The llas Toolbox

dc ¢’ LQuit \N258*Qq’,i1RETURN’
dec c’.’

Menu3 dc c¢>L Appetizers \N3",i1T'RETURN’
dc ¢’ LApple Salad \N259,i 1'RETURN’
dc ¢’ LApple Jello \N2607,i1RETURN’
dc ¢’ LApple Slices \N261°,i1RETURN’
dc ¢’ LApple Juice \N262°,7i1RETURN
dc c¢’.”

Menué4 dc ¢>L Entrees \N4”,i1'RETURN’
dc ¢’ LApple Duckling \N263°,i1RETURN’
dc ¢’ LApple Dumplings \N264',71RETURN’
dc c¢’.’

Menu5 dc c¢>L Beverages \N5,i1'RETURN’
dc c” LApple Shake \N265°,71RETURN’
dc c” LApple Cola \N266",71RETURN’
dc ¢’ LApple Wine \N267',i1RETURN’
dc c¢'.’

Menub dc c¢>L Desserts \N6’,11'RETURN’
dc ¢’ LApples \N268°,i1TRETURN’
dc ¢’ LApple Pie \N269°,i1RETURN’
dc ¢’ LApple Turnover \N270°,91RETURN’

dc c¢’.”
END
* k%
MenuTable DATA
* Menu 1 (apple)
dc i“ignore’ ; one for the NDAs
dc i“ignore’
* Menu 2 (file)
dc i'doQuit’ ; quit item selected
* Menu 3 (appetizers)
dc iChecklIt’ ; ‘salad’
dc i'CheckIt’ ; jello’
dc i'CheckIt’ ; ‘slices’
dc i'CheckIt’ ; ‘juice’
* Menu 4 (entrees)
dc i'ChecklIt’ ; duckling’

240

9-The Menu Manager

dc i'ChecklIt’ ; ‘dumplings’

* Menu 5 (beverages)
dc i'Checklt’ ; ‘shake’
dc i'CheckIt’ ; ‘cola’
dc i'ChecklIt’ ; ‘wine’

* Menu 6 (desserts)
dc i'CheckIt’ ; ‘an apptle’
dc i'CheckIt’ ; pie’
dc i'CheckIt’ ; ‘turnover’
END

Kk

TaskTable DATA
dc i“ignore’ ; 0 null
dc i“ignore’ ; 1 mouse down
dc i"ignore’ ; 2 mouse up
dc i“ignore’ ; 3 key down
dc i“ignore’ ; 4 undefined
dc i‘ignore’ ; 5 auto-key down
dc i“ignore’ ; 6 update event
dc i“ignore’ ; 7 undefined
dc i‘ignore’ ; 8 activate
dc iignore’ ; 9 switch
dc i“ignore’ ; 10 desk acc

dc i‘ignore’ 11 device driver

dc i‘ignore’ ; 12 application
dc i“ignore’ ; 13 application
dc i“ignore’ ; 14 application
dc i“ignore’ ; 15 application
dc i“ignhore’ ; 0 in desk
*
* TaskMaster events
*
dc iDoMenu’ ; 1 in menu bar
dc i“ignore’ ; 2 in system window
dc i“ignore’ > 3 in content of window (Move It)
dc i“ignore’ ; & in drag
dc iignore’ ; 5 in grow
dc iignore’ ; 6 in go-away
dc i“ignore’ ; 7 in zoom
dc i“ignore’ ; 8 in info bar

241

The llcs Toolbox

dc i“ignore’ ; 9 1in ver scroll
dc i“ignore’ ; 10 in hor scroll
dc i“ignore’ ; 11 in frame
dc i’ignore’ ; in drop
END

*okk

ToolTable DATA
dc 15 ; humber of tools in table
dc 1'$04,%$0100° ; QuickDraw
dc 106 ,$0100° ; Event Manager
dc i1'$0E,$0000° ; Window Manager
dc i'$0F,$0100° ; Menu Manager
dc i'$10,$0100 ; Control Manager
END

Hkk

EventData DATA

EventRecord anop ; table for Event Manager

EventWhat ds 2

EventMessage ds 4

EventWhen ds 4

EventWhere ds 4

EventModifiers ds 2

TaskData ds 4

TaskMask dc 14'$OFFF’
END

* %%k

QuitData DATA

QuitFlag ds 2

QuitParams dc 140
dc 40
dc i40
END

* k%

242

9-The Menu Manager

GlobalData DATA

MyID dc 10

MyDP ds 2
END

program ID word

Listing 9-10
MENU.C program

/************************************/

/* Data and routine to create menus */
/************************************/

/* Set up menu strings. Because C uses \ as an escape character,

we use two when we want a \ as an ordinary character. The \

at the end of each line tells C to ignore the carriage return. This lets
us set up our items in an easy-to-read vertical alignment. */

char *menul = "\
>L@\\XNT\r\
LAn Apple Menu\\N257\r\

.7

char *menu2 = "\
>L File \AN2A P
LQuit \\N258*Qq\r\

.
L 4

char *menu3 = "\

>L Appetizers N3\ PN
LApple Salad \\N259\r\
LApple Jello \\N260\r\
LApple Slices \\N261\r\
LApple Juice \\N262\r\

L 4

char *menu4 = "\

>L Entrees \AN4\r\
LApple Duckling \\N263\r\
LApple Dumplings \\N264\r\

.
LA 4

char *menu5 = "\

>L Beverages \ANS\ P\
LApple Shake \\N265\r\
LApple Cola \\N266\r\
LApple Wine \\N267\r\

-7

243

The llas Toolbox

char *menué = "\

>L Desserts \AN6\ T\
LApples \\N268\r\
LApple Pie \\N269\r\
LApple Turnover \\N270\r\

L 4

#define QUIT_-ITEM 258 /* these will help us check menu item numbers */
#define LAST_ITEM 270

Bui LdMenu()

{
InsertMenu(NewMenu(menué) ,0);
InsertMenu(NewMenu(menu5),0);
InsertMenu(NewMenu(menu4) ,0);
InsertMenu(NewMenu(menu3) ,0);
InsertMenu(NewMenu(menu?2) ,0);
InsertMenu(NewMenu(menu1),0);
FixMenuBar();
DrawMenuBar();

t

/********************************/

/* Main routine and event loop */
/********************************/

WmTaskRec myEvent;

Boolean done = false;
main()
{
StartTools();
Bui ldMenu();
EventLoop();
Shutbown();
}

/* When a menu bar event is returned, test the item number for a
checkable item. Use the Logical inverse of the value returned by
GetMItemMark as a parameter to CheckMItem. This will toggle the check
mark for each item. */

EventLoop()
{

Word *data = (Word *)&myEvent.wmTaskData; /* address of item id */

myEvent.wmTaskMask = OxOFFF;
while (!'done)

244

9-The Menu Manager

if (TaskMaster(everyEvent,&myEvent) == wInMenuBar) {
if (*data == QUIT_ITEM)

done = true;
else if ((*data > QUIT_ITEM) && (*data <= LAST_ITEM))

CheckMItem (!GetMItemMark(*data), *data);
HiliteMenu(false,*(data + 1)); /* data + 1 is address of menu

id */

245

CHAPTER

Doing Windows

Using the Window Manager

sure they’re done properly, the Ils employs a Window Manager.

The Window Manager—Tlike the Event Manager, which was intro-
duced in chapter 7—is a very important toolkit in the Apple Ilcs Toolbox.
It is the Window Manager’s job to handle all windows placed on the IlGs
desktop. It can create, draw, shrink, expand, scroll, and move windows.
When you’ve finished working with a window, the Window Manager can
remove it from your screen. When you’re through with a window for good,
the Window. Manager can dispose it and deallocate its memory.

The Window Manager takes care of all kinds of windows, not Jjust picture
windows and document windows, but also dialog windows, alert windows,
and windows custom-tailored for specific programs. Want a round window
or a triangular window? The Window Manager can make one. How about a
window that seems to explode when you click the mouse in its go-away box
or a window with custom-designed controls? No problem for the Apple Hes
Window Manager. It’s a toolkit that can do just about any kind of window.

Y I es, the Apple Ilgs does windows—and with real class, too! To make

Kinds of Windows

The kinds of windows the Window Manager can manage are divided into
three categories:

247

The llcs Toolbox

B Document windows. Most of the windows used in IlGs programs are
in this category. A window doesn’t have to contain text to be
classified as a document window. Windows that contain pictures
drawn with programs like PaintWorks Plus are also document
windows.

B Dialog windows. There are three kinds of dialog windows: modal
dialogs, modeless dialogs, and alert windows. Although low-level
operations for all three types of windows can be handled by the
Window Manager, they are mostly the responsibility of the Dialog
Manager. So we won’t go into detail about them until chapter 11,
which is all about the Dialog Manager.

B Custom-designed windows. You can design custom windows using
the Window Manager, but that is beyond the scope of this book. If
you'd like to design your own windows, you can find some tips on
how to do it in the Apple llGs Toolbox Reference.

Window Frames

There are two kinds of predefined window frames: alert window frames and
document window frames. An alert window frame is a double black line. A
document frame is a single black line or includes controls.

A window does not have to be an alert window to have an alert window
frame; document windows can have alert window frames, too. A standard

document window frame and an alert window frame are illustrated in figure
10-1.

Controls

The screen of the Ils represents a working desktop. Various graphic objects
appear on this desktop and are manipulated with a mouse. A window is a

This window has
a normal frame.

DO

This window has
an alert frame.

DCOOOOOOOOO

Figure 10-1
Document frame and alert frame

248

10—Doing Windows

desktop object that presents information; it can contain a document, a picture,
a message, or other items. Windows can be almost any size or shape, and
one or more of them can be on the desktop at any time.

Windows owe their name to the fact that they can show you more
information than the IIGs screen can display at one time. When a window is
on the screen, you can look through it into a larger area. The information
displayed through a window can be pictures, text, data, or all three. When
you look at something through a window—for example, a picture—the win-
dow can be moved around over the picture with a control called a scroll bar.

Most document windows have two scroll bars: a horizontal scroll bar,
which scrolls the window horizontally, and a vertical scroll bar, which scrolls
the window vertically. You’ll learn how to use both kinds of scroll bars before
you finish this chapter.

A document window can also have the following controls:

B A title bar, which is a horizontal bar that displays the window’s
title, if there is one. A title bar can contain a close box, which
makes the window disappear from the screen, and a zoom box,
which changes the window’s size. A title bar can be used as a drag
region for moving the window.

B A grow region, which is a small box in the lower right corner of a
window that changes the window’s size.

B An information bar, another horizontal bar in which an application
can display information that won’t be affected by the movements of
scroll bars.

Information bars may have their uses, but they are not popular in pro-
grams written for the IIgs. A standard document window, without an infor-
mation bar, is illustrated in figure 10-2. The controls in the title bar of a
document window are used as follows:

B Clicking the mouse anywhere in an inactive window highlights its
title bar and makes it the active window, the window in which
drawing and other activities take place. The title bars of all other
windows become unhighlighted. Although these windows remain on
the screen, they become inactive windows. According to Apple’s
Human Interface Guidelines, there should never be more than one
active window on the screen.

B Clicking the mouse in the close box, or go-away region, closes the
window. Usually, when you click the mouse in the close box, an
application program calls the Window Manager routine
HideWindow, which makes the window disappear from the screen.

B Pressing the mouse button in the window’s drag region (title bar)
and then dragging the window pulls an outline of the window across
the screen. Holding the mouse button down and releasing it in a
new location moves the window there. Unless the Apple key is held

249

The llcs Toolbox

Mode Windows Fonts

’] ﬁ'
1o was o dack and stormy night: The roin
It was a dark ond stormy nigh {1 ¢ S
el 1"{’,,}“0,}f{m"s"exg,‘;ﬁ{;;gc, Jel in torrents except at occasional inter
val1s, when 1t was checke '} ' ;
of wind Whichswent up the stry v, whe it was checke by viokent st
is in London that our scene lief

along the housetops, and fierc Df wind which swept up the streets (Ior it

the sconty flame of the lomps

{ ogainst the darkness. is in London that ous SCBM[I&), ot

i e g] o, o g

the scanty flane of the 1 e S0000Y flame of the lamps that strupplad
against the darkness. aquinst the datkness. iy
Q o>

[

Shaston 8

Figure 10-2
Standard document window

down when the mouse button is released, the moved window
becomes the active window.

B Clicking the mouse inside the grow box and then dragging the grow
box changes the window’s size.

To keep windows from getting lost, the Window Manager prevents them
from being dragged completely across the screen. The title bar can never be
moved to a point where the visible area of the title bar is less than four pixels
square.

Some windows are created by application programs and others are cre-
ated by tools in the Toolbox. (For example, the Dialog Manager can create
dialog windows.) Windows created by application programs and by tools in
the Toolbox are known collectively as application windows. Another class
of windows, called system windows, display desk accessories.

What the Window Manager Does

The Window Manager draws windows using QuickDraw II and the Control
Manager, and it disposes them with the help of the Memory Manager. After
a window is drawn on the screen, the Window Manager’s main function is

250

10—Doing Windows

to keep track of overlapping windows. The Window Manager handles tasks
so that you can draw in any window without running into windows in front
of it. You can move a window to a different place on the screen, change its
size, or change its plane (front-to-back order), and you don’t have to worry
about details, such as how parts of various windows cover parts of other
windows. The Window Manager redraws windows as needed and ensures
that they overlap properly.

Window Regions

Every window is made up of two regions:

B A content region, which is the area that lies inside the window’s
frame. An application can draw objects and text in this portion of a
window.

B A frame region, which is the outline of the entire window,
including its title bar and standard window controls.

A window’s content region and frame region make up what is known as the
structure region of the window.

Every window also has a data area: a block of memory that includes
all the data that can be viewed through the window. If the window has scroll
bars, they can be used to move the window over its data area.

If a window has a grow box, a zoom box, or both, they can be used
to increase or decrease the size of the window, causing more or less of its
data area to be displayed. When the window is scrolled, it moves over the
data area. But when the window is moved from one part of the screen to
another, the data area is moved with it, so the view remains the same.

Initializing the Window Manager

TaskMaster

Before the Window Manager can be started up, it must be loaded into memory,
and QuickDraw and the Event Manager must be loaded and initialized. The
Window Manager call WindStartup can then be issued to initialize the
Window Manager. Then you can use the Window Manager call NewWindow
to create any windows needed in a program.

In programs that use the Window Manager, there are two ways to handle user
input. One way is to use the Event Manager call GetNextEvent. The other
is to use the Window Manager call TaskMaster.

The easiest way to use the Window Manager is with TaskMaster. As
you may recall from chapter 9, TaskMaster can handle events related to menus

251

The llgs Toolbox

252

as well as events that involve windows. The interaction between TaskMaster
and menus is covered in chapter 9. In this chapter, you see how to use
TaskMaster in programs that make use of windows.

WINDOW.S1 shows how an assembly language program can handle
windows using TaskMaster. WINDOW.C is a C language version of the same
program. Both programs are at the end of this chapter.

When TaskMaster is used in a program, it does the following. First,
TaskMaster makes the Event Manager call GetNextEvent. If an event isn’t
ready, TaskMaster returns a task code of 0. If an event is ready, TaskMaster
looks at it and tries to handle it. If TaskMaster can’t handle the event, it
returns the event code to the application. The application can then handle the
event as if its event code had been returned by GetNextEvent.

If TaskMaster can handle the event, it calls standard functions to try to
complete the task. For example, if you press the mouse button in an active
window’s zoom box, TaskMaster makes the Window Manager call
TrackZoom until the mouse leaves the zoom box or the mouse button is
released. If you release the mouse button while the mouse is in the zoom
box, TaskMaster calls ZoomWindow to zoom the window either in or out,
as appropriate. This takes care of the complete zoom operation selected by
the user, so TaskMaster returns no event.

If TaskMaster can handle only part of an event, it does what it can and
then returns control to the calling program. For example, if you press the
mouse in the active window’s content region, TaskMaster can detect it, but
it can’t do anything further. In this case, TaskMaster returns a task code of
$0013 (wInContent). That lets an application program know that the mouse
button has been pressed in the active window’s content region, but it is up
to the application to determine what to do next.

The operation of TaskMaster is covered in detail in chapter 9, but here’s
a brief review. A call to TaskMaster takes three paramaters: a word to save
a space on the stack, an event mask, and a pointer to a task record.

The event mask passed to TaskMaster is like an event mask used by
the Event Manager. The task record used by TaskMaster is like an event
record used by the Event Manager, but with two extra fields. Each time
TaskMaster makes a GetNextEvent call, GetNextEvent fills in the first
seventeen fields of the task record being used by TaskMaster. Then
TaskMaster handles any events it can handle, fills in the last two fields of the
task record, and returns.

Listing 10-1 is a task record used in this chapter’s example program,
WINDOW.S1. The WINDOW.S] program, listed in its entirety at the end
of this chapter, is a sketcher program that allows the user to draw into a
window with a mouse. When a sketch is drawn, each dot in it is actually
drawn twice: once into the window on the screen and once into a pixel image
that paints the window’s contents each time the window is updated. Thus,
sketches drawn using the WINDOW.S1 program do not disappear from
memory when a window is removed from the screen. They remain in memory
and can show up in a window again when it is redrawn on the screen. In later
chapters, the WINDOW.S1 program becomes even more sophisticated.

10—Doing Windows

Listing 10—1
Task record in WINDOW.S1
EventData DATA
EventRecord anop
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2
TaskData ds 4
TaskMask dc i4'$OFFF’
END

As you may recall from chapter 9, the event mask passed to TaskMaster
as a parameter is different from the TaskMask passed to TaskMaster as part
of a task record. The event mask passed to TaskMaster is the same kind of
mask that is passed to the Event Manager in the GetNextEvent call.

A task mask is a word used by an application to tell TaskMaster what
kinds of events it should look for and what kinds of events it should ignore.
The high word of a task mask—bits 16 through 31-should always be clear.
In the low word of a task mask, each bit corresponds to a task; a set bit causes
TaskMaster to look for an event, and a cleared bit tells TaskMaster to ignore
an event. For TaskMaster to look for every type of event it can handle, the
task mask should be $0000FFFF. The bit layouts of an event mask and a task
mask are listed in chapter 9.

Window Records

For each window used in an application program, the Window Manager
maintains a window record. A window record contains a number of fields,
but only the first seven are directly accessible to application programs. The
rest of the fields in a window record can be accessed only through calls to
the Window Manager. Table 10-1 shows the seven window record fields
accessible to application programs.

When the Window Manager is active, it maintains a window list: a list
of all windows currently open. It is important to note that a window can be
open but hidden, and thus not visible on the screen.

As table 10—1 shows, the first field in a window record is a pointer to
the Window Manager’s window list. The second field is the window’s
GrafPort—the GrafPort itself, not a pointer to it. Thus, the length of the
GrafPort field is the length of a GrafPort; the field is 186 bytes.

When a window is created using the Window Manager call NewWindow,
the call returns a pointer to the new window’s GrafPort. Thus, the value
returned by NewWindow is also a pointer to the second field of a window

253

The llcs Toolbox

254

NewWindow
Call

Table 10-1
Window Record Fields Accessible to Application Programs
Name Length Function

wNext Long Pointer to next window in the window list

wport 186 bytes Window’s port; returned window pointers
point to here

wStrucRgn Handle Handle of window’s structural region (frame
plus content)

wContRgn Handle Handle of window’s content region

wUpdateRgn Handle Handle of update regions (regions that needs
redrawing)

wControl Handle Handle of application’s first control in content
region

wFrame Word Bit array that describes window’s frame

record. So the value returned by NewWindow, as well as being a pointer to
a GrafPort, can also calculate the addresses of the other six fields of a window
record.

In addition to a GrafPort and a pointer to the next window in the window
list, a window record contains a pointer to the window’s title. A window’s
title is a bit array that provides details about the window’s frame and the
handles of four regions used to draw the window. The bit array in the wFrame
field of a window record is shown in table 10-2.

Every window used in an application program must be set up with a call to
the Window Manager routine NewWindow. A call to NewWindow takes two
parameters: 2 null words (zeros) to save spaces on the stack and a pointer to
a parameter block. The call returns with a pointer to a window pushed onto
the stack. Listing 10-2 is a NewWindow call used in the WINDOW.S1
program.

