

Notice
Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice .

Disclaimer of All Warranties and Liabilities
Apple Computer, Inc. makes no warranties , either express or implied , with
respect to this manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness for any
particular purpose . Apple Computer, Inc . software is sold or licensed "as
is." The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase, the buyer
(and not Apple Computer, Inc. , its distributor, or its retailer) assumes the
entire cost of all necessary servicing , repair , or correction and any
incidental or consequential damages. In no event will Apple Computer, Inc .
be liable for direct, indirect , incidental , or consequential damages resulting
from any defect in the software , even if Apple Computer, Inc. has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied , reproduced , translated or
reduced to any electronic medium or machine readable form without prior
consent , in writing , from Apple Computer , Inc.

© 1982 by Apple Computer , Inc .
20525 Mariani Avenue
Cupertino, California 95014
(408) 996·1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S. A and Canada.

This manual was written for Apple Computer , Inc. , by
Scot Kamins
Technology Translated
San Francisco , California

Reorder Apple Product # A2L2005

/
-.--J

I

~

I
---J

I
---J

I
....-J

Apple II Applesoft BASIC Programmer's
Reference Manual-volume 1

I
-...I

I ,
--'

Volume One

About This Manua/
xiii Purposes of This Manual
xiv Where to Learn More
xiv How This Manual Is Organized
xvii How to Use This Manual
xvii As a Reference
xviii To Learn the Applesoft Language
xviii To Learn Program Planning
xviii Conventions Used in This Manual

Genera/Information
3 1.1 Statements and Lines
4 1.1.1 Immediate Execution
5 1.1.2 Line Numbers and Deferred Execution
5 1.1.3 Adding Lines to a Program
5 1.1.4 Multiple Statements on the Same Line

xiii

1

6 1.1.5 Deleting Lines from a Program : The DEL Command
7 1.1.6 Changing Lines in a Program
7 1.1.7 Annotating a Program: The REM Statement
8 1.2 Operations on Whole Programs
9 1.2.1 The NEW Command
9 1.2.2 The C LEA R Command

10 1.2.3 The LIS T Command
12 1.2.4 The RUN Command
13 1.2.5 The SAl,) E Command
14 1.2.6 The LOA D Command
15 1.3 Interrupting and Resuming a Program
15 1.3.1 Suspending Screen Output
15 1.3.2 Interrupting Program Execution
16 CONTROL-C
16 CONTROL-RESET
17 1.3.3 Resuming Program Execution : The CONT Command

Contents iii

2

iv

17 1.4

18
18
19

Editing What You Type
1.4.1 Canceling an Input Line
1.4.2 The Arrow Keys
1.4.3 Escape Mode

Variables and Arithmetic
25
26
27
27
28
29

2.1 Variables
2.1.1 Variable Names
2.1.2 Real Variables
2.1.3 Integer Variables
2.1.4 String Variables
2.1.5 Arrays: Collections of Variables

23 __

30 2.2 Assigning Values to Variables: The Assignment Statement
31
31
33
35
36
37
38
38
39
39
40
40
40
41
41
42
42

2.3 Expressions
2.3.1 Arithmetic Operators
2.3.2 Relational Operators
2.3.3 Logical Operators
2.3.4 Precedence of Operators

2.4 Functions
2.4.1 Built-in Arithmetic Functions

The A B S Function
The S G N Function
The I NT Function
The S Q R Function
The S I N Function
The COS Function
The TAN Function
The AT N Function
The E){ P Function
The LOG Function

42
44

2.4.2 Generating Random Numbers: The R N D Function
2.4.3 Defining Your Own Functions: The DE F F N

Statement

Control Statements
50 3.1

51 3.2

51
52
55 3.3

57
59
59

Contents

Unconditional Branching : The GO T 0 Statement
Conditional Branching
3.2.1 The 0 N ... GOT 0 Statement
3.2.2 The IF ... THE N Statement
Loops
3.3.1 The FOR Statement
3.3.2 The N E){ T Statement
3.3 .3 Nesting of Loops

47 -<

61 3.4 Subroutines
64 3.4.1 The GO SUB Statement
64 3.4.2 The RET URN Statement
65 3.4.3 The 0 N ... G 0 SUB Statement
66 3.4.4 The POP Statement
67 3.5 Error Handling
68 3.5.1 The ONERR .. . GOTO Statement
70 3.5.2 The RES U M E Statement
71 3.5.3 Restoring Normal Error Handling
73 3.6 Program Termination
73 3.6.1 The S TOP Statement
73 3.6.2 The EN 0 Statement

Arrays and Strings 75

4 77 4.1 Arrays
79 4.1.1 The DIM Statement
80 4.1.2 Multidimensional Arrays
81 4.2 Strings
82 4.2.1 Comparison of Strings: The ASCII Code
83 4.2.2 The LEN Function
84 4.2.3 Concatenation of Strings
86 4.2.4 Substring Functions
86 The L EFT $ Function
87 The MID $ Function
88 The RIG H T $ Function
89 4.2 .5 String Conversion Functions
89 The S T R $ Function
90 The t.' A L Function
91 The C H R $ Function
92 The AS C Function

Input/Output 93
95 5.1 Input
96 5.1.1 The I N # Statement
97 5.1 .2 The I N PUT Statement
98 Multiple Inputs on the Same Line
99 Rules for String Input

100 Rules for Numeric Input
102 An " Input Anything" Routine
104 5.1.3 The GET Statement
105 5.1.4 The REA D and D A T A Statements
108 5.1.5 The RESTORE Statement
109 5.1.6 Miscellaneous Input Facilities
109 The Hand Controls
110 Cassette Input

Contents

vi

111 5.2 Output
111 5.2.1 The P R # Statement
113 5.2.2 The P R I NT Statement
117 5.2.3 Number Formats
119 5.2.4 Formatting Text on the Screen
119 The T E)-(T Statement
119 The HOM E Statement
120 The S PC Function
121 The TAB Function
122 The H TAB Statement
124 The t,J TAB Statement
125 The PO 5 Function
126 The I N t,J E R 5 E Statement
127 The F LAS H Statement
128 The NOR MAL Statement
128 The 5 PEE D = Statement
129 The Text Window
129 5.2.5 Miscellaneous Output Facilities
130 Controlling the Speaker
131 Annunciator Output
131 The Utility Strobe
131 Cassette Output

Graphics
135 6.1

136
137
138
139
140
141
142 6.2

143
144
145
146
148
150 6.3

150
150
151
151
153
154
157

Contents

Low-Resolution Graphics
6.1.1 The G R Statement
6.1 .2 The COL 0 R = Statement
6.1.3 The P LOT Statement
6.1.4 The H LIN Statement
6.1.5 The t,J LIN Statement
6.1.6 The 5 eRN Function
High-Resolution Graphics
6.2.1 The H G R Statement
6.2.2 The H G R 2 Statement
6.2.3 The He 0 LOR = Statement
6.2.4 The H P LOT Statement
6.2.5 Protecting High-Resolution Graphics
Shape Tables
6.3.1 Creating a Shape Table

Plotting Vectors
How Plotting Vectors Are Interpreted
Coding a Shape Table
The Shape Table Index
Loading a Shape Table into Memory
Saving and Loading a Shape Table

133

159 6.3.2 Using Shape Tables
160 The DR A W Statement
161 The){ D RAW Statement
163 The 5 CAL E = Statement
164 The R D T = Statement
165 The S H LOA D Statement

Utility Statements 167
169 7.1 System Utilities
170 7.1.1 The PEEK Function
170 7.1.2 The PO K E Statement
171 7.1.3 The CALL Statement
172 7.1.4 The USR Function
174 7.1.5 The W A I T Statement
176 7.2 Memory Management
176 7.2.1 The HI MEM: Statement
177 7.2.2 The L 0 M EM: Statement
178 7.2.3 The F R E Function
180 7.3 Debugging Facilities
180 7.3.1 The TRACE Command
181 7.3.2 The NOTRACE Command

Programming: Bringing It All Together 183
185 8.1 Planning the Program
185 8.1 .1 Program Specification
186 What the Program Needs
186 What the Program Will and Won't Do
187 Validating the Data
188 Displaying the Results
189 8.1.2 Program Layout
189 The Initial Layout
190 Refining the Layout
192 8.2 Writing the Code
192 8.2.1 Preliminaries
193 8.2.2 Display the Menu
193 8.2.3 What's the Postage Class?
194 8.2.4 What Does It Weigh?
196 8.2.5 Compute the Charge
196 8.2.6 Display the Results
196 8.2.7 Calculating Routines
199 8.2.8 Consistency-Checking Routines
201 8.2.9 The "Keystall " Routine
201 8.2.10 The Formatting Routine
202 8.3 Final Advice to the New Programmer

Contents

A

Volume Two

Summary of Applesoft Statements
and Functions

Syntax Definitions

ASCII Character Codes

Reserved Words

Error Messages

Peeks, Pokes, and Calls
253 F.1 Screen Text
258 F.2 Keyboard
258 F.3 Graphics
262 F.4 Miscellaneous Input and Output
264 F.5 Error Handling

Hints for Program Efficiency
267 G.1 Saving Space
270 G.2 Saving Time

Implementation Details
274 H.1 Apple lie Memory Map
275 H.2 Applesoft Memory Allocation
278 H.3 Zero Page Usage
280 H.4 Keyword Tokens

Contents

215

235

241

245

247 -

253

267

273 --

I
Display Formats for Numbers 283

On-5creen Editing and 287
Cursor Control

40/80-Column Display Differences 289

Comparison with Integer BASIC 291
292 L.1 Differences between Statements
293 L.2 Other Differences
295 L.3 Converting BASIC Programs to Applesoft

If You Have a Cassette Recorder 297

Complete Listing of the Postage 301
Rates Program

Glossary of Technical Terms 309

Index 331

Reference Card Inside Back Cover

Contents ix

List of Figures
20 Figure 1-1
20 Figure 1-2

29 Figure 2-1

78 Figure 4-1
78 Figure 4-2
80 Figure 4-3

118 Figure 5-1

Single Cursor Moves
Long-range Cursor Moves

A Typical Array

A Real Array
A String Array
A Two-dimensional Array

Format for Scientific Notation

139 Figure 6-1 Screen Coordinates for Low-Resolution Graphics
147 Figure 6-2 Screen Coordinates for High-Resolution Graphics
147 Figure 6-3 Drawing a Rectangle with HPLOT
151 Figure 6-4 Plotting Vectors in a Byte
151 Figure 6-5 Plotting a Shape
152 Figure 6-6 Codes for Plotting Vectors
152 Figure 6-7 Shape Definition Table
153 Figure 6-8 Converting the Shape Definition to Hexadecimal
154 Figure 6-9 Form of a Complete Shape Table
154 Figure 6-10 A Complete Shape Table

275 Figure H-1 Applesoft Memory Map
277 Figure H-2 Variable and Array Maps

285 Figure 1-1

287 Figure J-1
287 Figure J-2

Contents

Format for Scientific Notation

Single Cursor Moves
Long-range Cursor Moves

List of Tables

L 19 Table 1-1 ASCII Equivalents of Arrow Keys
21 Table 1-2 Escape-Mode Functions

26 Table 2-1 Variable Types
'-- 32 Table 2-2 Operators

36 Table 2-3 Precedence of Operators

68 Table 3-1 Error Codes

118 Table 5-1 Number Formats

137 Table 6-1 Color Codes for Low-Resolution Graphics
145 Table 6-2 Color Codes for High-Resolution Graphics

L..
153 Table 6-3 Hexadecimal Byte Codes

L--
188 Table 8-1 Final Specifications for the Postage Rates Program
189 Table 8-2 Initial Layout of the Postage Rates Program
190 Table 8-3 First Refinement of the Postage Rates Program

L 191 Table 8-4 Final Layout of the Postage Rates Program

274 Table H-1 Apple lie Memory Usage

L
278 Table H-2 Applesoft Zero Page Usage
280 Table H-3 Applesoft Keyword Tokens

284 Table 1-1 Number Formats

288 Table J-1 ASCII Equivalents of Arrow Keys
288 TableJ-2 Escape-Mode Functions

289 Table K-1 40/80-Column Display Differences

292 Table L-1 Applesoft Features Not Available in Integer BASIC
292 Table L-2 Integer BASIC Features Not Available in Applesoft
293 Table L-3 Applesoft Features Expressed Differently in Integer

BASIC

'--

Contents xi

About This Manual

This is a reference manual for the Applesoft BASIC programming
language as implemented on the Apple lie computer. It is intended for
readers who have had some previous experience with programming,
either in BASIC or in some other programming language. It assumes
that you are familiar with the material in the Apple /Ie Owner's Man­
ual, and if you are a novice programmer, that you have read the Apple
lie Applesoft Tutorial.

To make using this manual easier for you , we have divided it into two
volumes. The complete table of contents, chapters one through eight,
and the complete index appear in volume one, the volume you are
now reading . Volume two holds the appendices and the glossary; the
index is also included in this volume for your convenience.

Purposes of This Manual
This manual has four purposes:

• To serve as a complete reference manual to the Applesoft BASIC
language for the experienced programmer.

• To provide clear enough explanations and examples so that a
new programmer can learn the details of any statement quickly
and easily.

• To allow any reader, even one who is not trying to learn Applesoft
in detail , to get a general feel for the language.

• To provide an introduction to program planning, design, and de­
velopment for the programmer-in-training.

This manual is decidedly not a tutorial. Experienced programmers
can learn a great deal about Applesoft by reading it from the first
page straight through to the end; but it wasn 't designed to be used in
that way.

Purposes of This Manual

xiv

Where to Learn More
The following sources contain further information about the Apple lie
computer in general and the Applesoft programming language in
particular :

• The Apple lie Owner's Manual covers the basics of the system
and includes a special section on the Apple lie's keyboard . It
also contains a list of books and magazines of special interest to
Applesoft programmers, as well as a short guide to the rest of
the extensive documentation that comes with your Apple lie.

• APPLE PRESENTS ... APPLE is a training disk that comes
with all disk-based Apple lie systems. It contains an interactive
tutorial program giving you hands-on practice with many of
the concepts discussed in the Apple lie Owner's Manual. It's a
must if you 're new to computers.

• The Apple lie Applesoft Tutorial is an excellent guide for be­
ginning programmers. It provides introductory, step-by-step
guidance for the new programmer and has a special chapter on
editing Applesoft programs.

• Apple Backpack: Humanized Programming in BASIC, by Scot
Kamins and Mitchell Waite (BYTE/McGraw-Hili Books) fills the
gap some newer programmers may feel between the Applesoft
Tutorial and this reference manual. It teaches programming in a
friendly and easy-paced way for people who are not computer
experts.

• The Apple lie Reference Manual contains a wealth of informa­
tion about the more technical aspects of the system's operation ,
with lists of various programmer-accessible system flags, point­
ers, and soft switches.

How This Manual Is Organized
This manual has 8 chapters, 14 appendices, a glossary of terms, an
index, and a quick reference card. All of it is designed to help you get
the most out of Applesoft. Here's a description of what each chapter
and appendix is about:

Chapter 1 , "General Information," contains information every Apple­
soft programmer needs. It discusses the programming environment
in which Applesoft operates and tells how to create, modify, execute,
and store Applesoft programs.

About This Manual

Chapter 2, "Variables and Arithmetic," deals with some of the most
fundamental concepts of Applesoft programming : variables, arithme­
tic expressions and operators, arithmetic precedence, Applesoft's
built-in functions, and how to define and use your own functions.

Chapter 3, "Control ," covers the various statements available to di­
rect the flow of program execution. It includes information on uncon­
ditional and conditional branching, loops, subroutines, error handling,
and program termination .

Chapter 4, "Arrays and Strings," completes the material on variables
begun in Chapter 2. It includes information on the definition and use
of arrays in Applesoft and on the various string manipulation facilities.

Chapter 5, " Input/Output," describes Applesoft 's facilities for getting
information into and out of programs and for formatting the way infor­
mation is presented on the display screen.

Chapter 6, "Graphics," tells how to create, change, display, and store
low- and high-resolution graphic designs. There is an extensive dis­
cussion on creating and using shape tables, as well as examples of
how to create animation sequences.

Chapter 7, " Utility Statements," contains information on a variety
of miscellaneous Applesoft facilities for low-level control of the
programming environment: directly accessing specific memory
locations, controlling the limits of program space, and tracing the
execution of a program for debugging purposes.

Chapter 8, "Bringing It All Together," is more tutorial than any other
chapter in the manual ; it describes and demonstrates a method for
planning, designing, and developing efficient, bug-free (well , rela­
tively bug-free) programs.

Appendix A, "Summary of Applesoft Statements and Functions,"
gives an abbreviated description of each Applesoft statement and
function , together with a reference to the chapter, section, or appen­
dix where you can find more detailed information and examples.

Appendix B, "Syntax Definitions," defines terms used in the formal
syntactic definitions of Applesoft statements given in Appendix A. In
the body of the manual , statement syntax is shown by example rather
than by formal definition; most readers can safely avoid the formal
definitions altogether.

How This Manual is Organized xv

xvi

Appendix C, "ASCII Character Codes," contains a complete listing of
the ASCII characters ; it is an adjunct to the comments on ASCII in
chapter 4.

Appendix D, " Reserved Words," is a list of words (some of them
rather odd-looking) that cannot be used in variable names.

Appendix E, "Error Messages," describes the meanings of the error
messages that Applesoft displays on the screen. Each description in­
cludes an explanation of why the error occured ; in some cases , there
are suggestions for debugging.

Appendix F, "Peeks, Pokes, and Calls," deals with low-level access
to features of the Apple lie computer via Applesoft's PEE K function
and PO K E and CAL L statements. There are sections on screen
text, the keyboard , graphics, miscellaneous input and output, and
error handling.

Appendix G, "Hints for Program Efficiency," offers techniques for
cutting down the size of programs and for speeding up program
execution .

Appendix H, " Implementation Details," contains information of inter­
est mainly to the advanced programmer. Included here is a memory
map with a list of pOinters and their descriptions, information on
Applesoft's methods of internal storage allocation, an outline of its
usage of special locations in page 0 of memory, and a list of the
tokens it uses for internal representation of keywords .

Appendix I, "Display Formats for Numbers," describes how Applesoft
displays numbers on the screen and gives the ranges of numbers the
system is capable of handling.

Appendix J, "On-Screen Editing and Cursor Control ," contains tables
summarizing Applesoft's on-screen editing features .

Appendix K, "40/80-Column Differences," is a table showing the dif­
ferences in Applesoft's behavior with and without the optional Apple
lie 80-Column Text Card installed.

Appendix L, "Comparison with Integer BASIC," gives charts showing
the differences between Applesoft and Apple Integer BASIC and
discusses how to convert Integer BASIC and non-Apple-lie BASIC
programs into Applesoft.

About This Manual

•

Appendix M, " If You Have a Cassette Recorder," describes Apple­
soft's statements for using tape cassettes as a storage medium for
programs and information.

Appendix N, "Complete Listing of the Postage Rates Program,"
gives the complete text of the programming example developed in
Chapter 8.

At the back of the manual is a Glossary of technical terms. In general ,
buzz words are no-no's in this manual ; but any technical field has its
own jargon, developed out of necessity to describe concepts genu­
inely having no parallel in common language. The glossary lists all
(we hope!) such words and terms that have found their way into the
manual, and a few others besides.

A tear-out Quick Reference Card, designed to act as a "memory jog,"
gives an extremely brief description of each statement, function , op­
erator, and variable type .

How to Use This Manual
Here are some suggestions on how to use this manual , depending on
the particular goals you are trying to accomplish .

As a Reference

• Look up the feature of interest on the Quick Reference Card ;
each statement, function , operator, and variable type is listed
there in an extremely abbreviated form as a "memory jog."

• Look up the feature in Appendix A, "Summary of Applesoft State­
ments and Functions"; each statement and function is described
briefly, and a reference is given to the chapter, section , or appen­
dix where it is discussed in detail.

• Look up the feature in the index; there you 'll find references to
the places in the manual where it is mentioned.

• Look in the appendices at the back of the manual for quick refer­
ence on specific facts .

How to Use This Manual

To Learn the Applesoft Language

• Read Appendix A, "Summary of Statements and Functions," to
get a quick feel for each of the features in the language.

• Read through each chapter and enter and run the example pro­
grams; then try modifying them to check your understanding and
gain hands-on experience.

• Enter, run, and modify the example program in chapter S.

To Learn Program Planning
• Read through chapter S and experiment with the program devel­

oped there.

• Develop your own programs based on the methods presented in
chapterS.

• Restructure someone else's program using the methods of
chapterS.

• Read Appendix G, "Hints for Program Efficiency," at the back of
the manual.

Conventions Used in This Manual

Throughout this manual you 'll encounter the following conventions:

Warning
Warning boxes contain vital information about potentially dangerous
situations in which you can damage or destroy equipment, programs,
or information.

Grey boxes contain minor details, tricky points, side comments , helpful
hints, historical notes, and other information of secondary importance.

• Screen boxes represent inforMation as it will
appear on the COMPuter's display screen.

Throughout the manual , extensive use has been made of marginal
notes for key points, definitions, and cross-references. After reading
a chapter or section, you can use the marginal notes to review what
you've learned or to refer back to a particular pOint for quick
reference.

About This Manual

New terms being introduced for the first time are set in italics; defini­
tions for most such terms can be found in the marginal notes, the
Glossary, or both.

Numbers (such as memory addresses) preceded by a dollar sign,
such as $ 9 GOO, are expressed in hexadecimal ; numbers without a
dollar sign are generally in decimal, unless otherwise stated.

How to Use This Manual

About This Manual

Genera/Information

3 1.1

4
5
5
5
6
7
7
8 1.2

9
9

10
12
13
14
15 1.3

15
15
16
16
17
17 1.4

18
18
19

Statements and Lines
1.1.1 Immediate Execution
1.1.2 Line Numbers and Deferred Execution
1.1 .3 Adding Lines to a Program
1.1.4 Multiple Statements on the Same Line
1.1 .5 Deleting Lines from a Program: The DEL Command
1.1.6 Changing Lines in a Program
1.1.7 Annotating a Program: The REM Statement
Operations on Whole Programs

1.2.1 The NEW Command
1.2.2 The C LEA R Command
1.2.3 The LIS T Command
1.2.4 The RUN Command
1.2.5 The SA t,J E Command
1.2.6 The LOA D Command
Interrupting and Resuming a Program
1.3.1 Suspending Screen Output
1.3.2 Interrupting Program Execution

CONTROL-C
CONTROL-RESET

1.3.3 Resuming Program Execution: The CON T Command
Editing What You Type
1.4.1 Canceling an Input Line
1.4.2 The Arrow Keys
1.4.3 Escape Mode

General Information

deferred execution: see Section 1 .1 .2

Use I CAPS LOCK I while typing Apple­
soft programs

SO-Column Text Card : see Apple lie
Owner's Manual, Apple lie aD-Column
Text Card Manual

Program lines may be up to 239 charac­
ters long

one or more keywords , special words that Applesoft recognizes as
denoting a particular type of statement.

You can type a program line whenever you see Applesoft's prompt
character, a right bracket (J), displayed on the screen followed by
the cursor. Each line you type must end in a press of the I RETURN I
key (but see Section 1.1.4 about multiple statements per line). De­
pending on what you type, the statements in the line may either be
executed immediately or deferred for later execution as part of a
complete program.

Applesoft understands only uppercase letters. Most programmers
therefore keep the I CAPS L OC K I key down while typing programs.

Notice that a program'line is not the same thing as a line of text on the
screen. If the cursor reaches the end of a screen line while you 're typ­
ing a program line, it will "wrap around" to the beginning of the next
screen line and continue displaying what you type . Although the
screen is only 40 columns wide (or 80 if you 're using the Apple lie 80-
Column Text Card) , a program line may be up to 239 characters long
and ends only when you press the I RETURN I key.

Actually, you can type as many as 255 characters in a program line, but
all characters after 239 will be ignored. If you type more than 255 char­
acters, Applesoft will display a backslash character (\) and cancel the
entire line. It will then redisplay the prompt character (]) followed by the
cursor, and you will have to retype the entire line from the beginning . As
a warning, Applesoft will " beep" the computer's built-in speaker with
every character you type beginning with the 245th in a line.

It's usually a bad idea to type program lines this long. In practice, you
should keep your lines well below 239 characters in length.

1.1.1 Immediate Execution

P R IN T statement: see Section 5.2.2

If you want Applesoft to execute a program line as soon as you type
it, just type the line and press the I RETURN I key. For example, if you
type

PRINT "HELLO"

Applesoft immediately displays the word HE L L Oon the screen, on
the line following what you just typed.

General Information

•

BASIC: Beginner's All-purpose Symbolic
Instruction Code

ANSI: American National Standards
Institute

creating and modifying programs: see
Section 1.1

operations on whole programs: see
Section 1.2

interrupting and resuming: see Sec­
tion 1.3

on-screen editing: see Section 1.4

1.1

program line: the basic unit of an Apple­
soft program

statement: a unit of a program specify­
ing an action for the computer to perform

General Information

Applesoft BASIC is a very extended version (in computer parlance,
a superset) of the BASIC programming language. It includes many
more features than either the original BASIC, developed at Dart­
mouth College in the 1960s, or the standard version of the language,
as defined by the American National Standards Institute (ANSI) . The
extra features allow your programs to use the special capabilities of
the Apple lie, such as color graphics, animation , and hand controls.

This first chapter introduces the Applesoft language and the environ­
ment in which it operates. Here you will find information on how to
create, modify, execute, and store Applesoft programs.

Section 1.1, "Statements and Lines," deals with the fundamental
units of Applesoft programs. It tells how to type Applesoft statements
for immediate execution and how to create and modify programs in
the computer's memory.

Section 1.2, "Operations on Whole Programs," introduces Apple­
soft's commands for displaying a program on the screen, writing it to
an output device such as a printer, executing it, saving it on a disk,
and retrieving it from a disk.

Section 1.3, " Interrupting and Resuming a Program," tells how to
suspend or cancel the execution of a running program and how to re­
sume execution after an interruption.

Section 1.4, " Editing What You Type," briefly describes Applesoft's
facilities for correcting typing errors and editing text on the screen.

Statements and Lines
The basic unit of an Applesoft program is the program line , which
may contain one or more statements specifying actions you want the
computer to perform. Most Applesoft statements are identified by

Statements and Lines 3

1.1 .2 Line Numbers and Deferred Execution

If you want Applesoft to save a program line to be executed later-
line number: a number identifying a line that is , if you want it to defer execution- then precede the line with a
in an Applesoft program line number:

Maximum line number is G 3 9 9 9

program: a sequence of program lines,
each with a different line number

10 PRINT "HELL O" - lO is the line number

Line numbers must be in the range 0 through G 3 9 9 9 . Applesoft
uses the presence or absence of line numbers to determine whether
the line you type is to be carried out immediately or deferred (stored
for execution at some future time) .

A sequence of deferred-execution lines, each preceded by a differ­
ent line number, is an Applesoftprogram. Program lines are stored in
the computer's memory in sequential order, from the lowest-num­
bered line to the highest.

1.1.3 Adding Lines to a Program

Program lines automatically sorted into
proper sequential order

To add a new line to a program, just type the new line preceded by a
line number indicating where in the program you wish to insert it. It
makes no difference in what order you enter program lines; Applesoft
will put them in the proper sequential order for you .

Helpful Hint: Instead of using consecutive line numbers (0, 1, 2, ...),
Leave intervals between line numbers it's usually more convenient to leave intervals of 5 or 10 or 20 between

the line numbers in your program. This makes it easy to insert new lines,
if necessary, in between the old ones.

1.1.4 Multiple Statements on the Same Line

Colons separate multiple statements
Applesoft allows you to put more than one statement on the same
program line. Use a colon (:) to separate the statements:

40 PRINT "COME OUTSIDE"
PLA Y"

PRINT "AN D

You can type as many statements as will fit within the limit of 239
characters per line.

Line Numbers and Deferred Execution 5

Multiple statements make editing more
difficult (although they speed up program
execution)

Although using multiple statements on the same line can speed up the
execution of your program, it can also make program editing difficult and
time-consuming . The example above, for instance, has two statements
on the same line. In order to change the word 0 U T SID E in the first
statement to INS IDE , you would have to retype both statements. But
if each statement were on its own line, you would have to retype only
the one statement you want to change. This may not seem like much
of a time saving ; but when you multiply three or four seconds by the
hundreds of edits you might need to make in developing a typical pro­
gram, the savings can become considerable.

1.1.5 Deleting Lines from a Program:
The DEL Command

DEL 100, 200

DEL deletes lines from the program in The DEL command del~tes (removes) a range of consecutive lines
memory from the program currently in memory. The line numbers of the first

and last lines to be deleted follow the keyword DEL and are sepa­
rated from each other by a comma. All program lines between the two
specified line numbers, inclusive, are deleted from the program. The
example above, for instance, will delete all lines from 100 to 200,
inclusive.

Deleting a single line

6

If either line number is out of the range of lines in the actual program
(for instance, if the command is DEL 1 00, 200 and the highest
existing line number is 150), then all existing lines within the speci­
fied range are deleted. If DE L specifies a range of lines that doesn't
exist, or if the second line number is smaller than the first, the com­
mand has no effect:

DEL 2 0 0, 100 -nothing happens

A single number with a comma also has no effect:

DEL 35, -nadapasa

A single number without a comma is a syntax error:

DEL 3 5 -syntax error

To delete a single line from the program, simply type the number of
that line and press I RE TURN I:

150

General Information

-press the I RETURN 1 key after
you type the line number

Dash not allowed in DEL command

If you 're fond of redundancy, you can also use DEL 15(> , 15 (> to
do the same thing .

Unlike the LIS T command, you cannot use a dash (-) to separate the
line numbers in the DEL command :

L IS T command: see Section 1.2.3

REM is for including explanatory
remarks to a human reader

DEL GO - 10 0 -causes a syntax error

The DEL command is normally used in immediate execution. You can
also use it from within a program, but as soon as it is executed the pro­
gram will stop with no error message:

20 DEL 135, 250 -lines 1 3 5 through 250 re­
moved from program; program
execution halts

1.1.6 Changing Lines in a Program

To alter or replace an existing line of your program, simply type the
new line using the same line number as the existing one. What you
type will replace the old line under the same line number; the old line
will be forgotten .

1.1.7 Annotating a Program: The REM Statement

REM T EST F OR ERROR

One rule of good programming practice is to include comments in
your program, explaining or clarifying to a human reader how the pro­
gram works . Applesoft's REM statement allows you to include such
remarks within the body of your program. It consists of the keyword
REM (for " remark") followed by any explanatory notes you care to in­
clude. For example,

o RE M MON T HLY BUDGET PRO GRAM

Line Numbers and Deferred Execution 7

LIS T command: see Section 1.2.3

RUN command: see Section 1 .2.4

1.2

NEW command: see Section 1.2.1

C LEA R command: see Section 1.2.2

L IST command: see Section 1.2.3

RUN command : see Section 1 .2.4

S AV E command: see Section 1.2.5

LOA D command: see Section 1 .2.6

8

This statement is included in the program strictly for the benefit of the
human reader. When you list the program, the REM statement will
appear just like any other statement. But when you run the program,
Applesoft will ignore the REM statement and just go on to the next
line. Everything following the keyword REM on the same line will be
ignored. See Chapter 8, "Bringing It All Together," for some tips on
the use of the REM statement.

Operations on Whole Programs
This section describes Applesoft's commands for manipulating
whole programs:

• NEW clears the current program from the computer's memory so
you can start typing another.

• C LEA R resets all variables and internal control information to
their initial settings without affecting the Applesoft program in
memory.

• LIS T displays the current program on the screen or writes it to
an output device such as a printer.

• RUN executes the program currently in memory. It can also be
used to load and execute a program stored on a disk.

• SAl) E writes the program currently in memory onto a disk or a
tape cassette for future use.

• LOA 0 reads a program into memory from a disk or a tape cas­
sette for execution.

You can use all of these commands for immediate execution ; you can
use some of them from within your Applesoft programs as well.

Getierallnformation

1.2.1 The N E!AI Command

NEW

NEW clears memory for a new program

variables: see Section 2.1

NEW in deferred execution

hang: for a program to "spin its wheels"
indefinitely, performing no useful work

null string: a string containing no
characters

C LEA R in deferred execution

1.2.2

The NEW command clears the current program from memory, resets
the values of all numeric variables to 0 and those of all string vari­
ables to the null string, and prepares Applesoft to accept a new pro­
gram. If there are no program and no variables in memory, NEW has
no effect.

Although NEW is usually used in immediate execution, you can also
use it in deferred execution (from within a program):

100 IF A$ "RATS" THEN NEW
-N E W in conditional statement

999 NEW -N E W on its own line

Warning
Using NEW in deferred execution can do strange and unpredictable
things to Applesoft's innards, causing subsequently entered programs
to hang. If you use NEW from within a program, it's a good idea to warn
your user to restart the system before typing another program:

100 IF A$ = "RATS" THEN PRINT
"PLEASE RESTART YOUR SYSTEM
BEFORE TYPING A NEW PROGRAM.": NEW

The C LEA R Command
CLEAR

The C LEA R command resets the values of all numeric variables to 0
and those of all string variables to the null string; it also resets Apple­
soft's internal control information to its initial state. It has no effect on
the program lines in memory.

Although C LEA R is usually used in immediate execution, you can
also use it in deferred execution (from within a program) :

100 IF Z$ = "NUTS " THEN CLEAR
-C LEA R in conditional

statement

999 CLEAR -CLEAR on its own line

Operations On Whole Programs 9

subroutines, control stack: see
Section 3.4

F 0 R/N D (T loops: see Section 3.3

Warning
Be careful where you execute C LEA R. Since C LEA R resets Apple­
soft's internal control stack, using it in the midst of a subroutine or in a
F 0 R/N E){ T loop can interfere with the orderly flow of program execu­
tion. The following program, for example, will fail in line 30 with a N E){ T
WITHOUT FOR error:

10 FOR }< 1 TO 10

20 PRINT \,I
1\

30 CLEAR

40 NDa >~

50 PRINT "H I ! "

1.2.3 The LIS T Command

LIST
LIST
LIST
LIST
LIST
LIST
LIST

100
100,
- 200
,200
100, 200
100 - 200

-try to loop 10 times

-C LEA R resets control stack
(among other things)

-program fails here-doesn't .-.J

know it's in a loop

-program won't get this far

LIS T displays or prints a program The LIS T command displays on the screen all or part of the pro- '--'

P R # statement: see Section 5.2.1

Listing the entire program

Listing a portion of the program

gram currently in memory, or writes it to the current output device as
specified in the last P R # statement. (For example, if there is a printer
connected to slot 1 , and if the statement P R # 1 has been executed, --J

then the program listing is sent to the printer.)

To list the entire program , just type the keyword LIS T and press ~

I RETURN I:

LIST

You can list a portion of the program by specifying the first and last
lines you want to list, separated by either a comma or a dash:

LIST 100, 250

LIST 100 - 250

General Information

-display lines 1 00 through
250

-also display lines 1 00
through 250

LIS T in deferred execution

If none of the lines in the specified range are in memory, nothing will
be listed; if the specified range is greater than the actual range of
lines in the program, Applesoft will list the entire program.

If you specify only one line number preceded by a comma or dash, all
lines from the beginning of the program through the specified line will
be listed:

LIST ,100 -display from beginning of pro­
gram through line 1 00

If you specify only one line number followed by a comma or dash, all
lines from the specified line through the end of the program will be
listed:

LIST 100 - -display from line 1 00 through
end of program

If you just specify a single line number, only that line will be listed:

LIST 100 -display line 1 00 only

You cannot list line number 0 by itself. You 'll have to use a form like

LI 8T t1

Warning
Always be sure to type the keyword L I 8 T before the number of the pro­
gram line you want to list; typing a line number not preceded by a key­
word deletes the specified line from the program (see Section 1.1.5,
"Deleting Lines from a Program: The DEL Command").

Although the LIS T command is usually used in immediate execu­
tion, you can also use it from within a program :

150 LIST

235 IF Z

-list entire program

X THEN LISt 10,75
-list lines 10 through 75 if vari­

able Z holds same value as
variable){

L I 8 T statements within a program can be particularly useful in debug­
ging. With them, you can test for various error conditions and display or
print only the section of the program in which the error occurred.

Operations On Whole Programs 11

RUN executes a program

RUN in deferred execution

variables: see Section 2.1

Running a program from a disk

1.2.4 The RUN Command

RUN
RUN 275
RUN MONTHLY BUDGE T

The RUN command instructs Applesoft to execute the program
currently in memory. If no line number is given, execution begins at
the beginning of the program ; if the RUN command includes a line
number, execution begins at the specified line:

RUN

RUN 500

-execute program from
beginning

-execute program from line
5 0 0

If you attempt to run a program from a specified line number (as in RUN
500) and that line doesn't exist, the message

?UNDEF ' D STATEMENT ERROR

will be displayed and program execution will halt.

Although RUN is normally used in immediate execution, you can also
use it from within a program:

150 IF A = 0 THEN RUN

235 RUN GOO

-if value of A is 0 , then execute
program from beginning

-execute program from line
GOO

You can use this technique, for example, to restart a game or to avoid
executing some code with low line numbers.

Warning
Whenever the RUN statement is executed , it resets the values of all nu­
meric variables to 0 and those of all string variables to the null string be­
fore executing the first program line. If you have assigned values to any
variables in immediate execution, those values will be forgotten . This
happens even if there is no program currently in memory.

If your computer is equipped with a disk drive and the Disk Operating
System (DOS) is active, you can use the RUN command to load a
program into memory from a disk file and execute it. To do this, follow
the keyword RUN with the file name under which the program is

General Information

stored on the disk. For example, if the program you want to run is
stored in a file named AW A Y, first make sure the disk containing that
file is in the disk drive, then type

RUN AWAY

and press I RETURN I. Applesoft (and DOS) will do the rest.

If you try to use this form of the RUN command with no disk drive con­
nected to your computer, or without DOS loaded and active, you 'll get a
syntax error.

For more information on disk drives, disks, files , and file names, see
the DOS manual that came with your disk drive. For related Applesoft
commands, see Sections 1.2.5, "The SA'_JE Command," and 1.2.6,
"The LOA 0 Command." For information on using a cassette tape re­
corder in place of a disk drive, see Appendix M, " If You Have a Cassette
Recorder."

1.2.5 The SA I,J E Command
SA I_JE

S A I) E writes a program to a disk or
tape

Saving programs on tape: see Appen­
dixM

I CON T ROL I- I RESET I : see Section 1.3.2

SAVE MONTHL Y B UDGET

On systems equipped with a disk drive , the SA ,_, E command writes
the Applesoft program currently in memory to a file on a disk. The
keyword SA 1_' E is followed by the file name under which the program
is to be written . The copy of the program in memory is not affected in
any way. For example,

SAI,'E MY CH I LD -store current program on disk
underfile name MY CH I LD

Attempting to use this form of the S A V E command with no disk drive
connected to your computer, or without the Disk Operating System
(DOS) loaded and active, will result in a syntax error.

If you issue the SA '_J E command without specifying a file name, Apple­
soft will attempt to write the program in memory onto a tape cassette. If
no cassette recorder is connected, the computer will seem to hang for a
while ; the actual time that will pass before you regain control depends on
the length of the program in memory. You can regain control immediately
by pressing I CONTROL I - IR ESETI .

Operations On Whole Programs

For more information on disk drives, disks, files, and file names, see
the DOS manual that came with your disk drive. For related Applesoft
commands, see Sections 1.2.4, "The RUN Command," and 1.2.6, "The
LOA D Command." For information on using a cassette tape recorder in
place of a disk drive, see Appendix M, " If You Have a Cassette
Recorder."

1.2.6 The LOA D Command
LOAD

LOA D reads a program from a disk
ortape

RUN command: see Section 1.2.4

LOAD MDNTHLY BUDGET

On systems equipped with a disk drive, the LOA D command reads
an Applesoft program from a file on a disk into the computer's mem­
ory for execution or editing. The keyword LOA D is followed by the file
name under which the program is to be found on the disk. For
example,

LOAD THE DICE -load program into memory
from file named THE DICE

LOA D does not execute the program it retrieves; it merely reads a
copy of the program into memory. You can then execute the program,
if you wish, with the RUN command. The copy of the program on the
disk is not affected in any way.

If the disk in the disk drive doesn't contain a file of the specified name,
the error message

FILE NOT FOUND

will be displayed. If there is no disk drive connected to your computer, or
if the Disk Operating System (DOS) isn't loaded and active, you'll get a
syntax error.

If you issue the LOA D command without specifying a file name, Apple-
Loading programs from tape: see soft will attempt to read a program into memory from a tape cassette. If
Appendix M no cassette recorder is connected, or if the tape in the recorder doesn't

contain a program to load, or if the recorder is turned off, the computer
will hang forever looking for a program that isn't there. When you get

I CONTROL I-I RES ET I: see Section 1.3.2 bored waiting, press I CONTROL 1-1 RESET Ito regain control.

14 General Information

1.3

1.3.1

I CON TRO L I-s temporarily suspends
screen output

I CONTRO L I-e: see Section 1.3.2

For more information on disk drives, disks, files, and file names, see the
DOS manual that came with your disk drive. For related Applesoft com­
mands, see Sections 1.2.4, "The RUN Command," and 1.2.5, "The
SAl.' E Command." For information on using a cassette tape recorder in
place of a disk drive, see Appendix M, " If You Have a Cassette
Recorder."

Interrupting and Resuming a Program
If a program starts to run away from you , there are various ways of
interrupting it and regaining control. This section covers Applesoft's
facilities for getting out of problem programming situations, infinite
loops, and the like.

Suspending Screen Output

Quite often the output a program displays, or the listing of the pro­
gram itself, exceeds the number of lines available on the display
screen, causing the output to fly by on the screen too fast for you to
read . In such cases, you can press I CONTROL 1-5 (type the letter 5
while holding down the I CONTROL I key) to suspend the output of text
to the screen temporarily so that you can comfortably read what's
there. I CONTROL 1-5 doesn't permanently discontinue the display of
text; pressing any key, including another I CONT ROL 1-5, causes
screen output to resume. You can then suspend it again with another
I CONTROL 1-5. To discontinue a program or a listing permanently, use
I CONTROL I-C .

