
APPLESOFT
LANGUAGE

Second Edition

BY BRIAN D. BLACKWOOD
& GEORGE H. BLACKWOOD

22073

Applesoft
Language
Second Edition

Dr. George H. Blackwood is a retired
Navy pilot and a former college professor
with bachelor's, master's, education special
ist, and D.D.S. degrees. He now devotes full
time to writing.

Brian D. Blackwood has studied computer
science and engineering at Michigan State
University, and has a B.S. degree in com
puter science from Lamar University. He is
presently employed as a programmer at a
large data processing center that services
banks and financial institutions.

Applesoft
Language
Second Edition

(Detailed Programming Instructions
Specifically for the Apple® Computer)

by Brian D. Blackwood and
George H. Blackwood

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, IN DIANA 46268 USA

Copyright© 1981 and 1983 by Brian D. Blackwood
and George H. Blackwood

SECOND EDITION
FIRST PRINTING - 1983

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without
written permission from the publisher. No patent
liability is assumed with respect to the use of the
information contained herein. While every precaution
has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for
damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-22073-3
Library of Congress Catalog Card Number: 83-060172

Edited by: Lou Keglovits

Printed in the United States of America.

Pref ace

Programming is detailed, exacting, and thought provoking. Do not ex
pect to become an expert overnight. Some advertisements may lead you to
believe that there is nothing to it. This is simply not true. Programming
takes effort that many people are not willing or able to expend. Further
more, because a program written for one brand of computer will probably
not run on a different brand of computer you must not only understand the
programming language, but the design of the computer as well. You see,
many programming language details and functions are applicable only to a
specific brand of computer.

In programming, every character, item, formula, punctuation, and format
means something specific to the computer. Exact steps must be pro
grammed for each action the computer takes. Any step not correctly pro
grammed, or improperly placed within the program, will cause the program
to fail. This failure may be partial or total, but the program will not produce
the desired results. Rote memorization will aid in programming, but com
prehensive understanding of how the rules interact and relate will produce
more efficient programs.

Programming is the truest form of building on a foundation. A solid
foundation must be in place to begin the building process. The computer is
an inanimate object that is designed according to a set of specifications.
The machine does not know anything, nor does it assume anything. The
computer does exactly what it is told to do. The programmer must under
stand machine capabilities and apply proper programming rules to produce
correct results.

The lessons in this book are designed to present programming rules in a
logical, detailed, progressive method from a beginners level to an advanced
level. The lessons attempt to always establish a reference point. If you have
trouble with programming errors, you can always return to the last
reference point to attempt to understand the correct procedure. When the
correct programming procedure is understood, you have to practice it.
Practice reinforces the learning experience. With practice comes perfec
tion, and with perfection comes enjoyment.

Do not force the learning experience. Most learning is accomplished by
studying in a regular routine. The same surroundings and location aid learn
ing. Some people learn best during the morning, while others learn best at
night. Establish your place and time for maximum learning enjoyment.

Unless the computer has a hardware problem, it does not make mistakes.
Many times the statement is heard, "It's the computer's fault." Don't you be
lieve it! If an error comes from a computer, it was caused by a person or per
sons, and a person or persons must correct the error.

Computers are a great part of our daily lives and will be a greater part in
the future. The more you understand about computers, their operations,
and programming, the better you will understand the future. Much of the
future of the world is tied to computer operations.

GEORGE H. BLACKWOOD

i i

Contents

INTRODUCTION .. 10

SECTION I - Applesoft Language

LESSON 1
LOAD AND SAVE PROGRAMS ON TAPE 15

LESSON 2
SAVE AND LOAD PROGRAMS ON DISK 19

LESSON 3
PRINT RULES ... 27

LESSON 4
HT AB, TAB, AND VT AB STATEMENTS TO FORMAT OUTPUT 33

LESSON 5
VARIABLES .. 37

LESSON 6
PRECEDENCE ... 47

LESSON 7
LOOPS .. 53

LESSON 8
RELATIONAL AND LOGICAL OPERATORS 61

LESSON 9
PROBLEM SOLVING AND FLOWCHARTS 67

LESSON 10
RULES FOR EFFICIENT PROGRAMMING 73

LESSON 11
SUMMING, COUNTING, AND FLAGS 77

LESSON 12

SINGLE SUBSCRIPTED VARIABLES 81

LESSON 13

DOUBLE SUBSCRIPTED VARIABLES 89

LESSON 14

STRING ARRAYS ... 95

LESSON 15

FUNCTIONS ... 115

LESSON 16

LIST AND EDIT ... 119

LESSON 17

PLAY COMPUTER ... 127

LESSON 18

RESERVED WORDS .. 131

LESSON 19

MENU SELECTION AND CODING FORMULAS 133

LESSON 20

PROGRAM OUTLINE .. 143

LESSON 21

CLEANUP ... 14 7

SECTION II - Programming

LESSON 22

APPROACHING THE PROBLEM 161

LESSON 23

PROGRAM FLEXIBILITY 1 71

LESSON 24

CIRCULAR LISTS, STACKS, AND POINTERS 175

LESSON 25

SORTING, SEARCHING, AND DELETING 183

LESSON 26

FORMULAS .. 205

LESSON 27

DOUBLE SUBSCRIPTED ARRAYS 219

SECTION Ill - Supplement

LESSON 28

GRAPHICS .. 235

LESSON 29

HIGH RESOLUTION GRAPHICS 249

INDEX ... 269

Introduction

In November 1978, Brian and I purchased an Apple computer. I looked
forward with great anticipation to using the computer to solve all the prob
lems I had never been able to solve. The problems were: how to make a mil
lion dollars, how to beat the stock market, and how to solve the energy
problem. After working with the computer for a couple of months, I dis
covered I had an even greater problem. I could not write a program that
would solve those problems. As a matter of fact, I could not write a program
that would solve a problem of any difficulty. So, I had to learn how to pro
gram the computer. I do not have a mathematical background, so the terms
reals and integers didn't mean anything to me. I not only had to learn to pro
gram, I had to understand the vocabulary used in relation to the computer.
Now, almost two years after the computer was purchased, I can write simple
programs. I don't think I could have ever learned to program had it not been
for the co-author, Brian. Brian is a computer engineer.

Not everyone is fortunate enough to have a computer engineer answer
questions about computers and programming. Neither can everyone study
programming on a formal basis. For those who want to learn how to pro
gram, don't have access to a computer engineer, and have no opportunity
for formal instruction, this book is the answer. It is written for people who
have very little comprehension of computer programming and need some
one to hold their hand during the struggle. The object is to produce a pro
gramming manual for those persons interested in serious programming,
but who do not have the necessary fundamentals or assistance.

If you can understand and identify with this "most basic" level of com
puter programming, then this book is for you. If you understand Kunth's
Fundamental Algorithms, then this book is not for you. Do not waste your
time or money.

The book begins on a simple level for the person who has little knowledge
of programming, but progresses to the advanced programming techniques
that are applied at the highest level of the art. For clarity of presentation,
few references are made to the hexadecimal numbering system, assembly
language, or machine language. The neophyte programmer has enough to
handle mastering BASIC.

We present the book in three sections, Applesoft Language, Program
ming, and Supplement.

10

The first section, Applesoft Language, assumes the reader can push the
OFF-ON switch to the ON position so the little light on the keyboard glows.
Once the light is glowing, Lesson 1 attempts to introduce the user to de
tailed programming routines. The explanations may be tedious and repeti
tious, but programming is exact and any detail affects the program. The ex
planations use lay language and try to avoid ambiguous computer engineer
ing phrases. There is an old computer cliche that covers this situation, "If
you can't dazzle them with brilliance, then baffle them with bs."

The second section, Programming, deals with the logic, formulas, and
thought that enable interaction among the programmer, the program, and
the computer. This section brings the reader from the hand holding stage to
the thinking stage. The section stimulates those seldom used brain cells.
You can feel the rust breaking loose and the dendrites pull and strain.

The third section, Supplement, presents simulations, games, and
graphics.

We have written this book specifically for the Apple II microcomputer,
which uses microsoft (Applesoft) language. We are not connected directly
or indirectly with Apple Computer, Inc. or Bell and Howell.

SECTION I
Applesoft Language

LESSON 1

Load and Save Programs on Tape

After completion of Lesson 1 you should be able to:

1. Type a program on the keyboard and store it in memory.
2. Save a program on cassette tape.
3. Load a program from cassette tape into memory.

VOCABULARY

CRT - This abbreviation stands for cathode ray tube. The picture tube in
your television is a CRT. The CRT can be used to display the output from

·. : and the typed-in input to your Apple computer.
Cursor - This is a blinking square of white light on a black field in the NOR

MAL mode. A blinking square of black light on a white field in the IN
VERSE mode.

Input - This is the process of transferring data, or program instructions,
into memory from some peripheral unit. It also can denote the data itself.
The word "input" sometimes denotes the signal applied to a circuit or a
device, such as a timing signal.

Line Number - This is a positive integer that begins each program state
ment.

LIST - This command displays the entire program on the screen. LIST
0, 100 lists the program statements from 0 to 100 on the screen.

LOAD - This command reads a program from cassette tape and stores it in
computer memory. LOAD USA loads a program named USA from cas
sette into computer memory.

NEW - This command deletes the current program and all variables from
computer memory.

Program - This is the set of statements or instructions that tells the com
puter how to solve a given problem or accomplish some other task.

Program Statement- This is a discrete instruction to the computer, stored
in memory, that begins with a positive integer.

15

16 APPLESOFT LANGUAGE

RUN - This command clears all variables, pointers, and stacks, and begins
execution of the program. RUN generally begins at the lowest number
and executes the complete program.

SA VE - This command stores a program on cassette tape. SA VE USA
stores a program named USA on cassette. (Programmers describe this
action as a SAVE to tape.)

VDM - This abbreviation stands for video display module, which is an elec
tronic screen for displaying data or information.

DISCUSSION

The starting point of this lesson is after Applesoft is in place in the Apple
II computer. When Applesoft is loaded into the computer from ROM (read
only memory), disk, or cassette tape, the prompt (]) and the cursor (Iii)
appear on the left side of the screen.

The older version of the Apple II came with Integer BASIC as standard
equipment and Applesoft as an accessory available either on ROM or cas
sette tape. The present Apple II Plus comes with Applesoft as a standard
ROM card and the Integer BASIC language as an accessory to be purchased
separately.

Programs typed on the keyboard are stored in memory. Programs of
value are SA VEd to cassette tape or disk. From your program library pro
grams are LOADed from tape or disk into memory. Programs are also re
ferred to as software.

After the screen has been cleared, type in the following program.

10 PRINT "THIS IS THE USA"
20 PRINT
30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
70 PRINT "THIS IS THE",
80 PRINT "USA"
999 END

Type in RUN and press RETURN. The output from the program appears
on the screen. Study the output in relation to the program statements. Now
type LIST and press RETURN. The program is listed on the screen. To save
this program on cassette tape follow these steps.

1. Type in SA VE - DO NOT PRESS RETURN.
2. Place a cassette into the tape recorder and rewind until the tape

stops.
3. Press the stop-pause button.
4. Set the mechanical counter on the recorder to zero.

LOAD AND SAVE PROGRAMS ON TAPE 17

5. Forward the tape to a specific number on the counter (for example,
forward the counter to 005).

6. Set the recorder volume to 6 and the tone to medium.
7. Press record-play buttons (or the combination that will cause your re

corder to record).
8. Now press the RETURN key on the computer. The cursor leaves the

screen and the computer. beeps. This indicates the program is being
SA VEd to tape.

9. When the recording is completed, the computer beeps and the cursor
returns to the screen.

10. Press the stop-pause button on the recorder.

The program has been SA VEd to tape. To facilitate future location of the
program, label the program on the cassette cover in the following manner.

1. Name and description of the program.
2. Starting number (on the counter) of the program.
3. Ending number (on the counter) of the program.
4. Volume and tone of the recording. (Generally a volume of 6 and a

medium tone from a Panasonic recorder will satisfactorily SAVE and
LOAD programs on the Apple 11.)

Keeping a record of programs on tape aids in finding and loading pro
grams. Four programs for each 15 minute tape are sufficient for program
protection. Record programs on only one side of the tape. Valuable pro
grams should be duplicated on separate tapes and stored in a safe place.

To check the program just recorded, load the program back into com-
puter memory as follows.

1. Type in NEW. This clears memory.
2. Type in LIST. This checks to see that memory is clear.
3. Type in LOAD - DO NOT HIT RETURN.
4. Rewind tape until it stops.
5. Press counter to read zero.
6. Forward tape to 004 (program recording started at 005).
7. Stop tape recorder.
8. Pull out monitor plug from recorder so sound can be heard.
9. Press play button on the recorder.

10. When the shrill sound is heard, press plug into monitor.
11. Now press RETURN.
12. Cursor leaves the screen, the computer beeps, and the program

loads.
13. When the program is loaded a beep is heard and the cursor returns to

the screen.
14. Type RUN to run, or LIST to list the program.

18 APPLESOFT LANGUAGE

After each operation, the RETURN key must be pressed to complete the
operation. From this point when an operation is complete, you must press
the RETURN key. Enough said about the RETURN key.

In most cases a volume of 6 and a medium tone will produce a satisfac
tory LOAD or SA VE. A volume and/or tone that is too low will produce an
ERR below the LOAD or SA VE on the screen. A volume that is too high will
produce a MEM FULL ERR below the LOAD or SA VE. Persistent difficulty in
LOAD or SA VE routines indicates the tape recorder should be checked to
determine if the frequency of the recorder synchronizes with the frequency
of the computer.

Tapes should be of the highest quality and low background noise. Low
quality tapes will give the user great difficulty in loading and saving pro
grams.

LESSON 2

Save and Load Programs on Disk

After completion of Lesson 2 you should be able to:

1. Initialize disks that are used to save and load programs.
2. Type a program on the screen, and use the reserved word, SA VE, to

save the program on a disk.
3. Load a program stored on disk into the computer memory by using

the reserved word LOAD.
4. Use a limited number of disk operating commands such as CAT A

LOG, RENAME, LOCK, and UNLOCK.

VOCABULARY

Booting DOS - The process of loading disk operating system commands
into the Apple computer. Bootstrap is the technique of loading a pro
gram into a computer by means of certain preliminary instructions which
in turn call in instructions to read programs, and/or data. The preliminary
instructions are usually preset on a device (a disk, in this case), and called
into action by the power "on" switch, or a special command from the key
board, JN#6 or PR#6. Literally, the computer picks itself up "by its boot
straps."

Disk or Diskette - A magnetic disk is a storage device that consists of a flat
circular plate coated on both sides with some material (Mylar) that can be
magnetized. The Apple II usE7~ single density, soft sectored, 5V4 inch
diskette as its virtual storage medium. The 5 % inch floppy disk has a
storage capacity of 118,000 bytes in the 3.2 disk operating system, and
146,000 bytes in the 3.3 disk operating system. The DOS 3.3 will store
between 100 and 120 pages of normal text. The disk is divided into thirty
five (35) tracks, three (3) of these tracks are used for the disk operating
system, and one (1) track, #l l, is used for the directory. The remaining
thirty-one (31) tracks are for the programmer's use. A number of sectors

19

20 APPLESOFT LANGUAGE

(13 on DOS 3.2, and 16 on DOS 3.3) are available on each track and data
is read from or written to these sectors by means of a READ/WRITE head.

Directory - A translation table used to specify the size and format of files
stored on the disk. Each record type and field type is identified by a data
file name.

DOS - The disk operating system consists of a disk drive, or drives, an in
terface card that plugs into one of the eight input/output (1/0) slots in the
Apple motherboard. The DOS interface card plugs into any slot num
bered one (1) through seven (7); slot #Q is reserved for the language card,
the Integer BASIC ROM card, or the Applesoft Language ROM CARD.
When the disks are used in any manner, a request for use is made to the
disk operating system. A software program handles the requests and is
on the master disk, or any initialized disk.

Interface - Refers to the electronic connections between the computer and
a peripheral unit such as a cathode ray tube (CRT), disk drives, modem,
or printer. The interface is commonly referred to as an interface board
that plugs into an input/output (1/0) slot. The cable from the peripheral
unit plugs into the interface board.

Motherboard - A large insulating circuit board on which component, mod
ules, or other electronic assemblies are mounted. Interconnections
between board and components are made by welding, soldering, or other
means.

ROM - Read only memory. ROM is a fixed memory and is any type which
cannot be readily rewritten. The information in ROM is stored perma
nently and is used repeatedly. Such storage is useful for programs such
as the disk operating system (DOS) boot program.

There are basically three configurations of the Apple computer that use
the disk operating system.

Configuration #1 - An Apple II Plus with autostart. This Apple has an
Applesoft language in read only memory (ROM) and the disk operating sys
tem is automatically loaded when the power switch is turned to the "on"
position.

Configuration #2 - An Apple computer with a language card (the lan
guage card has autostart). This type Apple has either Integer BASIC lan
guage or Applesoft language in ROM, and reads the other language into the
language card, and boots DOS from the master disk (or a copy) when the
power switch is turned "on." For clarity, we are going to have Integer BASIC
in ROM, and load Applesoft language into the language card. The master
disk (or copy) must be in the boot drive (slot #6, disk drive #1), and the disk
drive door must be closed when the power switch is turned "on." When the
power is turned "on," DOS is booted from the master disk and Applesoft
language is loaded into the language card.

SAVE AND LOAD PROGRAMS ON DISK 21

Configuration #3 - An Apple computer without autostart in ROM. This
Apple boots up with the language that is on the motherboard. The user
must instruct the computer to load DOS. This is accomplished by placing a
disk in the boot disk drive, and typing in either JN#6 or PR#6 (and then
press RETURN).

Most Apples in use now will be the Apple II Plus with autostart, or an
Apple II Plus with the language card.

The interface card between the computer and the disk drive is placed in
input/output (1/0) slot #6 on the Apple motherboard. The interface card has
two male plugs for two disk drives. The boot disk drive cable is plugged into
the plug marked, "DRIVE #1." If there is a second disk drive, its cable is
plugged into the plug marked, "DRIVE #2." On a two disk drive system, the
boot drive is referenced as DRIVE #l (Dl), or SLOT #6, DRIVE #l (S6,Dl).
The other drive on a two disk drive system is referenced as DRIVE #2 (D2),
or SLOT #6,DRIVE #2 (S6,D2).

BOOT THE SYSTEM

To boot (bring up) the disk operating system (DOS), the disk drive door is
opened gently, the master disk (or initialized disk) is placed in the disk drive
gently, and the disk drive door is closed gently.

Since we are dealing with the Applesoft language, the (]) prompt should
appear in front of the flashing cursor. If your computer comes up in the
Integer BASIC prompt(>), type "FP" (floating point), and press RETURN to
access Applesoft.

If you have an Apple without autostart, and the disk operating system
does not boot when the power is turned "on," you should:

1. Open the disk drive door on boot drive - disk drive #l (slot #6, drive
#l)

2. Place the master disk in the disk drive.
3. Close the disk drive door.
4. Type IN#6, or PR#6, and press RETURN.

While the disk operating system is booting, the red light on the disk drive
is turned "on," and the cursor disappears from the screen. When the disk
operating system is loaded into memory, the red light on the disk drive
turns "off," and the cursor reappears on the screen.

INITIALIZE A DISK

If this is the first time you have booted DOS from the master disk, it is im
portant that you learn to initialize a disk for your own use. The master disk
is WRITE protected, so you cannot write to it, only read from it. A WRITE

22 APPLESOFT LANGUAGE

protected disk has no square cut out hole on the right side when you are fac
ing the label on the disk.

To initialize a disk on a one disk drive system:

1. Take the master disk out of the disk drive.
2. Place the disk to be initialized into the disk drive.
3. Type the phrase, !NIT HELLO, so it appears on the screen. (INIT is a re

served word used to initialize a disk.)
4. Press RETURN.

To initialize a disk on a two disk drive system with the master disk in disk
drive #l (boot drive):

1. For precaution, open the door on disk drive #l (boot drive). Even
though the master disk is write protected, it is a good habit to open the
door on the disk drive that is not being used. Many times when you are
using DOS you will forget what you want to do. If the disk drive door is
open and you send information to the wrong disk, the DOS system will
print, 1/0 ERROR, on the screen. This 1/0 ERROR message makes you
think and realize what action should be taken to perform the correct
task.

2. Place the disk to be initialized in disk drive #2.
3. Type the phrase, !NIT HELLO,D2, so it appears on the screen.
4. Press RETURN.

After RETURN is pressed, the red light on the #2 disk drive is turned "on,"
the cursor disappears from the screen, the stepper motor rotates the disk at
about 360 revolutions per minute, and the disk is initialized to thirty-five
tracks. Each track is broken into thirteen (13) sectors in DOS 3.2, and six
teen (16) sectors in DOS 3.3.

After the disk is initialized, the red light on the disk drive is turned "off,"
and the cursor reappears on the screen.

The initialized disk has a directory which holds all the information about
programs or files that are stored on the disk. When a new program or file is
placed on the disk, the directory is updated to contain the information.

You can see what is on the disk by typing one of the following messages.

1. CATALOG - The command used to see what is stored on a disk (on a
one disk drive system, or the disk drive that was last accessed on a two
disk drive system).

2. CAT ALOG,D2 - The command used to see what is stored on a disk in
disk drive #2.

3. CAT ALOG,D 1 - The command used to see what is stored on a disk in
disk drive #1.

SAVE AND LOAD PROGRAMS ON DISK 23

CATALOG A DISK

When you type CATALOG (CATALOG,D2) and press RETURN, the fol
lowing information appears on the screen:

]CATALOG
DISK VOLUME 254

A 002 HELLO
I ill

The "A" indicates the "HELLO" program is in the Applesoft language. The
"002" means the program takes up two (2) sectors.

SLOT, DRIVE, AND VOLUME OPTIONS

When using the !NIT command to initialize a disk, there are three options
that can be used - slot number, drive number, and volume number. The
volume number option is especially useful when you want to number your
disks in a specific manner.

]INIT HELLO,S6,D2,V3
]CATALOG
DISK VOLUME 003
A 002 VOLUME 003

]illil

On a one disk drive system, INIT HELLO,V3 produces volume #3, since the
DOS system only sees slot #6, drive #l. On a two disk drive system, INIT
HELLO,D2,V3, produces the initialized volume #3 in disk drive #2, since
the DOS system sees the interface card in 1/0 slot #6.

FILE NAMES

In DOS the program must have a name that follows a certain pattern. A
legal file name in DOS must be from one (1) to thirty (30) characters in
length. The file name must begin with a letter from "A to Z," followed by
any alphabetic character, a number, or any other character except a comma
(,). A comma is the character reserved for the slot, drive, and volume op
tions. The command takes everything preceding the comma as a file name
(even control characters).

Examples of some legal file names are:

LOOP
LOOP15

JOHN DOE
MlOOO

Here are some examples of illegal file names:

1001 - starts with a number.

JOHN DOE, PhD - contains a comma

A NAME LONGER THAN THIRTY CHARACTERS IS TRUNCATED TO
THIRTY CHARACTERS

24 APPLESOFT LANGUAGE

SA VE A PROGRAM TO DISK

Let's write a program, and SAVE it to disk.

10 FOR J = 1 TO 5
20 PRINT "J = ";J
30 NEXT J
40 END

Let's name the program LOOP.

To save the program to disk type SAVE LOOP (or SAVE LOOP,Dl - or
SA VE LOOP ,D2), and press RETURN. The cursor disappears, the red light
on the disk drive goes "on," and the program is written to disk. When the
program has been written to disk, the red light goes "off," and the cursor
reappears on the screen. The DOS system requires that the program be
named before it can be SA VEd. SA VE LOOP is the proper command when
using DOS.

In using a cassette recorder, and a cassette tape, the command SAVE was
used to direct the program in memory to be SA VEd on the tape.

DOS remembers which disk drive was accessed last. If disk drive #2 was
last read from or written to, then SAVE LOOP is directed to disk drive #2.
To place LOOP on the disk in disk drive #l, use the command, SAVE
LOOP,Dl. The last disk accessed is the default drive. The default drive does
not require that the drive option be included in the command.

CLEAR COMPUTER MEMORY

If you want to clear memory to write another program or to load a pro
gram from disk, type NEW and press RETURN. The NEW command clears
memory, but does not disturb the DOS system. Memory should be cleared
at any time a situation arises that requires a different memory use.

If you want to save a program and then do more work on it, you do not
need to clear memory. You can add to, change, or delete part of a program,
and then save the program again. The last version SA VEd will be the pro
gram on disk.

LOAD A PROGRAM FROM DISK

Before loading a program type NEW, and press RETURN, so that memory
is cleared.

Now, to load the program LOOP from disk, type LOAD LOOP if the LOOP
program is on the disk in the default disk drive, LOAD LOOP,Dl if LOOP is
on a disk in disk drive #l, or LOAD LOOP,02 if LOOP is on a disk in disk
drive #2; Press RETURN.

Entering the command LOAD LOOP and pressing RETURN loads the pro
gram into the computer memory. After the program is loaded, type UST,

SAVE AND LOAD PROGRAMS ON DISK 25

and the program is listed to the screen. The LIST and EDIT functions are in
Lesson 16.

RUN A PROGRAM FROM DISK

If you prefer to run the program directly from disk, type RUN LOOP, and
press RETURN. The program is loaded into memory and runs.

RENAME A PROGRAM ON DISK

To change the name of a program saved on disk, use the RENAME com-
mand, in this format:

RENAME LOOP, LOOPl - if LOOP is on a disk in the default disk drive.

RENAME LOOP,LOOPl,02 - to direct to command to the disk in disk
drive #2.

RENAME LOOP,LOOPl,Dl - if LOOP is in a disk in disk drive #l.

If LOOPl is already on the disk, and you use the command RENAME
LOOP,LOOPl, you will have two files named LOOPl on the disk. The RE
NAME command does not look through the directory to see which files are
already on the disk.

DELETE A PROGRAM ON DISK

To delete the program named LOOP that has been saved on a disk, type
DELETE LOOP, and press RETURN. The cursor disappears, and the disk
red light goes "on," and the program is deleted from the disk. When the
deletion is complete, the red light on the disk drives goes "off," and the cur
sor returns to the screen. Test that your deletion has worked by typing
CATALOG.

LOCK A PROGRAM

To LOCK the program named LOOP, type LOCK LOOP, and press RE-
TURN.

]LOCK LOOP
]CATALOG
DISK VOLUME 003

A 002 HELLO
*A 002 LOOP

When a CATALOG is commanded, an asterisk(*) appears to the left of
the "A." This asterisk(*) indicates that the program LOOP is locked, and
cannot be deleted, or renamed.

]DELETE LOOP or (RENAME LOOP, LOOP1)
FILE LOCKED

26 APPLESOFT LANGUAGE

If the disk is reinitialized, the program named LOOP will be Jost. Initiali
zation destroys all data on the disk.

UNLOCK A PROGRAM

To unlock the program named LOOP, so that it can be deleted or re-
named, type UNLOCK LOOP.

]UNLOCK LOOP
]CATALOG
DISK VOLUME 003
A 002 HELLO
A 002 LOOP

When the disk is CAT ALOGed, the asterisk (*) has been removed, and the
program named LOOP can be deleted or renamed.

For more instructions on the DOS please refer to Apple If, The DOS
Manual, Disk Operating System, 1980, 1981, APPLE COMPUTER, INC.,
10260 Bandley Drive, Cupertino, California, 95014.

LESSON 3

Print Rules

After completion of Lesson 3 you should be able to:

1. Write a program in Applesoft using PRINT statements.
2. Define and properly use the rules pertaining to PRINT statements.

VOCABULARY

Applesoft II BASIC - This is a more extended, comprehensive, and flexi
ble language than INTEGER BASIC.

Command - Commands are executed immediately and do not require a
line number but can be used as program statements in certain cases.

Delimiters - These are the signals that tell the computer how closely the
results are to be printed, i.e., the comma and the semicolon.

Documentation - This is the total history of a program and its component
parts from inception to completion. Documentation enables another pro
grammer to understand the program.

Format - This is the predetermined arrangement of data, the layout of the
printed document.

PRINT - This statement outputs data.
REM - This statement allows comment within the program but produces

no action in the program. In other words, "REM" reminds the program
mer of what the program does. You can type any comment you like in a
REM statement.

Semicolon - This prevents the cursor from moving after output is com
pleted. In other words, it inhibits the automatic repositioning of the cur
sor.

Statement - Statements are instructions that require line numbers and tell
the computer what action to take.

DISCUSSION

The first objective of this lesson is to write a program using a PRINT state
ment.

27

28 APPLESOFT LANGUAGE

A program is a set of instructions developed to solve a specific problem.
In this example, the problem is to print out the statement "THIS IS THE
USA."

5 REM - PROGRAM - PRINT RULES
10 PRINT "THIS IS THE USA"
999 END

Now that was simple, wasn't it? This programming sure is easy.
The number "5" in the first line is the line number that identifies a state

ment of the program for reference use by the programmer. The first line
doesn't have to start with the number" l." You can use any number you like
up to 63999, the highest line number possible on an Apple II. However, suc
ceeding lines must have higher line numbers than previous lines. The most
practical way is to number every line in 5s or 1 Os. This way you'll be able to
insert extra program steps later if you want to expand your program.

The "REM" statement helps the programmer document the program.
The line 10 PRINT "THIS IS THE USA" is a program statement that out

puts the information enclosed in quotation marks.
The line 999 END is the end of the program. Apple Company's Applesoft

guide states that an END statement is unnecessary and eliminating it is one
way to conserve memory space. It is strongly suggested that an END state
ment always be used in every program. In many cases a program will not
run properly without an end statement.

Now type in line 10 without quotation marks.

10 PRINT THIS IS THE USA (no quotation marks)

999 END
RUN
0 (zero)

The output is zero (0) because the computer reads THIS IS THE USA as a
variable that has a zero (0) value. Variables are used to hold values that
change as the program progresses.

Now type in line 10 using a beginning quote and no closing quote.

10 PRINT "THIS IS THE USA
999 END

RUN
THIS IS THE USA

THIS IS THE USA prints even though there is no closing quote. Applesoft
is flexible enough to let you "get away" without a closing quote.

Now type line 10 with no beginning quote but with a closing quote.

10 PRINT THIS IS THE USA"
999 END
RUN
0

PRINT RULES 29

The output is zero (0) because the computer recognizes THIS IS THE USA
as an uninitialized variable and the ending quote is ignored.

Retype line 10 again, this time spelling PRINT incorrectly, and see what
happens.

10 PUNT "THIS IS THE USA"
999 END
RUN
SYNTAX ERROR IN 10

Now that you have all the errors out of your system - on to the PRINT
rules. This program was written and tested line by line so the student can
view the results produced by each program statement.

1. Anything in quotation marks is printed exactly as in the PRINT state
ment when RUN.

10
20
999
RUN

PRINT "THIS IS THE USA"
PRINT (this PRINT causes a line feed - a space between lines)

END

THIS IS THE USA

2. PRINT statements with no punctuation following the closing quote
cause the output to be printed on one line and cause the computer to
line feed (space down). Consecutive PRINT statements with no closing
punctuation cause the output to be printed vertically, one output
below the other.

30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
RUN
THIS IS THE
UNITED STATES
OF AMERICA

3. A comma placed at the end of a print statement places the output in
separate fields on the same line. Applesoft is designed to divide each
line into 3 fields. The first field begins at column 1 and ends at column
16. The second field begins at column 17 and ends at column 33. The
third field begins at column 34 and ends at column 40.

70 PRINT "THIS IS THE",
80 PRINT "USA"
90 PRINT
RUN
THIS IS THE USA

4. A semicolon placed at the end of a PRINT statement causes the output
to be packed (no space).

30 APPLESOFT LANGUAGE

100 PRINT "THIS IS THE";
110 PRINT "USA"
120 PRINT
RUN
THIS IS THEUSA

5. A comma between the two items in a PRINT statement places the out-
put in the 1st field and the next output in the next available field.

130 PRINT "THIS IS THE" , "USA"
140 PRINT
RUN
THIS IS THE USA

6. A semicolon between two items in a PRINT statement causes the
output to be packed (no space).

150 PRINT "THIS IS THE" ; "USA"
160 PRINT
RUN
THIS IS THEUSA

(Note that examples 3 and 5 give the same output, but are produced
by a different program statement format. The same is true of
examples 4 and 6.

7. Spaces placed between quotation marks and the item will be output in
the print format. (X's are placed in the PRINT statement to represent
blank spaces).

170 PRINT "XXTHIS IS THEX" ; "USA"
180 PRINT
RUN
XXTHIS IS THEXUSA (X's represent blank spaces)

8. A PRINT following a PRINT statement closes out the line. (A PRINT fol
lowing a PRINT statement with no punctuation causes a line feed, i.e.,
space between the lines. A PRINT following punctuation closes out the
line, but does not cause a line feed).

190 PRINT "THIS IS THE";
200 PRINT
210 PRINT "USA"
220 PRINT
RUN
THIS IS THE
USA

9. To print variables with assigned values NO quotation marks are used
and the assigned values are printed.

230 A = 5 : B = 10 : C = 15
240 PRINT A
250 PRINT B
260 PRINT C

270 PRINT
RUN
5
10
15

280 PRINT A,B,C
290 PRINT
RUN
5

300 PRINT A; B; C
RUN
51015

PRINT RULES 31

10 15

The same punctuation rules that apply to items enclosed in quotation
marks apply to variables.

1. No punctuation prints vertically.
2. Commas after variables print in three vertical columns.
3. Semicolons after variables pack the output leaving no space between

numbers.

The complete program and RUN follows.

5 REM - PRINT RULES
10 PRINT "THIS IS THE USA"
20 PRINT
30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
70 PRINT "THIS IS THE" ,
80 PRINT "USA"
90 PRINT
100 PRINT "THIS IS THE";
110 PRINT "USA"
120 PRINT
130 PRINT " THIS IS THE" , "USA"
140 PRINT
150 PRINT "THIS IS THE" ; "USA"
160 PRINT
170 PRINT "XXTHIS IS THEX" ; "USA"
180 PRINT
190 PRINT "THIS IS THE" ;
200 PRINT
210 PRINT "USA"
220 PRINT
230 A = 5 : B = 10 : C = 15
240 PRINT A
250 PRINT B
260 PRINT C

32 APPLESOFT LANGUAGE

270 PRINT
280 PRINT A, B, C
290 PRINT
300 PRINT A; B; C
999 END
RUN
THIS IS THE USA

THIS IS THE
UNITED STATES
OF AMERICA

THIS IS THE USA

THIS IS THEUSA

THIS IS THE USA

THIS IS THEUSA

XXTHIS IS THEXUSA

THIS IS THE
USA

5
10
15

5 10 15

51015

LESSON 4

HTAB, TAB, and VTAB Statements to
Format Output

After completion of Lesson 4 you should be able to:

1. Use HT AB, TAB, and VT AB statements to format output on the CRT,
similar to using the tabulators and return on a typewriter.

2. Draw the location of rows and columns on the CRT.
3. Clear the CRT by the use of HOME and CALL statements.

VOCABULARY

CALL - This causes the execution of a machine language subroutine at a
memory location whose decimal address is specified in the call expres
sion. CALL - 936 clears the screen. CALL - 936 causes the same results
as HOME.

Colon - The colon separates multiple statements that are on the same line.
The colon is also called the program statement separator.

HOME - This clears the screen of all data and moves the cursor to the up
per left position within the scrolling window. Produces the same results
as CALL - 936.

HTAB - This moves the cursor from 1 to 40 spaces over on the current line
and prints data at the HT AB numeric expression. HT AB 20 prints data at
column 20 on the current line.

Program Statement Separator - This is the colon in Applesoft language
that allows multiple statements at the same line number.

TAB -This must be used in a PRINT statement and prints data one column
past the numeric expression. PRINT TAB(20) prints data at column 20 of
the current line.

VTAB - This moves the cursor to a line that is in the numeric expression.
VTAB 12 moves the cursor to row 12 on the screen. The numeric expres
sion in VT AB can range from 1 to 24.

33

34 APPLESOFT LANGUAGE

DISCUSSION

HT AB is a function that allows the programmer to place information on a
specific vertical column on the VDM. The VDM has columns numbered
from 1 to 40.

VT AB is a function that allows the programmer to place information on a
specific horizontal row on the VDM. The VDM has 24 rows numbered from 1
to 24.

HT AB and VT AB are generally used together in the same program line
and are separated by a colon (:). The colon is used as a separator between
two or more program statements with the same line number.

TAB (26) is used only in a PRINT statement and is separated from other
statements by semicolons, and it accomplishes the same purpose as the
HTAB.

HOME is a command that moves the cursor and the prompt to the upper
left-hand corner of the screen of all text. Call - 936 clears the screen in the
same way.

HOME and CALL - 936 are discussed because the following program
must clear the screen to see the HT AB and VT AB functions executed
properly.

10 HOME
20 VTAB 1 : PRINT "A"
RUN

This clears the screen and prints "A" at VTAB 1 : HTAB 1 (see Fig. 4-1).

A B

40 CHARACTERS

E F

24 LINES

c l D

30 VTAB 1 : HTAB 40: PRINT "B";
RUN

Fig. 4-1. VDJVI screen.

This prints "B'' at VTAB 1: HTAB 40. The semicolon is necessary to pre-
vent line feed.

40 VTAB 24: HTAB 1 : PRINT "C"; : VTAB 10
RUN

This prints "C" at VT AB 24 : HT AB 1. The semicolon prevents line feed
and the colon closes out the line. VTAB 10 shifts the cursor to VTAB 10, be·
cause if we didn't, the computer would automatically shift the cursor to the
next line when we close out line 40. Since the cursor is already on the last

!

I ,

HTAB, TAB, AND VTAB STATEMENTS TO FORMAT OUTPUT 35

line of the screen, the present screen display must shift up one line to make
more room. That will cause us to lose "A" and "B" from the display, and it
will shift "C" up one line. To avoid all that, we just tell the computer to move
the cursor up instead of down. Of course, if we weren't running this line by
itself, the next line could instruct the computer to put the cursor elsewhere.
And that's just what we do in the next line, line 50.

50 VTAB 24: HTAB 39 : PRINT "D"; : VTAB 10
RUN

This prints "D" at VT AB 24 : HT AB 39. Even though the screen is 40
columns wide it is not possible to print the "D" at VT AB 24 : HT AB 40 with·
out shifting the "A" and "B'' characters off the screen, because, immedi·
ately after we print there and before we can do anything else, the cursor
jumps to the next line.

To clean up the program type LIST 40. Line 40 will be displayed on the
screen. Now retype the line.

40 VTAB 24: HTAB 1 : PRINT "C";

That leaves out the last colon and the VT AB 10. The program still runs
properly because the":" and VTAB 10 are not necessary with the inclusion
of line 50. (The edit function is discussed in further detail in Lesson 16.)

60 VTAB 12: HTAB 13: PRINT ''E''; TAB (26); "F"

Line 60 causes the letter "E" to be printed at VTAB 12: HTAB 13. A TAB
function is used in a PRINT statement and the numerical expression is con·
tained in the parentheses. The TAB (26) expression is separated from the
PRINT by semicolons on each side. Notice that the "F" does not have the
PRINT repeated but is enclosed in quotation marks.

Here is the program written as a unit.

10 HOME
20 VTAB 1 : PRINT "A"
30 VTAB 1 : HTAB 40 : PRINT "B" ;
40 VTAB 24 : HTAB 1 : PRINT "C" ;
50 VTAB 24: HTAB 39: PRINT "D"; : VTAB 10
60 VTAB 12: HTAB 13: PRINT "E"; TAB (26); "F"
999 END

Fig. 4-2. PRINT program results. I
24

I
HERE WE GO

A BLANK LINE??

ONE MORE TIME
NO BLANK LINE HERE!!!
HERE WE GO!

ONE MORE TIME!!!

WHAT A DIFFERENCE!!!

H

K

36 APPLESOFT LANGUAGE

Type in and RUN the program in Fig. 4-2 to learn more about controlling
PRINT statements.

70 HOME
80 PRINT "HERE WE GO" ; TAB (40); "H"
90 PRINT "A BLANK LINE??"
100 PRINT: PRINT
110 PRINT "ONE MORE TIME" ; TAB (40) ; "I";
120 PRINT "NO BLANK LINE HERE!!!"
130 PRINT "HERE WE GO!" ; : HTAB 40 : PRINT "J"
140 PRINT "ONE MORE TIME !" ;: HTAB 40: PRINT "K"
150 PRINT "WHAT A DIFFERENCE!!!"
160 END

Line 70 clears the screen.
Line 80 prints "H" in column 40 on the top line. After "H" is printed the

cursor went to the second line, first column to prepare for the next item.
Since the PRINT statement was complete, the second line was closed out.

Line 90 prints on the third line even though the second line is completely
blank. ·

Line 100 leaves 2 blank lines.
Line 110 is almost a duplicate of line 80, except for the semicolon after

"!." The semicolon does not close out the line.
Line 120 is printed immediately below "ONE MORE TIME" because the

line was not closed out.
Lines 130 through 150 do essentially the same things as lines 80 through

120 except the HTAB function is used instead of the TAB function. The
HT AB prints in the place where the HT AB value is assigned. HT AB 40 prints
at column 40. TAB (40) prints at column 40.

You cannot print at VT AB 24 : HT AB 40 without pushing the top line off
the screen.

You cannot print at VTAB 24: PRINT TAB (40) without pushing the top
line off the screen.

LESSON 5

Variables

After completion of Lesson 5 you should be able to:

1. Define the variables used in Applesoft.
2. Distinguish between variables and reserved words.
3. Understand the relationship between integers and reals and how

truncation affects mathematical calculations.
4. Use INT and DEF functions to round off calculations.

VOCABULARY

DEF FN - This allows the programmer to define functions within the pro
gram.

Deferred Execution - This means that a line is to be executed at a later
time. BASIC statements with a line number are run in the deferred execu
tion mode.

Immediate Execution - This means that a line is to be executed immedi
ately. BASIC commands without a line number are run in the immediate
execution mode.

Integer - This is any whole number, its negative, or a zero. Integers never
include decimal points, unless they are being expressed as real numbers.

Literal - This is a sequence of characters enclosed in quotation marks. In
A$ = "HELLO," A$ is a variable, HELLO is a string, and "HELLO" is a lit
eral. See the definition of String.

Real - This is any number, including integers, that can be written with a
decimal.

Scientific Notation - This is the method of expressing numbers as a power
of ten. In scientific notation, the number 1234 is 1.234 X 103 , and the
number 0.001234 is 1.234 X 10-3 • Applesoft uses the symbol "E" to indi
cate the number before the "E" is to be multiplied by ten raised to
the power indicated after the "E". For instance, 1X1011 is expressed by
Applesoft as lE + 11.

37

38 APPLESOFT LANGUAGE

String - This is any sequence of characters.
Truncate - This is to drop off the digits from a real number (1.3456) and

produce an integer (1). In this case, the .3456 was truncated to form the
integer (1). Truncation is different from rounding. If the real (1.3456) was
rounded to two places, the result would be 1.35.

DISCUSSION

A variable, according to Webster, is:

1. Something that is variable.
2. A quantity that may assume any one of a set of values.
3. A symbol representing a variable.

In Applesoft, a variable can be an alpha (alphabet) character (A through
Z), two alpha characters (AA), or an alpha and a numeric (0 through 9)
character, unless these characters are part of a word reserved specifically
for the Applesoft language.

LEGAL APPLESOFT VARIABLES

A BB Cl Z2

LEGAL APPLESOFT VARIABLES - but only the first two characters are
recognized by the Applesoft language.

DOE SlM SU3 PER

ILLEGAL APPLESOFT VARIABLES - that are reserved words.

ABS
LET

AND
LOAD

CALL
SAVE

DEL
VTAB

A complete list of reserved words is found on page 122 of the APPLE
SOFT II BASIC PROGRAMMING REFERENCE MANUAL, published by
Apple Computer, Inc.

What happens when a reserved word is used as a variable?

10 FOR = 5
20 PRINT FOR
30 END
RUN
?SYNTAX ERROR IN 10

The syntax error message is produced and the program does not run. One
deficiency of the Applesoft language is that it does not give an error
message until the program is run. A better method would be to give an error
message when the statements are input.

TYPE
INTEGER
REAL
STRING

TYPES OF APPLESOFT VARIABLES

VARIABLES 39

EXAMPLE
A%= 1
A = 1.23
A$ = "82.5"

An integer is any of the natural, or whole, numbers. The numbers 1, 2, 3,
and 5 are integers. In Applesoft, integers must be in the range of - 32767 to
+ 32767 or the computer will give an ILLEGAL QUANTITY ERR because
you are out of the range of its capabilities. Fig. 5-1 shows a program written
to demonstrate the limits of the Apple computer. Any number less than
- 32767, or greater than + 32767, gives an ILLEGAL QUANTITY ERROR, in
a specific line number. If A% had been given a value of - 32768, the pro
gram would not run, and would have printed out the error mesage, ILLEGAL
QUANTITY ERROR IN LINE 230.

ANY INTEGER LESS THAN -32767 OR GREATER THAN +32767 IS AN
ILLEGAL VALUE AND WILL PRINT THE ERROR MESSAGE - ?ILLEGAL
QUANTITY ERROR IN LINE???

230 A% = -32767
240 B% = 32767
250 PRINT
260 PRINT A%,B%
270 END

-32767 32767

Fig. 5-1. Program to demonstrate integer range.

Applesoft language uses the percent sign to indicate an integer variable.
Fig. 5-2 demonstrates that A% = 10 is an integer quantity.

120 A% = 10
130 PRINT
140 PRINT "RES UL TS ARE = ";A%
150 END

RES UL TS ARE = 10

Fig. 5-2. Program to demonstrate integer function.

Fig. 5-3 is a program to demonstrate how an integer variable truncates a
real number. 8% is an integer variable. The value 3.1416 is a real (frac
tional) value. The 8% is given the value 3.1416 in Fig. 5-3, line 120, but it
truncates the real number and outputs it as an integer (3). An integer
variable converts a positive real toward the lower value.

40 APPLESOFT LANGUAGE

120 8% = 3.1416
130 PRINT
140 PRINT "RESULTS ARE = ";8%
150 END

RESULTS ARE = 3

Fig. 5-3. Program to demonstrate truncation by the integer (INT) function.

Fig. 5-4 is a program written to demonstrate how an integer variable trun
cates a negative rei:i.J. C% = - 0.843. When the program is run, the nega
tive real (- 0.8430) is truncated to a negative one (- 1). Applesoft truncates
negative reals to negative integers by converting them down toward the
next whole number.

120 C% = -0.843
130 PRINT
140 PRINT "RESULTS ARE = ";C%
150 END

RESULTS ARE = -1

Fig. 5-4. Program showing how a negative real number is truncated by the INT
function.

· Fig. 5-5 is a program to demonstrate how the output results differ when
the area of a circle is calculated with integers or reals. A% = Pl% * R%A2
(R% = 3) calculates the area of a circle using integers. The output of this
calculation is twenty-seven (27) square inches. A = Pl * RA2 (R = 3) cal
culates the area of a circle using real variables, and produces an output of
28.2744 square inches. The correct type of variable must be used to pro
duce accurate results.

130 Pl% = 3.1416:R% = 3
140 A% = Pl% * R% A 2
150 Pl = 3.1416:R = 3
160 A = Pl * R A 2: PRINT
170 PRINT "INTEGER AREA OF THE CIRCLE IS ";A%;" SQUARE INCHES":

PRINT
180 PRINT "REAL AREA OF THE CIRCLE IS ";A;" SQUARE INCHES":

PRINT
190 END

INTEGER AREA OF THE CIRCLE IS 27 SQUARE INCHES

REAL AREA OF THE CIRCLE IS 28.2744 SQUARE INCHES

Fig. 5-5. Calculations with integers and reals.

VARIABLES 41

Applesoft language outputs nine, or fewer, positive or negative digits as
they are input (Fig. 5-6). When more than nine positive digits are input, the
output is in positive scientific notation. When more than nine negative
digits are input, the output is in negative scientific nota.tion.

130 A = 999999999
140 B = 9999999999
150 c = - 999999999
160 D = - 9999999999
170 PRINT
180 PRINT "APPLESOFT PRINTS = ";A;" FIGURES"
190 PRINT
200 PRINT "GREATER THAN NINE FIGURES = ";B
210 PRINT "APPLESOFT PRINTS IN SCIENTIFIC NOTATION"
220 PRINT
230 PRINT "NEGATIVE VALUE PRINTS = ";C;" IN"
240 PRINT "NEGATIVE NINE FIGURES"
250 PRINT
260 PRINT "NEGATIVE VALUE OUTPUT = ";D;" IN"
270 PRINT "NEGATIVE SCIENTIFIC NOTATION"
280 END

APPLESOFT PRINTS.= 999999999 FIGURES

GREATER THAN NINE FIGURES= 1E+10
APPLESOFT PRINTS IN SCIENTIFIC NOTATION

NEGATIVE VALUE PRINTS = -999999999 IN
NEGATIVE NINE FIGURES

NEGATIVE VALUE OUTPUT= -1E+10 IN
NEGATIVE SCIENTIFIC NOTATION

Fig. 5-6. Positive and negative integers.

Fig 5-7 shows a program written to demonstrate how the INT (integer)
function is used to output real numbers with a specified number of deci
mals. For example, if the variable "A" whose value is 28.2743343 is to be
rounded to two places, the rounding value is 100 (Q = 100). The formula
INT(lOO*A + .5)/100 is used to round to two places. The computation fol
lows the rules of precedence. Precedence of operations is discussed in
Lesson 6.

100 x 28.27 43343
2827.43343 + .5
INT(2827. 93343)
2827 I 100

2827.43343
2827.93343
2827
28.27

42 APPLESOFT LANGUAGE

130 p = 1000
140 Q = 100
150 R = 10
160 s = 1
170 Pl = 3.1415927:RA = 3
180 -A :: Pl * RA A 2
190 PRINT
200 PRINT "AREA OUTPUT AS INPUT = ";A
210 PRINT "AREA OUTPUT TO 3 PLACES = ";INT (A* P + .5) IP
220 PRINT "AREA OUTPUT TO 2 PLACES = "; INT (A* Q + .5) IQ
230 PRINT" AREA OUTPUT TO 1 PLACE = "; INT (A* R + .5) I R
240 PRINT "AREA OUTPUT TO 0 PLACES = "; INT (A* S + .5) IS
250 PRINT "AREA OUTPUT TRUNCATED = "; INT (A)
260 END

AREA OUTPUT AS INPUT = 28.2743343
AREA OUTPUT TO 3 PLACES = 28.274
AREA OUTPUT TO 2 PLACES = 28.27
AREA OUTPUT TO 1 PLACE = 28.3
AREA OUTPUT TO 0 PLACES = 28
AREA OUTPUT TRUNCATED = 28

Fig. 5-7. KNT fumcticm used to output real numbers with a specified number of
decimal places.

Fig. 5-8 is a program written to demonstrate what happens when an ex
pression or formula is divided by zero. In mathematics, dividing by zero
gives an undefined result. The computer does not allow division by zero.
When you attempt to divide by zero, accidentally or on purpose, the com
puter stops the program at the line number where the attempt to divide by
zero was made and outputs an error message, ?DIVISION BY ZERO ERROR
IN 200 (Fig. 5-8).

130 p = 0
140 Pl = 3.1416:RA = 3
150 A = Pl * RA A 2
160 PRINT
170 PRINT "WHEN THE AREA IS DIVIDED BY ZERO AN"
180 PRINT "ERROR MESSAGE IS PRINTED"
190 PRINT "P = 0 THEREFORE WHEN INT(A*P+ .5)/P IS"
200 PRINT "CALCULATED"; INT (A* P + .5) I P;"THE VALUE IS ZERO":

PRINT
210 END

WHEN THE AREA IS DIVIDED BY ZERO AN ERROR MESSAGE IS PRINTED
P = 0 THEREFORE WHEN INT(A*P+.5)/P IS CALCULATED
?DIVISION BY ZERO ERROR IN 200

fig. 5-8. Divide-by-zero gives an error message.

VARIABLES 43

Applesoft has a built in function that can be used to round to a specific
number of decimal places. The results are the same as when using the INT
function, but the DEF FN is more convenient when typing the output
variable. The DEF FN, Fig. 5-9, line 130, is used in the following format to
round to three decimal places.

130 DEF FN A(W) = INT(W * 1000 + 5)/1000
The "A" variable is attached to the define function to identify it for later

use. The variable "W" is placed in parentheses, DEF FNA(W), and the same
variable "W" is used in parentheses in the integer function, INT(W* 1000 +
.5)/1000.

130 DEF FN A(W) = INT (W * 1000 + .5) / 1000
140 DEF FN B(X) = INT (X * 100 + .5) / 100
150 DEF FN C(Y) = INT (Y * 10 + .5) / 10
160 DEFFND(Z) = INT(Z*1 + .5)/1
170 A= INT (A)
180 Pl= 3.1415927:RA = 3
190 A = Pl * RA A 2
200 PRINT
210 PRINT "AREA OUTPUT AS INPUT = ";A
220 PRINT "AREA OUTPUT TO 3 PLACES = "; FN A(A)
230 PRINT "AREA OUTPUT TO 2 PLACES = "; FN B(A)
240 PRINT "AREA OUTPUT TO 1 PLACE = "; FN C(A)
250 PRINT "AREA OUTPUT TO 0 PLACES = "; FN D(A)
260 PRINT "AREA OUTPUT TRUNCATED = "; INT (A)
270 END

AREA OUTPUT AS INPUT = 28.2743343
AREA OUTPUT TO 3 PLACES = 28.274
AREA OUTPUT TO 2 PLACES = 28.27
AREA OUTPUT TO 1 PLACE = 28.3
AREA OUTPUT TO 0 PLACES = 28
AREA OUTPUT TRUNCATED = 28

Fig. 5-9. Decimal calculation using the DEF function.

When the computed area is to be output to three places, the output func
tion is written, FNA(A). The "A" outside the parentheses refers to the define
function, and the "(A)" inside the parentheses refers to the area of the circle.

The define function can be used to store formulas. In Fig. 5-10, line 150,
the formula for the area of a circle is stored in the form, DEF FNB(A) = Pl *
R /\ 2. The value of Pl was initialized in Fig. 5-10, line 130, as Pl = 3.1416.
The function FNB(A) was then used in Fig. 5-10, line 170, to print out the
area of the circle each time the radius changed (FOR R = 1 TO 5). In Fig.
5-10, line 140, the define function was initialized to round a real number to
two decimal places. This rounding function, FNC(X), was used to embrace
the "AREA" function, FNB(A). To produce the area of a circle to two deci·

44 APPLESOFT LANGUAGE

mal places, FNC(FNB(A)). One function can be buried within another func
tion to produce desired results.

130 Pl= 3.1416
140 DEF FN C(X) = INT (X * 100 + .5) / 100
150 DEF FN B(A) = Pl * R A 2
160 FOR R = 1 TO 5
170 PRINT "AREA OF A CIRCLE = "; FN B(A)
180 NEXT R: PRINT
190 FOR R = 1 TO 5
200 PRINT "AREA OF A CIRCLE = "; FN C(FN B(A))
210 NEXT R
220 END

AREA OF A CIRCLE= 3.1416
AREA OF A CIRCLE = 12.5664
AREA OF A CIRCLE = 28.2744
AREA OF A CIRCLE = 50.2656
AREA OF A CIRCLE = 78.54

AREA OF A CIRCLE= 3.14
AREA OF A CIRCLE = 12.57
AREA OF A CIRCLE = 28.27
AREA OF A CIRCLE = 50.27
AREA OF A CIRCLE = 78.54

Fig. 5-10. Using the DEF function to store formulas.

A literal is a set of alphanumeric characters enclosed in quotation marks.
The following are examples of literals.

"7 - 11 STORE" "BILL"
"44 - 50" "SUE"

String literals have been used in the PRINT statement. A string variable
may consist of 256 characters (one row on the screen consists of 40
characters). The following are examples of string variables.

A$
02468$

Z1$
H1$

CC$
MOLE$

COB$
HAIR$

A string variable must begin with an alphabetic character and may be fol
lowed by an alphabetic character or a numeric character, followed by a
dollar sign($). Only the first two characters of the string variable are recog
nized by Applesoft.

HA$ is equivalent to HAIR$
Z2$ is equivalent to Z2468$

A string is used in replacement statement form by placing the string
variable on one side of an equals sign and the string literal on the other side
of the equals sign (Fig. 5-11). The number of characters in the string can be

VARIABLES 45

determined by using the reserved word LEN. In Fig. 5-11, line 130, A$ =

"HI THERE SUE," when LEN(A$) is used in line 170, the output shows the
number of characters in the string is twelve (12). When LEN("SUE") is used
in line 190, the output shows there are three (3) characters in the name
"SUE."

