

Notice
Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

Disclaimer of All Warranties and Liabilities
Apple Computer, Inc. makes no warranties , either express or implied, with
respect to this manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness for any I
particular purpose. Apple Computer, Inc . software is sold or licensed "as -.J
is. " The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase, the buyer
(and not Apple Computer, Inc., its distributor, or its retailer) assumes the
entire cost of all necessary servicing , repair, or correction and any
incidental or consequential damages. In no event will Apple Computer, Inc .
be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer, Inc. has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you.

This manual is copyrighted. All rights are reserved . This document may
not, in whole or part, be copied, photocopied , reproduced , translated or
reduced to any electronic medium or machine readable form without prior
consent , in writing , from Apple Computer, Inc.

© 1982 by Apple Computer, Inc .
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.

Written by Meg Beeler of the Apple PCSD
Publications Department
Based on a manual by Jef Raskin

Reorder Apple Product #A2L2003

- Apple lIe Applesoft Tutorial

•

Radio and Television Interference
The equipment described in this manual generates and uses radio­
frequency energy. If it is not installed and used properly, that is , in
strict accordance with our instructions, it may cause interference
with radio and television reception .

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specifications in
Subpart J, Part 15, of FCC rules . These rules are designed to ---l

provide reasonable protection against such interference in a
residential installation . However, there is no guarantee that the
interference will not occur in a particular installation, especially if -.l
you use a " rabbit ear" television antenna. (A " rabbit ear" antenna is
the telescoping-rod type usually contained on TV receivers.)

You can determine whether your computer is causing interference
by turning it off. If the interference stops, it was probably caused
by the computer or its peripheral devices. To further isolate the
problem:

• Disconnect the peripheral devices and their input/output cables -1

one at a time. If the interference stops, ,it is caused by either
the peripheral device or its 1/0 cable . These devices usually
require shielded I/O cables . For Apple peripheral devices, you -'
can obtain the proper shielded cable from your dealer. For non­
Apple peripheral devices, contact the manufacturer or dealer
for assistance. -1

-

If your computer does cause interference to radio or television
reception, you can try to correct the interference by using one or
more of the following measures:

• Turn the TV or radio antenna until the interference stops.

• Move the computer to one side or the other of the TV or radio .

• Move the computer farther away from the TV or radio .

• Plug the computer into an outlet that is on a different circuit
than the TV or radio . (That is, make certain the computer and
the radio or television set are on circuits controlled by different
circuit breakers or fuses.)

• Consider installing a rooftop television antenna with coaxial
cable lead-in between the antenna and TV.

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
helpful the following booklet, prepared by the Federal
Communications Commission :

"How to Identify and Resolve Radio-TV Interference Problems"

This booklet is available from the U.S. Government Printing Office,
Washington , DC 20402, stock number 004-000-00345-4.

Overview
Learning To Program

ix What Is Programming?
x Getting Ready
xi Things You Should Know
xi Word Meanings
xi Symbols
xii Where Else To Look

Introducing Applesoft
4 A First Statement
8 Unanswered Questions
8 Fancy Printing
9 Doing Calculations

13 What About IRETURNI ?
13 A Graphic Change of Pace
19 PLOT Error Messages
20 Drawing Lines
24 Variables and More Calculator Abilities
26 Distinguishing Variables
29 Summary of Variable Rules
30 A Big Timesaver
30 Precedence
32 Parenthetically Speaking
34 Chapter Summary

ix

1

•

Elementary Programming
37 Deferred Execution
42 Loops: the GOTO Statement
45 Interacting with Your Program : INPUT
47 So You Want To Save Your Programs?
47 Preparations
48 Saving
49 Conditions: Determining the "Truth "
51 Symbols Used in Conditional Statements
52 Rules for Using Conditional Statements
52 Conditional Loops : the IF • •. THEN Statement
54 Using the APPLESOFT SAMPLER: COLORLOOP
56 More on the I F Statement
58 Remarks
59 FOR/NEXT Loops
62 Nesting and Crossing Loops
64 Controlling Spaces in Your Programs
70 Chapter Summary

Making Changes
73 The Moving Cursor: Escape Mode
73 Rules for Using Escape Mode
74 A Practice Session
76 Other Escape Commands
76 The Limits of Escape Mode
77 Inserting Text into an Existing Line
82 Getting Rid of Program Lines
83 Editing Long Programs
84 A Little History
86 Summary of Editing Features

Lots of Graphics
89 Constructing a Simple Game
90 Multiple Statements on a Line
91 Creating Motion
92 Screen Boundaries
93 Creating Visual Impressions
93 The Whole Thing
94 Program Interaction with Users
97 Making Sounds

100 Noise for the Bouncing Ball
100 Random Numbers
103 Simulating a Pair of Dice
103 Random Graphics

37

73

89

104 Subroutines: Putting the Pieces Together
108 Traces
109 A Better Horse-Drawing Routine
110 Errors
110 Variables
111 Additional Subroutines
112 A Well-Structured Program
113 High-Resolution Graphics
120 Chapter Summary

Strings and Arrays
123 Stringing Along
124 String Functions
126 Common Programming Practices Using Strings
128 Duplicate Strings
128 Backward Spelling
130 Concatenation Got Your Tongue?
131 More String Functions
134 Trapping More Errors
135 Introducing Arrays
139 Array Error Messages
140 Chapter Summary
141 Conclusion

123

Summary of Statements and Commands 145

Reserved Words in Applesoft 159

Error Messages 163

Help 167
167 If You (or Your Program) Get Stuck
168 Errors
168 Statements and Commands
168 Cassette Recorders
169 More Helpful Information
169 Printing Applesoft Programs
169 The Apple lie's Memory
170 What the Prompt Character Identifies

•

More Programs To Play With
172 Notes To New Programmers
173 SCRAMBLER
174 Analysis of Program Lines
177 Fine Tuning
178 Program Listing
180 MAGIC MENU
181 Notes To Advanced Programmers
181 How the Five Subroutines Work: A Demonstration
182 The I NPUT Routine
183 The GET RETURN Routine
183 The Screen Formatter Routine
184 The Menu Maker Routine
186 The Computer Identifier Routine
187 Notes on the Rest of MAGI C MENU
188 Program Speed
189 A Few Words about Variable Names
190 A Few Notes on Logic
192 Program Listing
201 DISK MENU
203 Renumbering and Merging Program Parts
205 Program Listing
211 CONVERTER
211 Program Listing
219 Some Final Thoughts

Glossary

Index

171

221

238

Learning To Program

Welcome! This is the manual for you if you want to learn to
program or want to familiarize yourself with programming.
Either way, it is designed so you can have fun while you learn.

You will learn , for example, how to tell your computer to say
hello to your friends; how to get your computer to act like a
calculator; and how to program your computer to draw horses
all over the screen.

If you start at the beginning, try everything as it comes along,
and make up your mind to take your time, it is pretty much
guaranteed that you will learn how to program. The real secret
is taking your time and trying everything.

You cannot learn how to program by reading this or any other
book. When you learn to ride a bicycle, grow vegetables, or
drive a car, you learn by doing. Making mistakes and correcting
them is an important part of the process. It 's the same with
programming: as you follow the directions in this manual , don 't
worry if something doesn't work the first time. Figuring out what
went wrong will help you learn that much more.

This manual is organized so each skill you learn is a stepping
stone to the next. It also is organized to help you pace yourself ;
" pause" marks are noted at convenient stopping points.

What Is Programming?
A computer program is a set of instructions written in a code
called a computer language. Programs make things happen.
They may instruct a computer to display a message on the
screen, to do complex tax preparation calculation~, to create a
game, or to make designs. Programs, in other words, enable
you to accomplish many things with your computer.

Learning To Program

BASIC is a commonly used personal computer language. It is
easy to learn and easy to use. There are many varieties of
BASIC; each type of personal computer uses a slightly different
version . It is rather like regional dialects : even though people
speak differently, they generally use the same vocabulary and
can understand each other.

Applesoft BASIC, which is built into the Apple lie, is a
particularly powerful variety of BASIC. It has some graphics
capabilities that many other varieties of BASIC don 't have. This
manual introduces you to Applesoft BASIC, but once you have
learned Applesoft , you also will be able to understand other
versions of BASIC.

Learning a computer language is like learning a second
language: there are new words to learn , and there are rules
about the relationships between them . There are about 100
words in the Applesoft BASIC programming language.

Getting Ready
Before you begin Chapter 1, get your machine and materials
ready:

• A video monitor and a disk drive should be connected to the
Apple lie. The computer's and the monitor's power cords
should be plugged into a grounded outlet. If you haven 't
gotten this far, go back to the Apple lie Owner's Manual for
installation instructions.

• Make sure you have the DOS 3.3 SYSTEM MASTER disk, the
APPLESOFT SAMPLER disk, and an initialized blank disk. If
you do not know how to prepare a new disk to receive
information, see the Apple lie Owner's Manual.

• If you use a cassette recorder instead of a disk drive, the
special commands you ' ll need are listed in the Applesoft
BASIC Programmer's Reference Manual.

• If you have an aO-column text card , keep it inactive while
you use this manual: it is easier to learn Applesoft this way. J
Later you can read the Apple lie aO-Column Text Card
Manual to see how Applesoft works with the card active.

Learning To Program

•

•

Things You Should Know
This tutorial is not a complete guide to Applesoft. To make
things easier, information that a beginning programmer doesn 't
need is sometimes left out. In other words, don 't be surprised
that there is more to learn-that is the reason for the Applesoft
BASIC Programmer's Reference Manual .

Word Meanings
Computer terms with which you may be unfamiliar are in italics.
All italicized words are defined in the Glossary.

There are also several appendices that will help you with word
meanings.

• Appendix A defines and summarizes all Applesoft
statements.

• Appendix B lists reserved words (don't worry-you ' ll find
out what they mean in due time) .

• Appendix C explains error messages .

Symbols
There are three special symbols used in this manual.

The pause symbol marks points at which you can easily take a
break. You don 't have to stop working when you see this
symbol-it's just an aid.

The gray box is used to clarify information or to remind you
about some useful technique. It is set off from the main text with
shading.

The warning symbol lets you know when there is some vital
piece of information that you shouldn't miss. It also warns you
when you must do something for your programs to work.

Symbols

Where Else To Look
Before you begin this manual, you should read the Apple I/e
Owner's Manual and run the APPLE PRESENTS ... APPLE disk.

The companion to this manual is the Applesoft BASIC
Programmer's Reference Manual. The reference manual
contains detailed and complete information about Applesoft ,
has a handy reference card, and discusses the design of
programs and good programming practices. Use the reference
manual to increase your programming knowledge and skill once
you have learned the basics from the Applesoft Tutorial.

The DOS Manual contains complete information about Disk
Operating System commands and how DOS works. When you
move on to advanced programming you may also want to read
this manual.

Learning To Program

L

L

Introducing Applesoft

4 A First Statement
8 Unanswered Questions
8 Fancy Printing
9 Doing Calculations

13 What AboutlRETURfP
13 A Graphic Change of Pace
19 PLOT Error Messages
20 Drawing Lines
24 Variables and More Calculator Abilities
26
29
30
30
32
34

Distinguishing Variables
Summary of Variable Rules

A Big Timesaver
Precedence
Parenthetically Speaking
Chapter Summary

Introducing Applesoft

Figure 1-1. The Cursor and the
Prompt

Introducing Applesoft

Now it is time to get started! Find the disk labeled DOS 3.3
SYSTEM MASTER. Place it in the disk drive and close the drive
door. Turn on your computer. When the red light on the disk
drive goes off, you should see a square bracket prompt (]) and
a blinking cursor at the left edge of your screen.

If you don 't see them, check your system. Is the disk drive
connected? Is the video monitor plugged in and turned on?
Is the Apple lie turned on?

Applesoft BASIC is built into the Apple lie, so a disk drive is not
required. If you use a cassette recorder, see the Applesoft
Reference Manual.

Once you have a cursor, press the lcAPS LOCKi key down into its
on position . It is located at the lower-left corner of the keyboard.
When the key is locked into position, you should hear a click
and notice that it is lower than the other keys.

Applesoft BASIC instructions must be uppercase. The
ICAPS LOCKi key makes it easy. Just like a typewriter's shift lock
for alphabetic characters only, lcAPS LOCKi makes all letters
uppercase, but also allows you to type numbers. If you want the
upper character of a non-alphabetic key, you still must use the
ISH I n i key. For example, you'll use the ISH I n i key to get the
double quotation mark.

Warning
Whenever you are using Applesoft BASIC with the Apple lie,
make sure [CAPS LOCKi is on. If it is not on and you try to give an
instruction in lowercase, you will be rewarded with a beep from
your computer and a ?SYNTAX ERROR message. Applesoft only
understands instructions in uppercase.

Introducing Applesoft

Figure 1·2. The PR ItH Statement.
When you give instructions like this
to the Apple lie, you should type
exactly what you see in this manual ,
including spaces, uppercase letters,
and quotation marks .

•

A First Statement
You are ready to give the Apple lie some instructions, so type
the words you see below. Remember that to get the double
quotation mark you have to press thelsH I n l key. Type

PRINT "HELLO"

and press the IRETURNI key.

]

Prompt PR I tn "HELLO"

PRINT "HELLO" is the APPleSOft~ELLO
statement / /

PR I NT is the Applesoft keyword / /

HELLO is displayed when you press
the lRETURNI key, and the cursor
moves to the line following the display

The letters between the quotation
marks are what you are instructing
the Apple lie to print (display on the
screen)

•

•

The Apple lie should carry out your instructions by displaying
the word

HELLO

on the next line. If it followed your instructions, congratulations!

If your screen doesn't look like the one in this manual, no
problem. Try again. Look at your screen and carefully check
what you typed. Notice that each of the items below
corresponds to one of the examples in Figure 1-3.

1. Did you use uppercase letters? If not, press the lcAPS LOCK I
key and try again .

Introducing Applesoft

Figure 1-3. Identifying a Problem
on the Screen

2

3

4

5

A keyword is a special word that
identifies a part icular Applesoft
statement or command . PR I NT is
a keyword .

•

• A statement is an instruction that is
part of a computer language.

2. Is the cursor blinking next to the second quotation mark? If
so, press [RETURN[. (Every instruction must be followed by a
press of the [RETURN[key to tell the Apple lie that you have
completed the instruction.)

3. Are there quotation marks surrounding HELLO? If not, type
the instruction again. If you used the single quotation mark,
be sure to hold the ISH I FT[key down to produce the double
quotation mark.

If you forget the first quotation mark, the computer will print
a zero right below your instruction .

4. Is PR I NT spelled correctly? If not, try again.

5. Now you 've got it right!

print "hello"
?SYNTAX ERROR

PR I NT "HELLO".

PRINT HELLO
o
PRIMT "HELLO"
?SYNTAX ERROR

PRINT "HELLO"
HELLO

When you misspell a keyword (like PR I NT) in a statement
(PR I NT "HELLO" is a statement), you get this error message :

?SYNTAX ERROR

If you don't notice a misspelling until you see this error
message, all you need to do is type the statement again . Check
to make sure it is correct before you preSS[RETURN[.

A First Statement

PR I tH is the primary Applesoft
statement used to display
information on the screen.

•

If you notice a mistake before you press iRETURNl, you can fi x it
without having to retype the whole line. Press the llEFT- ARROw l
key until the cursor is over the mistake. Type the correction.
Then press thelRIGHT-ARRow lkey until the cursor reaches the
end of the line. Press IRETURNI.

Helpful Hint: A word to the wise : nobody's perfect. Unless you are
familiar with a computer keyboard, it will probably take a while for
your fingers to find the right keys every time. But all it takes is a
little practice, so keep trying! You 'll find that once you get used to
the arrow keys, fixing mistakes won 't take long. And soon you will
realize that checking each line before you presslRETURNI makes life
much easier.

Now type the next statement, filling in your name in place of the
blank. And don 't forget to pressK TJJRij.

PRINT "HI, MY NAME IS "

Did it work? If not, don 't despair. The computer doesn 't blow up
when you don't do things exactly right. It just waits until you
give it an instruction it recognizes. Unlike a person , a computer
cannot figure out what you mean ; it only responds to certain
words in a certain order. So check what you typed, and try
again .

Now type

PRINT "THE SKY IS RED, THE GRASS IS BLUE"

The Apple lie displays exactly what you told it to. Even if it's not
true!

When you tell the Apple lie to PR I NT something in quotation
marks, you instruct it to display all the characters between the
quotation marks on the display screen. You can use the PR I NT
statement to tell the computer to display any message you wish .
Try it!

If you type much beyond 240 characters at once, (255 to be exact) ,
the computer will beep and produce a backward slash when it
reaches the character limit . Then you will have to start over again.
Figure 1-4 illustrates the character limit.

Introducing Applesoft

•
Figure 1-4. The Screen Character
Limi t. The length of a line on the
screen is 40 characters. It takes 6 1/2
screen lines to reach the character
limit of an Applesoft line.

] PR ItH "THE QU I CK BROWN FOX JUMPED OVER T
HE LAZY DOG'S TAIL WHILE THE DOG ATE A CA
N OF CAVIAR. MY AUNT LOOKED ON IN HORROR
BECAUSE SHE WAS PLANNING TO FEED THE CAVI
AR TO HER GOLDFISH. I WAS SECRETLY HAPPY
SINCE I KNOW THAT THE LAZY DOG LOVES CAVI
AR AND HAD NOTt

When you want your computer to PR I NT characters, you must
use quotation marks. But if you type

PRINT 150

the computer prints the number 150 on the next line without
any error message about the missing quotation marks. Type

PRINT "150"

and it does the same thing . This only works with numbers. If you
try typing

PRINT HELLO

all you'll get is a zero.

Although both PR I NT statements cause the same result , the
difference between characters and numbers is very important.
This difference will become clearer as you learn more about
programming.

A First Statement •

Unanswered Questions
Many times you 'll have questions about Applesoft BASIC that
are not answered directly in this book. For instance, in the
statement

PRINT "HELLO"

do you have to put a space after PR I NT?

Usually a simple experiment will answer your question . Type

PRINT"HELLO"

and see what happens. When you take the time to try it yourself,
you will remember what you learn better than if you merely read
about it.

When trial and error doesn 't work, see this manual 's appendices
and the Applesoft Reference Manual.

Warning
The Apple lIe uses less electricity than an 11 -watt light bulb.
Whenever you take a short break, leave the computer turned on .
You should , however, turn the monitor off, since it uses much more
energy than the computer.

If you need to tu rn the computer off at one of the Pause marks, be
sure to restart it with the DOS 3.3 SYSTEM MASTER disk.

e Pause

The I NVERSE statement sets the
video mode so that characters are
displayed as black letters on a white
backg round .

Fancy Printing
Now that you've been introduced to the PR I NT statement, how
would you like to try another? Type

INVERSE

and press RETURN Notice that the prompt looks different: it is
black on a white background . To see what INVERSE does, type

PRINT "HELLO, HI, BONJOUR, BUENOS DIAS"

Introducing Applesoft

NORMAL sets the video mode to the
usual white letters on a black
background.

Isn 't that nice? Try some more PR I NT instructions of your own .
Notice that you don't have to type I NVERSE with each statement.
Once you instruct the Apple lie to use black-on-white, it will do
so until you tell it to stop. To do that, type

NORMAL

and any instructions that follow will be white-on-black.

Another statement you can use, whenever you want to clear
your screen and move the cursor to the upper-left corner of the
screen, is

HOME moves the cursor to the upper- HOME
left corner of the text window and
clears the screen.

Try it. Then type a few PR I NT statements. Try HOME again .
A cleared screen is at your command.

Here is another experiment. Don 't forget to press [RETURN I after
typing each statement. Type

INVERSE

HOME

PRINT "NOW THE SCREEN IS CLEARED AND THE WORDS
APPEAR IN BLACK-ON-WHITE"

Try a few more PR I NT instructions and see what happens.

Each of these statements tell the Apple lie to perform a specific
function: HOME clears the screen and returns the cursor to the
upper-left corner; I NVERSE produces black letters on a white
background ; and NORMAL returns the screen to white letters on a
black background.

Doing Calculations
Without further study, the Apple lie can be used as an ordinary
desk calculator.

Try this on the Apple lie:

PRINT 3 + 4

The answer, 7, appears on the next line.

DOing Calculations

The Apple lie can do five different elementary arithmetic
operations:

1. Addition is indicated by the usual plus sign (+).

2. Subtraction uses the conventional minus sign (-). To try
subtraction, type

PRINT 1086-99

3. Multiplication is indicated with an asterisk (*). (If an X were
used for multiplication, it could be confused with the letter
X). To find 7 times 8 (in case you don 't remember the
answer), just type

PRINT 7 * 8

and have your memory jogged .

4. Division is indicated by a slash (I). To divide 63 by 7, type

PRINT 63 / 7

and the correct answer will appear.

Try dividing 3 by 2. The Apple lie gives the answer to you in
the decimal form: 1 .5 .

5. Exponentiation is indicated by a caret (") . It is often handy
to multiply a number by itself a given number of times.
Instead of writing

PRINT 4 * 4 * 4 * 4 * 4

you can sUbstitute the shorthand

PRINT 4 A 5

To type the caret (sometimes called a circumflex or an
upward-pointing arrow), press the ISH I FTI key while holding
down the 6 key.

There is nothing special about exponentiation . It is just an
abbreviation for repeated multiplication. In noncomputer ---.J

notation, it is referred to as 4 to the 5th power and is written
like this:

Introducing Applesoft

•

•

You can combine several of these arithmetic operations within
the same statement. For example, you can instruct the Apple lie
to

PRINT 3 + 51 + 9 + 400

or

PRINT 3 + 5 I 9 * 4 A 2 -

PRINT 3 + 51 + 9 + 400
463

PRINT 3 + 5 I 9 • 4 A 2 - 1
10.8888889

The exact rules for such usage are given later in the chapter,
but you can experiment now if you wish.

Remember, Applesoft can 't use numbers in quotation marks for
arithmetic operations.

When you type

PRINT 45.340

your computer responds with

45.34

and doesn 't display the trailing zero. The Apple lie does not
display leading or trailing zeros, that is, zeros that are at the
beginning of a number and to the left of the decimal or zeros
that are at the end of a number and to the right of the decimal.

Very, very small numbers (between about
.000000000000000000000000000000000000003 and
- .000000000000000000000000000000000000003) wi II be
converted to zero by the Apple lie. Don 't take our word for it.
Try it yourself. An easier way to write these numbers is
PRINT 3 * 10 A - 39 and PRINT -3 * 10 A -39 .

Now type

PRINT 985788.6898

Doing Calculations -

•

•

•

Surprise! The last two digits are lost, and the number left
behind is the closest approximation the computer can find . This
process is called rounding . Try typing

PRINT 788.6898

The Apple lie did not round the number, but displayed it just the
way you typed it. Madness you say? Ah , but there is a method to
this seeming madness. Numbers are rounded only if they have
more than nine digits. Any number that has fewer than ten
digits will not be rounded . Applesoft does the best it can , but
it can only work with nine digits.

If you type a PR I NT statement with a large number like

1234567890

the Apple lie responds with

1.23456789E+09

If you PR I NT the number 10 billion (which has ten zeros), the
Apple lie responds with

1 E +10

The numbers 1 0000000000 and 1 E+1 0 and the numbers
1234567890 and 1 . 23456789E + 09 have the same value. Really.
The number displayed by your computer is in a form called
scientific notation. If you need numbers like this you probably
know how to read them . The Applesoft Reference Manual has
more information if you are curious about this notation .

Introducing Applesoft

What AboutRETURNI?
So far, you have been pressing thelRETURH key after every line.
You might like to know why this key gets so overworked. The
reason is simple: without the~ETURNI, the computer does not
know when you have completed an instruction. For example, if
you typed

PRINT 4 + 5

and the computer immediately answered with a 9 , you might be
upset because you had planned to type

PRINT 4 + 5 + 346

which nets a different answer entirely. Since the computer can 't
tell when you have finished typing an instruction, you must tell
it. You do this by pressing the lRETURH key.

• Warning
Since you always have to press thelRETURH key after typing an
instruction , this manual will no longer remind you . Pressing
RETURNI after each instruction should be a habit by now, if you have
been doing all the examples.

e Pause

The GR statement sets the stage for
low-reso lution graphics.

A Graphic Change of Pace
So far, you have been playing with words and numbers in
Applesoft. Now it's time for a change of pace. Read on , and
you will discover some of the wonderful graphics capabilities
of the Apple lie.

To prepare the screen for drawing, type

GR

When you type GR , short for "graphics, " you 'll notice that a
design quickly flashes past, the screen clears, and the cursor
moves to the bottom of the screen. (If your screen didn 't clear,
you probably forgot to pressRETURNI. And forgot that you won 't
be reminded any more.)

A Graphic Change of Pace III

Figure 1-5. The Low-Resolution
Graphics Mode

•
GR clears screen , sets the color to
black

Text window can display up to four
lines of text at once

The GR statement instructs the computer to set up an invisible
grid of 40 vertical columns and 40 horizontal rows on which you
can draw. This is called the low-resolution graphics mode. The
GR statement also instructs the computer to leave enough space
at the bottom of the screen for four lines of text, called the text
window. GR also clears the screen, and sets the color to black.

Cursor __________ ~

To set the color in low-resolution
graphics use the statement COLOR:,
followed by an integer from 0 to 15.
The PLOT statement places a " brick "
at the specified location.

The GR statement sets the stage for doing all kinds of drawing
and fancy visual work. However, before you can see the results
of what you do on the screen, you have to tell the computer to
use a color that will show up on the black background. Try this
now, by typing these two instructions:

COLOR: 15
PLOT 20,20

Do you see the white brick (a small rectangle) in the middle of
your screen? To place two more bricks along the same vertical
line, type

PLOT 20,22
PLOT 20,24

Introducing Applesoft

Figure 1-6. Using PLOT Statements

•

Note: If nothing appears on your screen, chances are you forgot
to specify a color. You must do this, no matter what kind of display
device you are using.

The PLOT statement tells the computer where to put each brick
of color by assigning two numbers on the invisible grid. The
first number in the three PLOT statements you have used so far,
20 , names the 20th vertical column out of 40. The vertical
column number is always the first in a PLOT statement. The
second number (you have used 20, 22, and 24) names the
horizontal row.

Now try plotting some bricks on your own. Can you put some in
the leftmost vertical column? (Hint: the first number after PLOT
should be 0, although 1 also will work.) What about the vertical
column on the far right? (Hint: the first number after PLOT
should be 39.)

A Graphic Change of Pace

Figure 1-7. Screen Grid Numbering
System in Low-Resolut ion Graphics

•

Notice in Figure 1-7 that the numbering system for the vertical
columns goes from 0 to 39, left to right. The numbers for the
horizontal rows also go from 0 to 39, beginning at the top of the
screen and moving down. Those of you who know algebra will
recognize that this is a system of Cartesian coordinates. This
book refers to the coordinates as columns and rows. Since the
screen is already divided into 40 vertical columns and 40
horizontal rows, all you have to do is name the coordinate
points that go with each PLOT .

The color of the bricks you are plotting is determined by the
COLOR= statement. The Apple lie will keep using whatever color
you assign until you instruct it to change to another color. Try
that now with

COLOR = 5

Notice that nothing new has happened on your screen yet. You
have to tell your Apple lie where to put each brick, so type

PLOT 20,21

And what happens? A brick of a different shade should appear
in the same vertical column you have been using, but in a
different row. Try

PLOT 20,23
PLOT 20,0

Introducing Applesoft

/

/'

• Figure 1-8. Applesoft COLOR= Names
and Numbers

0 black 8 brown
1 magenta 9 orange
2 dark blue 10 gray
3 purple 11 pink
4 dark green 12 green
5 gray 13 yellow
6 medium blue 14 aqua
7 light blue 15 white

Figure 1-9. Color Groups. For good
contrast on a black-and-white or
green-phosphor monitor, use a
number from each group.

Dark gray : 1, 2, 4, 8
Medium gray: 5, 10
light gray: 3, 6, 9, 12
Pale gray : 7, 11 , 13, 14
White : 15

You should see two more bricks in the same column.

So far, if you have been trying these exercises, you have
produced two shades of bricks on your screen . How does this
work?

There are sixteen numbers assigned to COLOR= in Applesoft.
Look at Figure 1-8 to see which number goes with which color .

If you are using a black-and-white or a green-phosphor monitor,
there are five groupings of colors that will contrast well on your
screen. All of the sixteen color numbers can be used, and you
should feel free to experiment with them.

A Graphic Change of Pace III

•

If You Have a Color Television Set: You can hook up a color
television set to the Apple lie with a radio-frequency (RF)
modulator. All of the graphics examples in this manual work
well in color. You don 't have to stick with the color groups,
however, because all 16 colors contrast well on a color screen .

Since you have bricks on your screen that have been plotted
with COLOR = 15 and COLOR = 5, try typing these instructions to
see some more contrasts:

COLOR = 3
PLOT 21,0
PLOT 21 ,20

COLOR = 1
PLOT 22,22
PLOT 22,25
PLOT 22,26

To see why COLOR = 1, 2, 4, and 8 are grouped together,
experiment by plotting bricks of those colors near each other.
On a black-and-white or green-phosphor monitor you can 't tell
much difference between them. On a color monitor, of course,
they are distinct colors (magenta, dark blue, dark green, and
brown). Now try

COLOR = 0
PLOT 22,27

Nothing happens, right? Take a look at Figure 1-8 to see why.
The same thing will happen whenever you give the GR statement
without indicating a color. This is because the color is initially
set to zero, or black. Remember?

Now try some more COLOR= and PLOT statements. Keep
practicing until you get the hang of it.

When you want to clear your screen and do some new PLOT
statement~, type

GR

When you are doing graphics, HOME only clears the text window.
GR must be used to clear the graphics portion of the screen .

Introducing Applesoft

•

•

•

P LOT Error Messages
There are two error messages that often turn up when using the
PLOT statement. You probably already know that if you type

PLAT

or

PLOP

instead of

PLOT

you get the message

?SYNTAX ERROR

A different error message occurs when you use a number larger
or smaller than those permitted for coordinates in a PLOT
statement. Type

PLOT 13,85

and you get the message

?ILLEGAL QUANTITY ERROR

This message means that you have tried to plot a point out of
range and off the screen . The highest number you should try to
use in a PLOT statement is 39 because the coordinates range
from 0 to 39.

Aside: There are, in fact , some ways to plot row numbers larger
than 39. They are discussed in the Applesoft Reference Manual.

Trying to use negative values in a PLOT statement is another way
to get the

?ILLEGAL QUANTITY ERROR

message.

e Pause

PLOT Error Messages

The HL I N statement is used to draw
horizontal lines in low-resolution
graphics.

Drawing Lines

Prepare your screen for some new graphics by typing

GR
COLOR = 1

You must have discovered by now that it takes a lot of
instructions to plot a line on the screen. It would , for example,
take 40 statements to draw a horizontal line all the way across
the middle of the screen :

PLOT 0,20
PLOT 1 ,20
PLOT 2,20

and so on, until

PLOT 39,20

However, there is an easier way to make horizontal lines. Just
type

HUN 0,39 AT 20

And there you have it: an instant horizontal line from column 0
to column 39 at row 20.

To draw a contrasting horizontal line just below the first, type

COLOR = 7
HUN 0,39 AT 21

Introducing Applesoft

Figure 1-10. The HLI N Statement

Figure 1-11. HL I N Syntax

Now you figure out how to draw a third contrasting line at row
22. This time, however, have it run from column 10 to column 30.

To understand the HL I N statement, look carefully at the order of
the numbers after HL IN. The syntax, or rules for writing the
statement, require the use of three numbers in a certain order.
The third contrasting line, for example, goes from column 10 to
column 30 at row 22 and is written as shown in Figure 1-11.

HLIN 10,30 AT 22

From left column number (10), to right
column number (30) at row number (22)

Drawing Lines

In low-resolution graphics, VL I t-I
draws a vertical line in the color
indicated by the most recent COLOR=
statement.

To see how PLOT and HL I N can be used together, try the
following:

COLOR = 8
HUN 29,39 AT 35
HUN 29,39 AT 37

COLOR = 10
PLOT 29,36
PLOT 39,36

There is a statement for vertical lines similar to that for
horizontal lines. To draw another, larger, rectangular box, type

COLOR = 15
VUN 0,20 AT 0
VUN 0,20 AT 15
COLOR = 5
HUN 0,15 AT 0
HUN 1 ,14 AT 20

Notice that when the first horizontal line is drawn over the ends
of the vertical lines, the new color takes over, and the old color '-'
disappears. Practice making more vertical lines. Then, to clear
the screen, use the GR statement.

Now test your proficiency with horizontal and vertical lines by
drawing a border around the screen in five statements. Put a
cross on the screen. Play with PLOT, HL IN, and VL I N until you
can put lines exactly where you want them.

Now, here's a test. Look at Figure 1-12. Use the number
coordinates on the grid to determine how to give one HL I Nand
three VL I N instructions to write "Hi " on your screen. Start with

COLOR = 3
VU N 5,25 AT 10

and figure out the rest. Then dot the i with a PLOT statement. If
you like, add an exclamation point at column 28 (just for show).

Introducing Applesoft

Figure 1-12. Using Low-Resolution
Grid Coordinates

TheTEXT statement sets the screen
to the nongraphics text mode : 40
characters per line and 24 lines.
When used to leave the graphics
mode, it is best used in conjunction
with the HOME statement.

When you are finished with graphics, the TEXT statement
returns the computer to text mode so you can use the full
screen to work with programs. When you type

TEXT

you 'll see a screenful of funny symbols. The technical term for
this is garbage. It is just an indication that Applesoft is switching
modes from graphics to text. To remove the garbage from your
screen, follow the TEXT statement with HOME. As you already
know, HOME clears text from the screen.

Since this manual is leaving the graphics mode for a while,
make sure you return the Apple lie to text mode before you
continue.

e Pause

Drawing Lines •

Variables and More Calculator Abilities
In the main memory of your Apple lie are a large number of
special storage spaces. In each one of these spaces you can
store a number, the result of a computation , words, or a group
of characters. To accomplish this you need symbols to
represent the various locations, or storage spaces.

It is a bit like saving a number for later use on a simple
calculator. Usually this is done on the calculator by pressing a
memory key. On the Apple lie, because it has many more
storage spaces than a calculator, you give a name to each
space.

Say you want to save the number 77 . If you wanted to name the
storage space A, you would instruct the Apple lie to

The LET statement is used to define a LET A = 77
variable.

If the statement LET A = 77 has
disappeared from your screen , you
fo rgot to leave the graphics mode by
typing TEXT . If you have a lot of
garbage on your screen , you forgot to
clear the screen with HOME .

-Figure 1-13. Defining a Variable with
LET. A variable is a symbol that
represents a location in memory. You
can think of it as a place where one
value, such as 77 , is stored .

This statem ent defines a variable

This symbol represents a location ,
or storage space, in memory

This is the value that is stored

The number, or value, 77, is not printed. It is stored in the space
you have called A. If you now type

PRINT A

the computer will print the value of the variable A, which is 77 .

Try typing the two statements.

LET A • 77

Introducing Applesoft

A variable can have almost any name as long as it starts with a
letter. For example:

LET A = 77
LET RED3 = 77
LET CLOTHING = 77

Each of these variables represents a different location in
memory. They all store the same value, 77. Now if you type

CLOTHING = 100

and print the value of CLOTH I NG , you get 1 00 , right? The 77 is
gone, and you have assigned a new value to CLOTH I NG.

Whenever you put a new value in a variable, the old value is erased
from memory.

However, the variables A and RED3 still contain the value 77 . Try
typing

PRINT RED3

to see. Is the same true for variable A?

You may have noticed that in the CLOTH I NG = 100 statement
you didn 't type LET . When naming a variable, LET is optional. In
other words, the statements

LET A = 45

and

A = 45

give the same result. Sometimes it is easier to recognize a
variable, when you are first learning Applesoft , if it is preceded
by LET . But it's your choice.

Variables and More Calculator Abilities II

You may find that it is easier on your fingers to use brief names
for variables. You 'll also discover that some names are not
allowed because they include a word that has a special meaning
in Applesoft. These are known as reserved words. One of these
words is COLOR. Thus a variable's name must not have the word
COLOR in it. Try typing

THISCOLOR = 6

or

COLORFUL = 9

All you get is the ?SYNTAX ERROR message, which means you
have unwittingly included a reserved word in the name. Don 't
worry. Just choose another name. In this case, a change to the
British spelling will solve the problem and still give you a
meaningful variable name: COLOURFUL.

A list of reserved words that cannot be used as variables or as
part of variable names can be found in Appendix B. There is
also a good deal more information on variables in the Applesoft
Reference Manual .

Distinguishing Variables

Applesoft uses only the first two characters of a variable name
to distinguish one variable from another.

To see how this works, try typing

81RD = 11
PRINT 81RD

Did you get what you expected? Now type

PRINT 81TE

What happens? Try

PRINT 81LLOW

All these names begin with 81 . So 81 RD , 81 TE , and 81 LLOW all
refer to the same variable.

Introducing Applesoft

There is a big difference between the way Applesoft interprets

PRINT CAT

and

PRINT "CAT"

What happens when you try them?

It is just like the difference between these two sentences: mice
have four feet ; " mice" has four letters.

The first sentence refers to little furry creatures with long tails.
The second sentence refers to the word itself. This is how
quotation marks are used in Applesoft. When you type

PRINT "CAT"

you are instructing the Apple lie to print the word . When you
type

PRINT CAT

you want the Apple lie to print what the word stands for.

Whenever you omit quotation marks in a PR I NT statement,
Applesoft will treat the word or lette r like a variable and try to print
the value of the word or letter.

So far, you have only used variables with a single number. You
also can store the result of a computation in a var iable. Type

A = 4 + 5

PRINT A

The value of A is 9 , right? Now you can use the value of A in
further computations. For example, try this on your computer :

PRINT A + 2

Is the answer what you expected? Try some other calculations
using A.

Applesoft takes everything to the right of the equal sign (=), figures
it out, and puts the result into the variable on the left of the sign .

Variables and More Calculator Abilities

Now let 's say FOOD has the value of 28 , and you want to increase
this value by 5. If you type

FOOD = 28
PRINT FOOD
PRINT FOOD + 5

you ' ll get 33 . But when you type

PRINT FOOD

again , Applesoft gives you the original value of the variable
FOOD . The way to increase the value of the variable in memory
is to type

FOOD = FOOD + 5
PRINT FOOD

The statement FOOD = FOOD + 5 may seem irrational until you
recall that Applesoft doesn 't require you to type in the assumed
LET. What you really are saying is " let FOOD now equal what
FOOD equaled up until now plus 5 ."

SO FOOD has a new value-until you assign another value to it.
Try that now. Type the statements below in order :

FOOD = 2
PRINT FOOD
FOOD = FOOD + 3
PRINT FOOD
FOOD = FOOD * 6
PRINT FOOD
FOOD = FOOD / 10
PRINT FOOD

At the end of this sequence of statements, you should have the
value 3 . Is this correct? Is this what you expected?

In contrast to the math you learned in school , where X always is
equal to X, the computer adds the element of change to variables.
In the statement X = X + 1, the equal sign means " receives the
value" or " is assigned the value."

Introducina ADDlesoft

The Apple lie is able to store each new value of the variable
(FOOD) as it is assigned or computed. You don 't have to
PR I NT FOOD each time for that to happen. Just to make sure,
try it now.

FOOD 2
FOOD FOOD + 3
FOOD FOOD * 6
FOOD FOOD / 10
PRINT FOOD

Look at the sequence below. What answer do you expect? Try it.

APPLES = 55
BANANAS = 11
QUOTIENT = APPLES / BANANAS
PR I NT QUOT! ENT

You see from this example that once you have stored several
variables in the Apple lie you can do computations using the
variable names. Apples can't actually be divided by bananas,
but Applesoft recognizes the words as variable names and uses
their values in the division.

This section has explained how to store numbers and the results
of computations in variables. As you may recall , it is also
possible to store words and groups of characters in variables.
Chapter 5 will return to this subject.

Summary of Variable Rules

1. A variable is a symbol that represents a location in memory.

2. The LET statement is used to define a variable.

3. LET is optional; LET A • 23 and A = 23 give the same result.

4. Applesoft takes everything to the right of the equal sign,
figures it out, and puts the result into the variable on the left
of the sign.

Variables and More Calculator Abilities

5. A variable name must begin with a letter. It is a good idea to
give meaningful names to your variables for easier
identification .

6. Applesoft uses only the first two characters of a var iable
name to distinguish one variable from another.

7. All Applesoft keywords and some other words are reserved
and cannot be used as variable names.

e Pause

• Figure 1-14. Precedence Example.
Division is done f irst. Then the
computation becomes 4 + 4 , and the
addition is done .

•

A Big Timesaver
You may have noticed by now that the PR I NT statement is used
a lot in Applesoft.

However, you are about to learn a wonderful timesaver: a
question mark can be used in place of PR I NT . In fact , ? and
PR I NT mean the same thing in Applesoft. Try it out now by
typing

? "WOW! ·"

Precedence
Now that you are using the Apple lie for computat ions, you need
to know what order, or precedence, Applesoft uses in carrying
out your instructions. In a calculation like

PRINT 4 + 8 / 2

will the answer be 6 or 8? It depends on which computat ion
Applesoft does first. If Applesoft adds 4 to 8 , then divides 1 2 by
2 , the result is 6 . If Applesoft divides 8 by 2 , then adds 4, the
result iS8 . Look at Figure 1-14 to see the order Applesoft
follows .

PRINT 4 + a I 2

PRINT4+4

Introducing Applesoft

Here are some more examples :

1. When a minus sign is used to indicate a negative number, it
is called a unary minus sign. In the example

PRINT -3 + 2

Applesoft applies the unary minus sign to its appropriate
number or variable before doing any arithmetic operations.
Thus -3 + 2 evaluates to -1 . If it did the addition first ,
-3 + 2 would evaluate to -5. But it doesn't. Another example
is

BRIAN = 6
PRINT -BRIAN + 10

The answer is 4 . (Notice, though, that in the arithmetic
expression 5 - 3 the minus sign is indicating subtraction ,
not a negative number.)

2. After identifying all negative numbers, Applesoft then does
exponentiations. The statement

PRINT 4 + 3 " 2

is evaluated by multiplying 3 by itself (3 113= 9) and then
adding 4 for a grand total of 13. When there are a number of
exponentiations, they are done from left to right , so that

PRINT 2 " 3 " 2

is evaluated by multiplying 2 by itself three times (2 II 2 112) ,
which is 8, and then multiplying that by itself (8 118) . The
answer is 64 .

3. After all exponentiations have been calculated , all
multiplications and divisions are done, from left to right.
Arithmetic operators of equal precedence are always
evaluated from left to right. Multiplication (II) and division
(!) have equal precedence.

4. Then all additions and subtractions are done, from
left to right. Addition (+) and subtraction (-) have equal
precedence.

Be assured that you don 't have to memorize the order of
precedence to use the computer. You can always refer to these
pages when you need to know.

Precedence •

Figure 1-15. Applesoft 's Order of
Precedence for Carrying Out
Arithmetic Operations

First: Unary, or minus, sign used to indicate a negative number

Second : " Exponentiations, from left to right

Third : * / Multiplications and divisions, from left to right

Fourth : + - Additions and subtractions, from left to right

Some arithmetic expressions to evaluate follow. With each one,
first do it yourself and then try it on the Apple lie. If your answer
is different from the computer's, try to find out why.

Remember to preface each computation with? or PR I NT.
Unless you already understand the way computers evaluate
expressions, you should do these examples one at a time,
checking your answer against the computer's as you go.

PRINT 4 + 6 - 2 +

PRINT 5 - 4 / 2
PRINT 20 / 2 * 5
PRINT 6 * -2 + 6 / 3 + 8
PRINT 2 " 2 " 3 + 2 " 3
PRINT 8 * 2 / 2 + 3 * 2 " 2 * 1

No answers are given in this book. The Apple lie will give you
the correct answers. If you like doing these, try some of your
own. If not, keep going!

Parenthetically Speaking
Now, suppose you want to divide 12 by the result of 4 + 2. If you
type

PR I NT 12 / 4 + 2

you will get the answer 5. But this is not what you meant. To
accomplish what you meant in the first place, use parentheses
to modify the precedence. Type

PRINT 12 / (4 + 2)

Introducing Applesoft

The rule Applesoft follows is simple: it does what is in
parentheses first. If there are parentheses within parentheses,
Applesoft does what is in the innermost parentheses first. Here
is an example:

PRINT 12 I (3 + (1 + 2) " 2)

In this case, doing the innermost parentheses, Applesoft first
adds 1 + 2 . Now the expression is:

12 I (3 + 3 " 2)

Then Applesoft follows the rules of precedence to determine
that: 3 + 3 " 2 is 3 + 9, or 1 2 , and that 1 2 I 12 is 1 .

In a case like (9 + 4) * (1 + 2) , where there is more than one
set of parentheses, Applesoft does the operations within each
set, starting at the left and working to the right. This expression
becomes 13 * 3 , or 39 .

Here are some more expressions to evaluate. Remember that
you can substitute a question mark (?) for PR I NT . Incidentally,
most of these rules for precedence and parentheses hold good
for most computer systems anywhere in the world , not just the
Apple computer.

PRINT (44 I 2) + 2

PRINT 100 I (200 I (1 * (9 - 5»)
PR I NT 32 I (1 + (7 I 3) + (5 I 4»

e Pause

Parenthetically Speaking

III

Chapter Summary
Here is what you have learned in this chapter. Impressive, isn 't
it? Each category lists the terms in order of their appearance in
the chapter. Definitions of statements are in Appendix A.
Glossary terms are defined in the Glossary.

Applesoft
Statements

PRINT
INVERSE
NORMAL
HOME
GR
COLOR=
PLOT
HUN
VUN
TEXT
LET

Keys

ICAPS LOCK I
OOITJ
!RETURN I
!lEFT - ARROW I
!RIGHT-ARROW I

Arithmetic
Operations

addition
subtraction
multiplication
division
exponentiation

Introducing Applesoft

Glossary
Terms

prompt
cursor
keyword
statement
character
character limit
arithmetic operations
scientific notation
low-resolution graphics mode
text window
radio-frequency modulator
syntax
main memory
value
variable
reserved word
precedence
unary
arithmetic expression
operator

Error Messages

?SYNTAX ERROR
?ILLEGAL QUANTITY ERROR

Elementary Programming

37 Deferred Execution
42 Loops : the GOTO Statement
45 Interacting with Your Program : INPUT
47 So You Want To Save Your Programs?
47 Preparations
48 Saving
49 Conditions: Determining the "Truth "
51 Symbols Used in Conditional Statements
52 Rules for Using Conditional Statements
52 Conditional Loops: the IF ... THEN Statement
54 Using the APPLESOFT SAMPLER : COLORLOOP
56 More on the I F Statement
58 Remarks
59 FOR/NEXT Loops
62 Nesting and Crossing Loops
64 Controlling Spaces in Your Programs
70 Chapter Summary

Elementary Programming

•
The NEW statement clears the main
memory in the Apple lie and should
be used each time you begin a new
program.

