Applesoft BASIC Programmer's

Reference Manual-volumel
For /le Only

| _J

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness for any
particular purpose. Apple Computer, Inc. software is sold or licensed “as
is.” The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase, the buyer
(and not Apple Computer, Inc., its distributor, or its retailer) assumes the
entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer, Inc. has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

© 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.

This manual was written for Apple Computer, Inc., by
Scot Kamins
Technology Translated
San Francisco, California

Reorder Apple Product #A2L.2005

Apple I Applesoft BASIC Programmer's C
] - Reference Manual-voume1 T

Contents

Volume One

About This Manual xiii

xiii Purposes of This Manual

xiv Where to Learn More

xiv How This Manual Is Organized

xvii How to Use This Manual

xvii As a Reference

xviii To Learn the Applesoft Language
xviii To Learn Program Planning

xviii Conventions Used in This Manual

__ e general Information 1

1

3 1.1 Statements and Lines

4 1.1.1 Immediate Execution
5 1.1.2 Line Numbers and Deferred Execution
5 1.1.3 Adding Lines to a Program
5 1.1.4 Multiple Statements on the Same Line
6 1.1.5 Deleting Lines from a Program: The DEL Command
7 1.1.6 Changing Lines in a Program
7 1.1.7 Annotating a Program: The REM Statement
8 1.2 Operations on Whole Programs
9 1.2.1 The NEW Command
9 1.22 The CLEAR Command
10 1.23 The LIST Command
12 1.2.4 The RUN Command
13 1.25 The SAYE Command
14 1.26 The LOAD Command
15 1.3 Interrupting and Resuming a Program
15 1.3.1 Suspending Screen Output
15 1.3.2 Interrupting Program Execution
16 CONTROL-C
16 CONTROL-RESET
17 1.3.3 Resuming Program Execution: The CONT Command

Contents jii

17 1.4 Editing What You Type

18 1.4.1 Canceling an Input Line

18 1.4.2 The Arrow Keys

19 1.4.3 Escape Mode e
N Variables and Arithmetic 23 __

2 25 21 \Variables

26 2.1.1 Variable Names

27 2.1.2 Real Variables =

27 2.1.3 Integer Variables

28 2.1.4 String Variables

29 2.1.5 Arrays: Collections of Variables =

30 22 Assigning Values to Variables: The Assignment Statement
31 23 Expressions

31 2.3.1 Arithmetic Operators Sl

33 2.3.2 Relational Operators

35 2.3.3 Logical Operators

36 2.3.4 Precedence of Operators ===

37 24 Functions

38 2.4.1 Built-in Arithmetic Functions

38 The ABS Function ==

39 The SGN Function

39 The INT Function

40 The SQR Function _

40 The S IN Function

40 The COS Function

41 The TAN Function _—

41 The ATN Function

42 The E X P Function

42 The LOG Function -

42 2.4.2 Generating Random Numbers: The RND Function

44 2.4.3 Defining Your Own Functions: The DEF FN

Statement .
e control Statements 47 __
3 50 3.1 Unconditional Branching: The GO T0O Statement

51 3.2 Conditional Branching

51 3.21 The ON...GOTO Statement —

52 322 The IF..THEN Statement

55 33 Loops

57 3.3.1 The FOR Statement i

59 3.3.2 The NEXT Statement

59 3.3.3 Nesting of Loops

iv Contents

61 34 Subroutines
64 3.4.1 The GOSUB Statement
64 3.4.2 The RETURN Statement
65 343 The ON...GOSUB Statement
66 3.44 The POP Statement
67 35 ErrorHandling
68 351 The ONERR...GOTO Statement
70 352 The RESUME Statement
71 3.5.3 Restoring Normal Error Handling
73 36 Program Termination
73 3.6.1 The STOP Statement
73 3.6.2 The END Statement
Arrays and Strings 75
77 41 Arrays
79 41.1 The DIM Statement
80 4.1.2 Multidimensional Arrays
81 42 Strings
82 4.2.1 Comparison of Strings: The ASCII Code
83 422 The LEN Function
84 4.2.3 Concatenation of Strings
86 4.2.4 Substring Functions
86 The LEF T % Function
87 The MID% Function
88 The R IGHT% Function
89 4.2.5 String Conversion Functions
89 The STR% Function
90 The VAL Function
91 The CHR % Function
92 The ASC Function
Input/Output 93
95 51 Input
96 5.1.1 The I N# Statement
97 5.1.2 The INPUT Statement
98 Multiple Inputs on the Same Line
99 Rules for String Input
100 Rules for Numeric Input
102 An “Input Anything” Routine
104 5.1.3 The GET Statement
105 5.1.4 The READ and DATA Statements
108 5.1.5 The RESTORE Statement
109 5.1.6 Miscellaneous Input Facilities
109 The Hand Controls
110 Cassette Input

Contents

111 52 Output

111 5.2.1 The PR # Statement
113 522 The PRINT Statement
117 5.2.3 Number Formats e
119 5.2.4 Formatting Text on the Screen
119 The TEXT Statement
119 The HOME Statement '—
120 The SPC Function
121 The TAB Function
122 The HTAB Statement -
124 The VY TAB Statement
125 The POS Function
126 The INVERSE Statement G
127 The FLASH Statement
128 The NORMAL Statement
128 The SPEED = Statement =
129 The Text Window
129 5.2.5 Miscellaneous Output Facilities
130 Controlling the Speaker -
131 Annunciator Output
131 The Utility Strobe
131 Cassette Output -
~ Q@Graphics 133 _
; 6 ‘ 135 6.1 Low-Resolution Graphics
— 136 6.1.1 The GR Statement
137 6.1.2 The COL OR = Statement e
138 6.1.3 The PL.OT Statement
139 6.1.4 The HL I N Statement
140 6.1.5 The VYL I N Statement -
141 6.1.6 The SCRN Function
142 62 High-Resolution Graphics
143 6.2.1 The HGR Statement -
144 6.22 The HGRZ Statement
145 6.23 The HCOLOR = Statement
146 6.2.4 The HPLOT Statement e
148 6.2.5 Protecting High-Resolution Graphics
150 6.3 Shape Tables
150 6.3.1 Creating a Shape Table -
150 Plotting Vectors
151 How Plotting Vectors Are Interpreted
151 Coding a Shape Table -
153 The Shape Table Index
154 Loading a Shape Table into Memory
157 Saving and Loading a Shape Table -

N Contents

159 6.3.2 Using Shape Tables
160 The DR AW Statement
- 161 The XDR AW Statement
163 The SCALE = Statement
164 The RO T = Statement
- 165 The SHLOAD Statement
s Utility Statements 167
7 169 71 System Utilities
170 7.1.1 The PEEK Function
— 170 7.1.2 The POKE Statement
171 7.1.3 The CALL Statement
172 7.1.4 The USR Function
b 174 7.1.5 The WA I T Statement
176 72 Memory Management
176 721 The HIMEM : Statement
- 177 722 The LOMEM : Statement
178 7.2.3 The FRE Function
180 73 Debugging Facilities
- 180 7.3.1 The TRACE Command
181 732 The NOTRACE Command

— s Programming: Bringing It All Together 183

8 185 8.1 Planningthe Program
- 185 8.1.1 Program Specification
186 What the Program Needs
186 What the Program Will and Won't Do
L 187 Validating the Data
188 Displaying the Results
189 8.1.2 Program Layout
L 189 The Initial Layout
190 Refining the Layout
192 82 Writing the Code
- 192 8.21 Preliminaries
193 8.22 Display the Menu
193 8.2.3 What's the Postage Class?
- 194 8.2.4 What Does It Weigh?
196 8.25 Compute the Charge
196 8.26 Display the Results
- 196 8.2.7 Calculating Routines
199 8.2.8 Consistency-Checking Routines
201 8.2.9 The “Keystall” Routine
L 201 8.2.10 The Formatting Routine

202 8.3 Final Advice to the New Programmer

Contents vii

I| QI .n| m| U| Ol ml J>|

viii

Volume Two

Summary of Applesoft Statements

and Functions

Syntax Definitions

ASCII Character Codes

Reserved Words

Error Messages

Peeks, Pokes, and Calls

253 F.1 Screen Text

258 F.2 Keyboard

258 F.3 Graphics

262 fF.4 Miscellaneous Input and Output
264 F.5 Error Handling

Hints for Program Efficiency

267 G.1 Saving Space
270 G.2 Saving Time

Implementation Details

274 H.1 Apple lle Memory Map

275 H.2 Applesoft Memory Allocation
278 H.3 Zero Page Usage

280 H.4 Keyword Tokens

Contents

215

235

241

245

247

253

267

273

s Display Formats for Numbers 283
I On-Screen Editing and 287
- J Cursor Control
— s 40/80-Column Display Differences 289
s comparison with Integer BASIC 291
i L 292 L.1 Differences between Statements
293 L.2 Other Differences
L 295 L.3 Converting BASIC Programs to Applesoft
IR IfYou Have a Cassette Recorder 297
— s Complete Listing of the Postage 301
N Rates Program
Iem Glossary of Technical Terms 309
I /ndex 331
~~ ReferenceCard Inside Back Cover

Contents ix

I Listof Figures

20 Figure 1-1 Single Cursor Moves
20 Figure 1-2 Long-range Cursor Moves

29 Figure2-1 ATypical Array

78 Figure4-1 ARealArray
78 Figure4-2 A String Array
80 Figure4-3 ATwo-dimensional Array

118 Figure 5-1 Format for Scientific Notation

139 Figure6-1 Screen Coordinates for Low-Resolution Graphics
147 Figure 6-2 Screen Coordinates for High-Resolution Graphics
147 Figure 6-3 Drawing a Rectangle with HPLOT

151 Figure 6-4 Plotting Vectors in a Byte

151 Figure 6-5 Plotting a Shape

152 Figure 6-6 Codes for Plotting Vectors

152 Figure 6-7 Shape Definition Table

153 Figure 6-8 Converting the Shape Definition to Hexadecimal
154 Figure 6-9 Form of a Complete Shape Table

154 Figure 6-10 A Complete Shape Table

275 Figure H-1 Applesoft Memory Map
277 Figure H-2 Variable and Array Maps

285 Figurel-1 Format for Scientific Notation

287 FigureJ-1 Single Cursor Moves
287 FigureJ-2 Long-range Cursor Moves

X Contents

~ ListofTables

19 Table 1-1 ASCII Equivalents of Arrow Keys
21 Table 1-2 Escape-Mode Functions

26 Table2-1 Variable Types
17ne 32 Table2-2 Operators
36 Table2-3 Precedence of Operators

68 Table3-1 Error Codes
118 Table 5-1 Number Formats

137 Table6-1 Color Codes for Low-Resolution Graphics
145 Table6-2 Color Codes for High-Resolution Graphics
153 Table 6-3 Hexadecimal Byte Codes

188 Table 8-1 Final Specifications for the Postage Rates Program
189 Table 8-2 Initial Layout of the Postage Rates Program

190 Table 8-3 First Refinement of the Postage Rates Program
191 Table 8-4 Final Layout of the Postage Rates Program

274 Table H-1 Apple lle Memory Usage
278 Table H-2 Applesoft Zero Page Usage

_' 280 Table H-3 Applesoft Keyword Tokens
284 Tablel-1 Number Formats

288 Table J-1 ASCII Equivalents of Arrow Keys
288 Table J-2 Escape-Mode Functions

289 Table K-1 40/80-Column Display Differences
292 TableL-1 Applesoft Features Not Available in Integer BASIC
292 TableL-2 Integer BASIC Features Not Available in Applesoft

293 Table L-3 Applesoft Features Expressed Differently in Integer
BASIC

Contents xi

Preface

L About This Manual

This is a reference manual for the Applesoft BASIC programming
b language as implemented on the Apple Ille computer. Itis intended for
readers who have had some previous experience with programming,
either in BASIC or in some other programming language. It assumes
—— that you are familiar with the material in the Apple lle Owner’s Man-
ual, and if you are a novice programmer, that you have read the Apple
Ile Applesoft Tutorial.

To make using this manual easier for you, we have divided it into two
volumes. The complete table of contents, chapters one through eight,

bl and the complete index appear in volume one, the volume you are
now reading. Volume two holds the appendices and the glossary; the
index is also included in this volume for your convenience.

e Purposes of This Manual

— This manual has four purposes:

e To serve as acomplete reference manual to the Applesoft BASIC
e language for the experienced programmer.

® To provide clear enough explanations and examples so that a
new programmer can learn the details of any statement quickly
and easily.

e To allow any reader, even one who is not trying to learn Applesoft
—_ in detail, to get a general feel for the language.

e To provide an introduction to program planning, design, and de-
velopment for the programmer-in-training.

This manual is decidedly not a tutorial. Experienced programmers
can learn a great deal about Applesoft by reading it from the first
page straight through to the end; but it wasn’t designed to be used in
that way.

Purposes of This Manual xiii

e WheretoLearnMore

The following sources contain further information about the Apple lle
computer in general and the Applesoft programming language in
particular:

® The Apple lle Owner's Manual covers the basics of the system
and includes a special section on the Apple lle’s keyboard. It
also contains a list of books and magazines of special interest to
Applesoft programmers, as well as a short guide to the rest of
the extensive documentation that comes with your Apple lle.

® APPLE PRESENTS...APPLE is a training disk that comes —_
with all disk-based Apple lle systems. It contains an interactive
tutorial program giving you hands-on practice with many of
the concepts discussed in the Apple lle Owner’s Manual. It's a —
must if you’re new to computers.

® The Apple lle Applesoft Tutorial is an excellent guide for be-
ginning programmers. It provides introductory, step-by-step
guidance for the new programmer and has a special chapter on
editing Applesoft programs.

® Apple Backpack: Humanized Programming in BASIC, by Scot
Kamins and Mitchell Waite (BYTE/McGraw-Hill Books) fills the
gap some newer programmers may feel between the Applesoft —
Tutorial and this reference manual. It teaches programmingin a
friendly and easy-paced way for people who are not computer
experts. —

® The Apple lle Reference Manual contains a wealth of informa-
tion about the more technical aspects of the system’s operation,
with lists of various programmer-accessible system flags, point-
ers, and soft switches.

s How This Manual Is Organized

This manual has 8 chapters, 14 appendices, a giossary of terms, an

index, and a quick reference card. All of it is designed to help you get
the most out of Applesoft. Here’s a description of what each chapter

and appendix is about:

Chapter 1, “General Information,” contains information every Apple-
soft programmer needs. It discusses the programming environment
in which Applesoft operates and tells how to create, modify, execute,
and store Applesoft programs.

xiv About This Manual

Chapter 2, “Variables and Arithmetic,” deals with some of the most

fundamental concepts of Applesoft programming: variables, arithme-
b tic expressions and operators, arithmetic precedence, Applesoft's

built-in functions, and how to define and use your own functions.

Chapter 3, “Control,” covers the various statements available to di-
rect the flow of program execution. Itincludes information on uncon-
ditional and conditional branching, loops, subroutines, error handling,
and program termination.

Chapter 4, “Arrays and Strings,” completes the material on variables
begun in Chapter 2. It includes information on the definition and use
of arrays in Applesoft and on the various string manipulation facilities.

Chapter 5, “Input/Output,” describes Applesoft’s facilities for getting
information into and out of programs and for formatting the way infor-
mation is presented on the display screen.

Chapter 6, “Graphics,” tells how to create, change, display, and store
low- and high-resolution graphic designs. There is an extensive dis-
cussion on creating and using shape tables, as well as examples of
how to create animation sequences.

Chapter 7, “Utility Statements,” contains information on a variety
of miscellaneous Applesoft facilities for low-level control of the
programming environment: directly accessing specific memory
locations, controlling the limits of program space, and tracing the
execution of a program for debugging purposes.

Chapter 8, “Bringing It All Together,” is more tutorial than any other
chapter in the manual; it describes and demonstrates a method for
planning, designing, and developing efficient, bug-free (well, rela-
tively bug-free) programs.

Appendix A, “Summary of Applesoft Statements and Functions,”
gives an abbreviated description of each Applesoft statement and
function, together with a reference to the chapter, section, or appen-
dix where you can find more detailed information and examples.

Appendix B, “Syntax Definitions,” defines terms used in the formal
syntactic definitions of Applesoft statements given in Appendix A. In
the body of the manual, statement syntax is shown by example rather
than by formal definition; most readers can safely avoid the formal
definitions altogether.

How This Manual is Organized XV

Appendix C, “ASCII Character Codes,” contains a complete listing of
the ASCII characters; it is an adjunct to the comments on ASCl| in
chapter 4.

Appendix D, “Reserved Words,” is a list of words (some of them
rather odd-looking) that cannot be used in variable names.

Appendix E, “Error Messages,” describes the meanings of the error
messages that Applesoft displays on the screen. Each description in-
cludes an explanation of why the error occured; in some cases, there
are suggestions for debugging.

Appendix F, “Peeks, Pokes, and Calls,” deals with low-level access
to features of the Apple Ile computer via Applesoft's PEEK function
and POKE and CAL L statements. There are sections on screen
text, the keyboard, graphics, miscellaneous input and output, and
error handling.

Appendix G, “Hints for Program Efficiency,” offers techniques for
cutting down the size of programs and for speeding up program
execution.

Appendix H, “Implementation Details,” contains information of inter-
est mainly to the advanced programmer. Included here is a memory
map with a list of pointers and their descriptions, information on
Applesoft's methods of internal storage allocation, an outline of its
usage of special locations in page of memory, and a list of the
tokens it uses for internal representation of keywords.

Appendix |, “Display Formats for Numbers,” describes how Applesoft
displays numbers on the screen and gives the ranges of numbers the
system is capable of handling.

Appendix J, “On-Screen Editing and Cursor Control,” contains tables
summarizing Applesoft's on-screen editing features.

Appendix K, “40/80-Column Differences,” is a table showing the dif-
ferences in Applesoft’s behavior with and without the optional Apple
Ile 80-Column Text Card installed.

Appendix L, “Comparison with Integer BASIC,” gives charts showing
the differences between Applesoft and Apple Integer BASIC and
discusses how to convert Integer BASIC and non-Apple-lle BASIC
programs into Applesoft.

xvi About This Manual

Appendix M, “If You Have a Cassette Recorder,” describes Apple-
soft’s statements for using tape cassettes as a storage medium for
programs and information.

Appendix N, “Complete Listing of the Postage Rates Program,”
gives the complete text of the programming example developed in
Chapter 8.

At the back of the manual is a Glossary of technical terms. In general,
buzz words are no-no’s in this manual; but any technical field has its
own jargon, developed out of necessity to describe concepts genu-
inely having no parallel in common language. The glossary lists all
(we hope!) such words and terms that have found their way into the
manual, and a few others besides.

A tear-out Quick Reference Card, designed to act as a “memory jog,”
gives an extremely brief description of each statement, function, op-
erator, and variable type.

e How to Use This Manual

Here are some suggestions on how to use this manual, depending on
the particular goals you are trying to accomplish.

As a Reference

® Look up the feature of interest on the Quick Reference Card;
each statement, function, operator, and variable type is listed
there in an extremely abbreviated form as a “memory jog.”

- ® ook up the feature in Appendix A, “Summary of Applesoft State-
ments and Functions”; each statement and function is described
briefly, and a reference is given to the chapter, section, or appen-

- dix where itis discussed in detail.

® Lookup the feature in the index; there you'll find references to
the places in the manual where itis mentioned.

® | ookinthe appendices at the back of the manual for quick refer-
ence on specific facts.

How to Use This Manual xvii

To Learn the Applesoft Language

e Read Appendix A, “Summary of Statements and Functions,” to —
get a quick feel for each of the features in the language.

® Read through each chapter and enter and run the example pro-
grams; then try modifying them to check your understanding and
gain hands-on experience.

e Enter, run, and modify the example program in chapter 8. —

To Learn Program Planning

® Read through chapter 8 and experiment with the program devel-
oped there.

® Develop your own programs based on the methods presented in =
chapter 8.

® Restructure someone else’s program using the methods of
chapter 8.

e Read Appendix G, “Hints for Program Efficiency,” at the back of
the manual. —

Conventions Used in This Manual

Throughout this manual you'll encounter the following conventions:

A Warning T

Warning boxes contain vital information about potentially dangerous
situations in which you can damage or destroy equipment, programs,
or information. —

Grey boxes contain minor details, tricky points, side comments, helpful
hints, historical notes, and other information of secondary importance.

represent info
computer’s d

tlen as it will @ © el
sGreen,

Throughout the manual, extensive use has been made of marginal -
notes for key points, definitions, and cross-references. After reading

a chapter or section, you can use the marginal notes to review what

you've learned or to refer back to a particular point for quick]
reference.

xviii About This Manual

_ New terms being introduced for the first time are set in italics; defini-
tions for most such terms can be found in the marginal notes, the
Glossary, or both.

Numbers (such as memory addresses) preceded by a dollar sign,
suchas $89G00, are expressed in hexadecimal; numbers without a
dollar sign are generally in decimal, unless otherwise stated.

How to Use This Manual ~
xix

XX

About This Manual

Chapter 1

General Information

oOoooNNOOCUOO AW

b
-

it
N

1.4

Statements and Lines
1.1.1 Immediate Execution
1.1.2 Line Numbers and Deferred Execution
1.1.3 Adding Lines to a Program
1.1.4 Multiple Statements on the Same Line
1.1.5 Deleting Lines from a Program: The DEL Command
1.1.6 Changing Lines in a Program
1.1.7 Annotating a Program: The REM Statement
Operations on Whole Programs
1.21 The NEW Command
1.22 The CLEAR Command
123 The LIST Command
1.24 The RUN Command
1.25 The SAYE Command
1.26 The LOAD Command
Interrupting and Resuming a Program
1.3.1 Suspending Screen Output
1.3.2 Interrupting Program Execution
CONTROL-C
CONTROL-RESET
1.3.3 Resuming Program Execution: The CONT Command
Editing What You Type
1.4.1 Canceling an Input Line
1.4.2 The Arrow Keys
1.4.3 Escape Mode

General Information 1

one or more keywords, special words that Applesoft recognizes as
denoting a particular type of statement.

You can type a program line whenever you see Applesoft’'s prompt
character, aright bracket (1), displayed on the screen followed by
the cursor. Each line you type must end in a press of the
key (but see Section 1.1.4 about multiple statements per line). De-
pending on what you type, the statements in the line may either be
deferred execution: see Section 1.1.2 executed immediately or deferred for later execution as part of a
complete program. —

Use while typing Apple- Applesoft understands only uppercase letters. Most programmers
soft programs therefore keep the key down while typing programs. —

Notice that a program line is not the same thing as a line of text on the
screen. If the cursor reaches the end of a screen line while you're typ- ~ —
ing a program line, it will “wrap around” to the beginning of the next
screen line and continue displaying what you type. Although the
80-Column Text Card: see Apple lle screen is only 40 columns wide (or 80 if you're using the Apple Ile 80- —
Owner's Manual, Apple lle 80-Column Column Text Card), a program line may be up to 239 characters long

/
Text Gard Manua and ends only when you press the key.
Actually, you can type as many as 255 characters in a program line, but
Program lines may be up to 239 charac- all characters after 239 will be ignored. If you type more than 255 char-
ters long acters, Applesoft will display a backslash character (\) and cancel the -

entire line. It will then redisplay the prompt character (1) followed by the

cursor, and you will have to retype the entire line from the beginning. As

awarning, Applesoft will “beep” the computer’s built-in speaker with

every character you type beginning with the 245th in a line. —

It's usually a bad idea to type program lines this long. In practice, you
should keep your lines well below 239 characters in length.

11.1 Immediate Execution

If you want Applesoft to execute a program line as soon as you type
it, just type the line and press the key. For example, if you
type —

PR INT statement: see Section 5.2.2 PRINT "HELLO"

Applesoftimmediately displays the word HEL L O on the screen, on
the line following what you just typed.

4 General Information

BASIC: Beginner's All-purpose Symbolic
Instruction Code

ANSI: American National Standards
Institute

creating and modifying programs: see
Section 1.1

operations on whole programs: see
Section 1.2

interrupting and resuming: see Sec-
tion 1.3

on-screen editing: see Section 1.4

1.1

program line: the basic unit of an Apple-
soft program

statement: a unit of a program specify-
ing an action for the computer to perform

Chapter 1

General Information

Applesoft BASIC is a very extended version (in computer parlance,
a superset) of the BASIC programming language. Itincludes many
more features than either the original BASIC, developed at Dart-
mouth College in the 1960s, or the standard version of the language,
as defined by the American National Standards Institute (ANSI). The
extra features allow your programs to use the special capabilities of
the Apple lle, such as color graphics, animation, and hand controls.

This first chapter introduces the Applesoft language and the environ-
ment in which it operates. Here you will find information on how to
create, modify, execute, and store Applesoft programs.

Section 1.1, “Statements and Lines,” deals with the fundamental
units of Applesoft programs. It tells how to type Applesoft statements
forimmediate execution and how to create and modify programs in
the computer’'s memory.

Section 1.2, “Operations on Whole Programs,” introduces Apple-
soft's commands for displaying a program on the screen, writing it to
an output device such as a printer, executing it, saving it on a disk,
and retrieving it from a disk.

Section 1.3, “Interrupting and Resuming a Program,” tells how to
suspend or cancel the execution of a running program and how to re-
sume execution after an interruption.

Section 1.4, “Editing What You Type,” briefly describes Applesoft's
facilities for correcting typing errors and editing text on the screen.

Statements and Lines

The basic unit of an Applesoft program is the program line, which
may contain one or more statements specifying actions you want the
computer to perform. Most Applesoft statements are identified by

Statements and Lines 3

1.1.2

line number: a number identifying a line
in an Applesoft program

Maximum line numberis 3999

program: a sequence of program lines,
each with a different line number

Program lines automatically sorted into
proper sequential order

Leave intervals between line numbers

1.1.4

Colons separate multiple statements

Line Numbers and Deferred Execution

If you want Applesoft to save a program line to be executed later—
that s, if you want it to defer execution—then precede the line with a
line number:

10 PRINT “HELLOY — 10 isthe line number

Line numbers must be in the range O through 63989. Applesoft
uses the presence or absence of line numbers to determine whether
the line you type is to be carried out immediately or deferred (stored
for execution at some future time).

A sequence of deferred-execution lines, each preceded by a differ-
ent line number, is an Applesoft program. Program lines are stored in
the computer's memory in sequential order, from the lowest-num-
bered line to the highest.

Adding Lines to a Program

To add a new line to a program, just type the new line preceded by a
line number indicating where in the program you wish to insert it. It
makes no difference in what order you enter program lines; Applesoft
will put them in the proper sequential order for you.

Helpful Hint: Instead of using consecutive line numbers (0, 1, 2,...),
it's usually more convenient to leave intervals of 5 or 10 or 20 between
the line numbers in your program. This makes it easy to insert new lines,
if necessary, in between the old ones.

Multiple Statements on the Same Line

Applesoft allows you to put more than one statement on the same
program line. Use a colon (:) to separate the statements:

40 PRINT "COME OUTSIDE" : PRINT "AND
PLA\II"

You can type as many statements as will fit within the limit of 239
characters per line.

Line Numbers and Deferred Execution 5

Multiple statements make editing more Although using multiple statements on the same line can speed up the
difficult (although they speed up program execution of your program, it can also make program editing difficult and
execution) time-consuming. The example above, for instance, has two statements

on the same line. In order to change the word OUT S I DE in the first
statementto INS IDE, you would have to retype both statements. But
if each statement were on its own line, you would have to retype only
the one statement you want to change. This may not seem like much —
of a time saving; but when you multiply three or four seconds by the

hundreds of edits you might need to make in developing a typical pro-

gram, the savings can become considerable.

115 Deleting Lines from a Program:
The DEL Command

DEL 100, Z00

DEL deletes lines from the programin The DEL command deletes (removes) a range of consecutive lines

memory from the program currently in memory. The line numbers of the first
and last lines to be deleted follow the keyword DEL and are sepa-
rated from each other by a comma. All program lines between the two
specified line numbers, inclusive, are deleted from the program. The
example above, for instance, will delete all lines from 1 00 to 200,
inclusive.

If either line number is out of the range of lines in the actual program
(forinstance, ifthe commandis DEL 100 » 200 and the highest
existing line number is 1 50), then all existing lines within the speci-
fied range are deleted. If DEL specifies a range of lines that doesn'’t
exist, or if the second line number is smaller than the first, the com-
mand has no effect:

DEL 200, 100 —nothing happens

A single number with a comma also has no effect:

DEL 35 —nada pasa

A single number without a comma is a syntax error:

DEL 35 —syntax error

Deleting a single line To delete a single line from the program, simply type the number of =
that line and press [RETURN J:
150 —press the key after

you type the line number

6 General Information

Dash not allowed in DEL command

L IST command: see Section 1.2.

REM is for including explanatory
remarks to a human reader

3

1.1.6

11.7

If you're fond of redundancy, youcanalsouse DEL 150 130t0
do the same thing.

Unlike the L I 5T command, you cannot use a dash (-) to separate the
line numbers in the DEL command:

DEL BO - 100 —causes a syntax error

The DEL command is normally used in immediate execution. You can
also use it from within a program, but as soon as it is executed the pro-
gram will stop with no error message:

20 DEL. 138y =00 —lines 1335 through 250 re-
moved from program; program
execution halts

Changing Lines in a Program

To alter or replace an existing line of your program, simply type the
new line using the same line number as the existing one. What you
type will replace the old line under the same line number; the old line
will be forgotten.

Annotating a Program: The REM Statement
REM TEST FOR ERROR

One rule of good programming practice is to include comments in
your program, explaining or clarifying to a human reader how the pro-
gram works. Applesoft’'s REM statement allows you to include such
remarks within the body of your program. It consists of the keyword
REM (for “remark”) followed by any explanatory notes you care to in-
clude. For example,

0 REM MONTHLY BUDGET PROGRAM

Line Numbers and Deferred Execution 7

This statement is included in the program strictly for the benefit of the —
L IST command: see Section 1.2.3 human reader. When you list the program, the R E M statement will
appear just like any other statement. But when you run the program,
Applesoft will ignore the REM statement and just go on to the next —
line. Everything following the keyword R EM on the same line will be
ignored. See Chapter 8, “Bringing It All Together,” for some tips on
the use of the REM statement. —

RUN command: see Section 1.2.4

Operations on Whole Programs —

1.2
This section describes Applesoft’'s commands for manipulating

whole programs:
NEW command: see Section 1.2.1 ® NEMW clears the current program from the computer’'s memory so
you can start typing another.

CLEAR command: see Section 1.2.2 e CLEAR resets all variables and internal control information to
their initial settings without affecting the Applesoft program in

memory. —

L IST command: see Section 1.2.3 e | IST displays the current program on the screen or writes it to
an output device such as a printer.

RUN command: see Section 1.2.4 ® [RUN executes the program currently in memory. It can also be o
used to load and execute a program stored on a disk.

SAVE command: see Section 1.2.5 e SAVE writes the program currently in memory onto a disk or a Nl
tape cassette for future use.

LOAD command: see Section 1.2.6 e | OAD reads a program into memory from a disk or a tape cas-)
sette for execution.

You can use all of these commands for immediate execution; you can
use some of them from within your Applesoft programs as well.

8 General Information

1.21

NEW clears memory for a new program

variables: see Section 2.1

NEMW in deferred execution

hang: for a program to “spin its wheels”
indefinitely, performing no useful work

1.2.2

null string: a string containing no
characters

CLEAR in deferred execution

The NEW Command
NE W

The NE W command clears the current program from memory, resets
the values of all numeric variables to ¢ and those of all string vari-
ables to the null string, and prepares Applesoft to accept a new pro-
gram. If there are no program and no variables in memory, NE i has
no effect. '

Although NE W is usually used inimmediate execution, you can also
use it in deferred execution (from within a program):

100 IF A% = "RATS" THEN NEW

—NE W in conditional statement
998 NEMW —NEW onits own line
Warning

Using NE I in deferred execution can do strange and unpredictable
things to Applesoft’s innards, causing subsequently entered programs
to hang. If you use NE W from within a program, it's a good idea to warn
your user to restart the system before typing another program:

100 IF A% = "RATS" THEN PRINT
"PLEASE RESTART YOUR SYSTEM
BEFORE TYPING A NEW PROGRAM.": NEW

The CLEAR Command
CLEAR

The CLEAR command resets the values of all numeric variables to ©
and those of all string variables to the null string; it also resets Apple-
soft’s internal control information to its initial state. It has no effect on
the program lines in memory.

Although CLEAR is usually used in immediate execution, you can
also use it in deferred execution (from within a program):

100 IF 2% = "NUTS" THEN CLEAR
—CLEAR in conditional

statement
999 CLEAR —CLEAR onitsownline

Operations On Whole Programs 9

A Warning

Be careful where you execute CLEAR. Since CLEAR resets Apple-

subroutines, control stack: see soft’s internal control stack, using it in the midst of a subroutine orin a -
Section 3.4 FOR/NEXT loop caninterfere with the orderly flow of program execu-
) tion. The following program, for example, will fail in line 30 witha NE X
FOR/NEXT loops: see Section 3.3 WITHOUT FOR error: L3
10 FOR X = 1 TO 10 —try to loop 10 times
20 PRINT X e
30 CLEAR —CLEAR resets control stack

(among other things)

40 NEXT X —program fails here—doesn’t -
know it'sin a loop

S50 PRINT "HI!" —program won't get this far

123 The LIST Command

LIST

LIST 100

LIST 100

LIST - 200
LIST +200

LIST 100, 200
LIST 100 - Z00

L IST displays or prints a program The L IS5T command displays on the screen all or part of the pro- -
gram currently in memory, or writes it to the current output device as
PR # statement: see Section 5.2.1 specified in the last PR # statement. (For example, if there is a printer

connected to slot 1, and if the statement PR# 1 has been executed,
then the program listing is sent to the printer.)

Listing the entire program To list the entire program, just type the keyword L I ST and press —
:
LIBT -
Listing a portion of the program You can list a portion of the program by specifying the first and last
lines you want to list, separated by either a comma or a dash: e
LIST 100, 250 —display lines 1 00 through
250 e
LIST 100 - 250 —also display lines 1 00
through 250

10 General Information

If none of the lines in the specified range are in memory, nothing will
be listed; if the specified range is greater than the actual range of
lines in the program, Applesoft will list the entire program.

If you specify only one line number preceded by a comma or dash, all
lines from the beginning of the program through the specified line will
be listed:

LIST +100 —display from beginning of pro-
gram through line 100

If you specify only one line number followed by a comma or dash, all
lines from the specified line through the end of the program will be
listed:

LIST 100 - —display from line 1 00 through
end of program

If you just specify a single line number, only that line will be listed:
LIST 100 —display line 1 00 only

You cannot list line number © by itself. You'll have to use a form like

- e G R

— A Warning

Always be sure to type the keyword L I ST before the number of the pro-
gram line you want to list; typing a line number not preceded by a key-
word deletes the specified line from the program (see Section 1.1.5,
“Deleting Lines from a Program: The DEL Command”).

L IST indeferred execution Although the L I 5T command is usually used in immediate execu-
tion, you can also use it from within a program:

= 190 LIST —list entire program

235 IF 2 = K THEN LIST 10,73
—listlines 1 O through 75 if vari-
able Z holds same value as
variable *

L I 5T statements within a program can be particularly useful in debug-
ging. With them, you can test for various error conditions and display or
print only the section of the program in which the error occurred.

Operations On Whole Programs 11

P—
Ce——

124 The RUN Command

RUN el
RUN 273
RUN MONTHLY BUDGET

RUN executes a program The RUN command instructs Applesoft to execute the program
currently in memory. If no line number is given, execution begins at
the beginning of the program; if the R UN command includes a line -
number, execution begins at the specified line:

RUN —execute program from —
beginning
RUN 300 —execute program from line =

S00

If you attempt to run a program from a specified line number (asin RUN
200) and that line doesn't exist, the message

TUNDEF ‘D STATEMENT ERROR

will be displayed and program execution will halt.

RUN in deferred execution Although RUN is normally used inimmediate execution, youcanalso __
use it from within a program:

150 IF A = O THEN RUN —
—ifvalue of A is (0, then execute
program from beginning
235 RUN BGOO —execute program from line _—

GO0

You can use this technique, for example, to restart a game or to avoid
executing some code with low line numbers.

A Warning -

Whenever the RUN statement is executed, it resets the values of all nu-

variables: see Section 2.1 meric variables to © and those of all string variables to the null string be-
fore executing the first program line. If you have assigned values to any
variables in immediate execution, those values will be forgotten. This
happens even if there is no program currently in memory.

Running a program from a disk If your computer is equipped with a disk drive and the Disk Operating
System (DOS) is active, you can use the RUN command to load a
program into memory from a disk file and execute it. To do this, follow ~ —
the keyword R UN with the file name under which the program is

12 General Information

stored on the disk. For example, if the program you want to run is
stored in afile named AWA'Y, first make sure the disk containing that
file is in the disk drive, then type

RUN AWAY
and press . Applesoft (and DOS) will do the rest.

If you try to use this form of the R UN command with no disk drive con-
nected to your computer, or without DOS loaded and active, you'll get a
syntax error.

For more information on disk drives, disks, files, and file names, see
the DOS manual that came with your disk drive. For related Applesoft
commands, see Sections 1.2.5, “The SAVE Command,” and 1.2.6,
“The LOAD Command.” For information on using a cassette tape re-
corder in place of a disk drive, see Appendix M, “If You Have a Cassette
Recorder.”

125 The SAVE Command

- SAVE
SAVE MONTHLY BUDGET

SAVE writes a program to a disk or On systems equipped with a disk drive, the SAYE command writes

tape the Applesoft program currently in memory to a file on a disk. The
keyword SAVE is followed by the file name under which the program
is to be written. The copy of the program in memory is not affected in
any way. For example,

SAVE MY CHILD —store current program on disk
under filename MY CHILD

Attempting to use this form of the SAWE command with no disk drive
connected to your computer, or without the Disk Operating System
(DOS) loaded and active, will result in a syntax error.

If you issue the SAYE command without specifying a file name, Apple-
Saving programs on tape: see Appen- soft will attempt to write the program in memory onto a tape cassette. If
dix M no cassette recorder is connected, the computer will seem to hang for a

while; the actual time that will pass before you regain control depends on

the length of the program in memory. You can regain control immediately

— [controL - : see Section 1.3.2 by pressing [CONTROL |- [RESET] .

Operations On Whole Programs 13

1.2.6

L OAD reads a program from a disk
or tape

RUN command: see Section 1.2.4

Loading programs from tape: see
Appendix M

[conTroL J{ RESET]: see Section 1.3.2

14

For more information on disk drives, disks, files, and file names, see
the DOS manual that came with your disk drive. For related Applesoft
commands, see Sections 1.2.4, “The RUN Command,” and 1.2.6, “The
LOAD Command.” For information on using a cassette tape recorder in
place of a disk drive, see Appendix M, “If You Have a Cassette
Recorder.”

The LOAD Command

LDAD
LOAD MONTHLY BUDGET

On systems equipped with a disk drive, the LOAD command reads
an Applesoft program from a file on a disk into the computer’'s mem-
ory for execution or editing. The keyword L OAD is followed by the file
name under which the program is to be found on the disk. For
example,

LOAD THE DICE —Iload program into memory
from filenamed THE DICE

L OAD does not execute the program it retrieves; it merely reads a
copy of the program into memory. You can then execute the program,
if you wish, with the R UN command. The copy of the program on the
disk is not affected in any way.

If the disk in the disk drive doesn'’t contain a file of the specified name,
the error message

FILE NOT FOUND

will be displayed. If there is no disk drive connected to your computer, or
if the Disk Operating System (DOS) isn’t loaded and active, you'll get a
syntax error.

If you issue the L 0AD command without specifying a file name, Apple-
soft will attempt to read a program into memory from a tape cassette. If
no cassette recorder is connected, or if the tape in the recorder doesn'’t
contain a program to load, or if the recorder is turned off, the computer
will hang forever looking for a program that isn’t there. When you get
bored waiting, press [conTrRoL J-{ RESET |to regain control.

General Information

For more information on disk drives, disks, files, and file names, see the
DOS manual that came with your disk drive. For related Applesoft com-

- mands, see Sections 1.2.4, “The RUN Command,” and 1.2.5, “The
SAVE Command.” For information on using a cassette tape recorder in
place of a disk drive, see Appendix M, “If You Have a Cassette
Recorder.”

I I Interrupting and Resuming a Program
1.3

If a program starts to run away from you, there are various ways of
interrupting it and regaining control. This section covers Applesoft’s

— facilities for getting out of problem programming situations, infinite
loops, and the like.

— 131 Suspending Screen Output

Quite often the output a program displays, or the listing of the pro-
gram itself, exceeds the number of lines available on the display
screen, causing the output to fly by on the screen too fast for you to
(conTROL J-S temporarily suspends read. In such cases, you can press [CONTROL]-5 (type the letter S
screen output while holding down the key) to suspend the output of text
to the screen temporarily so that you can comfortably read what's
there. -5 doesn’t permanently discontinue the display of
— text; pressing any key, including another [CONTROL]-5, causes
screen output to resume. You can then suspend it again with another
-5. To discontinue a program or a listing permanently, use
__ [conTroL J-C:see Section 1.3.2 (conTrOL J-C.