130 A$ = "HI THERE SUE"
140 PRINT
150 PRINT "A$ PRINT = "A$
160 PRINT
170 PRINT "NUMBER OF CHARACTERS IN THE STRING = "; LEN (A$)
180 PRINT
190 PRINT "NUMBER OF CHARACTERS IN THE NAME SUE = ";LEN ("SUE")
200 END

A$ PRINT = HI THERE SUE

NUMBER OF CHARACTERS IN THE STRING = 12

NUMBER OF CHARACTERS IN THE NAME SUE = 3

Fig. 5-11. Alphanumeric strings.

The Apple has an immediate execution mode that tells the number of
characters in a string and the length of a literal. After the program in Fig.
5-11 has been run, the immediate execution mode tells the length of the
string and the literal.

PRINT LEN (A$), LEN ("SUE") (press RETURN)

12 3

In this immediate execution mode, no line number is needed.

LESSON 6

Precedence

After completion of Lesson 6 you should be able to:

1. Write the order of precedence of arithmetic operators and show how to
modify precedence.

2. Demonstrate three methods to input into a program.
3. Use constants to perform addition, subtraction, multiplication, divi

sion, and exponentiation.

VOCABULARY

Arithmetic Operators - These are symbols that instruct the computer to do
arithmetic operations, addition, subtraction, multiplication, division, and
exponentiation.

ASC - This is the function that converts one string character to a numeric
value. PRINT ASC ("A") returns the American Standard Code for Informa
tion Interchange (ASCII) value of A which is 65.

CHR$ - This is the function that converts a numeric value into one string
character. PRINT CHR$ (65) returns the character A which is the ASCII
value of 65.

Constant - This is an item of data that remains unchanged after each run.
Interactive Mode - This is a method of operation in which the user is in

direct communication with the computer and is able to obtain immediate
response to his input messages. A display where the user is allowed to
input data in response to information displayed is said to be in an inter
active mode. Conversational mode (display) is synonymous with inter
active mode (display).

LET - This is a replacement statement that allows the value on the right
side of the equals sign to be stored in the variable on the left side of the
equals sign. LET may be a real, an integer, or a string.

MODEM - This word is a contraction of modulator and demodulator. It
means a device that codes or decodes information to send or receive
from a remote computer over telephone lines.

47

48 APPLESOFT LANGUAGE

Operand - This is the item on which the operation is performed.
Operator - This is the action to be taken on the operand. In A 5 * 2,

times is the operator.
Precedence - This is the order in which things are done.
Replacement Statement - This statement takes the value on the right side

of the equals sign and stores it in the variable on the left side of the
equals sign (e.g., A = 5 is a replacement statement).

Replacement Operator - In A = 5, the equals (=)sign is the replacement
operator.

Unary Operator - This is a processing operation performed on one
operand. NOT, plus (+), and minus (-) are unary operators and apply to
the sign of a number (- 5, + 3). It is the same as the monadic operator.

DISCUSSION

The order of precedence is very important in mathematic calculations.
Incorrect precedence produces incorrect answers. Correct precedence pro
duces correct answers if all other procedures are correct. The order of prec
edence of arithmetic operators from highest to lowest is

1.) items enclosed in parentheses are operated on first - highest
priority.

2. NOT, +, - NOT, POSITIVE, and NEGATIVE unary or monadic
operators.

3. Exponentiation.
4. Multiplication and division.
5. Addition and subtraction.

Operators listed on the same line have the same priority and are executed
starting at the left side of the formula and completed on the right side.

Integers and reals are classified as arithmetic variables. Strings are classi
fied as nonarithmetic variables. When integers and reals are used in a
formula, the integers are converted to reals before the calculation takes
place. The final result can be converted either to an integer or left as a real.
String variables (nonarithmetic) cannot be converted directly to integers or
reals, but can be converted indirectly by other functions provided for that
purpose.

The following program converts a string variable to a numeric variable
and converts a numeric variable to a string variable.

10 A$ = "A"
20 B = ASC (A$)
30 PRINT B
40 D = 65
50 C$ = CHR$ (D)
60 PRINT C$

70 END
RUN
65
A

PRECEDENCE 49

Line 10 sets A$ = "A". The computer uses coded numbers to represent
letters. "A" is converted to the ASCII number. Each letter, number, and
symbol on the keyboard has an ASCII number.

Line 20 B = ASC (A$) puts the ASCII number of A (65) into B.
Line 30 PRINT B produces B = 65 which is the conversion of A$ (a string)

to a real number.

ASC JS THE FUNCTION THAT CONVERTS ONE STRING CHARACTER TO A
NUMBER.

Line 40 D = 65 places the ASCII value of the letter A into D.
Line 50 C$ = CHR$ (D) changes the value of D into a string character in

C$.
Line 60 PRINT C$ prints out the letter that was converted from the

numeric equivalent of (65) of the letter A.

CHR$ IS THE FUNCTION THAT CONVERTS A NUMBER INTO ONE STRING
CHARACTER.

The maximum length of a string is 255 characters.
Now for some examples of precedence.

1. Items enclosed in parentheses can either be variables or numeric
values. If the variable is not given a value - a value of zero (0) is re
turned. The innermost set of parentheses is evaluated first.
15*(2 + (3 + 2)*3) = 255
15*(2 + 3 + 2)*3 = 315
15* 2+ 3+2 *3 = 39
Precedence can be modified by using parentheses as demonstrated by
the previous example.

2. The monadic or unary operator is the sign (+, - , or NOT) of the num
ber.
+ 3 + 2 = 5 (number is positive when no sign is printed)
+3-2=1
-3+2= -1
-3-2= -5

3. Exponentiation.
3/\2 = 9
31\80 = 1.47808831 E + 38

4. Multiplication and division.
(10*5)/(2*5) = 5
(10*5)/ 2*5 = 125
10*5 I 2*5 = 125

50 APPLESOFT LANGUAGE

5. Addition and subtraction.
(8 + 2) + (2 + 2) = 14
8+2 + 2+2 =14

(8 + 2) - (2 + 2) = 6
8+2 - 2+2 =10

(8 - 2) + (2-' 2) = 6
8-2 + 2-2 =6

(8 - 2)- (2 - 2) = 6
8-2 - 2-2 =2

There are several ways to get information or data into the computer. The
replacement statement and the READ-DATA statement do not require
any outside action or external peripherals. The INPUT statement is inter
active between the user and the computer. Cassette tape, disk, and modem
are external sources to place information or data into the computer.

10 LET A = 1 + 2 + 3
20 PRINT A
999 END
RUN
6

Line 10 is a replacement statement. The values on the right side of the
equals sign are calculated and placed in a memory location that the com
puter labels "A." The contents of A are 1 + 2 + 3 or 6.

In this case, equals does not mean two equal values on opposite sides of
the equals sign, but the value on the right side of the equals sign is trans
ferred to the left side of the equals sign. This is an operation (transfer) for
the computer to perform and not an evaulation (decision). The equals is the
replacement operator, and the LET is a replacement statement.

Line 20 PRINT A outputs 6, the value stored under the variable label A.
The LET is optional. You get the same results with A = 5 as with LET A

= 5. A = 5 saves memory and is easier to type.
The following program is written to demonstrate the arithmetic

operators, print rules, and replacement statements.

10 A = 5 : B = 10 : C = 20
20 D = C + B
30 E = C - B
40 F=A*B
50 G = CI A
60 H = AA2
70 PRINT D : PRINT E : PRINT F : PRINT
80 PRINT F, G, H : PRINT
90 PRINT D; E, F : PRINT
100 D = A : E = B : F = C
110 PRINT D, E, F
999 END

PRECEDENCE 51

RUN
30 (D, no punctuation, line 70)

10 (E, no punctuation, line 70)

50 (F, no punctuation, line 70)

(line 70, PRINT skips a line)

50 (F comma) 4 (G comma) 25 (H comma)
(line 80, PRINT skips a line)

301050 (D; E; F, semicolons, line 90)

(line 90, PRINT skips a line)

5 (D = A) 10 (E = B) 20 (F = C)

Line 100 D = A replaces the existing value of D (30) with the value of A
(5). When D is printed, the replaced value 5 is printed. E = B replaces the
existing value of E (10) with the value of B (10). These values happen to
be the same, so no difference is seen. F = C replaces the existing value of F
(50) with the value of C (20).

INPUT is used to place values in the program on an interactive basis.
Type in the following lines but leave the rest of the program as it is.

6 INPUT "A = ";A
8 INPUT "B = ";B
10 INPUT "C = ";C
RUN
A=5
B = 10
c = 20

The rest of the run is exactly the same as when the replacement statement
was used to input the values of A (5), B (10), and C (20).

Now RUN the program using any values that you choose, but do not
delete the program because the next step is to use the READ - DAT A input
method.

When you are through experimenting with different numbers using the
INPUT statement type in

DEL 6, 10 (return)

This deletes the INPUT statements at lines 6, 8, and 10. Now type in:

10 READ A, B, C
120 DATA 5, 10, 20

The results of the run are the same as using a replacement statement, IN
PUT statement, or a READ - DAT A statement when the values are A = 5,
B = 10, and C = 20.

LESSON 7

Loops

After completion of Lesson 7 you should be able to:

1. Write a program using a GOTO loop.
2. Write a program using a FOR-NEXT loop.
3. Write a program using nested loops.

VOCABULARY

Branch - This is a departure (or the act of departing) from a sequence of
program steps to another part of the program. Branching is caused by a
branch instruction that can be conditional (i.e., dependent on some previ
ous state or condition in the program) or unconditional (i.e., always
occurring). It is also known as a transfer or jump.

Conditional Transfer - See Branch.
FOR-NEXT - This is a conditional branch instruction used to make the

computer jump to another part of the program.
GOTO - This is an unconditional branch (jump or transfer) to another part

of the program. It may be executed in the immediate or deferred mode.
Graphics - This is the art or science of drawing a representation of an ob

ject on a two dimensional surface according to mathematical rules of
projection.

Increment - This is a fixed quantity that is added to another equivalent
quantity.

Initialization - This is a process performed at the beginning of a program
or program section or subroutine to ensure that all indicators and
constants are set to prescribed conditions and values before that sub
routine is run.

Loop - This is a set of instructions that are performed repeatedly until
some specified condition is satisfied, whereupon a branch (jump or trans
fer) instruction is obeyed to exit from the loop.

Nested Loops - These are loops that exist within other loops.

53

54 APPLESOFT LANGUAGE

STEP - In a FOR-NEXT loop, STEP is that function that causes the loop to
increment by the value designated by the STEP. It may be positive or
negative.

Test - This means to examine an element of data or an indicator to ascer
tain whether some predetermined condition is satisfied.

Unconditional Transfer - See Branch.

DISCUSSION

A loop is a series of instructions that are performed repeatedly until a
specified condition is satisfied.

Suppose a program was written to count from one to five. One variation
of the program could be

10 PRINT "1"
20 PRINT "2"
30 PRINT "3"
40 PRINT "4"
50 PRINT "5"
60 END

The program would not use the computer very efficiently; writing a pro
gram this way to count to a thousand would take all day. A more efficient
way to use the computer would be to write a program to count from 1 to 5
by using a GOTO loop.

10 x = 1
20 PRINT X
30 x = x + 1
40 IF X > 5 THEN 60
50 GOTO 20
60 PRINT : PRINT ''l'M THRU COUNTING!"
999 END
RUN
1
2
3
4
5

l'M THRU COUNTING!

Line 10 is the initializing top. The loop begins by initializing the variable
X to the first value of the count one. If a simple variable is not initialized, the
computer initialized the value to zero. The variable could be initialized to
any number such as 2, - 40, or 308. The programmer must know the cor
rect value to initialize the variable to produce the right answer.

Line 20 prints X each time the loop is executed.
Line 30 is the summing or incrementing statement that keeps track of the

number of times the loop has been executed. The loop variable was initial-

LOOPS 55

ized to one. Each time the loop is executed, the summing statement adds
one to the initialized value of the variable. In this case, when the summing
statement is equal to five, the program (at line 40) jumps out of the loop and
executes line 60.

Line 40 is a testing step, a conditional branch or transfer that says, IF the
loop has executed five times THEN jump out of the loop to line 60 in the
program.

Line 50 is an unconditional branch or transfer that makes the computer
go back to line 20.

When the loop has been executed five times and X > 5, line 40 checks that
X > 5 and THEN causes a branch to line 60 to print 'TM THRU COUNTING!"
and the program ends.

The FOR-NEXT loop program to count from one to five follows.

10 FOR X = 1 TO 5 (replacement statement)
20 PRINT X
30 NEXT X
40 PRINT : PRINT ''l'M THRU COUNTING!"
999 END
RUN
1
2
3
4
5

l'M THRU COUNTING!

This is how the GOTO loop and the FOR-NEXT loop look when they are
placed side by side.

GOTO loop
10 x = 1
20 PRINT X
30 x = x + 1
40 IF X > 5 THEN 60

50 GOTO 20
60 PRINT : PRINT ''l'M THRU

COUNTING!"
END

10
20
30
40

999

FOR - NEXT loop
FOR X = 1 TO 5
PRINT X
NEXT X
PRINT : PRINT ''l'M THRU
COUNTING!"
END

The FOR-NEXT loop program is shorter and more efficient than the
GOTO loop program. The GOTO loop is used in cases where the number of
times of loop execution is not known beforehand. This will be explained
more clearly when the GOTO loop is used with the decision statement in
Lesson 8.

The FOR-NEXT loop is used when the number of times of loop execution
is known. The FOR-NEXT loop can use loop variables to determine the
number of times that the loop is to be executed. In FOR X = 1 TO 5, the

56 APPLESOFT LANGUAGE

number of times the loop will be executed is 5. In FOR X = 1 TO N, the vari
able "N" determines the number of times the loop will be executed.

In the same FOR- NEXT loop program type in these lines.

5 INPUT "COUNT TO # : "; N
10 FOR X = 1 TON
RUN
COUNT TO#: 3
1
2
3

l'M THRU COUNTING!

Line 5 allows the user to input the highest number in the count.
Line 10 causes X to start at the number "1", and go to "N", the highest

number to be counted. In this case, X = 1 TO 3.
Now type these lines in the same program.

5 READ N
60 DATA 3
RUN
1
2
3

l'M THRU COUNTING!

The following program demonstrates how to use loops to print forward,
to print forward by steps, and to print backward by steps. It also demon
strates how the HT AB function formats output from loops.

10 FOR A = 1 TO 6
20 HTAB (A - 1)*3 + 1 : PRINT A;
30 NEXT A : PRINT
RUN
1 2 3 4 5 6

Line 10 designates that the loop executions will go from 1 to 6.
In line 20, the HT AB function sets up the column in which the value of A

is to be printed. The "* 3" begins a field every three positions (" * 4" would
begin a field every four positions). The "+ 1" signifies column one on the
left side of the screen. If the " + 1" is not used the HT AB tries to print in
column zero. Since there is no column zero, the program bombs (a "+ 2"
would signify column two on the left-hand side of the screen). The" *3" con
trols the positions between the numbers, while the " + 1" signifies the
number of columns from the left-hand side of the screen. The value of A is
printed horizontally because of the semicolon following the A. See Table
7-1 for details.

Line 30 completes the loop and the PRINT closes out the line.

Table 7-1. HTAB (A - 1)*3 + 1 : PRINT A;

LOOP
EXECUTIONS A (A - 1) (A - 1)*3

1 1 0
2 2 1
3 3 2
4 4 3
5 5 4
6 6 5

40 FOR B = 2 TO 6 STEP 2
50 HTAB (B - 1)*3 + 1 : PRINT B;
60 NEXT B : PRINT
RUN

2 4 6

0
3
6
9

12
15

(A - 1)*3 + 1

1
4
7

10
13
16

LOOPS 57

PRINT A;

1
2
3
4
5
6

Line 40 starts with a value of 2, to change the learning experience. STEP 2
causes the loop to be incremented by 2 numbers on each execution. The
STEP can be any necessary value, positive or negative, to achieve the solu
tion to the problem.

Lines 50 and 60 are similar to lines 20 and 30.
The next section of the program uses the loop to print the numbers back

ward.

70 FOR C = 6 TO 1 STEP - 1
80 HTAB (6 - C)*3 + 1 : PRINT C;
90 NEXT C
100 PRINT

Line 70 sets the loop to go from 6 to 1, stepped in increments of - 1.
In line 80, since the loop values are to be printed backwards in increments

of - 1, the value of 6 must be printed on the left side of the screen in column
1. To accomplish this, the value of C must be subtracted from the maximum
value of the loop which is 6. (See Table 7-2.)

Line 90 completes the loop.
Line 100 closes the output line.
The next section of the program causes the loop to print backwards in

steps of - 2.

110 FOR D = 6 TO 2 STEP - 2
120 HTAB (6 - D)*3 + 1 : PRINT D;
130 NEXT D: PRINT: PRINT
RUN
6 4 2

The first PRINT in line 130 closes out the line and the second PRINT causes
the program to skip a line between the previous section and the next section
of the program printout.

58 APPLESOFT LANGUAGE

Table 7-2. HTAB (6 - C)*3 + 1 : PRINT C;

LOOP
EXECUTIONS ((6 -C) (6 - C)*3 (6 - C)*3 + 1

1 6 0 0 1
2 5 1 3 4
3 4 2 6 7
4 3 3 9 10
5 2 4 12 13
6 1 5 15 15

140 PRINT "A = ";A; " : B = ";B; ": C = ";C; " : D = ";D
RUN
A=7:B=8:C=O:D=0

PRINT C;

6
5
4
3
2
1

The output from line 140 shows the next value of the variable after the
loop has completed its executions. In loop A, the values go from 1 to 6, but
the loop makes 7 the final value of A. In loop B, the values go from 2 to 6,
but the loop makes 8 the final value of B. In loop C, the values go from 6 to
1, but the loop makes 0 the final value of C. In loop D, the values go from 6
to 2, but the loop makes 0 the final value of D. This is a very important fact. It
is important to keep track of these final values because they can produce
incorrect results if the variables are used again and are not initialized. This
fact will be detailed in the CASH FLOW program in Lesson 27.

The complete program and RUN follow

5 REM - HTAB IN LOOPS
10 FOR A = 1 TO 6
20 HTAB (A - 1) * 3 + 1: PRINT A

30 NEXT A: PRINT
40 FOR B = 2 TO 6 STEP 2
50 HTAB (B - 1) * 3 + 1: PRINT B

60 NEXT B: PRINT
70 FOR C = 6 TO 1 STEP - 1
80 HTAB (6 - C) * 3 + 1: PRINT C

90 NEXT C
100 PRINT
110 FOR D = 6 TO 2 STEP - 2
120 HTAB (6 - D) * 3 + 1: PRINT

D;
130 NEXT D: PRINT : PRINT
140 PRINT "A = ";A;":B = ";B;":C

= II ;C;":D = ";D

LOOPS 59

]RUN
1 2 3 4 5 6

2 4 6
6 5 4 3 2 1
6 4 2

A= 7:8 = 8:C = O:D =0

Nested loops are a loop within a loop or loops within a loop. In Applesoft,
loops can be nested 10 deep.

10 FORS= 1 TO 3-----------------.
20 FOR T = 1 TO 5-----------.
30 PRINT T; " "; INNER LOOP OUTER LOOP
40 NEXT T : PRINT----------' I
50 NEXTS~~~~~~~~~~-~~~~~~~--'-
60 END
RUN
1 2
1 2
1 2

3
3
3

4
4
4

5
5
5

Line 20 sets the inner loop to execute 5 times. Line 30 causes the inner
loop to print out the value of Ton each execution and the quotation marks
cause one space to be placed between each of the values in the printout. If
two spaces were left between the quotation marks, there would have been
two spaces created between the values as they were printed. This gives a
second method of spacing in a loop. The first method demonstrated was
with the HT AB. ·

Line 10 and line 50 cause the outer loop to execute three times.
Loops must never be crossed or the program will not execute. Reverse

lines 40 and 50 and observe what happens to the program.

10 FORS = 1 TO 3---------.
20 FORT = 1 TO 5--------1-------.
30 PRINT T; " "; CROSSED LOOP CROSSED LOOP
40 NEXT s : PRINT------- I
50 NEXTT~~~~~~~~~~~~~~~~--
60 END
RUN
1 1

?NEXT WITHOUT FOR ERROR IN 50

Nested loops give the computer more power in computations and simpler
more efficient programming for the programmer. They are very useful in
graphics.

The following program uses nested loops and a graphic print to produce
the triangle shown in Fig. 7- 1.

60 APPLESOFT LANGUAGE

10 FORS = 1 TO 10
20 HTAB (19 - S)
30 FOR T = 1 TO S
40 PRINT"*";
50 NEXT T: PRINT
60 NEXT S
70 END
RUN

*
**

Fig. 7 -1. Triangle.

LESSON 8

Relational and Logical Operators

After completion of Lesson 8 you should be able to:

1. Define and use relational and logical operators in writing a program.
2. Use decision statements in programming.

VOCABULARY

Bug - This is a mistake or malfunction in a computer program.
Debug - This means to remove a mistake, or mistakes, from a computer

program or system.
Decision - This is an operation performed by a computer that enables it to

choose between alternative courses of action. A decision is usually made
by comparing the relative magnitude of two specified operands. A
branch instruction is used to select the required path according to the re
sults.

Default - The rule of default states that a computer program runs sequen
tially according to increasing line numbers unless a branch is executed.

Logical Operator - This is a word or symbol to be applied to two or more
operands (AND, OR, and NOT are logical operators).

Relational Operator - This is a method of comparing quantities to make
decisions.

DISCUSSION

Program statements have line numbers so the program can run sequen
tially from the lowest line number to the highest. The program runs sequen
tially until a program statement containing a relational or logical operator
is reached. The program then must weigh the decision. If the decision is
true (1 or YES), then the program branches to a line number out of se
quence. If the decision is false (0 or NO), then the program continues in its
sequential run. The program "falls through" or defaults to the next line
number. The rule of default states that unless a branch is executed, the

61

62 APPLESOFT LANGUAGE
(

statement with the next highest number is executed. With the computer
there are only two decision choices, true or false. There can be no other
answer to the decision.

The following relational operators compare two quantities. Based on the
result of the comparison, the computer can make a decision.

NOT. This is the logical negation of an expression.
1. Left expression "equals" right expression (in this case, equals is

2. <>
3. >
4. <
5. >=
6. <=

not a replacement statement).
Left expression "does not equal" right expression.
Left expression "is greater than" right expression.
Left expression "is less than" right expression.
Left expression "is ·greater than or equal to" right expression.
Left expression "is less than or equal to" right expression. NOT
is a replacement symbol in an IF-THEN statement.

Relational operators are related to logical operators.

1. NOT. This is the logical negation of an expression.
2. AND-IF A>B and C>D THEN 999.

Expression A>B AND expression C>D must be true for the statement
to be true.

3. OR-IF A>B OR C>D THEN 999.
If either expression A>B OR C>D is true, then the expression is true.

The following program combines PRINT statements, GOTO loops, deci
sion statements, and program sections in one unit to further the learning
experience. In Lesson 7 GOTO loops were discussed. This lesson details
why a GOTO loop is used in cases where the total number of inputs is not
known beforehand. The program deals with applicants who come into a
driver's license bureau to apply for an operator's permit. The office never
knows how many applicants will present themselves on a given day. The
GOTO loop accommodates the unknown number of applicants by using
decision statements.

An applicant enters the driver's license office and the attendant asks the
applicant's name and age. The program asks for the age of the applicant. An
operator's license is issued or not issued on the basis of the age of the appli
cant. The total number of applicants by age groups and the total number of
applicants for the day are printed out and the program terminates.

The program was intentionally written with REM statements in the pro
gram, to demonstrate how programs can be written in sections to determine
if each section runs properly. This is one method of debugging a program.
These variables are used in the program:

AGE = age of the applicant UNDER 18 = the applicant is
under 18

IS 18 = the applicant is 18 years
of age

NA = number of applicants

REM * PROGRAM TO DETERMINE
REM * LICENSE ELIGIBILITY AND

RELATIONAL AND LOGICAL OPERATORS 63

OVER 18 = the applicant is
over 18

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
RUN

REM * COUNT THE NUMBER OF APPLICANTS
REM * INITIALIZE VARIABLES
INPUT "AGE = "; AGE
IF AGE< = 0 THEN 190
REM * COUNTING VARIABLE
IF AGE< 18 THEN 130
IF AGE = 18 THEN 160
REM * COUNTING VARIABLE
PRINT "OPERATORS LICENSE"
GOTO 50
REM * COUNTING VARIABLE
PRINT "NO OPERATORS LICENSE"
GOTO 50
REM * COUNTING VARIABLE
PRINT "JUNIOR OPERATORS LICENSE"
GOTO 50
REM * PRINT HEADINGS
PRINT
REM *PRINT TOTALS
END

AGE= 36
OPERATORS LICENSE
AGE = 18
JUNIOR OPERATORS LICENSE
AGE = 15
NO OPERATORS LICENSE
AGE= 0
l Ill

The program RUNs as planned. When age is input, the output shows the
eligibility of the applicant. The first program revision counts the number of
applicants. Change the program by typing in the following line numbers and
program statements.

40
70
190
210
RUN

NA = 0 (initialize summing variable to zero)
NA = NA + 1 (counting statement)
PRINT "TOTAL APPLICANTS"
PRINT NA

AGE= 25
OPERATORS LICENSE
AGE= 0
TOT AL APPLICANTS

64 APPLESOFT LANGUAGE

It worked just as planned. Now let's try the second revision.
Line 40 initializes the variable NA (number of applicants) to zero.
Line 70 is a replacement statement that is also a counting statement that

counts the number of applicants. This will be discussed in detail in Lesson
11. The value of NA (originally zero) is incremented by the value of 1 for
each applicant. This incremented value (NA + 1) is placed on the left side of
the equals into NA. When processing the first applicant, the counter looks
like this: NA = 0 + 1. With the second applicant the process is repeated, so
the counter is NA = 1 + 1 and the results are placed on the left side of the
equals sign into the variable NA. As each applicant's age is input, the coun
ter is incremented by 1. The incrementing continues until a zero is input,
which causes the program to branch to line 190 to print out the totals (see
line 60).

The second revision separates the applicants by age, counts and prints
out the total number of applicants, and prints out the number of applicants
that are UNDER 18, IS 18, and OVER 18.

Type in the following line numbers and program statements.

40 NA = 0: UNDER 18 = 0: IS 18 = 0: OVER 18 = 0
100 OVER 18 = OVER 18 + 1
130 UNDER 18 = UNDER 18 + 1
160 IS 18 = IS 18 + 1
190 PRINT "TOTAL NUMBER UNDER 18 IS 18 OVER 18"
210 HTAB 5: PRINT NA; TAB (16); UNDER 18; TAB (25);

IS 18; TAB (33); OVER 18
RUN
AGE = 15
NO OPERATORS LICENSE
AGE = 18
JUNIOR OPERATORS LICENSE
AGE= 25
OPERATORS LICENSE
AGE= 0
TOTAL NUMBER UNDER 18 IS 18 OVER 18

3 1 1 1

The second revision initializes three more counting variables to zero.

40 NA = 0: UNDER 18 = 0: IS 18 = 0: OVER 18 = 0
100 OVER 18 = OVER 18 + 1
130 UNDER 18 = UNDER 18 + 1
160 IS 18 = NOW 18 + 1

Lines 100, 130, and 160 add counting statements to count the number of
applicants in each age bracket. The counting statements are placed in the
program sections that deal with the specific age of the applicant. The GOTO
statements of lines 120, 150, and 180 are the ends of GOTO loops. The
statements are unconditional jumps to line 50, the line that accepts the age
of the next applicant.

RELATIONAL AND LOGICAL OPERATORS 65

The two program revisions complete the program and solve the problem
of totaling the number of applicants and total the applicants by age.

The program section pertaining to applicants UNDER 18 is

80 IF AGE< 18 THEN 130
130 UNDER, 18 = UNDER 18 + 1
140 PRINT "NO OPERATORS LICENSE"
1SO GOTO SO

The program section pertaining to those applicants who are 18 is

90 IF AGE = 18 THEN 160
160 IS 18 = IS 18 + 1
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO SO
The program section dealing with those applicants OVER 18 is

90 IF AGE = 18 THEN 160 (if the AGE is OVER 18 the statement is FALSE
and the program defaults to line 100)

100 OVER 18 = OVER 18 + 1
110 PRINT "OPERATORS LICENSE"
120 GOTO SO

Finally, the program section that deals with line 60:

60 IF AGE< = 0 THEN 190
190 PRINT "TOTAL NUMBER UNDER 18 IS 18 OVER 18"
200 PRINT
210 HTAB S: PRINT NA; TAB (16); UNDER 18; TAB (2S);

IS 18; TAB (33); OVER 18
220 END

In the operator's eligibility program there are 3 age classifications,
UNDER 18, IS 18, and OVER 18. There are, however, only two decision
statements to select the 3 age categories. Line 60 does not select an age
category.

80 IFAGE< 18THEN 130
90 IF AGE = 18 THEN 160

As shown above, line 80 selects applicants UNDER 18. If line 80 is TRUE
it branches to line 130. If line 80 is FALSE the program defaults to line 90.

10 REM * PROGRAM TO DETERMINE
20 REM * LICENSE ELIGIBILITY AND
30 REM * COUNT THE NUMBER OF APPLICANTS
40 NA = 0 : UNDER 18 = 0 : IS 18 = 0 : OVER 18 = 0
SO INPUT "AGE = ";AGE
60 IF AGE< = 0 THEN 190
70 NA= NA+ 1
80 IF AGE< 18 THEN 130
90 IF AGE = 18 THEN 160
100 OVER 18 = OVER 18 + 1
110 PRINT "OPERATORS LICENSE"
120 GOTO SO

66 APPLESOFT LANGUAGE

130 UNDER 18 = UNDER 18 + 1
140 PRINT "NO OPERATORS LICENSE"
150 GOTO 50
160 IS 18 = IS 18 + 1
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50
190 PRINT "TOTAL NUMBER UNDER 18 IS 18 OVER 18"
200 PRINT
210 HTAB 5: PRINT NA; TAB (16); UNDER 18; TAB (25);

IS 18; TAB (33); OVER 18
220 END

In Applesoft, an IF-THEN statement that is TRUE executes all state-
ments after the THEN.

10 A= 5
20 IF A> 4 THEN A = 6: B = A/12: PRINT: GOTO 90

In this case, since A>4 is TRUE all statements at line 20 are executed be-
fore the computer branches to line 90.

10 A= 5
20 IF A> 4 THEN 90: A = 6: B = A/12: PRINT

In this case, since A>4 is TRUE it branches to line 90 without executing
the other statements at line 20.

With the Age Eligibility Program completed, the following concepts have
been reinforced.

1. PRINT statement rules.
2. HT AB and TAB rules.
3. GOTO loops.
4. Operators and decision statements.
5. Initializing variables and counting. statements have been introduced

and will be discussed in greater detail in Lesson 11.

LESSON 9

Problem Solving and Flowcharts

After completing Lesson 9 you should be able to:

1. Begin using a logical method in problem solving.
2. Flowchart simple problems with flowchart symbols.

VOCABULARY

Hardware - This is the name for all of the physical units of a computer sys
tem. Hardware is made up of the apparatus rather than the programs.

Logic Flowchart - This is a chart representing a system of logical elements
and their relationship within the overall design of the system or hardware
unit. It is the representation of the various logical steps in any program or
routine by means of a standard set of symbols. A flowchart is produced
before detailed coding for the solution of a particular problem.

Software - In its most general form, software refers to all programs that
can be used on a particular computer system.

DISCUSSION

When you write a computer program, you solve a problem. The most
basic approach to solving a problem is to first understand the problem. In
the program to compute the area of a circle, the formula was discussed and
thought out in high school math. The knowledge simplifies the program
ming of the output. A program to compute and compare three types of de
preciation somewhat changes the problem. The first problem in program
ming is to understand the problem and its ramifications.

Once the problem is understood, the solution must be placed in the
proper order. The exact output format must be known. The precise formulas
to output the correct answers must be used. The exact language that the
computer understands must be programmed in the proper order, and the
idiosyncracies and normal operations of the machine must be understood.
The computer can only output according to specific input. The excuse is

67

68 APPLESOFT LANGUAGE

often heard, "It's the computer's fault." Computers seldom (if ever) make
errors, it's the human input that is in error. Computers are stupid but exact
ing. Many programmers pray for a program statement DWIT (do what I
think). The DWIT statement is not yet available in Applesoft, so we'll do the
best we can with what we have. Remember, the computer does exactly what
you tell it to do, nothing more, nothing less.

Once the problem, the language, and the computer are understood, all
other problems are relatively simple. The program can now be written to
solve the problem.

The output must be tested for correct results with as many different in
puts as possible. Simple inputs may produce correct outputs, but are there
cases where the outputs are incorrect? The program should be tested and
debugged to produce the correct output under all circumstances. What if
the program to put a man on the moon had bugs in it?

Has the program been documented with REM statements and other
written records so another person could RUN the program and understand
the output? Have the variables been recorded so the computational
formulas can be easily understood? Has the program been properly indexed
so it can be easily located in the library? The answers to all these questions
should be yes. It is easy to forget what problem a program solves, what the
variables represent, and where the program can be located.

Flowcharting, or logic flowcharting, is a techique for representing in
symbolic form a succession of events. Flowcharting is the first step in
logical program development. It aids in thinking the program through, from
the problem to the computer stage.

In data processing, flowcharts may be divided into two types, system
flowcharts and program flowcharts.

System flowcharts, using symbols, show the logical relationship between
successive events using hardware. Such symbols include data input (on, for
example, magnetic tape, disks, and punched cards) and data output
(through, for instance, printers, magnetic tape, or disk).

SYSTEM SYMBOLS

Program flowcharts show diagrammatically the logical relationship be
tween successive steps in the program. For most complicated programs, an
outline flowchart precedes a detailed flowchart before the program is
written.

The purposes of an outline or initial flowchart are to show:

1. All input and output functions.
2. How input and output are to be processed.
3. How the program will be divided into routines and subroutines.

PROBLEM SOLVING AND FLOWCHARTS 69

SYSTEM SYMBOLS

D 0
PUNCHED TAPE MAGNETIC DRUM MAGNETIC TAPE

CJ
MANUAL INPUT DOCUMENT PUNCHED CARD

The purposes of a detail or final flowchart are:

1. To interpret the detailed program specifications.
2. To determine the programming techniques to be used.
3. To provide direction for code and comment.
4. To fix the program style for ease of interpretation.

Flowcharting symbols usually conform to some standard set in which
each symbol has a specific meaning. Flowchart symbols and definitions
follow.

PROGRAM FLOWCHART SYMBOLS

Used for the beginning and ending of a
program. A symbol representing a ter
minal point in a flowchart.

Flowlines show the transfer of control
from one operation to another by default,
conditional, or unconditional branc::_lling.

Indicate data entered into the computer
and results returned from the computer.
INPUT PRINT

Indicates a decision or switching type of
operation that determines which of a
number of alternate paths to follow. IF -
THEN

(TERMINAL)

GOTO

INPUT

OUTPUT

70 APPLESOFT LANGUAGE

START

YES

PRINT
PRINT
PRINT

UNDER 18 =
UNDER 18+1

IS 18=
IS 18 + 1

Fig. 9-1. Flowchart for license eligibility.

Operation or process symbol that repre
sents any kind of processing function
such as initializing, counting, summing,
or computing.

Indicates a sequence of the program
statement items in a list. GOSUB

END

PRINT NO
OPERATORS

LICENSE

PRINT JR
OPERATORS

LICENSE

OPERATION

PREDEFINED
PROCESS

START

END

10 x = 0

20 SUM = 0

30 FOR X = 0

40 PRINT X

50 SUM = SUM + X

60 NEXT X

70 PRINT "SUM = "· SUM

80 END

START

YES PRINT
SUM =;SUM

END

PROBLEM SOLVING AND FLOWCHARTS 71

Fig. 9-2. Sums of the integers 1
through 5 using a FOR-NEXT loop.

10 x = 0

20 SUM = 0

30 PRINT X

40 IF X = 5

50 X = X + 1 TH EN 80

60 SUM = SUM + X

70 GOTO 30

80 PRINT "SUM = ";SUM

99 END

Fig. 9-3. Sum of integers 1 through 5 using a GOTO loop.

72 APPLESOFT LANGUAGE

A symbol (pair) to represent the exit or
entry from another part of the flowchart.
It is used to indicate a transfer of control
from one point to another that cannot be
conveniently shown on a flowchart be-
cause of the confusion of connector lines,
or because the flowchart is continued on
another page.

0 CONNECTOR 8

Figs. 9-1, 9-2, and 9-3 demonstrate how flowcharts graphically describe a
program. Fig. 9-1 represents the driver's license program of Lesson 8. Figs.
9-2 and 9-3 represent new Sum of the Integers programs. The last two
figures also show how a FOR - NEXT loop is more efficient than a GOTO
loop because it is shorter (program loop efficiency was discussed in Lesson
7).

LESSON 10

Rules for Efficient Programming

After completion of Lesson 10 you should be able to:

1. Write three pairs of opposites to be used with decision statements.
2. Use three rules for efficient programming.
3. Understand how to save memory space and increase the speed at

which a program runs.

DISCUSSION

This lesson deals with how to program more efficiently and how to make
the program run faster. Efficiency and speed may be well and good, but for
the average computer hobbyist speed is not that important. The important
thing is to enjoy the hobby and write programs that are readable and can be
deciphered six months from now. Place REM statements within the pro
gram that will help you understand and remember what that variable repre
sented. Did that single "R" variable stand for RUTH or RAIN? These points
are very important if the program is to be reused at a later date. A couple of
microseconds lost here and there isn't going to change the world. Write un
derstandable programs. Write programs that jog your memory when you
pick them out of your library four months from now. The variable SUM
(even though Applesoft recognizes only the 1st two letters) means some
thing. The variable "S", now what did that stand for? Now back to speed and
efficiency.

There are three pairs of opposites that are used to reverse the logic of the
IF - THEN statement.

1. > is opposite < =

2. < is opposite > =

3. = is opposite<>

These pairs of opposites select a range. If the range is below age 18, the
statement is AGE< 18. If the range includes age 18 and those ages below

73

74 APPLESOFT LANGUAGE

age 18, the statement is AGE< = 18. If the over 18 group is to include the
18 year olds, the statement is written AGE> = 18.

AGE less than 18 = AGE< 18
AGE less than 18 but
includes the 18 year
old group = AGE< = 18
AGE greater than 18 = AGE> 18
AGE greater than 18 but
includes the 18 year
old group = AGE> = 18
AGE is 18 = AGE = 18
AGE is not 18 = AGE<> 18

Decision statements (IF-THEN) operate on a TRUE (1 or YES) or FALSE
(0 or NO) basis and are flowcharted as shown in Fig. 10-1.

YES Fig. 10-1. Decision statement flowchart.

Decision statements should select the range from least to greatest by
sequential line number for maximum programming efficiency. In other
words, the ranges involving the smallest numbers should be programmed
first, and the ranges involving the largest numbers should be programmed
last.

60 IF AGE< = 0 THEN 190
80 IF AGE< 18 THEN 130
90 IF AGE = 18 THEN 160

{AGE 18 defaults to line 100)

100 OVER 18= OVER 18 + 1

Selecting the range from least (line 60) to greatest (line 90) makes pro
gramming an orderly endeavor and, thus, easier to perform and interpret.

Memory space can be saved and program speed increased by:

1. Using multiple statements for each line number.
100 UNDER 18 = UNDER 18 + 1 : PRINT "OPERATORS LICENSE":

GOTO 50
This saves memory space, but also it sometimes helps to keep track of
program sections. In a long program, if short program sections are
written with a single line number it eases readability.

2. Using variables within the program instead of constants. PI = 3.1416.

RULES FOR EFFICIENT PROGRAMMING 75

If PI is used in the program (instead of 3.1416), it runs faster. It takes
more time to convert a constant to a real number than it does to fetch
a variable. This is true in computations and in FOR - NEXT loops.
Use FOR X = 1 TO Pl instead of FOR X = 1 TO 3.1416.

3. Placing items that are used frequently at the beginning of the pro
gram. When the program reaches an item that must be converted or
fetched, the computer must search through the program sequentially
until the item is found. If the item is on line 10, the search is much
shorter than if the item is on line 10,000.

There are other methods to save space and increase program speed but
they do not increase efficiency greatly. Learn to program efficiently so the
programs are usable, accurate, and understandable.

LESSON 11

Summing, Counting, and Flags

After completion of Lesson 11 you should be able to:

1. Write a program using summing and counting variables.
2. Initialize variables in the proper program location.
3. Use a flag to control all or part of a program.

VOCABULARY

Counting Variable - This is a variable used to count within a loop, e.g.,
C = C + 1. The variable is incremented by 1 on each loop execution.

Flag - This is an additional piece of information added to a data item which
gives information about the data itself. An error flag indicates that the
data item has given rise to an error condition.

Illegal Value - In Applesoft, this means using a reserved word for a vari
able, e.g., using TO as a variable when it is a reserved word.

Legal Value - In Applesoft, this means using a variable that meets the re
quirements of the language, e.g., X = 5.

Summing Variable - This is a variable used within a loop to sum the values
of the loop variable, e.g., FOR X = 1 TO 5. The summing statement SUM
= SUM + X sums the value of X.

DISCUSSION

Counting variables are used to count some function within the program
and are generally initialized to zero. The increment is one if each execution
of the loop is to be counted. C = C + 1 is the statement used to increment
the count by one and store the count in variable location "C".

Summing, also known as totaling, variables are used to sum or total
within a loop. If "T'' is the totaling variable, then T is usually initialized to
zero, the value at the beginning of the operation. A program that totals daily
and adds the daily total to the previous day's total would not be initialized to
zero, but to the previous day's total. If the variable is "X'', then the totaling

77

78 APPLESOFT LANGUAGE

statement would be T = T + X. The value of X is added to the total (T + X)
and that value is placed in the variable T. The statement T = T + Xis placed
inside the loop and the total value is output outside the loop, after the loop
has made its final execution.

Variables are initialized at the beginning of the program. The statements
that initialize the variables have no further function in the program. If a
GOTO statement returns the program to the line that initializes all variables
to zero, each loop execution will initialize all variables to zero. The GOTO
statement should go to a line number below the line where the variables are
initialized.

The following program demonstrates counting and totaling variables.

10
20
30
40
so
60
70
80
999
RUN

C = 0 : T = 0: REM * INITIALIZE VARIABLES
FOR X = 1 TO 5
PRINT X; " ";
C = C + 1 : REM * COUNTING STATEMENT
T = T + X : REM *TOTALING STATEMENT
NEXT X : PRINT : PRINT
PRINT "COUNT = "; C : PRINT
PRINT "TOTAL = "; T
END

1 2 3 4 5

COUNT= 5

TOTAL= 15

Note that the counting and totaling statements are within the body of the
loop and the count and total change with every execution of the loop. When
the loop has completed its last execution, the computer prints out the total
count (line 70), prints out the total value of the variable T (line 80), and the
program ends.

A flag is a value stored in a variable. Flags are signals to the computer
used to start some programmed function. In the following program the flag
has a legal value of zero (0), one (1), or minus one (- 1). Flag = 0 causes the
program to print "# of adds", "# of subtracts'', final total, and the program
ends. Flag = 1 causes a jump to the section of the program to input a
number to add. Flag = - 1 causes the program to jump to a section of the
program to input a number to be subtracted. After each addition and sub
traction there is a GOTO 20 statement that is an unconditional jump to input
another flag value.

If an illegal value (any item other than 0, 1 or - 1) is typed in the INPUT
(20 for instance) the program defaults to line 70. When Flag = 20, the deci
sion in line 40 is false, and the program defaults to line 50. In line 50, the
decision is also false and the program defaults to line 60. The same thing

SUMMING, COUNTING, AND FLAGS 79

happens in line 60 and the program defaults to line 70. Line 70, GOTO 20, is
an unconditional jump to line 20 to input another flag value.

The variables used in the program are:

CA = count to be added. CS = count to be subtracted.
N = number F = flag
T =total

10
20

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
RUN

CA=O:CS=O:T=O
PRINT "ENTER FLAG VALUE (0 TO QUIT : 1 TO ADD NUMBER :
-1 TO SUBTRACT NUMBER)"
INPUT "?" ;F
IF F = 0 THEN 140
IF F = 1 THEN 80
IF F = -1THEN110
GOTO 20
INPUT "NUMBER TO BE ADDED "; N
CA=CA+1:T=T+N
GOTO 20
INPUT "NUMBER TO BE SUBTRACTED "; N
CS = CS + 1 : T = T - N
GOTO 20
PRINT : PRINT "#OF ADDS = "; CA
PRINT : PRINT "#OF SUBTRACTS = "; CS
PRINT : PRINT "FINAL TOTAL = "; T
END

ENTER FLAG VALUE (0 TO QUIT: 1 TO ADD NUMBER: -1 TO
SUBTRACT NUMBER)
? 1
NUMBER TO BE ADDED 34
ENTER FLAG VALUE (ALL OF LINE 20)
? -1
NUMBER TO BE SUBTRACTED 18
? 0
#OF ADDS= 1
#OF SUBTRACTS = 1
FINAL TOTAL = 16

Line 10 initializes the variables to zero. Line 20 prints out the flag values
that control a specific part of the program. F = 0 outputs and ends the pro
gram. F = 1 adds a number that has been input and keeps a total. F = - 1
subtracts a number that has been input and keeps a total. Line 30 allows the
user to input the flag value. The flowchart for the FLAG PROGRAM is shown
in Fig. 11-1.

GOTO lines in Fig. 11-1 are represented by lines from one symbol to
another but are not named on the flowchart. Unless F = 0, all GOTO lines
return to input another flag value.

Lines 140, 150, and 160 print out the results and.the program ends at line
170.

80 APPLESOFT LANGUAGE

90

CA=CA + 1
T=T + N INPUT

120

CS=CS + 1
T=T + N INPUT

110

Fig. 11-1. Flowchart for flag program.

10

20

30

YES

YES

CA= 0
cs= 0
T = 0

PRINT

END

LESSON 12

Single Subscripted Variables

After completion of Lesson 12 you should be able to:

1. Set DIMension limits using constants and variables.
2. Write programs using subscripted variables for numeric lists

a. To output the list as it was input.
b. To output the list in reverse order.
c. To operate on the numbers in the list.
d. To total the numbers in the list.

VOCABULARY

Array (subscripted variable) - This is an arrangement of items of data, each
identified by a key or subscript. It is constructed in such a manner that a
program can examine the array in order to extract data relevant to a
particular key or subscript. The dimension of an array is the number of
subscripts necessary to identify an item. Reservations based on the day
of the month would need a (DIM R (31)) subscripted variable R (D), while
reservations based on the day and the month would need a (DIM R
(31, 12)) doubly subscripted variable R (D, M).

DIM - The DIM statement reserves memory locations for numeric or string
arrays, such as A$ (14), B (5), and C% (12). DIM A (15) reserves 16 strings
of 255 characters in length, starting from zero. DIM A (N) sets aside N +
1 number of arrays up to 255 characters in length. The DIM A (N) must be
placed in the program after N has been input. The DIM A (N) must not be
placed in a loop, except under very special conditions.

List - This is any printing operation in which a series of records on a file,
or in memory, are printed one after another.

Operate - This is a defined action by which a result is obtained from an
operand.

81

82 APPLESOFT LANGUAGE

DISCUSSION

Lesson 12 introduces a new type of variable, the subscripted variable for
numeric lists, or array.

SUBSCRIPTED VARIABLE

C(A)

SIMPLE VARIABLES

SUBSCRIPTED VARIABLES

CA

C(A)

C(l)

X9

X(9)

CX4

CX(4)

G3H

G3(H)

The variables A, A(O), AB, and A(B) can all be used in the same program
successfully. A subscripted variable, like a simple variable, reserves a
memory location with a label and contents.

Table 12-1 shows five subscripted variables with the memory locations
labeled C(A) with no values in the locations.

Table 12-1. Subscripted Variables
LABEL CONTENTS

C(1)

C(2)

C(3)

C(4)

C(5)

C(A) represents C(l), C(2), C(3), C(4), and C(5).
Suppose the contents of the memory locations whose label is C(A) is

filled with random numbers. LET C(l) = 8. LET C(2) = 5. LET C(3) = 19.
LET C(4) = 1. LET C(5) = - 8.

Table 12-2 shows the five memory locations whose labels are C(A) and
whose contents are as stated above.

The subscripted variable, or array, is now filled with a list of numbers.
When you remember that the subscript of a variable can be a variable

(C(A)), or a constant (C(l)), you begin to realize what a powerful tool the
single subscripted variable turns out to be.

Table 12-2. Subscripted Variables

LABEL CONTENTS

C(1) 8
C(2) 5
C(3) 19

C(4) 1

C(S) -8

SINGLE SUBSCRIPTED VARIABLES 83

IF A = 1 THEN C(A) = C(l)
IF A = 2 THEN C(A) = C(2)
IF A = 3 THEN C(A) = C(3)

Subscripted variables give great processing power to the computer, and
make the job of the programmer much easier.

To practice conversion of using constants and variables in the sub
scripted portion of subscripted variables, complete the following exercises.

L(l) ~ N(l); p

r=m
L(2) 5 N(2) 3 0
M(3) 7 0(3) 1 R
M(4) -2 0(4) 4 s
L(l) = p = L(P) =
L(2) = Q= O(R) =
M(R) = N(Q) = N(Q) =
M(S) M(S) = N(P) =

2 1 2
5 2 1
7 3 3
-2 -2 6

A DIM statement is necessary to reserve memory locations for a numeric
array. The array range goes from zero to the number dimensioned. DIM
A(15) reserves 16 elements for array A (0 to 15). Each element may be up to
255 characters in length. An array can be up to 11 (0 to 10) elements large
without a DIM statement.

Integer arrays A %(N) will not be presented separately because they are
handled in a manner similar to real arrays A(N).

In the following program there are only three numbers in the numeric list
so a DIM statement is not necessary. However, a DIM statement is used any
way as a teaching example. A DIM statement should always be used in pro
grams with subscripted variables to reserve specific memory locations.

The program allows the user to input N numbers into a list. The list of
numbers is printed as input, printed backwards, operated on, and totaled.

90 HOME : VTAB 3
100 REM : ARRAYS - SINGLE SUBSCRIPTED
110 REM : VARIABLES - USED FOR LISTS
120 REM: 4 WAYS TO USE THEM
130 REM : INPUT 4 NUMBERS
140 INPUT "HOW MANY NUMBERS = ";N
150 DIM L(N)
160 FOR X = 1 TO N : L(X) = 0 : NEXT X
170 FOR K = 1 TO N
180 PRINT "NUMBER";K; "= ";

84 APPLESOFT LANGUAGE

190 INPUT L(K)
200 NEXT K
210 PRINT "PRINT LIST AS INPUT" : PRINT
220 FOR A = 1 TO N
230 PRINT L(A); " ";
240 NEXT A : PRINT : PRINT
250 PRINT "PRINT LIST BACKWARD" : PRINT
260 FOR B = N TO 1 STEP - 1
270 PRINT L(B); " ";
280 NEXT B : PRINT : PRINT
290 PRINT "TO OPERATE ON THE LIST" : PRINT
300 PRINT "C''; TAB (7); "L(C)"; TAB (14); "L(C)+5"; TAB (23);

"C*L(C)"; TAB (33); "L(C)A2"
310 FOR C = 1 TO N
320 PRINT C; TAB (9); L(C); TAB (16); L(C) + 5;

TAB (24); C*L(C); TAB (34); L(C)A2
330 NEXT C : PRINT
340 PRINT "THE UST IS TOTALED" : PRINT
350 T = 0
360 FOR D = 1 TO N
370 T = T + L(D)
380 NEXT D
390 PRINT "TOTAL OF THE UST = "; T
400 END
RUN
HOW MANY NUMBERS 3
NUMBER 1 = ? 4
NUMBER 2 = ? -5
NUMBER 3 = ? 2.5
PRINT UST AS INPUT

4 -5 2.5

PRINT LIST BACKWARD

2.5 -5 4

TO OPERATE ON THE LIST

c
1
2
3

L(C)
4
-5
2.5

THE LIST IS TOTALED

TOTAL OF THE LIST = 1.5

L(C)+5
9
0
7.5

C*L(C)
4
-10
7.5

L(C)A2
16
25
6.25

In this program, the variable L automatically references the list. To
reference this list, the variable L must be used, followed by a subscript
value, (L(A), L(2), L(N*2- 3)). The subscript can either be a constant,

SINGLE SUBSCRIPTED VARIABLES 85

variable, or an arithmetic expression. This flexibility is what gives arrays
their real power. Anything can be placed in parentheses to reference a
single part of the list as long as it is ~ 0 and ~ the DIM value.

Line 90 clears the screen and places HOW MANY NUMBERS on line 3 of
the screen. The screen holds the complete input and output of the program
(if no more than three numbers are placed in the list). When viewed to
gether, the input and output help the user determine if the output is correct
in relation to the input.

Lines 100 to 130 are REM statements that partially document the intent
of the program.

Line 140 sets up the user request and prepares for the input of the num
ber of numbers to be contained in the list. The user then types in the num
ber.

Line 150 reserves memory locations for N + 1 numbers in List L.
Line 160 initializes the memory locations of N numbers in the list to zero.

L(X) could have been initialized to zero by using L(l) = 0: L(2) = 0: L(3) = 0,
etc. The loop is much more efficient. This step is unnecessary in this pro
gram but is given to show loop/array flexibility.

Lines 170 to 200 set up the input format of the numbers themselves.
Again the loop is used for efficiency.

170 FOR K = 1 TO N
180 PRINT "NUMBER"; K; "= ";
190 INPUT L(K)
200 NEXT K

In line 180, the K variable is placed between the "NUMBER" and the"="
to inform the user which of the numbers in the list is to be input. The K in
the PRINT statement begins as number 1 and increments by 1 with each
execution of the loop.

Lines 210 to 240 set up the list to be printed out as it is input. The loop is
used and the loop variable is A, so the subscripted variable is L(A).

210 PRINT "PRINT THE LIST AS INPUT" : PRINT
220 FOR A = 1 TO N
230 PRINT L(A); " ";
240 NEXT A : PRINT : PRINT

Line 230 prints the numbers in the list by placing them in the subscripted
variable (L(l) = 4) and printing one number on each loop execution. The
" " represents 2 spaces enclosed in quotation marks. The " " causes two
spaces to be left between each printed number each time the loop exec.utes.

Line 240 closes out the loop, and the first PRINT closes out the line after
all the numbers in the list have been printed. The second PRINT statement
leaves a blank line between program sections in the printout.

Lines 250 to 280 print out the list backward.

86 APPLESOFT LANGUAGE

250 PRINT "PRINT LIST BACKWARD" : PRINT
260 FOR B = N TO 1 STEP -1
270 PRINT L(B); " ";
280 NEXT B : PRINT : PRINT

Line 250 is the PRINT statement.
Line 260 sets up to print the list out backwards in increments of 1 on each

print.
In line 270, the list is referenced by the letter L. The loop variable B be

comes the subscript, so the subscripted variable is L(B). The value of the
number contained in L(B) is printed out on each execution of the loop.
Again, the " " leaves two spaces between each number as they are printed.

Line 280 completes the loop. The first PRINT statement closes out the
line after all numbers in the list are printed. The second PRINT leaves a
blank line between the output sections.

Lines 300 to 330 operate on the numbers.
Line 300 PRINTS the headings.
Line 310 is the beginning loop statement.
Line 320 prints the operation results and tabs those results so they are

printed out below the proper headings. The list variable L is combined with
the loop variable to produce the subscripted variable L(C).

Line 330 closes out the loop and leaves a blank line between output sec-
tions.

Lines 340 to 390 total the list and print out the results.
Line 350 initializes the totaling variable T to zero.
Line 370 is the totaling statement that places the list values in the sub

scripted variable L(D) and adds one list number on each loop execution.
Line 380 is the ending statement of loop D.
When loop D has completed its last execution, the program defaults to

line 390 to print out the total of the list of numbers and line 400 ends the
program.

To change the program from an INPUT mode to a READ - DATA mode,
delete lines 100 to 200.

The command DEL 100,200 leaves line 90 in place.
Type in these lines:

160 RESTORE
170 READ N (in line 400 - N = 3 - the first data value in the line)

180 PRINT "NUMBER OF NUMBERS = "; N : PRINT
190 FORK = 1 TON
200 READ L(K) : NEXT K

400 DATA 3, 4, -5, 2.5
410 END

Line 160 is not applicable in this program but it should be introduced at
this point. If the data statement was to be read two or more times the RE-

SINGLE SUBSCRIPTED VARIABLES 87

STORE statement would reset the data and make it available for further pro
gram executions.

Line 180 prints out the number of numbers in the list after it had been
READ from DATA.

Lines 190 and 200 are a loop that READS the list of numbers through the
subscripted variable L(K).

190 FOR K = 1 TO N
200 READ L(K) : NEXT K

When the last number in the list is READ, the program defaults to line
210 to print out the list as it was READ.

