

Golden Delicious Games
for the APPLE™ Computer

MORE THAN A MILLION PEOPLE HAVE LEARNED TO PROGRAM, USE,
ANDENJOY MICROCOMPUTERS WITH WILEY PAPERBACK GUIDES. LOOK
FOR THEM ALL AT YOUR FAVORITE BOOKSHOP OR COMPUTER STORE:

ANS COBOL, 2nd ed., Ashley

Apple™ BASIC: Data File Programming, Finkel & Brown

Apple II® Programming Exercises, Scanlon

8080/Z80 Assembly Language, Miller
*6502 Assembly Language Programming, Fernandez, Tabler, & Ashley
ATARI® BASIC, Albrecht, Finkel & Brown

ATARI® Sound and Graphics, Moore, Lower, & Albrecht
Background Math for a Computer World, 2nd ed., Ashley

BASIC, 2nd ed., Albrecht, Finkel, & Brown

BASIC for Home Computers, Albrecht, Finkel, & Brown
*BASIC for the Apple 11, Brown, Finkel, & Albrecht

BASIC Programmer’s Guide to Pascal, Borgerson
*Complete BASIC Dictionary, Adamis

Data File Programming in BASIC, Finkel & Brown

FAST BASIC: Beyond TRS-80™ BASIC, Gratzer

Flowcharting, Stern

FORTRAN 1V, 2nd ed., Friedmann, Greenberg, & Hoffberg
*Fundamentals of Microcomputer Programming including Pascal, McGlynn
Golden Delicious Games for the Apple™ Computer, Franklin, Finkel, & Koltnow
How to Buy the Right Small Business Computer System, Smolin
Introduction to 8080/8085 Assembly Language Programming,

Fernandez & Ashley

*Introduction to Computer Music, Bateman

Introduction to Data Processing, 2nd ed., Harris

Job Control Language, Ashley & Fernandez
*More Subroutine Sandwich, Grillo & Robertson

More TRS-80™ BASIC, Inman, Zamora, & Albrecht

Personal Computing, 2nd ed., McGlynn

Problem-Solving on the TRS-80 @ Pocket Computer, Inman & Conlan
Structured COBOL, Ashley
*Subroutine Sandwich, Grillo & Robertson

TRS-80™ BASIC, Albrecht, Inman & Zamora

TRS-80™ Color BASIC, Albrecht

TRS-80™ Means Business, Lewis
*Useful Subroutines in BASIC, Adamis

Using CP/M, Fernandez & Ashley
*Using the TRS-80™ Model 111, Finkel & Bove

Using Programmable Calculators for Business, Hohenstein

Why Do You Need A Personal Computer?, Leventhal & Stafford

*Forthcoming.

Apple™ is a trademark of Apple Computer, Inc.
ATARI® is a registered trademark of Atari, Inc.
CP/M® is a registered trademark of Digital Research.
TRS-80® is a trademark of Tandy Corp.

Golden Delicious Games
for the APPLE™ Computer

HOWARD FRANKLIN
JOANNE KOLTNOW
LEROY FINKEL

L NEARg

1807\«&1982

€
(’b’usﬂ\$

John Wiley & Sons, Inc.

New York ¢ Chichester - Brishane ¢ Toronto

o Singapore

Publisher: Judy V. Wilson
Editor: Dianne Littwin
Composition and Make-up: Cobb/Dunlop, Inc.

Any questions concerning the material in this
book should be referred to the Publisher, John
Wiley & Sons, and not to Apple Computer,
which is not responsible for and was not in-
volved in the preparation of this book. Apple
is a trademark of Apple Computer, Inc.,
Cupertino, California.

Copyright © 1982, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the 1976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Franklin, Howard.
Golden delicious games for the Apple Computer.

(Wiley self-teaching guides)

Includes index.

1. Apple II (Computer)—Programming. 2. Basic
(Computer programming language) I. Finkel, LeRoy.
II. Koltnow, Joanne. III. Title.

QA76.8.A662F7 001.64°2 81-23074
ISBN 0-471-09083-2 AACR2

Printed in the United States of America

82 83 10 9 8 765 4 3 2

Contents

Preface vii
Chapter 1 Musical Notes and Sound Effects 1
Chapter 2 Low-Resolution Graphics 19
Chapter 3 Graphic Images in LO-RES 37
Chapter 4 High-Resolution Graphics 61
Chapter 5 Routines for Entering Data 71
Chapter 6 Text-Based Games 91
Chapter 7 Additional Games 113
Appendex A Renumber/Append Routine 129
Appendix B Random Ramblings

from One Programmer to Another 131
Appendix C Typing Assistance 141
Appendix D Evaluating Programs 143

Index 145

Preface

Golden Delicious Games for the APPLE* Computer includes new
games, enhancements to familiar games, and suggestions for pro-
gramming projects to try. It is designed for those familiar with the
BASIC language who want to write more interesting programs. You
may be a parent, teacher, student, or simply a computer enthusiast.

We will provide you with well-designed routines to create sounds
or color patterns, to filter data as it is entered, or to disable certain
keys. These routines can be used as additions to your existing pro-
grams or as building blocks for new ones. We will also incorporate
the routines into stand-alone programs that are actual games you can
play. Both theroutines and the stand-alone programs will be models
of good programming style. They will also promote, by example, our
belief in the importance of user-friendly computer programs.

Type the routines as they appear in the text. Save them, using the
names we have given. This will allow us to take advantage of earlier
work when we are building bigger routines, and it will save you
retyping time. To get the most from the book, read the chapters
sequentially.

Using this Book with Your Computer

To use this book, you will need an APPLE II computer with the
APPLESOFT (FP) BASIC language. Some of our programs are fairly
small, requiring no more than 16K memory. However, most will
require 32K. The book is designed for use with a disk drive, on
which to store the programs and routines discussed. Those of you
with a cassette system will find that saving programs is a lot more
complex. If you are using a disk system, it does not matter which
Disk Operating System (DOS) you use—3.2 or 3.3.

*APPLE and APPLESOFT are trademarks of Apple Computer, Inc.

vii

viii

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

A Note About Computer Games

Few computer games in use these days are really new. Their origins
can be traced to games written for large computers (the only compu-
ters available ten to fifteen years ago). These early games were
played using teletype terminals and, thus, were text-line oriented.
When you notice text scrolling off the screen during a game, remem-
ber that a roll of teletype paper had no screen size limitation. Pro-
grammers knew that if players missed an instruction they could look
back and find it.

We bring this up for two reasons. First, it is useful to know how
something got to be the way it is. Computer games have a history,
and, when we can, we will point out the origins of games we discuss.

Second, because so many current games are simply microcompu-
ter adaptations of the earlier, teletype-based games, they have some
drawbacks—Ilike text scrolling off the screen. Also, they do not take
full advantage of the micros’ capabilities. Throughout the book, we
will suggest ways you can improve existing games by using your
APPLE’s features.

CHAPTER ONE

Musical Notes
and Sound Effects

This chapter introduces some of the basic sound capabilities of your
APPLE computer and provides sound-effect routines you can add to
existing programs. These routines are then used as the basis for new
programs with suggested variations you can make.

Program runs are not included in this book. It is impossible to
include a run of a program that produces sounds; it is difficult to
include arun of a program that moves colored images. It is, however,
appropriate to discuss the choices we have made for the way the
program responds to the player. Thus, the chapters include discus-
sions of particular player—program dialogues.

The APPLE produces sound by very quickly clicking a switch on
and off inside the computer. It produces a tone by projecting a long
series of these tiny clicks through the speaker. Changing the number
of clicks per second changes the tone. All the different sounds your
APPLE makes come from these clicks projected through the speaker.
For example, a sound roughly equivalent to an A on a musical scale
requires 440 clicks per second. ‘

2 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

BELL

Your APPLE will produce a beep tone, sometimes called a bell, if
you type Control-G. (Hold down the CTRL key while you type G.) Do
this a few times and listen to the sound. Control-G makes this sound
by using a program stored in the computer that produces a particular
series of clicks.

Did you notice that the G key is also labeled BELL? The label is an
artifact from the days when teletype terminals had bells inside, and
typing Control-G actuallyrang the bell. These days, the “bell” usual-
ly doesn’t sound like a bell, but most terminals have some kind of
audible tone produced by typing Control-G.

Suppose you want to use the beep sound to celebrate a winning
move in a game. You can include Control-G in a PRINT statement, as
part of your progi‘am. However, control characters don’t appear in a
program listing, so while the characters would be there in your
PRINT statements, they would be missing from the listing.

PRINT "YOU GOT IT!!"
(invisible Control G)

- While this isn’t bad, it could be annoying or confusing when you
look at your listing. Fortunately, there is an alternative. CHR$(7) is
the ASCII equivalent for Control-G, and these characters will appear
in a listing. Use CHR$(7) within a PRINT statement like this:

PRINT "YOU GOT IT!!": CHR$(7)
PRINT CHR$(7);"YOU";CHR$(7) ' "GOT" ;
CHR$(7);"IT!!!";CHRS(7)

You can see, however, that typing CHR$(7) can become tiresome
very quickly, and besides, you might forget which number to use. If
you define a string variable for the beep, the PRINT statements are
easier to type. We’'ll use BL$ as the variable for the beep:

10 BL$ = CHR$ (7)
20 PRINT BL$; “YOU " ;BL$:"GOT ":BL$:"IT!!!":BL$

MUSICAL NOTES AND SOUND EFFECTS 3

PAUSE

If you try this on your APPLE, you’ll notice that the words and the
tones occur almost simultaneously. The PRINT statement is ex-
ecuted sorapidly thatit’s hard to tell that the tones follow the words.
In fact, if you want to play a tone several times, you’ll find that the
sounds blend together. (PRINT BL$;BL$;BLS$ sounds like one beep
instead of three.)

The SPEED command controls the rate at which characters are
displayed on the screen in a PRINT statement. SPEED = 255 is the
fastest; SPEED = 0 is the slowest. When no speed is specified, the
default speed (255) is used. Here is an interesting way to use the
SPEED command to control the delay between bells:

10 REM ... BEEP PAUSE...

11

12 REM INSERT A PAUSE BETWEEN BEEPS USING 'SPEED'
13

100 BLS = CHRS (7)

110 SPEED= O

120 PRINT BLS$;BLS,BLS

130 SPEED= 255

RUN it with the speed set at 0. Then RUN the program again,
changing the speed in line 110 to 50, 100, 150, etc.

BELL GAMES

Simple programs that use the beep are easy to design. For instance,
teachers or parents of young children might use the beep in a pro-
gram to teach counting. One such program asks the player to pick a
number from 1 to 10. Then the program displays the counting series
to reach that number, beeping to punctuate each number. If, for
instance, the child pressed 5, the program would beep and display 1,
beep and display 2, beep and display 3, etc. The child playing counts
the beeps while watching the number series appear on the screen.
Here is the program.

4 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM .. .INPUT BEEPS. ..

11 .

12 REM BEEP # OF TIMES INFUT

13

100 L = 1. REM MINIMUM # OF BEEPS

110 H = 5. REM MAXIMUM

200 TEXT . HOME

Z10 PRINT "PLEASE PICK A NUMBER FROM ",L:;"
TO " (H;: INPUT ": "/N

220 IF N ¢ L OR N > H THEN 200

230 PRINT

300 PRINT "COUNT THE BEEPS...": PRINT . PRINT

310 FOR 4 =1 TO 1000: NEXT AEM PAUSE BEFORE FIRST BEEP
320 FOR J = 1 TO N

330 SPEED= §©

340 PRINT " ",. REM WASTE TIME WITH Z BLANKS

330 SPEED= 55

360 PRINT J;

370 PRINT CHRS (7);

330 NEXT

500 PRINT : VTAB 18

519 PRINT "PRESS RETURN TO TRY AGAIN... ";

520 GET Z¢

530 IF Z5 = CHRS (27) THEN END : REM CHECK FOR ESC
540 GOTO z00

SAVE this program, as INPUT BEEPS, then RUN it.
Look at the program listing. How would you change the maximum
number of beeps to 207

110 H = 20

This is a slightly unusual program because the player is always in
control. In most educational programs and many games, the compu-
ter is in control. In fact, the computer is usually testing rather than
teaching. As you write programs, think about who should be in
control during the game. It’s usually more fun for the players if they
are in control.

A more conventional variation onthebeepand numberideaisone
in which the program selects a number, beeps that many times, then
asks the player to type the number of beeps. Notice that this new
program tests the player’s ability to count beeps. It also gives en-
couragement if the guess is close to the right answer (see lines 120
and 430 below).

Instead of entering the entire program, we can modify the last
program, INPUT BEEPS, as follows:

Delete lines 220, 230, and 360.
Insert these lines. (Some will be changesto make to other lines.)

MUSICAL NOTES AND SOUND EFFECTS

10 REM .. COUNT BEEPS-INPUT BEEPS..

11

100 L = 4. REM MINIMUM # OF BEEPS

110 H = 16: REM JAXIMUM

120 € = 1: REM HOW CLOS% FOR "ENCOURAGEMENT"

210 N = INT ((H - L + 1) ® RND (1)) + L: REM # OF BEEPS

380 HTAB 1
400 INPUT "NOW, HOW MANY BEEPS WAS THAT? "G

410 PRINT
4Z0 IF G = N THEN PRINT "¥YOU GOT IT!!!": GOTO 500
430 IF ABS (G - N) ¢ = C THEN PRINT
"CLOSE, BUT NOT QUITE... THERE WERE " N;".":GOTO 500

440 PRINT "PLAY AGAIN... THERE WERE " N;"."

SAVE this program as COUNT BEEPS and RUN it.
How would you change the “encouragement” variable to 37

120C =3

OTHER SOUNDS

While the beep offers interesting programming possibilities for you
to experiment with, your APPLE can make many other sounds as
well. As noted earlier, the number of clicks per second (frequency)
determines the pitch of the tone. Thus, changes in the click frequen-
cy change the tone produced by the computer.

First, enter the following and SAVE it as NEXTDATA MODULE. It
allows READ DATA to begin at any line number. You can also use
this module in your other programs to RESTORE the DATA pointer
to a specific line number. (See Appendix B for additional explana-
tion.)

6 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ...NEXTDATA MODULE. ..

11

12 REM NEXT READ FROM ANY LINE 8
13 :

18881

188912

18993 REM %% NEXT DATA FROM LINE Z #nw
18984 REM ENTRY: Z LINE #
1898895
19000 IF YR% THEN 189200:
REM CHECKX IF NEXT DATA ROUTINE ALREADY LOADED
18010 YR% = 770: REM NEXT DATA ADDRESS
19097
19098 REM NEXT DATA ROUTINE WRITTEN IN MACHINE CODE
19089 :

15100 POXE 770,173: POKE 771,.0: POKE 772,3: POKE 773,133:
POKE 774 ,80: POKE 775,173 : POKE 776.1: POKE 777.3
19110 POXE 778,.,133: POKE 779%,.,81: POKE 780,32: POKE 781,26:

POKE 78B2.214: POKE 783, 65: POKE 784.,155: POKE 785.24
19120 "POKE 786,.105: POKE 787.,4: POKE 788,133:. POXE 789,125:
POKE 79%0,165: POKE 791 156, POKE 792.105: POKE 783.0
18130 POXE 794,133: POKE 785.126: POKE 796,96
18200 Z% = Z / 256. POKE YR% - 2.2 - 256 ® Z%:
POXKE YR% - 1.Z%: REM LINE 8
19210 CALL YR%
19220 RETURN
60000 :
60010 REM *COPYRIGHT 1981 BY HOWARD FRANKLIN, PALO ALTO, CA ¥
60020

SAVE this program as NEXTDATA MODULE.

This is the first of several “black box” routines we will give you.
The term “black box” is used to describe something whose perform-
ance is understandable, but whose operation is not. Our “black box”
routines are written in machine code. As we introduce them, we will
tell you what they do, but not how they work, because they are too
complicated to explain here. For those who are interested, refer to
Appendix B. Most of you, however, will just use them unexplained,
to make your programming easier.

Add the following to NEXTDATA MODULE:

10 REM ...SOUND MODULE-NEXTDATA MODULE. ..
12 'REM SOUND MODULE TO PLAY ALPHABETIC STRINGS AND GENERATE

12993 REM %% SOUND A PITCH FOR A SET DURATION %=
12994 REM ENTRY: WP PITCH #

12985 REM (WP=0 AND ROUTINE NOT LOADED =
INITIALIZATION ONLY)

12586 REM WD DURATION

12999

13000 IF WR% THEN 13200: REM GCHECK IF SOUND ROUTINE
ALREADY LOADED
13010 WR% = 8D0:WP% = 799:WD% = 797: REM SOUND., PITCH.
DURATION ADDRESSES
020 Z = 13100: GOSUB 18000: REM SET READ DATA POINTER
050 Z = WR%: REM LOAD SOUND ROUTINE
0

60 READ Zl: IF Z1) = 0 THEN POKE Z,Z1:Z =
Z + 1: GOTO 13060

070 IF WP = 0 THEN RETURN : REM TRAP FOR
INITIALIZATION ONLY

MUSICAL NOTES AND SOUND EFFECTS

7

13097

13098 REM SOUND ROUTINE WRITTEN IN MACHINE CODE

13099

13100 DATA 172,.,31,3.185,73,3,141,31,3,160,0,238,29,3.238,
30,3,176,31,3,173,48,182

13110 DATA 136.208.10.206,.29,3,.208,5,206.30,3,240,5,.202,240.
234.,208,238.96

13117

13118 REM PITCHES

13119

13120 DATA 255.242,228,.,215,203,192,181,171

13130 DATA 161.152,163,135.1%27.120,113,107

13140 DATA 101.95,90,85.80,75,71,67
13150 DATA 63.59
13190 DATA -1: REM FLAG TO STOP READING DATA
13200 z% = WD J 256: POKE WD% WD - 256 * Z%: POKE WD%
+ 1.2%: REM DURATION
13210 POKE WP%.WP: REM PITCH 8
13220 CALL WR%
13230 RETURN
13282
13283 REM ® PLAY STRING OF ALPHABETIC LETTERS ¥
13294 REM ENTRY:. Z$§ STRING
13295 REM WD DURATION
13298
13300 IF LEN (Zs) = 0 THEN RETURN : REM EMPTY STRING
13310 FOR W = 1 TO LEN (Z$)

13320 WP = ASC (MID$ (Zs,W.1)) - 64. REM NEXT LETTER

13330 IF WP > =1 AND WP ¢ = 26 THEN GOSUB 13000:
REM PLAY IF IN RANGE

13340 NEXT

13350 RETURN

13382 :

13383 REM w SOUND EFFECTS

13384 REM ENTRY: W1 LENGTH OF EACH TONE (2>=0)
13385 REM WZ STEP BETWEEN TONES ()0)

13386 REM (WZ=0 AND ROUTINE NOT LOADED =
INITIALIZATION ONLY)

13387 REM W3 STARTING TONE (0/255)

13388 REM W4 % OF TONES IN CYCLE

13385 REM W5 1=CYCLE DOWN; -1=UP; 0=DOWN AND UP

13380 RENM W6 PAUSE BETWEEN REPETITIONS OF CYCLE

13351 REM W7 # OF REPETITIONS OF CYCLE

13399

13400 IF WE% THEN 13500: REM CHECK IF EFFECTS ALREADY LOADED
13410 IF WR% = 0 THEN WP = 0: GOSUB 13000: REM LOAD SOUND
ROUTINE IF NECESSARY
13420 WE% = 809: REM EFFECTS ADDRESS
13430 IF WZ = 0 THEN RETURN : REM TRAP FOR
INITIALIZATION ONLY
13500 WH% = W1 / Z56:WL% = W1 - 256 % WH%: REM DURATION
AS TWO BYTES
13510 IF WZ (= 0 THEN WZ = 1: REM FORCE VALID WZ
13520 IF W3 ¢ 0 THEN W3 = 0: REM FORCE VALID W3
13530 FOR Z = 1 TO W7: REM 8 OF REPETITIONS
13540 z% = W3 + WZ ® W4: IF W5 ¢ 0 THEN 13600:
REM TRAP FOR UP ONLY)
13550 FOR Zl1 = W3 TO Z% STEP WZ: REM CYCLE DOWN
13560 IF Z1 ¢ = 255 THEN POKE WP%,Z1l: POKE WD% WL%:
POXE WD% + 1 ,WH%: CALL WE%: REM NEXT TONE IS IN RANGE
13570 NEXT
13600 IF W3 > 0 THEN 13650: REM TRAP FOR DOWN ONLY
13610 FOR Z1 = Z% TO W3 STEP - WZ: REM CYCLE UP
13620 IF Z1 (= 255 THEN POKE WP%,Zl: POKE WD% WL%: POKE
WD% + 1.,WH%: CALL WE%: REM
NEXT TONE IS IN RANGE
13630 NEXT
13650 FOR Z1 = 1] TO W6: NEXT : REM PAUSE BETWEEN CYCLES
13660 NEXT
13670 RETURN

60010 REM = COPYRIGHT 1981 BY HOWARD FRANKLIN,
PALO ALTO, CA =

8 CGOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Type it and SAVE it as SOUND MODULE. This is a collection of
subroutines that can be used in other programs but that does not do
anything by itself.

MUSICAL NOTES

Make the following changes to SOUND MODULE and you will have
a program in which the number keys (1 though 8) correspond to
notes on the musical scale:

Delete lines 13120 through 13150.

i REM .. . KEYS1/8-SOUND MODULE. .

il .

12 REM PROGRAM TO "PLAY" THE XEYS 1/8

13 .

100 GOSUB 13000 REM INITIALIZE SOUND ROUTINE
200 TEXT . HOME

210 PRINT "'PLAY' A TUNE USING THE NUMBERS 1 TO 8"
2z0 PRINT

230 PRINT "PRESS RETURN TO END YOUR 'TUNE' "
Z90 PRINT "PRESS ESC TO STOP PLAVING.. . "

250 PRINT

300 GET Z3

310 IF Zs = CHR§ (13) THEN 500: REM RETURN
320 IF Zs = CHRS (27) THEN END . REM ESC

230 IF Z¢ ¢ "i" OR Z% > "8" THEN 300: REM IGNORE OTHER KEYS
340 PRINT Z5§;

350 WP = ASC (Z5) - 4B: REM CONVERT TO 1/6
2360 WD = 50: REM DURATION

370 GOSUB 13600

380 GOTO 200

500 PRINT . VTAB 18

510 PRINT "PRESS RETURN TO TRY AGAIN... ";
52D GET Zs

530 IF Z¢ = CHR$ (27) THEN END : REM ESC
564D GOTO z0D

13120 DATA 255.2z8,203,192,171,152,135,127

SAVE this program as KEYS1/8. RUN it to play simple tunes using
the keys 1 through 8. As you “play,” the numbers you type appear on
the screen. You can copy them to keep track of the tunes you like. As
in our other programs, press RETURN to end yourtune; press ESC to
stop the program.

The SOUND MODULE routine instructs the computer to produce
tones at a number of different frequencies. It works much the same as
the internal routine activated when you type Control-G. This time,
we chose frequencies that roughly correspond to the scale and used
the numbers 1 through 8 to play the scale. The matching pattern is
arbitrary and is assigned by the DATA statements in lines 13120
through 13150.

MUSICAL NOTES AND SOUND EFFECTS 9

Play this series of notes, pausing when you come to an asterisk:
6545666 * 555 * 688 * 6545666655654. What is the tune?

Mary had a little lamb.

By changing the DATA statements in lines 13120 through 13150,
we can create additional click frequencies. We can match them this
time totheletter keys, in alphabetical order. Theroutine that follows
provides a twenty-six-note chromatic scale.

Here are the statements that change the assignment of keys 1
through 8 to keys A through Z. Make the following changes to
KEYS1/8:

10 REM .. KEYSA/Z-XEYS1/8. ..

11

12 REM PROGRAM TO "PLAY" THE KEYS As/Z (ALPHABETICAL ORDER)
13 ¢

210 PRINT "'PLAY' A TUNE USING THE KEYS A THROUGH Z"

330 IF zs ¢ "A" OR Z$ > "Z" THEN 300: REM ICNORE OTHER XEVYS
350 WP = ASC (Z%) - 64:. REM CONVERT TG A/Z

13120 DATA 255,242,.228,215,203,192,181,171

13130 DATA 161,152,143,135,127,120,113,107

13140 DATA 101.,95.90.85.80,75,71.67

13150 DATA 63,59

SAVE this program as KEYSA/Z. RUN it and play on the keyboard
using the keys A through Z. Listen to the sounds. When you find a
series of notes you like, copy the letters from the screen so you can
play your “song” again.

MUSICAL MESSAGE

Obviously, the next thing to have is a program that plays your
message from memory rather than from the keyboard. The following
program allows you to enter the series of tones you want from the
keyboard. The program plays the series when you press RETURN
instead of each time you press a key.

10 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Make the following changes to KEYSA/Z: Delete lines 300 through
380, and add the following lines:

10 REM .. . MUSIC MESSAGE-KEYSA/ZI...
11
12 BEM PROGRAM TO INPUT, THEN "PLAV"
A STRING (A/Z ALPHABETICAL)
13
z30 PRINT "ENTER 'TUNE' THEN PRESS RETURN TCQ PLAY."
240 PRINT
250 INPUT "TUNE: ".,ZS$
a00 WD = 50: REM DURATION
310 GOSUB 1'3300: REM PLAY STRING

SAVE this program as MUSIC MESSAGE. RUN it, using some of the
“tunes” you copied from before.

How about typing your name and listening to the computer “play”
it? How do your city and state “sound?” A variation might ask for
your name and then play it several times, perhaps alternating direc-
tion.

How would you alter the program so that the message was played
three times, instead of just once?

305FORJ=1103
315 NEXT
Change MUSIC MESSAGE by adding the following lines:

10 REM .. .BACK AND FORTH-MUSIC MESSAGE. ..

11

12 REM INPUT THEN "PLAY" A STRING BACK AND FORTH
13

110 BF = 1: REM # OF TIMES BACK AND FORTH

250 INPUT "TUNE: ", F§

260 Bs = "v

270 IF LEN (Fs) THEN FOR J =1 TO LEN (F$):B§ = B§ +
MIDé (FS$, LEN (F$) + 1 - g 1): NEET : REM REVERSE STRINGC

z80 FOR J = 1 TO BF

305 Z8 = F¢. REM FORWARD

320 Zs§ = B$. GOSUB 13300: REM BACK

330 NEXT

SAVE this program as BACK AND FORTH and RUN it. Type A
through Z as your tune and listen to it.

MUSICAL NOTES AND SOUND EFFECTS

11

You have a program that will play your series of letters first the
way you typed them, then again in the opposite direction. After you
have experimented with a few words and phrases, try typing some
palindromes to see how they sound. (A palindrome is a series of
letters that reads the same in either direction. Two well-known
palindromes are “Madam I'm Adam” and “A man a plan a canal
Panama.”)

1. Allthe tones are the same length. What line do you change to
make the tones longer or shorter?

2. How do you change the number of times the line is played
back and forth?

1. Line 300
2. Change the value of BF in line 110

PIANO

When you are ready for a different keyboard, create the following
PIANO program. This time each keyboard letter is associated with
one note, left-to-right and bottom-to-top order, instead of
alphabetical order.

To create PIANO, make the following changes to the program
KEYSA/Z (not BACK AND FORTH, although these changes would
change the BACK AND FORTH keyboard as well): ‘

12 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ...PIANO-KEYSA/Z
11
1Z REM "PIANO" USING AJZ
13

210 PRINT "'PIANO' USING THE XKEYS A THROUGH z"
13120 DATA 171,203.228,.152.90,143,135,1127
13130 DATA 67.120,113,107,181,182,63:58
13140 DATA 101,85,161,80,71,215,95,242

13150 DATA 75.255

Save this program as PIANO. Again, all we have done is change the
pitch assignment in lines 13120 through 13150.

Using this program, you can play your keyboard somewhat like a
piano. (Except that the tones all have the same length and you can
play only one note at a time.) See if it is easier to pick out your
favorite tunes when the notes are arranged this way.

ELECTRIC ORGAN

One limitation of the previous programs is that the tones are of set
duration. We can vary the length of all the tones, but we havenot yet
been able to vary the length of individual tones independent of each
other.

The following program takes duration time to the other extreme. A
tone lasts until a new key is pressed—in effect, imitating an electric
organ.

MUSICAL NOTES AND SOUND EFFECTS

13

Modify PIANO as follows:

10 REM ... ORGAN-PIANO. ..
11

12 REM ELECTRIC ORGAN

13

1004 GOSUB 13700: REM INITIALIZE ORGAN ROUTINE
210 PRINT "'ORGAN' USING THE KEYS A THROUGH zZ"
370 GOSUB 13700

13693 REM ® ORGAN ®
13694 REM ENTRY: WP PITCH

REM
(WP=0 AND ROUTINE NOT LOADED = INITIALIZATION ONLY)
13699
13700 IF WS% THEN 13500:
REM CHECK IF ORGAN ROUTINE ALREADY LOADED
13710 WS% = 88BZ2: REM ORGAN ADDRESS
13720 IF WR% = 0 THEN W = WP:WP = 0: GOSUB 13000:WP = W:
REM LOAD SOUND ROUTINE (SAVING PITCH)
13730 Z = 13800: GOSUB 18000: REM SET READ DATA POINTER
13750 Z = WS%: REM LOAD ORGAN ROUTINE
13760 READ Z1l: IF Z1 > = 0 THEN POKE Z,21:Z = Z + 1: GOTO 13760
13770 IF WP = 0 THEN RETURN : REM TRAP FOR INITIALIZATION ONLY
13797
13798 REM ORGAN ROUTINE WRITTEN IN MACHINE CODE
13799 :
13800 DATA 172,.31.3,185.73,3,141,31,3,173,0,192,48.,14,
174,31,3,173,.48,192
13810 DATA 136.208.0,202,240,235,208,248,96
13890 DATA -1: REM FLAG TO STOP READING DATA
13500 POKE WP% WP: REM PITCH #
13910 CALL WS%
13920 RETURN

SAVE this program as ORGAN. Play it to see how it differs from
PIANO.

SOUND EFFECTS

Finally, we are providing a very powerful SOUND EFFECTS
routine. Because it offers so many possibilities, we will suggest a
systematic way for you to explore it.

14 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

We can develop a huge variety of sound effects by adding the
following to SOUND MODULE:

REM .. .SOUND EFFECTS-SOUND MODULE. ..
"REM SOUND EFFECTS DEVELOPER

b b
W=D

100 GOSUB .13400: REM INITIALIZE SOUND EFFECTS ROUTINE

210 Wl = 0

220 W2 1

230 W3 0

240 W4 10

250 W5 1

260 W6 200

270 W7 4

300 TEXT : HOME

310 PRINT : PRINT "LENGTH OF EACH TONE: " Wl

320 PRINT . PRINT "STEP BETWEEN TONES: ";W2Z

330 PRINT . PRINT "STARTING TONE: " ;W3

340 PRINT : PRINT "# OF TONES IN CYCLE: ";Wé

350 PRINT : PRINT "1=CYCLE DOWN; -1=UP; 0=UP AND DOWN: " ;W5

360 PRINT . PRINT "PAUSE BETWEEN REPETITIONS: " W6

370 PRINT : PRINT "# OF REPETITIONS: " ;W7

500 PRINT : VTAB 18

510 PRINT "PRESS RETURN TO LISTEN... ";

520 GET Zs$

5306 IF Z$ = CHRS (27) THEN END : REM ESC

540 GOSUB 13400

60D PRINT : PRINT

610 PRINT "PRESS RETURN TO TRY NEW VALUES... ";

620 GET Z$

630 IF Zs8 = CHRS (27) THEN END : REM ESC

700 TEXT : HOME

710 PRINT "FOR EACH PARAMETER, ENTER A NEW VALUE"

720 PRINT "OR PRESS RETURN TO KEEP THE OLD ONE."

830 PRINT : PRINT "OLD LENGTH OF EACH TONE: " Wl;" NEW: ";:
INPUT Z6: IF LEN (Z§) THEN W1 = VAL (Z§)

BZ0 PRINT : PRINT "OLD STEP BETWEEN TONES: " Wz;" NEW: ";:
INPUT Zs: IF LEN (Z$) THEN WZ = VAL (Z$%)

830 PRINT : PRINT "OLD STARTING TONE: ",W3;" NEW: ";:
INPUT Z6: IF LEN (26) THEN W3 = VAL (Z$%)

840 PRINT : PRINT "OLD # OF TONES IN CYCLE: ":;Wé." NEW: ";:
INPUT Z6: IF LEN (Z$) THEN W4 = VAL (Z$)

850 PRINT : PRINT "OLD DOWN/UP PARAMETER: " W5;" NEW: ";:
INPUT Z¢: IF LEN (Z6) THEN WS = VAL (Zs§)

860 PRINT : PRINT "OLD PAUSE BETWEEN: " W6;" NEW: ";:
INPUT Z$: IF LEN (Z§) THENWE = VAL (Z$)

870 PRINT : PRINT "OLD # OF REPETITIONS: " W7." NEW: "::
INPUT Z6: IF LEN (Z§) THENW7 = VAL (Z$)

890 GOTO 300

nounowow

Wowon

SAVE this program as SOUND EFFECTS. RUN the routine once or
twice, and then come back to this discussion.

The routine displays the values that have been set for each para-
meter and then produces the sound effect when you press RETURN.
Next, it asks for your changes to the parameters, one at a time.
(Pressing RETURN retains the current value.)

The variety of sound effects you can get from this routine is
immense. Although it’s tempting to vary each parameter every time
you run the routine, your exploration will be most productive if you
vary only one or two parameters at a time. When you find sounds

MUSICAL NOTES AND SOUND EFFECTS 15

you like, play with the numbers to see if you can refine them further.
Then make note of the numbers so you can use this routine, with
these particular numbers assigned to the variables, in future pro-
grams.

First, see how the sound changes when you change the starting
note. The possible tones in this cycle range from 0 (high) through
255 (low). We started with 0, the highest tone. Try some starting
tones that are lower.