Helpful Hint: Experienced programmers looking at listings of long pro-
grams keep the key continually pressed; they control the list-

ing by pressing the S key whenever they want to suspend or continue it.

132 Interrupting Program Execution

Applesoft gives you two ways of interrupting the execution of a run-
— ning program or canceling a listing. Pressing -C interrupts
the program in such a way that it is usually possible to resume execu-
tion from the point of the interruption; [CoNTROL J-[RESET | is some-
— what more drastic, and often leaves the system in a state from which
the program can’t be resumed witha CONT statement.

Interrupting and Resuming a Program 15

[conTroL]-C

[conTROL J-C cancels execution or Pressing [conTroL |-C (typing the letter C while holding down the —
listing of a program key) cancels the execution or listing of a program and re-
turns Applesoft to its command level, displaying the prompt character
(7). You can then resume execution of the program, if you wish, with e
the CONT command. To cancel execution of a program that is wait-
INPUT statement: see Section 5.1.2 ing for aresponse toan INPUT statement, [conTROL |-C must be |
the first character typed and must be followed immediately by .

RETURN] .
GET statement: see Section 5.1.3 Interruptinga GET: -C will not interrupt a program waiting d

for aresponse to a GET statement; unlikethe INPUT statement, GET
will assume that [conTroL |-C is a valid response and will assign the

ASCII code: see Section 4.2.1 and ASCII code for the character | conTroL |-C to the specified variable.

Appendix C To allow a program halted at a GE T statement to be interrupted with e
(conTroL]-C, use this form:
250 GET A% —uwait for user to press a key —

260 IF A% = CHR%$(3) THEN S5TOP

—if user presses [conTroL J-C
(ASCII code 3), then stop

A Warning

In certain situations, using [conTroL J-C can disconnect the disk operat-
ing system. See the DOS manual for information on this point.

(coNTROL |-[RESET]

In most cases you can immediately and unconditionally stop the
execution of any Applesoft program or command by pressing
(conTrROL { RESET | unconditionally [coNTROL |-[RESET] (pressing the key while holding down
stops any program or command the key). The program in memory remains intact, but
some of Applesoft’s internal “housekeeping” information is changed;
as aresult, it may not be possible to resume execution of the program
withthe CONT command.

Controlling [conTroL |- [RESET] : Your Apple lle has an advanced soft-

ware feature called a reset vector, which allows you to control what hap-

pens when [conTROL |- [RESET] is pressed. You can use the reset vector —

to make the program continue as if nothing had happened, branch to

some other portion of the program, or do whatever you choose. Use of
Apple lle Monitor program: see Apple this technique requires knowledge of the Apple lle’s built-in Monitor pro-
lle Reference Manual gram: see the Apple lle Reference Manual for details.

16 General Information

133

CONT continues execution after an
interruption

STOP statement: see Section 3.6.1

END statement: see Section 3.6.2

(conTROL J-C: see Section 1.3.2

When CONT won’t work

INPUT statement: see Section 5.1.2

Tutorials abound...

Resuming Program Execution:
The CONT Command

CONT

The CONT (for “continue”) command is used to resume execution of
aprogram after it has been interrupted by a S TOP or END statement

or by pressing -C. Execution will continue at the first state-
ment after the STOP or END, or at the point in the program where

execution was interrupted by [conTroL J-C.
CONT won't work if

e the program has been stopped because of an error

® anerror has occurred in immediate execution

e an INPUT statement has been interrupted with [conTroL J-C

® any program line has been edited since the program stopped
running

However, you can continue the program with CONT after examining
or changing the values of variables, provided you haven't edited any
program lines.

When a program is interrupted with [conTroL |-[ReseT |, CONT may or
may not be able to continue execution. Let the programmer beware!

Warning

The CONT command should be used in immediate execution only. If itis
executed from within a program, it will cause the program to hang.

Editing What You Type

This section gives a very brief description of Applesoft’s facilities for
correcting typing mistakes and editing text on the screen. More de-
tailed discussions of these features can be found in the Apple Ille
Owner’'s Manual and the Apple lle Applesoft Tutorial. For hands-on
experience with the various keys and editing features, use the
APPLE PRESENTS... APPLE training disk.

Editing What You Type 17

141 Canceling an Input Line

(conTROL J-X cancels a line of input -} is your “escape hatch.” By typing the letter X while —
holding down the [conTROL | key, you can change your mind (as long

as you haven't yet pressed the key) and cancel a program

line that you're entering or editing or a line of input that you're in the —
midst of typing to a program. Applesoft will display a backslash (\) at

the end of the line you were typing, to show that it’s ignoring that in-

put, and will redisplay the cursor at the beginning of the next line of —
the screen.

e [fyou were typing a new program line, the whole line is elimi- —
nated and you can start over again.

® [fyou were retyping a previously entered program line, any
changes you had typed will be canceled.

e |f you were typing input to a running program, the line you were
typing is ignored and the program waits for your new response. —

- does not affect any previous input you've typed or pro-
gram lines already entered. —

142 The Arrow Keys
There are four arrow keys on the Apple lle keyboard:

® The[LEFT-ARROW | key works as a backspace. It moves the cur- i

sor one position to the left and “erases” the last character typed

from the keyboard (or recopied with the key; see

below). No characters are removed from the screen, but the last et
character typed is forgotten, as if it had never been typed.

® The [RIGHT-ARROW | key “recopies” the character under the cur-

sor as if it had been typed from the keyboard, then moves the
cursor one position to the right. Moving the cursor over a charac-

ter with is exactly the same as typing that char-

acter from the keyboard. —

® The[pown-arRrROW]| moves the cursor down one line without eras-

ing or recopying any characters.)

e The key has no effect in Applesoft.

Notice that the key doesn't erase any characters from the -
screen; it just tells Applesoft to “forget” the last character it received. If

pure cursor moves: see Section 1.4.3 any pure cursor moves have been used, the character “erased” may not
even be the one the cursor backs up over. s

18 General Information

escape mode: see Section 1.4.3 In escape mode, all four arrow keys function as pure cursor moves,
equivalentto I (up), J (left), K (right), and M (down). That is, they
lose their backspace and recopy functions and simply move the cur-
sor one position in the indicated direction, remaining in escape
mode. To cancel escape mode after moving the cursor, press the

L bar.

The Apple lle keyboard’s auto-repeat feature is particularly handy for
long cursor moves. If you press and hold down any of the arrow keys, the

— INPUT statement: see Section 5.1.2 cursor will move repeatedly in the indicated direction for as long as you
. hold down the key. (Exception: the key doesn't move the
GET statement: see Section 5.1.3 cursor unless you're in escape mode.)

ASCII: see Section 4.2.1 and Appendix C

For Experts Only: The [up-arroW Jand [Down-ARROK | keys can be
typed by the user in response to an INPUT statement in a running Ap-
] Table 1-1 ASCII Equivalents of Arrow plesoft program. ([LEFT-ARROMW] @nd [RIGHT-ARROW] can't be, because
Keys they're interpreted as backspace and recopy, even in program input; but
any of the four arrow keys can be typed as aresponse toa GE T state-
ment.) In your own programs, you can make the arrow keys mean just
ASCIl Keyboard what you choose them to mean (neither more nor less) by having the
Key Code Equivalent program test the input for each arrow’s ASCI| value, as shown in Table 1-
1. The program can then take any action you want on receiving one of

= LEFT-ARROW 8 [CconTroL]-H these codes from the user.
(RIGHT-ARROW | 21 [conTROL)-U (“The questionis,” said Alice, “whether you can make keys mean so
- 11 [ConTRoL)-K many different things.

10 -J “The question is,” said Humpty Dumpty, “which is to be master—that's
all.”)

143 Escape Mode

alters meanings of some keys Pressing the (for “escape”) key puts Applesoft into a state
called escape mode, in which certain keys take on special mean-
ings. Some of the keys become pure cursor moves, meaning that
= they move the cursor around on the screen without erasing or
recopying characters or affecting Applesoft’s input in any way. Others
can be used to clear away all text from all or part of the screen, again
i without having any effect on the input received by Applesoft.

Although Applesoft normally doesn’t understand lowercase letters, it will
s accept them in escape mode. All of the letter keys listed below will have
the same effect whether they are typed in upper- or lowercase.

Editing What You Type 19

Figure 1-1 Single Cursor Moves

A, B, C, D move cursor one position

Figure 1-2 Long-range Cursor Moves

I, J, K, M are for long-range moves

Arrows also work for long-range moves

E, F, @ clear all or part of the screen

text window: see Section 5.2.4

20

In escape mode, the following characters move the cursor one posi-
tion in the stated direction and then leave escape mode. To continue
moving the cursor, you have to press the key again. The func-
tions of these keys are illustrated in Figure 1-1.

® A moves the cursor one position to the right.

® B moves the cursor one position to the left.

e C moves the cursor down one line.

® [moves the cursor up one line.

The following characters move the cursor one position in the stated
direction and remain in escape mode. You can then continue moving
the cursor without pressing the key again. These keys are
especially useful for long-range cursor moves. The functions of these
keys are illustrated in Figure 1-2.

e I moves the cursor up one line.

® .l moves the cursor one position to the left.

® K moves the cursor one position to the right.

® M moves the cursor down one line.

Notice thatthe I, J, K, and M keys form a diamond shape on the key-
board, representing the directions in which these keys move the cursor
(I up, Jleft, K right, M down).

The four arrow keys function in escape mode exactly the sameas I, J,
K, and M. That is, they move the cursor one position in the indicated di-
rection and remain in escape mode.

The Apple lle keyboard’s auto-repeat feature is particularly handy for
long cursor moves. If you press and hold down I, J, K, M, or any of the
arrow keys while in escape mode, the cursor will move repeatedly in the
indicated direction for as long as you hold down the key.

In escape mode, the following keys clear away all text from all or part
of the display screen and then leave escape mode:
e E clears from the current cursor position to the end of the line.

e F clears from the current cursor position to the end of the text
window.

® (@ clears the entire text window and moves the cursor to the top-
left corner.

General Information

The special functions of all keys in escape mode are summarized in
Table 1-2. To leave escape mode, press any key except one of those
listed in the table.

Leaving escape mode

To avoid inadvertently pressing a key that has a special meaning, it's
safest always to use the

bar to leave escape mode.

Table 1-2 Escape-Mode Functions
Key

LEFT-ARROW

RIGHT-ARROW

UP-ARROW

DOWN-ARROW

Function

Moves cursor right one position; leaves escape mode
Moves cursor left one position; leaves escape mode
Moves cursor down one line; leaves escape mode

Moves cursor up one line; leaves escape mode

Moves cursor up one line; remains in escape mode
Moves cursor left one position; remains in escape mode
Moves cursor right one position; remains in escape mode

Moves cursor down one line; remains in escape mode

Moves cursor left one position; remains in escape mode
Moves cursor right one position; remains in escape mode
Moves cursor up one line; remains in escape mode

Moves cursor down one line; remains in escape mode

Clears from cursor to end of line; leaves escape mode
Clears from cursor to end of text window; leaves escape mode

Clears entire text window; moves cursor to top-left corner; leaves
escape mode

Editing What You Type

21

General Information

Chapter 2

Variables and Arithmetic

25 2.1 Variables

. 26 2.1.1 Variable Names
27 2.1.2 Real Variables
27 2.1.3 Integer Variables
- 28 2.1.4 String Variables
29 2.1.5 Arrays: Collections of Variables

30 22 Assigning Values to Variables: The Assignment Statement
31 23 Expressions

31 2.3.1 Arithmetic Operators
33 2.3.2 Relational Operators
35 2.3.3 Logical Operators
- 36 2.3.4 Precedence of Operators
37 24 Functions
38 2.4.1 Built-in Arithmetic Functions
TE 38 The ABS Function
39 The SGN Function
39 The INT Function
e 40 The S@R Function
40 The S I N Function
40 The COS Function
s a4 The TAN Function
41 The ATN Function
42 The EX P Function
o 42 The L OG Function
42 2.42 Generating Random Numbers: The RND Function
44 2.4.3 Defining Your Own Functions: The DEF FN
"- Statement

Variables and Arithmetic 23

—
——

i i # ——

variables: see Section 2.1

assignment statement: see Section 2.2

expressions, precedence rules: see
Section 2.3

functions: see Section 2.4

21

variable: a symbol representing a loca-
tion in the computer's memory where a
value can be stored

Variable types

real variables: see Section 2.1.2

Chapter2

Variables and Arithmetic

This chapter deals with variables and arithmetic in Applesoft. These
concepts are fundamental to Applesoft programming and will appear
again and again throughout this manual.

Section 2.1, “Variables,” discusses how to define and use variables,
the various types of variable available in Applesoft, and the rules for
naming them.

Section 2.2, “Assigning Values to Variables: The Assignment State-
ment,” deals with one of Applesoft’'s most basic types of statement,
the assignment statement.

Section 2.3, “Expressions,” discusses arithmetic operators and
expressions and the rules of precedence that govern them.

Section 2.4, “Functions,” covers Applesoft’s built-in arithmetic func-
tions and tells how you can define your own functions.

Variables

A variable is a symbol representing a location in the computer’s
memory where a value can be stored. The first time your program as-
signs avalue to a particular variable, Applesoft automatically allo-
cates a memory location or locations for that variable and stores the
specified value at that location. Thereafter, whenever your program
uses that particular variable name, Applesoft will take the name to
refer to the value stored at the corresponding location. For instance,
if the variable P I refers to a memory location where the value

3.+ 14159 isstored, then the statement PRINT P I will display
the value 3+ 14159 onthe screen.

Applesoft has three types of variable:

® Real variables can contain either whole numbers or numbers
containing decimal fractions.

Variables 25

integer variables: see Section 2.1.3 ® Integer variables can contain whole numbers only. -
string variables: see Section 2.1.4 e String variables can contain strings of text characters such as
words or names.

In addition, Applesoft allows you to define collections of variables,
arrays: see Section 2.1.5 called arrays, of any of the types listed above.

Reals save time; integers save space Programming Tip: Applesoft converts all integer values to real form be-
fore performing arithmetic on them. Because this conversion takes time,
integer arithmetic is considerably slower than arithmetic on real quan-
tities. However, integers take up less space in the computer's memory
than real numbers. In relatively small programs in which space is not a
concern, you can speed up your program by using real variables instead —

subroutines: see Section 3.4 of integers wherever possible, especially in subroutines, loops, and
. other sections of code that are executed many times. In large programs
loops: see Section 3.3 where space is critical, you can save space at the expense of time by

using integers instead of reals, particularly in arrays containing many —
elements. See Appendix G, ““Hints for Program Efficiency,” for further
suggestions on how to save space and time in your programs.

21.1 Variable Names

Rules for variable names The name of a variable must begin with a letter of the alphabet, which
may be followed by one or more letters and/or digits. In addition, the
names of all integer variables must end with a percent character (%)
and those of string variables must end with a dollar sign (%). The var-
ious variable types and the rules for naming them are summarized in

Table 2-1.
Table 2-1 Variable Types
Simple Array
Type Symbol Examples Examples -
Real (none) K AGE (CHILD)
PRICE TAX (ITEM) -
N1 N1 (J%s 3)
Integer % J7 YEARZ (N)
GS% BOOKY (COUNT)
N1Y N1% (J%s 3) -
String % A% SHOP% (3)
SAM% DAY4$ (WEEK)
N1 Nig C(JZs» 30

26 Variables and Arithmetic

A variable name can be up to 239 characters long, but Applesoft uses
only the first two characters to distinguish one variable from another
of the same type. All characters beyond the first two in a name are ig-
nored, so long as they don’t include a reserved word (see below).

Don't begin variable names of the same Take care not to begin the names of different variables of the same type

type with the same first two characters with the same two characters. Applesoft will consider the names SUM
and SUNSTROKE, for example, to refer to the same variable, since
they both begin with the same two characters.

Notice that the restriction above applies only to variables of the same
type. Thenames TAX, TAXY,and TAX$ refertothree different
variables, even though they all begin with the same two characters, be-
cause they are of different types (real, integer, and string). However,
names of the same type that begin with the same two characters—such
as TAX and TAXABLE, THIS% and THINZ or OTTER%
and OTHER $—referto the same variable.

— Reserved Words: Certain words used in Applesoft are reserved for
special uses in specific commands; you can't use these words as vari-
able names or as parts of variable names (even beyond the first two
characters). Forinstance, TOTAL or SUBTOTAL would be illegal as
variable names, because they both contain the reserved word TO. See

Reserved words illegal in variable Appendix D, “Reserved Words,” for a list of Applesoft’s reserved words.

names

212 Real Variables

A real variable can hold any numeric value, with or without a
decimal point, between -8, 8989888989E + 37 and
Range of real values +9.,98888899E + 37 (where “E + 37" means “times 10
— to the +37th power”). Applesoft represents real numbers to
32 bits (about 9 digits) of precision.

Real variable names consist of letters The name of a real variable must consist of letters and digits only.
and digits only Some legal real variable names are

SAM

TAX

Q7
SUMOFALLNUMBERS

Real variables preset to 0 Until they are given some other value with an assignment statement,
all real variables are preset to the value 0.

213 Integer Variables

Integer variables can hold only whole-number values between
— 32767 and + 32767. The name of an integer variable must

Variables 27

Integer variable names end with 7

Integer variables preset to 0

Real values assigned to integer variables
are truncated, not rounded

21.4

string: a sequence of text characters;
see Section 4.2

String constants enclosed in double
quotation marks

null string: a string containing no
characters

end with the percent character (%). Some legal integer variable names
are

SHARE
D37
TAXZ

Until they are given some other value with an assignment statement,
allinteger variables are preset to the value ©.

If a number containing a decimal fraction is assigned as the value of
an integer variable, it is truncated to the next lowest whole number—
not rounded to the nearest whole number:

LET AZ = 32.678 —value 32 assigned to variable
A%

LET BZ = —34.2 —value — 35 assigned to vari-
able B%

String Variables

A string is a sequence of text characters (letters, digits, and punctua-
tion marks). Just as you can write numeric constants such as Z 7 and
2+ 236 inyour Applesoft programs, you can write string constants
by enclosing the characters in the desired string between double

quotation marks:

"NOT WITH A BANG BUT A WHIMPER"
"Georde Berrnard Shaw"

"H23447"

PRl LAY

Even though Applesoft doesn’t understand lowercase letters when you
use them in keywords, it will allow you to use them in a string constant,
as the second example above shows.

A string can contain from 0 to 255 characters; when it contains no
charactersitis called a null string. Two quotation marks with nothing
between them denote the null string:

e —a string with no characters

Variables and Arithmetic

String variable names end with $

String variables preset to null string

21.5
array: a collection of variables referred to

by the same name and distinguished by
means of numeric subscripts

simple variable: a variable that is not an
element of an array

Figure 2-1 A Typical Array

Array R
R (0) —)
R (1) —| 27.35
R (2) — 31.4 J<R(S)
R (3) — B <~R(5+2)
R (4) — 18

A string variable can hold any string as its value. Its name must end
with a dollar sign (%). Some legal string variable names are

NAME$
59%
J$

Until they are given some other value with an assignment statement,
all string variables are preset to the null string.

Arrays: Collections of Variables

An array is a collection of variables referred to by the same name,
usually holding a collection of data items that are related to each
other in some logical or systematic way. The individual variables in
the array are called its elements, and are distinguished from one an-
other by means of identifying index numbers called subscripts.

An array can be of any type: integer, real, or string. Array names fol-
low the same rules as simple variable names of the same type. To re-
fer to a particular element of an array, write the array name followed
by one or more subscripts, separated by commas and enclosed in
parentheses. The subscripts refer to the position of the desired ele-
ment within the array:

0 (B) —element G of real array @

FIGUREZ (N) —element N of integer array
FIGUREYZ

NAME$ (J - 3) —element J - 3 ofstring ar-
ray NAME %

COUNT (SUMZ s 2) —element (SUMZ » 2) ofreal
array COUNT

Figure 2-1 shows a real array named R with five elements, numbered
0 to d.Element R (0) (pronounced “R-sub-zero”) holds the value
53,R({1) holds 27 .33, and soon. If the value of variable 5 is 2,
then the expression R (5) referstoelement R (2), whose value is
31.4,andtheexpressionR (S + 2Z) referstoelementR (4),
which holds the value 1 8.

For a fuller discussion of arrays and their use, see Section 4.1,
“Arrays.”

Variables 29

P Assigning Values to Variables: The -
22 Assignment Statement

LET PI 3.14159265
COUNTZ 0

Before Applesoft begins executing a program, it sets the values of all
Assignment statement assignsanew real and integer variables to © and the values of all string variables to
value to a variable the null string (that is, a string containing no characters). The pro- —
gram can then change the value of any variable at any time by exe-
cuting an assignment statement.

The NEW, CLEAR, and RUN commands also reset all real and integer
variables to © and all string variables to the null string.

An assignment statement consists of the optional keyword LE T, fol-

lowed by the name of the variable whose value is to be changed, an

equal sign (=), and an expression denoting the new value to be as- el

signed to that variable. The equal sign means “receives the value” or

“is assigned the value”; it is often read simply as “gets” (“* gets ¥

plus 27). The assignment statement means “evaluate the expression
NEW command: see Section 1.2.1 to the right of the equal sign and assign the resulting value to the vari-
able named to the left of the equal sign.” The variable will then con-

CLEAR d: see Section 1.2.2 i Sy :
L tinue to hold that value until itis changed by another assignment

RUN command: see Section 1.2.4 statementoris resetbya NEW, CLEAR, or RUN command. For
example,
Keyword LET is optional LET Q@ = 27.4 —assignvalue 27 .+ 4 toreal o
variable @
LET D3 = J —assign current value of real —

variable . to real variable D 3;
variable J unchanged

COUNTZ

|
e
a4
o

—assign current value of real
variable A plus current value
of real variable B to integer
variable COUNT %; variables A
and B unchanged

59% = 35 —assign value 35 to integer ==
variable 597%

NAME® = "GSAM" —assign string value "SAM" to
string variable NAME %

30 Variables and Arithmetic

NAME$ = GAM$% —assign current value of string
variable SAM % to string vari-
able NAME %; variable SAM$
unchanged

BOX(3) = 36 —assign value 3G to element 5
— of realarray BOX

J%4 = A%LIN) —assign current value of ele-
ment N of integer array A% to in-
teger variable J%;array A% and
variable N unchanged

— SHOP%(N) = "BAKERY" —assignvalue "BAKERY " to
element N of string array
SHOP%

The keyword LE T is optional in assignment statements. The statements
LET @ = 27.4
and

— Q = 27.4

mean exactly the same thing.

PN R SESEEESEEY. | Expressions

2.3
An expression is a formula describing a calculation for the computer

to perform. It may involve any number of numeric variables and con-
stants, together with operators specifying how the values of the vari-
ables and constants are to be combined. There are three kinds of
operator that can be used in an Applesoft expression:

arithmetic operators: see Section2.3.1 ® Arithmetic operators combine two numeric values and produce a
numeric result.

_ relational operators: see Section2.3.2 ~ ® Relational operators compare two values and produce a logical
(true-or-false) result.

logical operators: see Section 2.3.3 ® [ogical operators combine two logical values and produce a logi-
cal result.

Table 2-2 summarizes the various operators available in Applesoft.

231 Arithmetic Operators

— Arithmetic operators combine nu- Arithmetic operators combine two numeric values to produce a nu-
:‘;esﬁﬁ;’a'“es to produce numeric meric result. There are five of them in Applesoft, corresponding to the

Expressions 31

Table 2-2 Operators

Arithmetic Operators
+ addition

— subtraction

* multiplication
/ division
exponentiation

Relational Operators

= equal to
< less than
> greater than
L= less than or equal to
=<
= greater than or equal to
=
<> not equal to
><

Logical Operators

AND both true
OR either or both true
NOT is false

32

familiar operations of arithmetic: + (addition), — (subtraction), ¥
(multiplication), / (division), and * (exponentiation). Here are some

examples of their use:

3 + 4
+144

—144

SuUMs — 2

13 % o

6 * +23

25 * QUARTERSZ

4.8 % COUNT(3)

18 /7 6
6 / 18

DIST / TIME

DOLLARSZ /7 100

2 3
3 D
LN 4

—3 plus 4, yielding 7

—plus 144 (apositive number)

—the value of X plus the value
of ¥

—23+7minus 11 .4, yielding
12

—50 minus 735, yielding — 23

—minus 144 (anegative
number)

—the value of SUM7 minus 2
—13times 3, yielding G5
—G times + 25, yielding 1 + 5

— 25 times the value of
QUARTERSYZ

—4 , 8 times the value of ele-
ment 3 ofarray COUNT

— 18 divided by G, yielding 3

— G divided by 18, yielding
,333333333

—thevalueof DIST divided by
the value of TIME

—thevalueof DOLLARSZ
dividedby 100

— 2 to the 3rd power, yielding 8

—3tothe + 3 power, yielding
1,73205081

—the value of X raised to the
power of the value of J7%

Like most other computer languages, Applesoft uses an asterisk (¥) in-
stead of the letter X to represent multiplication.

Variables and Arithmetic

What to Do with Fractions: Applesoft doesn't treat fractional numbers
in the way that you are probably used to dealing with them. Most people
L would read the expression 3 3/ 4 as “three and three quarters.” To
Applesoft, however, the same expression would mean “thirty-three di-
vided by four.” (Applesoft ignores any spaces it finds in a number.)

— It's easy to convert fractions to a form Applesoft will understand cor-
rectly. Justthinkof 3 3/ 4 as “three plus three divided by four”. In
other words, instead of typing

LET A = 3 3/4

type this instead:

EEF A =85 =37

Applesoft will do the rest.

232 Relational Operators

Relational operators compare values A relational operator tests for a relation between two values and pro-
and produce logical results duces a logical (true-or-false) result, depending on whether the par-
— ticular relation does or doesn'’t hold between those two values. For
example, the expression

e A > B

means “the value of variable A is greater than that of variable B.” If
s the current value of variable A is 5 and that of B is 3, then the relation
is true; if the value of B is 8, the relation is false.

—_ Relational operators are particularly useful in connection with the
IF...THEN statement, discussed in Section 3.2.2.

The Truth about Applesoft: Applesoft actually uses numeric values to
represent the logical values true and false: if the stated relation is true,

1 stands for true the value of the relational expression is 1; if the relation is false, the

e value of the expression is . For example, if you type the statement

O stands for false

ERINT 6 =12

e in immediate execution, Applesoft will respond by displaying the number
0, meaning “false”; if you type

BRINE (12 > &

Applesoft will display the number 1, meaning “true.”

Expressions 33

= means equal to

< means/ess than

* means greater than

£ = or = < meansless than or equal to

= or = » means greater than or
equal to

34

Applesoft has six relational operators (some of which can be written
in more than one way): = (equal to), < (less than), > (greater than),
<= or =< (lessthan or equal to), > = or = > (greater than or
equal to), and <> or >< (not equal to). Here are some examples of

their use:

NAME$® = "Ann"

PROBABILITY < .5

B > 6

6 > 12

AGE > GBS

B <= 6

B =< B

B8 €= 12

B =< 12

A% <= 3 % BY%
A% =< 3 * B%

B e §

B => 6

6 >= 12

B => 12

SALARY >= 20000
SALARY => 20000

Variables and Arithmetic

—G equals G, yielding 1 for true

—~BG equals 1 2, yielding O for
false

—the value of X is equal to 2

—the value of NAME % is equal
tothe string " Arn "

—G islessthan G, yielding © for
false

—~bislessthan 12, yielding 1
for true

—thevalueof PROBABILITY
islessthan + 5

—~BG is greater than G, yielding O
for false

—~BG is greater than 1 Z, yielding
0O for false

—the value of AGE is greater
than G35

—~G isless than or equal to G,
yielding 1 for true

—Gislessthanorequalto 1 2,
yielding 1 for true

—the value of A% is less than or
equal to 3 times the value of B %

—G is greater than or equal to &,
yielding 1 for true

—B is greater than or equal to
12, yielding © for false

—thevalueof SALARY is
greater than or equal to
20000

< ¥ or »< means not equal to

233

Logical operators combine logical val-
ues to produce logical results

AND yields true if both original expres-
sions are true

OR yields true if either or both of the
original expressions are true

NOT yields true if the original expression
is false

B <> B —B isnotequalto G, yielding O

6 >< B for false

B <> 12 —GB isnotequalto 12, yielding

6 >< 12 1 fortrue

<> ¥ —the value of X is not equal to

X >< Y the value of ¥

BANGS >< "WHIMPER™ —thevalue of BANG % is

BANGS <> "WHIMPER" not equal to the string
"WHIMPER"

Logical Operators

A logical operator combines two logical (true-or-false) values and
produces a logical result. There are three logical operators in Apple-
soft: AND, OR, and NOT. Here are some examples of their use:
B <= 12 AND 6 >= 12
—~G islessthanorequalto 12
and E is greater than or equal

to 1 2;valueis O forfalse
<= R AND R < .73)
—+ 25 isless than or equal to
the value of R and the value of

Rislessthan + 73

B <= 12 OR 6 >= 12
—~BG islessthanorequalto 12
or G is greater than or equal to

12;valueis 1 fortrue

ANIMAL% = "CAT"
—thevalueof ANIMAL % is
equal tothe string "DOG" or
thestring "CAT"

ANIMAL$ "DOG" OR

NOT (B <= 12) —G is not less than or equal to

12;valueis © for false

NOT (YEARZ > 1930) —the value of YEAR % is not

greaterthan 1950

Notice that the OR operator doesn’t correspond exactly to the way we
often use the word “or” in everyday speech. When we say “A or Bis
true,” we usually mean that exactly one of the two statements is true, but
not both. The Applesoft OR operator produces a “true” value if either or
both of the original expressions are true.

Expressions 35

0 means false More Truth about Applesoft: Applesoft’s logical operators consider a
numerical value of © to mean “false”; any numerical value other than ©
Any nonzero value means true is taken to mean “true.” The logical operators always yield a value of 1 -—

fortrue or © for false.

Logical operators are particularly useful in connection with the
IF...THEN statement, discussed in Section 3.2.2.

234 Precedence of Operators

Operators in Applesoft have an order of precedence that determines
which operations are carried out first when they are combined in an
expression. Table 2-3 lists the operators in descending order of prec-
edence. Operators shown higher in the list are carried out before
those lower down. Operators on the same line of the list have the
same precedence, and are carried out from left to right within an
expression.

Table 2-3 Precedence of Operators
Parentheses (innermost first) (.2

Signed arithmetic and logical NOT + — NOT

Exponentiation (powers of

numbers) -

Multiplication and division * /

Addition and subtraction + -

Relational operators = € F = =€ 325 =22 £3 >< o

Logical AND AND

Logical OR OR -
Notice in Table 2-3 that the operators + and — have higher precedence -

when used to represent the sign of a single number (asin + 144 or
— ¥) than when they stand for the addition or subtraction of two
numbers.

To understand how Applesoft’s precedence rules work, consider the
expression

-2 % Z2 "3+ 0 /75 - A *B

When Applesoft evaluates this expression, it begins by applying the —
first minus sign to the constant 2, obtaining a result of — 2. Next it

raises the value of Z to the 3rd power and multiplies the result by

— 2. Then it divides the value of @ by & and adds the result to that of =
the previous calculation. Finally, it multiplies the values of A and B

and subtracts that result from the previous one.

36 Variables and Arithmetic

For example, suppose the current values of the variables in the
expression above areasfollows: 2 =2, 0 = 10, A =78 = 4.

- Then
E Z " 3 = 2 " 3 = g
-2 % 8 = —1B6
Q /7 5 = 1B £ 5 = 2
— —-16 + £ = —14
A * B = 7 % 4 = Z8
—-14 — 28 = —42
o The value of the expressionis — 42.
- Parentheses change order of Parentheses can be used to change the normal order of precedence.

evaluation For example:

-2 % 2 " (3 + Q)y /53 — A * B
—valueis — 3304, 8;
{3 + Q) evaluatedasa
unit

-2 % Z 3 4+ (Q /7 3 — A) ¥ B
—valueis — 36;
et (Q / 5 — A)evaluated
as a unit

-2 % Z " 3 + Q / (53 — A4 % B)
—valueis — 16.,4347826;
(Q /7 (3 — A % B))
evaluated as a unit

The original expression above is equivalent to the fully parenthesized
expression

(((=2) /7 (2 © 3Y) + (@ /7 3)) — (A % B)

Helpful Hint: When you're unsure of the order of precedence, use pa-
rentheses to make sure the expression is evaluated in the order you
intend.

e eneeaeeees. Functions

24

Functions are preprogrammed calculations that can be carried out
on request. You can use them whenever you need to perform the
same calculation repeatedly throughout a program. Whenever you
call a function (request its execution), you must give it a particular
value to operate on; this value is called the argument of the function.

function: a preprogrammed calculation
that can be carried out on request

Functions a7

Applesoft offers a variety of built-in functions, discussed in Section
2.4.1, for calculating common mathematical values such as loga-
rithms, cosines, and square roots. Section 2.4.2 covers the built-in
function RND, used for generating random numbers. In addition, you
can define your own functions for the special needs of a particular
program—see Section 2.4.3 for details.

2.4.1 Built-in Arithmetic Functions

This section discusses the various built-in functions that Applesoft
provides for calculating commonly used mathematical quantities. To

Calling built-in functions call a built-in function, just type the name of the function followed by
an expression in parentheses representing the argument value on
which you want the function to operate. For example, suppose you
need to calculate the square root of a number. Applesoft has a built-in
function named S QR for this purpose; to find the square root of 3,
write

S50R (3) -
To find the square root of the value of variable X plus 2, write
SQR (X+2)

The ABS Function

ABS computes the absolute value The built-in function ABS computes the absolute value of a num-
ber—that is, the positive numerical value of the number, without re- ——
gard to its original sign. For example,

ABS (27) —absolute value of 2 7; yields -
27
ABS (—27) —absolute value of — 27;yields
27 -
ABS (36.8 — 23.3) —absolute value of 36+ 8
minus 23+ 3;yields 13+ 5 —
ABS (23.3 — 36.8) —absolute value of 23 + 3
minus 3G+ 8;yields 13.5
ABS (C%(9)) —absolute value of element 9 of
array C7

38 Variables and Arithmetic

The SCGN Function

SGN computes the sign of a number The SGN function determines whether the value of its argument is
— positive, negative, or zero. It yields a result of 1 if the argument value
is positive (greater than), — 1 if the argument value is negative
(less than ©), and 0 if the argument value is ©. For example,

SGN (27) —signof 27;yields 1 (positive)
- SGN (—27) —signof —27;yields — 1
(negative)
. 5GN (36.8 — 23.3) —signof 36+ 8B minus 23+ 3;
a yields 1 (positive)
SGN (23.3 — 36.8) —signof 23+ 3 minus 3G .+ B;
L yields — 1 (negative)
SGN (9 * 5 — 45) —sign of 9 times 5 minus 45;
yields ©
o SGN (SUM — Z0) —sign of SUM minus 20

The INT Function

INT computes the integer part of a INT yields the integer (whole-number) part of its argument value,
number with the fractional part (if any) discarded. Note that this function

— makes no attempt at rounding: that is, if the argument value is not an
integer: a whole number integer, I NT yields the next lowest integer, not necessarily the near-

est integer. For example,

INT (27) —integer partof 27; yields 27
—_ INT (36.8) —integer partof 3G + 8; yields
36
INT (—=7.8) —integer partof — 7+ 9; yields
- -8
INT (—=62+1) —integer partof — 62 . 1;yields
- —-B3
INT (5 * PRICE) —integer part of 5 times
PRICE

Rounding a Number: To round a numeric value to the nearest integer,
firstadd + S and then apply the INT function to the result. For example,

—_ to find the nearest integer to the current value of variable AGE, use the
expression '

— ENTRGE + 30

Functions 39

S0OR computes the square root The 5QR Function
The S@R function computes the positive square root of its argument.
For example, —
5QR (169) —square root of 159, yields 13
SOR (1B3.84) —square rootof 163, 84; o
yields 12,8
50QR (3) —square root of 3; yields ——
1.,732035081
SOR (K2 + 9) —square root of X squared plus i)
9
Square root of a negative number is an If you try to take the square root of a negative number,an ILLEGAL —J
error QUANTITY errorwill occur.
The SIN Function —
S IN computes the sine 5 IN computes the trigonometric sine of its argument. The argument

must be expressed in radians. For example, assuming the value of
thevariable PI1is 3. 14159265, -

SIN (PI / 3) —sineof PI / 3radians;
yields . B6G023403 _
SIN (1) —sine of 1 radian; yields
+B41470885 —
SIN (X"2 — ¥ 2) —sine of X squared minus
squared
Arguments to trig functions must be in The argument you supply to the S I N function must be expressed in ra-
radians, not degrees dians, not degrees. (There are 21 radians in a circle; one radian is equal

to approximately 57.2957795 degrees.) For a formula you can use to —_—
convert from degrees to radians, see Section 2.4.3, “Defining Your Own
Functions: The DEF F N Statement.” I

The COS Function

COS computes the cosine COS computes the trigonometric cosine of its argument. The argu-
ment must be expressed in radians. For example, assuming the
value ofthevariable PI1is 3. 14159265,

cos (PI /7 3) —cosineof PI / 3radians;
yields + 5

cos (1) —cosine of 1 radian; yields =
+S40302306

40 Variables and Arithmetic

Arguments to trig functions must be in
radians, not degrees

TAN computes the tangent

Arguments to trig functions must be in
radians, not degrees

ATN computes the arc tangent

Result of A TN function is in radians, not
degrees

COg W 2u= N"2) —cosine of X squared minus ¥

squared

The argument you supply to the CO S function must be expressed in ra-
dians, notdegrees. (There are 2= radians in a circle; one radian is equal
to approximately 57.2957795 degrees.) For a formula you can use to
convert from degrees to radians, see Section 2.4.3, “Defining Your Own
Functions: The DEF FN Statement.”

The TAN Function

TAN computes the trigonometric tangent of its argument. The argu-
ment must be expressed in radians. For example, assuming the
value ofthe variable PI is 3+ 14159265,

TAN (PI 7 @) —tangentof PI / 3 radians;
yields 1+ 7320308

TAN (1) —tangent of 1 radian; yields
1.,85740772

TAN (X"2 — Y7"Z) —tangent of X squared minus

squared

The argument you supply to the TAN function must be expressed in ra-
dians, notdegrees. (There are 2w radians in a circle; one radian is equal
to approximately 57.2957795 degrees.) For a formula you can use to
convert from degrees to radians, see Section 2.4.3, “Defining Your Own
Functions: The DEF F N Statement.”

The ATN Function

ATN computes the trigonometric arc tangent (inverse tangent) of its
argument: that is, the angle whose tangent is equal to the given
value. The result is expressed in radians. For example,

ATN (SQR(3)) —arc tangent of the square root
of 3;yields 1 . 04718735
(=PI / 3)radians

ATN (1) —arctangent of 1;yields
+ 785398163 radians

ATN (X"2 — Y¥"2) —arc tangent of X squared

minus Y squared

The result produced by the AT N function is expressed in radians, not
degrees. (There are 2w radians in a circle; one radian is equal to approx-
imately 57.2957795 degrees.) For a formula you can use to convert from
radians to degrees, see Section 2.4.3, “Defining Your Own Functions:
The DEF FN Statement.”

Functions 41

The EXP Function

E % P computes the exponential The E X P function computes the mathematical exponential of its ar-
gument. The exponential is defined as the constant e raised to the Rt
power of the argument, where e = 2.718281828. For example,

KP (3) —e to the 3rd power; yields st
20,0855369
AP (LOG(10)) —e to the power of the natural]
logarithm of 1 0; yields 10
EXP (A * T) —etothepower&d * T

Limited Accuracy: Although Applesoft will display the result of the

E X P accurate to six places E X P function to nine places, only the first six are actually reliable. For
instance, in the first example above, the computed result of
20, 0B553689 should be interpreted simply as 20.0855.

The L.OG Function =

L OG computes the natural logarithm L 0G computes the natural logarithm of its argument (the logarithm to
the base e, where e = 2.718281828.) For example,

LOG (10) —natural logarithm of 1 0; yields
2.30258509 -
LOG (EXP(3)) —natural logarithm of e to the
3rd power,; yields 3
LOG (SIN(THETA)) —natural logarithm of the sine of o
THETA
Logarithm of a nonpositive number is an If you try to take the logarithm of a zero or negative number, an o
error ILLEGAL QUANTITY errorwill occur.