Helpful Hint: Ex erienced programmers looking at listings of long pro­
grams keep the CONTROL key continually pressed ; they control the list­
ing by pressing the 5 key whenever they want to suspend or continue it.

1.3.2 Interrupting Program Execution
Applesoft gives you two ways of interrupting the execution of a run­
ning program or canceling a listing. Pressing I CONTROL I-e interrupts
the program in such a way that it is usually possible to resume execu­
tion from the point of the interruption ; I CONTROL I-I RESET I is some­
what more drastic, and often leaves the system in a state from which
the program can't be resumed with a eON T statement.

Interrupting and Resuming a Program

l eo N T R 0 L 1-C cancels execution or
listing of a program

IN PUT statement: see Section 5.1 .2

GET statement: see Section 5.1 .3

ASCII code: see Section 4.2.1 and
AppendixC

I CONTROL H RESET I unconditionally
stops any program or command

Apple lie Monitor program: see Apple
lie Reference Manual

I CONTROL I-e
Pressing I CONTROL I-e (typing the letter e while holding down the
[CONTROL I key) cancels the execution or listing of a program and re­
turns Applesoft to its command level, displaying the prompt character
(]) . You can then resume execution of the program, if you wish, with
the eON T command. To cancel execution of a program that is wait­
ing for a response to an IN PUT statement, [CONTROL I-e must be
the first character typed and must be followed immediately by
I RETURN I·

Interrupting aGE T : I CONTROL I-c will not interrupt a program waiting
for a response to aGE T statement; unlike the IN PUT statement, GET
will assume that [CONTROL I-C is a valid response and will assign the
ASCII code for the character I CONTROL I- c to the specified variable .
To allow a program halted at aGE T statement to be interrupted with
[CONTROL I-C, use this form :

250 GET A $ -wait for user to press a key

260 IF A$ = CHR$(3) THEN STOP

Warning

-if user presses [CONTROL I-C
(ASCII code 3) , then stop

In certain situations, using [CONTROL I-C can disconnect the disk operat­
ing system. See the DOS manual for information on this point.

[CONTROL 1-[RESET I

In most cases you can immediately and unconditionally stop the
execution of any Applesoft program or command by pressing
I CONTROL I- I RESET I (pressing the I RESET I key while holding down
the [CONTROL I key). The program in memory remains intact, but
some of Applesoft's internal "housekeeping" information is changed ;
as a result, it may not be possible to resume execution of the program
with the eON T command.

Controlling [CONTROL 1- [RESETI : Your Apple lie has an advanced soft­
ware feature called a reset vector, which allows you to control what hap­
pens when [CONTROL 1- [RESE TI is pressed. You can use the reset vector
to make the program continue as if nothing had happened, branch to
some other portion of the program, or do whatever you choose. Use of
this technique requires knowledge of the Apple lie's built-in Monitor pro­
gram: see the Apple fie Reference Manual for details.

General Information

•

1.3.3 Resuming Program Execution:

e ON T continues execution after an
interruption

S TOP statement: see Section 3.6.1

END statement: see Section 3.6.2

I CONTROL I·e: see Section 1.3.2

When eON T won't work

IN PUT statement: see Section 5.1.2

Tutorials abound ...

The CON T Command

CONT

The CON T (for "continue") command is used to resume execution of
a program after it has been interrupted by a 5 TOP or END statement
or by pressing I CONTROL I -C . Execution will continue at the first state­
ment after the 5 TOP or END , or at the point in the program where
execution was interrupted by [CONTROL I-C .

CON T won 't work if

• the program has been stopped because of an error

• an error has occurred in immediate execution

• an INPUTstatementhasbeeninterruptedwith [CONTROL I-C

• any program line has been edited since the program stopped
running

However, you can continue the program with CON T after examining
or changing the values of variables, provided you haven't edited any
program lines.

When a program is interrupted with I CONTROL I-I RESET I, CON T mayor
may not be able to continue execution. Let the programmer beware!

Warning
The CO N T command should be used in immediate execution only. If it is
executed from within a program, it will cause the program to hang.

Editing What You Type
1.4 This section gives a very brief description of Applesoft's facilities for

correcting typing mistakes and editing text on the screen. More de­
tailed discussions of these features can be found in the Apple lie
Owner's Manual and the Apple lie Applesoft Tutorial. For hands-on
experience with the various keys and editing features , use the
APPLE PRESENTS ... APPLE training disk.

Editing What You Type 17

1.4.1 Canceling an Input Line

[CONTROL 1->: cancels a line of input [CONTROL I -){ is your "escape hatch." By typing the letter)-(while
holding down the I CON TROL I key, you can change your mind (as long
as you haven't yet pressed the I RET URN I key) and cancel a program
line that you 're entering or editing or a line of input that you 're in the
midst of typing to a program. Applesoft will display a backslash (\) at
the end of the line you were typing , to show that it's ignoring that in­
put, and will redisplay the cursor at the beginning of the next line of
the screen.

• If you were typing a new program line, the whole line is elimi- ..---J

nated and you can start over again .

• If you were retyping a previously entered program line, any
changes you had typed will be canceled.

• If you were typing input to a running program, the line you were
typing is ignored and the program waits for your new response. ----

I CONTROL I-){ does not affect any previous input you've typed or pro­
gram lines already entered.

1.4.2 The Arrow Keys

There are four arrow keys on the Apple lie keyboard :

• The I LEFT - ARROW I key works as a backspace. It moves the cur­
sor one position to the left and "erases" the last character typed
from the keyboard (or recopied with the [RIG HT - ARRO W I key; see
below) . No characters are removed from the screen, but the last
character typed is forgotten, as if it had never been typed .

• The [RI GHT -ARROW I key " recopies" the character under the cur­
sor as if it had been typed from the keyboard , then moves the
cursor one position to the right. Moving the cursor over a charac­
ter with I RIGHT - AR ROW lis exactly the same as typing that char­
acter from the keyboard.

• The I DOWN - AR ROW I moves the cursor down one line without eras­
ing or recopying any characters.

• The I UP-ARROW I key has no effect in Applesoft.

Notice that the I LEFT -AR RO W I key doesn't erase any characters from the
screen ; it just tells Applesoft to "forget" the last character it received . If

pure cursor moves: see Section 1.4.3 any pure cursor moves have been used, the character "erased" may not
even be the one the cursor backs up over.

18 General Information

'"--

'---"

escape mode: see Section 1.4.3

IN PU T statement: see Section 5.1.2

GET statement: see Section 5.1.3

ASCII: see Section 4.2.1 and Appendix C

Table 1-1 ASCII Equivalents of Arrow
Keys

ASCII Keyboard
Key Code Equivalent

[LEFT - ARROW I 8 [CONTROL I-H

[RIGHT - ARROW 21 I CONTROL I-u

I UP-ARROW I 11 I CONTROL I-K
I DOWN - ARRDW I 10 I CONTROL I-J

In escape mode, all four arrow keys function as pure cursor moves,
equivalent to I (up) , J (left) , K (right), and M (down). That is, they
lose their backspace and recopy functions and simply move the cur­
sor one position in the indicated direction, remaining in escape
mode. To cancel escape mode after moving the cursor, press the
I SPA CE I bar.

The Apple lie keyboard's auto-repeat feature is particularly handy for
long cursor moves. If you press and hold down any of the arrow keys, the
cursor will move repeatedly in the indicated direction for as long as you
hold down the key. (Exception: the [UP-ARROW I key doesn't move the
cursor unless you 're in escape mode.)

For Experts Only: The [UP-ARROW land l DOWN-ARROW I keys can be
typed by the user in response to an I N PUT statement in a running Ap­
plesoftprogram. (I LEFT-ARROW l and IRIGHT-ARRowl can't be, because
they're interpreted as backspace and recopy, even in program input; but
any of the four arrow keys can be typed as a response to aG E T state­
ment.) In your own programs, you can make the arrow keys mean just
what you choose them to mean (neither more nor less) by having the
program test the input for each arrow's ASCII value, as shown in Table 1-
1 . The program can then take any action you want on receiving one of
these codes from the user.

("The question is," said Alice, "whether you can make keys mean so
many different things."

"The question is," said Humpty Dumpty, "which is to be master-that's
aiL")

1.4.3 Escape Mode
IESCI alters meanings of some keys Pressing the [ESC I (for "escape") key puts Applesoft into a state

called escape mode, in which certain keys take on special mean­
ings. Some of the keys become pure cursor moves, meaning that
they move the cursor around on the screen without erasing or
recopying characters or affecting Applesoft's input in any way. Others
can be used to clear away all text from all or part of the screen, again
without having any effect on the input received by Applesoft.

Although Applesoft normally doesn't understand lowercase letters, it will
accept them in escape mode. All of the letter keys listed below will have
the same effect whether they are typed in upper- or lowercase.

Editing What You Type 19

Figure 1-1 Single Cursor Moves

A, B, C, D move cursor one position

C

Figure 1-2 Long-range Cursor Moves

I , J, K, M are for long-range moves

M

Arrows also work for long-range moves

E, F, @ clear all or part of the screen

text window: see Section 5.2.4

20

In escape mode, the following characters move the cursor one posi­
tion in the stated direction and then leave escape mode. To continue
moving the cursor, you have to press the [Iill key again. The func­
tions of these keys are illustrated in Figure 1-1.

• A moves the cursor one position to the right.

• B moves the cursor one position to the left.

• C moves the cursor down one line.

• D moves the cursor up one line.

The following characters move the cursor one position in the stated
direction and remain in escape mode. You can then continue moving
the cursor without pressing the [Iill key again . These keys are
especially useful for long-range cursor moves. The functions of these
keys are illustrated in Figure 1-2.

• I moves the cursor up one line.

• J moves the cursor one position to the left.

• K moves the cursor one position to the right.

• M moves the cursor down one line.

Notice that the I , J , K, and M keys form a diamond shape on the key­
board, representing the directions in which these keys move the cursor
(I up, J left, K right, M down).

The four arrow keys function in escape mode exactly the same as I , J ,
K, and M. That is, they move the cursor one position in the indicated di­
rection and remain in escape mode.

The Apple lie keyboard's auto-repeat feature is particularly handy for
long cursor moves. If you press and hold down I , J, K, M, or any of the
arrow keys while in escape mode, the cursor will move repeatedly in the
indicated direction for as long as you hold down the key.

In escape mode, the following keys clear away all text from all or part
of the display screen and then leave escape mode:

• E clears from the current cursor position to the end of the line.

• F clears from the current cursor position to the end of the text
window.

• @ clears the entire text window and moves the cursor to the top­
left corner.

General Information

Leaving escape mode

Table 1-2 Escape-Mode Functions

The special functions of all keys in escape mode are summarized in
Table 1-2. To leave escape mode, press any key except one of those
listed in the table.

To avoid inadvertently pressing a key that has a special meaning, it's
safest always to use the I SPACE I bar to leave escape mode.

Key Function

A Moves cursor right one position ; leaves escape mode

6 Moves cursor left one position ; leaves escape mode

C Moves cursor down one line; leaves escape mode

D Moves cursor up one line; leaves escape mode

Moves cursor up one line; remains in escape mode

J Moves cursor left one position ; remains in escape mode

K Moves cursor right one position ; remains in escape mode

M Moves cursor down one line; remains in escape mode

I LEFT - ARROW I Moves cursor left one position ; remains in escape mode

[RIGHT -ARROW I Moves cursor right one position ; remains in escape mode

[UP - ARROW I Moves cursor up one line; remains in escape mode

I DOWN-ARROW I Moves cursor down one line; remains in escape mode

E Clears from cursor to end of line; leaves escape mode

F Clears from cursor to end of text window; leaves escape mode

@ Clears entire text window; moves cursor to top-left corner; leaves
escape mode

Editing What You Type

22 General Information

-
\

L-

Variables and Arithmetic

"-----

25 2.1 Variables
26

'---
2.1.1 Variable Names

27 2.1.2 Real Variables
27 2.1.3 Integer Variables

'----
28 2.1.4 Stri ng Variables
29 2.1.5 Arrays: Collections of Variables
30 2.2 Assigning Values to Variables: The Assignment Statement
31 2.3 Expressions

~

31 2.3.1 Arithmetic Operators
33 2.3.2 Relational Operators

'--
35 2.3.3 Logical Operators
36 2.3.4 Precedence of Operators
37 2.4 Functions
38 2.4.1 Built-in Arithmetic Functions
38 The A B S Function
39 The S G N Function
39

~
The I NT Function

40 The S Q R Function
40 The SIN Function
40 The COS Function

I-.-.
41 The TAN Function
41 The AT N Function
42

~
The E >-(P Function

42 The LOG Function
42 2.4.2 Generating Random Numbers: The RND Function
44 2.4.3 Defining Your Own Functions: The 0 E F FN

"--
Statement

L..-.

Variables and Arithmetic

--

--

variables: see Section 2.1

assignment statement: see Section 2.2

expressions, precedence rules: see
Section 2.3

functions : see Section 2.4

2.1

variable : a symbol representing a loca­
tion in the computer's memory where a
value can be stored

Variable types

real variables: see Section 2.1 .2

Variables and Arithmetic

This chapter deals with variables and arithmetic in Applesoft. These
concepts are fundamental to Applesoft programming and wi ll appear
again and again throughout this manual.

Section 2.1 , "Variables," discusses how to define and use variables,
the various types of variable available in Applesoft , and the rules for
naming them.

Section 2.2, "Assigning Values to Variables : The Assignment State­
ment," deals with one of Applesoft's most basic types of statement,
the assignment statement.

Section 2.3, " Expressions," discusses arithmetic operators and
expressions and the rules of precedence that govern them.

Section 2.4, " Functions," covers Applesoft's built-in arithmetic func­
tions and tells how you can define your own functions.

Variables
A variable is a symbol representing a location in the computer's
memory where a value can be stored. The first time your program as­
signs a value to a particular variable, Applesoft automatically allo­
cates a memory location or locations for that variable and stores the
specified value at that location. Thereafter, whenever your program
uses that particular variable name, Applesoft will take the name to
refer to the value stored at the corresponding location. For instance,
if the variable P I refers to a memory location where the value
3 • 1 a 1 59 is stored, then the statement P R I NT P I will display
the value 3 • 1 a 1 59 on the screen.

Applesoft has three types of variable :

• Real variables can contain either whole numbers or numbers
containing decimal fractions.

Variables 25

integer variables: see Section 2.1.3

string variables: see Section 2.1.4

• Integer variables can contain whole numbers only.

• String variables can contain strings of text characters such as
words or names.

In addition , Applesoft allows you to define collections of variables,
arrays: see Section 2.1.5 called arrays, of any of the types listed above.

Reals save time; integers save space Programming Tip: Applesoft converts all integer values to real form be­
fore performing arithmetic on them. Because this conversion takes time,
integer arithmetic is considerably slower than arithmetic on real quan­
tities. However, integers take up less space in the computer's memory
than real numbers. In relatively small programs in which space is not a
concern , you can speed up your program by using real variables instead

subroutines: see Section 3.4 of integers wherever possible, especially in subroutines, loops, and
other sections of code that are executed many times. In large programs

loops: see Section 3.3 where space is critical , you can save space at the expense of time by
using integers instead of reals , particularly in arrays containing many
elements. See Appendix G, "Hints for Program Efficiency," for further
suggestions on how to save space and time in your programs.

2.1.1 Variable Names

Rules for variable names The name of a variable must begin with a letter of the alphabet, which
may be followed by one or more letters and/or digits. In addition , the
names of all integer variables must end with a percent character (,X.)
and those of string variables must end with a dollar sign ($). The var­
ious variable types and the rules for naming them are summarized in
Table 2-1.

Table 2-1 Variable Types
Simple Array

Type Symbol Examples Examples

Real (none) K AGE (CHIL D)

PRIC E T A}< (ITEM)

Nl Nl (J'X, I 3)

Integer 'X, J t.: YEAR t.: (N)

G5 'X, BOOn (COUN T)

N 1 'X, N 1 'X, (J 'X. I 3)

String $ A$ SHOP$ (5)

SA M$ DA Y$ (WEE K)

Nl$ Nl$ (J 'X, I 3)

26 Variables and Arithmetic

Don't begin variable names of the same
type with the same first two characters

Reserved words illegal in variable
names

A variable name can be up to 239 characters long, but Applesoft uses
only the first two characters to distinguish one variable from another
of the same type. All characters beyond the first two in a name are ig­
nored, so long as they don't include a reserved word (see below).

Take care not to begin the names of different variables of the same type
with the same two characters. Applesoft will consider the names SUM
and SUNSTROK E, for example, to refer to the same variable, since
they both begin with the same two characters.

Notice that the restriction above applies only to variables of the same
type. The names T A){, T A>(,X" and T A){ $ refer to three different
variables , even though they all begin with the same two characters , be­
cause they are of different types (real , integer, and string). However,
names of the same type that begin with the same two characters- such
as T A){ and T A >: A B L E, T HIS 'X, and T H I N 'X, or 0 T T E R $
and 0 THE R $ -refer to the same variable.

Reserved Words: Certain words used in Applesoft are reserved for
special uses in specific commands ; you can't use these words as vari­
able names or as parts of variable names (even beyond the first two
characters) . For instance, TOTAL or SUB TOTAL would be illegal as
variable names, because they both contain the reserved word TO . See
Appendix D, " Reserved Words," for a list of Applesoft 's reserved words.

2.1.2 Real Variables

Range of real values

Real variable names consist of letters
and digits only

A real variable can hold any numeric value, with or without a
decimal point, between - 9.9999 9 999 E + 37 and
+ 9. 99999999E + 37 (where "E + 37" means "times 10
to the + 37th power"). Applesoft represents real numbers to
32 bits (about 9 digits) of precision.

The name of a real variable must consist of letters and digits only.
Some legal real variable names are

SAM
TA){
Q7
SUMOFALLNUMBERS

Real variables preset to 0 Until they are given some other value with an assignment statement,
all real variables are preset to the value O.

2.1 .3 Integer Variables
Integer variables can hold only whole-number values between
- 327 G 7 and + 327 G 7 . The name of an integer variable must

Variables 27

Integer variable names end with 'X. end with the percent character ('X,). Some legal integer variable names
are

SHAREI..
DS 'X,
T M(I.,

Integer variables preset to 0 Until they are given some other value with an assignment statement,
all integer variables are preset to the value o.

Real values assigned to integer variables If a number containing a decimal fraction is assigned as the value of
are truncated, not rounded an integer variable, it is truncated to the next lowest whole number­

not rounded to the nearest whole number:

2.1.4

string: a sequence of text characters ;
see Section 4.2

String constants enclosed in double
quotation marks

null string: a string containing no
characters

28

LET AI., 32.678

LET B'X. - 34.2

String Variables

-value 32 assigned to variable
A I.,

-value - 3 S assigned to vari­
able B I.,

A string is a sequence of text characters (letters, digits, and punctua­
tion marks). Just as you can write numeric constants such as 27 and
2 • 236 in your Applesoft programs, you can write string constants
by enclosing the characters in the desired string between double
quotation marks:

" NDT WI TH A BANG BUT A WHIMPER"
"George Bernard ShalAI"
"H234J7"
"$7*! !I.,"

Even though Applesoft doesn't understand lowercase letters when you
use them in keywords, it will allow you to use them in a string constant,
as the second example above shows.

A string can contain from 0 to 255 characters; when it contains no
characters it is called a null string. Two quotation marks with nothing
between them denote the null string:

II II -a string with no characters

Variables and Arithmetic

~

String variable names end with $

String variables preset to null string

2.1.5

array: a collection of variables referred to
by the same name and distinguished by
means of numeric subscripts

A string variable can hold any string as its value. Its name must end
with a dollar sign ($) . Some legal string variable names are

NAME$
59$
J$

Until they are given some other value with an assignment statement,
all string variables are preset to the null string.

Arrays: Collections of Variables

An array is a collection of variables referred to by the same name,
usually holding a collection of data items that are related to each
other in some logical or systematic way. The individual variables in
the array are called its elements, and are distinguished from one an­
other by means of identifying index numbers called subscripts.

simple variable: a variable that is not an An array can be of any type : integer, real , or string. Array names fol-
element of an array low the same rules as simple variable names of the same type. To re­

fer to a particular element of an array, write the array name followed
by one or more subscripts, separated by commas and enclosed in
parentheses. The subscripts refer to the position of the desired ele­
ment within the array:

Figure 2-1 A Typical Array

Array R

R (0) --> 5 3

R (1) --> 27.35

R (2) --> 31.4

R (3) --> G

R (4) --> 19

+- R (5)

+- R (5 + 2)

Q (8)

FIGURE'X, (N)

NAME$ (J - 3)

COUNT (SUM'X" 2)

-element 8 of real array Q

-element N of integer array
F I GURE'X,

-element J - 3 of string ar­
ray NAME$

-element (5 U M 'X" 2) of real
array COUNT

Figure 2-1 shows a real array named R with five elements, numbered
o to L1 . Element R (0) (pronounced "R-sub-zero") holds the value
5 3, R (1) holds 27.35, and so on. If the value of variable 5 is 2 ,
then the expression R (5) refers to element R (2) , whose value is
3 1 • L1 , and the expression R (5 + 2) refers to element R (LI) ,
which holds the value 1 9 .

For a fuller discussion of arrays and their use, see Section 4.1 ,
"Arrays."

Variables 29

Assigning Values to Variables: The
2.2 Assignment Statement

LET PI 3. 14158285
COUNT'X. = 0

Before Applesoft begins executing a program, it sets the values of all
Assignment statement assigns a new real and integer variables to 0 and the values of all string variables to
value to a variable the null string (that is, a string containing no characters) . The pro­

gram can then change the value of any variable at any time by exe­
cuting an assignment statement.

NEW command: se~ Section 1 .2.1

C LE A R command: see Section 1.2.2

RUN command: see Section 1.2.4

Keyword LET is optional

The NEW . C LEA R • and RUN commands also reset all real and integer
variables to 0 and all string variables to the null string.

An assignment statement consists of the optional keyword LET. fol­
lowed by the name of the variable whose value is to be changed , an
equal sign (=). and an expression denoting the new value to be as­
signed to that variable. The equal sign means " receives the value" or
" is assigned the value" ; it is often read simply as "gets" (")-(gets Y
plus 2 "). The assignment statement means "evaluate the expression
to the right of the equal sign and assign the resulting value to the vari­
able named to the left of the equal sign." The variable will then con­
tinue to hold that value until it is changed by another assignment
statem'ent or is reset by aN E W. C LEA R, or RUN command. For
example,

LET Q 27 .4

LET 03 J

COUNTI.. A + B

581.. = 35

NAME$ "SAM "

Variables and Arithmetic

-assign value 27 • 4 to real
variable Q

-assign current value of real
variable J to real variable 0 3 ;
variable J unchanged

-assign current value of real
variable A plus current value
of real variable B to integer
variable CO U N T I.. ; variables A
and B unchanged

-assign value 35 to integer
variable 58'1.'.

-assign string value " 5 AM" to
string variable N A M E $

2.3

arithmetic operators: see Section 2.3.1

relational operators: see Section 2.3.2

logical operators: see Section 2.3.3

Arithmetic operators combine nu­
meric values to produce numeric
results

2.3.1

NAME$ SAM$

Bo)«5) = 36

J'X, A'X,(N)

-assign current value of string
variable SAM $ to string vari­
able N A M E $; variable SAM $
unchanged

-assign value 36 to element 5
of real array B 0)-(

-assign current value of ele­
ment N of integer array A 'X, to in­
teger variable J 'X,; array A 'X, and
variable N unchanged

SHOP$(N) II BAK ERY II -assign value II BAK ERY II to
element N of string array
SHOP$

The keyword LET is optional in assignment statements. The statements

LET Q = 27.4

and

Q = 27.4

mean exactly the same thing.

Expressions
An expression is a formula describing a calculation for the computer
to perform. It may involve any number of numeric variables and con­
stants, together with operators specifying how the values of the vari­
ables and constants are to be combined . There are three kinds of
operator that can be used in an Applesoft expression :

• Arithmetic operators combine two numeric values and produce a
numeric result.

• Relational operators compare two values and produce a logical
(true-or-false) result.

• Logical operators combine two logical values and produce a logi­
cal result.

Table 2-2 summarizes the various operators available in Applesoft.

Arithmetic Operators

Arithmetic operators combine two numeric values to produce a nu­
meric result. There are five of them in Applesoft, corresponding to the

Expressions 31

Table 2-2 Operators

Arithmetic Operators

+

* /

addition
subtraction
multiplication
division
exponentiation

Relational Operators

equal to
< less than
> greater than
< = less than or equal to
= <
> = greater than or equal to
= >
<>
><

not equal to

Logical Operators

AND both true
DR either or both true
NO T is false

32

familiar operations of arithmetic: + (aqdition), - (subtraction), *
(multiplication), I (division), and .'. (exponentiation). Here are some
examples of their use:

3 + a
+laa
)< + Y

23.7 - 11. a

50 - 75

-1 aa

SUM·X . .

13 * 5

6 * .25

2

25 * QUARTERS'X.

a.8 * COUNT(5)

18 / 6

6 / 18

OIST / TIME

OOLLARS·X. / 100

2 3

3 .5

J 'X.

-3 plus a, yielding 7

-plus 1 a a (a positive number)

-the value of)< plus the value
of Y

-23.7 minus 11 • a, yielding
12.3

-50 minus 75 , yielding - 25

-minus 1 a a (a negative
number)

-the value of SUM 'X. minus 2

-1 3 times 5, yielding 65

-6 times. 25 , yielding 1 .5

- 25 times the value of
QUARTERS'X.

-a . 8 times the value of ele­
ment 5 of array CO U N T

-18 divided by 6, yielding 3

-6 divided by 18, yielding
.333333333

-the value of 0 1ST divided by
the value of TIM E

-the value of DOL L A R S 'X.
divided by 1 00

- 2 to the 3 rd power, yielding 8

-3 to the. 5 power, yielding
1.73205081

-the value of)(raised to the
power of the value of J ·X.

Like most other computer languages, Applesoft uses an asterisk (*) in­
stead of the letter)(to represent multiplication.

Variables and Arithmetic

-

-

What to Do with Fractions: Applesoft doesn't treat fractional numbers
in the way that you are probably used to dealing with them. Most people
would read the expression 3 3/4 as "three and three quarters." To
Applesoft, however, the same expression would mean "thirty-three di­
vided by four." (Applesoft ignores any spaces it finds in a number.)

It's easy to convert fractions to a form Applesoft will understand cor­
rectly. Just think of 3 3/4 as "three plus three divided by four". In
other words, instead of typing

LET A = 3 3/4

type this instead:

LET A = 3 + 3/4

Applesoft will do the rest.

2.3.2 Relational Operators

Relational operators compare values A relational operator tests for a relation between two values and pro-
and produce logical results duces a logical (true-or-false) result, depending on whether the par­

ticular relation does or doesn't hold between those two values. For
example, the expression

1 stands for true

(I stands for false

A > B

means " the value of variable A is greater than that of variable B." If
the current value of variable A is 5 and that of B is 3 , then the relation
is true; if the value of B is 8 , the relation is false .

Relational operators are particularly useful in connection with the
IF ... THEN statement, discussed in Section 3.2.2.

The Truth about Applesoft: Applesoft actually uses numeric values to
represent the logical values true and false : if the stated relation is true,
the value of the relational expression is 1 ; if the relation is false, the
value of the expression is O. For example, if you type the statement

PRINT G > 12

in immediate execution , Applesoft will respond by displaying the number
0 , meaning "false"; if you type

PRINT 12 > G

Applesoft will display the number 1, meaning "true."

Expressions 33

= means equal to

< means less than

> means greater than

< = or = < means less than or equal to

> = or = > means greater than or
equal to

Applesoft has six relational operators (some of which can be written
in more than one way): = (equal to), < (less than) , > (greater than) ,
< = or = < (less than or equal to), > = or = > (greater than or
equal to), and <> or >< (not equal to) . Here are some examples of
their use:

6 6 -6 equals 6, yielding 1 fortrue

6 12 -6 equals 12, yielding 0 for
false

)-{ = 2 -the value of)(is equal to 2

NAME$ "Ann" -the value of N A M E $ is equal
to the string " A n n "

6 < 6 -6 is less than 6 , yielding 0 for
false

6 < 12 - 6 is less than 1 2, yielding 1
for true

PROBABILITY < .5 -the value of PROBAB I L I TY
is less than • 5

6 > 6 -6 is greater than 6 , yielding 0
for false

6 > 12 - 6 is greater than 1 2, yielding
o for false

AGE > 65 -the value of AGE is greater
than 65

6 < = 6 -6 is less than or equal to 6,
6 =< r 6 yielding 1 for true

6 < = 12 - 6 is less than or equal to 1 2,
6 = < 12 yielding 1 for true

A 'X, < = 3 * B'X, -the value of A /" is less than or
A 'X, = < 3 * B'X, equal to 3 times the value of B 'X,

6 >= 6 - 6 is greater than or equal to 6,
6 = > 6 yielding 1 for true

6 > = 12 -6 is greater than or equal to
6 = > 12 1 2, yielding 0 for false

SALARY > = 20000 -the value of SALARY is
SALARY = > 20000 greater than or equal to

20000

Variables and Arithmetic

-

-..J

< > or > < means not equal to G <> G -G is not equal to G, yielding 0
G >< G for false

G <> 12 -G is not equal to 12, yielding
G >< 12 1 for true

)-(<> \I -the value of}(is not equal to I

v >< \I the value of Y 1\ I

BANG$ >< "WHIMPER" -the value of BANG$ is
BANG$ <> "WHIMPER" not equal to the string

"WHIMPER"

2.3.3 Logical Operators

Logical operators combine logical val- A logical operator combines two logical (true-or-false) values and
ues to produce logical results produces a logical result. There are three logical operators in Apple-

AND yields true if both original expres­
sions are true

OR yields true if either or both of the
original expressions are true

soft: AND, DR, and NOT . Here are some examples of their use:

G < = 12 AND G > = 12

.25 < = RAND R < .75

G < = 12 OR G > = 12

-G is less than or equal to 1 2
and G is greater than or equal
to 1 2; value is 0 for false

- • 25 is less than or equal to
the value of R and the value of
R is less than • 7 5

-G is less than or equal to 12
or G is greater than or equal t9
1 2; value is 1 for true

ANIMAL$ "D OG" OR ANIMAL$ = "CAT"
-the value of A N I MAL $ is

equal to the string "D 0 G " or
the string " CAT"

NOT yields true if the original expression NOT (G < = 1 2) -G is not less than or equal to
1 2; value is 0 for false is false

NOT (YEAR% > 1850) -the value of YEA R 'X, is not
greater than 1 850

Notice that the 0 R operator doesn't correspond exactly to the way we
often use the word "or" in everyday speech. When we say "A or B is
true," we usually mean that exactly one of the two statements is true, but
not both. The Applesoft 0 R operator produces a "true" value if either or
both of the original expressions are true.

Expressions 35

o means false

Any nonzero value means true

Table 2-3 Precedence of Operators

36

More Truth about Applesoft: Applesoft's logical operators consider a
numerical value of 0 to mean "false"; any numerical value other than 0
is taken to mean "true." The logical operators always yield a value of 1
for true or 0 for false .

Logical operators are particularly useful in connection with the
IF ... THE N statement, discussed in Section 3.2.2.

2.3.4 Precedence of Operators
Operators in Applesoft have an order of precedence that determines
which operations are carried out first when they are combined in an
expression . Table 2-3 lists the operators in descending order of prec­
edence. Operators shown higher in the list are carried out before
those lower down. Operators on the same line of the list have the
same precedence, and are carried out from left to right within an
expression .

Parentheses (innermost first) ()

Signed arithmetic and logical NOT + - NOT

Exponentiation (powers of
numbers)

Multiplication and division

Addition and subtraction

Relational operators

Logical AND

Logical OR

* /
+ -

AND

OR

< > < = = < >= => <> ><

Notice in Table 2-3 that the operators + and - have higher precedence
when used to represent the sign of a single number (as in + 144 or
- >() than when they stand for the addition or subtraction of two
numbers.

To understand how Applesoft's precedence rules work, consider the
expression

-2 * Z 3 + Q/S - A*B

When Applesoft evaluates this expression , it begins by applying the
first minus sign to the constant 2 , obtaining a result of - 2. Next it
raises the value of Z to the 3rd power and multiplies the result by
- 2 . Then it divides the value of Q by S and adds the result to that of
the previous calculation . Finally, it multiplies the values of A and B
and subtracts that result from the previous one.

Variables and Arithmetic

Parentheses change order of
evaluation

2.4

function: a preprogrammed calculation
that can be carried out on request

For example, suppose the current values of the variables in the
expression above are as follows: Z = 2 , Q = 10, A = 7, B = 4 .
Then

2 -2
Z 3 2 ...

3 8
-2 * 8 -1 6
Q / 5 1 0 / 5 2
- 16 + '7 -1 4 "-

A * B 7 * 4 28
-14 - 28 - 42

The value of the expression is - 42.

Parentheses can be used to change the normal order of precedence.
For example:

-2 * Z .'. (3 + Q) / 5 - A * B

-2 * Z

-2 * Z

-value is - 3304.8 ;
(3 + Q) evaluated as a
unit

3 + (Q / 5 - A) * B
-value is - 36 ;

(Q / 5 A) evaluated
as a unit

3 + Q / (5 - A * B)
-value is - 16. 4347826;

(Q / (5 - A * B))
evaluated as a unit

The original expression above is equivalent to the fully parenthesized
expression

(((-2) / (Z .'. 3)) + (Q / 5)) (A * B)

Helpful Hint: When you're unsure of the order of precedence, use pa­
rentheses to make sure the expression is evaluated in the order you
intend.

Functions
Functions are preprogrammed calculations that can be carried out
on request. You can use them whenever you need to perform the
same calculation repeatedly throughout a program. Whenever you
call a function (request its execution) , you must give it a particular
value to operate on ; this value is called the argument of the function .

Functions 37

Applesoft offers a variety of built-in functions, discussed in Section
2.4.1, for calculating common mathematical values such as loga­
rithms, cosines, and square roots. Section 2.4.2 covers the built-in
function R N D, used for generating random numbers. In addition , you
can define your own functions for the special needs of a particular
program-see Section 2.4.3 for details.

2.4.1 Built-in Arithmetic Functions

This section discusses the various bui lt-in functions that Applesoft
provides for calculating commonly used mathematical quantities. To

Calling built-in functions call a built-in function , just type the name of the function followed by
an expression in parentheses representing the argument value on
which you want the function to operate. For example, suppose you
need to calculate the square root of a number. Applesoft has a built-in
function named S Q R for this purpose; to find the square root of 3,
write

A B 5 computes the absolute value

SQR (3)

To find the square root of the value of variable){ plus 2 , write

SQR O{+2)

The A B S Function

The built-in function A B S computes the absolute value of a num­
ber-that is, the positive numerical value of the number, without re­
gard to its original sign. For example,

ABS (27)

ABS (- 2 7)

ABS (38.8 2 3. 3)

ABS (23.3 - 38.8)

ABS (C 'X, (9»

Variables and Arithmetic

-absolute value of 27 ; yields
27

-absolute value of - 27 ; yields
27

-absolute value of 38 • 8
minus 2 3.3 ; yields 13 . 5

-absolute value of 23 • 3
minus 38.8 ; yields 13 . 5

-absolute value of element 9 of
array C'X,

S G N computes the sign of a number

I NT computes the integer part of a
number

integer: a whole number

The 5 G N Function

The 5 G N function determines whether the value of its argument is
positive, negative, or zero. It yields a result of 1 if the argument value
is positive (greater than 0), - 1 if the argument value is negative
(less than 0), and 0 if the argument value is O. For example,

SGN (27)

SGN (- 27)

SGN (3G.8 23.3)

SGN (23.3 - 3G.8)

SGN (9 *" 5 - 45)

SGN (SUM 20)

The I NT Function

-sign of 27; yields 1 (positive)

-sign of - 27; yields - 1
(negative)

-sign of 3G. 8 minus 23.3;
yields 1 (positive)

-sign of 23.3 minus 3G • 8 ;
yields - 1 (negative)

-sign of 9 times 5 minus 45 ;
yields 0

-sign of SUM minus 20

IN T yields the integer (whole-number) part of its argument value,
with the fractional part (if any) discarded. Note that this function
makes no attempt at rounding: that is, if the argument value is not an
integer, IN T yields the next lowest integer, not necessarily the near­
est integer. For example,

INT (27) -integer part of 27 ; yields 27

INT (3G.8) -integer part of 3 G • 8; yields
3G

INT (-7 .9) -integer part of - 7 • 9; yields
-8

INT (-G2.1) -integer part of - G 2 • 1 ; yields
- 63

INT (5 *" PRICE) -integer part of 5 times
PRICE

Rounding a Number: To round a numeric value to the nearest integer,
first add • 5 and then apply the I NT function to the result. For example,
to find the nearest integer to the current value of variable AGE, use the
expression

I NT (AGE + .5)

Functions

S Q R computes the square root

Square root of a negative number is an
error

SIN computes the sine

Arguments to trig functions must be in
radians, not degrees

COS computes the cosine

40

The S Q R Function

The S Q R function computes the positive square root of its argument.
For example,

SQR (169)

SQR (163.84)

SQR (3)

SQR ()C'2 + 9)

-square root of 1 69; yields 1 3

-square root of 163.84;
yields 12.8

-square root of 3; yields
1.73205081

-square root of){ squared plus
9

If you try to take the square root of a negative number, an ILL EGA L
QUANT I TY errorwill occur.

The SIN Function

SIN computes the trigonometric sine of its argument. The argument
must be expressed in radians. For example, assuming the value of
the variable P I is 3 • 1 4 1 59265 ,

SIN (PI / 3) -sine of P I / 3 radians;
yields.866 025 4 03

SIN (1) -sine of 1 radian ; yields
.841470985

SIN (" ... "
1\ L - Y "'2) -sine of){ squared minus Y

squared

The argument you supply to the SIN function must be expressed in ra­
dians, not degrees. (There are 21T radians in a circle ; one radian is equal
to approximately 57.2957795 degrees.) For a formula you can use to
convert from degrees to radians, see Section 2.4.3, "Defining Your Own
Functions : The 0 E F F N Statement." .

The COS Function

COS computes the trigonometric cosine of its argument. The argu­
ment must be expressed in radians. For example, assuming the
value of the variable P I is 3 • 1 4 1 59265,

COS (P I / 3)

COS (1)

Variables and Arithmetic

-cosine of P I / 3 radians ;
yields.5

-cosine of 1 radian ; yields
.5L!03 02 306

Arguments to trig functions must be in
radians, not degrees

TAN computes the tangent

Arguments to trig functions must be in
radians, not degrees

AT N computes the arc tangent

Result of AT N function is in radians, not
degrees

COS ()C z - y "'Z) -cosine of)(squared minus Y
squared

The argument you supply to the COS function must be expressed in ra­
dians, not degrees. (There are 2'lT radians in a circle; one radian is equal
to approximately 57.2957795 degrees.) For a formula you can use to
convert from degrees to radians, see Section 2.4.3, "Defining Your Own
Functions: The DEF FN Statement."

The TAN Function

TAN computes the trigonometric tangent of its argument. The argu­
ment must be expressed in radians. For example, assuming the
value of the variable P I is 3.14 158265 ,

T AN (PI / 3) -tangent of P I / 3 radians ;
yields 1 .7320508

TAN (1) -tangent of 1 radian ; yields
1.55740772

TAN (v "' ...,
1\ .:... - Y"'2) -tangent of)< squared minus Y

squared

The argument you supply to the TAN function must be expressed in ra­
dians, not degrees. (There are 2'lT radians in a circle; one radian is equal
to approximately 57.2957795 degrees.) For a formula you can use to
convert from degrees to radians, see Section 2.4.3, "Defining Your Own
Functions: The DEF FN Statement."

The AT N Function

AT N computes the trigonometric arc tangent (inverse tangent) of its
argument: that is, the angle whose tangent is equal to the given
value. The result is expressed in radians. For example,

ATN (SQR(3»

ATN (1)

ATN ()C' 2 - Y "' 2)

-arc tangent of the square root
of 3; yields 1 • 0 4 7 1 8 7 5 5
(= PI / 3) radians

-arc tangent of 1 ; yields
.785388163 radians

-arc tangent of >(squared
minus Y squared

The result produced by the AT N function is expressed in radians, not
degrees. (There are 2'lT radians in a circle; one radian is equal to approx­
imately 57.2957795 degrees.) For a formula you can use to convert from
radians to degrees, see Section 2.4.3, "Defining Your Own Functions:
The 0 E F F N Statement."

Functions

E >: P computes the exponential

E >< P accurate to six places

The E){ P Function

The E){ P function computes the mathematical exponential of its ar­
gument. The exponential is defined as the constant e raised to the
power of the argument, where e = 2.718281828. For example,

E>{ P (3) -e to the 3rd power; yields
20.0855368

D(P (LOG(10)) -e to the power of the natural
logarithm of 1 0 ; yields 1 0

D(P (A * T) -e to the power A * T

Limited Accuracy: Although Applesoft will display the result of the
E){ P function to nine places, only the first six are actually reliable . For
instance, in the first example above, the computed result of
20 • 0855369 should be interpreted simply as 20.0855.

The LOG Function

LOG computes the natural logarithm LOG computes the natural logarithm of its argument (the logarithm to
the base e, where e = 2.718281828.) For example,

LOG (10)

LOG (E>{P(3))

LOG (SIN<THETA))

-natural logarithm of 1 0; yields
2.3 0258508

-natural logarithm of e to the
3rd power; yields 3

-natural logarithm of the sine of
THETA

Logarithm of a nonpositive number is an If you try to take the logarithm of a zero or negative number, an
error ILL EGAL QUANT I TY error will occur.

2.4.2 Generating Random Numbers: The R N D
Function

R N D generates random numbers The built-in function R N 0 produces random decimal numbers be­
tween 0 and 1. The behavior of this function depends on whether the
argument you give it is positive, zero, or negative.