Elementary Programming

When a computer performs according to the instructions you
have given it, it executes the statement. Up to now, when you
typed

PRINT 3 + 4

and pressedlRETURH, the Apple lie would do what you told it to
do, immediately. This is called immediate execution . You can try
out nearly every Applesoft statement in immediate execution.

But what if you want to produce some computer magic for your
friends without typing while they watch? Or you want to write
some instructions, take a break, and return later to add some
more? To do these things, you need to be able to store the
statements for execution at a later time. This is called deferred
execution .

Deferred Execution
To make sure that the computer's memory is cleared , type

NEW

Now type the following line:

100 PRINT "MY FAVORITE FOOD IS ARTICHOKES"

When you press~ETURNI , nothing appears on the screen . If you
press lRETURH again , the cursor moves down the screen-but
your statement still hasn 't been executed.

Elementary Programming •

The LIST statement displays the
program lines that are in the
Apple lie's memory.

•

•

The RUN statement causes the
computer to execute, or carry out,
whatever instructions are contained
in the program lines in memory. •

lNEW
]100 PRINT "MY FAVORITE FOOD IS ARTICHOKES"
1
1
]1

The key to this response is simple: when you typed 1 00 you
gave the statement a line number, indicating that you want the
computer to defer execution. The Apple lie will hold line 100
in its memory, temporarily, until you instruct it not to. (If, for
example, you turn off the Apple lie, line 100 will be lost.)

Of course, you probably don't want to defer execution of that
line forever. And you may be wondering how you can be sure
about this temporary storage business. To find out what is being
held in the Apple lie's memory, type

LIST

and, unless you mistyped something,
----------------------~

LIST
100 PRIHT "MY FAVORITE FOOD IS ARTICHOKES"

appears on the screen.

The LIST statement instructs the computer to display whatever
numbered lines are in its memory. To instruct the computer to ---l
execute line 100, type

RUN

and the sentence

MY FAVORITE FOOD IS ARTICHOKES

should appear on your screen.

Look carefully at the difference between the line when it is
listed and when it is executed. You 'll notice that the line number,
100, has disappeared along with PR I NT . As you recall , the PR I NT
statement is used to display information on the screen. So when
you run line 100 only the characters enclosed in quotation
marks are displayed. You can list and run line 100 as many times
as you like.

Elementary Programming

•
Figure 2-1. Using LI ST and RUN in
Deferred Execution

It takes a while to understand the difference between what you see
on the screen , what is in main memory, and what is stored on a
disk. As you work with the Apple lie and this manual, the difference
will become clearer. More information on this subject can also be
found in the Apple lie Owner's Manual.

To see what happens when you give a different instruction with
line 100, type

100 PRINT "THE SUM OF 3 + 4 IS"
110 PRINT 3 + 4

The old line 100 has been replaced and is no longer in memory.
Type LIST to check. Now instruct the Apple lie to

RUN

What do you get? If you now type

NEW

and then

LIST

the computer's memory is erased; both lines 100 and 110 are
lost. Type

RUN

and nothing is executed-since there is nothing in memory.
You 'll have to give the Apple lie some more instructions, so type

Deferred Execution a

•

•

2 PRINT "P"
PRINT "A"

4 PRINT "E"
3 PRINT "L"

Now list these instructions. Notice that the computer stores
statements in order of increasing line number: it has rearranged
what you typed to read

1 PRINT "A"
2 PRINT upll
3 PRINT "lll
4 PRINT liE"

When you run what is in memory, you see that the computer
also executes the statements in order of increasing line number.
But that's not good enough. There is a P missing. To add it, so
the computer will print

A
P
P
L
E

you have to retype the statements with line numbers 3 and 4 as
statements 4 and 5 and add a new line number 3. To make the
corrections, type this:

3 PRINT "P"
4 PRINT "L"
5 PRINT "E"

To see what has happened, use the LIST statement, and then
type RUN .

Congratulations! You have just written a program. Putting
together a series of statements preceded by line numbers is,
in its most simple form, what programming is about. A program
is a stored sequence (that's what the line numbers are for) of
instructions (like PR I NT) that directs a computer to perform
some function (in this case, to display APPLE on the screen) .

When one of the p 's was left out of APLE, it was a bother to
retype those statements. There is, however, an easier way. It is
good programming practice to leave some room between line
numbers and before the first line. If the line numbers had been
10, 20, 30, and 40, you could have added the missing P with
line 15.

Elementary Programming

One of the advantages of deferred execution is that you can add
to or modify your instructions without having to type everything
over and over again. To see this in action, type

NEW

to eliminate the old instructions. Now put in these :

100 PRINT "C"
110 PRINT "T"

When you run this program it doesn 't quite print CAT vertically.
But you can go back and type

105 PRINT "A"

List and run this program.

Here is a longer list of instructions to try :

NEW
1 0 HOME
20 PRINT "MY APPLE GIVES MESSAGES:"
30 PRINT
40 PRINT "HI, THERE, PROGRAMMER!"
50 PRINT
60 PRINT "MY APPLE DOES COMPUTATI ONS : "
70 PRINT
80 PRINT 60 I 12
90 PRINT 4 A 5

Another advantage of deferred execution is that it is possible to
store many statements at once. Of course, each statement must
have a different line number.

Since you probably want to see the results of these instructions
right away, type

RUN

and watch the results appear.

Deferred Execution •

•

Figure 2·2. The Capabilities of NEW ,
LI ST , and RUN

MY APPLE GIVES MESSAGES:

HI, THERE, PROGRAMMER!
MY APPLE DOES COMPUTATIONS:

5
1024

Does your screen look like this? If not, list your program to see
what went wrong . (Notice that you can list a program after you
have run it as well as before.) Here are some things to look for
when you list a program :

• Does each line have a different number?

• Did you spell PR I NT correctly?

• Did you remember the quotation marks after each PR I NT
statement? (Lines 30, 50, and 70 introduce blank lines
between the statements, just as using a typewriter's
carriage return would.)

If you need to correct any lines simply type them over. Then list
again to make sure they look right. (In the next chapter you'll
learn some faster ways to correct and edit your program lines.)

In this section you have learned several statements that help
you work with whole programs. They are outlined in Figure 2-2.

NEW Erases the current program from the computer's memory. After
using NEW , you have to enter something from the keyboard or load
something from a disk.

LIST Displays the program that is in memory.

RUN Executes the program in memory, beginning with the statement
with the smallest line number. (It is also possible to start execution
with whatever line number you indicate.)

e Pause

Loops: the GOT 0 Statement
Suppose you want to print the integers 1 through 200, one
number to a line. An obvious way to do this is

100 PRINT
110 PRINT 2
120 PRINT 3

Elementary Programming

and so on. But this would require 200 statements and a lot of
careful typing! Luckily, there is an easier way. You can print the
positive integers using just five statements:

NEW
100 N = 1
110 PRINT N
120 N = N + 1
130 GOTO 110

The GOTO statement causes a
program to branch to the indicated
line. It is used to create a loop in a
program.

Figure 2·3. The GoTo Statement

Before you run this program, look at Figure 2-3 to see how the
program works.

• . . ____ 100 1'1 • 1
Line 100 names the variable Nand --- I

sets its value at 1. See "Variables and 110 PRIHT 1'1
More Calculator Abilities, " Cha~ter 1

120 1'1 • 1'1 +

130 GOTO 110
Line 110 prints the variable N. /1
Line 120 increases the value of ~ __________________________ ---'

variable N by 1

. ' . Run the program. You will learn how to stop this program
Line 130 does Just what It says . It . shortly. Meanwhile admire the power of the program. If you
causes the program to go back to line '
110. Line 110 printsN , line 120 typed RUN when instructed, two sentences back, the Apple lie
increases N by 1, line 130 says to do has executed the statement PR I NT N a few hundred times
line 110 over again , and so on . Each I d
time, a new value of N is printed , over a rea y.
and over.

To stop the program press and hold thelcoNTRoq key while
pressing the C key.

The lcoNTRoq-c command stops program execution and tells
you where the execution was stopped by displaying the line
number, such as:

BREAKIN110

Try it. By the way, this is an exception to the rule about pressing
RETURNI after every instruction. PressinglRETuRH is usually not
necessary when a program is stopped with ICONTROq- C.

Use ~oNTRoq-C to stop program execution.

Loops: the GOTO Statement •

When you stop a program with ICDtHROq-C, you can usually
resume its execution by typing the instruction

The CONT statement resumes, or CONT
continues, program execution after

~ONTROg-C , STOP , or END is used to which stands for "continue." Do this now.
alt execution.

•

II

As you look at the screen notice that the numbers keep rippling
up and out of sight. As each new number is printed at the
bottom of the screen all the others are moved up one line. This
is called scrolling. You 've been seeing it all along, but at a much
slower rate.

Stop program execution again with ICONTROq- C. Practice using
CONT and ~ONTROq-C until you get used to them. They will
come in handy.

If you want to start the program again, type RUN (instead of
CONT). When you are ready for another example of the
GOTO statement in action, type

NEW
100 PRINT "RAIN"
110 PRINT "IS"
120 PRINT "FALLING"
130 PRINT "DOWN"
140 PRINT "DOWN"
150 PRINT "DOWN"
160 GOTO 100
RUN

~ONTROq-c stops this program, and CONT continues it.

Earlier you learned that the RUN statement starts program
execution at the smallest line number. However, if you want to
start at some other line, such as line 130, type

RUN 130

and you ' ll see

DOWN
DOWN
DOWN

Elementary Programming

on your screen before the program goes back to line 100 and
begins at the beginning.

You can specify line numbers in the LIST statement as well. If
you type

LI ST 130

the Apple lie will list only line 130 (if there is one) . If you type

LIST 130,150

or

LIST 130-150

the computer will list all the program lines in its memory
between and including line 130 and line 150. Try it. You cannot,
however, specify a range of lines in the RUN statement.

A summary of Applesoft statements and a brief description of each
statement can be found in Appendix A. When you need a quick
reference (for example, if you want to know the difference between
the LIST and RUN statements) Appendix A will come in handy.

e Pause

• Interacting with Your Program: INPUT

The programs you have learned so far are sure to impress
your less experienced friends. But what if you want to write a
program to ask someone a question-to fill in the blank, so to
speak? There is a statement you can use to do just that : the
I NPUT statement.

Say you want a program that asks a person 's age and uses
whatever number the person enters to display a message. You
already know how to use PR I NT to display messages. So the
first step is to include in the program the message you want
used. You also know how to assign a variable name to a number.
Since age is a variable, you ' ll use what you already have learned

The I NPUT statement allows the for this. What you haven 't yet learned is how to use the INPUT
programmer to interact with a statement.
program user from within a program.

Interacting with Your Program: INPUT

Figure 2-4. Using the INPUT
Statement

•

•

•

Type this program, then list it to make sure you haven 't made -.J

any typing errors. Before you run it, look carefully at Figure 2-4.
The order, or syntax, of each statement is especially important.

NEW
10 HOME
20 INPUT "HOW MANY YEARS OLD ARE you?n ; AGE
30 PRINT "YOU ARE n; AGE; n YEARS OLD,n

Now run the program. When you see the screen clear and the
question

HOW MANY YEARS OLD ARE YOU?

on the screen , type in an answer (the number of your age). What
happens? Run it again , and pretend you have a different age.

Erases old programs--____ --.l
NEW

Clears screen j 10 HOME -:J
Message, or question you want - 20 INPUT I"HOW MANY YEARS OLD ARE YOU?"I; AGE
asked , is in quotation marks I
Semicol on betwee n message ~o PRINT "YOU ARE I"; AGE; "IYEARS OLD'"
and variable name

Vari able name I

--------------------------------------~--~---Prints message, in c luding th e
value o f th e variabl e AGE When you execute the I NPUT statement, in its simplest form , it

Un less you t ype th e spaces as shown ,
th e words won't be separate from
the age

prints a question mark and waits for you to type something in.
What you type is stored in a variable.

When you use INPUT, you have to decide, or define, several
things:

• What question, or message, do you want the person using
your program to see? Since INPUT, like PR I NT , displays
exactly what you write it is important to ask a specific
question. The message must be in quotation marks, and
it is separated from the variable name by a semicolon.

• What do you want the user to type in? If you want a number,
you must define a variable name.

It is also possible to have the user type in a word or group of
characters. You will see an example of this in a program later in
this chapter and will learn more about I NPUT and variables in
Chapters 4 and 5.

Elementary Programming

Initializing, or formatting, is a
process used to prepare a disk to
receive information . This process is
explained in the Apple lie Owner's
Manual .

Here is an example of how to add a variable computation to your
I NPUT program. Leave lines 10 and 20 as they are. Add th is new
line:

25 AGE = AGE * 365

and change line 30 to read:

30 PRINT "YOU ARE ABOUT "; AGE; " DAYS OLD!"

Use the LIST statement to double-check your new lines. Then
run the program. You ' ll notice that it doesn 't give the exact
number of days old a person is-unless it happens to be the
birthday of the user. It estimates. That is why you added ABOUT
to line 30. Each time you want to see this program in action,
type RUN to begin execution .

So You Want To Save Your Programs?
So far, you have been using deferred execution by writing
programs with line numbers, but each time you typed NEW , you r
previous program was erased from the computer's memory. This
section explains how to save your programs by using the
computer's Disk Operating System.

Preparations

To save a program you need two things : a program to save,
and an initialized disk or a cassette tape on which to save the
program. Of course, you also can save programs by writing
them down, but that's not nearly as much fun as using the
Apple lie.

• You should have initialized a disk before you started th is
manual. If you did, find it, and proceed to the next section,
"Saving ."

• If you are not sure whether a disk is initialized , find out by
typing

CATALOG is a DOS command that CATALOG
d isplays a list of all the files on a disk
in the specif ied d isk drive. and press thelRETURNI key. Something similar to this should

•
appear on your screen :

DISK VOLUME 254
A 002 HELLO

So You Want To Save Your Programs?

SAVE , when followed by a file name,
is a DOS command that stores the
program currently in memory onto a
disk. SAVE used without a file name
stores the program currently in
memory on cassette tape.

If this message appears on your screen, your disk is -'
initialized and you can proceed to "Saving." If no such
message appears, the Apple lie Owner's Manual explains
how to initialize a disk.

• If you have two disk drives connected to Apple lie, you need
to know which drive to use. DOS automatically uses Drive 1
when you boot the system. DOS continues to use Drive 1
until you tell it differently. When you follow a DOS command
with ,02-as in CATALOG,02-DOS then uses Drive 2 (that
is what 02 stands for) until further notice. To use Drive 1 by
default again follow the DOS command with, 01 .

Normally, with two disk drives, you have a boot disk (like the ---
DOS 3.3 SYSTEM MASTER disk) in Drive 1 and another disk
(like the initialized disk you are about to use) in Drive 2.

If you want more information on using two disk drives, see
the Apple lie Owner's Manual and the DOS Manual.

• If you are using a cassette recorder instead of a disk drive,
see the Apple lie Owner's Manual for how to store
information on a cassette tape and the Applesoft Reference
Manual for using cassette commands. -"

Saving

If you have been following along, the age-asking program is still
in memory. To make a permanent copy of this program on a
disk, give the SAVE command followed by the name you want to
give the program. To see this in action, make sure your
initialized disk is in the disk drive and type

SAVE AGE

Your disk drive will whir briefly, and you'll see the red light go
on. When the red light goes off, type

CATALOG

and you'll see a list of all the programs on your disk. There
should be two, unless you have already saved others.

Elementary Programming

The LOAD command, when followed
by a program name, looks for the
named program on the disk in the
specified or default drive. When used
without a program name, LOAD reads
a program from cassette tape into the
computer's memory.

Helpful Hints: If you turned your system off and restarted it
recently, the age-asking program may be gone from memory.
To save it, type it again, and then give the SAVE AGE command.

If you are using two disk drives and want to save the program
on the disk in Drive 2, type ,D2 after the program name.

Once you have saved a program on a disk, you can retrieve it
and load it into the computer's memory by typing

LOAD AGE

When you give the LOAD command, the disk drive will whir as it
searches for the program. As soon as the red light goes off, list
or run the program you have just loaded.

If nothing happens, type the program in again, and then save it.
If still nothing happens, ask yourself:

• Did I use an initialized disk?

• Is a HELLO program displayed when I give the CATALOG
command?

• Am I trying to save my program on the DOS 3.3 SYSTEM
MASTER disk? (If so, you'll have to change disks because
the SYSTEM MASTER disk is write-protected, which means
you can 't add anything to it.)

• If I have two disk drives connected to the Apple lie, did I
remember to type, D2 after the SAVE command (that is,
assuming the disk you want to save on is in Drive 2)?

e Pause

Conditions: Determining the "Truth"
Lots of things in life are conditional: one thing has to happen
before another thing can happen. For example, you have to
reach a certain age before you can register to vote or apply for
Social Security. The government has ways of determining
whether the condition has been met, what happens when the
condition has been met, and what happens when it hasn't ; and
so does Applesoft.

Conditions: Determining the "Truth"

•

•

When you make a conditional statement in Applesoft , there are
two possible responses: the condition is true or it is false. The
false condition is represented by zero (0); the true condition is
represented by one (1). If, for example, you type

PR I NT 17) = 18

the Apple lie will respond with 0 on the next line .

PRINT 17). 18
o

Applesoft understood the statement to mean " is 17 greater
than or equal to 18?" and, since it is not, responded with 0 to
indicate the falseness of the condition . If, on the other hand , you
type

PRINT 75)= 18

the computer answers with 1 because the condition is true :
75 is indeed greater than or equal to 18. For more examples of
Applesoft's response to the condition of greater than or equal
to, try each of the following statements:

PRINT 18)= 18
PRINT 3)= 18
PRINT 27)= 18

Conditional statements in combination with statements covered
later in this chapter give Applesoft the ability to make choices. If
a condition is true, Applesoft will follow one set of instructions;
if a condition is false, Applesoft will follow another set of
instructions.

Applesoft 's system of evaluating conditions is based on the
binary numbering system, which consists of ones and zeros.
Binary is a word you will hear often in computer circles since
computers store and manipulate information in binary form.
In other words, information you type into the computer is
translated into ones and zeros; this is called machine language .

Elementary Programming

-

Figure 2·5. Applesoft Symbols Used
in Cond itional Statements

Symbols Used in Conditional Statements

Six symbols are used in Applesoft to determine the relationship
between values. Figure 2-5 lists them and gives some examples
of each symbol.

Examples
Symbol Meaning True (1) False (0)

EQUAL TO 3 = 3 3 = 1

> GREATER THAN 78 > 55 78 > 124

< LESS THAN 10 < 2 0 10 < 9

>z GREATER THAN OR EQUAL TO 4 >= 4 4 >= 25

<z LESS THAN OR EQUAL TO 32 <= 33 32 <= 3 0

<> NOT EQUAL TO 32 <> 33 32 <> 32

To type the symbols for greater than or equal to and less than or
equal to on the Apple lie keyboard, first type a (or a) and
then an •. To type the symbol not equal to, press (and then) .

Think about and then test these conditional statements. Which
are true? Which are false? (Remember, you can substitute a
question mark for PR I NT .)

PRINT 5 () 5
PRINT 8 (= 8
PRINT -8 (- 7
PRINT -2)= -5
PRINT 9 <> -9
PRINT (45 * 6) () (- 45 + 6)

Conditions: Determining the "Truth"

Rules for Using Conditional Statements

• Conditional statements can include variables (like AGE) ,
numbers (like 5), and arithmetic expressions (like 45 * 6).

• When the computer determines the value of a condition ,
that value will always be one or zero.

• In conditional statements, all numbers that are not zero are
regarded as true.

• Applesoft evaluates conditions in statements after it does
arithmetic operations like multiplication and subtraction.

Applesoft follows a particular order when evaluating any
statement containing a condition or an arithmetic operation.

• First, parenthetical operations are evaluated.

• Second, unary minus signs used to indicate negative
numbers are evaluated.

• Third, exponentiations are evaluated.

• Fourth , multiplications and divisions are evaluated from left
to right in an expression.

• Fifth , addition and subtraction are evaluated. They are
executed from left to right when they are on the same line.

• Sixth, symbols used in conditional statements are evaluated.
All six have the same priority ; they are evaluated from left to
right within the same statement.

e Pause

Conditional Loops: the IF ... TH E N Statement
When you first tried loops, using the GOTO statement, your
programs ran on and on, indefinitely, until you pressed

ICOtHROLI- C. Another way of limiting such programs is to use
conditionals in combination with the IF ... THEN statement.

Say you want a program that counts to 20, then stops. What you
want is a conditional statement that will limit the variable, N, to
20 or less. This would be written N < = 20.

Elementary Programming

The IF ... THEN statement creates a
conditional program loop.

•

The idea of the program is if N is less than or equal to 20 ,
then counting continues; if the assertion is false (if N is greater
than 20), then counting stops. Not surprisingly, the Applesoft
statement for this is IF ... THEN. Here is a program that uses a
conditional in the IF ... THEN statement:

NEW
200 N = 1
210 PRINT N
220 N = N + 1
230 IF N (= 20 THEN GoTo 210

So long as N is less than or equal to 20 the program will
loop back to line 210. When the condition is no longer met,
the program won 't return to line 210, so execution ends. Try
the program.

Loops, whether executed by airplanes or computer programs,
have a top and a bottom. In this program line 210 is the top of
the loop and line 230 is the bottom. The number 20 is the limit
of the loop.

In general , the I F statement works like this : the condition
following I F is evaluated ; if the result is zero (false) , all the rest
of that program line is ignored, and the computer goes on to the
next line; if the result is not zero (true) , the statement following
THEN is executed .

To transfer the program AGE from the disk back into memory,
type

LOAD AGE

and then LIST. What you should see on your screen is

10 HOME
20 INPUT "HOW MANY YEARS OLD ARE YOU?" ; AGE
25 AGE • AGE * 365
30 PRINT "YOU ARE ABOUT "; AGE; " DAYS OLD!"

Conditional Loops: the IF ... THEN Statement

Figure 2-6. A Cond it ional Loop

•

To see how conditionals work with IF . .. THEN statements,
change lines 25 and 30 to

>
25 IF AGE < 18 THEN GOTO 40
30 PRINT "YOU WILL BE ABLE TO VOTE IN ";

18 - AGE; " YEARS."

and add line 40 :

40 PRINT "YOU ARE ELIGIBLE TO VOTE. HAVE YOU
REGISTERED?"

Figure 2-6 shows the two paths this program can take. Run the
program after you have studied the diagram.

10 HOME

20 INPUT "HOW MANY YEARS OLD ARE YOU ?" ; AGE
25 IF AGE < 18 THEN GoTo 40

I
I I

True False

30 PRINT "YOU WILL BE ABLE 40 PRINT "YOU AR E ELIG IBLE
TO VOTE IN " ; 18 - AGE; TO VOTE. HAVE YOU
" YEARS." REGI STERE D? "

Unless you want to erase the old program AGE , you must save thi s
new version with a different name. Since it is helpful to use prog ram
names that remind you what the program does, you cou ld use
VOTE - AGE for the name of the new version .

Using the APPLESOFT SAMPLER: COLORLOOP
The COLORLOOP program uses graphics to demonstrate a
conditional loop. It is already stored on the APPLESOFT
SAMPLER disk that came with the Apple lie, so you can take
a break from typing!

Loading this program from a disk into the computer's memory
is not much different from loading a program you have saved
yourself. Just make sure you have the right disk in the right
drive .

Elementary Programming

-

Remove the disk you have been saving programs on from the
disk drive. Insert the APPLESOFT SAMPLER disk and close the
drive door. Type

RUN CoLoRLooP

and you will hear the drive whir as it looks for the program.
When CoLoRLOOP is loaded into the computer's memory, it will
run automatically. If CoLoRLooP doesn 't execute:

• Type CATALOG to make sure the APPLESOFT SAMPLER
disk is in the disk drive and the program CoLoRLooP is
listed on the disk.

• Give the RUN instruction again , making sure everything
is spelled correctly and that you have specified the
appropriate drive. (Remember that if the APPLESOFT
SAMPLER disk is in Drive 2, you must type, 02 after the
program name.)

After execution stops, look at the program by typing TE XT ,
HOME, and LIST. You should see this on your screen :

400 GR
410 ROW = 1
420 COLOR = ROW
430 HLI NO, 39 AT ROW
440 ROW = ROW + 1
450 IF ROW < 16 THEN GoTo 420

If You Do Not Have a Disk Drive: All of the programs on the
APPLESOFT SAMPLER disk are listed in this manual. Whenever
you are instructed to load something from that disk, find the listing ,
and type the program in .

Conditional Loops: the IF ••• THEN Statement

•

ROW is the name of the variable in this program. In line 420, the
COLOR= statement makes the color equal to the value of the
variable ROW: each time the value of ROW changes, the value
of COLOR= changes with it.

Observe this program as it is executed. It uses graphics to
demonstrate the same kind of conditional loop you added to
AGE and used in the counting program. So long as the variable
ROW is less than 16, the program returns to line 420 and
executes another loop. When ROW is not less than 16 , the
condition is false and the program ends. You are beginning to
see how to combine Applesoft statements in some interesting
ways!

More on the I F Statement

The I F statement is a powerful one, and you will use it in almost
every program you write. The following program begins without
an I F statement, then shows what happens when you add one.
It is not on the APPLESOFT SAMPLER disk because you will be
changing it several times. Making the changes will give you a
sense of how the statements you've been learning about can be
used in combination with one another. Remember that you need
to type

TEXT

if you want to see all the program lines as you type them in.

NEW
200 GR
210 COLOR = 9
220 PLOT 0,0
230 PLOT 0,39
240 PLOT 39,39
250 PLOT 39,0

List the program to check your typing ; then run it. Quick, isn 't
it? Now change line 21 ° to another color with

210 COLOR = 15

Elementary Programming

Figure 2-7. The VL I N Loop Program -

and run the program again. Try to list the program. Notice that
you only see lines 240 and 250. The rest of the listing slips
through the narrow text window at the bottom of the screen.
This will continue to happen unless you type

TEXT

to get out of the graphics mode and then

HOME

to get rid of the garbage on the screen before you use the LIST
statement.

Now replace lines 220-250 with the following , and then list the
program (while you are still in text mode).

220 COLUMN = 0
230 VLIN 0, 39 AT COLUMN
240 COLUMN = COLUMN + 1
250 IF COLUMN < 40 THEN GoTo 230

This program makes the screen a solid color. Run it now.

Because you haven 't typed NEW, the old line 200 is still around. So
long as it is in the computer 's memory (and it will be until you type
NEW , turn the computer off, or change the lines), you can use it in
your program.

Sets graphics mode. -------200 GR

Sets color. ----------- 21 0 COLOR • 15

Names the variable COLUMN because-- 220 COLUMN • 0
the program will be working in the
columns of low-resolution graphics.
Setting COLUMN to 0 instructs the
program to begin in first column .

Draws vertical line in column 0.---7 230 VL I NO, 39 AT COLUMN

Adds 1 to value of variable. ----- 240 COLUMN • COLUMN + 1

If the value of the variable COLUMN is -- 250 I F COLUMN < 40 THEN GOTO 230
less than 40 (if the assertion is true),
the program loops back to line 230
and draws a new vertical line in the
new column. When the value
of COLUMN reaches 40 (remember,
the rightmost column on the screen is
39) , the program stops.

Conditional Loops: the IF ... THEN Statement

REM is a statement that allows you to
put remarks, or commentary, in a
program.

To eliminate typing RUN each time you want to fill the screen
with color, add the line

260 GOTO 210

Observe what happens when you run the program now. Try
typing something else. What you type doesn't show up because
the program is running continuously : it keeps going back to line
210 over and over. To stop the program, typetoNTRoq-C . To get
it going again, type CDl'H.

Now stop it again with K:ONTROq-C . Type TEXT , HOME, and
then LIST. Line 260 creates an infinite loop with the GOTO
statement-since there is nothing in the program to stop it. If
you want to save this program without the infinite loop, remove
line 260 before saving.

A Note About Line Numbers: Line numbers can begin with
10, 100, 1000, or whatever number you choose. What is important
is to leave space between the numbers so it is easy to add lines
when necessary. While you are doing the programs in this manual,
however, it is important to use the same line numbers as in the
examples. If you don 't, you will get confused when it comes to
additions and changes like the ones you made in the last program.

Remarks
As you can see from the description of the last program, what
happens on any given line can be complicated. There is a
statement in Applesoft especially for explaining what is going
to happen : REM. It stands for " remark."

The computer ignores REM statements; they are strictly for the
benefit of people. See how easy it is to follow the VL I N loop
program shown in Figure 2-8 when REM statements are used
liberally:

Elementary Programming

•

Figure 2·8. Using REM Statements in a
Program Program with Remarks Program without Remarks

The FOR INEXT statement sets up a
program loop that is carried out the
number of times specified by the TO
portion of the statement.

195 REM SET GRAPHICS MODE

200 GR

205 REM SET COLOR

210 COLOR = 15

215 REM START AT COLUMN 0

220 COLUMN = 0

225 REM DRAW VERTICAL LINE
AT COLUMN

230 VLIN 0 , 39 AT COLUMN

235 REM PROCEED TO NEXT
COLUMN BY ADDING 1

240 COLUMN = COLUMN + 1

245 REM LOOP MAKES IT
EXECUTE OVER AND OVER
UNTIL COLUMN 39 IS
REACHED

200 GR

210 COLOR = 15

220 COLUMN 0

230 VLIN 0,39 AT COLUMN

240 COLUMN COLUMN + 1

250 IF COLUMN < 40 THEN GOTO 250 IF COLUMN < 40 THEN
230 GOTO 230

If you look carefully you will see that the program still gives the

same instructions as it did before. The added REM statements
simply explain what the line (or lines) following them will do.

REM statements are optional. Applesoft does not execute them
because they are informational. You can use them as you w ish . The
longer your programs, the more helpful REM statements are. They
help anyone who looks at the program to understand what it does .

FOR INEXT Loops
The FOR /NEXT statement creates a program loop that works
within a range of numbers. You define the range w ith a variable.
The FOR/NEXT statement is a more efficient way of creating a

loop if you are using a variable that regularly increments. Type

TEXT to return to text mode, HOME to clear the screen , and NEW to
clear memory. Then try this program :

NEW

100 FOR NUMBER = 0 TO 12

110 PRINT NUMBER

120 NEXT NUMBER

130 PRINT "PROGRAM IS FINISHED WHEN LAST NUMBER
IN THE FOR STATEMENT IS DISPLAYED"

FOR/NEXT Loops II

Figure 2-9. The FOR INEXT Statement.
The line-by-line explanations could be
inserted in the program as REM
statements.

•

Run this program. You see that it does essentially the same
thing as the number counting program you produced with
IF ... THEN. Figure 2-9 explains how the FOR /NEXT program
works.

Sets range of the variable NUMBER to --1 00 FOR NUMBER • 0 TO 12
0- 12 .

Value of variable, NUMBER , is----,,-ll 0 PRI NT NUMBER
displayed.

This is the bottom of the loop. The------''-120 NEXT NUMBER
variable is increased by 1 and then
compared to the upper limit specified
in line 1 00 : 12. When the limit of the
range is reached , the program stops,
as line 130 indicates. 130 PRINT "PROGRAM IS FINISHED WHEN LAST NUMBER IN THE

FOR STATEMENT IS DISPLAYED"

In a FOR /NEXT statement the variable acts as a counter: it
specifies the number of times the loop will run. In any FOR/NEXT
loop, if the variable is not over the limit, execution continues at
the statement immediately following the FOR. If the variable is
over the limit, the program drops (out of the loop) to the
statement after the NEXT. In this program line 130 is not
displayed until the limit 12 is reached.

The most important advantage of the FOR /NEXT method of
con.structing loops is that you don't have to think so hard when
writing the loop. If you want to draw a series of horizontal lines
on the screen using each of the 16 colors, SUbstitute this
program for COLORLOOP:

NEW
3000 GR
3005 REM SETS VARIABLE RANGE TO 0-15
3010 FOR ROW = 0 TO 15
3015 REM MAKES VALUE OF COLOR THE SAME AS VALUE

OF VARIABLE
3020 COLOR = ROW
3025 REM DRAWS HLIN AT EACH ROW WITHIN RANGE
3030 HLIN 0, 39 AT ROW
3035 REM WHEN LIMIT OF RANGE IS REACHED, PROGRAM ENDS
3040 NEXT ROW

To leave the graphics mode, type TEXT; type HOME to clear the
screen. Now look at the two programs that follow. They show
two ways to print the even numbers from 0 to 12. The first uses
IF ... THEN:

Elementary Programming

Use STEP only within a FOR INEXT
statement. Its use is optional.

NEW
100 X = 0
11 0 PRINT X
120 X = X + 2
130 IF X (= 12 THEN GOTO 110

In line 120,2 is added to the variable X. This loop increases by 2.

The second example shows how to display the even numbers
from 0 to 12 using the STEP command within a FOR /NEXT loop.

200 FOR X = 0 TO 12 STEP 2
210 PRINT X
220 NEXT X

You may be wondering why you see two sets of even numbers
from 0 to 12 on your screen . Type LIST to see if you can figure
out why.

Hint: The two sets of numbers appear on the screen because
lines 100 to 130 as well as lines 200 to 220 were executed when
you typed RUN . To see only the second program, type RUN 200 . To
remove a previous program from memory, you can manually delete
it or you can begin each program with NEW .

A STEP may involve any number in Applesoft's range, from
approximately -32768 to +32767. A program can STEP by 5, 50,
or 500. A program can also STEP backward, as in

200 FOR X = 39 TO 15 STEP - 3

Type this line ; execute it by typing

RUN 200

Notice that the statement RUN 200 also executes lines 210 and
220 because all line numbers larger than the one indicated in a
RUN statement are executed.

Now try some of your own FOR/NEXT statements. Several of the
example programs from this point on will use the FOR/NE XT
statement.

FOR/NEXT Loops

Figure 2-10. Nested Loops: the HUE
Program -

Nesting and Crossing Loops
Along with the convenience of the FOR statement come some
limitations. For example, FOR/NEXT loops can be nested ,
meaning one loop may be contained inside another, but
FOR/NEXT loops must not cross. Figures 2-10 and 2-11
demonstrate nested and crossed loops.

NEW
300 GR
310 FOR HUE · 1 TO 15 - - --,
320 COLOR • HUE
330 FOR ROW • 0 TO 39 ----,
340 HLIN 0, 39 AT ROW ~ 350 NEXT ROW ______ ...J

360 COLOR • HUE - 1
370 FOR COLUMN • 0 TO 39l
380 VLIN 0, 39 AT COLUMN
390 NEXT COLUMN _____J
400 NEX T HUE ______ ...J

The program in Figure 2-10 is an example of two-level nesting. It
is called HUE on the APPLESOFT SAMPLER disk. Run it now.
Figure out how it works before going on.

• Warning

Figure 2-11. Crossed Loops _

When writing programs using FOR statements, remember that each
FOR must have a matching NEXT.

The program in Figure 2-11 illustrates what are called crossed
loops.

NEW
500 FOR Ng · 0 TO 20
510 PRINT N
520 FOR J • 30 TO 40
530 PRINT J
540 NEXT N
550 NEXT J

This program doesn 't work correctly. Type TEXT , HOME , and RUN .
It is an example of what happens when each FOR doesn 't have a
matching NEXT. The program's loops are crossed , so it jumbles
the numbers as it displays them. It also gives an error message.
See if you can fix the program by uncrossing the loops.

Elementary Programming

Figure 2-12. Three-Level Nesting : the
QU I L T Program -

The quilt drawing program in Figure 2-12 has three-level
nesting. QU I L T can be loaded from the APPLESOFT SAMPLER.
This program avoids using COLOR as a variable name because,
as you may recall , COLOR is a reserved word in Applesoft.
Applesoft..

NEW
400 GR
410 HUE· 0
420 FOR COLUMN • 0 TO 35 STEP 5------.
430 FOR LINE · 0 TO 30 STEP 10----~
440 HUE • HUE + 1
450 IF HUE) 15 THEN HUE · 0
460 COLOR • HUE
470 FOR ROW· LINE TO LINE + 9~
480 HLIN COLUMN,COLUMN + 4 AT ROWj
490 NEXT ROW -
500 NEXT LINE 510 NEXT COLUMN __________ --l

Now try an experiment. Type TEXT . Remove line 400 by typing
400 and pressing RETURNI. Run the program.

When you remove the GR statement, the program executes in text
mode. When you put line 400 back, the program will execute in
graphics mode again . You can do this with any program that uses
graphics.

e Pause

Nesting and Crossing Loops II

Controlling Spaces in Your Programs
The comma and the semicolon are used in Applesoft to create
different display effects in program execution. There are also
three Applesoft statements that control spacing in programs.
The examples in this section let you experiment so you become
familiar with the differences.

As a first experiment, type this program and see what it does
when you run it.

NEW
100 PRINT "MELLOW"
110 GoTo 100

Stop the program with CONTROL-C. Then add a comma to line
100.

100 PRINT "MELLOW",

and run the program again. The program now prints the word in
columns. Use CoNTRoL-C again to stop the program, and then -'
substitute a semicolon (;) for the comma (,).

100 PRINT "MELLOW";

Run the program again. This time the display runs together,
leaving no spaces between the words. It prints MELLOW after
MELLOW until you stop the program with CONTROL-C .

Using a semicolon results in output with no spaces between the
words or numbers. Using a comma results in output in columns.

Change the program by adding this statement

90 V = 99

and change line 100 to read

100 PRINT V

Run this program. Now add a comma to line 100.

100 PRINT V,

Elementary Programming

•

•

Run it again . Then change the comma to a semicolon

100 PRINT V;

and observe that the comma and semicolon also can be used
with numeric values. The ability to place numbers one after the
other without intervening spaces is sometimes quite usefu l.

Commas and semicolons can be used within a PR I NT statement.
Remove the old lines with NEW , and type

100 BALLS = 3
110 STRIKES = 2
120 PRINT BALLS,STRIKES
RUN

Your screen should look like this :

3 2

You can make clearer output by including a message in the
PR I NT statement. For example, change line 120 to

120 PRINT "THE BALLS AND STRIKES ARE ";BALLS , STRI KES

and the program will appear on your screen as

THE BALLS AND STRIKES ARE 3 2

unless you didn 't include a space after ARE . Another way of
writing the statement is

120 PRINT "THE BALLS ARE ";BALLS ; " AND THE STRI KES
ARE ";STRIKES

Perhaps the prettiest way to print this line (are you trying all of
these on the Apple lie?) is to add some spaces within the
PR I NT statement

120 PRINT "BALLS ";BALLS;" STRIKES " ; STRI KES

Controlling Spaces in Your Programs

•

The display function TAB , which must
be used in a PR I NT statement, moves
the cursor through tab fields on the
screen .

VTAB moves the cursor to the
specified vertical row on the display
screen.

II

This gives you a scoreboard-like display:

BALLS 3 STRIKES 2

Now let's say you wanted to display the word HERE in the 10th
column (the screen is 40 columns across). You could use the
statement

120 PRINT" HERE"

making sure that you carefully added exactly nine blanks before
the word HERE. Or you could use the TAB feature, which lets you
set a tab in your programs that acts like a tab on typewriters. Try
the statement

120 PRINT TAB(10);"HERE"

to see TAB in action.

TAB must be used in a PR I NT statement. If you try a statement
like

105 TAB (5)

you ' ll get an error message. TAB must be followed by an
argument: a number or variable contained in parentheses.
When TAB is combined with a variable, such as N, it spaces
according to the value of the variable. Here is an example:

NEW
200 FOR N = 1 TO 24
210 PRINT TAB(N);"X"
220 NEXT N

There are two related statements you can use to position the
cursor in various parts of the screen.

VTAB moves the cursor vertically up or down the 24 horizontal
display lines. The top line is line 1; the bottom line is line 24.
VTAB, unlike TAB, is not used within a PR I NT statement.

Elementary Programming

The HTAB statement moves the cursor
either left or right to the specified
column (1 through 40) on the screen.

You can tab horizontally with HTAB. It works like TAB , but can
cause printing to begin either to the left or to the right of the
current printing position and does not have to be used with the
PR I NT statement. The leftmost character on a line is in position
1, while the rightmost character is in position 40.

Here is a program that shows how HTAB moves the cursor on
the screen:

10 PRINT "RUN"
20 HTAB 5
30 PRINT "FASTER, "
40 HTAB 34
50 PRINT "FASTER,"
60 HTAB 81
70 PRINT "OR ELSE!"

The program SPACES on the APPLESOFT SAMPLER
demonstrates the use of HTAB and VTAB together. Load it now.
Or you can type it in:

NEW
590 HOME
600 FOR X TO 24
610 FOR Y TO X
620 HTAB X
630 VTAB Y
640 PRINT "APPLE"
650 NEXT Y
660 NEXT X
670 GoTo 600

Before you run this program, try (it isn 't easy!) to figure out what
it will do.

While TAB, HTAB , and VTAB act somewhat like the coordinates in
PLOT, there are some differences.

1. The 40 columns for the TAB instruction are numbered
from 1 to 40, as they would be on a typewriter, while
PLOT coordinates are numbered from 0 to 39 for graphics
display.

2. VTAB 'S limits are 1 through 24. Since characters are taller
than the bricks used in low-resolution graphics, there is
room for only 24 lines of screen display.

Controlling Spaces in Your Programs •

II

3. The largest value that can be used with TAB and HTAB is
255.

4. A zero or a number that is too large or too small for TAB ,
VTAB , orHTAB will give you an ?ILLEGAL QUANTITY ERROR.

5. TAB and HTAB will tab past the end of the screen and wrap
around to the next line.

To see wraparound in action , type

NEW
300 FOR K = 1 TO 255
310 PRINT TAB(K); K
320 NEXT K

Normally TAB is not used in this way. A more usual method
would be to use HTAB . Replace lines 310 and 320 with

310 HTAB K
320 PRINT K

and add

330 NEXT K

What happens to the program when you replace HTAB with
VTAB? How could you change the program to conform to the
screen limits?

Be assured that the numbering systems you are working with wi ll
become more familiar with use. The screen is always divided into 40
horizontal rows and 40 vertical columns. The horizontal numbers
vary depending upon the mode (0-39 in graphics, 1-40 in text) ; and
the vertical numbers change because characters take more space
than the bricks used in graphics.

Here is a program that combines most of the statements you
have used in this chapter. One part isn 't familiar : the variable N$.
You will find out more about this kind of variable in Chapter 5.
There is also a new statement used in line 70. Type

Elementary Programming

The EtiD statement causes a program
to cease execution and returns
control to the user.

NEW
10 HOME
20 INPUT "WHAT IS YOUR FIRST NAME?II; N$
30 PRINT
40 FOR A = 1 TO 5
50 PRINT TAB (A); "H I , II, NS; II HOW ARE YOU?II , ,
60 NEXT A
70 END

List this program to check your typing , correct any mistakes you
might have made, and run it. If you like it, and you want to store
it on a disk for future use, all you need to do is type

SAVE WELCOME

and then CATALOG to make sure it has been stored on the
correct disk.

Controlling Spaces in Your Programs

•

Chapter Summary

Statements

NEW
LIST
GOTO
CONT
INPUT
IF ... THEN
REM
FOR/NEXT
STEP
PR I NT (punctuation)
TAB
VTAB
HTAB
END

Keys

FONTROq-c

DOS Commands

RUN
CATALOG
SAVE
LOAD

Elementary Programming

Terms

execute
immediate execution
deferred execution
line number
program
scroll
initialize
default
write-protected
binary
machine language
nested
argument
wrap around

Error Messages

BREAK IN 110

L

L

L

L

Making Changes

73 The Moving Cursor : Escape Mode
73 Rules for Using Escape Mode
74 A Practice Session
76 Other Escape Commands
76 The Limits of Escape Mode
77 Inserting Text into an Existing Line
82 Getting Rid of Program Lines
83 Editing Long Programs
84 A Little History
86 Summary of Editing Features

Making Changes •

L

Making Changes

So far, you have learned several simple ways of fixing mistakes
in programs. However, you are getting the hang of things now,
and beginning to work with longer programs, so it is time to
give you a few more tools for changing or editing your work.

Just to refresh your memory: you have learned that if you
catch a typing mistake before you press ~ETURNI, you can use
the lliHTI- and lLEFT- ARRowlkeys to fix the mistake. The
/LEFT-ARROW1 key backs the cursor up to the error, and the

IGHT-ARROW key copies over the remainder of the line after
you have made the correction.

You also know that when you notice a mistake after you have
pressed ~ETURH, you can type the line over again.

The Moving Cursor: Escape Mode
Another method uses the /Escl key in combination with the four
arrow keys. Called escape mode, this method allows you to
move the cursor around the screen without affecting anything
except the cursor position.

Rules for Using Escape Mode

• To get into escape mode press the /Escl key. To leave escape
mode press the lsPAcEI bar. Once you are out of escape
mode all you have to do to -get back in is press the lEs cl key.

• To correct or change something using escape mode, you
must position the cursor over the first dig it in the line
number of the line you wish to fix.

• Escape mode allows you to correct only one program line at
a time.

Making Changes II

•

II

• After you make a change in a line it is important to copy
over the remainder of the line with the [R I GHT - ARROW] key.

• The [@8]- and [LEFT -ARROW[keys work differently in
escape mode than they do in normal mode. In escape mode,
they move the cursor around without affecting the
characters on the screen . The arrow keys used alone
(without pressing the[§]] key first) erase (ILEFT-ARROW~ and
copy over ([R I GHT - ARRowD the characters they go over.

---~
A Practice Session

There are several mistakes in the lines below. If you follow the
step-by-step instructions, you will get an idea of how escape
mode works.

What you do ...

Type exactly what you see:

NEW
10 PRINT "THE MOCKINGBIRD"
20 PRINT TAB (5); "SINGS"
30 PRINT RAB (3): "IN

SPRING"

Type LI ST 10

Press and release the [ESC)
key once.

Press the luP-ARROwl key two
times .

Making Changes

What happens . ..

All the mistakes you type
appear on the screen.

10 P RUN T"THE MOCK I NGB I RD"

This puts you into escape
mode.

The cursor is moved to line 10.

•

•
I --

•

Press thelbIti:ARRDw lkey
once. The cursor must be
placed over the first digit.

Press thelsPACE lbar.

Press the [RIGHT-ARRDwlkey
five times.

Replace the u with an I .

L=:- >=,

Notice that the cursor moves,
but nothing else changes on
the screen while you are in
escape mode. (You can 't see it,
but nothing changes in the
computer's memory either.)