II

242 Generating Random Numbers: The RND
Function

RND generates random numbers The built-in function RND produces random decimal numbers be-
tween O and 1. The behavior of this function depends on whether the
argument you give it is positive, zero, or negative. -

The simplest way to use RND is to give it a positive argument. RND
will produce a different random number each time you call it with a -

42 Variables and Arithmetic

Positive argument produces a different
random number each time

Zero argument repeats same result as
previous call

Negative argument starts new, repeat-
able sequence

seed: the value used to begin a
sequence of random numbers

positive argument. The actual numeric value of the argument is ig-
nored; only its sign is significant:

RND (1) —yields + 431448496
RND (1) —yields + 735866024
RND (89) —yields + 345443325

If you give RND a zero argument, it will reproduce the same result as
at the previous call:

RND (99) —yields + 270011996
RND (0) —yields + 270011996
RND (0) —yields + 270011996
RND (899) —yields + 139756248
RND (0O) —yields + 139756248

Calling RND with a negative argument causes it to begin a new, re-
peatable sequence of random numbers. This is called seeding the
random number generator; the particular negative value you use for
the argument acts as a “seed” for the new sequence. Different seeds
will produce different sequences, but each time you use the same
seed you will get the same result. Subsequent calls to R ND with posi-
tive arguments will then produce the same sequence of results:

RND (—1) —yields 2.,9891896472E-08

RND (1) —yields + 73BZ207302

RND (1) —yields + 272707136

RND (1) —yields + 299733446

RND (—35) —yields 3.737204GBE-08;
starts new sequence

RND (1) —yields 407457285

RND (1) —yields + 463740324

RND (1) —yields + 387195686

RND (—1) —yields 2.99196472E-08;
repeats same sequence as
before

RND (1) —yields + 73B207302

RND (1) —yields + 272707136

RND (1) —yields + 2989733446

Scientific Notation: The suffix E - 08 in some of the random values
listed above means “times 10 to the minus-8th power,” and is an exam-
ple of the scientific notation that Applesoft uses to display certain num-
bers. See Section |.2 for further details.

Functions 43

243 Defining Your Own Functions: The DEF FN

DEF FN defines a new function

argument: the value on which a function
operates

Formula limited to 239 characters

Argument must be a real variable

44

Statement
DEF FN CUBE (X¥) = X % X * X

In addition to the built-in functions discussed in Sections 2.4.1 and
2.4.2, Applesoft gives you the ability to define your own functions for
the special needs of a particular program. Defining your own func-
tions can be a real time-saver: instead of writing out the same com-
plex formula over and over again, you can simply define it once as a
function, give it a name, and then refer to it by that name whenever
you need it.

To define a function of your own, use the DEF F N statement. This
statement consists of the keywords DEF F N (for “define function”)
followed by the name of the function you're defining, the argument
name enclosed in parentheses, an equal sign (=), and the formula
defining the function. The examples below define functions to convert
temperatures from Fahrenheit to Celsius and vice versa, and to con-
vert angles from degrees to radians and vice versa, assuming that
the value of the variable P1 is 3+ 1415382G5:

10 DEF FN FTC (T) = (T — 32) * 5 / 9
—Fahrenheit to Celsius

20 DEF FN CTF (T) =T * (89 / 5y + 32
—~Celsius to Fahrenheit

A * (PI / 180)
—degrees to radians

A * (1BO / PID)
—radians to degrees

30 DEF FN DTR (A)

40 DEF FN RTD (A)

For example, the definition above for function F T C says “to convert
from Fahrenheit to Celsius, take the value of the argument (T), sub-
tract 32, multiply by 5, and divide by 9.”

The formula defining a function must not exceed one program line (239
characters) in length.

The names you give to your functions must follow the same rules
given in Section 2.1.1 for variable names: the name may be as long
as you like (up to 239 characters), but Applesoft uses only the first
two characters to distinguish one function from another. The argu-
ment variable in the function definition must be a real variable—
integer and string variables (ending in % or %) are not allowed.

Variables and Arithmetic

Don't begin function names with the Take care not to begin the names of different functions with the same
same first two characters two characters. Applesoft will consider the names CODF I 5H and
—_— COUNT, for example, to refer to the same function, since they both be-
gin with the same two characters. If you try to define functions with these
two names, the second definition will redefine the function, causing the
first definition to be forgotten.

However, a program can have a function and an array beginning with the
same two characters (or even having exactly the same name). This is

- because references to the function are written with the keyword F N (see
below), but references to the array aren'’t. Thus Applesoft can tell that,
for example,

e FN COUNT (N)
is a call to the function named COUNT, whereas
COUNT (N)

is a reference to the array of the same name.

The DEF FN statement can be executed only from within a pro-
gram; you can't use this statement in immediate execution.

Calling defined functions To call a function that you've defined with DEF F N, type the key-
word F N (for “function”) followed by the name of the function and an
expression in parentheses representing the argument value on
which you want the function to operate. For example, using the func-
tions defined above,

FN FTC (98.6) —convert 98 .+ G degrees Fahr-
— enheit to Celsius; yields 37
FN CTF (100) —convert 1 00 degrees Celsius
to Fahrenheit; yields 21 2
- FN DTR (180) —convert 1 80 degrees to radi-
ans;yields 3+ 14158265
— FN RTD (PI / 2) —convertPI / Zradiansto

degrees; yields 90

— Notice that the keyword F N must be used in calling your own defined
functions, but not for built-in functions (see Section 2.4.1, “Built-in
Arithmetic Functions”).

Functions 45 ‘

Variables and Arithmetic

WA R R e R e R R
Chapter 3

Control Statements

| S
50 3.1 Unconditional Branching: The GO T O Statement
51 3.2 Conditional Branching
— 51 3.2.1 The ON...GOTO Statement
52 322 The IF...THEN Statement
55 3.3 Loops
- 57 3.3.1 The FOR Statement
59 3.3.2 The NEXT Statement
59 3.3.3 Nesting of Loops
- 61 3.4 Subroutines
64 341 The GOSUB Statement
64 3.42 The RETURN Statement
= 65 3.4.3 The ON...GOSUB Statement
66 3.4.4 The POP Statement
67 3.5 Error Handling
i 68 351 The ONERR...GOTO Statement
70 3.5.2 The RESUME Statement
. 71 3.5.3 Restoring Normal Error Handling
_ 73 36 Program Termination
73 3.6.1 The STOP Statement
73 3.6.2 The END Statement

Control Statements a7

Chapter 3

. Control Statements

Ordinarily, Applesoft programs are executed sequentially, from the
Control statements determine the lowest-numbered line to the highest. Control statements allow you to
order of program execution branch to another part of the program: that is, to alter the normal or-
der of execution and send control to a line of the program other than
the next line in sequence. This ability to change the course of pro-
gram flow is what gives computer programs their real power and

flexibility.
unconditional branching: see Section 3.1, “Unconditional Branching: The GO T 0 Statement,” deals
Section 3.1 with the GO T O statement, which sends control unconditionally to a

specified line of the program.

conditional branching: see Section3.2 Section 3.2, “Conditional Branching,” discusses conditional branch-
ing statements, which allow the program to decide what to do next by
evaluating an expression or testing for a condition.

loops: see Section 3.3 Section 3.3, “Loops,” covers statements that are used in loops (por-
tions of a program that are executed many times repeatedly).

subroutines: see Section 3.4 Section 3.4, “Subroutines,” deals with the very important subject of
subroutines: sections of a program that can be executed on request
from elsewhere in the program to perform some particular task.

error handling: see Section 3.5 Section 3.5, “Error Handling,” describes Applesoft’s facilities for de-
tecting and dealing with error conditions that arise during the execu-
tion of a program.

program termination: see Section 3.6 Finally, Section 3.6, “Program Termination,” covers the various ways
of terminating (ending) the execution of a program.

Control Statements 49

e Unconditional Branching: The GOTO
31 Statement

GOTO 100
unconditional branch: a branch that An unconditional branch sends control to a specified line of the pro- —
BRI NG depsing oo Tt ol 2y gram without reference to whether any particular condition holds.
condition A
Applesoft has two statements that cause an unconditional branch:
GOTOand GOSUB. The GO T O statement is described in this sec- —
tion; see Section 3.4.1 for a description of the GOSUB statement.
GOTO branches to a specified line The GO T O statement interrupts the normal sequential execution of —
number program lines and forces execution to branch to (go to) a specified

line number. The branch is unconditional: that is, it doesn’t depend on
the truth or falsity of any particular condition. d

For example, consider the following program:

10 PRINT "HELLO" —display theword HEL L O

20 PRINT "THERE" —display the word THERE

30 GOTO 10 —branchtoline 10 —
40 PRINT "FRIEND" —this line never executed

This program displays the word HEL L. O on the screen (line 1 ©), dis- ——
plays the word THERE (line 20), and then (line 30) goes back to

line 10 torepeat the process. The word FR I END never gets dis-

played, because program execution never reaches line 4 0. Instead, e
the program simply repeats lines 1 0 to 30 indefinitely, displaying the

words HEL L O and THERE over and over again on the screen.

infinite loop: a section of a program that The program above contains an example of an infinite loop. To stop the

Wiél rfepea}t the same sequence of actions program and regain control of the computer, press [conTroL J-C.
indefinitely

If your program attempts to branch to a nonexistent line, orifa GOTO
statement does not include a line number, an error message such as

TUNDEF ‘D STATEMENT ERROR IN 30

will appear, identifying the program line in which the error occurred. The
program will stop and Applesoft will return to command level: et

10 PRINT “HELLA"
20" PRINT " FHERE"
30 GOTO 15 —branch to non-existent line
40 PRINT "ERIEND'

50 Control Statements

3.2

conditional branch: a branch that de-
pends on the truth of a condition or the
value of an expression

ON...GOTO statement: see Section
3.2

ON...GOSUB statement: see Section
343

IF...THEN statement: see Section
3.2.2

3.21

ON...GOTO chooses where to branch
depending on the value of an
expression

If value out of range, control proceeds
sequentially

You Can’t Branch to a Variable: If you attempt to use a variable instead
of an actual line number to specify the line to which a branch should oc-
cur(asinGOTO J), Applesoft will always attempt to branch to line
number O, no matter what value the variable holds. If line O doesn’t ex-
ist,tan UNDEF ‘D STATEMENT error will occur:

S5 LET J =10 —assign value to variable

10 JPRINT " “HELLBD"

20 PRINT "THERE"

30 GOTO J —Applesoft will try to go to line
number O

40 PRINT "FRIEND"

Conditional Branching

A conditional branch decides what action to take next, depending on
the truth of a stated condition or on the value of an arithmetic expres-
sion. Applesoft has three statements that cause a conditional branch:

e (ON...GOTO branches to one of a number of possible program
lines, depending on the value of an arithmetic expression.

e (N..GOSUB branches to one of a number of possible subrou-
tines, depending on the value of an arithmetic expression.

e IF..THEN either executes or skips one or more statements,
depending on the truth of a stated condition.

The ON...GOTO Statement

ON X GOTOD 1350, 200,
ON S%4 - 7 GOTO 300,

310,
285

310
900 4

150
150

999

The ON...GOTOD statement sends control to one of a list of line num-
bers, depending on the integer value of an arithmetic expression. The
expression between the keywords ON and GO T 0 is evaluated; if the
resultis real it is truncated to an integer. If this value is between 1 and
the number of line numbers in the list, program execution branches to
the line number at the corresponding position in the list. (For exam-
ple, if the integer value of the expression is 3, execution branches to

‘the third line number in the list.) If the integer value of the expression

is O oris greater than the length of the list, execution continues with
the next statement following the ON...GOTO.

Conditional Branching 51

The following program illustrates the use of ON...GOT0O: -

10 INPUT X —qget number from keyboard
20 ON X GOTO 150, 200, 310, 310, 150, 998 —
—decide where to go, depend-
ing on value of X

30 PRINT "VALUE OUT OF RANGE: PLEASE

RETYPE:" —control comes hereif A = O or
H>B6 —d
40 GOTO 10 —start again

150 PRINT "VALUE IS 1 OR 5"
—controlcomes hereif X = 1 or
K=5
160 GOTO 10
200 PRINT "UALUE IS 2"
—control comes here if X =

rJ

210 GOTO 10
310 PRINT "VALUE IS 3 OR 4"
—control comes here if X = 3 or

A\

320 GOTO 10
999 END —controlcomes hereif & = B

If the integer value of the expression between ON and GO TO is less
than O orgreaterthan 255,an ILLEGAL QUANTITY errorwill =
occur and program execution will halt.

322 The IF...THEN Statement

IF 2 » 235 THEN END —
IF HZ - 23 < SM - TTL THEN K% =

H#4 - 23 @ HZ = 0
IF X (I) = 12 THEN GOTO 325 =
IF A% »>< B%$ THEN 300
IF (D * +03) AND NOT (E » +1) GOTO 21530

IF...THEN executes or skips, de- The IF..THEN statement tests for the condition given between the

pending on the truth of a condition keywords IF and THEN. If the condition is true, the statement or
statements following THEN in the same program line are executed.
If the condition is false, the remainder of the line following THEN is
skipped and execution continues with the next program line in
sequence.

52 Control Statements

When the statement following THEN isa GO T 0, either (but not both) of
the keywords THEN and GO T 0O may be omitted. The following state-
ments are all equivalent:

12 THEN. GOTO 325
12, THEN 325
12 CONa 329

—
o
22X X
o~~~
]
I

Notice that when the I F condition is false, program execution contin-
— ues with the next program line (not the next statement) in sequence.
No other statements in the I F line are carried out:
- 10 LET J 1

K = 2

20 LET A = 10 —Asetto 10 here
30 PRINT " J HOLDS "3 Js3 " AND K
- HOLDS "i K
40 IF A » 10 THEN J = 5: K = 10:
GOTD 100 —Aisnotgreaterthan 1 0;test
e fails
50 PRINT "THE YALUES OF J AND K ARE
UNCHANGED . " —this message gets printed

— 60 GOTO 9899
100 PRINT "J NOW HOLDS "3 Ji " AND K
HOLDS "3 K —this message not printed
— 89989 END

When the program above is run, the IF testinline 40 will fail, the
. values of J and K will not be changed, and execution will continue
with line 3 0. If line 20 were changed to

20 LET A = Z5

thenthe IF testinline 40 would succeed, the values of J and K
b would be changed, and control would branch to line 1 0 0.

Conditional Branching 53

0 means false Using Numeric Valuesin IF...THEN: The IF...THEN statement
considers a numeric value of O to mean “false”; any nonzero value is
Any nonzero value means true taken to mean “true.” Thus you can write statements such as

IF J THEN GOSUB 400

which is equivalent to

IF J <% 0 THEN GOSUB 400
Recall also that Applesoft’s relational and logical operators always yield —_
avalue of 1 for true and © for false. Thus you can combine numeric val-

ues with the logical operators: the statement

IFINGT J THEN'| GOTH! S00 -
is equivalent to

IF 4 = 0 THEN GOTO 500

and

IF A AND B THEN END

is equivalent to

IF (AR <> 0) AMD (B <> 0) THEN END

Numeric values used in this way offer two advantages over the corre- —
sponding relational expressions:

® They take up less space in memory.

® They execute somewhat faster.

See Appendix G for further hints on making your programs more effi- —
cient.

Curious Parsing: Applesoft gets confused if the keyword THEN is im-
mediately preceded by a variable name ending in the letter A. For exam-
ple, the statement

IF J = BETA THEN 230

will be interpreted as

IF J = BEF AT HENZ30

causing a syntax error. This is because AT and THEN are both re-
served words; in the example, the word AT is encountered first, so it is
interpreted first. Such is life with Applesoft. You can get around the prob-
lem by using parentheses:

IF (J = BETA) THEN 230

54 Control Statements

TSR SR e [oops
33

loop: a sequence of statements exe-
cuted repeatedly

pass: a single execution of a loop

index variable: a variable whose value
changes on each pass through a loop;
often called control variable or loop
variable

NE X T statement: see Section 3.3.2

body: the statements in a loop between
the FOR and NEX T statements

Aloop is a sequence of statements in a program that are executed
repeatedly, often with the value of some variable being changed on
each pass through the loop. Loops are fundamental to all computer
programming: it's practically impossible to write any kind of useful or
interesting program that doesn't include at least one loop.

The usual way of writing loops in Applesoft is with the FOR and
NEX T statements. The F OR statement marks the beginning of the
loop. It identifies the loop’s index variable (the variable whose value
changes on each pass) and gives the starting and ending values the
index variable is to take on. Sometimes it also specifies the amount
by which the value of the index variable is to change on each pass
(see Section 3.3.1, “The F OR Statement,” for details).

The NEX T statement marks the end of the loop and causes the loop
to be executed again for the next value of the index variable. When
the loop has been executed once for each value of the index variable,
as specified in the F OR statement, control “falls through” to the next
statement following the NE X T statement. (That's right, “the next
statement following the NEX T statement.”)

Here’s an example to show how loops work:

> PAES = 0 —initialize pass count

10 FOR X = 3 T0O 10 —execute loop once for each
value of ¥ from 3to 10
20 PASS = PASS + 1 —countpassesthrough the loop
30 PRINT "PASS #"3i PASS
—display pass count
40 PRINT "INDEX = "3 X
—display current value of index
variable X
30 PRINT —display blank line (for

neatness)

B0 NEXT X —repeat loop for next value of X

70 PRINT "LOOP FINISHED"
—control comes here after last
pass through loop
80 END

The loop begins with the F OR statementin line 1 0, which specifies
that the loop is to be executed once for each value of index variable X
from 3to 1 0. Lines 20 to 50 form the body of the loop. The NEX T
statementin line G0 marks the end of the loop and sends control
back to line 20 for the next value of X. After the loop is executed for

Loops 55

the last time, with X set to the specified ending value of 1 0, Xisin-
creasedto 1 1. Since this exceeds the ending value, control “falls
through” the NE X T statement to line 70.

When the program above is executed, it will display the following
results on the screen:

Be careful jumping out of loops Loop Before You Leap: Exiting from the middle of a FOR/NEXT loop —_—
before the index variable reaches the ending value leaves Applesoft ex-
pecting a resolution that never comes. This is a dangerous practice that
can cause unpredictable results in your program’s execution. Don’t write
loops of the form .

10 FOR INDEX LOW TO HIGH

20 LET COUNT COUNT + 1

30 IF COUNT = LIMIT THEN GOTD 100
. : —not recommended

Il

40 NEXT INDEX
To be on the safe side, it’s better to finish the loop this way:

@0 IF COUNT = LIMIT THEN INDEX = HIGH:
NEXT INDEX: GOTD 100 -

Control Statements

331 The FOR Statement

— FOrR ¥ = 1 T0O 10
FOR MASS = 3.5 TO 7 STEP 1.5
FOR YEAR = 1980 TO 1960 STEP -4
— FOR ¥V = A + 2 TO 2%B - 3 STEP C / 2

F OR marks the start of a loop The F OR statement marks the beginning of a loop, identifies the
B . . , loop’s index variable, and gives the starting and ending values of the
index variable: a variable whose value ; : . ;
changes on each pass through a loop; index variable. It may also optionally specify the step value, the
see Section 3.3, above amount by which the value of the index variable is to change on each
= pass through the loop. If no step value is given, a value of 1 is
understood.
“' step value: the amount by which the In the example in Section 3.3 above, no step value was given, so the
index variable changes on each pass index variable ¥ was incremented by 1 on each pass through the

th haloo : s
oo . loop. If line 1 & in the example were changed to

10 FOR X = 3 70 10 STEP 2
—execute loop once for each
value of ¥ from 3to 1 0 by 2

the program would produce the following output on the display
screen:

PASS #4
INDEX = 9

LOOP FINISHED

— The loop is executed four times, with the index variable taking on val-
uesof 3, 3, 7, and 8. At the end of the fourth pass, the index variable
exceeds the specified ending value (8 plus Z is 1 1, which is greater

— than the ending value of 1 0), so the loop ends and execution contin-
ues with the statement following the NEX T inline 0.

Loops 57

Applesoft Will Try Anything Once: Notice that the test to see whether
the index variable exceeds the ending value is carried out at the end of

Body of loop always executed at least the loop. This means the body of the loop will always be executed at]
once least once. Even if the specified starting value is greater than the ending
value, asin
10/ FOR 'K = 10 .70 3 —starting value exceeds ending —
value

it won't be discovered until after the loop has been executed once (1 0
plus 1 is 1 1, whichis greater than 3).

Step value may be negative It's also possible to specify a negative step value:

10 FOR X = 10 TO 3 STEP -2
—negative step value

In this case the index variable will take values of 10, 8, &, and 4.
When the step value is negative, the loop ends when the index value
becomes /ess than the ending value (4 plus — 2 is 2, whichis less
than the ending value of 3). Notice that the starting and ending val-
ues have been reversed; if the statement read

10 FOR X = 3 TO 10 STEP -2

—starting value less than ending
value

the loop would have been executed only once (3 plus — Z is 1, which
islessthan 10).

A step value of O will result in an infinite loop. To stop the program
and regain control of the computer, press -C. —

The index variable specified in a F O statement must be a real vari-
Index variable must be a real variable able. Attempting to use an integer variable, such as o

10 FOR X% = 3 TO 10 —integerindex variable
will cause a syntax error at run time. (However, the expressions for

the starting, ending, and step values are unrestricted; any or all of
these values may be specified by an integer variable). —

58 Control Statements

332 The NEXT Statement
L NEXT
NEXT INDEX
NEXT JsI

NE X T repeats execution of a loop The NEX T statement marks the end of a loop and causes the loop to
be repeated for the next value of the index variable, as specified in
the corresponding F OR statement. When the value of the index vari-
able becomes greater than the specified ending value (less than the
ending value if the step value is negative), execution proceeds with
the statement immediately following the NEX T statement.

Naming the index variable ina NE X T statement is optional; if you
omit it, Applesoft will automatically repeat the most recently entered
loop. If you're using nested loops, this means the innermost loop con-
taining the NEX T statement will be repeated.

Helpful Hint: Leaving out the index variable in NE X T statements will
e make your programs run slightly faster:

10 ' FOR Gl =4 T8 6
20 PRINT "WOWs MOMLY
30 NEXT —no index variable necessary

— 333 Nesting of Loops

nested loop: a loop contained withinthe F OR/NE X T loops can be nested one inside another to a maximum

L body of another loop depth of ten levels. For example,
io0 FOR A = 1 TO 3 —start of outer loop
— 20 FOR B = 1 T0O 2 —start of inner loop
30 PRINT "A = "3 A3 "B = "3 B
—display values of index
— variables
40 NEXT B —repeat inner loop
30 NEXT A —outer loop not repeated until

inner loop is finished

Loops 59

The inner loop (lines 20 to 40) is executed twice for each pass
through the outer loop; the PR I NT statement in line 30 is executed
six times in all. This program will display the following on the screen:

A = =1
A = = 2 —
A = =1
A = = 2
A = = 2
No more than 10 levels of nesting Although this example shows only two levels of nesting, Applesoft al-

lows as many as ten levels (a loop inside a loop inside a loop . . . ten
times). If you nest your loops to a depth greater than ten, your pro- _
gram will halt with the error message

OUT OF MEMORY —

Don't cross loops Nested loops must not cross each other—that is, each loop must be
completely contained within the body of the next outer loop. Once a
loop is started using a particular index variable, the corresponding
NE X T must name the same index variable (if it names any at all). In
the example above, if lines 40 and S0 were reversed —

40 NEXT A —attempt to repeat outer loop
50 NEXT B —Dbefore inner loop is finished .

the program would halt with an error because of the crossed loops.

A Warning

Cross-looping is a second-degree misdemeanor punishable by five min-
utesinthe penaltyboxanda NEXT WITHOUT FOR error Itwill
also melt your keyboard.

When two or more NE X T statements occur in a row, as in the example
above, you can combine them into a single NE X T statement of the form

40 NEXT B»A —repeatinner, then outer loop
Notice, however, that the index variables must be listed in the reverse or-
der of their corresponding F OR statements, to avoid crossing loops. The s
statement

40 NEXT A:B —whoops!

will reduce your keyboard to a puddle of plastic.

60 Control Statements

3

GOSUB statement: see Section 3.4.1
RETURN statement: see Section 3.4.2
ON...GOSUB statement: see Section

343

P OP statement: see Section 3.4.4

GOTO statement: see Section 3.1

point of call: the point in a program from
which a subroutine is called

Subroutines
4

A subroutine is a section of a program that can be executed on
request from another part of the program. Applesoft has four state-
ments relating to subroutines:

e (GOSUB directs control to a particular subroutine.

e RETURN sends control back to the statement following the
GOSUB that branched to the subroutine.

e (ON...GOSUB selects one of a number of possible subroutines,
depending on the value of an arithmetic expression.

e POP removes a return address from the top of the control stack
(see the box below titled “How Subroutines Stack Up”).

To call a subroutine (request its execution), branch to its first line with
a GOSUB statement. GOSUB differs from an ordinary GO T O in that
it “remembers” where in the program the subroutine was called from,
so that control can return to that point when the subroutine is finished.
The same subroutine can be called from many different places in the
program; when the subroutine is finished, it sends control back to the
statement following the proper point of call by executinga RETURN
statement.

Here’s an example to illustrate the idea:

10 FOR 2 = 1 TO 10 —executeloop 10times
20 LET X = INT (RND (1) * 100)
—generate a random integer be-
tween 0 and 99
30 PRINT X " IS "3§i —displayfirstpartofmessage
40 IF X < 30 THEN GOSUB 1000 GOTO GO
—pbranch to subroutine at line
1000 ifrandom number is
less than 30; onreturn, goto
line GO
20 GOSUB Z000 —branch to subroutine at line
2000 ifrandom number is
50 orgreater
B0 PRINT "PASS #"3i Z: PRINT
count number of passes
through loop
70 NEXT Z —repeat loop
8998 END —end program
1000 PRINT "LESS THAN 3SO¢

—print second part of message
for numbers less than S

Subroutines 61

1010 RETURN —return to statement following
point of call
2000 PRINT "MORE THAN 49"
—print second part of message
for numbers greater than 49
2010 RETURN —return to statement following
point of call

The loopinlines 10 to 70 generates arandom integer between ©

and 99, then calls one of the two subroutines at lines 1 000 and
2000, depending on the value of the random number. Each of the
subroutines displays an appropriate message, then returns control to
the statement following the point of call with a RE TUR N statement
(lines 1010 and 201 0). The program then displays a count of the
number of passes through the loop and repeats the loop from the be-
ginning. When the loop has been executed ten times, the program ends.

Control returns to statement (not line) Notice thatthe RE T UR N statement returns control to the statement

following GOSUB following the GOSUB statement, not just to the /ine following it. In line
40 of the example above, if the random number generated is less
than 50, control is directed to the routine at line 1 000, When execu-

tion returns from the subroutine, it will continue with the statement
GOTO GO, branching aroundline 30.

Every subroutine should be regarded as a separate, indivisible unit

of your program, which should be entered only witha GOSUB and
Don't use the back door exited only witha RE TURN. Jumping into or out of the middle of a sub-

routine with an ordinary GO T O subverts Applesoft’s orderly control —d

stack mechanism (see “How Subroutines Stack Up,” below) and causes

the programmer to be in a state of sin. People who indulge in such

odious practices should be ostracized from polite society.

nested subroutine call: acalltoasub- Subroutine calls may be nested: that is, you can call one subroutine
routine from within another subroutine from inside another. Consider the following program:
10 GOSUB 1000 —branch to first subroutine

20 PRINT "BACK HOME AGAIN" -
—this message displayed last

30 END —prevent control from acci-
dently “falling into” a -
subroutine
1000 PRINT "FIRST SUBROUTINE CALLED™ —
—this message displayed first
1010 GOSUB 2000 —branch to second subroutine

62 Control Statements

1020 PRINT "BACK AT FIRST SUBROUTINE"
—this message displayed third

i 1030 RETURN —return to statement following
point of call (line 20)

2000 PRINT "SECOND SUBROUTINE CALLED"
—this message displayed
second

e 2010 RETURN —return to statement following
point of call (line 1 020)

— Line 1 O calls the first subroutine, at line 1 2 Q0. This subroutine dis-
plays the first message on the screen, then (line 1 01) calls the
second subroutine at line 200 0. The second subroutine displays its

i message, then returns control (line 2¢ 1 0) to the statement following
the point of call in the first subroutine. The first subroutine then dis-
plays another message and returns control (line 1 ¢ 3 () to the state-

e ment following its point of call. The final message is then displayed
(line 20) and the program ends. The lines of the program are exe-
cuted in the following order:

Line 10
Line 1000
— Line 1010
Line 2000
Line 2010
et Line 1020
Line 1030
Line 20
—— Line 30

The program produces the following output on the screen:

Bl kst osusrouTINE CALLED

SECOND SUBROUTINE CALLED

— BACK AT FIRST SUBROUTINE
BACK HOME AGAIN

stack: a listin which entries are added or - , - :
— removed atone end only How Subroutines Stack Up: Applesoft maintains a control stack to
keep track of the return addresses—the points to which control is to
return on completion—for all subroutines in progress. Each time a
GOS U Bis executed, the location of the statement following the

S) k. Whena RETURN state-

the stack and control is

pop: to remove the top entry fromastack directed to that point in the program. This arr ngement ensures that
e control enters and leaves subroutines in LIFO (last-in-first-out) order.

return address: the point to which con-
trol returns on completion of a subroutine

push: to add an entry to the top of a stack

Subroutines 63

3.4.1

GOSUB branches to a subroutine

control stack: see Section 3.4

GOTO statement: see Section 3.1

3.4.2

RETURN returns control from a
subroutine

control stack: see Section 3.4

64

Subroutine calls can be nested up to 25 levels deep: that is, you can
GOSUB froma GOSUB froma GOSUB . .. 24 times. Attempting to
go more than 25 levels deep willresultinan OUT OF MEMORY
error.

Actually, you're out of stack space, as opposed to program space. Since
no rational BASIC program ever uses such complex nesting, this error
usually means you've got a subroutine accidentally calling itself.

The GOS5UB Statement
GOSUB 1000

The GOSUB (for “go to subroutine”) statement is used to branch to
a subroutine, saving a return address to which control can return
when the subroutine is completed. The location of the statement im-
mediately following GOSUB is pushed onto the control stack, and
control is sent to the line number specified in the GOSUB statement.
GOSUB differs from an ordinary GO T 0 in that it “remembers” where
in the program the subroutine was called from, so that control can re-
turn to that point with a RE TUR N statement when the subroutine is
finished.

A GOSUB to atarget line that doesn’t exist will cause a message such
as

PUNDEF 'D STATEMENT ERROR IN 1350

to be displayed, identifying the line number in which the error occurred,
and your program will come to an untimely halt.

The RETURN Statement
RETURN

The RE TURN statement returns control from a subroutine to the
statement following its point of call. The top entry is popped off the
control stack and control is sent to that return address.

If the control stack is empty when RE TURN is executed, your program
will halt with the message

PRETURN WITHOUT GOSUB

Control Statements

343

ON...GOSUB chooses a subroutine
depending on the value of an
expression

If value out of range, control proceeds
sequentially

The ON...GOSUB Statement

ON X GOSUB 150, 200, 310, 310, 150, 999
ON S§%7 - 7 GOSUB 300, 285, 900, 150

The ON...GOSUB statement sends control to one of a list of subrou-
tines, depending on the integer value of an arithmetic expression.
The expression between the keywords ON and GOSUB is evaluated;
if the result is real it is truncated to an integer. If this value is between
1 and the number of line numbers in the list, program execution
branches to the subroutine at the corresponding position in the list.
(For example, if the integer value of the expression is 3, execution
branches to the subroutine beginning at the third line number in the
list.) If the integer value of the expression is © or is greater than the
length of the list, execution continues with the next statement follow-
ingthe ON...GOSUB.

The following program illustrates the use of ON...GOSUB:

10 INPUT X —get number from keyboard
20 ON X GOSUB 150, 200, 310 310 150,
999 —decide where to go, depend-

ing on value of X
30 IF X = 0 OR X *» 6 THEN PRINT "VALUE

OUT OF RANGEs PLEASE RETYPE:"
—display message if X out of
range
40 GOTO 10 —start again
150 PRINT "VALUE IS 1 OR 3"
—controlcomes hereif X = 1
or{ =25
160 RETURN
200 PRINT "VALUE IS 2"
—control comes here if X =

rJ

210 RETURN
310 PRINT "VALUE IS5 3 OR 4"
—control comes hereif X = 3
orx =4
320 RETURN
9989 END —control comes hereif X = B

Compare the program above with the example given for the

ON...GOTO statement in Section 3.2.1. The operation of
ON...GOSUB is very similarto thatof ON...GOTO, except that

Subroutines 65

RETURN statement: see Section 3.4.2

344

POP removes top entry from control
stack

control stack: see Section 3.4

6

ON...GOSUB “remembers” where in the program the subroutine was
called from by pushing onto the control stack the location of the next
statement following ON...GOSUB. Control can then return to that
point with a RE TUR N statement when the subroutine is finished.

If the integer value of the expression between ON and GOSUB is less
than © orgreaterthan 255,an ILLEGAL QUANTITY errorwill
occur and program execution will halt.

The POF Statement
POP

The POP statement removes (pops) the top return address from the
control stack without sending control to that point. This causes the
next RE TURN statement to send control back to the statement fol-
lowing the point of the second most recent subroutine call, instead of
the most recent.

Here’s an example illustrating the use of POP:

10

20

30

1000

1010
1020

1030

2000

20058

2010

GOSUB 1000 —branch to first subroutine
PRINT "BACK HOME AGAIN"
—this message displayed last
END —prevent control from acci-
dently “falling into” a
subroutine
PRINT "FIRST SUBROUTINE CALLED"
—this message displayed first
GOSUB Z000 —branch to second subroutine
PRINT "BACK AT FIRST SUBROUTINE"
—this message never displayed
RETURN —this return never taken
PRINT "SECOND SUBROUTINE CALLED"
—this message displayed
second
POP —remove return address from
stack
RETURN —return to statement following
first subroutine’s point of call
(line 20)

This program is identical to the one in Section 3.4 illustrating nested
subroutine calls, except that a PO P statement (line 200 5) has been
added to the second subroutine. The effect of the PO P is to remove

Control Statements

the second subroutine’s return address (line 1 0 Z0) from the control
stack, causingthe RETURN inline 20 1 0 to go back to the state-
ment following the point of call of the first subroutine (line 20) in-
stead. As aresult, lines 1 020 and 1 030 are never executed, and
the message BACK AT FIRST SUBROUTINE isneverdis-
played. The lines of the program are executed in the following order:

Line 10
Line 1000
Line 1010
Line 2000
Line 2003
Line 2010
Line 20
Line 30

The program produces the following output on the screen:

CALLED
CALLED

SUBROUTINE
) SUBROUTINE
OME AGAIN

If the control stack is empty when PO P is executed, your program will
haltwitha RETURN WITHOUT GOSUB error.

Resist temptation Programming Tip: Although it's sometimes tempting to try to get out of
— a tight programming situation by using P 0 P, most good programmers
avoid it, because it makes program flow really difficult to follow. If you
find yourself becoming ensnared in convoluted code, 'tis a far better
thing to redesign your program than to resort to the use of POP. See
Chapter 8 for a tutorial on program planning.

NN Frror Handling

3.5 . . ’
Sometimes even the most carefully written program will come to an

embarrassing halt at an inopportune moment because of an error. If
you've never suffered an “error crash,” you ain’t a programmer. Ap-
ONERR GOTO statement: see Sec- plesofts ONERR GOTO and RESUME statements provide a mech-
tion3.5.1 anism for detecting program errors as they occur and dealing with
RESUME statement: see Section3.5.2 them from within your program. Using these statements, you can
make your program display its own error messages or take any other
action you consider appropriate, instead of coming to a sudden,
screeching stop.

Error Handling 67

351 The ONERR GOTO Statement
ONERR GOTO 20000 =]

ONERR GOTO allows program to The ONERR GOTO statement turns off Applesoft's normal error

handle errors handling and replaces it with an error-handling subroutine in your
program. After this statement is executed, program errors will no
longer stop the program, but will instead transfer control to the error
routine beginning at the specified line number.

error code: a number representing a Before sending control to the error routine, Applesoft stores an error

type of error code identifying the type of error at a special location in the comptu- .
J ion 227 i

Efior codesiorad atlocation 222 ter's memory, location Z2 2. The error routine can then look at the

contents of this location with the PEEK function and decide what ac-

tion to take, depending on the error. Table 3-1 lists the possible error —
meanings of errors: see Appendix E codes and their meanings. See Appendix E, “Error Messages,” for

further information on the conditions that cause each type of error.

Table 3-1 Error Codes

Code Meaning Code Meaning

0 NEXT without FOR 120 Redimensioned array o
16 Syntax 133 Division by zero
22 RETURN without GOSUB 163 Type mismatch -
42 Outofdata 176 Stringtoo long
53 lllegal quantity 191 Formulatoo complex —
B9 Overflow 224 Undefined function
77 Outof memory 254 Badresponseto INPUT -

statement

90 Undefined statement

255 [conTroL }C interrupt attempted

107 Bad subscript

68 Control Statements

To prevent an error from interrupting the program, the ONERR
GOTO statement must be executed before the error occurs. If you're
using ONERR GOTO, it's agood idea to make it one of the first lines
in your program, as in the following example:

10 ONERR GOTO 21500
—establish error routine at line
21500

21500 LET EC=PEEK (222)
—qget error code
21910 IF EL <2 259 THEN 21550

- —branch if not[conTroL J-C

21520 PRINT "SORRY--PROGRAM CAN‘T BE
STOPPED WITH CONTROL-C™
L —if user pressed(conTroL J-C,
display special message
21530 RESUME —and resume program
- 215350 PRINT "UNANTICIPATED ERROR s
CODE "3 EC —on any other error, display
general message
L 21560 STOP —and halt
The program above uses its own error-handling routine to prevent the
L (conTROL J-C: see Section 1.3.2 user from interrupting execution by pressing [conTroL J-C. Line 10
turns off Applesoft’s normal error handling and substitutes instead
the program’s own error routine, beginning atline 2150 0. If an error

later occurs, the first thing the error routine does (line 2150 0) is get
the error code from memory location 22 2 to find out what type of er-
ror occurred. The error code is assigned to variable EC to make it
easierto handle. Line 2151 0 tests for an error code of 255, mean-
ing -C interrupt attempted” (see Table 3-1). If the error is
a [conTroL J-C, the message

- Bl SORRY--PROGRAM CAN’
TROL <650 '

STOPPED WITH

RESUME statement: see Section3.5.2 is displayed on the screen (line 2152 0) and control is sent back to
the point of the error with the RESUME statementinline 21330,

If the errorisn'ta [conTroOL J-C,the IF...THEN testinline 21510

sends control to line 21 35 0. Since the error routine has no special
action to take for any of these other errors, and since Applesoft's nor-

Error Handling 69

mal error messages are not being displayed, the error routine just
displays a general error message such as

UNANTICIPATED ERROR, CODE 16

(for a syntax error) and stops the program.

A Warning

Oncean ONERR GOTO statement has been executed, ordinary error
messages will not be displayed and the program will not stop if an error
Cover all the bases is detected. If your program’s own error routine doesn’t take some ap-
propriate action (such as stop) for every possible error code, the pro- —_—
gram may hang indefinitely or exhibit other forms of deviant behavior.
Make sure your error routine tells the computer what to do in all possible
cases of error; see the following box for suggestions.

More Peeking: In the program above, the general error message dis-
playedin line 21 550 would be more useful if it included the line num- —_—
ber where the error occurred as well as the error code itself. Through the
PEEK function: see Section 7.1.1 magic of the PEER function, the following two lines (replacing line
21350 of the original example) will do the trick:

ZIBHO I EL St PEEK 21 8) % 256+ L PREEK-{(Z18)
—qgeterror line
21335 PRINT "UNANTICIPATED ERROR, CODE "3 -
BECH N INGLINE N Bl
—display general error message

For more information... For an even nicer way of handling unanticipated errors, see Section
3.5.3, “Restoring Normal Error Handling.” See Appendix F, “Peeks,
Pokes, and Calls,” for more astounding feats of sorcery and witchcraft

you can perform at home. —
No ONERR GOTO inimmediate The ONERR GOTO statement can be executed only from within a pro-
execution gram; you can't use this statement in immediate execution. —

352 The RESUME Statement ek

RESUME
RESUME returns control from an The RESUME statement returns control from an error-handling rou-
SITOr Fouting tine to the statement in which the error occurred. It should be used
only in error routines, and should never be encountered in the normal —
flow of control.

70 Control Statements

Don’t leave a mess!

control stack: see Section 3.4

GOTO statement: see Section 3.1

CALL statement: see Section 7.1.3

Don’t use RESUME in immediate
execution!

Warning

If Applesoft encounters a RESUME statement without an error having
occurred, the program may stop or hang indefinitely, or other unpredict-
able but probably unpleasant events may transpire.

Warning

Notice that RESUME sends control back to the same statement that
caused the error in the first place. If the same error occurs again, the
program may hang in an infinite loop. Similarly, if an error occurs within
the error-handling routine itself, RESUME will cause the program to
hang.

Cleaning the Stack: When an error occurs whilean ONERR GOTO
statement is in effect, Applesoft pushes certain information onto its inter-
nal control stack before transferring control to the error routine. When
you leave the error routine with a RESUME statement, these control
codes are automatically popped off the stack. But if the error routine
ends witha GOTO instead ofa RESUME, the control codes will remain
behind on the stack, probably causing the world to end with a whimper
later on. To avert a global catastrophe, always “clean up” the stack by
uttering the magical incantation

caLL -—-3288

before leaving an error routine with a GO T O statement.

Warning

The RESUME statement should be executed only from within a pro-
gram. Attempting to use this statement inimmediate execution may
cause a syntax error, cause the system to hang, or begin executing an
existing or even a deleted program.