Line 400 DAT A 3(N), 4(K), - 5(K), 2.5(K) sets up the data to be READ in
the proper order.

READ statements may contain integer, real, and string variables. To be
read properly the READ variables must be aligned with the items in the
DAT A statement.

10 READ A%, A, A$
20 DATA 4, 1.7, HELLO (or "HELLO")

A$ will print out HELLO or "HELLO" in either form as HELLO.

10 READ A%, A, A$, B$
20 PRINT A%, A, A$, B$
30 DATA 4.5, 2.5, HELLO, "BYE"
RUN
4 (input as a real but truncated to an integer)
4 2.5 HELLO
BYE

A string variable in a READ statement will READ a literal or a string in a
DAT A statement but outputs only in the literal form.

': !

LESSON 13

Double Subscripted Variables

After completion of Lesson 13 you should be able to:

1. Discuss double subscripted arrays.
2. Write programs using double subscripted arrays.

DISCUSSION

Double subscripted arrays are arrays that have two subscripts. Double
subscripted arrays are used for outputting data or information in table form.
The following are examples of double subscripted arrays:

CF(l ,4) X(O,O) JANE(R,C) FOB(L,S)

Tables and arrays have rows and columns. Columns are positioned verti
cally on the screen. Rows are positioned horizontally on the screen. Fig.
13-1 shows how an array of three columns and three rows is arranged.

CF = array name
R = row subscript
C = column subscript

CF(R,C)

ROWO

ROW 1

ROW2

Fig. 13-1. CF(R,C) array.

COLUMN 0

CF(O,O)

c;:F(O)

CF()

COLUMN 1 COLUMN 2

CF{0,1) CF{0,2)

CF(1,1) CF()

CF() CF()

The double subscripted array references a memory location that holds a
value, the same as an ordinary variable. Values for CF(R,C) could be
assigned as follows:

CF{1, 1) = 20 CF{1,2) = 30 CF{1,3) = 40

CF{2, 1) = 25 CF{2,2) = 35 CF{2,3) = 45

CF{3, 1) = 30 CF{3,2) = 40 CF{3,3) = 50

89

90 APPLESOFT LANGUAGE

An array can use variables as subscripts instead of constants. For
instance, if R = 1 and C = 3, then CF(R,C) = CF(l ,3). Subscripts can also
be combined with arithmetic operators (e.g., CF(R+ 1, C-1) or CF(R*2,
C/3)).

Values input into the program as constants can be stored in subscripted
arrays.

10 INPUT "GROSS INCOME = ";GI
20 INPUT "EXPENSES = "; EX (EXP is a reserved word)

30 CF(C, 1) = GI
40 CF(C,2) = EX

Whole columns or rows in an array can be added or subtracted the same
as ordinary variables. As a matter of fact, any arithmetic operator that can
be used on ordinary variables can be used on arrays. In the following exam
ple, column 2 is being subtracted from column 1 to produce column 3 in
array CF.

CF(C,3) = CF(C, 1) - CF(C,2)

Variables, single subscripted arrays, and double subscripted arrays can
be handled in a similar fashion.

The program written for this lesson is a very elementary business pro
gram. The user inputs the amount of his gross income, expenses, and years
(months or days) to operate. From these three inputs is output the period of
operation, in this case years, the gross income, expenses, net income, and
the totals for each column.

A FOR-NEXT loop is used to compute and print the figures on a yearly
basis. After the yearly figures are output, double nested loops are used to
output the totals of each column.

Some large computers have the capacity to handle arrays with up to 16
subscripts. In the automobile industry, each style of automobile could have
15 items of optional equipment. The subscripted variable might look like
this.

CAR (MODEL,STYLE,AIR CONDITIONER, RADIO,
HEATER, ENGINE, TIRES,SPORTS PACKAGE,

COLOR OF PAINT.HUBCAPS)

From the subscripted variable, the manufacturer could keep track of what
is produced. The reports could then break down sales percentages into the
most popular models and options. This information could be fed back to the
computer to aid the production department to produce the cars the public
was buying.

Now back to our elementary program.

100 REM:PROGRAM TO DEMONSTRATE
110 REM:DOUBLE SUBSCRIPTED VARIABLES

DOUBLE SUBSCRIPTED VARIABLES 91

120 HOME: VTAB 2:HTAB 6:PRINT "DOUBLE SUBSCRIPTED VARIABLES"
130 H 1 $ = "GROSS INCOME EXPENSES YEARS TO OPERATE"
140 VTAB 4: PRINT H1$
150 VTAB 5: HTAB 3: INPUT" ";GI : VTAB 5:

HTAB 17: INPUT""; EX
160 VTAB 5: HTAB 30: INPUT""; YRS: PRINT: PRINT
170 DIM CF(YRS,3)
180 FOR R = 1 TO YRS
190 FOR C = 1 TO 3
200 CF(R,C) = 0
210 NEXT C, R
220 H2$ = "YEAR GROSS INCOME EXPENSES NET INCOME"
230 PRINT H2$
240 FOR C = 1 TO YRS
250 CF(C, 1) = GI : CF(C,2) = EX
260 CF(C,3) = CF(C, 1) - CF(C,2)
270 HTAB 2: PRINT C; TAB (8); CF(C, 1); TAB (21);

CF(C,2); TAB (30); CF(C,3)
280 TYRS = TYRS + C: NEXT C
290 FOR R = 1 TO YRS
300 FOR C = 1 TO 3
310 CF(O,C) = CF(O,C) + CF(R,C)
320 NEXT C,R
330 PRINT " __
340 HTAB 1 : PRINT TYRS; TAB {8); CF(0, 1);

TAB (21); CF{0,2) TAB (29) CF(0,3) (There are no semicolons between the
last three items)

350 END
RUN

DOUBLE SUBSCRIPTED ARRAYS
GROSS INCOME EXPENSES YEARS TO OPERATE

1500.21 875.35 4

YEAR
1
2
3
4

10

GROSS INC.
1500.21
1500.21
1500.21
1500.21

6000.84

EXPENSES
875.35
875.35
875.35
875.35

3501.4

NET INCOME
624.86
624.86
624.86
624.86

2499.44

The variables used in the program are:

CF = cash flow R = row
C = column
EX = expenses
H 1 $ = print heading

GI = gross income
YRS = years to operate
H2$ = print heading

The program was designed so the input and output would be visible on
the screen at the same time.

92 APPLESOFT LANGUAGE

Lines 100 and 110 are used to partially document the teaching objective
of the program, namely double subscripted variables.

Line 120 HOME clears the screen and prints on line 2 of the screen,
DOUBLE SUBSCRIPTED VARIABLES.

Line 130 places the string into Hl $ for ease of output. This is especially
valuable if the same heading is to be printed many times during the pro
gram.

Line 140 tabs to line 4 on the screen and prints out the heading.
Lines 150 and 160 ask for input below the subject in the heading, thereby

cluing the user as to what input is requested. In Applesoft, the statement
INPUT GI could be used, but it leaves a question mark on the screen in front
of the data. INPUT""; GI is used because it leaves no question mark on the
screen in front of the data.

The D!Mension statement of line 170 would not be necessary if fewer than
11 array elements were needed, since Applesoft automatically sets aside up
to 10 array element memory locations. The DIM statement that we use
allows a variable number of rows (CF(YRS,3)) to be allocated. If we knew
that the number of rows needed would never be more than five, we could
have written line 170: DIM CF (4,3). This version allocates 4 + 1 rows and
3 + 1 columns, or 20 real number elements to the array (don't forget that
the computer uses zero as a counting number, so that when you tell it four,
the computer counts five places including zero).

Lines 180 to 210 initialize the locations in the table to zero.

180 FOR R = 1 TO YRS
190 FOR C = 1 TO 3
200 CF(R,C) = 0
210 NEXT C, R

The double nested loop is the most efficient method to initialize the loca
tions in the table to zero. The table locations could have been initialized by
listing every element in the array and setting them equal to zero.

CF(1,1) = 0
CF(1,2) ::: 0
CF(1,3) = 0
CF(2, 1) = 0
CF(2,2) = 0
CF(2,3) = 0
CF(3, 1) = 0
CF(3,2) = 0
CF(3,3) = 0 , etc.

Or a FOR-NEXT loop could have been used.

FOR C = 1TO3
CF(1,C) = 0
CF(2,C) = 0
CF(3,C) = 0

CF(4,C) = 0
NEXT C

DOUBLE SUBSCRIPTED VARIABLES 93

Line 220 is the header to be printed before the output of data. The header
must be printed before the loop executes. If the header is within the loop, it
will be printed each time the loop is executed.

Line 230 prints out the header. There is no VT AB statement because the
table is printed below the input information. Two blank lines separate the
input information from the output data. The two PRINT statements in line
160 cause the two blank lines below the input.

In line 240, the number of years on which to compute the table was input.
In line 250, CF(C, 1) = GI is a replacement statement that stores the input

variable on the left side of the equals sign into CF(C, 1), the column that is to
hold the yearly gross income. CF(C,2) = EX is a replacement statement to
place the expenses into the cash flow CF(C,2) column.

Line 260 is a replacement statement that sets up the third column of the
table. The column (C,3) is to hold the net income, which is the gross income
(C, 1) less the expenses (C,2).

Line 270 places the results of each execution of the loop in the proper
location under the header. The CF(C, 1) is used directly in the PRINT state
ment to print out the results of that column.

Line 280 totals the number of years in the period. NEXT C is the ending
statement of the loop.

Lines 290 through 320 compute the totals for each column by using
double nested loops.

290 FOR R = 1 TO YRS
300 FOR C = 1 TO 3
310 CF(O,C) = CF(O,C) + CF(R,C)

The elements (0, 1), (0,2), and (0,3) have not been used in this table yet,
but are available in the dimension arrangement. The locations (0, 1), (0,2),
and (0,3) are used to place the totals of (C, 1), (C,2), and (C,3), respectively.
Line 310 inside the double nested loops is the totaling statement that totals
each of the columns.

Line 320 is the ending statement of the double nested loops.
Line 330 draws a line under the columns and the totals are placed below

the lines.
Line 340 prints the totals in the proper positions below the lines. Notice

that some of the semicolons between the TAB statements and the PRINT
statements are missing. Applesoft is flexible enough to accept the instruc
tions without semicolons and still operate properly.

Line 350 ends the program.

LESSON 14

String Arrays

After completion of Lesson 14 you should be able to:

1. Use LEFT$, MID$, and RIGHT$.
2. Use string arrays (or string subscripted variables) in loops.
3. Output alphanumeric lists by using string arrays.
4. Write programs using string arrays to print lists of names and

addresses.

VOCABULARY

Concatenate - This means to link together in a set, series, or chain.
GOSUB - This is a string which contains no characters. Strings are initial

ized with zero characters. A$ = ""is a null string and a PRINT A$ will not
print any characters on the screen, nor will the cursor advance on the
screen.

ON ERR GOTO 430, 440, etc. - This is a statement that causes an uncon
ditional GOTO branch when a particular error is encountered. Error #l
jumps to line 430, error #2 jumps to line 440, etc. The equivalent state
ment for a GOSUB branch is ON ERR GOSUB 430, 440, etc.

String Array - This is a complex variable used to manipulate all or part of
a string.

Subroutine - This is a discrete part of a program that performs a logical
section of the overall function of the program and that is available when
ever the particular set of instructions is required. The instructions form
ing the subroutine do not need to be repeated every time they are
needed, but can be entered by means of a branch from the main program.
Subroutines may be written for a specific program or they may be written
in general form to perform operations common to several programs. In
Applesoft, the statements GOSUB or ON (ERR) GOSUB direct the pro
gram to the subroutines. The last line of a subroutine is a RETURN state
ment, that jumps to the line in the main program directly below the

95

96 APPLESOFT LANGUAGE

GOSUB (or ON (ERR) GOSUB). Subroutines can be called from the main
body of the program or from other subroutines. GOSUBs can be nested
25 levels deep in Applesoft.

DISCUSSION

String variables were introduced in Lesson 4 with the other simple vari
ables, integers and reals. The complex variables, integer arrays and real
arrays were discussed in Lessons 12 and 13.

The complex variable (also known as the string array, or string sub
scripted variable) is a variable with a subscript. The string array is used to
output alphanumeric information, such as lists of names and addresses.

A$ = a string vciriable.
HI SUE = a literal.

"HI SUE" a literal enclosed in quotation marks (a string).
LEFT$(A$,J) string function having 2 arguments.

RIGHT$(A$,J) string function having 2 arguments.
MID$(A$,J, 1) string function having 3 arguments.

In a string array, a dollar sign($) follows the name of the array. The Apple
soft language uses three functions to retrieve all or part of a string, or to
print all or part of a string. A function is that part of a computer instruction
that specifies the operation to be performed. An argument is a variable fac
tor, the value of which determines the value of the function. The three func
tions used to manipulate strings are LEFT$, MID$, and RIGHT$.

When string arrays are manipulated as single entities they are handled in
this manner.

~ LEFT${A$,2)

function A stri?-;::ct!rs are printed beginning at the
first character.

~A$,1,2)

function A string 1 = firl character in the string.
2 = two characters are printed beginning at
character #l.

LEFT${A$,2) = MID${A$, 1,2)

/ RIGHT${A$,3)

/. .~\ .
function A string prints last three characters in the string.

STRING ARRAYS 97

The following program demonstrates the use of LEFT$, MID$, and
RIGHT$. The printout caused by each line is printed next to the line for your
convenience.

100 A$ = "HI SUE"
110 PRINT LEFT$(A$,2) HI
120 PRINT RIGHT$(A$,3) SUE
130 PRINT MID$(A$,1) HISUE
140 PRINT MID$(A$,2) ISUE
150 PRINT MID$(A$,3) SUE
160 PRINT MID$(A$,4) SUE
170 PRINT MID$(A$,5) UE
180 PRINT MID$(A$,6) E
190 PRINT MID$(A$, 1, 1) H
200 PRINT MID$(A$,2, 1) I
210 PRINT MID$(A$,3, 1) space
220 PRINT MID$(A$,4, 1) s
230 PRINT MID$(A$,5, 1) u
240 PRINT MID$(A$,6, 1) E
250 PRINT MID$(A$,4, 1) s
260 PRINT MID$(A$,4,3) SUE
999 END

This program also demonstrates that the function MID$ can output the
same characters as LEFT$ and RIGHT$. With proper manipulation the pro
grammer does not need LEFT$ or RIGHT$. MID$ alone will do the job.

LEFT$, MID$, and RIGHT$ functions can be used in loops to output all or
parts of a string. A loop variable J is used in this example. The L variable
holds the value of the length of the string.

FOR J = 1 TO L (L = LEN(A$))

Prints forward from left to

:::::::~ ... ~1!11.M ,J)

functio-n~---A-s-tr-ing loop varitble. Prints complete A$ on 1st
loop pass and decrements by 1 for each
character in the string beginning from the
left side of the string.

R!GHT$(A$,J)

f t.~A -~-'f "h If" bk unc ion stnng pnnts stnng rom ng t to et, 1.e., ac -
wards.

98 APPLESOFT LANGUAGE

100 A$ = "HI SUE"
110 PRINT LEN(A$), LEN("HI SUE")
120 FOR J = 1 TO LEN(A$)
130 PRINT LEFT$(A$,J)
140 NEXT J : PRINT: L = LEN(A$)
150 FOR J = 1 TO L
160 PRINT RIGHT$(A$,J)
170 NEXT J : PRINT
180 FOR J = 1 TO L
190 PRINT MID$(A$,J)
200 NEXT J : PRINT
210 FOR J = 1 TO L : PRINT MID$(A$,4) : NEXT J : PRINT
220 FOR J = 1 TO L : PRINT MID$(A$,J,2) : NEXT J : PRINT
230 FOR J = 1 TO L : PRINT MID$(A$,J, 1); : NEXT J
999 END
RUN
(PRINT LEN(A$), LEN("HI SUE")) NOT PRINTED FROM PROGRAM
6 6
H
HI
HI S PRINT LEFT$(A$,J)
HI SU
HI SUE

E
UE
SUE

SUE
ISUE
HI SUE

HI SUE
ISUE

SUE
SUE
UE
E
SUE
SUE
SUE
SUE
SUE
SUE

HI
I

s
SU
UE
E
HI SUE

PRINT RIGHT$(A$,J)

PRINT MID$(A$,J)

PRINT MID$(A$,4)

PRINT MID$(A$,J,2)

PRINT MID$(A$,J, 1);

To concatenate is to link together in a set, series, or chain. Applesoft has
the ability to concatenate. Strings can be altered to produce desired output.

I_' I

\ J

I ,

[
I

I'

!
! '

10
20
30
40
50
60

A$ = "HI SUE"
8$ = A$ + " " + "AND JIM"
PRINT A$
PRINT 8$
C$ = LEFT$(A$,3) + RIGHT$(8$,3) + "!!!"

STRING ARRAYS 99

PRINTC$ ~
END (3 includes the space after HI - if 2 was used the output 999

RUN
HI SUE
HI SUE AND JIM
HI JIM!!!

would be HIJIM!!!)

The balance of this lesson is on program development. The objective is to
produce a program that accepts a person's name and address for the pur
pose of compiling and printing a mailing list. The program has error check
ing to notify the input operator if the input is incorrect. Once the input is
correct the name and address is output in the proper format.

A correct program is not usually written on the first attempt. In this
example, an unusable program is written as a first attempt. The program is
then revised. The lesson presents an outline for program development and
shows some of the steps you should follow when writing usable programs.

The original program is inflexible. A$ holds the name and address of the
individual. If an individual with another name and address was placed in A$,
the output is not formatted correctly. As an extra, the program demon
strates the use of MID$ to replace LEFT$, and RIGHT$.

15 REM: NEXT PROGRAM CHANGE - INPUT A$ AT LINE 20
20 A$ = "JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000"
30 PRINT A$
40 PRINT LEFT$(A$,8)
50 PRINT MID$(A$, 10, 13)
60 PRINT RIGHT$(A$, 18) : PRINT
70 PRINT MID$(A$, 1,8)
80 PRINT MID$(A$, 10, 13)
90 PRINT MID$(A$,24, 19)
999 END
RUN
JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

When the program is typed and RUN, it can be readily understood that the
program is useful only if the name and address input is JOHN DOE 2200
MAIN ST. ANYTOWN USA 00000.

When line 20 is changed to

100 APPLESOFT LANGUAGE

20 INPUT A$

the input must be the same number of letters and characters in the original
JOHN DOE name and address to be output in the correct format.

For a program to be valuable, it must be flexible. The name line of the
program must accept any name, no matter if it has three characters or 255
characters. The address field must be able to accept different numbers of
characters for different street numbers and street names. The city, state,
and zip line must also be able to accept different numbers of characters. To
achieve this flexibility, a delimiter(;) is used after each line of the name and
address.

JOHN DOE;2200 MAIN ST.;ANYTOWN USA OOOOO(L)

As a step toward developing a flexible program, an inflexible formula is
first demonstrated.

20 INPUT A$
30 N = 9 : A 1 = 23 : L = LEN(A$)
40 PRINT A$
50 PRINT LEFT$(A$,N-1)
60 PRINT MID$(A$,N + 1,A 1-(N+1))
70 PRINT RIGHT$(A$,L-A1)
999 END
RUN
JOHN DOE;2200MAIN ST.;ANYTOWN USA 00000
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

The semicolon(;) is used as a delimiter separating fields in A$. The vari
ables locate the delimiters at the end of each field. No spaces are left be
tween the contents of the field and the delimiter.

The following is an explanation of the expressions used in this program.

N = 9 N = variable of the delimiter at the end of the first field.

Al = 23
Nine (9) is the column the delimiter occupies.
A 1 = variable of the delimiter at the end of the second
field. Twenty-three (23) is the column the delimiter oc-
cupies.

L LEN(A$) L points to the end of the third field. The column that L

Line

1

2

3

occupies is determined by the length of the city, state,
and zip code.

Table 14-1. Where lines Start and End
Start Symbol End Symbol

Position #1 LEFT$(A$, Before 1st del N - 1

After 1st del N + 1 Before 2nd del A1 - 1

After 2nd del A1 + 1 Length of string L

LEFT$(A$,N-1)
MID$(A$,N+1,A1 -(N+$1))

STRING ARRAYS 101

Line 1
Line 2
Line 3 RIGHTS(A$,L-A 1) (the closing delimiter should be Al+ 1, butApplesoft

picks up the delimiter position as Al)

In this sequence of learning events, the first string function used,
LEFT$(A$,8), had constants within the parentheses that printed out the first
through the eighth characters in the string. The second type of string func
tion, LEFT$(A$, N-1), had a constant and a variable with a fixed value in
relation to the delimiter and a fixed A$ input. The program to be studied
next has a variable length input and a delimiter that is determined by the
variable input LEFT$(A$, D1C - 1). The variable length input and input error
checks produce a useful program.

Developing a complicated program is a detailed, exacting, and thought
provoking experience. Not all the programmer's thoughts can,be written on
paper. The following program is presented in the detailed manner in which
it was developed. The final program varies from the outline flowchart and
this is a feature of progressive changing thought. For the benefit of the
learning programmer, the initial flowcharts were not changed to conform to
the finished program. The differences from one step to the next emphasize
how development occurs.

I. GENERAL OUTLINE FOR PROGRAM DEVELOPMENT

A. What is the problem?
B. Detailed input format
C. Detailed output format
D. Outline flowchart
E. Assignment of variables
F. Start and end of lines
G. Basic flowchart
H. Error checking

1. Number of delimiters
2. Length of lines

a. Length of line 1
b. Length of line 2
c. Length of line 3

I. Write error checking section of outline flowchart
J. Write final flowchart
K. Write program
L. Debug and modify the program
M. Code the final program

The explanations and details of the logic use the same code and headings
as the outline.

I. A. What is the problem? The problem is to input three lines of variable

102 APPLESOFT LANGUAGE

length separated by a delimiter(;) to allow any length of name, any length of
street number and address, and any length of city, state, and zip code up to
255 characters each.

I. B. Detailed input format. Line of input = A$
JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000
I. C. Detailed ouput format.
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000
I. D. Outline flowchart. (Shown in Fig. 14-1.)
I. E. Assignment of variables. The variables use the logic that a delimiter

(D) is used after line 1 to close the line, hence, D 1 C means the delimiter that
closes line 1. A delimiter (D) is used after line 2 to close the line, hence,
D2C. L = LEN(A$) is the delimiter used at the end of line 3. The entire list of
variables is as shown below:

1 (st column)
DlC
DlC-1
DlC+ 1
D2C
D2C-1
D2C+ 1
L
ERR

J - (J,J)

ASSIGNMENT OF EXPRESSIONS

Beginning of line 1 - LEFT$(A$,
Points to the delimiter at the end of line 1.
End of line 1.
Beginning of line 2.
Points to the delimiter at the end of line 2.
End of line 2.
Beginning of line 3.
End of line 3.
Variable that is assigned a value when an input error has
occurred, and the value is used to print the type of error.
Loop variable or subscript variable.

I. F. Start and end of lines. Once the delimiter variables are assigned, they
are placed at the start and at the end of the lines.

INPUT

(DlC-1) (DlC+l) (D2C-1) (D2C+)

~~OOMAINSJANL USA OOOOO(L)

!st DEL (D!C~nd DEL (D2~ ~)

i !

i
I I

Fig. 14-1. Outline flowchart.

START

INPUT LINE
OF INFORMATION

CHECK INFORMATION
TO MAKE SURE IT'S
LEGAL & DETERMINE

3 LINES OF INFO

PRINT 1st LINE
PRINT 2nd LINE
PRINT 3rd LINE

END

STRING ARRAYS 103

NO ERROR
MESSAGE

Table 14-2. Showing Where Lines Start and End
Line Start Symbol End Symbol

1 Beginning col. 1 LEFT$(A$, Before 1st del. D1C - 1

2 After 1st del. D1C+1 Before 2nd del. D2C - 1

3 After 2nd del. D2C+1 At end of string L

Line 1 LEFT$(A$,D1C-1)
Line 2 MID$(A$,D1C+1,D2C-(D1C+1))
Line 3 RIGHT$(A$,L- D2C)

I. G. Basic flowchart. This is shown in Fig. 14-2. The basic flowchart
shows the beginning pattern to develop the program. A$ is input by
the user. The length of A$ is stored in the variable L. The first delimiter
D 1 C is initialized to zero. A$ starts at the first character and ends at
L (L = LEN(A$). The statements DlC = DlC + 1 and IF MID$(A$,D1C,l)
~ ";"THEN - branch to DlC = DlC + 1, counts the number of characters
in the first line of A$. This looping continues until the first delimiter(;) is
found. The numeric value stored in D 1 C is then transferred to D2C. If after
the end of line 1, DlC has a value of 10, then 10 is transferred to D2C. D2C
= D 1 C. D2C is then initialized to a value of 10. The second line starts after
the first delimiter (11). The same logic is applied to count the number of
characters in line 2. D2C = D2C + 1 and IF MID$(A$,D2C, 1) = ";"THEN

104 APPLESOFT LANGUAGE

- branch to D2C = D2C + 1 and couht the number of characters in line 2
until the second delimiter is reached. These two delimiters set the end of
the first and second lines. The third line is composed of all the characters
between D2C and L.

START

NO

NO

END

Fig. 14-2. Basic flowchart.

I. H. Error checking. For a program to be effective and efficient, those
sections that interrupt the flow must be eliminated. The algorithm from
section I. G. specifies that the input section (A$) must have two delimiters
separating three lines. The first error check is to determine if D 1 C is greater
than the length of the line. IF D 1 C>L THEN. If D 1 C>L, the loop has searched
through A$ completely, and has not found a delimiter. Fig. 14-3 shows
input with no error check. Compare Figs. 14-4 and 14-5 to see how this
process looks logically. If the first loop finds a delimiter, the flowchart goes
to the second loop to search for the second delimiter. If D2C>L, the second
delimiter was not found. This is another error. If two delimiters are found
there is no error, but logic dictates a search for a third delimiter. Another
error would occur if there are three semicolon delimiters. Another error
would occur if the 1st delimiter was the first character in line 1. Line 1 would
be zero length. If the second delimiter is the next character after the 1st de·
limiter, line 2 would be zero length. If line 3 had no characters between D2C
and L, another error would occur. This gives a total possibility of six errors,
three delimiter errors, and three line length errors.

STRING ARRAYS 105

DOE MAIN USA

D1C

1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 14-3. Input with no error check.

Fig. 14-4. Case No. 1-flowchart with no
error checking.

MID$(A$,D1C, 1)

D
0
E

M
A
I
N

u
s
A
ILLEGAL QUANTITY ERR
(when D1 C = 256)

L = LEN (A$)

D2C = D1C

ILLEGAL CONDITIONS

1. Delimiters - not exactly 2.
2. Length of lines

a. Length of line 1 0 characters.
b. Length of line 2 0 characters.
c. Length of line 3 0 characters.

NO

I. H. 1. Number of delimiters. The input format has two, and only two
delimiters. If there are any more or any less than two delimiters, the input is
illegal.

106 APPLESOFT LANGUAGE

L = LEN (,A.$)

GOTO INPUT

YES PRINT
"ILLEGAL INPUT"

D2C = D1C

Fig. 14-5. Case No. 2-flowchart with error checking statement.

Table 14-3. Check for the Number of Delimiters

of Delimiters Test Decision Statement

0 ILLEGAL D1C>L

1 ILLEGAL D2C>L

2 LEGAL

3 ILLEGAL FOR J = D2C + 1 TO L
IF MID$(A$,J, 1) = ";"
NEXT J

I. H. 2. Length of lines. There are 3 lines of input separated by delimiters.
If any, or all, of these lines are zero length, the input is incorrect.

Line 1 0 ;2200 MAIN ST.;ANYTOWN USA OOOOO(L)
Line 2 = 0 JOHN DOE;;ANYTOWN USA OOOOO(L)
Line 3 = 0 JOHN DOE;2200 MAIN ST.;(L)
I. I. Write error checking section of the flowchart. Fig. 14-6 shows the

error checking aspects in the flowchart. Examine Fig. 14-6 carefully to
determine where each error case is checked. Fig. 14-3 shows what happens
with no error checking. If there are no delimiters separating the name and
address fields in "DOE MAIN USA" (A$), the DlC = DlC + 1 loop executes

I I
I !
I !

STRING ARRAYS 107

Table 14-4. Error Check for Line Length

Line Condition Decision Statement

1 ;MAIN; USA D1C = 1 ILLEGAL

2 DOE;;USA D1C+ 1 = D2C ILLEGAL

3 DOE;MAIN;(L) L = D2C ILLEGAL

until D 1 C is greater than L. When D 1 C>L, the computer prints ILLEGAL
QUANTITY ERR because it is telling the machine to compare a nonexistent
character with";".

Table 14-5. Errors

Error# Condition

1 IS D1C > L?
2 IS D1C = 1 ?
3 IS D2C > L?
4 IS D1C + 1 = D2C?
5 IS D2C = L?
6 IS A 3rd DELIMITER FOUND

IN THE LAST PART OF THE INPUT ?

I. J. Final flowchart. The final flowchart is an incorporation of all the de
tails, charts, ideas, and logic to this point. The final flowchart should be
written so very few changes are needed to code the program. The final flow
chart is shown in Fig. 14-6.

I. K. L. M. Write, debug, and modify the program. Most programmers are
perpetual students, tinkerers, and perfectionists. They will usually seek
modifications to do the job better. This is the real idea of programming and
life.

100 REM: PRINT NAME AND ADDRESS
110 REM : CHECK FOR INPUT ERRORS
120 PRINT: PRINT "INPUT 'NAME;ADDRESS;CITY STATE ZIP'"
130 INPUT "?";A$
140 L = LEN (A$): D1C = 0
150 D1C = D1C + 1
160 IF D1C>L THEN ERR= 1 : GOSUB 400: GOTO 120
170 IF MID$(A$,D1C,1) <>";"THEN 150
180 IF D1C = 1 THEN ERR = 2: GOSUB 400: GOTO 120
190 D2C = D1C
200 D2C = D2C + 1
210 IF D2C>L THEN ERR = 3 : GOSUB 400 : GOTO 120
220 IF MID$(A$,D2C, 1) <> ";"THEN 200
230 IF D1C + 1 = D2C THEN ERR = 4: GOSUB 400: GOTO 120
240 IF D2C = L THEN ERR = 5 : GOSUB 400 : GOTO 120
250 FOR J = D2C + 1 TO L
260 IF MID$(A$,J, 1) = ";"THEN ERR = 6 : GOSUB 400: GOTO 120
270 NEXT J

108 APPLESOFT LANGUAGE

START

REM: INPUT NAME & ADDRESS
WITH DELIMITERS

PRINT " 'NAME;ADDRESS;
CITY, STATE ZIP' "

D1C = 0

D1C = D1C + 1

NO

Fig. 14-6. Final flowchart.

STRING ARRAYS 109

NO ERR = 3 : GOSUB 400
: GOTO 120

'>-----i ERR = 4: GOSUB 400
: GOTO 120

"'-----.t ERR = 5 : GOSUB 400
: GOTO 120

FOR J = D2C + 1 TO L

YES ERR = 6 : GOSUB 400

PRINT LEFT$(A,D1C - 1)
PRINT MID$(A$,D1C + 1, D2C - (D1C + 1))

PRINT RIGHT$(A$, L - D2C)

MORE INPUT (Y OR N); Q$

Fig. 14-6-cont. Final flowchart.

: GOTO 120

110 APPLESOFT LANGUAGE

©

END

ERROR SUBROUTINE

<1

PRINT
''***ILLEGAL
INPUT***"

RETURN

Fig. 14-6-cont. Final flowchart.

280 PRINT: PRINT LEFT${A$,D1C - 1)

GOTO 120

PRINT "NO DELIMITER IN STRING"
: RETURN

PRINT "LINE 1 IS ZERO LENGTH"
: RETURN

PRINT "ONLY 1 DELIMITER IN STRING"
: RETURN

PRINT "LINE 2 IS ZERO LENGTH"
: RETURN

PRINT "LINE 3 IS ZERO LENGTH"
: RETURN

PRINT "MORE THAN 2 DELIMITERS
IN STRING"

: RETURN

290 PRINT: PRINT MID${A$, D1C + 1, D2C - {D1C + 1))
300 PRINT : PRINT RIGHT${A$, L - D2C)
301 REM : LEFT${A$,D1 C - 1) = = MID${A$, 1,D1 C - 1)
302 REM : RIGHT${A$,L - D2C) = = MID${A$,D2C + 1, L - D2C)
310 PRINT : INPUT "MORE INPUT {Y OR N)" ; Q$
320 IF Q$<>"N." THEN 120
330 END
400 PRINT "***ILLEGAL INPUT***"
410 ON {ERR) GOTO 430, 440, 450, 460, 470, 480
420 RETURN
430 PRINT "NO DELIMITER IN STRING" : RETURN
440 PRINT "LINE 1 IS ZERO LENGTH" : RETURN
450 PRINT "ONLY ONE DELIMITER IN STRING" : RETURN
460 PRINT "LINE 2 IS ZERO LENGTH" : RETURN
470 PRINT "LINE 3 IS ZERO LENGTH" : RETURN
480 PRINT "MORE THAN 2 DELIMITERS IN STRING" : RETURN

RUN

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000
ILLEGAL INPUT
NO DELIMITER IN STRING

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
7;2200 MAIN ST.;ANYTOWN USA 00000
ILLEGAL INPUT
LINE 1 IS ZERO LENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE:2200 MAIN ST. ANYTOWN USA 00000
ILLEGAL INPUT
ONLY ONE DELIMITER IN STRING

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;;ANYTOWN USA 00000
ILLEGAL INPUT
LINE 2 IS ZERO LENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;
ILLEGAL INPUT
LINE 3 IS ZERO LENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;ANYTOWN ;USA 00000
ILLEGAL INPUT
MORE THAN 2 DELIMITERS IN STRING

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000

JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

MORE INPUT (Y OR N) N

STRING ARRAYS 111

This is how the logic developed from conception to completion. The fol
lowing explanation of statements may be repetitious but it may also be
helpful.

FLOWCHART NORMAL
LOGIC
DlC < = L
MID$(A$,D1C,1) = ,

MID$(A$,D2C, 1) = ,

D2C <= L
Q$ = "N"

PROGRAM EXPEDIENT
LOGIC
DlC > L
MID$(A$,DlC, 1) <> ";"
MID$(A$,D2C, 1) <> ";"
D2C > L
Q$ <> "N"

112 APPLESOFT LANGUAGE

The flowchart was written with normal logic. The program was coded with
expedient logic. Once the flowchart is developed, the sections are broken
down to determine the most efficient and fastest way for the program to
run. A flowchart is simply a tool to help clarify the logic involved in solving
a problem. When converting a flowchart to a program it is sometimes useful
to reverse the "IF" check to save memory. The common practice is to use
MID$(A$,D1C, 1) = ";".The program must search for";" until it is found.
When = ";" is not true the program must unconditionally branch (GOTO)
backwards to increment D1C. Expedient logic MID$(A$,D1C,1)<>";"
causes the program to search for <>";". If it is not found, the program
conditionally branches to increment D 1 C, thus saving a GOTO statement
with each decision. This not only saves program statements, but makes the
program more efficient, run faster and uses less memory. Expedient logic
makes the program simpler and more efficient. It gets the job done better
and faster.

Lines 100 and 110 are REM statements that document the program to
print the name and address of an individual and to check for input errors.

Line 120 prints out the exact input format for the user. The user is soon
aware that the name and address must be input exactly the same way as the
input header. If the input is different, the user is given an error message why
the input is incorrect. The program will not accept the name and address
unless it is correctly input.

Line 140 is a programming convenience. It is much easier to type L than
it is to type LEN (A$). 01 C = 0 initializes the first delimiter to zero. The
D2C and L delimiters are not initialized to zero, because in line 190 D2C =

D 1 C takes the value of D 1 C at the end of line 1 and stores it in D2C. This
value maintains the continuity of the program in checking for the relation
ship with L (LEN (A$)).

Line 150 is a counting statement that is incremented on each character of
line 1 of A$ until it detects the delimiter(;).

In line 160, if the counting statement increments until the value of D 1 C is
greater than L, the THEN is executed to send the program to ERR = 1. In
Applesoft when the statement (IF D 1 C > L) is true, all statements at that
line number are executed (unless there is an unconditional branch THEN
400). GOSUB 400 branches to the subroutine beginning at line 400.
* * *ILLEGAL INPUT*** is printed. The ERR = 1 sends the program to line
430. The error-line number relationship is shown in Fig. 14-7.

At the end of line 430 is a RETURN statement. A RETURN statement
must be placed at the end of a subroutine. The RETURN causes the program
to branch to the program statement immediately after the GOSUB.

The sequence of events that occur after ERR = 1 is

1. GOSUB 400 Branch to line 400.

STRING ARRAYS 113

ERROR# ON (ERR) GOTO

1 430
2 440
3 450
4 460
5 470
6 480

Fig. 14-7. Error-line number relationship.

2. ERR = 1

3.RETURN

ON (1) GOTO 430 to print the input error. RETURN fol
lows the error printout.
GOTO 120-line immediately following GOSUB 400.

The ON-GOTO (ON-GOSUB) is a relationship programmed into
Applesoft. A specific ERROR number relates to a specific line number in the
program.

In line 170, the decision statement checks to see if the delimiter(;) at the
end of the first line has been reached. If the character is not the delimiter,
the program branches to line 150 to increment the value of DlC.

In line 180, if there is only one delimiter in A$, the ERROR = 2. The state
ment GOSUB 400 sends the program to line 400 to print out ***ILLEGAL IN
PUT*** and then to line 440 to print out the input error, LINE 1 IS ZERO
LENGTH.

In line 190, the value held in the delimiter D 1 C is stored in D2C. This
statement maintains the value relationship from one delimiter to the next.
This value relationship is continued as the program moves to L, the
delimiter at the end of line 3.

In line 210, if the present value stored in D2C is greater than L, THEN
input error #3 is printed on the screen. The program executes GOSUB 400,
ON 2 GOTO 450, to print, ONLY ONE DELIMITER IN STRING. The RETURN
statement branches to the line immediately after GOSUB 400. The state
ment is GOTO 120, and immediately branches to line 120, for more input.

In line 220, if the decision statement does not find the D2C delimiter, it
branches to line 200 to increment D2C.

In line 230, if the two semicolon delimiters are together with no char
acters in between, line 2 is missing. ERR = 4. GOSUB 400 executes to line
400 to print out ***ILLEGAL INPUT***, ON 4 GOTO 460, prints out, LINE 2 IS
ZERO LENGTH. RETURN branches to GOTO 120 (line 230) to input the cor
rect information.

In line 240, if D2C = L there are no characters in line 3, and ERR = 5,
causes a branch to the subroutine to print ***ILLEGAL INPUT***. ON 5
GOTO 470 prints, LINE 3 IS ZERO LENGTH.

Lines 250 to 270 are a loop to check the number of delimiters from D2C
to L. The program has checked that there are 2 delimiters to this point. Line

114 APPLESOFT LANGUAGE

170 checks the delimiter at the end of line #l. Line 220 checks the delimiter
at the end of line #2. If the loop FOR J = D2C + 1 TO L executes and finds
another semicolon delimiter then ERR = 6. The program branches to line
400, prints out ***ILLEGAL INPUT ***, ON 6 GOTO 480, MORE THAN 2
DELIMITERS IN STRING. The RETURN is executed to GOTO 120, and GOTO
120 branches to. input information.

Lines 280, 290, and 300 print out the name and address of the individual
in the correct format.

Lines 301 and 302 are inserted to inform the user of the correct MID$
functions to replace the LEFT$ and RIGHT$ to print out lines #l and #3.

Line 310 PRINT: INPUT "MORE INPUT (YORN)" ;Q$ queries the user, is
another name and address to be input, or does the user want to end the pro
gram?

Line 320 IF Q$<>"N" THEN 120 is a decision statement to branch to
line 120 for more input, or to end the program. This line could be flow
charted in either of two ways with equal efficiency as shown in Fig. 14-8.

GOTO 120

END

GOTO 120

END

Fig. 14-8. Decision flowchart.

Lines 400 to 480 are the subroutines and the ON (ERR) GOTO state
ments. Subroutines placed after the main body of the program do not
clutter up the main body of the program. Applesoft indicates an END state
ment is optional and need not be used. Experience shows that complicated
programs will not always run properly without an end statement. The sub
routines perform better when the program branches past the end statement
of the program. The subroutine runs and the RETURN branches to the state
ment immediately after the GOSUB in the main body of the program. Use
an END statement with all programs.

LESSON 15

Functions

After completion of Lesson 15 you should be able to:

1. Use arithmetic functions in programming.
2. Convert radians to degrees by using the DEF FN.
3. List and define language, string, and numeric functions.

VOCABULARY

Argument - This is a variable factor, the value of which determines the
value of the function.

Function - This is that part of the computer instruction that specifies the
operation to be performed.

Radian - This is a unit of plane angular measurement that is equal to the
angle at the center of a circle subtended by an arc equal in length to the
radius.

DISCUSSION

In this lesson, the arithmetic functions will be placed alphabetically in a
program to demonstrate their use, and they will be clarified by explanation.

A function, as explained in the vocabulary, is that part of the computer in
struction that specifies the operation to be performed. Functions act upon
the input to a function. The function then performs some operation on the
argument, and outputs the result. The operation itself may involve many
program steps. Calling a function automatically makes use of these pro
grammed steps.

The following program shows how functions work. The output of each
function is placed beside the function, rather than at the end of the pro
gram, for clarity.

100 M = -4: N = 2.5 : P = 3 : Q = 0
110 PRINT ABS (M) (4)

120 PRINT EXP (P) (20.0855369)

115

116 APPLESOFT LANGUAGE

130 PRINT LOG (P) (1 .09861229)

140 PRINT RND (P) (.889939655)
150 PRINT SGN (M) (-1)

160 PRINT SGN (Q) (O)

170 PRINT SGN (N) (1)

180 PRINT SQR (P) (1.73205081)

190 REM: GEOMETRIC ARGUMENTS GIVEN IN RADIANS
200 REM: USE DEF FN TO CONVERT DEGREES TO RADIANS
210 PRINT SIN (P) (.1411200008)

220 DEF FN SD(X) = SIN (X/57.2958)
230 PRINT FN SD (P) (.0523359375)

240 PRINT COS (P) (-.989992497)

250 DEF FN CD (X) = COS (X/57 .2958)
260 PRINT FN CD (P) (.998629665)

270 PRINT TAN (P) (-.142546543)

280 DEF FN TD (X) = TAN (X/57.2958)
290 PRINT FN TD (P) (.0524077605)
300 PRINT ATN (P) (1 .24904577)

310 DEF FN AD (X) = ATN (X/57.2958)
320 PRINT FN AD (P) (.0523120883)

999 END

ABS - returns the absolute or positive value.
EXP - raises the value to 6 places to the indicated power of 2.718289. This

is used in hyperbolic and exponential functions in biology, chemistry,
physics, and engineering. EXP (P) = 20.0855369.

LOG - This function in Applesoft is the natural log. In mathematics, LOG
= log to base 10. LN = the natural log. The conversion factor from the
natural log to the log base 10 is 2.302585093.

LOG BASE 10 - 10 LOG = 1.
NATURAL LOG - 10 LNX = 2.30258093.
RND - returns a real number greater than zero and less than one. RND (P)

= .889939655. M = - 4.RND (M) = 2.99214662E- 08.
SGN - if the expression is less than zero, a value of - 1 is returned. If the

expression is zero, a zero is returned. If the expression is greater than 1, a
value of 1 is returned.

SQR - returns the square root of the number.
SIN, COS, TAN, A TN - are trigonometric functions. Their arguments are

in radians. A radian is an angular measurement that is equal to the angle
at the center of a circle subtended by an arc equal in length to the radius.
Many people work in degrees, so the DEF FN function is used to convert
radians to degrees.

Language, string, and numeric functions are listed and defined below.

ASC ("A") - returns the ASCII code for the character in the argument.
Strings cannot be converted directly to numerics. ASC ("A") is used to

FUNCTIONS 117

convert the character of the string to an ASCII numeric value, which is
65.

CHR$ (65) - numerics cannot be converted directly to strings. CHR$ (65)
converts the ASCII value 65 to the string character A.

FRE (0) - returns to the user the number of bytes of memory available.
PRINT FRE (0) - must be used to return the amount of memory. Chang
ing the argument from 0 to 10 has no effect on the amount of memory re
turned.

INT - returns the largest integer in the number. PRINT INT (3.14) returns
the number 3.

LEFT$ - function detailed in Lesson 14.
LEN - returns the length of the string. A$ = "HJ SUE". PRINT LEN (A$),

LEN ("HI SUE") returns the number 6 for each LEN, the number of char
acters and spaces in the string.

MID$ - function detailed in Lesson 14.
POS - returns the position of the cursor. If the cursor is in column 1, PRINT

POS (0) returns 0. VT AB 20 : HT AB 30. PRINT POS (0) returns the cursor
location as 29.

RIGHT$ - function detailed in Lesson 14.
STR$ - returns a string that represents the value in the argument. PRINT

STR$ (3.14) returns 3.14.
VAL - interprets a string value. PRINT VAL ("3.14") returns 3.14.

LESSON 16

List and Edit

After completion of Lesson 16 you should be able to:

1. List programs or parts of programs, and delete parts of programs or a
whole program.

2. Edit using escape cursor moves mode and pure cursor moves mode.
3. Comprehend three types of program statements to edit.
4. Insert text into an existing line.

VOCABULARY

DEL - This is a command to remove a line or lines from a program. DEL
20, 70 removes lines 20 through 70 from the program.

Edit - This means to arrange data into a format required for subsequent
processing. Editing may involve deletion of data not required, conver
sion of fields into a machine format (e.g., value fields converted to
binary), and preparation of data for subsequent output (e.g., zero sup
pression).

Escape Cursor Moves Mode - In this mode, the ESCAPE key must be
pressed at the same time a cursor move key is pressed. If ESCAPE is not
pressed simultaneously with a cursor move key, the computer will not
move the cursor. Cursor move keys are A, B, C, and D. Escape cursor
moves mode is used by Apple computers supplied with Applesoft on tape
or disk.

LIST - This command lists all the line numbers and program statements in
a program. LIST 50, 100 lists lines 50 to 100 of a program.

Prompt - This is any message given to an operator by an operating system.
Pure Cursor Moves Mode - In this mode, the ESCAPE key does not have to

be pressed at the same time as the cursor move keys. Instead, ESCAPE is
pressed only once to enable the cursor move keys. To leave this mode,
any character key but the cursor move keys must be pressed. Cursor
move keys are I, J, K, and M. This mode can only be used by Apple com
puters with Applesoft supplied by firmware, rather than by tape.

119

120 APPLESOFT LANGUAGE

DISCUSSION

In editing, probably the most used keys are the left arrow, the right arrow,
and the repeat keys. The left arrow key, when pressed, moves the cursor one
space to the left. The right arrow key, when pressed, moves the cursor one
space to the right. When the repeat key is pressed, the last character printed
is repeated on the screen. To prevent this undesirable reprinting, a shift
arrow key should be pressed and released. The repeat and shift arrow key
(or desired key) can then be held down simultaneously to move the cursor
(or chosen character). When the repeat key and any other key are pressed
simultaneously, the character is repeated until the keys are released.

Type in this program.

10 PRINT "THIS IS THE USA"
20 END

To list the program, type LIST and the total program appears. To list only
one line of the program, type LIST and the line number.

LIST 10
10 PRINT "THIS IS THE USA"

To list a long section of a program, type LIST and the beginning line num
ber, followed by a comma, and the last line number.

LIST 10,20 (for a long program LIST 50, 100 - the screen only holds 24 lines of the program

statements)

10 PRINT "THIS IS THE USA"
20 END

In the list function, a minus sign (-) may be used to replace the comma
between the line numbers.

LIST 50, 100 = LIST 50-100

To list those lines above 500 (program runs from 0 to 1000) type LIST
- 500. To list those lines below 500 type LIST 500-. This convenient fea
ture saves a great deal of typing.

To delete a single line of the program, type in DEL and the line number,
followed by a comma, and the same line number.

DEL 10, 10 - deletes line 10 of the program.
Another way to delete line 10 is to type 10, and press RETURN.
The minus sign (-) cannot be used to replace the comma (,) in the DEL

command.
Type in DEL 10 to delete line 10. The computer gives a ? SYNTAX ERR

for this illegal command, because the command did not include a comma
and the repeat of the line number.

Sections of a program can be deleted by typing in: DEL first line number,
comma, second line number.

DEL 100,200 deletes all lines from 100 to 200, including 100 and 200.

LIST AND EDIT 121

To delete the total program from memory, type NEW. To check that the
program has been deleted from memory, type LIST. If no program appears
on the screen, the program has been deleted from memory.

There are two types of edit functions, (1) escape cursor moves, and (2)
pure cursor moves.

The escape cursor moves require the escape key be pressed before the
key to move the cursor is pressed. To move the cursor again, the escape key
must be pressed before the key to move the cursor is pressed. The routine is
press the escape key and then press the cursor move key. The escape cursor
move mode works on Applesoft that is loaded from tape or disk.

The keys that control the cursor in the escape cursor moves mode are:

KEY
ESCAPE A
ESCAPE B
ESCAPE C
ESCAPED

DIRECTION
RIGHT
LEFT
DOWN
UP

If the escape key is not pressed before the A key, the letter A will be
printed on the screen. When the escape key is pressed and the A key is
pressed, no letter is printed on the screen; only the cursor is moved one
space to the right.

The pure cursor moves mode edit function is available on Applesoft firm·
ware, and does not work on Applesoft loaded from tape.

The pure cursor moves mode requires the escape key be pressed once
and the proper character key is pressed to move the cursor. The cursor can
be moved in any direction until some key other than I, J, K, or Mis pressed.

The keys that control the cursor in the pure cursor moves mode are:

KEY DIRECTION
ESCAPE (pressed only once)
K ffiGHT
J LEFT
M DOWN
I UP

To recover from the pure cursor moves mode, any key (other than I, J, K,
or M) may be pressed one time. The second time the key is pressed the
operator regains control of the computer.

For example, in editing line 10:

LIST 10
10 PRINT "THIS IS THE USA"

ESCAPE is pressed and released. Key J is pressed one time to bring the
cursor to column 1 of the screen. Key I is pressed twice to place the cursor
over the 1 in line 10. The pure cursor moves mode is exited by pressing the

122 APPLESOFT LANGUAGE

right arrow key twice. The right arrow and repeat keys are then pressed to
place the cursor over the area to be changed. The changes are made by
typing in the proper character. The cursor is moved past the closing quote
to complete the edit. Did you print an incorrect character in the statement?
Go back and do it correctly.

There are three types of statements that can be edited. They are the state
ments containing:

1. Characters enclosed in quotation marks that occupy one line on the
screen.

2. Characters not enclosed in quotation marks that occupy more than
one line on the screen.

3. Characters enclosed in quotation marks that occupy more than one
line on the screen.

In editing Appiesoft loaded from tape or disk, only the escape cursor
moves mode can be used.

Statements with characters enclosed in quotation marks that occupy one
line and characters not enclosed in quotation marks that occupy more than
one line offer no editing problems. The cursor must be past the last
character in the line before RETURN is pressed. If the cursor is before the
last character and RETURN is pressed, all characters after the cursor are
deleted.

The editing problems come in statements with characters enclosed in
quotation marks occupying more than one line.

10 PRINT "THIS IS THE UNITED STATES OF
AMERICA"
20 END
RUN
THIS IS THE UNITED STATES OF AMERICA

Now type LIST 10

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"

The LIST causes line 10 to break in the middle of ST A TES. If not edited
correctly, spaces will be left in the printout when the program is run. The
method to eliminate spaces is to use the escape cursor moves mode, in the
areas where spacing is possible.

Press ESCAPE and B. This moves the cursor to column 1 of the screen.
Press ESCAPE and D. This moves the cursor one row up. Pressing ESCAPE
and D moves the cursor over the 1 in line 10.

Press repeat and right arrow keys simultaneously. D is printed on the
screen over the 1. The repeat key repeats the last character key pressed. To
prevent printing D (or the last character pressed), the right arrow key must

LIST AND EDIT 123

first be pressed and released. The right arrow key and the repeat key can
then be pressed simultaneously without printing a character.

To erase the D, press the left arrow key and retype the number 1. Press
the right arrow key and the repeat key simultaneously until the cursor
moves past the ending quotation mark on the 2nd line. Now press RETURN
and type LIST 10.

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"

The spacing between the A and the T in ST A TES has been changed. Now
type RUN.

RUN
THIS IS THE UNITED STA TES OF AMERICA

The spacing in the RUN has also been changed. To prevent this error the
line must be edited to look like this:

10 PRINT "THIS IS THE UNITED STATES OF
AMERICA"
RUN
THIS IS THE UNITED STATES OF AMERICA
LIST 10
10 PRINT "THIS IS THE UNITED STA

TES OF AMERICA"

To edit line 10 so the proper spacing is maintained, the following proce-
dure is used:

1. Press ESCAPE and B to bring the cursor to column 1.
2. Press ESCAPE D three times to bring the cursor over 1 in line 10.
3. Press right arrow key and release.
4. Press right arrow key and repeat key simultaneously until the cursor

rests immediately past the A in ST A.
5. Press ESCAPE and A in proper sequence and the correct number of

times to bring the cursor over the Tin TES (on the second line of the
statement). Sounds like a galloping horse, doesn't it?

6. Press right arrow key and release it.
7. Press right arrow key and repeat key simultaneously until the cursor is

past the closing quotation mark in the statement.
8. Press RETURN.

Type LIST 10

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"

The statement lists all right. Now type RUN

RUN
THIS IS THE UNITED STATES OF AMERICA

124 APPLESOFT LANGUAGE

The printed line now has the correct spacing. The ESCAPE and A must be
used to prevent changed spacing on statements with characters enclosed in
quotation marks that occupy more than one line.

For Apple computers with Apple firmware using the pure cursor moves
mode, editing is very simple. The same procedure is used for the pure cur
sor moves mode as is used for the escape cursor moves mode, but ESCAPE·
is pressed once and then l,J,K, or M is used to place the cursor over the
character to be edited. After the statement is edited, the RETURN key must
be pressed twice for the operator to regain control of the computer.

To delete a character in an existing line using the escape cursor moves
mode, type in the line.

10 PRINT "THIS IS THE USA"

Place the cursor over the I in IS. Press ESCAPE and A. The I is still visible
and the cursor moves over the letter S in IS. Move the cursor past the
closing quote. Another way to edit the I is to place the cursor over the I in IS,
and press the space bar. Type LIST 10.

10 PRINT "THIS S THE USA" (the letter I has been deleted)

To insert the letter I in IS, type LIST 10.

10 PRINT "THIS S THE USA"

Place the cursor over the letter S. Press ESCAPE and B to prepare to in-
sert the word IS. Type IS THE USA. Press RETURN and type LIST 10.

10 PRINT "THIS IS THE USA"

To delete a letter using the pure cursor moves mode, type in line 10.

10 PRINT "THIS IS THE USA"

Bring the cursor over the letter I in IS. Press ESCAPE and K. The cursor
moves over the S and the I is still visible. Move the cursor past the closing
quotation mark. Press RETURN and type LIST 10. The I can also be deleted
by placing the cursor over the I and pressing the space bar.

10 PRINT "THIS S THE USA"

To type in the letter I in the existing line, place the cursor over the letter
S. Back the cursor into the space between the THIS and the S. Press ES
CAPE and B for escape cursor moves mode, or ESCAPE and J for the pure
cursor moves mode. Type in I. Press the right arrow once and release. Press
the right arrow and repeat keys simultaneously to place the cursor past the
closing quote. Press RETURN. Type LIST 10.

10 PRINT "THIS IS THE USA"

The IS is in proper spacing in the literal again.
To insert text into an existing line, place the cursor over the letter where

the inserted item is to be placed. In the case of line 10, GOOD OLE is to be
placed before USA.

LIST AND EDIT 125

10 PRINT "THIS IS THE USA"

1. Place the cursor over the letter U in USA.
2. Use the escape cursor moves mode. Press ESCAPE D to move the

cursor one line above the statement.
3. Type in GOOD OLE leaving a space after OLE (space).
4. Press ESCAPE C to move the cursor back to the statement line.
5. Press ESCAPE B to back the cursor over the U in USA.
6. Press right arrow key and release it.
7. Press right arrow and repeat keys simultaneously to place the cursor

past the closing quote.
8. Press RETURN.

RUN
THIS IS THE GOOD OLE USA

LIST 10
10 PRINT "THIS IS THE GOOD OLE U

SA"

Great! This programming is moving in the right direction.