Listing 10-2

Call to NewWindow
PushLong #0 ; space for result
PushLong #WinOParamBlock
NewWindow
pla
sta WinOPtr
pla

sta WinOPtr+2

The llcs Toolbox

Table 10-2
Bits in the wFrame Field
Bit Name of Field Value
0 F_.HILITED = Frame highlighted

= Frame not highlighted
1 F_ZOOMED = Currently zoomed
= Frame not zoomed
2 F_ALLOCATED Record was allocated

= Record was provided by application
3 F_.CTRL_TIE Control’s state is independent

= Inactive window has inactive controls
4 F_INFO = Information bar

= No information bar
5 F_VIS

= Window is currently visible
= Window is invisible

= T — T T

6 F_.QCONTENT = Return wInContent even if

window is inactive
0 = Don’t return wInContent if
window is inactive
7 F_MOVE = Title bar is a drag region
= No drag region
8 F_ZOOM

Zoom box on title bar

[
[l

= No zoom box (zoom box must have
title bar)

9 F_FLEX 1 = GrowWindow and ZoomWindow
won’t change the origin
0 = GrowWindow and ZoomWindow
will affect the origin
10 F_GROW I = Grow box
0 = No grow box (grow box must have at
least one scroll bar)

11 F_BSCRL = Window frame horizontal scroll bar
= No horizontal scroll bar
12 F_RSCRL

Window frame vertical scroll bar
= No vertical scroll bar

_ 0 = O
|

13 F_ALERT = Alert type frame (don’t set grow box,

close box, info bar, title bar, or scrolls)
0 = Standard frame
14 F_CLOSE 1 = Close box

0 = No close box (close box must have title
bar)

15 F.TITLE 1 = Title bar
0 = No title bar

255

10—Doing Windows

Parameter
Blocks

Before an application makes a NewWindow cal L, it must set up a parameter
block that spells out many details about the window. Listing 10-3 is a
NewWindow parameter block used in the WINDOW.S1 program. The fields
in a window’s parameter block are described in table 10—3.

Listing 10-3
Parameter block for a NewWindow call

WinOParamBlock anop
i'WinOEnd-WinOParamBlock’
i2%1101110111000000° ; Bits describing frame

dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc

WinOEnd

i4Win0Title’ , Pointer to title

i4°0° ; RefCon

i226,0,188,308° ; Full size (0O=default)

1407 ; Color table pointer

i20° ; Vertical origin

i20° ; Horizontal origin

12200 ; Data area height

12320° ; Data area width

1272007 ; Max cont height

i27320° ; Max cont width

i22 ; No. of pixels to scroll vertically
i272° ; No. of pixels to scroll horizontally
i220° ; No. of pixels to page vertically
12327 ; No. of pixels to page horizontally
i40° ; Information bar text string

i2'0 ; Info bar height

1407 ; DefProc field

i4°0° ; Routine to draw info bar
i4Paint0’ ; Routine to draw content
i26,0,188,308" ; Size/position of content
i4'SFFFFFFFF’ ; Plane to put window in

1407 ; Address for record (0=to allocate)

Windows and GrafPorts

256

Before the NewWindow call returns, it creates a GrafPort for the window
being set up and pushes a pointer to that GrafPort onto the stack. From that
point, the application that created the window can treat it as a GrafPort. The
application can draw into the window using QuickDraw II routines.

When the NewWindow call sets up a window, it uses the information
passed in the window’s parameter block to create the window’s attributes.
For example, the first field in the parameter block describes the window’s
frame—using the bit layout illustrated in table 10-~2—and the second field

10—Doing Windows

Table 10-3
Fields in a Window Parameter Block
Field Name Length Description
1 paramlength Word Number of bytes in parameter table
2 wFrame Word Bit array describing window frame
3 wTitle Pointer Pointer to window’s title
4 wRefCon Long Reserved for application’s use
5 wZoom Rect Size and position of window when
zoomed (0 = screen size)
6 wColor Pointer Pointer to window’s color table
7 wYOrigin Word Content’s vertical origin
8 wX0rigin Word Content’s horizontal origin
9 wbataH Word Height of entire document or pixel
image
10 wDataW Word Width of entire document or pixel
image
11 wMaxH Word Maximum height of content allowed
by GrowWindow
12 WMaxW Word Maximum width of content allowed
by GrowWindow
13 wScrollver Word Number of pixels to scroll document
vertically using scroll bar arrows
13 wScrol lHor Word Number of pixels to scroll document
horizontally using scroll bar arrows
14 wPageVer Word Number of pixels to scroll vertically
using page control
14 wPageHor Word Number of pixels to scrotl horizon-
tally using page control
15 wInfoRefCon Long Value passed to information bar draw
routine
16 wInfoHeight Word Height of information bar
17 wFrameDefProc Pointer ~ Address of standard window defini-
tion procedure
18 wInfoDefProc Pointer Address of routine that draws infor-
mation bar interior
19 wContDefProc Pointer Address of routine that draws content
region interior
20 wPosition Rect Window’s starting position and size
21 wPlane Long Window’s starting plane
(FFFFFFFF = frontmost)
22 wStorage Pointer Address of memory to use for
window record (0=don’t care)
23 paramlength Word Total number of bytes in parameter

table, including this field

257

The llcs Toolbox

258

contains the window’s title. In subsequent fields, the width and height of the
window’s data areas and content areas are defined. A data area is a rectangle
that encloses all the data a window can work with (for example, a pixel map).
A content area is a rectangle enclosing the largest portion of the data area
that may be displayed on the screen.

Some fields in a window’s parameter block duplicate fields in the win-
dow’s window record. When a window is created using a NewWindow call,
the call uses information provided in the window’s parameter block to fill in
the corresponding fields of the window’s window record.

One very important field in a window parameter block is the fourth field
from the end of the block. This field contains a pointer to a routine that is
used to draw the contents of the window each time the window is displayed
on the screen. In the WINDOW.S1 program, the field looks like this:

dc i4'PaintQ’ ; Routine to draw content

The routine that paints a window must be written according to a specific
format, and must end with the assembly language mnemonic rti.

In the Paint0 segment of the WINDOW.S1 program, the QuickDraw
call PPToPort copies the contents of a specific pixel map into the window
used in the program. This pixel map is set up in a program segment called
MakeWinO and is accessed in the program by the pointer PicOPtr.

The program segments MakeWin0 and PaintO are in listing 10-5, the
complete listing of the WINDOW.S1 program at the end of this chapter. Here
is what happens in the segment of code labeled PaintO0.

First, the Memory Manager call NewHand Le reserves a 32K block of
RAM—enough memory to hold a pixel map that is the size of one screen.
The call returns with a handle to the requested block of data pushed onto the
stack. This handle is then pulled off the stack and stored in a variable called
WinOHandle. Later in the program, the Paint0 routine uses the block of
data pointed to by WinOHand Le to draw the contents of the program’s window
on the screen.

When the handle called WinOHand Le is assigned, a segment of code
labeled Deref dereferences the handle (converts it into a pointer). The Deref
routine also locks the handle being dereferenced so the Memory Manager
can’t move the handle’s block of memory in the middle of an important
operation, which could crash the program. Later, when the important operation
is over, the Unlock routine unlocks the handle, enabling the Memory Man-
ager to manage it again.

When WinOHand Le is dereferenced, the pointer thus obtained is stored
in a LocInfo data structure at the end of the WINDOW.S1 program in a
field labeled PicOPtr. Then a NewWindow call creates a new window. To
set the new window’s attributes, the NewWindow call uses the parameter
block in listing 10-3.

As explained previously, the WINDOW.S1 program allows you to draw
into a screen window and, at the same time, to draw into the pixel map that
paints the window on the screen each time it is updated or redrawn. This is
why sketches drawn with the WINDOW.S1 program do not vanish from

10—Doing Windows

Window
Manager’s
GrafPort

How a Window
Is Drawn

memory when a window is removed from the screen. Instead, they remain
in RAM and can be redrawn into a window when it shows up again on the
screen.

To make this technique possible, the WINDOW.S1 program creates a
GrafPort that can be used to draw into the pixel map from which the program’s
window is drawn. This GrafPort is set up in the NewPort program segment.
For its Loc Info data, the new GrafPort uses the Pi cOLoc Info data structure
in the PortData data segment at the end of the program.

When the GrafPort that points to a pixel image is created, the WIN-
DOW.S1 program clears the area of memory used for the pixel image with
the BLkF1i LL program segment. In this segment, the pen color is set to white
and the QuickDraw call PaintRect clears the bit image to white. Later in
the program, when the user asks for a new blank screen by making the menu
choice New, the program uses the BLkFi L { routine to clear both the window
port and the bit image port to white.

(Incidentally, the PaintRect call can be used to fill any block of RAM
with any value, even in a nongraphics program. To “‘stuff’” a block of
memory, just pass to PaintRect the size of the area you want filled and
the value you want it filled with. PaintRect does the rest—and you save
the time and effort it would take to write a 65C816 block fill program.)

The WINDOW.SI program, like every program that uses windows, has
another GrafPort that is created by the Window Manager. When you use the
Window Manager in a program, it always creates a special GrafPort that has
the entire screen as its port rectangle. In all programs that use the Window
Manager, this port is known as the Window Manager port. The Window
Manager uses it to draw all windows, along with their scroll bars and other
controls, on the Ilgs screen.

When the Window Manager draws or redraws a window, it always draws the
window’s frame first. Then it draws the window’s contents.

During this process, the Window Manager manipulates regions of the
Window Manager port as necessary to ensure that only what should be drawn
is drawn. The Window Manager generates an update event to draw a window’s
contents. But before an update event can take place, the Window Manager
must accumulate, in the update region, the areas of the window’s content
region that need updating.

In programs that use either TaskMaster or the Event Manager, the Event
Manager periodically calls a routine called CheckUpdate to see if there is
a window on the screen whose update region is not empty. If it finds one, it
reports that an update event has occurred and passes a pointer to the window
that needs updating in the event message field of its event record. If
TaskMaster is used, it then updates the window as required. Programs that
don’t use TaskMaster have to do the updating themselves. Obviously, it’s
easier to use TaskMaster.

Some Window Manager routines can change the state of a window from
inactive to active or from active to inactive. For each change, the Window
Manager generates an activate event, passing along the window pointer in

259

The llcs Toolbox

the event message. The activeF Lag bit in the modi fiers field of the event
record is set if the window becomes active and cleared if it becomes inactive.

When the Event Manager finds out from the Window Manager that an
activate event has been generated, it passes the event to the application or
TaskMaster through its GetNextEvent routine. An activate event has the
highest priority of any type of event, so when the Event Manager detects one
it gets immediate action.

Usually, activate events are generated in pairs, because when one win-
dow becomes active another usually becomes inactive, and vice versa. Oc-
casionally, however, a single activate event is generated, for example, when
there is only one window in the window list or when an active window is
closed permanently.

When a pair of activate events comes along, the Window Manager first
generates the event for the window becoming inactive. It then generates the
event for the window becoming active. In most applications, pairs of activate
events are handled competently by TaskMaster. Rarely does an application
program have to intervene.

Coordinates and the Window Manager

Global
Coordinates in
WINDOW.S1

Local
Coordinates in
WINDOW.S1

Port Rectangie
in WINDOW.S1

260

When NewWindow is called to create a window, it takes the window’s bounds
rectangle from the LocInfo field of the window’s GrafPort. Thus, a win-
dow’s local coordinates begin in the upper left corner of the bounds rectangle
specified in the LocInfo field of the window’s GrafPort. In a window’s
global coordinate system, coordinate 0,0 is always assigned to the pixel in
the upper left corner of the window’s bounds rectangle.

In the WINDOW .S1 program, the LocInfo record that defines the window’s
bounds rectangle is titled PicOLocInfo. This record is in a data segment
labeled PortData, which appears at the end of the program. The bounds
rectangle defined in the PicOLocInfo record appears in the PicOFrame
field. In the WINDOW.S1 program, therefore, the bounds rectangle assigned
to the program’s window is the rectangle 0,0,200,320.

The global coordinates of a window are always based on a pixel image,
specifically, the pixel image pointed to by the second field of the window’s
LocInfo record. In a window’s global coordinate system, coordinate 0,0 is
always assigned the pixel in the upper left corner of the window’s pixel image.

The pointer to the pixel image used in the WINDOW.S | programis PicOPtr.
This pointer is the second field in a LocInfo record called PicOLocInfo.
The PicOLocInfo record is in a data segment called PortData, which
appears at the end of the program.

The port rectangle of a window is a rectangle outlining the maximum portion
of the window that can be displayed on the screen at any given time. If a
window is partially hidden (for example, partly covered by another window
or partly off the screen), the window’s visible region (VisRgn) is also used

10—Doing Windows

Coordinate
Conversions in
WINDOW.S1

to determine how much of the window is visible on the screen. In the WIN-
DOW.S1 program, the Window Manager takes care of VisRgns automati-
cally. But, as you shall see shortly, the program has to perform a few
manipulations using port rectangles.

In programs like WINDOW.S1, coordinates often have to be converted from
one system to another. Some QuickDraw and Window Manager routines use
global coordinates, but others use local coordinates. For example, in the
segment of the WINDOW.S1 program labeled Movelt, TaskMaster returns
mouse coordinates in global coordinates, and the Event Manager call
GetMouse and the QuickDraw II call LineTo require local coordinates. For
this reason, the QuickDraw call G Loba lToLocall is used to convert the global
coordinates returned by TaskMaster to the local coordinates required by other
calls.

The MovelIt segment of the WINDOW.S1 program is the heart of the
program. In this section, mouse movements are tracked and lines are drawn
on the screen. TaskMaster detects the location of the IIGs mouse and returns
it, in global coordinates, in the EventWhere field of its task record. The
mouse location is then converted into local coordinates in these two lines:

PushLong #EventWhere
—GlobalToLocal

The GlobalTolocal call converts the global coordinates in the Event-
Where record to local coordinates. After this conversion, the EventWhere
field contains local coordinates, which can then be used by calls that require
them. In the Movelt segment, other conversions are taken care of by the
StartDrawing and SetOrigin calls.

When a window is created, the upper left coordinate of its bounds
rectangle are usually set to 0,0. Thus, in the local coordinate system used by
a new window, the first pixel in its bounds rectangle is generally assigned
the coordinate 0,0.

As you have seen, every window has both a port rectangle and a bounds
rectangle. The intersection of a window’s bounds rectangle and port rectangle
make up the largest possible area of the window that can be displayed on the
screen.

Suppose a window has a bounds rectangle that starts at local coordinate
0,0 and is the same size as the screen. Let’s also suppose the window has a
port rectangle that covers a smaller area in the middle of the screen. The
coordinates of this port rectangle are 65,50 (the vertical coordinate is listed
first). A bounds rectangle and a port rectangle that fit this description are
illustrated in figure 10-3.

Now let’s assume you want to use the WINDOW.S1 program to draw
a sketch in the window (that is, in the port rectangle) shown in figure 10-3.
You first have to convert the mouse location returned by TaskMaster from
global coordinates to local coordinates. But, because of the way the IlGs
Window Manager works, you also have to reset the origin of the window’s

261

The llas Toolbox

262

BIT IMAGE

Bounds Rect

Port Rect

Figure 10-3
Relationship between a bit image, BoundsRect, and PortRect

port rectangle; you have to change the value of the upper left corner of the
port rectangle, as expressed in local coordinates.

This is why the port rectangle’s origin must be reset. When the Window
Manager draws all the windows on a screen—complete with scroll bars, title
bars, and all other necessary features—it uses a GrafPort that has the whole
screen as its bounds rectangle. But before the Window Manager can draw
the content region of a single window (for example, when the window has
to be updated or redrawn), it has to switch to that window’s GrafPort and
change the origin of the window’s port rectangle from its usual value of 0,0
to the value it had when it was a port rectangle in the Window Manager’s
GrafPort, which uses the whole screen as its bounds rectangle.

The logic of this procedure is a little difficult to follow. After the origin
of a window’s port rectangle is changed, the Window Manager can draw into
the window, and the drawing ends up in the proper location on the screen.

When the Window Manager has finished drawing in a window, it must
set the window’s origin back to 0,0 before it can leave the window’s port
and return to its own GrafPort, so that it can regain the capability of drawing
anywhere on the screen.

When the Window Manager has to draw in a window, it automatically
carries out all the procedures just outlined. But when an application wants to
draw in a window, it has to perform the same kinds of operations the Window
Manager performs when it draws in a window.

To start drawing in a window, an application can use one of two ap-
proaches. It can either

B Make the QuickDraw call SetPort to make the window’s port the
current port and then make the QuickDraw call Set Origin with
the proper parameters

B Make the Window Manager call Startdrawing, which carries out
both of the previous steps automatically

10—Doing Windows

The simpler approach is to use the StartDrawing call—and that is what
is done in the WINDOW .S1 program.

After an application has finished drawing into a window, it must return
the origin of the window’s port rectangle to its original state by making the
QuickDraw call SetOrigin using parameters 0,0.

Running the WINDOWS.S1 Program

After the procedure for drawing into a window is understood, the operation
of the WINDOW .S1 program becomes straightforward. The main part of the
WINDOWS.S1 program is MainProgram. In this section, the tools used by
the program are initialized, a menu is constructed, and the MakeWinO sub-
routine is called to create a window.

Next, the NewPort subroutine is called to set up a GrafPort used by
the window’s pixel map. Then the BLkF1i L L subroutine is called to clear the
pixel map to white. (You could clear the screen to another color by simply
replacing the color code $FF in the BLkF1i L L routine with a different color
code.)

When the window’s pixel image is cleared, the WINDOW.S1 program
jumps to the EventLoop subroutine. This is the main event loop of the
program. While the event loop is running, TaskMaster continuously looks for
button down events. If TaskMaster detects a button down event, the program
uses a jump table labeled TaskTable to determine what should be done.

If TaskMaster reports a menu event, the table called TaskTab Le sends
the program to the doMenu subroutine. It is up to doMenu to carry out an
appropriate response to the user’s menu selection. Depending upon the menu
choice, the doMenu routine can either call the Repaint subroutine to draw
a new window, call the doWinQ subroutine to redraw a window, or jump to
the doQui t subroutine to end the program.

If a window event is detected, TaskMaster takes care of all routine
window-related operations, such as scrolling the window or changing its size.
If TaskMaster detects a button down event in the window’s go-away box, the
program jumps to a short subroutine titled doGoAway, which hides the win-
dow. If TaskMaster reports a button down event in the window’s content
region, the program jumps to the Movelt subroutine, which enables the user
to draw in the window.

The Movelt routine, as noted, is the heart of the WINDOW.S1 pro-
gram. In this segment of code, as long as the mouse is inside a window and
the mouse button is down, the QuickDraw call LineTo draws a line on the
screen tracing the mouse’s movements. When the mouse button is released,
the mouse’s movements are still followed, but the tracing is done using the
MoveTo call rather than the LineTo call, so no line is drawn on the screen.

You can clear the window at any time by making the menu selection
New. You can temporarily hide the window being drawn by clicking the
mouse in the window’s go-away region. If a window is hidden, but is not
erased with a click in the menu item New, you can bring the window back

263

The

lles Toolbox

into view by making the menu selection Untitled (for now, the title of the
window). After New is selected, however, the window is permanently erased
and cannot be retrieved from memory.

Other Features of WINDOW.S1

264

InsertSysDisk
Routine

The WINDOW .S1 program has some new features that should be mentioned
before you conclude this chapter. One is the InsertSysDisk subroutine,
which is called from the ToolInit program segment. The other new and
noteworthy feature is a macro called ErrorCheck, which is also called from
the ToolInit segment of the program.

The InsertSysDisk subroutine is called when the WINDOW.S1 pro-
gram tries to load the tools it needs and finds that the Ilgs system disk—on
which some tools are stored—is not currently in the computer’s disk drive.
When this condition is detected, InsertSysDisk is called and prints a
message on the screen asking the user to insert the system disk in the disk
drive.

The ErrorCheck macro is called following several critical routines,
such as the loading of essential tools. If the calling of a vital routine is aborted
by an error, the ErrorCheck macro ends the program. A system failure
message—a rolling-Apple symbol accompanied by an error message and an
error number—is displayed on the screen.

To see how the InsertSysDi sk routine works, look through the ToolInit
segment for the label LoadEmUp. Study the code that follows the labels
LoadEmUp and DoInsertDisk, and you’ll see that this section of code
forms a loop. When the program comes to the Load EmUp label, it makes the
Tool Locator call LoadTools to load all the tools used in the program. The
LoadTools call, like most Toolbox calls, uses a specific convention for
detecting errors. If the call is completed successfully, without an error, it
returns with the P register’s carry flag clear and a value of 0 in the accumulator.
If an error is encountered in making the call, however, the call returns with
the carry bit set and an error number in the accumulator.

In the WINDOW.S1 program, if the LoadTools call returns without
an error, the program jumps a few lines to a section of code labeled
ToolsLoaded and the tools that have been loaded start up normally. If the
call returns with the carry set and the number 45 in the accumulator, however,
the program jumps to the DoInsertDi sk subroutine, which prints a message
on the screen asking the user to insert the Ilgs system disk (which contains
some of the tools used by the computer). If the user complies and the necessary
tools are found, the program proceeds normally. If this doesn’t solve the
problem, the program ends and a system failure message is displayed.

10—Doing Windows

ErrorCheck To end programs and display system-death messages after fatal errors occur,
Macro the WINDOW.S1 program uses the ErrorCheck macro. Several calls to the
ErrorCheck macro appear in the TooLInit segment of the WINDOW.S1
program.
The ErrorCheck macro appears in listing 10-4. To use it in your
programs, type it into a macro file and add it to your library of macros using
APW’s MACGEN shell command.