The simplest way to use R N 0 is to give it a positive argument. R N 0
will produce a different random number each time you call it with a

Variables and Arithmetic

Positive argument produces a different
random number each time

Zero argument repeats same result as
previous call

Negative argument starts new, repeat­
able sequence

seed: the value used to begin a
sequence of random numbers

positive argument. The actual numeric value of the argument is ig­
nored; only its sign is significant:

RND (1)
RND (1)
RND (88)

-yields.43144848G
-yields.7358GG024
-yields.345445325

If you give R N 0 a zero argument, it will reproduce the same result as
at the previous call:

RND (88) -yields. 2700 1188G
RND (0) -yields. 2700 1188G
RND (0) -yields. 2700 1188G
RND (88) -yields. 13875G248
RND (0) -yields.13875G248

Calling R N D with a negative argument causes it to begin a new, re­
peatable sequence of random numbers. This is called seeding the
random number generator; the particular negative value you use for
the argument acts as a "seed" for the new sequence. Different seeds
will produce different sequences, but each time you use the same
seed you will get the same result. Subsequent calls to R N D with posi­
tive arguments will then produce the same sequence of results:

RND (-1) -yields 2 • 88 1 8 G 4 7 2 E - 08
RND (1) -yields. 738207502
RND (1) -yields.27270713G
RND (1) -yields.28873344G
RND (-5) -yields 3. 737204G8E-08;

starts new sequence
RND (1) -yields.407457285
RND (1) -yields. 4G37 40324
RND (1) -yields.387185G8G
RND (- 1) -yields 2 • 8818G4 72E - 08;

repeats same sequence as
before

RND (1) -yields.738207502
RND (1) -yields.27270713G
RND (1) -yields.28873344G

Scientific Notation: The suffix E - 08 in some of the random values
listed above means "times 10 to the minus-8th power," and is an exam­
ple of the scientific notation that Applesoft uses to display certain num­
bers. See Section 1.2 for further details.

Functions

2.4.3 Defining Your Own Functions: The DE F F N
Statement

DEF FN CUBE ()-() * V
1\

In addition to the built-in functions discussed in Sections 2.4.1 and
2.4.2, Applesoft gives you the ability to define your own functions for
the special needs of a particular program. Defining your own func­
tions can be a real time-saver: instead of writing out the same com­
plex formula over and over again , you can simply define it once as a
function, give it a name, and then refer to it by that name whenever
you need it.

DEF FN defines a new function To define a function of your own, use the DE F F N statement. This
statement consists of the keywords DE F F N (for "define function")

argument: the value on which a function followed by the name of the function you 're defining, the argument
operates name enclosed in parentheses, an equal sign (=), and the formula

defining the function. The examples below define functions to convert
temperatures from Fahrenheit to Celsius and vice versa, and to con­
vert angles from degrees to radians and vice versa, assuming that
the value of the variable P I is 3 • 14158265:

Formula limited to 239 characters

Argument must be a real variable

44

10 DEF FN FTC (T) (T - 32) * 5 / 8
-Fahrenheit to Celsius

20 DEF FN CTF (T) T * (8 / 5) + 3 2
-Celsius to Fahrenheit

30 DEF FN DTR (A) A * (PI / 18 0)
-degrees to radians

40 DEF FN RTD (A) A * (180 / PI)
-radians to degrees

For example, the definition above for function FTC says "to convert
from Fahrenheit to Celsius, take the value of the argument (T) , sub­
tract 32, multiply by 5 , and divide by 8 ."

The formula defining a function must not exceed one program line (239
characters) in length.

The names you give to your functions must follow the same rules
given in Section 2.1.1 for variable names: the name may be as long
as you like (up to 239 characters) , but Applesoft uses only the first
two characters to distinguish one function from another. The argu­
ment variable in the function definition must be a real variable­
integer and string variables (ending in 'X. or $) are not allowed.

Variables and Arithmetic

Don't begin function names with the
same first two characters

Calling defined functions

Take care not to begin the names of different functions with the same
two characters. Applesoft will consider the names COD F ISH and
CO U NT , for example, to refer to the same function , since they both be­
gin with the same two characters. If you try to define functions with these
two names, the second definition will redefine the function , causing the
first definition to be forgotten.

However, a program can have a function and an array beginning with the
same two characters (or even having exactly the same name). This is
because references to the function are written with the keyword F N (see
below), but references to the array aren't. Thus Applesoft can tell that,
for example,

FN COUNT (N)

is a call to the function named CO U NT , whereas

COUNT (N)

is a reference to the array of the same name.

The DE F F N statement can be executed only from within a pro­
gram ; you can 't use this statement in immediate execution.

To call a function that you 've defined with DE F F N, type the key­
word F N (for "function ") followed by the name of the function and an
expression in parentheses representing the argument value on
which you want the function to operate. For example, using the func­
tions defined above,

FN FTC (98 • G) -convert 98 • G degrees Fahr-
enheit to Celsius; yields 37

F N CTF (10 0) -convert 1 00 degrees Celsius
to Fahrenheit ; yields 2 1 2

FN DTR (18 0) -convert 1 8 0 degrees to rad i-
ans; yields 3 • 1 4 1 592 G 5

FN RTD (PI / 2) -convert P I / 2 rad ians to
degrees; yields 9 0

Notice that the keyword F N must be used in call ing your own defined
functions, but not for built-in functions (see Section 2.4.1, "Built-in
Arithmetic Functions").

Functions 45

Variables and Arithmetic

Control Statements

50 3.1 Unconditional Branching: The GOT 0 Statement
51 3.2 Conditional Branching
51 3.2.1 The 0 N ... GOT 0 Statement
52 3.2.2 The IF .. . THE N Statement

L-
55 3.3 Loops
57 3.3.1 The FOR Statement
59 3.3 .2 The N E)-(T Statement
59 3.3.3 Nesting of Loops
61 3.4 Subroutines
64 3.4.1 The GO SUB Statement
64 3.4.2 The RET URN Statement
65 3.4.3 The 0 N .. . G 0 SUB Statement
66 3.4.4 The POP Statement
67 3.5 Error Handling
68 3.5.1 The ONERR .. . GOTO Statement
70 3.5.2 The RES U M E Statement
71 3.5.3 Restoring Normal Error Handling
73 3.6 Program Termination
73 3.6.1 The S TOP Statement
73 3.6.2 The END Statement

L
Control Statements

-
-

--
-

-

Control statements determine the
order of program execution

unconditional branching: see
Section 3.1

conditional branching: see Section 3.2

loops: see Section 3.3

subroutines: see Section 3.4

error handling: see Section 3.5

program termination: see Section 3.6

Control Statements

Ordinarily, Applesoft programs are executed sequentially, from the
lowest-numbered line to the highest. Control statements allow you to
branch to another part of the program: that is, to alter the normal or­
der of execution and send control to a line of the program other than
the next line in sequence. This ability to change the course of pro­
gram flow is what gives computer programs their real power and
flexibility.

Section 3.1, "Unconditional Branching: The GOT 0 Statement," deals
with the GOT 0 statement, which sends control unconditionally to a
specified line of the program.

Section 3.2, "Conditional Branching," discusses conditional branch­
ing statements, which allow the program to decide what to do next by
evaluating an expression or testing for a condition .

Section 3.3, "Loops," covers statements that are used in loops (por­
tions of a program that are executed many times repeatedly) .

Section 3.4, "Subroutines," deals with the very important subject of
subroutines: sections of a program that can be executed on request
from elsewhere in the program to perform some particular task.

Section 3.5, " Error Handling," describes Applesoft's facilities for de­
tecting and dealing with error conditions that arise during the execu­
tion of a program.

Finally, Section 3.6, " Program Termination," covers the various ways
of terminating (ending) the execution of a program.

Control Statements 49

Unconditional Branching: The GOT 0
3.1 Statement

unconditional branch: a branch that
does not depend on the truth of any
condition

GOT 0 branches to a specified line
number

infinite loop: a section of a program that
will repeat the same sequence of actions
indefinitely

GOTO 100

An unconditional branch sends control to a specified line of the pro­
gram without reference to whether any particular condition holds.
Applesoft has two statements that cause an unconditional branch:
GOT 0 and GO SUB. The GOT 0 statement is described in this sec­
tion; see Section 3.4.1 for a description of the GO SUB statement.

The GOT 0 statement interrupts the normal sequential execution of
program lines and forces execution to branch to (go to) a specified
line number. The branch is unconditional: that is, it doesn't depend on
the truth or falsity of any particular condition .

For example, consider the following program:

10 PRINT "HELLO"
20 PRINT "THERE"
30 GOTO 10
ao PRINT "FRIEND"

-display the word HELLO
-display the word THERE
-branch to line 1 0
-this line never executed

This program displays the word HELLO on the screen (line 10), dis­
plays the word T HERE (line 20), and then (line 30) goes back to
line 10 to repeat the process. The word F R I END never gets dis­
played, because program execution never reaches line aO . lnstead,
the program simply repeats lines 1 0 to 30 indefinitely, displaying the
words HE L L 0 and THE R E over and over again on the screen.

The program above contains an example of an infinite loop. To stop the
program and regain control of the computer, press 1 CONTROL I-C.

If your program attempts to branch to a nonexistent line, or if aGO T 0
statement does not include a line number, an error message such as

?UNDEF'D STATEMENT ERROR IN 30

will appear, identifying the program line in which the error occurred. The
program will stop and Applesoft will return to command level :

10 PRINT "HELLO"
20 PRINT "THERE"
30 GOTO 15
1I0 PRINT "FRIEND"

Control Statements

-branch to non-existent line

conditional branch: a branch that de­
pends on the truth of a condition or the
value of an expression

ON ... GOT 0 statement: see Section
3.2.1

ON ... GOSUB statement: see Section
3.4.3

IF ... THE N statement: see Section
3.2.2

3.2

You Can't Branch to a Variable: If you attempt to use a variable instead
of an actual line number to specify the line to which a branch should oc­
cur (as in GOT 0 J), Applesoft will always attempt to branch to line
number 0, no matter what value the variable holds. If line 0 doesn't ex­
ist, an UNDEF I D STATEMENT error will occur:

5 LET J = 10
10 PRINT "HELLO"
20 PRINT "THERE"
30 GOTO J

LlO PRINT "FRIEND"

Conditional Branching

-assign value to variable

-Applesoft will try to go to line
number 0

A conditional branch decides what action to take next, depending on
the truth of a stated condition or on the value of an arithmetic expres­
sion. Applesoft has three statements that cause a conditional branch :

• 0 N ... GOT 0 branches to one of a number of possible program
lines, depending on the value of an arithmetic expression .

• 0 N .. . G 0 SUB branches to one of a number of possible subrou­
tines, depending on the value of an arithmetic expression .

• IF ... THE N either executes or skips one or more statements,
depending on the truth of a stated condition.

3.2.1 The ON ... GOTO Statement

ON .•. GOT 0 chooses where to branch
depending on the value of an
expression

If value out of range, control proceeds
sequentially

ON X GOTO 150,200, 310, 310, 150, 888
ON S1 - 7 GOTO 300, 285, 800, 15 0

The 0 N ... GOT 0 statement sends control to one of a list of line num­
bers, depending on the integer value of an arithmetic expression . The
expression between the keywords 0 Nand GOT 0 is evaluated ; if the
result is real it is truncated to an integer. If this value is between 1 and
the number of line numbers in the list, program execution branches to
the line number at the corresponding position in the list. (For exam­
ple, if the integer value of the expression is 3 , execution branches to

. the third line number in the list.) If the integer value of the expression
is ° or is greater than the length of the list, execution continues with
the next statement following the 0 N ... GOT O.

Conditional Branching

The following program il lustrates the use of 0 N ... GOT 0:

10 INPUT)(
2 0 ON X GO TO 15 0 ,

- get number from keyboard
200, 310, 310, 150,999

- decide where to go, depend-
ing on value of)(

30 PRIN T "1.JALU E OUT OF RANGE, PLEASE
RE TY PE :" - control comes here if){ = 0 or

)(> 6
4 0 GOTO 10 - start again

150 PRI NT "1.JA LUE IS 1 OR 5 11

- control comes here if){ = 1 or
}-{ = 5

16 0 GOT O 10
200 PR I NT "1)A LUE IS 211

- control comes here if){ = 2
210 GOTO 10
310 PR I NT "1.J ALU E IS 3 OR 4"

- control comes here if){ = 3 or
){ = 4

32 0 GO TO 10
999 END -control comes here if){ = 6

If the integer value of the expression between 0 Nand GO T 0 is less
than 0 or greater than 2 55 , an I LLEGAL QUANT I TY error will
occur and program execution will halt.

3.2.2 The IF ••• THE N Statement

IF Z > 2 55 THEN END

IF ... THE N executes or skips, de­
pending on the truth of a condition

52

IF HI - 2 3 < SM - TTL THEN KI
H'I.', - 2 3 : H'I.', = 0

I F)((I) = 12 THEN GO TO 3 2 5
IF A$ >< 5$ THEN 300
IF (D > t 05) AND NOT (E > t 1) GOTO 2 150

The I F ... THE N statement tests for the condition given between the
keywords I F and TH E N. If the condition is true, the statement or
statements following THE N in the same program line are executed.
If the condition is false, the remainder of the line following THE N is
skipped and execution continues with the next program line in
sequence.

Control Statements

When the statement following THE N is aGO TO , either (but not both) of
the keywords THE Nand GOT 0 may be omitted. The following state­
ments are all equivalent:

IF)((I)
IF }((I)
IF)((I)

12 THEN GoTo 325
12 THEN 325
12 GoTo 325

Notice that when the I F condition is false, program execution contin­
ues with the next program line (not the next statement) in sequence.
No other statements in the I F line are carried out:

10 LET J 1: K = 2
20
30

LlO

LET A 10 -A set to 10 here
PR I NT " J HOLDS "; J; " AND K

HOLDS "; K
IF A > 10 THEN J 5: K = 10 :

GOTO 100 - A is not greater than 1 0; test
fails

50

GO
100

999

PR I NT "THE l.)ALUES OF J AND K ARE
UN C HAN G ED. " -this message gets printed

GOTO 999
PR I NT "J NOW HOLDS " ; J; " AND K

HOLDS " ; K
END

-this message not printed

When the program above is run , the I F test in line LI 0 will fail , the
values of J and K will not be changed , and execution will continue
with line 50 . If line 20 were changed to

20 LET A = 25

then the I F test in line LI 0 would succeed, the values of J and K
would be changed, and control would branch to line 100.

Conditional Branching 53

o means false

Any nonzero value means true

54

Using Numeric Values in IF ... THE N: The IF ... THE N statement
considers a numeric value of 0 to mean "false"; any nonzero value is
taken to mean "true. " Thus you can write statements such as

IF J THEN GOSUB 400

which is equivalent to

IF J <> 0 THEN GOSUB 400

Recall also that Applesoft's relational and logical operators always yield
a value of 1 for true and 0 for false. Thus you can combine numeric val­
ues with the logical operators: the statement

IF NOT J THEN GOTO 500

is equivalent to

IF J = 0 THEN GoTo 500

and

IF A AND B THEN END

is equivalent to

IF (A <> 0) AND (B <> 0) THEN END

Numeric values used in this way offer two advantages over the corre- _
sponding relational expressions :

• They take up less space in memory.

• They execute somewhat faster.

See Appendix G for further hints on making your programs more effi­
cient.

Curious Parsing: Applesoft gets confused if the keyword THE N is im­
mediately preceded by a variable name ending in the letter A .. For exam­
ple, the statement

IF J = BETA THEN 230

will be interpreted as

IF J = BET AT HEN230

causing a syntax error. This is because A T and THE N are both re­
served words; in the example, the word A T is encountered first, so it is
interpreted first. Such is life with Applesoft. You can get around the prob­
lem by using parentheses:

IF (J = BETA) THEN 230

Control Statements

loop: a sequence of statements exe­
cuted repeatedly

pass: a single execution of a loop

3.3

index variable: a variable whose value
changes on each pass through a loop;
often called control variable or loop
variable

N E >: T statement: see Section 3.3.2

body: the statements in a loop between
the F OR and N E >-(T statements

Loops
A loop is a sequence of statements in a program that are executed
repeatedly, often with the value of some variable being changed on
each pass through the loop. Loops are fundamental to all computer
programming: it's practically impossible to write any kind of useful or
interesting program that doesn't include at least one loop.

The usual way of writing loops in Applesoft is with the F OR and
N E }(T statements. The FOR statement marks the beginning of the
loop. It identifies the loop's index variable (the variable whose value
changes on each pass) and gives the starting and ending values the
index variable is to take on. Sometimes it also specifies the amount
by which the value of the index variable is to change on each pass
(see Section 3.3.1 , "The FOR Statement," for details) .

The N E){ T statement marks the end of the loop and causes the loop
to be executed again for the next value of the index variable. When
the loop has been executed once for each value of the index variable,
as specified in the FOR statement, control "falls through" to the next
statement following the N E){ T statement. (That's right, "the next
statement following the N E){ T statement.")

Here's an example to show how loops work:

5 PA S S = <) -initialize pass count
1 <) FOR }(= 3 TO 1 0 -execute loop once for each

value of)(from 3 to 10
20 PAS S = PAS S + 1 -count passes through the loop
30 PR I NT "PASS # " j PASS

-display pass count
40 PRINT "INOE>(= " j)(

-display current value of index
variable)(

5 0 P R I NT-display blank line (for
neatness)

GO N E){ T)(-repeat loop for next value of }(
70 PRINT "LOOP F IN I SHED"

8 0 END

-control comes here after last
pass through loop

The loop begins with the FOR statement in line 1 0 , which specifies
that the loop is to be executed once for each value of index variable)(
from 3 to 1 O. Lines 2 0 to 50 form the body of the loop. The N E){ T
statement in line GO marks the end of the loop and sends control
back to line 2 0 for the next value of }(. After the loop is executed for

Loops 55

•

Be careful jumping out of loops

56

the last time, with){ set to the specified ending value of 1 0 ,){ is in­
creased to 11. Since this exceeds the ending value, control " falls
through" the N E){ T statement to line 7 0 .

When the program above is executed, it will display the following
results on the screen:

PASS #1
INDEX = 3
PASS #2
INDEX = £I

PASS #3
INDEX = S
PASS #£1
INDEX = 6
PASS #S
INDEX = 7
PASS #6
INDEX = 8
PASS #7
INDEX = 9
PASS #8
INDEX = 10
LOOP FINISHED

Loop Before You Leap: Exiting from the middle of a F 0 R/N E}(T loop
before the index variable reaches the ending value leaves Applesoft ex­
pecting a resolution that never comes. This is a dangerous practice that
can cause unpredictable results in your program's execution. Don't write
loops of the form

10 FOR INDEX = LOW TO HIGH
20 LET COUNT = COUNT + 1
30 IF COUNT = LIMIT THEN GOTO 100

-not recommended
LlO NE}-(T I NDD(

To be on the safe side, it's better to finish the loop this way:

30 I F COUNT = LI M IT THEN I NDE}{ = HIGH:
NEXT INDEX: GOTO 10 0

Control Statements

-

'--

3.3.1 The FOR Statement

FOR marks the start of a loop

index variable: a variable whose value
changes on each pass through a loop;
see Section 3.3, above

step value: the amount by which the
index variable changes on each pass
through a loop

•

FOR Y - 1 TO 10
FOR MASS = 3.5 TO 7 STEP 1.5
FOR YEAR = 1880 TO 1860 STEP - 4
FOR t,) = A + 2 TO 2*5 - 3 STEP C / 2

The FOR statement marks the beginning of a loop, identifies the
loop's index variable, and gives the starting and ending values of the
index variable. It may also optionally specify the step value , the
amount by which the value of the index variable is to change on each
pass through the loop. If no step value is given, a value of 1 is
understood.

In the example in Section 3.3 above, no step value was given, so the
index variable)-(was incremented by 1 on each pass through the
loop. If line lOin the example were changed to

10 FOR }-(= 3 TO 10 STEP 2
-execute loop once for each

value of)-(from 3 to 1 0 by 2

the program would produce the following output on the display
screen:

PASS #1
INDEX = 3

PASS #2
INDEX = 5
PASS #3
INDEX = 7

PASS #4
INDEX = 9

LOOP FINISHED

The loop is executed four times, with the index variable taking on val­
ues of 3, 5 , 7, and 8 . At the end of the fourth pass, the index variable
exceeds the specified ending value (8 plus 2 is 11, which is greater
than the ending value of 1 0), so the loop ends and execution contin­
ues with the statement following the N E}-(T in line 60 .

Loops

Body of loop always executed at least
once

Step value may be negative

Index variable must be a real variable

58

Applesoft Will Try Anything Once: Notice that the test to see whether
the index variable exceeds the ending value is carried out at the end of
the loop. This means the body of the loop will always be executed at
least once. Even if the specified starting value is greater than the ending
value, as in

10 FOR}(10 TO 3 -starting value exceeds ending
value

it won't be discovered until after the loop has been executed once (10
plus 1 is 1 1, which is greater than 3).

It's also possible to specify a negative step value :

10 FOR){ = 10 TO 3 STEP -2
-negative step value

In this case the index variable will take values of 10,8, G, and 4 .
When the step value is negative, the loop ends when the index value
becomes less than the ending value (4 plus - 2 is 2, which is less
than the ending value of 3). Notice that the starting and ending val­
ues have been reversed; if the statement read

10 FOR){ = 3 TO 10 STEP -2
-starting value less than ending

value

the loop would have been executed only once (3 plus - 2 is 1, which
is less than 10).

A step value of 0 will result in an infinite loop. To stop the program
and regain control of the computer, press I CONTROL I-C.

The index variable specified in a FOR statement must be a real vari­
able. Attempting to use an integer variable, such as

1 0 FOR){ I., = 3 TO 1 0 -integer index variable

will cause a syntax error at run time. (However, the expressions for
the starting, ending , and step values are unrestricted; any or all of
these values may be specified by an integer variable).

Control Statements

- '

N E >(T repeats execution of a loop

3.3.2 The N E)-(T Statement
NE)-(T
ND(T INDD(
ND(T J 1 I

The N E)-(T statement marks the end of a loop and causes the loop to
be repeated for the next value of the index variable, as specified in
the corresponding FOR statement. When the value of the index vari­
able becomes greater than the specified ending value (less than the
ending value if the step value is negative), execution proceeds with
the statement immediately following the N E)-(T statement.

Naming the index variable in a N E)-(T statement is optional ; if you
omit it, Applesoft will automatically repeat the most recently entered
loop. If you 're using nested loops, this means the innermost loop con­
taining the N E)-(T statement will be repeated.

Helpful Hint: Leaving out the index variable in N E >(T statements will
make your programs run slightly faster:

10 FOR G = 1 TO 6
20 PRINT "WOW, MOM!"
30 ND(T -no index variable necessary

3.3.3 Nesting of Loops
nested loop: a loop contained within the FOR IN E)-(T loops can be nested one inside another to a maximum
body of another loop depth of ten levels. For example,

10 FOR A 1 TO 3 -start of outer loop
20 FOR B 1 TO 2 -start of inner loop
30 PRINT "A = " . A j " 15 = " . 5 , ,

-display values of index
variables

40 ND(T 5 -repeat inner 10fJp
50 ND(T A -outer loop not repeated until

inner loop is finished

Loops 59

•
No more than 10 levels of nesting

Don 't cross loops

60

The inner loop (lines 20 to 40) is executed twice for each pass
through the outer loop; the P R I NT statement in line 30 is executed
six times in all. This program will display the following on the screen:

A 1 t B 1
A 1 t B 2
A 2 t B 1
A 2 t 6 2
A 3 t B 1
A 3 t B 2

Although this example shows only two levels of nesting, Applesoft al­
lows as many as ten levels (a loop inside a loop inside a loop ... ten
times). If you nest your loops to a depth greater than ten, your pro­
gram will halt with the error message

OUT OF MEMORY

Nested loops must not cross each other-that is, each loop must be
completely contained within the body of the next outer loop. Once a
loop is started using a particular index variable, the corresponding
N E)< T must name the same index variable (if it names any at all) . In
the example above, if lines 40 and 50 were reversed

40 ND{T A
50 ND{T B

-attempt to repeat outer loop
-before inner loop is finished

the program would halt with an error because of the crossed loops.

Warning
Cross-looping is a second-degree misdemeanor punishable by five min­
utes in the penalty box and a N E)-(T WIT H 0 U T FOR error. It will
also melt your keyboard .

When two or more N E)-(T statements occur in a row, as in the example
above, you can combine them into a single N E)-(T statement of the form

-repeat inner, then outer loop

Notice, however, that the index variables must be listed in the reverse or­
der of their corresponding FOR statements, to avoid crossing loops. The
statement

40 NE)-(T A tB -whoops!

will reduce your keyboard to a puddle of plastic.

Control Statements

3.4

GO 5 U B statement: see Section 3.4.1

RET URN statement: see Section 3.4.2

ON ... G 0 5 U B statement: see Section
3.4.3

POP statement: see Section 3.4.4

Subroutines
A subroutine is a section of a program that can be executed on
request from another part of the program. Applesoft has four state­
ments relating to subroutines:

• GO SUB directs control to a particular subroutine.

• RET URN sends control back to the statement following the
GO SUB that branched to the subroutine.

• 0 N ... G 0 SUB selects one of a number of possible subroutines,
depending on the value of an arithmetic expression.

• POP removes a return address from the top of the control stack
(see the box below titled "How Subroutines Stack Up").

To call a subroutine (request its execution) , branch to its first line with
aGO SUB statement. GO SUB differs from an ordinary GOT 0 in that

GOTO statement: see Section 3.1 it " remembers" where in the program the subroutine was called from,
so that control can return to that point when the subroutine is finished.
The same subroutine can be called from many different places in the
program; when the subroutine is finished , it sends control back to the

point of call: the point in a program from statement following the proper point of call by executing aRE T URN
which a subroutine is called statement.

Here's an example to illustrate the idea:

10 FOR Z
2 0 LET)-<

1 TO 1 0 -execute loop 10 times
INT (RND (1) * 1(0)

-generate a random integer be­
tween 0 and 99

30 P R I NT)(" IS " j -display first part of message
40 IF X < 5 0 THEN GOSUB 1000 : GO TO GO

50 GOSUB 2 000

-branch to subroutine at line
1 0 0 0 if random number is
less than 5 0; on return , go to
line GO

-branch to subroutine at line
2000 if random number is
50 or greater

GO PR I NT " PASS #" ; Z : PR I NT

70 NE><T Z
999 END

1000 PRINT " LESS

Subroutines

-count number of passes
through loop

-repeat loop
-end program

THAN 50"
-print second part of message

for numbers less than 50

Control returns to statement (not line)
following GaS U B

Don't use the back door

1 I) lOR E T URN -return to statement following
point of call

2000 PRINT "MORE THAN a9"

2010 RETURN

-print second part of message
for numbers greater than a 9

-return to statement following
point of call

The loop in lines 1 0 to 70 generates a random integer between 0
and 99 , then calls one of the two subroutines at lines 1 000 and
2000, depending on the value of the random number. Each of the
subroutines displays an appropriate message, then returns control to
the statement following the point of call with aRE T URN statement
(lines 1 0 1 0 and 20 1 0). The program then displays a count of the
number of passes through the loop and repeats the loop from the be­
ginning. When the loop has been executed ten times, the program ends.

Notice that the RET URN statement returns control to the statement
following the GO SUB statement, not just to the line following it. In line
LI 0 of the example above, if the random number generated is less
than 50 , control is directed to the routine at line 1 0 00 . When execu­
tion returns from the subroutine, it will continue with the statement
GOTO GO , branching around line 50.

Every subroutine should be regarded as a separate, indivisible unit
of your program, which should be entered only with aGO SUB and
exited only with aRE T URN. Jumping into or out of the middle of a sub­
routine with an ordinary GOT a subverts Applesoft's orderly control
stack mechanism (see "How Subroutines Stack Up," below) and causes
the programmer to be in a state of sin . People who indulge in such
odious practices should be ostracized from pOlite society.

nested subroutine call: a call to a sub- Subroutine calls may be nested: that is, you can call one subroutine
routine from within another subroutine from inside another. Consider the following program:

1 0 GOSUB 1000 -branch to first subroutine

2 0 PRINT " BACK HOME AGAIN"
-this message displayed last

30 END -prevent control from acci-
dently "falling into" a
subroutine

10 0 0 PRINT "FIRS T SUB ROUTI NE CA LL ED"
- this message displayed first

1010 GOSUB 2 0 0 0 -branch to second subroutine

62 Control Statements

•
stack: a list in which entries are added or
removed at one end only

return address: the point to which con­
trol returns on completion of a subroutine

push: to add an entry to the top of a stack

pop: to remove the top entry from a stack

1020 PRINT "BACK AT FIRST SUBROUTINE "
-this message displayed third

1030 RET URN -return to statement following
point of call (line 20)

2000 PRINT "SECOND SUBROUTINE CALLED "
-this message displayed

second

2010 RETURN -return to statement following
point of call (line 10 2 0)

Line 10 calls the first subroutine, at line 100 O. This subroutine dis­
plays the first message on the screen, then (line 1 0 1 0) calls the
second subroutine at line 2000. The second subroutine displays its
message, then returns control (line 2(1 0) to the statement following
the pOint of call in the first subroutine. The first subroutine then dis­
plays another message and returns control (line 1 03 0) to the state­
ment following its point of call. The final message is then displayed
(line 20) and the program ends. The lines of the program are exe­
cuted in the following order:

Line 10
Line 1000
Line 1010
Line 2000
Line 2010
Line 1020
Line 1030
Line 20
Line 30

The program produces the following output on the screen:

FIRST SUBROUTINE CALLED
SECOND SUBROUTINE CALLED
BACK AT FIRST SUBROUTINE
BACK HOME AGAIN

How Subroutines Stack Up: Applesoft maintains a control stack to
keep track of the return addresses-the paints to which control is to
return on completion-for all subroutines in progress. Each time a
GO SUB is executed, the location of the statement following the
GO SUB is pushed onto the top of the stack. When aRE T URN state­
ment is executed, the top entry is popped from the stack and control is
directed to that point in the program. This arrangement ensures that
control enters and leaves subroutines in LIFO (Iast-in-first-out) order.

Subroutines 63

GO 5 U B branches to a subroutine

control stack: see Section 3.4

GOT 0 statement: see Section 3.1

RET URN returns control from a
subroutine

control stack: see Section 3.4

64

Subroutine calls can be nested up to 25 levels deep: that is, you can
GOSUB from a GOSUB from a GOSUB .. . 24 times. Attempting to
go more than 25 levels deep will result in an 0 U T 0 F ME M 0 R Y
error.

Actually, you're out of stack space, as opposed to program space. Since
no rational BASIC program ever uses such complex nesting, this error
usually means you've got a subroutine accidentally calling itself.

3.4.1 The GOSUB Statement
GOSUB 1000

The GO 5 U B (for "go to subroutine") statement is used to branch to
a subroutine, saving a return address to which control can return
when the subroutine is completed. The location of the statement im­
mediately following GO SUB is pushed onto the control stack, and
control is sent to the line number specified in the GO SUB statement.
GO SUB differs from an ordinary GOT 0 in that it "remembers" where
in the program the subroutine was called from, so that control can re­
turn to that pOint with aRE T URN statement when the subroutine is
finished .

AGO 5 U B to a target line that doesn't exist will cause a message such --"
as

?UNDEF' D STATEMENT ERRO R I N 1350

to be displayed, identifying the line number in which the error occurred,
and your program will come to an untimely halt.

3.4.2 The RET URN Statement
RETURN

The RET URN statement returns control from a subroutine to the
statement following its point of call . The top entry is popped off the
control stack and control is sent to that return address.

If the control stack is empty when RET URN is executed, your program
will halt with the message

?RETURN WITHOUT GOSUB

Control Statements

3.4.3 The 0 N ••• G 0 SUB Statement

ON ... GO 5 U B chooses a subroutine
depending on the value of an
expression

If value out of range, control proceeds
sequentially

ON X GOSUB 150, 200, 31 0 , 310, 150, 999
ON S1 - 7 GOSUB 300, 285, 900, 150

The 0 N .. . G 0 SUB statement sends control to one of a list of subrou­
tines, depending on the integer value of an arithmetic expression.
The expression between the keywords 0 Nand GO SUB is evaluated;
if the result is real it is truncated to an integer. If this value is between
1 and the number of line numbers in the list, program execution
branches to the subroutine at the corresponding position in the list.
(For example, if the integer value of the expression is 3, execution
branches to the subroutine beginning at the third line number in the
list.) If the integer value of the expression is 0 or is greater than the
length of the list, execution continues with the next statementfoliow­
ing the ON ... GOSUB .

The following program illustrates the use of 0 N ... G 0 SUB :

10 INPUT }-(
20 ON X GOSUB 150,

999

30 IF }-(= 0 OR }-(..=-

-get number from keyboard
200,310,310,150,

-decide where to go, depend­
ing on value of }-(

8 THEN PR I NT "I,JALUE
OUT OF RANGE, PLEASE RETYPE:"

-display message if }-(out of
range

40 GoTo 10 - start again
150 PRINT "I,JALUE IS 1 OR 5"

-control comes here if}-(= 1
or}{ = 5

180 RETURN
200 PRINT "I,JALUE IS 2"

-control comes here if}-(= 2
210 RETURN
310 PRINT "I,JALUE IS 3 OR 4"

-control comes here if}{ = 3
or}-(= 4

320 RETURN
999 END -control comes here if}-(= 8

Compare the program above with the example given for the
ON ... GOT 0 statement in Section 3.2.1 . The operation of
ON ... GOSUB is very similar to that of ON .. . GOTO, except that

Subroutines 65

ON ... G 0 SUB " remembers" where in the program the subroutine was
called from by pushing onto the control stack the location of the next
statement following 0 N ... G 0 SUB . Control can then return to that

RETU RN statement: see Section 3.4.2 point with aRE T URN statement when the subroutine is finished .

If the integer value of the expression between 0 Nand GO 5 U B is less
than 0 or greater than 255 , an I LLEGAL QUANT I TY error will
occur and program execution will halt.

3.4.4 The POP Statement

POP

PO P removes top entry from control
stack

control stack: see Section 3.4

66

The POP statement removes (pops) the top return address from the
control stack without sending control to that point. This causes the
next RET URN statement to send control back to the statement fol­
lowing the point of the second most recent subroutine call , instead of
the most recent.

Here's an example illustrating the use of POP :

1 0 GOSUB 10 0 0
2 0 PRINT "BACK

30 END

1000 PRIN T "FIR ST

1010 GOSUB 2 00 0
1020 PRINT "BACK

1030 RETURN

-branch to first subroutine
HOME AGAIN "

-this message displayed last
-prevent control from acci-

dently "falling into" a
subroutine

SUBROUTINE CALLED "

AT

-this message displayed first
-branch to second subroutine

FIRST SUBROUTINE "
-this message never displayed
-this return never taken

200 0 PRINT "SECOND SUBROUTINE CA LLED "
-this message displayed

second
2 005 POP

20 10 RETURN

-remove return address from
stack

-return to statement following
first subroutine's point of call
(line 2 0)

This program is identical to the one in Section 3.4 illustrating nested
subroutine calis, except that a POP statement (line 2005) has been
added to the second subroutine. The effect of the POP is to remove

Control Statements

--

•

Resist temptation

ONE R R GOT 0 statement: see Sec­
tion3.5.1

3.5

RES U M E statement: see Section 3.5.2

the second subroutine's return address (line 1(20) from the control
stack, causing the RET URN in line 2010 to go back to the state­
ment following the point of call of the first subroutine (line 20) in­
stead. As a result, lines 1 020 and 1 030 are never executed, and
the message BACK AT FIRST SUBROU TINE is never dis­
played. The lines of the program are executed in the following order:

Line 10
Line 1000
Line 1010
Line 2000
Line 2005
Line 2010
Line 20
Line 30

The program produces the following output on the screen :

FIRST SUBROUTINE CALLED
SECOND SUBROUTINE CALLED
BACK HOME AGAIN

If the control stack is empty when POP is executed, your program will
halt with a RETURN WITHOUT GO SUB error.

Programming Tip: Although it's sometimes tempting to try to get out of
a tight programming situation by using POP , most good programmers
avoid it, because it makes program flow really difficult to follow. If you .
find yourself becoming ensnared in convoluted code, 'tis a far better
thing to redesign your program than to resort to the use of POP . See
Chapter 8 for a tutorial on program planning.

Error Handling
Sometimes even the most carefully written program will come to an
embarrassing halt at an inopportune moment because of an error. If
you 've never suffered an "error crash ," you ain 't a programmer. Ap­
plesoft's 0 N ERR GOT 0 and RES U M E statements provide a mech­
anism for detecting program errors as they occur and dealing with
them from within your program. Using these statements, you can
make your program display its own error messages or take any other
action you consider appropriate, instead of coming to a sudden,
screeching stop.

Error Handling 67

3.5.1 The ONERR GOTO Statement

ONERR GO TO allows program to
handle errors

error code: a number representing a
type of error

Error code stored at location 222

meanings of errors: see Appendix E

Table 3-1 Error Codes

68

oNERR GO TO 20000

The 0 N ERR GOT 0 statement turns off Applesoft's normal error
handling and replaces it with an error-handling subroutine in your
program. After this statement is executed, program errors will no
longer stop the program, but will instead transfer control to the error
routine beginning at the specified line number.

Before sending control to the error routine, Applesoft stores an error
code identifying the type of error at a special location in the comptu­
ter's memory, location 222 . The error routine can then look at the
contents of this location with the PEE K function and decide what ac­
tion to take, depending on the error. Table 3-1 lists the possible error
codes and their meanings. See Appendix E, "Error Messages," for
further information on the conditions that cause each type of error.

Code Meaning Code Meaning

0 N E){ T without FOR 120 Redimensioned array

18 Syntax 133 Division by zero

22 RETURN without GOSUB 183 Type mismatch

42 Out of data 178 String too long

53 Illegal quantity 191 Formula too complex

89 Overflow 224 Undefined function

77 Out of memory 254 Bad response to I N PUT
statement

90 Undefined statement
255 I CONTROL rC interrupt attempted

107 Bad subscript

Control Statements

~

To prevent an error from interrupting the program, the 0 N ERR
GOT 0 statement must be executed before the error occurs. If you 're
using 0 N ERR GOT 0, it's a good idea to make it one of the first lines
in your program, as in the following example:

10 ONERR GOTO 21500
-establish error routine at line

21500

21500 LET EC=PEEK (222)
-get error code

21510 IF EC <> 255 THEN 21550
-branch if not l CONTROL I-C

21520 PRINT "SORRY--PROGRAM CAN'T BE
STOPPED WITH CONTROL-C"

-if user pressed rl C::-':O"'-N-=-T-=-R o=-L-'I-C,
display special message

21530 RESUME -and resume program
21550 PRINT "UNANTICIPATED ERROR,

COD E "j E C -on any other error, display
general message

215GO STO P -and halt

The program above uses its own error-handling routine to prevent the
I CONTROL I-c : see Section 1.3.2 user from interrupting execution by pressing I CONTROL I-C . Line 10

turns off Applesoft's normal error handling and substitutes instead
the program's own error routine, beginning at line 2 1 500. If an error
later occurs, the first thing the error routine does (line 2 1 500) is get
the error code from memory location 222 to find out what type of er­
ror occurred. The error code is assigned to variable E C to make it
easier to handle. Line 2151 0 tests for an error code of 255 , mean­
ing "I CONTROL I-C interrupt attempted" (see Table 3-1). If the error is
a I CONTROL I-C , the message

• SORRY--PROGRAM CAN'T BE STOPPED WITH
CONTROL-C

RES U M E statement: see Section 3.5.2 is displayed on the screen (line 2 1 520) and control is sent back to
the point of the error with the RES U M E statement in line 2 1 53 0.

Iftheerrorisn 'ta l CONTROL I-C,the IF ... THENtestinline21510
sends control to line 2 1 550. Since the error routine has no special
action to take for any of these other errors, and since Applesoft's nor-

Error Handling 69

Cover all the bases

PEE K function: see Section 7.1 .1

mal error messages are not being displayed, the error routine just
displays a general error message such as

UNANTICIPATED ERROR, CODE 18

(for a syntax error) and stops the program.

Warning
Once an 0 N ERR GOT 0 statement has been executed , ordinary error
messages will not be displayed and the program will not stop if an error
is detected. If your program's own error routine doesn't take some ap­
propriate action (such as stop) for every possible error code, the pro­
gram may hang indefinitely or exhibit other forms of deviant behavior.
Make sure your error routine tells the computer what to do in all possible
cases of error ; see the following box for suggestions.

More Peeking: In the program above, the general error message dis­
played in line 2 1 550 would be more useful if it included the line num­
ber where the error occurred as well as the error code itself. Through the
magic of the PEE K function, the following two lines (replacing line
21550 of the original example) will do the trick :

2155 0 EL = PEEK (218) * 256 + PEEK (218)
-get error line

21555 PRINT "UNANTICIPATED ERROR, CODE ";
EC; ", IN LINE "; EL

-display general error message

For more information... For an even nicer way of handling unanticipated errors, see Section
3.5.3, " Restoring Normal Error Handling." See Appendix F, " Peeks,
Pokes, and Calls," for more astounding feats of sorcery and witchcraft
you can perform at home.

No 0 N ERR GOT 0 in immediate The 0 N ERR GOT 0 statement can be executed only from within a pro-
execution gram; you can't use this statement in immediate execution.

RES U M E returns control from an
error routine

70

3.5.2 The RES U M E Statement

RESUME

The RES U M E statement returns control from an error-handling rou­
tine to the statement in which the error occurred. It should be used
only in error routines, and should never be encountered in the normal
flow of control.

Control Statements

Don't leave a mess!

control stack: see Section 3.4

GOT 0 statement: see Section 3.1

CAL L statement: see Section 7.1.3

Don't use RESUME in immed;ate
execution!

Warning

If Applesoft encounters aRE SUM E statement without an error having
occurred, the program may stop or hang indefinitely, or other unpredict­
able but probably unpleasant events may transpire.

Warning

Notice that RES U M E sends control back to the same statement that
caused the error in the first place. If the same error occurs again , the
program may hang in an infinite loop. Similarly, if an error occurs within
the error-handling routine itself, RES U M E will cause the program to
hang .

Cleaning the Stack: When an error occurs while an 0 N ERR GOT 0
statement is in effect, Applesoft pushes certain information onto its inter­
nal control stack before transferring control to the error routine. When
you leave the error routine with aRE SUM E statement, these control
codes are automatically popped off the stack. But if the error routine
ends with aGO T 0 instead of aRE SUM E, the control codes will remain
behind on the stack, probably causing the world to end with a whimper
later on . To avert a global catastrophe, always "clean up" the stack by
uttering the magical incantation

CALL - 3288

before leaving an error routine with aGO T 0 statement.