This takes you out of escape
mode.

The[R I GHT - ARRowl key copies
over characters when you are
not in escape mode (so you
don't have to type them over) .

: ~- = = = -: - -....: ~ -: = = I- = -_ :;:: = = =:

J

Copy the rest of the
characters in the line with the
RIGHT-ARRowlkey. When you
reach the end of the line,
press[RETURN f

The Moving Cursor: Escape Mode

•
Type LIST 1 0 to see the
corrected line .

If you were to run the program now, a ?SYNTAX ERROR IN 30
would appear on the screen because there are two
mistakes in line 30 that you haven 't fixed yet. RAB should be
TAB , and the colon should be a semicolon. To correct line 30,
first type LI ST , then get into escape mode by pressing the
IEsel key, and use the arrow keys to move the cursor to the
beginning of line 30.

Follow the same procedure you used for line 10: leave escape
mode, use the !RIGHT-ARRowlkey to move the cursor over the
offending characters, replace them, and copy the remainder of
the line. List again , to make sure you have corrected all the
mistakes, then run.

Using escape mode may seem a bit complicated at first , but it is
easy once you get the hang of it. Promise!

Other Escape Commands

Three other commands are useful when you are doing a lot of
editing. They are all entered from escape mode.

• IEse l ~ (press thelEselkey, let go, then hold the lsHIFT lkey to
produce the ~ sign) clears the entire screen, just as the
HOME statement does.

• IEselF clears the screen from the cursor position to the
bottom of the screen.

• jEsel E clears from the cursor to the end of the line.

The Limits of Escape Mode

Now that you 've successfully used escape mode to correct some
program lines, you can take a break (of sorts) . Get into escape
mode and play with the four arrow keys : move the cursor to the
top of the screen, down to the bottom, up to the middle, over to

Making Changes

•

the right edge, and all around. What happens when the cursor
gets to the right edge of the screen? (Hint: it wraps around. You
saw this when you used TAB and HTAB.) What happens when
you accidentally press some other key while you are in escape
mode? Try it-finding out how it works now will save you some
headaches later. When you get tired of moving the cursor
around the screen , press the [SPAcE ibar to leave escape mode.

Helpful Hints: If you don 't position the cursor over the first digit in
the line number of the line you want to fix, some of the line will be
lost. If you don 't believe this, try it!

The reason you corrected line 10, listed it, and then corrected line
30 is because it is difficult to correct more than one line at a time in
escape mode.

Inserting Text into an Existing Line
Sometimes you may notice that an addition to a program line
would make the program a lot nicer. Suppose, for example, that
you want to insert a TAB (10) statement after PR I NT in the line

90 PRINT "THIS IS A SHORT PROGRAM"

Follow the step-by-step instructions below to see how text
insertion works.

What you do ... What happens . . .

Type

NEW
90 PRINT "THIS IS A SHORT PROGRAM"

Use RUN to see how the line
looks .

Inserting Text into an Existing Line

•

•

•

•

Type LIST 90

Press the [ES9 key.

Press the luP-ARRowlkey three
times and thellEFT-ARROW)
key once.

Press thelsPACE) bar.

Press the [RIGHT-ARRowlkey
ten times.

This puts you into escape
mode.

This positions the cursor
over the first digit in the line
number. The cursor must
be over the first digit for
corrections or insertions
to work properly.

This leaves escape mode.

This positions the cursor at
the place in the line where
you want to insert something .

Press~. This puts you back in escape
mode.

Press the luP-ARRow)key once. This positions the cursor just
above the line so that you can
add text to a line .

Press the §PACE) bar once.

Making Changes

This takes you out of escape
mode .

•

•

•

•

Type TAB (10);

Press lEscl·

Press the!oOWI'I-ARROwl key
once.

Press thelLEFT-ARRowlkey
eight times.

Press the ISPAC© bar once.

Press the iRIGHT-ARRowlkey
23 times-until the cursor is
on the space following A of
PROGRAM .

This is the text you are add ing
to the line.

This returns you to escape
mode.

This returns the cursor to the
point at which you began the
insertion . It allows you , after
you leave escape mode, to
copy over the remainder of the
line with theIRIGHT- ARROwl
key.

This takes you out of escape
mode.

Inserting Text into an Existing Line II

•

-

•

•

Press the SC key.

Press theiRIGHT-ARRowlkey
until the cursor is on the M •

Press the [SPACElbar.

Copy the remainder of the
statement with the
IR I GHT - ARRowl key and press
[RETURij. LI ST the line.

RUN the line to see the
difference in Its execution
after adding TAB (1 0) .

Making Changes

This step, and the two that
follow, moves the cursor to
the right without copying the
spaces between PROGRA and
M. See the Helpful Hints that
follow for more information.

This takes you out of escape
mode.

•
Now try adding VERY before SHORT in the same line. When you
are finished, the statement should LIST as

Helpful Hints: Applesoft uses a screen width of 40 columns-
that is, up to 40 characters can be displayed on a single line. Any
line longer than 40 characters is automatically wrapped around to
the next line and indented. When you are changing such a program
line, you must use escape mode if you don't want the automatic
indentation copied into your revised line. This is what you were
doing when you went back into escape mode between the A and M
of PROGRAM. When the cursor is over the first character of the
second line, leave escape mode and use theiR I GHT -ARRowl key to
f inish copying.

There is also a statement you can use to narrow the screen width
and to instruct Applesoft to stop adding those extra spaces:
POKE 33.33 . You don 't need to learn about it now, but you can find
out about' it in the Applesoft Reference Manual when you are ready.

Inserting Text into an Existing Line

•

The DEL statement removes, or
deletes, the specified range of lines
from the program .

•

Getting Rid of Program Lines
Naturally there are times when you decide you don 't like a
program line and want to get rid of it. There are several ways
to remove program lines.

If you have just finished typing the line and change your mind
about it before you press~ETURH , there is a control character
you can use: ICONTROLH . Try it out by typing the line below.
Before you press lRETuRft hold the ~ONTROq key while you
press the X key. If you torget and pressBETURNI before using
~ONTROq-x , you'll have to type NEW and try again.

10 PRINT "WHY AM I DOING THIS?"

10 PRINT 'WtY AM I DOING THIS?'"

As you see in the illustration and on your screen (you are doing
these exercises, aren't you?), a slash appears at the end of the
line when you usei¢oNTRoq-X . When you try to list the line,
nothing appears. You really have gotten rid of that line!

Now type

20 PRINT "AN ELEPHANT JUST WALKED IN"

and pressBETuRHj, It you change your mind about this line now,
there are several alternatives. One is to replace the line by
typing it over with a different statement, as in

20 PRINT "THIS IS VERY SILLY"

However, if you want to eliminate the line entirely, you can type

20

and it will disappear. If you don 't believe it, type LIST 20 .

Another method is to type the statement

DEL 20,20

Making Changes

DELETE is a DOS command that
removes the program specified by
name from a disk.

~OtiTROQ-S stops and resumes
program listing.

which instructs the computer to delete a line or lines. Since it is
obviously easier to type 20 by itself than to type DEL 20,20 , you
may be wondering why the DEL statement is so great. It's not
apparent until you want to erase five or ten lines of a program.
Instead of having to type each line number separately, you can
type

DEL 10,90

This will delete every statement with line numbers between and
including 10 and 90.

The DEL statement in Applesoft looks like, but is not the same as,
the DELETE command used by the Disk Operating System (DOS) .

DELETE is always used to delete entire programs from the disk and
is always followed by the name of the program you want to remove
from the disk.

DEL, as you have just learned, is followed by two line numbers
separated by a comma. If you get the two commands confused and
use the wrong one, don't worry. The Apple lie will give you an error
message to remind you.

ThelDELETEI key on the Apple lie's keyboard is not the same as the
DEL or DELETE commands. See the Apple lie Owner's Manual and
the Apple lie Reference Manual for more information.

Editing Long Programs
The full value of using escape mode to make changes does not
become apparent until you work with long program lines and
long programs. The more you write your own programs, the
more you will want to use escape mode.

There are several advantages to becoming well versed in the
use of escape mode. One advantage is that it is much faster
to use when editing an extremely long program line of, for
example, 230 characters. Another advantage is that it makes
it easier to merge two programs that have a lot of similar lines.
Yet another advantage is that you can list a line that appears in
similar form more than once, make the relevant changes, and
copy it over for easy reproduction.

However, these uses of escape mode are a bit down the line.
A more handy tool for the present involves the use of

ICotHROU- 5 .

Editing Long Programs II

II

When a long program is listing, the lines scroll by too quickly
for most of us to read. One way to get around this problem is to
list portions of a program, by typing , for example,

LIST 10,100

and then

LIST 110,200

and then

LIST 210,300

and so on until you have checked all the program lines.

Another, easier, way to control scrolling is to use
~OtHROLI-s to stop scrolling and again to resume it after you
have finished checking the lines on the screen. It takes a while -'
to get the knack of pressing g;ONTROq and s fast enough, but it's
worth the trouble and aggravation.

A Little History
Eight other keys, besides the four arrow keys, can be used for
editing. If you are familiar with older models of the Apple, you
may know what those keys are. In any case, a little history is in
order.

When the Apple II was first introduced, there were no~- and
IDOWN-ARRow!keys on the keyboard and there was no escape
mode. Editing was done by alternating the lESc! key with the A, 8,
c, and D keys : A moved the cursor to the right, 8 moved the
cursor to the left, C moved the cursor down, and D moved the
cursor up. If, for example, you wanted to move the cursor up five
and over to the left four spaces, you had to type, in succession :

IEscl D IEscl D IEscl D IEscl D IEscl D
IEscl 8 IEscl 8 lEse! 8 IEscl 8

Whew! You can see how easy it would be to get confused .

Making Changes

Figure 3.1. Key Directions

Later, this method was changed: one press of lEscj was enough
to get you into escape mode. However, the keyboard still had no
arrow keys. The four keys I , J, K, and M were used to move the
cursor. If you look at the keyboard , you 'll notice that those keys
form a diamond. Their directions are consistent with their
position: I moves the cursor up, J moves it to the left, M moves
it down, and K moves it to the right.

Although arrow keys have been added, I , J , K, and M still work
in escape mode. And you can sti II use A, E , C, and D to move the
cursor if you precede each with !EScl. If you happen to have
learned one of the older methods, you can continue to use it
and not worry about changing to the arrow keys. Or you may
find that you like one of the older methods better. The Apple lie
was designed so that all three keys move the cursor in the same
direction. Figure 3-1 summarizes the directions.

A Little History II

Summary of Editing Features

Escape Mode

To enter escape mode: Press thelESc l key

To leave escape mode: Press the~ bar

To move the cursor up: Use theIUP-ARROwl. I • i . D. or d

To move the cu rsor down : Use the lDOWH - ARR oij. M. m. C. or c

To move the cursor left : Use the lLEFT -ARROWf J . j . B. or b

To move the cursor right : Use theiR I GHT -ARROW~ K. k. A. or a

To clear from cursor to end of line : PresslESclE

To clear from cursor to end of screen : PresslESclF

To clear entire screen: PressiEscl8

Non-Escape Mode

To delete a character :

To copy over. or retype a character:

To delete a line before IRETURN I
has been pressed :

To stop a program listing :

To resume a program listing :

To delete a program line or lines:

To delete a whole program from disk :

Making Changes

Press thelLEFT -ARROWI key

Press theIRIGHT-ARROwl key

Press~OHTROLJ- X

Press lcoHTROq- 5

Press POHTROLJ- 5

Use the DEL statement

Use the DELETE command

L

L

Lots of Graphics

89 Constructing a Simple Game
90 Multiple Statements on a Line
91 Creating Motion
92 Screen Boundaries
93 Creating Visual Impressions
93 The Whole Thing
94 Program Interaction with Users
97 Making Sounds

100 Noise for the Bouncing Ball
100 Random Numbers
103 Simulating a Pair of Dice
103 Random Graphics
104 Subroutines: Putting the Pieces Together
108 Traces
109 A Better Horse-Drawing Routine
110 Errors
110 Variables
111 Additional Subroutines
112 A Well-Structured Program
113 High-Resolution Graphics
120 Chapter Summary

Lots of Graphics •

--------------~~

See Chapter 2, " Using the
APPLESOFT SAMPLER :
COLORLOOP " for more information .

Lots of Graphics

Now that you have a few more editing tools at your fingertips,
you are probably anxious for more programming challenges.
This chapter takes a great leap forward, leading you through
the construction and modification of longer and more
complicated programs. You will see how programs are built
piece by piece and how statements work as building blocks.

Don't expect to be able to do all this yourself right away!
Learning how to program is a process; the more you work with
the programs in this manual, the more you 'll understand what to
do on your own .

Constructing a Simple Game
This section introduces a number of program elements, or
parts, that are typically used in video games. It demonstrates
a way to use color in creating visual impressions on the screen.

Before going further, load the program COLORBOUNCE from the
APPLESOFT SAMPLER by typing

LOAD COLORBOUNCE

Then, to see COLORBOUNCE in action, execute it by typing RUN .

If you are not using a disk drive, turn to "The Whole Thing " in this
chapter. Type the program in, check your listing, then execute it.

To stop the program, pressICONTROLI- C. Now read the next few
sections to find out how the program works. Each section
discusses a different element of the program.

Lots of Graphics

•

Multiple Statements on a Line

Up to now most of the program lines you have worked with
contained one statement in each line. With this method you
might begin a program with (remember, you don 't have to do
anything but read this section):

400 REM SET COLOR GRAPHICS AREA
420 GR

However, the use of a colon (:) between statements allows you
to combine multiple instructions on one numbered program
line. Like this :

400 GR : REM SET COLOR GRAPHICS AREA

It sometimes makes program lines easier to understand if the
comments are on the same line they describe, as in line 400.
And sometimes it is easier if the remark is on a different line.
COLORBOUNCE uses both methods.

The colon can be used to separate any two statements. Other
examples:

390 HOME: PRINT "THAT WASN'T BETWEEN 1 AND 15'"
PRINT

720 COLOR = 0 : PLOT X,Y
760 X = NX : Y = NY

Line 390 combines three related statements: HOME clears the
screen , the first PR I NT displays a message to the user, and the
second PR I NT displays a blank line after the message. In line
720, the color is set to black (0) each time X and Yare plotted ;
the section "Creating Visual Impressions" explains more about
this. Line 760 changes variable X to NX , and var iable Y to NY .

On a program line using the colon and more than one statement,
remarks must be the last on the line .

Lots of Graphics

Creating Motion

The bouncing ball , which is really a brick plotted and moving on
the graphics grid, is created with six variables in COLORBOUNCE :

X represents the starting position of the back-and-forth motion
Y represents the starting position of the up-and-down motion
XV represents the velocity of x
YV represents the velocity of Y
NX represents the changing position of X (NX = X + XV)
NY represents the changing position of Y (NY = Y + YV)

The program lines that introduce these variables in
COLORBOUNCE look almost the same as the descriptions you
just read. The use of clear REM statements can really help.

440 X = 0 : REM SET STARTING POSITION OF BACK-AND­
FORTH VARIABLE

460 Y = 5 : REM SET STARTING POSITION OF UP-AND- DOWN
VARIABLE

480 XV = 2 : REM SET X VELOCITY
500 YV = 1 : REM SET Y VELOC lTY
520 REM CALCULATE NEW POSITION
540 NX = X + XV : NY = Y + YV

Helpful Hint: If you find it confusing to have more than one
statement on a program line, it is OK to use the longer method. In
this portion, for example, you would have 11 lines instead of 6.

One of the main reasons for combining statements is to save
space in long programs: the more program lines, the more
memory used. Another reason is that program execution is
faster with multiple statements on a line. A third reason is that
some statements, like IF ... THEN, control all the statements on
the same line; combining statements thus affects how the
program works. When you begin writing longer programs of
your own, you'll find helpful tips on saving space and time in
the Applesoft Reference Manual.

Constructing a Simple Game •

--
Screen Boundaries

When you first began plotting points on the graphics grid
you learned two crucial pieces of information: there are 40
horizontal and 40 vertical points on the grid; the numbering
system of the grid goes from 0 to 39 in both directions. To keep
a bouncing ball within these limits, you have to do two things :

1. Set some limits in the program so the ball doesn 't appear to
move off the screen.

2. Change the direction of the ball when it reaches the edge of
the screen.

The COLORBOUNCE lines that follow do both these things. Look at
them carefully so you understand how they work.

560 REM IF BALL EXCEEDS SCREEN EDGE, THEN BOUNCE
580 IF NX > 39 THEN NX = 39 : XV = -XV
600 IF NX < o THEN NX = 0 : XV = -XV
620 IF NY > 39 THEN NY = 39 : YV = -YV
640 IF NY < o THEN NY = 0 : YV = -YV

Figuring this out is not easy. One thing to remember is that
variable values are not static : when a line says XV = - XV , the
contents of the variable actually change to a negative value.

In other words, when the ball reaches the limit of the screen, 39 ,
line 580 changes XV to a negative XV . Then when line 540 is
reached in the next loop, NX becomes 38 . In the loop after that,
NX becomes 37, and so on , until the ball reaches the other
screen edge, at which point 1 is added to the value of NX with
each loop. This is how the direction is changed back and forth .

Lots of Graphics

Creating Visual Impressions

By alternating between black and a color for the ball each time
a new position is plotted for X and Y, you can make it look as if
the ball is being erased, adding to the visual effect of the ball 's
motion. This is done in CoLoRBoUNCE with the following lines:

660 REM PLOT NEW POSITION
680 COLOR = 7 : PLOT NX,NY
700 REM ERASE OLD POSITION
720 COLOR = 0 : PLOT X,Y
740 REM SAVE CURRENT POS ITI ON
760 X = NX : Y = NY
780 GoTo 540

The PLOT NX ,NY statement in line 680 plots a brick (otherwise
known as a ball) in the specified color at the new position set by
NX and NY. When line 720 plots X and Y, it is really plotting the
old coordinates NX and NY , which are saved after plotting the
previous brick (line 760). The statement COLOR = 0 in line 720
sets color to black, making it look as if the brick has been
erased. This is because the plotting happens so fast. The next
loop, of course, resets the color and plots NX and NY in that
color (line 680). The alternating between black and color in
each loop adds to the appearance of motion .

If the order of these statements doesn 't make sense to you , try
moving them around and running the program with your
changes incorporated.

The Whole Thing

Here is a listing of CoLoRBoUNCE. This is exactly the same as the
program on the APPLESOFT SAMPLER. List that program to
compare the versions. You can either list it in sections, such as

LIST 400,580
LI ST 600,780

Constructing a Simple Game

or you can list the whole thing and use iCotHROLI-s to stop and
start the listing. Go ahead, try it!

400 GR : REM SET COLOR GRAPHICS AREA
420 HOME : REM CLEAR TEXT AREA
440 X = 0 : REM SET START! NG POS 1 T! ON

FORTH VARIABLE
460 Y = 5 : REM SET STARTING POSITION

VARIABLE
480 XV = 2 : REM SET X VELOCITY
500 YV = 1 : REM SET Y VELOCITY
520 REM CALCULATE NEW POSITION
540 NX = X + XV : NY = Y + YV

OF BACK - AND -

OF UP - AND - DOWN

560 REM IF BALL EXCEEDS SCREEN EDGE, THEN BOUNCE
580 IF NX > 39 THEN NX = 39 : XV = - XV
600 IF NX < 0 THEN NX = 0 : XV = -XV
620 IF NY > 39 THEN NY = 39 : YV = - YV
640 IF NY < 0 THEN NY = 0 : YV = -YV
660 REM PLOT NEW POSITION
680 COLOR = 7 : PLOT NX,NY
700 REM ERASE OLD POSITION
720 COLOR = 0 : PLOT X,Y
740 REM SAVE CURRENT POSITION
760 X = NX : Y = NY
780 GOTO 540

Here's how COLORBOUNCE works, in summary : the program plots
a brick, erases it, plots another brick one column over, erases
that, and so on. When the edge of the screen is reached (in lines
580-640, when NX and NY are greater than 39 and when NX and
NY are less than 0) , the program reverses the plotting direction .

Program Interaction with Users
Suppose you decide to change COLORBOUNCE so that a new ball
color can be entered each time the program is run . One way of
doing this is to change line 680, run the program, and change
line 680 again. But that would be a lot of trouble. And it wou ld
be difficult to explain if you wanted to show a friend how.

A better way is to use the I NPUT statement to let the user
interact with the program. As you recall from Chapter 2, an
I NPUT statement names a variable and asks the person using
the program to enter something from the keyboard.

Lots of Graphics

........J

You have to be careful how you word the statement because
COLOR is a reserved word . If, for example, you added the line

350 INPUT COLOR

the program would get stuck: COLOR can 't be used as a var iable
name. You could , however, write line 350 as

350 INPUT "COLOR? "; HUE

and change line 680 to define COLOR= as variable HUE :

680 COLOR = HUE: PLOT NX , NY

If you haven 't done so, add these lines to COLORBOUNCE . Then
run it to see how the lines work. (When the program executes
line 350, the word COLOR , followed by a question mark (?) , will
appear on the screen. The cursor will keep blinking until
someone types a number and pressesIRETURNI.)

You may know what to do when you see the question mark.
However, your friend may not. So it is a good idea to have the
program tell your friend (the user) what is expected. Adding
some PR I NT statements and changing to text mode at the
beginning of the program will do the trick :

280 REM SET TEXT MODE
300 TEXT : HOME
310 PRINT "TO SELECT A COLOR FOR"
320 PRINT "THE BOUNCING BALL, FIRST TYPE"
330 PRINT "IN ANY NUMBER FROM 1 TO 15."
340 PRINT "THEN PRESS THE KEY LABELED RETURN . ": PRINT

It also would help to put a more specific message in the INPUT
statement:

350 INPUT "WHAT COLOR WOULD YOU LIKE THE BALL TO BE
(1-15)? "; HUE

Program Interaction with Users •

•

•

•

Writing the I NPUT statement:
• The message must be in quotation marks in an INPUT

statement.

• When the I NPUT statement contains a message, the computer
doesn't add a question mark. If you want a question mark to
appear, you must include it in the I NPUT message.

• Putting a space after the question mark, within the quotation
marks, sets the question off from the answer.

• There must be a semicolon between the message and the vari­
able name.

Adding the new lines 280 to 350 to CDLDRBDUNCE will make the
program much more friendly for users. But there still are some
potential pitfalls for people who are not used to computers.
What if someone makes a mistake and then presses[RETURN r
Instant error messages and loud beeps!

If too great or too small a number is entered, the program will
either let the ball move to the right side of the screen and then
stop or the message

?ILLEGAL QUANTITY ERROR IN 680

will appear on the screen and then the program will stop. For
the most part, your friends will not know how to restart the
computer-and shouldn 't have to. Therefore you should make
the program check the number typed in by the user before
proceeding. These lines will do it:

370 REM IS HUE OF BALL IN RANGE?
380 IF HUE> 0 AND HUE < 16 THEN GOTO 400
390 HOME: PRINT "THAT WASN'T BETWEEN 1 AND 15!"

PRINT
395 GOTO 310

If the character entered is not a number,

P?REEHTER
~?

will appear on the screen. You ' ll learn how to modify the
program to avoid this in Chapter 5 .

Lots of Graphics

It is good programming practice to make a program as
foolproof as possible. You have gotten to the point where
you are writing error messages for others to read . It may be all
right for a programmer like you to deal with such jargon as
?SYNTAX ERROR , but an innocent user shouldn 't have to.

Each time you use an I NPUT statement you should make your
program check what the user enters so the program doesn 't fail
in any way. Dealing with the untutored user (and you must
assume that users are not programmers) is an art in itself. Use
of specifically worded I NPUT statements and careful checking of
the user's response are always required.

Now that you have made some changes to COLORBOUNCE, list it
again . Make sure that you have added all the new lines (280-
395) , that you have changed line 680, and that all the lines are
typed correctly. Run the new version. Then save it as
NEW COLORBOUNCE .

Each time you save a different version of a program, you must give
the version a new name. Otherwise the old version will be written
over and lost.

e Pause

Making Sounds
Clicks, ticks, tocks, and various buzzes are easily generated by
the Apple lie. You can make sounds on your computer if you tap
it, scratch your fingers across it, or drop it, but the sounds you
are about to make are produced by programming it.

To construct a sound-producing program on the Apple lie, you
need this formula:

NEW
150 SOUND = PEEK(-16336>

There is no easy explanation for this formula. The number,
-16336 , is related to the memory address of the Apple lie's
speaker and is built into the electronics of the computer .

Making Sounds •

The PEEK function returns the
contents, in decimal form , of the byte
at the memory address specified by
the argument.

II

PEEK is a function . In Applesoft a function is something that
takes one or more numbers and performs some operation on
them to yield a single value. Applesoft has a number of built-in
arithmetic functions (like SQR, which finds the square root of a
number); some other functions can be derived . The Applesoft
Reference Manual discusses all of Applesoft 's functions.

The number that the function uses (-16336 in this case) is
called its argument and is always put in parentheses after the
function name. The number the function finds is said to be
returned to the program. PEEK returns the numeric value of the
contents of any byte in memory. You supply the address of that
byte when you provide the number in parentheses; in this case,
the address is - 16336 . The Apple lie has memory addresses that
range from 0 to 65535.

The range of memory addresses is determined by the size of
memory in the machine. The Apple lie has 64 kilobytes (64K) of
memory, which is equal to 65535 bytes, as 1 K represents 2 to the
10th power or 1,024.

At most locations PEEK only returns a numeric value, but at
some locations, such as - 1 6336 , it can cause somethi ng to
happen. In this case, it causes the speaker in the Apple lie to
make a click. Every time the program executes this statement,
you will hear a barely audible click. Run the program and listen
to your computer closely.

Now add this line :

160 GOTO 150

and run the program. No problem hearing this!

To make your program buzz for a limited period of time, add
these statements :

140 FOR BUZZ = 1 TO 100
160 NEXT BUZZ

A tone is generated by a rapid sequence of clicks. Any program
that uses PEEK (-16336) repeatedly will generate some sort
of noise. Since -16336 is such a bother to type, here is a
statement that will allow you to substitute the var iable 5 for
the number. Add this to your sound-producing program :

100 5 = -16336

Lots of Graphics

To produce a nice, resonant click, change line 150 to

150 SOUND = PEEK(S) - PEEK(S) + PEEK(S) - PEEK(S) +
PEEK(S) - PEEK(S)

Different numbers of PEEK s in the statement produce different
qualities of sound. Try some variations. See what happens when
you use all-PEEK(S)S. How does the sound change when you
use a lot of +PEEK(S)S?

For a more buzzy tone, put one of your variations into a loop. In
general, the faster the loop, the higher the pitch.

Applesoft does arithmetic operations at different speeds: it takes
longer to do subtraction than to do addition and longest to do
division. So the fastest PEEK loop is composed of all +PEEK (S) s.
A slower loop is composed of -PEEK(S)s. The slowest loop would
use division: PEEK(S) / PEEK(S) / PEEK(S), for example. A lot
more information on PEEK s can be found in the Applesoft
Reference Manual.

To produce even higher tones on the Apple lie, try these lines:

NEW
40 FOR PAUSE = 1 TO 2500 : NEXT PAUSE
50 5 = PEEK(-16336) : GOTO 50

Remember, ICONTROU- C stops program execution . As you might
guess, line 40 causes a pause before line 50 is executed. The
GOTO statement in line 50 causes a continuous sound after the
pause.

To put these sound tricks to good use, load your most recent
version of COLORBOUNCE into the computer. List it, and study the
lines. Then try to add a sound for each time the ball bounces off
a wall.

One possible solution is given in the next section, but try to
work it out for yourself.

Hint: A bounce occurs whenever XV and YV change value (sign)
and direction.

Making Sounds •

Noise for the Bouncing Ball
Here is one way to make the bouncing audible. Add these lines
to COLORBOUNCE:

240 REM SET S TO ADDRESS OF SPEAKER
260 S = -16336
580 IF NX) 39 THEN NX = 39 : XV = - XV : FOR B = 1 TO 5 :

BOUNCE = PEEK(S) + PEEK(S) + PEEK(S) : NEXT B
600 IF NX (0 THEN NX = 0 : XV = -XV: FOR B = 1 TO 5 :

BOUNCE = PEEK(S) + PEEK(S) + PEEK(S) : NEXT B
620 I F NY > 39 THEN NY = 39 : YV = - YV : FOR B = 1 TO 5 :

BOUNCE = PEEK(S) + PEEK(S) + PEEK(S) : NEXT B
640 IF NY (0 THEN NY = 0 : YV = - YV : FOR B = 1 TO 5

BOUNCE = PEEK(S) + PEEK(S) + PEEK(S) : NEXT B

You can see the advantage of having multiple statements on a
single line in a program like this. The sounds are directly
connected to the values of XV and YV so it makes sense (and
works more efficiently) to add to the already existing lines.

Now try your own sounds. Why not make a different sound
bounce off each wall? When you find a sound combination you
like, don 't forget to save a new version of COLORBOUNCE with the
noisemaking lines included. The remainder of this chapter will
introduce some new programs and concepts; we' ll return to
COLORBOUNCE in Chapter 5.

e Pause

The arithmetic function RND returns a
random real number greater than or
equal to zero and less than one.

Random Numbers
Here's another Applesoft function . Try it (remember you can
stop it when you want with ICONTRO L]- C) :

NEW
100 PRINT RND(1)
110 GOTO 100
RUN

RND in line 100 stands for "random." The RND function produces
random numbers. Each time you run it, you 'll see a different
sample of numbers. Try it!

Lots of Graphics

The I NT function returns the largest
integer less than or equal to the given
argument .

The numbers generated by this program are random decimal
fractions between zero and one. Any argument (the number in
parentheses) greater than zero will return random decimal
fractions between zero and one. Try, for example, changing
line 100 to

100 PRINT RND (6)

Although you won 't be dOing it in this tutorial, you can produce
different effects by using an argument of zero or an argument of
less than zero. See the Applesoft Reference Manual for more
information.

Random decimal fractions between one and zero can be a little
clumsy. Often integers (numbers like three, six, and ten) are
easier to use. To get random integers from zero to nine you have
to change the program. Type

NEW
90 REM ASSIGNS RND NUMBER TO X

100 X = RND(1)
11 0 REM MULTIPLIES X BY 10
120 X = X * 10
130 REM CHOPS OFF THE FRACTI ON
140 X = I NT<X)
150 PRINT X
160 GOTO 100

Line 140 introduces I NT , the integer function. The statement
x = I NHX) returns the largest integer that is less than or equal
to the value of X . For instance, if the value of X is 3.6754 , then
I NT<X) is equal to 3; if the value of X is -45.12345 , then
I NT< X) is equal to - 46. The parentheses after I NT can contain
any arithmetic expression or numeric variable.

Now run the program. Does it work the way you expected?

To change the program so that it generates numbers from
one to ten (instead of from zero to nine) add this line to your
program :

145 X = X + 1

Random Numbers III

II

This program may seem a little complicated at first. To see
what happens step by step add lots of PR I NT statements. The
following program shows how. However, you don 't have to type
in the additions. The program RANDOM on the APPLESOFT
SAMPLER disk is the same as what you see.

90 REM ASSIGNS RND NUMBER TO X
100 X = RND(1) : PRINT "X = RND(1)",X
105 PRINT
110 REM MULTIPLIES X BY 10
120 X = X * 10 : PRINT "X = X * 10",X
125 PRINT
130 REM CHOPS OFF THE FRACTION
140 X = INTO) : PRINT "X = INnx>",X
145 PRINT
150 REM ADDS 1 TO THE VALUE OF X
1 60 X = X + 1 : PR I NT "X = X + 1", X
170 PRINT: PRINT
180 FOR PAUSE = 1 TO 2000 : NEXT PAUSE
190 GOTO 100

Load and run this program to see what happens. To change the
way the numbers are displayed, you can remove the comma (,)
and the X from the end of line 160, change line 170, and add line
175, like this:

160 X = X + 1
170 PRINT X
175 PRINT

PRINT "X X + 1"

Amazingly enough, this whole program can be condensed to
just one line :

100 PRINT INT (10 * RND(1)) + 1 : GOTO 100

Study this line until you figure out how its parts correspond to
each of the lines in RANDOM .

Lots of Graphics

Simulating a Pair of Dice

Now you can use what you 've learned about random numbers
to make a program act like a pair of dice.

NEW
100 PRINT "WHITE DICE",
110 PRINT INT (6 * RND(1)) +

120 PRINT "RED DICE",
130 PRINT INT (6 * RND(1)) + 1

This program generates random integers from one to six for
each die. Each time you run the program, you simulate a roll of
the dice. What could you add to the program so you don 't have
to execute it over and over? Can you write a program that uses
these " dice" to playa game? Try it.

Now try writing a one-line program that generates random
numbers from 1 to 50 . From 0 to 25. Make up your own limits.
Remember to add one (1) to the random number if you don 't
want to generate zeros.

Helpful Hint: The numberRND is multiplied by (as in
50 * RND(1 ») represents the range of numbers to be generated.
The number added to RND is the smallest number generated : if 1 is
added, the lowest number will be 1 ; if 3 is added, the lowest
number will be 3; if nothing is added, the lowest number will be o.

Random Graphics

Here's a colorful way to combine the RND function w ith some
graphics statements :

NEW
200 GR
210 REM CHOOSE A RANDOM COLOR
220 COLOR = INT (16 * RND(1))
230 REM CHOOSE A RANDOM POINT
240 X = INT (40 * RND~1))
250 Y = INT (40 * RND(1))
260 REM PLOT THE RANDOM POINT
270 PLOT X, Y
280 REM DO IT AGAIN
290 GO TO 220

Random Numbers

Figure 4·1. A Blue Horse

•

Try using RND in other programs. Can you write a program that
draws random lines in random colors across the screen? How
about a program that shades the graphics screen with random
colors?

The RND function is used in many games. A somewhat longer
example of its use is SCRAMBLER on the APPLESOFT SAMPLER.
That program is discussed in Appendix E, "More Programs To
Play With. "

Subroutines: Putting the Pieces Together
This section takes you through the step-by-step process of
thinking about a program and putting the pieces together. It
begins with an idea: that you want to draw a horse as part of a
game you are developing. Here is a program that draws a blue
horse with orange feet and a white face:

NEW
1000 REM DRAW BLUE HORSE WITH WHITE FACE AND ORANGE

FEET
1010 GR
1020 COLOR = 2 : REM DARK BLUE
1030 PLOT 15,15
1040 HLIN 15,17 AT 16
1050 COLOR = 9 : REM ORANGE
1060 PLOT 15,17
1070 PLOT 17,17
1080 COLOR = 15 REM WHITE
1090 PLOT 14,15

Lots of Graphics

There is nothing wrong with this program: it draws a blue horse
with orange feet and a white face. Sut suppose you wanted to
draw another horse somewhere else on the screen. You could
rewrite this program with new values for x and Y, but that is a
bother. There should be some way of using the same program to
put a figure anywhere on the screen without having to rewrite it
each time.

You learned in CoLoRBoUNCE that variables can be used to
change the velocity and direction of points plotted on the
graphics screen. A similar method can be used to move the
horse to a different place on the screen.

You can move a point that is at coordinates (A,S) to the right
by adding to the value of the first coordinate, A. If A = 4 and
B = 17, you could move point (A,B) 10 columns to the right by
adding 10 to the first coordinate, making the point (14,17).

Likewise, a point moves left if you subtract from the first
coordinate (or add a negative value). A simple experiment
shows that adding to and subtracting from the second
coordinate moves pOints down and up, respectively.

This, in essence, is the basis of all animation in programming.

With these ideas in mind, you can rewrite the horse program to
place the horse at almost any point (x, Y) on the screen. Why
almost any point? Because if the center of the horse is plotted
at the edge of the screen, part of the horse will go off the
screen. This might give you an ? I LLEGAL QUANT I TY ERROR
IN 1030 message. The number at the end of the error message
identifies the line at which the error occurs and makes it easier
for the programmer to correct the problem. Here is part of an
improved program :

NEW
1000 REM PUT A HORSE ANYWHERE ON THE SCREEN
1010 COLOR = 2 REM DARK BLUE BODY
1020 PLOT x, Y - 1 : REM CENTER OF HORSE
1030 HLIN X, X + 2 AT Y : REM REST OF BODY
1040 COLOR = 9 REM ORANGE FEET
1050 PLOT X, Y + 1 : REM FRONT FOOT
1060 PLOT X + 2, Y + 1 : REM REAR FOOT
1070 COLOR = 15 : REM WHITE HEAD
1080 PLOT X - 1, Y - 1

Subroutines: Putting the Pieces Together

Figure 4-2. A " What If" Program

GOSUB causes a program to branch to
the line number given. The subroutine
beginning at that line number should
end with a RETURN statement, which
causes the program to branch back to
the statement immediately after the
GOSUB.

The portion of the program from line
1000 to 1090 is called a subroutine. A
subroutine is a segment of a program
that is used over and over by the main
routine (lines 20-100) of the program.

Notice that the GR statement has been left out. This part of the
program is supposed to put several horses on the screen. A GR
statement at 1005 would clear the screen before each new
horse was drawn.

This program can't be run as it is. You must set the graphics
mode and choose x and y:

20 GR
30 REM FIRST HORSE CENTER
40 X 12

50 Y = 35

When you execute this, you will get one horse at the desired
location before the program ends. But you still want to put two
horses on the screen. What if you could write what you see in
Figure 4-2:

60 DO THE PORTION OF THE PROGRAM AT LINE 1000
AND THEN COME BACK TO LINE 70

70 REM SECOND HORSE CENTER
80 X • 33
90 Y • 2

100 DO THE PORTION OF THE PROGRAM AT LINE 1000
AGAIN AND THEN END

Wouldn 't that be nice and easy? The problem is that the
computer can't read those strange instructions in lines 60 and
100. It can, however, read the statement

GoSUB 1000

A program such as the one starting at line 1000 is called
a subroutine. GoSUB 1 000 tells the computer to go to the
subroutine beginning at line 1000 and execute that statement.
It also tells the computer to come back to the line that follows
the GoSUB statement when it is finished with the subroutine.
The computer knows the subroutine is finished when it
encounters a RETURN statement. To make a complete subroutine
in your horse-drawing program, add the line

1090 RETURN

Lots of Graphics

Combining all these lines, you have that "what if you only
could " program :

20 GR
30 REM CHOOSE CENTER OF THE FIRST HORSE
40 X = 12

50 Y = 35

60 GOSUB 1000
70 REM CHOOSE CENTER OF THE SECOND HORSE
80 X = 33
90 Y = 2

100 GoSUB 1000
1000 REM PUT A HORSE ANYWHERE ON THE SCREEN
1010 COLOR = 2 REM DARK BLUE BODY
1020 PLOT X, Y - 1 : REM CENTER OF HORSE
1030 HLIN X, X + 2 AT Y : REM REST OF BODY
1040 COLOR = 9 REM ORANGE FEET
1050 PLOT X, Y + 1 : REM FRONT FOOT
1060 PLOT X + 2, Y + 1 : REM REAR FOOT
1070 COLOR = 15 : REM WHITE HEAD
1080 PLOT X - 1, Y - 1
1090 RETURN

If you run this program, you 'll get the error message

?RETURN WITHOUT GoSUB ERROR IN 1090

You'll find out how to fix the program to avoid this error shortly.
Keep reading! However, despite the error message, the program
runs fine. You have just created a horse-drawing routine. Now
use the statement

GoSUB 1000

to draw one of these special horses at whatever (X , Y) location
you choose.

Subroutines: Putting the Pieces Together 111

The debugging statement TRACE
indicates the path the program
follows as it is executed.

Figure 4-3. Using TRACE. TRACE.
displays the line number of each
statement as it is executed.

Traces

To follow the program's flow, or path of execution , you can
invoke a special feature called TRACE . This statement will show
you why the Apple lie gave an error message when the horse­
drawing program was executed. Add this line :

10 TRACE

and, for a moment, delete line 20 with

DEL 20,20

To leave the graphics mode and clear the screen , type TEXT and
HOME . Then run the program.

110130140 ISO 160 11000110101102011
030 11040 11050 1106011070 11080 11090
170 180 190 1100 11000 11010 11020 11030
11040 11050 11060 1107011080 11090110
00 11010 11020 11030 ,,1040 "1050 "1060 ,
1070 "1080 "1090
?RETURN WITHOUT GOSUB ERROR IN 1090

TRACE shows that the program begins at line 10, the smallest
line number, and continues until it reaches line 60, which sends
it to the subroutine. It executes the subroutine, returns to the
main program at line 1090, then executes the subroutine again.
When it reaches line 1090 again , not finding any smaller line
numbers, it goes to line 1000 and executes the subroutine
again. This is where the problem occurs. Do you understand
the error message now?

Lots of Graphics

The END statement causes a program
to cease execution and returns
control to the user.

Th e NOTRACE statement turns off
TRACE .

To remedy the problem of endless repetition , add this new line
to the program:

110 END

When the program gets to line 110, it will do just what the line
says: end. Run the program once more. No error message this
time. Because the RETURN statement causes the program to
branch to the statement immediately following the most recently
executed GOSUB , line 110 is reached and the program stops.

As you see, TRACE is extremely handy when you are having
problems with a program. By adding TRACE , you can find out
where the problem is.

If you want to TRACE only part of a program, use the NOTRACE
statement. Add this line:

65 NOTRACE

and the program will be traced only up to the execution of
line 65.

TRACE can also be issued when you are working w ithout line
numbers in immediate execution , TRACE and then RUN. It is not a
good idea to try it out now, unless you save the current version of
the horse-drawing program first.

Once you have issued the TRACE statement, whether in
immediate or deferred execution , the program will be traced
every time you run it. To stop TRACE you must issue a NOTRACE
statement and remove the TRACE statement.

Now that you have finished tracing the horse-drawing program,
issue a NOTRACE command , remove lines 10 and 65, and reinsert
line 20. That way you can run this program in the future without
having it traced each time.

A Better Horse-Drawing Routine

This section introduces several additions and modifications
to the horse-drawing program. The changes are based on
techniques that will be useful in any programming you do.

Subroutines: Putting the Pieces Together

Errors

It is important to anticipate possible errors when writing
programs so that problems are avoided. One problem with the
horse-drawing subroutine is that some values of x and Y will
cause the horse to go off the edge of the screen. This can be
prevented by adding a set of statements such as:

1000 REM PUT A HORSE ANYWHERE WITHIN SCREEN
1 01 2 I F X < 1 TH E N X = 1
1014 IF X) 37 THEN X = 37
1016 IF Y < 1 THEN Y = 1
1018 IF Y) 38 THEN Y = 38

The format of these lines should be familiar: it is similar to that
used in CoLoRBoUNCE. To keep the horses within the screen
limits, the values of x and Yare compared with the values of the
graphics grid. (Why should the maximum Y value be 38 , while x
must be limited to 37 ?)

If there is any attempt to locate a horse off the screen, the horse
will be moved to the nearest edge. There are other programming
strategies, such as giving an error message and stopping the
program. However, limiting the range of the horse has the
advantage of not stopping the program.

Note that line 1000 is slightly different from the old line 1000;
the rest of these lines are additions to the subroutine.

Variables

As you have already discovered, using variables instead of
specific number assignments for colors gives a program more
flexibility. If, for example, you wanted to add a second player to
the game and give that player a horse of a different color, you
could replace line 1 01 0 COLOR = 2 with

1010 COLOR = BODY

Similarly, you could write

1040 COLOR FEET
1070 COLOR FACE

Lots of Graphics

Then the main routine would change to :

20 GR
30 REM FIRST PLAYER'S HORSE COLOR
40 BODY 2 : REM DARK BLUE
50 FEET = 9 : REM ORANGE
60 FACE = 15 : REM WHITE
70 REM FIRST PLAYER'S HORSE CENTER
80 X = 15
90 Y = 30

100 GoSUB 1000

and so on . Now you add the lines for the second player's horse
color. Be sure to include an END statement. Run the program to
see the two horses displayed. Change your program lines until
you have color combinations you like.

This is a good opportunity to use some of the editing skills you
learned in Chapter 3, " Editing Long Programs." One of the
advantages of using escape mode is that you can list a line that
appears in similar form more than once in the program, make the
relevant changes, and copy it over for easy reproduction. Try that
now-it. will save you a lot of typing.

Additional Subroutines

To refine the horse-drawing program even more, use
subroutines that assign the colors for each player's horse and
then have each of those subroutines go to (or call) the horse­
drawing subroutine in turn . Here are two examples :

2000 REM DRAWS BLUE HORSE WITH ORANGE FEET AND WHITE
FACE

2010 BODY 2 : REM DARK BLUE
2020 FEET 9 : REM ORANGE
2030 FACE 15 : REM WHITE
2040 GoSUB 1000
2050 RETURN

2500 REM DRAWS ORANGE HORSE WITH PINK FEET AND GREEN
FACE

2510 BODY 9 : REM ORANGE
2520 FEET 11 : REM PINK
2530 FACE 4 : REM GREEN
2540 GoSUB 1000
2550 RETURN

Subroutines: Putting the Pieces Together III

When you add subroutines 2000 and 2500, you also must
change the main routine. To put a blue horse with a white face
and orange feet at (10,11), change lines 30-60 as follows :

30 REM FIRST PLAYER'S HORSE
40 X = 10
50 Y = 11
60 GOSUB 2000

To put an orange horse at (19,2), change lines 70-100 to

70 REM SECOND PLAYER'S HORSE
80 X = 19
90 Y = 2

100 GOSUB 2500

The horse-drawing subroutines at lines 2000 and 2500 call
another subroutine that begins at line 1000. Things become
quite efficient at this stage. The three subroutines make it very
easy to put up an attractive display of horses.

But first, another handy subroutine that replaces the old one at
lines 1012-1018:

3000 REM CHOOSES A RANDOM PAIR OF COORDINATES
3010 X = INT (RND(1) * 37) + 1
3020 Y = INT (RND(1) * 38) + 1
3030 RETURN

A Well-Structured Program

Here is the whole program. It combines the main routine with
three subroutines. You can change the program you have been
typing in to match what you see or load HORSES from the
APPLESOFT SAMPLER.

Lots of Graphics

10 REM SET GRAPHICS MODE
20 GR
30 REM CHOOSE A RANDOM POINT
40 GOSU8 3000
50 REM PUT A 8LUE HORSE THERE
60 GOSU8 2000
70 REM CHOOSE ANOTHER RANDOM POINT
80 GOSU8 3000
90 REM PUT AN ORANGE HORSE THERE

100 GOSU8 2500
110 REM DO IT ALL AGAIN
120 GOTO 30

This is how a main routine should look if you are writing well­
structured programs: mostly REM and GOSU8 statements. The
work should be done in relatively short subroutines, each of
which is easy to write and complete in itself.

Appendix E introduces more examples of subroutines and how to
structure them for maximum program efficiency.