353 Restoring Normal Error Handling

POKE 216 +0 restores normal error
v handling

POKE statement: see Section 7.1.2

You can restore Applesoft’s normal error-handling mechanism by
using the POK E statement:

POKE 216,0

After executing this statement, Applesoft will go back to stopping the

program when an error occurs and displaying its usual error
messages.

Error Handling 71

Apple lle Monitor program: see Apple ~ One use of this technique is to prevent your program from hanging or

Ile Reference Manual falling into the Monitor in case an error occurs in the error-handling
routine itself. You can do this by restoring normal error handling with
POKE 216 0 atthe beginning of your error routine, then reacti-
vating the error routine with ONERR GO T O before returning to the
main program. Here's another version of the example program of
Section 3.5.1 that illustrates this technique:

10 ONERR GOTO 21500
—establish error routine at line

21500
21500 POKE 2160 —restore normal error handling
21505 LET EC=PEEK (222) —
—qget error code

21510 IF EC < 255 THEN 21540
—ifnot [conTrOL J-C, resume
program under normal error
handling

PRINT "SORRY--PROGRAM CAN’'T BE
STOPPED WITH CONTROL-C"
—if user pressed [conTrOL J-C, —

display special message,

r-J
—
Lo
r-J

21530 ONERR GOTO 21300
—reactivate this error routine,

21540 RESUME —and resume program

This program also illustrates another applicationof POKE 216 +0.

Notice that if the error is anything other than a [conTroL -C interrupt

(code 25%3),the IF...THEN testinline 2151 0 sends control di- —
rectly to the RESUME statementin line 21540, without executing

the ONERR GOTOinline 21530. The effect of this is to re-exe-

cute the statement containing the original error, but with Applesoft's —
normal error handling still in effect. This will cause the same error to

occur again, but this time Applesoft will display its normal error mes-

sage and halt the program. Thus -C is the only error that —
gets special handling; all other errors produce the same results as if

there were no special error routine.

72 Control Statements

3.6

debugging: finding and correcting errors
in a program

3.6.1

STOP halts the program and displays
amessage

CONT command: see Section 1.3.3

3.6.2

END halts execution quietly

END optional at end of program

Program Termination

The STOP and END statements are used to halt the execution of a
program. The only difference between themis that ST OP displays a
message giving the number of the line at which execution was halted;
this information is useful primarily for debugging purposes. END sim-
ply stops the program without any message, and is usually used at a
program’s natural finishing point.

The STOF Statement
STOP

The 5T 0P statement halts execution of the program and displays a
message giving the number of the program line in which the STOP
occurs. For example, the line

115 S5TOP
displays the message
BREAK IN 115

Applesoft returns to its command level, allowing you to enter new
lines, examine or change the values of variables, and so on. You can
then resume the execution of the program usingthe CONT
command.

The END Statement
END

The END statement halts execution of the program and returns con-
trol to Applesoft's command level. No message is displayed on the
screen; program execution just stops quietly.

999 END

An END statement is purely optional at the end of a program. The pro-
gram will end by itself, even without an END statement, when it runs out
of statements to execute.

Prograﬁ\ Termination 73

Control Statements

Chapter4

Arrays and Strings

77 41
79
80
81 42
82
83

86
86
87
88
89
89
90

92

Arrays
4.1.1 The D I M Statement
4.1.2 Multidimensional Arrays
Strings
4.2.1 Comparison of Strings: The ASCII Code
422 The LEN Function
4.2.3 Concatenation of Strings
4.2.4 Substring Functions
The LEF T4% Function
The MID% Function
The R IGHT % Function
4.2,5 String Conversion Functions
The STR % Function
The VAL Function
The CHR % Function
The ASC Function

Arrays and Strings 75

. i —"
RN . e 4 -
il

arrays: see Section 4.1

strings: see Section 4.2

4.1

array: a collection of variables referred to
e by the same name

— element: one of the individual variables
in an array

simple variable: a variable that is not an
element of an array

| Chapterd? b

Arrays and Strings

This chapter discusses two important forms of data that Applesoft
programs can operate on: arrays and strings. Both topics were
treated briefly in Chapter 2, “Variables and Arithmetic,” but are cov-
ered in more detail here.

Section 4.1, “Arrays,” deals with collections of related information of
any type (real, integer, or string), referred to by the same name and
distinguished by means of numerical subscripts.

Section 4.2, “Strings,” describes Applesoft’s facilities for manipulat-
ing strings of characters such as words or names: comparing them,
concatenating (chaining) them together, taking them apart, and con-
verting them to and from numeric values.

Arrays

An array is a collection of variables referred to by the same name,
usually holding a collection of data items that are related to each
other in some logical or systematic way. The individual variables in
the array are called its elements, and are distinguished from one an-
other by means of identifying index numbers called subscripts.

An array can be of any type: integer, real, or string. Array names fol-
low the same rules as simple variable names of the same type. To re-
fer to a particular element of an array, write the array name followed
by one or more subscripts, separated by commas and enclosed in
parentheses. The subscripts refer to the position of the desired ele-
ment within the array:

Q (B) —element G of real array @
FIGUREZ (N) —element N of integer array
FIGURE%

Arrays T

NAME® (J - 3) —element J - 3 ofstring
array
COUNT (SUMZ%Z s+ 2) —element (SUMZ + 2) ofrreal —
array COUNT
Figure 4-1 A Real Array Figure 4-1 shows areal array named R with five elements, numbered —

Oto d.ElementR (0) (pronounced “R-sub-zero”) holds the value
33,R{1) holds 27+ 35, and soon. If the value of variable S is 2,

Array R then the expression R (S) refersto element R (2), whose value is e
31.4,andtheexpression R (S + 2Z) referstoelementR (4},

which holds the value 1 8.

R (0)—] 33

Biddes| BT1a0 Another example is shown in Figure 4-2, this time a string array

named NAME % with seven elements, numbered © to 5. Element
NAME® (1) holdsthe stringvalue "SCOT", NAME® (3) holds —
thevalue "BRUCE", NAME%$ (G) holds "MEG", and so on. If the

R(2)—| 31.4 «— R (8)

Al B value of variable C% is 5, then the expression NAME % (C%) refersto
Ray—| 19 < R(S 4+ 2y element NAIII"IE‘:S (3),whosevalueis "J.D.", and the.expressmn —
NAME$(C% - 3) referstoelement NAME® (2), which holds the
value "BITZEL".
Figure 4-2 A String Array Array NAME $

NAME$ (0) — | "BANA" -

NAME$ (1) — | "SCOT"

NAME$ (2) — |"BITZEL"| « NAME$ (C%Z — 3)

NAME$ (3) — |"BRUCE" ===

NAMES (4) — |"SUSAN"

NAME$ (3) — | "J.D.+" | « NAME$ (C%)

NAME$ (GB) — "MEG" B

78 Arrays and Strings

D I M defines the size of an array

dimension: the maximum size of one of
the subscripts of an array

Available memory limits size of arrays

Subscripts start from 0, not 1

The D 1M Statement

DIM R (4)

DIM TITLEs (100)

DIM H3 (J7%)

DIM MARKZ (3, C /7 5y P + 2)

The D I M (for “dimension”) statement defines the size of an array
and allocates memory space for its elements. The expressions in pa-
rentheses following the array name give the dimensions of the array.
There may be from one to 88 dimensions (see Section 4.1.2, “Multi-
dimensional Arrays”).

Once an array has been defined in a D I M statement, any reference
to that array with a different number of subscripts, or with a subscript
that exceeds the maximum specified for that dimension in the D I ¥
statement, will cause the program to halt with the message

TBAD SUBSCRIPT ERROR

Arrays are limited in size by the amount of available memory. See
Section H.2, “Applesoft Memory Allocation,” for detailed information
on the amount of space required by each type of array.

Since array subscripts in Applesoft begin with © (not 1), there is actually
one more than the specified number of subscripts in each dimension.
Forinstance, the array T I TLE % defined in the second example above
has 101 (not 100) elements. In the definition

DIM TEST (124 39 B) —array TESThas13*4*6 =
312 elements

array TEST has 312 elements (13 times 4 times 6), not 180 (12times 3
times 5) as you might expect.

When Applesoft encounters a reference to an array that has not yet
been defined in a D I M statement, it automatically allocates space for 11
subscripts (© to 1 ©) in each dimension of the array. Later attempting to
redefine the same array with a D I M statement will cause an error stop
with the message

TREDIM’D ARRAY ERROR

Defining the same array in more than one D I M statement, or executing
the same D I M statement twice, will produce the same message.

Arrays 79

412 Multidimensional Arrays

The examples shown in Figures 4-1 and 4-2 are both one-dimen- —
sional arrays. Actually, arrays in Applesoft may have as many as 88
dimensions, subject to the amount of memory available. Arrays of 88
dimensions aren't terribly useful, but those of two and three dimen- ==
sions often are.

Figure 4-3a shows an example of a two-dimensional array named
EGGS, which has been defined by the D I M statement

DIM EGGS (1, 3)

Figure 4-3a A two-dimensional array

Array EGGS
Column Column Column Column Column Column
0 1 2 3 4 2
RowO — [(Oy0)|(Os 1|0+ 2)[(0+3)|(04)|(0,5) -

Rowl — J(1,0)|(11))C1+2)[C1,3)[C1+4)|(1,+5)

For the newly perplexed, a metaphor may be helpful. Think of the

array as an empty egg carton. On the outside is written the word bt

EGGS. When you open the egg carton, there are a dozen cup-like in-

dentations where the eggs go—two rows of six cups each—corre-

sponding to the elements of the array. Each of the cups is identified et
Don't forget subscript 0! by a row number, © or 1, and a column number from 0 to 5 (we're

dealing with strange chickens here).

Now suppose you place three eggs in the egg carton, in elements
(0:2),(0+3),and (1 :+3):

LET EGGS (0 2) = EGG
LET EGGS (0 S) = EGG

LET EGGS (1, 3) = EGG e
Figure 4-3b
Array EGGS
Column Column Column Column Column Column
0 1 2 3 4 5
Row 0 — EGG EGG -
Rowl — EGG

Figure 4-3b shows the result. You might also elect to use your egg

80 Arrays and Strings

carton to hold small change. If you put a nickel in position (0 1), a
dimeinposition {(1 +1),and aquarterinposition (1 +4),

LET EGGS (0, 1) = O

LET EGGSE (1, 1) = 10
L LET EGGSE (1, 4) = 25
Figure 4-3c
Array EGGS
Column Column Column Column Column Column
0 1 2 3 4 o
_— Row O — 35 EGG EGG
Rowl — 10 EGG 25
your carton would look like Figure 4-3c.
o Actually, of course, you can't store eggs in your Applesoft arrays, only
Scrambled metaphor numbers and strings—but after all, metaphors aren’t always eggsact.

ST TR Strings
— s A string is a sequence of text characters (letters, digits, and punctua-
string: a sequence of text characters tion marks). Just as you can write numeric constants such as £7 and
2+ 236 inyour Applesoft programs, you can write string constants
— by enclosing the characters in the desired string between double

quotation marks:

s String constants enclosed in double "ON SALE FOR #49.95"
quotation marks "Truth is impervious to hissing®
"H2504"
L, " ':\ ’:\ ':\ "
Lowercase OK in string constants Even though Applesoft doesn’t understand lowercase letters when you

- use them in keywords, it will allow you to use them in a string constant,
as the second example above shows.

A string can contain from 0 to 255 characters; when it contains no
null string: a string containing no characters at all, it is called a null string. Two quotation marks with
characters nothing between them denote the null string:

—a string with no characters

Strings 81

String variable names end with $

String variables preset to null string

4.2.1

character code: a number used inside
the computer to represent a text
character

ASCII: American Standard Code for In-
formation Interchange; see Appendix C

relational operators: see Section 2.3.2

82

A string variable can hold any string as its value. Its name must end
with a dollar sign (%). Some legal string variable names are

TITLE%
GZ%
D%

Until they are given some other value with an assignment statement,
all string variables are preset to the null string.

Comparison of Strings: The ASCII Code

The characters in a string are represented inside the computer in the
form of numbers from © to 1 27. The correspondence between
these internal character codes and the characters they represent

is based on a nationwide computer-industry standard called the
American Standard Code for Information Interchange, or ASCII
(pronounced “asky”). For instance, ASCIl code G represents the
uppercase letter A, 1 1 Z represents alowercase r, & 2 represents
the digit 4, 4 3 represents a plus sign (+), and so on. For a complete
table of ASCII character codes and the characters they represent,
see Appendix C, “ASCII Character Codes.”

Like numbers, strings can be compared with each other using the re-
lational operators. The result of the comparison is based on the Il
codes of the characters in the strings. Applesoft looks for the first
non-identical characters in the two strings and compares them by
ASCII code to decide which is greater. For example, the character F
(ASCII 70) is considered greater than the character D (ASCII G 8)
but less than the character H (ASCII 7 2). If one string is longer but
begins with all the same characters as the other string, the longer
string is considered greater. For example,

A is less than "B
REATARS is less than "AB"
A" is less than "Ba"
"AB" is less than "ABC"

Arrays and Strings

String comparisons can be used for con-

ventional alphabetical order-. ..

... but watch out!

VAL function: see Section 4.2.5

LEN gives length of a string

concatenation: see Section 4.2.3

4.2.2

Since letters of the alphabet are represented by consecutive codes in
the ASCII table, comparisons between strings of alphabetic letters can
be used to place the strings in conventional alphabetical order. For
example,

HE ! is less than nE

YER! isless than "EDGAR"
"EDGAR" is less than "EDWARD"
"EDWARD" isless than "EDWARDS"
"EDWARD" is less than "FRANK"

There are a few surprises, however: since uppercase letters precede
lowercase letters in the ASCII chart,

"Zebra® is less than "aardvark"
And since strings are compared strictly character by character,
48" is less than e

If you want to compare two strings consisting of digits according to the
numbers they represent, use the WAL function.

The LEN Function

The LEN (for “length”) function counts the number of characters in a
string. The argument may be a string constant, a string variable, or a
concatenation of two or more strings. For example,

LEN ("APPLE") —length of the string
"APPLE";yields 5

LEN (SAMPLES$) —length of the string contained
invariable SAMPLE %

LEN (A% + "***" + B%)
—Ilength of the concatenation of
variable A%, string " ¥ %% ",
and variable B %

Using L EN, you can assign the length of a string to a numeric vari-
able and then use it in further operations:

10 LET NZ%Z = LEN ("MY HEART SO0ARS LIKE A
HAWK ")

20 PRINT "THERE ARE "3 N%Z3 " CHARACTERS
IN THE STRING."

Strings 83

When executed, this program will display the following output on the
screen:

423

concatenate: to combine two or more
strings into a single, longer string

LEF T$% function: see Section4.2.4

84

If you concatenate two or more strings with a combined length of more
than 255 (the maximum allowable string length), your program will halt

with the message

PSTRING TOOD LONG ERROR

Instead of writing
LEN (A% + B$ + (%)
it's safer to use

LEN (Aa%) -k LEN (B&)

+ LEN (C$)

Concatenation of Strings

Concatenation means “chaining together.” To concatenate two or
more strings is to join them together into a new string containing all
the characters of the original strings combined. This operation is rep-
resented in Applesoft by a plus sign (+):

"BORIS" + " AND " +

F$ + C%

H¢ + "RATS!I™

He + LEFT$(Cs, 4)

Arrays and Strings

"NATASHA"

—concatenation of the strings
"BORIS"," AND ", and
"NATASHA";yields the
string "BORIS AND
NATASHA™

—concatenation of the contents
of string variables F % and C %

—concatenation of the contents
of string variable H# with the
string constant "RATS ! "

—concatenation of the contents
of string variable H#% with the
leftmost four digits of the con-
tents of string variable C %

Result must not exceed 255 characters

LEN function: see Section 4.2.2

The program

10 LET NAME$% "CHARLIE"
—set victim’'s name

20 LET TITLE$ = "DEAR " + NAME$ + ","
—form salutation

30 PRINT TITLES% —print salutation

40 PRINT "HAVE WE GOT A SALE!"

—print rest of message
will display the output

DEAR CHARLIE
HAVE WE GOT A SALE!

on the screen. The program

10 LET A% = "GOOD " —assignvalue to string variable
20 LET A% = A% + "GRIEF!"
—extend string with
concatenation
30 PRINT A% —display result
will display
GoOoC

If the result of a concatenation operation is a string more than 255
characters in length, the program will halt with the error message

TPSTRING TOO LONG ERROR

You can test how long the result of a concatenation will be before-
hand by using the LEN function. For example:

10 LET A% = "HAPPY DAYS "
20 LET L1 = LEN (A%) —howmanycharactersin A% ?
30 LET B% = "ARE HERE AGAIN"
40 LET L2 = LEN (B%) —howmanycharactersinB%?
50 1IF (L1 + L2Z) 236 THEN LET A% =

A% + B% —if the combined lengths of A %

and B#% are less than 256,
combine the two strings into
A%

Strings 85

+ on strings doesn't mean addition! Don't confuse the concatenation of strings with the addition of numbers,
even though both are represented in Applesoft by the same symbol
(+). The value of the expression

12 i 3d
is the number 4 G; the value of the expression —
" 1 2 " + " Ba "

isthe string " 1 234" . If you want to add two strings consisting of digits
UAL function: see Section 4.2.5 according to the numbers they represent, use the VAL function.

424 Substring Functions

substring: a string that is part of another Applesoft has three built-in functions for extracting substrings from a
string string:

e | EF T4 extracts a substring from the beginning of a string.
e [MID#% extracts a substring from anywhere in a string.

e RIGHT®% extracts a substring from the end of a string.

The LEFT% Function

LEF T$ extracts a substring from the LEF T4% extracts a specified number of characters from the begin- —
beginning of a string ning (left end) of a string. The LEF T $ function takes two arguments,
separated by a comma: the string from which the characters are to be
taken and the number of characters desired. For example, —

LEFT® ("THIS IS IT!"s 4)
—first 4 characters of the string —
"THIS IS IT!";yields
YTHIS"

LEFT$ (NAME%: C + 2Z) —firstC + Z charactersof
the contents of string variable
NAME %

If the value you give for the number of characters in the substring is a

Real arguments converted to integers real number, LEF T % truncates it to the next lowest integer. If the
value specified is greater than the length of the string, Applesoft re-
turns the entire string; no extra characters are added.

The number of characters requested must be between 1 and 255 or
the program will halt with the message

PILLEGAL QUANTITY ERROR —

86 Arrays and Strings

MID$% extracts a substring from any-
where in a string

Third argument optional

If you omit the dollar sign (%) from the function name LEF T %, Applesoft
willtreat LEF T as an arithmetic variable name, causing an error stop
with the message

TPTYPE MISMATCH ERROR

The MID% Function

MID% (for “middle”) extracts a specified number of characters from
a specified position within a string. The M I D% function takes three
arguments, separated by commas: the string from which the charac-
ters are to be taken, the position within the string of the first character,
and the number of characters desired. For example,

MID$ ("HOW DO I LOVE THEET"s 10 4)
—4 characters beginning at po-
sition 10in string "HOW DO
I LOVE THEE™?";yields
IlLDl',EII

MID% (H9%:, R + 74+ 2 % YY)

—2 % Ucharacters beginning
atposition® + 7inthe
contents of string variable
H9%

You may optionally leave out the third argumentto MID%. If you don't
specify the number of characters you want, or if the number of char-
acters you request is greater than the length of the string, MI D %
yields all characters from the designated starting position to the end
of the string:

MID$ ("THERE THEY GO!", 7)
— all characters from position 7
toend of string " THERE
THEY GO!";yields
"THEY GO!"

MID$ (A%, 10) — all characters from position 10
to end of the contents of string
variable A%

MID$ ("HI THERE": 4, 20)
— all characters from position
4toendofstring "HI
THERE";yields "THERE"

Strings 87

Real arguments converted to integers If the value you give for the starting position or the number of charac-
ters in the substring is a real number, M I D % truncates it to the next
lowest integer. If the designated starting point is greater than the
length of the string, or if the number of characters requested is O,

null string: a string containing no MID#% yields the null string.

characters

The starting position must be between 1 and 2553, and the number of
characters between 0 and 255, or the program will halt with the
message

TILLEGAL QUANTITY ERROR

If you omit the dollar sign (%) from the function name M I D%, Applesoft
willtreat M I D as an arithmetic variable name, causing an error stop with
the message

?TYPE MISMATCH ERROR —d

The RIGHT% Function

R IGHT % extracts a substring from R IGHT % extracts a specified number of characters from the end

the end of a string (right end) of a string. The R I GHT % function takes two arguments,
separated by a comma: the string from which the characters are to be id
taken and the number of characters desired. For example,

RIGHT% ("GIMME A BREAK": 7) e
—Ilast 7 characters of the string
"GIMME A BREAR";
yields "A BREAK" =

RIGHT$ (NAME%: C + 2)
—lastC + 2 characters of

the contents of string variable
NAME$

Real arguments converted to integers If the value you give for the number of characters in the substring is a
real number, R I GHT % truncates it to the next lowest integer. If the
value specified is greater than the length of the string, Applesoft re-
turns the entire string; no extra characters are added.

The number of characters requested must be between 1 and 255 or
the program will halt with the message St

PILLEGAL QUANTITY ERROR

If you omit the dollar sign (#) from the function name R IGHT %, Apple-
soft willtreat R I GHT as an arithmetic variable name, causing an error
stop with the message

?TYPE MISMATCH ERROR

88 Arrays and Strings

a25 String Conversion Functions

- Strings and numbers are not the same, even when the string looks

like a number:
— 2 * 123 —vyields 246

Z % Yiza" — TYPE MISMATCH error
- LEFT$ ("123", 2) —yields "12"

LEFTS (123 2) —TYPE MISMATCH error

This section describes Applesoft’s built-in functions for converting
between numeric and string values:
— e S5TR% converts a number to a corresponding string.
e UAL converts a string to a corresponding number.
- e CHR% converts an ASCII code to the corresponding character.

ASCII code: see Section 4.2.1 e ASC converts a character to the corresponding ASCII code.

The STR$ Function

STR$ converts anumber to a string The STR# (for “string”) function converts a numeric value into a
— string representing that value. For example,

5TR$ (-100) — a string representing the num-
o ber - 100;yields " - 100"

STR% (3.14159) — a string representing the num-
N ber3.14159,yields
"3.14159"

STRe (MARK) — a string representing the nu-
— meric value of real variable
MARK

STR% (COUNTZ) — astring representing the nu-
meric value of integer variable
COUNTZ

— STR% (B 2 - 4xAx*C) — a string representing the nu-
meric value of the expression
B 2 - d4*AxC

Strings 89

The string produced by STR % is in the same format that Applesoft
uses to display or print numbers; see Appendix |, “Display Formats
for Numbers,” for details. For example,

STR$ (100 000 000) —yields " 100000000"

STR$ (1 000 000 000) —yields"1E+08" et
STR$ (-.,03) —vyields " -+ 03"

STR$ (-.003) —yields " -3E-03" —

If the numeric value of the argument falls outside the allowable
range for real numbers (-9, 89888888E + 37 to —_—
+98,8989988989E + 37), the program will halt with the message

TOVERFLOW ERROR

The VAL Function

VAL converts a string to a number The VAL (for “value”) function converts a string to the numeric value
it represents. For example,

VAL ("4096"™) — number represented by the -
string " 4096 "; yields 4096
VAL ("-1,508E+2") — number represented by the —

string"-1.303E+2";
yields -150.5
YAL (WHOLE® + "." + FRAC%) _'
— number represented by the
concatenation of strings
WHOLE%,".", andFRAC% -
R IGHT$ function: see Section 4.2.4 VAL (RIGHT$ (Q%, 4))

— number represented by the -
last 4 characters of string 0 %

90 Arrays and Strings

VAL recognizes same number formats
as INPUT; see Section 5.1.2

CHR % converts an ASCII code to the
corresponding character

ASCII code: see Section 4.2.1 and
Appendix C

Real arguments converted to integers

VAL recognizes the same number formats that can be used in key-
board input; see “Rules for Numeric Input” in Section 5.1.2, “The
INPUT Statement.” If VAL encounters a non-numeric character in
its argument string, it yields the numeric value of everything up to the
first non-numeric character, ignoring the rest of the string. (The digits
0 through 9, the signs + and -, the decimal point (+), and the letter
E for scientific notation are considered numeric characters. Spaces
are also allowed, and are simply ignored.) If the first character in the
string is non-numeric, Y AL yields a value of 0. For example,

VAL ("12.,54 OR S50") —yields 12,54
VAL ("ABOUT 4.37") —vyields O
If the absolute value of VAL s result is greater than 1 E38 or contains

more than 38 digits (including trailing zeros), the program will halt with
the message

TOVERFLOW ERROR

The CHR$ Function

The CHR % (for “character”) function regards its single numeric ar-
gument as an ASCII character code and yields a one-character
string consisting of the corresponding character. For example,

CHR$% (G8) — character with ASCII code
68;yields the string "D "

CHR$ (47) —character with ASClI code 4 7;
yields the string " / "

CHR$% (7) —character with ASCIl code 7;

yields a string containing
the ASCII bell character

(CcontroL)-G)

CHR$ (C1) —character whose ASCII code
is the value of variable C 1

CHR$ (L% + B4) ——character whose ASCII code
is the value of expression
L%Z + G4

If the value of the argument is a real number, CHR % truncates it to the
next lowest integer. For example,

CHR$ (81.9) —argument truncatedto 81;
yields "@"

Strings 91

An argument less than O or greater than 253 will cause the program to
halt with the message

TILLEGAL QUANTITY ERROR

The ASC Function —

ASC converts a character to the The ASC (for “ASCII”) function takes a single string argument and
corresponding ASCI code yields the ASCII code corresponding to the first character in the i
ASCII code: see Section 4.2.1 and string. For example,
Appendix C
ASC ("D") —ASClII code for character D; —d
yields 68
ASC ("/"™) —ASCII code for character /;
yields 47 =

ASC ("e+ e+ cummings")
—ASClII code for character g;

yields 101
ASC (BO%) —ASCII code for the first charac-
terinstring B0 % At
MID% function: see Section 4.2.4 ASC (MID$% (NAME%s 3))

—ASCII code for the fifth charac-
terinstring NAME

null string: a string containing no If the argument given to ASC is the null string, the program will halt with
characters the message

TILLEGAL QUANTITY ERROR

92 Arrays and Strings

Chapter5
Input/Output
95 5.1 Input
96 5.1.1 The I N# Statement
L 97 51.2 The INPUT Statement
98 Multiple Inputs on the Same Line
99 Rules for String Input
L 100 Rules for Numeric Input
102 An “Input Anything” Routine
104 5.1.3 The GET Statement
— 105 51.4 The READ and DATA Statements
108 5.1.5 The RESTORE Statement
109 5.1.6 Miscellaneous Input Facilities
L. 109 The Hand Controls
110 Cassette Input
111 52 Output
- 11 5.2.1 The PR # Statement
113 522 The PRINT Statement
117 5.2.3 Number Formats
- 119 5.2.4 Formatting Text on the Screen
119 The TEXT Statement
119 The HOME Statement
A 120 The SPC Function
121 The TAB Function
122 The HTAB Statement
- 124 The U TAB Statement
125 The POS Function
126 The INVERSE Statement
— 127 The FLASH Statement
128 The NORMAL Statement
128 The SPEED = Statement
e 129 The Text Window
129 5.2.5 Miscellaneous Output Facilities
130 Controlling the Speaker
ot 131 Annunciator Output
131 The Utility Strobe
131 Cassette Output

Input/Output 93

’ I«n,\”‘ A
Gt
S
-
iyl
e

Chapter5

Input/Output

This chapter is concerned with the ways in which Applesoft programs
communicate with the outside world. Here are described Applesoft’s
facilities for getting information into and out of the computer and for
controlling the way information is presented.

input: see Section 5.1 Section 5.1, “Input,” deals with the various statements through which
Applesoft programs receive information for processing.

output: see Section 5.2 Section 5.2, “Output,” describes how programs transfer information
to the “outside world”: to the display screen, printers, and so forth.

e = — T

5.1
The input statements discussed in this section enable Applesoft pro-

input: the transfer of informationintothe ~ grams to receive information for processing, either from the keyboard
computer from an external source or from a peripheral device connected to the computer via one of the
expansion slots:

I N# statement: see Section 5.1.1 e The I N# statement controls the source from which the com-
puter receives its input.
—— INPUT statement: see Section 5.1.2 e The INPUT statement accepts a line of input from the current
input device.
GET statement: see Section 5.1.3 e The GET statement reads a single character from the current in-
o put device.
READ statement: see Section 5.1.4 e TheREAD,DATA,and RESTORE statements are used to read

R e e information from within the running program itself.

RESTORE statement: see Section A few miscellaneous input _fam_lmes are available for reading the
515 hand controls and for reading information from a cassette tape

recorder.
miscellaneous input: see Section 5.1.6

Input 95

[—
———

511 The IN# Statement
IN# 2
IN# X -
IN# SLOT - J

I N# specifies source for subsequent The I N# statement specifies the source from which the computer
Input will receive subsequent input. The expression following the keyword
I N# should evaluate to a number between 0 and 7, designatingthe ~ —
expansion slot: see Apple lle Owner's expansion slot from which input is to be taken.
Manual and Apple lle Reference Manual
When Applesoft is started up, it is set to receive input from the
keyboard. Executing an I N# statement with a slot number from 1
to 7 instructs Applesoft to receive input instead from the peripheral
input device (such as a terminal or modem) connected to the
Slot number O specifies input from designated slot. A slot number of O reestablishes the keyboard as
keyboard the current input device. For example, the following program -
fragment reads a single character from the device connected to
slot 2, then reestablishes keyboard input:

510 IN# 2 —accept input from device in
slot2
GET statement: see Section 5.1.3 220 GET A% —read one character from -
deviceinslot 2
530 IN# O —accept future input from
keyboard -

Notice that the character # is part of the keyword I N# and cannot —d
be omitted.

Restarting the System with I N#: If the slot designatedin an I N# or e
PR # statement: see Section 5.2.1 P R # statement contains a disk controller card, Applesoft will attempt to

restart (often called “booting”) the system from the disk contained in

drive 1 connected to that slot. When you do this on purpose, it's the

usual way of restarting the system from within Applesoft; when you do it —
Be careful! by mistake, it can be a catastrophe.

A Warning

If no input device is connected to the slot designated in an I N# state-
CONTROL |-|RESET] : see Section 1.3.2 ment, the system will hang. To recover, use [conTROL |-[RESET | e

A slot number between 8 and 255 will cause unpredictable and possi-
bly aberrant behavior.

96 Input/Output

INPUTreads aline of input

current input device: see Section 5.1.1

prompt: to remind or signal the user that
some action is expected

current output device: see Section
52.1

Prompting message optional

A slot number less than O or greater than 255 will stop the program
with the message

TILLEGAL QUANTITY ERROR

512 The INPUT Statement

INPUT PRICE

INPUT MNTHZ% s+ DAYZ . YEARZ
INPUT "WHAT IS YOUR PASSWORD? "3
PASSWD$

INPUT ""3 X

The INPUT statement accepts a line of input (terminated by
(RETURN]) from the current input device, containing values to be as-
signed to one or more variables. The variables to be read are listed in
the INPUT statement, separated by commas.

The INPUT statement may optionally include a message to be dis-
played or printed on the current output device, prompting the user for
the desired input. If present, the prompting message must be given
as a string constant immediately following the keyword INPUT and
followed by a semicolon to separate it from the list of variable names.
The specified prompting string is reproduced exactly as written; if
displayed on the screen, it is immediately followed on the same line
by the cursor. If the prompting message is omitted fromthe INPUT
statement, a question mark (7') is used; the question mark can be
suppressed by supplying a null string as the prompting message. For
example,

10 PRINT "WHAT IS YOUR AGEs PLEASE?"

—display prompting message on
its own line

—prompt with 7 and wait for
response

STREET NAME? "3 5T%

—display prompting message on
same line as cursor and wait
for response

YOUR FIRST AND

SEPARATED BY A COMMA:"

—display prompting message on
its own line
LN% —suppress 7 and wait for two
responses separated by a
comma

20 INPUT AGE

INPUT "YOUR

40 PRINT "PLEASE TYPE

LAST NAMES

INPUT ""35 FN%$.

Input 97

The INPUT statement in line Z© above displays a question mark to
prompt the user for input, followed by the cursor. The INPUT state-
mentin line 30 displays the prompting message YOUR STREET
NAME 7 instead of the question mark, again followed by the cursor.
The INPUT statementin line 50O displays the cursor only, with no
question mark and no prompting message of any kind.

Colon causes remainder of line to be If the user types a colon (=) as part of an input line, the remainder of that
ignored input line is ignored. The ASCII null character ([conTroL J-C) has the

same effect. —
(conTROL]-C: see Section 1.3.2 An INPUT statement can be interrupted by -C, butonly if it __J

is the first character typed on an input line. The program halts when the

key is pressed at the end of that line. A [conTroL |-C that is

not the first character of the input line is treated as part of the input, the
same as any other character. -

Be sure to give your users clear instructions about how long their re-
Length of input line limited sponses can be. If the user types an input line longer than 255 charac-

ters, the whole line will be canceled and will have to be retyped from the

beginning (the Apple lle’s speaker will beep from about the 245th char-

acter, but no message will be displayed). A response of more than 239 L

but fewer than 255 characters will be truncated to 239 characters with no

warning message displayed.

No INPUT inimmediate execution The INPUT statement can be executed only from within a program;
you can't use this statement inimmediate execution.

Multiple Inputs on the Same Line

The INPUT statement may list any number of variables to be read

from the same input line. The user’s responses to these variables =
must be separated by commas. You can mix string and numeric vari-
ablesinthe same I NPUT statement, but the user’s responses must

each be of the correct type. i

If the user presses the RETURN Jkey (or types a colon or [CONTROL]-E)

without typing enough responses for all the variables listed in the S
INPUT statement, Applesoft displays two question marks to show

that it expects a further response. If a colon, comma, or [CONTROL]-B

is the first character of a response, Applesoft interprets the response s
as zero or as the null string (depending on the type of variable speci-

fied) and the program continues with the next statement.

98 Input/Output

If the user types more responses than Applesoft expects, or types a
colon into the final expected response, Applesoft displays the
message

TEXTRA IGNORED

and program execution continues. If the last response is shortened

by a[conTroL J-@—the program continues but no message is
displayed.

Programming Tip: Multiple inputs on the same line can be confusing
for your users; it's best not to use them except for “quick and dirty” test-

. ing purposes while you're debugging your code. Instead of asking for
something terribly unfriendly like

PLEASE TYPE LAST NAME:s FIRST NAMEs» MIDDLE
INITIAL:

Be kind to your users! use a form such as
PLEASE TYRFE YOUR 'FIRST NAME:
followed by

PLEASE TYPE YODUR MIDDLE INITIALS
JUST PRESS RETURN IF YOU HAVE NONE

and so on. You'll be able to give much clearer instructions, your user will
have an easier time giving you what you want, and you'll be better able to
detect and deal with errors in the input.

Rules for String Input

s The following rules govern the responses the user types to string
variablesinthe INPUT statement:

—— Quotation marks optional ® The user's response to a string variable may be typed with or
without enclosing quotation marks.
Leading spaces ignored ® Applesoftignores all spaces preceding the first nonspace
- character.

e [fthe first nonspace character is a quotation mark, the input
- string is considered to include everything up to (but not including)
Rules for quoted responses the next quotation mark, [ConNTROL |-@, or [RETURN |. The string

may include commas and colons, but may not include quotation

= marks, since these would be interpreted as marking the end of
the string. Spaces following the closing quotation mark are ig-
nored, but any other character causes the response to be re-

— jected with the message

TREENTER

Input 99

e [fthe first nonspace character is not a quotation mark, the input
string includes everything up to (but not including) the next
Rules for unquoted responses comma, colon, [CONTROL |-@, or [RETURN]. The string may in-
clude quotation marks, but may not include commas or colons,
since these would be interpreted as marking the end of the string.
Spaces following the last nonspace character are accepted as
part of the input string.

e [fthe first nonspace character is acomma, colon, [CoNTROL |-,
Null responses OK or , the response is interpreted as the null string and —
program execution continues.

® The following control characters cannot be included in the

response:
® [conTROL J-H (equivalentto the [LEFT-ARROW | or backspace
key) e

® [CcoNnTRroL J-M (equivalent to the key)
® [conTroL J-X (cancels the input line) —_

e [conTroL J-8 (ASCII null character; causes remainder of in-
put line to be ignored)

Control characters cause problems In general, control characters cause problems and should not be
used inrespondingto INPUT statements.

® Theresponse to a string variable must be a single string or a con-
stant; it cannot be a string expression involving concatenation,
String expressions don't work LEFT#,MID%, RIGHT#%, or other string operations. Re-
sponses such as

A% + B%
LEFT$ (MNTH%$, 3) —
RIGHT$ (NAME$: L - (FL + 2))

will be accepted exactly as typed, character for character (up to
the first comma), and will not be evaluated as string expressions.

Rules for Numeric Input

Listed below are the rules governing the user’s responses to numeric
variables. If aresponse is typed that doesn’t conform to these rules,
Applesoft will display the message —d
TREENTER

reissue the prompting message, and wait for another response.

All spaces ignored e Spaces are ignored in any position. =

100 Input/Output

Numeric characters only

scientific notation: see Section 1.2

Form of numbers

Degenerate cases interpreted as 0

Null responses interpreted as 0

Most control characters illegal

Arithmetic expressions invalid

The response is considered to include all nonspace characters
up to (but not including) the next comma, colon, [conTRroL -8, or

(RETURN)

The response may include numeric characters and spaces only.
Numeric characters include the digits © to 9, the signs + and -,
the period (decimal point), and the letter E for scientific notation.
A response containing a non-numeric character in any position is
invalid.

Numeric responses consist of the following elements. Any or all
of these elements may be omitted, except that the sign or value
of the exponent may not appear unless preceded by the letter E.
Those that are included must be given in the order listed:

® Asign(+ or —)

® One or more digits

® Adecimal point(+)

® One or more digits

® The letter E for scientific notation
® Asign (+ or —)forthe exponent
® One or more digits

Even forms suchas +E - and . E are accepted, and are inter-
preted as 0.

If the first nonspace character is a comma, colon, or [RETURN |,
the response is interpreted as © and program execution contin-

ues. A response beginning with [conTRrOL J-8 is invalid.
The following control characters have special meanings:

e [conTrOL J-H (equivalenttothe [LEFT-aARROW |or backspace
key)

® [CONTROL]-M (equivalent to the key)
° -# (cancels the input line)

® [conTroL -8 (ASCII null character; causes remainder of in-
put line to be ignored)

A response containing any other control character, in any posi-
tion, is invalid.

The response to a numeric variable must be a single number; it
cannot be a numeric expression involving arithmetic operations

Input 101

or function calls. Responses such as st

1/2
B2 - 4*AxC
SOR (2)

are invalid because of the non-numeric characters.

It's agood idea to use string variables to accept all numeric inputs, using

VAL function: see Section 4.2.5 the VAL function to convert them to numeric values. This makes it eas-
ier to detect and deal with user errors and to display alternate prompting e
messages.

An “Input Anything” Routine

The INPUT statement interprets the colon and the comma (and
sometimes the quotation mark) as special symbols and rejects any-

thing typed after them in the input line. Here's a bit of magic you can ==
use if you anticipate that your user’s response may include any of

these characters.

POKE statement: see Section 7.1.2 The following Applesoft subroutine uses the POK E statement to
store a special machine-language routine into the computer’'s mem-
ory, one byte at a time, beginning at address 7G 8. The machine-lan- —
guage routine will accept all characters in the input, including colons,
commas, and quotation marks, without “censoring” them, and will
assign them, character by character, to a string variable for further —_
processing. (The line numbers used below are arbitrary; you can
locate this subroutine anywhere you like in your program.)

B2000 REM SET UP "INPUT ANYTHING"
ROUTINE
GZ010 LET IN$ = "XK" —IN% mustbefirstvariable -
created
B2020 FOR J = 768 TO 7390
—these are memory addresses —
where machine language is to

be stored

62030 READ I —qget a byte of machine e
language

62040 POKE Js I —store it at next location

B2050 NEXT J — go back for next byte b

BZ2060 DATA 162, Oy 32y 117,y 253 160, 2,
138, 145, 103, 200, 169 0 145,
105, 200, 169, 24+ 145, 103+ 706 o

ols 213 —these are the actual bytes of
machine language
B2070 RETURN —return to statement following e
point of call

102 Input/Output

CALL statement: see Section 7.1.3

The DAT A statement containing the machine language must be re-
produced in your program exactly as shown.

The following subroutine uses the CAL L statement to call the ma-
chine-language routine at address 75 8. (Again, this subroutine can
be located anywhere in your Applesoft program, not necessarily at
line number B30 0 0.)

63000 REM CALL "INPUT ANYTHING" ROUTINE
63010 CALL 7GB —call machine-language routine
B3020 IN%$ = MID$ (IN%, 1)

— I N% now holds the input that
the machine-language routine
accepted

63030 RETURN —return to statement following
point of call

To accept a line of input from the user, instead of using a statement
such as

100 INPUT S%
substitute this line:
100 GOSUB B3000 : LET S% = IN%

The variable S % now contains whatever input the user typed, includ-
ing the “forbidden” characters; your program can proceed to process
the input in whatever way is appropriate.