Warning
The RES U M E statement should be executed only from within a pro­
gram. Attempting to use this statement in immediate execution may
cause a syntax error, cause the system to hang, or begin executing an
existing or even a deleted program.

3.5.3 Restoring Normal Error Handling

PO K E 21 G ,0 restores normal error You can restore Applesoft's normal error-handling mechanism by
handling using the PO K E statement:

POK E statement: see Section 7.1.2 PO K E 216,0

After executing this statement, Applesoft will go back to stopping the
program when an error occurs and displaying its usual error
messages.

Error Handling 71

Apple lie Monitor program: see Apple
lie Reference Manual

72

One use of this technique is to prevent your program from hanging or
falling into the Monitor in ~ase an error occurs in the error-handling
routine itself. You can do this by restoring normal error handling with
PO K E 21 G ,0 at the beginning of your error routine, then reacti­
vating the error routine with 0 N ERR GOT 0 before returning to the
main program. Here's another version of the example program of
Section 3.5.1 that illustrates this technique:

10 ONERR GOTO 21500
-establish error routine at line

21500

21500 PO K E 21 G ,0 -restore normal error handling

21505 LET EC =P EEK (222)
-get error code

21510 IF EC <> 255 THEN 21540
-if not '-1 C- O- N-T-RO- L-'I-C , resume

program under normal error
handling

21520 PRINT "S0RRY--PROGRAM CAN ' T BE
STOPPED WITH CDNTROL-C"

-if user pressed '-1 C- O- N-T-RO- L' I-C ,

display special message,

21530 ONERR GOTD 21500
-reactivate this error routine,

21540 RESUME -and resume program

This program also illustrates another application of PO K E 2 1 G ,0 .
Notice that if the error is anything other than a 1 CONTROL I-C interrupt
(code 255), the IF ... THE N test in line 2 1 51 0 sends control di­
rectly to the RES U M E statement in line 21 540, without executing
the 0 N ERR GOT 0 in line 2 1 53 O. The effect of this is to re-exe­
cute the statement containing the original error, but with Applesoft's
normal error handling still in effect. This will cause the same error to
occur again , but this time Applesoft will display its normal error mes­
sage and halt the program. Thus 1 CONTROL I -C is the only error that
gets special handling; all other errors produce the same results as if
there were no special error routine.

Control Statements

3.6

debugging: finding and correcting errors
in a program

3.6.1

Program Termination
The S TOP and END statements are used to halt the execution of a
program. The only difference between them is that S TOP displays a
message giving the number of the line at which execution was halted ;
this information is useful primarily for debugging purposes. END sim­
ply stops the program without any message, and is usually used at a
program's natural finishing pOint.

The S TOP Statement

STOP

5 TOP halts the program and displays The S TOP statement halts execution of the program and displays a
a message message giving the number of the program line in which the S TO P

occurs. For example, the line

115 STOP

displays the message

BREAK IN 115

Applesoft returns to its command level , allowing you to enter new
lines, examine or change the values of variables, and so on. You can

CON T command: see Section 1.3.3 then resume the execution of the program using the CON T
command.

EN 0 halts execution quietly

END optional at end of program

3.6.2 The END Statement

END

The END statement halts execution of the program and returns con­
trol to Applesoft's command level. No message is displayed on the
screen; program execution just stops quietly.

999 END

An END statement is purely optional at the end of a program. The pro­
gram will end by itself, even without an END statement, when it runs out
of statements to execute.

,
Program Termination 73

74 Control Statements

Arrays and Strings

77 4.1

79
80
81 4.2

82
83
84
86
86
87
88
89
89
90
91
92

Arrays
4.1.1 The DIM Statement
4.1.2 Multidimensional Arrays
Strings
4.2.1 Comparison of Strings: The ASCII Code
4.2.2 The LEN Function
4.2.3 Concatenation of Strings
4.2.4 Substring Functions

The LEFT$ Function
The MID $ Function
The RIG H T $ Function

4.2.5 String Conversion Functions
The STR$ Function
The l.J A L Function
The C H R $ Function
The AS C Function

Arrays and Strings 75

•

arrays: see Section 4.1

strings: see Section 4.2

4.1

array: a collection of variables referred to
by the same name

element : one of the individual variables
in an array

simple variable: a variable that is not an
element of an array

Arrays and Strings

This chapter discusses two important forms of data that Applesoft
programs can operate on: arrays and strings. Both topics were
treated briefly in Chapter 2, "Variables and Arithmetic ," but are cov­
ered in more detail here.

Section 4.1 , "Arrays," deals with collections of related information of
any type (real , integer, or string), referred to by the same name and
distinguished by means of numerical subscripts.

Section 4.2, "Strings," describes Applesoft's facilities for manipulat­
ing strings of characters such as words or names: comparing them,
concatenating (chaining) them together, taking them apart, and con­
verting them to and from numeric values.

Arrays
An array is a collection of variables referred to by the same name,
usually holding a collection of data items that are related to each
other in some logical or systematic way. The individual variables in
the array are called its elements, and are distinguished from one an­
other by means of identifying index numbers called subscripts.

An array can be of any type: integer, real , or string. Array names fol­
low the same rules as simple variable names of the same type. To re­
fer to a particular element of an array, write the array name followed
by one or more subscripts, separated by commas and enclosed in
parentheses. The subscripts refer to the position of the desired ele­
ment within the array:

Q (G)

FIGURE'X, (N)

Arrays

-element G of real array Q

-element N of integer array
FIGURE 'X,

77

Figure 4-1 A Real Array

Array R

R (0) ~ 53

R (1) ~ 27.35

R (2) ~ 31 .4 ~ R (5)

R (3) ~ 6

R (4) ~ 19 ~R (5 + 2)

Figure 4-2 A String Array

78

NAME$ (J - 3)

COUNT (SUM ·X. , 2)

-element J - 3 of string
array

-element (SUM I.. , 2) of real
array COUNT

Figure 4-1 shows a real array named R with five elements, numbered
o to 4 . Element R (0) (pronounced " R-sub-zero") holds the value
5 3 , R (1) holds 27.35 , and so on. If the value of variable S is 2,
then the expression R (S) refers to element R (2) , whose value is
3 1 • 4, and the expression R (S + 2) refers to element R (4) ,
which holds the value 1 8 .

Another example is shown in Figure 4-2, this time a string array
named N A M E $ with seven elements, numbered 0 to G. Element
N A M E $ (1) holds the string value " S COT" , N A M E $ (3) holds
the value " B R U C E " , N A M E $ (G) holds " MEG " , and so on. If the
value of variable C ·X. is 5, then the expression N A M E $ (C ·X.) refers to
element N A M E $ (5) , whose value is " J • D • " , and the expression
N A M E $ (C I.. - 3) refers to element N A M E $ (2) , which holds the
value "B I TZEL".

Array NAME$

NAME$(O) ~ "BANA"

NAME$ (1) ~ "SCOT "

NAME$ (2) "BITZEL" ~ NAME$ (C·X. - 3)

NAME$ (3) ~ "BRUCE"

NAME$ (4) ~ "SUSAN"

NAME$ (5) ~ IIJ + D + II ~ NAME$ (C/',)

NAME$ (6) "MEG"

Arrays and Strings

4.1.1 The DIM Statement
DIM R (4)

DIM TITLE$ (100)
DIM H5 (J'X,)

DIM MARK!., (3, C / 5, P + 2)

DIM defines the size of an array The DIM (for "dimension") statement defines the size of an array
and allocates memory space for its elements. The expressions in pa-

dimension: the maximum size of one of rentheses following the array name give the dimensions of the array.
the subscripts of an array There may be from one to 88 dimensions (see Section 4.1.2, " Multi­

dimensional Arrays").

Available memory limits size of arrays

Subscripts start from 0, not 1

Once an array has been defined in a DIM statement, any reference
to that array with a different number of subscripts, or with a subscript
that exceeds the maximum specified for that dimension in the D IM
statement, will cause the program to halt with the message

?BAD SUBSCRIPT ERRDR

Arrays are limited in size by the amount of available memory. See
Section H.2, "Applesoft Memory Allocation ," for detailed information
on the amount of space required by each type of array.

Since array subscripts in Applesoft begin with 0 (not 1), there is actually
one more than the specified number of subscripts in each dimension.
For instance, the array TIT L E $ defined in the second example above
has 101 (not 100) elements. In the definition

DIM TEST (12t 3t 5) -array TEST has 13 ' 4 ' 6 =
312 elements

array TEST has 312 elements (13 times 4 times 6), not 180 (12 times 3
times 5) as you might expect.

When Applesoft encounters a reference to an array that has not yet
been defined in a 0 I M statement, it automatically allocates space for 11
subscripts (0 to 1 0) in each dimension of the array. Later attempting to
redefine the same array with a DIM statement will cause an error stop
with the message

? REDIM ' D ARRAY ERROR

Defining the same array in more than one DIM statement, or executing
the same DIM statement twice, will produce the same message.

Arrays 79

4.1.2 Multidimensional Arrays

Figure 4-3a A two-dimensional array

Don't forget subscript O!

Figure4-3b

80

The examples shown in Figures 4-1 and 4-2 are both one-dimen­
sional arrays. Actually, arrays in Applesoft may have as many as 88
dimensions, subject to the amount of memory available. Arrays of 88
dimensions aren't terribly useful , but those of two and three dimen­
sions often are.

Figure 4-3a shows an example of a two-dimensional array named
EGG S, which has been defined by the DIM statement

DIM EGGS (1,5)

Array EGGS

Column Column Column Column Column Column
o 1 2 3 1I 5

Row 0 -4 (0 . 0) (0. 1) (0 . 2) (0 .3) (0 • 1I) (0.5)
--- --- -- --

Row 1 -4 (1 . 0) (1 tl) (1 .2) (1 • 3) (1 • 1I) (1 .5)

For the newly perplexed, a metaphor may be helpful. Think of the
array as an empty egg carton. On the outside is written the word
EGG S. When you open the egg carton, there are a dozen cup-like in­
dentations where the eggs go-two rows of six cups each- corre­
sponding to the elements of the array. Each of the cups is identified
by a row number, 0 or 1, and a column number from 0 to 5 (we're
dealing with strange chickens here) .

Now suppose you place three eggs in the egg carton , in elements
(0 ,2), (0 ,5) ,and (1 ,3) :

LET EGGS (0, 2) EGG
LET EGGS (0, 5) EGG
LET EGGS (1, 3) EGG

Array EGGS

Column Column Column Column Column Column
o 1 2 3 1I 5

Row 0

Row 1

Figure 4-3b shows the result. You might also elect to use your egg

Arrays and Strings

Figure4-3c

Scrambled metaphor

carton to hold small change. If you put a nickel in position (0 I 1) , a
dime in position (1 I 1) , and a quarter in position (1 14) ,

LET EGGS (0 I 1) 5
LET EGGS (1 I 1) 10
LET EGGS (1 I 4) 25

Array EGGS

Column Column Column Column Column Column
o 1 234 5

Row 0

Row 1

your carton would look like Figure 4-3c.

Actually, of course, you can't store eggs in your Applesoft arrays, only
numbers and strings-but after all, metaphors aren 't always eggsact.

Strings
4.2 A string is a sequence of text characters (letters, digits, and punctua-

string: a sequence of text characters tion marks) . Just as you can write numeric constants such as 27 and
2 • 23 G in your Applesoft programs, you can write string constants
by enclosing the characters in the desired string between double
quotation marks:

String constants enclosed in double
quotation marks

Lowercase OK in string constants

null string: a string containing no
characters

"ON SALE FOR $49.95 "
"Truth is i fT1Perl)ious to hissing "
" H2S04"
II???II

Even though Applesoft doesn't understand lowercase letters when you
use them in keywords, it will allow you to use them in a string constant,
as the second example above shows.

A string can contain from 0 to 255 characters ; when it contains no
characters at ali , it is called a null string. Two quotation marks with
nothing between them denote the null string :

II II -a string with no characters

Strings 81

String variable names end with $

String variables preset to null string

4.2.1

character code: a number used inside
the computer to represent a text
character

ASCII: American Standard Code for In­
formation Interchange; see Appendix C

relational operators: see Section 2.3.2

82

A string variable can hold any string as its value. Its name must end
with a dollar sign ($) . Some legal string variable names are

TITLE$
G2$
0$

Until they are given some other value with an assignment statement,
all string variables are preset to the null string.

Comparison of Strings: The ASCII Code
The characters in a string are represented inside the computer in the
form of numbers from 0 to 1 27 . The correspondence between
these internal character codes and the characters they represent
is based on a nationwide computer-industry standard called the
American Standard Code for Information Interchange, or ASCII
(pronounced "asky"). For instance, ASCII code G 5 represents the
uppercase letter A, 1 1 2 represents a lowercase P, 52 represents
the digit 4, 43 represents a plus sign (+), and so on. For a complete
table of ASCII character codes and the characters they represent ,
see Appendix C, "ASCII Character Codes."

Like numbers, strings can be compared with each other using the re­
lational operators. The result of the comparison is based on the II
codes of the characters in the strings. Applesoft looks for the first
non-identical characters in the two strings and compares them by
ASCII code to decide which is greater. For example, the character F
(ASCII 70) is considered greater than the character 0 (ASCII G 8)
but less than the character H (ASCII 72). If one string is longer but
begins with all the same characters as the other string , the longer
string is considered greater. For example,

"A" is less than "B"
" AA " is less than "AB"
" AB " is less than "BA"
"AB" is less than "ABC"

Arrays and Strings

L

String comparisons can be used for con­
ventional alphabetical order ...

.. . but watch out!

1.J A L function: see Section 4.2.5

Since letters of the alphabet are represented by consecutive codes in
the ASCII table, comparisons between strings of alphabetic letters can
be used to place the strings in conventional alphabetical order. For
example,

II Ell is less than "F"
"ED" is less than "EDGAR"
"EDGAR" is less than "EDWARD "
"EDWARD" is less than "EDWARDS"
"EDWARD" is less than "FRANK"

There are a few surprises, however: since uppercase letters precede
lowercase letters in the ASCII chart,

"Zebra" is less than "aardl.Jar f'"

And since strings are compared strictly character by character,

"1I8" is less than 115 11

If you want to compare two strings consisting of digits according to the
numbers they represent, use the t,J A L function .

4.2.2 The LEN Function

LEN gives length of a string

concatenation: see Section 4.2.3

The LEN (for " length") function counts the number of characters in a
string . The argument may be a string constant , a string variable , or a
concatenation of two or more strings. For example,

LEN ("APPLE")

LEN (SAMPLE$)

-length of the string
" A P P L E " ; yields 5

-length of the string contained
in variable SAM PLE $

LEN (A$ + "***" + B$)
-length of the concatenation of

variable A$, string " ***" ,
and variable B $

Using LEN, you can assign the length of a string to a numeric vari ­
able and then use it in further operations:

10 LET N'X, = LEN (" MY HEART SOARS LIKE A
HAWK,")

20 PR I NT "THERE ARE "; N'X, ; " CHARACTER S
IN THE STRING,"

Strings 83

•

When executed, this program will display the following output on the
screen:

... THERE ARE 27 CHARACTERS IN THE STRING.

If you concatenate two or more strings with a combined length of more
than 255 (the maximum a"owable string length), your program wi" halt
with the message

?STRING TOO LONG ERROR

Instead of writing

LEN (A$ + 5$ + C$)

it's safer to use

LEN (A$) + LEN (5$) + LEN (C$)

4.2.3 Concatenation of Strings

concatenate: to combine two or more Concatenation means "chaining together." To concatenate two or
strings into a single, longer string more strings is to join them together into a new string containing all

L EF T $ function: see Section 4.2.4

84

the characters of the original strings combined. This operation is rep­
resented in Applesoft by a plus sign (+):

"BORIS" + " AND" + "NATASHA"
-concatenation of the strings

" B 0 R IS"," AND ", and
" NAT ASH A " ; yields the
string" BOR I SAND
NATASHA"

F $ + C $ -concatenation of the contents

H$ + "RATS!"

H$ + LEFT$ (C$ I a)

Arrays and Strings

of string variables F $ and C $

-concatenation of the contents
of string variable H $ with the
string constant" RAT S ! "

-concatenation of the contents
of string variable H $ with the
leftmost four digits of the con­
tents of string variable C $

The program

10 LET NAME$ "CHARLIE "
-set victim's name

20 LET T I TLE$ = "DEAR " + NAME$ + " , "
-form salutation

30 PR I NT T I TLE$ -print salutation
40 PR I NT II HAl,JE WE GOT A SALE ! II

-print rest of message

will display the output

• DEAR CHARL IE,
HAVE WE GOT A SALE!

on the screen. The program

10 LET A$
20 LET A$

30 PRINT A$

will display

• GOOD GRIEF I

" GOO D " -assign value to string variable
A$ + " GRIEF!"

-extend string with
concatenation

-display result

Result must not exceed 255 characters If the result of a concatenation operation is a string more than 255
characters in length, the program will halt with the error message

LEN function: see Section 4.2.2

?STRING TOO LONG ERROR

You can test how long the result of a concatenation will be before­
hand by using the LEN function . For example:

10 LET A$
20 LET L1
30 LET 5$
ao LET L2
50 IF (L1

A$ +

Strings

"HAPP Y DAYS "
LEN (A $) -how many characters in A $?
"ARE HERE AGAIN"
LEN (5 $) -how many characters in 5 $?

+ L2) < 258 THEN LET A$ =
5 $ -if the combined lengths of A $

and 5 $ are less than 256,
combine the two strings into
A$

85

+ on strings doesn't mean addition! Don't confuse the concatenation of strings with the addition of numbers,
even though both are represented in Applesoft by the same symbol
(+). The value of the expression

12 + 34

is the number 4 G; the value of the expression

"12" + "34"

is the string" 1 2 3 4 " . If you want to add two strings consisting of digits
I,' A L function: see Section 4.2.5 according to the numbers they represent, use the I,' A L function.

4.2.4 Substring Functions

substring: a string that is part of another Applesoft has three built-in functions for extracting substrings from a
string string:

L EFT $ extracts a substring from the
beginning of a string

Real arguments converted to integers

86

• L EFT $ extracts a substring from the beginning of a string.

• MID $ extracts a substring from anywhere in a string.

• RIG H T $ extracts a substring from the end of a string.

The L EFT $ Function

L EFT $ extracts a specified number of characters from the begin­
ning (left end) of a string. The L EFT $ function takes two arguments,
separated by a comma: the string from which the characters are to be
taken and the number of characters desired. For example,

LEFT$ ("THIS IS IT!", 4)

-first 4 characters of the string
" T HIS I SIT I "; yields
"THIS"

L EFT $ (N A M E $, C + 2) -first C + 2 characters of
the contents of string variable
NAME$

If the value you give for the number of characters in the substring is a
real number, L EFT $ truncates it to the next lowest integer. If the
value specified is greater than the length of the string, Applesoft re­
turns the entire string; no extra characters are added.

The number of characters requested must be between 1 and 255 or
the program will halt with the message

?ILLEGAL QUANTITY ERROR

Arrays and Strings

MID $ extracts a substring from any­
where in a string

Third argument optional

If you omit the dollar sign ($) from the function name L EFT $, Applesoft
will treat L EFT as an arithmetic variable name, causing an error stop
with the message

?TYPE MISMATCH ERROR

The MID $ Function

MID $ (for "middle") extracts a specified number of characters from
a specified position within a string. The MID $ function takes three
arguments, separated by commas: the string from which the charac­
ters are to be taken , the position within the string of the first character,
and the number of characters desired. For example,

M I D$ (" HOW DO I LOt.)E THEE?", 1 0, a)

-4 characters beginning at po­
sition 10 in string" HOW DO
I LOt.JE THEE?"; yields
"LOt.)E"

MID$ (H9$, R + 7, 2 * t.J)
-2 * t.) characters beginning

at position R + 7 in the
contents of string variable
H9$

You may optionally leave out the third argument to MID $. If you don't
specify the number of characters you want, or if the number of char­
acters you request is greater than the length of the string, MID $
yields all characters from the designated starting position to the end
of the string:

M I D$ (" THERE THE Y GO I ", 7)

- all characters from position 7
to end of string "TH ERE
THEY GO I " ; yields
II THEY GO I II

MID $ (A $, 1 0) - all characters from position 10
to end of the contents of string
variable A$

M I D$ (" H I THERE ", a, 20)
- all characters from position

4 to end of string II H I
THERE "; yields II TH ERE II

Strings 87

Real arguments converted to integers

null string: a string containing no
characters

RIG H T $ extracts a substring from
the end of a string

Real arguments converted to integers

If the value you give for the starting position or the number of charac­
ters in the substring is a real number, MID $ truncates it to the next
lowest integer. If the designated starting pOint is greater than the
length of the string , or if the number of characters requested is 0,
MID $ yields the null string.

The starting position must be between 1 and 255, and the number of
characters between 0 and 255, or the program will halt with the
message

?ILLEGAL QUANTITY ERROR

If you omit the dollar sign ($) from the function name MID $, Applesoft
will treat MID as an arithmetic variable name, causing an error stop with
the message

?TYPE MISMATCH ERROR

The RIG H T $ Function

RIG H T $ extracts a specified number of characters from the end
(right end) of a string. The RIG H T $ function takes two arguments,
separated by a comma: the string from which the characters are to be
taken and the number of characters desired. For example,

R I GHT$ (" G I MME A BREAK ", 7)

RIGHT$ (NAME$, C + 2)

-last 7 characters of the string
II G I MME A BREAK " ;
yields II A BREAK II

- last C + 2 characters of
the contents of string variable
NAME$

If the value you give for the number of characters in the substring is a
real number, RIG H T $ truncates it to the next lowest integer. If the
value specified is greater than the length of the string , Applesoft re­
turns the entire string ; no extra characters are added.

The number of characters requested must be between 1 and 255 or
the program will halt with the message

?ILLEGAL QUANTIT Y ERRO R

If you omit the dollar sign ($) from the function name RIG H T $, Apple­
soft will treat RIG H T as an arithmetic variable name, causing an error
stop with the message

?TY PE MISMATCH ERROR

Arrays and Strings

4.2.5 String Conversion Functions

ASCII code: see Section 4.2.1

S T R $ converts a number to a string

Strings and numbers are not the same, even when the string looks
like a number:

2 * 123 -yields 246

2 * 1112311 - T Y P E MIS MAT C H error

LEFT$ ("123",2) -yields " 1 2 "

LEFT$ (123, 2) - T Y P E MIS MAT C H error

This section describes Applesoft's built-in functions for converting
between numeric and string values :

• S T R $ converts a number to a corresponding string.

• 1.J A L converts a string to a corresponding number.

• C H R $ converts an ASCII code to the corresponding character.

• AS C converts a character to the corresponding ASCII code.

The S T R $ Function

The S T R $ (for "string") function converts a numeric value into a
string representing that value. For example,

STR$ (-100)

STR$ (3.14159)

STR$ (MARK)

STR$ (COUNT'X,)

Strings

- a string representing the num­
ber - 1 0 0 ; yields " - 1 0 0 "

- a string representing the num­
ber 3 • 1 4 1 59 ; yields
" 3.14159 "

- a string representing the nu­
meric value of real variable
MARK

- a string representing the nu­
meric value of integer variable
COUNT'X,

- a string representing the nu­
meric value of the expression
B '" 2 - 4*A*C

89

t.J A L converts a string to a number

R I G H T $ function: see Section 4.2.4

90

The string produced by S T R $ is in the same format that Applesoft
uses to display or print numbers; see Appendix I, "Display Formats
for Numbers," for details. For example,

S T R $ (1 0 0 00 0 0 0 0) - yields " 1 00 000 0 0 0 "

STR$ (1 000 000 000) -yields" 1 E + 09"

STR$ (-.03) -yields" - • 03"

STR$ (-.003) - yields " - 3 E - 03 "

If the numeric value of the argument falls outside the allowable
range for real numbers (- 9. 99999999E + 37 to
+ 9 • 99999999 E + 37), the program wi ll halt with the message

?OI,JERFLOW ERROR

The I,J A L Function

The I,J A L (for "value") function converts a string to the numeric value
it represents. For example,

I,JAL (" 4096 ")

I,JAL ("-1.505E+2")

I,JAL (WHOLE$ + II 11 •

- number represented by the
string " 4 096 " ; yields 4 096

- number represented by the
string " - 1 • 505 E + 2 " ;
yields - 1 50 • 5

+ FRAC$)
- number represented by the

concatenation of strings
WHOLE$, " • " , and FRAC$

VAL (RIGHT$ (Q$, 4)

Arrays and Strings

- number represented by the
last 4 characters of string Q $

I,' A L recognizes same number formats
as I N PUT; see Section 5.1.2

C H R $ converts an ASCII code to the
corresponding character

ASCII code: see Section 4.2.1 and
Appendix C

Real arguments converted to integers

I.J A L recognizes the same number formats that can be used in key­
board input; see " Rules for Numeric Input" in Section 5.1.2, "The
IN PUT Statement." If 1.1 A L encounters a non-numeric character in
its argument string , it yields the numeric value of everything up to the
first non-numeric character, ignoring the rest of the string. (The digits
o through 8, the signs + and -, the decimal point (•), and the letter
E for scientific notation are considered numeric characters. Spaces
are also allowed, and are simply ignored.) If the first character in the
string is non-numeric, I.J A L yields a value of O. For example,

I.IAL ("12.54 OR SO") -yields 12.54

1.IAL ("ABOUT 4.57 ") -yields 0

If the absolute value of I,J A L 's result is greater than 1 E 3 8 or contains
more than 38 digits (including trailing zeros) , the program will halt with
the message

?DI)ERFLDW ERROR

The C H R $ Function

The C H R $ (for "character") function regards its single numeric ar­
gument as an ASCII character code and yields a one-character
string consisting of the corresponding character. For example ,

CHR$ (68)

CHR$ (47)

CHR$ (7)

CHR$ (C1)

CHR$ (L'X, + 64)

- character with ASC II code
68; yields the string " 0 "

-character with ASCII code 4 7 ;
yields the string " / "

-character with ASCII code 7 ;
yields a string containing
the ASCII bell character
([CONTROL I-G)

-character whose ASCII code
is the value of variable C 1

- character whose ASCII code
is the value of expression
Lt., + 64

If the value of the argument is a real number, C H R $ truncates it to the
next lowest integer. For example,

CHR$ (81.8)

Strings

-argument truncated to 8 1 ;
yields" Q"

91

A S C converts a character to the
corresponding ASCII code

ASCII code: see Section 4.2.1 and
AppendixC

MID $ function: see Section 4.2.4

null string: a string containing no
characters

92

An argument less than 0 or greater than 255 will cause the program to
halt with the message

?ILLEGAL QUANTITY ERROR

The AS C Function

The AS C (for "ASCII ") function takes a single string argument and
yields the ASCII code corresponding to the first character in the
string . For example,

AS C (" D II) -ASCII code for character D;
yields 68

AS C (" / ") -ASCII code for character / ;
yields 47

ASC (" e. e. cUfTlfTlings")

ASC (50$)

ASC (MID$ (NAME$, 5)

-ASCII code for character e ;
yields 101

-ASCII code for the first charac­
ter in string B 0 $

-ASCII code for the fifth charac­
ter in string NAME$

If the argument given to AS C is the null string, the program will halt with
the message

?ILLEGAL QUANTITY ERROR

Arrays and Strings

Input/Output

95 5.1 Input
96 5.1.1 The I N # Statement
97 5.1.2 The I N PUT Statement
98 Multiple Inputs on the Same Line
99 Rules for String Input

100 Rules for Numeric Input
102 An " Input Anything" Routine
104 5.1.3 The GET Statement
105 5.1.4 The REA D and D A T A Statements
108 5.1.5 The RESTDRE Statement
109 5.1 .6 Miscellaneous Input Facilities
109 The Hand Controls
110 Cassette Input
111 5.2 Output
111 5.2.1 The P R # Statement
113 5.2 .2 The P R I NT Statement
117 5.2.3 Number Formats
119 5.2.4 Formatting Text on the Screen
119 The T E){ T Statement
119 The H D M E Statement
120 The S PC Function
121 The TAB Function
122 The H TAB Statement
124 The l,J TAB Statement
125 The PO S Function
126 The I N l,J E R S E Statement
127 The F LAS H Statement
128 The NOR MAL Statement
128 The S PEE D = Statement
129 The Text Window
129 5.2.5 Miscellaneous Output Facil ities
130 Controlling the Speaker
131 Annunciator Output
131 The Utility Strobe
131 Cassette Output

Input/Output

•

'--

input: see Section 5.1

output: see Section 5.2

5.1

Input/Output

This chapter is concerned with the ways in which Applesoft programs
communicate with the outside world. Here are described Applesoft's
facilities for getting information into and out of the computer and for
controlling the way information is presented.

Section 5.1 , " Input," deals with the various statements through which
Applesoft programs receive information for processing.

Section 5.2, "Output," describes how programs transfer information
to the "outside world": to the display screen, printers, and so forth .

Input
The input statements discussed in this section enable Applesoft pro-

input: the transfer of information into the grams to receive information for processing, either from the keyboard
computer from an external source or from a peripheral device connected to the computer via one of the

expansion slots:

I N# statement: see Section 5.1.1

I N PUT statement: see Section 5.1 .2

GET statement: see Section 5.1 .3

REA 0 statement: see Section 5.1 .4

OAT A statement: see Section 5.1.4

RES TOR E statement: see Section
5.1.5

miscellaneous input: see Section 5.1.6

•

•

•

•

•

The I N# statement controls the source from which the com­
puter receives its input.

The I N PUT statement accepts a line of input from the current
input device.

The GET statement reads a single character from the current in­
put device.

The READ, DATA, and RES T DRE statements are used to read
information from within the running program itself.

A few miscellaneous input facilities are available for reading the
hand controls and for reading information from a cassette tape
recorder.

Input 95

5.1 .1

I N # specifies source for subsequent
input

expansion slot: see Apple lie Owner's
Manual and Apple lie Reference Manual

Slot number 0 specifies input from
keyboard

GET statement: see Section 5.1.3

PR# statement: see Section 5.2.1

Be careful!

I CONTRO L I-I RESET I: see Section 1.3.2

96

The I N # Statement
IN# 2
I N#)(
IN# SLOT - J

The I N# statement specifies the source from which the computer
will receive subsequent input. The expression following the keyword
I N# should evaluate to a number between 0 and 7, designating the
expansion slot from which input is to be taken.

When Applesoft is started up, it is set to receive input from the
keyboard . Executing an I N # statement with a slot number from 1
to 7 instructs Applesoft to receive input instead from the peripheral
input device (such as a terminal or modem) connected to the
designated slot. A slot number of 0 reestablishes the keyboard as
the current input device. For example, the following program
fragment reads a single character from the device connected to
slot 2, then reestablishes keyboard input:

510 IN# 2 -accept input from device in
slot 2

520 GET A$ -read one character from
device in slot 2

530 IN# 0 -accept future input from
keyboard

Notice that the character # is part of the keyword I N # and cannot
be omitted.

Restarting the System with I N # : If the slot designated in an I N # or
P R # statement contains a disk controller card , Applesoft will attempt to
restart (often called "booting") the system from the disk contained in
drive 1 connected to that slot. When you do this on purpose, it's the
usual way of restarting the system from within Applesoft ; when you do it
by mistake, it can be a catastrophe.

Warning
If no input device is connected to the slot designated in an I N# state­
ment, the system will hang . To recover, use I CONTROL 1-1 RESET f

A slot number between 8 and 255 will cause unpredictable and possi­
bly aberrant behavior.

Input/Output

A slot number less than 0 or greater than 255 will stop the program
with the message

?ILLEGAL QUANTITY ERROR

5.1.2 The I N PUT Statement

INPUT PRICE

I N PUT reads a line of input

current input device: see Section 5.1.1

prompt: to remind or signal the user that
some action is expected

current output device: see Section
5.2.1

Prompting message optional

INPUT MNTH%, DAY%, YEAR%
INPUT "WHAT IS YOUR PASSWORD? ";

PASSWD$
INPUT "";){

The I N PUT statement accepts a line of input (terminated by
I RETURN I) from the current input device, containing values to be as­
signed to one or more variables. The variables to be read are listed in
the IN PUT statement, separated by commas.

The I N PUT statement may optionally include a message to be dis­
played or printed on the current output device, prompting the user for
the desired input. If present, the prompting message must be given
as a string constant immediately following the keyword I N PU T and
followed by a semicolon to separate it from the list of variable names.
The specified prompting string is reproduced exactly as written ; if
displayed on the screen, it is immediately followed on the same line
by the cursor. If the prompting message is omitted from the I N PUT
statement, a question mark (?) is used ; the question mark can be
suppressed by supplying a null string as the prompting message. For
example,

10 PRINT "WHAT IS YOUR AGE, PLEASE? "
-display prompting message on

its own line
20 I N PUT AGE -prompt with ? and wait for

response
30 INPUT "YOUR STREET NAME? "; ST$

-display prompting message on
same line as cursor and wait
for response

40 PRINT "PLEASE TYPE YOUR FIRST AND
LAST NAMES, SEPARATED BY A COMMA : "

-display prompting message on
its own line

50 I N PUT " "; F N $, L N $ -suppress? and wait for two
responses separated by a
comma

Input 97

Colon causes remainder of line to be
ignored

[CONT ROL I-e : see Section 1.3.2

Length of input line limited

No I N PUT in immediate execution

98

The I N PUT statement in line 20 above displays a question mark to
prompt the user for input, followed by the cursor. The I N PUT state­
ment in line 30 displays the prompting message YOU R S T R E E T
N A ME? instead of the question mark, again followed by the cursor.
The I N PUT statement in line 50 displays the cursor only, with no
question mark and no prompting message of any kind .

If the user types a colon (:) as part of an input line, the remainder of that
input line is ignored. The ASCII null character ([CON TROL I-C) has the
same effect.

An IN PUT statement can be interrupted by [CONTROL I-e , but only if it
is the first character typed on an input line. The program halts when the
[RETURN I key is pressed at the end of that line. A [CONTROL I-C that is
not the first character of the input line is treated as part of the input, the
same as any other character.

Be sure to give your users clear instructions about how long their re­
sponses can be. If the user types an input line longer than 255 charac­
ters , the whole line will be canceled and will have to be retyped from the
beginning (the Apple lie's speaker will beep from about the 245th char­
acter, but no message will be displayed). A response of more than 239
but fewer than 255 characters will be truncated to 239 characters with no
warning message displayed.

The I N PUT statement can be executed only from within a program ;
you can't use this statement in immediate execution.

Multiple Inputs on the Same Line

The I N PUT statement may list any number of variables to be read
from the same input line. The user's responses to these variables
must be separated by commas. You can mix string and numeric vari­
ables in the same I N PU T statement, but the user's responses must
each be of the correct type.

If the user presses the l RETURN Ikey (or types a colon or [CONTROLI-@)
without typing enough responses for all the variables listed in the
I N PUT statement, Applesoft displays two question marks to show
that it expects a further response. If a colon , comma, or [CON TROLI- @
is the first character of a response , Applesoft interprets the response
as zero or as the null string (depending on the type of variable speci­
fied) and the program continues with the next statement.

Input/Output

Be kind to your users!

Quotation marks optional

Leading spaces ignored

Rules for quoted responses

If the user types more responses than Applesoft expects, or types a
colon into the final expected response, Applesoft displays the
message

?E>(TRA IGNORED

and program execution continues. If the last response is shortened
bya [CONTROL [-@-theprogramcontinuesbutnomessageis
displayed.

Programming Tip: Multiple inputs on the same line can be confusing
for your users; it's best not to use them except for "quick and dirty" test­
ing purposes while you 're debugging your code. Instead of asking for
something terribly unfriendly like

PLEASE TYPE LAST NAMEt FIRST NAMEt MIDDLE
INITIAL:

use a form such as

PLEASE TYPE YOUR FIRST NAME:

followed by

PLEASE TYPE YOUR MIDDLE INITIAL;
JUST PRESS RETURN IF YOU HAVE NONE

and so on. You'll be able to give much clearer instructions, your user will
have an easier time giving you what you want, and you 'll be better able to
detect and deal with errors in the input.

Rules for String Input

The following rules govern the responses the user types to string
variables in the I N PUT statement:

• The user's response to a string variable may be typed with or
without enclosing quotation marks.

• Applesoft ignores all spaces preceding the first nonspace
character.

• If the first nonspace character is a quotation mark, the input
string is considered to include everything up to (but not including)
the next quotation mark, [CONT ROL [-@ , or [RETUR N I. The string
may include commas and colons, but may not include quotation
marks, since these would be interpreted as marking the end of
the string . Spaces following the closing quotation mark are ig­
nored, but any other character causes the response to be re­
jected with the message

?REENTER

Input 99

Rules for unquoted responses

Null responses OK

Control characters cause problems

String expressions don 't work

All spaces ignored

• If the first nonspace character is not a quotation mark, the input
string includes everything up to (but not including) the next
comma, colon , 1 CONTROL I-@ , or 1 RETU RN I. The string may in­
clude quotation marks, but may not include commas or colons,
since these would be interpreted as marking the end of the string.
Spaces following the last nonspace character are accepted as
part of the input string .

• If the first nonspace character is a comma, colon , 1 CONTRO L I-@ ,
or 1 RETUR N I, the response is interpreted as the null string and
program execution continues.

• The following control characters cannot be included in the
response :

• 1 CON TRO L I-H (equivalenttothe l LEFT - ARROW I or backspace
key)

• 1 CONTROL I-M (equivalent to the 1 RE TURN I key)

• I CONTROL 1-)-((cancels the input line)

• 1 CONTROL I-@ (ASCII null character; causes remainder of in­
put line to be ignored)

In general , control characters cause problems and should not be
used in responding to IN PUT statements.

• The response to a string variable must be a single string or a con­
stant;. it cannot be a string expression involving concatenation ,
L EFT $, MID $, R I GH T $, or other string operations. Re­
sponses such as

A$ + B$
L EFT$ (MNTH$, 3)
R I GHT$ (N AME$, L - (F L + 2))

will be accepted exactly as typed , character for character (up to
the first comma) , and will not be evaluated as string expressions.

Rules for Numeric Input

Listed below are the rules governing the user's responses to numeric
variables. If a response is typed that doesn't conform to these ru les,
Applesoft will display the message

?REENTER

reissue the prompting message, and wait for another response .

• Spaces are ignored in any position.

Input/Output

Numeric characters only

scientific notation: see Section 1.2

Form of numbers

Degenerate cases interpreted as 0

Null responses interpreted as 0

Most control characters illegal

Arithmetic expressions invalid

• The response is considered to include all nonspace characters
up to (but not including) the next comma, colon , I CONT ROL I-@, or
I RETU RN I·

• The response may include numeric characters and spaces only.
Numeric characters include the digits 0 to 8 , the signs + and - ,
the period (decimal point), and the letter E for scientific notation.
A respons~ containing a non-numeric character in any position is
invalid.

• Numeric responses consist of the following elements. Any or all
of these elements may be omitted, except that the sign or value
of the exponent may not appear unless preceded by the letter E.
Those that are included must be given in the order listed:

• A sign (+ or -)

• One or more digits

• A decimal point (•)

• One or more digits

• The letter E for scientific notation

• A sign (+ or -) for the exponent

• One or more digits

Even forms such as + E - and. E are accepted, and are inter­
preted as o.

• If the first nonspace character is a comma, colon , or I RETURN j,
the response is interpreted as 0 and program execution contin­
ues. A response beginning with I CONTR OL I-@ is invalid.

• The following control characters have special meanings:

• I CONTROLJ -H (equivalent to the I LEFT -ARROW l orbackspace
key)

• I CONTROL I-M (equivalent to the I RETU RN I key)

• I CONT ROL 1->((cancels the input line)

• I CONTROL I-@ (ASCII null character; causes remainder of in­
put line to be ignored)

A response contain ing any other control character, in any posi­
tion , is invalid .

• The response to a numeric variable must be a single number; it
cannot be a numeric expression involving arithmetic operations

Input 101

l) AL function: see Section 4.2.5

PO K E statement: see Section 7.1.2

102

or function calls. Responses such as

112
B ··· 2 - 4*A*C
SQR (2)

are invalid because of the non-numeric characters.

It's a good idea to use string variables to accept all numeric inputs, using
the l..J A L function to convert them to numeric values. This makes it eas­
ier to detect and deal with user errors and to display alternate prompting
messages.

An "Input Anything" Routine

The I N PUT statement interprets the colon and the comma (and
sometimes the quotation mark) as special symbols and rejects any­
thing typed after them in the input line. Here's a bit of magic you can
use if you anticipate that your user's response may include any of
these characters.

The following Applesoft subroutine uses the PO K E statement to
store a special machine-language routine into the computer's mem­
ory, one byte at a time , beginning at address 7 G 8 . The machine-lan­
guage routine will accept all characters in the input, including colons,
commas, and quotation marks, without "censoring" them, and will
assign them, character by character, to a string variable for further
processing. (The line numbers used below are arbitrary; you can
locate this subroutine anywhere you like in your program.)

G2000 REM SET UP "INPUT ANYTHING"
ROUTINE

G 2 0 1 0 LET I N $ ")(" - I N $ must be first variable
created

G2020 FOR J = 7G8 TO 780

G2030 READ I

G2040 POKE J t I
G2050 NE)<T J
G20GO DATA lG2t Ot

138t 145t
105 t 200 t
57 t 213

G2070 RETURN

Input/Output

-these are memory addresses
where machine language is to
be stored

-get a byte of machine
language

-store it at next location
- go back for next byte

32 t 117 t 253 t 1 GO t 2 t
105 t 200 t 1 G8 tOt iLI5 t
lG8t 2t 145t 105t 7Gt

-these are the actual bytes of
machine language

-return to statement following
point of call

CAL L statement: see Section 7.1.3

The D A T A statement containing the machine language must be re­
produced in your program exactly as shown.

The following subroutine uses the CAL L statement to call the ma­
chine-language routine at address 768. (Again, this subroutine can
be located anywhere in your Applesoft program, not necessarily at
line number 63000.)

