indexing since the index is added to the zero page
location before determining the base address.

INDEXED INDIRECT ADDRESSING

6502: LDA ($80,X) (X-Register = $04) ..
($80 + $04 = $84) ----~ 0

Location: $80 $81 $82 $83 ($84 $85) $:f!O

Contents: $00 $02 $00 $03 $00 $04 $??
-J.- .J,

(Addr. = $400) <ACCUMULATOR>

54 ASSEMBLY LINES

Storing Pure Data

Before we can put all this new information to work, we now
need to answer one more question. How do you store just pure
data within a program? All the commands we've covered so far
are actual commands for the 6502. There is no data command
as such. What are available, though, are the Assembler directives
of your particular assembler. These will vary from one assembler
to another, so you'll have to consult your own manual to see
how your assembler operates.

In general, the theory is to define a block of one or more bytes
of data and then to skip over that block with a branch or jump
instruction when executing your program. Usually, data can be
entered either as hex bytes or as the ASCII characters you wish
to use. In the second case, the assembler will automatically trans
late the ASCII characters into the proper hex numbers.

Most assemblers have HEX command for directly entering the
hex bytes of data table. The DOS tool kit assembler is one ex
ception. It does not have the HEX command (nor many others)
and you must use the DFB (for define byte) command. Using it,
line 20 of the following listing should read: 20 DATA DFB

$Cl,$DO,$DO,$CC,$C5. A sample program using the indexed
address mode is given here:

1 *******************
2 *SAMPLE DATA PROGRAM *

3 *******************
4 *
5 ORG $300
6 OBJ $300
7 *
8 COUT EQU $FDED
9 * 10 START LDX #$00

11 LOOP LDA DATA,X
12 JSRCOUT
13 INX
14 CPX #$05
15 BCCLOOP
16 LDA#$8D
17 JSRCOUT
18 EXITRTS
19 *
20 DATA HEX C1DODOCCC5
21 *
22 * DATA = 'APPLE'

CHAPTER 6 55

When looked at in memory, it should appear like this:

*300L

0300- A2 00 LDX #$00
0302- BD 13 03 LDA $0313,X
0305- 20 ED FD JSR $FD!ED
030S- ES INX
0309- EO 05 CPX #$05
030B- 90 F5 BCC $0302
0300- A9 SD LDA #$8D
030F- 20 ED FD JSR $FDED
0312- 60 RTS
0313- Cl DO CMP ($DO,X)
0315- DO CC BNE $02E3
0317- cs 00 CMP $00

This program is an improved version of the one we did earlier to
print the word APPLE on the screen. It uses the indexed address
mode to scan through the data table to print the word APPLE.
Notice that data tables may be wildly interpreted to the screen
when disassembling. This is because the Apple has no way of
knowing what part of the listing is data and tries to list data as
a usual machine language program.

Basically, the idea of the program is to loop through, getting
successive items from the data table using the offset of the X
Register. When the X-Register reaches 05 (the number of items
in the table), we are finished printing. After printing, we ter
minate with a carriage return. Remember that in machine lan
guage we must usually do everything ourselves. This means we
cannot assume an automatic carriage return at the end of a
printed string.

Note that the hex values in the data table are the ASCII values
for each letter plus $80. This sets the high bit of each number,
which is what the Apple expects in order to have the letter
printed out properly when using COUT.

The indirect addressing modes are used when you want to
access in a very compact and efficient way. Let's consider the
problem of clearing the screen, for instance. We want to put a
space character in every memory location in the screen block
($400-$7FF). Here is one way of doing this:

56

1 ********************
2 * SCREEN CLEAR PROG. 1A *
3 ********************

4 *
5 OBJ $300
6 ORG $300

ASSEMBLY LINES

7 *
8 PTR EQU $06

9 *
10 ENTRY LDA #$04
U STAPTR +1
12 LDY #$00
13 STY PTR
14 * SETS PTR (6,7) TO $400
15 START LDA #$AO
16 LOOP STA (PTR),Y
17 INY
18 BNE LOOP
19 NXT INC PTR +1
20 LDA PTR +1
21 CMP #$08
22 BCC START
23 EXIT RTS

Listed from the Monitor, it should appear like this:
*300L

0300- A9 04 LDA #$04
0302- 85 07 STA $07
0304- AO 00 LDY #$00
0306- 84 06 STY $06
0308- A9 AO LDA #$AO
030A- 91 06 STA ($06),Y
030C- cs INY
0300- DO FB BNE $030A
030F- E6 07 INC $07
0311- AS 07 LDA $07
0313- C9 08 CMP #$08
0315- 90 Fl BCC $0308
0317- 60 RTS

We start off by initializing locations $06 and $07 to hold the
base address of $400, the first byte of the screen memory area.
Then we enter a loop that runs the Y-Register from $00 to $FF.
Since this is added to the base address in $06,07, we then store
a $AO (a space) in every location from $400 to $4FF. When Y is
incremented from $FF, it goes back to $00, and this is detected
by the BNE on line 18. At zero, it falls through and location $07
is incremented from $04 to $05, giving a new base address of
$500. This whole process is repeated until location $07 reaches
a value of $08 (corresponding to a base address of $800), at which
point we return from the routine.

By changing the value of the #$AO to some other character,
we can dear the screen to any character we wish. In fact, you
can get the value from the keyboard as we've done in earlier
programs.

CHAPTER6 57

Here is a revised version:

1 *******************
2 * SCREEN CLEAR PROG. 1B *
3 *******************
4 *
5 OBJ $300
6 ORG $300

7 *
8 PTREQU$06
9 CHAR EQU $08

10 KYBD EQU $COOO
11 STROBE EQU $C010

12 *
13 ENTRY LDA #$04
14 STAPTR +1
15 LDY #$00
16 STYPTR
17 * SETS PTR (6,7) TO $400
18 READ LDA KYBD
19 CMP #$80; KEYPRESS?
20 BCC READ; NO, THEN TRY AGAIN.
21 STA STROBE; CLEAR KYBD STROBE.
22 STACHAR
23 CLEAR LDY #$00
24 LDACHAR
25 LOOP STA (PTR),Y
26 INY
27 BNE LOOP
28 NXT INC PTR +1
29 LDA PTR +1
30 CMP #$08
31 BCCCLEAR
32 AGAIN JMP ENTRY

It should appear like this in listed form:

*300L

0300- A9 04 LDA #$04
0302- 85 07 STA $07
0304- AO 00 LDY #$00
0306- 84 06 STY $06
0308- ADOO co LDA $COOO
030B- C9 80 CMP #$80
0300- 90 F9 BCC $0308
030F- SD 10 co STA $C010
0312- 85 08 STA $08
0314- AO 00 LDY #$00
0316- A5 08 LDA $08
0318- 91 06 STA ($06),Y

58 ASSEMBLY LINES

031A- cs INY
031B- DO FB BNE $0318
0310- E6 07 INC $07
031F- AS 07 LOA $07
0321- C9 08 CMP #$08
0323- 90 EF BCC $0314
0325- 4C 00 03 JMP $0300

Enter this program and run from Basic with a CALL 768. Each
press will clear the screen to a different character. The screen
should clear to the same character as the key you press, including
space bar and special characters. In this program especially, you
can see how fast machine language is. To clear the screen requires
loading more than one thousand different locations with the
given value. In Applesoft, this process would be quite slow by
comparison. In assembly language, you'll find that the screen
will clear to different characters just as fast as you can type them.

An interesting variation on this is to enter the graphics mode
by typing in GR before calling the routine. Then the screen will
clear to various colors and different line patterns.

In this variation on program lA we've used the principles
from chapter five where we read the keyboard until we got a
value greater than $80, meaning a key has been pressed. This
value is held temporarily in the variable CHAR so that it can be
retrieved each time after incrementing the PTR in the NXT section.

See what variations you can make on this, or try the hi-res
screen ($2000 through $3FFF).

CHAPTER 6 59

CHAPTER 7
Sound Generation Routines

Sound generation in machine language is such a large topic
in itself, that an entire book could be done on that subject alone.
However, simple routines are so easy that they're worth at least
a brief examination here. These routines will not only allow you
to put the commands you've learned to further use, but are also
just plain fun.

The first element of a sound generating routine is the speaker
itself. Recall that the speaker is part of the memory range, from
$COOO to $COFF, which is devoted entirely to hardware items of
the Apple IL In earlier programs, we looked at the keyboard by
examining memory location $COOO. The speaker can be similarly
accessed by looking at location $C030. The exception here is that
the value at $COOO (the keyboard) varied according to what key
was pressed, whereas with $C030 (the speaker) there is no logical
value returned.

Every time location $C030 is accessed, the speaker will click
once. This is easy to demonstrate. Simply enter the Monitor with
a CALL -151. Enter C030 and press RETURN. You'll have to listen
carefully, and you may have to try it several times. Each time,
the speaker will click once. You can imagine. that, if we could
repeatedly access the speaker at a fast enough rate, the series
of clicks would become a steady tone. In Basic, this can be done,
although poorly, by a simple loop such as this:

CHAPTER 7 61

10 X = PEEK (-16336): GOTO 10

The pitch of the tone generated depends on the rate at which
the speaker is accessed. Because Integer Basic is faster in its
execution than Applesoft, the tone generated will be noticeably
higher in pitch in the Integer version.

In machine language, the program would look like this:

0300- AD 30 CO LDA $C030
0303- 4C 00 03 JMP $0300

In this case, I'm showing it as the Apple would directly
disassemble it as opposed to the usual assembly language source
listing. The program is so short that the easiest way to enter it
is by typing in the hex code directly. To do this, enter the Monitor
(CALL -151) and type:

300: AD 30 CO 4C Oil 03

Then run the program by typing 300G.
Disappointed? The program is working. The problem is that

the routine is actually too fast fo:r the speaker to respond. What's
lacking here is some way of controlling the rate of execution of
the loop. This is usually accomplished by putting a delay of
some kind in the loop. We should also be able to specify the
length of the delay, either before the program is run or, even
better, during the execution of the program.

Delays

We can do this any of three ways: 1) physically alter the
length of the program to increase the execution time of each
pass through the loop; 2) store a value somewhere in memory
before running the program and then use that value in a delay
loop; or 3) get the delay value on a continual basis from the
outside world, such as from the keyboard or paddles.

For the first method, you can use a new and admittedly com
plex command. The mnemonic for this instruction is NOP and
stands for No OPeration. Whenever the 6502 microprocessor
encounters this, it just continues to the next instruction without
doing anything. This code is used for just what we need here
a time delay.

62 ASSEMBLY LINES

It is more often used, though, as either a temporary filler
when assembling a block of code (such as for later data tables)
or to cancel out existing operations in a previously written section
of code. Quite often, this code ($EA, or 234 in decimal) is seen
being used in this manner to patch parts of the Apple DOS to
cancel out various features that you no longer want to have active
(such as the NOT DIRECT command error that prevents you from
doing a GOTO directly to a line that has a DOS command on it).

In our sound routine, an NOP will take a certain amount of
time even to pass over and will thus reduce the number of cycles
per second of the tone frequency. The main problem in writing
the new version will be the number of NOPs that will have to be
inserted.

The easiest way to get a large block of memory cleared to a
specific value is to use the move routine already present in the
Monitor. To clear the block, load the first memory location in the
range to be cleared with the desired value. Then type in the
move command, moving everything from the beginning of the
range to the end up one byte. For instance, to clear the range
from $300 to $3AO and fill it with $EAs, you would, from the
Monitor, of course, type in:

300: EA
301 <300.3AOM

Nate that we are clearing everything from $300 to $3AO to
contain the value $EA.

Now type in:

300: AD 30 CO
3AO: 4C 00 03

Then type in 300L, followed with L for each additional list sec
tion, to view your new program.

*300L

0300- AD30 co LDA $C030
0303- EA NOP
0304- EA NOP
0305- EA NOP
0306- EA NOP
0307- EA NOP

CHAPTER 7 63

0308- EA NOP
0309- EA NOP

* * *
* * *
* * * 0395- EA NOP
0396- EA NOP
0397- EA NOP
0398- EA NOP
0399- EA NOP
039A- EA NOP
039B- EA NOP
039C- EA NOP
0390- EA NOP
039E- EA NOP
039F- EA NOP
03AO- 4C 00 03 JMP $0300

Now run this with the usual 300G.
The tone produced should be a very nice, pure tone. The

pitch of the tone can be controlled by moving the JMP $300 to
points of varying distance from the LDA $C030. Granted, this is
a very clumsy way of controlling the pitch and is rather perma
nent once created, but it does illustrate the basic principle.

For a different tone, hit RESET to stop the program, then type
in: 350:.4C 00 03. When this is run (300G), the tone will be
noticeably higher. The delay time is about half of what it was,
and thus the frequency is twice the original value. Try typing in
the three bytes in separate runs at $320 and $310. At $310, you
may not be able to hear the tone, because the pitch is now essen
tially in the ultrasonic range.

I think you'll also notice that all these tones are of a very pure
nature and, in general, much nicer than those generated by a
Basic program.

Delay Value In Memory

Usually the way tone programs work is to pass a pitch value
from Basic by putting the value in a memory location. This pro
gram is an example of that technique.

64 ASSEMBLY LINES

1 ***************
2 * SOUND ROUTINE 2 *
3 ***************
4 *
5 *
6 OBJ $300
7 ORG $300

8 *
9 PITCH EQU $06

10 SPKR EQU $C030

u *
12 ENTRY LDY PITCH
13 LDA SP.KR
14 LOOP DEY
15 BNE LOOP
16 JMPENTRY
17 * INF. LOOP

When assembled, it should look like this:

*300L

0300- A4 06 LDY $06
0302- AD30 co LDA $C030
0305- 88 DEY
0306- DO FD BNE $0305
0308- 4C 00 03 JMP $0300

In this program, we get a value of $00 to $FF from location
$06 (labeled pitch) and put it in the Y-Register. The speaker is
then clicked. At that point, we enter a delay loop that cycles n
times where n is the number value for pitch held in location $06.

To run this program, first load location $06 with values of
your choice (0 to 255 decimal, $00 to $FF hex) and then run the
300G. This is more compact and controllable than the first exam
ple, but it still suffers from being an infinite loop. What we need
to do is specify a duration for the tone as well. Again you have
the option of either making the value part of the program or
passing it in the same way as we're currently doing the value for
pitch. Here's a listing for the new program:

CHAPTER 7 65

1 ***************
2 * SOUND ROUTINE 3 *
3 ***************
4 *
5 *
6 OBJ $300
7 ORG $300
8 *
9 PITCH EQU $06

10 DURATION EQU $07
11 SPKR EQU $C030
12 *
13 ENTRY LDX DURATION
14 LOOP LDY PITCH
15 LDASPKR
16 DELAY DEY
17 BNEDELAY
18 DRTNDEX
19 BNELOOP
20 EXITRTS

Disassembled, it will appear like this:

*3001

0300- A6 07 LDX $07
0302- A4 06 LDY $06
0304- AD30 co 1DA $C030
0307- 88 DEY
0308- DO FD BNE $0307
030A- CA DEX
030B- DO F5 BNE $0302
030D- 60 RTS

This routine is used by loading $06 with a value for the pitch
you desire, $07 with a value for how long you want the tone to
last, and then running the routine with the 300G.

Examining this listing, you'll see that it is basically an exten
sion of routine 2. In this revised version, instead of always
jumping back to the LDY of the play cycle, we decrement a coun
ter (the X-Register). This counts the number of times we're
allowed to pass through the loop, and thus the final length of
the play.

This can be used by Basic programs, as illustrated by this
sample Applesoft listing:

66 ASSEMBLY LINES

10 PRINT CHR$(4); "BLOAD TONE ROUTINE,A$300"
20 INPUT"PITCH, DURATION?";P,D
30 POKE6,P:POKE7,D
40 CALL 768
50 PRINT
60 GOT020

This makes it very easy to experiment with different values
for both pitch and duration. The main bug in this routine is that
even for a fixed value for duration, the length of the note will
vary depending on the pitch specified. This is because less time
spent in the delay loop means less overall execution time for the
routine as a whole.

Delay from Keyboard or Paddles

The next variation is to get the pitch on a continual basis from
an outside source. In this case, the source will be the keyboard.
Type in and assemble this source listing:

1 ***************· 2 * SOUND ROUTINE 4 *
3 *************** 4 * 5 * 6 OBJ$300
7 ORG$300
8 * 9 KYBD EQU $COOO

10 STROBE EQU $C010
11 SPKR EQU $C030
12 * 13 ENTRY LOA KYBD
14 STA STROBE
15 CMP#$80
16 BEQEXIT
17 TAY
18 LOOP LDA SPKR
19 DELAY DEY
20 BNEDELAY
21 JMPENTRY
22 EXITRTS

In memory, it should look like this:

CHAPTER 7 67

*300L

0300- ADOO co LDA $COOO
0303- SD 10 co STA $C010
0306- C9 80 CMP #$80
0308- FO IJA BEQ $0314
030A- AS TAY
030B- AD 30 co LDA $C030
030E- 88 DEY
030F- DO FD BNE $030E
0311- 4C 00 03 JMP $11300
0314- 60 RTS

Running this will give you a really easy way of passing tone
values to the routine. Characters with low ASCII values will pro
duce higher tones than ones with higher values. This means that
the control characters will produce unusually high tones. To exit
press control-shift-P (control-@).

Let's review how the routine functions.
At the entry point ($300), the very first thing done is to get

a value from the keyboard. The strobe is then cleared, and an
immediate check done for #$80. Remember that $80 is added to
the ASCH value for each key pressed when read at $COOO. A value
less than $80 means no key has been pressed. Checking specif
ically for $80, the computer looks to see if a control-@ has been
pressed. This is just a nice touch to give us a way of exiting the
program. After the check, we transfer the Accumulator value
(equivalent to pitch in the earlier programs) to the Y-Register
and finish with the same routine used in sound routine 2.

Of course, I have to give you at least one program using the
paddles. This one gives us an opportunity to use the external
routines in the Monitor, too. Don't forget that using the routines
already present in the Monitor is the real secret to easy machine
language programming. It saves you the trouble of having to
write your own I/O and other sophisticated routines and lets you
concentrate on those aspects unique to your program.

68

Now for the program:

1 ***************
2 * SOUND ROUTINE 5 *
3 ***************
4 *
5 *
6 OBJ $300

ASSEMBLY LINES

7 ORG $300
8 * 9 PDL EQU $FB1E

10 SPKR EQU $C030
n *
12 ENTRY LDX #$00
13 JSRPDL
14 LDASPKR
15 LJJX #$01
16 JSRPDL
17 LDASPKR
18 JMPENTRY
19 *INF. LOOP

The Monitor will list this as:

*3001

0300- A2 00 LDX #$00
0302- 20 1E FB JSR $FB1E
0305- AD 30 co LDA $C030
0308- A2 01 LDX #$01
030A- 20 1E FB JSR $FB1E
0300- AD30 co LDA $C030
0310- 4C 00 03 JMP $0300

Running this should produce some really interesting results.
The theory of this routine is elegantly simple. It turns out that
just reading a paddle takes a certain amount of time, sufficient
to create our needed delay. The greater the paddle reading, the
longer the delay to read it.

What happens in this routine is that we actually have two
distinct delays created, one by each paddle. Remember that, to
read a paddle, you first have to load the X-Register with the
number of the paddle you wish to read and then do the JSR to
the paddle read routine. The value is returned in the Y-Register,
but in this case we don't need to know what the value was.

The combination of the two different periods of delay creates
the effect of two tones at once and a number of other very unique
sounds.

This has been only the most basic discussion of sound gen
erating in machine language, but I think you'll find that it illus
trates what can be done with only a few commands, and that
machine language offers many advantages in terms of memory
use and execution speed.

CHAPTER 7 69

CHAPTERS
The Stack

One of the more obscure parts of the operation of the Apple
is related to something called the stack. This is a part of memory
reserved for holding return addresses for GOSUBs and FOR-NEXT
loops, and a few other operations in direct machine code.

If you want to impress your friends with your knowledge of
machine language, just throw this term around in a confident
manner and they'll figure you must be an expert!

The stack can be thought of like those spring-loaded plate
holders they have in restaurants. Plates are loaded onto the top
of a cylinder with a spring-loaded platform in it. As more plates
are added, the bottom one gets pushed down. The plates must
always be removed in the opposite order from that in which they
are put in. The catch phrase for this is LIFO, for Last-In, First
Out. The first location loaded in the 6502 stack is $1FF. Rather
than pushing everything down toward $100 each time a new
value is put on the stack, the 6502 has a stack pointer that is
adjusted as new data is added. Successive values are added in
descending order, with the stack pointer being reset each time
to indicate the position of the next available location. Thus the
table is created in reverse order, building downward.

The technical details of its operation are not required to make
good use of the stack. One of the most convenient things the
stack can be used for is to hold values temporarily while you're
doing something else. Normally, in a program, we'd have to

CHAPTER 8 71

assign a zero page location to hold a value. For instance, consider
this program:

1 ******************
2 *BYTE DISPLAY PROG. 1 *

3 ******************
4 *
5 OBJ $300
6 ORG $300

7 *
8 CHR EQU $06
9 PRBYTE EQU $FDDA

10 COUT EQU $FDED
11 PREAD EQU $FB1E
12 HOME EQU $FC58
13 * 14 START JSR HOME
15 GETCHR LDX #$00
16 JSR PREAD
17 STY CHR
18 TYA
19 JSRPRBYTE
20 LDA #$AO ; SPAClE
21 JSRCOUT
22 LDACHR
23 JSRCOUT
24 LDA #$8D ; RETURN
25 JSRCOUT
26 JMP GETCHR

This will be listed by the Monitor as:

*300L

0300- 20 58 FC JSR $FC58
0303- A2 00 LDX #$00
0305- 20 1E FB JSR $FB1E
0308- 84 06 STY $06
030A- 98 TYA
03011- 20 DAFD JSR $FDDA
030E- A9 AO LDA #$AO
0310- 20 ED FD JSR $FDED
0313- AS 06 LDA $06
0315- 20 ED FD JSR $FDED
0318- A9 SD LDA #$8D
031A- 20 ED FD JSR $FDED
0310- 4C 03 03 JMP $0303

72 ASSEMBLY LINES

This program gets a value from $00 to $FF from paddle zero,
and stores it in location $06. This is needed because the JSR to
$FDDA (a handy routine that prints the hex number in the
Accumulator) scrambles the Accumulator and Y-Register. We
want to keep the value at hand because the ASCII character cor
responding to it is then printed out right after the number using
COUT. The cycle then repeats until you press RESET

Location $06 is used for only a moment each pass to store
the value temporarily. In addition, it commits that zero page
location to use and thus limits our choices when we need other
places to store something. A better system is to make use of the
stack. The commands to do this are PHA and PLA. PHA stands
for PusH Accumulator onto stack. When this is used in line 17
below, the value currently in the Accumulator is put onto the
stack. The Accumulator itself goes unaltered, and none of the
status flags, such as the carry or zero flags, are conditioned. The
value is simply copied and stored for us.

Later on, when we want to retrieve the value, the PLA on line
21 (for PulL Accumulator from stack) pulls the value back off the
stack into the Accumulator. A PLA command does condition the
zero flag, and also the sign bit, which has not been covered yet.

Important: For each PHA there must be a PLA executed before
encountering the next RTS in a program.

Here's the revised program:

1 ******************
2 *BYTE DISPLAY PROG. 2 *
3 ******************
4 *
5 OBJ $300
6 ORG $300
7 *
8 PRBYTE EQU $FDDA
9 COUT EQU $FDED

10 PREAD EQU $FB1E
:n HOME EQU $FC58
12 *
13 START JSR HOME
14 GETCHR LDX #$00
15 JSR PREAD
16 TYA
17 PHA
18 JSR PRBYTE
19 LDA #$AO ; SPACE
20 JSR COUT

CHAPTER 8 73

21 PLA
22 JSRCOUT
23 LDA #$8D ; RETURN
24 JSR COUT
25 JMP GETCHR

This will list like so:

*300L

0300- 20 58 FC JSR $FC58
0303- A2 00 LDX #$00
0305- 20 1E FB JSR $FB1E
0308- 98 TYA
0309- 48 PHA
030A- 20 DAFD JSR $FDDA
030D- A9 AO LDA #$AO
030F- 20 ED FD JSR $FDED
0312- 68 PLA
0313- 20 ED FD JSR $FDED
0316- A9 80 LOA #$80
0318- 20 ED FD JSR $FDED
031B- 4C 03 03 JMP $0303

The stack is also used automatically by the 6502 for storing
the return address for each JSR as it's encountered. Each time
you do a PHA, this address is buried one level deeper. You must
have done an equivalent number of PLAs at some point in the
routine before reaching the next RTS to have things work prop
erly.

Also remember, if you want to store more than one value,
you must retrieve the values in the opposite order in which they
were stored. Once a value is removed from the stack with the
PLA, it is essentially gone forever from the stack unless you put
it back directly.

There is a limit to how much you can put in the stack. The
limit of sixteen nested GOSUBs and FOR-NEXT loops in Basic is
related to the use of this. Technically you can put 256 one-byte
values, or 128 RTS addresses on the stack, but the Apple also
uses it for its own operations, and, many times, you have Basic
going, too.

In general, though, it rarely fills up unless you're getting
extreme in its use, and at that point the code probably will be
so tangled in nested subroutines that you may want to consider
a rewrite anyway!

Try using the stack in some of your own programs; I think
you'll find it quite useful.

74 ASSEMBLY LINES

CHAPTER 9
Math Operations

Now let's look at the simple math operations of addition and
subtraction in machine language. To an extent, we've already
done some of this. The increment and decrement commands
(INC/DEC, and so on) add and subtract for us. Unfortunately, they
only do so by one each time (VALUE + 1 or VALUE - 1).

If you're really ambitious, you could, with the commands
you have already, add or subtract any number by using a loop of
repetitive operations, but this would be a bit tedious, not to men
tion slow. Fortunately, a better method exists. But, first, a quick
review of some binary math facts.

In chapter three, we discussed the idea behind binary num
bers and why they're so important in computers. I would like
to further elaborate on the topic now and show how the idea of
binary numbers applies to basic arithmetic operations in machine
language programming.

Binary Numbers

By now you're certainly comfortable with the idea of a byte
being an individual memory location which can hold a value
from $00 to $FF (0 to 255). This number comes about as a direct
result of the way the computer is constructed and the way in
which you count in base two.

Each byte can be thought of as being physically made up of

CHAPTER 9 75

eight individual switches that can be in either an on or off posi
tion. We can count by assigning each possible combination of
ons and offs a unique number value.

In the following diagrams, if a switch is off, it will be rep
resented by a 0 in its particular position. If it's on, a 1 will be
shown. When all the switches are off, we'll call that zero.

In base two, each of the eight positions in the byte is called
a bit, and the positions are numbered from right to left, from 0
to 7.

The pattern for counting is similar to normal decimal or hex
notation. The value is increased by adding one each time to the
digit on the far right, carrying as necessary. In base ten, you'd
have to carry every tenth count, in hex, every sixteenth. In base
two, the carry will be done every other time!

So ... the first few numbers look like this:

Hex Decimal Binary
$00 0 0 0 0 0 0 0 0 0
$01 1 0 0 0 0 0 0 0 1
$02 2 0 0 0 0 0 0 1 0
$03 3 0 0 0 0 0 0 1 1
$04 4 0 0 0 0 0 1 0 0

Notice that in going from the value one to the value two, we
would add a 1 to the 1 already at the first position (bit 0). This
generates the carry to increment the second position (bit 1). Here
is the end of the series:

$FD 253 11111101
$FE 254 11111110
$FF 255 1 1 1 1 1 1 1 1

Now the most important part. Observe what happens when
the upper limit of the counter is finally reached. At $FF (255), all
positions are full. When the I).ext increment is done, we should
carry a one to the next position to the left; unfortunately, that
next position doesn't exist!

Addition with ADC

This is where the carry bit of the Status Register is used again.
Before, it was used in the compare operations (CMP, for
instance), but, as it happens, it is also conditioned by the next

76 ASSEMBLY LINES

command, ADC. This stands for ADd with Carry. When the next
step is done using an ADC command, things will look like this:

$100 256 0 0 0 0 0 0 0 0

Carry

1

The byte has returned to a value of zero and the carry bit is
set to a one.

We discussed the wrap-around to zero earlier, with the incre
ment/decrement commands, but we didn't mention the carry.
That's because the INC/DEC commands don't affect the carry flag.

However, the ADC command does condition the carry flag.
The carry will be set whenever the result of the addition is
greater than $FF With ADC, you can make your counters incre
ment by values other than one-rather like the FOR I = 1 TO 10

STEP s statement in Basic. But ADC is used more often for general
math operations, such as calculating new addresses or screen
positions, among a wide variety of other applications.

Whenever ADC is used, the value indicated is added to the
contents of the Accumulator. The value can be stated either
directly by use of an immediate value or with an indirect value.

Important Note: Although the ADC conditions the carry after
it is executed, it cannot be assumed that the carry is conveniently
standing in a clear condition when the addition routine is begun.

For example, consider this simple program:

LDA #$05
ADC #$00
STA RESULT

As it stands, there are two possible results. If the carry hap
pened to be clear when this was executed, the value in RESULT

would be $05. If, however, the carry had been set (perhaps as
the result of some other operation), then RESULT would have been
$06.

The point of all this is that the carry flag must be cleared
before the first ADC operation. The example above should have
been written as:

CLC (Clear Carry)
LDA #$05

CHAPTER 9 77

ADC #$00
STA RESULT

In this case, RESULT will always end up holding the value $05.

Here are some sample programs for using the ADC. Note the
use of the CLC before each ADC.

1 ****************'
2 * SAMPLE PROGRAM 1 *
3 ****************
4 *
5 OBJ $300
6 ORG $300
7 *
8 Nl EQU$06
9 N2 EQU$08

10 RSLTEQU $0A
11 *
12 STARTLDAN1
13 CLC
14 ADCN2
15 STARSLT
16 END RTS

1 ****************'
2 * SAMPLE PROGRAM 2 *
3 ****************
4 *
5 OBJ $300
6 ORG $300
7 *
8 N1 EQU$06
9 RSLTEQU$0A

10 *
11 * 12 STARTLDAN1
13 CLC
14 ADC #$80
15 STARSLT
16 END RTS

1 ****************
2 * SAMPLE PROGRAM 3 *
3 ****************
4 *
5 OBJ $300
6 ORG$300

78 ASSEMBLY LINES

7 *
8 Nl EQU $06
9 INDX EQU $08

10 RSLT EQU $0A
11 TBL EQU $300

12 *
13 START LDA Nl
14 LDXINDX
15 CLC
16 ADC TBL,X
17 STARSLT
18 END RTS

1 ****************
2 * SAMPLE PROGRAM 4 *
3 ****************
4 *
5 OBJ $300
6 ORG $300
7 * 8 Nl EQU$06
9 INDXEQU$08

10 RSLTEQU $0A
11 PTR EQU $1E
12 * 13 START LDA #$00
14 STAPTR
15 LDA#$03
16 STAPTR+l
17 LDANl
18 LDYINDX
19 CLC
20 ADC (PTR), Y
21 STARSLT
22 END RTS

In the first program, the value in Nl is added to the contents
of N2. In the second, Nl is added to the immediate value $80.
Note the CLC before the ADC to ensure an accurate result. This
result is then returned in location $0A. This routine could be
used as a subroutine for another machine language program, or
it could be called from Basic after passing the values to locations
$06 and $08.

The latter two programs are more elaborate examples where
the indirect modes are used to find the value from a table starting
at $300. In program 3, an index value is passed to location $08.
That is used as an offset via the X-Register. In program 4, the
low-order and high-order bytes for the address $300 are first put

CHAPTER 9 79

in a pair of pointer bytes ($1E,$1F) and the offset is put in the Y
Register.

In all the programs, however, we are limited to adding two
single-byte values, and further restricted to a one-byte result.
Not very practical in the real world.

The solution is to use the carry flag to create a two-byte
addition routine. Here's an example:

1 ******************
2 * SAMPLE PROGRAM SA *
3 ******************
4 *
5 OBJ $300
6 ORG $300

7 *
8 Nl EQU$1l6
9 N2 EQU $08

10 RSLT EQU $0A

11 *
12 START CLC
13 LDANl
14 ADCN2
15 STA RSLT
16 LDA N1+1
17 ADCN2+1
18 STARSLT+l
19 END RTS

*300L

03110- 18 CLC
03111- AS 06 LDA $06
0303- 65 08 ADC $08
0305- 85 OA STA $0A
0307- AS 07 LDA $07
0309- 65 09 ADC $09
030B- 85 OB STA $OB
030D- 60 RTS

Notice that Nl, N2, and RSLT are all two-byte numbers, with
the second byte of each pair being used for the high-order byte.
(If you're unsure of the idea of low and high-order bytes, refer
to chapter one (footnote two). This allows us to use values and
results from $00 to $FFFF (0 to 65535). This is sufficient for any
address in the Apple H, although, by using three or more bytes,
we could accommodate numbers much larger than $FFFF.

A few words of explanation about this program. First, the

80 ASSEMBLY LINES

CLC has been moved to the beginning of the routine. Although
it need only precede the ADC command, it has no effect on the
LDA, so it is put at the beginning of the routine for aesthetic
purposes. Once the two low-order bytes of Nl and N2 are added
and the partial result stored, the high-order bytes are added. If
the result of this first addition is greater than 255, the carry will
be set and an extra unit added in the second addition. Note that
the carry remains unaffected during the LDA Nl + 1 operation.

The Monitor listing is given for this one so that you can enter
it and then call it from the Basic program:

List

0 REM MACHINE ADDITION ROUTINE
10 HOME
20 INPUT"Nl,N2?";N1,N2
30 Nl = ABS (Nl): N2 = ABS (N2)
40 POKE 6, Nl - INT (Nl/256) * 256: POKE 7, INT (Nl/256)
50 POKE 8, N2 - INT (N2/256) * 256: POKE 9, INT (N2/256)
60 CALL 768
70 PRINT: PRINT "RESULT IS "; PEEK (10) + 256 * PEEK (11)
80 PRINT:GOTO 20

The ABS() statements on line 30 eliminate values less than
zero. Although there are conventions for handling negative num
bers, this routine is not that sophisticated.

Many times, the number being added to a base address is
known always to be $FF or less, so only one byte for N2 is needed.
A two/one addition routine looks like this:

1 *****************
2 * SAMPLE PROGRAM 58 *
3 *****************
4 *
5 OBJ $300
6 ORG $300

7 *
8 Nl EQU $06
9 N2 EQU$08

10 RSLT EQU $0A

11 *
12 START CLC
13 LDAN1
14 ADCN2
15 STARSLT

CHAPTER 9 81

16 BCCEND
17 LDA Nl+l
18 ADC#$00
19 STARSLT+l
20 ENDRTS

1 ******************
2 * SAMPLE PROGRAM SC *
3 ******************
4 *
5 OBJ $300
6 ORG $300
7 *
8 Nl EQU$06
9 N2 EQU$08

10 RSLTEQU$0A
11 *
12 STARTCLC
13 LDAN1
14 ADCN2
lS STARSLT
16 BCCEND
17 LDAN1+1
18 STARSLT+l
19 INC RSLT+1
20 ENDRTS

For speed, if a carry isn't generated on line 14, the program
skips directly to the end. If, however, the carry is set, the value
in Nl + 1 gets incremented by one, even though the ADC says an
immediate $00. The $00 acts as a dummy value to allow the carry
to do its job. If speed is not a concern, the BCC can even be left
out with no ill effect. Program SC shows an alternate method
using the INC command. In this case, the BCC is required for
proper operation.

The reason for bringing up listing SC is that the most common
reason for adding one to a two-byte number is to increment an
address pointer by one. In that case, the result is usually put
right back in tl-~ original location, rather than in a separate
RESULT. A routine for this is more compact and would look like
this:

82

1 ******************
2 * SAMPLE PROGRAM SD *
3 ******************
4 *

ASSEMBLY LINES

5 OBJ $300
6 ORG $300
7 * 8 N1 EQU$06
9 N2 EQU $08

10 RSLTEQU $0A
11 * 12 START CLC
13 INC Nl
14 BNEEND
15 INC Nl+l
16 END RTS

Subtraction

Subtraction is done like addition except that a borrow is
required. Rather than using a separate flag for this operation, the
computer recognizes the carry as sort of a reverse borrow.

That is, a set carry flag will be treated by the subtract com
mand as a clear borrow (no borrow taken); a clear carry as a set
borrow (borrow unit taken).