If the workings of this program are still a little unclear, use
TRACE to follow the program flow. Type TEXT and HOME . Then
add

5 TRACE
130 NOTRACE

and then RUN . Compare what you see on the screen with the
program listing until you can follow the subroutines.

e Pause

High-Resolution Graphics
So far, you have used low-resolution graphics. In this sect ion
you will be introduced to another kind of graphics called high­
resolution graphics.

High-resolution graphics lets you draw with much more detail
than you could with the low-resolution grid. The high-resolution
graphics screen is 280 by 160 plotting points .. The horizontal
coordinates start with 0 at the left of the screen and end with
279 at the right. Likewise the vertical coordinates go from 0 at
the top of the screen to 159 at the bottom.

High-Resolution Graphics

Figure 4-4. High-Resolution Graphics
Screen Coordinates. The horizontal
coordinates range from 0 to 279 ;
the vertical coordinates range from
o to 159.

High-resolution graphics, set by HGR ,
uses a screen grid of 280 by 160
plotting points and leaves four lines
for text at the bottom. HGR clears the
screen to black.

HCOLOR = sets the high-resolution
graphics color to the number
specified .

o
o

50

100

150
159

[

Co::::

50 100 150 200

High-resolution graphics commands are often the same as the
corresponding low-resolution graphics commands except for the
addition of an H (for "high" resolution) . Your familiarity with low­
resolution graphics will be helpful to you in this section.

Type

HGR

279

to get into high-resolution graphics. This statement clears the
screen to black and leaves four lines at the bottom for text. As
in low-resolution graphics, high-resolution graphics allows you
to use vertical coordinates that would be in the text area (191 is
the maximum), but these points are not shown on the screen
unless you do some tricky maneuvers. See the Applesoft
Reference Manual for more information.

Helpful Hint: If the cursor is not visible, press RETURN until the
cursor appears near the bottom of the screen.

The color of the dots you plot in high-resolution graphics is
determined by the HCOLOR= statement. As in low-resolution
graphics, the Apple lie will use whatever color you assign until
you change it.

Lots of Graphics

Figure 4-5. High-Resolution Graphics
Colors

o black1
1 green
2 violet
3 white1

4 black2
5 orange
6 blue
7 white2

High-resolution graphics is truly wonderful , but you have to
make some sacrifices to use it. There are fewer numbers
assigned to HCOLOR= , and the colors vary according to their
positions on the screen. Look at Figure 4-5 to see which number
goes with which color.

High-Resolution Graphics II

Figure 4-6. The Fine Resolution of the
HGR Screen

The HPLOT statement plots dots and
lines in high-resolution graphics
using the most recently specified
value of HCOLOR= .

II

To tryout high-resolution graphics, once you have issued the
HGR statement, type

HCOLOR = 2
HPLOT 130,100
HPLOT 50,50

and so on. Notice how much smaller the plotted points appear
in high resolution. This mode makes it possible to create images
with much more detail than you can achieve in low resolution.

Drawing lines is even easier in high-resolution graphics than in
low-resolution graphics. You simply HPLOT from one point on the
screen TO another point. To draw a line along the top edge of
the screen, type

HCOLOR = 1
HPLOT 0,0 TO 279,0

Lots of Graphics

Figure 4-7. A Line Around the Edge
of the High-Resolution Screen

If you then want to draw a line from the corner at point 279 , a to
the bottom corner of the screen all you have to do is type

HPLOT TO 279,159

and a line appears along the right edge of the screen. When you
use this last statement, the new line takes its starting point and
its color from the point previously plotted (even if you have
issued a new HCOLOR= command since that po int was plotted).
To see for yourself, type

HCOLOR = 4
HPLOT TO 0,159

The color 4 is black so you would think the line wouldn 't show
up. But it does because it takes its color from its starting point,
which is green (number 1).

You also can combine several lines in one HPLOT statement.
Clear the screen with HGR , and try this on the Apple lie:

HCOLOR = 3
HPLOT 0,0 TO 279,0 TO 279,159 TO 0, 159 TO 0, 0

There should be a line around the edge of the screen , as in
Figure 4-7. If there isn 't a continuous line around the edge of
the screen , check your typing.

High-Resolution Graphics

Figure 4-8. MO I RE Program Listi ng.
Numbers 1 and 2 correspond to those
in the text.

If the top line is not visible on your screen, your television set or
video monitor needs adjustment. Try adjusting it. If that doesn't
work, replace HPLOT 0,0 TO 279,0 with HPLOT 0 ,2 TO 279,2
and so on .

You see how easy it is to draw straight lines in high resolution.
Well, diagonal lines are just as easy. To draw a line from the top­
left corner of the screen to the bottom-right corner, type

HPlOT 0,0 TO 279,159

Practice drawing high-resolution lines of varying length and
color. You will discover that certain colors don 't always draw
vertical lines on black-and-white monitors. Colors 2 and 6 only
plot vertical lines beginning with even numbers, while 1 and 5
only plot lines beginning with odd numbers. For example, if
HeOlOR = 1 , then HPlOT 279,0 TO 279,159 will draw a vertical
line on the screen, but HPlOT 2,159 TO 0,0 will not. This is
because of the way high-resolution colors are interpreted by
black-and-white monitors.

To see an example of what you can design with high-resolution
graphics, load the program MO I RE from the APPLESOFT
SAMPLER. Run it; stop the program with[eONTROll-e . Then type
TEXT, HOME, and lIST to see the program lines.

NEW
80 REM MOIRE PROGRAM
90 HOME

100 VTAB 24 : REM MOVE CURSOR TO BOTTOM lINE
120 HGR : REM SET HIGH-RESOLUTION GRAPHICS
140 A • RND(1) * 279 : REM PICK AN X FOR

"CENTER"
160 B • RND(1) * 159 : REM PICK A Y FOR "CENTER"
180 N • INT (RND(1) * 4) + 2 : REM PICK A

STEP SIZE
200 HTAB 15 : PRINT "STEPPING BY'" N;
220 FOR X • 0 TO 278 STEP N : REM STEP THRU A VALUES
240 FOR S· 0 TO 1 : REM 2 LINES, FROM X AND

X + 1
260 HCOlOR • 7 * S : REM FIRST lINE BLACK, NEXT

WHITE
------f- 280 REM DRAW LINE THROUGH "CENTER" TO OPPOSITE SIDE

2

2

300 HPlOT X + 5,0 TO A,B TO 279 - X - S, 159
320 NEXT S,X
340 FOR Y • 0 TO 158 STEP N : REM STEP THRU B

VALUES
360 FOR 5 • 0 TO REM 2 LI NES, FROM Y AND

Y + 1
380 HCOlOR • 7 * 5 REM FIRST lINE BLACK, NEXT

WHITE
400 REM DRAW LI NE THROUGH "CENTER" TO OPPOS ITE S I DE

420 HPlOT 279,Y + 5 TO A,B TO 0,159 - Y - S
------+- 440 NEXT 5 Y

460 FOR PAUSE· 1 TO 1500 : NEXT PAUSE: REM DELAY
480 GOTO 120 : REM DRAW A NEW PATTERN

Lots of Graphics

1. The center of the high-resolution screen is at the
intersection of four points, or dots, and cannot be precisely
plotted. Thus "CENTER" in lines 280 and 400 is approximate.

2. One instruction can provide the NEXT for more than one FOR
statement, as you see in lines 320 and 440. Be careful that
you list the NEXT variables in the right order, though , to
avoid crossed loops.

Can you think of ways to change the program? For example, try
making the value of HCOLOR= change randomly. Try drawing
orange then blue lines, or only blue lines.

There is much more to high-resolution graphics than is
presented here. When you feel confident using the high­
resolution graphics statements presented in this section, refer
to the Applesoft Reference Manual for more information on
high-resolution graphics.

High-Resolution Graphics

II

Chapter Summary

Statements

PEEK
RND
INT
GOSUB
TRACE
NOTRACE
END
HGR
HCOLOR=
HPLOT

Lots of Graphics

Terms

address
function
byte
kilobyte
memory
subroutine
rout ine
high-resolution graphics

Error Messages

?REENTER
?RETURN WITHOUT GOSU8 ERROR

L..

L

L

L

Strings and Arrays

123 Stringing Along
124 String Functions
126 Common Programming Practices Using Strings
128 Duplicate Strings
128 Backward Spelling
130 Concatenation Got Your Tongue?
131 More String Functions
134 Trapping More Errors
135 Introducing Arrays
139 Array Error Messages
140 Chapter Summary
141 Conclusion

Strings and Arrays II

-

d

Strings and Arrays

Computers can manipulate letters and symbols as well as
graphics and numbers. In this chapter you will learn how the
Apple lie handles whole strings of characters. You 'll also
discover more about how it stores characters and numbers in
what are called arrays.

Stringing Along
A string, or bunch of characters, is a type of variable. String
variable names follow the same rules as numeric variable names
except they end with a dollar sign ($) . Here are some examples
of possible string variable names:

A$
MYNAME$
SENTENCES$

Actually, you have already used a string variable without
knowing it. In the WELCOME program in Chapter 2, N$ was used
as a string variable to store your first name. Look at that
program now. N$ is a good example of what string variables do :
it holds whatever characters (letters) are typed in and uses
those same characters in a message to the user. String
variables can do other things, too. Read on.

Numeric variables (like A) are different from string variables
(like A$) : A can only contain a number (someone's age, for
example) and A$ can contain a character string (someone's
name, for example). Both can be used in the same program.

Strings and Arrays

The string function LEN returns the
number of characters in a string
(specified in parentheses) between
o and 255.

II

String variables can be given any kind of name, so long as the
name ends with a dollar sign . If you want a string variable to
contain the letters HARRY 5 TRUMAN, you can use the variable

A$ = "HARRY 5 TRUMAN"

or

NAME$ = "HARRY 5 TRUMAN"

The characters you put into a string variable must be enclosed
in quotation marks. The statement

PRINT NAME$

will print the contents of the variable NAMES : in this case the
name of the 33rd president of the United States.

String Functions

There are several Applesoft instructions that manipulate strings.
Suppose you want to know the length of a string (how many
characters it contains). You can use the length function, LEN , by
typing

PRINT LEN ("HARRY 5 TRUMAN")

or you can type the equivalent statement

PRINT LEN (NAME$)

and Applesoft will display the length of the string. As you see
(double-check by counting the characters yourself) the length
of the string NAMES is 14. Remember that the computer counts
spaces and punctuation as characters.

The number of characters in a string may range from 0 to 255. If
you try to use more than 255 characters in a string you will get
the ?SYNTAX ERROR or ?STR I NG TOO LONG ERROR message. A
string with zero characters is called a null string. Each time you
run a program, all numeric variables are automatically set to the
value 0 and all sting variables are set to the null string-until
you direct otherwise. Therefore, for each program you write that
uses string variables, you must assign the string value within
the program.

Strings and Arrays

The string function LEFT$ returns
the specified number of leftmost
characters from the string.

•
The string function R I GHT$ returns
the specified number of rightmost
characters from the string . •

On some occasions you may want to display only a part of the
character string contained in NAMES . To do this there are three
handy string functions : LEFTS, R I GHJS, and MI DS .

If, for instance, you want to PR I NT the first five letters in NAMES ,
type

PRINT LEFTS (NAMES,S)

and

HARRY

will be displayed on the screen. The reason you might want to
do this will become apparent soon. If you type

PRINT RIGHTS (NAMES,S)

RUMAN

will appear.

Here's a short program that uses the functions LEN and LEFTS .

NEW
90 NAMES = "HARRY S TRUMAN"

100 FOR N = 1 TO LEN(NAMES)
110 PRINT LEFTS(NAMES,N)
120 NEXT N

Run this program.

Now write another program substituting RIGHTS for LEFTS. The
RIGHTS function is just like the LEFTS function except that it
uses the rightmost characters in the string. What happens when
you run it?

If you want to use characters starting from the middle of the
The string function MI D$ returns the string instead of the beginning or end, the MI DS function is
substring specified in parentheses. what you need. Type

PRINT MIDS(NAMES,7)

and the Apple lie will respond with

Stringing Along II

•

II

5 TRUMAN

since 5 is the seventh character in the string. To see how the
MIDS function alters the program, edit line 110 to read

110 PRINT MIDS (NAMES,N>

Do you get what you expect when you run the program?

Suppose you want to display just y, S, and T from the string
called NAMES. To do this it's necessary to add another argument
to theMIDS function.

PRINT MIDS (NAMES,S,S>

The first argument specifies the fifth string character space.
This is where the display will begin . The second argument
indicates how many character spaces will be displayed. This is
interpreted by Applesoft as " find the fifth character space in
NAMES and print five character spaces beginning at the fifth and
moving to the right."

The first argument in a MIDS statement specifies the character in
the string (not necessarily a letter, since punctuation and spaces
are also characters in strings) where MI DS should beg in. If only one
argument is givenqM I DS:wili return the characters from the one
named to the end of the string. The second argument, which is
optional, limits the number of characters to be returned.

Now change line 110 again , as follows, and run it.

110 PRINT MIDS (NAMES,N,6>

Don 't go any further in this book until you 've thoroughly tested
the LEFTS, RIGHTS, and MI DS functions. Or else !

Common Programming Practices Using Strings

The program ALPHABET on the APPLESOFT SAMPLER disk
illustrates some common programming practices using strings.
Load and list it now.

The best way to understand how this program works is to study
it carefully. Figure out what each variable represents and how
each is used. Then look at the programming techn iques pointed
out in Figure 5-1 .

Strings and Arrays

Figure 5-1. The ALPHABET Program :

Common Programming Practices. ~~~ REM THE ALPHABET PROGRAM
The numbers in the illustration 200 AS • "ABCDEFGH I JKLMNOPQRSTUVWX YZ"
correspond to those in the text. 210 PR I NT

2

----------'

220 PRINT "TYPE A NUMBER, FROM 1 THROUGH ";LEN
(AS)''',''

230 PRINt "AND I WILL TELL YOU WHICH LETTER HAS
THAT POSITION IN THE ALPHABET. ";

240 INPUT P
250 IF P) LEN(AS) OR P < 1 THEN GOTO 210
260 PRINT

------ 270 PRINT MIDS (AS.l.Pt1);" IS LETTER NUMBER ";P;
" IN THE ALPHAJjE ."

3 ------ 280 PR I NT : PR I NT

4

290 PRINT "TYPE A LETTER, AND I WILL TELL YOU"
300 INPUT "WHERE IT IS IN THE ALPHABET. ";XS

--------;: 320 FOR 1'1 • 1 TO LEN(AS>
330 IF MIDS (AS,N,1> • XS THEN GOTO 380
340 NEXT 1'1
350 PRINT
360 PR I NT "THAT I S NOT A LETTER OF THE ALPHABET _"

PRINT
370 GOTO 290
380 PRINT
390 PRINT XS; " IS LETTER NUMBER ";1'1;" IN THE

ALPHABET."
3 ------ 400 PRINT

410 GOTO 210

1. LEN (A $) determines the length of the string held in
A$-when A$ changes, LEtHA$) will too. This gives the
program more flexibility and allows you to specify a
different alphabet without having to change the rest of the
program.

2. The MID$ statement in line 270 is interpreted as " begin at
the first character in A$, go to p (the number entered by the
user) , and display one character. " This is how the program
identifies the letter in the alphabet that has the position
specified by P.

3. Notice the function of the blank spaces in the PR I NT
statements. What would happen to the display without these
blank spaces? (If you aren 't sure, try removing a few of them
and see what happens when you run the program.)

4. The program uses a loop to find the position of a character
in a string . This method of using a loop to scan through a
string, one position at a time, is very common .

Run ALPHABET now. Then try changing line 200, and run it
again. Feel free to modify this program and change it in any way
you like.

Stringing Along

III

Duplicate Strings

You can duplicate a string by using a replacement statement
such as

XS = AS

This statement copies the contents of AS into x s. However, you
cannot use partial string notation on the left side of a
replacement statement. For example, the statement

MID$ (X$,3,3) = "XYZ"

is illegal , but the statement

XS = MIDS (AS,24,3)

is OK. The left side of a replacement statement must be a
variable.

Backward Spelling

Would you like the Apple lie to spell your name backward? Well ,
here's your big chance! This program will do just that.

NEW
100 REM PROGRAM TO SPELL YOUR NAME BACKWARD
11 0 I NPUT "TYPE YOUR NAME AND I WILL SHOW IT

TO YOU SPELLED BACKWARD. "jN$
120 REM REVERSE ORDER OF LETTERS
130 FOR T = LEN(NS) TO 1 STEP -1
140 RS = RS + (MID$ (NS,T,1»
150 NEXT T
160 PRINT : PRINT

IS "jR$
170 PRINT: PRINT
180 GOTO 110

Strings and Arrays

"YOUR NAME SPELLED BACKWARD

CLEAR sets all variables, including
strings and arrays, to zero . It is very
tricky to use within programs.

Run this program, trying several different names. After the
program executes itself a few times you will notice that there is
something wrong. Line 140 is the key to the problem. If, for
instance, you input SALL Y as your name, the variable N$
becomes SALL Y and the variable R $ becomes YLLAS . Try it.
When the program returns to line 110 and asks your name
again, type in JOE. This will set N$ to JOE. But the old variable
R$ is still in memory, so line 140 sets RS to the old RS plus NS
spelled backward . Instead of getting EOJ (JOE spelled backward)
displayed , you'll get YLLASEOJ .

What is needed is some way to reset string variables to zero, so
R$ can be refilled after each GOTO . Fortunately this can be done
in Applesoft. The null string can be used to empty the contents
of R$. Add this line to the program :

175 R$ = II II

Now run the program again. By using the null str ing near the
end of the program, the contents of R$ can be set to zero
characters after the backward name has been displayed. Then,
when the program goes back to line 110 and starts over, R$ will
be set to the new name rather than filling up with and displaying
all previous names.

There is an Applesoft statement, CLEAR, that resets all variables
of every size and shape, but it should be used in immediate
execution. Type

N = 254
PRINT N

Now type

CLEAR

and then

PRINT N

Does your computer give 0 as the value of N?

Stringing Along

•

•

Concatenation Got Your Tongue?
It is possible to add a second string onto the end of an
existing string using the plus (+) sign. This process is called
concatenation. Try the following:

C$ = "GOOD MORNING"
D$ = C$ + ", " + "BILL"
PRINT D$

The Apple lie will respond with

GOOD MORNING, BILL

Concatenation is especially useful if you wish to take a string
apart and then put it back together with slight modifications.
For instance, to create a new string containing the same
characters as in D$, but in a different order, type

E$ = RIGHT$ (D$,4) + MID$ (D$,13,2) + LEFT$ (D$,12)
PRINT E$

and

BILL, GOOD MORNING

will appear on your screen. Now here is a program that puts
concatenation to good use:

NEW
100 INPUT "GIVE ME ABOUT HALF OF A SENTENCE. "; HALF$
105 PRINT
110 INPUT "NOW GIVE ME THE SECOND HALF OF THE

SENTENCE. "; oTHERHALF$
120 WHoLE$ = HALF$ + " " + oTHERHALF$
130 PRINT
140 PRINT WHoLE$
150 PRINT: PRINT: PRINT: GoTo 100

And that's how you do concatenation. Try removing the space in
line 120. What happens to the sentence halves?

Appendix E presents a complex version of a sentence scrambling
program and gives lots of help with program display.

Strings and Arrays

The VAL function attempts to
interpret a string , up to the first
nonnumeric character, as a real
number or an integer, and returns
the value of that number.

•

More String Functions
Strings can be made up of almost any kind of character,
including numbers. However, the characters between the
quotation marks in a string cannot be interpreted
arithmetically-even if they are numbers. Type

C$ = "123"

PRINT C$ + 7

The Apple lie will give you a ?TYPE MISMATCH ERROR . However,
the VAL function (short for "value") can alleviate this problem.
The VAL function returns the value of the contents of a string as
opposed to its actual contents. Type

PRINT C$

and then type

PRINT VAUC$)

Both statements apparently produce the same result; however,
appearances can be deceiving . You already know that if you
type

PRINT C$ + 5

your computer will respond with ?TYPE MISMATCH ERROR . Try
typing

PRINT VALCC$) + 5

and

PRINT VALCC$) + 5
J128

appears on the screen. Notice that the string variable name,
which is the argument of the VAL function, must be in
parentheses.

More String Functions

The string function STR$ returns a
string that represents the value of the
argument.

What if you want to put the value of cs - 21 into an ordinary
(nonstring) variable? Simple. Just type

Q = VAL(CS) - 21

Now type

PRINT Q

and see what you get. Are the contents of Q what you expect?
You can even use VAL to add the numeric values of two different
strings. To try this, create a new string

K$ = "12"

and then type

P = VAL(C$) + VAL(K$)

PRINT P

Try the VAL function with different strings, including strings that
begin or end with letters.

Sometimes it is necessary to change a number into a string.
The STR $ function , which works much like the VAL function in
reverse, can be used to make this change. Suppose you want to
change the numeric variable P to a string variable. Type

P$ = STRHP)
PRINT P$

to see how STR $ works.

STR $ is especially useful for formatting text on the screen. You
could use STR$, for example, if you wanted to line up all the
decimal points in a list of numbers. Your program would
convert each number to a string and use the LEN and MI DS
functions and HTAB to line each entry up.

The program DECIMAL on the APPLESOFT SAMPLER does just
that. Run it, and then look at your listing and Figure 5-2 to see
how the lines work. This program has lots of remarks to help
you understand the functions of particular statements.

Strings and Arrays

Figure 5·2. The DECIMAL Program:
Using STR$. The numbers in the
i llust rat ion correspond to explanation

in the text. ~

1

5 REM THE DECIMAL PROGRAM
10 GoTo 1000

100 REM * PRINT ALIGNED NUMBERS *
110 REM PS MUST CONTAIN NUMBER
120 REM VTAB MUST BE PRE-DONE
130 REM FIND DECIMAL POINT:
135 LET DP • LEN (PS) + 1: REM SET ALIGNMENT

BASED ON NO DP
140 FOR CHAR· 1 TO LEN (PS)
150 IF MIDS (PS CHAR, 1) .. "." THEN DP .. CHAR:

REM IF DP FOUND, USE IT
160 NEXT CHAR
165 REM LINE UP DP AND PRINT:

2 -----~ 170 CALL -868: REM CLEAR LINE
180 HTAB 15 - DP: PRINT PS
190 RETURN
300 REM * INPUT NUMBER *
310 VTAB 21 : HTAB 1
320 PRINT "WHAT DECIMAL NUMBER"
330 PR I NT "WOULD YOU LI KE TO ADD? "t·

2 ------' 332 CALL -958: REM CLEAR FROM HERE 0 BOTTOM
OF SCREEN

3 . 335 INPUT ""; NS: REM KI LLS QUEST ION MARK
340 N .. VAL (NS)
350 IF N) 999999 OR N (.01 THEN GOTO 310:

REM POSITIVE NUMBERS ONLY
360 NS .. STRS (N)
370 RETURN

- ----- ~ 000 REM * MAIN ROUTINE *
1010 TEXT: HOME

4 - - ---- 1030 GOSUB 300 : REM GET NUMBER
1100 REM MOVE DOWN AND PRINT NS
1110 ROW" ROW + 1: VTAB ROW
11 20 PS .. NS : GoSUB 100

1

200 REM ADD NEW NUMBER TO SUM:
210 SUM .. SUM + N
300 REM PRINT TOTAL:

1310 PS .. STRS (SUM)
1320 PRINT "TOTAL: "; : GOSUB 100
1400 REM REPEAT UNTIL FULL:

5 - ----- 1410 IF ROW (19 THEN 1030
2 1420 CALL -958: END

1. Asterisks are used in REM statements for visual
identification . They are generally used to mark the
beginning of subroutines and main routines, as in lines
100 and 1000.

2. CALL causes execution of machine-language subroutines
that do magic things on the screen : CALL - 8G8 clears the
current line ; CALL -958 clears to the bottom of the screen . It
is advisable to use these CALL statements in conjunct ion
with I NPUT statements. For more information, see
Appendix E and the Applesoft Reference Manual.

More String Functions

•

•

3. The null string (" ,,) in line 335 keeps the I NPUT statement
from adding an extra question mark.

4. Note that the main routine of this program begins at line
1000; at line 1030, GOSUB 300 causes it to branch back to
the I NPUT statement. At 370, the program returns to line
1100.

5. The screen will only show 19 rows of numbers without
scrolling, so the variable ROW is conditional in line 1410.

Lines 335-360 demonstrate the first steps toward making a truly
error-proof input routine. Try entering all different kinds and
forms of numbers to see what will stop this program. Then
figure out ways to catch those kinds of errors so they won 't
cause the program to stop.

Trapping More Errors

As you are finding out, there are many potential pitfalls a
programmer has to be aware of and plan for in writing
programs. It is no fun for the user to find himself stuck in
the middle of a program with no idea of how to get out,
and it is no fun for the programmer to see that happen.

Now that you know how VAL and STRS can be used if the
character entered isn't a positive number (lines 335-360 in
DEC I MAL) , it would be helpful to see how to add these funct ions
to a program you have already worked on. Load your most
recent version of COLORBOUNCE , and type

LI ST 350 - 400

You should see these lines on your screen:

350 INPUT "WHAT COLOR WOULD YOU LIKE THE BALL TO BE
(1-15)? "·HUE

370 REM IS HUE OF BALL IN RANGE?
380 IF HUE) 0 AND HUE < 16 THEN GOTO 400
390 HOME : PRINT "THAT WASN'T BETWEEN 1 AND

15!": PRINT
395 GOTO 310
400 GR : REM SET COLOR GRAPHICS AREA

Strings and Arrays

Line 380 checks that the number entered is within the correct
range, and lines 390 and 395 give the user a message and
another chance to enter a number within range. However, the
program doesn 't cover the possibility that a user might enter
ONE instead of 1. As you may recall from " Program Interaction
with Users," Chapter 4, such an entry would be rewarded with
the ?REENTER error message, but no indication of what was
wrong.

Now you can fix the program to take care of just such a
possibility. Follow these steps:

1. Change the variable HUE in line 350 to a string variable,
HUE $, so that if a user happens to spell out a number,
Applesoft will be able to do something with it (remember,
a numeric variable cannot contain a string of characters).

2. Add these lines to the program:

352 REM IS ENTRY A NUMBER?
354 HUE = VALCHUE$) : REM VALUE OF HUE$ BECOMES

NUMERIC VARIABLE
356 I F HUE) 999999 OR HUE < .01 THEN GoTo 300 : REM

INPUT MESSAGE WILL REAPPEAR
358 HUE$ = STR$CHUE) : REM HUE CHANGED BACK INTO

STRING HUE$

Now run the new version and see what happens when you spell
out an entry. The CoLoRBoUNCESoUND program on the
APPLESOFT SAMPLER contains these and all the other
changes you have made to CoLoRBoUNCE.

Introducing Arrays
An array is a type of variable that is used to represent lists of
values linked together in some logical pattern. You can think of
an array as a table of numbers from which you can select
pieces, or elements. (See Figure 5-3.) The programming power
they give you more than compensates for the time spent
becoming familiar with them.

An array name can be any legal variable name, but it always
ends with a set of parentheses. Within the parentheses are the
elements of the array.

Introducing Arrays

When the DIM statement is executed,
it sets aside space for an array
containing the specified number
of elements.

•

To create an array you must first tell the computer the maximum
number of elements you want the array to accommodate. To do
this use the DIM statement (D I M stands for "dimension"). The
elements in an array are numbered from zero, so to dimension
an array called A that will have a maximum of 16 elements, type

DIM A(15)

This DIM statement creates a one-dimensional array variable
with space for 16 elements. The elements behave exactly like
the variables you have come to know and love. They are:

ACO)
A(1)
A(2)

and so on, up to

A(15)

The elements of an array can be used just as any other variable
is used. For example, you can take two elements of array A and
write

A(9) = 45 + A(12)

The elements of the array (the numbers in parentheses) are
called subscripts. The subscript can be an arithmetic
expression or it can be represented by a variable.

The following program illustrates the use of variables in the
subscript and displays the contents of each array element. Type

90 REM DIMENSION ARRAY CALLED DAYS
100 REM HOLDS 7 NUMBERS
110 DIM DAYS(6)
120 REM FILL THE ARRAY
130 FOR NUM = 0 TO 6
140 DAYSCNUM) = NUM + 1
150 NEXT NUM
160 REM DISPLAY THE ARRAY ELEMENTS
170 FOR I = 0 TO 6
180 PRINT "DAYSC"; I ;") = ";DAYSCI)
190 NEXT I

Strings and Arrays

- ..,

Figure 5·3. Array Dimensions. Array
DAYS(6) has one dimension and
seven elements ; array TWO (3,7) has
two dimensions and 32 elements.

If an array is used in a program before it has been dimensioned,
Applesoft automatically reserves space for 11 elements (subscripts
o through 10). However, it is good programming practice to
dimension all arrays.

Arrays can have one dimension, as in the arrays A(15) and
DAYS(6), or more than one dimension. The statement

DIM TWO (3,7)

sets up a two-dimensional array. The first dimension has four
elements (0, 1 , 2, 3) , and the second dimension has eight
elements (0, 1 , 2, 3, 4, 5, 6, 7). The TWO array has space
for a total of 32 separate elements (4 times 8) . Figure 5-3
illustrates the concept of dimensions.

Array 0 A Y S (6) L..1_O_.1....-_..I....-_2---,-_3---L_4---,,--5_L...-_6--,

Array TWO (3.7) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

Suppose you want to write a program that scrambles the
numbers from one to eight. To accomplish this you need to
manipulate tables of data. This is just the kind of thing arrays
are good for. The following program accomplishes this.

Introducing Arrays

NEW
200 REM DIMENSION THE ARRAY
210 DIM GLASS(8)
220 REM FILL THE ARRAY
230 FOR I = 1 TO 8
240 GLASS(I) = I
250 NEXT I
260 REM SCRAMBLE THE ARRAY AND CHOOSE EACH ELEMENT
270 FOR WINE = 1 TO 8
280 REM CHOOSE SOME OTHER ELEMENT
290 MILK = INT (RND(1) * 8) + 1
300 REM WAS MILK DIFFERENT FROM WINE?
310 REM IF NOT, TRY AGAIN
320 IF MILK = WINE THEN GOTO 280
330 REM INTERCHANGE GLASS(WINE) AND GLASS(MILK)
340 TEMP = GLASS(WINE) : GLASS(WINE) = GLASS(MILK)

GLASS(MILK) = TEMP
350 NEXT WINE
360 REM PRINT CONTENTS OF ARRAY
370 FOR C = 1 TO 8
380 PRINT GLASS(C)
390 NEXT C

Run the program. Do you understand how it works? The
program requires that no element of the array be what it
was originally, so it first fills an array with numbers and then
scrambles the contents of the array. Notice that you don 't
have to start filling the array at zero.

Here's a description of what some of the more complex
program lines do. Lines 230 through 250 fill the array and
assign each array element a number corresponding to its array
number (GLASS (1) = 1 , GLASS (2) = 2 , etc.}. Line 270 sets the
variable WINE to numbers 1 through 8. Line 290 sets variable
MILK to random integers from 1 to 8 . Then line 320 makes
sure that the value of variable WI NE is not equal to the value of
variable MILK at any given time. The contents of variables
GLASS(WINE> and GLASS(MILK) are switched in line 340.
Finally the array is printed with lines 370 through 390.

Strings and Arrays
-

Array Error Messages

Here are a few error messages you might generate while
programming with arrays.

.?REDIM'D ARRAY

This error message occurs when an array is dimensioned
more than once in the same program. For example, the lines

10 A(9) = 15

20 DIM A(50)

would produce such an error message. Often, however, this
error occurs because the default dimension is used and
then later a dimension statement is added to the program.

• ?BAD SUBSCRIPT ERROR

If an' attempt is made to use an array element that is outside
the dimension of the array, this error message occurs. For
instance, if A has been dimensioned to 25 with the
statement DIM A (25), referri ng to the element A (52) or any
other element whose subscript is less than 0 or greater than
25 will result in the ?BAD SUBSCR I PT ERROR.

• ? I LLEGAL QUANTI TY ERROR

You will get this message if you try to use a negative number
as an array subscript.

There are several programs in Appendix E that use arrays.
Going on to those programs now will give you a broader sense
of what can be done with arrays.

Introducing Arrays

Chapter Summary

Statements

LEN
LEFTS
MID$
RIGHTS
CLEAR
VAL
STR$
DIM

Strings and Arrays

Terms

string
array
string variable
numeric variable
null string
concatenation
format
element
subscript
application programs

Error Messages

?STRING TOO LONG ERROR
?TYPE MISMATCH ERROR
?REDIM'D ARRAY
?BAD SUBSCRIPT ERROR

Conclusion
Now that you have been introduced to some of the
programming tools of Applesoft, you have several options.

If you feel you have learned enough programming for now,
you will probably want to explore application programs: those
written by other people, available for purchase, that let you use
the Apple lie for all kinds of practical purposes. The Apple lie
Owner's Manual has a section on application programs.

If you are ready and eager for more programming challenges,
here are some suggestions.

• If you go through this book again, writing your own
programs with the statements that have been presented ,
you will solidify your knowledge considerably.

• Appendix E, "More Programs To Play With ," presents four
new programs. They provide examples of some of the
practical things you can do with Applesoft and are
designed to help you build your programming skill and
understanding. Experimenting with and studying the
programs in this appendix will help you learn good
programming practices and will give you lots of ideas
about writing your own programs.

• Use the Applesoft Reference Manual to learn about
statements as you need them. You can also add to your
programming skills by trying out the examples in that
manual.

One of the pleasures of owning a computer is developing your
own ideas into programs that you and others can use. This book
has presented the core of Applesoft BASIC. Applesoft has many
more capabilities, and once you have mastered those presented
here, there are whole new worlds for you to explore!

Summary of Statements and Commands 145

Reserved Words in Applesoft 159

Error Messages 163

Help 167
167 If You (or Your Program) Get Stuck
168 Errors
168 Statements and Commands
168 Cassette Recorders
169 More Helpful Information
169 Printing Applesoft Programs
169 The Apple lie's Memory
170 What the Prompt Character Identifies

Applesoft Tutorial

Appendices

More Programs To Play With 171
172 Notes To New Programmers
173 SCRAMBLER
174 Analysis of Program Lines
177 Fine Tuning
178 Program Listing
180 MAGIC MENU
181 Notes To Advanced Programmers
181 How the Five Subroutines Work: A Demonstration
182 The I NPUT Routine
183 The GET RETURN Routine
183 The Screen Formatter Routine
184 The Menu Maker Routine
186 The Computer Identifier Routine
187 Notes on the Rest of MAG I C MENU
188 Program Speed
189 A Few Words about Variable Names
190 A Few Notes on Logic
192 Program Listing
201 DISK MENU
203 Renumbering and Merging Program Parts
205 Program Listing
211 CONVERTER .
211 Program Listing
219 Some Final Thoughts

Appendices 111

Appendix A

Summary of Statements
and Commands

This appendix is a summary of the Applesoft BASIC statements
and DOS commands used in this manual. The number and/or
letter in square brackets at the end of each description refers to
the chapter and/or appendix where more detailed information
about the statement can be found.

You have been introduced to about half of all the Applesoft
BASIC statements available on the Apple lie. The Applesoft
BASIC Programmer's Reference Manual presents the remainder
and provides a comprehensive discussion of all Applesoft
statements.

Included in this appendix are some statements that were
not introduced in the body of this manual. They are used in
Appendix E, "More Programs To Play With ."

ASC
The ASC function returns the decimal ASCII code for the first
character of the argument. [E]

CALL
CALL causes execution of a machine-language subroutine at
the memory location whose decimal address is specified. For
example, CALL -868 will clear the current line from the cursor
to the right margin . It is possible to obtain the same result using
anIESC) or ICONTROL) sequence. [5, E]

CATALOG
This Disk Operating System (DOS) command displays a list of all
the files on a disk in the specified disk drive. For example,
CATALOG,D2 instructs the operating system to display the files
on whatever disk is in the second disk drive. Drive 1 (D1) is used
by default unless another drive is specified, as in the example.

Summary of Statements and Commands

III

The file type and the number of disk sectors occupied by the file -'
are indicated to the left of the file name in the CATALOG listing.
The file types are represented by letters :

means the file is a program written in Integer BASIC.

A means the file is a program written. in Applesoft BASIC.
(All the programs you have saved on a disk while using
this manual are this file type.)

T means the file contains text and was created by a WR I TE
command .

B means the file is stored in binary form , also known as
machine language.

[2]

CHRS
The CHR $ function returns the ASCII character that corresponds
to the value of the argument, which must be between 0 and 255.
For example, CHR $ (65) returns the letter A. [E]

CLEAR
This Applesoft statement sets all variables, including arrays
and strings, to zero. It should be used in immediate execution .
Because it throws away the values of all variables, it is tricky to
use within a program. [5]

COLOR=
The color for plotting in low-resolution graphics is set with the
statement COLOR= followed by an integer from 0 to 15, as in
COLOR = 5. Color is set to zero by the GR statement, so GR must
always be followed by the COLOR= statement for anything to
appear on the display screen . Color names and their assoc iated
numbers are :

o black

1 magenta

2 dark blue

3 purple

Appendix A

4 dark green 8 brown

5 gray 9 orange

6 med ium blue 10 gray

7 light blue 11 pink

12 green

13 yellow

14 aqua

15 wh ite

-

On black-and-white or green-phosphor screens the 16 colors
appear as four shades of gray, as shown :

Dark gray: 1, 2, 4, 8
Medium gray: 5,10
Light gray: 3,6,9,12
Pale gray: 7, 11,13,14
White : 15

[1]

CONT
The CO NT statement causes program execution to resume,
or continue, after ICONTROLI- C, STOP , or END is used to halt
execution. Execution resumes at the next instruction (like
GOSUB)-not the next line number. Variables are not cleared.

If you modify, add, or delete any program line or get an error
message after stopping execution , CONT won 't work.

If there is no halted program, CONT has no effect. [2]

DATA
The DATA statement creates a list of elements that can be used
by READ statements. The elements can be constants, strings,
real numbers, integers, or a combination , as in the example

DATA SMITH, "TRUMAN" , 3.17, -6

[E]

DEL

The DEL statement removes, or deletes, the specified range of
lines from the program and is written DEL 23,56. Other syntax
will be followed by a ?SYNTAX ERROR . To delete a single line, say
line 35, use the form DEL 35,35 or type the line number and
then press the RETURN key. [3]

Summary of Statements and Commands ·111

DELETE
This DOS command removes the program specified by name
from a disk. Like other DOS commands, it can be followed by
a disk drive number if, for example, the disk containing the
program is not in the default drive. DELETE BOUNCE, D2 would
remove the program named BOUNCE from the disk in Drive 2,
unless that disk is write-protected or the file is locked. [3]

Note: ThelDELETEi key on the keyboard is not the same as the
DELETE command. See the Apple lie Owner's Manual and the
Apple lie Reference Manual for more information.

DIM

When the DI M statement is executed , it sets aside space for
an array containing the specified number of elements. The
elements in an array, called subscripts, are numbered from zero.
DIM A (50) will dimension , or set aside space for, the array A

containing up to 51 elements. DIM 1'1$ (25) will allot
26 strings of any length to the array 1'1$.

If an array element is used in a program before it is
dimensioned, Applesoft automatically reserves space for 11
elements (subscripts 0 through 10). Array elements are set to
zero when RUN or CLEAR is executed. [5]

END
The END statement stops a program and returns control to the
user. No message is printed. [4]

FOR
A FOR statement in combination with a NEXT statement sets up a
program loop. The loop operation is carr ied out the number of
times specified with the TO portion of the statement. The use of
STEP is optional.

In the statement FOR W = 1 TO 20 ••• NEXT W, the variable W
counts how many times to do the instructions. The instructions
inside the loop will be executed 20 times, for W equal to 1 , 2 , 3 ,
up to 20. The loop ends with W = 21 , and the instruction after
NEXT W is then executed.

Appendix A

The statement FOR Q = 2 TO -3 STEP -2 ... NEXT Q illustrates
how to use STEP to count in regular increments other than one.

Checking takes place at the end of a loop, so in the example
FOR Z = 5 TO 4 STEP 3 ... NEXT Z the instructions inside the
loop are executed once.

A ?NEXT WITHOUT FOR ERROR appears if you try to run a
program with crossed loops. [2]

GOSUB
GOSUB causes the program to branch to the line number given.
The subroutine beginning at that line number should end with
a RETURN statement, which causes the program to branch back
to the statement immediately after the GOSUB. For example,
GOSUB 500 would cause the program to branch to line 500
and continue until RETURN . [4]

GOTO
The GOTO statement causes the program to branch to the
indicated line. It is used to create a loop and to run a program
without resetting all variables. [2]

GR
The GR statement sets the stage for low-resolution graphics. In
the low-resolution graphics mode set by GR, the screen has an
invisible grid of 40 vertical columns and 40 horizontal rows
numbered 0-39 and space for four lines of text at the bottom.
GR clears the screen and sets COLOR= to zero, or black. [1]

HCOLOR =

The color for plotting in high-resolution graphics is determined
by the HCOLOR= statement. Color numbers and their associated
names are:

a black1

1 green

2 violet

3 white1

[4]

4 black2

5 orange

6 blue

7 white2

Summary of Statements and Commands

II

HGR

The high-resolution graphics mode, set by HGR, creates a screen
grid of 280 by 160 plotting points and leaves fou r lines for text
at the bottom. The screen is cleared to black, and page 1 of
memory is displayed. Neither HCOLOR= nor text screen memory
is affected when HGR is executed. The cursor may not be visible
unless it is moved into the bottom four lines of the screen (text
window) by pressing RETURN . [4]

HLIN
The HL I N statement is used to draw horizontal lines in low­
resolution graphics. It uses the most recently specified color.
The syntax of HL I N is

HUN 10,30 AT 20

This example draws a horizontal line from column 10 to column
30 at row 20. [1]

HOME
Using HOME when you are in text mode will clear all text and
move the cursor to the upper-left corner of the screen . Using
HOME when you are in one of the graphics modes only clears the
four lines available for text at the bottom of the screen. (To clear
the screen of graphics, use GR or HGR .) [1]

HPLOT
The HPLOT statement is used to plot dots and lines in high­
resolution graphics using the most recently specif ied value of
HCOLOR=. There are th ree syntax variants ; each has a different
result :

HPLOT 10,20

Plots a high-resolution dot at column 10, row 20 on the
(invisible) screen grid.

HPLOT TO 70,80

Plots a line from the last dot plotted to a dot at column 70,
row 80, using the color of the last dot plotted (not necessari ly
the most recent HCOLOR=). If no previous point has been plotted,
no line is drawn.

Appendix A

HPLOT 30,40 TO 50,60

Plots a high-resolution line from the dot at column 30, row 40 to
a dot at column 50, row 60.

The plotted line may be extended in the same instruction almost
indefinitely. The single statement

HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO 0,0

plots a rectangular border around all four sides of the high­
resolution screen. (If it doesn 't work for you , your screen needs
adjustment.)

HPLOT must be preceded by HGR to avoid erasing the Apple lie's
memory, including your program and variables. [4]

HTAB
The HTA8 statement moves the cursor either left or right to the
specified column (1 through 40) on the screen.

HTA8 's moves are relative to the left margin of the text window,
but independent of the line width . A line has 255 character
positions (this is the character limit of any line) . Since the
screen has a limit of 40 characters per line, HTA8 causes the
cursor to wrap around to the next screen line for positions 41-
80, the next line down for positions 81-120, and so on. [2]

IF
The IF ... THEN statement creates a conditional program loop. It
is very useful for limiting the range of a program var iable. When
the condition following the keyword I F is evaluated as false (0),
all the rest of that program line is ignored , and the computer
goes on to the next line. When the condition is true (1) , the
statement following the keyword THEN is executed .

IF N <= 5 THEN GOTO 100

In this example the variable N will be compared to the condit ion
IF N < = 5 and evaluated. Each time the condition is true (when
N is 1 , 2 , 3, or 4 , for example), the remainder of the statement
will be executed and the program will branch to line 100
(specified by GOTO) . When the condition is false (when N is
6 or 1 0 , for example) the GOTO is ignored.

Summary of Statements and Commands

•

String expressions are evaluated by alphabetic ranking .

A THEN without a corresponding I F or an I F without a
corresponding THEN will cause a ?SYNTAX ERROR. [2]

INPUT
The I NPUT statement enables you to interact with a program
user from within a program. An I NPUT statement must name a
variable to be entered by the user and may contain a question or
statement. In the example

INPUT A

a question mark is displayed on the screen when the statement
is executed, and the program waits for the user to enter a
number, which will be assigned to the numeric variable A.
In the example

INPUT "TYPE AGE THEN A COMMA THEN YOUR NAME "; 8 , C$

the optional string is displayed exactly as shown (if the
programmer wanted to include a question mark, she would
have to include it within the quotation marks). The program
waits for the user to type a number, which is assigned to
the variable 8, then a comma, then a name, which is assigned
to the string variable C$. Multiple entries may be separated by
commas or presses of the RETURN key. I NPUT cannot be used
in immediate execution. [2]

INT
The I NT function returns the largest integer less than or equal
to the given argument. In the example I NT (NUM) , if NUM is
2.389, then 2 will be returned ; if NUM is - 45.123345

then - 46 will be retu rned. [4]

INVERSE
The I NVERSE statement sets the video mode so that characters
are displayed as black letters on a white background. Use
NORMAL to return to white letters on a black background. [1]

Appendix A

LEFT$
The string function LEFTS returns the specified number
of leftmost characters from the string. If you type
PR I I'lT LEFTS ("APPLESOFT", 5) the five leftmost characters,
APPLE, will be retu rned . [5]

LEN
The string function LEN returns the number of characters in
a string (specified in parentheses) between 0 and 255. In the
example LEN ("AN APPLE A DAY") , 14 will be returned . In the
example LEN (AS), the number returned will be the count of
characters in the string AS. [5]

LET
The LET statement is used to define a variable. The variable
name to the left of the equal sign, which is used in conjunction
with LET, is assigned the value of the string or expression to
the right of the equal sign. LET is optional; the statements
LET A = 23 and A = 23 give the same result. [1]

LIST
The LIST statement displays the program lines that are in the
Apple lie's memory.

LIST

LIST 150

LI ST -200

LI ST 200-

LIST 200,3000
or LI ST 200-3000

Displays entire program.

Displays only line 150.

Lists from the start of the program
through line 200.

Lists from line 200 to the end of the
program.

Lists program lines 200 through 3000.

[COI'lTROLI-s is used to halt and to resume a listing. Listing is
aborted by[CONTROL~ c , and the CDNT command cannot be
used. [2]

Summary of Statements and Commands

LOAD
The LOAD command, when followed by a file name, attempts
to find the named program file on the disk in the specified or
default drive. If the program is found, it is transferred into the
computer's memory. LOAD erases any program in the computer
before placing the new program in memory.

