GSBug 1.5 ERS 1/25/91

The Mensch Days

This part of the document details all changes made to the debugger
from version 1.3b1 to 1.5b8.

Bug Fixes:

Real Time Tool Breaks - The mechanism for using tool breaks real
time has been modified, the old method never worked quite right,
what used to happen was that when a tool break was to occur, the
stub in the dispatch vector would simply jump into the debugger,
this would cause the stack and processor not to be set as if they
came from an interupt, and the next exit of the debugger would cause
code execution to start at an inapropriate case, also the actual
tracing of a tool break would also cause the debugger to improperly
save the current registers, so that the stack/direct page and
processor status might come back damaged from a tool break. The
stub has been modified to now enter the debugger with a break
instruction instead of jumping to the front. This seems to solve all
real time tool break problems. ‘

Error tool breaks - These also did not work well, and did not seem 1o

be used by anyone anyway, so they have been removed to make room
for OSBreaks.

Version 1.5b3:

. display code was fixed so that the ™ would properly be displayed
in front of any toolbox glue that is detected.

» Fixed template data display so that if the data being displayed
crosses a bank boundry, the data is properly followed into the new
bank.

« Modified- the IN command so that it respects trigger counts of 0
and does not insert real time breaks.

Version 1.5b5:

. Added Glue tool break support. Now toolbreaks work for regular
and glue tool breaks. ErrorBreaks do not work for glue as they do not
make a lot of sense. '

- Made debugger work even when a DA window is open. See new
features below.

Apple Confidential 12:58 PM . 7

GSBug 1.5 E.R.S 1/25/91

» Added keyCiick so that you hear whenever the system draws a key
from the event queue. Also, cleaned up some comments

Version 1.5b6:
= Added new DebugSir toolcall that can be used to get more from the
debugger

Version 1.5b7:

» Added support for real time conditional breaks.

» Added OSBreaks.

« Fixed the Debugger tool calls (like debugstr) so that they use the
proper tool numbers (they had the toolset number in the high byte
instead of the low byte) Documentation for them should also be
right.

Version 1.5b8:

+ Added a debugger version and status call to the debugger tools
» Enhanced the OSBreak facility

» Removed the keyclicks because Dave complained.

Apple Confidential 12:58 PM 8

GSBug 1.5 E.R.S 1/25/91

New Features:

DebugSir:

This feature is designed to allow developers to better know where in
their program the debugger was entered. The way this feature works
is that if you want to enter the debugger programatically you can
now also pass a string to the debugger which will be printed on the
bottom line of the screen when the debugger is entered.

The way this mechanism works is a fake tool call that the debugger
now supports. Since this looks like a normal tool call it can be
easily called by any high level language as well as by assembly
language. This toolcall called DebugSir takes a single parameter, a
pointer to a pascal string. When the tool call is made the debugger is
entered as if you had put a break into your code, but the string you
passed is displayed on the screen and the program counter has been
bumped passed the tool call jsl. This way you can simply resume
execution with two simple keystrokes (with the init version hit 'R’
<return>).

Calling this new feature might look something like this
PushLong #DebugStr

ldx #$0SFF

jsl >$E10000
DebuéStr str "You are about to do blah.'
from pascal the same would be achieved by doing this...

. DebugStr("You are about to do blah.");
| would recommend that assembly language users use a macro to
make the toolcall and call it _DebugStr. Max pascal users could use

the following to define the debugstr routine:

Procedure DebugSir(theString:str255);
INLINE $09FFA2, $E1000022;

This call will also work when being called via the glue vector.

Apple Confidential 12:58 PM 9

GSBug 1.5E.RS 1/25/91

NOTE: Since this call is only available when the debugger is loaded
you will ALWAYS want to be sure to remove ALL calls to the
debugger before releasing your program (or even using it on
machines that do not have a debugger installed).