The command for subtraction is SBC, for SuBtract with Carty.
The borrow is cleared with the command SEC, for SEt Carry.
(Remember, things are backward here). A subtraction equivalent
of program SA looks like this:

1 ****************
2 * SAMPLE PROGRAM 6 *
3 ****************
4 *
5 OBJ $300
6 ORG $300
7 * 8 Nl EQU $06
9 N2 EQU$08

10 RSLTEQU$0A
11 *
12 START SEC
13 LDANl
14 SBCN2
15 STA RSLT
16 LDA N1+1
17 SBCN2+1
18 STARSLT+l
19 ENDRTS

CHAPTER 9 83

The program can be called with the same Basic program we
used for the addition routine (program 5A).

Positive and Negative Numbers

So far, we have only discussed how to represent whole num
bers greater than or equal to zero, using one or two bytes. A
reasonable question then is: "How do we represent negative
numbers?"

Negative numbers can be thought of as a way of handling
certain common arithmetic possibilities, such as when subtract
ing a larger number from a smaller one, such as in 3 - 5 =
- 2, and when adding a positive number to a negative number
to obtain a given result, such as in 5 + - 8 = - 3.

To be succesful, then, what we must come up with is a system
using the eight bits in each byte that will be consistent with
signed arithmetic that we are currently familiar with.

The Sign Bit

The most immediate solution to the question of signed num
bers is to use bit 7 to indicate whether a number is positive or
negative. If the bit is dear, the number is positive. If the bit is
set, the number will be regarded as negative.

Thus + 5 would be represented:

00000101

While - 5 would be shown as:

10000101

Note that by sacrificing bit 7 to show the sign, we're now
limited to values from -127 to + 127. When using two bytes to
represent a number such as an address, this means that we'll be
limited to the range of - 32767 to + 32767. Sound familiar? If
you've had any experience with Integer Basic, then you'll rec
ognize this as the maximum range of number values within that
language.

Although this new scheme is very pleasing in terms of sim
plicity, it does have one minor drawback-it doesn't work. If we
attempt to add a positive and negative number using this scheme
we get disturbing results:

84 ASSEMBLY LINES

5 00000101
+ - 8 10001000

- 3 10001101 = -13!

Although we should get - 3 as the result, using our signed
bit system we get -13. Tsk, tsk. There must be a better way.
Well, with the help of what is essentially a little numeric magic,
we can get something which works, although some of the con
ceptual simplicity gets lost in the process.

What we'll invoke is the idea of number complements. The
simplest complement is what is called a ones' complement. The
ones' complement of a number is obtained by reversing each
one and zero throughout the original binary number.

For example, the ones' complement to 5 would be:

For 8, it would be:

00000101 = 5
11111010 = - 5

00001000 = 8
11110111 = - 8

This process is essentially one of definition, that is to say that
we declare to the world that 11110111 will now represent -8
without specifically trying to justify it. Undoubtedly there are
lovely mathematical proofs of such things that present marvelous
ways of spending an afternoon, but for our purpose, a general
notion of what the terms mean will be sufficient. Fortunately
computers are very good at following arbitrary numbering
schemes without asking "but why is it that way?"

Now let's see if we're any closer to a working system:

5 00000101
+ - 8 11110111

- 3 11111100 = - 3
(00000011 = + 3)

Hmmm ... Seems to work pretty good. Let's try another:

-5 11111010
+ 8 00001000
~ 00000010 = 2

(Plus Carry)

CHAPTER 9 85

Well our answers will be right half the time ... It turns out
there is a final solution, and that is to use what is called the twos'
complement system.

The only difference between this and the ones' complement
system is that after deriving the negative number by reversing
each bit of its corresponding positive number, we add one.

Sound mysterious. Let's see how it looks:

For -5: For -8:
5 = 00000101 8 = 00001000

t ones' complement . . . '¥
11111010 11110111

W' now add one . . . -Jt
- 5 = 11111011 - 8 = 11111000

Now let's try the two earlier operations:

5 00000101
+ - 8 11111000

- 3 11111101 = - 3

Does 11111101
equal -3?

sample#: (00000011 = 3)

ones' comp: (11111100)
(+1)

twos' comp: (11111101 = - 3) ,,..,,

-5 11111011
+ 8 00001000

3 00000011 = 3

(Plus Carry)

At last! It works in both cases. It turns out that twos' com
plement math works in all cases, with the carry being ignored.

Now that you've mastered that, I'll let you off the hook a bit
by saying that none of this knowledge will be specifically
required in any programs in this particular book. It is, however,
a good thing to know about and is very useful in understanding
the next idea, that of the sign and overflow flags in the Status
Register.

The Sign Bit Flag

Since bit 7 of any byte can represent whether the number is
positive or negative, a flag in the Status Register is provided for

86 ASSEMBLY LINES

easy testing of the nature of a given byte. Whenever a byte is
loaded into a register, or when an arithmetic operation is done,
the sign bit will be conditioned according to what the state of
bit 7 is.

For example, LDA #$80 will set the sign flag to one, whereas
a LDA #$40 would set it to zero. This is tested using the com
mands BPL and BMI. BPL stands for Branch on PLus, and BMI

stands for Branch on Minus.
Regardless of whether you are using signed numbers or not,

these instructions can be very useful for testing bit 7 of a byte.
Many times bit 7 is used in various parts of the Apple to indicate
the status of something. For example, the keyboard location,
$COOO, gets the high bit set whenever a key is pressed.

Up until now we've always tested by comparing the value
returned rom $COOO to $80, such as in this listing:

1 ***************
2 * KEYrEST PROG. 1 *
3 ***************
4 * 5 * 6 OBJ $300
7 ORG $300
8 * 9 KYBD EQU $C!l00

10 STROBE EQU $C010
11 * 12 CHECK LDA KYBD
13 CMP #$80
14 BCC CHECK ; NO KEYPRESS
15 *
16 CLR STA STROBE
17 END RTS

This program will stay in a loop until a key is pressed. The
keypress is detected by the value returned from $COOO being
equal to or greater than $80. A more elegant method is to use
the BPL command:

1 ***************
2 * KEYTES1' PROG. 2 *
3 ***************
4 * 5 *
6 OBJ $300

CHAPTER 9 87

7 ORG $300

8 *
9 KYBD EQU $COOO

10 STROBE EQU $C010

11 *
12 CHECK LDA KYBD
13 BPL CHECK ; NO KEYPRESS

14 *
15 CLR STA STROBE
16 END RTS

In this case, as long as the high bit stays dear (i.e. no key
press), the BPL will be taken and the loop continued. As soon
as a key is pressed, bit 7 will be set to one, and the BPL will fail.
The strobe is then cleared and the return done.

A similar technique is used for detecting whether or not a
pushbutton has been pressed.

88

1 ************
2 * BUTTON TEST*

3 ************
4 *
5 *
6 OBJ $300
7 ORG $300

8 *
9 PBO EQU $C061

10 *
11 *
12 CHECK LOA PBO
13 BPL CHECK ; NO BUTTON PUSH

14 *
15 END RTS

ASSEMBLY LINES

IA f r=ifpp77 znmwrmmmms 77117 -, . .,,
CHAPTER 10

Disk Access

One of the more useful applications of machine language is
in accessing the disk directly to store or retrieve data. You might
do this to modify information already on the disk, such as when
you're making custom modifications to DOS, or to deal with data
within files on the disk, such as when you're patching or repair
ing damaged or improperly written files.

To cover DOS well requires more than a few chapters such as
this. My intent here, then, is to supply you with enough infor
mation at least to access any portion of a disk and to have enough
basic understanding of the overall layout of DOS and disks to
make some sense of what you find there. 1

Here's what we'll cover in this chapter. First, we'll paint a
general overview of what DOS is and how the data on the diskette
is arranged. Then you'll learn a general access utility with which
you can read and write any single block of data from a disk. With
these, you'll have a starting point for your own explorations of
this aspect of your Apple computer.

The Overview: DOS

An Apple without a disk drive has no way of understanding
commands like CATALOG or READ. These new words must enter

1. For a detailed look at DOS, I recommend the very recent book Beneath Apple
DOS, by Dan Worth and Pieter Lechner (Reseda, CA: Quality Software, 1981).

CHAPTER 10 89

its vocabulary from somewhere. When an Apple with a disk
drive attached is first turned on or a PR#6 is done, this infor
mation is loaded into the computer by a process known as booting.

During the booting process, a small amount of machine lan
guage code on the disk interface card reads in data from a small
portion of the disk. This data contains the necessary code to read
another lOK of machine language referred to as DOS. This block
of routines is responsible for all disk-related operations in the
computer. It normally resides in the upper lOK or so of memory,
from $9600 to $BFFF.

After booting, the organization of the memory used by DOS

looks something like this:

DOS FILE
BUFFERS (3)

!)\
$9600

(HIMEM:)

II\
$9DOO

MAIN FILE
ROUTINES MANAGER

II\
$AAC9

!)\

$B600

RWTS
ROUTINES

11'
$COOO
(END

OF DOS)

The first area contains the three buffers set aside for the flow
of data to and from the disk. A buffer is a block of memory
reserved to hold data temporarily while it's being transferred.
The MAXFILES command (a legal DOS command, see your manual
if you haven't encountered it before), can alter the number of
buffers reserved, and thus change the beginning address from
$9600 to other values. As it happens, three buffers are almost
never needed, so, in a pinch for memory, you can usually set
maxfiles to two, and often just one.

For example, if you had opened a text file called TEXTFILE, the
data being read or written would be transferred via buffer one.
If, while this file was still open, you did a catalog, buffer two
would be put in use. If, instead, you opened two other files, say
TEXTFILE 1 and TEXTFILE 2, and then tried to do a catalog, you
would get a NO BUFFERS AVAILABLE error (assuming maxfiles was
set at three). Buffer one starts at $9AA6, buffer 2 at $9853, and
buffer 3 at $9600. If maxfiles is set at three as in a normal system,
it's occasionally useful to use the dead space of the unused buffer
three for your own routines.

The main DOS routines starting at $9DOO are the ones respon
sible for the interpreting commands such as CATALOG and in

90 ASSEMBLY LINES

general, for allowing DOS to talk to Basic via control-D prefixed
statements.

The file manager is a set of routines that actually executes the
various commands sent via the main routines and that makes
sure files are stored in a logical (well, almost) manner on the
disk. This takes care of finding a file you name, checking to see
if it's unlocked before a write, finding an empty space on the
disk for new data, and countless other tasks required to store
even the simplest file.

When the file manager gets ready to read data from or write
data to the disk, it makes use of the remaining routines, called
the RWTS routines. This stands for Read/Write Track Sector. To
understand fully what this section does, though, it will be nec
essary now to look at the general organization of the disk itself.

Diskette Organization

Physically, a diskette is made of a material very similar to
magnetic recording tape and is used by small portions of the
surface being magnetized to store the required data in the form
of ones and zeros.

,2 I
READ/WRITE HEAD

CHAPTER 10 91

But the diskette is more analogous to a record than to a contin
uous strip of tape. Arranged in concentric circles, there are thirty
five individual tracks, each of which is divided into sixteen seg
ments called sectors.2

Tracks are numbered from 0 to 34 ($00 to $22), starting with
Track 0 in the outer position and track 34 nearest the center.
Sectors are numbered from 0 to 15 ($00 to $OF) and are interleaved
for fastest access. This means that sector 1 does not immediately
follow sector 0 when moving in the opposite direction from the
diskette rotation. Rather, the order is:

O-D-B-9-7-5-3-1-E-C-A-8-6-4-2-F

By the time DOS has read in and processed one sector, it
doesn't have sufficient time to read the very next sector properly.
If the sectors were arranged sequentially, DOS would have to wait
for another entire revolution to read the next sector. By exam
ining the sequence, you can see that after reading sector 0, DOS

can let as many as six other sectors go by and still have time to
start looking for sector 1. This alternation of sectors is sometimes
called the skew factor or just sector interleaving.

Looking for a given sector is done with two components. The
first is a physical one, wherein the read/write head is positioned
at a specific distance from the center to access a given track. The
sector is located via software by looking for a specific pattern of
identifying bytes. In addition to the 256 bytes of actual data
within a sector, each sector is preceded by a group of identifying
and error-checking bytes. These include, for example, something
like $00/03/FE for track $00, sector $03, volume $FE. By contin
ously reading these identification bytes until a match with the
desired values occurs, a given sector may be accessed.

This software method of sector location is usually called soft
sectoring, and it's somewhat unique to the Apple. Most other
microcomputers use hard-sectoring. Hard-sectoring means that
hardware locates the sector as well as the track. Search is done
by indexing holes located around the center hole of a disk. Even
Apple diskettes have this center hole, along with one to sixteen
matching holes in the media itself, but these aren't actually used

2. Throughout this discussion, we will assume DOS 3.3, which uses sixteen
sectors per track. DOS 3.2 has only thirteen sectors per track but is rapidly becom
ing obsolete. If you're using DOS 3.2, the correction from sixteen to thirteen
should be made in the topics throughout.

92 ASSEMBLY LINES

by the disk drive. Because the Apple doesn't need these holes
to index, using the second side of a disk is just a matter of
notching the edge of the disk protector to create another write
protect tab. We'll not go into the pros and cons of using the
second side but will leave that to you. It's one of those topics
guaranteed to be worth twenty to thirty minutes of conversation
at any gathering of two or more Apple owners.

Each sector holds 256 ($100) bytes of data. This data must
always be written or read as a single block. Large files are there
fore always made up of multiples of 256 bytes. Thus a 520 byte
file would take up three entire sectors, even though most of the
third sector will be wasted space (520 = 2 x 256 + 8)

*********** **********>!· D** 3

*****1***** *****2*****
*********** ***********

Certain tracks and sectors are reserved for specific informa
tion. Track 17 ($11) for example contains the directory. This gives
each file a name, and also tells how to find out which sectors on
the disk contain the data for each file. Track 17, Sector 0 contains
the volume table of contents (vroc), which is a master table of
which sectors currently hold data, and which sectors are avail
able for storing new data. If all of track 17 is damaged, it may be
nearly impossible to retrieve any data from the disk even though
the files themselves may still be intact.

The other main reserved area is on tracks 0 through 2. This
is where the DOS that will be loaded when the disk is booted is
held. If any of these tracks are damaged, it will not be possible
to boot the diskette, or if the disk does boot, DOS may not func
tion properly.

As a variation on this theme, by making certain controlled
changes to DOS directly on the disk you can create your own
custom version of DOS to enhance what Apple originally had in
mind. These enhancements will become part of your system
whenever you boot your modified diskette. Some modifications
of this type are discussed below.

To gain access to a sector to make these changes, however,
we need to be able to interface with the routines already in DOS

to do our own operations. This is most easily done by using the
RWTS routines mentioned earlier. Fortunately, Apple has made
them fairly easy to use from the user's machine language pro
gram.

CHAPTER 10 93

To use RWTS, you must do three general operations:
1) Specify the track and sector you wish access to.
2) Specify where the data is to be loaded to or read from (that

is, give the buffer address).
3) Finally, call RWTS to do the read/write operation.
If the operation is to be a read, then we would presumably

do something with the data in the buffer after the read is com
plete. If a write is to be done, then the buffer should be loaded
before calling RWTS with the appropriate data. Usually, the way
all this works is to read in a sector first, then make minor changes
to the buffer, and then write the sector back out to the diskette.

Steps 1 and 2 are actually done in essentially the same oper
ation, by setting up the IOB table (for Input/Output and control
Block). This is described in detail (along with the sector organi
zation) in the Apple DOS Manual, but here's enough information
to make you dangerous as the saying goes.

The IOB table is a table you make up and place at a location
of your choice. (You can also make use of the one already in
memory that is used in DOS operations.) Most people I know
seem to prefer to make up their own, but my personal preference
is to use the one in DOS. Since most people I know aren't at this
keyboard right now, I'll explain how to set up the table in DOS.

The table is made up of seventeen bytes and starts at $B7E8.
H's organized like this:

Location Code Purpose

$B7E8 $01 IOB type indicator, must be $01.
B7E9 60 Slot number times sixteen (notice that this calculation,

like multiplying by ten in decimal, means just
moving the hex digit to the left one place).

B7EA 01 Drive number.
B7EB 00 Expected volume number.
IB7EC 12 Track number.
B7ED 06 Sector number.
B7EE FB Low-order byte of device characteristic table.
B7EF B7 High-order byte of D.C.T.
B7FO 00 Low-order byte of data buffer starting address.
B7F1 20 High-order byte of data buffer
B7F2 00 Unused.
B7F3 00 Unused.
B7F4 02 Command code; $02 = write
B7F5 00 Error code (or last byte of buffer read in).
B7F6 00 Actual volume number
B7F7 60 Previous slot number accessed.
B7F8 01 Previous drive number accessed.

94 ASSEMBLY LINES

Because DOS has already set this table up for you, it isn't
necessary to load every location with the appropriate values. In
fact, if you're willing to continue using the last accessed disk
drive, you need only specify the track and sector, set the com
mand code, and then clear the error and volume values to 00.
However, for complete accuracy, the slot and drive values should
also be set so you know for sure what the entry conditions are.

Once the IOB table has been set up, the Accumulator and Y
Register must be loaded with the high and low-order bytes of
the IOB table, and then the JSR to RWTS must be done. Although
RWTS actually starts at $B7B5, the call is usually done as JSR $309
when it first boots. The advantage of calling here is that if Apple
ever changes the location of RWTS, only the vector address at
$309 will be changed and a call to $309 will still work.

A vector is the general term used for a location in memory
that holds the information for a second address in memory. A
vector is used so that a jump to the same place in memory can
be routed to a number of other locations in memory, usually the
beginning of various subroutines. A vector is rather like a tele
phone switchboard. Even though the user always calls the same
address, the program flow can be directed to any number of
different places simply by changing two bytes at the vector loca
tion.

For example, suppose at location $3FS we were to put these
three bytes:

3F5: 4C 00 03

Listed from the Monitor, this would disassemble as:

03F5- 4C 00 03 JMP $0300

Now whenver you do a call to $3FS, either by a CALL 1013 or
3FSG, the program will end up calling a rotine at $300. It would
now be a simple matter to write a switching program that would
rewrite the two bytes at $3F6 and $3F7 so that a call to $3FS would
go anywhere we wanted.

As it happens $3FS is used in just such a fashion by the
ampersand(&) function of Applesoft. The Applesoft II Basic Ref
erence Manual provides more information on this particular fea
ture.

The best way to finish explaining how to use the IOB table

CHAPTER 10 95

and RWTS is to present the following utiltiy to access a given track
and sector using RWTS. We'll then step through the program and
learn why the various steps are done to use RWTS successfully.

1 ******************
2 * *
3 * GEN'L PURPOSE RWTS *
4 * DOS UTILITY *
5 * *
6 ******************
7 *
8 *
9 OBJ $300

10 ORG $300

11 *
12 CTRK EQU $06
13 CSCT EQU $07
14 UDRIV EQU $08
15 USLOT EQU $09
16 BP EQU $0A ; !BUFFER PTR.
17 UERR EQU $0C
18 UCMD EQU $E3
19 * USER SETS THIS TO HIS CMD

20 *
21 RWTS EQU $3D9

22 *
23 * BELOW ARE LOCS IN IOB
24 SLOT EQU $B7E9
25 DRIV EQU $B7EA
26 VOL EQU $B7EB
27 TRACK EQU $B7EC
28 SECTOR EQU $B7ED
29 BUFR EQU $B7FO
30 CMD EQU $B7F4
31 ERR EQU $B7F5
32 OSLOT EQU $B7F7
33 ODRIV EQU $B7F8

34 *
35 READ EQU $01
36 WRITE EQU $02

37 *
38 *
39 *
40 *********************
41 * ENTRY CONDITIONS: SET *
42 * TRACK, SECTOR, SLOT, DR, *
43 * BUFFER AND COMMAND. *
44 *********************
45 *
46 *

96 ASSEMBLY LINES

47 *
48 CLEAR LOA #$00
49 STA VOL
so *
Sl LOA USLOT
S2 STA SLOT
S3 * S4 LOA UDRIV
SS STA ORIV
S6 *
S7 LOACTRK
SS STA TRACK
S9 *
60 LOA CSCT
61 STA SECTOR
62 *
63 LOAUCMD
64 STACMO
6S *
66 LOA BP
67 STA BUFR
68 LOA BP+l
69 STA BUFR+l
70 *
71 LOA#$B7
72 LOY #$ES
73 JSRRWTS
74 BCC EXIT
7S *
76 ERRHAND LOA ERR
77 STA UERR
78 *
79 EXIT RTS
80 *

This should list from the Monitor as:

*300L

0300- A9 00 LOA #$00
0302- 80 EB B7 STA $B7EB
030S- AS 09 LOA $09
0307- 80 E9 B7 STA $B7E9
030A- AS 08 LOA $08
030C- 80 EA B7 STA $B7EA
030F- AS 06 LOA $06
0311- 80 EC B7 STA $B7EC
0314- AS 07 LOA $07

CHAPTER 10 97

0316- SD ED B7 STA $B7ED
0319- AS E3 1DA $E3
031B- SD F4 B7 STA $B7F4
031E- AS OA LDA $0A
0320- SD FO B7 STA $B7FO
0323- AS OB LDA $OB
032S- SD Fl B7 STA $B7F1
032S- A9 B7 LDA #$B7
032A- AO ES 1DY #$ES
032C- 20 D9 03 JSR $03D9
032F- 90 OS BCC $0336
0331- ADFS B7 LDA $B7FS
0334- SS oc STA $0C
0336- 60 RTS

When this program runs, it assumes the user has set the
desired values for the track and sector wanted, which slot and
drive to use, where the buffer is and whether to read or write.

Starting with the first functional line, line 48, the byte for the
volume number in the IOB table (VOL) is stuffed with a zero. A
value of zero here tells RWTS any volume number is acceptable
during the access. H we wanted to access only a particular volume
number, a value from $01 to $FF would be used instead of $00.

In the next four sets of operations, the user values for the
slot, drive, track, and sector numbers are put into the IOB table.
Notice that, to have this work properly, you must set USLOT
($09) to sixteen times the value for the slot you wish to use. For
example, to access slot five you would store a $50 (80 decimal)
in location $09 just before calling this routine.

The next pair of statements take the user command UCMD

and put that in the table. If you want to read a sector, set UCMD

= $01. A write is UCMD = $02. A few other options are seldom
used. These are described in more detail in the DOS 3.3 manual
in the section on RWTS.

Next, the buffer pointer is set to the value given by the user
locations $0A and $OB. The required space is 256 bytes ($100)
and can be put anywhere that this won't conflict with data
already in the computer. Convenient places are the number three
DOS file buffer ($9600), the input buffer itself ($200), or an area
of memory below $9600 protected by setting HIMEM to an appro
priate value. 3 In the examples that follow, I'll use the area from

3. Note: The input buffer can only be used temporarily during your own
routine. If you return to Basic, or do any input or DOS commands, data in this
area will be destroyed. Other than that, it's a handy place to use.

98 ASSEMBLY LINES

$1000 to $10FF because no Basic program will be running and
it's a nice number. In this case, $0A and $OB will be loaded with
$00 and $10, respectively.

Last of all, the Accumulator is loaded with #$B7 and the Y
Register with #$E8, the high-order and low-order bytes of the
IOB table address.

After the call to Rwrs via the vector at $3D9, the carry flag is
checked for an error. If the carry is clear, there was no error and
the routine returns via the RTS. If an error is encountered, the
code will be transferred from the IOB table to the user location.
The possible error codes are:

CODE CONDITION

$10 Disk write-protected, and cannot be written to.
$20 Volume mismatch error. Volume number found was different than

specified.
$40 Drive error. An error other than the three described here is

happening (1/0 error, for example).
$80 Read error RWTS will try forty-eight times to get to a good read; if

it still fails, it will return with this error code.

DOS Modifications

The ERR byte of the IOB table is somewhat unusual in that it
does not remain at zero, even if the read/write operation was
successful. In actual operation, if an error does not occur, the
ERR byte will contain the last byte of the sector just accessed.

It is important therefore to always use the carry flag to detect
whether an error has occurred or not. In fact, as your experience
grows, you will notice that a great many subroutines use the
carry flag as an indicator of the results of the operation. In the
case of Rwrs, the carry will be cleared if the access was successful,
and set if an error occured. It is not necessary to condition the
carry before calling RWfS.

One of the best ways to grasp this routine is to use it to
modify the DOS on a sample disk and observe the differences.
Before proceeding with the examples, boot on an Apple master
disk, then INIT a blank disk. This will be our test piece so to
speak. Do not try these experiments on a disk already containing
important data. If done correctly, the changes wouldn't hurt, but
if an error were to occur you could lose a good deal of work!

#1: Disk-Volume Modification. First install the sector access

CHAPTER 10 99

routine at $300. Now insert the sample diskette. Enter the Mon
itor with CALL - 151 and type in:

*06: 02 02 01 60 00 10
*E3: 01

This assumes your diskette is in drive one, slot six. Now enter:

*300G

The disk motor should come on. When it stops type in:

*lOAFL

You should get something like this:

lOAF- AO CS LDY #$CS
10B1- CD DS CC CMP $CCD5
10B4- CF ???
10B5- D6 AO DEC $AO,X
10B7- CB ???
10B8- 03 ???
10B9- C9 C4 CMP #$C4

This apparent nonsense is the ASCII data for the words disk
volume, in reverse order. This is loaded in when the disk is booted
and is used in all subsequent catalog operations.

The data was retrieved from track 2, sector 2, and put in a
buffer starting at $1000. The sequence we're interested in starts
at byte $AF in that sector. To modify that, type in:

lf-10.AF: AO D4 D3 CS D4 AO AD
*E3: 02
*300G

The first line rewrites the ASCII data there, the E3:02 changes the
command to "write," and the 300G puts it back on the disk.

Now reboot on the disk and then type in CATALOG. When the
catalog prints to the screen, the new characters "DISKTEST 254"
should appear. By using an ASCII character chart, you can modify
this part of the diskette to say anything you wish within the
twelve-character limit.

#2: Catalog Keypress Modification. Reinstall the sector access

100 ASSEMBLY LINES

utility, put the sample disk in the drive again, and type in:

*06: 01 OD 01 60 00 10
*E3: 01
*300G

This will read track 1, sector $OD, into the buffer. Type in:

*l039L

The first line listed should be:

1039- 20 OC FD JSR $FDOC

Change this to:

*1039: 4C DF BC (JMP $BCDF)

And rewrite to the disk:

*E3: 02
$300G

Now read in the section corresponding to $BCDF (track 0,
sector 6) by typing:

*06 00 06

*300G

And alter this section with:

*10DF: 20 OC FD C9 SD DO 03 4C 2C AE 4C 3C AE
*lE3: 02
*300G

As it happens, this part of the disk isn't used and provides
a nice place to put this new modification.

When you reboot after making this change, place a disk with
a long catalog on it in the drive and type in CATALOG. When the
listing pauses after the first group of names, press RETURN. The
listing should stop, leaving the names just shown on the screen.
If instead of pressing RETURN you press any other key, the catalog

CHAPTER 10 101

will continue just as it normally would, going on to the next
group of names.

Both these modifications will go into effect whenever you
boot on the sample disk. These features can also be propagated
to other disks by booting on the sample disk and using the new
DOS to init fresh disks.

Many modifications to the existing DOS can be made this way,
and we haven't even started to talk about storing binary data in
general.

Bell Modification and Drive Access

(1) The first time you call the access utility from the Monitor,
it will return with just the asterisk prompt. After that, unless you
hit reset or do a catalog, it will return with the asterisk and a
beep. This is because the status storage byte for the Monitor
($48) gets set to a nonzero value by RWTS. If the beep annoys
you, modify the access utility to set $48 back to #$00 before
returning.

(2) If you set the slot/drive values to something other than
your active drive, the active drive will still be the one accessed
when you do, for example, the next catalog. This is because DOS

doesn't actually look at the last-slot/drive-accessed values when
doing a catalog. Instead, it looks at $AA66 for the volume number
(usually #$00), at $AA68 for the drive number, and at $AA6A
for the slot number (times sixteen). If you have Basic or machine
language programs on which you wish to change the active drive
values without having to do a catalog or give another command,
then just POKE or STA the desired values in these three locations.
Have fun!

102 ASSEMBLY LINES

CHAPTER 11
Shift Operators

Here I'd like to cover two main groups of machine language
commands: shift operators and logical operators. Shifts are the eas
iest to understand, so we'll do them first.

You'll recall that the Accumulator holds a single eight-bit
value, and that in previous programs it has been possible to test
individual bits by examining flags in the Status Register. An
example of this was used in testing bit 7 after an LDA operation.
If the Accumulator is loaded with a value from $00 to $7F, bit
7 is dear and only BPL tests will succeed, since the sign flag
remains clear. If, however, a value from $80 to $FF is loaded, BMI

will succeed since bit 7 would be set; hence the sign flag will
also be a one.

The shift commands greatly extend our ability to test indi
vidual bits by giving us the option of shifting each bit in the

CHAPTER 11 103

Accumulator one position to the left or right. There are two direct
shift commands, ASL (Arithmetic Shift Left) and LSR (Logical
Shift Right).

<==

7 6 0

ASL
(Arithmetic Shift Left)

'O'

In the case of ASL, each bit is moved to the left one position,
with bit 7 going into the carry and bit 0 being forced to zero. In
addition to the carry, the sign and zero flags are also affected.
Some examples appear in the following listing.

ASL

Value Result (C) (N) (Z)

Hex Binary Hex Binary Carry Sign Zero
$00 0000 0000 $00 0000 0000 0 0 1
$01 () 0 0 0 () 0 0 1 $02 0 0 0 0 0 0 1 0 0 0 0
$80 1 0 0 0 0 () 0 0 $00 0 0 0 0 0 0 0 0 1 0 1

$81 1 0 0 0 0 0 0 1 $02 0 0 0 0 0 0 1 0 1 0 0
$FF 1 1 1 1 1 1 1 1 $FE 1 1 1 1 1 1 1 0 1 1 0

In the first case, there's no net change to the Accumulator,
although the carry and sign flags are cleared and the zero flag
is set. The 0 at each bit position was replaced by a 0 to its right.

However, in the case of $01, the value in the Accumulator
doubles to become $02 as the 1 in bit 0 moves to the bit 1 position.
In this case, all three flags will be cleared.

When the starting value is $80 or greater, the carry will be
set. In the case of $80 itself, the Accumulator returns to zero
after the shift, since the only 1 in the pattern, bit 7, is pushed
out into the carry.

Notice that in the case of $FE the sign flag gets set as bit 6
in the Accumulator moves into position 7. Remember that in
some schemes, bit 7 is used to indicate a negative number.

The ASL has the effect of doubling the byte being operated
on. This can be used as an easy way to multiply by two. In fact,
by using multiple ASLs, you can multiply by two, four, eight,
sixteen, and so on, depending on how many you use. In the
discussion of DOS and RWTS in chapter ten, you might remember
that the IOB table required the slot number byte in the table to be
sixteen times the true value. If you didn't want to do the multi
plication ahead of time, you could do it in your access program,
as below.

104 ASSEMBLY LINES

AS 09 LDA US LOT
OA ASL
OA ASL
OA ASL
OA ASL
SD E9 B7 STA SLOT

USLOT holds the value from one to seven that you pass to the
routine and SLOT is the location in the IOB table in which the
value for USLOT *16 should be placed. Even though the four ASLs
look a bit redundant, notice that they only took four bytes.
Actually, the LOA/STA steps consumed more bytes (five) than the
four ASLS.

In general then, ASL is used for these types of operations:
(1) Multiply by two, four, eight, and so on.
(2) Set or clear the carry for free while shifting for some other

reason.
(3) Test bits 0 through 6. Note: This can be done, but it's usu

ally only done this way for bit 6; there are, in general, better
ways of testing specific bits, which we'll describe shortly.

The complement of the ASL command is the LSR. It behaves
identically except that the bits all shift to the right.

==>

'O' 7 6

LSR
(Logical Shift Right)

The LSR can be used to divide by multiples of two. It's also a
nice way to test whether a number is even or odd. Even numbers
always have bit 0 clear. Odd always have it set. By doing an LSR
followed by Bee or BCS, you can test for this. Whether a number
is odd or even is sometimes called its parity. An even number has
a parity of zero, and an odd number, a parity of one.

LSR also conditions the sign and zero flags.
In both LSR and ASL, one end or the other always gets forced

to a zero. Sometimes this is not desirable. The solution to this
is the rotate commands, ROL and ROR (ROtate Left, ROtate Right).

CHAPTER 11 105

ROL ROR
(Rotate One Bit Left) (Rotate One Bit Right)

In these commands, the carry not only receives the pushed
bit, but its previous contents are used to load the now available
end position.

ROL and ROR are used rather infrequently but do turn up
occasionally in math functions such as multiply and divide rou
tines.

So far, all the examples have used the Accumulator as the
byte to be shifted. As it happens, either the Accumulator or a
memory location may be shifted. Addressing modes include all
the direct modes and indexed modes using the X-Register, with
the exception of MEM,X. The Y-Register cannot be used as an
index in any of the shift operations.

Logical Operators

Logical operators are, to the uninitiated, some of the more
esoteric of the machine language commands. As with everything
we've done before, though, with a little explanation they'll
become quite useful.

Let's start with one of the most commonly used commands,
AND. You're already familiar with the basic idea of this one from
your daily speech. If this and that are a certain way, then I'll do
something. This same way of thinking can be applied to your
computer.

As we've seen, each byte is made up of eight bits. Let's take
just the first bit, bit 7, and see what kind of ideas can be played
with. Normal text output on the Apple is always done with the
high bit set. That is all characters going out through COUT

($FDED) should be equal to or greater than $80 (1000 0000
binary). Likewise, when watching the keyboard for a keypress,
we wait until $COOO has a value equal to or greater than $80.

Suppose we had a program wherein we would print charac
ters to the screen only when a key was pressed and a standard
character was being sent through the system. What we're saying

106 ASSEMBLY LINES

is to print characters on the screen only when both the character
and the keyboard buffer show bit 7 set to one.

We can draw a simple chart that illustrates all the possibilities
(and you know how fond computer people are of charts).

Character Bit 7:
0 1

Keyboard O mo
Bit 7:

1 0 1

The chart shows four possibilities. If the character's bit 7 is
zero (a non-standard character) and the keyboard bit is zero (no
keypress), then don't print the character (a zero result). Likewise,
if only one of the conditions is being met but not the other, then
the result is still zero, or don't print. Only when both desired
conditions exist will we be allowed to print, as shown by the
one as the result.

Taken to its extreme, what we end up with is a new math
ematical function, AND. In the case of a single binary digit (or
perhaps we should call it a bigit), the possibilities are few, and
the answers are given as a simple zero or one.

What about larger numbers? Does the term 5 AND 3 have
meaning? It turns out that it does, although the answer in this
case will not be 8, and it is now that we must be cautious not to
let our daily use of the word addition be confused with our new
meaning.

As we look at these numbers on a binary level, how to get
the result of 5 AND 3 will be more obvious.

x =5
y =3

xANDy

0 1 0 1
0 0 1 1

0 0 0 1 = 1

If we take the chart created earlier and apply it to each set of
matching bits in x and y, we can obtain the result shown. Starting
on the left, two O's give 0 as a result. For the next two bits, only
a single 1 is present, in each case, still giving 0 as a result. Only
in the last position do we get the necessary l's in bit 0 of both
numbers to yield a 1 in the result.

CHAPTER 11 107

Thus 5 AND 3 does have meaning, and the answer is 1. (Try
that at parties!)

Don't be discouraged if you don't see the immediate value in
this operation; you should guess by now that everything is good
for something!

AND is used for a variety of purposes. These include:
(1) To force zeros in certain bit positions.
(2) As a mask to let only ones in certain positions through.
When an AND operation is done, the contents of the Accu-

mulator are ANDed with another specified value. The result of
this operation is then put back in the Accumulator. The other
value may be either given by way of the immediate mode or held
in a memory location. These are some possible ways of using
AND:

LDA #$80
AND #$7F
AND $06
AND $300,X
AND ($06),Y

To understand better how the AND is used, we should clarify
some other ideas. One of these is the nature of machine language
programs in general. I believe that, at any given point in a pro
gram, one of two kinds of work will be going on. One is the
operational mode, where some specific task, such as clicking a
speaker or reading a paddle, is taking place. At these moments,
data as such does not exist. In the other case, the processing
mode, data has been obtained from an operational mode, and
the information is processed and/or passed to some other routine
or location in memory.

A given routine is rarely made up of just one mode or the
other, but any given step usually falls more into one category
than the other.

These ideas are important because, in general, all the logical
operators are used during the processing phases of a program.
At those times, some kind of data is being carried along in a
register or memory location. Part of the processing that occurs
is often done with the logical operators.