LESSON 17

Play Computer

After completion of Lesson 17 you should be able to:

1. Play computer and RUN a program manually, or mentally, to deter
mine the output.

2. Play computer to determine why a program doesn't RUN or why a pro
gram doesn't run properly (debug).

3. Use TRACE function to aid in debugging programs.
4. Use NOTRACE function to counter the TRACE function.

VOCABULARY

NOTRACE - This command turns off the TRACE mode (see TRACE
below).

Pass - This means the single execution of a loop, or the passage of
magnetic tape across the read or write heads of a recording device.

TRACE - This is an aid in following the sequence of execution of a pro
gram. It is used as an aid in debugging programs. TRACE causes the line
number and output data to be printed on the screen in the sequence of
line number execution. TRACE is turned off by NOTRACE. TRACE and
NOTRACE are immediate commands.

DISCUSSION

The primary purpose of this lesson is to "think" like a computer. When
you think like a computer and run the program mentally and manually, you
will be able to determine what the actual output of the program will be,
rather than what you think it should be. You must think like a computer if
you are going to understand and outsmart this exacting machine. When you
play computer the program is RUN exactly as it is written. If the rule of de
fault applies, use the rule of default. If the progam uses a decision state
ment, you must make the proper decision to branch or default. Tables
should be made to determine how the variables change with each pass. RUN

127

128 APPLESOFT LANGUAGE

the program mentally several times to get the feel of the program. Com
plete the chart to see if you think like a computer. The RUN and TRACE are
shown in Fig. 17-1.

10 REM: PROGRAM TO PLAY COMPUTER
20 A = 5 : B = 1 0 : C = - 10
30 IFC>OTHEN130
40 IF (B > A) THEN 90

(without parentheses: IF B>A THEN 90, produces a SYNTAX ERR be

cause AT is a reserved word - to correct this, use parentheses around

B >A)

50 IF C < = 0 THEN C = C + 1
60 B = B - 2
70 PRINT A, B, C
80 GOTO 30
90 A= A+ 1
100 c = c + 2
110 PRINT A, B, C
120 GOTO 30
130 c = c - 10
140 PRINT A, B, C
150 END

RUN
6 10
7 10
8 10
9 10

10 10
10 8
10 8
TRACE
RUN

-8
-6
-4
-2

0
1

-9

#10 #20 #20 #20 #30 #40 #90
10 -8
#120 #30 #40 #90 #100 #110
10 -6
#120 #30 #40 #90 #100 #110
10 -4
#120 #30 #40 #90 #100 #110
10 -2
#120 #30 #40 #90 #100 #110
10 0
#120 #30 #40 #50 #60 #70 10
8 1
#80 #30 #130 #140 10
-9
#150

Fig. 17-1. RUN and TRACE.

#100 #110 6

7

8

9

10

8

PLAY COMPUTER 129

Chart 17-1. Variable Chart
Assign value of variables A El c
from line 20 5 10 -10

Values - 1st pass

Values - 2nd pass

Values - 3rd pass

Values - 4th pass

Values - 5th pass

Values - 6th pass

Values - 7th pass

After the chart has been completed and you are satisfied you understand
how and why the program functions, RUN the program to get the correct re
sults. Did you do as well as the computer?

Type in the immediate command TRACE. When the program is RUN, the
line numbers, and variable values, are printed on the screen. If a program
does not RUN, TRACE can aid in determining why it doesn't run. The error
messages built into the language can also aid in debugging programs. If a
program stops at line 120, and no error message is given, many times the
TRACE mode can aid in correcting the problem.

TRACE function can be removed by typing NOTRACE on the screen. The
next program RUN will be without the line numbers on the screen to give an
example of how TRACE and NOTRACE are typed on the screen.

RUN

TRACE
RUN

NOTRACE

LESSON 18

Reserved Words

After completion of Lesson 18 you should be able to:

1. Use reserved words in programs in their proper relationship.
2. Use parentheses to separate characters that the computer interprets

as reserved words.

VOCABULARY

Reserved Words - These are words programmed into the language to aid in
carrying out the programming functions.

DISCUSSION

Reserved words are used to aid in programming. These words cannot be
used as variables. Applesoft tokenizes reserved words to a decimal number
similar to the decimal number that represents an ASCII symbol. For exam
ple,

40 IF B = A THEN 90.

When the program is RUN, the program is stopped at line 40 and
SYNTAX ERR is printed on the screen. When line 40 is LISTed it appears as:

40 IF B = AT HEN90.

The variable A attaches to T in THEN to become the reserved AT. To
overcome this problem and use the variable A in the same sequence, use
parentheses around B = A.

40 IF (B = A) THEN 90

The list of reserved words is taken directly from Applesoft II, BASIC PRO
GRAMMING REFERENCE MANUAL, page 122, by Apple Computer, Inc.,
10260 Bandley Dr., Cupertino, California 95014.

131

132 APPLESOFT LANGUAGE

RESERVED WORDS IN APPLESOFT

&

ABS AND ASC AT ATN

CALL CHR$ CLEAR COLOR= CONT COS

DAT A DEF DEL DIM ORA W

END EXP

FLASH FN FOR FRE

GET GOSUB GOTO GR

HCOLOR = HGR HGR2 HIMEM: HUN HOME

HPLOT HTAB

IF JN# INPUT INT INVERSE

LEFT$ LEN LET LIST LOAD LOG LOMEN:

MID$

NEW NEXT NORMAL NOT NOTRACE

ON ONERR OR

POL PEEK PLOT POKE POP POS PRINT PR#

READ RECALL REM RESTORE RESUME RETURN

RIGHT$ RND ROT= RUN

SA VE SCALE= SCRN(SGN SHLOAD SIN SPC(

SPEED= SQR STEP STOP STORE STR$

TAB(TAN TEXT THEN TO TRACE

USR

VAL VLIN VT AB

WAIT

XPLOT XDRAW

LESSON 19

Menu Selection and Coding Formulas

After completion of Lesson 19 you should be able to:

1. Write programs using a menu selection.
2. Translate formulas to computer code for computational purposes.

VOCABULARY

Code - This is the representation of data or instructions in symbolic form.
It is sometimes used as a synonym for instructions. Coding is the act of
converting data or instructions into program statements.

Comment - This is a written note that can be included in the coding of
computer instructions in order to clarify the procedures, but has no effect
on the computer itself.

GET A$ - This stops the program in order to view the output until any key
is pressed.

Menu Selection - This is a method of using a terminal to display a list of
optional facilities that can be chosen by the user in order to carry out dif
ferent functions in the system.

DISCUSSION

Many people have little knowledge of computers. For these people, the
programs must be written to tell them what input is required, and in what
format. One way to aid these people with the correct selection is to use a
menu. A menu selection is a method of using a terminal to display a list of
optional facilities that can be chosen by the user in order to carry out differ
ent functions in the system.

The following program computes depreciation by using either the
straight line method, double declining balance method (200%), or the sum
of the years digits method. The variables are shown in Fig. 19-1.

133

134 APPLESOFT LANGUAGE

BV
DY
GA
GET A$
LA
p

s
sv
TD

BV
DY
GA
GET A$
K
LA
sv
TD

BV
DY
GA
GET A$
K
LA
sv
TD
z

STRAIGHT LINE DEPRECIATION
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output.
Life of the asset
Rounded to 2 places (100)
Selection
Salvage value
Total depreciation

DOUBLE DECLINING BALANCE
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output.
Constant
Life of the asset
Salvage value
Total depreciation

SUM OF THE YEARS DIGITS
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output.
Constant
Life of the asset
Salvage value
Total depreciation
Variable to hold (LA - Y). Z = (LA - Y) + 1. A method to compute and
print the years forward, after they were computed backwards.

Fig. 19-1. Variables.

The program shows the menu selection. The user selects which method
of depreciation is to be used for computation. The menu section of the pro
gram is contained in lines 500 to 560.

500 HOME : VTAB 3 : HTAB 8: PRINT "***DEPRECIATION***" :
PRINT : PRINT

510 HTAB 5 : PRINT "1. STRAIGHT LINE DEPRECIATION" : PRINT
520 HTAB 5 : PRINT "2. DOUBLE DECLINING BALANCE" : PRINT
530 HTAB 5 : PRINT "3. SUM OF THE YEARS DIGITS" : PRINT
540 HTAB 8: INPUT "SELECTION PLEASE!" : PRINT
550 IF S < 1 OR S > 3 THEN 500
560 ON S GOTO 1500, 2500, 3500

Line 500 clears the screen and sets the position at which * * * DEPRECIA
TION*** is to be printed. The two PRINT statements leave two blank lines
below ***DEPRECIATION***.

MENU SELECTION AND CODING FORMULAS 135

Lines 510 through 530 print out the three types of depreciation. The user
selects one choice.

STRAIGHT LINE DEPRECIATION

DEPRECIATION/YEAR = COST OF ASSET - SALVAGE VALUE

NUMBER OF YEARS

YEAR
1
2
3

DEP/YR
200
200
200

TOTAL DEP.
200
400
600

DOUBLE DECLINING BALANCE (the numbers have been rounded)

3 year straight line = 1 /3 .333 (K)
200% double declining balance = 2 * 1/3 .667 (K)

YEAR
1
2
3

CONSTANT
.667 *
.667 *
.667 *

COST
625
208

69

DEP/YR
417
139
46

BOOKVL.
208

69
25

TOTAL DEPRECIATION
417
554
600

SUM OF THE YEARS DIGITS (the numbers have been rounded)

SYD + n (n + 1) SYD = 3 * (3 + 1) = 6

YEAR
1
2
3

2 2
CONSTANT GA - SV DEP/YR BOOK VL. TOTAL DEPRECIATION
.500 * 600 300 325 300
.333 * 600 198 125 500
.167 * 600 100 25 600

PRINT YEARS
1

Z=(LA-Y)+1
3 - 3 = 0 + 1 = 1
3 - 2 = 1 + 1 = 2
3 - 1 = 2 + 1 = 3

2
3

Line 3560 uses the INT function to round off the results to 2 places. DEF FN was used to round off to 2
places in line 2560. The two different methods expose the student to the fact that either method will accom
plish the same rounding results.

Fig. 19·2. Formulas and computations.

Line 540 allows the user to select any number. The number does not
necessarily have to be 1, 2, or 3.

Line 550 is a decision statement that causes a branch to line 500 if a num
ber other than 1, 2, or 3 is input. This is a form of error checking that limits
the input choices that will be accepted by the program. Since there are
three choices, the machine is programmed so only an input of 1, 2, or 3 will
allow the program to continue.

In line 560, the input value is placed in the variable S. When S = 1 the
program branches to line 1500. When S = 2 the program branches to line

136 APPLESOFT LANGUAGE

2500. When S = 3 the program branches to line 3500. The ON S GOTO type
of statement was discussed in Lesson 14 and was the method used to print
the input errors.

When a correct menu selection has been input, the program branches to
line 1500, 2500, or 3500. At each of these lines is a GOSUB 100. The GOSUB
100 causes a branch to line 100 of the program. Line 100 is the beginning of
the input subroutine. This subroutine is placed at the beginning of the pro
gram because it is used by each type of depreciation. The program is more
efficient because fewer lines are searched before the input information is
found. The headings are printed, and the input information is requested.

100 INPUT "GROSS AMOUNT = $" ;GA : PRINT
105 IF GA< 1 THEN 100
110 INPUT "SALVAGE VALUE = $" ;SV: PRINT
115 IF SV < 0 THEN 110
120 IF GA< SV THEN 100
130 INPUT "LIFE OF ASSET = " ;LA : PRINT
135 IF LA< 1 THEN 130
140 RETURN

In line 105, the gross amount of the asset cannot have a negative value to
be used in the formula.

In line 115, the asset may be valued at zero at the end of the depreciation
period, but the formula will not properly compute assets with a negative
salvage value.

In line 120, if the gross cost of the item is less than the salvage value, the
formula will not compute the depreciation properly.

In line 135, the asset must have a useful life of at least one year or some
period greater than zero.

The depreciation formula must compute positive real numbers greater
than zero. The error checks attempt to eliminate any input that would not
give a meaningful computation to the user.

Line 140 causes a branch to the section of the program that requested the
input information.

If 1 is input from the menu selection, the program branches to line 1500.
Line 1500 branches to the input subroutine. After input is received, line 140
causes a branch to line 1510 to begin calculation of straight line deprecia
tion. The numbers have been rounded. The numbers used for all examples
are: cost of asset (GA) = $625, salvage value (SV) = $25, and life of the
asset (LA) = 3 years.

1500 GOSUB 100
1510 TD = 0
1520 PRINT "YEAR DEP/YR TOTAL DEP.": PRINT:

p = 100
1530 FOR X = 1 TO LA
1540 DY = (GA - SV)/ LA

MENU SELECTION AND CODING FORMULAS 137

1550 TD = TD + DY
1560 PRINT X; TAB (1 O); INT (DY*P + .5)/P; TAB (25);

INT (TD*P + .5)/P
1570 IF X = INT (X/8) * 8 THEN GET A$
1580 NEXT
2400 GOTO 9990

STRAIGHT LINE DEPRECIATION

DEPRECIATION/YEAR= COST OF ASSET- SALVAGE VALUE
NUMBER OF YEARS

DEPRECIA Tl ON INFORMATION
LIFE OF THE ASSET = 3
DEP/YR = GA - SV I LA
DEP/YR = $200
TOTAL DEPRECIATION = $600

PROGRAM ST A TEMENT
FOR X = 1 TO LA
DY = (GA - SV) I LA
TD= TD+ DY
1580 NEXT X

Line 1560 prints the year, the amount of each year's depreciation, and the
total depreciation. Line 1560 is included within the loop, so the results will
be printed for each year's computation.

Line 1570 performs the same function in lines 1570, 2570, and 3570. It
causes the loop to stop after every eight executions (as shown in Table
19-1). This is useful when the life of the asset is a long period (over 10 years)
of time and the user needs to study sections of the printout. The integers
could be any number such as 10, 12, or 20, as long as the number is less
than the number of lines on the screen.

GET A$, from line 1570, is a function to stop the program to allow the
user to view the output. GET A$ allows the user to press any key on the key
board to continue the program. The key pressed does not print a character
on the screen. RETURN does not have to be pressed.

x
1
2

7
8
9

10

15
16
17

Table 19-1. IF X = INT(X/8) * 8 THEN GET A$

INT(X/8)

0
0

0
1
1
1

1
2
2

INT(X/8) * 8

0
0

0
8
8
8

8
16
16

138 APPLESOFT LANGUAGE

The conversion of straight line depreciation to program statements uses
no decision statements. The complete program is shown in Fig. 19-6 at the
end of the lesson.

The double declining balance method of depreciation applies a constant
depreciation rate to a reducing book value. This method charges off high
depreciation in the early years and lower amounts in later years. The rate
used in this example is 200% or twice the straight line depreciation, as ex
pressed in the formula K = (1/LA) * 2. The formula for the 150% rate is K
= (11 LA) * 1.5. The formula for the 125% rate is K = (1 I LA) * 1.25.

Please be aware that this is a programming manual, not an accounting
text. The double declining balance formula is taken from an accounting text
and has been checked by a qualified accountant. The computed figures in
the final year of the depreciation schedule may cause questions. The final
book value does not equate with the salvage value, nor does the total de
preciation equate with the allowable depreciation. Adjustments must be
made to the figures computed in the final year of the life of the asset.

In the double declining balance method, the constant (K) is multiplied by
the initial cost of the asset to determine the amount of yearly depreciation.
The cost (Book Value) is reduced by the depreciation amount each year, but
the book value cannot be reduced below the salvage value. The total de
preciation cannot be greater than the cost of the asset less the salvage
value.

This example uses the input: cost of the asset (Book Value) = $625,
salvage value = $25, and the life of the asset = 3 years.

The double declining balance routine begins at line 2500, and ends at line
3400.

2500 GOSUB 100
251 0 K = (1 I LA) * 2 : BV = GA
2512 TD = 0
2515 PRINT "YEAR CONST. DEP/YR BK. VAL. TOT DEP"
2520 FOR X = 1 TO LA
2530 DY = BV * K
2540 BV = BV - DY
2545 TD = TD + DY
2550 DEF FN A(X) = INT (X*100 + .5)/100
2560 PRINT X; TAB (5); FNA(K); TAB (14); FNA(DY); TAB (22);

FNA(BV); TAB (31); FNA(TD)
2570 IF X = INT (X/8) * 8 THEN GET A$
2580 NEXT
3400 GOTO 9990

Line 2500 branches to the input routine. The input routine RETURNs to
line 2510 (K = (1 I LA) * 2 : BV = GA). The constant (K) is computed by the
formula (11 LA) * 2 for 200% straight line depreciation. BV = GA is the
gross cost of the asset stored in the variable BV. The constant times the
reducing book value will give the yearly depreciation.

MENU SELECTION AND CODING FORMULAS 139

Line 2512 initializes the total depreciation to zero, and line 2515 causes
the headings to be printed.

Line 2520 is the beginning statement of the loop for the computations.
Line 2530 computes the depreciation for one year and stores that value in

the variable DY (depreciation per year).
Line 2540 computes the reducing book value by subtracting off the de

preciation each year.
Line 2545 is a summing statement that adds each year's depreciation to

the previous year's and stores the total in the total depreciation variable,
TD.

RUN
YEAR
1
2
3

DEP/YR
200
200
200

Fig. 19-3. Straight line depreciation nm.

TOTAL DEP.
200
400
600

Line 2550 rounds the print calculations to two places.
Line 2560 causes the information to be printed in table form on each loop

execution.
Line 2570 is the same as line 1570 and is shown in Table 18- 1.
Line 3400 branches to line 9990, which cues the user for more input.

RUN
YEAR
1
2
3

CONST.
.67
.67
.67

DEP/YR
416.67
138.89
46.3

Fig. 19-4. Double declining balance run.

BK.VAL
208.33
69.44
23.15

TOTAL DEP.
416.67
555.56
601.85

The third type of depreciation is the sum of the years digits. In this
method, the years of the asset's life are listed numerically and totaled. The
highest year in the life of the asset is then divided by the total to compute
the depreciation constant for the first year. The changing yearly constant is
multiplied by a fixed gross amount of the asset less the salvage value. The
method is shown in the program lines 2500 to 3600 in Fig. 19-6, and the
RUN in Fig. 19-5.

RUN
YEAR
1
2
3

CONSTANT
.5
.33
.17

Fig. 19-5. Sum of the years digits run.

DEP/YR
300
200
100

TOTAL DEP.
300
500
600

140 APPLESOFT LANGUAGE

DEPRECIATION
INFORMATION
Total years 3 + 2 + 1 6

316 = 1st year maximum
depreciation
2/6 = 2nd year depreciation
116 = 3rd year minimum
depreciation

DY
.500 * $600 = $300
.333 * 600 = 200
. 167 * 600 - 100

50 GOTO 500

TD
$300

500
600

PROGRAM ST A TEMENTS
FOR X = 1 TO LA:
T = T + X : NEXT X
T = LA * (LA + 1) I 2

FOR Y = LA TO 1 STEP -1 :
K = Y/T

DY= K *BY
TD= TD+ DY

100 INPUT" GROSS AMOUNT = $"; GA : PRINT
105 IF GA< 1 THEN 100
110 INPUT "SALVAGE VALUE = $" ;SV: PRINT
115 IF SV< 0 THEN 110
120 IF GA< SV THEN 100
130 INPUT "LIFE OF ASSET = " ;LA : PRINT
135 IF LA< 1 THEN 130
140 RETURN
500 HOME : VTAB 3 : HTAB 8 : PRINT "***DEPRECIATION***" :

PRINT : PRINT
. 510 HTAB 5: PRINT "1. STRAIGHT LINE DEPRECIATION": PRINT
520 HTAB 5 : PRINT "2. DOUBLE DECLINING BALANCE" : PRINT
530 HTAB 5: PRINT "3.SUM OF THE YEARS DIGITS": PRINT: PRINT
540 HTAB 8 : INPUT "SELECTION PLEASE!"; S : PRINT
550 IF S < 1 ORS> 3 THEN 500 .
560 ON S GOTO 1500, 2500, 3500
1500 GOSUB 100
1510 TD = 0
1520 PRINT "YEAR DEP/YR TOTAL DEP.": PRINT:

p = 100
1530 FOR X = 1 TO LA
1540 DY = (GA - SV)/LA
1550 TD = TD + DY
1560 PRINT X; TAB (10); INT (DY*P + .5)/P; TAB (25);

INT(TD*P + .5)/P
1570 IF X = INT (X/8) * THEN GET A$
1580 NEXT
2400 GOTO 9990
2500 GOSUB 100
2510 K = (1/LA) * 2: BV = GA
2512 TD = 0

Fig. 19-6. Mem:i-depreciation.

MENU SELECTION AND CODING FORMULAS 141

2515 PRINT" YR CONST. DEP/YR BK.VAL. TOT DEP"
2520 FOR X = 1 TO LA
2530 DY = BV * K
2540 BV = BV - DY
2545 TD = TD + DY
2550 DEF FN A(X) = INT (X*100 + .5)/100
2560 PRINT X; TAB (5); FNA (K); TAB (14); FNA (DY);

TAB (22); FNA (BV); TAB(31); FNA (TD)
2570 IF X = INT {X/8) * 8 THEN GET A$
2580 NEXT
3400 GOTO 9990
3500 GOSUB 100
3510 T = 0 : P = 100: BV = GA - SV: TD = 0
3520 PRINT "YEAR CONSTANT DEP/YR TOTAL DEP.": PRINT
3530 FOR X = 1 TO LA : T = T + X : NEXT X
3535 REM : T = LA * (LA+ 1)/2
3540 FOR Y = LA TO 1 STEP - 1 : K = Y/T
3550 DY = K * BV
3555 TD = TD + DY
3558 Z = (LA - Y) + 1
3560 PRINTZ; TAB (7); INT (K*P + .5)/P; TAB (18);

INT (DY*P + .5)/P; TAB (26 + (TD< 100));
INT {TD*P + .5)/P

3570 IF Z = INT (Z/8) * 8 THEN GET A$
3600 NEXT
9990 PRINT
9991 INPUT "ANOTHER PROBLEM? (Y OR N)" ; A$:

IF A$ = "Y" THEN 500
9999 END

Fig. 19-6-cont. Menu - depreciation.

LESSON 20

Program Outline

After completion of Lesson 20 you should be able to:

1. Comprehend that all computer programs are written according to a
general outline, but no program will exactly follow such an outline.

VOCABULARY

Data - This is a general expression used to describe any group of oper
ands that denote any conditions, values, or states (i.e., all values and
descriptive data operated on by a computer program but not part of the
program itself). The word data is used as a collective noun and is usually
accompanied by a singular verb: "data are" may be pedantically correct
but is awkward to understand. Data is sometimes contrasted with
information, which is said to result from the processing of data, so that
information derives from the assembly, analysis, or summarizing of data
into a meaningful form.

DATA - This statement contains a list of items that can be used by a READ
statement. DAT A statements can contain literals, strings, reals, and inte
gers. The item in the DAT A statement must contain the same relation
ship and position as the item in the READ statement.

READ - This is a statement used by the program to read data into
memory.

DISCUSSION

The outline for program structure must be considered very general and
probably no program will rigidly comply with the outline. There must be a
starting point to writing a program. The logical start to writing a program
must exist within the framework of an outline.

Computer program general outline.

A. Start the program.
B. Initialize the variables.

1. C 0 counting variable
2. S = 0 summing variable

143

144 APPLESOFT LANGUAGE

3. F = 0 flag variable
4. DEF FN
5. DIM - where constants are used - DIM CF (3,20)
6. DIM CF (R,C) - must be placed in the program after R & C have

been given values either by a program statement, INPUT, or
READ.

7. RESTORE - resets the "data list pointer" to the first element of
DAT A. Causes the next READ statement encountered to re-READ
the DAT A statements from the first one.

C. Print general program headings.
D. Menu
E. INPUT - READ

1. DIM CH (R,C) - after variables are input.
F. Beginning statement for FOR-NEXT loop, or GOTO loop.
G. Decision statements
H. Computation statements
I. Incrementing statements

1. C = C + 1 - counting statement
2. T = T + X - summing statement

J. PRINT- in this position the information is printed each time the loop
executes.

K. End of loop - NEXT for FOR-NEXT loop, and GOTO for GOTO loop.
L. PRINT - in this position the information totals are printed after the

last execution of the loop.
M. DAT A statements are placed anywhere in the program. Generally

placed close to the END.
N. END
0. Subroutines

The FOR-NEXT loop will be used to demonstrate the effects of state
ments within, and outside, the loop structure.

10 SUM = 0
20 FOR X = 1 TO 5
30 PRINT X
40 SUM = SUM + X
50 NEXT X
60 PRINT "SUM = ";SUM
70 END
RUN
1
2
3
4
5
SUM = 15

(initialize variable)
(FOR-NEXT loop beginning}

(print variable inside the loop)
(summing statement)
(end of loop statement)
(print statement outside the loop)
(end of the program)

PROGRAM OUTLINE 145

The program generally conforms to the outline.
Lines 30 and 40 should be reversed according to the outline. Does it

make a difference if they are reversed?

30 SUM = SUM + X
40 PRINT X
RUN
1
2
3
4
5
SUM = 15

No, the reversal of lines 30 and 40 within the loop makes no difference.
Generally, the PRINT X statement comes after the FOR statement.

Now reverse lines 40 and 30 to return to the original program. From the
original program, make these changes:

DEL 30,30
55 PRINT X

The entire program is:

10 SUM = 0
20 FOR X = 1 TO 5
40 SUM = SUM + X
50 NEXT X
55 PRINT X
60 PRINT "SUM = ";SUM
70 END
RUN
6
SUM = 15

The loop runs from 1 to 5 and prints the next number in the series,
namely 6. This is a very important point to realize. Because the general out
line was violated, the program did not produce the desired results, namely,
printing X at every iteration of the loop.

To the original program, make these changes:

DEL 60,60
45 PRINT "SUM = " ; SUM

The entire program is:

10 SUM = 0
20 FOR X = 1 TO 5
30 PRINT X
40 SUM = SUM + X
45 PRINT "SUM = " ; SUM
50 NEXT X
70 END
RUN

146 APPLESOFT LANGUAGE

1
SUM= 1
2
SUM= 3
3
SUM= 6
4
SUM = 10
5
SUM = 15

Since the SUM was within the loop, SUM = was printed with each execu-
tion of the loop. Make the following changes to the original program:

DEL 10, 10
25 SUM = 0

The entire program is now:

20
25
30
40
50
60
70
RUN
1
2
3
4
5

FOR X = 1 TO 5
SUM= 0
PRINT X
SUM= SUM+ X
NEXTX
PRINT "SUM = " ;SUM
END

SUM= 5

In this case, the summing variable was initialized to zero each time the
loop executed, so the final SUM = 5. The initialized variable must be out
side the loop or it will be reset to zero each time the loop executes.

LESSON 21

Cleanup

After completion of Lesson 21 you should be able to:

1. Open the closet door and have all the final tidbits of the Applesoft lan
guage fall out for your inspection and pleasure.

VOCABULARY

Print Field Definition - This is the technique of printing output to fit a stan
dard pattern or form, thus making the output more readable.

Right Justify - This means to format output so the printed field is aligned
on a right hand boundary.

Zero Suppression - This is the elimination before printing of nonsignif
icant zeros, e.g., those to the left of significant digits. The suppression is
a function of editing. It is also known as zero elimination.

DISCUSSION

This lesson "cleans up" many parts of the language not covered in the
first 20 lessons. Here we go with all the bits and pieces.

Applesoft does not align columns of different numbers to the power of
ten. All numbers are printed starting from one selected space and printed to
the right.

.7
284.6
98.3
2
3.47

The following program makes numbers align in the proper columns, so
the units are aligned, the tens are aligned, etc. The program causes the
printout to right justify by two methods, (1) by aligning the right hand num
ber, and (2) by aligning the decimal point. Either method of justification can

147

148 APPLESOFT LANGUAGE

be used in a program as a routine or a subroutine. Lines 60 to 80 right
justify any number. Lines 90 to 130 right justify the decimal of numbers
that are greater than or equal to .1 but less than 109 • ·

5 D = LOG (10)
6 DEF FN MA (X) = INT (LOG (M)/ D)
10 HOME
20 INPUT "ENTER?" ;M
30 IF M = 0 THEN END
40 GOSUB 60
50 GOTO 20
60 L = LEN (STR$ (M)) : PRINT "R JUST = ";
70 FOR J = L to 12: PRINT":"; : NEXT J
80 PRINT M;
90 L = FN MA (M)
100 FOR J = L + (L < - 1) TO 8 : PRINT "$" ; : NEXT J
120 PRINT M;
130 PRINT : RETURN
]RUN
ENTER?2.34
R JUST= :::::::::::::::2.34$$$$$$$$$2.34
ENTER?234.69
R JUST= ::::::::::::234.69$$$$$$$234.69
ENTER?. 5678
R JUST= :::::::::::::.5678$$$$$$$$$$.5678
ENTER?3456789
R JUST = :::::::::3456789$$$3456789
ENTER?2123.5678
R JUST= ::::::2123.5678$$$$$$2123.5678
ENTER?O

Lines 5 and 6 are used together to compute the magnitude of the number
to be printed. D holds a constant value which is 2.30258509. That is the
value used to compute the power to which base 10 is raised. The power is
used to right justify on the decimal point in lines 90 to 130.

DEF FN MA (X) = INT (LOG (M) I D) is the function that computes the
magnitude of the number.

M = 2.34
D = 2.30258509

LOG (M) = 3.17805383
LOG (M) I D = 3.17805383 I 2.30258509

INT (LOG (M) I D) = 1

Line 10 clears the screen. Line 20 asks the user to input a number. Line
30 is a decision statement that ends the program.

In this example, the number 2.34 will be input and the results will be dis
cussed as it is justified.

In line 60, STR$ converts the number 2.34 into a string. This conversion
allows the string "2.34" to be evaluated. The number of characters (4) is

CLEANUP 149

then stored in the variable L. PRINT "R JUST = "; prints out the header that
is printed in the first eight columns of the screen.

Line 70 computes the number of colons to be printed before the number
(M) is printed. FOR J = L TO 12 outputs 13 places (0-12) and subtracts off the
length of the string. R JUST = occupies the first eight columns. The string
contains four characters, so FOR J = 4 TO 12 will print nine colons before
printing the number.

COLUMN 8,9, ... 17 ... 21
R JUST = :::::::::2.34

Line 80 prints the number after the colons so all numbers are right justi
fied. The semicolon after the M keeps the line open to print the next section
that is to justify on the decimal point.

The right justification is based on adding the number of columns oc
cupied by R JUST=, plus the number of colons to be added to R JUST=, less
the number of columns occupied by the string. All numbers are right justi
fied to column 21 on the screen.

Lines 90 to 130 justify by placing the decimal in column 32 and aligning
the numbers in the proper columns in relation to the decimal point.

In line 90, the power of the number is determined by the formulas in lines
5 and 6. The value of the power is stored in the variable L. The value stored
in L, shown in Fig. 21-1, is then used to determine how many places to print.

CASE M FNMA (M)

0 0 ILLEGAL VALUE

1 >O to <;;; .01 -2 This case causes spe-
2 >.01 to <;;; 1 -1 cial handling by
3 > 1.0 to <;;; 10 0 (L < - 1)
4 > 10 to <;;; 100 1
5 > 100 to <;;; 1000 2
6 > 1000 to <;;; 10000 3

> 1 E + 8 to <;;; 1 E - 9

Fig. 21-L L=FN MA(M).

Line 100 is a loop to print dollar signs($) from column 21 to nine places
(0 - 8) (L +, the number of $ signs, = 9). The power of the number is
placed in the variable Land L TO 8 determines the number of dollar signs to
be printed before the number is printed. The number input is 2.34.

COLUMN 8,9, ... 17,21 ... 32
R JUST = :::::::::2.34$$$$$$$$$2.34

In this case, 2.34 has a power of zero (see Fig. 21-1.) FOR J = 0 TO 8 prints
out 9 dollar signs.

Line 120 prints 2.34 immediately after the ninth dollar sign so the deci
mal falls in column 32.

150 APPLESOFT LANGUAGE

Line 100 must handle a special case when the decimal input is less than
.01 and greater than .099 (see Case #l, Fig. 21-1). This special case is
handled by (L < - 1). FOR J = L TO 8 works in all cases where Lis greater
than or equal to 1. When Lis less than 1, a one has to be added back to align
the decimal points.

A simpler, but less effective, method of controlling the column printout is
to use decision statements. Using N as a variable to hold the value of the
number, the decision statements are as shown in Chart 21-1.

Chart 21-1. Decision Statement Chart

COLUMN 32 33 34 35 36 37

N = .78 IF N < 1.00 THEN HTAB 35 7 8
N = 1.78 IF N > .99 THEN HTAB 34 1 7 8
N = 11.78 IF N > = 10.00 THEN HTAB 33 1 1 7 8
N = 111.78 IF N > = 100 THEN HTAB 32 1 1 1 7 8

With these four statements the number to be placed in columns must be
less than 1000. Decision statements can cause any number to be printed in
specific columns as long as the number is in the range of the computer.

CONT is an immediate command that causes the program to continue
RUNning after it has been stopped by a STOP, END, or Control C. CONT
causes the program to continue at the next instruction. If the program was
stopped on line 40, a GOTO 100 statement, the program will execute line
number 100, not the default line after line 40. CONTinue will not be suc
cessful in continuing the program if the program line has been modified, or
if an error message has occurred since the execution stopped. A ?CAN'T
CONTINUE ERROR will be printed when no further instructions exist, after an
error has occurred, or after a line has been changed or deleted in the exist
ing program.

FLASH, INVERSE, and NORMAL functions are demonstrated in the
FLASH SCREEN program. The program combines FLASH, NORMAL, IN
VERSE, and RND functions to randomly print the letters of the alphabet and
change the video mode surrounding the character.

4 REM FLASH SCREEN
5 HOME
10 FOR J = 1 TO 653
20 I = INT (RND (1)*39) + 1
30 K = INT (RND (1.) * 23) + 1
40 L = INT (RND (1.) * 3) + 1
50 ON L GOTO 60, 70, 80
60 INVERSE: GOTO 100
70 NORMAL : GOTO 100
80 FLASH
100 HTAB I: VTAB K: PRINT CHR$ (RND (1.) * 26 + 65);
110 N = RND (1.) : NEXT J : NORMAL
120 END

CLEANUP 151

Line 10 is the loop that sets the number of times the program is to be exe
cuted. The number 653 was selected at random. Any number could be used.

Line 20 randomly selects the column in which the character is to be
printed. The screen has a line 40 characters long. RND returns a number
from zero to less than one. RND (1) * 39 always returns a number less than
39, from zero to 38. RND (1) * 39 + 1 always returns a number greater than
zero and less than 40. The "+ 1" is used to prevent the illegal value zero
from being generated. The screen has 40 columns, from 1 to 40. If the RND
function generated a zero, the program would stop and an ILLEGAL
QUANTITY error would be printed. It is important to remember the para
meters and limits of each function.

Line 30 randomly sets the limit of the rows on the screen. The screen has
24 rows, from 1 to 24. RND (1.) * 23 + 1 sets the limit to 22 + 1 which pre
vents the screen from scrolling while the program is running. In line 20,
RND (1) is used. In line 30, RND (1.) is used. Either 1 or 1. can be used with
out changing the function.

The program is designed so that no character is printed at column 40, nor
is any character printed in row 24. A print at column 40, row 24 causes the
screen to scroll.

In line 40, the positive argument of RND returns a different sequence of
numbers each time. RND (1.) * 3 returns the numbers 0, 1, 2. The "+ 1"
changes this sequence to 1, 2, and 3.

The 1, 2, or 3 generated by the program in line 40 is used by line 50 to
send the program to line 60 for L = 1, line 70 for L = 2, and line 80 for L =

3.
Line 100 prints the characters and the video mode randomly according to

VTAB I (line 20), and HTAB K (line 30). The PRINT CHR$ (RND (1.) * 25 + 65)
changes the 26 characters of the alphabet (0 - 25) + 65, from the ASCII
numeric code to the alphabetic characters.

A 65
B 66
c 67
D 68

etc.

In line 110, N = RND (1.) seems to serve no useful purpose. It is included
because the function that the Apple computer uses to generate the random
numbers may get into an endless loop that generates the same series con
tinuously. N = RND (1.) prevents the random number generator from con
tinued repetition of the same series. This knowledge comes from two
sources: (1) previous programming experience with the theory of
algorithms that generate random numbers, and (2) from viewing the pro
gram not printing any new positions, but printing the same position over

152 APPLESOFT LANGUAGE

and over. NEXT J is the last statement in the loop, and NORMAL brings the
screen back to its normal mode. The program ENDs at line 120.

There is no RUN on this program because it would be impossible to type
this hypnotic eye blinker. You have to RUN it to see and believe.

The next program introduces ONERR GOTO, POKE, PEEK, and RE-
SUME.

10 ON ERR GOTO 8000
20 PRINT "DISCO KID" : STRIKESAGAIN
30 READ D, A, B
40 DATA 1007, 34.5
50 INPUT "LETIER?" ;A
60 POKE 216, 0
70 NEXT J
7999 END
8000 Y = PEEK (222) : L = PEEK (218) + PEEK (219) * 256
8010 IF Y = 16 THEN PRINT "SYNTAX ERROR IN LINE" ;L: PRINT: GOTO 30
8020 IF Y = 42 THEN PRINT "OUT OF DATA IN LINE" ;L: PRINT: GOTO 50
8030 IF Y = 254 THEN PRINT "ANSWER THE CORRECT TYPE IN LINE" ;L: PRINT:

RESUME
RUN
DISCO KID
SYNTAX ERROR IN LINE 20
OUT OF DATA IN LINE 30
LETIER?A (letter E - reserved for exponentiation)

ANSWER THE CORRECT TYPE IN LINE 50
LETIER?5
NEXT WITHOUT ERROR IN LINE 70

Line 10 is a declaration statement that tells the computer what to do
when an error is detected. The computer handles errors in a normal fashion
until it executes an ONERR GOTO statement. The ONERR GOTO statement
is similar to TRACE in that it affects the entire program during its execu
tion. After an ONERR GOTO statement has been executed, anytime an error
is detected, the program branches to the line specified. The computer
remembers line 10 for all errors. This program handles three error condi
tions. Given time, all seventeen possible errors could be placed in the pro
gram.

Line 60 places a zero into memory location 216. POKE 216, 0 is the state
ment that clears the error flag so that normal error messages may occur.
When information is to be placed in a specific memory location the POKE
command is used.

In line 8000, Y = PEEK (222) returns the contents of memory location
222. The value of Y is stored in a variable to make its use easier. L = PEEK
(218) + PEEK (219) * 256 sets the value of the line number in the program
where the error occurred.

In line 8010, the number 16 is the value for the error code SYNTAX
ERROR.

CLEANUP 153

In line 8020, the number 42 is the value that prints the OUT OF DAT A
error.

In line 8030, the number 254 is the Y value that gives a bad response to an
INPUT statement.

Pause loops cause a delay in the program to allow the user to view the
information.

GET A$ pause loops were discussed in Lesson 19.
A simple pause loop that allows the program to continue without user

participation is:

FOR P = 1TO10000: NEXT P

A nested loop pause that allows the program to continue without user
participation is:

FOR N = 1 TO 1000
FOR P = 1 TO 100
NEXT P, N

A pause loop (similar to GET A$) that stops the program after a certain
number of printouts, 50 in this example, and requires the user to press RE
TURN is:

FOR I = 1 TO 1000
IF I = INT (1/50) * 50 THEN INPUT Q$
NEXT I

HT AB and VT AB are used for spacing in loops. VT AB and TAB are used
for straight spacing not in loops. HT AB, TAB, and VT AB tab from the #l
position of the column or row. SPC (6) leaves six spaces between the items.

HT AB (I* 2) + 1 leaves 2 spaces between items printed and the + 1 starts
in column #l. Zero is an illegal value.

The use of VT AB and HT AB in loops is illustrated in the following pro
gram. Line 40 prints the numbers 1 through 5 beginning in column 1 of the
screen, with two spaces between each number. This printout is used as a
reference with which to compare the spacing in line 70. Line 70 produces
similar output and spacing as line 40. Line 72 causes the first print in
column 5 rather than in column 1, with two spaces between each number.
Line 74 produces the first print in column #l with 5 spaces between each
number. This program RUN demonstrates that the times (* 5) produces the
number of spaces between printed items, while the plus (+ 1) determines in
which column the first item is to be printed.

10 HOME
20 FOR X = 1 TO 5
30 FOR I = 1 TO 5
40 VT AB 10 : HT AB (I - 1) * 2 + 1
50 PRINT I;
60 NEXT I: VTAB 12
70 HTAB (X - 1) * 2 + 1 : REM: 1ST RUN

154 APPLESOFT LANGUAGE

72 REM :HTAB (X - 1) * 2 + 5 : REM : 2ND RUN
74 REM :HTAB (X - 1) * 5 + 1 : REM : 3RD RUN
80 PRINT X;
90 NEXT X
100 END
RUN - LINE 70
(I) 1 2 3 4 5
(X)12345
RUN - LINE 72
(I) 1 2 3 4 5
(X) 1 2 3 4 5
RUN - LINE 74
(I) 1 2 3 4 5
(X) 1 2 3 4 5

The following three programs produce identical spacing results. Those
results are produced by three different methods:

1. Decision statements.
2. Loops.
3. HT AB formula.

5
10
20
30
40
50
60
70
80
RUN

REM: DECISION STATEMENT SPACING
FOR X = 1 TO 3
FOR Y = 1 TO 5
PRINTY; " ";
IF X > 1 THEN PRINT" ";
IF X > 2 THEN PRINT" ";
NEXT Y : PRINT : PRINT
NEXT X
END

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

5 REM: LOOP SPACING
10 FOR X = 1 TO 3
20 FOR Y = 1 TO 5
30 PRINTY;
40 FOR M = 1 TO X
50 PRINT " ";
60 NEXT M
70 NEXT Y
80 PRINT : PRINT
90 NEXT X
100 END
RUN

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

5
10
20
30
40
50
60
70
80
RUN

REM: HTAB FORMULA SPACING
FOR X = 1 TO 3
FOR Y = 1 TO 5
HT AB (X + 1) * Y - X
PRINTY;
NEXTY
PRINT : PRINT
NEXTX
END

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

CLEANUP 155

Applesoft suppresses leading and trailing zeros. Suppressing trailing
zeros leaves a blank space in the column where the trailing zero was sup
posed to be. It leaves the same feeling as reading a suspense story without
learning how it ended, you know, an empty feeling in the pit of your
stomach.

The final program in this lesson was initially written to print a zero in the
position where the zero had been suppressed. As it turned out, the program
not only demonstrated printing the zero in the trailing position, but also
reenforced HT ABing by decision statements and print rules and introduced
the rudiments of print field definition.

10 DEF FN A(X) = INT (X*100 + .5)/100
20 Pl = 3.1416
30 FOR R = 1 TO 100 STEP 10
40 A= Pl* RA2
50 IF A<= 10 THEN HTAB 20: REM : FIG. 20-2
60 IF A >10 THEN HTAB 19
70 IF A >100 THEN HTAB 18
80 IF A >1000 THEN HTAB 17
90 IF A >10000 THEN HTAB 16
100 PRINT FN A(A);
110 IF (INT(A*100 + .5) - INT (A*10 + .5)*10) = 0 THEN PRINT "O";
120 PRINT
130 NEXT R
140 END
RUN (see Fig. 21-2)

The important line in the program for overcoming zero suppression and
printing the trailing zero is line 110.

110 IF (INT (A*100 + .5) - INT (A*10 + .5)*10) = 0 THEN PRINT "O";

156 APPLESOFT LANGUAGE

CASE COLUMN 20

1 3.14
2 380.13
3 1385.45
4 3019.08
5 5281.03
6 8171.30***

7 11689.89
8 15836.81
9 20612.04

10 26015.59

***ZERO PRINTING

Fig. 21-2. Zero-printing right justify by decision statements.

Case #6 of the RUN (Fig. 21-2)
Without line 110 8171.3
With line 110 8171.30

The key to line 110 is to subtract the integer of A from itself. If the result
equals zero, then a zero is printed in the last column, as shown in Fig. 21-3.

CASE INT (A*100 + .5) INT (A*'IO + .5)*10 COLUMN 20

1 314 310 3.14
2 38013 38010 380.13
3 138545 138540 1385.45
4 301908 301910 3019.08
5 528103 528100 5281.03
6 817130 817130 8171.30***

7 1168989 1168990 11689.89
***ZERO PRINTING

Fig. 21-3. If (INT(A*lOO + .5)- INT(A*lO + 5)*10)= 10, then Print "O".

Line 10 sets up to round the print to two decimal places.
The rudiments of print field definition involve printing a suppressed trail

ing zero so the printout looks normal. The technique of printing the trailing
zero reenforces the print rules of Lesson 3. To print the zero and not disrupt
the printout format the print rules must be diligently applied. The value
held in A must be printed and the line left open for the possibility of printing
a zero. If the zero is printed the line must be closed. The option to close the
line after A is printed must be valid.
CASE #l-A printed, no zero printed, line closed.
Case #2-A printed, print zero, line closed.

The simplest way to handle both cases is:

1. PRINT FN A(A);-semicolon leaves the line open.

CLEANUP 157

2. THEN PRINT "O";-semicolon leaves the line open.
3. PRINT-on a separate line number after the PRINT "O";. This satisfies

CASE #l-the number is printed, no zero, the PRINT "O"; is false, and
a default to the PRINT occurs.

CASE #2-the number is printed, zero suppressed, THEN PRINT
"O";,prints the zero, and a default to the PRINT closes the line.

Lines 50 to 90 demonstrate how decision statements and HT ABs can
right justify (see Fig. 21-2).

SECTION II
Programming

LESSON 22

Approaching the Problem

Programming is the process by which a set of instructions is produced for
the computer to make it perform a specified activity.

Before programming, there is preprogramming. Preprogramming is the
ability to understand the problem and work the problem. This point cannot
be emphasized too strongly. To be able to program a problem, the program
mer must be able to understand and develop each step of the problem. The
variables assigned to the formula must be understood. The steps in comput
ing the solution must be understood. The solution must produce the correct
results. If the results are incorrect, the programmer must determine why the
results are incorrect and rectify the problem.

If you are an accountant, you must be able to solve the problem on paper
before you can program it. This is the most important fact in programming.
You must be so adept at solving the problem that you can explain it to the
computer. If you cannot solve the problem using a pencil and paper, do not
attempt to write a program to solve it.

Think of programming this way. An understudy machine is taught to do
something you do not have time to do. The understudy is electronic, not
human. This electronic understudy does not understand the English
language, so it must be instructed in its own language. This electronic
understudy, the computer, does not understand what it is doing. It is
processing so fast that it does not have time to care. The speed at which the
computer does tedious, repetitious, complex tasks is one of its great
advantages. Another advantage is its great accuracy. Unless there is a hard
ware malfunction, the answers are accurate as to input and according to
programming instructions.

To make use of the advantages, the disadvantages must be overcome.
The disadvantages are (1) procedures used in the solutions must be com
pletely specified and (2) conversion of the spoken language to the language

161

162 APPLESOFT LANGUAGE

of the computer must be performed. This aligns the advantages of speed
and accuracy versus the disadvantages of procedure and language.

In Lesson 14, the NAME AND ADDRESS program was written to cause
the computer to look through a string of characters in order to recognize
special markers, called delimiters. In that case, semicolons were used as de
limiters. The program also checked for six input errors.

To begin the learning process, write this string of characters on a piece of
paper.

RESIDENT;STREET;CITY STATE ZIP

Now separate the string of characters into different fields when a semi
colon is encountered.

RESIDENT;
STREET;
CITY ST A TE ZIP

What did that accomplish? It accomplished the need to think of the
minute steps involved in breaking down information so it can be converted
into detailed one step instructions that the computer can process.

The list of characters must have a starting point. The individual may use a
finger to point at the starting character, or may put a pencil mark on the
first character. The first character is marked as the place to begin, so the
field between the first character and the first delimiter can be determined.
Each character in the field is checked to see if it is a delimiter. This
character checking continues until the first delimiter is discovered. The first
field is then separated from the remaining fields by writing down the first
character in the field, and each succeeding character in the field is written
down until the delimiter is encountered. This process is repeated until the
string of characters is separated into three fields.

The programmer must tell the computer each individual step to separate
the string of characters. The computer must be told to mark the first charac
ter in the string. The computer must be told to look at each character in the
string of characters, checking to see if it had encountered a semicolon, and
told how to determine when it had reached the end of a field. The first field
starts with a special condition, the first character in the string. All other
fields start with a semicolon. The last field ends with a special condition, the
laist character. All other fields end with a semicolon. These are special start
ing and ending conditions.

These points must be understood in relation to what is necessary to solve
the programming problem. The programmer must thoroughly understand
all facets of the problem and be able to solve it before the problem can be
detailed in computer language. The problem is now approached from the
computer's side of the program.

APPROACHING THE PROBLEM 163

The line of characters is placed in a string variable. The computer marks
the first character in the string as 1, the second character as 2, the third
character as 3, etc., until it reaches the end of the string. This is a logical as
signment of the character position, as a reference for the programmer, and
the computer uses a numeric variable to hold a position value. When a loop
is used that will increment the numeric variable, one by one, each individual
character will be compared to the delimiter. An IF statement is used to test
the individual character with the delimiter, to see if the delimiter has been
reached. The LEN function (L = LEN(A$)) is used to store the length of the
string variable, and this LEN function stores the number of characters in the
string that are to be examined. Three delimiters have been discussed, (1)
the first or beginning character, (2) the semicolon between the fields, and
(3) the ending delimiter.

There are three reasons why the semicolon is used as a delimiter.

1. In Applesoft, a comma is used as a special separator in INPUT, READ,
GET, and DAT A statements. A comma incorrectly placed causes a ?
EXTRA IGNORED. A colon is a special separator used to place
multiple statements in a single line number. An incorrect placement
of a colon causes a ? EXTRA IGNORED. These are limitations of the
language. All languages have some types of limitation.

2. Few addresses display a semicolon as a part of the basic information.
A pound sign(#) could be used except apartment numbers are usually
designated by the pound sign. Diligent research of the problem will
eliminate many programming difficulties. Perhaps there are address
formats that use a semicolon as part of the basic format, but it is not
frequently seen. One type of research is to write down many varied
examples and chart which examples are most used and which are least
used.

3. The semicolon is easy for the input operator to produce. It is on the
home keys and does not require a shift. A division sign (/) could be
used as a delimiter but it is not as easy to produce as a semicolon.

Operator convenience, ease of production, and language compatibility
are three points that comprise the major network of logic used to write a
program for the computer. To extend a program to the complex task of
error checking (similar to the program in Lesson 14), the complete string of
information must be checked and tested to ensure correct format before the
lines are printed. For each line of output to be printed correctly, the
numeric value for the beginning of each field and the end of each field must
be stored. An efficient way to mark the beginning and end of each field is to
store the numeric value in the position of the semicolon delimiter.

Error detecting routines look for three kinds of errors:

1. Errors that do not "make sense" for purposes of processing data.

164 APPLESOFT LANGUAGE

2. Errors that cause the program to stop running.
3. Errors that create undesired output.

Errors that do not "make sense" for the purposes of processing involve
the length of the field. Fields of zero length must be checked because the
print formula would give an ILLEGAL VALUE error. This can be tested by
removing from the following program the program lines that check the
values of 1 to DlC, DlC to D2C, and D2C to L.

Errors that cause the program to stop running are those lines with less
than two delimiter's. While this option is not used in the program under dis
cussion, it could be used as a method to stop the execution of the program.

Errors that create undesired output include the use of more than two
semicolon delimiters and the improper use of the LEN function. If a semi
colon was used to end the third field instead of the LEN function, this would
indicate that there are more than two delimiters in the string.

A great deal of discussion has centered on the NAME AND ADDRESS
program because it has many features that make it a good learning tool.

As an exercise for logic development a situation that occurs frequently
will be discussed. While driving home from work late at night, a thumping
sound is heard and the car steering pulls unexpectedly. After the possibility
of a flat tire flashes through the driver's mind, the car is stopped for a visual
inspection. The possible actions are as shown in Fig. 22-1.
· While other options could be cited, the four possible actions from the dif
ferent situations will be discussed. The actions are reached by using com
mon sense and an understanding of a given situation.

When the situation is examined, the action will be taken according to NO
FLAT TIRES, or THE NUMBER OF FLAT TIRES as shown in Chart 22-1. If
after observing all tires, the flat count is zero, then the action taken is
placed in category I. If the flat count is 1, and the spare in the trunk is
usable, then the action taken is placed in category II. If the flat count is 1,
and the spare is unusable, then the action taken is placed in category Ill. If
the flat count is greater than 1, then the action taken is placed in category
IV.

The overall reaction to the thumping sound and car pull is included in a
general framework.

Chart 22-1. Flat Tire

Situation Category Action

1. No tire flat I 1. Continue the trip
2. One flat tire - the spare is II 2. Exchange the flat and spare

usable and continue trip
3. One flat tire - the spare is Ill 3. Walk for assistance

unusable
4. More than one tire flat IV 4. Walk for assistance

APPROACHING THE PROBLEM 165

1. Stop the car.
2. Shut off the engine.
3. Open the door. Exit the car. Close the door.
4. Initialize the flat count to zero.
5. If the left front tire is flat, increment the flat count.
6. If the left rear tire is flat, increment the flat count.
7. If the right rear tire is flat, increment the flat count.
8. If the right front tire is flat, increment the flat count:
9. If the flat count is zero, then continue the trip home.

10. If the flat count is more than one, then call for assistance.
11. Open the trunk.
12. If the spare is unusable then go to step #20.

START

STOP THE CAR
SHUT OFF ENGINE

OPEN THE DOOR
EXIT THE CAR

SHUT THE DOOR

Fig. 22-1. Flat tire flowchart.

:>--Y_Es _. INCREMENT COUNT

YES
>-----<~ INCREMENT COUNT

~-Y;,,;;;ES;;.....;M INCREMENT COUNT

166 APPLESOFT LANGUAGE

YES
.,._ _ ___. INCREMENT COUNT

YES

YES

YES EXCHANGE FLAT
AND THE SPARE

NO WALK FOR
ASSISTANCE

END

Fig. 22-1-conl:.. Flat tire flowchart.

©

©

START THE ENGINE
CONTINUE ON

YOUR WAY

END

APPROACHING THE PROBLEM 167

13. Exchange the flat tire and the spare.
14. Close the trunk.
15. Open the door on the driver's side of the car.
16. Get in the car. Close the door.
17. Start the engine.
18. Continue on the journey home.
19. End the actions.
20. Walk to a phone and call for assistance.

These are decisions and actions involved in the thought process. Most
humans do these actions naturally, but they must be completely detailed to
the computer.

The flowchart tests to determine if the flat count is zero or greater than
one. Since the flat count starts at zero (through initialization) and there are
three situations to check, only two decision statements are necessary (This
is the same as cutting a log in three pieces - only two cuts are needed). In
the first flat count decision statement in Fig. 22-1, there are two exit deci
sion paths. If the flat count is zero the statement is true, and the decision is
made to continue the trip home. If the flat count is not zero the statement is
false, and the exit path goes to a second decision statement. ls the flat count
greater than one? This decision statement selects the path to follow if the
flat count is one, or if the flat count is greater than one. If the flat count is
greater than one the statement is true, the exit path flows to the walk for as
sistance action. If the flat count is greater than one the statement is false,
the exit path flows to the open the trunk action, and to another decision
statement. Is the spare tire usable? The flowchart details the conclusion,
either walk for assistance or continue the homeward journey.

Flowchart steps can be detailed or general. Fig. 22-1 has both detailed
steps (stop the car, shut off the engine, etc.) and general steps (exchange the
spare for the flat tire). A flowchart can be on many different levels. It can be
a long, complicated written tool to help the programmer keep the action in
proper sequ~nce. Or the flowchart can be so simple that the programmer
doesn't have to write it down. The flowchart can help to clarify a complex
point. It can be a step-by-step set of instructions, complete with line num
bers, that will be followed exactly when the program is keypunched. Since
the FLAT TIRE is not a programmable problem, the flowchart is used to
keep the action in program context.

The ability to break actions into minute, detailed steps is the essence of
programming. Breaking the action into small steps helps develop the ability
to process information in the same manner as the computer.

To verify that the flowchart works properly, a table of possibilities is con
structed. The table of possibilities, Table 22-1, follows the flowchart logic to
determine that the problem is solved correctly.