We originally set the number of notes in the cycle to 100; try
shortening it. Did you notice that, as the cycle gets shorter, you begin
to get bursts of sound? The step size is the number of tones between
each tone. If you increase the step size, the resulting sound is less
smooth.

Now, you might want to change the number of times the cycle
repeats and the length of the pause between cycles. Neither of these
changes will have a dramatic effect on the sound. However, chang-
ing the up/down parameter will significantly change what you hear.
Your choices are 1 (down only), —1 (up only), and 0 (up and down).

At this point, you are probably becoming familiar with the parts of
theroutine you have explored. After you work with the routine for a
while, you will be able to predict the kind of sounds different
variable values will make.

By now, you should have a collection of number combinations
written down that produce sounds you like. When you use this
routine in a program, assign those numbers to the variables in the
routine to produce the sound effects you want.

CHAPTER SUMMARY

In this chapter you saw how to use the bell and the SPEED statement.
You were also given a stand-alone program that simulates a piano
and another that simulates an organ.

The most useful program in this chapter is SOUND MODULE.
This module allows you to produce musical sounds of all types and
to make exotic sound effects. You will use SOUND MODULE in
some of the programs presented later in this book.

16 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Sound Subroutine Reference Summary

This chapter has shown you how to manipulate the various sound
capabilities of your APPLE computer. Now we will show you how to
incorporate sound into your own programs.

The variable names beginning with W, X, Y, and Z are used by our
subroutine modules and should not be used in your programs except
for communicating with our routines. Nor should your programs use
line numbers between 10000 and 50000, because that is the area
where our subroutine modules will be located.

Music Sounds Summary

To make music using the keyboard letters A to Z:
Entry point = 13300
Entry variables:
73 string of letters
WD tone duration
Your entry to make music might look like this:

1220 Z§ = "GOLDEN DELICIOUS GAMES"
1230 WD = 100

1240 GOSUB 13300

1250

1260 : REM: PROGRAM CONTINUES

[t is as easy as that!

Sound Effects Summary

To make sound effects, you can set as many as seven variables or use
their default values.

MUSICAL NOTES AND SOUND EFFECTS 17

Entry point = 13400

Entry variables:
W1 length of each: >= 0
W2 step between tones: > 0
W3 starting tone: 0 through 255
W4 number of tones in cycle
W5 1 =cycle down; —1 =cycle up; 0=down and up
W6 pause between repetitions
W7 number of repetitions

Your program segment to make a sound effect might look like this:

1300 W1 =4:W2 = 1:W3 =50:W4 = 20
1310 W5 =0:W6 = 200:W7 =4

1320 GOSUB 13400

1330:

1340 :REM: PROGRAM CONTINUES

CHAPTER TWO

Low-Resolution Graphics

In this chapter, you will learn the fundamentals of LO-RES and a
number of different color effects. We will show you how to print
dots of color on the screen. Then we will extend these ideas to
colored lines, boxes, borders, and routines to cover the whole screen
with color.

This chapter should help you become familiar enough with using
LO-RES to add LO-RES capabilities to your own programs. While
you may not be using the specific routines we develop here, you will
be able to apply the ideas and create the effects you wantin your own
programs. (In Chapter 3, you will see how to create and manipulate
“images” or patterns of LO-RES dots, allowing you to include addi-
tional effects in your programs.)

Your APPLE computer has sixteen colors that will display on your
~ color TV or monitor. You control these colors using low-resolution
. graphics. Low resolution means that you can set only a limited
~ degree of detail in your images. The smallest point you can address
(do something with) is halfthe size of a text character printed on the
screen. Thisis in contrast to high-resolution graphics that allow you
to address much smaller points, thus getting greater detail in your
images. However, only six colors are available in the HI-RES mode.
We will discuss high-resolution graphics in Chapter 4.

You can use two modes in LO-RES. One mode allows forty lines of
graphics and a four-line text window at the bottom of the screen. The
other allows the whole screen (forty-eight lines) to be filled with

19

20 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

graphics. We will use the first mode most often because it permits us
to put instructions in text mode on the same screen as the picture.
Only by using the four-line text window can you mix color
graphics and text on the screen. Later we will show you how to
create block letters to write words or numbers using LO-RES.

COLOR GRAPHICS ON THE APPLE

You need only five commands to create LO-RES color effects: GR,
COLOR, PLOT, HLIN, and VLIN.

GR tells the APPLE to go into the mixed-graphics mode. The
screen is cleared and shows all black. (We will show you full-screen
LO-RES graphics later in this chapter.)

COLOR sets a particular color. A color is set until you change it
with another COLOR command. Type COLOR=4 and you will get
APPLE color DARK GREEN. Use the following APPLE Color Table
as a reference:

BLACK
MAGENTA
DARK BLUE
PURPLE

DARK GREEN
GRAY 1
MEDIUM BLUE
LIGHT BLUE
BROWN
ORANGE
GRAY 2

PINK

LIGHT GREEN
YELLOW
AQUAMARINE
WHITE

© O N O gk Wi - O

O | G
g W N RO

PLOT tells the APPLE to draw a colored dot at a particular point.
When you are working in mixed-graphics mode, your screen is
“divided” into a forty by forty point grid. The points are numbered

LOW-RESOLUTION GRAPHICS 21

from 0 to 39, with point 0, 0 at the upper left corner of the screen. In
the number pair that specifies a point, the H (horizontal) coordinate
is written first; the V (vertical) coordinate is written second. Thus,
PLOT 3,9 tells APPLE to PLOT a dotin the third column across and
in the ninth row down.

0,0

4,2

< 24

HLIN draws a horizontal line between two points at a specified
vertical row. VLIN draws a vertical line between two points at a
specified horizontal column. For example, HLIN 3,23 at 9 tells
APPLE to draw a horizontal line from the third column to the
twenty-third column, at the ninth row down.

To summarize: To draw a colored dot, go into graphics mode, set a
color, and plot a point. To draw more than one dot of the same color,
simply plot the next point. HLIN and VLIN plot horizontal and
vertical lines, respectively. If you want to change the color, do so
before you plot another point. '

Try this program:

100 GR:COLOR= 4
110 HLIN 3,23 AT 9
120 VLIN 3,25 AT 23
130 END

22 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

COLORED DOTS

Below is a simple program for printing colored dots at random
locations on the screen.

10 REM .. .COLOR DOTS...

11

100 GR : HOME

200 PRINT

210 PRINT "PRESS ANY KEY TO STOP ...":
300 H = INT (40 * RND (1))

400 V = INT (40 ® RND (1))

500 COLOR= INT (16 ® RND (1))

600 PLOT H,V

700 P = 200

710 FOR Z = 1 TO P. NEXT : REM PAUSE

800 IF PEEX (- 16384) { 1Z8 THEN 300: REM NO KEYSTROKXE
B10 GET Zs. REM THROW AWAY KEVYSTROKE

Notice how the plotting locations are specified in line 300 (hori-
zontal) and line 400 (vertical). Each coordinate is generated random-
ly from the numbers 0 to 39. The colors are generated randomly from
0 to 15 (line 500), so that all possible colors are included. The dot is
actually plotted at line 600.

The formulas in lines 300 and 400 can be generalized so that you
can generate a random number between any two numbers A and B.
For future applications, use this generalized formula to generate
random numbers.

LET R =INT ((B—A+1)*RND(1))+A

The last important item in this program is the pause in line 700.
Changing the value in this variable changes the length of time before
the next dot is displayed.

Type the preceding program and SAVE itas COLOR DOTS. RUN
this COLOR DOT program. You can stop it by pressing any key.
Mixed LO-RES mode will still be set, with only four lines of text at
the bottom of the screen.

To return to full-screen text mode, type the command TEXT.
Your screen will be filled with a variety of black and white images,
some flashing. To rid your screen of this unattractive mess, type
HOME. In future programming efforts, use the statement TEXT:
HOME to enter text mode and clear the screen. To clear the screen
and remain in LO-RES mode, use GR:HOME.

See what happens when you vary some of the parameters in
COLOR DOTS.

LOW-RESOLUTION GRAPHICS

23

1. How can you change COLOR DOTS to make pink “snow” cover
the ground?

2. How can you alter COLOR DOTS to have yellow “stars” slowly
appear above a horizon that is halfway up the screen?

3. How would youfill aten by ten dot rectangle in the center of the
screen with purple dots?

1. Modify COLOR DOTS: 500 COLOR = 11
2. Modify COLOR DOTS:

10 REM . ..YELLOW STARS-COLOR DOTS...
11
400 V = INT (20 * BRND (1))

500 COLOR= 13
700 P = 1000

3. Setthe color to purple. Set the H and V coordinates so that both
vary from 15 to 24.

10 REM .. . PURPLE RECTANGLE-COLOR DOTS. ..
11
300 H INT ¢1D % BRND ¢

= 1)) + 135
= INT (10 » BND {1)) + 13
500 COLOR= 3

24 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

You might use a variation of the dot routine in your own programs.
Would you ever need to represent the eyes of jungle animals appear-
ing in the night forest? You could have dark green and yellow dots
appearing on a black screen. How about looking down at coins
dropping into a wishing well? You could make yellow dots appear
within a circular area in the center of the screen. In both cases, you
could use a FOR-NEXT loop to control the number of dots that
appear. Here is the complete listing of WISHING WELL:

10 REM ...WISHING WELL...

11

100 GR : HOME

120 RA = 16: REM RADIUS OF WELL

130 RZ2 = RA % RA: REM RADIUS SQUARED
140 HO = 19%: REM H-POS OF CENTER

150 VD = 19: REM V-POS

200 PRINT

210 PRINT "PRESS ANY KEY TO STOP ...":
300 REM FIRST SELECT H,V IN A SQUARE CENTERED AT
(HO VD) WITH SIDE = Z%RA
310 H INT (2 = RA » BRND (1
400 V INT ¢z » RA = BRND (1 + VD - RA
410 REM SECOND CHECK IF (H, V) IS WITHIN THE CIRCLE
420 IF (H - HD) A 2 + (V - VD) A 2 > RZ THEN 310:
REM SELECT A NEW POINT IF IN SQUARE BUT NOT CIRCLE
500 COLOR= 13
600 PLOT H,V

=) +# HD - RA
=)

)
)
)

700 P = 1
710 FOR Z = 1 TO P: NEXT : REM PAUSE
800 IF PEEK (- 16384) ¢ 128 THEN 300: REM NO KEVYSTROKE

810 GET Z$: REM THROW AWAY KEVSTROKE

These are just a few of the possibilities you can program using this
basic dot routine.

Another way you can alter this program is to use a random, rather
than fixed, time delay for the value of P in line 700. Select a range for
the delay, and then use the formula we gave you earlier (page 000).
1. If you want to print only dots of medium blue and orange, how
would you change the routine? (Refer to the color table on page 00.)

LOW-RESOLUTION GRAPHICS 25

2. Suppose you still want medium blue and orange dots, but you
~ want blue to be three times as likely to appear. How would you
 change the routine?

1. 500 COLOR =6
510 IF RND(1)<.5 THEN COLOR = 9
(The .5 gives each color a 50-50 chance.)

2. 500 COLOR =6
510 IF RND(1)<.25 THEN COLOR = 9
(One chance in four is controlled by the .25.)

Here is a program that uses the dot routine to “grow” wildflowers
in a bare field. We have chosen three flower colors (red, yellow, and
purple) and assigned them at 20% each. Then, we assigned dark
~ green at 40%.

Modify original COLOR DOTS:

10 REM ... FLOWERS-COLOR DOTS. ..
11
400 V = INT (30 * BRND (1)) + 10
500 Z = INT (100 ® RND (1)) + 1: REM 1/100
510 COLOR= (Z « = 20) = 1 + (Z > 20 AND Z
{ = 40) % 13 + (Z > 40 AND Z ¢ = 60) %3 + (Z > 60) ® &

 Type this program and SAVE it as FLOWERS. Then RUN this pro-

gram and watch the flowers cover the field. To assure that they don’t

also cover the sky, we limited the V coordinate so that the dots do not
appear above V=10 (see line 400 above).

26 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

COLORED LINES

The only difference between plotting points and drawing lines is
that points need only two coordinates whereas lines must have both
endpoints specified. Because we are drawing only horizontal or
vertical lines, the endpoint specification is simple.

Use HLIN and specify the starting and ending columns and the
vertical distance from the top of the screen (the row). HLIN 10,20 at 5
draws a horizontal line from the tenth to the twentieth column, five
rows down. VLIN 10,20 at 5 draws a vertical line from the tenth row
to the twentieth row, in the fifth column from the left.

The following program creates lines instead of dots, and it builds
on what you learned earlier. The program selects the endpoints
(determining whether the line will be horizontal or vertical and how
long it will be), the color of the lines, and the time delay between
drawing lines.

Modify the original COLOR DOTS:

i0 REM ... COLOR LINES-COLOR DOTS...

11

300 H1 = INT (40 * BRND (1))

350 HZ = INT (40 ® BRND (1))

400 V1 = INT (40 * RND (1))

450 VZ = INT (40 % RND (1))

6006 D = INT (Z * BRBND (1)): REM D =0 (HLIN), =1 (VLIN)

650 IF D = 0 THEN HLIN H1,HZ AT V1
660 IF D = 1 THEN VLIN V1,VZ AT H1

SAVE it as COLOR LINES. Try this program exactly as it appears.
Then vary some of the parameters. How about limiting the colors
(line 500)?

LOW-RESOLUTION GRAPHICS 27

How would you change the program to limit the possible lengths of
the lines?

Modify COLOR LINES as follows:

10 REM .. .LINE LENGTHS-COLOR LINES...

20: REM MAXIMUM HLIN LENGTH

10: REM VLIN

360 IF: ABS (HZ - H1) > HL THEN 350: REM PICK AGAIN - TOO LONG
460 IF ABS (VZ - V1) > VL THEN 450: REM PFICK AGAIN - TOD LONG

—
[\
o
X
=

o

~ SAVE this program as LINE LENGTHS.

- Do you think you would ever need to fill the screen with short,
vertical lines? (They might represent people appearing out of no-
where.) You can eliminate horizontal lines from the routine by
making this change to line 600:

600D =1

Another way to make this program interesting (and the earlier one,
too) is to make it interactive. Currently, the values for all variables
are created by the program. You can alter the program so that it
accepts values from the keyboard. Make the following changes to
LINE LENGTHS:

28 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ... INPUT COLORS-LINE LENGTHS. ..
11

150 CL = 1: REM INITIAL COLOR

210 PRINT "PRESS ESC TO STOP ...";

500 Z¢ = "ASDFGHJKLZXCVBNM"

510 GOSUB 1000: REM CHECK KEYSTROKE

520 IF Z THEN CL = Z - 1: REM UPDATE COLOR IF KEYSTROKE MATCHED
530 COLOR= CL

BOO Z5 = CHRS (27): REM CHECK FOR ESC

810 GOSUB 1000

BzZ0 IF Z = 0 THEN 300

800 END

991

992 REM v CHECK IF KEYSTROKE IS IN SET =

983 REM ENTRY: Z$ STRING OF XEYS TO MATCH

994 REM EXIT: Z 0 (NO MATCH) AND KEYSTROKE (IF ANY) NOT CLEARED

995 REM Z J (J-TH CHARACTER IN Z§$) AND KEYSTROKE CLEARED
989

1000 Z = 0: REM SET NO-MATCH FLAC

1010 Z1 = PEEX (- 16384) - 128: REM READ KEYSTROKE

1020 IF Z1 ¢ 0 THEN RETURN : REM NO KEY PRESSED

1030 IF LEN (Z28) = 0 THEN RETURN : REM NO CHARACTERS TO MATCH
1040 FOR ZZ =1 TO LEN (Z5$)

1050 IF Zl = ASC (MIDS (Z§,Z2,1)) THEN Z = Z2: GET Z1$

REM MATCH FOUND - CLEAR KEYSTROKE
1060 NEXT

1070 RETURN

SAVE this program as INPUT COLORS. RUN the program and watch
the lines appear. They are all red. Now, as the program runs, type
alphabet keys in the two bottom rows. (A through L or Z through M.)
As you type, the colors will change. We have assigned one of the
APPLE colors to each of the keys (see line 500). The assignment was
arvitrary; we could have used an assignment scheme other than the
rainbow one we chose.

Now, using this idea of changing where the routine gets the values
for the variable, we can make the following change and have the
number keys (1 through 9) provide the length of the horizontal line,
and the keys Q through O provide the length of the vertical line. The
keysto the left will generate short lines; those to the right, long lines.

Modify INPUT COLORS:

10 REM ... INPUT LENGTHS-INPUT COLORS. ..

11

310 Z$ = "123456789"

320 GOSUB 1000

330 IF Z THEN HL = 2 ® Z: REM UPDATE HLIN LENGTH IF KEYSTROKE
340 Z = 1 - 2 *» INT (2 % RND (1)): REM +1. -1

350 HZ = Hl + Z w HL: REM + OR - HL

360 IF HZ ¢ 0 OR HZ > 39 THEN HZ = Hl - Z % HL:
REM - OR + IF OUT OF RANGE
410 Z¢ = "QWERTYUIO"
4z0 GOSUB 1000
430 IF Z THEN VL = 2 % Z: REM UPDATE VLIN LENGTH IF KEYSTROKE

440 z = 1 - Z ®» INT (2 % RND (1)): REM +1. -1

450 V2 = V1 + Z %» VL: REM + OR - VL

460 IF VZ ¢ 0 OR VvZ > 39 THEN VZ = V1l - Z % VL.
REM - OR + IF OUT OF RANGE

LOW-RESOLUTION GRAPHICS 29

SAVE this program as INPUT LENGTHS. RUN this program. You
will probably find it enjoyable to interact with the program and to
have immediate control over what is displayed on the screen. Re-
member, when you are designing programs, that interacting with the
program is fun for the players.

You may have noticed when you were plotting color dots in
LO-RES that the dots are not perfectly square—they are wider hori-
zontally than they are high vertically. This is due to the structure of
the LO-RES hardware. Similarly, vertical lines are “fatter and shor-
ter” than horizontal lines drawn with the same values for length.

By now you probably realize that you can vary parameters within
the routine to make other interesting effects: You can limit the colors
and you can assign the horizontal and vertical lengths to the keys in
different ways.

Boxes are one step beyond lines. You draw aline and then indicate
which way and how farto “grow” it. The last program in this section
prints colored boxes. Modify INPUT LENGTHS as follows:

10 REM .. INPUT BOXES-INPUT LENGTHS. .
= 0 THEN FOR Z = V1 TO VZ STEP SGN (VZ - V1). HLIN H1,
HZ AT Z: NEXT

L
660 IF D = 1 THEN FOR Z = Hl TO HZ STEP &GN (HZ - Hl): VLIN V1,
VZ AT Z° NEXT

SAVEitas INPUT BOXES. RUN it. Use keys 1 through 9 to vary the
- width, keys Q through O to vary the height, and A through M to vary
- the colors. You will see a direct relationship between what you do
with the keys and what happens on the screen.

COLORING THE SCREEN

This section presents several other ways to color the screen. First,
we will provide a routine to display a simple colored border, useful
for calling attention to what’s on the screen. This routine displays a
colored border one line wide around the screen. Notice that the color
is set in line 500.

30 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

SAVE this program as BORDER1. RUN it.
You can change BORDER1 to make it display borders of different
colors that follow one after another. Here’s how we did it:

10 REM ...BORDER. ..
11

i00 GR : HOME

500 COLOR= 1

600 HLIN 0,39 AT
610 VLIN 1,38 AT

0
3
620 HLIN 38B.0 AT 3
630 VLIN 38,1 AT 0

Make BORDERT1 a general-purpose program by deleting lines 600
through 630.

10 REM ...BORDER2Z-BORDER]. ..

11

600 Z = 0: REM 0 DOTS FROM THE EDGE
610 GOSUB 500

B20 END

8391

B92 REM % LOW-RES BORDER x

893 REM ENTRY: Z & OF DOTS IN FROM THE EDGE
884 REM COLOR SET

899 :

500 Z1 = 39 - Z

910 HLIN Z.Z1 AT Z

920 VLIN Z + 1,Z1 AT Z1

930 HLIN Z1 - 1,Z AT Z1l

940 VLIN Z1 - 1.Z + 1 AT Z

950 RETURN

SAVE this program as BORDER2.

1. How would you modify BORDERZ2 to set the border three dots in
from the screen sides?

2. How would you modify BORDER2 to make a doubleborder with
a space between the parts?

LOW-RESOLUTION GRAPHICS 31

1. 60072=23
2. One answer is: 62072 = 2.
630 GOSUB 900

It’s extremely useful to be able to wash the screen (fill it quickly
and smoothly with a color). The following routine fills the screen by
printing horizontal lines.

10 REM ...WASH...

11

100 GR : HOME

500 COLOR= 1 ~
600 FOR Z = 0 TO 39

6§10 HLIN 0,38 AT Z

620 NEXT

SAVE this program as WASH and RUN it.
How would you change the program to print stripes of alternating
colors?

Modify WASH as follows:

10 REM ...STRIPE-WASH..

11

500 Cl = 3: REM FIRST COLOR
510 Cz = 7: REM SECOND

520 C = Cl: REM CURRENT
605 COLOR= €C.C = Cl + CZ - C: REM CHANGE TO OTHER COLOR

The WASH routine provides a background color over which you
can make other lines, dots, and even images, as you will see in the
next chapter. You can easily change the background color in the
WASH program by changing line 500.

Another way to color the screen is to print stripes around the
screen in a spiral effect:

32 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 PEM .. SPIRAL...

11

100 GR . HOME

120 HO = 19: REM H-POS OF CENTER

130 VD = 19: REM V-POS

140 N 18: REM & OF LAYERS IN SPIRAL
150 P l: REM PAUSE BETWEEN SEGMENTS

200 FOR J = N TO 0 STEP - 1

210 Hl = HO - J: REM LEFT EDGE OF CURRENT LAYER
220 HZ = HDO + J + 1: REM RIGHT

230 V1 = VD - J: REM TOP

260 VZ = VD + J + 1: REM BOTTOM

300 GOSUB 500

310 HLIN H1,HZ AT V1

350 GOSUB 9500

360 VLIN V] » 1,V2 AT HZ

400 GOSUB 500

410 HLIN HZ - 1.,H1 AT V2

450 GOSUB 9500

460 VLIN VZ - 1,V] 3+ 1 AT Hl

490 NEXT

820 END

892

893 REM * SELECT COLOR FOR NEXT SEGMENT, THEN DELAY
899

900 COLOR= 1
910 FOR Z = 1 TO P: NEXT
930 RETURN

SAVE this program as SPIRAL.
You may want to slow the printing so you can see the spiral more
clearly. Do this by changing the delay in line 150:

150 P = 200

How would you change SPIRAL so it prints different colors on each
bar of the spiral?

900 COLOR = INT(16*RND(1))

SAVE this change as SPIRALT1.
Here is a modification to SPIRAL1 to have the spiral continue to
close, then open:

LOW-RESOLUTION GRAPHICS

33

10
11
180
500
510
SZ0
530
540
600
610
650
660
700
710
750
760
780
800
810

SAVE this

REM .. .SPIRALZ-SPIRALl. ..

PRINT . PRINT "PRESS ESC TO STOP M
: FOR J = 0 TO N

J
J o+ 1
J
VZ = V0 + J + 1

GOSUB 510

VLIN V1 » 1.,VZ - 1 AT HI

GOSUB 510

HLIN H1,HZ - 1 AT V2

GOSUB 510

VLIN VZ .Vl + 1 AT HZ

GOSUB 510

HLIN HZ,H1 AT V1

NEXT

IF PEEX (- i6384) (iZ8 THEN Z00
GET Zs: IF Z6 < 5 CHRS (27) THEN 200 REM NOT EZC

=T
—
|
T
o
[N I =1

as SPIRAL2. RUN it to see how it looks.

Modify SPIRAL2 to move the center and reduce the size of the

spiral:

id
il
izo0
1390
130

SAVE this
Try two

HO

REM SPIRAL3-SPIRALZ.

1
1

SE-1

Vo =
N = 4

as SPIRALS3.
spirals. Have them close and open at the same time.

Although the following solution is tedious, it does produce a fine

effect:

LR R N N S N ot
e @ DN) O
IS SRS RN NSRS N SEES]

e
o
NN

542
612
662
7i2
762

REM .TWO SPIRALS-SPIRAL3..
HC = 28. REM INTERLEAVE SFPIRAL #2
vt = V0
HA = HC - J
HB = BC + J 3 1
VA = VC - J
VB = VC + J + 1
HLIN HA.HB AT VA
VLIN VA + 1.VB AT HB
HLIN HB - i.HA AT VB
VLIN VB - 1,VA + 1 AT HA
HA = HC - J
HB = HC + J + 1
VA = VC - J
VB = VC + J + 1
VLIN VA + 1.,VB - 1 AT HA

HLIN HA,HB - 1 AT VB
VLIN VB.,VA + 1 AT HB
HLIN HB.HA AT VA

SAVE thisas TWO SPIRALS. With a little imagination, you can see
this as two eyes. Would you ever need a three-eyed monster to
enhance a program?

34 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

COMBINING COLOR AND SOUND

Now let’s combine sound with one of the screen coloring routines.
Here’s a program that makes ascending and descending scale sounds
as a spiral closes and opens.

Modify SPIRALZ2 as follows:

10 REM ...SPIRAL SOUND-SPIRALZ...
11

180 WD = 10

920 WP = N + 1 - J

93

0 GOSUB 13000

Merge with SOUND MODULE. SAVE this as SPIRAL SOUND and
RUN it.

With an additional change, you can have a program that drives
your friends wild. The sound is slightly offset from the spiral, so
they don’t start and finish at the same time.

10 REM . ..SPIRAL CRAZY-SPIRAL SOUND. ..

11

170 CP = 1:CZ = .25

920 WP = INT (CP)

940 CP = CP » CZ

950 IF CP > N + 2.25 THEN €CZ = - .25: GOTO 9640: REM UP TO DOWN
960 IF CP (1 THEN CZ = .25: GOTO 840: REM DOWN TO UP

Experiment on yourown with adding LO-RES effects correspond-
ing to the note change in the ORGAN program. How about display-
ing a colored dot each time you press a note (A through Z)? How
about special color effects each time you press one of the number
keys? (This is a little like using the pedals in a real organ.) For
example, pressingthe 1 key could signal to wash the screen withred;
the 2 key could signal an orange wash, etc. How about triggering a
spiral if a random key is pressed?

Ontheother hand, a simpler program would have the 1 key change
the screen to another color that was selected at random.

As you can see, you can combine color with sound in a variety of
ways to make them both more interesting.

LOW-RESOLUTION GRAPHICS

35

FULL-SCREEN LO-RES GRAPHICS

Each of our programs has used a four-line text window at the bottom
of the screen. To eliminate the text window and gain eight addition-
al graphic lines, use these two statements in your programs:

10 BREM ..FULL LOWRES

11

100 GR . POKE - 1630Z2.,0: REM SET FULL-SCREEN LOWRES

110 COLOR= 0. FOR Z = 40 TO 47. HLIN 0,39 AT ZI. NEXT
REM CLEAR BOTTOM 8 LINES

CHAPTER SUMMARY

This chapter introduced the LO-RES graphics statements and
showed some simple applications. The WASH, BORDER, AND
SPIRAL programs will be particularly useful when you write your
own programs.

CHAPTER THREE

Graphic In

1ages in LO-RES

This chapter deals specifically with making images—pictures and
symbols—using low-resolution graphics. You can create an image
and then save it to use in future programs. We will present some
images and show you how to use them. Then we will show you how
to create, change, and store your own unique images. Finally, we
will include programs that incorporate and manipulate images.

The building block of the image is the dot introduced in the
previous chapter. Because low-resolution images are made of these
rectangular dots, they have the quality of children’s drawings or of
pictures drawn in cross-stitch. Children especially find LO-RES
images very appealing.

IMAGE MODULE

The following IMAGE MODULE allows you to display images on the
screen. You specify the position, the color, and the image; the mod-
ule does the work. For your ease in getting started, we have included
an alphabet and the numerals 0 to 9. Later in the chapter, we will
show you how to create, save, and display additional images.

As you can see from the listing below, spacing is crucial to the
appearance of the letters. Be very careful when you type the image
portion of this routine, or your characters will be misshapen.

37

38 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM . ..IMAGE MODULE-NEXTDATA MODULE. ..
11

12 REM IMAGE SUBROUTINES + IMAGE LIBRARY
13

164981

149812

14983 REM ® DISPLAY IMAGE IN LOW-RES *®
14984 REM ENTRY: XH H-POS OF UPPER-LEFT-HAND-CORNER

14985 REM vV V-POS

14988 REM XA HORIZONTAL WIDTH

14987 REM XB VERTICAL HEIGHT

14888 REM READ DATA POINTER SET TO IMAGE

14888 RENM COLORS SELECTED IN XC()

14980 REM GRAPHICS MODE SELECTED

14891 REM EXIT: Z% 0 JMAGE FITS

14982 REM 1 ERROR - DOES NOT FIT

14998 :

15000 IF %H + XA > 40 OR XV + XB > 48 THEN Z% = 1: RETURN

REM ERROR - DOES NOT F IT
15010 Z1 = XV: REM FIRST V-POS
15020 REM INITIALIZATION UNNECESSARY -
FIRST REFERENCE TO XC() CAUSES "DIM XC(1l0)"

15030 READ Zs: IF Z$8 = "-1" THEN Z% = 0: RETURN : REM CHECK IF DONE
15060 FOR Z = 1 TO LEN (Z8): REM PLOT EACH 1/8 CHARACTER
15050 Zz% = ASC (MIDS (Z8.Z.1)) - 48
15060 IF Z% > =1 AND Z% (¢ = 9 THEN COLOR= XC(Z%):
PLOT %H ¢ Z - 1.,Z1: REM PLOT DOT
15070 NEXT
15080 Z1 = Z1l + 1l: REM NEXT V-FPOS
15090 GOTO 15030
15092 :
15093 REM *® GET IMAGE ®
15094 REM ENTRY: Z IMAGE 8
15095 REM EXIT: XA HORIZONTAL WIDTH

15096 REM XB VERTICAL HEIGHT
15087 REM READ DATA POINTER SET TO IMAGE
15098

15100 Z = 20000 +» 100 % Z: GOSUB 19000: REM SET READ DATA POINTER
15110 READ XA.XB: REM FIRST TWO DATA ARE WIDTH AND HEIGHT

15120 RETURN

151981

15192 REM % DISPLAY ONE IMAGE =

15193 REM ENTRY: Z IMAGE 8

15184 RENM XH H-POS OF ULHC

151895 RENM v Vv-POS

15186 REM COLORS SELECTED IN XC()
15197 REM EXIT: 2% 0 IMAGE FITS

15198 RENM 1 ERROR - DOES NOT FIT
15188

15200 GOSUB 15100: REM SET READ DATA POINTER
15210 GOTO 15000: REM DISPLAY IMAGE

15282

15293 "REM ® CENTER STRING OF IMAGES *»

15294 REM ENTRY: %8 STRING

15295 REM XV V-POS OF ULHC

15286 REM COLORS SELECTED IN XC¢)
15297 REM EXIT: 2% 0 IMAGES FIT

15298 REM 1 ERROR - DO NOT FIT
15288

15300 IF LEN (%$) = 0 THEN RETURN : REM EMPTY
15310 IF XS5 = 0 THEN XS = 1: REM INITIALIZE SPACE BETWEEN IMAGES

15320 %1 = - X5: REM INITIALIZE LOW-RES WIDTH
15330 FOR X = 1 TO LEN (X8)
15340 Z = ASC (MID$ (X8,X,1)): GOSUB 15100:

REM IMAGE 85 IDENTICAL TO ASCII 8S
15350 X1 = X1 + XA ¢+ XS: REM VUPDATE LOW-RES WIDTH
15360 NEXT
15370 IF X1 > 40 + XS5 THEN Z% = 1: RETURN : REM ERROR - DOES NOT FIT
15380 XH = 19 - INT (X1 / 2): REM DISPLAY AT LEFT MARGIN
15380
15381 REM ® DISPLAY STRING OF IMAGES *
15392 REM ENTRY: X8 STRING

GRAPHIC IMAGES IN LO-RES

39

15383
15394
15395
15396
15397
15388
15388
15400
15410
15420
15430
1544 0
15450
15460
15492
15483
15694
15899
15500
15510
15520
26800
26810
26820
24830
264840
26850
26880
264870
26880
26900
264910
2692 0
26930
26940
28950
24980
24970
24980
25000
25010
25020
25030
25040
25050
25080
25070
25080
25100
25110
25120
25130
25140
25150
25160
25170
25180
25200
25210
25220
25230
25240
25250
25260
25270
25280
25300
25310
25320
25330
253640
25350
25360

REM X4 H-POS OF ULHC

REM XV V-POS

REM COLORS SELECTED IN XC()

REM EXIT: xH UPDATED

REM Z% 0 IMAGES FIT

REM 1l ERROR - DO NOT FIT

IF LEN (X%$) = 0 THEN RETURN : REM EMPTY

IF X8 = 0 THEN XS = 13: REM INITIALIZE SPACE BETWEEN IMAGES
FOR X = 1 TO LEN (X$)
Z = ASC (MIDS (%$,%,1)): GOSUB 15200: REM DISPLAY ONE IMAGE
XH = XH + XA + XS: REM UPDATE H-POS

NEXT

RETURN

REM ® WASH 60X460 SCREEN IN ONE COLOR ¥#

REM ENTRY: COLOR SET
Z = 39: REM HEIGHT

FOR Z1 = 0 TO Z: HLIN 0.38 AT Z1l: NEXT

RETURN
DATA §5.7: REM 0
DATA " 111"

DATA "1 "
DATA "1 11"
DATA "1 11"
DATA "11 1"
DATA "1 i

DATA " 111"

DATA "-1"

DATA 5,7: REM 1
DATA " "

DATA " 11"

DATA " 1"