For technical reasons having to do with the way variables are stored in
memory, the string variable used to pass the user's response between
machine language and Applesoft (arbitrarily called I N% in the example
above) must be the first variable used or defined in the program. To be
safe, you might want to call the “input anything” setup routine from line
number O:

0 GOSUB BZ000

Input 103

51.3 The GET Statement

GET L%
GET S#%(N)
GET Ci$s CZ2%, C3%

GET reads a single input character The GET statement reads a single character from the current input

device. Although it can be used to read from any peripheral input de-

vice (such as a terminal or modem), it is seldom used in actual prac- —
tice with anything other than the keyboard.

current input device: see Section 5.1.1

GET accepts one character from the current input device for each of —
the string variables listed following the keyword GE T. Each single

character is read as soon as it is typed, without waiting for the user to

press the key. The character is not displayed on the el
screen, and the cursor is not moved in any way.

Here’s an example of a program fragment using GE T: ==

310 PRINT "PRESS THE ‘Y’ KEY TO GO ON:z"3
—prompt user for response —

semicolon: see Section 5.2.2 (semicolon keeps cursor on
same line)
320 GET A% —wait for user to press key e
330 IF A% <x "Y" THEN 320
—keep cycling until user presses
correct key —
340 PRINT —move cursor to new line (can-
cels effect of semicolon from
line 310) —
350 PRINT "THANK YOU" —politenessfrom machinesis
always welcome
No GET inimmediate execution The GET statement can be executed only from within a program; you

can'’t use this statement in immediate execution.

(conTROL J-C won'tinterrupta GET Iftyped inresponsetoa GET, -C is treated like any other

character; it does not interrupt program execution.

(conTROL J-C: see Section 1.3.2 -

104 Input/Output

DOS: Disk Operating System A DOS command issued immediately after a GE T will not be recog-
nized. For DOS commands to be executed properly, you must issue a
character immediately after the GE T and before the DOS
command. An easy way to do this is with an empty PR I N T statement:

PRINT

See your DOS manual for more information.

Numeric Inputs with GET: The GE T statement is neither designed nor
intended to obtain values for numeric variables. You may attempt to do
s0 at your own peril, subject to the following limitations:

® Acomma or acolon will resultin the message

TEXTRA IGNORED

and will be interpreted as a numeric value of 0.

® Aplus sign, minus sign, [conTroL J-@, E, space, or period will be
s interpreted as a numeric value of 0.

® Any non-numeric character will cause the program to halt with a
syntax error.

It's better to use only string variables with the GE T statement, using the
VAL function: see Section 4.2.5 YAL function to convert the response to a numeric value.

514 The READ and DATA Statements

_ READ PRICE
READ A By MACINY s J4s SH(EZ%] - 1) T%
DATA 12,8+ HI HO:. 1G8B

_ DATA 2,236

fs READ reads information frombodyof The READ and DA T A statements are used to read information from

program within the body of the Applesoft program itself, rather than from the
DATA sets up information foruseby ~ k€yboard oraninput device. There may be any number of DATA
- READ statements in a program, each containing a list of one or more items

of information (numbers or strings) following the keyword DA T A and
separated by commas. All of the DA T A statements in the program

- are considered to form one long list of items, in sequential order of
line numbers; each READ statement reads one or more items from
this list.

Input 105

Each time it executes a READ statement, Applesoft remembers the
lastitem read from the DAT A list. The next READ always begins
with the nextitem in the list. There is no way to “back up” or “skip for-
ward” inthe DA TA list, but you can start over from the beginning of

RESTORE statement: see Section the list with the RES TORE statement.

5.1.5

Don't read past end of list! An attempt to read past the end of the DA T A list will halt the program Bl
with a message such as

7?0UT OF DATA ERROR IN 1465 el

identifying the line number of the READ statement in which the error oc-
curred. Leaving part of the DA T A list unread at the end of the program

does not cause an error. -
Rules for numeric and string input: The itemsina DATA statement are separated by commas and follow
see Section 5.1.2 the usual rules for numeric and string input, exceptthata DATA s

statement cannot contain a colon (). The number of items in each

DATA statement is limited only by the length of the program line. A
DAT A statements may appear DAT A statement may appear anywhere in your program; it need not e
anywhere precede the READ statement that uses it. There is no limit to the

number of DA T A statements in a program.

Here's an example program showing the use of the READ and
DATA statements:

10 DATA "GO WESTs YOUNG MAN"
—item containing a comma; OK
between quotation marks -
20 DATA 3.,141539, 2, "SAM"
—mixed typesinsame DATA
statement —
30 READ A%+ B —read GO WEST s+ YOUNG
MAN into string variable A%
and 3.+ 14159 intoreal vari- el
able B; notice that these items
come from two different
DAT A statements —
0 READ C%s» D% E$ —read 2 into integer variable C7%,
S5AM into string variable D %,
and THE "WORLD" IS el
FLAT into string variable E%;
begins with next item following
previous READ statement =t

4

106 Input/Output

DATA THE "WORLD" IS FLAT
—item containing quotation
marks; notice that this item fol-
lows the READ statement that
uses it
- 60 PRINT E% —display THE "WORLD"
IS FLAT
70 PRINT A% —display GO WEST
s YOUNG MAN
80 DATA 98.6y+ 37y —273.16
—these items never read

)]

90 END

Null items interpreted as 0 or null string Nullitemsina DA TA statement are interpreted as © or the null
= string, depending on the type of variable to which they are assigned
ina READ statement. A null item is read whenever there are no non-
space characters
® between the keyword DA T A and the end of the program line
® Dbetween the keyword DA TA and the first comma
® between two consecutive commas

® between the last comma and the end of the program line
Thus the statement

- DATA »+ »
contains three null items.

An attempt to read a string value in a DA T A statement with a numeric
variable in a READ statement causes a syntax error. Numeric values

—s VAL function: see Section 4.2.5 can be read into string variables, but must be evaluated with the VAL
function before they can be used as numbers.

— The characters [conTroL |-H, [conTroL |-M, [conTrOL |-X, and
Most control characters treated as CONTROL | -8 cannot be embedded in a DA T A statement. Any other

ordinary characters control character typed into a DA T A statement is treated as an
- ordinary character and becomes part of the input. A[conTroL |-C
(‘conTROL J-C: see Section 1.3.2 characterina DA TA statement will not interrupt the program.

= The READ statement can be executed only from within a program; you
can't use this statement inimmediate execution.

Input 107

515 The RESTORE Statement
RESTORE -

RESTORE restarts DATA list The RESTORE statement restarts the DA T A list from the beginning.
After RESTORE is executed, the next RE AD statement will read the
firstitemin the first DA T A statement in the program. For example,

10 DATA "GO WESTs YOUNG MAN"

20 DATA 3.14159, 2, "5AM"

30 READ A%, B —read GO WEST s YOUNG
MAN into string variable A %
and 3. 14159 intoreal vari-
able B

40 READ C%s D% E$ —read 2intointegervariable C%,
S5AM into string variable D %,
and THE "WORLD" IS
FLAT into string variable E

50 DATA THE "WORLD" IS FLAT

B0 PRINT E% —display THE "WORLD™
IS8 FLAT -
70 RESTORE —restart list from beginning
B0 READ Q% —read GO WEST . YOUNG
MAN into string variable Q % =
90 PRINT Q0% —display GO WEST »
YOUNG MAN
100 PRINT A% —display GO WEST » -
YOUNG MAN (valueof A%
still intact)
110 END -

120 DATA 98.6, 37y —273.16
—these items never read

There is no easy way to reposition the DA T A list to a specific desired
item or line number. The only other Applesoft statement that affects
the positioning of the DATA listis RUN, which also restarts the list
from the beginning.

108 Input/Output

516 Miscellaneous Input Facilities

PDL reads dials on hand controls

Standard hand controls numbered O
and 1

Result of PDL isbetween 0 and 255

This section covers Applesoft’s facilities for dealing with the remain-
ing input features of the Apple lle: the hand controls and cassette
tape input.

The Hand Controls

If you have a set of hand controls connected to your computer, you
can use the PDL function to read their dial settings. The Apple lle
can accommodate as many as four hand controls, numbered 0 to 3,
connected through the 9-pin hand control connector on the comput-
er's back panel or the GAME I/O connector inside the case on the
main logic board. However, the standard Apple hand control set con-
sists of only two controls, numbered 0 and 1.

The PDL function takes one argument, the number of the hand con-
trol to be read, and yields an integer from @ to 23 5 representing the
current position of the dial on that control. For example,

10 LET ®¥ = PDL (0) —readhandcontrol0

20 LET P4 = X * 40 / 256+1

—reduce to a number from 1 to
40

—move cursor to indicated posi-
tionon currentline

40 PRINT "<t —display the character <

30 LET ¥ = PDL (1) —readhandcontrol1

BO LET Q%4 = ¥ % 40 / 256+1

—reduce to a number from 1 to
40

—move cursor to indicated posi-
tion on current line

80 PRINT "> —display the character >

90 IF X = 0 AND ¥ = O THEN END

—end program when both hand
controls read ©

—otherwise repeat the process

30 HTAB P%

70 HTAB Q%

100 GOTO 10

If the argument givento PDL is less than O or greaterthan 2535, the
program will halt with the message

TILLEGAL QUANTITY ERROR

If the argument is between 4 and 235, or if no hand control of the desig-
nated number is connected, the results are unpredictable.

Input 109

Allow a delay between callsto PDL

Reading the hand control buttons

PEEK function: see Section 7.1.1

For more information...

LOAD command: see Section 1.2.6 and
Appendix M

RECALL statement: see Appendix M

SHL OAD statement: see Section 6.3.2
and Appendix M

110

If your program reads two hand controls in consecutive statements, the
reading from the first hand control may affect the reading from the sec-
ond. To obtain more accurate readings, allow several program lines be-
tween calls to PDL or use a short delay loop such as

FOR xii= L TEG 0 SNETE- X

between PDL calls.

Historical Note: The function name PDL stands for “paddle,” which in
turn is short for “game paddle,” an older name for the Apple lle’s hand
controls.

The buttons on the hand controls can be read with the function calls

PEEK (-16287) —yields avalue > 127 if button
on hand control 0 is being

pressed, <= 127 ifnot

PEEK (-1B628G6) —yields avalue > 127 if button
on hand control 1 is being

pressed, <= 127ifnot

PEEK (-1G285) —yields avalue > 127 if button
on hand control 2 is being

pressed, <= 127 ifnot

There is no way to read the button on hand control 3. The PEEK calls
listed above are also used to read the “apple keys” on the Apple lle
keyboard: the key is equivalent to the button on hand
control 0, and is equivalent to the button on hand

control 1.

See the Apple lle Reference Manual for detailed technical information
on the 9-pin hand control connector and the internal GAME 1/O
connector.

Cassette input

Three Applesoft statements, LOAD, RECALL,and SHLOAD, can
be used to read information from a cassette tape recorder. LOAD
reads an Applesoft program into memory from tape; RECAL L reads
the contents of an integer or real array; SHLOAD reads a shape ta-
ble for use in high-resolution graphics. For details, see Appendix M,
“If You Have a Cassette Recorder.”

Input/Output

TR RS Output
5.2

output: the transfer of informationfrom 1 NiS section describes the output facilities available in Applesoft:
o the computer to an external destination

® Section 5.2.1 covers the PR # statement, which controls the des-

FRA ML S0e Seotich 5121 tination to which output is directed.

PR INT statement: see Section 5.2.2 ® Section 5.2.2 contains a detailed discussion ofthe PRINT
statement, Applesoft’s primary output statement.

- number formats: see Section 5.2.3 ® Section 5.2.3 gives details on the way numbers are formatted
when written withthe PR INT statement.

— screen formatting: see Section 5.2.4 ® Section 5.2.4 describes Applesoft’s wide variety of facilities for
controlling the format in which textual information is displayed on
the screen.

- miscellaneous output: see Section ® Section 5.2.5 touches briefly on various miscellaneous output fa-

5.2.5 cilities not covered elsewhere: the Apple lle’s built-in speaker,

annunciator outputs, utility strobe, and cassette tape output.

521 The PR# Statement

— PR# 1
PR# X
PR# SLOT - J

PR# specifies destination for subse- The PR # statement specifies the destination to which the computer
quent output will send subsequent output. The expression following the keyword
expansion slot: see Apple lle Owner's PR# should evaluate to a number between 0 and 7, designating the
Manual and Apple lle Reference Manual ~ expansion slot to which output is to be sent.

When Applesoft is started up, it is set to send output to the display
screen. Executing a PR # statement with a slot number from 1 to 7
instructs Applesoft to send output instead to the peripheral output de-
vice (such as a printer, terminal, or modem) connected to the desig-

Slot number O specifies output to the nated slot. A slot number of O reestablishes the display screen as the

screen current output device. For example, the following program fragment
writes a string of characters to the device connected to slot 1, then re-
establishes screen output:

610 PR# 1 —send output to device in slot 1
620 PRINT Z% —uwrite contents of string vari-
able Z% to device in slot 1
o B30 PR# O —send future output to screen

Notice that the character # is part of the keyword P R # and cannot
be omitted.

Output 111

I N# statement: see Section 5.1.1 Restarting the System with PR #: If the slot designated in an I N# or
PR # statement contains a disk controller card, Applesoft will attempt to
Be careful! restart (often called “booting”) the system from the disk contained in =

drive 1 connected to that slot. When you do this on purpose, it's the
usual way of restarting the system from within Applesoft; when you do it
by mistake, it can be a catastrophe.

A Warning

If no output device is connected to the slot designated in a PR # state-
[conTroOL J-[RESET]: see Section 1.3.2 ment, the system will hang. To recover, use [CONTROL |- [RESET] .

A slot number between 8 and 25 5 will cause unpredictable and possi- St
bly aberrant behavior.

A Warning

If you are using the Apple lle 80-Column Text Card, always be sure to

deactivate it by typing (conTroL J-Q before using PR # to transfer -
output to another slot. Leaving the Text Card active while using a printer

or while restarting the system from a disk may produce amusing but

confusing fireworks on the screen.

Although the Text Card is installed in the Apple lle’s special auxiliary
slot, it appears to the computer as if it were in slot 3. So to reactivate the
Text Card after sending output to another device, type

PR# 3

You can also return output to the 40-column screen with the Text Card —
inactive by typing

PR# 0O

However, don'tuse PR# © to redirect output directly from the Text

Card to the 40-column screen without first deactivating the Text Card

with -Q. Under certain circumstances, this may cause —
text intended for the screen to be written outside the area of memory

reserved for it, possibly destroying your Applesoft program or other

important information.

A slot number less than © or greater than 255 will stop the program
with the message

TILLEGAL QUANTITY ERROR

112 Input/Output

5.2.2

PR INT writes to the current output
device

current output device: see Section
5.2.1

number formats: see Section 5.2.3
SPC function: see Section 5.2.4

TAB function: see Section 5.2.4

Semicolon suppresses space after an
item

The PFRINT Statement
PRINT
PRINT P$s Qs R%
PRINT "DISCRIMINANT = "3 B"2 - 4%A*C
PRINT LEFT$ (FN$%s 1) 4+ "," + LN$%
PRINT TAB (M)3 "*"3 TAB (M + N);
"xx%"; TAB (M + N + N)j; "xn

The PR INT statement writes output to the current output device.
Expressions representing the values to be written are listed after the
keyword PR INT, separated by commas or semicolons.

Any expression may be includedina PR INT statement. Each
expression in the list following the keyword PR I NT is evaluated. If
the value of the expression is a string, the characters of the string are
written to the current output device; if the value is a number, it is writ-
ten according to the rules discussed in Section 5.2.3, “Number For-
mats.” Calls to the special functions SPC and TAB may also be
includedina PR INT list; they do not cause anything to be written,
but control the positioning of the next item.

When aniteminthe PR INT listis followed by a semicolon, the cur-
sor (if output is going to the screen) or print head (if to a printer) is left
positioned immediately after the last character in the item. The next
item written will begin in the next available column, with no interven-
ing spaces. A semicolon attheend ofa PR I NT statement causes
the cursor or print head to be left at the end of that line, and prevents
a new line from being started. For example, the statement

PRINT 135 23 337 453
will produce the output
1234

and will leave the cursor or print head positioned in the column imme-
diately following the digit 4. The statement

PRINT 1/33% (2 % 4)3 51
will produce the output

+ 333333383851

Output 113

If two consecutive itemsina PR INT list are not separated by either a
comma or a semicolon, a semicolon is understood.

The Apple lle’s normal display is 40 columns wide. After Applesoft dis-

plays the 40th character on a line, it automatically sends the cursor to

the beginning of the next line. The next PR I NT statement executed will -
start another new line, causing an unintended blank line to appear on

80-Column Text Card: see Apple lle the screen. This happens even if you have the Apple lle 80-Column Text

Owner's Manual, Apple Ile 80-Column Card installed and running in “active 80” mode; Applesoft doesn’t know

Text Card Manual about the 80-column display and will still break each output line after 40 ——
characters.

For example, the statements

1O PRINT “THIS MESSAGE HAS PREECISELY 40
CHARACTERS"

20 PRINT "S0 THERE’S A BLANK LINE ON THE —
SCREENY

will display the output

THIS MESSAGE HAS PRECISELY 40 CHARACTERS

S0 THERE’S A BLANK LINE ON THE SCREEN -

To eliminate the blank line, add a semicolon to the end of line 1 O:

10 PRINT "THIS MESSAGE HAS PRECISELY 40 P
CHARACTERS" 3

Now you'll get this:

THIS MESSAGE HAS PRECISELY 40 CHARACTERS
S0 THERE’S A BLANK LINE ON THE SCREEN

The second line of this message is now a lie.

A statement such as
BRINT ‘A% i+ B
causes a halt with the message
PSTRING TOO LONG ERROR
concatenation: see Section 4.2.2 if the combined length of the concatenated strings is greater than 255.
However, you can print the apparent concatenation regardless of length

by using a semicolon:

PRINT A%3 B%

114 Input/Output

Comma advances to next tab position

80-Column Text Card: see Apple lle
Owner's Manual, Apple lle 80-Column
Text Card Manual

text window: see Section 5.2.4, Section
F.1, and the Apple lle Reference Manual

PRINT by itself starts a new line

When aniteminthe PR INT listis followed by a comma, the cursor
or print head is advanced to the next available tab position: column
17 or 33 of the current line or column 1 of the next line. The next item
written will begin at the tab position. A series of consecutive commas
will advance the cursor or print head a corresponding number of tab
positions. A comma atthe end of a PR I NT statement causes the
cursor or print head to be left at the next available tab position, and
may prevent a new line from being started. For example, the
statement

PRINT 1, 2y 3 4,
will produce the output

bl 2 3

4 i

and will leave the cursor or print head positioned in column 17 of the
second line, directly under the digit Z. The statement

PRINT 173 (2 % 4) 4 51
will produce the output

+333833333 8 51

If any character appears in columns 24 to 32, or if you have the Apple lle
80-Column Text Card installed in your computer and running in “active
80" mode, then column 33 is not available as a tab position; a comma
after column 17 will cause the next item to start at column 1 of the next
line.

If the text window is set to fewer than 33 columns wide, commas in a
PR INT statement do not function properly and may cause text to be
displayed outside the text window.

A PRINT statement that doesn’t end with a comma or semicolon al-
ways starts a new line after writing its last item and leaves the cursor
or print head positioned in column 1 of the new line. The statement

PRINT
simply starts a new line. If the cursor or print head was already at the

beginning of a line, this statement causes a blank line to be displayed
or printed.

Output 115

Here’s an example program using some of the features of PRINT
discussed above:

10 LET A = 5,35 : LET C% = "FRED" : LET
G4 = 16 —set up series of variables
20 PRINT "STUFF AND NONSENSE"
—display message and start

new line

30 PRINT —display a blank line

40 PRINT "A = "3 —display message without start- -
ing anew line

30 PRINT A —display 5 + 35 on same line as

message from program line
40; start new line

B0 PRINT "GZ4 = "3 G% —display message andvalue
1 G on same line; start new _
line

70 PRINT "C% = ", C% —display message, advance to

next tab position, and display

string FRED; start new line
B0 PRINT A * GY4 —display value of expression

A * G%(B5.6)andstart -

new line

When executed, this program will produce the following output:

STUFF AND NONSENSE

A = 5 + 35

G4 = 16

C$ = FRED

85.6 —
? standsfor PRINT Abbreviation: You can use a question mark () as an abbreviation for

the keyword PR INT;if you useit, it appears as PR INT in a program —_
listing. If you type

100 7 A% —display string A %
EIST —list program

Applesoft will display
100 PRINT A% —Applesoftsees T as PRINT

116 Input/Output

523 Number Formats

Ranges of numeric values

All arithmetic done on reals

truncate: to convert a real number to the
next lower integer

Rules for number formats

This section describes the formats in which Applesoft displays or
prints numeric values. Numbers may not always be formatted in the
way you might expect; this is particularly true for numbers more than
nine digits long or for exceptionally small numbers.

Numeric values in Applesoft mustbe intherange — 1 #1038 to
1% 107 38. Any number whose absolute value is less than approxi-
mately 3% 10" — 39 is converted to zero. True integer values to

be assigned to integer variables (such as A%) must be in the range
-32767t0 +32767.

A number typed from the keyboard or a numeric constant used in an
Applesoft program may have as many as 38 digits. However, only
nine digits are significant, and the last digit is rounded off. An Apple-
soft statement that you type as

PRINT 1.23456787654321

—you type this from the
keyboard
will display
+ 23456788 —you get this on the screen
on the screen.

Integers are always converted to real form before being used in arith-
metic calculations, and the results are converted back to integer form
when assigned to an integer variable. Conversion from real to integer
form is by truncation to the next lowest integer, not by rounding to the
nearest integer.

Applesoft displays and prints numbers according to the following
rules:

e Ifthe number is negative, itis preceded by a minus sign (-); ifitis
zero or positive, no sign is used.

e |fthe number is an integer with an absolute value from O to
9989 999 999, itisformatted as an integer.

Output 117

Table 5-1 Number Formats

scientific notation: the representation
of numbers in terms of powers of 10

Figure 5-1 Format for Scientific Notation

sign exponent symbol

each X is a digit

sign of exponent

digits of exponent

118

e |fthe number is not an integer and its absolute value is between
+01and 89898 999 8989, 2 itisformatted with a decimal
pointin the usual way.

e Inall other cases, the number is formatted in scientific notation

(see below).

Table 5-1 shows examples of the formats used for displaying and

printing numbers.

Number

+1
=1

6523

—23.460

45.72%10°5
1%10"20
—12.34567896 * 10" 10
1000000000

999999999

632

Output Format

3

—23.46
45372000

1E+20

—1.,2345679E+11
1E+08
98898990899

The format Applesoft uses for scientific notation is shown in Figure
5-1. A sign is shown only if the number is negative. There is always
exactly one nonzero digit before the decimal point and up to eight dig-
its after it, with trailing zeros suppressed. There are never any lead-
ing zeros; the digit before the decimal point is always nonzero. If
there is only one digit to print after all trailing zeros are suppressed,
no decimal point is shown. The letter E (for “exponent”) is always
followed by a sign and a two-digit exponent. The value of a number
represented in this form is the number before the E times 10 raised to

the power after the E. For example,

PRINT 35 * 345 14
PRINT -3.14139 * 367
PRINT 1 / 988

PRINT -3 / 988

Input/Output

yields
3
yields
yields
yields

1.184500853E+37

-1.,84104G69E+ 14
1.,001001E-03
-3.,003003E-03

524 Formatting Text on the Screen

POKE statement: see Section 7.1.2

TEXT switches from graphics to text
display

text window: see below
80-Column Text Card: see Apple lle

Owner's Manual, Apple lle 80-Column
Text Card Manual

HOME clears the text window

- text window: see below

This section deals with Applesoft’s facilities for controlling the way
text is formatted and presented on the display screen. For further in-
formation on text formatting, see Section 5.2.2, “The PRINT
Statement.”

The TEXT and HOME statements are used to clear text and graph-
ics from the screen.

SPC, TAB,HTAB,VTAB, and POS control the position of the cur-
sor, which determines where characters are displayed on the screen.

NORMAL, INVERSE, and FLASH control the form in which text
characters are presented on the screen.

The SPEED = command sets the rate at which characters are
displayed.

The POKE statement can be used to set the boundaries of the text
window within which text is displayed on the screen.

The TEXT Statement
TEXRT

The TEXT statement instructs Applesoft to begin displaying text on
the screen; itis usually used to switch from graphics to text display.
The text window is set to the full screen (24 lines, 40 characters per
line; 80 if the 80-Column Text Card is installed and running in “active
80" mode). The Applesoft prompt character (1) is displayed in the
bottom-left corner of the screen, followed by the cursor.

If the display is already in text mode, the TE X T statement is equivalent
tothe statement YV TAB 24 (see “The Y TAB Statement,” below).

The HOME Statement
HOME

HOME clears the currently defined text window and sends the cur-
sor to the top-left corner of the window. If the text window is set to
the full screen, the cursor is sent to the beginning of line 1. If the
computer is displaying mixed text and graphics (four lines of text at
the bottom of the screen), HOME clears the four text lines and
sends the cursor to the beginning of line 21.

Output 119

Helpful Hint: To move the cursor to the top-left corner of the screen
without clearing any text, use

UTAB and HTAB statements: see UTAB 1 : HTAB 1
below

The S5FPC Function

SPC displays spaces on the screen The SPC (for “space”) functionis usedin PR INT statements to

write a specified number of spaces to the current output device. The

numeric argument given to the function specifies the number of —_—
spaces to be written. If this value is a real number, Applesoft trun-

cates it to the next lowest integer.

PRINT statement: see Section 5.2.2

The SPC function can be called only from withina PR INT state-
TAB function: see below ment. SPC differs from TAB in that it advances the cursor (or print
:) head, if the current output device is a printer) a specified number of —
current output device: see Section . " o .
5.2.1 columns from its current position, rather than to a specific horizontal
position from the beginning of the current line. If the cursor is spaced
past the right edge of the screen or text window, it returns to the be- —
ginning of the next line and continues spacing. For example, assum-
ing the text window is set to the full screen and the cursor is initially at
the left edge, the statements —

10 PRINT SPC (3)3 "HELLO"
—display HEL L O starting in e
column 6
20 PRINT "THESE"3i SPC (10)3F "ARE"3 SPC
(4)35 "INTERESTING" 3 SPC (12)3 —
"TIMES" —display THESE, 10
spaces, ARE, 4 spaces,
INTERESTING, 12 spaces, td
TIMES

will display the following on the screen: i

== HELLO

THESE = ARE INTERESTING
Notice how the output of line 20 “wraps around” when it reaches the
edge of the screen (column 40). —_

SPC atend of PR INT suppresses new If SPCisthelastitemina PR I NT statement, Applesoft acts as if the

line statement ended with a semicolon. The cursor is left positioned the —
specified number of spaces after the end of the previous item; no new
line is started. The next item displayed will begin immediately following
the last space.

120 Input/Output

The argument given to SPC must be in the range 0 to 255 or the pro-
gram will halt with the message

T TILLEGAL QUANTITY ERROR
However, several calls to S PC can be strung together in the form
EFRINGE SELGESS) S GRIGZES) 3 SRE(ZES)

to provide arbitrarily large numbers of spaces.

Semicolons are optional between SPC items:

o PRINT -WEET Y EHPES 1 0 "aLL" SPL (155
"REJBICE"

— The TAB Function

TAB advances cursor to a specified The TAB functionisusedin PR INT statements to advance the cur-

horizontal position sor to a specified horizontal position from the beginning of the current

PRINT statement: see Section5.2.2 output line. The numeric argument given to the function specifies the
position to which the cursor is to be moved. If this value is a real num-
ber, Applesoft truncates it to the next lowest integer.

The TAB function can be called only from withina PR INT state-

SPC function: see above ment. TAB differs from SPC in that it advances the cursor (or print

: Y head, if the current output device is a printer) to a specific horizontal

current output device: see Section i il . o

5.2.1 position from the beginning of the current line, rather than a specified
number of columns from the current cursor position. If the cursor is
advanced past the right edge of the screen or text window, it returns
to the beginning of the next line and continues advancing. For exam-
ple, assuming the text window is set to the full screen and the cursor
is initially at the left edge, the statements

10 PRINT TAB (135)3 "THE FLEET’S IN!"
—display THE FLEET’S IN!
starting at column 15
20 PRINT TAB (10)35 "HELLO"3 TAB (30)3
"THERE " 3§ TAB (45)3 "SAILOR!"
—display HEL L O at column 10,
THERE # atcolumn 30,
SAILOR! atcolumn5 of
nextline

- will display the following on the screen:

= THE FLEET’S IN!
L HELLO | THERE
SAILOR!

Output 121

Notice how the output of line 20 “wraps around” when it reaches the
edge of the screen (column 40).

HTAB statement: see below Unlike the HT AB statement, which moves the cursor to an absolute hor-
izontal position from the left edge of the screen or the text window, TAB
moves the cursor in a forward direction only. If the specified tab position
is less than the current cursor position, TAE has no effect; it will never e
move the cursor to the left on the current line (use HT AB for this
purpose).

TAB atend of PR INT suppresses new If TAB isthe lastitemina PR I NT statement, Applesoft acts as if the

line statement ended with a semicolon. The cursor is left at the specified tab
position; no new line is started. The next item displayed will begin at the —
tab position.

The argument given to TAB must be in the range 0 to 2575 or the pro-
gram will halt with the message

TILLEGAL QUANTITY ERROR —

An argument value of O moves the cursor to 256 positions from the be-
ginning of the current line.

Semicolons are optional between TAB items:

PRINT "DOWN"3§ TAB (14) "YOUu" TAB (27)i "GO"

The HTAB Statement

HTAB 10
HTAB N
HTAB 41 - LEN (S5%) —

HTAB moves cursor to a specified HTAB (for “horizontal tab”) moves the cursor to a specified horizon-

horizontal position tal position from the beginning of the current output line. The expres-
sion following the keyword HT AB specifies the position to which the
cursor is to be moved. If this value is a real number, Applesoft trun-
cates it to the next lowest integer.

122 Input/Output

TAB function: see above

HTAB can move cursor in either
direction

text window: see below

Unlike the TAB function, which moves the cursor in a forward direc-
tion only, the HT AB statement can move the cursor in either direction
to a specified horizontal position. For example, the program

5 HOME —clear text from screen
10 HTAB B : PRINT "IS THE "3
—display I 5 THE starting at
column 6
15 FOR 2 = 1 TO 3500: NEXKT Z
—delay loop so user can see the
order and position of text
display
20 HTAB 1 : PRINT "THIS "3
—display THIS at column 1
25 FOR Z = 1 TO 500 : NEXT Z
—another delay loop
30 HTAB 13 : PRINT "PROPER ORDER"
—display PROPER ORDER at
column 13

will display the following on the screen:

THIS 15 THEI PROPER ORDER

If you want to use HT AB to display several text items on the same line,
you need a semicolon at the end of each PR INT statement, as in the
program above, to avoid starting a new line.

If there is a text window set, the specified tab position is interpreted
relative to the left edge of the window. However, HT AB behaves as
though there were 40 columns in each line of the window, regardless
of the actual width to which the window has been set; that is, position
1 is considered to be the leftmost column of the current line, position
41 the leftmost column of the next line, position 81 the leftmost col-
umn of the line after that, and so on. If the cursor is advanced past the
right edge of the screen or text window, it returns to the beginning of
the next line and continues advancing.

HTAB can carry the cursor outside the boundaries of the text
window, but only long enough to display one character; the cur-
sor then returns to the left edge of the window.

Output 123

80-Column Text Card: see Apple lle 80-Column Text Card Users: HTAB is designed to operate with a
Owner’s Manual, Apple lle 80-Column 40-column screen only. If you attempt to advance the cursor beyond
Text Card Manual column 40, it will “wrap around” to the next line, even if you have the

Apple lle 80-Column Text Card installed and running in “active 80" -
mode. To tab to a position between columns 41 and 80, use

POKE statement: see Section 7.1.2 POKE 3By XX

where } X the number of the column to which you want to tab. See
Section F.1 and the 80-Column Text Card Manual for more information.

The column number specifiedto HTAB must be inthe range O to 255
or the program will halt with the message

TILLEGAL QUANTITY ERROR

A value of © moves the cursor to 256 positions from the beginning of the —
current line.

Many programmers find HT AB to be more convenient to use than TAB,
because itis an independent statement and need not be embedded in a
PR INT statement. This makes it easier to change, if necessary, during
program development.

The YV TAB Statement

UTAB 10
UTAB N
UTAB 25 - HZ

U TAB moves cursor to a specified UTAB (for “vertical tab”) moves the cursor vertically to a specified

vertical position line on the screen. The expression following the keyword Y TAB i
specifies the line to which the cursor is to be moved. If the value of
this expression is a real number, Applesoft truncates it to the next
lowest integer. -

The top line of the screenis line 1; the bottom lineisline 24. VTAB

may move the cursor either up or down on the screen, but never to —_
the left or right; it remains at the same horizontal position as before

the move. For example,

10 HOME —clear text from screen
20 UTAB 6 —move cursor to line 6 -
30 PRINT "LINE GB" —display imaginative message

124 Input/Output

Text window ignored

POS yields current horizontal cursor
position

Argument required but ignored

40 FOR 2 = 1 TO 200 : NEXT Z
—delay loop so user can see the

order and position of text
display

30 UTAB 18 —move cursor to line 18

B0 PRINT "LINE 18" —display another imaginative
message

70 FOR Z = 1 TO 500 : NEXT Z
—another delay loop

BO UTAB 12 —move cursor to line 12
90 PRINT "THE MIDDLE" —display last message

LU TAB ignores the setting of the text window, if any. The specified line
number is always taken to refer to the entire screen.

The line number specified to 4 TAB must be in the range 1 to 24 orthe
program will halt with the message

TILLEGAL QUANTITY ERROR

If YT AB moves the cursor to a line below the bottom of the text window,
all subsequent text will be displayed on that same line.

The POS Function

The POS (for “position”) function yields the current horizontal posi-
tion of the cursor, relative to the left edge of the screen or text window.
The value yielded is in the range © to 39 (0 to 79 if the Apple lle
80-Column Text Card is installed and running in “active 80" mode). A
value of O represents the left edge of the screen or window.

Strange but True: The argument given to POS is ignored, and has no
effect on the operation of the function. However, you can't leave it out—
you must include an argument expression of some kind to “keep the pa-
rentheses apart.” What you use for an argument expression doesn'’t
matter, but if Applesoft can’t evaluate it as a legal expression, you'll get
an error halt.

Output 125

A Difference of Opinion: Notice that P05 numbers columns beginning
POS, TAB,and HTAB disagree with O, whereas TAB and HT AB number them beginning with 1. Thus,
assuming the cursor is at the beginning of a line, the statement

PRINT TAB (10)i POS (0) —tabtocolumn 10anddisplay

position
will display the value 9, and o
HTAB 43 : PRINT POS (X)
—tab to column 43 and display —
position

will display 2 (since HTAB 43 tabs to the third column of the next dis-
play line). Notice in the second case that the value of variable X makes
no difference.

The INVERSE Statement -
INVERSE

INVERSE displays text in black-on- The INVERSE statement causes subsequent text output to be
white displayed in black-on-white instead of the usual white-on-black
(where “white” means the phosphor color of your display, whatever
that is). The normal white-on-black display can be restored with the
NORMAL statement: see below NORMAL statement. For example,

10 INVERSE —set inverse display
20 PRINT "BLACK-ON-WHITE"
—display BLACK -0ON - =
WHITE in black-on-white
30 NORMAL —restore normal display
40 PRINT "WHITE-ON-BLACK" —
—display WHITE-ON -
BLACK in white-on-black

INVERSE affects only subsequent output characters sent to the
PR INT statement: see Section 5.2.2 screen with PR I NT statements. It has no effect on characters al-
ready on the screen or on keyboard input “echoed” to the screen. —

Don’t Overdo It: I NVERSE is most effective when you use it sparingly.

126 Input/Output

FLASH causes text to flash on the
screen

NORMAL statement: see below

PR INT statement: see Section 5.2.2

ASCII codes: see Section 4.2.1 and
Appendix C

80-Column Text Card: see Apple lle
Owner’s Manual, 80-Column Text
Card Manual

The FLASH Statement
FLASH

The F L ASH statement causes subsequent text output to alternate
approximately twice a second between black-on-white and the usual
white-on-black (where “white” means the phosphor color of your dis-
play, whatever that is). The normal white-on-black display can be re-
stored with the NORMAL statement. For example,

10 FLASH —set flashing display

20 PRINT "FLASHY" —display flashy FLASHY
30 NORMAL —restore normal display
40 PRINT "DRAB" —display drab DRAB

F L ASH affects only subsequent output characters sent to the
screen with PR I NT statements. It has no effect on characters al-
ready on the screen or on keyboard input “echoed” to the screen.

FLASH doesn’t work on characters with ASCII codes above 95, the
most important of which are the lowercase letters; instead of making
them flash, it turns them into gibberish. FL ASH doesn’t work at all if you
have the Apple lle 80-Column Text Card installed and running in “active
80" mode.

A Little Dab’ll Do Ya: F L ASH is most effective when you use it very
sparingly. Reserve it for only the most important messages or unusual
uses. Cavalier use of F L ASH has been known to drive users to
delirium. -

Output 127

NORMAL displays text in white-on-
black

INVERSE and FL ASH statements:

see above

PRINT statement: see Section 5.2.2

SPEED = sets rate of text output

128

The NORMAL Statement
NORMAL

The NORMAL statement causes subsequent text output to be dis-
played in the usual white-on-black (where “white” means the phos-
phor color of your display, whatever that is). Itis usually used to
cancel the effects of the INVERSE or FLASH statement. For
example,

10 INVERSE —setinverse display
20 PRINT "BLACK-ON-WHITE"
—display BLACK -ON -
WHITE in black-on-white
30 NORMAL —restore normal display
40 PRINT "WHITE-ON-BLACK®
—display WHITE-ON-
BLACK in white-on-black

20 FLASH —set flashing display

B0 PRINT "FLASHY" —display flashy FLASHY
70 NORMAL —restore normal display
80 PRINT "DRAB" —display drab DRAB

NORMAL affects only subsequent output characters sent to the
screen with PR I N T statements. It has no effect on characters al-
ready on the screen.

The SPEED= Statement

SPEED= Z355
SPEED= X
SPEED= 2 - 6 * F

The SPEED = statement sets the rate at which output characters
are sent to the display screen or other output device (such as a

printer). The slowest rate is O; the fastestis 25 5. The normal speed
setting (if you don’t do anything to change it) is 25 5. For example,

10 SPEED= © —set slowest possible speed
20 PRINT "THE TORTOISE"
—display THE TORTOISE

slowly
30 SPEED= 255 —restore normal speed
40 PRINT "THE HARE" —display THE HARE quickly

Input/Output

SPEED isn'ta variable Notice that the equal sign is part of the keyword SPEED =; it doesn't
represent an assignment to a variable named SPEED. A statement
such as

EET “SPEED==MX

— will cause a syntax error. The only way to find out the current speed
setting is to keep track of it yourself with a variable, as in the following

example:
- 10 LET XK. .= 2850 —set initial value for speed
20 [BREED= X —set speed to value of X
e 40 NPRINT IS EURRENTNSPEED T8 | 15X
—display current speed
40 LET X .= ¥ - 28 —decrease value of X by 25

50 IF X >= 0 THEN GOTO 20
—repeat until X becomes
negative

GO SPEED=" 289 : END —X is too low; end the program

— The speed setting is not reset to its normal value by RUN, CLEAR or
CONTROL |-[RESET |.

The speed setting specified to SPEED = must be in the range O to
255 or the program will halt with the message

— TILLEGAL QUANTITY ERROR

The Text Window

The “window” within which text is displayed and scrolled on the
screen can be set to less than the full screen through the magic of the

POKE statement: see Section 7.1.2 POKE statement. See Section F.1 for details and the Apple lle Refer-
ence Manual for a more technical discussion.

— 525 Miscellaneous Output Facilities

This section covers Applesoft’s facilities for dealing with the remain-

ing output features of the Apple lle: the built-in speaker, annunciator

outputs, utility strobe, and cassette tape output. Most of these fea-
PEEK function: see Section 7.1.1 tures are controlled by means of PEEK and POK E; details can be
found in Appendix F, “Peeks, Pokes, and Calls.” The annunciators
and utility strobe are seldom used, and are mentioned here just for
the sake of completeness.

— POKE statement: see Section 7.1.2

Output 129

Controlling The Speaker

The Apple lle has a small, built-in speaker that you can use to add
sound to your programs. The easiest way to use it is by sending the —

[conTROL J-G sounds the “bell” ASCII “bell” character ([conTroL |-G, ASCII code 7) to the display

screen. This causes the computer to emit a short “beep.”

Historical Note: ASCII code 7 was originally used to ring a small bell on
teletype machines, to let the teletype operator know that a message was
coming in. On the Apple lle it sends a 1-kilohertz tone (1000 cycles per
second) to the computer’s speaker for 1/10 second.