168 APPLESOFT LANGUAGE

Table 22-1. Flat Tire Possibilities

LEFT LEFT RIGHT RIGHT
FRONT REAR REAR FRONT

0 0 0 0
0 0 0 0
0 0 0 F
0 0 0 F
0 0 F 0
0 0 F 0
0 0 F F
0 0 F F
0 F 0 0
0 F 0 0
0 F 0 F
0 F 0 F
0 F F 0
0 F F 0
0 F F F
0 F F F
F 0 0 0
F 0 0 0
F 0 0 F
F 0 0 F

TIRE STATUS (FLAT - F, 0 - OKAY)
CONTINUE - C, WALK FOR ASSISTANCE - W
EXCHANGE FLAT AND SPARE - E

SPARE

0
F
0
F
0
F
0
F
0
0
0
F
0
F
0
F
0
F
0
F

ACTION
TO BE
TAKEN

c
c
E&C
w
E&C
w
w
w
E&C
w
w
w
w
w
w
w
E&C
w
w
w

Over half of the thirty-two possibilities are listed in Table 22-1. The table
shows the status of four tires, the spare, and the course of action to be
taken. Table 22-1 was produced by writing down different combinations of
tire status and determining the best possible action to take. Common sense
was used to confirm the algorithm and produce the table. If the "YES" or
"NO" decisions on the flowchart had been switched, the flowchart would
give incorrect results even though the logic was correct. For correct results
to be produced from the written program, logic, flowcharts, and program
coding must be correct.

The first two lines of the table of possibilities show the four tires, the
spare, and the action to be taken. Both lines show all four tires are okay, but
the first line shows the spare is okay, and the second line shows the spare is
flat. According to logic, if all four tires are okay, the spare does not need to
be checked.

There is at least one drawback in producing a table of possibilities to
check the flowchart logic. On a complex problem, a table of possibilities
may have so many entries, it may be unusable. In that case, five or ten com
prehensive sample situations are used to try to catch all possible errors.

APPROACHING THE PROBLEM 169

To sum up, there are three basic steps in programming. The programmer
must:

1. Be able to completely describe the situation to be set in basic instruc
tions.

2. Be able to outline the logical progression from one step to another,
especially where decisions need to separate actions into different sec
tions.

3. Be able to change instructions from English to equivalent computer
form by understanding what the computer can process.

LESSON 23

Program Flexibility

The only thing permanent in life is change. This also applies to programs
and programming. The banking industry is highly regulated by the govern
ment. Although the regulations are rigid, the bank computer programs
change constantly. The bank's needs and equipment are constantly
changed and updated. Customer's relations with the bank and customer's
situations constantly change. The government regulations constantly
change so the bank must revise and check their programs to maintain com
pliance. This beehive of activity affects the bank's programmers who must
constantly revise and rewrite the programs. The programmer also must
constantly upgrade his or her education to adapt to new methods and equip
ment.

In programming, flexibility is a key word. Is the program flexible? Can the
program be easily and quickly changed to accommodate a new input situa
tion, a new set of government tables, or a new output format, and produce
correct results? Using a programming team, a long complex program may
take a year to write. This program should be flexible enough so minor
changes do not make the program completely obsolete.

If a mailing list program has a three line input, can a fourth line of input
be easily inserted in the program to produce a four line output?

In an inventory program, can data be input both in the alpha and numeric
modes?

In an accounts receivable program, can customer information be easily
changed without having to rewrite the program and without having to
rewrite the whole business program package?

The programs used for this example of flexibility are the computation of
federal income tax and net income. The user inputs the adjusted gross
income and the program computes the tax due and the net income. The tax
table was taken from the 1979 Tax Rate Schedule for married taxpayers fil
ing joint returns and qualifying widows and widowers. For simplicity, only
one tax table was used in the program. In reality, the tax rate schedule has

171

172 APPLESOFT LANGUAGE

four separate tables, (1) for single taxpayers, (2) married filing joint returns,
(3) married filing separate returns, and (4) heads of households, etc. The
point is that an accountant filing income tax returns for the general public
needs all four tables. A flexible program could be easily changed to accept
revised tables, while an inflexible program could not accept new tables
easily.

The inflexible program in this example is written with IF statements. In
this program, it would be difficult to change one table, much less four
tables. The flexible program is written with the table inserted in DATA state
ments. The flexible program would be relatively easy to change or add to by
a simple routine.

INPUT "ADJUSTED GROSS INCOME ";AGI

MENU
1. SINGLE TAX PAYER
2. MARRIED FILING JOINT RETURN
3. MARRIED FILING SEP ARA TE RETURN
4. HEAD OF HOUSEHOLD

INPUT "STATUS ";STATUS

ON ST A TUS GOSUB 2000, 3000, 4000, 5000

At 2000, 3000, 4000, and 5000 the tables could be placed in DAT A state
ments similar to the flexible tax computation program.

The variables used for both programs are:

AGl
UL
BF

BT
TB
JT
RANGE

adjusted gross income.
upper limit.
base figure from which tax is computed. If the base figure is
24,600, the base tax is 3273 plus 28% of everything over
24,600.
base tax is the second number in the table
tax bracket is the third number in the table.
income tax.
between the base figure and the upper limit.

RESTORE has been previously discussed. RESTORE resets the pointer so
the data can be reused. RESTORE-READ-DAT A allows data tables to be
reused when the program is in constant use. Without the RESTORE, the
program would have to be RUN again (started over) if the data were to be
reused.

After the adjusted gross income (AG!) is input, it is checked to see if it is
less than zero. If the adjusted gross income is less than zero the program
ends. The processing starts at the lowest range of base figure values. If the
adjusted gross income is greater than the upper limit value for the first

PROGRAM FLEXIBILITY 173

range, the adjusted gross income is tested against the next higher upper
limit value. The processing continues until the adjusted gross income is less
than the upper limit value in the range. The correct range is found when the
adjusted gross income is equal to or greater than the base figure, but is less
than the upper limit value. The correct range then sets the base tax, tax
bracket, and base figure for this range. Both the inflexible and the flexible
program process the ranges in approximately the same manner.

The flexible program gets the base figure from the upper limit value of
the previous range. If the adjusted gross income is in the first range, zero to
3400, the base figure has been initialized to zero before the processing
begins (Line 1040 - BF = 0).

If the adjusted gross income is greater than 215,400, the upper limit
value of the next range is zero. The zero indicates there is no upper limit to
this range. The upper limit value is zero, so that range applies to any
amount greater than 215,400.

Line 1060 tests the upper limit value for zero. If line 1060 is true, the pro
gram branches to line 1080 to compute the tax. If the upper limit value is
zero, the adjusted gross income is greater than 215,400. This sets the base
figure as 215,400. Line 1080 computes the income tax.

The inflexible program is shown first, followed by the flexible program.

995 REM : INFLEXIBLE TAX PROGRAM
1000 HOME : VTAB 3
1010 INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
1020 IF AGI < 0 THEN END
1040 BF = 0
2000 IF AGI > 3400 THEN 2020
2010 BT = O:TB = O:BF = 0: GOTO 7010
2020 IF AGI > 5500 THEN 2040
2030 BT = O:TB = .14:BF = 3400: GOTO 7010
2040 IF AGI > 7600 THEN 2060
2050 BT = 294:TB = .16: BF = 5500: GOTO 7010
2060 IF AGI > 11900 THEN 2080
2070 BT = 630:TB = .18:BF = 7600: GOTO 7010
2080 IF AGI > 16000 THEN 2100
2090 BT= 1404:TB = .21:BF = 11900: GOTO 7010
2100 IF AGI > 20200 THEN 2120
2110 BT = 2265:TB = .24:BF = 16000: GOTO 7010
2120 IF AGI > 24600 THEN 2140
2130 BT = 3273:TB = .28:BF = 20200: GOTO 7010
2140 IF AGI > 29900 THEN 2160
2150 BT = 4505:TB = .32:BF = 24600: GOTO 7010
2160 IF AGI > 35200 THEN 2180
2170 BT = 6201 :TB = .37:BF = 29900: GOTO 7010
2180 IF AGI > 45800 THEN 2200
2190 BT = 8162:TB = .43:BF = 35200: GOTO 7010
2200 IF AGI > 60000 THEN 2220
2210 BT = 12720:TB = .49:BF = 45800: GOTO 7010

174 APPLESOFT LANGUAGE

2220 IF AGI > 85600 THEN 2240
2230 BT = 19678:TB = .54:BF = 60000: GOTO 7010
2240 IF AGI > 109400 THEN 2260
2250 BT = 33502:TB = .59:BF = 85600: GOTO 7010
2260 IF AGI > 162400 THEN 2280
2270 BT = 47544:TB = .64:BF = 109400: GOTO 7010
2280 IF AGI > 215400 THEN 2300
2290 BT = 81464:TB = .68:BF = 162400: GOTO 7010
2300 BT = 117504:TB = .7:BF = 215400
7010 IT = BT + (AGI - BF)* TB: PRINT: PRINT "YOUR INCOME TAX IS";IT
7020 PRINT: PRINT "YOUR NET IS";AGI - IT
7030 PRINT: GOTO 1010
7040 END

995 REM : FLEXIBLE TAX PROGRAM
1000 HOME : VTAB 3
1010 INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
1020 IF AGI < 0 THEN END
1030 RESTORE
1040 BF = 0
1050 READ UL,BT,TB
1060 IF UL = 0 THEN 1080
1070 IF AGI > UL THEN BF = UL: GOTO 1050
1080 IT = BT + (AGI - BF) *TB: PRINT: PRINT "YOUR INCOME TAX IS";IT
1090 PRINT: PRINT "YOUR NET IS";AGI - IT
1100 PRINT: GOTO 1010
1110 END
7100 DATA 3400,0,0
7110 DATA 5500,0,.14
7120 DATA 7600,294,.16
7130 DATA 11900,630,.18
7140 DATA 16000, 1404,.21
7150 DATA 20200,2265,.24
7160 DATA 24600,3275,.28
7170 DATA 29900,4505,.32
7180 DATA 35200,6201,.37
7190 DATA 45800,8162,.43
7200 DATA 60000,12720,.49
7210 DATA 85600, 19678,.54
7220 DATA 109400,33502,.59
7230 DATA 162400,47544,.64
7240 DATA 215400,81446,.68
7250 DATA 0,117504,.70

! i

I)

I '
I

LESSON 24

Circular Lists, Stacks, and Pointers

Lessons 24 through 27 will deal with specialized methods to aid in solving
problems in programming. The lessons deal with (1) circular lists, stacks,
and pointers, (2) lists, sorting, searching, and deleting, (3) formulas - how
to construct and use them, and (4) double subscripted variables.

A circular list is a list from which all insertions are made at one end and
all retrievals are made at the other end (Fig. 24-1). This type of list has
several names: circular buffer, queue, and FIFO (first in-first out). FIFO is
also applicable to computers, inventory and science.

The program written for this lesson (Fig. 24-2) uses FIFO in two ways,
computer lists and inventory.

A stack is a linear list from which all insertions and all retrievals are made
from the top. LIFO (last in-first out) is synonymous with stack (Fig. 24-3).
The program written for this lesson uses LIFO in two ways, computer lists
and inventory.

A pointer, as shown in Figs. 24-1 and 24-3, is an address location used to
designate the location of data contained in a cell of a linear list. A pointer is
considered a pointer only if it points at some data within a list. An address
location is not considered to be a pointer unless it specifically points to
data.

A circular list has two buffer pointers, buffer in (Bl) and buffer out (BO). A
stack has one buffer pointer (Bl).

The program in Fig. 24-2, written to demonstrate a circular list, stack,
and pointers, accepts only one inventory item. The fields for this inventory
item contain (1) the date the item was purchased by the company, A$(BI),
(2) the price of the item, PR(BI), and (3) the number of items the company
purchased, AO(BI).

The circular list and the stack contain 101 cells (DIM A$(100),
PR(lOO),AO(lOO)), into which purchase information is placed and customer
orders are taken (Fig. 24-4).

175

176 APPLESOFT LANGUAGE

CUSTOMER'S
ORDERS
01.JT
TAIL

BUFFER
OUT

POINTER

A

B

COMPANY
PURCHASES
IN
HEAD

Bl+ 1 = BO

BUFFER
IN
POINTER

Fig. 24·1. Circular list (FIFO).

101 CELLS

c

BUFFER
IN
POINTER

BUFFER
OUT
POINTER

IF Bl = BO THEN THE
BUFFER IS EMPTY. IF
THE BUFFER CONTAINS
100 CELLS THE
POINTERS CAN BE
EQUAL AT ANY
LOCATION FROM 0 - 100
AND THE BUFFER
IS EMPTY.

IF Bl+ 1 - (Bl= 100) * 101 =BO

Bl Bl+ 1 - (Bl= 100) * 101 BO

0 1 Bl < 100 1

1 2 Bl < 100 2

2 3 Bl < 100 3

3 4 Bl < 100 4

4 5 Bl < 100 5

5 6 Bl < 100 6

6 7 Bl < 100 7

I I I I
100 101 - 100 = 1 * 101 101 **

** SPECIAL CASE
D

The FIFO (circular list) and the LIFO (stack) give the program flexibility.
The program could be used by a company that uses either the FIFO or LIFO
inventory method.

Lines 10 through 80 DIMension the variables and set up the initial menu
to select: 0. END THE PROGRAM, 1. FIFO, or 2. LIFO.

Lines 420 through 490 process the purchasing information for the circu
lar list (FIFO). Line 430 detects the buffer full condition (Fig. 24-1, part A).

The buffer is DIMensioned to 101 cells. DIM A$(100) was arbitrarily
selected and could have been a smaller number or any number within
usable memory limits.

When BO and BI are located in adjacent memory cells there are no empty
cells. Therefore, the buffer is full. In line 430, a special case is used when BI
= 100 (Fig. 24-1, part D). This special case is used so the circle can con
tinue uninterrupted. The Bl = 100 portion of the formula is activated when
Bl = 100.

CIRCULAR LISTS, STACKS, AND POINTERS 177

5 REM : CIRCULAR LISTS, STACKS, AND POINTERS
10 DIM A$(100),PR(100),A0(100)
20 HOME: VTAB 5: HTAB 12: PRINT "FIFO/LIFO DEMONSTRATION"
30 VTAB 8: PRINT SPC(12);"0.END"
40 VTAB 10: PRINT SPC(12);"1.FIFO"
50 VTAB 12: PRINT SPC(12);"2.LIFO"
60 VTAB 14: INPUT "ENTER SELECTION ?";S
70 IFS = 0 THEN HOME: PRINT "THAT'S ALL": END
80 ON S GOSUB 300,600
90 GOTO 20
300 Bl = O:BO = O:T = 0
310 HOME: VTAB 5: HTAB 12: PRINT "FIFO ENTRY SYSTEM"
320 VTAB 8: PRINT SPC(12);"0.ENDING REPORT"
330 VTAB 10: PRINT SPC(12);"1.ENTER PURCHASE"
340 VTAB 12: PRINT SPC(12);"2.ENTER ORDER"
350 VTAB 14: INPUT "ENTER SELECTION ?";S
360 IF S > 0 THEN 400
370 HOME: VTAB 5: HTAB 12: PRINT "FIFO ENDING REPORT"
380 VTAB 14: GOSUB 1020: GOSUB 1010: RETURN
400 ON S GOTO 420,500
410 GOTO 310
420 HOME: VTAB 5: HTAB 12: PRINT "FIFO PURCHASE HANDLER"
430 IF (Bl + 1 - (Bl = 100) * 101) = BO THEN VTAB 15: PRINT

"INVENTORY IS FULL!!!!": PRINT: PRINT "NO PURCHASES PERMITIED
TODAY": GOSUB 1000: GOTO 310

440 VTAB 8: PRINT "ENTER DATE(MM/DD/YY),PRICE,AMOUNT"
450 VT AB 10: HTAB 11: INPUT A$(Bl),PR(Bl),AO(BI)
460 N = T:T = AO(BI) + T: IF T < 1 THEN 490
470 IF T < N THEN AO(BI) = T
480 Bl = Bl + 1 - (Bl + 100) * 101
490 VTAB 12: GOSUB 1020: GOSUB 1000: GOTO 310
500 HOME : IF BO = Bl THEN VTAB 8: PRINT "THERE IS NO INVENTORY IN

STOCK": GOSUB 1000: GOTO 310
510 VTAB 4: INPUT "ENTER NUMBER OF ITEMS ORDERED ?";NU: IF NU< 1

THEN 510
515 T=T-NU
520 IF AO(BO) > NU THEN 560
530 PRINT: PRINT AO(BO);" ITEMS AT $";PR(BO);" PURCHASED ";A$(BO):NU

= NU - AO(BO):BO = BO + 1 - (BO = 100) * 101: IF NU
= 0 THEN 570

540 IF Bl = BO THEN PRINT: PRINT "WE ARE OUT OF STOCK WITH ";NU;"
ITEMS": PRINT: PRINT "LEFT ON ORDER": GOSUB 1010: GOTO 310

550 GOTO 520
560 PRINT: PRINT NU;" ITEMS AT $";PR(BO);" PURCHASED ";A$(BO):AO(BO)

= AO(BO) - NU
570 PRINT: GOSUB 1020: GOSUB 1000: GOTO 310
600 Bl = O:T = 0
610 HOME: VTAB 5: HTAB 12: PRINT "LIFO ENTRY SYSTEM"
620 VTAB 8: PRINT SPC(12);"0.ENDING REPORT"
630 VTAB 10: PRINT SPC(12);"1.ENTER PURCHASE"

Fig. 24-2. Circular list, stack, and pointers.

178 APPLESOFT LANGUAGE

640 VTAB 12: PRINT SPC(12);"2.ENTER ORDER"
650 VTAB 14: INPUT "ENTER SELECTION ?";S
660 IF S > 0 THEN 700
670 HOME: VTAB 5: HTAB 12: PRINT "LIFO ENDING REPORT"
680 VTAB 14: GOSUB 1020: GOSUB 1010: RETURN
700 ON S GOTO 720,800
710 GOTO 610
720 HOME: VTAB 5: HTAB 12: PRINT "LIFO PURCHASE HANDLER"
730 IF Bl = 100 THEN VTAB 15: PRINT "INVENTORY IS FULL!!!!": PRINT:

PRINT "NO PURCHASES PERMITTED TODAY": GOSUB 1000: GOTO 610
740 VTAB 8: PRINT "ENTER DATE(MM/DD/YY),PRICE,AMOUNT"
750 Bl = Bl + 1: VTAB 10: HTAB 11: INPUT A$(Bl),PR(Bl),AO(Bl):N = T:T

= AO(BI) + T: IF T < 1 THEN Bl = Bl - 1: GOTO 770
760 IF T < N THEN AO(BI) = T
770 VTAB 12: GOSUB 102-0: GOSUB 1000: GOTO 610
800 HOME : IF Bl = 0 THEN VTAB 8: PRINT "THERE IS NO INVENTORY IN

STOCK": GOSUB 1000: GOTO 610
810 VTAB 4: INPUT "ENTER NUMBER OF ITEMS ORDERED ?";NU: IF NU< 1

THEN 810
815 T = T - NU
820 IF AO(BI) > NU THEN 860
830 PRINT: PRINT AO(BI);" ITEMS AT $";PR(BI);" PURCHASED ";A$(Bl):NU =

NU - AO(Bl):BI = Bl - 1: IF NU = 0 THEN 870
840 IF Bl = 0 THEN PRINT: PRINT "WE ARE OUT OF STOCK WITH ";NU;"

ITEMS": PRINT: PRINT "LEFT ON ORDER": GOSUB 1010: GOTO 610
850 GOTO 820
860 PRINT: PRINT NU;" ITEMS AT $";PR(BI);" PURCHASED ";A$(Bl):AO(BI) =

AO(BI) - NU
870 PRINT: PRINT: GOSUB 1020: GOSUB 1010: GOTO 610
1000 FOR J = 1 TO 1800: NEXT J: RETURN
1010 VTAB 20: PRINT "PRESS RETURN TO CONTINUE!!!";: GET Q$: RETURN
1020 PRINT "THERE ARE ";T;" ITEMS IN INVENTORY": RETURN
1050 T = O:PT = Bl
1060 FOR J = PT TO 0 STEP - 1
1070 T = T + AO(J): NEXT J: PRINT "THERE ARE ";T;" ITEMS IN INVENTORY":

RETURN

Fig. 24-2-cont. Circular list, stack and pointers.

Line 440 prints the informational headers, ENTER DATE (MM/DD/VY),
PRICE, AMOUNT. Line 450 allows input of the date of purchase, A$(BI), the
price of the item, PR(BI), and the number of items purchased, AO(Bl). These
items are placed within a specific cell in the circular list (Fig. 24-4).

In line 460, the total number of items purchased is placed in the variable
N. N holds the total number of items for comparison purposes in relation to
back orders. When N is greater than T, there are not enough items to fill a
customer's order and the items have to be back ordered. T = AO(Bl) + T
holds the total number of items purchased.

CIRCULAR LISTS, STACKS, AND POINTERS 179

PULL OFF 3

PULL OFF 2

PULL OFF 1

DIM A$(100)

0

1

2

99

100

ACTION SERIES

IN/IN/IN/OUT /OUT /OUT

0

1

2

99

100

Fig. 24-3. Stack (LIFO) 101 cells.

Fig. 24-4. Individual cell and contents.

BUFFER IN POINTER

BUFFER IN POINTER

BUFFER IN POINTER

Bl = 0 STACK EMPTY

Bl= Bl + 1

Bl = 100 STACK FULL

5 - 15 - 79 A$(5)

$1.39 PR(5)

400 A0(5)

CELL #5

Line 460 IF T < 1 THEN 490. When T is less than 1, there are items back
ordered and the subroutine at line 1020 prints out a negative value for the
number of items in inventory.

Line 470 IF T < N THEN AO(Bl) = T. If there is a back order, the next pur
chase may not eliminate the back order. When the next purchase does not
eliminate the back order, or when the purchase equals the back order, the
purchase does not go into the buffer. If the purchase is greater than the back

180 APPLESOFT LANGUAGE

A$ =
AO=
Bl
BO
N
NU
PR
PT
T

date of purchase of items by company.
number of items purchased by the company.
buffer in pointer.
buffer out pointer.
holds total number of items for later comparison to total items (T).
number of items ordered by the customer.
price of the items.
temporary pointer.
total number of items.

Fig. 24-5. Variables for circular list, stack, and pointers.

order. the excess is stored in N. The excess in N can then be compared to T.
(1) before the purchase order, and (2) after the purchase order. If the total
after the order is less than the order, the purchase must be reduced by the
number of items in the back order. When the purchase is greater than the
back order, the back order is subtracted from the purchase, and the balance
of the purchase is stored in a cell in the buffer.

Line 480 increments the buffer in pointer to the next cell in the buffer and
line 490 causes the program to jump back to the FIFO menu.

In line 500, when both buffer pointers rest at the same cell in the buffer
(Fig. 24-1, part C) the buffer is empty. The buffer has three conditions:

1. Bl = BO BUFFER EMPTY - input company purchases only.
2. Bl+ 1 = BO BUFFER FULL - take out customer's orders only.
3. Bl+ 1 <>BO company purchases can be placed in the buffer and

customer·s orders can be taken from the buffer.

Line 510 checks if an order of less than one has been input. If it has, the
statement branches back to itself.

Line 515 subtracts the number of items ordered from the total number of
items.

In line 520. if the number of items of a particular purchase in the buffer is
greater than the number of items ordered, the program branches to line 560
to process the order.

If the statement in line 520 is false, the program defaults to line 530 to
print out the number of items purchased and updates the buffer as neces
sary to complete the order. The order is processed against inventory buffers
until the order is filled. If there are not sufficient items in inventory to fill the
order, the inventory buffers are depleted and the balance is back ordered,
making T a negative number. AO(BO) is printed each time the inventory is
reduced by the order. NU = NU - AO(BO) updates the number of items left
on the order that need to be filled. If NU is greater than AO(BO), the first
buffer cell is emptied, and each following buffer cell is emptied until all
buffer cells are empty, or until the order is completely filled. If the order is
not completely filled, and there is no remaining inventory, the balance of
the items is back ordered. This logic is implemented in lines 520 through
550.

CIRCULAR LISTS, STACKS, AND POINTERS 181

The reduction in inventory is contained in the statement NU = NU -
AO(BO). The buffer out cell is computed in the statement BO = BO + 1 -
(BO = 100)* 101. IF NU = 0 THEN 570 takes care of the condition when the
number of items ordered comes out even, with BO entry on the buffer
empty.

Line 560 prints out the number of items purchased, the price, and the
date of purchase.

The statement AO(BO) = AO(BO) - NU in line 560 computes the num
ber of items that remain in a specific cell in the inventory buffer.

When the transactions are completed, the FIFO menu is displayed. Zero
selection prints out an ending report of the number of items remaining in in
ventory (GOSUB 1020). GOSUB 1000 causes PRESS RETURN TO CON
TINUE!!! to be printed below the ending report. When RETURN is pressed,
the program returns to line 90 - GOTO 20, and the FIFO/LIFO DEMON
STRATION menu is displayed on the screen. Selection zero from the
FIFO/UFO DEMONSTRATION menu causes the program to end.

Selection #2 from the FIFO/LIFO DEMONSTRATION menu causes the
program to GOSUB 600 to the LIFO (stack) section of the program.

Line 600 Bl = 0 : T = 0 initializes the buffer in pointer apd the total to
zero. The stack has only one pointer, the buffer in pointer. The UFO ENTRY
SYSTEM menu is printed and there are three selections available, 0. END
ING REPORT, 1. ENTER PURCHASE, and 2. ENTER ORDER.

If 1. ENTER ORDER is selected the program branches to line 720, to print
out LIFO PURCHASE HANDLER.

Line 730 IF Bl = 100 the program prints out INVENTORY IS FULL.
The stack has three conditions (Fig. 24-3).

1. Bl 100 ST ACK IS FULL - customer orders can be filled.
2. Bl 0 ST ACK IS EMPTY - company purchases can be

placed in the stack. ,
3. Bl Bl + 1 company purchases may be inserted, and custom~r's

orders may be processed.

Line 750 Bl = BI + 1 increments the pointer, and purchasing information
is input into an array. A$(Bl) is the date of purchase, PR(Bl) is the price of
the item, and AO(Bl) is the number of items purchased.

Line 750 N = T places the total number of items in a variable to be used
in comparison later in the program. T = AO(BI) + T totals the number of
items in inventory. IF T < 1 THEN Bl = Bl - 1. If there are items on back
order T is less than one and the buffer in pointer is decremented. This
means that any purchase received goes first to fill the back orders.

Line 760 IF T < N THEN AO(Bl) = T. If the total number of items in in
ventory is less than the number ordered, the purchases go to eliminiate the
back order. If the purchases are less than, or equal to, the back order, the

182 APPLESOFT LANGUAGE

purchases do not go to inventory. If the purchases are greater than the back
order, the excess purchases are stored in N. The excess in N is compared to
T before, and T after the purchase. If T after the purchase is greater than N,
the back order is eliminated and the excess purchases go into a cell in the
buffer.

Line 800 IF Bl = 0 THEN PRINT "THERE IS NO INVENTORY STOCK".
The Bl pointer is set to the top cell in the stack (Fig. 24-3). Cell number 100
is the bottom cell in the stack. The top and the bottom of the stack is a
matter of semantics. The important aspect is how the stack is filled and
emptied.

Line 800 allows the user to enter the number of items ordered by the cus
tomer.

Line 820 IF AO(Bl)> NU THEN 860. If the number of items in inventory is
greater than the number of items ordered by the customer, the program
branches to line 860 to process the order and only this cell in the stack is
reduced.

If line 820 is false, the program defaults to line 830 to print out the
number of items purchased, subtract the number from inventory (NU = NU
- AO(Bl)), decrement the stack pointer, Bl = Bl - 1, and go to the next cell
to try to complete the order. The order is processed against inventory buffer
cells until the order is filled. If there is not sufficient inventory to fill the
order, all inventory buffer cells are depleted and the balance is back
ordered. T is a negative number. Line 815 T = T - NU. AO(BI) is printed
out each time the inventory is reduced by the order. NU = NU - AO(Bl) up
dates the number of items left on order that need to be filled. If NU is greater
than AO(Bl), this cell is emptied, and adjacent cells are emptied, until the
order is filled. If the order is not completely filled, and there is no remaining
inventory, the remaining items are back ordered. The logic is implemented
in lines 820 through 850.

Line 830 IF NU = 0 THEN 870 is true the program prints an inventory
status report of zero items.

When all purchases and orders have been completed, the program re
turns to line 610 to print out the LIFO ENTRY SYSTEM. Zero selection from
this menu prints out an ending inventory report, and press RETURN returns
the program to the FIFO/LIFO DEMONSTRATION menu. A zero selection
from this menu ends the program.

LESSON 25

Sorting, Searching, and Deleting

The program written for Lesson 25 (Fig. 25-1) prepares a list of names
and telephone numbers. The list is sorted and SA VEd to tape or disk. The
list may be loaded into the program, searched for a name or fragment of a
name, and searched for an area code and a phone number. Items on the list
may be deleted. There are many techniques to sort, search, and delete
items on a list. The techniques introduced in this lesson are a basis for
further study. The variables, as they appear in the program, are shown in
Fig. 25-2. The variables are given in Fig. 25-3 in alphabetical order.

1 DIM CA(45),CH(1),DA$(1000),CL(1000): REM: PHONE LIST
10 SP$ = " ":SP$ = SP$ + SP$ + SP$
15 DC$ = "713"
16 D$ = CHR$ (4)
20 HOME: VTAB 4: HTAB 12: PRINT "PHONE LISTING"
30 VTAB 10: HTAB 8: PRINT "1.ENTER"
40 VTAB 12: HTAB 8: PRINT "2.MODIFY/DELETE"
50 VTAB 14: HTAB 8: PRINT "3.LIST/SEARCH"
60 VTAB 16: HTAB 8: PRINT "4.SAVE LIST AND END"
70 VTAB 18: HTAB 8: INPUT "ENTER SELECTION ?";MS
80 ON MS GOTO 1000,2000,3000,4400
90 GOTO 20
1000 HOME: VTAB 4: HTAB 12: PRINT "FILE MAINTENANCE"
1010 VTAB 10: HTAB 8: PRINT "1.LOAD OLD FILE"
1020 VTAB 12: HTAB 8: PRINT "2. ENTER NEW ITEMS"
1030 VTAB 14: HTAB 8: PRINT "3.RETURN TO MAIN MENU"
1040 VTAB 16: HTAB 8: INPUT "ENTER SELECTION ?";MS
1050 ON MS GOTO 1070, 1200, 1400
1060 GOTO 1000
1070 PRINT: PRINT "IS THE FILE ON (T)APE OR (D)ISK ?": PRINT: INPUT "EN

TER (T) OR (D) ?";Q$
1075 IF Q$ = ''T'' GOTO 1100

Fig. 25-1. Program written for Lesson 25.

183

184 APPLESOFT LANGUAGE

1080 IF Q$ = "D" GOTO 1170
1090 GOTO 1000
1100 HOME : VTAB 4: HTAB 4: INPUT "READY CASSETTE AND PRESS RETURN

! ";Q$
1110 RECALLCH
1120 IF CH(O) = 0 THEN PRINT "THERE IS NO ARRAY ON TAPE": GOTO 1000
1130 FOR J = 1 TO CH(O)
1140 RECALL CA
1150 DA$(J) = "": FOR K = 1 TO 44:DA$(J) = DA$(J) + CHR$ (CA(K)):

NEXT K:CL(J} = CA(45):NEXT J
1160 GOTO 1000
1170 HOME : VTAB 4: HTAB 4: PRINT "ENTER THE DISK FILE NAME!": PRINT
1175 PRINT: INPUT "FILE NAME = ";F$: IF LEN (F$) = 0 GOTO 1000
1180 PRINT D$;"0PEN ";F$: PRINT D$;"READ ";F$: INPUT CH(O)
1185 FOR J = 1 TO CH(O): INPUT DA$(J),CL(J): NEXT J
1190 PRINT D$;"CLOSE ";F$: PRINT D$;"1N#O": PRINT D$;"PR#O"
1195 GOTO 1000
1200 HOME :VT = 6: GOSUB 10010
1210 IF CL(CH(O) + 1) = 0 THEN 1000
1260 VT= 12: GOSUB 10080
1310 DA$(CH(O) + 1) = DA$(CH(O) + 1) +

"(" + TC$ + ")-" + LEFT$(PT$,3)
+ " - " + RIGHT$ (PT$,4)

1320 PRINT: GOSUB 10000
1330 PRINT: INPUT "ENTER 'R' TO REENTER ELSE 'RETURN' ?";Q$: IF Q$

< > "R" THEN CH(O) = CH(O) + 1
1340 GOTO 1200
1400 GOSUB 1410: GOTO 20
1410 IF CH(O) < 2 THEN RETURN
1420 FOR J = 1 TO CH(O) - 1
1430 M = J: FORK = J + 1 TO CH(O)
1440 IF LEFT$ (DA$(K),30) < LEFT$ (DA$(M),30) THEN M = K
1450 NEXT K
1460 IF M = J THEN 1480
1470 TC$ = DA$(M):DA$(M) = DA$(J):DA$(J) = TC$:CL(O)

= CL(M):CL(M) = CL(J):CL(J) = CL(O)
1480 NEXT J
1490 RETURN
2000 HOME: VTAB 4: IF CH(O} = 0 THEN PRINT "THERE IS NO LIST";

CHR$ (7): FOR J = 1 TO 2000: NEXT J: GOTO 20
2010 PRINT "ENTER NAME TO BE CHANGED": PRINT: INPUT NA$
2020 IF LEN (NA$) = 0 THEN 20
2030 FOR K = 1 TO CH(O)
2040 IF NA$<> LEFT$ (DA$(K),CL(K)) THEN 2060
2050 GOTO 2100
2060 NEXT K: VTAB 10: HTAB 6: PRINT "THIS NAME NOT ON LIST": PRINT

CHR$ (7): FOR J = 1 TO 1000: NEXT J: GOTO 2000
2100 CH(1) = CH(O):CH(O) = K - 1:VTAB 6: PRINT "CURRENT RECORD IS":

PRINT

Fig. 25-1-cont. Program written for Lesson 25.

SORTING, SEARCHING, AND DELETING 185

2110 VTAB 8: GOSUB 10000: PRINT: PRINT "ENTER 'C' TO CHANGE, 'D' TO
DELETE": PRINT : INPUT "ELSE 'RETURN' ?";Q$

2120 IF Q$ < > "C" AND Q$ < > "D" THEN 2240
2125 IF Q$ = "D" THEN DA$(K) = "DELETE" + LEFT$ (SP$,24) + "(000)-

000- 0000": GOTO 2230
2130 VTAB 12: CALL -958: VTAB 12: PRINT "ENTER 'N'-NAME, 'P'-PHONE#,

'B'-BOTH" : PRINT
2140 T$ = RIGHT$ (DA$(K),14): INPUT "LEITER PLEASE ?";C$: IF C$ < >

"N" AND C$ < > "P" AND C$ < > "B" THEN 2130
2150 IF C$ = "P" THEN 2170
2160 VT = 14: GOSUB 10010
2170 IF C$ = "N" THEN 2190
2180 VT = 16: GOSUB 10080
2190 IF C$ = "N" THEN DA$(K) = DA$(K) + T$: GOTO 2230
2200 IF C$ = "P" THEN DA$(K) = LEFT$(DA$(K),30)
2220 DA$(K) = DA$(K) + "(" + TC$ + ")-"

+ LEFT$ (PT$,3) + " - " + RIGHT$ (PT$,4)
2230 CH(O) = CH(1): PRINT: INPUT "ANY MORE CORRECTIONS (YORN)

?";Q$: IF Q$ = "Y" THEN 2000
2240 K = 0: FOR J = 1 TO CH(O)
2250 IF LEFT$ (DA$(J),6) = "DELETE" THEN 2280
2260 K = K + 1: IF K = J THEN 2280
2270 DA$(K) = DA$(J):CL(K) = CL(J)
2280 NEXT J
2290 CH(O) = K
2300 GOSUB 1410: GOTO 20
3000 HOME : VTAB 3: INPUT "ENTER 'S' TO SEARCH OR 'L' TO LIST ?";Q$:

IF Q$ < > "L" AND Q$ < > "S" THEN 3000
3010 IF Q$ = "S" THEN 3100
3030 FOR J = 1 TO CH(O)
3040 IF J < > INT ((J - 1) I 5) * 5 + 1 THEN 3070
3050 IF J < > 1 THEN PRINT : INPUT "!";Q$
3060 HOME: VTAB 3
3070 PRINT "NAME = "; LEFT$ (DA$(J),30): PRINT SPC(7);"PHONE # = ";

RIGHT$ (DA$(J), 14): PRINT
3080 NEXT J
3090 PRINT : INPUT ''!'';Q$: GOTO 20
3100 HOME: VTAB 3: HTAB 12: PRINT "SEARCH SELECTION": PRINT
3110 HTAB 12: PRINT "1.NAME SEARCH": PRINT: HTAB 12: PRINT "2.NUMBER

SEARCH": PRINT: HTAB 12: PRINT "3.RETURN TO MAIN MENU": PRINT
3120 INPUT "ENTER SEARCH KEY?"; MS
3130 ON MS GOTO 3150,3250,20
3140 GOTO 3100
3150 HOME: VTAB 4: PRINT "ENTER NAME OR FRAGMENT?": PRINT:

INPUT NA$:L = LEN (NA$): IF L = 0 THEN 3100
3160 CO = 0: FOR J = 1 TO CH(O): IF L > CL(J) THEN 3220
3170 FOR K = 1 TO Cl(J) - L + 1
3180 IF NA$<> MID$ (DA$(J),K,L) THEN 3210
3190 CH(1) = CH(O):CH(O) = J - 1: PRINT : GOSUB 10000: PRINT :

INPUT Q$

Fig. 25-1-cont. Progrnm written for Lesson 25.

186 APPLESOFT LANGUAGE

3200
3210
3220
3230

3250

3260
3270

3280
3290
3300

3310
3320
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
10000

10010

10020
10030

CH(O) = CH(1):CO = CO + 1: GOTO 3220
NEXT K
NEXT J: IF CO> 0 THEN 3100
PRINT: PRINT "THIS WORD IS NOT ON FILE": FOR J = 1 TO 1000:
NEXT J: PRINT CHR$ (7): GOTO 3100
HOME : VTAB 6: HTAB 6: INPUT "ENTER AREA CODE,PHONE # ?";
AC$,PN$
IF LEN (AC$) = 0 THEN AC$ = DC$
TC$ = "(" + AC$ + ")-" + LEFT$(PN$,3)
+ " - " + RIGHT$ (PN$,4)
FOR J = 1 TO CH(O)
IF TC$<> RIGHT$ (DA$(J), 14) THEN 3310
CH(1) = CH(O):CH(O) = J - 1: GOSUB 10000: PRINT :CH(O) = CH(1):
INPUT Q$: PRINT
NEXT J
GOTO 3100
HOME: VTAB 6: HTAB 10: INPUT "READY CASSETTE TO SAVE FILE !";Q$
STORE CH
FOR J = 1 TO CH(O)
FORK = 1 TO 44
CA(K) = ASC (MID$ (DA$(J),K,1))
NEXT K
CA(45) = CL(J)
STORE CA
NEXT J
PRINT CHR$ (7); CHR$ (7)
HTAB 10: PRINT "PHONE SYSTEM IS ENDED"
END
HOME: VTAB 4: HTAB 4: PRINT "SAVE THE FILE ON (T)APE OR (D)ISK ?":
PRINT : INPUT "ENTER (T) OR (D) ?";Q$
IF Q$ = "T" THEN 4000
IF Q$ < > "D" THEN 1000
PRINT: PRINT: PRINT: PRINT "ENTER THE DISK FILE NAME!": PRINT
INPUT "FILE NAME = ";F$
IF LEN (F$) = 0 THEN END
PRINT D$;"0PEN ";F$
PRINT D$;"WRITE ";F$
PRINT CH(O)
FOR J = 1 TO CH(O)
PRINT DA$(J);",";CL(J): NEXT J
PRINT D$;"CLOSE ";F$
END
PRINT "NAME = "; LEFT$ (DA$(CH(O) + 1),30): PRINT : PRINT "PHONE
#= "; RIGHT$ (DA$(CH(O) + 1), 14): RETURN
VTAB VT: CALL - 958: VTAB VT: PRINT "ENTER NAMES(LESS THAN 31
CHARACTERS)"
PRINT : INPUT DA$(CH(O) + 1)
CL(CH(O) + 1) = LEN (DA$(CH(O) + 1)): IF CL(CH(O) + 1) = 0 THEN
RETURN

Fig. 25-1-cont. Program written for Lesson 25.

SORTING, SEARCHING, AND DELETING 187

10040 IF CL(CH(O) + 1) > 30 THEN PRINT: PRINT "NAME IS TOO LONG";
CHR$ (7): FOR J = 1 TO 1000: NEXT J: GOTO 10010

10050 IF CL(CH(O) + 1) = 30 THEN RETURN
10060 DA$(CH(O) + 1) = DA$(CH(O) + 1) + LEFT$ (SP$,30 - CL(CH(O)

+ 1))
10070 RETURN
10080 VTAB VT: PRINT "ENTER AREA CODE,PHONE NO."
10090 PRINT: PRINT: INPUT AC$, PN$
10100 IF LEN (AC$) = 0 THEN AC$ = DC$
10110 IF LEN (AC$)<> 3 OR LEN (PN$) < > 7 THEN 10080
10120 TC$ = STR$ (VAL (AC$)):PT$ = STR$ (VAL (PN$)): IF TC$<> AC$

OR PT$<> PN$ THEN PRINT: PRINT "PLEASE USE NUMERICS"; CHR$
(7): FOR J = 1 TO 1000: NEXT J: GOTO 10080

10130 RETURN

Fig. 25-1-cont. Program written for Lesson 25.

CA

CH
CH(1)
DA$

CL

SP$
DC$

MS
Q$
RECALL CA

J,K
VT

CL(CH(O) + 1)

GOSUB 10010

Array used to store to, and retrieve from, tape. AS language can
not store string arrays directly. The string arrays are converted to
the numbered equivalent to store the number. CA(K) =
ASC(MID$(DA$(J),K, 1)). Lines 4010-4050. STORE CA saves the file.
RECALL CA loads the file. The file is converted into a string - DA$
= DA$ + CHR$ (CA(K)) in lines 1110 - 1150.
CH(O) holds the number or records in the record count.
Temporary storage for the record count.
String in which the name, area code, and phone number are
held.
Length of the name string before it is padded to exactly 30
characters.
Padding string that contains 30 blank spaces.
713. Default string holds the area code. A comma input places
713 in the area code. A different area code can be inserted by
typing in the numbers.
Menu selection.
String that holds "Y" for yes, "N" for no, or "R" for return.
Retrieves a real or integer array that has been STOREd on tape.
The array must be DIMensioned in the program. Subscripts are
not used when storing or recalling arrays. CA(O), CA(1), CA(2),
etc., are stored and recalled as CA. CA(45) contains 45 characters
including the padded spaces.
44 CHARACTERS NAME STRING PADDED TO 30 CHARACTERS
(713) - 688 - 1212 = 44 + CL = 45
1 3 1 1 3 1 4 1 + 30 = 45
Loop variables used throughout the program.
Sets up VTAB VT to VTAB to different rows according to program
structure.
Holds the length of the name being input before padding in rela
tion to the length of DA$ before it was padded.
Inputs name into the 1st part of DA$ and pads the 1st part of the
string to 30 characters.

Fig. 25-2. Variables as they appear in the program.

188 APPLESOFT LANGUAGE

GOSUB 10080

PN$
TC$

PT$

AC$
M
NA$
GOSUB 10000

STORE CA
2125
CHR$(7)
CH(O) =J -1

co

Inputs area code and phone number into the last 14 characters of
DA$. PT$ = STR$(VAL(PN$)) - checks that all phone numbers are
numeric characters and not'alpha characters.
Phone number string.
Temporary area code string to check numeric character input into
area code. TC$ = STR$(VAL(AC$)).
Temporary phone number string to check numeric character in
put into the phone number string.
PT$ = STR$(VAL(PN$)).
Area code string. A comma defaults to DC$ = 713.
Minimum.
Name to be changed.
Prints out name, area code, and telephone number before it is
changed.
Stores real or integer numbers on tape. SEE RECALL CA.
Delete line-see Fig. 25-4.
PRINT CHR$(7) rings the bell on the computer-CONTROL G.
The name and phone number are placed in CH(O) + 1.
Subroutines 10010 and 10080 input name and phone number.
Count of the number of times a match is found on the list.

Fig. 25-2-cont. Variables as they appear in the program.

Sorting is the act of placing information in a predetermined sequence.
Sorting depends on sequencing items according to a key word. Lists of
names are usually keyed or sorted alphabetically on the first letters of the
last name. Telephone numbers are usually keyed or sorted on the area code.
Mailing lists may be sorted according to the zip code. Lists can be sorted in
any manner that meets the needs of the user.

Lists are sorted to increase the speed and efficiency of the search and
delete functions. From the human point of view, a list is sorted because we
expect to see lists in proper order.

The correct time to sort the list is after file maintenance is complete and
before the list is SAVEd to tape, disk, or paper. File maintenance includes
all changes to the list, all updates to the list, and all deletions from the list.

The sort is set up inside double nested loops so the items on the list can
be compared and ordered (Fig. 25-4). Each comparison is called a pass. The
items on the list are compared to each other during the passes and items on
the list are swapped to place them in the correct order.

There are several types of sorts used in programming. Ripple, modified
ripple, bubble, and Shell-Metzner are some of the better known sorts. Shell
Metzner is the most efficient sort of this group. A detailed discussion of
sorts is out of the scope of this book.

A search is the act of examining items in the list to discover whether the

key being searched for is on the list. All items related to that key are then
displayed. A search aids the user in discovering all items on a list related to
a key. A key can be a name or fragment of a name or a phone number. How

AC$
CA

CH
CH(O)=J-1

CH(1)
CHR$(7)
CL

CL(CH (O) + 1)
co
DA$

DC$

GOSUB 10000

GOSUB 10010

GOSUB 10080

J,K
M
MS
NA$
PN$
PT$

Q$
RECALL CA

SP$

SORTING, SEARCHING, AND DELETING 189

Area code string.
Array used to store to, and retrieve from, tape. AS language can
not store string arrays directly. The string arrays are converted to
the numbered equivalent to store the number. CA(K) =
ASC(MID$(DA$(J),K, 1)). Lines 4010 - 4050. STORE CA saves the
file. RECALL CA loads the file. The file is converted into a string -
DA$ = DA$ + CHR$(CA{K)) in lines 1110 - 1150.
CH(O) holds the number of records in the record count.
The name, area code, and the phone number are placed in
CH(O) + 1. Subroutines 10010 and 10080 input the name, area
code, and the phone number. In order to print the list CH(O) must
be decremented Uump out of the loop) to the correct end of the
list. J + 1 and J -1 must be offset so CH(O) is the one name on the
list to be printed out.
Temporary storage for the record count.
PRINT CHR$(7) rings the bell on the computer-CONTROL G.
Length of the name string before it is padded to exactly 30
characters.
Holds the length of the name being input before padding.
Count of the number of times a match is found on the list.
String in which the name, area code, and phone number are
held.
713. Default string holds the area code. A comma input places
713 in the area code. A different area code can be inserted by
typing in the numbers.
Prints out the name, area code, and telephone number before it
is changed.
Inputs name into the 1st part of DA$ and pads the 1st part of the
string to 30 characters.
Inputs area code and phone number into the last 14 characters of
DA$. PT$ = STR$(VAL(PN$))-checks that all phone numbers are
numeric characters and not alpha characters.
Loop variables used throughout the program.
Minimum.
Menu selection.
Name to be changed.
Phone number string.
Temporary phone number string to check numeric character in
put into the phone number string.
PT$ = STR$(VAL(PN$)).
String that holds "Y" for yes, "N" for no, or "R" for return.
Retrieves a real or integer array that has been STOREd on tape.
The array must be DIMensioned in the program. Subscripts are
not used when storing or recalling arrays. CA(O), CA(1), CA(2),
etc., are stored and recalled as CA. CA(45) contains 45 characters
including the padded spaces.
44 CHARACTERS NAME STRING PADDED> TO 30 CHARACTERS.
(713) - 688 - 1212 = 44 + CL = 45 1

1 3 1 1 3 1 4 1 + 30 = 45
Padding string that contains ten blank spaces.

Fig. 25-3. Variables in alphabetical order.

190 APPLESOFT LANGUAGE

Stores real or integers on tape. SEE RECALL CA. STORE CA
TC$ Temporary area code string to check numeric character input into

area code. TC$ = STR$(VAL(AC$)).
VT Sets up VTAB VT to VTAB to different rows according to program

structure.
2125 Delete line-see Fig. 25-5.

Fig. 25-3-cont. Variables in alphabetical order.

DA$(K)

NUMBER OF ITEMS IN THE LIST-5
ORIGINAL ORDER OF THE LIST

DA$(1) DA$(2) DA$(3) DA$(4) DA$(5)
E D C B A

CONTAINS NAME AND TELEPHONE NUMBER
FOR J = 1 TO CH(0)-1
(FOR J= 1 TO 4)

NUMBER OF PASSES IS ONE LESS THAN THE #OF ITEMS
IN THE LIST

FORK= J + 1 TO CH(O) IF K STARTED AT #1 THE SAME ITEM WOULD BE
(FORK= 2 TO 5) COMPARED TO ITSELF
(1st pass only)

(A) ln(ormalion for sorl.

PASS J Ms J+1 K DA$(1) DA$(2) DA$(3) DA$(4) DA$(S) LINE #

0 1 1

1 1 1 2

M=S, J=1

2 2 2 3

M=4, J=2

3 3 3 4

NO EXCHANGE M = J

4 4 4 5
NO EXCHANGE M = J

Ms-MAT SORT PASS
Ma-M AFTER CHANGE

E D c B

2 D

3 c
4 B

5

A D c B
3 c
4 B
5

A B c D

4 A B c D

5

5 A B c D

1st PASS EXCHANGE M = 5(A), J = 1(E)
2nd PASS EXCHANGE M = 4(B), J = 2(D)

A 1430-
1470

1440

1440

1440

A 1440

E 1460

1440

1440

E 1440

E 1460

E 1440

1440

E 1440

CONDITION

TRUE

TRUE

TRUE

TRUE

FALSE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

3rd PASS NO EXCHANGE 3rd ITEM IN THE LIST IS IN THE CORRECT ORDER
4th PASS NO EXCHANGE 4th ITEM IN THE LIST IS IN THE CORRECT ORDER

(B) Computer sort.

Fig. 25-4. Sorting a list.

Ma

2

3

4

5

3

4

4

3

4

SORTING, SEARCHING, AND DELETING 191

1470 T$ = DA$(M) : DA$(M) = DA$(J) : DA$(J) = T$CL(O) = CL(M) :
CL(M) = CL(J) : CL(J) = CL(O)

T$

DA$(J)

(C) Exchange routine.

ORIGINAL

1st PASS 1st EXC
2nd EXC
3rd EXC

2nd PASS 1st EXC
2nd EXC
3rd EXC

CL = length of DA$
before it is padded.
In this example, CL
is always 1 character.

T$ DA$(M) DA$(J)

E A

E E A
E A A
A A E

D D B
D B B
B B D

CL(J)

T$ = DA$(5)
DA$(5) = DA$(1)
DA$(1) = T$

T$ = DA$(4)
DA$(4) = DA$(2)
T$ = DA$(2)

3rd PASS NO EXCHANGE-3rd ITEM IS IN THE CORRECT POSITION

4th PASS NO EXCHANGE-4th ITEM IS IN THE CORRECT POSITION

(D) Table of passes and exchanges.

Fig. 25-4-cont. Sorting a list.

often do you remember the last name of a person but not his first name? If
the name is on the list a search will reveal it. A search allows the user to pull
one record off the list by using a keyword with which to search.

A search can be made anytime the user needs information from the
records on the list.

Deletion is the act of removing a record or records from the list (Fig.
25-5). Deleting is used to keep the file as small as possible to use the least
memory and to keep the file current. A list containing unneeded names is
nonproductive and costly to most users.

Deletions should be made anytime names on the list become of no use to
the user. If the list is for subscriptions, each name on the list costs money in
production costs, mailing costs, and labor. Nonsubscribers names on the
list should be deleted.

192 APPLESOFT LANGUAGE

FILE:
DA$(1) = "JONES (713)-688-1212"
DA$(2) = "SM ITH (713)-688-1213"
DA$(3) = "DELETE (000)-000-0000"
DA$(4) = "ACTION (713)-688-1214"

PASS K J DA$(J)

0
1 1 1 JONES
2 2 2 SMITH
3 2 3 DELETE
4 3 4 ACTION_.

FILE:
DA$(1) = "JONES (713)-688-1212"
DA$(2) = "SMITH (713)-688-1213"
DA$(3) = "ACTION (713)-688-1214"
DA$(4) = "ACTION (713)-688-1214"

CH(O) = 4

DA$(K) LINE 2250

JONES FALSE
SMITH FALSE

TRUE

2290 CH(O) = K (K = 3)-LAST RECORD DA$(4) IS REMOVED

Fig. 25-5. Delete routine.

K = J

FALSE
FALSE
JUMPS OVER

Line 1 DIMensions the variables. CA(45) is the array used to store to and
retrieve from tape. The record (name and telephone number) is input as a
string array. Each record is stored as 45 numbers because the store and
recall commands do not store string arrays. The conversion is shown in
lines 4010 through 4070 in Fig. 25-1.

4010 STORE CH

Line 4010 stores the number of records to be placed on the tape. In this
case, CH(O) = 5 (5 is an arbitrary number).

4020 FOR J = 1 TO CH(O)

Line 4020 sets the beginning of the loop that stores five records on tape
(CH(O) = 5).

4030 FORK = 1 TO 44

Line 4030 states there are 44 characters in each record plus CL = 1. CL
stores the length of DA$ before it is padded. Thirty characters are in the
name string, including padded characters (spaces) produced by SP$.

(713) - 688 - 1212

There are 1 + 3 + 1 + 1 + 3 + 1 + 4 + 30 = 44 characters in DA$. CL
= 1. CL is the length of DA$ before it is padded.

SORTING, SEARCHING, AND DELETING 193

30 characters in DA$
14 characters in area code (AC$) and phone number (PN$)

1 character for CL = length of DA$ before padding.

45 = CA(45)

4040 CA(K) = ASC(MID$(CA$(J),K, 1))

RELATES TO REZ.S Ti ~CONVERTS ONE CHARACTER
NUMBER NUMBER K IN RECORD J FOR EACH EXECUTION OF

THE LOOP

Line 4040 converts the string array, DA$, into ASCII characters and
places it in CA numeric array to be stored on tape.

4050 NEXT K

Line 4050 completes the conversion of one record.

4060 CA(45) = CL(J)

In line 4060, CL is the length of DA$ before it is padded and stored in
CA(45). CL(J) is one number. One added to the 44 characters produced in
line 4020 equals 45 numbers, thus, CA(45).

4070 STORE CA

Line 4070 stores the real array, CA, on tape. The subscript of the array is
not indicated when STORE is used. This stores all 45 values from each
record.

4080 NEXT J

Line 4080 ends the J loop. In this loop, when one record is converted to a
numeric array and stored, the next record is processed. This processing
continues until all five records have been stored.

But returning to line 1, we see that CL holds the length of DA$ (name)
before it is padded. DA$(1000) can contain 1000 records stored in DA$.

10 SP$ = " ":SP$= SP$ + SP$ + SP$

Line 10 contains the string that pads DA$ (name) to 30 characters. SP$
originally contained 10 blank spaces. SP$ concatenated contains 30 blank
spaces. SP$ is used in the subroutine 10010 through 10070, partially shown
below.

10060 DA$(CH(O) + 1) = DA$(CH(O) + 1) + LEFT$(SP$, 30-CL(CH(O) + 1))

~ /
30 SPACES LENGTH OF DA$ (name) RECORD

BEING BUILT

10070 RETURN

194 APPLESOFT LANGUAGE

Going back to line 15, we see

15 DC$ = "713"

which is the area code of Houston, Texas. The default area code is used to
save input time. The area code can be input directly, or the default area
code can be input by typing a comma followed by the phone number. The
default area code can be easily changed to any area code.

10100 IF LEN (AC$) = 0 THEN AC$ = DC$

In line 10100, we see that the comma input works successfully because
everything before the comma is put in AC$ and everything after the comma
goes into PN$.

Lines 20 through 90 present the PHONE LISTING menu that asks the user
to make a selection before proceeding. Based on that selection, the com
puter goes to different parts of the program. Line 80 tells the computer to
where it must branch: to line 1000 if item 1 (line 30) is selected, to line 2000
if item 2 (line 40) is selected, to line 3000 if item 3 (line 50) is selected, and
to line 4000 if item 4 (line 60) is selected.

Lines 1000 through 1060, selected by item 1 of the PHONE LISTING
menu, make up the FILE MAINTENANCE menu. If item 1 of the new menu
is selected (items from the FILE MAINTENANCE menu are selected when
the computer reaches line 1040), the program jumps to line 1100 to load
tape into memory. We assume for the purposes of this explanation that the
user has prepared a tape containing names and phone numbers.