In the case of the two modes of use, operational and process
ing, we are really just talking about two different ways of looking
at the same operation. To illustrate this, examine this partial
disassembly of the Monitor starting at $FDED:

108 ASSEMBLY LINES

*FDEDL

FDED- 6C 36 00 JMP ($0036)
FDFO- C9 AO CMP #$AO
FDF2- 90 02 BCC $FDF6
FDF4- 25 32 AND $32
FDF6- 84 35 STY $35
FDFB- 48 PHA
FDF9- 2IJ 78 FB JSR $FB78
FDFC- 68 PLA
FDFD- A4 LOY $35
FDFF- 60 RTS

For normal text output on the Apple, the Accumulator is
loaded with the ASCII value for the character to be printed, the
high bit is set, and a JMP to COUT ($FDED) is done. From looking
at the listing, you can see that at $FDED is an indirect jump based
on the contents of $36,37 (called a vector).

If this seems a little vague, then consider for a moment what
I call the flow of control in the computer. This means that the
computer is always executing a program somewhere. Even when
there's nothing but a flashing cursor on the screen, the computer
is still in a loop programmed to get a character from the key
board. When you call your own routines, the computer is just
temporarily leaving its own activities to do your tasks until it hits
that last RTS. It then goes back to what it was doing before; usu
ally, that's waiting for your next command.

When characters are printed to the screen, disk, printer, or
anywhere else, there's a flow of control that carries along the
character to be printed. For virtually every character printed, the
6502 scans through this region as it executes the necessary code
to print the character.

Normally, $36,37 points to $FDFO (at least before DOS is
booted). This may seem a little absurd until you realize that a
great deal of flexibility is created by the vector. For instance, a
PR#t, such as you do when turning on a printer, redirects $36,37
to point to the card, which in turn, after printing a character,
returns usually to where $36,37 used to print.

The card thus borrows the flow of control long enough to
print the character, after which it gives control back to the screen
print routine. Likewise, when DOS is booted, $36,37 gets redi
rected from $FDFO to $9EBD, which is where phrases preceeded
by a control-Dare detected. If no control-Dis found, the output
is returned to $FDFO.

CHAPTER 11 109

Now, back to what the AND is used for. Normally when the
routine enters at $FDFO, the Accumulator will hold a value
between $80 and $DF. The characters from $80 to $9F are all
control characters and are passed through by the BCC following
the first CMP. Characters passing this test will be the usual alpha
betic, numeric, and special characters shown on the Screen Char
acter Chart in appendix E. You'll notice at this point an AND with
the contents of $32 is done. Location $32 is called INVFLG and
usually holds either $FF, $7E or $3F depending on whether the
computer is in the NORMAL, FLASHING, or INVERSE text mode. Let's
assume that the Accumulator is holding the value for a normal
A. Look at the following table to see what happens when an
AND is done with each of these values.

EXAMPLE 1: HEX BINARY ASCII
Accumulator: $Cl 1 1 0 0 0 0 0 1 A
INVFLG: $FF 1 1 1 1 1 1 1 1
Result: $Cl 1 1 0 0 0 0 0 1 A

EXAMPLE 2:
Accumulator: $Cl 1 1 0 0 0 0 0 1 A
INVFLG: $7F 0 1 1 1 1 1 1 1
Result: $41 0 1 0 0 () 0 0 1 A (flashing)

EXAMPLE 3:
Accumulator: $Cl 1 1 0 0 0 0 0 1 A
INVFLG: $3F 0 0 1 1 1 1 1 1
Result: $01 0 0 0 0 0 0 0 1 A (inverse)

In the first example, ANDing with $FF yields a result identical
to the original value. The result is identical because, with each
bit set to one, the resulting bit will always come out the same as
the corresponding bit in the Accumulator. (Can you guess what
the result of ANDing with $00 would always yield?) This means
that the character comes out in its original form.

In the second case, ANDing with $7F has the effect of forcing
a zero in bit 7 of the result. Examining the Screen Character
Chart in the appendix, we can see that $41 corresponds to a
flashing A.

The Apple uses the leading two bits to determine how to
print the character. If the leading two bits are off, then the char
acter will be in inverse. If bit 7 is zero and 6 is one, then the
character will be printed in flashing mode. If bit 7 is set, then the
character will be displayed in normal text.

110 ASSEMBLY LINES

Using the AND operator forces a zero in the desired positions
and lets the remaining bit pattern through.

In general, then, the way to use the AND is to set a memory
location equal to a value wherein all bits are set to one except for
those that you wish to force to zero.

You can also think of AND as acting rather like a screen that
lets only certain parts of the image through. When INVFLG is set
to $3F, the leading bits will always be zero, regardless of whether
they were set at entry or not; hence, the expression mask.

Sometimes figuring exactly what value you should use for the
desired result is tricky. As a general formula, first decide what
bits you want to force to zero and then calculate the number with
all other positions set to ones. This will give the proper value to
use in the mask. For example, to derive the inverse display mask
value:

(1) Determine which bits to force to zero:
OOxxxxxx

(2) Calculate with the remaining positions set to ones:
0 0 1 1 1111 = $3F (63)

Try this with the desired result of forcing bit 7 only to zero
and see if you get the proper value for INVFLG of $7F.

DOS tool kit users should note that when shifting the Accu
mulator, Apple's assembler requires the addition of the A oper
and (Example: LSR A). This applies to ASL, LSR, ROR, and ROL.

Most other assemblers do not require the A operand. This is the
syntax used in this book.

BU

The command somewhat related to the AND is BIT. This is
provided to allow the user to determine easily the status of spe
cific bits. When BIT is executed, quite a number of things happen.
First of all, bits 6 and 7 of the memory location are transferred
directly to the sign and overflow bits of the Status Register. Since
we've not discussed the overflow flag, let me say briefly that its
related commands, BVC and BVS, may be used just as BPL and BMI

are used to test the status of the sign flag. If V (the overflow flag)
is dear, BVC will succeed. If V is set, BVS will work.

Most important, though, is the conditioning of the zero flag.
H one or more bits in the memory location match bits set in the
Accumulator, the zero flag will be cleared (Z = 0). If no match
is made, Z will be set (Z = 1). This is done by ANDing the

CHAPTER 11 111

Accumulator and the memory location and conditioning Z
appropriately. The confusing part is that this may seem some
what backward. Alas, it's unavoidable; it's just one of those notes
to scribble in your book so as to remember the quirk each time
you use it.

Note that one of the main advantages of BIT is that the Accu
mulator is unaffected by the test.

Here are examples of how BIT might be used:

EXAMPLE 1: To test for bits 0 and 2, set:

LDA
BIT
BNE

#$05
MEM
OK

; 0000 0101

; (1 OR MORE BITS MATCH)

EXAMPLE 2: To test for bit 7, set in memory:

CHK BIT
BPL
BIT

$COOO
CHK
$C010

; (KEYBOARD).
; (BIT 7 CLR, NO KEY PRESSED)
; (ACCESS $C011l TO CLR STROBE) ...

If you want to test for all of a specific set of bits being on, the
AND command must be used directly.

EXAMPLE 3: To test for both bits 6 and 7 being on:

LDA
AND
CMP
BEQ

CHAR
#$CO
#$CO
MATCH

; '1100 0000'

; BOTH BITS "ON"

This last example is somewhat subtle, in that the result in the
Accumulator will only equal the value with which it was ANDed
if each bit set to one in the test value has an equivalent bit on
the Accumulator.

ORAandEOR

These last two commands bring up an interesting error of
sorts in the English language, and that is the difference between
an inclusive OR and the exclusive OR. What all this is about is the
phenomenon that saying something like "I'll go to the store if it
stops raining or if a bus comes by" has two possible interpreta
tions. The first is that if either event happens, and even if both

112 ASSEMBLY LINES

events occur, then the result will happen. This is called an inclu
sive OR statement.

The other possibility is that the conditions to be met must be
one or the other but not both. This might be called the purest
form of an OR statement. It is either night or day, but never both.
This would be called an exclusive OR statement.

In machine language, the inclusive OR function is called ORA

or OR Accumulator. The other is called EOR for Exclusive OR.
The figure below shows the charts for both functions.

(Ace)

ORA: 0 1

(Memo:i~
1l_J_J

(Ace)

EOR: 0 1

(Memo~~
1~

First, consider the table for ORA. If either or both correspond
ing bits in the Accumulator and the test value match, then the
result will be a one. Only when neither bit is one does a zero
value for that bit result. The main use for ORA is to force a one
at a given bit position. In this manner, it's something of the com
plement to the use of the ANO operator to force zeros.

The following table presents some examples of the effect of
the ORA command.

Example 1:
Accumulator: $80 1000 0000
Value: $03 0000 0011
Result: $83 1000 0011

Example 2
$83 1000 0011
$0A 0000 1010
$88 1000 1011

Use of ORA conditions the sign and zero flags, depending on
the result, which is automatically put into the Accumulator.

The EOR command is somewhat different in that the bits in
the result are set to one only if one or the other of the corre
sponding bits in the Accumulator and test value is set to one,
but not both.

EOR has a number of uses. The most common is in encoding
data. An interesting effect of the table is that, for any given test
value, the Accumulator will flip back and forth between the
original value and the result each time the EOR is done. See the
examples in the table below.

CHAPTER 11 113

Accumulator: $80 1000 0000 $83 1000 0011
Value: $03 0000 0011 $0A 0000 1010
Result: $83 1000 0011 $89 1000 1001

Accumulator: $83 1000 0011 $89 1000 1001
Value: $03 0000 0011 $0A 0000 1010
Result: $80 1000 0000 $83 1000 0010

This flipping phenomenon is used extensively in hi-res
graphics to allow one image to overlay another without destroy
ing the image below. EOR can also be used to reverse specific bits.
Simply place ones in the positions you wish reversed.

You might find it quite rewarding to write your own experi
mental routine that will EOR certain ranges of memory with given
values. Then make the second pass to verify that the data has
been restored. This is especially interesting when done either on
the hi-res screen or blocks of ASOI data such as on the text screen.

It would be a shame if you've stayed with this chapter long
enough to read through all this and didn't get a program for your
efforts, so I offer the demonstration program that follows. It pro
vides a way of visually experimenting with the different shifts
and logical operators. Assemble the machine language program
listed and save it to disk under the name OPERATOR.OBJ.

1 ********************** 2 * BINARY FUNCTION DISPLAY *
3 * UTILITY *
4 **********************
5 *
6 *
7 OBJ $300
8 ORG $300

9 *
10 NUM EQU $06
llMEM EQU $07
12 RSLT EQU $08
13 STAT EQU $09

14 *
15 YSAVl EQU $35
16 COUTl EQU $FDFO
17 CVID EQU $FDF9
18 COUT EQU $FDED
19 PRBYTE EQU $FDDA

20 *
21 *

114 ASSEMBLY LINES

0300: A9 00 22 OPERATOR LDA #$00
0302: 48 23 PHA
0303: 28 24 PLP
0304: AS 06 2S LDA NUM
0306: 2S 07 26 AND MEM ; <=ALTER THIS
0308: SS 08 27 STA RSLT
030A: 08 28 PHP
030B: 68 29 PLA
030C: 8S 09 30 STA STAT
030E: 60 31 RTS

32 * 030F: A9 A4 33 PRHEX LDA #$A4 ;'$'
0311: 20 ED FD 34 JSR COUT
0314: AS 06 35 LDA NUM
0316: 4C DAFD 36 JMP PRBYTE

37 * 0319: AS 06 38 PRBIT LDA NUM
031B: A2 08 39 LDX #$0 8
0310: OA 40 TEST ASL
031E: 90 OD 41 BCC PZ
0320: 48 42 PO PHA
0321: A9 Bl 43 LDA #$Bl ; '1'
0323: 20 ED FD 44 JSR COUT
0326: A9 AO 45 LDA #$AO ; 'SPC'
0328: 20 ED FD 46 JSR COUT
032B: BO OB 47 BCS NXT

48 * 032D: 48 49 PZ PHA
032E: A9 BO 50 LDA #$BO ; 'O'
0330: 20 ED FD Sl JSR COUT
0333: A9 AO S2 LDA #$AO ; 'SPC'
033S: 20 ED FD S3 JSR COUT

54 * 0338: 68 SS NXT PLA
0339: CA 56 DEX
033A: DO El 57 BNE TEST

58 * 033C: 60 59 EXIT RTS
60 * 0330: EA 61 NOP

033E: EA 62 NOP
033F: EA 63 NOP

64 * 0340: C9 80 65 CSHOW CMP #$80 ;STAND CHAR?
0342: 90 10 66 BCC CONT
0344: C9 SD 67 CMP #$80 ;<CIR>
0346: FO oc 68 BEQ CONT
0348: C9 AO 69 CMP #$AO ;'SPC'
034A: BO 08 70 BCS CONT

71 *
CHAPTER 11 115

034C: 48 72 PHA
0340: 84 35 73 STY YSAV1
034F: 29 7F 74 AND #$7F ; FORCE 'O' IN BIT 7
0351: 4C F9 FD 75 JMP cvm

76 * 0354: 4C FO FD 77 CONT JMP COUT1
78 * 0357: 00 79 EOF BRK
80 * 81 *

Then enter the accompanying Apple program (Logical Operator
Demo Program) and save it under the name OPERATOR DEMO

PROGRAM. 1

Logical Operator Demo Program

0 IF PEEK (768) <> 169 THEN PRINT CHR$ (4);"BLOAD
OPERATOR.OBJ,A$300"

5 POKE 54,64: POKE 55,3: CALL 1002: REM HOOK UP CTRL
SHOW

10 REM LOGICAL OPERATOR PROG.
15 OP = 774:F = 768:PH = 783:PB = 793
20 TEXT : HOME : GOTO 1000

100 KEY = PEEK (-16384): IF KEY > 127 THEN 1000
110 A = PDL (O):A = PDL (0)
120 M = PDL (l):M = PDL (1)
125 POKE 6,A: POKE 7,M
130 CALL f: REM EVALUATE FUNCTION
140 R = PEEK (8):S = PEEK (9)
200 VTAB 11: HTAB 1: PRINT "OPCODE:";: POKE 6,0: GOSUB

500: VTAB 11: HTAB 32: PRINT ""';0$;""'
210 VTAB 14: PRINT "ACC:";: POKE 6,A: GOSUB 500: HTAB 30:

PRINT"";: HTAB 30: PRINT CHR$ (A);: VTAB 14: HTAB 33: PRINT
"(PO)": POKE 1742,A: IF A = 13 OR A = 141 THEN VTAB 14:
HTAB 30: INVERSE : PRINT "M": NORMAL

215 IF 01 = 7 THEN VTAB 16: PRINT "MEMORY:";: POKE 6,M:
GOSUB 500: HTAB 30: PRINT"";: HTAB 30: PRINT CHR$ (M);:
VTAB 16: HTAB 33: PRINT "(Pl)": POKE 1998,M: IF M = 13 ORM
= 141 THEN VTAB 16: HTAB 30: INVERSE: PRINT "M": NORMAL

220 IF 0$ <> "BIT" THEN VTAB 18: PRINT "RESULT:";: POKE
6,R: GOSUB 500: HTAB 30: PRINT"";: HTAB 30: PRINT CHR$ (R):
POKE 1270,R: IF R = 13 OR R = 141 THEN VTAB 18: HTAB 30:
INVERSE: PRINT "M": NORMAL

230 VTAB 20: PRINT "STATUS:";: POKE 6,S: GOSUB 500: PRINT
240 VTAB 22: HTAB 10: PRINT "N lh V lh - lh B lh D lh I lh Z lh C"
250 GOTO 100
499 END

1. In the PRINT statements of the following program, the symbol lb represents
a space or blank.

116 ASSEMBLY LINES

500 REM PRINT BITS & HEX
510 HTAB 10: CALL PB: HTAB 26: CALL PH: RETURN

1000 REM SELECT FUNCTION
1010 T = PEEK (-16368):FC = FC + 1 - (KEY = 136)* 2:

IF FC > 8 THEN FC = 1
1011 IF KEY = 193 THEN FC = 1
1012 IF KEY = 194 THEN FC = 3
1013 IF KEY = 197 THEN FC = 4
1014 IF KEY = 204 THEN FC = 5
1015 IF KEY = 207 THEN FC = 6
1016 IF KEY = 210 THEN FC = 7
1019 IF FC < 1 THEN FC = 8
1020 FOR I = 1 TO FC: READ 0$,0,01: NEXT I: RESTORE
1025 IF KEY = 155 THEN PRINT CHR$ (4);"PR#O": END
1030 POKE OP,O: POKE OP + 1,01: HOME
1050 ON FC GOSUB 1100,1200,1300,1400,1500,1600,1700,1800
1055 POKE 32,0
1060 A = -1: GOTO 100
1100 REM 'AND'
1110 POKE 32,9
1140 VTAB 1: PRINT"-------------------"
1145 PRINT "! l6 AND l'i ! 16 lb 0 l6 l6 ! l\ l\ 1 Iii l6 !"
1150 PRINT"-------------------"
1155 PRINT "! 16 16 O}) l'> ! lb 16 0 lb 16 ! 16 "!) 0 16 l6 !"
1160 PRINT "-------------------"
1165 PRINT "! l6 lb 1 l\ l\ ! lb lb 0 lh l6 ! l6 16 1 lb lb !"
1170 PRINT "-------------------"
1175 PRINT: HTAB 7: PRINT "'AND"'
1180 VTAB 23: PRINT "/\ lb l\ lb l6 l\ 16 lb \Ii 16 l6 16 /\ "
1185 RETURN
1200 REM 'AS!:
1220 VTAB 1: HTAB 9: PRINT"------- < = = -------"
1225 HTAB 4: PRINT "-----!7!6!5!4!3!2!1!0!< -- lb 'O"'
1230 HTAB 4: PRINT "! 16 lb lb 16 -----------------"
1235 HTAB 3: PRINT"---"
1240 HTAB 3: PRINT "!C!"
1245 HTAB 3: PRINT"---"
1250 VTAB 7: HTAB 16: PRINT "'ASt"': HTAB 8: PRINT

"(ARITHMETIC SHIFT LEFT)''
1280 VTAB 23: HTAB 10: PRINT "/\ 16 lb lb lb b l6 16 lb !ti lb lb /\ ll /\"
1285 RETURN
1300 REM 'BIT'
1310 POKE 32,9
1340 VTAB 1: PRINT"-------------------"
1345 PRINT "! l6 AND l6 ! lb l) O lb l\ ! lb lb 1 l6 l6 !"
1350 PRINT"-------------------"
1355 PRINT "! l6 l6 0 l'i ll ! \'I l6 O l6 l6 ! lh \'I 0 lh lh !"
1360 PRINT"-------------------"
1365 PRINT "! lh l\ 1 b lh ! lb lb 0 lb lh ! lh 16 1 l6 lh !"
1370 PRINT "-------------------"
1375 PRINT : HTAB 7: PRINT "'BIT"'
1380 VTAB 23: PRINT "M lh M l6 l6 16 Ji) lb l6 lh lh 1' /\": PRINT "71' 6";
1385 RETURN
1400 REM 'EOR'
1410 POKE 32,9
1440 VTAB 1: PRINT"-------------------"

CHAPTER 11 117

1445 PRINT "! Iii EOR 1' ! 1' 1'i 0 1' 1' ! 16 Vi 1 1' Iii !"
1450 PRINT"-------------------"
1455 PRINT "! 1) /6 0 16 1li ! 1' 1'i 0 Vi 16 ! 1'i Iii 1 1li 11 !"
1460 PRINT"-------------------"
1465 PRINT "! l'i 16 1 11 1' ! Vi l'i 1 11 l'P ! 1li 1li 0 1'i Vi !"
1470 PRINT"-------------------"
1475 PRINT : HTAB 7: PRINT "'EOR"'
1480 VTAB 23: PRINT"/\ 1'i llJ \; 1li 1'i l'i 1' 1'i 1' l'i l'i /\"
1485 RETURN
1500 REM 'LSR'
1520 VTAB 1: HTAB 9: PRINT"-------==>-------"
1525 HTAB 2: PRINT "'O' l'i-- >!7!6!5!4!3!2!1!0! -----"
1530 VTAB 3: HTAB 9: PRINT "----------------- 1' 1' 1' 1'i !"
1535 HTAB 29: PRINT "---"
1540 HTAB 29: PRINT "!C!"
1545 HTAB 29: PRINT"---"
1550 VTAB 7: HTAB 15: PRINT "'LSR"': HTAB 8: PR:O:NT

"(LOGICAL SHIFT RIGHT)"
1580 VTAB 23: HTAB 10: PRINT "O 1li 11l'i111'i 16 1'i 1'i ll l'i l6 /\ 1li /\"
1585 RETURN
1600 REM'ORA'.
1610 POKE 32,9
1640 VTAB 1: PRINT"-------------------"
1645 PRINT "! 11 ORA 1li ! 1' 1li 0 Yi l'i ! 1li 1' 1 1li 1'i !"
1650 PRINT"-------------------"
1655 PRINT "! \\ 1'i 0 11 l'i ! 16 11 0 1'i 1li ! lHI 1 1'i 1' !"
1660 PRINT"-------------------"
1665 PRINT "! 1'i 1' 1 1li 16 ! 16 11 1 1' 16 ! 16 l'i 1 16 l'i !"
1670 PRINT"-------------------"
1675 PRINT : HTAB 7: PRINT "'ORA'."
1680 VTAB 23: PRINT "/\ 11 1'i l6 1' l'i 1'i 1' 1' 1' ll l'> /\"
1685 RETURN
1700 REM 'ROI;'
1720 VTAB 1: HTAB 9: PRINT "------- < = = -------"
1725 HTAB 4: PRINT"----- !7!6!5!4!3!2!1!0!< ----"
1730 HTAB 4: PRINT "! 11 1'i 16 16 ----------------- \\ 1' 1'i 1'i !"
1735 HTAB 4: PRINT "! l'i l'i 1' 1' 1li 1'i 1' l'> 1'i 1'i l) ---1' \\ 1) l'i 1'i 1li 1' 1) 1' 1' 1li !"
1740 HTAB 4: PRINT"----------- >!C! ------------"
1745 HTAB 16: PRINT"---"
1750 VTAB 8: HTAB 15: PRINT "'ROt'": HTAB 9: PRINT

"(ROTATE ONE BIT LEFT)''
1780 VTAB 23: HTAB 10: PRINT"/\ l'i \\ l'i 1' 16 1' 1' l'i 1' \\ \\ /\fl /\"
1785 RETURN
1800 REM 'ROR'
1820 VTAB 1: HTAB 9: PRINT"-------==>-------"
1825 HTAB 4: PRINT"----> !7!6!5!4!3!2!1!0!-----"
1830 HTAB 4: PRINT "! 1'i 1'i 1'i l'> -----------------fl ll l\ 1li !"
1835 HTAB 4: PRINT "! 1li 11 ll b 1' lh l) l) 1' 16 1' --- b 1' 1' Iii 11 1' 1' ll 1' 1' 11 !"
1840 HTAB 4: PRINT"------------ !C!< -----------"
1845 HTAB 16: PRINT"---"
1850 VTAB 8: HTAB 15: PRINT "'ROR"': HTAB 9: PRINT

"(ROTATE ONE BIT RIGHT)"
1880 VTAB 23: HTAB 10: PRINT "/\ 1' 1' 1' 1' ll \) 1' ii Iii 11 \Ii /\ Iii /\"
1885 RETURN

118 ASSEMBLY LINES

2000 DATA AND ,37 ,7 ,ASL,10,234,BIT,36,7,EOR,69 ,7,LSR,
74,234,0RA,5,7,ROL,42,234,ROR,106,234

32000 REM COPYRIGHT (C) 1981
32010 REM ROGER R. WAGNER

The basic theory of operation for the program is to rewrite
locations $306 and $307 with the appropriate values to create the
different operators. These values are contained in the DATA state
ment on line 2000 of the Applesoft program. In addition, there
are routines to printthe value in location $06 in both binary and
hex formats. Also, there is a routine to show control characters
in inverse. You may wish to examine each of these to determine
the logic, if any, behind their operation.

The Applesoft program itself operates by getting a value for
the Accumulator and the memory location from paddles zero
and one. The double read in lines 110 and 120 minimizes the
interaction between the two paddles. Pressing any key advances
the display to the next function; the left arrow backs up. Pressing
A, B, E, L, 0 or R will jump to selected functions.

The screen display shows the hex and binary values for each
number and also what character would be printed via a PRINT

CHR$(X) statement (control characters are shown in inverse). To
the far right is the character obtained when the value is poked
into the screen display part of memory.

I suppose if I were a purist, the entire thing would have been
written in machine language. Oh well, maybe next time.

CHAPTER 11 119

CHAPTER 12
I/O Routines: Print and Input

In chapter ten, I discussed how to access the disk using the
RWTS routine. There is another way in which the disk can be
read that is more similar to the procedure used in Basic. The
advantage of this system is that we need not be concerned about
what track and sector we're using, since DOS will handle the files
just as it does in a normal program. The disadvantage is that we
must have the equivalent of PRINT and INPUT statements to use
in our programs to send and receive the data. So, before going
any further, let's digress to input/output routines.

Print Routines

I, personally, have two favorite ways of simulating the PRINT

statement. The first was described in earlier chapters and looks
like this:

120

1 *********************
2 *DATA-TYPE PRINT ROUTINE*

3 *********************
4 *
5 *
6 OBJ $300

ASSEMBLY LINES

7 ORG $300
8 * 9 COUT EQU $FDED

0300: A2 00 10 * 11 ENTRY LDX #$00
0302: BD OE 03 12 LOOP LDA DATA,X
0305: FO 06 13 BEQ DONE
0307: 20 ED FD 14 JSRCOUT
030A: ES 15 INX
030B: DO F5 16 BNELOOP

17 *(ALWAYS UP TO 255 CHRS)
18 * 0300: 60 19 DONERTS
20 * 030E: S4 21 DATAHEXS4

030F: C3 Cl D4 22 ASC "CATALOG"
0312: C3 CC CF
0315: C7
0316: SD 00 23 HEX 8000
0318: 00 24 * 25 EOFBRK

This type of routine uses a defined data block to hold the
ASCII values for the characters we wish to print. The printing is
accomplished by loading the X-Register with 00 and stepping
through the data table until a 00 is encountered. Each byte loaded
is put into the Accumulator and printed via the JSR to COUT

($FDED). When the 00 is finally reached, the BEQ on line 13 is
taken and we return from the routine via the RTS at DONE.

The new item of interest in this listing is the use of the $84
as the first character printed. This will be printed as a control
D and the word CATALOG that follows will be executed as a DOS

command.
The essence of this chapter's message, along with the routines,

is that any DOS command can be executed from machine lan
guage exactly the same way it's done from Basic. One need only
precede the command with a control-D and terminate the com
mand with a carriage return. (READ and WRITE are something of
an exception to this technique but can still be done with only
minor adjustments.)

Because DOS looks at all characters being output, it will see
the control-D character and behave accordingly.

You'll also notice the new assembler directive, ASC. This
directive allows you to put an ASCII string directly into a listing
without having to use the HEX command which would neces
sitate a lot of mental conversions.

CHAPTER 12 121

Try entering this program and then calling with either a 300G
from the Monitor, or a CALL 768 from Basic. Remember, the
routine cannot be BRUN.

When running this program, you may notice a difference
between a CALL 768 and the 300G. When called from the Monitor
with the 300G, strange characters are printed out after the CAT
ALOG is done. It is important to note here that any DOS com
mand will overwrite the input buffer ($200 +) when executed.
Because the Monitor expects to look for commands after your
300G, it maintains an internal pointer to which character in the
input buffer it is currently evaluating. For example, it normally
would be perfectly legal to execute the command: 300G 200.210.

The problem is, it wouldn't work with this program. Let's
see why. When you enter 300G (RETURN), the input buffer holds
five characters, 3-0-0-G-<C/R>. When $300 is called, the char
acter pointer is at the RETURN character. When the DOS com
mand CATALOG, is issued, the input buffer is overwritten with
the characters 'D-C-A-T-A-L-0-G-<C/R>, where 'D represents
the control-D character. After the CATALOG, the monitor will
resume its interpretation of the input buffer on the fifth character,
which row instead of the carriage return, is the second A of the
word CATALOG. Thus, after the CATALOG command is done,
and control returns from the routine at $300, you get the same
result as if you had typed in ALOG, which would be to disas
semble the code starting at location $0A (AL), followed by a beep
for a syntax error for OG <CIR>. To avoid this problem, routines
that involve DOS commands should only be called from a run
ning BASIC program, or should exit via a JMP $300, as mentioned
earlier in the section on the COUT routine.

This next print routine is more involved but does offer some
advantages. The advantage is that the hex or ASCH data for what
you want to print can immediately follow the JSR PRINT state
ment, which parallels Basic a little more closely, and avoids con
structing the various data blocks. The disadvantage is that the
overall code is longer for short programs such as this. The general
rule of thumb is to use the data-type when you have only to print
once or twice during the program, and to use the following type
when printing many times.

The logic behind the operation of this second method is
slightly more complex than the previous routine, but I think
you'll find it quite interesting.

Here's the new method:

122 ASSEMBLY LINES

1 *********************
2 * SPECIAL PRINT ROUTINE *
3 *******************
4 *
5 OBJ $300
6 ORG$300
7 *
8 PTR EQU$06
9 COUT EQU $FDED

10 *
0300: 20 OD 03 11 ENTRY JSR PRINT
0303: 84 12 EOHEX84
0304: C3 Cl D4 13 ASC "CATALOG"
030B: SD 00 14 HEX8DOO
030D: 60 15 DONERTS

16 *
030E: 68 17 PRINTPLA
030F: 85 06 18 STAPTR
0311: 68 19 PLA
0312: 85 07 20 STAPTR+l
0314: AO 01 21 LDY #$01 ; PTR HOLDS 'EO' - 1 HERE

22 *
0316: Bl 07 23 PO LDA (PTR), Y
0318: FO 06 24 BEQFNSH
031A: 20 ED FD 25 JSRCOUT
031D: CB 26 INY
031E: DO F6 27 BNE PO ;(MOST ALWAYS)

28 *
0320: 18 29 FNSHCLC
0321: 98 30 TYA
0322: 65 06 31 ADCPTR
0324: 85 06 32 STAPTR
0326: AS 07 33 LDAPTR+l
0328: 69 00 34 ADC#$00
0329: 48 35 PHA
032B: AS 06 36 LDAPTR
032D: 48 37 PHA
032E: 60 38 EXITRTS

39 *WILL RTS TO DONE INSTEAD OF
40 *EO!
41 *

This one is rather interesting in that it uses the stack to deter
mine where to start reading the data. You'll recall that when a
JSR is done, the return address minus one is put on the stack.
Upon entry to the Print routine, we use this fact to put that
address in PTR, PTR + 1. By loading the Y-Register with #$01 and
indexing PTR to fetch the data, we can scan through the string to

CHAPTER 12 123

be printed until we encounter 00, which indicates the end of the
string.

When the end is reached, the BEQ FNSH will be taken. After
that happens, the Y-Register (the length of the string printed) is
transferred to the Accumulator and added to the address in PTR,

PTR + 1, and the result pushed back onto the stack. Remember
that the old return address was EO -1 until it was pulled off.

Now when the RTS is encountered, the program will be fooled
into returning to DONE instead of EO as it would otherwise have
done.

To summarize, then:
1) Any DOS command can be executed from machine lan

guage just as it is done in Basic by doing the equivalent of Print
ing a control-D followed by the command and a carriage return.

2) A data-type print routine uses ASCII characters in a labeled
block, which is then called by name using the X-Register in a
direct indexed addressing mode. The string to be printed should
have the high bit set (ASCII value + $80), and the string must be
terminated by a zero (at least when using the routine given here).

3) A JSR to a special print routine can also be done. In this
case the ASCII data should immediately follow the JSR. Again have
the high bit set, and end with 00.

Input Routines

The other side of the coin is, of course, the Input routine.
You might be surprised by the number of times I get calls from
people saying, "If only the input in such-and-such program
would accept quotes, commas, etc." The solution is actually quite
simple and is presented here.

In its simplest form, the routine looks like this:

124

1 **********************
2 * INPUT ROUTINE FOR BINARY *
3 **********************
4 *
5 * STORES STRING AT PTR lOC

6 *
7 OBJ $300
8 ORG $300

9 *
10 GETLN EQU $FD6F
11 BUFF EQU $200
12 PTR EQU $06

ASSEMBLY LINES

13 * 14 * 0300: A2 00 15 ENTRY LDX #$00
0302: 20 6F FIJ 16 JSRGETLN

17 * 0305: BA 18 CLEAR TXA ;X = LEN OF STRING
0306: A8 19 TAY
0307: A9 00 20 LDA #$00
0309: 91 06 21 STA (PTR),Y ;PUT END-OF-STRING MARKER
030B: 88 22 DEY;Y-1 FOR PROPER INDEXING
030C: B9 00 02 23 CZ LDA BUFF, Y
030F: 29 7F 24 AND #$7F ;CLEAR HIGH BIT
0311: 91 06 25 STA (PTR.),Y ;PUT IN NEW LOC
0313: 88 26 DEY
0314: CO FF 27 CPY #$FF
0316: DO F4 28 BNE C2

29

0318: 60 30 DONE RTS

The heart of this routine is a call to the Monitor's GETLN rou
tine, which gets a line of text from the keyboard or current input
device and puts it in the keyboard buffer ($200-2FF).

This saves our having to write a routine ourselves. The beauty
of this method is also that all the escape and left/right arrow keys
are recognized. When the routine returns from GETLN, the
entered line is sitting at $200 +. The length is held in the X
Register.

At this point we could, presumably, just return from our rou
tine as well, but as it happens, all the data now in the buffer has
the high bit set-that is, #$80 has been added to the ASCH value
of each character. Because Applesoft in particular, and many
other routines in general, don't expect this, the high bit should
be cleared before returning. Also $200 + will hold only one string
at a time, so there should be some provision for putting the string
to some final destination.

Both are accomplished in the Clear section of this routine.
First the length of the string is transferred via the TXA, TAY to
the Y-Register. My preference is then to mark the end of the
string. The subtle part here is that even though the Y register
holds the length value, this actually points to the position imme
diately after the last character entered into the input buffer. For
example, if you entered the word TEST, X would be returned as
04. Now the characters TEST occupy bytes $200-203. Thus when
the length (04) is put in the Y register, STA $200, Y will put a
zero i.n the fifth character position. Thus a DEY is then needed

CHAPTER 12 125

to get ready for the continuation to C2.
Next, C2 begins a loop that loads each character into the

buffer, does an AND with #$7F, and then stores the result at a
location pointed to by PTR, PTR + 1 plus the Y-Register offset.

The AND #$7F has the effect of clearing the high bit by forcing
bit 7 to zero.

The Y-Register is then decremented and the loop repeated
until the DEY forces Y to an $FF. This will indicate that the last
value was $00, and we have thus completed scanning the buffer.

This routine will work fine as long as you're willing to manage
the string entirely yourself once it gets to the PTR, PTR + 1 location.

As noble as it might be to write programs entirely in machine
language, I usually prefer to write in both Applesoft and machine
language. This is because unless speed is required, Applesoft
does offer some advantages in terms of program clarity and ease
of modification. After all, if there were no advantage to Applesoft
why would somebody have written it in the first place?

So, to that end, here are two new listings, the first in Apple
soft:

10 IN$ = "X"
20 PRINT "ENTER THE STRING:";
30 CALL 768: IN$ = MID$(IN$,1)
40 IF IN$ = "END" THEN END
50 PRINT IN$: PRINT: GOTO 20

and the second in assembly language:

0300: A2 00
0302: 20 6F FD
0305: AO 02

126

1 ***********************
2 * INPUT ROUTINE FOR FP BASIC *
3 ***********************
4 *
5 * IN$="" MUST BE 1ST VARIABLE
6 * DEFINED IN PROGRAM!

7 *
8 OBJ $300
9 ORG$300

10 * 11 GETLN EQU $FD6F
12 VARTAB EQU $69
13 BUFF EQU $200
14 * 15 * 16 ENTRY LDX #$00
17 JSR GETLN
18 LDY #$02

ASSEMBLY LINES

0307: SA 19 TXA
0308: 91 69 20 STA (VARTAB),Y

21 * STORE 'X-REG = LEN OF IN$'
22 * IN LEN BYTE OF IN$
23 * 030A: cs 24 INY ;Y = 3

030B: A9 00 25 LDA#$00
0300: 91 69 26 STA (VARTAB),Y
030F: cs 27 INY ;Y = 4
0310: A9 02 28 LDA#$02
0312: 91 69 29 STA (VARTAB),Y

30 * SET LOCATION PTR OF IN$ TO
31 * $200 (INPUT BUFFER)
32 * 0314: BA 33 XFER TXA

0315: AS 34 TAY; Y-REG = LEN NOW
0316: B9 00 02 35 X2 LDA BUFF, Y
0319: 29 7F 36 AND#$7F
031B: 99 00 02 37 STABUFF,Y
031E: SS 3S DEY
031F: CO FF 39 CPY #$FF
0321: DO F3 40 BNEX2

41 * 0323: 60 42 DONERTS

The important difference to notice here is that IN$ has been
defined as the first variable in the Applesoft program, and that
the machine language routine uses this fact to transfer the string
to Applesoft.