Here’s a program to ring the computer’s “bell” a number of times
specified by the user:

10 PRINT "ENTER A NUMBER FROM 1 TO 9
(5 TO STOP):"3 —promptuserforinput

20 GET A% —accept single character from
keyboard L
30 IF A% = "B" THEN END

—stop if user typed S
40 IF VAL (A%) < 1 THEN Z0O
—if character typed is out of

range then try again
50 FOR X = 1 TO VAL (A%)
—loop requested number of -
times
B0 PRINT CHR% (7) —sound “bell”
70 NEXT X —Iloop backto 50 _
B0 PRINT —leave a blank line
g0 GOTO 10 —start again

The only other way to produce sound from the speaker is with a
PEEK or POKE to address - 1 53 36. This causes the speaker to
emit a single “click.” By combining such clicks in the appropriate pat-
terns and frequencies, you can produce musical tones and a variety
of other sounds. Experiment for yourself!

For technical information on the built-in speaker, see the Apple lle
Reference Manual.

130 Input/Output

annunciators: see Apple lle Reference
— Manual

utility strobe: see Apple lle Reference
Manual

SAVE command: see Section 1.2.5 and
Appendix M

STORE statement: see Appendix M

Annunciator Output

The Apple lle has four annunciator outputs, which are pins of the
hand control connector on which electrical impulses can be transmit-
ted. The signals on these pins are most commonly used to control
devices such as lamps and relays connected to &he computer
through the hand control connector. The annunciator outputs can be
turned on and off with PEEK or POKE to the appropriate addresses;
see Section F.4 for details and the Apple lle Reference Manual for
further technical information.

The Utility Strobe

The Apple lle’s utility strobe is a pin of the hand control connector that
can be triggered to send an electrical impulse lasting one-half micro-
second. Like the annunciators, it can be used to control a variety of
devices connected to the computer through the hand control connec-
tor. The utility strobe can be triggered witha PEEK or POKE to ad-
dress - 1 G3Z0; see Section F.4 for details and the Apple Ile
Reference Manual for further technical information.

Cassette Output

Two Applesoft statements, SAVE and STORE, can be used to write
information to a cassette tape recorder. SAVE writes the Applesoft
program currently in memory to tape; 5 TORE writes the contents of
an integer or real array. For details, see Appendix M, “If You Have a
Cassette Recorder.”

Output 131

132

Input/Output

Chapter 6

- Graphics

135 6.1 Low-Resolution Graphics

136 6.1.1 The GR Statement
i 137 6.1.2 The COLOR = Statement
138 6.1.3 The PLOT Statement
139 6.1.4 The HL I N Statement
—_ 140 6.1.5 The VL I N Statement
141 6.1.6 The SCRN Function
142 6.2 High-Resolution Graphics
- 143 6.2.1 The HGR Statement
144 6.22 The HGRZ Statement
145 6.23 The HCOLOR = Statement
- 146 6.24 The HPLOT Statement
148 6.2.5 Protecting High-Resolution Graphics
150 6.3 Shape Tables
S 150 6.3.1 Creating a Shape Table
150 Plotting Vectors
151 How Plotting Vectors Are Interpreted
- 151 Coding a Shape Table
153 The Shape Table Index
154 Loading a Shape Table into Memory
= 157 Saving and Loading a Shape Table
159 6.3.2 Using Shape Tables
160 The DR AW Statement
- 161 The XDR AW Statement
163 The SCALE = Statement
164 The ROT = Statement
= 165 The SHLOAD Statement

Graphics 133

low-resolution graphics: see Section
6.1

high-resolution graphics: see Section
6.2

shape tables: see Section 6.3

6.1

GR statement: see Section 6.1.1

COLOR = statement: see Section 6.1.2

PLOT statement: see Section6.1.3
HL I N statement: see Section 6.1.4
UL I N statement: see Section 6.1.5

SCRN function: see Section 6.1.6

Chapter 6

Graphics

This chapter describes Applesoft’s facilities for creating, changing,
displaying, and storing both low- and high-resolution graphic
designs.

Section 6.1, “Low-Resolution Graphics,” deals with 16-color graphics
on a 40-by-48 grid.

Section 6.2, “High-Resolution Graphics,” deals with 6-color graphics
on a 280-by-192 grid.

Section 6.3, “Shape Tables,” discusses the use of shape tables for
animation sequences.

Low-Resolution Graphics

The low-resolution graphics screen consists of 1920 blocks (40 col-
umns by 48 rows) in 16 colors. This section describes the facilities
available in Applesoft for using low-resolution graphics:

e The GR statement instructs Applesoft to begin displaying low-
resolution graphics.

e The COLOR = statement controls the colors displayed on the
screen.

The PLOT statement plots individual blocks on the screen.
The HL I N statement draws horizontal lines.

The YL I N statement draws vertical lines.

The SCRN function determines what color is currently displayed
at any position of the screen.

Low-Resolution Graphics 135

6.1.1 The GR Statement
GR —

GR displays low-resolution graphics ~ The GR (for “graphics”) statement instructs the computer to display
low-resolution graphics. If the screen has been displaying text, it is
changed from 40 (or 80) columns by 24 lines of text to 40 columns by
40 rows of graphics, with space for four lines of text at the bottom.

TEXT statement: see Section 5.2.4 (Full text display can be restored with the TE X T statement.) GR
clears the screen to black, moves the text cursor to the beginning of
text window: see Section 5.2.4 the bottom line (line 24), clears any text window that may have been

set, and sets the low-resolution display color to © (black).

After executing a GR statement, you can convert the display to full-
screen graphics (a 40-by-48 grid with no space for text) with the
statement

POKE statement: see Section 7.1.2 POKE -16302Z,0

This statement will change the bottom four lines of text to eight rows
of colored blocks. To clear these rows to black, add

CALL -1998

Notice that the P OK E statement above must be executed after GR. If
you execute the POKE first, GR will reset the screen to mixed graphics

and text. —
high-resolution page 2: see Section If you execute a GR statement while displaying high-resolution page 2, ___'
6.2.2 GR clears its usual screenful of memory but leaves you looking at page

2 of low-resolution graphics and text. To avoid this problem, always use
the TEX T statement before switching from high-resolution page 2 to
low resolution. —

For more information... See Section F.3 for more information on the use of the various text and
graphics memory pages. See the Apple lle Reference Manual for fur- —
ther technical information on the Apple lle’s graphics display
capabilities.

136 Graphics

612 The COLOR= Statement

COLOR= 12
COLOR= C(J)
COLOR= (X - 4) / 16

COLOR = sets low-resolutiondisplay The COL OR = statement sets the display color for plotting low-
e resolution graphics. There are 16 colors available, represented by
— numbers from 0 to 1 5 as shown in Table 6-1. When you enter
low-resolution graphics, the GR statement sets the display color to

black (0).
Table 6-1 Color Codes for Low-Resolu-
tion Graphics Code Color Code Color
0 black 8 brown
- 1 magenta 9 orange
2 dark blue 10 grey-2
3 violet 11 pink
- 4 dark green 12 green
3 grey-1 13 yellow
= B medium blue 14 aqua
7 light blue 15 white

If you're using a monochrome display (black-and-white, or some other
single phosphor color), the different colors will appear on your screen as
— various patterns of shading.

The following short program displays each of the 16 available colors
L. in a horizontal bar across the screen:

10 GR —display low-resolution

- graphics
20 FOR X = 0 TO 15 —execute loop for each color
30 COLOR= X —set next color

- HL I N statement: see Section 6.1.4 40 HLIN © 38 AT X * 2

—draw a bar of this color across
the screen, leaving a blank
- row above it
20 NEXT X —qo back for next color

Low-Resolution Graphics 137

COLOR isn'tavariable

PLOT draws a single block

low-resolution display color: see
Section 6.1.2

138

Notice that the equal sign is part of the keyword COLOR = ; it doesn't
represent an assignment to a variable named COL OR. A statement
such as

LET COLOR= X

will cause a syntax error. The only way to find out the current display
color is to keep track of it yourself with a separate variable, as in the
example above.

You can specify a color code higher than 1 5, but the series of color val-
ues simply repeats. Thatis, 16 is equivalentto O, 18 is equivalentto Z,
35 is equivalent to 3, and so on. However, a color value less than © or
greater than 255 will stop the program with the message

TILLEGAL QUANTITY ERROR

The PLOT Statement

PLOT 20, 12
PLOT X - B ¥ + 2
PLOT THETA * 40 /

(SIN(THETA)

(2%PI)
* Z23)

24 -

The PLOT statement places a block of the current low-resolution
display color at a specified position on the screen. The first expres-
sion following the keyword PL O T specifies the column in which the
block is to be plotted (numbered © to 39, from left to right); the sec-
ond expression, separated from the first by a comma, designates the
row (numbered © to 39 for mixed text and graphics, © to 4 7 for full-
screen graphics, from top to bottom). For example, the following pro-
gram plots a block of pink in column 20, row 2 of the screen:

10 GR —display low-resolution
graphics

20 COLOR= 11 —set display color to pink

30 PLOT 20, 2 —plot a block of pink in column

20, row 2

Figure 6-1 shows the system of coordinates used to designate posi-
tions on the low-resolution graphics screen. Position O + O is the top-
left corner and position 39 : O the top-right. When displaying mixed
graphics and text, the bottom-left corner is position © » 39 and the
bottom-rightis 39 » 39; in full-screen graphics, the bottom-left cor-
neris 0 » 47 and the bottom-rightis 39 »47.

Graphics

Figure 6-1 Screen Coordinates for Low-

Resolution Graphics

HL I N draws a horizontal line

low-resolution display color: see
Section 6.1.2

6.1.4

0y 0

0y 39
(orry 47)

39y 0

39, 39
(or39 47)

If Applesoft is displaying mixed graphics and text and the plotting coordi-
nates designate a row from 40 to 4 7, a text character will be displayed
at the specified coordinates instead of a block of color. The particular
character displayed depends on the current low-resolution display color. .
Here’s a program to demonstrate this effect:

10

20
30
40

50
60O
70

GR

EOR. Y
FOR! X
COLOR

([T |

PLET s
NEXT X
INERT T

0O TO 47
ol e e

o

Try changing line 10 to

10

to see the effect on the full screen.

TEXT

—display mixed low-resolution
graphics

—loop over all screen rows

—Iloop over all screen columns

—use color corresponding to col-
umn number (colors 0 to 15 will
repeat after column 15)

—plot a block at column X, row Y

—Iloop to next column

—Iloop to next row

A column coordinate outside the range © to 39 or a row coordinate out-
side the range O to 4 7 will cause the program to halt with the message

PILLEGAL QUANTITY ERROR

The HL I N Statement

HLIN 5
HLIN X

HLIN @

20

AT 35
Y AT Z

3+ J * 858 AT Vi

The HL I N (for “horizontal line”) statement draws a horizontal line on
the screen in the current low-resolution display color. The two expres-
sions following the keyword HL I N, separated by a comma, desig-
nate the columns in which the line is to begin and end; the expression
following the keyword AT specifies the row in which the line is to be

Low-Resolution Graphics

139

drawn. The first end point may be less than, equal to, or greater than
the second. For example,

10 GR —display low-resolution

graphics
20 COLOR= 4 —set color to dark green -
30 HLIN 10 30 AT Z0 —drawahorizontal greenlinein

row 20 from column 10 to col-

umn 30

If you use HL I N while displaying text instead of graphics, or with a row
coordinate from 40 to 4 7 while displaying mixed graphics and text,
Applesoft will display a row of characters instead of a bar of color. For
example, if line 1 O above were changed to

10 TEXT —display text instead of graphics —
the result would be a row of dollar signs instead of a bar of dark green. In

most cases, when you see patterns like these on your screen it means
you forgot to include a GR statement. S

A column coordinate outside the range © to 39 or a row coordinate out-
side the range © to 4 7 will cause the program to halt with the message

TILLEGAL QUANTITY ERROR

The HL I N statement has no visible effect if you use it while displaying
high-resolution graphics.

615 The VL IN Statement
ULIN 5 20 AT 35
ULIN X+ ¥ AT Z
ULIN Q@ - 3, J * 58 AT V% —

UL IN draws a vertical line The VL IN (for “vertical line”) statement draws a vertical line on the
o screen in the current low-resolution display color. The two expres-
low-resolution display color: see p 3 U .
Section 6.1.2 sions following the keyword YL I N, separated by a comma, desig-
nate the rows in which the line is to begin and end; the expression

140 Graphics

6.1.6

SCRN reads the color at a designated
screen position

color codes: see Table 6-1, Section
6.1.2

following the keyword AT specifies the column in which the line is to
be drawn. The first end point may be less than, equal to, or greater
than the second. For example,

10 GR —display low-resolution
graphics

20 COLOR= 4 —set color to dark green

30 ULIN 10, 30 AT 20 —drawaverticalgreenlinein
column 20 from row 10 to row
30

If you use VL I N while displaying text instead of graphics, or if part of
the line being drawn goes beyond row 39 while displaying mixed graph-
ics and text, Applesoft will display text characters instead of blocks of
color. For example, if line 1 O above were changed to

1OUTRERT —display text instead of graphics
the result would be a row of flashing D’s and a dollar sign instead of a bar
of dark green.

A column coordinate outside the range © to 38 or a row coordinate out-
side the range © to 4 7 will cause the program to halt with the message
TILLEGAL QUANTITY ERROR

The VL I N statement has no visible effect if you use it while displaying
high-resolution graphics.

The SCRN Function

The SCRN (for “screen”) function reads the color currently displayed
at a designated position on the low-resolution graphics screen. This
function takes two arguments, the first specifying the column and the
second the row of the desired position. It yields a number from O to

1 5 representing the color displayed at that position. For example, the
expression

SCRN (3, 9)
yields the code for the color displayed at column 5, row 9.

The SCRN function is not intended for use with high-resolution
graphics.

Low-Resolution Graphics 141

For Experts Only—Strange Extensions: Although the ordinary limits
for coordinates on the low-resolution graphics screen are 39 and 4 7,
SCRN will actually accept values up to 4 7 for both arguments. But if the
column parameter is greater than the usual limit of 38, odd things hap-
pen. The code yielded by SCR N gives the color for the block whose col-
umn is the designated column minus 40, and whose row is the
designated row plus 16. —

If the row-plus-16 number is in the range 4 O through 47, and if mixed
graphics and text are being displayed, then the code yielded is not a
color code, but is related to the text character at that position in the text
area below the graphics (see “For Experts Only—Reading the Text
Screen,” below).

If the row-plus-16 numberisintherange 48to 53, SCRN yieldsare-
sult whose meaning is beyond the ken of mere mortals.

For Experts Only—Reading the Text Screen: When text is being dis-
played, SCRN yields numbers in the range © to 1 5 whose value is
either the high-order four bits (if the row number is odd) or the low-order
four bits (if the row number is even) of the characterincolumnC + 1
androw (R + 1) / 2, whereC andR are the column and row
numbers given as arguments to SCRN. Thus the following expression
will yield the character at position * + Y : —_
CHR$ (SCRN (X 1

- & * (y - 1) Bl 1) % 16
+ 8CRN (X - 1y *

(= 12)

4
2
&

Im High-Resolution Graphics
6.2

There are two separate regions in the Apple lle’s memory, desig-

nated page 1 and page 2, that can be used for displaying high-resolu-

tion graphics. Each consists of 53,760 points (280 columns by 192 —
rows), which can be displayed on the screen in 6 colors. This section
describes the facilities available in Applesoft for using high-resolution

graphics: —
HGR statement: see Section 6.2.1 ® The HGR statement instructs Applesoft to begin displaying page
1 of high-resolution graphics. —
HGR Z statement: see Section 6.2.2 e The HGRZ statement instructs Applesoft to begin displaying
page 2 of high-resolution graphics.
HCOLOR = statement: see Section e The HCOL OR = statement controls the colors displayed on the
6.23 high-resolution screen.

HPLOT statement: see Section 6.2.4 e The HPLOT statement plots individual points and lines on the
high-resolution screen.

protecting programs and graphics: Section 6.2.5 tells how to protect your programs and high-resolution
see Section 6.2.5 graphics from overwriting each other in the computer's memory.

142 Graphics

HGR displays high-resolution
 S— graphics page 1

6.2.1

high-resolution display color: see

Section 6.2.3

POKE statement: see Section 7.1.2

TEXT statement: see Section 5.2.4

protecting programs and graphics:

see Section 6.2.5

A

The HGRk Statement
HGR

The HGR (for “high-resolution graphics”) statement instructs Apple-
soft to display page 1 of high-resolution graphics. If the screen has
been displaying text, it is changed from 40 (or 80) columns by 24 lines
of text to 280 columns by 160 rows of high-resolution graphics, with
space for four lines of text at the bottom. The graphics area of the
screen is cleared to black; the high-resolution display color is not af-
fected. HGRR doesn't affect the contents of the text screen, the setting
of the text window, or the location of the text cursor; the cursor will not
be visible unless itis in one of the bottom four lines of the screen.

After executing an HGRR statement, you can convert the display to full-
screen graphics (a 280-by-192 grid with no space for text) with the
statement

POKE -16302, 0

This statement will change the bottom four lines of text to high-reso-
lution graphics. To return to mixed graphics and text, use

POKE -163014+ 0O

Notice that the first POK E statement above must be executed after
HGR. If you execute the POKE first, HGR will reset the screen to mixed
graphics and text.

The TEX T statement will return to text display with the text window
set to the full screen and the cursor at the bottom of the screen. To
turn off high-resolution graphics and return to text display with the
text window and cursor intact, use the statement

POKE -16303s+ O

If you intend to use HGR with an Applesoft program longer than about
6000 (decimal) bytes, see Section 6.2.5 on how to protect your program
and graphics from overwriting each other.

Warning

If you use the reserved word HGR as the first three characters of a vari-
able name, the HGRR statement may be executed before a syntax error is
detected. For example, executing the statement

HGRIP = 4

will unexpectedly turn on high-resolution graphics and may destroy part
of your program.

High-Resolution Graphics 143

For more information...

6.2.2

HGR 2 displays high-resolution
graphics page 2

high-resolution display color: see
Section 6.2.3

text window: see Section 5.2.4

TEXT statement: see Section 5.2.4

POKE statement: see Section 7.1.2

144

See Section F.3 for more information on the use of the various text and
graphics memory pages, and Section H.1 for the memory locations oc-
cupied by the high-resolution graphics pages. See the Apple Ile Refer-
ence Manual for further technical information on the Apple lle’s graphics
display capabilities.

The HGRZ Statement
HGRZ

The HGR Z (for “high-resolution graphics, page 2”) statement in-
structs Applesoft to display page 2 of high-resolution graphics. If the
screen has been displaying text, it is changed from 40 (or 80) col-
umns by 24 lines of text to 280 columns by 192 rows of high-resolu-
tion graphics. The screen is cleared to black; the high-resolution
display color is not affected. HGR 2 doesn’t affect the contents of the
text screen, the setting of the text window, or the location of the text
cursor.

The TEX T statement will return to text display with the text window
set to the full screen and the cursor at the bottom of the screen. To
turn off high-resolution graphics and return to text display with the
text window and cursor intact, use the statements

POKE -1G6G300, O —switch from page 2 to page 1
POKE -1B303s O —switch from graphics to text

After executing an HGRR 2 statement, you can convert the display to
mixed graphics and text (a 280-by-160 grid with four lines of text at the
bottom) with the statement

POKE -1B6301: ©

However, when you use this statement while displaying high-resolution
page 2, the four lines of text will be taken from text page 2 instead of the
usual page 1. Since Applesoft uses the same memory locations allo-
cated to text page 2 for program storage, you'll end up displaying gar-
bage in the bottom four lines of your screen. For this reason, most
programmers avoid mixing graphics and text when using high-resolution
page 2.

Graphics

protecting your program: see Section

6.2.5

For more information...

A

6.2.3

HCOL OR = sets high-resolution dis-

play color

Table 6-2 Color Codes for High-Resolu-

tion Graphics

If you intend to use HGR 2 with an Applesoft program longer than about
14000 (decimal) bytes, see Section 6.2.5 on how to protect your pro-
gram and graphics from overwriting each other.

Warning

If you use the reserved word HGR 2 as the first four characters of a vari-
able name, the HGR 2 statement may be executed before a syntax error
is detected. For example, executing the statement

HGRZPIECES = 4

will unexpectedly turn on high-resolution graphics and may destroy part
of your program.

Code

L% | B S % B

~N @

Color

black-1
green
violet
white-1
black-2
orange
blue

white-2

See Section F.3 for more information on the use of the various text and
graphics memory pages, and Section H.1 for the memory locations oc-
cupied by the high-resolution graphics pages. See the Apple lle Refer-
ence Manual for further technical information on the Apple lle’s graphics
display capabilities.

The HCOLOR = Statement

HCOLOR= B
HCOLOR= C(J)
HCOLOR= (X - 4) / 8

The HCOLOR = (for “high-resolution color”) statement sets the dis-
play color for plotting high-resolution graphics. There are 6 colors
available, represented by numbers from O to 7, as shown in Table 6-2.

If you're using a monochrome display (black-and-white, or some other
single phosphor color), the different colors will appear on your screen as
various patterns of shading.

The high-resolution display color is not affected by HGR, HGR Z, or
RUN. Until your program executes an HCOL OR = statement, the
display color for high-resolution graphics is indeterminate.

Notice that the equal sign is part of the keyword HCOL OR = ; it doesn't
represent an assignment to a variable named HCOL OR. A statement
such as

LET HCOLOR= X

will cause a syntax error.The only way to find out the current display
color is to keep track of it yourself with a separate variable.

High-Resolution Graphics 145

6.2.4

HPLOT plots high-resolution points
and lines

high-resolution display color: see
Section 6.2.3

146

Curious Behavior: As you wander deeper into the recesses of the Ap-
ple lle’s graphics system, you'll begin to notice that the colors in high-
resolution graphics don'’t always act as you might expect. For example,
carefully drawn vertical lines may refuse to be visible, a white line cross-
ing a field of green may leave jagged blocks of orange in its wake, or a
point plotted with HCOLOR = 3 (white-1) may look blue if its column
coordinate is even, green if the column coordinate is odd, and white only
if a point is plotted in the next column as well. These strange phenom-
ena are a result of the way the Apple lle’s high-resolution graphics fea-
tures interact with the color circuitry in your television set. See the Apple
Ile Reference Manual for further explanation.

If you specify a color code higher than 7, your program will halt with the
message

TILLEGAL QUANTITY ERROR

The HPLOT Statement

HPLOT 140, BO

HPLOT X - 16 ¥
12

HPLOT 70,40 TO0 210,40 TO 210,120 TO
704120 TO 70440

HPLOT TO THETA * 280 /
(SIN(THETA) * 85)

+ 12 TO X + 16 Y -

(2%¥PI) s 96 -

The HPLOT (for “high-resolution plot”) statement plots points and
lines on the high-resolution graphics screen in the current high-reso-
lution display color. The first expression in each pair specifies a col-
umn (numbered 0 to 279, from left to right); the second expression,
separated from the first by a comma, designates a row (numbered ©
to 159 for mixed text and graphics, 0 to 181 for full-screen graph-
ics, from top to bottom). For example, the following program plots a
white point at column 100, row 50 of the screen:
10 HGR —display high-resolution
graphics
—set display color to white-1
—plot a point at column 100, row
50

20 HCOLOR= 3
30 HPLOT 100, 350

Figure 6-2 shows the system of coordinates used to designate posi-
tions on the high-resolution graphics screen. Position @ + O is the top-
left corner and position 278 1 0 the top-right. When displaying mixed
graphics and text, the bottom-left corner is position 0 + 1 389 and the
bottom-rightis 279 » 1 59; in full-screen graphics, the bottom-left

Graphics

Figure 6-2 Screen Coordinates for High-
Resolution Graphics

Figure 6-3 Drawing a Rectangle with
HPLOT

corneris O » 191 and the bottom-rightis 279 +191.

0, 0

0, 1589
(or0 s 191)

279, 0
279, 159
(or279, 191)

Todraw aline with HPL O T, specify the starting and ending points,
separated by the keyword T 0. The next example draws a white line
across the screen:
10 HGR —display high-resolution
graphics

—set display color to white-1
TO 278, 50

—draw a line across row 50

20 HCOLOR= 3
30 HPLOT 0, 50

You can draw a series of connected lines in the same HPLOT state-
ment by using a series of T O clauses. Each line will begin where the
last one ended. The following program, for example, draws a rectan-
gle, as illustrated in Figure 6-3:
10 HGR —display high-resolution

graphics
20 HCOLOR= 3 —set display color to white-1
30 HPLOT 70,40 TO 210,40 TO 2104120

TO 70,120 TO 70,40

—draw arectangle

(Starthere:) 70 4 40 210, 40

704 120 210 120

You can extend the series of lines almost indefinitely within the same
HPL OT statement, subject only to the limit of 239 charactersin a
program line.

High-Resolution Graphics 147

You can also continue from wherever the last HPL O T statement
ended, by writing the keyword T 0 immediately after the word
HPLOT. Forexample, adding the line

40 HPLOT TO 210+ 120 —continue drawing from last
point

to the previous program will cause it to draw in the diagonal of the
rectangle, represented by the dashed line in Figure 6-3. Applesoft
assumes that the starting point (which ordinarily would have ap-
peared between the words HPLOT and T 0) is the last point plotted.

The color of the new line drawn by HPLOT T0O is the same as that of
HCOLOR = statement: see Section the last point plotted. Even if you insertanew HCOL OR = statement
6.2.3 between lines 30 and 40, the linedrawnbythe HPLOT TO in pro-

gram line 4 O will appear in the same color as those drawn in line 30. s

To change the color of the line, use awhole new HPLOT :

35 HCOLOR= B —change color to blue -

40 'HPELDT 7040 T8, 210 120
— continue drawing from last
point —

If the screen is displaying mixed text and graphics, an attempt to plot a
point whose row coordinate is in the range 1 50 to 191 will have no vis-
ible effect. However, if you draw a line either beginning or ending in rows
160 to 191, Applesoft will display as much of the line as it can. If you later
switch to full-screen graphics with POKE -16302 ;0 the hidden por- —
tion of the line will appear.

A Warning o

Be sure to precede HPLOT by either HGR or HGR 2 or you will write
over lots of memory, including your program and variables.

If the column coordinate givento HPL OT is outside the range O to
2789, orthe row coordinate outside the range 0 to 191, the program —_—
will halt with the message

PILLEGAL QUANTITY ERROR

625 Protecting High-Resolution Graphics

Apple lle memory allocation: see The two high-resolution graphics pages lie pretty much in the center

Section H.1 of things: page 1 resides at memory addresses 8192 to 16383
(hexadecimal $Z20 00 to $3FFF) and page 2 ataddresses 16384
to 24575 (hexadecimal #4000 to $5F FF). Because Applesoft

148 Graphics

program storage begins at location 2048 (hexadecimal $800),it's
easy for your program and graphics to get in each other’s way. For

HGR statement: see Section 6.2.1 example, if you're using the HGRR statement to display page 1 of high-
resolution graphics, you have only 6144 bytes of program and vari-
able space (81 92 minus 2048) before your program overwrites
the graphics area. This section tells how to prevent them from collid-
ing, causing untold mayhem and destruction.

One way to protect your program and graphics from each other is to

HIMEM: statement:see Section7.2.1 use the HIMEM: statement to set the upper limit of program memory
at 819Z. This is a reasonable method to use for short programs; but
Applesoft tends to use a lot of memory, and longer programs would
soon run out of space.

Another method that allows the program a bit more breathing room is

HGR 2 statement: see Section 6.2.2 to use the second page of graphics instead of the first (HGR 2 instead
of HGR). This has the benefit of starting the graphics at a higher
memory location, so you canset HIMEM: to 1 6384 instead of
8192, allowing 14336 bytes (1 6384 minus 20 48) for your pro-
gram and variable space. The disadvantage of this method is that you
lose the four lines of text at the bottom of the screen, which are avail-
able with HGR but not with HGR 2.

A third method, probably the best for long programs with lots of vari-

POKE statement: see Section 7.1.2 ables, is to use the wizardry of the P OK E statement to change the
start, instead of the end, of Applesoft’s program storage space. The
following statements will start program and variable storage above
graphics page 1, beginning at address 1 5384 (hexadecimal
$4000):

POKE 103+ 1
POKE 104, G4
POKE 16384, 0

These statements will start program and variable storage above
high-resolution page 2, beginning at address 24576 (hexadecimal
—‘ $6000):

POKE 103+ 1

- POKE 104, 96
POKE 24376 O

High-Resolution Graphics 149

NEW command: see Section 1.2.1

RUN command: see Section 1.2.4

6.3

6.3.1

shape table: a collection of one or more
shape definitions, together with their
indices

plotting vector: a code representing a
single step in drawing a shape on the
screen

150

No matter where you start program space in memory, your next com-
mand should be

NEW

to clear out any old variables and system control information so you
can start a fresh program beginning at the new location. (If your com-
puter is equipped with one or more disk drives, you can accomplish
the same thing by loading a new program from a disk with the RUN
command.)

Shape Tables

Applesoft has a number of special facilities that allow you to manipu-
late shape tables defining shapes on the high-resolution graphics
screen. Because shape tables have the advantages of both flexible
design and very fast execution, they are ideal for applications such as
on-screen animation. This section contains detailed information on
creating and manipulating shape tables.

For Hackers Only: Since the advent of the Apple |l series of computers,
a number of excellent graphics software packages have appeared on
the market. Available at most computer stores, these packages take the
hard-core technical work (binary arithmetic and machine-language ma-
nipulation) out of designing and using shape tables. The information in
this section is intended for those programmers who enjoy “twiddling the
bits” themselves.

To use this section effectively, you'll need to know about bits and bytes
and the rudiments of hexadecimal arithmetic. This information is avail-
able in any basic text on computer science; see the bibliography in the
Apple lle Owner’s Manual that came with your computer. All computer
memory addresses in this section are in hexadecimal; all other num-
bers, unless otherwise noted, are in decimal.

Creating a Shape Table

An Applesoft shape definition consists of a sequence of plotting vec-
tors that are stored in a series of consecutive bytes in the computer’s
memory. One or more such shape definitions, with their indices (see
“The Shape Table Index,” below), make up a shape table.

Plotting Vectors

Each byte in a shape definition has three sections. Each section may
contain a plotting vector, specifying whether to plot a point at the cur-
rent screen position and in what direction to move (up, down, left, or
right) before processing the next vector. Thus each byte can repre-
sent up to three plotting vectors.

Graphics

Figure 6-4 Plotting Vectors in a Byte Figure 6-4 shows how the three sections are arranged within each of
the bytes that make up a shape definition. In each plotting vector, bit
' P specifies whether to plot a point before moving, and the pair of bits
A ,JL B A designated DD specify the direction in which to move before pro-
bitnumber: 17 8 5 4 3 2 1 0] cessing the next vector.

specifies: D D P D D P D D Noticethatthe last section in each byte (the two high-order bits, la-
beled C in the figure) does not include a P bit. The value of P in such
a section is always assumed to be O (don't plot); thus section C can

o IfDD = 00 moveu ; : ;
— 01 move rigm only specify a move without plotting.
= 10 move down
L = 11 moveleft How Plotting Vectors Are Interpreted
IfP = 0 dontplot The DRAW and X DR AW statements read through each byte in the
= 1 plotapoint shape definition, from the first byte in the definition to the last. Within
= each byte, the sections are processed from right to left: section A,
then B, then C. When a byte is encountered that contains all zeros,
DRAW and XDRAMW statements: see the shape definition is complete.
— Section 6.3.2
At any section in the byte, if all the remaining sections contain only
zeros, then those sections are ignored. Thus a byte can't end with a
— move in section C of 00 (move up without plotting), because that
Figure 6-5 Plotting a Shape section, containing only zeros, will be ignored. Similarly, if section C
is 00 (ignored), then section B cannot be a move of © 0 (move up
e without plotting), since that will also be ignored. And a vector of 00 0
a. in section A will end your shape definition unless there is a one bit
e somewhere in section B or C.
e e °
Z . Coding a Shape Table
L * * Suppose you want to draw a shape like that shown in Figure 6-5a. To
SN convert the shape into an Applesoft shape definition, follow these
b. steps:

1. Draw the shape on graph paper, one dot per square.

¢ S 2. Decide where to start drawing the shape—Ilet's start this one at
— ¢ ¢ the center—and draw a path through each point in the shape, us-
ing only 90-degree angles on the turns, as in Figure 6-5b.

3. Redraw the shape as a series of plotting vectors, each vector

c. moving one place up, down, left, or right, and distinguish those
>po vectors that plot a point before moving. This step is illustrated in
Figure 6-5c; vectors that plot before moving are marked in the

) figure with a dot at the beginning of the direction arrow.

High-Resolution Graphics 151

4. “Unwrap” the vectors and write them out in sequential order, as
in Figure 6-5d.

Figure 6-5 continued d —

R S S AR T A

Now you're ready to code the plotting vectors as a shape definition

table. Figure 6-6 gives the binary codes corresponding to each pos- —
sible vector. For each vector in the shape, determine the proper bit

code and place it in the next available section in the table, as shown

in Figure 6-7. If the code won't fit (for instance, the vector in section C —
can't plot a point) orisa 00 (or 00 0) at the end of a byte, then just fill

that section with zeros.

Figure 6-6 Codes for Plotting Vectors
vector code

0 000 —_—
— 001 or 01 move
l 010 or 10 only
— 011 or 11
7 100 _
- 101 plot
? 110 and move
<o 144
Figure 6-7 Shape Definition Table
section & e A e 8 A —
byte g : l otof|oto
1 «e <o B I I I
2 1) (i 100] |oo0
3| —» 1 73 01 1001100 Sl
4 - - 101) 101
5 | - otof]1o1
B ! ? t10l]ti10
7 o | DR o11f 110 —
8 < 111
9 00 | 000|000 | <e— denotes end

of shape -
L this vector ———* definition
cannot plot
or move up

152 Graphics

Table 6-3 Hexadecimal Byte Codes

— Binary Hex

Q000 =

G o001 =

—_

0010 =

rJ

— 0011 =

0100 =

L5 IR SR %}

o101 =
0110 =
0111 =
1000 =
1001 =
— 1010 =
1011 =
- 1100 =
1101 =
1110 =
1111 =

m m O 0O O D 0o O Nd

Figure 6-8 Converting the Shape Defini-
tion to Hexadecimal

The final step is to convert the binary codes representing the plotting
vectors into hexadecimal form so you can type them into the com-
puter. As shown in Table 6-3, each hexadecimal code corresponds to
a group of four bits; so each row of eight bits in your definition table is
represented by two such codes (called hexadecimal digits). This step
isillustrated in Figure 6-8. The final shape definition for the shape in
Figure 6-5is

12 3F 20 B4 2D 15 36 1E 07 00

The Shape Table Index

There is still a little more information you need to provide before you
have a complete shape table: the table must have anindex. This is
simply a listindicating where in memory to find a particular shape.
Applesoft needs the index so that it can find the shape later, when
your program tries to draw the shape on the screen.

bytes
Section: C B r?ﬁ%gid
= N A
byte 0 0001 0010 = 12
i o011 1111 = 3F
2 0010 0000 = 20
3 0110 0100 = G4
4 0010 1101 = 2D
5 0001 0101 = 15
6 0011 0110 = 36
7 0001 1110 = 1E
8 0000 0111 = 07
9 0000 0000 = 00 <denotesend
— —— of shape
hex: digit1 digit 2 definition

The form of a complete shape table, including the index, is shown in
Figure 6-9. The shape table’s starting location, whose address is
called S in the figure, contains the number of shape definitions in the
table (between 00 and F F) in hexadecimal. The next byte (address
5 + 1)isunused;itis followed by a sequence of two-byte pairs
giving the locations of the shapes in the table. (Notice that the shape
locations are given with the bytes reversed—Ilow-order byte first—
and that the locations are specified relative to address S, the start of
the table itself, and not in absolute memory addresses.) For simplic-
ity, the shape definitions themselves are usually placed immediately
after the index.

Shape Tables 153

Figure 6-9 Form of a Complete Shape

Table

Figure 6-10 A Complete Shape Table

start
(store address
inEB and E9)

v

oOOUuUIDUOUONOURDWUMN— O

01
00
04
00
12
3F
20
64
2D
15
36
1E
07
00

byte

<& number of shapes

index to shape

} definition #1,
relative to start

™\ = firstbyte

> shape definition #1

_J <& lastbyte

high-resolution graphics pages: see
Sections 6.2.1,6.2.2

154

start=5 (byte S+0 | n(0toFF) total number of
+1 unused shape definitions
+ 2 | lower 2 digits . .
+3 [upper2digits D 1:index to first byte of shape
+ 4 [Tower2dights definition #1, relative to §
index +5 [upper2digits D Z:index to first byte of shape
: o definition #2, relative to §
+2n | lower 2 digits ; <
- = Dn:index to first byte of shape
K"’ Zn+1 [upper2digits definition #n, relative to S
r S+D1 [Tfirsibyte
. . . shape definition #1
@ lastbyte =00
S+D2 first byte
. . . shape definition #2
shape . last byte =00
definitions< . . L .
S+Dn first byte
. . . shape definition #n
_ last byte = 0 0+

Figure 6-10 shows the complete shape table for our example. Since
there’s only one shape in the table, location S contains the value 1.
BytesS + 2andS + 3 areneeded tospecifythe shape’s lo-
cation; the shape definition itself can start in the next available byte, S
+ 4.Soindexbyte § + 2 containsthe value 04 and index byte
8 + 3 contains the value 0 Q. Next come the bytes of the shape
definition, as derived in Figure 6-8. The table ends with the zero byte
marking the end of the shape definition.

Loading a Shape Table into Memory

Now that you’ve figured out how to code your shape in the form of a
shape table, you have to get it into the computer’'s memory so Apple-
soft can draw it on the screen. You also have to tell Applesoft where
in memory to look for the shape table.

First you must choose a starting address. This address must be less
than the highest memory address available in your system, and must
not be located in the high-resolution graphics page that you'll be us-
ing to display the shapes (locations 200 O through 3FFF for page 1,
4000 through SFFF for page 2). For this example, we'll use hexa-

decimal address 1 DF C, which is just below high-resolution page 1.

Graphics

&

Keep shape table out of harm’s way

Apple lle Monitor program: see Apple
lle Reference Manual

DR AW statement: see Section 6.3.2

P OKE statement: see Section 7.1.2

Warning

Be sure you don'’t place your shape table in an area that will conflict with
your program or variable space, or with vital internal information used by
the system. See the box labeled “Protecting Your Shape Table,” below,
for information on how to keep your program and shape table out of each
other’s way; see Appendix H for the memory locations of important sys-
tem information.

While you're in the process of creating the shape table, you'll proba-
bly want to type the table into memory directly from the keyboard us-
ing the Monitor program. Then you can draw the shape on the screen
with an immediate-execution DR Al statement, see if it looks the way
you want it, and go back and change it if it doesn't. See your Apple Ile
Reference Manual for information on the use of the Monitor program.

Once your shape table looks correct, you'll want to be able to use it
from within a program. Your program can store the table into memory
by using POK E. To do this, you have to convert the starting address
of the table, and each byte of the table itself, from hexadecimal to
decimal, then store the decimal values into memory one at a time.

The shape table we've been developing consists of the hexadecimal
bytes

01 00 04 00 12 3F 20 64 2D 15 36 1E 07
00

The equivalent decimal values are
1 04 0 18 B3 32 100 45 21 54 30 7 0

The starting address we’ve chosen for the table, hexadecimal 1DF C,
is equivalentto 767G decimal. So the following statements in a pro-
gram will store the shape table into memory:

10 FOR X = 7676 to 7689
—memory locations where
shape table will go

20 READ A —read byte of table
30 POKE X+ A —store at next location
40 NEXT X —go back for next byte
50 DATA 1:0:,440418363:32:,100,45,21
54304750 —contents of table

Shape Tables 155

Another way for a program to store a shape table into memory is to load
it from a disk or tape cassette. Details are given below under “Saving
and Loading a Shape Table.”

Store the starting address of the shape ~ Now that you have your shape table in memory, you have to tell

table Applesoft where to find it. Applesoft looks for the table’s starting ad-
dress in hexadecimal locations E 8 (low-order byte) and E & (high-or-
der byte), so you have to arrange somehow to store the correct
starting address into these locations. If you've been using the Monitor
program to type the shape table into memory from the keyboard, you
can type its address into locations E 8 and E 8 in the same way. From
within a program, you can do it with two more POK E statements. The
hexadecimal addresses E8 and E 9 are equivalent to decimal 232
and £ 33; the two bytes of the table’s starting address, 1D and FC,
are equivalentto 29 and 25 2. So the following P OK E statements
will do the trick:

B0 POKE 232 252 : POKE 233: 28

Your shape table is now stored correctly in the computer's memory,
ready to be drawn on the screen from within your program with a
DR AW statement.

Remember to store the two bytes of the starting address in reverse or-
der, with the low-order byte before the high-order byte. This convention
is always followed when storing memory addresses in the Apple lle’s
memory.

SHLOAD statement: see Section 6.3.2 When you use SHLOAD to load a shape table from a tape cassette, the
starting address is set up for you automatically in the proper locations.