DATA »* 1"

DATA " 1"

DATA " 1"

DATA " 111"

DATA "-1"

DATA 5.7: REM 1
DATA " 111"

DATA "1 1
DATA " i
DATA v 1"

DATA " 1"

DATA "1™

DATA "11111"
DATA "-1"

DATA 5.7: REM 3
DATA ™11111"

DATA " 1
DATA " i
DATA " 11"
DATA " "
DATA "1 i
DATA " 111"
DATA "-1"
DATA 5.7: REM 4
DATA " "
DATA " 11"
DATA " 1 1"

DATA "1 1"
DATA "1l1111"

DATA " i
DATA ¢ i
DATA "-1"

DATA 5,7: REM 3§
DATA "11111"

DATA "1V
DATA "1111"
DATA "
DATA " 1"

DATA "1 1

40 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

25370 DATA * il1"
25380 DATA "-1"

25400 DATA 5.7: REM 6
25610 DATA " 111"

25620 DATA " 1"

23430 DATA "1"

25640 DATA "1111"
25650 DATA "1 1
25460 DATA "1 "
25670 DATA " 111"
25680 DATA "-1"

25500 DATA 5.7: REM 7
25510 DATA "11111"

25520 DATA " i
25530 DATA " i
25540 DATA " 1"
25550 DATA " 1"

25560 DATA "1"

25570 DATA "1"

25580 DATA "-1"

25600 DATA S5.7: REM 8
25610 DATA " 111"
25620 DATA "1 i
25630 DATA "1 "
25640 DATA " 111"
25650 DATA "1 i
25660 DATA "1 1"

25670 DATA " 111"
25680 DATA "-1"

25700 DATA 5.7: REM 9
25710 DATA " 111"

25720 DATA "1 1"
23730 DATA "1 b

25740 DATA " 1111"
25750 DATA " 1
25760 DATA " i
25770 DATA "111"
25780 DATA "-1"

26500 DATA 5.7: REM A
265310 DATA " 1"

26520 DATA " 1 1"
26530 DATA "1 i
26540 DATA "1 i
286550 DATA "1l1l11"
26560 DATA "1 i
26570 DATA "1 i
26580 DATA "-1"

26600 DATA 5,7: REM B
26610 DATA "1111"
26620 DATA "1 1"
26630 DATA "1 i
26640 DATA "1l111"
28650 DATA "1 i
26660 DATA "1 e
26670 DATA "11l11"

26680 DATA "-1"
26700 DATA 35.7: REM €
26710 DATA " 111"

26720 DATA "1 i
26730 DATA "1“
26740 DATA "1"
26730 DATA "1" .
26760 DATA "1 i
26770 DATA " 111"
26780 DATA "-1"
26800 DATA 5,7: REM D
26810 DATA "ll11"
26820 DATA "1 i
26830 DATA "1 i
26840 DATA "1 1
26850 DATA "1 "
26860 DATA "1 b
26870 DATA "1l111"

GRAPHIC IMAGES IN LO-RES

41

76880
26800
26910
26820
26930
26940
26950
26960
26970
26980
27000
27010
27020
27030
27040
27050
27060
27070
27080
27100
27110
27120
27130
27140
27150
27160
27170
27180
27200
27210
27220
27230
27240
27250
27260
27270
27280
27300
27310
27320
27330
27340
27350
27360
27370
27380
27400
27410
276420
27430
27440
27450
27460
27470
27480
27500
27510
27520
27530
27540
27550
27560
27570
27580
27600
27810
27620
27630
27640
276350
27660
27670
27680

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

w_gn
§.7: REM
"11111"
wyn

wyn
wli11n
wyn

wyn
"11111"
w_yn
5.7: REM
"11111"
wyn

win
°1111"
wiw

wym

wyn

w_gm
$.7: REM
"1111"
Wy

wym

wyn

“] 11
v] I
"1111n
w_yn
5,7: REM
") I
"] I
"] 1
"11111"
v I
"] v
"] 1
wige
3,7: REM
vl1ae

W yw
woym
w1
woye

w o qm
wyyge
wlyn
6,7: REM
" 111"
" X
" I
" I
" I
"y 1
wyygn
w_jm
5.7: REWM
"l I
vyl oqe
Wl qnm
wygn

Wy g

vyl g
vl I
wogm
4,7: REM
wym

wye

wyn

aln

wyn

nyw
"1111"

noqn

42 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

27700 DATA 7.7: REM M
27710 DATA "1 i
27720 DATA "1l 1"
27730 DATA "1 1 1 1"
27740 DATA "1 1 1"

27750 DATA "1 i
27760 DATA "1 i
27770 DATA "1 i
27780 DATA "-1"

27600 DATA 5,7: REM N
27610 DATA "1 "
27620 DATA "1 "
27830 DATA "11 1"
276840 DATA "1 11"
27850 DATA "1 11"
27860 DATA "1 i
27870 DATA "1 i

27880 DATA "-1"
27900 DATA 35.7: REM O
27910 DATA " 111"

27920 DATA "1 i
27930 DATA "1 1"
27940 DATA "1 1"
27950 DATA "1 1"
27960 DATA "1 i
27870 DATA " 111"
27980 DATA "-1"
28000 DATA 35,7: REM P
28010 DATA "lll11"“
28020 DATA "1 in
28030 DATA "1 h
28040 DATA "1111"
28050 DATA "1
28060 DATA "1"
28070 DATA "i"

28080 DATA "-1"
28100 DATA 5.7: REM Q
28110 DATA " 111"

28120 DATA "l 1"
28130 DATA "1 i
28140 DATA "1 i
28150 DATA "1 1 1"
28160 DATA "1 1 " &
28170 DATA " 11 1" -
28180 DATA "-1" |
28200 DATA 5,7: REM R
28210 DATA "1l1l11" . -
282210 DATA "1 1" o7
28230 DATA "1 i .
18240 DATA "1ill"
ZBZ50 DATA "1 1"

28260 DATA "1 1"
23270 DATA "1 i

28280 DATA "-1"

28300 DATA 5.,7: REM &

28310 DATA " 11l

28320 DATA "1 "

28330 DATA "1"

28340 DATA " 111"

18350 DATA " i

78250 DATA "1 1" 0
28370 DATA " 111” -
28380 DATA "-1" .

28400 DATA 5,7 BREM T
23410 DATA "1i1l1i1iv
IB470 DATA * 17

28430 DATA = 1"

28440 DATA v 1"
23450 DATA v 1"
28460 DATA 1"
28470 DATA 1"
28460 DATA. "-1iv

76500 DATA 5.7 FEM U

GRAPHIC IMAGES IN LO-RES

43

28510
28520
28530
285490
28550
28360
283570
28580
28600
78610
18620
28630
28640
28630
2B660
28670
18680
28700
28710
287120
28730
28740
28750
28760
28770
28780
28800
28810
788120
28830
18840
28850
28860
28870
28880
28800
28910
28920
28830
28940
28850
28860
28970
28880
25000
29010
28020
29030
290490
28050
25060
25070
29080
29090
60000
60010
60020

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA’
"REM

W

X

¥

Wy qw
ny
Wl
Wl e
"1
w1 1w
"I
w_pn

5.7: RE
TR
21 3w
R
w1 v
Wl Qe
Wi

“ Tyh
n_yn

7.7: REM
" S
" In
"l 1"
Wl o1 e
"l11 1
"1l 11n
") in
wipe

5,7: REM
R
Wl 1w
vy g

w T qn
0oy

lll lll
ST
wogn

5.7: REM
Wyo1w
nyooqe
wiq g

W qw
wooqm
noqm
I
w_gn

5,7: REM Z
AR
"11111"

" It

wo g
nooqw
wogh

Wy
"11111"
wlin

% COPYRIGHT 18581 BY HOWARD FRANKLIN, PALO ALTO, CA =

Type this routine and SAVE it as IMAGE MODULE.

44 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Displaying Letters and Numbers

You must follow three steps to display a LO-RES image. First, spec-
ify the image to be displayed. Next, specify where it should be
printed on the screen. Last, indicate the colors to be used.

IMAGE MODULE makes it very easy to display letters or numbers
at different locations on the screen. You simply specify the contents
of a string (X$), determine the distance from the top of the screen
(XV), decide whether the string will be centered on the row, and
choose the color (XC(1)). If you do not want the string centered, you
must also specify where the string will start. Set XH, the distance
from the left side of the screen.

The next section explains how the image gets colored. Remember
those 1’s you typed in the image DATA statements? We designed the
letters and numerals so they can only be displayed in a single color.
However, we did not indicatethecolorinthe module. When you use
animage, you specifyits color by assigning one of the sixteen APPLE
LO-RES colors to the 1’s used in the DATA statements. For example,
if you want the image to be light green, you would type XC(1) = 12.
This assigns APPLE color 12 to the 1’s which make up that image. If
you want the image to be pink, you would type XC(1) = 11. Later in
the chapter, you will see how to design and color images made with
more than one color.

Followingare some ways you can use IMAGE MODULE to display
words. Add these statements to IMAGE MODULE and RUN it:

100 GR:HOME
110 X$ = “CAT"
120 XV = 10

130 XC(1) = 3
140 GOSUB 15300
999 END

Notice that the string is printed in green (line 130) and that the tops
of the letters are in row 10 (line 120). The string “CAT” is centered
because the IMAGE MODULE subroutine was entered at line 15300.
Add the following lines and RUN the program again:

GRAPHIC IMAGES IN LO-RES 45

145
150 XH = 5
160 XV = 20

170 XC(1) =8
180 GOSUB 15400

The added lines changed some of the variables. Since X$ was not
changed, the screen displaying CAT was repeated. Try modifying
this program so that your name is displayed in different colors and
in different places on the screen. Watch what happens if you posi-
tion the letters to overlap.

Be sure to specify all the string positioning information. When we
entered the module at 15300, the string was centered; when we
entered the module at 15400, it was not automatically centered. If
you do not want to center the string, you must be sure to specify the
starting position, XH (see line 150).d10GOLDEN DELICIOUS

1. What will be displayed when you merge IMAGE MODULE with
the following program and RUN it?

100 GR:HOME
110 X§ = “CAT"
120 XV = 20

130 XC(1) = 3
140 GOSUB 15300
150 XC(1) = 13
160 GOSUB 15300
999 END

2. What will happen if we add 145 GR:HOME to the program?

46 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

1. The word CAT will be displayed in purple. Then the same
word, in the same position, will be colored yellow.
2. The screen will clear before the yellow word is displayed.

A neat addition available as part of IMAGE MODULE is a routine
to wash the screen with the color of your choice. Add these lines to
your current program and RUN it again:

102 COLOR =5
104 GOSUB 15500

On some occasions you might get X$ from the keyboard instead of
assigning it in the program. For example, you might want to ask for a
name and then display it in large letters. The letters are large,
however, and some names might not fit. The IMAGE MODULE
subroutines check the string length and allow you to avoid truncat-
ing the name.

If you enter the routine at 15300 (for centering the display), the
routine checks the length of the string and displays it only if it will
all fit on the screen. If it will not fit, the routine displays nothing. If
you enter the routine at 15400, however, the routine will truncate
the string to fit on the screen.

IMAGE MODULE subroutines set the variable Z% upon exit, to
indicate whether or not the images fit. If Z% equals 0, the images fit
and are displayed; if Z% equals 1, the images do not fit and none are
displayed (if 15300 is the entry point) or only the ones that fit are
displayed (if 15400 is the entry point).

The following routine tests Z%. Add these lines to IMAGE
MODULE:

GRAPHIC IMAGES IN LO-RES

47

100 GR:HOME

110 PRINT "PLEASE TYPE YOUR NICKNAME.'";
120 INPUT X$

130 XV = 10: XC(1) = 3

140 GOSUB 15300

150 IF 2% = 0 GOTO 200

160 PRINT “THERE WERE TOO MANY LETTERS . "
170 PRINT "PLEASE TRY AGAIN WITH FEWER."
180 GOTO 110

200: continue the program

RUN it.

Have you noticed that you have to wait a while for each letter to be
displayed? It takes longer to display this kind of letter than a text
letter (a letter in a program listing). The letters and numbers you see
in text mode are created very quickly by the internal logic of the
machine. The images presented here are created, piece by piece, by
the logic of a BASIC program and, hence, take longer.

SUGGESTIONS FOR LETTER GAMES

Here are suggestions for two skill-building games you can design to
help teach number recognition and keyboard familiarity to begin-
ning readers.

In the first game, the player types a letter and the program displays
it using the LO-RES images. An adult, sitting with a beginning
learner, can say the names of the letters as they are displayed to
reinforce the learning.

A second game displays a number and the player is asked to press
the corresponding key. You might want to ignore all other keys to
avoid confusion. When the player presses the correct key, the pro-
gram makes a tone and presents another number. ,

48 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

UNDERSTANDING OUR
LINE-NUMBERING CONVENTIONS

Beginning in line 24800 of IMAGE MODULE are the DATA state-
ments that contain the images. Look back at them and note the
conventions we used in designing the images and assigning line
numbers. Each image begins on a line number that is a multiple of
100; each image begins with a DATA statement containing its width
and height and a REM telling which image it is; each image ends
with a DATA “-1.”

This particular line numbering convention allows us to access the
images very easily, so it is important that you understand it. If you
subtract 20000 from the line number of an image, you will see that
the result is equal to 100 times the ASCII value of that character. For
example, the A image begins at line 26500. 26500 minus 20000 is
6500, or 100 times the ASCII value for A. The ASCII value for B is 66.
Notice that the DATA statements for B begin on line 26600.

Our line-numbering convention allows usto specify ASCII images
using their character values, e.g., “A” for image number 65. This also
means that you can create images for other keyboard characters and
later access them in strings using their character values.

Later you might want to design lower-case letters to complement
the upper-case ones we provide. We suggest numbering them start-
ing at image 97 (line 29700) so that the lower-case image number
equals the upper-case ASCII number, plus 32 (this means that you
are using standard ASCII for lower case also.) When you want to
refer to them in a string, add the following subroutine to IMAGE
MODULE to convert upper-case ASCII to lower-case image num-
bers:

GRAPHIC IMAGES IN LO-RES 49

15591 :

15592 REM * CONVERT UPPER CASE TO LOWER CASE *
15593 REM ENTRY: Z$ UPPER CASE

15594 REM EXIT: Z1$ LOWER CASE

15599:

15600 Z1§ = "

15610 IF LEN(Z$) = O THEN RETURN: REM EMPTY
15620 FOR Z = 1 TO LEN(Z$)

15630 Z1$ = Z1$ + CHR$ (ASC(MID$(Z$,Z,1)) + 32)
15640 NEXT

15650 RETURN

For example, if you added lower-case images to IMAGE MODULE,
you could set X$ = “Cat” as follows:

500 Zz§ = “AT":GOSUB 15600
510 X$ = "C" + Z1$

Our line-numbering conventions allow room for 255 images (lines
20100 through 45599). Reserving image numbers 32 through 127 for
the ASCII characters, you will have room for many more of your
own.

MAKING AN IMAGE LIBRARY

You would probably like to have many other images. We suggest you
begin creating an image library of your own. Image numbers 1
through 31 and 128 through 255 are available to use within IMAGE
MODULE. When you have written your program, you can merge
IMAGE MODULE with it and have all the images available at once.
To save space in a program, delete the images you don’t want after
you have merged IMAGE MODULE. By making an image library and
using it this way, you can save and easily reuse the images you have
spent time creating.

50 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

DESIGNING AND INCORPORATING NEW IMAGES

The easiest way to create images is to design them on graph paper
and then copy the picture by typing numbers into DATA statements.
Because the color dots on the screen are not perfectly square, howev-
er, the image on the screen will not be exactly the same shape as the
one on the graph paper. A two-color tree designed on graph paper
might look like Figure 1.

Modify IMAGE MODULE as follows:

10 REM ...TWO COLOR TREE-IMAGE MODULE. ..
11

100 GR : HOME

110 %8 = CHRS (1)

120 %C(1)> = 4

130 %¥C¢2) = 8

140 GOSUB 15300

999 END

Z2D10D DATA 21,38: REM TWO-COLOR TREE
20102 DATA " 11111111111111"

20104 DATA " 111111111111111"

20106 DATA "1111111111111111111"
z01p08 DATA "1111111111111111111"

20110 DATA "111111111111111111111"
20112 DATA "111111111111i11111111"
20114 DATA "111111111111111111111"
20116 DATA "111111111111111111111"
20118 DATA "111111111111111111111"
20120 DATA "111111111111111111111"
20122 DATA "111111111111111111111"
20124 DATA "11113113113i11111111111"
20126 DATA "111111111111111111111"
20128 DATA "1111111 2231i1111111"
20130 DATA " 11111 22 11111111"
20132 DATA " 11ill 22 111110
20134 DATA " 1111 22 11"
0136 DATA 22"

20138 DATA " z2"

201406 DATA © zz"

20142 DATA " iz"

20144 DATA " 2"

20146 DATA 22"

20148 DATA " 22"

20150 DATA " 2z

20152 DATA " 22"

20154 DATA " 12"

20156 DATA " 22"

26158 DATA " z2"

20160 DATA " 22"

20162 DATA " 22"

20164 DATA " 22"

10166 DATA " 22"

20168 DATA " 12"

26170 DATA 2"

06172 DATA zz"

10174 DATA " 22"

Z20176 DATA " 2222222%"
(178 DATA "-1"

GRAPHIC IMAGES IN LO-RES 51

52 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Note that lines 20100 through 20178 correspond to the graph. Type
this and SAVE it as TWO-COLOR TREE. The TWO-COLOR TREE
image number does not have an ASCII equivalent, so you access the
image differently (see line 110). Instead of typing the string of char-
acters in X$, type the reference to the image. For example, to access
image number 130, use the statement X$ = CHR$(130). Using this
method, you can position images the same way you position charac-
ter strings. Assign the image number to X$ using CHR$; then enter
the IMAGE MODULE at either 15300 or 15400.

You can also use X$ to position several images in arow. Write the
assignments in the following form:

X$ = CHR$(130) + CHR$(140)

where 130 and 140 are image numbers.

Finally, a word about spacing the images in the X$. As the module
is presently written, it creates one space between successive images.
If you want to change it, set XS to the number of spaces you want
before you enter the module (see lines 15310 and 15410).

REUSING AN IMAGE WITH DIFFERENT COLORS

When we created the image, we assigned a number to each of the
blocks on the graph paper that we may want to color. The spaces (the
blocks without numbers) do not get colored. Later, when we include
the image in a program, we will translate each number into an
APPLE color, just as we did with the 1’s in the letter images.

We can have a dark green tree with a brown trunk by setting XC(1)
= 4 and XC(2) = 8. Later we can use the same image and have a
yellow tree with a white trunk by assigning XC(1) = 12 and
XC(2) = 15. Still later we can have ared tree withared trunkby typing
XC(1) = 1 and XC(2) = 1.

Using this color-numbering method, you can design an image
without immediately deciding which colors you are going to use.
You can try different combinations of colors just by making different
color assignments. This kind of flexibility is particularly useful
when you are designing something like the next tree shown in
Figure 2.

GRAPHIC IMAGES IN LO-RES 53

54 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

We used three numbers in this image. By assigning colors to the
numbers in different ways, we can make very different-looking
trees. Modify IMAGE MODULE as follows:

10 REM .. .THREE COLOR TREE-IMAGE MODULE. ..

11

100 GR . HOME

110 X& = CHRS (2)

iz0 XV =0

130 XC¢l) = 1

140 ¥C(Z) = 2

150 XC(3) = 3

160 GOSUB 15300

170 PRINT . PRINT "PRESS ANY KEY TO CONTINUE... ";

180 GET Z5$
z00 GR . HOME

z10 XV = 0

zzZ0 XC(1) = 3

230 XC(2) = 4

24D XC(3) =3

750 GOSUB 15300

260 PRINT : PRINT "PRESS ANY KEY TO CONTINUE... ";

270 GET Zs

300 GR : HOME

310 XV = 0

320 XC(1) = 9

330 XCi{zZ) = 9

340 XC(3) = 9

350 GOSUB 15300

360 PRINT : PRINT "PRESS ANY KEY TO CONTINUE... ";
370 GET Z3%

400 GR . HOME

410 XV = 0
420 XC(1) =
430 XC(2) =
440 XC(3) =
450 GOSUB 15306

460 PRINT . PRINT "PRESS ANY KEY TO CONTINUE... ":
470 GET Z¢

500 GR : HOME

510 XV = §
520 XC(1) 0

530 XC(2) 0

540 XC(3) 8

550 GOSUB 15300

999 END

20200 DATA 23.39: REM THREE-COLOR TREE
z0z0z DATA " 11111111111111111"

20204 DATA " 12211111111111111"

20206 DATA "112211111111111z222111"
20208 DATA "1ill11111111111zz221111"
20210 DATA "11111222111111111111111"
2021z DATA "13111111222111111131111"
Z0z14 DATA "1311311111111111132z111"
20216 DATA "13333221111111223111111"
20218 DATA "11113222313111113111311"
20220 DATA "12113111131112113133111"

@ ;e

20222 DATA " 2213111113122213131111"
20224 DATA " 1333111211311113322"
20226 DATA " 1113112221313333 1"
20228 DATA " 1113311111333"

20230 DATA " 33111133"

20232 DATA " 333333"

20234 DATA " 33"

20236 DATA " 33"

20238 DATA " 3an

z0z40 DATA " 33"

20242 DATA " 33"

GRAPHIC IMAGES IN LO-RES

55

20244 DATA " 33"
20246 DATA " 33"
20248 DATA 33"
20250 DATA " 3a"
20252 DATA " 33"
z0z254 DATA " 33"
20256 DATA " 33"
20258 DATA " 33"
20260 DATA v 33"
20262 DATA " 33"
z0z64 DATA " 33"
20266 DATA " 33"
20268 DATA " 33"
20270 DATA " 33"
2027z DATA " 33"
20274 DATA " aan
20276 DATA " 33"
20278 DATA " 3333333333"
20280 DATA "-1"

Typeitand SAVE itas THREE-COLOR TREE. Notice how the same
image can look different depending on the color assignment (see
lines 130 through 150, 220 through 240, 320 through 340, 420
through 440, and 520 through 540).

When we designed the tree, we decided which areas might have
different colors and assigned a different number to each. (The more
numbers you assign, the greater the flexibility you will have when
you color the image.) Then, when we used the image in the program,
we assigned different colors to the numbers. (One time we assigned
the same color to several numbers—see lines 320 through 340, 420
through 440, and 520 through 540.) Using this method, you can
design for a maximum of nine colors. Later you can control-ihe
“busyness” of the image with the actual color assignment state-
ments. And, of course, you can use the image again another time
with different color assignments.

The last image is even more complex and versatile. We used nine
different numbers to designate different portions of this figure. Us-
ing different sets of colors, you can have four realistic arm-position
combinations and four realistic leg-position combinations (Figure
3). (Assign black to the extra body parts.)

Make the following changes to IMAGE MODULE.

56 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ... PERSON-IMAGE MODULE. ..

11

100 C'= 3: REM # OF COLORINGS

110 FOR N =1 TO C

120 X6 = CHRs (3)

197

1858 REM * COLORS FOR N-TH PERSON AT LINE 500+10%N ¥
199

Z =500 + 10 * N
GOSUB 19000

220 FOR J =1 TO 3§
230 READ XC(a)

[(SEN)
—_—o
oo

240 NEXT

300 GR . HOME
310 XV =0

3z0 GOSUB 15300
400 PRINT

410 PRINT "PRESS RETURN TO CONTINUE... ™;
420 GET Zs

43D NEXT

480 END)

497 REM w VALUES FOR XC(1l)., L XC(9) ¥
438 REM (N-TH PERSON COLORS AT LINE 500+10%N)
499

510 DATA 5,0,0,5,5,0,5.0.3

520 DATA 1,0,1,0.1.0,1.0.1

530 DATA 0.4.4.0,4.4.0.4.0

20300 DATA Z0,.39: REM PERSON

2030z DATA " 555 333"
20304 DATA " 553 3"
20306 DATA " 555 3"
20308 DATA " 555 3"
20310 DATA " 5535 3"
20312 DATA " 5 ar
20314 DATA " N 3"
20316 DATA. " 222225555555533333"

20318 DATA " 1155555 4"

z
20320 DATA " Z 11 55555 4"
20322 DATA " Z 11 55555 4"
20324 DATA " 711 55555 ¢ 4"
20326 DATA " 2zl 55555 ¢ a4
20328 DATA " 21 55555 444444"
20330 DATA "z2211 55555"
2033z DATA " 11 55555"
20334 DATA " 11155555
20336 DATA " 1155555"
20338 DATA " 777777755555"
Z20340 DATA " 777777755555"
20342 DATA " 77 88 55"
20344 DATA " 77 88 55"
20346 DATA " 77 88 55"
20348 DATA " 77 88 55"
20350 DATA " 77 88 55"
20352 DATA " 77 88 55"
20354 DATA " 77 88 55958599%39"
20356 DATA "777 88 559899988"
20358 DATA "777 BB 66 89"
20360 DATA " 88 66 99"
2036z DATA " 88 66 99"
z0364 DATA " 88 66"
20366 DATA " 88 66"
20368 DATA " 88 66"
z20370 DATA ™ 88 66"
20372 DATA " B8 66"
20374 DATA " BB 66"
20376 DATA " 88888 66666"
20378 DATA " 88888 66666"
20380 DATA "-1"

RUN it.

GRAPHIC IMAGES IN LO-RES

57

&b

38 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

To show one hand on hip and one arm in the air, color 1, 3, and 5
the same, and assign black to 2 and 4. How would you place the arms
so the figure looks like an Egyptian drawing?

To make the figure stand up straight, color 5, 6, and 8 the same and
assign black to 7 and 9. Can you color the figure so only the left leg is
raised?

DIFFERENT TV, DIFFERENT COLORS

In the last chapter, you played with colors when you made the boxes
and borders. Now that you are making images, you may want to take
the colors more seriously. The colors you see on your screen depend
on your particular TV set. In fact, your program may look different
when it’s being displayed on a different TV. APPLE supplies a color
testing chart you can use to see what the colors look like. Look for it
in your APPLESOFT Reference Manual.

We strongly encourage you to make your own images. It’s really
fun, and it will help make your programs uniquely your own. You
can make big images that simply appear during a program. Or you
can make little images and move them around on the screen. The
important thing to remember, though, is that they are stored in
DATA statements, so you cannot use the same line numbers for
different images.

GRAPHIC IMAGES IN LO-RES 59

CHAPTER SUMMARY

This chapter showed how touse IMAGE MODULE to create LO-RES
graphic letters and numerals and also how to design and use original
images. You will find IMAGE MODULE very useful when you are
writing your own game programs. Later in the book you will see how
we used it in the games we wrote.

CHAPTER FOUR

High-Resolution Graphics

In this chapter you will learn a little bit about how to use the
high-resolution graphics capability of the APPLE II. High-resolution
(HI-RES) graphics are much more complicated to use than LO-RES.
As a matter of fact, they are so complicated that we are not going to
show you all the details. We have discovered that very few things
can be done in HI-RES from APPLESOFT BASIC without an enor-
mous amount of detailed programming. Many game-type programs
feature HI-RES graphics that use machine language subroutines to
greatly speed up the display process. However, since the sub-
routines are not done in BASIC and since machine language pro-
gramming is beyond the scope of this book, we will onlyremind you
that the programs are probably much more complex than they look
at first. Another way of thinking about HI-RES programming is,
“What you’ve seen, you can’t do!”

The APPLE designers attempted to resolve some of the difficulty
of doing HI-RES graphics in BASIC by introducing the concept of
using shape tables. Shape tables allow you to design, create, and
manipulate shapes using a special set of instructions. Unfortunate-
ly, even shape tables are slow, cumbersome, difficult to use, and too
intricate to discuss in this book. For example, they are inadequate to
create a HI-RES map of the United States.

For those of you who want more details on HI-RES graphics shape
tables, we suggest Chapter 9 of the APPLESOFT Reference Manual

61

62 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

that came with your computer. We also suggest that you consider
purchasing any one of the several well-documented, high-
resolution graphics software packages that are currently available.
Using a commercial package is much easier than trying to figure out
how to do HI-RES in BASIC. Check your local computer store for
their favorite package. Then laok carefully at the documentation to
be sure you understand how to use it.

FUNDAMENTALS OF HI-RES

Now that you know what you can’t do in BASIC, we’ll show you
some things you can do. HI-RES graphics uses two graphics screens,
screen one and screen two. To use screen one, use the instruction
HGR. HGR2 tells your program to use screen two. Either of these two
instructions clears the appropriate graphic screen to black. Screen
one can display a matrix of 280 dots across (0 through 279) and 160
dots down (0 through 159). “Beneath” HI-RES screen one is blank
screen space on which you can display four lines of regular text,
using normal PRINT statements in your BASIC program. Screen two
displays a matrix of 280 by 192 dots with no text space.

The instruction HCOLORtellsthe program which HI-RES color to
use when plotting on the HI-RES screens. The eight HI-RES colors
available and their color numbers are shown below:

0 = black 4 = black

1 = green 5 = orange
2 = violet 6 = blue

3 = white 7 = white

Note the duplication of black and white colors (the reason for the
duplication is quite technical). You should also note that colors 5
and 6 may not appear as orange and blue on your TV screen. One of
the difficulties with HI-RES color is the tremendous variation
among home television sets. The colors in our program may depend
on the set you show them on. To avoid some of the problems, you
can stick with black and white graphics!

HIGH-RESOLUTION GRAPHICS

63

To select white as your plotting color, use this instruction:
HCOLOR = 3

White will be plotted on the screen until another HCOLOR state-
ment is executed changing the plot color.

The HPLOT instruction is used to plot a point or a line on the
HI-RES screen. The upper left corner of the screen is considered
position 0, 0. All points are plotted in relation to this point.

HPLOT 25, 55 will plot a point in the current color located at the
dot 25 columns over and 55 rows down from the upper-left corner of
the screen.

HPLOT 10,20 to 110,90 will plot a diagonal line from point 10, 20
to point 110, 90.

To continue the plot line from point 110, 90, use this abbreviated
form of HPLOT:

HPLOT TO 160, 20

This abbreviated form of the HPLOT statement assumes that you
want to continue plotting from the last point plotted (in our case 110,
90).

You could combine the above into one HPLOT statement that
looks like this:

HPLOT 10,20 TO 110,90 to 160, 20

The following program is a demonstration of the HI-RES com-
mands you have learned so far.

REM .. . HI-RES DENMOI1...

HGR

HCOLOR= 3

HPLOT 25,55

GOSUB 220

HPLOT 10,20 TO 110,80
GOSUB 220

HPLOT TO 160,20

180 GOSUB 220

180 GOTO 300

[y S il
NP D W N b =D
oo oo

2zZ0 PRINT "PRESS RETURN TO CONTINUE:";
230 INPUT RS

240 RETURN

300 END

Enter it and RUN it.

64 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

1. Write the statement that will cause the plot line to continue
down the screen in a straight line to position 90.

185

2. Write a statement that will change the plot color to green. Then
write another statement to plot a horizontal line across the entire
screen and just below the plot line now on the screen.

190
200

1. 185 HPLOT TO 160, 90
2. 190 HCOLOR =1
200 HPLOT 0, 90 to 279, 90

To wash the screen with a color background instead of the black
background that is cleared by HGR and HGR2, use this procedure:

—HGR or HGR2

—POKE 28, X

—CALL 62454
X can be any color from 0 through 255. Except for the values indi-
cated below, you will get an interesting striped color image on your
screen. These values of X in the POKE statement will give you a solid
background in the color indicated:

black—0 or 128
white—127 or 255

green—42
violet—85
orange—170

blue—213

HIGH-RESOLUTION GRAPHICS

The screen wash works very quickly. Once the screen color is
established, you can plot lines in other colors over the background
color.

SOME HI-RES PROBLEMS

The program you tried earlier worked just as you might have ex-
pected. You can even change the colors and the program will still
work. When you switch to screen two by using HGR2, the program
will also work, except for the “press RETURN” prompts. They will
not appear because screen two has no text window.

We make a point of mentioning that this program works as you
would expect because, as a result of variations in televisions as well
as pecularities in HI-RES, things do not always work as you might
expect. Followingis a classic example. The program below attempts
to place a nice single-color border around HI-RES screen one. Enter
the program and RUN it to see what happens.

10 REM .. .HIRES BORDER. ..

11

12 REM BORDER DEMO IN EACH COLOR

13

100 FOR J = 0 TO 7: REM USE EACH COLOR

110 HOME : HGR

120 HCOLOR= J: REM NEXT COLOR

z00 HPLOT O.,0 TO 27%.0 TO 279,158 TO 0,159 TO 0.0
300 VTAB 2Z: PRINT "BORDER IN COLOR ":J

310 PRINT

320 PRINT "PRESS RETURN FOR THE NEXT COLOR... ";
330 GET Zs)

340 IF Z$ = CHRS (27) THEN TEXT : END : REM ESC
350 NEXT

360 GOTO 100: REM LOOP

As you can see, some of the borders were incomplete and some of
them appeared with multiple colors. How do things like that hap-
pen? There is no easy answer to that question.

1. Why did nothing appear on the screen for colors 0 and 47

65

66 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

2. Which colors displayed a complete four-sided border, though
colors may have been mixed?

1. Those are black colors that are not visible and did not appear on
the black screen.

2. Colors3and 7 are white and did display four sides of the border,
though the vertical sides were odd colors on our TV.

Now add this statement to your program and RUN it again to
observe the change:

210 HPLOT 1,1 TO278,1TO278, 158T01, 158T01, 1

The purpose of this statement is to make a double border around the
screen (an inner border) to see if that improves our picture.
Which colors now have a full, normal, one-color border?

Green, violet, white, and blue were normal. On our screen, color 5
(orange) had two or more colors and color 7 (white) did not appear
correctly. Much to our surprise, the same problem appeared when
we ran this program using an expensive video monitor.

Now delete statement 200 in your program to see if a single
inner-border will appear correctly.
What happens when you RUN the program now?