LOAD is also an instruction used with cassette recorders. When
not followed by a file name, LOAD reads an Applesoft program
from cassette tape into the computer's memory. No prompt is
given: the user must rewind the tape and press the play button
on the recorder before loading. A beep is sounded when
information is found on the tape being loaded. When loading is
successful , a second beep sounds and the Applesoft prompt (J)
is displayed. Only pressing the\RESETI key can interrupt the
command. See the Applesoft Reference Manual for a list of all
instructions used with cassette recorders. [2]

MID$
The string function MI D$ returns the substring specified in
parentheses. If you type PR I NT M I DH "AN APPLE A DAY", 4) ,
the fourth through the last characters of the string
will be returned: APPLE A DAY. In the example
MI DH "AN APPLE A DAY", 4,9) , the nine characters beginning
with the fourth character in the string will be returned :
APPLE A D. [5]

NEW
The NEW statement deletes the current program from memory
and sets all variables to zero. [2]

NEXT
NEXT is used within a FOR/NEXT loop. See the FOR statement for
explanation. [2]

NORMAL
NORMAL sets the video mode to the usual white letters on a black
background. [1]

NOTRACE
The NOTRACE statement turns off TRACE . See TRACE. [4]

Appendix A

-

ON ERR GoTo
ONERR GOTO is used to avoid an error message that
halts execution when an error occurs. When executed ,
ON ERR GOTO sets a flag that causes an unconditional jump to
the indicated line number if any error is later encountered. [E]

PEEK
The PEEK function returns the contents, in decimal form,
of the byte at the specified memory address. In the example
PEEK (-16336), the address, or argument, is - 163 36 ; th is
particular address is related to the memory address of the
Apple lie's speaker. When the function is executed , the speaker
makes a barely audible click. [4,E]

PLOT
In low-resolution graphics, the PLOT statement places a brick
at the specified location. In the example PLOT 10,20 , a brick
will be placed at column 10, row 20. The color of the brick is
determined by the most recent value of COLOR= , which is black
if not specified. [1]

POKE
POKE stores the binary equivalent of the second argument (3
in the example below) in the memory location whose decimal
address is given by the first argument (34 in the example).
POKE statements are useful for doing things like switching the
graphics/text window mix and for controlling the size and
scrolling of the text window. In the example POKE 34 , 3 , the top
margin of the display is set three lines down from the top and
text only scrolls up to that margin. Another example is
POKE 33 , 33 , which narrows the width of the text window. [E]

PRINT
PR I NT is the primary Applesoft statement used to display
information on the screen . The PR I NT statement can display
a number, as in PR I NT 150 ; it can display the contents of a
variable, as in PR I NT N ; it can display a group of characters
contained in quotation marks, as in PR I NT "HELLO THERE" ; and
it can display a blank line, as in PR I NT , which causes a line feed
and RETURN to be executed.

To display a list of items without any intervening spaces
between them , use semicolons in the PR I NT statement. To
display a list of items in separate tab fields, use commas. [1]

Summary of Statements and Commands

PR#
PRI is a DOS command that sends information to a specified
slot, 1 through 7. To send information to slot 1, where a printer
is customarily connected, you type PRI1. PRIO returns display
to the screen, although it is not the best method to use with
some peripheral cards. [E]

READ
When a program executes a READ statement it looks for a DATA

statement. It uses the first element in the DATA statement as a
variable in the READ statement. Successive DATA elements are
assigned to successive variables in the READ statement each
time READ is executed. In the example READ A , 8, C$, the first
two elements in the DATA statement must be numbers and the
third element must be a string. The elements will be assigned ,
respectively, to the variables A , 8, and C$. [E]

REM
REM is a statement that allows you to put remarks, or
commentary, in a program. REM statements are not displayed
or executed in a program ; they are used by programmers to
explain program lines. [2]

RETURN
The RETURN statement is used at the end of subroutines. It
causes the program to branch to the statement immediately
after the most recently executed GOSU8. [4]

RIGHT$
The string function R I GHT$ returns the specified number
of rightmost characters from the string. If you type
PR I NT R I GHT$ ("SCRAPPLE" , 5) , APPLE (the five rightmost
characters) will be returned . [5]

RND
The arithmetic function RND returns a random real number
greater than or equal to zero and less than one. Every
time RND is used with any positive argument a new random
number from zero to one is generated, unless it is part of a
sequence of random numbers initiated by a negative argument.
RND(0) returns the most recently generated random
number. [4, E]

Appendix A

RUN
The RUN statement clears all variables and begins execution at
the indicated line number.

RUN

RUN 130

Executes entire program, beginning
at lowest line number.

Begins execution at line 130 (or
whatever line is specified) and
continues to end of program.

RUN followed by a file name is a DOS command. It loads the
named file from the specified or default drive and then runs the
program that has been loaded . [2]

SAVE
SAVE, when followed by a file name, is a DOS command that
stores the program currently in memory. If the command
SAVE AGE is given, and no file called AGE is found on the disk in
the specified or default drive, a file is created on that disk, and
the program currently in memory is stored under the given file
name. If the disk already contains a file in the same language
with the specified file name, the original file's contents are lost
and the current program is saved in its place. No warning is
given.

SAVE used without a file name stores the program currently in
memory on cassette tape. No prompt or signal is given: the user
must press the record and play buttons on the recorder before
SAVE is executed. SAVE does not check that the proper recorder
buttons are pushed; beeps signal the start and end of a
recording. See the Applesoft Reference Manual for a list
of all instructions for cassette recorders. [2]

STR$
The string function STR$ returns a string that represents the
value of the argument. In the example STR$ (12. 4S) , 12. 4S is
returned . [5]

TAB
The display function TAB , which must be used in a PR I NT
statement, moves the cursor through tab fields on the screen.
Its arguments must be between 0 and 255 and enclosed in
parentheses.

Summary of Statements and Commands

II

If the argument is greater than the value of the current cursor
position, TAB moves the cursor to the specified printing
position , counting from the left edge of the current cursor line.
If the argument is less than the value of the current cursor
position, the cursor is not moved . [2]

TEXT
The TEXT statement sets the screen to the usual nongraphics
text mode, with 40 characters per line and 24 lines. When used
to leave the graphics mode, it is best used in conjunction with
the HOME statement. It resets the text window to fu ll screen. [1]

TRACE
The debugging statement TRACE causes the line number of
each statement to be displayed on the screen as it is executed.
TRACE is not turned off by RUN , CLEAR , NEW , DEL , or[RESETI.
NOTRACE turns off TRACE . [4]

VAL
The VAL function attempts to interpret a string, up to the first
nonnumeric character, as a real number or an integer and
returns the value of that number. If no number occu rs before
the first nonnumeric character, zero is returned . [5]

VLIN
In low-resolution graphics, VL I N draws a vertical line in the
color indicated by the most recent COLOR = statement. The line
is drawn in the column indicated by the third argument. In the
exampleVLIN 10,20 AT 30 , the line is drawn from row 10 to
row 20 at column 30. [1]

VTAB
VTAB moves the cursor to the specified vertical row on the
display screen . The top row is row 1; the bottom row is row 24.
VTAB will move the cursor up or down, but not left or right. [2]

Appendix A

Reserved Words
in App/esoft

The following list contains all of the reserved words in Applesoft
BASIC. They are reserved for use as keywords in Applesoft
statements: when Applesoft sees them in a program, it tries to
execute them and only understands their meaning within the
language. In most cases these reserved words cannot be used
as variable names. The comments at the end of the list note the
exceptions. See the Applesoft BASIC Programmer's Reference
Manual for an explanation of the statements not discussed in
this manual.

Reserved Words in Applesoft

Applesoft Reserved Words

& GET NEW SAVE

GOSUB NEXT SCALE=

A8S GoTo NORMAL SCRN(

AND GR NOT SGN

ASC NoTRACE SHLoAD

AT HCoLoR= SIN

ATN HGR ON SPC(

HGR2 oNERR SPEED=

CALL HIMEM: OR SQR

CHRS HLIN STEP

CLEAR HOME PDL STOP

CoLoR= HPLoT PEEK STORE

CoNT HTA8 PLOT STRS

COS POKE

IF POP TA8(

DATA IN" POS TAN

DEF INPUT PRINT TEXT

DEL INT PR" THEN

DIM INVERSE TO

DRAW READ TRACE

LEFTS RECALL

END LEN REM USR

EXP LET RESTORE

LIST RESUME VAL

FLASH LOAD RETURN VLIN

FN LOG RIGHTS VTA8

FOR LoMEM: RND

FRE RoT= WAIT

MIDS RUN

XPLoT

XDRAW

II Appendix B

•

Applesoft "tokenizes" these reserved words: each word takes
up only one byte of storage space. Usually, one character takes
up one byte.

• The ampersand (&) is intended for the computer's internal
use only; it is not a proper Applesoft statement. This
symbol , when executed as an instruction, causes an
unconditional jump to location $3F5 .

• XPLOT is a reserved word that does not correspond to a
current Applesoft statement.

Some reserved words are recognized by Applesoft only in
certain contexts :

• COLOR=, HCOLOR=, SCALE= , SPEED= , and ROT= are
interpreted as reserved words only if the next nonspace
character is the replacement sign (=) . In the case of
COLOR= and HCOLOR= , this is of little benefit because the
included reserved word OR prevents their use in variable
names anyway.

•

•

•
•

•

When you attempt to execute a statement like
10 COLORFUL = 5, a ?SYNTAX ERROR results. When you
attempt to list the same statement, it will be broken down as

10 COL OR FUL • 5

SCRN , SPC , and TAB are recognized as reserved words only if
the next nonspace character is a left parenthesis [(] .

HI MEM must have a colon (:) to be recognized as a reserved
word .

LOMEM also requires a colon (:) to be recognized.

ATN is recognized as a reserved word only if there is no
space between the T and the N. If a space occurs between
the T and the N, the reserved word AT is recognized , instead
OfATN.

TO is interpreted as a reserved word unless preceded by
an A with a space between the T and the O. If a space is
between the T and the 0, the reserved word AT is
recognized instead of TO .

Reserved Words in Applesoft

•
•

Sometimes parentheses can be used to get around reserved
words :

100 FOR A = LOFT OR CAT TO 15 lists as

100 FOR A = LOF TO RC AT TO 15

Whereas, 100 FOR A = {LOFT> OR {CAT> TO 15 lists as

100 FOR A = (LOFT) OR (C AT) TO 15

ADDendix B

AppendixC

Error Messages

All of Applesoft BASIC's error messages are listed and
described in this appendix. The Applesoft BASIC Programmer's
Reference Manual has more information about trapping errors
and debugging programs.

After an error occurs, Applesoft BASIC returns to command
level as indicated by the] prompt character and a cursor.
Variable values and the program text remain intact, but the
program cannot be continued with CONT and all GOSUB and FOR

loop counters are set to zero.

The format for error messages:

• Errors in immediate execution statements display as
?XX ERROR.

• Errors in deferred execution statements display as
?XX ERROR IN YY.

In both formats xx is the name of the specific error. In deferred
execution YY is the line number of the statement where the
error occurred. Errors in a deferred execution statement are not
detected until that statement is executed .

All Applesoft error messages are preceded by a question mark
(?). If an error message is displayed on your screen without a
question mark, it is either an Applesoft message of the non­
error variety (such as BREAK IN 110) or it is a DOS error
message; see the DOS Manual for more information . An error
message preceded by three asterisks (***), as in
*** SYNTAX ERR, is an Integer BASIC error message.

Error Messages II

II

Applesoft error messages and their explanations follow.

?BAD SUBSCRIPT ERROR

An attempt was made to reference an array element that is
outside the dimensions of the array. This error can occur if the
wrong number of dimensions is used in an array reference: for
instance, LET A(11) = z when A has been dimensioned using
DIM A(2).

?CAN'T CONTINUE ERROR

Attempt to continue a program when none existed ; or after an
error occurred ; or after a line was changed, deleted from , or
added to a program.

?DIVISION BY ZERO ERROR

Dividing by zero generates this message.

?FORMULA TOO COMPLEX ERROR

More than two statements of the form IF . . . THEN were
executed .

?ILLEGAL DIRECT ERROR

You cannot use an INPUT , DEF FN , GET , or DATA statement as an
immediate execution command.

?ILLEGAL QUANTITY ERROR

The parameter passed to a built-in arithmetic or string function
was out of range. Illegal quantity errors can occur because of

• a negative array subscript (e.g. , LET A(-1) = 0)

• using LOG with a negative or zero argument

• using SQR with a negative argument

• A" B with A negative and B not an integer

• useofMIDS, LEFTS, RIGHTS, WAIT, PEEK, POKE, TAB,
SPC, ON ... GoTo , or any of the graphics functions with an
improper argument.

Appendix C

?NEXT WITHOUT FOR ERROR

The variable in a NEXT statement did not correspond to the
variable in a FOR statement that was still in effect, or a nameless
NEXT did correspond to any FOR that was still in effect. The
three most common causes for this error are forgetting to type
the appropriate FOR or NEXT statement; typing the wrong
variable after the NEXT statement ; or accidentally branching
into the body of a FOR loop.

?OUT OF DATA ERROR

A READ statement was executed, but all of the DATA statements
in the program already had been read . Either the program tried
to read too much data or insufficient data was included in the
program.

?OUT OF MEMORY ERROR

Any of the following can cause this error: program too large ;
too many variables; FOR loops nested more than 10 levels deep ;
GOSUBS nested more than 24 levels deep; too complicated an
expression; parentheses nested more than 36 levels deep ;
attempt to set LOMEM: too high; attempt to set LOMEM: lower
than present value; attempt to set HI MEM: too low.

?OVERFLOW ERROR

The result of a calculation was too large to be represented in
Applesoft's number format. If an underflow occurs, zero is
given as the result, and execution continues without any error
message being printed .

?REDIM'D ARRAY ERROR

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs if
an array has been given the default dimension and then is
followed later in the program by aDIM statement. This error
message can be useful if you want to know on what program
line a certain array was dimensioned: just insert a dimension
statement for that array in the first line, run the program,
and Applesoft will tell you where the original dimension
statement is.

Error Messages

?RETURN WITHOUT GOSUB ERROR

A RETURN statement was encountered without a corresponding
GOSUB statement.

?STRING TOO LONG ERROR

Attempt was made by use of the concatenation operator (+) to
create a string more than 255 characters long. This error tends
to occur when a string variable is used more than once without
being cleared.

?SYNTAX ERROR

There is a missing parenthesis in an expression , an illegal
character in a line, incorrect punctuation , or some other format
error. Usually this is caused by a simple typing error.

?TYPE MISMATCH ERROR

The left-hand side of an assignment statement was a numeric
variable and the right-hand side was a string, or vice versa ; or a
function that expected a string argument was given a numeric
one, or vice versa. This happens most often because the str ing
sign ($) is left off.

?UNDEF'D STATEMENT ERROR

An attempt was made to GOTO , GOSUB , or THEN to a statement
line number that does not exist. Causes include accidentally
deleting a line, changing a line number without making
corresponding changes in references, and simple typing errors.

?UNDEF'D FUNCTION ERROR

A reference was made to a user-defined function that had never
been defined.

Appendix C

,.UIUC. dix D

Help

This appendix gives you some ideas about what to do if
something goes wrong and where to look for more information .

If You (or Your Program) Get Stuck
One day, when you are happily working away, you will look up to
discover that nothing is happening on the display screen. When
you press thelRETURNI key, nothing moves. When you try other
keys, nothing appears. The cursor may even have disappeared.
This state is affectionately referred to as a " hung" system by
some people.

There are at least six ways to get the Apple lie back to normal.
The methods are listed in order of increasing severity. It is
always better to try steps 1 and 2 first.

1. Press thelEscl key. This key is in the upper-left corner of the
keyboard. Its full name is escape, and if you 're lucky, that's
what it will help you do.

2. Press lcONTROLI-c . Many programs think of lcONTROL~ C as
" cancel. "

3. Press ICONTROL~ C and then RETURN .

4. Hold down the CONTROL key while pressing thelREsETlkey
(on the far right of the keyboard) .lcONTROLI-IRESETI restarts
the resident program.

5. Press the \OPEN-APPLE i key and hold it until you have pressed
and let go of \CONTROLi- IRESETI. This is a power-on restart and
is pretty drastic: whatever is going on is stopped and
main memory is cleared. You can find out more about this
procedure in the Apple lie Reference Manual .

Help

•

6. Turn off the power. You will rarely have to go this far, and it
is easier on the computer if you use the power-on restart
instead of turning the power off and on.

You can use these same methods to exit from a program.
Usually a program (if it is well written) will tell you what to do,
but there are times when programs don 't offer such options.

Errors

In this manual , Applesoft error messages are explained in the
text and in Appendix C. More information about Applesoft
errors can be found in the Applesoft Reference Manual .

Error messages also are given by operating systems, such
as DOS and Pascal. Whenever you get an unfamiliar error --'
message, check the operating system's manual for information .

Statements and Commands

Applesoft statements are discussed in full in the Applesoft
Reference Manual .

Commands used by the Disk Operating System are discussed in
the DOS Manual.

The Apple lie has certain input/output (I/O) subroutines bu ilt
into the firmware. See the Apple fie Reference Manual for more
information.

Cassette Recorders

All of the programs in this manual can be saved on cassette
tape if you are not using a disk drive. The Applesoft Reference
Manual explains the use of cassette recorders with the
Apple lie .

Appendix 0

More Helpful Information
The information in this section is a bit miscellaneous, but
helpful nonetheless.

Printing App/esoft Programs

If you have a printer connected to the Apple lie, or have access
to a printer, you can use these general instructions to print your
programs.

1. Load the program.

2. Type PR"1 if the printer card is connected in slot 1. If the
printer card is in a different slot, use the number of that slot
with PR# .

3. Type RUN if you want the results of your program printed .

4. Type LIST if you want the listing of your program printed .

That's all there is to it!

The Apple lie's Memory

The memory in the Apple lie is used in a surprising number of
ways:

1. To store the instructions that make up your program.

2. To store your program's variables, strings, and intermediate
and final results.

3. To store information that the computer needs: about the
system, about your program, and about where different
things are stored in memory.

4. To create the text and low-resolution graphics that normally
show on your video monitor.

5. To create the high-resolution graphics that can be shown on
your video monitor.

More Helpful Information

Each of these activities, in general, occupies a different portion
of the computer's memory. Information is placed in various
memory pigeonholes, called memory locations . A block of
1024 memory locations is called 1 K of memory. Each memory
location has an identifying address , a number that lets the
Apple lie find that location and the item of information stored
there. These items of information, which you rarely see in their
raw, machine-language form , are called bytes of information .
Each byte of information occupies one memory location.

The portion of the Apple lie's memory that is used by a
particular activity can be described in terms of the memory
locations used , usually specified as a range of memory
addresses. If a certain range of memory locations is being
used to store your program, for instance, those same memory
locations must not be used to create a high-resolution graphics
display or your program will be lost.

In Applesoft BASIC, memory addresses and other numbers
are expressed in the usual decimal form . The computer uses
hexadecimal numbers. To aid advanced programmers, memory
addresses are sometimes given in both forms. Hexadecimal
numbers usually are preceded by a dollar sign ($).

What the Prompt Character Identifies

One of the functions of the prompt character, besides cuing you
for input, is to identify which language the computer is using.
Here are the prompt characters you are likely to see :

* for the Monitor program

) for Apple Integer BASIC

] for Applesoft BASIC

By looking at the prompt, you can easily tell (if you forget) which
language the computer is using.

Appendix D

More Programs
To Play With

endix E

This appendix contains annotated listings of four programs. It
provides examples of some of the practical uses for Applesoft
BASIC and has these purposes :

1. To build programming skill and understanding. The
programs focus on good programming practices and help
you learn how to use some new techniques and statements.

2. To help a new programmer bridge the gap between the
introduction to programming in this manual and the
advanced programming concepts presented in the
Applesoft BASIC Programmer's Reference Manual .

3. To offer useful routines that you can incorporate into your
own programs.

4. To continue to make programming fun . The programs
discussed here are to be played with , modified ,
experimented with , and changed.

These programs are on the APPLESOFT SAMPLER disk that
you have been using as you worked through this manual. They
are, in order of presentation :

• SCRAMBLER : a sentence scrambling game that demonstrates
clear instructions to users and the RND function . It also
gives free rein to the imaginative writer.

• MAG I C MENU: a surprise program that offers you useful
subroutines for displaying instructions, accepting input
using the underline cursor, and creating friendly menus
-all in a minimum of time.

More Programs To Play With

•

• DI SK MENU: a program that introduces the APPLESOFT
SAMPLER disk, provides a sample menu , and uses the
subroutine package provided in the MAGI C MENU program.

• CONVERTER: a program skeleton used for measurement
conversion that leaves plenty of space for you to add and to
experiment with your own conversions while learning how
to tailor programs to your needs. The program guides you
through this process and helps you to build your own
menus.

Before you tinker with the programs on the APPLESOFT
SAMPLER, make a backup copy as instructed in the Apple lie
Owner's Manual. Then you can run the programs, play with
them , and see what they do.

Notes To New Programmers

So far you have learned many Applesoft BASIC statements: the
purpose of this appendix is to show you some of the techniques
used to put those statements to work effectively. As with
writing , painting , and other arts, you can gain much insight by
exploring the work of others.

You will learn how to avoid the pitfalls of "write-only code":
programs so cryptic even the programmer can 't understand
them. You will sidestep "spaghetti code" : programs with
meandering trails of GOTO statements. Instead, you will see how
professionals block-structure programs so that they and others
can comprehend and change what they have written .

It is always a shock to be suddenly confronted with programs
that are two, five, or ten pages long after dealing with programs
of at most ten lines long. However, you can rest easy:
SCRAMBLER , the first program, is quite simple. You are already
equipped with all the skills you need to understand it. The final
three programs are more complex, but the reward for
understanding them is far more substantial , as you will see. If
you begin to feel overwhelmed, stop. Work a bit on your own
and then come back. As you develop more and more questions,
you will be able to find more and more answers .

Appendix E

• SCRAMBLER

Before exploring this program, run it to see what it feels like.
This discussion, and the ones that follow, assume that you have
the program in your computer as you are reading.

SCRAMBLER is an easy to understand, block-structured program.
Block-structured programs are made up of subroutine blocks,
or components, each of which performs a specific task. The
main program is in the top-level block (lines 1 000 -1060) , which
calls, in turn, the four second-level blocks. The blocks are very
much like the components of a stereo system, with each part
designed to do its own specific task.

SCRAMBLER has five such tasks :

1. To give instructions.

2. To accept the first halves of sentences.

3. To accept the second halves of sentences.

4. To display the sentences.

5. To end the program.

Each of these tasks has been assigned to a separate subroutine,
or block, with one clearly defined entrance. Try typing

RUN 1180

to see the instruction block by itself.

Each subroutine or block is called by a higher block, using the
GOSUB statement, and each block ends with a RETURN statement.
(The reason you got the ?RETURN WI THOUT GOSUB ERROR just
now is that the top-level block of the program did not call the
subroutine-you did directly.) All this probably seems easy
-after all , you 've learned how to write subroutines with GOSUB
and RETURN. The fact is, it is easy. It is stressed here because
writing unstructured code (filled with meandering GOTO

statements) at first seems even easier. It is not until your first
serious program, stretching 80 or 100 lines, that you 'll suddenly

SCRAMBLER

•

discover that you can no longer control the monster you have -..l

created . By taking just a few minutes to think through the
overall program you are writing , you can avoid becoming
ensnarled in spaghetti code. When a block becomes so complex
that you no longer can see the big picture, break that block into
a series of smaller subroutine blocks.

Analysis of the Program Lines

This, and all the Appendix E programs, have basically the same
first three lines. The first (well , the zeroth) line has the name of
the program, when it was written , and who was responsible.
Including this information in your programs lets you know at a
glance what program you are looking at and when you wrote it.

Line 1 sends the program off to the main routine (which is also
the top-level block) with GOTO 1000 . The main routine begins at
line 1 000 so that there is space to make additions later if you
need to.

Line 2 is a complete mini-program. Type

RUN 2

then

LIST 1350

to see what it does. By scrunching up the lines on one side of
the screen , this program forces Applesoft to abandon sticking a
bunch of extra spaces in the middle of the PR I NT statements:
you can edit PR I NT and REM statements with ease. (The spaces
on the right side of the screen are not copied.) Type RUN 2
whenever you are going to edit the program ; type TEXT when
you are done. (All the Appendix E programs have this same
line.)

Lines 1 000 to 1 060 are the top-level block of the program. By
reading this level , you can understand exactly what the program
does and what each subroutine block is responsible for doing .

Appendix E

Lines 1 070 to 1160 end the program. Programs should have
only one end point because you may decide at some future time
to have the program do something special. In this case, the
programmer, some two months after finishing the program,
decided to include line 1155 , which returns the user to the
DI SK MENU program. Because the program has only one exit, it
wasn't necessary to read through the entire program looking for
other END statements before making the addition.

Lines 1180 to 1390 set up the program and display the
directions.

Line 1200 should be included in all your programs that use
40-column display. (MAGI C MENU , the next program, has a similar
line for aO-column display.) You can never assume that the user
is going to run your program with the proper text mode already
set. This line also has the effect of canceling a RUN 2 , so you
needn 't type TEXT before running the program.

Line 121 0 dimensions the two string arrays used to store the
first and last sentence halves. Because space for 1000 elements
is allotted in each string , it would take a user between six and
eight hours to fill enough strings to cause an error. It is hoped
that few users are so dedicated to sentence scrambling!

English words-like TITLE$ in line 1220-are used as string
variable names to make them easy to identify. Use descriptive
names for variables whenever practical, keeping in mind that
Applesoft only looks at the first two characters. (More on
variable names in the next program.)

Lines 1400 to 1540 form the second-level subroutine block that
accepts the first halves of sentences. The routine works by
having the user fill the strings in the F I RSH array, and keeps
track of how many are filled with a counter called F, for " first."

Variable counters keep track; you have used them before in
FOR/NEXT loops. A good rule to follow, when deciding whether
to use IF ... THEN orFOR/NEXT statements, is

•

•

When the use of a variable counter is determinate (when
you know, for example, that you want to count from 1 to 10
and then stop) , use a FOR/NEXT loop.

When the use of a variable counter is indeterminate (when
you don't know the exact number) , as in SCRAMBLER , use an
IF ... THEN statement.

SCRAMBLER

Lines 1400 to 1470 give instructions to the user. Line 1490 sets
a scrolling window, so that the user's entries will not scroll the
instructions off the screen.

Lines 1500 to 1530 form a loop : as long as the user does not
press [OPEN-APPLE)[RETURN), F is incremented by 1 and the user
can type in another string .

Line 151 0 quickly checks to see if the user is pressing the
IOPEN-APPLE) key. It does this by looking at the switch
immediately after)RETURN) is pressed in the I NPUT statement (line
1 500) .

Line 1 520 checks to make sure that the user did type something
before incrementing F. This prevents blank lines from being
introduced into the sentence halves. Try changing the line to
read

1520 F = F + 1

to see how the program would work without this error-checking
element.

Lines 1600 to 1720 get the second halves of the sentences. This
routine works like the first; only the prompt lines are different.

Lines 1800 to 1950 contain the second-level block subroutine
that combines random sentence halves and displays the
combined sentences on the screen.

Line 1820 makes sure that there are halves to combine. If not, it
returns to the top-level routine. Usually, the lack of sentences
means the user wants to get out.

Line 1830 uses the TEXT statement to release the text window
set by line 1660 so that HOME will clear the whole screen.

Lines 191 0 to 1930 select and display a random sentence. Line
1910 selects the sentence variables, FF and SS , from the total
number of sentence halves, F and s . Line 1930 then displays the
sentence halves with an intervening space.

Appendix E

Fine Tuning

SCRAMBLER has two problems that have been left for you to work
out:

1. Applesoft standard I NPUT statements will not accept
commas or colons : try typing a sentence half with either one.
There are two ways to handle problems of this type : warn the
user or fix the problem. In this case you might simply tell the
user not to type in commas or colons, as part of the
instructions.

In MAGI C MENU you will learn how to use a special INPUT

subroutine that has already taken care of the problem ; and
you ' ll learn how to put it in programs like SCRAMBLER . It is a
more difficult fix , but would be easier on the user.

2. If a user types spaces at the beginning or end of the
sentence halves, the two halves are pushed apart. (Try it!)
This can be fixed by getting rid of extra leading and trailing
spaces, a complex task requiring the use of LEFH and
R I GHH string functions. Again, the simpler way of handling
the problem, until you have a stronger command of
Applesoft , is to give the user a warning message.

For now, try adding warnings about these problems to the user
directions after line 1360. If the added instructions are too long ,
change the VTAB 4 in line 1230 to a simple PR I NT. When you are
sure the program works, save it on a disk. Later you may wish to
come back to SCRAMBLER and tryout some of your advanced
skills by correcting the original problems.

SCRAMBLER

Program Listing

o REM SCR AMB LE R - SEPT, 1982 BY BG & TOG
GOTO 1000 : REM BEGINN I NG OF PROGRAM

2 TEXT: PRINT CHR$ (21): POKE 33,33 : HOME: END
1000 REM THE SCR AM BLER - A SENT ENCE SCRAMBLING GAME - 1982
1010 GOSUB 1180: REM SET UP PROGR AM & DISPLAY DIRECTIONS
1020 GOSUB 1400 : REM INPUT 1ST HAL F OF SENTENCES
1030 GOSUB 1600 : REM INPUT 2ND HALF OF SENTENCES
1040 GOSUB 1800 : REM DISPLAY SENTENCES
1050 REM O. K., WE' RE DONE NOW , SO • . .
1060 REM
1070 REM *** END OF PROGRAM ***
1080 REM
1090 REM NOTE: PROGR AMS SHOULD HAVE ONLY 1 EXIT
1100 TEXT : HOME : VTAB 12
1110 PRINT "Would you like to play again (Y or N)? " ;: GET IN$
1120 I F IN$ = "Y" OR IN$ = "y" THEN TEXT : HOME GOTO 1020
1130 IF IN$ < > "N" AND IN$ < > "n" THEN 1100
1140 TEXT : HOME : VTAB 22
1150 PRINT "Thanks for playing "
1155 IF PEEK (6) = 99 AND PEEK (7) = 99 THEN PRINT CHR$ (4) ;"RUN HEL

LO" : REM SEE NOTES FOL LOWING LINE 9060 IN THE DISK MENU PROGRAM
1160 END
1170 REM
1180 REM *** DIRECTIONS ***
1190 REM
1200 PRINT CHR$ (21) : TEXT: HOME : REM TURN OFF APPLE ' S 80- COLUMN TE

XT CARD , SELECT TEXT , AND CLEAR THE SCRE EN
1210 DIM FI RST$(999) , LAST$(999):F = O:S = 0: REM GIVE THE USER 1000 1ST

AND 2ND STRINGS
1220 TITLE$ = "*** THE SCRAMBLER ***" : HTAB 21 - LEN (TITLE$) I 2: PRINT

T ITLE$
1230 VTAB 4
1240 PRINT "The scrambler is a wo rd game . You wi l l"
1250 PRINT "be asked to type the first halves of"
1260 PR I NT "sentences such as 'Edwin cooked' .": PRINT
1270 PRINT "You wi II then be asked for the second"
1280 PRINT "halves of sentences such as 'a banana"
1290 REM
1300 PRINT "squash . ' '': PRINT
1310 PRINT "Type as many as you like; then command"
1320 PRINT "the computer to combine random halves"
1330 PRINT "into humorous sentences . " : PRINT
1340 PRINT "The hi larity rises with the number of"
1350 PRINT "participants: what seems dull to you": PRINT "alone will be

found hysterically funny"
1360 PRINT "by a group of 10 otherwise normal people";: PRINT "-- astra

nge phenomenon . II
1370 VTAB 23
1380 INPUT "Press the RETURN key to begin.";IN$
1390 RETURN
1399 REM

Appendix E

1400 REM *** GET 1ST HALVES ***
1410 REM
1420 HOME : HTAB 9
1430 PRINT "The first haLf. •. "
1440 VTAS 20
1450 PRINT "Type the first haLves of sentences."
1460 PRINT "Press RETURN after each entry . "
1470 PRINT "Hold down OPEN- APPLE and press the" : PRINT "RETURN key after

your Last entry . " ; : REM ALWAYS USE A SEMI- COLON AFTER PRINTS ON BOT
TOM LINE

1480 F = O: OAK = 0: REM SET COUNTER TO 0: SET OPEN-APPLE KEY VARIABLE TO
o

1490 POKE 34, 2: POKE 35,18: HOME: REM SET SC ROllING WINDOW
1500 INPUT FIRST$(F)
1510 IF PEEK (- 16287) > 127 THEN OAK = 1: REM CHECK QUICKLY TO SEE IF

USER IS PRESSING THE OPEN- APPLE KEY
1520 IF lEN (FIRST$(F» > 0 THEN F = F + 1: REM ADVANCE COUNTER IF A SU

CCESSFUl ENTRY
1530 IF OAK = 0 THEN 1500 : REM IF OPE N-APPLE- RETURN NOT PRESSED , lOOP BA

CK FOR THE NEXT HALF-SENTENCE
1540 RETURN
1550 REM
1600 REM *** GET 2ND HALVE S ***
1610 REM
1620 TEXT: VTAB 1: HTAB 9
1630 PRINT " • . • the second half"
1640 VTAB 20
1650 PRINT "Type the second halve s of sentence s ."
1660 S = O: OAK = 0 : POKE 34 , 2: POKE 35,18: HOME: REM SET UP SECO ND HALF

1670
1680

1690
1700
1710
1720
1800
1810
1820

1830
1840
1850
1860
1870
1880
1890
1900

1910
1920
1930
1940
1950

SAME WAY AS FIR ST
INPUT lAST$ (S)
IF PEEK (- 16287) > 127 THEN OAK = 1: REM CHECK QUICKLY TO SEE IF
USER IS HOLDING THE OPEN- APPLE KEY
IF lEN (lAST$(S» > 0 THEN S = S + 1:
IF OAK = 0 THEN 1670
RETURN
REM
REM ** DISPLAY SENTENCES **
REM
IF F 0 OR S = 0 THEN RETURN

PlETE SENTENCE , CANCEL
TEXT : HOME : HTAB 9
PRINT "Sc r ambled sentences : "
VTAB 20

REM IF THERE IS NOT AT lEAST 1 COM

PRINT "Press RETURN for a new sentence . "
PRINT "Press OPEN-APPLE-RETURN to end."

OAK = 0: POKE 34,2 : POKE 35,18: HOME
VTAB 17: INPUT IN$
IF PEEK (- 16287) > 127 THEN RETURN : REM IS USER PRESSING OPEN­

APPLE? YES , THEN RETURN
FF = RND (1) * F: SS = RND (1) * S: REM SELECT RANDOM SENTENCE

VT AB 17
PRINT FIRST$(FF);" ";lAST$(SS) : REM AND PRINT IT
PR INT : PR I NT
GOTO 1890

SCRAMBLER

MAGI C MENU

It is a rule in programming that the last 10 percent of a program
takes 90 percent of the time. Say you 've written a program
called "Commodity Market Forcaster for Oleomargarine
Futures. " It only took you two hours to write, but you didn 't
include any user instructions. After all, you know when to plug
in corn oil prices, so the directions consist of a series of
blinking cursors. Unfortunately, Mr. Benson, your boss, just
got wind of your work and would like a copy to run on his
Apple II Plus. It could take you another three or four days to
get the program in shape for him to use. What to do? Use
MAGIC MENU .

MAG I C MENU contains five subroutine blocks that collectively
take care of the most time consuming, boring , and important
tasks in making a program usable by others. ("Others, " by the
way, includes you about two months down the road when you
run the program again and try to figure out what the third
blinking cursor is asking for.)

The blocks are intelligent. For example, the Computer Identifier
subroutine figures out which version of the Apple II series the
program is being run on, so the other blocks in the program can
take advantage of the machine's features. This lets you use both
upper- and lowercase characters in your programs, even though
they may be run on an Apple II or Apple II Plus. (Earlier versions
of the Apple II did not have lowercase characters available from
the keyboard.)

The actual code that forms each of the blocks is very complex
and rather obscure, but this should not keep you from using
them. The blocks can be thought of as "black boxes" : give them
the input they want, and they will carry out their jobs. You
needn 't understand how a radio works to find your favorite
station; in the same way, these subroutine blocks carry out very
complex tasks, just so you don 't have to .

The following discussion will center exclusively on how to use
the blocks, not how they work. At the end of the MAG I C MENU
discussion are some hints on how to build up libraries of your
own favorite black boxes, along with a discussion of variable
names and how to choose them.

Appendix E

Notes To Advanced Programmers

MAG I C MENU and the two programs that follow feature an
Applesoft version of the Apple lie standard interface.

The REM statements scattered throughout MAG I C MENU convey a
lot of information about how to deal with the Apple lie 80-
Column Text Card; how to use HTAB and VTAB ; and how to read
the cursor location.

How the Five Subroutines Work: A Demonstration

This section will use examples, which you should tryout on your
computer. They demonstrate how the five subroutines (black
boxes) work and how they are tied together in MAG I C MENU . The
new lines you enter will allow you to look at each subroutine as
a stand-alone block of code.

If you have not yet run MAG I C MENU , do so now. Then , to clear
out everything except the subroutine package itself and keep
from running into Computer Identifier, which starts on line
63000 , type

DEL 1000,62999
2000 END

Now, to make sure the system is normal, type

RUN 2
TEXT

This should leave you in 40-column display with a clear screen .
Lines 0 to 2 of MAG I C MENU are suspiciously similar to lines 0 to
2 of every other program in Appendix E; they were discussed in
detail in the section on SCRAMBLER . Line 1 remains because all
the examples in this section start on line 1 000: this way you can
type RUN instead of RUN 1 000 .

MAGI C MENU

II

The I NPUT Routine

Lines 1 00 to 299 are the I NPUT routine. This routine is an
extension of the Applesoft statement

INPUT .". ; AN$

Any prompt, such as Do you want the answer in dollars?
<yIn>, must have already been given. You may limit how many
characters the user may enter by setting the variable FL (for
" field length") to a number between 1 and 250. (Even with a yIn
response, as above, it is wise to give people a few spaces to
thrash around in.) If you know that the user probably will want
the answer in dollars, you may supply that answer in AN$, in this
case, AN$ = "y" . Then the user must only press RETURN to say
"yes. " (Apple II and Apple II Plus users will not be given this
default answer.)

The I NPUT routine, when run on an Apple lie, will also look to
see if the [Escj, [OPEN-APPLEj, and,sOLlD-APPLE keys are
pressed. IfmJ is pressed , or the OPEN-APPLE or the
SOLI D-APPL keys are held down while another key is pressed ,
the program will return. ~ will equal 1 if m is pressed, OAKEY
will equal 1 if !OPEN-APPLEj is pressed , and SAKEY will equal 1 if
[SOLI D-APPLEj is pressed. AN$ will hold what the user typed
before pressing one of these keys; and OAKEY$ or SAKEY$ will
contain the key pressed at the same time as the [OPEN-APPLEj or
[SOLI 0- APPLEI key, respectively.

You may ignore all of these features by stating (here comes an
example-type it in and try it out!):

1000 AIlE = 1 : HOME
1010 PRINT "Do you like margarine?";
1020 AN$ = "" : FL = 0 : GOSU8 100 : IF ESCKEY <> 0

OR OAKEY (> 0 OR SAKEY (> 0 THEN 1000
1030 PRINT AN$
RUN

This example doesn 't use the special capabilities of the INPUT
routine, namely, field length and recogn ition of special keys. But
even ignoring these capabilities, you will be able to use the
blinking-underline cursor, and users will be able to type
commas and colons.

Line 1 30 lists all the variables used (and potentially changed by)
the routine. All good black box REM statements should do this.

Appendix E

The GET RETURN Routine

Lines 300 to 399 are the GET RETURN keypress routine in the
program: they do the Apple lie equivalent of aGET loop until the
user presses lRETURN ~ There are many times in programs when
you need to say something like Press !RETURN!to see the
Oleomar arine Futures and then wait around for someone to
press RETURN. This routine does that, supplying the same
cursor as the I NPUT routine.

To see it work, simply type

DEL 1000, 1030
1000 PRINT "Please press RETURN.";
1010 GOSU8 300
RUN

In this example you don't supply any information, and none
will be supplied back. It will change the values of I, J, K ,L,
and P. (Line 1 01 0 is being deleted because it was used in
the I NPUT routine example.)

The Screen Formatter Routine

Lines 400 to 499 are the Screen Formatter routine. This black
box performs the equivalent of

400 PRINT AN$; ; : RETURN

But it does it in a very intelligent way.

First, it never breaks a word in half between lines : it looks back
through the line and finds the first space it can and breaks the
sentence there, continuing it on the next line. This means that
you don 't have to spend large amounts of time getting
instruction pages just so, only to find you left out a word that
throws off every line all the way down the screen. Just throw
your text into AN$ and execute the Screen Formatter.

Second, the Screen Formatter routine is active while the
program is running: if the specific computer has an aD-column
text card in it, it will properly format the text for aD columns .

MAGI C MENU •

II

Third, if the program is run on an Apple II or Apple II Plus, the
Screen Formatter will convert all lowercase letters, which those
computers do not recognize, into uppercase letters. So your
whole program can take advantage of the new Apple lie
hardware, without being confined to just the Apple lie.

The program expects the contents you want printed to be in
AN$. It will display in upper- and lowercase if the Computer
Identifier routine has set A I I E to true (A I IE = 1). It will format for
80 columns if you have set COL80 to true (COL80 = 1). More of
that on line 1 025 . Try this example:

1000 AIlE = 1
1010 AN$ = "Margarine used to taste horrible

and came with the coloring in a separate
pouch. It has improved considerably. Is
it good enough now to compete with the $4 . 98
spread?"

1020 GOSUB 400
1030 GOSUB 100

After running it this way, try changing line 1 000 to

1000 AIlE = 0

and run it again . This is the way it would look on an Apple II or
II Plus: slow, but serviceable. On these models, the routine has
to scan through each character (after finding the 40th character
and counting back to the first word break) to see if the
character is lowercase. If it is, a complicated formula is used to
translate the lowercase character into an uppercase character
for correct Apple II display. (See line 445 .) Note also that a
listing of such lines on an Apple II or Apple II Plus will display
lowercase characters as garbage; the translation only works
when the program is run.

The Menu Maker Routine

Lines 500-899 contain the fourth block, called Menu Maker.
This routine creates a menu in minutes, instead of days, a boast
about to be proved. Type

1000 AIlE = 1

Appendix E

and enter the name of the program with

1010 TITLES = "Oleomargarine Futures Forecaster"

The name of this menu is

1020 SUBTITLE$ = "Type of Margarine"

The menu selections (yes, you should enter them so you can see
Menu Maker at work) are

1030 MENUS< 1) "Corn Oil"
1040 MENUS(2) "Sunflower Seed Oil"
1050 MENUS(3) "Cottonseed Oil"
1060 MENUs(4) "Crude Oil"
1070 MENUS(5) "End the Program"

To tell Menu Maker you are through , enter

1080 MENUS(6) = "END"

It will also accept "End" or "end" . In line 1 090, FROM$ is set to
the null string because there are no submenus in the program
example. However, in a program with more than one menu , the
variable FROM$ holds the name of the menu the user has come
from. When FROM$ has something in it (besides a null string) , it
enables the~ key and displays a message like To return to

themainmenu, press the~ key.

1090 FROM$ = " "

You may offer descriptions of the various menu items within
your program. MAG I C MENU does this; for now, there are no help
screens (descriptions of the menu items), so OAKEY is set to
false (OAKEY = 0).

1100 OAKEY = 0

Finally, add

1110 GOSUB 500

1120 PRINT AN, AN$

MAGIC MENU

So you can see that the correct menu item number was placed
in both AN and AN$. Writing this menu certainly took only
minutes. Now type RUN.

Magic!

Of course, all options will end the program since you are just
displaying AN , not using it. From here, you could have your
program branch to various subroutines dealing with the
different oils. See the discussion of line 1670 in the section
" Notes on the Rest of MAG I C MENU " for more information.

The Computer Identifier Routine

Now you can tryout the fifth and final block, Computer
Identifier. Right now, line 1 000 looks like this:

1000 AIlE = 1

To make Computer Identifier figure out which machine you are
using, change it to

1000 GOSUB 63000

This will make A I IE = 1 if the program is run on an Apple lie and
o if it is run on an Apple II or Apple II Plus. It also sets the
variable RESUL TS to

• 0 if an Apple II or II Plus
• 32 if an Apple lie
• 64 if an Apple lie with an Apple lie aO-Column Text Card
• 1 2B if an Apple lie with an Extended aO-Column Text Card

To use an Apple lie aO-Column Text Card or an Extended Text
Card , and to let the Menu Maker and Screen Formatter routines
know if there is such a card , add this line :

1005 IF RESULTS)= 64 THEN COLBO =

CHRH4) ; "PR,3"

PRINT

Try running the program again . If you have neither card , nothing
will happen. If you have a text card, your screen will suddenly
display ao columns. To go back to 40 columns, just type

RUN 2

Appendix E

Notes on the Rest of MAG I C MENU

To get the entire program back again, type

LOAD MAGIC MENU

You have explored the black boxes themselves ; now take a look
at the lines of a program built upon them . There is very little
difficult code in these lines ; for the main part, you can look at
the listings and run the program to figure out what is being
done. A few lines that bear further comment are discussed in
this section .

Line 1 010: Applesoft puts each variable it encounters during
the running of a program into a variable table, where it stores
the current values of those variables. Any time a program looks
at or changes the value of a variable, Applesoft scans through
the table, looking at each variable in order. By declaring the
most often used variables first , you can speed up your program
significantly.

Line 1 360 : users with an aO-column text card can look at more
text on one screen than users with a 40-column display. The
program takes advantage of this by offering more information to
users with an aO-column display.

Line 1640 handles requests for descriptions.

Line 1645 handles a request to go back to the DISK MENU
program.

Line 1670 sends the user off to the requested subsection of the
program. ON AN GOSUB 2000,3000,4000 will go to a subroutine
beginning on line2000 if AN = 1; 3000 if AN = 2; 4000 if AN = 3 ;
and so on. Note, however, that when you use ON GOSUB , there is
no logical connection between the variable number and the
subroutine it sends the program to. Menu Maker will not allow
an illegal number, so error-checking for correct numbers in AN is
already included.

MAGI C MENU

.. II'

Lines 1800 to 1890 are very similar to those described above ;
they handle the call for descriptions, branching to the
appropriate subsections.

Line 2010 does the sort of error-checking you need to think
about if you want your program to be universal. (You can test
your program in Apple II Plus mode, by the way, by setting All E
and RESUL TS to 0 I instead of using the Computer Identifier
routine.)