Listing 10—4
ErrorCheck

MACRO
&lab ErrorCheck &msg
&lab bcc end&syscnt
pea x&syscnt!/-16
pea x&syscnt

Ldx #$1503

jsl $E10000
x&syscnt str “&msg"
end&syscnt anop

MEND

The WINDOW.S1 and INITQUIT.S1 Programs

The WINDOW.S1 program, like the C language programs in the last few
chapters, is divided into two parts: WINDOW.S| and INITQUIT.S1. The
WINDOW .S1 program, listing 10-5, and the INITQUIT.S1 program, listing
10-6, are at the end of this chapter.

Splitting a program into two or more parts can save a considerable
amount of typing. For example, INITQUIT.S1—the portion of the program
that loads, starts up, and shuts down tools—is also used in sample programs
in chapters 11 and 12.

In programs written using the APW assembler-editor package, it’s easy
to divide a program into sections and then put all the sections together again
at assembly time. All you have to do is type each section, save it as a separate
source code file, and then combine the files you have saved using the APW
assembler directive COPY. Look at the end of the WINDOW.S1 program in
listing 10-5, and you’ll see that the last line of the listing is

COPY INITQUIT.S1

When the APW assembler reaches that line, it starts assembling INITQUIT.S1
and adds it to WINDOW.S1, just as if the two listings were a single listing.
Furthermore, any number of COPY directives can appear at the end of a source
code listing. So you can add many modules to an APW program by using
the COPY directive.

265

The llcs Toolbox

The WINDOW.C and INITQUIT.C Programs

The WINDOW.C program, listing 10-7, is a C language version of WIN-
DOW.SI. It is designed to be used with the INITQUIT.C program, listing
10-8, which performs the same functions as INITQUIT.S1 and was intro-
duced in chapter 9. THe WINDOW.C and INITQUIT.C programs appear at
the end of this chapter.

WINDOW.C and INITQUIT.C are combined into one program with
the statement

#include “initquit.c”

This statement is in the first line of the WINDOW.C program.

There are significant differences between WINDOW.C and its assembly
language equivalent, WINDOW.S1. In WINDOW.C, for example, the
Sketch() function, which draws on the screen, is simplified. It uses the
function StartDrawing() just once, then it uses SetPort() thereafter.
This is a more streamlined way to write the Sketch() routine in C, but the
method used in WINDOW.S1 works better in assembly language. Experiment
and you’ll see why.

In WINDOW .C, the ErasePic0() function, which is called repaint
in WINDOW .S1, is also simplified. Instead of completely dismantling a win-
dow environment and then rebuilding it (the technique used in WINDOW .S1)
the ErasePic0() function keeps the window’s environment, but simply
erases what is in it. Because of differences in the way in which WINDOW .S1
and WINDOW.C work, this is another approach that works well in C, but
the technique used in WINDOW .S1 works better in assembly language.

WINDOW.S1 and INITQUIT.S1 Listings

Listing 10-5
WINDOW.S1 program

*

* WINDOW.S1
*

%% A FEW ASSEMBLER DIRECTIVES ##x

266

Title Window
ABSADDR on

LIST off

SYMBOL off

65816 on

mcopy window.macros

KEEP window

10—Doing Windows

*

* EXECUTABLE CODE STARTS HERE

*

Begin

*

* SOME DIRECT
*

DPData
DPTemp
DPPointer
DPHandle

ScreenMode
MaxX

True
False

*

START
Using QuitData

imp MainProgram ; skip over data

END

PAGE ADDRESSES AND A FEW EQUATES

START

gequ $00
gequ DPTemp+4
gequ DPPointer+4

gequ $00 ; 320 mode
gequ 320 ; X clamp high
gequ $8000

gequ $00

END

* MAIN PROGRAM LOOP

*

MainProgram

START
Using GlobalData
Using PortData

phk

plb

tdc ; get current direct page

sta MyDP ; and save it for the moment
jsr ToollInit ; start up all tools we'll need
jsr BuildMenu ; create and draw menu bar

jsr MakeWinO ; Create empty window

267

The lics Toolbox

**% OPEN A PORT SO WE CAN DRAW IN WINDOW'S PIXEL MAP **x*
jsr NewPort
lda #PicOPort
sta BLkToFill
lda #PicOPort
sta BLkToFill+2
jsr BLkFill
*%% LINE THAT JUMPS TO THE EVENT LOOP %
jsr EventLoop ; check for key & mouse events

**% WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN *%x

jsr Shutdown

jmp Endit
END

*

* EVENT LOOP

*

EventlLoop START

Using QuitData
Using TaskTable
Using EventData

Again anop
PushWord #0 ; space for result
PushWord #S$FFFF ;s recognize all events
PushlLong #EventRecord
-TaskMaster
pla
asl a ; code * 2 = table location
tax ; X is index register
jsr (TaskTable,x) ; look up event’s routine
lda QuitFlag
beq again

rts

END

268

10—Doing Windows

*

* ROUTINE TO DRAW SKETCHES ON THE SCREEN

*
Movelt

loop

START

Using EventData
Using GlobalData
Using PortData

PushLong TaskData
-StartDrawing
PushLong #RectPtr
—GetPortRect
PushLong #EventWhere
—GlobalTolLocal
PushLong EventWhere
—MoveTo

pea O
pea 0
-SetOrigin

PushLong #PicOPort
~SetPort

PushLong #RectPtr
—ClipRect

PushLong EventWhere
-MoveTo

pea 0

pea O
StillDown
pla

beq out

lda TaskData+2
pha

lda TaskData
pha
-StartDrawing

lda #EventWhere
pha

lda #EventWhere
pha

—GetMouse

-
4

.
r

; move cursor to mouse location

convert them to
local coordinates

; space for return

.
r

check button zero

269

The llcs Toolbox

out

RectPtr

*

lda EventWhere+?2
pha

lda EventWhere
pha

-LineTo

pea 0
pea 0
-SetOrigin

lda #'PicOPort
pha

lda #PicOPort
pha

_SetPort

lda EventWhere+2
pha

lda EventWhere
pha

-LineTo

brl loop

anop
rts

ds 8

END

* REPAINT: MAKE NEW EMPTY WINDOW

*

Repaint

270

START

Using PortData
Using WindowData
Using GlobalData

PushLong #0
—GetPort
PullLong ThisPortPtr

PushLong #PicOPort
SetPort

PushLong #ScreenRect

10—Doing Windows

ThisPortPtr
ScreenRect

NewPort

—ClipRect

lda #PicOPort
sta BlkToFill
lda #PicOPort
sta BLkToFill+2

jsr BLkFill

PushLong ThisPortPtr
-SetPort

PushLong WinOPtr
-HideWindow

PushLong WinOPtr
—CloseWindow

PushLong PicOHandle
-DisposeHandle

jsr MakeWinO
jsr doWinO

rts

ds 4
dc i0,0,200,320°

END

START
Using GlobalData
Using PortData

PushLong #0
-GetPort
PullLong OrigPortPtr

PushlLong #PicOPort
-OpenPort

PushLong #PicOPort
—SetPort

PushLong #ScreenRect
—ClipRect

space for result
save pointer to current port

pointer to new port
open a port for pixel map

; make new port the current

port (temporarily)

271

The llcs Toolbox

ScreenRect

*
* CREATE AND
*

MakeWin0

*** SET HANDLE

PushLong #PicOLocInfo
-SetPortloc

PushLong OrigPortPtr
-SetPort

rts
dc i0,0,200,320°

END

DRAW A WINDOW

START

using GlobalData
using WindowData
using PortData

FOR PIC O (new) *#*x

PushLong #$00
PushLong #$8000
PushWord MyID
PushWord #$C000
PushLong #0
NewHandle

; set up loc info for new port

; make original port
; the current port again

; 32K (one screen)

; locked and fixed

ErrorCheck ‘Could not get handle.’

pla

sta PicOHandle
pla

sta PicOHandle+2

% DEREF HANDLE, CLEAR MEMORY, AND CREATE POINTER **x

272

lda PicOHandle
ldx PicOHandle+?2
jsr Deref

sta PicOPtr
stx PicOPtr+2

lock and deref PicOHandle
while we do our thing with it

; deref gives us a pointer

to PicOHandle's pixel map
so we'll save it

10—Doing Windows

*%% SET UP WINDOW 0 *%x

PushLong #0 ; space for result
PushLong #WinOParamBlock
—NewWindow

pla

sta WinOPtr
pla

sta WinOPtr+2

rts
END

* DoWinO
* Selects and shows window 0 (blank) in response to menu selection.

DoWin0 START
using Globalbata
using WindowData

PushLong WinOPtr
-SelectWindow

PushLong WinOPtr
~ShowWindow

rts
END
*
* Paint0
* Draws empty window when TaskMaster calls.
*
Paint0 START

using GlobalData
Using PortData
using WindowData

phb
phk
plb

phd
lda MyDP

273

The lics Toolbox

tcd

PushLong #PicOLocInfo
PushLong #PicOFrame
PushWord #0

PushWord #0

PushWord #0

_PPToPort

pld
plb
rtl

END

**%% BLOCK FILL ROUTINE **x*

BLkKFiLL

OrigPortPtr
ARect

274

START

Using GlobalData
Using WindowData
Using PortData

PushLong #0
—GetPort
PullLong OrigPortPtr

PushLong BLkToFill
—SetPort

PushWord #$FF
-SetSolidPenPat

PushLong #ARect
—PaintRect

-PenNormal

PushLong OrigPortPtr
-SetPort

rts

ds 4
dc i0,0,200,320°

END

10—Doing Windows

*

* CREATE AND DRAW MENU
*

Bui ldMenu START
using MenuData ; proceeding from back to front

PushlLong #0 ; space for return
PushLong #Menu3

NewMenu

PushWord #0

~InsertMenu

PushLong #0 ; space for return
PushLong #Menu?2 ; wait’ screen menu bar
-NewMenu

PushWord #0

~InsertMenu

PushLong #0 ; space for return
PushLong #Menu1

—NewMenu

PushWord #0

_InsertMenu

PushWord #0 ; init & draw the menu bar
—FixMenuBar
pla ; discard menu bar height

—_DrawMenuBar
rts
END

*
* DoMenu

* Called when TaskMaster tells us a new menu item is selected.
*

DoMenu START
Using TaskTable
Using EventData
Using MenuTable

lda TaskData

cmp #256
bcc GiveUp ; this should never happen

275

The ligs Toolbox

and #$00FF
asl a
tax

jsr (MenuTable,x)

GiveUp anop
PushWord #False ; draw normal
PushWord TaskData+2 ; which menu

-HiliteMenu

rts

END
InsertSysbDisk

This routine is called when tools need to be loaded and the
system disk is offline. Routine asks user to insert system disk.

* ok * % ¥

InsertSysDisk START

-SetPrefix SetPrefixParams
-GetPrefix GetPrefixParams

PushWord #0 ; space for result
PushWord #195 ; X pos

PushWord #30 ; Y pos

PushLong #PromptStr ; prompt string
PushLong #VolStr ; vol string

PushLong #0KStr
PushLong #CancelStr

~TLMountVolume
pla
rts
PromptStr str 'Please insert the disk’
VolStr ds 16
OKStr str 0K
CancelStr str ‘Shutdown’

GetPrefixParams dc i'7°

276

10—Doing Windows

dc i4'VolStr’

SetPrefixParams dc i'7’
dc i4BootStr’

BootStr str %/°

END

*

* WINDOW GO-AWAY ROUTINE
*

doGoaway START
Using EventData

PushLong TaskData
-HideWindow
rts

END

*

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*

Ignore START
rts
END

*

* Deref

* Derefs the handle passed in a and x registers.

* Result passed back in a and x registers.
*

Deref START
sta DPTemp
stx DPTemp+2
ldy #2
lda [DPTempl,y
tax
lda [DPTempl
rts

END

277

The llcs Toolbox

*

* DATA SEGMENTS

*

*

* Menu Data
*

MenubData

Return

Menu1

Menu?2

Menu3

*kk

MenuTable

278

DATA

equ 13

dc ¢>L@\XN1",i1RETURN’
dc ¢’ LA Window Program \N257°,i1RETURN’
dc c¢’.”

dc c>L File \N2',i1TRETURN’

dc ¢’ LNew \N258V’,i1RETURN’

dc ¢’ LQuit \N259°,7i 1T'RETURN’

dc c¢'.”

dc c¢>L Windows \N3',i1RETURN’
dc ¢” LUntitled \N260°,i1RETURN’

dc c¢’.”

END

DATA

Menu 1 (apple)
dc i“ignore’ ; one for the NDAs
dc i“ignore’ ; ‘a window program’

Menu 2 (file)
dc iRepaint’ ; ‘doWin0’" (new window)
dc idoQuit’ ; quit item selected

Menu 3 (windows)
dc i'doWin0’ ; ‘untitled’

END

10—Doing Windows

Kk
TaskTable DATA
dc iignore’ ; 0 null
dc i‘ignore’ ; 1 mouse down
dc i‘ignore’ ; 2 mouse up
dc i‘ignore’ ; 3 key down
dc iignore’ ; &4 undefined
dc i“ignore’ ; 5 auto-key down
dc i“ignore’ ; 6 update event
dc i“ignore’ ; 7 undefined
dc i’ignore’ ; 8 activate
dc i“ignore’ 5 9 switch
dc 1ignore’ ;> 10 desk acc
dc i“ignore’ ; 11 device driver
dc i“ignore’ ; 12 application
dc i“ignore’ ; 13 application
dc i“ignore’ ; 14 application
dc i“ignore’ ; 15 application
dc i“ignore’ ; 0 in desk
*
* TaskMaster events
*
dc i'DoMenu’ ; 1 1in menu bar
dc i“ignore’ ; 2 in system window
dc 1'Movelt’ ; 3 in content of window (Movelt)
dc i“ignore’ ; 4 in drag
dc i“ignore’ 5 5 1n grow
dc i‘doGoAway’ ; 6 in go-away
dc i“ignore’ ; 7 in zoom
dc i“ignore’ ; 8 in info bar
dc i‘ignore’ ; 9 in ver scroll
dc i’ignore’ ; 10 in hor scroll
dc i’ignore’ ; 11 in frame
dc i“ignore’ ; in drop
END
k%
ToolTable DATA
dc '8 ; number of tools in table
dc i'$04,$0100° ; quickdraw

279

The llas Toolbox

* k%

EventData

EventRecord
EventWhat

EventMessage

EventWhen
EventWhere

EventModifiers

TaskData
TaskMask

* %%
QuitData
QuitFlag

QuitParams

*kk

WindowData
PicOHandle

WinOPtr
WinOTitle

280

dc
dc
dc
dc
dc
dc
dc

END

DAT

1'$06 ,$0100°
1'$0E ,$0000°
i'$0F ,$0100°
i$10,%$0100°
1'$14 ,$0000°
1'$15,$0000°
1'$17,$0000

A

anop

ds
ds
ds
ds
ds
ds
dc

END

DAT
ds
dc
dc
dc

END

DAT

ds
ds
str

2
4
4
4
2
4
.i

4'SOFFF

A

1407
1407
1407

A

4
4
‘Untitled’

; event manager

; window manager
; menu manager

; control manager

; std file manager

; table for Event Manager

10—Doing Windows

WinOParamBlock anop

Bits describing frame

Pointer to title

RefCon

Full Size (0= default)

Color Table Pointer

Vertical origin

Horizontal origin

Data Area Height

Data Area Width

Max Cont Height

Max Cont Width

No. of pixels to scroll vertically
No. of pixels to scroll horizontally
No. of pixels to page vertically
No. of pixels to page horizontally
Infomation bar text string

Info bar height

DefProc

Routine to draw info bar

Routine to draw content
Size/position of content

Plane to put window in

Address for window record (0 to
allocate)

program ID word

dc i'WinOEnd-WinOParamBlock’
dc i2'%1101110111000000° ;
dc i4Win0Title’ ;
dc i4°0 ;
dc i226,0,188,308° ;
dc i4°0° ;
dc i2°0° ;
dc i20° ;
dc 27200 ;
dc 127320° ;
dc 272007 ;
dc i27320° ;
dc 12727 ;
dc i22’ ;
dc i2°20° ;
dc i2'32° ;
dc i40 ;
dc i20 ;
dc i40 ;
dc i40 ;
dc i4'Paint0’ ;
dc i26,0,188,308" ;
dc i4'SFFFFFFFF’ ;
dc i4°0° ;

*

Win0End anop

END

*kk

GlobalData DATA

BLkToFill ds 4

MyID dec 110 ;

MyDP ds

BlockSize ds 4

Filval ds 2

END

281

The llcs Toolbox

%k
PortData DATA
OrigPortPtr ds 4 ; pointer to original port
PicOPort ds $AA
PicOLocInfo dc i'$00° ; 320 mode
PicOPtr ds 4 ; MakeWin0 fills this in
dc i160° ; width
PicOFrame dc¢ i10,0,200,320° ; pic image frame rect
END
*
* IOData
*
I0OData DATA
ReplyRecord anop
GoodF lag ds 2
FType dc 1193 ; %c1
AuxFType dc 10 ; #0
FName ds 15
Ful LPathName ds 128
CreateParams anop
NameC dec 140
dc 12'$00C3’ ; DRNWR
CType dc i2$00C1° ; super high-res graphics
CAux dc 14°$00000000° ; Aux
dc i2°$0001° ; type
dc 12'$0000° ; create date
dc 1260000’ ; create time
DestParams anop
NameD dc 140
OpenParams anop
OpenlID ds 2
NamePtr ds &4
ds 4
ReadParams anop
ReadlD ds 2
PicDestIN ds 4
dc 14$8000° ; this many bytes
ds &4 ; how many xfered

282

10—Doing Windows

WriteParams anop
WritelD ds 2
PicDestQOUT ds &4
dc 147$8000° ; this many bytes
ds 4 ; how many xfered
CloseParams anop
CloselD ds 2
END
J %k %k

COPY INITQUIT.S1

Listing 10—6
INITQUIT.S1 program

*

* INITQUIT.S1: WHERE WE INITIALIZE OUR TOOLS
*

Toollnit START

Using GlobalData

Using ToolTable
**% START UP TOOL LOCATOR **x*

-TLStartup ; Tool Locator
*%% INITIALIZE MEMORY MANAGER **%

PushWord #0

-MMStartup

ErrorCheck Could not init Memory Manager.’

pla
sta MyID

*%%x INITIALIZE MISC. TOOL SET *#%x*

-MTStartup
ErrorCheck Could not init Misc Tools.’

**% GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT #*%%*

PushLong #0 ; space for handle

PushLong #$800 ; eight pages

283

The llcs Toolbox

*%% INITIALIZE

*%% INITIALIZE

PushWord MyID

PushWord #$C001 ; locked, fixed, fixed bank
PushLong #0

-NewHandle

ErrorCheck ‘Could not get direct page.’
pla

sta DPHandle

pla

sta DPHandle+?2

Lda [DPHandlel
sta DPPointer

QUICKDRAW II *xx

lda DPPointer ; pointer to direct page
pha

PushWord #ScreenMode ; either 320 or 640 mode
PushWord #160 ; max size of scan line
PushWord MyID

-QDbStartup

ErrorCheck Could not start QuickDraw.’

EVENT MANAGER *x*

lda DPPointer ; pointer to direct page
clc

adc #3$300 ; QD direct page + #$300
pha ; (@D needs 3 pages)
PushWord #20 ; Qqueue size

PushWord #0 ; X clamp Llow

PushWord #MaxX ; X clamp high

PushWord #0 ; Y clamp Llow

PushWord #200 ; Y clamp high

PushWord MyID

-EMStartup

ErrorCheck Could not start Event Manager.’

*%% LOAD SOME TOOLS FROM RAM *xx

LoadEmUp

284

PushLong #ToolTable
—LoadTools
bcc ToolsLoaded

cmp #$45 ; prodos error: vol not found
beq doInsertDisk

10—Doing Windows

DolnsertDisk

sec
ErrorCheck Could not load tools.’

anop
jsr InsertSysDisk

cmp #1

beg LoadEmUp

sec

ErrorCheck Tool loading aborted.’

**k%x WINDOW MANAGER *#*x*

Toolsloaded

PushWord MyID
WindStartup
ErrorCheck ‘Could not Start Window Manager.’

PushLong #$0000
—Refresh

***% CONTROL MANAGER ***

PushWord MyID

lda DPPointer ; DP to use = qd dp + $400
cle

adc #%$400

pha

—CtlStartup

ErrorCheck ‘Could not start Control Manager.’

% MENU MANAGER *

PushWord MyID

lda DPPointer ; DP to use = qd dp +%$500
clc

adc #%$500

pha

-MenuStartup

ErrorCheck ‘Could not start Menu Manager.’

~ShowCursor

k% LINE EDIT #%%*

PushWord MyID

lda DPPointer

clc

adc #3600 ; aqd dp + $600
pha

285

The llcs Toolbox

-LEStartup
errorcheck ‘Could not start up Line Edit.’

**%% DIALOG MANAGER *%%

PushWord MyID
-DialogStartup
errorcheck ‘Could not start Dialog Manager.’