The way this is done begins at XFER. When an Apple soft string
variable is stored, the name, length and location of the string are
put in a table, whose beginning is pointed to by locations $69,
6A (VARTAB, VARTAB+ 1).

Since IN$ was the first variable defined, we know that its name
and pointer will start at wherever VARTAB points. The name i.s
held in positions 00 and 01, the length in 02, and the location in
03 and 04.

+ 4 loc + 1

+ 3 loc

+ 2 length

LOMEM: + 1 N$

I ~LOMEM: ($69,6A)

CHAPTER 12 127

By loading the Y-Register with #$02, we can store the length
of the entered string in the proper place. The location of IN$ is
then set to $200 by putting the appropriate bytes into positions
03 and 04. Now Applesoft is temporarily fooled into thinking
that IN$ is at $200-right where our input string is held!

The routine finishes by clearing the high bit, as before, and
then returning with the RTS.

When the return is done, line 30 of the Applesoft program
immediately assigns IN$ to itself in such a way as to force Apple
soft to move IN$ from where it was in the input buffer to a new
location up in its usual variable storage area. The net result can
be obtained in various other ways besides the MID$ statement,
but the way shown is the least intrusive in terms of affecting
other variables. (You could use A$= IN$:IN$ =A$, but then you'd
need a second variable in your program-no problem, just more
names to keep track of.)

Try assembling this routine and the Applesoft program. Make
sure the input routine is loaded at $300 before running the
Applesoft program. Note that you can enter commas, quotes,
control-C's, etc. Only END or pressing reset should be able to exit
this routine.

128 ASSEMBLY LINES

CHAPTER 13
Reading/Writing Files on Disk

This chapter will challenge your devotion to the cause of
learning assembly language programming.

Up until now the source listings have been very short and
easily typed in a few minutes time. Unfortunately, the listings
for this chapter are a bit longer than usual. But chin up! The
result will be worth it! I've received quite a number of requests
for information on how to read and write files on the disk. The
programs listed will combine many of the techniques and rou
tines you've learned so far into a single mini-database program.

The first program saves and loads the data by means of a
simple BSAVE/BLOAD operation. This is fast and very straight for
ward. Here's the listing:

1 ************************
2 * NAME FILE DEMO PROGRAM *
3 ************************
4 *
5 *
6 ORG $6000

7 *
8 HOME EQU $FC58
9 COUT EQU $FDED

10 RDKEY EQU $FDOC
11 GETLN EQU $FD75
12 BUFF EQU $200
13 VTAB EQU $FC22
14 CH EQU $24

CHAPTER 13 129

1S CV EQU $2S
16 CTR EQU $OS
17 PTR EQU $06
1S REENTRY EQU $3DO
19 *
20 *

6000: A9 00 21 ENTRY LDA #$00
6002: 8S 06 22 STAPTR
6004: A9 10 23 LDA #$10
6006: SS 07 24 STA PTR+l
600S: A9 Bl 2S LDA #$Bl
600A: 8S OS 26 STA CTR

27 *
600C: AO 00 2S CLR LDY #$00
600E: 91 06 29 STA (PTR),Y
6010: cs 30 INY
6011: A9 AO 31 LDA#$AO
6013: 91 06 32 STA (PTR),Y
601S: A9 00 33 LDA #$00
6017: cs 34 INY
6018: 91 06 3S STA (PTR),Y
601A: E6 07 36 INC PTR+l
601C: E6 08 37 INC CTR
601E: AS OS 38 LDACTR
6020: C9 B6 39 CMP#$B6
6022: 90 ES 40 BCC CLR

41 *
42 *PUTS '#1-S,SPC,OO' IN BUFFER
43 *

6024: 20 SS FC 44 MENU JSR HOME
6027: A9 02 4S Pl LDA #$02
6029: 85 2S 46 STA CV ; VTAB 3
602B: 20 22 FC 47 JSR VTAB
602E: 20 C2 61 48 JSR PRINT
6031: Bl A9 AO 49 ASC "1) INPUT NAMES"
6034: C9 CE DO

DS D4 AO
CE Cl

603C: CDCS D3
603F: SD 00 so HEX SDOO

Sl *
6041: A9 04 S2 P2 LDA #$04
6043: SS 2S S3 STA CV
604S: 20 22 FC S4 JSR VTAB ; VTAB 5
6048: 20 C2 61 SS JSR PRINT
604B: B2 A9 AO S6 ASC "2) PRINT NAMES"
604E: DO D2 C9

CE D4 AO
CE Cl

60S6: CD CS D3
60S9: SD 00 S7 HEX SDOO

SS *

130 ASSEMBLY LINES

605B: A9 06 59 P3 LOA #$06
6050: 85 25 60 STACY
605F: 20 22 FC 61 JSR YTAB ; VTAB 5
6062: 20 C2 61 62 JSR PRINT
6065: B3 A9 AO 63 ASC "3) SAVE NAMES"
6068: 03 Cl 06

CS AO CE
Cl CD

6070: C5 03
6072: so 00 64 HEX SOOO

65 * 6074: A9 OS 66 P4 LDA #$OS
6076: SS 2S 67 STACY
607S: 20 22 FC 6S JSR YTAB ; YTAB 9
607B: 20 C2 61 69 JSR PRINT
607E: B4 A9 AO 70 ASC "4) LOAD NAMES"
6081: CC CF Cl

C4 AO CE
Cl CD

60S9: CS D3
608B: 80 00 71 HEX SDOO

72 * 60SO: A9 OA 73 PS LOA#$0A
608F: SS 2S 74 STA CV
6091: 20 22 FC 7S JSR YTAB ; VTAB 11
6094: 20 C2 61 76 JSR PRINT
6097: BS A9 AO 77 ASC "S) END PROGRAM"
609A: CS CE C4

AO DO D2
CF C7

60A2: D2 Cl CD
60AS: SD 00 7S HEX 8DOO

79 * 60A7: A9 OC so P6 LDA #$0C
60A9: 8S 2S Sl STA CV
60AB: 20 22 FC S2 JSR VTAB ; VTAB 13
60AE: 20 C2 61 S3 JSR PRINT
60Bl: 07 CS C9 S4 ASC "WHICH DO YOU WANT?"
60B4: C3 C8 AO

C4 CF AO
D9 CF

60BC: OS AO D7
Cl CE 04
BF AO

60C4: 00 SS HEXOO
S6 * 60CS: 20 OC FD S7 MlJSRRDKEY

60C8: C9 Bl 8S CMP #$Bl ; '1'
60CA: DO 06 89 BNEM2
60CC: 20 FD 60 90 JSR INPUT
60CF: 4C 24 60 91 JMPMENU
6002: C9 B2 92 M2 CMP #$B2 ; '2'

CHAPTER 13 131

6004: DO 09 93 BNEM3
6006: 20 42 61 94 JSR DSPLY
60D9: 20 oc FD 9S JSR RDKEY
60DC: 4C 24 60 96 JMPMENU
60DF: C9 B3 97 M3 CMP #$B3 ; '3'
60E1: DO 06 98 BNEM4
60E3: 20 7S 611. 99 JSR SAVE
60E6: 4C 24 60 100 JMPMENU
60E9: C9 1!14 101 M4 CMP #$B4; '4'
60EB: DO 06 102 BNEM5
60ED: 20 AO 61 103 JSR LOAD
60FO: 4C 24 60 104 JMPMENU
60F3: C9 BS 105 MS CMP #$BS ; 'S'
60FS: DO 03 106 BNEM6
60F7: 4C DO 03 107 JMPREENTRY
60FA: 4C 24 60 108 M6JMPMENU

109 * 110 * 60FD: 20 42 61 111 INPUT JSR DSPLY ; SHOW WHAT'S THERE
112 * 6100: A9 00 113 IO LDA #$00

6102: 8S 06 114 STAPTR
6104: A9 10 115 LDA#$10
6106: 8S ll7 116 STA PTR + 1 ; SET PTR = $1000

117 * 6108: A9 00 118 LDA #$00
610A: SS 08 119 STA CTR
6:1.0C: 18 120 ILOOP CLC
6100: AS 08 121 LDA CTR
610F: 65 08 122 ADC CTR
6111: 8S 25 123 STA CV
6113: 20 22 FC 124 JSR VTAB
6116: A9 00 125 LDA#$00
611S: SS 24 126 STACH
611A: AS 127 TAY
611B: 20 29 61 128 JSR IP
611E: E6 07 129 INC PTR+l
6120: E6 08 130 INC CTR
6122: A9 04 131 LDA#$04
6124: cs 08 132 CMP CTR
6126: BO E4 133 BCS ILOOP ; GET 5 NAMES

134 * 6128: 60 13S IFIN RTS
136 * 6129: A2 00 137 IP LDX #$00

612B: 20 75 FD 138 JSR GETLN
612E: SA 139 TXA
612F: FO 10 140 BEQ IPFIN ; EXIT IF <CR> ONLY
6131: A8 141 TAY
6132: A9 Oil 142 LDA #$00
6134: 99 00 02 143 STA BUFF,Y
6137: B9 Oil 02 144 IPLOOP LDA BUFF,Y

132 ASSEMBLY LINES

613A: 91 06 14S STA (PTR),Y; MOVE DATA TO PTR
146 *;BLOCK.

613C: SS 147 DEY
613D: CO FF 14S CPY #$FF
613F: DO F6 149 BNEIPLOOP
6141: 60 lSO IPFIN RTS

lSl *
6142: 20 SS FC 1S2 DSPLY JSR HOME
614S: A9 00 1S3 LDA #$00
6147: SS OS 1S4 STA CTR

lSS *
6149: SS 06 1S6 STAPTR
614B: A9 10 1S7 LDA #$10
614D: SS 07 lSS STA PTR+l
614F: lS 1S9 DOCLC
61SO: AS OS 160 LDACTR
61S2: 6S OS 161 ADC CTR
61S4: 85 2S 162 STA CV ; VTAB (2*CTR) + 1
61S6: 20 22 FC 163 JSR VTAB
61S9: A9 00 164 LDA #$00
61SB: SS 24 16S STA CH ; HTAB 1
61SD: AS 166 TAY

167 *
61SE: Bl 06 16S Dl LDA (PTR), Y
6160: FO 06 169 BEQ DlFIN
6162: 20 ED FD 170 JSRCOUT
616S: cs 171 INY
6166: DO F6 172 BNE Dl (ALWAYS)

173 *
616S: A9 SD 174 DlFIN LDA #$SD
616A: 20 ED FD 17S JSR COUT; END WI <CR>
616D: E6 07 176 INC PTR+l
616F: E6 OS 177 INC CTR
6171: A9 04 17S LDA #$04
6173: cs OS 179 CMPCTR
617S: BO DS lSO BCS DO ; PRINT S NAMES

lSl *
6177: 60 1S2 DSFIN RTS

1S3 *
184 *

617S: A9 SD lSS SAVE LDA #$SD
617A: 20 ED FD 1S6 JSR COUT ; CLEAR OUTPUT BUFFER
6170: 20 C2 61 1S7 OPEN JSR PRINT
61SO: 84 lSS HEX84
61Sl: C2 D3 Cl 1S9 ASC "BSAVE DEMO FILE,A$1000,L$SOO"
6184: D6 CS AO

C4 CS CD
CF AO

61SC: C6 C9 CC
CS AC Cl
A4 Bl

6194: BO BO BO

CHAPTER 13 133

AC CC A4
BS BO

619C: BO
6190: SD 00 190 HEX SDOO

191 * 619F: 60 192 SFIN RTS
193 * 194 * 61AO: A9 SD 19S LOAD LDA #$SD

61A2: 20 ED FD 196 JSR COUT
197 * 61AS: 20 C2 61 19S JSR PRINT

61AS: 84 199 HEXS4
61A9: C2 CC CF 200 ASC "BLOAD DEMO FILE,A$1000"
61AC: Cl C4 AO

C4 CS CD
CF AO

61B4: C6 C9 CC
CS AC Cl
A4 Bl

61BC: BO BO BO
61BF: SD 00 201 HEX SDOO

202 * 61Cl: 60 203 RTS
204 * 20S * 206 * 61C2: 68 207 PRINT PLA

61C3: SS 06 208 STAPTR
61C5: 6S 209 PLA
61C6: SS 07 210 STA PTR+l
61CS: AO 01 211 LDY #$01
61CA: Bl 06 212 PO LDA (PTR),Y
61CC: FO 06 213 BEQ PFIN
61CE: 20 ED FD 214 JSRCOUT
61Dl: cs 21S INY
61D2: DO F6 216 BNE PO (ALWAYS)

217 * 6104: lS 21S PFIN CLC
6105: 9S 219 TYA
61D6: 6S 06 220 ADCPTR
61DS: SS 06 221 STAPTR
61DA: AS 07 222 LDAPTR+1
61DC: 69 00 223 ADC #$00
61DE: 4S 224 PHA
61DF: AS 06 22S LDAPTR
61El: 4S 226 PHA
61E2: 60 227 EXIT RTS

228 * 229 * 61E3: 00 230 EOFBRK
231 * 232 *

134 ASSEMBLY LINES

To understand how it works, consider these conditions:
Data will be stored in the area from $1000-$14FF. This area

is called a buffer. A total of five strings will be stored, each
beginning at an exact page boundary ($1000, 1100, 1200, etc.).
It is assumed that no string will be longer than 255 bytes-a
fairly safe assumption since the input routine won't allow this
either.

A zero page pointer (cleverly labeled PTR) will be used to
control which range in the buffer is currently being accessed for
a particular string.

The basic routines used to make the overall idea work are as
follows:

1) An input routine using the Monitor ($FD6F = GETLN).

2) A print routine using a JSR and a stack manipulation. (Not
the DATA type.)

3) A single key input routine present in the Monitor used to
get the command key ($FDOC =RDKEY).

4) The execution of DOS commands from machine language
by preceding phrases with a control-D.

To use the program, call it directly from Basic with a CALL

24576.
A menu will appear with these choices:

1) INPUT NAMES
2) PRINT NAMES
3) SAVE NAMES
4) LOAD NAMES
5) END PROGRAM

To try the routine out, use 1 to enter five sample names.
Then use 2 to view the data you've entered. You may then use
3 to save the data as a binary file on a diskette. Then rerun the
program, and verify that only the numbers 1 through 5 exist in
the buffer (option 2). Then retrieve your data by using the LOAD

command (option 4), and view again to confirm a successful
load.

In detail, this is how the program works:
At entry, PTR is set to point to $1000, where the name buffer

begins. The Accumulator is then loaded with with ASCII value
for the character 1, and the CLR routine entered.

CLR puts the characters 1 through 5 into each of the string
spaces. Each digit is followed by a space, and then a 0. I used
0 as an end-of-string marker, but the choice is somewhat arbi
trary.

MENU dears the screen and presents the user with the avail
able choices. Points of interest here are the VTAB operation and

CHAPTER 13 135

the print routine. To VTAB to a given line from machine language,
one of the easiest ways is to load cv with the line you wish to
go to, and then JSR to the Monitor's VTAB routine ($FC22). Nor
mally, we might also wish to either print a carriage return, or
set CH to zero. Note that cv and CH are the computer's vertical
and horizontal cursor position bytes, as used by the Monitor.
You can always tell the cursor position by examining these bytes,
and CH may be forced to a desired value to accomplish the same
as an HTAB in Basic.

The print routine is the one described in chapter twelve, and
is useful because the JSR PRINT can be immediately followed with
the data to print. This is more similar to the Basic PRINT statement,
and also avoids setting up a lot of specific data tables to do the
printing.

Once the menu is printed on the screen, line 87 of the source
file does the JSR to RDKEY. This gets the command key from the
user, which is then tested by the Ml to M6 series of checks.
After calling RDKEY, the keyboard value was returned in the
Accumulator, and we can directly test to see which key was
pressed. The key is then compared with one of the five desired
responses. If no match is found, it jumps back to MENU to repeat
the display and command input. Other than reset, 5 is the only
way to exit the program.

Let's examine the menu choices:
If you enter 1, control is directed to the section labeled INPUT.

The first thing done there is to JSR to DSPLY. At this point, it's
only necessary to understand that DSPLY just clears the screen
and shows the five strings currently in memory.

After DSPLY, PTR is initialized to point to the beginning of the
buffer ($1000), and the counter set to zero. The main input loop
comes next. Here CTR is used to calculate what line (vertical
position) to put the cursor on. (DSPLY used the samt: algorithm
to display present data.) After VTAB, the equivalent of HTAB 0 is
done, followed by the jump to the actual input routine, here
labeled IP. This is the routine from the previous chapter that gets
a line and then moves it to a location indicated by PTR.

There are a few subtle items in the IP routine that should be
noted. The first is line 140. If return alone is entered (i.e. no
new data), the routine immediately returns without rewriting
the old string. This is to allow editing of a single entry by skip
ping the entries not of interest. Try it to see how it works.

The second item is the characteristic of this particular input
routine to put the trailing zero at the end of the line. This is
done on lines 141-143.

136 ASSEMBLY LINES

When it returns from IP, the counter is incremented and
checked to see if it exceeds #$04. If not, ILOOP repeats until five
strings are input. After the fifth string is entered, the program
returns to the menu.

If choice 2 is entered, the DSPLY routine is called. The sole
purpose of this section is to clear the screen and print the five
names in memory. At entry to DSPLY, a JSR $FC58 does a HOME

and the CTR is initialized to zero. As in the INPUT section, CTR is
then used to calculate the VTAB position to print each line.

Dl is the part that actually prints each line by scanning (and
outputting through couT) all the bytes at each range indicated
by PTR. Note that as a safety check, if a zero did not happen to
be present due to some other error, eventually the Y-Register
will pass #$FF and the program will fall through to DlFIN.

DlFIN provides an ending carriage return to the string, and
then increments CTR until aff five strings have been printed.

The load/save operations are quite simple. Knowing where
the buffer is located, the entire block is accessed by doing either
a BLOAD or BSAVE. Remember that disk commands are done from
machine language just as they would be done from Basic. The
program need only output a control-D followed by a legal DOS

command and a carriage return. Again the print routine is used
to facilitate this.

If choice 5 is entered, then the JMP to the DOS BASIC entry
vector is executed to end the program.

Reading and Writing Text Files

This second listing is basically a modification of the first pro
gram. If you wish, rather than retype the entire file, you can just
edit the first listing to add lines 20-29, and 194-228.

1 *****************************
2 * NAME FILE DEMO PROGRAM #2 *
3 *****************************
4 *
5 *
6 *OBJ $6000
7 ORG $6000

8 *
9 HOME EQU $FC58

:10 COUT EQU $FDED
11 RDKEY EQU $FDOC
12 GETLN EQU $FD75
13 BUFF EQU $200
14 VTAB EQU $FC22
15 CH EQU $24
16 CV EQU $25

CHAPTER 13 137

17 CTR EQU $08
18 PTR EQU $06
19 *
20 PROMPT EQU $33
21 CURLIN EQU $7S
22 LANG EQU $AAB6
23 REENTRY EQU $3DO
24 *

6000: A9 40 2S ENTRY LDA #$40
6002: SD B6 AA 26 STA LANG ; LANG = FP
600S: BS 76 27 STA CURLIN +1; RUNNING PROG
6007: A9 06 28 LDA #$06
6009: BS 33 29 STA PROMPT ; NOT DIRECT MODE
600B: A9 00 30 LDA #$00
600D: BS 06 31 STAPTR
600F: A9 10 32 LDA #$10
6011: BS 07 33 STA PTR+l
6013: A9 Bl 34 LDA #$Bl
601S: BS 08 3S STA CTR

36 *
6017: AO 00 37 CLR LDY #$00
6019: 91 06 38 STA (PTR),Y
601B: CB 39 INY
601C: A9 AO 40 LDA#$AO
601E: 91 06 41 STA (PTR),Y
6020: A9 00 42 LDA #$00
6022: CB 43 INY
6023: 91 06 44 STA (PTR),Y
602S: E6 07 4S INC PTR+l
6027: E6 08 46 INC CTR
6029: AS 08 47 LDACTR
602B: C9 B6 48 CMP #$B6
602D: 90 EB 49 BCC CLR

so *
Sl *PUTS '#1-S,SPC,OO' IN BUFFER
S2 *

602F: 20 SB FC S3 MENU JSR HOME
6032: A9 02 S4 Pl LDA #$02
6034: BS 2S SS STA CV ; VTAB 3
6036: 20 22 FC S6 JSR VTAB
6039: 20 OA 62 S7 JSR PRINT
603C: Bl A9 AO SB ASC "1) INPUT NAMES"
603F: C9 CE DO

DS D4 AO
CE Cl

6047: CD CS D3
604A: SD 00 S9 HEX 8DOO

60 *
604C: A9 04 61 P2 LDA #$04
604E: BS 2S 62 STA CV
60SO: 20 22 FC 63 JSR VTAB ; VTAB S
60S3: 20 OA 62 64 JSR PRINT

138 ASSEMBLY LINES

6056: B2 A9 AO 65 ASC "2) PRINT NAMES"
6059: DO 02 C9

CE 04 AO
CE Cl

6061: CDC5 D3
6064: SD 00 66 HEX8DOO

67 * 6066: A9 06 68 P3 LDA#$06
6068: 85 25 69 STA CV
606A: 20 22 FC 70 JSR VTAB ; VTAB 7
6060: 20 OA 62 71 JSR PRINT
6070: B3 A9 AO 72 ASC "3) SAVE NAMES"
6073: 03 Cl 06

CS AO CE
Cl CD

6078: cs 03
6070: SD 00 73 HEX SDOO

'74 * 607F: A9 08 75 P4 LDA #$08
6081: 8S 2S 76 STA CV
6083: 20 22 FC 77 JSR VTAB ; VTAB 9
6086: 20 OA 62 78 JSR PRINT
6089: B4 A9 AO 79 ASC "4) LOAD NAMES"
608C: CC CF Cl

C4 AO CE
Cl CD

6094: cs 03
6096: SD 00 80 HEX 8000

81 * 6098: A9 OA 82 PS LDA #$0A
609A: 8S 2S 83 STA CV
609C: 20 22 FC 84 JSR VTA8 ; VTA8 11
609F: 20 OA 62 85 JSR PRINT
60A2: BS A9 AO 86 ASC "5) END PROGRAM"
60A5: CS CE C4

AO DO D2
CF C'7

60AD: 02 Cl CD
6080: 8D 00 87 HEX 8000

88 * 6082: A9 OC 89 P6 LDA #$0C
6084: 85 25 90 STA CV
6086: 20 22 FC 91 JSR VTAB ; VTA8 13
6089: 20 OA 62 92 JSR PRINT
60BC: D'7 CB C9 93 ASC "WHICH DO YOU WANT? "
60BF: C3 CB AO

C4 CF AO
09 CF

60C7: 05 AO 07
Cl CE 04
BF AO

60CF: 00 94 HEXOO

CHAPTER 13 139

9S * 6000: 20 OC FD 96 M1JSRRDKEY
6003: C9 Bl 97 CMP #$Bl ; '1'
6005: DO 06 98 BNEM2
6007: 20 08 61 99 JSR INPUT
60DA: 4C 2F 60 100 JMPMENU
60DD: C9 B2 101 M2 CMP #$B2 ; '2'
60DF: DO 09 102 BNEM3
60E1: 20 4D 61 103 JSR DSPLY
60E4: 20 OC FD 104 JSRRDKEY
60E7: 4C 2F 60 10S JMPMENU
60EA: C9 B3 106 M3 CMP #$B3 ; '3'
60EC: DO 06 107 BNEM4
60EE: 20 83 61 108 JSR SAVE
60F1: 4C 2F 60 109 JMPMENU
60F4: C9 B4 110 M4 CMP #$B4; '4'
60F6: DO 06 111 BNEMS
60F8: 20 C7 61 112 JSR LOAD
60FB: 4C 2F 60 113 JMPMENU
60FE: C9 BS 114 MS CMP #$BS ; 'S'
6100: DO 03 11S BNEM6
6102: 4C DO 03 116 JMP REENTRY
610S: 4C 2F 60 117 M6JMPMENU

118 * 119 * 6108: 20 4D 61 120 INPUT JSR DSPLY ; SHOW WHAT'S THERE
121 * 610B: A9 00 122 IO LDA #$00

610D: 8S 06 123 STAPTR
610F: A9 10 124 LDA #$10
6111: 8S 07 12S STA PTR + 1 ; SET PTR = $1000

126 * 6113: A9 00 127 LDA#$00
611S: 85 08 128 STA CTR
6117: 18 129 ILOOP CLC
6118: AS 08 130 LDACTR
611A: 6S 08 131 ADC CTR
611C: 85 25 132 STA CV
611E: 20 22 FC 133 JSR VTAB
6121: A9 00 134 LOA #$00
6123: 8S 24 13S STACH
612S: AS 136 TAY
6126: 20 34 61 137 JSR IP
6129: E6 07 138 INC PTR+1
612B: E6 08 139 INC CTR
612D: A9 04 140 LDA #$04
612F: cs 08 141 CMPCTR
6131: BO 134 142 BCS ILOOP ; GET S NAMES

143 * 6133: 60 144 IFIN RTS
14S * 6134: A2 00 146 IP LOX #$00

140 ASSEMBLY LINES

6136: 20 7S FD 147 JSR GETLN
6139: SA 14S TICA
613A: FO 10 149 BEQ IPFIN ; EXIT IF <CR> ONLY
613C: AS lSO TAY
613D: A9 00 lSl LDA #$00
613F: 99 00 02 1S2 STA BUFF,Y
6142: B9 00 02 1S3 IPLOOP LDA BUFF, Y
6145: 91 06 1S4 STA (PTR),Y; MOVE DATA TO PTR

lSS *;BLOCK.
6147: SS 1S6 DEY
614S: CO FF 1S7 CPY #$FF
614A: DO F6 lSS BNE IPLOOP
614C: 60 1S9 IPFIN RTS

160 *
614D: 20 SS FC 161 DSPLY JSR HOME
61SO: A9 00 162 LDA#$00
61S2: SS OS 163 STA CTR

164 *
6154: SS 06 16S STAPTR
61S6: A9 10 166 LDA#$10
61SS: SS 07 167 STA PTR+l
61SA: lS 16S DOCLC
61SB: AS OS 169 LDACTR
61SD: 6S OS 170 ADC CTR
61SF: SS 25 171 STA CV ; VTAB (2*CTR) + 1
6161: 20 22 FC 172 JSR VTAB
6164: A9 00 173 LDA #$00
6166: 85 24 174 STA CH ; HTAB 1
616S: AS 17S TAY

176 *
6169: Bl 06 177 Dl LDA (PTR),Y
616B: FO 06 17S BEQ DlFIN
616D: 20 ED FD 179 JSR COUT
6170: cs 1SO BNE Dl (ALWAYS)
6171: DO F6 1S1 BNE D1 (ALWAYS)

1S2 *
6173: A9 SD 1S3 DlFIN LDA #$SD
617S: 20 ED FD 184 JSR COUT; END WI <CR>
617S: E6 07 1SS INC PTR+l
617A: E6 OS 1S6 INC CTR
617C: A9 04 1S7 LDA #$04
617E: cs OS 1SS CMPCTR
61SO: BO DS 1S9 BCS DO ; PRINT S NAMES

190 *
61S2: 60 191 DSFIN RTS

192 *
193 *

61S3: A9 SD 194 SAVE LDA #$SD
61SS: 20 ED FD 19S JSR COUT; CLEAR OUTPUT
61SS: 20 OA 62 196 OPENW JSR PRINT
61SB: 84 197 HEX 84 ; CTRL-D
61SC: CF DO CS 19S ASC "OPEN NAME TEXT FILE"

CHAPTER 13 141

618F: CE AO CE
Cl CD CS
AO D4

6197: CS D8 D4
AO C6 C9
cc cs

619F: SD 84 199 HEX SD84
61A1: D7 D2 C9 200 WRITE ASC "WRITE NAME TEXT FILE"
61A4: D4 CS AO

CE Cl CD
CS AO

61AC: D4 CS D8
D4 AO C6
C9 CC

61B4: cs
61BS: 80 00 201 HEX SDOO

202 * 61B7: 20 4D 61 203 SVLOOP JSR DSPLY ; PRINT NAMES TO DISK
204 * 61BA: 20 OA 62 20S CLOSEW JSR PRINT

61BD: SD 84 206 HEX 8D84
61BF: C3 CC CF 207 ASC "CLOSE"
61C2: D3 CS
61C4: SD 00 208 HEX 8000
61C6: 60 209 SVHN RTS

210 * 211 * 61C7: A9 SD 212 LOAD LDA #$SD
61C9: 20 ED FD 213 JSRCOUT

214 * 61CC: 20 OA 62 21S OPENR JSR PRINT
61CF: 84 216 HEX84
61DO: CF DO CS 217 ASC "OPEN NAME TEXT FILE"
6103: CE AO CE

Cl CD CS
AO D4

61DB: cs DS 04
AO C6 C9
CC C5

61E3: SD 84 21S HEX SD84
61ES: D2 CS Cl 219 READ ASC "READ NAME TEXT FILE"
61E8: C4 AO CE

Cl CD CS
AO D4

61FO: CS DS D4
AO C6 C9
cc cs

61F8: SD 00 220 HEX8DOO
221 * 61FA: 2() OB 61 222 RDLOOP JSR IO ; GET NAMES FROM DISK
223 * 61FD: 20 OA 62 224 CLOSER JSR PRINT

142 ASSEMBLY LINES

6200: SD 84 225 HEX 8084
6202: C3 CC CF 226 ASC "CLOSE"
620S: D3 CS
6207: BD 00 227 HEX SDOO
6209: 60 228 RDFIN RTS

229 * 230 * 231 * 620A: 68 232 PRINT PLA
620B: SS 06 233 STA P'fR
620D: 68 234 PLA
620E: 85 07 235 STA PTR+1
6210: AO 01 236 LDY #$01
6212: Bl 06 237 PO LDA (PTR),Y
6214: FO 06 238 BEQ PFIN
6216: 20 ED FD 239 JSR COUT
6219: cs 240 INY
621A: DO F6 241 BNE PO (ALWAYS)

242 * 621C: 18 243 PFIN CLC
6210: 98 244 TYA
621E: 6S 06 24S ADCPTR
6220: 8S 06 246 STAPTR
6222: AS 07 247 LDA PTR+1
6224: 69 00 248 ADC #$00
6226: 48 249 PHA
6227: AS 06 250 LDAPTR
6229: 48 251 PHA
622A: 60 252 EXIT RTS

253 * 2S4 * 622B: 00 25S EOFBRK
2S6 *
257 *

The theory to the second program is fairly simple. If you
think about it, the INPUT and DSPLY sections are essentially equiv
alent to a FOR I = 1 TO 51 NEXT I type loop that respectively inputs
and prints five strings. In a Basic program, all that would be
required to access a text file would be to precede the execution
of those routines with the OPEN, READ and the OPEN, WRITE
commands. (I'm assuming you're familiar with the normal access
of Apple DOS text files. If not, read your manual!)

If you examine the new save and load routines you'll notice
two changes. First, rather than printing BSAVE or BLOAD, the files
are OPENed and the READ or WRITE command output. Notice that
each command begins with a control-D and ends with a carriage
return. Second, after the command is printed, a JSR is done to
the IP or DSPLY routine as is appropriate. Last of all, a CLOSE is
output before returning to the menu.

CHAPTER 13 143

According to what we know so far, these should be the only
changes necessary to access text files. There is one last catch
though.

Apple DOS complicates things by not allowing the user to
OPEN text files from the immediate mode. When a machine lan
guage program is running, DOS thinks we're still in the imme
diate mode and won't let us access the text files. What's needed
is a way to fool DOS into thinking we're running a program.

This is done by using three internal management locations
in the Apple. LANG ($AAB6) is what DOS uses to keep track of
which language is currently running. CURLIN ($75,76) is Apple
soft's register for the bytes of the line number of the program
currently being executed. In the immediate mode, the high-order
byte ($76) defaults to #$FF. Applesoft can tell if a program is
running by looking for a non-#$FF value in this location. The
other way it knows a program is running is to check the location
($33) that holds the ASCII value for the prompt character. In the
immediate mode of Applesoft, this is #$DD, equivalent to the
']' character. In a running program, this changes to #$06.

To fool DOS, all we need to do is load these three locations
at the beginning of the routine. Finally, when exiting the pro
gram, rather than a simple RTS, the JMP $3DO is done to do a soft
reentry to Basic. This will restore the bytes we've altered to fool
DOS and also return us to the current language. 1

Try these programs out You'll find they make an excellent
summary of many of the ideas and routines discussed so far,
and also will provide a valuable model for your own programs.

1. Some people have also inquired as to whether the check for a write-protect
label can be defeated by modifying DOS. The answer is yes and no. Yes, the part
of the code that generates the error can be eliminated, but because the write
protect switch is physically wired into the recording head write system, you
cannot defeat it without actually removing or altering the switch itself.

14.4 ASSEMBLY LINES

CHAPTER 14
Special Programming Techniques

It has long been my feeling that it is not enough to just know
an arbitrary selection of options or commands when using any
tool, program, or programming language. Equally important are
the techniques with which the options are combined to achieve
the desired results.

With time and practice you will develop your own skills at
creating efficient machine language routines, but that process
can be assisted by examining the techniques that others have
developed in previous programming efforts.

I have tried in this book to provide a reasonable mix of pro
gramming techniques, along with the usual ration of new com
mands.

Relocatable versus Nonrelocatable Code

In chapter twelve, I presented two print subroutines for the
output of text to the screen or disk text file. The disadvantage
of both routines was that they were not relocatable. To see what
this means, consider the following program:

1 ********************
2 * NONRELOC PRINT DEMO *
3 ********************

CHAPTER 14 145

4 * 5 * 6 OBJ $300
7 ORG$300
8 COUT EQU $FDED
9 * 10 * 0300: 20 OD 03 11 ENTRY JSR PRNT

12 * 0303: 4C OC 03 13 DONE JMP EXIT
14 * 0309: D4 CS D3 15 DATA ASC "TEST"

030A: 8D 00 16 HEXSDOO
17 * 030C: 60 18 EXITRTS
19 * 030D: A2 00 20 PRNT LDX #$00

030F: BD 06 03 21 LOOP LDA DATA,X
0312: FO EF 22 BEQDONE
0314: 20 ED FD 23 JSRCOUT
0317: ES 24 INX
0318: DO F5 25 BNELOOP
031A: 60 26 FINRTS

This program, as written, can only be run at the location
specified by the ORG statement, in this case $300. Thus it is called
nonrelocatable code. Machine code becomes nonrelocatable through
the use of any statements which involve absolute addressing.
The most common examples are the JMP and JSR commands, and
the use of data statements, usually in print routines.

The first statement of this type occurs on line 11. The JSR to
PRNT ($30D) will only work so long as PRNT is at $30D. If the
routine were to be loaded into memory at $400 (instead of $300),
the routine would take the JSR to a block of nonexistent code at
$30D.

Likewise, the JMP on line 13 has the same difficulty as does
the DATA,X statement on line 21. Any attempt to run the code at
an address other than $300 will result in disaster.

It should be noted however that not all JSRS and JMPs are
universally troublesome. The JSR couT ($FDED) will execute
properly no matter where the object code is located since the
reference is to a location outside of the object code block.

The general rule then is that any code which makes reference
to absolute addresses within itself will not be relocatable,
whereas code that does not suffer from this limitation can be run
anywhere in memory.

146 ASSEMBLY LINES

The problem of relocatability may seem slight since any given
routine is usually designed to be put at a definite location (usually
either at $300 or at the top of memory) and then protected via
the Applesoft HIMEM: statement. However, as the number of
routines you use increases, you will encounter more and more
conflicts between routines originally written to occupy the same
memory ranges. In addition, it is also occasionally desirable to
directly append machine code to the end of Applesoft programs,
where they will float up and down in memory at the end of the
Basic portion of the listing, being automatically moved as lines
are added or deleted.

For these reasons, it is in the long run better to write code to
run anywhere in memory when possible, thus avoiding future
headaches about where to put everything.

The remainder of this chapter will discuss the various ways
of avoiding the use of absolute addressing, thus creating code
that can be used anywhere in memory, regardless of the ORG

statement used at assembly time.

JMP Commands

This is an example of a common use of the JMP command to
jump over a range of memory, here represented by the FILL sec
tion. At the destination, EXPT, the bell routine is called as a trivial
example of where a subroutine might be executed.