Program Speed

When Applesoft executes programs, it goes through every line
number in sequence every time. The larger the program, the
longer it takes to run; the further up a variable is in a variable
table, the longer it takes to find.

Applesoft executes subroutines with the smallest line numbers
fastest, so the smaller line numbers are best reserved for
subroutines that must do a lot of computing in a minimum of
time. The main routines usually go near the end because they
are only called once.

To see the difference in execution times between small line
numbers and large ones, compare the two mini-programs that
follow. Type

101=1+1
20 STOP
RUN 10

and then try

50000 I = 1 + 1
50010 STOP
RUN 50000

Appendix E

IF I < 300 THEN 10

IF 1 < 300 THEN 50000

A Few Words about Variable Names

Once you become familiar with how the black boxes in
MAGI C MENU work, you will probably be interested in creating
some black boxes of your own. These notes on variable names
are designed to help you do just that.

It is usually better to use descriptive variable names. Descriptive
variable names make a program far more readable : A I IE = 1
gives you a hint ; L3 = 1 does not.

Often , however, the speed at which your Applesoft programs
execute is an issue. If you stick with a few variables, declared
early in your program, using them in all high-speed routines,
your program will run much faster. Often three or four times
faster.

Fortunately, there are some guidelines, based on conventions
going back to the early 1950's, for high-speed variables. There
are eight standard, nondescriptive variable names that are used
to speed up execution. And , of course, they break the rule that it
is always better to use descriptive variable names. The standard
variable names are:

I, J, K, L, M, N, 0, P

I is the most common variable name of all. J is second, and so
forth. P is generally used for the PEEK function-to look at the
keyboard and other hardware locations.

These variables should only be used within a subroutine, not
between subroutines, nor between subroutines and the calling
routine. To communicate between routines, use variable names
that mean something.

If you need to call a low-level subroutine (such as the INPUT
routine) while carrying out a high-speed activity in a higher-level
routine (such as the Menu Maker routine) , use the letter twice in
the higher-level routine :

I I, JJ, KK, LL, MM, NN, 00, PP

MAGI C MENU 11

This will keep the lower-level routine from destroying values in
the higher-level routine. Menu Maker, for example, uses all
double letter variables because it calls both the I NPUT and
Screen Formatter routines.

Make sure you document with REM statements which variables
you are affecting within such subroutines.

Finally, don't use these variables unless you really need the
speed, or you are converting your favorite routines to black
boxes. You have to be able to read and understand your own
program : use descriptive variables anywhere they won 't
seriously affect your program.

By following these guidelines in the creation of the f ive
subroutine blocks in this program, the program author has
given programmers using the package the greatest lattitude in
constructing their own routines.

A Few Notes on Logic

Applesoft BASIC uses a kind of logic called Boolean logic. It is
based on false and true, zeros and ones.

When you say

x = 0 : IF A = 23 THEN X = 14

you are calling on Applesoft to decide if it is true that A = 23. If
true, it will carry out your further instructions. The same
decision could be made in a decidedly different way:

x = 14 * (A = 23)

This is a little hard to believe at first. So try it in immediate
execution , first making A equal to 23 and then making A equal to
something other than 23.

Type

A = 23
X = 14 * (A 23)
PRINT X

A = -32.68
X = 14 * (A 23)
PRINT X

Appendix E

---'

---'

When Applesoft encounters a Boolean argument (A = 23) , it
decides whether it is true (1) or false (0). (14 * 0) is 0 and
(14 * 1) is 14. (You may explore such Boolean logic further in
the section on IF ..• THEN in the Applesoft Reference Manual.)

MAG I C MENU uses many true or false flags to communicate
between routines. A flag is a variable whose contents (usually 1
or 0) indicate whether some condition holds or whether some
event has occurred. It is used to control the program's actions at
some later time.

Using a flag , the Computer Identifier routine communicates to
the Screen Formatter routine that the program is running on an
Apple lie by making A I IE = 1 . Then , Screen Formatter can
make decisions based on I F A I IE = 1 THEN or, more simply,
I F A I I E THEN. The I NPUT routine reports to you that the
IOPEN-APPLEI key has been pressed by setting the flag , OAKEY , to
true. Then you may go ahead and see what is in OAS to find out
what key was pressed at the time.

A good programming practice is to declare the two variable
names TRUE and FALSE early in your program :

1000 FALSE = 0 : TRUE = 1

Having done so, you may then clearly state what you are doing :

1010 AIlE = TRUE
1020 IF AIlEE = TRUE THEN PRINT "TRUE"
1030 IF AIlE = FALSE THEN PRINT "FALSE"

Many new programmers will avoid flags, choosing instead some
other kind of test. A couple of years ago, an Apple programmer
needed to get the user's age in the variable, YEARS. His
subroutine for doing this first asked the user for the age in
months and years. The routine then divided the months by 12,
added them to the years, and finally took the integer of
YEARS + .5 to round it to the nearest year :

YEARS = INT (YEARS + .5> : RETURN

MAGI C MENU II

II

When the subroutine ended, the routine that called it needed to
know if the user had answered successfully, rather than just
pressing lRETuRNj. The programmer discoved that he could tell if
an age had been successfully found by simply testing the
variable YEARS:

1000 IF YEARS THEN [go on with the program]

That worked fine until a colleague typed in the age of her new
baby: no years, 2 months. The program rounded this reply to :
YEARS = O. It didn 't matter how many times she typed it in, it
kept asking her how old "Setty" was.

You will not run out of variable names-there are more than
5000 of them . Use a flag and always give it a descriptive name.

Program Listing

o REM MAGIC ME NU - SE PT, 1982 BY TOG
1 GOTO 1000
2 TEXT : PRINT CHRS (21) : HOME: POKE 33, 33: END
100 REM *** INPUT ROUTINE ***
102 REM SEPT, 1982 BY B. TOG NA ZZ I NI
105 REM US ES FLASHI NG UNDER LIN E CURSOR
110 REM YO U MA Y SET THE NUMBE R OF CH ARACTERS THE USER MAY TYPE (T HE FI EL

o LE NGTH) IN TH E VA RIABL E FL
11 5 REM A FIELD LE NGTH OF 0 (FL=O) ALLOWS THE MAX I MUM INPUT
120 REM IF YOU WANT A "DEFAULT" (SUPPLIED- BY- YOU) ANSWER, PUT IT IN ANS.

FOR EX AMPLE: ANS= "C AT"
124 REM UPON RETUR N, ANS (ANS~ERS) WILL CONTA IN THE INPUT FROM THE USER
125 REM ESCKEY UILL BE SE T TO TRUE (WILL EQUAL 1) IF THE USER PRESSED IT

TO EX IT THE INPUT
126 REM SAKEY OR OAKEY IIlLL BE SET TO TRU E (IH LL EQUAL 1) IF THE USER PR

ESSED ANY CHARACTER KEY WHILE HOLDING THE SOL ID-APPLE OR OPEN-APPLE
KEY , RESPECT IVELY

127 REM ABOVE 3 KEYS ARE ONLY READ IN AN APPLE lIE: PROVI DE SOME OTHER M
ETHOD OF SIGNALLING FOR All AND AII+ OWNERS

130 REM THE ROUTIN E US ES (AND MAY CHANGE THE VALUE S IN) I , J, K,L, M, P, FL, E
S (FOR ESCA PE KEY) , OA (FOR OPEN- APPLE KEY) , SA (FOR SO LID- APPLE KEY) ,
FL,IS, OAS, SAS ,A N$

135 REM * TA KE INPUT *
140 I = 5: J = O:K = O: L = O:M = 0:1$ = "" :E SC = O:OA = O:OAS = "" : SA = 0:

SA$ = "" : IF FL = 0 THEN FL = 245
142 IF NOT AIlE THEN INPUT " "; ANS : RETURN
145 PR I NT AN $;: J = LEN (ANS)
149 M = PEEK (37)
153 L = PEEK (36) : IF COLBO THEN IF L = PEEK (1 147) THEN L = PEEK (14

03): REM FI ND CURRENT HORIZ POS I TION WITH 80 COLUMN CARD TURNED ON
155 PRINT" "; 1$;" ";
160 N = 1: IF L + LEN (IS) > = PEEK (33) - 3 AND PEEK (37) = PEEK (3

5) - 1 THEU N = 0
165 POKE 36, L: POKE 14 03 ,L: VTAB M + 1
170 I = I - 1: IF I < 0 THEtJ K = 1 - K: I = 5: PRINT CHRS 132 + 63 * K);
175 POKE 36 , L: POKE 1403 , L: VTAB M + 1
180 P = PEEK (- 16384): IF P < 128 THEN 170
185 IF PE EK (- 16287) > 127 THEN OAKEY 1
190 IF PE EK (- 16286) > 127 THEN SAKEY = 1
195 POKE - 16368, 0 : K = 0 : 1 = 0

Appendix E

--

200 IF OAKEY THEN OAS = CHRS (P - 128) : ANS ANS + IS: PRINT IS;" ". RETURt'! ,
: REM * OPEN-A PPLE KEY

205 IF SAKEY THEN SAS = CHRS (P - 128) : ANS ANS + IS : PRINT IS;" " . RETURN
: REM * SOLID- APPLE KEY

210 IF P > 159 AND P < > 255 THEN IF J + LEN (IS) < FL THEN IF N THEN
ANS = ANS + CHRS (P - 128) : J = J + 1: PRINT CHRS (P) ; : GOTO 149

215
220

IF P < >
IF J THEN
J - 1

255 THEN 240:
PR INT II ";:

225 IF J = 0 THEN ANS = ""

REM DELETE KEY
POKE 36,L: VTAB

230 IF J THEN ANS LEFTS (ANS,J)
235 GOTO 149

M + 1:

240 IF P < > 136 THEN 265: REM * BAC K ARROW KEY

PRINT CHRS (136); :J

245 IF J THEN PRINT" ";: POKE 36, L: VTAB M + 1: PRINT CHR$ (136);:1$
RIGHT$ (ANS , 1) + I$: J = J - 1

250 IF J = 0 THEN ANS = ""
255 IF J THEN AN$ = LEFT$ (AN$, J)
260 GOTO 149
265 IF P 141 THEN AN$ = AN$ + 1$: PRINT 1$;" ": RETURN REM * RETURN

KEY
270 IF P < > 149 THEN 294 : REM * FORWARD ARROW KEY
275 IF NOT LEN (1$) THEN 149
280 AN$ = AN$ + LEFT$ (I$, 1):J = J + 1: PRINT LEFT$ (1$, 11;
285 IF U: N (IS) = 1 THEN 1$ = ''''
290 IF LE~ (1$) THEN 1$ = RIGHT$ (1$, LEN (1$) - 1)
292 GOTO 149
294 IF P = 155 THEN ESCKEY = 1: PRINT : RETURN : REM ESCAPE KEY PRESSED
296 GOTO 149
298 REM

300 REM ** GET RETUR N ROUTINE **
305
310
315
320
325
330
335
340

345
350
355
360
365

370
375
399

400
401
402

403
404
405
406
407

410
41 1

412

REM USES I,J, K,L,P
IF AIlE THEN 325
GET AN$: IF ASC (AN$) < > 13 THEN 315
PR INT : RETURN

I = O:J = O:K = 0
I = I - 1: IF I < 0 THEN K = 1 - K:I = 5: PR INT CHR$ <32 + 63 * K);

I F I < > 5 TH EN 355
L = PEEK (36) : IF COL80 THEN IF L = PEE K (1147) THEN L PEEK (14
03): REM FIND CURRENT HORIZ POSITION WITH 80 COLUMN CARD TURNED ON
IF L = 0 THEN POKE 36, PEEK (33): VTAB PEEK (37)
IF L < > 0 THEN POKE 36,L - 1

P = PEEK (- 16384): IF P < > 141 THEN 330: REM NOT A RETURN
PRINT" ";
IF PEEK (37) = 23 THEN VTAB 23 : REM PEEK(37) CONTAINS CURRENT VTAB
POSITION -1. IF ON BOTT OM LINE (VERY CO MMON WIT H WAIT-FOR-RETURN-K

EYS) MOVE UP ONE TO PREVENT SCREE N FROM SCROLL ING
PRINT
POKE - 16368, 0: RETUR N
REM

REM *** SCREEN FORMATTER ROUTINE ***
REM STRING TO BE PRINTED IN AN$
REM IF 80 COLUMN BOARD IS TURNED ON , MAKE SURE CO L80
I S NOT TO BE USED, MAKE SURE CO L80 = O.
REM USES I , J , 1$
REf1 ROUGH EQUIVALENT OF PRINT AN$;" ";
REM USES AIlE SE T BY COMPUTER IDENTIFIER ROUT INE
REM USUALLY LEAVES 1 EXTRA BLAN K AT EN D OF LINE

1. IF BOARD

REM PER FOR MS WORD-WRAP AND WILL CONVER T LOWER - TO UPPER - CASE IF USED
INSIDE AN APPLE II OR 11+

I = LEN (AN$) : IF NOT I THEN RETURN
P = PEEK (36) : IF CO LBO THEN IF P = PEEK (1147) THEN P = PEEK (14
03) : REM FIND CURRENT HORIZ POSITION WITH 80 COLUMN CARD TURNED ON
IF NOT P THEN IF I > 1 THEN IF ASC (AN$) = 32 THEN AN$ = RIGHT$
(AN$, I - 11

413 IF P + 2 + I < PEEK (33) AND AIlE THEN PRINT AN$; " " ;:AN$ = "": RETURN
: REM EXPRESS CHE CK-OUT

MAGI C MENU

414 IF I > THEN IF RIGHT$ (AN$, 1) = " " THEN AN$ = LEFTS (AN$, I - 1
)

417 IF P + I < PEEK (33) THEN 1$ = AN$:AN$ "". GOTO 440
420 J = PEE K (33) - P + 2: 1 = J
425 I = I - 1: IF I THEN IF MID$ (AN$, I , 1) < >" " THEN 425
430 IF I = 1 THEN I = J
431 IF I = 0 THEN PRINT: GOTO 410
435 1$ = LEFT$ (AN$,I - 1): IF LEN (AN$) > I THEN AN$ RIGHT$ (AN$, LEN

(AN$) - 1): REM ISOLATE 1 LINE IN 1$
440 IF AIlE THEN PRINT 1$;
445 IF NOT AIl E THEN K = LEN (I$) + 1: FOR I = 1 TO LEN (I$): J = ASC

(RIGH T$ (I$, K - Il): PRINT CHR$ (J - 32 * (J > 96 AND J < 123)) ;: NEXT

447 P = PEEK (36) : IF COL80 THEN IF P = PEEK (1147l THEN P = PEEK (14
03)

450 IF LEN (AN$) THEN IF P < > 0 THEN PRINT
455 IF LEN (AN$) THEN 410
460 IF P < > 0 THEN IF MID$ (I$, LEN (I$), 1) < > " " THEN PRINT" "

465 RETURN
499 REM

500 REM *** MENU MAKER ROUTINE ***
505 REM SUPPLY PROGRAM TITLE IN TITLE$, MENU TITLE IN SUBTITLE$, CALLING

MENU TITLE (WHERE USER CAME FROM) IN FROM$, OA=1 IF HELP IS AVAILAB
LE

510 REM PUT MENU ITEMS IN MENU$(1) THROUGH MENU$(12). REMEMBER TO DIM M
ENU$(12) IF MORE THAN 10 IT EMS

515 REM PROGRAM USES INPUT ROUTINE AND SCREEN FORMATTER . ALL VARIABLE S
AFFECTED BY THEM AS WELL AS II, JJ, KK, LL, MM, NN, OO , PP , AN, 11$ A
RE AFFECTED

520 REM USER ' S CHOICE IS RETUR NED IN BOTH AN$ AND AN

525 REM IF FROM$ HAS A TITLE IN IT, ESCKEY WILL BE IF USER WANT S TO G
o BA CK TO CALLING MENU. MAIN MENUS SHOULD MAKE FRO~l$ = "" (NOTHING)

530 J = O:K = O:JJ = O: KK = O: LL = O:MM = O: NN = 0:00 = O:AN = 0
535 00 = OA: REM STORE WHETHER DESCRIPTIONS ARE AVAILABLE
540 AN$ = ,,, .
545 II = 1
550 KK = KK + INT (LEN (MENU$(II)) f (27 + 35 * (COL80 = 1))) : REM AP PR

OXIMATE NUMBER OF EXTRA LINE S MEN U ITEM WILL TAKE
555 IF II < 12 THEN IF MENU$ (Il + 1) < > "End" AND MENU$(II + 1) < >

"end" AND MENU$ (II + 1) < > "END" TH EN II = II + 1: GOTO 550
560 LL = II: REM NUMBER OF MENU ITEMS
565 NN = 0: IF LL * 2 + KK < 14 THEN NN = 1: REM DETERMINE IF MENU CAN BE

DOUBLE-SPACED
570 MM = 3: IF COL80 THEN MM = 9: REM SELECT LEFT MAR GIN OFF SET : 3 IF 40

COLUMN , 9 IF 80 COLUMN
575 JJ = 3 + MM : IF LL > 9 THEN JJ = 4 + MM : REM IF MORE THAN 9 ITEMS, IN

DENT NAME OF EACH BY 1 MORE
580 REM

585 REM * DISPLAY MENU ROUTINE *
590 TEXT : HOME
595 AN$ = TITLE$: GO SUB 400 : POKE 36, PEEK (33) - LEN (SUBTITLE$) - 1:AN

$ = SUBT ITLE$
600 GO SUB 400
605 FOR II = 1 TO PEEK (33) : PR INT " ";: NE XT PR INT
610 REM PRINT SELECTIONS
615 FOR II = 1 TO LL
620 HT AB MM : PR I NT II;". ";
625 VTAB PEEK (37) : IF COL80 THEN VTAB PEE K (1531): REM BELOW PRINT M

OVES DOWN 1 LINE: THI S COMMAND IS A TRI CK TO MOVE UP EXACTLY 1 LINE
FIR ST

ADDendix E

---'

630 POKE 32,J J : POKE 33, PEEK (33) - JJ : PRINT: REM SET "WINDOW" SO THA
T TEXT OF MENU ITEM IS INDENTED

635 AN$ = MENU$(II): GOSUB 400 : REM PRINT MENU ITEM
640 POKE 32, 0: POKE 33, PEEK (33) + JJ : PRINT : REM "RESTORE" FULL WINDO

\oJ

645 IF NN TH EN PRINT
650 NEXT II
655 IF PEEK (37) > 16 THEN PRINT "TOO MANY MENU ITEMS OR TOO LONG LINE

S. " : STOP
660 TEXT : VTAB 17 : AN$ = "Select option >" : GOSUB 400: PRINT
665 FOR II = 1 TO PEEK (33) : PRINT" " ;: NEXT
670 IF NOT 00 OR NOT AILE THEN PRINT : REM IF ROOM , SPACE DOWN 1
675 IF LEN CFROM$) THEN AN$ = "For" + FROM$ + " : press ESC": GOSUB 400

680 PRINT
685 IF AIlE THEN PRINT "To erase : use the DELETE key"
690 AN$ = "To select: type a number from 1 to "+ STR$ (LL)
700 GOSUB 400 : PRI NT
705 I F NOT 00 THE N 720
710 IF AIlE THE N PRINT "Fo r descriptions : press OPEN- APPLE-?"
715 IF NOT AIlE THEN PRINT "FOR DESCRIPTIONS: FOLLOW ANSWER WITH ?"
720 AN$ = "To go to se lected item: press RETURN· ' : GOSUB 400: PR INT
723 IF NOT 00 THEN AN$ = "(There are no descriptions available)": GOSUB

400
725 FL = 3:AN$ = "" . REM SET-UP VALUES FOR INPUT ROUTINE BEFORE CALLING I

T
730 REM

735 REM ** GET INPUT FROM USER **
740 VTAB 17 : HTAB 17 : CALL - 868: HTAB 17
745 IF AILE OR NOT LEN (FROM$) THEN GOSUB 100: GOTO 795: REM THE LINE

S THAT FO LLOW ARE TO PICK UP AN ESC PRESS ON AN APPLE II OR 11+
750 = O: J = O:M PEEK (37) : L PEEK (36):OAKEY = 0
755 I = 1 - 1: IF 1< 0 THEN K = - K:I = 5:J = 1 - J: NORMAL: IF J THEN

INVERSE
760 PRINT" ";; POKE 36, L: VTAB M +
765 P = PEEK (- 16384) : IF P < 128 THEN 755
770 NORMAL: REM ABOVE PRINTS A BLINKING CURSOR THE HARD WAY
775 IF P = 155 THEN POKE - 16368, 0:ESCKEY = 1: GOTO 795: REM ESC PRESS

ED FIRST
780 L = PEEK (36): VTAB 20 : HTAB 1: CALL - 868 : VTAB M + 1: HTAB L + 1
785 INPUT "" ; ANS
790 REM

END OF All AND AII+ ROUTINE

795 VTAB 19
800 IF NOT OAKEY THEN 825
1105 IF NOT 00 OR OA$ < > "?" AND OAS < > "/" THEN 735: REM HELP NOT A

VAILABLE (00 WA S SET TO VALUE OF OAKEY AT BEGINNING OF ROUTINE) OR W
RONG KEY PRESSED

810 REM JJ WILL NOW BE USED TO HOLD LENGTH OF ANS:
8 15 JJ = VAL (ANS): IF JJ > 0 AND JJ < = LL THEN II = JJ: GOTO 880 : REM

EXIT MENU FOR HELP
820 IF JJ = 0 THEN PRINT "-- > PLEASE SE LECT A NUMBER FIRST <--";: CALL

- 868 : PRINT :ANS = "": GOTO 735
825 IF SAKEY THEN 735 : REM SOLID-APPLE KEY NOT USED FOR MENU
830 IF ESCKEY THEN IF LEN (FROM$) THEN 880: REM IF ESCAPE KEY IS PRESS

ED , MENU IS EXITED
835 JJ = VAL (ANS) : IF JJ > 0 AND JJ < = LL THEN II = JJ: REM ISOLATE N

UMBER FR OM ANS AND MAKE II EQUAL IT
840 IF LEN (ANS) = 0 THEN 735
845 IF 00 THEN IF NOT AILE AND (R IGHT$ (ANS , 1) = "?" OR RIGHTS (A NS,

1) = "/") THEN IF II > 0 AND II < LL THEN OAKEY = 1: GOTO 880
850 IF LEN (ANS) THE N K = 0: FOR I = 1 TO LEN (ANS) : J = ASC (RIGHTS

(ANS , I):K = K + (J < > 32 AND (J < 48 OR J > 57): NEXT I: IF K THEN
PRINT" --> PLEASE USE DIGIT S <--";: CALL - 868: PRINT :AN$

"" . GOTO 735
855 REM ABOVE LINE CHECKS FOR PRESENCE OF NON- NUMERIC CHARACTERS OTHER

HAN SPACE IN THE LINE; IF FOUND, THE LINE IS REJECTED

MAGI C MENU

1160 IF NOT JJ THEN IF LEN (AN$) THEN K = 0: FOR I = 1 TO LEN (AN$) : J
ASC (RIGHT$ (AN$,I):K = K + (J = 48): NEXT I: IF NOT K THEN PRINT

- -> PLEASE USE DIGIT S <--";: CALL - 868: PRINT :AN$ = '''' : GOTO
735

865 REM ABOVE LINE CH ECKS FOR A SIN GLE SPA CE AS AN SWER (OTHERWI SE , A SPA
CE IS A ZERO)

870 IF JJ > LL THEN PR INT " --) n;JJ;" I S TOO LARGE <--"; : CALL
868: PRINT :AN$:: "": GOTO 735

1175 IF J J < i THEN PRINT " --> 0 IS TOO SMALL < __ ";: CALL - 868 : A
N$ = "": GOTO 735

880 AN = II: TEX T : HOME : RE TURN : REM EXIT PO INT FOR MENU PROGRAM
885 REM

1000
101 0

1020
1021
1025

1030

REM •• * MAIN PROGRAM .*.
I = O:AN$ = "":J = 0: 1$ = "" : K = 0: REM DECLARE MOST OFTEN USED VARI
ABLE S FI RST FOR SP EED .

GOSUB 63000 : REM FIND OUT IF AIlE OR NOT
DIM ME$(20)
IF RESU LT S>

N 80-CO LUMN CARD
HE LINE TO:

1025

64 THEN COLBO 1: PRINT CHR$ (4);"PR#3": REM IF A
IS PRE SE NT, USE IT. IF YOU DON'T WA NT IT , CHANGE T

PR INT CHR$(21)

TEXT: PRINT: HOME: RE M TE XT CLEAR S ANY OLD WIND OWS: PRINT CLEARS
OUT ANY OLD HTAB AND VTAB INFORMATION : HOME CLE ARS THE SCREEN

1040 PRINT : HOME
1050 AN$ = "* •• Magic Menu ••• ": POKE 36, { PEEK (33) - LEN (AN$» I 2: GOSUB

400: PRINT : REM CENTER TITLE
1060 PRINT :AN$ = '~ag i c Menu has f i ve basic sub routines upon whi ch you

can bui ld yo ur prog rams : !!
1070 GOSUB 400: PRINT : IF COLBO THEN PRINT: REM BY CHANCE , THE SECOND

LINE IS JUST LONG ENOUGH TO CAUSE AN EXTRA CARRIAGE RETURN IN 40- CO
LUMN MODE

1080 AN$ = "1 . COMPUTER IDENTIFIER: says you are now using an AppLe" : GOSUB

-J

~

400 -
1090 IF RESULT 0 THEN AN$ = " II OR II+."
1100 IF RESULT 32 THEN AN$ = "IIe."
1110 IF RESULT 64 THEN AN$ = "IIe with an 80- CoLumn Card . "
1120 IF RESULT 128 THEN AN$ = "lIe with a Memory-Expansion Card . "
1130 IF CO L80 THEN GOSUB 400:AN$ = "Th e ot her four routine s use the inf

o rmati on from COMPUTER IDENTIFIER to Let you r software take fuLL adv
antage of what ever AppLe compute r it is run on . "

1140 GOSUB 400: PRINT: PRINT
1150 AN$ = "2 . SCRE EN FORMATTER: ": GOSUB 400
1160 AN$ = "controLs text dispLay so that Lines a r e ended between word s i

nstead of in the midd Le of them."
1170 IF COL80 THEN GOSUB 400:AN$ = "It aLso automaticaLLy converts aLL

Lower-case Lette rs to capitaLs when the program is run on an AppLe I
I o r an AppLe II+. "

1180 GOSUB 400 : PRINT: IF COLBO THEN PRINT
1190 AN$ = '~. MENU MAKER: Let s you c r eate unifo rm, friendLy menus in min

utes, instead of days. (A sampLe menu follows .)"
1200 GOSUB 400 : PRINT: PRINT
1210 AN$ = "4. INPUT : is the flashing-underLine curso r routine you Lea rne

d on AppLe Pre sent s • •• APPLE.": GOSUB 400
1220 AN$ = "" : IF AIlE THEN AN$ = "(Pi ck 1 fr om menu.)"
1230 IF CO LBO THEN AN$ = " (To reacquaint yourseLf with this input routi

ne , se Lect option 1 from the menu that foLLows.)
1240 GOSUB 400 : PRINT: PRINT
1250 AN$ = "5 . GET RETURN: wa its fo r you to pr ess RE TURN . It i s waiting

now • .. "
1260 GOSUB 400: PRINT: PRINT
1270 AN$ = "Press RETURN t o conti nue . ": GOSUB 400 : GOSUB 300: REM PRINT P

ROMPT: WAIT FOR A RETURN
1299 REM

Appendix E

1300 REM *** "heLp" SCR EEN ***
1310 HOME
1315 IF CO lBO THEN VTAB 4
1320 AN$ = "A few wo rds about the sampLe menu:"
1330 GOSUB 400 : PRINT : PRINT : PRINT
1340 AN$ = "The foL Lowing menu has six seL ections, onLy two of whi ch actu

aLLy do something . The first seLection shows you a famiLiar exampLe
of the fLashing- cu r sor input routine ; the Last seLection exits the

prog ram ."
1350 GOSUB 400
1360 IF CO l BO THEN AN$ = " The other four se Lect i ons are there to take u

p space on t he menu and in the program , so you can see how a more el
aborat'e program wouLd be st ructured." : GOSUB 400

1370 PRINT : PRINT
1375 IF CO l 80 THEN PRINT
1380 AN$ = "The Menu Make r enabLes you to give a de sc ripti on of each menu

item , so the user needn ' t fi r st wade through pages of "+ CHR$ (34
) + "di r ections" + CHR$ (34) + ":"

1390 GOSUB 400
1400 AN$ = "t o see the description of option 1, type"
1410 GOSUB 400
1420 AN$ = "1? RETURN" : IF AIlE THEN AN$ = "1, then pr ess OPEN-APPLE-?"
1430 GOSUB 400: PRINT: PRINT
1435 IF CGl80 THEN PRINT
1440 AN$ = " ExpLo re the menu , then review the Listings in Appendix E of t

he AppLesoft Tuto r iaL manuaL fo r detaiLs on how to use these routine
s in your own programs ."

1450 GOSUB 400 : PRINT
1460 VTAB 24 :AN$ = "Press RETUR N to go to the menu . ": GOSUB 400: GOSUB 3

00
1499 REM

1500 REM ** SAMPLE MAIN MENU **
1510 REM ** MAIN MENU LOOP **
15 20 TITLE$ = "Magi c /·1enu": REM TITLE OF MENU
1530 SUB TITLE$ = "Ma in ;"enu" : REM TITLE OF MENU OR SUBSECTION OF PROGRAM
1540 FROM$ = '''' : IF PEEK (6) = 99 AND PEEK (ll = 99 THEN FROM$ = "the D

isk Menu" : REM SEE NOTES FOLLOWING LINE 9060 OF DISK MENU PROGRAM
1550 MENU$(l1 "A sampLe of the input rout ine"
1560 MENU$ (2)
1570 MENU$(3)
1580 MENU$(4)
1590 MENU$(5)
1600 MENU$(6) "End the program"
1605 IF PEEK (6) 99 AND PEEK (ll = 99 THEN ~'ENU$(6) = "End the progr

am and return to the Di sk Menu": REM SEE NOTES FOLLOWING LINE 9060 0
F DISK MENU

1610 MENU$(71 = "END": RE M MENU PROGRAM KEEPS DISPLAYING ITEMS UN TIL IT
INDS THE WORD "END"

1620 OAKEY = 1: REM HELP AVAILABLE; OPEN-APPLE KEY WILL BE READ
1630 GOSUB 500
1640 IF OAKEY THEN GOSUB 1810: GO TO 1510 : REM "HELP" ASKED FOR
1645 IF ESKEY THEN GOTO 7000 : REM RETURN TO DISK MENU
1650 AN$ = ""
1660 VTAB Il
1670 ON AN GOSUB 2000,3000, 4000, 5000, 6000, 7000: REM RETURN PRESSED, SO G

o TO THE SELEC TED SECTION
16BO VTAB 24
1685 IF AN < > 1 THEN POKE 36, 0: IF COL80 THEN POKE 1147, 255 : REM THE

SE 2 POKES ARE EQUIVALENT TO HTAB 1, BUT WORK IN EITHER 40 OR 80 COL
UMN MODE

1690 AN$ = "Press RETURN for the menu .": GOSUB 400
1700 GOSUB 300 : REM WAIT FOR RE TURN
1705 IF CO L80 THEN VTAS 22: PRINT: PRINT CHR$ (4) ;" PR#3" : REM OPTION

1 TURNS OFF SO-COL CARD (I F ANY) . THIS TURNS IT BACK ON
1710 GOTO 1510
1720 REM

MAGI C MENU

1800 REM *** GO TO HELP ***
1810 TEXT: HOME VTAB 8
1820 HOLD$ = AN$
1830 ON AN GOSUB 9000,9200,9300,9400,9500, 9600, 9725,9825 , 9925
1850 AN$ = "Press RE TURN to go to the menu . " : GOSUB 400
1860 GO SU B 300 : REM WAIT FOR RETURN
1870 AN$ = HOLD$
1880 RETURN
1890 REM BLAN K LINE S ARE DONE BY PR ESS ING THE DOWN-ARR OW KEY

2000 REM *** INPUT SAMPLE ***
2010 IF NOT AIlE THEN AN$ = "' SORRY , THI S SAMPLE WORK S ONLY ON AN APPLE

lIE COMPUTER . " : VTAB 10: GOSUB 400: PRINT : RETURN
2015 PRINT CHR$ (21) : REM TURN OFF 80 COLUMN MOD E IF IT I S ON. TRY REM

OVING THI S LINE TO SEE EFFE CT ON PROGRAM
2020 HOME :HT = 1: IF PEEK (33) > 40 THEN HT = 21: HTAB HT
2030 PRINT "Correct the answer in the box to read" : GOSUB 400: PRINT
2040 AN$ = "A herd of ca tt le"
2050 II = (PEEK (33) - LEN (AN$» I 2: POKE 36,Il: REM POK E 36,X IS THE

SAME AS HTAB X- 1, EXCEPT IT WORK S WITH EITHER 40 OR 80-COLUMN MODES

2055
2060
2070
2075
2080
2085
2090

2092
2095
2100
2105
21 10

2115
2120

2125
2130
2135
2140
2200
2220
2230
2240

GOSUB 400 : PRINT
POKE 36,Il: PRINT"
HTAB HT : AN$ = "'by doing the following :": GOSUB 400: PRINT: PRINT
HTAB HT + 1

AN$ = "'1. Press left ar row to back up to the" : GOSUB 400 : PR INT
HTAB HT + 4

AN$ = "righ t of the" + CHR$ (34) + "t" + CHR$ (34) + "' in th e wor
d ., + CHR$ (34) + "'l ot " + CHR$ (34) : GOSUB 400: PRINT

PR INT
HTAB HT + 1

ANt = "'2 . Press the DELETE key several times"': GOSUB 400: PR INT
HTAB HT + 4

AN$ = "'t o erase the words" + CHR$ (34) + "'whole lot "' + CHR$ (34):
GOSUB 400: PRINT : PRINT
HTAB HT + 1

AN$ = "'3. Type" + CHR$ (34) + "herd"' + CHR$ (34) : GOSUB 400: PR INT
: PRINT

HTA B HT + 1
AN$ = "'4 . Now press the RETURN key to"': GOSUB 400: PRINT

HTAB HT + 4
AN$ = "'accept the en tir e ans we r"': GOSUB 400: PRINT

REM BOX
HTAB HT +
PRINT"
FOR I =·-n0~TOn-4~:~H~T~A~B-H~T~+~1~:~PR"I~N~T~"'~I----

I"': NEXT: VTAB PEEK (37)
2250 HTAB HT + 2: PRINT "'
2260 VTAB 19 : HTAB HT + 4-------- - --- ------
2270 AN$ = "'Wh at is a "+ CHR$ (34) + "drift"' + CHR$ (34) + "'?"': GOSUB

400: PRINT : PRINT
2280 HTAB HT + 5
2290 PRINT "> "' ;
2300 REM GET INPUT
2310 FL = 30: REM LENGTH OF FIELD
2320 AN$ = "'A whole lot of cattle"': REM THE "default" ANSWER (SUPPLIED B

Y THE PROGRAM - THE USER CAN CHANGE IT)
2330 GOSUB 100: REM INPUT
2335 VT AB 24
2340
2350
2360
3000
3999
4000
4999
5000
5999

IF AN$ = "A herd of catt le"' THEN AN$ = uPerfect! II:

IF AN$ = "A HERD o f cattle"' THEN AN$ = "'Very good!":
RETURN

AN$ = "Sample rout i ne number 2" : GOSUB 400
RETURN

AN$ = "SampLe rout ine numbe r 3"': GOS UB 400
RETURN

AN$ = "Sample routine number 4" : GO SUB 400
RETURN

Appendix E

GOSUB 400
GOSUB 400

6000 AN$ = "SampLe routine number 5": GOSUB 400
6999 RETURN
7000 REM END
7005 PRINT: REM DISK COMMANDS (SEE NEXT LINE) WILL NOT WORK IF THERE IS

AN "OPEN" PRINT COMMAND SUCH AS A "PRINT;" OR "PRINT," . THEREF ORE ,
ALWAYS DO A "PRINT" BEFORE ISSUING A DOS COMMAND

7010 IF PEEK (6) = 99 AND PEEK (7) = 99 THEN PRINT CHR$ (4) ;"RUN DIS
K MENU": END

7020 REM ABOVE LI NE RUNS DISK MENU IF DISK MENU ASKED IT TO. SEE NOTES
FOLLOWING LINE 9060 OF DISK MENU .

7050 TEXT: HOME : TEXT : END : REM CLEAN UP & GO AWAY
9000 REM *HELP SCREENS*
9100 REM
9105 AN$ = "Option 1: the AppLe lIe Input Routine"
9107 VTAB 1
9110 HTAB (PEEK (33) - LEN (AN$» I 2
9115 GOSUB 400: PRINT: PRINT
9117 IF COL80 THEN VTAB 7 : REM A DIFFERENT SPACING LOOKS MORE PLEASING

IN 80-COLUMN MODE
9120 AN$ = "The Apple lIe is equipped with a full ASCII keyboard, includi

ng the DELETE key , a new key for the AppLe II ser i es ." : GOSUB 400
9122 PRINT : IF COL80 THEN PRINT : REM BY COINCIDENCE, THE ABOVE SENTEN

CE, IN 40-COLUMN MODE , IS JUST LONG ENOUGH TO "force" AN EXTRA CARRI
AGE RETURN . SO , TO GET THE EXTRA SPACE IN 8o-COLUMN r~ODE, WE MUST P
RINT ONCE MORE

9125 AN$ = "Using the DELETE key and the flashing-cursor input routine in
eluded within this program , ": GOSUB 400

9130 AN$ = "you can scan forward and backward through your answers , inser
ting and deLeting characters at wi Ll . ": GOSUB 400

9135 AN$ =" The input rout ine automaticaLLy gives the standard AppLesof
t BASIC blinking cu rs or to users of the AppLe II o r II+.": GOSUB 400

9145 PRINT: PRINT
9150 AN$ = "The input routine, aLong with the othe r routine s in MAGI C MEN

U, wilL enabLe you to easi Ly create humanized programs . ": GOSUB 400
9155 GOSUB 400: PRINT: PRINT
9160 AN$ = "Since you are using an AppLe II o r Il+, you cannot take advan

tage of this cursor di rectLy , but using it in your programs wi LL mak
e it eas ier for othe rs . "

9165 IF AIlE THEN AN$ = "SeLect option 1 to reacquaint yourseLf with the

9170
9180
9199

underLine cursor."
GOSUB 400
IF COL80 THEN
RETURN

PRINT: PRINT

9200 AN$ = "Th ere is no description avaiLable for this option.": GOSUB 40
n

9250 PRINT : VTAB 24
9299 RETURN
9300 AN$ = "Th ere is no option avai LabLe for this description.": GOSUB 40

o
9350 PRINT : VTAB 24
9399 RETURN
9400 AN$ = "SampLe help screen for option 4": GOSUB 400
9450 PRINT : VTAB 24
9499 RETURN
9500 AN$ = "SampLe heLp screen for option 5": GOSUB 400
9550 PRINT : VTAB 24
9599 RETURN
9600 AN$ = "Thi s option lets you gracefu lL y exit the program . ": GOSUB 400

9650 PRINT : VTAB 24
9699
10000
63000
63010
63020
63030
63040

RETURN
RETURN
REM *** COMPUTER ID ROUTINE ***
REM *** AIlE OR NOT? ***
REM USES I,J,K,RE -- SETS AIlE TO 1 IF IT I S AN AIlE
REM SETS RESULT DEPENDENT ON AVAILABLE HARDWARE
REM RESULTS OF 0 MEANS NOT AIlE; 32 MEANS AIlE BUT NO

64 MEAN S AIlE WITH 80 COLUMNS BUT NO AUX MEM; 128 MEAN S
UX MEM

MAG I C MENU

80 COLUMNS;
AIlE WITH A

II

63050 DATA 8, 120, 173, 0, 224, 141, 208, 2, 173, 0, 208, 141, 209, 2,
173, 0, 212, 141, 210, 2, 173, 0, 216, 141, 211, 2, 173, 129, 192, 1
73, 129, 192, 173, 179, 25 1, 201 , 6, 208, 73, 173

63060 DATA 23, 192, 48, 60, 173, 19, 192, 48, 39, 173, 22, 192, 48, 34,
160, 42, 190, 162, 3, 185, 0, 0, 150, 0, 153, 162, 3, 136, 208, 242

, 76, 1, 0, 8, 160, 42, 185, 162, 3, 153
63070 DATA 0, 0, 136, 208, 247, 104, 176, 8, 169, 128, 141, 207, 3, 76,

73, 3, 169, 64, 141, 207, 3, 76, 73, 3, 169, 32, 141, 207, 3, 76, 7
3, 3, 169, 0, 141, 207, 3, 173, 0, 224

63080 DAT A 205, 208, 2, 208, 24, 173, 0, 208, 205 , 209, 2, 208, 16, 173
, 0, 212, 205 , 210, 2, 208, 8, 173, 0, 216, 205, 211 , 2, 240, 56, 17
3, 136, 192, 173, 0, 224, 205, 208, 2, 240, 6

63090 DATA 173, 128, 192, 76, 161, 3, 173, 0, 208, 205, 209, 2, 240, 6,
173, 128, 192, 76, 161, 3, 173, 0, 212, 205 , 210, 2, 240, 6, 173, 1

28, 192, 76, 161, 3, 173, 0, 216, 205, 211, 2
63100 DATA 240, 3, 173, 128, 192, 40, 96, 169, 238, 141, 5, 192, 141, 3

, 192, 141, 0, 8, 173, 0, 12, 201, 238, 208, 14, 14, 0, 12, 173, 0,
8, 205 , 0, 12, 208, 3, 56, 176, 1, 24

63110 DATA 141, 4, 192, 141, 2, 192, 76, 29, 3, 234
63120 J = 975 : K = 724
63130 FOR I = 0 TO 249
63140 READ L
63150 POKE K + I,L
63160 NEXT
63170 CALL K
63180 RESULTS = PEEK (J)

63190 IF RE SULT S < > 0 THEN AIlE
63200 RETURN

Appendix E

DISK MENU

DISK MENU was written in two hours flat. In fact , it wasn 't exactly
written: the author used MAG I C MENU to create DI SK MENU. (Soon
you will be able to do the same!)

The process was pretty straightforward . After loading in
MAG I C MENU, the author took out everything no longer needed ,
changed the names of the MENU $ s, and polished off the
submenus. All done.

Explore this program enough to become familiar with it. When
you write your own programs using the MAG I C MENU package,
use DI SK MENU as a foundation. You can still refer to the
MAGI C MENU listing for details, and you'll get the added speed
and reduced size of the compressed DI SK MENU version.

If you compare lines 1 00 to 900 in DISK MENU with the same lines
in MAG I C MENU, you will notice a distinct change. The subroutine
package has been compressed . Most REM statements have been
removed. Any variable name greater than two characters long
has been shortened to a minimum.

Line 1 030 makes the program skip the initial instructions if
DISK MENU has set locations 6 and 7 to 99, meaning it's not the
user's first time through. See the discussion of line 9060 that
follows.

Lines 1 047 to 1 075 are the text of DISK MENU. Because the
Screen Formatter subroutine from MAG I C MENU automatically
straightens out unformatted text, the author didn 't have to be
careful about line breaks when adding these lines. Otherwise,
there is very little new and interesting in DISK MENU . This is
exactly the point of using MAGI C MENU: a functional , useful
program using standard inputs, clear instructions, and friendly
menus was created in an extremely short period of time. It took
more than a month of work to write the subroutine block
package on which this program is based; it takes only a few
hours to grow something out of it.

Line 3060 was actually included because the author wanted to
test whether Menu Maker would handle such a long line
properly.

DISK MENU

Lines 6000 to 6999 are the little routine that simulates the
typing of the CATALOG command. The command is actually
issued in the normal manner by line 6080 . DOS commands can
be executed from within an Applesoft program by printing a
string that consists of aICONTROL} D followed by the DOS
command ; since CHRH4) is the ASCII code for ICONTROL~ D , and
TITLE$ has been set to "CATALOG" in line 6030 , line 6080
produces a CATALOG listing on the screen .

Line 9060 is the key to why the appendix programs all come
back to DISK MENU when they are done. The problem is to
communicate among programs with a flag: if the flag is set (if
DISK MENU has been run) come back ; if not, don 't come back.
One cannot use a standard var iable for a flag between
programs, because all variables are cleared to zero when a
program is run. But many memory locations are not affected by
Applesoft. In this case, the author chose locations 6 and 7 ,
placing the arbitrary number 99 in each of them. The odds of
both locations having 99 in them by chance are only 1 in 65,536
-pretty good odds.

The subroutine package in DISK MENU has been reduced to only
a little over half its MAG I C MENU size, and has been considerably
speeded up in the process. The DOS Programmer's Tool Kit
offers programs that compress your software and enable it, at
the same time, to run at maximum speed . Using such " uti lities
programs" gives you full reign to write code you can read and
understand, while allowing you to end up with a compressed
version that runs at maximum speed .

There are five kinds of utilities programs that are of particular
use to Applesoft programmers :

1. Those that compress programs by taking out REM
statements, by shortening variable names to two characters,
and by combining statements that can be put together.

2. Those that compile, or translate, code into machine language
so it will execute up to 100 times faster.

3. Those that renumber line numbers as well as GOSUB and
GOTO line references. (See the next section for an explanation
of this technique.)

Appendix E

4. Those that allow you to edit program lines more easily than
escape mode does.

5. Those that provide cross referencing, telling you each and
every variable name and where it is used, as well as which
line numbers are called by other line numbers with GOSUB

and GOTO statements.

Renumbering and Merging Program Parts

The exercise in this section uses a program on the DOS 3.3
SYSTEM MASTER disk called RENUMBER. This program was
used by the author of DISK MENU to duplicate the MAG I C MENU

menus so that only the contents of the strings had to be
rewritten. After programming for a while, you will learn to avo id
typing as much as you can ; RENUMBER helps you do just that.

This example, and the longer one that follows in the next
section , is for you to tryout on your computer. Insert the DOS
3.3 SYSTEM MASTER disk into your disk drive if it is not already
there. Then type

RUN RENUMBER

If you are using one disk drive, remove the SYSTEM MASTER
disk and insert the APPLESOFT SAMPLER disk into the drive. If
you are using two drives, the APPLESOFT SAMPLER can be
placed in the second drive. (These instructions will presume you
are using one disk drive. If you are using two, remember to add
the, D2 to the next command.) Type

LOAD DISK MENU

and then , when DI SK MENU is loaded, type

DEL 0,1999
DEL 3000,63999
LIST

You will see that there isn 't much left. Now, to renumber the
portion of 01 SK MENU beginning at line 7000 , type

& 7000
LIST

DISK MENU

The menu is suddenly on new line numbers. RENUMBER does
this. Using the ampersand (&) by itself would renumber the
whole program, starting at line 1 0 and incrementing by 10 .
Using & 7000 renumbers the program beginning at line 7000
and incrementing by 1 O. Now to store it away, type

&H

If you list the program now, you 'll find there isn 't anything
visible: it's on hold. &H tells DOS to hold something in the
computer's main memory so that you can bring in another
program on top of whatever is there. This tool is limited, of
course, by the size of the programs you are working with and
the size of the computer's memory.