*%% STANDARD FILE MANAGER **xx%

PushWord MyID

lda DPPointer

clc

adc #3700 ; ad dp + $700
pha

~SFStartup

errorcheck Could not start up SF Manager.”

rts

END

*

* THE ROUTINE THAT ENDS THE PROGRAM
*

EndIt START
Using QuitData
-Quit QuitParams

*%% A QUIT CALL SHOULDNT RETURN; IF IT DOES, WERE FINI ***
ErrorCheck We returned from a quit call!”

END

*

* SHUT DOWN ALL THE TOOLS WE STARTED UP
*

ShutDown START
Using GlobalData
Using WindowData

—SFShutdown

286

10—Doing Windows

-DialogShutdown
—LEShutdown
—MenuShutDown
-CtlShutDown
-WindShutDown
—EMShutbown
-@DShutbown
-MTShutDown

PushLong DPHandle
-DisposeHandle

PushLong PicOHandle
-DisposeHandle

PushWord MyID
-MMShutbDown
_TLShutDown

rts

END

*

* ROUTINE THAT SETS THE QUIT FLAG

*

doQuit START
Using QuitData

lda #$8000

sta
rts

END

QuitFlag

WINDOW.C and INITQUIT.C Listings

Listing 10-7
WINDOW.C program

#include "initquit.c”

************************************/

/* Data and routine to create menus */
/************************************/

287

The llcs Toolbox

/* Set up menu strings. Because C uses \ as an escape character, we use
two when we want a \ as an ordinary character. The \ at the end of each
line tells C to ignore the carriage return. This lets us set up our items
in an easy-to-read vertical alignment. %/

char *menul = "\
>L@XN1\r\
LA Window Program \\N257\r\

LAY 4

char *menu2 = "\

>L File \\N2\r\
LNew \\N258V\r\
LQuit \\N259\r\

LAY 4

char *menu3 = "\
>L Windows \\N3\r\
LUntitled \\N260\r\

L 4

#define QUIT_ITEM 259 /* these will help us check menu item numbers */
#define QUIT_ITEM 259 /* these will help us check menu item numbers */
#define NEW_ITEM 258

#define UNTIT_ITEM 260

Bui ldMenu ()

{
InsertMenu(NewMenu(menu3),0);
InsertMenu(NewMenu(menu2) ,0);
InsertMenu(NewMenu(menu1),0);
FixMenuBar();
DrawMenuBar();

}

/***/

* Data structures and routine to set up offscreen drawing environment */
/***/

LocInfo picOLocInfo = { mode320,
NULL, /* space for pointer to pixel image */
160, /* width of image in bytes = 320 pixels */
0,0,200,320 /* frame rect */
1

Rect screenRect = {0,0,200,320);
GrafPort picOPort;

288

10—Doing Windows

#define IMAGE_ATTR attrlLocked+attrFixed+attrNoCross+attrNoSpec+attrPage

PicOSetup() /* called once by MakeWindow at start of program */

{
GrafPortPtr thePortPtr;

picOLocInfo.ptrToPixImage = *(NewHandle (0x8000L ,myID,IMAGE_ATTR,NULL));
thePortPtr = GetPort();
OpenPort (&picOPort);
SetPort(&picOPort);
SetPortLoc(&picOLocInfo);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(thePortPtr);
}

/**/
/* Data structures and routine to create window */

/**/

/* Initialize template for NewWindow */

#define FRAME fQContent+fMove+fZoom+fGrow+fBScroll+fRScroll
+fClose+fTitle

ParamList template = { sizeof (ParamList),

FRAME,

“\pUntitled”, /* pointer to title */

oL, /* RefCon */
26,0,188,308, /*x full size (O=default) */
NULL, /* use default ColorTable */
0,0, /* origin */
200,320, /* data area height & width #*/
200,320, /* max cont height & width =*/
2,2, /* ver & hor scroll increment */

20,32, /* ver & hor page increment */
NULL, /* no info bar text string */
0, /* info bar height = none */
NULL, /* default def proc */
NULL, /* no info bar draw routine */
NULL, /* draw content must be filled in
at run time */
26,0,188,308, /* starting content rect */
-1L, /* topmost plane */
NULL /* let window manager allocate record */

b

289

The llcs Toolbox

/* Window's draw content routine */
pascal void DrawContent()

{
PPToPort(&picOLocInfo,&(pic0LocInfo.boundsRect),0,0,modeCopy);
}

GrafPortPtr winOPtr;

MakeWindow() /% complete template, make (the window,
and setup offscreen port */

{

template.wContDefProc = DrawContent;

winOPtr = NewWindow(&template);

PicOSetup(); /* create offscreen image for use by DrawContent */
}

/***/
/* Main routine. Set up environment, call eventloop, and shut down */
/***/
main()
{

StartTools();

Bui ldMenu();

MakeWindow();

EventLoop();

DisposeHandLe(FindHandle(picOLocInfo.ptrToPixImage));

ShutDown();
}

/**************************************/
/* Event loop and supporting routines */
/**************************************/
WmTaskRec myEvent;

Boolean done = false;

EventLoop()
{
myEvent.wmTaskMask = OxOFFF;
while(!done)
switch (TaskMaster(everyEvent,&myEvent)){
case wInMenuBar:
DoMenus();
break;
case wInGoAway:
HideWindow(winOPtr);
break;
case wInContent:
Sketch();

290

10—Doing Windows

}
}
DoMenus ()
{

Word *data = (Word *)&myEvent.wmTaskData; /* address of item id */

switch(*data) {
case QUIT_ITEM:
done = true;
break;
case NEW_ITEM:
ErasePic0();
HideWindow(winOPtr);
CloseWindow(winOPtr);
winOPtr = NewWindow(&template);
case UNTIT_ITEM:
SelectWindow(winOPtr);
ShowWindow(winOPtr);
break;
}
HiliteMenu(false,*(data + 1)); /* data + 1 is address of menu id */

}

ErasePic0()

{
GrafPortPtr oldPortPtr;

oldPortPtr = GetPort();
SetPort(&picOPort);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(oldPortPtr);

}

Sketch() /* sketch into current port and into offscreen port */
{

Point mouseloc;

GrafPortPtr thePortPtr = (GrafPortPtr)myEvent.wmTaskData;
Rect theRect;

mouselLoc = myEvent.wmWhere;
StartDrawing(thePortPtr); /* set up correct drawing coordinate
system */

GetPortRect(&theRect); /* copy current Port Rect */
GlobalToLocal(&mouselLoc); /#* get cursor pos in local coordinates */

291

The llas Toolbox

MoveTo(mouseloc); /* set pen position to mouse loc */

SetPort(&picOPort); /* switch to offscreen port */

ClipRect(&theRect); /* clip offscreen drawing to window’s
port rect */

MoveTo(mouseLoc); /* set offscreen pen to same location */

SetPort(thePortPtr); /* switch back to window's port */

while (Stillbown(0)) {
GetMouse(&mouseLoc); /* get new mouse coordinates */

LineTo(mouseLoc); /* draw line in both ports x/
SetPort(&picOPort);
LineTo(mouseLoc);
SetPort(thePortPtr);
}

SetOrigin(0,0); /* restore normal coordinates */

Listing 10-8
INITQUIT.C program

#include <TYPES.H>
#include <LOCATOR.H>
#include <MEMORY.H>
#include <MISCTOOL.H>
#include <QUICKDRAW.H>
#include <EVENT.H>
#include <CONTROL.H>
#include <WINDOW.H>
#include <MENU.H>
#include <LINEEDIT.H>
#include <DIALOG.H>

#define MODE mode320 /* 640 graphics mode def. from quickdraw.h */

#define MaxX 320 /* max X for cursor (for Event Mgr) %/

#define dpAttr attrLocked+attrFixed+attrBank /* for allocating direct page
space */

int myID; /* for Memory Manager */
Handle zp; /* handle for page 0 space for tools */

int ToolTablel[]l = {7,
4, 0x0100, /+* Q@p */
6, 0x0100, /* Event */
14, 0x0100, /* Window */
16, 0x0100, /* Control */
15, 0x0100, /* Menu */

292

10—Doing Windows

20, 0x0100, /* Line Edit */
21, 0x0100, /* Dialog *x/

1
StartTools() /* start up these tools: */
{
TLStartUpQ); /* Tool Locator */
myID = MMStartUp(); /* Mem Manager */
MTStartUp(); /* Misc Tools */
LoadTools(ToolTable); /* load tools from disk */
ToolInit(); /* start up the rest */
}
ToolInit(O) /* init the rest of needed tools =*/
{
zp = NewHandle(Ox700L,myID,dpAttr,0L); /* reserve 6 pages */
@bStartUp((int) *zp, MODE, 160, myID); /* uses 3 pages */
EMStartUp((int) (*zp + 0x300), 20, 0, MaxX, 0, 200, myID);
WindStartUp(myID);
RefreshDesktop(NULL);
CtlStartUp(myID, (int) (*zp + 0x400));
MenuStartUp(myID, (int) (*zp + 0x500));
LEStartUp(myID, (int) (*zp + 0x600));
DialogStartUp(myID);
ShowCursor();
}
ShutDown() /* shut down all of the tools we started */
{
Grafoff();
DialogShutDown();
LEShutDown();
MenuShutDown();
CtilShutbown();
WindShutDown();
EMShutDown();
QDShutbDown();
MTShutDown();

293

The llcs Toolbox

DisposeHandle(zp); /* release our page 0 space */
MMShutDown(myID);

TLShutDown();

294

CHAPTER

Dialog with a llgs

Using the Dialog Manager

he main channel of communication between the Apple Ilgs and its
user is handled by a tool set known as the Dialog Manager. When

a program needs to inform the user of something important
or give the user guidance—or when a program needs to obtain information
from the user—the Dialog Manager provides the interface between computer
and user.

The Dialog Manager communicates with the IlGs user through dialog
windows—boxes that are usually programmed to appear on the screen when
they are needed. Dialog windows can display messages, obtain user input,
or both. They can contain icons, pictures, text, and user-operated controls.
Some icons can stay on the screen for a long time and can be moved around.
Others remain in one spot until they are deactivated and then go away as
quickly as they appeared.

In this chapter, you’ll take a look at various kinds of dialog windows,
and you’ll see how dialogs can be used in IIGs programs.

What Dialog Windows Look Like

Dialog windows resemble ordinary document windows, but they have controls
that ordinary windows usually do not have. A dialog window usually appears
near the top of the screen, in the center of the screen and slightly below the

295

The llcs Toolbox

menu bar, and is somewhat narrower than the screen. Figure 11-1 shows a
typical dialog window.

As figure 11-1 shows, a dialog window looks something like a printed
form. Like a paper form, a dialog can contain messages, illustrations, and
blanks to be filled in by the user. These features can be presented in many
formats, such as

B Messages designed to provide the user with information,
instructions, or alerts.

B Controls such as buttons, scroll bars, and squares that can be
checked off by the user. Text messages may or may not be supplied
along with these controls.

B Rectangles in which the user may type in text. These rectangles,
called edit lines, may be blank when they appear on the screen or
they may contain default text that can be edited by the user.

B Graphic symbols: either icons or pictures drawn using QuickDraw.
Icons are easier to manage than QuickDraw pictures and are thus
more commonly used. But there is no reason why a QuickDraw
picture can’t appear in a dialog window.

B Any other types of items an application can define.

% File Windows Mode

Figure 11-1
Typical dialog window

296

11-Dialog with a llgs

Dialog 1/0

Dialog Items

The simplest kind of dialog window is one that requires no response at all.
Such a noninteractive dialog might be created to print a message on the screen
while an application is performing a time-consuming process. When the op-
eration is finished, the dialog could be removed from the screen.

Another simple type of dialog is one that contains just two items: a
printed message and one button, often labeled OK, that the user can press
after reading the message. In most cases, the dialog in which the message
appears then disappears from the screen.

The button that makes the dialog disappear does not have to be labeled
OK. It could be labeled Start or Proceed, or it could have another name. But,
for simplicity, we call this button the OK button throughout this chapter.

Many kinds of dialog windows can be used in Ilgs programs. Some
dialog windows display more than one message on the screen, some display
different messages at different times, and some accept input from the user.
For example, if a dialog window appears on the screen as the result of some
action by the user, it might contain a button labeled Cancel that is clicked to
cancel the action that caused the dialog to appear. Or there could be a button
labeled Help that is used to request additional information.

In Dialog Manager jargon, buttons with labels like OK, Cancel, and Help
are known as dialog items. There are many kinds of dialog items, and each
is designed to be used in a slightly different way. Some dialog items provide
information to the user, some obtain information from the user, and some do
both. The items that can be used in dialog windows can be divided into the
following categories:

B Button items. A button item is a simulated pushbutton that contains
a label such as OK, Help, or Cancel. A button item usually has
round corners and usually contains a label displayed in the standard
lls type font, or system font. When the user clicks the IlGs mouse
inside a button item, an application program can carry out whatever
response is appropriate.

B Check items. A check item is a small square box that is empty or
contains an X. When the user clicks the mouse in an empty check
item, an X appears. When the user clicks the mouse in a check item
that contains an X, the X disappears.

A dialog box can contain any number of check items.
When a dialog with a user ends, the application using the dialog can
check to see which boxes have been checked and which have been left
unchecked, and take the appropriate actions.

297

The llcs Toolbox

298

Radio items. A radio item is a small circle that is empty or contains
a still smaller circle. The inner circle in a radio item is usually
black. When the user clicks the mouse in an empty radio item, an
inner circle appears. When the user clicks the mouse in a radio item
that contains an inner circle, the inner circle disappears.

Scroll bar items. A scroll bar item is a special scroll bar used only
in dialogs. A scroll bar item can be used to display the progress of
an operation. For example, the white square, or ‘‘thumb’’ of a
scroll bar, can move down the bar as files are printed to show the
user how the operation is progressing.

Static text items. A static text item, usually abbreviated StatText
item, consists only of a Pascal-type string (a length byte followed
by a string of ASCII characters). StatText items only display
information; they cannot accept input from the user. Text in a
StatText item does not have to be enclosed in a visible rectangle,
and it cannot be edited.

Long static text items. A long static text item, abbreviated
LongStatText item, consists only of a block of text. The text in a
LongStatText item is not preceded by a length byte, so its length
must be passed to the Dialog Manager as a parameter when the item
is created with a NewDItem call. More about this call is provided
later in this chapter. LongStatText items only display messages; they
cannot accept input from the user. Text in a LongStatText item does
not have to be enclosed in a visible rectangle, and it cannot be
edited.

Edit line items. An edit line item contains space for one line of text
that is entered or edited by the user. The text usually appears inside
a visible rectangle. When an edit line item appears on the screen, it
is empty or contains default text. If it is empty, you can fill it in by
typing information, and you can edit the information after it has
been typed. If the item contains default text when it appears on the
screen, that text can be edited by the user.

Icon items. An icon item contains an icon. Icons used in dialog
windows are stored in memory in a specific format and appear in
the dialog window when it is displayed on the screen. When the
user clicks the mouse in an icon item, the application using the
dialog can take whatever action is appropriate.

Picture items. A picture item contains a picture drawn with
QuickDraw II. When the user clicks the mouse in a picture item,
the application using the dialog can take whatever action is
appropriate.

User items. Any item that is not in any of the previous categories is
called a user item. User items are defined by application programs.

11-Dialog with a llgs

Types of Dialog Windows

Modal Dialogs

Modeless
Dialogs

There are three kinds of dialog windows: modal dialogs, modeless dialogs,
and alert dialogs. Let’s take a closer look at each of these types of dialog
windows.

Modal dialogs require the user to respond to a dialog message before taking
any other action. Modal dialogs derive their name from the fact that they put
a program in a state, or mode, of being unable to take any action outside a
dialog window. A modal dialog usually has at least one button item that is
clicked to perform some action and a Cancel button that is clicked to make
the dialog box go away. Normally, clicking the mouse anywhere outside the
dialog window only makes the IIGs speaker beep.

In programs written according to Apple’s Human Interface Guidelines,
one button item in a dialog window may be outlined in bold; that is, it may
have a double outline. If such a button appears in a dialog box, it is usually
the OK button, the button that ends the dialog by initiating some action and
making the dialog window go away. When a button has a double outline, the
Return key on the keyboard can always be pressed as an alternative to clicking
the outlined button. In short, a button with a double outline is the dialog’s
default button—the safest button to use in the current situation. If there is no
boldly outlined button, pressing the Return key will have no effect on the
dialog. A typical modal dialog window is illustrated in figure 11-2.

A dialog cannot be modal and modeless at the same time; different routines
create these two types of dialogs. When a program is running, however, it
can be difficult to distinguish between a modal dialog and a modeless dialog
because they often look alike.

A modeless dialog, like a modal dialog, usually has an OK button (often
doubly outlined) and a Cancel button. And, just like a modal dialog, a mode-
less dialog can contain other controls that do not erase the dialog window
and do not result in any change in a program until an OK button is pressed
to make the dialog go away.

But modeless dialogs do not put a program into any special state, or
mode, and thus do not require the user to respond to a dialog before taking
any other action. When a modeless dialog is on the screen, it can stay there
while the user performs actions unrelated to the dialog. For example, the user
might be permitted to work in various windows on the desktop before clicking
a button in the dialog window.

Because a modeless dialog can remain on the screen while document
windows (or even other dialog windows) are in use, you can create a modeless
dialog window that has a title bar and thus can be moved on the screen.
Because of this feature—and because they can stay on the screen while various
operations take place—modeless dialogs are used as desk accessories. Clocks,
calculators, notepads, and other desk accessory items are often incorporated
into programs in the form of modeless dialogs.

299

The llcs Toolbox

300

Alert Dialogs

[Quit] [(Help)

Y

Figure 11-2
Modal dialog window

Figure 11-3 shows a modeless dialog box that is similar to a document
window. Like a standard document window, it has both a title bar and a close
box. So it can be moved, hidden, closed, and opened again, like any other
similarly equipped window.

An alert dialog looks much like a modal dialog (or a modeless dialog without
a title bar). But an alert dialog has a special function. It appears only when
something has gone wrong or when something important must be brought to
the user’s attention. Alert dialogs can provide a program with a convenient
method for reporting errors or issuing warnings.

An alert window is usually placed slightly farther below the menu bar
than a modal or modeless dialog. And an alert dialog often contains an icon
that gives the user a visual clue about the nature of the alert. There are three
standard types of alert icons: Stop, Note, and Caution. You can also design
other kinds of icons. An alert dialog can also be programmed to beep or make
other sounds when it is activated.

To help the user who isn’t sure how to proceed when an alert box
appears, the button used most often in the current situation is displayed with
a double outline. This button is also the alert’s default button. If the user
presses the Return key, the effect is the same as clicking the alert’s default
button.

One special feature of an alert dialog is that it can behave in a different
way each time it is activated. This feature can give the user increasingly

11-Dialog with a llas

Q
[

L
1O
Q

?,

AN

Figure 11-3
Modeless dialog window

severe warnings each time an error is made or a dangerous situation becomes
more dangerous. For example, the first time an error is made, the error might
beep the speaker but generate no alert box. Thereafter, each successive error
might cause an alert dialog to be displayed, and each alert might carry an
increasingly severe warning.

Furthermore, the sound produced by an alert dialog does not have to
be a beep. It can be any sequence of tones, which may occur either by
themselves or with an alert dialog. Figure 11—4 is an illustration of a typical
alert dialog window.

Manipulating Dialog Windows

After a modal or modeless dialog is created, it can be manipulated like any
other window. With the help of routines provided by the Window Manager
and QuickDraw, an application can do just about anything to a dialog window:
show, hide, or move it, change its size or plane, or close and discard it when
it is no longer needed. The Dialog Manager even recognizes the CLipRgn
field of the dialog window’s GrafPort, so the QuickDraw Il SetClipRgn
and CLlipRect routines can keep portions of a window from being displayed
on the screen.

When an alert window is designed, however, the Dialog Manager takes
care of most details, so that all alert windows have a standard appearance
and behavior. The size and location of the box are supplied as part of the
definition of the alert and are not changed easily. You do not have to specify
an alert window’s plane because an alert always appears in front of all other
windows. After an alert window is on the screen, the application that uses it
never has to manipulate it. That’s because an alert window requires the user
to respond before doing anything else, and the user’s response makes the box
disappear.

301

The llcs Toolbox

& File Edit View Special Color

Completely replace the contents of
"MOBY.DICK" with the contents of
"SUPERMAN"?

Figure 11—4
Alert dialog window

Initializing the Dialog Manager

Before the dialog is started, the following tool sets must be loaded and started:

B Tool Locator (always loaded and active)
B Memory Manager

B Miscellaneous Tool Set

W QuickDraw 11

B Event Manager

® Window Manager

B Control Manager

B LineEdit Tool Set

After these tools are loaded and initialized, the Dia logStartUp call
can be made to start up the Dialog Manager. If you want the type font used
in your dialog and alert windows to be something other than the system font,
you can make the Dialog Manager call SetDAFont.