Protect your tables Protecting Your Shape Table: In choosing a location in memory for
your shape table, it's important to keep it out of the way of your Applesoft
program, so the two don’t overwrite each other. One way to do this is

HIMEM: statement: see Section 7.2.1 simply touse HIMEM : to set the upper limit of program memory to the
starting address of the table. In the example,

HIMEM: 7676

This too is done automatically when you use SHL OAD to get the table
from a tape cassette.

Unfortunately, this method leaves very little room for your program and

variables—in the example, only 5628 bytes (7676 minus 2048). You _
can buy a little more space for your program by setting HIMEM : to the

156 Graphics

beginning of the graphics page you're using (81 92 forpage 1, 16384
for page 2), as suggested in Section 6.2.5, “Protecting High-Resolution

- Graphics.” You can then locate the shape table above the graphics
page: thatis, above location 1 6384 ifyou're usingpage 1, 24576 if
you're using page 2.

el Perhaps the best method is to locate the program and variables above
the graphics page, again as described in Section 6.2.5. This leaves
room for the shape table below the start of the graphics page. If you're
using graphics page 1, that's 6144 bytes (81 92 minus 2048)—
enough room for a very extensive shape table!

— Don't overwrite DOS! A Warning
If you locate your shape table above the high-resolution graphics page
and your system is equipped with one or more disk drives, be careful not
— to run into the memory space occupied by the Disk Operating System,
beginning at location 38400 (hexadecimal 960 0).

Saving and Loading a Shape Table
Saving a shape table on a disk To save your shape table on a disk, you need to know two things:

® The starting address of the table (1 DF C in the example)

® The length of the table in bytes (14 in the example—hexadecimal

00 0E—including the “stop” byte)

Next, you must choose a file name under which to store your shape
table on the disk. We'lluse SHAPE 1 for this example.

DOS: Disk Operating System To save the table on a disk inimmediate execution, put the disk in the
disk drive and issue the following DOS command:

BSAVE command: see DOS manual BSAVE SHAPE1l:, A$1DFC, L$0OOOE

binary file: a file containing “raw” infor- This command says “store a binary file named SHAPE 1 on the disk,
mation not expressed in text form containing the current contents of memory starting at hexadecimal
address 1DFC, and 00 OE (hexadecimal) bytes long.”

If you're using a disk drive other than the main startup drive, the BSAVE
command should also include slot and drive parameters specifying
which disk drive to use; see your DOS manual for details.

— To issue the same command from within an Applesoft program, use
the statement

— PRINT CHR% (4)3i "BSAVE SHAPE1: A%1DFC,
L$OOOE"

Shape Tables 157

Again, see your DOS manua! for details.

Loading a shape table from a disk To load the table back into memory from the disk, you can use the]
DOS command
BLOAD command: see DOS manual BLOAD SHAPEL

in immediate execution, or the statement
PRINT CHR$% (4)3 "BLOAD SHAPEL™

from within a program. Notice that you don’t have to include the start-
ing address and the table length; this information will be picked up

Don't forget the starting address automatically from within the disk file itself. However, the starting ad-
dress is not stored automatically into the special addresses where
Applesoft looks for them, so you (or your program) will have to do that
for yourself:

POKE 232, 232 : POKE 233+ Z9

Saving a shape table on tape To save your shape table on a tape cassette, you need to know three
things:

® The starting address of the table (1 DF C in the example)
® The last address of the table (1 E 8 in the example)
e The difference between the first two items (hexadecimal G QG D,

decimal 14)

Item 3, the difference between the last address and the first address
of the table, must be stored in locations © (low-order byte) and 1

Apple lle Monitor program: see Apple (high-order byte). From the Monitor, type
lle Reference Manual

0:0D 00

and press [RETURN]. Now you must write to the cassette first the ta-
ble length from locations O to 1, then the shape table itself:

O.1W 1IDFCLI1EQQHK

Don't press the key until you've put a cassette in your tape re-
corder, rewound it, and started it recording.

Loading a shape table from tape To load the shape table back from the tape, use the SHLOAD

) statement.
SHL OAD statement: see Section 6.3.2 e

158 Graphics

632 Using Shape Tables

The commands in this section are used to draw and manipulate on
the screen shapes defined by a shape table in memory:

e DRAWand XDRAMW draw shapes from a shape table onto the
high-resolution screen.

e S5CALE = controls the scale at which shapes are drawn on the
= screen.

e [ROT = controls the rotation of shapes on the screen.
L e SHLOAD loads a shape table into memory from a tape cassette.

As a preview of what the commands in this section can do, here's a
— sample Applesoft program for you to try. The program first stores into
memory the shape table developed in Section 6.3.1, usingthe POKE
statement (see “Loading a Shape Table into Memory).” Then it uses
— the statements described in this section to produce a somewhat sur-
prising effect on the screen. See if you can guess what the program
will display, then type it and runit:

10 FOR X = 7676 TO 7688
—memory locations where
- shape table will go

20 READ A —read byte of table
30 POKE X A —store at next location
- 40 NEXT X —qgo back for next byte
S50 DATA 140:4,04184+634+324100,:45,21
544330470 —contents of table
- 100 HGRZ

110 HCOLOR= 3

120 FOR R = 1 TO 50
s 130 ROT= R

140 SCALE= R

150 XDRAW 1 AT 140, 96
- 160 NEXT R

170 GOTO 120

L When you get tired of watching the show, interrupt the program by

[coNTROL J-C: see Section 1.3.2 pressing [conTroL |-C to regain control of the system.

Shape Tables 159

The DRAW Statement

DRAW 5 —
DRAW 1 AT 140, 896
DRAW SHAPE AT XCENTER + XOFFSET:

YCENTER + YOFFSET —_

DRAW draws a shape on the high- The DR AW statement draws a shape from a shape table on the high- -
resolution screen resolution graphics screen at a specified location. The expression

following the keyword DR Al gives the index number of the desired
shape tables: see Section 6.3.1 shape within the shape table currently in memory. The location at

which the shape is to be drawn is specified by a pair of expressions
following the keyword AT, separated by a comma. The first expres-
sion gives the horizontal screen position of the shape’s starting point;
the second gives the vertical position.

HCOLOR = statement: see Section The designated shape is drawn in the current display color, scale,]
6.23 and rotation, as specified in the most recently executed HCOL OR =,
SCALE=,and ROT = statements.

A Warning N

You must specify the color, scale, and rotation of the shape before

DR AW is executed. If any of these have not been specified, the results
will be random: odd dots may appear, bizarre shapes may be drawn,
and memory may be overwritten.

Assuming that a shape table is already loaded into memory (see
“Loading a Shape Table into Memory” in Section 6.3.1), the following '
program will draw the first shape in the table at column 50, row 100: —

10 HGR — display high-resolution

graphics —
20 HCOLOR= 3 —set color to white-1
30 ROT= 0 —orient shape as originally

defined —
40 SCALE= 5 —enlarge shape 5 times
50 DRAW 1 AT 50+ 100 —drawshape 1 atcolumn 50,

row 100 —

If you omit the keyword AT and the screen coordinates,

50 DRAW 1

160 ' Graphics

Applesoft will put the shape on the screen starting at the last point
HPLOT statement: see Section 6.2.4 plotted by the most recently executed HPLOT, DRAW, or ADRAW
statement. (The shape drawn on the screen may not actually begin at
the last point previously plotted. If the first plotting vector in the shape
doesn’t actually plot a point, there will be an offset between the first
visible point in the shape and the last point plotted.) If no such state-
ment has been executed, the results are unpredictable.

Sl ADRAW statement: see below

If the shape number specified is less than © or greater than the actual
number of shapes in the shape table, the program will halt with the
message

— TILLEGAL QUANTITY ERROR

—_ Be sure to load a shape table first A Warning
If you execute DR Al without first loading a shape table into memory, the
(conTroL J-[RESET J: see Section 1.3.2 system may hang (use [conTRoL |-[RESET | to recover), or Applesoft
may draw random shapes anywhere in the high-resolution graphics
area of memory (locations 8192 to 24575 decimal), whether or not
HGR statement: see Section 6.2.1 HGR or HGR Z has previously been executed. This can have disastrous
consequences if your program is longer than about 6000 bytes.

The “DRAW Statement

ADRAKW 35
XKDRAW 1 AT 140, BO
— XKDRAW SHAPE AT KCENTER + XOFFSET:
YCENTER + YOFFSET

XDRAMW erases a shape The X DR AW statement works exactly the same as DR AW, except
that the color used to draw the shape is the complement of the color
already existing at each point plotted. The following pairs of colors
are complements:

Complementary colors ® black and white
® violetand green
® blue and orange
XDRAMW is most commonly used to erase a previously drawn shape.

The following program, which assumes that a shape table has al-
— ready been loaded into memory (see “Loading a Shape Table into

Shape Tables 161

Memory” in Section 6.3.1), illustrates the point by drawing and then
erasing the same shape, leaving the screen blank:

10 HGRZ —display full-screen high-reso-

lution graphics
20 HCOLOR= 3 —set color to white-1 —
30 ROT= 0O —orient shape as originally

defined
40 SCALE= 5 —enlarge shape 5 times —
50 DRAW 1 AT S50, 100 —drawshape atcolumn 150,

row 100

B0 FOR Z2 = 1 TO 500 : NEXT Z —
—stall for a short time
70 XDRAW 1 AT 350 100 —erasetheshape

If you use DRAW and XDR Al alternately in a loop, you can do

animation:

10 HGRZ —display full-screen high-resolu- -
tion graphics

20 HCOLOR= 4 —set color to white-1

30 ROT= 0O —orient shape as originally]
defined

40 SCALE= 5 —enlarge shape 5 times

50 FOR X = 1 T0O 200 —Iloop 200 times

60 DRAW 1 AT 60 + X 100 —
—draw shape in a different col-

umn each time
70 XDRAW 1 AT 50 4+ X, 100 —
— erase shape
80 NEXT X —repeat loop

If the shape number specified is less than © or greater than the actual
number of shapes in the shape table, the program will halt with the
message

TILLEGAL QUANTITY ERROR

Be sure to load a shape table first A Warning

If you execute X DR AW without first loading a shape table into memory,
(conTROL - : see Section 1.3.2 the system may hang (use [conTRoL]- [RESET] to recover), or Applesoft —
may draw random shapes anywhere in the high-resolution graphics
area of memory (locations 8 1 92 to 24575 decimal), whether or not
HGR statement: see Section 6.2.1 HGR or HGR 2 has previously been executed. This can have disastrous
consequences if your program is longer than about 6000 bytes.

162 Graphics

SCALE = sets scale factor for DRAK
- and XDRAW

DRAWand XDRAW statements: see
above

The SCALE = Statement

SCALE= 10
SCALE= Z / 4

The SCALE = statement sets the scale factor (relative size) for the
high-resolution graphics shape to be drawn by DR Al or XDRANW.
The expression following the keyword SCALE = specifies the scale
factor, which may range from 1 (reproduce the shape exactly as orig-
inally defined) up to a maximum of 235 (draw the shape 255 times
the size originally defined).

Assuming that a shape table is already loaded into memory (see
“Loading a Shape Table into Memory” in Section 6.3.1), the following
program will draw the first shape in the table at three different posi-
tions on the screen and in three different sizes:

10 HGRZ —display full-screen high-reso-
lution graphics

20 HCOLOR= 3 —set color to white-1

30 ROT= 0O —orient shape as defined

40 SCALE= 1 —use original size

50 DRAW 1 AT 100, 100 —drawshape atcolumn 100,
row 100

60 SCALE= 2 —scale to twice original size

70 DRAW 1 AT 150+ 100 —draw atcolumn 150, row 100

80 SCALE= 3 —scale to three times size

90 DRAW 1 AT 200, 100 —draw atcolumn 200, row 100

A scale setting of 0 is considered equivalent to the maximum setting
(2359).If the scale setting specified is less than O or greaterthan 255, the
program will halt with the message

TILLEGAL QUANTITY ERROR

Scale factors are useful only up to a certain point. Large scale settings
produce some rather outlandish results on the screen.

Notice that the equal sign is part of the keyword SCALE = ; itdoesn’t
represent an assignment to a variable named SCALE. A statement
such as

LET SCALE= X

will cause a syntax error. The only way to find out the current scale
setting is to keep track of it yourself with a separate variable.

Shape Tables 163

ROT = sets rotation for DRAW and
ADRAKW

DRAWand XDR AW statements: see
above

Rotation also depends on scale
setting

scale setting: see above

164

The ROT = Statement

ROT= 16
ROT= 32 + 2 * R

The ROT = (for “rotation”) statement sets the angular rotation for the
high-resolution graphics shape to be drawn by DRAW or XDRA M.
The expression following the keyword RO T = specifies the rotation
in units of 5.625 degrees (1/64 of acircle). ROT = O will orient the
shape exactly as defined in the shape table, ROT = 1E will rotate
the shape 90 degrees clockwise, ROT = 32 will rotate it 180 de-
grees, and so on. The process repeats startingat ROT = B4.

Assuming that a shape table is already loaded into memory (see
“Loading a Shape Table into Memory” in Section 6.3.1), the following
program will draw the first shape in the table, five times its original
size, at two different positions on the screen, once oriented as origi-
nally defined and once rotated by 45 degrees:

10 HGREZ —Display full-screen high-reso-
lution graphics

20 HCOLOR= 3 —set color to white-1

30 SCALE= 5 —scale shape to five times origi-
nal size

40 ROT= 0O —orient shape as originally
defined

530 DRAW 1 AT 504 100 —drawshape atcolumn 50, row
100

G0 ROT= B —rotate shape 45 degrees

70 DRAW 1 AT 100, 100 —drawshape atcolumn 100,
row 100

The amount of rotation obtainable is somewhat dependent on the
current scale setting. For SCALE = 1, Applesoft recognizes only
four rotationvalues (¢, 16, 32, 48);for SCALE = 2, itrecognizes
eight rotation values (0, 8, 16,...);for SCALE = 3, itrecognizes
twelve rotation values; and so on. For scale settings of 1 5 or more,
the full range of rotation values is available. For unrecognized rota-
tion values, Applesoft usually orients the shape with the next smallest
rotation that it recognizes.

Graphics

SHLOAD loads a shape table from
tape

HIMEM : statement: see Section 7.2.1

Notice that the equal sign is part of the keyword RO T = ; it doesn’t repre-
sent an assignment to a variable named RO T. A statement such as

LET ROT= X

will cause a syntax error. The only way to find out the current rotation
setting is to keep track of it yourself with a separate variable.

If the rotation setting specified is less than © or greater than 255, the
program will halt with the message

PILLEGAL QUANTITY ERROR

The SHLOAD Statement
SHLOAD

The SHL OAD statement (for “shape load”) loads a shape table from
atape cassette. The shape table is loaded just below the upper limit
of available program and variable space (HIMEM:); HIMEM: is
then set just below the shape table to protect it.

To use SHLOAD inimmediate execution, turn on your tape recorder
with the proper tape inserted and cued up to the proper place. Then

type
SHLOAD

and press . You should hear one “beep” when the shape
table’s length has been read successfully, and another when the ta-
ble itself has been read.

You can also use SHL OAD from within a program (with appropriate
prompting messages) to allow users to load their own shape tables:

100 PRINT "CUE UP YOUR SHAPE TAPE AND
PRESS THE FLAY BUTTON."
110 PRINT "THEN PRESS THE RETURN KEY TO
LOAD THE SHAPE TABLE."
—prompt user with instructions
120 GET STALLS% —uwait for keypress
130 SHLOAD —load shape table from tape
140 PRINT "TABLE LOADED—PLEASE SHUT OFF
¥YOUR RECORDER." —tellusertableisloaded

Shape Tables 165

Don't forget to turn on your tape recorder!

[conTRrOL J-[RESET] : see Section 1.3.2

For more information...

166

If you load a second shape table replacing the first one, you or your pro-
gram should reset HI MEM : to avoid wasting memory. See the section
“Loading a Shape Table into Memory” in Section 6.3.1 for more informa-
tion on shape tables and memory usage.

If you try touse SHL OAD without a tape recorder connected,
turned on, and set to play, the system will hang indefinitely. Use
[conTrOL J-[RESET | to regain control.

If a variable name begins with the reserved word SHLOAD
SHLOADER = 358

SHL OAD may be executed before a syntax error is detected. In such a
case, the system will patiently wait (forever, if necessary) for a shape ta-
ble to be loaded from a tape cassette. Again, use [conTROL |-[RESET | to
recover.

For information on saving a shape table on tape, see “Saving and Load-
ing a Shape Table” in Section 6.3.1. See Appendix M for a list of all
statements dealing with tape cassettes.

Graphics

Chapter7

Utility Statements

169
170
170
171
172
174
176
176
177
178
180
180
181

Utility Statements

71

7.2

7.3

System Utilities

7.1.1 The PEERK Function
7.1.2 The POKE Statement
7.1.3 The CAL L Statement
7.1.4 The USR Function

715 The WA I T Statement
Memory Management

721 The HIMEM : Statement
722 The LOMEM : Statement
7.2.3 The FRE Function
Debugging Facilities

7.3.1 The TRACE Command
7.32 The NOTRACE Command

167

iy it

it direct memory access: see Section 7.1

— memory management: see Section 7.2

- debugging: see Section 7.3

Chapter7

Utility Statements

The features covered in this chapter are concerned with low-level
control of the programming environment.

Section 7.1, “System Utilities,” discusses direct access to specific lo-
cations in the computer’s memory from within an Applesoft program.

Section 7.2, “Memory Management,” describes the ways in which
Applesoft programs can control the limits of program space.

Section 7.3, “Debugging,” tells how to trace the execution of a run-
ning program for debugging purposes.

S System Utilities
71

PEEK function: see Section 7.1.1
POKE statement: see Section 7.1.2
CALL statement: see Section 7.1.3
USR function: see Section 7.1.4

WA IT statement: see Section 7.1.5

This section describes statements and functions that give Applesoft
programs direct access to the Apple lle’s memory:

e PEEK examines the contents of a memory location.

e POKE alters the contents of a memory location.

e CALL and USR allow Applesoft programs to execute machine-
language subroutines stored in the computer’'s memory.

WA I T suspends program execution until a specified signal is
received from a peripheral device.

System Utilities 169

711 The PEEK Function

PEEK examines contents of amem- The PEEK function directly examines the contents of a specified lo- —
ory location cation in the computer's memory. The argument given to PEEK is the
decimal address of the desired memory location. PEEK yields the
contents of the specified location, which will be an integer from © to —
255, For example, the following program displays the contents of
addresses 100 through 1 20:

10 FOR ADDR = 100
TO 120 —loop through desired
addresses —
20 PRINT "LOCATION "3 ADDR3Y "HOLDS THE
VALUE "3 PEEK (ADDR) 30 NEXT ADDR
—display contents of location —
—qgo back for next address

Certain locations hold special informa- ~ Certain locations in the Apple lle’s memory hold special systeminfor-
tion or produce special effects: see mation or produce special effects whenever their contents are read.
“ppeRtE One important use of PEEK is for manipulating these special loca-

tions. See Appendix F, “Peeks, Pokes, and Calls,” for details. —

If PEEK is given a negative argument value, itadds 5536 (2to the
16th power) to obtain an equivalent positive address. For example, -

PEEK (-16384) isequivalentto PEEK (49152)

PEEK (-1) isequivalentto PEEK (BS55353)

PEEK (-3Z2768) isequivalentto PEEK (32Z7G68) —
PEEK (-B5500) isequivalentto PEEK (3B)

If the argument is notin the range -65535 to + 65535 » the pro-
gram will halt with the message

TILLEGAL QUANTITY ERROR

712 The POKE Statement
POKE 34, B —
POKE -1B302, 0
POKE ADDRs (2%D1 + 3%D2) /7 (U - W)

POKE alters contents of a memory The POK E statement stores a specified value directly into a location
location in the computer's memory. The first expression following the keyword
POKE gives the decimal address of the memory location; the second

170 Utility Statements

A

[conTROL |-[RESET J: see Section 1.3.2

CALL executes a machine-language
subroutine

expression, separated from the first by a comma, gives the value to
be stored into that location. For example,

POKE 34, 8 —stores value 8 into location
34

Warning

Be certain that the address into which you are storing doesn't contain
part of your program or some vital system information that you don't
want to change. Aniill-advised P OKE can hang the system, drop you
into the Monitor, or alter the operation of the system or of your program in
unpredictable and possibly disastrous ways. In the event of catastrophe,
use [CoNTROL |-[RESET |to regain control of the system. See Appendix
H for the locations of vital system information that shouldn’t be tampered
with.

Certain locations in the Apple lle’s memory hold special system infor-
mation or produce special effects whenever a value is stored into
them. One important use of POK E is for manipulating these special
locations. See Appendix F, “Peeks, Pokes, and Calls,” for details.

If POKE is given a negative target address, itadds 65536 (2to the
16th power) to obtain an equivalent positive address. For example,

POKE -16384, 0O isequivalentto POKE 49152, 0O
POKE -32768:s 112 isequivalentto POKE 32768
112

POKE -G3502, 8 isequivalentto POKE 34: 8

If the target addressis notintherange -63535to + 63535, orifthe
specified value is not in the range 0 to 2553, the program will halt with
the message

TILLEGAL QUANTITY ERROR

The CAlL L Statement

CALL 34915
CALL -8936b
CALL ROUTINE (1)

The CALL statement executes a machine-language subroutine from
within an Applesoft program. The decimal address of the desired
subroutine follows the keyword CAL L. Control is transferred to the

System Utilities 171

subroutine at the designated address; when the subroutine is fin-
ished, execution continues with the statement following the CAL L.

For example, -

CALL G46G8 — executes machine-language
subroutine beginning at ad- e
dress G4GG8B

A Warning —

Make sure the address you give in the CAL L statement is the beginning
of a valid machine-language subroutine! A misdirected CAL L can have
unpredictable and probably unpleasant consequences, such as hang-
ing the system or dropping you into the Monitor. If any of these calamities

CONTROL |-| RESET |: see Section 1.3.2 befall you, use [conTrOL |- RESET |to regain control of the system.

system calls: see Appendix F The Apple lle’s built-in firmware contains many useful subroutines —
accessible with the CAL L statement; see Appendix F, “Peeks,
Pokes, and Calls,” for details.

You can also use CAL L to execute machine-language subroutines
POKE statement: see Section 7.1.2 of your own, which you have stored into memory with the POKE
statement, typed from the keyboard via the Monitor, or loaded into —

le lle Moni : :
Applelle Monitor program: see Apple yo computer from a disk or tape.

lle Reference Manual

If CAL L is given a negative target address, itadds 65536 (2to the —
16th power) to obtain an equivalent positive address. For example,

CALL -936 isequivalentto CALL B4B0O
CALL -BBB isequivalentto CALL G4GG68
CALL -1998 isequivalentto CALL BE3538

If the target address is notinthe range -65535to + 65535, the —
program will halt with the message

TILLEGAL QUANTITY ERROR

714 The USR Function

Not for Everyone: This feature is intended for expert programmers
only, and requires a knowledge of machine-language programming.
Readers with fewer than sixteen fingers are advised to skip this section. —

USR executes a machine-language The USR (for “user-supplied routine”) function executes a machine-

function routine language function routine stored into the computer's memory by you, ~ —
the user. Such a routine typically performs some high-speed compu-
tation that cannot be done efficiently, or cannot be expressed at all, in

172 Utility Statements

Applesoft. The argument supplied to the USR function is passed un-
changed to the machine-language routine, and the result yielded by
the routine is passed back as the value of the USR call.

The function routine to be executed with USR may be stored into the
POKE statement: see Section 7.1.2 computer’'s memory with the POK E statement, typed from the key-
B ———— board via thg Monitor, or loaded into t_he computer from a‘disk ortape.
#1s Rateronce:Manusl When USR is called, the value supplied as an argument is placed
into the floating-point accumulator in the computer's memory (hexa-
decimal locations $3D to $A3); control is then transferred via
a machine-language JSR (Jump to Subroutine) instruction to
hexadecimal address $0A (decimal 10). Locations $0Ato $0C
(decimal 10 to 1 Z) must contain a machine-language JMP (Jump)
instruction to the beginning of the machine-language routine. The
routine should leave its result in the floating-point accumulator and
return control to Applesoft with an R TS (Return from Subroutine) in-
Argument and result passed via floating- struction. The contents of the floating-point accumulator are then
point accumulator passed back to your Applesoft program as the value yielded by USR.

Here is a trivial example showing the use of the USR function. The
machine-language routine shown here simply takes the argument
value it receives and multiplies it by 8:

1 CALL -151 —leave Applesoft; enter Monitor
- * 0OA:d4C 00 03 —set up machine-language
jump to hexadecimal address
$300

* 0300:18 A5 9D BY 03 85 9D GO
—enter short machine-language
routine to multiply contents of
floating-point accumulator by

8
* -C —return to Applesoft
- 1 PRINT USR (3) —execute routine with argument
value 3
24 —result displayed on screen

Locations $0Ato $0C mustcontaina At hexadecimal address $ A, thereisa JMP (op code 4C) to hex-

JMP to the routine adecimal address $ 30 0. (As usual in 6502 machine language, the
low-order byte of the address, 00, precedes the high-order byte,
03.) Beginning at address %30 0 is a machine-language routine to
multiply the value in the floating-point accumulator by 8. Back in
Applesoft, when the functioncall USR (3) is executed, the argu-
ment value 3 is placed in the floating-point accumulator and control is
passed to the machine-language routine via the JMFP at location
%0A. The machine-language routine gets the value in the floating-

System Utilities 173

point accumulator, multiplies it by 8, puts the result (2 4) back into the
floating-point accumulator, and returns control to Applesoft with an

R TS instruction (op code G). The value Z 4 is then passed back as
the result of the USR call.

To obtain a two-byte integer from the value in the floating-point accumu-
lator, your machine-language routine should do a JSR to address
$E01C. Upon return, the integer value will be in locations $A O (high-
orderbyte) and $A 1 (low-order byte).

To convert an integer result to its floating-point equivalent, so that the
function can return that value, place the two-byte integer in registers A
(high-order byte) and Y (low-order byte). Then do a JSR to address
$EZF 2. Upon return, the floating-point value will be in the floating-point
accumulator.

715 The WAIT Statement

Novices need not apply

WA I T waits for a signal from a periph-
eral device

mask: a pattern of bits for use in bit-level
logical operations

174

WAIT 493474+ 15
WAIT 49401 240, 182
WAIT ADDR%» M17s MZU

For Experts Only: This feature is intended for expert programmers
only, and requires an understanding of bit-masking operations. If you
think a mask is something you wear on Halloween, you can safely afford
to skip this section. You won’t miss a thing.

The WA I T statement suspends program execution until a specified
bit pattern appears at a specified memory location. It is typically used
to wait for a particular status signal from a peripheral device.

The first expression following the keyword WA I T designates the ad-
dress of the memory location to be tested. The second expression
represents a one-byte mask specifying which bits of the designated
location are of interest: a one bit in the mask means that the corre-
sponding bit of the memory location is to be tested; a zero bit means
itis to be ignored. The optional third expression is another one-byte
mask specifying the bit value to be tested for in each position of the
memory location: a one bit in the mask tests for a zero bit in the corre-
sponding position of the memory location, and vice-versa (!). If the
second mask is omitted, all bit positions specified by the first mask
will be tested for a one bit. For example,

Utility Statements

- A

CONTROL |- |RESET| : see Section 1.3.2

WAIT ADDR

13
3
o

—wait for a one bit anywhere in
location ADDR

WAIT ADDR s

r-J
Loy
o
rJ
£
£

—wait for a zero bit anywhere in
location ADDR

WAIT ADDR

-

—wait for low-order bit of loca-
tion ADDR to become 1

WAIT ADDR s 128, 128 —waitforhigh-order bit of loca-
tion ADDR to become ©

WAIT ADDR s 3

rJ

—wait for low-order bit of loca-
tion ADDR tobecome 1 or
second low-order bit to be-
come 0

When WA I T is executed, the contents of the location specified by
the first expression are exclusive-or'ed with the mask represented by
the third expression (if any); the result is then anded with the mask
represented by the second expression. If the result is nonzero (that
is, if any of the bits of interest are in the specified state), then program
execution proceeds; if the result is zero (none of the bits of interest
are in the specified state), then the test is repeated. Thus program
execution will be suspended until one of the specified bits is set to the
specified state by an outside agency (presumably a signal from a pe-
ripheral device).

Warning

If the specified bit pattern never appears, program execution will hang
forever. Make sure that the memory location you're testing is receiving
information that will eventually test true. The only way to interrupt a
WATITiswith [conTroL |- [RESET] .

If WA IT isgiven a negative target address, itadds 65536 (2to the
16th power) to obtain an equivalent positive address. For example,

WAIT -16188, 15 isequivalentto WAIT 489347, 15
If the target address is notintherange -65535to + 65535, orif
either of the masks is not in the range © to 235, the program will halt
with the message

TILLEGAL QUANTITY ERROR

System Utilities 175

~ Memory Management

2 The features discussed in this section are used to control the way
Applesoft allocates memory space for your program: —_

HIMEM: statement:see Section7.21 ® The HIMEM : statement sets the upper limit of available pro-
gram memory. —

LOMEM: statement:see Secton7.22 ® The LOMEM : statement sets the lower limit of available program
memory.

FRE function: see Section 7.2.3 ® The FRE function determines the amount of remaining memory
space available to the program.

721 The HIMEM : Statement
HIMEM: B192 —

HIMEM: setsupperlimitofavailable ~The HIMEM : statement sets the highest memory address available

program memory to an Applesoft program for storage of program lines and variables.
The upper limit of available program memory is set to the value of the
expression following the keyword HIMEM : . The area above this ad-
dress is available for use by the Disk Operating System, high-resolu-
tion graphics, or machine-language programs.

Notice that the colon is part of the keyword HIMEM : and is required.

Applesoft automatically sets HIMEM : to the address of the highest
writable memory (RAM) address available on your computer. On sys-
tems equipped with disk drives, loading the Disk Operating System

Loading DOS resets HIMEM : (DOS) will automatically reset HI MEM = to a lower value in order to
protect the area of memory occupied by DOS itself. See your DOS
manual for further information.

You can change the settingof HIMEM = only by

Apple lle Monitor program: see Apple ~ ® executingthe HIMEM : statement
Ile Reference Manual e

e typing [conTrOL |-B to the Monitor program

e restarting the system

® |oading a machine-language program

Aword to the wise A Warning s
Resetting HIMEM : above its current value is an extremely dangerous
practice that can result in writing over the Disk Operating System or
other vital system information. Wise programmers will carefully investi- —d
gate reserved memory areas before writing to them.

176 Utility Statements

PEEK function: see Section 7.1.1

7.2.2

LOMEM : sets lower limit of available
program memory

DEF FN statement: see Section 2.4.3

Adding a program line resets
LOMEM:

NEW command: see Section 1.2.1

A common use of HIMEM : is to protect your program and high-resolu-
tion graphics from overwriting each other. See Section 6.2.5, “Protecting
High-Resolution Graphics,” for details.

Helpful Hint: The current value of HI MEM : is stored in decimal mem-
ory locations 1 15 and 1 1 E; to obtain that value, use the expression

PEEK (118 e% 206t PEEK G115

IfHIMEM : is given a negative address, it adds 655 36 (2 to the 16th
power) to obtain an equivalent positive address. For example,
HIMEM: -57344 isequivalentto HIMEM: 8182

If the specified address is notinthe range -63535to + 65535, the
program will halt with the message

TILLEGAL QUANTITY ERROR

If the specified address is lower than the current setting of LOMEM z, or
doesn’t allow enough room for the program already in memory, the pro-
gram will halt with the message

T0UT OF MEMORY ERROR

The LOMEM : Statement
LOMEM: 24576

The LOMEM : statement sets the lowest memory address available
to an Applesoft program for storage of variables. The lower limit of
available program memory is set to the value of the expression fol-
lowing the keyword LOMEM = . The area below this address is avail-
able for high-resolution graphics or machine-language programs.
LOMERM : also resets all variables to their initial values and wipes out
all functions defined with DEF F N.

Notice that the colon is part of the keyword LOMEM : and is required.

Applesoft ordinarily begins to store variables at the end of the pro-
gram in memory. Each time you add, delete, or change a program
line, Applesoft resets LOMEM : to alocation just above the final line
of the program. Executing the NE W command or typing [conTroL |-B
to the Monitor resets LOMEM & to its initial value.

Memory Management 177

The value of LOMEM : can only be increased from its current setting.
An attemptto set LOMEM = to a lower value than the one already in
effect will halt the program with the message

70UT OF MEMORY ERROR

A Warning B

Don’texecute LOMEM : from withina Changing LOMEM = during the course of a program is a most danger-
program ous practice that can cause portions of the program or of Applesoft's in- —
ternal control information to become unavailable, which in turn will
cause the program to behave in outlandish ways (if at all). Programmers
who behave with such reckless abandon have only themselves to
blame. =

Helpful Hint: The current value of LOMEM : is stored in decimal mem- —_—
ory locations 105 and 1 0G; to obtain that value, use the expression

PEEK function: see Section 7.1.1 PEEK (10&) % 256 + PEEK (103)

If LOMEM : is given a negative address, itadds 65536 (2 to the 16th
power) to obtain an equivalent positive address. For example,

LOMEM: -48152 isequivalentto LOMEM: 16384

If the specified address is notintherange -553535to + 65535, the —
program will halt with the message

TILLEGAL QUANTITY ERROR

HIMEM : statement: see Section 7.2.1 If the specified address is higher than the current settingof HIMEM =,
or lower than the address of the highest memory location occupied by
the current operating system (plus any currently stored program), the —_
program will halt with the message

?0UT OF MEMORY ERROR

723 The FRE Function

FRE yields amount of availablemem- The F RE function yields the number of bytes of unused writable
ory (RAM) memory available to the running program. For example,

LET AVAIL = FRE(O) —set AVAIL toamount of
available memory remaining

Notice that the name of the functionis FRE, not FREE.

178 Utility Statements

HIMEM : statement: see Section 7.2.1

Argument required but ignored

If the number of free bytes exceeds 32767, F RE yields a negative re-
sult; adding G55 36 will give you the actual number of free bytes:

IF FRE(D) < 0O THEN AVAIL = FRE(Q) +
65536

If you have set HIMEM : beyond the highest RAM address in your
Apple lle, F RE may yield a value higher than the computer's actual
memory capacity. The reliability of such a value is to be taken lightly.

Stranger Than Fiction: The argument given to F RE is ignored, and
has no effect on the operation of the function. However, you can't leave it
out—you must include an argument expression of some kind to “keep
the parentheses apart.” What you use for an argument expression
doesn’t matter, but if Applesoft can't evaluate it as a legal expression,
you'll get an error halt.

How Applesoft Manages Free Space: The amount of free space re-
ported by F RE is the number of bytes remaining below the string stor-
age space and above the numeric array and string pointer array space
(see Section H.2, “Applesoft Memory Allocation”). When Applesoft
changes the contents of a string variable during the course of a program
(sayfrom "CAT" to "DOG"), the characters in the old string
("CAT") are not erased from memory; Applesoft simply allocates
some fresh space to hold the new string ("DOG"). As aresult, charac-
ters left over from unused strings take up “dead space” and slowly fill
memory from HIMEM : down toward the top of the array space.

Applesoft will automatically clear out these leftover characters when the
bottom of string space “collides” with the top of array space. But if you're
using any of the free space for machine-language programs or for high-
resolution graphics, they may be overwritten.

Light Housecleaning: The automatic “housecleaning” just described
takes time (anywhere from a fraction of a second to over two minutes,
depending on the number of string variables your program is using). Fur-
thermore, such housecleaning occurs at unpredictable moments—
whenever your string and array spaces happen to collide. If it happens
while Applesoft is in the middle of displaying a message on the screen,
for instance, it can cause unfortunate confusion for your program’s user,
who will be left waiting for the computer to finish displaying a half-deliv-
ered message.

The F RE function provides a tool for warning the user that the computer
will be busy for a while. The address of the current beginning of string
space is keptinlocations 111 and 1 1 2 of the computer’'s memory; the
end of array space is kept in locations 1 8 and 1 1 0. Whenever Apple-
soft needs to allocate more memory, it compares the contents of these
locations; if they differ by less than one, Applesoft does its automatic
housecleaning.

Memory Management 179

Since Applesoft checks these locations, so can you. When the differ-
ence between them starts getting close to zero, it's time to display some
kind of “don’t worry” message and force housecleaning. Using a state-
ment of the form

IF (REERI11Z2)%256 + PEER(1111))
—HPEERGL10)*Z00 + PEENCIO8)) > 2 THEN —
PRINT "PLEASE STAND BY..." @ Q@ = FRE (0)

periodically within your program will force housecleaning to occur and
will prevent such confusion.

Since the housecleaning can take as long as several minutes each time

itoccurs, don'tdo it too often. It's besttouse FRE (0) when you need —
a pause anyway—such as after you write information onto a disk, or

while the user is reading information on the display screen.

~ Debugging Facilities
e This section details two Applesoft commands used as debugging

aids: TRACE and NOTRACE. They're useful when a programisn'’t
behaving as intended and you need to find out why.

731 The TRACE Command
TRACE

TRACE displays linenumbersasthey TR ACE causes Applesoft to display the line number of each state-
are executed ment it executes. Each line number displayed is preceded on the et
screen by a number sign (#). For example, the program

10 TRACE et
201 =1 1 21 =1 + 1
—two statements on line 20
30 J = Jd 4+ 1 3 Jd=4Jd 4+ 1 —
—two statements on line 30
40 GOTO 20 —loop forever

will display the output

Bl 420 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40
#20 #20 #30 #30 #40 #20 #20 #30 #30 #40

(‘conTROL J-C: see Section 1.3.2 ad nauseam, or until you press [conTrOL |-C, whichever occurs first.

180 Utility Statements

NOTRACE statement: see Section
7.3.2

Apple lle Monitor program: see Apple
Ile Reference Manual

Using TRACE from within a program

display formatting: see Section 5.2.4

7.3.2

Once tracing has been started, it can be canceled only by

e executingthe NOTRACE statement
® restarting the system

e typing [conTROL |-B to the Monitor program

As the example above shows, TRACE can be used from within a pro-
gram as well as inimmediate execution. A more realistic use in debug-
ging would be to test for some error condition and turn on tracing only if
the error condition holds:

IF X » Y THEN TRAGE —trace if variable values are
wrong

Be sure to remove the TR ACE statements from your program after
you've found and exterminated the bug!

When the program being traced contains display-formatting statements
(WTAB,HTAB, TAB, semicolons, commas), line numbers displayed by
TRACE may appear in a confused fashion or may be overwritten
entirely.

The NOTRACE Command
NOTRACE

The NOTRACE command cancels the effects of TRACE. After this
command is executed, line numbers are no longer displayed on the
screen as Applesoft executes them.

Debugging Facilities 181

182

Utility Statements

Chapter 8

b Programming: Bringing It
_ All Together

185 8.1 Planning the Program

185 8.1.1 Program Specification
— 186 What the Program Needs
186 What the Program Will and Won't Do
187 Validating the Data
— 188 Displaying the Results
189 8.1.2 Program Layout
189 The Initial Layout
— 190 Refining the Layout
192 82 Writing the Code
192 8.2.1 Preliminaries
— 193 8.22 Display the Menu
193 8.23 What's the Postage Class?
194 8.24 What Does It Weigh?
— 196 8.2.5 Compute the Charge
196 8.2.6 Display the Results
196 8.2.7 Calculating Routines
— 199 8.28 Consistency-Checking Routines
201 8.29 The “Keystall” Routine
201 8.2.10 The Formatting Routine

o 202 8.3 Final Advice to the New Programmer

Programming: Bringing It All Together 183

program planning: see Section 8.1

coding: see Section 8.2

e

i 8.1

8.1.1

Good programs take careful planning

Specifications define what the program
does and how

Chapter 8

Programming: Bringing It
All Together

Good programs don't just happen. Programs that are efficient, eco-
nomical, and easy to debug and to modify are the result of careful
planning. This chapter presents a method to facilitate such planning,
using as its example a program to calculate postage fees for United
States mail. A copy of this program is included on the Applesoft Sam-
pler disk; a complete listing can be found in Appendix N.

Section 8.1, “Planning the Program,” shows how to develop a list of
program specifications and how to convert the list into a kind of pro-
gram outline.

Section 8.2, “Writing the Code,” shows how to refine the outline
developed in Section 8.1 into a final Applesoft program.

Planning the Program

Although you can afford to be “quick and dirty” for casual or one-
time-only applications, you'll need to do some preliminary planning
for more serious ones. In general, the more planning you do the more
efficient and bug-free your finished program will be.

To demonstrate some of the principles of program planning, this
chapter develops a program to calculate postage rates on certain
classes of mail sent in the United States.

Program Specification

Program planning begins with deciding what your program is to do or
what problem you want it to solve. You might want to design a space-
war game, a tax planner, or a data-base management system. It
doesn’t matter how simple or how complex the task—whatever it is,
you have to decide in detail what the program is supposed to do.

To make writing the program easier, it's a good idea to begin with a
list of program specifications. This list specifies what information the

Planning the Program 185

What does the program need from the
user?

What internal information does the
program need?

What won’t the program do?