Before you merge one program into another, make sure you are
not deleting old lines. Type

LOAD DISK MENU

LIST 7000,7999

You shouldn 't see any listing since those line numbers have not
been used. You can therefore directly proceed to the process
called merging. Type

&M

to merge the new lines into the old program. By changing the
program names to new program names, including the new
name of this submenu in the main menu, and giving the address
of this new menu to the ON ... GOSUB statement in line 1 230 ,
you could index up to 12 more programs on this disk. The
author used this method (RENUMBER, &H, &M) three times to
create the three submenus in the program.

RENUMBER is a very useful program to have in your computer
whenever you are programming. It gives you flexibility. When
you discover a routine getting so long that you can no longer
get the big picture, you can break out subroutines and move
them to other line numbers. RENUMBER overcomes the problem
of having to fit an extra 11 lines in between lines 40 and so : just
move 50 and everything above it somewhere above 500 or 1 000.
That will give you all the room in the world. (See the DOS
Manual for complete instructions for using RENUMBER.)

Appendix E

Program Listing

a REM DISK MENU - SEPT 198 2 - BY TOG

1 GOTO 1000
2 TEXT: PRINT CHR$ (21): HOME: POKE 33,33 : END
100 REM

••• INPUT RO UTINE •••

140 I = 5:J = O:K = O:L = O:M = 0 : 1$ = "":ESC O:OA O: OA$ " ": SA 0:

SA$ = "": IF FL = a THEN FL = 245
142 IF NOT AIlE THEN INPUT "";AN$: RETURN
145 PRINT AN$;:J LEN (AN$)
149 M = PEEK (37)
153 L = PEEK (36): IF COL80 THEN IF L PEEK (1147) THEN L PEEK (14

03)
155 PRINT" ";1$;" ";

160 N = 1: IF L + LEN (J$) > PEEK (3 3) - 3 AND PEEK (37) PE EK (3
5) - 1 THE~ N = 0

165 POKE 36 ,L: POKE 1403,L: VTAB M + 1
170 ! = ! - 1: IF ! < 0 THEN K = 1 - K:! = 5: PR INT CHR~ (32 + 63 * Kl;
175 POKE 36 , L : POKE 1403,L: VTAB n + 1
180 P = PEEK (- 16384): IF P < 128 THEN 170
18 5 IF PEEK (- 16287) > 127 THEN OAKEY 1
190 IF PEEK (- 16286) > 127 THEN SAKEY = 1
195 POKE - 16368 , 0 :K 0 :1 = 0
200 IF OAKEY THEN OA$ CHR$ (P - 128) :AN$ AN$ + 1$: PRINT 1$;" " . RETURN

205 IF SAKEY THEN SA$ CHR$ (P - 128) :AN$ AN$ + 1$: PRINT 1$;" ". RE TURN

2 10 IF P > 159 AND P < > 255 THEN IF J + LEN (1$) < FL THEN IF N THEN
AN$ = AN$ + CHR$ (P - 128) :J = J + 1: PRINT CHR$ (P) ;: GO TO 149

215 IF P < > 255 THEN 240
220 IF J THEN PRINT" ";: POKE 36,L: VTAB M + 1: PRINT CHR$ (136) ;:J

J - 1
225 IF J = a THEN AN$ = ""
230 I F J TH EN AN$ LEF T$ (AN$,J)
235 GOTU 149
240 IF P < > 136 THEN 265
245 IF J THEN PRINT" ";: POKE 36 , L: VTAB M + 1: PRI NT CHR$ (136);:1$

RIGHT$ (AN$,1) + I$:J = J - 1
250 IF J = a THEN AN$ = ""
255 IF J THEN AN$ = LEFT$ (AN$,J)
260 GOTO 149
265 IF P = 141 THEN AN$ = AN$ + 1$: PRINT 1$;" ". RETURN
270 IF P < > 149 THEN 294
275 IF NOT LEN (1$) THEN 149
280 AN$ = AN$ + LEFT$ (1$,1):J = J + 1 : PRI NT LEFT$ (1$,1);
285 IF LEN (1$) = 1 THEN 1$ =
290 IF LEN (1$) THEN 1$ = RIGHT$ (1$, LEN (1$) - 1)
292 GOTO 149
294 IF P = 155 THEN ESCKEY = 1: PRINT: RE TURN
296 GOTU 149
300 REM

•• GET RETURN **

310 IF AIlE THEN 325
315 GET AN$: IF ASC (AN$) < > 13 THEN 315
320 PRINT: RETURN
325 I = O:J = O:K = a
330
335
340

I = I - 1: IF I < a THEN K = 1 - K : I = 5 : PRINT CHR$ (3 2 +
IF I < > 5 THEN 355

L = PEEK (36) : IF CO L80 THEN IF L PEEK (1 147) THEN

03)
345 IF L = 0 THEN POKE 36 , PEEK (33) : VTAB PEEK (37)

Dr SK MENU

63 * K) ;

PEEK (1 4

81

350 IF L < > 0 THEN POKE 36,L - 1
355 P = PEEK (- 16384): IF P < > 141 THEN 330
360 PRINT" ";
365 IF PEEK (37) = 23 THEN VTAB 23
370 PRINT
375 POKE - 16368,0: RETURN
400 REf~

410 I =
411 P =

03)

••• SCREEN FORMATTER •••

LEN (ANS) : IF NOT I THEN RETURN
PEEK (36) : IF COL80 THEN IF P PEEK (1147) THEN P =

IF I > 1 THEN IF ASC (ANS) = 32 THEN ANS

PEE K (14

RIGHTS 412 IF NOT P THEN
(ANS , I - 1)

413 IF P + + I < PEEK (33) AND AIIE THEN PR·INT ANS;" "; :ANS = '''': RETURN

414 IF I > THEN IF RIGHTS (ANS,1) = " " THEN ANS = LEFTS (AN$, I - 1
)

417 IF P + I < PEEK (33) THEN IS = ANS: ANS ''' ': GOTO 440
420 J = PEEK (33) - P + 2: I = J
425 I = I - 1: IF I THEN IF MIDS (ANS, 1,1) < > "" THEfl 425
430 IF = 1 THEN I = J
431 IF I = 0 THEN PRINT: GOTO 410
435 IS = LEFT$ (ANS , ! - 1): IF LEN (ANS) > I THEN ANS RIGHT$ (ANS, LEN

(ANS) - 1)

440 IF AIlE THEN PRINT IS;
445 IF NOT AIlE THEN K LEN (IS) + 1: FOR I = 1 TO LEN (I$):J = ASC

(RIGHTS (1S,K - Il): PRINT CHRS (J - 32. (J > 96 AND J < 123»;: NEXT
I

447 P = PEEK (36) : IF COL80 THEN IF P = PEEK (1147) THEN P =
03)

450 IF LEN
455 IF LEN
460 IF P <

465 RETURN
500 REM

(ANS) THEN IF P <
(AN$) THEN 410
> 0 THEN IF MIDS

••• MENU MAKER •••

> 0 THEN PRINT

(1S, LEN (1S) , 1) < > " " THEN

530 J = O:K = O:JJ O:KK O:LL O: MM O: NN 0:00 O:AN 0
535 00 = OA
540 AN$ = ""
545 I I = 1
550 KK = KK + INT (LEN (MENU$(II» / (27 + 35 • (COL80 = 1»)

PEEK (14

PRINT " "

555 IF II < 12 THEN IF MENU$(II + 1) < > "End" AND MENU$ (II + 1) < >
"end" AND MENU$ (II + 1) < > "END" THEN II = II + 1: GOT a 550

560 LL II
565 NN 0 : IF LL • 2 + KK < 14 THEN NN = 1
570 MM 3: IF COL80 THEN MM = 9
575 JJ 3 + MM : IF LL > 9 THEN JJ = 4 + MM
590 TEXT : HOf1E
595 AN$ = TITLES: GOSUB 400 : POKE 36, PEEK (33) - LEN (SUBTITLE$) - 1:AN

$ = S UBT ITLE$
600 GOSUB 400
605 FOR II = 1 TO PEEK (33): PRINT" ";: NEXT PRINT
615 FOR II = 1 TO LL
620 HTAB MIl: PRINT II;". ";
625 VTAB PEEK (37) : IF COL80 THEN VTAB PEEK (1531)
630 POKE 32, JJ: POKE 33, PEEK (33) - JJ: PRINT
635 AN$ = MENUS(II): GOSUB 400
640 POKE 32 , 0 : POKE 33, PEEK (33) + JJ: PRINT
645 IF NN THEN PRINT
650 NEXT II
655 IF PEEK (37) > 16 THEN PRINT "TOO MANY MENU ITEMS U~ TOO LONG LINE

S.": STOP

Appendix E

660 TEXT: VTAB 17:AN$: "Sele ct option >": GOSUB 400: PRINT
665 FOR II : 1 TO PEEK (33) : PRINT" ";: NEXT
670 IF NOT 00 OR NOT AIlE THEN PRINT
67 5 IF LEN (FROM$) THEN AN$: "For" + FROt'1$ + ". pre ss ESC": GOS UB 400

680 PRINT
685 IF AIlE THEN PRINT "To era se : use the DELETE ke y "
690 AN$: "To select: t ype a number fr om 1 to "+ STR$ (LL)
700 GOS UB 400: PRINT
705 IF NUT UO THEN 720
710 IF AIlE THEN PRINT "For de scripti ons : press UPEN-APPLE-?"
7 15 IF NOT AIlE THEN PRINT "FOR DESCRIPTIONS: FOLLOW ANSWER WITH ?"
720 AN$: "To go t o se l ected i t ern: p re ss RETURN" : GOSUB 400: PRINT
723 IF NOT 00 THEN AN$: "(There are no de sc ripti on s avai lable) ": GU SUB

400
725 FL : 3:ANS : ""
735 REM
740 VTAB 17: HTAB 17: CALL - 868 : HTAB 17
745 IF AILE OR NOT LEN (FROM$) THEN GOS UB 100: GOT O 795
750 : o:J : O:M: PEEK (37) : L PEEK (36): OAKEY : 0
)55 I : I - 1: IF I < 0 THEN K: - K:I : 5:J : 1 - J: NORM AL IF J THEN

INVERSE
760 PRINT" ";: POKE 36,L: VTAB M +
765 p: PEEK (- 16384): IF P < 128 THEN 755
770 NORMAL
775 IF P : 155 THEN POKE - 16368,0:ESCKEY 1: GOTO 795
780 L: PEEK (36): VTAB 20: HTAB 1: CALL - 868: VTAB n + 1 : HT AB L + 1
785 INPUT "" ;ANS
795 VTAB 19
800 IF NOT OAKEY THEN 825
805 IF NOT 00 OR OA$ < > " ? " AND UA$ < > " / " THEN 735
815 JJ: VAL (AN$): IF JJ > 0 AND J J < LL THEN II : JJ: GOTO 880
8 20 IF JJ : 0 THEN PRINT "--> PLEASE SELECT A NUMBER FI RST <--" ; : CALL

- 868: PRINT : ANS : '''': GOTO 735
825 IF SAKEY THEN 735
830 IF ESCKEY THEN IF LEN (FROfl$) THEN 880
835 JJ: VAL (AN$): IF JJ > 0 AND JJ < : LL THEN II : JJ
840 IF LEN (ANS) : 0 THEN 735
845 IF 00 THEN IF NOT AIlE AND (RI GHT$ (AN$,l) : " ? " OR RI GHT$ (ANS ,

1) : "/") THEN IF II > 0 AND II < LL THEN OAKEY: 1: GO TO 880
850 IF LEN (AN$) THEN K : 0 : FOR I : 1 TO LEN (ANS) :J ASC (RI GH T$

(ANS , I)):K: K + (J < > 32 AND (J < 48 OR J > 57)): NEX T I: IF K THE N
PRINT" --> PLEASE USE DIGIT S <--";: CALL - 868 : PR INT : AI,$:

"". GOTO 735
860 IF NOT JJ THEN IF LEN (ANS) THEN K : 0: FOR I 1 TO LEN (AN$) : J

ASC (RIGHTS (AN$,I)):K : K + (J : 48) : NE XT I: IF NOT K THEN PRINT
--> PLEASE USE DIGIT S <--";: CALL - 868 : PR INT :AN$: "" : GO TO

735
870 IF JJ > LL THEN PRINT " --> " ;JJ;" I S TOO LARGE < __ " ; : CALL -

868 : PRINT : AN$: "": GOTO 73 5
875 IF JJ < 1 THEN PRINT " --> 0 I S TOO SMALL < __ "; : CALL - 868 :A

N$: 1111. GOTO 735
880 AN : II: 'TE XT : HOME : RETURN

1000 REM *** MAIN PROGRAM ***
1010 I : O:AN$: "" : J : 0:1$: "":K : 0: REM DECLARE MO ST OFTEN USED VARI

ABLE S FIRST FOR SPEED.
1020 GOSUB 63000: REM FIND OUT IF AILE OR NOT

1021 DIM ME$(20)
1025 IF RE SULTS > 64 THEN COL80 1: PRINT CHR$ (4) ;"PR#3": REM IF A

N 80-COLUMN CARD I S PRE SENT, US E IT. IF YOU DON'T WANT IT, CHAN GE T

HE LINE TO:
1025 PRINT CHR$(2 1)

1030 IF PEEK (6) : 99 AND PEEK (7) 99 THEN 1100: REM SEE NO TES FOLL
OWING 9060

1035 TEX, : HOME : VTAB 2 : PRINT
1040 AN$: ' ~** THE APPLE SO FT SAMPLE R DI SK **~' : POKE 36 , (PEEK (33) - LEN

(AN$)) / 2 : GO SUB 400: PRINT
10 45 VTAB 6 + 3 * (COL80 : 1) : REM START ON LINE 6 UNLE SS CO L80: 1, IN WH

ICH CA SE, START ON LINE 9
1047 AN$: "Feat uring": GOSUB 400

DISK MENU

1050 AN$ = "the coLLection of programs to be studied in conjuction with t

he AppLesoft TutoriaL, with a speciaL appearance by" : GOSUB 400

1060 AN$ = "Postag e Rate s, the exampLe program from the AppLes o ft Referen

ce Manua L.": GOSUB 400 : PR INT : PR INT
1065 AN$ = " The foLLowing" + CHR$ (34) + "main menu" + CHR$ (34) + "

ets you seLect one of severaL" + CHR$ (34) + "sub-menus" + CHR$
34) + " with the names of the programs on this disk .": GOSUB 400

1070 AN$ "You can choose to pick a program from a sub -menu, or you can

eLect to end the" : GOSUB 400
1075 AN$ = "program. ": GOSUB 400
1076 GOSUB 400

1080 PR INT : VTAB 24
1089 AN$ = "Pres s RETURN t o go to the Main Menu." : GOSUB 400: GOSUB 300
1090 REM ** MAIN MENU **
1100 REM ** MAIN MENU LOOP **
1110 TITLE$ = "The AppLesoft SampLer Di s k"
1120 SUBTITLE$ = "Main Menu": REM TITLE OF MENU OR SUBSECTION OF PROGRAM
1130 MENU$(1) "ExampLe Programs from The AppLe soft TutoriaL"
1140 MENU$(2) "Tut o riaL Appendix E : More Programs To PLay With"
1150 MENU$(3) "Pos tage Rates -- From The AppLesoft Reference ManuaL"
1180 MENU$(4) "End the program (This op tion wi LL type CATALOG f o r you a

nd wi LL Leave you in AppLesoft.)"

1190 MENU$(5) = "END": REM MENU PROGRAM KEEPS DISPLAYING ITEMS UNTIL IT

INDS THE WORD "end"
1195 OAKEY = 0 : REM HELP NOT AVAILABLE; OPEN-APPLE KEY WILL NOT BE READ
1197 FROM$ = ''''
1200 GOSUB 500
1215 AN$ = ""
1225 VTAB 8
1230 ON AN GOSUB 2000,3000,4000,6000: REM RE TURN PRESSED, SO GO TO THE S

ELECTED SEC TION
1240 GOT a 1100
1250 REM

1999 REM BLANK LINE S ARE DONE BY PRESSING THE DOWN-ARR OW KEY

2000 REM *** EXAMPLES ***
2010 REM

2020 TITLE$ = "AppLesoft Tut o riaL"

2030 SUBTITLE$ = "ExampLe s"

2040 MENU$(1) "COLORLOOP"
2045 MENU$(2) "HUE"
2046 MENU$(3) "QUILT"
2047 MENU$(4) "SPACES"
2048 MENU$(5) "COLORBOUNCE"
2049 MENU$(6) "RANDOM"
2050 MENU$ (7) "HORSES"
2051 MENU$(8) "MOIRE"
2100 MENU$ (9) "ALPHABET"
2110 MENU$(10) "DECIMAL"
2120 MENU$(11) = "COLORBOUN CESOUND"
2140 MENU$(12) = "Return to Main Menu"
2160 FROM$ = "Main Menu":AN$ = "":OAKEY 0 : GOSUB 500
2170 IF ESCKEY THEN RETURN

2180 IF AN 12 THEN RETURN
2190 TITLE$ = MENU$(AN) : REM STORE NAME OF SELECTION FOR USE BY EACH ROUT

INE
2195 PRINT CHR$ (21)

2200 GOTO 9000

2210 GOTO 2000
2 220 REM

3000 REM TUTOR EXAMPLE S ***
3010 REM

Appendix E

3020 TITLE$ = "AppLesoft TutoriaL"
3030 SUBTITLE$ = "SampLes"
3040 MENU$(1) "SCRAMBLER"
3050 MENU$(2) = "MAGIC MENU"
3060 MENU$(3) = "DISK MENU (Which is this very program -- seLecting it wi

LL onLy resuLt in a Long wait foLLowed by the program sta rting over .
It is incLuded here because it i s included in Appendi x E.)"

3070 IF NOT COL80 THEN MENU$(2) = MENU$(2) + CHR$ (10) :MENU$ (3) = MENU
$(3) + CHR$ (10): REM CHR$(10) I S DOWN-ARROW: ADDING DOWN-ARROWS WI
LL ADD SPACES ABOVE AND BELOW MENU OPTION 3

3080 REM IN 80 COLUMN MODE , THERE IS ENOUGH ROOM THAT THE MENU MAKER ROU
TINE WILL ADD SP ACES AUTOMATICALLY , SO WE DO IT ONLY IF THE COMPUTER

IS NOT IN 80- COLUMN MODE
3090 MENU$ (4) "C ONVERTER"
3100 MENU$(5) = "Return t o Ma in Menu"
3110 MENU$(6) = "end"
3120 FROM$ = "Ma i n Menu" : AN$ = ''' ' : OAKEY 0 : GOSUB 500
3130 IF ESCKEY THEN RETURN
3140 IF AN = 5 THEN RETURN
3150 IF AN = 1 AND NOT AIlE THEN HOME: VTAB 10: PRINT " SORRY , SCRA MBL

ER CAN ONLY BE": PRINT "PLAYED ON AN APPLE IlE . " : VTAB 24: PRINT "PR
ESS RETURN TO GO BACK TO THE MENU . ";: GOSUB 300: GOTO 3000: REM "pa
t ch"

3160 TITLE$ MENU$(AN): REM STOR E NAME OF SE LECTION FOR USE BY EACH ROUT
INE

3165 IF AN 2 THEN TITLE$ = "MAGIC MENU": REM A DOWN-ARROW MAY HAVE BEE
N APPENDED IN LINE 3070

3170 IF AN = 3 THEN TITLE$ = "DISK MENU": RE~' A "PATCH" TO THE PROGRAM:
MENU$(3) HA S AN EXTRA DESCRIPTION

3180 GOTO 9000
3190 REM

4000 REM *** REFERENCE MAN ***
4010 REM

4020 TITLE$ = "AppLesoft Tut oriaL"
4030 SUBTITLE$ = "ExampLe"
4040 MENU$(1) "POSTAGE RATES"
4060 MENU$(2) = "Return to Main Menu"
4070 MENU$(3) = "end"
4080 FROM$ = "Main Menu " :AN$ = "" :OAKEY 0: GOSUB 500
4090 IF ESCKEY THEN RETURN
4100 IF AN 2 THEN RETURN
4110 TITLE$ = MENU$ (AN) : REM STOR E NAME OF SE LE CTION FOR USE BY EACH ROUT

INE
4120 GOTO 9000
4140 REM

5999 RETURN
6000 REM *** CATALOG ***
6010 HOME
6020 VTAB 10
6025 PRINT "J" ;
6030 TITLE$ = "CATALOG"
6040 FOR I = 1 TO LEN (TITLE$)
6050 PRINT MID$ (TITLE$, I , 1);
6055 K = PEEK (- 16336) + PEEK (- 16336)
6060 FOR J = 1 TO 400 * RND (1) : NEXT
6070 NEXT I
6072 POKE 6, 0: POKE 7, 0: REM SEE NOTES FOLLOWING 9060
6075 PRINT
6080 PRINT CHR$ (4);TITLE$
6999 END

DISK MENU II

9000 REM *** GO TO DI SK ***
9060 POKE 6, 99: POKE 7, 99 : REM LET THE PR OG RAMS FROM APPENDIX E KNOW THA

T THE Y CAN RETURN TO THI S PR OGRAM . US UALL Y, YOU USE A VARIA BLE TO "
TURN ON" OR "TURN OFF" AN OPTI ON

906 1 REM BUT VARIABLE S ARE ALL CLE AR ED BETWEE N PROGRAMS . LOCATIONS 6 &
7 ARE NOT AFFE CTED BY AP PLESO FT, SO THE AUTHOR CHOSE THEM AS A WAY T
o COMMUNI CATE

907 5 PR INT
9080 PR I NT CHRS (4) ;" RUN " ; TITLES
9090

63000
63010
63020
63030
63040

END
REM *** COMPUTER 10 ***
REM ••• AIlE OR NOT? • ••
REM USES I , J , K, RE - - SETS AIlE TO 1 IF IT I S AN AIl E
RE M SETS RESULT DEPENDENT ON AVAILABLE HARDWARE
REM RESU LT S OF a MEAN S NO T A lI E; 32 MEANS AIlE BUT NO 80 COLUMNS ;

64 ME ANS AIlE WIT H 80 CO LUM NS BUT NO AU X MEM; 128 MEAN S AIlE WITH A
UX MEM

63050 DA TA 8, 120, 173, 0, 224, 141 , 208, 2, 173, 0, 208, 141, 209, 2,
173, 0, 212, 141, 210, 2, 173, 0, 216, 141 , 211, 2, 173, 129, 192, 1
73, 129, 192, 173 , 179 , 251 , 20 1, 6, 208, 73, 173

63060 DATA 23, 192, 48, 60, 173, 19, 192, 48 , 39 , 173, 22 , 192, 48 , 34,
160, 42, 190, 162, 3, 185 , 0, 0, 150, 0, 153, 162, 3, 136, 208 , 242

, 76 , 1, 0, 8, 160, 42, 185 , 162, 3, 153
63070 DATA 0, 0, 136, 208, 247, 104, 176, 8, 169 , 128, 141, 207 , 3, 76,

73, 3, 169, 64, 141, 207, 3, 76, 73, 3, 169, 32, 141, 207, 3, 76, 7
3, 3, 169, 0, 141, 207, 3, 173, 0, 22 4

63080 DATA 205 , 208 , 2, 208, 24, 173, 0, 208, 205 , 209, 2, 208, 16, 173
, 0, 212, 205 , 210, 2, 208, 8, 173, 0, 216, 205 , 211, 2, 240, 56, 17
3, 136 , 192, 173 , 0, 224, 205 , 208, 2, 240, 6

63090 DATA 173, 128 , 192, 76, 161, 3, 173, 0, 208, 205, 209, 2, 240, 6,
173, 128, 192, 76, 161 , 3, 173, 0, 212, 205 , 210, 2, 240, 6, 173,

28, 192, 76, 161, 3, 173, 0, 216, 205 , 21 1, 2
63100 DATA 240, 3, 173, 128, 192, 40, 96 , 169, 238, 141 , 5, 192, 141 , 3

, 192, 141 , 0, 8, 173, 0, 12, 201 , 238, 208 , 14 , 14, 0, 12, 173, 0,
8, 205 , 0, 12, 208 , 3, 56, 176, 1, 24

63110 DATA 141 , 4, 192, 141, 2, 192, 76, 29, 3, 234
63120 J = 975 : K = 724
63130 fOR I = 0 TO 249
63140 READ L
63150 POKE K + I , L
63160 NEXT
63170 CA LL K
63180 RES ULT S PEEK (J)
63190 I F RESU LT S < > 0 T HE ~ AIl E
63200 RETURN

Appendix E

CONVERTER

CONVERTER stands on its own. It is based on the now-familiar
subroutine package. It was derived from MAG I C MENU , and lies in
wait for you to add the sorts of conversions you might find
useful. It can provide the most valuable sort of programming
experience : working intimately with a program written by
experts.

When you add to CONVERTER , make good use of the RENUMBER
program. Many conversions are done in very much the same
way : only the text changes. Dupl icate the lines and change the
words.

Line 11145 is special: it is an example of the kind of care that
can and should go into programming. Creating humanized
programs that neither make fools of nor appear foolish to users
is a strong , exciting challenge.

Program Listing

a REM CONVERTER - SEPT , 1982 - SG & TOG
1 GOTO 2000
2 TE XT: PRINT CHRS (21) : HOME: POKE 33, 33 : END
100 REM

*** INPUT ROUTINE ***

140 I = 5:J = O:K = O:L = 0:r·1 = 0 : 1$ = :ESC = O: OA = O: OA$ = : SA = 0 :
SA$ = : IF FL = a THEN FL = 245

142 IF NOT AIlE THEN INPUT ; AN$: RETURN
145 PRINT AN$;:J = LEN (AN$)
149 f1 = PEEK (37)
153 L = PEEK (36): IF CO L80 THEN IF L = PEEK (1 147) THEN L = PEEK (14

03)
155 PR INT" ";1$;" ";
160 N = 1: If L + LEN (I$) > = PEEK (33) - 3 AN D PEE K (37) = PEEK (3

5) - 1 THEH N = 0
165 POKE 36 , L : POKE 1403,L : VTAS f; + 1
170 I = I - 1: If I < 0 THEN K = 1 - K: I = 5: PRIm (HRS (32 + 63 * K) ;

1 75 POK E 36,L: POKE 1403,L: VTAR M + 1

180 P = PEEK (- 16384) : IF P < 128 THEN 170
185 IF PEEK (- 16287) > 127 THEN OAKEY = 1
190 IF PEEK (- 16286) > 1 27 THEN SAKEY = 1
195 POKE - 16368, 0:K = 0 : 1 = a
200 I F OAKEY THEN OAS CHR$ (P - 128): Ar~$ = AN$ + 1$: PRItH 1$;" ". ~E T UR r~

205 IF SAKEY THEN SA$ = CHR$ (P - 128) :AtJ$ = AN$ + 1$: PR I I.T IS;" '" RE TU RtJ

2 10 IF P > 159 AND P < > 255 THEN IF J + LEN (1$) < FL TH EN I F N TH EN
AN$ = AN$ + CHR$ (P - 128) :J = J + 1: PR INT CHll$ (P) ;: GOT O 149

215 IF P < > 255 THEN 240
220 IF J THEN PRINT" ";: POKE 36 ,L: VTAS M + 1: PRINT CHR$ (136) ;: J =

J - 1
225 IF J = a THEN AN$ =
230 IF J THEN AN$ = LEFT$ (AN$, J)
235 GOTO 149

CONVERTER

240 IF P < > 136 THEN 265
245 IF J THEN PRINT" ";: POKE 36, L: VTAS r1 + 1: PRINT CHR$ (1 36) ;:1$

RIGHT$ (AN$, 1) + I$: J = J - 1
250 IF J = 0 THEN AN$ = ""
255 IF J THEN AN$ = LEFTS (AN$, J)
260 GOTO 149
265 IF P = 141 THEN AN$ = AN$ + 1$: PRINT 1$;" " : RETURN
270 IF P < > 149 THEN 294
275 IF NOT LEN (IS) THEN 149
280 AN$ = ANS + LEFTS (IS , 1):J = J + 1 : PRINT LEFT$ (1$,1);
285 IF LEN (1$) = 1 THEN 1$ =
290 IF LEN (IS) THE~ 1$ = RIGHT$ (1$, LEN (1$) - 1)
292 GO TO 149
294 IF P = 155 THEN ESCKEY = 1: PRINT: RETURN
296 GOTO 149
300 REr1

** GET RETURN **

IF AIlE THEN 325
GET AN$: IF ASC (ANS) < > 13 THEN 315
PRINT : RETURN

I = O:J = O:K = 0

310
315
320
325
330
335
340

I = I - 1 : IF I < 0 THEN K = 1 - K:I = 5: PRINT CHR$ (32 + 63 * K);
IF I < > 5 THEN 355

345
350
355
360
365
370
375
400

L = PEEK (36) : IF COL80 THEN IF L PEEK (1147) THEN L PEEK (14
03)
IF L = 0 THEN POKE 36, PEEK (33) : VTAS PEEK (37)
IF L < > 0 THEN POKE 36,L - 1

P = PEEK (- 16384): IF P < > 141 THEN 330
PRINT" ";
IF PEEK (37) = 23 THEN VTAS 23
PRINT
POKE - 16368,0: RETURN
REM

*** SCREEN FORMATTER ***

410 I = LEN (AN$): IF NOT I THEN RETURN
411 P = PEEK (36): IF COL80 THEN IF P PEEK (1147) THEN P = PEEK (14

03)
41 2 IF NOT P THEN IF I > 1 THEN IF ASC (AN$) = 32 THEN AN$ RIGHTS

(ANS,I - 1)
413 IF P + + I < PEEK (33) AND AIlE THEN PRINT ANS;" "; :ANS = '''': RETURN

414 IF I > THEN IF RIGHT$ (ANS,1) = " " THEN ANS = LEFTS (AN$,I - 1
)

417
420
425
430
431
435

440
445

447

450
455
460

465
500

IF P + < PEEK (33) THEN 1$ = ANS: MIS "": GOTO 440
J = PEEK (33) - P + 2: 1 = J
I = I - 1: IF I THEN IF MIDS (AN$,I,1) < >"" THEN 425

IF = 1 THEN I = J
IF = 0 THEN PRINT: GOTO 410

IS = LEFT$ (ANS,I - 1) : IF LEN (AN$) > I THEN ANS
(AN$) - Il

RIGHTS (ANS, LEN

IF AIlE THEN PRINT 1$;
IF NOT AIlE THEN K LEN (IS) + 1: FOR I = 1 TO LEN (I$):J = ASC
(RIGHT$ (I$,K - Il) : PRINT CHR$ (J - 32 * (J > 96 AND J < 123»;: NEXT
I

P = PEEK (36): IF COL80 THEN IF P = PEEK (1147) THE~ P = PEEK (14
03)
IF LEN (ANS) THEN IF P < > 0 THEN PRINT
IF LEN (ANS) THEN 410
IF P < > 0 THEN IF MID$ (1$, LEN (1$),1) < > " " THEN PR INT" "

RETURN
REM

*** MENU MAKER ***

Appendix E

530

535
540

545
550
555

560
565
570
575
590
595

600
605
615
620
625
630
635
640
645
650
655

660
665
670
675

680
685
690
700
705
710
715
720
723

J = O:K = O:JJ O:KK O: LL O:MM O:NN 0:00 O:AN 0

00 = OA
AN$ = ""
II = 1
KK = KK + INT (LEN (MENU$(II» / (27 + 35 * (COL80 = 1»)

IF II < 12 THEN IF ~'ENU$(Il + 1) < > "End" AND r1ENU$(II + 1) < >
"end" AND MENU$ (II + 1) < > "END" THEN II = II + 1: GOTD 550

LL II
NN 0: IF LL * 2 + KK < 14 THEN NN = 1
MM 3 : IF COL80 THEN ~IM = 9
JJ 3 + MM: IF LL > 9 THEN JJ = 4 + MM

TEXT : HOfiE
AN$ = TITLE$: GOSUB 400: POKE 36, PEEK (33) - LEN (SUBTITLE$) - 1:AN

$ = SUBT ITLE$
GOSUB 400
FOR II = 1 TO PEEK (33): PRINT
FOR I I = 1 TO LL
HTAB riM: PRINT II;". ";

" II ••

'" NEXT PRINT

VTAB PEEK (37): IF COL80 THEN VTAd PEEK (15311
POKE 32 ,J J: POKE 33, PEEK (331 - JJ : PRINT

AN$ = MENU$(III: GOSUB 400
POKE 32 , 0: POKE 33, PEEK (331 + JJ : PR INT
IF NN THEN PRINT
NEXT II
IF PEEK (37) > 16 THEN PRINT "TOO MANY ~IENU ITEMS OR TOO LONG LINE
S. ": STOP
TEXT: VTAB 17:AN$ = "Select option >": GOSUB 400: PRINT
FOR II = 1 TO PEEK (331: PRINT" ";: NEXT
IF NOT 00 OR NOT AILE THEN PRINT
IF LEN IFROM$) THEN AN$ = "For " + FROm + ": press ESC": GOSUB 400

PRINT
IF AIlE THEN PRINT "To erase: use the DELETE key"

AN$ = "To se Lect : type a number from 1 to "+ STR$ (LL)
GOSUB 400: PRINT
IF NOT 00 THEN 720
IF AIlE THEN PRINT "For descriptions: press OPEN-APPLE-?"
IF NOT AIlE THEN PRINT "F OR DESCRIPTIONS: FOLLOW ANSWEII WITH ? "

AN$ = "To go to seLected item: p re ss RETURN" : GOSUB 400: PRI IH
IF NOT 00 THEN AN$ = "(There are no descriptions availabLe)": GOSUB
400

725 FL = 3 : AN$ = ""
735 REM
740 VTAB 17: HTAB 17: CALL - 868: HTAB 17
745 IF AILE OR NOT LEN (FROM$) THEN GOSUB 100: GOTO 795
750 = O:J = O:M PEEK (371:L PEEK (361:0AKEY = 0
755 I = I - 1: IF I < 0 THEN K = - K:I = 5:J = 1 - J: NORMAL IF J THEN

INVERSE
760 PRINT" ";: POKE 36,L: VTAB fl +
765 P = PEEK (- 16384): IF P < 128 THEN 755
770 NORMAL
775 IF P = 155 THEN POKE - 16368, 0 : ESCKEY 1: GOTO 795
780 L = PEEK (36) : VTAB 20 : HTAB 1 : CALL - 868: VTAB M + 1 : HTAB L + 1
785 INPUT "";AN$
795 VTAB 19
800 IF NOT OAKEY THEN 825
805 IF NOT 00 OR OA$ < > " ? " AND llA$ < >" /" THEN 735
815 JJ = VAL (AN$I: IF JJ > 0 AND JJ < = LL THEN II = JJ: GOTO 880
820 IF J J = 0 THEN PRINT "--> PLEA SE SELECT A NUMBER FIRST <--" ;: CALL

- 868 : PRINT : AN$ = "": GO TO 735
825 IF SAKEY THEN 735
830 IF ESCKEY THEil IF LEN (FROM$) THEil 880
835 JJ = VAL (AN$): IF JJ > 0 AND JJ < LL THEN II = JJ
840 IF LEN (AN$) = 0 THEN 735
845 IF 00 THEN IF NOT AIlE AND (RIGHT$ (AN$, 1) = "?" OR RIGHT$ (AN$,

1) = "/") THEN IF II > 0 AND II < LL THEN OAKEY = 1 : GOTO 880
850 IF LEN (AN$) THEN K = 0 : FOR I = 1 TO LEN (AN$):J ASC (RIGHT$

(AN$,I): K = K + (J < > 32 AND (J < 48 OR J > 57) : NEXT I: IF K THEN
PRINT" --> PLEASE USE DIGITS <--";: CALL - 868 : PRINT :AN$ =

"": GOTO 735

CONVERTER II

II

860 IF NOT JJ THEN IF LEN (AN$) THEN K = 0: FOR I = 1 TO LEN (ANS) :J
ASC (RIGHTS (AN$,I)):K = K + (J = 48): NEXT I: IF NOT K THEN PRINT

--> PLEASE US E DIGITS <- -" ; : CALL 868: PRINT :AN$ = "": GOTO
735

870 IF JJ > LL THEN
863 : PRINT : ANS

PRINT" --> ";JJ;" I S TOO LARGE <--";: CALL

875

880
1000
1010
1100
1110

= "" : GOTO 735
IF JJ < 1 THEN PRINT" --> 0 I S TOO SMALL <--" ; : CALL
NS = "": GOTu 735

AN = II: TE XT : HOME : RE TURN
REM *** SUBROUTINES ***
REM SOME SPEC I AL ROUTINES FOR THIS PROGRAM
REM Y OR N?
REM PUT NAME OF CALLING ROUTINE IN AN$

1120 REM UPON RETURN, AN WILL BE 1 IF YES , 0 IF NO
11 30 REM USES AN, AN$, I, 11$
1135 PRINT

- 868:A

1140 lI$ = " Do you want to do another" + AN$ + " conversion? (Y OR N) "
1145 HTAB 1: VTAB 22 : CALL - 958 : AN$ = 11$: GOS UB 400:FL = 2: GOSUB 100

1150 I = 0: IF LEN (AN$) THEN
< > ASC ("y ") AND I < >

45
115 5 IF NOT I THEN 1145

ASC (AN$) : IF I <
ASC ("N") AND I < >

> ASC ("y") AND I
ASC ("n") THEN 11

1160 AN = 0: IF I = ASC (" y") OR ASC ("Y") THEN AN
1170 RETURN
2000 REM *** BEGIN PR OGR AM ***
2010 REM THE CONVERTER - A PROGRAM SK ELETON USED FO R MEASUREMENT CONVERS

IONS - 1982
2020 GOSUB 63000 : REM SET AILE TO TRUE (1) OR FAL SE (0)
2025 IF RESULTS> 64 THEN CO L80 = 1: PRINT CHR$ (4) ;" PR#3": REM IF

N 80-COLUMN CARD IS PRESENT, USE IT . IF YOU DON'T WANT IT, CHANGE T
HE LINE TO:

1025 PRINT CHR$(21)

2030 TE XT: PRINT : HOME
2040 1= O: AN$ = '''' : J = 0 : 1$ = "" : K = 0
2050 DIM MENU$(1 2)
2070 AN$ = "*** Converte r ***" : POKE 36, (PEEK (33) - LEN (AN$» I 2: GOSUB

400 : PRINT : REM CENTER TITLE
2080 PR INT : PR INT : IF COL80 THEN VT AB 6
2090 AN$ = "Converter i s a program to conve rt"
2095 GOSUB 400
2100 AN$ "mea surement s fr om one form t o anot he r , " : GOSUB 400
2110 AN$ = " s uch as kilometers to mi Le s .": GOSUB 400: PRINT: PRINT
2120 AN$ = "The prog ram i s structu r ed to provide hundreds of conversions ,

bu t it i s now in ske Leton form": GOSUB 400
2130 AN$ = "-- that is, onLy a few sampLe conve r sions are provided . The

i ntent": GOSUB 400
2140 AN$ = "i s for you to Lea rn , through studying the program Listings an

d the given sampLes , how to aL t er the program": GOSUB 400
2150 AN$ = "to prov i de you the conversions you wi LL find usefuL . ": GOSUB

400: PRINT : PRINT
2160 AN$ = "Through this Learning process , you wi LL gain insight into aLt

e ring other programs to suit you r needs.": GOSUB 400
2220
2230
2240
2250
2260

PRINT
VTAB 23

AN$ = "Press RETURN to continue . ": GOSUB 400 : GOSUB 300
HOME
REM

2270 REM *** MAIN MEN U ***
2280 TITLE$ = "Converter" : SUBTIT LE$ = "Main Menu"
2285 FROM$ = "": IF PEEK (6) = 99 AND PEE K (7) = 99 THEN FROM$ = "the 0

isk Menu": REM SEE NOTES FOLLOWING LINE 9060 IN THE DISK MENU PROGRAM
2290 MENU$ (1) "LINEAR MEASURES"
2300 MENU$(2) "TEMPERATURE MEASURES"
2310 MENU$(3) "SPEED MEASURES"
2320 MENU$(~i
2330 MENU$(5)
2340 MENU$(6)

Appendix E

2350 MENU$(7)
2360 MENU$ (8)
2370 MENU$(9)
2380 MENU$ (1OJ
2390 ~'ENU$(11) = ""
2400 MENU$(12) = "End th e program"
2405 IF LEN (FROM$) THEN MENU$ (12)
2410 REM

AN$ =
OAKEY = 0: REM NO HELP AVA I LABLE

GOSUB 500: REM DO MENU

"End program and go t o Di sk Menu"

2430
2440
2450
2455 IF ESCKEY THEN GOTO 22000: REM SEE NOTE S FOLLOWING LINE 9060 IN TH

E DISK MENU PROGRAM
2460 ON AN GOSUB 11000, 12000,13020,14000,15000,16000,1 7000,1 8000,19000, 2

0000, 21000, 22000
2470
10999

GOT O 2270
REM

11000 REM *** LINEAR MEASURE
11001 REM

11002 'TITLE$ = "Conversi ons"
11005 SUBTITLE$ = "Change linear measure"
11010 MENU$(1) "Kilometers t o Mi les"
11020 MENU$(2) "Miles to Kilometers "
11030 MENU$(3) "Return to Ma;n Menu"
11035 MENU$(4) "end"
11040 FROM$ = "Main Menu" : AN$ = "":OAKEY 0: GOSIJB 500
11050 IF ESCKEY THEN RETURN
11060 IF AN 3 THEN RETURN
11065 TITLE$ = MENU$ (AN): REM STO RE NAME OF SELECTION FOR US E BY EACH ROU

TINE
11070 ON AN GOSUB 11100, 11200
11080 GOTO 11000
11099 REM

11100 REM ** KILOMETER S --) MILE S
11110 TEXT: HOME: PRINT : AN$ = "C onvert Ki lome ter s t o Mi les" : GOS UB 40

0: PRINT : REM FUNCTION TITLE
11120 VTAB 10 : AN$ = "Enter number of kilometers ": GO SUB 400 :AN$ = "":FL

= 10: GOSUB 100
11130 AN =

11110:
11140 MILE
11145 1$

VAL (AN$): IF AN = 0 AND AN$ <) "0" THEN PRINT CHR$ (7) : GO TO
REM ONLY NUMBER S ALLOWED

AN * .62137
" mi le": IF INT (MILE * 10000) / 10000 <) 1 THEN 1$ " m; l

es"
11146 J$ "kilomet e r": IF AN <) THEN J$ =" ki lomet e r s
11150 PRINT :AN$ = STR$ (AN) + J$ + " = "+ STR$ (flILE) + 1$: GOS UB 40

o
11160 AN$ = TITLE$: GOSUB 1100
11170 IF AN THEN 11100
11190 RETURN
11199 REM

11200 REM ** MIL ES --) KILOMETER S
11210 TEXT: HOME : PRINT : AN$ = "Convert Mile s t o Kil ome te r s": GOS UB 40

0: PRINT: REM FUNCTION TITLE
11220 VTAB 10 : AN$ = "Enter number of mi l es ": GOSUB 400:AN$ = "":FL = 10

: GOSUB 100
11 230 AN = VAL (AN$) : IF AN = 0 AND AN$ <) "0" THEN PRINT CHR$ (7) : GOTO

11210 : REM ONLY NUMBER S ALLOWED
11240 KIL O AN / . 62137
11245 1$ = " m; le " : IF AN <) 1 THEN 1$ = " mi les "
11 246 J$ = " ki lome t e r": IF INT (KILO * 10000) / 10000 <) 1 THEN J$

" ki Lometer s"
11 250 PRINT :AN$ = STR$ (AN) + 1$ + " = "+ STR$ (KIL O) + J$: GOSUB 40

o
11 260 AN$ = TITLE$: GOS UB 1100

CONVERTER •

11270
11280
11 290

IF AN THEN 11200
RETURN
REM

11300 RETURN: REM PROGRAMMER TO CREATE CONVERSION ROUTINE HERE

12000 REM * •• lEMPERATURE ***
12010 REM

12020 TITLE$ = "Conversions"
12030 SUBTITLE$ = "Change temperature measure"
12040 MENU$ (1) "Fahrenheit to Celsius"
12050 MENU$(2) "Celsius to Fahrenheit "
1 2060 MENU$(3) "Return to Main Menu"
12070 MENU$ (4) " end"
12080 FROM$ = "Main Menu" :AN$ = "":OAKEY 0 : GOSUB 500
12090 IF ESCKEY THEN RETURN
12100 IF AN 3 THEN RETURN
12110 TITLE$ = MENU$(AN): REM STORE NAME OF SELECTION FOR USE BY EACH ROU

TINE
12120 ON AN GOSUB 12200,12400
12130 GOTO 12000
1 2140 REM

12200 REM ** FAHRENHEIT --) CELS IUS
12210 TEXT: HOME: PRINT :AN$ = "Convert Fahrenheit to CeLsius": GOSUB

400: PR INT: REM FUNCTION TITLE
12220 VTAB 10:AN$ = "Enter degrees Fa hrenheit ": GOSUB 400:AN$ = '''' :FL =

10: GOSUB 100
12230 AN = VAL (AN$): IF AN = 0 AND AN$ < > "0" THEN PRINT CHR$ (7) : GOTO

12210: REM ONLY NUMBERS ALLOWED

12235 IF AN < - 459 . 6 THEN PRINT :AN$ "One cannot have a temperature
below Absolute 0 (- 459 . 6 degrees Fahrenheit)": GOSUB 400: GOTO 1248

o
12240 CEL = (AN - 32) I 1.8
122501$ =" degree": IF INT (CEL * 10000) 110000 < > 1 THEN 1$ "de

9 rees"
12260 J$ = " degree": IF AN <
12270 PRINT :AN$ = STR$ (AN)

+ " Celsius" : GOSUB 400
AN$ = ~ITLE$: GOSUB 1100

IF AN THEN 12200
12280
12290
12300
1 23 10

RETURN
REM

) 1 THEN J$ = " degrees"
+ J$ + " Fahrenheit = " +

12400 REM ** CE LSIUS - -) FAHRENHEIT

STR$ (CEll + 1$

1 24 10 TEXT: HOME : PRINT :AN$ = "Convert Celsius to Fahrenheit ": GOSUB
400: PRINT: REM FUNCTION TITLE