When the Dialog Manager is loaded and started up, the NewModall-
Dialog, NewModelessDialog, and GetNewModalDia Llog calls can be
used to create dialog windows. NewMode LessDialog creates a dialog using
a special kind of dialog record, and GetNewMode lessDialog creates a
dialog using a template that can be accessed by more than one dialog window.

302

11-Dialog with a ligs

After a dialog is set up, the NewDItem and GetNewDItem calls can

be used to create the items that appear in each dialog. The CloseDialog
call can be used to close and dispose of any dialogs.

Creating a Dialog Window

The Dialog Manager requires the same kind of information to create a dialog
that the Window Manager requires to create a document window. These are
the steps that are usually used to set up a dialog window:

1.

The application calls NewModalDialog, GetNewModalDialog, or
NewModelessDialog. In addition to creating a dialog window,
these calls determine how the window looks and behaves.

The Dialog Manager must be supplied with a rectangle that becomes
the port rectangle of the window’s GrafPort.

. The Dialog Manager must be told whether the window will be

visible or invisible when it is created. If it is created as a visible
window, it appears on the screen immediately. If it is created as an
invisible window, the Window Manager calls SelectWindow and
ShowWindow must be made each time the window appears on the
screen.

If a modeless dialog is created, the plane in which it appears in relation

to other windows must also be specified. By convention, a newly created
window always appears in the frontmost plane.

The example program in this chapter, DIALOG.S1, uses the call

NewModalDialog to create a modal dialog window. Listing 11-1 shows
how NewModalDialog is used in the program. Instructions for typing and
compiling the DIALOG.S1 program in both assembly language and C are at
the end of this chapter.

Listing 11-1
Calling the NewModalDialog routine

PushLong #0 ; output
PushLong #DRect
PushWord #True ; visible
PushLong #0 ; refcon
-NewModalDialog
pla
sta MDialogPtr
pla
sta MDialogPtr+2

303

The ligs Toolbox

As listing 11-1 shows, the NewModa LDialog call takes four parame-
ters:

B 2 null words (zeros), which provide a space on the stack for a
2-word result.

B A pointer to a rectangle that defines the location of the dialog
window on the screen.

B A 1-word space for a Boolean value. If the value is nonzero, or true,
the dialog is displayed on the screen as soon as it is created. If the
value is zero, the window is not displayed until a specific command,
such as ShowWindow, is called to display it on the screen.

When aNewModa lDialog call returns, a pointer to the dialog window
which it created is on the stack. In the DIALOG.S1 program, this pointer is
stored in the MDialogPtr variable.

Creating an Item List

304

Before a dialog window can be displayed on the screen, the NewDItem call
must be used to create each item that will appear in the window. The dialog
window in the DIALOG.S1 program contains three buttons: Start, Quit, and
Help. Listing 11-2 shows how the NewDItem call creates the Start button.

Listing 11-2

NewDltem call
PushLong MDialogPtr ; item belongs to this window
PushWord #1 ; item ID number
PushLong #ButtonRect1 ; pointer to button's rect
PushWord #ButtonItem ; item type
PushLong #ButtonText1 ; item descriptor
PushWord #0 ; item’'s initial value
PushWord #0 ; visible/invis flag
PushLong #0 ; color table pointer
-NewDItem

As listing 11-2 shows, the NewDItem call takes eight parameters:

B A pointer to the window to which the item belongs.

B A 1-word identification number that will be used in all dialog-related
items to identify the item being created.

B A pointer to a rectangle that defines where the item will appear
inside its dialog window. Note that this rectangle is expressed not in
screen coordinates, but in local coordinates that treat the dialog
window as a bounds rectangle.

11-Dialog with a llas

B A 1-word parameter identifying the type of item being created. This
parameter is a constant that can be found in APW’s LIBRARIES/
AINCLUDE file, under the filename E16.DIALOG. In the
DIALOG.S1 program, the constants for item types are listed in the
DialogData data segment.

By convention, the OK button in an alert’s item list is
always assigned an ID of 1, and the Cancel button should always
have an ID of 2. The Dialog Manager provides predefined constants
equal to the item ID for OK and Cancel as follows:

0K equ 1
Cancel equ 2

In a modal dialog’s item list, the item whose ID is 1 is generally
assumed to be the dialog’s default button. If the user presses the Return
key, the Dialog Manager normally returns the ID of the default button,
just as when that item is actually clicked.

To conform with Apple’s Human Interface Guidelines, the Dialog
Manager automatically prints a double outline in bold around the default
button, unless there is no default button—that is, no button item with
an 1D number of 1. So, if you don’t want a dialog to have a default
button, you should not assign any button an ID number of 1. The item
types listed in the DIALOG.S1 program are shown in listing 11-3.

B A two-word parameter called a dialog item descriptor. The function
of this parameter can vary, depending upon the type of item being
created. Table 11-1 shows the functions the item descriptor
parameter can have when used with different kinds of items.

B A one-word parameter setting the initial value of the item descriptor,
if applicable.

B A flag determining whether the item being created should be visible
or invisible when the window is first displayed. This parameter can
also include item-specific information, for example, the family
number of a radio button or whether a scroll bar is horizontal or
vertical. Further information on item-specific data in this parameter
is in the Apple 1IGs Toolbox Reference.

W A pointer to a color table, which can be used to change the standard
colors used to draw items in a dialog. Custom color tables can be
used for standard or custom-designed controls. But make sure your
use of color conforms to Apple’s Human Interface Guidelines.

Listing 11-3
Item types in DIALOG.S1
DialogData DATA
ButtonlItem equ 10
CheckItem equ 11
Radioltem equ 12

305

The llcs Toolbox

ScrollBarItem equ 13
UserCtlItem equ 14
StatText equ 15
EditText equ 16
EditLine equ 17
Iconltem equ 18
PicIltem equ 19
UserItem equ 20
END
Table 11-1
ltem Descriptor Parameter in a NewDltem Call
Type Function of Descriptor Value
Buttonltem Pointer to a string containing N/A
item’s label
CheckItem N/A 0 = not checked
1 = checked
RadiolItem N/A 0 = not checked
1 = checked

ScrollBarItem

UserCtlItem
UserCtlItem?2

StatText
LongStatText

EditLine
Iconltem

Picltem
UserItem

Pointer to dialog scroll bar
action procedure

Pointer to control definition
procedure

Pointer to parameter block

Pointer to static string

Pointer to the beginning of
text

Pointer to default string

Handle to the icon
Handle to the picture

Pointer to item definition pro-
cedure

0 or default value
if ItemDescr
=0

Initial value of
control

Initial value of
control

Application use

Length of text (0
to 32,767)

Maximum length
allowed (0 to
255)

Application use
Application use
Application use

Using a Dialog Window in a Program

When a modal dialog is created, the Moda LD4a Log call can be used to accept
user input. Listing 11-4 shows how the ModalDialog call is used in the
DIALOG.S1 program. Let’s take a look now at how the routine in listing
11-4 works. Then we’ll see how the routine is used in the DIALOG.S1
program.

306

11-Dialog with a llgs

Again

next

button?

noquit

Listing 114

ModalDialog call
PushWord #0 ; space for result
PushlLong #0 ; filter procedure pointer
-ModalDialog
pla
cmp #3
beq Again
cmp #1
beq noquit
lda #$FFFF ; button 2 was pressed
sta QuitFlag
PushLong MDialogPtr ; use this exit for #1 or #3
—CloseDialog
rts

The ModalDialog call takes two parameters: a 1-word null (zero)
value that saves a space on the stack and a pointer to a user-written filter
procedure, if there is one. A filter procedure, usually abbreviated
FilterProc, is a routine that an application can call to filter out unwanted
responses by the user (for example, to ignore non-numeric characters typed
inanEditLineimnlmaUmHsﬂnrmnwﬁcchmadmsoMy)IfaOispaﬁed
toModalDialog in the FilterProc parameter, it means no filter process
is set up by the application using the dialog. In that case, ModalDialog will
not look for one.

In the DIALOG.S1 program, ModalDialog is called with two O pa-
rameters: a null word to save a space on the stack and a null pointer because
there is no filter procedure in the program.

When a ModalDialog call returns, a 1-word value—the ID number
of the item selected by the user—is pushed on the stack. In the DIALOG.S1
program, this value is pulled off the stack and compared with the literal values
3 and 1. If the value is 3—the item ID number for the Help button—the
program loops back to the line labeled Again. That’s because no help function
is written for the DIALOG.S1 program. If you expand the program, you may
want to write a help function.

If the Moda lDialog call returns a value of 1—the item ID number of
the Start button—the dialog is erased from the screen with a CLloseDialog
call and the DIALOG.S1 program continues, as though there had never been
a dialog window on the screen.

If the routine in listing 11-4 discovers that the user has clicked a button
that is neither item 1 nor item 3, it is smart enough to determine that the user

307

The llcs Toolbox

If the routine in listing 11-4 discovers that the user has clicked a button
that is neither item 1 nor item 3, it is smart enough to determine that the user
has made the only other choice, item 2. This is the Quit button, which ends
the program by storing a nonzero value in the program’s quit flag before
returning.

The DIALOG.S1 Program

308

DIALOG.S1 is an expanded version of the WINDOW.S1 program in chapter
10, so you can save yourself a lot of work by modifying WINDOW.S]1 instead
of typing the entire DIALOG.S1 program. To convert WINDOW.SI into
DIALOG.S1, the following modifications are necessary:

1. Replace the heading of the WINDOW.S1 program with the heading
shown in listing 11-5.

2. Add three lines to the main program segment of the WINDOW.S1
program so that the segment looks like the one in listing 11-6.

3. Following the program segment labeled EventLoop, insert the
segment that appears in listing 11-7. This segment displays a dialog
window on the screen.

4. In the data segment labeled MenuData, change the line
dc ¢” LA Window Program \N257°,71RETURN’
to
dc ¢’ LA Dialog Program \N257°,i 1'RETURN’

5. At the end of the program, add the data segment that appears in
listing 11-8. This segment provides the item codes used in the
DIALOG.S1 program.

6. Before you assemble DIALOG.S1, make sure you have the latest
version of INITQUIT.SI saved on the same disk that holds your
DIALOG.S1 source code. Then the COPY directive at the end of
DIALOG.S1 will combine the DIALOG.S1 and INITQUIT.S1
programs.

When you’ve typed, assembled, and executed DIALOG.S1, you’ll be
ready to examine the portion that creates a dialog on the screen. Starting from
the beginning of the DIALOG.S1 program, move down the listing until you
see the label Main Program. Below that label look for this line:

jsr doDialog1

If you have typed and run the program, you should have no trouble
figuring out what this line does. After all tools are initialized and an empty
menu bar appears on the screen, the line jsr doDia Log1 simply places a

11-Dialog with a llas

modal dialog on the screen and waits for the user’s input. The user can do
one of three things: click Start, which erases the dialog box and resumes
execution of the DIALOG.S1 program, click Help, which won’t do anything
because there is no help routine, or click Quit, which ends the program.

Listing 11-5
Heading segment
*
* DIALOG.S1
*

*%% A FEW ASSEMBLER DIRECTIVES *#*%

Title Dialog’
ABSADDR on

LIST off

SYMBOL off

65816 on

mcopy dialog.macros

KEEP dialog

Listing 11-6
Main loop segment

*

* MAIN PROGRAM LOOP

MainProgram STA
Usi
Usi

phk
plb
tdc
sta
jsr
*%% PUT DIALOG NO.
jsr

jsr
jsr

RT
ng GlobalData
ng PortData
; get current direct page
MyDP ; and save it for the moment
ToollInit ; start up all tools we'll need

1T ON THE SCREEN #*%%*

doDialog1
Bui ldMenu ; create and draw menu bar
MakeWinO ; create empty window

309

The llcs Toolbox

*** OPEN A PORT SO WE CAN DRAW IN WINDOW'S PIXEL MAP #*x*
jsr NewPort
lda #PicOPort
sta BLkToFilt
lda #*PicOPort
sta BLkToFill+2
jsr BLkFill
**% LINE THAT JUMPS TO THE EVENT LOOP **%
jsr EventlLoop ; check for key & mouse events

%% WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN #%x

jsr Shutdown
jmp Endit

END

Listing 11-7
Dialog window segment

* DODIALOGT: PRINT DIALOG NO. 1 ON THE SCREEN

doDialog1 START
using GlobalData
using WindowData
using DialogData
using QuitData

PushLong #0 ; output

PushLong #DRect

PushWord #True ; visible
PushLong #0 ; refcon

-NewModalDialog

pla

sta MDialogPtr
pla

sta MDialogPtr+2

PushLong MDialogPtr ; item belongs to this window
PushWord #1 ; item ID number

310

11-Dialog with a llgs

Again

next

button?2

noquit

DRect

PushlLong
PushWord
PushLong
PushWord
PushWord
PushLong

NewDItem

PushLong
PushWord
PushlLong
PushWord
PushlLong
PushWord
PushWord
PushLong

-NewDItem

PushLong
PushWord
Pushlong
PushWord
PushLong
PushWord
PushWord
PushlLong

-NewDItem

PushWord
PushLong

#ButtonRect1
#ButtonItem
#ButtonText1
#0

#0

#0

MDialogPtr
#2
#ButtonRect?2
#Buttonltem
#ButtonText?2
#0

#0

#0

MDialogPtr
#3
#ButtonRect3
#ButtonItem
#ButtonText3
#0

#0

#0

#0
#0

—ModalDialog

pla

cmp #3

beq Again

cmp #1

beq noquit

lda #$FFFF
sta QuitFlag

Pushlong

MDialogPtr

—CloseDialog

rts

dc 184,63,114,252

pointer to button’s rect
item’s id number

item descriptor

item’s initial value
visible/invis flag
color table pointer

, space for result
; filter procedure pointer

; button 2 was pressed

; use this exit for #1 or #3

; screen coordinates

311

The lics Toolbox

ButtonRect1 dc i8,129,22,179° ; local coordinates using
ButtonRect?2 dc 18,8,22,58 ; dialog window's frame
ButtonRect3 dc 178,67,22,117 ; as a bounds rectangle
ButtonText1 str ‘Start’

ButtonText2 str ‘Quit’
ButtonText3 str ‘Help’

MDialogPtr ds 4

END

Listing 11-8
DialogData segment

DialogData DATA

ButtonItem equ 10
CheckItem equ 1
Radioltem equ 12

ScrollBarItem equ 13
UserCtlItem equ 14

StatText equ 15

EditText equ 16

EditLine equ 17

Iconltem equ 18

Picltem equ 19

UserlItem equ 20
End

The DIALOG.C Program

Listing 11-9, DIALOG.C, is a C language version of the DIALOG.S1 pro-
gram. It is designed to be used with the include file INITQUIT.C, and it
works just like DIALOG.S1.

Listing 11-9
DIALOG.C program

#include "initquit.c”

Boolean done = false;
WmTaskRec my Event;

312

11-Dialog with a llgs

/************************************l

/* Data and routine to create menus */
/************************************l

/* Set up menu strings. Because C uses \ as an escape character, we use
two when we want a \ as an ordinary character. The \ at the end of each
Line tells C to ignore the carriage return. This lets us set up our items
in an easy-to-read vertical alignment. */

char *menul = "\
>L@\\XN1\r\
LA Window Program \\N257\r\

LA 4

char *menu2 = "\

>L File \\N2\r\
LNew \\N258V\r\
LQuit \\N259\r\

-7

char *menu3 = ™\
>L Windows \\N3\r\
LUntitled \\N260\r\

-7

#define QUIT.ITEM 259 /* these will help us check menu item numbers */
#define NEW_ITEM 258
#define UNTIT_ITEM 260

Bui ldMenu ()

{
InsertMenu(NewMenu(menu3),0);
InsertMenu(NewMenu(menu?2) ,0);
InsertMenu(NewMenu(menu1) ,0);
FixMenuBar();
DrawMenuBar();

}

R T T 2 T B 2 TR T R S S Surur ey
/* Data structures and routine to set up offscreen drawing environment */
/***/
LocInfo picOLocInfo = { mode320,

NULL, /* space for pointer to pixel image */

160, /* width of image in bytes = 320 pixels */

0,0,200,320 /* frame rect */

1

Rect screenRect = {0,0,200,320};
GrafPort picOPort;

313

The llgs Toolbox

#define IMAGE_ATTR attrLocked+attrFixed+attrNoCross+attrNoSpec+attrPage

PicOSetup() /* called once by MakeWindow at start of program */
{
GrafPortPtr thePortPtr;

picOLocInfo.ptrToPixImage = *(NewHand Le (0x8000L ,myID,IMAGE_ATTR,NULL))
thePortPtr = GetPort();
OpenPort(&picOPort);
SetPort(&picOPort);
SetPortLoc(&picOLocInfo);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(thePortPtr);

}

/**/

/* Data structures and routine to create window */
/**/

/%

Initialize template for NewWindow */

#defineFRAMEfQContent+fM0ve+onom+fGrow+fBScroLL+fRScroLL+fCLose+fTitLe

ParamList template = { sizeof (ParamList),

3714

FRAME,

\"Untitled", /* pointer to title */

oL, /* RefCon */
26,0,188,308, /* full size (O=default) */

NULL, /* use default ColorTable */

0,0, /* origin */

200,320, /* data area height & width */
200,320, /* max cont height & width */

2,2, /* vertical & horizontal scroll increment */

20,32, /* vertical & horizontal page increment */
NULL, /* no info bar text string */

o, /* info bar height = none */

NULL, /* default def proc */

NULL, /* no info bar draw routine */

NULL, /* draw content must be filled in at run time */
26,0,188,308, /* starting content rect */

-1L, /* topmost plane */

NULL /* let Window Manager allocate record */

b

11-Dialog with a llas

/* Window's draw content routine */

pascal void DrawContent()

{
}

PPToPort (&picOLocInfo,&(picOLocInfo.boundsRect),0,0,modeCopy);

GrafPortPtr winOPtr;

MakeWindow() /* complete template, make window, and set up offscreen port */
{

template.wContDefProc = DrawContent;

winOPtr = NewWindow(&template);

PicOSetup(); /* create offscreen image for use by DrawContent */

}

/***/

/* Data and routine to set up and display dialog */
[*kkhkhkkkhkkhkhkkhkkhkhhkkkkhkhkhkkhhhkhhhkkhkhhkkhkrhkhkkhrx/

ItemTemplate item1 = {1,{8,129,22,179}, buttonltem, "\pStart\r",0,0,NULL };
ItemTemplate item2 {2,{8,8,22,58},buttonItem, "\pQuit\r"',0,0,NULL };
ItemTemplate jitem3 {3,{8,67,22,117},buttonItem, "\pHelp\r",0,0,NULL};

il

il

DialogTemplate dtemp = {{84,63,114,252},true,0L,&item1,&item2,&item3 , NULL} ;

DoDialog() /* Create and display an opening dialog box =*/

{
GrafPortPtr dlgPtr;
Word hit;

dlgPtr = GetNewModalDialog(&dtemp);

while (Chit = ModalDialog(NULL)) == 3);
done = (hit == 2);
CloseDialog(dlgPtr);

}

/**/

/* Main routine. Set up environment, call event loop, and shut down */
/**/

main()

{
StartTools();

DoDialog();
Bui ldMenu();

315

The llcs Toolbox

MakeWindow();
EventLoop();

DisposeHandle(FindHandle(picOLocInfo.ptrToPixImage));

Shutbown();

/**************************************/

/* Event loop and supporting routines */
/**************************************/

EventLoop()

{
myEvent.wmTaskMask = OxOFFF;
while(!done)

switch (TaskMaster(everyEvent,&myEvent)){

case wlnMenuBar:
DoMenus();
break;

case wInGoAway:
HideWindow(winOPtr);

break;
case wInContent:
Sketch();
}
}
DoMenus ()
{

Word *data = (Word *)&myEvent.measkData; /*address of item id

switch(*data) {
case QUIT_ITEM:
done = true;
break;
case NEW_ITEM:
ErasePic0Q);
HideWindow(winOPtr);
CloseWindow(winOPtr);
WwinOPtr = NewWindow(&template);
case UNTIT_ITEM:
SelectWindow(winOPtr);
ShowWindow(winOPtr);
break;

}

*/

HiliteMenu(false,*(data + 1); /* data + 1 is address of menu id

316

*/

11-Dialog with a llas

ErasePic0()

{
GrafPortPtr oldPortPtr;

oldPortPtr = GetPort();
SetPort(&picOPort);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(oldPortPtr);

}

Sketch() /* sketch into current port and into offscreen port */

{

Point mouseloc;

GrafPortPtr thePortPtr = (GrafPortPtr)myEvent.wmTaskData;
Rect theRect;

mouselLoc = myEvent.wmWhere;
Startbrawing(thePortPtr); /* set up correct drawing coordinate system */

GetPortRect(&theRect); fr /* copy current Port Rect */
GlobalToLocal(&mouseloc); /* get cursor pos in local coordinates */

MoveTo(mouseloc); /* set pen position to mouse loc */
SetPort(&picOPort); /* switch to offscreen port */
ClipRect(&theRect); /* clip offscreen drawing to window's Port Rect */
MoveTo{(mouseloc); /* set offscreen pen to same location */
SetPort(thePortPtr); /* switch back to window's port */

while (StillDown(0)) {
GetMouse (&mouseloc); /* get new mouse coordinates */

LineTo(mouseLoc); /* draw Lline in both ports */
SetPort(&picOPort);
LineTo(mouseloc);
SetPort(thePortPtr);
}

SetOrigin(0,0); /* restore normal coordinates */

317

CHAPTER

The Standard File
Operations Tool Set

And ProDOS 16

disk drive operations into assembly language programs. Today, in
programs written for the IIcs, the job is much easier. Here are four
major reasons.