Let's follow this path of the program to line 1100. After the tape is loaded,
line 1110, RECALL CH, obtains however many records from tape that CH
designates. We set that number to 5 earlier in line 4010.

1120 IF CH(O) = 0 THEN PRINT "THERE IS NO ARRAY ON TAPE": GOTO 1000

Line 1120 tells us if there are no records on the tape to be recalled.

1130 FOR J = 1 TO CH(O)

Line 1130 is the beginning of the loop to load the records into memory.

1140 RECALL CA

In Line 1140, RECALL CA retrieves a real array which has been stored on
tape. Subscripts are not used with STORE or RECALL.

1150 DA$ = " " : FOR K = 1 TO 44 : DA$(J) = DA$(J) + CHR$(CA(K)) :
NEXT K : CL(J) = CA(45) : NEXT J

DA$ = " "sets DA$ to a null value. There are no characters in DA$. It is
just initialized for later use. FOR K = 1 TO 44 sets the number of characters
to be retrieved and converted from a numeric array to a string array.

DA$ = DA$ + CHR$(CA(K)) converts the numeric arrays stored on tape to
string arrays used within the program.

SORTING, SEARCHING, AND DELETING 195

NEXT K completes the loop and CL(J) = CA(45) completes the transfer
from tape to RAM by adding the length of DA$ before it is padded with
spaces.

NEXT J is the end of the loop and processes until all five records have
been loaded into memory.

If we had picked item 2 of the FILE MAINTENANCE menu (line 1020), the
program would have branched to line 1200.

1200 HOME: VT = 6; GOSUB 10010

In line 1200, HOME clears the screen. VT = 6 sets the vertical tab value
that is used in the subroutine beginning at 10010.

10010 VTAB VT: CALL -958: VTAB VT: PRINT "ENTER NAME (LESS THAN 31
CHARACTERS)''

In line 10010, VTAB VT (tabs to line 6 on the screen). CALL -958 is a
machine language call that clears the screen below the cursor.

10020 INPUTDA$(CH(0)+1)

Line 10020 allows the name to be input into a specific record number.

10030 CL(CH(O) + 1) = LEN(DA$(CH(O) + 1)) : IF CL(CH(O) + 1) = 0 THEN RETURN

Line 10030 stores the length of DA$ for the current record being built.
This is held in CL array of the next position available (indicated by the + 1
added to CH(O)). The second part of line 10030, IF CL(CH(0)+1) = 0 THEN
1000, checks to see if no record is input. If there is no record input, the
program branches to line 1000. Line 10020 is related to line 10030.

10040 IF CL(CH(0)+1) > 30 THEN PRINT: PRINT "NAME IS TOO LONG"
CHR$(7) : FOR J = 1 TO 1000 : GOTO 10010

DA$ (name) can be a total of 30 characters. If the length of the name
string is over 30 characters it is disallowed because the file is not designed
to hold over 30 characters in the name part of DA$.

The pause loop FOR J = 1TO1000 delays for the count of 1000. CHR$(7)
rings a bell on the computer to attract the user's attention and GOTO 10010
causes the program to jump to 10010 to input a name of 30 characters or
less. If the DA$ is a correct entry, the program RETURNS to line 1260,
which merely changes the value of VT and begins another subroutine.

1260 VT = 12: GOSUB 10080
10080 VTAB VT: PRINT "ENTER AREA CODE, PHONE NO."
10090 INPUT AC$, PN$

Line 10090 allows the area code and the phone number to be input.

10100 IF LEN(AC$) = 0 THEN AC$ = DC$

The input format is AC$,PN$. If there is no input into AC$ (a comma is
the first character typed), line 10100 is true and the AC$ = DC$, which is
the area code 713.

196 APPLESOFT LANGUAGE

10110 IF LEN(AC$) <> 3 OR LEN(PN$) <> 7 THEN 10080

In line 10110, if the area code is not three characters or the phone num
ber is not seven characters, then the computer goes to line 10080 for the
correct input.

10120 TC$ = STR$ (VAL(AC$)):PT$ = STR$(VAL(PN$)); IF TC$<>AC$ OR PT$
<> PN$ THEN PRINT: PRINT "PLEASE USE NUMERICS"; CHR$(7): FOR J
= 1 TO 1000: NEXT J: GOTO 10080

Line 10120 converts the string arrays to numeric arrays as a further check
that the area code and the phone number are numerics. TC$ =
STR$(VAL(AC$)) converts the area code string to a numeric value and that
value is reconverted to a string. PT$ = STR$(VAL(PN$)) converts the phone
number string to a numeric value and that value is reconverted to a string. IF
TC$<> AC$ OR PT$<> PN$ THEN PRINT: PRINT "PLEASE USE NUMERICS"
is a check to determine that the area code string and the phone number
string have been input incorrectly. CHR$(7) rings the bell. The pause loop is
activated and the program branches to line 10080 for the correct input. If
the input is correct, the program returns to line 1310 to concatenate the
name, area code, and phone number into a single string array, DA$.

1310 DA$(CH(0)+1) = DA$(CH(0)+1)+"(" +TC$+") - "+ LEFT$(PT$,3)
+ " - " + RIGHT$(PT$,4).

This translates to:

JOHN SM ITHXXXXXXXXXXXXXXXXXXXX
(713) - 688 - 1212

1320 PRINT: GOSUB 10000

30 CHARACTERS
14 CHARACTERS.

Line 1320 causes the record entered to be printed on the screen by the
subroutine at line 10000. A sample output is shown below:

NAMEX=XXJOHN SMITH
PHONEX#=X(713) - 688 - 1212
1330 PRINT: INPUT "ENTER 'R' TO REENTER ELSE 'RETURN' ";Q$: IF Q$<>"R"

THEN CH(O) = CH(O) + 1.

In line 1330, IF Q$ <> "R", then the record count is incremented and a
new record may be entered. IF "R" has been input, the next record input is
placed over the last record entered. The program then goes to line 1200.

1210 IFCL(CH(0)+1) = OTHEN 1000

In line 1210, if no record is input and RETURN is pressed in the sub
routine at 10010, line 1210 is true and the program branches to line 1000,
the FILE MAINTENANCE menu.

If selection #3 is chosen in the menu, the program jumps to line 1400 to
sort the list in alphabetical order using the full name as the key.

1410 IF CH(O) < 2 THEN RETURN

SORTING, SEARCHING, AND DELETING 197

Line 1410 says, if there is only one record, there is no need to sort the list.
Lines 1420 through 1480 perform the sort routine. In this example, there

are five records in the list (Fig. 25-4A). The five records E, D, C, B, A repre
sent a list of names, area codes, and telephone numbers. Fig. 25-48 shows
the details of program lines 1420, 1430, 1440, 1450, 1460, and 1480. The
details of the exchange produced by line 1470 are shown in Fig. 25-40. The
number of records in the list is CH(O) = 5.

1420 FOR J = 1 TO CH(O) - 1

Line 1420 determines the maximum number of passes through five
records to order the list. This list took only two passes to order.

1430 M = J: FORK= J+1 TO CH(O)

In line 1430, the K variable begins at the second record in the list. If J and
K both started at the same record, the same record would be compared to
itself and this would be a useless comparison.

1440 IF LEFT$(DA$(K), 30) < LEFT$(DA$(M), 30} THEN M = K

Line 1440 compares the position of the records in the list. If record K is
less than record M, then the value of K is stored in M (Fig. 25-48). This
comparison continues K times.

1460 IF M = J THEN 1480

If 1460 is true, the records for a specific pass in the list are in the correct
order and no exchange is made. If 1460 is false, the program defaults to line
1470 to exchange the records on the list. In a sort, all items out of order
must be exchanged. The DA$'s are ordered by exchanging records that are
out of position.

1480 NEXT J

Line 1480 processes the next record on the list.

1490 RETURN

Line 1490 returns the program to the second statement in line 1400,
which is GOTO 20. GOTO 20 causes the program to jump to the PHONE
LISTING main menu.

40 VTAB 12: HTAB 8: PRINT "2.MODIFY/DELETE"

Selection #2 of the main menu (line 40) causes a jump to line 2000 to
modify or delete records in the list.

2000 HOME: VTAB 4: IF CH(O) = 0 THEN PRINT "THERE IS NO LIST";
CHR$(7) : FOR J = 1 TO 2000 : NEXT J : GOTO 20

If CH(O) = 0, there are zero records in the list and there is no list.

2010 PRINT "ENTER NAME TO BE CHANGED" : PRINT : INPUT NA$
2020 IF LEN(NA$) = 0 THEN 20

198 APPLESOFT LANGUAGE

If the length of the name string is zero, the program branches to the main
menu.

2030 FOR K = 1 TO CH(O)

Line 2030 sets the beginning of the loop to process each record on the
list.

2040 IF NA$<>LEFT$(DA$(K), CL(K)) THEN 2060

If the name string that was input does not match any name on the list then
the computer goes to line 2060.

2060 NEXT K: VTAB 10: HTAB 6 : PRINT "THIS NAME IS NOT ON THE LIST" :
PRINT CHR$(7) : FOR J = 1 TO 1000 : NEXT J : GOTO 2000

If line 2040 is false, the program defaults to line 2100.

2100 CH(1) = CH(O) : CH(O) = K -1: VTAB 6 : PRINT "CURRENT RECORD IS "
: PRINT

CH(1) = CH(O) stores the value of the 5 records in the list in CH(1) for tem
porary storage. CH(O) = K -1 stores the value of the record to be changed.
Each time the loop executes, it is incremented by one greater than the loop
value. K - 1 decrements the loop value to correspond to the number of
records on the list.

GOSU B 10000 prints the current record on the screen.

2110 VTAB 8 : GOSUB 10000: PRINT: "ENTER 'C' TO CHANGE, 'D' TO
DELETE" : PRINT : INPUT "ELSE 'RETURN' ?";Q$

Line 2110 sets up the record to be modified, prints the heading to change
or delete the record, and requests the user input.

2120 IF Q$<>"C" AND Q$<>"D" THEN 2240

If "C" is not pressed, and "D" is not pressed, and RETURN is pressed, the
program branches to line 2240 to reestablish the list in the correct order.
Line 2300 causes the list to be sorted in alphabetical order and then makes
the program jump to line 20 of the PHONE LISTING menu.

2125 IF Q$ = "D" THEN DA$(K) = "DELETE" + LEFT$(SP$,24) + "(000) - 000
- 0000" : GOTO 2230

If "D" is entered the program jumps to line 2230 to reset the value of the
list into CH(O), and print "ANY MORE CORRECTIONS (Y OR N)?".

2230 CH(O) = CH(1) : PRINT: INPUT "ANY MORE CORRECTIONS (YORN)
?" ;Q$: IF Q$ = "Y" THEN 2000

If there are no more corrections, the program defaults to line 2240 to the
delete routine (Fig. 25-5).

2240 K = 0 : FOR J = 1 TO CH(O)
2250 IF LEFT$(DA$(J),6) = "DELETE" THEN 2280
2260 K = K + 1 : IF K = J THEN 2280

SORTING, SEARCHING, AND DELETING 199

If 2250 if false, line 2260, K = K + 1, increments the value of K to accom
modate the record. IF K = J THEN 2280 is false, the record is stored in
DA$(K}, (DA$(K} = DA$(J} and the length of the record CL(K} is also stored
(CL(K} = CL(J}. This transfer places the record in K.

Records are taken from DA$(J) and placed in DA$(K} unless they are equal
to "DELETE". If K = J, no action is taken because the record DA$(J} =
DA$(K} and the records are not moved. Each time a DELETE record is
encountered, J is incremented but K remains the same. As an example (Fig.
25-5), if the third record is DELETE, then when the fourth record is pro
cessed, K is still equal to 3, but J = 4. DA$(4} is then moved into DA$(3}. If
2250 is true, K remains the same value for the next loop execution. The next
record is placed over the deleted record.

2230 GOSUB 1410: GOTO 20

Line 2230 causes the program to sort the list and jump to the PHONE
LISTING menu.

Going back to line 2120, if the statement IF Q$ <> "C" is true, the pro
gram defaults to line 2130.

2130 VTAB 12: CALL -958: VTAB 12: PRINT "ENTER 'N'-NAME, 'P'-PHONE#,
'B'-BOTH" : PRINT

CALL - 958 is a machine call that clears the screen below the cursor at
VTA8 12. The name and phone number headings are printed, and remain on
the screen as a prompt during the changes. The program defaults to line
2140 to store the area code and phone number in T$, and requests a letter
input from the user.

2140 T$ = RIGHT$(DA$(K), 14) : INPUT "LETTER PLEASE ?;C$: IF C$ <> "N"
AND C$<>"P" AND C$<>"B" THEN 2130

If the letter input is "8", the program defaults to line 2150, which is, IF C$
= "P" THEN 2170. Since the letter "8" is input, this makes line 2150 false,
and the program defaults to line 2160.

2160 VT = 14: GOSUB 10010

Line 2160 sets the VTAB variable to line 14 and the subroutine at 10010
asks for the name change to be input. The subroutine returns to line 2170.

2170 IF C$ = "N" THEN 2190

The letter "8" was input and this makes line 2170 false, and the program
defaults to line 2180.

2180 VT = 16: GOSUB 10080

The subroutine at 10080 asks the user to input the new telephone num
ber.

The "8" for both name and phone number is not written into the program
routine. "8" is a default when "N" or "P" is not input. Remember the

200 APPLESOFT LANGUAGE

cliche about cutting a log in two places to get three sticks of wood? This
example demonstrates the use of the default value in programming. "B"
was the selection, but "B" was not written into the program. Another point
to be reenforced is, when an IF statement is true, all following statements on
that line are executed. When an IF statement is false, no following state
ments on that line are executed.

In line 2140, the user inputs the letter "N" for a name change. The pro
gram defaults to line 2150.

2150 IF C$ = "P" THEN 2170

The letter "N" w'as input, so line 2150 is false and the program defaults to
line 2160.

2160 VT = 14: GOSUB 10010

The subroutine at 10010 asks for the name change to be input. The sub
routine at 10010 returns to line 2170.

2170 IF C$ = "N" THEN DA$(K) = DA$(K) + T$: GOTO 2230

The name change is concatenated to the area code and the phone number
stored in T$. Line 2230 sets CH(O) = CH(1) and asks for more corrections. If
there are no more corrections, the number of records in the list is stored in
CH(O), the list is sorted, and the program jumps to the PHONE LISTING
menu.

If the user inputs the letter "P" in line 2140, the program defaults to line
2150.

2150 IF C$ = "P" THEN 2170

The letter "P" is input. Line 2150 is true, so the program branches to line
2170.

2170 IF C$ = "N" THEN 2190

The letter "P" was input. Line 2170 is false. The program defaults to line
2180.

2180 VT = 16: GOSUB 10080

GOSU B 10080 allows input of the phone number to be changed and re
turns to line 2190.

2190 IF C$ = "N" THEN DA${K) = DA$(K) + T$: GOTO 2230

The letter "P" was input, so line 2190 is false and the statement GOTO
2230 is not executed. The program defaults to line 2200.

2200 IF C$ = "P" THEN DA$(K) = LEFT$(DA$(K),30)

Line 2200 is true and sets up DA$(K) so it contains the name in the
specific record. The program defaults to line 2220 to concatenate the name
and new phone number into DA$(K).

I I

SORTING, SEARCHING, AND DELETING 201

2220 DA$(K) = DA$(K) + "(" + TC$ + ")-"
+ LEFT$(PT$,3) + RIGHT$(PT$,4)

The program defaults to line 2230 to ask for more corrections. If there are
no more corrections, the program defaults to line 2300.

2300 GOSUB 1410 : GOTO 20

GOSUB 1410 sorts the list, and GOTO 20 causes the program to jump to
the PHONE LISTING menu.

Entry 3 in the PHONE LISTING menu is "3.LIST/SEARCH". This selec
tion causes the program to jump to line 3000.

3000 HOME : VTAG 3 : INPUT "ENTER 'S' TO SEARCH OR 'L' TO LIST ?";Q$:
IF Q$<>"L" AND Q$<>"S" THEN 3000.

3010 IF Q$ = "S" THEN 3100

The user typed in the letter "L" to list the records. Line 3010 is false, so
the program defaults to line 3030, the next line.

3030 FOR J = 1 TO CH(O)

Line 3030 is the beginning of a loop to process the records in the list.

3040 IF J<>INT((J-1)/5)*5+1 THEN 3070
3050 IF J<>1 THEN PRINT : INPUT "!";Q$

Lines 3040 and 3050 use negative logic and are both related (Fig. 25-6).
On the first pass of the loop, line 3040 is false and the program defaults to
line 3050. On the first loop pass J = 1, so line 3050 is false and defaults to
line 3060, to clear the screen and VTAB 3.

J

1

2
3
4
5

6

7
8
9

3040 IF J<>INT((J-1)/5)*5 + 1 THEN 3070
3050 IF J<>1 THEN PRINT : INPUT "!";Q$

J-1 INT((J -1)/5) INT((J -1)/5)*5 + 1 3040

0 0 1 FALSE

1 0 1 TRUE
2 0 1 TRUE
3 0 1 TRUE
4 0 1 TRUE

5 1 6 FALSE

6 1 6 TRUE
7 1 6 TRUE
8 1 6 TRUE

ACTION OF
GOES TO 3050 3050

3050 FALSE GOES TO 3060
PRINTS RECORD #1

3070 PRINTS RECORD #2
3070 PRINTS RECORD #3
3070 PRINTS RECORD #4
3070 PRINTS RECORD #5

3050 TRUE INPUTS "!";Q$
PRESS RETURN TO
CONTINUE
PRINTS RECORD #6

3070 PRINTS RECORD #7
3070 PRINTS RECORD #8
3070 PRINTS RECORD #9

Fig. 25-6. Relationship of lines 3040 and 3050.

202 APPLESOFT LANGUAGE

3060 HOME : VTAB 3

3070 PRINT "NAME" = ";LEFT$(DA$(J),30) : PRINT SPC(7);"Phone # = ";
RIGHT$(DA$(J), 14) : PRINT

Line 3070 is executed and prints the first record. On loop executions 2, 3,
4, and 5, line 3040 is true, so the program branches to line 3070 to print
records 2, 3, 4, and 5.

On the sixth loop execution line 3040 is false (6 = 6). The program de
faults to line 3050 IF J <> 1 THEN PRINT: INPUT "!";Q$. On the sixth execu·
tion (6 <> 1), and line 3050 is true. The loop execution stops,"!" is printed,
and the computer waits for the user to press RETURN to continue printing
the list.

3080 NEXT J

Line 3080 completes the loop execution.

3090 PRINT: INPUT ''!'' ;Q$: GOTO 20

Line 3090 stops the program. When the user presses RETURN, the pro
gram jumps to line 20, the PHONE LISTING menu.

Selection 3 on the PHONE LISTING menu "3.LIST/SEARCH" causes the
program to jump to line 3000. If "S" for search is typed at line 3000, the
program branches to line 3100 to begin the search.

3100 HOME : VTAB 3 : PRINT "SEARCH SELECTION" : PRINT

Line 3110 prints out the three selections.

1.NAME SEARCH
2.NUMBER SEARCH
3.RETURN TO MAIN MENU

Selection 1 causes the program to jump to line 3150 to begin the NAME
search.

3150 HOME: VTAB 4: PRINT "ENTER NAME OR FRAGMENT?": PRINT:
INPUT NA$: L = LEN(NA$) : IF L = 0 THEN 3100

The name search is processed in lines 3160 through 3220. For this
example, variables are given specific values to make the learning easier.

NA$
L
DA$(J)
CL(J)
co

"ABC"-SEARCH FOR ABC
LEN(NA$) = 3
"EDABC"-THIS NAME IS SEARCHED
LENGTH OF DA$(J) IS 5 CHARACTERS
COUNTING VARIABLE TO COUNT THE NUMBER OF
MATCHES FOUND IN THE LIST

CH(O) CH(O) = 7-THERE ARE 7 RECORDS IN THE LIST
FOR J = 1 TO CH(O) - FOR J = 1 TO 7
for K = 1 TO CL(J) - L + 1 - FOR K = 1 TO 3

SORTING, SEARCHING, AND DELETING 203

Lines 3160 through 3220, using variables with specific values, are de
tailed in Fig. 25-7. Fig. 25-7 should be studied in detail to learn the name
search routine. The record count is stored in a temporary location, CH(1). In
line 3220, CH(O) = CH(1), the record count is stored in CH(O). This step is
necessary to preserve the record count. This storage process occurs before
the GOSUB 10000, and after the GOSUB 10000. Fig. 25-7 should be more
explanatory than comment.

SPECIFIC VARIABLES USED FOR THE NAME SEARCH

NA$ LEN(NA$) DA$(J) LEN(DA$(J)) # OF RECORDS CL(J) - l + 1
ABC 3 ED ABC 5 7 3

FOR J = 1 TO 7 FORK = 1 TO 3

PROGRAM LINES 3160 - 3220 FOR NAME SEARCH
3160 CO = 0: COUNTS THE NUMBER OF MATCHES IN THE LIST.

FOR J = 1 TO CH(O) - FOR J = 1 TO 7
3170 FORK = 1 TO CL(J) - L + 1 - FORK = 1 TO 3

IF NA$<> MID$(DA$(J), K, L) THEN 3210
ABC ED ABC

1st PASS ABC (TRUE) <>EDA 1, 3 K=1, L=3 3210
2nd PASS ABC (TRUE) <>DAB 2, 3 K=2, L=3 3210
3rd PASS ABC (FALSE) <>ABC 3, 3 K=3, L=3 3190

3190 CH(1) = CH(O) 7 = 7 - THE RECORD COUNT MUST BE STORED BEFORE
THE GOSUB 10000 OR RECORD COUNT WILL BE WIPED OUT
CH(O) = J - 1 - SEE Fig. 25-2 OR Fig. 25-3
GOSUB 10000 - PRINTS OUT THE RECORD
INPUT Q$ - STOPS THE PROGRAM - PRESS RETURN TO CONTINUE

3200 CH(O) = CH(1) 7 = 7 - CH(1) RESTORES THE RECORD COUNT TO CH(O)
CO = CO + 1 - INCREMENTS THE COUNT TO DETERMINE IF A MATCH
OCCURS MORE THAN ONCE IN THE LIST
GOTO 3220 - PREVENTS THE SAME ITEM ON THE LIST FROM BEING
MATCHED TWICE

3210 NEXT K
3220 NEXT J - SEARCHES THE NEXT RECORD

Fig. 25-7. Name search.

If at line 3100, the user had input 2, "2.NUMBER SEARCH", the program
would jump to line 3250 to search for a specific phone number.

3250 HOME : VTAB 6 : HTAB 6 : INPUT "ENTER AREA CODE.PHONE#
?";AC$,PN$

3260 IF LEN(AC$) = 0 THEN AC$ = DC$

Line 3260 allows the user to enter a comma for the area code, if the user
wants the default area code of 713. The area code and the phone number
are always the last 14 characters of DA$. The phone number for a specific
record is RIGHT$(DA$(J), 14).

3270 TC$ = "(" + AC$ + ")-" + LEFT$(PN$,3)
+ " - " + RIGHT$(PN$,4)

204 APPLESOFT LANGUAGE

Line 3270 concatenates the area code and phone number in the proper
format and stores it in the temporary string variable, TC$.

3280 FOR J = 1 TO CH(O)

Line 3280 sets up the loop that will list the area codes and phone numbers
on the list.

3290 IF TC$<>RIGHT$(DA$(J), 14) THEN 3310

All phone numbers are composed of 14 numeric characters located in the
last 14 places in DA$. The TC$ was formatted in the same places in DA$ as
RIGHT$(DA$(J), 14), so the comparison is relatively simple. It is much
simpler than the name search, though not nearly as flexible.

3300 CH(1) = CH(O) : CH(O) = J -1: GOSUB 10000 : PRINT: CH(O) = CH(1) :
INPUT Q$: PRINT

The record count is again stored in a temporary location, CH(1), so it will
not be lost during the execution of the subroutine at line 10000. The sub
routine prints out both the name, area code, and telephone number pro
duced from the number search. On returning from the subroutine, the
record count is again stored in CH(O) (CH(O) = CH(1)).

3310 NEXT J

Each record on the list is searched for the phone number in question and
line 3320, GOTO 3100, causes the program to jump to the SEARCH SELEC
TION menu. Selection 3, "3.RETURN TO MAIN MENU", causes a jump to
line 20, the PHONE LISTING menu. Selection 4, "4.SAVE UST AND END",
from the PHONE LISTING menu causes the program to end.

LESSON 26

Formulas

Lesson 26 contains three programs dealing with formulas for (1) decimal
to hexadecimal conversion (Fig. 26-1), (2) hexadecimal to decimal conver
sion (Fig. 26-6), and (3) systematic and efficient output (Fig. 26-9).

"Formula" has many different meanings but a good definition is "the rule
for doing something." A formula is a recipe or a prescription. Formulas
have been tried and have been demonstrated in almost every lesson of this
book.

The computer, which understands only binary (1 and 0), must use a
formula to convert binary input and output, which are in decimal form. This
formula is invisible to you because you won't see it on your program listing.
The visible ones are the formulas you write. The invisible ones are the
formulas that your computer needs to interpret your program. The invisible
formulas reside in the Applesoft interpreter.

The most efficient way to use a formula in programming is to input the
data in a variable. The variable or variables in the formula compute the data
and output the information in a variable. In this way, the input data and the
output information can be easily changed and the program remains rela
tively constant.

In the first program (Fig. 26-1) decimal is converted to hexadecimal. In
the second program, hexadecimal is converted to decimal. The conversion
formulas encompass two important aspects of the Apple computer: (1)
humans speak decimal and computers speak hexadecimal, before it is con
verted to binary, and (2) decimal contains numeric characters and hexadeci
mal contains alpha and numeric characters. In the conversion process, deci
mal is input as numerics and converted to string arrays. In converting hexa
decimal to decimal, the hexadecimal is input as a string array and converted
to numerics.

205

206 APPLESOFT LANGUAGE

5 REM : DECIMAL TO HEXADECIMAL
10 HOME : VTAB 6
20 INPUT "ENTER DECIMAL INTEGER ?";DEC
30 IF DEC< 1 THEN END
40 DEC = INT (DEC)
50 HEX = O:HX$ = " "
60 FOR J = 0 TO 15: IF DEC< 16 t J THEN 80
70 NEXT J: PRINT "THE NUMBER IS TOO LARGE" : PRINT : GOTO 20
80 FOR K = J - 1 TO 0 STEP - 1
90 HEX = INT (DEC I 16 t K)
100 HX$ = HX$ + CHR$ (HEX + 48 + (HEX>9) * 7)
110 DEC = DEC - HEX * 16 t K
120 NEXT K
130 PRINT: HTAB 9: PRINT "HEX DISPLAY IS ";HX$
140 PRINT: GOTO 20

]RUN
ENTER DECIMAL INTEGER ?863
HEX DISPLAY IS 35F

Fig. 26-1. Decimal to hexadecimal conversion program.

The decimal system uses a base of 10. The hexadecimal system uses a
base of 16. The decimal figure 312 means

3 * 102 300
+ 1 * 101 10
+ 2 * 10° 2

312

The hexadecimal system uses the decimal numbers from 0 to 9 as its first
ten digits, and uses A = 10, B = 11, C = 12, D = 13, E = 14, and F = 15
as its last 5 digits (Fig. 26-2). The hexadecimal number 35F means

3 * 162 768
+ 5 * 16 1 80
+ F * 16° 15

863

Fig. 26-3 shows the manual system for converting decimal to hexadeci
mal. Fig. 26-4 details the decimal to hex conversion program statements in
relation to the manual conversion to hex. Figs. 26-2 and 26-3 should be
studied closely before going to the conversion program.

Fig. 26-2 presents the relationship between the first 15 decimal numbers
and the first 15 hexadecimal numbers.

i I

l -

i i

I -

HEXADECIMAL
0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

DECIMAL
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

FORMULAS 207

Fig. 26·2. Comparing the first sixteen hexadecimal and decimal digits.

ASC
48
49
50
51
52
53
54
55
56
57

58
59
60
61

CHR$
0
1
2
3
4
5
6
7
8
9

<

62 >
63 ?
64 @

65 A
66 B
67 c
68 D
69 E
70 F

90 z

CONVERSION OF A NUMERIC ARRAY TO
A STRING ARRAY
ASC(65) =A

CONVERSION OF A NUMERIC ARRAY TO
A STRING ARRAY
CHR$(A) = 65

Fig. 26-3. ASCII characters.

208 APPLESOFT LANGUAGE

NUMBER
IN DECIMAL

863
DIVIDE BY

863/16
53/16

3/16

QUOTIENT
53

3
0

REMAINDER
IN DECIMAL

15
5
3

fig. 26-4. Marn.1al system for decimal to hexadecimal conversion.

REMA~NDER
IN HEXADECIMAL

~-, I I
3 5 F

Fig. 26-3 shows the ASCII numerics and the character strings they repre
sent. Conversion of string arrays to numeric arrays and conversion of
numeric arrays to string arrays were discussed in Lesson 6. The sequence of
ASCII characters for ten numerics and 26 alpha characters goes from 48
through 90. The character strings represented by the ASCII characters run
from zero to zerba (Z). Between the numeric and the alpha characters is an
intervening group of characters (58-64) that interrupt the chain of con
tinuity. This interruption is very important to understand. It is programmed
in line 100 of Fig. 26-1. The hexadecimal number is converted into a string
array to accommodate both the alpha and numeric characters.

100 HX$ = HX$ + CHR$(HEX + 48 + (HEX> 9)*7)

The ASCII number 48 represents the string character zero (0).
If the ASCII characters were set so 48 through 59 represented zero to 9,

and ASCII 60 through 86 represented A through Z, there would be no need
for the logical expression, (HEX > 9)*7), in line 100. Since ASCII 59 through
64 interrupt the continuity of the numeric and alpha characters, " + 48" cor
rects for the offset of the ASCII values.

Line 100 converts in this manner: (HEX > 9)*7) is a logical expression
used as a bridge between ASCII 48 to 59 (0-9), and ASCII 65 to 90 (A to Z).
When HEX is less than 9, the expression is false or zero. Zero times 7 = 0. If
HEX is greater than 9, the expression is true or 1. One times 7 = 7. The fol
lowing example shows how line 100 works:

HEX= 6
HX$ = HX$ + CHR$(6 + 48 + 0) = CHR$(54)
CHR$(54) = "5"

HEX = 14
HX$ = HX$ + CHR$(14 + 48 + (1 *7)) = CHR$(69)
CHR$(69) = "E"

In line 50 we see HX$ ="".This means HX$ is initialized as a null string.
Fig. 26-5 shows three loop executions by each program statement in

volved in converting decimal 863 to hexadecimal 35F. This was done to
show how the individual loop executions compared with the manual conver
sion.

20 INPUT "ENTER DECIMAL
INTEGER ?";DEC

30 IF DEC< 1 THEN END

40 DEC = INT(DEC)

50 HEX = 0 : HX$ =

60 FOR J = 0 TO 15 : IF DEC <
16 >J THEN 80

70 NEXT J : PRINT "THE NUMBER
IS TOO LARGE"

FORMULAS 209

863

If a real number is input, this statement
converts it to an integer.

Initializes variables. HX$ is a null string
with no characters.

Numbers larger than 1.15*1018 will not
be accepted.

Sets up the position of DEC - 863 = 163

80 FOR K = J - 1 TO 0 STEP - 1 The largest power is divided 1st. When
the J loop checks the size of DEC, J is 1
more than the greatest power when J
jumps out of the loop. J -1 is the offset
for the correct power. K sets up posi
tional values.

90

100

HEX = INT(DEC/16 > K) Divides DEC by the positional value to
give the HEX value.
1. INT(DEC/162)=863/16 2 =HEX 3 R95

, 2. INT(DEC/161} = 95/161 =HEX 5 R15
I 3. INT(DEC/16°)=15/16°=HEX F (15)

HX$ = I 1. 15 + 48 + (1*7)=70 ASC(70) = F
HX$+CHR$(HEX+48+(HEX > 9) I 2. 5+48+(0*7)=53 ASC(53) = 5
*7) I 3. 3+48+(0*7)=51 ASC(51) = 3

110 DEC = DEC - HEX*16 > K 1 1. DEC = 863 - HEX(3)*162 = 768
2. DEC = 95 - HEX(5)*161 = 80
3. DEC= 15 - HEX(15)*16° = 15

120 NEXT K

130 PRINT "HEX DISPLAY IS ";HX$ 35F

Fig. 26-5. Decimal to hex conversion program statements as related to mamual
conversion to hex.

The formulas in program 2 (Fig. 26-6) convert hexadecimal to decimal.
Since hexadecimal may contain both alpha and numeric characters (Fig.
26-2), it is input in a string array. The string array is converted into a
numeric variable to print out the decimal number. The hexadecimal
number, 35F, is input and converted to decimal 863. The program state
ments and manual conversion comparisons are detailed in Fig. 26-8. The
three loop executions are included with each involved program statement
to view the change in computation.

The hexadecimal value is input as a string array in line 10.

10 INPUT "ENTER HEX VALUE ?";Q$

210 APPLESOFT LANGUAGE

1 REM : HEXADECIMAL TO DECIMAL
5 HOME: VTAB 6
10 INPUT "ENTER HEX VALUE T";Q$
20 IF LEN (Q$) = 0 THEN END
30 DEC = 0: FOR J = 1 TO LEN (Q$)
40 HX = ASC (MID$ (Q$,J, 1)): IF (HX > 47 AND HX < 58) OR (HX > 64

AND HX < 71) THEN DEC = DEC* 16 + HX - 48 - (HX > 58) * 7
50 NEXT J
60 PRINT: PRINT "DEC = ";DEC: PRINT
70 GOTO 10

]RUN
ENTER HEX VALUE ?35F
DEC = 863

Fig. 26-6. Hexadecimal to decimal conversion program.

HEXADECIMAL
NUMBER

35F
POSITIONAL VALUE

F * 16°
5 * 161

3 * 162

MULTIPLY BY
F* 1= 15
5 * 16 = 80
3 * 256 = 768

863

Fig. 26-7. Manual system for hexadecimal to decimal conversion.

Line 40 converts the hex input string array (Q$) into a numeric variable by
the ASC function. In conjunction with the loop beginning at line 30, line 40
processes the characters one at a time.

J 1 : HEX = 3 CHR$(51)
J = 2 : HEX = 5 CHR$(53)
J == 3 : HEX == F CHR$(70)

If the hexadecimal character is a numeric it must be between 48 and 58. If
the hexadecimal character is an alpha character it must be between 65 and
70.

The statement THEN DEC == DEC * 16 + HX - 48 - (HX 58) * 7) is
similar to the summing statement DEC == DEC + HX. This statement con·
verts from hexadecimal display input to an actual numeric number (Fig.
26-8) in that it takes the sum of the computed DEC and adds it to DEC on
each loop execution. An input display string can be converted to an actual
numeric number and display the numeric number because of machine de·
sign or configuration.

Line 50 is the end of the loop, and line 60 displays the numeric number
that has been converted from hexadecimal input.

60 PRINT "DEC = ";DEC

Line 70 gives the user a chance to input another hexadecimal number.

5 HOME : VTAB 5

10 INPUT "ENTER HEX VALUE?";
Q$

20 IF LEN(Q$) = 0 THEN END

30 DEC = 0 : FOR J = 1 TO
LEN(Q$)

40 HX = ASC(MID$(Q$,J, 1)) :
IF (HX > 47 AND HX < 58} OR
(HX > 64 AND HX < 71) THEN
DEC= DEC*16+HX-48-(HX >
58}*7

1. DEC=0*16+51-48-(51 > 58)
=3
DEC=3 (0*7)

2. DEC=3*16+48-53-(53 > 58)
=53
DEC= 53 (0 * 7)

3. DEC= 53*16=848+ 70-48-
(70 > 58)

DEC = 863 (1 * 7)

50 NEXT J

60 PRINT: PRINT "DEC = ";DEC

70 GOTO 10

FORMULAS 211

35F - HEX is input in a string array. It
may contain alpha and numeric
characters.

Initialized DEC to zero. Sets up loop to
check each character.

Converts the string array to a numeric
array one character at a time. Picks off
the 1st, 2nd, and 3rd character. ASC
numerics 48 - 58 represent the numbers
zero to 9. ASC numbers 64 - 71 repre
sent the letters A - F, Fig. 26-3.
Positional value
35F

16° * 15 = 15
161 * 5 = 80
162 * 3 = 768

863

DEC = 863

fig. 26-8. Comparing program statements and manual conversion.

The formulas in program number three (Fig. 26-9) produce systematic
and efficient output and are applied to a statistical problem.

The statistical problem inputs student grades. The grades are output in
seventeen different ranges. The grades are used to produce an ogive of
cumulative distribution.

The definition of cumulative distribution is "heaped up," or "growing in
amount."

Ogive is a distribution curve or graph in which the frequencies are cumu
lative.

The educator takes the 80 student grades, places them in 17 ranges of
varying widths, adds the number of grades in each range, and plots them on
a graph (Fig. 26-10).

212 APPLESOFT LANGUAGE

5 REM : OGIVE PROGRAM
10 HOME
20 DIM CG(17)
30 GOSUB 800
40 T = 0: FOR J = 1 TO 17
50 IF J < > INT ((J - 1) I 5) * 5 + 1 THEN 80
60 IF J < > 1 THEN PRINT "OGIVE COUNT=";T;" OF 80 =";T / 80;"%":

INPUT 'T';Q$
70 PRINT "RANGE# BASE TOP COUNT"
80 R = J: GOSUB 900:Ul = Rl:R = J - 1: GOSUB 900:ll

= Rl + 1: IF LL = 1 THEN LL = 0
90 PRINT SPC(3);J;: HTAB 13: PRINT LL;: HTAB 20: PRINT UL;: HTAB 30:

PRINT CG(J)
100 T = T + CG(J): NEXT J
110 PRINT "OGIVE COUNT=";T;" OF 80 =";T / 80;"%"
120 END
800 FOR J = 1 TO 80:SG = INT (RND(1.0) * 101): IF SG = 0 THEN

SG = 1
810 IF SG > 32 THEN 830
820 CG((SG - 1) / 16 + 1) = CG((SG - 1) / 16 + 1) + 1: GOTO 880
830 IF SG > 64 THEN 850
840 CG{3 + (SG - 33) I 8) = CG(3 + (SG - 33) I 8) + 1:: GOTO 880
850 IF SG > 92 THEN 870
860 CG(7 + (SG - 65) I 4) = CG(7 + (SG - 65) I 4) + 1:: GOTO 880
870 CG(14 + (SG - 93) I 2) = CG(14 + (SG - 93) I 2) + 1
880 NEXT J: RETURN
900 RL = R * 16 - (R > 2) * (R - 2) * 8 - (R > 6)

* (R - 6) * 4 - (R > 13) * (R - 13)
*2

910 RETURN

]RUN
RANGE # BASE TOP COUNT

1 0 16 11
2 17 32 11
3 33 40 4
4 41 48 9
5 49 56 5

OGIVE COUNT=40 OF 80 = .5%

RANGE # BASE TOP COUNT
6 57 64 6
7 65 68 3
8 69 72 3
9 73 76 5
10 77 80 3

OGIVE COUNT=60 OF 80 = .75%

Fig. 26-9. OGIVE progrnm.

RANGE # BASE TOP COUNT
11 81 84 4
12 85 88 2
13 89 92 7
14 93 94 2
15 95 96 1

OGIVE COUNT= 76 OF 80 =. 95%

RANGE # BASE TOP
16 97 98
17 99 100

COUNT
2
2

OGIVE COUNT= 80 OF 80 = 1 %

Fig. 26-9-cont. OGIVE program.

CUMULATIVE
FREQUENCY

16 32 40 48 56 64 72 80 88 96100

SCORE

Fig. 26-10. OGJ:VE of the distribution of 80 scores.

FORMULAS 213

The program in Fig. 26-9 uses an RND function to produce the 80 grades.
The grades are placed in ranges by a formula and the ranges are computed
by a formula. A formula is used to break the printout into a heading and five
ranges, then the printout continues. The ogive is produced by hand to
demonstrate the use of the output. In Lesson 28, LOW RESOLUTION
GRAPHICS, the ogive is produced by a graphics program. One point to note

214 APPLESOFT LANGUAGE

- since the grades ar.e produced by the RND function, NO TWO PROGRAM
RUNS OR GRAPHS WILL BE THE SAME. The ogive does not pattern itself in
the manner of the standard distribution curve.

Line 10 provides dimensions for 17 grade ranges.
Line 30 branches to the subroutine at 800, which produces the 80 student

grades. Lines 810 through 880 place them in the proper range.
In line 800, FOR J = 1 TO 80 is the beginning of a loop to produce the 80

student grades. SG = INT (RND(1.0) * 101) produces student grades from 0
to 100. The purpose of IF SG = 0 THEN SG = 1 is as follows: If the RND func
tion produces a student grade of zero, the grade has to be modified to fit the
program pattern. The grade ranges have no place for a grade of zero, so a
zero grade is replaced with a grade of one.

Lines 810, 830, and 850 set up to divide the ranges into four divisions, (1)
two ranges containing 16 score points each, (2) four ranges containing 8
score points each, (3) six ranges containing 4 score points each, and (4) four
ranges containing 2 score points each (Figs. 26-11 and 26-12).

810 IF SG > 32 THEN 830
830 IF SG > 64 THEN 850
850 IF SG > 92 THEN 870

(handles grades form 1 to 32)
(handles grades from 33 to 64)
(handles grades from 65 to 92 if the

statement is false, and grades from
93 to 100 if the statement is true)

If line 810, IF SG > 32 THEN 830, is false the program defaults to line 820
to tabulate the grades in the first two grade ranges from zero to 32.

820 CG((SG-1)/16 + 1) = CG((SG-1)/16 + 1) + 1: GOTO 880

The summing statement in line 820, CG ((SG - 1) /16 + 1) = CG
((SG - 1) I 16 + 1) + 1, sums the number of student grades in each of the
first two grade ranges (Fig. 26-12).

There are statements similar to the statement in line 820 at lines 840,
860, and 870. These statements compute and total the number of student
grades in each grade range (Fig. 26-12).

830 IF SG > 64 THEN 850

If line 830 is false, line 840 increments the number of grades in the proper
grade range from 33 to 64 (Fig. 26-12).

850 IF SG > 92 THEN 870

If line 850 is false, line 860 increments the number of grades in the proper
grade range from 65 to 92. If line 850 is true, line 870 increments the
number of grades in the proper grade range from 93 to 100 (Fig. 26-12).

880 NEXT J : RETURN

FORMULAS 215

J LL(BASE) UL(TOP) SPREAD NO. OF RANGES

1 0 16 16 2
2 17 32 16

3 33 40 8 4
4 41 48 8
5 49 56 8
6 57 64 8

7 65 68 4 7
8 69 72 4
9 73 76 4

10 77 80 4
11 81 84 4
12 85 88 4
13 89 92 4

14 93 94 2 4
15 95 96 2
16 97 98 2
17 99 100 2

Fig. 26-11. Ranges and score points.

NEXT J completes the loop to input 80 student grades and to place them
in the proper range limit, and RETURN causes the subroutine to return to
line 40.

40 T = 0 : FOR J = 1 TO 17

The totaling variable is initialized to zero, and the 17 grade ranges are
placed in a loop structure for processing.

50 IF J <> INT((J-1)/5)*5 + 1 THEN 80
60 IF J <> 1 THEN PRINT "OGIVE COUNT = ";T/80; "%": INPUT Q$

Lines 50 and 60 control the printout. The printout changes its routine
after every 5 lines. The details of the printout can be viewed in the RUN sec
tion of Fig. 26-9. Similar operational details of lines 50 and 60 may be seen
in Fig. 26-6. Statements similar to the statements in lines 50 and 60 are
routinely used formulas to control printouts to the screen.

70 PRINT "RANGE# BASE TOP COUNT"

Line 70 prints the heading for each column in the printout.

80 R = J : GOSUB 900 : UL = RL : R = J - 1 : GOSUB 900 :
LL = RL + 1 : IF LL = 1 THEN LL = 0

R = J is used as a temporary storage for the range loop J. If J is not
stored, it will be lost during the jump to, and return from, the subroutine.

The branch to line 900 computes the range level (RL) by using a logical
comparison for all ranges (Fig. 26-14).

216 APPLESOFT LANGUAGE

810 IF SG > 32 THEN 830
820 CG((SG-1)/16+1) = CG((SG-1)/16+1)+1: GOTO 880

GRADE (SG - ?) CG((SG - ?)/ 7 + 7
1 0 1

17 16 2
32 31 2

830 IF SG > 64 THEN 850
840 CG(3 + (SG - 33)/8) = CG(3 + (SG - 33)/8) + 1 : GOTO 880

33 0 3
41 8 4
49 16 5
57 24 6
64 31 6

850 IF SG > 92 THEN 870
860 CG(7 + (SG - 65)/4) = CG(7 + (SG - 65)/4 + 1 : GOTO 880

65 0 7
69 4 8
73 8 9
77 12 10
81 16 11
85 20 12
89 24 13
92 27 13

870 CG(14+(SG-93)/2) = CG(14+(SG-93)/2+1
93 0 14
95 2 15
97 4 16
99 6 17

100 7 17

Fig. 26-12. Grades and ranges.

900 RL = R * 16 = (R > 2) * (R - 2) * 8 - (R > 6)
* (R - 6) * 4 - (R > 13) * (R - 13)
*2

R * 16 - (R > 2), the range number times 16 (number of grade points in
the first two ranges), separates the first two ranges. The logical expression,
(-(R > 2)), separates the first two grade ranges based on a spread of 16
points. If R is less than 2, the statement is true, or 1. When the logical ex·
pression is true, it is activated for the first two loop values (R = J). If R is
greater than 2, the logical expression is false, or zero. When the expression
is false (0), zero times 16 = 0, and the logical expression is not included in
any other computation (Fig. 26-13). Line 900 processes the range levels
from 1 through 17. This is the power of formulas in programming.

Lines 80 and 900 work in conjunction to produce the upper level (TOP),
UL = RL, of the range, and the lower level (BASE), LL = RL + 1, of the
range.

When the subroutine at line 900 has completed processing each range

FORMULAS 217

40 FOR J = 1 TO 17
80 R = J : GOSUB 900 : UL = RL : R = J - 1

RL = R * 16 - (R > 2) UL = RL R = J - 1
1*16=16 16 1
2 * 16 = 32 32 2

RL = (R - 2) * 8 - (R > 6)
3 - 2 = 1 * 8 = 8 40 3
4 - 2= 2 * 8 = 16 48 4
5 - 2= 3 * 8 = 24 56 5
6 - 2= 4 * 8 = 32 64 6

RL = (R - 6) * 4 - (R > 13)
7 - 6= 1 * 4 = 4 68 7
8 - 6= 2 * 4 = 8 72 8
9 - 6= 3 * 4 = 12 76 9

10 - 6= 4 * 4 = 16 80 10
11 - 6= 5 * 4 = 20 84 11
12 - 6= 6 * 4 = 24 88 12
13 - 6= 7 * 4 = 28 92 13

RL = (R - 13) * 2
14 - 13= 1 * 2 = 2 94 14
15-13=2* 2 = 4 96 15
16-13=3* 2 = 6 98 16
17-13=4* 2 = 8 100 17

Fig. 26-13. Compute upper limit range.

level, it returns to line 80, UL = RL, to store the range level computed into
the upper level variable.

R = J - 1 decrements the value of the loop variable stored in R, so the
upper level and the lower level will remain at the same value. The program
jumps to line 900 (GOSUB 900) to process the range level again. When the
subroutine at line 900 returns to line 80, the range limit is incremented by 1
(LL = RL + 1), to produce the lower limit (BASE) of the grade range. Line
80 and the formula at line 900 have now produced the upper and lower
limits of the grade range from 1 to 100. The grade ranges run from one to
100, so a special case must be accommodated to produce a grade range
from zero to 100.

IF LL = 1 THEN LL = 0 converts the lower level of the first grade range
from one to zero.

90 PRINT SPC(3); J : HTAB 13: PRINT LL;: HTAB 20: PRINT UL;:
HTAB 30 : PRINT CG(J)

Line 90 prints the output information under the proper headings.

100 T = T + CG(J) : NEXT J

T = T + CG(J) totals the number of grades in each grade range, and NEXT
J completes the loop structure, so all 17 grade ranges are produced.

218 APPLESOFT LANGUAGE

40 FOR J = 1 TO 17
80 R = J : GOSUB 900 : UL = RL : R = J - 1 : GOSUB 900 :

LL = RL + 1 : IF LL = 1 THEN LL = 0

IF LL = 1 THEN LL = 0
RL = R * 16 - (R > 2) LL = RL + 1 J - 1

0
1 * 16 = 16 0 1
2 * 16 = 32 17 2

RL = (R - 2) * 8 - (R > 6)
3 - 2 = 1 * 8 = 8 33 3
4- 2 = 2 * 8 = 16 41 4
5 - 2 = 3 * 8 = 24 49 5
6- 2 = 4 * 8 = 32 57 6

RL = (R - 6) * 4 - (R > 13)
7 - 6 = 1 * 4 = 4 65 7
8- 6 = 2 * 4 = 8 69 8
9- 6 = 3 * 4 = 12 73 9

10 - 6=4* 4= 16 77 10
11 - 6 = 5 * 4= 20 81 11
12 - 6 = 6 * 4= 24 85 12
13 - 6 = 7 * 4= 28 89 13

RL = (R - 13) * 2
14-13=1* 2 = 2 93 14
15-13=2* 2 = 4 95 15
16-13=3* 2 = 6 97 16
17-13=4* 2 = 8 99 17

Fig. 26-14. Compute lower limit range.

110 PRINT "OGIVE COUNT = ";T; "OF 80 = ";T/80; "%"

Line 110 prints out the final OGIVE count as a check to determine if all 80
student grades have been input and processed. The OGIVE count was
printed for each five ranges by line 60.

120 END

Formulas produce fast, efficient, orderly output. This program, written
without formulas, would take approximately six times the number of pro
gram statements to solve the same problem. When possible, use formulas
to save memory space, increase speed and efficiency, and to systematize
output.

LESSON 27

Double Subscripted Arrays

Double subscripted arrays were introduced in Lesson 14. In that lesson, a
business program was presented that accepted inputs of gross income and
expenses and produced outputs of net income and totals for all columns.

Double subscripted arrays may be thought of as an arrangement of num
bers in rows and columns. Numbers in the array may be accessed by
specifying the row and column of the array. For instance, CF(2,3) calls the
number in the array named CF (cash flow). The number is located in the row
numbered 2 and in the column numbered 3. Double subscripted arrays per
mit great flexibility. The size may be determined exactly. The array serves
as a storage area for large amounts of data or information. The contents of
an array can be processed and the results entered in other parts of the same
array with tremendous maneuverability.

The cash flow program (Figs. 27-1 and 27-10) does an analysis of an in
vestment in income producing property to assist the potential buyer to
determine if the purchase will be profitable. Information concerning the
loan, depreciation, and investors' income is input (Fig. 27-2). The input in
formation is processed by the program (Fig. 27-3). The output is a summary
of cash benefits, tax benefits, and yields on which to aid the purchase deci
sion (Fig. 27-4).

10 REM : CASH FLOW PROGRAM TO
20 REM : DETERMINE INVESTMENT
30 REM : YIELDS ON INCOME PROP-
40 REM : ERTY:: :COPYWRITED 1980
50 REM: BRIAND. BLACKWOOD AND
60 REM : GEORGE H. BLACKWOOD
70 REM : 7020 BURLINGTON
80 REM : BEAUMONT, TEXAS 77706
90 REM : 713-866-6141
140 DEF FN R(Z) = (INT (Z * 1000 + .5) I 1000)
145 DEF FN A(X) = INT ((X) + .5)

Fig. 27-1. Cash flow program.

219

220 APPLESOFT LANGUAGE

150 DIM H1$(15),NUM(2),H4(15,1)
160 HOME: VTAB 3
200 H1$ = "NET OP INC LOAN VAL INT RATE LOAN LEN"
210 PRINT H1$
220 VTAB 4: INPUT" ";NOi: VTAB 4: HTAB 12: INPUT" ";PV: VTAB 4:

HTAB 23: INPUT" ";I: VTAB 4: HTAB 33: INPUT" ";LL
240 H2$ = "ASSET COST ASSET LIFE SALVAGE VALUE": VTAB 5: PRINT H2$
245 VTAB 6: HTAB 1: INPUT" ";CA
250 VTAB 6: HTAB 15: INPUT" ";LA: VTAB 6: HTAB 26: INPUT" ";SV
255 DIM CF(LL + 1, 14)
260 H3$ = "RATE OF DEP YRLY INCOME CASH EQUITY"
270 VTAB 7: PRINT H3$
280 VTAB 8: HTAB 4: INPUT" ";RD: VTAB 8: HTAB 14: INPUT" ";YI:

VTAB 8: HTAB 26: INPUT" ";CE
290 IF I> = 1 THEN I = I I 100 : GOTO 290
292 IF RD< 1 THEN RD = 100
310 GOSUB 8000
320 DP = 1 I LA:DEP ,;, (RD I 100) * DP:BV = CA - SV:TB = BV
360 CF(1,8) = O:CF(1,9) = O:NE = Yl:CF(O, 14) = O:J = 1: GOSUB 7000
365 CF(O, 14) = IRS
370 GOSUB 9000
380 AN = PV I DF: FOR J = 1 TO LL
385 CF(J,2) = NOi
390 11 = PV * l:CF(J,3) = 11
395 CF(LL + 1,3) = CF(LL + 1,3) + CF(J,3)
410 PR = AN - 11 :CF(J,4) = PR
415 CF(LL + 1,4) = CF(LL + 1,4) + CF(J,4)
420 BR = PV - PR:PV = BR
425 REM : COMPUTE CASH FLOW
430 CF(J,5) = CF(J,2) - (CF(J,3) + CF(J,4))
435 CF(LL + 1,5) = CF(LL + 1,5) + CF(J,5)
462 D1 = TB * DEP
464 CF(J ,6) = D1
466 CF(LL + 1,6) = CF(LL + 1,6) + CF(J,6)
470 TB = TB - D1
500 CF(J,7) = CF(J,3) + CF(J,6)
505 CF(LL + 1, 7) = CF(LL + 1, 7) + CF(J ,7)
520 CF(J,8) = CF(J,2) - CF(J,7)
523 IF CF(J,8) < 0 THEN CF(J,8) = 0
525 CF(LL + 1,8) = CF(LL + 1,8) + CF(J,8)
540 CF(J,9) = CF(J,2) - CF(J,7)
545 CF(J,9)= (SGN (CF(J,9)) - 1) * CF(J,9) I 2
547 CF(LL + 1,9) = CF(LL + 1,9) + CF{J,9)
560 CF(J, 1 O) = CF(J ,8) * CF(J - 1, 14)
565 CF(LL + 1,10) = CF(LL + 1,10) + CF(J,10)
580 CF(J, 11) = CF(J,9) * CF(J - 1, 14)
585 CF(LL + 1,11) = CF(LL + 1,11) + CF(J,11)
590 CF(J,O) =YI+ CF(J,10) - CF(J,11)
595 NE = YI + CF(J, 10) - CF(J, 11) : GOSUB 7000:CF(J, 14) = IRS

Fig. 27-1-cont. Cash flow program.