1 *******************
2 * NONRELOC JMP DEMO *
3 *******************
4 * 5 * 6 OBJ $300
7 ORG $300
B BELL EQU $FF3A
9 *

10 * 0300: 4C 04 03 11 ENTRY JMP EXPT
12 * 0303: EA 13 FILL NOP
14 *

0304: 20 3A FF 15 EXPT JSR BELL
16 *

0307: 60 17 DONERTS

CHAPTER 14 147

An alternative to this is the use of a forced branch statement,
as shown in this example:

1 ****************
2 * RELOCATABLE JMP 1 *
3 ****************
4 * 5 *
6 OBJ $300
7 ORG $300
8 BELL EQU $FF3A
9 * 10 *

0300: 18 11 ENTRYCLC
0301: 90 01 12 BCCEXPT

13 * 0303: EA 14 FILL NOP
15 * 0304: 20 3A FF 16 EXPT JSR BELL
17 * 0307: 60 18 DONERTS

Notice that by clearing the carry, and then immediately
executing the Bee, the same result is obtained as when the JMP
command was used in the earlier listing.

The main caution to observe is that the jump is not made over
a distance of greater than 127 bytes, although most assemblers
will give an error at assembly time if this is attempted. In addi
tion, since the carry is cleared to force the branch, routines that
set or clear the carry to indicate certain conditions may have
compatability problems with this approach.

Both limitations can be solved by slight modifications to this
listing. The first is by using the overflow flag, often represented
by a V. You should remember that the Status Register of the 6502
contains certain flags that are conditioned by various operations.
These flags can be checked and appropriate responses made,
depending on their status. Examples of flags already covered are
the carry and zero flags.

The overflow flag is another bit in the Status Register which
is set either by the BIT command (The overflow flag is set to bit
6 of the memory location), or by an ADC command. The overflow
will be set whenever there is a carry from bit 6 to bit 7 as a result
of an ADC operation.

These details are mentioned only in passing at this point, and
you need not be concerned if it is not entirely clear. The main

148 ASSEMBLY LINES

reason for bringing it up is that the overflow flag is used much
more infrequently than the carry, and thus is a slightly more
desirable flag to use when creating a forced branch.

To make jumps over distances greater than 127 bytes, a step
ping technique can be used. This is done by creating a series of
the branch commands throughout the code to facilitate the pro
gram flow from one part to another. It is generally not too dif
ficult to find breaks between routines to insert the branch state
ments required for the stepping action.

Both techniques are illustrated here:

1 ***************** 2 * RELOCATABLE JMP 2 *
3 **************** 4 * 5 * 6 OBJ $300
7 ORG $300
8 BELL EQU $FF3A
9 * 10 * 0300: BS 1:1. ENTRYCLV

0301: 50 01 12 13VC STEP
13 * 0303: EA 14 FILUNOP
15 * 0304: 50 01 16 STEP BVC EXPT
17 * 0306: EA 18 FILL2 NOP
19 * 0307: 20 3A FF 20 EXPT JSR BELL
21 * 030A: 60 22 DONERTS

Although only one step is shown here, any number may be
used, depending on what is required to span the required dis
tance.

Determining Code Location

Solving the JMP problem is only the beginning of the task.
Very often it is important to know just where in memory the
code is currently being run. One example of this is the code
present on the disk controller cards. Since the card can be put in
one of seven slots, and since each slot occupies a unique memory

CHAPTER 14 149

range, some technique is required to answer the question,
"Where are we?"

1 **********'
2 * LOCATOR1*
3 **********
4 *
5 OBJ $300
6 ORG$300
7 *
8 PTREQU$06
9 RTRN EQU $FF58

10 STCK EQU $100
11 *

0300: 20 58 FF 12 ENTRY JSR RTRN
0303: BA 13 TSX
0304: BD 00 01 14 LDASTCK,X
0307: 85 07 15 STAPTR+l
0309: CA 16 DEX
030A: BD 00 01 17 LDASTCK,X
0300: 85 06 18 STAPTR
030F: 60 19 DONERTS

The success of this routine is based entirely on the predictable
nature of the stack, and its function when a JSR is executed.

The stack was briefly described in. chapter eight. At this point
a little greater detail is necessary. The stack is a reserved part of
memory from $100 to $1FF. It is used as a temporary holding
buffer for various kinds of information required by the 6502
microprocessor. Information put on the stack is always retrieved
in the opposite order from which it was deposited. This is often
called LIFO (for Last In, First Out). The analogy of a stack of
plates was used earlier, but the time has come to examine what
actually occurs.
Before the JSR $FF58:

$1FF $XX

$XX

$XX

$XX ~ Stack Pointer: S (one byte pointer)

150 ASSEMBLY LINES

During the JSR $FF58:

After the RTS from $FF58:

(Remember that the stack
pointer S always points to
the next available position
on the stack, not the last
stored byte.)

$1FF

$1FF

$XX

$XX

$XX

$03

$02

$XX <E- Stack Pointer: S (one byte pointer)

$XX

$XX

$XX

$03 <E:-- Stack Pointer: S (one byte pointer)

$02

$XX

Whenever a JSR is done, the stack is used to hold the address
to which the return should be made when the expected RTS is
encountered. The preceding diagrams illustrate this. Location
$FF58 is a simple RTS in the Monitor ROM which will be used to
set up a dummy return address. Before the JSR, the stack pointer
is set to some arbitrary position in the stack. Upon executing the
JSR, the return address of $302 is put on the stack and the stack
pointer is decremented two bytes. Note that the stack stores the

CHAPTER 14 151

data from the top down, advancing the pointer as new data is
added. When the RTS is encountered (immediately in the case
of $FF58), the stack pointer is returned to its original position
and the return made.

Note that the address stored, $302, is the last byte of the JSR

command, or put another way, one byte less than the address of
the next immediate command following the JSR.

Upon return from the JSR, the stack pointer is transferred to
the X-Register with the TSX command on line 13. Because the
stack pointer is at the next available byte on the stack, this will
also point at the high-order byte of the return address still left
in memory there. This is retrieved with the LDA STCK,X on line
15 and put in a temporary pointer location PTR + 1 ($07). The
X-Register is then decremented and the low-order byte retrieved
and put in PTR ($06).

The final RTS of the routine returns control to the caller, at
which point $06,07 may be examined to verify the successful
determination of the address $302. You may wish to run this
routine at several different locations in memory to verify that in
each case PTR is properly set to (ENTRY + 2).

What you have then is a short routine which can determine
where in memory it is currently being run. The only disadvan
tage to this routine is that the high-order byte is retrieved first,
thus complicating things if we want to add some offset value to
the return address. The desirability of this will be shown shortly.
In the mean time, consider this altered version of the Locator 1
routine:

1 **********
2 * LOCATOR2*
3 **********
4 * 5 OBJ $300
6 ORG $300
7 * 8 PTREQU$06
9 RTRN EQU $FF58

:10 STCK EQU $100
11 * 0300: 20 58 FF 12 ENTRY JSR RTRN

0303: BA 13 TSX
0304: CA 14 DEX
0305: BD 00 01 15 LDA STCK,X
0308: 85 06 16 STAPTR

152 ASSEMBLY LINES

030A: ES
030B:
030E:
0310:

BD 00 01
BS 07
60

17 INX
1B LDA STCK,X
19 STA PTR+1
20 DONE RTS

What I've done here is decrement the X-Register (line 14)
immediately after the TSX statement so that the low-order byte of
the address can be retrieved first. The INX is then later used to
go back and get the high-order byte. The advantage of this sys
tem is that it makes adding an offset much easier.

To show what we can now do, look at this revised print rou
tine:

1 ******************
2 * RELOCATABLE PRINT 1 *
3 ******************
4 * 5 OBJ $300
6 ORG $300
7 * 8 PTREQU$06
9 COUT EQU $FDED

10 RTRN EQU $FF5B
11 STCK EQU $100
12 *
13 * 0300: 20 SB FF 14 ENTRY JSR RTRN

0303: BB 15 CLV
0304: 50 06 16 BVCCONT

17 *
0306: D4 CS 1B DATA ASC "TEST"
030A: BD 00 19 HEXBDOO

20 *
030C: BA 21 CONTTSX
030D: CA 22 DEX
030E: 18 23 CLC
030F: BD 00 01 24 LDA STCK,X
0312: 69 04 25 ADC #$04
0314: 85 06 26 STAPTR
0316: ES 27 INX
0317: BD 00 01 28 LDA STCK,X
031A: 69 00 29 ADC #$00
031C: 85 07 30 STA PTR+1

31 *
031E: AO 00 32 PRNT LDY #$00
0320: Bl 06 33 LOOP LDA (PTR),Y
0322: FO 06 34 BEQ FIN
0324: 20 ED FD 35 JSR COUT
0327: CB 36 INY

CHAPTER 14 153

0328: DO F6 37 BNE LOOP ; (ALWAYS 'TILL 255)

38 *
032A: 60 39 FIN RTS

After calling the dummy return statement, a forced branch
over the data section is done. This will have no effect on the
address remaining on the stack. At CONT, we take the general
procedure used in Locator 2, and add the CLC and ADC state
ments needed to add an offset to the address on the stack. What
we need is the starting address of the ASCII data to be printed.
Since the data starts at $306 and the address on the stack is $302
(see earlier examples) the offset needed is $04.

This may seem arbitrary, but the value to add will always be
$04 if you always do the CLV, BVC $XXXX branch immediately
after the return, and follow that with the data to be printed.

Once the actual address of the ASCH data has been calculated,
it is printed in the PRNT section by use of the indexed pointer at
LOOP.

JSR Simulations

You might get the impression from the above example that a
tremendous code expansion takes place to accomplish the relo
catability of a program. This is somewhat true but depends on
how you write the program. The use of CLV, BVC $XXXX only
takes three bytes where the JMP $XXXX it was replacing also used
three bytes.

The stack operations just discussed take a small number of
bytes to implement, but could become rather large if used many
times. What is needed is a way to put the stack operations in a
subroutine. Unfortunately, the JSR is one of the nonrelocatable
commands.

0300: 20 04 03

154

1 ******************
2 * NONRELOC. JSR DEMO *
3 ******************
4 *
5 OBJ $300
6 ORG $300

7 *
8 BELL EQU $FF3A

9 *
10 *
11 ENTRY JSR TEST

12 *
ASSEMBLY LINES

0303: 60 13 DONERTS
14 *

0304: EA 15 TEST NOP
16 *

0305: 20 3A FF 17 EXPT JSR BELL
18 *

0308: 60 19 FINRTS
20 *
21 * WILL RETURN TO DONE
22 *

This routine is very similar to the nonrelocatable JMP demo
presented earlier, with the exception that the call to the BELL

routine has been made a subroutine itself, headed by the label
TEST. In this listing, TEST is followed by a dummy NOP statement,
but we'll fill that in shortly.

This program, as written, can only be run at the address
specified in the ORG statement. Here is an improved version,
using a simulation of the JSR command:

1 *****************
2 * RELOCATABLE JSR SIM *
3 *****************
4 *
5 OBJ$300
6 ORG$300
7 *
8 PTREQU$06
9 BELL EQU $FF3A

. 10 RTRN EQU $FF58
11 STCK EQU $100
12 *
13 *

0300: 20 58 FF 14 ENTRY JSR RTRN
0303: BB 15 CLV
0304: 50 01 16 BVCTEST

17 *
0306: 60 18 DONERTS

19 *
0307: BA 20 TESTTSX
0308: CA 21 DEX
0309: 18 22 CLC
030A: BD 00 01 23 LDASTCK,X
030D: 69 03 24 ADC#$03
030F: 85 06 25 STAPTR
0311: EB 26 INX
0312: BD 00 01 27 LDASTCK,X
0315: 69 00 28 ADC#$00

CHAPTER 14 155

03:1.7: 8S 07 29 STAPTR+l
30 *

0319: 20 3A FF 3:1 EXPT JSR BELIL
32 *

031C: AS 07 33 HXLDAPTR+l
031E: 48 34 PHA
031F: AS 06 35 LDAPTR
032:1: 48 36 PHA
0322: 60 37 FINRTS

38 * 39 * WILL RETURN TO DONE.
40 *

This program is very similar to the Print 1 program, with two
exceptions. First, #$03 is added instead of #$04 to the address
on the stack. This is a subtle point worth mentioning, and you
should review the listings until you feel comfortable with what
is being done. Remember that the return address for a JSR/RTS is
always one less than the address you want to return to. In the
case of the DATA statement, we needed to know the exact address
of the first character of the string to be printed. Hence the dif
ference in the offset value used in each case.

Once the offset has been added and the proper return address
calculated, the FIX section uses the PHA commands to put these
on the stack. Thus when the RTS is encountered, the program
returns to DONE. Notice that we have seemingly violated two
general rules of machine language programming. The first is
using the PHA commands without corresponding PLA state
ments, and the second is the use of an RTS without a calling JSR.

Upon further thought however, it should become apparent
that the two counteracted each other, and that an RTS is really
equivalent to two PLAs.

The converse of this is when using two PLAs within a routine
called by a JSR to avoid returning to the calling address. This is
equivalent to using a POP command in an Applesoft subroutine
called by a GOSUB.

Having thus simulated the JSR command, let's put it all
together into a rewrite of the Print 1 routine that uses calls to
subroutines to minimize the extra code required to make the
routine relocatable:

156

1 *****************
2 * RELOCATABLE PRINT 2 *
3 *****************

ASSEMBLY LINES

4 * 5 OBJ $300
6 ORG $300
7 * 8 PTR EQU$06
9 COUT EQU $FDED

10 RTRN EQU $FF58
11 STCK EQU $100
12 * 13 * 0300: 20 58 FF 14 ENTRY JSR RTRN

0303: B8 15 CLV
0304: 50 15 16 BVCPRINT

17 * 0306: D4 CS D3 18 DATAl ASC "TESTl"
030B: SD 00 19 HEX8DOO

20 * 0300: 20 58 FF 21 L2JSR RTRN
0310: B8 22 CLV
0311: 50 08 23 BVCPRINT

24 * 0313: D4 CS D3 25 DATA2 ASC "TEST2"
0318: 8D 00 26 HEX8DOO

27 * 031A: 60 28 DONERTS
29 * 0318: BA 30 PRINTTSX

031C: CA 31 IJEX
031D: 18 32 CLC
031E: BD 00 01 33 LDA STCK,X
0321: 69 04 34 ADC#$04
0323: 85 06 35 STAPTR
0325: E8 36 INX
0326: BD 00 01 37 LDASTCK,X
0329: 69 00 38 ADC#$00
032B: 85 07 39 STA PTR+l

40 * 0320: AO 00 41 PRNT LDY #$00
032F: Bl 06 42 LOOP LDA (PTR),Y
0331: FO 06 43 BEQ FIX
0333: 20 ED FD 44 JSRCOUT
0336: C8 45 INY
0337: DO F6 46 BNE LOOP ; (ALWAYS 'TILL 255)

47 * 0339: 18 48 FIX CLC
033A: 98 49 TYA
033B: 65 06 50 ADCPTR
0330: 85 06 51 STAPTR
033F: AS 07 52 LDA PTR+l
0341: 69 00 53 ADC #$00
0343: 48 54 PHA

CHAPTER 14 157

0344: AS 06 SS LDAPTR
0346: 48 S6 PHA
0347: 60 S7 FINRTS

S8 * S9 * WILL RTS TO L.2/DONE
60 *

This routine has the advantage of allowing the print state
ments to be used very much like they were in the nonrelocatable
version given in chapter twelve. The extra bytes required for the
stack calculations are confined to one place, and there are only
three extra bytes per line to be printed, compared to the chapter
twelve routine.

The return to the end of each printed string is accomplished
by using the Y-Register in FIX. At entry to FIX, the Y-Register will
hold the length of the string printed, which is then added to PTR
to calculate the proper address to return to. Again we use the
two PHAs followed by an RTS to accomplish the return.

Self-Modifying Code

Ah, here is an area to make the strongest heart quiver-the
idea that a program rewrite itself to accomplish its given task.
The possibilities are endless, but for now, we'll just look at a way
of coping with statements like LDA $ADDR,X. It was this type of
statement in the very first program of this chapter that contrib
uted to its nonrelocatability. Here's the new mystery program:

0300: 20 SS FF
0303: BS
0304: so 14

0306: D4 CS D3
030A: SD 00

158

1 ******************
2 * RELOCATABLE PRINT 3 *
3 ******************
4 * s OBJ $300
6 ORG $300
7 * 8 PTREQU$06
9 COUT EQU $FDED

10 RTRN EQU $FFS8
11 STCK EQU $100
12 * 13 * 14 ENTRY JSR RTRN
1S CLV
16 BVCPRINT
17 * 18 DATA ASC "TEST"
19 HEXBDOO

ASSEMBLY LINES

20 * 030C: A2 00 21 PRNT LDX #$00
030E: BD 06 03 22 LOOP LDA DATA,X
0311: FO 06 23 BEQ DONE
0313: 20 ED FD 24 JSRCOUT
0316: EB 25 INX
0317: DO F5 26 BNE LOOP ; (ALWAYS TILL 255)

27 * 0319: 60 28 DONERTS
29 * 031A: BA 30 PRINTTSX

031B: CA 31 DEX
031C: 18 32 CLC
0310: BD 00 01 33 LDASTCK,X
0320: 69 04 34 ADC#$04
0322: BS 06 3S STAPTR
0324: E8 36 INX
032S: BD 00 01 37 LDASTCK,X
0328: 69 00 38 ADC#$00
032A: 8S 07 39 STA PTR+l

40 * 41 * 032C: AO 09 42 FIX LDY #$09 ; LEN OF $ + 5
032E: AS 06 43 LDAPTR
0330: 91 06 44 STA (PTR),Y
0332: CB 45 INY
0333: AS 07 46 LDAPTR+1
033S: 91 06 47 STA (PTR),Y; REWRITE DATA ADDR
0337: BS 48 CLV
0338: SO D2 49 BVCPRNT

so *
This program will actually rewrite the address present on

line 22 for the LDA DATA,X statement. The method uses the
address on the stack to calculate the address for the beginning
of the ASCII string to be printed. It is this address that we will
want to eventually put into the code at $30F,$310 to rewrite the
data statement.

After calculating the address in lines 30-39, the result is
stored in PTR. The FIX section then adds the length of the printed
string, plus five and uses this as the Y-Register offset to finally
point to $30F. The low and high-order bytes are then written to
the code and a return done to the actual PRNT routine.

The example comes with many cautions. The value on line
42 must be appropriate to the length of the string being printed.
Also the order of the ENTRY, DATA, and PRNT routines was delib
erately chosen to make the rewrite as easy as possible. Extreme

CHAPTER 14 159

care must be taken whenever constructing a program that alters
itself, but the results can be very powerful.

If you are inclined to pursue this, study this example well
until you are very sure why each step was done. To verify its
versatility, you should assemble the code for this example and
then run it at several different memory locations. After each run,
list the code from the Monitor and see how the statement on line
22 has been rewritten. It's really quite fascinating!

Indirect Jumps

To round out this chapter, one more technique will be dis
cussed. Although the stepping method using the forced branch
ing can be used to span large distances, it can get rather
inconvenient to have to keep inserting the stepping points
throughout your code. An alternate technique is to use the
indirect JMP command.

In the indirect jump, a two-byte pointer is created which
indicates where the jump should be made to. The added advan
tage of this command is that the pointer need not be created on
the zero page, which already is in high demand for numerous
other uses. The basic syntax for the indirect jump is:

0300: 6C FF FF 99 J1 JMP ($FFFF)

Here is a sample program showing how this can be combined
with the stack operation to create a relocatable jump commmand:

160

1 ******************
2 * RELOCATABLE JMP SIM *
3 ******************
4 *
5 OBJ $300
6 ORG $300

7 *
8 PTREQU$06
9 BELL EQU $FF3A

10 RTRN EQU $FF58
11 STCK EQU $100

12 *
ASSEMBLY LINES

13 * 0300: 20 58 FF 14 ENTRY JSR RTRN
15 * 0303: BA 16 CALCTSX

0304: CA 17 DEX
0305: 18 18 CLC
0306: BD 00 01 19 LDA STCK,X
0309: 69 17 20 ADC#$17
030B: 85 06 21 STAPTR
030D: ES 22 INX
030E: BD 00 01 23 LDA STCK,X
0311: 69 00 24 ADC #$00
0313: 85 07 25 STA PTR+l
0315: 6C 06 00 26 JMP (PTR) ; TO 'EXPT'

27 * 0318: EA 28 FILL NOP
29 * 0319: 20 3A FF 30 EXPT JSR BELL
31 * 031C: 60 32 DONER.TS

The system is fairly simple, basically just using the stack to
get a base address, and then adding whatever the distance is
between the end of the JSR RTRN statement and the destination
of the JMP(). As with some of the other systems though, this
distance will change as code is added or deleted between the two
points. Consequently you may have to change the values on lines
20 and 24 rather frequently to keep up with your code changes.

It does however avoid the problems associated with many
stepping points sprinkled throughout your code, as would be
necessary using the other alternative.

There is one bug in the use of the indirect jump that should
be mentioned. It is present in the 6502 microprocessor itself, and
occurs whenever the indirect pointer straddles a page boundary.
For example, if you used the statement JMP ($06), the destination
would be retrieved from locations $06 and $07. However, if you
were to use JMP ($3FF), the destination would be retrieved from
$3FF and $300. The high-order byte is not properly incremented
by the 6502. This is usually not a concern, though, since there
are generally many alternate locations for the destination pointer.

In conclusion then, certain techniques can be used to produce
code which is not restricted to running at a particular address in
memory. Although a bit harder to construct initially, and slightly
larger in terms of final memory requirements, the final product
is generally much more versatile in its applications.

CHAPTER 14 161

APPENDIX A
Assembly Lines Contest

In the March 1981 edition of Softalk magazine, Roger chal
lenged the readers of his Assembly Lines column to a contest.
Using the commands discussed in the column from October 1980
through March 1981 (all material covered through chapter five
in this book). Contestants were asked to submit programs which
would be judged by Roger, the shortest and most interesting
program being the winner. Contest rules are reprinted here as
they originally apeared. in the March issue of Softalk.

Contest Rules

Create the shortest possible program using all and only the
commands presented. thus far in this series that does something
interesting. The program must be entirely in machine language,
and may not call any routines in Integer or Applesoft. It may
call any of the Monitor routines from $FOOO-$FFFF.

The person who submits the shortest program of the most
interest will be awarded $50 worth of product from any advertiser
in this issue of Softalk and the program will be published in
Softalk.

Judging will be based on the opinions of a rather subjectively
selected panel made up of people at Softalk, myself, and any
other hapless passerby we can rope into this thing. Members of
the staffs of Softalk and Southwestern Data Systems and profes
sional programmers are not eligible to win. Entries should be
submitted no later than April 15, 1981. Ties will be settled by
Apple's random number generator. (I promise not to seed it!)

Contest results were announced in the June 1981 edition of
Softalk. The winning program for Roger's contest is listed below.
Roger's commentary accompanies the listing.

Contest Results

With the usual comments in mind about how hard it was to

Appendix A 163

decide on a winner, I hereby announce the winner of the contest
as Steven Morris, of Queens, New York. His program combines
a number of the principles we've discussed so far and also shows
some nice touches in programming. It's an elegant use of all the
given codes. Of particular interest is a self-modifying part
wherein the program actually rewrites a small portion of itself
upon user command.

I think it will be of interest, and also a good review, to go
through Morris's listing to see what's been done. Before doing
that, however, a little background on one more kind of tone
routine is in order. This will make Morris's program that much
more understandable.

In chapter seven, I discussed simple tone routines in which
the speaker was accessed at a constant rate for a given length
of time. These two factors determined the pitch and duration of
the tone played. A variation on this is to have the pitch decrease
or increase as the tone is played, creating effects rather like the
sound usually associated with a falling bomb or a rising siren,
respectively. This requires three variables, and without getting
too technical, let me take a moment to illustrate with this chart:

(Y-REG.)

~T~
FREQ.

TIME
~---DURATION {$301)---__..

($300 OR
X-REG)

The vertical axis represents the frequency of the tone being
played. Putting several tones together into a series over a period
of time creates, in this case, a rising scale. As each tone is played,
the pitch is increased. Each individual tone lasts some arbitrary
time, T, and put together, the series lasts an overall time period,
labeled here as Duration.

If the pitch is decreased by a certain amount each time, the
pattern is reversed. This is sometimes called a ramp tone pattern.
In parentheses, I have indicated how each of these values is
determined in Morris's program.

Here is a source listing of the program:

164 ASSEMBLY LINES

1 *************
2 * By Steven Morris *
3 *************
4 *
5 OBJ $302
6 ORG$302
7 *
8 PTCH EQU $300
9 DRTN EQU $301

10 SPKR EQU $C030
11 PREAD EQU $FB1E
12 PBO EQU $C061
13 PBl EQU $C062
14 GRSW EQU $C050
15 TXTSW EQU $C051
16 CLRSCR EQU $F832
17 *
18 LOOP DEX ; DEC THIS DELAY
19 BNECYCLE ; DONE? NO =SKIP CLK
20 *
21 CLKLDXPTCH ; REFRESH X-REG
22 LDASPKR ; CLKSPKR
23 * SPKR CLKS ONLY ONCE
24 * FOR EVERY ($300) PASSES
25 *
26 CYCLE DEY ; # OF CYCLE CTR.
27 BNELOOP ;DONE?
28 * NO =KEEP GOING
29 DECDRTN
30 BEQCHKPDL ; DONE WI RAMP?
31 * YES = CHK POLS
32 RAMP INC PTCH
33 JMPLOOP
34 *
35 CHKPDL LOX #$00
36 JSRPREAD ; READ PDL (0)
37 STYPTCH ; SET PTCH
38 INX
39 JSRPREAD ; READ POL (1)
40 STYDRTN ; SETDRTN
41 LOY #$7F
42 CPYPBl ; #1 PRESSED?

! i 43 BCCTOGGLE ; BRCH IF YES
44 *
45 INY ; #$7F->#$80 ; AN EXCUSE
46 TYA ; TO USE THESE
47 TAX ;COMMANDS.
48 CPXPBO ; #0 PRESSED?
49 BCSLOOP ;BRCHIFNO
50 *

Appendix A 165

51 SCREEN JSR CLRSCR ; CLR TOBLK
52 Sl STA GRSW ; SHOW GRAPHICS MODE
53 STA TXTSW ; SHOW TEXT MODE
54 JMP Sl
55 * 56 SETDECTAY ; USE UP THIS CODE
57 LDX#$CE ; OPCODE FOR 'DEC'
SS TXA
59 CMPRAMP ; IS IT 'DEC' NOW?
60 BEQ SETINC ; BR.CH IF YES.
61 STA RAMP ; NO. MAKE IT 'DEC'
62 RTS
63 * 64 SETINC LDX #$EE ; OPCODE FOR 'INC'
65 STX RAMP
66 RTS
67 * 6S TOGGLE JSR SETDEC
69 JMPLOOP
70 *
This lists in memory as:

*300L

0300- 38 SEC
0301- AS CA LOA $CA
0303- DO 06 BNE $030B
0305- AE 00 03 LDX $0300
0308- AD30 co LDA $C030
030B- 88 DEY
030C- DO F4 BNE $0302
030E- CE 01 03 DEC $0301
0311- FO 06 BEQ $0319
0313- CE 00 03 DEC $0300
0316- 4C 02 03 JMP $0302
0319- A2 00 LDX #$00
031B- 20 1E FB JSR $FB1E
031E- SC 00 03 STY $0300
0321- ES INX
0322- 20 1E FB JSR $FB1E
0325- SC 01 03 STY $0301
032S- AO 7F LDY #$7F
032A- cc 62 co CPY $C062
0320- 90 27 BCC $0356
032F- cs INY
0330- 98 TYA
0331- AA TAX
0332- EC 61 CO CPX $C061
0335- BO CB BCS $0302

166 ASSEMBLY LINES

0337- 20 32 F8 JSR $F832
033A- 80 50 co STA $C050
0330- BD 51 co STA $C051
0340- 4C 3A 03 JMP $033A
0343- AB TAY
0344- A2 CE LDX #$CE
0346- BA TXA
0347- CD 13 03 CMP $0313
034A- FO 04 BEQ $0350
034C- 80 13 03 STA $0313
034F- 60 RTS
0350- A2 EE LDX #$EE
0352- BE 13 03 STX $0313
0355- 60 RTS
0356- 20 43 03 JSR $0343
0359- 4C 02 03 JMP $0302

I'll try to explain each part of the program, hopefully with a
proper balance of enough detail to jog your memory and enough
brevity to keep things reasonably short.

If all this seems overwhelming, you're trying to read through
it too fast. Go back through it slowly, taking your time. Have a
nice cup of tea while you're at it.

Remember, we're packing seven chapters' worth of subject
matter into one program. Don't worry if the fine details of the
tone routine escape you. The important part is to make sure that
you at least recall the existence and general nature of each indi
vidual command used in the program.

To explain the program, the easiest place to start is actually
at CHKPDL, where the paddles are checked for new values at the
end of each ramp series (line 35@$319). The X-Register is loaded
with a $00 to tell the computer we want to read paddle zero in
the next step, then JSR to $FB1E. That returns with the Y-Register
holding the value of the paddle ($00 to $FF), which is then stored
in location $300, labeled PTCH (for pitch). The X-Register value
is then incremented from $00 to $01 on line 38, and paddle one
read. The returned value is stored at $301 for the duration value.

If paddle button one is pressed, location $C062 will hold a
number greater than $7F. To check for this, the Y-Register is
loaded with $7F and compared against $C062. If $C062 holds a
value greater than $7F, the branch carry clear (sec) will be taken
(Y-Register < memory location = carry clear). We'll see what
that does later.

If the value is less than $7F, program execution will fall

Appendix A 167

through to line 45. Here the $7F is increased to $80 and that value
passed to the X-Register via the Accumulator. These steps are
here to exercise the INY, TYA, TAX commands, and to allow us to
use the CPX command next to fulfill the contest requirements. At
line 48 the comparison is done. If the X-Register is greater
(remember it holds a $80 here), the button is not pressed and the
branch carry set will be taken (X-Register > memory loc = carry
set) that sends us to the main tone loop.

At entry to this loop, the X-Register and the Y-Register hold
rather arbitrary values, but the overall theory is that, starting at
CLK on line 21, the X-Register is loaded with the pitch value and
the speaker dicked once. At line 26 the Y-Register is decre
mented; this is a counter for the length of that pitch value. Jump
ing back to loop, the net effect is that the program will make n
passes through before dicking the speaker once, where n is the
pitch value held in $300. This creates the delay between dicks
needed for a given tone.

The length of that particular tone is determined by the Y
Register. When it reaches a value of $00, the BNE (branch not
equal) fails and the counter for the overall duration is decre
mented. As long as there's time left (that is, DRTN > $00), the
next test fails (BEQ = branch if equal to zero) and the pitch value
is incremented.

Going back to LOOP plays this next note until all the notes
in the series have been played. Incrementing pitch gives a
descending note pattern. (Recall that the greater the pitch value,
the lower the tone played.)

When DRTN does reach zero, the program branches to the
paddle check r9utine that we started in. Let's see what happens
when a button is pressed. If button one is pressed, the program
goes via TOGGLE to SETDEC. This clever section (ignore the TAY)

loads the X-Register with the value $CE. This is the opcode for
DEC (decrement a memory location).

If the comparison fails, that is, there is not a $CE currently
there, the $CE is stored at RAMP, the RTS (return from subroutine)
returns to TOGGLE and the JMP LOOP sends everything back into
the tone loop, this time with a DEC PTCH there instead. This gives
an ascending pitch series.

If the comparison is true, it means that a $CE was put there
earlier, and the BEQ goes to SETINC, which restores the code for
INC at RAMP ($313), and then returns with the RTS, JMP LOOP as
in the previous case.

168 ASSEMBLY LINES

These two options give the program the ability to rewrite
itself, an interesting and powerful idea.

If paddle button zero is pressed, the branch at line 49 fails
and the program falls into an infinite loop at SCREEN ($337). In
this loop, the screen is cleared to the color black by the monitor
routine at $F832.

Locations $C050 and $C051 are softswitches mentioned in
earlier chapters. Remember that accessing these changes the dis
play mode of the Apple. The screen can be viewed either in a
text mode or in a graphics mode. Accessing $C050 on line 52 sets
the graphics mode, so the screen appears black. Accessing $C051
sets the display to text, which appears as inverse "@" signs.

The JMP Sl repeats this cycle back and forth so fast that you
don't actually see the flicker, just an interesting pattern created
by the screens switching faster than your screen monitor can
display them.

At this point you have to hit RESET to end.
There were a number of other excellent entries. Honorable

mention should be made of Steve Hawley, Ray Ransom, Stephen
Gagola, Jr., and Matt Brookover for their efforts.

Appendix A 169

APPENDIX B
This section may well serve as the most often used portion

of this book. I have mentioned elsewhere that learning pro
gramming can be looked upon as merely familiarizing yourself
with the available tools to accomplish a specified task. The fol
lowing section summarizes the tools available to a machine lan
guage programmer.

When you are first learning to program, much can be gained
by simply browsing through the following pages and casually
noting the variety of instructions available when writing a rou
tine. Each entry provides not only the usual technical data on
the instruction, but often a brief example of its use as well.

Please note that in some examples a percent sign (%) is used
to indicate a binary form of a number. Some assemblers support
this delimiter which can be very convenient, particularly when
working with the logical operators and shift instructions. For
example, the following representations are all equivalent:
100 = $64 = %01100100.

When looking at addressing modes, it's easy to forget the
subtleties of the differences between the X and Y registers as
used with indirect addressing. Remember that the syntax ($FF,X)
indicates pre-indexing, while ($FF),Y indicates post-indexing. See
pages 51-54 for the "official" explanation of addressing modes.

Appendix B 171

ADC: ADd with Carry

DESCRIPTION: This instruction adds the contents of a memory
location or immediate value to the contents of the Accumulator,
plus the carry bit, if it was set. The result is put back in the
Accumulator. ADC works for both binary and BCD modes.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute ADC $FFff 6D ff FF
Zero Page ADC $FF 65 FF
Immediate ADC #$FF 69 FF
Absolute,X ADC $FFff,X 7D ff FF
Absolute,Y ADC $FFff,Y 79 ff FF
(Indirect,X) ADC ($FF,X) 61 FF
(Indirect), Y ADC ($FF),Y 71 FF
Zero Page,X ADC $FF,X 75 FF

USES: Peculiarly enough, ADC is most often used to add numbers
together. Here are some common examples:

I. Adding a constant to a register or memory location:

CLC
LDA MEM
ADC #$80
STA MEM

(MEM = MEM + #$80)

II. Adding a constant (such as an offset) to a two-byte memory
pointer:

172

CLC
LDA
ADC
STA

MEM
#$80
MEM

ASSEMBLY LINES

LDA MEM+l
ADC #$00
STA MEM+l

(MEM,MEM + 1 = MEM,MEM + 1 + #$80)

III. Adding two (2) two-byte values together:

CLC
LDA MEM
ADC MEM2
STA MEM
LDA MEM+l
ADC MEM2+1
STA MEM+l

(MEM,MEM + 1 = MEM,MEM + 1 + MEM2,MEM2+1)

Appendix B 173

AND: Logical AND

DESCRIPTION: This instruction takes each bit of the Accumu
lator and performs a logical AND with each corresponding bit of
the specified memory location or immediate value. The result
is put back in the Accumulator. The memory location specified
is unaffected. (See ORA also.)

AND means that if both bits are one then the result will be
one, otherwise the result will be zero.

The truth table used is:

Example:
Accumulator:
Memory:

Result:

FLAGS & REGISTERS AFFECTED:

N v II D z c

I• I I• I
ADDRESSING MODES AVAILABLE:

COMMON
MODE SYNTAX

Absolute AND $FFff
Zero Page AND $FF
Immediate AND #$FF
Absolute,X AND $FFff,X
Absolute,Y AND $FFff,Y
(Indired,X) AND ($FF,X)
(Indirect), Y AND ($FF),Y
Zero Page,X AND $FF,X

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1

Ace x y Mem

I• I I I (i I

HEX
CODING

2D ff FF
25 FF
29 FF
30 ff FF
39 ff FF
21 FF
31 FF
35 FF

USES: AND is used primarily as a mask, that is, to let only certain
bit patterns through a section of a program. The mask is created
by putting ones in each bit position where data is to be allowed
through, and zeros where data is to be suppressed. For example,
it is frequently desirable to mask out the high-order bit of ASCII

data, such as would come from the keyboard or another input
device (such as a disk file). The routine shown assures that no

174 ASSEMBLY LINES

matter what value is gotten from DEVICE, the high-order bit of
the value put in MEM will always be clear:

Routine Sample input:
LDA DEVICE Accumulator: 01010111 11010111
AND #7F; 31l11111U #$7F 01111111 01111111
STA MEM

Result: 01010111 01010111

AND is also used when you know the high bit will be set and
you want it cleared. This is the case when getting ASCII characters
from the keyboard. A common routine to get a character from
the keyboard is:

WATCH LOA
BPL
BIT
AND
STA

KYBD
WATCH
STROBE
#$7F
MEM

$COOO
AGAIN IF < #$80
CLEAR STROBE: $C010
CLR HIGH BIT

.Another way of looking at this same effect is to say that AND

can be used to force a zero in any desired position in a byte's bit
pattern. (See ORA to force ones). A zero is put in the mask value
at the positions to be forced to zero, and all remaining positions
are set to one. Whenever a data byte is ANDed with this mask,
a zero will be forced at each position marked with a zero in the
mask, while all other positions will be unaffected, remaining
zeros or ones, as in their original condition.