The Apple Iigs has new features that earlier Apple II computers do not
have. For example, the Memory Manager tool set relieves the programmer
of the responsibility of dealing with absolute addresses. It also has a new
kind of I/O port, a SmartPort, which keeps track of the locations of disk
drives and supports named devices and multiple, user-defined file prefixes.

The disk operating system in the Ilcs is ProDOS 16—a 16-bit descen-
dent of ProDOS 8, which was designed for the Apple Ile and the Apple Ilc.
ProDOS 16 is faster, more powerful, and easier to use than its 8-bit prede-
cessor. And, unlike ProDOS 8, ProDOS 16 makes use of several new features
of the IlGs.

The APW assembler-editor has a library of ProDOS macros that simplify
the job of making ProDOS calls. In this chapter, you’ll see how those macros
are used.

The Standard File Operations Tool Set, which is included in the Ilcs
Toolbox, makes the task of working with ProDOS 16 even easier. When the
Standard File Operations Tool Set is used in a program, a special dialog box
is created every time a file is loaded or saved. You can load or save the file
by either clicking the mouse inside a button item or typing the name of the
file in a line edit control. You can also search through directories using the

@ ntil the advent of the Apple Ilcs, it could be difficult to incorporate

319

The llgs Toolbox

Standard File Tool Set’s dialog boxes, and you can even switch disks and
change directories. The tool set gives the programmer the option of using
predesigned dialog boxes or creating custom-designed boxes. Application
programs can select the types of files that will or will not be listed on the
screen.

In this chapter, you’ll see how easy it is to create, load, save, and edit
files using ProDOS 16, the ProDOS macros in the APW assembler-editor
package, and the IlGs Standard File Operations Tool Set. These techniques
are demonstrated using a sample program called SF.S1, which is listed at the
end of this chapter. A C language version, SF.C, is also listed at the end of
this chapter. Figure 12—1 shows the Standard File Tool Set screen display.

Introducing ProDOS 16

If you have written Apple II programs using ProDOS 8, you probably won’t
have any trouble understanding ProDOS 16. ProDOS 16 calls are made in
the same way as ProDOS 8 calls: by filling in a block of parameters, pushing
the address of the parameter block onto the stack, and Jjumping to a fixed
entry point.

There are two important differences in the way calls are made in ProDOS
8 and ProDOS 16. In ProDOS 16, a program must Jjump to the ProDOS entry
point with a js L instruction rather than a jsr instruction, and the entry point
is in bank $EI rather than bank $00. In programs written using the APW

320

File to open:
/5td.File.Tester/

3 Arl.5f 51
[Ar1.5£.52
D Build

03 Errd

[3 Finder.Data

I% Finder Root
Lib
|21 Macros (Concel)

Figure 12—1
Standard File Operations Tool Set screen display

12—The Standard File Operations Tool Set

library of ProDOS macros, neither of these details makes any difference; the
macros take care of them.

The kernel (or central part) of the Apple Ilcs operating system is ProDOS
16, which is covered in detail in the Apple 1IGs ProDOS 16 Reference. ProDOS
accesses the disk drive or disk devices on which files are stored and retrieved
and manages the creation and modification of files. ProDOS 16 also controls
certain features of the Ils operating environment, such as pathname prefixes
and procedures for quitting programs and starting new ones.

ProDOS 16 can communicate with various disk drives, including hard
disk drives, 5.25-inch floppy disk drives, and 3.5-inch disk drives. Because
the IIs has an intelligent disk port called a SmartPort, programs that use
ProDOS 16 do not have to specify a disk’s slot number or drive number to
access the disk. Under ProDOS 16, a disk can also be accessed by its volume
name or device name.

In ProDOS 16, just as in ProDOS 8, disks are also known as volumes,
and information on a volume is divided into files. A file is an ordered sequence
of bytes that has several attributes, including a name and a file type.

There are two primary types of files in ProDOS 16: standard files and
directory files. Directory files contain the names and disk locations of other
files. When a volume is formatted, a volume directory file is placed on it.
The volume directory has the same name as the volume and usually contains
the names and disk locations of other directory files.

ProDOS 16 supports a hierarchical file system. In a hierarchical file
structure, volume directories can contain the names of other directories, called
subdirectories, and subdirectories can, in turn, contain the names of other
files or subdirectories.

In ProDOS 16, a file is identified by its pathname: a sequence of file-
names starting with the name of the volume directory and ending with the
name of the file. A pathname that begins with the name of a volume is a full
pathname and is always preceded by a slash (/). If the name of the volume
in which a file is stored is known, the file can be referenced by a partial
pathname: a pathname that is not preceded by a slash and does not include
a volume name.

Whether a pathname is preceded by a slash or not, the names of the
directories, subdirectories, and files in the pathname are all separated by
slashes. More details about pathnames are in the Apple IIcs ProDOS 16
Reference.

Loading a File with ProDOS 16

The SF.S1 program contains three code segments that make calls to ProDOS
16: EndIt, LoadOne, and SaveOne. EndIt makes the ProDOS call Qui t
to end the program. LoadOne appears in listing 12—1. SaveOne is explained
shortly.

321

The llcs Toolbox

322

Listing 12—1
Loading a file using ProDOS 16

LoadOne START
using IOData

-Open OpenParams
bcec cont1
ErrorCheck ‘Could not open picture file.’

cont1 anop
lda OpenlID
sta ReadID
sta CloselD

—Read ReadParams
bcc cont?2
ErrorCheck ‘Could not read picture file.’

cont?2 anop
-Close CloseParams

clc
rts
OpenParams anop
OpenlD ds 2
NamePtr ds 4
I0Buffer ds 4
ReadParams anop
ReadID ds 2
PicDestIN ds 4
dc 14'$8000° ; this many bytes
ds 4 ; how many xfered
CloseParams anop
CloselID ds 2
END

In listing 12—1, the APW macro Open opens a file, the Read macro
copies it into memory, and the € lose macro closes it. In each of these calls,
a label that identifies a parameter block is used as an operand. The parameter
blocks used in the program appear at the end of the listing.

In the source code listing of the SF.S1 program, only one parameter—
the number of bytes to be read into RAM—is filled in. When you run the

12—The Standard File Operations Tool Set

program, a segment of code called ReadIt fills in the other parameters.
You'll examine the ReadIt segment later in this chapter.

As listing 12—1 shows, the ProDOS call Open takes three parameters:

A 1-word file identification number that ProDOS assigns to the file
being called when the Open call is made.

A pointer to a string that contains the name of the file to be loaded.
The string must be provided by the program using the Open call.

A pointer to a 1,024-byte /O buffer that ProDOS allocates when the
call is made.

The ProDOS Read call takes four parameters:

A 1-word file identification number. This is the ID number ProDOS
assigns to the file when it is opened using an Open call.

A pointer to a block of memory in which the file is stored. This
block of memory must be provided by the application program
making the Read call. In the SF.S1 program, the block is allocated
using the Memory Manager call NewHand Le in the segment of code
labeled MakeWinO.

A long word containing the number of bytes read into memory. In
the SF.S1 program, $8000 bytes (or 32K) of memory are loaded
into memory. This number was chosen because it is the length of
the IlGs screen buffer and is thus the number of bytes required by
one screenful of data.

A long word that ProDOS fills in with the number of bytes actually
transferred after the Read call is made.

When the file is read, a Close call should be issued to close the file.

A Close call takes one parameter: the 1-word ID number assigned to the file
when it is opened.

Saving a File with ProDOS 16

In the SF.S1 program, the code segment labeled SaveOne also makes a call
to ProDOS 16. Listing 12-2 shows how ProDOS 16 can be used to save a
program.

Listing 12-2
Saving a file using ProDOS 16

SaveOne

START

using IOData

_Destroy DestParams

—Create CreateParams

bcc contO

ErrorCheck ‘Could not create pic file.’

323

The llcs Toolbox

cont0 -Open OpenParams
bcc cont1
ErrorCheck ‘Could not open pic file.’

cont1 anop
lda OpenlID
sta WritelD
sta CloselD

Write WriteParams
bcc cont?
ErrorCheck Could not write to pic file.’

cont?2 anop
—Close CloseParams

cle

rts
DestParams anop
NameD dc i4°0°

CreateParams anop
Name(C dc 140

dc 12'$00C3” ; DRNWR
CType dc i2°'$00C1” ; super high-res graphics
CAux dc i14°$00000000° 5 Aux
dc i2'$0001° ; type
dc i2$0000° ; Create date
dc 12°$0000° ; create time
OpenParams anop
OpenlD ds 2
NamePtr ds 4
ds 4
WriteParams anop
WritelD ds 2
PicDestOUT ds 4
dc 14'$8000° ; this many bytes
ds 4 ; how many xfered
CloseParams anop
CloselD ds 2
END

324

12—The Standard File Operations Tool Set

Five ProDOS 16 calls appear in listing 12-2. Destroy, Create,

Open, Write, and Close. Let’s take a closer look at each of these calls.

The Destroy call deletes a file. It is used in the SF.S1 program to

delete one file so that another file can be created and placed in the RAM space
left by the first one. The Destroy call takes just one paramater: the name
of the file being deleted.

The Create call takes seven parameters:

A pointer to a string that contains the name of the file being created.
The string must be provided by the program using the Create call.

A word whose bits contain information about how the file can be
accessed. Only the low-order byte of this word is significant, and
bits 2 through 4 are not used. The meanings of the other five bits
are listed in table 12-1.

A word identifying the file’s file type. ProDOS 16 file types are
listed in table 12-2.

A long word identifying the file’s auxiliary file type. Many
applications use this field. For example, APW source files (file type
$BO0) use the auxiliary file type parameter to identify the language of
a file—that is, whether it is a 65C816 assembly language file, a C
file, an exec file, and so on. ProDOS 16 applies no restrictions to
this parameter, however, and user-written applications may use it to
distinguish between subtypes of files.

A word identifying the file’s storage type. This parameter identifies
the level in the ProDOS hierarchy in which a file falls. Values that
can be stored in this parameter, and their meanings, are listed in
table 12-3. The values most commonly used in this parameter are
$01 and $0D. More information on file storage types can be found
in the Apple Ilcs ProDOS 16 Reference.

Create date: a word specifying the date on which a file was created.
Bits O through 4 hold the day of the month, bits 5 through 8 hold
the number of the month, and bits 9 through 15 hold the year. If no
date is specified when a file is created, ProDOS 16 supplies the date
from the system clock.

Create time: a word specifying the time a file was created. Bits 0

through 5 hold the minute and bits 8 through 12 hold the hour. Bits
6, 7, and 13 through 15 are not used. If no date is specified when a
file is created, ProDOS 16 supplies the date from the system clock.

An Open call must be issued before a file can be saved on a disk. You

saw the parameters of an Open call previously, when you examined listing

12-1.

The ProDOS 16 call Write takes four parameters:

A 1-word file ID number assigned when the file is opened.

A pointer to the memory address of the information to be saved as a
file.

325

The llcs Toolbox

Table 12—1
Access Byte in the Create Call
Bit Name Function Value
7 D Destroy enable 0 = File can’t be destroyed
bit 1 = File can be destroyed
6 RN Rename enable 0 = File can’t be renamed
bit 1 = File can be renamed
5 B Backup needed 0 = File backup is required
bit 1 = Backup not required
4 Reserved
3 Reserved
2 Reserved
1 w Write enable bit 0 = File can’t be written to
1 = File can be written to
0 R Read enable bit 0 = File can’t be read
1

(|

File can be read

B A long word holding the number of bytes to be saved.

B A long word in which ProDOS stores the number of bytes that have
actually been transferred after the call is completed.

When you have finished saving a file, a Close call should be issued
to close the file. A Close call takes one parameter: the 1-word ID number
assigned to the file when it is opened.

Using the Standard File Tool Set

The Standard File Operations Tool Set, as noted, offers the IIGs user an easy
and convenient method for loading and saving files—a collection of dialog
boxes that can be programmed to appear on the screen when needed. These
dialog boxes make loading and saving files as easy as clicking the mouse
button. The Standard File Tool Set is even more of a timesaver for the 1IGs
programmer than it is for the IlGs user!

Before the Standard File Operations Tool Set is started up, the following
tool sets must be loaded and initialized:
Tool Locator (always loaded and active)
Window Manager
Control Manager
Menu Manager
LineEdit Tool Set
B Dialog Manager

When these tool sets are loaded and started up, the Standard File Tool Set
can be initialized with the SFStartup call. Before a program that uses the
tool set ends, SFShutdown should be called.

326

The llas Toolbox

Table 12-2
ProDOS 16 File Types

Type Name Description
$00 Uncategorized file
$01 BAD Bad block file
$02-03 Used by SOS (Apple I11)
$04 TXT ASCII text file
$05 Used by SOS (Apple HI)
$06 BIN Binary file
$07 Used by SOS (Apple 1II)
$08 FOT Apple II graphics screen file
$09-$0E SOS (Apple II) reserved
$OF DIR Directory file
$10-$18 Used by SOS (Apple III)
$19 ADB AppleWorks database file
$1A AWP AppleWorks word-processor file
$1B ASP AppleWorks spreadsheet file
$1C-SAF Reserved
$BO SRC APW source file
$B1 OBJ APW object file
$B2 LIB APW library file
$B3 Si6 ProDOS 16 application program file
$B4 RTL Run-time library
$B5 EXE ProDOS 16 shell application file
$B6 ProDOS 16 permanent initialization file
$B7 ProDOS 16 temporary initialization file
$B8 New desk accessory (NDA)
$B9 Classic desk accessory (CDA)
$BA Tool set file
$BB-$BE Reserved for ProDOS 16 load files
$BF ProDOS 16 document file
$CO-$EE Reserved
$EF PAS Pascal area on a partitioned disk
$FO CMD ProDOS 8 CI added command file
$F1-$F8 ProDOS 8 user-defined files 1-8
$F9 ProDOS 8 reserved
SFA INT Integer BASIC program file
$FB INV Integer BASIC variable file
$FC BAS Applesoft BASIC program file
$FD VAR Applesoft BASIC variables file
$SFE REL Relocatable code file (EDASM)
$FF SYS ProDOS 8 system program file

327

12—The Standard File Operations Tool Set

Table 12-3

File Storage Types
Value Meaning
$00 Inactive entry
$01 Seedling file
$02 Sapling file
$03 Tree file
$04 Apple II Pascal region on a partitioned disk
$05 Directory file

Loading a File with the Standard File Tool Set

The easiest way to load a file using the Standard File Tool Set is with the
SFGetFile call. The SFGetFile routine displays a standard, predesigned
dialog box and allows the IIGs operator to use the dialog to open and load
the selected file. With SFGetFile, the calling program can specify where
the dialog box will be placed on the screen and the prompt that appears at
the top of the box. The calling program can also filter the types of files to be
displayed in the box. But the routine does not allow an application program
to modify the appearance of the box. Programs that use a custom-designed
dialog box must use another Standard File routine, SFPGetFi le.

In the SF.S1 program, the SFGetFile call loads files into memory.
Listing 12-3 shows the section of the program that uses the SFGetF 3 Le call.

The SFGetFile As listing 12-3 illustrates, the SFGetF1iLe call takes five parameters:

328

Call

B A l-word integer that specifies the horizontal screen coordinate
of the upper left corner of the dialog box.

B Another 1-word integer that specifies the vertical screen coordinate
of the upper left corner of the dialog box.

B A pointer to a Pascal-style string that is printed as a prompt inside
the dialog box.

B A pointer to a ““filter process’’ that can provide special instructions
to the Dialog Manager about the handling of files. If such a process
is used, it must be defined by the calling program. Instructions for
designing a filter process are in the Apple Ilcs Toolbox Reference.
No filter process is used in the SF.S1 program.

B A pointer to a reply record, a specially designed record that the
SFGetFile call fills with information before it returns. Listing 12—
4 shows the reply record used in the SF.S1 program.

12—The Standard File Operations Tool Set

Listing 12—-3
SFGetFile call in SF.S1

LoadIt

cont

START
using WindowData
using IOData

jsr Repaint

PushWord #20

PushWord #20

PushLong #PromptPtr
PushLong #0

PushLong #TypelListPtr
PushLong #ReplyRecord
_SFGetFile

lda GoodFlag
bne cont
jmp return

Lda #FName
sta NamePtr
lda #” FName
sta NamePtr+2

lda WinOHandle
ldx WinOHandle+2
jsr Deref

sta PicDestIn
stx PicDestIn+2
jsr LoadOne

PushLong NamePtr
PushLong WinOPtr
SetWTitle

lda WinOHandle
ldx WinOHandle+2
jsr Unlock

PushLong NamePtr
PushWord #262
~SetMItemName
PushWord #0
PushWord #0
PushWord #3
—CalcMenuSize

upper x coordinate
upper y coordinate

no filter process
file types to display

; defined in iodata

; user canceled operation

; update window title

update ‘title” menu item
menu item number

; update name of item

; menu number
; update width of items

329

The llas Toolbox

return

PromptPtr

rts

TypelListPtr anop

str ‘Load Picture:’

NumEntries dc 11
Filetype1 dc h'e?’
END
Listing 12—4
Reply record used by SFGetFile call
ReplyRecord anop
GoodFlag ds 2
FType dc ds 2 ; in SF.S1, will always be $C1
AuxFType dc i0° ; #0
FName ds 15
FullPathName ds 128

330

An SFGetFile reply record has five fields:

B A l-word flag, called GoodF Lag in the SF.S1 program, that holds a

Boolean value. The flag is cleared to O if the user aborts the
SFGetF1ile operation by pressing a Cancel button inside the dialog
box. If the user does not press the Cancel button, the flag is set.

A l-word parameter that contains the type of file selected by the
user. This parameter, like all other parameters in a reply record, is
filled in by the SFGetFile call.

A 1-word parameter that contains the auxiliary file type of the file
selected by the user.

A Pascal-style string that contains the name of the file selected by
the user. The length of this parameter can be set by the application
that calls SFGetFiLe. The most common length for this parameter
is 15 bytes.

Another Pascal-style string that contains the full pathname of the file
selected by the user. The length of this parameter must be set by the
application that calls SFGetFile. The recommended length for the
parameter is 128 bytes.

All the information returned by the SFGetFile call is placed in its reply
record; it does not push any values onto the stack.

In the SF.S1 program, a pointer to the file name returned by SFGetFi le

is loaded into the NamePtr variable. The handle of the screen buffer used
in the program is then dereferenced (coverted into a pointer), and the LoadOne
subroutine loads the file chosen by the user into the screen buffer.

12—The Standard File Operations Tool Set

The SFPutFile
Call

Next, the program makes the Window Manager call SetWTitLle to
update the name of the window being displayed on the screen. Then the Menu
Manager routines SetMItemName and CalcMenuSize replace the menu
item Untitled with a menu item that displays the name of the selected
window.

The simplest way to save a file using the Standard File Tool Set is with the
call SFPutFile. The SFPutFile routine, like the SFGetFile routine,
displays a standard, predesigned dialog box. The Ils operator can then use
the dialog to save the selected file on a disk. With SFPutFi le, like
SFGetFi le, the calling program can specify the location of the dialog box
on the screen, the prompt that appears at the top of the box, and the types
of files to be displayed in the box. But it does not permit an application
program to modify the design of the box. Programs that use a custom-tailored
dialog box must use another Standard File routine, SFPPutFi le.

In the SF.S1 program, files are saved using the SFPutF1i Le call. Listing
12-5 shows how the call is used in the program.

Listing 12-5
SFPutFile call in SF.S1

Savelt

cont

START
Using WindowData
Using IOData

PushWord
PushWord
PushlLong
Pushlong

#20 ;
#20 ;
#TopMsg
#Win0Title
PushWord #15 ;
PushLong #ReplyRecord ;
_SFPutFile

upper X coordinate
upper Y coordinate

max length of filename
defined in iodata

lda
bne
jmp

GoodF lag
cont

return ; user canceled operation

lda
sta
Lda
sta

#FName
NamePtr
#"FName
NamePtr+2

lda
Ldx
jsr
sta
stx

WinOHandle
WinOHandle+?2
Deref
PicDestOut
PicDestOut+2

331

The llcs Toolbox

332

return

TopMsg

jsr SaveOne

PushLong NamePtr
PushLong WinOPtr
SetWTitle ; update window title

lda WinOHandle
ldx WinOHandle+2
jsr Unlock

PushLong NamePtr ; update ‘title menu item
PushWord #262 ; menu item number
_SetMItemName ; update name of item

PushWord #0
PushWord #0

PushWord #3 ; menu number
-CalcMenuSize ; update width of items
rts

str Type name of picture:’

END

SFPutFile, like SFGetFi Le, takes five parameters. There are some

differences, however, between the parameter sequences used by the two calls.
The parameters that must be passed to the SFPutFile call are

A 2-byte integer that specifies the horizontal screen coordinate of
the upper left corner of the dialog box.