HIGH-RESOLUTION GRAPHICS 67

The odd color problems reappeared just as they did when we first
ran the program.

These same problems appear when you use HI-RES screen two.
Type this little program and RUN it:

100 HGR
110 HCOLOR =1
120 HPLOT 50,0 TO 70, 150

You would expect a single line to be plotted on the screen. What
actually appeared on the screen?

A series of short plot lines from point to point appeared, rather than
one continuous line.

Change the color to see if that changes the image. Try changing the
plot line points. Your screen image will change in an interesting
manner.

Other problems may also appear on a HI-RES screen. Some are
called clutter, others artifacts. One common problem is the un-
wanted orange stripe that sometimes displays down the left side of
the screen. It is a function of what appears to be an error in the
HI-RES graphic software. Other problems are not a function of your
APPLE or the HI-RES capability of the APPLE. Rather, they are a
product of the circuitry found in television sets and more expensive
color video monitors.

FUN WITH HI-RES

This chapter could not end without some examples of what can be
done quickly and easily with HI-RES graphics. (You really can do

68 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

things!) But don’t expect perfection. As you try these exercises, you
will see color imperfections appear on your screen. Don't fret . . .
that’s just HI-RES!

Enter and RUN this program that displays a simple string pattern
in HI-RES graphics.

10 REM . ..STRING PATTERN. ..
11

12 REM SIMPLE STRING PATTERN
13

100 TEXT : REM FORCE FULL SCREEN

110 HO = 0: REM H-ORIGIN

120 V0 = 159: REM V-ORIGIN

130 MS = 18: REM MAXIMUM STEP SIZE

200 HOME : HGR

210 S% = MS ® EREND (1) + 1: REM SELECT RANDOM STEP SIZE

220 HTAB 1: VTAB 2%z: PRINT "STEP SIZE = ";8%

230 Z% = 7 ® RND (1) + 1: IF Z% = 4 THEN 230: REM SELECT RANDOM
NON-BLACK COLOR

240 HCOLOR= Z%

300 R% = VO / S% % S%: REM RANGE

310 FOR J = 0 TO R% STEP S%: REM STEP THROUGH ENDPOINTS IN THE RANGE

320 HPLOT HO,VD - R% + J TO HO + J.VD: REM NEXT STRING SEGMENT

390 NEXT

500 PRINT

310 PRINT "PRESS RETURN FOR NEXT PATTERN... ".

520 GET Zs

530 IF Z§ = CHRS (27) THEN TEXT : END : REM ESC

560 GOTO 200

SAVE it using the name STRING PATTERN.

Here is a fancier version of a geometric string pattern. Geometric
patterns are easy to reproduce in HI-RES and appear very clearly on
the screen. This particular one is complex enough to cause color
artifacts to appear on the screen in some of the displays. Make these
changes to STRING PATTERN and SAVEit using the name STRING
PATTERN2. RUN the program to see what it does. You might want to
merge either of these two programs to your game programs to offer an
interesting “time-out” or reward at the end of play.

10 REM .. .STRINGZ PATTERN-STRING PATTERN

12 REM FANCIER STRING PATTERN

13 .

110 HO = 139: REM H-ORIGIN

120 VO 79: REM V-ORIGIN

130 MS 11: REM MAXIMUM STEP SIZE

330 HPLOT TO HO.VD + R% - J: REM LOWER RIGHT
340 HPLOT TO HO - J.VD: REM LOWER LEFT

350 HFLOT TO HO.V0D - R% + J: REM VUPFDR LEFT

HIGH-RESOLUTION GRAPHICS 69

CHAPTER SUMMARY

This chapter may be a disappointment to those of you who thought
you might learn all there is to know about HI-RES graphics in just a
few short pages. It is our feeling that HI-RES programming is simply
beyond the scope of what can be expected of the average home/
school BASIC programmer. You will enjoy programming with HI-
RES graphics much more if you purchase and use one of the many
commercial software packages that take the pain out of HI-RES
programming. Also, keep in mind that LO-RES programming is
much easier to do and young children find LO-RES images just as
enjoyable as HI-RES images.

CHAPTER FIVE

Routines for Eniering Data

The object of this chapter is to show you how to use special data
entry subroutines designed for your game programs. They are: The
General-Purpose Input Subroutine, The Input Number Subroutine,
The Y/N Subroutine, The Single-Character Input Subroutine, The
Pause or Keystroke Subroutine, and the Get One Keystroke Without
Echo Subroutine. Parts of this chapter are more technical than other
chapters of this book because some of you may want to know some of
the details of the data entry subroutines. If you don’t want all the
technical information, just read the “How to Use” sections to learn to
use the six data entry routines.

One principal frustration experienced by computer game players
is having a program terminate or “abort” in the middle of play
because they entered incorrect data. Conversly, a chief frustration of
computer game programmers is that inexperienced players will
enter incorrect data or hit the wrong keys when entering data. This
causes the program to abort or “blow-up,” to the consternation of
both player and programmer. The ultimate program includes data
entry handlers, or routines, to testall data entered for validity and to
then respond appropriately without allowing the program to termi-
nate. A good data entry routine is designed with the novice playerin
mind and will usually accept only the intended keystrokes, essen-
tially deactivating the rest of the keyboard. We have developed four
data entry subroutines fitting that description. A fifth and sixth are
offered that you may want to use for special purposes.

71

72 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Here is the complete INPUT MODULE that contains all the sub-
routines.

10 REM ...INPUT MODULE. ..
12 "REM INPUT SUBROUTINES

9992 REM ®® INPUT AND ECHO A STRING ENDING WITH RETURN ®w
9993 REM ENTRY: CURSOR SET TO BEGINNING OF INPUT FIELD

9894 RENM Yv FIELD WIDTH

99935 REM YF$ FIELD FILLER CHARACTER

9996 REM EXIT: Z¢§ STRING

9987 REM Z% -1 (ESC), 0 (NOT ESC)

9998 :

10000 IF LEN (YF8) (> 1 THEN YF$8 = " ": REM INITIALIZE FILLER

CHARACTER IF NECESSARY
10010 YH% = PEEK (36) +# 1: REM H-POS
10020 YV% = PEEK (37) + 1: REM V-POS
10100 GOSUB 10500: REM SET INPUT FIELD TO THE FILLER CHARACTER AND

INITIALIZE
10110 GET Z1$
10120 IF Z1% = CHRS (13) THEN RETURN : REM RETURN

10130 IF z1s ¢ > CHRS (27) THEN 10200: REM ESC

10140 GOSUB 10500

10150 FLASH : PRINT "ESC"; CHRS (8);:: NORMAL

10160 Zz% = - 1: REM ESC FLAG

10170 GOTO 10110

10200 IF Z1%8 ¢ > CHRS (8) THEN 10300: REM LEFT ARROVW
10210 IF 2% = - 1 OR LEN (Z8) ¢ = 1 THEN 10100: REM ESC AND ONE
CHARACTER OR LESS SHARE LOGIC
(

10220 PRINT CHRSs (8);YF8; CHRS (8);:. REM ERASE ONE CHARACTER
10230 26 = LEFTS (Z6, LEN (Z%) - 1)

10240 GOTO 10110 -

10300 IF Zl1¢ (" "™ THEN 10110: REM IGNORE OTHER CONTROL CHARACTERS
10310 IF 2% = - 1 THEN GOSUB 10500: REM CLEAR ESCAPE CONDITION

10320 IF LEN (Z8) ¢ YW THEN 10400

10330 IF YW = 0 THEN 10110: REM DO NOT ECHO IF WIDTH=0

10340 PRINT CHRS (8);,: REM ALREADY AT MAX WIDTH

10350 IF LEN (Z8) = 1 THEN Z§ = ""

10360 IF LEN (Zé) > 1 THEN Z¢ = LEFTS (Z8, LEN (Z$) - 1)

10400 PRINT Z16;: REM ECHO AND APPEND CHARACTER

10410 Zs5 = 28 + Z1§

10420 GOTO 10110

10500 HTAB YH%: VTAB YV%: FOR Z = 1] TO YW: PRINT YF$.: NEXT : REM
SET FIELD TO FILLER CHARACTER

10510 PRINT " ",. REM AND ERASE POSSIBLE CURSOR

10520 IF-YW (2 THEN FOR Z = YW + 1 TO 3: PRINT " ";: NEXT : REM
ERASE POSSIBLE ESC IF FIELD NOT WIDE ENOUGH

10530 HTAB YH%: VTAB YV%

10540 26 = .""

10550 2% = O

10560 RETURN

10591

10592 REM *® INPUT NUMBER x

10583 REM ENTRY: CONDITIONS FOR INPUT STRING SET

10584 REM EXIT. 2% -1 (ESC); 0 (INVALID); 1 (INTEGER); 2 (DECIMAL)

10595 REM Z VALUE (IF VALID)

10599

10600 GOSUB 10000: REM GET STRING

10610 IF Z% = - 1 OR LEN (Z8) = 0 THEN RETURN : REM ESC OR RETURN

ONLY (Z%=0)
10620 Zz% = 1: REM SET VALID FLAC

10630 FOR Z1 = 1 TO LEN (Z$8):Z18 = MIDS (Z§,2Z21.1)

10640 IF Z1$ = "." AND 2% = 1 THEN Z% = 2: GOTO 10660: REM TRAP FOR
FIRST DECIMAL POINT

10650 IF (Z1§ ¢ "D" OR Z1§ > "9") AND (Z1l§ ¢ > "-" AND Z1 > 1) THEN

2% = 0: REM INVALID IF NOT A DIGIT AND NOT A LEADINGC -

10660 NEXT
10670 Z = VAL (Z&): REM VALUE ONLY IF VALID FLAG (Z%=1 OR 2)
10680 RETURN

ROUTINES FOR ENTERING DATA 73

10981
10982 REM % INPUT INTEGER #%
10593 REM ENTRY: CONDITIONS FOR INPUT STRING SET

108984 REM YL MINIMUM INTEGER

10985 REM YH MAXIMUM

10996 REM EXIT. Z% -1 (ES5C); 0 (INVALID INTEGER); 1 (VALID
INTEGER)

10997 REM Z VALUE (IF INTEGER VALID)

10899

11000 GOSUB 10600: REM INPUT NUMBER

11010 IF Z% ¢ 1 THEN RETURN : REM ESC OR INVALID

11020 IF 2% = 2 THEN Z% = 0: RETURN : REM INVALID IF DECIMAL POINT
11030 JF Z ¢ YL OR Z > YH THEN Z% = 0: REM INVALID IF OUT OF RANGE
11040 RETURN _

11091

11092 REM »w% INPUT DECIMAL #x

11093 REM ENTRY: CONDITIONS FOR INPUT STRING SET

11084 REM YL MINIMUM VALUE

11085 REM YH MAXIMUM

11086 REM EXIT: Z% -1 (ESC); 0O (INVALID); 1 (INTEGER); 2
(DECIMAL)

087 REM Z VALUE (IF VALID)
099 :

100 'GOSUB 10600: REM INPUT NUMBER

11

11

11

11110 IF Z% ¢ 1 THEN RETURN : REM ESC OR INVALID

11120 IF Z ¢ YL OR Z > YH THEN Z% = D0: REM INVALID IF OUT OF RANGE
11130 RETURN

11191

11192 REM %% INPUT Y OR N #=

11193 REM ENTRY. CURSOR AND FILLER CHARACTER SET

11194 REM EXIT: Z% -1 (ESC); 0 (NEITHER Y NOR N); 1 (¥), Z (N)
11189

11200 ¥Ys = "YN": REM USE INPUT SINGLE CHARACTER ROUTINE

11291

11292 REM »w% INPUT SINGLE CHARACTER AND MATCH WITH VALID STRING #=x

11283 REM ENTRY: CURSCR AND FILLER CHARACTER SET

11294 REM Y6 STRING OF MATCH CHARACTERS

11285 REM EXIT: Z% -1 (ESC); 0 (CHARACTER NOT IN STRING); J (J-TH
CHARACTER IN MATCH STRING)

11299

11300 YW = 1: REM SET FIELD WIDTH

11310 GOSUB 10000

11320 IF Z% = - 1 OR LEN (Zs) = 0 THEN RETURN : REM ESC OR
RETURN ONLY (Z%=0)

11330 Z% = 0: REM SET NOT MATCHED FLAG

11340 FOR Z1 = 1 TO LEN (Y$)

11350 IF Zs = MIDS (Y$,Z1,1) THEN Z% = Zl1: REM MATCH IN POSITION
Z1

11360 NEXT

11370 RETURN

11391

11382 REM #% PAUSE OR UNTIL KEYSTROKE #w

11393 REM ENTRY: YP LENGTH OF PAUSE IN INTERNAL TIME UNITS

11394 REM 0 WAIT FOR XKEYSTROKE ONLY

11385 REM EXIT: Z% -1 {(ESC): 0 (PAUSE EXPIRZD); 1 (KEYSTROKE
BEFORE PAUSE EXPIRED)

11396 REM Z KEYSTROKE (ASCII VALUE + 128)
11399
11400 POXE - 16368,.,0: REM CLEAR TYPE-AHEAD

11410 Z1 = 0: REM INITIALIZE COUNT (% ENTRY FOR GET ONE KEY ®)

11420 Z1 =21 + 1

11430 Z = PEEXK (- 16384)

11440 IF Z > = 128 THEN Z% = 1 - 2 ® (Z = 1§§8): RETURN : REM
KEYSTROKE; TRAP FOR ESC THEN RETURN

11450 IF Z1 ¢ YP OR YP = 0 THEN 11420

11460 2% = 0: REM PAUSE EXPIRED

11470 RETURN

11491

11492 REM %% GET ONE XEY, NO ECHO, NO TYPE-AHEAD =w

11493 REM EXIT: Z% -1 (ESC); 1 (OTHER KEY)

11484 REM Z KEYSTROKE (ASCII VALUE + 128)
11499
11500 YP = 0: GOSUB 11400: REM WAIT FOR KEYSTROKE

11510 POKE - 16368.,0: RETURN : REM CLEAR XEYBOARD AND RETURN
11591

74 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

11582 REM ®»% GET ONE KEY, NO ECHO, WITH TYPE-AHEAD nx
11583 REM EXIT: Z% -1 (ESC): 1 (OTHER KEY)

11584 RENM Z KEYSTROKE (ASCII VALUE + 128)

11598

11600 YP = 0: COSUB 1142D: REM GET ONE KEY, NO TYPE-AHEAD

11610 POKE - 16368.0: RETURN : REM CLEAR KEYBOARD AND RETURN
60000

60010 REM =® COPYRIGHT 18581 BY HOWARD FRANKLIN, PALO ALTO, CA =®
60020

Type it. Save it as INPUT MODULE.

GENERAL-PURPOSE INPUT SUBROUTINE

The General-Purpose Input Subroutine will accept any characters
on the keyboard: numbers, letters, and special characters. It can be
used for all data entry. However, by itself, we use it for entering only
letters and special characters. The subroutine simulates the use of
the normal BASIC INPUT statement. It requires that the user always
press RETURN to indicate that the entry is complete. Some program-
mers mix GET and INPUT statements in the same program when
asking for data. Novice users find it very confusing to PRESS RE-
TURN for some answers and not press RETURN for others. Our data
entry convention requires that the user always press RETURN.
(Technical note: A GET statement is actually used for data entry, but
each entry is tested for RETURN before the routine is terminated.)

Another programming convention introduced allows the user to
press ESCAPE (ESC) at any time during entry, and tests for it. The
ESC key assumes a special purpose, usually to signal that the user
wants to end the play, and is tested by the General-Purpose Input
Subroutine. If the user presses ESC, the word ESC flashes on the
screen advising the user that ESC was pressed. Pressing RETURN
ends the entry sequence signaling ESCape has been pressed. Press-
ing any other key before RETURN erases the ESC, and the program
remains in the entry sequence. How the program itself responds to
ESC will depend on what you, the programmer, tell it to do.

ROUTINES FOR ENTERING DATA 75

How to Use the General-Purpose Input Subroutine

The General-Purpose Input Subroutine starts at line 10000. Here are
the REMark lines that precede the subroutine:

8980

9891 .-

9882 REM #% JNPUT AND ECHO A STRING ENDING WITH RETURN ##
9993 REM ENTRY: CURSOR SET TO BEGINNING OF INPUT FIELD
9894 REM Y FIELD WIDTH

9983 REM YF$ FIELD FILLER .CHARACTER
9996 REM EXIT: 2§ STRING

9987 REM % -1 (ESC); 0 (NOT ESC)
8989

As you can see, there are entry variables, YW and YF$, and exit
variables, Z$ and Z%. The entry variables must be defined before
you enter the subroutine using GOSUB 10000. The YW variable
determines the field width or number of characters that the sub-
routine will accept. If you want the user to enter a twenty-character
name, then place this statement in the program:

200 YW = 20

YF$ isafiller character.Itis most commonly used in games where
the player makes guesses that fill in the blanks. If you do nothing to
YF$, then the program assumes that YF$ contains a blank character
and will display blanks on the screen where the user is entering
characters. If you want the user to “fill-in” places, for example,
indicating how many characters are acceptable, place some charac-
ter into YF$. Here is an example:

210 YF§ = ="

To use the subroutine in a game program, your program might look
like this, where the field width is set to three and the filler character

€09,

to “x7:

200 YW = 3: YF§ = 'x"
210 PRINT “"ENTER A THREE DIGIT NUMBER: '";
220 GOSUB 10000

76

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Write the BASIC statements that set the entry variables for a ten-
character entry variable word. Use the equals sign as a filler char-
acter.

200 YW = 10: YF‘% = 1=n
210 PRINT "ENTER A 10 CHAR WORD: ";
220 GOSUB 10000

The exit variables serve two functions. Z$ will contain the data
that was entered and accepted, numbers or letters. Variable Z9% will
be set to —1 if the ESC was pressed or will remain at zero (0) if there
was no escape. You can use the ESC key formany different purposes.
This subroutine allows you the flexibility to choose how to use it.
For some of our programs, we have adopted the convention that
when the user presses ESC during play, it is a signal for “help,” and
the instructions or a note or clue of some kind are printed on the
screen. If the user presses ESC again from the “help” screen, the
program ends. To continue play from the “help” screen, the user
could press RETURN. This is all controlled by using the INPUT
MODULE’s flexibility.

ESC can also be used to return to a menu of choices, to reshuffle
cards in a card game, to quit the round but continue the game, and a
host of other purposes. Using this subroutine, ESC is only detected.
You, the programmer, determine what the program will do.

Here is the rest of the General-Purpose Input Subroutine.

!

ROUTINES FOR ENTERING DATA

77

10000 IF LEN (YF$) ¢ > 1 THEN YF$ = " ": REM INITIALIZE FILLER
CHARACTER IF NECESSARY
10010 YH% = PEEK (36) + 1: REM H-POS

10020 YV% = PEEK (37) + 1: REM V-POS

10100 GOSUB 10500: REM SET INPUT FIELD TO THE FILLER CHARACTER AND
INITIALIZE

10110 GET Z1¢

10120 IF Z1$ = CHRS (13) THEN RETURN : REM RETURN

10130 IF Z16 ¢ > CHRS$ (27) THEN 10200: REM ESC

10140 GOSUB 10500

10150 FLASH : PRINT "ESC". CHRS (8);: NORMAL

10160 2% = - 1: REM ESC FLAC

10170 GOTO 10110

10200 IF Z1¢ ¢ > CHRS$ (8) THEN 10300: REM LEFT ARROVW

10210 JF Z% = - 1 OR LEN (Z%) ¢ =1 THEN 10100: REM ESC AND ONE
CHARACTER OR LESS SHARE LOGIC

10220 PRINT CHRS (8);YF¢, CHRS (8);: REM ERASE ONE CHARACTER

10230 28 = LEFTS (Z§, LEN (Z8) - 1)

10240 GOTO 10110

10300 IF z1¢ ¢ " " THEN 10110: REM IGNORE OTHER CONTROL CHARACTERS
10310 IF 2% = - 1 THEN GOSUB 10500: REM CLEAR ESCAPE CONDITION

10320 IF LEN (Z¢) ¢ YW THEN 10400

10330 IF YW = 0 THEN 10110: REM DO NOT ECHO IF WIDTH=0

10340 PRINT CHRS (8),: REM ALREADY AT MAX WIDTH

10350 IF LEN (Z$) = 1 THEN Z§ = "V

10360 IF LEN (Zs) > 1 THEN Zs§ = LEFTS (Zs, LEN (Z§) - 1)

10400 PRINT Zl¢;: REM ECHO AND APPEND CHARACTER

10810 28 = 25 + Z15§

10420 -GOTO 10110

10500 HTAB YH%: VTAB YV%: FOR Z = 1 TO YW: PRINT VF$;: NEXT : REM
SET FIELD TO FILLER CHARACTER

10510 PRINT " ",:. REM AND ERASE POSSIBLE CURSOR

10520 IF YW ¢ Z THEN FOR Z = YW + 1 TO 3: PRINT :: NEXT : RENM
ERASE POSSIBLE ESC IF FIELD NOT WIDE ENOUGH

10530 HTAB YH%: VTAB YV%

10540 z5 = ""

10550 2% = 0

10560 RETURN

Note that all entered data are placed in a string variable (Z2$).
Write the statements that will allow the userto enter a four-character
word, with the filler character being periods (.). Test for ESC (GOTO
4000). If no ESC, let the user enter another word with as many as ten
characters into a period-filled field.

78 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

2000 YW =4: YF =n. "
- 210 PRINT "ENTER YOUR GUESS: ";
220 GOSUB 10000
230 :
240 IF 2% = —1 THEN 4000: REM ESC TEST
260
270 YW = 10: YF ="
280 PRINT “"ENTER A WORD: “;
290 GOSUB 10000
300 REM PROGRAM CONTINUES

3999 STOP

RUN the program now and “exercise” the data entry routine so
that you can answer these questions.
1. What happens if you attempt to enter more characters than are
acceptable?

2. What happens if you press the left arrow key?

3. What happens if you press CTRL C?

4. What happens if you press the ESC key?

ROUTINES FOR ENTERING DATA 79

1. The last character erases and is replaced by the most recent
character typed. You cannot enter more characters than allowed.
2. The previous character(s) is erased and can be replaced by a new
character. This allows the user to correct data entry mistakes.

3. Nothing. The CTRL key is deactivated.

4. ESCflashes on the screen until you press some other key. If you
attempt to enter data, ESC is erased and the data are accepted.

A Technical Peek at the General-Purpose Subroutine

This short subroutine is very powerful in terms of what it does. Line
10000 sets the field-filler character to the default condition blank if
it has not already been set by the program. Lines 10010 and 10020
establish the cursor position for later use. The subroutine at 10500
prints the field-filler characters on the screen to establish the data
entry screen.

The only actual point to enter data is the GET statement in line
10110. Note that the entry is to a string variable (Z1$) so that num-
bers, letters, and special characters are all acceptable.

RETURN is checked in line 10120. ESC is tested in line 10130.
Thereafter, the program handles the left-arrow-erase routine (10200
through 10230), ignores all unwanted characters (10300), and
checks the length of data entry (10330 through 10350),

What happens in line 104107

80 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

The exit string, Z$, is created, one character at a time being con-
catenated to Z$.

INPUT NUMBER SUBROUTINE

The General-Purpose Input Subroutine can accept any entered data:
numbers, letters, and special characters. We have designed two
special subroutines to enter numeric values; the Input Integer Sub-
routine and the Input Decimal Subroutine. Here are the beginning
statements of the Input Number Subroutine. It is used by the Integer
and Decimal Subroutines:

10582 REM ® INPUT NUMBER %
10593 REM ENTRY: CONDITIONS FOR INPUT STRING SET
10594 REM EXIT: Z% -1 (ESC); 0 (INVALID); 1 (INTEGER); Z (DECIMAL)

10585 REM Z VALUE (IF VALID)

10589

10600 GOSUB 10000: REM GET STRING

10610 JIF 2% = - 1 OR LEN (Z%) = 0 THEN RETURN : REM ESC OR

RETURN ONLY (Z%=0)
10620 Z% = 1. REM SET VALID FLAG

10630 FOR Z1 = 1 TO LEN (2$):Z1% = MIDS (2§,21,1)

10640 IF Z16 = "." AND Z% = 1 THEN Z% = Z: GOTO 10660: REM TRAP FOR
FIRST DECIMAL POINT

10650 IF (Z1¢ ¢ "0" OR Zls > "9") AND (Z1s (¢ » "-" AND Z1l)» 1) THEN
2% = 0: REM INVALID IF NOT A DIGIT AND NOT A LEADING -

10660 NEXT

10670 Z = VAL (Z$): REM VALUE ONLY IF VALID FLAG (Z%=1 OR 2)

10680 RETURN

10881 :

How to Use the Input Integer Subroutine

Attimes you will want the user to enter a positive or negative integer
that falls within a range; for example, between 1 and 100. To enter a
negative integer, use the minus (—) sign. For this situation a special
integer subroutine is presented here.

The entry point for this subroutine is line 11000. Here is the Input
Integer Subroutine:

ROUTINES FOR ENTERING DATA

81

10992 REM % INPUT INTEGER #x
10993 REM ENTRY: CONDITIONS FOR INPUT STRINC SET

109%4 REM YL MINIMUM INTEGER
10885 REM YH MAXIMUM
10586 REM EXIT: Z% -1 (ESC); 0 (INVALID INTEGER); 1 (VALID
INTEGER)
97 REM 4 VALUE (IF INTEGER VALID)
88
D0 CGOSUB 10600: REM INPUT NUMBER
10 IF Z% ¢ 1 THEN RETURN : REM ESC OR INVALID

z20 IF Z% = 2 THEN Z% = 0: RETURN : REM INVALID IF DECIMAL POINT
30 IF Z (YL OR Z > YH THEN Z% = 0: REM INVALID IF OUT OF RANGE
40 RETURN

The entry variables contain the low and high range of the accept-
able integer. You will still want to set YW and YF$ for field width
and filler character. Your program might look like this segment that
will set the entry variables to accept a three-character integer in the
range of 250 through 750:

200 YW = 3: YF$ = v-"

210 YL = 250: YH =750

220 PRINT "ENTER A 3 — DIGIT NUMBER: ";
230 GOSUB 11000

240 :

The exit variables from this subroutine are different than before.
7% returns as —1 if ESC was pressed. If the number entered falls
within the 250 through 750 range, Z% will be set to 1. If the entered
itemisoutof range or contains invalid characters, Z% is set to 0. This
means that you must include an error test and message to advise the
user to enter a number within range. The variable Z will contain the
entered and accepted number. Here’s how your subroutine exit tests
might look:

250 IF 2% = —1 THEN 5000: REM ESC TEST

260 IF Z% = 0 THEN PRINT:PRINT "PLEASE ENTER A
NUMBER BETWEEN "; YL; '" AND " ;YH: GOTO 200 :-

REM INVALID NUMBER TEST

270 IF Z = N THEN 4000: REM WINNER ROUTINE

280 :

82 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

How to Use the Input Decimal Subroutine

To enter numbers with decimals, or non-integer numbers, use the
Input Decimal Subroutine shown below:

11091

11082 REM ww INPUT DECIMAL wnx

11093 REM ENTRY: CONDITIONS FOR INPUT STRING SET

11094 RENM YL MINIMUM VALUE

11095 REM YH MAXIMUM

11096 REM EXIT: Z% -1 (ESC); 0 (INVALID):. 1 (INTEGER): 2
(DECIMAL)

11087 REM Z VALUE (IF VALID)

11088

11100 GOSUB 10600: REM INPUT NUMBER

11110 IF Z% ¢ 1 THEN RETURN : REM ESC OR INVALID

11120 IF Z ¢ YL OR Z > YH THEN Z% = 0. REM INVALID IF OUT OF RANGE

11130 RETURN ‘

11191 :

11152 REM &% INPUT Y OR N #w

11193 REM ENTRY: CURSOR AND FILLER CHARACTER SET

11194 REM EXIT: Z% -1 (ESC); 0 (NEITHER Y NOR N); 1 (¥), Z (N)

11189

The entry point is line 11100. The entry variables are the same, YL
and YH for the minimum and maximum values; YW and YF$ for
field length and field filler. The exit value, Z%, has an added ele-
ment. It becomes 2 if the number entered contains a decimal point.
Otherwise, its use is the same as the integer subroutine.

Y/N SUBROUTINE

Another “special case” data entry situation occurs when a single
character is entered. The typical case is shown below:

DO YOU WANT INSTRUCTION (Y/N):

This is a special subroutine that you can use to accept only the

letters Y or N:

.

ROUTINES FOR ENTERING DATA

83

"REM %x INPUT ¥ OR N xw
REM ENTRY: CURSOR AND FILLER CHARACTER SET
REM EXIT: 2% -1 (ESC); 0 (MEITHER Y NOR N); 1 (¥), 2 (M)

D W W W WD WD
D W S W N~

Y$ = "YN": REM USE INPUT SINGLE CHARACTER ROUTINE

DR = s bt B B

w
[

REM wn INPUT SINGLE CHARACTER AND MATCH WITH VALID STRING #x
2893 REM ENTRY: CURSOR AND FJLLER CHARACTER SET

294 RENM ¥$ STRING OF MATCH CHARACTERS

285 REM EXIT: Z% -1 (ESC); 0 (CHARACTER NOT IN STRING); J (J-TH
;HARACTER IN MATCH STRING)

YW = 1: REM SET FIELD WIDTH

GOSUB 10000

IF 2% = -1 OR LEN (Z$8) = 0 THEN RETURN : REM ESC OR
RETURN ONLY (Z%=0)

11330 Z% = 0: REM SET NOT MATCHED FLAG

11340 FOR Z1 = 1 TO LEN (¥$)

11350 IF Zs = MIDS (¥6,Z1,1) THEN Z% = Z1: REM MATCH IN POSITION
zZ1

11360 NEXT

11370 RETURN

[S S I Sl S Sy Sy Sy Wy SOy Sy SO W S
[O S P))~y Sy Wy
3]

w
3]

QD QI R BN
N =D W
oD

How to Use the Y/N Subroutine

To use this subroutine to accept only Y for yes or N for no, this is all
you must do:

200 YF$ = "-": REM SET FILLER CHARACTER
210 GOSUB 11200
220

Theexit variable Z9% will be set to —1 if the user pressed ESC, to 0 if
neither Y or N was entered, to 1 if Y was entered, and to 2 if N was
entered. Your exit test statements might look like this:

230 IF Z% = —1 THEN 5000: REM ESC TEST

240 IF Z% = 0 THEN PRINT: PRINT "PLEASEENTER Y OR N
ONLY": GOTO 200: REM INVALID ENTRY

250 IF Z% = 1 THEN GOSUB 8000: REM PRINT
INSTRUCTIONS IF Y

260 REM CONTINUE PROGRAM

SINGLE-CHARACTER SUBROUTINE

Another subroutine included in the INPUT MODULE allows you to
enter any single character, not just Y or N. The entry point for this

84 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

subroutine is 11300. Before you enter the subroutine, you must set
the filler character (YF$), and this time set Y$ to contain all accept-
able characters. For example, if you want to accept any single char- .
acter of A, E, I, O, or U, then set your variables like this:

250 YF$ = ov-n

260 Y$ = "AEIOU"

270 PRINT "ENTER YOUR LETTER: ";
280 GOSUB 11300

The exit variable is still Z%, but the values mean different things.
If 7% is —1, ESC has been pressed. If 7% is 0, the entered character is
not valid. If Z% is a positive number, that number tells you which
character number in Y$ was entered. For example, if the user en-
tered the letter I, then Z% would be 3, indicating the third character
in Y$ (AEIOU).

PAUSE OR KEYSTROKE SUBROUTINE

A common problem in games is how long to wait after the player has
entered a guess before the program asks for another guess. If the
program’s response is “YOUR LETTER IS NOT IN MY WORD,”
“PLEASE GUESS A NUMBER BETWEEN 1 AND 40,” or some other
phrase, the player needs time to read and digest it before continuing.
If the pause is too short, the novice player doesn’t have enough time;
too long, and the experienced player gets bored. The Pause or Key-
stroke Subroutine allows the programmer to pick a pause that will be
long enough for the novice, but if the player types a keystroke the
pause immediately ends (usually by asking for another guess) and
the keystroke pressed will be accepted as part of the next input.

We recommend that you put this capability into your games and
let the player discover it; we recommend against trying to explain it
with additional instructions as it will tend to confuse the novice
player and clutter the screen. This subroutine can be separated from
the INPUT MODULE and used by itself in your programs.

ROUTINES FOR ENTERING DATA

85

11391

11382 REM %% PAUSE OR UNTIL KEYSTROKE #w

11393 REM ENTRY: YP LENGTH OF PAUSE IN INTERNAL TIME UNITS

11394 REM 0 WAIT FOR KEYSTROKE ONLY

11395 REM EXIT: Z% -1 (ESC); 0 (FAUSE EXPIRED); 1 (XEYSTROKE
REFORE PAUSE EXPIRED)

11396 REM Z XEYSTROKE (ASCII VALUE + 128)

11399

11400 POXE - 18368,0: REM CLEAR TYPE-AHEAD

11410 Z1 = 0: REM INITIALIZE COUNT (% ENTRY FOR GET ONE KEY %)

11420 z1 = Z1 + 1 -

11430 Z = PEEK (- 16384)

11440 IF Z > = 128 THEN Z% =1 - 2 ® (Z = 155): RETURN : REM

KEYSTROKE; TRAP FOR ESC THEN RETURN
11450 IF Z1 (YP OR YP = 0 THEN 11420
11460 Z% = 0: REM PAUSE EXPIRED

The entry variable YP defaults to zerounless otherwise set. When
YP is zero, the user must press a key to continue. Otherwise, the
length of the pause is determined by an internal time unit. You
should experiment with different time lengths.