The Monitor uses the AND instruction in the GETLN routine
($FD6C) to convert lower case letters to upper case:

$FD76: Bl 28 807 I.DA (BASL), y ; GET CHARACTER
$FD7E: C9 EO 808 CAPTST CMP #$EO ; Alpha?
$FD80: 90 02 809 BCC ADDINP ; no, don't xvert
$FD82: 29 DF 810 AND #$DF ; xvert to caps
$FD84: 90 00 02 811 ADDINP STA IN,X ; put char back

There are also at least two other rather obscure uses for the
AND instruction. The first of these is to do the equivalent of a
MOD function, involving a piece of data and a power of two.
You'll recall that the MOD function produces the remainder of a
division operation. For example: 12 MOD 4 = 0; 14 MOD 4 = 2;
18 MOD 4 = 2; 17 MOD 2 = l; etc.

The general formula is: Acc. MOD 2n = RESULT
The actual operation is carried out by using a value of

Appendix B 175

(2n - 1) as the mask value. The theory of operation is that only
the last n bits of the data byte are let through, thus producing
the result corresponding to a MOD function.

Example:

LOA
AND
STA

MEM
#$07
MEM

%00000111 = 23 - 1
MEM = MEM MOD 8

This technique provides one of several ways of testing for
the odd/even attribute of a number:

LDA
AND
BEQ
BNE

MEM
#$01
EVEN
ODD

%00000001 = 21 - 1

The result of the AND of any number and #$01 will always
be either 0 or 1 depending on whether the number was odd or
even.

The third application is in determining if a given bit pattern
is present among the other data in a number. For example, to
test if bits 0, 3 and 7 are on:

LDA
AND
CMP
BEQ
BNE

MEM
#$89
#$89
MATCH
NO MATCH

%10001001

The general technique is to first AND the data against the
value for the byte with just the desired bits set to one (all others
zero), and then immediately do a CMP to the same value. If all
the specified bits match, a BEQ will succeed.

NOTE: BIT (described later) can be used to test for one or
more matches, but the AND technique described here confirms
that all the bits of interest match.

176 ASSEMBLY LINES

ASL: Arithmetic Shift Left

DESCRIPTION: This instruction moves each bit of the Accu
mulator or specified memory location one position to the left.
A zero is forced at the bit 0 position, and bit 7 (the high-order
bit) falls into the carry. The result is left in the Accumulator or
memory location.

<==

ASL
(Arithmetic Shift Left)

(See also ROL; also LSR and ROR.)

FLAGS & REGISTERS AFFECTED:

'O'

N V B D z c Ace X Y Mem

I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Accumulator ASL OA
Absolute ASL $FFff OE ff FF
Zero Page ASL $FF 06 FF
Absolute,X ASL $FFff 1E ff FF
Zero Page,X ASL $FF,X 16 FF

USES: The most common use of ASL is for multiplying by a power
of two. You are already familiar with the effect in base ten:
123 * 10 = 1230 (shift left). For example:

LOA
ASL
ASL
STA

MEM

MEM

TIMES 2
TIMES 2 AGAIN
MEM = MEM * 4 (4 = 22)

Appendix B 177

The other use is to check a given bit position by conditioning
the carry flag. For example, to check bit 4, this would look like:

LDA MEM
ASL
ASL
ASL
ASL
BCS
BCC

SET
NOTSET

BIT 4 NOW IN CARRY

NOTE: This technique destroys the Accumulator in the
process of checking the bit. AND or BIT instructions are generally
preferred instead of this technique.

If testing bits 0-3, LSR or ROR may be more appropriate (fewer
shifts needed). ROL can also be used instead of ASL depending
on whether or not the data is to be preserved.

178 ASSEMBLY LINES

BCC: Branch Carry Clear

DESCRIPTION: Executes a branch if the carry flag is clear.
Ignored if carry is set. Many assemblers have an equivalent
pseudo-op called BLT (Branch Less Than, not to be confused with
the sandwich), since BCC is often used immediately following a
comparison to see if the Accumulator held a value less than the
specified value.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BCCADDRESS

HEX
CODING

90 FF

NOTE: The carry flag, upon which this depends, is conditioned
by: ADC, ASL, CLC, CMP, CPX, CPY, LSR, PLP, ROL, RTI, SBC, and SEC.

USES: As mentioned, BCC is used to detect when the Accumu
lator is less than a specified value. The usual appearance of the
code is listed below. Note that in a two-byte comparison the
high-order bytes are checked first.

One-Byte Comparison:
ENTRY LOA MEM

CMP MEM2
BCC LESS
BCS EQ/GRTR

(Goes to LESS if MEM < MEM2)

Two-Byte Comparison:
ENTRY LOA MEM + 1

CMP MEM2+1
BCC LESS
BEQ CHK2
BCS GRTR

MEM+l
MEM+l
MEM+l

Appendix B

< MEM2+1
= MEM2+1
> MEM2+1

179

CHK2 LDA
CMP
BCC
BCS

MEM
MEM2
LESS
EQ/GRTR

; MEM
; MEM

< MEM2
<= MEM2

(Goes to LESS only if MEM,MEM+1 < MEM2,MEM2+1)

180 ASSEMBLY LINES

BCS: Branch Carry Set

DESCRIPTION: Executes the branch only if the carry flag is set.
Some assemblers support the pseudo-op BGT (for Branch Greater
Than), since this command is used to test for the Accumulator
equal to or greater than the specified value.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BCS ADDRESS

Ace X Y Mem

I I

HEX
CODING

BO FF

NOTE: The carry flag, upon which this depends, is conditioned
by: ADC, ASL, CLC, CMP, CPX, CPY, LSR, PLP, ROL, RTI, SBC, and SEC.

USES: Used to detect Accumulator equal to or greater than a
specified value. Can be combined with BEQ to detect a greater
than relationship. Note that in the two-byte comparison, the
high-order bytes are checked first.

One-Byte Comparison:
ENTRY LOA MEM

CMP MEM2
BCC LIESS
BEQ EQUAL
BCS GREATER

(Goes to GREATER if MEM > MEM2, or EQUAL if MEM = MEM2)

Two-Byte Comparison:
ENTRY LOA MEM+1

CMP MEM2+1
BCC LESS MEM+l < MEM2+1
BEQ CHK2 MEM+1 MEM2+1
BCS GRTR MEM+l > MEM2+1

CHK2 LOA MEM
CMP MEM2
BCC LESS MEM < MEM2
BEQ EQUAL MEM MEM2
BCS GREATER MEM > MEM2

Appendix B 181

{Goes to GREATER only if MEM,MEM+l > MEM2,MEM2+1, or to EQUAL
if MEM,MEM + 1 = MEM2,MEM2+1)

182 ASSEMBLY LINES

BEQ: Bran.ch if EQual

DESCRIPTION: Executes a branch if the Z-flag (zero flag) is set,
indicating that the result of a previous operation was zero. See
BCS to see how a comparison for Accumulator equal to value is
done.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BEQADDRESS

Ace X Y Mem

I I

HEX
CODING

FO FF

I I

NOTE: The zero flag, upon which this depends, is conditioned
by: ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,

INY, LOA, LOX, LOY, LSR, ORA, PLA, PLP, ROL, RTS, SBC, TAX, TAY, TXA,

and TYA.

USES: In addition to being used in conjunction with compare
operations, BEQ is used to test for whether the result of a variety
of other operations has resulted in a value of zero. The common
classes of these operations are increment/decrement, logical
operators, shifts, and register loads. Even easier to remember
is the general principle that whenever you've done something
that resuHs in zero, chances are good the Z-flag has been set.
Likewise, any non-zero result of an operation is likely to clear
the Z-flag. One of the most common instances is when checking
an input string for a zero, usually used as a delimiter:

Example:

ENTRY LOA DEVICE
BEQ DONE; DATA=O

WORK (...)
JMP ENTRY

DONE RTS

Appendix B 183

BIT: Compare Accumulator BITs with contents of memory

DESCRIPTION: Performs a logical AND on the bits of the Accu
mulator and the contents of the memory location. The opposite
of the result is stored in the Z-flag. What this means is that if
any bits set in the Accumulator happen to match any set in the
value specified, the Z-flag will be cleared. If no match is found,
it will be set. BNE is used to detect a match, BEQ detects a no
match condition.

Fully understanding the function and various applications of
this instruction is a sign of having arrived as a machine language
programmer, and suggests you are probably the hit of parties,
thrilling your friends by doing hex arithmetic in your head and
reciting ASCII codes on command.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I m7 I m6 I I• I I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute BIT $FFff 2C ff FF
Zero Page BIT $FF 24 FF

*Note absence of the immediate mode as an option!

USES: BIT provides a means of testing whether or not a given
bit is on in a byte of data. IMPORTANT: BIT will only indicate
that at least one of the bits in question match. It does not indicate
how many actually do match. See the AND instruction on how
to do a check for all matching.

The test mask can either be held in the Accumulator (if testing
a memory location), or in a memory location (when testing the
Accumulator). The mask is created by setting ones in the bit
positions you are interested in, and leaving all remaining posi
tions set to zero.

Examples:

184 ASSEMBLY LINES

I. Showing the results of the BIT operation:

Ace: 1 0 0 1 1 0 1 1
Mem: O 1 O 1 O 1 0 1 Z-flag effect:
Result: 0 0 0 1 0 0 0 1 -> 1 -> (opposite) -> 0 BNE works

BEQ not taken

STATUS REGISTER:

N v B D z c

II.

Ace: 1 0 0 1 1 0 1 1
Mem: 0 1 O 0 0 1 0 0 Z-flag effect:
Result: 0 0 0 0 0 0 0 0 -> 0 -> (opposite) -> 1 BEQ works

BNE not taken

STATUS REGISTER:

N V B D

III. Sample routines.

Test Acc. for bit 4 on

ENTRY LDA #$10
STA MEM
LOA DEVICE
BIT MEM
BNE MATCH
BEQ NO MATCH

Test memory for bit 4 on

ENTRY LDA
BIT
BNE
BEQ

#$10
MEM
MATCH
NO MATCH

z c

300010000

%00010000

BIT also sets the N and V-flags, and thus provides a very fast
way of testing bits 6 and 7. Since bit 7 is the high-order bit and
is frequently used to indicate certain conditions, this can be quite
handy. Here is an example on how to watch for a keypress:

Appendix B 185

LOOP BIT
BPL
BIT

DONE RTS

KYBD
LOOP
STROBE

$COOO
VAL < 128 = NOT PRESS
$C010

Note that in this example, no data is actually retrieved from
the keyboard. Only a wait is done until the keypress. The BIT

STROBE step in the example also provides an illustration of a
second application of BIT, which is to access a hardware location
(often called a softswitch) without damaging the contents of the
Accumulator.

186 ASSEMBLY LINES

BMI: Branch on Minus

DESCRIPTION: Executes branch only if N-flag (sign flag) is set.
N-flag is set by any operation producing a result in the range
$80 to $FF (i.e. high bit set).

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BMIADDRESS

Ace X Y Mem

I I

HEX
CODING

30 FF

I I I

NOTE: The zero flag, upon which this depends, is conditioned
by: ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,

INY, LOA, LOX, LOY, LSR, ORA, PLA, PLP, ROL, TAX, TAY, TXS, TXA, and
TYA.

USES: BMI is most commonly used to detect negative numbers
when signed binary math is used, but is also equally common
in testing for a high bit set, such as in watching the keyboard
for a keypress. (See BIT also.) For example:

LOOP LOA
BMI
BPL

KYBD
PRESS
LOOP

; DATA
; DATA

> $7F
< $80

BMI is also useful for terminating a loop that you want to
reach zero, and where the loop will otherwise stay out of the
$80 to $FF range:

ENTRY
LOOP

DONE

LOX
DEX
BMI
BPL
RTS

$20

DONE
LOOP

TO LOOP 33 TIMES

WHENX =
WHILE X >

Appendix B

$FF
$FF

187

BNE: Branch Not Equal

DESCRIPTION: Executes the branch if the Z-flag (zero flag) is
dear, that is to say, if the result of an operation was a non-zero
value.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BNEADDRESS

HEX
CODING

DO FF

NOTE: The zero flag, upon which this depends, is conditioned
by: ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,

INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, RTS, SBC, TAX, TAY, TXA,

and TYA.

USES: Often used in loops to branch until the counter reaches
zero. Also used in data input loops to verify the non-zero nature
of the last byte in, as when checking for the end of data delimiter.

I. Simple loop

ENTRY
LOOP

LDX
DEX
BNE

DONE RT§

II. Data input routine

ENTRY

DONE

LDA
BNE
RT§

#$20

LOOP

DEVICE
CONTINUE

WILL COUNT 32 TIMES

'TILL X = 0

HI. As used in a two-byte increment routine

ENTRY

188

LDA
ADC
STA

MEM
#$01
MEM

ASSEMBLY LINES

BNE DONE UNLESS MEM = 0
LDA MEM+1
ADC #$00 MEM+1 = MEM+l + 1
STA MEM+1

DONE RT§

Appendix B 189

BPL: Branch on PLus

DESCRIPTION: Executes branch only if N-flag (sign flag) is dear,
as would be the case when the result of an operation is in the
range of $00 to $7F (high bit dear). See also BMI.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BPL ADDRESS

HEX
CODING

10 FF

NOTE: The sign flag, upon which this depends, is conditioned
by: ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,

INY, LOA, LOX, LDY, LSR, ORA, PLA, PLP, ROL, TAX, TAY, TXS, TXA, and
TYA.

USES: BPL is an easy way of staying in a loop until the high bit
is set. It is also used in general to detect the status of the high
bit. Here's our familiar keypress check using BPL:

ENTRY LDA
BPL
BIT
STA

DONE RTS

KYBD
ENTRY
STROBE
MEM

$COOO
LOOP UNTIL DATA > $7F
CLR $C010
SAVE VALUE

Also used for short loops that you want to reach zero:

ENTRY
LOOP

DONE

190

LDX
DEX
BPL
RTS

#$20

LOOP

WILL LOOP 33 TIMES
X=X-1
UNTIL X =$FF

ASSEMBLY LINES

BRK: BReaK (software interrupt)

DESCRIPTION: When a BRK is encountered in a program, pro
gram execution halts, and the user generally sees something like
the following:

0302- A=AO X=OO Y=01 P=36 S=E7

What actually happens is that the program counter, plus two,
is saved on the stack, immediately followed by the Status Reg
ister, in which the BRKbit has been set. The processor then jumps
to the address at $FFFE,FFFF. On the Apple, this is a vector at
$3F0,3Fl which points to the BRK handler routine which pro
duces the results mentioned above.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only

COMMON
SYNTAX

BRK

Ace X Y Mem

I I

HEX
CODING

Oil

I I

USES: BRK can be very useful in debugging machine language
programs. A BRK is simply inserted into the code at stategic
points in the routine. When the program comes to a screeching
halt, one can examine the status of various memory locations
and registers to see if everything is as you think it should be.
This process can be formalized, and hence considerably improved
on, by using a software utility called a debugger, which allows
you to step through a program one instruction at a time. Munch
A-Bug, along with others, provides this option. On Integer
Apples, a primitive Step and Trace function is provided as part
of the Monitor.

Appendix B 191

BVC: Branch on oVedlow Clear

DESCRIPTION: Executes a branch only if the V-flag (overflow
flag) is dear. The overflow flag is cleared whenever the result
of an operation did not entail the carry of a bit from position
6 to position 7. The overflow flag can also be cleared with a CLV

command.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BVCADDRESS

I I

HEX
CODING

50 FF

I I I

NOTE: The overflow flag, upon which this depends, is condi
tioned by: ADC, BIT, CLV, PLP, RTI, and SBC.

USES: BVC is used primarily in detecting a possible overflow
from the data portion of the byte into the sign bit, when using
signed binary numbers. For example:

ENTRY CLC
LOA #$64 %01100100 = + 100
ADC #$40 %01000000 = + 64
BVC STORE NOT TAKEN HERE

ERR RTS RESULT = + 164 =
% 10100100 > $7F

STORE STA MEM

BVC can also be used as a forced branch when writing relo
catable code. The advantage is that the carry remains unaffected,
thus allowing it to be tested later in the conventional manner.

192

CLV
BVC LABEL

CLEAR VFLAG
(ALWAYS)

ASSEMBLY LINES

BVS: Branch oVerflow Set

DESCRIPTION: Executes the branch only when the V-flag
(overflow flag) is set. The overflow flag is set only when the
result of an operation causes a carry of a bit from position 6 to
position 7. Note that there is not a command to specifically set
the overflow flag (as would correspond to a SEC command for
the carry), but in the Apple, the instruction BIT $FF58 is often
used to set the overflow flag.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Relative Only

COMMON
SYNTAX

BVS ADDRESS

Ace X Y Mem

I I I I I

HEX
CODING

70 FF

NOTE: The overflow flag, upon which this depends, is condi
tioned by: ADC, BIT, CLV, PLP, RTI, and SBC.

USES: BVS is used primarily in detecting a possible overflow from
the data portion of the byte into the sign bit, when using signed
binary numbers. For example:

ENTRY

STORE
DONE
ERR

CLC
LDA
ADC
BVS

STA
RT§
JSR BELL

#$64 %01100100 = +100
#$40 %01000000 = + 64
ERR RESULT = + 164 =

% 10100100 > $7F
MEM

ALERT TO OVER.FLOW

Appendix B 193

CLC: CLear Carry

DESCRIPTION: Clears the carry bit of the status register.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

ADDRESSING MODES AVAILABLE:

MODE

Implied Only

COMMON
SYNTAX

CLC

I I

HEX
CODING

18

I I I

USES: CLC is usually required before the first ADC instruction of
an addition operation, to make sure the carry hasn't inadver
tently been set somewhere else in the program, and thus incor
rectly added to the values used in the routine itself. A CLC can
also be used to force a branch when writing relocatable code,
such as:

194

CLC
BCC LABEL (ALWAYS)

ASSEMBLY LINES

CLD: Clear Decimal Mode

DESCRIPTION: CLD is used to enter the binary mode (which the
Apple is usually in by default), so as to properly use the ADC

and SBC instructions. (See SED for setting decimal mode.)

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I I I

ADDRESSING MODES AVAILABLE:

MODE

Implied Only

COMMON
SYNTAX

CLD

Ace X Y Mem

I I

HEX
CODING

DB

I I I

USES: The arithmetic mode of the 6502 is an important point to
keep in mind when using the ADC and SBC instructions. If you
are in the wrong mode from what you might assume, rather
unpredictable results can occur. See the SED instruction entry for
more details on the other mode.

Appendix B 195

CU: Clear Interrupt Mask

DESCRIPTION: This instruction enables interrupts.

FLAGS & REGISTERS AFFECTED:

N V B D z c

ADDRESSING MODES AVAILABLE:

MODE

Implied Only

COMMON
SYNTAX

cu

Ace X Y Mem

I I

HEX
CODING

58

I I

USES: cu tells the 6502 to recognize incoming IRQ (Interrupt
ReQuest) signals. The Apple's default is to have interrupts
enabled, but after the first interrupt, all succeeding interrupts
are disabled by the 6502 until a cu is re-issued. As a matter of
interest, timing dependent routines like the DOS RWTS (Read
Write Track Sector) routine disable interrupts while on, and then
allow them again with the cu at exit.

196 ASSEMBLY LINES

CLV: CLear oVerflow Flag

DESCRIPTION: This clears the overflow flag by setting the V
bit of the Status Register to zero.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I
ADDRESSING MODES AVAILABLE

MODE

Implied Only

COMMON
SYNTAX

CLV

Ace X Y Mem

I I

HEX
CODING

BS

I I

USES: Because the overflow flag is, in fact, cleared by a non
overflow result of an ADC instruction, it is not usually necessary
to clear the flag prior to an addition. It is, however, occassionally
used as a relatively unobtrusive way of forcing a branch when
writing relocatable code.

This is done in a manner similar to the CLC, BCC or SEC, BCS

pairs discussed in chapter fourteen. The general form is:

CLV
BVC ADDRESS

This technique has the advantage of not affecting the carry
flag, should the user want to test the carry after the forced break.

Appendix B 197

CMP: CoMPare to Accumulator

DESCRIPTION: CMP compares the Accumulator to a specified
value or memory location. The N (sign), Z (zero), and C (carry)
flags are conditioned. A conditional branch is usually then done
to determine whether the Accumulator was less than, equal to,
or greater than the data.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I• I • • I I I I I

ADDRESSING MODES AVAILABLE

COMMON HEX
MODE SYNTAX CODING

Absolute CMP $FFff CD ff FF
Zero Page CMP $FF cs FF
Immediate CMP #$FF C9 FF
Absolute,X CMP $FFff,X DD ff FF
Absolute,)' CMP $FFff,Y 09 ff FF
(Indirect,X) CMP ($FF,X) Cl FF
(Indirect), Y CMP ($FF),Y Dl FF
Zero Page,X CMP $FF,X 05 FF

USES: CMP is used to check the value of a byte against certain
values such as would be done in loops, or in data processing
routines. The routine typically decides whether the result is less
than, equal to, or greater than a critical value. The usual pattern
is:

BCC: Acc.
BCS: Acc.
BEQ, BCS: Acc.

< value
>= value
> value

See the section on BCC through Bes for specific examples.

IMPORTANT: A CMP #$00 should never be done. Consider this
example:

ENTRY LDY #$FF

198 ASSEMBLY LINES

LOOP DEY
CPY
BCS
BCC

DONE RTS

#$00
LOOP
DONE

(ALWAYS TAKEN!)

Because $01 through $FF is larger than zero, the branch will
be taken while the Y-Register is in this range. Since $0 = $0,
when Y reaches zero, the branch will still be taken. Therefore,
the example creates an endless loop which will never terminate.

Similarly, if a BCC is done first, it will never be taken, since
there is no value less than zero to trigger it.

Appendix B 199

CPX: ComPare data to the X-Register.

DESCRIPTION: CPX compares the contents of the X-Register
against a specified value or memory location. See also CMP.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I• I • • I I I I I

ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute CPX $FFff EC ff FF
Zero Page CPX $FF E4 FF
Immediate CPX #$FF EO FF

USES: CPX is primarily used in loops which read data tables,
with the X-Register being used as the offset in the Absolute,X
addressing mode. The X-Register is usually loaded with zero,
and then incremented until it reaches the length of the data
stream to be read. For example:

ENTRY
LOOP

DONE
DATA

LDY
LDA
JSR
INX
CPX
BCC
RTS
ASC

#$00
DATA,X
PRINT

#$05
LOOP

"TEST!"

For the same reasons discussed under CMP, a CPX #$00 should
not be used. See CMP for details.

200 ASSEMBLY LINES

CPY: ComPare data to the Y-Register

DESCRIPTION: CPY compares the contents of the Y-Register
against a specified value or memory location. See also CMP.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

ADDRESSING MODES AVAILABLE:

MODE

Absolute
Zero Page
Immediate

COMMON
SYNTAX

CPY $FFff
CPY $FF
CPY #$FF

I I I

HEX
CODING

CC ff FF
C4 FF
CO FF

I I

USES: The Y-Register is usually used when reading a stream of
data from a zero page pointer. CPY allows for checking the current
value of the Y-Register against a critical value. In this example,
the Y-Register is used to retrieve the first five bytes of an Apple
soft program line:

ENTRY
LOOP

DONE

LDY
LDA
STA
INY
CPY
BCC
RTS

#$00
($67),Y PROG BEG+ Y
($06),Y TEMP STORAGE AREA

LOOP LOOP FOR 5 BYTES

For the same reasons discussed under CMP, a CPY #$00 should
not be used. See CMP for details.

Appendix B 201

DEC: DECrement a memory location

DESCRIPTION: The contents of the specified memory location
are decremented by one. If the original contents were equal to
#$00, then the result will wrap around giving a result of #$FE

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I• I • I I I I I· I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute DJEC $FFff CE ff FF
Zero Page DEC $FF C6 FF
Absolute,X DEC $FFff,X DE ff FF
Zero Page,X DEC $FF,X D6 FF

USES: DEC is usually used when decrementing a one-byte mem
ory value (such as an offset), or a two-byte memory pointer.
Here are the common examples:

One Byte Value:

ENTRY
DONE

DEC
RTS

Two Byte Pointer:

ENTRY DEC
LDA
CMP
BNE
DEC
DONE

MEM

MEM
MEM
#$FF
DONE
MEM+l
RTS

WRAP-AROUND?
NO
YES: DEC MEM + 1

After the DEC operation, the N and/or Z-flags are often
checked to see if the result was negative or a zero/non-zero value,
respectively.

The technique shown for the two-byte decrement operation
is not necessarily the most efficient. See the SBC entry for an
alternative method.

202 ASSEMBLY LINES

DEX: DEcrement the X-Register

DESCRIPTION: The X-Register is decremented by one. When
the original value was #$00, the result will wrap around to give
a result of #$FF. See also DEC.

FLAGS & REGISTERS AFFECTED:

N V B D z c

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

DEX

Ace X Y Mem

I I• I I I

HEX
CODING

CA

USES: DEX is often used in reading a data block via indexed
addressing, i.e. Absolute,X. Here is a simple example:

ENTRY
LOOP

DONE
DATA

LDX
LDA
JSR
DEX
BNE
RTS
ASC

#$05
DATA-1,X
PRINT

LOOP

"!TSET"

NOTE: There are several points of interest in this example.
Besides the general use of the X-Register in the indexed address
ing mode, notice that the loop runs backwards from #$05 to
#$01. The loop is terminated when the X-Register reaches zero.
Because the loop runs from high memory down, the ASCII string
is put in memory in reverse order, as evidenced in the listing.
Also note that the base address of the loop is DATA-1. This allows
the use of the #$05 to #$01 values of the X-Register.

Appendix B 203

DEY: DEcrement the Y-Register

DESCRIPTION: The Y-Register is decremented by one. When
the original value :was #$00, the result will wrap around to give
a result of #$FE See also DEC.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace: X Y Mem

I• I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

DEY

I I

HEX
CODING

88

I• I I

USES: DEY is usually used when decrementing a reverse scan of
a data block, using a zero page pointer via indirect indexed
addressing (such as LDA ($FF),Y). Reverse scans are often used
because it's so easy to use a BEQ instruction to detect when you're
done. DEY is also used when making a counter for a small number
of cycles. Here's a routine which outputs a variable number of
carriage returns, as indicated by the contents of MEM.

ENTRY
LOOP

DONE

204

LDY
LDA
JSR
DEY
BNE
RTS

MEM
#$SD <RETURN>
COUT $FDED

LOOP 'TILL Y=O

ASSEMBLY LINES

EOR: Exclusive-OR with Accumulator

DESCRIPTION: The contents of the Accumulator is Exclusive
ORed with the specified data. The N (sign) and Z (zero) flags
are also conditioned depending on the result. The result is put
back in the Accumulator. The memory location (if specified) is
unaffected.

EOR means that if either bit, but not both, is one then the result
will be one, otherwise the result will be zero.

The truth table used is:

Example:
Accumulator:
Memory:

Result:

FLAGS & REGISTERS AFFECTED:

N v B D z c

I• I I• I I
ADDRESSING MODES AVAILABLE:

COMMON
MODE SYNTAX

Absolute EOR $FFff
Zero Page EOR $FF
Immediate EOR #$FF
Absolute,X EOR $FFff,X
Absolute,Y EOR $FFff,Y
(Indirect,X) EOR ($FF,X)
(Indirect), Y EOR ($FF),Y
Zero Page,X EOR $FF,X

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0

Ace x y Mem

I• I I• I

HEX
CODING

4D ££ FF
45 FF
49 FF
SD ff FF
59 ff FF
41 FF
51 FF
55 FF

USES: EOR has a wide variety of uses. (1) The most common is
to encode data by doing an EOR with an arbitrary one-byte key.
The data may then be decoded later by again doing an EOR of
each data byte with the same key again.

Appendix B 205

CODE LDX
LOOP LDA

EOR
STA
DEX
BNE

DONE RTS
DATA ASC

DECODE LDX
LOOP LDA

EOR
STA
DEX
BNE

DONE RTS

#$05
DATAl,X
#$7D
$300,X

LOOP

"TEST!"

#$05
$300,X
#$70
$380,X

LOOP

ARBITRARY "KEY"
REWRITE TABLE

'TILL X = 0

RETRIEVE CODED DATA

PUT IN NEW LOC.

(2) Another application is to reverse a given bit of a data byte.
The mask is created by putting a one in the positions which you
wish to have reversed. A zero is put in all remaining positions.
When the EOR with the mask is done, bits in the specified
positions will reverse, i.e. ones will become zeros, and vice versa.
See the original example in this entry to verify this effect.

(3) The N (sign) flag can be used to detect if both memory and
the Accumulator have bit 7 set:

ENTRY LDA
EOR
BMI
BPL

MEM
MEM2
MATCH
NO MATCH

BOTH SET
BOTH NOT SET

(4) The Z (Zero) flag will be set if either the Accumulator or
memory or both equal zero:

ENTRY LDA
EOR
BEQ
BNE

MEM
MEM2
ZERO
NOTZ

MEM = 0 and/or MEM2 = 0
NEITHER MEM NOR MEM2 = 0

(5) EOR is also useful in producing the twos' complement of a
number for use in signed binary arithmetic.

206 ASSEMBLY LINES

ENTRY LDA #$34 %00110100 = +52
TO BE CVRTD TO - 52

EOR #$FF % 11111111 = $FF
RSLT = %11001011

CLC
ADC #$01 RSLT = RSLT + 1

= %11001100 = $CC
STA MEM STORE RSLT

DONE RTS

(Sa) And to convert signed negative numbers back:

ENTRY LDA #$CC %11001100 = $CC = -52
TO BE CVRTD BACK

SEC
SBC #$01 ACC = ACC -1

= % 11001011 = $CB
EOR #$FF REVERSE ALL BITS

RSLT = %00110100 = $34 = +52
STA MEM STORE RESULT

DONE RTS

Appendix B 207

INC: INcrement Memory

DESCRIPTION: The contents of a specified memory location are
incremented by one. If the original value was #$FF, then incre
menting will result in a wrap around giving a result of #$00. The
N (sign) and Z (zero) flags are conditioned depending on the
result.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute INC $FlFH EE ff JFF
Zero Page INC $FF E6 FF
Absolute,X INC $FFff,X FE ff FF
Zero Page,X INC $FF,X F6 FF

USES: INC is most often used for incrementing a one-byte value
(such as an offset) or a two-byte pointer. Here are the most
common forms:

One-Byte Value

ENTRY INC
RTS

MEM

Two-Byte Pointer

ENTRY INC MEM
BNE DONE
INC MEM+l
DONE RTS

After the INC operation, the N and/or Z-flags are often
checked to see if the result was negative or a zero/non-zero value,
respectively.

208 ASSEMBLY LINES

INX: INcrement the X-Register

DESCRIPTION: The contents of the X-Register are incremented
by one. If the original value was #$FF, then incrementing will
result in a wrap around giving a result of #$00. The N (sign) and
Z (zero) flags are conditioned depending on the result.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I• I I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

INX

HEX
CODING

EB

USES: INX is used in forward scanning loops which digest a DATA

stream as shown here:

ENTRY
LOOP

DONE
DATA

LDX
LDA
BEQ
JSR
JMP
RTS
ASC
HEX

#$00
DATA,X
DONE DELIMITER?
COUT $FDED
LOOP NEXT CHAR

"TEST!"
00 ; END OF DATA

Note that in forward scanning loops, the base address can
be DATA itself (See DEX for another situation).

INX can also be used as a general purpose counter for mis
cellaneous routines:

ENTRY LDX #$00
LDA #$8D <RETURN>

LOOP JSR COUT $FDED
INX
CPX #$05
BCC LOOP 'TILL X = 5

DONE RTS PRINTS 5 CR'S

Appendix B 209

INY: INcrement the Y-Register

DESCRIPTION: The contents of the Y-Register are incremented
by one. If the original value was #$FF, then incrementing will
result in a wrap around giving a result of #$00. The N (sign) and
Z (zero) flags are conditioned depending on the result.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I I I• I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

INY

HEX
CODING

CB

USES: INY is used in forward scanning loops which use the
indirect indexed addressing mode (ie. LDA ($FF),Y). This is quite
common in routines which process strings for certain characters,
search routines, etc. Here is a routine which scans the input
buffer for the first carriage return:

ENTRY

LOOP

DONE
FOUND

210

LDA
STA
LDA
STA
LDY
LDA
CMP
BEQ
INY
BNE
RTS
STY
BEQ

#$00
PTR
#$02
PTR PTR,PTR + 1 = $200
#$00
(PTR),Y
#$8D CHR =<CR>?
FOUND

LOOP 'TILL Y = $00 AGAIN

MEM
DONE (ALWAYS)

ASSEMBLY LINES

JMP: JuMp to Address

DESCRIPTION: Causes program execution to jump to the
address specified.

FLAGS & REGISTERS AFFECTED:
N V B D z c Ace X Y Mem

I I I I I I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Absolute
Indirect

COMMON
SYNTAX

JMP $FFff
JMP ($FFff)

HEX
CODING

4C ff FF
6C ff FF

NOTE: The 6502 has a well documented bug regarding the
indirect jump. If the jump specified uses pointers which do not
cross a page boundary (for example, $3C0,3C1), then all will go
as predicted. If, however, the pointers cross a boundary (such
as $3FF,400), then the assumed bytes will not be used. Instead,
the address data will be retrieved from locations $3FF and $300.
That is to say that the high-order byte is not properly incre
mented within the 6502 so that both bytes are retrieved from the
same page of memQ¥"y. This should be taken into account if such
a situation can possibly arise in your routine.

USES: Besides the obvious application of the usual absolute
addressed JMP instruction, the indirect JMP is used when creating
vectored jumps. The Apples uses many such indirect jumps, the
most notable of which are:

ROUTINE LOC. LABEL VECTOR lOC. FUNCTION

IRQ+9: $FA49 IRQLOC $3FE,3FF Interrupt Vector
BRK+$A: $FA56 BRKV $3F0,3F1 Break Vector
RDKEY+F: $FD18 KSWL $38,39 Input Vector
COUT: $FDED CSWL $36,37 Output Vedoir

An indirect jump can also be used when writing relocatable
code. If the current location of the code can be determined, then
an offset can be calculated and the vectors set up so that the JMP

will be relative to the current location of the code. See chapter
fourteen for more information on these techniques.

Appendix B 211

JSR: Jump to SubRoutine

DESCRIPTION: The address of the instruction following the JSR

is pushed onto the stack. The address following the JSR is then
jumped to. When an RTS in the called subroutine is encountered,
a return to the location on the stack (the one after the JSR) is
done. This is analgous to a GOSUB in Basic.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I
ADDRESSING MODES AVAILABLE:

MODE

Absolute Only:

COMMON
SYNTAX

JSR $FFff

Ace X Y Mem

I I

HEX
CODING

20 ff FF

I I I

USES: JSR is one of the most commonly used instructions, being
used to call often needed subroutines. The disadvantage of the
instruction is that if the JSRS reference addresses within the code
(as opposed to routines external to the program, such as in the
Monitor ROM), the code can only be executeu at the location for
which the code was originally assembled.

Because the calling address is saved on the stack, a JSR to a
known RTS can be done, and the data retrieved to determine
where in memory the routine is currently being executed.

See chapter fourteen for more details on both of these topics.

212 ASSEMBLY LINES

! I , I

LDA: LoaD Accumulator

DESCRIPTION: Loads the Accumulator with either a specified
value, or the contents of the designated memory location. The
N (sign) and Z (zero) flags are conditioned when a value with
the high bit set is loaded, or when a zero value is loaded.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I• I I I I• I I• I I I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute LDA $FFff AD ff FF
Zero Page LOA $FF AS FF
Immediate LD.A. #$FF A9 FF
Absolute,X LOA $FFff,X BO ff FF
Absolute,Y LOA $FFff,Y B9 ff FF
(Indirect,)() LDA ($FF,X) Al FF
(Indirect), Y LOA ($FF),Y Bl FF
Zero Page,X LOA $FF,X BS FF

USES: LDA is probably the most used of any instruction. The vast
majority of operations center around the Accumulator, and this
instruction is used to get data into this important register.