DOUBLE SUBSCRIPTED ARRAYS 221

600 CF(J, 12) = CF(J,5) + CF(J, 11) - CF(J, 10)
610 CF(LL + 1,12) = CF(LL + 1,12) + CF(J,12)
660 CF(J,13) = CF(J,12) + CF(J,4}
670 CF(LL + 1,13) = CF(LL + 1,13) + CF(J,13): NEXT J:CF(LL + 1,2) =

CF(1,2) * LL
675 CF(J, 14) = IRS
680 VTAB 9: INPUT "YRS OWNED= ";YO
690 IF YO = 0 THEN 900
695 IF YO< 1 OR YO> LL THEN 680
697 VTAB 9: CALL -958
700 FOR K = 3 TO 13
710 CF(O,K) = 0
720 FOR J = 1 TO YO
730 CF(O,K) = CF(O,K) + CF(J,K)
740 NEXT J,K
750 CF(0,2) = YO * CF(1,2)
760 IRS = CF(YO, 14)
770 NE = CF(YO,O)
780 VTAB 9: PRINT "YRS OWNED= ";YO; TAB(16);"END INC=";

FN A(CF(YO,O));"(";IRS;")"
810 VTAB 11: HTAB 16: PRINT YO;" YR TOT ";YO:"YR AV";

TAB(35); "YIELD"
820 VTAB 12: PRINT "CASH FLOW"; TAB(18); FN A(CF(0,5)); TAB (28);

FN A(CF(0,5) I YO); TAB(35); FN R(CF(0,5) I (YO* CE)
830 VTAB 14: PRINT "TAX SAV'S"; TAB(11); FN A(CF(O, 11))
840 VTAB 16: PRINT "TAX PAY"; TAB(11); FN A(CF(O, 10)); TAB(19);

FN A(CF(O, 11) - CF(O, 10))
850 VTAB 18: PRINT "CASH BENEFITS"; TAB(18); FN A(CF(0,12)); TAB(28);

FN A(CF(O, 12) I YO); TAB(35); FN R(CF(O, 12) I (YO * CE))
860 VTAB 19: PRINT "ADD:PRINCIPAL"; TAB(18}; FNA(CF(0,4))
870 VTAB 21: PRINT "TOTAL CASH AND"
880 VTAB 22: PRINT "AMORTIZATION"; TAB(18); FN A(CF(0,13)); TAB(28);

FN A(CF(O, 13) I YO); TAB(35); FN R(CF(O, 13) I (YO * CE))
890 GOTO 680
900 H1$(0) = "0.INCOME":H4(0,0) = 6:H4(0,1) = O:H1$(1) = "1.TAX

PAYABLE":H4(1,0) = 3:H4(1,1) = 7
910 H1$(2) = "2.NET OP INCOME":H4(2,0) = 6:H4(2,1) = 6:H1$(3) =

"3.INTEREST":H4(3,0) = 8:H4(3, 1) = 0
920 H1$(4) = "4.PRINCIPAL":H4(4,0) = 9:H4(4, 1) = O:H1$(5) = "5.CASH

FLOW":H4(5,0) = 4:H4(5,1) = 4
930 H1$(6) = "6.TOT DEPRECIATION ":H4(6,0) = 9:H4(6,1) = 7:H1$(7) =

"7.INC TAX DEDUCTS":H4(7,0) = 7:H4(7, 1) = 7
940 H1$(8) = "8.TAXABLE INC.":H4(8,0) = 7:H4(8,1) = 4:H1$(9) ="

9.TAXABLE LOSS":H4(9,0) = 7:H4(9, 1) = 4
950 H1$(10) = "10.TAX PAYABLE":H4(10,0) = 3:H4(10, 1) = 7:H1$(11) =

"11.TAXSAVINGS":H4(11,0) = 3:H4(11,1) = 7
860 VTAB 19: PRINT "ADD:PRINCIPAL"; TAB(18); FN A(CF(0,4))

"13.TOTAL BENEFITS":H4(13,0) = 5:H4(13, 1) = 8

Fig. 27-1-cont. Cash flow program.

222 APPLESOFT LANGUAGE

965 H1$(14) = "14.TAX BRACKET":H4(14,0} = 3:H4(14,1) = 7:H1$(15) =
"15.ANNUAL PAYMENT":H4(15,0) = 6:H4(15,1) = 7

970 CALL - 936: HTAB 14: PRINT "TABLE LISTING" :PRINT : PRINT "ENTER 3
COLUMN VALUES FOR TABLE PRINT"

980 FOR J = 0 TO 14 STEP 2: PRINT H1$(J); TAB(19);H1$(J + 1): NEXT J:
PRINT

990 FOR N = 0 TO 2: PRINT "COLUMN ";N + 1;" = ";:INPUT NUM(N):
IF NUM(N) < 0 OR NUM(N) > 15 THEN 1010

1000 NEXT N
1010 N = N - 1: IF N < 0 THEN 3000
1020 FOR L = 1 TO LL
1030 IF L <>INT ((L - 1) / 15) * 15 + 1 THEN 1080
1040 IF L < > 1 THEN INPUT "!";A$
1050 CALL -936: PRINT "YEARS";: FOR J = 0 TON: HTAB (J + 1) * 10:M

= NUM(J): PRINT MID$(H1$(M),4,H4(M,O));: NEXT J: PRINT
1060 FOR J = 0 TON: HTAB (J + 1) * 10:M = NUM(J): IF H4(M, 1) > 0

THEN PRINT RIGHT$ (H1$(M},H4(M, 1});
1070 NEXT J: PRINT : PRINT
1080 PRINT L;: FOR J = 0 TO N
1090 HTAB (J + 1) * 10:M = NUM(J): IF M = 14 THEN 1110
1095 IFM<>15THEN1100
1096 PRINT FN A(AN);: GOTO 1120
1100 PRINT FN A(CF(L,M));: GOTO 1120
1110 PRINT FN R(CF{L, M));
1120 NEXT J: PRINT: NEXT L
1130 INPUT "!";A$: GOTO 970
3000 END
7000 RESTORE
7010 BS = 0
7020 READ UL,BF,IRS
7030 IF NE> = UL AND UL< > 0 THEN BS = UL: GOTO 7020
7040 CF(J, 14) = IRS
7050 CF(J,1) =BF+ CF(J - 1,14) * (CF(J,O) - BS)
7100 DATA 3400,0,0
7110 DATA 5500,0,.14
7120 DATA7600,294,.16
7130 DATA 11900,630,.18
7140 DATA 16000, 1404,.21
7150 DATA 20200,2265, .24
7160 DATA 24600,3273,.28
7170 DATA 29900,4505,.32
7180 DATA 35200,6201,.37
7190 DATA 45800,8162,.43
7200 DATA 60000, 12720,.49
7210 DATA 85600, 19678,.54
7220 DATA 109400,33502,.59
7230 DATA 162400,47544,.64
7240 DATA 215400,81464,.68
7250 DATA 0, 117504,.70

Fig. 27-1-cont. Cash flow program.

DOUBLE SUBSCRIPTED ARRAYS 223

7900 RETURN
8000 FOR J = 3 TO 13
8010 CF(LL + 1,J) = 0
8020 NEXT J
8030 RETURN
9000 FOR J = 1 TO LL
9010 DF = DF + 1 I (1 + I) t J
9020 NEXT J
9030 RETURN

Fig. 27-1-cont. Cash flow program.

PURCHASE PRICE
LAND 50,000
BUILDING 750,000
TOTAL PURCHASE PRICE 800,000
SALVAGE VALUE 50,000
CASH EQUITY 200,000

NET OPERATING INCOME 80,000 per year
OUTSIDE INCOME 40,000 per year
MORTGAGE

LIFE OF THE LOAN 25 years
INTEREST RATE 12 %
ANNUAL PAYMENTS (INTEREST & PRINCIPAL) 76,500

DEPRECIATION
LIFE OF THE BUILDING 40 years
DEPRECIATION METHOD 200 % double declining

balance

Fig. 27-2. Cash flow and tax benefits of investment property ownership.

The cash flow program was written to be used as an investment tool, and
is being used to evaluate income situations.

The cash flow program demonstrates the power of the double subscripted
array by producing 25 rows (the length of the loan) and 14 columns. Fig.
27-3 shows 5 rows and 14 columns of the cash flow problem. The columns
are J, 1 through J, 14. Columns within the array are operated on to produce
other columns. The cash flow column (J,5) is produced by subtracting the
principal (J,4) and the interest (J,3) from the net operating income (J,2).
CF(J,S) = CF(J,2) - (CF(J,3) + CF(J,4}). Net operating income is input as NOi,
and a replacement statement is used to place NOi into CF(J,2). CF(J,2) =
NOi.

224 APPLESOFT LANGUAGE

NET AMORTI- TOTAL
OPERATING ZATION CASH TOTAL DEDUC-

YEAR INCOME INTEREST PRINCIPAL FLOW DEPRECIAT. TIONS
J,2 J,3 J,4 J,5 J,6 J, 7

1 8,000 72,000 4,500 3,500 35,000 107,000
2 8,000 71,460 5,040 3,500 33,250 104,710
3 8,000 70,855 5,645 3,500 31,588 102,443
4 8,000 70, 178 6,322 3,500 30,008 100, 186
5 8,000 69,419 7,081 3,500 28,508 97,927

TOTALS 40,000 353,912 28,588 17,500 158,354 512,266

CASH
AVAILABLE
AFTER TOTAL
MORT- CASH &
GAGE AMORTI-

TAXABLE TAX TAX TAX & TAX ZATION TAX
INCOME LOSS PAYABLE SAVINGS BENEFIT BENEFITS BRACKET
J,8 J,9 J, 10 J, 11 J, 12 J, 13 J, 14

0 27,000 0 11,610 15,110 19,610 .32
0 24,710 0 7,907 11,407 16,447 .37
0 22,443 0 8,304 11,804 17,449 .37
0 20, 186 0 7,469 10,969 17 ,291 .37
0 17,927 0 6,633 10, 133 17,214 .37

0 122,266 0 41,923 59,423 88,011

Fig. 27-3. Input information.

The variables used in the program are shown in Fig. 27-5, as they appear
in the program. The variables in Fig. 27-6 are placed in alphabetical order.

The double declining balance depreciation constant is computed in line
320, and applied to the remaining depreciation (line 462) as each year is
incremented during the life of the loan loop.

SUMMARY OF CASH & BENEFITS
CASH FLOW (BEFORE INCOME

TAX EFFECT)
TAX SAVINGS +63,023
TAX PAYABLE - 0

SUB TOTAL
TOTAL CASH BENEFITS AFTER TAXES
ADD PRINCIPAL PAID ON MORTGAGE
TOTAL CASH & AMORTIZATION BENEFITS

AFTER TAXES

Fig. 27-4. Summary of cash and tax benefits.

10 YR.
TOTAL

35,000

63,023
98,023
78,969

176,992

10 YR.
AVG.

3,500

9,802

17,699

YIELD

.018

.049

.088

H1$
H2$
H3$
NOi
PV
I
LL
CA
LA
sv
CF
CF(LL + 1, ?)
RD
YI
CE
DP
DEP
BV
TB
NE
IRS
AN
CF(J,2)
11
CF(J,3)
CF(LL + 1,3)
PR
CF(J,4)
CF(LL + 1,4)
BR
CF
CF(J,S)
D1
CF(J,6)
CF(LL + 1,6)
TB
CF(J,7)
CF(LL + 1,7)
CF(J,8)
CF(LL + 1,8)
CF(J,9)
CF(LL + 1,9}
CF(J,10)
CF(LL + 1, 1 O)
CF(J, 11)
CF(LL + 1, 11)
CF(J,O)
CF(J,12)

Header.
Header.
Header.
Net operating income.
Loan amount.
Interest rate.
Life of the loan.
Cost of the asset.
Life of the asset.
Salvage value.
Cash flow array.

DOUBLE SUBSCRIPTED ARRAYS 225

Holds totals for the individual column.
Rate of depreciation - 200% double declining balance.
Your personal yearly income.
Cash equity.
1 /LA - depreciation factor.
(RD/1 OO)*DP - depreciation per year.
Book value.
Total book value.
Net income.
Tax bracket - CF(J, 14) = IRS.
Annual payment on the loan.
NOi - net operating income.
Yearly interest.
11
Total interest paid for the period of analysis.
Principal remaining.
PR
Total principal paid for the period analyzed.
Balance remaining.
Cash flow.
CF
Total depreciation for one year.
D1
Total depreciation for the period analyzed.
Total book value.
Total deductions - interest and depreciation.
Total deductions for the period of analysis.
Taxable income.
Total taxable income for the period of analysis.
Tax loss.
Total tax loss for the period analyzed.
Tax payable.
Tax payable for the period analyzed.
Tax savings.
Total tax savings for the period analyzed.
Yearly income and tax payable - CF(J, 10)- CF(J, 11)
Cash available after mortgage payments and payment of
income tax effect.

Fig. 27-5. Variables as they appear in the program.

226 APPLESOFT LANGUAGE

CF(LL + 1, 12)

CF(J,13)
CF(LL + 1, 13)

YO
H1 $(0)
H1$(15)
H4(0,0)
H4(15,1)
NUM(N)
N
M = NUM(J)

DF

Total of cash available after mortgage payments and income
tax effect for period analyzed.
Total cash and amortization benefits after taxes.
Total of cash and amortization benefits after taxes for the pe
riod analyzed.
Years owned.
See Fig. 27-7.
See Fig. 27-7.
See Fig. 27-7.
See Fig. 27-7.
Number of column to be printed.
Number of the column.
Loop variable J, placed in column array NUM, stored in the vari
able M.
Discount factor.

Fig. 27-5-cont. Variables as they appear in the program.

AN
BR
BV
CA
CE
CF
CF(J,O)
CF(J,2)
CF(LL + 1,2)
CF(J,3)
CF(LL + 1,3)
CF(J,4)
CF(LL + 1,4)
CF(J,5)
CF(LL + 1,5)
CF(J,6)
CF(LL + 1,6)
CF(J, 7)
CF(LL + 1,7)
CF(J,8)
CF(LL + 1,8)
CF(J,9)
CF(LL + 1,9)
CF(J,10)
CF(LL + 1, 10)
CF(J, 11)
CF(LL + 1, 11)
CF(J, 12)

CF(LL + 1, 12)

CF(J,13)

Annual payment on the loan.
Balance remaining.
Book value.
Cost of the asset.
Cash equity.
Cash flow.
Yearly income and tax payable - CF(J,10)-CF(J,11)
Net operating income.
Total net operating income for the period analyzed.
11 - yearly interest.
Total interest for the period analyzed.
PR = principal remaining.
Total principal for the period analyzed.
CF = cash flow.
Total cash flow for the period analyzed.
D1 = depreciation for one year.
Total depreciation for the period analyzed.
Total deductions - interest and depreciation.
Total deductions for the period analyzed.
Taxable income.
Total taxable income for the period analyzed.
Tax loss.
Total tax loss for the period analyzed.
Tax payable.
Total tax payable for the period analyzed.
Tax savings.
Total tax savings for the period analyzed.
Cash available after mortgage payments and payment of in
come tax effect.
Total of cash available after mortgage payments and income
tax effect for period analyzed.
Total cash and amortization benefits after taxes.

Fig. 27-6. Variables in alphabetical order.

CF(LL + 1, 13)

CF(J,14)
DEP
DP
D1
H1$
H2$
H3$
H1 $(?)
H4(0,0)
J
LA
LL
M = NUM(J)

N
NOi
NUM(N)
PR
PV
RD
sv
TB
YI
YO

DOUBLE SUBSCRIPTED ARRAYS 227

Total of cash and amortization benefits after taxes for the pe
riod analyzed.
IRS = tax bracket.
(RD/100)*DP - depreciation for one year.
1 /LA - depreciation factor.
Total depreciation for one year.
Header.
Header.
Header.
See Fig. 27-7.
See Fig. 27-7.
Loop variable - FOR J 1 TO N
Life of the asset.
Life of the loan.
Loop variable J, placed in array column NUM, stored in the vari
able M.
Number of the column.
Net operating income.
Number of the column to be printed.
Principal remaining.
Loan amount.
Rate of depreciation - 200% double declining balance.
Salvage value.
Total book value.
Your personal yearly income.
Years owned.

Fig. 27-6-cont. Variables in alphabetical order.

310 GOSUB 8000

Line 310 initializes the columns that hold the totals to zero.
Line 360 sets up the investors' tax information contained in the table at

lines 7000 to 7900.
Lines 380 to 670 are the life of the loan loop that computes all the rows

and columns in the cash flow array.
··· After the rows and columns are generated, which takes about 60 seconds

on a 25 year loan, the program defaults to line 780. Line 780 requests the
user to input the YEARS OWNED. This input allows the user to view the cash
and tax benefits and yields for periods from one year to the life of the loan.
This output helps the user to determine which period of holding time results
in the greatest profit.

If zero is input in YEARS OWNED, the program branches to the menu at
line 900 to print out the individual tables in the array.

The menu selections and headings for the tables are set up in lines 900
through 965. This ingenious method uses single subscripted string arrays to
hold the header and double subscripted numeric arrays to hold the number
of spaces in the first and second lines of the headers (Figs. 27-7 and 27-8).
H 1 $(0-15) holds the menu selection headings of each table. The string

228 APPLESOFT LANGUAGE

H1$(5)=" 5.CASH FLOW" HEADER STRING ARRAY
/RELATES TO THE FIRST LINE OF THE HEADER

H4{5,0) = 4

>RELATES TO H1$(S)

H4(5,1)=4

~RELATES TO HIE SECOND LINE OF THE HEADER

arrays and the numeric arrays are related. The first subscript in the numeric
array relates to the string array, and the second subscript relates to the line
of the header. Some of the two line headers are incorrectly separated, as in
(H 1 $(6) - TOT. DEPRE---CIATION), but the technique produces the correct
results.

The logic of the algorithm stores the values to indicate a one line header
(H4(0,0) = 6 - H4(0, 1) = 0) or a two line header (H4(5,0) = 4 - H4(5, 1) = 4),
and indicates how many characters are contained in the first line and how
many characters are contained in the second line.

H1 $(0) =" O. INCOME" -------------------------HEADER STRING ARRAY
H4(0,0) =6 --------------------------··--------------SIX CHARACTERS IN THE FIRST LINE
H4(0, 1) = 0 ---------------------------·--------------ZERO CHARACTERS IN THE SECOND LINE

After all fifteen values are set, line 970 clears the screen and prints TABLE
LISTING and ENTER 3 VALUES FOR TABLE PRINT.

Line 980 prints the menu selection.
Line 990 sets up a loop to output to the screen three columns (0 to 2). The

user inputs the number of the column in a single subscripted array and the
array is checked to determine if it is between 1 and 15. If the column num
ber is not between 1and15, the program jumps out of the loop to line 1010.

In line 1010, N = N - 1 decrements the column number to produce the
correct value of N. When the program jumps out of the loop, the loop value
is one more than the correct value. To produce the correct value of N, one
must be subtracted. This was discussed in Lesson 6.

If N < 0 THEN 3000. When the user is through working with the program,
an input of - 1 (less than zero) causes a branch to line 3000 to end the pro
gram.

DOUBLE SUBSCRIPTED ARRAYS 229

LENGTH LENGTH OF
H1$ 1st LINE 2nd LINE 1st LINE 2nd LINE

H1$(0)=" 0.INCOME" INCOME NONE H4(0,0) = 6 H4(0, 1) = 0
H1$(1)=" 1.TAX PAYABLE" TAX PAYABLE H4(1,0)=3 H4(1,1)=7
H1$(2)=" 2.NET OP

INCOME" NET OP INCOME H4(2,0) = 6 H4(2, 1)=6
H1$(3)=" 3.INTEREST" INTEREST NONE H4(3,0) = 8 H4(3, 1)=0
H1$(4)=" 4.PRINCIPAL" PRINCIPAL NONE H4(4,0)=9 H4(4, 1) =0
H1 $(5) =" 5.CASH FLOW CASH FLOW H4(5,0) =4 H4(5,1)=4
H1$(6)=" 6.TOT

DEPRECIATION"TOT DEPRECIATION H4(6,0)=9 H4(6, 1) = 7
H1$(7)=" 7.INC TAX

DEDUCTS" INC TAX DEDUCTS H4(7,0)= 7 H4(7, 1) = 7
H1$(8)=" 8.TAXABLE INC." TAXABLE INC. H4(8,0)= 7 H4(8,1)=4
H1 $(9) =" 9.TAXABLE LOSS"TAXABLE LOSS H4(9,0) = 7 H4(9,1)=4

H1$(10)= "10.TAX PAYABLE" TAX PAYABLE H4(10,0)=3 H4(10,0)=7
H1 $(11) = "11.TAX SAVINGS" TAX SAVINGS, H4(11,0)=3 H4(11,1)=7
H1 $(12) = "12.CASH

AVAILABLE" CASH AVAILABLE H4(12,0)=4 H4(12,1)=9
H1$(13)= "13.TOTAL

BENEFITS" TOTAL BENEFITS H4(13,0)=5 H4(13,1)=8
H1$(14)="14.TAX BRACKET" TAX BRACKET H4(14,0)=3 H4(14,1)=7
H1 $(15) = "15.ANNUAL

PAYMENT" ANNUAL PAYMENT H4(15,0)=6 H4(15,1)=7

THE 1st ALPHA CHARACTER OF H1$(?) IS ALWAYS THE
4th CHARACTER OF THE HEADER

Fig. 27 · 7. Header construction.

4t~$(5) AND ALL H1$(?)',

H1$(5)=" 5.CASH FLOW"

ht LINE OF HEADER/ ~2nd LINE OF HEADER

~0)=4 H4(L

~~
RELATED TO H1$(5)

Fig. 27-8. Header detail.

230 APPLESOFT LANGUAGE

Line 1020 is the beginning of the loop to compute the values in the
tables. LL is the variable used to hold the life of the loan value.

Program statements similar to lines 1030 and 1040 are detailed in Fig.
25-6 in Lesson 25. Line 1030 computes when 15 years of the table have
been printed on the screen.

The only function of line 1040 is to stop the program. On the first loop
pass L = 1. The program defaults through 1030, 1040, and prints the head
ings in 1050 and 1060. On each subsequent loop pass, the program
branches from 1030 to 1080. When line 1030 is false the program defaults
to line 1040. If L is not one (L = 16) the program inputs "!" and stops. This
allows the user to view and study the 15 rows of the tables printed on the
screen. When the user is ready for the program to resume, RETURN is
pressed.

Line 1050 prints the first line of the column header on the screen and
clears the screen. In line 1050, N is the variable that holds the number of
columns, and HTAB (J + 1)* 10 sets the column in the correct position on
the screen. The column value is stored in the variable M.

PRINT MID$(Hl$(M), 4, H4(M,O))

HEADER ARRAY

HEADER STRING 4th CHARACTER IN H1$(M)

COLUMN VALUE

RELATED TO 1st LINE OF H4(M,O)

RELATED TO H1$(M)

In line 1060, second line of the header is printed. N is the variable that
holds the number of columns. The value of the column is placed in the vari
able M.

When the column headings have been printed, the program defaults to
line 1080 to print L, which represents the year. The second statement in line
1080, FOR J = 0 TO N, is the beginning of a loop that controls the number of
columns to be printed. Line 1090 tabs to the proper location on the screen
to print the columns. M = NUM(J) stores the number of the column to be
printed in the variable M.

DOUBLE SUBSCRIPTED ARRAYS 231

IF H4{M,1) > 0 THEN PRINT RIGHT1(H1$(M), H4(M,1))

IF THERE IS A
2nd LINE

HEADER STRING

COLUMN VALUE

~ATED TO 2nd
LINE OF H4(M, 1)

RELATED TO H1$(M)

HEADER ARRAY

If line 1090 is true, the program branches to line 1110 to print out the
rounded (line 140) cash flow array values for row L, column M. If M = 14 is
false, the program defaults to line 1095. If line 1095 is true, the program
branches to line 1100 to print out the integer function (line 145) of the cash
flow array, row L, column M. If M <> 15 is false, the program defaults to line
1096. FNA (AN) is the integer (line 145) cash flow array of the annual pay
ment. The annual payment on the loan is computed by dividing the loan
value by the discount factor (line 380), and is not computed by the loop
execution and placed in the table.

The SGN function (Fig. 27-9) is used in line 545. The SGN function re
turns only three values + 1, 0, and - 1. These values relate to greater than
zero, zero, or less than zero. In this case, if the tax loss is a positive number,
SGN(CF(J,9)) = + 1, (SGN(CF(J,9)) - 1) = 0, and zero times CF(J,9)/2 =

zero. When the tax loss is a negative number, (SGN(CF(J,9)) - 1) = - 2.
When - 2 is multiplied by a negative (CF(J,9) /2, the factor (- 2 I+ 2)
divides out leaving a negative value. A negative times a negative is a posi
tive value. The purpose of the SGN function is to make all negative numbers
positive, leave zero numbers zero, and make all positive numbers zero. The
SGN function is used so a tax loss, which is a negative number, can be con
verted into a positive number. The positive number is then multiplied by the
previous year's tax rate, (CF(J - 1, 14)), and the results are placed in the tax
savings column, CF(J, 11).

CF(J -1, 14) gives the tax rate for the previous year which is used to com
pute this year's taxes. CF(J, 14) gives the tax rate for the present year.

The cash flow program outputs the cash flow, tax benefits, and yields for
a single year or a number of years. This information assists the prospective
buyer in determining how the purchase will affect his cash flow and future
net worth. This information will aid with the decision to buy the property or
not to buy the property.

232 APPLESOFT LANGUAGE

SGN FUNCTION MAKES ALL NEGATIVE NUMBERS-POSITIVE
SGN FUNCTION MAKES ALL ZERO NUMBERS-ZERO
SGN FUNCTION MAKES ALL POSITIVE NUMBERS-ZERO

TAXABLE LOSS NET OPERATING INCOME
CF(J,9) = CF(J,2) - CF(J,7)

CF(J,9) = (SGN(CF(J,9)) - 1)*CF(J,9)/2

IF CF(J,9) < 0 THEN SGN IS -1
IF CF(J,9) = - 2000

(SGN(CF(J,9)) - 1)*CF(J,9)/2
(SGN(-2000) -1)* -2000/2

(-1 -1)* -2000/2
-2* -2000/2

+4000/2
= 2000

IF CF(J,9) = 0 THEN SGN = 0
(O - 1) * 0/2 = 0

IF CF(J,9) = + 2000 THEN SGN = + 1
(SGN(CF(J,9)) -1)* CF(J,9)/2

(+1-1)*2000/2
0 * 2000/2

= 0

Fig. 27-9. Sign (SGN) function.

DEDUCTIONS

! ' '

SECTION Ill
Supplement

LESSON 28

Graphics

Lesson 28 contains two programs. The first program, LO-RES EX
PLAINER, explains the details of low resolution graphics. The second pro
gram, OGIVE, uses the program in Lesson 26 to generate a graph of cumu
lative distribution of student grades.

Graphics is the art or science of drawing, especially by mechanical princi
ples, as in mechanical drawing. It is also the science of calculating by means
of graphics, diagrams, etc.

The Apple II computer has three modes of screen display: (1) full text, (2)
split screen graphics with four lines of text at the bottom of the screen, and
(3) full screen graphics (Figs. 28-1 and 28-2).

Fig. 28-1. Text screen.

Y COORDINATE

QUADRANT I

X COORDINATE

0,0 39,0

TEXT SCREEN

QUADRANT II

20
21
22
23
24

THE SCREEN POSITION IS IN THE
POSITIVE X AND NEGATIVE Y
COORDINATE AREA BUT IS A
MIRROR IMAGE OF QUADRANT I

~

235

236 APPLESOFT LANGUAGE

0,0 39.0

GRAPHICS
SPLIT SCREEN

0,39 39,39

40
42 POKE - 16302,0
44
46 GRAPHICS FULL SCREEN
48

(THE SCREENS ARE NOT TO SCALE)

Fig. 28-2. Graphics screen.

The full text mode has 24 rows, 1 to 24, and 40 columns, 0 to 39, to dis
play text on the screen.

The split screen graphics mode contains 40 X positions, 0 to 39, and 40 Y
positions, 0 to 39, leaving four rows for text. The text rows are 21, 22, 23,
and 24. Each two rows of graphics equals one row of text.

The full screen graphics mode contains 40 X positions, 0 to 39, and 48 Y
positions, 0 to 4 7. In the full screen graphics mode, one X position is the
same width as one column of text, but one Y position is equal to one-half
row of text, Fig. 28-1, and Fig. 28-2.

Fig. 28-3 lists the low resolution graphics commands and statements.

COLOR = 8 Sets color for lo-resolution graphics. 8 = pink.
GR Sets lo-resolution graphics mode of screen.

40 rows by 40 columns. Sets COLOR = 0 (black),
POKE-16301,0 =GR.

HLIN 1, 39 AT 20 Draws a horizontal line from column 1 to column 39 at row 20.
PLOT 5, 10 Places a square on the screen at X coordinate 5, and Y coordi

nate 10. COLOR must be set to other than zero or the square
will be black on a black screen.

SCRN 5, 1 O Returns the color value of the square at location 5, 10.
TEXT Sets the screen to the full screen TEXT mode.
VLIN 10,20 AT 20 Draws a line from row 10 to row 20 at column 20.

Fig. 28-3. Low resolution graphics commands and statements.

Fig. 28-4 lists the color names and related values used in low resolution
graphics.

The LO-RES EXPLAINER program (Fig. 28-5) was written to explain and
demonstrate the use of low resolution graphics.

GRAPHICS 237

0 BLACK 8 BROWN
1 MAGENTA 9 ORANGE
2 DARK BLUE 10 GREY
3 PURPLE 11 PINK
4 DARK GREEN 12 GREEN
5 GREY 13 YELLOW
6 MEDIUM BLUE 14 AQUA
7 LIGHT BLUE 15 WHITE

Fig. 28-4. Low resolution graphics color names and related numbers.

10 HOME : VTAB 10
20 HTAB 12: PRINT "LO-RES EXPLAINER"
30 PRINT : PRINT
40 GOSUB 1000
50 GR: VTAB 21: PRINT "-------THIS IS THE BOTTOM

EDGE--------''
60 GOSUB 1000
70 TEXT : GOSUB 1000: GR
80 COLOR= 15: PLOT 0,0: PLOT 39, 0: GOSUB 1000
90 COLOR= 1: PLOT 0,39: PLOT 39, 39: GOSUB 1000
100 COLOR= 11: HUN 2,37 ATO: GOSUB 1000
110 HUN 2,37 AT 39: GOSUB 1000
120 COLOR= 12: VLIN 2,37 AT 0: GOSUB 1000
130 VLIN 2,37 AT 39: GOSUB 1000
140 FOR K = 1 TO 4: GOSUB 1000: NEXT K
150 FOR X = 2 TO 36: COLOR= X - INT (XI 16) * 16
160 PLOT X,(37 - .122 * (X - 19)t 2)
170 NEXT X: VTAB 22: HTAB 2: PRINT "GRAPH OF Y = -.122 * (X-19) t

2 + 37": GOSUB 1000: GOSUB 1000: GOSUB 1000
180 PLOT 15,47: GOSUB 1000
190 POKE - 16302,0: GOSUB 1000
200 COLOR= 0
210 FOR K = 40 TO 47: HUN 0,39 AT K: NEXT K: GOSUB 1000
220 COLOR= 1: VLIN 42,46 AT 0: HUN 1,2 AT 41: HUN 1,2 AT 47: VLIN

45,46 AT 3: PLOT 3,42: PLOT 2,44
240 COLOR= 3: VLIN 42,47 AT 5: HUN 6,7 AT 41: VLIN 42,43 AT 8: HUN

6,7 AT 44: PLOT 6,45: PLOT 7,46: PLOT 8,47
260 COLOR= 5: VLIN 42,47 AT 10: HUN 11,12 AT 41: VLIN 42,47 AT 13:

HUN 11,12AT44
280 COLOR= 7: VLIN 42,47 AT 15: HUN 16, 17 AT 41: VLIN 42,43 AT 18:

HUN 16,17 AT 44
300 COLOR= 9: VLIN 41,47 AT 20: HUN 21,22 AT 44: VLIN 41,47 AT 23
320 COLOR= 11: HUN 25,27 AT 41: VLIN 42,47 AT 26: HUN 25,27 AT 47
340 COLOR= 13: VLIN 42,46 AT 29: HUN 30,31AT41: PLOT 32,42: VLIN

45,46 AT 32: HUN 30,31 AT 47
360 COLOR= 15: HUN 35,37 AT 41: HUN 35,37 AT 47: PLOT 34,46: PLOT

38,46: PLOT 37,45: PLOT 36,44: PLOT 35,43: PLOT 34,42: PLOT 38,42

Fig. 28-5. LO-RES EXPLAINER program.

238 APPLESOFT LANGUAGE

950 FORK = 1 TO 30: GOSUB 1000: NEXT K
960 POKE - 16301,0: HOME_: VTAB 22: PRINT "THAT'S ALL"
970 GOSUB 1000: GOSUB 1000: GOSUB 1000
980 TEXT: HOME
999 END
1000 FOR J = 1 TO 1800: NEXT J: RETURN

Fig. 28-5-cont. LO-RES EXPLAINER program.

When the Apple computer is turned on, it comes up in the text mode. To
change the TEXT mode, GR is typed on the screen as an immediate execu
tion, or GR is placed in a program statement to be executed in the deferred
mode. GR mode comes up with COLOR = 0 (black). The color must be
changed before a PLOT, YUN, or HUN execution. If the color is not
designated, it remains the same color as previously set.

Line 10 clears the screen and VT AB' s to row 10 on the screen.
Line 20 indicates the program content.
Line 40 is a pause loop to allow the user time to view the printout. GOSUB

1000 is used throughout the program, and will not be mentioned again dur
ing the discussion.

Line 50 sets the graphics mode and VTAB's to line 21, which is the first
usable line in the TEXT portion of the screen, and prints the line in the print
statement. This line remains on the screen as a reminder of the beginning of
the first portion of usable text, in split screen graphics.

Line 70 places the screen in the text mode and returns it to the GRaphics
mode to demonstrate what a graph looks like when the screen is changed
back to text.

In line 80, COLOR = 15 sets the color to white before the square is
colored. The computer retains the color designation in memory and sets all
lines and squares to that color, until the color designation is changed (Fig.
28-4).

PLOT 0,0 in line 80 sets the square at column 0, row 0 to white. The
column value is the first digit or digits, and the row value is the second digit
or digits (Fig. 28-6). PLOT 0,0 and PLOT 39,0 cause two white squares to be
placed at the outermost positions on the top row (Fig. 28-6).

In line 90, the color is changed to magenta (COLOR = 1), and PLOT 0,39
and PLOT 39,39 place two magenta squares on the outermost position of the
split screen graphics.

In line 100, the color is changed to pink and a horizontal line is drawn
from column 2 to column 37 at row 0, across the top of the screen (Fig.
28-6). HLIN is the statement for a horizontal line.

Line 110 draws a horizontal line at row 39, across the bottom of the
screen. The line is pink.

In line 120, the color is changed to green, and a vertical line is drawn from
row 2 to row 37 at column zero. YUN sets the column value to color the

GRAPHICS 239

COLOR= 15 PLOT 0,0 (A)
WHITE PLOT 39,0 (B)

COLOR = 1 PLOT 0, 39 (C)
MAGENTA PLOT 39, 39 (D)

COLOR = 11 HLIN 2, 37 AT 0 (E)
PINK HLIN 2, 37 AT 39 (F)

COLOR = 12 VLIN 2, 37 AT 0 (G)
GREEN VLIN 2, 37 AT 39 (H)

POKE - 16302,0 GOES TO FULL SCREEN GRAPHICS

A E B

I I
G H

c F D

20
21 VTAB 21 THIS IS THE BOTTOM LINE
22 GRAPHOFY= -.122*(X-19) 2 + 37
23
24

Fig. 28-6. LO-RES EXPLAINER.

squares. The "AT O" designates the column in which to draw the line (Fig.
28-6).

In line 130, a green vertical line is drawn on the right side of the screen.
The screen now has four colored squares at each corner and a colored line
on each side of the screen. The lines are separated from the squares by a
single space.

Line 140 is a pause loop that is four times as long as the normal pause
loop at GOSUB 1000.

In line 150, FOR X = 2 TO 36 is the beginning of a loop used to plot a
parabola on the screen starting at column 2. The loop has a second func
tion, to set the color value for the squares to be plotted.

COLOR= X - lNT(X/16) * 16 in line 150 subtracts color values over 15. If
the color value went over 15 the program would stop running. The values
input to the computer must be in the legal range (0 to 15) or a processing
error will occur.

Line 160 plots the parabola.
The standard X, Y axes are the basis of the screen display (Fig. 28-7). In

the standard graph, the value of X increases from left to right. The value of Y
increases from bottom to top. The two axes cross at the 0,0 position. There
are four quadrants on the graph. Quadrant I is positive X, positive Y.

240 APPLESOFT LANGUAGE

Quadrant II is positive X, negative Y. Quadrant Ill is negative X, negative Y.
Quadrant IV is negative X, positive Y.

+Y

IV

-x 0,0 +X Fig. 28-7. Standard graph.

Ill

-Y

The Apple screen is located in quadrant I of the graph. However, the nega
tive Y and positive Y axes are reversed. This causes the Apple screen to be a
mirror image of quadrant I (Fig. 28-8).

-Y

-x

+Y

0,0 +X

SCREEN AREA
MIRROR IMAGE OF
QUADRANT I
ABOVE THE X AXIS

Fig. 28-8. Apple screen.

The problem to be solved in the graphic$ demonstration is to plot the
graph of a parabola with its apex pointing toward the bottom of the display
screen. Figs. 28-9, 28-10, 28-11, 28-12, 28-13, and 28-14 show the formula
graph display as it appears on the screen.

The formula for a parabola is Y = AX2 + B. Variations of this formula are
used to plot the parabola. Lines 150, 160, and 170 of the program produce
the graph of a parabola with its apex pointed toward the bottom of the
screen.

Plotting Y = X2 (Fig. 28-9) produces a graph in the proper quadrant. The
apex of the graph is pointing up, but only the right half of the graph is dis
played on the screen.

-Y

-x 0,0 +X Fig. 28-9. Y=X2 •

+Y

GRAPHICS 241

Plotting Y = (X - 19)2 (Fig. 28-10) produces a graph with its apex point:
ing up, and the graph is centered on the screen. The graph has been moved
nineteen X positions to the right on the positive X axis.

-Y

Fig. 28-10. Y=(X-19)2. -x

+Y

The remaining usable screen is between the line 2,0 to 37 ,0, and the line
2,37 to 37,37 (Lines and squares created by the program fill the screen at
0,0 to 39,0, and 0,39 to 39,39). To fit the graph into the usable screen space,
the graph must be sized to the screen. We do this using the sizing factor. SF
stands for sizing factor.

LEFT EDGE SIZING FACTOR

37 = SF * (2 - 19)2 = 172 289
SF = 37/289 = .128

RIGHT EDGE SIZING FACTOR
37 = SF* (37 - 19)2 = 182 = 324
SF = 37/324 = .114

The two sizing factors are averaged, (.128 + .114) /2 = .122, and the
constant .122 is the figure we use to size the graph vertically. The formula is
changed to include the sizing constant, Y = .122 * (X - 19)2 (Fig. 28-11).

-Y

Fig. 28-11. Y=.122*(X-19)2 •
-x

0, 19

+Y

The next step is to place the apex of the parabola towards the bottom of
the screen. To invert the graph, a negative sign is placed before .122. The
formula, Y = - .122 * (X - 19)2 , is shown in Fig. 28-12. The formula places

242 APPLESOFT LANGUAGE

the apex toward the bottom of the screen. The negative sign causes the
graph to disappear from the screen because it shifts to the true quadrant I.

-Y

-x Fig. 28-12. Y = - .122*(X - 19)2.

2.37 37,37
+Y

To cause the graph to be displayed on the screen, + 37 is added to the
formula. The formula is, Y = - .122 * (X - 19)2 + 37 (Fig. 28-13). This
adjustment to the formula places the graph, apex down, on the viewing
screen.

-Y

-x +X Fig. 28-13. Y= -.122*(X-19)2 +37.

v
+Y

The formula in Fig. 28-14 is coded to plot the graph. The program state
ment at line 160 causes the parabola to be graphed on the screen with its
apex pointing down, thus solving the problem.

-Y

-x

+Y

+X

C/'"
Fig. 28-14. Plot X,
(37- .122*(X-19) A 2).

GRAPHICS 243

Line 170 completes the plot of the graph. VTAB 22: HTAB 2 sets the loca
tion for the print statement. GRAPH of Y = - . 122 * (X - 19) A 2) + 37 is
printed on line 22 of the TEXT area of the split screen graph (Fig. 28-6).

Line 180 plots the square at 15,47. The square is plotted in the TEXT area
of the screen and shows as a 1 ight "@".

Line 190 causes the display to go to full screen graphics.
Line 200 sets the color to black.
Line 210 blacks out horizontal lines in the full screen graphics from lines

40 to 47.
Lines 220 through 360 produce the word GRAPHICS, each letter in a dif

ferent color, at the bottom of the screen in lines 40 to 47 (Fig. 28-15).

40

41

42

43

fig. 28-15. Graphics G. 44

45

46

47

48
4

Line 950 is a long pause loop. It gives the user time to view the demon
stration.

In line 960, POKE -16301,0 switches display from graphics mode back to
text mode. HOME clears the screen. VTAB 22 tabs to line 22 to print THAT'S
ALL.

The second program in Lesson 28 is OGIVE (Fig. 28-16). In Lesson 26,
FORMULAS, the OGIVE program was presented. The program randomly
input 80 student grades and placed them in 17 ranges. The output was infor
mation on which to make an ogive of cumulative distribution. Lesson 28
adds graphics to the original program so the ogive is printed on the screen.
Lines 130 through 700 (Fig. 28-16) produce and print the ogive on the
screen.

244 APPLESOFT LANGUAGE

5 REM : OGIVE GRAPHICS
10 HOME
20 DIM CG(17)
30 GOSUB 800
40 T = 0: FOR J = 1 TO 17
50 IF J <>INT ((J - 1) I 5) * 5 + 1 THEN 80
60 IF J < > 1 THEN PRINT "OGIVE COUNT= ";T;" OF 80 =";TI 80;"%":

INPUT "!";Q$
70 PRINT "RANGE # BASE TOP COUNT"
80 R = J: GOSUB 900:UL = RL:R = J - 1: GOSUB 900:LL = RL + 1:

IF LL = 1 THEN LL = 0
90 PRINT SPC(3);J;: HTAB 13: PRINT LL;: HTAB 20: PRINT UL;: HTAB 30:

PRINT CG(J)
100 T = T + CG(J): NEXT J
110 PRINT "OGIVE COUNT=";T;" OF 80 =";TI 80;"%"
120 INPUT ''!'';Q$
130 GR: HOME: COLOR= 1: VLIN 0,39 AT O: HUN 2,39 AT 39
140 T = 0: FOR J = 1 TO 17: COLOR= J - 1 + (J = 1) * 15 -

(J = 17)
150 VLIN 37 - (CG(J) + T - CG(1)) I (80 - CG(1)) * 37,37 AT J * 2 + 2
160 T = T + CG(J): NEXT J
170 VTAB 21: PRINT " R# ";: FOR J = 1 TO 9: PRINT J;" ";: NEXT J:

FOR J = 1 TO 8: PRINT "1 ";: NEXT J
180 VTAB 22: HTAB 23: FOR J = 0 TO 7: PRINT J;" ";: NEXT J
190 PRINT
690 INPUT "!";Q$
700 TEXT : HOME : END
800 FOR J = 1 TO 80:SG = INT (RND(1.0) * 101): IF SG = 0 THEN

SG = 1
810 IF SG > 32 THEN 830
820 CG((SG - 1) I 16 + 1) = CG((SG - 1) I 16 + 1) + 1: GOTO 880
830 IF SG > 64 THEN 850
840 CG(3 + (SG - 33) I 8) = CG(3 + (SG - 33) I 8} + 1:: GOTO 880
850 IF SG > 92 THEN 870
860 CG(? + (SG - 65) I 4) = CG(? + (SG - 65) I 4) + 1: GOTO 880
870 CG(14 + (SG - 93) I 2) = CG(14 + (SG - 93) I 2) + 1
880 NEXT J: RETURN
900 RL = R * 16 - (R > 2) * (R - 2) * 8 - (R > 6)

* (R - 6) * 4 - (R > 13) * (R - 13)
* 2

910 RETURN

Fig. 28-16. OGIVE program.

In line 130 GR sets the split screen graphics mode. HOME clears the
screen. COLOR = 1 sets the color to white.

VLIN 0,39 AT 0 draws a vertical line in column zero. HLIN 2,39 AT 39 draws
a horizontal line at row 39. These lines highlight the left side and bottom
area in which the ogive is placed (Fig. 26-10). The student grades are ran
domly input, so no two ogives will be the same.

GRAPHICS 245

In line 140, T= 0 initializes the totaling variable to zero. FOR J = 1TO17
is beginning of the loop to display the 17 different grade ranges.

COLOR= J - 1 + (J = 1) * 15 - (J = 17) is a formula used to change the
color on each loop execution. J = 1 is a logical expression used to
eliminate J = 0 (black). J = 17 is a logical expression used to subtract the
value of J = 17, and cause the color value to be generated in a circular
mode.

The formula at line 150 processes the ogive data generated by the pro
gram and graphs the ogive of cumulative distribution.

Fig. 28-18 details the processing action to produce the bar graph.
The value of the loop variable, J, is recorded in column Cl. J represents

the 17 ranges used in the graph.
Column C2 holds the value of the number of grades in grade range CG(J).

These are the same values generated by the program and listed in Fig.
28-17.

RANGE # BASE TOP COUNT
1 0 16 1'I
2 17 32 11
3 33 40 4
4 41 48 9
5 49 56 5

OGIVE COUNT =40 OF 80 = .5%

RANGE # BASE TOP COUNT
6 57 64 6
7 65 68 3
8 69 72 3
9 73 76 5
10 77 80 3

OGIVE COUNT= 60 OF 80 =. 75%

RANGE # BASE TOP COUNT
11 81 84 4
12 85 88 2
13 89 92 7
14 93 94 2
15 95 96 1

OGIVE COUNT= 76 OF 80 = .95%

RANGE# BASE TOP
16 97 98
17 99 100

COUNT
2
2

OGIVE COUNT= 80 OF 80 = 1 %

Fig. 28-17. OGIVE data.

246 APPLESOFT LANGUAGE

Column C3 holds the total number of grades and is computed by the
formula in line 160, T = T + CG(J).

Column C4 is a constant, whose value is 11 . Eleven is the number of
grades in the first grade range.

Column C5, C2 + C3 - C4, computes the number of grades in each
grade range less the number of grades in the first grade range (11). This
causes range 1 to be printed as one instead of 11. The 11 is subtracted out
of the number of grades in each grade range. Subtracting the 11 from all
range values expands the rest of the ranges to accurately relate how many
students are in each range. It expands the graph to give better definition
without distorting the truth.

Column C6 is a constant to reflect the total number of grades less the
grades in range 1. Total grades = 80, less the 11 grades in range 1, leaves
the constant with a value of 69.

Column C7, C5/C6, divides the total grades less the grades in range 1, by
the constant 69. Column C7 produces a percentage of the total grades in
each range.

The maximum length of any bar in the graph is 37. Column C8, C7*37,
takes the percentage of grades and multiplies by 37 to get the number of
squares to be subtracted from the bar in the graph.

Column C9, 37 - C8, subtracts the value computed in C8 from 37 (maxi
mum length of the bar), so that the bar extends from the bottom line up
wards.

Column ClO, VLIN C9,37 AT J * 2 + 2, produces the vertical line to be
printed in the proper column on the ogive.

The column at which the bar is printed is computed by the formula J * 2 +
2.

Careful study of Figs. 28-17 and 28-18 shows the power and beauty of
formulas, and how they produce speed and efficiency.

Lines 170 and 180 produce the range labels, below the ogive.

VTAB 21 R# 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1
VT AB 22 : HT AB 23 0 1 2 3 4 5 6 7

The range labels are tied with the formula in line 150, so J * 2 + 2 prints
the bar in the properly labeled column.

Line 190 causes a line to be skipped between the lowest label in the ogive
and the input at line 690.

Line 690 causes an exclamation mark to be placed at line 24, column 1,
and allows the user time to study the ogive. When the user has completed
his study of the ogive, RETURN is pressed. Pressing RETURN places the
screen in the TEXT mode. HOME clears the screen and the program ends.

COLUMN4'CG(1)' = 11 COLUMN6'BO-C4' = 69
J CG(J) T C2 + C3 -C4 C5/C6 C7*37 37- CB

C1 C2 C3 CS C7 CB C9
1 11 0 0 0000 0 37
2 11 11 11 .159 5 32
3 4 22 15 .217 B 29
4 9 26 24 .34B 12 25
5 5 35 29 .420 15 22
6 6 40 35 .507 1B 19
7 3 46 3B .551 20 17
B 3 49 41 .594 21 16
9 5 52 46 .667 24 13

10 3 57 49 .710 26 11
11 4 60 53 .76B 2B 9
12 2 64 55 .797 29 B
13 7 66 62 .B99 33 4
14 2 73 64 .92B 34 3
15 1 75 65 .942 34 3
16 2 76 67 .971 35 2
17 2 7B 69 1000 37 0

Fig. 28-18. OGIVE graph information.

GRAPHICS 247

VLIN C9,37 AT J*2+2
C10

37,37 AT 4
32,37 AT 6
29,37 AT B
25,37 AT 10
22,37 AT 12
19,37 AT 14
17,37 AT 16
16,37 AT 1B
13,37AT20
11,37 AT 22
9,37 AT 24
B,37 AT 26
4,37 AT 2B
3,37 AT 30
3,37 AT 32
2,37 AT 34
0,37 AT 36

LESSON 29

High Resolution Graphics

High resolution graphics is very similar to low resolution graphics in Les
son 28. High resolution graphics will not run with Applesoft on tape or disk.
HGR WILL ONLY RUN WITH APPLESOFT IN ROM.

High resolution graphics has two modes: (1) split screen graphics, with
the four bottom lines for text, and (2) full screen graphics.

The split screen mode (Fig. 29- 1) divides the screen into 280 columns
(0,279), and 160 rows (0, 159). The bottom four lines are reserved for text.
Each seven high resolution graphics columns represent one text column.
There are 40 text columns and 280 graphics columns. Every eight high

Fig. 29-1. Text screen.

Y COORDINATE

QUADRANT I

X COORDINATE

0,0 39,0

TEXT SCREEN

QUADRANT II

20
21
22
23
24

THE SCREEN POSITION IS IN THE
POSITIVE X AND NEGATIVE Y
COORDINATE AREA BUT IS A
MIRROR IMAGE OF QUADRANT I

249

250 APPLESOFT LANGUAGE

resolution graphics rows represent one text row. There are 20 text rows and
160 graphics rows.

The full screen high resolution screen (Fig. 29-2) contains 280 columns
(0,279) and 192 rows (0,191).

~

0,0 279,0

HGR - SPLIT SCREEN

160 x 280

0. 159 159,279

160 - 167
HGR 2 - FULL SCREEN

192 x 280

0, 191 191,279

(THE SCREENS ARE NOT TO SCALE)

~

Fig. 29-2. High resolution graphics
screen.

The high resolution graphics screen is divided into two distinct sets of
lines. There are columns with odd numbered lines and columns with even
numbered lines. The color statement (HCOLOR =) is related to the odd
even line system. The odd number lines are colored by the odd numbered
colors (Fig. 29-3) and the even numbered lines are colored by the even num
bered colors.

0 Black 1
2 Blue (depends on TV)
4 Black 2
6 (depends on TV)

1 Green (depends on TV)
3 White 1
5 (depends on TV)
7 White 2

Fig. 29-3. High resolution graphics color names and related numbers.

Two programs are presented in Lesson 29, (1) HI-RES EXPLAINER (Fig.
29-7) and (2) ORBIT AL WAR GAME (Fig. 29-9).

The HI-RES EXPLAINER details the use of the high resolution graphics
commands and statements (Fig. 29-4).

DRAW 1 AT 30,40

HCOLOR=3

HGR

HGR 2

HPLOT 10,20

HPLOT 9,0 TO 271,0
HPLOT TO 159,271

ROT=

SCALE

SH LOAD
TEXT

XDRAW 1 AT 30,40

HIGH RESOLUTION GRAPHICS 251

Draws shape as defined in the shape table. Shape #1 is
drawn at X location 30, Y location 40. The color, scale, and
rotation must be specified before DRAW is executed. See
line 10 of Fig. 28-8.
Sets the color of the screen to white. Color values range
from 0-7 (Fig. 28-4). Even color values print on even num
bered lines on the screen. Odd color values print on odd
numbered lines on the screen.
Sets high resolution, split screen, graphics mode to 160 x
280 for the screen. Leaves four lines for TEXT at the bot
tom of the screen. Sets COLOR = 0 (black). HGR IS AVAIL
ABLE ONLY ON APPLESOFT IN ROM.
Sets high resolution, full screen, graphics mode to 192 x
280 on the screen.
Places a dot at X location 10, Y location 20, using last
HCOLOR designation.Xis even numbered line, so HCOLOR
value must be even. Odd value color prints black on even
numbered line.
Plots a line from column 9 to column 271 at row 0.
Plots a line from the last designated point (271,0) to the
next designated point (159,271).
Value ranges from 0 to 64. Causes a shape to be rotated
clockwise after a DRAW or XDRAW.
Value ranges from 0-255. Scale 1 is the smallest size, and
scale 0 is the largest size. See line 1000, Fig. 28-8.
Loads a shape table from cassette tape.
Sets the screen to the TEXT mode of 24 rows and 40
columns.
Draws shape 1, from previously loaded shape table, at X
location 30, Y location 40.

Fig. 29·4. High resolution graphics commands and statements.

Line 10 of the HI-RES EXPLAINER sets the TEXT mode, clears the
screen, and places the HI-RES EXPLAINER PROGRAM in the center of the
screen.

10 TEXT: HOME : VTAB 8 : PRINT" HI - RES EXPLAINER PROGRAM"
20 GOSUB 1000: HOME: HGR: VTAB 21 : PRINT "--------THIS IS

THE BOTTOM LINE--------"

In line 20, GOSUB 1000 is a delay loop to allow the user time to view the
results as the program progresses. HOME clears the screen. HGR is the
statement that places the screen in high resolution split screen graphics
(most high resolution graphics statements are prefaced with the letter "H"
to distinguish them from low resolution graphics statements). THIS IS THE
BOTTOM LINE is printed at line 21 in the text section of the graphics screen.
Line 20 is not usable because of computer design.

Lines 30 through 34 set up the basic data to plot rectangles, one in each
corner of the screen (Fig. 29-5).

252 APPLESOFT LANGUAGE

0,0

XP = 1
yp = 0

PRINTS AS
yp + 2 = 2
GOES TO
YP = 0

XP = 1
YP + 2 = 2

31 XP = 1 : YP = 0 : GOTO 40

XP + 2 = 3
yp + = 0

PRINTS AS
YP = 0
GOES TO
yp + 2 = 2

XP + 2 = 3
yp + 2 = 2

40 HCOLOR = 1 : HPLOT XP,YP TO XP + 2,YP TO XP + 2,YP + 2 TO
XP,YP + 2, TO XP,YP: NEXT J : GOSUB 1000

Fig. 29-5. HPLOT diagram. HCOLOR = 1(prints on oclcl 111.1mbered lines).

30 FOR J = 1 TO 4 : ON J GOTO 31, 32, 33, 34
31 XP = 1 : YP = 0 : GOTO 40
32 XP = 277 : YP = 0 : GOTO 40
33 XP = 277 : YP = 157 : GOTO 40
34 XP = 1 : YP = 157
40 HCOLOR = 1 : HPLOT XP,XY TO XP + 2,YP TO XP + 2,YP + 2 TO

XP,YP + 2 TO XP,YP: NEXT J : GOSUB 1000

In line 40, HCOLOR = 1 sets the color to green (Fig. 29-4). The color green
has a value of 1. All colors with an odd value print only on the odd num
bered lines. All colors with an even value print on the even numbered lines.

HPLOT XP, YP TO XP + 2,YP prints on the dot whose value is XP = 1, YP
= 0. The XP value is odd, so the odd value of the color is printed at 1,0. The
next dot printed is 3,0. The color on column #2 prints on an even color
value, so column #2 is black (Fig. 29-5).

If no dot is specified, HPLOT plots from the last printed dot. The last
printed dot is 3,0 (XP + 2,YP). The HPLOT continues from 3,0 to plot XP +
2, YP + 2. An increment of 2 is added to the Y value, so a dot is placed at
3,2. In placing the dot at 3,2 a dot is also placed at 3.1 (Fig. 29-5).

The plot continues from 3,2 to XP,YP + 2, or from 3,2 to 1,2. The color
value is odd, so the even valued line does not show a print. The square
would be three dots wide by three dots long, but the color value is odd. This
causes the square to look like a 2 x 3 rectangle (Fig. 29-5).

The NEXT J in line 40 causes a rectangle to be placed in each corner of the
screen.

GOSUB 1000 branches to a delay loop at line 1000 that delays for a count
of 1500 to enable the viewer time to view the dots.

HIGH RESOLUTION GRAPHICS 253

319,o7/

9,1~
9, 2

33

9, 157
9, 158
9, 159

160. 167
168. 175
176. 183
184. 191

30 FOR J = 1 TO 4 : ON J GOTO 31, 32, 33, 34
31 XP = 1 : YP = 0 : GOTO 40
32 XP = 277 : YP = 0 : GOTO 40
33 XP = 277 : YP = 157 : GOTO 40
34 XP = 1 : YP = 157

271.0
271,1
271.2

32

40 HCOLOR = 1 : HPLOT XP,YP TO XP + 2,YP TO XP + 2,YP + 2 TO XP,
YP + 2, TO XP,YP : NEXT J : GOSUB 1000

SO FOR J = 0 TO 1 S7 STEP 1 S7 : FOR K = 0 TO 2 : HPLOT 9,J + K TO
271, J + K : NEXT K, J : GOSUB 1000

fig. 29-6. High resolution explainer.