The exit variable Z% sets to —1 if ESC was pressed, to 0 if the pause
timed out, and to 1 if the user pressed a key before the time was up.
You can use the latter two items of information or simply disregard
them. Here are a sample entry and exit variable setting for this
subroutine:

300 REM INSTRUCTIONS HERE

310:

320 LET YP = 100

330 GOSUB 11400

340

350 IF Z% = —1 THEN 5000; REM ESC TEST

360 IF Z% = 0 THEN PRINT "IF YOU NEED MORE TIME,
CONTACT YOUR INSTRUCTOR" :GOTO 300

370 REM CONTINUE

GET ONE KEYSTROKE, NO ECHO SUBROUTINE

Another common problem in games is how long to wait after dis-
playing instructions. The difference in reading speeds and familiar-
ity with the game may require that the player signal the game to
continue (by pressing a key), rather than the programmer trying to
guess how long to wait.

86

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Both the “Get One Key, No Echo, No Type-Ahead” at line 11500
and “Get One Key, No Echo, With Type-Ahead” at line 11600 wait
until any one key is pressed (without also waiting for RETURN) and
do not “echo” or display the key pressed on the screen. Unlike the
Pause or Keystroke Subroutine, the key is “thrown away” and will
not become part of the input. The exit variable Z% is set to —1 if ESC
was the key, and to 1 if any other key was pressed. The variable Z is
set to the ASCII value +128 of the key pressed. There are no entry
variables.

The difference between these two subroutines involves “type-
ahead.” The APPLE hardware has a one-character “memory” that
latches the last keystroke pressed. Reading the keyboard involves
waiting for this latch to be set, then actually reading it, and finally
clearing it to signal that a key has not just been pressed. (Refer to
your APPLE II Reference Manual for more details if you wish.) The
No Type-Ahead Subroutineat 11500 first clears the latch, then waits
for a keystroke. Clearing the latch first forces the user to press a key
AFTER the instructions (or whatever) have been displayed and the
program logic is waiting for the next key. The With Type-Ahead
Subroutine allows the experienced user to anticipate the pause and
toavoid it; however, if the novice user inadvertently presses an extra
key, the pause would also be skipped. We recommend using the No
Type-Ahead version of this subroutine for this application.

Forthose of you whomaybe interested, a different version of these
subroutines appears in the version of SIMON in Chapter 7. Notice
line 3000, which gets the next noteand THEN decides where to echo
it.

The programs in Chapters 1 through 4 have not used the data entry
testing techniques described in this chapter. If you plan to use any of
those earlier programs, you should first merge them with INPUT
MODULE and add necessary linkage statements to the programs.

DATA ENTRY SUBROUTINE REFERENCE SUMMARY

When using these subroutines, it is best to simply merge the entire
INPUT MODULE with your program. If you use only the Pause or
Keystroke Subroutine, delete the rest of INPUT MODULE and merge

ROUTINES FOR ENTERING DATA

87

only that routine. The entire module does not take that much mem-
ory space for you to worry about chopping into pieces and merging
only the pieces you need. Merge it all. It’s much easier!

General-Purpose Subroutine

Entry point:
Entry variables:

Exit variables:

GOSUB 10000

YW : field length

YF$: field filler (default is blank)
Z$: string entered

7% : 1 (ESC); 0 (not ESC)

Input Number Subroutine

This subroutine must also use the General-Purpose Subroutine.

Integer Numbers

Entry point:
Entry variables:

Exit variables:

GOSUB 11000

YW : field length

YF$: field filler

YL : minimum value

YH : maximum value

Z : value

7% : 1(ESC); 0 (invalid integer); 1 (valid integer)

Decimal Numbers
ENTRY POINT: GOSUB 11100

Entry variables:

Exit variables:

YW : field length

YF$: field filler

YL : minimum value

YH : maximum value

Z : value

Z%: —1(ESC); 0 (invalid number); 1 (valid in-
teger); 2 (decimal number)

88 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Y/N Subroutine

This subroutine must also use the General-Purpose Subroutine.

Entry point: GOSUB 11200
Entry variables: YF$: field filler
Exit variables: 7% : —1 (ESC); 0 (neither Y nor NJ; 1 (Y); 2 (N)

General-Purpose Single-Character Subroutine

This subroutine must also use the General-Purpose Subroutine.

Entry point: GOSUB 11300
Entry variables: ~ Y$: match characters
YF$: field filler
Exit variables: 7% :—1 (ESC); 0 (char. not in match string); J (Jth
position in match string)

Pause or Keystroke Subroutine

Entry point: GOSUB 11400

Entry variables: YP : LENGTH OF PAUSE

Exit variables: 7% : -1 (ESC); 0 (pause expired); 1 (keystroke
before pause expired)

Get One Key, No Echo, No Type-Ahead Subroutine

Entry point: GOSUB 11500
Entry variables: none
Exit variables: 7% : —1 (ESC), 1 (other way)
7 : ASCII value + 128 of keystroke

ROUTINES FOR ENTERING DATA 89

Get One Key, No Echo, with Type-Ahead Subroutine

Entry point : GOSUB 11600
Entry variables: none
Exit variables : 7% : -1 (ESC), 1 (other way)
7 . ASCII value + 128 of keystroke

CHAPTER SUMMARY

This chapter has given you the third complete program module that
you can use when writing your own game programs. It is also an
excellent subroutine to use when writing programs for any other
purpose as well. The subroutine gives you complete control over
what is acceptable data entry by the program user. We will show you
how we use the data entry subroutine in our game programs that
follow in the next chapters.

CHAPTER SIX

Text-Based Games

String variable manipulation, or doing things with text provided by
the user, is the backbone of some of the “classic” and most interest-
ing computer games. Although technical advances have provided us
with color, graphics, and sound, word games continue to be fascinat-
ing, both to play and to write.

This chapter discusses word games that take advantage of the text
manipulation capabilities of your APPLE and also suggests how to
match the particular game to its intended audience. We will consid-
er three types of word games—story construction, word guessing,
and word matching. For each, we will build whole games and then
discuss the reasons for the particular features included.

STORY

STORY asks a series of questions and inserts the answers in a
previously constructed format. It uses a powerful game design that
can be modified for any audience. You may recognize our version as
a variation of the “mad-lib” games popular with school children.

91

92 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ...STORY-INPUT IMAGE...

11

987 :

998 REM ®% ONE-TIME INITIALIZATION #un
899

1000 DIM RPS(10.,10): REM MAX # OF RANDOM GROUPS BY MAX # OF ITEMS
IN EACH GROUP

1010 DIM NR¢(10): REM ACTUAL & OF ITEMS IN EACH GROUP

1020 DIM A$¢1D): REM MAX 8 OF ANSWERS

1197 :

1198 REM ® COVER SCREEN «

1198 :

1200 GR : HOME : COLOR= 15: GOSUB 15500: REM VWASH IN WHITE

1210 COLOR= 6: FOR Z = 11 TO 33 STEP 11: REM BLUE LINES

1220 HLIN 0.39 AT Z - 8

1230 HLIN 0,39 AT Z

1240 NEXT

1250 %6 = "WRITE":XV = 4:XC(1) = 0: GOSUB 15300

1260 X6 = "A":XV = XV + 11: GOSUB 15300

1270 36 = "STORY":XV = XV + 11: GOSUB 15300

1280 VTAB 23: HTAB 7: PRINT "PRESS RETURN TO CONTINUE...";

1290 GOSUB 11500: REM WAIT FOR KEYSTROKE

1300 IF Z% = - 1 THEN END : REM ESC

1997 :

1998 REM %% INITIALIZATION FOR NEZT STORY wn®
1999

2000 TEZT : HOME

2010 Z = 51000: GOSUB 19000: REM SET READ DATA POINTER TO RANDOM
PARTS

2097

2088 REM % LOAD RANDOM STORY PARTS @

2008

2100 RP = 0

2110 J = 0

2120 READ Z$: REM ® SHARE LOGIC WITH NEW GROUP STARTED

2200 RP = RP + 1: REM NEXT GROUP OF STORY PARTS

2210 J = 0: REM & OF PARTS IN CURRENT GROUP

2230 IF Z$ = "END" THEN 2300

2240 J = J + 1

2250 RPS(RP.J) = Z§: REM SAVE PART

2260 READ Z$

2270 GOTO 2230

2300 NRA(RP) = J: REM & OF RANDOM PARTS IN GROUP RP

2310 READ Z$s: REM CHECK FOR SECOND "END"

2320 IF Z% = "END" THEN 2500: REM NO MORE RANDOM PARTS

2330 GOTO 2200: REM SHARE LOGIC TO BEGIN NEW GROUP

2497 :

2898 REM % ASK OUESTIONS AND SAVE ANSWERS #

24989 : ’

2500 NG = 0

2510 HTAB 14: PRINT "waw STORY wmwan

2520 VTAB 22: HTAB 11: PRINT "PRESS ";: INVERSE : PRINT “ESC";:

NORMAL ; PRINT " TO STOP.™;
2600 READ Q6¢: REM CHECK IF ANY JMORE QUESTIONS
2610 IF 0% = "END" THEN 3000: REM NO MORE QUESTIONS
2620 NO = NQ + 1: REM ONE MORE QUESTION
2630 VTAB 2 ® NO + 6: HTAB 1l: PRINT Q¢;" ",

2660 YW = 38 - LEN (0¢): REM MAZIMUM LENGTH OF ANSWER
2650 GOSUB 10000
2660 IF Z% = - 1 THEN 6000: REM ESC

2670 IF LEN (Z8) = 0 THEN 2650: REM TRAP FOR EMPTY ANSWER

2680 AS(NO) = Z$: REM SAVE NEXT ANSWER

26890 GOTO 2600

2997 :

2998 REM wn WRITE STORY nw

2899 :

3000 HOME : REM PAUSE BEFORE WRITING STORY

3010 SPEEDs 10

3020 VTAB 11: HTAB 9

3030 PRINT "HERE IS YOUR STORY."; CHRS (7);"."; CHRS (7);".", CHRS
(7)

3040 SPEED= 2355

3050 YP = 50: GOSUB 11400: REM PAUSE OR UNTIL KEYSTROXE

TEXT-BASED GAMES

93

3081
3092 REM % WRITE STORY FROM STORY PARTS IN DATA STATEMENTS *#
3093 REM TRAP FOR WORDS BREAKING IN THE MIDDLE AT THE END OF A

LINE
3098
3100 L = 3: REM LEFT MARGIN (FOR TEXT WINDOW)
3110 W = 34: REM WIDTH
3120 T = 4: REM TOP LINE
3130 B = Z20: REM BOTTOM

3140 POXE 3Z2,L: REM SET TEXT WINDOW

3150 REM WIDTH SETTING IS NOT NEEDED

3160 POKE 34.T

3170 POKE 35.B

3180 HOME : REM MOVE CURSOR TO ULHC OF WINDOW

3200 S8 = "": REM INITIALIZE SCREEN LINE

3210 READ zs: REM NEXT STORY ELEMENT

3220 IF z$% = "END" THEN 3800: REM END OF STORY

3230 IF LEFTS (Z8.,1) = "8" THEN 3500: REM USE ANSWER NUMBER
SPECIFIED

3240 IF LEFTS (Zs,1) = "@" THEN 3600: REM USE RANDOM PART FROM

GROUF SPECIFIED
3300 §6 = S% + ZS5: REM AFPEND STORY PART

3310 IF LEN (8¢%) (= VW THEN 3210: REM SCREEN LINE NOT YET FULL
3320 2z = W + 1: REM TRY TO BREAX THE LINE AT THE RIGHTMOST BLANK
POSSIBLE

3330 REM START WITH THE FIRST CHARACTER BEYOND THE MAXIMUM WIDTH

3340 IF Z = 1 THEN Z = VW + 1: GOTO 3400: REM NO BLANKS ANYWHERE:
USE MAXIMUM WIDTH

3350 IF MIDS (58.Z.1) = " " THEN 3400: REM FOUND BLANK AT
POSITION Z

3360 Z = Z - 1

3370 GOTO 3340

3400 PRINT LEFTS (86.Z - 1): REM BREAK THE LINE AT THE Z-TH

CHARACTER
3410 JF Z = LEN (S58) THEN 3200: REM NOTHING LEFT OVER
3420 S5 = RIGHTS (58, LEN (588) - Z): REM REST OF THE LINE

3430 GOTO 3310: REM CHECK IF STILL TOO LONG

3500 Z8 = AS(VAL (RIGHTS (Zs, LEN (Z$) - 1))): REM USE ANSVER
NUMBER SPECIFIED

3510 GOTO 3300

600 z = VAL (RIGHTS (Zs, LEN (z8) - 1)): REM RAMDOM GROUP
SPECIFIED

3610 Z6 = RPS(Z.1 + INT (NR(Z) = RND (1))): REM PICK ONE

3620 GOTO 3300

3900 IF LEN (8$) > 0 THEN PRINT Ss: REM = END OF STORY - PRINT

REMAINING PART =#

3910 TEXT : REM SET FULL SCREEN WINDOW

3997

5998 REM #n AGAIN? an

59989

6000 HTAB 1: VTAB 24

6010 PRINT "ANOTHER STORY (Y OR N)? ",

6020 GOSUB 11z200: REM VY/N

6030 ON Zz% » Z GOTO 6100,6000.2000,6100: REM ESC, INVALID, ¥, N

6100 PRINT : PRINT

6110 PRINT "THANKS FOR PLAYING.":

6120 END

30991

50982 REM ® RANDOM STORY PARTS. ENDING WITH "END" #

50993 REM EACH GROUP ENDS WITH "END"

50994 REM TO OMIT RANDOM GROUPS. '51000 DATA "END", "END"'

3
3

508989 :

51000 DATA "ON HALLOWEEN,", "ONE DARK NIGHT.", "END": REM =
RANDOM 1 =

51010 DATA "RUNNING". "SITTING", "SKATING". "END": REM W% RANDOM
2 %

510Z0 DATA "AT THE SEASHORE", "IN THE MOUNTAINS", "IN A HAUNTED
HOUSE", "TO SCHOOL", "IN THE DESERT", "END": REM *® RANDOM 3 *

51030 DATA "HEARD", "NOTICED", "END": REM @ RANDOM 4 =«

51040 DATA "SLIMY", "HUGE", "FUZZY", "FURRY", "END": REM # RANDOM
5 n

51050 DATA "KISSED", "PINCHED", "PLAYED CHESS WITH". "SKATED ALONGC

WITH", "READ STORIES TO"., "END": REM # RANDOM 6 =

94 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

51060 DATA “"BROUGHT THEM ALL SOME BIRTHDAY CAKE", "FLEW THEM AWAY
IN A HELICOPTER", "SANG THEM A LULLABY", "END": REM * RAMDOM 7 =

51070 DATA "END": REM END RANDOM GROUPS

51991

51982 REM ® QUESTIONS, ENDING WITH "END" =#

51989

52000 DATA "WHAT'S YOUR NAME?"

52030 DATA "WHAT'S YOUR FAVORITE COLOR?"

52020 DATA "WHOM DO YOU LOVE?"

52030 DATA "WHAT ARE YOU AFRAID OF?"

52040 DATA "WHO'S YOUR BEST FRIEND?"

52050 DATA "END"

528981

52882 REM ® STORY, ENDING WITH "END"®

528993 REM TYPES OF DATA:

52994 REM "SNUMBER" = PRINT ANSWER NUMBER
52995 REM "@NUMBER" = PRINT ONE FROM RANDOM GROUP NUMBER

52988 RENM "END" = END OF STORY (DOESN'T PRINT)
52987 REM ELSE = PRINT AS TEXIT STRING

529 98

53000 DATA “eiv," "

53010 DATA "®1"." AND " "85"

53020 DATA " WERE ","@z"," ","@3",". ALL OF A SUDDEN THEY ®
53030 DATA IIe@II‘II A Il‘llesll‘ll L

$3040 DATA "82"," ", "#4"

53050 DATA ". THE "

S3060 DATA "§z"," ", "g4"

$3070 DATA " ALMOST ","@6"." THEM BUT ALONG CAME "

53080 DATA "#3"
53090 DATA " AND " "@7","."

53100 DATA "END"

60000 :

60010 REM = COPYRIGHT 1981 BY HOWARD FRANKLIN, PALO ALTO, CA *
60020

Merge this with INPUT MODULE and IMAGE MODULE. SAVE it as
STORY and RUN it.

This is the original STORY program, rewritten to 1nclude INPUT
checking and screen formatting for the Apple. STORY was written at
the Community Computer Center and first appeared in print in 1976
in an early People’s Computer Company newspaper. Developed for
use with teletypes, STORY was designed to be fun and also to be a
good language exercise for beginning readers. Notice that the ques-
tions ask for very personal answers. Children remember these per-
sonal responses easily, so it is not difficult for them to “read” the
story the computer displays. STORY differs from other mad-lib
games by asking for answers to specific questions rather than for
parts of speech.

Unlike more traditional games, STORY has no winner or loser.
Hence, older children and even adults find it an enjoyable, non-
threatening introduction to computers. In fact, STORY can easily be
turned into an introduction to programming for more sophisticated
players. After several runs of the program, players see a pattern in
the story construction and begin to understand what the program is
doing. You might want to explain how computer programs work,
basing your explanation on their experience with STORY.

TEXT-BASED GAMES 95

Notice that the questions are constructed so that the players can
answereitherwith one word ora longer phrase. If theanswers match
the questions grammatically, they will fit properly into the follow-
ing story structure. However, the length of the answer is limited.
Examine line 2640.

1. What would happen if you changed a question so it became
thirty-five characters long?

2. How would you change the program to ask different questions?

1. The answer would be limited to three characters.
2. Change the data statements in lines 52000 through 52050.

Breaking words arbitrarily at the end of a line and continuing the
word on the next line is called wraparound. Wraparound can be
unpleasant, yet many text-based programs suffer from it. A routine
included in STORY avoids wrapping words around the screen. The
routine checks for spaces (ends of words) and breaks the line at a
suitable spot. You may want to use this routine in other programs
you write.

What part of the program handles the problem of screen wrap-
around?

Lines 3310 through 3430

Consider changing STORY to suit your particular audience. Be
sure to match the wording, content, and length of the story to the
reading ability and/or sophistication level of your intended audi-
ence.

96 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Here’s how to change the text part of the story. Look atlines 50000
through 51070. They contain the randomly selected phrases for the
story. Each series of phrases ends with the word “END” followed by
a REM. (The “END” is required; the REM is, of course, optional.)

51000 DATA "ON HALLOWEEN, ", "ONE DARK
NIGHT, ", "END" :REM *RANDOM1*

Line 51000 indicates that only two choices are possible for random
phrase 1.
Our program has seven sets of phrases.

How many phrase choices are there for phrase 37

Line 51020. Four choices.

You can change the text of the story by changing these phrase
choices. Be careful to use the same format used in the program.

Changing the format of the story is a little more difficult. The code
for the story is as follows:

52982 REM " STORY., ENDING WITH "END"®#

52883 REM TYPES OF DATA:

52984 REM "$NUMBER" = PRINT ANSWER NUMBER

52985 REM "@NUMBER" = PRINT ONE FROM RANDOM GROUP NUMBER
52996 REM "END" = END OF STORY (DOESN'T PRINT)

52997 REM ELSE PRINT AS TEXT STRING

52999

53000 DATA “vei"," "

53010 DATA "#1".," AND ", "85"

53020 DATA " WERE ", "@Z"," " ."@3".,". ALL OF A SUDDEN THEY "
53030 DATA "@4"," A ", "@5"," »

53060 DATA "sz"," " "84"

53050 DATA ". THE "

53060 DATA "gz", " ", "#4"

53070 DATA " ALMOST ".,"@6"." THEM BUT ALONG CAME "
53080 DATA "#3"

53050 DATA " AND " "@7" "."

53100 DATA "END"

Lines 52994 through 52997 tell you how to make the story, fol-
lowed by the format of the current story that you played. To cause
the user-entered answer to display on the screen, use the @ symbol,
followed by the question answer number, as shown in line 53080.

TEXT-BASED GAMES

97

The user’s third response will be printed inresponseto the DATA in
line 53080.

To select one of the random phrases, use the @ symbol, followed
by the group number of the phrases. Line 53000 above will cause the
selection of one of the random phrases labeled “random 1” in line
51000. Anything else in your story will print as you type it. Notice
the words in lines 53020 and 53070. You end the story by typing
“END,” as shown in line 53100.

You will find that matching story phrases to question responses
takes practice and experience. The more you do, the better your
stories will be. Your friends of all ages will enjoy your stories.

BLOCKOUT

BLOCKOUT has its origins in a game called Hangman. An earlier
version, called SNAKE, was designed at the Community Computer
Center and published in People’s Computer Company newspaper,
along with STORY. SNAKE, written for teletype printers, was origi-
nally intended to incorporate Hangman’s educational potential, yet
eliminate the waste of paper caused by redrawing the gallows, the
inherent gruesomeness of the game, and the relatively fixed number
of tries until failure.

BLOCKOUT preserves the spirit of SNAKE while making use of
the graphic capabilities of your APPLE.

98

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ...BLOCKOUT-INPUT SOUND IMAGE...

11

997 :

998 REM ®w ONE-TIME INITIALIZATION =#®

999

1000 DIM WDS(S50)

1010 ML 16: REM MAXJIMUM LENGTH OF SECRET WORD

1020 HG = 8: REM HORIZONTAL TAB FOR GUESS
= HG + ML + 1: REM HORIZONTAL TAB FOR CLUE

= 2): REM VERTICAL TAB FOR GUESS
VC = VG: REM VERTICAL TAB FOR CLUE

= 0: REM #® COUNT THE WORDS AND STORE THEM IN WDS(J) =
Z = 51000: GOSUB 19000: REM READ DATA FROM LINE 51000
READ Z§
IF 28 = "END" THEN 1200: REM NO MORE WORDS

1140 IF LEN (Z$) > ML THEN 1120: REM THROW AWAY WORD JF TOO LONG

1150 NW = NW + 1: REM ONE MORE WORD

1160 WDS(NW) = Z§

1170 GOTO 1120

1200 NG 10: REM DEFAULT & OF INCORRECT GUESSES

15: REM UPPER BOUND ON 8 OF GUESSES

1220 GL = 5: REM LOWER BOUND

1300 DIM BX%(15.1): REM H/V POSITIONS OF THE BLOCKS
1310 BH = 2: REM HORIZONTAL WIDTH

(S
~
o
=]
R
(=]
1]

1320 BV 3: REM VERTICAL HEIGHT
1397 :

1398 REM % COVER SCREEN #

1389

1600 GR : MOME : COLOR= 1: GOSUB 15500: REM WASH IN RED
1430 COLOR= 0: FOR J = 1 TO 60: REM RANDOM BLOCKS IN BLACK

1420 %XH = INT (37 = BRND (1)) + 1:%V = INT (36 ® RND (1)) » 1l: RENM

RANDOM ULHC
1430 FOR Z = 0 TO 2: HLIN XH.XH + 1 AT XV + Z: NEIT
1440 NEXT
1450 EC¢1) = 15:XV = 12:%6 = "BLOCK": GOSUB 15300
1460 XV = ZV +» B » 2:%X$ = "OUT": GOSUB 15300
1470 . VTAB 23: HTAB 6: PRINT "PRESS RETURN TO CONTINUVE...";
1480 GOSUB 11500: REM WAIT FOR KEYSTROKE

1480 JF Z% = - 1 THEN END : REM ESC

1800 GOSUB 9000: REM INSTRUCTIONS

1987 :

1998 REM ®®% INITIALIZATION FOR NEXT GAME #w
1999 . -

2000 IF NW = 0 THEN 6800: REM NO MORE WORDS
2010 Z = INT (NW ® BRND (1)) + 1

2020 SWS = WDG(Z): REM PICK ONE OF THE UNUSED WORDS

2030 WDS(Z) = WDS(NW): REM REPLACE THE CHOSEN "SLOT" WITH THE LAST

UNUSED WORD

080 NW = NW - 1: REM AND REDUCE THE SIZE OF THE UNUSED WORD LIST
BY 1

2100 LS = "": REM INJTIALIZE L$.US$.C$. AND BLS

2110 US = ™"

2120 €S = "™

2130 FOR J = 1 TO 28

2140 L8 = LS + CHRS (64 ¢ J): REM NEXT LETTER OF THE ALPHABET

2150 US = US +» " ": REM ONE MORE BLANK

2180 €5 = €8 + "-": REM ONE MORE -

2170 NEXT

2180 €C$ = LEFTS (CS, LEN (SW6)): REM SHORTEN CLUES TO LENGTH OF

SECRET WORD

2190 BLS = U +» US: REM 52 BLANKS

2300 GOSUB 9500: REM SETUP

2997 :

2998 REM ®n NEXT GUESS #»%

29989 :

3000 VTAB VG: HTAB HG

3010 YW = 1: GOSUB 10000

3020 IF Z% = - 1 THEN 6200: REM ESC

8030 IF zS ¢ "A"™ OR Z$ > "zZ" THEN 4700: REM NOT A LETTER OF
ALPHABET)

3100 REM CHECK IF LETTER HAS ALREADY BEEN GUESSED

3110 Z = ASC (Z8) - ASC ("A") ¢+ 1. REM POSITION IN US

3120 IF MIDS (US,z.1) ¢ > " " THEN 4600: REM ALREADY USED

THE

TEXT-BASED GAMES

99

3130 REM VUPDATE LS AND U$ AND DISPLAY
9140 REM SPECIAL CASE FOR STRING FUNCTIONS IF FIRST OR LAST

CHARACTER

3150 IF Z = 1 THEN LS = " " $ RIGHTS (L8,25):U8 = Z8 + RIGHTS
(Us,.235)

3160 JF Z = 26 THEN L$ = LEFTS (L$,28) + " ":U8 = LEFTS (U$,25) +
z$

3170 IF z > 1 AND Z ¢ 26 THEN LS = LEFTS (L6.Z - 1) + ™ " + RIGHTS

(L8.26 - Z):Us$
= LEFTS (US8,Z - 1) + Z8 +» RIGHTS (Us.26 - Z)
3180 VTAB 23: HTAB HG: PRINT US$
3190 HTAB HG: PRINT L§;

3397 :

3398 REM CHECKX IF LETTER IS IN THE WORD

3389 :

3400 REM SUBSTITUTE ALL OCCURRENCES IN C6 (CLUE) OF THE GUESS, IF
ANY

3410 REM DUE TO LIMITATIONS OF THE STRING FUNCTIONS., €S IS REBUILT
ONE LETTER AT A TIME

3420 Z18 = ""

3430 FOR J = 1 TO LEN (5W$)

3640 225 = MID$ (SWs,J.1): REM NEXT SECRET LETTER

3450 IF Z$ = 228 THEN Z1§ = Z1% + z5: REM GUESS MATCHES A SECRET
LETTER

3460 IF Z$ (> Z2% THEN 218 = z1% + MIDS (CS8.,J.1): REM NO MATCH,
USE INFORMATION FROM CLUE

3470 NEXT
3480 IF Z1$ = C% THEN 6000: REM CLUE HAS NOT CHANGED SO GUESS IS
INCORRECT

3480 C6 = Z1s: REM A CORRECT GUESS; UPDATE CLUE AND DISPLAY (ENTRY
FOR CORRECT WORD GUESSED)

3500 VTAB VC: HTAB HC: PRINT C§:

3510 GOTO 5000

3987

3988 REM =% JINCORRECT GUESS #n

3898

4000 J = NB

4010 FOR X = 1 TO 8: REM FLASH LAST BLOCK

4020 J = NB

4030 GOSUB 8300

4040 YP = 2: GOSUB 11400: REM PAUSE

4050 J = NB

4060 GOSUB 8400: REM ERASE LAST BLOCK

4070 NEXT

4100 NB = NB - 1: REM ONE LESS BLOCK

4110 JF NB > 0 THEN 3000: REM BLOCKS STILL LEFT

4120 GOTO 8200

4597

4588 REM ® ERRORS #

84599

4600 z$¢ = "THAT LETTER HAS ALREADY BEEN TRIED": REM ALREADY GUESSED
4610 GOTO 4500

4700 Z$ = "PLEASE GUESS A LETTER FROM A TO z": REM NOT ALPHABETIC
4891

4892 REM " DISPLAY ERROR MESSAGE AND PAUSE <

4893 REM ENTRY: Z$ MESSAGE TO DISPLAY

4889

4900 VTAB 22: HTAB 20 - LEN (Z8) / Z: REM CENTER
4910 INVERSE : PRINT Z6;: NORMAL

4920 YP = 60: GOSUB 11400: REM PAUSE

4930 HTAB 1: PRINT LEFTS (BL6.,40): REM CLEAR ERROR LINE
4940 GOTO 3000: REM NEXT GUESS

4887 :

4988 REM w% CORRECT GUESS =~®

4989

5000 IF €C$ = SWé THEN 5100: REM #% CORRECT GUESS ww
5010 REM CORRECT LETTER BUT WORD NOT YET GUESSED

5020 W1 = 0:W2 = 1:W3 = 0:Wd = 10:WS = = 1:W6 = 50:W7 = 2: GOSUB
13400

5030 FOR X = 1 TO 15

5040 J = INT (NB ® RND (1)) + 1: REM PICK A RANDOM BLOCK

5050 GOSUB 8300: REM AND CHANGE ITS COLOR

5060 NEXT

5070 GOTO 3000: REM NEXT GUESS

100 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

5100 WD = 100:Z8 = SW$s: GOSUB 13300: REM % GOT THE SECRET WORD =®
5110 FOR K = 1 TO ¢

5120 FOR J = 1 TO NB: GOSUB 8400: NEXT

5130 FOR J = 1 TO NB: GOSUB 8300: NEXIT

5140 NEXT

5150 GOTO 6000: REM AGAIN?
5897 :

5988 REM %% AGAIN? a=

5899

6000 POXE 34,.,2Z: HOME : REM CLEAR BOTTOM Z LINES

6010 VTAB z24: HTAB 1

6020 PRINT "PLAY AGAIN (Y OR N)? ";

6030 YF6 = " ". GOSUB 11200: REM VY/N

6040 ON Z% » Z GOTO 6100.6000,2000,6100: REM ESC. INVALID, ¥, N
6100 PRINT : PRINT

6110 PRINT "THANKS FOR PLAYING.";

6120 END

6187 :

6198 REM *® QUIT =
6199 :

6200 VTAB 22: HTAB HC - 14
6210 INVERSE : PRINT "THE WORD WAS: ";SWs: NORMAL
§220 GOTO 6000

6787

6798 REM # NO MORE WORDS #
6799

6800 HOME

6810 PRINT

6820 PRINT "YOU HAVE USED ALL THE SECRET WORDS"

6830 GOTO 6100

7997

7998 REM %% BLOCK ROUTINES nw

7999

8000 POKE 34.20: HOME : REM =% SET UP BLOCKS #nw% (CLEAR TEZT LINES)

8010 COLOR= 0: FOR Z = BT TO 39: HLIN 0.39 AT Z: NEXT : REM CLEAR
BLOCK AREA

60zZ0 FOR J = 1 TO NB

8030 GOSUB B100: REM LOCATE AND DISPLAY NEZT BLOCK

8040 NEIT
BD5D RETURN
8100 H = INT (¢(40 - BH) ® RND (1)): REM % LOCATE AND DISPLAY A

BLOCK BELOW TITLE ¥

8110 REM J = BLOCK 8

8120 REM DO NOT ALLOW BLOCK TO BE "TOO CLOSE" TO BLOCXS 1,....,J-1

8130 V = INT ((39 - BV - BT) * BRND (1)) + BT

8140 IF J = 1 THEN B82Z10: REM FIRST BLOCK LOCATED

8150 FOR Z =1 TO J - 1

8160 IF ABS (BK%(Z.0) - H) > BH OR ABS (BK%(Z,1) - V)) BY THEN
8z200: REM NOT TO O CLOSE

8170 H INT ((40 - BH) ® RND (1)): REM PICK A NEW LOCATION

8180 V INT ((¢(38 - BV - BT) * BRND (1)) ¢+ BT

8190 Z = D: REM AND BEGIN "CLOSENESS" CHECK AGAIN

B200 NEXT

8210 BK%(J.0) = H: REM H-POS OF BLOCK J

8220 BX%(J.1) = V: REM V-POS

Bz30 REM FALL THROUGH TO DISPLAY A BLOCK

8300 C = INT (15 ® RND (1)) » 1: REM % DISPLAY A BLOCK %

8310 REM J= BLOCK #

8320 COLOR= C: REM SOLID BLOCK (ENTRY FOR ERASE BLOCIK)

8330 H = BK%(J.0): REM KH-POS

8340 V = BX%(J,1): REM V-POS

8350 IF SCRN(H.V) = C THEN 8300: REM PICK ANOTHER COLOR IF SAME
AS BEFORE

8360 FOR Z = 1 TO BH

8370 VLIN V.V ¢+ BY - 1 ATH + Z - 1

8380 NEXT

B390 RETURN

8400 C = 0: REM * ERASE A BLOCK *

8410 REM J = BLOCK %

8420 GOTO 83Z0: REM SHARE CODE

8500 J = INT (NB * RND (1)) + 1: REM #® MOVE A BLOCK ¥

8310 REM ERASE A RANDOM BLOCK, OVERWRITE THE BLOCK WITH THE "LAST"
BLOCX,

TEXT-BASED GAMES

101

8520 REM THEN LOCATE AND DISPLAY A NEW "LAST" BLOCK

8530 GCGOSUB 8400: REM ERASE THE CHOSEN BLOCK

8560 BK%(J,0) = BK%(NB,0): REM OVERWRITE BLOCK J WITH THE LAST BLOCK

8550 BK%(J,1) = BK%(NB,1)

8560 J = NB

8570 GOTO 8100: REM LOCATE AND DISPLAY A NEW LAST BLOCK

8997

89858 REM #w INSTRUCTIONS ##

8989

9000 TEXT : HOME

8010 PRINT "BLOCKOUT IS A WORD GUESSING GAME."

9020 PRINT

8030 PRINT

8040 PRINT "THE COMPUTER PICKS A SECRET WORD AND"

8050 PRINT "DISPLAYS A DASH FOR EACH LETTER."

9060 PRINT "(A 6-LETTER SECRET WORD GETS 6 DASHES.)"

8070 PRINT

8080 PRINT "TRY TO GUESS THE LETTERS."

9050 PRINT

9100 PRINT "EACH CORRECT GUESS IS SHOWN IN THE"

9110 PRINT "SECRET WORD. EACH INCORRECT GUESS"

8120 PRINT "MAKES ONE OF THE BLOCKS DISAPPEAR."

9130 PRINT

8140 PRINT "YOU BEGIN WITH ";NG;" BLOCKS. TRY TO GUESS"

9150 PRINT "THE SECRET WORD BEFORE THEY DISAPPEAR."

9160 PRINT

8170 PRINT "FRESS ":: INVERSE : PRINT "ESC".: NORMAL : PRINT " TO
QuiT. "

9180 PRINT

9180 PRINT "PRESS RETURN TO CONTINUE... ";

9200 GOSUB 11500: REM WAIT FOR KEVSTROKE

8210 IF Z% = - 1 THEN 6100: REM ESC

9300 GR : HOME : REM TITLE

8310 X¢ = "BLOCK":XC¢l) = INT (15 = @JRND (1)) + 1:%V = 0: GOSUB
15300: REM TITLE .

9320 %8 = "OUT":XV = XV + XB + 1: GOSUB 135300

8330 BT = XV + X¥B + 1: REM TOP OF BLOCK AREA
8360 RETURN

9487

8498 REM % SETUP #w

8499 :

8500 NB = NG: REM # OF BLOCKS

8510 GCOSUB 8000: REM SET UP BLOCKS

8520 VTAB VG: HTAB HG - 7: PRINT "GUESS:";
8530 VTAB VC: HTAB HC: PRINT Cs

9540 PRINT

$550 PRINT "USED: ";U$

8560 PRINT "LEFT: ".L§:

9570 RETURN

50987

50998 REM ®% WORDS, ENDING WITH "END" wn%
50988 :

51000 DATA "STRATEGY","MONOLITH","EXASPERATE" "ASP"

51010 DATA "TABLOID" ,"LICHEN" "TENT","ASTOUND"

31020 DATA "VARY" ,"QUIZ" , "SYCOPHANT","INLET"

51030 DATA "SYLPH" "INFINITE" "COAL" "PIANISSINMO"

51040 DATA "OXYGEN" "WILT" "TRUISM" "CEREBRAL"

51050 DATA "BRAVERY"."BARB",."AUGER"

31090 DATA "END"

60000

60010 REM % COPYRIGHT 1981 BY HOWARD FRANKLIN, PALO ALTO, CA @
60020 :

Merge this with INPUT MODULE, SOUND MODULE (delete lines
18000 through 19999), and IMAGE MODULE. SAVE it as BLOCK-
OUT. RUN it.