Appendix B 213

LDX: Loa.D the X-Register

DESCRIPTION: Loads the X-Register with either a specified
value, or the contents of the designated memory location. The
N (sign) and Z (zero) flags are conditioned when a value with
the high bit set is loaded, or when a zero value is loaded.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

• I• I I I • I I

ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute LDX $FFff AE ff FF
Zero Page LDX $FF A6 FF
Immediate LDX #$FF A2 FF
Absolute,Y LDX $FFFF,Y BE ff FF
Zero Page,Y LDX $FF,Y B6 Ff

USES: This is the primary way in which data is placed into the
X-Register. What more can I say?

214 ASSEMBLY LINES

LDY: LoaD the Y-Register

DESCRIPTION: Loads the Y-Register with either a specified
value, or the contents of the designated memory location. The
N(sign) and Z (zero) flags are conditioned when a value with
the high bit set is loaded, or when a zero value is loaded.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I• I I• I I I I • I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute LOY $FFff AC ff FF
Zero Page LOY $FF A4 FF
Immediate LDY #$FF AO FF
Absolute,X LDY $FFFF,X BC ff FF
Zero Page,X LDY $FF,X B4 FF

USES: This is the primary way in which data is placed into the
Y-Register. See LDX for additional comments.

Appendix B 215

LSR: Logical Shift Right

DESCRIPTION: This instruction moves each bit of the Accu
mulator or memory location specified one position to the right.
A zero is forced at the bit 7 position (the high-order bit), and bit
0 falls into the carry. The result is left in the Accumulator or
memory location. (See also ROR; also ASL and ROL).

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I cir I I I I• I• I I• I I I• I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Accumulator LSR 4A
Absolute LSR $FF££ 4E ff FF
Zero Page LSR $FF 46 FF
Absolute,X LSR $FFff,X 5E ff FF
Zero Page,X LSR $FF,X 56 FF

USES: ASL provides an easy way of dividing by a power of two.
The corresponding effect in decimal arithmetic is well known:
123/10 = 12.3 (shift right). As an example:

ENTRY LDA
LSR
LSR
STA

MEM

MEM

DIV BY 2
DIV BY 2 AGAIN
MEM = MEM/4

ASL also provides a fast way of detecting whether a number is
odd or even:

ENTRY LDA
LSR
BCS
BCC

MEM

ODD
EVEN

Since bit 0 determines the odd/even nature of a number, this
is easily transferred to the carry via the LSR, and then checked
via the BCS/BCC instructions.

216 ASSEMBLY LINES

NOP: No OPeration

DESCRIPTION: Does nothing for one instruction (two cycles).
May remind you of some people you know.

FLAGS & REGISTERS AFFECTED: (NONE)

N V B D z c

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

NOP

Ace X Y Mem

I I

HEX
CODING:

EA

USES: NOP is used primarily to disable portions of code written
by other programmers that you have decided you can live with
out. A classic example of this is the placing of three NOPs at
bytes $3B,3C, and $3D on Track n, Sector n, of a standard DOS
3.3 diskette. By the strategic placement of these NOPs, a boot
will not force a clear of the language card, thus avoiding the
rather monotonous LOADING LANGUAGE CARD message on every
boot.

Additionally, NOPs may be used during debugging to disable
certain steps, or to create certain timing periods.

Appendix B 217

ORA: Inclusive OR with the Accumulator

DESCRIPTION: This instruction takes each bit of the Accumu
lator and performs a logical OR with each corresponding bit of
the specified memory location or immediate value. The result
is put back in the Accumulator. The memory location, if speci
fied, is unaffected. Conditions the N (sign) and Z (zero) flags
depending on the result. (See ORA and AND also.) Inclusive OR
means if either or both bits are one then the result is one. Only
when both bits are zero is the result zero. The truth table used
is:

Example:
Accumulator:
Memory:

Result:

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0 1 1 1 0 1 1 1

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I
ADDRESSING MODES AVAILABLE:

COMMON
MODE SYNTAX

HEX
CODING

Absolute ORA $FFff OD ff FF
Zero Page ORA $FF 05 FF
Immediate ORA #$FF 09 FF
Absolute,X ORA $FFff,X lD ff FF
Absolute,Y ORA $FFff,Y 19 ff FF
(lndirect,X) ORA ($FF,X) 01 FF
(lndirect),Y ORA ($FF),Y 11 FF
Zero Page,X ORA $FF,X 15 FF

USES: ORA is used primarily as a mask to force ones in specified
bit positions. (See AND to force zeros.) To create the mask, a one
is put in each bit position which is to be forced. All other posi
tions are set to zero. For example, here is a routine which will
set the high bit on any ASCII data going out through COUT:

ENTRY LDA DEVICE
ORA #$80 %10000000

SET HIGH BIT
JSR COUT $FDED
RTS

218 ASSEMBLY LINES

,,
, ,

PHA: PusH Accumulator

DESCRIPTION: This pushes the contents of the Accumulator
onto the stack. The Accumulator and Status Register are unaf
fected. (See PLA also.)

FLAGS & REGISTERS AFFECTED: (NONE)

N V B D z c Ace X Y Mem

I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

PHA

I I

HEX
CODING

48

I I

USES: This is one of the most common ways of temporarily
storing a byte or two. It is combined with PLA to retrieve the
data. Generally speaking, each PHA must be matched by a PLA
later in the routine. Otherwise the final RTS of your routine will
deliver you, not back to the calling Basic program or immediate
mode, but rather off in the weeds, as the saying goes.

Here is an example of a simple store/retrieve operation:
ENTRY LDA #$80 TEST VALUE

PHA STORE IT
LDA #$FF DESTROY ACC.
PLA RETRIEVE VALUE
STA MEM SAVE IT TO LOOK AT

DONE RTS

Another more obscure use of PHA is to set up an artificial JMP
by executing an RTS for which a JSR was never done. Providing
two PHAs have been done prior to the RTS, the pseudo-jump will
be executed. See chapter fourteen for more details on this.

ORA can also be used to convert upper case characters to
lower case.
ENTRY LDA

CMP
BCC
CMP
BCS
ORA
STA
RTS

CHAR
#$Cl(A)
DONE
#$EO
DONE
#$20
CHAR
DONE

get character
is it alphabetic?
no, don't convert
is it already lower case?
yes, don't convert
upper case to lower case
put character back

Appendix B 219

PHP: PusH Processor Status

DESCRIPTION: This pushes the Status Register onto the stack
for later retrieval. The Status Register itself is unchanged, and
none of the registers are affected.

FLAGS & REGISTERS AFFECTED: (NONE)

N V B D z c Ace X Y Mem

I I I I I
ADDRESSING MODES AVAILABLE

MODE

implied Only:

COMMON
SYNTAX

PHP

I I

HEX
CODING

08

I I I

USES: PHP is done to preserve the Status Register for later testing
for a specific condition. This is handy if you don't want to test
a flag right then, but the next instruction would ruin what you
want to test for. By putting the Status Register on the stack, and
then later retrieving it, you can test things like the sign flag or
carry when it's most convenient.

ENTRY CLC
PHP
SEC
PLP
BCC
BRK

DONE RTS

ENTRY LDA
PHP
LDA
PLP
BEQ
BRK

DONE RTS

DONE

#$00

#$FF

DONE

CLRCARRY
SAVE REG
SET CARRY
RETRIEVE REG
(ALWAYS!)
(NEVER)

SET Z FLAG
SAVE REG
DESTROY
RETRIEVE
(ALWAYS!)
(NEVER)

Like the PHA instruction, PHP should always be accompanied
by an equal number of PLP instructions to keep the Apple happy.
Remember: It's not nice to fool the stack!

220 ASSEMBLY LINES

PLA: Pu.IL Accumulator

DESCRIPTION: This is the converse of the PHA instruction. PLA
retrieves one byte from the stack and places it in the Accumulator.
This accordingly conditions the N (sign) and Z (zero) flags, just
as though a LDA instruction had been done.

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

PLA

Ace X Y Mem

HEX
CODING

68

I I I

USES: This is combined with PHA to retrieve data from the stack.
See PHA for an example of this.

Additionally, PLA can be used to cancel a current RTS, much
like a POP in Applesoft Basic. To cancel the most recent RTS, two
PLAs are required:

ENTRY JSR LEVEL1
RTS WOULD EXIT HERE NORMALLY

LEVEU LDA #$00 ARBITRARY OPERATION
PLA
PLA 'POP' RTS

EXIT RTS WILL EXIT ENTIRELY HERE

Appendix B 221

PLP: PulL Processor Status

DESCRIPTION: This is used after a PHP to retrieve the Status
Register data from the stack. The byte is put in the Status Register
and all the flags are conditioned corresponding to the status of
each bit in the byte placed there. The Accumulator and other
registers are unaffected. (See PHP.)

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

PLP

I I

HEX
CODING

28

I I

USES: PLP is used much like the retrieve the Status Register after
a PHP has stored the flags at an earlier time. The examples used
for PHP are duplicated here for your convenience:

ENTRY CLC
PHP
SEC
PLP
BCC
BRK

DONE RTS

ENTRY LDA
PHP
LDA
PLP
BEQ
BRK

DONE RTS

DONE

#$00

#$FF

DONE

CLR CARRY
SAVE REG
SET CARRY
RETRIEVE REG
(ALWAYS!)
(NEVER)

SET Z FLAG
SAVE REG
DESTROY
RETRIEVE
(ALWAYS!)
(NEVER)

As with the PHA/PLA set, PLPs should always be matched with
a corresponding number of PHP instructions, in a one-to-one
relationship. Failure to observe this requirement can result in
some very strange results!

222 ASSEMBLY LINES

ROL: ROtate Left

DESCRIPTION: This instruction moves each bit of the Accu
mulator or specified memory location one position to the left.
The carry bit is pushed into position 0, and is replaced by bit
7 (the high-order bit). The N (sign) and Z (zero) flags are also
conditioned depending on the result of the shift. (See ASL; also
ROR and LSR.)

ROL ROR
(Rotate One Bit Left) (Rotate One Bit Right)

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Accumulator ROL 2A
Absolute ROL $FFff 2E ff FF
Zero Page ROL $FF 26 FF
Absolute,X ROL $FFff,X 3E ff FF
Zero Page,X ROL $FF,X 36 FF

USES: ROL can be used as one of the various methods to test for
the high bit set. The disadvantage to testing for the high bit in
this way is that the contents must then be restored with a cor
responding ROR instruction.

ROL is more often used in combination with ASL in multiply
and divide routines.

Appendix B 223

ROR: ROtate Right

DESCRIPTION: This instruction moves each bit of the Accu
mulator or memory location specified one position to the right.
The carry bit is pushed into position 7 (the high-order bit), and
replaced by bit 0. The N (sign) and Z (zero) flags are also con
ditioned depending on the result of the shift. (See LSR; also ASL

and ROL.)

ROL ROR
(Rotate One Bit Left) (Rotate One Bit Right)

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I• I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Accumulator ROR 6A
Absolute ROR $FFff 6E ff FF
Zero Page ROR $FF 66 FF
Absolute,X ROR $FFff,X 7E ff FF
Zero Page,X ROR $FF,X 76 FF

USES: ROR provides an alternate way of testing for the odd/even
nature of a number. The carry is tested after the shift to detect
whether the number was odd or even.

ROR finds greater use when combined with the shift opera
tions in creating multiply and divide routines.

224 ASSEMBLY LINES

RTI: ReTum from Interrupt

DESCRIPTION: This restores both the program counter and the
Status Register in preparation to resuming the routine being
executed at the time of the interrupt. All flags of the Status
Register are reset to the original values.

FLAGS & REGISTERS AFFECTED:

N V B D z c

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

RTI

Ace X Y Mem

I I

HEX
CODING

40

I I

USES: RTI is used in much the same way that an RTS would be
used in returning from a JSR. After an interrupt has been handled
and the background operation performed, the return is done via
the RTI command. Usually the user will want to restore the
Accumulator, the X-Register and the Y-Register prior to return
ing.

RTI also is equivalent to a PLP RTS in that the status register
is restored from the stack and a return is done to the address
on the stack.

Appendix B 225

RTS: ReTurn from Subroutine

DESCRIPTION: This restores the program counter to the address
stored on the stack, usually the address of the next instruction
after the JSR that called the routine. Analogous to a RETURN to
a GOSUB in Basic. (See JSR also.)

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

RTS

Ace X Y Mem

I I

HEX
CODING

60

I I I

USES: RTS is, surprisingly enough, most often used to return
from subroutines. It can on occasion be used to simulate a JMP
instruction, by using two PHA instructions to put a false return
address on the stack, and then executing the RTS. See the section
on PHA, and also chapter fourteen for more details.

An RTS can be POPed one level by the execution of two PLA
instructions.

226 ASSEMBLY LINES

SBC: Su.Btrad with Carry

DESCRIPTION: Subtracts the contents of the memory location
or a specified value from the Accumulator. The opposite of the
carry is also subtracted, and in this instance, the carry is called
a borrow. The N (sign), V (overflow), Z (zero), and C (carry)
flags are all conditioned by this operation, and are often used
to detect the nature of the result of the subtraction. The result
of the subtraction is put back in the Accumulator. The memory
location, if specified, is unchanged. SBC works for both the binary
and BCD arithmetic modes.

IMPORTANT: A SEC should always be done prior to the first SBC

operation. This is equivalent to clearing the borrow. This is anal
ogous to the CLC done prior to an ADC instruction.

FLAGS & REGISTERS AFFECTED:

N v B D z c Ace x y Mem

I• I• I I I• I• I I~ I I I I
ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute SBC $FFff ED ff FF
Zero Page SBC $FF ES FF
Immediate SBC #$FF E9 FF
Absolute,X SBC $FFff,X FD ff FF
Absolute,Y SBC $FFff,Y F9 ff FF
(Indirect,X) SBC ($FF,X) El FF
Ondirect), Y SBC ($FF),Y Fl FF
Zero Page,X SBC $FF,X F5 FF

USES: SBC is used most often for either 1) subtracting a constant
or memory value from a one-byte memory location, or 2) sub
tracting a constant or memory value from a two-byte memory
location.

Appendix B 227

One-Byte Subtraction

ENTRY SEC

DONE

LDA
SBC
STA
RTS

MEM
#$80
MEM

(MEM = MEM - #$80)

Two-Byte Subtraction

ENTRY SEC
LDA MEM
SBC #$80
STA MEM
LDA MEM+l
SBC #$00
STA MEM+l

DONE RTS

(MEM,MEM + 1 = MEM,MEM + 1 - #$80)

228 ASSEMBLY LINES

SEC: SEt Carry

DESCRIPTION: This sets the carry flag of the Status Register.

FLAGS & REGISTERS AFFECTED:

N V B D z c

•
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

SEC

Ace X Y Mem

I I

HEX
CODING

38

I I I

USES: SEC is usually used just prior to a SBC operation. The carry
is occasionally used though to indicate error (or other) condi
tions, as is done by RWTS (Read-Write Track Sector) in DOS. In
these instances SEC is used to set the carry to indicate an error.
This would be detected sometime later in program execution,
after a return from RWTS has already been made.

SEC is also sometimes used to force a branch. For example:

SEC
BCS ADDRESS (ALWAYS)

Appendix B 229

SEO: SEt Decimal Mode

DESCRIPTION: SED sets the 6502 to the Binary Coded Decimal
(BCD) mode, in preparation for a ADC or SBC operation.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

SED

HEX
CODING

F8

USES: BCD math is used when a greater degree of precision is
required. In this mode each four bits of a byte represent one
digit of a base ten number. Although not discussed in the articles
covered in this volume, here is a brief example of a BCD addition
operation:

ENTRY

DONE

230

SED
CLC
LDA
ADC
STA
CLD
RTS

#$25
#$18
MEM

SET DEC MODE

%00101001 = #25
%00011000 = #18
RSLT = %01000011 = #43
CLR DEC MODE

ASSEMBLY LINES

SEI: SEt Interrupt Disable

DESCRIPTION: SEI is used to disable the interrupt response to
an IRQ (a maskable interrupt). This does not disable the response
to a NMI (Non-Maskable Interrupt = RESET).

FLAGS & REGISTERS AFFECTED:

N V B D z c

I I I I• I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

SEI

Ace X Y Mem

I I

HEX
CODING

78

I I I

USES: SEI is automatically set whenever an interrupt occurs so
that no further interrupts can disturb the system while it is going
through the $FFFE,FFFF to $3FE,3FF vector path. The user is
expected to use cu to re-enable interrupts upon entry to his
own interrupt routine. DOS typically does a SEI/CLI operation
upon entrance to and exit from RWTS so that interrupts do not
interfere with the highly timing-dependent disk read/write rou
tines.

Appendix B 231

STA: STore Accumulator

DESCRIPTION: Stores the contents of the Accumulator in the
specified memory location. The contents of the Accumulator are
not changed, nor are any of the Status Register flags.

FLAGS & REGISTERS AFFECTED: (NONE)

N v B D z c Ace x y Mem

I I I I I I I

ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute STA $FF££ SD H FF
Zero Page STA $FF 85 FF
Absolute,X STA $FFff,X 9D ff FF
Absolute,Y STA $FFff,Y 99 ff FF
Undirect,X) STA ($FF,X) 81 FF
(Indirect), Y STA ($FF),Y 91 FF
Zero Page,X STA $FF,X 95 FF

USES: STA is another highly used instruction, being used at the
end of many operations to put the final result into a memory
location.

In general, the LDA/STA combination is used to transfer bytes from one
location to another.

232 ASSEMBLY LINES

STX: STore the X-Register

DESCRIPTION: STX stores the contents of the X-Register in the
specified memory location. The X-Register is unchanged and
none of the Status Register flags are affected.

FLAGS & REGISTERS AFFECTED: (NONE)

N v B D z c Ace x y Mem

I I I I I I I

ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute STX $FFff BE ff FF
Zero Page STX $FF 86 FF
Zero Page,Y STX $FF,Y 96 FF

USES: It is occasionally useful to be able to store the contents
of the X-Register for later reference. Another fairly common use
of STX is in Applesoft's determination of string lengths. After
getting data from the input buffer ($200-2FF) the length of the
input string is held in the X-Register, and is saved to a string
descriptor for later use. See chapter twelve for a listing of a simple
INPUT routine.

Appendix B 233

STY: STore the Y-Register

DESCRIPTION: STY stores the contents of the Y-Register in the
specified memory location. The Y-Register is unchanged and
none of the Status Register flags are affected.

FLAGS & REGISTERS AFFECTED: (NONE)

N v B D z c Ace x y Mem

I I I I I I I I I

ADDRESSING MODES AVAILABLE:

COMMON HEX
MODE SYNTAX CODING

Absolute STY $FF££ BC ff FF
Zero Page STY $FF 84 FF
Zero Page,X STY $FF,X 94 FF

USES: STY is used to store the value of the Y-Register, usually
from within string or data scanning loops. For example, here is
a routine which returns the position of the first control character
in a block of data:

ENTRY
LOOP

FOUND
DONE
NXT

NOTF

234

LDY
LDA
BEQ
CMP
BCS
STY
RTS
INY
BNE
BEQ
LDY
BNE

#$00 ZERO COUNTER
DATA,Y GET CHARACTER
NOTF CHR=O =END
#$20 'SPC'
NXT CHR > CTRI.:S
POS SAVE Y-REG

Y=Y+l
LOOP 'TILL Y = 0 AGAIN.
DONE
#$FF FLAG NOTFOUND
FOUND

ASSEMBLY LINES

TAX: Transfer Accumulator to X-Register

DESCRIPTION: Puts contents of Accumulator into the X-Reg
ister. Does not affect the Accumulator.

FLAGS & REGISTERS AFFECTED:

N V B D z c

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

TAX

Ace X Y Mem

I I• I I I

HEX
CODING

AA

USES: Most simply, TAX is used for transferring data in the man
ner in which it implies. Equally important however, is its com
bination with TYA to form a transfer from Y-Register to X-Register
function:

ENTRY LDY
TYA
TAX

#$00 LOADY
PUTIN A
PUT IN X

Appendix B 235

TAY: Transfer Accumulator to Y-Register

DESCRIPTION: Puts contents of Accumulator into the Y-Reg
ister. Does not affect the Accumulator.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

TAY

I I

HEX
CODING

AS

I• I I

USES: Most often, TAY is used for transferring data from the
Accumulator to the Y-Register. Equally important, however, is
its combination with TXA to form a transfer from X-Register to
Y-Register function:

ENTRY

236

LDX
TXA
TAY

#$00 LOADX
PUTIN A
PUTINY

ASSEMBLY LINES

TSX: Transfer Stack to X-Register

DESCRIPTION: This puts the contents of the stack pointer into
the X-Register. The N (sign) and Z (zero) flags are conditioned.
The stack pointer is unchanged.

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mem

I I• I I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

TSX

HEX
CODING

BA

USES: The most obvious use of TSX is in preserving the value
of the stack at a certain point. This could be used in place of the
PLAs mentioned under the PLA and RTS headings in attempting
to duplicate the equivalent of Basie's POP command, that is to
say, a direct return to a different level than the one which had
actually called a subroutine. For example:

ENTRY

LEVEL1
DONE

LDA
TSX
JSR
RTS

TXS
RTS

#$00

LEVELl

DUMMY OPERATION
SAVE CURRENT RETURN PTR.

NORMAL EXIT, BUT IT
WILL NEVER BE CALLED HERE.
PUT PTR TO lST RETURN BACK.
EXIT TO MAIN CALLING PROGR.

Note that this is somewhat dangerous in that you must be
very certain as to the actual contents of the stack, and in the
knowledge that the data has not been changed by intermediate
PHAs and PLAs for instance. Remember that S is only a pointer
to the stack and does not preserve the return address as such,
only its position in the stack.

Another use for TSX is in retrieving data from the stack with
out having to do a PLA instruction. Although a PLA/PHA!TAX
sequence would be transparent to the stack, and accomplish the
same results, TSX can be used to retrieve information that is

Appendix B 237

officially lost at that point. What I am alluding to is retrieving
data that is lower in memory than the current stack pointer, and
which would be overwritten by the next PHA instruction. One
of the prime examples of this is in using a JSR to a known RTS in
the Monitor for no other purpose than to be able to immediately
retrieve the otherwise transparent return address. This is done
so that relocatable code has a way of finding out where it's cur
rently located. See chapter fourteen for a thorough explanation
of the technique. For quick reference, here's the basic routine:

ENTRY JSR RETURN $FF58
TSX
LDA STACK,X $100,X
STA PTR+l
DEX
LDA STACK,X $100,X+l
STA PTR PTR,PTR + 1 = ENTRY+ 2.

DONE RTS

CAUTION: Most Step and Trace utilities will not properly trace
code like this because of the somewhat illegal use of the stack.
Strictly speaking, good programming principles dictate that once
data is officially off the stack, it is counted as being effectively
lost. This is especially true in the case of interrupts, where an
interrupt in the middle of the dummy JSR, RTS and retrieval
process could produce a completely invalid result in PTR,PTR + 1.

Caveat emptor!

238 ASSEMBLY LINES

TXA: Transfer X to Accumulator

DESCRIPTION: This puts the contents of the X-Register into the
Accumulator, and thus conditions the Status Register just as if
a LOA instruction had been executed. The X-Register is unaf
fected by the operation. (See also TAX.)

FLAGS & REGISTERS AFFECTED:

N V B D z c Ace X Y Mero

I I I• I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

TXA

HEX
CODING

8A

[]

USES: TXA provides a way of retrieving the value in the X-Reg
ister for appropriate processing by the program. In the case of
string related routines, this is often the length of the string just
entered or scanned. The Accumulator can then go about the
things it does so well in terms of putting the value into the most
useful part of memory. Notice that there are more addressing
modes available to STA command, not to mention the overall
powers granted the Accumulator in terms of logical operators.

As discussed under TAY, TXA can be combined with TAY to
form a TXY-like (transfer X to Y) function like so:

ENTRY LOX
TXA
TAY

MEM GET DATA
PUT IN X
MOVE TOY

Appendix B 239

TXS: Transfer X to Stack

DESCRIPTION: This puts the contents of the X-Register into the
stack pointer. None of the Status Register flags are affected, nor
is the X-Register itself changed.

FLAGS & REGISTERS AFFECTED: (NONE)

N V B D z c Ace X Y Mem

I I I I I I I
ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

TXS

HEX
CODING

9A

USES: TXS is used to put data directly onto the stack pointer.
Because there is no TAS (Accumulator to stack) or even TYS (Y
Register to stack), this is the only way to get a specific byte into
the stack pointer. This is usually used in conjunction with TSX

to restore previously saved data. In the case of the Applesoft
stack fix program, it is used to avoid problems that would other
wise occur if a RESUME were not used after an error had occurred
within a FOR-NEXT loop, or GOSUB:

ENTRY PLA

TAY
PLA

LDX
TXS
PHA
TYA
PHA

DONE RTS

ERRSTK

GET LOW BYTE OF CURRENT
RETURN ADDR.
SAVE INTO Y
GET HIGH BYTE OF
RETURN ADDR.
$DF = S PTR BEFORE ERROR
PUT BEFORE-ERR PTR BACK
PUT HIGH BYTE BACK
GET LOW BYTE IN ACC.
PUT LOW BYTE BACK.
RETURN TO APPLESOFT
WITH STACK FIXED.

See also TSX for other applications of TXS.

240 ASSEMBLY LINES

TYA: Transfer Y to Accumulator

DESCRIPTION: This puts the contents of the Y-Register into the
Accumulator, and thus conditions the Status Register just as if
a LDA instruction had been executed. The Y-Register is unaffected
by the operation. (See also TAX.)

FLAGS & REGISTERS AFFECTED:

N V B D z c

ADDRESSING MODES AVAILABLE:

MODE

Implied Only:

COMMON
SYNTAX

TYA

Ace X Y Mem

HEX
CODING

98

I I I

USES: TYA provides a way of retrieving the value in the Y-Register
for appropriate processing by the program. This comes in handy
when scanning a data block, and information regarding certain
locations is to be processed. As mentioned under TXA, the
Accumulator has far greater flexibility than the Y-Register in
terms of addressing modes and logical operators available.

TYA is also combined with TAX to form the equivalent of a TYX

(transfer Y to X). The operation has the form of:

ENTRY LDY
TYA
TAX

MEM GET DATA
PUT IN Y
MOVE TOX

Appendix B 241

APPENDIX C
6502 MICROPROCESSOR INSTRUCTIONS

ADC Add memory to Accumulator LDA Load Accumulator with Memory
with Carry LDX Load Index X with Memory

AND "AND" Memory with LDY Load Index Y with Memory
Accumulator LSR Shift Right One Bit (Memory or

ASL Shift Left One Bit (Memory or Accumulator)
Accumulator) NOP No Operation

BCC Branch on Carry Clear ORA "OR" Memory with
BCS Branch on Carry Set Accumulator
BEQ Branch on Result Zero PHA Push Accumulator on Stack
BIT Test Bits in Memory with PHP Push Processor Status on Stack

Accumulator PLA Pull Accumulator from Stack
BMI Branch on Result Minus PLP Pull Processor Status from Stack
BNE Branch on Result not Zero ROL Rotate One Bit Left (Memory or
BPL Branch on Result Plus Accumulator)
BRK Force Break ROR Rotate One Bit Right (Memory
BVC Branch on Overflow Clear or Accumulator)
BVS Branch on Overflow Set RTI Return from Interrupt
CLC Clear Carry Flag RTS Return from Subroutine
CLD Clear Decimal Mode SBC Subtract Memory from
cu Clear Interrupt Disable Bit Accumulator with Borrow
CLV Clear Overflow Flag SEC Set Carry Flag
CMP Compare Memory and SED Set Decimal Mode

Accumulator SEI Set Interrupt Disable Status
CPX Compare Memory and Index X STA Store Accumulator in Memory
CPY Compare Memory and Index Y STX Store Index X in Memory
DEC Decrement Memory by One STY Store Index Y in Memory
DEX Decrement Index X by One TAX Transfer Accumulator to Index X
DEY Decrement Memory Y by One TAY Transfer Accumulator to Index Y
EOR "Exclusive-On" Memory with TSX Transfer Stack Pointer to Index X

Accumulator TXA Transfer Index X to Accumulator
INC Increment Memory by One TXS Transfer Index X to Stack Pointer
INX Increment Index X by One TYA Transfer Index Y to Accumulator
INY Increment Index Y by One
JMP Jump to New Location
JSR Jump to New Location Saving

Return Address

*Appendices c, D, and E reprinted from the APPLE II REFERENCE MANUAL

courtesy Apple Computer, Inc.

Appendix C 243

A
x, y
M
c
p
s
j

+
/\

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator
Index Register
Memory
Borrow
Processor Status Register
Stack Pointer
Change
No Change
Add
Logical AND
Subtract

v
PC
PCH
PCL
OPER

Logical Exclusive Or
Transfer From Stack
Transfer To Stack
Transfer To
rransfer To
Logical OR
Program Counter
Program Counter High
Program Counter Low
Operand
Immediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

FIGURE3.

NOTE 1: BIT - TEST BITS

Bits 6 and 7 are transferred to the Status Register. If the result of A /\ M is
zero then Z=l, otherwise Z=O.

244 ASSEMBLY LINES

15

PCH

PROGRAMMING MODEL

7

7

7

7

I
7

I 01 I

0

A

0

y

0

x

0

PCL I
0

s I

NV-BDIZC

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER

STACK POINTER

Carry

Zero

Interrupt Disable

Decimal Mode

~----- Break Command

~------ Not Used

Overflow
~-------- Negative

Appendix C 245

~I
INSTRUCTION CODES

Assembly HEX
Name Addressing Language Op No. "P" Status Reg.

Description Operation Mode Form Code Bytes NZCIDV

ADC
Add memory to Accumulator A-M-C~A.C Immediate ADC #Oper 69 2 I jjj---
with carry Zero Page ADC Oper 65 2

Zero Page, X ADC Oper, X 75 2

> Absolute ADC Oper 60 3

CJ) Absolute, X ADC Oper, X 70 3
CJ) Absolute, Y ADC Oper, Y 79 3
tI:1 (Indirect, X) ADC (Oper, X) 61 2 s;:: (Indirect), Y ADC (Oper), Y 71 2
O::l

r< AND

~
"AND" memory with A/\M~A Immediate AND #Oper 29 2 I jj----- Accumulator Zero Page AND Oper 25 2 z Zero Page, X AND Oper, X 35 2

tI:1 Absolute AND Oper 20 3 CJ)
Absolute, X AND Oper, X 30 3
Absolute, Y AND Oper, Y 39 3
(Indirect, X) AND (Oper, X) 21 2
(Indirect), Y AND (Oper), Y 31 2

ASL
Shift left one bit (Memory or (See Figure 1) Accumulator ASLA OA 1 I j j j---
Accumulator) Zero Page ASL Oper 06 2

Zero Page, X ASL Oper, X 16 2
Absolute ASL Oper OE 3
Absolute, X ASL Oper, X 1E 3

BCC
Branch on carry clear I Branch on C=O I Relative jBCC Oper I 90 I 2 ·------

BCS
Branch on carry set I Branch on C=l I Relative jBCS Oper I 80 I 2 1------

BEQ
Branch on result zero I Branch on Z=l I Relative jBEQ Oper I FO I 2

, ______

BIT
Test bits in memory with I A/\M, M7--> N. I Zero Page IBIT* Oper I

24
I

2
IM7/- -M. > Accumulator M6 --> V Absolute BIT* Oper 2C 3

en
en BMI
t:r:l Branch on result minus I Branch on N = 1 I Relative IBMI Oper s;:: I 30 I 2 ·------

Oj BNE

Q Branch on result not zero I Branch on Z=O I Relative IBNE Oper I DO I 2 ·------

L" BPL ,.......
Branch on result plus I Branch on N =0 I Relative IBPL Oper I 10 I 2 ·------z

t:r:l BRK en
Force Break I Forced Interrupt I Implied IBRI<* I 00 I 1 \---1--

PC+2H!

BVC
Branch on overflow clear Branch on V = 0 Relative IBVC Oper I 50 I 2

, ______
BVS
Branch on overflow set Branch on V = 1 Relative jBVS Oper I 70 I 2

, ______

~I Note 1. Bits 6 and 7 are transferred to the Status Register. If the result of A/\ Mis zero, then Z = 1 otherwise Z = 0.

Note 2. A BRI< command cannot be masked by setting I.

~I Assembly HEX
Name Addressing Language Op No. "P" Status Reg.

Description Operation Mode Form Code Bytes NZCIDV
I

CLC
Clear carry flag 10---+C I Implied ICLC I 18 I 1 I - - -o- -
ClD
Clear decimal mode

10-->D I Implied ICLD I 08 I 1 1-0----

> cu 0 ---+ I Implied ICU I 58 I 1 1---0--
(./)
c.n ClV rn
$:; Clear overflow flag IO-->V I Implied ICLV BS 1 10------

o:i CMP

~ Compare memory and A-M Immediate CMP #Oper C9 2 I///---
~ Accumulator Zero Page CMP Op er cs 2 - Zero Page,X CMP Oper,X DS 2 z
trJ Absolute CMP Op er CD 3
c.n Absolute,X CMP Oper,X DD 3

Absolute,Y CMP Oper,Y D9 3
(Indirect,X) CMP (Oper,X) Cl 2
(Indirect), Y CMP (Oper),Y Dl 2

I
CPX
Compare memory and Index X I X - M I Immediate I CPX #Oper

I

EO

I

2 I///---
Zero Page CPX Oper E4 2
Absolute CPX Oper EC 3

CPY
Compare memory and Index Y I Y - M J Immediate CPY #Oper

I
co

I
2 Jjj/---

Zero Page CPY Op er C4 2
Absolute CPY Op er cc 3

DEC
IM-1-->M I Zero Page Decrement memory by one DEC Oper C6 2 111----

Zero Page,X DEC Oper,X D6 2
Absolute DEC Oper CE 3
Absolute,X DEC Oper,X DE 3

DEX
IX-1-->X I Implied

>
Decrement Index X by one DEX I CA I 1 111----

'""d DEY
'"O Decrement Index Y by one I Y-1-->Y I Implied IDEY 88 I 1 I//----ro

:::::1 EOR p.. "Exclusive-Or" memory with IAV-M->A I Immediate EOR #Oper 49 2 I//----
><
n Accumulator Zero Page EOR Op er 45 2

Zero Page,X EOR Oper,X 55 2
Absolute EOR Op er 4D 3
Absolute,X EOR Oper,X SD 3
Absolute,Y EOR Oper,Y 59 3
(Indirect,X) EOR (Oper,X) 41 2
(Indirect), Y EOR (Oper),Y 51 2

INC
Increment memory by one M+l---?M Zero Page INC Oper E6 2 111----

Zero Page,X INC Oper,X F6 2

~I Absolute INC Oper EE 3
Absolute,X INC Oper,X FE 3

~I Assembly HEX
Name Addressing Language Op No. "P" Status Reg.

Description Operation Mode Form Code Bytes NZCIDV

INX
Increment Index X by one 1x+l---?X I Implied IINX I ES 1 111----
INY
Increment Index Y by one \Y+l---?Y I Implied I INY cs 1 111----

> JMP
CJ) Jump to new location I (PC+ 1)---? PCL I Absolute I JMP Oper 4C 3 I------
CJ)

(PC + 2) ---? PCH Indirect JMP (Oper) 6C 3 t:d
~ JSR
Cd Jump to new location saving I PC+2t I Absolute I JSR Oper 20 3 '------t< return address (PC+ 1)---? PCL

L' (PC + 2) ---? PCH
~ z LDA
t:d Load Accumulator with IM--,,A I Immediate LDA #Oper A9 2 Ill----CJ)

memory Zero Page LDA Op er AS 2
Zero Page,X LDA Oper,X BS 2
Absolute LDA Op er AD 3
Absolute,X LDA Oper,X BD 3
Absolute,Y LDA Oper,Y B9 3
(Indirect,X) LDA (Oper,X) Al 2
(Indirect),Y LDA (Oper),Y Bl 2

LDX
Load Index X with memory IM~x I Immediate LDX#Oper A2 2 In----

Zero Page LDX Op er A6 2
Zero Page,Y LDX Oper,Y B6 2
Absolute LDX Op er AE 3
Absolute,Y LDX Oper,Y BE 3

LDY IM~Y I Immediate Load Index Y with memory LDY #Oper AO 2 In----
Zero Page LDY Op er A4 2
Zero Page,X LDY Oper,X B4 2
Absolute LDY Oper AC 3

)> I I Absolute,X LDY Oper,X BC 3

"'O LSR "'O
([) Shift right one bit (memory or (See Figure 1) Accumulator LSRA 4A 1 I on- - -
~ Accumulator) Zero Page LSR Oper 46 2 0.. x· Zero Page,X LSR Oper,X 56 2

n Absolute LSR Oper 4E 3
Absolute,X LSR Oper,X SE 3

NOP
No operation Implied NOP I EA I 1 I------

ORA
"ORn memory with AVM~A Immediate ORA#Oper 09 2 In----
Accumulator Zero Page ORA Oper 05 2

Zero Page,X ORA Oper,X 15 2
Absolute ORA Oper OD 3

~I I
I Absolute,X ORA Oper,X 1D 3

Absolute,Y ORA Oper,Y 19 3
(Indirect,X) ORA (Oper,X) 01 2
(Indirect), Y ORA (Oper),Y 11 2

~I Assembly HEX
Name Addressing Language Op No. "P" Status Reg.