Another 2-byte integer that specifies the vertical screen coordinate of
the upper left corner of the dialog box.

A pointer to a Pascal-style string that is printed as a prompt inside
the dialog box.

A pointer to a Pascal-type string that can be used to specify a
default file name. If a pointer is specified, the string that is pointed
to is printed in a line edit item inside the default box. You can then
save that file by clicking the mouse button inside an OK box or
pressing the Return key. If you want to save another file, the default
string can be erased or edited using standard line edit techniques. If
a 0 is passed in this parameter, a default string is not printed on the
screen.

A pointer to the same kind of five-field reply record used by the
SFGetFile call.

12—The Standard File Operations Tool Set

After the SFPutFile routine is called in the SF.S1 program, the

LoadOne subroutine loads the file selected by the user into the program’s
window buffer. The name of the window is updated, and the menu is modified
so that it displays the new window’s name.

The SF.S1 Program

The

sample program in this chapter, SF.S1, is an expanded version of the

DIALOG.S1 program created in chapter 11. To convert DIALOG.S! into
SF.S1, the following modifications are necessary:

1.

Edit the heading of the program so that it looks like the one shown
in listing 12-6.

Following the program segment labeled EventLoop, insert the
segments shown in listing 12—7. These segments are the heart of the
SF.S1 program. They load and save files and control the Standard
File Tool Set.

Replace the data segment labeled MenuData with the segment
shown in listing 12-8.

At the end of the program, add the data segment shown in listing
12-9.

. Make sure that the latest version of INITQUIT.S1 is on the same

disk that holds your SF.S1 source code. The COPY directive at the
end of the SF.S1 combines the SF.S1 program and the INITQUIT.S1
program.

Listing 12-6
SF.S1 heading segment

SF.Ss1

*** A FEW ASSEMBLER DIRECTIVES #*%*

Title 'SF

ABSADDR on

LIST off

SYMBOL off
65816 on

mcopy SF.macros

KEEP SF

333

The lles Toolbox

Listing 12—7
SF.S1 new segments

*

* LOADIT: ROUTINE TO LOAD A PICTURE FROM DISK
*

LoadIt START
using WindowData
using IOData

jsr Repaint

PushWord #20 ; upper x coordinate
PushWord #20 ; upper y coordinate
PushLong #PromptPtr

PushLong #0 ; no filter process
PushLong #TypelListPtr ; file types to display
PushLong #ReplyRecord ; defined in jodata
_SFGetFile

lda GoodFlag
bne cont
jmp return ; user canceled operation

cont lda #FName
sta NamePtr
Lda #"FName
sta NamePtr+2

lda WinOHandle
ldx WinOHandle+2
jsr Deref

sta PicDestlIn
stx PicDestIn+2
jsr LoadOne

PushLong NamePtr
PushLong WinOPtr
_SetWTitle ; update window title

lda WinOHandle
ldx WinOHandle+?2
jsr Unlock

PushLong NamePtr ; update ‘title” menu item
PushWord #262 ; menu item number
SetMItemName ; update name of item

334

12—The Standard File Operations Tool Set

PushWord #0
PushWord #0
PushWord #3
-CalcMenuSize

return rts

PromptPtr str

TypelListPtr anop

‘Load Picture:’

NumEntries dc 1171

Filetype1 dc h'c1’
END

*

; menu number
; update width of items

* SAVEIT: ROUTINE TO SAVE A PICTURE TO DISK

*

Savelt

START

Using WindowData
Using IOData

PushWord #20

PushWord #20

PushLong #TopMsg
PushLong #Win0Title
PushWord #15

PushLong #ReplyRecord
_SFPutFile

lda
bne
imp

cont lda
sta
Lda
sta

lda
Ldx
jsr
sta
stx

GoodF lag
cont
return

#FName
NamePtr
#"FName
NamePtr+2

WinOHandle
WinOHandle+2
Deref
PicDestOut
PicDestOut+2

upper X coordinate
upper Y coordinate

max length of file name
defined in iodata

; user canceled operation

335

The llgs Toolbox

jsr SaveOne

PushLong NamePtr
PushLong WinOPtr
SetWTitle ; update window title

lda WinOHandle
ldx WinOHandle+2
jsr Unlock

PushLong NamePtr ; update ‘title” menu item
PushWord #262 ; menu item number
_SetMItemName ; update name of item

PushWord #0
PushWord #0

PushWord #3 ; menu number
-CalcMenuSize ; update width of items
return rts
TopMsg str Type name of picture:’
END
*
* LoadOne

* Loads the picture whose pathname is passed in NamePtr to address
* passed in PicDestIN

LoadOne START
using IOData

-Open OpenParams
bcc cont1
ErrorCheck ‘Could not open picture file.’

cont1 anop
lda OpenlID
sta ReadlID
sta CloselD

—Read ReadParams

bcc cont2
ErrorCheck ‘Could not read picture file.’

336

12—The Standard File Operations Tool Set

cont?2 anop
—Close CloseParams

cle
rts
END

SaveOne
Saves the picture whose pathname is passed in NamePtr from address
passed in PicDestOUT

* ¥ % * *

SaveOne START
using IOData

Lda NamePtr
sta NameC

sta NameD

lda NamePtr+2
sta NameC+2
sta NameD+2

_Destroy DestParams

lda #%$c1 ; SuperHiRes picture type
sta CType

lda #$0 ; standard type = 0

sta CAux

-Create CreateParams
bcec cont0
ErrorCheck Could not create pic file.’

contO Open OpenParams
bcc cont1
ErrorCheck Could not open pic file.’

cont1 anop
lda OpenlID
sta WritelD
sta CloselD

Write WriteParams

bcc cont?2
ErrorCheck ‘Could not write to pic file.’

337

The llcs Toolbox

cont?2 anop
-Close CloseParams
clc
rts
END
Listing 12-8
SF.S1 new MenuData segment
*
* Menu Data
*
MenuData DATA
Return equ 13
Menu1 dc ¢>L@\XN1",i1RETURN’
dc ¢’ LA Window Program \N257',i1RETURN’
dc c¢’.’
Menu?2 dc c>L File \N2,i1TRETURN’
dc ¢’ LNew \N258V’,i1RETURN
dc ¢’ LLoad \N259°,i1RETURN’
dc ¢’ LSave \N260V’,i1TRETURN’
dc ¢ LQuit\N261°,i1RETURN’
dc c¢'.’
Menu3 dc c¢>L Windows \N3',i1RETURN’
dc ¢’ LUntitled \N262°,11RETURN’
dc c¢'.’
END
MenuTable DATA
* Menu 1 (apple)
dc iignore’ ; one for the NDAs
dc i’ignore’ ; ‘a window program’
* Menu 2 (file)

338

dc iRepaint’
dc i’Loadlt’
dc i'Savelt’
dc idoQuit’

; ‘doWin0" (new window)

; quit item selected

12—The Standard File Operations Tool Set

* Menu 3 (windows)
dc i‘doWin0’ ;> untitled’
END
*kk
Listing 12-9
SF.S1 IOData segment
*
* IOData
*
I0OData DATA
ReplyRecord anop
GoodF Lag ds 2
FType dc 193" ; $c1
AuxFType dc 10 ; #0
FName ds 15
Ful LPathName ds 128
CreateParams anop
NameC dc 1407
dc 12'$00C3 ; DRNWR
CType dc i2°$00C1” ; super high-res graphics
CAux dc i4°$00000000° ; Aux
dc 12°$0001° ; type
dc 12'$0000° ; create date
dc i12°$0000° ; create time
DestParams anop
NameD dc 1407
OpenParams anop
OpenlID ds 2
NamePtr ds 4
ds 4
ReadParams anop
ReadlD ds 2
PicDestIN ds 4
dc i14°$8000° ; this many bytes
ds 4 ; how many xfered

339

The lles Toolbox

WriteParams anop
WritelD ds 2
PicDhestOUT ds &4
dc 14°$8000° ; this many bytes
ds 4 ; how many xfered
CloseParams anop
CloselD ds 2
END

The SF.C Program

Listing 12-10 is a C language version of the SF.S1 program. Designed to
be used with the inc lude file INITQUIT.C, it works almost exactly like the
SF.S1 program.

In the C version of the SF program, files are not loaded and saved using
ProDOS calls, as they are in the assembly language version. Instead, SF.C
uses four C library routines: Open, CLlose, Read, and Wri te. These routines
are called in the LoadIt and Savelt segments of the program.

The Open function returns an integer, known as a file descriptor, for
each file successfully opened. If the call fails, it returns — 1. In the SE.C
program, you test the value returned by Open. If the value is — 1, a dialog
window appears on the screen and tells the user an I/O error has occurred.
Then the user can try to continue or quit. This dialog is created and displayed
in the BadIO segment of the program.

The event loop of the program is the same as the one that appeared in
the DIALOG.C program in chapter 11. The DoMenus section is expanded
to accommodate some new menu choices, but the changes need little expla-
nation.

There are also changes in the way window titles are selected and dis-
played. These modifications are necessary because window titles can change
in the SF.S1 program. Although there may be a more elegant way to accom-
modate the shifting of window titles, calling HideWindow and then
ShowWindow does the job.

Also, the File menu selection in SF.S1 does not conform strictly to the
usual conventions for saving and loading files. For example, in the SF.S1
program, you can use the menu selections New, Load, or Quit without saving
first—and you can thus wipe out the picture currently on the screen without
warning. Because SF.S1 is a tutorial program, we decided to forego fixing
that bug to avoid adding more complexity to the program.

One feature we did add was to disable the menu selection Save when
no window is open. Disabling an item lets the user know ‘‘that can’t be done
right now,”” and ensures that TaskMaster does not return the constant that
represents the disabled item in the wmTaskData field.

340

12—The Standard File Operations Tool Set

Listing 12-10
SF.C program

#include "initquit.c”
#include <prodos.h>
#include <string.h>
#include <fentl.h>

Boolean done = false;
WmTaskRec myEvent;

/************************************/

/* Data and routine to create menus */
/************************************/

/* Set up menu strings. Because C uses \ as an escape character, we use
two when we want a \ as an ordinary character. The \ at the end of each
Line tells C to ignore the carriage return. This lets us set up our items
in an easy-to-read vertical alignment. */

char *menu1 = "\
>L@\\XN1\r\
LA Standard File Program \\N257\r\

LY 4

char *menu2 = "\

>L File \\N2\r\
LNew \\N258V\r\
LOpen #\\N259\r\
LSave \\N260V\r\
LQuit #\\N261\r\

Y 4

char *menu3 = "\
>L Windows \\N3\r\
LUntitled \\N262\r\

LAY 4

#define NEW_ITEM 258

#define OPEN_ITEM 259

#define SAVE_ITEM 260

#define QUIT_ITEM 261 /* these will help us check menu item numbers */
#define TITLE_ITEM 262

Bui ldMenu ()
{

InsertMenu(NewMenu(menu3),0);
InsertMenu(NewMenu(menu2),0);

341

The lles Toolbox

InsertMenu(NewMenu(menu1),0);

FixMenuBar();

DrawMenuBar () ;

DisableMItem(SAVE_ITEM);/* save is disabled until a window is drawn */

R e T e Lt R R L L L L)
/* Data structures and routines to set up and refresh */
/* offscreen drawing environment */

/***/

LocInfo picOLocInfo = { mode320,
NULL, /* space for pointer toc pixel image */
160, /* width of image in bytes = 320 pixels */
0,0,200,320 /* frame rect */
1

Rect screenRect = {0,0,200,320);
GrafPort picOPort;

#define IMAGE_ATTR attrLocked+attrFixed+attrNoCross+attrNoSpec+attrPage

PicOSetup() /* called once by MakeWindow at start of program */
{
GrafPortPtr thePortPtr;

picOLtocInfo.ptrToPixImage = *(NewHandLe(Ox8000L,myID,IMAGE_ATTR,NULL));
thePortPtr = GetPort();

OpenPort(&picOPort);
SetPort(&picOPort);
SetPortLoc(&picOLocInfo);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(thePortPtr);

}

ErasePic0()

{
GrafPortPtr oldPortPtr;

oldPortPtr = GetPort();
SetPort(&picOPort);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(oldPortPtr);

342

12—The Standard File Operations Tool Set

/***/

/* Data and routines for handling Open and Save calls */
/***/

#define O_PICLOAD O_RDONLY+O_BINARY
#define O_PICSAVE O_WRONLY+O_CREAT+O0_BINARY+0_TRUNC

SFReplyRec file = {0,193}; /* intit 2 fields, rest are 0d */

char curpath[130] ; /* place for C string version of pathname */
Byte typelist[2] {1,193}; /* we only want to open hi-res pictures */
FileRec filelnfo {file.fullPathname}; /* initialize first field =*/

I

LoadIt()
{

int filedes;
char oldTitle[16];

strncpy(oldTitle,file.filename,16); /* save title in case load fails */

SFGetFile(20,20,"\pLoad Picture:",NULL,typelist, &file);
if(file.good) {

p2cstr(strncpy(curpath,file.fullPathname,(int)*file.fullPathname+ 1)) ;

if((filedes = open(curpath,0_PICLOAD)) != -1) {
read(fiLedes,pic0LocInfo.ptrToPixImage,0x8000);
close(filedes);

SetMItemName(file.filename,b262);
CalcMenuSize(0,0,3);
RenewWind();

}
else {
BadIO(); /* load failed, put up message and restore title */
strncpy(file.filename,oldTitle,16);
h
!
t
Savelt(winPtr)
GrafPortPtr winPtr;
{

int filedes;
char oldTitle[16];

strncpy(oldTitle,file.filename,16); /* save title in case save fails */

SFPutfFile(20,20,\pType name of picture:", file.filename,15,&file);

343

The llas Toolbox

if(file.good) {
p2cstr(strncpy(curpath,file.fullPathname,(int)*file.fullPathname+
1));
if((filedes = open(curpath,0_PICSAVE)) ! 1= —1){
write(filedes,picOLocInfo.ptrToPixImage,0x8000);
close(filedes);

GET_FILE_INFO(&fileInfo); /* make file's type a hires picture */
fileInfo.fileType = 0xC1;
SET_FILE_INFO(&filelInfo);

SetMItemName(file.filename, TITLE_ITEM);
CalcMenuSize(0,0,3);
}

else { /* save failed, put up message and restore title */
Badio();
strncpy(file.filename,oldTitle,16);

}

}
else strncpy(file.filename,oldTitle,16);

}

/**/
/* Data structures and routines to create window */
/**/
/* Initialize template for NewWindow =*/

#define FRAME fQContent+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose+fTitle

ParamList template = { sizeof(ParamList),

FRAME,

file.filename, /* Pointer to title in SFReplyRec */

oL, /* RefCon */

26,0,188,308, /* Full size (O=default) =*/
NULL, /* use default ColorTable */

0,0, /* origin */

200,320, /* data area height & width */

200,320, /* max cont height & width =*/

2,2, /* vertical & horizontal scroll increment */

20,32, /*vertical & horizontal page increment */
NULL, /* no info bar text string =*/

0, /* info bar height = none */

NULL, /* default def proc */

NULL, /* no info bar draw routine */

NULL, /* draw content must be filled in at run time */
26,0,188,308, /* starting content rect */

344

12—The Standard File Operations Tool Set

-1L, /* topmost plane */
NULL /* let window manager allocate record */

1
/* Window's draw content routine */

pascal void DrawContent()
{

PPToPort (&picOLocInfo,&(picOLoclnfo.boundsRect),0,0,modeCopy);
}

GrafPortPtr winQOPtr;

MakeWindow() /* Set default title str, complete template, make the window */
{
strncpy(file.filename,"\pUntitled”,9); /* default name for new window =*/
template.wContDefProc = DrawContent;
WwinOPtr = NewWindow(&template);
}

RenewWind() /* a way to restore a window to its default size and position %/
{ /*will not affect the contents unless ErasePicO is called first */

EnableMItem(SAVE_ITEM);
HideWindow(winOPtr);
CloseWindow(winOPtr);
WwinOPtr = NewWindow(&template);
SelectWindow(winOPtr);
ShowWindow(winOPtr);

1

/**/

/* Data and routines to set up and display dialogs */
/**/

char prompt[40]1 = "\pUnable to load or save “;

ItemTemplate item1 = { 1,{8,129,22,179},buttonltem, " \pStart\r",0,0,NULL b
ItemTemplate item2 {2,8,8,22,58},buttonItem, "\pQuit\r",0,0,NULL 4
ItemTemplate jtem3 { 3,{8,67,22,117},buttonItem,“\pHelp\r",0,0,NULL b
ItemTemplate jtemé4 { 4,{30,8,55,259},statText,prompt,0,0,NULL };
ItemTemplate item5 = { 1,{8,129,22,179},buttonItem, \pOK",0,0,NULL };

Il

DialogTemplate dtemp ={{84,63,114,252Ltrue,0L,&item1,&item2,&item3,NULL};
DialogTemplate iotemp :{{84,23,144,292Ltrue,OL,&itemS,&itemZ,&item4,NULL};

DoDialog() /* Create and display an opening dialog box */

{

345

The llas Toolbox

GrafPortPtr dlgPtr;
Word hit;

dlgPtr = GetNewModalDialog(&dtemp);

while ((hit = ModalDialog(NULL)) == 3);
done = (hit == 2);
CloseDialog(dlgPtr);

}

Bad1o()

{

GrafPortPtr dlgPtr;

strncat(prompt,file.filename + 1, *file.filename);
*prompt = 23 + *file.filename;
dlgPtr = GetNewModalDialog(&iotemp);

done = (ModalDialog(NULL) == 2);
CloseDialog(dlgPtr);
}

/**/

/* Main routine. Set up environment, call eventloop, and shut down */
/**/

main()

{
StartTools();
DoDialog();
Bui ldMenu () ;
MakeWindow();
PicOSetup();
EventLoop();

DisposeHandle(FindHandle(picOLocInfo.ptrToPixImage));
ShutDown();

}

/**************************************/

/* Event loop and supporting routines */
/**************************************/

EventLoop()

{
myEvent.wmTaskMask = OxOFFF;

while(!done)

switch (TaskMaster(everyEvent,&myEvent)){
case wlnMenuBar:

346

12—The Standard File Operations Tool Set

DoMenus();
break;

case wInGoAway:
DisableMItem(SAVE_ITEM);
HideWindow(winOPtr);

break;
case wInContent:
Sketch();
}
}
DoMenus ()
{

Word *data = (Word *)&myEvent.wmTaskData; /* address of jtem id */

switch(*data) {
case QUIT_ITEM:
done = true;
break;
case OPEN_ITEM:
LoadIt();
break;
case SAVE_ITEM:
Savelt();
HideWindow(winOPtr); /* Make sure the title gets updated */
ShowWindow(winOPtr);
break;
case NEW_ITEM:
ErasePic0();
strncpy(file.filename,\pUntitled’,9);
RenewWind();
break;
case TITLE_ITEM:
EnableMItem(SAVE_ITEM);
SelectWindow(winOPtr);
ShowWindow(winQOPtr);
break;
}
HiliteMenu(false,*(data + 1)); /* data + 1 is address of menu id */

}

Sketch() /* sketch into current port, and into offscreen port */
{

Point mouseloc;

GrafPortPtr thePortPtr = (GrafPortPtr)myEvent.wmTaskData;
Rect theRect;

347

The llas Toolbox

mouselLoc = myEvent.wmWhere;

StartDrawing(thePortPtr);

GetPortRect(&theRect);

GlobalToLocal (&mouseloc);

MoveTo(mouseloc);
SetPort(&picOPort);
ClipRect(&theRect);
MoveTo(mouselLoc);
SetPort(thePortPtr);

while (StillDown(0)) {
GetMouse(&mouseloc);

LineTo(mouseloc);
SetPort(&picOPort);
LineTo(mouseloc);
SetPort(thePortPtr);

}
SetOrigin(0,0);

/* set up correct drawing coordinate system x/
/* copy current port rect */
/* get cursor pos in local coordinates */

/* set pen position to mouse loc */

/* switch to offscreen port */

/* clip offscreen drawing to window's port rect x/
/* set offscreen pen to same location */

/* switch back to window's port */

/* get new mouse coordinates */

/* draw line in both ports */

/* restore normal coordinates */

348

CHAPTER

The Sound of Music

The llgs as a Sound and Music Synthesizer

] | ne of the most remarkable features of the Ilcs is its ability to syn-
O thesize music and sounds. Some reviewers have declared that the
IIGs offers the finest sound-synthesizing capabilities of any computer

in its class. So it’s no wonder that the s in Ils stands for sound.