63000 REM CALL "INPUT ANYTHING " ROUTINE
630 1 0 CAL L 768 -call machine-language routine
63020 IN$ = MIO$ (IN$ t 1)

63030 RETURN

- I N $ now holds the input that
the machine-language routine
accepted

-return to statement following
point of call

To accept a line of input from the user, instead of using a statement
such as

100 INPUT S$

substitute this line:

100 GOSUB 630 0 0 : LET S$ = IN$

The variable S $ now contains whatever input the user typed , includ­
ing the "forbidden" characters; your program can proceed to process
the input in whatever way is appropriate.

For technical reasons having to do with the way variables are stored in
memory, the string variable used to pass the user's response between
machine language and Applesoft (arbitrarily called IN $ in the example
above) must be the first variable used or defined in the program. To be
safe, you might want to call the " input anything" setup routine from line
number 0:

o GOSUB 62000

Input 103

5.1.3 The GET Statement

GET L$

GE T reads a single input character

current input device: see Section 5.1 .1

semicolon: see Section 5.2.2

No GE T in immediate execution

I CO NTRO L I-c won't interrupt a GET

I CO NT ROL I-C: see Section 1.3.2

104

GET S$ (N)
GET C1$, C2 $, C3$

The GET statement reads a single character from the current input
device. Although it can be used to read from any peripheral input de­
vice (such as a terminal or modem), it is seldom used in actual prac­
tice with anything other than the keyboard .

GET accepts one character from the current input device for each of
the string variables listed following the keyword GET . Each single
character is read as soon as it is typed , without waiting for the user to
press the I RETURN 1 key. The character is not displayed on the
screen, and the cursor is not moved in any way.

Here's an example of a program fragment using GET :

310 PRINT "PRESS T HE ' 'I'' KE Y TO GO ON:" i
-prompt user for response

(semicolon keeps cursor on
same line)

320 GET A $ -wait for user to press key
3 3 0 IF A$ <:> "'I''' THE N 3 20

-keep cycling until user presses
correct key

340 P R I NT - move cursor to new line (can­
cels effect of semicolon from
Iine 3 10) -J

350 PR I NT "T HANK YOU" -politeness from machines is
always welcome

The GET statement can be executed only from within a program; you
can't use this statement in immediate execution.

If typed in response to aGE T , I CONT ROL I-C is treated like any other
character; it does not interrupt program execution.

Input/Output

DOS: Disk Operating System A DOS command issued immediately after aGE T will not be recog­
nized. For DOS commands to be executed properly, you must issue a
I RETURN I character immediately after the GET and before the DOS
command. An easy way to do this is with an empty P R I NT statement:

PRINT

See your DOS manual for more information.

Numeric Inputs with GET : The GET statement is neither designed nor
intended to obtain values for numeric variables. You may attempt to do
so at your own peril, subject to the following limitations:

• A comma or a colon will result in the message

?E){TRA IGNORED

and will be interpreted as a numeric value of O.

• A plus sign, minus sign , I CONTROL I-@, E, space, or period will be
interpreted as a numeric value of O.

• Any non-numeric character will cause the program to halt with a
syntax error.

It's better to use only string variables with the GET statement, using the
I) AL function : see Section 4.2.5 t.J A L function to convert the response to a numeric value.

5.1.4 The REA D and D A T A Statements
READ PRICE
READ A I B I M'X, (I) I J'X, I S$ (2 * J - 1) I T$
DAT A 12 . 8 1 HI HO, 168
DA TA 2 . 2 36

REA D reads information from body of The RE A 0 and 0 A T A statements are used to read information from
program with in the body of the Applesoft program itself, rather than from the

D AT A sets up information for use by keyboard or an input device. There may be any number of 0 A T A
READ statements in a program, each containing a list of one or more items

of information (numbers or strings) following the keyword 0 A T A and
separated by commas. All of the 0 A T A statements in the program
are considered to form one long list of items, in sequential order of
line numbers ; each REA 0 statement reads one or more items from
this list.

Input 105

RES TOR E statement: see Section
5.1.5

Don't read past end of list!

Rules for numeric and string input:
see Section 5.1.2

D A T A statements may appear
anywhere

106

Each time it executes aRE A D statement, Applesoft remembers the
last item read from the D A T A list. The next REA D always begins
with the next item in the list. There is no way to "back up" or "skip for­
ward" in the D A T A list, but you can start over from the beginning of
the list with the RES TOR E statement.

An attempt to read past the end of the D A T A list will halt the program
with a message such as

?OUT OF DATA ERROR IN la65

identifying the line number of the REA D statement in which the error oc­
curred. Leaving part of the 0 A T A list unread at the end of the program
does not cause an error.

The items in a D A T A statement are separated by commas and follow
the usual rules for numeric and string input, except that a D A T A
statement cannot contain a colon (:). The number of items in each
D A T A statement is limited only by the length of the program line. A
OAT A statement may appear anywhere in your program ; it need not
precede the REA D statement that uses it. There is no limit to the
number of D A T A statements in a program.

Here's an example program showing the use of the REA D and
OAT A statements:

10 DATA "GO WEST, YOUNG MAN"
-item containing a comma; OK

between quotation marks
20 DATA 3.1a158, 2, "SAM"

-mixed types in same D A T A
statement

3 0 READ A$, B -read GO WEST, YOUNG

ao READ Cl, D$, E$

Input/Output

MAN into string variable A $
and 3 • 1 4 1 59 into real vari­
able B; notice that these items
come from two different
D A T A statements

-read 2 into integer variable C 'X"

SAM into string variable D$,
and THE "WORLD" IS
F L A T into string variable E $;
begins with next item following
previous REA D statement

Null items interpreted as 0 or null string

1,'AL function: see Section 4.2.5

Most control characters treated as
ordinary characters

I CONTROL I-c: see Section 1.3 .2

SO DATA THE "WDRLD" IS FLAT

GO PRINT E$

70 PRINT A$

80 DATA 88. G, 37,

80 END

-item containing quotation
marks; notice that this item fol­
lows the REA D statement that
uses it

-display THE "WORLD"
IS FLAT

- display GO WEST,
YOUNG MAN

-2 73.1G
-these items never read

Null items in a D A T A statement are interpreted as 0 or the null
string , depending on the type of variable to which they are assigned
in aRE A D statement. A null item is read whenever there are no non­
space characters

• between the keyword D A T A and the end of the program line

• between the keyword D A T A and the first comma

• between two consecutive commas

• between the last comma and the end of the program line

Thus the statement

DATA, ,

contains three null items.

An attempt to read a string value in a 0 A T A statement with a numeric
variable in aRE A 0 statement causes a syntax error. Numeric values
can be read into string variables , but must be evaluated with the t,J A L
function before they can be used as numbers.

The characters I CONTROL I-H, I CONTROL I-M, I CONTROL 1-:<, and
I CONTROL I-@ cannot be embedded in a D A T A statement. Any other
control character typed into a 0 A T A statement is treated as an
ordinary character and becomes part of the input. A I CONTROL I-C
character in a 0 A T A statement will not interrupt the program.

The REA 0 statement can be executed only from within a program ; you
can't use this statement in immediate execution.

Input

RESTOR E restarts DA TA list

108

5.1.5 The RESTORE Statement

RES TORE

The RES TOR E statement restarts the D A T A list from the beginning.
After RES TOR E is executed, the next REA D statement will read the
first item in the first D A T A statement in the program. For example,

10 DATA "GO WEST, YOUNG MAN "
20 DATA 3.1a158, 2, "SAM "
30 READ A$, B -read GO WEST, YOU NG

ao READ C%, D$, E$

50 DATA THE " WORLD"
GO PRIN T E$

70 RESTORE
80 READ Q$

80 PRINT Q$

100 PRIN T A$

110 END

MAN into string variable A $
and 3 • 1 a 1 58 into real vari­
able B

-read 2 into integer variable C/..,
SAM into string variable D $,
and THE "WORLD " I S
F L A T into string variable E $

IS FLA T
-display THE "WD RLD"

IS FLAT
-restart list from beginning
-read GD WES T, YOU NG

MAN into string variable Q $
-display GO WE ST,

YOUNG MAN
-display GO WES T,

YOUNG MAN (value of A $
still intact)

120 DATA 88.G, 37, - 273.1G
-these items never read

There is no easy way to reposition the D A T A list to a specific desired
item or line number. The only other Applesoft statement that affects
the positioning of the D A T A list is RUN, which also restarts the list
from the beginning.

Input/Output

5.1.6 Miscellaneous Input Facilities

P D L reads dials on hand controls

Standard hand controls numbered 0
and 1

Result of P D L is between 0 and 255

This section covers Applesoft's facilities for dealing with the remain­
ing input features of the Apple lie : the hand controls and cassette
tape input.

The Hand Controls

If you have a set of hand controls connected to your computer, you
can use the P D L function to read their dial settings. The Apple lie
can accommodate as many as four hand controls, numbered 0 to 3,
connected through the 9-pin hand control connector on the comput­
er's back panel or the GAME I/O connector inside the case on the
main logic board. However, the standard Apple hand control set con­
sists of only two controls, numbered 0 and 1.

The P D L function takes one argument, the number of the hand con­
trol to be read, and yields an integer from 0 to 255 representing the
current position of the dial on that control. For example,

10 LET X = PDL (0)
20 LET P% = X * 4 0

30 HTAB p 'Y"

40 PRINT " < "
50 LET Y = PD L (1)
60 LET 0% = Y * 40

-read hand control 0
/ 2 56 + 1
-reduce to a number from 1 to

40
-move cursor to indicated posi­

tion on current line
-display the character <
-read hand control 1

/ 2 5 6 + 1
-reduce to a number from 1 to

4 0
70 H TAB O/" -move cursor to indicated posi-

tion on current line
8 0 P R I NT" > " -display the character >
90 IF)-(= 0 AND Y = 0 THEN END

-end program when both hand
controls read 0

1 00 GOT 0 1 0 -otherwise repeat the process

If the argument given to POL is less than 0 or greater than 2 5 5 , the
program will halt with the message

?ILLEGAL QUAN TITY ERROR

If the argument is between LI and 255 , or if no hand control of the desig­
nated number is connected, the results are unpredictable.

Input 109

Allow a delay between calls to P D L

Reading the hand control buttons

PEE K function: see Section 7.1 .1

For more information .. .

LOA D command: see Section 1.2.6 and
Appendix M

R E CAL L statement: see Appendix M

S H LOA D statement: see Section 6.3.2
and Appendix M

If your program reads two hand controls in consecutive statements, the
reading from the first hand control may affect the reading from the sec­
ond. To obtain more accurate readings, allow several program lines be­
tween calls to P D L or use a short delay loop such as

FOR X = 1 TO 10 : NEXT X

between P D L calls.

Historical Note: The function name P D L stands for "paddle," which in
turn is short for "game paddle," an older name for the Apple lie's hand
controls.

The buttons on the hand controls can be read with the function calis

PEEK (-18287)

PEEK (-18288)

PEEK (-18285)

-yields a value > 1 27 if button
on hand control 0 is being
pressed, < = 127 if not

-yields a value > 1 27 if button
on hand control 1 is being
pressed, < = 127 if not

-yields a value > 1 27 if button
on hand control 2 is being
pressed, < = 127 if not

There is no way to read the button on hand control 3. The PEE K calis
listed above are also used to read the "apple keys" on the Apple lie
keyboard : the I OPEN - APPLE I key is equivalent to the button on hand
control 0, and [SOLI 0- APPLE I is equivalent to the button on hand
control 1.

See the Apple lie Reference Manual for detailed technical information
on the 9-pin hand control connector and the internal GAME I/O
connector.

Cassette Input

Three Applesoft statements, LOA D, R E CAL L, and S H LOA D, can
be used to read information from a cassette tape recorder. LOA D
reads an Applesoft program into memory from tape; R E CAL L reads
the contents of an integer or real array; S H LOA D reads a shape ta­
ble for use in high-resolution graphics. For details, see Appendix M,
" If You Have a Cassette Recorder."

Input/Output

5.2
output: the transfer of information from
the computer to an external destination

P R# statement: see Section 5.2.1

P R I NT statement: see Section 5.2.2

number formats: see Section 5.2.3

screen formatting: see Section 5.2.4

miscellaneous output: see Section
5.2.5

Output
This section describes the output facilities available in Applesoft:

• Section 5.2.1 covers the P R # statement, which controls the des­
tination to which output is directed.

• Section 5.2.2 contains a detailed discussion of the P R I NT
statement, Applesoft's primary output statement.

• Section 5.2.3 gives details on the way numbers are formatted
when written with the P R I NT statement.

• Section 5.2.4 describes Applesoft's wide variety of facilities for
controlling the format in which textual information is displayed on
the screen.

• Section 5.2.5 touches briefly on various miscellaneous output fa­
cilities not covered elsewhere: the Apple lie's built-in speaker,
annunciator outputs, utility strobe, and cassette tape output.

5.2.1 The P R # Statement

PR# 1

P R # specifies destination for subse­
quent output

expansion slot: see Apple lie Owner's
Manual and Apple lie Reference Manual

Slot number (I specifies output to the
screen

PR# >{

PR# SLOT - J

The P R # statement specifies the destination to which the computer
will send subsequent output. The expression following the keyword
P R # should evaluate to a number between 0 and 7 , designating the
expansion slot to which output is to be sent.

When Applesoft is started up, it is set to send output to the display
screen. Executing aPR # statement with a slot number from 1 to 7
instructs Applesoft to send output instead to the peripheral output de­
vice (such as a printer, terminal , or modem) connected to the desig­
nated slot. A slot number of 0 reestablishes the display screen as the
current output device. For example, the following program fragment
writes a string of characters to the device connected to slot 1 , then re­
establishes screen output:

610 PR# 1
620 PRINT Z$

630 PR# 0

-send output to device in slot 1
-write contents of string vari-

able Z $ to device in slot 1
-send future output to screen

Notice that the character # is part of the keyword P R # and cannot
be omitted.

Output

I N # statement: see Section 5.1.1

Be careful!

I CONT ROL I-I RE SET I: see Section 1.3.2

112

Restarting the System with P R #: If the slot designated in an I N # or
P R # statement contains a disk controller card, Applesoft will attempt to
restart (often called "booting") the system from the disk contained in
drive 1 connected to that slot. When you do this on purpose, it's the
usual way of restarting the system from within Applesoft ; when you do it
by mistake, it can be a catastrophe.

Warning
If no output device is connected to the slot designated in aPR # state­
ment, the system will hang. To recover, use I CONTROL I- IRE SET I.

A slot number between 8 and 255 will cause unpredictable and possi­
bly aberrant behavior.

Warning
If you are using the Apple lie 80-Column Text Card, always be sure to
deactivate it by typing ~ I CONTROL I-Q before using P R# to transfer
output to another slot. Leaving the Text Card active while using a printer
or while restarting the system from a disk may produce amusing but
confusing fireworks on the screen .

Although the Text Card is installed in the Apple lie's special auxiliary
slot , it appears to the computer as if it were in slot 3. So to reactivate the
Text Card after sending output to another device, type

PR# 3

You can also return output to the 40-column screen with the Text Card
inactive by typing

PR# 0

However, don't use P R # 0 to redirect output directly from the Text
Card to the 40-column screen without first deactivating the Text Card
with ~ I CONTROL I-Q . Under certain circumstances, this may cause
text intended for the screen to be written outside the area of memory
reserved for it, possibly destroying your Applesoft program or other
important information.

A slot number less than 0 or greater than 255 will stop the program
with the message

?ILLEGAL QUANTITY ERROR

Input/Output

5.2.2 The P R I NT Statement

PRINT
PRINT P$, Q, R'X.
PRINT "DISCRIMINANT = "; 5"' 2 - 4*A*C
PR I NT LEFT$ (FN$, 1) + "." + LN$
PRINT TAB (M); "*"; TAB (M + N);

"***"; TAB (M + N + N); "* "

P R I NT writes to the current output
device

The P R I NT statement writes output to the current output device.
Expressions representing the values to be written are listed after the
keyword P R I NT , separated by commas or semicolons. current output device: see Section

5.2.1

number formats: see Section 5.2.3

5 P C function: see Section 5.2.4

TAB function: see Section 5.2.4

Any expression may be included in aPR I NT statement. Each
expression in the list following the keyword P R I NTis evaluated. If
the value of the expression is a string, the characters of the string are
written to the current output device; if the value is a number, it is writ­
ten according to the rules discussed in Section 5.2.3, "Number For­
mats." Calls to the special functions S PC and T A 5 may also be
included in aPR I NT list; they do not cause anything to be written ,
but control the positioning of the next item.

Semicolon suppresses space after an
item

When an item in the P R I NT list is followed by a semicolon, the cur­
sor (if output is going to the screen) or print head (if to a printer) is left
positioned immediately after the last character in the item. The next
item written will begin in the next available column, with no interven­
ing spaces. A semicolon at the end of aPR I NT statement causes
the cursor or print head to be left at the end of that line, and prevents
a new line from being started. For example, the statement

PRINT 1; 2; 3; 4;

will produce the output

• 1234

and will leave the cursor or print head positioned in the column imme­
diately following the digit 4 . The statement

PRINT 113; (2 * 4); 51

will produce the output

• .333333333851

Output 113

SO-Column Text Card: see Apple lie
Owner's Manual, Apple lie aO-Column
Text Card Manual

concatenation: see Section 4.2.2

114

If two consecutive items in aPR I NT list are not separated by either a
comma or a semicolon, a semicolon is understood.

The Apple lie's normal display is 40 columns wide. After Applesoft dis­
plays the 40th character on a line, it automatically sends the cursor to
the beginning of the next line. The next P R I NT statement executed will
start another new line, causing an unintended blank line to appear on
the screen. This happens even if you have the Apple lie SO-Column Text
Card installed and running in "active SO" mode; Applesoft doesn't know
about the SO-column display and will still break each output line after 40
characters.

For example, the statements

10 PRINT "THIS MESSAGE HAS PRECISELY 40
CHARACTERS"

20 PRINT "SO THERE'S A BLANK LINE ON THE
SCREEN"

will display the output

THIS MESSAGE HAS PRECISELY 40 CHARACTERS

SO THERE'S A BLANK LINE ON THE SCREEN

To eliminate the blank line, add a semicolon to the end of line 1 0 :

10 PRINT "THIS MESSAGE HAS PRECISEL Y 40
CHARACTERS";

Now you'll get this :

THIS MESSAGE HAS PRECISELY 40 CHARACTERS
SO THERE'S A BLANK LINE ON THE SCREEN

The second line of this message is now a lie.

A statement such as

PRINT A$ + B$

causes a halt with the message

?STRING TOO LONG ERROR

if the combined length of the concatenated strings is greater than 255.
However, you can print the apparent concatenation regardless of length
by using a semicolon :

PRINT A$j B$

Input/Output

Comma advances to next tab position

•

•
SO-Column Text Card: see Apple /Ie
Owner's Manual, Apple /Ie a~-Column
Text Card Manual

text window: see Section 5.2.4, Section
F.1 , and the Apple /Ie Reference Manual

P R I NT by itself starts a new line

When an item in the P R I NT list is followed by a comma, the cursor
or print head is advanced to the next available tab position: column
17 or 33 of the current line or column 1 of the next line. The next item
written will begin at the tab position . A series of consecutive commas
will advance the cursor or print head a corresponding number of tab
positions. A comma at the end of aPR I NT statement causes the
cursor or print head to be left at the next available tab position , and
may prevent a new line from being started. For example, the
statement

PRINT 1,2,3, LI,

will produce the output

1
1I

2 3

and will leave the cursor or print head positioned in column 17 of the
second line, directly under the digit 2 . The statement

PRINT 1/3, (2 * LI), 51

will produce the output

.333333333 8 51

If any character appears in columns 24 to 32, or if you have the Apple lie
80-Column Text Card installed in your computer and running in "active
80" mode, then column 33 is not available as a tab position ; a comma
after column 17 will cause the next item to start at column 1 of the next
line.

If the text window is set to fewer than 33 columns wide, commas in a
P R I NT statement do not function properly and may cause text to be
displayed outside the text window.

APR I NT statement that doesn't end with a comma or semicolon al­
ways starts a new line after writing its last item and leaves the cursor
or print head positioned in column 1 of the new line. The statement

PRINT

simply starts a new line. If the cursor or print head was already at the
beginning of a line, this statement causes a blank line to be displayed
or printed.

Output 115

? stands for PR I NT

116

Here's an example program using some of the features of P R I NT
discussed above:

10 LET A = 5.35 : LE T C$ = "FRED" : L ET
G /., = 1 6 -set up series of variables

20 PRINT "STUFF AND NONSENSE "

3 0 PRINT
4 0 PRINT "A " . ,
5 0 PR I NT A

60 PRINT " G /., " . ,

7 0 PR I NT " C$ "

80 PRINT A * G'X,

G /.,

C$

-display message and start
new line

-display a blank line
-display message without start-

ing a new line
-display 5 • 35 on same line as

message from program line
4 0; start new line

-display message and value
16 on same line; start new
line

-display message, advance to
next tab position, and display
string F RED ; start new line

-display value of expression
A * G'X, (85.6)andstart
newline

When executed, this program will produce the following output:

STUFF AND NONSENSE

A = 5.35
G'X, = 16
C$ =
85.6

FRED

Abbreviation: You can use a question mark (?) as an abbreviation for
the keyword P R I NT; if you use it, it appears as P R I NT in a program
listing. If you type

100 ? A$
LIST

Applesoft will display

100 PRINT A$

Input/Output

-display string A $
-list program

- Applesoft sees? as P R I NT

Ranges of numeric values

5.2.3 Number Formats

This section describes the formats in which Applesoft displays or
prints numeric values. Numbers may not always be formatted in the
way you might expect; this is particularly true for numbers more than
nine digits long or for exceptionally small numbers.

Numeric values in Applesoft must be in the range - 1"* 1 0 ... 38 to
1 "* 1 <) ... 38 . Any number whose absolute value is less than approxi­
mately 3"* 1 0 ... - 39 is converted to zero. True integer values to
be assigned to integer variables (such as A /.,) must be in the range
- 3 2 7 6 7 to + 32767.

A number typed from the keyboard or a numeric constant used in an
Applesoft program may have as many as 38 digits. However, only
nine digits are significant, and the last digit is rounded off. An Apple­
soft statement that you type as

PRINT 1.23456787654321

will display

1.23456788

on the screen.

-you type this from the
keyboard

-you get this on the screen

All arithmetic done on reals Integers are always converted to real form before being used in arith­
metic calculations, and the results are converted back to integer form
when assigned to an integer variable. Conversion from real to integer

truncate: to convert a real number to the form is by truncation to the next lowest integer, not by rounding to the
next lower integer nearest integer.

Rules for number formats Applesoft displays and prints numbers according to the following
rules :

• If the number is negative, it is preceded by a minus sign (-); if it is
zero or positive, no sign is used.

• If the number is an integer with an absolute value from 0 to
888 888 888, it is formatted as an integer.

Output 117

Table 5-1 Number Formats

scientific notation: the representation
of numbers in terms of powers of 10

Figure 5-1 Format for Scientific Notation

sign exponent symbol

I I

y
each)< is a digit

sign of exponent

digits of exponent

118

• If the number is not an integer and its absolute value is between
• (I i and 999 999 999.2, it is formatted with a decimal
point in the usual way.

• In all other cases, the number is formatted in scientific notation
(see below) .

Table 5-1 shows examples of the formats used for displaying and
printing numbers.

Number

+ 1

- 1

6523

- 23.460

45.72* 10 ·5

1 * 10··· 20

- 12.34567896 * 10 ... 10

1000000000

999999999

Output Format

- 1

6523

- 23.46

4572000

1 E + 20

- 1. 2345679E + 11

1 E + 09

999999999

The format Applesoft uses for scientific notation is shown in Figure
5-1. A sign is shown only if the number is negative. There is always
exactly one nonzero digit before the decimal point and up to eight dig­
its after it, with trailing zeros suppressed. There are never any lead­
ing zeros; the digit before the decimal point is always nonzero. If
there is only one digit to print after all trailing zeros are suppressed,
no decimal point is shown. The letter E (for "exponent") is always
followed by a sign and a two-digit exponent. The value of a number
represented in this form is the number before the E times 10 raised to
the power after the E. For example,

PRINT 35 * 3L15 ill yields 1.lBLl5 0 0B5E +3 7
PRINT - 3.iLl159 * 567 ... 5

yields - 1 • BLi l OLl669E + 1 LI
PRINT 1 / 999 yields 1.001001E-03
PRINT -3 / 999 yields -3.003003E- 0 3

Input/Output

5.2.4

PO K E statement: see Section 7.1.2

T E){ T switches from graphics to text
display

text window: see below

a~-Column Text Card: see Apple lie
Owner's Manual, Apple lie aO-Column
Text Card Manual

HOM E clears the text window

text window: see below

Formatting Text on the Screen

This section deals with Applesoft's facilities for controlling the way
text is formatted and presented on the display screen. For further in­
formation on text formatting , see Section 5.2.2, "The P R I NT
Statement."

The T E)< T and HOM E statements are used to clear text and graph­
ics from the screen.

S PC, T A 5 , H T A 5 , In A 5 , and PO S control the position of the cur­
sor, which determines where characters are displayed on the screen.

NORMA L , I NI,JERSE , and FL ASH control the form in which text
characters are presented on the screen.

The S PEE 0 = command sets the rate at which characters are
displayed .

The PO K E statement can be used to set the boundaries of the text
window within which text is displayed on the screen.

The T E >(T Statement

TE><T

The T E){ T statement instructs Applesoft to begin displaying text on
the screen; it is usually used to switch from graphics to text display.
The text window is set to the full screen (24 lines, 40 characters per
line; aD if the aD-Column Text Card is installed and running in "active
aD" mode). The Applesoft prompt character (J) is displayed in the
bottom-left corner of the screen, followed by the cursor.

If the display is already in text mode, the T E){ T statement is equivalent
to the statement I,) T AB 24 (see 'The I,) TAB Statement," below).

The HOM E Statement

HOME

HOM E clears the currently defined text window and sends the cur­
sor to the top-left corner of the window. If the text window is set to
the full screen, the cursor is sent to the beginning of line 1. If the
computer is displaying mixed text and graphics (four lines of text at
the bottom of the screen) , HOM E clears the four text lines and
sends the cursor to the beginning of line 21 .

Output 119

~I TAB and H TAB statements: see
below

5 PC displays spaces on the screen

P R I NT statement: see Section 5.2.2

TAB function: see below

current output device: see Section
5.2.1

Helpful Hint: To move the cursor to the top-left corner of the screen
without clearing any text, use

'nAB 1 : HTAB 1

The S PC Function

The S PC (for "space") function is used in P R I NT statements to
write a specified number of spaces to the current output device. The
numeric argument given to the function specifies the number of
spaces to be written. If this value is a real number, Applesoft trun­
cates it to the next lowest integer.

The S PC function can be called only from within aPR I NT state­
ment. S PC differs from TAB in that it advances the cursor (or print
head, if the current output device is a printer) a specified number of
columns from its current position, rather than to a specific horizontal
position from the beginning of the current line. If the cursor is spaced
past the right edge of the screen or text window, it returns to the be­
ginning of the next line and continues spacing. For example, assum­
ing the text window is set to the full screen and the cursor is initially at
the left edge, the statements

10 PRINT SPC (5); " HELLO "
-display HE L L 0 starting in

column 6
20 PRIN T "THESE"; SPC (10); "ARE"; SPC

(4); "INTERESTING"; SPC (12);
"T I MES" -display THESE , 10

spaces, ARE, 4 spaces,

will display the following on the screen:

I NTEREST lNG, 12 spaces,
TIMES

... HELLO
THESE

TIMES
ARE INTERESTING

Notice how the output of line 20 "wraps around" when it reaches the
edge of the screen (column 40).

5 peat end of P R I NT suppresses new If S P C is the last item in aPR I NT statement, Applesoft acts as if the
line statement ended with a semicolon . The cursor is left positioned the

specified number of spaces after the end of the previous item; no new
line is started. The next item displayed will begin immediately following
the last space.

Input/Output

TAB advances cursor to a specified
horizontal position

P R I NT statement: see Section 5.2.2

S P C function : see above

current output device: see Section
5.2.1

•

The argument given to S P C must be in the range 0 to 255 or the pro­
gram will halt with the message

?ILLEGAL QUANTITY ERROR

However, several calls to S PC can be strung together in the form

PRINT SPC(255); SPC(255); SPC(255)

to provide arbitrarily large numbers of spaces.

Semicolons are optional between S P C items:

PRINT "LET"; SPC (10) "ALL" SPC (15);
"REJOICE"

The TAB Function

The TAB function is used in P R I NT statements to advance the cur­
sor to a specified horizontal position from the beginning of the current
output line. The numeric argument given to the function specifies the
position to which the cursor is to be moved. If this value is a real num­
ber, Applesoft truncates it to the next lowest integer.

The TAB function can be called only from within aPR I NT state­
ment. TAB differs from S P C in that it advances the cursor (or pr1nt
head, if the current output device is a printer) to a specific horizontal
pOSition from the beginning of the current line, rather than a specified
number of columns from the current cursor position. If the cursor is
advanced past the right edge of the screen or text window, it returns
to the beginning of the next line and continues advancing. For exam­
ple, assuming the text window is set to the full screen and the cursor
is initially at the left edge, the statements

10 PRINT TAB (15); "THE FLEET 'S IN!"
-display THE FLEE T'S I N I

starting at column 15
20 PRINT TAB (1 0); "HELLO"; TAB (30) ;

"THERE,"; TAB (Ll5); "S AILOR!"
-display HELLO at column 10,

THE RE, at column 30,
S A I LOR! at column 5 of
next line

will display the following on the screen:

THE FLEET'S IN!
HELLO THERE,

SAILOR!

Output 121

H TAB statement: see below

TAB at end of P R I NT suppresses new
line

H TAB moves cursor to a specified
horizontal position

122

Notice how the output of line 20 "wraps around" when it reaches the
edge of the screen (column 40).

Unlike the H TAB statement, which moves the cursor to an absolute hor­
izontal position from the left edge of the screen or the text window, T AB
moves the cursor in a forward direction only. If the specified tab position
is less than the current cursor position, TAB has no effect; it will never
move the cursor to the left on the current line (use H TAB for this
purpose) .

If TAB is the last item in aPR I NT statement, Applesoft acts as if the
statement ended with a semicolon. The cursor is left at the specified tab
position ; no new line is started. The next item displayed will begin at the
tab position .

The argument given to TAB must be in the range 0 to 255 or the pro­
gram will halt with the message

?ILLEGAL QUANTITY ERROR

An argument value of 0 moves the cursor to 256 positions from the be­
ginning of the current line.

Semicolons are optional between TAB items:

PRINT "DOWN" j TAB (ill) "YOU" TAB (27) i "GO"

The H TAB Statement

HTAB 10
HTAB N
HTAB 41 - LEN (5$)

H TAB (for "horizontal tab") moves the cursor to a specified horizon­
tal position from the beginning of the current output line. The expres­
sion following the keyword H TAB specifies the position to which the
cursor is to be moved. If this value is a real number, Applesoft trun­
cates it to the next lowest integer.

Input/Output

T A 6 function: see above

H T A 6 can move cursor in either
direction

text window: see below

•

Unlike the TAB function , which moves the cursor in a forward direc­
tion only, the H TAB statement can move the cursor in either direction
to a specified horizontal position . For example, the program

5 HOME
10 HTAB G

15 FOR Z

-clear text from screen
PRINT "I S THE ";

-display 1ST H E starting at
column 6

1 TO 500: ND<T Z
-delay loop so user can see the

order and position of text
display

20 HTAB 1 PRINT "THIS" j

-display T HIS at column 1
25 FOR Z = 1 TO 500 : NE XT Z

-another delay loop
30 HTAB 13 PRINT "PROPER ORDER "

-display PRO PER ORDER at
column 13

will display the following on the screen:

THIS IS THE PROPER ORDER

If you want to use H TAB to display several text items on the same line,
you need a semicolon at the end of each P R I NT statement, as in the
program above, to avoid starting a new line.

If there is a text window set, the specified tab position is interpreted
relative to the left edge of the window. However, H TAB behaves as
though there were 40 columns in each line of the window, regardless
of the actual width to which the window has been set; that is, position
1 is considered to be the leftmost column of the current line, position
41 the leftmost column of the next line, position 81 the leftmost col­
umn of the line after that, and so on. If the cursor is advanced past the
right edge of the screen or text window, it returns to the beginning of
the next line and continues advancing.

H TAB can carry the cursor outside the boundaries of the text
window, but only long enough to display one character; the cur­
sor then returns to the left edge of the window.

Output 123

BO-Column Text Card: see Apple lie
Owner's Manual, Apple lie aD-Column
Text Card Manual

PO K E statement: see Section 7.1.2

1.J TAB moves cursor to a specified
vertical position

124

SO-Column Text Card Users: HTAB is designed to operate with a
40-column screen only. If you attempt to advance the cursor beyond
column 40, it will "wrap around" to the next line, even if you have the
Apple lie 80-Column Text Card installed and running in "active 80"
mode. To tab to a position between columns 41 and 80, use

POKE 36, }(>(

where }()(the number of the column to which you want to tab. See
Section F.1 and the aD-Column Text Card Manual for more information.

The column number specified to H TAB must be in the range 0 to 255
or the program will halt with the message

?ILLEGAL QUANTITY ERROR

A value of 0 moves the cursor to 256 positions from the beginning of the
current line.

Many programmers find H TAB to be more convenient to use than TAB,
because it is an independent statement and need not be embedded in a
P R I NT statement. This makes it easier to change, if necessary, during
program development.

The I.) TAB Statement

I.)TAB 10
I.)TAB N
I.)TAB 25 - H'l,

I.) TAB (for "vertical tab") moves the cursor vertically to a specified
line on the screen. The expression following the keyword I.) TAB
specifies the line to which the cursor is to be moved. If the value of
this expression is a real number, Applesoft truncates it to the next
lowest integer.

The top line of the screen is line 1 ; the bottom line is line 24. I.) TAB
may move the cursor either up or down on the screen , but never to
the left or right; it remains at the same horizontal position as before
the move. For example,

10 HOME -clear text from screen

20 InAB 6 -move cursor to line 6

30 PRINT "LINE 6" -display imaginative message

Input/Output

Text window ignored

40 FOR Z 1 TO 50 0 : NEXT Z

50 I,JTAB 18

GO PRINT " L INE 18"

70 FOR
...,

1 TO 500 L

80 I,JTA B 12

:

- delay loop so user can see the
order and position of text
display

-move cursor to line 18

-display another imaginative
message

NE>(T ...,
L

-another delay loop

-move cursor to line 12

80 PR I NT "THE M I DOLE " -display last message

I,J TAB ignores the setting of the text window, if any. The specified line
number is always taken to refer to the entire screen.

The line number specified to t,) TAB must be in the range 1 to 2 L! or the
program will halt with the message

?ILLEGAL QUANTITY ERROR

If t,) TAB moves the cursor to a line below the bottom of the text window,
all subsequent text will be displayed on that same line.

The PO S Function

PO S yields current horizontal cursor The PO S (for "position") function yields the current horizontal posi-
position tion of the cursor, relative to the left edge of the screen or text window.

The value yielded is in the range 0 to 38 (0 to 78 if the Apple lie
80-Column Text Card is installed and running in "active 80" mode). A
value of 0 represents the left edge of the screen or window.

Argument required but ignored Strange but True: The argument given to PO S is ignored, and has no
effect on the operation of the function. However, you can't leave it out­
you must include an argument expression of some kind to "keep the pa­
rentheses apart." What you use for an argument expression doesn't
matter, but if Applesoft can't evaluate it as a legal expression, you'll get
an error halt.

Output 125

POS , TAB , and HTAB disagree

I N 1.,J E R S E displays text in black-on­
white

NORMAL statement: see below

P R I NT statement: see Section 5.2.2

126

A Difference of Opinion: Notice that PO S numbers columns beginning
with I) , whereas TAB and H TAB number them beginning with 1. Thus,
assuming the cursor is at the beginning of a line, the statement

P R I NT TAB (1 I) ; PO S (0) -tab to column 10 and display
position

will display the value 8 , and

HTAB 43 : PRINT POS (X)
-tab to column 43 and display

position

will display 2 (since H TAB 43 tabs to the third column of the next dis­
play line) . Notice in the second case that the value of variable >{ makes
no difference.

The I N 1,1 E R 5 E Statement

I NI,I ERSE

The I N 1,1 E R 5 E statement causes subsequent text output to be
displayed in black-an-white instead of the usual white-an-black
(where "white" means the phosphor color of your display, whatever
that is) . The normal white-an-black display can be restored w ith the
NOR MAL statement. For example,

1 0 I N 1,1 E R 5 E -set inverse display
20 PRINT " BLACK - ON-WH I TE"

-display BLA CK - ON -
W H I T E in black-an-white

30 NOR MAL -restore normal display
40 PRINT " WHI T E-ON - BLACK"

-display WH I T E - ON-
B LAC K in white-an-black

I N 1,1 E R 5 E affects only subsequent output characters sent to the
screen with P R I NT statements. It has no effect on characters al­
ready on the screen or on keyboard input "echoed" to the screen.

Don't Overdo It: I N I,' E R S E is most effective when you use it sparingly.

Input/Output

F LA S H causes text to flash on the
screen

NOR MAL statement : see below

PR I NT statement: see Section 5.2.2

ASCII codes: see Section 4.2.1 and
Appendix C

80-Column Text Card: see Apple I/e
Owner's Manual, aO-Column Text
Card Manual

The F LAS H Statement

FLASH

The F LAS H statement causes subsequent text output to alternate
approximately twice a second between black-on-white and the usual
white-on-black (where "white" means the phosphor color of your dis­
play, whatever that is). The normal white-on-black display can be re­
stored with the NOR MAL statement. For example,

10 F L ASH
20 PRINT " FLASH Y"
3 0 NORMAL
ao PRIN T "DRAB "

-set flashing display
- display flashy FL ASHY
-restore normal display
-display drab DR A B

F LAS H affects only subsequent output characters sent to the
screen with P R I NT statements. It has no effect on characters al­
ready on the screen or on keyboard input "echoed" to the screen.

FLASH doesn't work on characters with ASCII codes above 85 , the
most important of which are the lowercase letters; instead of making
them flash, it turns them into gibberish. F LAS H doesn't work at all if you
have the Apple lie SO-Column Text Card installed and running in "active
SO" mode.

A Little Dab'" Do Va: F LAS H is most effective when you use it very
sparingly. Reserve it for only the most important messages or unusual
uses. Cavalier use of F LAS H has been known to drive users to
delirium . .

Output

NOR MAL displays text in white-on­
black

I NI.JERSE and FLASH statements:
see above

P R I NT statement: see Section 5.2.2

S PEE 0 = sets rate of text output

128

The NOR MAL Statement

NORMAL

The NOR MAL statement causes subsequent text output to be dis­
played in the usual white-on-black (where "white" means the phos­
phor color of your display, whatever that is). It is usually used to
cancel the effects of the I N lj E R S E or F LAS H statement. For
example ,

1 0 I N l,J E R S E -set inverse display
20 PRINT "BLACK-ON-WHITE"

-display BLACK - ON-
W HIT E in black-on-white

30 NORMAL
40 PRINT

-restore normal display
"WHITE-ON-BLACK"

5 0 FLASH
60 PRINT
70 NORMAL

"FLASHY"

80 PRINT "DRAB"

-display WH I TE - ON-
B LAC K in white-on-black

-set flashing display
-display flashy FLASHY
-restore normal display
-display drab DR A B

NOR MAL affects only subsequent output characters sent to the
screen with P R I NT statements. It has no effect on characters al­
ready on the screen.

The S PEE D = Statement

SPEED = 255
SPEED =){
SPEED = Z - 6 * F

The S PEE D = statement sets the rate at which output characters
are sent to the display screen or other output device (such as a
printer) . The slowest rate is 0; the fastest is 255 . The normal speed
setting (if you don't do anything to change it) is 255 . For example,

lOS PEE D = 0 -set slowest possible speed
20 PRINT "THE TORTOISE"

-display THE TORTO I SE
slowly

30 S PEE D = 255 -restore normal speed
40 PR I NT "THE HARE" -display THE HARE quickly

Input/Output

S PEE 0 isn't a variable

PO K E statement: see Section 7.1.2

5.2.5

PEE K function: see Section 7. 1.1

PO K E statement : see Section 7.1 .2

Notice that the equal sign is part of the keyword S PEE D = ; it doesn't
represent an assignment to a variable named S PEE D. A statement
such as

LET SPEED =)(

will cause a syntax error. The only way to find out the current speed
setting is to keep track of it yourself with a variable, as in the following
example:

10 LET)(= 250 -set initial value for speed

20 SPEED =)-(-set speed to value of){

30 PRINT "CURRENT SPEED IS "j)(
-display current speed

LlO LET)(=)(- 25 -decrease value of)(by 25

50 IF)(> = 0 THEN GOTO 20
-repeat until)-(becomes

negative

60 SPEED= 255 : END -)-(is too low; end the program

The speed setting is not reset to its normal value by RUN , C LEA R or
[CONTROL 1- [RESET I·

The speed setting specified to S PEE D = must be in the range 0 to
255 or the program will halt with the message

?ILLEGAL QUANTITY ERROR

The Text Window

The "window" within which text is displayed and scrolled on the
screen can be set to less than the full screen through the magic of the
PO K E statement. See Section F.1 for details and the Apple lie Refer­
ence Manual for a more technical discussion.

Miscellaneous Output Facilities

This section covers Applesoft's facilities for dealing with the remain­
ing output features of the Apple lie: the built-in speaker, annunciator
outputs, utility strobe, and cassette tape output. Most of these fea­
tures are controlled by means of PEE K and PO K E; details can be
found in Appendix F, " Peeks , Pokes, and Calls ." The annunciators
and utility strobe are seldom used, and are mentioned here just for
the sake of completeness.

Output 129

1 CONTROL I-G sounds the "bell "

130

Controlling The Speaker

The Apple lie has a small, built-in speaker that you can use to add
sound to your programs. The easiest way to use it is by sending the
ASCII "bell " character (I CONTROL I-G , ASCII code 7) to the display
screen. This causes the computer to emit a short "beep."

Historical Note: ASCII code 7 was originally used to ring a small bell on
teletype machines, to let the teletype operator know that a message was
coming in. On the Apple lie it sends a 1-kilohertz tone (1000 cyCles per
second) to the computer's speaker for 1/10 second.