102 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

BLOCKOUT makes effective use of low-resolution color and
movement. The words are drawn from a word list written in DATA
statements in lines 51000 through 51090. You can change or add to
the list of word choices. You have a maximum of fifty word choices
(seeline 1000.) Be sureto leaveline 51090 as a “flag” to the computer
that there are no more words. Currently, the game permits ten wrong

tries.

How would you change the program to make the wrong-try limit
six?
1200 NG =6

Notice that BLOCKOUT uses the ESC convention introduced in
the previous chapter. To end the game and see the mystery word,
players press ESC and then RETURN.

The colored blocks are placed at random on the screen, and colors
are assigned to them at random.

How would you change the program to make the blocksall orange?

8300 COLOR = 9, and delete line 8350

Look at the routine that begins at line 8100. This routine carefully
checks to be sure that blocks are not placed too closely to one
another, a truly elegant addition to the program that helps create a
pleasant-to-look-at screen image. ‘

Currently, the wrong answer makes one of the blocks flash colors
and then disappear.

Where and how does the program make the block disappear?

TEXT-BASED GAMES

In lines 8400 through 8420. Then in lines 8300 through 8390 the
block is colored black.

In many graphics games, the four-line text window at the bottom
of the screen is not used to full advantage. Questions tend to scroll
off the screen, leaving no information for the player who forgot what
to do. In BLOCKOUT, the clues (letters used and letters remaining)
stay on the screen. Only the question is refreshed. This is one way
the four-line text window can be used effectively. In general, you
should try to design the screen so that relevant clues remain visible
throughout the game.

Did you notice as you played BLOCKOUT that only correct
answers received the positive sound response? Incorrect answers
changed the screen, but did not receive a positive sound. Reinforc-
ing positive responses and ignoring, when possible, negative re-
sponses is a good technique to use when writing educational games.

Look carefully at the cover screen routine that begins at line 1400.
You might think that all the activity on the screen requires a lot of
program code. However, because IMAGE MODULE is so well-
designed, we needed to do little actual programming to create a very
attractive screen. When you look at the other programs in this book,
notice how little programming code was needed to create the attrac-
tive cover screens.

MATCH

MATCH is a solitaire game that can also be played by several people
taking turns. The object of the game is to match all the word pairs.
Players can exit from the game at any time by pressing ESC and then
pressing the RETURN key. When designing MATCH, we chose not

104 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

to display the correct answers when the player chooses to end the
game. By the process of elimination, a player can always “win”
MATCH, so there is no need to give the answers. One of the nice
things about the ESC convention in INPUT MODULE is that the
programmer retains complete control over the effect of pressing

ESC.

10 REM . ..MATCH-INPUT SOUND IMAGE..
11

997

998 REM %% ONE-TIME INITIALIZATION #x
999 :

1000 DIM LS(50) ,RS(50) ,L%(50),R%(30)
1010 BLS = ""

1020 FOR J = 1 TO 40

1030 BLS = BLS§ + " "

1040 NEXT

1100 z = 51000: GOSUB 18000: REM SET READ DATA POINTER

1110 READ HL.HR.C§

1120 Z = HR - HL - LEN (C$). IF Z ¢ Z THEN HOME . PRINT "CONNECTING
WORD DOES NOT FIT": END

1130 IF Z j 2 ¢ > INT (Z / 2) THEN HR = HR - 1. REM FORCE SAME #
OF SPACES ON BOTH SIDES OF CONNECTING WORD

1140 HC = INT ((HL + HR) /J 2)

1150 VO = 2

1160 VS = 2

1200 NP = 0: REM INITIALIZE WORD PAIRS

1210 BREAD Z6§,Z1%

1220 IF Z$% = "END" OR Z1§ = "END" THEN 1300: REM NO MGRE PAIRS

1230 NP = NP + 1: REM ONE MORE PAIR
1240 LS(NP) & ZS$

1250 RS(NP) = Z1%

1260 GOTO 1210

1300 NR = 8: REM 8 ROWS

1397

1398 REM * COVER SCREEN x

1399

1400 GR : HOME : COLOR= 13: GOSUB 15500: REM WASH IN YELLOW

1410 X8 = "MATCH":XV = 10:XC(l) = Z2: GOSUB 15300

1420 X8 = "W" 4+ CHRS (1) s+ CHRS (2) + "CH":XV = 40 - XV - XB.XC(1l)
= 7. GOSUB 15300: REM MIRROR IMAGE

1430 VTAB Z3. HTAB 8: PRINT "PRESS RETURN TO CONTINUE.. .";

1440 GOSUB 11500: REM WAIT FOR XKEYSTROXE

1450 IF Z% = - 1 THEN END : REM ESC

1900 GOSUB 5000: REM INSTRUCTIONS

1897

1998 REM %% INITIALIZATION FGR NEXT GAME *»

1999

2000 FOR J = 1 TO NP

2010 L%(J) = - J:. REM SET FLAG FGR INITIALIZING DISFLAY

2020 NEXT

2030 N = NP: REM SCRAMBLE ALL THE PAIRS

2040 GOSUB z500

2050 N = NR: REM USE THE FIRST NR

Z2D60 FOR J = 1 TO N

2079 R%(J) = L%(J): REM COPY TO R%(1,...,NR)

2080 NEXT

20590 GOSUB 2500: REM SCRAMBLE THE SAME FAIRZ FGR THE LEFT SIDE
27200 GOSUB 9500: REM INITIALIZE THE DISPLAY

2210 GOTO 23000

2900 FOR Z = N TC z STEP - 1: REM SCRAMBLE L%{1.....,N)
2910 z% = 2 % RND (1) + 1

2920 Z1 = L%(Z)

2530 L%(Z) = L%¢Z%)

2940 L%(Z%) = Z1

7950 NEXT

2960 RETURN

TEXT-BASED GAMES

105

2987
2998
2999
3000
3010
3020
3030
3100
3110
3120
3130
3140
3150
3200
3210
3220
3230
3240
3z50
3300
3310
3320
3330
3340
3400
3410
3491
3492
3493
3494
3499
3500
3510
3520
3530
3540
3550
3560
3800
3810
3820
3830
3891
3892
3893
3894

2899
3900
3910
3920
3830
3940
3997
3598
3998
4000
4010
4020
4030
4040
4050
4200
4210
4720
4400
4410
4420
4430
4600
4610
4620
4630
4640
4650

"REM %% CHODSE NEXT PAIR xx

FOR Z =1 TO N

VTAB VDO + VS ®* (NR - N + Z>: REM BUILD # MENU
HTAB HC: PRINT Z;

NEXT
QPS$ = "PICK A NUMBER OF A WORD ON THE LEFT: "
GOSUB 3500

Pl = J

INVERSE . REM DISPLAY LEFT STRING IN INVERSE
GOSUB 8600

NORMAL

QP$ = "NOW PICX A NUMBER FROM THE RIGHT: "
GOSUB 3500
Pz = J

INVERSE : REM DISPLAY THE RIGHT STRING IN INVERSE
GOSUB 8800

NORMAL

FOR Z = 1 TO N: REM CLEAR 8 MENU

VTAB VO + VS ® (NR - N + Z): REM V-POS

HTAB HC: REM H-POS

PRINT " ",

NEXT

IF L%(P1) <« > R%(PZ) THEN 4000: REM PAIR DOESN'T MATCH
GOTO 5000: REM A MATCH

‘REM % COMMON CODE TO PICK A STRING =
REM ENTRY: QP$ PROMPT
REM EXIT: J CHOICE

"VTAB 22: HTAB 1: PRINT QOPS;
YL = 1:YH = N:YW = 1: GOSUB 11000

IF Z% = - 1 THEN 6100

IF Z% = 0 THEN 3800: REM INVALID

J =2

HTAB 1: PRINT LEFTS (BL¢,39);

RETURN

08 = "PLEASE PICK A NUMBER FROM 1 TO " +# STRS (N)
P = 80

GOSUB 3900

GOTO 3500. REM TRY AGAIN

"REM ® DISPLAY MESSAGE LINE %
REM ENTRY: 0¢ STRING TO DISPLAY
REM P PAUSE

VTAB 24: HTAB 20 - INT (LEN (Qs) /J 2)
INVERSE : PRINT Q$;:: NORMAL
YP = P: GOSUB 11400: REM PAUSE

HTAB 1: PRINT LEFTS$ (BL§,39);

RETURN

"REM %% PAIR DOESN'T MATCH nw

YP = 10

IF Pl = PZ THEN 4400: REM LEFT . RIGHT LINED UP

IF Pz ¢ Pl THEN 4200: REM MOVE RIGHT SIDE DOWN FIRST
UD = 1: REM MOVE LEFT SIDE DOWN ONE

GOSUB 8000

GQTO 4010
UD = 1: REM MOVE RIGHT SIDE DOWN ONE

GOSUB 8Z00

GOTO 4010

IF Pl = N THEN 4800: REM LEFT,RIGHT LINED UP AT THE BOTTOM
UD = 1: REM MOVE BOTH SIDES

GOSUB 8400

GOTO 4400
Wl = 0:WZ = 5:W3 = 0:W4 = 10:W5 = 1:W7 = 1. GOSUB 13400

Qs "af® NOT A MATCH rav
P = 60

GOSUB 3900

J Pl

GBSUB 8600: REM DISPLAY IN NORMAL

106 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

4660 GOSUB 8800

4670 C€OTO 3000

4997

4998 REM nn PAJR MATCHES w*

4388

5000 YP = 10

5010 IF Pl = PZ THEN 5400: REM LEFT.RIGHT LINED UP

5020 IF Pz > P1 THEN 5200: REM MOVE RIGHT SIDE UP FIRST
5030 UD = - 1: REM MOVE LEFT SIDE UP ONE

5040 COSUB 800D

5050 GOTO 5010

5200 UD = - 1: REM MOVE RIGHT SIDE UP ONE

5210 GOSUB 8200

5220 COTO 5010

5400 IF Pl = 1 THEN 5600: REM LEFT.RIGHT LINED UP AT THE TOP
5610 UD = - 1: REM MOVE BOTH SIDES

5420 GOSUB 840D

543D GOTO 5400

5600 W1 = 0:W2 = 5:W3 = 0:W8 = 10:W5 = - 1:W7 = 1: GOSUB 13400
5610 VTAB VD » VS % (NR - N + 1): REM LEFT,RIGHT ON TOP LINE
5620 HTAB HC - INT ¢ LEN (Cs) J 2)

5630 INVERSE : PRINT C$;: NORMAL
5640 Z5 = LB(L%(1))
5650 Z1% = RS(A%B(1))

§700 FOR J = HL ¢+ 1 TO HC - INT (LEN (C6) / 2) - 1: REM MOVE THE
WORDS TOGETHER

5710 HTAB J - LEN (Z8) - 1: PRINT " ";: INVERSE : PRINT Z§8;: NORMAL

5720 HYAB HR + HL - J: INVERSE : PRINT Z1$;: NORMAL : PRINT " ";

5730 NEXT

5600 06 = "YOU FOUND A MATCH!"

5810 P = 60

§B8z0 GOSUB 3900

3830 N = N - 1: REM ONE LESS PAIR

5840 IF N = 0 THEN 5800: REM FOUND THEM ALL

5850 FOR J = 1 TO N: REM MOVE THE LIST DOWN ONE

5860 L%B(J) = LB(J + 1)

5870 R%(J) = R%B(J =+ 1)

5880 NEIT

5880 GOTO 3000

5800 VTAB z1: HTAB 7: PRINT "YOU FOUND ALL THE MATCHES!!"
59087

59068 REM #% AGAIN? am

5999

6000 HTAB 1: VTAB 24

6010 PRINT "PLAY AGAIN (¥ OR N)? ";

6020 GOSUB 11z00: REM VY/N

6030 ON Z% + 2 GOTO 6100.6000,.2000,.6100: REM ESC. INVALID, Y. N
6100 PRINT : PRINT

6110 PRINT "THANKS FOR PLAYING.";

6120 END

7987 :

7998 REM @#% MOVE ROUTINES #w
7989

8000 z = L%(F1l): REM MOVE LEFT SIDE DOWN/UP ONE
8010 REM UD = -1 UP, +1 DOWN

8020 LBH(P1) = L%H(P1 + UD)

6030 L%(Fl + UD) = Z

8100 J = Pl: REM DISPLAY NEW LEFT J

8110 GOSUB 8700: REM BLANK

8120 GOSUB B8600: REM THEN DISPLAY

8130 J = Pl ¢+ UD:P) = J: REM MOVE CHOICE

8140 GOSUB 8700: REM BLANK

8150 INVERSE .

8160 GCOSUB B600: REM THEN DISPLAY IN INVERSE
8170 NORMAL

8180 GOSUB 11400: REM PAUSE

8190 RETURN

8200 z = R%(P2): REM MOVE RIGHT SIDE DOWN/UP ONE
8210 REM UD = -1 UP, +] DOWN

8220 R%(PZ) = R%(PZ + UD)

8230 R%(PZ2 » UD) = Z

8300 J = P2: REM DISPLAY NEW RIGHT J

8310 GOSUB 8800: REM BLANK

8320 GOSUB 8800D: REM THEN DISPLAY

TEXT-BASED GAMES

107

6330 J = PZ + UD:PZ = J: REM MOVE CHOICE

8340 GOSUB 8900: REM BLANK .

8350 INVERSE

8360 GOSUB 8600: REM . THEN DISPLAY IN INVERSE

8370 NORMAL

6380 GOSUB 11400: REM PAUSE

8390 RETURN

8400 z = L%(P1): REM MOVE BOTH SIDES

86410 REM UD = -1} UP, +1 DOWN

8420 L%(P1) = L%(P1l + UD)

8430 L%(P) + UD) = 2

8480 Z = RW(PI1)

8450 R%(P1l) = R%(P1 + UD)

8460 R%B(Pl ¢+ UD) = Z

8470 J = P}

6480 GOSUB 8700

8460 GOSUB 6900

86300 CGOSUB 8800

8510 GCOSUB 6800

8520 J = P1 + UD:P1l = J: REM MOVE ROW

8530 GOSUB 8700

8340 GOSUB 8500

6550 INVERSE

6560 GOSUB 8600

8570 GOSUB 8800

8580 NORMAL

8590 GOTO 11400: REM PAUSE

6587 :

85898 REM ® DISPLAY ROUTINES *#

8598

6600 Z$ = LS(L%(J)): REM DISPLAY LEFT STRING AT ROW J

8610 HTAB HL - LEN (Z8): REM H-POS

6620 GOTO 8820

8700 z$ = LEFTS (BLS ,HL - 1): REM BLANK LEFT STRING AT ROW J

8710 GOTO 6610

6800 Z8 = RS(R%(J)): REM DISPLAY RIGHT STRING AT ROW J

8810 HTAB HR: REM H-POS

68620 VTAB VD + VS % (NR - N ¢+ J): REM ENTRY FOR LEFT STRING

8830 PRINT Z$;

6840 RETURN

8900 Z$ = LEFTS (BLS.40 - HR): REM BLANK RIGHT STRING AT ROW J

8810 GOTO 6810

8997 :

6998 REM #®n JINSTRUCTIONS n#

8998

8000 TEXT : HOME

9010 VTAB ¢

8020 HTAB 14: PRINT "wnam MATCH nwmav

8030 PRINT

8040 PRINT

8050 PRINT "THIS IS5 A MATCHING GAME."

9060 PRINT

8070 PRINT "YOU DECIDE WHICH ITEM ON THE LEFT"

9080 PRINT "MATCHES AN ITEM ON THE RIGHT. MATCH"

8080 PRINT "THE ITEMS BY TYPING THEIR NUMBERS."

8100 PRINT

9110 PRINT "WHEN YOU MATCH ALL THE ITEMS, YOU WIN "

8120 VTAB 20

8130 PRINT "PRESS ";: INVERSE : PRINT "ESC":: NORMAL : PRINT " TO
GIVE UpP."

8140 PRINT

8150 PRINT "PRESS RETURN TO CONTINUE...";

8160 GOSUB 11500: REM WAIT FOR KEVSTROXE

8170 IF Z% = - 1 THEN 6100: REM ESC

8180 RETURN

9897 :

8498 REM % INITIALIZE THE DISPLAY =

9498 :

8500 HOME

9510 HTAB HC - 2z: INVERSE : PRINT "MATCH": NORMAL

8520 FOR XK = 1} TO NR: REM RANDOMLY DISPLAY THE PAIRS

8530 J = INT (NR'® RND (1)) + 1: REM DISPLAY A NEW LEFT PAIR

9560 IF L%(J)) 0 THEN 9530: REM ALREADY DISPLAYED, TRY AGAIN

8550 L%(J) = - L%(J): REM FLAG AS DISPLAYED

108 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

9560 GOSUB 8600: REM DISPFLAY LEFT PAIR

9570 J = INT (NR ® RND (1)) + 1: REM NOW DISPLAY A NEW RIGHT PAIR
9580 IF R%(J) > D THEN 9570: REM ALREADY DISPLAYED, TRY AGAIN
9590 R%(J) = - R%(J): REM FLAG AS DISPLAYED

9600 GOSUB 8800: REM DISPLAY RIGHT PAIR

9610 NEXT

8620 RETURN

20100 DATA 5.7: REM INVERTED A

20110 DATA "1 1

20120 DATA "1 1

20130 DATA "11111"

20140 DATA "1 i

20150 DATA "1 1"

20160 DATA " 1 1"

20170 DATA " 1"

20160 DATA "-1"

20200 DATA 5.7: REM INVERTED T
20210 DATA " 1"

20220 DATA " 1"

20230 DATA " 1"

20240 DATA " 1"

20250 DATA " 1"

20260 DATA " 1"

20270 DATA "11111"

20280 DATA "-1"

499897 :

49988 REM #% VARIABLE CONVENTIONS =%
49899

50000 REM LS$(J) LEFT STRING OF PAIR (RIGHT JUSTIFIED)
50010 REM R$(J) RIGHT STRING OF PAIR (LEFT JUSTIFIED)
50020 REM L%(J) LEFT STRING 8 IN J-TH ROV
50030 REM R%(J) RIGHT STRING 8 IN J-TH ROW

50040 REM NP B OF PAIRS

50050 REM NR ® OF ROWS INITIALLY

50060 REM N ® OF ROWS LEFT

50070 REM HL H-POS + 1 OF RIGHT EDGE OF LEFT COLUNMN
50080 REM HR H-POS OF LEFT EDGE OF RIGHT COLUNMN
50090 REM HC H-POS OF CENTER

50100 REM VO V-POS OF "ROW O"

50110 REM VS ® OF VERTICAL TABS BETWEEN ROWS
50120 REM BLS BLANKS

50130 REM Pl FIRST PICK

50140 REM P2 SECOND

50980

50881 :

50982 REM =#w% MATCHING DATA MUST BEGIN AT LINE 51000 =®
50983

50984 REM H-POS + 1 OF RIGHT EDGE OF LEFT COLUMM
50895 REM H-POS OF LEFT EDGE OF RIGHT COLUMN
50896 REM CONNECTING WORD (MUST FIT BETWEEN COLUNMNS)

50897 REM PAIRS 1.....NP
50998 REM END,END
50989

51000 DATA 14,27, "MATCHES"

51010 DATA "ACCELERATE","SPEED UP","FURTIVE","CONCEALED","ZEALOT",
"HOTHEAD"

51020 DATA "AUSTERE”,"STERN","COERCE","COMPEL","MENDACIOUS", "LYING"

51030 DATA "IMPLACABLE","RELENTLESS","TRUCULENT","FIERCE","GRAVE",
"SOLEMN"

51040 DATA "PACIFIC","CALM","EXTOL","LAUD","MUNIFICENT", "LAVISH"

51050 DATA "OBDURATE","STUBBORN","INFALLIBLE","PERFECT","INDIGENT",
"PENURIOUS"

51060 DATA "INDIGNITY","INSULT","REPLENISH","REFILL","RETICENCE",
"RESERVE"

51070 DATA "RELISH","SAVOR","REPRISAL" . "RETALIATION","IMPROVIDENT",
"THRIFTLESS"

51080 DATA "MALADROIT","TACTLESS","IRKSOME","TEDIOUS" "TEPID",
"LUKEWARM"

51090 DATA "HAMLET","VILLAGE","PLAUDIT","COMMENDATION","CHAGRIN",

"MORTIFICATION"
51100 DATA "UBIQUITOUS", "OMNIPOTENT","SURMISE" ("GUESS", "MOROSE".
"GLOOMY"

TEXT-BASED GAMES

109

51110 DATA "QUERULOUS" , "COMPLAINING","TRACTABLE" "AMENABLE",
"ALTERCATION " ,"OUARREL"

51120 DATA "HOMILY" "SERMON", "CRYPTIC","OBSCURE" "ADIPOSE" "FATTY"

51130 DATA "DUPLICITY" "HYPOCRISY","REGIME" "RULE" "TENACITY",
"PERSISTANCE"

51999 DATA "END", "END"

60000

50010 REM ® COPYRIGHT 1981 BY HOWARD FRANKLIN, PALO ALTO, CA =

60020

Merge it with INPUT MODULE, SOUND MODULE (delete lines
18000 through 18999), and IMAGE MODULE. SAVE it as MATCH.
RUN it and enjoy.

MATCH makes use of full-screen formatting and inverse video.
Although it is entirely text-based, it is an attractive game to watch.
MATCH is also designed to be helpful to the player. The relevant
instructions remain in view at all times because the text never
scrolls out of the text window. Finally the program uses very sophis-
ticated text-moving techniques that make text appear animated (see
lines 8000 through 8910).

MATCH is a friendly game and a good example of sound educa-
tional design. Error messages are helpful; the right answerreceives a
more signficant response than the wrong one, and the successful
matches remain in view, reinforcing the correct answer. (Incorrectly
matched pairs drop to the bottom of the list.)

MATCH makes effective use of the screen. The centered design is
both attractive and space-saving. The use of inverse video reinforces
the correct answers. Moving the text blocks keeps the player’s atten-
tion on the screen and the reinforcing value of seeing the matched
pairs move and stay together is greater than when lines are drawn (as
in a workbook).

Other nice touches in MATCH include the following: The word
list is continually renumbered to reflect the number of remaining
words, and at the beginning of each new run of the program, words
are drawn at random from the DATA pairs and presented in scram-
bled order.

MATCH can be easily expanded by changing the contents of the
DATA statements. However, the greatest power of this program is
that it is a completely generalizable matching game. Not only can
synonyms be used, but so can any set of text or numeric pairs. Notice
in line 51000 that the center word (in this case, MEANS) is in a
DATA statement. You can insert states and capitals, equations and
their sums, rhyming words or opposites, and, in each case, use a
relevant center word.

110 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Below are examples of “win” screens of two possible modifica-
tions of MATCH:

CA CAPITAL SACRAMENTO
PA CAPITAL HARRISBURG
LA CAPITAL BATON ROUGE
AZ CAPITAL PHOENIX

ME CAPITAL PORTLAND
NY CAPITAL ALBANY

NE CAPITAL LINCOLN

COLT IS A YOUNG HORSE
CUB IS A YOUNG LION
GOSLING IS A YOUNG GOOSE
FAWN IS A YOUNG DEER
LAMB IS A YOUNG SHEEP
DUCKLING IS A YOUNG DUCK
PUPPY IS A YOUNG DOG

To use these word matches, replace the DATA statements in lines
51010 through 51999 with new DATA statements that incorporate
these words. For example,

51010 DATA "CA", "SACRAMENTO", "PA",
"HARRISBURG"

You can include as many as fifty pairs of words. The game will
randomly select only eight pairs (see line 1300). You may also have
to change the center word in line 51000 so that it makes sense with
the new words in your current word list.

TEXT-BASED GAMES 111

CHAPTER SUMMARY

This chapter showed three complete text-based games and discus-
sed how to make simple variations to tailorthem to your particular
audience. The games use the modules presented earlier in the book
and exemplify the style and user-friendly attitude we have been
discussing all along. The next chapter will give you some even more
exciting games that make use of graphics.

CHAPTER SEVEN

Additional Games

This chapter discusses three computer games that incorporate some
of the special features introduced earlier in the book.

CONCENTRATION, drawn from the familiar card game of the
same name, is an image-based game that lends itself well to the
low-resolution graphics of the APPLE. However, this version of
CONCENTRATION is entirely new and allows for substantial, yet
easy, modification to create various difficulty levels.

STARS is a number-guessing game. The program takes advantage
of the computer’s quick calculation capabilities. We designed this
special version of the game to show off the APPLE’s color graphics.

Our version of the popular SIMON game uses sound, LO-RES
color, and a scrolling text window.

CONCENTRATION

CONCENTRATION is a solitaire game, although it can be played by
several players taking turns. In a typical game, play continues until
all the cards are matched. When the game ends, all the cards are
displayed face up.

113

114 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ...CONCENTRATION-INPUT IMAGE...
11
887 :
998 REM %% ONE-TIME INITIALIZATION ==
989

1000 DIN PR%(12.,1).CD%(28) H%(248) ,V%(28) CP%(6.1)
1010 MP = 12: REM MAXIMUM ® OF PAIRS OF CARDS

10z20 MC = 6: REM COLOR PAIRS
1030 REM MODIFY THE CARD TYPE DISPLAY ROUTINES AT 8300.,... IF CH OR
CV CHANGED!!

1040 CH = 4: REM HORIZONTAL WIDTH - 1 OF A CARD

1050 CV = 6: REM VERTICAL HEIGHT - 1l

1100 FOR J = 1 TO zZ4: REM INITIALIZE CARD LOCATIONS
1110 2% = (J - 1) J 6

1120 H%(J) = (J -1 - 6 ® Z%) ® 6 + 2
1130 V%(J) = Z% = 10

1140 NEXT

1200 DJIM BL$(39)

1210 BLS = "

1220 FOR J = 1 TO 38
1230 BLS = BLs + " »

1240 NEXT

1287 :

1298 REM % COVER SCREEN #

12988

1300 GR : HOME : FOR J = 1 TO 24: GOSUB 8000: NEXT : REM DISPLAY
CARDS FACE DOWN

1310 %8 = 1:%H = H%(1):¥V = V%(1):%8 = "CON":XC(1l) = 14: GOSUB 15400

1320 XH = H%(B8):XV = V®%(B):%8 = "CEN": GOSUB 15400

1330 XH = H%(16):3XV = V%(16):%6 = "TRA": GOSUB 15400

1360 %85 = Z2:%H = H%(Z20):%V = V%(20):X6 = "TIO": GOSUB 15400

1350 XH = H%(23):%6 = "N": GOSUB 156400

1360 VTAB 23: HTAB 7. PRINT "PRESS RETURN TO CONTINUE...";
1370 GOSUB 11500: REM WAIT FOR KEYSTROKE

1380 IF Z% = - 1 THEN END : REM ESC
1497 :

1498 REM % PARAMETERS FOR THIS GAME %
1499

1500 NT 4: REM # OF CARD TYPES THIS GAME
1510 NC 4: REM 8 OF COLOR PAIRS

1520 NP 6: REM # OF PAIRS OF CARDS

1530 LCS = CHRS (ASC ("A"™) - 1 ¢+ Z ® NP)
1600 GOSUB 95000: REM INSTRUCTIONS

0 omon

1997

1998 REM #w% JINITIALIZATION FOR NEXT GAME nw

1898 :

2000 IF NT ®* NMC ¢ NP THEN TEXT : HOME : -VTAB 11: HTAB 2: PRINT
"NOT ENOUGH CARDS. CHANGE 1500-1520.": END : REM *® CARDS WILL
NOT BE UNJQUE ¥

2010 N = 15

20z0 FOR J = 1 TO N: REM INITIALIZE COLORS

2030 CD%(J) = J

2040 NEXT

2030 GOSUB 2900: REM SCRAMBLE THE COLORS

2060 FOR J = 1 TO NC: REM SELECT THE FIRST 2%NC COLORS

2070 CP%(J,0) = CD%(Z * J - 1)

2080 CP%(J.1) = CD%(z ® J)

2090 NEXT

2100 N = NP: REM # OF CARD PAIRS

2110 FOR J = 1 TO N: REM INITIALIZE CARD TYPES AND ARRANGEMENTS

2120 PRB%(J,0) = NT & BRND (1) s 1: REM SELECT TYPE FOR PAIR J

2130 PR%(J.1) = NC ® RND (1) + 1: REM SELECT COLORS FOR PAIR J

2140 IF J = 1 THEN 2200

2150 Z = 0

2160 FOR X = 1 TO J - 1: REM FORCE PAIR TO BE DIFFERENT FROM
PREVIOUS PAIRS |

2170 IF PR%(J.0) = PR%(K.,0) AND PR%(J, 1) = PR%(K.1) THEN Z = 1: REM
SET FLAG FOR SAME PAIR

2180 NEIXT

2180 IF Z > 0 THEN 21z20: REM SELECT THE PAIR AGAIN

2200 CD%(z * J - 1) = J: REM TWO CARDS FOR PAIR J

2210 CD%(z % J) = J

2220 NEXT
2230 GOSUB 9500: REM INITIALIZE THE DISPLAY BEFORE SCRAMBLING
THE CARDS

2300 N = 2 # NP: REM 8 OF CARDS TO BE USED

ADDITIONAL CAMES

115

2310
2320
2300
2900
2010
2820
2930
2940
2950
2960
2987
2898
2999
3000
3010
3020
3030
3040
3050
3100
3110
3120
3130
3140
3150
3200
3210
3220
3481
3482
3483
3484
3485
3496
3697
3498
3488
3300
3510
3520
3530
3340

50

GOSUB 2900: REM SCRAMBLE THE CARDS
TR = 0: REM 8 OF TURNS
GOTO 3000
FOR Z = N TO 2 STEP - 1: REM SCRAMBLE CD%(1.....N)
Z% = Z % RND (1) + 1
Z) = CD%(Z): REM EZCHANGE TWO ELEMENTS
CDS%(Z) = CD%(Z%)

CO%(Z%) = Z1

NEXT

RETURN

"REM %% SELECT NEW PAIR %
0P = "PICK A CARD: "
QX = 10
Pl = 0: REM ALLOW ANY -VALID PICK
GOSUB 3500: REM PICK A VALID CARD
IF J = 0 THEN 5200

Pl = J: REM FIRST PICK
QP$ = "A SECOND: "
0H = 128
GOSUB 3500: REM PICK ANOTHER VALID CARD
IF J = 0 THEN 5200
PZ = J: REM SECOND PICK
TR = TR + 1: REM ONE MORE TURN
VTAB 23: HTAB 10: PRINT LEFTS (BLS,.30): REM BLANK PROMPT LINE
IF CD%(P1) (> CD%(P2z) THEN 4000: REM CARDS DO NOT MATCH
GOTO 5000: REM A MATCH

"REM % COMMON CODE FOR FICKING CARDS *®

REM ENTRY: OP$ PROMPT

REM 0H HORIZONTAL TAB FOR PROMPT
REM EXIT: J CARD 8

REM 0 ESC

REM ROUTINE FORCES A NON-MATCHED CARD TO BE SELECTED
REM DOES NOT ALLOW Pl TO BE PICKED

VTAB 23: HTAB QH: PRINT 0PS;
YW = 1: GOSUB 10000: REM JNPUT ONE CHARACTER

IF Z% = -) THEN J = 0: RETURN : REM ESC

IF Z8 ("A" OR Z$ > LCS THEN 3700: REM LETTER IS NOT IN RANGE
J = ASC (Z8) - ASC ("A™) + 1

IF CD%(J) ¢ = 0 OR J = Pl THEN 3600: REM CARD HAS ALREADY

BEEN SELECTED

3560
3570
3387
3598
3589
3600
3610
3687
3688
3698
3700
3710
3720
3730
3691
3692
3893
3884
3685
3689
3800
3810
3820
3930
3940
3997
3898
3898
4000
4010
4020
4100