SetMileStone:

SetMileStone operates exactly the same way as debugstr except that
the debugger is not actually entered. This will allow tracking of
random crashes by allowing you to call the SetMileStone routine
with milestones that have been met. any time the debugger is
entered via a brk instruction or thru the keyboard the last string
passed via the SetMileStone call will be displayed. the toolcall
number for sweetstring is $0AFF, the max pascal interface might
look like this:

Procedure SetMileStone (theString:str255);
INLINE $0AFFA2, $E1000022;

DebugVersion, DebugStatus:

These calls are added so that an application can identify the version
of the debugger that is loaded and thus know what calls can be made
to the debug tool. currently these calls are identical and return the
same result. The status call returns non-zero for true (as opposed to
$FFFF which most people might want...) other than that these calls
act the same as any other toolbox status or version call, each call
requires a word space on the stack for the result which is on the top
of the stack when the call completes. If a debugger is loaded that
does not support this feature you will get a standard tool locator
error. For version 1.5b8 the version number returned is $158F as you
might expect this number will change as the debugger version
changes and it will always go up never down. .

Glue Snypher:

Glue snypher is a routine that can recognize high level language tool
calls that are made with the standard glue entry, when a call to glue
is detected while disassembling an instruction the call to glue will
be replaced with *_TooName in a manner similar to how real tool
calls now work. Glue snypher is also used by the memory protect
feature, if a glue call is detected while the standard toolbox memory
protect range is on, the glue call will be treated as if it were a JSL
>$e10000. All glue entries MUST be a JSL to one of 3 standard types
of glue that are shown below:

Apple Confidential 12:58 PM 10

GSBug1.5E.RS 1/25/91

ToolGlueTypel LDX #S5ToolNum
JSL >SE10004
RTI
ToolGlueType?2 LDX #$ToolNum
JML CommonCall
CommonCall JSL >S$E10004
RTL
ToolGlueType3 IDX #$ToolNum

JMP CommonCall

If any other types of glue calls are used, they will not be properly
detected.

Glue Breaks:

In addition to glue snypher further support was added for high level
languages by extending the tool break support to the glue vector
($E10004). Since error conditions are treated differently with glue
(The second RTL ain't mine no more...) it seems unreasonable to also
support error breaks via the glue vector.

OSBreaks: .

OSBreaks work very much the same way that tool breaks work with
three exceptions. First, instead of breaking on a toal call they will
break on a call to the OS (gee....). Next, you can NQOT specify an OS
break by name, only by number. Lastly, they are not supported in
trace mode, only in real time mode (maybe in a future version...). To
use OSBreaks you simply type setOSBrk #xxxx where xxxx is the
number of the OS routine that you want to break on. This number is
matched exactly when an OS call is made, so if you do not know if
the target call is class 0 or class 1 you must set the break for both
calls. OSBreaks are supported via both vectors, inline and
stackbased. The following is a list of commands that operate on OS
breaks and what they do.

SetOSBrk - adds a number to the OS break list
CIrOSBrk - Removes a given number from the OS break
list

CIrAllIOSBrk - Removes all numbers from the OS break
list

OSBrkin - enables real time scanning for OS breaks

Apple Confidential 12:58 PM 11

GSBug 1.5 E.R.S 1/25/91

OSBrkOut - disables real time scanning of OS breaks
ShowBrks - lists all tool and OS breaks currently set.

DA Debugging support:

In the past it has always been difficult o debug certain new desk
accs because they accept keystrokes, and keep the debugger from
recieving them. | have added a patching mechanism to the system
event call that is installed when the debugger is installed that fixes
this problem. The way this feature now works is that if the caps
lock key is down no keyboard events get passed to system event (and
then to any open DA's) and the debugger will always get them. a side
effect of this is that when the debugger screen is not active
applications will get the same keystroke events if the caps lock key
is down. As a gentle reminder of this feature, when installed, it will
make your GS speaker click whenever a key is processed by
getNextEvent.

New Template types:

We have added support for a few more data types in templates, these
are mainly for use with GS/OS strings, but can also be used for any
word length string. they are:
InputStr: This type will read the next word of data and treat
it as a length word for string data that follows.
The entire contents of the string will be displayed.

OutputStr: Similar to InputSir except that the first word is a
buffer length and the second word is the string
length. After the string is displayed the debugger
will skip to the end of the buffer to find the next
byte of data to process.

RealTime Conditional Breakpoints:

The debugger now supports conditional real time breakpoints. In the
past when a breakpoint was entered in the breakpoint list and you
used the IN feature to make them work real time, the trigger count
that you entered was ignored. Now, If you the trigger count is
supported the same way it is supported in trace mode, that is, if you
insert a real time breakpoint with a count higher than 1 it will break
on the Nth execution of the opcode at that location. NOTE: Currently

Apple Confidential 12:58 PM 12