SO FOR J = 0 TO 1 SO STEP 1 S7 : FOR K = 0 TO 2 : HPLOT 9,J + K
TO 271,J + K : NEXT K,J : GOSUB 1000

FOR J = 0 TO 157 STEP 157 sets up to print a line at row 0, and a line at row
157. FORK = 0 to 2 sets up to print three lines. The three lines in columns
0, 1, 2 produce a line 3 rows wide (Fig. 29-6).

HPLOT 9,J + K TO 271,J + K plots three lines,

9,J+K 271,J+K
9,0 .. 271,0
9,1 .. 271,1
9,2 .. 271,2

and also plots three lines at 9,J + K TO 271,J + K.

9,J+K 271.J+K
9, 157 .. 271, 157
9, 158 .. 271, 158
9,159 .. 271,159

Line 60 causes two vertical lines (of three lines each) to be printed on the
right and left sides of the screen. The statement FOR K = 1 TO 3 STEP 2
prints on the odd lines one and three, and steps over the even line because
the color value of green (1) does not print on even numbered lines.

254 APPLESOFT LANGUAGE

Line 70 causes the graph of a parabola to be sized and printed, with its
apex toward the top of the screen. The parabola at line 70 is printed in the
upper half of the screen. Steps similar to those in Lesson 26 are used to size
and print the graph of the parabola.

70 HPLOT 9,79: FOR J = 0 TO 130: X = J*2 + 11: HPLOT TO X,
INT(((X - 139) /\. 2)*.00435 + 4.5): NEXT J

HPLOT 9,79 designates the location of the first dot to be printed in the
graph. FOR J = 0 TO 130 prints 131 dots in the graph (Fig. 29-7).

5 REM : HI-RES EXPLAINER
10 TEXT: HOME : VTAB 8: HTAB 8: PRINT "HI-RES EXPLAINER PROGRAM"
20 GOSUB 1000: HOME: HGR: VTAB 21; PRINT "--------THIS IS

THE BOTTOM LINE--------"
30 FOR J = 1 TO 4: ON J GOTO 31,32,33,34
31 XP = 1:YP = 0: GOTO 40
32 XP = 277:YP = 0: GOTO 40
33 XP = 277:YP = 157: GOTO 40
34 XP = 1 :YP = 157
40 HCOLOR= 1: HPLOT XP,YP TO XP + 2,YP TO XP + 2,YP + 2 TO XP,

YP + 2 TO XP,YP: NEXT J: GOSUB 1000
50 FOR J = 0 TO 157 STEP 157: FORK = 0 TO 2: HPLOT 9,J + K TO

271,J + K: NEXT K,J: GOSUB 1000
60 FOR J = 0 TO 276 STEP 276: FOR K = 1 TO 3 STEP 2: HPLOT J + K,5

TO J + K, 154: NEXT K,J: GOSUB 1000
70 HPLOT 9,79: FOR J = 0 TO 130: X = J * 2 + 11: HPLOT TO X,

INT (((X - 139) t 2) * .00435 + 4.5): NEXT J
80 VTAB 22: PRINT "PLOT: Y= .00435*(X-139)t2+4.5": GOSUB 1000
90 FOR J = 129 TO 0 STEP - 1 :X = J * 2 + 9: HPLOT TO X,(INT

(151 - ((X - 139) t 2) * .00435 + 4.5)): NEXT J
100 VTAB 23: PRINT "PLOT: Y=151-.00435*(X-139)t2+4.5";: GOSUB 1000
110 FOR J = 1TO129 STEP 2:X = J * 2 + 9:Y =INT (((X - 139) t 2)

* .00435 + 4.5):X2 = 271 - J * 2:Y2 = INT (151 - ((X - 139)
t 2) * .00435 + 4.5): HPLOT X,Y TO X2,Y2: NEXT J

999 END
1000 F.OR J = 0 TO 1500: NEXT J: RETURN

Fig. 29-7. (Cont.) HI-RES EXPLAINER program.

X = J*2 + 11 is the formula used to compute the value along the X axis.
When J = 0, the second dot is placed at 11, along the X axis. The first dot is
plotted at HPLOT 9,79. The last value of Xis equal to 130*2 + 11 = 271.

The value along the Y axis is plotted by the formula INT((((X - 139)A2)*
.00435) + 4.5). The graph is plotted in the center of the screen by dividing
the range (0,279) by 2 = 139. The center of the X axis is X - 139.

The graph is sized to the usable space between columns 9 and 271, and
rows 4 to 79. The Y range = 75.

X = 9: (9-139)2 *CONSTANT = 75

CONSTANT = 75/(130)2 = .00437

HIGH RESOLUTION GRAPHICS 255

The constant, .004437 is reduced by guesstimate to .00435 to make
sure the graph does not extend past the screen limits. The formula is now

Y = (X - 139)2 * .00435.

Vertical lines are printed along the left side of the screen to form a border.
Three vertical lines are printed from row 5 to 154, at columns 0, 1, and 2.
The left edge of the parabola starts at column 4. The 4 is added to the
formula.

Y = (X - 139)2 * .00435 + 4

To make sure the integer function is always rounded properly, .5 is added
to the formula. The final formula is

Y = (X - 139)2 * .00435 + 4.5.

The formula is converted to a program statement, and the data is in Fig.
29-8.

J

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

J*2 + 11
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61

INT(((X- 139)t2)* .00435) + 4.5)
75
73
71
69
67
65
63
61
59
57
55
53
51
49
48
46
44
42
41
39
38
36
35
33
32
30

Fig. 29-8. Data to plot graph.

--------------~ -- - -----

256 APPLESOFT LANGUAGE

J*2 + 11 INT(((X- 139)t2)* .00435) + 4.5)

26 63 29
27 65 28
28 67 27
29 69 25
30 71 24
31 73 23
32 75 22
33 77 21
34 79 20
35 81 19
36 83 18
37 85 17
38 87 16
39 89 15
40 91 14
41 93 13
42 95 12
43 97 12
44 99 11
45 101 10
46 103 10
47 105 9
48 107 8
49 109 8
50 111 7
51 113 7
52 115 7
53 117 6
54 119 6
55 121 5
56 123 5
57 125 5
58 127 5
59 129 4
60 131 4
61 133 4
62 135 4
63 137 4
64 139 4
65 141 4
66 143 4
67 145 4
68 147 4
69 149 4
70 151 5
71 153 5
72 155 5
73 157 5

Fig. 29-8-cont. Data to plot graph.

HIGH RESOLUTION GRAPHICS 257

J*2 + 11 INT(((X-139)t2)* .00435) + 4.5)

74 159 6
75 161 6
76 163 7
77 165 7
78 167 7
79 169 8
80 171 8
81 173 9
82 175 10
83 177 10
84 179 11
85 181 12
86 183 12
87 185 13
88 187 14
89 189 15
90 191 16
91 193 17
92 195 18
93 197 19
94 199 20
95 201 21
96 203 22
97 205 23
98 207 24
99 209 25

100 211 27
101 213 28
102 215 29
103 217 30
104 219 32
105 221 33
106 223 35
107 225 36
108 227 38
109 229 39
110 231 41
111 233 42
112 235 44
113 237 46
114 239 48
115 241 49
116 243 51
117 245 53
118 247 55
119 249 57
120 251 59
121 253 61

Fig. 29-8-cont. Data to plot graph.

258 APPLESOFT LANGUAGE

122
123
124
125
126
127
128
129
130

J*2 + 11

255
257
259
261
263
265
267
269
271

INT(((X-139)t2)* .00435) + 4.5)

63
65
67
69
71
73
75
78
80

Fig. 29-8 - cont. Data to plot graph.

HPLOT TO X,INT(((X - 139)A 2)*.00435 + 4.5)
80 VTAB 22: PRINT "PLOT: Y = .00453 * (X-139) A 2 + 4.5": GOSUB 1000

Line 80 VT AB's to row 22 and prints out the formula used to graph the
parabola.

90 FOR J = 129 TO 0 STEP -1 : X = J*2 + 9 : HPLOT TO X,
(INT(151 - ((X - 139) A 2) * .00435 + 4.5)): NEXT J

Line 90 prints the graph of a parabola starting from the right hand side of
the screen. The parabola is in the lower half of the screen, with its apex
pointing down. FOR J = 129 TO 0 STEP -1, joins point 130,261 and plots the
graph clockwise to point 4,6.

100 VTAB 23: PRINT "PLOT: Y = 151 - .00435*(X-139) A 2 + 4.5"
; : GOSUB 1000

Line 100 VT AB' s to row 23 and prints out the formula to graph the
parabola in the lower half of the screen ..

110 FOR J = 1 TO 129 STEP 2: X = J * 2 + 9: Y = INT (((X - 139)
A 2) * .00435 + 4.5): X2 = 271 - J * 2: Y2 = INT (151 -
((X - 139) A 2) * .00435 + 4.5): HPLOT X,Y TO X2,Y2: NEXT J
J*2 + 11 INT(((X-139)t2)* .00435) + 4.5)

Line 110 causes lines to be printed from the upper graph boundary,
through the center of the screen, to the lower graph boundary. The loop
causes 129 points to be plotted beginning at the junction of the graphs on
the left to the junction of the graphs on the right. Two sets of X points are
computed and plotted, X and X2. X is the point on the boundary of the
upper graph. X2 is the point on the boundary of the lower graph.

Two sets of Y points are computed, Y and Y2. Y is the point on the
boundary of the upper graph. Y2 is the point on the boundary of the lower
graph.

The two points, X,Y and X2,Y2, are the opposite ends of a series of clock
wise lines filling the interior of the two graphs.

I ,
I ~

X=J*2+9
Y = (((X - 139) A 2) * .00435 + 4.5)
X2 = 271 - J * 2

HIGH RESOLUTION GRAPHICS 259

Y2 = INT(151 - ((X - 139)A2) * .00435 + 4.5)

HPLOT X, Y TO X2, Y2 plots the lines related to the FOR J = 1 TO 129 STEP
2 loop.

The second program written for Lesson 29 is called ORBIT AL WAR
GAME (Fig. 29-9). The game runs only on Apple computers with Applesoft in
ROM. It can be loaded from tape and saved to tape. The shape tables are
written into the program in data statements. The information necessary to
create and save shape tables is found in Applesoft Basic Programming
Manual, pages 91 to 100, published by Apple Computer Inc.®

1 REM : ORBITAL WAR GAME
2 GOSUB 1600
5 GOTO 1000
10 FOR J = 0 TO 1: HCOLOR= 0: DRAW J + 1 AT VS(J,4),VS(J,5):

HCOLOR= ABS (VS(J,O)): DRAW J + 1 AT VS(J,6),VS(J,7):VS(J,2) =VS
(J,2) + VS(J,3)

20 VS(J,4) = VS(J,6):VS(J,S) = VS(J,7):VS(J,6) = COS (VS(J,2)) * VS(J,9) +
VS(J, 11):VS(J,7) = SIN (VS(J,2)) * VS(J, 10) + VS(J, 12): IF VS(J,O) > - 1
THEN 40

30 HCOLOR= 0: FORK = 0 TO VS(J, 16): DRAW 4 - J AT VS(J,4) -
SD(3 - J,1,0) + RND (1) * 7,VS(J,S) - SD(3 - J,1,1) + RND (1)
* 9: NEXT :VS(J, 16) = VS(J, 16) + .47

35 FORD = 1 TO 180: NEXT D
40 NEXT :VS(1, 15) = SQR (((VS(0,4) + SD(O, 1,0)) - (VS(1,4) + SD(1, 1,0))) t

2 + ((VS(0,5) + SD(0,1,1)) - (VS(1,S) + SD(1,1,1))) t 2): RETURN
50 FOR K = 0 TO 3: IF NOT W(K,O) THEN 70
60 NEXT: GOTO 100
70 W(K,3) = COS (VS(O, 15) - C(0,6)) * SD(0,0,0) + VS(0,6) + SD(O, 1,0):

IF W(K,3) < C(0,3) OR W(K,3) > C(0,4) THEN W(K,3) = C(0,4): GOTO 100
80 W(K,4) = SIN (VS(O, 15) - C(0,6)) * SD(O,O, 1) + VS(O, 7) + SD(O, 1,0):

IF W(K,4) < C(1,3) OR W(K,4) > C(1,4) THEN W(K,3) = C(0,4):W(K,4) =
C(1,4): GOTO 100

90 W(K,O) = 1 :W(K,S) = COS (VS(O, 15) - C(0,6)) * 18:W(K,6) = SIN
(VS(O, 15) - C(0,6)) * 8:VS(O, 14) = VS(O, 14) - VS(O, 13)

100 FOR J = 0 TO 3: HCOLOR= 0: DRAW 3 AT W(J, 1),W(J,2): HCOLOR=
W(J,O): DRAW 3 AT W(J,3),W(J,4):W(J, 1) = W(J,3):W(J,2) = W(J,4):W(J,3)
= W(J,3) + W(J,S):W(J,4) = W(J,4) + W(J,6)

110 IF W(J,3) < C(0,3) OR W(J,3) > C(0,4) OR W(J,4) < C(1,3) OR W(J,4) >
C(1,4) THEN W(J,O) = O:W(J,3) = C(0,4):W(J,4) = C(1,5):W(J,5) = O:W(J,6)
= 0

120 NEXT: RETURN
140 FOR J = 0 TO 3: IF W(J,O) = 0 OR VS(1,0) < > 1 THEN 170

Fig. 29-9. ORBITAL WAR GAME program.

260 APPLESOFT LANGUAGE

150 IF ABS (VS(1,4) + SD(1, 1,0) - W(J, 1) - SD(2, 1,0)) < 9 AND ABS (VS(1,5)
+ SD(1,1,1) - W(J,2) - SD(2,1,1)) < 5 THEN VS(1,0) = - 1: VTAB 24:
HTAB 1: PRINT "INTRUDER DESTROYED";:VS(1,16) = O:DC =DC+ 1:
GOTO 475

170 NEXT :VS(O, 15) = PDL (O) * C(0,5):VS(O, 14) = VS(O, 14) + VS(0,8):
VTAB 23: HTAB 17: PRINT INT (VS(0,15) * C(1,5) + .5); SPC(3);: RETURN

390 HCOLOR = 0: DRAW 4 AT W(4, 1), W(4,2): IF VS(1, 15) > VS(1, 14) OR
VS(1,0) < 1 THEN W(4,3) = C(0,4):W(4,4) = C(1,4): FOR J = 0 TO 300:
NEXT : RETURN

400 VS(1,8) = (1 - VS(1, 15) < VS(1, 13)) * ((VS(1, 15) - VS(1, 13)) I
(VS(1, 14) - VS(1, 13))):W(4,5) = VS(1,6) - VS(0,6): IF ABS (W(4,5)) < .001
THEN W(4,5) = C(0,6) + (VS(1,7) > VS(0,7)) *Pl: GOTO 420

410 W(4,5) = ATN ((VS(1,7) - VS(0,7)) I W(4,5)) + (VS(1,6) > VS(0,6)) *Pl
420 W(4,5) = W(4,5) + (-1) t INT (RND (1) + .5) * RND (1) * VS(1,8)

*Pl I 5:W(4,6) = VS(1,15) + (- 1) t INT (RND (1) + .5) * RND
(1) * VS(1,8) * (VS(1, 14) - VS(1, 15))

430 W(4,3) = VS(1,6) + COS (W(4,5)) * W(4,6):W(4,4) = VS(1,7) + SIN
(W(4,5)) * W(4,6): IF W(4,3) < C(0,3) OR W(4,3) > C(0,4) OR W(4,4) <
C(1,3) OR W(4,4) > C(1,4) THEN FOR J = 0 TO 55: NEXT J: RETURN

440 FOR J = 1 TO 6: HCOLOR= J - INT (J I 2) * 2: HPLOT VS(1,6) +
SD(2,0,0),VS(1,7) + SD(2,0,1) TO W(4,3),W(4,4): NEXT: HCOLOR= 1:
DRAW 4 AT W(4,3),W(4,4):W(4, 1) = W(4,3):W(4,2) = W(4,4)

450 VS(1,8) = SQR ((W(4,3) - (VS(0,6) + SD(O, 1,0))) t 2 + (W(4,4) -
(VS(O, 7) + SD(O, 1, 1))) t 2)

460 VS(0,14) = VS(0,14) - (VS(1,14) - INT (VS(1,8))) * 6: IF VS(0,14) > 0
THEN 480

470 VTAB 24: HTAB 1: PRINT "DEFENDER DESTROYED ";:
VS(O,O) = - 1:VS(O,16) = O:VS(O, 14) = O:VS(0,8) = 0: IC = IC + 1

475 HCOLOR= 0: DRAW 4 AT W(4, 1),W(4,2): RETURN
480 W(4,3) = C(0,4):W(4,4) = C(1,4): RETURN
610 GOSUB 140
620 GOSUB 10: VTAB 22: HTAB 15: PRINTVS(0,14); SPC(2);: HTAB 34: PRINT

INT (VS(1, 15) + .5); SPC(3);
640 IF VS(O,O) + VS(1,0) = 2 AND PEEK (- 16287) > 127 AND VS(0,14) >

VS(O, 13) THEN GOSUB 50: GOTO 740
660 GOSUB 100
740 GOSUB 140: IF VS(O,O) + VS(1,0) = 2 THEN GOSUB 390
800 IF VS(O, 16) < 5 AND VS(1, 16) < 5 THEN 610
840 IF VS(O,O) < 0 THEN VS(O,O) = 0
850 IF VS(1,0) < 0 THEN VS(1,0) = 0
860 FORK = 0 TO 7: GOSUB 10: FORD = 1 TO 500: NEXT D,K
998 RETURN
1000 DIM VS(1,16),W(4,7): POKE 232,0: POKE 233,3:J = 0: SCALE= 1: ROT=

O:K = 0
1010 DIM C(1,6),SD(3,1,1),0V(1): Pl= 3.14159
1020 FOR J = 0 TO 3: FOR K = 0 TO 1: FOR L = 0 TO 1: READ SD(J,K,L):

NEXT L,K,J
1030 FOR K = 0 TO 1: FOR J = 0 TO 4: READ C(K,J): NEXT J, K: READ

C(0,5),C(1,5)
1040 OV(1) = 5 I 57.2958:0V(O) = OV(1) I 1.5435

Fig. 29-9-cont. ORBITAL WAR GAME program.

HIGH RESOLUTION GRAPHICS 261

1050 GOSUB 3000
1070 IC= O:DC = O:VS(0,16) = O:VS(1,16) = O:C(0,6) = 1.5707
1080 VS(O,O) = 1:VS(1,0) = O:VS(0,1) =INT (RND (1) + .5):VS(1,1) = INT

(RND (1) + .5):VS(0,2) = RND (2 * Pl):VS(1,2) = VS(0,2) + Pl +
(- 1) t (INT (RND (1) + .5)) * RND (Pl)

1090 VS(0,3) = OV(VS(O, 1)) * (1 - 2 * INT (RND (1) + .5)):VS(1,3) =
OV(VS(1,1)) * (1 - 2 *INT (RND (1) + .5))

1100 FOR J = 0 TO 4:W(J,O) = O:W(J,3) = C(0,4):W(J,4) = C(1,4):W(J,5) =
O:W(J,6) = O:W(J, 1) = W(J,3):W(J,2) = W(J,4): NEXT

1110 FOR K = 0 TO 1 :VS(K,9) = C(VS(K, 1),0) - SD(K,0,0) I 2:VS(K, 10) =
C(VS(K,1),1) - SD(K,0,1) I 2:VS(K,11) = C(0,2) - SD(K,1,0):VS(K,12) =
C(1,2) - SD(K,1,1): NEXT K

1120 FORK = 0 TO 1 :VS(K,4) = COS (VS(K,2)) * VS(K,9) + VS(K, 11):VS(K,6)
= VS(K,4):VS(K,5) = SIN (VS(K,2)) * VS(K, 1 O) + VS(K, 12):VS(K, 7) =
VS(K,5): NEXT K

1130 VS(0,8) = 85:VS(0,13) = 134:VS(1,13) = 40:VS(1,14) = 120
1140 HGR: VTAB 21: HOME : VTAB 21: PRINT "DEFENDER = ";DC;: HTAB 23:

PRINT "INTRUDER =";IC
1150 PRINT "ENERGY LEVEL = "; SPC(8);"DISTANCE ="
1160 PRINT "FIRE DIRECTION ="
1170 HCOLOR= 1: HPLOT 1,0 TO 279,0 TO 279, 159 TO 1, 159 TO 1,0: DRAW 1

ATVS(0,4),VS(0,5):VS(0,16) = O:VS(1,16) = 0
1180 FORK = 0 TO 8: GOSUB 10: FORD = 1 TO 550: NEXT D,K: VTAB 24:

FLASH : PRINT "WARNING! ! INTRUDER APPROACHING";
1190 NORMAL: FOR K = 0 TO 4: GOSUB 10: FORD = 1 TO 550: NEXT D,K:

VTAB 23: CALL -958:VS(1,0) = 1:VS(0,14) = 3000
1200 GOSUB 610: IF IC< 5 AND DC< 5 THEN 1080
1210 VTAB 23: HTAB 24: INPUT "TRY AGAIN ?";Q$: IF Q$ < > "N"

THEN 1070
1220 TEXT: HOME: END
1600 FORK= 768 TO 1000: READ J: IF J = - 1 THEN 1840
1610 POKE K,J: NEXT K: GOTO 1840
1620 DATA 4,0, 10,0, 105,0, 189,0,202,0
1630 DATA 45,5,45,5,45,5,45,5, 73,58, 7
1640 DATA 63,7,63,7,63,7,63,7,63,5,63,7
1650 DATA 191, 73,73, 105,5,45,5, 141,251,63, 7 ,255
1660 DATA 74,45,5,109,21,7,59,7,7,255,31,7
1670 DATA 74,45,5, 7,45,5,45,5, 13,5,250,63
1680 DATA 7,63,7,7,255,31,7,155,41,5,45,5
1690 DATA 45,5,45,5,45,5,45,5,45,5,218,59
1700 DATA 7,63,7,63,7,63,7,7,63,7,7,0
1710 DATA 77,9,5,73,77,77,58,7,63,7,63
1720 DATA 7,31,7,63,7,63,7,159,45,5,45,5
1730 DATA 45,5,45,5,45,5,45, 7, 7 ,5,45,5
1740 DATA 45,5,218,59, 7,63,5,63, 7,63,7, 15
1750 DATA 63,7,63,7,5,63,25, 191,73, 13,5,45
1760 DATA 5,45,5,5,45,5,209,31, 7 ,63, 7 ,63
1770 DATA 7,63,7, 159,41,5, 105,41,5,73,5,45,0
1780 DATA 77,250,31,7, 155,9,5, 105,77,218,27
1790 DATA 7,0

Fig. 29-9-cont. ORBITAL WAR GAME program.

262 APPLESOFT LANGUAGE

1800 DATA 77, 109,58,7,63,7,255,87,41,5,5
1810 DATA 9,5, 13,5,218,63, 7 ,5,63, 7,255,87
1820 DATA 9,5,9,5,5,0
1830 DATA - 1
1840 RETURN
2100 DATA 10, 10,4,2
2110 DATA 11,7,3,3
2120 DATA 3,4,0, 1
2130 DATA 5,5,1,2
2140 DATA 128,75, 138,5,270
2150 DATA 92,60,80,5,150
2160 DATA .02464,57.2958
3000 HOME : VTAB 8: HTAB 8: PRINT "= = = ORBITAL WAR GAME = = =" :

PRINT: PRINT: HTAB 12: PRINT "BRIAN BLACKWOOD"
3010 PRINT: PRINT: HTAB 12: PRINT "7020 BURLINGTON": PRINT: PRINT:

HTAB 12: PRINT "BEAUMONT TX, 77706"
3020 PRINT : PRINT : HTAB 12: PRINT "COPYRIGHT JULY 20, 1980"
3030 FOR J = 1 TO 1500: NEXT J: RETURN

Fig. 29-9. (Cont.) ORBITAL WAR GAME program.

The program will not be explained in detail because this is the final
examination. The lessons in the book give sufficient information and detail
for all the sharp students to replicate the program. This program draws on
logic, graphics, mathematics, science, and programming ability to create
an interesting game.

The program creates four shapes: defender, intruder, defender's missiles,
and intruder's space rays. The defender and intruder move in either of two
randomly selected orbits, an inner orbit, and an outer orbit.

The defender has four missiles to fire at the intruder that are controlled
and fired by the player through game paddle zero (0). Each missile is
replenished when it leaves the screen, so the defender has an unlimited
number of missiles, within a controlled time frame.

The intruder automatically fires its space rays when the defender is in
range. The invader has an unlimited number of space rays to fire, but they
are only effective within a specified range.

The game ends when either adversary has five kills.
The game is written entirely in Applesoft BASIC for teaching purposes. In

Applesoft the game is a bit slow. If the orbital and firing routines were
written in assembly language, the game would be faster.

The variables in the program are shown in Fig. 29-10.
Line 2 GOSUB 1600 causes the shape tables to be loaded into memory.

1600 FORK = 768 TO 1000 : READ J : IF J = -1 THEN 1840
1610 POKE K, J : NEXT K: GOTO 1840

Line 1600 sets up the number of memory addresses (decimal) into which
the shape table data is placed. READ J reads the data.

i
I

CONSTANTS
Orbit values - 2 orbits
DIM C(1,6)
C(A,B)

A = orbit 0 or 1
B = range of orbit

0 = X range
1 = Y range

HIGH RESOLUTION GRAPHICS 263

C(O,O), C(O, 1), C(1,0), and C(1, 1) = orbit values
(SCREEN LIMITS)
C(A,B)

A = 0 = X axis value
A = 1 = Y axis value
B = 2 = offset
B = 3 = minimum
B = 4 = minimum on selected axis
B = 5 = maximum on selected axis

C(1,3) = minimum on Y axis
C(1,4) = maximum on Y axis
C(0,5) = conversion factor of paddle zero (0-255) to radians (0, pi)
C(1,5) = conversion factor of radians to degrees (57 .2958)
C(0,6) = conversion of paddle value to degrees on the screen

360 - North, 90 - East, 180 - South, and 270 - West
C(1,6) = # of times to draw space ship destruction
DC = defender count - the number of kills
IC = intruder count - the number of kills
J, K = loop and temporary variables

ORBITAL
OV(O) = angular velocity of outer orbit #0
OV(1) = angular velocity of inner orbit #1
Pl = 3.1417
ROT = 0 = HGR rotation value (value range from 0-64)
SCALE = 1 = HGR scaling factor - value range 0-255-1 smallest 0 largest

SHAPE DATA-four different shapes
0 = defender
1 = intruder
2 = missile (defender)
3 = space ray (intruder)
SD(3, 1, 1) = shape data
SD(A,B,C)

A = 0 to 3 sliape number
B = 0 = range
B = 1 = offset-center of space ship to center position of the screen from

position 0,0
C = 0 = X axis value
C = 1 = Y axis value

SD(O, 1, 1) = Y axis, offset of the shape 0
SD(3,0,0) = X axis, range of shape 3

VEHICLE STATUS
VS(1,15)

Fig. 29-10. ORBITAL WAR GAME variables.

264 APPLESOFT LANGUAGE

VS(O, ?) = defender
VS(1, ?) = intruder
VS(A,B)

A = 0 = defender
A = 1 = intruder
B = 0 = status

VS(1,0) = 0-intruder does not exist
VS(1,0) = 1-intruder functional
VS(1,0) = - 1-intruder damaged

B = 1 = orbit
VS(O, 1) = 0-defender is in the outer orbit
VS(O, 1) = 1-defender is in the inner orbit

B = 2 = angle value
B = 3 = orbital velocity
B = 4 = X axis value
B = 5 = Y axis value
B = 6 = next X axis value
8 = 7 = next Y axis value

VS(0,8) = energy increment
VS(1,8) = accuracy factor or distance to defender by intruder's space rays

B = 9 = X range
B = 10 = Y range
8 = 11 = X offset
8 = 1 2 = Y offset

VS(O, 13) = defender's energy base
VS(1, 13) = intruder's base firing distance
VS(O, 14) = defender's energy level
VS(1, 14) = intruder's maximum firing distance
VS(O, 15) = defender's fire direction
VS(1, 15) = intruder's distance to the defender
VS(O, 16) = defender's damage count
VS(1, 16) = intruder's damage count

WEAPON STATUS
W(4,6) = weapon data
W(A,8) = weapon data

A = 0, 1, 2, 3-defender has 4 missiles
A = 4-intruder has unlimited space rays at specified range

(DEFENDER'S WEAPONS)
8 = 0 = HCOLOR = 0 (black) or HCOLOR = 1 (green)

W(1,0) = 0-HCOLOR = 0 (black)
W(1,0) = 1-HCOLOR = 1 (green)

8 = 1 = X position value
8 = 2 = X positive value
8 = 3 = next X positive value
8 = 4 = next Y positive value

(INTRUDER'S WEAPON)-same 81 through 84
B = 5 = change in X value random value
8 = 6 = change in Y value random value

Fig. 29-10-cont. ORBITAL WAR GAME variables.

HIGH RESOLUTION GRAPHICS 265

IF J = -1THEN1840 is a clean way to end a READ-DATA statement with
out getting a processing error.

POKE K, J fills a specific memory address with specific data. NEXT K con
tinues processing the data until it has all been placed in memory.

The program RETURNS to line 5, which is GOTO 1000.
Lines 1000 to 1040 contain the initialization of constants. These

constants are set up one time and do not change throughout the program.
The constants initialized are vehicle status (VS), weapon status (W), SCALE
= 1, ROT = 0, constants (C), shape data (SD), orbital value (OV), and pi =
3.14159. OV(l) produces the angular velocity of orbit 1, the inner orbit.
OV(O) is the angular velocity of the outer orbit (Fig. 29-10).

1020 FOR J = 0 TO 3 : FORK = 0 TO 1 : FOR L = 0 TO 1 :
READ SD(J, K, L) : NEXT L, K, J

Line 1020 reads the shape data at lines 2100 through 2130. This data tells
the height and width of the shape, and the distance from the shape's center
to the first plot of the shape. This is the offset of the vehicle from the center
of the screen.

1030 FORK = 0 TO 1 : FOR J = 0 TO 4: READ C(K,J) : NEXT J,K :
READ C(0,5), C(1,5)

Line 1030 reads the data in lines 2140 through 2160 to set up the
constant array values. C(0,5) is the conversion factor of the paddle range
(0-255) to radians. C(l,5) is the conversion factor of radians to degrees (Fig.
29-10).

1050 GOSUB 3000 branches to line 3000 to display the name of the game,
the author's name and address, and the copyright date.

Lines 1070 through 1130 initialize all flight and gunnery information
before the start of the program. Such information includes the orbit num
ber, direction of motion, initial angle between space ships, shape data,
vehicle status, weapon status, and constants.

Lines 1130 through 1170 set up the screen display headers in the text
portion of the screen. The headers include the defender count of the
number of kills, the intruder count of the number of kills, the energy level of
the defender, the distance of the defender to the intruder, and the fire direc
tion of the defender to the intruder.

Line 1180 sets up the preconflict movement by flashing WARNING!! IN
VADER APPROACHING.

1200 GOSUB 610: IF IC< 5 AND DC< 5 THEN 1080

The lines from 610 through 850 tie all actions together and create the
battle.

610 GOSUB 140

266 APPLESOFT LANGUAGE

Lines 140 through 170 determine if the defender's missile has destroyed
the intruder. This routine returns to 620, which begins with the statements
GOSUB 10.

Line 10 DRAWS and redraws both space ships at the old position. It also
draws the space ships at the new position.

Line 20 calculates the next position of the space ships.
Line 30 blacks out part of the damaged space ship and increments the

damage count which is held in VS(O, 16) for the defender, and VS(l, 16) for
the intruder.

Line 35 FOR D = 1 TO 180 : NEXT D is a timing loop so projectiles and
space ships run at the same speed. This timing loop causes a delay before
the program can continue. If a space ship is damaged, its weapons will not
fire during this delay.

Line 40 calculates the distance between defender and intruder and
RETURNS to the second statement in line 620, to print out the defender's
energy level, and the intruder's distance to the defender.

In line 640, if both space ships are functional, if the paddle key is pressed,
and if the defender's energy level is greater than the defender's base energy
level, the program jumps to line 50.

Lines 50 and 60 determine if a missile is available to fire. If it is, and if the
paddle firing button was pressed, a missile is fired (if a missile is available,
go to line 70. If no missile is available, go to line 100).

Lines 70, 80, and 90 set the missile firing direction, give missile speed,
and fire the missile.

Lines 100, 110, and 120 move the defender's missile toward the intruder.
The program returns to line 740, which is GOSUB 140.

Lines 140, 150, and 170 determine if the defender's missile has destroyed
the intruder. It the defender's missile has not, the program branches to line
390.

Lines 390 through 480 calculate the action, angle, range, and distance to
the defender. This information prepares the intruder's space ray to fire on
the defender.

Line 440 creates a series of flashes and explosions when the intruder's
space ray is fired and when it hits the defender. Line 440 plots an HCOLOR
= 1 three times, and wipes out the lines. This routine causes a flashing line
from the intruder at the point where the space ray is going to appear. The
area flashes three times, and then the space ray appears on the screen. This
is to simulate an explosion. This brings the program back to lines 610
through 998 to continue the action of the program.

This is a general outline of the program:

I. Line 1 - GOSUB 1600
A. Loads the shape tables at lines 1600 through 1840

HIGH RESOLUTION GRAPHICS 267

= = = ORBITAL WAR GAME = = =

WELCOME TO THE WORLD OF ORBITAL DEFENSE. YOU HAVE BEEN ASSIGNED
DUTY ON AN ORBITING SPACE STATION. YOUR ORDERS ARE TO SCAN DEEP SPACE
AND STOP ANY INTRUDING ALIEN VEHICLE FROM REACHING THE EARTH. WHEN
YOU HAVE DESTROYED FIVE ENEMY CRAFT YOU WILL BE TRANSFERRED TO A NEW
UNIT. (YOUR VEHICLE IS THE CYLINDRICAL CRAFT.)

THERE ARE TWO ORBITS FOR THIS PROGRAM. BOTH YOUR VEHICLE AND THE IN
TRUDER CAN BE IN EITHER ORBIT. IN ADDITION THE VEHICLES CAN MOVE IN A
CLOCKWISE OR COUNTER-CLOCKWISE DIRECTION. THIS IS DETERMINED RAN
DOMLY BEFORE EACH ENCOUNTER. THE TWO CRAFT FOLLOW GRAVITATIONAL
FORCES AND CANNOT BE MANEUVERED.

YOU WILL HAVE TIME TO PREPARE FOR COMBAT BEFORE THE INTRUDER
APPEARS. ALSO, YOU WILL RECEIVE A MESSAGE JUST BEFORE THE INTRUDER RE
TURNS FROM HYPERSPACE TRAVEL. THEN THE BATTLE WILL COMMENCE.

SCREEN DISPLAY WILL AUTOMATICALLY INDICATE DISTANCE TO lf\ITRUDER,
YOUR ENERGY LEVEL, AND THE DIRECTION YOUR MISSILES ARE AIMED. T~IS DIREC
TION IS STANDARD COMPASS ANGLES (0 AND 360-STRAIGHT UP, 90-RIGHT,
180-DOWN, 270-LEFT). TO CHANGE DIRECTION ROTATE PADDLE ZERO. TO FIRE MIS
SILES PUSH PADDLE ZERO BUTTON. YOU CAN HAVE ONLY FOUR MISSILES ON THE
SCREEN AT ANY ONE TIME. THESE ARE AUTOMATICALLY RESTOCKED AS THEY
LEAVE THE SCREEN. THESE MISSILES TRAVEL SLOWLY SO YOU WILL HAVE TO FIRE
AT AN ANGLE THAT WILL LEAD THE PATH OF THE INTRUDER.

THE INTRUDER'S WEAPON IS SLIGHTLY DIFFERENT THAN THE DEFENDER'S. WHEN
IT IS WITHIN A DISTANCE OF 120 THEN HE WILL FIRE HIS RAY BEAM AT YOU.
LUCKILY, HIS WEAPON IS INEXACT AND HE WON'T HIT YOU DEAD CENTER WITH
EVERY SHOT. HIS BLASTS DRAIN YOUR ENERGY UNTIL YOU HAVE ZERO LEFT. THEN
YOU ARE GONE.

Fig. 29-11. ORBITAL WAR GAME instructions.

II. Line 2 - GOTO 1000
A. Lines 1000 - 1050 initialize constants and display copyright in

formation at lines 3000 - 3020
Ill. Lines 10 - 40

A. Draws space vehicles
B. Line 30 - if either vehicle is damaged, part of the interior is

blacked out
IV. Lines 50 - 90

A. Fires defender's missile
V. Lines 100 - 120

A. Moves defender's missile
VI. Lines 140 - 170

A. Determine if defender's missile destroyed the intruder
VII. Lines 390 - 480

268 APPLESOFT LANGUAGE

A. Calculate action, range, angle, fire, and damage to defender by
intruder's space ray

Vlll. Lines 610 - 998
A. Loop that ties all program actions together
B. Post destruction let down at lines 860 - 998

IX. Lines 1000 - 1070
A. Initializes all battle variables
B. Screen display headers at lines 1140 - 1170

X. Lines 1180 - 1220
A. Pre-conflict movement
B. Intruder warning period at line 1190
C. Call subroutine for battle at line 1200
D. Another game and END at lines 1210 - 1220

XI. Lines 1600 - 1840
A. Shape table data

XII. Lines 2100 - 2160
A. Shape data at lines 2100 - 2130
B. Constant array values at lines 2140 - 2160

XIII. Lines 3000 - 3030
A. Copyright information

Index

A

ABS, 116
Addition and subtraction, 49
AND-IF, 62
Apple

computer configurations, 20-21
screen, 240

Applesoft II BASIC, 27
Applesoft variables

illegal, 38
legal, 38
types of, 39

Apple II, BASIC, 16
Apple II Plus, 21
Approaching the problem, 161-169
Argument, 96, 115
Arithmetic operators, 4 7
Array(s)

double subscripted, 219-232
string, 95-115
(subscripted variable), 81

ASC, 47
("A"), 116
function, 49

ASCII characters, 207
Assignment of

expressions, 102
variables, 102

B

Basic flowchart, 103-104
Boot

drive, 22
the system, 21

Booting DOS, 19
Branch, 53

Buffer pointers, 175
Bug, 61

CALL, 33

c

Cash flow program, 219-223
Cassette

label, 17
tape, saving programs on, 16-17

CATALOG, 22
Dl, 22
D2, 22

Characters, ASCII, 207
Checking for program errors, 99, 104-106
CHR$, 47

function, 49
(65), 117

Circular lists, stacks, and pointers, 175-182
Cleanup, 147-157
Clear computer memory, 24
Code, 133
Colon, 33
Command, 27
Comment, 133
Comparing hexadecimal and decimal digits,

207
Complex variable, 96
Computer program, general outline, 143-144
Concatenate, 95
Conditional transfer, 53
Conditions, illegal, 106
Constant, 47
Construction, header, 229
corn, 150
Counting

and totaling variables, 78
variable, 77

269

270 APPLESOFT LANGUAGE

CRT, 15
Cursor, 15

moves
escape, 121
pure, 121

DATA, 143
Debug, 61

D

Decimal to hexadecimal conversion
program, 206

Decision, 61
flowchart, 114
statement flowchart, 7 4
statements, 74

Default, 61
Deferred execution, 37
DEF FN, 37, 43-44
Definition of formula, 205
Definition, print field, 149
DEL, 119, 120
Delete

a program on disk, 25
routine, 192

Delimiter(s), 27
number of, 106
semicolon, 163

Depreciation, straight line, 134
Detailed

input format, 102
output format, 102

Detail, header, 229
Development of a program, 99
DIM, 81

statement for numeric array, 83
Directory, 20
Disk

initialize, 21-22
load and save programs, 19-26
or diskette, 19-20

Division
and multiplication, 49
by zero, 42

Documentation, 27
DOS, 20

booting, 19
Double

declining balance, 134
nested loop, 92
subscripted

arrays, 89, 219-232

·am,

Double - cont.
subscripted

variables, 89-93

Edit, 119

E

Efficient programming, rules for, 73-75
END statement, 28
Error

check for line length, 107
checking, 104-105
detecting routines, 163
line number relationship, 113
no sense, 164
stop program running, 164

Escape cursor moves mode, 119, 121
Execution,

deferred, 37
immediate, 37

EXP, 116
Exponentiation, 49
Expressions, assignment of, 102

FIFO, 175
File names, 23
Final flowchart, 107
Flag, 77, 78

F

Flexibility, program, 171-174
Flexible tax program, 174
Flowchart(s)

and problem solving, 67-73
basic, 103-104
decision, 114

statement, 7 4
for flag program, 80
logic, 67
outline, 102, 103

Flowcharting, 68
Format, 27

detailed
input, 102
output, 102

Formulas, 205-218
FOR-NEXT, 53

loop, 55, 144
FRE(O), 117
Function, 96, 115-117

ASC, 49
CHR$, 49

G

General outline
computer program, 143- 145
for program development, 101

GET A$, 133
GOSUB, 95
GOTO, 53

loop, 54-55
Graphics, 53, 235-247

high resolution, 249-268
screen, 236

Graph, standard, 240

Hardware, 67
Header, 93

construction, 229
detail, 229

HELLO program, 23

H

Hexadecimal to decimal conversion, 210
High resolution graphics, 249-268

commands and statements, 251
screen, 251

HI-RES EXPLAINER program, 254
HOME, 33
HTAB, 33, 34

and VT AB for spacing in loops, 153

Illegal
Applesoft variables, 38
conditions, 106
value, 77

Immediate execution, 37
Increment, 53
Inflexible tax program, 173
Initialization, 53
Initialize a disk, 21-22

one disk drive system, 22
two disk drive system, 22

Initializing variables, 78
Input, 15

format, detailed, 102
statement, 50

INT, 117
function, truncation with, 40

Integer, 37, 39
range, 39

Interactive mode, 47

Interface, 20

Justify, right, 147

Key
left arrow, 120
repeat, 120
right arrow, 120

Label, cassette, 17
Left arrow key, 120

K

L

LEFT$, MID$, RIGHT$, 96, 97
Legal

Applesoft variables, 38
value, 77

LEN, 45, 117
Length of lines, 107
LET, 47
LIFO, 175
Line(s)

length, error check for, 107
number, 15, 28, 61, 62
start and end of, 102, 103

List, 15, 81, 119
and edit, 119- 125
sorting, 191 -192

Literal, 37, 44
string, 44

LOAD, 15
Load and save programs

on disk, 19-26
or tape, 15-18

INDEX 271

Loading program from cassette, 17
LOCK a program on disk, 25
LOG, 116
Logical operator, 61
Logic flowchart, 67
Loop(s), 53-60

double nested, 92
FOR-NEXT, 55, 144
GOTO, 54-55
nested, 53, 59-60

LO-RES EXPLAINER program, 237-239
Low resolution graphics commands and

statements, 236

272 APPLESOFT LANGUAGE

M

Manual system
decimal to hexadecimal conversion, 208
for hexadecimal to decimal conversion,

210
Memory space, saving, 74
Menu selection, 133

and coding formulas, 133-141
Mode, interactive, 47
MODEM, 47
Motherboard, 20
Multiplication and division, 49

Name search, 203
Names, file, 23

N

Nested loops, 53, 59-60
Network of logic to write a program, 163
NEW, 15
No sense errors, 164
NOT, 62
Notation, scientific, 37
NOTRACE, 127
Numbering lines, 28
Number of delimiters, 106
Numbers, line, 61, 62

0

OGIVE program, 212-213, 244
ON ERR GOTO, 95
Operand, 48
Operator(s), 48, 81

arithmetic, 47
logical, 61
relational and logical, 61-66
replacement, 48
unary, 48

Options, slot, drive and volume, 23
ORBIT AL WAR GAME program, 259-262
Order of precedence, 48
OR-IF, 62
Outline

flowchart, 102, 103
program, 143-146

Output format, detailed, 102

p

Parenthesis, 49

Pass, 127
Percent sign, 39
Play computer, 127-129
Pointers, buffer, 175
POS, 117
Precedence, 47-51

order of, 48
Preprogramming, 161
PRINT, 27

field definition, 14 7
rules, 27-32
statements, punctuation in, 29-30

Problem solving and flowcharts, 67-73
Program(s)
. a set of instructions, 28

cash flow, 219-223
development, 99

general outline, 101
error checking, 99
flexibility, 171-174
flowchart symbols, 69-71
HELLO, 23
loading from cassette, 17
LO-RES EXPLAINER, 237-238
OGIVE, 244
on disk,

delete, 25
LOAD, 24
LOCK, 25
RENAME, 25
RUN, 25
UNLOCK, 26

outline, 143-146
statement, 15

Prompt, 119
types of, 21

Protected, write, 21, 22
Punctuation in PRINT statements, 29-30
Pure cursor moves mode, 119, 121

Radian, 115
Range, integer, 39
READ, 143

R

READ-DAT A statement, 50
Real, 37
Relational and logical operators, 61-66
Replacement

operator, 48
statement, 48, 50

REM, 27
statements, 73

RENAME a program on disk, 25
Repeat key, 120
Reserved words, 131-132
RESTORE-READ-DA TA, 172
RETURN

key, 18
statement, 111

Right
arrow key, 120
justify, 147

RND, 116
ROM, 20
Routine

delete, 192
error - detecting, 163

Rules
for efficient programming, 73-75
PRINT, 27-32

RUN, 16
and TRACE, 128
a program from disk, 25

5

SAVE, 16
a program to disk, 24

Saving
memory space, 74
program on cassette tape, 16-17

Scientific notation, 37
Screen

Apple, 240
graphics, 236
text, 235, 249

Search, name, 203
Selection, menu, 133
Semicolon, 27

as a delimiter, 163
SGN, 116
SIN, COS, TAN, A TN, 116
Single subscripted variables, 81-87
Slot, drive, and volume options, 23
Software, 16, 67
Sorting

a list, 191-192
searching, and deleting, 183-204

Sorts, types of, 188
SQR, 116
Stack, 175

Standard graph, 240
Start and end of lines, 102, 103
Statement, 27

decision, 74
DIM, 83
END, 28
input, 50
READ-DATA, 50
REM, 73
replacement, 48, 50
RETURN, 113

STEP, 54
Straight line depreciation, 134
String, 38

arrays, 95-115
as single entities, 96

literal, 44
variable, 44

STR$, 117
Subroutine, 95

INDEX 273

Subscripted variables with memory
locations, 82

Subtraction and addition, 49
Summing,

counting, and flags, 77-80
variable, 77

Sum of the years digits, 134
Suppression, zero, 147
Symbols,

flowchart, 69-71
system, 69

System, booting, 21

T

TAB, 33
Tape, load and save programs, 15-18
Test, 54
Text screen, 235, 249
Three reasons for semicolon as a delimiter,

16~
TRACE, 127
Transfer

conditional, 53
unconditional, 54

Truncate, 38
Truncation, 39-40

with INT function, 40
Types of

Applesoft variables, 39
prompt, 21
sorts, 188

274 APPLESOFT LANGUAGE

u

Unary operator, 48
Unconditional transfer, 54
Uninitialized variable, 29
UNLOCK program on disk, 26
Use of double subscripted arrays, 89

VAL, 117
Value

illegal, 77
legal, 77

v

Variable(s), 37-45, 134
assignment of, 102
complex, 96
counting, 77

and totaling, 78

Variable(s) - cont.
double subscripted, 88-93
for circular list, stack, and pointers, 180
in Applesoft, 38
initializing, 78
single subscripted, 81-87
string, 44
summing, 77
uninitialized, 29

VDM, 16
VTAB, 33

w

Words, reserved, 131-132
Write, debug, modify program, 107
Write protected, 21, 22

SAMS APPLE® BOOKS
Many thanks for your interest in this Sams Book about Apple II® microcomputing. Here are a few
more Apple-oriented Sams products we think you'll like:

POLISHING YOUR APPLE®
Clearly written, highly practical, concise assembly of all procedures needed for wriiing, disk-filing,
and printing programs with an Apple II. Positively ends your searches through endless manuals to
find the routine you need! By Herbert M. Honig. 80 pages, 51/z x 81/z, comb. ISBN 0-672-22026-1.
© 1982.
Ask !or No. 22026 ... $4.95

THE APPLE II® CIRCUIT DESCRIPTION
Provides you with a detailed circuit description of the Revision 1 Apple II motherboard, including the
keyboard and power supply. Compares Revision 1 with other revisions, and includes timing diagrams
for major signals. By Winston D. Gayler. 176 pages plus foldouts, 8% x 11, comb. ISBN 0-672-21959-X.
© 1983.
Ask !or No. 21959 .. $22.95

INTERMEDIATE LEVEL APPLE II® HANDBOOK
Hands-on aid for exploring the entire internal firmware of your Apple II and finding out what you can
accomplish with its 6502 microprocessor through machine- and assembly-language programming.
By David L. Heiserman. 328 pages, 6 x 9, comb. ISBN 0-672-21889-5. © 1983.
Ask for No. 21889 .. $16.95

APPLE® FORTRAN
Only fully detailed Apple ~RTRAN manual on the market! Ideal for Apple programmers of all skill
levels who want to try FORTRAN in a business or scientific program. Many ready-to-run programs
provided. By Brian D. Blackwood and George H. Blackwood. 240 pages, 6 x 9, comb. ISBN
0-672-21911-5. © 1982.
Ask for No. 21911 .. $14.95

APPLE II® ASSEMBLY LANGUAGE jJ
Shows you how to use the 3-character, 56-word vocabulary of Apple's 6502 to create powerful, fast
acting programs! For beginners or those with little or no assembly language programming experi
ence. By Marvin L. De Jong. 336 pages, 5% x 81/z, soft. ISBN 0-672-21894-1. © 1982.
Ask for No. 21894 .. $15.95

ENHANCING YOUR APPLE II® - Vol. 1
Shows you how to mix text, LORES, and HIRES anywhere on the screen, how to open up whole new
worlds of 3-D graphics and special effects with a one-wire modification, and more. Tested goodies
from a trusted Sams author! By Don Lancaster. 232 pages, 8% x 11, soft. ISBN 0-672-21846-1. © 1982.
Ask lor No. 21846 .. $15.95

CIRCUIT DESIGN PROGRAMS FOR THE APPLE II® jJ
Programs quickly display "what happens if" and "what's needed when" as they apply to periodic
waveform, rms and average values, design of matching pads, attenuators, and heat sinks, solution of
simultaneous equations, and more. By Howard M. Berlin. 136 pages, 8% x 11, comb. ISBN
0-672-21863-1. © 1982.
Ask for No. 21863 .. $15.95

APPLE® INTERFACING jJ
Brings you real, tested interfacing circuits that work, plus the necessary BASIC software to connect
your Apple to the outside world. Lets you control other devices and communicate with other com
puters, modems, serial printers, and more! By Jonathan A. Titus, David G. Larsen, and Christopher A.
Titus. 208 pages, 51/2 x 8%, soft. ISBN 0-672-21862-3. © 1981.
Ask for No. 21862 .. $10.95

INTIMATE INSTRUCTIONS IN INTEGER BASIC
Explains flowcharting, loops, functions, graphics, variables, and more as they relate to Integer
BASIC. Used with Applesoft Language (No. 21811), it gives you everything you need to program
BASIC with your Apple II or Apple II Plus. By Brian D. Blackwood and George H. Blackwood. 160
pages, 51/z x 81/z, soft. ISBN 0-672-21812-7. © 1981.
Ask for No. 21812 ... $8.95

APPLESOFT® LANGUAGE
Only complete text available on Applesoft BASIC! Self-teaching format simplifies learning and lets
you use what you learn FAST. Ideal for businessmen, hobbyists, and professionals! Many programs
included. By Brian D. Blackwood and George H. Blackwood. 256 pages, 51/z x 81/z, soft. ISBN
0-672-21811-9. © 1981.
Ask for No. 21811 .. $10.95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE II®, BOOK 1
Twenty-eight debugged, fun-and-serious BASIC programs you can use immediately on your Apple II.
Includes a telephone dialer, digital stopwatch, utilities, games, and more. By Howard Berenbon. 160
pages, 81/z x 11, comb. ISBN 0-672-21789-9. © 1980.
Ask for No. 21789 .. $12.95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE II®, BOOK 2
A second gold mine of fascinating BASIC programs for your Apple II, featuring 3 dungeons, 11 house
hold programs, 6 on money or investment, 2 to test your ESP level, and more - 32 in all! By Howard
Berenbon. 224 pages, 81/z x 11, comb. ISBN 0-672-21864-X. © 1981.
Ask for No. 21864 .. $12.95

You can usually find these Sams products at better computer stores, bookstores, and electronic
distributors nationwide.

If you can't find what you need, call Sams at 800-428-3696 toll-free or 317-298-5566, and charge it to
your MasterCard or Visa account. Prices subject to change without notice.

For a free catalog of all Sams Books available, write P.O. Box 7092, Indianapolis IN 46206.

SAMS BRINGS YOU MIND TOOLS™ FOR FINANCIAL PLANNING IN BUSINESS
Special, ready-to-use software that temporarily interlocks with the spreadsheet in your regular ver
sion of Multi plan® or VisiCalc® so you can immediately perform 17 common financial planning cal
culations without wasting time manually setting up the sheet. All you do is enter the data - the
proper formulas and column headings are there automatically!

Mind Tools allow you to instantly calculate present, net present, and future values, yields, internal
and financial management rates of return, and basic statistics.

Also lets you do break-even analyses, depreciation schedules, and amortization tables, as well as
compute variable· and graduated-rate mortgages, wraparound mortgages, and more!

Allows you to use your regular spreadsheet as you always have, at any time. Ideal for any business
man with financial planning responsibilities, as well as for business students and instructors.

Supplied with complete documentation, including 136-page text and 68-page quick-reference guide,
all in a binder with the proper disk to match the brand of spreadsheet program you own.

Currently available for use with Multiplan or VisiCalc on the Apple II as follows:

EXECUTIVE PLANNING WITH MULTIPLAN
Apple II Version, ISBN 0-672-22058'X.
Ask for No. 22058 .. $79.95

EXECUTIVE PLANNING WITH VISICALC
Apple II Version, ISBN 0-672-22059-8.
Ask for No. 22059 .. $79.95

TO THE READER
Sams Computer books cover Fundamental~ - Programming - Interfacing -
Technology written to meet the needs of computer engineers, professionals,
scientists, technicians, students, educators, business owners, personal com
puterists and home hobbyists.

Our Tradition is to meet your needs
and in so doing we invite you to tell us what
your needs and interests are by completing
the following:

1. I need books on the following topics:

2. I have the following Sams titles:

3. My occupation is:

-- Scientist, Engineer

__ Personal computerist

__ Technician, Serviceman

__ Educator

___ D P Profession~!

___ Business owner

___ Computer store owner

___ Home hobbyist

__ Student Other _________ _

Name (print) ______________________ _

Address _______________________ ~

City State _____ Zip ____ _

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 22073

Get Your FREE Copy of Tim Knight's
MEGABUCKS FROM YOUR MICRO"
COMPUTER!
We're interested in what kind of a microcomputer you
use, where you use it, and what you use it for. If you'll tell
us on the postpaid form below, we'll send you a free copy
of Tim Knight's book, MEGABUCKS FROM YOUR
MICROCOMPUTER, for your trouble!

MEGABUCKS FROM YOUR MICROCOMPUTER shows
you how to make money using your creative talents
through your microcomputer, and includes detailed in
structions for earning money by doing your own writing,
reviewing, and programming. It shows you dangers to
avoid, gives you tips on choosing the right microcom
puter, and may help you develop talents you didn't know
you had!

MEGABUCKS FROM YOUR MICROCOMPUTER contains
advice that could be worth many times the cover price of
$3.95, but it's yours FREE just for answering the simple
questions below!

Brand & model of microcomputer you use:

Do you use it (check) __ At home? __ In business?
__ In another area (where?)

Please list the applications for which you use it:

Please send my FREE copy of MEGA BUCKS FROM
YOUR MICROCOMPUTER (No. 22083) to:

Your name (print): _____________ _

Address: ________________ _

City/State/Zip:
BC100

~
B

U
S

IN
E

S
S

 R
E

P
L

Y
 M

A
IL

F

irst C
la

ss
• P

e
rm

it N
o. 1

0
7

6

• In
d

ia
n

a
p

o
lis, Ind.

P
O

S
T

A
G

E
 W

ILL B
E

 P
A

ID
 B

Y
 A

D
D

R
E

S
S

E
E

H
O

W
A

R
D

 W
. S

A
M

S
 &

 C
O

., IN
C

.
4300 W

e
st 62nd S

tre
e

t
P

.O
. B

ox 7092
In

d
ia

n
a

p
o

lis, IN
 46206

N
O

 P
O

S
T

A
G

E

N
E

C
E

S
S

A
R

Y

IF
 M

A
IL

E
D

IN

 T
H

E

U
N

IT
E

D
 S

T
A

T
E

S

:---1

I I
L I

r1 \ __ I

I : , I
L

L!

1

1

i
_)

I :
lJ