Here's a program to ring the computer's "bell " a number of times
specified by the user:

10 PRINT "ENTER A NUMBER FROM 1 T O 8
(S TO

20 GET A$

30 IF A$ =

40 IF l,JAL

STOP):";

" S" THEN

(A$) < 1

-prompt user for input
-accept single character from

keyboard
END
-stop if user typed S

THEN 20
-if character typed is out of

range then try again
50 FOR){ 1 TO l,JAL (A$)

80 PRINT CHR$ (7)
70 ND(T >(

8 0 PRINT
80 GOTO 10

-loop requested number of
times

-sound "bell "
-loop back to 5 0
-leave a blank line
-start again

The only other way to produce sound from the speaker is with a
PEE K or PO KEto address - 183 36. This causes the speaker to
emit a single "click. " By combining such clicks in the appropriate pat­
terns and frequencies, you can produce musical tones and a variety
of other sounds. Experiment for yourself!

For technical information on the built-in speaker, see the Apple lie
Reference Manual.

Input/Output

Annunciator Output

annunciators: see Apple lie Reference The Apple lie has four annunciator outputs, which are pins of the
--- Manual hand control connector on which electrical impulses can be transmit­

ted. The signals on these pins are most commo?ly used to control
devices such as lamps and relays connected to the computer
through the hand control connector. The annunciator outputs can be
turned on and off with PEE K or PO KEto the appropriate addresses;
see Section F.4 for details and the Apple lie Reference Manual for
further technical information.

utility strobe: see Apple lie Reference
Manual

The Utility Strobe

The Apple lie's utility strobe is a pin of the hand control connector that
can be triggered to send an electrical impulse lasting one-half micro­
second. Like the annunciators, it can be used to control a variety of
devices connected to the computer through the hand control connec­
tor. The utility strobe can be triggered with aPE E K or PO KEto ad­
dress - 1 G 3 2 0; see Section FA for details and the Apple lie
Reference Manual for further technical information.

Cassette Output

5 A 1.J E command : see Section 1.2.5 and Two Applesoft statements, SAt) E and S TOR E, can be used to write
Appendix M information to a cassette tape recorder. SA t.J E writes the Applesoft

5T.ORE statement: see Appendix M program currently in memory to tape; S TOR E writes the contents of
an integer or real array. For details, see Appendix M, " If You Have a
Cassette Recorder."

Output 131

Input/Output

Graphics

135 6.1

136
137
138
139
140
141
142 6.2

143
144
145
146
148
150 6.3

150
150
151
151
153
154
157
159
160
161
163
164
165

Graphics

Low-Resolution Graphics
6.1.1 The G R Statement
6.1.2 The eo LOR = Statement
6.1.3 The P LOT Statement
6.1.4 The H LIN Statement
6.1.5 The t.J LIN Statement
6.1.6 The SeRN Function
High-Resolution Graphics
6.2.1 The H G R Statement
6.2.2 The H G R 2 Statement
6.2.3 The He 0 LOR = Statement
6.2.4 The H P LOT Statement
6.2.5 Protecting High-Resolution Graphics
Shape Tables
6.3.1 Creating a Shape Table

Plotting Vectors
How Plotting Vectors Are Interpreted
Coding a Shape Table
The Shape Table Index
Loading a Shape Table into Memory
Saving and Loading a Shape Table

6.3.2 Using Shape Tables
The 0 RAW Statement
The)-(D RAW Statement
The seA L E = Statement
The RO T = Statement
The S H LOA D Statement

133

-

•

low-resolution graphics: see Section
6.1

high-resolution graphics: see Section
6.2

shape tables: see Section 6.3

6.1

Chapter 6

Graphics

This chapter describes Applesoft's facilities for creating , changing ,
displaying, and storing both low- and high-resolution graphic
designs.

Section 6.1 , " Low-Resolution Graphics," deals with 16-color graphics
on a 40-by-48 grid.

Section 6.2, "High-Resolution Graphics," deals with 6-color graphics
on a 280-by-192 grid.

Section 6.3, "Shape Tables," discusses the use of shape tables for
animation sequences.

Low-Resolution Graphics
The low-resolution graphics screen consists of 1920 blocks (40 col-
umns by 48 rows) in 16 colors. This section describes the facilities
available in Applesoft for using low-resolution graphics:

G R statement: see Section 6.1 .1 • The G R statement instructs Applesoft to begin displaying low-
resolution graphics.

COL 0 R = statement: see Section 6.1.2 • The COL 0 R = statement controls the colors displayed on the

P LOT statement: see Section 6.1 .3

H LIN statement: see Section 6.1.4

~J LIN statement: see Section 6.1.5

5 CR N function: see Section 6.1.6

screen.

• The P LOT statement plots individual blocks on the screen.

• The H LIN statement draws horizontal lines.

• The t.J LIN statement draws vertical lines.

• The S eRN function determines what color is currently displayed
at any position of the screen.

Low-Resolution Graphics 135

6.1.1 The GR Statement

GR

G R displays low-resolution graphics

T E)-(T statement: see Section 5.2.4

text window: see Section 5.2.4

PO K E statement: see Section 7.1.2

high-resolution page 2: see Section
6.2.2

For more information ...

136

The G R (for "graphics") statement instructs the computer to display
low-resolution graphics. If the screen has been displaying text , it is

changed from 40 (or 80) columns by 24 lines of text to 40 columns by
40 rows of graphics, with space for four lines of text at the bottom .
(Full text display can be restored with the T E >(T statement.) GR
clears the screen to black, moves the text cursor to the beginning of
the bottom line (line 24) , clears any text window that may have been
set, and sets the low-resolution display color to 0 (black).

After executing a G R statement, you can convert the display to fu ll­
screen graphics (a 40-by-48 grid with no space for text) with the
statement

POKE - 16 3 0 2 , 0

This statement will change the bottom four lines of text to eight rows
of colored blocks. To clear these rows to black, add

CALL -1888

Notice that the PO K E statement above must be executed after GR. If
you execute the PO K E first, G R will reset the screen to mixed graphics
and text.

If you execute a G R statement while displaying high-resolution page 2,
G R clears its usual screenful of memory but leaves you looking at page
2 of low-resolution graphics and text. To avoid this problem, always use
the T E){ T statement before switching from high-resolution page 2 to
low resolution .

See Section F.3 for more information on the use of the various text and
graphics memory pages. See the Apple lie Reference Manual for fu r­
ther technical information on the Apple lie's graphics display
capabi I ities.

Graphics

-

6.1.2 The COL 0 R = Statement
COLOR= 12

COL 0 R = sets low-resolution display
color

Table 6-1 Color Codes for Low·Resolu·
tion Graphics

H LIN statement: see Section 6.1 .4

COLOR= C(J)
COLOR= ()-(- 4) / 18

The COL 0 R = statement sets the display color for plotting low­
resolution graphics. There are 16 colors available, represented by
numbers from 0 to 1 5 as shown in Table 6-1 . When you enter
low-resolution graphics, the G R statement sets the display color to
black (0).

Code Color Code Color

0 black 8 brown

magenta 9 orange

2 dark blue 10 grey·2

3 violet 11 pink

4 dark green 12 green

5 grey-1 13 yellow

G medium blue 14 aqua

7 light blue 15 white

If you 're using a monochrome display (black-and-white, or some other
single phosphor color), the different colors will appear on your screen as
various patterns of shading.

The following short program displays each of the 16 available colors
in a horizontal bar across the screen:

10 GR

20 FOR)-(= 0 TO 15
30 COLOR =)-(

-display low-resolution
graphics

-execute loop for each color
-set next color

40 HLIN 0, 39 AT X * 2

50 NE>(T)-(

Low-Resolution Graphics

-draw a bar of this color across
the screen, leaving a blank
row above it

-go back for next color

137

CO L 0 R isn't a variable

P LOT draws a single block

low-resolution display color: see
Section 6.1 .2

138

Notice that the equal sign is part of the keyword COL 0 R = ; it doesn't
represent an assignment to a variable named COL 0 R . A statement
such as

LET COLOR =)(

will cause a syntax error. The only way to find out the current display
color is to keep track of it yourself with a separate variable, as in the
example above.

You can specify a color code higher than 1 5 , but the series of color val­
ues simply repeats. That is, 1 G is equivalent to 0 , 1 8 is equivalent to 2,
35 is equivalent to 3 , and so on. However, a color value less than 0 or
greater than 255 will stop the program with the message

?ILLEGAL QUANTITY ERROR

6.1.3 The P LOT Statement
PLOT 20, 12
PLOT X - 6, Y + 2
PLO T THE TA * 40/ (2*PI) , 24 -

(SIN(THE TA) * 23)

The P LOT statement places a block of the current low-resolution
display color at a specified position on the screen. The first expres­
sion following the keyword P LO T specifies the column in which the
block is to be plotted (numbered 0 to 39 , from left to right) ; the sec­
ond expression , separated from the first by a comma, designates the
row (numbered 0 to 39 for mixed text and graphics, 0 to a 7 for fu ll ­
screen graphics, from top to bottom) . For example, the following pro­
gram plots a block of pink in column 20, row 2 of the screen :

1 0 GR

20 COLOR = 1 1
30 PLO T 2 0 , 2

-display low-resolution
graphics

-set display color to pink
-plot a block of pink in column

20, row 2

Figure 6-1 shows the system of coordinates used to designate posi­
tions on the low-resolution graphics screen. Position 0 ,0 is the top­
left corner and position 39 , 0 the top-right. When displaying mixed
graphics and text, the bottom-left corner is position 0 ,3 9 and the
bottom-right is 39 , 3 9 ; in full -screen graphics, the bottom-left cor­
ner is 0 ,47 and the bottom-right is 39 ,47.

Graphics

Figure 6-1 Screen Coordinates for Low­
Resolution Graphics

0,0 39, 0

H LIN draws a horizontal line

low-resolution display color: see
Section 6.1.2

0,39 39,39
(orO, 1I7) L..-___________ (or3 9, 1I7)

If Applesoft is displaying mixed graphics and text and the plotting coordi­
nates designate a row from 40 to 47, a text character will be displayed
at the specified coordinates instead of a block of color. The particular
character displayed depends on the current low-resolution display color . .
Here's a program to demonstrate this effect:

10 GR

20 FOR Y
30 FOR)(
40 COLOR

o TO 47
o TO 38

50 PLOT)(, Y
GO NE)-(T)(
70 NE)-(T Y

Try changing line 1 0 to

10 TE)-(T

to see the effect on the full screen .

-display mixed low-resolution
graphics

-loop over all screen rows
-loop over all screen columns
-use color corresponding to col-

umn number (colors 0 to 15 will
repeat after column 15)

-plot a block at column X, row Y
-loop to next column
-loop to next row

A column coordinate outside the range 0 to 38 or a row coordinate out­
side the range 0 to 47 will cause the program to halt with the message

?ILLEGAL QUANTITY ERROR

6.1.4 The HL I N Statement

HLIN 5, 20 AT 35
HLIN >{, Y AT Z
HLIN Q - 3, J * 58 AT V%

The H LIN (for "horizontal line") statement draws a horizontal line on
the screen in the current low-resolution display color. The two expres­
sions following the keyword H LIN, separated by a comma, desig­
nate the columns in which the line is to begin and end; the expression
following the keyword A T specifies the row in which the line is to be

low-Resolution Graphics 139

t,' LIN draws a vertical line

low-resolution display color: see
Section 6.1 .2

140

drawn. The first end point may be less than, equal to, or greater than
the second. For example,

lO G R -display low-resolution
graphics

20 COL 0 R = LI -set color to dark green
30 HL I N 10, 30 AT 20 -draw a horizontal green line in

row 20 from column 10 to col­
umn30

If you use H LIN while displaying text instead of graphics, or with a row
coordinate from a 0 to a 7 while displaying mixed graphics and text ,
Applesoft will display a row of characters instead of a bar of color. For
example, if line 1 0 above were changed to

10 TE)<T -display text instead of graphics

the result would be a row of dollar signs instead of a bar of dark green. In
most cases, when you see patterns like these on your screen it means
you forgot to include a G R statement.

A column coordinate outside the range 0 to 3 9 or a row coordinate out­
side the range 0 to a 7 will cause the program to halt with the message

?IL L EGAL QUANTIT Y ERROR

The H LIN statement has no visible effect if you use it while displaying
high-resolution graphics.

6.1.5 The I,lL I N Statement

VL I N 5, 2 0 AT 3 5
t,!LIN){ , Y AT Z
VLIN Q - 3 , J * 58 AT VI

The t.! LIN (for "vertical line") statement draws a vertical line on the
screen in the current low-resolution display color. The two expres­
sions following the keyword t.! LIN , separated by a comma, desig­
nate the rows in which the line is to begin and end ; the expression

Graphics

6.1.6

5 eRN reads the color at a designated
screen position

color codes: see Table 6-1 , Section
6.1 .2

following the keyword A T specifies the column in which the line is to
be drawn. The first end point may be less than, equal to, or greater
than the second. For example,

1 <) G R -display low-resolution
graphics

2 <) COLOR = LI -set color to dark green
30 l.ll I N 10, 30 AT 20 -draw a vertical green line in

column 20 from row 10 to row
30

If you use 1.1 LIN while displaying text instead of graphics, or if part of
the line being drawn goes beyond row 39 while displaying mixed graph­
ics and text, Applesoft will display text characters instead of blocks of
color. For example, if line 10 above were changed to

10 TE){T -display text instead of graphics

the result would be a row of flashing D's and a dollar sign instead of a bar
of dark green .

A column coordinate outside the range 0 to 39 or a row coordinate out­
side the range 0 to 47 will cause the program to halt with the message

? ILLEGAL QUANTI TY ERROR

The 1.1 LIN statement has no visible effect if you use it wh ile displaying
high-resolution graphics.

The SCRN Function

The S C R N (for "screen") function reads the color currently displayed
at a designated position on the low-resolution graphics screen. This
function takes two arguments, the first specifying the column and the
second the row of the desired position. It yields a number from 0 to
1 5 representing the color displayed at that position. For example, the
expression

SCRN (5, 8)

yields the code for the color displayed at column 5, row 9.

The S eRN function is not intended for use with high-resolution
graphics.

Low-Resolution Graphics 141

H G R statement: see Section 6.2.1

H G R 2 statement: see Section 6.2.2

He 0 L OR = statement: see Section
6.2.3

6.2

H P LO T statement: see Section 6.2.4

protecting programs and graphics:
see Section 6.2.5

142

For Experts Only-Strange Extensions: Although the ordinary limits
for coordinates on the low-resolution graphics screen are 38 and 47 ,
5 eRN will actually accept values up to 47 for both arguments. But if the
column parameter is greater than the usual limit of 38 , odd things hap­
pen. The code yielded by 5 C R N gives the color for the block whose col­
umn is the designated column minus 40, and whose row is the
designated row plus 16.

If the row-plus-16 number is in the range 4 0 through 4 7 , and if mixed
graphics and text are being displayed, then the code yielded is not a
color code, but is related to the text character at that position in the text
area below the graphics (see "For Experts Only-Reading the Text
Screen," below) .

If the row-plus-16 number is in the range 48 to 63 , 5 C R N yields a re­
sult whose meaning is beyond the ken of mere mortals.

For Experts Only-Reading the Text Screen: When text is being dis­
played, S C R N yields numbers in the range 0 to 1 5 whose value is
either the high-order four bits (if the row number is odd) or the low-order
four bits (if the row number is even) of the character in column C + 1
and row (R + 1) / 2 , where C and R are the column and row
numbers given as arguments to 5 C R N. Thus the following expression
will yield the character at position }(,Y :

CHR$ (SCRN (){ - 1, 2 * (Y - 1) + 1) * 16
+ SCRN (){ - 1, 2 * (Y - 1»)

High-Resolution Graphics
There are two separate regions in the Apple lie's memory, desig­
nated page 1 and page 2 , that can be used for displaying high-resolu­
tion graphics. Each consists of 53,760 points (280 columns by 192
rows) , which can be displayed on the screen in 6 colors. Th is section
describes the facilities available in Applesoft for using high-resolution
graphics :

• The H G R statement instructs Applesoft to begin displaying page
1 of high-resolution graphics.

• The H G R 2 statement instructs Applesoft to begin d isplaying
page 2 of high-resolution graphics.

• The He 0 LO R = statement controls the colors displayed on the
high-resolution screen.

• The H P LOT statement plots individual pOints and lines on the
high-resolution screen.

Section 6.2.5 tells how to protect your programs and high-resolution
graphics from overwriting each other in the computer's memory.

Graphics

6.2.1 The HGR Statement

HGR

H G R displays high-resolution
graphics page 1

high-resolution display color: see
Section 6.2.3

PO K E statement: see Section 7.1.2

T E}(T statement: see Section 5.2.4

protecting programs and graphics:
see Section 6.2.5

The H G R (for " high-resolution graphics") statement instructs Apple­
soft to display page 1 of high-resolution graphics. If the screen has
been displaying text, it is changed from 40 (or SO) columns by 24 lines
of text to 2S0 columns by 160 rows of high-resolution graphics, with
space for four lines of text at the bottom. The graphics area of the
screen is cleared to black ; the high-resolution display color is not af­
fected . H G R doesn't affect the contents of the text screen, the setting
of the text window, or the location of the text cursor ; the cursor will not
be visible unless it is in one of the bottom four lines of the screen.

After executing an H G R statement, you can convert the display to full­
screen graphics (a 2S0-by-192 grid with no space for text) with the
statement

POKE -16302, 0

This statement will change the bottom four lines of text to high-reso­
lution graphics. To return to mixed graphics and text, use

POKE -16 3 01, 0

Notice that the first PO K E statement above must be executed after
H GR. If you execute the PO K E first , H G R will reset the screen to mixed
graphics and text.

The T E){ T statement will return to text display with the text w indow
set to the full screen and the cursor at the bottom of the screen. To
turn off high-resolution graphics and return to text display with the
text window and cursor intact, use the statement

POKE -16303, 0

If you intend to use H G R with an Applesoft program longer than about
6000 (decimal) bytes, see Section 6.2.5 on how to protect your program
and graphics from overwriting each other.

Warning
If you use the reserved word H GR as the first three characters of a vari­
able name, the H G R statement may be executed before a syntax error is
detected. For example, executing the statement

HGR IP = Ll

wi ll unexpectedly turn on high-resolution graphics and may destroy part
of your program.

High-Resolution Graphics 143

For more information.. . See Section F.3 for more information on the use of the various text and
graphics memory pages, and Section H.1 for the memory locations oc­
cupied by the high-resolution graphics pages. See the Apple lie Refer­
ence Manua! for further technical information on the Apple lie's graphics
display capabilities.

6.2.2 The H G R 2 Statement

HGR2

H G R 2 displays high-resolution
graphics page 2

high-resolution display color: see
Section 6.2.3

text window: see Section 5.2.4

T E >< T statement: see Section 5.2.4

PO K E statement: see Section 7.1 .2

144

The H G R 2 (for "high-resolution graphics, page 2") statement in­
structs Applesoft to display page 2 of high-resolution graphics. If the
screen has been displaying text, it is changed from 40 (or 80) col­
umns by 24 lines of text to 280 columns by 192 rows of high-resolu­
tion graphics. The screen is cleared to black; the high-resolution
display color is not affected. H G R 2 doesn 't affect the contents of the
text screen, the setti ng of the text wi ndow, or the location of the text
cursor.

The T E)-(T statement will return to text display with the text window
set to the full screen and the cursor at the bottom of the screen. To
turn off high-resolution graphics and return to text display with the
text window and cursor intact, use the statements

POKE -16300, 0
POKE -16303, 0

-switch from page 2 to page 1
-switch from graphics to text

After executing an H G R 2 statement, you can convert the display to
mixed graphics and text (a 280-by-160 grid with four lines of text at the
bottom) with the statement

POKE -16301, 0

However, when you use this statement while displaying high-resolution
page 2, the four lines of text will be taken from text page 2 instead of the
usual page 1. Since Applesoft uses the same memory locations allo­
cated to text page 2 for program storage, you 'll end up displaying gar­
bage in the bottom four lines of your screen. For this reason, most
programmers avoid mixing graphics and text when using high-resolution
page 2.

Graphics

protecting your program: see Section
6.2.5

For more information ...

If you intend to use H G R 2 with an Applesoft program longer than about
14000 (decimal) bytes, see Section 6.2.5 on how to protect your pro­
gram and graphics from overwriting each other.

Warning

If you use the reserved word H G R 2 as the fi rst four characters of a vari­
able name, the H G R 2 statement may be executed before a syntax error
is detected. For example, executing the statement

HGR2PIECES = a

will unexpectedly turn on high-resolution graphics and may destroy part
of your program.

See Section F.3 for more information on the use of the various text and
graphics memory pages, and Section H.1 for the memory locations oc­
cupied by the high-resolution graphics pages. See the Apple lie Refer­
ence Manual for further technical information on the Apple lie's graphics
display capabilities.

6.2.3 The He 0 LOR = Statement

HCOLOR = G

He 0 LOR = sets high-resolution dis­
play color

Table 6-2 Color Codes for High-Resolu­
tion Graphics

Code Color

0 black-1

green

2 violet

3 white-1

4 black-2

5 orange

G blue

7 white-2

HCOLOR = C (J)

HCOLOR= (X - a) / 8

The H CO L 0 R = (for " high-resolution color") statement sets the dis­
play color for plotting high-resolution graphics. There are 6 colors
available, represented by numbers from 0 to 7, as shown in Table 6-2.

If you 're using a monochrome display (black-and-white, or some other
single phosphor color) , the different colors will appear on your screen as
various patterns of shading.

The high-resolution display color is not affected by H G R, H G R 2 , or
RUN. Until your program executes an H COL 0 R = statement, the
display color for high-resolution graphics is indeterminate.

Notice that the equal sign is part of the keyword H COL 0 R = ; it doesn't
represent an assignment to a variable named H COL 0 R . A statement
such as

LET HCOLOR =){

will cause a syntax error.The only way to find out the current display
color is to keep track of it yourself with a separate variable.

High-Resolution Graphics 145

Curious Behavior: As you wander deeper into the recesses of the Ap­
ple lie's graphics system, you 'l l begin to notice that the colors in high­
resolution graphics don't always act as you might expect. For example,
carefully drawn vertical lines may refuse to be visible, a white line cross­
ing a field of green may leave jagged blocks of orange in its wake, or a
point plotted with He 0 LOR = 3 (white-1) may look blue if its column
coordinate is even, green if the column coordinate is odd, and white only
if a point is plotted in the next column as well. These strange phenom­
ena are a result of the way the Apple lie's high-resolution graphics fea­
tures interact with the color circuitry in your television set. See the Apple
lie Reference Manual for further explanation.

If you specify a color code higher than 7, your program will halt with the
message

?ILLEGAL QUANTIT Y ERROR

6.2.4 The H P LOT Statement

H P LOT plots high-r.esolution points
and lines

high-resolution display color: see
Section 6.2.3

HPLOT 140, 80
H PLOT)(- 16, Y + 12 TO)(+ 16, Y

12
HPLOT 70,40 TO 210,40 TO 210,120 TO

701120 TO 70,40
HPLOT TO THETA * 280 / (2*P I), 96 -

(SIN(THETA) * 95)

The H P LOT (for " high-resolution plot") statement plots points and
lines on the high-resolution graphics screen in the current high-reso­
lution display color. The first expression in each pair specifies a col­
umn (numbered 0 to 279, from left to right) ; the second expression ,
separated from the first by a comma, designates a row (numbered 0
to 1 59 for mixed text and graphics, 0 to 19 1 for full-screen graph­
ics, from top to bottom) . For example, the following program plots a
white point at column 100, row 50 of the screen :

10 HGR

20 HCOLOR = 3
30 HPLOT 100, 50

-display high-resolution
graphics

-set display color to white-1
-plot a point at column 100, row

50

Figure 6-2 shows the system of coordinates used to deSignate posi­
tions on the high-resolution graphics screen. Position 0 ,0 is the top­
left corner and pOSition 279 ,0 the top-right. When displaying mixed
graphics and text, the bottom-left corner is position 0 , 1 59 and the
bottom-right is 279 , 1 59; in full-screen graphics, the bottom-left

Graphics

Figure 6-2 Screen Coordinates for High­
Resolution Graphics

Figure 6-3 Drawing a Rectangle with
HPLOT

corner is I) I 1 8 1 and the bottom-right is 278 I 1 8 1.

0,0-------------. 279, 0

0, 159 27 9, 15 9
(orO, 191) __________ ---1 (or 27 9 , 19 1)

To draw a line with H P LOT, specify the starting and ending points,
separated by the keyword TO. The next example draws a white line
across the screen:

1 0 H G R -display high-resolution
graphics

20 He 0 LOR = 3 -set display color to white-1
30 HPLOT 0, 50 TO 278, 50

-draw a line across row 50

You can draw a series of connected lines in the same H P LOT state­
ment by using a series of TO clauses. Each line will begin where the
last one ended. The following program, for example, draws a rectan­
gle, as illustrated in Figure 6-3:

1 0 H G R -display high-resolution
graphics

20 He 0 LOR = 3 -set display color to white-1
30 HPLOT 70,40 TO 210,40 TO 210,120

TO 70,120 TO 70,4 0
-draw a rectangle

(Start here:) 70, 40 1"'-- 21 0, 4 0

..................
......

..............
......

..............
70, 120 210, 120

You can extend the series of lines almost indefinitely within the same
H P LOT statement, subject only to the limit of 239 characters in a
program line.

High-Resolution Graphics

He 0 LOR = statement: see Section
6.2.3

You can also continue from wherever the last H P LOT statement
ended, by writing the keyword TO immediately after the word
H P LOT. For example, adding the line

40 H P LOT TO 2 1 0 I 1 20 -continue drawing from last
point

to the previous program will cause it to draw in the diagonal of the
rectangle , represented by the dashed line in Figure 6-3. Applesoft
assumes that the starting point (which ordinarily would have ap­
peared between the words H P LOT and TO) is the last point plotted.

The color of the new line drawn by H P LOT TO is the same as that of
the last point plotted. Even if you insert a new H COL 0 R = statement
between lines 30 and 40 , the line drawn by the H P LOT TO in pro­
gram line 40 will appear in the same color as those drawn in line 30 .

To change the color of the line, use a whole new H P LOT:

35 HCOLOR = 6 -change color to blue

40 HPLOT 70, 40 TO 210, 120
- continue drawing from last

point

If the screen is displaying mixed text and graphics, an attempt to plot a
point whose row coordinate is in the range 1 GO to 1 9 1 will have no vis­
ible effect. However, if you draw a line either beginning or ending in rows
160 to 191 , Applesoft will display as much of the line as it can. If you later
switch to full-screen graphics with PO K E - 1 6302 ,0 the hidden por­
tion of the line will appear.

Warning
Be sure to precede H P LOT by either H G R or H G R 2 or you will write
over lots of memory, including your program and variables.

If the column coordinate given to H P LOT is outside the range 0 to
279, or the row coordinate outside the range 0 to 1 9 1 , the program
will halt with the message

?ILLEGAL QUANTITY ERROR

6.2.5 Protecting High-Resolution Graphics
Apple lie memory allocation: see The two high-resolution graphics pages lie pretty much in the center
Section H.1 of things : page 1 resides at memory addresses 8 182 to 1 G 3 8 3

(hexadecimal $ 2 0 0 0 to $ 3 F F F) and page 2 at addresses 1 G 3 8 4
to 24575 (hexadecimal $4000 to $ 5 F F F) . Because Applesoft

148 Graphics

--

H G R statement: see Section 6.2.1

H IM EM : statement: see Section 7.2.1

H G R 2 statement: see Section 6.2.2

PO K E statement: see Section 7.1 .2

program storage begins at location 2 (I L18 (hexadecimal $ 8 (I (I), it's
easy for your program and graphics to get in each other's way. For
example , if you 're using the H G R statement to display page 1 of high­
resolution graphics, you have only 6144 bytes of program and vari­
able space (8 1 8 2 minus 20 L18) before your program overwrites
the graphics area. This section tells how to prevent them from coll id­
ing, causing untold mayhem and destruction.

One way to protect your program and graphics from each other is to
use the HIM EM : statement to set the upper limit of program memory
at 8 1 82 . This is a reasonable method to use for short programs; but
Applesoft tends to use a lot of memory, and longer programs would
soon run out of space.

Another method that allows the program a bit more breathing room is
to use the second page of graphics instead of the first (H G R 2 instead
of H G R). This has the benefit of starting the graphics at a higher
memory location, so you can set H IM EM : to 1 838 LI instead of
8 1 82 , allowing 14336 bytes (1 838 LI minus 20 L18) for your pro­
gram and variable space. The disadvantage of this method is that you
lose the four lines of text at the bottom of the screen, which are avail­
able with HGR but not with HGR 2 .

A third method, probably the best for long programs with lots of vari­
ables, is to use the wizardry of the PO K E statement to change the
start, instead of the end, of Applesoft 's program storage space. The
following statements will start program and variable storage above
graphics page 1 , beginning at address 18 38 LI (hexadecimal
$LlO OO):

PO KE 103, 1
POKE l OLl , 8L1
POKE 1838L1, 0

These statements will start program and variable storage above
high-resolution page 2, beginning at address 2 Ll5 7 8 (hexadecimal
$8000):

POKE 103, 1
POKE lOLl, 8 8
POKE 2L1578 , 0

High-Resolution Graphics 149

NEW command: see Section 1.2.1

RUN command: see Section 1.2.4

6.3

6.3.1

shape table: a collection of one or more
shape definitions, together with their
indices

plotting vector: a code representing a
single step in drawing a shape on the
screen

150

No matter where you start program space in memory, your next com­
mand should be

NEW

to clear out any old variables and system control information so you
can start a fresh program beginning at the new location. (If your com­
puter is equipped with one or more disk drives, you can accomplish
the same thing by loading a new program from a disk with the RUN
command.)

Shape Tables
Applesoft has a number of special facilities that allow you to manipu­
late shape tables defining shapes on the high-resolution graphics
screen. Because shape tables have the advantages of both flexible
design and very fast execution, they are ideal for applications such as
on-screen animation. This section contains detailed information on
creating and manipulating shape tables.

For Hackers Only: Since the advent of the Apple II series of computers ,
a number of excellent graphics software packages have appeared on
the market. Available at most computer stores, these packages take the
hard-core technical work (binary arithmetic and machine-language ma­
nipulation) out of designing and using shape tables. The information in
this section is intended for those programmers who enjoy "twiddling the
bits" themselves.

To use this section effectively, you'll need to know about bits and bytes
and the rudiments of hexadecimal arithmetic. This information is avail­
able in any basic text on computer science; see the bibliography in the
Apple lie Owner's Manual that came with your computer. All computer
memory addresses in this section are in hexadecimal ; all other num­
bers, unless otherwise noted, are in decimal.

Creating a Shape Table

An Applesoft shape definition consists of a sequence of plotting vec­
tors that are stored in a series of consecutive bytes in the computer's
memory. One or more such shape definitions, with their indices (see
"The Shape Table Index," below) , make up a shape table.

Plotting Vectors

Each byte in a shape definition has three sections. Each section may
contain a plotting vector, specifying whether to plot a point at the cur­
rent screen position and in what direction to move (up, down, left, or
right) before processing the next vector. Thus each byte can repre­
sent up to three plotting vectors.

Graphics

Figure 6-4 Plotting Vectors in a Byte

section : C B A
~~ ~

bit number: 17 G 5 4 3 2 1

specifies: D D P D D P D

IfDD 00 move up
0 1 move right
10 move down
11 move left

If P 0 don't plot
1 plot a point

D RA W and)-(D RAW statements: see
Section 6.3.2

Figure 6-5 Plotting a Shape

a.
• • •

• •
• •
• •

• • •

b.

I

1

c.

~

1

o I
D

Figure 6-4 shows how the three sections are arranged within each of
the bytes that make up a shape definition. In each plotting vector, bit
P specifies whether to plot a point before moving, and the pair of bits
designated D D specify the direction in which to move before pro­
cessing the next vector.

Notice that the last section in each byte (the two high-order bits, la­
beled C in the figure) does not include a P bit. The value of P in such
a section is always assumed to be 0 (don't plot); thus section C can
only specify a move without plotting.

How Plotting Vectors Are Interpreted

The DR A Wand)-(D RAW statements read through each byte in the
shape definition, from the first byte in the definition to the last. Within
each byte, the sections are processed from right to left: section A,
then B, then C. When a byte is encountered that contains all zeros,
the shape definition is complete.

At any section in the byte, if all the remaining sections contain only
zeros, then those sections are ignored. Thus a byte can 't end with a
move in section C of 00 (move up without plotting) , because that
section , containing only zeros, will be ignored. Similarly, if section C
is 00 (ignored) , then section B cannot be a move of 00 O(move up
without plotting) , since that will also be ignored. And a vector of 000
in section A will end your shape definition unless there is a one bit
somewhere in section B or C.

Coding a Shape Table

Suppose you want to draw a shape like that shown in Figure 6-5a. To
convert the shape into an Applesoft shape definition, follow these
steps:

1. Draw the shape on graph paper, one dot per square.

2. Decide where to start drawing the shape-let's start this one at
the center-and draw a path through each point in the shape, us­
ing only gO-degree angles on the turns, as in Figure 6-5b.

3. Redraw the shape as a series of plotting vectors, each vector
moving one place up, down, left, or right, and distinguish those
vectors that plot a pOint before moving. This step is illustrated in
Figure 6-5c; vectors that plot before moving are marked in the
figure with a dot at the beginning of the direction arrow.

High-Resolution Graphics 151

Figure 6-5 continued

Figure 6-6 Codes for Plotting Vectors

Figure 6-7 Shape Definition Table

152

4. "Unwrap" the vectors and write them out in sequential order, as
in Figure 6-5d.

Now you 're ready to code the plotting vectors as a shape definition
table. Figure 6-6 gives the binary codes corresponding to each pos­
sible vector. For each vector in the shape, determine the proper bit
code and place it in the next available section in the table, as shown
in Figure 6-7. If the code won't fit (for instance, the vector in section C
can 't plot a point) or is a 0 0 (or 00 0) at the end of a byte, then just fill
that section with zeros.

vector code

t 000
~ 00 1 or 0 1 } rno,"
t 0 10 or 10 only
~ 0 11 or 11

1 100 - 1 0 1 } plol
! 11 0 and move 11 1

section
C B A C B A

- ~-byte
0 t t 0 10 0 1 0
1 111 11 1
2 1 t 100 000
3 1 ~ 0 1 100 100
4 - ~ 10 1 101
5 t ~ 0 10 101
G t t 11 0 1 10
7 ~ ! 0 11 1 10
8 1 11
9 00 - 000 000 ..- denotes end

~ this vector ~ of shape
definition

cannot plot
or move up

Graphics

Table 6-3 Hexadecimal Byte Codes

Binary Hex

0000 0

0001

0010 2

0011 3

0 100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 0

111 0 E

1111 F

Figure 6-8 Converting the Shape Defini­
tion to Hexadecimal

The final step is to convert the binary codes representing the plotting
vectors into hexadecimal form so you can type them into the com­
puter. As shown in Table 6-3, each hexadecimal code corresponds to
a group of four bits; so each row of eight bits in your definition table is
represented by two such codes (called hexadecimal digits) . This step
is illustrated in Figure 6-8. The final shape definition for the shape in
Figure 6-5 is

1 2 3 F 2 0 6a 2D 15 36 IE 0 7 00

The Shape Table Index

There is still a little more information you need to provide before you
have a complete shape table: the table must have an index. This is
simply a list indicating where in memory to find a particular shape.
Applesoft needs the index so that it can find the shape later, when
your program tries to draw the shape on the screen.

bytes

Section : C B A
recoded

in hex
--------~ ~

byte 0 000 1 o 0 1 0 1 2
1 001 1 1 1 1 1 3F
2 o 0 1 0 0000 20
3 o 1 1 0 o 1 0 0 64
4 00 1 0 1 1 01 20
5 000 1 o 1 0 1 1 5
6 00 1 1 o 1 1 0 36
7 000 1 1 1 1 0 1 E
8 0000 o 1 1 1 07
9 0000 0000 00 <-denotes end
~ '-----y----' of shape

hex: digit 1 digit 2 definition

The form of a complete shape table, including the index, is shown in
Figure 6-9. The shape table 's starting location, whose address is
called S in the figure, contains the number of shape definitions in the
table (between 0 0 and F F) in hexadecimal. The next byte (address
S + 1) is unused ; it is followed by a sequence of two-byte pairs
giving the locations of the shapes in the table. (Notice that the shape
locations are given with the bytes reversed-low-order byte first­
and that the locations are specified relative to address S, the start of
the table itself, and not in absolute memory addresses.) For simplic­
ity, the shape definitions themselves are usually placed immediately
after the index.

Shape Tables 153

Figure 6-9 Form of a Complete Shape
Table

Fi~ure 6-10 A Complete Shape Table

start
(store address
in EB and E9) ,
byte 0 01 number of shapes

1 00 index to shape
2 04 } definition #1,
3 00 relative to start
4 12 first byte
5 3F
6 20
7 64
B 2D shape definition #1
9 15
A 36
B 1E
C 07
D 00 lastbyte

high-resolution graphics pages: see
Sections 6.2.1,6.2.2

154

start = 5

index

shape
definitions

byte 5 + 0
+1
+2
+3
+ 4
+ 5

+2n
+2n + 1

5+D1

5+D2

5 + Dn

n (0 to FF)
unused

lower 2 digits
upper 2 digits
lower 2 digits
upper 2 digits

· · · . · · . ·
lower 2 digits
upper 2 digits

first byte

· ·
last byte = 0 0

first byte

· ·
last byte = 00

· · · · · ·
first byte

· ·
last byte = 00,

<c- total number of
shape definitions

}
}

}

}
}

D 1 : index to first byte of shape
definition #1 , relative to 5

D 2: index to first byte of shape
definition #2, relative to 5

D n : index to first byte of shape
definition #n, relative to 5

shape definition #1

shape definition #2

} shape definition #n

Figure 6-10 shows the complete shape table for our example. Since
there's only one shape in the table, location 5 contains the value 1.
Bytes 5 + 2 and 5 + 3 are needed to specify the shape's lo­
cation; the shape definition itself can start in the next available byte,S
+ 4. So index byte 5 + 2 contains the value 04 and index byte
5 + 3 contains the value 00. Next come the bytes of the shape
definition, as derived in Figure 6-8. The table ends with the zero byte
marking the end of the shape definition.

Loading a Shape Table into Memory

Now that you've figured out how to code your shape in the form of a
shape table, you have to get it into the computer's memory so Apple­
soft can draw it on the screen. You also have to tell Applesoft where
in memory to look for the shape table.

First you must choose a starting address. This address must be less
than the highest memory address available in your system, and must
not be located in the high-resolution graphics page that you 'll be us­
ing to display the shapes (locations 2000 through 3 F F F for page 1 ,
4000 through 5 F F F for page 2). For this example, we'll use hexa­
decimal address 1 D Fe, which is just below high-resolution page 1 .

Graphics

Keep shape table out of harm's way

Apple lie Monitor program: see Apple
/Ie Reference Manual

DR A It.! statement: see Section 6.3.2

PO K E statement: see Section 7.1.2

Warning
Be sure you don't place your shape table in an area that will conflict with
your program or variable space, or with vital internal information used by
the system. See the box labeled "Protecting Your Shape Table," below,
for information on how to keep your program and shape table out of each
other's way; see Appendix H for the memory locations of important sys­
tem information.

While you're in the process of creating the shape table, you 'll proba­
bly want to type the table into memory directly from the keyboard us­
ing the Monitor program. Then you can draw the shape on the screen
with an immediate-execution DR A W statement, see if it looks the way
you want it, and go back and change it if it doesn't. See your Apple /Ie
Reference Manual for information on the use of the Monitor program.

Once your shape table looks correct, you 'll want to be able to use it
from within a program. Your program can store the table into memory
by using PO K E. To do this, you have to convert the starting address
of the table, and each byte of the table itself, from hexadecimal to
decimal , then store the decimal values into memory one at a time.

The shape table we've been developing consists of the hexadecimal
bytes

01 0 0 04 0 0 12 3F 20 8 4 2D 15 38 l E 07
00

The equivalent decimal values are

1 0 4 0 18 83 32 10 0 45 21 54 30 7 0

The starting address we 've chosen for the table, hexadecimal 1 D Fe ,
is equivalent to 7878 decimal. So the following statements in a pro­
gram will store the shape table into memory:

10 FO R }(= 7 8 78 to 7 889
-memory locations where

shape table will go
20 REA D A - read byte of table
3 0 PO K E){ t A -store at next location
4 0 N E){ T){ - go back for next byte
5 0 DATA lt O t 4 t O t 18t 83 t3 2 t l 0 0 t 45t21

54 t 3 0 t 7 t o -contents of table

Shape Tables 155

Store the starting address of the shape
table

5 H L OA 0 statement: see Section 6.3.2

Protect your tables

HI M EM: statement: see Section 7.2.1

156

Another way for a program to store a shape table into memory is to load
it from a disk or tape cassette. Details are given below under "Saving
and Loading a Shape Table."

Now that you have your shape table in memory, you have to tell
Applesoft where to find it. Applesoft looks for the table's starting ad­
dress in hexadecimal locations E 8 (low-order byte) and E 8 (high-or­
der byte), so you have to arrange somehow to store the correct
starting address into these locations. If you 've been using the Monitor
program to type the shape table into memory from the keyboard , you
can type its address into locations E 8 and E 8 in the same way. From
within a program, you can do it with two more PO K E statements. The
hexadecimal addresses E 8 and E 8 are equivalent to decimal 2 32
and 233 ; the two bytes of the table's starting address, 1 D and Fe ,
are equivalent to 28 and 252 . So the following PO K E statements
will do the trick:

GO POKE 232, 252 : POKE 233, 28

Your shape table is now stored correctly in the computer's memory,
ready to be drawn on the screen from within your program with a
ORA W statement.

Remember to store the two bytes of the starting address in reverse or­
der, with the low-order byte before the high-order byte. This convention
is always followed when storing memory addresses in the Apple lie's
memory.

When you use S H LOA 0 to load a shape table from a tape cassette, the
starting address is set up for you automatically in the proper locations.