You don’t have to be a musician or an audio engineer to understand
how the synthesizer built into the Ilgs works. To write sound and music
programs for the Apple llgs, however, it doesn’t hurt to know a little bit
about how a music synthesizer produces sound. So, in the first part of this
chapter, you take a brief look at some important facts about the science of
sound and how the IIGs produces sound and music. Then you type, assemble,
and run a program that turns your Ilgs keyboard into a music synthesizer
capable of producing an almost limitless variety of sounds.

The Characteristics of Sound
When you hear a sound from a musical instrument, four characteristics are
combined to create the sound you perceive. These four characteristics are

B Volume, or loudness
B Frequency, or pitch
B Timbre, or sound quality

349

The llcs Toolbox

® Dynamic range, or the difference in level between the loudest sound
that can be heard and the softest sound that can be heard during a
given period of time. This time period can range between the time it
takes to play a single note and the length of a much longer listening
experience, such as a musical performance or a complete musical
recording.

Sound Hardware in the ligs

The Digital

Oscillator Chip

350

The General
Logic Unit

To produce sounds that have these four characteristics—volume, frequency,
timbre, and dynamic range—the Ilgs is equipped with a pair of special-
purpose sound chips. One is the digital oscillator chip, or DOC, and the other
is the general logic unit, or GLU. Let’s take a closer look at these two
processors.

The digital oscillator chip, or DOC, is a sound-generating microprocessor
designed by the Ensoniq sound synthesizer company. DOCs are used in
Ensoniq synthesizers as well as in the IIGs.

The basic sound-generating unit used by the DOC is a component called
an oscillator. To produce a sound, an oscillator must step through a table of
sound samples stored as digital numbers. This table must be supplied by the
application program using the oscillator. It can be created while a program
is running, or it can be stored on a disk and loaded into memory in advance.

The DOC contains thirty-two oscillators, but two are unavailable for
use in application programs. One is always used as a clock, and another is
reserved for future use. That leaves thirty oscillators, each of which can
function independently. In practice, however, the DOC’s oscillators are used
In pairs because it takes at least two oscillators to produce a continuous
instrumental voice.

When two oscillators are used together to produce a sound, they form
a functional unit called a generator. So, in normal use, the DOC has fifteen
generators and thus is a 15-voice chip.

The DOC also has a component called an analog-to-digital converter,
or ADC. The ADC makes it possible for the DOC to record a digital sample
of an actual sound, so that the sound can be played back later from its digital
sample. More information about this capability is in the Apple Ilcs Hardware
Reference.

The general logic unit, or GLU, is a chip that interfaces the DOC processor
and the IIGs system. It also enables the IIgs to produce sound in the same
way as older Apple Ils: by toggling a single-bit switch that can make a speaker
vibrate at various rates of speed. But thanks to the GLU, this method of
producing sound is improved; its volume can now be software controlled.

In addition to its DOC and GLU chips, the 1IGs has 64K of dedicated
RAM used only for storing sound samples. Because this area of memory is
used only by the DOC, it is sometimes referred to as DOC RAM.

13—The Sound of Music

Sound Tools in the Toolbox

The 1lgs Toolbox contains three tool kits that make it possible to write sound
and music programs without accessing the sound registers used by the DOC
and the GLU directly. These three tool sets are the

B Sound Tool Set, which starts and stops sounds, sets sound volumes,
performs read and write operations to and from DOC registers, and
reads and writes data to and from DOC RAM.

B Note Synthesizer, a higher-level tool set that produces and controls
musical notes. The Note Synthesizer can emulate the sound of
virtually any musical instrument and can produce unique musical
sounds with almost any characteristics desired.

B Note Sequencer, a still higher-level tool set that makes it easier to
combine various notes, chords, note patterns, and rhythms into
musical performances and compositions.

The sample program in this chapter, MUSIC.S1, uses the Sound Tool
Set and the Note Synthesizer. It does not use the Note Sequencer because it
is an interactive program. The MUSIC.S1 program appears at the end of this
chapter.

More About the Science of Sound

Volume

Frequency

Now that you know something about how the IIgs produces music and sound,
you’re ready to take a closer look at the four primary characteristics of every
sound: volume, frequency, timbre, and dynamic range.

If you’ve ever turned a volume knob on a radio, you know just about all
you’ll need to know about volume to write sound and music programs for
the Ilcs.

In programs written using the Sound Tool Set, the volume of a sound
is controlled using the Sound Tool call SetSoundVolume. In programs that
use the Note Synthesizer, volume is expressed as a value ranging from O to
127 and is controlled by passing a parameter to the Note Synthesizer call
NoteOn.

As you shall see later, the NoteOn call must be made every time a note
is produced by the Ncte Synthesizer. In the MUSIC.S1 program, volume is
controlled using the NoteOn call. You’ll see how this is done later in this
chapter.

The pitch of a musical note is determined by its frequency. In programs written
using the IIgs Note Synthesizer, frequency is measured in semitones, or
halftones. A semitone value ranges from 0 to 127, with 60 representing
middle C.

The frequency of a note, like the note’s volume, can be established by
passing a parameter to the Note Synthesizer call NoteOn. An example is
provided later in this chapter.

351

The llcs Toolbox

Timbre Timbre, or note quality, is sometimes illustrated with the help of a waveform.
There are four basic varieties of waves: sine wave, square wave (or pulse
wave), triangle wave, and sawtooth wave. But these four types of waves can
be combined with each other, and with irregular wave patterns, in endless
varieties.

To understand how waveforms work, you need to know a little about
musical harmonics. So here is a crash course in music theory.

With the help of an electronic instrument, you can generate a tone that
has just one pure frequency. But when a note is played on a musical instru-
ment, more than one frequency is usually produced. In addition to a primary
frequency, or a fundamental, there is usually a set of secondary frequencies
called harmonics. It is this total harmonic structure that determines the timbre
of a sound.

When a tone containing only a fundamental frequency is viewed on an
oscilloscope, the pattern produced on the screen is a pure sine wave. When
a flute is played, the waveform produced is very close to that of a pure sine
wave. The waveform of a sine wave is shown in figure 13—1.

When harmonics are added to a tone, the result is a richer scund that
produces what is sometimes called a triangle wave. Triangle waveforms, or
waves that are close to triangle waveforms, are produced by instruments such
as xylophones, organs, and accordians. Figure 13-2 is a triangle wave.

When still more harmonics are added to a note, other kinds of waves
are formed. Harpsichords and trumpets, for example, produce a type of wave
sometimes called a sawtooth wave. A piano generates a squarish kind of wave
called a square wave or a pulse wave. A sawtooth wave is illustrated in figure
13-3, and a pulse wave is shown in figure 13-4.

Another kind of waveform that the DOC can produce is a noise wave-
form. A noise waveform creates a random sound output that varies with a
frequency proportionate to that of an oscillator built into Voice 1. Noise
waveforms are often used to imitate the sound of explosions, drums, and other
nonmusical noises.

Figure 13-1
Sine waveform

AN

Figure 13-2
Triangle waveform

N
AN

352

13—The Sound of Music

Dynamic Range

A Close Look at
an ADSR
Envelope

e

Figure 13-3
Sawtooth waveform

Figure 13—4
Pulse waveform

In programs written for the Ilgs, waveforms can be created when
needed—as they are in the MUSIC.S1 program—or they can be created and
loaded into memory in advance. No matter how a waveform is created, though,
it must be moved into DOC RAM before it can be used to produce a sound.

The dynamic range of a note—the difference in volume between its loudest
sound level and its sofiest sound level—can be illustrated in many ways. To
illustrate and control the dynamic ranges of notes, audio engineers sometimes
use a device called an ADSR envelope, or attack-decay-sustain-release
envelope. An ADSR envelope illustrates four distinct stages in the life of a
note: four phases every note undergoes between the time it starts and the time
it fades away. These four phases—attack, decay, sustain, and release—are
shown in the ADSR envelope illustrated in figure 13-5.

As figure 13-5 shows, every note starts with an attack. The attack phase of
a note is the length of time it takes for the volume of the note to rise from a
level of zero to the note’s peak volume.

As soon as a note reaches its peak volume, it begins to decay. The
decay phase of a note is the length of time it takes for the note to decay from
its peak volume to a predefined sustain volume.

When the decay phase of a note ends, the note is usually sustained for
a certain period of time at a certain volume. Then a release phase begins.
During this final phase, the volume of the note drops from its sustain level
back down to zero.

When the IIgs Note Synthesizer is used in a program, the ADSR en-
velope of each sound in the program can be set up by creating a data structure
called an instrument record. Then, when a note is played, the address of this
record can be passed as a parameter to the Note Synthesizer call NoteOn.

353

The lles Toolbox

i i l i i
i A 1D} S S
T B u i B
LT L C s Pl
A LAY T i E o
o C Y A A
POk oA | bos !
: ! N \ E |
| i | |
i) I |
| | | |
1 | | |
| | | 1
| | | |
| | (|
}] I |
' ' s : !
| i
' I
| |
1 I
1 I
| |
| |
I |
I |
1 I
1 I
1 I
1 I
1 I
! +
1 1
i ;
Figure 13-5

ADSR envelope

Initializing the Sound Tool Set and the Note Synthesizer

The Sound Tool Set and the Note Synthesizer, like most tools in the IlGs
Toolbox, must be loaded and started before they can be used in a program.
In programs that use both tool kits, the Sound Tool Set must be started first
because the Note Synthesizer uses part of the Sound Tool Set’s direct page.

In the MUSIC.S1 program, the Sound Tool Set is initialized in a program
segment labeled SoundStartUp, and the Note Synthesizer is started in a
segment labeled NoteStartUp.

SoundStartUp, the call that initializes the Sound Tool Set, is quite
straightforward. It takes one parameter—a pointer to a direct page work-
space—and returns with the carry clear if there is no error.

NSStartup, the call that initializes the Note Synthesizer, takes two
parameters. The first parameter is a 2-byte update rate, which determines the
rate at which sound envelopes are generated. Update rates are expressed in
units of .4 cycles per second, or hertz. In the MUSIC.S1 program, the update
rate passed to the NSStartup call is the decimal number 70, so the sound
envelope used in the program is updated at a rate of 60 times a second, or
60 hertz.

The second parameter passed to the NSStartup call is a pointer to an
interrupt-driven routine that can be used for note sequencing. No interrupts
are used in the MUSIC.S1 program, so the value for this parameter is zero.

How the Note Synthesizer Works

When the Note Synthesizer is used in an application program, a sound gen-
erator must be allocated for each voice used in the program. The call to
allocate a generator is AL LocGen.

The AllocGen call takes two parameters: a 2-byte space to return a

354

13—The Sound of Music

NoteOn Call

The Structure of
an Instrument
Record

result on the stack and a 1-word value to establish the priority of the generator
being allocated.

This is how generator priorities work. Generator priorities can range
from O to 128. When a generator has a priority of 0, it is free and thus can
be allocated. If there are no free generators when a generator is to be allocated,
the Note Synthesizer looks for the lowest-priority generator and ‘‘steals’” it—
if it has a priority of less than 128. If a generator has a priority of 128, it
cannot be stolen.

When the Al locGen call returns, a generator number ranging from 0
to 13 is pushed onto the stack. Then, when a note is to be played by one of
the DOC’s fifteen generators, the generator can be referred to by its assigned
number.

When all the generators needed by a program are allocated, the NoteOn call
can be made each time a note is to begin, and the NoteOf f call can be made
each time a note is to end.

The NoteOn call takes four parameters:

B A 1-word generator number (the identification number assigned by
the AllocGen call)

B A I-word semitone number (a number ranging from 0 to 127, with
the value 60 representing middle C)

B A I-word volume parameter (a number ranging from 0 to 127)

B A 2-word pointer to an instrument record

The structure of an instrument record is described in the next section.
The NoteOn call does not return any parameters.

When the NoteOn call is used in a program, one of the parameters passed
to it is an instrument record. The instrument record used in the MUSIC.SI
program is shown in table 13—1. The routine that plays notes using the
instrument record is in the P LlayNote segment of the program. The following
paragraphs describe each of the fields shown in table 13-1.

The Enve Lope field of an instrument record is composed of up to eight
linear segments. Each of these segments has a breakpoint value and an in-
crement value, or slope. During each segment, the volume of the note being
played ramps (increases or decreases) from its current value to its breakpoint
value. The time that th:s process takes is determined by the increment value
of the note’s envelope.

The value of a breakpoint can range from 0 to 127. This range of values
represents the level of a sound on a logarithmic scale, with each 16 steps
changing the note’s amplitude by 6 decibels (dB). The last breakpoint used
in an envelope should have a value of 0.

Each increment value in the envelope field can range from O through
127. An increment is a value that is added to or subtracted from a note’s
current level at the update rate passed to the NoteOn call, thus changing its

355

The llacs Toolbox

356

Table 13-1
Instrument Record
Field Number Field Name Field Length
1 Enve lope 24 bytes
2 ReleaseSegment 1 byte
3 PriorityIncrement 1 byte
4 PitchBlendRange 1 byte
5 VibratoDepth 1 byte
6 VibratoSpeed 1 byte
7 Spare I byte
8 AWaveCount 1 byte
9 BWaveCount 1 byte
10... Wavelists 6 bytes each

frequency at a rate determined by its update rate. The sustain level of an
envelope is created by setting an increment value to O.

An increment is a 2-byte, fixed-point number, that is, a number that
represents a fraction. Specifically, the fraction represented by an increment
value is the value over 256. Thus, if an increment value is 1, it represents
the fraction 1/256 and has to be added to a note’s current volume 256 times—
over a total elapsed time of 2.56 seconds—to cause the volume of the note
to go up by 1.

The ReleaseSegment field of an instrument record is a number rang-
ing from 0 to 7. This number determines how many segments it takes for the
release of a note to go down to 0. When the release phase diminishes to 0,
the note ends.

The PriorityIncrement field of an envelope is a number subtracted
from the envelope’s generator priority when the envelope reaches its sustain
phase. Then, when the note reaches its release phase, its priority is cut in
half. The priority of each allocated generator is also decremented by 1 each
time a new generator is allocated. The purpose of this process is to ensure
that the “‘oldest’ active generators are ‘‘stolen’” first when a new generator
needs to be allocated.

The PitchBlendRange of an envelope is the number of semitones
that a pitch is raised when its pitchwheel—a constantly incrementing value—
reaches 127. The PitchBlendRange field controls a sound’s vibrato effect.
There are only three valid values for this field: 1, 2, and 4.

The VibratoDepth field defines the initial depth of a note’s vibrato.
Vibrato depth can range from 0 to 127, with a value of 0 meaning no vibrato
will be used. The VibratoSpeed field, a value ranging from 0 to 255,
controls the rate of vibrato oscillation. The next field, field 7, is reserved for
future expansion.

Each of the digital oscillator chip’s generators is made up of a pair
of oscillators. Each oscillator in a pair can be used to synthesize as many differ-
ent kinds of sound waves as desired. In an instrument record, field 8,
AWaveCount, tells how many kinds of waves are defined for the first oscillator

13—The Sound of Music

in a pair. Field 9, BWaveCount, tells how many kinds of waves are defined
for the second oscillator.

In an instrument record, a WavelList is a variable length array. Each
element in a Wavelist array has 6 bytes, divided into four fields. Fields 8
and 9 of an instrument record—the AWaveCount and BWaveCount fields—-
determine how many Wavelist arrays the record contains.

The five fields in a WavelList array are:

B TopKey (1 byte). The highest semitone (ranging from 0 to 127) that
a waveform will play. When a note is played by an instrument, the
Note Synthesizer examines the TopKey field in each of the
instrument’s waveforms until it finds one that will play the requested
note. Therefore, the waveforms listed in each wavelist should be
arranged in an order of increasing TopKey values, and the last
TopKey value in a wavelist should be 127.

B WaveAddress (1 byte). This field contains the high byte of the
address of a waveform. This value is placed directly into a DOC
register that holds a pointer to a waveform address. The waveform
stored at the indicated address must be supplied by the program
being executed.

B WaveSize (I byte). This I-byte field is placed directly in a DOC
register that defines the size of the wave being accessed.

B DOCMode (1 byte). This field determines what mode the DOC uses
to play the waveform listed. The most commonly used DOC mode is
swap mode, in which two oscillators are used together to form a
generator. DOC mode 0 is swap mode. More information on DOC
modes are in the Apple llcs Hardware Reference.

B RelPitch (2 bytes). This field is a 2-byte word that tunes the
waveform in which it appears. The high byte of the word (the
second byte of the field) is expressed in semitones, but can be a
signed number. The low byte (the first byte of the field) is a value
expressed in increments representing 1/256 of a semitone.

The MUSIC Program

Listing 13-1 is a complete listing of the MUSIC.S1 program. Listing 13-2,
MUSIC.C, is a C language version of the program. INITQUIT.C, listing 13—
3, is an inc lude file that handles disk input and output for MUSIC.C. All
three listings appear at the end of this chapter.

Type, assemble, and run the MUSIC program, and it will turn your
Ilcs keyboard into the keyboard of a real sound synthesizer. The keys on the
Tab row are the synthesizer’s white keys, and the keys on the numbers row
are the black keys. The keyboard layout of the MUSIC synthesizer is illustrated
in figure 13-6.

After you know how the lls produces sound, it isn’t difficult to figure
out how the MUSIC.S1 program works. It loads and starts up the Sound Tool

357

The llcs Toolbox

Not the End

NOTE
KEY

NOTE
KEY

F# G# A# C# D# F# G# A# C# D#
1 2 3 5 6 8 9 0 = 2
l
F A B C D E F G A B C D E
Tab R T Y U | 0] P [1 |Return
Figure 13-6

Key layout of the MUSIC synthesizer

Set and the Note Synthesizer, and then enters a loop that reads characters
typed on the IlGs keyboard. In a segment labeled GetKey, the program
constantly checks to see if the user has pressed a key on either of the top two
rows of the keyboard. If such a key is pressed, the ASCII code of the typed
character is converted into a musical semitone, and the program segment
labeled PLlayNote produces the appropriate musical sound. MUSIC.C is a
fairly straightforward translation of the program into C.

This brings us to the end of this book, but we have barely begun to explore
the amazing capabilities of the Apple Ilas. If you have typed, assembled, and
executed the Name Game program, and the programs designed to demonstrate
the capabilities of the lls graphics and sound tools, you have all the supplies
to hack your way into the IIGs jungle and see what lies beyond that first row
of trees. So happy hunting!

MUSIC.S1, MUSIC.C, and INITQUIT.C Listings

Listing 13—1
MUSIC.S1 program

*
*
*

358

MUSIC.S1: Creating a Mini-Synthesizer

keep music

65816 on

absaddr on

mcopy music.macros
longi on
longa on

13—The Sound of Music

Music

loop

exit

START

phk
plb

jsr SoundStartup
jsr LoadSound
jsr NoteStartup
cli
Println

PrintLn
PrintLn

; this seems to be necessary

Your computer is now a mini-synthesizer.’

PrintLn ~ The white keys are on the TAB row.’
PrintLn ~ The black keys are on the number row.”

PrintLn ~ °
PrintlLn

PushWord #0
PushWord #0
-ReadChar
pla

and #3$7F
cmp #%$20
beq exit

jsr GetKey
bcs loop

jsr PlayNote
bra Loop

jsr Shutdown
-Quit QuitParams

QuitParams anop

dc 1407
dc i20°

END

Keep shift lock down; press space bar to quit.’

; no echo
; read key the user typed

; clear highbit
, space bar?
; convert ASCII to a note

; if carry set, no action

; call Note Synthesizer

359

The llgs Toolbox

*kk
GetKey START
short m,1
ldx #23 ; 24 keys, starting from zero
Loop cmp Key,x ; Llook for key in table
beq foundit
dex
bpl Loop
jmp nonote ; search over--no note found
foundit anop
txa
adc #$2A ; convert X reg content to a note
clce ; found note--clear carry
jmp fini
nonote sec ; no note found--set carry
fini tong m,i
rts
Key dc h"09 31 51 32 57 33 45 52 35 54" ; ascii codes
dc h"36 59 55 38 49 39 4f 30 50 Sb’
dc h’3d 5d 7f 0d’
END
*
* Start up the tools we'll need
*

SoundStartup START

—TLStartup

PushWord #0

-MMStartup

ErrorCheck ‘Could not call Memory Manager’

pla

sta MyID

MTStartup

ErrorCheck Could not call Misc Tools’

PushLong #ToolTable

-LoadTools
ErrorCheck ‘Could not load sound tools’

360

13—The Sound of Music

*%% GET SOME DIRECT PAGE SPACE AND START UP SOUND TOOLS *%**

MyID
ToolTable dc
X

*

* Load Sound
*

LoadSound

*

PushLong #0
PushLong #$100
PushWord MyID
PushWord #$C001
PushLong #0

.
4

-
14

4

4

; one tool: #25, version 0

room for handle
one page

type: locked, fixed

using addresses $0000

; <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>