186

program needs, what the program should and should not do, how the
results are to be presented, and so forth.

What the Program Needs

It's fairly simple to determine what information a postage rates pro-
gram needs. Since the goal is to determine how much it costs to mail
an item, and since cost is a function of mail class and weight, the pro-
gram needs someone or something to tell it what weight item is being
mailed in what class. To keep things simple, the program will get this
information from the program user:

® The usertells the program the class of mail.

® The user also tells the program the weight of the item, since pos-
tage rates are based on both class and weight.

When the program has the weight and class of mail (for instance,
three ounces of first class), it needs to determine the postage based
on some scale. It must either calculate the postage with a formula or
look up the rate in a table stored in the computer's memory. Since all
computers are inherently stupid and must be told everything, you
have to include formulas or tables with which your computer can
work:

e The program includes formulas and/or tables of postage rates for
various weights and classes of mail.

® The program includes information on the maximum allowable
weight in each class.

This last specification is a matter of postal regulations; first class mail
above 12 ounces is called priority mail and is charged at a different
rate; 70 pounds is the maximum weight for priority mail; and so forth.
Program planning, then, calls for information often outside of the pro-
grammer’s immediate purview. That's why God created libraries and
telephones—so that programmers could obtain information they
don’t already have.

What the Program Will and Won’t Do

Deciding on the limits of a program is often as important as determin-
ing what the program is supposed to accomplish. United States mail
has four classes, several types within certain classes, optional extras
like insurance and various forms of registry, and so forth. To make de-
signing and writing the program simpler, we'll assume that our pos-
tage is never below first class, and further that we never insure or
register mail (what fools these mortals . . .). We'll also assume that
packages sent by overnight delivery (express mail) never weigh more

Programming: Bringing It All Together

Humans will be human...

e Give your user clear instructions

What if the information is invalid or
inconsistent?

than nine pounds and always travel in the same postal zone:

® The program is limited to express, first class, and priority mail
(one zone only).

® The heaviest express mail package will be nine pounds; first
class and priority mail may be of any weight, up to Post Office
limits.

Validating the Data

Now that the program has information both from the user and from its
own internal resources (charts of rates and so on), it must check the
validity and consistency of the information.

First for validity: does the information the user typed make sense in
terms of what the program expected? If the program needs a digit for
the weight of a letter, what should it do if it gets a word? In designing
any program, it's important to remember:

e Most humans do not possess genetic information about what to
type into computers.

® Most humans make mistakes.

The program, then, must display clear instructions telling the user
what to type (kind of information needed) and what form to use
(letters, digits, words):

® The program will display a list of classes of mail on the screen,
with instructions for the user about what to type.

® Afterit gets the class of mail, the program will solicit the weight
from the user with proper instructions.

® There will be a mechanism for accepting valid information and
rejecting invalid information (that is, there are error-handling
provisions).

Naturally, if the program rejects invalid information, it must try again
to get valid information from the user:

e [finformation is rejected as invalid, the program will continue to
solicitinformation until it gets what it needs.

Now to consistency: although a user might plausibly ask the cost of
sending a five-pound package via first class mail, only the program
knows (by checking its table of limits) that five pounds is too heavy for
first class. It must notify the user that some other action is called for:

Planning the Program 187

How are the results presented?

What happens when the program is
finished?

Table 8-1 Final Specifications for the
Postage Rates Program

188

e |finformation is rejected as inconsistent, the program will notify
the user with appropriate recommendations for further action.

Displaying the Results

The specifications must also include the form in which the results are
to be given to the user. In this case we’ll keep it simple:

® The final calculated postage charge will be displayed on the
screen with appropriate labeling.

Finally, the specifications must tell what the program does when its
job is completed. Here, it will repeat the whole process until the user
types in some kind of “I'm done” signal:

® The program will continue to solicit information to calculate new
postage charges until the user types an “end” signal.

Reordering the list of specifications into a more logical form, we ob-
tain the final list shown in Table 8-1.

e The program will display a list of classes of mail on the screen, with instructions for
the user about what to type.

® The program is limited to express, first class, and priority mail (one zone only).
® The user tells the program the class of mail.

e After it gets the class of mail, the program will solicit the weight from the user with
proper instructions.

® The user tells the program the weight of the item.
® The program includes information on the maximum allowable weight.

® The heaviest express mail package will be nine pounds; first class and priority mail
may be of any weight, up to Post Office limits.

e There will be a mechanism for accepting valid information and rejecting invalid
information.

e |finformation is rejected as invalid, the program will continue to solicit information
until it gets what it needs.

e |finformation is rejected as inconsistent, the program will notify the user with
appropriate recommendations for further action.

e The program includes formulas and/or tables of postage rates for various weights
and classes of mail.

e The final calculated postage charge will be displayed on the screen with appropriate
labeling.

e The program will continue to solicit information to calculate new postage charges
until the user types an “end” signal.

Programming: Bringing It All Together

Reviewing the list, you can see that the program’s actions fall into a
natural chronological order:

Computer displays prompting messages.

User responds.

Program checks validity of responses.

If any information is invalid, program solicits new information.

Program checks consistency of responses.

2 S

If any information is inconsistent, program solicits clarified
= information.

Program processes validated information.
e 8. Program displays results and goes back to stage 1.
interactive program: a program that You'll find that most interactive programs—programs that carry on a

— conducts a dialog with the user “dialog” with a human sitting at the computer—involve most of the
categories above in roughly the same order.

812 Program Layout

Before rushing to put fingers to keyboard, it's best to take your plan-
— Lay out your program before youstart ~ ning at least one step further. Now is the time for program layout.
coding Here you plan out the form for each section of the program as de-
scribed in both the specification list and the chronological order list.

stepwise refinement: a technique of The program layout technique presented here is called stepwise re-
program development in which broad finement. What this means is laying out broad sections of the pro-
sections of the program are laid out first, h ina back and refini h 4 b
— then elaborated step by step gram, then going back and refining each section step by step.
The Initial Layout

3 Table 8-2 shows an initial layout of the Postage Rates program in the
—— %é';‘;‘f: Layoutof the Postage broadest terms. The layout says that there are five general sections
to the program (Display menu, Accept class, Accept weight, Com-
pute charge, and Display results), and that the program is to repeat

Repeat this sequence of steps in order until somehow told to stop.
(- Display menu . X
i Each section can now be treated as an independent module, to be
Acceptclass designed and coded separately. The smaller the chunks of program
Accept weight you work with and the more independent each chunk is, the less
Compulochargs chance for error and the easier the program will be to debug.

Display results

until done

Planning the Program 189

Refining the Layout

Refine each module Now that we have the program laid out in skeleton form, we can begin
to put some flesh on the bones. Table 8-3 shows the first refinement, =
in which each of the broad steps in the initial layout is spelled out in
more detail.

Table 8-3 First Refinement of the Pos-

tage Rates Program Repeat

Display menu:
List choices

Acceptclass:
Instruct user how to choose
Repeat
Get postage class from user —
until valid menu item

Accept weight:
Repeat
Instruct user how to type
Get weight from user
until consistent

Compute charge:
Calculate from formula or look up in table

Display result:
Format result with dollar sign, trailing zeros
Label and display result
Wait for signal from user before proceeding

until user signals end

At this point, many programmers would take outline in hand and at-

tack the keyboard. (With an outline?) But a couple of the modules -
need further refinement: both the Accept weight and the Compute
charge modules need to do specialized processing depending on
the class of mail specified by the user. The new information in the
Compute charge module comes from examining postage rate charts.
First class mail is fairly regular, so a formula can be used to compute
the charge. Express mail follows no regular pattern, so it's easier to
create a table of charges. Priority mail requires a combination of both
formula and table. The final program layout is shown in Table 8-4.

190 Programming: Bringing It All Together

Table 8-4 Final Layout of the Postage

Rates Program Repeat

Display menu:
List choices

—_ Accept class:
Instruct user how to choose
Repeat
Get postage class from user
— until valid menu item

Accept weight:
Repeat
Instruct user how to type
Get weight from user:
Check validity of response
Express?
If item more than 9 pounds
then suggest alternative
First class?
L If item more than 12 ounces
then suggest alternative
Priority?
If item less than 12 ounces
— then suggest alternative
If item more than 70 pounds
then suggest alternative
until valid and consistent

Compute charge:
Express?
Look up charge in table
e Firstclass?
Calculate charge from formula
Priority?
If item less than 10 pounds
e then look up charge in table
otherwise calculate charge from formula

. Display result:
Format result with dollar sign, trailing zeros
Label and display result
Wait for signal from user before proceeding

until user signals end

Planning the Program 191

e Writing the Code

8.2
Now that you've refined the program layout to a sufficient level of

Use the layout as a guide while writing detail, you're finally ready to start writing code. The layout is only a —_—
code guide; itisn't the last word. As you write and test the actual program,

you may find you need to make changes in your original design.

That'’s perfectly all right; use the layout to keep you on track. =

What follows in this section represents one way to turn the outline

into a working program. Itisn’t the only way—a hundred program- —
mers would produce a hundred different programs for the same task.

It does, however, work; and because it's been developed in an or-

Methodical program development derly, methodical way, it's also logically organized and easy for a hu- I
mgz‘;i programs easy to debug and man reader to follow. This is an important consideration, because it

makes the program easy to debug and easy to modify. (Almost all se-
rious programs need to be modified at some time or other, often by =
someone other than the original programmer.)

The author makes no warranties, either Hysterical Note: Any resemblance between the following program and —
express or implied... true top-down structured code is purely coincidental and probably hallu-

cinatory. The perceiver of such a resemblance is advised to seek psy-

chiatric aid promptly. —

821 Preliminaries

Your program should begin with a block of R EM statements identify-
ing the program and describing what it does. Most programmers add
their own name and the date of the program’s current version:

10 REM POSTAGE RATES
—name of program
20 & —colon leaves line empty
30 REM DETERMINES POSTAGE FEES
—what program does
40 REM FOR EXPRESS: 18T CLASS:
50 REM AND PRIORITY MAIL
—empty line inserted by embed-
ding [conTRrOL]-J (line feed)
atend of REM statement in
line 30

60 REM Uz 9/01/82
—number and date of this
version -
70 REM BY JOHN SCRIBBLEMONGER
—programmer’s credit line

192 Programming: Bringing It All Together

8.2.2

8.2.3

Display the Menu

Now you can refer to your outline and base your code directly on it.
Notice the REM statements introducing the different sections. All the
comments marked here by dashes (—) could also be included as
REM statements:

100 REM MENU OF POSTAGE CLASSES
—(cantRaL - here

110 HOME —Dbegin with a clear screen
120 TITLE% = "POSTAGE RATES"
130 PRINT

140 HTAB 21 - LEN (TITLE$) / 2
—formula to center title

150 PRINT TITLES%

160 VYTAB G

170 PRINT "1, EXPREBS"

180 PRINT "2, FIRST CLASS"

190 PRINT "3, PRIORITY"

200 PRINT

210 PRINT "4, END THE PROGRAM"
—the escape hatch

What’s The Postage Class?

This section finds out what mail class the user wants to use. Note
the use of -J, the line feed character, to set off the REM
statements for easier reading (line 30 0):

300 REM —[conTrROL J-J here
GET CLASS OF MAIL

—[conTRoL J-J here

310 VUTAB 14
320 PRINT "Press the number of vour

choice:"3 —semicolon keeps response on
same line
330 GET C% —only one keypress needed;

cuts down on error possibili-
ties. Note use of string variable
to get number; avoids type
mismatch errors

335 REM —[_conTraL J-J here
CHECK FOR VALIDITY

—another [conTROL]-J (last

time this is noted)

Writing the Code 193

194

8.2.4

340 IF C$% = "4" THEN END

—end program if user types a 4
350 IF VAL (C#%) » O AND VAL (C%) < 4
THEN 380 —skip next two lines if valid
choice typed
360 PRINT CHR$(7)3F CHR$(7)1
—beep twice to get attention

370 GOTO 330 —response was invalid; try
again
380 PRINT C#% —since choice accepted via

GET, itisn’t displayed on the
screen. Display it back to user

3890 C = VAL (C%) —need this value later to deter-
mine what section of program
to branch to for proper
processing

What Does It Weigh?

Now the program asks the user for the weight of the letter or package.
The program makes sure that the user follows the instructions and
types a number for the weight and a symbol (O or F) for ounces or
pounds. Notice that the program accepts both the numeric weight of
the item and the ounce/pound designation in the same string (line
530).

500 REM
GET WEIGHT OF ITEM

503 UTAB 16

510 PRINT "Please enter the WEIGHT - a
riimber Plus an 0O (for ounces) or a P
(for Pounds) - and Press the RETURN
Kevs "3 —prompting message to tell
user what information to type
and how to type it

520 CALL -BGS —clear to end of line; useful to
erase any errors that might be
typed

230 INPUT ""3 W% —semicolon suppresses ques-
tion mark

o240 Wis = RIGHTS® (W% 1)

—rightmost letter should be
either O or P; use it later to see
if weight is consistent with
postal regulations

Programming: Bringing It All Together

W = VAL (W$) —how many ounces or pounds?
REM
WAS ENTERED WEIGHT VALID?

560 IF W » O AND (W1$="0" OR Wis="P")
THEN 710 —if a weight was typed, and if
L last character was either O for
ounces or P for pounds, then
proceed
- 5370 PRINT CHR$ (7)3i CHR$% (7)
—Dbeep twice to get attention
380 GOTO 500 —entry was invalid; try again

oo

oo
n

If the program has progressed this far, then everything typed by the
user is valid from the computer’s point of view. However, the user's

= choices still may not be consistent with postal regulations or the pro-
gram’s limitations. First class letters must weigh less than 12 ounces,
the program can’t handle express mail above a certain weight, and

- so on. This section of code uses the value of variable C (setin line
380) to direct control to the proper subroutine to check for
consistency.

700 REM
CHECK CONSISTENCY

— 710 ON C GOSUB 10000, 11000, 12000
—branch to appropriate subrou-
tine to see if weight typed is
within postal rules or program
limitations for mail class
chosen
- 720 IF NOT EFLAG THEN 910
—if no inconsistency detected in
subroutine then proceed with
processing
730 GOSUB GOOOO : REM KEYSTALL
—uwait for user to acknowledge

message
740 EFLAG = 0O —clear error flag setin
subroutine
- 750 CLEAR —reset all variables, clear
arrays, etc.
760 GOTO 100 —restart program loop

Writing the Code 195

8.2.5

8.2.6

8.2.7

196

Compute the Charge

Now that everything checks out all right, the program can proceed to
calculate the postage. The calculation is different for each of the
three classes of postage, so there are three separate calculating rou-
tines. Again, what routine the program goes to depends on the value
of C, the number representing the postal class chosen by the user.

900 REM
FIND APPROPRIATE CODE FOR
PROCESSING —everything is valid and consis-
tent; now program can solve
for the postage rate!
910 ON C GOSUB 1000, 2000, 3000
—branch to proper calculating
routine
920 GOSUB B100O REM FORMATTER
—format result for display
930 PRINT
Display the Results

It's finally time to display the result!

935 REM
DISPLAY RESULTS
940 PRINT "POSTAGE NEEDED: "3 T%
—finally, the postage due!
950 GOSUB BOOOO REM KEYSTALL
—don’t go on until user is ready
960 CLEAR —prepare for restart...
970 GOTO 100 —...anddoiit.
Calculating Routines

The following three subroutines do the actual rate calculations,
based on formulas, tables, or both. The rates for express mail are
fairly straightforward; they are based on a table created in the ex-
press mail consistency-checking routine at line 1 000 0. First class
rates couldn’t be simpler; a little arithmetic is all that's needed. Prior-
ity mail is another story, however; when you get to it, you'll find an
explanation.

998 REM
SUBROUTINES BEGIN HERE

Programming: Bringing It All Together

i 1000 REM
EXPRESS MAIL CALCULATION

L 1010 W = INT (W + ,98)
—weight must be increased to
compensate for fractions;
- postal rates read “NOT MORE
THAN x POUNDS”
1020 T = R (W) —rate array filled in express mail
— consistency-checking routine
(line 100O00)
1030 RETURN —end routine
L 2000 REM
FIRST CLASS CALCULATION

2010 T = +20 4+ INT (W 4+ .99 - 1) * ,17
—first class rate is 20 cents first
ounce plus 17 cents for each
additional ounce or portion
- thereof (April, 1982 rates)
2020 RETURN —end routine

Although there is something approaching a pattern to priority mail
charges, the pattern is obscure at best. This is especially true for the
first ten pounds. Pounds 1 through 5 are charged by the half-pound;
pounds 6 through 10 are full-pound charges. It's simpler and quicker
to use a table for these charges (lines 3030 to 314 0) than to figure
out aformula.

Weights over 5 pounds follow a more regular pattern than the first 5;
they are all charged in full-pound increments. Furthermore, each five
pounds costs $2.38. Unfortunately, the cost for pound 6 is different
from the cost for pound 7, and so on. What it boils down to is that
5-pound lots can be charged at the same rate (line 31 70), and
anything that isn’t a multiple of 5 must be looked up in a table (lines
318B0t0o3220).

— I'm not making this up... If all this strains credulity, refer to United States Mail Service poster
103, November 1981.

= 3000 REM
PRIORITY MAIL CALCULATION

3010 W = INT (W + ,98)
—compensate for partial ounces
or pounds

— Writing the Code 197

3020 IF W * 10 THEN 3160 il
—gotoline 3160 for weights
greater than 10 pounds
(ounce weights converted to
pounds in consistency subrou-
tine starting atline 12000)
3025 REM -
PRIORITY RATES TO 10 POUNDS

3030 IF W <= 1 THEN T = 2.2

3040 IF W > 1 AND W <= 1.3 THEN
T = 2,30 —rates in half-pound increments
3030 IF W > 1.5 AND W <= 2 THEN]
T = 2.54
3060 IF W » 2 AND W <= 2.5 THEN
T = : + 78 S
3070 IF W » 2.5 AND W <= 3 THEN
T = 3,01
3072 IF W > 3 AND W <= 3.5 THEN -
T = 25
3078 IF W * 3.5 AND W <= 4 THEN
T = 3.49 .
3080 IF W > 4 AND W <= 4.3 THEN
T = 3.73
3090 IF W * 4,5 AND W <= 3 THEN o
T = 3.87
3100 IF W * 53 AND W <= 6 THEN T = 4,44
—rates by the pound now! o
3110 IF W *» 6 AND W <= 7 THEN T = 4,82
3120 IF W * 7 AND W <= 8 THEN T = 5,39
3130 IF W 8 AND W <= 89 THEN T = 5.87 '
3140 IF W » 9 THEN T = 6.35
3150 GOTO 3240 —branchto RE TURN statement
3160 REM

PRIORITY RATES FOR OVER 10 POUNDS

3170 T1 = INT (W / 3 - 1) * 2,38 + 3.97
—first 5 pounds cost $3.97; each =
added 5 pounds cost $2.38

3180 W1 = W - INT (W / 5) % 5
—how many odd pounds are =
there (pounds that are not
multiples of 5 and must be
charged at a special rate)? —
3190 IF W1 = 1 THEN TZ = .47
3200 IF W1 = 2 THEN T2 = .95
3210 IF W1 = 3 THEN TZ = 1.42 et

198 Programming: Bringing It All Together

8.2.8

3220 IF W1 = 4 THEN TZ = 1,80

3230 T = T1 + T2 —add the 5-pound-multiples rate
to the odd-pounds rate
3240 RETURN —end routine

Consistency-Checking Routines

The next three routines make sure that first class letters aren’t too
heavy, that the requested rate can be calculated by the program, and
in general that the program can deliver what the user wants. The ex-
press mail routine begins by loading its rates into a table (it gets the
rates froma DATA list; DATA lists are excellent places to store infor-
mation you might need in a program); then it checks to seeif it has a
rate for the package being sent. First class just makes sure that the
package weighs 12 ounces or less; that’s the maximum weight for a
first-class item. Priority mail also has an easy job; it just makes sure
the package weighs more than 12 ounces but not more than 7.0
pounds.

10000 REM
EXPRESS MAIL CONSISTENCY CHECK

10010 DATA 8,35 9.35+ 8.55 9.80,
10,30, 10,65 11,00, 11,40,

11,75+ © —express mail rates; 0 atend is
“lastitem” flag
10020 X = 0 —set up counter to check how
many rates are read from
DATA list
10030 X = K + 1 —increment counter
10040 READ R (X —put price into proper array
element
10030 IF R (X)) = 0 THEN 10070
—price of O marks end of list
ioo6o GOTO 10030 —qget next price
10070 X = X - 1 — X includes count of “last item”

flag from 1 005 0; subtract it
from count since it's a

“dummy” item
10080 IF Wi$ = "P" THEN 10100
—next line is for ounces only
10080 W = W / 16 —convert ounces to pounds

10100 IF W<=X THEN 10140
—if weight in pounds is covered
by the rate chart, then go
ahead

Writing the Code 199

10110 PRINT
10120 PRINT CHR% (7)3 CHR$ (7)3% "TOO
HEAWVY FOR MY TABLES - PLEASE CALL
THE POST OFFICE™
—sorry; can't help you

10130 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at il
line 720
10140 RETURN —end routine
11000 REM -
FIRST CLASS CONSISTENCY CHECK
11010 IF Wi$ = "0" AND W < 12,01 -
THEN 11060 —OK if not more than 12 ounces

11020 PRINT
11030 PRINT CHR$% (7)3 CHR$(7)3 "TOO —
HEAVY FOR FIRST CLASS"
—sorry—inconsistent!
11040 PRINT "TRY PRIORITY MAIL" -

—suggest alternative

11050 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at —
line 720

11060 RETURN —end routine

12000 REM -

PRIORITY MAIL CONSISTENCY CHECK
12010 IF W1$ = "P" THEN 12090

—ifin pounds, then skip down
12020 IF W * 12 THEN 12080
—skip down if weight is between
12 and 16 ounces
12030 PRINT
12040 PRINT CHR$% (7)3 CHR%$ (7)3
"TOO LIGHT FOR PRIORITY MAIL -" —

—too light!
120530 PRINT "TRY FIRST CLASS"
—suggest alternative -
12060 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at
line 720 -
12070 GOTO 12150 —branch to end of routine
12080 W = W / 16 —convert ounces to pounds

12090 IF W <= 70 THEN 12150 ==
—final check: is item on the
charts?

200 Programming: Bringing It All Together

8.2.9

8.2.10

12100 PRINT
12110 PRINT CHR% (7)3 CHR% (7)3
"TOO HEAVY FOR PRIORITY MAIL -"

—off the charts
12120 PRINT "TRY ONE OF THE AIR EXPRESS
COMPANIES" —too big for the Post Office!
12130 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at
line 720
12150 RETURN —end routine

The “Keystall” Routine

The “keystall” routine interrupts execution of the program and waits
for the user to press a key before going on. The GE T statement in
line GO 040 actually does the waiting; when the user presses a key,
the program continues. What key the user presses doesn’t matter—
the program doesn’t care what value is assigned to A$.

28899 REM
UTILITY ROUTINES
—routines useful for various
tasks but ancillary to rest of

program
GOO0O0O REM
KEYSTALL —routine to interrupt program

until user presses a key

GOO10 VUTAB 24 —move cursor to screen bottom

BOOZ0O INVERSE —set text to appear black-on-
white

BOO30 PRINT "PRESS RETURN TO GO ON..."3

Goodo GET A% —wait for keypress

BOO30 NORMAL —restore ordinary white-on-
black

BOOBO RETURN —end routine

The Formatting Routine

After the postage charge is calculated, the program branches to this
final subroutine. Here the final result is checked to see how it will look
when it is displayed. Does it have a decimal point? Applesoft sup-
presses trailing zeros after a decimal point, but people are used to

Writing the Code 201

seeing them when dealing with dollars and cents. The formatting
subroutine adds trailing zeros as needed.

G1000 REM i
MONEY FORMATTER
—adds zeros after the decimal
point where needed

61010 T$ = S8TR$ (T) —turnthe calculated postage
fee into a string el
B1020 IF T = INT (T) THEN T$% = T% +

tyoon —if charge is in whole dollars,
add a decimal point and two el
zeros
61030 IF ASC (RIGHT% (T$:2)) = 46 THEN
T = T% + "O" -

—if second character from the
right is a decimal point (ASCII
code 4) then number has -

only one digit to right of deci-

mal—soadda " 0" tothe

string —
61040 RETURN —end the routine

83 Final Advice to the New Programmer —

The program planning methods discussed and demonstrated in this

Find your own style chapter won'’t necessarily work for everyone. Different people have
different programming styles, and some people won't be comfortable
with the (perhaps) coldly logical model presented here. What's im-
portant is to find a style that works for you. Programming is a logical
art; it shouldn’t be a confining one. Be as creative as your own inter-
nals will let you, remembering that poets also plan.

Keep in mind as you learn to program, please, when a bug is as hard
to find as cheap gas, that deep down at the bit level—down where the
computer deals with the only things it really understands—there are
only zeros and ones.

(Funny—I don't feel comforted...)

202 Programming: Bringing It All Together

Writing the Code

s

i
il

i (S L

i et

Gt

G
A

Index

y:|

ABS function 38,215

absolute value 38,215

addition 32, 36, 86

American National Standards
Institute (ANSI) 3

American Standard Code for
Information Interchange, see
ASCII

ampersand character (&) 246

AND 35,175

animation 150

annunciators 131, 262, 263

ANSI: see American National
Standards Institute

Apple lle 80-Column Text Card, see
80-Column Text Card

arctangent 41,216

argument of functions 37, 38, 125,
173,179

argument variable 44

arithmetic functions 38

arithmetic operators 31

array(s) 26,29, 77ff, 217, 228, 248,
249, 268, 275ff, 293ff, 298
dimensions 79, 80
elements 29, 77, 269
names 29,77
storage 179
variables 275ff

arrow keys 18,20

ASC function 215

ASCII (American Standard Code for
Information Interchange) 19, 82,
215, 2411f, 258

assignment statement 30, 215,
224,251,296

asterisk (¥) 32

ATN function 41,216

auto-repeat 19,20

Index

Index

B

backslash character (\) 4,18
BAD SUBSCRIPTerror 79,248
bell character (-G) 130
BLOAD command 158
body of loop 55
booting 96, 112
branch 49ff, 220

conditional 51

unconditional 50, 220
built-in arithmetic functions 38ff

Cc

CALL statement 71,136, 216, 249,
253ff, 281, 294

CAN’T CONTINUE error 248

[CAPS LOCK key 4

caret (") 31

cassette input 110

cassette output 131, 264

Celsius 44

character codes 82

CHR¢% function 91,216

CLEAR Command 9, 30, 129, 216,
294

colon (:) 5,98ff, 105, 106, 177,192,
246, 267, 296, 301

color, see display color

COLOR= statement 137,216

comma (+) 98ff, 105,113,114, 115

commands, see names of
commands

concatenation 83, 84, 100, 251,
295

conditional branch 51

constants 268

CONT command 16, 17,73, 215,
247,248

control characters 100, 101, 241

key 15,16, 18, 241
-@ 98,107
-B 176,177,181
-C 15ff, 50, 58, 69, 72,
98, 107, 159, 180, 216
-G 130
-H 100, 107
-J (line feed character)
192,193, 216, 301
-M 100, 107
-[RESET] 13-17,96, 112,
161, 162, 166, 171
-§ 15
-% 18,100, 107
control
stack 10, 62ff, 71, 227, 265
statements 49ff
COS function 40,217
cosine 40,217
crossed loops 60
currentinput device 104, 223
current output device 10, 113, 224,
228
cursor 4,18ff, 97,113, 115, 119ff,
220ff, 232, 234, 253, 254
cursor control 287-288

D

DATA statement 103, 105, 108,
217,228, 229, 250

debugging 11,180

DEF FN statement 44,177,217,
249

deferred execution 4,5, 9,247

degrees 44

DEL command 6,7, 217

key 7

DIM statement 79,217,251, 293,
295, 298

disk 12ff, 112, 156, 230

Disk Operating System (DOS) 12,
14,16, 105, 157, 176, 265, 298

display color 137ff, 160, 216, 220ff,
231

display screen 111

division 32

DIVISION BY ZEROerror 248

dollar sign (%) 26, 29, 82, 88, 251,
259

DOS (see Disk Operating System)

double quotation marks (") 28, 81,
99,102, 270

key 18,19,241

DRAW statement 151, 155, 156,
160, 161, 162, 163, 164, 218, 230,
231

Index

E

e 42
editing 287-288
Eighty-Column Text Card 4, 112,
114,115,119, 124, 125, 127, 222,
254, 287ff
END statement 17,783,216, 218,
251,269, 294
equal sign (=) 30, 34, 44,129, 137,
145, 163, 246
equalto (=) 34
error
codes 68,69, 247ff
messages 247ff
error handling routines 67ff, 229,
247,264
restoringnormal 71
escape mode 19,287
[ESC] key 20,242
-@ 20,255
-A 20
-B 20
-C 20
-D 20
-E 20
-F 20,255
-1 19,20
-J 19,20
-K 19,20
-M 19,20
exclusive-or 175
execution of program 16
EXP function 42,218
expansion slot 96, 111
exponential 42,218
exponentiation 32
expressions 31ff
EXTRA IGNORED message 99,
105

F

Fahrenheit 44

false 33ff

FILE NOT FOUNDerror 14

FLASH statement 127,128, 218,
226

floating-point accumulator 173

FN keyword 45,219

FOR statement 55ff, 219, 225, 271

FORMULA TOO COMPLEX error
248

FPcommand 291

fractions 33

FRE function 178,220

free space 275

full-screen graphics 136, 138, 143, H

144,146, 221, 260 hand control 109, 262
function names 44 hand trol tor 109. 131
- functions 37ff, 173, 177, 229 3262"02%50 CORNERIOr 1t Tl
g o 338522 173179 |coLOR= statement 145, 160, 220
HGR statement 143, 145, 149, 161,

gall 87 et 162, 220, 258, 259
amas 44 HGRZ statement 144, 145, 149
user-defined 44-45,217 & SIEeman v b 14
161, 162, 221, 259

ABS 38,215 . : "
ASC 215 high-resolution graphics 136, 140ff,
ATN 41 216 150, 176ff, 218, 220ff, 230, 261
CHR$ 2'16 HIMEM: statement 149, 156, 165,
COS 40 217 176,179, 221, 250, 275, 299
v ; HL IN statement 139, 221
El'\P 42,218
FRE 178.219 HOME statement 221,254

; HPLOT statement 146, 161,218,
INT 39,223 222 262
tE:TZZ:OO, 223,248 HTAB statement 120, 122, 126,
LET 215 181,222, 254, 256

LOG 42,224,249

MID$ 100,225,249

PEEK 130,131,177,178, 180,
247, 249, 253ff

PDL 109, 227

POS 125,228

RIGHT$ 100,229, 249

RND 43,229

SCRN 141,231

SGN 39,231

SIN 40,231

SPC 113,120-121,231, 249

SQR 40,232,249

STR$ 232

TAB 113,120, 121, 123, 126,
181,232, 233, 249, 254

TAN 4,233

USR 172,233

VAL 102,105,233

G

GAME 1I/O connector 109

GET statement 16, 19, 104, 220,
249

GOSUB statement 61ff, 220, 227,
229, 251,293

GOTO statement 50, 53, 64, 71,
220, 251, 265, 293

GR statement 136, 140, 220, 258,
259, 261

graphics 119, 135ff, 258

greaterthan () 34

greater than or equal to (= or =)
34

ground loop 297

Index

Humpty Dumpty 19

I

IF...THEN statement 33, 36, 52,
222,248, 251, 267,294
ILLEGAL DIRECT error 249
ILLEGAL QUANTITY error 40,
42,52, 66, 86ff, 92, 97, 109, 112,
121ff 129, 138ff, 146, 147, 161ff,
170, 171, 175ff, 249
immediate execution 4,7,9,257
I N# statement 96, 223
index variable 55ff, 219, 225, 271
infinite loop 58
input 95, 223
numeric 100
Input Anything Routine 102
INPUT statement 16, 17,97,
102, 223, 249, 294
input/output 93ff
string 99
INT function 39, 223, 291
integer
constants 270
part 39,223
variables 26, 27, 44, 58, 270,
275ff
Integer BASIC 260, 291
INVERSE statement 126, 128,
223,226

J

JMP (Jump) instruction 173,233
JSR (Jump to Subroutine)
instruction 173,174, 246

207

208

K

keyboard 96, 258
keyword tokens 280ff
keywords 4

L

LEFT$% function 86, 100, 223, 249

key 18,19,100,
241

LEN function 83, 85,224

LET statement 215, 224

lessthan (<) 34

lessthanorequalto (< =or=<) 34

line feed character (-J)
192, 193, 216, 255

line numbers 5ff, 50, 51, 64, 65, 70,
180, 220, 226, 232, 233, 251, 265,
267,293, 294

LIST Command 7, 10,224

LOAD Command 14, 110, 224, 298

LOG function 42,224,249

logarithm, natural 42,224

logical operators 35, 54

logical values 33, 36, 54

LOMEM: statement 177,225, 250

loops 10, 55ff, 219, 225, 250, 270,
296
body 55
crossed 60
nested 59

low-resolution graphics 135, 216,
220, 221, 231, 234, 258, 261

M

machine language 172,176, 177,
179, 216, 221, 233, 246

mask 174

MAT functions 296

memory allocation 25,275

memory management 176

MID% function 87,100, 225, 249

minus sign(—) 36, 105

mixed graphics and text 119, 136,
138, 140, 141, 143, 146, 220, 260

Monitor program 16,7 155ff, 172,
173,176,177, 181

multidimensional array 80

multiple input 98

multiple statements perline 5

multiplication 32

N

natural logarithm 42,224
nested loops 59
nested subroutines 62

Index

NEW command 9, 30, 150, 177, 225

NEXT statement 55ff, 225, 271,
294

NEXT WITHOUT FORerror 10,
60, 249

NORMAL statement 126, 128, 226

NOT 35,54

notequalto (« > or »<) 34

NOTRACE command 181, 226

null character ([CONTROL]-@) 98,
100, 101, 105

null string 9, 12, 28, 30, 81, 82, 88,
97,98, 100, 106, 251, 294

number formats 117

number sign (#) 96, 111, 180, 246

numeric constants 117, 283

numericinput 100

(0

ON...GODSUB statement 65, 226,
249
ON...GOTO statement 51, 226,
249
on-screen edit 17
ONERR GOTO statement 68,72,
226, 229, 247, 239, 264, 265
key 110,262
operators 31ff
arithmetic 30
logical 35,54
precedence of 36
relational 33, 54
ORrR 34,54
OUT OF DATAerror 106,250
OUT OF MEMORY error 60,64,
177,178, 250, 299
output 111
ODVERFLOWerror 90,91, 250

P

parentheses 37, 250, 276

PDL function 109, 227

PEEK function 68, 70, 110, 130,
131,170, 177,178, 180, 227, 247,
249, 253ff, 294

percent character (%) 26,28

period (.) 105

PLOT statement 138, 227

plotting vector 150ff

plussign(+) 36,84, 105,295

pointofcall 61,64

pointer 275

POKE statement 71,72, 129ff, 136,
143, 149, 155, 156, 159, 170ff,
227,249, 253ff, 294

POP statement 66,227
POS function 125,228
pound sign (#) 96
PR # statement 10, 111,228
precedence 36
PRINT statement 105, 113ff, 120,
121, 223, 226, 228, 231, 232, 254,
267
TAB usedin 121ff
printer 10, 111
program 275
execution 16
layout 189
lines 3
planning 185
specification 185
prompt character (1) 4,16, 119,
247
prompting message 97, 294
pure cursormoves 19

Q

question mark (?) 97,116, 294

R

radians 40,41,44

RAM (random-access memory)
176,179

random numbers 43, 229

READ statement 105, 108, 207,
217,129, 250

real variables 25,27, 44,58, 270,
275-277

RECALL statement 110,298

REDIM‘D ARRAY error 79,250

REENTER message 99, 100

relational operators 33, 54, 82

REM statement 7,229, 267

reserved words 27, 245-246, 276

key 16

reset vector 16

restarting the system 96, 112, 176,
181

RESTORE statement 106, 108,
229, 250

Restoring Normal Error Handling
71

RESUME statement 69, 70, 229,
249, 265

return address 63, 66, 227

key 4,6,10,13, 16,18,
100, 104, 158, 165, 219, 241, 293
INPUT statementuse 97,98

RETURN statement 61ff, 220, 227,
251

Index

RETURN WITHOUT GOSUB
error 64,67, 251

right bracket (1) 4,16, 119, 247

RIGHT% function 100,229, 249

key 18,19,241

RND function 43,229

ROT = statement 160, 164, 230

rotation 230

rounding 39

RTS (Return From Subroutine) 174

RUN Command 12, 14, 30, 108,
145, 150, 230, 294

S

SAVE Command 13, 131,230, 297

scale factor 230

SCALE= statement 160, 163, 164,
230

scientific notation 43,91, 118, 283

SCRN function 141,231

scrolling 253

seeding 43

semicolon (3) 113ff, 122, 267, 269

SGN function 39, 231

shape definition 150

shape table(s) 150ff, 230, 231, 234,
299
index 153
loading 154ff

SHLOAD statement 110, 156, 158,
165, 231, 299

sign of anumber 39, 231

simple variables 275-277

SIN function 40,231

sine 40, 231

slash (/) 296

soft switches 253, 259

key 110,262

space bar 19,21

space character 99, 101, 105, 231

SPC function 113, 120-121, 231,
249

speaker 130, 264

SPEED statement 128, 231

SOR function 40, 232, 249

square root 40, 232

statements 3, 223, 269
see also names of statements

step value 57ff

stepwise refinement 189

STOP statement 17,73,216

STR% function 89, 232

string(s) 28,81, 113, 229, 232, 233,
270, 275ff, 293, 295
comparison 82

210

constants 28,81, 83
conversion 89
input 99
null 28
pointers 275-277
storage 179
variables 26, 28, 44, 83, 102,
104,105, 107
STRING TOO LONGerror 84,
85, 114, 251
subroutine(s) 10, 61ff, 171, 229,
250, 269, 270, 276
call 61
execution 220
nested 62
subscripts 29, 77,79
substrings 86, 295
subtraction 32,36
syntax definitions 235ff
syntax error 13, 14, 54, 58, 105,
107, 143ff, 166, 251

T

TAB function 113, 120, 121ff, 126,
181, 232, 249, 254

TAN function 41,233

tangent 41,233

tape cassette 13, 14, 110, 156, 158,
165, 228, 230, 231, 297ff

termination 218, 232

text 142,253
window 115, 119ff, 129, 136, 143,

221, 253ff

TEXT statement 119, 136, 143,
233, 258

TRACE command 180, 181, 226,
233,294

trigonometric functions 40-41

true 33ff

truncation 28, 39, 51, 65, 86, 88,
91, 117, 120ff, 283

TYPE MISMATCH error 87,88,
251

u

unconditional branch 50, 220

UNDEF ‘D FUNCTION error 251

UNDEF ‘D STATEMENT error 12,
50, 51, 64, 251, 268

(UP-ARROW | key 18,19, 241

user-defined function 44-45

USR function 172,233

utility strobe 131, 261, 264

Index

v

VAL function 83,86, 90, 102, 105,
107,233
validation of data 187
values, logical 33, 54
variable(s) 25ff,51,97,98, 177,
216, 268
argument 44
index 55,57, 58, 60
integer 2627, 44,58
name 26,293
real 25,27, 44,58, 270, 275ff
string 26, 28, 44, 102, 105
UL IN statement 140, 234
UTAB statement 119, 120, 124,
181, 234, 256

w

WAIT statement 174,234, 249
wraparound 4,120, 122

X

XDRAMW statement 151, 161ff, 230,
231,234
XPLOT statement 246

Y

Z
zeropage 278

Cast of Characters

" (double quotation marks) 28, 81,
99, 102, 270
(numbersign) 96, 111, 180, 246
(dollar sign) 26, 29, 82, 88, 251,
259
(percent character) 26, 28
(ampersand) 246
(parentheses) 37,250, 276
(asterisk) 31,32
(plus sign) 31,36, 84,105
(comma) 98ff, 105, 113ff
(minus sign) 31,36, 105
. (period) 105
/ (slash) 31,296
(colon) 5, 98ff, 105, 106, 177,192,
246, 267, 296, 301
; (semi-colon) 113ff, 122, 267, 269

%

I~ + % _ oo

< (lessthan) 34
<=or=< (lessthanorequalto) 34
= (equalsign) 30, 34, 44,129,137,
— 145, 163, 246
» (greaterthan) 34
»=or=> (greaterthanorequalto) 34
< ror =< (notequalto) 34
= ? (questionmark) 97,116,294
1 (rightbracket) 4,16, 119,247
\ (backslash) 4,18
- * (caret) 31
80-Column Text Card 4, 112ff, 119,
124,125, 127, 222, 254, 287ff

Index

P
wapPple computer
®
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TLX 171-576

- S

030-0359-A

	Document (1)
	Document (2)
	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)
	Document (75)
	Document (76)
	Document (77)
	Document (78)
	Document (79)
	Document (80)
	Document (81)
	Document (82)
	Document (83)
	Document (84)
	Document (85)
	Document (86)

	Document (3)
	Document (4)