Protecting Your Shape Table: In choosing a location in memory for
your shape table, it's important to keep it out of the way of your Applesoft
program, so the two don't overwrite each other. One way to do this is

. simply to use HIM EM: to set the upper limit of program memory to the
starting address of the table. In the example,

HIMEM: 7676

This too is done automatically when you use S H LOA 0 to get the table
from a tape cassette .

Unfortunately, this method leaves very little room for your program and
variables-in the example, only 5628 bytes (7676 minus 2 048). You
can buy a little more space for your program by setting HIM EM: to the

Graphics

Don't overwrite DOS!

Saving a shape table on a disk

DOS: Disk Operating System

B S A t.J E command: see DOS manual

binary file: a file containing " raw" infor­
mation not expressed in text form

beginning of the graphics page you're using (8192 for page 1, 16384
for page 2), as suggested in Section 6.2.5, "Protecting High-Resolution
Graphics." You can then locate the shape table above the graphics
page: that is, above location 16384 if you're using page 1,24576 if
you 're using page 2.

Perhaps the best method is to locate the program and variables above
the graphics page, again as described in Section 6.2.5. This leaves
room for the shape table below the start of the graphics page. If you're
using graphics page 1, that's 6144 bytes (8182 minus 2048)­
enough room for a very extensive shape table!

Warning
If you locate your shape table above the high-resolution graphics page
and your system is equipped with one or more disk drives, be careful not
to run into the memory space occupied by the Disk Operating System,
beginning at location 38400 (hexadecimal 86 0 0) .

Saving and Loading a Shape Table

To save your shape table on a disk, you need to know two things:

• The starting address of the table (1 D F C in the example)

• The length of the table in bytes (14 in the example-hexadecimal
000 E -including the "stop" byte)

Next, you must choose a file name under which to store your shape
table on the disk. We'll use S HAP E 1 for this example.

To save the table on a disk in immediate execution, put the disk in the
disk drive and issue the following DOS command:

BSAl.'E SHAPE1, A$lDFC, L$OOOE

This command says "store a binary file named S HAP E 1 on the disk,
containing the current contents of memory starting at hexadecimal
address 1 DF C, and 000 E (hexadecimal) bytes long."

If you're using a disk drive other than the main startup drive, the B S A lj E
command should also include slot and drive parameters specifying
which disk drive to use; see your DOS manual for details.

To issue the same command from within an Applesoft program, use
the statement

PR I NT CHR$ Ul)
L$OOOE"

Shape Tables

"BSAl.JE SHAPE1, A$lDFC,

157

Loading a shape table from a disk

B LOA D command: see DOS manual

Don't forget the starting address

Saving a shape table on tape

Apple lie Monitor program: see Apple
lie Reference Manual

Loading a shape table from tape

S H LOA D statement: see Section 6.3.2

158

Again, see your DOS manual for details.

To load the table back into memory from the disk, you can use the
DOS command

BLOAO SHAPEl

in immediate execution, or the statement

PRINT CHR$ (4) j "BLOAD SHAPE1"

from within a program. Notice that you don't have to include the start­
ing address and the table length ; this information will be picked up
automatically from within the disk file itself. However, the starting ad­
dress is not stored automatically into the special addresses where
Applesoft looks for them, so you (or your program) will have to do that
for yourself:

POKE 232, 25 2 : POKE 233, 2 9

To save your shape table on a tape cassette, you need to know three
things :

• The starting address of the table (1 D F C in the example)

• The last address of the table (1 EO 9 in the example)

• The difference between the first two items (hexadecimal 000 D,
decimal 14)

Item 3, the difference between the last address and the first address
of the table, must be stored in locations 0 (low-order byte) and 1
(high-order byte). From the Monitor, type

O:OD 00

and press [RETURN I. Now you must write to the cassette first the ta­
ble length from locations 0 to 1, then the shape table itself:

O.lW 1DFC.1E09W

Don't press the [RETURN 1 key until you've put a cassette in your tape re­
corder, rewound it, and started it recording .

To load the shape table back from the tape, use the S H LOA D
statement.

Graphics

I CONTROL I-c: see Section 1.3.2

6.3.2 Using Shape Tables

The commands in this section are used to draw and manipulate on
the screen shapes defined by a shape table in memory:

• DR A Wand)-(D RAW draw shapes from a shape table onto the
high-resolution screen.

• S CAL E = controls the scale at which shapes are drawn on the
screen.

• R D T = controls the rotation of shapes on the screen.

• S H LOA D loads a shape table into memory' from a tape cassette.

As a preview of what the commands in this section can do, here's a
sample Applesoft program for you to try. The program first stores into
memory the shape table developed in Section 6.3.1, using the PO K E
statement (see "Loading a Shape Table into Memory)." Then it uses
the statements described in this section to produce a somewhat sur­
prising effect on the screen. See if you can guess what the program
will display, then type it and run it:

10 FOR X = 7878 TO 7889
-memory locations where

shape table will go
20 REA D A -read by1e of table
30 PO K E)-(, A -store at next location
LI 0 N E)-(T)-(-go back for next byte
50 DATA 1,0 ,LI ,0 ,18 ,83 ,32 ,100 ,Ll5 ,21,

5 LI ,30 ,7 ,0 -contents of table
100 HGR2
110 HCOLOR = 3
120 FOR R = 1 TO 50
130 ROT = R
lL10 SCALE= R
150 XDRAW 1 AT lL10, 98
180 NE)<T R
170 GOTO 120

When you get tired of watching the show, interrupt the program by
pressing I CONTROL I-C to regain control of the system.

Shape Tables 159

DR A W draws a shape on the high­
resolution screen

shape tables: see Section 6.3.1

He D LOR = statement: see Section
6.2.3

160

The DR A W Statement

DRAW 5
DRAW 1 AT 140, 86
DRAW SHAPE AT XCENTER + XO FFSET,

YCENTER + YOFFSET

The DR A W statement draws a shape from a shape table on the high­
resolution graphics screen at a specified location. The expression
following the keyword DR A W gives the index number of the desired
shape within the shape table currently in memory. The location at
which the shape is to be drawn is specified by a pair of expressions
following the keyword AT , separated by a comma. The first expres­
sion gives the horizontal screen position of the shape's starting point ;
the second gives the vertical position.

The designated shape is drawn in the current display color, scale,
and rotation, as specified in the most recently executed H COL 0 R = ,
SCALE =, and ROT = statements.

Warning
You must specify the color, scale, and rotation of the shape before
ORA W is executed. If any of these have not been specified, the results
will be random: odd dots may appear, bizarre shapes may be drawn,
and memory may be overwritten.

Assuming that a shape table is already loaded into memory (see
" Loading a Shape Table into Memory" in Section 6.3.1), the following
program will draw the first shape in the table at column 50, row 100:

10 HGR

20 HCOLOR = 3
30 ROT = 0

40 SCALE = 5
50 DRAW 1 AT 50, 100

- display high-resolution
graphics

-set color to white-1
-orient shape as originally

defined
-enlarge shape 5 times
-draw shape 1 at column 50,

row 100

If you omit the keyword A T and the screen coordinates,

50 DRAW 1

Graphics

H P LOT statement: see Section 6.2.4

)-: D RAW statement: see below

Be sure to load a shape table first

I CONTROL 1-1 RESET I: see Section 1.3.2

H G R statement: see Section 6.2.1

>(D RAW erases a shape

Complementary colors

Applesoft will put the shape on the screen starting at the last point
plotted by the most recently executed H P LOT, DR A W, or)< D RAW
statement. (The shape drawn on the screen may not actually begin at
the last point previously plotted. If the first plotting vector in the shape
doesn't actually plot a point, there will be an offset between the first
visible point in the shape and the last paint plotted .) If no such state­
ment has been executed, the results are unpredictable.

If the shape number specified is less than 0 or greater than the actual
number of shapes in the shape table, the program will halt with the
message

?ILLEGAL QUANTITY ERROR

Warning
If you execute 0 RAW without first loading a shape table into memory, the
system may hang (use I CONTROL I-I RESET I to recover) , or Applesoft
may draw random shapes anywhere in the high-resolution graphics
area of memory (locations 81 92 to 24575 decimal) , whether or not
H G R or H G R 2 has previously been executed. This can have disastrous
consequences if your program is longer than about 6000 bytes.

The)-~ D RAW Statement

)-(DRAW 5
XDRAW 1 AT 140 , 80
XDRAW SHAPE AT XC ENTER + XD FFSE T,

YCENTER + YOFFSET

The){ 0 R A \AI statement works exactly the same as DR A W, except
that the color used to draw the shape is the complement of the color
already existing at each point plotted. The following pairs of colors
are complements :

• black and white

• violet and green

• blue and orange

){ D R A \AI is most commonly used to erase a previously drawn shape.
The following program, which assumes that a shape table has al­
ready been loaded into memory (see "Loading a Shape Table into

Shape Tables 161

Be sure to load a shape table first

I CO NTROL I- [RESET I : see Section 1.3.2

H G R statement: see Section 6.2.1

162

Memory" in Section 6.3.1) , illustrates the pOint by drawing and then
erasing the same shape, leaving the screen blank:

10 HGR 2 -display full-screen high-reso-
lution graphics

20 HCOLOR = 3 -set color to white-1
30 ROT= 0 -orient shape as originally

defined
40 SCALE = 5 -enlarge shape 5 times
50 DRAW 1 AT 50 t 10 0 -draw shape at column 150,

row 100
GO FOR -, 1 TO 500 : NE>(T -,

L- L-

-stall for a short time
7 0 }{ D RAW 1 AT 50 t 1 0 0 -erase the shape

If you use DR A Wand){ D RAW alternately in a loop, you can do
animation:

10 HGR2

20 HCOLOR = 4
30 ROT= 0

40 SCALE = 5
50 FOR v = 1 1\

60 DRAW 1 AT
TO 200

50 + \I
1\ t

-display full-screen high-resolu­
tion graphics

-set color to white-1
-orient shape as originally

defined
-enlarge shape 5 times
-loop 200 times

100
-draw shape in a different col­

umn each time
70 }<DRAW 1 AT 50 + X, 100

- erase shape
BON E){ T >< -repeat loop

If the shape number specified is less than 0 or greater than the actual
number of shapes in the shape table, the program will halt with the
message

?ILLEGAL QUANTITY ERROR

Warning
If you execute)(D RAW without first loading a shape table into memory,
the system may hang (use [CONTROL 1- [RESET I to recover) , or Applesoft
may draw random shapes anywhere in the high-resolution graphics
area of memory (locations 81 92 to 24575 decimal), whether or not
H G R or H G R 2 has previously been executed. This can have disastrous
consequences if your program is longer than about 6000 bytes.

Graphics

S CA L E = sets scale factor for DR AW
and :< DRAW

DRAW and :<D RAW statements: see
above

The S CAL E = Statement

SCALE = 10
SCALE = Z / 4

The S CAL E = statement sets the scale factor (relative size) for the
high-resolution graphics shape to be drawn by DR A W or)-(D RAW.
The expression following the keyword 5 CAL E = specifies the scale
factor, which may range from 1 (reproduce the shape exactly as orig­
inally defined) up to a maximum of 255 (draw the shape 255 times
the size originally defined) .

Assuming that a shape table is already loaded into memory (see
"Loading a Shape Table into Memory" in Section 6.3.1), the following
program will draw the first shape in the table at three different posi­
tions on the screen and in three different sizes:

10 HGR2

20 HCDLOR = 3
30 ROT = 0
40 SCALE = 1
50 DRAW 1 AT

GO SCALE =
,..,
.::...

70 DRAW 1 AT
8 0 SCALE = 3
80 DRAW 1 AT

100 ,

150 ,

200,

-display full-screen high-reso-
lution graphics

-set color to white-1
-orient shape as defined
-use original size

10 0 -draw shape at column 100,
row 100

-scale to twice original size
100 -draw at column 150, row 100

-scale to three times size
10 0 -draw at column 200, row 100

A scale setting of (> is considered equivalent to the maximum setting
(25 5) . 1f the scale setting specified is less than 0 or greater than 2 5 5 , the
program will halt with the message

?ILLEGAL QUANTITY ERROR

Scale factors are useful only up to a certain point. Large scale settings
produce some rather outlandish results on the screen.

Notice that the equal sign is part of the keyword S CAL E = ; it doesn 't
represent an assignment to a variable named S CAL E. A statement
such as

LET SCALE =)<

will cause a syntax error. The only way to find out the current scale
setting is to keep track of it yourself with a separate variable .

Shape Tables 163

ROT = sets rotation for 0 RAW and
>(ORAW

DRAW and)<0 R AW statements: see
above

Rotation also depends on scale
setting

scale setting: see above

164

The ROT = Statement

ROT = 1 G
ROT = 32 + 2 * R

The ROT = (for "rotation") statement sets the angular rotation for the
high-resolution graphics shape to be drawn by DR A W or)-(D RAW.
The expression following the keyword ROT = specifies the rotation
in units of 5.625 degrees (1 /64 of a circle). ROT = 0 will orient the
shape exactly as defined in the shape table, ROT = 1 G will rotate
the shape 90 degrees clockwise, ROT = 32 will rotate it 180 de­
grees, and so on. The process repeats starting at ROT = G 4.

Assuming that a shape table is already loaded into memory (see
"Loading a Shape Table into Memory" in Section 6.3.1), the following
program will draw the first shape in the table, five times its original
size, at two different pOSitions on the screen, once oriented as origi­
nally defined and once rotated by 45 degrees:

10 HGR2

20 HCOLOR= 3
30 SCALE= 5

40 ROT= 0

50 DRAW 1 AT 50,

60 ROT= 8
70 DRAW 1 AT 100,

100

-Display full-screen high-reso­
lution graphics

-set color to white-1
-scale shape to five times origi-

nal size
-orient shape as originally

defined
-draw shape at column 50, row

100
-rotate shape 45 degrees

1 00 -draw shape at column 100,
row 100

The amount of rotation obtainable is somewhat dependent on the
current scale setting. For S CAL E = 1, Applesoft recognizes only
four rotation values (0, 1 G, 32 , 48); for SCALE = 2, it recognizes
eight rotation values (0 , 8, 1 G, ...); for S CAL E = 3, it recognizes
twelve rotation values ; and so on. For scale settings of 1 6 or more,
the full range of rotation values is available. For unrecognized rota­
tion values, Applesoft usually orients the shape with the next smallest
rotation that it recognizes.

Graphics

S H LOA D loads a shape table from
tape

HIM EM: statement: see Section 7.2.1

Notice that the equal sign is part of the keyword ROT = ; it doesn't repre­
sent an assignment to a variable named ROT. A statement such as

LET ROT = }(

will cause a syntax error. The only way to find out the current rotation
setting is to keep track of it yourself with a separate variable.

If the rotation setting specified is less than 0 or greater than 255, the
program will halt with the message

?ILLEGAL QUANTITY ERROR

The S H LOA 0 Statement

SHLOAO

The S H LOA D statement (for "shape load") loads a shape table from
a tape cassette. The shape table is loaded just below the upper limit
of available program and variable space (H I ME M :); HIM EM: is
then set just below the shape table to protect it.

To use S H LOA D in immediate execution, turn on your tape recorder
with the proper tape inserted and cued up to the proper place. Then
type

SHLOAD

and press 1 RETURN I. You should hear one "beep" when the shape
table's length has been read successfully, and another when the ta­
ble itself has been read.

You can also use S H LOA D from within a program (with appropriate
prompting messages) to allow users to load their own shape tables :

100 PRINT "CUE UP YOUR SHAPE TAPE AND
PRESS THE PLAY BUTTON."

110 PRINT "THEN PRESS THE RETURN KE Y TO
LOAD THE SHAPE TABLE."

120 GET STALL$
130 SHLOAD
lL10 PRINT "TABLE

-prompt user with instructions
-wait for keypress
-load shape table from tape

LOADED-PLEASE SHUT OFF
YOUR RECORDER." -tell user table is loaded

Shape Tables 165

Don't forget to turn on your tape recorder!

I CON TROL I - IRESETI :seeSection1 .3.2

For more information ...

166

If you load a second shape table replacing the first one, you or your pro­
gram should reset HIM EM: to avoid wasting memory. See the section
"Loading a Shape Table into Memory" in Section 6.3.1 for more informa­
tion on shape tables and memory usage.

If you try to use S H LOA D without a tape recorder connected,
turned on, and set to play, the system will hang indefinitely. Use
I CONTROL I- I RESET I to regain control.

If a variable name begins with the reserved word S H LOA D

SHLOADER = 59

S H LOA D may be executed before a syntax error is detected. In such a
case, the system will patiently wait (forever, if necessary) for a shape ta­
ble to be loaded from a tape cassette. Again , use I CONTROL I- I RESET I to
recover.

For information on saving a shape table on tape, see "Saving and Load­
ing a Shape Table" in Section 6.3.1. See Appendix M for a list of all
statements dealing with tape cassettes.

Graphics

Utility Statements

169 7.1 System Utilities
170 7.1.1 The PEEK Function
170 7.1.2 The PO K E Statement
171 7.1.3 The CALL Statement
172 7.1.4 The US R Function
174 7.1.5 The W A I T Statement
176 7.2 Memory Management
176 7.2.1 The HIM EM: Statement
177 7.2.2 The L 0 M EM: Statement
178 7.2.3 The F R E Function
180 7.3 Debugging Facilities
180 7.3.1 The TRACE Command
181 7.3.2 The NOT R ACE Command

Utility Statements 167

........J

-

'----

Chapter 7

Utility Statements

The features covered in this chapter are concerned with low-level
control of the programming environment.

direct memory access: see Section 7.1 Section 7.1 , "System Utilities," discusses direct access to specific lo­
cations in the computer's memory from within an Applesoft program.

memory management: see Section 7.2 Section 7.2, "Memory Management," describes the ways in which
Applesoft programs can control the limits of program space.

debugging: see Section 7.3

7.1

PEE K function: see Section 7.1 .1

PO K E statement: see Section 7.1 .2

CAL L statement: see Section 7.1.3

US R function: see Section 7.1 .4

W A I T statement: see Section 7.1 .5

Section 7.3, "Debugging," tells how to trace the execution of a run­
ning program for debugging purposes.

System Utilities
This section describes statements and functions that give Applesoft
programs direct access to the Apple lie's memory:

•
•
•

•

PEE K examines the contents of a memory location.

PO K E alters the contents of a memory location.

CAL Land US R allow Applesoft programs to execute machine­
language subroutines stored in the computer's memory.

W A I T suspends program execution until a specified signal is
received from a peripheral device.

System Utilities 169

7.1.1 The PEEK Function

PEE K examines contents of a mem­
ory location

Certain locations hold special informa­
tion or produce special effects: see
Appendix F

The PEE K function directly examines the contents of a specified lo­
cation in the computer's memory. The argument given to PEE K is the
decimal address of the desired memory location. PEE K yields the
contents of the specified location, which will be an integer from 0 to -..J

255. For example, the following program displays the contents of
addresses 1 00 through 1 20 :

10 FOR AOOR = 100
TO 1 20 -loop through desired

addresses
20 PRINT "LOCATION" j AOOR j "HOLDS THE

1,'ALUE "j PEEK (AOOR) 30 ND<T AOOR
-display contents of location
-go back for next address

Certain locations in the Apple lie's memory hold special system infor­
mation or produce special effects whenever their contents are read .
One important use of PEE K is for manipulating these specialloca­
tions. See Appendix F, " Peeks, Pokes, and Calls," for details.

If PEE K is given a negative argument value, it adds 65536 (2 to the
16th power) to obtain an equivalent positive address. For example,

PEEK (-16384)
PEEK (-1)
PEEK (- 32768)
PEEK (-65500)

is equivalent to PEEK (49152)
isequivalentto PEEK (65535)
isequivalentto PEEK (32768)
is equivalent to PEEK (36)

If the argument is not in the range - 65535 to + 65535 t the pro­
gram will halt with the message

?ILLEGAL QUANTITY ERROR

7.1.2 The PO K E Statement

POKE 3L1, 8

PO K E alters contents of a memory
location

170

POKE -16302, 0
POKE AOOR, (2*01 + 3*02) / (U - I,')

The PO K E statement stores a specified value directly into a location
in the computer's memory. The first expression following the keyword
PO K E gives the decimal address of the memory location; the second

Utility Statements

[CO NTROL 1-[RESET I: see Section 1.3.2

expression, separated from the first by a comma, gives the value to
be stored into that location. For example,

POKE 34, 8

Warning

-stores value 8 into location
34

Be certain that the address into which you are storing doesn 't contain
part of your program or some vital system information that you don't
want to change. An ill-advised PO K E can hang the system, drop you
into the Monitor, or alter the operation of the system or of your program in
unpredictable and possibly disastrous ways. In the event of catastrophe,
use [CONTROL 1-[RESET Ito regain control of the system. See Appendix
H for the locations of vital system information that shouldn 't be tampered
with .

Certain locations in the Apple lie's memory hold special system infor­
mation or produce special effects whenever a value is stored into
them. One important use of PO K E is for manipulating these special
locations. See Appendix F, " Peeks, Pokes, and Calis," for details.

If PO K E is given a negative target address, it adds 65536 (2 to the
16th power) to obtain an equivalent positive address. For example,

POKE -163811, 0 is equivalent to POKE 1I9152 , 0
POKE -32768, 112 is equivalent to POKE 32768 ,

112
POKE -65502, 8 is equivalent to POKE 3 11 , 8

If the target address is not in the range - 6 5 5 3 5 to + 6553 5, or if the
specified value is not in the range 0 to 255 , the program will halt with
the message

?ILLEGAL QUANTITY ERROR

7.1 .3 The CAL L Statement
CALL 54815

CAL L executes a machine-language
subroutine

CALL - 836
CALL ROUTINE (J)

The CAL L statement executes a machine-language subroutine from
within an Applesoft program. The decimal address of the desired
subroutine follows the keyword CAL L. Control is transferred to the

System Utilities 171

[CO NTR OL 1-[RES ET I: see Section 1.3.2

system calls: see Appendix F

PO K E statement: see Section 7.1.2

Apple lie Monitor program: see Apple
lie Reference Manual

subroutine at the designated address ; when the subroutine is fin­
ished, execution continues with the statement following the CAL L.
For example,

CA LL 6466B

Warning

- executes machine-language
subroutine beginning at ad­
dress 6466 B

Make sure the address you give in the CAL L statement is the beginning
of a valid machine-language subroutine! A misdirected CAL L can have
unpredictable and probably unpleasant consequences, such as hang­
ing the system or dropping you into the Monitor. If any of these calamities
befall you , use [CONT ROL 1-[RES ET I to regain control of the system.

The Apple lie's built-in firmware contains many useful subroutines
accessible with the CAL L statement; see Appendix F, "Peeks,
Pokes, and Calls," for details.

You can also use CAL L to execute maChine-language subroutines
of your own, which you have stored into memory with the PO K E
statement, typed from the keyboard via the Monitor, or loaded into
the computer from a disk or tape.

If CAL L is given a negative target address, it adds 65536 (2 to the
16th power) to obtain an equivalent positive address. For example,

CAL L - 836 is equivalent to CAL L 6 a 6 0 0
CALL - 868 is equivalent to CALL 6a668
CALL -1888 isequivalentto CALL 63538

If the target address is not in the range - 6 5 5 3 5 to + 65535 , the
program will halt with the message

?ILLEGAL QUANTIT Y ERROR

7.1 .4 The USR Function

US R executes a machine-language
function routine

172

Not for Everyone: This feature is intended for expert programmers
only, and requires a knowledge of machine-language programming.
Readers with fewer than sixteen fingers are advised to skip this section.

The US R (for "user-supplied routine") function executes a machine­
language function routine stored into the computer's memory by you ,
the user. Such a routine typically performs some high-speed compu­
tation that cannot be done efficiently, or cannot be expressed at all , in

Utility Statements

PO K E statement: see Section 7.1 .2

Apple lie Monitor program: see Apple
lie Reference Manual

Argument and result passed via floating­
point accumulator

Locations $ (I A to $ (I C must contain a
J M P to the routine

Applesoft. The argument supplied to the US R function is passed un­
changed to the machine-language routine, and the result yielded by
the routine is passed back as the value of the US R call.

The function routine to be executed with US R may be stored into the
computer's memory with the PO K E statement, typed from the key­
board via the Monitor, or loaded into the computer from a disk or tape.
When US R is called, the value supplied as an argument is placed
into the floating-point accumulator in the computer's memory (hexa­
decimal locations $ 8 D to $ A 3); control is then transferred via
a machine-language J 5 R (Jump to Subroutine) instruction to
hexadecimal address $OA (decimal 1 0). Locations $OA to $OC
(decimal 10 to 12) must contain a machine-language J M P (Jump)
instruction to the beginning of the machine-language routine. The
routine should leave its result in the floating-point accumulator and
return control to Applesoft with an R T S (Return from Subroutine) in­
struction. The contents of the floating-point accumulator are then
passed back to your Applesoft program as the value yielded by US R .

Here is a trivial example showing the use of the US R function . The
machine-language routine shown here simply takes the argument
value it receives and multiplies it by 8:

] CAL L - 1 51-leave Applesoft; enter Monitor
* 0 A : 4 COO 03 -set up machine-language

jump to hexadecimal address
$300

* 0300:18 A5 8D G8 03 85 8D GO

* I CONTROL 1- C
] PR I NT USR (3)

24

-enter short machine-language
routine to multiply contents of
floating-point accumulator by
8

-return to Applesoft
-execute routine with argument

value 3
-result displayed on screen

At hexadecimal address $ 0 A, there is a J M P (op code 4 C) to hex­
adecimal address $ 3 0 O. (As usual in 6502 machine language, the
low-order byte of the address, 00, precedes the high-order byte,
03.) Beginning at address $ 3 0 0 is a machine-language routine to
multiply the value in the floating-point accumulator by 8 . Back in
Applesoft, when the function call US R (3) is executed, the argu­
ment value 3 is placed in the floating-point accumulator and control is
passed to the machine-language routine via the J M P at location
$ 0 A. The machine-language routine gets the value in the floating-

System Utilities 173

point accumulator, multiplies it by 8, puts the result (24) back into the
floating-point accumulator, and returns control to Applesoft with an
R T 5 instruction (op code GO). The value 24 is then passed back as
the result of the US R call.

To obtain a two-byte integer from the value in the floating-point accumu­
lator, your machine-language routine should do a JSR to address
$E 01 C. Upon return , the integer value will be in locations $AO (high­
order byte) and $ A 1 (low-order byte).

To convert an integer result to its floating-point equivalent, so that the
function can return that value, place the two-byte integer in registers A
(high-order byte) and Y (low-order byte). Then do a JSR to address
$ E 2 F 2 . Upon return, the floating-point value will be in the floating-point
accumulator.

I

--~--
7.1.5

Novices need not apply

W A I T waits for a Signal from a periph­
eral device

The WA I T Statement

WAIT 48347, 15
WAIT 48401 , 240, 182
WAI T ADDR'y', , M l'y', , M2 'y',

For Experts Only: This feature is intended for expert programmers
only, and requires an understanding of bit-masking operations. If you
think a mask is something you wear on Halloween, you can safely afford
to skip this section. You won 't miss a thing.

The WA I T statement suspends program execution until a specified
bit pattern appears at a specified memory location. It is typically used
to wait for a particular status signal from a peripheral device.

The first expression following the keyword W A I T designates the ad­
dress of the memory location to be tested. The second expression

mask: a pattern of bits for use in bit-level represents a one-byte mask specifying which bits of the designated
logical operations location are of interest: a one bit in the mask means that the corre­

sponding bit of the memory location is to be tested ; a zero bit means
it is to be ignored. The optional third expression is 6.nother one-byte
mask specifying the bit value to be tested for in each position of the
memory location: a one bit in the mask tests for a zero bit in the corre­
sponding position of the memory location, and vice-versa (!) . If the
second mask is omitted, all bit positions specified by the first mask
will be tested for a one bit. For example,

174 Utility Statements

I CONTROLI - I RESETI : seeSeclion 1.3.2

WAIT ADDR, 255 -wait for a one bit anywhere in
location ADD R

WAIT ADDR, 255, 255 -wait for a zero bit anywhere in
location ADD R

WAIT ADDR, 1 -wait for low-order bit of loca-
tion ADD R to become 1

WAIT ADDR, 128, 128 -wait for high-order bit of loca-
tion ADD R to become 0

WAIT ADDR, 3 , 2 -wait for low-order bit of loca-
tion ADD R to become 1 or
second low-order bit to be-
come 0

When WA I T is executed, the contents of the location specified by
the first expression are exclusive-or'ed with the mask represented by
the third expression (if any); the result is then anded with the mask
represented by the second expression. If the result is nonzero (that
is, if any of the bits of interest are in the specified state), then program
execution proceeds; if the result is zero (none of the bits of interest
are in the specified state) , then the test is repeated . Thus program
execution will be suspended until one of the specified bits is set to the
specified state by an outside agency (presumably a signal from a pe­
ripheral device).

Warning
If the specified bit pattern never appears, program execution will hang
forever. Make sure that the memory location you 're testing is receiving
information that will eventually test true. The only way to interrupt a
WA I T is with I CONTRO L I-IRESETI .

If WA I T is given a negative target address, it adds 65536 (2 to the
16th power) to obtain an equivalent positive address. For example,

W A I T - 1 6 1 88, 1 5 is equivalent to WA I T a 8 3 a 7, 1 5

If the target address is not in the range - 65 5 35 to + 65535, or if
either of the masks is not in the range 0 to 255, the program will halt
with the message

?I LLE GA L QUANT ITY ERR OR

System Utilities 175

Memory Management
7.2 The features discussed in this section are used to control the way

Applesoft allocates memory space for your program :

H I ME M : statement: see Section 7.2.1 • The HIM EM: statement sets the upper limit of available pro-
gram memory.

L 0 M EM: statement: see Section 7.2.2 • The L 0 M EM: statement sets the lower limit of available program

F R E function: see Section 7.2.3

memory.

• The F R E function determines the amount of remaining memory
space available to the program.

7.2.1 The HIM EM: Statement

HIMEM: 8182

HIM EM: sets upper limit of available The HIM EM: statement sets the highest memory address available
program memory to an Applesoft program for storage of program lines and variables.

Loading DOS resets HIM EM:

Apple lie Monitor program: see Apple
lie Reference Manual

A word to the wise

176

The upper limit of available program memory is set to the value of the
expression following the keyword HIM EM: . The area above this ad­
dress is available for use by the Disk Operating System, high-resolu­
tion graphics, or machine-language programs.

Notice that the colon is part of the keyword HIM EM: and is required .

Applesoft automatically sets HIM EM: to the address of the highest
writable memory (RAM) address available on your computer. On sys­
tems equipped with disk drives, loading the Disk Operating System
(DOS) will automatically reset HIM EM: to a lower value in order to
protect the area of memory occupied by DOS itself. See your DOS
manual for further information.

You can change the setting of HIM EM: only by

• executing the HIM EM: statement

• typing 1 CONTROL I-B to the Monitor program

• restarting the system

• loading a machine-language program

Warning
Resetting HIM EM: above its current value is an extremely dangerous
practice that can result in writing over the Disk Operating System or
other vital system information. Wise programmers will carefully investi­
gate reserved memory areas before writing to them.

Utility Statements

PEE K function: see Section 7.1.1

A common use of HIM EM: is to protect your program and high-resolu­
tion graphics from overwriting each other. See Section 6.2.5, "Protecting
High-Resolution Graphics," for details.

Helpful Hint: The current value of HIM EM: is stored in decimal mem­
ory locations 1 1 5 and 11 6; to obtain that value, use the expression

PEEK (116) * 256 + PEEK (115)

If HIM EM: is given a negative address, it adds 65536 (2 to the 16th
power) to obtain an equivalent positive address. For example,

HIM EM: - 57344 is equivalent to HIM EM: 8 1 82

If the specified address is not in the range - 65535 to + 65535, the
program will halt with the message

?ILLEGAL QUANTITY ERROR

If the specified address is lower than the current setting of L 0 M EM: , or
doesn't allow enough room for the program already in memory, the pro­
gram will halt with the message

?OUT OF MEMORY ERROR

7.2.2 The L 0 M EM: Statement

LOMEM: 2 L157G

L 0 M EM: sets lower limit of available
program memory

DE F F N statement: see Section 2.4.3

Adding a program line resets
LOMEM:

NEW command: see Section 1 .2.1

The L 0 M EM: statement sets the lowest memory address available
to an Applesoft program for storage of variables. The lower limit of
available program memory is set to the value of the expression fol­
lowing the keyword L 0 M EM: . The area below this address is avail­
able for high-resolution graphics or machine-language programs.
L 0 M EM: also resets all variables to their initial values and wipes out
all functions defined with DE F F N.

Notice that the colon is part of the keyword L 0 M EM: and is required.

Applesoft ordinarily begins to store variables at the end of the pro­
gram in memory. Each time you add , delete, or change a program
line , Applesoft resets L 0 M EM: to a location just above the final line
of the program. Executing the NEW command or typing I CONTROL 1-5
to the Monitor resets L 0 M EM: to its initial value .

Memory Management 177

Don't execute L 0 M EM: from within a
program

PEE K function: see Section 7.1 .1

HIM EM: statement: see Section 7.2.1

The value of L 0 M EM: can only be increased from its current setting.
An attempt to set L 0 M EM: to a lower value than the one already in
effect will halt the program with the message

?OUT OF MEMORY ERROR

Warning
Changing L 0 M EM: during the course of a program is a most danger­
ous practice that can cause portions of the program or of Applesoft's in­
ternal control information to become unavailable, which in turn will
cause the program to behave in outlandish ways (if at all). Programmers
who behave with such reckless abandon have only themselves to
blame.

Helpful Hint: The current value of L 0 M EM: is stored in decimal mem­
ory locations 105 and 106; to obtain that value, use the expression

PEEK (106) * 256 + PEEK (1 0 5)

If L 0 M EM: is given a negative address, it adds 65536 (2 to the 16th
power) to obtain an equivalent positive address. For example,

LOMEM: -a9152 isequivalentto LOMEM: 1638a

If the specified address is not in the range - 65535 to + 65535 , the
program will halt with the message

?ILLEGAL QUANTITY ERROR

If the specified address is higher than the current setting of HIM EM: ,
or lower than the address of the highest memory location occupied by
the current operating system (plus any currently stored program), the
program will halt with the message

?OUT OF MEMORY ERROR

7.2.3 The F R E Function

F R E yields amount of available mem- The F R E function yields the number of bytes of unused writable
ory (RAM) memory available to the running program. For example,

LET AVAIL = FRE(O) - set A l.J A I L to amount of
available memory remaining

Notice that the name of the function is F R E, not F R E E.

Utility Statements

HIM EM: statement: see Section 7.2.1

Argument required but ignored

If the number of free bytes exceeds 32767, F R E yields a negative re­
sult; adding 65536 will give you the actual number of free bytes:

IF FRE(I) < I) THEN At.JAIL = FRE(O) +
65536

If you have set HIM EM: beyond the highest RAM address in your
Apple lie, F R E may yield a value higher than the computer's actual
memory capacity. The reliability of such a value is to be taken lightly.

Stranger Than Fiction: The argument given to FRE is ignored, and
has no effect on the operation of the function . However, you can't leave it
out-you must include an argument expression of some kind to "keep
the parentheses apart." What you use for an argument expression
doesn't matter, but if Applesoft can 't evaluate it as a legal expression ,
you'll get an error halt.

How Applesoft Manages Free Space: The amount of free space re­
ported by F R E is the number of bytes remaining below the string stor­
age space and above the numeric array and string pointer array space
(see Section H.2, "Applesoft Memory Allocation"). When Applesoft
changes the contents of a string variable during the course of a program
(say from" CAT" to " DOG"), the characters in the old string
(" CAT") are not erased from memory; Applesoft simply allocates
some fresh space to hold the new string (" DOG") . As a result , charac­
ters left over from unused strings take up "dead space" and slowly fill
memory from HIM EM: down toward the top of the array space.

Applesoft will automatically clear out these leftover characters when the
bottom of string space "collides" with the top of array space. But if you 're
using any of the free space for machine-language programs or for high­
resolution graphics, they may be overwritten.

Light Housecleaning: The automatic "housecleaning" just described
takes time (anywhere from a fraction of a second to over two minutes,
depending on the number of string variables your program is using). Fur­
thermore, such housecleaning occurs at unpredictable moments­
whenever your string and array spaces happen to collide. If it happens
while Applesoft is in the middle of displaying a message on the screen,
for instance, it can cause unfortunate confusion for your program's user,
who will be left waiting for the computer to finish displaying a half-deliv­
ered message.

The F R E function provides a tool for warning the user that the computer
will be busy for a while . The address of the current beginning of string
space is kept in locations 11 1 and 1 1 2 of the computer's memory; the
end of array space is kept in locations 1 09 and 11 O. Whenever Apple­
soft needs to allocate more memory, it compares the contents of these
locations; if they differ by less than one, Applesoft does its automatic
housecleaning.

Memory Management 179

7.3

Since Applesoft checks these locations, so can you. When the differ­
ence between them starts getting close to zero, it's time to display some
kind of "don't worry" message and force housecleaning. Using a state­
ment of the form

IF (PEEK (112) *256 + PEEK (111))
- (PEEK (110) *256 + PEEK (108» :> 2 THEN
PRINT "PLEASE STAND BY"," : Q = FRE (0)

periodically within your program will force housecleaning to occur and
will prevent such confusion.

Since the housecleaning can take as long as several minutes each time
it occurs, don't do it too often. It's best to use F R E (0) when you need
a pause anyway-such as after you write information onto a disk, or
while the user is reading information on the display screen.

Debugging Facilities
This section details two Applesoft commands used as debugging
aids : T R ACE and NOT R ACE. They're useful when a program isn't
behaving as intended and you need to find out why.

7.3.1 The T RAe E Command

TRACE

T R ACE displays line numbers as they
are executed

•

I CO NTROL I-c: see Section 1.3.2

T R ACE causes Applesoft to display the line number of each state­
ment it executes. Each line number displayed is preceded on the
screen by a number sign (#) . For example, the program

1 0 TRACE
20 I I + 1 I I + 1

-two statements on line 20
30 J J + 1 J J + 1

-two statements on line 30
40 GOTO 20 -loop forever

will display the output

#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #4 0

ad nauseam, or until you press I CONTROL I-C, whichever occurs first.

Utility Statements

NOT RAe E statement: see Section
7.3.2

Apple lie Monitor program: see Apple
I/e Reference Manual

Using T RAe E from within a program

Once tracing has been started, it can be canceled only by

• executing the NOT RAe E statement

• restarting the system

• typing 1 CONTROL 1-5 to the Monitor program

As the example above shows, T R ACE can be used from within a pro­
gram as well as in immediate execution. A more realistic use in debug­
ging would be to test for some error condition and turn on tracing only if
the error condition holds:

IF X > Y THEN TRACE -trace if variable values are
wrong

Be sure to remove the T RAe E statements from your program after
you've found and exterminated the bug!

display formatting: see Section 5.2.4 When the program being traced contains display-formatting statements
(1.ITAB , HTAB, TAB , semicolons, commas) , line numbers displayed by
T R ACE may appear in a confused fashion or may be overwritten
entirely.

7.3.2 The NOT RAe E Command

NOTRACE

The NOT R ACE command cancels the effects of T R AC E. After this
command is executed, line numbers are no longer displayed on the
screen as Applesoft executes them.

Debugging Facilities 181

182 Utility Statements

'---

Programming: Bringing It
All Together

185 8.1 Planning the Program
185 8.1.1 Program Specification
186 What the Program Needs
186 What the Program Will and Won 't Do
187 Validating the Data
188 Displaying the Results
189 8.1.2 Program Layout
189 The Initial Layout
190 Refining the Layout
192 8.2 Writing the Code
192 8.2.1 Preliminaries
193 8.2.2 Display the Menu
193 8.2.3 What's the Postage Class?
194 8.2.4 What Does It Weigh?
196 8.2.5 Compute the Charge
196 8.2.6 Display the Results
196 8.2.7 Calculating Routines
199 8.2.8 Consistency-Checking Routines
201 8.2.9 The "Keystall " Routine
201 8.2.10 The Formatting Routine
202 8.3 Final Advice to the New Programmer

Programming: Bringing It All Together 183

•

program planning: see Section 8.1

coding: see Section 8.2

Chapter 8

Programming: Bringing It
All Together

Good programs don't just happen. Programs that are efficient, eco­
nomical, and easy to debug and to modify are the result of careful
planning. This chapter presents a method to facilitate such planning,
using as its example a program to calculate postage fees for United
States mail. A copy of this program is included on the Applesoft Sam­
pler disk; a complete listing can be found in Appendix N.

Section 8.1 , "Planning the Program," shows how to develop a list of
program specifications and how to convert the list into a kind of pro­
gram outline.

Section 8.2, "Writing the Code," shows how to refine the outline
developed in Section 8.1 into a final Applesoft program.

Planning the Program
8.1 f Although you can af ord to be "quick and dirty" for casual or one-

8.1.1

Good programs take careful planning

Specifications define what the program
does and how

time-only applications, you'll need to do some preliminary planning
for more serious ones. In general, the more planning you do the more
efficient and bug-free your finished program will be.

To demonstrate some of the principles of program planning, th is
chapter develops a program to calculate postage rates on certain
classes of mail sent in the United States.

Program Specification

Program planning begins with deciding what your program is to do or
what problem you want it to solve. You might want to design a space­
war game, a tax planner, or a data-base management system. It
doesn't matter how simple or how complex the task-whatever it is,
you have to decide in detail what the program is supposed to do.

To make writing the program easier, it's a good idea to begin with a
list of program specifications. This list specifies what information the

Planning the Program 185

What does the program need from the
user?

What internal information does the
program need?

What won't the program do?

186

program needs, what the program should and should not do, how the
results are to be presented, and so forth.

What the Program Needs

It's fairly simple to determine what information a postage rates pro­
gram needs. Since the goal is to determine how much it costs to mail
an item, and since cost is a function of mail class and weight, the pro­
gram needs someone or something to tell it what weight item is being
mailed in what class. To keep things simple, the program will get this
information from the program user:

• The user tells the program the class of mail.

• The user also tells the program the weight of the item, since pos-
tage rates are based on both class and weight.