1 2420 VTAB 10:AN$ = "Enter degrees Celsius" : GOSUB 400:AN$ = "":FL = 10:
GOSUB 100

12430 AN = VAL (AN$): IF AN = 0 AND AN$ < > "0" THEN PRINT CHR$ (7): GOTO
1 24 10: REM ONLY NUMBERS ALLOWED

12435 IF AN < - 273 .1 THEN PRINT :AN$ "One cannot have a temperature
below Absolute 0 (-273 .1 degree s CeLsius)": GOSUB 400: GOTO 12480

12440 FAHR AN * 1. 8 + 32
12450 1$ = " degree": IF AN < > 1 THEN 1$ = " degrees"
1 2460 J$ = " deg ree": IF INT (FAHR * 10000) 10000 < > 1 THEN J$ = " d

egrees ll

1 2470 PRINT :AN$ = STR$ (AN) + 1$ + " Celsius = "+ STR$ (FAHR) + J$ +
" Fahrenheit": GOSUB 400

12480 AN$ = TITLE$: GOSUB 1100
12490 IF AN THEN 12400
12500 RETURN
12510 REM

12600 RETURN: REM PROGRAMMER TO CREATE KELVIN CONVERS ION ROUTINE HERE

13000 REM *** SPEED ***
13010 REM

CONVERTER

-

13020 T ITLE$ = "Conve rs ions"

13030 SUBT ITLE$ = "Change speed measure"

13040 MENU$(1) "Ki Lometers/hour to mi Les/hour"

13050 MENU$(2) "MiLes/hour to kiLometers/hour
13060 MENU$(3) "Return to Main Menu"
13070 MENU$(4) "end"
13080 FROM$ = "Main Menu":AN$ = "" : OAKEY 0: GOSUB 500

13090 IF ESCKEY THEN RETURN
13100 IF AN 3 THEN RETURN
13110 TITLE$ = MENU$(AN): REM STORE NAME OF SELECTION FOR USE BY EACH ROU

TINE

13120 ON AN GOSUB 13200,13400
13130 GOTO 13000
13140 REM

13200 REM ** KILO/HR --> MILES/HR
13210 TEXT: HOME : PRINT : AN$ = "Convert Kilometers per hour t o Miles p

er hour": GOSUB 400 : PRINT: REM FUNCTION TITLE
13220 VTAB 10:AN$ = "Enter kilometers per hour ": GOSUB 400:AN$ = "":FL

10: GOSUB 100

13230 AN = VAL (AN$): IF AN = 0 AND AN$ < > "0" THEN PRINT CHR$ (7) :
13210: REM ONLY NUMBERS ALLOWED

13240 MILE AN * .62137
13250 1$ " m; le": IF INT (MILE * 10000l I 10000 < > 1 THEN 1$ " mi l

e s"
13260 J$ "ki lometer": IF AN < > THEN J$ = " ki lometers

GOTO

13270 PRINT :AN$ = STR$ (AN) + J$ + " per hour = "+ STR$ (MILE) + 1$ +
" per hour": GOSUB 400

13280 AN$ = TITLE$: GOSUB 1100
13290 IF AN THEN 13200
13300 RETURN
13310 REM

13400 REM ** MILES /HR --> KILO/HR
13410 TEXT : HOME: PRINT :AN$ = "Convert Mi les per hour to ki lometers p

er hour": GOSUB 400 : PRINT: REM FUNCTION TITLE
13420 VTAB 10 : AN$ = "Enter number of mph ": GOSUB 400:AN$ = "":FL = 10: GOSUB

100
13430 AN = VAL (AN$) : IF AN = 0 AND AN$ < > "0" THEN PR INT CHR$ (7) : GOTO

13410: REM ONLY NUMBERS ALLOWED
13440 KILO AN I .62137
13450 1$ = " mi le": IF AN < > 1 THEN 1$ = " mi les"
13460 J$ = " ki lometer" : IF INT (KILO * 10000) I 10000 < > 1 THEN J$ =

" ki lometers"
13470 PRINT :AN$ = STR$ (AN) + 1$ + " per hour = "+ STR$ (KI LO) + J$ +

" per hour": GOSUB 400
13480
13490
13500
13600

13601
14000
14999

15000
15999
16000
16999

17000
17999

18000
18999
19000
19999
20000
20999
21000

AN$ = TITLE$: GOSUB 11 00
IF AN THEN 13400
RETURN
REM

RETURN : REM PROGRAMMER
REM *** SELECT ION 4 ***
RETURN

REM *** SELECTION ***
RETURN

REM *** SELECTION 6 ***
RETURN

REM *** SELECT ION 7 ***
RETURN

REM *** SELECT ION 8 ***
RETURN

REM *** SELECTION 9 ***
RETURN

REM *** SELECTION 10 ***
RETURN
REM *** SELECTION 11 ***

Appendix E

TO CREATE CONVERSION ROUTINE HERE

21999
22000
22010

RETURN
REM *** SELECTION 12 ***
REM *** END THE PROGRAM ***

22020 IF PEEK (6) = 99 AND PEEK (7) 99 THEN PRINT PRINT CHR$ (4)
;"RUN HELLO": END

22050 TEXT : HOME : TEXT : END
63000 REM *** COMPUTER ID ***
63010 REM *** AILE OR NOT? ***
63020 REM USES I,J,K,RE -- SETS AILE TO 1 IF IT IS AN AILE
63030 REM SETS RESULT DEPENDENT ON AVAILABLE HARb~ARE
63040 REM RESULTS OF 0 MEANS NOT A lIE ; 32 MEANS AIlE ~UT NO 80 CO LUMN S;

64 MEANS AIlE WITH 80 COLUMNS BUT NO AUX MEM; 128 MEANS AIlE WITH A
UX MEM

63050 DATA 8, 120, 173, 0, 224, 141, 208, 2, 173, U, 208, 141 , 209, 2,
173, 0, 212, 141, 210, 2, 173, 0, 216, 141, 211, 2, 173, 129, 192, 1
73, 129, 192, 173, 179, 251 , 201 , 6, 208, 73, 173

63060 DATA 23, 192 , 48 , 60, 173, 19, 192, 48, 39, 173, 22 , 192, 48, 34 ,
160, 42, 190, 162, 3, 185, 0, 0, 150, 0, 153, 162, 3, 136, 208 , 242

, 76, 1, 0 , 8, 160 , 42, 185, 162, 3, 153
63070 DATA 0, 0, 136, 208 , 247, 104, 176 , 8, 169, 128 , 141, 207, 3, 76,

73, 3, 169, 64, 141, 207, 3, 76, 73, 3, 169, 32, 141 , 207, 3, 76, 7
3, 3, 169, 0, 141 , 207, 3, 173, 0, 224

63080 DATA 205 , 208 , 2, 208, 24 , 173, 0, 208, 205 , 209, 2, 208, 16 , 173
, 0, 212, 205, 210, 2, 208, 8, 173, 0, 216, 205 , 211, 2, 240, 56 , 17
3, 136 , 192, 173, Q, 224, 205 , 208, 2, 240, 6

63090 DATA 173, 128, 192, 76, 161 , 3, 173, 0, 208 , 205 , 209 , 2, 240, 6,
173, 128 , 192, 76 , 161, 3, 173, 0, 212, 205, 210, 2, 240, 6, 173,

28 , 192, 76, 161 , 3, 173, 0, 216 , 205 , 211 , 2
63100 DATA 240, 3, 173, 128, 192 , 40, 96, 169, 238, 141 , 5, 192, 141 , 3

, 192, 141 , 0, 8, 173, 0, 12, 201, 238, 208, 14, 14, 0, 12, 173, U,
8, 205 , 0, 12, 208 , 3, 56, 176, 1, 24

63110 DATA 141, 4, 192, 141, 2, 192, 76, 29, 3, 234
63120 J = 975:K = 724
63130 FOR I = 0 TO 249
63140 READ L
63150 POKE K + I , L
63160 NEXT
63170 CALL K
63180 RESULTS PEEK (J)
63190 IF RESULTS < > 0 THEN AILE
63200 RETURN

Appendix E

Some Final Thoughts

We hope you have enjoyed this excursion into the depths of
large programs. If you feel a bit overwhelmed, take heart. You
have been given a tremendous amount of new information in
the space of a few hours. Examine these programs again in a
few days or a week. Look at programs by other authors. Each
time you do, you will discover some new trick or technique that
you can incorporate into your own programs.

Some Final Thoughts

Glossary

Glossary

address: A number used to identify something , such as a
location in the computer's memory.

algorithm: A step-by-step procedure for solving a problem or
accomplishing a task.

Apple lie: A personal computer in the Apple II family,
manufactured and sold by Apple Computer.

Apple lie SO-Column Text Card: A peripheral card
made and sold by Apple Computer that plugs into the
Apple lie's auxiliary slot and converts the computer's display of
text from 40- to SO-column width.

Apple lie Extended SO-Column Text Card: A peripheral
card made and sold by Apple Computer that plugs into the
Apple lie's auxiliary slot and converts the computer's display
of text from 40- to 80-column width while extending its
memory capacity by 64K bytes.

Applesoft: An extended version of the BASIC programming
language used with the Apple lie computer and capable of
processing numbers in floating-point form . An interpreter for
creating and executing programs in Applesoft is built into the
Apple lie system in firmware. Compare Integer BASIC.

application program: A program that puts the resources and
capabil ities of the computer to use for some specific purpose
or task, such as word processing , data-base management,
graphics, or telecommunications. Compare system program.

argument: The value on which a function operates. An
argument can be a number or a variable and is contained in
parentheses that follow the function.

Glossary

arithmetic expression: A combination of numbers and
arithmetic operators (such as 3 + 5) that indicates some
operation to be carried out.

arithmetic operations: The five actions Applesoft can perform
with numbers are addition , subtraction , multiplication, d ivision ,
and exponentiation. -"

arithmetic operator: An operator, such as + , that combines
numeric values to produce a numeric result ; compare relational
operator, logical operator.

array: A collection of variables referred to by the same name
and distinguished by means of numeric subscripts. Each
variable in the array can be addressed independently by using
that variable's unique subscript.

ASCII: American Standard Code for Information Interchange;
a code in which the numbers from 0 to 127 stand for text
characters, including the digits 0 through 9, the letters of the
alphabet, punctuation marks, special characters, and control
characters. The code is used for representing text inside a
computer and for transmitting text between computers or
between a computer and a peripheral device.

assembly language: A low-level programming language in
which individual machine-language instructions are written in a
symbolic form more easily understood by a human programmer
than machine language itself.

BASIC: Beginner's All-purpose Symbolic Instruction Code ; a
high-level programming language designed to be easy to learn
and use. Two versions of BASIC are available from Apple
Computer for use with the Apple lie : Applesoft (built into the
Apple lie in firmware) and Integer BASIC (provided on the DOS
3.3 SYSTEM MASTER disk).

binary: The representation of numbers in terms of powers of
two, using the two digits 0 and 1 . Commonly used in compute rs,
since the values 0 and 1 can easily be represented in physical
form in a variety of ways, such as the presence or absence of
current, positive or negative voltage, or a white or black dot on
the display screen .

Glossary

binary operator: An operator that combines two operands to
produce a result ; for example + is a binary arithmetic operator,
< is a binary relational operator, and OR is a binary logical
operator. Compare unary operator.

bit: A binary digit (0 or 1) ; the smallest possible unit of
information that a computer can hold, consisting of a simple
two·way choice, such as yes or no, on or off, positive or
negative, something or nothing.

boot: To start up a computer by loading a program into
memory from an external storage medium such as a disk. Often
accomplished by first loading a small program whose purpose
is to read the larger program into memory. The program is said
to "pull itself in by its own bootstraps"; hence the term
bootstrapping or booting .

boot disk: See startup disk.

bootstrap: See boot.

branch: To send program execution to a line or statement other
than the next in sequence.

buffer: An area of the computer's memory reserved for a
specific purpose, such as to hold graphic information to be
displayed on the screen or text characters being read from
some peripheral device. Often used as an intermediary " holding
area" for transferring information between devices operating at
different speeds, such as the computer's processor and a
printer or disk drive. Information can be stored into the buffer
by one device and then read out by the other at a different
speed.

bug: An error in a program that causes it not to work as
intended .

byte: A unit of information consisting of a fixed number of bits ;
on the Apple lie, one byte consists of eight bits and can hold
any value from 0 to 255 . Each character in the ASCII code can
be represented by one byte, with an extra bit left over.

call: To request the execution of a subroutine or function .

catalog: A list of all files stored on a disk ; sometimes called a
directory.

Glossary

central processing unit: See processor.

character: A letter, digit, punctuation mark, or other written
symbol used in printing or displaying information in a form
readable by humans.

character limit: The maximum number of characters allowed in
a single Applesoft statement: 255.

chip: The small piece of semiconducting material (usually
silicon) on which an integrated circuit is fabricated . The word
chip properly refers only to the piece of silicon itself, but is
often used for an integrated circuit and its package; see
integrated circuit.

code: (1) A number or symbol used to represent some piece of
information in a compact or easily processed form. (2) The
statements or instructions making up a program.

cold start: The process of starting up the Apple lie when the
power is first turned on (or as if the power had just been turned
on) by loading the operating system into main memory, then
loading and running a program. Compare warm start.

column: A vertical arrangement of graphics points or character
spaces on the screen.

command: A communication from the user to a computer
system (usually typed from the keyboard) directing it to perform
some immediate action .

computer: An electronic device for performing predefined
(programmed) computations at high speed and with great
accuracy. A machine that is used to store, transfer, and
transform information .

computer language: See programming language.

computer system: A computer and its associated hardware,
fi rmware, and software.

concatenate: Literally, " to chain together"; to combine two or
more strings into a single, longer string containing all the
characters in the original strings.

Glossary

conditional branch: A branch that depends on the truth of a
condition or the value of an expression; compare unconditional
branch.

control: The order in which the statements of a program are
executed.

control character: A character that controls or modifies the way
information is printed or displayed. Control characters have
ASCII codes between 0 and 31 and are typed from the Apple lie
keyboard by holding down the lcONTROLi key while typing some
other character. For example, the characterlcONTROLI-M (ASCII
code 13) means "return to the beginning of the line" and is
equivalent to the[RETURN I key.

CPU: Central processing unit ; see processor.

crash: To cease operating unexpectedly, possibly damaging or
destroying information in the process.

CRT: See cathode-ray tube.

cursor: A marker or symbol displayed on the screen that marks
where the user's next action will take effect or where the next
character typed from the keyboard will appear. Cursors are
usually represented by a white box, an underline, or a flashing
checkerboard box.

data: Information ; especially information used or operated on
by a program.

debug: To locate and correct an error or the cause of a problem
or malfunction in a computer system. Typically used to refer to
software-related problems; compare troubleshoot.

decimal: The common form of number representation used in
everyday life, in which numbers are expressed in terms of
powers of ten, using the ten digits 0 to 9 .

default: (1) A value, action, or setting that is automatically used
by a computer system when no other explicit information has
been given. For example, if a command to run a program from a
disk does not identify which disk drive to use, the Disk Operating
System will automatically use the same drive that was used in
the last operation .

Glossary

II

deferred execution: The saving of an Applesoft program line
for execution at a later time as part of a complete program ;
occurs when the line is typed with a line number. Compare
immediate execution.

delimiter: A character that is used for punctuation to mark the
beginning or end of a sequence of characters, and which
therefore is not considered part of the sequence itself. For
example, Applesoft uses the double quotation mark (,,) as a
delimiter for string constants : the string "DOG" consists of the
three characters D, 0, and G, and does not include the quotation
marks. In written English, the space character is used as a
delimiter between words.

digit: (1) One of the characters 0 to 9 , used to express numbers
in decimal form . (2) One of the characters used to express
numbers in some other form , such as 0 and 1 in binary or 0 to 9
and A to F in hexadecimal.

dimension: the maximum size of one of the subscripts of an
array.

directory: A list of all files stored on a disk; sometimes called a
catalog.

disk: An information storage medium consisting of a flat ,
circular magnetic surface on which information can be recorded
in the form of small magnetized spots, similarly to the way
sounds are recorded on tape.

disk drive: A peripheral device that writes and reads
information on the surface of a magnetic disk.

diskette: A term sometimes used for the small (5-1 /4-inch)
flexible disks used with the Apple Disk II drive.

Disk II drive: A model of disk drive made and sold by Apple
Computer for use with the Apple lie computer; uses 5-1 /4-inch
flexible (" floppy") disks.

Disk Operating System: An optional software system for the
Apple lie that enables the computer to control and
communicate with one or more Disk II drives.

Glossary

display: (1) Information exhibited visually, especially on the
screen of a display device. (2) To exhibit information visually.
(3) A display device.

display screen: The glass or plastic panel on the front of a
display device on which images are displayed.

DOS: See Disk Operating System.

edit: To change or modify; for example, to insert, remove,
replace, or move text in a document.

element: A member of a set or collection; specifically, one of
the individual variables making up an array. See also subscript.

error message: A message displayed or printed to notify the
user of an error or problem in the execution of a program.

escape mode: A state of the Apple lie computer, entered by
pressing the [Escl key, in which certain keys on the keyboard take
on special meanings for positioning the cursor and controlling
the display of text on the screen.

escape sequence: A sequence of keystrokes beginning with
the lEsc l key, used for positioning the cursor and controlling the
display of text on the screen .

execute: To perform or carry out a specified action or sequence
of actions, such as those described by a program.

expression: A formula in a program describing a calculation to
be performed.

file: A collection of information stored as a named unit on a
peripheral storage medium such as a disk.

file name: The name under which a file is stored.

firmware: Those components of a computer system consisting
of programs stored permanently in read-only memory. Such
programs (for example, the Applesoft interpreter and the
Apple lie Monitor program) are built into the computer at the
factory; they can be executed at any time but cannot be
modified or erased from main memory. Compare hardware,
software.

Glossary

fixed-point: A method of representing numbers inside the
computer in which the decimal point (more correctly, the binary
point) is con;:;idered to occur at a fixed position within the
number. Typically, the point is considered to lie at the right end
of the number, so that the number is interpreted as an integer.
Fixed-point numbers of a given length cover a narrower range
than floating-point numbers of the same length, but with
greater precision. Compare floating-point.

flexible disk: A disk made of flexible plastic; often called a
"floppy" disk.

floating-point: A method of representing numbers inside the
computer in which the decimal point (more correctly, the binary
point) is permitted to " float " to different positions within the
number. Some of the bits within the number itself are used to
keep track of the point's position. Floating-point numbers of a
given length cover a wider range than fixed-point numbers of
the same length, but with less precision. Compare fixed-point.

floppy disk: See flexible disk.

format: (1) The form in which information is organized or
presented. (2) To specify or control the format of information.
(3) To prepare a blank disk to receive information by dividing its
surface into tracks and sectors; also initialize .

function: A preprogrammed calculation that can be carried out
on request from any point in a program.

graphics: (1) Information presented in the form of pictu res or
images. (2) The display of pictures or images on a computer's
display screen. Compare text.

hang: For a program or system to "spin its wheels" indefinitely,
performing no useful work.

hardware: Those components of a computer system consisting
of physical (electronic or mechanical) devices. Compare
software, firmware.

hexadecimal: The representation of numbers in terms of
powers of sixteen, using the sixteen digits 0 to 9 and A to F.
Hexadecimal numbers are easier for humans to read and
understand than binary numbers, but can be converted easily
and directly to binary form: each hexadecimal digit corresponds
to a sequence of four binary digits, or bits.

Glossary

high-level language: A programming language that is relatively
easy for humans to understand. FORTRAN, BASIC, and Pascal
are all examples of high-level languages. A single statement in a
high-level language typically corresponds to several instructions
of machine language.

high-resolution graphics: The display of graphics on the
Apple lie's display screen as a six-color array of points, 280
columns wide and 192 rows high . When the text window is in
use, the visible high-resolution graphics display is 280 by 160
plotting points.

immediate execution: The execution of an Applesoft program
line as soon as it is typed; occurs when the line is typed without
a line number. This is a particular advantage of Applesoft , which
is not available in many other programming languages. It means
that you can tryout nearly every statement immediately to see
how it works. Compare deferred execution.

infinite loop: A section of a program that will repeat the same
sequence of actions indefinitely.

information: Facts, concepts, or instructions represented in an
organized form.

initialize: (1) To set to an initial state or value in preparation
for some computation . (2) To prepare a blank disk to receive
information by dividing its surface into tracks and sectors ; also
format.

input: (1) Information transferred into a computer from some
external source, such as the keyboard , a disk dr ive, or a modem.
(2) The act or process of transferring such information .

integer: A whole number, with no fractional part ; represented
inside the computer in fixed-point form . Compare real number.

Integer BASIC: A version of the BASIC programming language
used with the Apple II family of computers ; older than Applesoft
and capable of processing numbers in integer (fixed-point) form
only. An interpreter for creating and executing programs in
Integer BASIC is included on the DOS 3.3 SYSTEM MASTER
disk, and is automatically loaded into the computer's memory
when the computer is started up with that disk. Compare
Applesoft.

Glossary

interface: The devices, rules, or conventions by which one
component of a system communicates with another.

inverse video: The display of text on the computer's display
screen in the form of black dots on a white (or other single
phosphor color) background, instead of the usual white dots
on a black background.

I/O: Input/output; the transfer of information into and out of a
computer. See input, output.

K: Two to the tenth power, or 1024 (from the Greek root kilo,
meaning one thousand) ; for example, 64K equals 64 times 1024,
or 65,536.

keyboard: The set of keys built into the Apple lie computer,
similar to a typewriter keyboard , for typing information to the
computer.

keystroke: The act of pressing a single key or a combination of
keys (such as [CONTROL~ c) on the Apple lie keyboard.

keyword: A special word or sequence of characters that
identifies a particular type of statement or command , such as
RUN orPRINT .

kilobyte: A unit of information consisting of 1 K (1024) bytes, or
8K (8192) bits ; see K.

language: See programming language.

line: See program line.

line number: A number identifying a program line in an
Applesoft program. Line numbers are necessary for deferred
execution.

load: To transfer information from a peripheral storage medium
(such as a disk) into main memory for use ; for example, to
transfer a program into memory for execution.

location: See memory location .

logical operator: An operator, such as AND , that combines
logical values to produce a logical result ; compare arithmetic
operator, relational operator.

Glossary

loop: A section of a program that is executed repeatedly until
the limit is met.

low-level language: A programming language that is relatively
close to the form that the computer's processor can execute
directly. Assembly language is an example.

low-resolution graphics: The display of graphics on the
Apple lie's display screen as a 16-color array of blocks, 40
columns wide and 48 rows high. When the text window is in use,
the visible low-resolution graphics display is 40 by 40 plotting
points.

machine language: The form in which instructions to a
computer are stored in memory for direct execution by the
computer's processor. Each model of computer processor (such
as the 6502 microprocessor used in the Apple lie) has its own
form of machine language.

main memory: The memory component of a computer system
that is built into the computer itself and whose contents are
directly accessible to the processor.

memory: A hardware component of a computer system that can
store information for later retrieval ; see main memory, random­
access memory, read-only memory, read-write memory.

memory location: A unit of main memory that is identified by an
address and can hold a single item of information of a fixed
size ; in the Apple lie, a memory location holds one byte, or eight
bits, of information.

menu: A list of choices presented by a program, usually on the
display screen, from which the user can select.

mode: A state of a computer or system that determines its
behavior.

monitor: See video monitor.

Monitor program: A system program built into the Apple lie
firmware, used for directly inspecting or changing the contents
of main memory and for operating the computer at the machine­
language level.

Glossary

nested loop: A loop contained within the body of another loop
and executed repeatedly during each pass through the
containing loop.

normal: Video display format made up of white (or single color)
dots on a black background. (See inverse.)

null string: A string containing no characters.

operating system: A software system that organizes the
computer's resources and capabilities and makes them
available to the user or to application programs running on
the computer.

operator: A symbol or sequence of characters, such as + or
AND , specifying an operation to be performed on one or more
values to produce a result ; see arithmetic operator, relational
operator, logical operator, unary operator, binary operator.

output: (1) Information transferred from a computer to some
external destination , such as the display screen , a disk drive, a
printer, or a modem. (2) The act or process of transferring such
information.

page: (1) A screenful of information on a video display,
consisting on the Apple lie of 24 lines of 40 or 80 characters
each. (2) An area of main memory containing text or graphic
information being displayed on the screen.

peripheral: At or outside the boundaries of the computer itself,
either physically (as a peripheral device) or in a logical sense
(as a peripheral card) .

precedence: The order in which operators are applied in
evaluating an expression.

processor: The hardware component of a computer that
performs the actual computation by directly executing
instructions represented in machine language and stored in
main memory.

program: (1) A set of instructions, conforming to the rules and
conventions of a particular programming language, describing
actions for a computer to perform in order to accomplish some
task. In Applesoft , a sequence of program lines, each with a
different line number. (2) To write a program.

Glossary

program line: The basic unit of an Applesoft program,
consisting of one or more statements separated by colons (:) .

programmer: The human author of a program ; one who writes
programs.

programming: The activity of writing programs.

programming language: A set of rules or conventions for
writing programs.

prompt: To remind or signal the user that some action is
expected, typically by displaying a distinctive symbol , a
reminder message, or a menu of choices on the display screen .

prompt character: A text character displayed on the screen to
prompt the user for some action. Often also identifies the
program or component of the system that is doing the
prompting ; for example, the prompt character l is used by the
Applesoft BASIC interpreter,) by Integer BASIC, and * by the
system Monitor program. Also called prompting character.

prompt message: A message displayed on the screen to prompt
the user for some action . Also called prompting message.

radio-frequency modulator: A device for converting the video
Signals produced by a computer to a form that can be accepted
by a television set.

RAM: See random-access memory.

random-access memory: Memory in which the contents of
individual locations can be referred to in an arbitrary or random
order. This term is often used incorrectly to refer to read-write
memory, but strictly speaking both read-only and read-write
memory can be accessed in random order. Random-access
means that each unit of storage has a unique address and a
method by which each unit can be immediately read from or
written to . Compare read-only memory, read-write memory.

read: To transfer information into the computer's memory from
a source external to the computer (such as a disk drive or
modem) or into the computer's processor from a source
external to the processor (such as the keyboard or main
memory).

Glossary

•

read-only memory: Memory whose contents can be read but
not written; used for storing firmware. Information is written
into read-only memory once, during manufacture ; it then
remains there permanently, even when the computer's power is -J

turned off, and can never be erased or changed. Compare read-
write memory, random-access memory.

read-write memory: Memory whose contents can be both read
and written ; often misleadingly called random-access memory,
or RAM. The information contained in read-write memory is -'
erased when the computer's power is turned off, and is
permanently lost unless it has been saved on a more permanent
storage medium, such as a disk. Compare read-only memory,
random-access memory.

real number: A number that may include a fractional part ;
represented inside the computer in floating-point form.
Compare integer.

relational operator: An operator, such as) , that compares
numeric values to produce a logical result ; compare arithmetic
operator, logical operator.

reserved word: A word or sequence of characters reserved by a
programming language for some special use, and therefore
unavailable as a variable name in a program.

RF modulator: See radio-frequency modulator.

ROM: See read-only memory.

routine: A part of a program that accomplishes some task .
subordinate to the overall task of the program.

row: A horizontal arrangement of character spaces or graphics
points on the screen.

run: (1) To execute a program. (2) To load a program into main
memory from a peripheral storage medium, such as a disk, and
execute it.

save: To transfer information from main memory to a peripheral
storage medium for later use .

Glossary

scientific notation: A method of expressing numbers in terms
of powers of ten , useful for expressing numbers that may vary
over a wide range, from very small to very large. For example,
the number of atoms in a gram of hydrogen is approximately
6. 02E23 , meaning 6.02 times ten to the 23rd power. (The letter E
stands for "exponent. ") The number is easier to understand in
this form than in the form 602000000000000000000000 .
Applesoft uses this method to display real precision numbers
with more than nine digits.

screen: See display screen.

scroll: To change the contents of all or part of the display
screen by shifting information out at one end (most often the
top) to make room for new information appearing at the other
end (most often the bottom) , producing an effect like that of
moving a scroll of paper past a fixed viewing window. See
viewport, window.

simple variable: A variable that is not an element of an array.

software: Those components of a computer system consisting
of programs that determine or control the behavior of the
computer. Compare hardware, firmware.

space character: A text character whose printed
representation is a blank space, typed from the keyboard by
pressing the lsPACEJ bar.

startup disk: A disk containing software recorded in the proper
form to be loaded into the Apple lie's memory to set the system
into operation . Sometimes called a boot disk; see boot.

statement: A unit of a program in a high-level language
specifying an action for the computer to perform , typically
corresponding to several instructions of machine language.

step value: The amount by which a variable changes on each
pass through a loop.

string: An item of information consisting of a sequence of test
characters. Both II f 1 ippi ng frog5 endanger wi dow'5 mi t e II

and "(A + 8) /973 = 14" are strings.

Glossary

subroutine: A part of a program that can be executed on
request from any point in the program, and which returns
control to the point of the request on completion.

subscript: An index number used to identify a particular
element of an array.

syntax: The rules governing the structure of statements or
instructions in a programming language.

television set: A display device capable of receiving broadcast
video signals (such as commercial television) by means of an
antenna. Can be used in combination with a radio-frequency
modulator as a display device for the Apple lie computer.
Compare video monitor.

text: (1) Information presented in the form of characters
readable by humans. (2) The display of characters on the
Apple lie's display screen. Compare graphics.

text window: An area on the Apple lie's display screen within
which text is displayed and scrolled.

unary operator: An operator that applies to a single operand ;
for example, the minus sign (-) in a negative number such as - 6
is a unary arithmetic operator. Compare binary operator.

unconditional branch: A branch that does not depend on the
truth of any condition ; compare conditional branch.

user: The person operating or controlling a computer system.

value: An item of information that can be stored in a var iable,
such as a number or a string.

variable: (1) A location in the computer's memory where a value
can be stored . (2) The symbol used in a program to represent
such a location ; compare constant.

video: (1) A medium for transmitting information in the form of
images to be displayed on the screen of a cathode-ray tube.
(2) Information organized or transmitted in video form.

Glossary

video monitor: A display device c~pable of receiving video
signals by direct connection only, and which cannot receive
broadcast signals such as commercial television . Can be
connected directly to the Apple lie computer as a display device.
Compare television set.

viewport: All or part of the display screen, used by an
application program to display a portion of the information
(such as a document, picture, or worksheet) that the program is
working on. Compare window.

warm start: The process of restarting the Apple lie after the
power is already on, without reloading the operating system into
main memory and often without losing the program or
information already in main memory. Compare cold start.

window: The portion of a collection of information (such as a
document, picture, or worksheet) that is visible in a viewport on
the display screen; compare viewport.

wraparound: The automatic continuation of text from the end of
one line to the beginning of the next, as on the display screen or
a printer.

write: To transfer information from the computer to a
destination external to the computer (such as a disk drive,
printer, or modem) or from the computer's processor to a
destination external to the processor (such as main memory) .

write-enable notch: The square cutout in one edge of a disk's
jacket that permits information to be written on the disk. If there
is no write-enable notch , or if it is covered with a write-protect
tab, information can be read from the disk but not written
onto it.

write-protect: To protect the information on a disk by covering
the write-enable notch with a write-protect tab, preventing any
new information from being written onto the disk.

write-protect tab: A small adhesive sticker, usually silver, used
to write-protect a disk by covering the write-enable notch .

Glossary

III

Index
Note: Boldface page numbers
indicate figures.

A
addition 10
additional information x
address 97
AGE program 48
alternating colors in graphics 93
ampersand(&) 160, 204
animation in programming

89-122
Apple lie

80-Column Text Card 181 , 183
Owner's Manual x
speaker 97
standard interface 181

Apple Integer BASIC, prompt
character (» 170

Applesoft , introduction to 3
Applesoft BASIC, prompt

character (l) 170
Applesoft BASIC Programmer's

Reference Manual x
APPLESOFT SAMPLER

ALPHABET program 126, 127
COLORBOUNCE program 89
COLORBOUNCESOUND

program 135
COLORLOOP program 54
DECIMAL program 132
HORSES program 112
loading from disk 55
MO I RE program 118

application programs 140
arguments 101

in strings 126
arithmetic

expression 31
operations 10

at different speeds 99
sombining 11

Index

arrays 135-139, 137, 148, 175
elements of 136
two-dimensional 137-138, 137

arrow keys 6
directions 85

ASC function 145
ASCII code 145, 146
assertion 53
asterisk (.) 10
ATN 161
automatic indentation 81

B
backward slash (\) 6
backward spelling 128
?BAD SUBSCR I PT ERROR 139,

164
BASIC x
binary 146

numbering system 50
black boxes 180, 181 , 183
black, default 17
black-on-white 9
blinking-underline cursor 182
block-structured programs 172
Boolean logic 190
BREAK IN 1 10 43
building blocks 89
bytes 170

c
calculations 9-12, 27-33
CALL 133, 145
? CAN'T CO NT I NUE ERROR 164
ICAPS LOCK I key 3
caret (A) 10
Cartesian coordinates 16
cassette recorder, use of 47, 48,

154, 157, 168, x
CATALOG command 47,145 , 202

changing your work, see editing
chapter summaries

Chapter 1 34
Chapter 2 70
Chapter 3 86
Chapter 4 120
Chapter 5 141

character 6
limit 6, 7
strings 123

CHRS statement 146, 202
CLEAR statement 129, 146
clearing screen , 76, 150
code ix
colon 90, 177

use, combining statements with
REMs 90

COLOR - statement 14-18, 17,
20-23, 146, 160

color
groups 17, 17, 146
in high-resolution

graphics 114, 118
in low-resolution graphics

14-18, 20-23
plotting 17
table 146
using to create visual

impressions 89
COLORBOUNCE program 89-100,

134-135
adding noise 100
how it works 94
listing 93

COLORBOUNCESOUND
program 135

columns 14
combination of statements 56
comma 64, 65, 177
compiling 202
completing instructions 13
compressing programs 201 , 202
computations 9-12, 27-33

order of 30
Computer Identifier

Routine 180, 186
computer

language ix
program ix
turning off power 8

concatenation 130
conclusion 140
conditional statement 50, 52

rules 51
symbols 51

Applesoft Tutorial

167

controlling spaces in your
programs 64-69

CONVERTER program 172, 211
copy over, with [RIGHT - ARROW I

key 74
correction of lines, see editing
counters 60, 175
creating visual impressions 93
cross-referencing with utilities

programs 203
crossed loops 62, 62
cursor 3, 3

blinking-underline 182
in high-resolution

graphics 114
moving to right without

copying spaces 80
cursor-moving keys 85

D
DATA statement 147
decimal pOints, lining up 132
DECIMAL program 132
default drive 48
deferred execution 37-41

advantage of 41
execution statement, errors

in 163
DEL statement 83, 147
DELETE command 83, 145, 148

[DELETE I key 83
determinate variable

counter 175
determinate loops

(IF .. • THEN) 52
DIM statement 136
dimensioning arrays 175

concepts 137
disk drive 48, x
DIS K MENU 201
Disk Operating System, see DOS
display

differences in graphics and
text 66

horizontal , use of VTAB 66
vertical , use of TAB 66

distinguishing variables 26
division 10
?DIVISION BY ZERO ERROR 164
dollar sign

in string variables 124
use with variable 68

DOS (Disk Operating System) 47
DOS commands 145, 156

CATALOG 47, 202
DELETE 83, 145, 148
PRI 145, 156, 169
SAVE 48, 157

DOS Pro rammer's Tool Kit 202
DOWN-ARROW key 84
drawing 118, 150, 151

diagonals 104
high-resolution graphics 116
horses 104
lines 20-23, 104
pOints 104

drive 2, hint using 48
see also second disk drive

duplicate strings 128

E
editing 4-6, 73-86, 85

practice sessions 74-81
inserting text 77-81
changing text 74-76
getting rid of lines 82-83
history 84-85
summary of features 86

80-column display 175
80-column text card 183, 187

keeping inactive x
elements 136
END 109, 148
endless repetition 108
equal sign (=) 27
erase, with I LEFT-ARROW I key 74
error messages, format for

163-166
error trapping 110, 134, 155,

168, 188
[ESC [E 76
IEsc lF 76
IEsCI key 73, 167, 182

alternati ng with A, B, C,
and D keys 84

in conjunction with I , J, K ,
and M keys 85

IEsCI @ 76
escape commands 76

Index

escape mode 111
limits 76-77
practice sessions 74-81
rules for using 73-74
summary table 86

execution , program 43
exponentiation 10
extra spaces in program lines,

how to avoid 80

F
false 190

condition 50
fancy printing 8
file types 146
flags 191 , 202
FOR statement 148

necessity for matching
NE XT 62

FOR / NE XT
loops 59
statement 59-63, 60
defining variable range 59

formatting 132, 201
?FORMULA TOO COMPLE X

ERROR 164
40-columndisplay 175
friendly menus 171
functions

built-in arithmet ic 98
I NT 152
LEFH 125, 153
LEN 124, 153
MID$ 125, 154
PEE K 155
R I GHH 125, 156
RND 156
STR$ 132, 157
TAB 157
VAL 131 , 158

G
game construction 89

dice 103
garbage 23
GET RETURN routine 183
getting rid of program lines 82,

83
good programming pract ice 96
GOSUB statement 149, 173

in main rout ine 111 -113
GOTO statement 42-45, 149
GR statement 14, 149
graphics 13-18, 89-122

additional subroutines 111 ,
112

--'

drawing lines 20-23, 11-118
grid 14
high-resolution 113-122
low-resolution 13-18
text window 14, 57

gray box x
greater than or eq ual to

(>=) 50,51
greater than zero arguments 100

H
&H 204
halt listing 153
halting program listing 84
HCOLOR = statement 114-119,

115, 149,160
help 167
help screens 185
HGR statement 114-119,150

using colors with 118
high-resolution graphics

113-119, 115, 150
HIMEM : 161
HL I N statement 20-22, 21, 150

syntax 20, 21
HOME statement 9-12, 150
horizontal coordinates 113
horizontal row 15
horse drawing 104
HORSES program 112
HPLOT statement 116-119, 150

combination of lines in 117
HTAB statement 67-69, 151

use with VTAB

on APPLESOFT SAMPLER 67
HUE program 62
humanized programs 211
hung system 167

I
identifying address 170
I F statement 53, 56
if you or your program get

stuck 167
IF .• . THEN statement 52,

151
? ILLEGAL DIRECT ERROR

? I LLEGAL QUANT I TY ERROR

68, 96, 105, 139, 164
immediate execution 37
indeterminate variable

counters 175

164
19,

indeterminate loops (GOTO) 52
infinite loop 58

Applesoft Tutorial

initialized disk 47
I NPUT routine 182
I NPUT statement 45-47, 94-96,

152,177
execution 46
use 46
writing 96

inserting text
into an existing line 77
step-by-step instructions 77

instructions, stored sequence
of 40

INT function 101 , 152
Integer BASIC 146
integers

function 101
printing 42

I NVERSE statement 8, 152

K
keyword 5

L
LEFTS function 125, 153

I LEFT-ARROW) key 6, 78
in escape mode 74

LEN function 124, 153
length function 124
less than or eq ual to (< =) 51
LET statement 24-29, 153

defining a variable with 24
syntax 25, 27
value 27

limiting variables 52
line breaks 183
line differences, when

listed/executed 38
line numbers 38, 58

leaving space between 40
lines, replacement of 39
LIST statement 38-44, 153

line numbers specified in 44
listing programs

how to see whole list 57
how to resume 153

LOAD command 48, 53, 145,
154

loading program from disk 54
location in memory 25
LOMEM: 161
long programs, to list portions

of 84

loops 52
using to scan through a

string 127
with the GOTO

statement 42-44
low-resolution graphics

mode 14
low-resolution grid

coordinates 23

M
&M 204
machine language 50, 170
MAGIC MENU program 171
main memory 24
making choices, Applesoft 's

ability to 50
making changes, see editing
measurement conversion 172
memory 38, 169

address range 98
locations 170

Menu Maker Routine 184
MID$ function 125, 154
minus sign (-) 10
MOIRE program 118
Monitor program, prompt

character (*) 170
moving cursor 73
multiple statements on a line 90
multiplication 10

N
naming programs 54, 97
nested loops 62
NEW command 37-38, 47, 57,

154
NEXT statement 154
?NEXT WITHOUT FOR ERROR 165
NORMAL statement 8, 154
NOTRAC,E statement 109, 154
null string 124, 129, 134, 185
numbering systems 16, 16, 68

in graphics 68
in text 68

numbers, displaying 42
numeric values, comma and

semicolon used with 65
numeric variables 123

Index

o
ON , , , GOSUB 204
ONERR GOTO 155
~PEN-APPLE I key 167, 176, 182
?OUT OF DATA ERROR 165
? OUT OF MEMORY ERROR 165
output

in columns 64
with no spaces between

words 64
?OVERFLOW ERROR 165

p
parentheses 135

Applesoft rule 33
to modify precedence 32

pause symbol xi
PEEK function 98, 155

different numbers of
PEEKs 99

with variables 98
PLOT 14-22, 155

as used with HL IN
statement 22
coordinates 15, 67-68
error messages 19
used with HL I N 22

plotted points, fine
resolution 116

plus sign (+) 10, 130
POKE statement 81 , 155
power, turning off 8
PR# command 145, 156
PR#1 169
precedence 30, 30

order for carrying out
arithmeHc operations 32

PRINT statement 4-7, 4, 155
interchangeable with question

mark 30
use of quotation marks

with 27
using commas and

semicolons 65
with TAB statement 66

printing Applesoft
programs 169

problem identification on the
screen 5

-

program (s)
asking questions in 201-204
block structured 89, 172-173
building blocks in 89
compression of 201 , 202
control 173-174
correcting lines in 41
execution of 43

resuming after
I CONTROL~ C 147

how to see whole listing
of 57, 84

interaction with users 94
lines, editing 203
listing 153
loading, from disk 54
numbering lines 38, 40-41 , 57
saving 47-48, 97, 157
speed 188-189
using color to create 89
writing 40,172-174,180-192,

201-204, x
prompt character (J) 3, 3, 170

Q

question mark (?)
preceding error message 163
using instead of PRINT

statement 30, 32
questions, unanswered 8
quotation marks (..) 3, 11 , 27,

41

R

in string variables 124
use of 5

radio-frequency (RF)
modulator 18

random numbers 100-104, 176
RANDOM program 102
READ statement 147, 156
?REDIM'DARRAYERROR 139,

165
regular increments 59
REM statement 58, 59, 113,
156, 201
remarks (REM) 58
RENUMBER program 203
renumbering line numbers 202
reserved words 26

table of 160
IRETURN I key 4, 13, 43
RETURN statement 156, 173
?RETURN WITHOUT GOSUB

ERROR 107, 166, 173

Applesoft Tutorial

RF modulator, using with
television set 18

RIGHTS function 125, 156
[RIGHT - ARROW I key 6, 78

in escape mode 74
RND function 100, 156, 171

combining with graphics
statements 103

ROT= 160
rounded numbers 12
rows 14
RUN2 174
RUN statement 38-44, 157

s

in regard to line numbers 61
to start at some other line 44

SAVE command 46-49, 145,
157

saving programs, by using DOS
(Disk Operating System) 47-48

SCALE= 160
scientific notation 12
SCRAMBLER program 171
screen boundaries 92
screen display 8, 157, see also

display
screen formatter routine 183
SCRN 160
scrolling 44, 138, 155, 176
scrolling window 176
second disk drive 48, 49, 55
semicolon 64, 65
ISH I FTI key 3
Simulating a pair of dice 103
slash (!) 10
small numbers

rounding of 11
treatment of 11

[SOLID-APPLE I key 182
I SPACEi bar 73
spaces in program lines, how to

avoid 80
SPACES program , APPLESOFT

SAMPLER 67
spag hetti code 172, 174
SPC 161
speaker, Apple lie 97
SPEED= 160

statement 4-7
and commands 168
as building blocks in

programs 89
control 91
execution 37
fixing mistakes 6
multiple on a line 21
problems with 5
storage 40
reasons for combining 91
used in combination with one

another 56
STEP command 61
stopping program listing 84
storage spaces 24
storage, temporary 38
STR$ function 132, 157
string functions 124, 131
? STR I NG TOO LONG ERROR 124,

166
strings

adding together 130
and arrays 123-140
characters in 124
duplicate 128
null 124, 129, 134
programming practices 126
punctuation and spaces

in 126
using loops with 127
variables

how to reset to zero 124,
129

names 123
manipulating 124

subroutine 104, 106
blocks 173, 174, 180
for displaying

instructions 171
subscripts 136
subtraction 10
switching modes, from graphics

to text 23
symbols, used in the tutorial xi
syntax 46
?SYNTAX ERROR 19, 26, 97,

124, 166
system identification

routine 184, 186

Index

T
TAB function 66, 157, 161

follow with argument 66
table of symbols 51
television set , connecting to

Apple lie 18
temporary prog ram storage 38
text formatting , on the

screen 184
text mode 23
TEXT statement 158
text window 14

in graphics 57
three-level nesting 63
TO 161
TRACE statement 108-110, 108,

158
trailing zeros, display of 11
transferring programs 53
troubleshooting 5
true 190
true condition 50
two-dimensional array 137
two-level nesting 62
?TYPE MISMAT CH ERROR 131 ,

166
typing mistakes, correcting 73

u
unary minus sign 31
?UNDEF'D FUNC T ION

ERROR 166
?UNDEF 'D STATEMENT

ERROR 166
underline cursor, input

using 171
unformatted text 201

IUP-ARRow l key 84
uppercase, for instructions 3
users 94

checking for errors 110
-

v
VAL function 131 , 158
value 25, 27

increasing in variable 28
variables 24-30, 45, 68, 105, 110,

182
defining 24,153
defining with LET

statement 24
increasing value of 28
listing in programs 182
naming 24, 123, 153, 175, 189
numeric 24, 123, 153
storage in memory 24,

187-188
string 123
summary of rules 29
table 187-188
use in FOR/NEXT 59, 60
use in subscript 136
using CLEAR statement 146
values are not static 92

vertical column 15
vertical coordinates 113
video mon itor x
VLIN loop program 57
VLI N statement 22, 57, 158
VTAB statement 66-69, 158

Applesoft Tutorial

w
warning symbol xi
warnings

?SYNTAX ERROR 3
I CAPS LOCK I key on 3
FOR statements 62
IRETURN I key 14
starting up 8
turning off power 8

WELCOME program 69
wrap around 68, 77, 81
write-protected 48

x
XPLOT 160

z
zeros, how not to generate 103

	Document (1)
	Document (3)
	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)

	Binder1
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)

	Document ()
	Document (2)