“ 6OSUB 8200: REM DISPLAY THE CARD

RETURN

'REM % ALREADY PICKED % .
Qﬁ.c "THAT CARD WAS ALREADY PICKED"

GOTO 3710

FREM % PICKX A VALID LETTER %
éS = "PICK A LETTER FROM A TO " + LCS
P = 60

GOSUB 3800

GOTO 3500: REM TRY AGAIN

.ﬁEM % DISPLAY MESSAGE LINE =

4BEM ENTRY: 08 STRING TO DISPLAY

REM P PAUSE

'VTAB 26: HTAB 10: PRINT 0$;

NORMAL

YP = P: GOSUB 11400: REM PAUSE '
HTAB 10: PRINT LEFTS (BLS.28);: REM BLANK MESSAGE LINE
RETURN ’

'REM % CARDS DO NOT MATCH %

@3 = "a% NO MATCH w#a®
P = 150

COSUB 3800

J = Pl: REM TURN CARD 1 FACE DOWN

116 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

4110 GCOSUB 8000

4120 J = PZ: REM TURN CARD 2z FACE DOWN

4130 GCOSUB 8000

4140 GOTO 3000: REM PICK ANOTHER PAIR

4987

4998 REM ® CARDS MATCH =®

4868

5000 Qs = "®%® YOU FOUND A PAIR #®

5010 FLASH

5020 P = 150

5030 COSUB 3800

5050 J = Pl: REM REMOVE CARD 1

5060 COSUB 5500

5070 J = P2: REM REMOVE CARD 2

5080 COSUB 53800

5100 N = N - 2: REM TWO LESS CARDS

S110 JF N) D THEN 3000: REM CARDS REMAINING

5200 GCR : HOME : REM DISPLAY THE ORIGINAL BOARD

5210 VTAB 21: INVERSE

5220 IF N > 0 THEN HTAB 9: INVERSE : PRINT "HERE ARE THE CARDS...":
NORMAL

5230 IF N = 0 THEN HTAB 2: PRINT "YOU MATCHED ALL THE PAIRS IN ";TR;
" TURNS.": NORMAL

5300 FOR J = 1 TO 2 % NP: REM DISPLAY THE CARDS FACE UP
5310 GOSUB 8200

3320 NEIT

5330 GOTO 6000: REM AGAIN?

5900 GOSUB 9500: REM REMOVE CARD J

5910 PRINT " ";

5920 GOSUB B810D: REM ERASE CARD

5930 CD%(J) = - CD%(J): REM FLAG CARD AS MATCHED
5840 RETURN

5987 :

5998 REM . =% AGAIN? =#w

5998

6000 HTAB 1: VTAB 24

6010 PRINT "PLAY AGAIN (¥ OR N>? ",

6020 GOSUB 11200: REM V/N

6030 ON Z% + 2 GOTO 6100,.,6000,2000,6100: REM ESC. INVALID, ¥V, N
6100 PRINT : PRINT

8110 PRINT "THANKS FOR PLAYING.";

6120 END

7987 :

7988 REM ® DISPLAY CARDS ROUTINES #
7988 :

8000 COLOR= 1: REM = DISPLAY CARD J FACE DOWN

8010 GOTO 8110

8100 COLOR=s 0: REM % ERASE CARD J

8110 H = H%(J)

8120 V = VS%(J)

8130 FOR Z = K TO H + CH

8140 VLIN V.V » CV AT Z

8150 NEXT

8160 RETURN

8200 Z% = ABS (CD%(J)): REM DISPLAY CARD J FACE UP

8210 REM MODIFY DRAWING ROUTINES IF CH.CV CHANGED

8220 REM EXIT: Z% PAIR # OF CARD J

8230 H = H%(J): REM H-POS

8240 V = V%(J): REM V-POS

82350 C1 = CP%(PR%(Z%,1),0): REM COLOR 1

8260 CZ = CP%(PR®(Z%,1).,1): REM COLOR 2

8270 ON PR%(Z%.0) GOTO B8300,.,8400,8500,.8600: REM DISPLAY CARD TYPE
8300 FOR Z = H TO H + 1: REM TYPE 1 = 3 V-STRIPES

8310 COLOR= C1

8320 VLIN V.V + CV AT Z

8330 VLIN V.V » CV AT Z + 3

8340 NEXT

8350 COLOR= C2Z

8360 VLIN V,V »+ CV AT H +» 2

8370 ~RETURN

8400 FOR Z = V TO V + 1: REM TYPE Z = 3 H-STRIPES

8410 COLOR= C1

8420 HLIN H.H » CH AT
8430 HLIN H.H + CH AT
8440 COLOR= C2Z

8450 HLIN H.H + CH AT

N NN
<+
w

ADDITIONAL GAMES 117

8460
8470
8480
8500
8510
8520
8 530
8 540
8550
8560
8570
8600
8610
8620
6630
8640
8650
8660
6870
6660
8897
8896
8989
95000
8010
8020
8030
8040
9050
95060
8070
5080
9080
9100
9110
9120
9130
9140
9150
8160
9170
9180
9180
9200
9210
9220
9230
9240

8250
9260
8270
9280
8290
9497
9488
9499
8500
9510
§520
9530
9540
9550
9560
8570
9580
9590
8600
5610
9620

HLIN H.H + CH AT Z + 3

NEXT

RETURN

FOR Z = H TO H » 2 STEP z: REM TYPE 3 = 5 V-STRIPES
COLOR= C1l

VLIN V.V » CV AT
VLIN V.V + CV AT
COLOR= C2Z

VLIN V.V » CV.AT
NEXT

RETURN

FOR Z = V TO V » 3 STEP 3: REM TYPE 4 = 5 H-STRIPES
COLOR= Cl

HLIN H.H + CH AT
HLIN H,H » CH AT
COLOR= C2Z

HLIN H,H + CH AT
HLIN H.,H » CH AT
NEXT

RETURN

N NN
<+
~

NN NN
£
w

"REM %% INSTRUCTIONS n%
"TEXT : HOME

PRINT "CONCENTRATION 1S A MEMORY GAME."
PRINT

PRINT "PAIRS OF CARDS ARE MIXED UP AND TURNED"
PRINT "OVER. YOU TRY TO FIND THE PAIRS."
PRINT

PRINT "THE CARDS ARE ARRANGED ACCORDING TO"
PRINT "THIS DIAGRAM:"

INVERSE :Z = 17

HTAB Z: PRINT "ABCDEF"

HTAB Z: PRINT "GHIJKL"

REM HTAB Z:PRINT "MNOPOR"

REM HTAB Z:PRINT "STUVWX"

NORMAL

PRINT

PRINT "SELECT A CARD BY TYPING A LETTER FROM A"
PRINT “TO ";LCS:". (IF YOU WANT THE TOP LEFT CARD."
PRINT "TYPE A.)

PRINT

PRINT "YOU MAY SEE ONLY Z CARDS AT ONE TIME."
PRINT "WHEN YOU MATCH CARDS, THEY DISAPPEAR."
PRINT 7
PRINT "THERE IS NO GUESS LIMIT."

PRINT

PRINT "PRESS ";: INVERSE : PRINT "ESC".: NORMAL : PRINT
TO QUIT."

PRINT

PRINT "PRESS RETURN TO CONTINUE... ";

GOSUB 11500: REM WAIT FOR KEYSTROKE

IF Z% = - 1 THEN 6100: REM ESC

RETURN

"REM =% MIXED SCREEN LOWRES SETUP =®

"GR : HOME

FOR J = 1 TO z % NP

GOSUB 8000: REM DISPLAY CARD FACE DOWN
NEXT

VTAB 21: HTAB 10: PRINT "EACH LETTER REPRESENTS A CARD."
cHTAB 10: PRINT "TRY TO MATCH THE PAIRS."
INVERSE

FOR J = 1 TO z ® NP

GOSUB 9500

PRINT CHRS$ (ASC ("A") -1 + J);

NEZT

NORMAL

RETURN

9800 Z% = (J - 1) / 6: REM LOCATE CARD J IN LETTER TEMPLATE

8810
8920
9830

48897
48898
498898

VTAB 21 + I%
HTAB J - 1 - 6 % Z% + 2
RETURN

"REM ®® VARIABLE CONVENTIONS %

118 CGOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

50000 REM PR%(J,0) CARD TYPE OF PAIR J

50010 REM PR%(J,)) COLOR PAIR OF CARD J

50020 REM CP%(X.0) COLOR 1] OF COLOR PAIR X

50030 REM CP%(X,1) COLOR 2 OF COLOR PAIR K

50040 REM CD%(J) PAIR & OF J-TH CARD IF UNMATCHED

50050 REM - PAIR & IF ALREADY MATCHED
50060 REM H%(J) HORIZONTAL POSITION OF CARD J
50070 REM V% (J) VERTICAL

JpoB0 REM NT 8 OF CARD TYPES ACTIVE

50090 REM NC 8 OF COLOR PAIRS ACTIVE

50100 REM NP ORIGINAL & OF PAIRS

50110 REM LC$ LETTER OF LAST CARD

50120 REM N # OF CARDS STILL UNMATCHED
50130 REH CH HORIZONTAL WIDTH OF A CARD
50140 REM cv VERTICAL HEIGHT OF A CARD
50150 REM TR % OF TURNS

50160 REM Pl FIRST PICK

50170 REM P2 SECOND

60000 :

60010 REM % COPYRIGHT 1881 BY HOWARD FRANKLIN. PALO ALTO. CA ®
60020 :

Type it and merge with INPUT MODULE and IMAGE MODULE.
SAVE it as CONCENTRATION and RUN it.

In addition to the expected features of the error-trapping input
routine, CONCENTRATION incorporates other features that make it
easy to use. A matrix of letters at the lower left side of the screen
represents the cards. This matrix remains on the screen throughout
the game and is updated whenever selections are made and matches
found. Thus, a player is reminded not to select the same letter for
both cards in a pair and not to select a card that has already been
matched. (In the latter case, the clue letter, as well as the card, is
removed from the screen.)

What message does the program display when the card selected has
already been removed?

THAT CARD WAS ALREADY PICKED.
(See Lines 3598 through 3610.)

Another advantage of using the letter matrix is that players don’t
need to use a joystick or remember a complicated series of directions
to move the cursor; all information necessary for playing remains on
the screen throughout the game. When a player makes an error, the

ADDITIONAL GAMES

program prints a helpful message. Players who want to stop the
game before the end just press ESC and then RETURN.

Inverse video and flashing text are difficult to use tastefully.
However, in CONCENTRATION, inverse is used effectively for the
message “YOU MATCHED ALL THE PAIRS.” Flash is used to signal
that the player found a matching pair.

What line number in the program holds the message that a pair was
found?

Line 5000. Note that Q$ is also used to hold other printed messages
at lines 3600, 3700, and 4000 and is always printed at line 3900.

Asfarasthe playeris concerned, the game has only one difficulty
level. However, you can change several program parameters that
affect the game’s difficulty. The important items, those that affect
what the game looks like, are all written in variables and assigned
early in the program. We designed CONCENTRATION so that you
can easily change the number and type of color patterns presented.
The patterns are combinations of three or five horizontal or vertical
stripes (see lines 1040 and 1050). Program changes can make the
possibility set include fewer colors (line 1510), fewer stripe varia-
tions (line 1500), and more or fewer cards (line 1520). The cards are
always scrambled at the beginning of each game.

We chose to display twelve cards (six pairs) and to make the color
selection from all color pairs and patterns for aesthetic reasons. We
wanted two full rows of cards, and we also wanted a colorful,
challenging game. However, you can make your own decisions
about those parameters if you make sure that the number of stripe
variations times the number of color pairs is greater than, or equal to,
the number of pairs of cards.

How do you change the number of cards displayed at the beglnnlng
of the game?

119

120 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

1520 NP = 12 (Twelve is the maximum number of color pairs—see:
line 1010.)

To make the game easier to play, reduce the number of card pairs,
the number of card types and color pairs, and the number of stripes
in the cards.

CONCENTRATION has no sound. We think the game should be
purely visual. However, if you want to add sound, include SOUND
MODULE and assign appropriate numbers to the variables. Many
other elegant programming techniques are employed in this game.
Look the listing over carefully to find and appreciate them.

STARS

STARS is a number-guessing game originally developed at the Peo-
ple’s Computer Center (that later became the Community Computer
Center.) Unlike the other number-guessing games, which can just as
easily be played with paper and pencil, STARS takes advantage of
the computer’s quick calculation capability. The program responds
to guesses by displaying stars, instead of words, as clues. The more
stars you get, the closer you are to the secret number. The program
calculates how many stars to display. An interesting feature of
STARS is that the response to each guess gives useful information
about the correct answer.

STARS was originally written for teletypes. We have written a
new, LO-RES color version of it for your APPLE that takes advantage
of the APPLE’s screen formatting capabilities and also makes use of
the error handling in the INPUT MODULE. We have also used the
Pause or Keystroke Subroutine. Thus, the program pauses briefly
after each clue is displayed, but a player may shorten the pause by
pressing a key.

ADDITIONAL GAMES

121

10 REM ...STARS-INPUT SOUND IMAGE...

11

887 :

8998 REM #% ONE-TIME INITIALIZATION #®

899

1000 BPS = CHRS (7)

1010 Lz = LOG (2)

1020 MN = 1

1030 ME = 40

1040 S1% = LOG (MZ - MN) / LOG (2) s+ 1

1050 TB = 13

1060 GB = 38

1070 GT = GB - 27

1187

1198 REM % COVER SCREEN =

1188

1200 CGR : HOME

1210 FOR Z = 1 TO 100: REM COLOR DOTS

1220 COLOR= 15: IF BRND (1) ¢ .75 THEN COLOR= 13

1230 PLOT INT (40 = RND (1)), INT (40 % RND (1))

12640 NEXIT

1250 COLOR= 15: FOR Z = 15 TO 23: REM WHITE RECTANGLE

1260 HLIN 4,34 AT Z

1270 NEIT

1280 %8 = "STARS":%V = 16:%C(1) = 0: GOSUB 15300

1280 VTAB 23: HTAB 8: PRINT "PRESS RETURN TO CONTINUE...";

1300 GOSUB 11500: REM WAIT FOR KEYSTROXE

1310 JF Z% = - 1 THEN END : REM ESC

1900 GCOSUB %000: REM INSTRUCTIONS

1887

1898 REM w7 INITIALIZATION FOR NEXT CGAME =wn

1998

2000 GOSUB 9500: REM MIXED SCREEN SETUP

2010 A = INT ((MX - MN + 1) &= RND (1)) + MN

2020 N = D

Z030 YL = MN

2080 YH = MX

2997

2998 REM =®»% NEXT TURN =#=®

2999

3000 PRINT "GUESS: ";

3010 YW = 3: GOSUB 11000: REM INPUT INTEGER

3020 IF Z% = - 1 THEN 6200: REM ESC

3030 IF Z% ¢ > 1 THEN HTAB TB: PRINT "NUMBER FROM " ,MN;" TO ":MZ:
", PLEASE": GOTO 3000: REM INVALID INTEGER

3040 G = Z

3100 N = N + 1: REM ® VALID GUESS *

3110 IF A = G THEN 5000

3897

3988 REM #® JNCORRECT GUESS #®

3989

4000 S% = S1% - INT (LOG (ABS (G - A)) / L2)

4010 GOSUB 8000

4020 GOTO 3000

4997 :

4998 REM =®® CORRECT GUESS =#x

4989

5000 S% = 20

S010 GOSUB B80DD: REM BAR GRAPH

5020 WD = 100:Z% = "AAHHJJH": CGOSUB 13300: REM SOUND

5030 PRINT

5040 FLASH

5050 HTAB 9: PRINT "YOU GOT IT IN ":N:" GUESS":

5060 IF N > 1] THEN PRINT "ES";

5070 PRINT "I

5080 NORMAL

3987

59898 REM ®% AGAIN? =rwn

5998

6000 HTAB 1: VTAB 24

6010 PRINT "PLAY AGAIN (Y OR N)? "

6020 GOSUB 11200: REM VYJN

6030 ON z% + 2 GOTO 6100.6000.2000,6100: REM ESC. INVALID, ¥, N

6100 PRINT : PRINT

6110

PRINT "THANKS FOR PLAYING.";

122 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

6120 END

8187 :

6198 REM ®%®% QUIT #w
61869

6200 HKTAB TB

6210 PRINT "MY NUMBER WAS ":A
6220 GOTO 6000

78987 :

7998 REM ®% RESPONSE TO GUESS #w
7999

BODD0 HTAB TB

8010 SPEED= 120

8020 FOR J = 1 TO §%

8030 PRINT "w%";BPS;

8040 NEXT

8050 SPEED= 255

8060 PRINT

8070 JF GB - 3 % 8% (GT THEN 5% = 5% - 1: GOTO 8070

8100 REM #® PLOT BAR GRAPH =

8110 COLOR= 8%

8120 VLIN GB.GB - 3 % S% AT G - MN
8130 RETURN

8887 :

8998 REM %% INSTRUCTIONS =%
8989 :

9000 TEXT : HOME

9010 VTAB 4

9020 HTAB 14: PRINT "#w%wn STARS #na"
9030 PRINT

8040 PRINT

8050 PRINT "I AM THINKING OF A WHOLE NUMBER BETWEEN"
9060 PRINT MN:" AND " ;MX;". TRY TO GUESS WHAT IT IS.

8070 PRINT

9080 PRINT "AFTER EACH GUESS, I WILL DISPLAY ONE OR"
9090 PRINT "MORE STARS (®). THE CLOSER YOU ARE TO"

8100 PRINT "MY NUMBER, THE MORE STARS YOU GET."
9110 VTAB 20

9120 PRINT "PRESS ",;: INVERSE : PRINT "ESC".: NORMAL
" TO GIVE UP."
9130 PRINT

9140 PRINT "PRESS RETURN TO CONTINUE... ":
9130 GOSUB 11500: REM WAIT FOR KEYSTROKE

9160 IF Z% = - 1 THEN 6100: REM ESC

9200 GR : HOME

9210 X8 = "STARS":3V = 0:XC(1) = 13: GOSUB 15300

9220 PRINT "....5...10...15...20...25...30...35...40"

9230 POKE 34.22: REM SET SCROLLING WINDOW
9290 " RETURN

9497 :

9488 REM #% MIXED SCREEN LOWRES SETUP %
9489

9500 .COLOH= 0: FOR Z = GT TO GB: HLIN 0,39 AT Z: NEXT :

REM CLEAR GRAPH AREA
9510 HOME : REM CLEAR SCROLLING WINDOW
9520 RETURN

PRINT

49981 :

49892 REM w%% STARS www

498983

49994 REM ORIGINAL VERSION BY PEOPLE'S COMPUTER COMPANY,
MENLO PARK, CA

499987 :

49998 REM wn VARIJABLE CONVENTIONS =%

49899

50000 RENM A ANSVER

50010 RENM BPS BEEP (CHRS(7))

50020 RENM F FLAG FOR VALID INPUT

50030 RENM G GCUESS

50040 RENM GB BOTTOM OF GRAPH
50050 REM GT TOP OF GRAPH

50060 REM J LOOFP COUNTER

50070 REM Lz LOG(2)

50080 REM MN MINIMUM ANSWER

30090 RENM MX MAZ I MUM

50100 RENM N B OF GUESSES

50110 REM 8% # OF STARS FOR GUESS
501z0 REM 51% MAX & OF STARS » 1

ADDITIONAL GAMES

123

50130 REM TB TAB POSITION FOR RESPONSE
60000 :
60010 REM = COPYRIGHT 1981 BY HOWARD FRANKLIN, PALO ALTO, CA ®
60020

Typeitand merge with INPUT MODULE, SOUND MODULE, (delete
lines 18000 through 19999) and IMAGE MODULE. SAVE it as
STARS and RUN it.

As you remember, LO-RES permits only four lines of text at the
bottom of the screen, so we put the instructions at the beginning of
the program. However, the visual display reminds the players of the
game’s idea.

In STARS, the clues are dramatically displayed on the LO-RES
screen. The number line provides a visual organization of the in-
formation that simply was not available in the teletype game. Be-
cause all clues remain in view, we thinkitis acceptable to leave only
one previous response in the text portion of the screen.

This version of STARS is particularly pleasing to us because we
have integrated the graphics into the game, rather than using them
simply as decorations. When you are designing or enhancing your
own programs, try to consider how you can integrate graphics, using
lines and images to display helpful information.

We did not limit the number of guesses permitted as is usually
done in games of this type. Limitingthe number of guesses in an easy
game can inhibit play by children. Using the ESC convention to let
the player choose to quit is much more friendly.

SIMON

SIMON is our version of the popular game in which the computer
plays a tune and the player tries to play back the same tune.

124 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

10 REM ... SIMON-INPUT SOUND. ..

11

997 :

998 REM n% ONE-TIME INITIALJIZATION =n%
999

1000 DIM T%(30)

1100 01 = 1: REM ECHO DIGIT IN TUNE OPTION
1110 02 = 1: REM NOTE UNDER BOX OPTION
1120 03 = 1: REM SELECT BOX OPTION

1130 04 = 1: REM SOUND NOTE OPTION

1200 TL = 1: REM LOWEST NOTE

1210 TH = B: REM HIGHEST NOTE

1220 TD = 80: REM DURATION OF EACH NOTE
1230 TP = 10: REM PAUSE BETWEEN SOUNDS
1260 LL 3: REM MINIMUM LENGTH OF TUNE
1250 LK 20: REM MAXIMUM

1300 BV 3: REM BOX HEIGHT

1310 VR 30: REM V-POS OF BOX AT REST

- BV - B: REM V-POS OF BOX SELECTED
18: REM H-POS OF TUNE

23: REM V-POS OF COMPUTER'S TUNE

24: REM V-POS OF LENGTH

REM V-POS OF YOUR TUNE

5
w
~
=
<
w
0 o 8 w66 00
<
E)

[
[*)
@
=]
<
>
L

(]
™

1400 CB = 1: REM BACKGCROUND COLOR
1410 CR = 2: REM BOX AT REST COLOR
1420 CR = 3: REM BOX SELECTED COLOR
1500 L = LL: REM LENGTH OF FIRST TUNE
1597

1588 REM ® COVER SCREEN ®

15989

1600 TEXT : HOME

1610 WP = 0: GOSUB 13000: REM AVOID INITIALIZATION DELAY WITH FIRST
NOTE

1620 S¢ = "SIMON"

1630 FOR J = 1 TO LEN (88)

1640 VTAB 16: HTAB 17 + J: INVERSE : PRINT MID§ (S8.J.1)

1650 VTAB 12 - 2 % J: HTAB 2 + 6 % J: PRINT MID$ (8§.J.1);: NORMAL

1660 WP = J:WD = 60: GOSUB 13000: REM NOTE J

1670 YP = 15: GOSUB 11400: REM AUSE

18680 PRINT CHRS (B);" "

1690 NEXT

1700 - SPEED= 100: FOR Z = 1 TO 4: PRINT CHRS (7);: NEXT : SPEED= 255

1710 VTAB 23: HTAB 8: PRINT "PRESS RETURN TO CONTINUE...";:

1720 GOSUB 11S00: REM WAIT FOR KEYSTROKE

1730 IF Z% = - 1 THEN END : REM ESC

1900 REM GOSUB 9000: REM INSTRUCTIONS

1987 :

1998 REM #%n INITIALIZATION FOR NEXT TUNE a#
1989

2000 FOR J = 1 TO L: REM GENERATE TUNE

2010 T%(J) = (TH - TL) ® BRND (1) + TL

2020 NEXT

2030 GOSUB 8300: REM SET UP BOXES

2080 VT = VC:09 = 01:01 = D: GOSUB B800D: REM FPLAY COMPUTER'S TUNE
(DO NOT PRINT TUNE)

2050 01 = 08: REM RESTORE PRINT TUNE OPTION

2060 YP = 10: GOSUB 11400: REM PAUSE

2100 HOME

2110 VTAB VL: HTAB HT - 8: PRINT "LENGTH: ";L;: REM DISPLAY LENGTH

2120 VTAB VY: HTAB HT -'11: PRINT "YOUR TUNE:";

2130 NJ = 1: REM FIRST NOTE

2997 :

2988 REM wn GET NEXT NOTE IN TUNE nwn

2999 :

3000 GOSUB 11600: REM GET XEYSTROKE, NO ECHO, WITH TYPE-AHEAD
3010 JF zZ% = - 1] THEN VTAB VY: HTAB HT - 1 + NJ: FLASH : PRINT

"ESC";: NORMAL : GOTO 4000: REM ESC
3020 N = Z - 176: REM CONVERT TO NOTE $
8030 JIF N ¢ TL OR N > TH THEN 3000: REM INVALID NOTE
3080 VT = VY: GOSUB 6600: REM RESPOND TO NOTE
3050 IF N = T%(NJ) THEN 5000: REM CORRECT NOTE
3897 :
3998 REM #n TUNE WAS INCORRECT ww
3898
4000 SPEED= 100: FOR Z = 1 TO 4: PRINT CHRS (7);: NEXT : SPEED= 255
4010 YP = 10: GOSUB 11400: REM PAUSE

ADDITIONAL CAMES 125

4020 09 = 01:01 = }): GOSUB 8800: REM PLAY COMPUTER'S TUNE (PRINT
TUNE)

4030 Q1 = 08: REM RESTORE PRINT TUNE OPTION

404p JIF L > LL THEN L =1L - 1

4050 COTO 6000: REM AGAIN?

4897 :

4398 REM ®% CORRECT NOTE #w

4899 :

5000 NJ = NJ + 1

5010 IF NJ (¢ = L THEN 3000: REM NEIT NOTE

5097 :

5098 REM #w% GOT IT #n

50989

5100 HOME

5110 VTAB VY: HTAB HT - 1Z: PRINT "YOU GOT IT: ";

5120 09 = @1:01 = 1: GOSUB 8%00: REM PLAY THE TUNE (PRINT TUNE)

5130 01 = 09: REM RESTORE PRINT TUNE OPTION

5140 REM =®% NEXT TUNE IS ONE LONGER #®

5150 JF L (LH THEN L =L + 1

5887

58988 REM #m AGAIN? =an

5999

6000 HTAB 1: VTAB 24

6010 PRINT "ANOTHER TUNE (Y OR WN)? ";

6020 GOSUB 11200: REM VYIN

6030 ON Z% + Z COTO 6100.6000,.2000,6100: REM ESC, INVALID, Y, N

6100 PRINT : PRINT

110 PRINT "THANKS FOR PLAYING.";

6120 END

7897 :

7998 REM ®% DISPLAY BOX SUBROUTINES =#®

7989

8000 COLOR= CR: REM % DISPLAY BOX N AT REST

86010 Z = VR

8020 GOTO 8200

8050 COLOR= CB: REM ® ERASE BOX N AT REST

8060 GCGOTO 8010

8100 COLOR= CS: REM ® DISPLAY BOX N SELECTED

B8N0 Z = VS

8120 GOTO 8200

8150 COLOR= CB: REM ® ERASE BOX N SELECTED

8160 GOTO B1190

8200 Z) = - 46 + 5 % N: REM = DISPLAY BOXI N AT ROV Z

8210 REM N = BOX &

8220 REM COLOR SET FOR DISPLAY OR ERASE

8230 REM Z = ROW %

8240 FOR ZZ = Z + BV - 1 TO Z STEP - 1: REM DISPLAY FROM BOTTOM

8250 HLIN Z1.,Z1 » z AT Z2

8260 NEXT

8270 RETURN

8300 GR : HOME : REM % DISPLAY BACKGROUND AND INITIAL BOXES

8310 COLOR= CB

8320 FOR Z = 0 TO 38

8330 HLIN 0,39 AT Z

8340 NEIT

8350 FOR N = TL TO TH

8360 GOSUB 8000

8370 NEIT

6380 RETURN

8400 Z5 = STR$ (N): REM w ECHO DIGIT UNDER BOX N

8410 INVERSE

8420 GCGOTO 8500

8450 z6 = " ": REM ® ERASE DIGIT UNDER BOX N

8500 VTAB 21: REM ® DISPLAY Z$ UNDER BOX N

8510 HTAB - 2 + 5§ ® N

8520 PRINT Z$;

8530 NORMAL

8540 RETURN

8600 REM = RESPOND TO NOTE N, NJ NOTE IN TUNE. ECHO NOTE ON LINE VT

8610 IF Q1 > 0O THEN VTAB VT: HTAB HT - 3 » NJ: INVERSE : PRINT N;:
NORMAL : REM ECHO NOTE IN TUNE

8620 IF 0z > 0 THEN COSUB 8400: REM ECHO NOTE UNDER BOZ

8630 IF Q3 > 0 THEN GOSUB 8050: GOSUB 8100: REM SELECT BOX

8640 JIF Q4 > 0 THEN WD = TD:WP = N: GOSUB 13000: REM PLAY NOTE

6650 YP = TP: GOSUB 11400: REM PAUSE

8660 IF Q3 > 0 THEN GOSUB 8150: GOSUB 8000: REM DE-SELECT BOZX

126 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

8670 IF Q2 » 0 THEN GOSUB 8450: REM ERASE NOTE UNDER BOX

8680 RETURN

8800 VT = VC: REM * PLAY THE COMPUTER'S TUNE

8810 IF Q1 > 0 THEN VTAB VT: HTAB HT - 17: PRINT "COMPUTER'S TUNE:";
8900 REM ® PLAY TUNE ON LINE VT ®

8910 FOR NJ = 1 TO L

8920 N = TH(NJ)

8830 GOSUB B8600: REM RESPOND TO NOTE NJ IN TUNE

8840 NEIT

8950 RETURN

8997 :

8998 REM % INSTRUCTIONS #rn
8999

9000 TEXT : HOME
9200 PRINT

9210 PRINT "PRESS ";: INVERSE : PRINT "ESC";: NORMAL : PRINT
" TO QUIT."
9220 PRINT

9230 PRINT "PRESS RETURN TO CONTINUE... *;

9240 GOSUB 11500

9250 IF Z% = - 1 THEN 6100: REM ESC

§260 RETURN

13120 DATA 255.228,203.192,171,152,135.127

g0000

60010 REM % COPYRIGHT 1981 BY HOWARD FRANKLIN, PALO ALTO, CA *®
60020

Type it and merge with INPUT MODULE and SOUND MODULE.
SAVE it as SIMON and RUN it.

The player’s task is to copy the computer’s tune, using the number
keys. Our game provides both visual and auditory clues—the blocks
move and the numbers appear as the note sounds. The player can
concentrate on the numbers, the relative position of the blocks, the
notes, or any combination of these three.

Lookatall the variables you can change to alter the game (see lines
1100 through 1500). Changing these variables gives this game a
tremendous range of possible variations! To minimize visual dis-
traction, we have colored all blocks the same color. You can change
the box color and background color by changing the colors in lines
1400, 1410, and 1420.

Each successive tune is different, created at random from the
available notes. The difficulty of the game is determined only by the
tune’s length. Longer tunes are more difficult; shorter tunes are
easier. The player’s success with the previous tune determines
whether the next tune will be harder or easier. Thus, the game
constantly adjusts itself to match the player’s ability.

You can also make the game more difficult by shortening the pause
between notes. What line number would you change?

ADDITIONAL GAMES 127

1230 TP=

The number of possible notes (and of blocks in the game) is deter-
mined in the program. We have used eight notes.

1. How would you modify the program to make it select from only
five notes?

2. How do you change the length of the first tune played to 57

3. How would you modify the program to eliminate the numbers
that appear when a note is played?

1. 1210 TH = 5 (Or change TL and TH so that any
five numbers separate them.)

2. 1240LL =5

3. 1110Q2 =0

The program responds immediately to the first incorrectly pressed
key. Thus, if a tuneis 3 5 4,and you type 3 6 4, the program will stop
at the 6, signal you, and play the tune correctly.

128 CGOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

CHAPTER SUMMARY

This chapter is our pride and joy. In it we have shown you three
superlative games. STARS is a high-tech version of an old computer
standard; CONCENTRATION and SIMON are popular games from
other media. In these versions we have brought them into the space
age. With the many easy-to-make variations, you have a myriad of
possible CONCENTRATION and SIMON games. Enjoy them all!

APPENDIX A

Renumber/Append Routine

To easily use the routines and subroutines provided in this book,
you must merge the routines with your own programs. In some
cases, you will have to renumber your programs so the merge can
take place.

On the System Master disk that came with your APPLE computer
is a utility program that allows you to both renumber and append
(merge) programs. Here is a brief summary of how to use the program
(a complete set of instructions can be viewed by running the pro-
gram called RENUMBER INSTRUCTIONS).

1.

RUN the RENUMBER program. It will be loaded and
saved in the high memory locations of the computer.
Load your program into memory by typing: LOAD
NAME1 RETURN

Type: &H RETURN. Your program will be placed on
HOLD.

Load the second program by typing: LOAD NAME2 RE-
TURN

Merge the two programs together by typing: &M RETURN.
The resulting program will be found in memory. You
should SAVE it using its own name before you do any-
thing else (better safe than sorry). The complete program
can now be RUN.