When the program has the weight and class of mail (for instance,
three ounces of first class), it needs to determine the postage based
on some scale. It must either calculate the postage with a formula or
look up the rate in a table stored in the computer's memory. Since all
computers are inherently stupid and must be told everything, you
have to include formulas or tables with which your computer can
work:

• The program includes formulas and/or tables of postage rates for
various weights and classes of mail.

• The program includes information on the maximum allowable
weight in each class.

This last specification is a matter of postal regulations; first class mail
above 12 ounces is called priority mail and is charged at a different
rate; 70 pounds is the maximum weight for priority mail; and so forth .
Program planning, then, calls for information often outside of the pro­
grammer's immediate purview. That's why God created libraries and
telephones-so that programmers could obtain information they
don't already have.

What the Program Will and Won't Do

Deciding on the limits of a program is often as important as determin­
ing what the program is supposed to accomplish. United States mail
has four classes, several types within certain classes, optional extras
like insurance and various forms of registry, and so forth. To make de­
signing and writing the program simpler, we'll assume that our pos­
tage is never below first class, and further that we never insure or
register mail (what fools these mortals . ..). We'll also assume that
packages sent by overnight delivery (express mail) never weigh more

Programming: Bringing It All Together

Humans will be human ...

Give your user clear instructions

What if the information is invalid or
inconsistent?

than nine pounds and always travel in the same postal zone:

• The program is limited to express, first class , and priority mail
(one zone only).

• The heaviest express mail package will be nine pounds; first
class and priority mail may be of any weight, up to Post Office
limits.

Validating the Data

Now that the program has information both from the user and from its
own internal resources (charts of rates and so on) , it must check the
validity and consistency of the information.

First for validity: does the information the user typed make sense in
terms of what the program expected? If the program needs a digit for
the weight of a letter, what should it do if it gets a word? In designing
any program , it's important to remember:

• Most humans do not possess genetic information about what to
type into computers.

• Most humans make mistakes.

The program , then , must display clear instructions telling the user
what to type (kind of information needed) and what form to use
(letters, digits, words) :

• The program will display a list of classes of mail on the screen,
with instructions for the user about what to type .

• After it gets the class of mail , the program will solicit the weight
from the user with proper instructions.

• There will be a mechanism for accepting valid information and
rejecting invalid information (that is, there are error-handling
provisions) .

Naturally, if the program rejects invalid information, it must try again
to get valid information from the user:

• If information is rejected as invalid, the program will continue to
solicit information until it gets what it needs.

Now to consistency: although a user might plausibly ask the cost of
sending a five-pound package via first class mail , only the program
knows (by checking its table of limits) that five pounds is too heavy for
first class. It must notify the user that some other action is called for:

Planning the Program 187

How are the results presented?

What happens when the program is
finished?

Table 8-1 Final Specifications for the
Postage Rates Program

188

• If information is rejected as inconsistent, the program will notify
the user with appropriate recommendations for further action.

Displaying the Results

The specifications must also include the form in which the results are
to be given to the user. In this case we'll keep it simple :

• The final calculated postage charge will be displayed on the
screen with appropriate labeling.

Finally, the specifications must tell what the program does when its
job is completed. Here, it will repeat the whole process until the user
types in some kind of ''I'm done" signal:

• The program will continue to solicit information to calculate new
postage charges until the user types an "end" signal.

Reordering the list of specifications into a more logical form, we ob­
tain the final list shown in Table 8-1 .

• The program will display a list of classes of mail on the screen, with instructions for
the user about what to type.

• The program is limited to express, first class, and priority mail (one zone only) .

• The user tells the program the class of mail.

• After it gets the class of mail , the program will sol icit the weight from the user with
proper instructions.

• The user tells the program the weight of the item .

• The program includes information on the maximum allowable weight.

• The heaviest express mail package will be nine pounds ; first class and priority mail
may be of any weight, up to Post Office limits .

• There will be a mechanism for accepting valid information and rejecting invalid
information .

• If information is rejected as invalid , the program will continue to solicit information
until it gets what it needs.

• If information is rejected as inconsistent, the program will notify the user with
appropriate recommendations for further action.

• The program includes formulas and/or tables of postage rates for various weights
and classes of mail.

• The final calculated postage charge will be displayed on the screen with appropriate
labeling.

• The program will continue to solicit information to calculate new postage charges
until the user types an "end" signal.

Programming: Bringing It All Together

interactive program: a program that
conducts a dialog with the user

Reviewing the list, you can see that the program's actions fall into a
natural chronological order:

1. Computer displays prompting messages.

2. User responds.

3. Program checks validity of responses.

4. If any information is invalid, program solicits new information.

5. Program checks consistency of responses.

6. If any information is inconsistent, program solicits clarified
information.

7. Program processes validated information.

8. Program displays results and goes back to stage 1 .

You'll find that most interactive programs-programs that carryon a
"dialog" with a human sitting at the computer-involve most of the
categories above in roughly the same order.

8.1.2 Program Layout

Before rushing to put fingers to keyboard, it's best to take your plan-
Layout your program before you start ning at least one step further. Now is the time for program layout.
coding Here you plan out the form for each section of the program as de­

scribed in both the specification list and the chronological order list.

stepwise refinement: a technique of
program development in which broad
sections of the program are laid out first ,
then elaborated step by step

Table 8-2 Initial Layout of the Postage
Rates Program

Repeat

Display menu

Accept class

Accept weight

Compute charge

Display results

until done

The program layout technique presented here is called stepwise re­
finement. What this means is laying out broad sections of the pro­
gram, then going back and refining each section step by step.

The Initial Layout

Table 8-2 shows an initial layout of the Postage Rates program in the
broadest terms. The layout says that there are five general sections
to the program (Display menu, Accept class, Accept weight, Com­
pute charge, and Display results) , and that the program is to repeat
this sequence of steps in order until somehow told to stop.

Each section can now be treated as an independent module, to be
designed and coded separately. The smaller the chunks of program
you work with and the more independent each chunk is, the less
chance for error and the easier the program will be to debug.

Planning the Program 189

Refine each module

Table 8-3 First Refinement of the Pos­
tage Rates Program

190

Refining the Layout

Now that we have the program laid out in skeleton form , we can begin
to put some flesh on the bones. Table 8-3 shows the first refinement ,
in which each of the broad steps in the initial layout is spelled out in
more detail.

Repeat

Display menu:
Ustchoices

Accept class:
Instruct user how to choose
Repeat

Get postage class from user
until valid menu item

Accept weight:
Repeat

Instruct user how to type
Get weight from user

until consistent

Compute charge:
Calculate from formula or look up in table

Display result:
Format result with dollar sign, trailing zeros
Label and display result
Wait for signal from user before proceeding

until user Signals end

At this point, many programmers would take outline in hand and at­
tack the keyboard. (With an outline?) But a couple of the modules
need further refinement: both the Accept weight and the Compute
charge modules need to do specialized processing depending on
the class of mail specified by the user. The new information in the
Compute charge module comes from examining postage rate charts.
First class mail is fairly regular, so a formula can be used to compute
the clarge. Express mail follows no regular pattern , so it's easier to
create a table of charges. Priority mail requires a combination of both
formula and table. The final program layout is shown in Table 8-4.

Programming: Bringing It All Together

Table 8-4 Final Layout of the Postage
Rates Program Repeat

Display menu:
Ustchoices

Accept class:
Instruct user how to choose
Repeat

Get postage class from user
until valid menu item

Accept weight:
Repeat

Instruct user how to type
Get weight from user:

Check validity of response
Express?

If item more than 9 pounds
then suggest alternative

First class?
If item more than 12 ounces

then suggest alternative
Priority?

If item less than 12 ounces
then suggest alternative

If item more than 70 pounds
then suggest alternative

until valid and consistent

Compute charge:
Express?

Look up charge in table
First class?

Calculate charge from formula
Priority?

If item less than 10 pounds
then look up charge in table
otherwise calculate charge from formula

Display result:
Format result with dol/ar sign, trailing zeros
Label and display result
Wait for signal from user before proceeding

until user signals end

Planning the Program

8.2

Use the layout as a guide while writing
code

Methodical program development
makes programs easy to debug and
modify

Writing the Code
Now that you 've refined the program layout to a sufficient level of
detail, you 're finally ready to start writing code. The layout is only a
guide; it isn't the last word . As you write and test the actual program,
you may find you need to make changes in your original design.
That's perfectly all right; use the layout to keep you on track.

What follows in this section represents one way to turn the outline
into a working program. It isn't the only way-a hundred program­
mers would produce a hundred different programs for the same task.
It does, however, work; and because it's been developed in an or­
derly, methodical way, it's also logically organized and easy for a hu­
man reader to follow. This is an important consideration , because it
makes the program easy to debug and easy to modify. (Almost all se­
rious programs need to be modified at some time or other, often by
someone other than the original programmer.)

The author makes no warranties, either Hysterical Note: Any resemblance between the following program and
express or implied ... true top-down structured code is purely coincidental and probably hallu­

Cinatory. The perceiver of such a resemblance is advised to seek psy­
chiatric aid promptly.

8.2.1 Preliminaries
Your program should begin with a block of REM statements identify­
ing the program and describing what it does. Most programmers add
their own name and the date of the program's current version:

10 REM POSTAGE RATES
-name of program

20 -colon leaves line empty
30 REM DETERMINES POSTAGE FEES

-what program does
40 REM FOR EXPRESS, 1ST CLASS,
50 REM AND PRIORITY MAIL

GO REM

-empty line inserted by embed­
ding I CONTROL I-J (line feed)
at end of REM statement in
line 50

9/01182
-number and date of this

version
70 REM BY JOHN SCRIBBLEMONGER

-programmer's credit line

Programming: Bringing It All Together

8.2.2 Display the Menu

Now you can refer to your outline and base your code directly on it.
Notice the REM statements introducing the different sections. All the
comments marked here by dashes (-) could also be included as
REM statements:

100 REM MENU OF POSTAGE CLASSES
- [CONTROL I-J here

1 1 0 HOM E -begin with a clear screen
120 TITLE$ "POSTAGE RATES"
130 PRINT
lao HTAB 21 - LEN (TITLE $) / 2

-formula to center title
150 PRINT TITLE$
160 I,JTAB 6
170 PRINT "1. E>(PRESS"
1 80 PRINT "2. FIRST CLASS"
180 PRINT "3. PRIOR ITY"
200 PRINT
210 PRINT "a. END THE PR OGRAM "

-the escape hatch

8.2.3 What's The Postage Class?
This section finds out what mail class the user wants to use. Note
the use of I CONTROL I-J, the line feed character, to set off the REM
statements for easier reading (line 3(0):

300 REM - [CONTROL I-J he re
GET CLASS OF MAIL

- '-[C-O-N-rr,-~ o-L-'I-J he re

310 1.ITAB la
320 PRINT "Press the nUfllber of y our

c hoi c e : " ; -semicolon keeps response on
same line

33(> GET C $ -only one keypress needed ;
cuts down on error possibili­
ties. Note use of string variable
to get number; avoids type
mismatch errors

335 REM - [CONTROL I-J here
CHECK FOR VALIDITY

Writing the Code

-another [CONTROL I-J (last
time this is noted)

193

194

340 IF C$ = "4" THEN END

350 IF I,JAL (C$) >
THEN 380

380 PRINT CHR$(7)j

370 GOTO 330

380 PRINT C$

390 C I,JAL (C$)

8.2.4 What Does It Weigh?

- end program if user types a 4
o AND VAL (C$) < 4

-skip next two lines if valid
choice typed

CHR$ (7) j
-beep twice to get attention
-response was invalid; try

again
-since choice accepted via

GET , it isn't displayed on the
screen. Display it back to user

-need this value later to deter­
mine what section of program
to branch to for proper
processing

Now the program asks the user for the weight of the letter or package.
The program makes sure that the user follows the instructions and
types a number for the weight and a symbol (0 or P) for ounces or
pounds. Notice that the program accepts both the numeric weight of
the item and the ounce/pound designation in the same string (line
530).

500 REM
GET WEIGHT OF ITEM

505 I,lTAB 18

510 PRINT "Please enter the WEIGHT - a
number plus an 0 (for ounces) or a P
(for pounds) - and press the RETURN
Key: "j -prompting message to tell

user what information to type
and how to type it

5 2 0 CAL L - 888 -clear to end of line; useful to
erase any errors that might be
typed

530 I N PUT "" j W $ -semicolon suppresses ques-
tion mark

540 W1$ = RIGHT$ (W$,l)
-rightmost letter should be

either 0 or P; use it later to see
if weight is consistent with
postal regulations

Programming: Bringing It All Together

550 W = I,J A L (W $) -how many ounces or pounds?
555 REM

WAS ENTERED WEIGHT VALID?

560 IF W > 0 AND (Wl$ =I O" OR Wl$ ="P I)
THE N 7 1 0 -if a weight was typed, and if

last character was either 0 for
ounces or P for pounds, then
proceed

570 PRINT CHR$ (7); CHR$ (7)
-beep twice to get attention

580 GoTo 500 -entry was invalid ; try again

If the program has progressed this far, then everything typed by the
user is valid from the computer's pOint of view. However, the user's
choices still may not be consistent with postal regulations or the pro­
gram's limitations. First class letters must weigh less than 12 ounces,
the program can 't handle express mail above a certain weight, and
so on. This section of code uses the value of variable C (set in line
38 1)) to direct control to the proper subroutine to check for
consistency.

700 REM
CHECK CONSISTENCY

710 ON C GoSUB 10 000 , 11000, 12000
-branch to appropriate subrou­

tine to see if weight typed is
within postal rules or program
limitations for mail class
chosen

720 I F NOT EFLAG THEN 81 0

730 GoSUB 60 0 00

7£10 EFLAG 0

750 CLEAR

760 GoTo 10 0

Writing the Code

-if no inconsistency detected in
subroutine then proceed with
processing

REM KEYSTALL
-wait for user to acknowledge

message
-clear error flag set in

subroutine
-reset all variables , clear

arrays, etc.
-restart program loop

195

8.2.5 Compute the Charge

Now that everything checks out all right, the program can proceed to
calculate the postage. The calculation is different for each of the
three classes of postage, so there are three separate calculating rou­
tines. Again , what routine the program goes to depends on the value
of C, the number representing the postal class chosen by the user.

900 REM
FIND APPROPRIATE CODE FOR
PRO C E S SIN G -everything is valid and consis-

tent; now program can solve
for the postage rate!

910 ON C GoSUB 1000, 2000, 3000
-branch to proper calculating

routine
920 GoSUB 61000 REM FORMATTER

-format result for display
930 PRINT

8.2.6 Display the Results

It's finally time to display the result!

935 REM
DISPLAY RESULTS

9aO PRINT " POSTAGE NEEDED: $"; T$
-finally, the postage due!

950 GoSUB 60000 : REM KEYSTALL
-don't go on until user is ready

960 CLEAR -prepare for restart...
970 GoTo 100 - .. . and do it.

8.2.7 Calculating Routines

The following three subroutines do the actual rate calculations,
based on formulas, tables, or both. The rates for express mail are
fairly straightforward; they are based on a table created in the ex­
press mail consistency-checking routine at line 1 0000. First class
rates couldn 't be simpler; a little arithmetic is all that's needed. Prior­
ity mail is another story, however; when you get to it, you 'll find an
explanation.

999 REM
SUBROUTINES BEGIN HERE

Programming: Bringing It All Together

I'm not making this up ...

1000 REM
EXPRESS MAIL CALCULATION

1010 W = INT (W + .88)

1020 T R (W)

1030 RETURN
2000 REM

FIRST CLASS

2010 T = .20 + INT

2020 RETURN

-weight must be increased to
compensate for fractions ;
postal rates read "NOT MORE
THAN x POUNDS"

-rate array filled in express mail
consistency-checking routine
(line 100(0)

-end routine

CALCULATION

(W + .88 - 1) .. .17
-first class rate is 20 cents first

ounce plus 17 cents for each
additional ounce or portion
thereof (April , 1982 rates)

-end routine

Although there is something approaching a pattern to priority mail
charges, the pattern is obscure at best. This is especially true for the
first ten pounds. Pounds 1 through 5are charged by the half-pound ;
pounds 6 through 10 are full-pound charges. It's simpler and quicker
to use a table for these charges (lines 3030 to 3 1 a 0) than to figure
out a formula.

Weights over 5 pounds follow a more regular pattern than the first 5;
they are all charged in full-pound increments. Furthermore, each five
pounds costs $2.38. Unfortunately, the cost for pound 6 is different
from the cost for pound 7, and so on. What it boils down to is that
5-pound lots can be charged at the same rate (line 3 1 70) , and
anything that isn't a multiple of 5 must be looked up in a table (lines
3 1 80 to 32 2 0).

If all this strains credulity, refer to United States Mail Service poster
103, November 1981.

3000 REM
PRIORITY MAI L CALCULATION

3010 W = INT (W + .88)

Writing the Code

-compensate for partial ounces
or pounds

197

3020 IF W > 10 THEN 3180
-go to line 3 1 80 for weights

greater than 10 pounds
(ounce weights converted to
pounds in consistency subrou­
tine starting at line 12(00)

3025 REM
PRIORITY RATES TO 10 POUNDS

3030 IF W < = 1 THEN T = 2.24
3040 IF W > 1 AND W < = 1.5 THEN

T = 2. 30 -rates in half-pound increments
3050 IF W > 1.5 AND W <= 2 THEN

T = 2.54
3080 IF W > 2 AND W <= 2.5 THEN

T = 2.78
3070 IF W > 2.5 AND W <= 3 THEN

T = 3.01
3072 IF W > 3 AND W < = 3.5 THEN

T = 3.25
3078 IF W ". 3.5 AND W <= 4 THEN

T = 3.48
3080 IF W > 4 AND W <= 4.5 THEN

T = 3.73
3080 IF W > 4.5 AND W < == 5 THEN

T = 3.87
3100 IF W > 5 AND W <. = 8 THEN T = 4.44

-rates by the pound now!
3110 IF W " . 8 AND W <= 7 THEN T 4.82 .. '
3120 IF W > 7 AND W <= 8 THEN T 5.38
3130 IF W :. 8 AND W <= 8 THEN T = 5.87
3140 IF W .> 8 THEN T = 8.35
3150 GDTO 3240 -branch to RET URN statement
3160 REM

PRIORITY RATES FOR OVER 10 POUNDS

3170 Tl = INT (W / 5 - 1) *" 2.38 + 3.87
-first 5 pounds cost $3.97; each

added 5 pounds cost $2.38
3180 WI W - I NT (W / 5) *" 5

-how many odd pounds are
there (pounds that are not
multiples of 5 and must be
charged at a special rate)?

3180 IF WI 1 THEN T2 .47
3200 IF WI 2 THEN T2 .85
3210 IF WI 3 THEN Try

"- 1.42

Programming: Bringing It All Together

3220 IF W1 = 4 THEN
3230 T = T 1 + T2

3240 RETURN

T2 = 1.90
-add the 5-pound-multiples rate

to the odd-pounds rate
-end routine

8.2.8 Consistency-Checking Routines

The next three routines make sure that first class letters aren't too
heavy, that the requested rate can be calculated by the program, and
in general that the program can deliver what the user wants. The ex­
press mail routine begins by loading its rates into a table (it gets the
rates from a D A T A list; D A T A lists are excellent places to store infor­
mation you might need in a program); then it checks to see if it has a
rate for the package being sent. First class just makes sure that the
package weighs 12 ounces or less; that's the maximum weight for a
first-class item. Priority mail also has an easy job; it just makes sure
the package weighs more than 12 ounces but not more than 70
pounds.

10000 REM
EXPRESS MAIL CONSISTENCY CHECK

10010 DATA 9.35, 9.35, 8.55, 8.80,
10.30, 10.85, 11.00, 11.40,
11 • 75, 0 -express mail rates; 0 at end is

" last item" flag
1 0020){ 0 -set up counter to check how

10030)(= }(+ 1
10040 READ R (){)

10050 IF R O() =

10080 GOTO 10030
10070 }-(= }-(- 1

0

many rates are read from
DATA list

-increment counter
-put price into proper array

element
THEN 10070

-price of 0 marks end of list
-get next price
-)(includes count of " last item"

flag from 1 0050; subtract it
from count since it's a
"dummy" item

10080 IF W1$ = "P" THEN 10100
-next line is for ounces only

1 0 0 8 0 W = W / 1 8 -convert ounces to pounds
10100 IF W<=){ THEN 10140

Writing the Code

-if weight in pounds is covered
by the rate chart, then go
ahead

199

200

10110 PRINT
10120 PR I NT CHR$ (7); CHR$ (7); "TOO

HEAVY FOR MY TABLES - PLEASE CA LL
THE POST OFFICE"

-sorry; can't help you
1 0 130 EFLAG = 1 -set flag indicating inconsistent

weight/type; will be checked at
line 720

1 0 140 RETURN -end routine
11000 REM

FIRST CLASS CONSISTENCY CHECK

11010 IF Wl$ "0" AND W < 12.01
THEN 11060 -OK if not more than 12 ounces

11020 PRINT
11030 PR I NT CHR$ (7); CHR$ (7); "TOO

HEAI,IY FOR FIRST CLASS"

11040 PRINT "TRY
-sorry-inconsistent!

PRIORITY MAIL"
-suggest alternative

11050 EFLAG = 1 -set flag indicating inconsistent
weight/type; will be checked at
line 720

11060 RETURN -end routine
12000 REM

PRIORITY MAIL CONSISTENCY CHECK

12010 IF Wl$ "P" THEN 12090
-if in pounds, then skip down

12020 IF W > 12 THEN 12080
-skip down if weight is between

12 and 16 ounces
12030 PRINT
12040 PRINT CHR$ (7); CHR$ (7);

"TOO LIGHT FOR PRIORITY MAIL
-too light!

12050 PRINT "TRY FIRST CLASS"
-suggest alternative

"

1 2060 E F LAG = 1 -set flag indicating inconsistent
weight/type; will be checked at
line 720

12070 GoTo 12150 -branch to end of routine
1 2080 W = W / 1 6 -convert ounces to pounds
12090 IF W < = 70 THEN 12150

-final check: is item on the
charts?

Programming: Bringing It All Together

121 0 0 PRINT
12 11 0 PRINT CHR$ (7) j CHR $ (7) j

"TOO HEA l.!'.' FOR PR I OR I TY MA I L "
-off the charts

12120 PRI NT "TRY ONE OF THE A I R E){ PRESS
COM PA N I E S " -too big for the Post Office!

1 2 1 30 E F LAG = 1 -set flag indicating inconsistent
weight/type ; will be checked at
line 72 0

12 150 RETURN -end routine

8.2.9 The "Keystal/" Routine
The "keystall " routine interrupts execution of the program and waits
for the user to press a key before going on. The GET statement in
line 6 0 04 0 actually does the waiting ; when the user presses a key,
the program continues. What key the user presses doesn't matter­
the program doesn't care what value is assigned to A$.

59999 REM
UTILIT Y ROUTIN ES

6 0 000 REM
KE YSTALL

6 0 010 l.J T AB 24
6 0 020 I Nl.J ERSE

6003 0 PR"[NT " PRESS
6 004 0 GET A$
6 0 05 0 NORMAL

60060 RETURN

-routines useful for various
tasks but ancillary to rest of
program

- routine to interrupt program
until user presses a key

-move cursor to screen bottom
-set text to appear black-on-

white
RE TURN TO GO ON •• • ";

-wait for keypress
-restore ordinary white-on-

black
-end routine

8.2.10 The Formatting Routine

After the postage charge is calculated , the program branches to this
final subroutine. Here the final result is checked to see how it will look
when it is displayed. Does it have a decimal point? Applesoft sup­
presses trailing zeros after a decimal point, but people are used to

Writing the Code 201

Find your own style

(Funny-I don'tfee/ comforted ...)

202

seeing them when dealing with dollars and cents. The formatting
subroutine adds trailing zeros as needed.

61000 REM
MONEY FORMATTER

61010 T$ STR$ (T)

61 0 20 IF T INT (T)
".00"

61030 IF ASC (RIGHT$

-adds zeros after the decimal
point where needed

-turn the calculated postage
fee into a string

THEN T$ = T$ +
- if charge is in whole dollars,

add a decimal point and two
zeros

(T$ 12)) = 4 6 THEN
T$ = T$ + "0"

61040 RETURN

-if second character from the
right is a decimal pOint (ASCII
code 46) then number has
only one digit to right of deci­
mal-so add a " 0 " to the
string

- end the routine

8.3 Final Advice to the New Programmer

The program planning methods discussed and demonstrated in this
chapter won 't necessarily work for everyone. Different people have
different programming styles, and some people won 't be comfortable
with the (perhaps) coldly logical model presented here. What's im­
portant is to find a style that works for you . Programming is a logical
art; it shouldn't be a confining one. Be as creative as your own inter­
nals will let you , remembering that poets also plan.

Keep in mind as you learn to program, please, when a bug is as hard
to find as cheap gas, that deep down at the bit level-down where the
computer deals with the only things it really understands-there are
only zeros and ones.

Programming: Bringing It All Together

L

Writing the Code 203

...J

-

--

Index

A
ABS function 38, 215
absolute value 38, 215
addition 32, 36, 86
American National Standards

Institute (ANSI) 3
American Standard Code for

Information Interchange, see
ASCII

ampersand character (&) 246
AND 35, 175
animation 150
annunciators 131,262, 263
ANSI : see American National

Standards Institute
Apple lie 80-Column Text Card, see

80-Column Text Card
arc tangent 41 , 216
argument of functions 37, 38, 125,

173, 179
argument variable 44
arithmetic functions 38
arithmetic operators 31
array(s) 26, 29, 77ft, 217, 228, 248,

249, 268, 275ft, 293ft, 298
dimensions 79, 80
elements 29, 77, 269
names 29, 77
storage 179
variables 275ft

arrow keys 18, 20
AS C function 215
ASCII (American Standard Code for

Information Interchange) 19, 82,
215, 241ft, 258

assignment statement 30, 215,
224, 251 , 296

asterisk (...) 32
ATNfunction 41 , 216
auto-repeat 19, 20

Index

B
backslash character (\) 4, 18
BAD SUBSCR I PT error 79, 248
belicharacter (lcoNTRO Ll -G) 130
BLOA D command 158
body of loop 55
booting 96, 112
branch 49ft, 220

conditional 51
unconditional 50, 220

built-in arithmetic functions 38ft

C
CALL statement 71,136, 216, 249,

253ft , 281, 294
CAN ' T CDNTINUEerror 248
I CAPS LO CK I key 4
caret ("") 31
cassette input 110
cassette output 131 , 264
Celsius 44
character codes 82
CHR$ function 91 , 216
CLEAR Command 9, 30, 129, 216,

294
colon (:) 5, 98ff, 105, 106, 177, 192,

246, 267, 296, 301
color, see display color
COLOR= statement 137, 216
comma (.) 98ff, 105, 113, 114, 115
commands, see names of

commands
concatenation 83, 84, 100, 251 ,

295
conditional branch 51
constants 268
CO NT command 16, 17, 73, 21 G,

247, 248
control characters 100, 101, 241

205

ICONTROL I key 15,16, 18, 241
-@ 98, 107
-5 176,177, 181
-C 15ft, 50, 58, 69, 72,

98 , 10T 159, 180, 216
-G 130
-H 100, 107
-J (line feed character)

192, 193, 216, 301
-M 100, 107
- IRESET I 13-17, 96, 112,

161 , 162, 166,171
-5 15
-){ 18, 100, 107

control
stack 10, 62ft, 71 , 227,265
statements 49ff

COS function 40, 217
cosine 40, 217
crossed loops 60
current input device 104, 223
current output device 10 113 224

228 ' , ,

cursor 4, 18ff, 97, 113, 115, 119ft,
220ft, 232, 234, 253, 254

cursor control 287-288

D
OAT A statement 103, 105, 108,

217, 228, 229, 250
debugging 11 , 180
OEF FN statement 44 177 217

249 ' , ,

deferred execution 4, 5, 9, 247
degrees 44
DEL command 6, 7,217
I DELETE I key 7
DIM statement 79, 217, 251 293

295, 298 ' ,
disk 12ft, 112, 156,230
Disk Operating System (DOS) 12
. 14, 16, 105,157, 176, 265, 298 '

display color 137ft, 160 216 220ff
231 ' , ,

display screen 111
division 32
o I 1,1 I 5 ION 5 Y Z E R 0 error 248
dollar sign ($) 26, 29 82 88 251 259 ' , , ,

DOS (see Disk Operating System)
double quotation marks (") 28, 81 ,

99, 102, 270
I DOWN-ARROW I key 18, 19, 241
DRAW statement 151 , 155, 156,

160, 161 , 162,163,164 218 230
231 ' , ,

Index

E
e 42
editing 287-288
Eighty-Column Text Card 4 112

114, 115, 119, 124, 125, 12'7,22'2,
254, 287ft

END statement 17, 73, 216, 218,
251 , 269, 294

equal sign (=) 30, 34, 44,129 137
145, 163, 246 "

equal to (=) 34
error

codes 68, 69, 247ff
messages 247ff

error handling routines 67ff, 229,
247, 264
restoring normal 71

escape mode 19, 287
l ESe ! key 20, 242

-@ 20, 255
-A 20
-5 20
- C 20
- 0 20
-E 20
-F 20, 255
- I 19, 20
- J 19, 20
-K 19, 20
-M 19, 20

exclusive-or 175
execution of program 16
E){ P function 42, 218
expansion slot 96, 111
exponential 42, 218
exponentiation 32
expressions 31 ft
D(TRA I GNoREO message 99,

105

F
Fahrenheit 44
false 33ft
FILE NOT FOUND error 14
FLASH statement 127, 128 218

226 ' ,

floating-point accumulator 173
F N keyword 45, 219
FOR statement 55ft, 219 , 225, 271
FORMULA TOO COM PLE){ error

248
F P command 291
fractions 33
FRE function 178, 220
free space 275

full-screen graphics 136, 138, 143,
144,146, 221 , 260

function names 44
functions 37ft, 173, 177, 229

argument of 37, 38, 125, 173, 179
built-in arithmetic 38

G

call 37, 38 , 45
names 44
user-defined 44-45, 217
ABS 38,215
ASC 215
AT N 41 , 216
CHR$ 216
COS 40, 217
E)< P 42, 218
FRE 178, 219
I NT 39 , 223
LEFH 100, 223, 249
LEN 224
LET 215
LOG 42, 224, 249
M I 0$ 100, 225,249
PEEK 130, 131 , 177, 178, 180,

247, 249, 253ft
POL 109, 227
POS 125,228
R I GHH 100, 229, 249
RNO 43, 229
SCRN 141,231
SGN 39, 231
SIN 40, 231
S PC 113, 120-121 , 231 , 249
S Q R 40, 232, 249
STR$ 232
TAB 113, 120, 121 , 123, 126,

181 , 232, 233, 249,254
TAN 4,233
USR 172, 233
I.JAL 102,105,233

GAME I/O connector 109
GET statement 16, 19, 104, 220,

249
GO S UB statement 61ft, 220, 227,

229, 251,293
GOT 0 statement 50, 53, 64, 71 ,

220, 251 , 265, 293
G R statement 136, 140, 220, 258,

259, 261
graphics 119, 135ft, 258
greater than (:» 34
greater than or equal to (:> = or = :»

34
ground loop 297

Index

H
hand control 109, 262
hand control connector 109, 131 ,

262, 263
HCOLOR = statement 145, 160, 220
HGR statement 143, 145, 149, 161 ,

162, 220, 258, 259
HGR 2 statement 144, 145, 149,

161 , 162, 221 , 259
high-resolution graphics 136, 140ff,

150, 176ft, 218, 220ft , 230, 261
HI MEM: statement 149, 156, 165,

176,179, 221 , 250, 275, 299
H LIN statement 139, 221
HOME statement 221 , 254
HPLOT statement 146, 161 , 218,

222, 262
HTAB statement 120, 122, 126,

181 , 222, 254, 256
Humpty Dumpty 19

I
IF ••• THE N statement 33, 36, 52,

222, 248, 251 , 267, 294
ILLEG AL 0 I RE CT error 249
I LLEG AL QUA NT I TY error 40,

42, 52, 66, 86ft, 92, 97, 109, 112,
121ff 129, 138ft, 146, 147, 161ft,
170, 171 , 175ft, 249

immediate execution 4, 7, 9, 257
I N# statement 96, 223
index variable 55ft, 219 , 225, 271
infinite loop 58
input 95, 223

numeric 100
Input Anything Routine 102
IN PUT statement 16, 17, 97,

102, 223, 249,294
input/output 93ft
string 99

I NT function 39, 223, 291
integer

constants 270
part 39 , 223
variables 26, 27, 44, 58, 270,

275ft
Integer BASIC 260, 291
I NI.JERS E statement 126, 128,

223, 226

J
J M P (Jump) instruction 173, 233
J S R (Jump to Subroutine)

instruction 173, 174, 246

207

208

K
keyboard 96, 258
keyword tokens 280ft
keywords 4

L
L EFT $ function 86, 100, 223, 249
I LEFT - ARROW 1 key 18, 19, 100,

241
LEN function 83, 85, 224
LET statement 215,224
less than (-<) 34
less than or equal to (-< = or = <) 34
line feed character (I CONTROL 1- J)

192, 193, 216, 255
line numbers 5ff, 50, 51 , 64, 65, 70,

180, 220, 226,232, 233, 251 , 265,
267, 293, 294

LIS T Command 7, 10, 224
LOAD Command 14, 110, 224, 298
LOG function 42, 224, 249
logarithm, natural 42, 224
logical operators 35, 54
logical values 33, 36, 54
LoMEM: statement 177,225, 250
loops 10, 55ft, 219, 225, 250, 270,

296
body 55
crossed 60
nested 59

low-resolution graphics 135, 216,
220, 221 , 231 , 234, 258, 261

M
machine language 172, 176, 177,

179, 216, 221 , 233, 246
mask 174
MAT functions 296
memory allocation 25, 275
memory management 176
M I 0$ function 87, 100, 225, 249
minus sign (-) 36, 105
mixed graphics and text 119, 136,

138,140, 141 , 143,146,220, 260
Monitorprogram 16, 7 155ft, 172,

173, 176, 177, 181
multidimensional array 80
multiple input 98
multiple statements per line 5
multiplication 32

N
natural logarithm 42, 224
nested loops 59
nested subroutines 62

Index

NEW command 9, 30, 150, 177, 225
NE>(T statement 55ft , 225, 271 ,

294
NE>(T WITHOUT FOR error 10

60, 249 '
NORMAL statement 126, 128, 226
NOT 35, 54
notequalto(-<> or >-<) 34
NOTRACE command 181 , 226
null character (ICONTROL I- @) 98,

100, 101,105
null string 9, 12, 28, 30, 81 , 82, 88,
9~98 , 100, 106, 251 , 294

number formats 117
number sign (;fft) 96, 111 , 180, 246
numeric constants 117, 283
numeric input 100

o
ON ••• GoSUB statement 65,226,

249
ON ••• GOTO statement 51 226

249 ' ,

on-screen edit 17
oNERR GoTO statement 68, 72,
226 , 229 , 24~239 , 264 , 265

10PEN-APPLE I key 110, 262
operators 31 ft

arithmetic 30
logical 35, 54
precedence of 36
relational 33, 54

OR 34, 54
OUT OF DATA error 106, 250
OUT OF MEMORY error 60 64
17~ 178, 250, 299 "

output 111
ol.JERFLOWerror 90, 91 , 250

P
parentheses 37, 250, 276
POL function 109, 227
PEE K function 68, 70, 110, 130,

131 , 170, 177, 178, 180, 227, 247,
249, 253ff, 294

percent character ('7.,) 26, 28
period (.) 105
PLOT statement 138, 227
plotting vector 150ft
plus sign (+) 36, 84, 105, 295
point of call 61 , 64
pOinter 275
PO K E statement 71 , 72, 129ft, 136,

143,149, 155, 156,1 59, 170ft,
227, 249, 253ft, 294

POP statement 66, 227
POS function 125, 228
pound sign (#) 96
PR#statement 10, 111,228
precedence 36
PRINT statement 105, 113ff, 120,

121 , 223, 226, 228, 231 , 232, 254,
267
TAB used in 121ft

printer 10, 111
program 275

execution 16
layout 189
lines 3
planning 185
specification 185

promptcharacter(J) 4, 16, 119,
247

prompting message 97, 294
pure cursor moves 19

Q
question mark (?) 97, 116, 294

R
radians 40, 41 , 44
RAM (random-access memory)

176, 179
random numbers 43, 229
READ statement 105, 108, 207,

217, 129, 250
real variables 25, 27, 44, 58, 270,

275-277
REC ALL statement 110, 298
RE DIM ' D ARRA Y error 79, 250
REENTER message 99, 100
relational operators 33, 54, 82
REM statement 7, 229, 267
reserved words 27, 245-246, 276
[RESET [key 16
reset vector 16
restarting the system 96, 112, 176,

181
RE STO RE statement 106, 108,

229, 250
Restoring Normal Error Handling

71
RES UME statement 69, 70, 229,

249, 265
return address 63, 66, 227
[RETURN [key 4, 6, 10, 13, 16, 18,

100, 104, 158, 165,219, 241 , 293
I N PUT statement use 97, 98

RE TUR N statement 61ft, 220, 227,
251

Index

RET URN WIT HOUT GOSUB
error 64, 67, 251

right bracket (J) 4, 16, 119, 247
R I GHH function 100, 229, 249
[RI GHT- ARROW [key 18, 19, 241
RND function 43, 229
RO T= statement 160, 164, 230
rotation 230
rounding 39
RTS (Return From Subroutine) 174
RUN Command 12, 14, 30, 108,

145, 150, 230, 294

s
SAl} E Command 13, 131, 230, 297
scale factor 230
S CAL E = statement 160, 163, 164,

230
scientific notation 43, 91 , 118, 283
SC RNfunction 141 , 231
scrolling 253
seeding 43
semicolon (i) 113ft, 122, 267, 269
SGN function 39, 231
shape definition 150
shape table(s) 150ft, 230, 231 , 234,

299
index 153
loading 154ft

SHLOA D statement 110, 156, 158,
165, 231 , 299

sign of a number 39, 231
simple variables 275- 277
SI N function 40, 231
sine 40, 231
slash (/) 296
soft switches 253, 259
[SOL I D-A PPLE [key 110, 262
space bar 19, 21
space character 99 , 101 , 105, 231
SPCfunction 113, 120-121 , 231 ,

249
speaker 130, 264
SPEED statement 128, 231
SQ R function 40, 232, 249
square root 40, 232
statements 3, 223, 269

see also names of statements
step value 57ft
stepwise refinement 189
S TOP statement 17, 73, 216
S T R $ function 89, 232
string(s) 28, 81 , 113, 229 , 232, 233,

270, 275ft, 293, 295
comparison 82

209

210

constants 28, 81 , 83
conversion 89
input 99
null 28
pointers 275- 277
storage 179
variables 26, 28, 44, 83, 102,

104,105, 107
STR I NG TOO LONG error 84,

85, 114, 251
subroutine(s) 10, 61ft, 171 , 229,

250, 269,270, 276
call 61
execution 220
nested 62

subscripts 29, 77, 79
substrings 86, 295
subtraction 32, 36
syntax definitions 235ft
syntax error 13, 14, 54, 58, 105,

107, 143ft, 166, 251

T
TAB function 113, 120, 121ft, 126,

181 , 232, 249, 254
TAN function 41 , 233
tangent 41 , 233
tape cassette 13, 14, 110, 156, 158,

165, 228, 230, 231,297ft
termination 218, 232
text 142, 253

window 115, 119ft, 129, 136, 143,
221,253ft

TE ~<T statement 119, 136, 143,
233, 258

TRACE command 180, 181 , 226,
233, 294

trigonometric functions 40-41
true 33ft
truncation 28, 39, 51 , 65, 86, 88,

91 , 117, 120ft, 283
TYPE MISMATCHerror 87, 88,

251

U
unconditional branch 50, 220
UNDEF ' D FUN CT I DN error 251
UNDEF ' D STATEMENT error 12,

50, 51 , 64, 251 , 268
I UP-ARROW I key 18, 19, 241
user-defined function 44-45
US R function 172, 233
utility strobe 131 , 261 , 264

Index

V
I.JAL function 83, 86, 90, 102, 105,

107, 233
validation of data 187
values, logical 33, 54
variable(s) 25ft, 51 , 97, 98, 177,

216, 268
argument 44
index 55, 57, 58, 60
integer 2627, 44, 58
name 26,293
real 25, 27, 44, 58, 270, 275ft
string 26, 28, 44, 102, 105

I.JL I N statement 140, 234
I.JT AB statement 119, 120, 124,

181 , 234, 256

W
WA I T statement 174, 234, 249
wraparound 4, 120, 122

X
)-(DRAW statement 151 , 161ft, 230,

231 , 234
~< P LOT statement 246

y

Z
zero page 278

Cast of Characters
" (double quotation marks) 28, 81 ,

99 , 102, 270
"1ft (number sign) 96, 111 , 180, 246
$ (dollar sign) 26, 29, 82, 88, 251 ,

259
'X, (percent character) 26, 28
1\ (ampersand) 246
() (parentheses) 37, 250, 276
* (asterisk) 31 , 32
+ (plus sign) 31 , 36, 84, 105
• (comma) 98ft, 105, 113ft

(minus sign) 31 , 36, 105
• (period) 105
I (slash) 31 , 296

(colon) 5, 98ft, 105, 106, 177, 192,
246, 267, 296, 301
(semi-colon) 113ft, 122, 267, 269

< (less than) 34
<: = or = < (less than or equal to) 34
= (equal sign) 30, 34, 44, 129, 137,

145, 163, 246
> (greater than) 34
:> = or = > (greater than or equal to) 34
< > or > < (not equal to) 34
? (question mark) 97, 116, 294
] (right bracket) 4, 16, 119, 247
\ (backslash) 4, 18

(caret) 31
80-ColumnTextCard 4, 112ft, 119,

124, 125, 127, 222, 254, 287ft

Index

	Document (1)
	Document (2)
	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)
	Document (75)
	Document (76)
	Document (77)
	Document (78)
	Document (79)
	Document (80)
	Document (81)
	Document (82)
	Document (83)
	Document (84)
	Document (85)
	Document (86)

	Document (3)
	Document (4)