Description Operation Mode Form Code Bytes NZCIDV

PHA
Push Accumulator on stack Ai Implied \PHA I 48 I 1 I------

PHP
Push processor status on stack p i Implied \PHP I 08 I 1 '------

> PLA

rJ) Pull Accumulator from stack I At I Implied IPLA I 68 I 1 I JJ----
rJ)

PLP tr:l
~ Pull processor status from stack I P t I Implied IPLP I 28 I 1 I From Stack
Oj

ROL
~ Rotate one bit left (memory or j (See Figure 2) Accumulator ROLA 2A 1 I Jn---
r-" Accumulator) Zero Page ROL Oper 26 2

"""'" Zero Page,X ROL Oper,X 36 2 z
tr:l Absolute ROL Oper 2E 3
rJ) Absolute,X ROL Oper,X 3E 3

ROR
Rotate one bit right (memory or (See Figure 3) Accumulator RORA 6A 1 I jjJ---
Accumulator) Zero Page ROR Oper 66 2

Zero Page,X ROR Oper,X 76 2
Absolute ROR Oper 6E 3
Absolute,X ROR Oper,X 7E 3

RTI
I PtPCt I Implied Return from Interrupt RTI I 40 I 1 I From Stack

RTS
Return from subroutine PC t, PC+ 1--l>PC I Implied I RTS 60 I 1 '------

SBC
Subtract memory from A - M - C __,. A I Immediate SBC #Oper E9 2 I 111--1
Accumulator with borrow Zero Page SBC Op er ES 2

Zero Page,X SBC Oper,X FS 2
Absolute SBC Op er ED 3
Absolute,X SBC Oper,X FD 3
Absolute,Y SBC Oper,Y F9 3
(Indirect,X) SBC (Oper,X) El 2

>- 1 (Indirect), Y SBC (Oper),Y Fl 2

'"cl SEC
'"cl Set carry flag Jl__,.C I Implied I SEC 38 I 1 1--1---t1l
~

SED p_. x· Set decimal mode 11__,.D I Implied I SED I FS I 1 - - - -1-

n SEI
Set interrupt disable status 1 __,. I Implied I SEI I 78 1 1---1--

STA
Store Accumulator in memory A_,. M Zero Page STA Oper 85 2 I------

Zero Page,X STA Oper,X 95 2
Absolute STA Oper SD 3
Absolute,X STA Oper,X 9D 3
Absolute,Y STA Oper,Y 99 3
(Indirect,X) STA (Oper,X) 81 2

NI I 1 (Indirect), Y STA (Oper),Y 91 2
Ul
CJJ

~I Assembly HEX
Name Addressing Language Op No. "P" Status Reg.

Description Operation Mode Form Code Bytes NZCIDV

STX
Store Index X in memory jX->M I Zero Page STX Oper

I
S6

I
2

, ______
Zero Page,Y STX Oper,Y 96 2
Absolute STX Oper SE 3

STY
> Store Index Y in memory y ---7 M Zero Page STY Oper

I
S4

I
2

, ______
en
en Zero Page,X STY Oper,X 94 2
tr:I Absolute STY Oper SC 3
~
tJj TAX

~ Transfer Accumulator to Index X I A -> X I Implied ITAX I AA 1 I//----

r TAY
........ Transfer Accumulator to Index Y I A -> Y I Implied ITAY AS 1 I//----z
tii TSX en Transfer stack pointer to Index X I S ---? X I Implied ITSX I BA I 1 I//----

TXA
Transfer Index X to Accumulator X-> A Implied ITxA SA 1 In----

TXS
Transfer Index X to stack pointer x ---7 s Implied ITXS 9A I 1 I------

TYA
Transfer Index Y to Accumulator Y---?A Implied ITYA 9S I 1 I//---

HEX OPERATION CODES

00 -BRK 2F -NOP
01 - ORA - (Indirect, X) 30 -BMI
02 -NOP 31 -AND - (Indirect), Y
03 -NOP 32 -NOP
04 -NOP 33 -NOP
OS - ORA - Zero Page 34 -NOP
06 - ASL -- Zero Page 3S - AND - Zero Page, X
07 -NOP 36 - ROL - Zero Page, X
08 -PHP 37 -NOP
09 - ORA - Immediate 38 -SEC
OA - ASL - Accumulator 39 - AND - Absolute, Y
OB -NOP 3A -NOP
oc -NOP 3B -NOP
OD - ORA - Absolute 3C -NOP
OE - ASL - Absolute 3D - AND - Absolute, X
OF -NOP 3E - ROL - Absolute, X
10 -BPL 3F -NOP
11 - ORA - (Indirect), Y 40 -RTI
12 -NOP 41 - EOR - (Indirect, X)
13 -NOP 42 -NOP
14 -NOP 43 -NOP
lS - ORA - Zero Page, X 44 -NOP
16 -ASL - Zero Page, X 4S - EOR - Zero Page
17 -NOP 46 - LSR - Zero Page
18 -CLC 47 -NOP
19 - ORA - Absolute, Y 48 -PHA
lA -NOP 49 - EOR - Immediate
1B -NOP 4A - LSR - Accumulator
lC -NOP 4B -NOP
1D - ORA - Absolute, X 4C - JMP - Absolute
1E - ASL - Absolute, X 4D - EOR - Absolute
lF -NOP 4E - LSR - Absolute
20 -JSR 4F -NOP
21 - AND - (Indirect, X) so -BVC
22 -NOP Sl - EOR - (Indirect), Y
23 -NOP S2 -NOP
24 - BIT - Zero Page S3 -NOP
2S - AND - Zero Page S4 -NOP
26 - ROL - Zero Page SS - EOR - Zero Page, X
27 -NOP S6 - LSR - Zero Page, X
28 -PLP S7 -NOP
29 - AND - Immediate S8 -CLI
2A - ROL - Accumulator S9 - EOR - Absolute, Y
2B -NOP SA -NOP
2C - BIT - Absolute SB -NOP
2D - AND - Absolute SC -NOP
2E - ROL - Absolute SD - EOR - Absolute, X

Appendix C 255

SE - LSR - Absolute, X 90 -BCC
SF -NOP 91 - STA - (Indirect), Y
60 -RTS 92 -NOP
61 -ADC - (Indirect, X) 93 -NOP
62 -NOP 94 - STY - Zero Page, X
63 -NOP 9S - STA - Zero Page, X
64 -NOP 96 - STX - Zero Page, Y
6S - ADC - Zero Page 97 -NOP
66 - ROR - Zero Page 9S -TYA
67 -NOP 99 - STA - Absolute, Y
6S -PLA 9A -TXS
69 - ADC - Immediate 9B -NOP
6A - ROR - Accumulator 9C -NOP
6B -NOP 90 - STA - Absolute, X
6C - JMP - Indirect 9E -NOP
60 -ADC - Absolute 9F -NOP
6E - ROR - Absolute AO - LOY - Immediate
6F -NOP Al - LOA - (Indirect,X)
70 -BVS A2 - LOX - Immediate
71 - ADC - (Indirect), Y A3 -NOP
72 -NOP A4 - LOY - Zero Page
73 -NOP AS - LOA - Zero Page
74 -NOP A6 - LOX - Zero Page
7S -ADC - Zero Page, X A7 -NOP
76 -ROR - Zero Page, X AS -TAY
77 -NOP A9 - LOA - IJIU:11.ediate
7S -SEI AA -TAX
79 - ADC - Absolute, Y AB -NOP
7A -NOP AC - LOY - Absolute
7B -NOP AD - LOA - Absolute
7C -NOP AE - LOX - Absolute
70 -ADC - Absolute, X AF -NOP
7E - ROR - Absolute, X BO -BCS
7F -NOP Bl - LOA - (Indirect), Y
so -NOP B2 -NOP
Sl - STA - (Indirect, X) B3 -NOP
S2 -NOP B4 - LOY - Zero Page, X
83 -NOP BS - LOA - Zero Page, X
84 - STY - Zero Page B6 - LOX - Zero Page, Y
SS - STA - Zero Page B7 -NOP
S6 - STX - Zero Page BS -CLV
S7 -NOP B9 - LOA - Absolute, Y
SS -DEY BA -TSX
S9 -NOP BB -NOP
SA -TXA BC - LOY - Absolute, X
SB -NOP BO - LOA - Absolute, X
SC - STY - Absolute BE - LOX - Absolute, Y
SD - STA - Absolute BF -NOP
SE - STX - Absolute co - CPY - Immediate
SF -NOP Cl - CMP - (Indirect, X)

256 ASSEMBLY LINES

C2 -NOP El - SBC - (Indirect), X
C3 -NOP E2 -NOP
C4 - CPY - Zero Page E3 -NOP
cs - CMP - Zero Page E4 - CPX - Zero Page
C6 - DEC - Zero Page ES - SBC - Zero Page
C7 -NOP E6 - INC - Zero Page
cs -INY E7 -NOP
C9 - CMP - Immediate ES -INX
CA -DEX E9 - SBC - Immediate
CB -NOP EA -NOP
cc - CPY - Absolute EB -NOP
CD - CMP - Absolute EC - CPX - Absolute
CE - DEC - Absolute ED - SBC - Absolute
CF -NOP EE - INC - Absolute
DO -BNE EF -NOP
Dl - CMP - (Indirect), Y FO -BEQ
D2 -NOP Fl - SBC - (Indirect), Y
D3 -NOP F2 -NOP
D4 -NOP F3 -NOP
DS - CMP - Zero Page, X F4 -NOP
D6 - DEC - Zero Page, X FS - SBC - Zero Page, X
D7 -NOP F6 - INC - Zero Page, X
DS -CLD F7 -NOP
D9 - CMP - Absolute, Y FS -SED
DA -NOP F9 - SBC - Absolute, Y
DB -NOP FA -NOP
DC -NOP FB -NOP
DD - CMP - Absolute, X FC -NOP
DE - DEC - Absolute, X FD - SBC - Absolute, X
DF -NOP FE - INC - Absolute, X
EO - CPX - Immediate FF -NOP

Appendix C 257

APPENDIX D
SOME USEFUL MONITOR SUBROUTINES

Here is a list of some useful subroutines in the Apple's Monitor and Autostart
ROMs. To use these subroutines from machine language programs, load the
proper memory locations or 6502 registers as required by the subroutine and
execute a JSR to the subroutine's starting address. It will perform the function
and return with the 6502's registers set as described.

$FDED COUT Output a character

COUT is the standard character output subroutine. The character to be output
should be in the Accumulator. coUT calls the current character output subroutine
whose address is stored in csw (locations $36 and $37), usually COUTl (see
below).

$FDFO COUT1 Output to screen

COUTl displays the character in the Accumulator on the Apple's screen at the
current output cursor position and advances the output cursor. It handles the
control characters RETURN, linefeed, and bell. It returns with all registers intact.

$FE80 SETINV Set Inverse mode

Sets Inverse video mode for COUTl. All output characters will be displayed as
black dots on a white background. The Y-Register is set to $3F, all others are
unchanged.

$FE84 SETNORM Set Normal Mode

Sets Normal video mode for COUTl. All output characters will be displayed as
white dots on a black background. The Y-Register is set to $FF, all others are
unchanged.

$FD8E CROUT Generate a RETURN

CROUT sends a RETURN character to the current output device.

$FD8B CROUT1 RETURN with dear

CROUTl clears the screen from the current cursor position to the edge of the
text window, then calls CROUT .

$FDDA PR BYTE Print a hexadecimal byte

This subroutine outputs the contents of the Accumulator in hexadecimal on the
current output device. The contents of the Accumulator are scrambled.

Appendix D 259

$FDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nibble of the Accumulator as a single hexa
decimal digit. The contents of the Accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal

This outputs the contents of the Accumulator and X-Register as a four-digit
hexadecimal value. The Accumulator contains the first byte output, the X-Reg
ister contains the second. The contents of the Accumulator are usually scrambled.

$F948 PRBLNK Print 3 spaces

Outputs three blank spaces to the standard output device. Upon exit, the
Accumulator usually contains $AO, the X-Register contains zero.

$F94A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks to the standard output device.
Upon entry, the X-Register should contain the number of blanks to be output.
If X=$00, then PRBL2 will output 256 blanks.

$FF3A BELL Output a "bell" character

This subroutine sends a bell (CTRL G) character to the current output device.
It leaves the Accumulator holding $87.

$FBDD BELL1 Beep the Apple's speaker

This subroutine beeps the Apple's speaker for .1 second at lKHz. It scrambles
the Accumulator and Y-Register.

$FDOC RD KEY Get an input character

This is the standard character input subroutine. It places a flashing input cursor
on the screen at the position of the output cursor and jumps to the current input
subroutine whose address is stored in KSW (locations $38 and $39), usually
KEYIN (see below).

$FD35 RD CHAR Get an input character or ESC code

RDCHAR is an alternate input subroutine which gets characters from the standard
input, but also interprets the eleven escape codes.

$FD1B KEYIN Read the Apple's keyboard

This is the keyboard input subroutine. It reads the Apple's keyboard, waits for
a keypress, and randomizes the random number seed. When it gets a keypress,
it removes the flashing cursor and returns with the keycode in its Accumulator.

$FD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines. Your programs can call
GETLN with the proper prompt character in location $33; GETLN will return

with the input line in the input buffer (beginning at location $200) and the X
Register holding the length of the input line.

260 ASSEMBLY LINES

$FD67 GETLNZ Get an input line

GETLNZ is an alternate entry point for GETLN which issues a carriage return
to the standard output before falling into GETLN (see above).

$FD6F GETLN1 Get an input line, no prompt

GETLNl is an alternate entry point for GETLN which does not issue a prompt
before it gathers the input line. If, however, the user cancels the input line,
either with too many backspaces or with a CTRL x, then GETLNl will issue the
contents of location $33 as a prompt when it gets another line.

$FCA8 WAIT Delay

This subroutine delays for a specific amount of time, then returns to the program
which called it. The amount of delay is specified by the contents of the Accu
mulator. With A the contents of the Accumulator, the delay is 1/2 (26 + 27 A+ SA 2)
µ,seconds. WAIT returns with the Accumulator zeroed and the X and Y-Registers
undisturbed.

$F864 SETCOL Set Low-Res Graphics color

This subroutine sets the color used for plotting on the Low-Res screen to the
color passed in the Accumulator.

$F85F NEX'fCOL Increment color by 3

This adds 3 to the current color used for Low-Res Graphics.

$F800 PLOT Plot a block on the Low-Res Screen

This subroutine plots a single block on the Low-Res screen of the prespecified
color. The block's vertical position is passed in the Accumulator, its horizontal
position in the Y-Register. PLOT returns with the Accumulator scrambled, but
X and Y unmolested.

$F819 HLINE Draw a horizontal line of blocks

This subroutine draws a horizontal line of blocks of the predetermined color on
the Low-Res screen. You should call HLJNE with the vertical coordinate of the
line in the Accumulator, the leftmost horizontal coordinate in the Y-Register, and
the rightmost horizontal coordinate in location $2C. HLINE returns with the
Accumulator and Y scrambled, X intact.

$F828 VLINE Draw a vertical line of blocks

This subroutine draws a vertical line of blocks of the predetermined color on
the Low-Res screen. You should call VLINE with the horizontal coordinate of
the line in the Y-Register, the top vertical coordinate in the Accumulator, and
the bottom vertical coordinate in location $2D. VLINE will return with the
Accumulator scrambled.

$F832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR

Appendix D 261

while the video display is in Text mode, it will fill the screen with inverse-mode
"@0 characters. CLRSCR destroys the contents of the Accumulator and Y.

$F836 CLRTOP Clear the top of the Low-Res Screen

CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows
of the screen.

$F871 SCRN Read the Low-Res screen

This subroutine returns the color of a single block on the Low-Res screen. Call
it as you would call PLOT (above). The color of the block will be returned in the
Accumulator. No other registers are changed.

$FB1E PRE AD Read a Game Controller

PREAD will return a number which represents the position of a game controller.
You should pass the number of the game controller (0 to 3) in the X-Register. If
this number is not valid, strange things may happen. PREAD returns with a
number from $00 to $FF in the Y-Register. The Accumulator is scrambled.

$FF2D PRE RR Print "ERR"

Sends the word 'ERR', followed by a bell character, to the standard output
device. The Accumulator is scrambled.

$FF4A IOSAVE Save all registers

The contents of the 6502's internal registers are saved in locations $45 through
$49 in the order A-X-Y-P-S. The contents of the Accumulator and X are changed;
the decimal mode is cleared.

$FF3F IO REST Restore all registers

The contents of the 6502's registers are loaded from locations $45 through $49.

262 ASSEMBLY LINES

APPE DIX E
YOU GET WHAT YOU ASCH FOR ...

This chart shows many of the possible interpretations of a
byte value in memory. The first three columns show the hex
value and its decimal and binary equivalents. This can be handy
when conversions are needed. The next column shows what key
on an Apple II keyboard generates that character, if any.

Although the standard Apple II does not have a lower case
keyboard, lower case keys are shown to allow for machines with
special adapters, external keyboards, etc.

The screen column shows what character is to be expected
if that value is stored in the screen memory area, $400-7FF.

The Applesoft column indicates how Applesoft interprets
that byte when tokenizing programs.

Note that for control characters, the "A" symbol is used. Thus
a Control-A would be indicated AA.

Hex Dec Binary Key Screen Applesoft

$00 0 0000 0000 @ A

$01 1 0000 0001 A
$02 2 0000 0010 B
$03 3 0000 0011 c
$04 4 0000 0100 D
$05 5 0000 0101 E
$06 6 0000 0110 F
$0'7 7 0000 0111 G
$08 8 0000 1000 H N

$09 9 0000 1001 I v
$0A 10 0000 1010 J

E

$OB 11 0000 1011 K R

$0C 12 00001100 L s
$OD 13 0000 1101 M E

$OE 14 0000 1110 N
$OF 15 0000 1111 0
$10 16 0001 0000 p

$11 17 0001 0001 Q
$12 18 0001 0010 R
$13 19 0001 0011 s "'
All codes are given in hexadecimal.

Appendix E 263

Hex Dec Binary Key Screen Applesoft

$14 20 0001 0100 T 'T
$15 21 0001 0101 u 'U
$16 22 0001 0110 v 'V
$17 23 0001 0111 w 'W
$18 24 00011000 x 'X
$19 25 00011001 y ·y
$1A 26 00011010 z ·z
$1B 27 00011011 ['[

$1C 28 00011100 '\
$1D 29 00011101 ']

$1E 30 00011110
$1F 31 00011111
$20 32 0010 0000
$21 33 0010 0001
$22 34 0010 0010
$23 35 0010 0011 # #
$24 36 0010 0100 $ $
$25 37 0010 0101 % %
$26 38 0010 0110 & I &
$27 39 0010 0111 N
$28 40 0010 1000 v
$29 41 0010 1001 E
$2A 42 0010 1010 R
$2B 43 0010 1011 + s +
$2C 44 0010 1100 E
$20 45 0010 1101
$2E 46 0010 1110
$2F 47 0010 1111
$30 48 0011 0000 0 0
$31 49 0011 0001 1 1
$32 50 0011 0010 2 2
$33 51 0011 0011 3 3
$34 52 0011 0100 4 4
$35 53 0011 0101 5 5
$36 54 0011 0110 6 6
$37 55 0011 0111 7 7
$38 56 00111000 8 8
$39 57 00111001 9 9
$3A 58 00111010
$3B 59 00111011
$3C 60 00111100 < <
$30 61 00111101
$3E 62 00111110 > >
$3F 63 00111111 ? v ?

264 ASSEMBLY LINES

Hex Dec Binary Key Screen Applesoft

$40 64 0100 0000 @ .. @
$41 65 0100 0001 A A
$42 66 0100 0010 B B
$43 67 0100 0011 c c
$44 68 0100 0100 D D
$45 69 0100 0101 E E
$46 70 0100 0110 F F
$47 71 0100 0111 G G
$48 72 01001000 H H
$49 73 0100 1001 I I
$4A 74 01001010 J J
$4B 75 01001011 K K
$4C 76 0100 1100 L L
$40 77 0100 1101 M M
$4E 78 0100 1110 N N
$4F 79 0100 1111 0 0
$50 80 0101 0000 p p
$51 81 0101 0001 Q Q
$52 82 01010010 R R
$53 83 0101 0011 s s
$54 84 0101 0100 T T
$55 85 0101 0101 u F u
$56 86 0101 0110 v L v
$57 87 0101 0111 w A w
$58 88 01011000 x s x
$59 89 01011001 y H y
$5A 90 01011010 z I z
$5B 91 01011011 [N [
$5C 92 01011100 G

\
$50 93 01011101]
$5E 94 01011110
$5F 95 01011111
$60 96 0110 0000 SPC
$61 97 0110 0001 a
$62 98 0110 0010 b
$63 99 0110 0011 # c
$64 100 0110 0100 $ d
$65 101 0110 0101 3 e
$66 102 0110 0110 & f
$67 103 0110 0111 g
$68 104 01101000 h
$69 105 01101001
$6A 106 01101010 * j
$6B 107 01101011 + k
$6C 108 01101100 I
$60 109 01101101 m
$6E 110 01101110 n
$6F 111 01101111 0

$70 112 01110000 0 p
$71 113 01110001 1 q

Appendix E 265

Hex Dec Binary Key Screen Applesoft

$72 114 0111 0010 2 i r
$73 115 0111 0011 3 s
$74 116 0111 0100 4 t
$75 117 0111 0101 5 F u
$76 118 0111 0110 6 L v
$77 119 0111 0111 7 A w
$78 120 01111000 8 s x
$79 121 01111001 9 H y
$7A 122 01111010 I z
$7B 123 01111011 N
$7C 124 01111100 < G
$7D 125 01111101 l $7E 126 01111110 >
$7F 127 01111111 ? Rubout

$80 128 1000 0000 A@ @ END
$81 129 1000 0001 AA A FOR
$82 130 1000 0010 AB B NEXT
$83 131 1000 0011 Ac c DATA
$84 132 1000 0100 AD D INPUT
$85 133 1000 0101 AE E DEL
$86 134 1000 0110 AF F DIM
$87 135 1000 0111 AG G READ
$88 136 1000 1000 AH H GR
$89 137 1000 1001 AI I TEXT
$8A 138 1000 1010 AJ J PR#
$SB 139 1000 1011 AK K IN#
$8C 140 1000 1100 AL L CALL
$80 141 1000 1101 AM M PLOT
$8E 142 1000 1110 AN N N HUN
$8F 143 1000 1111 Ao 0 0 VLIN
$90 144 1001 0000 AP p R HGR2
$91 145 1001 0001 AQ Q M HGR
$92 146 1001 0010 AR R A HCOLOR=
$93 147 1001 0011 As s L HP LOT
$94 148 1001 0100 AT T DRAW
$95 149 1001 0101 Au u XDRAW
$96 150 1001 0110 Av v HTAB
$97 151 1001 0111 Aw w HOME
$98 152 10011000 Ax x ROT=
$99 153 10011001 Ay y SCALE=
$9A 154 10011010 AZ z SHLOAD
$9B 155 10011011 A[[TRACE
$9C 156 10011100 A\ NOTRACE
$90 157 10011101 Al NORMAL
$9E 158 10011110 INVERSE
$9F 159 10011111 FLASH
$AO 160 1010 0000 SPC SPC COLOR=
$Al 161 1010 0001 POP
$A2 162 1010 0010 VTAB
$A3 163 1010 0011 # # HIMEM:

266 ASSEMBLY LINES

Hex Dec Binary Key Screen Applesoft

$A4 164 1010 0100 $ $ LOMEM:
$A5 165 1010 0101 % % ON ERR
$A6 166 1010 0110 & & RESUME
$A7 167 1010 0111 RECALL
$A8 168 1010 1000 STORE
$A9 169 1010 1001 SPEED=
$AA 170 1010 1010 * * LET
$AB 171 1010 1011 + + GOTO
$AC 172 1010 1100 RUN
$AD 173 1010 1101 IF
$AE 174 1010 1110 RESTORE
$AF 175 1010 1111 &
$BO 176 1011 0000 0 0 GO SUB
$111 177 1011 0001 1 1 RETURN
$B2 178 1011 0010 2 2 REM
$B3 179 1011 0011 3 3 STOP
$B4 180 1011 0100 4 4 ON
$B5 181 1011 0101 5 5 WAIT
$.86 182 1011 0110 6 6 LOAD
$.87 183 1011 0111 7 7 SAVE
$B8 184 10111000 g 8 DEF
$B9 185 10111001 9 9 N POKE
$BA 186 10111010 0 PRINT
$BB 187 10111011 R CONT
$BC 188 10111100 < < M LIST
$BD 189 10111101 A CLEAR
$BE 190 10111110 > > L GET
$BF 191 10111111 ? ? NEW
$CO 192 1100 0000 @ @ TAB(
$Cl 193 1100 0001 A A TO
$C2 194 1100 0010 B B FN
$C3 195 1100 0011 c c SPC(
$C4 196 1100 0100 D D THEN
$C5 197 1100 0101 E E AT
$C6 198 1100 0110 F F NOT
$C7 199 1100 011.1 G G STEP
$C8 200 1100 1000 H H +
$C9 201 11001001 I I
$CA 202 1100 1010 J J
$Cl! 203 1100 1011 K K
$CC 204 1100 1100 L L
$CD 205 1100 1101 M M AND
$CE 206 1100 1110 N N OR
$CF 207 1100 1111 0 0 >
$DO 208 1101 0000 p p
$D1 209 1101 0001 Q Q <
$D2 210 1101 0010 R R SGN
$03 211 1101 0011 s s INT
$04 212 1101 0100 T T ABS
$D5 213 1101 0101 u u USR
$D6 214 1101 0110 v v v FRE

Appendix E 267

Hex Dec Binary Key Screen Applesoft

$07 215 1101 0111 w w SCRN(
$08 216 11011000 x x PDL
$09 217 11011001 y y POS
$DA 218 11011010 z z SQR
$DB 219 11011011 [[RND
$DC 220 11011100 LOG
$DD 221 11011101 EXP
$DE 222 11011110 cos
$DF 223 11011111 SIN
$EO 224 1110 0000 TAN
$El 225 1110 0001 a a ATN
$E2 226 1110 0010 b b PEEK
$E3 227 1110 0011 c c LEN
$E4 228 1110 0100 d d STR$
$E5 229 1110 0101 e e VAL
$E6 230 1110 0110 f ASC
$E7 231 1110 0111 g g CHR$
$EB 232 1110 1000 h h N LEFT$
$E9 233 1110 1001 0 RIGHT$
$EA 234 11101010 j j R MID$
$EB 235 11101011 k k M
$EC 236 1110 1100 l I A
$ED 237 1110 1101 m m L
$EE 238 1110 1110 n n
$EF 239 11101111 0 0

$FO 240 1111 0000 p p
$Fl 241 1111 0001 q q
$F2 242 1111 0010 r
$F3 243 1111 0011 s s
$F4 244 11110100 t
$F5 245 1111 0101 u u
$F6 246 1111 0110 v v
$F7 247 11110111 w w
$F8 248 11111000 x x
$F9 249 11111001 y y
$FA 250 11111010 z z
$FB 251 11111011
$FC 252 11111100
$FD 253 11111101
$FE 254 11111110

.,.
$FF 255 11111111 Rubout Rubout

268 ASSEMBLY LINES

MAP OF THE TEXT SCREEN

N s: i
..... :i!

Q QD it al ~ I» t'! "' QD

~
I» Q "' 'I al U1 N

~ Q j:j al Q al I» ~ N "' i ~ "' al I» Q QD U1
Q al QD Q N Q N Q N N al QD Q N

0 $00
1 $01
2 $02
3 $03
4 $04
5 $05
6 $06
7 $07
8 $08
9 $09
10 $0A
11 $OB
12 $0C
13 $00
14 $OE
15 $OF
16 $10
17 $11
18 $12
19 $13
20 $14
21 $15
22 $16
23 $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 $10
30 $1E
31 $1F
32 $20
33 $21
34 $22
35 $23
36 $24
37 $25
38 $26
39 $27

Appendix E 269

INDEX
absolute addressing, 19, 51, 52
Accumulator, 6-7, 18-19, 41, 42
ADC, 76-79, 148
addition, 76-83
address, 4, 9, 10, 13, 41
addressing, modes, 19, 51-54
address pointers, 53, 82
AND, 107-111
Apple DOS Manual, 94
Apple II Plus, 6
Applesoft, 6, 13, 15, 17, 35, 39, 53,

59, 62, 126-128, 147
Applesoft II Basic Reference Manual, 95
Apple, structure of, 1-12
Apple II Reference Manual, 6, 14,

16-17, 46, 49, 53, 110
ASC, 22
ASCII, 44, 100
ASCII Screen Character Set, 20
ASL, 104-105
assemblers, 2, 7, 13-22
assembly language programs, 7
asterisks, 18

base sixteen numbers, 4-7, 24
base two numbers, 24-25, 75-76
BCC, 43
BCS, 43
bell modification, 102
BEQ, 31-32
binary numbers,24-25, 75-76
bit, 76, 103
BIT, 111-112, 148
BNE, 27
booting, 90
borrow, 83
branch instructions, 27-28, 31-34, 43
branch offsets, 33
break message, 3, 6
buffer pointer, 98
buffers, 90, 98, 139
bytes, 4, 10, 23, 25, 75-76, 79-80, 92

270

carry (C) flag, 42-43, 77, 82, 83, 99
CATALOG, 90
catalog keypress modifications,

100-102
CH, 135
clear borrow, 83
CMP, 42
command field, 18
comment field, 18
compare command, 42
complements, 85-86
counters,23, 26-29
com; 34-37, 44, 49
CV, 135

data storage, 54-59
decrementing, 26-27
delays, 62-69
delimiters, 17
directives, 16, 55, 122
directory, 93
disassembly, 8-9
disk access, 89-102, 121-128
disk controller cards, 149
diskette organization, 91-99
Disk Operating System (DOS), 17,

35, 89-102
disk, reading/writing files to, 129-143
disk-volume modification, 99-100
dollar ($) sign, 4
DOS commands, 122-124
DOS error codes, 99
DOS memory organization, 90
DOS modifications, 99-102
DOS Tool Kit, 55
drive error, 99
dummy return address, 151
duration, 65-67

editor/assemblers, 13
editors, 17
EOR, 112-114
EQU, 17, 18
ERR byte, 99

error codes, 99
exclusive OR, 112-114

fields, 17-18
file buffer, 98
flags, 23, 25, 26-27, 41, 42-43, 77,

82, 83, 86-88, 99, 111-112, 148
forced branch statement, 148

game paddles, 37-39, 68-69
GETLN, 125

hard-sectoring, 92
hex, 4-7, 24
HEX, 55
hexadecimal notation, 4-7, 24
high-order byte, 10, 80-81
HOME, 20-21, 42

immediate addressing, 19, 51, 52
implicit/implied addressing, 51, 52
inclusive OR, 112-113
incrementing, 26-27
indexed addressing, 51, 52-53
indexed indirect addressing, 51, 54
indexing holes, 92-93
indirect indexed addressing, 51, 53
indirect jumps, 160-161
input buffer, 98
input routines, 124-128
Integer Basic Apple, 6, 13, 15, 17, 35,

62
INVFLG, 110
IOB table, 94-98
I!O routines, 45-49, 121-128

JMP commands, 147-149, 160-161
JSR, 9-10, 146, 150-152, 155, 156
JSR/RTS dummy return address, 152,

156
JSR simulations, 154-158

keyboard, sound generation from,
67-68

keyboard buffers, 47

labels, 17
LDA, 19
line numbers, 9, 17
load/store opcrn;les, 18-19
Logical Operator Demo Program,

116-119
logical operators, 106-111
loops, 23, 26-29, 31-32
low-order byte, 10, 80-81
LSR, 104, 105

machine code, 2
machine language, 7
mask, 111
math operations, 75-87
MAXFILES, 90
memory chips, 1
memory locations, 1-5
memory map, 3
memory range, 5, 8
Mini-Assembler, 13-15
mnemonics, 2, 9, 13
Monitor, 6, 7-11
Monitor programs for 1/0 routines,

45-46

negative numbers, 84-88
NO BUFFERS AVAILABLE error, 90
nonrelocatable code, 145-147
NOP, 62-63
number complements, 85-86
numbers. See binary numbers,

hexadecimal notation, math
operations, negative numbers,
positive numbers

number (#) sign, 19, 52

OBJ, 18

271

object code, 16-17
offset branch, 33
ones' complement, 85
opcodes, 2, 9, 17, 18-19
operands, 9, 18
ORA, 112-113
ORG,18
overflow (V) flag, 111, 148-149

paddles, 37-39, 68-69
page, 5
parity, 105
PHA, 73-74, 156, 158
pitch, 62, 64-67
PLA, 73-74, 156
positive numbers, 84-88
print routines, 121-124
pseudo opcodes, 18, 55, 122

ramp tone pattern, 164
read error, 99
reading/writing files on disk, 129-143
Read Only Memory, 6
registers, 6-7, 18-19, 23, 25, 41-42,

53-54, 76-77, 86-87
relative addressing, 51, 52
relocatable code, 145-147
reverse branches, 33
ROL, 105-106
ROM, 6
ROR, 105-106
RTS, 10, 17, 151-152, 156
RWTS, 91, 93-99

SBC, 83
SEC, 83
sector interleaving, 92
sectors, 92-98
self-modifying code, 158-160
set borrow; 83
seven bit code, 44
shift operators, 103-106
sign bit, 84-86

272

sign (N) flag, 86-88
6502 microprocessor, 1-2, 6-7, 16, 41
skew factor, 92
SLOT, 105
slot/drive values, 102
soft-sectoring, 92
sound generation routines, 61-69,

164-169
source code, 16-17
source listings, 16-17
speaker, 61-62
STA, 19, 49
stack, 71-74, 124, 150-154
stack pointer, 71, 151-152
Status Register, 23, 25, 41, 76-77,

86-87
stepping techniques, 149
strobe, 46
subtraction, 83-84
syntax, 17

TAY, 51, 52
text files, 142-143
Text Screen Map, 20
time delays, 62-69
tone, 63-64, 68
tracks, 92-98
transfer commands, 39-40
two-byte addition, 80-83
twos' complement, 86

UCMD, 98
USLOT, 98, 105

vector, 95, 109
volume mismatch error, 99
volume number (VOL), 98
volume table of contents (VTOC), 93
VTAB, 135

wrap-around, 26-27, 36, 77
write-protect label, 143

XFER, 127
X-Register, 6-7, 18-19, 41, 53-54,

106

Y-Register, 6-7, 18-19, 41, 53-54, 106

zero (Z) flag, 25, 26-27, 41, 111-112
zero page addressing, 51, 52, 73

273

ROGER WAGNER
/

This volume includes the first fifteen installments of "Everyone's Guide to Assem-
bly Language;' by Roger Wagner, originally published in Softalk magazine. Expanded,
corrected, indexed, and with an introduction by the author, Assembly Lines: The Book
is better than the original.

Creator of several popular programs for the Apple computer-Apple Doc, the
Correspondent and Roger's Easel-Roger Wagner is the president of Southwestern Data
Systems based in Santee, California. In addition to Wagner's programs, SDS also
markets such successful programs for the Apple as ASCII Express, SpeedStar, Merlin ,
and Z-Term.

Wagner is a graduate of San Diego State University with a degree in physical
science, and he has taught math and science at Mountain Empire High School in
Southern California.

Concern for the end user permeates Wagner's dealing with the microcomputer
world. His philosophy calls for utility programs that equal industry standards and
at the same time educate the user.

An accomplished programmer and teacher, Wagner brings this philosophy to
fruition within the pages of this book. '

In clear, concise language, Roger Wagner makes the basics of assembly language
palatable to the experienced and novice programmer alike.

As thousands of Apple owners and Softalk readers already know, for learning
assembly language one can do no better than Southwestern Data Systems' young
president, Roger Wagner.

~

"' ;s
3
!=
..... -· :::s
tD

"' • •

f ...