We have intentionally numbered our routines and subroutines so

129

130 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

that they should not interfere with programs you will write. It is
important that the line numbers of the two programs you want to
merge do not overlap. If they do, some strange things will occur. For
example, if two statements have the same line number, they will
both appear in the final program. To avoid this and other problems,
you should renumber the statements in your program and/or the
subroutine you wish to merge so line numbers do not overlap. You
can use the same RENUMBER program described above. The proce-
dure is:

1. RUN the RENUMBER program to save it in high memory.
. Load the program to be renumbered.

3. Torenumber your program type: & RETURN. Your entire
program will be renumbered starting with line ten in
increments of ten. All line number references in GOTO,
GOSUB, IN..GOTO, and IF.. THEN statements will be
fixed for you. It may take as much as one minute to
completely renumber a 16K program. Your computer will
be sitting idle, but don’t panic and hit RESET. This prog-
ram may now be SAVEd, RUN, LISTed, or anything else.

The renumber process can also renumber starting with a number
other than ten, or in increments other than ten. You can also use the
program to renumber segments of programs without renumbering
the entire program. Here is the explanation:

F indicates the first new line number.

I indicates the increment between lines.

S is the start or first line number to be renum-
bered.

E isthe last or ending line number to be renum-
bered.

&F 100, 1 20, S 350, E 660—Renumber the statements between 350
and 660 in increments of 20, beginning with line 100. The resulting
line numbers will be 100, 120, 140, . . .

&S 1000, E 2500, F 1000, I 15—~Renumber the statements from 1000
to 2500 beginning with line 1000 and incrementing by 15. The
resulting line numbers will be 1000, 1015, 1030. . . .

Appendix B

Random Ramblings From One
Programmer to Another

This appendix, written for the experienced programmer, outlines
the rationale behind some of the programming choices made
throughout this book. It describes the need for a subroutine library
and the restrictions in APPLESOFT BASIC that affect the construc-
tion and use of such a library. Assembly listings are included for
those featuresthatare essential but cannot be written in BASIC. This
appendix is also a collection of comments about some of the pro-
grams presented that are too technical to present elsewhere (also
known as “ramblings”).

This appendix, however, is by no means a thorough, step-by-step
analysis and description of each algorithm and line of code. The
REMs contained within the listings trace the flow and can be studied
to answer specific questions.

Subroutine Library

From a program design viewpoint, a subroutine extends the capabil-
ity of a given programming language. Once constructed and debug-
ged, a subroutine is logically equivalent to a “super-command.”
Some subroutines are specific “super-commands” for a given ap-

131

132

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

plication (i.e., display a variable number of *’s in STARS, line 8000).
Other subroutines are more general “super-commands” that are
useful in many applications (i.e., input and echo a string, trap for
ESC, and test if itis an integer within a variable range). A subroutine
library is simply a collection of those subroutines which are consid-
ered to be of general use.

This book has developed four subroutine modules (groupings of
subroutines). Each module extends the capabilities of APPLESOFT.
INPUT MODULE extends the INPUT/GET commands, SOUND
MODULE implements a sound function. IMAGE MODULE manipu-
lates block images in LO-RES graphics, and NEXTDATA MODULE
implements a RESTORE to any line number, rather than to the first
DATA statement. Refer to chapter summaries for their usage. Ramb-
lings about these modules appear later in this appendix.

Problems in Implementing a Subroutine Library

There are two types of problems to solve when implementing a
subroutine library. The first type involves limitations imposed by
the given programming language. In APPLESOFT, there are three:
variable name conflicts (changing values of variables in the sub-
routines that are also used in the main program), line-number con-
flicts (overlapping ranges of line numbers), and DATA-statement
conflicts (inability to READ data from a given line number because
DATA statements from other subroutines, or even the main program
itself, might precede it). Other programming languages, or even
other versions of BASIC, eliminate some or all of these “syntactical”
problems. LOCAL variables eliminate the first; languages without
line numbers eliminate the second (obviously not BASIC); and
“RESTORE X,” where X is a line number, eliminates the third.
The second type of problem in implementing a subroutine library
involves difficulty in actual use of the library. “Calling sequences”
(where, with what entry conditions, and with what exit conditions)
must be clearly documented. Initialization requirements must also
be specified (i.e., “Load machine code routine X at location Y before
using”). Most important, the subroutines themselves should be
well-modularized, avoiding unnecessary ‘“side-effects” (i.e., dis-
playing “OUT OF RANGE”), so that they are usable in a variety of
applications. All of these problems are generally independent of a

RANDOM RAMBLINGS FROM ONE PROGRAMMER TO ANOTHER

given programming language. Instead, they are a function of careful
planning by the programmer.

Solutions Chosen

There is no “right answer” to these problems. Instead, there are a
variety of solutions which will work. Those presented in this book
are “best choices” made by the programmer for various objective and
subjective reasons (ease of interfacing, aesthetics, and whims).

Problem #1: Variable-Name Conflicts

By fiat, variable names beginning with W are reserved for the
SOUND MODULE, X for IMAGE MODULE, Y for INPUT MODULE
and NEXTDATA MODULE, and Z as temporary variables. In gener-
al, main programs should only use variable names beginning with
A/V.

This solution may at first seem arbitrary since not many of the
possible variable names in the range W/Z are used in the modules.
An alternative might be to select a small, reusable set, and document
the actual “reserved” names. This solution is not “easy” or “aesthe-
tic” for various reasons: It is easier to remember not to use W/Z than
not to use certain reserved names; it is more difficult to ensure that
the modules themselves do not conflict with each other; it is more
difficult to interface with the modules when “obscure” variable
names are used. BASIC code is hard enough to read, anyway, and
variable names were selected to preserve mnemonics where possi-
ble (i.e., XH is a horizontal position forthe IMAGE MODULE, while
YH is the highest integer in the range in the INPUT MODULE—YM
could be minimum or maximum). The proposed solution generates
prettier code.

Following are some additional prejudices about variable names.
Avoid the letters I and O—they are too easily confused with 1 and 0.
By convention, use integer variables for return codes (Z%=-1 ESC;
=0 invalid integer; =1 valid integer), not for return values (Z=value
if integer valid). Also use integer variables for flags (WR%>0 if
sound routine already loaded). To conserve RAM, use integer arrays,
rather than real arrays, where possible (i.e., L%() and R%() in
MATCH). Use INT() rather than integer variable—the code is easier
to follow.

133

134

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

No consideration has been given to improving execution time of
the programs by ordering the appearance of variables. (Refer to
APPLESOFT II Reference Manual, Appendix E.) There is no un-
obscure way to include this capability in a subroutine library;
however, the experienced programmer may play at will. The pro-
grammer chose program clarity as more important and so chose to
ignore the speed-of-execution issue. With the exception of IMAGE
MODULE, the subroutines run “fast enough.”

Problem #2: Line Number Conflicts

By fiat, reserve lines 10xxx/11xxx for INPUT MODULE, lines
13xxx for SOUND MODULE, lines 15xxx for IMAGE MODULE,
lines 19xxx for NEXTDATA MODULE, and lines 20100/49999 for
the image library in IMAGE MODULE.

As with the variable name solution, this solution also has competi-
tion. An alternative is to use the Renumber Program not only for
merging (as it is now used to append subroutines to the main pro-
gram) but for renumbering as well—simply renumber the sub-
routines needed where there is “room.” The major objection to this
solution is that the entry points will vary from program to program
and will therefore be more difficult to use than fixed-entry points.
Further, it seems as though there are enough line numbers left for the
main program. The programmer’s aesthetics require modules to
begin on 10000—boundaries, major logical portions on 1000—
boundaries, and minor portions on 100-boundaries. Therefore,
massive renumbering leaves the program harder to follow (and
ugly).

GOTOs and GOSUBs are never to lines containing only REMs, in
case theyare deleted or left out when typing. Subroutines should be
entered at the beginning—tricky entrances in the middle are danger-
ous and make the code difficult to modify later (restructuring sub-
routine nesting/entry variables can eliminate this need).

One of the goals in making the listings readable was to select
variable names, line numbering, and REM usage that was reasonably
consistent from program to program (i.e., make the programs look
like each other). The programmer’s aesthetics evolved during this
process with the effect that later programs are more consistent than
earlier ones (“It’s too hard to be consistent”). It’s difficult to write
pretty code in BASIC; these programs represent one programiner’s
attempts to create beauty.

RANDOM RAMBLINGS FROM ONE PROGRAMMER TO ANOTHER 135

As with ordering the appearance of variables, carefully ordering
line numbers can speed up execution (see APPLESOFT II Reference
Manual, Appendix E). Likewise for the reasons to ignore this
problem.

Problem #3: DATA Statement Conflicts

The solution is straightforward and tricky. A “RESTORE X”
(where X is any line number) was added in NEXTDATA MODULE.
Many BASIC’s already have this capability—unfortunately, APPLE-
SOFT does not. The image library in IMAGE MODULE avoids an
incredible amount of bookkeeping by beginning each image at
20000+100*# and is easily implemented with RESTORE X.
SOUND MODULE loads machine code routines by POKEing from
DATA statements, rather than individual POKEs. (Notice, however,
that NEXTDATA MODULE must load its machine code with
POKEs.)

Here is an assembly listing of RESTORE X:

6 %
7 * APPLESOFT EQUATES
8 R
9 DATPTR EQU $7D ;MEMORY LOCATION FOR
NEXT READ
10 LINNUM EQU §50 ;LINE NUMBER FOR 'FNDLIN'
11 LOWPTR EQU $9B ;ADDRESS FROM 'FNDLIN'
l% FNDLIN EQU $D61A ;SEARCH FOR LINE NUMBER
1 "
14 L
15 ® RESTOREX - NEXT READ FROM LINE X
16 R
17 LINEX Ds 2 ;LINE NUMBER
18 R
030z: AD 00 03 19 RESTOREX LDA LINEX ;SET LINNUM
0305: 85 50 z0 S5TA L INNUM
0307: AD 01 03 21 LDA LINEX +1
030A: 85 351 2 S5TA LINNUMs1
030C: zZ0 1A D6 z3 JSR FNDLIN ;SEARCH
030F: A5 9B 24 LDA LOWPTR ;UPDATE POINTER FOR
: NEXT READ
0311 18 5 cLc
031Z: 69 09 26 ADC #4 ;OFFSET FOR ACTUAL DATA
0314: 85 7D 27 STA DATPTR
0316: A5 9C 8 LDA LOWFTR+1
D318: 695 00 z9 ADC #0
031A: 835 T7E 30 STA DATPTR#1
031C: 60 31 RTS

Problem #4: Documenting Calling Sequences
The chapter summaries include all the calling sequences for each
module. Additionally, REMs precede each entry point in the list-

136

GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

ings. If REMs must be deleted to save space, the entry point REMs
should be deleted last.

Problem #5: Initialization Requirements

The modules are self-initializing. They work even if the program
“forgets” to initialize them. This was an important design goal since
novice programmers are encouraged to use the modules in their
programs.

The solution is a rare example of an APPLESOFT trick (i.e., “It
won’t necessarily work in other BASICs”) that the programmer
could stomach. (The programmer finds that tricks, or “kludges”
interfere with proper digestion.) This solution relies on the “feature”
that RUN sets all arithmetic variables to 0 and sets strings to empty.
Wherever initialization is required, a flag is tested (i.e., SOUND
MODULE, line 13000 WR%=0 not initialized; >0 already initial-
ized). See INPUT MODULE, line 10000 for initializing YF$, the filler
character. See IMAGE MODULE, lines 15310 and 15410 for initializ-
ing XS, the space between images. Line 15020 in IMAGE MODULE
(relying on an automatic DIM XC(10)) represents a marginally
acceptable juggling of the programmer’s aesthetics (“Why not?”)

Problem #6: Well Modularized,

Avoiding Unnecessary “Side-Effects”

The programmer thinks so and the publisher has been explicitly
instructed not to represent opposing points of view.

SELECTED COMMENTS ABOUT THE PROGRAMS

The sound chapter uses two machine code routines, one to produce
pitches for a fixed duration (SOUND), and the other to produce
pitches until a new key is pressed (ORGAN). Assembly listings are
included below:

RANDOM RAMBLINGS FROM ONE PROGRAMMER TO ANOTHER 137

33 n
34 % APPLESOFT EQUATES
35 n
36 CLICK EQU $C030 ;SPEAKER TOGGLE
37 n
38 w
39 % SOUND - SOUND A PITCH FOR A SET DURATION
40 ®
41 % ENTRY . DURATION-L.H SET
42 " 1: PITCH OFFSET IN 'PITCHTBL' (1/40)
43 " 2: PITCH SET
44 ®
45 DURATION DS Z
46 PITCH Ds 1
47 "
48 " ENTRY 1: USE 'PITCH' AS OFFSET TO ACTUAL
FITCH
03z0: AC 1F 03 49 SOUND1 LDY PITCH
03z3: B9 4% 03 50 LDA PITCHTBL-1.Y
0326: 8D 1lF 03 351 STA PITCH
52 "
53 % ENTRY 2: 'PITCH' SET
0329: AD 0O 54 SOUND2Z Loy #0 ;INITIALIZE 24-BIT
"COUNTER"
03zB: EE 1D 03 55 INC DURATION
032E: EE 1E 03 356 INC DURATION=#1
57 "
0331: AE 1F 03 58 NITCLICK LDX PITCH ;RESTORE PITCH COUNT
0334: AD 30 CD 59 LDA CLICK ;"CLICK" SPEAKER
60 "
0337: 88 61 COUNTDOWN DEY :24-BIT COUNTER
(Y, DURATION-L . .H)
0338: DO DA 62 BNE NOTDONE
033A: CE 1D 03 63 DEC DURATION
033D: DO 05 64 BNE NOTDONE
033F: CE 1E 03 65 DEC DURATION+1
034z: FO 0S5 66 BEO DONE
67 "
0344: CA 68 NOTDONE DEX :CHECKX JF NEXT CLICK YET
0345: FO EA 69 BEQ NEITCLICK
0347: DO EE 70 BNE COUNTDOWN
71 n
0348: 60 72 DONE RTS
73 R
74 % PITCHTBL - PITCH VALUES
D34A: FF FZ E¢ 75 PITCHTBL HEX FFFZE4D7CBCOBSAB ;1/8
0352: Al 98 BF 76 HEX Al98BBFBTTFT78716B ;9/16
035A: 65 5F SA 77 HEX 655F5A55504B4743 ;17/28
0362: 3F 3B 38 78 HEX 3F3B3835322F2C2ZA :25/312
036A: 28 25 23 798 HEX 282523212Z01E1C1IA ;33/40
81 n
82 " APPLESOFT EQUATES
83 I
84 KEY EQU $C000
85 "
86 "
87 % ORGAN - SOUND A PITCH UNTIL ANY KEY IS
PRESSED
88 *
89 # ENTRY: PITCH OFFSET IN 'PITCHTBL' (1/40)
80 ®
0372: AC i1F 03 81 ORGAN Loy PITCH
0375: BS 49 03 92 LDA PITCHTBL-1.VY
0378: 8D 1lF 03 93 STA PITCH
037B: AD 00 CO0 94 ORGCLICK LDA XEY ;CHECKX KEYBOARD
037E: 30 0E 95 BMI ORGDONE ;-)> KEY WAS PRESSED
0380: AE 1F 03 86 LDX PITCH ;RESTORE PITCH COUNT
0383: AD 30 CO 87 LDA CLICK ;"CLICK" SPEAKER
98 n
99 ® THE NEXT TWO INSTRUCTIONS ARE INCLUDED TO
MAKE

100 " THE TIMING OF THE "INNER LOOP" APPROXIMATELY
L B

* TO THAT OF THE PREVIOUS ROUTINE 'SOUND'.

x

138 CGOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

103 ®* THIS RESULTS IN THE PITCH VALUES PRODUCING

SIMILAR

104 " PITCHES IN EACH ROUTINE

105 i
p3g6: 88 106 ORGCOUNT DEY
0387: DO 00 107 BNE ORGNOF

108 ORGNOP EQU 7 ,END OF "WASTE" TIME
0389: CA 109 DEX :CHECK JYF NEXT CLICK YET
038A: FO EF 110 BEQ ORGCLICK
038C: DO F&8 111 BNE ORGCOUNT

. 112 R

038E: 60 113 ORGDONE RTS

Notice that SOUND has two entries. The first, SOUND1, uses
PITCH to look up a value in PITCHTBL. The second, SOUNDZ2, uses
PITCH as the actual value. Sounds are produced by clicking the
speaker at an internal frequency determined by the value in PITCH.
The relationship of the internal frequency to actual sound is a
function of the timing of the machine code. Notice that PITCHTBL
has allocated space for forty different internal frequencies. The
16-bit value in DURATION controls the length of the sound.

ORGAN uses the same frequencies in PITCHTBL and “wastes
time” in its internal loop so that the internal timings approximate
those of SOUND. Unlike DURATION in SOUND, ORGAN continues
to produce its tone until a key is pressed. One of the limitations of
the APPLE hardware is that there is no way to detect when a key has
been released. Therefore, ORGAN must wait for a new key press to
terminate.

In the LO-RES Chapter, INPUT LENGTHS segments the keyboard
into different sections, with each section affecting a different inter-
nal parameter. This technique might be applicable to one of ycur
programs and a simple addition to INPUT MODULE will implement
it.

The elegance of a subroutine library can be seen in the addition of
three BASIC commands to SPIRALZ to create SPIRAL SOUND. (The
LO-RES cover screens in the last two chapters are also added with
minimal new code.)

IMAGE MODULE is already discussed in some detail in its chap-
ter. Worth mentioning here is that execution speed can be substan-
tially increased with the addition of machine code routines. This is,
however, not the purpose of the book. Machine code was used only
in the absence of a BASIC solution. Program length/disk access time
can be shortened by including only those images you need in your
program.

RANDOM RAMBLINGS FROM ONE PROGRAMMER TO ANOTHER 139

Asfor HI-RES, the programmer is thankful that there are commer-
cial packages available The APPLE hardware can do it, but APPLE-
SOFT is another matter. Refer to the APPLESOFT Reference Manual
if the numeric variables and arrays (or even the program) override
the HI-RES screen buffers—Appendix L contains the Zero Page
pointers that can verify whether this has occurred.

INPUT MODULE traps for the ESC key sinceit provides one of the
few special keys that can be used by program logic to exit from the
current level in a game (i.e., program). Requiring ESC-RETURN and
echoing ESC eliminates the problem of a “hot” ESC key.

ONERRGOTO is essentially useless, except while debugging pro-
grams. Errors 0/224 are errors in logic (program redesign can avoid
them). Since INPUT MODULE does not use the INPUT command,
error 254 is not possible. Error 255, CTRL-C, is a nice idea but was
incorrectly implemented—execution RESUMESs with the statement
that was just executed (i.e., RESUME after a CTRL-C will re-execute
the same instruction, rather than continuing with the next). Alas,
CTRL-C is only trapped while waiting for input. It is fatal if pressed
otherwise. Maybe error 255 could be used to display a graceful adieu
before the demise. Even if a brilliant solution is discovered, the user
still has the RESET (or, CTRL-RESET) key in his arsenal.

STORY is an example of a simple game gone wild with a cover
screen in LO-RES, a trap for word breaks when displaying, and
DATA-driven questions and story construction.

BLOCKOUT struggled to overcome limitations in APPLESOFT
substrings. The SCRN function, omitted from discussion in the
LO-RES chapter, is used in line 8350 to guarantee that the block
changes to a new color.

Both MATCH and CONCENTRATION have fun manipulating
data structures and produce some fascinating visual effects. Notice
theaddition ofaninverted A andan inverted T tothe IMAGE library
forthe MATCH cover screen. As an added challenge, play CONCEN-
TRATION on a black and white TV and try distinguishing the subtle
variations. :

STARS was another old favorite that got out of hand with the
addition of LO-RES and sound. The effect of the graph erasing itself
was purely accidental.

SIMON reminds your programmer of the hot dog stands that
advertize 1,048,576 varieties. The programs minimize the use of
monitor calls and ESC sequences in PRINT comands. Such features

140 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

obscure the readability of programs. A better solution is for language
designers to expand languages to include additional commands
(i.e., HOME instead of CALL-936). Until then, your programmer
prefers to PRINT a string of blanks, rather than to CALL a monitor
routine that clears to the end of the line.

Please Write

Your programmer welcomes all correspondence but regrets, in ad-
vance, that there may not be time to answer each letter. Please write
about bugs (AARGH!, “The typesetters blew it!”); extensions to the
subroutine modules; and other modules.

Please write to:

Howard Franklin

c/o Golden Delicious Games
John Wiley & Sons

605 Third Avenue

New York, NY 10016

APPENDIX C

Typing Assistance

If you are going to type all our programs into your APPLE by hand,
the following comments may help you read and enter the listings:

1.

The modules should be saved on your disk just once, as
they are, with no other program parts. That way you can
always merge just the module with your program. You
have to type the module only once!

We carefully used high-line numbers for the modules so
they would not interfere with your programs. Programs
should not go beyond line 10000, though they can be
resumed at line 50000.

Avoid using variable names starting with W, X, Y, and Z
in your programs, as they are used in the various modules.
If you have doubts as to what you are reading in the
listings, here are some clues:

The letter I is not used as a variable name. We did not
even use Al or ZI. It’s too easily confused with the number
1.

. The letter O is never used as a variable name, to'avoid
confusion with number 0. AO does not exist either.

You may find variables names like A1 or BO or C9.
The line numbers and blank REM lines provide a natural
divider between program sections and thoughts.

If you are running out of memory space, you can delete all

141

142 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

or most of the REMs in the programs, but it’s best that you

leave them if you can, for future reference and changes.

Delete on-line REMs first, then introductory REMs. On-

line REMs annotate how the BASIC code works, while

introductory REMs explain how to access the subroutines
- and make changes to the program.

7. If you are running out of memory space, you can delete
parts of the INPUT MODULE and parts of the IMAGE
MODULE that are not used. For example, since the game
STARS uses only the letters S, T, A, and R, all other
images in the IMAGE MODULE can be deleted.

APPENDIX D

Evaluating Programs

The phrase “user-friendly software” is being used often these days.
As the quantity of available computer programs increases, people
are becoming more selective about what they buy. They are looking
not only for programs that will run on their computers, but also for
programs that are easy to use. They are no longer patient with
programs whose text scrolls off the screen, whose response require-
ments are awkward, or whose questions are ambiguous.

Throughout this book, we have made suggestions for program-
ming conventions that are user-friendly. The INPUT routines, with
their error traps and helpful error messages, are examples of user-
friendly programming. The escape convention for exiting programs
is another user-friendly routine.

This Appendix summarizes the suggestions already made and
adds others. Use the following checklist to measure both your own
programs and commercial programs for their user-friendly qualities.

DESIRABLE QUALITIES IN EDUCATIONAL SOFTWARE

Introduction/instructions at the same level as the activity.
Branching to avoid instructions.

Branching for “expert” mode.

Difficulty of task matched to required reading level.

143

144 COLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

Exit/interrupt information clearly stated.
Well-formatted, uncrowded screens.

Obvious choices of what to enter.

Consistent input pattern (use either INPUT or GET).
User-controlled flexibility in number of tries permitted.
 User-controlled timing in instruction presentation.
User-controlled flexibility in difficulty of task.
Response for right answer more exciting than for wrong.
Helpful and non-negative responses.

Easily accessible “help” screens.

Error traps with helpful messages.

Frequent screen clears.

Consistent use of help and exit conventions.

Avoid These
Word wraparound.
Reading/responding at bottom of the screen.
Very “busy” screens.
Inadequate spacing.
Text scrolling off the screen (especially instructions).
Excessive flashing text.
Excessive use of sound, especially repetitive tunes.

Consider These

Is this a good computer application or could it be done better
another way?

Does the thinking required to play the game match the learn-
ing experience being promoted? (Is two-step logic required
in an otherwise simple game?)

Is it totally easy to operate the program? Learning to get
around in the program is not usually the point of the game.

Index

Index

APPLESOFT Reference Manual, 58, 61, 134
ASCII, 2, 48, 52

BACK AND FORTH, 10
Beeps, 2, 3, 4
BELL, 2
Bell games, 3—4
Black box routine, 6
BLOCKOUT:
explanation, 97, 101-103
list, 100-101
BORDERT1, 30
BORDERZ2, 30

Clicks, 1,5, 9
COLOR, 20
Color chart:
HI-RES, 62
LO-RES, 20
COLOR DOTS, 22
Coloring the screen, 29-33
COLOR LINES, 26
Community Computer Center, 94, 97, 120
CONCENTRATION:
explanation, 118—120
list, 114—-118

147

148 GCOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

COUNT BEEPS, 5
CTRL G, 2

ESC convention, 74
Evaluating programs, 143-144

FLOWERS, 25
Full screen LO-RES, 35

General purpose input subroutine, 74-80
GR, 20

HCOLOR, 62

HGR, 62, 64

HGR2, 62, 64

HI-RES graphics, 61-67
color chart, 62, 64
color wash, 65
HCOLOR, 62
HGR, 62
HGR2, 62
HPLOT, 63-64
problems, 65—-67

HLIN, 20

HOME, 22

HPLOT, 63-64

Image library, 49

IMAGE MODULE:
background wash, 46
centering, 44
image library, 49
images, new, 50-52
line numbering convention, 48
list, 38—43
uncentered, 45

Images, new, 50-52

INPUT BEEPS, 4

INPUT BOXES, 29

INPUT COLORS, 28

INDEX

149

INPUT LENGTHS, 28-29

INPUT MODULE, 72-74
ESC convention, 74
General purpose input subroutine, 74—80
Get one keystroke ubroutine, 85—-86
Input decimal subroutine, 82—83
Input integer subroutine, 80-81
Pause or keystroke subroutine, 84-85
Reference summary, 86—89
Single character subroutine, 83—84
Y/N subroutine, 83

KEYS A/Z, 9
KEYS 1/8, 8

Letter game suggestions, 47
LINE LENGTHS, 27
LO-RES graphics, 19-35

COLOR, 20

color chart, 20

full screen, 35

GR, 20

HLIN, 20

mixed screen, 20-21

PLOT, 20

VLIN, 20

wash, 31

MATCH:

list, 104-109

to modify, 109-110
MUSIC MESSAGE, 10
Music sounds summary, 16

NEXTDATA MODULE, 6
ORGAN, 13

Palindrome, 11
People’s Computer Company Newspaper, 94, 97

150 GOLDEN DELICIOUS GAMES FOR THE APPLE COMPUTER

PIANO, 11-12
PLOT, 20

Random numbers formula, 22
RENUMBER/APPEND subroutine, 129—130

SIMON, 123-126
SNAKE, 97
SOUND EFFECTS:
explanation, 14-15
list, 14
Sound effects summary, 16—17
SOUND MODULE, 6-8
SOUND subroutine reference summary, 16
SPEED, 3
SPIRAL, 32
SPIRAL SOUND, 34
SPIRAL1, 32
SPIRAL3, 33
SPIRALZ2, 33
STARS, 120-123
STORY:
explanation, 94-97
list, 92—94
STRING PATTERN, 68
STRING PATTERNZ2, 68

TEXT, 22

THREE-COLOR TREE, 54-55
TWO-COLOR TREE, 50-52
TWO SPIRALS, 33

Typing assistance, 141-142

VLIN, 20

WASH, 31
WISHING WELL, 24
Word wraparound, 95

NOW AVAILABLE!

All the game programs and subroutines listed in this book will
help you get more enjoyment from your Apple than ever. Share the
games with your friends and family, and build on the subroutines
to write your own games!

Save time and don’t risk introducing keyboarding errors into your
programs. Buy the two 5%" disks at your favorite computer store,
or order from Wiley:

In the United States: John Wiley & Sons
1 Wiley Drive
Somerset, NJ 08873

In the United Kingdom John Wiley & Sons, Ltd.
and Europe: Baffins Lane, Chichester
Sussex PO 19 1UD UNITED KINGDOM

In Canada: John Wiley & Sons Canada, Ltd.
22 Worcester Road
Rexdale, Ontario MOW 1L1 CANADA

In Australia: Jacaranda Wiley, Ltd.
GPO Box 859
Brisbane, Queensland AUSTRALIA

Franklin—APPLE® GAMES PROGRAM DISK SET 1-86837-X

To The Reader

The computer programs from Golden Delicious Games for the
Apple™ Computer are delivered to you on disks that are not copy-
protected. That is, there is no mechanical or electronic device to
prevent copying. They are copyrighted. We are morally committed
to provide software that you can modify so you can both explore our
games and by using segments from our programs, develop games of
your own. We also feel you are entitled to have sufficient backup
copies so that you need not fear that machine malfunction or per-
sonal error will destroy your only copy of the program.

Our moral commitment assumes a personal commitment on your
part — that you will NOT make copies of our programs and distrib-
ute them freely to your friends, neighbors, or user group. By not copy
protecting these disks we are hoping to demonstrate to publishers
and software developers alike that programs can be disseminated
without copy protection and still be profitable. Without profit we
know that publishers cannot continue offering software at reason-
able prices.

Please cooperate with our effort by making copies of these pro-
grams only for your own use.

Sincerely,
Howard Franklin

Joanne Koltnow
LeRoy Finkel

NOW AVAILABLE

All the game programs and subroutines listed in this book will
help you get more enjoyment from your Apple than ever. Share the
games with your friends and family, and build on the subroutines
to write your own games!

Save time and don’t risk introducing keyboarding errors into your
programs. Order the two 5%" disks for only $34.95 today!

The APPLE® GAMES PROGRAM DISK SET is available at your
favorite computer store. Or use the handy order card below.

THE APPLE™ GAMES PROGRAM DISK SET

Yes, I want to start writing my own games. Please send me ____ copies of
the APPLE GAMES PROGRAM DISK SET at $34.95 each.

1-86837-X $34.95

__ Payment enclosed (including state sales tax). _ Bill me.
Wiley pays shipping and handling charges. ____ Bill my company.
__ Charge to my credit card: ____ Visa ___ Master Card

Card number DDDDDDDDDDDDDDDD

Expiration date Signature
Name Title
Company
Address
City State Zip Code
1-86837-X 263 Signature (Order invalid unless signed)

Wenormallyshipwithintendays. If payment accompanies your order and shipment cannot be made
within 90 days, payment will be refunded.

TURN YOUR IMAGINATION LOOSE
WITH APPLE®™ GAME PROGRAMS TODAY

Buy the 5%" disks at your favorite computer store,
or order from Wiley:

In the United States: John Wiley & Sons
1 Wiley Drive
Somerset, NJ 08873

In the United Kingdom John Wiley & Sons, Ltd.
and Europe: Baffins Lane, Chichester
Sussex PO 19 1UD UNITED KINGDOM

In Canada: John Wiley & Sons Canada, Ltd.
22 Worcester Road
Rexdale, Ontario MOW 1L1 CANADA

In Australia: Jacaranda Wiley, Ltd.
GPO Box 859
Brisbane, Queensland AUSTRALIA

Franklin—APPLE® GAMES PROGRAM DISK SET 1-86837-X

|

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES
BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 2277, NEW YORK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

JOHN WILEY & SONS, Inc.
1 Wiley Drive
Somerset, N.J. 08873

Attn: Apple™ Games Program Disk Set

Computers ' ; $12.95

You can write your own games for the Apple@II!
TECHNIQUES FOR CREATING

GOLDEN DELICIOUS GAMES
FOR THE APPLE COMPUIER

More than just another collection of computer games, this unique book teaches you to
create your own games on the Apple™ Il. You'll learn the theory of game structure...how a
game program progresses...the kinds of subroutines needed...and techniques to help
you make full use of the Apple II's graphic capabilities.

The book includes many game routines—many never before published for micros. And it
helps you build on these subroutines to modify other games—or to write your own!

With just a fundamental knowledge of BASIC, you can turn your Apple Il into a home
entertainment center. Go/lden Delicious Games for the Apple™ Computer shows you how to
control the Apple II's brilliant colors using both low and high resolution graphics. You'll
learn how to cover your whole screen with images you can design, as well as colored lines,
boxes, borders, and spirals...and combine these patterns with music and sound effects.
The book also includes special purpose input routines to make entering data easier.

And there’s more to Golden Delicious Games than pure fun. You'll iearn how to turn your
Apple Il into an educational aid for the whole family, and how to make all types of games
user-friendly and tailor them to different ages and abilities. While involved in games ranging
from story construction to word guessing and matching, children will build language,
number, and keyboard skills...and learn basic computer operations and logic. Parents,
teachers, and Apple amateurs alike will enjoy and learn from Golden Delicious Games.

Howard M. Franklin is a software consultant in Palo Alto,
California. Joanne Koltnow markets educational software for-Apple
Computer. With co-author Franklin, she founded the Community
Computer Center, the nation’s first walk-in recreational computing
facility. LeRoy Finkel, Instructional Computing Coordinator for the 4
San Mateo (Calif.) County Office of Education, is the co-author of
five other bestseliing Wiley Self-Teaching Guides. All three are
pioneers in the educational/recreational uses of computers.

Save time and errors! All the game programs and
subroutines in this book are available on disk—ready to
use on your Apple™ for instant enjoyment. Buy at your
favorite computer store or bookstore, or use the handy
order card inside.

Apple™ is a trademark of Apple Computer, Inc. Any questions concerning this book
should be referred to the Publisher, John Wiley & Sons, and not to Apple Computer,
which is not responsible for and was not involved in its preparation. -

More than a million people have learned to program, use, and enjoy microcomputers with
Wiley Self-Teaching Guides. Look for them all at your favorite bookshop or computer store!

JOHN WILEY & SONS, INC.
605 Third Avenue, New York, N.Y. 10158
New York e Chichester e Brisbane e Toronto ¢ Singapore ISBN 0 471 09083-2

FRANKLN/KOLINOW /FINKE GOLDEN DELICIOUS GAMES FOR THE APPLE' COMPUTER %) wiey

	Contents
	Preface
	Chapter 1: Musical Notes and Sound Effects
	Chapter 2: Low-Resolution Graphics
	Chapter 3: Graphic Images in LO-RES
	Chapter 4: High-Resolution Graphics
	Chapter 5: Routines for Entering Data
	Chapter 6: Text-Based Games
	Chapter 7: Additional Games
	Appendix A: Renumber/Append Routine
	Appendix B: Random Ramblings From One Programmer to Another
	Appendix C: Typing Assistance
	Appendix D: Evaluating Programs
	Index
	To the Reader

